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Preface

This book serves as a guide and reference for anyone who wishes to understand
analysis of neural data generated from studies that range from molecules, to
circuits, to systems, to behavior.

Its origins may be traced to the decision by two of us (E.N.B. and R.E.K.), in
1998, to write a review article on statistical analysis of spike train data. Shortly
after commencing we realized that some of the methods we thought we ought to be
reviewing had, in fact, not yet been developed. After we and others rectified this
situation, we published a pair of reviews (Brown et al. 2004; Kass et al. 2005).
During this time we also broadened our interests to other experimental modalities,
such as neuroimaging, and we began teaching workshops and semester-long
courses on statistical methods for neuroscience. In addition, we met the third
author of this book (U.E.), who came to share our interests in research and ped-
agogy (and who pursued his Ph.D. thesis under the guidance of E.N.B.).

It became clear that a book on this subject was desperately needed, and we
agreed to write one. While this turned into a longer project than we anticipated,
numerous research collaborations, conversations with colleagues at meetings, and
extensive comments from students gave us many insights into the content and
presentation of the principles and techniques that evolved to form this volume. We
feel we are much wiser than when we started, and we hope we have succeeded in
imparting a good deal of what we have learned in the process.

Some readers may expect a book organized by type of neural data. We decided,
instead, to organize by analysis, with each chapter devoted to broadly categorized
statistical concepts described succinctly in section headings that are available in
the extended version of the table of contents. Each chapter, however, also contains
multiple examples of the way these analytical ideas have been used in the brain
sciences: there are more than 100 such examples throughout the book, and they are
indexed. A reader wishing to see how we have discussed fMRI data, for instance,
should start with the example index. More specific organizational guidelines are
given in Chapter 1.

The book is intended as either a reference, or a text. R.E.K. has used
preliminary versions of the manuscript in classes populated by graduate students of
varying backgrounds, ranging from biologists with minimal mathematical
knowledge, who were looking for conceptual understanding, to engineers, who
needed to see derivations. We opted to try to satisfy both kinds of audiences.

vii


http://dx.doi.org/10.1007/978-1-4614-9602-1_1

viii Preface

An appendix is provided as a reminder of key mathematical ideas, and derivations
are often marked as optional by indenting them. To those who wish to use the book
as a text, R.E.K. would suggest the following ordering of topics:

Part I (Elementary Statistics): Chapters 1-7, 10, 12.1-12.4, 13.1.

Part IT (Basic Statistical Theory): Chapters 8, 9, 11, 12.5, 13.2-13.4.

Part IIT (Advanced Topics): Selections from Chapters 14—19.

In his experience, Parts I and II take approximately 12 and 7 classes,
respectively.

Many readers will want to see computer code for the methods we have
described. We ourselves used both Matlab and R to produce figures. Although we
decided not to inject Matlab or R code into the body of the book, we have put code
up on our the website http://www.stat.cmu.edu/ ~ kass/KEB.

In addition to the many colleagues and students who made suggestions along
the way, including those who are acknowledged within the text, we are indebted to
Spencer Koerner, who helped clean up and create much code and many figures,
Patrick Foley, who created the website, Heidi Sestrich, who fixed numerous
defects in our LATEX, and Matthew Marler, who read the whole manuscript
carefully and provided extremely helpful comments. We are also grateful to Elan
Cohen and Ryan Sieberg, who each created several figures.

Robert E. Kass
Uri T. Eden
Emery N. Brown
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Chapter 1
Introduction

1.1 Data Analysis in the Brain Sciences

The brain sciences seek to discover mechanisms by which neural activity is
generated, thoughts are created, and behavior is produced. What makes us see, hear,
feel, and understand the world around us? How can we learn intricate movements,
which require continual corrections for minor variations in path? What is the basis
of memory, and how do we allocate attention to particular tasks? Answering such
questions is the grand ambition of this broad enterprise and, while the workings of the
nervous system are immensely complicated, several lines of now-classical research
have made enormous progress: essential features of the nature of the action potential,
of synaptic transmission, of sensory processing, of the biochemical basis of memory,
and of motor control have been discovered. These advances have formed conceptual
underpinnings for modern neuroscience, and have had a substantial impact on clinical
practice. The method that produced this knowledge, the scientific method, involves
both observation and experiment, but always a careful consideration of the data.
Sometimes results from an investigation have been largely qualitative, as in Brenda
Milner’s documentation of implicit memory retention, together with explicit memory
loss, as a result of hippocampal lesioning in patient H.M. In other cases quantitative
analysis has been essential, as in Alan Hodgkin and Andrew Huxley’s modeling of ion
channels to describe the production of action potentials. Today’s brain research builds
on earlier results using a wide variety of modern techniques, including molecular
methods, patch clamp recording, two-photon imaging, single and multiple electrode
studies producing spike trains and/or local field potentials (LFPs), optical imag-
ing, electroencephalography (producing EEGs), and functional imaging—positron
emission tomography(PET), functional magnetic resonance imaging (fMRI), mag-
netoencephalography (MEG)—as well as psychophysical and behavioral studies. All
of these rely, in varying ways, on vast improvements in data storage, manipulation,
and display technologies, as well as corresponding advances in analytical techniques.
As aresult, data sets from current investigations are often much larger, and more com-

R. E. Kass et al., Analysis of Neural Data, 1
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_1,
© Springer Science+Business Media New York 2014



2 1 Introduction

plicated, than those of earlier days. For a contemporary student of neuroscience, a
working knowledge of basic methods of data analysis is indispensable.

The variety of experimental paradigms across widely ranging investigative levels
in the brain sciences may seem intimidating. It would take a multi-volume encyclo-
pedia to document the details of the myriad analytical methods out there. Yet, for
all the diversity of measurement and purpose, there are commonalities that make
analysis of neural data a single, circumscribed and integrated subject. A relatively
small number of principles, together with a handful of ubiquitous techniques—some
quite old, some much newer—Ilay a solid foundation. One of our chief aims in writing
this book has been to provide a coherent framework to serve as a starting point in
understanding all types of neural data.

In addition to providing a unified treatment of analytical methods that are crucial
to progress in the brain sciences, we have a secondary goal. Over many years of
collaboration with neuroscientists we have observed in them a desire to learn all that
the data have to offer. Data collection is demanding, and time-consuming, so it is
natural to want to use the most efficient and effective methods of data analysis. But
we have also observed something else. Many neuroscientists take great pleasure in
displaying their results not only because of the science involved but also because of
the manner in which particular data summaries and displays are able to shed light
on, and explain, neuroscientific phenomenon; in other words, they have developed
a refined appreciation for the data-analytic process itself. The often-ingenious ways
investigators present their data have been instructive to us, and have reinforced our
own aesthetic sensibilities for this endeavor. There is deep satisfaction in compre-
hending a method that is at once elegant and powerful, that uses mathematics to
describe the world of observation and experimentation, and that tames uncertainty
by capturing it and using it to advantage. We hope to pass on to readers some of
these feelings about the role of analytical techniques in illuminating and articulating
fundamental concepts.

A third goal for this book comes from our exposure to numerous articles that report
data analyzed largely by people who lack training in statistics. Many researchers have
excellent quantitative skills and intuitions, and in most published work statistical
procedures appear to be used correctly. Yet, in examining these papers we have
been struck repeatedly by the absence of what we might call statistical thinking, or
application of the statistical paradigm, and a resulting loss of opportunity to make
full and effective use of the data. These cases typically do not involve an incorrect
application of a statistical method (though that sometimes does happen). Rather, the
lost opportunity is a failure to follow the general approach to the analysis of the data,
which is what we mean by the label “the statistical paradigm.” Our final pedagogical
goal, therefore, is to lay out the key features of this paradigm, and to illustrate its
application in diverse contexts, so that readers may absorb its main tenets.

To begin, we will review several essential points that will permeate the book.
Some of these concern the nature of neural data, others the process of statistical
reasoning. As we go over the basic issues, we will introduce some data that will be
used repeatedly.
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1.1.1 Appropriate analytical strategies depend crucially
on the purpose of the study and the way the data
are collected.

The answer to the question, “How should I analyze my data?”’ always depends on
what you want to know. Convenient summaries of the data are used to convey appar-
ent tendencies. Particular summaries highlight particular aspects of the data—but
they ignore other aspects. At first, the purpose of an investigation may be stated
rather vaguely, as in “I would like to know how the responses differ under these two
experimental conditions.” This by itself, however, is rarely enough to proceed. Usu-
ally there are choices to be made, and figuring out what analysis should be performed
requires a sharpening of purpose.

Example 1.1 SEF neural activity under two conditions Olson et al. (2000) exam-
ined the behavior of neurons in the supplementary eye field (SEF), which is a frontal
lobe region anterior to, and projecting to, the eye area in motor cortex. The general
issue was whether the SEF merely relays the message to move the eyes, or whether
it is involved in some higher-level processing. To distinguish these two possibilities,
an experiment was devised in which a monkey moved its eyes in response to either
an explicit external cue (the point to which the eyes were to move was illuminated) or
an internally-generated translation of a complex cue (a particular pattern at fixation
point determined the location to which the monkey was to move its eyes). If the
SEF simply transmits the movement message to motor cortex and other downstream
areas, one would expect SEF neurons to behave very similarly under the two exper-
imental conditions. On the other hand, distinctions between the neural responses in
the two conditions would indicate that the SEF is involved in higher-level cognitive
processing. While an individual neuron’s activity was recorded from the SEF of an
alert macaque monkey, one of the two conditions was chosen at random and applied.
This experimental protocol was repeated many times, for each of many neurons.
Thus, for each recorded neuron, under each of the two conditions, there were many
trials, which consist of experimental repetitions designed to be as close to identical
as possible.

Results for one neuron are given in Fig. 1.1. The figure displays a pair of raster plots
and peri-stimulus time histograms (PSTHs). Each line in each raster plot contains
results from a single trial, which consist of a sequence of times at which action
potentials or spikes occur. The sequence is usually called a spike train. Note that for
each condition the number and timing of the spikes, displayed on the many lines of
each raster plot, vary from trial to trial. The PSTH is formed by creating time bins
(here, each bin is 10ms in length), counting the total number of spikes that occur
across all trials within each bin, and then normalizing (by dividing by the number of
trials and the length of each bin in seconds) to convert count to firing rate in units of
spikes per second. The PSTH is used to display firing-rate trends across time, which
are considered to be common to! the many separate trials.

! One source of variation across trials is that the behavior of the monkey is not identical on every
trial. For instance, the eyes may move along slightly different paths and at different rates. Even
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Fig. 1.1 Raster plot (Top) and PSTH (Bottom) for an SEF neuron under both the external-cue or
“spatial” condition (Left) and the complex cue or “pattern” condition (Right). Each line in each
raster plot contains data from a single trial, that is, a single instance in which the condition was
applied. (There are 15 trials for each condition.) The tick marks represent spike times, i.e., times
at which the neuron fired. The PSTH contains normalized spike counts within 10 ms time bins: for
each time bin the number of spikes occurring in that bin is counted across all trials; this count is
then divided by the number of trials, and the width of the time bin in seconds, which results in
firing rate in units of spikes per second. Time is measured relative to presentation of a visual cue,
which is considered time # = 0. This neuron is more active under the pattern condition, several
hundred milliseconds post cue. The increase in activity may be seen from the raster plots, but is
more apparent from comparison of the PSTHs.

Visual comparison of the two raster plots and two PSTHs in Fig. 1.1 indicates that
this neuron tends to respond more strongly under the pattern condition than under the
spatial condition, at least toward the end of the trial. But such qualitative impressions
are often insufficiently convincing even for a single neuron; furthermore, results for
many dozens of neurons need to be reported. How should they be summarized?
Should the firing rates be averaged over a suitable time interval, and then compared?
If so, which interval should be used? Might it be useful to display the firing-rate
histograms on top of each other somehow, for better comparison, and might the
distinctions between them be quantified and then summarized across all neurons?
Might it be useful to compare the peak firing rates for the two neurons, or the time
at which the peaks occurred? All of these variations involve different ways to look
at the data, and each effectively defines differently the purpose of the study.

The several possible ways of examining firing rate, just mentioned, have in com-
mon the aggregation of data across trials. A quite different idea would be to exam-
ine the relationship of neural spiking activity and reaction time, on a trial-by-trial

(Footnote 1 continued)

in preparations in vitro, however, identical current inputs to a neuron do not necessarily produce
identical spiking outputs. This is due, at least in part, to the stochastic behavior of the movements
of ions and molecules that govern the spiking mechanism.
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basis, and then to see how that changes across conditions. This intriguing possibility,
however, would require a different experiment: in the experiment of Olson et al. the
eye movement occurred long after? the cue, so there was no observed behavior corre-
sponding to reaction time. This is an extreme case of the way analytical alternatives
depend on the purpose of the experiment. (]

Example 1.1 illustrates the way a particular purpose shaped the design of the
experiment, the way the data were collected, and the possible analytic strategies. In
thinking about the way the data are collected, one particular distinction is especially
important: that of steady-state versus systematically evolving conditions. In many
studies, an experimental manipulation leads to a measured response that evolves in
a more-or-less predictable way over time. In Example 1.1 the neuronal firing rate, as
represented by the PSTH, evolves over time, with the firing rate increasing roughly
200ms after the cue. This may be contrasted with observation of a phenomenon
that has no predictable time trend, experimentally-induced or otherwise. Typically,
such situations arise when one is making baseline measurements, in which some
indicator of neural activity is observed while the organism or isolated tissue is at
rest and receives no experimental stimulus.’ Sometimes a key piece of laboratory
apparatus must be observed in steady state to establish background conditions. Here
is an important example.

Example 1.2 MEG background noise Magnetoencephalography (MEG) is an
imaging technique used to measure the magnetic fields produced by electrical activity
in the brain. MEG recordings are used clinically to localize a brain tumor or to identify
the site of an epileptic focus; they are used by neuroscientists to study such things
as language production, memory formation, and the neurological basis of diseases
such as schizophrenia.

The MEG signals are generated from the net effect of ionic currents flowing in the
dendrites of cortical neurons during synaptic transmission. From Maxwell’s equa-
tions, any electrical current produces a magnetic field oriented orthogonally (per-
pendicularly) to the current flow, according to the right-hand rule. MEG measures
this magnetic field. Magnetic fields are relatively unaffected by the tissue through
which the signal passes on the way to a detector, but the signals are very weak.
Two things make detection possible. One is that MEG uses highly sensitive detec-
tors called superconducting quantum interference devices (SQUIDs). The second is
that currents from many neighboring neuronal dendrites have similar orientations, so
that their magnetic fields reinforce each other. The dendrites of pyramidal cells in the
cortex are generally perpendicular to its surface and, in many parts of the brain, their
generated fields are oriented outward, toward the detectors sitting outside the head.

2 They used a random delay followed by a separate cue to move; this helped ensure that movement
and anticipatory effects would not contaminate the processing effects of interest.

3 Analyses of brain activity when the subject is resting (e.g., during passive eye fixation or with
eyes closed) have been reported by many groups. See, for example, Fox et al. (2005), who used
fMRI to describe two distinct resting-state networks.
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Fig. 1.2 MEG imaging. Left drawing of the way the SQUID detectors sit above the head in a MEG
machine. Right plots of sensor signals laid out in a two-dimensional configuration to correspond,
roughly, to their three-dimensional locations as shown in the left panel of the figure.

A detectable MEG signal is produced by the net effects of currents from approxi-
mately 50,000 active neurons. See Fig. 1.2.

Because the signals are weak, and the detectors extremely sensitive, it is important
to assess MEG activity prior to imaging patients. Great pains are taken to remove
sources of magnetic fields from the room in which the detector is located. Nonethe-
less, there remains a background signal that must be identified under steady-state
conditions. O

Many analytical methods assume a steady state exists. The mathematical formu-
lation of “steady state,” based on stationarity, will be discussed in Chapter 18.

1.1.2 Many investigations involve a response to a stimulus
or behavior.

In contrast to the steady state conditions in Example 1.2, many experiments involve
perturbation or stimulation of a system, producing a temporally evolving response.
This does not correspond to a steady state. The SEF experiment was a stimulus-
response study. Functional imaging also furnishes good examples.

Example 1.3 fMRI in a visuomotor experiment Functional magnetic resonance
imaging (fMRI) uses change in magnetic resonance (MR) to infer change in neural
activity, within small patches (voxels) of brain tissue. When neurons are active they
consume oxygen from the blood, which produces a local increase in blood flow
after a delay of several seconds. Oxygen in the blood is bound to hemoglobin, and
the magnetic resonance of hemoglobin changes when it is oxygenated. By using an
appropriate MR pulse sequence, the change in oxygenation can be detected as the
blood-oxygen-level dependent (BOLD) signal, which follows a few seconds after the
increase in neural activity. The relationship between neural activity and BOLD is not
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Fig. 1.3 An fMRI image with several traces of the signal across time. Panel A displays an image
indicating three locations, shown in red, from which voxel signals were examined. Panels B-D
display the signals themselves, averaged across the voxels. They correspond, respectively, to motor
cortex, primary visual cortex, and white matter.

known in detail, but since the 1990s fMRI has been used to track changes in BOLD
in relation to the execution of a task, giving at least a rough guide to the location of
sustained functional neural activity.

Figure 1.3 displays images from one subject in a combined visual and motor fMRI
experiment. The subject was presented with a full-field flickering checkerboard, in a
repeating pattern of 12.8 s (seconds) OFF followed by 12.8 s ON. This was repeated
8 times. Alternating out of phase with the flickering checkerboard pattern the subject
also executed a finger tapping task (12.8 s ON followed by 12.8 s OFF). The brain was
imaged once every 800 ms for the duration of the experiment. The slice shown was
chosen to transect both the visual and motor cortices. Three regions of interest have
been selected, corresponding to (1) motor (2) visual cortex, and (3) white matter.
Parts B through D of the figure illustrate the raw time series taken from each of these
regions, along with timing diagrams of the input stimuli. As expected, the motor
region is more active during finger tapping (but the BOLD signal responds several
seconds after the tapping activity commences) while the visual region is more active
during the flickering visual image (again with several seconds lag). The response
within white matter serves as a control. (]

The focus of stimulus-response experiments is usually the relationship between
stimulus and response. This may suggest strategies for analysis of the data. If we
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let X denote the stimulus and Y the response, we might write the relationship as
follows:
Y «— X (1.1)

where the arrow indicates that X leads to Y. Chapters 12, 14, and 15 are devoted to
regression methods, which are designed for situations in which X might lead to Y.

In Example 1.1, Y could be the average firing rate in a specified window of time,
such as 200-600 ms following the cue, and X could represent the experimental con-
dition. In other words, the particular experimental condition leads to a corresponding
average firing rate. In Example 1.3, Y could be the value of the BOLD response, and
X could represent whether the checkerboard was on or off 5 s prior to the response Y.

The arrow in (1.1) suggests a mechanistic relationship (the stimulus occurred, and
that made Y occur), but it is often wise to step back and remain agnostic about a
causal connection. A more general notion is that the variables X and Y are associated,
meaning that they tend to vary together. A wide variety of neuroscientific studies
seek to establish associations among variables. Such studies might relate a pair of
behavioral measures, for example, or they might involve spike trains from a pair
of neurons recorded simultaneously, EEGs from a pair of electrodes on the scalp,
or MEG signals from a pair of SQUID detectors. Many statistical tools apply to
both causal and non-causal relationships. Measures of association are discussed in
Chapters 10 and 12. Chapter 13 also contains a brief discussion of the distinction
between association and causation, and some issues to consider when one wishes to
infer causation from an observed association.

1.2 The Contribution of Statistics

Many people think of statistics as a collection of particular data-analytic techniques,
such as analysis of variance, chi-squared goodness-of-fit, linear regression, etc. And
so it is. But the field of statistics, as an academically specialized discipline, strives
for something much deeper, namely, the development and characterization of data
collection and analysis methods according to well-defined principles, as a means of
quantifying knowledge about underlying phenomena and rationalizing the learning
and decision-making process. As we said above, one of the main pedagogical goals
of this book is to impart to the reader some sense of the way data analytic issues
are framed within the discipline of statistics. In trying to achieve this goal, we find
it helpful to articulate the nature of the statistical paradigm as concisely as possible.
After numerous conversations with colleagues, we have arrived at the conclusion
that among many components of the statistical paradigm, summarized below, two
are the most fundamental.
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Two Fundamental Tenets of the Statistical Paradigm:

1. Statistical models are used to express knowledge and uncertainty about a
signal in the presence of noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine how well they are likely
to perform.

In the remainder of this section we will elaborate, adding a variety of comments
and clarifications.

1.2.1 Statistical models describe regularity and variability
of data in terms of probability distributions.

When data are collected, repeatedly, under conditions that are as nearly identical as an
investigator can make them, the measured responses nevertheless exhibit variation.
The spike trains generated by the SEF neuron in Example 1.1 were collected under
experimental conditions that were essentially identical; yet, the spike times, and the
number of spikes, varied from trial to trial. The most fundamental principle of the
statistical paradigm, its starting point, is that this variation may be described by
probability. Chapters3 and 5 are devoted to spelling out the details, so that it will
become clear what we mean when we say that probability describes variation. But
the idea is simple enough: probability describes familiar games of chance, such as
rolling dice, so when we use probability also to describe variation, we are making
an analogy; we do not know all the reasons why one measurement is different than
another, so it is as if the variation in the data were generated by a gambling device.
Let us consider a simple but interesting example.

Example 1.4 Blindsight in patient P.S. Marshall and Halligan (1988) reported an
interesting neuropsychological finding from a patient, identified as P.S. This patient
was a 49 year-old woman who had suffered damage to her right parietal cortex
that reduced her capacity to process visual information coming from the left side
of her visual space. For example, she would frequently read words incorrectly by
omitting left-most letters (“smile” became “mile””) and when asked to copy simple
line drawings, she accurately drew the right-hand side of the figures but omitted
the left-hand side without any conscious awareness of her error. To show that she
could actually see what was on the left but was simply not responding to it—a
phenomenon known as blindsight—the examiners presented P.S. with a pair of cards
showing identical green line drawings of a house, except that on one of the cards
bright red flames were depicted on the left side of the house. They presented to P.S.
both cards, one above the other (the one placed above being selected at random),
and asked her to choose which house she would prefer to live in. She thought this
was silly “because they’re the same” but when forced to make a response chose the
non-burning house on 14 out of 17 trials. This would seem to indicate that she did, in
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fact, see the left side of the drawings but was unable to fully process the information.
But how convincing is it that she chose the non-burning house on 14 out of 17 trials?
Might she have been guessing?

If, instead, P.S. had chosen 17 out of 17 trials there would have been very strong
evidence that her processing of the visual information affected her decision-making,
while, on the other hand, a choice of 9 out of 17 clearly would have been consistent
with guessing. The intermediate outcome 14 out of 17 is of interest as a problem in
data analysis and scientific inference precisely because it feels fairly convincing, but
leaves us unsure: a thorough, quantitative analysis of the uncertainty would be very
helpful.

The standard way to begin is to recognize the variability in the data, namely, that
P.S. did not make the same choice on every trial; we then say that the choice made
by P.S. on each trial was a random event, that the probability of her choosing the
non-burning house on each trial was a value p, and that the responses on the different
trials were independent of each other. These three assumptions use probability to
describe the variability in the data. Once these three assumptions are made it becomes
possible to quantify the uncertainty about p and the extent to which the data are
inconsistent with the value p = .5, which would correspond to guessing. In other
words, it becomes possible to make statistical inferences. O

The key step in Example 1.4 is the introduction of probability to describe vari-
ation. Once that first step is taken, the second step of making inferences about
the phenomenon becomes possible. Because the inferences are statistical in nature,
and they require the introduction of probability, we usually refer to the probability
framework—with its accompanying assumptions—as a statistical model. Statistical
models provide a simple formalism for describing the way the repeatable, regular
features of the data are combined with the variable features. In Example 1.4 we may
think of p as the propensity for P.S. to choose the non-burning house. According
to this statistical model, p is a kind of regularity in the data in the sense that it
is unchanging across trials. The variation in the data comes from the probabilistic
nature of the choice: what P.S. will choose is somewhat unpredictable, so we attribute
a degree of uncertainty to unknown causes and describe it as if predicting her choice
were a game of chance. We elaborate on the statistical model, and the inferences
drawn from the data of Example 1.4 in Chapters5 and 7.

Probability is also often introduced to describe small fluctuations around a spec-
ified formula or “law.” We typically consider such fluctuations “noise,” in contrast
to the systematic part of the variation in some data, which we call the “signal.” For
instance, as we explain in Chapter 12, when the underlying, systematic mathematical
specification (the signal) has the form

y=r
we will replace it with a statistical model having the form

Y= f(x)+e (1.2)
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Fig. 1.4 Conduction velocity of action potentials, as a function of diameter. The
x-axis is diameter in microns; the y-axis is velocity in meters per second. Based on Hursh (1939,
Fig.2). Also shown is the least-squares regression line.

where e represents noise and the variable Y is capitalized to indicate its now-random
nature: it becomes “signal plus noise.” The simplest case occurs when f(x) is a line,
having the form f(x) = [y + P1x, where we use coefficients 3y and 3] (instead of
writing f(x) = a + bx) to conform to statistical convention. Here is an example.

Example 1.5 Neural conduction velocity Hursh (1939) presented data on the
relationship between a neuron’s conduction velocity and its axonal diameter, in adult
cats. Hursh measured maximal velocity among fibers in several nerve bundles, and
then also measured the diameter of the largest fiber in the bundle. The resulting
data, together with a fitted line, are shown in Fig. 1.4. In this case the line y =
(Bo + [1x represents the approximate linear relationship between maximal velocity
y and diameter x. The data follow the line pretty closely, with the intercept 3y being
nearly equal to zero. This implies, for example, that if one fiber has twice the diameter
of another, the first will propagate an action potential roughly twice as fast as the
second. O

Before we conclude our introductory remarks about statistical models, by elabo-
rating on (1.2), let us digress for a moment to discuss the method used to fit the line
to the data in Fig. 1.4, which is called least squares regression, It is one of the core
conceptions of statistics, and we discuss it at length in Chapter 12.

Suppose we have a line that is fit by some method, possibly least-squares or
possibly another method, and let us write this line as y = /37 4 3] x. It is customary,
in statistics, to use the notations 3y and (31 for the intercept and slope. Here we
have included the asterisk * in §; and 3] because it will simplify some additional
notations later on. The important thing is that 3§ and 3} are coefficients that define
the line we fit to the data, using whatever method we might choose. Suppose there
are n data pairs of the form (x, y) and let us label them with a subscript so that they
take the form (x;, y;) withi = 1,2, ..., n. Thatis, (x1, y;) would be the first data
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pair, (x2, y2) the second, and so forth. The y-coordinate on the line y = 55‘ + ﬁTx
corresponding to x; is
Vi =06+ Bixi.

The number y7 is called the fitted value at x; and we may think of it as predicting y;.
We then define the ith residual as

ok
e =Yy — Y-

The value ¢; is the error at x; in fitting, or the error of prediction, i.e., it is the vertical
distance between the observation (x;, y;) and the line at x;. We wish to find the line
that best predicts the y; values, which means we want to make the e;’s as small as
possible, in aggregate. To do this, we have to minimize some measure of the size of all
the e;’s taken together. In choosing such a measure we assume positive and negative
values of the residuals are equally important. Two alternative aggregate measures
that treat e¢; and —e; equally are the following:

n
sum of absolute deviations = Z lei|

i=1

n
sum of squares = Z eiz. (1.3)

i=1

Data analysts sometimes choose 3; and 3] to minimize the sum of absolute devia-
tions, but the solution can not be obtained in closed form, and it is harder to analyze
mathematically. Instead, the method of least squares works with the sum of squares,
where the solution may be found using calculus (see Chapter 12).

The least-squares estimates BO and Bl are the values of 3 and 3] that minimize
the sum of squares in (1.3). The least-squares line is then

y =/5’0+31X-

Having motivated least-squares with (1.2) let us return to that equation and note
that it is not yet a statistical model. If we write

Yi = f(x) + e, (1.4)

take
f&x) =B+ Bix

and, crucially, let the noise term ¢; be a random variable, then we obtain a linear
regression model. Random variables are introduced in Chapter3. The key point in
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the present discussion is that linear regression describes the regularity of the data
by a straight line and the variability (the deviations from the line) by a probability
distribution (the distribution of the noise random variable ¢;).

1.2.2 Statistical models are used to express knowledge
and uncertainty about a signal in the presence
of noise, via inductive reasoning.

The introduction of a statistical model not only provides guidance in determining
fits to data, as in Example 1.5, but also assessments of uncertainty.

Example 1.4 (continued from page 9) Let us return to the question of whether the
responses of P.S. were consistent with guessing. In this framework, guessing would
correspond to p = .5 and the problem then becomes one of assessing what these
data tell us about the value of p. As we will see in Chapter7, standard statistical
methods give an approximate 95 % confidence interval for p of (.64, 1.0). This is
usually interpreted by saying we are 95 % confident the value of p lies in the interval
(.64, 1.0), which is a satisfying result: while this interval contains a range of values,
indicating considerable uncertainty, we are nonetheless highly confident that the
value of p is inconsistent with guessing. (]

The confidence interval we have justreported in Example 1.4 illustrates the expres-
sion of “knowledge and uncertainty.” It is an example of inductive reasoning in the
sense that we reason from the data back to the quantity p assumed in the model.
Many mathematical arguments begin with a set of assumptions and prove some
consequence. This is often called deductive reasoning. As described in Chapter7,
statistical theory uses deductive reasoning to provide the formalism for confidence
intervals. However, when we interpret the result as providing knowledge about the
unknown quantity p based on experience (the data), the argument is usually called
“inductive.” Unlike deductive reasoning, inductive reasoning is uncertain. We use
probability to calibrate the degree to which a statement is likely to be true. In report-
ing confidence intervals, the convention is to use a probability of .95, representing a
high degree of confidence.

In fact, as a conceptual advance, this expression of knowledge and uncertainty via
probability is highly nontrivial: despite quite a bit of earlier mathematical attention
to games of chance, it was not until the late 1700s that there emerged any clear notion
of inductive, or what we would now call statistical reasoning; it was not until the first
half of the twentieth century that modern methods began to be developed systemati-
cally; and it was only in the second half of the twentieth century that their properties
were fully understood. From a contemporary perspective the key point is that the
confidence interval is achieved by uniting two distinct uses of probability. The first
is descriptive: saying P.S. will choose the non-burning house with probability p is
analogous to saying the probability of rolling an even number with an apparently
fair six-sided die is 1/2. The second use of probability is often called “epistemic,”
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and involves a statement of knowledge: saying we have 95 % confidence that p is
in the interval (.64, 1.0) is analogous to someone saying they are 90 % sure that the
capital of Louisiana is Baton Rouge. The fundamental insight, gained gradually over
many years, is that the descriptive probability in statistical models may be used to
produce epistemic statements for scientific inference. We will emphasize the con-
trast between the descriptive and epistemic roles of statistical models by saying that
models describe the variation in data and produce uncertain inferences. Technically,
there are alternative frameworks for bringing descriptive and epistemic probability
together, the two principal ones being Bayesian and frequentist. We will discuss
the distinction in Section7.3.9, and develop the Bayesian approach to inference at
greater length in Chapter 16.

While we wish to stress the importance of statistical models in data analysis, we
also want to issue several qualifications and caveats: first, the notion of “model”
we intend here is very general, the only restriction being that it must involve a
probabilistic description of the data; second, modeling is done in conjunction with
summaries and displays that do not introduce probability explicitly; third, it is very
important to assess the fit of a model to a given set of data; and, finally, statistical
models are mathematical abstractions, imposing structure on the data by introducing
explicit assumptions. The next three subsections explain these points further.

1.2.3 Statistical models may be either parametric
or nonparametric.

In emphasizing statistical models, our only restriction is that probability must be
used to express the way regularity and variability in the data are to be understood.
One very important distinction is that of parametric versus nonparametric models.
The terminology comes from the representation of a probability distribution in
terms of an unknown parameter. A parameteris anumber, or vector of numbers, thatis
used in the definition of the distribution; the probability distribution is characterized
by the parameter in the sense that once the value of the parameter is known, the
probability distribution is completely determined. In Example 1.4, p. 9, the parameter
is p. In Example 1.5, p. 11, the parameter includes the pair (G, 31), together with a
noise variation parameter o, explained in Chapter 12. In both of these cases the values
of the unknown parameters determine the probability distribution of the random
variables, as in (1.4). Parametric probability distributions are discussed in Chapter 5.
A related distinction arises in the context of y versus x models of the type con-
sidered in Example 1.5. That example involved a linear relationship. As we note in
Chapters 14 and 15, the methods used to fit linear models can be generalized for
nonlinear relationships. The methods in Chapter 15 are also called nonparametric
because the fitted relationship is not required to follow a pre-specified form.

Example 1.6 Excitatory post-synaptic current As partof astudy on spike-timing-
dependent plasticity (Dr. David Nauen, personal communication), rat hippocampal
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Fig.1.5 Excitatory post-synaptic current. Current recorded from arat hippocampal neuron, together
with smoothed version (shown as the thin red line within the noisy current trace) obtained by fitting
a suitable function of time, given in the text. The current values are connected by the dark line.
When values recorded sequentially in time are plotted it is a common practice to connect them.
(Figure courtesy of David Nauen.)

neurons were held in voltage clamp and post-synaptic currents were recorded fol-
lowing an action potential evoked in a presynaptic cell. Figure 1.5 displays a plot of
membrane current as a function of time. One measurement of size of the current is
found by integrating the current across time (which is implemented by summing the
current values and multiplying by the time between observations), giving the total
charge transmitted. Other quantities of interest include the onset delay, the rate at
which the curve “rises” (here, a negative rise) from onset to peak current, and the rate
at which the curve decays from peak current back toward steady state. The current
trace is clearly subject to measurement noise, which would contaminate the calcu-
lations. A standard way to reduce the noise is to fit the data by a suitable function
of time. Such a fit is also shown in the figure. It may be used to produce values for
the various constants needed in the analysis. To produce the fit a statistical model of
the form (1.4) was used where the function y = f(x), with y being post-synaptic
current and x being time, was defined as

Jf @) = Ar(1—exp((x—10)/71)) (A2 exp((x —10)/72) = (1 — A2) exp((x — 10)/73)).

This was based on a suggestion by Nielsen et al. (2004). Least squares was then
applied, as defined in Section 1.2.1. The fit is good, though it distorts slightly the
current trace in the dip and at the end. The advantage of using this function is that
its coefficients may be interpreted and compared across experimental conditions. []

The simple linear fit in Example 1.5, p. 11, is an example of linear regression, dis-
cussed in Chapter 12, while the fit based on a combination of exponential functions
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Fig. 1.6 Electrooculogram together with a smoothed, or “filtered” version that removes the noise.
The method used for smoothing is an example of nonparametric regression.

in Example 1.6 is an example of nonlinear regression discussed in Section 14.2. Both
are examples of parametric regression because both use specified functions based on
formulas that involve a few parameters. In Example 1.5 the parameters were 3y and
(1 while in Example 1.6 they were A1, Az, 71, T2, 73, ty. Nonparametric regression
is used when the formula for the function is not needed. Nonparametric regression
is a central topic of Chapter 15. Here is an example.

Example 1.7 Electrooculogram smoothing for EEG artifact removal EEG
recordings suffer from a variety of artifacts, one of which is their response to eye
blinks. A good way to correct for eye-blink artifacts is to record potentials from
additional leads in the vicinity of the eyes; such electrooculograms (EOGs) may be
used to identify eye blinks, and remove their effects from the EEGs. Wallstrom et al.
(2002, 2004) investigated methods for removing ocular artifacts from EEGs using
the EOG signals. In Chapter 15 it will become clear how to use a general smoothing
method to remove high-frequency noise. This does not require the use of a func-
tion having a specified form. Figure 1.6 displays an EOG recording together with a
smoothed version of it, obtained using a nonparametric regression method known as
BARS (Dimatteo et al. 2001). O
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1.2.4 Statistical model building is an iterative process
that incorporates assessment of fit and is preceded
by exploratory analysis.

Another general point about the statistical paradigm is illustrated in Fig. 1.7. This
figure shows where the statistical work fits in. Real investigations are far less sequen-
tial than depicted here, but the figure does provide a way of emphasizing two com-
ponents of the process that go hand-in-hand with statistical modeling: exploratory
analysis and assessment of fit. Exploratory analysis involves informal investigation of
the data based on numerical or graphical summaries, such as a histogram. Exploratory
results, together with judgment based on experience, help guide construction of an
initial probability model to represent variability in observed data.

Every such model, and every statistical method, makes some assumptions, leading,
as we have already seen, to a reduction of the data in terms of some small number
of interpretable quantities. As shown in Fig. 1.7, the data may be used, again, to
check the probabilistic assumptions, and to consider ramifications of departures from
them. Should serious departures from the assumptions be found, a new model may
be formed. Thus, probability modeling and model assessment are iterative, and only
when a model is considered adequate are statistical inferences made. This process
is embedded into the production of scientific conclusions from experimental results
(Box et al. 1978).

1.2.5 All models are wrong, but some are useful.

The simple representation in Fig. 1.7 is incomplete and may be somewhat misleading.
Most importantly, while it is true that there are standard procedures for model assess-
ment, some of which we will discuss in Chapter 10, there is no uniformly-applicable
rule for what constitutes a good fit. Statistical models, like scientific models, are
abstractions and should not be considered perfect representations of the data. As
examples of scientific models in neuroscience we might pick, at one extreme, the
Hodgkin-Huxley model for action potential generation in the squid giant axon and,
at the other extreme, being much more vague, the theory that vision is created via
separate ventral and dorsal streams corresponding loosely to “what” and “where.”
Neither model is perfectly accurate—in fact, every scientific model fails* under cer-
tain conditions. Models are helpful because they capture important intuitions and can
lead to specific predictions and inferences. The same is true of statistical models. On
the other hand, statistical models are often driven primarily by raw empiricism—they
are produced to fit data and may have little or no other justification or explanatory
power. Thus, experienced data analysts carry with them a strong sense of both the

4 For a discussion of some ways that great equations of physics remain fundamental while only
approximating the real world, see Weinberg (2002). An entry into the philosophical literature on
statistical inference and modeling is Mayo and Spanos (2010).
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Fig.1.7 Formal statistical inference within the process of drawing scientific conclusions. Statistical
model building is a prerequisite to formal inference procedures. Model building is iterative in the
sense that tentative models must be assessed and, if necessary, improved or abandoned. The figure
is something of a caricature because the process is not as neat as depicted here. Furthermore, there
are typically multiple aspects of the data, which bear on several different issues. A single scientific
conclusion may rely on many distinct statistical inferences.

inaccuracies in statistical models and their lingering utility. This sentiment is cap-
tured well by the famous quote from George Box, “All models are wrong, but some
are useful” (Box 1979).

To emphasize further the status of statistical models we have created Fig. 1.8.
Pictured in the left column is the “real world” of data, i.e., the observables, obtained
by recording in some form, often by measurement. In the right column is the
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Fig. 1.8 The role of statistical models and methods in scientific inference. Statistical procedures
are abstractly defined in terms of mathematics, but are used, in conjunction with scientific models
and methods, to explain observable phenomena. Adapted from Kass (2011).

“theoretical world” where both scientific and statistical models live. Scientific mod-
els help us organize facts with explanations. They can be high-level or detailed, but
they should not, at least in principle, be confused with the observations themselves.
The theoretical world seeks to make statements and predictions, often using a pre-
cise but abstract mathematical framework, which may be applied to things in the
real world that may be observed. In a domain where theory works well, the theo-
retical world would be judged to be very close to the real world and, therefore, its
predictions would be highly trustworthy. Statistical models are used to describe the
imperfect predictability of phenomena, the regularity and variability of data, in terms
of probability distributions.

A second aspect of the flow diagram in Fig. 1.7 may be misleading. The diagram
fails to highlight the way the judgment of adequate fit depends on context. When we
say “All models are wrong, but some are useful,” part of the point is that a model can
be useful for a specified inferential purpose. Thus, in judging adequacy of a model,
one must ask, “How might the reasonably likely departures from this model affect
scientific conclusions?”

We illustrate the way statistical models lead to scientific conclusions in numerous
examples throughout this book.

1.2.6 Statistical theory is used to understand the behavior
of statistical procedures under various probabilistic
assumptions.

The second of the two major components of the statistical paradigm is that methods
may be analyzed to determine how well they are likely to perform. As we describe
briefly in Sections4.3.4 and 7.3.9, and more fully in Chapters 8 and 11, a series of
general principles and criteria are widely used for this purpose. Statistical theory
has been able to establish good performance of particular methods under certain
probabilistic assumptions. In Chapters 3—6 we provide the necessary background for
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the theory we develop. When we wish to add arguments that are not essential to the
flow of material we highlight them as details and indent them, as follows.

Details: We indent, like this, the paragraphs containing mathematical
details we feel may be safely skipped. (I

One easy and useful method of checking the effectiveness of a procedure, which
is applicable in certain predictive settings, is cross-validation. The simplest form of
cross-validation involves splitting the data set into two subsets, applying and refining
a method using one of the subsets, and then judging its predictive performance
(predicting the value of some response) on the second subset. Sometimes the second
subset involves entirely new data. For example, in a behavioral study, a new set
of subjects may be recruited and examined. Methods that perform well with this
kind of cross-validation are often quite compelling. In addition to being intuitive,
cross-validation has a theoretical justification discussed briefly in Chapter 12.

1.2.7 Important data analytic ideas are sometimes
implemented in many different ways.

The usual starting point in books about data analysis is measures of central tendency,
such as mean and median, which we review in Section2.1.1. There are three reasons
for putting a discussion of central tendency at the beginning. First, the use of a
single representative value (such as the mean) to summarize a bunch of numbers is
ubiquitous. Second, it is an excellent example of the process of data summary; data
analysis as a whole may be considered a kind of generalization of this simple method.
Third, the mean and median are both single-number summaries but they behave very
differently. This last point, that it matters how a general data analytic idea (a single-
number summary of central tendency) is defined (mean or median), has become
ingrained into teaching about statistical reasoning. The crucial observation® is that it
can be important to separate the general idea from any specific implementation; as a
useful concept, the general idea may transcend any specific definition. For example,
in Section4.3.2 we discuss the deep notion that information represents reduction of
uncertainty. As we explain there, the general idea of information could be defined,
technically, in terms of a quantity called mutual information, but it could also be
defined using the squared correlation. Mutual information and squared correlation
have very different properties. The definition matters, but with either definition we
can think of information as producing a reduction of uncertainty.

1.2.8 Measuring devices often pre-process the data.

Measurements of neural signals are often degraded by noise. A variety of techniques
are used to reduce the noise and increase the relative strength of the signal, some

3 This point was emphasized by Mosteller and Tukey (1977, Section 1F).
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of which will be discussed in Chapter7. In many cases, methods such as these are
applied by the measurement software to produce the data the investigator will analyze.
For example, fMRI data are acquired in terms of frequency and software is used to
reconstruct a signal in time; MEG sensors must be adjusted to ensure detection above
background noise; and extracellular electrode signals are thresholded and filtered to
isolate action potentials, which then must be “sorted” to identify those from particular
neurons. In each of these cases the data that are to be analyzed are not in the rawest
form possible. Such pre-processing may be extremely useful, but its effects are not
necessarily benign. Inaccurate spike sorting, for example, is a notorious source of
problems in some contexts. (See Bar-Gad et al. (2001) and Wood et al. (2004).)
The wise analyst will be aware of possible distortions that might arise before the
data have been examined.

1.2.9 Data analytic techniques are rarely able to compensate
Jor deficiencies in data collection.

A common misconception is that flaws in experimental design, or data collection,
can be fixed by statistical methods after the fact. It is true that an alternative data
analytic technique may be able to be help avoid some presumed difficulty an analyst
may face in trying to apply a particular method—especially when associated with a
particular piece of software. But when a measured variable does not properly capture
the phenomenon it is supposed to be measuring, post hoc manipulation will be almost
never be able to rectify the situation; in the rare cases that it can, much effort and very
strong assumptions will typically be required. For example, we already mentioned
that inaccurate spike sorting can create severe problems. When these problems arise,
no post-hoc statistical manipulation is likely to fix them.

1.2.10 Simple methods are essential.

Another basic point concerning analytical methods is that simple, easily-understood
data summaries, particularly visual summaries such as the PSTH, are essential com-
ponents of analysis. These fit into the diagram of Fig. 1.7 mainly under the heading of
exploratory data analysis, though sometimes inferential analyses from simple mod-
els are also used in conjunction with those from much more elaborate models. When
a complicated data-analytic procedure is applied, it is important to understand the
way results agree, or disagree, with those obtained from simpler methods.

1.2.11 It is convenient to classify data into several broad types.

When spike train data, like those in Example 1.1, are summarized by spike counts
occurring in particular time intervals, the values taken by the counts are necessarily


http://dx.doi.org/10.1007/978-1-4614-9602-1_7

22 1 Introduction

non-negative integers. Because the integers are separated from each other, such data
are called discrete. On the other hand, many recordings, such as MEG signals, or
EEGs, can take on essentially all possible values within some range—subject only
to the accuracy of the recording instrument. These data are called continuous. This
is a very important distinction because specialized analytical methods have been
developed to work with each kind of data.

Count data form an important subclass within the general category of discrete
data. Within count data, a further special case occurs when the only possible counts
are 0 or 1. These are binary data. The key characterization is that there are only two
possible values; it is a matter of analytical convenience to consider the two values
to be 0 or 1. As an example, the response of patient P.S. on each trial was binary.
By taking the response “non-burning house” to be 1 and “burning house” to be zero,
we are able to add up all the coded values (the 1 and Os) to get the total number of
times P.S. chose the non-burning house. This summation process is easy to deal with
mathematically. A set of binary data would almost always be assumed to consist of
O and Is.

Two other kinds of data arising in neuroscience deserve special mention here. They
are called time series and point processes. Both involve sequential observations made
across time. MEG signals, EEGs, and LFPs are good examples of time series: at each
of many successive points in time, a measurement is recorded. Spike trains are good
examples of point processes: neuronal action potentials are recorded as sequences of
event times. In each case, the crucial fact is that an observation at time ¢#; is related to
an observation made at time #, whenever #; and f, are close to each other. Because
of this temporal relationship time series and point process data must be analyzed
with specialized methods. Statistical methods for analyzing time series and point
processes are discussed in Chapters 18 and 19.
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Chapter 2
Exploring Data

Data analysis involves both manipulation, via formulas and computations, and
interpretation of the results. During the period immediately following World War
I, particularly in the United States, statistical theory was consumed with the logic
of statistical inference and decision-making. Against this backdrop, John Tukey
revolted. In addition to coining the term data analysis (see Brillinger 2002, Appen-
dix D) Tukey emphasized the distinction between formal methods, based on the logic
of statistical inference, and informal manipulations—which he called exploratory,
having arole we indicated in Section 1.2.4. The informality of exploratory data analy-
sis (EDA), however, should not be confused with mathematical simplicity. As we
indicate in Section 2.1.2, the manipulations behind many EDA methods are compli-
cated. Tukey’s large and lingering influence came from demonstrating the power of
mathematical, computational, and statistical insight in producing useful displays and
summaries of data. We describe a few basic ideas below.

2.1 Describing Central Tendency and Variation

2.1.1 Alternative displays and summaries provide different
views of the data.

Different displays and summaries may emphasize different aspects of the data. While
certain data summaries may be well suited for particular purposes, there is never a
uniquely “right” way to collapse the data. A multiplicity of possible data features
is inherent to the data analytic process. Furthermore, the details of data summary
can be important. A simple example is that the mean, i.e., the arithmetic average, of
the numbers 2, 3, 10 is 5 while the median is 3. Similarly, a histogram displays the
distribution of data values, but the way it does so depends on the way its bins are
defined. This is illustrated in the next example.

R. E. Kass et al., Analysis of Neural Data, 23
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_2,
© Springer Science+Business Media New York 2014
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Fig. 2.1 Four histograms of saccadic reaction time data. The same data are used in each histogram.
The appearance of the data distribution depends on details of histogram creation. The first three
histograms have different bin sizes. The fourth histogram (bottom right) uses the same bin size as
the third (bottom left) but shifts the bin locations slightly.

Example 2.1 Saccadic reaction time in hemispatial neglect Let us consider
saccadic reaction times from a single patient in the study of hemispatial neglect by
Behrmann et al. (2002). Each measured value is the time (in seconds) to complete an
eye saccade. The data have been aggregated across several conditions for pedagogical
purposes. There are 119 reaction times, which range from 72 to 988 ms (.072—.988 s
(seconds)). The lower quartile (below which lie 25 % of the data) is 140 ms, the
median (below which lie 50 % of the data) is 188 ms, and the upper quartile (below
which lie 75 % of the data) is 252 ms. Thus, the fast reaction times (72-140ms) are
bunched relatively close to the middle reaction of 188 ms, while the slow reaction
times (252-988 ms) are spread out and include some comparatively large values. We
refer to this feature of the distribution as skewness and say the data are skewed toward
high values.

Four histograms of the data are shown in Fig. 2.1. Although the same 119 values are
used in each, the four histograms give different impressions of the data. In particular,
the first histogram (top left) makes the distribution look unimodal, i.e., it looks
like it has a single peak, while the second (top right) makes the distribution look
bimodal (two peaks) or even multimodal (multiple peaks). However, all four give
the clear impression of skewness toward high values. (|

In discussing histograms it is important to distinguish this informal use of “distri-
bution” from the mathematical use when we speak about a probability distribution.
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We will, beginning in Chapter 3, use probability distributions to describe data, but
that should be recognized as a conceptual leap: data are observed, and part of the
“real world” of Fig. 1.8, while probability distributions are part of the “theoretical
world.” The word “distribution” is used in both contexts, and we typically hope that
a particular probability distribution will do a good job describing a data distribution.
As an example, sometimes data distributions—as represented by histograms—are
unimodal and more-or-less symmetrical about the median, i.e., the relative frequency
of data higher than the median is about the same as that of corresponding data lower
than the median by an equal amount. Symmetric and unimodal data distributions
are easier to describe concisely with probability distributions and the normal dis-
tribution, discussed in Chapter5, is! unimodal and symmetrical (it is often called
“the bell-shaped curve”). It is very rare to find a set of data that, on close inspec-
tion, may be described accurately by a normal distribution, but it is common to
find unimodal and symmetric data distributions that are roughly normal-looking. A
great deal of emphasis is placed on the normal distribution, in large part because
of its appearance as a basic assumption of many formal statistical procedures and
because such statistical procedures typically remain useful for modest departures
from normality, due to® the Central Limit Theorem (Section 6.3.1). When departures
from normality become large, however, they can materially affect the behavior of
the procedures. A standard practice, therefore, is to examine data via displays such
as histograms, looking especially for substantial skewness.

In talking about a single set of numbers, such as the saccadic reaction times, it is
useful to have a word for the complete set of values. We will follow Tukey by using
the word batch, i.e., we will speak of the batch of 119 saccadic reaction times.

The saccadic reaction time data are substantially skewed. One effect of this is
that the mean (the arithmetic average) is substantially higher than the median: the
mean reaction time is 226 ms, while the median is 188 ms. This is because the mean
is affected much more strongly by values that are far away from the middle of the
distribution. Data values that are very far from the middle of the distribution are
called outliers, and the sensitivity of the mean to outliers is one reason it is often
replaced by the median as a summary of central tendency, that is, a single number
that represents a center among all the values.

In addition to the mean and median, the mode, which is the value occurring
most frequently, is sometimes mentioned in this context. However, the term “mode”
is not used in a precise way very often when describing a batch of numbers. The
concept of a mode applies better to the theoretical setting of probability densities,
where it is the value at which the density is maximized. For a batch of numbers we
typically speak, instead, informally and approximately, of “the mode” as being the
rough location of the peak of the distribution.

! The normal distribution is also called the Gaussian distribution.

2 As we point out in Chapters 7—10, statistical procedures often require statistical summaries (such
as the least-squares estimates Sy and B; on p. 12) to be normally distributed rather than the data
themselves.
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Just as central tendency in data may be summarized by mean or median, variability
may be summarized by more than one measure. We might ask, for example, how
much the saccade times vary. For instance, if we were to look at a control subject
might we expect less variability? How should we quantify this?

The most widely used summary of variability is the standard deviation:

 J— _
s = mg(xi — x)2
i=

where xp, x2, ..., x, are the observations and x is their mean. We may think of s as
an “average deviation” of the values from their mean. The square-root is used so that
the units of standard deviation agree with the units of the data themselves. For the
saccadic reaction time data we find the standard deviation to be s = 134 milliseconds
(s = .1345s). The use of n — 1 rather than n in the formula for s comes from certain
theoretical arguments given in Chapter 8.

An alternative to the standard deviation would be the mean absolute deviation
}l >'_ |xi — X| but this turns out to be mathematically less convenient. In some
contexts the median absolute deviation is used as this is not affected by outliers. If
X = median(xy, x2, ..., x,) is the median of the n data values x; then the median
absolute deviation is median(|x; — X|, |[xo — X|, ..., |x, — X|). Sometimes the dif-
ference between the upper and lower quartiles (see p. 24) is used. This is called the
interquartile range.

In this section we have reviewed several very basic methods of data summary
and display while trying to illustrate the general notion that alternative measures and
displays can produce differing impressions of the data. An additional concern is that
perception of data may depend on aspects of the way the data are displayed that
have nothing to do with choices of data features. For scatterplots of a variable y
against another variable x, Cleveland et al. (1982) showed that a subject’s perception
of association depends on the size of the scatterplot within the frame created by the
axes. In choosing data displays it is worth keeping such perceptual issues in mind.

2.1.2 Exploratory methods can be sophisticated.

As we said in Section 1.2.4, exploratory data analysis (EDA) refers to the collection
of methods that are relatively informal, based not on a cohesive logical framework
built around statistical models but rather on tools that help illuminate interesting
features of the data. The informal methods of EDA can be extremely useful. In this
section we have mentioned a couple of very elementary descriptive methods, but
in some cases informal techniques can draw on quite sophisticated ideas. The next
example involves a method we will discuss in Chapter 18.
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Fig. 2.2 EEG spectrograms for a subject in various stages of general anesthesia. In each of four
stages an EEG voltage tracing is shown, and below it a spectrogram. The EEG tracings are for
the P4 (right parietal) lead in an array of 16 leads (it is taken with O2 as reference lead). The
spectrogram decomposes the voltage signal into frequency components across successive time
bins. Red indicates high magnitudes, ye/low medium magnitudes, and blue low magnitudes. Each
displayed trace corresponds to several successive time bins in the spectrogram, as indicated by the
black lines. Two prominent features are the alpha rhythm, at roughly 10Hz, and the slower delta
rhythm, below 4 Hz. Both sets of oscillations are visible in the EEG tracings, and their temporal
presence or absence is indicated in the spectrogram. During the awake phase the alpha rhythm
is absent when the eyes are open and present when the eyes are closed; the delta rhythm is also
present, but only weakly. During surgery the delta rhythm is very strong, and the alpha rhythm is
also stronger than in the awake phase.

Example 2.2 EEG spectrogram under general anesthesia When patients undergo
general anesthesia for certain surgical procedures EEGs are recorded to monitor
brain activity. These recordings provide a comparison of various states of uncon-
sciousness. A set of EEG traces for a patient during carotid endarterectomy surgery
at the Massachusetts General Hospital is displayed in Fig.2.2. The figure shows
EEGs and spectrograms during an initial awake phase, a general anesthesia induc-
tion phase, the surgical phase, and the recovery phase. Spectrograms are made by
taking the signal within successive time bins (here, 1 s bins) and using Fourier analy-
sis to decompose the signal into oscillatory components at varying frequencies. On
the x-axis is time and on the y-axis is the frequency. The plotted spectrogram is the
resulting power (a measure of the strength of a particular frequency component of the
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signal) at each frequency, for each time bin, indicated in the figure by three different
colors representing low, medium, and high power. In Fig. 2.2 the most easily visible
oscillations are the alpha rhythm (roughly 8—-13 Hz) in the second half of the EEG
trace in the awake phase (when the eyes are closed) and the delta rhythm (below
4 Hz) during the surgical phase. Precise scientific statements often require statistical
inferences (indications of uncertainty or tests of hypotheses), but spectrograms are
very useful in displaying time-frequency information even without formal inferential
assessments. O

2.2 Data Transformations

2.2.1 Positive values are often transformed by logarithms.

Measurement scales arise from convenience, and need not be considered in any way
absolute or immutable; changing the scale often produces a more elegant description.
A canonical example involves the acidity of a dilute aqueous solution, which is
determined by the concentration of hydrogen ions. The larger the concentration
[H ] of hydrogen ions, the more acidity. Rather than using [ H*] to measure acidity,
we use its logarithm, which is known as pH. Specifically, pH = —log,o([H]),
so that an increase in [H 1] corresponds to a decrease in p H. Because the defining
property of the logarithm is

logab = loga + log b, (2.1)

log transformations are used when multiplicative effects seem more natural than
additive. In the case of pH, a solution having a hydrogen ion concentration of 107>
mol 17! is 1 unit greater pH (less acidic) than a solution having a concentration of
10~* mol 1-!. Similarly, a solution having a hydrogen ion concentration of 10~
mol 17! is 1 unit greater p H than a solution having a concentration of 108 mol 171,
In both cases, a 1 unit increase in p H corresponds to a 10-fold decrease in hydrogen
ion concentration, regardless of the concentration we started with. In chemical cal-
culations, the log concentration scale is simpler to work with than the concentration
scale.

Many other familiar scales are logarithmic. One example is the use of decibels to
measure the strength of an auditory signal. Not only are log scales familiar and
intuitive but, in addition, some batches of data look more nearly like observations
from a normal distribution following a log transformation. In particular, it frequently
happens that a batch of data look highly skewed in a given measurement scale, but
are much closer to being symmetric in the log scale.

Example 2.1 (continued from p.24) Figure 2.3 displays the saccadic reaction time
data in both the original scale and the log transformed scale. To transform the data
to the log scale we have replaced x = reaction time by log;,(x) for each of the 119
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Fig. 2.3 Histograms of eye saccade data. Top display is for data in the original scale, bottom display
is for the same data after being transformed by log. The data are distributed more symmetrically
in the log scale.

values. In the log scale the distribution is more symmetric. In addition, the potential
bimodality, or possibly even multimodality of the distribution is also evident in the
log scale. The data shown here were aggregated by combining conditions in which
the eyes began fixating centrally, to the right, or to the left, which may explain why
the histogram does not appear to be unimodal. When the data are disaggregated into
single conditions, in the log scale they do appear unimodal and roughly symmetrical.
For this reason, Behrmann et al. (2002) chose to perform many of their analyses in
the log scale. ]

Example 2.3 High-Field BOLD signal Lewis et al. (2005) have argued that for
some purposes it may be advantageous to transform the BOLD signal in fMRI data
by taking logarithms, at least in the case of high-field signals. Those authors examined
the BOLD intensity for subjects during 4 T imaging, with a simple visual stimulus.
Figure 2.4 displays a histogram (with dots replacing bin heights) of the BOLD values
collected from 19,000 voxels for each of 15 subjects and 15 images under their control
condition, during which the subjects were fixating on a central spot on the screen
they were watching. It is apparent that this distribution across voxels is quite skewed.
The authors produced various plots aimed at suggesting the log transformation could
be useful. O

The way we usually think of the log transformation is that it produces a more
“natural” scale for measurements whenever they are necessarily positive and might
reasonably be compared in proportional relationships. We have already mentioned
that normal distributions for data are assumed by standard statistical procedures,
that data distributions are rarely very close to normal, but that mild departures from
normality are generally tolerable. Such mild departures are common: once we trans-
form the data to a suitable scale, distributions are often unimodal and more-or-less
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Fig. 2.4 High field of BOLD signal intensities. The frequencies are plotted as dots, rather than bin
heights. The distribution across voxels is skewed toward high values. Reprinted with permission
from Lewis et al. (2005).

symmetrical. Presumably, this has to do with effects of the Central Limit Theo-
rem. We will discuss this great theorem in Chapter 6. For now let us be content
to state it this way: if we add up many small, independent effects their sum will
be approximately normally distributed. The empirical observation of approximate
normality may then be interpreted as follows: if we choose the right scale, the data
values may be considered sums of many small, independent effects.

We can understand this a little more deeply by returning to the logarithmic rela-
tionship in Eq. (2.1), and considering the role it may play when many small effects are
combined to produce variability. The cases where the log transformation is valuable
are those where it is natural to think in terms of proportionality. So suppose the reason
that two measurements are different is that many small proportional effects, of some-
what different sizes in the two measurements, have been combined. For example, the
length of a dendritic spine may depend on contributions to the cell membrane and
its contents by vast numbers of lipid and protein molecules. If we break the growth
process into many thousands of pieces, each might be considered a small effect, so
that the net result is a composition of many, many small effects. When we see that
one spine is longer than another, we might imagine that the many small effects in
the longer spine tended to be proportionally larger than those in the shorter spine.
Now consider two such small growth effects x| and x, occurring, respectively, in
the shorter and longer dendrites. If we think of the variation as proportional, we may
relate the values x1 and xp by writing x = x1(1 + €), where € is a small number
representing the proportional change (e.g., ¢ = .05, or 5 %) in going from x| to x».
From Eq. (2.1) together with a little calculus, for small € we have log(l + €) ~ €
(see Section A.4 of the Appendix). We then have
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log x> —logx; = log(1 + €)
~ €.

In other words, when we add a small perturbation € to log x; we get log x». Thus, if
we wish to think of € as a small random quantity that creates variability in the data
multiplicatively, it does so additively on the log scale. If the length of a dendritic spine
is the result of thousands of small growth processes that act multiplicatively, the log
of the length will be the sum of many thousands of €s and, therefore, according to the
Central Limit Theorem, will be described, approximately, by a normal distribution.
The same would be true of other measurements that are necessarily positive and
might reasonably be expected to follow proportional variation. From this argument,
one would expect that a batch of such numbers might look more symmetric and
unimodal following a log transformation.

All of this is heuristic; there is no argument here that can be claimed formally
correct—the Central Limit Theorem applies not to data but to mathematical quantities
that live in the “theoretical world” described in Section 1.2.5. We are simply trying
to provide a plausible explanation for the empirical fact that log-transformed growth
measurements usually have fairly symmetric distributions.

In transforming data by logs it does not matter what base is used. In mathematics
it is common to use’ the “natural” log (base ¢). In applications, where answers are
expressed and interpreted in decimal expansions, the “common” log (base 10) is
often used. (Sometimes binary expansions are most intuitive and log, (x) is used.)
These transformations have a simple relationship:

log, (x) = log,(10) log;((x).

This implies a batch of numbers transformed by log, will look essentially the same as
the batch transformed by log;. The only distinction is multiplication by the constant
log,(10) applied to each value. Thus, for data analytic purposes it does not matter
which scale is used. Of course, to interpret the results in a meaningful way, based
on relevant physiological units, one must know which logarithmic base has been
applied. The statistics literature follows the mathematics convention in using log,
unless otherwise noted. We follow this convention here.

