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Preface

This book serves as a guide and reference for anyone who wishes to understand
analysis of neural data generated from studies that range from molecules, to
circuits, to systems, to behavior.

Its origins may be traced to the decision by two of us (E.N.B. and R.E.K.), in
1998, to write a review article on statistical analysis of spike train data. Shortly
after commencing we realized that some of the methods we thought we ought to be
reviewing had, in fact, not yet been developed. After we and others rectified this
situation, we published a pair of reviews (Brown et al. 2004; Kass et al. 2005).
During this time we also broadened our interests to other experimental modalities,
such as neuroimaging, and we began teaching workshops and semester-long
courses on statistical methods for neuroscience. In addition, we met the third
author of this book (U.E.), who came to share our interests in research and ped-
agogy (and who pursued his Ph.D. thesis under the guidance of E.N.B.).

It became clear that a book on this subject was desperately needed, and we
agreed to write one. While this turned into a longer project than we anticipated,
numerous research collaborations, conversations with colleagues at meetings, and
extensive comments from students gave us many insights into the content and
presentation of the principles and techniques that evolved to form this volume. We
feel we are much wiser than when we started, and we hope we have succeeded in
imparting a good deal of what we have learned in the process.

Some readers may expect a book organized by type of neural data. We decided,
instead, to organize by analysis, with each chapter devoted to broadly categorized
statistical concepts described succinctly in section headings that are available in
the extended version of the table of contents. Each chapter, however, also contains
multiple examples of the way these analytical ideas have been used in the brain
sciences: there are more than 100 such examples throughout the book, and they are
indexed. A reader wishing to see how we have discussed fMRI data, for instance,
should start with the example index. More specific organizational guidelines are
given in Chapter 1.

The book is intended as either a reference, or a text. R.E.K. has used
preliminary versions of the manuscript in classes populated by graduate students of
varying backgrounds, ranging from biologists with minimal mathematical
knowledge, who were looking for conceptual understanding, to engineers, who
needed to see derivations. We opted to try to satisfy both kinds of audiences.
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An appendix is provided as a reminder of key mathematical ideas, and derivations
are often marked as optional by indenting them. To those who wish to use the book
as a text, R.E.K. would suggest the following ordering of topics:

Part I (Elementary Statistics): Chapters 1–7, 10, 12.1–12.4, 13.1.
Part II (Basic Statistical Theory): Chapters 8, 9, 11, 12.5, 13.2–13.4.
Part III (Advanced Topics): Selections from Chapters 14–19.
In his experience, Parts I and II take approximately 12 and 7 classes,

respectively.
Many readers will want to see computer code for the methods we have

described. We ourselves used both Matlab and R to produce figures. Although we
decided not to inject Matlab or R code into the body of the book, we have put code
up on our the website http://www.stat.cmu.edu/*kass/KEB.

In addition to the many colleagues and students who made suggestions along
the way, including those who are acknowledged within the text, we are indebted to
Spencer Koerner, who helped clean up and create much code and many figures,
Patrick Foley, who created the website, Heidi Sestrich, who fixed numerous
defects in our LATEX, and Matthew Marler, who read the whole manuscript
carefully and provided extremely helpful comments. We are also grateful to Elan
Cohen and Ryan Sieberg, who each created several figures.

Robert E. Kass
Uri T. Eden

Emery N. Brown

viii Preface

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://www.stat.cmu.edu/~kass/KEB


Short Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Exploring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Probability and Random Variables . . . . . . . . . . . . . . . . . . . . . . . 37

4 Random Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Important Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 105

6 Sequences of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Estimation and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Estimation in Theory and Practice . . . . . . . . . . . . . . . . . . . . . . . 179

9 Propagation of Uncertainty and the Bootstrap . . . . . . . . . . . . . . . 221

10 Models, Hypotheses, and Statistical Significance . . . . . . . . . . . . . 247

11 General Methods for Testing Hypotheses . . . . . . . . . . . . . . . . . . 287

12 Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

13 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

14 Generalized Linear and Nonlinear Regression . . . . . . . . . . . . . . . 391

ix

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_14


15 Nonparametric Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

16 Bayesian Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

17 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

18 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

19 Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Appendix: Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 605

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Example Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

x Short Table of Contents

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_17
http://dx.doi.org/10.1007/978-1-4614-9602-1_17
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_19


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Data Analysis in the Brain Sciences . . . . . . . . . . . . . . . . . . . 1

1.1.1 Appropriate analytical strategies depend crucially
on the purpose of the study and the way
the data are collected. . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Many investigations involve a response to a
stimulus or behavior.. . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Contribution of Statistics. . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Statistical models describe regularity and variability

of data in terms of probability distributions. . . . . . . . 9
1.2.2 Statistical models are used to express knowledge

and uncertainty about a signal in the presence
of noise, via inductive reasoning. . . . . . . . . . . . . . . . 13

1.2.3 Statistical models may be either parametric
or nonparametric. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Statistical model building is an iterative process
that incorporates assessment of fit and is
preceded by exploratory analysis. . . . . . . . . . . . . . . . 17

1.2.5 All models are wrong, but some are useful. . . . . . . . . 17
1.2.6 Statistical theory is used to understand the behavior

of statistical procedures under various
probabilistic assumptions. . . . . . . . . . . . . . . . . . . . . 19

1.2.7 Important data analytic ideas are sometimes
implemented in many different ways. . . . . . . . . . . . . 20

1.2.8 Measuring devices often pre-process the data. . . . . . . 20
1.2.9 Data analytic techniques are rarely able to

compensate for deficiencies in data collection. . . . . . . 21
1.2.10 Simple methods are essential. . . . . . . . . . . . . . . . . . 21
1.2.11 It is convenient to classify data into several broad

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_1#Sec15


2 Exploring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Describing Central Tendency and Variation . . . . . . . . . . . . . . 23

2.1.1 Alternative displays and summaries provide
different views of the data. . . . . . . . . . . . . . . . . . . . 23

2.1.2 Exploratory methods can be sophisticated.. . . . . . . . . 26
2.2 Data Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Positive values are often transformed
by logarithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Non-logarithmic transformations are sometimes
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Probability and Random Variables . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 The Calculus of Probability . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Probabilities are defined on sets of uncertain
events.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 The conditional probability P(A|B) is the probability
that A occurs given that B occurs. . . . . . . . . . . . . . . 40

3.1.3 Probabilities multiply when the associated
events are independent. . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Bayes’ theorem for events gives the conditional
probability P(A|B) in terms of the conditional
probability P(B|A). . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Random variables take on values determined

by events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Distributions of random variables are defined

using cumulative distribution functions and
probability density functions, from which theoretical
means and variances may be computed. . . . . . . . . . . 48

3.2.3 Continuous random variables are similar to discrete
random variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 The hazard function provides the conditional
probability of an event, given that
it has not yet occurred. . . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 The distribution of a function of a random variable
is found by the change of variables formula. . . . . . . . 62

3.3 The Empirical Cumulative Distribution Function . . . . . . . . . . 64
3.3.1 P–P and Q–Q plots provide graphical checks

for gross departures from a distributional form. . . . . . 65
3.3.2 Q–Q and P–P plots may be used to judge the

effectiveness of transformations.. . . . . . . . . . . . . . . . 69

xii Contents

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_3#Sec14


4 Random Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Two or More Random Variables . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 The variation of several random variables is
described by their joint distribution. . . . . . . . . . . . . . 73

4.1.2 Random variables are independent when their joint
pdf is the product of their marginal pdfs. . . . . . . . . . 75

4.2 Bivariate Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.1 The linear dependence of two random variables

may be quantified by their correlation. . . . . . . . . . . . 77
4.2.2 A bivariate normal distribution is determined

by a pair of means, a pair of standard deviations,
and a correlation coefficient. . . . . . . . . . . . . . . . . . . 82

4.2.3 Conditional probabilities involving random
variables are obtained from conditional densities. . . . . 84

4.2.4 The conditional expectation EðY jX ¼ xÞ is
called the regression of Y on X. . . . . . . . . . . . . . . . . 85

4.3 Multivariate Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.1 The mean of a random vector is a vector and its

variance is a matrix. . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.2 The dependence of two random vectors may be

quantified by mutual information.. . . . . . . . . . . . . . . 92
4.3.3 Bayes’ theorem for random vectors is analogous

to Bayes’ theorem for events. . . . . . . . . . . . . . . . . . 98
4.3.4 Bayes classifiers are optimal. . . . . . . . . . . . . . . . . . . 99

5 Important Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 105
5.1 Bernoulli Random Variables and the Binomial Distribution . . . 105

5.1.1 Bernoulli random variables take values 0 or 1.. . . . . . 105
5.1.2 The binomial distribution results from a sum of

independent and homogeneous Bernoulli random
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 The Poisson distribution is often used to describe

counts of binary events.. . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 For large n and small p the binomial

distribution is approximately the same as Poisson. . . . 113
5.2.3 The Poisson distribution results when the binary

events are independent. . . . . . . . . . . . . . . . . . . . . . . 115
5.3 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Normal random variables are within 1 standard
deviation of their mean with probability 2=3; they
are within 2 standard deviations of their mean with
probability :95.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Contents xiii

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_4#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec9


5.3.2 Binomial and Poisson distributions are
approximately normal, for large n or large k.. . . . . . . 118

5.4 Some Other Common Distributions . . . . . . . . . . . . . . . . . . . 119
5.4.1 The multinomial distribution extends the binomial

to multiple categories. . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.2 The exponential distribution is used to describe

waiting times without memory. . . . . . . . . . . . . . . . . 120
5.4.3 Gamma distributions are sums of exponentials. . . . . . 123
5.4.4 Chi-squared distributions are special cases

of gamma distributions. . . . . . . . . . . . . . . . . . . . . . . 124
5.4.5 The beta distribution may be used to describe

variation on a finite interval. . . . . . . . . . . . . . . . . . . 124
5.4.6 The inverse Gaussian distribution describes the

waiting time for a threshold crossing by Brownian
motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.7 The t and F distributions are defined from normal
and chi-squared distributions. . . . . . . . . . . . . . . . . . . 128

5.5 Multivariate Normal Distributions . . . . . . . . . . . . . . . . . . . . 129
5.5.1 A random vector is multivariate normal if linear

combinations of its components are univariate
normal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.2 The multivariate normal pdf has elliptical contours,
with probability density declining according
to a v2 pdf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.3 If X and Y are jointly multivariate normal
then the conditional distribution of Y given X is
multivariate normal. . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Sequences of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.1 Random Sequences and the Sample Mean . . . . . . . . . . . . . . . 137

6.1.1 The standard deviation of the sample mean
decreases as 1=

ffiffiffi

n
p

. . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.1.2 Random sequences may converge according

to several distinct criteria. . . . . . . . . . . . . . . . . . . . . 142
6.2 The Law of Large Numbers. . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.1 As the sample size n increases, the sample mean
converges to the theoretical mean. . . . . . . . . . . . . . . 143

6.2.2 The empirical cdf converges
to the theoretical cdf. . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.1 For large n, the sample mean is approximately

normally distributed. . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.2 For large n, the multivariate sample mean

is approximately multivariate normal. . . . . . . . . . . . . 147

xiv Contents

http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec16
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec16
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec16
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec17
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec17
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec17
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec17
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec19
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec19
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec20
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec20
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec20
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec20
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_6#Sec9


7 Estimation and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.1 Fitting Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 The Problem of Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 The method of moments uses the sample mean
and variance to estimate the theoretical mean
and variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2.2 The method of maximum likelihood maximizes
the likelihood function, which is defined up to a
multiplicative constant. . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3.1 For scientific inference, estimates are useless

without some notion of precision.. . . . . . . . . . . . . . . 158
7.3.2 Estimation of a normal mean is a paradigm case. . . . . 160
7.3.3 For non-normal observations the central limit

theorem may be invoked. . . . . . . . . . . . . . . . . . . . . 162
7.3.4 A large-sample confidence interval for l is

obtained using the standard error s=
ffiffiffi

n
p

. . . . . . . . . . . 162
7.3.5 Standard errors lead immediately to confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.6 Estimates and standard errors should be reported

to two digits in the standard error. . . . . . . . . . . . . . . 169
7.3.7 Appropriate sample sizes may be determined

from desired size of standard error. . . . . . . . . . . . . . 169
7.3.8 Confidence assigns probability indirectly,

making its interpretation subtle. . . . . . . . . . . . . . . . . 170
7.3.9 Bayes’ theorem may be used to assess

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.10 For small samples it is customary to use

the t distribution instead of the normal.. . . . . . . . . . . 176

8 Estimation in Theory and Practice . . . . . . . . . . . . . . . . . . . . . . . 179
8.1 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.1.1 Mean squared error is bias squared plus variance. . . . 181
8.1.2 Mean squared error may be evaluated by computer

simulation of pseudo-data. . . . . . . . . . . . . . . . . . . . . 186
8.1.3 In estimating a theoretical mean from

observations having differing variances a weighted
mean should be used, with weights inversely
proportional to the variances. . . . . . . . . . . . . . . . . . . 190

8.1.4 Decision theory often uses mean squared error
to represent risk.. . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Contents xv

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec6
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec8
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec10
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec11
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec12
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_7#Sec15
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec1
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec2
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec5
http://dx.doi.org/10.1007/978-1-4614-9602-1_8#Sec5


8.2 Estimation in Large Samples . . . . . . . . . . . . . . . . . . . . . . . . 196
8.2.1 In large samples, an estimator should be very

likely to be close to its estimand. . . . . . . . . . . . . . . . 196
8.2.2 In large samples, the precision with which

a parameter may be estimated is bounded
by Fisher information. . . . . . . . . . . . . . . . . . . . . . . . 196

8.2.3 Estimators that minimize large-sample variance
are called efficient. . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.3 Properties of ML Estimators . . . . . . . . . . . . . . . . . . . . . . . . 202
8.3.1 In large samples, ML estimation is optimal. . . . . . . . 202
8.3.2 The standard error of the MLE is obtained

from the second derivative of the loglikelihood
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3.3 In large samples, ML estimation is approximately
Bayesian.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.3.4 MLEs transform along with parameters. . . . . . . . . . . 208
8.3.5 Under normality, ML produces the weighted

mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.4 Multiparameter Maximum Likelihood . . . . . . . . . . . . . . . . . . 209

8.4.1 The MLE solves a set of partial differential
equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.4.2 Least squares may be viewed as a special
case of ML estimation. . . . . . . . . . . . . . . . . . . . . . . 212

8.4.3 The observed information is the negative
of the matrix of second partial derivatives
of the loglikelihood function, evaluated at ĥ. . . . . . . . 213
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Chapter 1
Introduction

1.1 Data Analysis in the Brain Sciences

The brain sciences seek to discover mechanisms by which neural activity is
generated, thoughts are created, and behavior is produced. What makes us see, hear,
feel, and understand the world around us? How can we learn intricate movements,
which require continual corrections for minor variations in path? What is the basis
of memory, and how do we allocate attention to particular tasks? Answering such
questions is the grand ambition of this broad enterprise and, while the workings of the
nervous system are immensely complicated, several lines of now-classical research
have made enormous progress: essential features of the nature of the action potential,
of synaptic transmission, of sensory processing, of the biochemical basis of memory,
and of motor control have been discovered. These advances have formed conceptual
underpinnings for modern neuroscience, and have had a substantial impact on clinical
practice. The method that produced this knowledge, the scientific method, involves
both observation and experiment, but always a careful consideration of the data.
Sometimes results from an investigation have been largely qualitative, as in Brenda
Milner’s documentation of implicit memory retention, together with explicit memory
loss, as a result of hippocampal lesioning in patient H.M. In other cases quantitative
analysis has been essential, as in Alan Hodgkin and Andrew Huxley’s modeling of ion
channels to describe the production of action potentials. Today’s brain research builds
on earlier results using a wide variety of modern techniques, including molecular
methods, patch clamp recording, two-photon imaging, single and multiple electrode
studies producing spike trains and/or local field potentials (LFPs), optical imag-
ing, electroencephalography (producing EEGs), and functional imaging—positron
emission tomography(PET), functional magnetic resonance imaging (fMRI), mag-
netoencephalography (MEG)—as well as psychophysical and behavioral studies. All
of these rely, in varying ways, on vast improvements in data storage, manipulation,
and display technologies, as well as corresponding advances in analytical techniques.
As a result, data sets from current investigations are often much larger, and more com-
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2 1 Introduction

plicated, than those of earlier days. For a contemporary student of neuroscience, a
working knowledge of basic methods of data analysis is indispensable.

The variety of experimental paradigms across widely ranging investigative levels
in the brain sciences may seem intimidating. It would take a multi-volume encyclo-
pedia to document the details of the myriad analytical methods out there. Yet, for
all the diversity of measurement and purpose, there are commonalities that make
analysis of neural data a single, circumscribed and integrated subject. A relatively
small number of principles, together with a handful of ubiquitous techniques—some
quite old, some much newer—lay a solid foundation. One of our chief aims in writing
this book has been to provide a coherent framework to serve as a starting point in
understanding all types of neural data.

In addition to providing a unified treatment of analytical methods that are crucial
to progress in the brain sciences, we have a secondary goal. Over many years of
collaboration with neuroscientists we have observed in them a desire to learn all that
the data have to offer. Data collection is demanding, and time-consuming, so it is
natural to want to use the most efficient and effective methods of data analysis. But
we have also observed something else. Many neuroscientists take great pleasure in
displaying their results not only because of the science involved but also because of
the manner in which particular data summaries and displays are able to shed light
on, and explain, neuroscientific phenomenon; in other words, they have developed
a refined appreciation for the data-analytic process itself. The often-ingenious ways
investigators present their data have been instructive to us, and have reinforced our
own aesthetic sensibilities for this endeavor. There is deep satisfaction in compre-
hending a method that is at once elegant and powerful, that uses mathematics to
describe the world of observation and experimentation, and that tames uncertainty
by capturing it and using it to advantage. We hope to pass on to readers some of
these feelings about the role of analytical techniques in illuminating and articulating
fundamental concepts.

A third goal for this book comes from our exposure to numerous articles that report
data analyzed largely by people who lack training in statistics. Many researchers have
excellent quantitative skills and intuitions, and in most published work statistical
procedures appear to be used correctly. Yet, in examining these papers we have
been struck repeatedly by the absence of what we might call statistical thinking, or
application of the statistical paradigm, and a resulting loss of opportunity to make
full and effective use of the data. These cases typically do not involve an incorrect
application of a statistical method (though that sometimes does happen). Rather, the
lost opportunity is a failure to follow the general approach to the analysis of the data,
which is what we mean by the label “the statistical paradigm.” Our final pedagogical
goal, therefore, is to lay out the key features of this paradigm, and to illustrate its
application in diverse contexts, so that readers may absorb its main tenets.

To begin, we will review several essential points that will permeate the book.
Some of these concern the nature of neural data, others the process of statistical
reasoning. As we go over the basic issues, we will introduce some data that will be
used repeatedly.
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1.1.1 Appropriate analytical strategies depend crucially
on the purpose of the study and the way the data
are collected.

The answer to the question, “How should I analyze my data?” always depends on
what you want to know. Convenient summaries of the data are used to convey appar-
ent tendencies. Particular summaries highlight particular aspects of the data—but
they ignore other aspects. At first, the purpose of an investigation may be stated
rather vaguely, as in “I would like to know how the responses differ under these two
experimental conditions.” This by itself, however, is rarely enough to proceed. Usu-
ally there are choices to be made, and figuring out what analysis should be performed
requires a sharpening of purpose.

Example 1.1 SEF neural activity under two conditions Olson et al. (2000) exam-
ined the behavior of neurons in the supplementary eye field (SEF), which is a frontal
lobe region anterior to, and projecting to, the eye area in motor cortex. The general
issue was whether the SEF merely relays the message to move the eyes, or whether
it is involved in some higher-level processing. To distinguish these two possibilities,
an experiment was devised in which a monkey moved its eyes in response to either
an explicit external cue (the point to which the eyes were to move was illuminated) or
an internally-generated translation of a complex cue (a particular pattern at fixation
point determined the location to which the monkey was to move its eyes). If the
SEF simply transmits the movement message to motor cortex and other downstream
areas, one would expect SEF neurons to behave very similarly under the two exper-
imental conditions. On the other hand, distinctions between the neural responses in
the two conditions would indicate that the SEF is involved in higher-level cognitive
processing. While an individual neuron’s activity was recorded from the SEF of an
alert macaque monkey, one of the two conditions was chosen at random and applied.
This experimental protocol was repeated many times, for each of many neurons.
Thus, for each recorded neuron, under each of the two conditions, there were many
trials, which consist of experimental repetitions designed to be as close to identical
as possible.

Results for one neuron are given in Fig. 1.1. The figure displays a pair of raster plots
and peri-stimulus time histograms (PSTHs). Each line in each raster plot contains
results from a single trial, which consist of a sequence of times at which action
potentials or spikes occur. The sequence is usually called a spike train. Note that for
each condition the number and timing of the spikes, displayed on the many lines of
each raster plot, vary from trial to trial. The PSTH is formed by creating time bins
(here, each bin is 10 ms in length), counting the total number of spikes that occur
across all trials within each bin, and then normalizing (by dividing by the number of
trials and the length of each bin in seconds) to convert count to firing rate in units of
spikes per second. The PSTH is used to display firing-rate trends across time, which
are considered to be common to1 the many separate trials.

1 One source of variation across trials is that the behavior of the monkey is not identical on every
trial. For instance, the eyes may move along slightly different paths and at different rates. Even
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Fig. 1.1 Raster plot (Top) and PSTH (Bottom) for an SEF neuron under both the external-cue or
“spatial” condition (Left) and the complex cue or “pattern” condition (Right). Each line in each
raster plot contains data from a single trial, that is, a single instance in which the condition was
applied. (There are 15 trials for each condition.) The tick marks represent spike times, i.e., times
at which the neuron fired. The PSTH contains normalized spike counts within 10 ms time bins: for
each time bin the number of spikes occurring in that bin is counted across all trials; this count is
then divided by the number of trials, and the width of the time bin in seconds, which results in
firing rate in units of spikes per second. Time is measured relative to presentation of a visual cue,
which is considered time t = 0. This neuron is more active under the pattern condition, several
hundred milliseconds post cue. The increase in activity may be seen from the raster plots, but is
more apparent from comparison of the PSTHs.

Visual comparison of the two raster plots and two PSTHs in Fig. 1.1 indicates that
this neuron tends to respond more strongly under the pattern condition than under the
spatial condition, at least toward the end of the trial. But such qualitative impressions
are often insufficiently convincing even for a single neuron; furthermore, results for
many dozens of neurons need to be reported. How should they be summarized?
Should the firing rates be averaged over a suitable time interval, and then compared?
If so, which interval should be used? Might it be useful to display the firing-rate
histograms on top of each other somehow, for better comparison, and might the
distinctions between them be quantified and then summarized across all neurons?
Might it be useful to compare the peak firing rates for the two neurons, or the time
at which the peaks occurred? All of these variations involve different ways to look
at the data, and each effectively defines differently the purpose of the study.

The several possible ways of examining firing rate, just mentioned, have in com-
mon the aggregation of data across trials. A quite different idea would be to exam-
ine the relationship of neural spiking activity and reaction time, on a trial-by-trial

(Footnote 1 continued)
in preparations in vitro, however, identical current inputs to a neuron do not necessarily produce
identical spiking outputs. This is due, at least in part, to the stochastic behavior of the movements
of ions and molecules that govern the spiking mechanism.
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basis, and then to see how that changes across conditions. This intriguing possibility,
however, would require a different experiment: in the experiment of Olson et al. the
eye movement occurred long after2 the cue, so there was no observed behavior corre-
sponding to reaction time. This is an extreme case of the way analytical alternatives
depend on the purpose of the experiment. �

Example 1.1 illustrates the way a particular purpose shaped the design of the
experiment, the way the data were collected, and the possible analytic strategies. In
thinking about the way the data are collected, one particular distinction is especially
important: that of steady-state versus systematically evolving conditions. In many
studies, an experimental manipulation leads to a measured response that evolves in
a more-or-less predictable way over time. In Example 1.1 the neuronal firing rate, as
represented by the PSTH, evolves over time, with the firing rate increasing roughly
200 ms after the cue. This may be contrasted with observation of a phenomenon
that has no predictable time trend, experimentally-induced or otherwise. Typically,
such situations arise when one is making baseline measurements, in which some
indicator of neural activity is observed while the organism or isolated tissue is at
rest and receives no experimental stimulus.3 Sometimes a key piece of laboratory
apparatus must be observed in steady state to establish background conditions. Here
is an important example.

Example 1.2 MEG background noise Magnetoencephalography (MEG) is an
imaging technique used to measure the magnetic fields produced by electrical activity
in the brain. MEG recordings are used clinically to localize a brain tumor or to identify
the site of an epileptic focus; they are used by neuroscientists to study such things
as language production, memory formation, and the neurological basis of diseases
such as schizophrenia.

The MEG signals are generated from the net effect of ionic currents flowing in the
dendrites of cortical neurons during synaptic transmission. From Maxwell’s equa-
tions, any electrical current produces a magnetic field oriented orthogonally (per-
pendicularly) to the current flow, according to the right-hand rule. MEG measures
this magnetic field. Magnetic fields are relatively unaffected by the tissue through
which the signal passes on the way to a detector, but the signals are very weak.
Two things make detection possible. One is that MEG uses highly sensitive detec-
tors called superconducting quantum interference devices (SQUIDs). The second is
that currents from many neighboring neuronal dendrites have similar orientations, so
that their magnetic fields reinforce each other. The dendrites of pyramidal cells in the
cortex are generally perpendicular to its surface and, in many parts of the brain, their
generated fields are oriented outward, toward the detectors sitting outside the head.

2 They used a random delay followed by a separate cue to move; this helped ensure that movement
and anticipatory effects would not contaminate the processing effects of interest.
3 Analyses of brain activity when the subject is resting (e.g., during passive eye fixation or with
eyes closed) have been reported by many groups. See, for example, Fox et al. (2005), who used
fMRI to describe two distinct resting-state networks.
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Fig. 1.2 MEG imaging. Left drawing of the way the SQUID detectors sit above the head in a MEG
machine. Right plots of sensor signals laid out in a two-dimensional configuration to correspond,
roughly, to their three-dimensional locations as shown in the left panel of the figure.

A detectable MEG signal is produced by the net effects of currents from approxi-
mately 50,000 active neurons. See Fig. 1.2.

Because the signals are weak, and the detectors extremely sensitive, it is important
to assess MEG activity prior to imaging patients. Great pains are taken to remove
sources of magnetic fields from the room in which the detector is located. Nonethe-
less, there remains a background signal that must be identified under steady-state
conditions. �

Many analytical methods assume a steady state exists. The mathematical formu-
lation of “steady state,” based on stationarity, will be discussed in Chapter 18.

1.1.2 Many investigations involve a response to a stimulus
or behavior.

In contrast to the steady state conditions in Example 1.2, many experiments involve
perturbation or stimulation of a system, producing a temporally evolving response.
This does not correspond to a steady state. The SEF experiment was a stimulus-
response study. Functional imaging also furnishes good examples.

Example 1.3 fMRI in a visuomotor experiment Functional magnetic resonance
imaging (fMRI) uses change in magnetic resonance (MR) to infer change in neural
activity, within small patches (voxels) of brain tissue. When neurons are active they
consume oxygen from the blood, which produces a local increase in blood flow
after a delay of several seconds. Oxygen in the blood is bound to hemoglobin, and
the magnetic resonance of hemoglobin changes when it is oxygenated. By using an
appropriate MR pulse sequence, the change in oxygenation can be detected as the
blood-oxygen-level dependent (BOLD) signal, which follows a few seconds after the
increase in neural activity. The relationship between neural activity and BOLD is not

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 1.3 An fMRI image with several traces of the signal across time. Panel A displays an image
indicating three locations, shown in red, from which voxel signals were examined. Panels B-D
display the signals themselves, averaged across the voxels. They correspond, respectively, to motor
cortex, primary visual cortex, and white matter.

known in detail, but since the 1990s fMRI has been used to track changes in BOLD
in relation to the execution of a task, giving at least a rough guide to the location of
sustained functional neural activity.

Figure 1.3 displays images from one subject in a combined visual and motor fMRI
experiment. The subject was presented with a full-field flickering checkerboard, in a
repeating pattern of 12.8 s (seconds) OFF followed by 12.8 s ON. This was repeated
8 times. Alternating out of phase with the flickering checkerboard pattern the subject
also executed a finger tapping task (12.8 s ON followed by 12.8 s OFF). The brain was
imaged once every 800 ms for the duration of the experiment. The slice shown was
chosen to transect both the visual and motor cortices. Three regions of interest have
been selected, corresponding to (1) motor (2) visual cortex, and (3) white matter.
Parts B through D of the figure illustrate the raw time series taken from each of these
regions, along with timing diagrams of the input stimuli. As expected, the motor
region is more active during finger tapping (but the BOLD signal responds several
seconds after the tapping activity commences) while the visual region is more active
during the flickering visual image (again with several seconds lag). The response
within white matter serves as a control. �

The focus of stimulus-response experiments is usually the relationship between
stimulus and response. This may suggest strategies for analysis of the data. If we
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let X denote the stimulus and Y the response, we might write the relationship as
follows:

Y ←− X (1.1)

where the arrow indicates that X leads to Y . Chapters 12, 14, and 15 are devoted to
regression methods, which are designed for situations in which X might lead to Y .

In Example 1.1, Y could be the average firing rate in a specified window of time,
such as 200–600 ms following the cue, and X could represent the experimental con-
dition. In other words, the particular experimental condition leads to a corresponding
average firing rate. In Example 1.3, Y could be the value of the BOLD response, and
X could represent whether the checkerboard was on or off 5 s prior to the response Y .

The arrow in (1.1) suggests a mechanistic relationship (the stimulus occurred, and
that made Y occur), but it is often wise to step back and remain agnostic about a
causal connection. A more general notion is that the variables X and Y are associated,
meaning that they tend to vary together. A wide variety of neuroscientific studies
seek to establish associations among variables. Such studies might relate a pair of
behavioral measures, for example, or they might involve spike trains from a pair
of neurons recorded simultaneously, EEGs from a pair of electrodes on the scalp,
or MEG signals from a pair of SQUID detectors. Many statistical tools apply to
both causal and non-causal relationships. Measures of association are discussed in
Chapters 10 and 12. Chapter 13 also contains a brief discussion of the distinction
between association and causation, and some issues to consider when one wishes to
infer causation from an observed association.

1.2 The Contribution of Statistics

Many people think of statistics as a collection of particular data-analytic techniques,
such as analysis of variance, chi-squared goodness-of-fit, linear regression, etc. And
so it is. But the field of statistics, as an academically specialized discipline, strives
for something much deeper, namely, the development and characterization of data
collection and analysis methods according to well-defined principles, as a means of
quantifying knowledge about underlying phenomena and rationalizing the learning
and decision-making process. As we said above, one of the main pedagogical goals
of this book is to impart to the reader some sense of the way data analytic issues
are framed within the discipline of statistics. In trying to achieve this goal, we find
it helpful to articulate the nature of the statistical paradigm as concisely as possible.
After numerous conversations with colleagues, we have arrived at the conclusion
that among many components of the statistical paradigm, summarized below, two
are the most fundamental.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Two Fundamental Tenets of the Statistical Paradigm:

1. Statistical models are used to express knowledge and uncertainty about a
signal in the presence of noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine how well they are likely
to perform.

In the remainder of this section we will elaborate, adding a variety of comments
and clarifications.

1.2.1 Statistical models describe regularity and variability
of data in terms of probability distributions.

When data are collected, repeatedly, under conditions that are as nearly identical as an
investigator can make them, the measured responses nevertheless exhibit variation.
The spike trains generated by the SEF neuron in Example 1.1 were collected under
experimental conditions that were essentially identical; yet, the spike times, and the
number of spikes, varied from trial to trial. The most fundamental principle of the
statistical paradigm, its starting point, is that this variation may be described by
probability. Chapters 3 and 5 are devoted to spelling out the details, so that it will
become clear what we mean when we say that probability describes variation. But
the idea is simple enough: probability describes familiar games of chance, such as
rolling dice, so when we use probability also to describe variation, we are making
an analogy; we do not know all the reasons why one measurement is different than
another, so it is as if the variation in the data were generated by a gambling device.
Let us consider a simple but interesting example.