Another motivation for logarithmic transformations is that they convert power
laws, which are useful in describing many neuroscientific phenomena, to simpler
linear forms. Power laws have the form

w = cvb (2.2)

and may be summarized by saying that a proportional change in v produces a pro-
portional change in w. If we let y = log w and x = log v then

3 Of all the values A in the function f(x) = AY, the value A = ¢ makes the derivative of f(x)
exactly equal to f (x) itself. For other values of A a constant must be introduced, which would make
calculus-based formulas more complicated.
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Fig. 2.5 Power function fits to firing-rate data, shown on log—log scale. On the y-axis are log firing
rates, and on the x-axis is log intensity of light. The data are from three different sources, using
three distinct methods of collection. Except for the deviation from the line at low intensities for the
data set indicated by circles, the fits are quite good. Adapted from Stevens (1970).

y =a + bx,

where a = logc.
Example 2.4 Stimulus-response power laws Power laws may be used to describe

the way increases in stimulus intensity produce increased magnitudes of sensation
Stevens (1961) (where they replace the “Weber—Fechner” law w = a + d logv), or
increased neural firing rate Stevens (1970). For example, Fig. 2.5 displays five classic
sets of data on neural responses from the eye of the horseshoe crab Limulus. For
each data set, the log of neural firing rate is plotted as a function of log of light inten-
sity. In each case the function is approximately linear. In other words, in each case
the relationship of firing rate to stimulus intensity follows, approximately, a power
law. O

Example 2.5 Power law for skill acquisition Power laws also arise in describ-
ing the effects of practice on recall or reaction time in memory and skill acqui-
sition (Anderson 1990). An interesting set of data comes from Kolers (1976) who
investigated the learned skill of reading inverted text.* As shown in Fig. 2.6, he found

4 See also the related work on power laws by Anderson and Schooler (1991).
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Fig. 2.6 Skill learning described by a power law, shown on a log—log scale. On the y-axis is the
log (base 2) of the time taken to read a passage of inverted text (in minutes), and on the x-axis
is log practice time (in pages). Four sets of data from multiple subjects are displayed. Data were
obtained on two occasions, separated by a year, on both ordinary text and inverted text (creating a
total of four conditions). Line A is fit to data based on ordinary text on the first occasion and line B
is fit to data based on ordinary text on the second occasion. There is essentially no training effect.
Lines C and D are the fits for inverted text. In both cases there is a clear power-law relationship,
indicated by the good fit of the lines to the data. Substantively, after the delay by a year the subjects
again improved with practice, but they had retained much of the skill of reading inverted text (/ine
D is below line C) and needed only about 100 pages of training to reach the proficiency previously
obtained after 200 pages. Adapted from Kolers (1976).

two things. First, a decreasing power law describes the relationship of reading time
to amount of practice. Second, when subjects were tested a year later, they had lost
some of their ability to read the inverted text, and then regained it again according to
a power law, though at a slower rate. The two relationships are shown in Fig.2.6 as
a pair of lines with differing slopes and intercepts. These studies are of great interest
for education: they suggest that retained learning may be quantified by the decrease
in training time required to achieve proficiency following re-training, compared to
the original training time. O

2.2.2 Non-logarithmic transformations are sometimes applied.

The log is by far the most common transformation, but there are others, too. The gen-
eral method of transformations is to replace a measured variable x, such as reaction
time, with some f (x) for every value of x. For example, reaction times and other time
measurements are sometimes analyzed on the reciprocal scale 1/x: the reciprocal
transforms time to something proportional to speed (speed is distance/time). Square-
root transformations are also sometimes used, especially for spike counts because
the square-root can be a so-called variance-stabilizing transformation, as discussed
in Chapter9. Square-roots are also sometimes used for measurements of area and
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Fig. 2.7 EMG from the leg of a frog during a swimming motion. Top panel shows raw signal.
Bottom panel shows the rectified signal.

cube-root transformations are occasionally used for volumetric measurements. We
may order these transformations by letting, for the moment, the symbol < stand for
“less strong than” and then writing them as follows:

x < x? <x13 < log(x) < 1/x.

In each case we strengthen the transformation (make it pull in the right-hand tail
more) as we decrease the power to which we raise x. Note that 1/x = x~! and
that, in this context, the log corresponds to using the power 0, so that increasing the
strength of transformation corresponds to decreasing the exponent.

Details: We may imbed the log in the power family of transformations
by putting the power transformations in the normalized form

F) = (&% = D)/

By calculus (L'Hbpital’s rule) it then follows that the log corresponds
toa =0. (]
In general, both distributional symmetry and interpretability are important in
determining a scale for analysis.
These “power transformations” are all monotonic. Occasionally, non-monotonic
transformations are used, as in the analysis of EMG recordings.

Example 2.6 EMG in frog movement An electromyogram (EMG) is arecording
of the electrical impulses transmitted through a group of muscle fibers, recorded
as electrical potentials. Because the instantaneous potential is generated from both
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agonist and antagonist muscle fibers, it is recorded as both positive and negative.
This is shown in the top panel of Fig.2.7, which is a display of an EMG taken from a
frog during a leg extension. Because the force generated by a muscle is only positive,
the standard convention is to analyze the full-wave rectified signal, i.e., the absolute
value of the potential. This is shown in the bottom panel of Fig.2.7. (]



Chapter 3
Probability and Random Variables

Probability is a rich and beautiful subject, a discipline unto itself. Its origins were
concerned primarily with games of chance, and many lectures on elementary prob-
ability theory still contain references to dice, playing cards, and coin flips. These
lottery-style scenarios remain useful because they are evocative and easy to under-
stand. On the other hand, they give an extremely narrow and restrictive view of what
probability is about: lotteries are based on elementary outcomes that are equally
likely, but in many situations where quantification of uncertainty is helpful there
is no compelling way to decompose outcomes into equally-likely components. In
fact, the focus on equally-likely events is characteristic of pre-statistical thinking.!
The great advance toward a more general notion of probability was slow, requiring
over 200 years for full development.? This long, difficult transition involved a deep
conceptual shift. In modern texts equally-likely outcomes are used to illustrate ele-
mentary ideas, but they are relegated to special cases. It is sometimes possible to
compute the probability of an event by counting the outcomes within that event, and
dividing by the total number of outcomes. For example, the probability of rolling an
even number with a fair six-sided die, i.e., of rolling any of the three numbers 2, 4, or
6, out of the 6 possibilities, is % = % In many situations, however, such reasoning is
at best a loose analogy. To quantify uncertainty via statistical models a more general
and abstract notion of probability must be introduced.

This chapter begins with the axioms and elementary laws of probability, and then
discusses the way probability is used to describe variability. The key concept of
independence is defined in Section 3.1.3. Quantities that are measured but uncertain
are formalized in probability theory as random variables. More specifically, we set up
atheoretical framework for understanding variation based on probability distributions
of random variables, and the variation of random variables is supposed to be similar

I See Stigler (1986).
2 Its beginning point is usually traced to a text by Jacob Bernoulli, posthumously-published in 1713

(Bernoullli 1713), and its modern endpoint was reached in 1933, with the publication of a text by
Kolmogorov (1933).
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to real-world variation observed in data. Many families of probability distributions
are used throughout the book. The most common ones are discussed in Chapter 5.

One quick note on terminology: the word sfochastic connotes variation describable
by probability. Within statistical theory it is often used in specialized contexts, but it
is almost always simply a synonym for “probabilistic.”

3.1 The Calculus of Probability

3.1.1 Probabilities are defined on sets of uncertain events.

The calculus of probability is defined for sezs, which in this context are called events.
That is, we speak of “the probability of the event A” and we will write this as
P(A). Events are considered to be composed of outcomes from some experiment or
observational process. The collection of all possible outcomes (and, therefore, the
union of all possible events) is called the sample space and will be denoted by 2.
Because €2 is a set, we also say that 2 is made up of elements (each of which is
an outcome) and to indicate that w is an element of Q we write w € 2. Recall the
definitions of union and intersection: for events A and B the union A U B consists of
all outcomes that are either in A or in B or in both A and B; the intersection A N B
consists of all outcomes that are in both A and B. The complement A€ of A consists of
all outcomes that are not in A. We say two events are mutually exclusive or disjoint
if they have empty intersection.

Example 3.1 Two neurons from primary visual cortex In an experiment on
response properties of cells in primary visual cortex, Dr. Ryan Kelly and colleagues
recorded approximately 100 neurons simultaneously from an anesthetized macaque
monkey while the animal’s visual system was stimulated by highly irregular random
visual input (Kelly et al. 2007). The stimulus they used is known as white noise,
which will be defined in Chapter 18. Kelly examined the response of two neurons
during 100 ms of the stimulus. Let A be the event that the first neuron fires at least
once within the 100 ms time interval and B the event that the second neuron fires at
least once during the same time interval. Here, A U B is the event that at least one of
the 2 neurons fires at least once, while A N B is the event that both neurons fire at
least once. Because it is possible that both neurons will fire during the time interval,
the events A and B are not mutually exclusive. O

We now state the axioms of probability.
Axioms of Probability:

[

. For all events A, P(A) > 0.

2. P(2) = 1.

3. If A1, A, ..., A, are mutually exclusive events, then P(A1 UAy U --- UA,) =
P(A1) + P(A2) + -+ + P(Ap).
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If we let U!_|A; = A UAZ U --- U A, then Axiom 3 may be written instead in the
form

3. If Ay, Az, ..., are mutually exclusive events, then P(U;’ZIA,-) = Z?:l P(A)).

A technical point is that in advanced texts, Axiom 3 would instead involve infinitely
many events, and an infinite sum:
3/.If Ay, Ay, ..., are infinitely many mutually exclusive events, then P(U?ilAi)

=22 P(AD.

Regardless of whether one worries about the possibility of infinitely many events, it
is easy to deduce from the axioms the elementary properties we need.

Theorem: Three Properties of Probability For any events A and B we have

(1) P(A°) =1 — P(A), where A€ is the complement of A.
(i) If A and B are mutually exclusive, P(A N B) = 0.
(iii) P(AUB) = P(A) + P(B) — P(ANB).

Proof : To prove (i) we simply note that 2 = A U A°. From axiom (2) we then

have P(A U A°) = 1 and because A and A¢ are mutually exclusive axiom (3)
gives P(A) + P(A€) = 1, which is the same as (i). It is similarly easy to prove (ii)
and (iii). |

To illustrate, suppose we pick at random a playing card from a standard 52-card
deck. We may compute the probability of drawing a spade or a face card, meaning
either a spade that is not a face card, or a face card that is not a spade, or a face
card that is also a spade. We take A to be the event that we draw a spade and B
to be the event that we draw a face card. Then, because there are 3 face cards that
are spades we have P(A N B) = 52, and, applying the last formula above, we get
P(AUB) = 4 + 13 2 = 26 This matches a simple enumeration argument: there
are 13 spades and 9 non-spade face Cards for a total of 22 cards that are either a
spade or a face card, i.e., P(AUB) = 52 =1 é The main virtue of such formulas is
that they also apply to contexts where probabilities are determined without reference
to a decomposition into equally-likely sub-components.

Example 3.1 (continued from p. 38) From 1,200 replications of the 100ms
stimulus Kelly calculated the probability that the first neuron would fire at least
once was P(A) = .13 and the probability that the second neuron would fire at least
once was P(B) = .22, while the probability that both would fire at least once was
P(A N B) = .063. Applying the formula for the union (property (iii) above), the
probability that at least one neuron will fire is P(A U B) = .13 + .22 — .063 = .287.

O
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ANB

A B

Fig. 3.1 Venn diagram showing the intersection of A and B. The events A and B are depicted as
open and filled-in circles, respectively, while A N B, the portion of B that is also in A, is shown
with diagonal lines. The conditional probability of A given B is the relative amount of probability
assigned to A within the probability assigned to B, i.e., the probability assigned to the region having
diagonal lines divided by the probability assigned to the whole of B.

3.1.2 The conditional probability P(A|B) is the probability that A
occurs given that B occurs.

We often have to compute probabilities under an assumption that some event has
occurred. For instance, one may be interested in the probability that a neuron will
fire in an interval of time (¢, f + At) given that it has already fired at a previous time
to. If we let A be the event we are interested in and B the event that is assumed to
have occurred, then we write®> P(A|B) for the conditional probability of A given B.
From a Venn diagram (see Fig.3.1) it is easy to visualize the calculation required:
we limit the universe to B and ask for the relative probability assigned to the part of
A that is contained in B. Algebraicly, the formula is the following:

Definition: Conditional Probability Assume P(B > 0). The conditional probability
of A given B is
P(ANB)
PA|B) = ———
P(B)

Again, using draws from a deck of cards, the probability of drawing a Jack given
4/52 1

that we draw a face card is P(A|B) = % = 3
A rewriting of the definition of conditional probability is also sufficiently useful

to have a name:
Multiplication rule If P(B) > 0 we have P(A N B) = P(A|B) - P(B).
Although conditional probability calculations are pretty straightforward, prob-

lems involving conditioning can be confusing. The trick to keeping things straight is
to be clear about the event to be conditioned upon. Here is one standard example.

3 This notation is due to Jeffreys (1931); see his p. 15.
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Ilustration: The boy next door Suppose a family moves in next door to you and
you know they have two children, but you do not know whether the children are boys
or girls. Let us assume the probability that either particular child is a boy is % We
might label them Child 1 and Child 2 (e.g., Child 1 could be the older of the two).
Thus, P(Child 1 is a boy) = P(Child 2 is a boy) = % Now suppose you find out
that one of the children is a boy. What is the probability that the other child is also a
boy?

It may seem that the answer is % but, if we assume that “you find out one of the
children is a boy” means at least one of the children is a boy, then the correct answer
is % Here is the argument. When you find out that one of the children is a boy you
do not know whether Child 1 is a boy, nor whether Child 2 is a boy, but you do know
that one of them is a boy—and possibly both are boys. This information amounts to
telling you it is impossible that both are girls. Let A be the event that both children
are boys and B the event that at least one child is a boy. We want P(A|B). Note that
there are four equally-likely possibilities:

P(Child 1 is a boy and Child 2 is a boy)

= P(Child 1 is a boy and Child 2 is a girl)
P(Child 1 is a girl and Child 2 is a boy)
= P(Child 1 is a girl and Child 2 is a girl).

Thus, we compute P(A N B) = P(A) = 4—1‘ and P(B) = %. Plugging these numbers
into the formula for conditional probability we get P(A|B) = % ([

3.1.3 Probabilities multiply when the associated
events are independent.

Intuitively, two events are independent when the occurrence of one event does not
change the probability of the other event. This intuition is captured by conditional
probability: the events A and B are independent when knowing that B occurs does not
affect the probability of A, i.e., P(A|B) = P(A). This statement of independence is
symmetrical: A and B are also independent if P(B|A) = P(B). However, these state-
ments are not usually taken as the definition of independence because they require
the events to have nonzero probabilities (otherwise, conditional probability is not
defined). Instead, the following is used as a definition.

Definition: Independence Two events A and B are independent if and only if P(A N
B) = P(A) - P(B).

Note that from this definition, when A and B are independent and P(B) > 0 we
have, as a consequence,
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P(A|B) =P(ANB)/P(B) = P(A)P(B)/P(B) = P(A).

Multiplication of probabilities should be very familiar. If a coin has probability .5
of coming up heads when flipped, then we usually say the probability of getting two
heads is .25 = .5 x .5, because we usually assume that the two flips are independent.

Example 3.1 (continued from p. 39) For the probabilities P(A), P(B) given on
p. 39 we have P(A)P(B) = .029 while the probability of the intersection was reported
to be P(A N B) = .063. The latter is more than double the product P(A)P(B). We
conclude that the two neurons are not independent. Their tendency to fire much more
often together than they would if they were independent could be due to their being
connected, to their having similar response properties, or to their both being driven
by network fluctuations (see also Kelly et al. 2010). (I

The definition of independence extends immediately to more than two events: if
A1, Az, ..., A, are independent then

P(N_1A) = > P(A)

i=1

where N A; = A1 NA2N---NA,.

Independence is extremely useful. Without it, dependencies represented by con-
ditional probabilities can become very complicated. Independence simplifies calcu-
lations and is often assumed in statistical models and methods. On the other hand,
as illustrated in Example 3.1, above, if the assumption of independence is wrong,
the calculations can be way off: in Example 3.1 the probability P(A N B) predicted
by independence would be too small by a factor of more than 2. In many situations
independence is the most consequential statistical assumption, and therefore must
be considered carefully.

3.1.4 Bayes’ theorem for events gives the conditional probability
P(A|B) in terms of the conditional probability P(B|A).

Bayes’ theorem is a very simple identity, which we derive easily below. Yet, it has
profound consequences. We can state its purpose formally, without regard to its appli-
cations: Bayes’ theorem allows us to compute P(A|B) from the reverse conditional
probability P(B|A), if we also know P(A). As we will see below, and in Chapter 16,
there are more complicated versions of the theorem, and it is especially those that
produce the wide range of applications. But the power of the result becomes apparent
immediately when we take B to be some data and A to be a scientific hypothesis. In
this case, we can use the probability P(datalhypothesis) from the statistical model
to obtain the scientific inference P(hypothesis|data). In the words used in Chapter 1,
p- 14, Bayes’ theorem provides a vehicle for obtaining epistemic probabilities from
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descriptive probabilities (see Section 16.1.1). The inverting of conditional probabil-
ity statements, together with the recognition that a different notion of probability
was involved, led to the name “inverse probability” during the early 1800s. This has
been replaced by the name “Bayes” in the theorem, and the adjective “Bayesian”
to describe many of its applications.* To derive the theorem we need a preliminary
result which is also important.

Theorem: Law of Total Probability For events A and B we have
P(B) = P(BIA)P(A) + P(BIA®)P(A°).

Proof : We begin by decomposing B into two pieces: B = (BN A) U (B N A°).
Because A and A€ are disjoint, (B N A) and (B N A€) are disjoint. We then have
P(B) = P(BNA) + P(BN A°). Applying the multiplication rule to P(B N A) and
P(B N A°) gives the result. O

Bayes’ Theorem in the Simplest Case If P(B) > 0 then

PAIB) = P(BJA)P(A) 3.1)
~ P(BIA)P(A) + P(BJA©)P(AC)’ '

Proof : 'We begin with the definition of conditional probability and then use the mul-
tiplication rule in the numerator and the law of total probability in the denominator:

P(ANB)
P(B)
_ P(BIA)P(A)
~ P(BJA)P(A) + P(BJA°)P(A°)

P(A|B) =

O

The “simplest case” modifier here refers to the statement of the theorem in which
the law of total probability is applied to the denomoninator P(B) by decomposing
B by intersection with only two events, A and A“. We discuss other versions of the
theorem below.

One interesting class of problems where this simple case is useful is in the inter-
pretation of clinical diagnostic screening tests. These tests are used to indicate that a
patient may have a particular disease A, based on a test outcome B, but they are not
definitive. The probability P(B|A) that a patient having the disease tests positively is
known as the sensitivity of the test, the probability P(B¢|A€) that a patient who does
not have the disease tests negatively is known as the specificity of the test, and the
probability P(A) that a patient drawn randomly from the population has the disease

4 For historical comments see Stigler (1986) and Fienberg (2006).
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is known as the prevalence of the disease. Good diagnostic screening tests have sen-
sitivity and specificity close to 1 but, as we will describe, Bayes’ Theorem serves as
a quantitative reminder that when a disease is rare, screening tests are preliminary,
and other information will be needed to provide a diagnosis. Specifically, if we let
PPV = P(A|B), which stands for positive predictive value, we get

sensitivity x prevalence
PPV = — —— (3.2
sensitivity x prevalence + (1 — specificity) x (1 — prevalence)

and, when the prevalence is small, the value of PPV will also typically be small—
sometimes surprisingly small.

A famous example involves screening for prostate cancer based on the radioim-
munoassay prostatic acid phosphatase (PSA). Even though the test is reasonably
accurate, the disease remains sufficiently rare among young men that a random male
who tests as positive will still have a low probability of actually having prostate
cancer. An application of Bayes’ Theorem (with A being the event that a randomly
chosen man will have the disease and B the event that he tests positive) to data from
Watson and Tang (1980), places the probability of disease given a positive test at
about 1/125. The intuition comes from recognizing that, among men under age 65 in
the United States, the disease has a prevalence of about 1/1,500. Suppose we were to
examine 1,500 men, 1 of whom actually had the disease. If the screening test were
90 % accurate, a 10 % false positive rate would mean that about 150 men would test
positively. In other words, about 1/150 of the positively tested men would actually
have the disease. Bayes’ Theorem refines this very crude calculation. Here is an
example drawn from neurology.

Example 3.2 Diagnostic test for vascular dementia Vascular dementia (VD) is
the second leading cause of dementia. It is important that it be distinguished from
Alzheimer’s disease because the prognosis and treatments are different. In order
to study the effectiveness of clinical tests for vascular dementia, Gold et al. (1997)
examined 113 brains of dementia patients postmortem. One of the clinical tests these
authors considered was proposed by the National Institute of Neurological Disorders
and Stroke (NINDS, an institute of NIH). Gold et al. found that the proportion of
patients with VD who were correctly identified by the NINDS test, its sensitivity,
was .58, while the proportion of patients who did not have VD who were correctly
so identified by the NINDS test, its specificity, was .80. Using these results, let us
consider an elderly patient who is identified as having VD by the NINDS test, and
compute the probability that this person will actually have the disease. Let A be the
event that the person has the disease and B the event that the NINDS test is positive.
We want P(A|B), and we are given P(B|A) = .58 and P(B€|A¢) = .8. To apply
Bayes’ Theorem we need the disease prevalence P(A). Let us take this probability to
be P(A) = .03 (which seems a reasonable value based on Hébert and Brayne 1995).
We then also have P(A°) = .97 and, in addition, P(B|A) = 1 — P(B¢|A¢) = .2.
Plugging these numbers into the formula gives us
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PAIB) (.58)(.03) _ o
©(58)(.03) +(.2)(.97)

or, approximately, 1/12. Thus, based on the Gold et al. study, because VD is a
relatively rare disease, without additional evidence, even when the NINDS test is
positive it remains unlikely that the patient has VD. (]

As in Example 3.2, this form of Bayes’ Theorem requires probabilities P(B|A),
P(B|A€) and P(A) which must come from some background information. All appli-
cations of Bayes’ Theorem are analogous in needing background information as
inputs in order to get the desired conditional probability as output.

To generalize Bayes’ Theorem from the simplest case we need the law of total
probability, which gives a formula for P(B) in terms of a decomposition of 2: Given
mutually exclusive events Ay, Az, ..., A, that are exhaustive in the sense that 2 =
AlUAU---UA,, we have

B=(BNA)UMBNA)U---U(BNA,)
with the sets B N A; being mutually exclusive. We then have

P(B) = P(BNA|) +P(BNAy) +---+P(BNA,)
= P(B|A1)P(A1) + P(B|A2)P(A2) + - - - + P(B|A,)P(An)

= > P(BIA)P(A).

i=1
From this we obtain a more general form of the theorem.

Bayes’ Theorem Suppose A, Az, ..., A, are mutually exclusive with P(A4;) > O,
foralli,and A UA, U---UA, = Q.If P(B) > 0 then

P(B|A)P(Ar)
P(BIA1)P(A1) + P(BIA2)P(Ay) + - - + P(BIA,)P(Ay)

P(Ax|B) =

Example 3.3 Decoding of saccade direction from SEF spike counts Bayes’ The-
orem is frequently used to study the ability of the relatively small networks of neurons
to identify a stimulus or determine a behavior. As an example, Olson et al. (2000)
reported results from a study of supplementary eye field neurons during a delayed-
saccade task. In this study, described in Example 1.1 on p. 3, there were four possible
saccade directions: up, right, down, and left. For each direction, and for each neuron,
spike counts in fixed pre-saccade time intervals were recorded across multiple trials.
From a combination of data analysis, and assumptions, the probability distribution
of various spike counts could be determined for each of the four directions. If we
consider a single neuron, we may then let B be the event that a particular spike count
occurs, and the events A1, A>, Az, and A4 be the saccade directions up, right, down,
left. Assuming the four directions are equally likely, from the probabilities P(B|Ax)
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Fig. 3.2 Histogram of spike counts from a motor cortical neuron. The histogram displays 60 spike
counts from a particular neuron recorded in primary motor cortex across 60 repetitions of the
practiced condition.

together with Bayes’ Theorem, we may determine from the spike count B the prob-
ability that the saccade will be in each of the four directions. In Bayesian decoding,
the signals from many neurons are combined, and the direction A having the largest
probability P(Ax|B) is considered the “predicted” direction. In unpublished work,
our colleague Dr. Valérie Ventura found that, from 55 neurons, Bayesian decoding
was able to predict the correct direction more than 95 % of the time. (]

3.2 Random Variables

So far we have discussed the basic rules of probability, which apply to sets repre-
senting uncertain events. A far more encompassing framework is obtained when we
consider quantities measured from those events. For example, the number of times a
neuron fires during a particular task may be observed, yielding a spike count. When
the behavior is repeated across many trials, the spike counts will vary.

Example 3.4 Spike counts from a motor cortical neuron Matsuzaka et al. (2007)
studied cortical correlates of practicing a movement repeatedly by comparing the
firing of neurons in primary motor cortex during two sequential button-pressing tasks:
one in which the sequence was highly practiced, and the other in which the sequence
was determined at random. Figure 3.2 displays spike counts from a single neuron
across 60 repetitions of the practiced condition. The histogram displays substantial
variation among the counts. (]

To describe variation among quantitative measurements, such as that seen in
Fig. 3.2, we need to introduce mathematical objects called random variables, which
assign to each outcome (e.g., neuronal spiking behavior on a particular trial) a number
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(the spike count). The variation in data may be summarized by a histogram, as
in Fig.3.2. The uncertainty in a random variable is described by’ its probability
distribution. In this section we develop some of the basic attributes and properties of
random variables, and their probability distributions.

At the outset it is important to emphasize the abstraction involved in using a
random variable to describe observed data. Strictly speaking, random variables and
their probability distributions live in the theoretical world of mathematics, while data
live in the real world of observations (as depicted by Fig. 1.8). When we speak of
the distribution of some data, as in the histogram in Fig. 3.2, we are talking about
observed variation. On the other hand, if we use a probability distribution, such
as a normal (or Gaussian) distribution or a Poisson distribution, both discussed in
Chapter 5, to describe some data, we are imposing a mathematical structure. To be
useful, such a structure must capture dominant features that drive scientific infer-
ences, and a fundamental part of data analytic expertise involves appreciation of the
ways inaccuracies in probabilistic description may or may not lead to misleading
inferences. We discuss assessments of probability distributions, and consequences
of incorrect assumptions, throughout the book. In this chapter we concentrate on
essential mathematical definitions and results.

3.2.1 Random variables take on values determined by events.

Let us start by returning to the framework of Example 1.4, in which patient P.S. made
a choice between two drawings on each of many trials. Suppose that the probability
of her choosing the non-burning house on each trial was p, and let us consider the
possibilities for two trials, assuming the outcomes were independent. For a given
trial, let A be the binary (i.e., two-choice) event that she chooses the non-burning
house, so that p = P(A) and P(A°) = 1 — p. For two trials, let us write the four
possible outcomes as AA, AA¢, AA, A°A°. From independence, the probabilities of
these events are

P(AA) = p*,
P(AAC) = p(1 —p)
P(A°A) = (1 —p)p

P(A°AS) = (1 —p)>.

Now take X to be the number of times, out of 2, that she chooses the non-burning
house. We have

5 We often shorten “probability distribution” to “distribution.” The word distribution is sometimes
also applied to data, where it describes the variation among the numbers. However, a probability
distribution can refer only to a random variable.
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P(X =2) =p’,
PX=1)=p(l—p)+ A —=pp=2p(l—p)
PX =0) = (1—p)

In this situation X is a random variable and it has a binomial distribution. More
generally, given a sample space €2, a random variable is a mapping that assigns to
every element of 2 a real number. That is, if w € 2 (see p. 38) then X(w) = x
is the value of the random variable X when w occurs. In the context above, Q2 =
{AA, AA°, A°A, A°A°} and X (AA) = 2, X(AA°) = 1, X(A°A) = 1, X(A°A°) = 0.

In Chapter I we discussed the distinction between continuous and discrete data.
We may similarly distinguish continuous and discrete random variables: a random
variable is continuous if it can take on all values in some interval (A, B), where
it is possible that either A = —oo or B = oo or both. The mathematical distinc-
tions between discrete and continuous distributions are that (i) discrete distributions
assign probabilities to specific values (such as non-negative integers) that can be sep-
arated from each other, but continuous distributions assign probabilities to intervals
of non-separable numbers (such as numbers in the interval (0, 1)) and (ii) wher-
ever summation signs appear for discrete distributions, integrals replace them for
continuous distributions.

3.2.2 Distributions of random variables are defined using
cumulative distribution functions and probability density
Junctions, from which theoretical means and variances may
be computed.

There are several definitions we need, which will apply to other probability distri-
butions besides the binomial. In the case of two trials from patient P. S., discussed
on p. 47, the probabilities P(X = 0), P(X = 1), and P(X = 2) form the proba-
bility mass function. For convenience, as indicated in Section 3.2.3, we generally
instead call the probability mass function a probability density function (pdf). We
would typically write P(X = x), with x taking the values 0, 1, 2, and we also use
the notation f(x) = P(X = x). The function F(x) = P(X < x) is called the cumu-
lative distribution function (cdf). Thus, in the case of two trials from patient P.S.
we have F(0) = PX =0), F1) =PX <1) =PX =0)+PX = 1), and
FQ2)=PX <2)=PX =0)+PX = 1) + P(X = 2). From the pdf we can
obtain the cdf, and vice-versa. When we speak loosely of the “probability distribution
of X,” or the “distribution of X,” we will be referring generically to the range of
probabilities attached to X, which could be specified by either the pdf or the cdf.
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Illustration: Litter sizes of mice As a simple non-binomial example, useful for
pedagogical purposes, suppose that 50 female mice were maintained in a facility,
that each gave birth to a litter, and that the litter sizes may be summarized in the
following table:

size 345 6 7 8

count[37 1214 10 4

Let us consider choosing a mouse at random from among the 50 that gave birth, and
let X be the litter size for that mouse. By dividing each count in the table above by
50 we get the following table for the probability distribution of X:

x|3 456 78
F()[.06 .14 24 28 .20 .08

Thus, f(3) = 3/50 = .06 signifies the probability that a randomly drawn mouse will
have litter size 3. ]

Notice that a plot of the counts (against x) would be a histogram of the 50 litter
sizes. Aside from the divisor of 50 used in getting each probability from the corre-
sponding count, a plot of f(x) against x would look the same as the histogram of the
counts; this would, instead, be a plot of the relative frequencies.6 More generally,
a plot of a pdf looks something like a histogram, except that the total amount of
probability must equal 1.

One way to understand any specification of probabilities f(x) is to consider them
to represent relative frequencies among a population of individuals. However, in
many cases the idea of a random drawing from a population is an abstraction, and
may be rather unrealistic. This is actually an important philosophical point that has
been argued about a great deal, but we will not go into it.

Details: In experimental settings, it is quite artificial to imagine that
the repeated measurements (trials) of an experiment are being drawn
at random from some population of such things. Similarly, when there
is a single unique event, such as the outcome of a football game, or the
flip of a fair coin, we can be comfortable speaking about the probability
of the outcome without any need for a population. In the case of the
coin, suppose we let X = 1 if it comes up heads and X = 0 if it comes
up tails, and take f(1) = P(X = 1) = Sand f(0) = P(X =0) = .5.
We could, if we wished, imagine some very large population of fair
coins, just like the one we are going to flip, among which, if flipped in
just the same way, half would come up heads and half would come up
tails. But we do not really need this imaginary device: thinking only
about one single coin it remains easy enough to understand the idea
that it is “fair” precisely when f(1) = .5 and f(0) = .5. That is, the

6 In this context terminology is inconsistent: “frequency” can mean either “count” or “relative
frequency.”
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notion that it is equally likely to be heads and tails does not require
further elaboration. If we wished to have an operational meaning to
“fair” we could take it to mean that we are willing to accept a fair
bet, i.e., one in which we would win the same amount if heads as we
would lose if tails. (]

For our purposes, what is important is that relative frequencies sometimes define
probabilities, and more generally provide a useful analogy for thinking about prob-
ability.

Now, let us go on to the concepts of mean and variance. For the 50 litter sizes in
the table on p. 49 we would compute the mean as

3(3) +7(4) + 12(5) + 14(6) + 10(7) + 4(8)
mean = 50 = 5.66.

Alternatively, we could write
3() 4 A() 4+ 52) £ 6(e0) + 7)1 8(o) = 5.6
mean = 3(— — = _ i ~)y=5.
50 50 50 50 50 50
which, from the table on p. 49 is the same as

mean =3 -f(3) +4-f(@4)+5-£(5) +6-£(6) +7-f(T) + 8- f(8) = 5.66.

This latter form may be interpreted as the litter size we would “expect” to see (“on
average”) for arandomly drawn mouse, and it is an instance of the general expression
for the mean or expected value or expectation of the random variable X:

px =EX) =D x-f(x). (3.3)

Correspondingly, the variance of X is

o} = VX)) =D (x — px)? ()

and the standard deviation is ox = \/g . The subscript X is often dropped, leaving
simply p and o. The standard deviation summarizes the magnitude of the devia-
tions from the mean; roughly speaking, it may be considered an average amount of
deviation from the mean. It is thus a measure of the spread, or variability, of the
distribution. There are alternative measures (such as D" |x — u|f(x)), and these are
used in special circumstances, but the standard deviation is the easiest to work with
mathematically. It is, therefore, the most common measure of spread.

Note that ux and ox are theoretical quantities defined for distributions, and are
analogous to the mean and standard deviation defined for data. In fact, if there
are n values of x and we plug into (3.3) the special case f(x) = % (which states
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that all n values of x are equally likely) we get back’ jxy = X. Because data are
often called samples, the data-based mean and standard deviation are often called
the sample mean and the sample standard deviation to differentiate them from py
and oy, which are often called the population mean and standard deviation. This
terminology distinguishes samples from “populations,” rather than distributions, with
the word “sample” connoting a batch of observations randomly selected from some
large population. Sometimes there is a measurement process that corresponds to
such random selection. However, as we have already mentioned, probability is much
more general than the population/sample terminology might lead one to expect;
specifically, we do not need to have a well-defined population from which we are
randomly sampling in order to speak of a probability distribution. So, at least in
principle, we might rather avoid calling uy a population mean. On the other hand,
the “sample” terminology is useful for emphasizing that we are dealing with the
observations, as opposed to the theoretical distribution, and it is deeply imbedded in
statistical jargon. Similarly, the “population” identifier is frequently used rather than
“theoretical.” The crucial point is that one must be careful to distinguish between
a theoretical distribution and the actual distribution of some sample of data. Many
analyses assume that data follow some particular theoretical distribution, and in doing
so hope that the match between theory and reality is pretty good. We will look at
ways of assessing this match in Section 3.3.1.
The following properties are often useful.

Theorem For a discrete random variable X with mean py and standard deviation ox
we have

E@-X+b)=a-ux+b (3.4)
05X+b =a’. 0)2( 3.5)
Oax+b =lal - ox. (3.6)

Proof : 'We have
E(aX +b) = Z(ax + b)f (x)
=aQ N +b D )
=aEX)+b

which is the same as (3.4). The derivation of (3.5) is similar, and taking square-roots
gives (3.6). O

7 We also get oy = ./ % Z?Zl (x; — px)? which, when we replace sy with X, is not quite the same
thing as the sample standard deviation; the latter requires a change from n to n — 1 as the divisor for
certain theoretical reasons, including that the sample variance then becomes an unbiased estimator
of o%. See p. 183.
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3.2.3 Continuous random variables are similar to discrete
random variables.

Suppose X is a continuous random variable on an interval (A, B), with A = —o0
and B = oo both being possible. The probability density function (pdf) of X will be
written as f (x) where now

b
Pla<X <b) =/ f)dx

and, because (from Axiom 2 on p. 38) the total probability is 1, we have

B
/ f)dx = 1.
A

Note that in this continuous case there is no distinction between P(a < X) and
P(a < X) (we have P(X = a) = 0). We may think of f(x) as the probability per
unit of x; f (x)dx is the probability that X will lie in an infinitesimal interval about x,
that is, f(x)dx = P(x < X < x + dx). In some contexts there are various random
variables being considered and we write the pdf of X as fx (x).

A technical point is that when either A > —oo or B < oo or both, by convention,
the pdf f(x) is extended to (—oo, o) by setting f(x) = 0 outside (A, B). When we
say that X is a continuous random variable on an interval (A, B) we will mean that
f(x) > 0on (A, B) and, if either A or B is a number, f(x) = 0 outside of (A, B). We
next give several examples of continuous distributions.

Ilustration: Uniform distribution Perhaps the simplest example is the uniform
distribution. For instance, if the time of day at which births occurred followed a
uniform distribution, then the probability of a birth in any given 30 min period would
be the same as that for any other 30 min period throughout the day. In this case the
pdf f (x) would be constant over the interval from 0 to 24 h (hours). Because it must
integrate to 1, we must have f(x) = 1/24 and the probability of a birth in any given
30 min interval starting at a hours is |’ aa +3 f(x)dx = 1/48. When a random variable
X has a uniform distribution on a finite interval (A, B) we write this as X ~ U(A, B)
and the pdf is f(x) = ﬁ. O

In this illustration above we have introduced a convention that is ubiquitous, both
in this book and throughout statistics: the squiggle “~” means “is distributed as.”

Figure 3.3 displays pdfs for four common distributions. For the two in the top
panels, exponential and gamma distributions, X may take on all positive values, i.e.,
values in (0, 0o0). The lower left panel shows a beta distribution, which is confined
to the interval (0, 1). A normal distribution, which ranges over the whole real line, is
shown in the bottom right panel. We discuss the exponential and normal distributions

briefly below and return to them, and to the beta and gamma distributions in Chapter 5.
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Fig. 3.3 Plots of pdfs for four continuous distributions. Top left Exponential. Top right Gamma.
Bottom left Beta. Bottom right Normal. See Chapter5 for the explanation of the latter three distri-
butions.

Illustration: Normal distribution The normal distribution (also called the Gaussian
distribution) is the most important distribution in statistical analysis. The reason for
this, however, has little to do with its ability to describe data. Example 1.2, continued
below, presents one of the few examples we know in which the data really appear
normally distributed to a high degree of accuracys; it is rare for a batch of data not to
be detectably non-normal. Instead, in statistical inference, the normal distribution is
used to describe the variability in quantities derived from the data as functions of a
sample mean. As we discuss in Chapter 6, according to the Central Limit Theorem,
sample means are approximately normally distributed and, in Chapter 9, we will also
see that functions of a sample mean are approximately normally distributed.

The normal distribution is characterized by two parameters: the mean and the
standard deviation (or, equivalently, its square, the variance). When arandom variable
X is normally distributed we write X ~ N (i, o2). Both in most software and in most
applications, one speaks of the parameters  and o rather than z and 2. The pdf for
the normal distribution with mean p and standard deviation o is

FO) = ——ex (—1(x_” )2) 3.7)
—mo_ P 5 (— . .

This pdf can be hard to use for analytic calculations because integrals such as

b _
Pl@a<X <b) =/ \/;_M exp (—%(x Jﬂ)z) dx
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Fig. 3.4 A histogram of MEG noise at a SQUID sensor, overlaid with a normal density function
(the “bell-shaped curve”).

5

can not be obtained in closed form, meaning that there is no simple formula for
the answer. Thus, probabilities for normal distributions are almost always obtained
numerically. Because of its shape the normal pdf is often called “the bell-shaped
curve.” We exemplify this in the next example. (]

Example 1.2 (continued from p. 5) We previously noted that the SQUID detectors
in MEG are extremely sensitive, and there is nontrivial background noise that is
detected in the absence of any brain signal. Figure 3.4 shows a histogram of the
signal at one detector during a short period with nothing in the scanner. The noise
histogram is very well approximated by a normal pdf. Indeed, this is one of the rare
examples in which even on close inspection, a substantial batch of data appear to
follow a normal distribution. (]

In fact, the general bell shape of the distribution is not unique to the normal
distribution. On the other hand, the normal is very special among bell-shaped distri-
butions. The most important aspect of its being very special is its role in the Central
Limit Theorem, which we’ll come back to in Chapter 6. We also describe additional
important properties of normal distributions on p. 63 and in Chapter 5.

The cumulative distribution function, or simply distribution function, is written
again as F(x) and is defined as in the discrete case: F(x) = P(X <x).IfA = —o0
and B = oo this becomes

X
Fx) = / f(t)dt.
—o0
If A is a number, i.e., —00 < A, then F(x) = 0 when x < A and

Flx) = / *fwr,
A
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Fig. 3.5 The cdf of a N(0, 1) random variable. The cdf of any other continuous distribution will,
similarly, be continuous with asymptotes at 0 and 1.

while if B is a number (B < 00) then F(x) = 1 when x > B. From the definition, the
cumulative distribution function for a continuous distribution has a sigmoid appear-
ance, as in Fig. 3.5, given by the following theorem.

Theorem Suppose f(x) is a continuous pdf that is positive on (A, B). Then F(x)
is a non-decreasing function and it is strictly increasing (F’(x) > 0) on (A, B). In
addition we have F(x) - Oasx — A and F(x) — 1 asx — B.

Proof : By differentiation (the Fundamental Theorem of Calculus) we have F’(x) =
f(x), whichimplies F’(x) > 0 and, by assumption, F’(x) > 0on (A, B). Furthermore,
because F'(x) is differentiable, it is also continuous. Because f (x) integrates to 1 on
the interval (A, B), when A = —oo we must have F(x) — 0 asx — —oo (otherwise
the integral would be infinite) and when B = oo F(x) — 1 as x — oo. When A
is a number, from the integral form of F(x), F(A) = 0 and F(x) — 0 as x — A.
Similarly, when B is a number we get F(B) = 1 and then F(x) - lasx — B. [

In the continuous case, the expected value of X is
B
px = E(X) = / xf (¥)dx
A
and the standard deviation of X is ox = 4/V(X) where

B
VX) = /A (¢ — px)f (x)dx
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is the variance of X. Note that in each of these formulas we have simply replaced
sums by integrals in the analogous definitions for discrete random variables. Note,
too, that pdf and cdf values for certain continuous distributions may be computed
with statistical software.® We again have

HaXx+b=a-pux +b (3.8)
Oax+b = lal - ox. (3.9

These formulas are just as easy to prove as (3.4) and (3.6). Another formula is useful
for certain calculations:
V(X) = E(X?) — ii? (3.10)

and this, too, is easily verified. In many contexts the variation relative to the mean is
summarized using the coefficient of variation, given by

cvix) = 2. 3.11)
1

The quantiles or percentiles are often used in working with continuous distribu-
tions: for p anumber between 0 and 1 (such as .25), the p quantile or 100pth percentile
(e.g., the .25 quantile or the 25th percentile) of a distribution having cdf F(x) is the
value 7 such that p = F(n). Thus, we write the p quantile as 1, = F ~1(p), where
F~!is the inverse cdf.

Ilustration: Exponential distribution Let us illustrate these ideas in the case of
the exponential distribution, which is special because it is easy to handle and also
because of its importance in applications. We provide an application in Example 3.5
A random variable X is said to have an exponential distribution with parameter

A, with A > 0, when its pdf is
fx) =A™ (3.12)

for x > 0, and is O for x < 0. We will then say that X has an Exp()\) distribution
and we will write X ~ Exp()\). The pdf of X when X ~ Exp(1) is shown in Fig. 3.6.
Also illustrated in that figure is computation of probabilities as areas under the pdf
for the case

P(X>2) = /oof(x)dx
2

which means we compute the area under the curve to the right of x = 2. For the
exponential distribution this value is easy to compute using calculus. The cdf of an
exponential distribution is

8 The definitions of expectation and variance assume that the integrals are finite; there are, in fact,
some important probability distributions that do not have expectations or variances because the
integrals are infinite.
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Fig. 3.6 The pdf of arandom variable X having an exponential distribution with A\ = 1. The shaded
area under the pdf gives P(X > 2).

X
F(x) :/ e Mdt
0

X

— N

0
=1—e ™

Thus, when X ~ Exp(\), using P(X > x) = 1 — F(x), we also have
PX>x)=e ™ (3.13)

andif A\ =1
PX>2=1—-—FQ2)=¢2.

The quantiles are also easily obtained. For example, if X ~ Exp()) the .95 quantile
of X is the value 7,95 such that P(X < 19s5) = F(n.95) = .95. We have

95 = F(nos) =1 — e 1
and we must solve 7.95. More generally, if we set p = F(x) then
Ax

p=1—e"

so that

and, therefore, —\x = log(1 — p) so that
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_ log(1—p)
= 5 .
Plugging in p = .95 gives 195 = —log(.05)/\.

If X ~ Exp()\) then, by similar calculations, we obtain

EX) =1/\
V(X) = 1/X?
ox =1/

We omit the details. For future reference, we note that when we put the formu-
las for E(X) and oy above in Eq.(3.11), we find the coefficient of variation of an
exponentially-distributed random variable X to be

CV(X) = 1. (3.14)

O

If X1, X5, ..., X, are independently distributed as Exp(\) then their sum ¥ =
X1+ X> + - - - + X, follows a gamma distribution with shape parameter n, written
Y ~ G(n, \). The exponential is often used to describe event durations, and the
gamma then becomes a sum of event durations, as illustrated in the next example.

Example 3.5 Duration of ion channel activation To investigate the functioning of
ion channels, Colquhoun and Sakmann (1985) used patch-clamp methods to record
currents from individual ion channels in the presence of various acetylcholine-like
agonists; see also Colquhoun (2007). A set of their recordings is shown in Fig. 3.7.
One of their main objectives was to describe the opening and closing of the channels
in detail, and to infer mechanistic actions from the results. Colquhoun and Sakmann
found that channels open in sets of activation “bursts” in which the channel may
open, then shut again and open again in rapid succession, and this may be repeated,
with small gaps of elapsed time during which the ion channel is closed. A burst may
thus have 1 or several openings. As displayed in Fig. 3.8, Colquhoun and Sakmann
examined separately the bursts having a single opening, then bursts with 2 openings,
then bursts with 3,4, and 5 openings. Panel B of Fig. 3.8 indicates that, for bursts with
a single opening, the opening durations follow closely an exponential distribution.
In the case of bursts with 2 openings, if each of the two opening durations were
exponentially distributed, and the two were independent, then their sum—the total
opening duration—would be gamma with shape parameter o« = 2. Panel C of Fig. 3.8
indicates the good agreement of the gamma with the data. The remaining panels show
similar results for the other cases. |

The formulas and concepts that apply to random variables are usually stated with
the notation of integrals rather than sums. This is partly because it is cumbersome
to repeat everything for both continuous and discrete random variables, when the
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Fig. 3.7 Current recordings from individual ion channels in the presence of acetylcholine-type
agonists. The records show the opening (higher current levels) and closing (lower current levels),
with the timing of opening and closing being stochastic. Adapted from Colquhoun and Sakmann
(1985).

results are in essence the same. In fact, there is an elegant theory of integration” that,
among other things, treats continuous and discrete random variables together, with
summations becoming special cases of integrals. Throughout our presentation we
will, for the most part, discuss the continuous case with the understanding that the
analogous results follow for discrete random variables. For example, we will freely
use the terminology pdf for both continuous and discrete random variables, where
for the latter it will refer to a probability mass function.

For many purposes we do not actually need formulas such as those derived for
the exponential distribution. Most statistical software contains routines to generate
random observations artificially!® from standard distributions, such as those pre-
sented below, and the software will typically also provide pdf values, probabilities,
and quantiles. Indeed, as we note below, random variables having essentially any
continuous distribution may be generated on a computer from a program that gener-
ates U(0, 1) random variables. In showing this we will have to use the cdf, which is
given next.

9 Lebesgue integration is a standard topic in mathematical analysis; see for example, Billingsley
(1995).

10 The numbers generated by the computer are really pseudo-random numbers because they are
created by algorithms that are actually deterministic, so that in very long sequences they repeat
and their non-random nature becomes apparent. However, good computer simulation programs use
good random number generators, which take an extremely long time to repeat, so this is rarely a
practical concern.



D
(=)

3 Probability and Random Variables

100 - 201

(@), (b) ©

o

E g 75 £
o 200 & Ig 15
8 10 -3- 50 S0

g 100 g g

2 3 25f T 5

g o g g
- [ ke

0 50 00 50 0 50 100 150 0 50 100 150
Apparent open time (ms) Open time per burst (ms) Open time per burst (ms)

(d) (e)1s (12 6

g 1sp : 2

w0 @ n

b - 1wt T 4r

é 10 8 E

-

g 2 g

= L @ 5 a 2

g ° g g

[ b g

0 50 100 150 0 50 100 150 0 50 100 150

Open time per burst (ms) Open time per burst (ms) Open time per burst (ms)

Fig. 3.8 Duration of channel openings. Panel a depicts the distribution of burst durations for a
particular agonist. Panel b displays the distribution of bursts for which there was only 1 opening,
with an exponential pdf overlaid. This illustrates the good fit of the exponential distribution to the
durations of ion channel opening. Panel ¢ displays the distribution of bursts for which there were 2
apparent openings, with a gamma pdf, with shape parameter 2, overlaid. Panel ¢ again indicates good
agreement. Panels d—f show similar results, for bursts with 3—5 openings. Adapted from Colquhoun
and Sakmann (1985).

Ilustration: Uniform distribution (continued from p. 52) If a continuous random
variable X has cdf F(x) = x on the interval (0, 1) we may differentiate to get the
U(0, 1) pdf f(x) = 1. On the other hand, if X ~ U(0, 1) we integrate f(x) = 1 to
get

F(x):/xl-dxzx.
0

In other words, X has a U(0, 1) distribution if and only if its cdf is F(x) = x on the
interval (0, 1). ([

Ilustration: Normal distribution (continued from p. 53) When X is distributed
normally with mean p and standard deviation o it has a pdf given by Eq. 3.7. Its cdf

is given by
F(x) = / «/_or exp (——(—)2) dx.

This integral can not be evaluated in explicit form. Therefore, normal probabilities
of the form P(a < X < b) are obtained by numerical approximation. (|
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3.2.4 The hazard function provides the conditional probability of
an event, given that it has not yet occurred.

Another useful characterization of a probability distribution arises in specialized con-
texts, including the analysis of spike train data, where a random variable X represents
the waiting time until some event occurs. In the case of a spiking neuron, X would
be the elapsed time since the neuron last fired, and the event of interest would be
next time it fires. We want a formula for the instantaneous probability that the neuron
will fire at time x, i.e., that it will fire in an interval (x, x 4 dx), given that it has not
yet fired in (0, x). Assuming X is a continuous random variable, the event that the
neuron has not yet fired in (0, x) is the same as X > x. Recall that if P(B) > 0 then

P(ANB)

P(A|B) = 5

Applying this with A being the event X € (x, x4 &) and B being the event that X > x

we have
F(x+h) —F(x)

e, x+h|X >x) =
PX € (x,x )| X) [~ F)
Passing to the limit as & vanishes gives

. PXe(x,x+hX >x) Jx)
lim = ,
h—0 h 1—F(x)

which we may interpret as the probability X € (x, x4+ dx) given X > x. The function

L f®
A =T F o

is called the hazard function of X. For example, if X is the elapsed time that an ion
channel is open, so that its values are times x, then \(x)dx becomes the probability the
ion channel will close in the interval (x, x + dx), given that it has remained open up to
time x. Similarly, if X is the elapsed time since a neuron last fired an action potential
then A(x)dx becomes the probability the neuron will fire in the interval (x, x + dx),
given that it has not yet fired again before elapsed time x. In spike train analysis,
the hazard function for a neuron becomes its theoretical firing rate (its instantaneous
probability of firing per unit time), which is known in general as the infensity or
conditional intensity function. See Chapter 19.

The “hazard” terminology comes from lifetime analysis, where the random vari-
able X is the lifetime (of a lightbulb or a person, etc) in units of time ¢ and \(¢)dt is
the probability of failure (death) in the interval (¢, t 4 dt) given that failure has not
yet occurred.
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3.2.5 The distribution of a function of a random variable
is found by the change of variables formula.

There are many situations in which we begin with a random variable X that has a
particular distribution and we want, in addition, to obtain the distribution of another
random variable ¥ = g(X) for some function g(x). This arises in the context of data
transformations (discussed in Chapter 2) and it is also important in various theoretical
derivations. In the simplest cases there is no need for any special formula.

Ilustration: Two trials from patient P.S. Let us return to the framework on p. 47,
where X is the number of times, out of 2, that P.S. chooses non-burning house,
and P(X = 2) = p>, P(X = 1) = 2p(1 — p), P(X = 0) = (1 — p)>. Suppose
Y = g(X) = 10*. Then we have P(Y = 100) = p2, P(Y = 10) = 2p(l — p),
P(Y =1) = (1 —p)%. It would be easy to calculate the mean and variance of Y from
these probabilities. (]

When X has a continuous distribution we may obtain the pdf fy(y) of ¥ = g(X)
using the change-of-variables formula from calculus—which follows from the chain
rule.

Theorem: Pdf of a Function of a Random Variable Suppose X is a continuous
random variable having pdf fx(x) for which fx(x) > 0 on an interval (A, B) and
fx(x) = 0otherwise; suppose further that g(x) is a differentiable function and g’ (x) #
0 for x € (A, B). Then the random variable Y = g(X) has pdf given by

d
ﬁ@=ﬁ@”@m;g%m
y

wherever y = g(x) for some x, and fy (y) = 0 elsewhere.

Proof details: Let us consider x € (A, B). Because g'(x) # 0, g'(x) is
either always positive, in which case g(x) is monotonically increasing,
or always negative in which case g(x) is monotonically decreasing.
Let us assume g’(x) > 0. Because g(x) is monotonically increasing
we then have x < ¢ <= g(x) < g(c). We will obtain the pdf f, (y) by
differentiating the cdf Fy(y), using f;(y) = F} (y). Suppose y = g(x)
for some x. Then

Fy(y) = P(g(X) <)
=PX <g ')
= Fx(g~'(»)

where the second equality used x < ¢ <= g(x) < g(c). Now, by the
chain rule, differentiation gives
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d
) =fx(g*‘<y))d—g*‘(y).
y

Because we have assumed g'(x) > 0, this is the desired result. The
case in which g’(x) < 0 requires a small modification of the argument
above (which we leave to the attentive reader). U

Here is a simple consequence of the theorem above.

Theorem: Linear transformation of a normal random variable Suppose X ~
N(ux, o%) and let g(x) = a + bx with b # 0. If Y = g(X) then Y ~ N(uy, 03)
where iy = a + buy and oy = |bloy.

Proof : Notice first that the mean and standard deviation formulas follow from (3.8)
and (3.9). Let us apply the transformation theorem above. We have g~ (v) = (y—a) /b
and |

. 3.15
] (3.15)

L)l =
dyg B
If we substitute x = (y — a)/b into the pdf formula (3.7), multiply by the derivative

factor 1/|b| from (3.15) as required by the theorem above, and simplify we obtain
the pdf

1 L y—py.,
() = ——exp(—=( )7
fr@y By p(=3 oy
in agreement with (3.7). ]

Another result that will be used later in the book provides a way of reducing the
distribution of X to a uniform distribution.

Theorem: The Probability Integral Transform, Part 1 Suppose X is a continuous
random variable having pdf fx (x) and cdf Fx (x), and suppose further that fx (x) > 0
on an interval (A, B) and fy(x) = O otherwise. The random variable Y defined by
Y = Fx(X) has a U(0, 1) distribution.

Proof : First, let us note that Fy(x) is strictly increasing on (A, B). It therefore
has a well-defined, strictly increasing inverse function Fy ') satisfying Fy Ly =

x whenever Fx(x) = y. Furthermore, x < ¢ < F;l(x) < F;l(c) and
FX(Fgl(y)) = y. We must show that P(Y < y) = y whenever y € (0,1). We
have

P(Y <y)=P(Fx(X) <y) = P(X < F5'())
= Fx(Fy'()
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Theorem: The Probability Integral Transform, Part 2 Suppose X is a continuous
random variable having pdf fx (x) and cdf Fx(x), and suppose further that fx (x) > 0
on an interval (A, B) and fy(x) = 0 otherwise. If U ~ U(0, 1) then the random
variable Y defined by ¥ = Fy l(U ) has the same distribution as X, i.e., its cdf Fy
satisfies Fy(y) = Fx(y) for all y.

Proof : The proof involves manipulations similar to those of part 1. (]

This result gives a general method of generating a random variable that has a
distribution with a given distribution function F(x): we generate a U (0, 1) random
variable U and apply the transformation F~!(U).

We conclude with a technical result that provides transformations from one dis-
tribution to another in terms of CDFs.

Corollary to the Probability Integral Transform Suppose X and Y are continuous
random variables having pdfs fx(x), fy (y) and cdfs Fx(x), Fy(y). Suppose further
that fx(x) > 0 on an interval (A, B) and fx(x) = 0 otherwise and fy(y) > 0 on an
interval (C, D) and fy(y) = O otherwise. Then the random variable W defined by
W = F;l (Fx (X)) has the same distribution as Y, i.e., its cdf Fy satisfies Fy (w) =
Fy(w) for all w.

Proof : This is simply a combination of parts 1 and 2 of the probability integral
transform. (]

3.3 The Empirical Cumulative Distribution Function

One way to check the accuracy with which a probability distribution fits the data is
to overlay a pdf on a histogram, as in Figs. 3.4 and 3.8. (In Chapter7 we discuss
how to choose the parameter values for the pdf, e.g., the A in an exponential.) In this
section we consider another pair of graphical techniques, called P-P and Q-Q plots,
which can be more sensitive than plotting the pdf.

The difficulty in examining the pdf is that its values cover a large range: it can be
hard to judge deviations from a curving trend, especially when some of the values
are close to zero. An alternative is to straighten things out so that a perfect fit is
represented by a straight line. Both P-P and Q—Q plots accomplish this, and both are
based on the cdf. We begin by defining the data-based counterpart of the theoretical
cdf.

Let Xj, ..., X, be independent random variables all having the same distribu-
tion function F(x). The empirical cumulative distribution function, written F n(X),
is the cdf for the discrete probability distribution that puts mass 1/n on each value
X1,..., Xy, 1e.,

A number of indices i for which X; < x
Fu(x) = .

n
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That is, I:",, (x) provides the proportion of the random variables, out of n, that are
less than or equal to x. When n is large, we might expect this proportion to be close
to the theoretical probability that each random variable is less than or equal to x,
i.e., we might expect I:“n (x) to be close to F'(x). We will see in Chapter6 that this
is necessarily so, for sufficiently large n. Figure 3.9 illustrates this in the case of a
Gamma(2, 1) distribution, for samples of size n = 10 and n = 200. Specifically, to
create the left panel in Fig. 3.9 we (i) used the computer to generate 10 observations
X1, X2, ..., Xx10 from a Gamma(2, 1) distribution, then (ii) plotted F 2 (x) versus x and
(ii1) overlaid a plot (dashed line) of the theoretical Gamma(2, 1) cdf F(x) versus
x. In this case there is a reasonably close agreement between f’n (x) and F(x). The
agreement is much closer in the right panel, when n = 200.

The same procedure could be used for any set of observations xi, . . ., x, to check
whether they seem to be consistent with random draws from a distribution with cdf
F(x), i.e., we could plot F'(x) versus x on together with a plot of F, (x) versus x and
see whether they agree well. A variation on this idea is to plot F,(x) versus F(x).
This becomes a P—P plot, discussed in Section 3.3.1.

3.3.1 P-P and Q-0 plots provide graphical checks for gross
departures from a distributional form.

Suppose we wish to compare a cdf F (x) with another, similar cdf F(x). If F x) ~
F(x),wecoulddefinev = F (x)andu = F(x), plot v against u over the range of values
of x, and judge the accuracy of the approximation by the deviation of this plot from
the line v = u. In other words, we could plot probabilities against probabilities. This
is the idea behind the P-P plot (P—P for Probability-Probability), except that in exam-
ining data it is performed with the empirical cdf Fp(x) replacing F(x). Specifically,
to examine the fit of a theoretical cdf F(x) to some data, we pick suitable values of x
spanning the range of the data and compute v = F,(x) and u = F(x) and then plotv
against u. Often, the “suitable values” of x are simply the data values themselves. In
other words, for data values xy, . .., x,, we plot I:"n (x;) against F(x;),fori =1, ..., n.

Example 1.2 (continued from p. 54) A P-P plot of the data shown in Fig.3.4 is
given in Fig. 3.10, where we have used a normal distribution as our theoretical F'(x).
The plot follows extremely closely the line y = x. (]

One difficulty with the P—P plot is that the range of both axes is [0, 1], which
sometimes makes it difficult to see clearly the departures from the line v = u for
values of u near 0 or 1. An alternative is to pick suitable values of w between 0
and 1 and plot f?n_ L(w) versus F~1(w), both of which will be on the scale of the
data. This is the idea behind the Q—Q plot, which is based on quantiles (Q—Q for
Quantile-Quantile).

On p. 56 we defined the quantiles of a continuous probability distribution. The data
quantiles (or observed quantiles, or sample quantiles) are analogous, but it turns out
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Fig.3.9 Convergence of the empirical cdf to the theoretical cdf. The left panel displays the empirical
cdf for a random sample of size 10 from the Gamma distribution whose pdf is in the top right panel
of Fig. 3.3, together with the gamma cdf (dashed blue line). The right panel shows the empirical
cdf for a random sample of size 200, again with the gamma cdf. In the right panel the empirical cdf
is quite close to the theoretical gamma cdf.
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Fig. 3.10 A P-P plot of the MEG noise data from Fig.3.4. The straightness of the plot indicates
excellent agreement with the normal distribution.

that there is no unique analogue and instead one of several variants may be used. If we
start from a sample of observations x1, x2, .. ., x, we first put the data in ascending
order according to the size of each observation: we write x(1), X2), . . ., X(n), Where
X(1y is the smallest value, x(2) is the second-smallest, and x,) is the largest. Let us use
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Fig. 3.11 Q-Q plots for 200 randomly-drawn observations from a three distributions. Left obser-
vations from a N (0, 1) distribution; middle observations from a gamma distribution, whose pdf is
shown in the top right panel of Fig. 3.3, which is skewed to toward high values; right observations
from a ¢ distribution (see Section5.4.7), which is symmetric with heavy tails. In each case the
theoretical quantiles come from a normal distribution.

r to denote the index of ordered values, meaning that x, is the rth smallest value.
Working by analogy with the definition 7 = F~!(p) we could define the - sample

quantile, or the 100, sample percentile, by setting p = 1 and replacing F with Fy,
to get I:“n_l(ﬁ) = x,. We then define

=F7'()
Ny = n

for r = 1,...,n and plot the ordered data against these values. That is, we plot
the points (1(1), X(1)), - - ., (N(n), X(n)). Most software modifies the details of this
procedure, but the idea remains the same.