Example 1.4 Blindsight in patient P.S. Marshall and Halligan (1988) reported an
interesting neuropsychological finding from a patient, identified as P.S. This patient
was a 49 year-old woman who had suffered damage to her right parietal cortex
that reduced her capacity to process visual information coming from the left side
of her visual space. For example, she would frequently read words incorrectly by
omitting left-most letters (“smile” became “mile”) and when asked to copy simple
line drawings, she accurately drew the right-hand side of the figures but omitted
the left-hand side without any conscious awareness of her error. To show that she
could actually see what was on the left but was simply not responding to it—a
phenomenon known as blindsight—the examiners presented P.S. with a pair of cards
showing identical green line drawings of a house, except that on one of the cards
bright red flames were depicted on the left side of the house. They presented to P.S.
both cards, one above the other (the one placed above being selected at random),
and asked her to choose which house she would prefer to live in. She thought this
was silly “because they’re the same” but when forced to make a response chose the
non-burning house on 14 out of 17 trials. This would seem to indicate that she did, in

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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fact, see the left side of the drawings but was unable to fully process the information.
But how convincing is it that she chose the non-burning house on 14 out of 17 trials?
Might she have been guessing?

If, instead, P.S. had chosen 17 out of 17 trials there would have been very strong
evidence that her processing of the visual information affected her decision-making,
while, on the other hand, a choice of 9 out of 17 clearly would have been consistent
with guessing. The intermediate outcome 14 out of 17 is of interest as a problem in
data analysis and scientific inference precisely because it feels fairly convincing, but
leaves us unsure: a thorough, quantitative analysis of the uncertainty would be very
helpful.

The standard way to begin is to recognize the variability in the data, namely, that
P.S. did not make the same choice on every trial; we then say that the choice made
by P.S. on each trial was a random event, that the probability of her choosing the
non-burning house on each trial was a value p, and that the responses on the different
trials were independent of each other. These three assumptions use probability to
describe the variability in the data. Once these three assumptions are made it becomes
possible to quantify the uncertainty about p and the extent to which the data are
inconsistent with the value p = .5, which would correspond to guessing. In other
words, it becomes possible to make statistical inferences. �

The key step in Example 1.4 is the introduction of probability to describe vari-
ation. Once that first step is taken, the second step of making inferences about
the phenomenon becomes possible. Because the inferences are statistical in nature,
and they require the introduction of probability, we usually refer to the probability
framework—with its accompanying assumptions—as a statistical model. Statistical
models provide a simple formalism for describing the way the repeatable, regular
features of the data are combined with the variable features. In Example 1.4 we may
think of p as the propensity for P.S. to choose the non-burning house. According
to this statistical model, p is a kind of regularity in the data in the sense that it
is unchanging across trials. The variation in the data comes from the probabilistic
nature of the choice: what P.S. will choose is somewhat unpredictable, so we attribute
a degree of uncertainty to unknown causes and describe it as if predicting her choice
were a game of chance. We elaborate on the statistical model, and the inferences
drawn from the data of Example 1.4 in Chapters 5 and 7.

Probability is also often introduced to describe small fluctuations around a spec-
ified formula or “law.” We typically consider such fluctuations “noise,” in contrast
to the systematic part of the variation in some data, which we call the “signal.” For
instance, as we explain in Chapter 12, when the underlying, systematic mathematical
specification (the signal) has the form

y = f (x)

we will replace it with a statistical model having the form

Y = f (x)+ ε (1.2)

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 1.4 Conduction velocity of action potentials, as a function of diameter. The
x-axis is diameter in microns; the y-axis is velocity in meters per second. Based on Hursh (1939,
Fig. 2). Also shown is the least-squares regression line.

where ε represents noise and the variable Y is capitalized to indicate its now-random
nature: it becomes “signal plus noise.” The simplest case occurs when f (x) is a line,
having the form f (x) = β0 + β1x , where we use coefficients β0 and β1 (instead of
writing f (x) = a + bx) to conform to statistical convention. Here is an example.

Example 1.5 Neural conduction velocity Hursh (1939) presented data on the
relationship between a neuron’s conduction velocity and its axonal diameter, in adult
cats. Hursh measured maximal velocity among fibers in several nerve bundles, and
then also measured the diameter of the largest fiber in the bundle. The resulting
data, together with a fitted line, are shown in Fig. 1.4. In this case the line y =
β0 + β1x represents the approximate linear relationship between maximal velocity
y and diameter x . The data follow the line pretty closely, with the intercept β0 being
nearly equal to zero. This implies, for example, that if one fiber has twice the diameter
of another, the first will propagate an action potential roughly twice as fast as the
second. �

Before we conclude our introductory remarks about statistical models, by elabo-
rating on (1.2), let us digress for a moment to discuss the method used to fit the line
to the data in Fig. 1.4, which is called least squares regression, It is one of the core
conceptions of statistics, and we discuss it at length in Chapter 12.

Suppose we have a line that is fit by some method, possibly least-squares or
possibly another method, and let us write this line as y = β∗0 + β∗1 x . It is customary,
in statistics, to use the notations β0 and β1 for the intercept and slope. Here we
have included the asterisk ∗ in β∗0 and β∗1 because it will simplify some additional
notations later on. The important thing is that β∗0 and β∗1 are coefficients that define
the line we fit to the data, using whatever method we might choose. Suppose there
are n data pairs of the form (x, y) and let us label them with a subscript so that they
take the form (xi , yi ) with i = 1, 2, . . . , n. That is, (x1, y1) would be the first data

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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pair, (x2, y2) the second, and so forth. The y-coordinate on the line y = β∗0 + β∗1 x
corresponding to xi is

ŷ∗i = β∗0 + β∗1 xi .

The number ŷ∗i is called the fitted value at xi and we may think of it as predicting yi .
We then define the i th residual as

ei = yi − ŷ∗i .

The value ei is the error at xi in fitting, or the error of prediction, i.e., it is the vertical
distance between the observation (xi , yi ) and the line at xi . We wish to find the line
that best predicts the yi values, which means we want to make the ei ’s as small as
possible, in aggregate. To do this, we have to minimize some measure of the size of all
the ei ’s taken together. In choosing such a measure we assume positive and negative
values of the residuals are equally important. Two alternative aggregate measures
that treat ei and −ei equally are the following:

sum of absolute deviations =
n∑

i=1

|ei |

sum of squares =
n∑

i=1

e2
i . (1.3)

Data analysts sometimes choose β∗0 and β∗1 to minimize the sum of absolute devia-
tions, but the solution can not be obtained in closed form, and it is harder to analyze
mathematically. Instead, the method of least squares works with the sum of squares,
where the solution may be found using calculus (see Chapter 12).

The least-squares estimates β̂0 and β̂1 are the values of β∗0 and β∗1 that minimize
the sum of squares in (1.3). The least-squares line is then

y = β̂0 + β̂1x .

Having motivated least-squares with (1.2) let us return to that equation and note
that it is not yet a statistical model. If we write

Yi = f (xi )+ εi , (1.4)

take
f (x) = β0 + β1x

and, crucially, let the noise term εi be a random variable, then we obtain a linear
regression model. Random variables are introduced in Chapter 3. The key point in

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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the present discussion is that linear regression describes the regularity of the data
by a straight line and the variability (the deviations from the line) by a probability
distribution (the distribution of the noise random variable εi ).

1.2.2 Statistical models are used to express knowledge
and uncertainty about a signal in the presence
of noise, via inductive reasoning.

The introduction of a statistical model not only provides guidance in determining
fits to data, as in Example 1.5, but also assessments of uncertainty.

Example 1.4 (continued from page 9) Let us return to the question of whether the
responses of P.S. were consistent with guessing. In this framework, guessing would
correspond to p = .5 and the problem then becomes one of assessing what these
data tell us about the value of p. As we will see in Chapter 7, standard statistical
methods give an approximate 95 % confidence interval for p of (.64, 1.0). This is
usually interpreted by saying we are 95 % confident the value of p lies in the interval
(.64, 1.0), which is a satisfying result: while this interval contains a range of values,
indicating considerable uncertainty, we are nonetheless highly confident that the
value of p is inconsistent with guessing. �

The confidence interval we have just reported in Example 1.4 illustrates the expres-
sion of “knowledge and uncertainty.” It is an example of inductive reasoning in the
sense that we reason from the data back to the quantity p assumed in the model.
Many mathematical arguments begin with a set of assumptions and prove some
consequence. This is often called deductive reasoning. As described in Chapter 7,
statistical theory uses deductive reasoning to provide the formalism for confidence
intervals. However, when we interpret the result as providing knowledge about the
unknown quantity p based on experience (the data), the argument is usually called
“inductive.” Unlike deductive reasoning, inductive reasoning is uncertain. We use
probability to calibrate the degree to which a statement is likely to be true. In report-
ing confidence intervals, the convention is to use a probability of .95, representing a
high degree of confidence.

In fact, as a conceptual advance, this expression of knowledge and uncertainty via
probability is highly nontrivial: despite quite a bit of earlier mathematical attention
to games of chance, it was not until the late 1700s that there emerged any clear notion
of inductive, or what we would now call statistical reasoning; it was not until the first
half of the twentieth century that modern methods began to be developed systemati-
cally; and it was only in the second half of the twentieth century that their properties
were fully understood. From a contemporary perspective the key point is that the
confidence interval is achieved by uniting two distinct uses of probability. The first
is descriptive: saying P.S. will choose the non-burning house with probability p is
analogous to saying the probability of rolling an even number with an apparently
fair six-sided die is 1/2. The second use of probability is often called “epistemic,”

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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and involves a statement of knowledge: saying we have 95 % confidence that p is
in the interval (.64, 1.0) is analogous to someone saying they are 90 % sure that the
capital of Louisiana is Baton Rouge. The fundamental insight, gained gradually over
many years, is that the descriptive probability in statistical models may be used to
produce epistemic statements for scientific inference. We will emphasize the con-
trast between the descriptive and epistemic roles of statistical models by saying that
models describe the variation in data and produce uncertain inferences. Technically,
there are alternative frameworks for bringing descriptive and epistemic probability
together, the two principal ones being Bayesian and frequentist. We will discuss
the distinction in Section 7.3.9, and develop the Bayesian approach to inference at
greater length in Chapter 16.

While we wish to stress the importance of statistical models in data analysis, we
also want to issue several qualifications and caveats: first, the notion of “model”
we intend here is very general, the only restriction being that it must involve a
probabilistic description of the data; second, modeling is done in conjunction with
summaries and displays that do not introduce probability explicitly; third, it is very
important to assess the fit of a model to a given set of data; and, finally, statistical
models are mathematical abstractions, imposing structure on the data by introducing
explicit assumptions. The next three subsections explain these points further.

1.2.3 Statistical models may be either parametric
or nonparametric.

In emphasizing statistical models, our only restriction is that probability must be
used to express the way regularity and variability in the data are to be understood.
One very important distinction is that of parametric versus nonparametric models.

The terminology comes from the representation of a probability distribution in
terms of an unknown parameter. A parameter is a number, or vector of numbers, that is
used in the definition of the distribution; the probability distribution is characterized
by the parameter in the sense that once the value of the parameter is known, the
probability distribution is completely determined. In Example 1.4, p. 9, the parameter
is p. In Example 1.5, p. 11, the parameter includes the pair (β0,β1), together with a
noise variation parameter σ, explained in Chapter 12. In both of these cases the values
of the unknown parameters determine the probability distribution of the random
variables, as in (1.4). Parametric probability distributions are discussed in Chapter 5.

A related distinction arises in the context of y versus x models of the type con-
sidered in Example 1.5. That example involved a linear relationship. As we note in
Chapters 14 and 15, the methods used to fit linear models can be generalized for
nonlinear relationships. The methods in Chapter 15 are also called nonparametric
because the fitted relationship is not required to follow a pre-specified form.

Example 1.6 Excitatory post-synaptic current As part of a study on spike-timing-
dependent plasticity (Dr. David Nauen, personal communication), rat hippocampal

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 1.5 Excitatory post-synaptic current. Current recorded from a rat hippocampal neuron, together
with smoothed version (shown as the thin red line within the noisy current trace) obtained by fitting
a suitable function of time, given in the text. The current values are connected by the dark line.
When values recorded sequentially in time are plotted it is a common practice to connect them.
(Figure courtesy of David Nauen.)

neurons were held in voltage clamp and post-synaptic currents were recorded fol-
lowing an action potential evoked in a presynaptic cell. Figure 1.5 displays a plot of
membrane current as a function of time. One measurement of size of the current is
found by integrating the current across time (which is implemented by summing the
current values and multiplying by the time between observations), giving the total
charge transmitted. Other quantities of interest include the onset delay, the rate at
which the curve “rises” (here, a negative rise) from onset to peak current, and the rate
at which the curve decays from peak current back toward steady state. The current
trace is clearly subject to measurement noise, which would contaminate the calcu-
lations. A standard way to reduce the noise is to fit the data by a suitable function
of time. Such a fit is also shown in the figure. It may be used to produce values for
the various constants needed in the analysis. To produce the fit a statistical model of
the form (1.4) was used where the function y = f (x), with y being post-synaptic
current and x being time, was defined as

f (x) = A1(1−exp((x−t0)/τ1)) (A2 exp((x − t0)/τ2)−(1− A2) exp((x − t0)/τ3)).

This was based on a suggestion by Nielsen et al. (2004). Least squares was then
applied, as defined in Section 1.2.1. The fit is good, though it distorts slightly the
current trace in the dip and at the end. The advantage of using this function is that
its coefficients may be interpreted and compared across experimental conditions. �

The simple linear fit in Example 1.5, p. 11, is an example of linear regression, dis-
cussed in Chapter 12, while the fit based on a combination of exponential functions

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 1.6 Electrooculogram together with a smoothed, or “filtered” version that removes the noise.
The method used for smoothing is an example of nonparametric regression.

in Example 1.6 is an example of nonlinear regression discussed in Section 14.2. Both
are examples of parametric regression because both use specified functions based on
formulas that involve a few parameters. In Example 1.5 the parameters were β0 and
β1 while in Example 1.6 they were A1, A2, τ1, τ2, τ3, t0. Nonparametric regression
is used when the formula for the function is not needed. Nonparametric regression
is a central topic of Chapter 15. Here is an example.

Example 1.7 Electrooculogram smoothing for EEG artifact removal EEG
recordings suffer from a variety of artifacts, one of which is their response to eye
blinks. A good way to correct for eye-blink artifacts is to record potentials from
additional leads in the vicinity of the eyes; such electrooculograms (EOGs) may be
used to identify eye blinks, and remove their effects from the EEGs. Wallstrom et al.
(2002, 2004) investigated methods for removing ocular artifacts from EEGs using
the EOG signals. In Chapter 15 it will become clear how to use a general smoothing
method to remove high-frequency noise. This does not require the use of a func-
tion having a specified form. Figure 1.6 displays an EOG recording together with a
smoothed version of it, obtained using a nonparametric regression method known as
BARS (Dimatteo et al. 2001). �

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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1.2.4 Statistical model building is an iterative process
that incorporates assessment of fit and is preceded
by exploratory analysis.

Another general point about the statistical paradigm is illustrated in Fig. 1.7. This
figure shows where the statistical work fits in. Real investigations are far less sequen-
tial than depicted here, but the figure does provide a way of emphasizing two com-
ponents of the process that go hand-in-hand with statistical modeling: exploratory
analysis and assessment of fit. Exploratory analysis involves informal investigation of
the data based on numerical or graphical summaries, such as a histogram. Exploratory
results, together with judgment based on experience, help guide construction of an
initial probability model to represent variability in observed data.

Every such model, and every statistical method, makes some assumptions, leading,
as we have already seen, to a reduction of the data in terms of some small number
of interpretable quantities. As shown in Fig. 1.7, the data may be used, again, to
check the probabilistic assumptions, and to consider ramifications of departures from
them. Should serious departures from the assumptions be found, a new model may
be formed. Thus, probability modeling and model assessment are iterative, and only
when a model is considered adequate are statistical inferences made. This process
is embedded into the production of scientific conclusions from experimental results
(Box et al. 1978).

1.2.5 All models are wrong, but some are useful.

The simple representation in Fig. 1.7 is incomplete and may be somewhat misleading.
Most importantly, while it is true that there are standard procedures for model assess-
ment, some of which we will discuss in Chapter 10, there is no uniformly-applicable
rule for what constitutes a good fit. Statistical models, like scientific models, are
abstractions and should not be considered perfect representations of the data. As
examples of scientific models in neuroscience we might pick, at one extreme, the
Hodgkin-Huxley model for action potential generation in the squid giant axon and,
at the other extreme, being much more vague, the theory that vision is created via
separate ventral and dorsal streams corresponding loosely to “what” and “where.”
Neither model is perfectly accurate—in fact, every scientific model fails4 under cer-
tain conditions. Models are helpful because they capture important intuitions and can
lead to specific predictions and inferences. The same is true of statistical models. On
the other hand, statistical models are often driven primarily by raw empiricism—they
are produced to fit data and may have little or no other justification or explanatory
power. Thus, experienced data analysts carry with them a strong sense of both the

4 For a discussion of some ways that great equations of physics remain fundamental while only
approximating the real world, see Weinberg (2002). An entry into the philosophical literature on
statistical inference and modeling is Mayo and Spanos (2010).

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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Experiment
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of Fit:

Adequate?

Exploratory Analysis

Scientific Issue

Statistical Model

Statistical Inference

Scientific Conclusion

YES

NO

Fig. 1.7 Formal statistical inference within the process of drawing scientific conclusions. Statistical
model building is a prerequisite to formal inference procedures. Model building is iterative in the
sense that tentative models must be assessed and, if necessary, improved or abandoned. The figure
is something of a caricature because the process is not as neat as depicted here. Furthermore, there
are typically multiple aspects of the data, which bear on several different issues. A single scientific
conclusion may rely on many distinct statistical inferences.

inaccuracies in statistical models and their lingering utility. This sentiment is cap-
tured well by the famous quote from George Box, “All models are wrong, but some
are useful” (Box 1979).

To emphasize further the status of statistical models we have created Fig. 1.8.
Pictured in the left column is the “real world” of data, i.e., the observables, obtained
by recording in some form, often by measurement. In the right column is the
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Real World Theoretical World

Data

Conclusions

Statistical Models

Scientific Models

Fig. 1.8 The role of statistical models and methods in scientific inference. Statistical procedures
are abstractly defined in terms of mathematics, but are used, in conjunction with scientific models
and methods, to explain observable phenomena. Adapted from Kass (2011).

“theoretical world” where both scientific and statistical models live. Scientific mod-
els help us organize facts with explanations. They can be high-level or detailed, but
they should not, at least in principle, be confused with the observations themselves.
The theoretical world seeks to make statements and predictions, often using a pre-
cise but abstract mathematical framework, which may be applied to things in the
real world that may be observed. In a domain where theory works well, the theo-
retical world would be judged to be very close to the real world and, therefore, its
predictions would be highly trustworthy. Statistical models are used to describe the
imperfect predictability of phenomena, the regularity and variability of data, in terms
of probability distributions.

A second aspect of the flow diagram in Fig. 1.7 may be misleading. The diagram
fails to highlight the way the judgment of adequate fit depends on context. When we
say “All models are wrong, but some are useful,” part of the point is that a model can
be useful for a specified inferential purpose. Thus, in judging adequacy of a model,
one must ask, “How might the reasonably likely departures from this model affect
scientific conclusions?”

We illustrate the way statistical models lead to scientific conclusions in numerous
examples throughout this book.

1.2.6 Statistical theory is used to understand the behavior
of statistical procedures under various probabilistic
assumptions.

The second of the two major components of the statistical paradigm is that methods
may be analyzed to determine how well they are likely to perform. As we describe
briefly in Sections 4.3.4 and 7.3.9, and more fully in Chapters 8 and 11, a series of
general principles and criteria are widely used for this purpose. Statistical theory
has been able to establish good performance of particular methods under certain
probabilistic assumptions. In Chapters 3–6 we provide the necessary background for

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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the theory we develop. When we wish to add arguments that are not essential to the
flow of material we highlight them as details and indent them, as follows.

Details: We indent, like this, the paragraphs containing mathematical
details we feel may be safely skipped. �

One easy and useful method of checking the effectiveness of a procedure, which
is applicable in certain predictive settings, is cross-validation. The simplest form of
cross-validation involves splitting the data set into two subsets, applying and refining
a method using one of the subsets, and then judging its predictive performance
(predicting the value of some response) on the second subset. Sometimes the second
subset involves entirely new data. For example, in a behavioral study, a new set
of subjects may be recruited and examined. Methods that perform well with this
kind of cross-validation are often quite compelling. In addition to being intuitive,
cross-validation has a theoretical justification discussed briefly in Chapter 12.

1.2.7 Important data analytic ideas are sometimes
implemented in many different ways.

The usual starting point in books about data analysis is measures of central tendency,
such as mean and median, which we review in Section 2.1.1. There are three reasons
for putting a discussion of central tendency at the beginning. First, the use of a
single representative value (such as the mean) to summarize a bunch of numbers is
ubiquitous. Second, it is an excellent example of the process of data summary; data
analysis as a whole may be considered a kind of generalization of this simple method.
Third, the mean and median are both single-number summaries but they behave very
differently. This last point, that it matters how a general data analytic idea (a single-
number summary of central tendency) is defined (mean or median), has become
ingrained into teaching about statistical reasoning. The crucial observation5 is that it
can be important to separate the general idea from any specific implementation; as a
useful concept, the general idea may transcend any specific definition. For example,
in Section 4.3.2 we discuss the deep notion that information represents reduction of
uncertainty. As we explain there, the general idea of information could be defined,
technically, in terms of a quantity called mutual information, but it could also be
defined using the squared correlation. Mutual information and squared correlation
have very different properties. The definition matters, but with either definition we
can think of information as producing a reduction of uncertainty.

1.2.8 Measuring devices often pre-process the data.

Measurements of neural signals are often degraded by noise. A variety of techniques
are used to reduce the noise and increase the relative strength of the signal, some

5 This point was emphasized by Mosteller and Tukey (1977, Section 1F).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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of which will be discussed in Chapter 7. In many cases, methods such as these are
applied by the measurement software to produce the data the investigator will analyze.
For example, fMRI data are acquired in terms of frequency and software is used to
reconstruct a signal in time; MEG sensors must be adjusted to ensure detection above
background noise; and extracellular electrode signals are thresholded and filtered to
isolate action potentials, which then must be “sorted” to identify those from particular
neurons. In each of these cases the data that are to be analyzed are not in the rawest
form possible. Such pre-processing may be extremely useful, but its effects are not
necessarily benign. Inaccurate spike sorting, for example, is a notorious source of
problems in some contexts. (See Bar-Gad et al. (2001) and Wood et al. (2004).)
The wise analyst will be aware of possible distortions that might arise before the
data have been examined.

1.2.9 Data analytic techniques are rarely able to compensate
for deficiencies in data collection.

A common misconception is that flaws in experimental design, or data collection,
can be fixed by statistical methods after the fact. It is true that an alternative data
analytic technique may be able to be help avoid some presumed difficulty an analyst
may face in trying to apply a particular method—especially when associated with a
particular piece of software. But when a measured variable does not properly capture
the phenomenon it is supposed to be measuring, post hoc manipulation will be almost
never be able to rectify the situation; in the rare cases that it can, much effort and very
strong assumptions will typically be required. For example, we already mentioned
that inaccurate spike sorting can create severe problems. When these problems arise,
no post-hoc statistical manipulation is likely to fix them.

1.2.10 Simple methods are essential.

Another basic point concerning analytical methods is that simple, easily-understood
data summaries, particularly visual summaries such as the PSTH, are essential com-
ponents of analysis. These fit into the diagram of Fig. 1.7 mainly under the heading of
exploratory data analysis, though sometimes inferential analyses from simple mod-
els are also used in conjunction with those from much more elaborate models. When
a complicated data-analytic procedure is applied, it is important to understand the
way results agree, or disagree, with those obtained from simpler methods.

1.2.11 It is convenient to classify data into several broad types.

When spike train data, like those in Example 1.1, are summarized by spike counts
occurring in particular time intervals, the values taken by the counts are necessarily

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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non-negative integers. Because the integers are separated from each other, such data
are called discrete. On the other hand, many recordings, such as MEG signals, or
EEGs, can take on essentially all possible values within some range—subject only
to the accuracy of the recording instrument. These data are called continuous. This
is a very important distinction because specialized analytical methods have been
developed to work with each kind of data.

Count data form an important subclass within the general category of discrete
data. Within count data, a further special case occurs when the only possible counts
are 0 or 1. These are binary data. The key characterization is that there are only two
possible values; it is a matter of analytical convenience to consider the two values
to be 0 or 1. As an example, the response of patient P.S. on each trial was binary.
By taking the response “non-burning house” to be 1 and “burning house” to be zero,
we are able to add up all the coded values (the 1 and 0 s) to get the total number of
times P.S. chose the non-burning house. This summation process is easy to deal with
mathematically. A set of binary data would almost always be assumed to consist of
0 and 1 s.

Two other kinds of data arising in neuroscience deserve special mention here. They
are called time series and point processes. Both involve sequential observations made
across time. MEG signals, EEGs, and LFPs are good examples of time series: at each
of many successive points in time, a measurement is recorded. Spike trains are good
examples of point processes: neuronal action potentials are recorded as sequences of
event times. In each case, the crucial fact is that an observation at time t1 is related to
an observation made at time t2 whenever t1 and t2 are close to each other. Because
of this temporal relationship time series and point process data must be analyzed
with specialized methods. Statistical methods for analyzing time series and point
processes are discussed in Chapters 18 and 19.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_19


Chapter 2
Exploring Data

Data analysis involves both manipulation, via formulas and computations, and
interpretation of the results. During the period immediately following World War
II, particularly in the United States, statistical theory was consumed with the logic
of statistical inference and decision-making. Against this backdrop, John Tukey
revolted. In addition to coining the term data analysis (see Brillinger 2002, Appen-
dix D) Tukey emphasized the distinction between formal methods, based on the logic
of statistical inference, and informal manipulations—which he called exploratory,
having a role we indicated in Section 1.2.4. The informality of exploratory data analy-
sis (EDA), however, should not be confused with mathematical simplicity. As we
indicate in Section 2.1.2, the manipulations behind many EDA methods are compli-
cated. Tukey’s large and lingering influence came from demonstrating the power of
mathematical, computational, and statistical insight in producing useful displays and
summaries of data. We describe a few basic ideas below.

2.1 Describing Central Tendency and Variation

2.1.1 Alternative displays and summaries provide different
views of the data.

Different displays and summaries may emphasize different aspects of the data. While
certain data summaries may be well suited for particular purposes, there is never a
uniquely “right” way to collapse the data. A multiplicity of possible data features
is inherent to the data analytic process. Furthermore, the details of data summary
can be important. A simple example is that the mean, i.e., the arithmetic average, of
the numbers 2, 3, 10 is 5 while the median is 3. Similarly, a histogram displays the
distribution of data values, but the way it does so depends on the way its bins are
defined. This is illustrated in the next example.

R. E. Kass et al., Analysis of Neural Data, 23
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_2,
© Springer Science+Business Media New York 2014
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Fig. 2.1 Four histograms of saccadic reaction time data. The same data are used in each histogram.
The appearance of the data distribution depends on details of histogram creation. The first three
histograms have different bin sizes. The fourth histogram (bottom right) uses the same bin size as
the third (bottom left) but shifts the bin locations slightly.

Example 2.1 Saccadic reaction time in hemispatial neglect Let us consider
saccadic reaction times from a single patient in the study of hemispatial neglect by
Behrmann et al. (2002). Each measured value is the time (in seconds) to complete an
eye saccade. The data have been aggregated across several conditions for pedagogical
purposes. There are 119 reaction times, which range from 72 to 988 ms (.072–.988 s
(seconds)). The lower quartile (below which lie 25 % of the data) is 140 ms, the
median (below which lie 50 % of the data) is 188 ms, and the upper quartile (below
which lie 75 % of the data) is 252 ms. Thus, the fast reaction times (72–140 ms) are
bunched relatively close to the middle reaction of 188 ms, while the slow reaction
times (252–988 ms) are spread out and include some comparatively large values. We
refer to this feature of the distribution as skewness and say the data are skewed toward
high values.

Four histograms of the data are shown in Fig. 2.1. Although the same 119 values are
used in each, the four histograms give different impressions of the data. In particular,
the first histogram (top left) makes the distribution look unimodal, i.e., it looks
like it has a single peak, while the second (top right) makes the distribution look
bimodal (two peaks) or even multimodal (multiple peaks). However, all four give
the clear impression of skewness toward high values. �

In discussing histograms it is important to distinguish this informal use of “distri-
bution” from the mathematical use when we speak about a probability distribution.
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We will, beginning in Chapter 3, use probability distributions to describe data, but
that should be recognized as a conceptual leap: data are observed, and part of the
“real world” of Fig. 1.8, while probability distributions are part of the “theoretical
world.” The word “distribution” is used in both contexts, and we typically hope that
a particular probability distribution will do a good job describing a data distribution.
As an example, sometimes data distributions—as represented by histograms—are
unimodal and more-or-less symmetrical about the median, i.e., the relative frequency
of data higher than the median is about the same as that of corresponding data lower
than the median by an equal amount. Symmetric and unimodal data distributions
are easier to describe concisely with probability distributions and the normal dis-
tribution, discussed in Chapter 5, is1 unimodal and symmetrical (it is often called
“the bell-shaped curve”). It is very rare to find a set of data that, on close inspec-
tion, may be described accurately by a normal distribution, but it is common to
find unimodal and symmetric data distributions that are roughly normal-looking. A
great deal of emphasis is placed on the normal distribution, in large part because
of its appearance as a basic assumption of many formal statistical procedures and
because such statistical procedures typically remain useful for modest departures
from normality, due to2 the Central Limit Theorem (Section 6.3.1). When departures
from normality become large, however, they can materially affect the behavior of
the procedures. A standard practice, therefore, is to examine data via displays such
as histograms, looking especially for substantial skewness.

In talking about a single set of numbers, such as the saccadic reaction times, it is
useful to have a word for the complete set of values. We will follow Tukey by using
the word batch, i.e., we will speak of the batch of 119 saccadic reaction times.

The saccadic reaction time data are substantially skewed. One effect of this is
that the mean (the arithmetic average) is substantially higher than the median: the
mean reaction time is 226 ms, while the median is 188 ms. This is because the mean
is affected much more strongly by values that are far away from the middle of the
distribution. Data values that are very far from the middle of the distribution are
called outliers, and the sensitivity of the mean to outliers is one reason it is often
replaced by the median as a summary of central tendency, that is, a single number
that represents a center among all the values.

In addition to the mean and median, the mode, which is the value occurring
most frequently, is sometimes mentioned in this context. However, the term “mode”
is not used in a precise way very often when describing a batch of numbers. The
concept of a mode applies better to the theoretical setting of probability densities,
where it is the value at which the density is maximized. For a batch of numbers we
typically speak, instead, informally and approximately, of “the mode” as being the
rough location of the peak of the distribution.

1 The normal distribution is also called the Gaussian distribution.
2 As we point out in Chapters 7–10, statistical procedures often require statistical summaries (such
as the least-squares estimates β̂0 and β̂1 on p. 12) to be normally distributed rather than the data
themselves.
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Just as central tendency in data may be summarized by mean or median, variability
may be summarized by more than one measure. We might ask, for example, how
much the saccade times vary. For instance, if we were to look at a control subject
might we expect less variability? How should we quantify this?

The most widely used summary of variability is the standard deviation:

s =
√√√√ 1

n − 1

n∑

i=1

(xi − x̄)2

where x1, x2, . . . , xn are the observations and x̄ is their mean. We may think of s as
an “average deviation” of the values from their mean. The square-root is used so that
the units of standard deviation agree with the units of the data themselves. For the
saccadic reaction time data we find the standard deviation to be s = 134 milliseconds
(s = .134 s ). The use of n − 1 rather than n in the formula for s comes from certain
theoretical arguments given in Chapter 8.

An alternative to the standard deviation would be the mean absolute deviation
1
n

∑n
i=1 |xi − x̄ | but this turns out to be mathematically less convenient. In some

contexts the median absolute deviation is used as this is not affected by outliers. If
x̃ = median(x1, x2, . . . , xn) is the median of the n data values xi then the median
absolute deviation is median(|x1 − x̃ |, |x2 − x̃ |, . . . , |xn − x̃ |). Sometimes the dif-
ference between the upper and lower quartiles (see p. 24) is used. This is called the
interquartile range.

In this section we have reviewed several very basic methods of data summary
and display while trying to illustrate the general notion that alternative measures and
displays can produce differing impressions of the data. An additional concern is that
perception of data may depend on aspects of the way the data are displayed that
have nothing to do with choices of data features. For scatterplots of a variable y
against another variable x , Cleveland et al. (1982) showed that a subject’s perception
of association depends on the size of the scatterplot within the frame created by the
axes. In choosing data displays it is worth keeping such perceptual issues in mind.

2.1.2 Exploratory methods can be sophisticated.

As we said in Section 1.2.4, exploratory data analysis (EDA) refers to the collection
of methods that are relatively informal, based not on a cohesive logical framework
built around statistical models but rather on tools that help illuminate interesting
features of the data. The informal methods of EDA can be extremely useful. In this
section we have mentioned a couple of very elementary descriptive methods, but
in some cases informal techniques can draw on quite sophisticated ideas. The next
example involves a method we will discuss in Chapter 18.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 2.2 EEG spectrograms for a subject in various stages of general anesthesia. In each of four
stages an EEG voltage tracing is shown, and below it a spectrogram. The EEG tracings are for
the P4 (right parietal) lead in an array of 16 leads (it is taken with O2 as reference lead). The
spectrogram decomposes the voltage signal into frequency components across successive time
bins. Red indicates high magnitudes, yellow medium magnitudes, and blue low magnitudes. Each
displayed trace corresponds to several successive time bins in the spectrogram, as indicated by the
black lines. Two prominent features are the alpha rhythm, at roughly 10 Hz, and the slower delta
rhythm, below 4 Hz. Both sets of oscillations are visible in the EEG tracings, and their temporal
presence or absence is indicated in the spectrogram. During the awake phase the alpha rhythm
is absent when the eyes are open and present when the eyes are closed; the delta rhythm is also
present, but only weakly. During surgery the delta rhythm is very strong, and the alpha rhythm is
also stronger than in the awake phase.

Example 2.2 EEG spectrogram under general anesthesia When patients undergo
general anesthesia for certain surgical procedures EEGs are recorded to monitor
brain activity. These recordings provide a comparison of various states of uncon-
sciousness. A set of EEG traces for a patient during carotid endarterectomy surgery
at the Massachusetts General Hospital is displayed in Fig. 2.2. The figure shows
EEGs and spectrograms during an initial awake phase, a general anesthesia induc-
tion phase, the surgical phase, and the recovery phase. Spectrograms are made by
taking the signal within successive time bins (here, 1 s bins) and using Fourier analy-
sis to decompose the signal into oscillatory components at varying frequencies. On
the x-axis is time and on the y-axis is the frequency. The plotted spectrogram is the
resulting power (a measure of the strength of a particular frequency component of the



28 2 Exploring Data

signal) at each frequency, for each time bin, indicated in the figure by three different
colors representing low, medium, and high power. In Fig. 2.2 the most easily visible
oscillations are the alpha rhythm (roughly 8–13 Hz) in the second half of the EEG
trace in the awake phase (when the eyes are closed) and the delta rhythm (below
4 Hz) during the surgical phase. Precise scientific statements often require statistical
inferences (indications of uncertainty or tests of hypotheses), but spectrograms are
very useful in displaying time-frequency information even without formal inferential
assessments. �

2.2 Data Transformations

2.2.1 Positive values are often transformed by logarithms.

Measurement scales arise from convenience, and need not be considered in any way
absolute or immutable; changing the scale often produces a more elegant description.
A canonical example involves the acidity of a dilute aqueous solution, which is
determined by the concentration of hydrogen ions. The larger the concentration
[H+] of hydrogen ions, the more acidity. Rather than using [H+] to measure acidity,
we use its logarithm, which is known as pH . Specifically, pH = − log10([H+]),
so that an increase in [H+] corresponds to a decrease in pH. Because the defining
property of the logarithm is

log ab = log a + log b, (2.1)

log transformations are used when multiplicative effects seem more natural than
additive. In the case of pH , a solution having a hydrogen ion concentration of 10−5

mol l−1 is 1 unit greater pH (less acidic) than a solution having a concentration of
10−4 mol l−1. Similarly, a solution having a hydrogen ion concentration of 10−9

mol l−1 is 1 unit greater pH than a solution having a concentration of 10−8 mol l−1.
In both cases, a 1 unit increase in pH corresponds to a 10-fold decrease in hydrogen
ion concentration, regardless of the concentration we started with. In chemical cal-
culations, the log concentration scale is simpler to work with than the concentration
scale.

Many other familiar scales are logarithmic. One example is the use of decibels to
measure the strength of an auditory signal. Not only are log scales familiar and
intuitive but, in addition, some batches of data look more nearly like observations
from a normal distribution following a log transformation. In particular, it frequently
happens that a batch of data look highly skewed in a given measurement scale, but
are much closer to being symmetric in the log scale.

Example 2.1 (continued from p. 24) Figure 2.3 displays the saccadic reaction time
data in both the original scale and the log transformed scale. To transform the data
to the log scale we have replaced x = reaction time by log10(x) for each of the 119
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Fig. 2.3 Histograms of eye saccade data. Top display is for data in the original scale, bottom display
is for the same data after being transformed by log10. The data are distributed more symmetrically
in the log scale.

values. In the log scale the distribution is more symmetric. In addition, the potential
bimodality, or possibly even multimodality of the distribution is also evident in the
log scale. The data shown here were aggregated by combining conditions in which
the eyes began fixating centrally, to the right, or to the left, which may explain why
the histogram does not appear to be unimodal. When the data are disaggregated into
single conditions, in the log scale they do appear unimodal and roughly symmetrical.
For this reason, Behrmann et al. (2002) chose to perform many of their analyses in
the log scale. �

Example 2.3 High-Field BOLD signal Lewis et al. (2005) have argued that for
some purposes it may be advantageous to transform the BOLD signal in fMRI data
by taking logarithms, at least in the case of high-field signals. Those authors examined
the BOLD intensity for subjects during 4 T imaging, with a simple visual stimulus.
Figure 2.4 displays a histogram (with dots replacing bin heights) of the BOLD values
collected from 19,000 voxels for each of 15 subjects and 15 images under their control
condition, during which the subjects were fixating on a central spot on the screen
they were watching. It is apparent that this distribution across voxels is quite skewed.
The authors produced various plots aimed at suggesting the log transformation could
be useful. �

The way we usually think of the log transformation is that it produces a more
“natural” scale for measurements whenever they are necessarily positive and might
reasonably be compared in proportional relationships. We have already mentioned
that normal distributions for data are assumed by standard statistical procedures,
that data distributions are rarely very close to normal, but that mild departures from
normality are generally tolerable. Such mild departures are common: once we trans-
form the data to a suitable scale, distributions are often unimodal and more-or-less
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Fig. 2.4 High field of BOLD signal intensities. The frequencies are plotted as dots, rather than bin
heights. The distribution across voxels is skewed toward high values. Reprinted with permission
from Lewis et al. (2005).

symmetrical. Presumably, this has to do with effects of the Central Limit Theo-
rem. We will discuss this great theorem in Chapter 6. For now let us be content
to state it this way: if we add up many small, independent effects their sum will
be approximately normally distributed. The empirical observation of approximate
normality may then be interpreted as follows: if we choose the right scale, the data
values may be considered sums of many small, independent effects.

We can understand this a little more deeply by returning to the logarithmic rela-
tionship in Eq. (2.1), and considering the role it may play when many small effects are
combined to produce variability. The cases where the log transformation is valuable
are those where it is natural to think in terms of proportionality. So suppose the reason
that two measurements are different is that many small proportional effects, of some-
what different sizes in the two measurements, have been combined. For example, the
length of a dendritic spine may depend on contributions to the cell membrane and
its contents by vast numbers of lipid and protein molecules. If we break the growth
process into many thousands of pieces, each might be considered a small effect, so
that the net result is a composition of many, many small effects. When we see that
one spine is longer than another, we might imagine that the many small effects in
the longer spine tended to be proportionally larger than those in the shorter spine.
Now consider two such small growth effects x1 and x2, occurring, respectively, in
the shorter and longer dendrites. If we think of the variation as proportional, we may
relate the values x1 and x2 by writing x2 = x1(1 + ε), where ε is a small number
representing the proportional change (e.g., ε = .05, or 5 %) in going from x1 to x2.
From Eq. (2.1) together with a little calculus, for small ε we have log(1 + ε) ≈ ε

(see Section A.4 of the Appendix). We then have

http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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log x2 − log x1 = log(1+ ε)

≈ ε.

In other words, when we add a small perturbation ε to log x1 we get log x2. Thus, if
we wish to think of ε as a small random quantity that creates variability in the data
multiplicatively, it does so additively on the log scale. If the length of a dendritic spine
is the result of thousands of small growth processes that act multiplicatively, the log
of the length will be the sum of many thousands of εs and, therefore, according to the
Central Limit Theorem, will be described, approximately, by a normal distribution.
The same would be true of other measurements that are necessarily positive and
might reasonably be expected to follow proportional variation. From this argument,
one would expect that a batch of such numbers might look more symmetric and
unimodal following a log transformation.

All of this is heuristic; there is no argument here that can be claimed formally
correct—the Central Limit Theorem applies not to data but to mathematical quantities
that live in the “theoretical world” described in Section 1.2.5. We are simply trying
to provide a plausible explanation for the empirical fact that log-transformed growth
measurements usually have fairly symmetric distributions.

In transforming data by logs it does not matter what base is used. In mathematics
it is common to use3 the “natural” log (base e). In applications, where answers are
expressed and interpreted in decimal expansions, the “common” log (base 10) is
often used. (Sometimes binary expansions are most intuitive and log2(x) is used.)
These transformations have a simple relationship:

loge(x) = loge(10) log10(x).

This implies a batch of numbers transformed by loge will look essentially the same as
the batch transformed by log10. The only distinction is multiplication by the constant
loge(10) applied to each value. Thus, for data analytic purposes it does not matter
which scale is used. Of course, to interpret the results in a meaningful way, based
on relevant physiological units, one must know which logarithmic base has been
applied. The statistics literature follows the mathematics convention in using loge
unless otherwise noted. We follow this convention here.

Another motivation for logarithmic transformations is that they convert power
laws, which are useful in describing many neuroscientific phenomena, to simpler
linear forms. Power laws have the form

w = cvb (2.2)

and may be summarized by saying that a proportional change in v produces a pro-
portional change in w. If we let y = log w and x = log v then

3 Of all the values A in the function f (x) = Ax , the value A = e makes the derivative of f (x)

exactly equal to f (x) itself. For other values of A a constant must be introduced, which would make
calculus-based formulas more complicated.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1


32 2 Exploring Data

Fig. 2.5 Power function fits to firing-rate data, shown on log–log scale. On the y-axis are log firing
rates, and on the x-axis is log intensity of light. The data are from three different sources, using
three distinct methods of collection. Except for the deviation from the line at low intensities for the
data set indicated by circles, the fits are quite good. Adapted from Stevens (1970).

y = a + bx,

where a = log c.
Example 2.4 Stimulus-response power laws Power laws may be used to describe
the way increases in stimulus intensity produce increased magnitudes of sensation
Stevens (1961) (where they replace the “Weber–Fechner” law w = a + d log v), or
increased neural firing rate Stevens (1970). For example, Fig. 2.5 displays five classic
sets of data on neural responses from the eye of the horseshoe crab Limulus. For
each data set, the log of neural firing rate is plotted as a function of log of light inten-
sity. In each case the function is approximately linear. In other words, in each case
the relationship of firing rate to stimulus intensity follows, approximately, a power
law. �

Example 2.5 Power law for skill acquisition Power laws also arise in describ-
ing the effects of practice on recall or reaction time in memory and skill acqui-
sition (Anderson 1990). An interesting set of data comes from Kolers (1976) who
investigated the learned skill of reading inverted text.4 As shown in Fig. 2.6, he found

4 See also the related work on power laws by Anderson and Schooler (1991).
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Fig. 2.6 Skill learning described by a power law, shown on a log–log scale. On the y-axis is the
log (base 2) of the time taken to read a passage of inverted text (in minutes), and on the x-axis
is log practice time (in pages). Four sets of data from multiple subjects are displayed. Data were
obtained on two occasions, separated by a year, on both ordinary text and inverted text (creating a
total of four conditions). Line A is fit to data based on ordinary text on the first occasion and line B
is fit to data based on ordinary text on the second occasion. There is essentially no training effect.
Lines C and D are the fits for inverted text. In both cases there is a clear power-law relationship,
indicated by the good fit of the lines to the data. Substantively, after the delay by a year the subjects
again improved with practice, but they had retained much of the skill of reading inverted text (line
D is below line C) and needed only about 100 pages of training to reach the proficiency previously
obtained after 200 pages. Adapted from Kolers (1976).

two things. First, a decreasing power law describes the relationship of reading time
to amount of practice. Second, when subjects were tested a year later, they had lost
some of their ability to read the inverted text, and then regained it again according to
a power law, though at a slower rate. The two relationships are shown in Fig. 2.6 as
a pair of lines with differing slopes and intercepts. These studies are of great interest
for education: they suggest that retained learning may be quantified by the decrease
in training time required to achieve proficiency following re-training, compared to
the original training time. �

2.2.2 Non-logarithmic transformations are sometimes applied.

The log is by far the most common transformation, but there are others, too. The gen-
eral method of transformations is to replace a measured variable x , such as reaction
time, with some f (x) for every value of x . For example, reaction times and other time
measurements are sometimes analyzed on the reciprocal scale 1/x : the reciprocal
transforms time to something proportional to speed (speed is distance/time). Square-
root transformations are also sometimes used, especially for spike counts because
the square-root can be a so-called variance-stabilizing transformation, as discussed
in Chapter 9. Square-roots are also sometimes used for measurements of area and

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 2.7 EMG from the leg of a frog during a swimming motion. Top panel shows raw signal.
Bottom panel shows the rectified signal.

cube-root transformations are occasionally used for volumetric measurements. We
may order these transformations by letting, for the moment, the symbol < stand for
“less strong than” and then writing them as follows:

x < x1/2 < x1/3 < log(x) < 1/x .

In each case we strengthen the transformation (make it pull in the right-hand tail
more) as we decrease the power to which we raise x . Note that 1/x = x−1 and
that, in this context, the log corresponds to using the power 0, so that increasing the
strength of transformation corresponds to decreasing the exponent.

Details: We may imbed the log in the power family of transformations
by putting the power transformations in the normalized form

f (x) = (xα − 1)/α.

By calculus (L’Hôpital’s rule) it then follows that the log corresponds
to α = 0. �

In general, both distributional symmetry and interpretability are important in
determining a scale for analysis.

These “power transformations” are all monotonic. Occasionally, non-monotonic
transformations are used, as in the analysis of EMG recordings.

Example 2.6 EMG in frog movement An electromyogram (EMG) is a recording
of the electrical impulses transmitted through a group of muscle fibers, recorded
as electrical potentials. Because the instantaneous potential is generated from both
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agonist and antagonist muscle fibers, it is recorded as both positive and negative.
This is shown in the top panel of Fig. 2.7, which is a display of an EMG taken from a
frog during a leg extension. Because the force generated by a muscle is only positive,
the standard convention is to analyze the full-wave rectified signal, i.e., the absolute
value of the potential. This is shown in the bottom panel of Fig. 2.7. �



Chapter 3
Probability and Random Variables

Probability is a rich and beautiful subject, a discipline unto itself. Its origins were
concerned primarily with games of chance, and many lectures on elementary prob-
ability theory still contain references to dice, playing cards, and coin flips. These
lottery-style scenarios remain useful because they are evocative and easy to under-
stand. On the other hand, they give an extremely narrow and restrictive view of what
probability is about: lotteries are based on elementary outcomes that are equally
likely, but in many situations where quantification of uncertainty is helpful there
is no compelling way to decompose outcomes into equally-likely components. In
fact, the focus on equally-likely events is characteristic of pre-statistical thinking.1

The great advance toward a more general notion of probability was slow, requiring
over 200 years for full development.2 This long, difficult transition involved a deep
conceptual shift. In modern texts equally-likely outcomes are used to illustrate ele-
mentary ideas, but they are relegated to special cases. It is sometimes possible to
compute the probability of an event by counting the outcomes within that event, and
dividing by the total number of outcomes. For example, the probability of rolling an
even number with a fair six-sided die, i.e., of rolling any of the three numbers 2, 4, or
6, out of the 6 possibilities, is 3

6 = 1
2 . In many situations, however, such reasoning is

at best a loose analogy. To quantify uncertainty via statistical models a more general
and abstract notion of probability must be introduced.

This chapter begins with the axioms and elementary laws of probability, and then
discusses the way probability is used to describe variability. The key concept of
independence is defined in Section 3.1.3. Quantities that are measured but uncertain
are formalized in probability theory as random variables. More specifically, we set up
a theoretical framework for understanding variation based on probability distributions
of random variables, and the variation of random variables is supposed to be similar

1 See Stigler (1986).
2 Its beginning point is usually traced to a text by Jacob Bernoulli, posthumously-published in 1713
(Bernoullli 1713), and its modern endpoint was reached in 1933, with the publication of a text by
Kolmogorov (1933).
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to real-world variation observed in data. Many families of probability distributions
are used throughout the book. The most common ones are discussed in Chapter 5.

One quick note on terminology: the word stochastic connotes variation describable
by probability. Within statistical theory it is often used in specialized contexts, but it
is almost always simply a synonym for “probabilistic.”

3.1 The Calculus of Probability

3.1.1 Probabilities are defined on sets of uncertain events.

The calculus of probability is defined for sets, which in this context are called events.
That is, we speak of “the probability of the event A” and we will write this as
P(A). Events are considered to be composed of outcomes from some experiment or
observational process. The collection of all possible outcomes (and, therefore, the
union of all possible events) is called the sample space and will be denoted by �.
Because � is a set, we also say that � is made up of elements (each of which is
an outcome) and to indicate that ω is an element of � we write ω ∈ �. Recall the
definitions of union and intersection: for events A and B the union A ∪ B consists of
all outcomes that are either in A or in B or in both A and B; the intersection A ∩ B
consists of all outcomes that are in both A and B. The complement Ac of A consists of
all outcomes that are not in A. We say two events are mutually exclusive or disjoint
if they have empty intersection.

Example 3.1 Two neurons from primary visual cortex In an experiment on
response properties of cells in primary visual cortex, Dr. Ryan Kelly and colleagues
recorded approximately 100 neurons simultaneously from an anesthetized macaque
monkey while the animal’s visual system was stimulated by highly irregular random
visual input (Kelly et al. 2007). The stimulus they used is known as white noise,
which will be defined in Chapter 18. Kelly examined the response of two neurons
during 100 ms of the stimulus. Let A be the event that the first neuron fires at least
once within the 100 ms time interval and B the event that the second neuron fires at
least once during the same time interval. Here, A∪ B is the event that at least one of
the 2 neurons fires at least once, while A ∩ B is the event that both neurons fire at
least once. Because it is possible that both neurons will fire during the time interval,
the events A and B are not mutually exclusive. �

We now state the axioms of probability.
Axioms of Probability:

1. For all events A, P(A) ≥ 0.
2. P(�) = 1.
3. If A1, A2, . . . , An are mutually exclusive events, then P(A1 ∪ A2 ∪ · · · ∪ An) =

P(A1)+ P(A2)+ · · · + P(An).

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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If we let ∪n
i=1Ai = A1 ∪ A2 ∪ · · · ∪ An then Axiom 3 may be written instead in the

form

3. If A1, A2, . . . , are mutually exclusive events, then P(∪n
i=1Ai) =∑n

i=1 P(Ai).

A technical point is that in advanced texts, Axiom 3 would instead involve infinitely
many events, and an infinite sum:
3′. If A1, A2, . . . , are infinitely many mutually exclusive events, then P(∪∞i=1Ai)

=∑∞
i=1 P(Ai).

Regardless of whether one worries about the possibility of infinitely many events, it
is easy to deduce from the axioms the elementary properties we need.

Theorem: Three Properties of Probability For any events A and B we have

(i) P(Ac) = 1− P(A), where Ac is the complement of A.
(ii) If A and B are mutually exclusive, P(A ∩ B) = 0.

(iii) P(A ∪ B) = P(A)+ P(B)− P(A ∩ B).

Proof : To prove (i) we simply note that � = A ∪ Ac. From axiom (2) we then
have P(A ∪ Ac) = 1 and because A and Ac are mutually exclusive axiom (3)
gives P(A) + P(Ac) = 1, which is the same as (i). It is similarly easy to prove (ii)
and (iii). �

To illustrate, suppose we pick at random a playing card from a standard 52-card
deck. We may compute the probability of drawing a spade or a face card, meaning
either a spade that is not a face card, or a face card that is not a spade, or a face
card that is also a spade. We take A to be the event that we draw a spade and B
to be the event that we draw a face card. Then, because there are 3 face cards that
are spades we have P(A ∩ B) = 3

52 , and, applying the last formula above, we get
P(A∪B) = 1

4 + 3
13 − 3

52 = 11
26 . This matches a simple enumeration argument: there

are 13 spades and 9 non-spade face cards, for a total of 22 cards that are either a
spade or a face card, i.e., P(A ∪ B) = 22

52 = 11
26 . The main virtue of such formulas is

that they also apply to contexts where probabilities are determined without reference
to a decomposition into equally-likely sub-components.

Example 3.1 (continued from p. 38) From 1,200 replications of the 100 ms
stimulus Kelly calculated the probability that the first neuron would fire at least
once was P(A) = .13 and the probability that the second neuron would fire at least
once was P(B) = .22, while the probability that both would fire at least once was
P(A ∩ B) = .063. Applying the formula for the union (property (iii) above), the
probability that at least one neuron will fire is P(A∪ B) = .13+ .22− .063 = .287.

�
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A B

A B

Fig. 3.1 Venn diagram showing the intersection of A and B. The events A and B are depicted as
open and filled-in circles, respectively, while A ∩ B, the portion of B that is also in A, is shown
with diagonal lines. The conditional probability of A given B is the relative amount of probability
assigned to A within the probability assigned to B, i.e., the probability assigned to the region having
diagonal lines divided by the probability assigned to the whole of B.

3.1.2 The conditional probability P(A|B) is the probability that A
occurs given that B occurs.

We often have to compute probabilities under an assumption that some event has
occurred. For instance, one may be interested in the probability that a neuron will
fire in an interval of time (t, t +�t) given that it has already fired at a previous time
t0. If we let A be the event we are interested in and B the event that is assumed to
have occurred, then we write3 P(A|B) for the conditional probability of A given B.
From a Venn diagram (see Fig. 3.1) it is easy to visualize the calculation required:
we limit the universe to B and ask for the relative probability assigned to the part of
A that is contained in B. Algebraicly, the formula is the following:

Definition: Conditional Probability Assume P(B > 0). The conditional probability
of A given B is

P(A|B) = P(A ∩ B)

P(B)
.

Again, using draws from a deck of cards, the probability of drawing a Jack given
that we draw a face card is P(A|B) = 4/52

12/52 = 1
3 .

A rewriting of the definition of conditional probability is also sufficiently useful
to have a name:

Multiplication rule If P(B) > 0 we have P(A ∩ B) = P(A|B) · P(B).

Although conditional probability calculations are pretty straightforward, prob-
lems involving conditioning can be confusing. The trick to keeping things straight is
to be clear about the event to be conditioned upon. Here is one standard example.

3 This notation is due to Jeffreys (1931); see his p. 15.
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Illustration: The boy next door Suppose a family moves in next door to you and
you know they have two children, but you do not know whether the children are boys
or girls. Let us assume the probability that either particular child is a boy is 1

2 . We
might label them Child 1 and Child 2 (e.g., Child 1 could be the older of the two).
Thus, P(Child 1 is a boy) = P(Child 2 is a boy) = 1

2 . Now suppose you find out
that one of the children is a boy. What is the probability that the other child is also a
boy?

It may seem that the answer is 1
2 but, if we assume that “you find out one of the

children is a boy” means at least one of the children is a boy, then the correct answer
is 1

3 . Here is the argument. When you find out that one of the children is a boy you
do not know whether Child 1 is a boy, nor whether Child 2 is a boy, but you do know
that one of them is a boy—and possibly both are boys. This information amounts to
telling you it is impossible that both are girls. Let A be the event that both children
are boys and B the event that at least one child is a boy. We want P(A|B). Note that
there are four equally-likely possibilities:

P(Child 1 is a boy and Child 2 is a boy)

= P(Child 1 is a boy and Child 2 is a girl)

= P(Child 1 is a girl and Child 2 is a boy)

= P(Child 1 is a girl and Child 2 is a girl).

Thus, we compute P(A ∩ B) = P(A) = 1
4 and P(B) = 3

4 . Plugging these numbers
into the formula for conditional probability we get P(A|B) = 1

3 . �

3.1.3 Probabilities multiply when the associated
events are independent.

Intuitively, two events are independent when the occurrence of one event does not
change the probability of the other event. This intuition is captured by conditional
probability: the events A and B are independent when knowing that B occurs does not
affect the probability of A, i.e., P(A|B) = P(A). This statement of independence is
symmetrical: A and B are also independent if P(B|A) = P(B). However, these state-
ments are not usually taken as the definition of independence because they require
the events to have nonzero probabilities (otherwise, conditional probability is not
defined). Instead, the following is used as a definition.

Definition: Independence Two events A and B are independent if and only if P(A∩
B) = P(A) · P(B).

Note that from this definition, when A and B are independent and P(B) > 0 we
have, as a consequence,
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P(A|B) = P(A ∩ B)/P(B) = P(A)P(B)/P(B) = P(A).

Multiplication of probabilities should be very familiar. If a coin has probability .5
of coming up heads when flipped, then we usually say the probability of getting two
heads is .25 = .5× .5, because we usually assume that the two flips are independent.

Example 3.1 (continued from p. 39) For the probabilities P(A), P(B) given on
p. 39 we have P(A)P(B) = .029 while the probability of the intersection was reported
to be P(A ∩ B) = .063. The latter is more than double the product P(A)P(B). We
conclude that the two neurons are not independent. Their tendency to fire much more
often together than they would if they were independent could be due to their being
connected, to their having similar response properties, or to their both being driven
by network fluctuations (see also Kelly et al. 2010). �

The definition of independence extends immediately to more than two events: if
A1, A2, . . . , An are independent then

P(∩n
i=1Ai) =

n∑

i=1

P(Ai)

where ∩n
i=1Ai = A1 ∩ A2 ∩ · · · ∩ An.

Independence is extremely useful. Without it, dependencies represented by con-
ditional probabilities can become very complicated. Independence simplifies calcu-
lations and is often assumed in statistical models and methods. On the other hand,
as illustrated in Example 3.1, above, if the assumption of independence is wrong,
the calculations can be way off: in Example 3.1 the probability P(A ∩ B) predicted
by independence would be too small by a factor of more than 2. In many situations
independence is the most consequential statistical assumption, and therefore must
be considered carefully.

3.1.4 Bayes’ theorem for events gives the conditional probability
P(A|B) in terms of the conditional probability P(B|A).

Bayes’ theorem is a very simple identity, which we derive easily below. Yet, it has
profound consequences. We can state its purpose formally, without regard to its appli-
cations: Bayes’ theorem allows us to compute P(A|B) from the reverse conditional
probability P(B|A), if we also know P(A). As we will see below, and in Chapter 16,
there are more complicated versions of the theorem, and it is especially those that
produce the wide range of applications. But the power of the result becomes apparent
immediately when we take B to be some data and A to be a scientific hypothesis. In
this case, we can use the probability P(data|hypothesis) from the statistical model
to obtain the scientific inference P(hypothesis|data). In the words used in Chapter 1,
p. 14, Bayes’ theorem provides a vehicle for obtaining epistemic probabilities from

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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descriptive probabilities (see Section 16.1.1). The inverting of conditional probabil-
ity statements, together with the recognition that a different notion of probability
was involved, led to the name “inverse probability” during the early 1800s. This has
been replaced by the name “Bayes” in the theorem, and the adjective “Bayesian”
to describe many of its applications.4 To derive the theorem we need a preliminary
result which is also important.

Theorem: Law of Total Probability For events A and B we have

P(B) = P(B|A)P(A)+ P(B|Ac)P(Ac).

Proof : We begin by decomposing B into two pieces: B = (B ∩ A) ∪ (B ∩ Ac).
Because A and Ac are disjoint, (B ∩ A) and (B ∩ Ac) are disjoint. We then have
P(B) = P(B ∩ A) + P(B ∩ Ac). Applying the multiplication rule to P(B ∩ A) and
P(B ∩ Ac) gives the result. �

Bayes’ Theorem in the Simplest Case If P(B) > 0 then

P(A|B) = P(B|A)P(A)

P(B|A)P(A)+ P(B|Ac)P(Ac)
. (3.1)

Proof : We begin with the definition of conditional probability and then use the mul-
tiplication rule in the numerator and the law of total probability in the denominator:

P(A|B) = P(A ∩ B)

P(B)

= P(B|A)P(A)

P(B|A)P(A)+ P(B|Ac)P(Ac)
. �

The “simplest case” modifier here refers to the statement of the theorem in which
the law of total probability is applied to the denomoninator P(B) by decomposing
B by intersection with only two events, A and Ac. We discuss other versions of the
theorem below.

One interesting class of problems where this simple case is useful is in the inter-
pretation of clinical diagnostic screening tests. These tests are used to indicate that a
patient may have a particular disease A, based on a test outcome B, but they are not
definitive. The probability P(B|A) that a patient having the disease tests positively is
known as the sensitivity of the test, the probability P(Bc|Ac) that a patient who does
not have the disease tests negatively is known as the specificity of the test, and the
probability P(A) that a patient drawn randomly from the population has the disease

4 For historical comments see Stigler (1986) and Fienberg (2006).

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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is known as the prevalence of the disease. Good diagnostic screening tests have sen-
sitivity and specificity close to 1 but, as we will describe, Bayes’ Theorem serves as
a quantitative reminder that when a disease is rare, screening tests are preliminary,
and other information will be needed to provide a diagnosis. Specifically, if we let
PPV = P(A|B), which stands for positive predictive value, we get

PPV = sensitivity× prevalence

sensitivity× prevalence+ (1− specificity)× (1− prevalence)
(3.2)

and, when the prevalence is small, the value of PPV will also typically be small—
sometimes surprisingly small.

A famous example involves screening for prostate cancer based on the radioim-
munoassay prostatic acid phosphatase (PSA). Even though the test is reasonably
accurate, the disease remains sufficiently rare among young men that a random male
who tests as positive will still have a low probability of actually having prostate
cancer. An application of Bayes’ Theorem (with A being the event that a randomly
chosen man will have the disease and B the event that he tests positive) to data from
Watson and Tang (1980), places the probability of disease given a positive test at
about 1/125. The intuition comes from recognizing that, among men under age 65 in
the United States, the disease has a prevalence of about 1/1,500. Suppose we were to
examine 1,500 men, 1 of whom actually had the disease. If the screening test were
90 % accurate, a 10 % false positive rate would mean that about 150 men would test
positively. In other words, about 1/150 of the positively tested men would actually
have the disease. Bayes’ Theorem refines this very crude calculation. Here is an
example drawn from neurology.

Example 3.2 Diagnostic test for vascular dementia Vascular dementia (VD) is
the second leading cause of dementia. It is important that it be distinguished from
Alzheimer’s disease because the prognosis and treatments are different. In order
to study the effectiveness of clinical tests for vascular dementia, Gold et al. (1997)
examined 113 brains of dementia patients postmortem. One of the clinical tests these
authors considered was proposed by the National Institute of Neurological Disorders
and Stroke (NINDS, an institute of NIH). Gold et al. found that the proportion of
patients with VD who were correctly identified by the NINDS test, its sensitivity,
was .58, while the proportion of patients who did not have VD who were correctly
so identified by the NINDS test, its specificity, was .80. Using these results, let us
consider an elderly patient who is identified as having VD by the NINDS test, and
compute the probability that this person will actually have the disease. Let A be the
event that the person has the disease and B the event that the NINDS test is positive.
We want P(A|B), and we are given P(B|A) = .58 and P(Bc|Ac) = .8. To apply
Bayes’ Theorem we need the disease prevalence P(A). Let us take this probability to
be P(A) = .03 (which seems a reasonable value based on Hébert and Brayne 1995).
We then also have P(Ac) = .97 and, in addition, P(B|Ac) = 1 − P(Bc|Ac) = .2.
Plugging these numbers into the formula gives us
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P(A|B) = (.58)(.03)

(.58)(.03)+ (.2)(.97)
= .082

or, approximately, 1/12. Thus, based on the Gold et al. study, because VD is a
relatively rare disease, without additional evidence, even when the NINDS test is
positive it remains unlikely that the patient has VD. �

As in Example 3.2, this form of Bayes’ Theorem requires probabilities P(B|A),
P(B|Ac) and P(A) which must come from some background information. All appli-
cations of Bayes’ Theorem are analogous in needing background information as
inputs in order to get the desired conditional probability as output.

To generalize Bayes’ Theorem from the simplest case we need the law of total
probability, which gives a formula for P(B) in terms of a decomposition of �: Given
mutually exclusive events A1, A2, . . . , An that are exhaustive in the sense that � =
A1 ∪ A2 ∪ · · · ∪ An, we have

B = (B ∩ A1) ∪ (B ∩ A2) ∪ · · · ∪ (B ∩ An)

with the sets B ∩ Ai being mutually exclusive. We then have

P(B) = P(B ∩ A1)+ P(B ∩ A2)+ · · · + P(B ∩ An)

= P(B|A1)P(A1)+ P(B|A2)P(A2)+ · · · + P(B|An)P(An)

=
n∑

i=1

P(B|Ai)P(Ai).