Details: A common variation is to take x, to be the 100 ’;'5 sample
percentile. To see why this makes some sense, suppose we have n = 7
ordered observations. Then the 4th is the median. This divides the 7
numbers into the 3 smallest and the 3 largest and, effectively says that
the 4th is part of both the smallest half of the numbers and the largest
half of the numbers. It could therefore be considered the 3.5th ordered
value. The reasoning behind the designation of x, as the - ;'5 quantile
is similar. Statistical software sometimes chooses alternative defini-
tions based on expected values of x(, under particular assumptions.
r—.5

Also, in creating a P-P plot, some software plots F (x(r)) against =—=.

O

Figure 3.11 displays three Q—Q plots, for which the theoretical quantiles are based
on the normal distribution. Thus, we would make these plots in order to check whether
the data could reasonably be described by a normal distribution. The three data sets
were generated on the computer from three very different probability distributions.
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The first comes from a normal distribution, the second from a gamma distribution,
which is skewed toward high values, and the third from a ¢-distribution, which is
symmetric but has heavy tails in both directions. The first plot shows adherence to a
linear relationship between the observed and theoretical quantiles. The second, for
skewed data, shows upward curvature: the points on the far right-hand side of the plot
correspond to data values that are farther from the middle than would be expected
if normal (the observed quantiles for those points are too large for the theoretical
quantiles—the data should have been pulled in toward the middle—so the points
appear too high) and those on the far left-hand side are too close to the middle (the
observed quantiles are again too large—the data should now be pushed away from
the middle—and the points are again too high). The third plot, for symmetrical but
heavy-tailed data, has an S-shaped tendency (the observed quantiles are too large
on the far right-hand side and too small on the left; on both extremes, to look more
normal, the data should be pushed back toward the middle).

Although such plots are very useful for revealing serious departures from nor-
mality, small wiggles in these plots are very common even for computer-generated
normal data. Thus, strong nonlinearities are what we look for, and even these are
sometimes a bit subtle. Figure3.12 shows Q—-Q plots, where again the theoretical
quantiles are based on the normal distribution, with data being 30 randomly drawn
observations from a N(0, 1) distribution. That is, these were computer-generated
data from a N (0, 1) distribution and one might expect Q—Q plots from the correct
distribution to be nearly exactly linear. The 6 plots show 6 replications of this random
number generation and plotting. The departures from linearity indicate that randomly
drawn observations fluctuate; they do not conform perfectly to what is theoretically
“expected.” Or, put differently, what we should expect is that small samples of truly
normal data will be somewhat erratic and less regular than the theoretical curve based
on infinitely much data. This basic lesson applies to all probability distributions, and
it also applies to many situations other than examination of Q-Q plots. It is some-
thing we must keep in mind when using our personal perceptions'! to judge random
quantities.

In a P-P plot we look for departures from the line y = x, and the same holds for a
Q—Q plot (except that sometimes a scale factor changes the slope, so that departures
from linearity are of interest). In either case it does not matter which of the variables is
plotted on the x-axis and which is plotted on the y-axis. There is no fixed convention
here and, in interpreting the plots, a data analyst must check which choice is made
by the software being used.

11 The cognitive psychology of perception of randomness has been studied quite extensively. See,
for instance, Gilovich et al. (1985).
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Fig. 3.12 Normal Q-Q plots for 30 randomly-drawn observations from a N (0, 1), repeated six
times. The plots are more or less linear, but display mild departures (wiggles, etc.) from linearity.

3.3.2 Q-0 and P-P plots may be used to judge the effectiveness
of transformations.

In Chapter2 we discussed transformations of data, especially to improve symmetry.
There we used histograms as displays. An alternative is to use Q—Q or P-P plots.

Example 2.1 (continued from p. 24) Figure 3.13 provides Q—Q plots for the human
eye saccade data shown in Chapter2. The logarithm makes the distribution more
symmetrical, and the reciprocal does an even better job. An unusually long delay in
the saccade time becomes apparent as an outlier in the latter plot.

On the bottom right of Fig.3.13 is a Q—Q plot from a different patient, for whom
much of the data were unusable. We have included this because the plot has the
classic S-shape, indicating a “heavy-tailed” distribution. Power transformations do
not fix this problem. If one wishes to analyze data of this sort it is important to
use a statistical procedure either specifically designed for such situations or having
well-understood behavior in the presence of heavy-tailed distributions. We discuss
nonparametric procedures in Chapters9 and 11.
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Fig.3.13 Q-Q plots. Upper left Q—Q plot for the data from a particular patient, shown in Chapter 1,
from the study by Behrmann et al. (2002); upper right Q—Q plot of the same data following a log
transformation; lower left Q—Q plot following a reciprocal transformation. The plot for the log-
transformed data is straighter than that for the raw data; the plot for the reciprocal-transformed data
is straighter still. Lower right Q—Q plot of data from a different patient, which exhibits an S shape.
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Chapter 4
Random Vectors

In most experimental settings data are collected simultaneously on many variables,
and the statistical modeling problem is to describe their joint variation, meaning
their tendency to vary together. The starting point involves m-dimensional random
vectors (where m is some positive integer), which are the natural multivariate exten-
sion of random variables. The fundamental concepts of distribution, expectation, and
variance discussed in Chapter 3 extend fairly easily to m-dimensions. We review the
essential definitions in Section 4.1, then consider bivariate dependence in Section4.2
and multivariate dependence in Section4.3. The most commonly applied measure of
association between two random variables is the correlation, defined in Section4.2.1.
As we explain, correlation is a measure of linear dependence. Nonlinear depen-
dence is often quantified by mutual information, which we define in Section4.3.2.
In Section4.3.4 we apply concepts of multivariate dependence to the problem of
classification, and show that Bayes classifiers provide the best possible classification
accuracy.

4.1 Two or More Random Variables

Let us begin our discussion of multivariate dependence with a motivating example.

Example 4.1 Tetrode spike sorting One relatively reliable method of identifying
extracellular action potentials in vivo is to use a “tetrode.” As pictured in panel A
of Fig. 4.1, a tetrode is a set of four electrodes that sit near a neuron and record
slightly different voltage readings in response to an action potential. The use of all
four recordings allows more accurate discrimination of a particular neuronal signal
from the many others that affect each of the electrodes. Action potentials correspond-
ing to a particular neuron are identified from a complex voltage recording by first
“thresholding” the recording, i.e., identifying all events that have voltages above
the threshold. Each thresholded event is a four-dimensional vector (x1, x3, X3, X4),
with x; being the voltage amplitude (in millivolts) recorded at the ith electrode or
“channel.” Panels b-d display data from a rat hippocampal CA1 neuron. Because

R. E. Kass et al., Analysis of Neural Data, 71
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_4,
© Springer Science+Business Media New York 2014


http://dx.doi.org/10.1007/978-1-4614-9602-1_3

72 4 Random Vectors

a b 2107 w10
™ sf o«
200 200 g"': g w15 5
g S O ™
2 : & 3
g} S‘ 1 12 14 16 18 - 1 15 ?’
3 = Channel 1 *'0 Channel 1 *1%
;OD gOD x10™ - x10®
2 2|
9 1 0 1 3" ' 3
Time (ms) Time (ms) 21 w £ w
s |
F
200 200 g 1 15 2 O s 2 25
z 3 Channel 1 x10™ Channel 2 x10™
o @
E ‘K § :la*m ‘_’15“0 ——
g — 2 Tio) w 2w w- |
200 ZODD . E of < 8 éﬂ il |
1] 1 3] 15 18 2 22 24 05 0B 1 12 14 1%
Tt {ma) Time {ms) Channel 2 x10™ Channel 3 x1w0™
[ 1 2ap i 24710 -
ol 23| 24|
| 2| . 3 | |
% ul ¥
H Hol
|I‘ 1.‘5“
MIS e E o+ A oa e E
Channel 1 Channel 2
= .sxlﬂ'. Is_llu" -
f- | £ 18 | ¢ 14 2
| it Al a4 a1z
(3 | 1z 10|
| fﬂ L | ‘ : Bl H
I 08| ‘{ 8|
o 8 .f[ I E 08| 3 4
- | I
-“rm- _ml‘\_ LML . 5 i oA
Chnnel 3 “hannei4 Channel 3 Channel 4

Fig. 4.1 Spike sorting from a tetrode recording. Panel a is a diagram of a tetrode, which is a set of
four electrodes; also shown are signals recorded from a particular neuron (indicated as an elliptical
disk) that is sitting near the tetrode. Panel b displays the six pairs of plots of event amplitudes. For
instance, the top left plot in panel b shows the event amplitudes for channel 1 (x-axis) and channel
2 (y-axis). Also overlaid on the data in panel b are 95 % probability contours found from a suitable
bivariate normal distribution. Panel ¢ displays histograms for the event amplitudes on each channel,
together with fitted normal pdfs, and panel d provides the corresponding normal Q-Q plots.

there are six pairs of the four tetrodes (channel 1 and channel 2, channel 1 and
channel 3, etc.) six bivariate plots are shown in panel b. The univariate distributions
are displayed in panel ¢ and Q-Q plots are in panel d. We return to this figure in
Chapter 5. |

Particularly when the number of dimensions m is greater than 2 it becomes hard
to visualize multidimensional variation. Some form of one and two-dimensional
visualization is usually the best we can do, as illustrated in Fig. 4.1. As we contemplate
theoretical representations, the possibilities for interactions among many variables
quickly become quite complicated. Typically, simplifications are introduced and an
important challenge is to assess the magnitude of any distortions they might entail.
We content ourselves here with a discussion of multivariate means and variances,
beginning with the bivariate case.
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4.1.1 The variation of several random variables is described
by their joint distribution.

If X and Y are random variables, their joint distribution may be found from their
Jjoint pdf, which we write as f (x, y):

d rb
P(anfb,chfd):/ /f(x,y)dxdy.
C a

In the discrete case the integrals are replaced by sums. Each individual or marginal
pdf is obtained from the joint pdf by integration (or, in the discrete case, summation):
if fx (x) is the pdf of X then

fxx) = / fx, y)dy.

Illustration: Spike Count Pairs Suppose we observe spike counts for two neurons
recorded simultaneously over an interval of 100ms. Let X and Y be the random
variables representing the two spike counts. We may specify the joint distribution by
writing down its pdf. Suppose it is given by the following table:

2|.03 .07 .10
Y 1] .06 .16 .08
0] .30 .15 .05
0 1 2

X

This means the probability that the first neuron spikes once and the second neuron
spikes twice, during the observation interval, is P(X = 1, Y = 2) = .07. We may
compute from this table all of the marginal probabilities. For example, we have
the following marginal probabilities: P(X = 1) = .07 + .16 + .15 = .38 and
PY =2)=.03+.074.10 = .2. O

The example above explains some terminology. When we compute P(Y = 2) we
are finding a probability that would naturally be put in the margin of the table; thus,
it is a marginal probability.

More generally, if X, X», ..., X, are continuous random variables their joint
distribution may be found from their joint pdf f (x{, x2, ..., x,):

Pla) = X1 <bi,a <Xp <by,...,a, <X < by)

by by b
=/ / f&x1,x0, ..., xp)dx1dxs - - - dxy,
[ az ai

and the marginal pdf of the ith random variable X; is given by



74 4 Random Vectors
o0 o0
S, (xi) = / / feer, x2, oo xp)dxidxy - - - dxi_ydxiqy - dxy
—0o0 —00

where all the variables other than x; are integrated out. The joint cdf is defined by
F(xp,x,...,%) = PX1 <x1,X2 <x2,..., X < xp).
Once again, the formulas for discrete random variables are analogous.

Let us introduce a general notation. Sometimes we will write X = (X1, Xo, ...,
X,), so that X becomes a random vector with pdf (really, a joint pdf for its compo-

nents) fx (X) = fix;, X5, ..., X,) (X1, X2, . . ., x,). When we must distinguish row vectors
from column vectors we will usually want X to be an n x 1 column vector, so we
would instead write X = (X1, X3, ..., Xn)T, where the superscript T denotes the

transpose of a matrix.

A very useful and important fact concerning two or more random variables is that
their expectation is linear in the sense that the expectation of a linear combination of
them is the corresponding linear combination of their expectations.

Theorem: Linearity of Expectation For random variables X; and X, we have

E(aXy + bX3) = aE(X1) + bE(X3).

More generally, for random variables Xi, X», ..., X, we have
n n
EQQ aiXi) = ) aiE(X). (.1)
i=1 i=1

Proof: Consider the case of two random variables and assume X7 and X are contin-
uous. Let f1(x1), f2(x2), and fi2(x1, x2) be the marginal and joint pdfs of X; and X,
and assume these random variables take values in the respective intervals (A, By)
and (A,, B;) (which could be infinite). We have

B> B

E(aXi +bXy) = / (ax1 + bx2)f12(x1, x2)dx1dx,
Ay JA;

By B
= a/ / x1f12(x1, x2)dx1dxs
Ar Ay

B> B
+ b/ / x2f12(x1, X2)dx1dx
Ay JA;
B B>
=a / X Sf12(x1, x2)dxzdx
A Az

By B
+ b/ x2 Si12(x1, x2)dx1dxa
Ar Ay
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B By
= a/ x1f1(x1)dx1 + b/ Xof2 (x2)dx;
A

1 Az
= aE(X) + bE(X>).

The proof in the discrete case would replace the integrals by sums, and the proof in
the general case of n variables follows the same steps. (]

4.1.2 Random variables are independent when their joint pdf
is the product of their marginal pdfs.

We previously said that two events A and B are independent if P(ANB) = P(A)P(B),
and we used this in the context of random variables that identify dichotomous events.
For example, if p is the probability that P.S. chooses the non-burning house on any
given trial, we said that p> will be the probability she chooses the non-burning house
on both of two trials. Generally, we say that two random variables X and Y are
independent if

Pla<X<bandc<Y <d)=Pla<X=<bP(c<Y<d “4.2)

for all choices of a, b, ¢, d. It follows that when X and Y are independent we also
have

J,y) = fx@fy () (4.3)

for all x and y. Indeed, when X and Y are random variables with pdf f(x, y), they
are independent if and only if Eq. (4.3) holds. Thus, we may instead take (4.3) as the
definition of independence of two random variables.

Details: Suppose X and Y are continuous random variables. If (4.3)
holds we may integrate both sides over the region (a, b) x (c, d) to
obtain (4.2). If (4.2) holds we rewrite it in terms of integrals, setb = x
and d = y, and compute the mixed second partial derivatives with
respect to x and y. This gives (4.3).

If X and Y are discrete, the integrals are replaced by sums. If (4.2)
holds then we set a = b = x and ¢ = d = y to get (4.3). If (4.3)
holds for all x and y then the double summation on the left-hand side
of (4.2) factors as

> e = D) fo D o)

a<x<b,c<y<d a<x<b c<y=<d

which is the right-hand side of (4.2). O
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Ilustration: Spike Count Pairs (continued from p. 73) We return once again to
the joint distribution of spike counts for two neurons, given by the table on p. 73.
Are X and Y independent?

The marginal pdf for X is fx(0) = .39, fx(1) = .38, fx(2) = .23 and the
marginal pdf for Y is fy(0) = .50, fy(1) = .30, fy(2) = .20. We thus obtain
fxO)fy(0) = .195 # .30 = £(0, 0), which immediately shows that X and Y are

not independent. 0

We may generalize the definition of independence to multiple random vari-
ables: we say that X1, X, ..., X, are independent random variables if their joint
pdf fix, x,,... x,) (X1, X2, . . ., X,) is equal to the product of their marginal pdfs,

In the previous subsection we showed that the expectation of a sum is always the
sum of the expectations. In general, it is not true that the variance of a sum of random
variables is the sum of their variances (the formula is instead more complicated; see
(4.6)), but this is true under independence.

Theorem: Variance of a Sum of Independent Random Variables For independent
random variables X and X, we have

V(aX) + bX2) = a*V(X)) + b*V(Xa). (4.4)

More generally, for independent random variables X1, X», ..., X;, we have

V(Z aiX,') =>alvXx). (4.5)
i=1 i=1

Proof: The proof is similar to that of the theorem on linearity of expectations, except
that the factorization of the joint pdf, due to independence, must be used. O

The formula (4.5) may fail if X; and X, are not independent. For example, if
X, = —Xj then X1 + X2 = 0 and V(X + X2) = 0. A general formula appears in
Eq.(4.6).

4.2 Bivariate Dependence

In Section4.1.2 we said that random variables X1, X3, ..., X,, are independent if
their joint pdf fx, x,....x,)(*1, X2, ..., X,) is equal to the product of their marginal
pdfs. We now consider the possibility that X, X», ..., X, are not independent and
develop some simple ways to quantify their dependence. In the case of two random
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variables the most common way to measure dependence is through their correlation,
which is discussed in Section4.2.1. We first interpret the correlation as a measure
of linear dependence then, in Section4.2.2, describe its role in the bivariate normal
distribution. After we discuss conditional densities in Section4.2.3 we re-interpret
correlation using conditional expectation in Section4.2.4. We then turn to the case
of arbitrarily many random variables (X1, ..., X, with n > 2), providing results
in Section4.3 that will be useful later on. We discuss general multivariate normal
distributions later, in Section5.5.

4.2.1 The linear dependence of two random variables
may be quantified by their correlation.

When we consider X and Y simultaneously, we may characterize numerically their
joint variation, meaning their tendency to be large or small together. This is most com-
monly done via the covariance of X and Y which, for continuous random variables, is

Cov(X,Y) = E((X — px)(Y — piy))
o0 (0.¢]
= / / (x = px) (v = py)f (x, y)dxdy
—0Q0 J —00
and for discrete random variables the integrals are replaced by sums. The covariance

is analogous to the variance of a single random variable. We now generalize Eq. (4.5)
to the case in which the random variables may not be independent.

Theorem: Variance of a Sum of Random Variables For random variables X and
X, we have

V(aX| + bX2) = a’V(X)) + b*V(X2) + 2abCov(X1, X2).

More generally, for random variables Xi, X», ..., X, we have
n n
VO aixi) = (Z a,?V(X,»)) +2 aiajCov(X;, X;). (4.6)
i=1 i=1 i<j

Proof: The proof follows from the definition by straightforward algebraic manipu-
lations and is omitted. ]

The covariance depends on the variability of X and Y individually, as well as their
joint variation, and therefore depends on scaling. For instance, as is immediately
verified from the definition, Cov(3X, Y) = 3Cov(X, Y). To obtain a measure of joint
variation that does not depend on the variance of X and Y, we standardize. The
correlation of X and Y is
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Cov(X,Y)

0x0y

Cor(X,Y) =

where ox and oy are the standard deviations of X and Y. This is also often called
the Pearson correlation, after Karl Pearson who studied extensively this and other
measures of association.! The correlation is also called the correlation coefficient
and is commonly denoted by p, as in

pxy = Cor(X,Y),

and when it is clear which random variables are being considered the subscript is
omitted.

Let us emphasize that, just as a theoretical mean p and standard deviation o
should be distinguished from the sample mean x and sample standard deviation s,
the theoretical quantities Cov(X, Y) and Cor(X, Y) should be distinguished from
the analogous quantities computed from data: if x1, ..., x, and yy, ..., y, are two
batches of numbers their sample correlation is

L S i — D — )

rxy = (4.7)

SxSy
where s, is the sample standard deviation of xy, ..., x, and sy is the sample standard
deviation of yy, . .., y,. The numerator in (4.7) is the sample covariance of these two

samples. The quantity rxy in (4.7) is also often called the sample Pearson correla-
tion and sometimes “Pearson correlation” may mean either pyy or rxy. The sample
correlation is also often written using the alternate notation

pxy = rxy (4.8)

to indicate that pyy is being estimated by the sample correlation. We discuss the
sample correlation further in Chapter 12. In the remainder of this section we focus
exclusively on Cor(X, Y).

It is easy to check that Cor(X, Y) is invariant to linear rescaling of X and Y and
it may be shown that —1 < Cor(X,Y) < 1. The latter is an instance of what is
known in mathematical analysis as the Cauchy-Schwartz inequality. When X and Y
are independent their covariance, and therefore also their correlation, is zero.

Details: This last fact follows from the definition of covariance: if X
and Y are independent we have f (x, y) = fx (x)fy(y) and then

! The concept of association also played a prominent role in Pearson’s influential book The Grammar
of Science, the first edition of which appeared in 1892. For a discussion of Pearson’s research see
Stigler (1986).
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/ / (x — px)(y — py)f (x, y)dxdy
_ / / (o — jx)fx () — gy )y ()dxdy

_ / (x — 10 (0 / 0 — )y )y

but from the definition of uy

/ O —ur)fr(Wdy =0

(and similarly the integral over x is zero). (I

We now illustrate the calculation of correlation in a simple example, introduced
earlier.

Illustration: Spike count pairs (continued from p. 76 ) We return to the joint
distribution of spike counts for two neurons, discussed on p. 73, with joint pdf given
by the following table:

21 .03 .07 .10

Y 1] .06 .16 .08

0] .30 .15 .05

01 2

X

We may compute the covariance and correlation of X and Y as follows:

px =0+ 1-(38)+2-(.23)
py =0+1-(30)+2-(.2)

ox =39 (0 — pux)? + .38 (1 — px)2 + .23 - (2 — pix)?
oy =v.5 0= py)2+3-(1—pr)?+ .22 — py)?

which gives

Ux = .84
py =.7
ox = 771
oy = .781.

We then get
D)@ — )y — py) = 272
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and

D) — px)(y — py)

oxoy

= .452.

Thus, the correlation is p & .45. O

The correlation is undoubtedly the most commonly used measure of association
between two random variables, but it is rather special. For one thing, Cor(X,Y) = 0
does not imply that X and Y are independent. Here is a counterexample.

Ilustration: Dependent variables with zero correlation. Suppose X is a con-
tinuous random variable having a distribution that is symmetric about 0, meaning
that for all x we have fx(—x) = fx(x), and let us assume that E(X*) is finite (i.e.,
E(X*) < 00). From symmetry we have

0 00
/ xfx(x)dx = — / xfx (x)dx
00 0

so that

EX) = /00 xfyx (x)dx

0 00
= / xfx (x)dx +/ Xfx(x)dx =0
0

—0o0

and, similarly, E(X3) = 0. Now let ¥ = X?. Clearly X and Y are not independent:
given X = x we know that Y = x2. On the other hand,

Cov(X,Y) = EXX(Y — py)) = E(X*) — EX)py = 0.

Therefore, Cor(X, Y) = 0. O

A more complete intuition about correlation may be found from the next result.
Suppose we wish to predict a random variable Y based on another random variable
X. That is, suppose we take a function g(x) and apply it to X to get g(X) as our
prediction of Y. To evaluate how well g(X) predicts ¥ we can examine the average
size of the error, letting under-prediction (g(x) < y) be valued the same as over-
prediction (g(x) > y). A mathematically simple criterion that accomplishes this is
expected squared error, or mean squared error, E((Y — g(X ))2). We therefore pose
the problem of finding the form of g(x) that minimizes mean squared error. There
is a general solution to this problem, which we give in Section4.2.4. For now we
consider the special case in which g(x) is linear, and find the best linear predictor in
the sense of minimizing mean squared error.

Theorem: Linear prediction Suppose X and Y are random variables having vari-
ances 0)2( and 012/ (with 0)2( < oo and O'% < 00 ). In terms of mean squared error, the
best linear predictor of Y based on X is « + 3X where
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g=p2 (4.9)
ox

and p = Cor(X, Y). In other words, the values of v and (3 given by (4.10) and (4.9)
minimize E((Y — o — 3X)?). With o and 3 given by (4.10) and (4.9) we also obtain

E((Y—a—ﬁX)z) = o2 (1 — pP). 4.11)
Proof details: Write
Y—a—pX = —py) — (a+ X — px)) + py — Bux
then square both sides, take the expected value, and use the fact that

for any constants c and d, E(c(X — px)) =0 = E(d(Y — py)). This
leaves

E((r = a—80%) =0} + B0} — 2Bpoxoy + (ur — a = B,

(4.12)
Minimizing this quantity by setting
0
0=—E ((Y —a- 5X)2)
da
and
0=k (v —a-px)?)
=95
and then solving for « and 3 gives (4.10) and (4.9). Inserting these
into (4.12) gives (4.11). U

Let us now interpret these results by considering how well « + X can predict
Y. From (4.11) we can make the prediction error (the mean squared error) smaller
simply by decreasing oy. In order to standardize we may instead consider the ratio
E((Y — a — (3X)?)/0%. Solving (4.11) for p* we get

_ _ 2
2=l E( - X7 (4.13)
Oy

Expression (4.13) shows that the better the linear prediction is, the closer to 1 p* will
be; and, conversely, the prediction error is maximized when p = 0. Furthermore, we
have p > 0 for positive association, i.e, 3 > 0, and p < 0 for negative association, i.e,
[ < 0.Based on (4.13) we may say that correlation is a measure of linear association
between X and Y. Note that the counterexample on p. 80, in which X and Y were
perfectly dependent yet had zero correlation, is a case of nonlinear dependence.
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4.2.2 A bivariate normal distribution is determined by a pair
of means, a pair of standard deviations, and a correlation
coefficient.

As you might imagine, to say that two random variables X and Y have a bivariate
normal distribution is to imply that each of them has a (univariate) normal distribution
and, in addition, they have some covariance. Actually, there is a mathematical subtlety
here: the requirement of bivariate normality is much more than that each has a
univariate normal distribution. We return to this technical point later in this section.
For now, we will say that X and Y have a bivariate normal distribution when they
have a joint pdf

Ut () ) () ()
2moxoyy/1 — p?

where p = Cor(X, Y) and we assume that ox > 0, oy > 0,and —1 < p < 1. We
may also write this pdf in the form

fx,y) =

I P ——CS T (4.14)
2woxoyy/1 — p?

where

1 —ux\? - _ —v\2
0t = - 2(( NX) _2p(x Mx)(y uy)+(y uy) )
—p ox ox oy ay

Note that the factor multiplying the exponential in (4.14) does not depend on either
x or y and that Q(x, y) is a quadratic centered at the mean vector; we have inserted
the minus sign as a reminder that the density has a maximum rather than a minimum.
An implication involves the contours of the pdf. In general, a contour of a function
f(x,y) is the set of (x,y) points such that f(x, y) = ¢ for some particular number
¢ > 0. When the graph z = f(x, y) is considered, a particular contour represents a set
of points for which the height of f(x, y) is the same. The various contours of f (x, y)
are found by varying c. The contours of a bivariate normal pdf satisfy Q(x, y) = ¢*,
for some number c*, and it may be shown that the set of points (x, y) satisfying such
a quadratic equation form an ellipse (see Eq. (A.24) in the Appendix). Therefore, the
bivariate normal distribution has elliptical contours. See Fig. 4.2. The orientation and
narrowness of these elliptical contours are governed by oy, oy, and p. If oy = oy
the axes of the ellipse are on the lines y = x and y = —x; as p increases toward 1 (or
decreases toward —1) the ellipse becomes more tightly concentrated around y = x
(or y = —x); and when p = 0 the contours become circles. If, instead, ox # oy the
axes of the ellipse rotate to y = —x andy = ——x

We have assumed here that ox > 0, oy > 0 and —1 < p < 1, which corre-
sponds to “positive definiteness” of the quadratic, a point we return to in Section4.3.
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Ox=0y, p=0
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Fig.4.2 The bivariate normal pdf. Perspective plots and contour plots are shown for various values
of ox, oy and p, with (uy, pry) = (0, 0). Left column has oy = oy and right column has 20y = oy.
First, second, and third rows correspond to p = 0, p = .75, p = —.75. Contours enclose probability
equal to .8, .9, .95, and .99.

Sometimes a more general definition of bivariate normality is needed: we say that
(X, Y) is bivariate normal if every nonzero linear combination of X and Y has a
normal distribution, i.e., for all numbers a and b that are not both zero, aX + bY
is normally distributed. This covers additional cases, such as when p = 1, and we
mention it again in Chapter5 when we discuss the general multivariate normal dis-
tribution. An important point is that joint normality is a stronger requirement than
normality of the individual components. It is not hard to construct a counterexample
in which X and Y are both normally distributed but their joint distribution is not
bivariate normal.

A detail: Let U and V be independent N (0, 1) random variables. Let
Y=VandforU <0,V >0o0rU >0,V < 0take X = —U. This
amounts to taking the probability assigned to (U, V) in the 2nd and 4th
quadrants and moving it, respectively, to the 1st and 3rd quadrants. The
distribution of (X, Y) is then concentrated in the 1st and 3rd quadrants
((X, Y) has zero probability of being in the 2nd or 4th quadrants), yet
X and Y remain distributed as N (0, 1). U

In practice, when we examine data xi, ..., x, and y, ..., y, to see whether their
variation appears roughly to follow a bivariate normal distribution, the general result
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suggests one should plot them together as scatterplot pairs (x1, y1), ..., (Xn, Yn),
rather than simply examining xp, ..., x, and y1, ..., y, separately. In the multivari-
ate case, however, one must rely on one-dimensional and two-dimensional visual
representations of data, as in Fig. 4.1.

4.2.3 Conditional probabilities involving random variables
are obtained from conditional densities.

We previously defined the probability of one event conditionally on another, which
we wrote P(A|B), as the ratio P(A N B) /P(B), assuming P(B) > 0. When we have a
pair of random variables X and Y with f(y) > 0, the conditional density of X given

Y=yis
S x,y)
fro -

For discrete random variables fxy (x|y) is the probability that X = x giventhatY = y.
For continuous random variables, roughly speaking, f(x, y)dxdy is the probability
that X will lie in the infinitesimal interval (x, x4+ dx) and Y will lie in the infinitesimal
interval (y, y +dy). We may thus think of fx|y (x|y)dx as the probability that X will lie
in the infinitesimal interval (x, x 4+ dx) given that Y lies in the infinitesimal interval
0,y +dy).

Suppose we

Sxiy(xly) = (4.13)

1. Draw a random variable Y from the marginal distribution with pdf fy (y), and
then
2. Draw another random variable X (V) from the distribution with pdf fxy (x[y).

In the discrete case we have

PXY =x, vV =y) = PXY = x|y = yp(xV =)
=P(X =x|Y = y)P(X =x)
=PX=x,Y=y).

In other words, this two-step procedure produces a bivariate random vector (X1,
YD) having the joint distribution with pdf f(x, y), which provides a very important
intuition: a joint distribution may be considered to arise from a compound process of
first drawing a random variable from one marginal distribution, and then drawing a
second random variable from the resulting conditional distribution. The interpretation
also holds in the continuous case, and the argument is analogous.

Note that when X and Y are independent we have

Sxpy (xly) = fx(x).
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This is immediate from (4.15).

Ilustration: Spike count pairs (continued from p. 79) We return to the joint distri-
bution of spike counts for two neurons. We may calculate the conditional distribution
of X given Y = 0. We have fx|y(0|0) = .30/.50 = .60, fx|y (1/0) = .15/.50 = .30,
Jfxy(210) = .05/.50 = .10. Note that these probabilities are different than the mar-
ginal probabilities .39, .38, .23. In fact, if ¥ = 0 it becomes more likely that X will
also be 0, and less likely that X will be 1 or 2. O

4.2.4 The conditional expectation E(Y|X = x) is called
the regression of Y on X.

The conditional expectation of Y|X is

EY|X =x) = /ny\X(VIX)dy (4.16)

where the integral is taken over the range of y.

Ilustration: Spike count pairs (continued) Using the joint pdf table repeated on
p.79), we compute E(X|Y = 0). This uses (4.16) except that the roles of X and Y are
reversed and the integral is replaced by a sum. We previously found fxy (0|0) = .60,
fxy (110) = .30, fx|y(2|0) = .10. Then

EX|Y =0) = 0(.6) + 1(.3) + 2(.1) = .5.

O

Note that E(Y|X = x) is a function of x, so we might write M (x) = E(Y|X = x)
and thus M(X) = E(Y|X) is a random variable. An important result concerning
M (X) is often called the law of total expectation.

Theorem: Law of total expectation. Suppose X and Y are random variables and ¥
has finite expectation. Then we have

E(E(Y|X)) = E(Y).
Proof: From the definition we compute
pErx =) = [ (([axomas) s

=//ny\x(VIX)fX(X)dxdy
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=//)’f(x,y>(x, y)dxdy

= /yfy(y)dy = E(Y). =

There are also the closely-related law of total probability and law of total variance.

Theorem: Law of total probability. Suppose X and Y are random variables. Then
we have
EPY = ylX)) =Fy().

Proof: The proof follows a series of steps similar to those in the proof of the law of
total expectation. O

We may also define the conditional variance of Y |X

V(Y|IX =x) = / (v — E(Y|X = x))*frix (ylx)dy

and then get the following, which has important applications.

Theorem: Law of total variance. Suppose X and Y are random variables and Y has
finite variance. Then we have

V() =VEX|X)) +EVYI]X)). 4.17)

Proof: The proof is similar to that of the law of total expectation. (]

Example 4.2 Decision-making and trial-to-trial variability of spike counts from
LIP neurons When an experiment is run repeatedly across many experimental trials,
as in Example 1.1, the spiking pattern will vary across trials, as is evident in Fig. 1.1.
It is convenient to consider separately the variation in overall rate of firing across
trials, which would operate on slow time scales on the order of the length of the
trial, from the much faster variation of spike occurrences within trials. To do this
we may introduce a random variable Y; to represent the spike count on trial i and
then consider its expectation as it varies across trials, which we write X; = E(Y;).
The random variable X; represents the theoretical expectation of the spike count that
strips away the variability of spike occurrences within trials but retains the variation
across trials, on the slower trial-length time scale. Churchland et al. (2011) used
this idea, and applied formula (4.17) to neural spike counts recorded from lateral
intraparietal (LIP) cortex during a decision-making task. They argued that the results
they obtained for their estimates of V(E(Y;|X;)) were consistent with a particular
model of decision-making but not with competing models. (]

In the spike count pairs illustration, we computed the conditional expectation
E(X|Y = y) for a single value of y. We could evaluate it for each possible value
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Fig. 4.3 Conditional expectation for bivariate normal data mimicking Pearson and Lee’s data on
heights of fathers and sons. Left panel shows contours of the bivariate normal distribution based
on the means, standard deviations, and correlation in Pearson and Lee’s data. The dashed vertical
lines indicate the averaging process used in computing the conditional expectation when X = 64
or X = 72inches: to get the average height of a son when the father has height X = x we average
y using the probability fy|x (v|x), which is the probability, roughly, in between the dashed vertical
lines, integrating across y. In the right panel we generated a sample of 1,078 points (the sample
size in Pearson and Lee’s data set) from the bivariate normal distribution pictured in the left panel.
We then, again, illustrate the averaging process: when we average the values of y within the dashed
vertical lines we obtain the two values indicated by a plotted red x. These fall very close to the
least-squares line (the solid line). The dashed diagonal line is discussed in the text.

of y. When we consider E(X|Y = y) as a function of y, this function is called the
regression of X on Y. Similarly, the function E(Y|X = x) is called the regression
of Y on X. To understand this terminology, and the interpretation of the conditional
expectation, consider the case in which (X, Y) is bivariate normal.

Example 4.3 Regression of son’s height on father’s height A famous data set,
from Pearson and Lee (1903), has been used frequently as an example of regres-
sion (See Freedman et al. (2007).) Figure 4.3 displays both a bivariate normal pdf
and a set of data generated from the bivariate normal pdf—the latter are similar to
the data obtained by Pearson and Lee (who did not report the data, but only sum-
maries of them). For a bivariate normal pair (X, Y), the left panel of Fig. 4.3 shows
E(Y|X = x), which is the regression line. The right panel shows a line fitted to the
data by least squares, which was discussed briefly in Chapter 1 and will be discussed
more extensively in Chapter 12. In a large sample like this one, the least-squares
line (right panel) is close to the bivariate normal regression line (left panel). The
purpose of showing both is to help clarify the averaging process represented by the
conditional expectation E(Y|X = x).

The terminology “regression” is illustrated in Figure 4.3 by the slope of the regres-
sion line being less than that of the dashed line. Here, oy = oy, because the variation
in sons’ heights and fathers’ heights was about the same, while (ux, py) = (68, 69),
so that the average height of the sons was about an inch more than the average height
among their fathers. The dashed line has slope oy/ox = 1 and it goes through
the point (ux, py). Thus, the points falling on the dashed line in the left panel, for
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example, would be those for which a theoretical son’s height was exactly 1 inch more
than his theoretical father. Similarly, in the plot on the left, any data points falling on
the dashed line would correspond to a real son-father pair for which the son was an
inch taller than the father. However, if we look at E(Y|X = 72) we see that among
these taller fathers, their son’s height tends, on average, to be less than the 1 inch more
than the father’s predicted by the dashed line. In other words, if a father is 3 inches
taller than average, his son will likely be less than 3 inches taller than average. This
is the tendency for the son’s height to “regress toward the mean.” An explanation of
the phenomenon is as follows. First, the father is tall partly for genetic reasons and
partly due to environmental factors which pushed him to be taller. If we represent
the effect due to the environmental factors as a random variable U, and assume its
distribution follows a bell-shaped curve centered at 0, then for any positive u we have
P(U < u) > 1/2. Thus, if u represents the effect due to environmental factors that
the father received and U the effect that the son receives, the son’s environmental
effect will tend to be smaller than the father’s whenever the father’s effect is above
average. For a tall father, while the son will inherit the father’s genetic component,
his positive push toward being tall from the environmental factors will tend to be
somewhat smaller than his father’s had been. This is regression toward the mean.
The same tendency, now in the reverse direction, is apparent when the father’s height
is X = 64. Regression to the mean is a ubiquitous phenomenon found whenever two
variables vary together. (]

In general, the regression E(Y|X = x) could be a nonlinear function of x but in
Fig.4.3 it is a straight line. This is not an accident: if (X, Y) is bivariate normal, the
regression of ¥ on X is linear with slope p - oy /ox. Specifically,

oy
E(YIX =) = py +p— (= ix). 4.18)
X
We say that Y has a regression on X with regression coefficient
oy
Brix = p—-. (4.19)
ox

This means that when X = x, the average value of Y is given by (4.18). We should
emphasize, again, that we are talking about random variables, which are theoretical
quantities, as opposed to observed data. In data-analytic contexts the word “regres-
sion” almost always refers to least-squares regression, illustrated in the right panel
of Fig.4.3.

For later use let us note that when (X, Y) is bivariate normal we may also consider
the regression of X on Y

EY|X =x) = py + Bxjy (v — py)

where, as in (4.19),

g
Bxy = p— (4.20)
Oy
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so that if we combine (4.19) and (4.20) we get the following expression for the

correlation:
p = sign(Byx)/ By ix Bx|y (4.21)

where sign(8y|x) is —1 if By|x is negative and 1 if By |y is positive.
Compare Eq.(4.18) to Egs.(4.9) and (4.10). From(4.9) and (4.10) we have that
the best linear predictor of Y based on X is f (X) where

F@) = py + pj—i (X — ix) . (4.22)

In general, we may call this the linear regression of Y on X. In the case of bivariate
normality, the regression of Y on X is equal to the linear regression of Y on X, i.e.,
the regression is linear. We derived (4.22) as the best linear predictor of Y based
on X by minimizing mean squared error. More generally, if we write the regression
function as M (x) = E(Y|X = x). Then M (X) is the best predictor of Y in the sense
of minimizing mean squared error.

Prediction Theorem The function f(x) that minimizes E((Y — f(X))?) is the con-
ditional expectation f(x) = M(x) = E(Y|X = x).

Proof details: Note that E(Y — M (X)) = E(Y) — E(E(Y|X)) and by
the law of total expectation (p. 85) this is zero. Now write Y —f(X) =
Y -MX))+ MX) —f(X)) and expand E((Y —f(X))Z) to get

E((Y —f(X))*) = E((Y = M(X))*) + 2E((Y — M(X))
MX) —f(X))) + E(M(X) — f(X))*).
(4.23)

Applying the law of total expectation to the second term we get

E((Y = MX)M(X) - f(X))) = E(E(Y —MX))(M(X)
—fX)IX))

but for every x we have

E(Y = MX)MX) = fX)IX =x) = (M(x) — M(x))(M(x)
—f(x) =0

so that the second term in (4.23) is 0. The third term E((M(X) —
FX)?) is always non-negative and it is zero when f(x) is chosen
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to equal M(x). Therefore the whole expression is minimized when
fx) =M(x). ([

Let us also note the following, which may be viewed as a special case of the
prediction theorem.

Theorem: Optimality of the Mean In predicting a random variable X, the number
d that minimizes E((X — d)?) is the mean d = E(X).

Proof: As in the proof of the prediction theorem, we expand the expectation to get
E(X—d)?) =EX? — 2dpu+ d? where 1 = E(X). The derivative of the expression
d? — 2dpis 2(d — 1), so the expectation is minimized when d = . [

4.3 Multivariate Dependence

4.3.1 The mean of a random vector is a vector and its variance
is a matrix.

Now suppose we wish to consider the way m random variables X1, ..., X, vary
together. If we have p; = E(Xi),ai2 = V(X;),and p;j = Cor(X;, Xj),fori =1,...,m
andj =1, ..., m, we may collect the variables in an m-dimensional random vector
X=(X,... ,Xm)T, and can likewise collect the means in a vector

1

I2%)

Hn= .
Hm

Similarly, we can collect the variances and covariances in a matrix

2
o1 P120102 -+ PlmO10m
2
s — | 21102 op o p2moiom
2
Pm1010m Pm2020m * ** Om

Note that p;; = pj; so that ¥ is a symmetric matrix (the element in its ith row and
Jjth column is equal to the element in its jth row and ith column, for every i and j).
We write the mean vector E(X) = p and the variance matrix V(Y) = X. The latter
is also called the covariance matrix. Once again we wish to distinguish these from
sample-based analogues. If we have m batches of numbers their collective sample
mean vector is the vector of the m sample means, and their sample variance matrix
is the matrix S having the form of X, above, but with each theoretical standard
deviation o; being replaced by a corresponding sample standard deviation s;, and
each theoretical correlation p;; replaced by a sample correlation pj;, i.e.,
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2 A A
ST P1285152 -+ P1mS1Sm
A 2 A
S18 S S1S
S = P215152 5 P2mS1Sm ) (4.24)
A A 2
Pm1S1Sm Pm2S28Sm * = * Sin

Let w be an m-dimensional vector. By straightforward matrix manipulations we
obtain the mean and variance of w’ X as

Ew'x) =wlp (4.25)
ViwTX) = wl Sw. (4.26)

Equations (4.25) and (4.26) generalize (4.1) and (4.6).

Let us now recall (see the Appendix, p. 617) that a symmetric m x m matrix A is
positive semi-definite if for every m-dimensional vector v we have v/ Av > 0 and it
is positive definite if for every nonzero m-dimensional vector v we have v/ Av > 0.
From the definition of variance (involving the integral of a non-negative function),
every variance is non-negative. Therefore, V(w! X) > 0 so that the variance matrix ¥
is necessarily positive semi-definite. However, a variance matrix may or may not be
positive definite. The non-positive-definite case is the generalization of ox = 0 for
a random variable X: in the non-positive-definite case the distribution of the random
vector X “lives” on a subspace that has dimensionality less than m. For example, if
X and Y are both normally distributed but ¥ = X then their joint distribution “lives”
on a one-dimensional subspace y = x of the two-dimensional plane.

An important tool in analyzing a variance matrix is the spectral decomposition.
As stated in Section A.8 of the Appendix (see p. 617), the spectral decomposition of
a positive semi-definite matrix A is A = PDPT where D is a diagonal matrix with
diagonal elements \; = D;; fori = 1,...,m, and P is an orthogonal matrix, i.e.,
PTP = I, where I is the m-dimensional identity matrix. Here, A1, ..., A, are the
eigenvalues of A and the columns of P are the corresponding eigenvectors.

Lemma If ¥ is a symmetric positive definite matrix then there is a symmetric positive
. . 1
definite matrix X2 such that

.. L. . _1 1
and, furthermore, writing its inverse matrix as ¥~ 2 = (X2) ! we have

Proof: This follows from the spectral decomposition (Section A.8), which gives ¥ =
PDPT, with D being diagonal. We define D? to be the diagonal matrix having
elements (D11, ..., /Dym) and take 2 = PD>PT. With =2 = PD 3P,
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where D™ is the diagonal matrix having elements (1/+/D11, ..., 1/~/Dmm), the
stated results are easily checked. ]

Theorem Suppose X is a random vector with mean 4 and covariance matrix X.
Define the random vector ¥ = V%X — ). Then E(Y) is the zero vector and
V(Y) is the m-dimensional identity matrix.

Proof: This follows from the lemma. We omit the details. (I

We will use this kind of standardization of a random vector in Chapter 6.

4.3.2 The dependence of two random vectors may be quantified by
mutual information.

It often happens that the deviation of one distribution from another must be evaluated.
Consider two continuous pdfs f(x) and g(x), both being positive on (A, B). The
Kullback-Leibler (KL) divergence is the quantity

X
Dgr(f,g) = (log ﬁ)

where the subscript on the expectation Ey signifies that the random variable X has
pdf £ (x). In other words, we have

flx )

Dgir(f,8) = / f &) log— o0 )

The KL divergence may also be defined, analogously, for discrete distributions. Note
that Dk (f, g) may also be written in the difference form

Dg1(f. 8) = Ey (logf(X)) — Ef (log g(X)) 4.27)

and that, except for some special cases, D(f, g) # D(g, f). In fact, the KL divergence
is essentially unique (aside from linear rescaling) among all discrepancies D(f, g)
that satisfy

() D(f, 8 = Er(p(f(X))) — Er(e(g(X))) for some differentiable function ¢, and
(i) D(f, g) is minimized over g by g = f.

Details: When there are finitely many outcomes (so that sums replace
integrals in the definition of Dgy (f, g)) it may be shown that the form
of ¢ must be logarithmic, i.e., ¢ must satisfy o(f (x)) = a+blogf (x)
for some a, b, with b > 0. See Konishi and Kitagawa (2007, [Section
3.1]). ]
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In addition to having the special difference-of-averages property in (4.27), the KL
divergence takes a simple and intuitive form when applied to normal distributions.

Ilustration: Two normal distributions Suppose f(x) and g(x) are the N (u1, o)
and N (uz, 02) pdfs. Then, from the formula for the normal pdf we have

oo F®) _ =) — =) 2x(u = ) — (i — 413)
gx) 202 o 202

and substituting X for x and taking the expectation (using Ex (X) = 1), we get

Dgr(f,g) =

2
2 =2 — i+ (—
202 o '
That is, Dxr (f, g) is simply the squared standardized difference between the means.
This is a highly intuitive notion of how far apart these two normal distributions are. []

Example 4.4 Auditory-dependent vocal recovery in zebra finches Song learning
among zebra finches has been heavily studied. When microlesions are made in the
HVC region of an adult finch brain, songs become destabilized but the bird will
recover its song within about 1week. Thompson et al. (2007) ablated the output
nucleus (LMAN) of the anterior forebrain pathway of zebra finches in order to
investigate its role in song recovery. They recorded songs before and after the surgery.
The multiple bouts of songs, across 24h (hours), were represented as individual
notes having a particular frequency composition and duration. The distribution of
these notes post-surgery was then compared to the distribution pre-surgery. In one
of their analyses, for instance, the authors examined the distributions of pitch and
duration. Their method of comparing post-surgery and pre-surgery distributions was
to compute the KL divergence. Thompson et al. found that deafening following song
disruption produced a large KL divergence whereas LMAN ablation did not. This
indicated that the anterior forebrain pathway is not the neural locus of the learning
mechanism that uses auditory feedback to guide song recovery. O

The Kullback-Leibler divergence may be used to evaluate the association of two
random vectors X and Y. We define the mutual information of X and Y as

IX,Y)=D Sxf) = Eecnl '
X, ¥) = D (fox.n. fify) = Eoery log ™ e o

(4.28)

In other words, the mutual information between X and Y is the Kullback-Leibler
divergence between their joint distribution and the distribution they would have if
they were independent. In this sense, the mutual information measures how far a
joint distribution is from independence.

Ilustration: Bivariate normal If X and Y are bivariate normal with correlation p
some calculation following application of the definition of mutual information gives
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1 2
IX,Y) = _E log(1 — p°). (4.29)

Thus, when X and Y are independent, /(X, Y) = 0 and as they become highly
correlated (or negatively correlated) 1(X, Y) increases indefinitely. [l

Theorem For random variables X and Y that are either discrete or jointly continuous
having a positive joint pdf, mutual information satisfies (i) /(X, Y) = I(Y, X), (ii)
I(X,Y) >0, (ii) I(X, Y) = 0 if and only if X and Y are independent, and (iv) for
any one-to-one continuous transformations f'(x) and g(y), I(X, Y) = I(f(X), g(Y)).

Proof: Omitted. See, e.g, Cover and Thomas (1991). ]

Property (iv) makes mutual information quite different from correlation. For cor-
relation, Cor(X, Y )2 = Cor(f(X), g(Y ))2 when f(x) and g(y) are linear functions,
but when they are nonlinear the value of the squared correlation can change.

The use here of the word “information” is important. For emphasis we say, in
somewhat imprecise terms, what we think is meant by this word.

Roughly speaking, information about a random variable Y is associated with
the random variable X if the uncertainty in Y is larger than the uncertainty in
Y|X.

For example, we might interpret “uncertainty” in terms of variance. If the regres-
sion of Y on X is linear, as in (4.18) (which it is if (X, Y) is bivariate normal), we
have

oyx = (1= pP)oy. (4.30)

In this case, information about Y is associated with X whenever |p| > 0 so that
1 — p? < 1. The reduction of uncertainty in ¥ provided by X becomes

2 2 _ 22
Oy —0yix =P Oy,

which retains the multiplier 012, (coming from the multiplicative form of (4.31)). To
remove the factor 012/ we may consider the relative reduction of uncertainty,

2 2
9y “9vx o,
— .
9y
In this sense, p> becomes a measure of the information about ¥ supplied by X.
A different rewriting of (4.30) will help us connect it more strongly with mutual
information. First, if we redefine “uncertainty” to be standard deviation rather than

variance, (4.30) becomes
Uy|X=\/1 —p20'y. (4.31)
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Like Equation (4.30), (4.31) describes a multiplicative (proportional) decrease in
uncertainty in Y associated with X. An alternative is to redefine “uncertainty,” and
rewrite (4.31) in an additive form, so that the uncertainty in Y|X is obtained by
subtracting an appropriate quantity from the uncertainty in Y. To obtain an additive
form we define “uncertainty” as the log standard deviation. Assuming |p| < 1,

log /1 — p? is negative and, using log /1 — p? = %log(l — p?), we get
1 2
logoy)x =logoy — -3 log(1—p9) ). (4.32)

In words, Eq. (4.32) says that —% log(1 — p?) is the amount of information associated
with X in reducing the uncertainty in Y to that of Y|X. If (X, Y) is bivariate normal
then, according to (4.29), this amount of information associated with X is the mutual
information.

Formula (4.32) may be generalized by quantifying “uncertainty” in terms of
entropy, which leads to a popular interpretation of mutual information.

Details: We say that the entropy of a discrete random variable X is

HX) = = > fx(0) logfx(x) (4.33)

We may also call this the entropy of the distribution of X. In the contin-
uous case the sum is replaced by an integral (though there it is defined
only up to a multiplicative constant, and is often called differential
entropy). The entropy of a distribution was formalized analogously
to Gibbs entropy in statistical mechanics by Claude Shannon in his
development of communication theory. As in statistical mechanics, the
entropy may be considered a measure of disorder in a distribution. For
example, the distribution over a set of values {x1, x2, ..., x;;} having
maximal entropy is the uniform distribution (giving equal probability
n% to each value) and, roughly speaking, as a distribution becomes
concentrated near a point its entropy decreases.

For ease of interpretation the base of the logarithm is often taken to
be 2 so that, in the discrete case,

H(X) == fx(x) log, fx (x). (4.34)

Suppose there are finitely many possible values of X, say xi, ..., X,
and someone picks one of these values with probabilities given by
f(x;), then we try to guess which value has been picked by asking
“yes” or “no” questions (e.g., “Is it greater than x3?”). In this case
the entropy (using log,, as above) may be interpreted as the minimum
average number of yes/no questions that must be asked in order to
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determine the number, the average being taken over replications of
the game. When the outcomes xi, ..., x,, are equally likely we have
f(xi) =1/m,fori =1, ..., m,and (4.34) reduces to H(X) = log, (m).
Entropy may be used to characterize many important probability dis-
tributions. The distribution on the set of integers 0, 1,2, ..., n that
maximizes entropy subject to having mean p is the binomial. The
distribution on the set of all non-negative integers that maximizes
entropy subject to having mean p is the Poisson. In the continuous
case, the distribution on the interval (0, 1) having maximal entropy is
the uniform distribution. The distribution on the positive real line that
maximizes entropy subject to having mean  is the exponential. The
distribution on the positive real line that maximizes entropy subject to
having mean ;. and variance o is the gamma. The distribution on the
whole real line that maximizes entropy subject to having mean p and
variance o is the normal.

Now, if Y is another discrete random variable then the entropy in the
conditional distribution of Y|X = x may be written

H(Y|X =x) == > frx(7[x) log fyjx (1)

y

and if we average this quantity over X, by taking its expectation with
respect to fx (x), we get what is called the conditional entropy of Y
given X:

HYX) = > [ =D frixlx) logfrix (1) | fi (x).
x y
Algebraic manipulation then shows that the mutual information may
be written
I(X,Y) = H(Y) — H(Y|X).

This says that the mutual information is the average amount (over X)
by which the entropy of Y decreases given the additional information
X = x. In the discrete case, working directly from the definition we
find that entropy is always non-negative and, furthermore, H(Y|Y) =
0. The expression for the mutual information, above, therefore also
shows that in the discrete case I(Y,Y) = H(Y). (In the continuous
case we get I(Y,Y) = oo.) For an extensive discussion of entropy,
mutual information, and communication theory see Cover and Thomas
(1991) or MacKay (2003).

Mutual information was used to define the channel capacity of a communication

system that transmits a signal in the presence of noise: if X is a random variable
representing a transmitted message and Y is a random variable representing the
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received message after noise has been injected during the transmission process, then
the channel capacity is
C=maxI(X,Y)
X

where the maximum is taken over all possible distributions of X. This concept,
developed to characterize electronic communication channels, has also been applied
to human behavior and neural activity. Because the mutual information in this context
concerns discrete distributions for (X, Y), and log, is used, the units are said to be
in bits for “binary digits” (because, for a positive integer n, log,(n) is the number
of binary digits used to represent n in base 2). Thus, human and neural information
processing capacity is usually reported in bits.

Example 4.5 The Magical Number Seven In a famous paper, George Miller
reviewed several psychophysical studies that attempted to characterize the capacity
of humans to process sensory input signals (Miller 1956). One study, for example,
exposed subjects to audible tones of several different values of pitch (frequency) and
asked them to identify the pitch (e.g., pitch 1, 2, or 3, corresponding to high, medium,
or low). The question was, how many distinct values of pitch can humans reliably
discriminate? It turned out that with five or more tones of different pitch, the human
observers made frequent mistakes. The experimental design allowed calculation of
the probability of responding with a particular answer Y based on a particular input
tone X, and with this the mutual information could be calculated. By examining
several different studies, of similar yet different types, Miller concluded that mutual
information had an asymptotic maximum at about C = 2.6 £ .6 bits, which could
be interpreted as the channel capacity of a human observer. Transforming this back
to numbers of discernible categories gives 220~ = 4 and 226+¢ = 9.2 After
looking at other, related psychophysical data Miller summarized by saying there was
a “magical number seven, plus or minus two,” which characterized many aspects of

human information processing in terms of channel capacity. ]
Mutual information has also been used extensively to quantify the information

about a stochastic stimulus Y associated with a neural response X. In that context
the notation is often changed by setting S = Y for “stimulus” and R = X for neural
“response,” and the idea is to determine the amount of information about the stimulus
that is associated with the neural response.

Example 4.6 Temporal coding in inferotemporal cortex In an influential paper,
Optican and Richmond (1987) reported responses of single neurons in inferotempo-
ral (IT) cortex of monkeys while the subjects were shown various checkerboard-style
grating patterns as visual stimuli. Optican and Richmond computed the mutual infor-
mation between the 64 randomly-chosen stimuli (the random variable Y here taking
64 equally-likely values) and the neural response (X), represented by a vector of
time-varying firing rates across multiple time bins. They compared this with the
mutual information between the stimuli and a single firing rate across a large time
interval and concluded that there was considerably more mutual information in the
time-varying firing rate vector. Put differently, more information about the stimulus
was carried by the time-varying firing rate vector than by the overall spike count. []
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In Examples 4.4 and 4.6 the calculations were based on pdfs that were estimated
from the data. We discuss probability density estimation in Chapter 15.

4.3.3 Bayes’ theorem for random vectors is analogous to Bayes’
theorem for events.

Now suppose X and Y are random vectors with a joint density f (x, y). Substituting
Jf(x,y) = frix(vlx)f (x) into (4.15), we have

frix(x,y)
fr»
_ Srix10)fx (x)
fro»
This is a form of Bayes’ Theorem (see Section3.1.4).

Bayes’ Theorem for Random Vectors If X and Y are continuous random vectors
and fy (y) > 0 we have

Sxy (xly) =

(4.35)

Frix Olx)fx (x)
[ frixGlofy (dx”

fxir(xly) = (4.36)

If X is a discrete random vector, and Y is either discrete or continuous with fy (y) > 0,

then we have
Srix 1)y (x)
> rxOlofx )

Sxy(xly) = (4.37)

Proof: These results follow? by using the definition of marginal pdf in the denomi-
nator of (4.35). O

The resemblance of this result to Bayes’ Theorem for events may be seen by
comparing (4.36) with (3.1), identifying X with A and Y with B. The theorem also
holds, as a special case, if X and Y are random variables.

4.3.4 Bayes classifiers are optimal.

Suppose X is a random variable (or random vector) that may follow one of two pos-
sible distributions having pdf f1 (x) or f> (x). If X = x is observed, which distribution

2 The result (4.37) when Y is continuous requires the notion of the joint distribution of (X, ¥) when
X is discrete and Y is continuous, which we have not discussed, but this case can be accommodated
by an extension of the definitions we have given.


http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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did it come from? This is the problem of binary classification. Typically, there is a
random sample X1, ..., X, and the problem is to classify (to one of the two distri-
butions) each of the many observations. A decision rule or classification rule is a
mapping that assigns to each possible x a classification (that is, a distribution). A
classic scenario for binary classification is when patients having characteristics sum-
marized in a vector x (for example, brain features found from PET imaging), are to be
considered diseased (e.g., having Alzheimer-like amyloid deposits, see Vandenbergh
et al. 2013) or not. The problem extends to m categories, where X follows one of
many alternative distributions, with pdf f;(x), fori = 1, ..., m. A classification error
is made if X ~ f;(x) and the observation X = x is classified as coming from f;(x)
with i # k. In this section we present a remarkable result: it is, in principle, possible
to define a classifier that minimizes the probability of classification error.

Let C; refer to the case X ~ f;(x). We use the letter C to stand for “class,” so
that the problem is to assign to each observed x a class C;. We assume that X is
selected from class C; with probability P(C = C;) = m;, fori = 1, ..., m. Often the
m; probabilities are taken to be equal, i.e., m; = 1/m, fori = 1, ..., m (so that the
classes are a priori equally likely), but the theory does not require this. The Bayes
classifier assigns to each observed value x the class having the maximal posterior
probability

Jie )T
Z:n: S

among all the classes C;. Writing f;(x) = fx|c(x|C = C;), Eq.(4.38) has the same
form as (4.37). The following theorem says that Bayes classifiers minimize the prob-
ability of classification error.

P(C=ClX =x) = (4.38)

Theorem on Optimality of Bayes Classifiers Suppose X is drawn from a distribution
having pdf f;(x), where fj(x) > O for all x, with probability 7;, fori = 1, ..., m,
where m + - -+ + m, = 1, and let C; be the class X ~ f;(x). Then the probability of
committing a classification error is minimized if X = x is classified as arising from
the distribution having pdf f (x) for which Cj has the maximum posterior probability
given by (4.38).

The proof is somewhat lengthy and appears at the end of this section.

Corollary Suppose that with equal probabilities X is drawn either from a distribution
having pdf fj (x), where fi(x) > O for all x, or from a distribution having pdf f>(x),
where f>(x) > 0O for all x. Then the probability of committing a classification error
is minimized if X = x is classified to the distribution having the higher pdf at x.

Corollary Suppose n observations Xi, ..., X, are drawn, independently, from a
distribution having pdf f;(x), where fj(x) > O for all x, with probability 7;, for
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i=1,...,m, where m; + --- + m, = 1, and let C; be the class X ~ f;(x). Then

the expected number of misclassifications is minimized if each X; = x; is classified

as arising from the distribution having pdf f; (x;) for which Cy has the maximum

posterior probability

Jie () Tk

P(CHlX) = %) = S
T YL fig)m

among all the classes C;.

Proof: Let Y; = 1 if X; is misclassified, and O otherwise. The theorem says that
P(Y; = 1) = P(Yy = 1) is minimized by the Bayes classifier, which maximizes
(4.38). The expected number of misclassifications is then E(3; Y;) and we have

EQ_ Y) =Y EX)
- ZP(Yi =1)

= nP(Y) = 1).

Therefore, the expected number of misclassifications is minimized by the Bayes
classifier. ]

One use of classifying neural data is to show that information about stimuli or
behavior is contained in particular recorded signals. Here is an example.

Example 4.7 Decoding intended movement using MEG We introduced MEG
neuroimaging in Example 1.2. One of its attractive features is that it is non-invasive
while being potentially capable of supplying movement-related information with
high temporal resolution, much like that obtained with highly invasive electrophysi-
ological methods. Wang et al. (2010) studied MEG signals from subjects both during
a wrist movement task and during imagined wrist movement. The idea was that there
might be substantial information about intended wrist movement even when the wrist
was not actually moving—this would be analogous to the situation in which a user
was severely disabled. One purpose of this methodology would be to localize the
movement-related information in order to help guide surgical implant of a more
invasive device.