From this we obtain a more general form of the theorem.

Bayes’ Theorem Suppose A1, A2, . . . , An are mutually exclusive with P(Ai) > 0,
for all i, and A1 ∪ A2 ∪ · · · ∪ An = �. If P(B) > 0 then

P(Ak|B) = P(B|Ak)P(Ak)

P(B|A1)P(A1)+ P(B|A2)P(A2)+ · · · + P(B|An)P(An)
.

Example 3.3 Decoding of saccade direction from SEF spike counts Bayes’ The-
orem is frequently used to study the ability of the relatively small networks of neurons
to identify a stimulus or determine a behavior. As an example, Olson et al. (2000)
reported results from a study of supplementary eye field neurons during a delayed-
saccade task. In this study, described in Example 1.1 on p. 3, there were four possible
saccade directions: up, right, down, and left. For each direction, and for each neuron,
spike counts in fixed pre-saccade time intervals were recorded across multiple trials.
From a combination of data analysis, and assumptions, the probability distribution
of various spike counts could be determined for each of the four directions. If we
consider a single neuron, we may then let B be the event that a particular spike count
occurs, and the events A1, A2, A3, and A4 be the saccade directions up, right, down,
left. Assuming the four directions are equally likely, from the probabilities P(B|Ak)
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Fig. 3.2 Histogram of spike counts from a motor cortical neuron. The histogram displays 60 spike
counts from a particular neuron recorded in primary motor cortex across 60 repetitions of the
practiced condition.

together with Bayes’ Theorem, we may determine from the spike count B the prob-
ability that the saccade will be in each of the four directions. In Bayesian decoding,
the signals from many neurons are combined, and the direction Ak having the largest
probability P(Ak|B) is considered the “predicted” direction. In unpublished work,
our colleague Dr. Valérie Ventura found that, from 55 neurons, Bayesian decoding
was able to predict the correct direction more than 95 % of the time. �

3.2 Random Variables

So far we have discussed the basic rules of probability, which apply to sets repre-
senting uncertain events. A far more encompassing framework is obtained when we
consider quantities measured from those events. For example, the number of times a
neuron fires during a particular task may be observed, yielding a spike count. When
the behavior is repeated across many trials, the spike counts will vary.

Example 3.4 Spike counts from a motor cortical neuron Matsuzaka et al. (2007)
studied cortical correlates of practicing a movement repeatedly by comparing the
firing of neurons in primary motor cortex during two sequential button-pressing tasks:
one in which the sequence was highly practiced, and the other in which the sequence
was determined at random. Figure 3.2 displays spike counts from a single neuron
across 60 repetitions of the practiced condition. The histogram displays substantial
variation among the counts. �

To describe variation among quantitative measurements, such as that seen in
Fig. 3.2, we need to introduce mathematical objects called random variables, which
assign to each outcome (e.g., neuronal spiking behavior on a particular trial) a number
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(the spike count). The variation in data may be summarized by a histogram, as
in Fig. 3.2. The uncertainty in a random variable is described by5 its probability
distribution. In this section we develop some of the basic attributes and properties of
random variables, and their probability distributions.

At the outset it is important to emphasize the abstraction involved in using a
random variable to describe observed data. Strictly speaking, random variables and
their probability distributions live in the theoretical world of mathematics, while data
live in the real world of observations (as depicted by Fig. 1.8). When we speak of
the distribution of some data, as in the histogram in Fig. 3.2, we are talking about
observed variation. On the other hand, if we use a probability distribution, such
as a normal (or Gaussian) distribution or a Poisson distribution, both discussed in
Chapter 5, to describe some data, we are imposing a mathematical structure. To be
useful, such a structure must capture dominant features that drive scientific infer-
ences, and a fundamental part of data analytic expertise involves appreciation of the
ways inaccuracies in probabilistic description may or may not lead to misleading
inferences. We discuss assessments of probability distributions, and consequences
of incorrect assumptions, throughout the book. In this chapter we concentrate on
essential mathematical definitions and results.

3.2.1 Random variables take on values determined by events.

Let us start by returning to the framework of Example 1.4, in which patient P.S. made
a choice between two drawings on each of many trials. Suppose that the probability
of her choosing the non-burning house on each trial was p, and let us consider the
possibilities for two trials, assuming the outcomes were independent. For a given
trial, let A be the binary (i.e., two-choice) event that she chooses the non-burning
house, so that p = P(A) and P(Ac) = 1 − p. For two trials, let us write the four
possible outcomes as AA, AAc, AcA, AcAc. From independence, the probabilities of
these events are

P(AA) = p2,

P(AAc) = p(1− p)

P(AcA) = (1− p)p

P(AcAc) = (1− p)2.

Now take X to be the number of times, out of 2, that she chooses the non-burning
house. We have

5 We often shorten “probability distribution” to “distribution.” The word distribution is sometimes
also applied to data, where it describes the variation among the numbers. However, a probability
distribution can refer only to a random variable.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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P(X = 2) = p2,

P(X = 1) = p(1− p)+ (1− p)p = 2p(1− p)

P(X = 0) = (1− p)2.

In this situation X is a random variable and it has a binomial distribution. More
generally, given a sample space �, a random variable is a mapping that assigns to
every element of � a real number. That is, if ω ∈ � (see p. 38) then X(ω) = x
is the value of the random variable X when ω occurs. In the context above, � =
{AA, AAc, AcA, AcAc} and X(AA) = 2, X(AAc) = 1, X(AcA) = 1, X(AcAc) = 0.

In Chapter 1 we discussed the distinction between continuous and discrete data.
We may similarly distinguish continuous and discrete random variables: a random
variable is continuous if it can take on all values in some interval (A, B), where
it is possible that either A = −∞ or B = ∞ or both. The mathematical distinc-
tions between discrete and continuous distributions are that (i) discrete distributions
assign probabilities to specific values (such as non-negative integers) that can be sep-
arated from each other, but continuous distributions assign probabilities to intervals
of non-separable numbers (such as numbers in the interval (0, 1)) and (ii) wher-
ever summation signs appear for discrete distributions, integrals replace them for
continuous distributions.

3.2.2 Distributions of random variables are defined using
cumulative distribution functions and probability density
functions, from which theoretical means and variances may
be computed.

There are several definitions we need, which will apply to other probability distri-
butions besides the binomial. In the case of two trials from patient P. S., discussed
on p. 47, the probabilities P(X = 0), P(X = 1), and P(X = 2) form the proba-
bility mass function. For convenience, as indicated in Section 3.2.3, we generally
instead call the probability mass function a probability density function (pdf). We
would typically write P(X = x), with x taking the values 0, 1, 2, and we also use
the notation f (x) = P(X = x). The function F(x) = P(X ≤ x) is called the cumu-
lative distribution function (cdf). Thus, in the case of two trials from patient P.S.
we have F(0) = P(X = 0), F(1) = P(X ≤ 1) = P(X = 0) + P(X = 1), and
F(2) = P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2). From the pdf we can
obtain the cdf, and vice-versa. When we speak loosely of the “probability distribution
of X,” or the “distribution of X,” we will be referring generically to the range of
probabilities attached to X, which could be specified by either the pdf or the cdf.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Illustration: Litter sizes of mice As a simple non-binomial example, useful for
pedagogical purposes, suppose that 50 female mice were maintained in a facility,
that each gave birth to a litter, and that the litter sizes may be summarized in the
following table:

size 3 4 5 6 7 8
count 3 7 12 14 10 4

Let us consider choosing a mouse at random from among the 50 that gave birth, and
let X be the litter size for that mouse. By dividing each count in the table above by
50 we get the following table for the probability distribution of X:

x 3 4 5 6 7 8
f (x) .06 .14 .24 .28 .20 .08

Thus, f (3) = 3/50 = .06 signifies the probability that a randomly drawn mouse will
have litter size 3. �

Notice that a plot of the counts (against x) would be a histogram of the 50 litter
sizes. Aside from the divisor of 50 used in getting each probability from the corre-
sponding count, a plot of f (x) against x would look the same as the histogram of the
counts; this would, instead, be a plot of the relative frequencies.6 More generally,
a plot of a pdf looks something like a histogram, except that the total amount of
probability must equal 1.

One way to understand any specification of probabilities f (x) is to consider them
to represent relative frequencies among a population of individuals. However, in
many cases the idea of a random drawing from a population is an abstraction, and
may be rather unrealistic. This is actually an important philosophical point that has
been argued about a great deal, but we will not go into it.

Details: In experimental settings, it is quite artificial to imagine that
the repeated measurements (trials) of an experiment are being drawn
at random from some population of such things. Similarly, when there
is a single unique event, such as the outcome of a football game, or the
flip of a fair coin, we can be comfortable speaking about the probability
of the outcome without any need for a population. In the case of the
coin, suppose we let X = 1 if it comes up heads and X = 0 if it comes
up tails, and take f (1) = P(X = 1) = .5 and f (0) = P(X = 0) = .5.
We could, if we wished, imagine some very large population of fair
coins, just like the one we are going to flip, among which, if flipped in
just the same way, half would come up heads and half would come up
tails. But we do not really need this imaginary device: thinking only
about one single coin it remains easy enough to understand the idea
that it is “fair” precisely when f (1) = .5 and f (0) = .5. That is, the

6 In this context terminology is inconsistent: “frequency” can mean either “count” or “relative
frequency.”
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notion that it is equally likely to be heads and tails does not require
further elaboration. If we wished to have an operational meaning to
“fair” we could take it to mean that we are willing to accept a fair
bet, i.e., one in which we would win the same amount if heads as we
would lose if tails. �

For our purposes, what is important is that relative frequencies sometimes define
probabilities, and more generally provide a useful analogy for thinking about prob-
ability.

Now, let us go on to the concepts of mean and variance. For the 50 litter sizes in
the table on p. 49 we would compute the mean as

mean = 3(3)+ 7(4)+ 12(5)+ 14(6)+ 10(7)+ 4(8)

50
= 5.66.

Alternatively, we could write

mean = 3(
3

50
)+ 4(

7

50
)+ 5(

12

50
)+ 6(

14

50
)+ 7(

10

50
)+ 8(

4

50
) = 5.66

which, from the table on p. 49 is the same as

mean = 3 · f (3)+ 4 · f (4)+ 5 · f (5)+ 6 · f (6)+ 7 · f (7)+ 8 · f (8) = 5.66.

This latter form may be interpreted as the litter size we would “expect” to see (“on
average”) for a randomly drawn mouse, and it is an instance of the general expression
for the mean or expected value or expectation of the random variable X:

μX = E(X) =
∑

x

x · f (x). (3.3)

Correspondingly, the variance of X is

σ2
X = V(X) =

∑

x

(x − μX)2 · f (x)

and the standard deviation is σX =
√
σ2

X . The subscript X is often dropped, leaving
simply μ and σ. The standard deviation summarizes the magnitude of the devia-
tions from the mean; roughly speaking, it may be considered an average amount of
deviation from the mean. It is thus a measure of the spread, or variability, of the
distribution. There are alternative measures (such as

∑
x |x − μ|f (x)), and these are

used in special circumstances, but the standard deviation is the easiest to work with
mathematically. It is, therefore, the most common measure of spread.

Note that μX and σX are theoretical quantities defined for distributions, and are
analogous to the mean and standard deviation defined for data. In fact, if there
are n values of x and we plug into (3.3) the special case f (x) = 1

n (which states
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that all n values of x are equally likely) we get back7 μX = x̄. Because data are
often called samples, the data-based mean and standard deviation are often called
the sample mean and the sample standard deviation to differentiate them from μX

and σX , which are often called the population mean and standard deviation. This
terminology distinguishes samples from “populations,” rather than distributions, with
the word “sample” connoting a batch of observations randomly selected from some
large population. Sometimes there is a measurement process that corresponds to
such random selection. However, as we have already mentioned, probability is much
more general than the population/sample terminology might lead one to expect;
specifically, we do not need to have a well-defined population from which we are
randomly sampling in order to speak of a probability distribution. So, at least in
principle, we might rather avoid calling μX a population mean. On the other hand,
the “sample” terminology is useful for emphasizing that we are dealing with the
observations, as opposed to the theoretical distribution, and it is deeply imbedded in
statistical jargon. Similarly, the “population” identifier is frequently used rather than
“theoretical.” The crucial point is that one must be careful to distinguish between
a theoretical distribution and the actual distribution of some sample of data. Many
analyses assume that data follow some particular theoretical distribution, and in doing
so hope that the match between theory and reality is pretty good. We will look at
ways of assessing this match in Section 3.3.1.

The following properties are often useful.
Theorem For a discrete random variable X with mean μX and standard deviation σX

we have

E(a · X + b) = a · μX + b (3.4)

σ2
aX+b = a2 · σ2

X (3.5)

σaX+b = |a| · σX . (3.6)

Proof : We have

E(aX + b) =
∑

x

(ax + b)f (x)

= a(
∑

x

xf (x))+ b
∑

x

f (x)

= aE(X)+ b

which is the same as (3.4). The derivation of (3.5) is similar, and taking square-roots
gives (3.6). �

7 We also get σX =
√

1
n

∑n
i=1(xi − μX )2 which, when we replace μX with X̄ , is not quite the same

thing as the sample standard deviation; the latter requires a change from n to n−1 as the divisor for
certain theoretical reasons, including that the sample variance then becomes an unbiased estimator
of σ2

X . See p. 183.
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3.2.3 Continuous random variables are similar to discrete
random variables.

Suppose X is a continuous random variable on an interval (A, B), with A = −∞
and B = ∞ both being possible. The probability density function (pdf) of X will be
written as f (x) where now

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx

and, because (from Axiom 2 on p. 38) the total probability is 1, we have

∫ B

A
f (x)dx = 1.

Note that in this continuous case there is no distinction between P(a ≤ X) and
P(a < X) (we have P(X = a) = 0). We may think of f (x) as the probability per
unit of x; f (x)dx is the probability that X will lie in an infinitesimal interval about x,
that is, f (x)dx = P(x ≤ X ≤ x + dx). In some contexts there are various random
variables being considered and we write the pdf of X as fX(x).

A technical point is that when either A > −∞ or B <∞ or both, by convention,
the pdf f (x) is extended to (−∞,∞) by setting f (x) = 0 outside (A, B). When we
say that X is a continuous random variable on an interval (A, B) we will mean that
f (x) > 0 on (A, B) and, if either A or B is a number, f (x) = 0 outside of (A, B). We
next give several examples of continuous distributions.

Illustration: Uniform distribution Perhaps the simplest example is the uniform
distribution. For instance, if the time of day at which births occurred followed a
uniform distribution, then the probability of a birth in any given 30 min period would
be the same as that for any other 30 min period throughout the day. In this case the
pdf f (x) would be constant over the interval from 0 to 24 h (hours). Because it must
integrate to 1, we must have f (x) = 1/24 and the probability of a birth in any given
30 min interval starting at a hours is

∫ a+ .5
a f (x)dx = 1/48. When a random variable

X has a uniform distribution on a finite interval (A, B) we write this as X ∼ U(A, B)

and the pdf is f (x) = 1
B−A . �

In this illustration above we have introduced a convention that is ubiquitous, both
in this book and throughout statistics: the squiggle “∼” means “is distributed as.”

Figure 3.3 displays pdfs for four common distributions. For the two in the top
panels, exponential and gamma distributions, X may take on all positive values, i.e.,
values in (0,∞). The lower left panel shows a beta distribution, which is confined
to the interval (0, 1). A normal distribution, which ranges over the whole real line, is
shown in the bottom right panel. We discuss the exponential and normal distributions
briefly below and return to them, and to the beta and gamma distributions in Chapter 5.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Fig. 3.3 Plots of pdfs for four continuous distributions. Top left Exponential. Top right Gamma.
Bottom left Beta. Bottom right Normal. See Chapter 5 for the explanation of the latter three distri-
butions.

Illustration: Normal distribution The normal distribution (also called the Gaussian
distribution) is the most important distribution in statistical analysis. The reason for
this, however, has little to do with its ability to describe data. Example 1.2, continued
below, presents one of the few examples we know in which the data really appear
normally distributed to a high degree of accuracy; it is rare for a batch of data not to
be detectably non-normal. Instead, in statistical inference, the normal distribution is
used to describe the variability in quantities derived from the data as functions of a
sample mean. As we discuss in Chapter 6, according to the Central Limit Theorem,
sample means are approximately normally distributed and, in Chapter 9, we will also
see that functions of a sample mean are approximately normally distributed.

The normal distribution is characterized by two parameters: the mean and the
standard deviation (or, equivalently, its square, the variance). When a random variable
X is normally distributed we write X ∼ N(μ,σ2). Both in most software and in most
applications, one speaks of the parameters μ and σ rather than μ and σ2. The pdf for
the normal distribution with mean μ and standard deviation σ is

f (x) = 1√
2πσ

exp

(
−1

2
(
x − μ
σ

)2
)

. (3.7)

This pdf can be hard to use for analytic calculations because integrals such as

P(a ≤ X ≤ b) =
∫ b

a

1√
2πσ

exp

(
−1

2
(
x − μ
σ

)2
)

dx

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 3.4 A histogram of MEG noise at a SQUID sensor, overlaid with a normal density function
(the “bell-shaped curve”).

can not be obtained in closed form, meaning that there is no simple formula for
the answer. Thus, probabilities for normal distributions are almost always obtained
numerically. Because of its shape the normal pdf is often called “the bell-shaped
curve.” We exemplify this in the next example. �
Example 1.2 (continued from p. 5) We previously noted that the SQUID detectors
in MEG are extremely sensitive, and there is nontrivial background noise that is
detected in the absence of any brain signal. Figure 3.4 shows a histogram of the
signal at one detector during a short period with nothing in the scanner. The noise
histogram is very well approximated by a normal pdf. Indeed, this is one of the rare
examples in which even on close inspection, a substantial batch of data appear to
follow a normal distribution. �

In fact, the general bell shape of the distribution is not unique to the normal
distribution. On the other hand, the normal is very special among bell-shaped distri-
butions. The most important aspect of its being very special is its role in the Central
Limit Theorem, which we’ll come back to in Chapter 6. We also describe additional
important properties of normal distributions on p. 63 and in Chapter 5.

The cumulative distribution function, or simply distribution function, is written
again as F(x) and is defined as in the discrete case: F(x) = P(X ≤ x). If A = −∞
and B = ∞ this becomes

F(x) =
∫ x

−∞
f (t)dt.

If A is a number, i.e., −∞ < A, then F(x) = 0 when x < A and

F(x) =
∫ x

A
f (t)dt,

http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Fig. 3.5 The cdf of a N(0, 1) random variable. The cdf of any other continuous distribution will,
similarly, be continuous with asymptotes at 0 and 1.

while if B is a number (B <∞) then F(x) = 1 when x > B. From the definition, the
cumulative distribution function for a continuous distribution has a sigmoid appear-
ance, as in Fig. 3.5, given by the following theorem.

Theorem Suppose f (x) is a continuous pdf that is positive on (A, B). Then F(x)
is a non-decreasing function and it is strictly increasing (F ′(x) > 0) on (A, B). In
addition we have F(x)→ 0 as x→ A and F(x)→ 1 as x→ B.

Proof : By differentiation (the Fundamental Theorem of Calculus) we have F ′(x) =
f (x), which implies F ′(x) ≥ 0 and, by assumption, F ′(x) > 0 on (A, B). Furthermore,
because F(x) is differentiable, it is also continuous. Because f (x) integrates to 1 on
the interval (A, B), when A = −∞ we must have F(x)→ 0 as x→−∞ (otherwise
the integral would be infinite) and when B = ∞ F(x) → 1 as x → ∞. When A
is a number, from the integral form of F(x), F(A) = 0 and F(x) → 0 as x → A.
Similarly, when B is a number we get F(B) = 1 and then F(x)→ 1 as x→ B. �

In the continuous case, the expected value of X is

μX = E(X) =
∫ B

A
xf (x)dx

and the standard deviation of X is σX = √V(X) where

V(X) =
∫ B

A
(x − μX)2f (x)dx
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is the variance of X. Note that in each of these formulas we have simply replaced
sums by integrals in the analogous definitions for discrete random variables. Note,
too, that pdf and cdf values for certain continuous distributions may be computed
with statistical software.8 We again have

μa·X+b = a · μX + b (3.8)

σa·X+b = |a| · σX . (3.9)

These formulas are just as easy to prove as (3.4) and (3.6). Another formula is useful
for certain calculations:

V(X) = E(X2)− μ2 (3.10)

and this, too, is easily verified. In many contexts the variation relative to the mean is
summarized using the coefficient of variation, given by

CV(X) = σ

μ
. (3.11)

The quantiles or percentiles are often used in working with continuous distribu-
tions: for p a number between 0 and 1 (such as .25), the p quantile or 100pth percentile
(e.g., the .25 quantile or the 25th percentile) of a distribution having cdf F(x) is the
value η such that p = F(η). Thus, we write the p quantile as ηp = F−1(p), where
F−1 is the inverse cdf.

Illustration: Exponential distribution Let us illustrate these ideas in the case of
the exponential distribution, which is special because it is easy to handle and also
because of its importance in applications. We provide an application in Example 3.5

A random variable X is said to have an exponential distribution with parameter
λ, with λ > 0, when its pdf is

f (x) = λe−λx (3.12)

for x > 0, and is 0 for x ≤ 0. We will then say that X has an Exp(λ) distribution
and we will write X ∼ Exp(λ). The pdf of X when X ∼ Exp(1) is shown in Fig. 3.6.
Also illustrated in that figure is computation of probabilities as areas under the pdf
for the case

P(X > 2) =
∫ ∞

2
f (x)dx

which means we compute the area under the curve to the right of x = 2. For the
exponential distribution this value is easy to compute using calculus. The cdf of an
exponential distribution is

8 The definitions of expectation and variance assume that the integrals are finite; there are, in fact,
some important probability distributions that do not have expectations or variances because the
integrals are infinite.
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Fig. 3.6 The pdf of a random variable X having an exponential distribution with λ = 1. The shaded
area under the pdf gives P(X > 2).

F(x) =
∫ x

0
λe−λtdt

= −e−λt
∣∣∣∣
x

0

= 1− e−λx.

Thus, when X ∼ Exp(λ), using P(X > x) = 1− F(x), we also have

P(X > x) = e−λx (3.13)

and if λ = 1
P(X > 2) = 1− F(2) = e−2.

The quantiles are also easily obtained. For example, if X ∼ Exp(λ) the .95 quantile
of X is the value η.95 such that P(X ≤ η.95) = F(η.95) = .95. We have

.95 = F(η.95) = 1− e−λη.95

and we must solve η.95. More generally, if we set p = F(x) then

p = 1− e−λx

so that
e−λx = 1− p

and, therefore, −λx = log(1− p) so that
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x = − log(1− p)

λ
.

Plugging in p = .95 gives η.95 = − log(.05)/λ.
If X ∼ Exp(λ) then, by similar calculations, we obtain

E(X) = 1/λ

V(X) = 1/λ2

σX = 1/λ.

We omit the details. For future reference, we note that when we put the formu-
las for E(X) and σX above in Eq. (3.11), we find the coefficient of variation of an
exponentially-distributed random variable X to be

CV(X) = 1. (3.14)

�
If X1, X2, . . . , Xn are independently distributed as Exp(λ) then their sum Y =

X1 + X2 + · · · + Xn follows a gamma distribution with shape parameter n, written
Y ∼ G(n,λ). The exponential is often used to describe event durations, and the
gamma then becomes a sum of event durations, as illustrated in the next example.

Example 3.5 Duration of ion channel activation To investigate the functioning of
ion channels, Colquhoun and Sakmann (1985) used patch-clamp methods to record
currents from individual ion channels in the presence of various acetylcholine-like
agonists; see also Colquhoun (2007). A set of their recordings is shown in Fig. 3.7.
One of their main objectives was to describe the opening and closing of the channels
in detail, and to infer mechanistic actions from the results. Colquhoun and Sakmann
found that channels open in sets of activation “bursts” in which the channel may
open, then shut again and open again in rapid succession, and this may be repeated,
with small gaps of elapsed time during which the ion channel is closed. A burst may
thus have 1 or several openings. As displayed in Fig. 3.8, Colquhoun and Sakmann
examined separately the bursts having a single opening, then bursts with 2 openings,
then bursts with 3, 4, and 5 openings. Panel B of Fig. 3.8 indicates that, for bursts with
a single opening, the opening durations follow closely an exponential distribution.
In the case of bursts with 2 openings, if each of the two opening durations were
exponentially distributed, and the two were independent, then their sum—the total
opening duration—would be gamma with shape parameterα = 2. Panel C of Fig. 3.8
indicates the good agreement of the gamma with the data. The remaining panels show
similar results for the other cases. �

The formulas and concepts that apply to random variables are usually stated with
the notation of integrals rather than sums. This is partly because it is cumbersome
to repeat everything for both continuous and discrete random variables, when the
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Fig. 3.7 Current recordings from individual ion channels in the presence of acetylcholine-type
agonists. The records show the opening (higher current levels) and closing (lower current levels),
with the timing of opening and closing being stochastic. Adapted from Colquhoun and Sakmann
(1985).

results are in essence the same. In fact, there is an elegant theory of integration9 that,
among other things, treats continuous and discrete random variables together, with
summations becoming special cases of integrals. Throughout our presentation we
will, for the most part, discuss the continuous case with the understanding that the
analogous results follow for discrete random variables. For example, we will freely
use the terminology pdf for both continuous and discrete random variables, where
for the latter it will refer to a probability mass function.

For many purposes we do not actually need formulas such as those derived for
the exponential distribution. Most statistical software contains routines to generate
random observations artificially10 from standard distributions, such as those pre-
sented below, and the software will typically also provide pdf values, probabilities,
and quantiles. Indeed, as we note below, random variables having essentially any
continuous distribution may be generated on a computer from a program that gener-
ates U(0, 1) random variables. In showing this we will have to use the cdf, which is
given next.

9 Lebesgue integration is a standard topic in mathematical analysis; see for example, Billingsley
(1995).
10 The numbers generated by the computer are really pseudo-random numbers because they are
created by algorithms that are actually deterministic, so that in very long sequences they repeat
and their non-random nature becomes apparent. However, good computer simulation programs use
good random number generators, which take an extremely long time to repeat, so this is rarely a
practical concern.
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Fig. 3.8 Duration of channel openings. Panel a depicts the distribution of burst durations for a
particular agonist. Panel b displays the distribution of bursts for which there was only 1 opening,
with an exponential pdf overlaid. This illustrates the good fit of the exponential distribution to the
durations of ion channel opening. Panel c displays the distribution of bursts for which there were 2
apparent openings, with a gamma pdf, with shape parameter 2, overlaid. Panel c again indicates good
agreement. Panels d–f show similar results, for bursts with 3–5 openings. Adapted from Colquhoun
and Sakmann (1985).

Illustration: Uniform distribution (continued from p. 52) If a continuous random
variable X has cdf F(x) = x on the interval (0, 1) we may differentiate to get the
U(0, 1) pdf f (x) = 1. On the other hand, if X ∼ U(0, 1) we integrate f (x) = 1 to
get

F(x) =
∫ x

0
1 · dx = x.

In other words, X has a U(0, 1) distribution if and only if its cdf is F(x) = x on the
interval (0, 1). �

Illustration: Normal distribution (continued from p. 53) When X is distributed
normally with mean μ and standard deviation σ it has a pdf given by Eq. 3.7. Its cdf
is given by

F(x) =
∫ x

−∞
1√
2πσ

exp

(
−1

2
(
x − μ
σ

)2
)

dx.

This integral can not be evaluated in explicit form. Therefore, normal probabilities
of the form P(a ≤ X ≤ b) are obtained by numerical approximation. �
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3.2.4 The hazard function provides the conditional probability of
an event, given that it has not yet occurred.

Another useful characterization of a probability distribution arises in specialized con-
texts, including the analysis of spike train data, where a random variable X represents
the waiting time until some event occurs. In the case of a spiking neuron, X would
be the elapsed time since the neuron last fired, and the event of interest would be
next time it fires. We want a formula for the instantaneous probability that the neuron
will fire at time x, i.e., that it will fire in an interval (x, x + dx), given that it has not
yet fired in (0, x). Assuming X is a continuous random variable, the event that the
neuron has not yet fired in (0, x) is the same as X > x. Recall that if P(B) > 0 then

P(A|B) = P(A ∩ B)

P(B)
.

Applying this with A being the event X ∈ (x, x+h) and B being the event that X > x
we have

P(X ∈ (x, x + h)|X > x) = F(x + h)− F(x)

1− F(x)
.

Passing to the limit as h vanishes gives

lim
h→0

P(X ∈ (x, x + h)|X > x)

h
= f (x)

1− F(x)
,

which we may interpret as the probability X ∈ (x, x+dx) given X > x. The function

λ(x) = f (x)

1− F(x)

is called the hazard function of X. For example, if X is the elapsed time that an ion
channel is open, so that its values are times x, thenλ(x)dx becomes the probability the
ion channel will close in the interval (x, x+dx), given that it has remained open up to
time x. Similarly, if X is the elapsed time since a neuron last fired an action potential
then λ(x)dx becomes the probability the neuron will fire in the interval (x, x + dx),
given that it has not yet fired again before elapsed time x. In spike train analysis,
the hazard function for a neuron becomes its theoretical firing rate (its instantaneous
probability of firing per unit time), which is known in general as the intensity or
conditional intensity function. See Chapter 19.

The “hazard” terminology comes from lifetime analysis, where the random vari-
able X is the lifetime (of a lightbulb or a person, etc) in units of time t and λ(t)dt is
the probability of failure (death) in the interval (t, t + dt) given that failure has not
yet occurred.

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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3.2.5 The distribution of a function of a random variable
is found by the change of variables formula.

There are many situations in which we begin with a random variable X that has a
particular distribution and we want, in addition, to obtain the distribution of another
random variable Y = g(X) for some function g(x). This arises in the context of data
transformations (discussed in Chapter 2) and it is also important in various theoretical
derivations. In the simplest cases there is no need for any special formula.

Illustration: Two trials from patient P.S. Let us return to the framework on p. 47,
where X is the number of times, out of 2, that P.S. chooses non-burning house,
and P(X = 2) = p2, P(X = 1) = 2p(1 − p), P(X = 0) = (1 − p)2. Suppose
Y = g(X) = 10x . Then we have P(Y = 100) = p2, P(Y = 10) = 2p(1 − p),
P(Y = 1) = (1−p)2. It would be easy to calculate the mean and variance of Y from
these probabilities. �

When X has a continuous distribution we may obtain the pdf fY (y) of Y = g(X)

using the change-of-variables formula from calculus—which follows from the chain
rule.

Theorem: Pdf of a Function of a Random Variable Suppose X is a continuous
random variable having pdf fX(x) for which fX(x) > 0 on an interval (A, B) and
fX(x) = 0 otherwise; suppose further that g(x) is a differentiable function and g′(x) �=
0 for x ∈ (A, B). Then the random variable Y = g(X) has pdf given by

fY (y) = fX(g−1(y))| d

dy
g−1(y)|

wherever y = g(x) for some x, and fY (y) = 0 elsewhere.

Proof details: Let us consider x ∈ (A, B). Because g′(x) �= 0, g′(x) is
either always positive, in which case g(x) is monotonically increasing,
or always negative in which case g(x) is monotonically decreasing.
Let us assume g′(x) > 0. Because g(x) is monotonically increasing
we then have x ≤ c⇐⇒ g(x) ≤ g(c). We will obtain the pdf fy(y) by
differentiating the cdf FY (y), using fy(y) = F ′Y (y). Suppose y = g(x)
for some x. Then

FY (y) = P(g(X) ≤ y)

= P(X ≤ g−1(y))

= FX(g−1(y))

where the second equality used x ≤ c⇐⇒ g(x) ≤ g(c). Now, by the
chain rule, differentiation gives

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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fY (y) = fX(g−1(y))
d

dy
g−1(y).

Because we have assumed g′(x) > 0, this is the desired result. The
case in which g′(x) < 0 requires a small modification of the argument
above (which we leave to the attentive reader). �

Here is a simple consequence of the theorem above.

Theorem: Linear transformation of a normal random variable Suppose X ∼
N(μX ,σ2

X) and let g(x) = a + bx with b �= 0. If Y = g(X) then Y ∼ N(μY ,σ2
Y )

where μY = a+ bμX and σY = |b|σX .

Proof : Notice first that the mean and standard deviation formulas follow from (3.8)
and (3.9). Let us apply the transformation theorem above. We have g−1(y) = (y−a)/b
and

| d

dy
g−1(y)| = 1

|b| . (3.15)

If we substitute x = (y− a)/b into the pdf formula (3.7), multiply by the derivative
factor 1/|b| from (3.15) as required by the theorem above, and simplify we obtain
the pdf

fY (y) = 1√
2πσY

exp(−1

2
(
y− μY

σY
)2)

in agreement with (3.7). �

Another result that will be used later in the book provides a way of reducing the
distribution of X to a uniform distribution.

Theorem: The Probability Integral Transform, Part 1 Suppose X is a continuous
random variable having pdf fX(x) and cdf FX(x), and suppose further that fX(x) > 0
on an interval (A, B) and fX(x) = 0 otherwise. The random variable Y defined by
Y = FX(X) has a U(0, 1) distribution.

Proof : First, let us note that FX(x) is strictly increasing on (A, B). It therefore
has a well-defined, strictly increasing inverse function F−1

X (y) satisfying F−1
X (y) =

x whenever FX(x) = y. Furthermore, x ≤ c ⇐⇒ F−1
X (x) ≤ F−1

X (c) and
FX(F−1

X (y)) = y. We must show that P(Y ≤ y) = y whenever y ∈ (0, 1). We
have

P(Y ≤ y) = P(FX(X) ≤ y) = P(X ≤ F−1
X (y))

= FX(F−1
X (y))

= y.

�
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Theorem: The Probability Integral Transform, Part 2 Suppose X is a continuous
random variable having pdf fX(x) and cdf FX(x), and suppose further that fX(x) > 0
on an interval (A, B) and fX(x) = 0 otherwise. If U ∼ U(0, 1) then the random
variable Y defined by Y = F−1

X (U) has the same distribution as X, i.e., its cdf FY

satisfies FY (y) = FX(y) for all y.

Proof : The proof involves manipulations similar to those of part 1. �

This result gives a general method of generating a random variable that has a
distribution with a given distribution function F(x): we generate a U(0, 1) random
variable U and apply the transformation F−1(U).

We conclude with a technical result that provides transformations from one dis-
tribution to another in terms of CDFs.

Corollary to the Probability Integral Transform Suppose X and Y are continuous
random variables having pdfs fX(x), fY (y) and cdfs FX(x), FY (y). Suppose further
that fX(x) > 0 on an interval (A, B) and fX(x) = 0 otherwise and fY (y) > 0 on an
interval (C, D) and fY (y) = 0 otherwise. Then the random variable W defined by
W = F−1

Y (FX(X)) has the same distribution as Y , i.e., its cdf FW satisfies FW (w) =
FY (w) for all w.

Proof : This is simply a combination of parts 1 and 2 of the probability integral
transform. �

3.3 The Empirical Cumulative Distribution Function

One way to check the accuracy with which a probability distribution fits the data is
to overlay a pdf on a histogram, as in Figs. 3.4 and 3.8. (In Chapter 7 we discuss
how to choose the parameter values for the pdf, e.g., the λ in an exponential.) In this
section we consider another pair of graphical techniques, called P–P and Q–Q plots,
which can be more sensitive than plotting the pdf.

The difficulty in examining the pdf is that its values cover a large range: it can be
hard to judge deviations from a curving trend, especially when some of the values
are close to zero. An alternative is to straighten things out so that a perfect fit is
represented by a straight line. Both P–P and Q–Q plots accomplish this, and both are
based on the cdf. We begin by defining the data-based counterpart of the theoretical
cdf.

Let X1, . . . , Xn be independent random variables all having the same distribu-
tion function F(x). The empirical cumulative distribution function, written F̂n(x),
is the cdf for the discrete probability distribution that puts mass 1/n on each value
X1, . . . , Xn, i.e.,

F̂n(x) = number of indices i for which Xi ≤ x

n
.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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That is, F̂n(x) provides the proportion of the random variables, out of n, that are
less than or equal to x. When n is large, we might expect this proportion to be close
to the theoretical probability that each random variable is less than or equal to x,
i.e., we might expect F̂n(x) to be close to F(x). We will see in Chapter 6 that this
is necessarily so, for sufficiently large n. Figure 3.9 illustrates this in the case of a
Gamma(2, 1) distribution, for samples of size n = 10 and n = 200. Specifically, to
create the left panel in Fig. 3.9 we (i) used the computer to generate 10 observations
x1, x2, . . . , x10 from a Gamma(2, 1) distribution, then (ii) plotted F̂n(x) versus x and
(iii) overlaid a plot (dashed line) of the theoretical Gamma(2, 1) cdf F(x) versus
x. In this case there is a reasonably close agreement between F̂n(x) and F(x). The
agreement is much closer in the right panel, when n = 200.

The same procedure could be used for any set of observations x1, . . . , xn to check
whether they seem to be consistent with random draws from a distribution with cdf
F(x), i.e., we could plot F(x) versus x on together with a plot of F̂n(x) versus x and
see whether they agree well. A variation on this idea is to plot F̂n(x) versus F(x).
This becomes a P–P plot, discussed in Section 3.3.1.

3.3.1 P–P and Q–Q plots provide graphical checks for gross
departures from a distributional form.

Suppose we wish to compare a cdf F̃(x) with another, similar cdf F(x). If F̃(x) ≈
F(x), we could define v = F̃(x) and u = F(x), plot v against u over the range of values
of x, and judge the accuracy of the approximation by the deviation of this plot from
the line v = u. In other words, we could plot probabilities against probabilities. This
is the idea behind the P-P plot (P–P for Probability-Probability), except that in exam-
ining data it is performed with the empirical cdf F̂n(x) replacing F̃(x). Specifically,
to examine the fit of a theoretical cdf F(x) to some data, we pick suitable values of x
spanning the range of the data and compute v = F̂n(x) and u = F(x) and then plot v
against u. Often, the “suitable values” of x are simply the data values themselves. In
other words, for data values x1, . . . , xn we plot F̂n(xi) against F(xi), for i = 1, . . . , n.

Example 1.2 (continued from p. 54) A P–P plot of the data shown in Fig. 3.4 is
given in Fig. 3.10, where we have used a normal distribution as our theoretical F(x).
The plot follows extremely closely the line y = x. �

One difficulty with the P–P plot is that the range of both axes is [0, 1], which
sometimes makes it difficult to see clearly the departures from the line v = u for
values of u near 0 or 1. An alternative is to pick suitable values of w between 0
and 1 and plot F̂−1

n (w) versus F−1(w), both of which will be on the scale of the
data. This is the idea behind the Q–Q plot, which is based on quantiles (Q–Q for
Quantile-Quantile).

On p. 56 we defined the quantiles of a continuous probability distribution. The data
quantiles (or observed quantiles, or sample quantiles) are analogous, but it turns out

http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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Fig. 3.9 Convergence of the empirical cdf to the theoretical cdf. The left panel displays the empirical
cdf for a random sample of size 10 from the Gamma distribution whose pdf is in the top right panel
of Fig. 3.3, together with the gamma cdf (dashed blue line). The right panel shows the empirical
cdf for a random sample of size 200, again with the gamma cdf. In the right panel the empirical cdf
is quite close to the theoretical gamma cdf.

Fig. 3.10 A P–P plot of the MEG noise data from Fig. 3.4. The straightness of the plot indicates
excellent agreement with the normal distribution.

that there is no unique analogue and instead one of several variants may be used. If we
start from a sample of observations x1, x2, . . . , xn we first put the data in ascending
order according to the size of each observation: we write x(1), x(2), . . . , x(n), where
x(1) is the smallest value, x(2) is the second-smallest, and x(n) is the largest. Let us use
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Fig. 3.11 Q–Q plots for 200 randomly-drawn observations from a three distributions. Left obser-
vations from a N(0, 1) distribution; middle observations from a gamma distribution, whose pdf is
shown in the top right panel of Fig. 3.3, which is skewed to toward high values; right observations
from a t distribution (see Section 5.4.7), which is symmetric with heavy tails. In each case the
theoretical quantiles come from a normal distribution.

r to denote the index of ordered values, meaning that x(r) is the rth smallest value.
Working by analogy with the definition η = F−1(p) we could define the r

n sample

quantile, or the 100 r
n sample percentile, by setting p = r

n and replacing F with F̂n

to get F̂−1
n ( r

n ) = xr . We then define

η(r) = F̃−1(
r

n
)

for r = 1, . . . , n and plot the ordered data against these values. That is, we plot
the points (η(1), x(1)), . . . , (η(n), x(n)). Most software modifies the details of this
procedure, but the idea remains the same.

Details: A common variation is to take xr to be the 100 r−.5
n sample

percentile. To see why this makes some sense, suppose we have n = 7
ordered observations. Then the 4th is the median. This divides the 7
numbers into the 3 smallest and the 3 largest and, effectively says that
the 4th is part of both the smallest half of the numbers and the largest
half of the numbers. It could therefore be considered the 3.5th ordered
value. The reasoning behind the designation of x(r) as the r−.5

n quantile
is similar. Statistical software sometimes chooses alternative defini-
tions based on expected values of x(r) under particular assumptions.
Also, in creating a P–P plot, some software plots F̂(x(r)) against r−.5

n .
�

Figure 3.11 displays three Q–Q plots, for which the theoretical quantiles are based
on the normal distribution. Thus, we would make these plots in order to check whether
the data could reasonably be described by a normal distribution. The three data sets
were generated on the computer from three very different probability distributions.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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The first comes from a normal distribution, the second from a gamma distribution,
which is skewed toward high values, and the third from a t-distribution, which is
symmetric but has heavy tails in both directions. The first plot shows adherence to a
linear relationship between the observed and theoretical quantiles. The second, for
skewed data, shows upward curvature: the points on the far right-hand side of the plot
correspond to data values that are farther from the middle than would be expected
if normal (the observed quantiles for those points are too large for the theoretical
quantiles—the data should have been pulled in toward the middle—so the points
appear too high) and those on the far left-hand side are too close to the middle (the
observed quantiles are again too large—the data should now be pushed away from
the middle—and the points are again too high). The third plot, for symmetrical but
heavy-tailed data, has an S-shaped tendency (the observed quantiles are too large
on the far right-hand side and too small on the left; on both extremes, to look more
normal, the data should be pushed back toward the middle).

Although such plots are very useful for revealing serious departures from nor-
mality, small wiggles in these plots are very common even for computer-generated
normal data. Thus, strong nonlinearities are what we look for, and even these are
sometimes a bit subtle. Figure 3.12 shows Q–Q plots, where again the theoretical
quantiles are based on the normal distribution, with data being 30 randomly drawn
observations from a N(0, 1) distribution. That is, these were computer-generated
data from a N(0, 1) distribution and one might expect Q–Q plots from the correct
distribution to be nearly exactly linear. The 6 plots show 6 replications of this random
number generation and plotting. The departures from linearity indicate that randomly
drawn observations fluctuate; they do not conform perfectly to what is theoretically
“expected.” Or, put differently, what we should expect is that small samples of truly
normal data will be somewhat erratic and less regular than the theoretical curve based
on infinitely much data. This basic lesson applies to all probability distributions, and
it also applies to many situations other than examination of Q–Q plots. It is some-
thing we must keep in mind when using our personal perceptions11 to judge random
quantities.

In a P–P plot we look for departures from the line y = x, and the same holds for a
Q–Q plot (except that sometimes a scale factor changes the slope, so that departures
from linearity are of interest). In either case it does not matter which of the variables is
plotted on the x-axis and which is plotted on the y-axis. There is no fixed convention
here and, in interpreting the plots, a data analyst must check which choice is made
by the software being used.

11 The cognitive psychology of perception of randomness has been studied quite extensively. See,
for instance, Gilovich et al. (1985).
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Fig. 3.12 Normal Q–Q plots for 30 randomly-drawn observations from a N(0, 1), repeated six
times. The plots are more or less linear, but display mild departures (wiggles, etc.) from linearity.

3.3.2 Q–Q and P–P plots may be used to judge the effectiveness
of transformations.

In Chapter 2 we discussed transformations of data, especially to improve symmetry.
There we used histograms as displays. An alternative is to use Q–Q or P–P plots.

Example 2.1 (continued from p. 24) Figure 3.13 provides Q–Q plots for the human
eye saccade data shown in Chapter 2. The logarithm makes the distribution more
symmetrical, and the reciprocal does an even better job. An unusually long delay in
the saccade time becomes apparent as an outlier in the latter plot.

On the bottom right of Fig. 3.13 is a Q–Q plot from a different patient, for whom
much of the data were unusable. We have included this because the plot has the
classic S-shape, indicating a “heavy-tailed” distribution. Power transformations do
not fix this problem. If one wishes to analyze data of this sort it is important to
use a statistical procedure either specifically designed for such situations or having
well-understood behavior in the presence of heavy-tailed distributions. We discuss
nonparametric procedures in Chapters 9 and 11.

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Fig. 3.13 Q–Q plots. Upper left Q–Q plot for the data from a particular patient, shown in Chapter 1,
from the study by Behrmann et al. (2002); upper right Q–Q plot of the same data following a log
transformation; lower left Q–Q plot following a reciprocal transformation. The plot for the log-
transformed data is straighter than that for the raw data; the plot for the reciprocal-transformed data
is straighter still. Lower right Q–Q plot of data from a different patient, which exhibits an S shape.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1


Chapter 4
Random Vectors

In most experimental settings data are collected simultaneously on many variables,
and the statistical modeling problem is to describe their joint variation, meaning
their tendency to vary together. The starting point involves m-dimensional random
vectors (where m is some positive integer), which are the natural multivariate exten-
sion of random variables. The fundamental concepts of distribution, expectation, and
variance discussed in Chapter 3 extend fairly easily to m-dimensions. We review the
essential definitions in Section 4.1, then consider bivariate dependence in Section 4.2
and multivariate dependence in Section 4.3. The most commonly applied measure of
association between two random variables is the correlation, defined in Section 4.2.1.
As we explain, correlation is a measure of linear dependence. Nonlinear depen-
dence is often quantified by mutual information, which we define in Section 4.3.2.
In Section 4.3.4 we apply concepts of multivariate dependence to the problem of
classification, and show that Bayes classifiers provide the best possible classification
accuracy.

4.1 Two or More Random Variables

Let us begin our discussion of multivariate dependence with a motivating example.

Example 4.1 Tetrode spike sorting One relatively reliable method of identifying
extracellular action potentials in vivo is to use a “tetrode.” As pictured in panel A
of Fig. 4.1, a tetrode is a set of four electrodes that sit near a neuron and record
slightly different voltage readings in response to an action potential. The use of all
four recordings allows more accurate discrimination of a particular neuronal signal
from the many others that affect each of the electrodes. Action potentials correspond-
ing to a particular neuron are identified from a complex voltage recording by first
“thresholding” the recording, i.e., identifying all events that have voltages above
the threshold. Each thresholded event is a four-dimensional vector (x1, x2, x3, x4),
with xi being the voltage amplitude (in millivolts) recorded at the ith electrode or
“channel.” Panels b-d display data from a rat hippocampal CA1 neuron. Because

R. E. Kass et al., Analysis of Neural Data, 71
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_4,
© Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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Fig. 4.1 Spike sorting from a tetrode recording. Panel a is a diagram of a tetrode, which is a set of
four electrodes; also shown are signals recorded from a particular neuron (indicated as an elliptical
disk) that is sitting near the tetrode. Panel b displays the six pairs of plots of event amplitudes. For
instance, the top left plot in panel b shows the event amplitudes for channel 1 (x-axis) and channel
2 (y-axis). Also overlaid on the data in panel b are 95 % probability contours found from a suitable
bivariate normal distribution. Panel c displays histograms for the event amplitudes on each channel,
together with fitted normal pdfs, and panel d provides the corresponding normal Q-Q plots.

there are six pairs of the four tetrodes (channel 1 and channel 2, channel 1 and
channel 3, etc.) six bivariate plots are shown in panel b. The univariate distributions
are displayed in panel c and Q-Q plots are in panel d. We return to this figure in
Chapter 5. �

Particularly when the number of dimensions m is greater than 2 it becomes hard
to visualize multidimensional variation. Some form of one and two-dimensional
visualization is usually the best we can do, as illustrated in Fig. 4.1. As we contemplate
theoretical representations, the possibilities for interactions among many variables
quickly become quite complicated. Typically, simplifications are introduced and an
important challenge is to assess the magnitude of any distortions they might entail.
We content ourselves here with a discussion of multivariate means and variances,
beginning with the bivariate case.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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4.1.1 The variation of several random variables is described
by their joint distribution.

If X and Y are random variables, their joint distribution may be found from their
joint pdf, which we write as f (x, y):

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d

c

∫ b

a
f (x, y)dxdy.

In the discrete case the integrals are replaced by sums. Each individual or marginal
pdf is obtained from the joint pdf by integration (or, in the discrete case, summation):
if fX(x) is the pdf of X then

fX(x) =
∫ ∞

−∞
f (x, y)dy.

Illustration: Spike Count Pairs Suppose we observe spike counts for two neurons
recorded simultaneously over an interval of 100 ms. Let X and Y be the random
variables representing the two spike counts. We may specify the joint distribution by
writing down its pdf. Suppose it is given by the following table:

2| .03 .07 .10
Y 1| .06 .16 .08

0| .30 .15 .05
0 1 2

X

This means the probability that the first neuron spikes once and the second neuron
spikes twice, during the observation interval, is P(X = 1, Y = 2) = .07. We may
compute from this table all of the marginal probabilities. For example, we have
the following marginal probabilities: P(X = 1) = .07 + .16 + .15 = .38 and
P(Y = 2) = .03+ .07+ .10 = .2. �

The example above explains some terminology. When we compute P(Y = 2) we
are finding a probability that would naturally be put in the margin of the table; thus,
it is a marginal probability.

More generally, if X1, X2, . . . , Xn are continuous random variables their joint
distribution may be found from their joint pdf f (x1, x2, . . . , xn):

P(a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2, . . . , an ≤ Xn ≤ bn)

=
∫ bn

an

· · ·
∫ b2

a2

∫ b1

a1

f (x1, x2, . . . , xn)dx1dx2 · · · dxn

and the marginal pdf of the ith random variable Xi is given by
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fXi(xi) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, x2, . . . , xn)dx1dx2 · · · dxi−1dxi+1 · · · dxn

where all the variables other than xi are integrated out. The joint cdf is defined by

F(x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

Once again, the formulas for discrete random variables are analogous.
Let us introduce a general notation. Sometimes we will write X = (X1, X2, . . . ,

Xn), so that X becomes a random vector with pdf (really, a joint pdf for its compo-
nents) fX(x) = f(X1, X2, ..., Xn)(x1, x2, . . . , xn). When we must distinguish row vectors
from column vectors we will usually want X to be an n × 1 column vector, so we
would instead write X = (X1, X2, . . . , Xn)

T , where the superscript T denotes the
transpose of a matrix.

A very useful and important fact concerning two or more random variables is that
their expectation is linear in the sense that the expectation of a linear combination of
them is the corresponding linear combination of their expectations.

Theorem: Linearity of Expectation For random variables X1 and X2 we have

E(aX1 + bX2) = aE(X1)+ bE(X2).

More generally, for random variables X1, X2, . . . , Xn we have

E(

n∑

i=1

aiXi) =
n∑

i=1

aiE(Xi). (4.1)

Proof: Consider the case of two random variables and assume X1 and X2 are contin-
uous. Let f1(x1), f2(x2), and f12(x1, x2) be the marginal and joint pdfs of X1 and X2,
and assume these random variables take values in the respective intervals (A1, B1)

and (A2, B2) (which could be infinite). We have

E(aX1 + bX2) =
∫ B2

A2

∫ B1

A1

(ax1 + bx2)f12(x1, x2)dx1dx2

= a
∫ B2

A2

∫ B1

A1

x1f12(x1, x2)dx1dx2

+ b
∫ B2

A2

∫ B1

A1

x2f12(x1, x2)dx1dx2

= a
∫ B1

A1

x1

∫ B2

A2

f12(x1, x2)dx2dx1

+ b
∫ B2

A2

x2

∫ B1

A1

f12(x1, x2)dx1dx2
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= a
∫ B1

A1

x1f1(x1)dx1 + b
∫ B2

A2

x2f2(x2)dx2

= aE(X1)+ bE(X2).

The proof in the discrete case would replace the integrals by sums, and the proof in
the general case of n variables follows the same steps. �

4.1.2 Random variables are independent when their joint pdf
is the product of their marginal pdfs.

We previously said that two events A and B are independent if P(A∩B) = P(A)P(B),
and we used this in the context of random variables that identify dichotomous events.
For example, if p is the probability that P.S. chooses the non-burning house on any
given trial, we said that p2 will be the probability she chooses the non-burning house
on both of two trials. Generally, we say that two random variables X and Y are
independent if

P(a ≤ X ≤ b and c ≤ Y ≤ d) = P(a ≤ X ≤ b)P(c ≤ Y ≤ d) (4.2)

for all choices of a, b, c, d. It follows that when X and Y are independent we also
have

f (x, y) = fX(x)fY (y) (4.3)

for all x and y. Indeed, when X and Y are random variables with pdf f (x, y), they
are independent if and only if Eq. (4.3) holds. Thus, we may instead take (4.3) as the
definition of independence of two random variables.

Details: Suppose X and Y are continuous random variables. If (4.3)
holds we may integrate both sides over the region (a, b) × (c, d) to
obtain (4.2). If (4.2) holds we rewrite it in terms of integrals, set b = x
and d = y, and compute the mixed second partial derivatives with
respect to x and y. This gives (4.3).
If X and Y are discrete, the integrals are replaced by sums. If (4.2)
holds then we set a = b = x and c = d = y to get (4.3). If (4.3)
holds for all x and y then the double summation on the left-hand side
of (4.2) factors as

∑

a≤x≤b,c≤y≤d

f (x)f (y) =
∑

a≤x≤b

f (x)
∑

c≤y≤d

f (y)

which is the right-hand side of (4.2). �
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Illustration: Spike Count Pairs (continued from p. 73) We return once again to
the joint distribution of spike counts for two neurons, given by the table on p. 73.
Are X and Y independent?

The marginal pdf for X is fX(0) = .39, fX(1) = .38, fX(2) = .23 and the
marginal pdf for Y is fY (0) = .50, fY (1) = .30, fY (2) = .20. We thus obtain
fX(0)fY (0) = .195 �= .30 = f (0, 0), which immediately shows that X and Y are
not independent. �

We may generalize the definition of independence to multiple random vari-
ables: we say that X1, X2, . . . , Xn are independent random variables if their joint
pdf f(X1,X2,...,Xn)(x1, x2, . . . , xn) is equal to the product of their marginal pdfs,

f(X1,X2,...,Xn)(x1, x2, . . . , xn) =
n∏

i=1

fXi(xi).

In the previous subsection we showed that the expectation of a sum is always the
sum of the expectations. In general, it is not true that the variance of a sum of random
variables is the sum of their variances (the formula is instead more complicated; see
(4.6)), but this is true under independence.

Theorem: Variance of a Sum of Independent Random Variables For independent
random variables X1 and X2 we have

V(aX1 + bX2) = a2V(X1)+ b2V(X2). (4.4)

More generally, for independent random variables X1, X2, . . . , Xn we have

V

(
n∑

i=1

aiXi

)
=

n∑

i=1

a2
i V (Xi) . (4.5)

Proof: The proof is similar to that of the theorem on linearity of expectations, except
that the factorization of the joint pdf, due to independence, must be used. �

The formula (4.5) may fail if X1 and X2 are not independent. For example, if
X2 = −X1 then X1 + X2 = 0 and V(X1 + X2) = 0. A general formula appears in
Eq. (4.6).

4.2 Bivariate Dependence

In Section 4.1.2 we said that random variables X1, X2, . . . , Xn are independent if
their joint pdf f(X1,X2,...,Xn)(x1, x2, . . . , xn) is equal to the product of their marginal
pdfs. We now consider the possibility that X1, X2, . . . , Xn are not independent and
develop some simple ways to quantify their dependence. In the case of two random
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variables the most common way to measure dependence is through their correlation,
which is discussed in Section 4.2.1. We first interpret the correlation as a measure
of linear dependence then, in Section 4.2.2, describe its role in the bivariate normal
distribution. After we discuss conditional densities in Section 4.2.3 we re-interpret
correlation using conditional expectation in Section 4.2.4. We then turn to the case
of arbitrarily many random variables (X1, . . . , Xn with n ≥ 2), providing results
in Section 4.3 that will be useful later on. We discuss general multivariate normal
distributions later, in Section 5.5.

4.2.1 The linear dependence of two random variables
may be quantified by their correlation.

When we consider X and Y simultaneously, we may characterize numerically their
joint variation, meaning their tendency to be large or small together. This is most com-
monly done via the covariance of X and Y which, for continuous random variables, is

Cov(X, Y) = E ((X − μX)(Y − μY ))

=
∫ ∞

−∞

∫ ∞

−∞
(x − μX)(y− μY )f (x, y)dxdy

and for discrete random variables the integrals are replaced by sums. The covariance
is analogous to the variance of a single random variable. We now generalize Eq. (4.5)
to the case in which the random variables may not be independent.

Theorem: Variance of a Sum of Random Variables For random variables X1 and
X2 we have

V(aX1 + bX2) = a2V(X1)+ b2V(X2)+ 2abCov(X1, X2).

More generally, for random variables X1, X2, . . . , Xn we have

V(

n∑

i=1

aiXi) =
(

n∑

i=1

a2
i V(Xi)

)
+ 2

∑

i<j

aiajCov(Xi, Xj). (4.6)

Proof: The proof follows from the definition by straightforward algebraic manipu-
lations and is omitted. �

The covariance depends on the variability of X and Y individually, as well as their
joint variation, and therefore depends on scaling. For instance, as is immediately
verified from the definition, Cov(3X, Y) = 3Cov(X, Y). To obtain a measure of joint
variation that does not depend on the variance of X and Y , we standardize. The
correlation of X and Y is

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Cor(X, Y) = Cov(X, Y)

σXσY

where σX and σY are the standard deviations of X and Y . This is also often called
the Pearson correlation, after Karl Pearson who studied extensively this and other
measures of association.1 The correlation is also called the correlation coefficient
and is commonly denoted by ρ, as in

ρXY = Cor(X, Y),

and when it is clear which random variables are being considered the subscript is
omitted.

Let us emphasize that, just as a theoretical mean μ and standard deviation σ
should be distinguished from the sample mean x̄ and sample standard deviation s,
the theoretical quantities Cov(X, Y) and Cor(X, Y) should be distinguished from
the analogous quantities computed from data: if x1, . . . , xn and y1, . . . , yn are two
batches of numbers their sample correlation is

rXY =
1

n−1

∑n
i=1

∑n
i=1(xi − x̄)(yi − ȳ)

sxsy
(4.7)

where sx is the sample standard deviation of x1, . . . , xn and sy is the sample standard
deviation of y1, . . . , yn. The numerator in (4.7) is the sample covariance of these two
samples. The quantity rXY in (4.7) is also often called the sample Pearson correla-
tion and sometimes “Pearson correlation” may mean either ρXY or rXY . The sample
correlation is also often written using the alternate notation

ρ̂XY = rXY (4.8)

to indicate that ρXY is being estimated by the sample correlation. We discuss the
sample correlation further in Chapter 12. In the remainder of this section we focus
exclusively on Cor(X, Y).

It is easy to check that Cor(X, Y) is invariant to linear rescaling of X and Y and
it may be shown that −1 ≤ Cor(X, Y) ≤ 1. The latter is an instance of what is
known in mathematical analysis as the Cauchy-Schwartz inequality. When X and Y
are independent their covariance, and therefore also their correlation, is zero.

Details: This last fact follows from the definition of covariance: if X
and Y are independent we have f (x, y) = fX(x)fY (y) and then

1 The concept of association also played a prominent role in Pearson’s influential book The Grammar
of Science, the first edition of which appeared in 1892. For a discussion of Pearson’s research see
Stigler (1986).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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∫ ∞

−∞

∫ ∞

−∞
(x − μX)(y − μY )f (x, y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
(x − μX)fX(x)(y− μY )fY (y)dxdy

=
∫ ∞

−∞
(x − μX)fX(x)dx

∫ ∞

−∞
(y − μY )fY (y)dy

but from the definition of μY

∫ ∞

−∞
(y − μY )fY (y)dy = 0

(and similarly the integral over x is zero). �
We now illustrate the calculation of correlation in a simple example, introduced

earlier.

Illustration: Spike count pairs (continued from p. 76 ) We return to the joint
distribution of spike counts for two neurons, discussed on p. 73, with joint pdf given
by the following table:

2| .03 .07 .10
Y 1| .06 .16 .08

0| .30 .15 .05
0 1 2

X

We may compute the covariance and correlation of X and Y as follows:

μX = 0+ 1 · (.38)+ 2 · (.23)

μY = 0+ 1 · (.30)+ 2 · (.2)

σX =
√

.39 · (0− μX)2 + .38 · (1− μX)2 + .23 · (2− μX)2

σY =
√

.5 · (0− μY )2 + .3 · (1− μY )2 + .2 · (2− μY )2

which gives

μX = .84

μY = .7

σX = .771

σY = .781.

We then get ∑
f (x, y)(x − μX)(y − μY ) = .272
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and ∑
f (x, y)(x − μX)(y − μY )

σXσY
= .452.

Thus, the correlation is ρ ≈ .45. �
The correlation is undoubtedly the most commonly used measure of association

between two random variables, but it is rather special. For one thing, Cor(X, Y) = 0
does not imply that X and Y are independent. Here is a counterexample.

Illustration: Dependent variables with zero correlation. Suppose X is a con-
tinuous random variable having a distribution that is symmetric about 0, meaning
that for all x we have fX(−x) = fX(x), and let us assume that E(X4) is finite (i.e.,
E(X4) <∞). From symmetry we have

∫ 0

−∞
xfX(x)dx = −

∫ ∞

0
xfX(x)dx

so that

E(X) =
∫ ∞

−∞
xfX(x)dx

=
∫ 0

−∞
xfX(x)dx +

∫ ∞

0
xfX(x)dx = 0

and, similarly, E(X3) = 0. Now let Y = X2. Clearly X and Y are not independent:
given X = x we know that Y = x2. On the other hand,

Cov(X, Y) = E(X(Y − μY )) = E(X3)− E(X)μY = 0.

Therefore, Cor(X, Y) = 0. �
A more complete intuition about correlation may be found from the next result.

Suppose we wish to predict a random variable Y based on another random variable
X. That is, suppose we take a function g(x) and apply it to X to get g(X) as our
prediction of Y . To evaluate how well g(X) predicts Y we can examine the average
size of the error, letting under-prediction (g(x) < y) be valued the same as over-
prediction (g(x) > y). A mathematically simple criterion that accomplishes this is
expected squared error, or mean squared error, E((Y − g(X))2). We therefore pose
the problem of finding the form of g(x) that minimizes mean squared error. There
is a general solution to this problem, which we give in Section 4.2.4. For now we
consider the special case in which g(x) is linear, and find the best linear predictor in
the sense of minimizing mean squared error.

Theorem: Linear prediction Suppose X and Y are random variables having vari-
ances σ2

X and σ2
Y (with σ2

X <∞ and σ2
Y <∞ ). In terms of mean squared error, the

best linear predictor of Y based on X is α+ βX where
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β = ρσY

σX
(4.9)

α = μY − βμX (4.10)

and ρ = Cor(X, Y). In other words, the values of α and β given by (4.10) and (4.9)
minimize E((Y −α− βX)2). With α and β given by (4.10) and (4.9) we also obtain

E
(
(Y − α− βX)2

)
= σ2

Y (1− ρ2). (4.11)

Proof details: Write

Y − α− βX = (Y − μY )− (α+ β(X − μX))+ μY − βμX

then square both sides, take the expected value, and use the fact that
for any constants c and d, E(c(X − μX)) = 0 = E(d(Y − μY )). This
leaves

E
(
(Y − α− βX)2

)
= σ2

Y + β2σ2
X − 2βρσXσY + (μY −α− βμX)2.

(4.12)
Minimizing this quantity by setting

0 = ∂

∂α
E
(
(Y − α− βX)2

)

and

0 = ∂

∂β
E
(
(Y − α− βX)2

)

and then solving for α and β gives (4.10) and (4.9). Inserting these
into (4.12) gives (4.11). �

Let us now interpret these results by considering how well α + βX can predict
Y . From (4.11) we can make the prediction error (the mean squared error) smaller
simply by decreasing σY . In order to standardize we may instead consider the ratio
E((Y − α− βX)2)/σ2

Y . Solving (4.11) for ρ2 we get

ρ2 = 1− E
(
(Y − α− βX)2)

σ2
Y

. (4.13)

Expression (4.13) shows that the better the linear prediction is, the closer to 1 ρ2 will
be; and, conversely, the prediction error is maximized when ρ = 0. Furthermore, we
have ρ > 0 for positive association, i.e,β > 0, and ρ < 0 for negative association, i.e,
β < 0. Based on (4.13) we may say that correlation is a measure of linear association
between X and Y . Note that the counterexample on p. 80, in which X and Y were
perfectly dependent yet had zero correlation, is a case of nonlinear dependence.
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4.2.2 A bivariate normal distribution is determined by a pair
of means, a pair of standard deviations, and a correlation
coefficient.