In the case of wrist movement, each subject had to move a joystick-controlled
cursor, which was viewed on a projection of a computer screen. After one of 4
directional targets (up, down, left, right) was illuminated the subject then had to hit
the target with the cursor. In the imagined movement case, each subject was told to
imagine moving the wrist. For each of the experimental conditions, there were 120
recordings from 87 MEG sensors located above the sensorimotor areas during the
movement and imagined movement tasks. A 1,500 ms time window was selected for
analysis, and this window was partitioned into 150 time bins (each 10 ms in length,
the signals being averaged within time bins), so that the data consisted vectors X = x
at each of 150 time points. It was assumed that each X was drawn from one of four
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Fig. 4.4 Decoding accuracy from cursor controlled by overt wrist movement (a) and imagined
wrist movement (b). Time ¢ = 0 is onset of movement of the cursor. Thin gray lines show decoding
accuracy using a Bayes classifier for each of 5 subjects across 150 time intervals, each interval being

10ms in length. Thick black lines are accuracies averaged across subjects. Adapted from Wang
et al. (2010).

multivariate normal distributions (see Chapter5) having pdf fy(x), k = 1,2, 3,4,
corresponding to the four experimental conditions (up, down, left, right). That is,
for both hand movement and imagined movement, the four experimental conditions
were assumed to produce multivariate normal data, but with four distinct sets of
mean vectors uy and variance matrices X;. A Bayes classifier was then used to try
to recover from the data the experimental condition that had generated those data.
If the classifier performed above chance levels of 25% (1 out of 4), this would
indicate the presence of directional movement information, or imagined movement
information, in the MEG sensors located above the sensorimotor areas (to measure
classification accuracy Wang et al. used leave-one-out cross-validation, discussed in
Section 12.5.7). The results for 5 subjects are shown in Fig. 4.4. Chance classification
accuracy would be 25 %. It may be seen that for every subject, during both movement
and imagined movement, the classification accuracy rose sharply above chance. In
the imagined movement case (panel b of Fig. 4.4) the peak classification accuracy
ranged across subjects from about 50 % to about 90 %, with a mean of over 60 %. []

In our discussion of Example 4.7, above, we have omitted many details. Most
importantly, in practice a Bayes classifier must learn (estimate) from some training
data the distributions f;(x). In the multivariate normal case this requires estimating
the mean vectors p; and variance matrices ¥;, which is usually done by comput-
ing the sample mean vector and sample variance matrices defined in (4.24) (see
Section 12.5.7 for further discussion of the use of training data and cross-validation).
In many multidimensional problems the data are clearly non-normal and it is difficult
to estimate f; (x) reliably. For such situations other, non-Bayesian classifiers are pop-
ular (see Section 17.4.2). Nonetheless, Bayes classifiers set the theoretical standard
by achieving the smallest possible classification error rate.


http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_17
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The fundamental result given in the theorem also extends to the case in which
different penalties result from the various incorrect classifications. This more general
situation is treated by decision theory. Suppose d(x) is a mapping that assigns to each
x aclass (a distribution). Such a mapping is called a decision rule. Let us denote the
possible values of any such rule by d(x) = a (for action), so that a may equal any
of the C; for 1, 2, ..., m. The penalties associated with various classifications, or
decisions, may be specified by a loss function L(d(x), Cx) = L(a, Ci), where each
L(a, Cy) is the non-negative number representing the penalty for deciding to classify
x as arising from class C, when actually it arose from class Cy. We then consider the
expected loss E(L(d(X), C;)), 1i.e., the average behavior of the decision rule, which is
also known as the risk of the decision rule for class C;, and we may average these risks
across classes by weighting them according to their probabilities 7;. The decision
rule with the smallest average risk is called the optimal decision rule. Assuming
that class C; has probability m;, for i = 1, ..., m, this optimal rule turns out to be
the Bayes rule, which is found by minimizing the expected loss computed from the
posterior distribution, i.e., minimizing Ec,x(L(a, C;)) over possible actions a. The
theorem above then becomes the special case in which L(a, C;) = 0 if a = C; and
L(a, C;) = 1otherwise, for then the risk is simply the probability of misclassification.
The process of applying Bayes rules is often called Bayesian decision-making.

In many applications of decision theory one speaks not of losses but of gains, and
then the loss function is replaced by a utility function. Typically one then writes the
utility as U(a, C;) and the Bayes rule would maximize the expected utility based on
the posterior distribution of C;, fori =1, ..., m.

Much has been written about the extent to which the nervous system implements
Bayesian decision-making. A theoretical Bayesian decision-maker is often called an
ideal observer. Thus, the issue is the extent to which a particular part of the nervous
system performs a computation consistently with the way an ideal observer would
use the available information.

Example 4.8 Vision as Bayesian decision-making Geisler (2011) reviews the ben-
efits of using ideal observers to model visual perception (see also Yuille and Kersten
2006). In this case a typical task is to classify an object based on a noisy stimulus
that reaches the eye. If there are biological constraints, these are implemented as
costs that are incorporated into the loss function. There is prior information about
the probability of each object, and for each object there is a probability distribution
for the stimulus. These ingredients allow Bayesian decision-making to proceed. In
applications there is considerable detail about each aspect of the formalism: the prob-
ability distributions for the data, those that represent the prior, and the loss function.
The concept, however, is quite simple. (]
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Some additional references concerning ideal observer analysis, and Bayesian
approaches to modeling neural systems more generally, appear at the beginning
of Chapter 16. Here is a different setting in which utilities and Bayes rules have been
invoked.

Example 4.9 ACT-R theory of procedural memory ACT-R is a theory of human
problem-solving that is implemented in a computer program (Anderson 1993, 2007).
A typical domain is elementary algebra problem-solving, involving equations such
as 7x+3 = 38. The many steps involved in solving algebra problems include actions
such as “subtract,” which require calls to memory (e.g., to retrieve 8 —3 = 5). These
are encoded as production rules which are IF-THEN statements, and are often called
procedures. At the completion of each step ACT-R must select from memory the
next production rule to use. To do so it considers a utility function based on the value
V of the goal, the probability P; of achieving the goal if production rule i is selected,
and the cost D; of rule i. Each production rule is then assigned the utility

U; =P;V — D,.

ACT-R picks the production rule with the highest utility. Because the probabilities
are actually posterior probabilities based on previous experience, ACT-R may be
considered to be using a Bayes rule for this situation. The acronym ACT stands for
“adaptive character of thought” and the R is tacked on as a nod to “rational” in the
sense of optimal decision-making. (]

Proof of theorem on optimality of Bayes classifiers:

We consider the binary case where m = 2. We also assume the two
distributions are discrete and, for simplicity, we take m = % Here, the
Bayes classifier assigns class C; to X = x whenever f](x) > f>(x),
and assigns class C> when f>(x) > f1(x).

Let R = {x : fi(x) < f2(x)}. We want to show that the classification
rule assigning x — f>(x) whenever x € R has a smaller probability
of error than the classification rule x — f>(x) whenever x € A for
any set A that is different than R. To do this we decompose R and its
complement R as R = (RNA)U(RNA) and R = (R°NA)U(R°NAC).

We have
D= D A0+ D Ak (4.39)

XER XERNA XERNAC

and

> A= D A0+ D A®. (4.40)

XERC XERNA XERCNAC

By the definition of R we have, for every x € R, f1(x) < fo(x) and, in
particular, for every x € RN A€, fi(x) < f>(x). Therefore, from (4.39)
we have
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D AW= D AW+ D hK. (4.41)

XeR XERNA XERNAC

Similarly, from (4.40) we have

D hm < D AW+ D AK. (4.42)

xXeR® XERNA XERCNAC

Strict inequality holds in (4.42) because A is distinct from R; if A = R
then R° N A = ¢ and the first sums in both (4.40) and (4.42) become
zero. Combining (4.41) and (4.42) we get

DAW+ DLW < DA+ D AK

XeR X€ERC XERNA XERNAC
+ D i+ D A
XERNA XERCNAC

and the right-hand side reduces to > 4 f1(x) + > c4c f2(x). In other
words, we have

D AW+ D HE) <D AW+ D HE. (4.43)

XER XERC xeA xeA°

The left-hand side of (4.43) is the probability of an error using the
rule x — f>(x) whenever x € R while the right-hand side of (4.43)
is the probability of an error using the rule x — f>(x) whenever
x € A. Therefore the rule x — f>(x) whenever x € R has the smallest
probability of classification error.

The case for general 7 is essentially the same, and the continuous case
replaces sums with integrals. When m > 2 the argument is similar. [



Chapter 5
Important Probability Distributions

In Chapter 1 we said that a measurement is determined in part by a “signal” of interest,
and in part by unknown factors we may call “noise.” Statistical models intro-
duce probability distributions to describe the variation due to noise, and thereby
achieve quantitative expressions of knowledge about the signal—a process we will
describe more fully in Chapters 7 and 10. The essential ideas in statistical modeling
are simple and very general, allowing modern methods to make reasonably realistic
assumptions. Despite this wide-ranging generality, the models found in elemen-
tary statistics rely heavily on a small handful of probability distributions. For this
reason alone, a beginning student must learn about the binomial model for binary
observations, the Poisson model for counts, and the normal model for continuous
measurements. But there are additional motivations for studying these and several
other probability distributions. While it may be tempting to dismiss the ubiquity of
these distributions as a historical quirk, a throwback to a pre-computer age in which
simplicity was essential, a small number of distributions remain especially important
in contemporary practice. This is partly because many methods of statistical infer-
ence, when applied carefully, are remarkably robust in the face of modest deviations
from theoretical assumptions. In addition, the simplest distributions often serve as a
starting point when building more general and elaborate models. Furthermore, these
distributions continue to be important because they arise in theoretical calculations.
In this chapter we discuss at greater length some of the probability distributions we
mentioned in Chapters 3 and 4. We also introduce several others.

5.1 Bernoulli Random Variables and the Binomial Distribution

5.1.1 Bernoulli random variables take values 0 or 1.

A random variable X that takes the value 1 with probability p and 0 with probability
1 — pis called a Bernoulli random variable. For example, patient P.S. in Example 1.4
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made repeated choices of the “burning” or “non-burning” house. Each such choice
could be considered a Bernoulli random variable by coding “burning” as 0 and “non-
burning” as 1 (or vice-versa).

5.1.2 The binomial distribution results from a sum
of independent and homogeneous Bernoulli
random variables.

In the case of the binomial distribution arising from two trials for patient P.S.,
discussed on p. 47, we made two probabilistic assumptions: (i) independence, the
choices on the two trials were made independently, and (ii) homogeneity, the proba-
bility of choosing non-burning house remained the same across the two trials. With
X being the number of times she chooses the non-burning house, and p being the
probability that she chooses the non-burning house on any given trial, these assump-
tions lead to X having a binomial distribution over the possible values 0, 1, 2 with
binary event probability p. We would write this by saying the distribution of X is
B(2, p),or X ~ B(2, p).

The binomial distribution is easy to generalize: instead of counting the number
of outcomes of a certain type out of a maximal possible value of 2, we allow the
maximal value to be any positive integer n; under assumptions of independence and
homogeneity we then would say X has distribution B(n, p), or simply X ~ B(n, p).
For example, if we were considering 3 trials and again let X be the number of trials
on which P.S. chooses the non-burning house, then X has a binomial distribution
with n = 3 and binary event probability p, or X ~ B(3, p). By a similar argument
to that made for n = 2 on p. 47 we have P(X = 3) = p3, P(X =2) = 3p*(1 — p),
P(X =1) =3p(l —p)?2 P(X =0) = (1 — p). Similarly, for four trials we
would have then X ~ B(4, p) and P(X = 4) = p*, P(X = 3) = 4p3(1 — p),
P(X=2)=6p*(1 —p), P(X =1) =4p(1 — p)*, P(X =0) = (1 — p)*.

The general formula for arbitrary n with X ~ B(n, p), is

P(X = x) = (Z)pm — p)no (5.1)

forx =0,1,2,...,n, where (Z) = )#ix), is the number of ways of choosing x

objects from n without regard to ordering. Equation (5.1) is the binomial probability
mass function (or pdf). If X ~ B(n, p) then straightforward calculations produce
E(X) =np
V(X) = np(1 — p) (5.2)

ox = +/np(l = p).
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The individual binary observations, such as the outcomes for the individual trials, are
independent Bernoulli random variables all having the same probability of taking the
value 1, i.e., the Bernoulli random variables are both independent and homogeneous.
Such random variables are often called Bernoulli trials. The sum of n Bernoulli
trials has a B(n, p) distribution. That is, in general, if Y1, Y, ..., ¥, are independent
Bernoullirandom variables and P (Y; = 1) = pforalli,and we define X = ZL] Yi,
then X ~ B(n, p). Note that when n = 1 X is a Bernoulli random variable and
we have

EX)=P(X=1) (5.3)

whichis aspecial case of (5.2) andiseasy tocheck (E(X) = 1-P(X = 1)+ 0-P(X =
0)=P(X =1)).

Binomial distributions usually arise as the sum of Bernoulli trials. Thus, the bino-
mial distribution is reasonable to assume if the Bernoulli random variables appear
to be independent and homogeneous. It is important to consider both assumptions
carefully. In particular, the assumptions of independence and homogeneity are fre-
quently violated when the Bernoulli random variables are observed across time. Let
us now state these assumptions again in the context of patient P.S.

Example 1.4 (continued from p. 9 and 47) In judging the 14 out of 17 occasions
on which P.S. chose the non-burning house by statistical methods we would assume
that the set of 17 forced choices were Bernoulli trials. The independence assumption
would be violated if P.S. had a tendency, say, to repeat the same response she had
just given regardless of her actual perception. The homogeneity assumption would
be violated if there were a drift in her response probabilities (e.g., due to fatigue)
over the time during which the experiment was carried out. (]

The B(2, p) arises as the Hardy-Weinberg distribution in genetics. There, if the
probability that an allele A is inherited from a parent is p, and the probability that
the other possible allele B is inherited is 1 — p, then the number of A alleles is
B(n, p) under the assumptions of independence and homogeneity. In this case the
assumption of independence would be violated if somehow the two parents were
coupled at the molecular level, so that the processes of separating the alleles in
the two parents were connected; in most studies this seems very unlikely and thus
the assumption of independence is quite reasonable. The second assumption is that
there is a single, stable value for the probability of the allele A. This clearly could be
violated: for instance, the population might actually be a mixture of two or more types
of individuals, each type having a different value of P(A); or, when the population
is not in equilibrium due to such things as non-random mating, or genetic drift, we
would expect deviations from the binomial prediction of the Hardy-Weinberg model.
Indeed, in population genetics, a check on the fit of the Hardy-Weinberg model to a
set of data is used as a prelimary test before further analyses are carried out.

Example 5.1 Nicotinic acetylcholine receptor and ADHD Attention deficit
hyperactivity disorder (ADHD), a major psychiatric disorder among children, has
been the focus of much recent research. There is evidence of heritability of ADHD,
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and

effective medications (such as Ritalin) involve inhibition of dopamine transport.
There is also evidence of involvement of the nicotine system, possibly due to its
effects on dopamine receptors. Kent et al. (2001) examined genotype frequencies
for the nicotinic acetylcholine receptor subunit a4 gene among children with ADHD
and their parents. Atissue was the frequency of a7 — C exchange in one base in the
gene sequence. In order to carry out the standard analysis the authors first examined
whether the population appeared to be in equilibrium. If so, the probabilities of the
allele combinations TT, CT, CC would be given by B(2, p) distribution, according to
the Hardy-Weinberg model. The frequencies for the 136 parents in their study were
as follows:

TT CT CC
Number 48 71 17
Frequency 35 52 .13

Hardy-Weinberg Probability .38 .47 .15

In this case, the probabilities determined from the Hardy-Weinberg model (how
we obtain these will be discussed in Chapter7) are close to the observed allele
frequencies, and there is no evidence of disequilibrium in the population (we also
discuss these details later). Kent et al. went on to find no evidence of an association
between this genetic polymorphism and the diagnosis of ADHD. (]

In some cases the probability p is not stable across repetitions. Indeed, sometimes
the change in probability is the focus of the experiment, as when learning is being
studied.

Example 5.2 Learningimpairment following NMDA antagonist injection Exper-
iments on learning often record responses of subjects as either correct or incorrect
in sequences of trials during which the subjects are given feedback as to whether
their responses are correct or not. The subjects typically begin with a probability of
being correct that is much less than 1, perhaps near the guessing value of .5, but after
some number of trials they get good at responding and have a high probability of
being correct, i.e., a probability near 1. An illustration of this paradigm comes from
Smith et al. (2005), who examined data from an experiment in rats by Stefani et al.
(2003) demonstrating that learning is impaired following an injection of an NMDA
antagonist into the frontal lobe. In a first set of trials, the rats learned to discriminate
light from dark targets, then, in a second set of trials, which were the trials of interest,
they needed to discriminate smooth versus rough textures of targets. In two groups
of rats a buffered salt solution with the NMDA antagonist was injected prior to the
second set of trials, and in two other groups of rats the buffered salt solution with-
out the antagonist was injected. Figure 5.1 displays the responses across 80 learning
trials for set 2. It appears from the plot of the data that the groups of rats without the
NMDA antagonist did learn the second task more quickly than the second group of
rats, as expected.
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Fig. 5.1 Responses for 13 rats in the placebo group (labeled “Vehicle,” in reference to the buffered
solution vehicle) and 9 rats in the treatment group (“MK801 Treatment”) for set 2. Blue and red
indicate correct and incorrect responses, respectively. Each row displays responses for a particular
rat across 80 trials. Light blue triangles indicate that the rat had 8 correct trials in a row. A light
blue triangle appearing after the end of the trials, to the right, indicates that the rat did not achieve
8 correct trials in a row by the end of the 80 trials. Groups A and C were rewarded for dark arm on
set 1 while groups B and D were rewarded for light arm on set 1. The rats in group A clearly learned
the discrimination task relatively quickly. Modified and reprinted with permission from Smith et al.
(2005).

The Smith et al. analysis was based on the method of maximum likelihood, which
we will discuss in Chapter 7. For now, however, we may use the example to consider
the possibility of aggregating the responses within groups of rats. Two possible ways
to aggregate would be either across rats or across trials, the latter producing blocks of
trials (e.g., 10 blocks of 8 trials). In each case, aggregation would produce a number
X of correct responses out of a possible number . We would then be able to plot the
value of X across time in order to help examine the differences among the groups.
If we were to assume X ~ B(n, p), in each case, what would we be assuming about
the trials themselves? If we were to aggregate across rats we would be assuming that
the different rats’ responses were independent, which is reasonable, and that the rats
all had the same probability of responding correctly, which is dubious. Making this
kind of dubious assumption is often a useful first step, and in fact can be innocuous
for certain analyses, but it must be considered critically. After aggregating trials into
blocks, the binomial assumption would be valid if the trials were independent and had
the same probability of correct response, both of which would be dubious—though
again potentially useful if its effects were examined carefully. In situations such as
these it would be incumbent upon the investigator to show that aggregation would
be unlikely to produce incorrect analytical results. ([

Before leaving the binomial distribution, let us briefly examine one further appli-
cation.

Example 5.3 Membrane conductance Anderson and Stevens (1973) were able to
estimate single-channel membrane conductance by measuring total conductance at


http://dx.doi.org/10.1007/978-1-4614-9602-1_7

110 5 Important Probability Distributions

a frog neuromuscular junction. Their method relied on properties of the binomial
distribution. Suppose that there are n channels, each either open or closed, all acting
independently, and all having probability p of being open. Let X be the number of
channels that are open, and ~ the single-channel conductance. Then the measured
membrane conductance G satisfies G = vX where X ~ B(n, p). From formulas
(3.4) and (3.5) it follows that the mean and variance of G are given by

E(G) = ynp

and
V(G) = ¥*np(l — p).

Now, assuming that p is small, we have 1 — p & 1 so that + satisfies

V(G

TGy

Anderson and Stevens made multiple measurements of the membrane conductance
at many different voltages, obtaining many estimates of V (G) and E(G). The slope
of the line through the origin fitted to a plot of V (G) against E(G) thereby furnished
an estimate of the single-channel conductance.! ([

The Anderson and Stevens estimate of single-channel conductance is based on
the approximate proportionality of the variance and mean across voltages. In the
derivation above this was justified from the binomial, for small p. The small-p case
of the binomial is very important and, in general, when p is small while # is large,
the binomial distribution may be approximated by the Poisson distribution.

5.2 The Poisson Distribution

5.2.1 The Poisson distribution is often used to describe counts
of binary events.

The Poisson distribution is the most widely-used distribution for counts. Strictly
speaking, the Poisson distribution assigns a positive probability to every nonnegative
integer 0, 1, 2, .. ., so that every nonnegative integer becomes a mathematical pos-
sibility. This may be contrasted with the binomial, which takes on numbers only
up to some n, and leads to a proportion (out of n). The defining feature of the
Poisson distribution, however, is that it arises as a small-p and large-n approxima-
tion to the binomial, which we discuss in Section5.2.2. That mathematical charac-

! Additional comments on this method, and its use in analysis of synaptic plasticity, may be found
in Faber and Korn (1991).
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Fig. 5.2 Several event times displayed both in continuous time and in discrete time. In the discrete
case time has been decomposed into bins and for each bin the presence or absence of an event is
indicated by a 1 or 0.

terization portrays the count, approximately, as a sum of many binary variables, each
indicating whether an event occurs (perhaps across time or across space), with each
event occurrence having a small probability p. For example, neural spike counts are
sometimes modeled as Poisson random variables. This results from a characteriza-
tion of the spike train as a sequence of discrete event times, and if we decompose time
into small bins (e.g., having 1 ms width) we may consider each time bin to define
a binary variable that indicates whether a spike occurs within that bin, as depicted
in Fig.5.2. When we consider discrete events across time there is necessarily some
time scale (corresponding to a small bin width) on which the events become rare, so
that the probability p that any binary variable will take the value 1 becomes small.
For a spiking neuron with a low or moderate firing rate (say 10 spikes per second
or less), for example, a scale in milliseconds leaves large gaps (many milliseconds)
between each spike and makes the probability of a spike within any 1 ms bin quite
small (e.g., less than 10/1000 = .01). For this reason the Poisson is often said to be
a model for the variation in the number of occurrences of rare events.?

Counts of such “rare” events are common in neural data analysis, but it is important
to recognize that many count distributions are discernibly non-Poisson. We begin our
discussion with a classic data set from a situation where there are good reasons to think
the Poisson distribution ought to provide an excellent description of the variation
among counts. Although drawn from physics, this example helps to fix ideas about
assumptions that generate Poisson variability. We then mention some situations in
neural data analysis where Poisson distributions have been assumed. After that, we
will elaborate on the motivation for the Poisson and then we will conclude with some
discussion of frequently-occurring departures from Poisson variation among counts.

Example 5.4 Emission of o particles Rutherford et al. (1920) counted the num-
ber of a-particles emitted from a radioactive specimen during 2608 7.5 s (seconds)
intervals.> The data are summarized in the table below. The first column gives the
counts 0, 1,2, ...,9,> 10, and the second column gives number of times the cor-
responding count occurred. For example, in 383 of the 2608 intervals there were 2
particles emitted. The third column provides the “expected” frequencies based on
the Poisson distribution (obtained by maximum likelihood, defined in Section7.2.2).

2 The derivation of the Poisson distribution as an approximation to the binomial is credited to
Siméon D. Poisson, having appeared in his book, published in 1837. Bortkiewicz (1898, The Law
of Small Numbers) emphasized the importance of the Poisson distribution as a model of rare events.

3 Rutherford et al. (1920, p. 172); cited in Feller (1968).
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x Observed Expected
0 57 54.40
1 203 210.52
2 383 407.36
3 525 525.50
4 532 508.42
5 408 393.52
6 273 253.82
7 139 140.33
8 45 67.88
9 27 29.19
> 10 16 17.08

Here, the emission of any one particle is (on an atomic time scale) a “rare event”
so that the number emitted during 7.5 s may be considered the number of rare events
that occurred. ]

The Poisson pdf is

X

P(X =x)= e—AA— (5.4)
x!

and we write X ~ P (). The mean, variance, and standard deviation of X are given
by

E(X) =\
V(X)=A
ox = \/X

The equality of variance and mean is highly restrictive and is often used to examine
whether repeated series of observations depart from Poisson variation: a plot of
variance versus mean should fall approximately on the line y = x.

Here is a physiological setting involving particle emissions where the Poisson
distribution was used much as in Example 5.4.

Example 5.5 Human detection of light Hecht et al. (1942) investigated the sen-
sitivity of the human visual system to very dim light, and calculated the number
of light quanta required to drive perception. To do this, Hecht et al. constructed an
apparatus that would emit very dim flashes of light, of 1 ms duration, in a darkened
room; they presented these to several subjects and determined the proportion of times
each subject would respond that he or she had seen a flash of light. In one part of
their analysis, they assumed that the number of light quanta penetrating the retina
would follow a Poisson distribution. If X is the number of quanta emitted, and if ¢
is the number required for perception of the flash, then the probability of perception
of flash is

PX>c)=1—-F(c—-1) (5.5)



5.2 The Poisson Distribution 113

where F'(x) is the Poisson cumulative distribution function. (Note that the argument
¢ — | appears because P(X > c¢) = P(X > c—1) =1 — F(c — 1).) Using the
formula for the Poisson cdf (i.e., the summed pdf), Hecht et al. fit this to observed
data and found that, roughly, a minimum of 6 quanta must be absorbed by the retina
in order for a human to detect light. (]

Not all applications of the Poisson distribution involve events across time. In the
next example the events are distributed across space—on neural synaptic boutons.

Example 5.6 Quantal response in synaptic transmission The quantal response
hypothesis is that a neurotransmitter is released from a large number of presynaptic
vesicles in packets, or “quanta,” each of which has a small probability of being
released. To test this, del Castillo and Katz (1954) recorded postsynaptic potentials,
or end-plate potentials (EPPs), at a frog neuromuscular junction. By assuming a
Poisson distribution for the number of quanta released following an action potential,
the authors obtained good experimental support for the quantal hypothesis. (I

5.2.2 For large n and small p the binomial distribution
is approximately the same as Poisson.

Example 5.6 (continued from Section5.2.1) Let us go a step further in examining
the argument of del Castillo and Katz. Under behavioral conditions the EPP would
typically involve hundreds of quanta, but del Castillo and Katz used a magnesium bath
to greatly decrease this number. In addition, they recorded spontaneous (“miniature”)
EPPs, which, according to the quantal hypothesis, should involve single quanta. They
observed that this gave them two different ways to estimate the mean number of
quanta released. The first method is to estimate the mean in terms of P(X = 0)
using the Poisson pdf formula P(X = 0) = ¢~ or

A= —log P(X = 0). (5.6)

To estimate P(X = 0) they used the ratio D/C, where C was the total number of
presynaptic action potentials and D was the number of times that the postsynaptic
voltage failed to increase. Their second method used the ratio A/B, where A was
the mean EPP voltage response following actional potentials and B was the mean
spontaneous EPP voltage response. When the data from 10 experiments were plotted,
the ten (x, y) pairs with y = —log D/C and x = A/B were very close to the line
y=x. U

A major motivation for the Poisson distribution is that it approximates the binomial
distribution as p gets small and n gets large (with A = np). One way to express this
is given by the theorem below, but the argument used by del Castillo and Katz,
described above, highlights both the key assumptions and the key mathematical
result. Under the quantal hypothesis that vesicle release is binary together with the
Bernoulli assumptions of independence and homogeneity, we have
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P(X=0)=(1-p)

where p is the probability that any given vesicle will release and n is the number of
vesicles. We define A = np and make the substitution p = \/n, then take logs of
both sides to get

A
log P(X =0) =nlog(l — —).
n

Now, for large n, an expansion of the log (see Section A.4 of the Appendix) gives
nlog(l — \/n) ~ —A\. This says that Eq.(5.6) becomes a good approximation for
small p and large n. The rest of the argument is given below.

Theorem: Poisson pdf approximation to binomial pdf For A > 0,
letting p = \/n, as n — oo we have

n e RO\
(k)pk(l —p) ke AH' (5.7)

Proof: To derive Eq. (5.7), we use Eq. (A.6) from the Appendix, which
we rewrite here by saying that as n — oo,

(1— %)" — e (5.8)

Now let A = pn, substitute p = \/n into the binomial pdf,

_ n f B n_k_ n‘ é k _i)nk
f(k)_(k)p =P = om (n) (1 n

and rearrange the terms to get

fhky=A-B

=65 () ()
r=(0) (-3) (-3)

As n — oo, the expression for A converges to 1; the expression over
the first underbrace defining B remains constant (n does not appear
there); by (5.8) the expression over the second underbrace defining
B converges to e~*; and the expression over the third underbrace
defining B converges to 1. This gives (5.7). (]

where
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5.2.3 The Poisson distribution results when the binary
events are independent.

In thinking about the binomial assumption for a random variable X one generally
ponders whether it is reasonable to conceptualize X as a sum of Bernoulli trials with
the independence and homogeneity assumptions. Similarly, in the Poisson case, one
typically asks whether the count variable X could be considered a sum of Bernoulli
trials for small p and large n. The first requirement is that the counts really are sums
of binary events. This means that X results from a string of Os and 1s, as in Fig. 5.1,
p- 109.In Example 5.4, p. 111, each emission event corresponds to a state transition in
the nucleus of a particular atom. It is reasonable to assume that it is impossible for two
nuclei to emit particles at precisely the same time and, furthermore, that each Geiger-
counter “click” corresponds to exactly one particle emission. Independence, usually
the crucial assumption, here refers to the independence of the many billions of nuclei
residing within the specimen. This is an assumption, apparently well justified, within
the quantum-mechanical conception of radioactive decay. It implies, for example,
that any tendency for two particles to be emitted at nearly the same time would be due
to chance alone: because there is no interaction among the nuclei, there is no physical
“bursting” of multiple particles. Furthermore, the probability of an emission would
be unlikely to change over the course of the experiment unless the specimen were
so tiny that its mass changed appreciably. To summarize, the Poisson distribution
for counts of events across time makes intuitive sense when we can conceptualize
the events as Bernoulli trials, which are homogeneous and independent, where the
success probability p is small.

The framework we have constructed above to discuss emission of « particles
would apply equally well to quanta of light in the Hecht et al. experiment. What
about the vesicles at the neuromuscular junction? Here, the quantal hypothesis is
what generates the sequence of dichotomous events (release vs. no release). Is release
at one vesicle independent of release at another vesicle? If neighboring vesicles tend
to release in small clumps, then we would expect to see more variability in the counts
than that predicted by the Poisson, while if release from one vesicle tended to inhibit
release of neighbors we would expect to see more regularity, and less variability
in the counts. It is reasonable to begin by assuming independence, but ultimately
it is an empirical question whether this is justified. Homogeneity is suspect: the
release probability at one vesicle may differ substantially from that at another vesicle.
However, as del Castillo and Katz realized, homogeneity is actually not an essential
assumption. We elaborate on this point when we return to the Poisson distribution,
and its relationship to the Poisson process in Section 19.2.2.

Neuronal spike counts are sometimes assumed to be Poisson-distributed. Let us
consider the underlying assumptions in this case. First, if measurements are made
on a single neuron to a resolution of 1 ms or less, it is the case that a sequence of
dichotomous firing events will be observed: in any given time bin (e.g., any given
millisecond) the neuron either will or will not have an action potential, and it can
not have two. But are these events independent? Immediately after a neuron has
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fired, the membrane of a neuron undergoes changes that alter its propensity to fire
again. In particular, there is a refractory period during which sodium channels are
inactivated and the neuron can not fire again. This clearly violates the assumption of
independence. In addition, there may be a build-up of ions, or activity in the local
neural network, that makes a neuron more likely to fire if it has fired recently in the
past (it may be “bursting”). This again would be a violation of independence. In many
experiments such violations of independence produce markedly non-Poisson count
distributions and turn out to have a substantial effect, but in others the effects are
relatively minor and may be ignored. We indicated that, in the case of vesicle release
of neurotransmitters, the homogeneity assumption is not needed in order to apply
the Poisson approximation. The same is true for neuronal spike counts: the spike
probabilities can vary across time and still lead to Poisson-distributed counts. The
key assumption, requiring thought, is independence. On the other hand, the question
of whether it is safe to assume Poisson variation remains an empirical matter, subject
to statistical examination. As in nearly all statistical situations, judgment of the
accuracy of the modeling assumptions—here, the accuracy of the Poisson distribution
in describing spike count variation—will depend on the analysis to be performed.

5.3 The Normal Distribution

As we said in Chapter 3, the normal distribution (or Gaussian distribution) plays a
dominant role in statistical theory because of the Central Limit Theorem, which we
state in Chapter 6. In Section5.3.1 we review a property of the normal distribution
that leads to interpretation of standard errors and confidence intervals, and in
Section 5.3.2 we note its relationship to the binomial and Poisson distributions.

5.3.1 Normal random variables are within 1 standard deviation of
their mean with probability 2 /3; they are within 2 standard
deviations of their mean with probability .95.

We indicated on p. 60 that when X has a normal distribution probabilities of the form
P(a < X < b) can not be found directly by calculus and must, instead, be obtained
numerically. Two such probabilities are so important in practice that they should be
committed to memory. We will call these the “5 and 95% rule.”

The % and 95 % rule: For a normal random variable X with mean p
and standard deviation o,
Pu—oc<X<p+o)~3
P(pu—20 <X <p+20)=.95
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We also have P(u — 30 < X < u+ 30) =~ .997, but this is less important.

Example 5.7 Ebbinghaus on human memory A very early experiment on human
memory was reported by Ebbinghaus (1885). Ebbinghaus used himself as the sole
subject of his investigation, and he taught himself to learn lists of nonsense syl-
lables made up of consonant-vowel-consonant trigrams such as DAX. Ebbinghaus
memorized relatively long lists (e.g., 16 trigrams) to the point of being able to recite
them without error, twice consecutively, and kept track of the time it took for him
to achieve this success. He then repeated the task using the same lists after a delay
period, that is, he re-learned the lists, and he examined the way his re-learning time
increased with the length of the delay period. This was a way to quantify his rate
of forgetting. (Compare the experiment of Kolers in Example2.5 on p. 32.) The
method Ebbinghaus used relied on the normal distribution. In one of his tabulations,
he examined 84 memorization times, each obtained by averaging sets of 6 lists. He
found the distribution of these 84 data values to be well approximated by the normal
distribution, with mean 1,261 s and standard deviation 72 s.4 This would mean that
for about 2/3 of the sets of lists his learning time was between 1,189 s and 1,333s. It
also would mean that a set-averaged learning time less than 1,117 s or greater than
1,405 s would be rare: each of these would occur for only about 2.5 % of the sets of
lists. (]

It may seem odd that in examining the suitability of the normal distribution
Ebbinghaus did not look at the distribution of learning times for lists, but rather
chose to work with the distribution of average learning times across sets of 6 lists.
The distribution of learning times was skewed. Only after averaging across several
learning times did the distribution become approximately normal. This effect is due
to the Central Limit Theorem, discussed in Section6.3.1.

Normal distributions are often standardized so that 4 = 0 and o = 1. In general,
using Eq.(3.8)if X ~ N(u,0?)and Y = aX +bthen Y ~ N(ap+ b, a’c?). Asa
special case, if X ~ N (u, 02) and Z = (X — p)/othen Z ~ N (0O, 1). The N(O, 1)
distribution is called the standard normal. This is often used for calculation: if we
know probabilities for the N (0, 1) distribution then we can easily obtain them for
any other normal distribution. For example, we also have

hogbon

p_X—p_b
s— =

Pla<X <b)=PQE= —y=pEE ).
g g g

o
Thus, the right-hand side may be found in order to obtain the answer for the left-hand
side. Standardized variables are often denoted by Z, sometimes with the terminology
Z-score.

4 He actually found the “probable error,” which is .6745¢ to be 48.4s. See Stigler (1986) for a
discussion of these data.
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10 20 30 40 50 60 70

Fig. 5.3 The normal approximation to the binomial. Black circles are pdf values for a B(100, .4)
distribution; curve is pdf of a normal having the same mean and variance.

5.3.2 Binomial and Poisson distributions are approximately
normal, for large n or large .

The normal distribution may be used to approximate a large variety of distributions
for certain values of parameters. In the case of the binomial with parameters n and p,
we take the normal mean and standard deviation tobe yt = np and o0 = /np(1 — p).
An illustration is given in Fig.5.3. The approximation is generally considered to be
quite accurate for most calculations when 7 is large and p is not close to its boundary
values of 0 and 1; a commonly-used rule of thumb (which is somewhat conservative,
at least for .2 < p < .8) is that it will work well when np > S and n(1 — p) > 5.

In the case of the Poisson with parameter A we take the normal mean and standard
deviation to be z = X and o = +/)\; the approximation is generally considered to be
acceptably accurate for many calculations® when \ > 15.

These approximations are a great convenience, especially in conjunction with the
“2 —95% rule."

5 Actually, different authors give somewhat different advice. The acceptability of this or any other
approximation must depend on the particular use to which it will be put. For computing the prob-
ability that a Poisson random variable will fall within 1 standard deviation of its mean, the normal
approximation has an error of less than 10% when A = 15. However, it will not be suitable for
calculations that go far out into the tails, or that require several digits of accuracy. In addition, a
computational fine point is mentioned in many books. Suppose we wish to approximate a discrete
cdf F(x) by a normal, say F (x). The the value 1:"(x + .5) is generally closer to F(x) than is F(x).
This is sometimes called a continuity correction.
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5.4 Some Other Common Distributions

5.4.1 The multinomial distribution extends the binomial
to multiple categories.

In Example 5.1, on p. 107, we cited an application of the Hardy-Weinberg model
in a study of genotype frequencies for the nicotinic acetylcholine receptor subunit
a4 gene among children with ADHD and their parents. The three genotypes were
labeled TT, CT, CC. This constitutes three distinct categories. For the ith individual
in the study, let ¥; = (1, 0, 0) if that individual has genotype 77, Y; = (0, 1, 0) if that
individual has genotype CT, and Y; = (0, 0, 1) if that individual has genotype CC.
The variable Y; thus indicates the genotype of the ith individual, fori = 1,2,...,n
Let p1 = P(Y; = (1,0,0)), po = P(Y; = (0,1,0)), and p3 = P(Y¥; = (0,0, 1)),
where pi + p, + p3 = 1 and define X = >"_, ¥;. Note that X gives the number of
individuals, among a total of n, that have each of the three genotypes. In the Kent et
al. datain Example 5.1 there were 136 individuals: 48 of genotype 77, 71 of genotype
CT, and 17 of genotype CC, and we could write X = (48, 71, 17). If we assume the
Y1, Y, ..., Y, are independent then X follows a multinomial distribution, written
X ~ M(n; p1, p2, p3) with pdf

nl
P(X = (x1,x2,%3)) = ﬁpl 'pytpy. (5.9)
x11xo!x3

According to the Hardy-Weinberg model the probabilities (p1, p2, p3) would be
restricted to satisfy the binomial pdf p; = p?, p» = 2p(1 — p) and p3 = (1 — p)2.
However, (5.9) holds regardless of the validity of the Hardy-Weinberg model, as long
as the genotypes are independent and homogeneous across individuals.

More generally, a random variable is distributed as X ~ M (n; p1, p2, ..., px) if
its pdf is given by
— X1 X2
P(X = (x1,x2, ..., X)) = x1'X2' le Py

where p; +---+ pr = 1 and x1 + - - - + xx = n. When k = 2 we obtain as a special
case the binomial pdf of Eq. (5.1). (To see this, with x as in Eq.(5.1) define (x1, x7)
in (5.1) to be (x1, x2) = (x,n — x).) Thus, the multinomial is an extension of the
binomial to multiple categories.
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5.4.2 The exponential distribution is used to describe waiting times
without memory.

We defined the exponential distribution in Eq.(3.12), p. 56, using it to illustrate
calculations based on the pdf, and we showed how it may be applied to ion channel
activation durations in Example3.5. The exponential distribution is very special®
because of its “memoryless” property. To understand this, let X be the length of
time an ion channel is open, and let us consider the probability that the channel will
remain open for the next time interval of length 4. For example, 2 might be 5ms.
How do we write this? If we begin the moment the channel opens, i.e., at x = 0, the
next interval of length 4 is (0, ) and we want P(X > h). On the other hand, if we
begin at time x = ¢, for some positive ¢, such as 25 ms, the interval in question is
(z,t + h) and we are asking for a conditional probability: if the channel is open at
time t+ we must have X > 7, so we are asking for P(X > ¢t + h|X > t). We say that
the channel opening duration is memoryless if

PX>t+hX>1t)=PX>h) (5.10)

foralls > Oand 2 > 0. That is, if # = 25 ms, the channel does not “remember” that
it has been open for 25 ms alreadys; it still has the same probability of remaining open
for the next Sms that it had when it first opened; and this is true regardless of the
time 7 we pick. The exponential distributions are the only distributions’ that satisfy
Eq.(5.10).

Contrast this memorylessness with, say, a uniform distribution on the interval
[0, 10], measured in milliseconds. According to this uniform distribution, the event
(e.g., the closing of the channel) must occur within 10ms and initially every Sms
interval has the same probability. In particular, the probability the event will occur
in the first 5ms, i.e., in the interval [0, 5], is the same as the probability it will occur
in the last Sms, in [5, 10]. Both probabilities are equal to % Howeyver, if at time
t = 5ms the event has not yet occurred then we are certain it will occur in the
next half second [5, 10], i.e., this probability is 1, which is quite different than % In
anthropomorphic language we might say the random variable “remembers” that no
event has yet occurred, so its conditional probability is adjusted. For the exponential
distribution, the probability the event will occur in the next 5 ms, given that it has not
already occurred, stays the same as time progresses.

Theorem A random variable X satisfies X ~ Exp()) for some A > 0 if and only if
(5.10) is satisfied for all positive ¢ and 4, i.e., if X is memoryless.

Proof: Using Eq. (3.13) we have

6 Another reason the exponential distribution is special is that among all distributions on (0, c0)
with mean p = 1/, the Exp()) distribution has the maximum entropy. See Eq. (4.33).

7 The memoryless property can also be stated analogously for discrete distributions; in the discrete
case only the geometric distributions are memoryless.
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PX>t+h X>1)
P(X >1)
P(X>t+h)

P(X > 1)
e*/\(t+h)

P(X>t+hX>1)

e M
g—Ah

Thus, every exponential distribution is memoryless. On the other hand,
let G(x) = 1 — F(x) where F(x) is the distribution function of X.
Memorylessness implies

P(X>t+h)=PX>t)P(X>h)

ie.,

Git+h)=Gt)G(h)

for all positive ¢+ and h. But (as mentioned in Section A.4 of the
Appendix), G (x) can satisfy this equation for all positive ¢ and & only
if it has an exponential form G (x) = aeP™ . Because Fx)=1-G(x)
is a distribution function, it satisfies F(x) — 1 as x — o0, which
implies b < 0, and it satisfies F(x) — 0 as x — 0, which implies
a =1.Thus F(x) = 1 — e~ for some \, i.e., X ~ Exp(\). O

An additional characterization of the exponential distribution is that it has a con-
stant hazard function.

Theorem: A continuous random variable X satisfies X ~ Exp()\g) if and only if its
hazard function is A(x) = Ag.

Proof: First suppose X ~ Exp(\o). The hazard function is easy to
compute from the definition

 fW

Substituting f(x) = Noe 2% and F(x) = 1 — e~ 0% we have

/\067’\0)6
)\()C) = W
=)o

On the other hand, if the hazard function is A\(x) = Ao we may rewrite
the definition of A(x) and solve for F(x),
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F(x)=1—=Xf(x)

and then differentiate to get

Fx) ==X f'(x)

which implies that
f@x) = ce 0

for some constant ¢ (see Section A.4) and because f(x) must integ-
rate to 1 we get f(x) = Ape A0x. O

The constant hazard of the exponential may be considered another way to view
memorylessness: with constant hazard, given that the event has not already occurred
at time ¢ the probability that the event occurs in the next infinitesimal interval (¢, ¢ +
dt) is the same as it would be for any other infinitesimal interval (', ' + dt).

In Chapter 19 we will discuss the role played by the exponential distribution in
Poisson processes, which are sometimes used to model spike trains. A technical result
used there is a version of the probability integral transform derived in Section3.2.5.

Theorem: Exponential Variables from the Probability Integral Transform Sup-
pose X is a continuous random variable having pdf fy (x) and cdf Fx (x), and suppose
further that fx(x) > O on an interval (A, B) and fx(x) = 0 otherwise. Let A(x) be
the associated hazard function of X. If we define a random variable Y by ¥ = G(X)
where

G(x) = /x Mu)du (5.11)

A
then Y ~ Exp(1).

Proof: Let us write the cdf of the Exp(1) distribution as Ffgy,. From
the corollary to the probability integral transform on 64, if we define
Y by

Y = FE_X})(FX(X)) (5.12)
then Y ~ Exp(1). It remains to show that for G (x) defined by (5.11)
we get

G(x) = Fi, Fx(x). (5.13)
We have (p. 56)

FExp(y) =1-e.

The inverse of this function is

Fg);,(w) = —log(1 — w). (5.14)
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The hazard function of X (Section3.2.4) is

o= B0
which gives
Fx(x)=1- Jz‘(ix))
and, because fy (x) = A(x)e™ Joo A1 e oot
Fx(x) = 1 — e~ {2 M)du, (5.15)

Putting w = Fx(x) in (5.15) and applying (5.14) we have
Fro(Fx (X)) = Fg (w)

= /X AMu)du
A

which is (5.13). 0

5.4.3 Gamma distributions are sums of exponentials.

In Example3.5, on p. 58, we illustrated a basic property of a gamma distribution:
if X1, X2, ..., X, are distributed as Exp()), independently, and ¥ = X| + --- +
X,, then Y ~ Gamma(n, \). Note that a Gamma(1, \) distribution is the same
as an Exp()) distribution. More generally, a random variable X is said to have a
Gamma(a, 3) distribution when its pdf is

_ B a1 ,—p
fxla, B) = F(a)x e

for x > 0 and is 0 when x < 0. Here, the function I" (@) is the gamma function:

o
I"(a)=/ x4 e dx.
0

The gamma function is a variant of the factorial function; we have I'(n) = (n — 1)!
for any positive integer n. If X ~ Gamma(a, ) then

EX)=2
B
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Plots of the gamma will be displayed for the special case of the chi-squared distrib-
ution, in the Section 5.4.4.

5.4.4 Chi-squared distributions are special cases of gamma
distributions.

If W ~ N(0, 1) then X = W? is said to have a chi-squared distribution on 1 degree
of freedom, which is written X ~ X%. Ifw;, ~ X% foralli =1, ..., n,independently,
andif X = Wy + W, +--- + W, then X is said to have a chi-squared distribution
on n degrees of freedom, written X ~ X,%- The most important way chi-squared
distributions arise is as sums of squares of independent normal distributions. In
general, a random variable X is said to have a chi-squared distribution with degrees

of freedom v, written xlz,, if it has a Gamma(a, 3) distribution with o = % and

g=1
If X ~ x2 then

E(X)=v
V(X)=2v
ox = \/E

Figure 5.4 shows several chi-squared pdfs. Note that, for small degrees of freedom,
the distribution is skewed toward high values (or skewed to the right). That is, it is
not symmetrical, but rather large values distant from the middle (to the right) are
more likely than small values distant from the middle (to the left). For the xﬁ, the
middle of the distribution is roughly between 1 and 6 but values less than 0 are
impossible while values much greater than 7 have substantial probability. For large
degrees of freedom v the XIZ, becomes approximately normal. For v = 16 in Fig.5.4
there remains some slight skewness, but the distribution is already pretty close to
normal over the plotted range.

5.4.5 The beta distribution may be used to describe variation
on a finite interval.

A random variable X is said to have a beta distribution with parameters o and 3 if
its pdf is
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Fig. 5.4 Chi-squared pdfs for four values of the degrees of freedom: v = 1 (Top left), 4 (top right),
9 (bottom left), and 16 (bottom right).
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for 0 < x < 1 and is O otherwise. We then write X ~ Beta(a, ). Suppose W| ~
Gamma(ay, 3) and Wy ~ Gamma(ay, 3), independently, and let X = Wy /(W +
W5). Then we have X ~ Beta(a, [3).

If X ~ Beta(a, §) then E(X) = a/(a+ ) and V(X) = a + § + 1. The beta
distribution is sometimes written instead in terms of the parameters © = E(X) and
v =V (X)—1,sothat « = pr and 8 = (1 — p)v. The beta distribution is commonly
used to describe continuous variation that is confined to (0, 1). By rescaling it is easy
to obtain a distribution confined to any finite interval (a, b). Whena > 1 and 5 > 1
the beta pdf is unimodal and f(x) — O as x — Qorx — 1, and if & = 3 the pdf is
symmetric about x = .5. A unimodal symmetric beta pdf was plotted in Fig. 3.3.

The beta pdf arises in Bayesian analysis of binomial data, which is discussed
in Section7.3.9. There, the binomial parameter p must be in (0, 1) and the beta
distribution is used to represent knowledge about its value.

5.4.6 The inverse Gaussian distribution describes the waiting time
Jor a threshold crossing by Brownian motion.

A random variable X is said to have an inverse Gaussian distribution if its pdf is

fx) = WGXP(—)\(X — M)z/(Zuzx))
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for x > 0. Here, E(X) = pand V(X) = 13/

The inverse Gaussian arises as the theoretical interspike interval (ISI) distribution
for integrate-and-fire neurons under simplifying assumptions. The essential idea is
that excitatory and inhibitory post-synaptic potentials, EPSPs and IPSPs, are con-
sidered to arrive in a sequence of time steps of length §, with each EPSP and IPSP
contributing normalized voltages of +1 and —1, respectively, and with the proba-
bility of EPSP and IPSP being p and 1 — p, where p > 1 — p creates the upward
“drift” toward positive voltages. Let X; be the post-synaptic potential at time ¢ with
t=1,2,...andlet S, = X| + X» + --- + X,,. The variable S, is said to follow a
random walk (confer p. 530) and an action potential occurs when S, exceeds a par-
ticular threshold value V;j,051,. The process then resets to the resting potential Vig;.
The behavior of a theoretical integrate-and-fire neuron based on such a random walk
process is illustrated in Fig.5.5. The continuous-time stochastic process known as
Brownian motion, with drift, results from taking § — 0 and n — oo, while also
constraining the mean and variance in the form E(S,) — m and V(S,) — v, for
some m and v. The distribution of “first passage time,” meaning the time it takes
for the drifting Brownian motion to cross a boundary, is inverse Gaussian. (See
Whitmore and Seshadri (1987). Also, Mudholkar and Tian (2002).) In particular,
if we assume pd — Ag and (1 — p)d — Ay, so that Ag and \; are the limiting
rates at which excitatory and inhibitory arrive, the drift toward the spiking threshold
Vihresh, from the resting potential V.5, becomes A\g — A\; and the mean of the inverse

Gaussian ISI distribution is
_ Vthresh - Vrest

AE — Al

and its coefficient of variation (defined in Eq.(3.11)) is

Jz AE+Ar
[F ) (5.17)
A \/Z(Vthresh - Vrest) (>\E - >\1)

See Tuckwell (1988, Section9.6). Thus, as the difference Vi esn — Viesr increases the
coefficient of variation of the ISIs decreases and the neuron fires more regularly. As
excitation and inhibition become more nearly balanced, the coefficient of variation
increases and the neuron fires more irregularly. Shadlen and Newsome (1998) used a
closely-related analysis to argue the plausibility of roughly balanced excitation and
inhibition in cortex. The random walk formulation was first given by Gerstein and
Mandelbrot (1964).

Figure 5.6 gives an example of an inverse Gaussian pdf, with a Gamma pdf for
comparison. Note in particular that when x is near 0 the inverse Gaussian pdf is very
small. This gives it the ability to model, approximately, neuronal interspike intervals
in the presence of a refractory period, i.e., a period at the beginning of the interspike
interval (immediately following the previous spike) during which the neuron doesn’t
fire, or has a very small probability of firing.
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Fig. 5.5 Example of a computer-simulated integrate-and-fire neuron. At each time step there is
either an EPSP or an IPSP, with probabilities p and 1 — p. For p > 1 — p this creates a stochastic
upward “drift” of the voltage (as the inputs are summed or “integrated”) until it crosses the threshold
and the neuron fires. The neuron then resets to its baseline voltage. The resulting interspike interval
(ISI) distribution is approximately inverse Gaussian.

Fig. 5.6 Inverse Gaussian pdf plotted together with a Gamma(2, 1) pdf. The inverse Gaussian
(dashed line) has the same mean and variance as the gamma (solid line).

Example 5.8 Fit of integrate-and-fire model to cochlear neuron inter-spike
intervals When they introduced the random walk integrate-and-fire model, and
pointed out the inverse Gaussian would be the resulting approximate distribution
for the inter-spike intervals, Gerstein and Mandelbrot (1964) provided illustrative
fits to data. Figure 5.7 shows one such fit to a set of data from a cat cochlear neuron,
under anesthesia. ]
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Fig. 5.7 Fitted inverse Gaussian pdf (solid line) together with dots indicating the heights of his-
togram bins based on inter-spike interval data from a cat cochlear neuron. The x-axis is time in
milliseconds and the y-axis is the histogram height on a log scale. The data conform well to the
inverse Gaussian distribution. Adapted from Gerstein and Mandelbrot (1964).

5.4.7 The t and F distributions are defined from normal
and chi-squared distributions.

Two distributions are used very frequently in statistical hypothesis testing. The first
is the ¢ distribution.
IfX~N@O,1)and Y ~ X?,, independently, then

T =

Ealle

is said to have a ¢ distribution on v degrees of freedom, which we write as T ~ ¢,,.
This form of the T ratio arises in “¢ tests” and related procedures.

Note that 7 would be N (0, 1) if the denominator were equal to 1. The denominator
is actually very close to one when v is large: if ¥ ~ X;2/ we have E(Y/v) = 1 while
V(Y /v) = 2v/v? which becomes very close to zero for large v. That is, the random
variable Y /v has a very small standard deviation and thus takes values mostly very
close to its expectation of 1. Therefore, for large v, the #, distribution is very close
to a N(0, 1) distribution. One rule of thumb is that for » > 12, when computing
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probabilities in the middle of the distribution, the 7, distribution may be considered
essentially the same as N (0, 1). For small v, however, the probability of large positive
and negative values becomes much greater than that for the normal. For example, if
X ~ N(0,1) then P(X > 3) = .0014 whereas if T ~ 13 then P(T > 3) = .029,
about 20 times the magnitude. To describe this phenomenon we say that the 3
distribution has much heavier tails (or thicker tails) than the normal.

The ¢ distribution was first derived by William Gosset under the pen name
“A. Student.” It is therefore often called Student’s t distribution.

IfX ~ X,zjl and Y ~ Xlz,z, independently, then

X
Fo /vi
Y/u»n

is said to have an F distribution on v and 1, degrees of freedom, which are usually
referred to as the numerator and denominator degrees of freedom. We may write this
as F' ~ F,, ,,. This distribution arises in regression and analysis of variance, where
ratios of sums of squares are computed and each sum of squares has (under suitable
assumptions) a chi-squared distribution.

When vy = 1 the numerator is the square of a normal and F = T2, where T is the
ratio of a N (0, 1) and the square-root of a X,Z,z. That is, the square of a t,, distributed
random variable has an F , distribution. Also, analogously to the situation with the
t, distribution, when 1, gets large the denominator Y /1, is a random variable that
takes values mostly very close to 1 and F,, ,, becomes close to a X12/1'

5.5 Multivariate Normal Distributions

5.5.1 A random vector is multivariate normal if linear
combinations of its components are univariate normal.

We now generalize the bivariate normal distribution, which we discussed in
Section4.2.2. We say that an m-dimensional random vector X has an m-dimensional
multivariate normal distribution if every nonzero linear combination of its
components is normally distributed. If ;x and ¥ are the mean vector and variance
matrix of X we write this as X ~ N, (i, £). Using (4.25) and (4.26) we thus char-
acterize X ~ N, (u, X) by saying that for every nonzero m-dimensional vector w
we have w” X ~ N(w p, w Zw).

Notice that, just as the univariate normal distribution is completely characterized
by its mean and variance, and the bivariate normal distribution is characterized by
means, variances, and a correlation, the multivariate normal distribution is completely
characterized by its mean vector and variance matrix. In many cases the components
of a multivariate normal random vector are treated separately, with each diagonal
element of the covariance matrix furnishing a variance, and the off-diagonal elements
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being ignored. In some situations, however, the joint distribution, and thus all the
elements of the variance matrix, are important.

If X has an m-dimensional multivariate normal distribution then each of its com-
ponents has a univariate normal distribution. The following theorem extends this to
the various components of X.

Theorem If X has an m-dimensional multivariate normal distribution and Y consists
of the first k components of X, then Y has a k-dimensional multivariate normal
distribution.

Proof: Let w be a non-zero k-dimensional vector. We must show that w Y is univari-
ate normal. Define v(w) to be the m-dimensional vector consisting of the components
of w followed by m — k zeroes. Then w’ ¥ = v(w)” X and, by definition, v(w)” X
is univariate normal; thus, w’ Y is univariate normal. O

Example4.1 (continued from p. 71) It is convenient to assume that the voltage
amplitudes in Fig. 4.1 are 4-dimensional multivariate normal. According to the theo-
rem above, this would imply that every pair of voltage amplitudes is bivariate normal.
The 6 = (g) bivariate data plots in panel B of Fig. 4.1 indicate, very roughly, shapes
consistent with bivariate normality, as indicated by the overlaid elliptical contours.
Univariate histograms with normal pdfs and normal Q-Q plots are also given in that
figure. The Q-Q plots clearly indicate some departure from normality, due to heavy
tails in the first three channels. For many statistical analyses this degree of departure
from normality would be unlikely to produce severe inferential problems, but the
extent to which it is a cause for concern depends on the question being asked and the
procedure used to answer it. ]

The multivariate normal distribution is even more prominent in multivariate data
analysis than the normal distribution is for univariate data analysis. The main reason
is that specifying only the first two moments, mean vector and variance matrix,
is a huge simplification. In addition, there is a generalization of the Central Limit
Theorem, which we give in Section 6.3.2.

5.5.2 The multivariate normal pdf has elliptical contours,
with probability density declining according to a x* pdf.

The definition given above, in Section 5.5.1, does not require X to be positive definite
(see p. 617 of the Appendix). In discussing the bivariate normal pdf for (X, Y) we
had to assume oy > 0, oy > 0, and —1 < p < 1. This is equivalent to saying
that the variance matrix of the (X, Y) vector is positive definite. When we work
with the multivariate normal distribution we usually assume the variance matrix is
positive definite. If X is m-dimensional multivariate normal, having mean vector
and positive definite covariance matrix ¥, then its pdf is given by
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1 1
— —50(x)
fx) = —(27r)’"|2|e 2 (5.18)

where
0(x) = (x — pux) "7 — px)

with |X| being the determinant of ¥. We have labeled the exponent by Q(x) to
emphasize that it gives a quadratic in the components of x, so that Eq. (5.18) gener-
alizes Eq. (4.14). The positive definiteness of ¥ implies that | X| > 0, so that the pdf
is well defined. It also implies that the contours of Q(x) and, therefore, of f(x) are
multidimensional ellipses (see Section A.8 of the Appendix), generalizing remarks
we made about the bivariate normal on p. 82.

Using simple matrix multiplication arguments, it is not hard to show that if X ~
Ny (u, ¥), and X is positive definite, then Q(X) has a chi-squared distribution with
m degrees of freedom.

Details: Let Z be m-dimensional multivariate normal with the
zero vector as its mean vector and the m-dimensional identity matrix
as its variance matrix. The components of Z follow Z ~ N(0, 1),
independently. Thus, from the definition of the chi-squared distribu-
tion in Section5.4.4, ZTZ ~ x2. Now, if X ~ N, (u, ¥) then, by
the theorem on p. 92, Y = 7 1/2(X — p) satisfies YTV ~ Xﬁl. But
YTy = 9(X). O

Taken together these results imply that, for ¢ > 0, each contour {x : Q(x) = c}
of the multivariate normal pdf is elliptical and encloses a region {x : Q(x) < c}
having probability determined from the X,2n distribution function.

The remarks we have just made about elliptical contours apply when X is positive
definite, so that we may write the pdf in (5.18). Occasionally, however, one must
deal with the non-positive definite case. This arises, for example, when one wants
to model the joint variation of m variables by assuming it is concentrated in fewer
than m dimensions (analogously to the bivariate case with p = 1). If X ~ N, (i, )
and X is not positive definite but instead has rank k where k < m, we may use the
spectral decomposition to find a k-dimensional subspace in which the distribution
may be represented by a pdf with elliptical contours. This arises in some applications
of multivariate analysis. See Chapter 17.

Details: If there are k positive eigenvalues of ¥ we may write
¥ = PDP"

where the first k£ diagonal elements of D are the positive eigenvalues.
Let P be the m x k matrix consisting of the first kK columns of P, which
are the eigenvectors corresponding to the positive eigenvalues. These
k eigenvectors span a k-dimensional subspace V. Let v; = col;(P)
for j = 1,...,k, so that every vector x € V may be written in the
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form

k
X = ZLtj(x)vj
Jj=1

and the n-dimensional vector x may instead be represented as a k-
dimensional vector u(x) = (u1(x), ..., ur(x)) = PlTx. The distrib-
ution of X then lies in V in the sense that (i) P(X € V) = 1 and (ii)
for all non-zero x € V,

xI'sx = u(x)TD,\u(x) > 0,

where D) is the k x k diagonal matrix with (7, i) element equal to the
positive eigenvalue D;;; in other words, D) is the k x k matrix formed
by eliminating all the zero column and row vectors of D. Furthermore,
setting U = u(X) it may be shown that U ~ Ni(uy, D)), where
py = Pru, and U has pdf

o) = U 3w Dy ),

V (2mk|D;|
(]

We illustrate this kind of dimensionality reduction in Example 17.2 on p. 500.

5.5.3 If X and Y are jointly multivariate normal
then the conditional distribution of Y given X
is multivariate normal.

In Section4.2.2 we introduced the bivariate normal distribution for a pair of random
variables X and Y and in Section4.2.4 we discussed the conditional expectation
E(Y|X = x), which is the regression function. We now generalize this to the case
in which X and Y are random vectors. Let us suppose X and Y are, respectively,
m1-dimensional and m,-dimensional; they are m| x 1 and my x 1 vectors. Let us
define U to be the concatenation of these two vectors,

o= ()

with mean p = E(U). Let us partition the components of x4 so that they correspond
to E(X) and E(Y), and let us use subscripts a and b to indicate this partitioning:


http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4

5.5 Multivariate Normal Distributions 133

()

M =

b

so that p, = E(X) and pup = E(Y). In this subsection we will partition matrices in

the same way, separating the first m; rows and columns from the last m, rows and
columns based on these subscripts. Thus, we write the variance matrix ¥ = V(U)

as
Yaa Zab
Y= aa 5.19
(Eba Ebb) (5.19)

so that V(X) = X, and V(Y) = Zpp.

The generalization of the normal regression results in Section4.2.4 is the follow-
ing.
Theorem With the definitions above, if X and Y are jointly m-dimensional mul-
tivariate normal, then Y|X = x is my-dimensional multivariate normal with mean
vector and variance matrix given by

fibla = tb + Sba oy (X — pia) (5.20)
Zb\a = Xpp — Ehaza_al Xab- (5.21)

Outline of Proof: The theorem is proved by writing the quadratic
exponent in the multivariate normal pdf of U, breaking it into pieces
corresponding to the a and b components in the partitioning above,
using the definition of conditional density, and then simplifying while
applying the following matrix identity:

ABY' E  —A'BF!
cp) ~\-rFlca! F

E=A-BD"'0)"!

where

and
F=D-cA 'p! O

In carrying out calculations such as those used in proving the theorem above it is
helpful to define the precision matrix,

which is partitioned as
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It is not generally true that Iy, = E;b]. Instead we have

~1
WS (Ebb — Zpa Ty Eab)
-1
Coa == (Zo0 = 0aZid Zan)  ToaTie)

and by reversing the subscripts a and b we get the corresponding expressions for Iy,
and [yp.