As you might imagine, to say that two random variables X and Y have a bivariate
normal distribution is to imply that each of them has a (univariate) normal distribution
and, in addition, they have some covariance. Actually, there is a mathematical subtlety
here: the requirement of bivariate normality is much more than that each has a
univariate normal distribution. We return to this technical point later in this section.
For now, we will say that X and Y have a bivariate normal distribution when they
have a joint pdf

f (x, y) = 1

2πσXσY

√
1− ρ2

e
− 1

2(1−ρ2)

((
x−μX
σX

)2−2ρ
(

x−μX
σX

)(
y−μY
σY

)
+
(

y−μY
σY

)2
)

where ρ = Cor(X, Y) and we assume that σX > 0, σY > 0, and −1 < ρ < 1. We
may also write this pdf in the form

f (x, y) = 1

2πσXσY

√
1− ρ2

exp(− 1
2 Q(x,y)) (4.14)

where

Q(x, y) = 1

1− ρ2

((
x − μX

σX

)2

− 2ρ

(
x − μX

σX

)(
y − μY

σY

)
+

(
y − μY

σY

)2
)

.

Note that the factor multiplying the exponential in (4.14) does not depend on either
x or y and that Q(x, y) is a quadratic centered at the mean vector; we have inserted
the minus sign as a reminder that the density has a maximum rather than a minimum.
An implication involves the contours of the pdf. In general, a contour of a function
f (x, y) is the set of (x, y) points such that f (x, y) = c for some particular number
c > 0. When the graph z = f (x, y) is considered, a particular contour represents a set
of points for which the height of f (x, y) is the same. The various contours of f (x, y)
are found by varying c. The contours of a bivariate normal pdf satisfy Q(x, y) = c∗,
for some number c∗, and it may be shown that the set of points (x, y) satisfying such
a quadratic equation form an ellipse (see Eq. (A.24) in the Appendix). Therefore, the
bivariate normal distribution has elliptical contours. See Fig. 4.2. The orientation and
narrowness of these elliptical contours are governed by σX , σY , and ρ. If σX = σY

the axes of the ellipse are on the lines y = x and y = −x; as ρ increases toward 1 (or
decreases toward −1) the ellipse becomes more tightly concentrated around y = x
(or y = −x); and when ρ = 0 the contours become circles. If, instead, σX �= σY the
axes of the ellipse rotate to y = σY

σX
x and y = −σX

σY
x.

We have assumed here that σX > 0, σY > 0, and −1 < ρ < 1, which corre-
sponds to “positive definiteness” of the quadratic, a point we return to in Section 4.3.
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Fig. 4.2 The bivariate normal pdf. Perspective plots and contour plots are shown for various values
of σX , σY and ρ, with (μX ,μY ) = (0, 0). Left column has σX = σY and right column has 2σX = σY .
First, second, and third rows correspond to ρ = 0, ρ = .75, ρ = −.75. Contours enclose probability
equal to .8, .9, .95, and .99.

Sometimes a more general definition of bivariate normality is needed: we say that
(X, Y) is bivariate normal if every nonzero linear combination of X and Y has a
normal distribution, i.e., for all numbers a and b that are not both zero, aX + bY
is normally distributed. This covers additional cases, such as when ρ = 1, and we
mention it again in Chapter 5 when we discuss the general multivariate normal dis-
tribution. An important point is that joint normality is a stronger requirement than
normality of the individual components. It is not hard to construct a counterexample
in which X and Y are both normally distributed but their joint distribution is not
bivariate normal.

A detail: Let U and V be independent N(0, 1) random variables. Let
Y = V and for U < 0, V > 0 or U > 0, V < 0 take X = −U. This
amounts to taking the probability assigned to (U, V) in the 2nd and 4th
quadrants and moving it, respectively, to the 1st and 3rd quadrants. The
distribution of (X, Y) is then concentrated in the 1st and 3rd quadrants
((X, Y) has zero probability of being in the 2nd or 4th quadrants), yet
X and Y remain distributed as N(0, 1). �

In practice, when we examine data x1, . . . , xn and y1, . . . , yn to see whether their
variation appears roughly to follow a bivariate normal distribution, the general result

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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suggests one should plot them together as scatterplot pairs (x1, y1), . . . , (xn, yn),
rather than simply examining x1, . . . , xn and y1, . . . , yn separately. In the multivari-
ate case, however, one must rely on one-dimensional and two-dimensional visual
representations of data, as in Fig. 4.1.

4.2.3 Conditional probabilities involving random variables
are obtained from conditional densities.

We previously defined the probability of one event conditionally on another, which
we wrote P(A|B), as the ratio P(A∩B)/P(B), assuming P(B) > 0. When we have a
pair of random variables X and Y with f (y) > 0, the conditional density of X given
Y = y is

fX|Y (x|y) = f (x, y)

fY (y)
. (4.15)

For discrete random variables fX|Y (x|y) is the probability that X = x given that Y = y.
For continuous random variables, roughly speaking, f (x, y)dxdy is the probability
that X will lie in the infinitesimal interval (x, x+dx) and Y will lie in the infinitesimal
interval (y, y+dy). We may thus think of fX|Y (x|y)dx as the probability that X will lie
in the infinitesimal interval (x, x + dx) given that Y lies in the infinitesimal interval
(y, y + dy).

Suppose we

1. Draw a random variable Y (1) from the marginal distribution with pdf fY (y), and
then

2. Draw another random variable X(1) from the distribution with pdf fX|Y (x|y).
In the discrete case we have

P(X(1) = x, Y (1) = y) = P(X(1) = x|Y (1) = y)P(X(1) = x)

= P(X = x|Y = y)P(X = x)

= P(X = x, Y = y).

In other words, this two-step procedure produces a bivariate random vector (X(1),

Y (1)) having the joint distribution with pdf f (x, y), which provides a very important
intuition: a joint distribution may be considered to arise from a compound process of
first drawing a random variable from one marginal distribution, and then drawing a
second random variable from the resulting conditional distribution. The interpretation
also holds in the continuous case, and the argument is analogous.

Note that when X and Y are independent we have

fX|Y (x|y) = fX(x).
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This is immediate from (4.15).

Illustration: Spike count pairs (continued from p. 79) We return to the joint distri-
bution of spike counts for two neurons. We may calculate the conditional distribution
of X given Y = 0. We have fX|Y (0|0) = .30/.50 = .60, fX|Y (1|0) = .15/.50 = .30,
fX|Y (2|0) = .05/.50 = .10. Note that these probabilities are different than the mar-
ginal probabilities .39, .38, .23. In fact, if Y = 0 it becomes more likely that X will
also be 0, and less likely that X will be 1 or 2. �

4.2.4 The conditional expectation E(Y|X = x) is called
the regression of Y on X.

The conditional expectation of Y |X is

E(Y |X = x) =
∫

yfY |X(y|x)dy (4.16)

where the integral is taken over the range of y.

Illustration: Spike count pairs (continued) Using the joint pdf table repeated on
p. 79), we compute E(X|Y = 0). This uses (4.16) except that the roles of X and Y are
reversed and the integral is replaced by a sum. We previously found fX|Y (0|0) = .60,
fX|Y (1|0) = .30, fX|Y (2|0) = .10. Then

E(X|Y = 0) = 0(.6)+ 1(.3)+ 2(.1) = .5.

�
Note that E(Y |X = x) is a function of x, so we might write M(x) = E(Y |X = x)

and thus M(X) = E(Y |X) is a random variable. An important result concerning
M(X) is often called the law of total expectation.

Theorem: Law of total expectation. Suppose X and Y are random variables and Y
has finite expectation. Then we have

E(E(Y |X)) = E(Y).

Proof: From the definition we compute

E(E(Y |X = x)) =
∫ (∫

yfY |X(y|x)dy

)
fX(x)dx

=
∫ ∫

yfY |X(y|x)fX(x)dxdy
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=
∫ ∫

yf(X,Y)(x, y)dxdy

=
∫

yfY (y)dy = E(Y). �

There are also the closely-related law of total probability and law of total variance.

Theorem: Law of total probability. Suppose X and Y are random variables. Then
we have

E(P(Y ≤ y|X)) = FY (y).

Proof: The proof follows a series of steps similar to those in the proof of the law of
total expectation. �

We may also define the conditional variance of Y |X

V(Y |X = x) =
∫

(y− E(Y |X = x))2fY |X(y|x)dy

and then get the following, which has important applications.

Theorem: Law of total variance. Suppose X and Y are random variables and Y has
finite variance. Then we have

V(Y) = V(E(Y |X))+ E(V(Y |X)). (4.17)

Proof: The proof is similar to that of the law of total expectation. �

Example 4.2 Decision-making and trial-to-trial variability of spike counts from
LIP neurons When an experiment is run repeatedly across many experimental trials,
as in Example 1.1, the spiking pattern will vary across trials, as is evident in Fig. 1.1.
It is convenient to consider separately the variation in overall rate of firing across
trials, which would operate on slow time scales on the order of the length of the
trial, from the much faster variation of spike occurrences within trials. To do this
we may introduce a random variable Yi to represent the spike count on trial i and
then consider its expectation as it varies across trials, which we write Xi = E(Yi).
The random variable Xi represents the theoretical expectation of the spike count that
strips away the variability of spike occurrences within trials but retains the variation
across trials, on the slower trial-length time scale. Churchland et al. (2011) used
this idea, and applied formula (4.17) to neural spike counts recorded from lateral
intraparietal (LIP) cortex during a decision-making task. They argued that the results
they obtained for their estimates of V(E(Yi|Xi)) were consistent with a particular
model of decision-making but not with competing models. �

In the spike count pairs illustration, we computed the conditional expectation
E(X|Y = y) for a single value of y. We could evaluate it for each possible value

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Fig. 4.3 Conditional expectation for bivariate normal data mimicking Pearson and Lee’s data on
heights of fathers and sons. Left panel shows contours of the bivariate normal distribution based
on the means, standard deviations, and correlation in Pearson and Lee’s data. The dashed vertical
lines indicate the averaging process used in computing the conditional expectation when X = 64
or X = 72 inches: to get the average height of a son when the father has height X = x we average
y using the probability fY |X (y|x), which is the probability, roughly, in between the dashed vertical
lines, integrating across y. In the right panel we generated a sample of 1,078 points (the sample
size in Pearson and Lee’s data set) from the bivariate normal distribution pictured in the left panel.
We then, again, illustrate the averaging process: when we average the values of y within the dashed
vertical lines we obtain the two values indicated by a plotted red x. These fall very close to the
least-squares line (the solid line). The dashed diagonal line is discussed in the text.

of y. When we consider E(X|Y = y) as a function of y, this function is called the
regression of X on Y . Similarly, the function E(Y |X = x) is called the regression
of Y on X. To understand this terminology, and the interpretation of the conditional
expectation, consider the case in which (X, Y) is bivariate normal.

Example 4.3 Regression of son’s height on father’s height A famous data set,
from Pearson and Lee (1903), has been used frequently as an example of regres-
sion (See Freedman et al. (2007).) Figure 4.3 displays both a bivariate normal pdf
and a set of data generated from the bivariate normal pdf—the latter are similar to
the data obtained by Pearson and Lee (who did not report the data, but only sum-
maries of them). For a bivariate normal pair (X, Y), the left panel of Fig. 4.3 shows
E(Y |X = x), which is the regression line. The right panel shows a line fitted to the
data by least squares, which was discussed briefly in Chapter 1 and will be discussed
more extensively in Chapter 12. In a large sample like this one, the least-squares
line (right panel) is close to the bivariate normal regression line (left panel). The
purpose of showing both is to help clarify the averaging process represented by the
conditional expectation E(Y |X = x).

The terminology “regression” is illustrated in Figure 4.3 by the slope of the regres-
sion line being less than that of the dashed line. Here, σY = σX , because the variation
in sons’ heights and fathers’ heights was about the same, while (μX ,μY ) = (68, 69),
so that the average height of the sons was about an inch more than the average height
among their fathers. The dashed line has slope σY /σX = 1 and it goes through
the point (μX ,μY ). Thus, the points falling on the dashed line in the left panel, for

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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example, would be those for which a theoretical son’s height was exactly 1 inch more
than his theoretical father. Similarly, in the plot on the left, any data points falling on
the dashed line would correspond to a real son-father pair for which the son was an
inch taller than the father. However, if we look at E(Y |X = 72) we see that among
these taller fathers, their son’s height tends, on average, to be less than the 1 inch more
than the father’s predicted by the dashed line. In other words, if a father is 3 inches
taller than average, his son will likely be less than 3 inches taller than average. This
is the tendency for the son’s height to “regress toward the mean.” An explanation of
the phenomenon is as follows. First, the father is tall partly for genetic reasons and
partly due to environmental factors which pushed him to be taller. If we represent
the effect due to the environmental factors as a random variable U, and assume its
distribution follows a bell-shaped curve centered at 0, then for any positive u we have
P(U < u) > 1/2. Thus, if u represents the effect due to environmental factors that
the father received and U the effect that the son receives, the son’s environmental
effect will tend to be smaller than the father’s whenever the father’s effect is above
average. For a tall father, while the son will inherit the father’s genetic component,
his positive push toward being tall from the environmental factors will tend to be
somewhat smaller than his father’s had been. This is regression toward the mean.
The same tendency, now in the reverse direction, is apparent when the father’s height
is X = 64. Regression to the mean is a ubiquitous phenomenon found whenever two
variables vary together. �

In general, the regression E(Y |X = x) could be a nonlinear function of x but in
Fig. 4.3 it is a straight line. This is not an accident: if (X, Y) is bivariate normal, the
regression of Y on X is linear with slope ρ · σY/σX . Specifically,

E(Y |X = x) = μY + ρσY

σX
(x − μX) . (4.18)

We say that Y has a regression on X with regression coefficient

βY |X = ρσY

σX
. (4.19)

This means that when X = x, the average value of Y is given by (4.18). We should
emphasize, again, that we are talking about random variables, which are theoretical
quantities, as opposed to observed data. In data-analytic contexts the word “regres-
sion” almost always refers to least-squares regression, illustrated in the right panel
of Fig. 4.3.

For later use let us note that when (X, Y) is bivariate normal we may also consider
the regression of X on Y

E(Y |X = x) = μY + βX|Y (y − μY )

where, as in (4.19),

βX|Y = ρσX

σY
(4.20)
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so that if we combine (4.19) and (4.20) we get the following expression for the
correlation:

ρ = sign(βY |X)

√
βY |XβX|Y (4.21)

where sign(βY |X) is −1 if βY |X is negative and 1 if βY |X is positive.
Compare Eq. (4.18) to Eqs. (4.9) and (4.10). From(4.9) and (4.10) we have that

the best linear predictor of Y based on X is f (X) where

f (x) = μY + ρσY

σX
(x − μX) . (4.22)

In general, we may call this the linear regression of Y on X. In the case of bivariate
normality, the regression of Y on X is equal to the linear regression of Y on X, i.e.,
the regression is linear. We derived (4.22) as the best linear predictor of Y based
on X by minimizing mean squared error. More generally, if we write the regression
function as M(x) = E(Y |X = x). Then M(X) is the best predictor of Y in the sense
of minimizing mean squared error.

Prediction Theorem The function f (x) that minimizes E((Y − f (X))2) is the con-
ditional expectation f (x) = M(x) = E(Y |X = x).

Proof details: Note that E(Y −M(X)) = E(Y)− E(E(Y |X)) and by
the law of total expectation (p. 85) this is zero. Now write Y − f (X) =
(Y −M(X))+ (M(X)− f (X)) and expand E((Y − f (X))2) to get

E((Y − f (X))2) = E((Y −M(X))2) + 2E((Y −M(X))

(M(X)− f (X))) + E((M(X)− f (X))2).

(4.23)

Applying the law of total expectation to the second term we get

E((Y −M(X))(M(X)− f (X))) = E(E((Y −M(X))(M(X)

− f (X))|X)))

but for every x we have

E((Y −M(X))(M(X)− f (X))|X = x) = (M(x)−M(x))(M(x)

− f (x)) = 0

so that the second term in (4.23) is 0. The third term E((M(X) −
f (X))2) is always non-negative and it is zero when f (x) is chosen
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to equal M(x). Therefore the whole expression is minimized when
f (x) = M(x). �

Let us also note the following, which may be viewed as a special case of the
prediction theorem.

Theorem: Optimality of the Mean In predicting a random variable X, the number
d that minimizes E((X − d)2) is the mean d = E(X).

Proof: As in the proof of the prediction theorem, we expand the expectation to get
E((X−d)2) = E(X2)−2dμ+d2 where μ = E(X). The derivative of the expression
d2 − 2dμ is 2(d − μ), so the expectation is minimized when d = μ. �

4.3 Multivariate Dependence

4.3.1 The mean of a random vector is a vector and its variance
is a matrix.

Now suppose we wish to consider the way m random variables X1, . . . , Xm vary
together. If we haveμi = E(Xi),σ2

i = V(Xi), andρij = Cor(Xi, Xj), for i = 1, . . . , m
and j = 1, . . . , m, we may collect the variables in an m-dimensional random vector
X = (X1, . . . , Xm)T , and can likewise collect the means in a vector

μ =

⎛

⎜⎜⎜⎝

μ1
μ2
...

μm

⎞

⎟⎟⎟⎠ .

Similarly, we can collect the variances and covariances in a matrix

� =

⎛

⎜⎜⎝

σ2
1 ρ12σ1σ2 · · · ρ1mσ1σm

ρ21σ1σ2 σ2
2 · · · ρ2mσ1σm

· · · · · · · · · · · ·
ρm1σ1σm ρm2σ2σm · · · σ2

m

⎞

⎟⎟⎠ .

Note that ρij = ρji so that � is a symmetric matrix (the element in its ith row and
jth column is equal to the element in its jth row and ith column, for every i and j).
We write the mean vector E(X) = μ and the variance matrix V(Y) = �. The latter
is also called the covariance matrix. Once again we wish to distinguish these from
sample-based analogues. If we have m batches of numbers their collective sample
mean vector is the vector of the m sample means, and their sample variance matrix
is the matrix S having the form of �, above, but with each theoretical standard
deviation σi being replaced by a corresponding sample standard deviation si, and
each theoretical correlation ρij replaced by a sample correlation ρ̂ij, i.e.,
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S =

⎛

⎜⎜⎝

s2
1 ρ̂12s1s2 · · · ρ̂1ms1sm

ρ̂21s1s2 s2
2 · · · ρ̂2ms1sm

· · · · · · · · · · · ·
ρ̂m1s1sm ρ̂m2s2sm · · · s2

m

⎞

⎟⎟⎠ . (4.24)

Let w be an m-dimensional vector. By straightforward matrix manipulations we
obtain the mean and variance of wT X as

E(wT X) = wTμ (4.25)

V(wT X) = wT �w. (4.26)

Equations (4.25) and (4.26) generalize (4.1) and (4.6).
Let us now recall (see the Appendix, p. 617) that a symmetric m×m matrix A is

positive semi-definite if for every m-dimensional vector v we have vT Av ≥ 0 and it
is positive definite if for every nonzero m-dimensional vector v we have vT Av > 0.
From the definition of variance (involving the integral of a non-negative function),
every variance is non-negative. Therefore, V(wT X) ≥ 0 so that the variance matrix �

is necessarily positive semi-definite. However, a variance matrix may or may not be
positive definite. The non-positive-definite case is the generalization of σX = 0 for
a random variable X: in the non-positive-definite case the distribution of the random
vector X “lives” on a subspace that has dimensionality less than m. For example, if
X and Y are both normally distributed but Y = X then their joint distribution “lives”
on a one-dimensional subspace y = x of the two-dimensional plane.

An important tool in analyzing a variance matrix is the spectral decomposition.
As stated in Section A.8 of the Appendix (see p. 617), the spectral decomposition of
a positive semi-definite matrix A is A = PDPT where D is a diagonal matrix with
diagonal elements λi = Dii for i = 1, . . . , m, and P is an orthogonal matrix, i.e.,
PT P = I , where I is the m-dimensional identity matrix. Here, λ1, . . . ,λm are the
eigenvalues of A and the columns of P are the corresponding eigenvectors.

Lemma If � is a symmetric positive definite matrix then there is a symmetric positive

definite matrix �
1
2 such that

� = �
1
2 �

1
2

and, furthermore, writing its inverse matrix as �− 1
2 = (�

1
2 )−1 we have

�−1 = �−
1
2 �−

1
2 .

Proof: This follows from the spectral decomposition (Section A.8), which gives � =
PDPT , with D being diagonal. We define D

1
2 to be the diagonal matrix having

elements (
√

D11, . . . ,
√

Dmm) and take �
1
2 = PD

1
2 PT . With �− 1

2 = PD− 1
2 PT ,
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where D− 1
2 is the diagonal matrix having elements (1/

√
D11, . . . , 1/

√
Dmm), the

stated results are easily checked. �
Theorem Suppose X is a random vector with mean μ and covariance matrix �.
Define the random vector Y = �−1/2(X − μ). Then E(Y) is the zero vector and
V(Y) is the m-dimensional identity matrix.

Proof: This follows from the lemma. We omit the details. �
We will use this kind of standardization of a random vector in Chapter 6.

4.3.2 The dependence of two random vectors may be quantified by
mutual information.

It often happens that the deviation of one distribution from another must be evaluated.
Consider two continuous pdfs f (x) and g(x), both being positive on (A, B). The
Kullback-Leibler (KL) divergence is the quantity

DKL(f , g) = Ef

(
log

f (X)

g(X)

)

where the subscript on the expectation Ef signifies that the random variable X has
pdf f (x). In other words, we have

DKL(f , g) =
∫ B

A
f (x) log

f (x)

g(x)
dx.

The KL divergence may also be defined, analogously, for discrete distributions. Note
that DKL(f , g) may also be written in the difference form

DKL(f , g) = Ef (log f (X))− Ef (log g(X)) (4.27)

and that, except for some special cases, D(f , g) �= D(g, f ). In fact, the KL divergence
is essentially unique (aside from linear rescaling) among all discrepancies D(f , g)

that satisfy

(i) D(f , g) = Ef (ϕ(f (X)))− Ef (ϕ(g(X))) for some differentiable function ϕ, and
(ii) D(f , g) is minimized over g by g = f .

Details: When there are finitely many outcomes (so that sums replace
integrals in the definition of DKL(f , g)) it may be shown that the form
of ϕmust be logarithmic, i.e., ϕmust satisfy ϕ(f (x)) = a+b log f (x)
for some a, b, with b > 0. See Konishi and Kitagawa (2007, [Section
3.1]) . �

http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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In addition to having the special difference-of-averages property in (4.27), the KL
divergence takes a simple and intuitive form when applied to normal distributions.

Illustration: Two normal distributions Suppose f (x) and g(x) are the N(μ1,σ
2)

and N(μ2,σ
2) pdfs. Then, from the formula for the normal pdf we have

log
f (x)

g(x)
= − (x − μ1)

2 − (x − μ2)
2

2σ2 = 2x(μ1 − μ2)− (μ2
1 − μ2

2)

2σ2

and substituting X for x and taking the expectation (using EX(X) = μ1), we get

DKL(f , g) = 2μ2
1 − 2μ1μ2 − μ2

1 + μ2
2

2σ2 =
(
μ1 − μ2

σ

)2

.

That is, DKL(f , g) is simply the squared standardized difference between the means.
This is a highly intuitive notion of how far apart these two normal distributions are. �

Example 4.4 Auditory-dependent vocal recovery in zebra finches Song learning
among zebra finches has been heavily studied. When microlesions are made in the
HVC region of an adult finch brain, songs become destabilized but the bird will
recover its song within about 1 week. Thompson et al. (2007) ablated the output
nucleus (LMAN) of the anterior forebrain pathway of zebra finches in order to
investigate its role in song recovery. They recorded songs before and after the surgery.
The multiple bouts of songs, across 24 h (hours), were represented as individual
notes having a particular frequency composition and duration. The distribution of
these notes post-surgery was then compared to the distribution pre-surgery. In one
of their analyses, for instance, the authors examined the distributions of pitch and
duration. Their method of comparing post-surgery and pre-surgery distributions was
to compute the KL divergence. Thompson et al. found that deafening following song
disruption produced a large KL divergence whereas LMAN ablation did not. This
indicated that the anterior forebrain pathway is not the neural locus of the learning
mechanism that uses auditory feedback to guide song recovery. �

The Kullback-Leibler divergence may be used to evaluate the association of two
random vectors X and Y . We define the mutual information of X and Y as

I(X, Y) = DKL(f(X,Y), fX fY ) = E(X,Y) log
f(X,Y)(X, Y)

fX(X)fY (Y)
. (4.28)

In other words, the mutual information between X and Y is the Kullback-Leibler
divergence between their joint distribution and the distribution they would have if
they were independent. In this sense, the mutual information measures how far a
joint distribution is from independence.
Illustration: Bivariate normal If X and Y are bivariate normal with correlation ρ
some calculation following application of the definition of mutual information gives
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I(X, Y) = −1

2
log(1− ρ2). (4.29)

Thus, when X and Y are independent, I(X, Y) = 0 and as they become highly
correlated (or negatively correlated) I(X, Y) increases indefinitely. �
Theorem For random variables X and Y that are either discrete or jointly continuous
having a positive joint pdf, mutual information satisfies (i) I(X, Y) = I(Y , X), (ii)
I(X, Y) ≥ 0, (iii) I(X, Y) = 0 if and only if X and Y are independent, and (iv) for
any one-to-one continuous transformations f (x) and g(y), I(X, Y) = I(f (X), g(Y)).

Proof: Omitted. See, e.g, Cover and Thomas (1991). �
Property (iv) makes mutual information quite different from correlation. For cor-

relation, Cor(X, Y)2 = Cor(f (X), g(Y))2 when f (x) and g(y) are linear functions,
but when they are nonlinear the value of the squared correlation can change.

The use here of the word “information” is important. For emphasis we say, in
somewhat imprecise terms, what we think is meant by this word.

Roughly speaking, information about a random variable Y is associated with
the random variable X if the uncertainty in Y is larger than the uncertainty in
Y |X.

For example, we might interpret “uncertainty” in terms of variance. If the regres-
sion of Y on X is linear, as in (4.18) (which it is if (X, Y) is bivariate normal), we
have

σ2
Y |X = (1− ρ2)σ2

Y . (4.30)

In this case, information about Y is associated with X whenever |ρ| > 0 so that
1− ρ2 < 1. The reduction of uncertainty in Y provided by X becomes

σ2
Y − σ2

Y |X = ρ2σ2
Y ,

which retains the multiplier σ2
Y (coming from the multiplicative form of (4.31)). To

remove the factor σ2
Y we may consider the relative reduction of uncertainty,

σ2
Y − σ2

Y |X
σ2

Y

= ρ2.

In this sense, ρ2 becomes a measure of the information about Y supplied by X.
A different rewriting of (4.30) will help us connect it more strongly with mutual

information. First, if we redefine “uncertainty” to be standard deviation rather than
variance, (4.30) becomes

σY |X =
√

1− ρ2σY . (4.31)
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Like Equation (4.30), (4.31) describes a multiplicative (proportional) decrease in
uncertainty in Y associated with X. An alternative is to redefine “uncertainty,” and
rewrite (4.31) in an additive form, so that the uncertainty in Y |X is obtained by
subtracting an appropriate quantity from the uncertainty in Y . To obtain an additive
form we define “uncertainty” as the log standard deviation. Assuming |ρ| < 1,
log

√
1− ρ2 is negative and, using log

√
1− ρ2 = 1

2 log(1− ρ2), we get

logσY |X = logσY −
(
−1

2
log(1− ρ2)

)
. (4.32)

In words, Eq. (4.32) says that− 1
2 log(1−ρ2) is the amount of information associated

with X in reducing the uncertainty in Y to that of Y |X. If (X, Y) is bivariate normal
then, according to (4.29), this amount of information associated with X is the mutual
information.

Formula (4.32) may be generalized by quantifying “uncertainty” in terms of
entropy, which leads to a popular interpretation of mutual information.

Details: We say that the entropy of a discrete random variable X is

H(X) = −
∑

x

fX(x) log fX(x) (4.33)

We may also call this the entropy of the distribution of X. In the contin-
uous case the sum is replaced by an integral (though there it is defined
only up to a multiplicative constant, and is often called differential
entropy). The entropy of a distribution was formalized analogously
to Gibbs entropy in statistical mechanics by Claude Shannon in his
development of communication theory. As in statistical mechanics, the
entropy may be considered a measure of disorder in a distribution. For
example, the distribution over a set of values {x1, x2, . . . , xm} having
maximal entropy is the uniform distribution (giving equal probability
1
m to each value) and, roughly speaking, as a distribution becomes
concentrated near a point its entropy decreases.
For ease of interpretation the base of the logarithm is often taken to
be 2 so that, in the discrete case,

H(X) = −
∑

x

fX(x) log2 fX(x). (4.34)

Suppose there are finitely many possible values of X, say x1, . . . , xm,
and someone picks one of these values with probabilities given by
f (xi), then we try to guess which value has been picked by asking
“yes” or “no” questions (e.g., “Is it greater than x3?”). In this case
the entropy (using log2, as above) may be interpreted as the minimum
average number of yes/no questions that must be asked in order to
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determine the number, the average being taken over replications of
the game. When the outcomes x1, . . . , xm are equally likely we have
f (xi) = 1/m, for i = 1, . . . , m, and (4.34) reduces to H(X) = log2(m).
Entropy may be used to characterize many important probability dis-
tributions. The distribution on the set of integers 0, 1, 2, . . . , n that
maximizes entropy subject to having mean μ is the binomial. The
distribution on the set of all non-negative integers that maximizes
entropy subject to having mean μ is the Poisson. In the continuous
case, the distribution on the interval (0, 1) having maximal entropy is
the uniform distribution. The distribution on the positive real line that
maximizes entropy subject to having mean μ is the exponential. The
distribution on the positive real line that maximizes entropy subject to
having mean μ and variance σ2 is the gamma. The distribution on the
whole real line that maximizes entropy subject to having mean μ and
variance σ2 is the normal.
Now, if Y is another discrete random variable then the entropy in the
conditional distribution of Y |X = x may be written

H(Y |X = x) = −
∑

y

fY |X(y|x) log fY |X(y|x)

and if we average this quantity over X, by taking its expectation with
respect to fX(x), we get what is called the conditional entropy of Y
given X:

H(Y |X) =
∑

x

⎛

⎝−
∑

y

fY |X(y|x) log fY |X(y|x)
⎞

⎠ fX(x).

Algebraic manipulation then shows that the mutual information may
be written

I(X, Y) = H(Y)− H(Y |X).

This says that the mutual information is the average amount (over X)
by which the entropy of Y decreases given the additional information
X = x. In the discrete case, working directly from the definition we
find that entropy is always non-negative and, furthermore, H(Y |Y) =
0. The expression for the mutual information, above, therefore also
shows that in the discrete case I(Y , Y) = H(Y). (In the continuous
case we get I(Y , Y) = ∞.) For an extensive discussion of entropy,
mutual information, and communication theory see Cover and Thomas
(1991) or MacKay (2003).

Mutual information was used to define the channel capacity of a communication
system that transmits a signal in the presence of noise: if X is a random variable
representing a transmitted message and Y is a random variable representing the
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received message after noise has been injected during the transmission process, then
the channel capacity is

C = max
X

I(X, Y)

where the maximum is taken over all possible distributions of X. This concept,
developed to characterize electronic communication channels, has also been applied
to human behavior and neural activity. Because the mutual information in this context
concerns discrete distributions for (X, Y), and log2 is used, the units are said to be
in bits for “binary digits” (because, for a positive integer n, log2(n) is the number
of binary digits used to represent n in base 2). Thus, human and neural information
processing capacity is usually reported in bits.

Example 4.5 The Magical Number Seven In a famous paper, George Miller
reviewed several psychophysical studies that attempted to characterize the capacity
of humans to process sensory input signals (Miller 1956). One study, for example,
exposed subjects to audible tones of several different values of pitch (frequency) and
asked them to identify the pitch (e.g., pitch 1, 2, or 3, corresponding to high, medium,
or low). The question was, how many distinct values of pitch can humans reliably
discriminate? It turned out that with five or more tones of different pitch, the human
observers made frequent mistakes. The experimental design allowed calculation of
the probability of responding with a particular answer Y based on a particular input
tone X, and with this the mutual information could be calculated. By examining
several different studies, of similar yet different types, Miller concluded that mutual
information had an asymptotic maximum at about C = 2.6 ± .6 bits, which could
be interpreted as the channel capacity of a human observer. Transforming this back
to numbers of discernible categories gives 22.6−.6 = 4 and 22.6+.6 = 9.2. After
looking at other, related psychophysical data Miller summarized by saying there was
a “magical number seven, plus or minus two,” which characterized many aspects of
human information processing in terms of channel capacity. �

Mutual information has also been used extensively to quantify the information
about a stochastic stimulus Y associated with a neural response X. In that context
the notation is often changed by setting S = Y for “stimulus” and R = X for neural
“response,” and the idea is to determine the amount of information about the stimulus
that is associated with the neural response.