Now suppose X and Y are random variables, U is a random vector, and (U, X, Y)
is multivariate normal. Then, putting V(U) = X,, and V (X, Y) = Xj;, and applying
the theorem, we write the components of the 2 x 2 matrix Xp|, as

oxXX|\U = Zbla,11
OYY|U = Xpla,22
OXY|\U = Zpja,12-

We may then define the partial correlation of X and Y given U to be

OxXY|U

JOXX|U - OYY|U

The partial correlation pyy|y measures the remaining linear dependence of X and
Y after conditioning on U. The sample partial correlation is the analogous quantity
based on the sample covariance matrix S. That is, if we define the sample covariance
matrix S as in (4.24) based on samples x1, ..., X;, V1, ..., yp and uy, ..., u, (where
u is the vector sample analogue of U), and we then partition S as we partitioned
Y in (5.19), we write

pXYIU = (5.22)

sxx|u = Spla,11
syy\u = Spla,22
Sxy|u = Shla,12

and then the sample partial correlation of x and y given u is®

SXY|U

JSXX\U - Syy|u

The sample partial correlation in (5.23) is an estimate of the partial correlation’ in
(5.22).

pxviy = (5.23)

8 It may be shown that ) xv|u is equal to the correlation between the pair of residual vectors found
from the multiple regressions (see Chapter 12) of x on « and y on u.

9 In fact, Pxy|u is the maximum likelihood estimate; maximum likelihood estimation is discussed
in Chapter 7.
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Example 5.9 Network models from fMRI Many investigations have sought to
describe large-scale network activity across the brain based on fMRI, particularly dur-
ing a task-free “resting state.” Suppose many regions of interest (ROIs) are defined,
and let x; be the sum of the fMRI signals across all voxels in one particular ROI at
time ¢, fort = 1,..., T. Let us call this ROI1. Similarly, let y; be the sum of the
fMRI signals across all voxels in another ROI at time 7, and let us call this ROI2.
Then the sample correlation pyy of the vectors (x1, ..., x7) and (yy, ..., yr) may
be used to define a “network connection” between ROI1 and ROI2. However, this
measure suffers from the defect that any association between activity at these ROIs,
represented by random variables X, and Y;, could be due to their correlated activity
with other ROIs, which could be represented by a random vector U;. That is, the
other ROIs could be connected to both ROI1 and ROI2, and then X; and Y; would be
correlated even if there were no connection between ROI1 and ROI2. An alternative
is to use the sample partial correlations pxy|y to define each network connection.
Smith et al. (2011) conducted a large simulation study of fMRI network activity and
found that partial correlation could be effective at identifying connected network
nodes defined by ROIs. (I



Chapter 6
Sequences of Random Variables

One of the great ideas in data analysis is to base probability statements on
large-sample approximations, which are often easy to obtain either analytically or
numerically. This short chapter contains the two fundamental results that produce
most of the methodology, the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT). Both concern the behavior of the sample mean X = > X;. These
theorems form a foundation for much data analytic theory because many statistical
functions may be either rewritten or approximated in terms of sample means.

While sample means are important, the power of the LLN and CLT reaches far
beyond means themselves to other summaries of the data. In general a numerical
summary of the data is called a statistic. That is, a statistic is scalar or vector-
valued function defined on the set of possible data values. For example, a regression
coefficient, i.e., the slope of a least-squares fitted line, is a statistic. Many statistics
may be written, at least approximately, as some function of a sample mean. This often
produces approximate normality of the statistic which, as we will see in Chapters 7
and 8, becomes the basis for statistical inferences, such as confidence intervals and
significance tests.

6.1 Random Sequences and the Sample Mean

We need a crucial piece of preliminary terminology: if X, X7, ..., X, are drawn
independently from the same distribution, then X, X», ..., X, is said to form a
random sample from that distribution, and the random variables X; are said to be
independent and identically distributed (i.i.d.). This section is about means computed
from random samples (sets of i.i.d. random variables). Let © = E(X;). The LLN
says that X gets arbitrarily close to j as n increases indefinitely. The CLT says that
the distribution of X becomes arbitrarily close to a normal distribution as 7 increases
indefinitely. Similar results hold for many other data summaries, as well (because they
may be written in terms of sample means). They are extremely important because
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they allow calculations based on normality, such as those in Section5.3.1, to be
applied, producing simple and useful probability statements.

In analyzing the behavior of the sample mean, the first point to recognize is that
drawing a new sample would produce a new value of the sample mean, so that if we
were to repeat the process of drawing a new sample many times, we would observe
variability in the sample mean. In Example 5.7, p. 117, for example, we described
some data on re-learning time from Ebbinghaus (1885), and noted that he examined
84 means, each of which was obtained by averaging the re-learning time across 6 lists
of trigrams. Each mean was slightly different: they exhibited variation. The second
point is that, typically,! the variation in the sample mean is smaller than that in the
original data, and it decreases with increasing sample size.

Example 3.4 (continued from p. 46) Figure 3.2 displays a histogram of 60 spike
counts from a motor cortical neuron during a reaching task. The mean among these 60
counts is 13.6 spikes. (The time interval was 600 ms, so this neuron’s mean firing rate
was 22 spikes per second.) Imagine drawing one spike count at random from among
the 60, and doing this repeatedly. The histogram gives a sense of the variability we
would see in these repeated random draws. Now suppose instead we were to draw 4
spike counts at random, and compute their mean, and then repeat this process many
times. Because it would be likely that some of the 4 values would be bigger than 13.6,
and some would be less, a mean of these 4 values would tend to be closer to 13.6
than any single random value would be—in other words, the mean of 4 observations
would tend to exhibit less variability than did the original observations themselves.
We can see this by considering the first 12 of the spike counts:

16 12 14 9 9 4 12 14 13 13 17 16

The mean count among these 12 is 12.4 spikes and the standard deviation is 3.7
spikes. Now consider the remaining 48 spike counts:

21 16 16 10 12 15 11 11 8 26 12 12
18 13 13 12 8 16 14 12 7 13 12 14
14 16 10 11 7 17 15 14 16 10 13 13
14 10 14 15 16 17 12 18 32 11 19 13

The data have been arranged in 12 columns of length 4 in order to consider
the column means. In this case, the mean of these 12 means is 13.9 spikes and the
standard deviation is 1.8 spikes: we find that the variation among the 12 means
(the standard deviation of 1.8) is smaller than the variation among the 12 raw
counts (the standard deviation of 3.7). O

The points illustrated by these motor cortical spike counts in Example 3.4 are (i)
if we calculate the mean of a set of observations (a set of 4 trials) repeatedly for

! There are exceptions to this rule if the expectation does not exist, which can occur when the tails
of the pdf fall to zero very slowly. An example is the Cauchy distribution, which is the ¢ distribution
on | degree of freedom.
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new data (12 repetitions of the sets of 4) we observe variation among the means,
and (ii) the variation among the means (the standard deviation of 1.8) is smaller
than the variation we would typically see among the raw spike counts (the standard
deviation of 3.7). However, this illustration was intended only to set the stage for
an entirely theoretical discussion. In this section we consider the random variable
X. Its variation may be quantified by its standard deviation 0. Notice that this is
not the same thing as the standard deviation oy of the original data. In fact, o3
decreases as the sample size increases; qualitatively, the larger the sample size, the
less variation in the sample mean. Specifically, we have o3 = ox //n. After giving
this result in Section6.1.1 we present the law of large numbers in Section6.2.1 and
the Central Limit Theorem in Section 6.3.1. These theorems require the use of some
mathematics for dealing with sequences of random variables, which is the topic of
Section6.1.2.

6.1.1 The standard deviation of the sample mean decreases

as 1/./n.

If we repeatedly draw random samples X1, ..., X, and from them repeatedly com-
pute X, the value of X will fluctuate: it will be a random variable. The dominant
features of the distribution of X are captured by its mean and variance, which may
be computed easily from the formulas (4.1) and (4.5).

Theorem If X1, X5, ..., X, form a random sample from a distribution having
mean py and standard deviation oy then the expectation and standard deviation
of the mean X are

(i) E(X) = px, and
(i) og = ox//n.

Proof: The expectation E (X) is immediate from (4.1). For the variance, in formula
(4.5) plug in V(X;) = 0% to get V(X1 + X2 + --- + X,) = noy. Then take
square-roots and, remembering that X = X1+ X244+ X,)/n, apply (3.6). O

The statement that £(X) = px says that the average amount by which X exceeds
1 is equal to the average amount by which 1 exceeds X . The statement oz =ox//n
quantifies how rapidly the fluctuations in X diminish as a function of sample size.
It is sometimes called “the square-root of n law.” A consequence of diminishing
fluctuations is that X must tend to get closer and closer to zx. This is the LLN, given
in Section6.2.1.

These results may be illustrated in the case of Bernoulli trials, where X; is either
Oor1.If p=P(X; =1) = .4andn = 4 the sum > |, X; takes possible values of
0, 1,2, 3,4, with binomial probabilities .0625, .25, .375, .25, .0625. Thus, the mean X
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| ome— T 1 1 ks t T t T 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 6.1 The pdf of the binomial mean X when p = .4 for four different values of n. As n increases
the distribution becomes concentrated (o 3 becomes small), with the center of the distribution getting
close to ux = .4 (the LLN). In addition, the distribution becomes approximately normal (the CLT).

takes possible values of 0, .25, .5, .75, 1, also with probabilities .0625, .25, .375, .25,
.0625. The pdfis plotted in Fig. 6.1. The pdfs whenn = 10, 25 and 100 are also shown
there. For n = 4 the distribution is relatively wide, but as n increases it gets more
concentrated. Note that in the case of the binomial we may write Y = >/ X;, so
thatY ~ B(n, p) and then X = Y /n. Using the binomial formula V (Y) = np(1—p)
(see p. 107) together with the general formula V (aY) = a2V(Y) (see Eq.(3.9)) we
getogy =/p(l—p)/n.

For the square-root of n law to hold, the assumption of independence among the
random variables X1, ..., X, is crucial. Suppose instead that Cor(X;, X;) = p,
with p > 0, fori # j and let 0> = V(X;) for all i. A straightforward calculation

shows that
- o2 n—1 2
V(X) = . + po (6.1)

so that the variance does not vanish but instead reaches an asymptote: as n — 0o we
have B
V(X) — po. (6.2)

Thus, even a small positive correlation among the variables destroys the result.

Details: Fori # j we have Cov(X;, X;) = p02 and then
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n n

Example 6.1 Neural spike count correlation could limit fidelity Shadlen and
Newsome (1998) noted that common input to neurons can produce small, positive
correlations in spike counts, and that this has been observed in recordings from
primate cortex. As a consequence, they suggested, the information transmitted by
groups of neurons acting together may be severely limited. The idea is that, according
to the conception of integrate-and-fire neural transmission, an ensemble of neurons
might transmit information to a downstream neuron based on their average spike
count over small time intervals. In recordings from the MT area of visual cortex,
correlations were estimated to be, on average, approximately p = .12. Shadlen and
Newsome used the formula (6.2), stating that the asymptote in mean spike counts
would be reached, approximately, by about 50-100 neurons. They concluded that
“50-100 neurons might constitute a minimal signaling unit in cortex.”

Details: Let R = V(X)/o? and suppose we want to have the variance
V (X) be within 10 % of its asymptotic value. Letting ¢ = 1/10 we set
R = p(1 + ¢) and solve for n. From (6.1) we have

1 —
R=—"1,
n
and solving for n we get
l—p
n—=-———-.
R—p

We now insert R — p = pe to get

1—-pl
n=——-—.
p €

With p = .12 and € = .1 this gives n &~ 73, supporting the observation
made by Shadlen and Newsome.
(]

Various rebuttals to the argument in Example 6.1 have appeared in the literature,
the most convincing being simply that neural computations could be more compli-
cated than simple summation (averaging of spike counts), and more complicated
combinations of inputs need not suffer from this difficulty. In any case, it is impor-
tant to recognize the fundamental fact that small correlations can severely limit the
information in a mean.
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6.1.2 Random sequences may converge according to several
distinct criteria.

In discussing the large-n behavior of a sequence of random variables X1, Xo, ...,
X, ... we need a formalism for two kinds of statements. First, we want to be able
to say that the distribution of X,, is approximately of a particular form. We do this
by examining the cdfs. Suppose that the variables X1, X5, ..., X,,, ... have corre-
sponding cdfs Fi(x), Fa(x), ..., F,(x), ... and suppose further that the particular
distribution that we want to consider an approximating distribution has cdf F(x). We
may then formalize the approximation by giving a precise meaning to the expression
F,(x) = F(x) for n large, meaning that F},(x) is approximately equal to F'(x) for
n large. We make this precise using limits. Recall that a sequence of numbers x,,
forn = 1,2, ..., converges to x if for every ¢ > 0 we have |x, — x| < ¢ for all
sufficiently large n. This is written lim,,_, 5 X, = x.

Definition Suppose X1, X», ..., is a sequence of random variables and F;, is the
cdf of X,,. We say that X,, converges in distribution to a continuous random variable
X with cdf F if

lim F,(x) = F(x)

n—o0

for all x. More generally, X, converges in distribution to a random variable X with
cdf F (which may or may not be continuous) if

lim F,(x) = F(x)
n—od
for all x at which F' is continuous. We often write this as
X, —> X.

In cases in which X follows a particular well-known distribution we put the distrib-
ution on the right-hand side; e.g., if X ~ N(0, 1) we write

x, 2 N, 1.

The second kind of statement we want to make has to do with the case in which
the sequence of random variables X1, X7, ..., X,,, ... gets progressively closer to a
number, i.e., a fixed constant ¢ rather than having some probability distribution. This
is needed for the LLN. We may think of the constant as a probability distribution
that has collapsed down to a point: we say that a random variable X is degenerate,
meaning that it is identically equal to a constant ¢, when P(Y = ¢) =1. In this
situation the cdf of X is F(x) =0 forx < cand F(x) = 1 forx > c.

Definition Suppose X1, X», ..., isasequence of random variables and F}, is the cdf
of X,,. We say that X,, converges in probability to c if X, converges in distribution
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to the degenerate random variable X for which P(X = ¢) = 1. We often write this
as

X, — c.

The notion of convergence in probability is more general than the definition above
indicates, but we do not need the general definition. There are also two stronger
notions of convergence, convergence in quadratic mean and convergence with prob-
ability one—but again we do not need these here.

Details: In applying convergence in probability, the criterion that is
used is the following.

Theorem A sequence X1, X», ... converges in probability to c if and
only if for every € > 0, P(| X, —c| > €¢) —»> Oasn — oo.

Proof: This involves straightforward manipulations using the defini-
tion. The details are omitted. (]

6.2 The Law of Large Numbers

6.2.1 As the sample size n increases, the sample mean converges to
the theoretical mean.

The LLN is an accessible result, in the sense that its statement may be understood
without advanced mathematics. The proof is not especially difficult, and we include
it here, but we will regard it as an inessential detail.

Theorem: The Law of Large Numbers If X, X, ... is a sequence of i.i.d.
random variables having a distribution with mean px and standard deviation
ox,then X converges in probability to ux, i.e.,

Xn — UX.

The form of the LLN given here is sometimes called the “weak” law of large
numbers. The strong law instead says that convergence occurs with probability 1.
However, considerably more machinery is needed in order to say this in precise
mathematical terms. Intuitively, “with probability 1” means that the convergence is
certain to occur.

Details: The proof will require the following lemma.
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Lemma (Markov’s Inequality) Let Y be a positive random variable
on (A, B) with uy = E(Y) < oo. Then for any positive a,

P(Y>oz)<ﬂ.
«

Proof of Lemma: Let us assume that Y is continuous. We have

B
Py >a)=/ fr(y)dy

and

B B
a/tmw@s/yﬁww.

Combining these, and continuing, we then have

B

aPY > a) < / yfr(Mdy

«

« B
sAyﬁw®+/yﬁw®
B
=/A yfr(ydy = E(Y).

The case in which Y is not continuous may be handled by an analogous
argument. (|

Proof of Theorem: We need to show that for any positive € we may
find n sufficiently large that P(|X — x| > €) becomes arbitrarily
close to 0. We have P(|X — ux| > €) = P((X — px)*> > €2). Let
Y = (X — puy)?, note that E(Y) = ai/n, and apply the Lemma to

get
_ g2
POX — pxl > €) < ——.
€“n

This shows that for sufficiently large n, P(X — x| > €) becomes
arbitrarily close to 0. O

6.2.2 The empirical cdf converges to the theoretical cdf.

We introduced the empirical cdf F,(x) in Section 3.3 and noted there that, for large
n, it approximates the cdf F (x) and illustrated the phenomenon in Fig. 3.9. We now
relate this behavior to the LLN.
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In the proof we need the following definition: for a random variable X, we let the
indicator variable I{x <y be 1 if X < x and 0 otherwise.

’IA‘heorem If X1, X», ... 1s a sequence of i.i.d. random variables then, for every x,
F,(x) converges in probability to F(x).

Proof: Another way to think about ﬁ,, (x) is that it counts the number
of random variables X; in the random sample X1, ..., X, for which
X; < x, and then divides by n. This is the same thing as adding 1/n
for each of the X; variables that are less than x. Mathematically, we
express this counting operation using indicator variables. Consider a
sequence X1, X7, ... of i.i.d. random variables with cdf F(x). We
may write the empirical cdf in the form

. 1 <
Fu(x) = ;ZI{X,S)C}'
i=1

We now use

E(lix;<x)) =1-P(X; <x)+0- P(X; > x)
= P(Xi =x) = F(x)

and apply the LLN. (]

In addition to supplying the theoretical foundation for P-P and Q-Q plots, as
discussed in Chapter 3, this result is also the starting point for the bootstrap method
of statistical inference, which we cover in Chapter9.

6.3 The Central Limit Theorem

6.3.1 For large n, the sample mean is approximately normally
distributed.

The LLN concerns only the large-sample tendency of X to get arbitrarily close
to y1x. The CLT describes the large-sample probability distribution of X. Actually,
we are speaking a bit loosely here: the LLN says that the distribution of X becomes
degenerate at p1x; to get fluctuations that are described, approximately, by a normal
distribution we have to introduce rescaling. Instead of X, the CLT describes the
behavior of the random sequence of variables Z,, in which X is standardized by
subtracting its mean and dividing by its standard deviation (the standard deviation
of X being oy //n).
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The Central Limit Theorem: Suppose X1, X», ... is an i.i.d. sequence of
random variables having mean px and standard deviation oy, and let Z,, =
Vn(X —px)/ox. Then Z, converges in distribution to a normal random variable
having mean 0 and variance 1, i.e.,

Z, 2 N, ).

Proof Outline: The CLT may be proved using the Fourier transform.
The Fourier transform of a pdf is called the characteristic function
of the distribution. If Xy, X5, ..., X,,, ... is a sequence of random
variables with characteristic functions ¢,(¢), forn = 1,2,..., and
on(t) — ¢(¢) for all # with ¢(¢) being a characteristic function of the
distribution of a random variable X, then X,, converges in distribution
to X; this basic result is a version of the continuity theorem. Let us
take ¢, () to be the sequence of characteristic functions of the distri-
butions of the normalized sample means Z,,. Calculations show that
¢, (1) converges to the characteristic function of a N (0, 1) distribution;
therefore, by the continuity theorem, Z, converges in distribution to
a N (0, 1) random variable. U

The effects of the LLN and CLT are illustrated in Fig. 6.1. For n = 4 the distribu-
tion of X does not look very close to normal. However, as n increases the distribution
of X gets more tightly concentrated near the mean pxy = .4 (a consequence of the
LLN) and it looks more and more normal (the CLT).

What we have just done is looked at the distribution of X for Bernoulli trials for
several values of n with p = .4. The distribution of nX is binomial and the picture
of its distribution would look just like the pictures we had for the distribution of X
except that the x-axis would be multiplied by n. In particular, as n gets large we
see that the distribution looks normal. This effect of the CLT may be considered an
explanation for the normal approximation to the binomial.

In fact, there are much more general versions of the CLT. We do not want to build
up the machinery needed for a general theorem, but it is worth stating one result in
an imprecise form.

Roughly speaking, if X1, X», ..., X, are independent random variables, possi-
bly having different distributions but with no individual X; making a dominant
contribution to the mean X, then for n sufficiently large, the distribution of X

is approximately normal with mean E(X) and standard deviation v/ V (X).

The “no dominant contribution” phrase may be made precise as the Lindeberg
condition, and the CLT then follows (see Billingsley 1995, Section27). This version
of the CLT helps to explain why the normal distribution arises so often in statistical



6.3 The Central Limit Theorem 147

theory, and also why it seems to fit, at least crudely, so many observed phenomena.
It says that whenever we average a large number of small independent effects, the
result will be approximately normally distributed.

A detail: Another way to interpret the CLT uses entropy, as defined
in Eq.(4.33). Among all distributions having mean p and standard
deviation o, the N (y, 02) distribution is the most disorderly possi-
ble, in the sense of having maximal entropy. The CLT says that as
the sample size gets very large the distribution of the sample mean
becomes as disorderly as possible. This characterization provides an
alternative way to understand and prove the CLT. See Madiman and
Barron (2007).

There are also versions of the CLT for non-independent variables, though they
are considerably more complicated. Those results typically require the sequence to
be stationary, as defined on p. 515 of Chapter 18, and further limit the dependence
among the random variables X; and X ; within the sequence as j — i increases. See
Billingsley (1995, Theorem 27.4) and also Francq and Zakoian (2005).

6.3.2 For large n, the multivariate sample mean
is approximately multivariate normal.

The multivariate version of the CLT is analogous to the univariate CLT. We begin with
a set of multidimensional samples of size n: on the first variable we have a sample
X11, X12, ..., X1n, on the second, X»1, X22, ..., X2, and so on. In this notation,
X;;j is the jth observation on the ith variable. Suppose there are m variables in all,
and suppose further that £(X;;) = u;, V(X;;) = 01.2, and Cor(X;;, Xij) = pix for
alli =1,...,m,j =1,...,n,and k = 1,...,m. As before, let us collect the
means into a vector  and the variances and covariances into a matrix . We assume,
as usual, that the variables across different samples are independent. Here this means
X;j and X are independent whenever i # h. The sample means

B 1 &
X1=-> Xy
1 I’lJZ_:‘ 1j

<

3

|| cen
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M

<
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may be collected in a vector B
X1
_ Xs
x=\ .
X

., X;, are means

Multivariate Central Limit Theorem: Suppose X1, X,
from a set of m random samples of size n, as defined above, with the covariance

matrix ¥ being positive definite. For any m-dimensional vector w define

Zu(w) = Vw73 (X — .

Then for every nonzero m-dimensional vector w, Z,(w) converges in distribu-
tion to a normal random variable having mean 0 and variance 1.

(6.3)

More loosely, the multivariate CLT says that X is approximately multivariate
normal with mean p and variance matrix %E. As in the univariate case, there are

much more general versions of the multivariate CLT.



Chapter 7
Estimation and Uncertainty

7.1 Fitting Statistical Models

The examples in previous chapters, involving experimental settings ranging from
human and animal behavior, to neuroimaging, EEG and EMG, neural spike trains,
and in vitro recording, have illustrated the way statistical models describe regularity
and variability of neural data. All of these models involve free parameters. In Example
1.5,0onp. 11, we reviewed the use of least squares in demonstrating an approximately
linear relationship between conduction velocity and nerve diameter. Least squares is
easy to understand and often works well for models of the form

Yi =f(xi) + €.

But what about other situations? In Fig. 3.8 of Example 3.5, on p. 60, we displayed fits
of Gamma(c, (3) distributions to histograms of ion-channel opening durations, but we
did not say how the parameters « and 3 were chosen. A nidive approach to the problem
of using the data to determine suitable values of parameters might propose a particular
method and argue for it on intuitive grounds. According to the doctrine of statistics,
however, principles may be introduced and used in analyzing the performance of
alternative methods. By demonstrating the properties of solutions under general
conditions, statistical theory brings coherence to an otherwise bewildering array
of disparate problems. In this chapter, together with Chapters 8 and 9, we present the
key ideas.

We start with a traditional, though somewhat artificial, separation of two aspects
of the fitting problem that are intimately connected in practice: estimation of para-
meters and assessment of uncertainty. In Section7.2 we formalize the process of
estimation and then give two alternative methods, the method of moments and max-
imum likelihood (ML). In the 1920s Ronald Fisher proposed maximum likelihood
and demonstrated that it is optimal quite generally for large sample sizes. Fisher also
showed how uncertainty about the answer can be assessed, and an alternative perspec-
tive was provided at about the same time by Harold Jeffreys using Bayes’ Theorem.

R. E. Kass et al., Analysis of Neural Data, 149
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_7,
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It took roughly 50 more years to refine the early concepts to its full-fledged modern
incarnation and, in fact, new variants of algorithms continue to be developed so that it
may be applied to ever more complicated situations. In contexts where finitely-many
parameter values completely specify! the statistical model, implementation of ML
estimation is conceptually straightforward while, from a theoretical perspective, ML
estimation is also provably unbeatable—no other method offers better performance,
for large samples. ML estimation has, therefore, become the dominant approach to
parameter estimation. We will review basic properties and uses of ML estimation in
Chapter 8.

In Section 7.3 we discuss confidence intervals. In Chapter 1, on p. 13, we described
the use of a confidence interval to assess the uncertainty associated with responses
of patient P.S. when forced repeatedly to choose between pictures of burning and
non-burning houses; we noted that an approximate 95 % confidence interval for her
propensity to choose the non-burning house was (.64, 1.0) and we concluded it was not
very likely that she was choosing them with equal probabilities (a propensity of .5);
instead, she apparently saw the two complete pictures without conscious awareness
of processing their left ends, which is where the fire appeared. As a data-analytic tool,
confidence intervals have become straightforward to use in many, varied situations.
We treat several simple yet important problems in Section 7.3 and supplement with
more general methods in Chapters 8 and 9. As one thinks harder about interpretation,
the subject gets somewhat more subtle. We review the issues in Sections 7.3.8 and
7.3.9. On the other hand, confidence intervals are fundamental to statistical practice
and, from a contemporary standpoint, they seem very natural. Seen in historical
context, the introduction of confidence intervals by Jerzy Neyman in the 1930s was
quite ingenious, and a giant leap forward.

One of the ways confidence intervals are found in conjunction with maximum
likelihood is to apply the bootstrap, which is discussed in Chapter9. As additional
motivation for the discussion in this and subsequent chapters, here is a concrete
example where these methods have been used in fitting a statistical model of mental
processes.

Example 7.1 A Model of Visual Attention Experiments on visual attention often
study the ability of subjects to see and remember multiple objects that are exposed
to them for a very short time. Following Sperling (1967), Bundesen and colleagues
developed a quantitative theory of visual attention (Bundesen, 1998) according to
which, objects in the visual field are compared with representations in visual memory,
and if the comparison is completed prior to the end of visual exposure, the object
is recognized. In this theory the time taken to process and store an object identity
is a random variable. For object i call this random variable X;. The processing is
considered to begin after a latency of length #(, so that if 7 is the total time an object
is displayed then the ith object is recognized if X; < ¢ — #y. Bundesen assumed
X; ~ Exp()\;). Letting fij(x) and F;(x) be the Exp()\;) pdf and cdf, for exposure
of length x = ¢ — 19, Fi(t — tg) is the probability of object recognition success

! From the point of view of the mathematical theory, a nonparametric method does not eliminate
the parameters but rather makes them infinite dimensional.
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and 1 — F;(t — tg) is the probability of object recognition failure. Suppose S is the
stimulus set and let R denote some particular subset of objects that are recognized.
If the subject’s memory capacity is not exceeded, and if recognition of object i is
independent of recognition of all other objects (and this is true for every i), then the
probability that the subject will recognize all objects in R, and fail to recognize all
objects not in R (i.e., fail to recognize those in the complement, which may be written
S — R), is given by

Ps(R) =[] Fitt —10) J] (1 = Fit — 1o)). (7.1)

ieR jeS—R

This model has several unknown parameters (the encoding rates )\;, the latency 7y, and
the memory capacity) which must be determined in order to compute the probabilities
and compare them to data. Figure7.1 displays fits of the model to data from three
subjects. The model fitting was performed by the method of maximum likelihood,
and uncertainties associated with each of the parameters of interest may be obtained
by bootstrap methods. See Kullingsbaek (2006). (]

7.2 The Problem of Estimation

In order to fit a model to data, a parameter or set of parameters needs to be determined.
Following a convention in the statistical literature, we use 6 to denote a generic
parameter. In much of our initial discussion we will focus on the case of a single,
scalar parameter, but in most real-world problems # becomes a vector. For example,
in fitting a Gamma(«, ) model we would be taking 6 = («, 3) and we would speak
of “the parameter” 6 in place of “the parameters” o and 3. The problem of estimation
is to determine a method of estimating 6 from the data. To constitute a well-defined
method we must have an explicit procedure, that is, a formula or a rule by which
a set of data values x1, x, ..., x, produces an estimate. We consider an estimator
to have the form ' = T(Xy, X5, ..., X,), i.e., the estimator is a random variable
derived from the random sample. The properties of an estimator may be described
in terms of its probabilistic behavior.

Before presenting the method of moments and maximum likelihood, we need to
make two comments on notation. First, when we write T = T(X1, ..., X,) we are
using capital letters to indicate clearly that we are considering the estimator to be
a random variable, and the terminology distinguishes the random “‘estimator” from
an “estimate,” the latter being a value the estimator takes. Nonetheless, neither we
nor others in the literature are systematically careful in making this distinction;
it is important conceptually, but some sloppiness is tolerable. Second, we often
write 6* or @ for the value of an estimator, so we would have, say, T = 0. The
latter notation, using 0 to denote an estimate, or an estimator, iS very common in
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Fig.7.1 Datafrom three subjects, together with fits of a model for probability of letter identification
as a function of exposure duration. Adapted from Bundesen (1998).

the statistical literature. Sometimes, however, 0 refers specifically to the maximum
likelihood estimator (MLE). This is another potential source of confusion, which the
context should clarify.
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7.2.1 The method of moments uses the sample mean
and variance to estimate the theoretical mean
and variance.

We have already indicated that ML is the dominant approach to estimating a para-
meter vector . For various reasons, however, other methods are sometimes used. In
this section we present one of these other methods, the method of moments, which
preceded the development of ML and is still used for some purposes. The idea is
simple: to fit a probability distribution to a set of data we equate the theoretical
mean and variance to the sample mean and variance and then solve for the unknown
parameters.

Illustration: Fitting a gamma distribution On p. 124 we noted that the mean and
variance of a Gamma(c, (3) random variable are

,UZ

e o)

2 _ o
g = ? .
We may solve these for 3 and «: dividing the first equation by the second we get

1

B = ?;

squaring the first and dividing by the second we get
ozt
0'2 ’

g =
S2

[0 =—2
)

O

The method of moments is, in some cases, like the gamma, quite easy to apply.
In principle, higher-order moments could be used (e.g., E(3 (X; — 1)) could be
equated to the sample analogue).
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7.2.2 The method of maximum likelihood maximizes
the likelihood function, which is defined
up to a multiplicative constant.

To introduce maximum likelihood estimation, let us begin by framing the estimation
problem concretely, using the binomial, and let us write the binomial pdf in the form

fxlf) = (”)9%1 — oy
X

which was previously denoted by f(x) = P(X = x), with p replacing 6. Here the
notation f(x|6) is used to imply that we are examining the pdf of X given the value
of 6. The binomial pdf describes the probabilities to be attached to varying possible
values X = x for a given fixed value of #. That is, once we plug in a value of 6§ we
have completely determined the pdf for all values of x. The problem of estimation,
however, attempts to find a sensible guess at 6 given that X = x has been observed.
It thus reverses the situation: instead of assuming a value for 6 and finding values of
x, we must assume a value of X = x and come up with a value of 6. In this sense,
it involves an inverse or inductive form of reasoning. The method of maximum
likelihood chooses the value  of 6 that assigns to the observed data x the highest
possible probability:

fxlf) = max f (x/6).

In the binomial problem we will, below, show that 0 =x /n. In other words, maximum
likelihood estimates the theoretical proportion (or propensity) 6 by the observed
proportion x/n.

A detail: Why do we call 6 a theoretical proportion? We have that X /n
is the mean of n Bernoulli trials, each having probability € of being 1.
By the law of large numbers

SRS

£

so that 6 is, roughly speaking, the proportion of 1s observed in infi-
nitely many trials. In this sense we can say that # is a theoretical
proportion. (]

To understand the maximum likelihood idea better we consider what the pdf f (x|6)
tells us about the various possible values of 6. To do this we invert its functionality by
thinking of f(x|6) as a function of € rather than of x. That is, having observed X = x,
we fix x in the pdf £ (x]|0) and then consider how each different choice of 6 produces
a different probability f (x|6). We do not regard this as an intuitively obvious thing to
do. It becomes much more intuitive from a Bayesian point of view, as we mention in
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Fig. 7.2 Comparison of pdf f(x|#) when viewed as a function of x with § fixed at # = .5 (on
left) or of @ with x fixed at x = 1 (on right). On the right-hand side, the pdf is evaluated for 99
equally-spaced values of § from .01 to .99 .

Section 7.3.8. For now we ask the reader to bear with us and make sure to understand
what we mean.

The distinction we are trying to draw here, between f'(x|0) as a function of x and

f(x]|0) as a function of @ is illustrated in Fig.7.2, which displays the binomial pdf
viewed both ways when n = 4: first (on the left) as a function of x when § = .5
and then (on the right) as a function of § when x = 1. First, when 0 = .5, the pdf is
evaluated for five possible values of x: 0, 1, 2, 3, 4. These are all the possible values
of x. (When n = 4, these are all the possible values of x regardless of the value of 6,
as long as it is a permissible value, i.e., it is between 0 and 1, which is often written
0 € (0, 1).) When x = 1 and the pdf is regarded as a function of 6 there is a whole
continuum of possible values of 6 in (0, 1). In the second part of the figure we set
x = 1 and the pdf is evaluated for 99 values of 6, among all the possibilities for
0 € (0, 1). There is nothing of interest about the contrast between the picture on the
left and the picture on the right except that the two representations are conceptually
different.

When the pdf is considered as a function of the parameter 6 rather than the values
x of the random variable, it is called the likelihood function. We will denote it by
L(#). (Other notations are variations on this; all authors use some form of the letter
“L.”) The maximum likelihood estimator (MLE) is the value of 0 that maximizes
L(#). We will denote it> by 6.

So far, we have discussed the pdf and likelihood based on a single (scalar) ran-
dom variable. The concept generalizes immediately to vectors. In fact, one would
typically have a vector of observed data x = (xi,...,x,) that has a joint pdf
f(xl0) = f(x1,...,x,]0). In the subsequent parts of this chapter we will take x
to be a vector, often corresponding to a sample of data, and regard as a special case
any application when it becomes a scalar.

Note that the value of  maximizing L(6) is the same as the value of # maximizing
¢ - L(0) for any positive constant c. We therefore always understand the likelihood
function to be defined only up to a positive constant. Thus, we may write L() in

2 There is some potential for confusion because, as we said on p. 152, in the literature the “hat”
sometimes denotes a generic estimator and sometimes specifies the MLE.
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proportionality form, using the proportionality symbol (), as
L(0) o f(x]0)

and choose the constant for arithmetic convenience.

Ilustration: Binomial likelihood We may write the binomial likelihood function as
LO) =61 —-0"".

Here, in going from the pdf to the likelihood function we have omitted the factor (’;)
because it does not involve 6. O

From the second part of Fig. 7.2 it is apparent that when x = 1 the MLEis 6 = .25,
which is an instance of the formula 6 = x/n. To find the maximum, more generally,
some combination of analytic (calculus-based) and numerical methods may be used.
In the simplest problems, analytic methods suffice. In either case, however, it is
easiest to begin by taking logs, because the value maximizing log L(6) is the same as
the value maximizing L(6), and because the pdf typically has a product form which
is thereby converted to a sum. Suitably enough, the log of the likelihood function is
called the loglikelihood function. We denote it here by £(6):

£0) = log L(0).

Note that in writing a formula for £(f) we may omit any additive terms that do not
involve 6, because these become multiplicative constants in L(#) and do not affect
the maximization.

Ilustration: Binomial MLE. To derive the general form 0=x /n for the MLE we
begin with the loglikelihood function

£(0) = xlogf + (n — x)log(l — 0)

where we have omitted the term log (Z) because it does not involve €. To maximize
this function we set its derivative equal to zero and solve:

n—x
1-6

X
0=¢® == -
0 7
so that

x(1—60)=mn—x)0
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which gives the solution

h="
n
It is also easy to check that £ (@) < 0, which verifies that 6 is a maximum. O
Ilustration: Normal MLE. Suppose we have a sample xi, ..., x, from a N (6, o?)

distribution, where ¢ is known and the problem is to estimate §. The ith normal
density has pdf

fxil0) = ;ex (_M)
W= oy P 202

and the random variables X1, ..., X, are independent, so the joint pdf is

f@n, o xl0) = [ £l

= ﬁ ! exp (_—(x,- — 9)2)
i=1 V2o 20° '

From this, the loglikelihood function is

(o) = — Z(xl_a)

2
202 Zx — 2x;0 + 0

—F(a2 —2%0) + R

where R is a term that does not involve 6. Because the loglikelihood function is
defined only up to an additive constant, we have

00) = — (6% — 230). (7.2)
202
Setting its derivative equal to O we obtain
n -

so that 0 = X. O
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7.3 Confidence Intervals

7.3.1 For scientific inference, estimates are useless
without some notion of precision.

InExample 1.4 P.S. preferred the non-burning house about 80 % of the time. However,
this information by itself is not enough to say anything useful about her preferences:
four out of five trials would also provide a preference for the non-burning house 80 %
of the time, as would 80 out of 100 trials. But four out of five is far different than 80
out of 100. With 100 trials we could say pretty accurately what her preference rate
is, while with four out of five it would not be clear that this is different than guessing.
In scientific contexts, an estimate is useless unless we have some idea how accurate
it is. One need not always drag around a standard error or confidence interval, and
it is common to speak in terms of estimates without stating uncertainty; however,
this convention assumes the uncertainty to be small relative to the size of the effects
under discussion. It is important to include a statement of uncertainty whenever the
uncertainty is non-negligible. In our judgment, inclusion of uncertainty should be
considered the rule rather than the exception. We keep returning to Example 1.4
precisely because 14/17 is intermediate between the obvious situations where one
doesn’t need uncertainty (80/100) and where the estimate is hopelessly uncertain
(4/5). Even a trained statistician might have some trouble saying correctly where
14/17 falls in this continuum without doing some calculations. So let us look at
14/17 = .82 and ask, “How much error is there in this estimate”?

At first glance it appears unposmble to answer this question: if we knew 6 then
the error in estimating it with 6 would be 6 — 6; but we don’t know 6, which is why
we are trying to estimate it. Nonetheless, even though we can not say precisely how
big the error is, we can use probability and say something about the likely magnitude
of error. This is usually quantified with the standard error. The idea begins with
the recognition that every estimator 7 = T (X1, X», ..., X;;) exhibits variation. That
is, if we were to examine 7 across many different samples we would get many
different values. Because X1, ..., X, are random variables having some probability
distribution, T is a random variable. A simple summary of the magnitude of the
variation of T is its standard deviation

_ VD). (7.3)

This is almost, but not quite, the standard error of 7. The problem with formula (7.3)
is that V(T) is typically not known and so itself must be estimated from the data. We
illustrate in the context of Example 1.4.

Example 1.4 (Continued, see p. 13) Let ¥ ~ B(n, p) and note that the usual
estimator of p is the sample proportion T = p = Y /n. Because V(Y) = np(1 — p)
we have V(T) = p(1 — p)/n. Thus, we have the formula
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or = ,/’M. (7.4)
n

The formula in Eq. (7.4) quantifies the variation we can associate with the observed
proportion p = 14/17 = .824. However, we can not compute a numerical value
for o7 from Eq. (7.4) because we do not know what value of p to use. The obvious
solution is to substitute p for p in Eq. (7.4). When we do this we obtain the standard
error for the binomial proportion

SE(p) = ,/@. (7.5)

Applying this to the data from P.S. we get

70—

SE =, 11— 172 — (92.

17

We then typically write the estimate in the form .824 % .092, with the =+ indicating
that the likely variability in the estimate is .092. When, instead, we write p £ 2SE
we get the confidence interval (.64, 1.0), reported on p. 13. (I

The general procedure for computing the standard error is, in essence, the same
as in the binomial case. To emphasize the substitution of the estimated parameter for
the unknown parameter we define the standard error of an estimator T to be of the

form
SE(T) =+ V(T) (7.6)

with the hat on V indicating that we have estimated the variance. In fact, definition
(7.6) is very general in the sense that it does not specify how we estimate the variance.
As we will see in Chapters8 and 9, several different methods are used to obtain
variance estimates. We have used 7 in (7.6) to emphasize that it is a random variable,
but in an alternative notation we use more often we may rewrite (7.6) as

SE@) =/ V().

One note on terminology: the term “standard error” is sometimes used to refer to the
standard error of the mean, as in Eq. (7.17), which is a special case of (7.6).

It is very common practice to report an estimate together with its standard error
in the form

0+ SE(0).

This gives a simple, rough sense of how accurate the estimate is. A more refined
statement, made in terms of probability, comes from the use of a confidence interval:
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a 95 % confidence interval (CI) for a parameter 6 is an interval of the form (L, U)
(L for lower, U for upper), where L = L(Xy,...,X,) and U = U(X1, ..., X,) are
random variables derived from the data and

P(L <0 < U) = .95. (7.7)

This rather abstract definition becomes clear by examining particular problems, as we
do below. In words, Eq. (7.7) says that if # were the value of the unknown parameter,
the probability that the interval would include this unknown value is 95 %. The
probability .95 is the level of confidence associated with the interval (L, U).

In many applications an estimator 6 follows an approximately normal distribution
(because estimators may often, at least approximately, be written in the form of the
mean of some random variables). This is a tremendous simplification because it gives
asimple method for finding L and U in (7.7). According to the 2/3-95 % rule (p. 117),
from the approximate normahty of 6 we may get an approxzmate 95 % confidence
interval (L, U) by taking L = o — 2SE(9) and U = 0 + 2SE(9) that is,

approx. 95% CI = (6 — 2SE(6), 6 + 2SE(6)). (7.8)

The ingeniously simple construction that drives confidence intervals is most easily
understood in the case of estimating the mean of a normal distribution, which we
consider in Section 7.3.2. We then give some justification for the more general form
in (7.8) on p. 166.

7.3.2 Estimation of a normal mean is a paradigm case.

Suppose X, ..., X, is a random sample from a N (11, ) distribution with the value
of o known. Here for notational ease, we drop the subscript X from p and o. Note
that ;« may be estimated by the sample mean X and in this special case V(X) = o2/n

so that the standard error is o

SE(X) = —. 7.9
(X) NG (7.9)
Theorem If X1, ..., X, is a random sample from a N (i, 02) distribution, with the
value of ¢ known, then ) )
X ~ N(u, (SE(X))%) (7.10)

where SE(X) is given by (7.9).

Proof: Let 1, be the n-dimensional vector with all components equal to 1. Accord-
ing to the definition of a random sample, the random variables in the sample are
independent. Because X1, ..., X}, is a random sample from a N (u, o?) distribution,
the vector X = (X, ..., X;) is, therefore, multivariate normal with mean g1, and
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variance matrix o2, where I, is the n x n identity matrix. Note that

o1
X=-11 x. (7.11)
n

From the definition of multivariate normality on p. 129 (which used Eqgs. (4.25) and
(4.26)) we have that 17, X is normally distributed with mean 17, y1,,. = nu and

vec
variance 0217 I, 1,.c = no?. Multiplying by 1/n and using (3.8) and (3.9), with

vec
a=1/nand b = 0, we have

2

I o
;%«:X ~ N(u, 7). (7.12)
Combining (7.12) with (7.11) gives
- 0'2
X ~N(u, —) (7.13)
n
which is (7.9). U
Theorem If X1, ..., X, is a random sample from a N (y, 02) distribution, with the

value of o known, then the interval (X —2-SEX), X +2-SE(X)) is a 95 % CI for
1, where SE(X) is given by (7.9).

Proof: We must show that
PX—2-SEXX) <p<X+2-SEX)) = .95. (7.14)

From (7.13) we have

o - o
Plpu—2—<X< 2—) =.95. 7.15
(u N o+ «/ﬁ) ( )
We observe
o - o X — 11
—2—<X< 2— = |——| <2
H N =p+ NG Ig/ﬁl <
— ag - g

—X-2—<pu<X+2—.

Jn sp=Xt Jn
Therefore, (7.15) gives (7.14). O

The beauty of confidence lies in the simple manipulations, given above, that allow
us to reason from (7.15) to (7.14). We take the description of variation given in (7.13)
and convert it to a quantitative inference about the value of the unknown parameter p.
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7.3.3 For non-normal observations the central
limit theorem may be invoked.

Now suppose X1, . . . , X, form a sample from a distribution with mean x4 and standard
deviation ¢, with the distribution not necessarily normal. For simplicity, suppose
again that o is known.

By the CLT we have

VX —p) b
—%
g

N, 1).

We now apply the same manipulations used in deriving (7.15). We have

P(|5(_M|52)%.95
a/yn

and, in turn, this is equivalent to

— o - ag
P{X-2—<pu<X+2— )~ .95 7.16
( N " ﬁ) (10

Therefore, for n sufficiently large, Eq.(7.16) provides an approximate 95% CI.
Written slightly differently, an approximate 95% CI is given by X + 2 - SE(X),
where SE(X) = o/+/n. The important point here is that we do not require the dis-
tribution of the data to be normal, yet we still get a quantitative inference based on
asymptotic normality of the mean because of the CLT.

7.3.4 A large-sample confidence interval for p is obtained
using the standard error s [ \/n.

In Sections 7.3.2 and 7.3.3 we assumed o was known. This was for purely pedagogical
purposes. In practice, o is almost always unknown and, as a consequence, we don’t
have a value to plug in when we want to calculate SE = o //n. The way to proceed,
however, is pretty clear. As in the binomial standard error formula (7.5), we simply
replace o with an estimate, the obvious estimate being the sample standard deviation
s. In the scenario envisioned in Section 7.3.3, with ¢ unknown we replace it with s
in o/\/n to get the standard error of the mean,

_ S
SE(¥) = NG (7.17)
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and from this we obtain a more practical version of (7.16) for our approximate 95 %
CI. Because we state the result in terms of probability, we replace the observed value
s with its random-variable counterpart S.

Result If X7, ..., X, is a random sample from a distribution having mean x
and standard deviation o, and n is sufficiently large, then an approximate 95 %
CI for p is given by x & 2 - SE(X), where SE(X) is given by (7.17), i.e., for n
sufficiently large,

_ S _ S
PX —-2— X+2—)~ .95. 7.18
X -2 <p<X+272) (7.18)

This result follows from manipulations similar to those used in deriving (7.14) and
(7.16). In establishing (7.16) we applied the CLT. The following theorem modifies
the CLT used in Section7.3.3 by replacing o with S.

Theorem Suppose X1, . .., X, is arandom sample from a distribution having mean p
and standard deviation o. Assume E ((X,- — u)4) < 00, let S, be the sample standard
deviation calculated from X1, ..., X,;,andletY,, = ﬁ(f( —u)/Sp. Then,asn — oo,
we have

Y, 2 N, ).

Details: In order to prove the theorem we first need two lemmas.

Lemma 1 Let Xi,...,X,, ... be ii.d. sequence for which E((X;—
W < oo and let S, be the sample standard deviation calculated
from X, ..., X},. Then we have

S, 5 o (7.19)

Proof: Let Y; = (X; — )%, so that Y = 1 > | ¥;. Note that E(Y;) =
0% E(Y;) = 07 = 02 and, from (3.10), V(Y;) = E ((X; — w*) — o*
which shows that V(Y;) < oo so that the law of large numbers may
be applied. By the law of large numbers we have that ¥ converges to
o2. Because n/(n — 1) — 1, we also have that ﬁf/ converges to o
in probability. But S, = 2. O
Lemma 2 (Slutsky’s Theorem) If U, converges to ¢ in probability
and V,, converges to Y in distribution, then U,V,, converges to cY in

distribution.

Proof: The proof of this result, while straightforward, involves quite
a bit of detailed manipulation. We omit it. (See Bickel and Doksum
(2001, Theorem A.14.9).) O
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Proof of Theorem: By the CLT Z, = /n(X — p)/o converges in
distribution to N (0, 1). Applying Lemma 1 we have that S, converges
to o in probability or, equivalently, o /S, converges to 1 in probability.
Writing U, = ¢/S,, and V,, = Z,, and noting that Y, defined in the
statement of the theorem satisfies Y,, = U,V,, we may apply Lemma
2 to obtain the desired convergence in distribution. (I

Example 3.4 (continued from p. 138) On p. 138 we considered spike counts from
a motor cortical neuron across 60 trials, each spike count being recorded during a
600 millisecond interval. The mean spike count across the 60 trials was 13.63 spikes.
Converting the counts to firing rates (by dividing by .6s (seconds)), we get a mean
of 22.72 spikes per second and a standard deviation of 7.17 spikes per second. This
gives a standard error of

SE = = .93.

~
AN|| -
Sl =

We might then report the firing rate of this neuron, under the particular experimental
condition, to be 22.72 (£.93) spikes per second. An approximate 95 % confidence
interval for the firing rate is then (20.8, 24.6) spikes per second. (I

The result is tremendously important in practice. However, it leaves open the
question of how large the sample must be in order for the approximation to be good,
i.e., for the probability of coverage (the probability the interval will cover u) to
be nearly .95. There is no universal answer to this question. Because we have the
exact result in (7.14), this approximation tends to be good for moderate-size samples
when the data are nearly normal. It may not be very good in moderate-size samples
with strongly non-normal data. This is why it is important to check normality. The
small-sample case is more problematic. We return to it in Section7.3.10.

7.3.5 Standard errors lead immediately to confidence intervals.

We now return to the general form for an approximate 95 % CI given by (7.8) and
derive it. First we consider the special case of the binomial probability p. Recall
that if Xy, ..., X, are Bernoulli trials with probability p, and if ¥ = Z?: 1 Xi, then
Y ~ B(n, p). We have Y /n = X, E(X;) = p and V(X;) = p(1 — p) so the CLT gives

VX =p) o
2 N, 1 7.20
s N, (7.20)

By the —95 % rule (p. 117) this implies

«/_( -p _

P
(2 \/p(l - )
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p(l=p)
n

PX -2 [P =p) <p<X+2. /M)%.%.
n n

Here p is unknown. Using X as an estimator of p we replace p by X and get

P()_(—2~,/M§p§)_(+2-,/w)%.95 (7.21)
n n

which is (7.8) for the binomial case, where the standard error is given by (7.5). The
replacement of p with p in the standard error formula is analogous to the replacement
of o with s in Section 7.3.4. The binomial case is sufficiently important that we state
it formally, rewriting (7.21) in terms of p, where p = X so that the standard error is

SE(p) = /ﬁ(ln—f’) )

and, multiplying through the inequalities by , we have

Result If Y ~ B(n, p) then p may be estimated by p = Y /n with standard error
SE(p) =/ ’@. For large n, an approximate 95 % CI is given by

pE2-SER),
meaning that for n sufficiently large we have

Pp—2-SE(p) <p<p+2-SE(p))~ .95. (7.22)

Details: To justify the replacement of p with p we first note that the
LLN gives us

x5 p.
Then, by Slutsky’s Theorem (p. 163), X (1 — X) converges to p(1 — p)

in probability and, from (7.20), we have

VX D) D v

VX1 =X)

which gives (7.21).
|

To generalize this argument we consider the problem of estimating a parameter
vector 6 in some statistical model using an estimator 7,, = T(Xy, ..., X,). We
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have written the subscript n on T to indicate that we are examining its behavior
as n — oo. Two things drove the derivation of (7.22) above. First, the CLT was
invoked to produce the approximate normality of X according to (7.20) and, second,
in the standard deviation ,/ ’%, p was replaced by p (which was justified by the
convergence of X to p in probability). If we assume these two phenomena apply, then
we obtain (7.8) according to the following theorem.

Theorem If 7}, is an asymptotically normal estimator of # satisfying

T,—0
"7 BN, 1
oT,
and &7, satisfies
9 F
O.Tll
then we have
T,—0
"~ B N, .
UTn
Proof: This follows by Slutsky’s theorem (p. 163), as in the binomial case. (I

We now re-state the theorem as a “result”, by putting it in a form that is less precise
mathematically but more useful in practice.

Result If 7}, is an asymptotically normal estimator of  satisfying

T,—6

oT,

B N, 1) (7.23)

and &7, provides the standard error of 7}, in the sense that

~

oT,

n

£

UT,,
then
approx. 95 % Cl = (T, — 267, Tn + 267,)

which may also be written, equivalently, in the form (7.8), i.e.,

approx. 95% CI = () — 2SE(6), § + 2SE()).
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The method given by (7.8) is widely applicable because (i) lots of estimators are
approximately normally distributed, as in the first assumption of the theorem, and
(ii) there are good ways to get standard errors, as in the second assumption of the
theorem. The useful “result” is imprecise because of the approximation. The precise
statement is in the theorem. This degree of imprecision, and the unclear relevance
of arguments that treat the sample size n as sufficiently large, or essentially infinite,
are core components of the bond between theory and practice in data analysis.

A Detail: An additional consequence of (7.23) returns us to the char-
acterization, on p. 158 of the standard error. After saying that the
standard error represents the likely magnitude of error T — 6 we then
discussed standard error as estimating the standard deviation of T,
which is not the same thing. It is in principle possible for the estimator
T to be systematically wrong (being close to, say, 6 + 10 instead of
#) and yet have a small variance; in this case the standard error would
not represent the likely magnitude of error. When (7.23) holds all is
well: it says that T — 6 is approximately normally distributed with
mean 0 and approximate standard deviation o7, so that o, is indeed
the likely magnitude of error. This notion of standard error is justified
because (7.23) holds in a variety of commonly-found cases.

(]

An important kind of application of (7.8) arises when we have two parameters ¢
and ¢; and we are interested in the magnitude of their difference 6 = ¢ — ¢,. If we
have two independent estimators 77 and 7> (we could write T ,, and 7> ,, but are
suppressing the dependence on the sample sizes n; and ny) with standard errors SE
and SE, then

V(T)) = SE}
for j = 1, 2 and, by independence (see Eq.(4.4)),

V(T — T») = SE? + SE3,

SE(Ty — T») = /SE} + SE3. (7.24)

This expression provides the standard error needed to produce a confidence interval
for the difference 6 = ¢1 — ¢», according to (7.8).

and we get

Example 7.2 Test-enhanced learning Tests are used to assess whether students
have learned subject-matter material. A line of research has emphasized the additional
value of testing as a way to enhance learning (Karpicke and Roediger 2008). The
idea is that when students are tested, they recall information and thereby reinforce
memory of it. In one study, Roediger and Karpicke (2006) had subjects read a short
passage and then get tested on it after a delay period during which they would forget
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Fig.7.3 Histograms of test-enhanced learning data. Data are assessment scores (number of recalled
idea units, out of a maximum of 30) for 30 subjects under the SSSS condition (fop) and the SSST
condition (bottom). Data courtesy of J.D. Karpicke.

some of the material. Let us call this test the assessment test. After reading but
before the assessment test there was an experimental manipulation: some subjects
were asked to restudy the text, while other subjects were instead given a learning test,
identical to the assessment test. These tests simply asked the subjects to write down
everything they could remember about the passages. The tests were scored according
to the number of “idea units” correctly recalled. A key part of the study focused on
retention of the material following a delay period of 1 week, asking whether the
learning-test group retained the material better than in the restudying group.

After finding strong evidence of a benefit from testing, the authors did a second
experiment, using four study or testing sessions. In one condition, labelled SSSS,
there were four study sessions, and in another, labelled SSST, there were three study
sessions followed by a testing session. The assessment administered following a
delay of 1 week had a maximal score of 30 idea units. Data from 60 subjects, 30 in
each of the SSSS and SSST groups are displayed in Fig.7.3.

For the data displayed in Fig.7.3 the means were 11.9 and 16.7 idea units, with
medians 12 and 16 idea units, and lower and upper quartiles (8.25, 15) and (11.25,
21) idea units. It appears that the SSST scores tend to be higher than the SSSS scores.
To formalize the comparison, we consider the population mean scores under these
two conditions. If we let X1; be the score of the ith subject in the SSSS condition and
X»i be the score of the ith subject in the SSST condition and if i1 and p; are the mean
scores within these two conditions, we may estimate the difference 0 = p; — ps.
Applying (7.8) with (7.24) we first used (7.17) to obtain SE and SE», and then (7.24)
gave

SEXX; —X2) = 1.5
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idea units. We then found the approximate 95 % confidence interval to be
11.9 —16.7 £ 2(1.5) = —4.8 £ 3.0

which produced the interval (1.8, 7.8) for the estimated mean number of additional
idea units recalled in the SSST condition, compared with the SSSS condition. [

7.3.6 Estimates and standard errors should be reported
to two digits in the standard error.

We recommend rounding standard errors to two leading (nonzero) digits, and then
rounding the estimate to match the standard error. For example, if we found an
estimate to be 5.582 and the standard error to be .207 we would report the result as
5.58 £ .21. Our reasoning is as follows. On the one hand, it is generally good to
avoid too many digits both because numbers with many digits become hard to read,
and also because extra digits may imply more accuracy than is present in the results.
In this illustration, because the standard error is .21, the second digit in the estimate
is already very uncertain: the 95% Cl is (5.2, 6.0) so we really don’t know much
about that second digit. We could report only a single digit in the standard error, but
we prefer to report two because a standard error of .249 is quite a bit larger than a
standard error of .151, yet to single-digit accuracy both would be rounded to .2. No
rule is perfect, but it seems to us that reporting standard errors to two digits, but not
more, is a good idea. Thus, in Example 1.4 on p. 159 we reported the estimate p of
the propensity p to be .824 £.092, and in Example 3.4 on p. 164 we reported the
firing rate of the M1 neuron to be 22.72 £ .93 spikes per second.

7.3.7 Appropriate sample sizes may be determined
Jrom desired size of standard error.

In Example 1.4, based on the confidence interval reported on p. 13, the results seemed
conclusive but, in some situations, we would like even stronger evidence. A natural
question is then, How much data would we need to achieve a decisive result? By
assuming preliminary data give us a good idea of what to expect, we can answer
this question. In the case of Example 1.4, we found p = .824 with SE = .092. If
we assume p is, in fact, somewhere around p, the way we would obtain stronger
evidence is by decreasing the standard error. In general terms we proceed in two
steps. First, we determine how small we want the standard error to be. Writing our
current standard error as SE| and our desired standard error as SE;, we then write an
expression that tells us how big a sample size we would need in order to reduce SE;
to SE>.
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The key extra assumption is that the standard error tends to decrease as /n. This
holds for many estimators, including MLEs (which follows from the discussion in
Section 8.4.3). Let us suppose that SE7 is based on a sample of size n; and we wish to
determine the sample size n; that would give us SE>. Because we want the standard
error SE; to decrease by a factor SE; /SE» (e.g., if we want SE> to be half the size of
SE| we want to decrease SE| by a factor of 2), we write

SE,| _m
SE»  \Vm
and solve for np, which gives
SE| 2
= —) . 7.25
ny = n ( SEZ) (7.25)

If, for instance, we wanted to decrease the standard error by a factor of 2 we would
have to multiply our current sample size by a factor of 4. This is just a restatement
of the /n decrease in the standard error, with (7.25) providing the explicit formula
we would use to compute n, in practice.

Using confidence intervals, the simple rule3 in Eq.(7.25) is about as far as we
can go. An investigator may wonder about step one, the choice of the “desired” SE,.
The selection of SE; must be determined by careful thinking about the scientific
issues involved in the particular case at hand. The desired size of the standard error
in Example 3.4, p. 164, for instance, depends on the way the information about spike
counts will be used as part of the overall project. In Example 3.4 a relatively large
number of trials were collected because the experiment was part of a comparative
study in which relatively small differences across conditions appeared possible—yet
still would have been of interest. According to the standard error on p. 164, the firing
rate was determined within about 41 spike per second. If 15 trials had been used
instead of 60, according to the /n law and (7.25) we would expect an accuracy of
about £2 spikes per second, which may or may not have seemed adequate.

7.3.8 Confidence assigns probability indirectly,
making its interpretation subtle.

Here are two interpretations of the confidence interval found for the propensity p of
P.S. to choose the non-burning house:

3 More complicated formulas exist; however, the uncertainties involved in replicating results when
collecting more data are often much larger than any extra precision one might gain from a more
detailed calculation.
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Interpretation A: If p were the true value, then the probability that the
interval given by (7.22) would contain p is approximately 95 %. Based
on the data from P.S., the approximate 95 % Cl is (.64, 1.0).

Interpretation B: Based on the data from P.S., the probability that (.64,
1.0) contains p is approximately 95 %.

It may seem that interpretation B is an immediate consequence of interpreta-
tion A. After all, once we apply interpretation A to all values of p, then, regardless
of the data we observe, the CI will cover p with approximately 95 % probability;
we need only apply this to the data we actually did observe to get interpretation B.
Unfortunately, to the shock and dismay of many students of statistical inference, this
simple logic is fallacious. Interpretation B is a famously incorrect interpretation of a
confidence interval. The correct interpretation of confidence, in interpretation A, can
not be translated into interpretation B because interpretation A involves the random
variables L and U that specify the lower and upper endpoints of the CI; probability
concerns random variables, not constants; and in interpretation B, .64 and 1.0 are
constants, they are not random variables. Once the data have been observed, the
probability formalism at the foundation of (7.22) no longer speaks. So it is incorrect
to think that the confidence interval (.64, 1.0) tells us the probability that p is in the
range (.64, 1.0) is approximately 95 %. The math involved in deriving confidence
intervals is clear, neat and clean. If we want to provide a linguistic interpretation of
the confidence interval, however, we must revert to the somewhat clumsy and indirect
interpretation A. On p. 175 we give a more careful re-statement of interpretations A
and B.

To highlight the meaning of CIs let us consider the blindsight example further.

Example 1.4 (continued, see p. 13) The first three columns of the table below gives
possible CIs using (7.22) when X ~ B(17, p). For example, when X = 11 we find
L = .415 and U = .879 so that the CI becomes (.42, .88).

x L U Cover
7 17 .65 N
8 23 71 N
9 29 .77 N
10 35 .83 Y
11 42 88 Y
12 49 93 Y
13 .56 .97 Y
14 .64 1.01 Y
15 73 1.04 Y
16 .83 1.06 N
17 1 1 N

Now suppose the true value of p were .8. We would find that the CI would contain
or “cover” p for some of the values of x but not others, as indicated in the fourth
column of the table (“Y” for yes, the interval (L, U) covers .8, “N” for no it does
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not). The table shows that (L, U) covers .8 when 10 < x < 15. To find the level
of confidence associated with (L, U) we may compute P(10 < X < 15) when
X ~ B(17,.8). We find P(10 < X < 15) = .871, which says that the approximate
95 % CI found from (7.22) has probability .87 of containing the true value .8. The
value .87 is a little smaller than the probability of .95 the interval would have if it were
an exact, as opposed to an approximate CI. We discuss this further on p. 175. Here,
the point is that the probability attached to the CI refers to the theoretical calculation
based on drawing an observation X from a B(17, p) distribution, as in interpretation
A, rather than referring to the probability that p lies in the specific CI that was found
from the data x = 14, as in interpretation B. O

There is another way to look at confidence intervals. Suppose we draw N random
samples, independently, and compute ClIs (L, U) for each. Let ¥; = 1 if (L, U)
contains p for the ith random sample and ¥; = 0 if not, so that P(L < p < U) =
P(Y; = 1). Then Y is the fraction of random samples for which (L, U) contains p.
By the LLN,

v & pyi=1)
that is,
- P
v & PL<p<u.