Example 4.6 Temporal coding in inferotemporal cortex In an influential paper,
Optican and Richmond (1987) reported responses of single neurons in inferotempo-
ral (IT) cortex of monkeys while the subjects were shown various checkerboard-style
grating patterns as visual stimuli. Optican and Richmond computed the mutual infor-
mation between the 64 randomly-chosen stimuli (the random variable Y here taking
64 equally-likely values) and the neural response (X), represented by a vector of
time-varying firing rates across multiple time bins. They compared this with the
mutual information between the stimuli and a single firing rate across a large time
interval and concluded that there was considerably more mutual information in the
time-varying firing rate vector. Put differently, more information about the stimulus
was carried by the time-varying firing rate vector than by the overall spike count. �
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In Examples 4.4 and 4.6 the calculations were based on pdfs that were estimated
from the data. We discuss probability density estimation in Chapter 15.

4.3.3 Bayes’ theorem for random vectors is analogous to Bayes’
theorem for events.

Now suppose X and Y are random vectors with a joint density f (x, y). Substituting
f (x, y) = fY |X(y|x)f (x) into (4.15), we have

fX|Y (x|y) = fY |X(x, y)

fY (y)

= fY |X(y|x)fX(x)

fY (y)
. (4.35)

This is a form of Bayes’ Theorem (see Section 3.1.4).
Bayes’ Theorem for Random Vectors If X and Y are continuous random vectors
and fY (y) > 0 we have

fX|Y (x|y) = fY |X(y|x)fX(x)∫
fY |X(y|x)fX(x)dx

. (4.36)

If X is a discrete random vector, and Y is either discrete or continuous with fY (y) > 0,
then we have

fX|Y (x|y) = fY |X(y|x)fX(x)∑
x fY |X(y|x)fX(x)

. (4.37)

Proof: These results follow2 by using the definition of marginal pdf in the denomi-
nator of (4.35). �

The resemblance of this result to Bayes’ Theorem for events may be seen by
comparing (4.36) with (3.1), identifying X with A and Y with B. The theorem also
holds, as a special case, if X and Y are random variables.

4.3.4 Bayes classifiers are optimal.

Suppose X is a random variable (or random vector) that may follow one of two pos-
sible distributions having pdf f1(x) or f2(x). If X = x is observed, which distribution

2 The result (4.37) when Y is continuous requires the notion of the joint distribution of (X, Y) when
X is discrete and Y is continuous, which we have not discussed, but this case can be accommodated
by an extension of the definitions we have given.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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did it come from? This is the problem of binary classification. Typically, there is a
random sample X1, . . . , Xn and the problem is to classify (to one of the two distri-
butions) each of the many observations. A decision rule or classification rule is a
mapping that assigns to each possible x a classification (that is, a distribution). A
classic scenario for binary classification is when patients having characteristics sum-
marized in a vector x (for example, brain features found from PET imaging), are to be
considered diseased (e.g., having Alzheimer-like amyloid deposits, see Vandenbergh
et al. 2013) or not. The problem extends to m categories, where X follows one of
many alternative distributions, with pdf fi(x), for i = 1, . . . , m. A classification error
is made if X ∼ fk(x) and the observation X = x is classified as coming from fi(x)
with i �= k. In this section we present a remarkable result: it is, in principle, possible
to define a classifier that minimizes the probability of classification error.

Let Ci refer to the case X ∼ fi(x). We use the letter C to stand for “class,” so
that the problem is to assign to each observed x a class Ci. We assume that X is
selected from class Ci with probability P(C = Ci) = πi, for i = 1, . . . , m. Often the
πi probabilities are taken to be equal, i.e., πi = 1/m, for i = 1, . . . , m (so that the
classes are a priori equally likely), but the theory does not require this. The Bayes
classifier assigns to each observed value x the class having the maximal posterior
probability

P(C = Ck|X = x) = fk(x)πk∑m
i=1 fi(x)πi

(4.38)

among all the classes Ci. Writing fi(x) = fX|C(x|C = Ci), Eq. (4.38) has the same
form as (4.37). The following theorem says that Bayes classifiers minimize the prob-
ability of classification error.

Theorem on Optimality of Bayes Classifiers Suppose X is drawn from a distribution
having pdf fi(x), where fi(x) > 0 for all x, with probability πi, for i = 1, . . . , m,
where π1 + · · · + πm = 1, and let Ci be the class X ∼ fi(x). Then the probability of
committing a classification error is minimized if X = x is classified as arising from
the distribution having pdf fk(x) for which Ck has the maximum posterior probability
given by (4.38).

The proof is somewhat lengthy and appears at the end of this section.

Corollary Suppose that with equal probabilities X is drawn either from a distribution
having pdf f1(x), where f1(x) > 0 for all x, or from a distribution having pdf f2(x),
where f2(x) > 0 for all x. Then the probability of committing a classification error
is minimized if X = x is classified to the distribution having the higher pdf at x.

Corollary Suppose n observations X1, . . . , Xn are drawn, independently, from a
distribution having pdf fi(x), where fi(x) > 0 for all x, with probability πi, for
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i = 1, . . . , m, where π1 + · · · + πm = 1, and let Ci be the class X ∼ fi(x). Then
the expected number of misclassifications is minimized if each Xj = xj is classified
as arising from the distribution having pdf fk(xj) for which Ck has the maximum
posterior probability

P(Ck |Xj = xj) = fk(xj)πk∑m
i=1 fi(xj)πi

among all the classes Ci.

Proof: Let Yi = 1 if Xi is misclassified, and 0 otherwise. The theorem says that
P(Yi = 1) = P(Y1 = 1) is minimized by the Bayes classifier, which maximizes
(4.38). The expected number of misclassifications is then E(

∑
i Yi) and we have

E(
∑

i

Yi) =
∑

i

E(Yi)

=
∑

i

P(Yi = 1)

= nP(Y1 = 1).

Therefore, the expected number of misclassifications is minimized by the Bayes
classifier. �

One use of classifying neural data is to show that information about stimuli or
behavior is contained in particular recorded signals. Here is an example.

Example 4.7 Decoding intended movement using MEG We introduced MEG
neuroimaging in Example 1.2. One of its attractive features is that it is non-invasive
while being potentially capable of supplying movement-related information with
high temporal resolution, much like that obtained with highly invasive electrophysi-
ological methods. Wang et al. (2010) studied MEG signals from subjects both during
a wrist movement task and during imagined wrist movement. The idea was that there
might be substantial information about intended wrist movement even when the wrist
was not actually moving—this would be analogous to the situation in which a user
was severely disabled. One purpose of this methodology would be to localize the
movement-related information in order to help guide surgical implant of a more
invasive device.

In the case of wrist movement, each subject had to move a joystick-controlled
cursor, which was viewed on a projection of a computer screen. After one of 4
directional targets (up, down, left, right) was illuminated the subject then had to hit
the target with the cursor. In the imagined movement case, each subject was told to
imagine moving the wrist. For each of the experimental conditions, there were 120
recordings from 87 MEG sensors located above the sensorimotor areas during the
movement and imagined movement tasks. A 1,500 ms time window was selected for
analysis, and this window was partitioned into 150 time bins (each 10 ms in length,
the signals being averaged within time bins), so that the data consisted vectors X = x
at each of 150 time points. It was assumed that each X was drawn from one of four
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Fig. 4.4 Decoding accuracy from cursor controlled by overt wrist movement (a) and imagined
wrist movement (b). Time t = 0 is onset of movement of the cursor. Thin gray lines show decoding
accuracy using a Bayes classifier for each of 5 subjects across 150 time intervals, each interval being
10 ms in length. Thick black lines are accuracies averaged across subjects. Adapted from Wang
et al. (2010).

multivariate normal distributions (see Chapter 5) having pdf fk(x), k = 1, 2, 3, 4,
corresponding to the four experimental conditions (up, down, left, right). That is,
for both hand movement and imagined movement, the four experimental conditions
were assumed to produce multivariate normal data, but with four distinct sets of
mean vectors μk and variance matrices �k . A Bayes classifier was then used to try
to recover from the data the experimental condition that had generated those data.
If the classifier performed above chance levels of 25 % (1 out of 4), this would
indicate the presence of directional movement information, or imagined movement
information, in the MEG sensors located above the sensorimotor areas (to measure
classification accuracy Wang et al. used leave-one-out cross-validation, discussed in
Section 12.5.7). The results for 5 subjects are shown in Fig. 4.4. Chance classification
accuracy would be 25 %. It may be seen that for every subject, during both movement
and imagined movement, the classification accuracy rose sharply above chance. In
the imagined movement case (panel b of Fig. 4.4) the peak classification accuracy
ranged across subjects from about 50 % to about 90 %, with a mean of over 60 %. �

In our discussion of Example 4.7, above, we have omitted many details. Most
importantly, in practice a Bayes classifier must learn (estimate) from some training
data the distributions fi(x). In the multivariate normal case this requires estimating
the mean vectors μi and variance matrices �i, which is usually done by comput-
ing the sample mean vector and sample variance matrices defined in (4.24) (see
Section 12.5.7 for further discussion of the use of training data and cross-validation).
In many multidimensional problems the data are clearly non-normal and it is difficult
to estimate fi(x) reliably. For such situations other, non-Bayesian classifiers are pop-
ular (see Section 17.4.2). Nonetheless, Bayes classifiers set the theoretical standard
by achieving the smallest possible classification error rate.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_17
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The fundamental result given in the theorem also extends to the case in which
different penalties result from the various incorrect classifications. This more general
situation is treated by decision theory. Suppose d(x) is a mapping that assigns to each
x a class (a distribution). Such a mapping is called a decision rule. Let us denote the
possible values of any such rule by d(x) = a (for action), so that a may equal any
of the Ci for 1, 2, . . . , m. The penalties associated with various classifications, or
decisions, may be specified by a loss function L(d(x), Ck) = L(a, Ck), where each
L(a, Ck) is the non-negative number representing the penalty for deciding to classify
x as arising from class Ca when actually it arose from class Ck . We then consider the
expected loss E(L(d(X), Ci)), i.e., the average behavior of the decision rule, which is
also known as the risk of the decision rule for class Ci, and we may average these risks
across classes by weighting them according to their probabilities πi. The decision
rule with the smallest average risk is called the optimal decision rule. Assuming
that class Ci has probability πi, for i = 1, . . . , m, this optimal rule turns out to be
the Bayes rule, which is found by minimizing the expected loss computed from the
posterior distribution, i.e., minimizing ECi|x(L(a, Ci)) over possible actions a. The
theorem above then becomes the special case in which L(a, Ci) = 0 if a = Ci and
L(a, Ci) = 1 otherwise, for then the risk is simply the probability of misclassification.
The process of applying Bayes rules is often called Bayesian decision-making.

In many applications of decision theory one speaks not of losses but of gains, and
then the loss function is replaced by a utility function. Typically one then writes the
utility as U(a, Ci) and the Bayes rule would maximize the expected utility based on
the posterior distribution of Ci, for i = 1, . . . , m.

Much has been written about the extent to which the nervous system implements
Bayesian decision-making. A theoretical Bayesian decision-maker is often called an
ideal observer. Thus, the issue is the extent to which a particular part of the nervous
system performs a computation consistently with the way an ideal observer would
use the available information.

Example 4.8 Vision as Bayesian decision-making Geisler (2011) reviews the ben-
efits of using ideal observers to model visual perception (see also Yuille and Kersten
2006). In this case a typical task is to classify an object based on a noisy stimulus
that reaches the eye. If there are biological constraints, these are implemented as
costs that are incorporated into the loss function. There is prior information about
the probability of each object, and for each object there is a probability distribution
for the stimulus. These ingredients allow Bayesian decision-making to proceed. In
applications there is considerable detail about each aspect of the formalism: the prob-
ability distributions for the data, those that represent the prior, and the loss function.
The concept, however, is quite simple. �
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Some additional references concerning ideal observer analysis, and Bayesian
approaches to modeling neural systems more generally, appear at the beginning
of Chapter 16. Here is a different setting in which utilities and Bayes rules have been
invoked.

Example 4.9 ACT-R theory of procedural memory ACT-R is a theory of human
problem-solving that is implemented in a computer program (Anderson 1993, 2007).
A typical domain is elementary algebra problem-solving, involving equations such
as 7x+3 = 38. The many steps involved in solving algebra problems include actions
such as “subtract,” which require calls to memory (e.g., to retrieve 8−3 = 5). These
are encoded as production rules which are IF-THEN statements, and are often called
procedures. At the completion of each step ACT-R must select from memory the
next production rule to use. To do so it considers a utility function based on the value
V of the goal, the probability Pi of achieving the goal if production rule i is selected,
and the cost Di of rule i. Each production rule is then assigned the utility

Ui = PiV − Di.

ACT-R picks the production rule with the highest utility. Because the probabilities
are actually posterior probabilities based on previous experience, ACT-R may be
considered to be using a Bayes rule for this situation. The acronym ACT stands for
“adaptive character of thought” and the R is tacked on as a nod to “rational” in the
sense of optimal decision-making. �

Proof of theorem on optimality of Bayes classifiers:
We consider the binary case where m = 2. We also assume the two
distributions are discrete and, for simplicity, we take π = 1

2 . Here, the
Bayes classifier assigns class C1 to X = x whenever f1(x) > f2(x),
and assigns class C2 when f2(x) ≥ f1(x).
Let R = {x : f1(x) ≤ f2(x)}. We want to show that the classification
rule assigning x → f2(x) whenever x ∈ R has a smaller probability
of error than the classification rule x → f2(x) whenever x ∈ A for
any set A that is different than R. To do this we decompose R and its
complement Rc as R = (R∩A)∪(R∩Ac) and Rc = (Rc∩A)∪(Rc∩Ac).
We have ∑

x∈R

f1(x) =
∑

x∈R∩A

f1(x)+
∑

x∈R∩Ac

f1(x) (4.39)

and ∑

x∈Rc

f2(x) =
∑

x∈Rc∩A

f2(x)+
∑

x∈Rc∩Ac

f2(x). (4.40)

By the definition of R we have, for every x ∈ R, f1(x) ≤ f2(x) and, in
particular, for every x ∈ R∩Ac, f1(x) ≤ f2(x). Therefore, from (4.39)
we have

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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∑

x∈R

f1(x) ≤
∑

x∈R∩A

f1(x)+
∑

x∈R∩Ac

f2(x). (4.41)

Similarly, from (4.40) we have

∑

x∈Rc

f2(x) <
∑

x∈Rc∩A

f1(x)+
∑

x∈Rc∩Ac

f2(x). (4.42)

Strict inequality holds in (4.42) because A is distinct from R; if A = R
then Rc ∩ A = ∅ and the first sums in both (4.40) and (4.42) become
zero. Combining (4.41) and (4.42) we get

∑

x∈R

f1(x)+
∑

x∈Rc

f2(x) <
∑

x∈R∩A

f1(x)+
∑

x∈R∩Ac

f2(x)

+
∑

x∈Rc∩A

f1(x)+
∑

x∈Rc∩Ac

f2(x)

and the right-hand side reduces to
∑

x∈A f1(x)+∑
x∈Ac f2(x). In other

words, we have

∑

x∈R

f1(x)+
∑

x∈Rc

f2(x) <
∑

x∈A

f1(x)+
∑

x∈Ac

f2(x). (4.43)

The left-hand side of (4.43) is the probability of an error using the
rule x → f2(x) whenever x ∈ R while the right-hand side of (4.43)
is the probability of an error using the rule x → f2(x) whenever
x ∈ A. Therefore the rule x→ f2(x) whenever x ∈ R has the smallest
probability of classification error.
The case for general π is essentially the same, and the continuous case
replaces sums with integrals. When m > 2 the argument is similar. �



Chapter 5
Important Probability Distributions

In Chapter 1 we said that a measurement is determined in part by a “signal” of interest,
and in part by unknown factors we may call “noise.” Statistical models intro-
duce probability distributions to describe the variation due to noise, and thereby
achieve quantitative expressions of knowledge about the signal—a process we will
describe more fully in Chapters 7 and 10. The essential ideas in statistical modeling
are simple and very general, allowing modern methods to make reasonably realistic
assumptions. Despite this wide-ranging generality, the models found in elemen-
tary statistics rely heavily on a small handful of probability distributions. For this
reason alone, a beginning student must learn about the binomial model for binary
observations, the Poisson model for counts, and the normal model for continuous
measurements. But there are additional motivations for studying these and several
other probability distributions. While it may be tempting to dismiss the ubiquity of
these distributions as a historical quirk, a throwback to a pre-computer age in which
simplicity was essential, a small number of distributions remain especially important
in contemporary practice. This is partly because many methods of statistical infer-
ence, when applied carefully, are remarkably robust in the face of modest deviations
from theoretical assumptions. In addition, the simplest distributions often serve as a
starting point when building more general and elaborate models. Furthermore, these
distributions continue to be important because they arise in theoretical calculations.
In this chapter we discuss at greater length some of the probability distributions we
mentioned in Chapters 3 and 4. We also introduce several others.

5.1 Bernoulli Random Variables and the Binomial Distribution

5.1.1 Bernoulli random variables take values 0 or 1.

A random variable X that takes the value 1 with probability p and 0 with probability
1− p is called a Bernoulli random variable. For example, patient P.S. in Example 1.4
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made repeated choices of the “burning” or “non-burning” house. Each such choice
could be considered a Bernoulli random variable by coding “burning” as 0 and “non-
burning” as 1 (or vice-versa).

5.1.2 The binomial distribution results from a sum
of independent and homogeneous Bernoulli
random variables.

In the case of the binomial distribution arising from two trials for patient P.S.,
discussed on p. 47, we made two probabilistic assumptions: (i) independence, the
choices on the two trials were made independently, and (ii) homogeneity, the proba-
bility of choosing non-burning house remained the same across the two trials. With
X being the number of times she chooses the non-burning house, and p being the
probability that she chooses the non-burning house on any given trial, these assump-
tions lead to X having a binomial distribution over the possible values 0, 1, 2 with
binary event probability p. We would write this by saying the distribution of X is
B(2, p), or X ∼ B(2, p).

The binomial distribution is easy to generalize: instead of counting the number
of outcomes of a certain type out of a maximal possible value of 2, we allow the
maximal value to be any positive integer n; under assumptions of independence and
homogeneity we then would say X has distribution B(n, p), or simply X ∼ B(n, p).
For example, if we were considering 3 trials and again let X be the number of trials
on which P.S. chooses the non-burning house, then X has a binomial distribution
with n = 3 and binary event probability p, or X ∼ B(3, p). By a similar argument
to that made for n = 2 on p. 47 we have P(X = 3) = p3, P(X = 2) = 3p2(1− p),
P(X = 1) = 3p(1 − p)2, P(X = 0) = (1 − p)3. Similarly, for four trials we
would have then X ∼ B(4, p) and P(X = 4) = p4, P(X = 3) = 4p3(1 − p),
P(X = 2) = 6p2(1− p)2, P(X = 1) = 4p(1− p)3, P(X = 0) = (1− p)4.

The general formula for arbitrary n with X ∼ B(n, p), is

P(X = x) =
(

n

x

)
px (1− p)(n−x) (5.1)

for x = 0, 1, 2, . . . , n, where
(n

x

) = n!
x !(n−x)! is the number of ways of choosing x

objects from n without regard to ordering. Equation (5.1) is the binomial probability
mass function (or pdf). If X ∼ B(n, p) then straightforward calculations produce

E(X) = np

V (X) = np(1− p) (5.2)

σX =
√

np(1− p).
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The individual binary observations, such as the outcomes for the individual trials, are
independent Bernoulli random variables all having the same probability of taking the
value 1, i.e., the Bernoulli random variables are both independent and homogeneous.
Such random variables are often called Bernoulli trials. The sum of n Bernoulli
trials has a B(n, p) distribution. That is, in general, if Y1, Y2, . . . , Yn are independent
Bernoulli random variables and P(Yi = 1) = p for all i , and we define X =∑n

i=1 Yi ,
then X ∼ B(n, p). Note that when n = 1 X is a Bernoulli random variable and
we have

E(X) = P(X = 1) (5.3)

which is a special case of (5.2) and is easy to check (E(X) = 1·P(X = 1)+ 0·P(X =
0) = P(X = 1)).

Binomial distributions usually arise as the sum of Bernoulli trials. Thus, the bino-
mial distribution is reasonable to assume if the Bernoulli random variables appear
to be independent and homogeneous. It is important to consider both assumptions
carefully. In particular, the assumptions of independence and homogeneity are fre-
quently violated when the Bernoulli random variables are observed across time. Let
us now state these assumptions again in the context of patient P.S.

Example 1.4 (continued from p. 9 and 47) In judging the 14 out of 17 occasions
on which P.S. chose the non-burning house by statistical methods we would assume
that the set of 17 forced choices were Bernoulli trials. The independence assumption
would be violated if P.S. had a tendency, say, to repeat the same response she had
just given regardless of her actual perception. The homogeneity assumption would
be violated if there were a drift in her response probabilities (e.g., due to fatigue)
over the time during which the experiment was carried out. �

The B(2, p) arises as the Hardy-Weinberg distribution in genetics. There, if the
probability that an allele A is inherited from a parent is p, and the probability that
the other possible allele B is inherited is 1 − p, then the number of A alleles is
B(n, p) under the assumptions of independence and homogeneity. In this case the
assumption of independence would be violated if somehow the two parents were
coupled at the molecular level, so that the processes of separating the alleles in
the two parents were connected; in most studies this seems very unlikely and thus
the assumption of independence is quite reasonable. The second assumption is that
there is a single, stable value for the probability of the allele A. This clearly could be
violated: for instance, the population might actually be a mixture of two or more types
of individuals, each type having a different value of P(A); or, when the population
is not in equilibrium due to such things as non-random mating, or genetic drift, we
would expect deviations from the binomial prediction of the Hardy-Weinberg model.
Indeed, in population genetics, a check on the fit of the Hardy-Weinberg model to a
set of data is used as a prelimary test before further analyses are carried out.

Example 5.1 Nicotinic acetylcholine receptor and ADHD Attention deficit
hyperactivity disorder (ADHD), a major psychiatric disorder among children, has
been the focus of much recent research. There is evidence of heritability of ADHD,
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and
effective medications (such as Ritalin) involve inhibition of dopamine transport.
There is also evidence of involvement of the nicotine system, possibly due to its
effects on dopamine receptors. Kent et al. (2001) examined genotype frequencies
for the nicotinic acetylcholine receptor subunit α4 gene among children with ADHD
and their parents. At issue was the frequency of a T → C exchange in one base in the
gene sequence. In order to carry out the standard analysis the authors first examined
whether the population appeared to be in equilibrium. If so, the probabilities of the
allele combinations TT, CT, CC would be given by B(2, p) distribution, according to
the Hardy-Weinberg model. The frequencies for the 136 parents in their study were
as follows:

TT CT CC

Number 48 71 17
Frequency .35 .52 .13
Hardy-Weinberg Probability .38 .47 .15

In this case, the probabilities determined from the Hardy-Weinberg model (how
we obtain these will be discussed in Chapter 7) are close to the observed allele
frequencies, and there is no evidence of disequilibrium in the population (we also
discuss these details later). Kent et al. went on to find no evidence of an association
between this genetic polymorphism and the diagnosis of ADHD. �

In some cases the probability p is not stable across repetitions. Indeed, sometimes
the change in probability is the focus of the experiment, as when learning is being
studied.

Example 5.2 Learning impairment following NMDA antagonist injection Exper-
iments on learning often record responses of subjects as either correct or incorrect
in sequences of trials during which the subjects are given feedback as to whether
their responses are correct or not. The subjects typically begin with a probability of
being correct that is much less than 1, perhaps near the guessing value of .5, but after
some number of trials they get good at responding and have a high probability of
being correct, i.e., a probability near 1. An illustration of this paradigm comes from
Smith et al. (2005), who examined data from an experiment in rats by Stefani et al.
(2003) demonstrating that learning is impaired following an injection of an NMDA
antagonist into the frontal lobe. In a first set of trials, the rats learned to discriminate
light from dark targets, then, in a second set of trials, which were the trials of interest,
they needed to discriminate smooth versus rough textures of targets. In two groups
of rats a buffered salt solution with the NMDA antagonist was injected prior to the
second set of trials, and in two other groups of rats the buffered salt solution with-
out the antagonist was injected. Figure 5.1 displays the responses across 80 learning
trials for set 2. It appears from the plot of the data that the groups of rats without the
NMDA antagonist did learn the second task more quickly than the second group of
rats, as expected.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Fig. 5.1 Responses for 13 rats in the placebo group (labeled “Vehicle,” in reference to the buffered
solution vehicle) and 9 rats in the treatment group (“MK801 Treatment”) for set 2. Blue and red
indicate correct and incorrect responses, respectively. Each row displays responses for a particular
rat across 80 trials. Light blue triangles indicate that the rat had 8 correct trials in a row. A light
blue triangle appearing after the end of the trials, to the right, indicates that the rat did not achieve
8 correct trials in a row by the end of the 80 trials. Groups A and C were rewarded for dark arm on
set 1 while groups B and D were rewarded for light arm on set 1. The rats in group A clearly learned
the discrimination task relatively quickly. Modified and reprinted with permission from Smith et al.
(2005).

The Smith et al. analysis was based on the method of maximum likelihood, which
we will discuss in Chapter 7. For now, however, we may use the example to consider
the possibility of aggregating the responses within groups of rats. Two possible ways
to aggregate would be either across rats or across trials, the latter producing blocks of
trials (e.g., 10 blocks of 8 trials). In each case, aggregation would produce a number
X of correct responses out of a possible number n. We would then be able to plot the
value of X across time in order to help examine the differences among the groups.
If we were to assume X ∼ B(n, p), in each case, what would we be assuming about
the trials themselves? If we were to aggregate across rats we would be assuming that
the different rats’ responses were independent, which is reasonable, and that the rats
all had the same probability of responding correctly, which is dubious. Making this
kind of dubious assumption is often a useful first step, and in fact can be innocuous
for certain analyses, but it must be considered critically. After aggregating trials into
blocks, the binomial assumption would be valid if the trials were independent and had
the same probability of correct response, both of which would be dubious—though
again potentially useful if its effects were examined carefully. In situations such as
these it would be incumbent upon the investigator to show that aggregation would
be unlikely to produce incorrect analytical results. �

Before leaving the binomial distribution, let us briefly examine one further appli-
cation.

Example 5.3 Membrane conductance Anderson and Stevens (1973) were able to
estimate single-channel membrane conductance by measuring total conductance at

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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a frog neuromuscular junction. Their method relied on properties of the binomial
distribution. Suppose that there are n channels, each either open or closed, all acting
independently, and all having probability p of being open. Let X be the number of
channels that are open, and γ the single-channel conductance. Then the measured
membrane conductance G satisfies G = γX where X ∼ B(n, p). From formulas
(3.4) and (3.5) it follows that the mean and variance of G are given by

E(G) = γnp

and
V (G) = γ2np(1− p).

Now, assuming that p is small, we have 1− p ≈ 1 so that γ satisfies

γ = V (G)

E(G)
.

Anderson and Stevens made multiple measurements of the membrane conductance
at many different voltages, obtaining many estimates of V (G) and E(G). The slope
of the line through the origin fitted to a plot of V (G) against E(G) thereby furnished
an estimate of the single-channel conductance.1 �

The Anderson and Stevens estimate of single-channel conductance is based on
the approximate proportionality of the variance and mean across voltages. In the
derivation above this was justified from the binomial, for small p. The small-p case
of the binomial is very important and, in general, when p is small while n is large,
the binomial distribution may be approximated by the Poisson distribution.

5.2 The Poisson Distribution

5.2.1 The Poisson distribution is often used to describe counts
of binary events.

The Poisson distribution is the most widely-used distribution for counts. Strictly
speaking, the Poisson distribution assigns a positive probability to every nonnegative
integer 0, 1, 2, . . ., so that every nonnegative integer becomes a mathematical pos-
sibility. This may be contrasted with the binomial, which takes on numbers only
up to some n, and leads to a proportion (out of n). The defining feature of the
Poisson distribution, however, is that it arises as a small-p and large-n approxima-
tion to the binomial, which we discuss in Section 5.2.2. That mathematical charac-

1 Additional comments on this method, and its use in analysis of synaptic plasticity, may be found
in Faber and Korn (1991).

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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discrete

continuous

0 0 1 1 0 0 0 0 1 0 0 1 0 0 0

Fig. 5.2 Several event times displayed both in continuous time and in discrete time. In the discrete
case time has been decomposed into bins and for each bin the presence or absence of an event is
indicated by a 1 or 0.

terization portrays the count, approximately, as a sum of many binary variables, each
indicating whether an event occurs (perhaps across time or across space), with each
event occurrence having a small probability p. For example, neural spike counts are
sometimes modeled as Poisson random variables. This results from a characteriza-
tion of the spike train as a sequence of discrete event times, and if we decompose time
into small bins (e.g., having 1 ms width) we may consider each time bin to define
a binary variable that indicates whether a spike occurs within that bin, as depicted
in Fig. 5.2. When we consider discrete events across time there is necessarily some
time scale (corresponding to a small bin width) on which the events become rare, so
that the probability p that any binary variable will take the value 1 becomes small.
For a spiking neuron with a low or moderate firing rate (say 10 spikes per second
or less), for example, a scale in milliseconds leaves large gaps (many milliseconds)
between each spike and makes the probability of a spike within any 1 ms bin quite
small (e.g., less than 10/1000= .01). For this reason the Poisson is often said to be
a model for the variation in the number of occurrences of rare events.2

Counts of such “rare” events are common in neural data analysis, but it is important
to recognize that many count distributions are discernibly non-Poisson. We begin our
discussion with a classic data set from a situation where there are good reasons to think
the Poisson distribution ought to provide an excellent description of the variation
among counts. Although drawn from physics, this example helps to fix ideas about
assumptions that generate Poisson variability. We then mention some situations in
neural data analysis where Poisson distributions have been assumed. After that, we
will elaborate on the motivation for the Poisson and then we will conclude with some
discussion of frequently-occurring departures from Poisson variation among counts.

Example 5.4 Emission of α particles Rutherford et al. (1920) counted the num-
ber of α-particles emitted from a radioactive specimen during 2608 7.5 s (seconds)
intervals.3 The data are summarized in the table below. The first column gives the
counts 0, 1, 2, . . . , 9,≥ 10, and the second column gives number of times the cor-
responding count occurred. For example, in 383 of the 2608 intervals there were 2
particles emitted. The third column provides the “expected” frequencies based on
the Poisson distribution (obtained by maximum likelihood, defined in Section 7.2.2).

2 The derivation of the Poisson distribution as an approximation to the binomial is credited to
Siméon D. Poisson, having appeared in his book, published in 1837. Bortkiewicz (1898, The Law
of Small Numbers) emphasized the importance of the Poisson distribution as a model of rare events.
3 Rutherford et al. (1920, p. 172); cited in Feller (1968).

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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x Observed Expected

0 57 54.40
1 203 210.52
2 383 407.36
3 525 525.50
4 532 508.42
5 408 393.52
6 273 253.82
7 139 140.33
8 45 67.88
9 27 29.19

≥ 10 16 17.08

Here, the emission of any one particle is (on an atomic time scale) a “rare event”
so that the number emitted during 7.5 s may be considered the number of rare events
that occurred. �

The Poisson pdf is

P(X = x) = e−λ λ
x

x ! (5.4)

and we write X ∼ P(λ). The mean, variance, and standard deviation of X are given
by

E(X) = λ
V (X) = λ
σX =

√
λ.

The equality of variance and mean is highly restrictive and is often used to examine
whether repeated series of observations depart from Poisson variation: a plot of
variance versus mean should fall approximately on the line y = x .

Here is a physiological setting involving particle emissions where the Poisson
distribution was used much as in Example 5.4.

Example 5.5 Human detection of light Hecht et al. (1942) investigated the sen-
sitivity of the human visual system to very dim light, and calculated the number
of light quanta required to drive perception. To do this, Hecht et al. constructed an
apparatus that would emit very dim flashes of light, of 1 ms duration, in a darkened
room; they presented these to several subjects and determined the proportion of times
each subject would respond that he or she had seen a flash of light. In one part of
their analysis, they assumed that the number of light quanta penetrating the retina
would follow a Poisson distribution. If X is the number of quanta emitted, and if c
is the number required for perception of the flash, then the probability of perception
of flash is

P(X ≥ c) = 1− F(c − 1) (5.5)
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where F(x) is the Poisson cumulative distribution function. (Note that the argument
c − 1 appears because P(X ≥ c) = P(X > c − 1) = 1 − F(c − 1).) Using the
formula for the Poisson cdf (i.e., the summed pdf), Hecht et al. fit this to observed
data and found that, roughly, a minimum of 6 quanta must be absorbed by the retina
in order for a human to detect light. �

Not all applications of the Poisson distribution involve events across time. In the
next example the events are distributed across space—on neural synaptic boutons.