We may therefore consider the confidence level P(L < p < U) to be the long-run
limit of the fraction of confidence intervals that contain p.

Interpretation C: If we were to obtain Cls using (7.22) repeatedly,
indefinitely many times, then, in the long run, approximately 95 % of
those CIs would contain p. Based on the data from P.S., the CI is (.64,
1.0).

More generally, the level of confidence is usually considered to be the long-run
frequency with which the CI covers the true value. For this reason, level of confidence
is often called a frequentist property of a CL.

The big achievement of confidence intervals is the use of probability as a descrip-
tion of variation (the distribution X ~ B(n, p)) to suggest values of a parameter that
are plausible in light of the data. However, this achievement comes at a cost: the
formal statement is very weak, as it only calibrates the variability of interval (inter-
pretations A and C). We might prefer interpretation B, which is analogous to saying
“T'am 90 % sure the capital of Louisiana is Baton Rouge”, but, strictly speaking, con-
fidence intervals do not allow such a statement. At best we might regard a confidence
interval as a heuristic suggestion of uncertain knowledge. An alternative approach,
based on Bayes’ Theorem, does allow the more direct interpretation B. As we will
see in Section 7.3.9, it has its own cost.
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7.3.9 Bayes’ theorem may be used to assess uncertainty.

Recall Bayes’ Theorem for random variables and vectors, given in Section4.3.3.
From Eq. (4.36), for continuous random variables or vectors U and V we have

Svivlw)fu(u)

: 7.26
[ fvio Olw)fy (wydu (7.26)

Jo (uly) =
Let us apply this to the problem of estimating the binomial parameter p. In this section

we replace p by 6, so we suppose X ~ B(n, 0). To apply (7.26) we take U = 6 and

V = X to get
Tx10(x|0)fp(0)
[ fx10(x10)fp(0)db

Joc(01x) = (7.27)

(We use 6 for both capital and lower case theta.) Ordinarily we would take 6 as a
known constant. Here, however, we acknowledge that 6 is uncertain by considering it
to be a random variable and assigning it a probability distribution. We take f3 () to be
the pdf representing our knowledge before seeing the data. It is the pdf corresponding
to the prior distribution. When we treat 6 as a known constant it is implicitly part of
the binomial pdf, so we write the binomial pdf as fx (x). Here, however, the binomial
pdf must be determined conditionally on a value of 0, so it is written fxg(x|0). The
pdf that summarizes our knowledge after observing the data X = x is fyx (0|x). This
is the pdf corresponding to the posterior distribution. It is common to write the prior
pdf as w(0) = fp(0) (this special notation makes it clear where the prior appears
in various equations) and, because the likelihood function is L() o fx¢(x|0), the
posterior pdf may be written

L(O)7(60)

f0|x(9|x) = W

(7.28)

In order to do computations we must assign a specific probability distribution as
the prior distribution. Assuming we know very little about the value of 6 a priori, a
natural choice is to use the uniform distribution, 6 ~ U (0, 1), i.e., fp(#) = 1. With
this prior pdf we obtain

()6 (1 — )" -1

FoR) = T ()51 — oy - 1d0

which reduces to
gx(l _ g)n—x

TOW = Tora =gy —~ap’

(7.29)

This formula is a special case of a beta distribution introduced briefly in Chapter 5:
from Eq. (5.15), the Beta(a, 3) pdf is
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I'(a+p3)

a—1.1 _  \O—1
T a-w (7.30)

flw) =

Therefore, the posterior distribution of 6 is Beta(x + 1, n — x + 1) which has mean
and standard deviation

_x+1
Ho|x = Nt 2
J@+DM—x+D
Ogix = 5 .
(n+2)*(n+3)

Example 1.4 (continued from p. 171) Let us apply this to the data from patient
P.S. From (7.29) and (7.30) we have just found the posterior distribution to be
Beta(x + 1,n — x 4+ 1). Here n = 17 and x = 14 so the posterior distribution
is Beta(15,4) and the posterior mean and standard deviation are pg, = .79 and
oglx = -091. Thus, roughly speaking, these data lead us to conclude that the fre-
quency with which P.S. will prefer the non-burning house is approximately .79 and
our uncertainty may be summarized by saying that the average amount by which
this guess misses the truth is approximately .091. These numbers are similar to those
obtained in earlier analyses of the data from patient P.S., but here they have a differ-
ent interpretation. Before giving this interpretation let us press on. We may obtain
an interval having 95 % posterior probability from the .025 and .975 quantiles (the
2.5 and 97.5 percentiles) of the Bera(15, 4) distribution, which gives (.59, .94). That
is, P(0 < .59]y) = P(# > .94|x) = .025 so that P(.59 < 6 < .94|x) = .95. The
posterior interval (.59, .94) is sometimes called a credible interval to distinguish it
from a confidence interval. Credible intervals are based on posterior distributions,
whereas confidence intervals may be obtained from other arguments. The interval
(.59, .94) is a succinct summary of what we know about 6 based on the data. It is
close to, but a little different than, the approximate 95 % CI of (.64, 1.0), which was
obtained from (7.22). O

It is now legitimate to say what the posterior interval means, using words that are
in essence just like interpretation B of Section7.3.8.

Bayesian interpretation: Based on the data from P.S., together with the uniform
prior, the probability that (.59, .94) contains € is 95 %.

The use of Bayes’ Theorem has thus bought us a highly intuitive interpretation
of the credible interval. Like confidence intervals, credible intervals convert proba-
bility as a description of variation (the distribution X ~ B(n, p)) into a statement of
knowledge. In this case, unlike the indirect situation with confidence intervals, the
Bayesian statement is very much analogous to saying “I am 90 % sure the capital of
Louisiana is Baton Rouge.”

The straightforward Bayesian interpretation is very appealing. We issue two notes
of caution. First, as we said at the end of Section7.3.8, Bayes’ Theorem requires the
additional assumption of a particular form for the prior distribution. For the binomial
problem it makes a good deal of sense to use the U (0, 1) distribution for 8 a priori.
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In many settings, however, it is not clear what prior distribution should be used.
Secondly, while confidence is undeniably less direct than posterior probability, we
must keep in mind the fundamental distinction between the theoretical world of
random variables and formal inferences, and the real world of data. There remains a
degree of indirectness in the Bayesian statements as well, because they always say
it is as if the data were to arise as random variables following the probability model
(e.g., the binomial distribution). There is an inescapable divide between theoretical
inferences and real-world conclusions; they are not quite the same thing, no matter
what approach we take. Thus, the following elaborations to interpretations A and B
on p. 171 would be more complete:

Interpretation A: If we were to draw a random sample of n = 17
Bernoulli trials with parameter p, then the probability that the interval
given by (7.22) would contain p is approximately 95 %. This is a theo-
retical statement. Assuming the theoretical and real worlds are aligned
well, “the approximate 95 % Cl is (.64, 1.0)” is a useful statement of
knowledge.

Interpretation B: If we were to draw a random sample of n = 17
Bernoulli trials with parameter p, and if we were to obtain p = 14/17,
then the probability that (.64, 1.0) contained p would be approximately
95 %. This is a theoretical statement. Assuming the theoretical and real
worlds are aligned well, “the probability that (.64, 1.0) contains p is
approximately 95 %" is a useful statement of knowledge.

Statistical methods that apply Bayes’ theorem are usually called Bayesian and
those that do not are usually called “frequentist”, because of the frequency interpre-
tation given on p. 172. Both Bayesian and frequentist methods have been applied in a
wide range of data analysis problems. The form of the problem and the predilections
of the practitioner dictate which approach is taken and, sometimes, both approaches
appear within a single scientific article. It is widely recognized that Bayesian proce-
dures should have good frequentist properties; for example, Bayesian 95 % credible
intervals should have close to 95 % frequentist coverage probability, as they often
do. We return to Example 1.4 to illustrate this.

Example 1.4 (continued from p. 171) We calculate the frequentist coverage prob-
ability of the posterior credible intervals obtained by the method on p. 174. To do
this we apply the same reasoning used previously on p. 171, where we computed the
coverage probability of the approximate CI based on (7.22). Note first that if we were
to observe a value x from X ~ B(17, p) we would obtain a Beta(x + 1, 17 —x + 1)
posterior distribution (according to (7.29) and (7.30)). The second and third columns
of the table below give the resulting possible credible intervals using .025 and .975
quantiles of the Beta(x + 1, 17 — x + 1) distribution, labeled g ¢25 and ¢ 975.

We again suppose p = .8. From this table we find that the Bayesian credible
intervals would cover the true value of p = .8 when 11 < x < 16 (again indicated
by “Y” for “yes” in the last column). To find the level of confidence associated with
the credible intervals we compute P(11 < X < 16) when X ~ B(17,.8). We find
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X qns q975 Cover
7 22 .64 N
8 26 .69 N
9 31 .74 N
10 36 .78 N
11 41 .83 Y
12 47 87 Y
13 520 .90 Y
14 59 94 Y
15 .65 .96 Y
16 73 .99 Y
17 81 1 N

P(11 < X < 16) = .94, which says that these credible intervals have probability .94
of containing the true value .8. This is very nearly equal to the desired value of .95, and
is much closer to .95 than the value of .87 obtained on p. 171 for the approximate CI.
The discrepancy between the putative value .95 and the correct coverage probability
.87 for the approximate CI is due to the small sample size (n = 17). As the sample
size gets large, the approximate 95 % CI found from (7.22) will have very nearly
probability .95 of covering the true value of p. The Bayesian method performs better
in this small-sample setting. When sample sizes are relatively small it is often possible
to study coverage probabilities numerically in order to determine whether they are
likely to be performing according to specifications, at least approximately. (]

There are many important theoretical results concerning posterior distributions. In
particular, the approximate CIs given by (7.22) have a Bayesian justification for large
samples (see Section 8.3.3), making valid interpretation B of Section 7.3.8, which is
re-phrased above. We return to Bayesian methods in Chapter 16.

7.3.10 For small samples it is customary to use the t distribution
instead of the normal.

When the sample size is small, the approximation (7.18) may not be accurate. An
alternative is to derive an “exact” confidence interval analogous to (7.14) that corrects
for the substitution of s for 0. This leads to an adjustment of the multiplier put in front
of the standard error. The adjustment to the small-sample CI uses the ¢ distribution.
Recall from Chapter5 that if U ~ N (0, 1) and V ~ x? independently then

W =

s

has a ¢ distribution on v degrees of freedom. In the context of a single batch of
numbers, v =n — 1.
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Note first that if Z ~ N(0, 1) then P(Z < 2) = .975. In other words, 2 is
the .975 quantile of the N (0, 1) distribution. We now replace Z with W, which has
a t distribution on v degrees of freedom, and we write the .975 quantile of the ¢
distribution on v degrees of freedom as 7,975 ,,, i.e., P(W < t975,) = .975. We then
replace the value 2 in (7.18) with the somewhat larger value 7975, so that ¢ 975,
multiplies the standard error. The distributional result that makes this work is the
following.

Theorem If X1, ..., X, is a sample from a N (y, 02) distribution, then X and S? are
independent random variables with
X —
M ~N(0, 1)
o

and

withvy =n — 1.

Proof: We omit the proof of this theorem (which follows, with some effort, by
manipulation of the joint pdf). ([

Theorem If X, ..., X, is a sample from a N (u, 02) distribution, then a 95 %
Clis given by x £1.975,, - SE(x), where v = n — 1 and SE(X) is given by (7.17),
meaning

- S - N
PX —torsn—1-—F==<p<X+19750-1—=) =.95. (7.31)
Jn n
Proof: Let us write
- X—p
ﬁ(X _ M) _ M
N [s2
o2
The previous theorem then gives the required ¢ distribution of m (]

Formula (7.31) is the standard method used by most statistical software to provide
a confidence interval for an unknown mean p. When the sample size is large, say,
n > 12,thentg7s, ~ 2 and (7.31) agrees with (7.16). Customary terminology refers
to the Cl in (7.31) as based on ¢ (because the ¢ distribution is used) while the CI in
(7.16) is based on z (because the standard normal distribution is used). One would
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not need to bother with the distinction between these two formulas unless n < 12,
except that as a matter of convention (found in many journals, for example), there
tends to be a preference for procedures based on a ¢, such as (7.31). In other words,
it is worth being aware that many people say they are reporting ¢-based intervals as
in (7.31) even when n is large and they might just as well say they are reporting
(7.16)—there is in that case no practical distinction between the two.

Example 3.4 (continued from p. 164) Let us now consider the first 12 trials of
counts from the motor cortical neuron, examined on p. 164. We get a mean firing
rate of 24.31 spikes per second, and a standard deviation of 5.20 spikes per second,
giving a standard error of

5.20
SE=——==1.50

V12

spikes per second. The 7,-based Cl uses v = 12 — 1 = 11 and we find #.975 11 =
2.20. For the 95 % CI we take L = 24.31 — 2.20(1.5) = 21.0 and U = 24.31 +
2.20(1.5) = 27.6, giving us the CI (21.0, 27.6) spikes per second. (]

It is also worth emphasizing a fundamental difficulty with this approach. The
cases in which (7.31) differs from (7.16) are those in which #n is small. But in such
situations it is quite hard to tell whether the sample is really close to being normal.
Application of (7.31) based on small samples should be considered only rough guides
to evaluation of uncertainty.



Chapter 8
Estimation in Theory and Practice

In Section7.2.1 we showed how the method of moments may be used to estimate
the parameters of a Gamma(c, 3) distribution, and we immediately stated that the
method of maximum likelihood provides a better solution. How do we know this? In
general, how should alternative methods of estimation be compared? In this chapter
we lay out a series of principles that serve as guides to practice. The main ideas came
from Ronald Fisher (1922); they were modified and made more precise by Jerzy
Neyman (1937), and have been refined and incorporated into textbooks on statistical
theory ever since, beginning notably with Cramér (1946).

Suppose we have a family of probability distributions that depends on a parame-
ter 6, which must be estimated, and we have an estimator 7. For now let us assume
that 6 is a scalar. If we were to say that 7 is a good estimator of #, what might we
mean? In particular, what might we mean when we say that maximum likelihood
produces a good estimator? Clearly, for T to be a good estimator it must be “close”
to 0, but because 7 is a random variable the notion of closeness must be stated prob-
abilistically. For example, if we consider the mean X of arandom sample X1, ..., X,
from a N (6, 1) distribution, we might want to say that the mean X is close to § when
|X—6| < .1.Because X ~ N(#, 1/n), evenif nis large itis possible that | X — 6| > .1.
We can not say that |X — 6| < .1. All we can say is the probability that |X — 6| < .1
is large, meaning close to one or, equivalently, the probability that [X — 6| > .1 is
small, meaning close to zero.

For a general estimator 7" we can use the same approach and say that T is a
good estimator of § when it is highly probable that T is close to . Specifically, we
introduce a tolerance €, understanding that € will be some small positive number, and
then we require that P(|X — 6| < ) is close to one or, equivalently, P(|X — 6| > ¢)
is close to zero. It is, in general, rather difficult to provide guarantees on the size of
P(|X — 6| > ¢) for fixed sample sizes. In most realistically complicated problems
computer simulation studies must be used (as in Section 8.1.2) and they are based on
specific cases so they do not provide general assurances. On the other hand, general
results may be obtained asymptotically, letting the sample size grow indefinitely
large. To take a concrete case, because the mean X of a random sample from a
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N(0, 1) distribution follows a N (6, 1/n) distribution, if we take n=10,000, from the
normal cdf we find P(|X — 6] > .1) = 1.5 - 10723, Indeed, no matter how small we
take € we have P(|X — 6| > €) — 0 as n — oo. This is simply a restatement of the
law of large numbers (p. 143)

S P
X — 0.
We discuss asymptotic results in Sections 8.2.1-8.3.1.
When we examine what happens as n — oo it is helpful to write the generic
estimator in the form 7,, = T(X1, ..., X;) to emphasize its dependence on n as we

did in Section 7.3.5. One of the most important of the large-sample findings considers
estimators that are asymptotically normal, as in Eq. (7.23),

Tn_a

UT,,

Z N, 1. (8.1)

For such estimators, in large samples, the probabilistic closeness of T}, to 6 depends
entirely on o7, and we seek estimators that make o7, as small as possible. In Sec-
tions 8.2.2-8.3.1 we go over the remarkable discovery by Fisher that o7, can be
minimized, and the minimum is obtained by the MLE. There has been a lot of theo-
retical work on the general subject of large-sample optimality, all of which leads to
the conclusion that in well-behaved parametric problems, the method of maximum
likelihood is essentially unbeatable. This, coupled with its very wide applicability
(which began to be appreciated with the development of generalized linear models,
see Section 14.1.6), has made maximum likelihood an essential tool in data analysis.

Fisher’s theoretical insight seems to have been based on geometrical intuitions,
which were elaborated in a mathematically rigorous framework by Bradley Efron in
the 1970s and early 1980s. For details and references on the asymptotic arguments
and their geometrical origins see Kass and Vos (1997). For a rigorous treatment in a
more general context see van der Vaart (1998).

While asymptotic results are important, they have an inherent weakness: they
apply when the sample size is large, but they do not say what “large” means in
practice. In some cases n = 20 is more than adequate while in others n =20,000 is
not large enough. One approach to coping with this problem is to evaluate a measure
of likely deviation for specific cases, with specified sample sizes. The most common
assessment of deviation of 7" from 6 is the mean squared error (MSE) defined by

MSE(T) = E(T — 0)?). (8.2)

In Chapter4, p. 80, and 89, we considered the mean squared error in predicting
one random variable from another. We discuss mean squared error in estimation
in Section8.1. In Section 8.4 we describe some of the practical considerations in
applying ML estimation.

The most important points about ML estimation are the following:
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1. ML estimation is applicable when the statistical model depends on an unknown
parameter vector.! See Sections7.2.2 and 8.4.1.
2. Together with ML estimates it is possible to get large-sample confidence intervals
(Sections 8.2.2, 8.3.2, and 8.4.3).
. In large samples, ML estimation is optimal (Section8.3.1).
4. Inlarge samples ML estimation agrees with Bayesian estimation (Section 8.3.3).

W

8.1 Mean Squared Error

The mean squared error criterion defined in (8.2) uses the squared magnitude of the
deviation T' — @ rather than its absolute value |7 — | because it is easier to work with
mathematically, and because it has a very nice decomposition given in Section 8.1.1.
Intuitively, because MSE(T) is an average of the values (T — )2, when MSE(T) is
small, large values of (T — #)? (and thus also large values of |7 — 6|) must be highly
improbable. In fact, even more is true: we have

E(T —6)%)

P(T — 0| > ¢) < 3

(8.3)

€

Thus, we can make sure it is highly probable for 7 to be close to § by instead making
sure that MSE(T) is small.

Details: We can use Markov’s inequality, which appeared as a lemma
in Section 6.2.1, to guarantee that P(|7 — 0| > ¢) will be small if
MSE(T) is small. First, we have

P(T — 6| > €) = P(T — 0)* > €.

Now, assuming E((T — 0)%) < oo, Markov’s inequality gives (8.3).
O

In some cases MSE(T) may be evaluated by analytical calculation, but in most
practical situations computer simulation studies are used. We give two examples of
such studies in Section 8.1.2.

8.1.1 Mean squared error is bias squared plus variance.

Two ways an estimator can perform poorly need to be distinguished. The firstinvolves
the systematic tendency for the estimator 7" to miss its target value 6. An estimator’s

! The parameter must be finite-dimensional; in nonparametric inference the parameter is, instead,
infinite-dimensional. Also, there are regularity conditions that make ML estimation work properly.
See Bickel and Doksum (2001).
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high bias ) low b_ias
low variance high variance

high bias low bias
high variance low variance

Fig. 8.1 Drawing of shots aimed at a target to illustrate the way estimates can miss their “target.”
They may be systematically biased, or they may have high variability, or both. The best situation,
of course, is when there is little systematic bias and little variability.

bias is Bias(T) = E(T) — 6. When the bias is large, T will not be close to 6 on
average. The second is the variance V(T). If V(T) is large then T will rarely be
close to 6. Figure 8.1 illustrates, by analogy with shooting at a bullseye target, the
situations in which only the bias is large, only the variance is large, both are large
(the worst case) and, finally, both are small (the best case). Part of the appeal of mean
squared error is that it combines bias and variance in a beautifully simple way.

Theorem Suppose E((T — #)%) < oco. Then
E((T — 6)%) = (E(T — 0))% + V(T).

That is,
MSE(T) = Bias(T)? + Variance(T).

Proof: Let us write ur = E(T) and T — 0 = (T — ur) + (ur — 0),
and then square both sides to get

(T = 60)* = (T — u1)* + 2T — pr)(ur — 6) + (ur — 0)°.
Now consider taking the expectation of the cross-product term on the

right-hand side. The quantity 7 — 6 is a constant (it is not a random
variable), while because E(T) = ur, we have E(T — ur) = 0 and,
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therefore, E(2(T — p7)(ur — 6)) = 0. Thus, we have
E((T — 0)*) = E((T — p1)*) + (E(ur — 6))

and, since V(T) = E((T — ,uT)z), we have proven the theorem. [

This decomposition of MSE into squared bias and variance terms is used in various
contexts to “tune” estimators in an attempt to decrease MSE. This typically involves
some increase in one term, either the squared bias term or the variance term, in order
to gain a larger decrease in the other term. Thus, reduction of MSE is often said to
involve a bias variance trade-off. For an example, see p. 434.

Before we present an illustration of a MSE calculation, let us mention a property of
the sample mean and sample variance. Assuming they are computed from a random
sample X1, ..., X,, we have E ()_( ) = px which may be written

EX) — pux = 0.

This says that, as an estimator of the theoretical mean, the sample mean has zero bias.
When an estimator has zero bias it is called unbiased. If an estimator T is unbiased
we have MSE(T) = V(T) so that consideration of its performance may be based on
a study of its variance.

In addition to the sample mean being unbiased as an estimator of the theoretical
mean, it also happens that the sample variance, defined by

n

1 2
— 2 X=X,

i=1

§? =

is unbiased as an estimator of the theoretical variance:
E(S?) = o%. (8.4)

Details: We wish to evaluate
ES*) =E L Zn:(x- -X)? )= L Zn;(x- - X)?
n—1 pn ! n—1 pn ! '

We write X; — X = (X; — px) + (ux — X) and expand the square

n n

D=3 =D (X5 — ) + (ux = X))’

i=1 i=1

= > (Xi — ix)* + D 2(Xi — i) (px — X)
i=1

i=1
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n
v\2
+ > (ux = X)%.
i=1

We now rewrite the three terms in the last expression above. Because
EX; — HX)Z = 0,2(, and the expectation of a sum is the sum of the
expectations, the first term has expectation

E(Z(X,- - MX)Z) = no?. (8.5)
i=1

Next, the second term may be rewritten

D20 — ) (x — X) = 2(ux — X) D (Xi — pix)

i=1 i=1

= —2(X — px) D _(X; — pix)

i=1

= —2n(X — px)*,

where the last equality uses > 7, (X; — px) = n(X — pix), and then,

because E((X — MX)Z) =VX) = 0)2( /n, the expectation of the second
term becomes

n
E(Z 2(X; — pix) (px — 5()) = —20%. (8.6)
i=1
Finally, because again, E((X — ux)?) = 0)2( /n, the expectation of the
third term is
n
E(Z(ux - 5()2)) = 0% (8.7)
i=1

and, combining (8.5), (8.6), and (8.7) we get

E (Z(Xi - X)Z) = (n—1)o%
i=1

which gives (8.4). O

We use the unbiasedness of the sample mean and sample variance in the following
illustration of the way two estimators may be compared theoretically.

Illustration: Poisson Spike Counts On p. 164 we considered 60 spike counts from
a motor cortical neuron and found an approximate 95 % CI for the resulting firing
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rate using the sample mean. The justification for that approximate CI involved the
CLT, and the practical implication was that as long as the sample size is fairly
large, and the distribution not too far from normal, the CI would have approximately
.95 probability of covering the theoretical mean. In this case, the spike counts do,
indeed, appear not too far from normal. Sometimes they are assumed to be Poisson
distributed. This is questionable because careful examination of spike trains almost
always indicates some departure from the Poisson. On the other hand, the departure
is sometimes not large enough to make a practical difference to results. In any case,
for the sake of illustrating the MSE calculation, let us now assume the counts follow
a Poisson distribution with mean \. The sample mean X is a reasonable estimator
of A, but one might dream up alternatives. For example, a property of the Poisson
distribution is that its variance is also equal to \; therefore, the sample variance 52
could also be used to estimate the theoretical variance A. This may seem odd, and
potentially inferior, on intuitive grounds because the whole point is to estimate the
mean firing rate, not the variance of the firing rate. On the other hand, once we take
the Poisson model seriously the theoretical mean and variance become equal and,
from a statistical point of view, it is reasonable to ask whether it is better to estimate
one rather than the other from their sample analogues. Our purpose here is to present
a simple analysis that demonstrates the inferiority of the sample variance compared
with the sample mean as an estimator of the Poisson mean A\. We are going through
this exercise so that we can draw an analogy to it later on.

Now, because, as we mentioned immediately before beginning this illustration, X
and S2 are unbiased for the theoretical mean and variance they are, in this case, both
unbiased as estimators of \. As a consequence, MSE(T) = V(T) forboth T = X and
T = §2. Analytical calculation of the variance of these estimators (which we omit
here) gives

V(X) =
2)2

V(S?) =

where 7 is the number of counts (the number of trials). Therefore, the MSE of S is
always larger than that of X so that S tends to be further from the correct value of
) than X. For example, if we take n = 100 trials and A = 10, we find V()_() =.10
while V(5%) = 2.12. The estimator S has about 21 times the variability as X, so
that estimating \ using S would require about 2,100 trials of data to gain the same
accuracy as using X with 100 trials. Figure 8.2 shows a pair of histograms of X and
$2 values calculated from 1,000 randomly-generated samples of size n = 100 when
the true Poisson mean was A = 10. The distribution represented by the histogram on
the right is much wider. O

This illustration nicely shows how one method of estimation can be very much
better than another, but it is admittedly somewhat artificial; because the distribution
of real spike counts may well depart from Poisson, a careful comparison of X versus
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Fig. 8.2 Histograms displaying distributions of X and S based on 1,000 randomly-generated
samples of size n = 100 from a Poisson distribution with mean parameter ;1 = 10. In these
repeated samples both X and S2 have distributions that are approximately normal. Both distributions
are centered at 10 (both estimators are unbiased) but the values of $2 fluctuate much more than do
the values of X.

$2 should consider their behavior also under alternative assumptions. In this regard,
the sample mean remains a reasonably good estimator of the theoretical mean in large
samples regardless of the probability distribution of the spike counts. The sample
variance, on the other hand, does so only if the theoretical variance is truly equal
to the theoretical mean; otherwise, as the sample size increases it will converge to
the wrong value. This is likely to be an important consideration. However, even if
one were convinced that counts truly followed a Poisson distribution, the analysis
above would be compelling. It would be grossly inefficient to use S? instead of X in
estimating \.

Another thing to notice in Fig. 8.2 is the approximately normal shape of the two
histograms. Asymptotic normality of estimators is very common, and we have already
relied on it in Section7.3.5.

8.1.2 Mean squared error may be evaluated by computer
simulation of pseudo-data.

In the Poisson spike count illustration on p. 184 we were able to compute the MSE
exactly. In more complicated situations this is often impossible. Instead we rely on
either large-sample arguments, such as those in Section 8.2.2, or numerical simula-
tions. The numerical method uses computer-generated pseudo-data, by which we
mean numbers or vectors that are generated from known probability distributions in
order to mimic the behavior of data. Because the distribution is known, there is a
known correct value of 6 to which T may be compared.

Suppose we wish to compute MSE(T) in estimating ¢ under the assumption that
a random sample comes from a particular probability distribution having cdf F(x).
Assuming we know how to generate random samples from F(x) on the computer,
we may use this algorithm:
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Fig. 8.3 Time of maximal firing rate. a displays a raster plot and Peri-Stimulus Time Histogram
(PSTH). As explained in Chapter 1, the PSTH represents the firing rate as a function of time. b
displays the time at which the maximal firing rate occurs, estimated (i) using the PSTH and (ii)
using instead a smooth curve. Adapted from Kass et al. (2003).

1. Take G to be alarge integer (such as 1,000) and forg = 1, ..., G do the following:

(i) Generate a random sample X 1(g ), - ,X,gg ) from F (x).

(ii) Compute 79 = T(Xfl), .., X'9). which is the value of the estimator T
based on the gth random sample.
(i) Let Y, = (T —0)2.

2. Compute

<
Il

Sy, (8:8)

g=1

Ql-

By the LLN, we have that Y converges to the desired MSE = E(T — 9)2) in
probability. Thus, we take Y as our MSE.

This kind of computation is used in the following illustration. It involves the
statistical efficiency of smoothing, a topic we take up in Chapter 15. In presenting
this now we omit details about the method.

Example 1.1 (continued, see p. 3) In Chapter 1 we discussed a study by Olson
et al. (2000), in which neuronal spike trains were recorded from the supplementary
eye field (SEF) under two different experimental conditions. As is usually the case
in stimulus-response studies, the neuronal response—in this case, the firing rate—
varied as a function time. For a particular neuron in one of the conditions, the PSTH
in Fig.8.3 displays the way the firing rate changes across time. The data analytic
challenge in the Olson et al. study was to characterize the distinctions between the
firing rate functions under the two experimental conditions. One of the distinctions,
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evident in some of the plots, was that the maximal firing rate occurred somewhat
later in one condition than in the other. How should this time of maximal firing rate
be computed? One possibility is to use the PSTH, by finding the time bin for which
the PSTH is maximized. Panel b of Fig. 8.3 displays the resulting solution: according
to the PSTH shown there, the maximal firing rate of about 133 spikes/s occurs at a
time marked by the arrow on the left along the time axis. However, this is clearly
a noisy estimate. Slight variations in location of time bin, or width, would change
this, as would consideration of new data from the same neuron. On the other hand, a
second method based on first fitting a smooth curve to the PSTH and then finding its
maximum, yields a different answer: the maximum firing rate of about 75 spikes/s
(seconds) occurs at a time indicated by the arrow on the right along the time axis. This
value is less subject to fluctuations in the data. If we assume that the theoretical firing
rate is, in fact, slowly varying in time, then the smooth curve should provide a better
estimate. Kass et al. (2003) used MSE to evaluate the extent to which smoothing
improves estimation.

Kass et al. (2003) evaluated MSE for the true firing rate function shown in panel
a of Fig.8.4. To do so, they simulated, repeatedly, 16 trials of pseudo-data and then
constructed histograms and also fit smooth curves (there are 16 trials in the SEF data
shown in Fig.8.3a). The PSTH and smooth curve from one sample of 16 trials of
pseudo-data are shown in panel b of Fig. 8.4. The smoothing method used by Kass et
al. (2003) involved regression splines, as discussed in Section 15.2.3. Note that the
smooth curve (“estimated rate”) is close to the true rate from the simulation, but it
misses by a small amount due to the small number of trials we used in the simulation.

To quantify the deviation of both the PSTH and the smooth curve at any one point
in time ¢ the MSE could be used. That is, we would regard the true firing rate at time
t as the value 6 = 6, to be estimated, and we would compute MSE(T) = MSE(T)
when T is based on the PSTH and when T is based on the smooth curve. Here the
subscript ¢ is a reminder that we have chosen a particular time point. If MSE(T) is
evaluated for every time value ¢ the total of all the mean squared errors may be found
by integrating across time. This defines what is called the integrated mean squared
error or mean integrated squared error (MISE),

MISE(T) = / MSE,(T)dt

where the integration is performed over the time interval of interest. The integral
may be evaluated easily simply by calculating the MSE along a grid of time values
separated by some increment At

/ MSE,(T)dt ~ At ZMSE,(T).
t

In order to compute the MSE at each time value ¢ Kass et al. (2003) used computer
simulation: They generated data repeatedly, each time finding both the PSTH and the
smooth curve. They simulated 1,000 data sets, each involving 16 randomly-generated
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Fig. 8.4 a True rate from which 16 trials are simulated; their PSTH is shown in (b), with true
and estimated firing rates overlaid. ¢ shows the true rate and 95 % simulation bands obtained from
smoothed and unsmoothed PSTHs. d shows the same curves as (c¢), as well as 95 % simulation
bands obtained from unsmoothed PSTHs with 16 x 14 trials instead of 16. Adapted from Kass
et al. (2003).

spike trains based on the true firing rate curve shown in Fig.8.4a, and from these
1,000 data sets they computed the MISE. They also computed 95 % bands, within
which fall 95 % of the estimated curves. Figure 8.4c shows the two pairs of bands,
now labeled with the two values of MISE: the spline-based estimate has a MISE
of .34 (in spikes/s squared) while the PSTH has a MISE of 4.68, which is 14 times
larger. This means that when the PSTH is used to estimate firing rate, 14 times as
much data are needed to achieve the same level of accuracy. Similarly, the 95 %
bands for the PSTH are much further from the true firing-rate curve than the bands
for the spline-based estimate. Figure 8.4d includes a pair of 95 % bands obtained
from the PSTH when 224 trials are used rather than 16 (because 224 = 14 x 16).
This is another way of showing that the accuracy in estimating the firing rate using
spline smoothing based on 16 trials is the same as the accuracy using the PSTH based
on 224 trials. Clearly it is very much better to use smoothing when estimating the
instantaneous firing rate. ]

A detail: One issue that arises in numerical simulation is the accuracy
of the computational results, because the value Y in (8.8) is itself an
estimate of the MSE. However, if G is large, the standard error of
Y will be small. Furthermore, because Y is a sample mean, we can
apply the method of Section 7.3.4 and use s/+/G as its standard error,
where s = ﬁ Z?:l (Yy— Y)2. The standard error lets us determine
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whether G is adequately large. For instance, if we wish the MSE to be
computed with accuracy d, we can take G big enough to satisfy

By the result in Section7.3.4, an approximate 95 % confidence inter-
val for MSE would be (8 — 4,6 + J). Thus, we would have 95 %
confidence that the desired accuracy was obtained. (]

8.1.3 In estimating a theoretical mean from observations having
differing variances a weighted mean should be used,
with weights inversely proportional to the variances.

In the illustration on Poisson spike counts, p. 184, we used the MSE criterion to
evaluate alternative estimators, based on an analytical expression. In that case both
estimators were unbiased and the comparison was based on variance. Another illus-
tration of this type arises when data are considered collectively across many similarly
measured objects, such as neurons or subjects, with the observations from the dif-
ferent individuals contributing varying amounts of information; specifically, with
the individual observations having different variances. In combining such discrepant
observations, it is preferable not to use the sample mean, but instead to weight each
observation according to the amount of information it contributes. Here we provide
a theoretical analysis of this problem, and give the basic result.

Suppose we have two independent random variables X; fori = 1, 2, with E(X|) =
EX>y) = pbut V(X)) = O'% and V(Xp) = O'%, with the two variances possibly
being different. After analyzing the two-observation case, we will present analogous
results for n observations. Let us assume that ¢ and o, are known and ask how best
to combine X; and X> linearly in order to estimate p. We write a general weighted
combination as

Yo =wi - X1 +wr-Xo (8.9)

where wy + wp = 1. It turns out that the optimal special case is
Xy =wi - X1 +w-Xp (8.10)

where

(8.11)

fori =1, 2.
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Theorem Suppose X; and X, are independent random variables with E(X;) =
E(X2) = prand V(X)) = 07 and V(X2) = 03, and let ¥, be defined as in (8.9). Then
Y,, is unbiased, so that MSE(Y,,) = V(Y,,), and this quantity is minimized among
possible weighting pairs by taking ¥,, = X,,, i.e.,

V(Xy) < V(Yy)

or, equivalently, _
MSE(X,,) < MSE(Y,,)

with equality holding in both cases only if ¥, = X,, defined by (8.10) and (8.11).

Proof of Theorem: First, we have

E(Yy) =wi-p+wr-p
= (w1 +w2)u

Thus, Y,, is unbiased and MSE(Y,,) = V(Y,,). To derive the variance
result we start with

Viw - X1 +wa-X2) =wh-oF + w303

Now we use wi + wo = 1 and replace wo with 1 — wy to get

2 2 2, 2

Viwr - X1 +w2-Xo) =wi o7+ —w1)” 05
= 0w + 03 — 205w + oWt
= (07 + o)W — 203w; + 03.

We now minimize this quantity by differentiating with respect to wi,
and setting the derivative equal to zero. We get

0=2(c7 + 05w — 203

and therefore

2
93

w| = —————.
a%—i—a%

Dividing the numerator and denominator of this fraction by Jfa% gives

7 il
o A3 _

- 2,2 ~ 1 1

01 +05 = + =

272 oy o5
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which is the desired result. (]

As an illustration, suppose we had 100 independent observations U; ~ N (11, 0%,
i =1,...,100, and grouped them unequally defining, say, X| = % Z}gl U; and
X, = % Z}QOH U;. It would seem strange to use %(Xl + X») in this situation and
the intuitive thing to do would be to use the weighted mean: here the weights are
wi = 10/100 and w, = 90/100 (because o7 = 0%/10 and 03 = 02/90) so we get
X, = U.

One way to interpret this is to say that using X instead of X,, is like throwing
away a fraction of the data. For example, suppose X and X, both represent means of
counts from z trials. If o is half the size of o then, from the formula above, the ratio
of variances is 1.56. This means that to achieve the same accuracy in the estimator,
n would have to be 56 % larger if we used the sample mean instead of the weighted
mean. When o is one-third the size of o, we would have to increase n by a factor
of 2.78 (instead of 50 trials, say, we would need 139). In these cases we might say
that the weighted mean is, respectively, 1.56 and 2.78 times more efficient than the
ordinary sample mean.

Example 8.1 Optimal integration of sensory information Ernst and Banks (2002)
considered whether humans might combine two kinds of sensory input optimally,
according to (8.10) and (8.11). Subjects were presented with raised bars either visu-
ally or by touch (known as haptic input) and had to judge the height of each bar in
comparison with a “standard” bar. The experimental apparatus was set up to allow
visual or haptic noise to be added to the height of each bar. Subjects were also
presented with both visual and haptic input simultaneously. The authors reported
evidence that when presented with the simultaneous visual and haptic input, subjects
judged heights by combining the two sensory modalities consistently with (8.10) and
(8.11). In other words, this was evidence that humans can integrate distinct sensory
inputs optimally. O

Here is the result for combining n observations. We have also included here the
formula for the standard error of the weighted mean.

Theorem Suppose Xi, ..., X, are independent random variables with E(X;) =
EXy)) = =EX,) =pand V(X;) = o7 fori = 1,...,n. Let
n
Xy =D wi-Xi (8.12)
i=1
where, in (8.12),
P
w; = !
>

and for any set of weights wy, ..., w, for which > | w; = 1 define
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Fig. 8.5 When an action potential follows closely a previous action potential (with small ISI), the
second action potential is broader than the first. When a long ISI intervenes, however, the second
action potential is very similar to the first.

n
Yw =::E:1M5~XS.
i=1

Then we have )
V(Xy) < V(Yw)

with equality holding if and only if ¥,, = X,,. Furthermore we have

SE(X,,) =/ V(Xy) (8.13)

n —1
V(X,) = (Z iQ) .

i=1 "1

where

Proof: The proof is analogous to that for the case n = 2. (I

Example 8.2 Action potential width and the preceding inter-spike interval As
part of a study on the effects of seizure-induced neural activity (Shruti et al. 2008)
spike trains were recorded from barrel cortex neurons in slice preparation. One of
the interesting findings> involved the relationship between the width of each action
potential (spike) and its preceding ISI. As is well known, when a spike follows closely
on a preceding spike, so that the ISI is relatively short, then the second spike will
tend to be wider than the first. If, however, the ISI is sufficiently long, there will not
be any effect of the first spike on the second, and the spike widths should be roughly

2 The results here were obtained by Judy Xi.
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Fig. 8.6 Action potential width varies as function of previous ISI. The data are from many action
potentials recorded for a single neuron. A fitted curve with a change point is also shown, the change
point being indicated as a large blue dot.

equal. See (Fig.8.5). How long is “sufficiently long?” This turns out to be dependent
on previous neuronal activity.

Let Y be the spike width and x the preceding ISI length, and let us assume there
is an IST length 7 such that, on average, Y is constant for all x > 7. Among neurons
taken from animals that had seizures, 7 tended to be smaller than its value among
control animals. Figure 8.6 displays some of the data, together with a fitted curve.
The statistical model used for this curve assumes that, on average, Y decreases with
x for x < 7 but remains constant for x > 7. In statistical jargon, 7 is called a change
point, because the relationship between Y and x changes at x = 7. The relationship
between y and x was assumed to be quadratic for x < 7 (see Section 12.5.4) and
constant for x > 7. The model was fit using nonlinear least squares. Additional
details are given on p. 408 in Section 14.2.1. The parametric bootstrap (Section9.2.2)
was then applied to obtain the SE(7). The method was repeated for neurons from
seizure and control animals to see whether there were systematic differences across
the two treatment conditions. Figure 8.7 shows results for both groups. Note the very
different standard errors across neurons. This suggests that in comparing the two
groups it is advisable to use weighted means, as in Eq. (8.12), together with standard
errors given by Eq. (8.13). The results were that the control group had weighted mean
change point of 190 (£32) ms and the seizure group reset earlier, with weighted mean
change point 108 (£.012) ms. ]

Example 8.3 Neural response to selective perturbation of a brain-machine
interface In order to study learning-related changes in a network of neurons,
Jarosiewicz et al. (2008) introduced a paradigm in which the output of a cortical
network can be perturbed directly and the neural basis of the compensatory changes
studied in detail. Using a brain-computer interface (BCI), dozens of simultaneously
recorded neurons in the motor cortex of awake, behaving monkeys were used to
control the movement of a cursor in a three-dimensional virtual-reality environment.
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Fig. 8.7 Change points and SEs for neurons of both seizure and control groups. The results for the
seizure group appear above those for the control group. The seizure group has change points that
occur earlier and they tend to be less variable.

This device creates a precise, well-defined mapping between the firing of the recorded
neurons and an expressed behavior (cursor movement). In a series of experiments,
they forced the animal to relearn the association between neural firing and cursor
movement in a subset of neurons and assessed how the network changes to com-
pensate. Their main finding was that changes in neural activity reflect not only an
alteration of behavioral strategy but also the relative contributions of individual neu-
rons to the population error signal. As part of their study the authors compared firing
rate modulation among neurons whose BCI signals had been artificially perturbed
with that among neurons whose BCI signals remained as determined from their con-
trol responses. Because the uncertainties varied substantially across neurons, these
comparisons among groups of neurons were carried out using weighted means. [

8.1.4 Decision theory often uses mean squared
error to represent risk.

At the end of Section4.3.4, on p. 102, we mentioned that optimal classification may
be considered a problem in decision theory where, in general, the expected loss or
risk is minimized. In the context of estimation we may consider a decision rule d
to be a mapping from each possible vector of observations to a parameter value: we
may write d(X1, ..., X,) = T. If we use squared-error loss defined by

Ld(x1,...,x0),0) = (d(x1, ..., x0) — 0)%,
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then MSE is the risk function
MSE(T) =E(LA(X1,...,Xn),0)).

This terminology, viewing MSE as “risk under squared-error loss,” is quite common.

8.2 Estimation in Large Samples

8.2.1 In large samples, an estimator should be very
likely to be close to its estimand.

In the introduction to this chapter we offered the reminder that the sample mean
satisfies

x5

which is the law of large numbers. Suppose 7}, is an estimator of . If, as n — oo,
we have

7,50 (8.14)

then T}, is said to be a consistent estimator of 6. This means that for every positive e,
as n — oo we have
P(T, — 0] > ¢) — 0.

Note that, by (8.3), if MSE(T,,) — 0 then T}, is consistent. Also, if T}, satisfies (8.1)
and o7, — 0 then T}, is consistent.

Details: Multiplying the left-hand side of (8.1) by o7, and applying
Slutsky’s theorem we have T, — 6 £ 0, which s equivalentto T}, £ 0.
a

In words, to say that an estimator is consistent is to say that, for sufficiently large
samples, it will be very likely to be close to the quantity it is estimating. This is
clearly a desirable property. When 7}, satisfies (8.1) and o7, — 0 we will call 7,
consistent and asymptotically normal.

8.2.2 In large samples, the precision with which a parameter may
be estimated is bounded by Fisher information.

Let us consider all estimators of # that are consistent and asymptotically normal in the
sense of Section 8.2.1. For such an estimator 7' = T, we may say that its distribution
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is approximately normal, and we write
T ~N(@,0%), (8.15)

where the symbol ~ means “is approximately distributed as.” The expression (8.15)
is a convenient way to think of the more explicit Eq. (8.1). From (8.15), o7 may be
considered? the standard error of 7', and an approximate 95 % CI for # based on T
would be (T — 207, T + 207).

Now, suppose we had two such estimators 74 and 7% that both satisfy (8.15).
We would say that 74 is asymptotically more accurate than 72 if ora < ors. An
extreme case of this was displayed in Fig. 8.2, where T4 = X and T8 = §2, with
both histograms being approximately normal in shape and o5 being more than four
times larger than o74. In general, we would prefer to use an estimator with a small o7
because it would tend to be closer to # than an estimator with a larger value of or. In
addition, a small o7 would produce comparatively narrow Cls, indicating improved
knowledge about 6. Ideally, we would like to find an estimator 7" for which o7 would
be as small as possible. Fisher (1922) discovered that this is a soluble problem: there
is a minimum value of o7 and, furthermore, this minimum value is achieved by the
method of maximum likelihood.

To understand how this works, we may use some rough heuristics* based on the
normality in (8.15) to get an expression for o7. Let us first note an important fact
about normal distributions. Suppose X ~ N(u, 02) with o known, and consider the
loglikelihood function

£(p) = log fx (x|p).

We have s
1 (x — ) )
x|lp) = exp{ ———
Sx (x| ) o P ( 202
so that 5
(x — p)
o) = _Tf, (8.16)
and when we differentiate twice we get
’ X— [
==
and
g//( ) _ _i
H) = 2

3n practice, o7 may depend on the value of 6, which is unknown, so that a data-based version o7
would have to be substituted in forming a confidence interval.

4 For a rigorous treatment along the lines of the argument here see Kass and Vos (1997, Chapter 2).
See also Bickel and Doksum (2001, Chapter 5).


http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_5

198 8 Estimation in Theory and Practice

which gives
2 1

=—. 8.17
M) ®17

That is, the standard deviation of a normal pdf is determined by the second derivative
of the loglikelihood function £(1).

The result (8.17) suggests that when a pdf of an estimator is approximately normal,
its standard error may be found in terms of the second derivative of the corresponding
loglikelihood function. We now apply this idea to the approximate normal pdf based
on (8.15). We write the pdf of the estimator T as f7(¢|0) and define its loglikelihood
function to be

tr(0) = log fr(¢|0). (8.18)
Using the approximate normality in (8.15) and applying (8.17) we get

1

—_— 8.19
AT (8.19)

2 _
or =

Equation (8.19) implies that minimizing o7 is the same as maximizing —£7.(6).
However, there is an important distinction between (8.19) and (8.17). In (8.17),
£”(y1) is a constant whereas, because 7 is a random variable, —¢7.(6) is also random
(it does not reduce to a constant except when 7 is exactly normally distributed, so
that its loglikelihood becomes exactly quadratic). Thus, regardless of how we were to
choose the estimator 7', we could not guarantee that —¢/.(¢) would be large because
there would be some probability that it might be small. We therefore work with its
average value, i.e., its expectation, for which we use the following notation:

2

d
1'0) = E (_W log fT(z|9)) ) (8.20)

If we replace —E/T’(G) in (8.19) by its expectation, using (8.20), we get

1

o 8.21)

2 _
oy =

The quantity I7() is called the information about # contained in the estimator 7.
Thus, an optimal estimator would be one that makes the information as large as
possible.

How large can the information /7(6) be? Fisher’s insight was that the informa-
tion in the estimator can not exceed the analogous quantity derived from the whole
sample, which is now known as the Fisher information. For a parametric family of
distributions having pdf f(x|6) the Fisher information is given by

d2
IH0) = E (_W 1ogf(X|9)) .
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To be clear, for a continuous random variable on (A, B) this expectation is

B d2
o= | ( - 1ogf<x|9))f<x|9>dx

For a random sample drawn from this distribution the Fisher information is given
by?

2
—— log Hf(x |9>)
Z log f (X; |9>)

= E ( logf(X; |9))
1

(5
(23

do?

and, because the sample involves identically distributed random variables, all of the
expected values in this final expression are the same, and equal to /g (). Therefore,
we have

1(0) = nlp(6).

Result Under certain general conditions, the information in an estimator T
satisfies
1) < 1(6). (8.22)

Therefore, the large-sample variance U% of a consistent and asymptotically

a > —, 8.23

In words, (8.22) says that the information in an estimator can not exceed the infor-
mation in the whole sample. In Section 8.3.1 we add that the MLE attains this upper
bound asymptotically, asn — oo and, therefore, has the smallest possible asymptotic
variance.

A detail: Tt is possible for an estimator T to achieve the information
bound exactly, in finite samples, i.e.,

1) = 1(0)

5 Because the expectation is used in defining I(6), it is often called the expected information to
distinguish it from the observed information which we discuss in Section 8.3.2.
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for all n. When this happens the estimator contains all of the infor-
mation about # that is available in the data, and it is called a sufficient
statistic. For instance, if we have a sample from a N (y, 0%) distribu-
tion with & known, then the sample mean X is sufficient for estimating
. Sufficiency may be characterized in many ways. If 7 is a sufficient
statistic, then the likelihood function based on 7' is the same as the like-
lihood function based on the entire sample. For example, it is not hard
to verify that the likelihood function based on a sample (xi, ..., x,)
from a N (y, o2) distribution with o known is the same as the like-
lihood function based on X. This property is sometimes known as
Bayesian sufficiency (see Bickel and Doksum 2001). In addition, if
6 is given a prior distribution as in Section7.3.9, then T is sufficient
when the mutual information between 6 and 7 is equal to the mutual
information between 6 and the whole sample (see Cover and Thomas
1991). Parametrized families of distributions for which it is possible
to find a sufficient statistic with the same dimension as the parameter
vector are called exponential families. See Section 14.1.6. (I

A related result is the following. If we let )(6) = E(T), where the expectation is
based on a random sample from the distribution with pdf f(x|6), it may be shown®
that

v'(9)?
10)

V(T) =

Therefore, if T is an unbiased estimator of § based on a random sample from the
distribution with pdf f (x|6) we have ¢’ (f) = 1 and

1
V(T) = T (8.24)

This is usually called the Cramér-Rao lower bound. Although Eq. (8.24) is of less
practical importance than the asymptotic result (8.23), authors often speak of the
bound in (8.23) as a Cramér-Rao lower bound.

Fisher information also arises in theoretical neuroscience, particularly in discus-
sion of neural decoding and optimal properties of tuning curves (see Dayan and
Abbott 2001).

8.2.3 Estimators that minimize large-sample
variance are called efficient.

A consistent and asymptotically normal estimator T satisfies (8.1) and it also satisfies
(8.22). In (8.1) we suppressed the dependence of 7' and o7 on n. The information
I7(#) also depends on n, as does I(6). We now consider what happens as n — 0.

6 See Bickel and Doksum (2001, Chapter 3).


http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_3

8.2 Estimation in Large Samples 201

Suppose we have a consistent and asymptotically normal estimator 7 which, by

definition, satisfies (8.1). If we find a sequence of numbers cy, ¢2, ..., ¢y, ... such
that o
I (8.25)
Cn

then we have
T,—0

Cn

Z N, 1. (8.26)

Details: We write

n—@_Tn—QUTn
Cn T,

n

Cn

and apply Slutsky’s Theorem (p. 163) using (8.25). (]

Equation (8.26) says that ¢, can also serve as the large-sample standard error of
T. If we have two consistent and asymptotically normal estimators 74 and T2 what
matters is the limiting ratio 1 defined by

TTA

grB
as n — oo. If 7 < 1 then, in large samples, T is more accurate than 7%, while if

1 = 1 the two estimators are equally accurate. This, together with (8.22), leads us to
conclude that the large-sample value of o7 is minimized if

I_T(G) 1 (8.27)
— .
1(0)
n — o0. In this case we also have
VIONT — 0) £> N(, 1). (8.28)

When an estimator attains (8.27), and therefore (8.28), it is said to be efficient.

Details: In general, ifay, ...,ap, ... and by, ..., b,, ... are positive
sequences that satisfy

an

— =1

bﬂ
then

n .

bl‘l

Applying this to (8.27) we get
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I'o 1 8.29

as n — oo. Let us rewrite 1 /o7 as

T,
1 _ e = |L©) 1(0). (8.30)
or 1(0)

Putting (8.30) in (8.1) we get

T,
II(L;))\/I(H)(T,, —0 2 N, 1). (8.31)

Therefore, by Slutsky’s Theorem (p. 163), if (8.27) holds for some
estimator T then (8.28) also holds. U

Fisher (1922) described efficient estimators by saying they contain the maximal
amount of information supplied by the data about the value of a parameter, and there
are rigorous mathematical results that justify Fisher’s use of these words. Roughly
speaking, the information in the data pertaining to the parameter value may be used
well (or poorly) to make an estimator more (or less) accurate; in using as much
information about the parameter as is possible, an efficient estimator uses the data
most efficiently and reduces to a minimum the uncertainty attached to it. Other
definitions of efficiency are sometimes used in statistical theory, but the one based on
Fisher information remains most immediately relevant to data analysis, and supports
Fisher’s observations about maximum likelihood.

8.3 Properties of ML Estimators

8.3.1 In large samples, ML estimation is optimal.

We now state Fisher’s main discovery about ML estimation.

Result Under certain general conditions, if 7 is the MLE then (8.27) and (8.28)
hold. That is, ML estimators are consistent, asymptotically normal, and efficient:

JIO) @ —0) 2 N, 1). (8.32)
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In other words, when we consider what happens as n — 00, among all those
“nice” estimators that are consistent and asymptotically normal, ML estimators are
the best in the sense of having the smallest possible limiting standard deviation.

Results may also be derived’ in terms of MSE. Under certain conditions, an
estimator 7,, must satisfy

1(0) - MSE(T,,) — ¢

where ¢ > 1 and for the MLE, where T = é we have
1) - MSE() — 1.

This is a different way of saying that, for large samples, ML estimation is as accurate
as possible.

8.3.2 The standard error of the MLE is obtained from the second
derivative of the loglikelihood function.

Although we have emphasized the theoretical importance of Eq. (8.28), to be useful
for data analysis it must be modified: the quantity /(f) depends on the unknown
parameter 6, so we must replace 7(6) with an estimate of it. In other words, when
we apply maximum likelihood and want to use (8.32) we must modify it to obtain a
confidence interval. One possible such modification is fairly obvious, based on the
way we modified initial asymptotic normality results in our discussion of confidence
intervals in Section 7.3: we replace 6 with the MLE 6. Under certain conditions we
have

16)@ —0) 2 N, 1). (8.33)

Details: Because  — 6 in probability (i.e., the MLE is consistent),

it may be shown that we also have /1 (é) /1(6) — 1 in probability,
so we can again apply Slutsky’s Theorem together with (8.28) to get
(8.33). (]

It turns out that there is a more convenient version of the result. The difficulty with
(8.33) is that in some problems it is hard to compute /(#) analytically because of the
required expectation. Instead, as a general rule, we replace 1(#) with the observed
information given by

Iops (@) = —£"(®). (8.34)

7 See the discussion and references in Kass and Vos (1997).
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In other words, instead of the expected information evaluated at 0 in (8.33), we
use the negative second derivative of the loglikelihood, evaluated at §, without® any
expectation. Again, under certain conditions, we have

Tops (@)@ — 0) B N, 1). (8.35)

Details: Note that

n 2

1 1 d
——0"0) = —=> " logf(x;|0
O =~ ?:1 g loaf (il6)

and that the expectation of the right-hand side is I (#). From the LLN
we therefore have

1
—=0"(0) = 1r(6),
n
and it may also be shown that

lops(0) P
- A~ % 17
1(9)
which, again by Slutsky’s Theorem, gives (8.35). ]

Equation (8.35) provides large-sample standard errors and confidence intervals
based on ML estimation, given in the following result.

Result For large samples, under certain general conditions, the MLE 0 satisfies
(8.35), so that its standard error is given by

1
SE = ——— (8.36)

NS0

and an approximate 95 % CI for 6 is given by (é —2SE. 0+ 28E).

Additional insight about the observed information can be gained by returning to
the derivation of (8.17) and applying it, instead, to the likelihood function based on
a sample xp, ..., x, from a N(u, 02) distribution with o known, as in Section 7.3.2.
There, we found the loglikelihood function to be

8 For the special class of models known as exponential families, which are used with the generalized

linear models discussed in Chapter 14, we have I(@) = IoBs (@) (see, e.g., Kass and Vos 1997) but
this is not true in general.
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n 2

(xi — 0)

L0) = — E —_—

: 202
i=1

which simplified to Eq. (7.2),
no 5 _

Differentiating this twice we get

, n
U6) = .
so that
o 1

In other words, 1/+/—£€"(f) gives the standard error of the mean in that case.

Quite generally, for large samples, the likelihood function has an approximately
normal form and there is a strong analogy with this paradigm case. Specifically,
a quadratic approximation to the loglikelihood function (using a second-order
Taylor expansion) produces a normal likelihood (because if Q(0) is quadratic then
exp(Q(0)) is proportional to a normal likelihood function) and in this normal likeli-

hood the value of the standard deviation is 1/4/ —¢” (é). This heuristic helps explain
(8.36).

Details: The quadratic approximation to £(6) at 0 is
A ~ ~ 1 ~ ~
0O = L) + D)0 =) + 5" O) (0 — 0)*.
Using ¢/ @) = 0 and setting ¢ = exp(é(é)) we have

1 ~ ~
exp(Q(0)) = cexp (—§<—a9)>(9 - 9>2) . (839

The function on the right-hand side of (8.38) has the form of a likeli-
hood function based on X ~ N (6, 0%) where 6 plays the role of x and

o=1/\/—0" ). O
We now consider two simple illustrations.

Ilustration: Exponential distribution Suppose X; ~ Exp()\) fori = 1,...,n,
independently. The likelihood function is


http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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n
L) = [Jre
i=1

— N > xi
— )\nef)\n)_c

and the loglikelihood function is
£(A) = nlog A\ — nAx.
Differentiating this and setting equal to zero gives
0= n(l —X)
A

and solving this for A yields the MLE

>
Il
=i =

Continuing, we compute the observed information:

N n
(N = ¥
= nx?

which gives us the large-sample standard error

N 1
SE(\) = ——. O
) x/n
Ilustration: Binomial For a B(n, p) random variable it is straightforward to obtain
the observed information n
—'Pp) = ——F.
p(1—p)

SE®) =,/’¥,

which is the same as the SE found in Section 7.3.5. Therefore, the approximate 95 %
Clin (7.22) is an instance of that provided by ML estimation with SE given by (8.36).
t

This gives


http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Beta
---  Normal

Fig. 8.8 Normal approximation N (.6, (.049)2) to beta posterior Beta(61, 41).

8.3.3 In large samples, ML estimation is approximately Bayesian.

In Section7.3.9 we said that Bayes’ theorem may be used to provide a form of
estimation based on the posterior distribution according to (7.28), i.e.,

LO)7(0)

I O0) = o

One of the most important results in theoretical statistics is the approximate large-
sample equivalence of inference based on ML and inference using Bayes’ theorem.

Result For large samples, under certain general conditions, the posterior distrib-
ution of # is approximately normal with mean given by the MLE 6 and standard
deviation given by the standard error formula (8.36).

We elaborate in Section 16.1.5 and content ourselves here with a simple illustra-
tion.

Illustration: Binomial distribution Suppose Y ~ B(n, §) with n = 100 and we
observe y = 60. As we said in Section7.3.9, if we take the prior distribution on
0 to be U(0, 1), which is also the Beta(1, 1) distribution, we obtain a Beta(61, 41)
posterior. The observed proportion is the MLE = x/n = .6. The usual standard

error then becomes SE = / é(l — é)/n = .049. As shown in Fig. 8.8 the normal

distribution with mean 6 and standard deviation £/ 6 1 - é) /n is a remarkably good
approximation to the posterior. (I

For the data from subject P.S. in Example 1.4, which involves a relatively small
sample, we already noted (see p. 174) that the approximate 95 % confidence interval
(.64, 1.0) found using (8.36) (which is the same as (7.22), see p. 206) differed by


http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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only a modest amount from the exact 95 % posterior probability interval we obtained,
which was (.59, .94).

8.3.4 MLEs transform along with parameters.

It sometimes happens that we wish to consider an alternative parameterization of a
pdf, say ~y rather than 6, and then want find the MLE of ~. If v = g(0) for a trans-
formation function g having nonzero derivative, then the MLE of the transformation
equals the transformation of the MLE:

4= g().

This is often called invariance or equivariance. The derivation of invariance of ML
is perhaps most easily followed in a concrete example. The argument given next for
the exponential distribution could be applied to any parametric family.

Ilustration: Exponential distribution (continued from p. 205) Suppose we para-
meterize the Exp(\) distribution in terms of the mean ¢ = 1/ so that its pdf becomes

fx) = leﬂ‘/“.
1

Previously (see p. 205) we found that the MLE of \ based on a sample from Exp(\)
is A = 1/x. The invariance property of ML says that

f=1/\=*x

To see why this works for the exponential distribution, let us use a subscript on
the likelihood function to indicate its argument, L () vs. L, (1). We find L;, (1) by
starting with )

Ly(\) = N'e™ ™™

and writing

1 1 _ -
Ly(p) = Lyx(—) = —e ™1,
B

Thus, when we maximize L, (u) over u, we are maximizing Ly (1/) over p which is
the same thing as maximizing Ly (\) over A. We therefore must have i1 = 1/ \. More
generally, the same argument shows that when v = ¢(6) we must have 4 = g(0). O

Invariance is by no means a trivial property: some methods of estimation are not
invariant to transformations of the parameter.
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8.3.5 Under normality, ML produces the weighted mean.

We now return to choosing the weights for a weighted mean, discussed in Section 8.1.3.
Previously (p. 190) we found the weights that minimized MSE. A different way to
solve the problem is to introduce a statistical model, and then apply the method of
maximum likelihood. Let us do this.

To apply ML, we assume that X; and X, are both normally distributed. The
loglikelihood is
=t -

20% 20%

(p) =

and setting its derivative equal to zero gives

X1 — X2 —
0:_1,u 2— M

Therefore, dividing through by ﬁ + ﬁ, the MLE is
1 2

p=wi-X1+w-Xs,

where 1

2
Ji

fori =1, 2. This is Eq. (8.10).

8.4 Multiparameter Maximum Likelihood

The method of ML estimation was defined for the case of a scalar parameter 6
in Section7.2.2, together with Egs. (8.35) and (8.36). More generally, when 6 is a
vector, the definitions of the likelihood function, loglikelihood function, and MLE
remain unchanged. The observed information instead becomes a matrix, and the
approximate normal distribution mentioned in conjunction with Eq.(8.36) instead
becomes an approximate multivariate normal distribution.


http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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8.4.1 The MLE solves a set of partial differential equations.

In Section7.2.2 we computed the MLE by solving the differential equation
0=12(0) (8.39)

when 6 was a scalar. To obtain the MLE of an m-dimensional vector parameter, we
must solve precisely the same equation, except that now the derivative in Eq. (8.39)

is the vector
ol

90,
ot
oy =|"
o
00y,
This means that Eq. (8.39) is really a set of m equations, often called the likelihood
equations, which need to be solved simultaneously.

Ilustration: Normal MLE Let us return to finding the MLE for a sample x, . . ., x,
from a N(u, o%) distribution. Previously we assumed ¢ was known, but now we
consider the joint estimation of 1 and o. The loglikelihood function now must include
a term previously omitted that involves . The joint pdf is

o — w)?
)

n
1
f(xl,...,x| ,0‘): ex -
i EVZWJ p( 202

and the loglikelihood function is

n

L(u,0) = —nlogo — Z

i=1

(i — ?
202

The partial derivatives are

o l —
% = ;Z(xi )
i=1

ol n .
= +o 3Z(Xi — w?
i=1

do o
Setting the first equation equal to 0 we obtain
=X

Setting the second equation equal to 0 and substituting /1 = X gives


http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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>
I

1 n
=D i -2
n<

i=1

The MLE is thus slightly different than the usual sample standard deviation s, which
is defined with the denominator n — 1 so that the sample variance becomes unbiased
as an estimator of o2, as in (8.4). We have

n—1

(S}
I
©

n

Clearly the distinction is unimportant for substantial sample sizes.’ (I

Ilustration: Gamma MLE Let us rewrite the gamma loglikelihood function:
n n
Ua, B) =nalogB+ (a— 1) Zlogx,' - ﬂin —nlogI' ().
i=1 i=1

The partial derivatives are

ot

n
0 = nlogﬁ—i—Zlogx,- —n

I'(a)
I'(a)

i=1
ol no "
A I

where I'' (1) is the derivative of the function I" (1) (sometimes called the “digamma
function”). Setting the second partial derivative equal to zero we obtain

When we set the first equation equal to zero and substitute this expression for B, we
get the nonlinear equation

r'a
NORE

n
nlog & —nlogfc—i—Zlogxi —n

i=1

To obtain the MLE (&, B) we may proceed iteratively: given a value BU) we can
solve the first equation for @Y+ and solve the second equation to obtain 50+ ; we

® We may obtain & = s if we instead integrate out x from the likelihood and then maximize the
resulting function; this function is sometimes called an integrated or marginal likelihood, and in
some situations maximizing the integrated likelihood yields a preferable estimator.
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continue until the results converge. The second equation must be solved numerically,
but it is not very difficult to use available software to do so. O

8.4.2 Least squares may be viewed as a special
case of ML estimation.

In Example 1.5 we discussed data collected by Hursh (1939), indicating the linear
relationship between a neuron’s conduction velocity and its axonal diameter. We
also briefly described the method of least-squares regression, based on the linear
regression model (1.4), which is

Yi = fo+ fixi + € (8.40)

where ¢; ~ N(0, 0%), independently. Least-squares regression is discussed at length
in Chapter 12. Here we show that the method of least squares may be considered a
special case of ML estimation.

Least squares may be derived by assuming that the € error variables in (8.40) are
normally distributed, and that the problem is to estimate the parameter vector § =
(Bo, B1)- Specifically, we assume €; ~ N (0, o), independently for all i. Calculation
then shows that the ML estimate of @ is the least squares estimate. In other words, in
the simple linear regression problem, ML based on the assumption of normal errors
reproduces the least-squares solution.

Details: In the illustration on p. 210 we wrote down the loglikelihood
function for a sample from a N (i1, o) distribution,

(i — )’
L, o) = —nloga—z%
i=1

and obtained the MLE [ = Xx. Notice that, as a function of g,
the loglikelihood is maximized by minimizing the sum of squares
> (xi— p)?. Thus, the MLE /i = ¥ is also a least-squares estimator
in the one-sample problem. For the simple linear regression model
(8.40) the loglikelihood function becomes

€(Bo. B, o) = —nlog — Z%

i=1

We can maximize £(0y, 31, o) by first defining (BO(J) 31 (o)) to be
the maximum of E(ﬁo 081, o) over (3o, 1) for fixed o, and then max-
imizing E(ﬁo(a) 61 (0), o) over 0. However, from 1nspect10n of the
formula above, for every o the solution (ﬁo(o), ﬂ1 (0)) (the maxi-
mum of €(8y, B1,0)) is found by minimizing the sum of squares
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> i—Bo— B1x)%. Therefore, the MLE (Bo, ﬁl , 0) has the least-
squares estimate as its first two components. O

8.4.3 The observed information is the negative of the matrix
of second partial derivatives of the loglikelihood function,

evaluated at 0.

In the multiparameter case the second derivative £”(6) becomes a matrix,

80% 0010, 0010
Fr Pe | o
') = | 0 o 9020,
TR )
9010, 00,0, 002,

This second-derivative matArix is often called the Hessian of £(6). The observed
information matrix is —£" (6), which generalizes (8.34).

Result For large samples, under certain general conditions, the MLE 0 of the
m-dimensional parameter 6 is distributed approximately as an m-dimensional
multivariate normal random vector with variance matrix

=0, (8.41)

ie.,
$-120 - 0) B N, 0,1,) (8.42)

as n — oQ.

Example 5.5 (continued from p. 112) In the Hecht et al. experiments on threshold
for visual perception of light, the response variable was an indication of whether or
not light was observed by a particular subject (“yes” or “no”), and the explanatory
variable was the intensity of the light (in units of average number of light quanta
per flash). Several different intensities were used, and for each the experiment was
repeated many times. The results for one series of trials in one subject are plotted in
Fig.8.9.

As illustrated in Fig. 8.9, the linear regression model (8.40) does not work very
well in this example. The proportions vary between 0 and 1 but a line y = a + bx is
unrestricted and can not represent the variation accurately, at least not for proportions
that get close to 0 or 1. A solution is to replace the line y = a 4 bx by a sigmoidal
curve, which goes to zero as the explanatory variable x goes to —oo and increases
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Fig. 8.9 Proportion of trials, out of 50, on which light flashes were perceived by subject S.S. as a
function of log; intensity, together with fits. Data from Hecht et al. (first series of trials) are shown
as circles. Dashed line is the fit obtained by linear regression. Solid curve is the fit obtained by
logistic regression.

to one as x — oo0. The fitted curve in Fig.8.9 is based on the following statistical
model: for the ith value of light intensity we let Y; be the number of light flashes on
which the subject perceives light and then take

Y; ~ B(n;, pi) (8.43)

_ exp(Bo + Bix;)
1 +exp(Bo + Bixi)

: (8.44)
This is known as the logistic regression model. There are many possible approaches
to estimating the parameter vector § = (0o, 31) but the usual solution is to apply
maximum likelihood. The observed information matrix is then used to get stan-
dard errors of the coefficients. These calculations are performed by most statistical
software packages. For the data in Fig.8.9 we obtained BO = —20.5 + 2.4 and
Bl = 10.7 £ 1.2. Further discussion of logistic regression, and interpretation of this
result, are given in Section 14.1. O

8.4.4 When using numerical methods to implement
ML estimation, some care is needed.

There are three issues surrounding the application of numerical maximization to ML
estimation. The first is that, while loglikelihood functions are usually well behaved
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near their maxima, they may be poorly behaved away from the maxima. In particular,
a loglikelihood may have multiple smaller peaks, and numerical methods may get
stuck in a region away from the actual maximum. Except in cases where the loglike-
lihood is known to be concave (see Section 14.1.6.), itis essential to begin an iterative
algorithm with a good preliminary estimate. Sometimes models may be altered and
simplified in some way to get guesses at the parameter values. In some cases the
method of moments may be used to get initial values for an iterative maximization
algorithm.

Ilustration: Gamma distribution On p. 153 we found the method of moments
estimator for the Gamma distribution,

g ==
S2

01 :—2
)

In order to obtain the MLE of («, (3) we may use an iterative maximization algorithm
beginning with (&1, V) = (a*, 5). U

With good initial values, iterative maximization software usually only needs to
run for a few iterations, after which the estimates don’t change by more than a
small fraction of the statistical uncertainty (represented by standard errors). In fact,
it may be shown, theoretically, that from any consistent estimator for which the MSE
vanishes at the rate 1/n, a single iteration of Newton’s method for maximizing the
loglikelihood function will produce an efficient estimator (see Lehmann, 1983).

A second important implementation issue is that the second derivatives used in
numerical maximization software are often themselves estimated numerically, and
they may be estimated rather poorly (because they do not need to be estimated
accurately to obtain the maximum). Thus, for the purpose of finding a variance matrix,
one should either evaluate second derivatives separately (from an analytical formula,
or from special-purpose software), or one should apply the parametric bootstrap (see
Section9.2).

The third issue is that parameterization can be important. Numerical maximization
procedures tend to work well when the loglikelihood function is roughly quadratic,
which means that the likelihood function is approximately normal. Transformations
of parameters can improve this approximation. For example, before running maxi-
mization software it is often helpful to transform variance parameters by taking logs.

8.4.5 MLEs are sometimes obtained with the EM algorithm.

Certain statistical models have a structure that lends itself to a special method of
likelihood maximization known as the expectation-maximization (EM) algorithm.
We describe it in one special case.
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Ilustration: Mixture of Two Gaussians Suppose a random variable X follows
either a N(u, 012) distribution or a N (uz, 0'%) distribution, and that the selection
of the distribution is determined probabilistically: with probability = we have X ~
N(u1, o7) and with probability 1 — 7 we have X ~ N (2, 03). The pdf of X is

() = 7f (s 1, 03) + (1= WF (x5 p2, 03) (8.45)

where f(x; u, 02) is the N(u, 02) pdf. If we consider a large sample of values
X1, ..., X, from the distribution of X, some proportion of x; values (approximately nm
of them) would be from the N (i1, a%) distribution, while the rest would be from the
N(u2, U%) distribution. Such a sample would thus blend the N (y41, 012) and N (ua, O’%)
distributions and (8.45) defines a mixture of two normal distributions, often called a
mixture of Gaussians model. Based on a sample of data the problem is to estimate
the parameter vector 0 = (uy, p2, o1, 02, 7).

Let us introduce a random variable W; to represent the selected distribution for X;
in the sense that W; = 1 with probability 7 and if W; = 1 a value U is drawn from
N(u1, 0%) and we set X; = U, while W; = 0 with probability 1 — 7 andif W; =0a
value V is drawn from N (2, a%) and we set X; = V. The variables Wy, ..., W, are
not observed. If they were known, however, the problem would be much simpler:
we could collect the values of W; for which W; = 1 and take the sample mean and
variance of those as estimates!'? of w1 and 012 and then collect the values of W; for
which W; = 0 and take the sample mean and variance of those as estimates of o
and O’%. Because the W;s are unobserved, they are often called latent variables (see
Section 16.2). The data (x1, ..., x,) are said to be augmented by (wy, ..., wp). Let
us write ¥ = (X1, ..., X,) and Z = (Wq, ..., W,) and then write the loglikelihood
function based on the original data y as £,(#) and that based on the augmented data
(v, 2) as £(y,;)(0). We have

n n
oy (O) = D wilogf (xii pur. o) + D (1 = wi) logf (xi; 2. 03)
i=1 i=1

+ D wilogm + > (1 —w;)log(l — )

i=1 i=1
= > logf(xiip oD+ > logf(xii pa, 03)

{izwi=1} {izw;=0}

+ > logm+ > log(l—m) (8.46)

{izwj=1} {i:zw;=0}

and maximizing this with respect to (u1, 012) is the same as maximizing the likelihood
forasamplea N (u1, a%) pdf made up of the values x; for which w; = 1 (and similarly

10 A we said in Section 8.4.1 (see p- 210), the MLE of the variance has denominator n rather than
n — 1 but the sample variance is usually preferred.
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for (p2, o%)). Thus, the introduction of the latent variables W; has greatly simplified
the problem. However, because these latent variables have not been observed we
must get estimates that do not rely on them. To do this we may integrate out the W;
variables (marginalize over them), as we next explain.

If we think of 7 as a prior probability that W; = 1 then, after observing X; = x;
we may compute the posterior probability from Bayes” Theorem as

f (xi; g1, 07)

= e D+ A= G D
We use the notation
Vi =PWi = 11X; = xp). (8.48)
Note that, because W; is a binary variable ; may also be written
vi = E(WilXi = x;)
and, for later purposes, we make the dependence on 6 explicit by writing
vi = E(WilX; = x;, 0). (8.49)

With this framework in hand, the EM algorithm for this problem may be defined.
It produces an iterative sequence 81, §) ... that, with good initial values, will
converge to the MLE 6. Here is the algorithm.

1. Find an initial value #) for 6 and set j = 1.
2. Given a current value #%) compute 71'(] ) fori = 1, ..., n by applying (8.48) using
(8.47) where 6 = 69,

3. Using VY)’ ceey fy,(li ) from Step 2 compute the components of #UFD as follows:

)
MUH) _ D1 X
===

pI ’Yi(/)
Mgﬂ) _ D (- %(j)‘)xl'
PRI
D _ S i H?H))z
> ’Vi(l)
U%(Hl) _ Do (1= %(j))(xz' - ALYH))Z
S =47

. | A
=13
i=1
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4. Increment j and return to Step 2.
5. Repeat Steps 2—4 until convergence. O

A key step in formulating the EM algorithm in the mixture of two Gaussians
model, above, was the introduction of the random variables W;. In order to maximize
the loglikelihood £y (6) defined by the pdf fy(y|f) we effectively introduced the
loglikelihood £(y,z)(f) in (8.46) based on the augmented data pdf fiy z)(y, z|0).
Step 2 of the algorithm, known as the expectation step, is based on the expectation
EWy DY =y,0 = 6%). In Step 2 the conditional expectation in (8.49) was
evaluated for # = 0. In Step 3 the loglikelihood was maximized in terms of the
expectations computed in Step 2.

In general, if Y = y is the data vector augmented by Z = z we define

00,09) = E(ly. 7)Y =y,0 =09). (8.50)

Beginning with an initial guess #), for each j the EM algorithm computes Q(6, §%)
and sets YD equal to the maximizer of Q(, 8Y)) as a function of §. The EM
algorithm works well for problems in which some kind of data augmentation greatly
simplifies the problem, so that Q(6, #7)) is easy to compute (as in Step 2 of the
mixture of two Gaussians illustration above). In addition to models that incorporate
latent variables, the EM algorithm is often applied to problems with missing data,
where the missing data are treated as augmenting the observed data. (See also the
related discussion of Gibbs sampling in Section 16.2.2.)
One way to see that this iterative scheme should work is to apply the formula'!

d / *
EQ(G, 0%)o=0x = Ly (67) (8.51)

(see the details below). If oM @ isa sequence of EM iterates that converge to
a value 6* then, because each iterate maximizes Q(4, 09 its derivative is 0, i.e.,

d *
@Q(Q, 0™)lg=o+ = 0.

From (8.51) we then have
(%) =0.

Thus, for sufficiently good initial values, when the EM algorithm converges to 0*
we get 0* = 0, i.e., the EM algorithm converges to the MLE 6.

Details: We derive Eq.(8.51). From (8.50) we have

F.z|0%)

0,0%) =
0.0 = | Triiom

logf(y, z|0)dz.

' This formula was used by Fisher, in his discussion of sufficiency, to substantiate the argument
mentioned in Section 8.2.2 (see p. 200 and Kass and Vos 1997, Section2.5.1)
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We differentiate under the integral:

F0.210%) 2f (5, 210)]g = s
fo10%  f(,z206%)
d
2/ 0 2l g = 0«
= [4& - "~ 4
/ oy “

We continue using f (v, z|0) = f(zly, 0)f (v|0), differentiate the prod-
uct, and rewrite:

d
=00, 0%)g—px =
dHQ( ,0%)6=0

d
EQ(Q’ 0%) 16 = o«
_ / &I @y, O 010l

FO16)
_ /f(yle*)%f(zly, Olo=0s Gy, ) o G100
B 0169 2
d . d
- / 257 @ Olo=ge +F @y, 0%) 25 10ef (416) lp= gudlz.
(8.52)

In this last expression the integral of the first term vanishes because

/f(zly, dz =1

so that
—_— f(zly, 0dz =0

and taking the derivative under the integral gives

d
/ S (Ely, Olgsnde = 0.

Therefore, expression (8.52) reduces to (8.51). U

8.4.6 Maximum likelihood may produce bad estimates.

The method of ML is not universally applicable, nor does it guarantee good statistical
results. The most serious concern with ML is that it is predicated on the description of
the data according to a particular statistical model. If that model is seriously deficient,
the MLE will be misleading. This underscores the essential role of model assessment,
and the iterative nature of model building, emphasized in Chapter 1.
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The provably good performance of ML estimation also applies only for large
samples. What constitutes “large” is difficult to specify precisely, though attempts
have been made occasionally. A key observation is that sample size must be judged
relative to the number of parameters being estimated. In problems having large
numbers of parameters and only modest sample sizes, we should expect neither ML
estimates, nor their associated SEs, to be accurate. One standard approach to making
progress in such situations is to build models that effectively reduce the number
of parameters by restricting them in some way (often by introducing additional
probability distributions). In some cases, however, ML must be abandoned. There is
a large body of methods that are nonparametric, in the sense that they do not posit a
statistical model with a finite number of parameters. There are many situations where
nonparametric methods perform well, and save the difficulty and worry associated
with careful model building.



Chapter 9
Propagation of Uncertainty and the Bootstrap

Atthe beginning of this book we said that we wanted to lay out the key features of what
we called, “the statistical paradigm,” which consists of broadly applicable concepts
that guide reasoning from data in diverse contexts. One of its foundations is the idea
that data may be used to express knowledge and uncertainty about unknown values
of model parameters, especially through confidence intervals. This was the focus of
Chapter 7. Another is the notion that alternative estimators may be evaluated and
compared, which was the main subject of Chapter 8, together with the large-sample
optimality and utility of ML estimation. We now turn to a third building block of
statistical reasoning, which is a major source of the remarkable reach and flexibility of
modern data analysis, especially in complicated settings. It is based on the simple idea
that when we have an expression of uncertainty about a random variable or random
vector X, in the form of a standard error or variance matrix, we can propagate this
uncertainty to a new variable Y, where y = f(x) for some! function f(x), in order to
get a standard error for Y. Let us be concrete by considering a simple example.

Example 5.5 (continued from p. 112) We previously displayed data from Hecht
etal. (1942), who investigated the threshold for visual perception by exposing human
observers to very weak flashes of light in a darkened room. In the bottom part of
Fig.8.9 we overlaid on the data a sigmoidal curve found from the logistic regres-
sion model given by the pair of Egs. (8.43) and (8.44), using maximum likelihood
estimation. We reported the values of the fitted coefficients and their standard errors.

Those data were from a single subject. What if we wanted to compare results
across subjects? We would get a set of sigmoidal curves with somewhat different
slopes, shifted to some extent to the left or right. One common way such curves are
characterized is by the intensity x50 at which the subject will perceive the light 50 %
of the time. To find x50 we begin with Eq. (8.44), which without subscripts on x; and
pi becomes

1 We are not intending f (x) to be a pdf. We are here, in this chapter, using the notation y = f(x) to
refer to some general function.

R. E. Kass et al., Analysis of Neural Data, 221
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b= exp(Bo + B1x)
1+ exp(Bo + Bi1x)

9.1)

In (9.1) we set p = .5 and solve for x5¢. That is, we solve the equation

_ exp(Bo + Bixs0)
1 4 exp(Bo + Bixs0)

for x50 as a function of (3y, 31). Details given on p. 226 show that

—5o
Xs50 = 3 9.2)
In terms of the form y = f(x), here the role of y is played by x50, the role of x is
played by (5o, (31), and the function is f (5o, 1) = —Bo/1-

To estimate xso we replace 3y and 31 in (9.2) by their fitted values BO and ﬁAl. As
discussed in Section 8.4.3, an approximate variance matrix of (Bo, B 1) is given by the
inverse of observed information matrix for (ﬁAo, Bl). It is available from the fitting
software. We want to use that variance matrix to express knowledge about x5q in the
form of a standard error SE(Xso). This is a problem in propagation of uncertainty,
which we may write schematically in two ways:

. ropagate .
uncertainty about (3y, 81) bropay uncertainty about xsg 9.3)

which states the uncertainty about x5 will have to be obtained from uncertainty
about the coefficients (fy, (1), and

. N A ropagate . A
uncertainty attached to (5o, 51) bropag; uncertainty attached to xsg 9.4)

which, more prescriptively, suggests that we will use the uncertainty we have evalu-
ated along with the estimated coefficients (Gy, 31) (i.e., the inverse of the observed
information matrix) to get an expression of uncertainty for xs. O

Propagation of uncertainty is an old concept” but it was given a new, and pro-
foundly important twist with the development of bootstrap methods by Bradley Efron
(Efron 1979a). Bootstrap methods for confidence intervals rest on two ideas. First,
that the variability in the data, based on the statistical model, may be estimated rea-
sonably accurately and, second, that this variability may be propagated to express
uncertainty about any quantities computed from the data, such as functions of the
unknown parameters in the model. In the context of estimating x5y in Example 5.5
we might write this, schematically, in two steps:

2 The “law of propagation of error,” as it was called, is mentioned as a standard technique by Schultz
(1929).
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.. . ropagate . A A
variation in (yi, y2, ..., Y6) propag; uncertainty attached to (5o, 31)
. ~ A propagate . N
uncertainty attached to (8p, 81)  — uncertainty attached to Xs¢. 9.5)

Efron’s insight was that propagation of uncertainty, from variability in the data to
uncertainty in estimates, could be carried out easily on the computer in a wide
variety of circumstances, and he followed up with convincing theoretical analysis of
the method using some of the principles articulated in Chapter 8. In the 1980s, when
desktop computers became available, the use of computers to propagate uncertainty
took off (see Efron 1979b).

We discuss propagation of uncertainty in Section 9.1 and then move on to bootstrap
methods in Section 9.2. In Section 9.3 we specify the circumstances under which
each of the several methods described here might be preferred to the others.

9.1 Propagation of Uncertainty

The problem of transferring uncertainty about a random vector X to a random vari-
able Y = f(X) is the problem of propagation of uncertainty, or what was histori-
cally called “propagation of error” and, sometimes, “the delta method.” There are
several varieties of propagation of uncertainty. The original method, historically, used
mathematical analysis with n — oo to derive an approximate standard error for Y,
which we write as SE(Y), based on an approximate variance matrix for X. In some
cases this is easy. We discuss it in Section 9.1.2. It is often even easier to use a brute
force computer simulation: if we can generate observations (on the computer) from
the approximate distribution of X, we can also immediately obtain the approximate
distribution of Y. We explain this method, enumerating the steps, in Section9.1.1.
Propagation of uncertainty is also an essential part of modern Bayesian methods,
which appear in Chapter 16.

9.1.1 Simulated observations from the distribution
of the random variable X produce simulated observations
Jrom the distribution of the random variable Y = f (X).

Itis sometimes advantageous to work out analytically the approximate standard error
according to (9.19), derived below. However, the calculations can be complicated,
which may make them tedious and could also result in math mistakes. A remark-
ably effective way to propagate uncertainty, which may also reduce the chance of
overlooking a math error, is to use simulation. To understand the method, one must
first be sure to understand how to work with a probability distribution based on a
transformation y = f(x). Let us consider a simple illustration.
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Illustration: A random variable having three possible values Suppose X can take
the values 2, 4, or 8 with probabilities .2, .5, .3, respectively, and we are interested
in the transformation y = log, (x). Then Y can take the values 1, 2, or 3. To find the
probability distribution of ¥ we simply note that

P(Y=1)=Plog, X)=1)=P(X =2)= 2
P(Y =2)=P(log,(X) =2) =PX =4) =5
P(Y =3) = P(log,(X) =3) = P(X = 8) = .3.

Thus, for example, if we wanted to find the mean of ¥ we would obtain

pwy=1-P¥=1)+2-PY=2)+3-P(Y=3)
=1-(2)4+2-(5+3-(3).
=2.1. O

The calculation in the discrete case (as above) is very simple. In the continuous
case, to get the pdf we would have to introduce a derivative factor |% |, as ordinary
calculus requires when a variable is transformed (see p. 62). The point, here, is that
once we know the probabilities for X, we can obtain them easily for Y using computer
simulations. Suppose we can, on the computer, generate observations (“draws”) from
the distribution of X, and let us denote a set of G such simulated observations by
v, U@, U9 If we define W = F(UD), WP = f(UP),..., wO =
F(U'9D), we obtain a set of G draws from the distribution of Y. We will refer to these
simulated observations as pseudo-data.

Ilustration: A random variable having three possible values (continued) In the
discrete illustration above, suppose we wanted to find P(Y = 1) without using
the formula P(Y = 1) = P(X = 2) = .2. We could get an approximate answer by
the following procedure:

1. Forj =1 to 10,000:
Generate U9 from the distribution of X.
Compute W@ = log, (UY).
2. Let N be the number of W such that W9 = 1 and compute

P =D~ 15000

To compute the mean of ¥ we could follow the same step 1, and then replace step 2
with
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1 G
~ ()]
=S W, O
- ;

This computer-simulation procedure works for discrete and continuous random
variables and random vectors.

Algorithm: Simulation-Based Propagation of Uncertainty Suppose the random
variable or random vector X has a probability distribution from which we are able
to simulate observations, and we wish to find the distribution of a random variable
Y = f(X) defined by a real-valued function f (x). Proceed as follows:

1. Forj=1to G:
Generate U9 from the distribution of X.
Compute W@ = f(U9).

2. Step 1 gives us a sample WD, W® . W from the distribution of ¥. We
can obtain whatever information we wish about the distribution of Y by taking G
to be sufficiently large. In particular,

(i) To get P(a < Y < b) let N be the number of W@ such thata < W9 < b
and compute

N
P(a<Y<b)%5.

(ii) To get oy, compute the sample mean W = é Zgzl W@ and use the sample
. 1 G k772
variance g—y Zgzl(W(g) — W)? to get

G
1 —
| — W@ — 2, 9.6
oy G—1g§=1( W) 9.6)

(ii1) To get the gth quantile of the distribution of Y use the gth sample quantile
wy (defined on p. 67) among the pseudo-data values wh w@ o owe g

The procedure is very general: it is applicable as long as it is possible to gen-
erate observations from the distribution of X. (The problem of creating algorithms
that generate observations from a given distribution is itself a sub-specialty field of
research; some additional comments about this may be found in Section 16.1.6.)
When we use simulation-based propagation of uncertainty together with the approx-
imate normality of ¥, due to the results in Section9.1.2, we have a very powerful
inference engine: we can apply them, together, to obtain approximate 95 % Cls in a
wide variety of settings.


http://dx.doi.org/10.1007/978-1-4614-9602-1_16

226 9 Propagation of Uncertainty and the Bootstrap

Result: Simulation-Based Propagation of Uncertainty in Estimation Sup-
pose the random vector X is a consistent estimator of a parameter vector 6 having
an approximate distribution from which we are able to simulate observations and
we wish to estimate ¢ = f(f) for some real-valued function f (x). If we apply
simulation-based propagation of uncertainty, with G large, then an approximate
95 % CI for ¢ is given by (w025, w.975) Where w 25 and w 975 are the .025 and
.975 quantiles among the pseudo-data wh w@ WO,

The beauty of this simulation-based method of getting approximate confidence
intervals is its simplicity and practicality, as long as it is easy to generate observations
from the distribution of the estimator X. If, in addition, the estimator (13 =f (é) is
approximately normal, then we have a slightly different option. Although it will
often produce essentially the same answers, it simplifies the reporting of results by
producing a standard error, which is connected to the confidence interval by the 95 %
rule (p. 117).

Result: Simulation-Based Propagation of Uncertainty in Estimation When the
Estimator is Approximately Normal Suppose X is an approximately multivariate
normal estimator of # having estimated variance matrix fl, and we want to estimate
¢ = f(0) for some real-valued (univariate) function f(x). Let us take ¥ = f(X) to
be the estimator of ¢. We will write the observed estimate of § as X = 0 and the
observed estimateof pas Y = ¢ = f (é). If the function f (x) is approximately linear
near x = 6 and f (é) is not the zero vector (i.e., not all of its partial derivatives are
zero) then

1. Y is approximately normally distributed, and
2. the standard error obtained from (9.6) by simulation-based propagation of
uncertainty

G
SE(J) = ﬁ D (W —W)2 9.7)
g=1

furnishes approximate inferences. In particular, an approximate 95 % CI is given
by (Y — 2SE(Y),Y + 2SE(Y)). |

If these two methods differ, it is an indication that the distribution of (,Z; is noticeably
non-normal and it is better to use the quantiles as they are likely to be more accurate.
The second method, based on approximate normality, is justified by the theorem on
p- 235 leading to (9.20).

We illustrate both methods by returning to the example involving perception of
dim light.

Example 5.5 (continued from p. 221) Atthe beginning of the chapter we motivated
propagation of uncertainty using the problem of calculating x50, defined on p. 221,
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and finding its standard error. If we drop the subscript i in Eq.(8.44), the logistic
function used in the logistic regression model may be written in the form

exp(u)

RECTT .

where u = [y + (31x. We can solve for u as follows:

exp(u)
1
1+exp(u)

and taking logs gives

u = log 9.9)

p
I—=p
If we set p = .5 we get u = 0. In other words, x50 must be the value of x for which

Bo + Bi1x = 0.

Solving for x we get (9.2), and when we plug in (Bo, ﬁl) we obtain

~

hso = 22 (9.10)

1

To get a standard error for X509 we propagate the uncertainty from the approximate
variance matrix 3 for (/30, B 1)- Thatis, we assume that statistical software (for logistic
regression, which we discuss in Section 14.1.1) has provided the MLE (Bo, B 1) and
the varianceA maltrix V based on the observed information matrix as in (8.41), i.e.,
V= Ioss(Bo, 31)~'. We can then set $ =V and apply the computer-simulation
methods.

To obtain a 95 % confidence interval based on quantiles or the standard error
of x50, we generate many two-dimensional vectors that represent plausible values
of (Bp, 41) according to the uncertainty in (Bo, ﬁ 1) and, for each such vector, find
xs50. That is, we simulate two-dimensional vectors U9 = (U l(g) , Uég)) whose first
component corresponds to Jg and whose second component corresponds to 31; we
then apply (9.10) to these components to get a simulated value

(9)
—Ur

w@ — )
(9)
U2

©.11)

The distribution of W@ values represents the uncertainty in xso propagated from the
uncertainty in (3, 01).
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We now spell this out in steps. We again assume we have (from software) the
MLE (8o, (1) and the variance matrix V. The algorithm is as follows:

1. Initialize by setting

3= (bo, B)
T=V
G = 1,000 (or some other suitable value).

2. Forg=1,...,G

simulate U9 ~ N(B, f))
compute W using (9.11).

3. SetoM, 0@ .. 0© equal to the ordered values of wh w@ WO g0
that O is the smallest W, 0@ is the second smallest, etc., with 0@ being
the largest.

If .025G is an integer, set 7925 = .025G and if .025G is not an integer set r o5
equal to the smallest integer larger than .025G. (If G = 1,000 then r g5 = 25.)

If .975G is an integer, set r 975 = .975G+ 1 and if .975G is not an integer set r 975
equal to the smallest integer larger than .975G. (If G = 1,000 then r 975 = 976.)

Define

Wons = Or.0s)

w.o7s = 097, (9.12)

(If G = 1, 000 then w gps is the 25th ordered value of W9 and w 975 is the 976th
ordered value of W9 )
The approximate 95 % CI for x5¢ is (W 025, W.975).

4. Compute

1 7 9)
SE =\/— W@ — W2,
(xs50) G_1 > )
Using the percentile-based simulation algorithm we obtained
approx. 95 % CI for x 50 = (1.88, 1.96).

We found the standard error of X5 to be SE = .019. The usual standard-error based
approximate 95 % CI is then

(1.92 — 2(.019), 1.92 4+ 2(.019)) = (1.88, 1.96)
in agreement with the percentile-based method. This agreement is an indication that

the MLE in (9.10) is approximately normally distributed, to a close approximation,
for the sample sizes in this data set. The log; intensity at which subject S.S. (whose
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data were shown in Fig. 8.9, the scale on the x-axis having been log,(intensity))
would have perceived half the flashes is estimated to have been x50 = 1.921 +
.019 with approximate 95 % CI (1.88, 1.96). Note that the logistic regression model
(Egs. (8.43) and (8.44)) could be viewed here as a method of interpolating between
the experimental values, while also providing a standard error of the interpolated
quantity. (I

In the simulation procedure above, a detail left unspecified is the value of the
simulation sample size G to be used, i.e., the number of random variables or vectors
U9 to be generated on the computer. Typically we would expect G = 1,000 to be
sufficient, and when the computation is fast we might use G = 10,000 to be safe. In
general the size of G to be used is an empirical matter; if in doubt, one easy way to
proceed is to pick a convenient value of G, such as G = 1,000, and then run the entire
procedure several times, each with a new seed to the random number generator (as is
typically the default in software). Because new random variables will be generated
each time the procedure is run, the several values of the outputs (w25, w975, and
SE) will be different. If the output values on different runs are all close to each other
then it may be concluded that these quantities of interest are sufficiently accurate. If
not, the size of G must be increased.

9.1.2 In large samples, transformations of consistent
and asymptotically normal random variables become
approximately linear.

We now discuss the analytical approach to propagating uncertainty. Let us suppose
we have a random variable or vector X, and a function y = f(x), which we wish
to apply to X. This will produce a random variable ¥ = f(X). A handful of special
cases have been analyzed in the literature (mostly many years ago), which leads to
some standard distributions such as the chi-squared distribution, the #-distribution,
and the F-distribution. In practice, however, one often comes across cases that do not
fit any specialized framework. Fortunately, there is a simple and powerful method
that may be applied in conjunction with a general theoretical result in order to get
the approximate distribution of Y.

Suppose, first, that X is a random variable having mean px and standard devi-
ation ox. The classical idea behind what is often called the delta method assumes,
first, that the distribution of X is concentrated around px (so that oy is small), and,
second, that the function y = f(x) is approximately linear near px. In addition, X is
often assumed to be approximately normally distributed. Under these assumptions
the linear transformation that approximates f (x) is applied to X to get the approx-
imate distribution of ¥ = f(X). In particular, if X were normal then the theorem
concerning linear transformation of a normal random variable on p. 63 would show
that this linear transformation of X would be normally distributed. As a consequence
(it may be shown) if X is approximately normal, then Y is approximately normal
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Hy

Ha

Fig. 9.1 The effect of the transformation y = a + bx operating on a normally distributed random
variable X having mean uyx and standard deviation oy. The random variable Y = a + bX is again
normally distributed, with mean py = a + buy and standard deviation oy = |b|ox. The normal
distributions are displayed on the x and y axes; the linear transformation is displayed as a /ine, which
passes through the point (ux, (1y) so that it may be written, equivalently, as y — py = b(x — ux).

and the approximate mean and variance of Y is given from the approximating linear
transformation, as in the theorem on p. 63.

Theorem Suppose that a sequence of random variables X1, Xo, ..., X,, ... satisfies

X_
" H D N1

Jx,

as n — 00, and that the function f(x) is continuously differentiable with /(1) # 0.

Then ¥
F&D =160 B0y

UY,,

with oy, = [f/(/J,)|JXn.

Proof: We omit the proof, which is a consequence of Slutsky’s theorem (p. 163),
but give the essential idea.

First, from the theorem on transformation of a normal random variable (p. 63),
if ¥ = a+bX and X ~ N(ux, 0%) then Y ~ N(uy, 03) with uy = a + bux and
oy = |blox. Apictorial display of this situation is given in Fig. 9.1. Now, suppose that
f(x) is not linear, but let us assume that it is only mildly nonlinear within the “most
probable” range of X. That is, f (x) is mildly nonlinear within, say, puy =2.50x, which
is the range over which we are assuming X to be approximately normally distributed.
Then we may approximate f (x) with the best-fitting linear approximation at x = px:
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M

Fig. 9.2 The transformation y = log(x) operating on a normally distributed (or approximately
normally distributed) random variable X having mean px and standard deviation ox produces an
approximately normally distributed random variable Y with mean and standard deviation approxi-
mately given by py = log(uy) and oy = ox/|ux|. The approximating line could also be written
in the form y — 1y ~ (x — jix)/|pix |-

F@) & f(ux) +f (mx) (0 = px)

which is usually called a first-order Taylor series at x = py. (See the Appendix.)
That is, we have

fx) ~a+ bx

witha = f(ux) —f (ux)px and b = f'(ux). Note that a+buyx = f(jx). As aresult,
we have that Y = f(X) is approximately normally distributed, with py = f(ux) and

oy ~ |f'(ux)|ox. O

We now re-state this theorem in a less mathematically precise but more practical
form.

Result: Propagation of Uncertainty in the Scalar Case If X is approximately
N(uy, 0)2() and the function f(x) is approximately linear with f’(x) # 0 near
wx (“near” being defined probabilistically, in terms of ox), then

(1) Y = f(X) is approximately normal, and

(2) the approximate mean and standard deviation of Y are given by puy ~ f(ux)
and oy ~ lf,(,UX)|UX-

Note that both conclusions in this result are important: subsequently we will
rely on the approximate normality in (1) using computer simulation in place of the
analytical formula for the standard deviation appearing in (2). On the other hand, the
formulas are sometimes valuable.
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A detail: Here is a technical point. In the statement of the theorem the
numbers oy, do not have to be the standard deviations of X,,. They can,
instead, be some numbers that will serve as the approximate standard
deviations. In practice, we often do not have the exact standard devia-
tion but we do have a useful approximate value based on large-sample
theory, as in Chapter 8. (I

Hlustration: Log transformation Suppose g(x) = log(x). Then f'(x) = 1/x, so
that if X is approximately normal, with small oy, then Y is approximately normal
with py =~ log(ux) and oy =~ ox/|ux|. The picture is given in Fig.9.2. Careful
examination of Fig. 9.2 reveals that the distribution of Y is not exactly normal (it is
mildly skewed toward low values), but it is close. |

The illustration above, using the log transformation, serves to show how the analyt-
ical calculation works in propagation of uncertainty. As we stressed in Chapter 2, the
log transformation is frequently used in practice to make data distributions more sym-
metrical. An additional benefit of the log transformation comes from its application in
statistical procedures such as analysis of variance (Chapter 13) that compare observa-
tions across groups or experimental conditions, where it is typically assumed that all
the observations have the same variance. Similarly, one of the standard assumptions
in linear regression (Chapter 12) is that the noise or error has the same variance for
all observations. Sometimes, however, this is clearly violated. Suppose it is found,
empirically, that the standard deviation is proportional to the mean. The illustration
above may be used to show that the log transformation removes this effect, making
the variances approximately homogeneous across observations.

Specifically, suppose we have random variables X, .. ., X, for which oy, is pro-
portional to px;, with all 1y, > 0. We may write this using the proportionality symbol
(x) as

ox; X Lx; (913)
and if the proportionality constant is ¢ we have
ox; = ClY;- (9.14)

Now let ¥; = log(X;). Then, by the analysis in the previous illustration, using | iy, | =
1x; because px, > 0, we obtain

gy, = C.
In this context the log transformation is called variance stabilizing. Improving
homogeneity of variances, making them more nearly equal, is an additional motiva-

tion for the log transformation in data analysis. Here is an example.

Example 2.3 (continued from p. 29) As part of their argument that it may be
advantageous to transform high-field BOLD signal infMRI data by taking
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Standard Deviation
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Mean of BOLD Signal

Fig. 9.3 Plot of standard deviation versus mean in BOLD signal across 15 subjects, adapted from
Lewis et al. (2005). The plot is nearly linear, so the standard deviation is very nearly proportional

to the mean.

Standard Deviation
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Fig.9.4 Plotof standard deviation versus mean of log-transformed BOLD signal across 15 subjects,
adapted from Lewis et al. (2005). Here, in contrast to Fig. 9.3, the standard deviation is approximately
constant and shows no fixed relationship with mean.

logarithms, Lewis et al. (2005) provided plots of the standard deviation versus the
mean for the BOLD signal and for the log-transformed BOLD signal. These plots are
shown in Figs. 9.3 and 9.4. The standard deviation is nearly proportional to the mean
for the BOLD signal, but shows no relationship to the mean of the log-transformed
BOLD signal. Because standard statistical procedures assume the standard deviation



234 9 Propagation of Uncertainty and the Bootstrap

is more or less constant regardless of the mean, the authors suggested that taking
logs might be a good idea. O

Example 9.1 Square-root transformation of spike counts in motor cortex When
the variance of spike counts is plotted against the mean it often happens that they are
roughly proportional. That is, the spike counts X1, ..., X, satisfy

0%, O Jux;, (9.15)

at least approximately. (There are many references to this phenomenon; see Shadlen
and Newsome 1998, for some of them.) Let us rewrite (9.15) analogously with
Eq.(9.14), putting it in the form

0%, = cux, (9.16)

for some proportionality constant c. By examining the analysis in the foregoing
illustrations of the log transformation it becomes apparent that a similar trick may
be used here. From the propagation of uncertainty result oy ~ |f'(ux)|ox, together
with (9.16) we have

oy ~ I (ux)le/fix. (9.17)

In order to remove the effects in (9.16) we therefore should find f(x) such that

() o 1/4/x 9.18)

because that will force the factors |f'(xx)| and ,//zx to cancel. The square-root func-
tion does the job: if f (x) = /x then (9.18) is satisfied. For this reason, many authors
have chosen to use square-root transformations of spike counts in their statistical
analyses. In particular, Georgopoulos et al. (2000) reported improvements from a
square-root transformation when fitting spike counts to direction of movement by
linear regression. For a similar reason, Yu et al. (2009) used square-root transfor-
mations of spike counts in studying “neural trajectories” that summarize population
activity in motor cortex during movement planning. (]

We now extend the propagation of uncertainty argument to the vector case, which
involves a multivariate linear approximation (a first-order Taylor series expansion).
The idea is to take a sequence of random vectors X1, Xz, . . . that are approximately
multivariate normal and apply the function f(x) to each of them and, as in the scalar
case above, approximate f (x) using a first-order Taylor series based on the derivative
of f(x). In this multidimensional case the derivative becomes the vector of partial
derivatives. Specifically, for a vector x we let f’ (1) be the vector of partial derivatives
(with respect to all components) of the real-valued function f (x), evaluated at x = p.
That is, the ith component of this derivative is

9
ox,

i X=

(i =
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Result: Multivariate Propagation of Uncertainty If X is approximately mul-
tivariate normal, given by N, (ux, Xx), and the function f (x) is approximately
linear with f/(x) # O near uy (“near” again being defined probabilistically),
then

(1) Y = f(X) is approximately normal, and

(2) the approximate normal mean and standard deviation are given by uy =~
f(ux) and

oy 2 \[f ()T Exf’ (px). 9.19)

Details: To see how we get this, consider the bivariate case. If we have
z = f(x, y) and we apply a first-order Taylor series expansion (a linear
approximation) near a point (xp, yp), we get

N of of
z = f(x0, yo) + a|(m»y0) (x —xo0) + 8_y|("0v>’0)(y —0).

Analogously to what was done in the scalar case, we insert ran-
dom variables X and Y and replace (xo,yo) with (ux, py). With
Z = f(X,Y) we note that the first term in the variance o% = V()
is V(f (x0, y0)) = 0 (because the variance of a constant is 0), and we
then get

of 2 of 2
2 _ (9 L2 < .02
9z = (ax|(x,y)—(ux,uy)) ox ay|(x,y):(ux,uy) Ty

5 of of
T a|(x,y):(/1x,/ty)a_y|(x,>‘):(/tx,/ty)paxgy'

The general multidimensional case is analogous. (]

The result relies on the following theorem.

Theorem Let ;. be an m-dimensional vector, and let f (x) be a differentiable function
for which /(1) # 0. If X1, X2, ..., Xp, . .. is a sequence of m-dimensional random
vectors and X, is a sequence of positive definite symmetric matrices such that for
every nonzero m-dimensional vector w,

_ D
wl B, V2(X, — 1) = N(O, 1),

then, writing Y, = f(X,), we have

W =F ) B o, 1) (9.20)

oy
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oy = ' W Zaf" ().

Proof: Omitted. (]

where

Example 9.2 Neural firing rate selectivity index In single-unit electrophysiologi-
cal studies, neural firing rates are often estimated under two experimental conditions.
Let us label the conditions A and B, and suppose that for each neuron we have many
trials of recordings under each of the conditions. Averaging across the trials gives
sample mean firing rates, X4 and X, which may be compared. However, comparisons
are made across many neurons having quite different firing rates. For this reason,
some sort of normalization is usually invoked. One commonly-used comparative
measure is the index _ _
y=Xa=Xs 921)
Xa+Xp
For example, Roesch and Olson (2004) compared activity of neurons in the
orbitofrontal (OF) cortex under conditions involving large reward for success in
an eye movement task, a large penalty for failure (a time out for the monkey), or nei-
ther (i.e., a small reward and a small penalty). The authors compared the large reward
to the neutral condition using a measure of the form (9.21),with condition A being
large reward and B being neutral. This would identify neurons that tended to respond
to expected reward. It would be possible for a neuron to respond not specifically to
reward but to the importance of success, which the authors termed “motivation.” Both
large reward and large penalty should increase the subject’s motivation to perform
the task.The authors also compared the large penalty to the neutral condition using
a measure of the form (9.21), with A representing the large penalty condition and B
being neutral. By examining many neurons they concluded that neurons in the OF
cortex tend to fire more with large expected reward, and tend to fire less with large
expected penalty. They went on to contrast this with premotor cortex where neurons
tended to fire more with both large expected reward and large expected penalty. They
characterized the results as suggesting that OF cortex was more involved in reward
processing while PM activity tended to reflect motivation.
To put this in the general framework we write X| = Xa, X0 = Xp, X = X1, X2),

and then
X1 — X2

fx) =

X1 —i—xz.

The problem of finding the standard error of Y defined by (9.21) then becomes a
special case of the general problem of finding the standard error of ¥ = f(X) when
the uncertainty in X is known.

In Example 12.3 we discuss an application of the difference index for firing rates
where propagation of uncertainty was used to obtain interesting results.Example 12.3
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is based on Behseta et al. (2009), which provides some details about propagation of
error for the difference index. O

Additional details: We may also propagate uncertainty analytically to
x50 = f(Bo, £1) using Eq. (9.19) with (9.10), which gives the standard
error

SE = /"G, BOTS"(Bo. )

where the partial derivates are

of 1
0 G0 = T,
of o

lGoy = 22
opy o 52

Plugging into the formulas above the values of /3)0, Bl and 3, the logg
intensity at which subject S.S. would have perceived half the flashes
is estimated to have been x50 = 1.921 &+ .019. This agrees with the
approximate 95 % CI obtained by the simulation method. ([

9.2 The Bootstrap

The bootstrap is a very simple way to obtain standard errors and confidence inter-
vals. It has turned out to be one of the great inventions in the field of statistics. In
Section 9.2.1 we explain the essential idea, and we contrast the parametric boot-
strap with the nonparametric bootstrap, elaborating on these two distinct methods
in Sections 9.2.2 and 9.2.3.

9.2.1 The bootstrap is a general method of assessing uncertainty.

The algorithm for simulation-based propagation of uncertainty (p. 225) began with
a random vector X having a known distribution (from which observations could be
generated on the computer). In practice, applying the result on p. 226, X becomes
an estimator of a parameter vector § and its distribution is known approximately;
typically it is a normal distribution. From this, uncertainty can be propagated from X
to an estimator (ﬁ of ¢ = f(0). As illustrated in Example 5.5 on p. 226, an essential
input to the algorithm is the variance matrix of X (in Example 5.5 wehad X = (Bo, ﬁA D)
and used 3 = Iogs (Bo, Bl)_l). But what if it is difficult to compute the variance
matrix of X? The bootstrap instead backs up a step, using the variation in the data
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themselves so that an explicit form for the variance matrix of X becomes unnecessary
(and the variance matrix of X can, in fact, also be obtained from the bootstrap).

Here is the idea. Let us suppose X1, . . ., X, is arandom sample from a distribution
having distribution function Fyx(x). We write this as X; ~  Fx,
independently, for i = 1,...,n. We wish to find the standard error of a scalar
statistic T = T(Xi,...,X,). Notice, as we have said before, that T is obtained
by applying some mapping to the random variables. Let us emphasize this still
further by using the function h(xy, x2,...,x,) to denote that mapping so that
T(X1,X,...,X,) = h(Xy,Xo,...,X,). In the case of ML estimation, for instance,
h(x1,x2, ..., x,) would be the function that gives the value of the MLE for a particu-
lar setof dataxy, ..., x,. In some cases the function a(x1, x2, .. ., x,) is explicit, as in
ML estimation of the binomial propensity p, while in other cases it is implicit—the
result of solving a differential equation, as in ML estimation of (3| in the logis-
tic regression model of Example 5.5 (p. 214). In either situation, however, SE(T')
is defined as the standard deviation of T = h(X1, X», ..., X,;) when the X; random
variables follow the distribution with cdf Fx. Now, if we were able to simulate obser-
vations from Fx on the computer, we could simulate G samples where G is a large
number, proceeding as follows:

1. Forg=1t0o G
Generate a sample Ul(g), Uég), ., UY from Fy
Compute W& = (U, U, ..., UY)

2. Compute W = é Z,Gzl W and then

G
1 —
SEim(T) = o-1 E (W@ —Ww)2.
g=1

Step 1 of this scheme would evaluate the estimator 7 on all the sets of pseudo-data
Ul(g), Uég), . U forg =1, ..., G.Each set of simulated values U{g), Uz(g), o

U,(lg) may also be called a sample of pseudo-data. The squared value SEq;,(T)>
is simply the sample variance of the W9 random variables, and for large G it
would become close to the variance V(T') (because, in general, the sample variance
converges to the theoretical variance, in probability, as in Section 7.3.4). Thus, for
large G we would get SE;,,(T) ~ SE(T).

The only problem with the scheme as we have described it so far is that, in practice,
we don’t know the distribution Fy, so we don’t know how to generate the pseudo-
data. This situation is similar to the one we found in Section 7.3.4 where we could
not compute SE(X) = ox/+/n because we did not know ox. There, we solved the
problem by substituting s for oy, which is often called a plug-in estimate, and this
worked because the plug-in estimate is consistent, i.e.,

sE oy (9.22)
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which is the same as (7.19). The idea of the bootstrap is analogous: we replace
Fx by an estimate of it and then apply the algorithm above. If we have a paramet-
ric model and we use ML estimation to estimate the parameters, we can use the
model with the fitted parameters to generate the pseudo-data U l(g), ce ,(,g). This
scheme is called the parametric bootstrap. Otherwise, we replace Fx by the empirical
cdf F, and draw the pseudo-data U l(g), ..., UY from F,. This is the nonparamet-
ric bootstrap. Both methods extend to cases in which we replace scalar estimates
(e.g., Bl) by vectors of estimated quantities (e.g., (Bo, Bl)).

The parametric bootstrap and nonparametric bootstrap both begin, conceptually,
by estimating the data distribution Fx. The parametric bootstrap uses a specific
assumption, such as normality of the data. The nonparametric bootstrap does not
require any specific data distributional assumption, and this is the sense in which it is
“nonparametric.” The nonparametric bootstrap is also usually easier to implement.
Its disadvantage is that it requires i.i.d. random variables to represent the variation
in the data. There are many cases where the data are not modeled as i.i.d., such as
in regression, time series, and point processes. Sometimes a clever transformation
makes the nonparametric bootstrap applicable (see Davison and Hinkley 1997, for
examples), but in other cases the parametric bootstrap is either the only available
approach or at least a more straightforward methodology to apply. Both forms of
bootstrap use propagation of uncertainty.

9.2.2 The parametric bootstrap draws pseudo-data from an
estimated parametric distribution.

Suppose we assume that a set of data x, x2, ..., x, is a random sample from a
distribution with pdf f (x;|6), and we estimate 6 with the MLE 0. If we assume for the
moment that the parameter 6 is a scalar then, according to the scheme in Section 9.2.1,
we may obtain the standard error of 0 as SEsim(é) by generating pseudo-samples
U l(g ), Uég ), el U,(,y ) from the distribution with pdf f (x;|0). Because we do not know
the value of  we plug in the MLE 6 and instead generate pseudo-samples from the
distribution with pdf f (xilé). This is a parametric bootstrap, and the resulting value
of SEgn, (é) is a parametric bootstrap standard error.

Algorithm: Parametric bootstrap estimate of standard error To obtain the stan-
dard error SE(6) we proceed as follows:

1. Forg=1to G
Generate a random sample U f‘q ) Uég )., UY from the distribution having pdf
fxilh).
Find the MLE 6@ based on Ufg), Uég), L UY and set W9 = 4@

2. Compute W = é Z,GII W and then
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G
~ 1 —
SE(0) = o1 2 (W@ — W2,
9=1

O

Why does the parametric bootstrap work? As in (9.22), the plug-in estimator 0
satisfies

[y (9.23)

which is part of the statement in (8.32). Let us write the cdf corresponding to f (x;|6)
in the form Fy (x|#). From (9.23) it follows that

Fx(xl0) 5 Fx(x|0) (9.24)

for all x (we omit details), which is a formal way of saying that the distribution
of pseudo-data based on the distribution having pdf f (x,-|é) will be close to the
distribution of the data (which has pdf f (x;|0)). Thus, simulating pseudo-data is very
much like simulating new data from the same distribution as the original data.

When 6 is a vector, the same method may be used to estimate the value f () of
any real-valued function f (x). We modify the procedure as follows.

Algorithm: Parametric bootstrap when estimating f (@) Suppose we want to find
the standard error of f(#) and get an approximate 95 % CI for f(0). We proceed as
follows:

1. Forg=1to G
Generate a random sample U l(g ), U2(g )., U from the distribution having pdf
f(xil).
Find the MLE @ based on Ul(g), U2('q), L UY and set W9 = £(09).

2. Compute W = é Zszl W and then

G
SE(f(0)) = ﬁ > (WO —W)2. (9.25)
g=1

In addition, an approximate 95 % CI for f (6) is given by
approx. 95 % CI = (w25, W.975) (9.26)

where w (o5 and w 975 are the sample quantiles defined from the ordered W9 values
asin (9.12).

If we have several functions f](6), /2(6), ..., fr (8) we may obtain approximate
95 % ClIs for each using (9.26) and we can get an approximate variance matrix
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V=V{§H0),L0),....0),

by following step 1, above, for each of f1 (), f>(0), ..., fx(6) to get
i =Ji

forj =1, ..., k, and then setting 1% equal to the sample variance matrix (see p. 90)
of the k-dimensional vectors W) = (Wl(y), el W,Ey)). O

Example 8.2 (continued from p. 193) In discussing the way previous seizures
affect the relationship between spike width and preceding inter-spike interval length
we displayed results based on change-point models. The statistical model assumed
that, on average, Y decreases quadratically with x for x < 7 but remains constant for
x > 7, with 7 being the change point. In Fig. 8.7 we displayed fitted change-points
together with standard errors, which led to the conclusion that the seizure group
reset to baseline average spike widths earlier than the control group. We said that the
standard errors shown in Fig. 8.7 were based on a parametric bootstrap. The specifics
of computing the bootstrap standard errors followed the steps given above: based on
the fitted 7, together with the fitted parameters for the quadratic relationship when
x < 7 and the constant relationship when x > 7 (see p. 408), pseudo-data samples
were generated and for the gth such sample a value 79 was calculated following
the same procedure that had been used with the real data; then formula (9.25) was
applied. O

There are modifications of the bootstrap confidence interval procedure that offer
improvements. These are reviewed by DiCiccio and Efron (1996). Particularly
effective® are the bias-corrected and accelerated (or BC,) intervals, which are often
used as defaults in bootstrap software.

9.2.3 The nonparametric bootstrap draws pseudo-data
Jfrom the empirical cdf.

In Section 9.2.2 we showed how the parametric bootstrap is used to get standard
errors and confidence intervals. The key theoretical point was captured by Eq. (9.24),
which says that, for large samples, the distribution of the pseudo-data based on the
MLE plug-in estimate will be close to the distribution of the data. The idea of the
nonparametric bootstrap is to generate pseudo-data, instead, from the empirical cdf

3 The bootstrap approximate 95 % CI based on percentiles in Eq. (9.26) has the property that as
n — oo the probability of coverage is .95 + 7, where 7, vanishes at the rate of 1/4/n. The BC,
intervals have the analogous property with 7, vanishing at the rate 1/n, which means the theoretical
coverage probability should be closer to .95.
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F,(x), defined on p. 64. The theoretical justification for this is given by the theorem
on p. 145, which says that* for i.i.d. random variables

Fu) £ Fy(). 9.27)

This has a form very similar to (9.24). In words, for large samples, the distribution
of pseudo-data generated from the empirical cdf will be close to the distribution
of the data. The advantage of this nonparametric formulation is the reduction of
assumptions: we do not have to rely on a specific parametric model, but rather can
assume only that we are dealing with an i.i.d. sample.

How do we generate observations from the empirical cdf F,,? This turns out to be
very easy. According to its definition (on p. 64), the empirical cdf assigns probability
% to each observation in the sample x1, x2, . . ., x,. This means that in order to draw

a single observation from the distribution F 1w, we randomly select one of the values
X1, X2, ..., Xy, with each value having probability % In order to draw a set of pseudo-
data, we simply repeat this process n times. In doing so the procedure is likely to
produce repeats: we are sampling the values xp, x2, . .., x, each time; this is called
sampling with replacement; we “replace” each value after sampling it, before drawing
again from all the values x1, x7, . . ., x,,. Using standard statistical software it is easy
to draw samples with replacement from a set of data.

Because we are sampling the sample of data, the process is often called resampling.
Bootstrap resampling is beautifully simple. We define the algorithm in terms of any
consistent estimator 7' of an unknown quantity ¢. Here, ¢ could be defined in terms
of a parameter vector ¢ = f(6) or it could be defined from the data distribution
Fx without reference to any parameter vector (e.g., ¢ could be the median of the
distribution Fx). The algorithm is as follows:

Algorithm: Nonparametric bootstrap for an estimator 7" of ¢ To get a

nonparametric bootstrap approximate 95 % CI for ¢ from a sample x1, . . ., x, based
onT = h(Xiy,...,X,), and to get the nonparametric bootstrap SE(T'), we proceed
as follows:

1. Forg=1t0o G

Generate a sample U fg >, Uég), R U,gg) by resampling, with replacement, the
observations xi, ..., X;.

Compute 79 = h(Ul(g), Uég), L U,

4 Actually, a stronger result is needed, and it is stated in terms of the supremum (also known as
the least upper bound). The supremum of a set of numbers S(x), written sup, S(x), is the smallest
value ¢ such that S(x) < c¢. (Thus the alternative name, “least upper bound.”) It is used when S(x)
is bounded but does not reach a maximum across the range of x. The stronger version of the result
in the theorem is that the convergence is uniform in the sense that

A P
sup |[Fp(x) — F(x)] = 0.
X

This holds when F (x) is a continuous cdf, and in many other cases.
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2. Set 0o, 0@ ... 0© equal to the ordered values of 7D, 7@ | TO) 40
that O is the smallest 79, 0@ is the second smallest, etc., with 0@ being
the largest.

If .025G is an integer, set 7,25 = .025G and if .025G is not an integer set 7 o5
equal to the smallest integer larger than .025G.

If .975G is an integer, set r975 = .975G + 1 and’ if .975G is not an integer set
7,975 equal to the smallest integer larger than .975G.

Define

toos = 0r025)

to7s = 0099, (9.28)

The approximate 95 % CI for ¢ is (Z.025, .975)-
3. Compute T = é Zlel T and then

G
1 -
SE(T) = o1 § (T —T)2.
g=1

O

This extends immediately to the case in which each X;, and thus each U i(g ), is a
random vector; the algorithm above is unchanged. As with the parametric bootstrap
(see p. 241), modifications to the percentile-based intervals can offer improvements
and the bias-corrected and accelerated (or BC,) intervals are often used as defaults
in bootstrap software.

In practice, the parametric and nonparametric bootstraps often produce very sim-
ilar confidence intervals and standard error assessments, so that the choice between
them may depend on convenience. There are important examples (e.g., in time series)
where the data do not form an i.i.d. sample and it can be difficult or impossible to
use the nonparametric bootstrap, but in many situations it is easy to take advantage
of theoretically identical replications, and resample the data.

Example 9.2 (continued from p. 236) In the SEF example introduced in Chapter 1
there were two experimental conditions, and the problem was to compare the firing
rates of a neuron under each of these conditions based on a limited number of trials.
In a particular time interval we found mean firing rates of 48 spikes per second for the
spatial condition versus 70 spikes per second for the pattern condition. As we have
noted previously, because studies involve many neurons with varying firing rates, it
is common to examine the difference index

5 With this convention, if G = 1,000 then there are 24 values smaller than r o5 and 24 values larger
than r.975. If G = 100 there are 2 values smaller than r 5 and 2 values larger than r 975.
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K%

Xa+Xp
In Section9.1.1 we discussed generation of a standard error for 7" using propagation
of uncertainty based on the asymptotic normality of X4 and X. An alternative would
be to apply the nonparametric bootstrap procedure given above. These would give
very similar results, but let us make sure it is clear how the bootstrap would be
applied. For each g in step 1 we would first draw a random samples of size 15 from
the 15 firing rates under the spatial condition and another random sample of size
15 from the 15 firing rates under the pattern condition; we would compute the two
sample means to get )_(/gg ) and X ég ); then we would apply the difference index formula
to get

v(@ _ w9
yo _ X2 —Xs
7@ . v@’
X, + Xy
Having obtained Yyh y@ . y© (where we would take something like G =
1,000), we would go to step 2 and, to find an approximate 95 % CI, we would order
the values YV, ¥@ . Y@ and compute the resulting 2.5 and 97.5 percentiles.
In Step 3 we would compute the mean and apply the formula for the standard error.
]

Example 9.3 (continued from p. 187) As we said in Section 8.1, one of the ques-
tions asked by Olson et al. was whether SEF neurons tend to reach their maximal fir-
ing rate later under one of the experimental conditions (the “pattern” condition) than
under the other (the “spatial” condition). To answer this, each neuron’s PSTH, under
each condition, was smoothed as in Fig. 8.3 (with methods described in Chapter 15),
and then the time #y,,x at which the maximum occurred was computed. This was
regarded as an estimator of the time 7 of maximal firing rate. Olson et al. applied
bootstrap methods. To get a bootstrap confidence interval for 7 the nonparametric
bootstrap algorithm above can be applied: we set ¢ = 7 and in step 1, for each g,
the individual trials (each of which provides a spike train, as in Fig. 8.3) would be
resampled, then the resulting pseudo-data would be used to get a PSTH, this PSTH
would be smoothed, and a value 79 = tr(ﬁa)x would be computed; then step 2 would
be carried out. ]

The point to be taken from these examples is that the nonparametric bootstrap,
like the parametric bootstrap, can produce confidence intervals relatively easily, even
for complicated estimation procedures: in step 1 of the algorithm we simply re-run
the estimation procedure from start to finish using each set of pseudo-data rather than
the original data. Step 2 is then accomplished with just a few software commands.
When the data may be considered i.i.d. samples the nonparametric bootstrap is typ-
ically even easier than the parametric bootstrap because resampling the data may be
accomplished with a single software command.
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The nonparametric bootstrap has been studied extensively, and has been shown
to work well in a variety of theoretical and empirical senses. For more information
about the bootstrap, see Efron and Tibshirani (1993) and Davison and Hinkley(1997).

An important caveat is that arbitrary shuffles of the data do not necessarily produce
bootstrap samples. The key assumption is independent and identically distributed
sampling of X1, ..., Xj,, so that the key result (9.27) applies. Many problems may
be put in this form, but the nonparametric bootstrap only applies once they are.

9.3 Discussion of Alternative Methods

At the beginning of this chapter we considered the data on perception of dim light
to illustrate propagation of uncertainty according to the diagram in (9.4). We went
on to discuss analytical propagation of uncertainty, simulation-based propagation
of uncertainty, and then both the parametric and non-parametric bootstrap methods
of obtaining uncertainty about the target estimand, in this case x50, the intensity at
which a flash of light is perceived 50 % of the time.

The choice among these methods is largely a matter of convenience. It is often
easy to obtain the variance matrix of the parameter MLEs and then simulation-based
propagation of uncertainty is easy to implement. Sometimes it is also easy to get
the derivatives analytically, and the analytical approach becomes an option. The
percentile method of getting confidence intervals from simulation becomes more
accurate than that based on £2SE when the nonlinearity in the target estimand as a
function of the parameters is pronounced (relative to the uncertainty in the parameters,
as explained in Section9.1.2). With i.i.d. data the nonparametric bootstrap is very
easy to apply, and is often the preferred method. But many examples involve non-
i.i.d. data. In regression or time series contexts, for instance, nonparametric bootstrap
methods require modification and may be difficult or impossible to apply (this is the
case for some point process models of neural spike train data). In such settings the
parametric bootstrap is often used.

These methods can produce valid 95 % confidence intervals, which cover the
estimand 95 % of the time, when the statistical model is correct and the sample size
is sufficiently large. The statistical model used with the nonparametric bootstrap, in
the form we have presented, assumes i.i.d. sampling but is otherwise very general.
All of the methods aim to provide an appropriate spread of the confidence interval
about the estimate, which is what leads to the correct coverage probability. The bias
in the estimator is ignored because, for sufficiently large samples, it becomes vanish-
ingly small. Furthermore, as we noted in Chapter 8, the bias squared often becomes
vanishingly small faster than the variance becomes vanishingly small, so that the
MSE is dominated by the variance. In practice, however, it is worth remembering
that nontrivial bias in the estimator can greatly diminish the coverage probability
of a putatively 95 % confidence interval. If a statistical model is grossly incorrect
because, for example, some important explanatory factor has not been considered,
then these procedures will not perform well. For reasonably good models bootstrap
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methods are remarkably reliable, with large samples. Of course, with small samples
the coverage probability can be highly inaccurate but, in such cases, there may be
too little information to draw useful statistical inferences.



Chapter 10
Models, Hypotheses, and Statistical
Significance

The notion of hypothesis is fundamental to science. Typically it refers to an idea that
might plausibly be true, and that is to be examined or “tested” with some experimen-
tal data. Sometimes, the expectation is that the data will conform to the hypothesis.
In other situations, the hypothesis is introduced with the goal of refuting it. In either
case, however, variation and experimental noise prevent a perfect determination of the
veracity of the hypothesis. In reality, the hypothesis will at best predict only approx-
imately the results of an experiment. But then, one might ask, in order to be judged
favorably, how close to the data should a theoretical prediction be? Development of
a systematic method of answering this question, the chi-squared goodness-of-fit test,
was one of the great advances in the early part of the twentieth century.

We describe chi-squared tests in Section 10.1. The idea is to use a statistical
model to represent the theoretical predictions of the hypothesis. In this setting the
model embodies the hypothesis, and we usually speak of assessing the fit of the
model, as opposed to the accuracy of the hypothesis. The statistical model assigns
probabilities to possible data outcomes, and if the experimental data turn out to be
very rare—according to the model—then the model is deemed a poor fit. Because
the chi-squared procedure analyzes the discrepancy between model prediction and
data outcome, it might better be called, as John Tukey suggested, a “badness-of-fit”
test. On the other hand, it is often applied as a way of checking that a model fits
reasonably well—the expectation, or hope, being that it does.

When, instead, there is great interest in the possibility that the hypothesis may be
wrong, we usually label it a null hypothesis, and if the data provide sufficient evidence
against the null hypotheses we speak of rejecting it. Ronald Fisher introduced the
general concept of p-value, with p standing for probability, to quantify the rarity of
the data outcome under a null hypothesis. The notion is that when p is small, the data
outcome is rare under the hypothesis, and thus casts doubt on the hypothesis. Fisher
worked out specific procedures for obtaining p-values in many important problems,
and his methodology became standard practice. We introduce p-values in the context
of chi-squared tests, in Section 10.1.3, and we discuss the general framework and
methodology in Section 10.3.

R. E. Kass et al., Analysis of Neural Data, 247
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_10,
© Springer Science+Business Media New York 2014
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The null hypothesis and p-value are only part of the standard approach to testing
hypotheses. An additional idea is to introduce a specific alternative hypothesis, which
has the potential to replace the null. In the 1930s Jerzy Neyman and Egon Pearson
provided a theoretical framework that explicitly included an alternative hypothesis.
Specifically, Neyman and Pearson defined type one error (usually written Type I) as
the probability of incorrectly rejecting the null hypothesis and type two error (Type
II) as the probability of incorrectly rejecting the alternative hypothesis. The theory
considers both kinds of errors, and analyzes statistical hypothesis tests according to
the probabilities of making these errors. We go over the fundamental elements of
the Neyman-Pearson framework in Section 10.4, and we also discuss several differ-
ent points of view about the statistical assessment of hypotheses. The terminology
hypothesis test sometimes connotes application of the Neyman-Pearson framework.
In our discussion here we use “hypothesis test” and significance test, interchangeably,
without meaning to imply any particular theoretical posture.

It is unconventional to present goodness-of-fit tests before other hypothesis tests.
Our preference for this ordering! is due to the smaller number of concepts and issues
that arise in goodness-of-fit testing: from a pedagogical point of view, in this context
it is easier to concentrate on the logic of p-values. We discuss other kinds of null
hypotheses in Section 10.2.

10.1 Chi-Squared Statistics

We have described several studies where a theoretical model seemed to fit the data
well and was then used for scientific inference. For instance, the Hardy-Weinberg
binomial model fit well the nicotinic acetylcholine receptor and ADHD data in
Example 5.1, the Poisson distribution was used to fit quantal response in synaptic
transmission data in Example 5.6, the normal distribution fit well the background
noise in MEG in Example 1.2, and the exponential and gamma distributions were
used to fit ion channel opening duration data in Example 3.5. Previously we judged fit
simply by looking at tables and graphs, informally. The chi-squared procedure pro-
vides a probabilistic quantification of the observed discrepancy between theoretical
prediction and data.
The essence of goodness-of-fit assessment is as follows:

(1) We define a statistical model that assigns probabilities to potentially-observed
outcomes;

(i) We compute the discrepancy between the data values and the values obtained
from the fitted model; and

! This order of presentation is the one followed by Fisher in his immensely influential Statistical
Methods for Research Workers, but it seems to have been abandoned later in the twentieth century
as the Neyman-Pearson approach became dominant.
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(iii)) Assuming the data were generated by the hypothetical model, we determine
whether the observed discrepancy would be considered rare; if observing such
a large discrepancy constitutes a sufficiently rare event, then we consider this
to be evidence that the model does not hold.

The discrepancy between observed data and fit is evaluated using a statistic, here
a chi-squared statistic, and its rarity is judged by comparing the observed value to
a suitable probability distribution, here a chi-squared distribution, according to the
p-value. The chi-squared statistic is used when each observation may be considered
to arise as one of several possible categories.

10.1.1 The chi-squared statistic compares model-fitted
values to observed values.

To assess the fit of a theoretical model to a set of data we begin with the obvious idea
of examining the discrepancy between the model predictions and the data values.

Example 5.1 (continued, see p. 107) In Chapter5, on p. 107, we displayed data
from a study of genotype frequencies for the nicotinic acetylcholine receptor subunit
a4 gene among children with ADHD and their parents. The table of frequencies (for
aT — C exchange in one base in the gene sequence) among the 136 parents in the
Kent et al. study is given again below:

TT CT CC
Number 48 71 17
Frequency 35 52 13
Hardy-Weinberg probability .38 47 15
Hardy-Weinberg expected number 51.7 63.9 20.4

We noted previously that the frequencies and Hardy-Weinberg probabilities are quite
close. We have now added a fourth line in the table to indicate the predicted or
“expected” number of each genotype. To judge the fit of the model we evaluate the
discrepancy between the values in the first and last lines of this table. (I

In Example 5.1 there are many possible ways to measure the discrepancy between
the vector of observed values (48, 71, 17) and the vector of theoretically-expected
values (51.7, 63.9, 20.4). The most common assessment is based on the chi-squared
statistic. Let us denote observed values by O and theoretically-expected values by
E, so that the first pair of O and E values are 48 and 51.7, the second pair are 71 and
63.9, and the third pair are 17 and 20.4. The chi-squared statistic is

O —E)?
o = Z—( - ) (10.1)
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where the sum is over all pairs of values, in this case the three pairs, and we have
used the subscript on X%hs to indicate that it is calculated from the observed data. A
large X%hs indicates a failure of the model to fit the data. But how do we know when
ngs should be considered large? The O values surely will, by chance fluctuation,
deviate from the theoretical E values. The key is that when the theoretical model is
valid the magnitude of this chance fluctuation becomes predictable.

To motivate ng s let us note that each O value is a count, counts are usually
modeled as Poisson random variables, and for a Poisson random variable Y we have
V(Y) = E(Y). A reasonable way to combine the counts is to standardize each O
value by subtracting the corresponding expected value, which we here take to be E,
and dividing by the standard deviation which, if the observed value were Poisson
would be the square root of the expectation, here /E. Each contribution (O — E)2/E
may thus be considered the square of a standardized variable. It turns out that, for
large samples, these standardized variables approximately follow a standard normal
distribution. Recalling that the chi-squared distribution arises as a sum of squares
of standard normal variables it then becomes at least plausible that a chi-squared
distribution might be used to judge the magnitude of the chi-squared statistic. This
argument may be made rigorous. We comment further on theoretical aspects of the
method in Section 11.1.4.

To obtain the p-value for the chi-squared procedure we consider a random vari-
able X having a X,% distribution and evaluate p = P(X > ngs). This provides an
approximate p-value (approximate because the chi-squared statistic approximately
follows a chi-squared distribution, for large samples). We discuss the selection of
v in Section 10.1.2. If p is sufficiently small we consider the observed value to be
rare. Typically, p < .05 is taken as modest evidence and p < .01 is taken as strong
evidence that the model doesn’t fit.

Example 5.1 (continued from p. 249) For the ADHD data we get

, (85172 (71-63.9)7 (17 —20.4)

_ — 1.62.
Xobs 517 63.9 204

We compare this to a X% distribution by taking X to be a random variable having a X%
distribution and then computing P(X > 1.62). We find P(X > 1.62) = .20, so that
an approximate p-value is p = .20. This indicates a good fit of the Hardy-Weinberg
model to these data. g

10.1.2 For multinomial data, the chi-squared statistic follows,
approximately, a x* distribution.

In Example 1.4 we introduced a binary random variable to analyze the variation
across outcomes where each outcome was one of two possibilities, “burning house”
or “non-burning house.” In Example 5.1, we have a similar situation, except instead
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of two possible outcomes we have three: each of the 136 subjects contributed a geno-
type that was classified as 77T, TC, or CC. As discussed on p. 119, this leads to the
assumption of a multinomial distribution across the three categories of data, which
is the fundamental assumption for the application of the chi-squared test on p. 250.
More generally, the theoretical starting point of every chi-squared test is the idea
that the given set of counts may be considered an observation of a multinomial ran-
dom vector. Here is a particularly straightforward example where the genetic model
completely specifies the set of multinomial probabilities, leaving no free parameters.

Example 10.1 Allele frequencies in fruit flies Some basic genetic investigations
have involved the “vestigial” (vg) and “ebony” (e) strains of fruit flies. The vestigial
flies have small wings so that the animal can not fly, while the ebony flies are very dark
in color. Kempthorne (1957, p. 131) cites an investigation involving cross breeding of
vg with e flies. According to Mendelian equilibrium theory, the four possible results
(denoted +, vg, e, vge) should be in the proportions 9:3:3:1. The four respective
frequencies among 465 flies were 268, 94, 79, 24. The theoretical proportions are
(.563, .188, .188, .0625) while the observed proportions were (.576, .202, .170,
.0516). For instance, .576 = 268/465. In this case, we model the vector of numbers
of phenotypes among 465 flies as a M (n, p1, p2, p3, p4) distribution, where n = 465
and p; is the probability that a given fly would be of type +, p> the probability the
fly would be of type vg, etc. We would assume that the phenotypes are independent
of each other across flies (so that knowing one fly’s phenotype does not change
another fly’s phenotype probability distribution), and each has the same set of four
probabilities. Thus, under the model, the vector (268, 94, 79, 24) is treated as if it
were an observed value of the multinomial random vector. (]

In applications of chi-squared methodology each O is a count associated with a
particular data category. In Example 5.1, for instance, the categories were 7T, CT,
CC. The number of categories is important in determining the degrees of freedom v.
The value to use for v depends on the problem. If we take the number of categories
to be k and the number of estimated parameters to be m then v is found from the
formula

v=k—1-—m. (10.2)

The degrees of freedom, often abbreviated d.f., may be considered the number of free
parameters. The idea and terminology of degrees of freedom come from mechanics:
we count the number of dimensions in which the random variable is “free to move,”
often beginning with some apparent maximal number of dimensions and subtracting
off constraints. The examples below should help clear this up, and there are general
formulas for each type of problem. In Eq. (10.2) we begin with a multinomial distri-
bution that has k categories with probabilities py, ..., px. Because these sum to 1,
there are only k — 1 free parameters. Then, after estimating m parameters for the null
hypothetical model we are left with v = k — 1 — m free parameters.

Example 10.1 (continued from p. 251) Returning to the allele frequencies example,
the “observed values” O are 268, 94, 79, 24. The “expected values” E values must be
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calculated. If the ratios were 9:3:3:1, the corresponding proportions would be 9/16,
3/16, 3/16, 1/16. With 465 flies, We would therefore expect to see % -465 = 261.6,

7465 = 87.2, 3 -465 = 87.2, 1¢ - 465 = 29.1. The O and E values are compared

and summarized by the chi-squared statistic using (10.1):

, (268 —261.6) (24 —29.1)* 534
Xobs = 2616 201 T
Here there are four categories, so three degrees of freedom. (I

Just as the binomial may be approximated by a normal distribution for large n,
so too may the multinomial be approximated by a multivariate normal for large n.
This leads to the general result that the chi-squared statistic follows, approximately,
a chi-squared distribution.

Result Suppose X ~ M (n pl, P2, ..., pr) and we have a statistical model
p1 = p10), p2=p2 ), . = pr(0) based on an m-dimensional parameter
vector . Let § be the MLE and let ¥, be a random variable representing x>
according to (10.1), i.e.,

obs

Zk:( —np,(a)) : (10.3)

i=1 np; (9)

Then, assuming suitable general conditions on the statistical model, as n — oo
we have
D
Yo = X2 (10.4)

wherev =k — 1 —m.

A detail: The “suitable general conditions” on the model are that the
mapping 0 — (p1(0), p2(0), ..., pr(6)) must be one-to-one and dif-
ferentiable with the derivative matrix having rank m. (]

In practice, the most important input to this theoretical result, which leads to the
calculation of the p-value, is the assumption that the data may be represented by a
multinomial random vector. As in the binomial case, the multinomial assumption
will make sense when it is reasonable to assume the classification variables are
independent across observations (across subjects in Example 5.1). Thus, as before,
it is the judgment of independence that must be considered most carefully.
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10.1.3 The rarity of a large chi-squared is judged by its p-value.

The conventional cut-offs for the p-value are .05 and .01, with p < .05 and p < .01
reflecting modest and strong evidence. These two particular numbers were handed
down from Fisher and are now imbedded in standard practice, but they are some-
what arbitrary and should be considered rough guides rather than finely tuned cri-
teria.? Articles in the literature often include statements in the form p < .05, with
the result typically being called statistically significant, or p < .01, which may be
labeled highly significant. However, it is not unusual to obtain a very small p-value
(e.g., 10™%), which is quite different than .01. Rather than saying p < .01, it is
preferable to report the p-value, and it is also good practice to say what statistic was
computed, e.g., in Example 5.1 on p. 250, one would report p = .20 for chi-squared
on one degree of freedom.

Example 10.1 (continued from p. 251) We use the computer to find p = P(X >
2.34) =1—P(X <2.43) where X has a X% distribution. We obtain P(X < 2.43) =
4951 and therefore p = .50. This p-value is large, much larger than the conventional
values .05 and .01. Thus, data that deviate from expected values as much as these
would not be rare and we conclude there is a good fit of the theoretical model to
these data. 0

Example 5.4 (continued from p. 111) In the radioactive disintegration example,
the statistical model is that the data are a sample from a P(\) distribution. Here, we
have 8 = )\ so that p;(0) = p,(/\) The O and E values are given in Table 10.1. The E
values are obtained as E; = np,(/\) where pi(\) = P(X =1i) = e N /i! and we then
substitute A = A = x. Thus, after computing )\ = X = 3.87 we obtain the values
pi(Q) = e_/\/\’ /i!, which appear in the theoretical statement (10.3) and the values
E; = np; (/A\), which appear without the subscriptiin (10.1). For example, the expected
number of times we would observe one particle emitted is 2608 times the probability
of getting one particle emitted, i.e., 2,608 - ¢=3-87(3.87) = 210.523.

Calculation of (10.1) gives ngs = 12.9 and here therearev = 11 — 1 —-1=9
degrees of freedom: we start with 11 — 1 = 10 degrees of freedom, because there
are 11 categories, but we lose one degree of freedom from estimating \. From the
chi-squared cdf we find that when X ~ X%O’ P(X > 12.9) = .17. Thus, p =
.17 and there is no evidence of departure from the Poisson distribution despite the
large sample size, which would have given an opportunity to detect even a small
departure. (]

A detail: A technical point arises in Example 5.4, above, from the
observation that the number of categories here is actually somewhat
arbitrary: we chose to use 11 categories, but could have chosen a
different number. As a result, the large-sample distribution is not the
claimed chi-squared, but a slightly different approximation (a pair of

2 Our characterization of p < .05 as “modest evidence” is consistent with Fisher’s view. In particular,
he felt p = .05 was inconclusive. See the footnote on p. 298.
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Table 10.1 Fit of Poisson distribution to the counts of a-particle emissions from a specimen during
2,608 intervals.

Observed counts Poisson fitted counts
0 57 54.399
1 203 210.523
2 383 407.361
3 525 525.496
4 532 508.418
5 408 393.515
6 273 253.817
7 139 140.325
8 45 67.882
9 27 29.189
> 10 16 17.075

bounds) may be used for the p-value. In this case, using 11 categories,
the p-value would be somewhere between those obtained for 9 and 10
degrees of freedom. This would make the p-value a bit bigger than
our reported p = .17. Many texts emphasize this technicality but, for
models such as these, with a single parameter, it has little effect on the
conclusions. O

10.1.4 Chi-squared may be used to test independence
of two traits.

Many studies seek to evaluate the association of two traits. In genetic epidemiology,
for instance, it is useful to know whether a particular genotype may be associated
with a disease. When the occurrence of each trait is considered a random variable, the
traits will fail to be associated if the two random variables are independent. Thus, the
issue becomes one of evaluating the fit of a statistical model based on independence.

Example 10.2 Alzheimer’s and APOE As part of a study of markers for late-onset
Alzheimer’s disease, Yu et al. (2007) looked for the presence of the 4 allele of the
apolipoprotein E gene (APOE), which had previously been associated with increased
risk of Alzheimer’s, among both Alzheimer’s patients and controls. The following
table summarizes some of the data they presented from 193 Alzheimer’s patients
(AD) and 232 controls:

€4 absent &4 present
AD 58 135
Controls 162 70
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Atfirst glance it appears that the g4 allele is far more prevalent among the Alzheimer’s
patients than among the controls—and that this is probably not due to chance. This
may be verified using a x? test. (]

Example 10.2 involves what is called a two-by-two table (written 2 x 2). In general,
the probabilities for a 2 x 2 table may be represented as follows:

1 absent 1 present

2absent [p1) P12 Pl
2 present |pai P22 P2+
P+1 P+2

Here the subscript ij corresponds to the (i, j) element in the table, meaning that p;;
is the probability in row i and column j. For example, poo is the probability that a
random individual has both trait 1 and trait 2 (e.g., in Example 10.2 both €4 and AD).
The probabilities along the margins of the table come from summing the probabilities
along rows or columns. For example, p12 = p12 + p22 is the probability that the
individual has trait 1 (e.g., €4) and pr+ = p21 + p22 is the probability that the
individual has trait 2 (e.g., AD). Now, if independence holds, then the probability of
having both trait 1 and trait 2 must equal the probability of having trait 1 times the
probability of having trait 2, i.e., p»2 = p24+p+2. Filling out the rest of the table of
probabilities the same way gives the independence model

Pij = Pi+P+j

for all i, j.

In order to apply ngs we need to compute the expected values, each of which
is the number of individuals we would expect in a particular entry of the table. In
principle, the expected value for the (i, j) entry in the table is E = n-p;; = n-p;p4;
for each of the four p;;’s, but we don’t know the values of p;y and py;. Here we
resort to the standard “plug-in” method: we estimate these marginal probabilities
from the data. For instance, in the Alzheimer’s example there are a total of 425
individuals so we use p14+ = (58 4 135) /425, for the probability of having AD, etc.
(P24 = (162 +70)/425, p11 = (58 4+ 162) /425, pyo = (135 + 70) /425).

This estimation process causes the chi-squared distribution to lose degrees of
freedom, as in Example 5.4. In general, if there are » rows and ¢ columns we begin
with rc — 1 degrees of freedom: there are rc probabilities in the table but they must
sum to 1, which means we lose one degree of freedom. We then lose another r — 1
degrees of freedom for estimating row marginal probabilities and ¢ — 1 for estimating
column marginal probabilities. This leaves rc—1 —(r—1) —(c—1) = rc—r—c+1 =
(r — 1)(c — 1) degrees of freedom.

Example: 10.2 (continued from p. 254) In this example r = 2 and ¢ = 2 so there
is one degree of freedom. Entering the data into an appropriate statistical software
package produces Xibx = 65 on one degree of freedom, and p = 7 x 1076, which
is truly tiny. Clearly there is an association here. (]
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Software used to get chi-squared results, as in Example 10.2 above, typically
applies a variation of the chi-squared statistic that includes a “continuity correction.”
This adjusts the statistic slightly to make the continuous chi-squared distribution
match more closely the distribution of the discrete chi-squared statistic in small
samples. It is also possible to use so-called “exact” methods, which avoid the x>
distribution altogether. While such methods are commonly applied, it is important
to keep in mind that we are usually looking for clear and compelling results, either
not significant or strongly significant, and borderline cases should be interpreted as
such. That is, when the continuity correction—or the distinction between exact and
approximate methods—is important to conclusions, this signals a case in which a
careful investigator ought to recognize the ambiguity of the data.

Example 10.2 (continued, introduced on p. 254) The Alzheimer’s and APOE data
may be examined further to see if there is a difference between men and women.
Here is the table for the AD patients:

€4 absent 4 present
Women AD 32 70
Men AD 26 65

The proportions appear to be about the same, and this time we get x> = .071 again
on one degree of freedom, and p = .79, so there is no evidence of any discrepancy
in €4 prevalence among the male and female AD patients. (]

One final subtlety should be noted. The logic we have described here assumes that
all subjects have the same underlying (theoretical) probabilities p;;, as would occur
if each subject in the study were drawn randomly from a population of potential
subjects. That could be a good rough description of what happened in the Alzheimer’s
study. However, often a set of diseased patients is selected and then a set of controls
is chosen separately. In epidemiology this is called a case-control study. It generates
a different statistical model, but it turns out to give the same x? test. (The cited study
did not say which way the subjects were collected.) We return to the issue of data
collection strategies and their effects on scientific inference in Section 13.4.

10.2 Null Hypotheses

10.2.1 Statistical models are often considered null hypotheses.

In talking about assessing fit we have used a “hypothesized model,” i.e., the model
being fit to the data. The standard terminology is to take such a model to be the “null”
model, or the null hypothesis, often written as Hy. Sometimes the null hypothesis
completely specifies the probability distribution, as in Example 10.1 (p. 251). In
other cases it merely identifies a family of distributions, as in the a-particle emissions
example (where there is still a free parameter \), and in the Alzheimer’s and APOE
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example (where there remain two free parameters pi4+ and p41). The “null” here
indicates that such a hypothesis is often used with an eye toward collecting evidence
against the hypothesis, the implicit understanding being that Hy would eventually be
replaced with something that could describe such data better.

10.2.2 Null hypotheses sometimes specify a particular value
of a parameter within a statistical model.

Another possibility is that the null hypothesis specifies a particular value of a para-
meter within a family of distributions.

Example 1.4 (continued, see p. 13) In the investigation of blindsight in patient P.S.
the possibility that P.S. was guessing corresponds to taking p = .5 in the binomial
model. We write this as X ~ B(17, p) with Hy: p = .5. One way to test this is
with x2. We take the observed values to be 14 and 3 (for the two categories “non-
burning preferred” and “burning preferred”) and take the expected values to be npg
and n(1 —pg), withn = 17 and pg = .5, which gives npy = 8.5 and n(1 —pg) = 8.5.
The chi-squared statistic is then

5, (14-85)?2 (3-8.5)?
Xobs 85 1 85

Here we have two categories and 0 estimated parameters, so ¥ = 1. Comparing 7.12
toa X% distribution gives a p-value of p = .0076, which? is strong evidence against
Hy. ([l

In Example 1.4 there is a simple null hypothesis and a chi-squared procedure to
test it. Because the sample size there is small, however, the continuity correction
mentioned on p. 256 would change the p-value somewhat. We will obtain a more
accurate p-value for Example 1.4 on p. 267.

10.2.3 Null hypotheses may also specify a constraint on two
or more parameters.

In the blindsight example (p. 257) we had a single binomial and tested Hyp: p = .5.
Now suppose we have two binomials, X ~ B(ny, p1) and X ~ B(na, p2) and we
wish to test Hy : p; = p». This is a special case of a widely-applied type of null
hypothesis, namely one that corresponds to a constraint on some parameters in a

3 In this example we use the notation p in two different ways: at first p stands for the probability
that P.S. would choose the non-burning house, and then later it stands for the p-value. These are
both such common notations that we felt we couldn’t change either of them. We hope our double
use of p is not confusing.
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statistical model. In the case of two binomials, Hy : p; = p» may be assessed by
comparing X(z) s 0@ X% distribution: we begin with two free parameters p; and p, and
lose a degree of freedom due to the constraint. In fact, this special case of x%b ; turns
out to be mathematically equivalent to the test of independence examined above.

Example 10.2 (continued, see p. 254) On p. 256 the way the Alzheimer’s data
were collected would affect the way the statistical problem would be posed. If AD
patients and controls were collected separately, then we would examine whether the
probability of having the £4 genotype was the same in each population, i.e, we would
have two binomials and would test Hy: p; = p». To repeat, this test may be carried

out using ngs’ exactly as done previously, on p. 255. 0
In a similar way, data from two independent samples X1, Xi2, ..., X1,, and
Xo1,X22, ..., X2, may be used to test the hypothesis that the corresponding means

w1 and pp are equal, Hy: pup = pa.

Example 1.1 (continued from p. 3) In the case of the SEF neuronal activity under
two conditions there were 15 trials in both experimental conditions, generating mean
firing rates of 48 spikes per second for the spatial condition and 70 spikes per second
for the pattern condition across the time interval from 200 to 600 milliseconds after
the onset of the cue. The null hypothesis Hy: ©11 = p» would say that the two mean
firing rates are equal. g

The standard statistical procedure for testing Hy : 1 = pp is called a ¢-test,
because it relies on the ¢ distribution. We discuss this in Section 10.3.4. Example 7.2
provides another example.

Example 7.2 (continued from p. 167) For the test-enhanced learning study we
previously showed how to get a confidence interval for p11 — po, where p and pp
were the mean scores within the SSSS and SSST conditions. As an alternative we
may test the null hypothesis Hy : p1 = po, which says that the theoretical mean
scores in the SSSS and SSST conditions are identical. We present results based on
the ¢-test on p. 265. ]

10.3 Testing Null Hypotheses

10.3.1 The hypothesis Hy: . = g for a normal random variable
is a paradigm case.

We have already noted that a null hypotheses may specify a particular value of a
parameter. To establish intuition based on a widely-used form of test statistic, let us
return to the prototypical situation we considered in Section 7.3.2, where we have a
sample X1, ..., X, from a N (u, 02) distribution with o known. To test Hp: pt = po
we may form the ratio
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7= X—"Ho (10.5)
SE(X)
where B
SEX) = o//n (10.6)

is the standard error of the mean, as in Eq. (7.9). The data-based analogue, computed
from a sample xp, ..., x,, is

X — po

SE(x)

Zobs = (10.7)

where X is the sample mean computed from the data and SE(xX) = o/+/n. (The SE
value is the same for the data-based mean and its theoretical counterpart because
the formula in this simple case does not depend on the actual values of the data.)
If the magnitude |z,ps| is sufficiently large we would say there is evidence against
Hj. To analyze this procedure we return to the theoretical statement (10.5). Because
X ~ N(p, 02 /n), under Hy: j1 = 1o we also have

Z~N(Q,1. (10.8)
We therefore obtain a p-value from
P =P(Z] = |zobs))- (10.9)

Together, (10.7) and (10.9) define a z-test for normal data with ¢ known.
As in Section 7.3.2 we have presented the z-test first in this special case for
conceptual simplicity. In practice, the data are typically not normally distributed and
o is not known. We may treat the more general setting by approximation, analogously
to what was done in Section 7.3.4. The procedure is to replace o with the sample
standard deviation s in SE(X), as in Eq. (7.17) and, having done so, invoke (10.7) as
above. For the purpose of formalizing the argument in theoretical terms let us replace
Z,in (10.5) with Y,
y=X"Ho
SE(X)

(10.10)

We do this because when the observations are non-normal Y will also typically be
non-normal and we want to reserve the notation Z for the case Z ~ N (0, 1).
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Result If X1, ..., X, is arandom sample from a distribution having mean y and
standard deviation o, and n is sufficiently large, then a test of the null hypothesis
Hy: ;v = po may be carried out by applying (10.7) with SE(x) defined by (7.17)
and computing an approximate p-value using (10.9). That is, under Ho : it = o,
for sufficiently large n we have

P(Y[ = |zops|) = P(IZ] = |zobs|) (10.11)
where Y is defined by (10.10) and Z ~ N (0, 1), so that the p-value based on

(10.7), where SE(x) is defined by (7.17), together with (10.9) is approximately
correct.

This result is an immediate consequence of the theorem following (7.18).

10.3.2 For large samples the hypothesis Hy: 0 = 0y may be tested
using the ratio (6 — 6,) /SE(0).

The uncertainty associated with an estimate is quantified by the estimate’s standard
error, as defined in Eq. (7.6) on p. 159. In Example 1.4, concerning blindsight in
patient P.S. we reported on p. 13 an approximate 95 % confidence interval (.64, 1.0)
(based on calculations given on p. 158) and we noted that this was inconsistent with
the probability of .5, which would correspond to guessing. But if we are mainly
interested in whether the data are consistent with guessing, we could rephrase the
problem using the observed discrepancy between and .5. The proportion 6= 17
seems much too big to be consistent with guessmg So we may ask this question: If

P.S. were guessing, how unlikely would it be that 6 would be as far from .5 as was
149
7"

We will present several different procedures that provide slightly different numer-
ical answers to this question, all of which lead to the same conclusion. The one most
closely related to the approximate confidence interval in (7.8) assesses the discrep-
ancy between 6 and .5 in units of SE(@) This relies on the approximate normality of

the MLE 6.
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Result: Suppose X1, ..., X}, has joint pdf f (xq, ...x,|6), with 6 a scalar, and
suppose further that 7, is an asymptotically normal estimator of 6 with standard
error SE(T,) = &7,. Then the null hypothesis Hy: § = 6p may be tested by
using the statistic

T, — 90
- SE(T,)’

(10.12)

Zobs

with large values of |z,p| indicating evidence against Hy. If the sample size is
large, an approximate p-value may be obtained from

p = P(Z] = |zops]) (10.13)

where Z ~ N(0, 1).

This result follows from the theorem in Section 7.3.5, which said that if 67, is the
standard error of T}, in the sense that

or, P
— =1
or,
then T o
Tn=9 By,
oT,
If 6 = 09 then the random variable
_ T, — 0y
 SE(Tw)

follows, approximately, for large n, a N (0, 1) distribution and the p-value based on
Z ~ N(0, 1) will be approximately correct. Because Z is a common notation for a
N (0, 1) random variable, the value z,ps in (10.12) is often called az-score and the
procedure in (10.12) and (10.13) is az-fest.

Example 1.4 (continued from p. 257) Suppose X ~ B(n, #) and we wish to test
Hy : 6 = 0. The usual formula for SE is SE(é) =4/ 9(1’—:6). It is customary to

find SE under the null hypothesis, 6y = .5, i.e., we replace4 0 with 0p = .5in
the calculation of SE. In the case of the data from P.S. we had n = 17 so we get
SE = /(.5)(.5)/17 = .121, and z,ps = (.824 — .5)/.121 = 2.68. This gives us a

4 The logic of the procedure does not demand that we use 6 in place of 6. The justification of the
large-sample significance test, the Theorem in Section 7.3.5 that says Z is approximately N (0, 1), is
not refined enough to distinguish between the two alternative choices for SE(T,) (both would satisfy
the theorem). However, because we are doing the calculation under the assumption that 6 = 6y, it
makes some sense to use the value § = 6 in computing the standard error.
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p-value of .0074, which is nearly the same as the value .0076 obtained from the chi-
squared analysis (see p. 257). In fact, in this case, a little bit of manipulation shows
that we have the arithmetic identity z%bs = ng » Where z,py is defined in (10.12) and

ngs is defined by (10.1) with (10.2). O

The identity above provides a way of understanding the chi-squared procedure.
The definition of a X% distribution is that it results from squaring a N(0, 1) random
variable. When we replace the data with random variables we get the theoretical
counterpart of the observed value z,p;,

9 — 6y
z7=-"2
SE)

which has an approximate N (0, 1) distribution. Therefore, its square has an approxi-
mate X% distribution, but its square is the theoretical counterpart of the observed value
Zghs = X%bs' In other words, the theoretical chi-squared statistic follows, approxi-
mately, a chi-squared distribution.

When 6 is a vector essentially the same result as in (10.12) and (10.13) holds
again for each component. That is, if 6; is one component of # and 7}, ; is the corre-
sponding component of an asymptotically normal vector estimator 7}, (which would
be asymptotically multivariate normal as in (8.42)), then we can test Hy : 6; = 6; o by
replacing T, by T,,; and 0; by 6; ¢ in (10.12) and again using (10.13). For example,
in simple linear regression we may have both an intercept and a slope, but we may
wish to test the null hypothesis that the slope is zero—which would correspond to
there being no linear relationship between the response and explanatory variables.
We return to this case in Chapter 12.

10.3.3 For small samples it is customary to test Hy: p = p using
a t statistic.

In Section 7.3.10 we presented the usual #-based confidence interval for a mean
of a normal distribution. The point was that, for small samples of observations that
are truly normal, the normal distribution of the standardized sample mean should be
replaced by a ¢ distribution (with degrees of freedom given by the degrees of freedom
used in the estimation of ¢ by s). In the case of testing Hy : i+ = po with truly normal
observations the normal distribution in (10.9) is replaced by a ¢-based counterpart:

p = PUT| = [tops]) (10.14)
where t,p; is defined by replacing o with s in (10.6) and (10.7), i.e.,

fops = ——10 (10.15)

S

NG
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and T follows a t distribution, 7 ~ t,, where v = n — 1. This is called az-test. We
could consider n to be “large” and apply (10.9) with 6 = X and SE (x) = s//n. As
in Section 7.3.10, using the ¢ distribution instead of the standard normal distribution
has the effect of making extreme values more probable; therefore, the p-value using
the ¢ distribution with (10.14) will be larger (providing less evidence against Hy)
than that found using the normal distribution (10.9), and the distinction vanishes as
n increases.

The ¢-test defined in Eq. (10.14) is often used when paired data of the form u; and
w; are observed and their differences x; = u; —w; are analyzed. The conception is that
Uy, ..., U, is arandom sample from a N (p1, of) distribution and Wy, ..., W,isa
random sample froma N (p41, a%) distribution and the problem s to test Hy: 1 = pa.
The differences X; = U; — W;, fori = 1, ..., n then form a random sample from a
N(u, 0%) distribution with yz = f11 — p12. The null hypothesis then may be rewritten
Hp: p = 0, so that we obtain a normal random sample with null hypothesis of the
form Ho : = po (where o = 0), which is the problem solved by the #-test in
Eq. (10.14). In this setting the procedure is called a paired t-test.

Example 10.3 Glutamate increase in response to pain Mullins et al. (2005) used
proton magnetic resonance spectroscopy to study brain response to pain in humans.
The authors obtained spectra from the anterior cingulate cortex during application
of painfully cold compress to the subject’s foot and during several rest periods.
One analysis used the magnitude of the response associated with glutamate. This
involved a pair of measurements of the form u; and w;, for subject i, with u; being
the glutamate concentration during pain and w; being the glutamate concentration
during rest. The differences x; = u; — w;, for i = 1,...,n were then analyzed
with a paired #-test. In this study, which the authors called “preliminary,” results
from only seven subjects were reported. The authors reported a 9.3 % increase in
glutamate concentration during pain, with 7,5, = 3.85, yielding p = .006, which is
highly significant. In other words, even with only seven subjects, these data appear
to provide strong evidence of an increase in glutamate in anterior cingulate cortex
during administration of a painful stimulus. (I

The t-test is justified by the following theorem.

Theorem If X1, ..., X, is a sample from a N (u, 02) distribution and Hy : 1 = po
holds, then
P(Y] = ltops]) = P(T| = ltops|) (10.16)

where Y is defined by (10.10) with SEX) = S/, tobs = Zops is given by (10.7)
with SE(x) defined by (7.17), and T follows a t,, distribution with v =n — 1.

Proof: The proof is the same as that of the theorem containing Eq. (7.31). 0

In practice, as we said in Section 7.3.10 calculations based on ¢ distributions
often agree pretty well with those based on normal distributions. However, for large
values of |#,ps| the tails of the distribution come into play, and the p-values computed
with the ¢ distribution may be quite a bit different than those based on the normal
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distribution. In any case, throughout the scientific literature the #-test is considered
a standard approach, as long as the data do not deviate too far from normality. The
small sample size in Example 10.3 is worrisome because departures from normality
could affect the results. The p-value of .006, however, is sufficiently small to be
reassuring: substantial departures from normality would be required to change the
conclusion we would draw from the data. In Section 13.3 we discuss methods that
depend on neither the normality of the data, as in (10.16), nor normality of the sample
mean, as in (10.11).

10.3.4 For two independent samples, the hypothesis Hy: (11 = 2
may be tested using the t-ratio.

Let us next apply the idea in Section 10.3.2 to the problem of testing Hy: p) = pa

based on two independent samples X1, X12, ..., X1, and Xo1, X2, ..., X24,. The

obvious starting point is the difference between the sample means X; — X», which

should then be divided by its standard error.

Now, what is the standard error of X; — X»? Because the two samples are inde-
pendent we have

VX1 —X)=—+—=

ni n2

(10.17)

where a% and O’% are the respective variances of each X1; and X»;, within each of the
two samples. The standard error will be the square-root of the variance in (10.17)
after we plug in suitable estimates of o1 and o3 (as in Eq. (7.24)). The most common
procedure, the ordinary z-fest, makes the assumption that oy = o5, which greatly
simplifies the theoretical results. We now label these standard deviations by o (so
that 0 = 01 = o). With this assumption, the two sample standard deviations s and
52 both estimate 0. We then pool the data together by calculating

1 a4 _ 2 _
2 _ Y _X5)?
Spooled - n+n—2 (l-zl:(Xh X1+ Z(XZz X3)

i=1

which is taken as an estimator of ¢ and gets plugged into (10.17) for o and o5.
The test statistic becomes B B
X1 —Xo
T=—rrFr— (10.18)

/1 1
Spm)led n + '

and, assuming 1 = p2, as n and np become infinite 7 converges in distribution to
N(0, 1). This gives the following method (where the notation converts the capital T,
X and S to lower case once T is applied to observed data).
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Result: Suppose Xi1, X12, ..., X1y, and Xo1, X2, ..., Xp,, are independent
random samples from distributions having means 1 and p» and standard devi-
ations o1 = 0. The null hypothesis Hy: j11 = p2 may be tested using

fopy = —— 22 (10.19)

/1 1
Spooled[ 3, + ™

with large values of |#,,,| indicating evidence against Hy. If the sample sizes are
large, an approximate p-value may be obtained from

p=P(Z| = |tops|) (10.20)

where Z ~ N (0, 1).

The result above, using (10.20), is justified by the Central Limit Theorem. If,
in addition, we are willing to assume normality of the distributions then we have a
theoretically exact result, which applies in small samples.

Result: Suppose Xi1, X12, ..., X1, and Xo1, X202, ..., Xp,, are independent
random samples from normal distributions having means y1 and p; and standard
deviations o1 = o7. The null hypothesis Hy : ;11 = p2 may be tested using
(10.19) with large values of |t,s| indicating evidence against Hy. A p-value
may be obtained from

P =P(T| = [tons)) (10.21)

where T ~ t,, withv = ny +np — 2.

The method above, using (10.21) with (10.19), is called the two-sample t-test.
Sometimes the two samples are called “independent” to emphasize the distinction
between this setting and that of the paired 7-test in Section 10.3.3. To be concrete,
suppose that the data come from human subjects. Typically, the data in the paired case
are paired because two observations come from the same subject, as in Example 10.3.
Itis then natural to take advantage of the pairing by analyzing differences. In contrast,
the two samples in (10.19) come from separate subjects’ and there is no natural way
to identify a particular x| observation with an x, observation. Here is an example.

Example 7.2 (continued from p. 258) In the test-enhanced learning study Roediger
and Karpicke (2006) found strong evidence against Hp, the hypothesis the
theoretical mean scores in the learning-test group and the restudy groups were iden-
tical. Applying the two-sample 7-test to the data displayed in Fig.7.3 we obtained
tops = —3.19 on 58 degrees of freedom. Using the normal approximation this gives

5 We discuss this distinction again in Section 13.1.
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p = .0014 while using the ¢ distribution we get p = .0023. Either way there is strong
evidence against Hy, indicating strong evidence that the mean assessment score
under the SSST condition is greater than the mean assessment score under the SSSS
condition. O

In Example 7.2 the p-value is larger when the ¢ distribution is used than when the
normal distribution is used. This is generally the case, as the ¢ distribution has thicker
tails, so that it gives higher probability to values with large magnitudes. Standard
practice is to report the 7-based p-value.

Deviations from the assumption that 0y = o», which motivates the use of (10.18),
typically must be quite large in order to have a strong effect on the p-value in (10.20)
or (10.21). (A rough rule of thumb would be that, for substantial sample sizes, the
conclusions are likely to be valid when the standard deviations are within a factor of
3 of each other.) However, a simple alternative is to define S| = s; and S» = 57 to
be the sample standard deviations of the two respective samples and then define

fops = 22 (10.22)
Sl + rSL_i
Replacing T in (10.18) with B B
X1 — X
e —— (10.23)
282
A

the large-sample result based on the central limit theorem again holds, with p-value
given by (10.20). This version of the two-sample 7-test is often called® Welch’s t-test,
or the unequal variance t-test. We provide simulation-based methods of computing
the p-value for this test in Sections 11.2.1 and 11.2.2.

10.3.5 Computer simulation may be used to find p-values.

We have gone over several examples of p-values. Let us now summarize the essen-
tial logic we have applied, and show how they may be obtained using computer
simulation.

In each case we have an observed value of some test statistic, which we now write
in generic form as g,ps. The examples so far have involved various formulas for Xi b
Zobs and 1,5, With context determining the formula. We then introduce a theoretical

6 Welch provided an approximate distribution from which p-values could be computed, which is
more accurate than the normal.
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statistic O, and use its distribution under the null hypothesis (chi-squared, normal,
t,) in a relevant statistical model to compute the p-value

P = P(Q > qops|Hp) (10.24)

where we have used the conditioning notation to emphasize that’ the probability is
computed under the assumption that Hy holds.

In many situations it is possible to use the computer to generate artificial data under
the null hypothesis. That is, the statistical model specified by the null hypothesis
contains certain probability distributions, and it is often relatively easy to generate
observations from these probability distributions. We have done this previously, in
Section 9.1.1, and produced simulated data, which we have also called pseudo-data.
Each set of pseudo-data should resemble the real data in many respects that are crucial
to analysis, such as having the same number of observations as the real data. On the
other hand, the pseudo-data will have known variation with all the characteristics
we assume in our theoretical world of statistical modeling. If we can create sets
of pseudo-data repeatedly, a large number of times (each set of pseudo-data being
different due to the randomness specified by the statistical model) then we can also
compute the p value numerically.

The idea is to generate a large number G of pseudo-data sets (e.g., G = 10,000)
and apply the statistic Q to each set of pseudo-data. This produces G computer-
generated observations from the probability distribution of Q (under Hyp). To find
p = P(Q > qops) we then simply have to get the proportion of such generated
observations (out of G = 10,000) for which Q is as large as gps. Let us use Q9
to denote a value of Q computed from a set of pseudo-data, where g = 1,2, ..., G.
Here is the algorithm.

Finding the p-value by simulation

1. Generate G sets of pseudo-data labelled g = 1,...,G and for the gth
set of pseudo-data compute Q9.

2. Let N be the number of sets of pseudo-data for which Q(g) > Gobs-

3. The p-value is given by p = %

Example 1.4 (continued from p. 261) Let us take X to be a random variable
representing the number of non-burning house preferences. Under the null hypothesis
we have X ~ B(17,.5). As our test statistic we may use Q = |X — 8.5|, where 8.5

7 This may be considered an abuse of the notation because we usually consider H to be a fixed, non-
random entity, so we are not really “conditioning” on it in the usual sense developed in Chapter 3.
The exception occurs under the Bayesian interpretation given in Section 10.4.5, where H is formally
considered to be an event. In that scenario the probability in (10.24) does become a conditional
probability.
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is the expected value of X and we are here judging small and large deviations from
8.5 to be equally important. We have g,,; = 14 — 8.5 = 5.5. We may then simulate
10,000 observations from a B(17, .5) distribution and count the number N for which
O > qops- Doing this, we obtained N = 126 and p =~ .013. O

One issue is that the accuracy of such computer-generated p-values depends on
the number of data sets generated. If we take G to be extremely large we can get a
very accurate p-value, but in complicated problems the computing time may get too
long. In most problems G = 10,000 is large enough to obtain reasonable accuracy.

Details: In fact, we may compute the accuracy of such computer-
generated p-values quite generally from the binomial standard error.
If we generate G data sets, we have N ~ B(G, p) where p is the desired
p-value, which is estimated by p = N/G. The standard error for this
binomial proportion is SE(p) = /p(1 — p)/G. Thus, in the exam-
ple above, the accuracy would be SE = /(.0126)(.9874)/10,000 =
.0011. Doubling this we get a 95 % CI for p of .013 £ .002. (]

We used Example 1.4 to demonstrate the idea of simulation-based computation of
p-values. The great virtue of p-values based on pseudo-data is that they can be easy to
compute even in very complicated situations where direct calculation is impossible.
However, the binomial setting shares with some other common problems sufficient
simplicity that the exact p-value may be computed more directly.

Example 1.4 (continued) We have that Q > g, precisely when x > 14 or x < 3.
Thus, we have
p=PX <3)+PX=>14)

where X ~ B(17, .5), which may be computed by evaluating the binomial cdf from
statistical software. Specifically, if F'(x) is the B(17, .5) cdf, then

p=FQ3)+1-F(3).
In this special case the B(17, .5) distribution is symmetrical so that P(X > 14) =
P(X < 3) and we also have
p=2F3)=.013

which agrees with the value obtained above, by simulation. [

10.3.6 The Rayleigh test can provide evidence against a uniform
distribution of angles.

When a random sample X, ..., X, consists of angles, i.e., measurements between
0 and 360 degrees (with 0 being the same as 360) or, equivalently, 0 and 27 radians
(with O being the same as 27) a common question is whether the angles tend to be



10.3 Testing Null Hypotheses 269

clustered around a particular direction. A natural null hypothesis is that the angles are
uniformly distributed on the unit circle, i.e., X; ~ U(0, 27) with the understanding
that x = 0 is the same as x = 27.

There is a body of methods devoted to analyzing data on the unit circle, i.e.,
angles, which are usually called circular data. For data x1, . . ., x, let us define

I
C = - Z}cos(x,-)
1=

1 n
- Zsin(xi)
n-
i=1
Rops = vV C? + §2. (10.25)

Recall (see p. 610 of the Appendix) that the cosine and sine of an angle « are the
(x,y) coordinates of a point found by rotating the vector (1, 0) counter-clockwise
through an angle . This implies that C and S are, respectively, the mean of the x
coordinate and the mean of the y coordinate when the data are plotted as points on
the unit circle. The vector (C, S ) is called the sample mean resultant vector and R is
its magnitude. Note that (nC, nS) is the sum of n unit vectors so® its maximal length
is n, which occurs when all the vectors (x;, ;) are equal. In this case we get R = 1.
When the vectors tend to be clustered together, R gets close to 1. The Rayleigh test
uses R as a test statistic and computes

[95]]
I

p =P[R > Ryps),

where R is the random variable defined as in (10.25) with random variables
X1, ..., X, replacing data values xi, ..., x,, under the assumption that X1, ..., X,
form a sample from the uniform distribution on the unit circle.

Example 10.4 Hippocampal hemispheric differences among homing pigeons
Gagliardo et al. (2001) examined directional orienting after release among groups
of homing pigeons in three experimental conditions. In the first condition, at one
month of age each pigeon was subjected to left unilateral ablation of the hippocam-
pal formation. In the second condition, at 1 month of age each pigeon was subjected
to right unilateral ablation of the hippocampal formation. The third condition was
a control, with no ablation. At around four months of age the birds were released
from one of three locations and their direction of flight was recorded. This gener-
ated samples with sizes ranging from n = 11 to n = 30 across the nine groups
(Three locations for each of three treatments.) Each sample was a set of flight direc-
tion angles and the initial question was whether the birds tended to follow a par-
ticular direction (homeward). In this case the null hypothesis was no orientation

8 This generalizes (and follows from) Eq. (A.29), which says that the maximal length of the sum
of two unit vectors is 2 and it occurs when the vectors are equal.
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at all, i.e., a uniform distribution of angles. The authors applied the Rayleigh test
and found strong evidence against Hy for the control and right-side ablation groups
(p < .001 for four groups and p < .02 for two groups) but no evidence against Hy
for the left-side ablation group. This, together with other analyses, led them to con-
clude that the left hippocampal formation appears to be critical for navigational map
learning. (]

Statistical software is available for computing this p-value, butitis easy to compute
using simulation as in Section 10.3.5.

10.3.7 The fit of a continuous distribution may be assessed with the
Kolmogorov-Smirnov test.

The framework for statistical hypothesis testing, which includes specifying a null
hypothesis, choosing a statistic for evaluating it, and then computing a p-value, is
very flexible. Here is another case which, like the chi-squared tests of Section 10.1,
may be used to assess fit of a statistical model.

Suppose we have a sample of i.i.d. random variables X1, ..., X, each having
distribution function F'(x), and we wish to examine whether F'(x) takes a specified
form, such as N(0, 1) or Exp(1). Testing whether a batch of observations follow
an Exp(1) distribution is important in the analysis of spike train data (see Section
19.3.5). We write the specified distribution function as Fy(x) and consider the null
hypothesis Hy: F(x) = Fy(x), and we assume F'(x) and Fy(x) are continuous.

To test Hy the discrepancy between empirical cdf F (x), which satisfies F, (x) —
F(x) forall x as n — oo (see Section 6.2.2), and Fp(x) may be examined. A standard
procedure is to consider the largest possible value of the magnitude |f7 w(x) — Fo(x)],
over all x. This is called the Kolmogorov-Smirnov (KS) statistic.

A detail: Strictly speaking, because x ranges from —oo to oo there may
not be a value of x at which the magnitude |I:"n (x) — Fo(x)| achieves
a maximum. Instead, the supremum is used. (See p. 242.) Therefore,
the KS statistic is

KS = sup |, (x) — Fo(x)|.
X

O

The distribution of the KS statistic under Hy has been studied and, it turns out,
does not depend on the choice of null cdf Fp(x). Many statistical software packages
provide p-values for the KS test. In particular, for large n we have p < .05 when the
KS statistic is greater than 1.36/./n. See Bickel and Doksum (2001, Section 4.1).
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10.4 Interpretation and Properties of Tests

‘We now turn to some theoretical aspects of significance tests. In practice, new situa-
tions arise where no standard test is available. Researchers then invent significance
tests, and sometimes they are not valid. What do we mean by this? The key property
is Eq. (10.24). For an evaluation of statistical significance to be correct, theoretically,
(10.24) must be satisfied.

Let Fp(x) be the cdf of Q under the statistical model specified by Hy and let
us assume that Q follows a continuous distribution. We then have P(Q < ¢q) =
1 — P(Q > ¢g) and we obtain from (10.24) the equivalent form

p=1—Fo(qops)- (10.26)

This will help below. Sometimes (10.24) does not hold exactly, but it does hold
approximately, as in the case of chi-squared tests. In Section 10.4.1 we derive two
consequences that allow us to check whether (10.24) is approximately true. That
section describes the behavior of a valid significance test when Hy is true. In Section
10.4.3 we consider what happens when Hj is false.

10.4.1 Statistical tests should have the correct probability
of falsely rejecting Hy, at least approximately.

The criteria for determining statistical significance, usually taken to be .05 or .01, are
called significance levels. Fisher suggested’ that research workers might routinely
use p < .05 as a “convenient convention” to summarize the evidence against Hy.
Indeed, this became standard practice. Neyman and Pearson then considered, for-
mally, the behavior of such a procedure. They began by saying one might reject Hy
for sufficiently large values of the test statistic Q. If we let ¢ be the cut-off value for
which Hy is rejected whenever Q > c, then c is called the critical value and

a=PQ=>c)

is called the level of the test for the critical value c. Now, for the 7-test on p. 265
based on Q = |T| and q,ps = t,ps defined in (10.19), at a particular level, such as
a = .05, we may reverse the process and, for any «, we can find a critical value c,
such that

a =P > c,). (10.27)

9 See pages 114 and 128 of the fourteenth (1970) edition of Fisher (1925).
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For example, the probability of falsely rejecting Hy based on the criterion p < .05 is
o = .05. Equation (10.27) should hold for any valid test, at least if O has a continuous
distribution (and it should hold approximately for the discrete case).

A detail: For continuous statistics like that in the z-test we can find ¢ o5
for which P(Q > cs5) = .05and P(Q > ¢) < .05 whenever ¢ > ¢ 5.
In the discrete case, however, only particular values of probabilities
actually occur, so there may not exist c o5 for which P(Q > co5) = .05
and, furthermore, there will be values a > b such that P(Q > a) =
P(Q > b). We ignore this technical point here. [

Equation (10.27) gives us a way of checking any test to see whether the fundamen-
tal property (10.24) holds: we pick values of ¢, compute the probability P(Q > c,),
and see whether the answer is a.. For instance, when Hy holds, we should findp < .05
(i.e., Q > c5) 5% of the time and we should find p < .01 (i.e., Q > co1) 1 % of
the time. Another way to say this'® would be, “if we use p < .05 we will be making
an incorrect decision 5 % of the time and if we use p < .01 we will be making an
incorrect decision 1 % of the time.”

This calibration of p-values in terms of significance levels is satisfied when (10.24)
holds. That is, for any « between O and 1, a test that rejects Hy whenever p < «
will have « as its significance level. Formula (10.24) holds for the #-test under the
assumption of normality, but without the assumption of normality (10.24) is only
approximately correct, as in the first version in Section 10.3.4. Likewise, (10.24)
holds only approximately for the p-values computed from the chi-squared distribution
based on the chi-squared statistics in Section 10.1. Similarly, when a new statistical
test is proposed to deal with a complicated or unusual situation, it may provide
approximate p-values. For approximate tests it is good to know how close the p-
value is to being correct. In this case it is valuable to verify, by computer simulation,
that the test has approximately the level o = .05 when p < .05, and similarly for
other levels such as o = .01. For illustrative purposes we carried out the calculation
in the case of the example on blindsight of patient P.S.

Example: Blindsight of P.S. Let us consider the use of Xsz as we did on p. 257.
For a x? distribution we have c o5 = 3.84, i.e., if X ~ x? then P(X > 3.84) = .05.
For the case n = 17 and pg = .5 we may compute the value of « = P(Q > 3.84)
where Q is the chi-squared statistic. This is easily done by computer simulation.
We obtained o = .049. Repeating this for ¢ g; = 6.63 we obtained o« = .013. For
these standard cut-off values for p, and for this sample size, we conclude that the X%
distribution furnishes an accurate approximation.!! O

10 Fisher objected to the idea that statistical significance should be equated with decision making
about hypotheses. From our modern perspective this is an objection about the words used to describe
(10.27) but the formula itself is crucial. We say more about this in Section 10.4.7.

11 On the other hand, we should recall that the p-value we obtained for the data x = 14 was
p = .0076 based on ngs and the chi-squared distribution while the exact p-value was p = .0127.
The discrepancy between approximate and exact values is a bit larger; the approximation apparently
gets worse as we move further out into the tails.
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Equations (10.24) and (10.27) provide explicit statements of the behavior of a
significance test under the assumption that Hy is true. Let us continue to assume that
Hj is true and go a step further by observing that the p-value is, itself, a random
variable and inquiring about its distribution. If we ask, “How often do we get p <
.05?7” the answer, for any valid test, according to (10.27), is 5 % of the time; if we
ask “How often do we get p < .017” the answer is 1 % of the time; if we ask “How
often do we get p < .25?7” the answer is 25 % of the time. In general, we must get
p < « with probability «. But if a random variable X satisfies P(X < «) = « then
X ~ U(0, 1). (Assuming X is continuous then P(X < x) = P(X < x) = Fx(x) = x,
which is the cdf of the U (0, 1) distribution.) Therefore, when Hy holds, the p-values
from a valid significance test will be uniformly distributed between 0 and 1.

Details: If we were to repeatedly sample data according to the statis-
tical model specified by Hy, then we would get random values of g,p;.
Let us denote such random values by the random variable Y. By the
way we are constructing Y it has the same distribution as Q. To be even
more specific, let us denote the mapping from data values xi, ..., x,
to y values by y = T(xq,...,x,) sothat Y = T(Xy,...,X,). The
definition (10.24) could be rewritten in terms of y as

p=P(Q =y|Ho) = P(Q = T(x1, ..., x,)|Ho). (10.28)

Now, just as repeated samples would give random values of y so,
too, would repeated samples give random values of p. Let us denote
such random values by the random variable P. The random variable
P satisfies

P =P(Q=Y[Hy) =PQ=TX,...,X,)|Ho). (10.29)

With this notation in hand, we show that the theoretical distribution
of p-values under Hy is uniform.

Theorem Let X1, .. ., X;, be arandom sample from which P is defined
from (10.29), and assume Q follows a continuous distribution. If Hy
holds then P ~ U (0, 1).

Proof: From the first equality in (10.29) we have

P=1-FyY),

which is the random variable version of (10.26). Because Y follows
the same distribution as Q, Fp(y) = Fy(y), so that

P=1-Fy)

and
1—P=Fy().
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From the probability integral transform given in Section 3.2.5 it fol-
lows that 1 — P has a U(0, 1) distribution. It is an easy exercise to
show that X ~ U(0, 1) if and only if 1 — X is U(0, 1). Therefore,

P~UQ,1). O
We also have the following.
Theorem Let X1, . . ., X, be arandom sample from which P is defined

from (10.29), and assume Q follows a continuous distribution. Then,
under Hy, the probability that P < « is equal to o, i.e.,

P(P < alHp) = a. (10.30)

Proof: This is a corollary to the previous theorem: because P ~
U(0, 1) we have Fp(x) = x which, because Q is continuous, is the
same as (10.30). O

Example 7.2 (continued from p. 265) To illustrate the uniformity of p-values guar-
anteed by the theorem, we generated samples of pseudo-data based on the real data
used in the 7-test on p. 265. The idea was to begin with the 60 data values under the
SSSS and SSST conditions and create 10,000 sets of pseudo-data like the real data
except that for each set of pseudo-data Hy was true. To force H to hold we sampled
the 60 data values and then arbitrarily put them into two groups of 30 values each,
so that each of the two groups of pseudo-data would follow the same distribution.'?
We repeated this to get the 10,000 sets of pseudo-data, and then ran the #-test and
computed the p-value for each set of pseudo-data. Figure 10.1 is a histogram of the
resulting 10,000 p-values. The distribution is uniform. O

10.4.2 A confidence interval for 6 may be used to test Hy: 0 = 0.

Let us return to the “paradigm case” of Section 7.3.2 in which X1, . .., X, is arandom
sample from a N (u, 0%) distribution with the value of o known. In Section 7.3.2 we
found a confidence interval for . Now let us consider, instead, the null hypothesis
Hy: p = 0. This hypothesis comes up frequently because many experiments generate,
for each subject, one observation under each of two conditions, and the data may be
reduced by taking the difference of the two observations. Thus, instead of n pairs
of observations we analyze n single-number differences X; and the null hypothetical
question becomes whether the mean of these differences is zero. In practice, the
value of ¢ is unknown but here, as in Section 7.3.2, we assume it is known in order
to simplify the derivation below.

As in Section 7.3.2 we have standard error SE(X) = o/+/n. In Section 7.3.2 we
showed that the interval (X — 2 - SE(X), X 4 2 - SE(X)) is a 95% CI for y, which

12 Specifically, both groups followed the distribution specified by the empirical cdf based on the 60
data values. This is an 