Example 5.6 Quantal response in synaptic transmission The quantal response
hypothesis is that a neurotransmitter is released from a large number of presynaptic
vesicles in packets, or “quanta,” each of which has a small probability of being
released. To test this, del Castillo and Katz (1954) recorded postsynaptic potentials,
or end-plate potentials (EPPs), at a frog neuromuscular junction. By assuming a
Poisson distribution for the number of quanta released following an action potential,
the authors obtained good experimental support for the quantal hypothesis. �

5.2.2 For large n and small p the binomial distribution
is approximately the same as Poisson.

Example 5.6 (continued from Section 5.2.1) Let us go a step further in examining
the argument of del Castillo and Katz. Under behavioral conditions the EPP would
typically involve hundreds of quanta, but del Castillo and Katz used a magnesium bath
to greatly decrease this number. In addition, they recorded spontaneous (“miniature”)
EPPs, which, according to the quantal hypothesis, should involve single quanta. They
observed that this gave them two different ways to estimate the mean number of
quanta released. The first method is to estimate the mean in terms of P(X = 0)

using the Poisson pdf formula P(X = 0) = e−λ or

λ = − log P(X = 0). (5.6)

To estimate P(X = 0) they used the ratio D/C , where C was the total number of
presynaptic action potentials and D was the number of times that the postsynaptic
voltage failed to increase. Their second method used the ratio A/B, where A was
the mean EPP voltage response following actional potentials and B was the mean
spontaneous EPP voltage response. When the data from 10 experiments were plotted,
the ten (x, y) pairs with y = − log D/C and x = A/B were very close to the line
y = x . �

A major motivation for the Poisson distribution is that it approximates the binomial
distribution as p gets small and n gets large (with λ = np). One way to express this
is given by the theorem below, but the argument used by del Castillo and Katz,
described above, highlights both the key assumptions and the key mathematical
result. Under the quantal hypothesis that vesicle release is binary together with the
Bernoulli assumptions of independence and homogeneity, we have



114 5 Important Probability Distributions

P(X = 0) = (1− p)n

where p is the probability that any given vesicle will release and n is the number of
vesicles. We define λ = np and make the substitution p = λ/n, then take logs of
both sides to get

log P(X = 0) = n log(1− λ

n
).

Now, for large n, an expansion of the log (see Section A.4 of the Appendix) gives
n log(1 − λ/n) ≈ −λ. This says that Eq. (5.6) becomes a good approximation for
small p and large n. The rest of the argument is given below.

Theorem: Poisson pdf approximation to binomial pdf For λ > 0,
letting p = λ/n, as n→∞ we have

(
n

k

)
pk(1− p)n−k → e−λ λ

k

k! . (5.7)

Proof: To derive Eq. (5.7), we use Eq. (A.6) from the Appendix, which
we rewrite here by saying that as n→∞,

(1− λ

n
)n → e−λ. (5.8)

Now let λ = pn, substitute p = λ/n into the binomial pdf,

f (k) =
(

n

k

)
pk(1− p)n−k = n!

(n − k)!k!
(
λ

n

)k (
1− λ

n

)n−k

and rearrange the terms to get

f (k) = A · B

where

A =
(n

n

) (
n − 1

n

) (
n − 2

n

)
· · ·

(
n − k + 1

n

)

B =
(
λk

k!
)

︸ ︷︷ ︸

(
1− λ

n

)n

︸ ︷︷ ︸

(
1− λ

n

)−k

︸ ︷︷ ︸
.

As n→∞, the expression for A converges to 1; the expression over
the first underbrace defining B remains constant (n does not appear
there); by (5.8) the expression over the second underbrace defining
B converges to e−λ; and the expression over the third underbrace
defining B converges to 1. This gives (5.7). �
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5.2.3 The Poisson distribution results when the binary
events are independent.

In thinking about the binomial assumption for a random variable X one generally
ponders whether it is reasonable to conceptualize X as a sum of Bernoulli trials with
the independence and homogeneity assumptions. Similarly, in the Poisson case, one
typically asks whether the count variable X could be considered a sum of Bernoulli
trials for small p and large n. The first requirement is that the counts really are sums
of binary events. This means that X results from a string of 0s and 1s, as in Fig. 5.1,
p. 109. In Example 5.4, p. 111, each emission event corresponds to a state transition in
the nucleus of a particular atom. It is reasonable to assume that it is impossible for two
nuclei to emit particles at precisely the same time and, furthermore, that each Geiger-
counter “click” corresponds to exactly one particle emission. Independence, usually
the crucial assumption, here refers to the independence of the many billions of nuclei
residing within the specimen. This is an assumption, apparently well justified, within
the quantum-mechanical conception of radioactive decay. It implies, for example,
that any tendency for two particles to be emitted at nearly the same time would be due
to chance alone: because there is no interaction among the nuclei, there is no physical
“bursting” of multiple particles. Furthermore, the probability of an emission would
be unlikely to change over the course of the experiment unless the specimen were
so tiny that its mass changed appreciably. To summarize, the Poisson distribution
for counts of events across time makes intuitive sense when we can conceptualize
the events as Bernoulli trials, which are homogeneous and independent, where the
success probability p is small.

The framework we have constructed above to discuss emission of α particles
would apply equally well to quanta of light in the Hecht et al. experiment. What
about the vesicles at the neuromuscular junction? Here, the quantal hypothesis is
what generates the sequence of dichotomous events (release vs. no release). Is release
at one vesicle independent of release at another vesicle? If neighboring vesicles tend
to release in small clumps, then we would expect to see more variability in the counts
than that predicted by the Poisson, while if release from one vesicle tended to inhibit
release of neighbors we would expect to see more regularity, and less variability
in the counts. It is reasonable to begin by assuming independence, but ultimately
it is an empirical question whether this is justified. Homogeneity is suspect: the
release probability at one vesicle may differ substantially from that at another vesicle.
However, as del Castillo and Katz realized, homogeneity is actually not an essential
assumption. We elaborate on this point when we return to the Poisson distribution,
and its relationship to the Poisson process in Section 19.2.2.

Neuronal spike counts are sometimes assumed to be Poisson-distributed. Let us
consider the underlying assumptions in this case. First, if measurements are made
on a single neuron to a resolution of 1 ms or less, it is the case that a sequence of
dichotomous firing events will be observed: in any given time bin (e.g., any given
millisecond) the neuron either will or will not have an action potential, and it can
not have two. But are these events independent? Immediately after a neuron has

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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fired, the membrane of a neuron undergoes changes that alter its propensity to fire
again. In particular, there is a refractory period during which sodium channels are
inactivated and the neuron can not fire again. This clearly violates the assumption of
independence. In addition, there may be a build-up of ions, or activity in the local
neural network, that makes a neuron more likely to fire if it has fired recently in the
past (it may be “bursting”). This again would be a violation of independence. In many
experiments such violations of independence produce markedly non-Poisson count
distributions and turn out to have a substantial effect, but in others the effects are
relatively minor and may be ignored. We indicated that, in the case of vesicle release
of neurotransmitters, the homogeneity assumption is not needed in order to apply
the Poisson approximation. The same is true for neuronal spike counts: the spike
probabilities can vary across time and still lead to Poisson-distributed counts. The
key assumption, requiring thought, is independence. On the other hand, the question
of whether it is safe to assume Poisson variation remains an empirical matter, subject
to statistical examination. As in nearly all statistical situations, judgment of the
accuracy of the modeling assumptions—here, the accuracy of the Poisson distribution
in describing spike count variation—will depend on the analysis to be performed.

5.3 The Normal Distribution

As we said in Chapter 3, the normal distribution (or Gaussian distribution) plays a
dominant role in statistical theory because of the Central Limit Theorem, which we
state in Chapter 6. In Section 5.3.1 we review a property of the normal distribution
that leads to interpretation of standard errors and confidence intervals, and in
Section 5.3.2 we note its relationship to the binomial and Poisson distributions.

5.3.1 Normal random variables are within 1 standard deviation of
their mean with probability 2/3; they are within 2 standard
deviations of their mean with probability .95.

We indicated on p. 60 that when X has a normal distribution probabilities of the form
P(a ≤ X ≤ b) can not be found directly by calculus and must, instead, be obtained
numerically. Two such probabilities are so important in practice that they should be
committed to memory. We will call these the “ 2

3 and 95% rule.”

The 2
3 and 95 % rule: For a normal random variable X with mean μ

and standard deviation σ,
P(μ− σ ≤ X ≤ μ+ σ) ≈ 2

3
P(μ− 2σ ≤ X ≤ μ+ 2σ) ≈ .95

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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We also have P(μ− 3σ ≤ X ≤ μ+ 3σ) ≈ .997, but this is less important.

Example 5.7 Ebbinghaus on human memory A very early experiment on human
memory was reported by Ebbinghaus (1885). Ebbinghaus used himself as the sole
subject of his investigation, and he taught himself to learn lists of nonsense syl-
lables made up of consonant-vowel-consonant trigrams such as DAX. Ebbinghaus
memorized relatively long lists (e.g., 16 trigrams) to the point of being able to recite
them without error, twice consecutively, and kept track of the time it took for him
to achieve this success. He then repeated the task using the same lists after a delay
period, that is, he re-learned the lists, and he examined the way his re-learning time
increased with the length of the delay period. This was a way to quantify his rate
of forgetting. (Compare the experiment of Kolers in Example 2.5 on p. 32.) The
method Ebbinghaus used relied on the normal distribution. In one of his tabulations,
he examined 84 memorization times, each obtained by averaging sets of 6 lists. He
found the distribution of these 84 data values to be well approximated by the normal
distribution, with mean 1,261 s and standard deviation 72 s.4 This would mean that
for about 2/3 of the sets of lists his learning time was between 1,189 s and 1,333 s. It
also would mean that a set-averaged learning time less than 1,117 s or greater than
1,405 s would be rare: each of these would occur for only about 2.5 % of the sets of
lists. �

It may seem odd that in examining the suitability of the normal distribution
Ebbinghaus did not look at the distribution of learning times for lists, but rather
chose to work with the distribution of average learning times across sets of 6 lists.
The distribution of learning times was skewed. Only after averaging across several
learning times did the distribution become approximately normal. This effect is due
to the Central Limit Theorem, discussed in Section 6.3.1.

Normal distributions are often standardized so that μ = 0 and σ = 1. In general,
using Eq. (3.8) if X ∼ N (μ,σ2) and Y = aX + b then Y ∼ N (aμ+ b, a2σ2). As a
special case, if X ∼ N (μ,σ2) and Z = (X − μ)/σ then Z ∼ N (0, 1). The N (0, 1)

distribution is called the standard normal. This is often used for calculation: if we
know probabilities for the N (0, 1) distribution then we can easily obtain them for
any other normal distribution. For example, we also have

P(a ≤ X ≤ b) = P(
a − μ
σ
≤ X − μ

σ
≤ b − μ

σ
) = P(

a − μ
σ
≤ Z ≤ b − μ

σ
).

Thus, the right-hand side may be found in order to obtain the answer for the left-hand
side. Standardized variables are often denoted by Z , sometimes with the terminology
Z -score.

4 He actually found the “probable error,” which is .6745σ to be 48.4 s. See Stigler (1986) for a
discussion of these data.

http://dx.doi.org/10.1007/978-1-4614-9602-1_6
http://dx.doi.org/10.1007/978-1-4614-9602-1_3


118 5 Important Probability Distributions

10 20 30 40 50 60 70

Fig. 5.3 The normal approximation to the binomial. Black circles are pdf values for a B(100, .4)

distribution; curve is pdf of a normal having the same mean and variance.

5.3.2 Binomial and Poisson distributions are approximately
normal, for large n or large λ.

The normal distribution may be used to approximate a large variety of distributions
for certain values of parameters. In the case of the binomial with parameters n and p,
we take the normal mean and standard deviation to be μ = np and σ = √np(1− p).
An illustration is given in Fig. 5.3. The approximation is generally considered to be
quite accurate for most calculations when n is large and p is not close to its boundary
values of 0 and 1; a commonly-used rule of thumb (which is somewhat conservative,
at least for .2 < p < .8) is that it will work well when np ≥ 5 and n(1− p) ≥ 5.

In the case of the Poisson with parameter λwe take the normal mean and standard
deviation to be μ = λ and σ = √λ; the approximation is generally considered to be
acceptably accurate for many calculations5 when λ ≥ 15.

These approximations are a great convenience, especially in conjunction with the
“ 2

3 − 95 % rule."

5 Actually, different authors give somewhat different advice. The acceptability of this or any other
approximation must depend on the particular use to which it will be put. For computing the prob-
ability that a Poisson random variable will fall within 1 standard deviation of its mean, the normal
approximation has an error of less than 10 % when λ = 15. However, it will not be suitable for
calculations that go far out into the tails, or that require several digits of accuracy. In addition, a
computational fine point is mentioned in many books. Suppose we wish to approximate a discrete
cdf F(x) by a normal, say F̃(x). The the value F̃(x + .5) is generally closer to F(x) than is F̃(x).
This is sometimes called a continuity correction.
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5.4 Some Other Common Distributions

5.4.1 The multinomial distribution extends the binomial
to multiple categories.

In Example 5.1, on p. 107, we cited an application of the Hardy-Weinberg model
in a study of genotype frequencies for the nicotinic acetylcholine receptor subunit
α4 gene among children with ADHD and their parents. The three genotypes were
labeled TT, CT, CC. This constitutes three distinct categories. For the i th individual
in the study, let Yi = (1, 0, 0) if that individual has genotype TT, Yi = (0, 1, 0) if that
individual has genotype CT, and Yi = (0, 0, 1) if that individual has genotype CC.
The variable Yi thus indicates the genotype of the i th individual, for i = 1, 2, . . . , n.
Let p1 = P(Yi = (1, 0, 0)), p2 = P(Yi = (0, 1, 0)), and p3 = P(Yi = (0, 0, 1)),
where p1+ pn + p3 = 1 and define X =∑n

i=1 Yi . Note that X gives the number of
individuals, among a total of n, that have each of the three genotypes. In the Kent et
al. data in Example 5.1 there were 136 individuals: 48 of genotype TT, 71 of genotype
CT, and 17 of genotype CC, and we could write X = (48, 71, 17). If we assume the
Y1, Y2, . . . , Yn are independent then X follows a multinomial distribution, written
X ∼ M(n; p1, p2, p3) with pdf

P(X = (x1, x2, x3)) = n!
x1!x2!x3! p

x1
1 px2

2 px3
3 . (5.9)

According to the Hardy-Weinberg model the probabilities (p1, p2, p3) would be
restricted to satisfy the binomial pdf p1 = p2, p2 = 2p(1− p) and p3 = (1− p)2.
However, (5.9) holds regardless of the validity of the Hardy-Weinberg model, as long
as the genotypes are independent and homogeneous across individuals.

More generally, a random variable is distributed as X ∼ M(n; p1, p2, . . . , pk) if
its pdf is given by

P(X = (x1, x2, . . . , xk)) = n!
x1!x2! · · · xk !

k∏

j=1

px1
1 px2

2 · · · pxk
k

where p1+ · · ·+ pk = 1 and x1+ · · ·+ xk = n. When k = 2 we obtain as a special
case the binomial pdf of Eq. (5.1). (To see this, with x as in Eq. (5.1) define (x1, x2)

in (5.1) to be (x1, x2) = (x, n − x).) Thus, the multinomial is an extension of the
binomial to multiple categories.
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5.4.2 The exponential distribution is used to describe waiting times
without memory.

We defined the exponential distribution in Eq. (3.12), p. 56, using it to illustrate
calculations based on the pdf, and we showed how it may be applied to ion channel
activation durations in Example 3.5. The exponential distribution is very special6

because of its “memoryless” property. To understand this, let X be the length of
time an ion channel is open, and let us consider the probability that the channel will
remain open for the next time interval of length h. For example, h might be 5 ms.
How do we write this? If we begin the moment the channel opens, i.e., at x = 0, the
next interval of length h is (0, h) and we want P(X > h). On the other hand, if we
begin at time x = t , for some positive t , such as 25 ms, the interval in question is
(t, t + h) and we are asking for a conditional probability: if the channel is open at
time t we must have X > t , so we are asking for P(X > t + h|X > t). We say that
the channel opening duration is memoryless if

P(X > t + h|X > t) = P(X > h) (5.10)

for all t > 0 and h > 0. That is, if t = 25 ms, the channel does not “remember” that
it has been open for 25 ms already; it still has the same probability of remaining open
for the next 5 ms that it had when it first opened; and this is true regardless of the
time t we pick. The exponential distributions are the only distributions7 that satisfy
Eq. (5.10).

Contrast this memorylessness with, say, a uniform distribution on the interval
[0, 10], measured in milliseconds. According to this uniform distribution, the event
(e.g., the closing of the channel) must occur within 10 ms and initially every 5 ms
interval has the same probability. In particular, the probability the event will occur
in the first 5 ms, i.e., in the interval [0, 5], is the same as the probability it will occur
in the last 5 ms, in [5, 10]. Both probabilities are equal to 1

2 . However, if at time
t = 5 ms the event has not yet occurred then we are certain it will occur in the
next half second [5, 10], i.e., this probability is 1, which is quite different than 1

2 . In
anthropomorphic language we might say the random variable “remembers” that no
event has yet occurred, so its conditional probability is adjusted. For the exponential
distribution, the probability the event will occur in the next 5 ms, given that it has not
already occurred, stays the same as time progresses.

Theorem A random variable X satisfies X ∼ Exp(λ) for some λ > 0 if and only if
(5.10) is satisfied for all positive t and h, i.e., if X is memoryless.

Proof: Using Eq. (3.13) we have

6 Another reason the exponential distribution is special is that among all distributions on (0,∞)

with mean μ = 1/λ, the Exp(λ) distribution has the maximum entropy. See Eq. (4.33).
7 The memoryless property can also be stated analogously for discrete distributions; in the discrete
case only the geometric distributions are memoryless.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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P(X > t + h|X > t) = P(X > t + h, X > t)

P(X > t)

= P(X > t + h)

P(X > t)

= e−λ(t+h)

e−λt

= e−λh

= P(X > h).

Thus, every exponential distribution is memoryless. On the other hand,
let G(x) = 1 − F(x) where F(x) is the distribution function of X .
Memorylessness implies

P(X > t + h) = P(X > t)P(X > h)

i.e.,
G(t + h) = G(t)G(h)

for all positive t and h. But (as mentioned in Section A.4 of the
Appendix), G(x) can satisfy this equation for all positive t and h only
if it has an exponential form G(x) = aebx . Because F(x) = 1−G(x)

is a distribution function, it satisfies F(x) → 1 as x → ∞, which
implies b < 0, and it satisfies F(x) → 0 as x → 0, which implies
a = 1. Thus F(x) = 1− e−λx for some λ, i.e., X ∼ Exp(λ). �

An additional characterization of the exponential distribution is that it has a con-
stant hazard function.

Theorem: A continuous random variable X satisfies X ∼ Exp(λ0) if and only if its
hazard function is λ(x) = λ0.

Proof: First suppose X ∼ Exp(λ0). The hazard function is easy to
compute from the definition

λ(x) = f (x)

1− F(x)
.

Substituting f (x) = λ0e−λ0x and F(x) = 1− e−λ0x we have

λ(x) = λ0e−λ0x

e−λ0x

= λ0.

On the other hand, if the hazard function is λ(x) = λ0 we may rewrite
the definition of λ(x) and solve for F(x),
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F(x) = 1− λ0 f (x)

and then differentiate to get

f (x) = −λ0 f ′(x)

which implies that
f (x) = ce−λ0x

for some constant c (see Section A.4) and because f (x) must integ-
rate to 1 we get f (x) = λ0e−λ0x . �

The constant hazard of the exponential may be considered another way to view
memorylessness: with constant hazard, given that the event has not already occurred
at time t the probability that the event occurs in the next infinitesimal interval (t, t +
dt) is the same as it would be for any other infinitesimal interval (t ′, t ′ + dt).

In Chapter 19 we will discuss the role played by the exponential distribution in
Poisson processes, which are sometimes used to model spike trains. A technical result
used there is a version of the probability integral transform derived in Section 3.2.5.

Theorem: Exponential Variables from the Probability Integral Transform Sup-
pose X is a continuous random variable having pdf fX (x) and cdf FX (x), and suppose
further that fX (x) > 0 on an interval (A, B) and fX (x) = 0 otherwise. Let λ(x) be
the associated hazard function of X . If we define a random variable Y by Y = G(X)

where

G(x) =
∫ x

A
λ(u)du (5.11)

then Y ∼ Exp(1).

Proof: Let us write the cdf of the Exp(1) distribution as FExp. From
the corollary to the probability integral transform on 64, if we define
Y by

Y = F−1
Exp(FX (X)) (5.12)

then Y ∼ Exp(1). It remains to show that for G(x) defined by (5.11)
we get

G(x) = F−1
Exp FX (x). (5.13)

We have (p. 56)
FExp(y) = 1− e−y .

The inverse of this function is

F−1
Exp(w) = − log(1− w). (5.14)

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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The hazard function of X (Section 3.2.4) is

λ(x) = fX (x)

1− FX (x)

which gives

FX (x) = 1− fX (x)

λ(x)

and, because fX (x) = λ(x)e−
∫ x
−∞ λ(u)du , we get

FX (x) = 1− e−
∫ x
−∞ λ(u)du . (5.15)

Putting w = FX (x) in (5.15) and applying (5.14) we have

F−1
Exp(FX (x)) = F−1

Exp(w)

=
∫ x

A
λ(u)du

which is (5.13). �

5.4.3 Gamma distributions are sums of exponentials.

In Example 3.5, on p. 58, we illustrated a basic property of a gamma distribution:
if X1, X2, . . . , Xn are distributed as Exp(λ), independently, and Y = X1 + · · · +
Xn , then Y ∼ Gamma(n,λ). Note that a Gamma(1,λ) distribution is the same
as an Exp(λ) distribution. More generally, a random variable X is said to have a
Gamma(α,β) distribution when its pdf is

f (x |α,β) = βα

�(α)
xα−1e−βx

for x > 0 and is 0 when x ≤ 0. Here, the function �(a) is the gamma function:

�(a) =
∫ ∞

0
xa−1e−x dx .

The gamma function is a variant of the factorial function; we have �(n) = (n − 1)!
for any positive integer n. If X ∼ Gamma(α,β) then

E(X) = α

β

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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V (X) = α

β2

σX =
√
α

β
.

Plots of the gamma will be displayed for the special case of the chi-squared distrib-
ution, in the Section 5.4.4.

5.4.4 Chi-squared distributions are special cases of gamma
distributions.

If W ∼ N (0, 1) then X = W 2 is said to have a chi-squared distribution on 1 degree
of freedom, which is written X ∼ χ2

1. If Wi ∼ χ2
1 for all i = 1, . . . , n, independently,

and if X = W1 + W2 + · · · + Wn , then X is said to have a chi-squared distribution
on n degrees of freedom, written X ∼ χ2

n . The most important way chi-squared
distributions arise is as sums of squares of independent normal distributions. In
general, a random variable X is said to have a chi-squared distribution with degrees
of freedom ν, written χ2

ν , if it has a Gamma(α,β) distribution with α = ν
2 and

β = 1
2 .

If X ∼ χ2
ν then

E(X) = ν
V (X) = 2ν

σX =
√

2ν.

Figure 5.4 shows several chi-squared pdfs. Note that, for small degrees of freedom,
the distribution is skewed toward high values (or skewed to the right). That is, it is
not symmetrical, but rather large values distant from the middle (to the right) are
more likely than small values distant from the middle (to the left). For the χ2

4, the
middle of the distribution is roughly between 1 and 6 but values less than 0 are
impossible while values much greater than 7 have substantial probability. For large
degrees of freedom ν the χ2

ν becomes approximately normal. For ν = 16 in Fig. 5.4
there remains some slight skewness, but the distribution is already pretty close to
normal over the plotted range.

5.4.5 The beta distribution may be used to describe variation
on a finite interval.

A random variable X is said to have a beta distribution with parameters α and β if
its pdf is
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Fig. 5.4 Chi-squared pdfs for four values of the degrees of freedom: ν = 1 (Top left), 4 (top right),
9 (bottom left), and 16 (bottom right).

f (x) = γ(α+ β)

γ(α)γ(β)
xα−1(1− x)β−1 (5.16)

for 0 < x < 1 and is 0 otherwise. We then write X ∼ Beta(α,β). Suppose W1 ∼
Gamma(α1,β) and W2 ∼ Gamma(α2,β), independently, and let X = W1/(W1 +
W2). Then we have X ∼ Beta(α,β).

If X ∼ Beta(α,β) then E(X) = α/(α + β) and V (X) = α + β + 1. The beta
distribution is sometimes written instead in terms of the parameters μ = E(X) and
ν = V (X)−1, so that α = μν and β = (1−μ)ν. The beta distribution is commonly
used to describe continuous variation that is confined to (0, 1). By rescaling it is easy
to obtain a distribution confined to any finite interval (a, b). When α > 1 and β > 1
the beta pdf is unimodal and f (x)→ 0 as x → 0 or x → 1, and if α = β the pdf is
symmetric about x = .5. A unimodal symmetric beta pdf was plotted in Fig. 3.3.

The beta pdf arises in Bayesian analysis of binomial data, which is discussed
in Section 7.3.9. There, the binomial parameter p must be in (0, 1) and the beta
distribution is used to represent knowledge about its value.

5.4.6 The inverse Gaussian distribution describes the waiting time
for a threshold crossing by Brownian motion.

A random variable X is said to have an inverse Gaussian distribution if its pdf is

f (x) =
√
λ/(2πx3) exp(−λ(x − μ)2/(2μ2x))

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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for x > 0. Here, E(X) = μ and V (X) = μ3/λ.
The inverse Gaussian arises as the theoretical interspike interval (ISI) distribution

for integrate-and-fire neurons under simplifying assumptions. The essential idea is
that excitatory and inhibitory post-synaptic potentials, EPSPs and IPSPs, are con-
sidered to arrive in a sequence of time steps of length δ, with each EPSP and IPSP
contributing normalized voltages of +1 and −1, respectively, and with the proba-
bility of EPSP and IPSP being p and 1 − p, where p > 1 − p creates the upward
“drift” toward positive voltages. Let Xt be the post-synaptic potential at time t with
t = 1, 2, . . . and let Sn = X1 + X2 + · · · + Xn . The variable Sn is said to follow a
random walk (confer p. 530) and an action potential occurs when Sn exceeds a par-
ticular threshold value Vthresh . The process then resets to the resting potential Vrest .
The behavior of a theoretical integrate-and-fire neuron based on such a random walk
process is illustrated in Fig. 5.5. The continuous-time stochastic process known as
Brownian motion, with drift, results from taking δ → 0 and n → ∞, while also
constraining the mean and variance in the form E(Sn) → m and V (Sn) → v, for
some m and v. The distribution of “first passage time,” meaning the time it takes
for the drifting Brownian motion to cross a boundary, is inverse Gaussian. (See
Whitmore and Seshadri (1987). Also, Mudholkar and Tian (2002).) In particular,
if we assume pδ → λE and (1 − p)δ → λI , so that λE and λI are the limiting
rates at which excitatory and inhibitory arrive, the drift toward the spiking threshold
Vthresh, from the resting potential Vrest, becomes λE −λI and the mean of the inverse
Gaussian ISI distribution is

μ = Vthresh − Vrest

λE − λI

and its coefficient of variation (defined in Eq. (3.11)) is

√
μ

λ
=

√
λE + λI

2(Vthresh − Vrest)(λE − λI )
. (5.17)

See Tuckwell (1988, Section 9.6). Thus, as the difference Vthresh−Vrest increases the
coefficient of variation of the ISIs decreases and the neuron fires more regularly. As
excitation and inhibition become more nearly balanced, the coefficient of variation
increases and the neuron fires more irregularly. Shadlen and Newsome (1998) used a
closely-related analysis to argue the plausibility of roughly balanced excitation and
inhibition in cortex. The random walk formulation was first given by Gerstein and
Mandelbrot (1964).

Figure 5.6 gives an example of an inverse Gaussian pdf, with a Gamma pdf for
comparison. Note in particular that when x is near 0 the inverse Gaussian pdf is very
small. This gives it the ability to model, approximately, neuronal interspike intervals
in the presence of a refractory period, i.e., a period at the beginning of the interspike
interval (immediately following the previous spike) during which the neuron doesn’t
fire, or has a very small probability of firing.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3


5.4 Some Other Common Distributions 127

Fig. 5.5 Example of a computer-simulated integrate-and-fire neuron. At each time step there is
either an EPSP or an IPSP, with probabilities p and 1− p. For p > 1− p this creates a stochastic
upward “drift” of the voltage (as the inputs are summed or “integrated”) until it crosses the threshold
and the neuron fires. The neuron then resets to its baseline voltage. The resulting interspike interval
(ISI) distribution is approximately inverse Gaussian.

0 2 4 6 8 10

Fig. 5.6 Inverse Gaussian pdf plotted together with a Gamma(2, 1) pdf. The inverse Gaussian
(dashed line) has the same mean and variance as the gamma (solid line).

Example 5.8 Fit of integrate-and-fire model to cochlear neuron inter-spike
intervals When they introduced the random walk integrate-and-fire model, and
pointed out the inverse Gaussian would be the resulting approximate distribution
for the inter-spike intervals, Gerstein and Mandelbrot (1964) provided illustrative
fits to data. Figure 5.7 shows one such fit to a set of data from a cat cochlear neuron,
under anesthesia. �
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Fig. 5.7 Fitted inverse Gaussian pdf (solid line) together with dots indicating the heights of his-
togram bins based on inter-spike interval data from a cat cochlear neuron. The x-axis is time in
milliseconds and the y-axis is the histogram height on a log scale. The data conform well to the
inverse Gaussian distribution. Adapted from Gerstein and Mandelbrot (1964).

5.4.7 The t and F distributions are defined from normal
and chi-squared distributions.

Two distributions are used very frequently in statistical hypothesis testing. The first
is the t distribution.

If X ∼ N (0, 1) and Y ∼ χ2
ν , independently, then

T = X√
Y
ν

is said to have a t distribution on ν degrees of freedom, which we write as T ∼ tν .
This form of the T ratio arises in “t tests” and related procedures.

Note that T would be N (0, 1) if the denominator were equal to 1. The denominator
is actually very close to one when ν is large: if Y ∼ χ2

ν we have E(Y/ν) = 1 while
V (Y/ν) = 2ν/ν2 which becomes very close to zero for large ν. That is, the random
variable Y/ν has a very small standard deviation and thus takes values mostly very
close to its expectation of 1. Therefore, for large ν, the tν distribution is very close
to a N (0, 1) distribution. One rule of thumb is that for ν > 12, when computing
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probabilities in the middle of the distribution, the tν distribution may be considered
essentially the same as N (0, 1). For small ν, however, the probability of large positive
and negative values becomes much greater than that for the normal. For example, if
X ∼ N (0, 1) then P(X > 3) = .0014 whereas if T ∼ t3 then P(T > 3) = .029,
about 20 times the magnitude. To describe this phenomenon we say that the t3
distribution has much heavier tails (or thicker tails) than the normal.

The t distribution was first derived by William Gosset under the pen name
“A. Student.” It is therefore often called Student’s t distribution.

If X ∼ χ2
ν1

and Y ∼ χ2
ν2

, independently, then

F = X/ν1

Y/ν2

is said to have an F distribution on ν1 and ν2 degrees of freedom, which are usually
referred to as the numerator and denominator degrees of freedom. We may write this
as F ∼ Fν1,ν2 . This distribution arises in regression and analysis of variance, where
ratios of sums of squares are computed and each sum of squares has (under suitable
assumptions) a chi-squared distribution.

When ν1 = 1 the numerator is the square of a normal and F = T 2, where T is the
ratio of a N (0, 1) and the square-root of a χ2

ν2
. That is, the square of a tν distributed

random variable has an F1,ν distribution. Also, analogously to the situation with the
tν distribution, when ν2 gets large the denominator Y/ν2 is a random variable that
takes values mostly very close to 1 and Fν1,ν2 becomes close to a χ2

ν1
.

5.5 Multivariate Normal Distributions

5.5.1 A random vector is multivariate normal if linear
combinations of its components are univariate normal.

We now generalize the bivariate normal distribution, which we discussed in
Section 4.2.2. We say that an m-dimensional random vector X has an m-dimensional
multivariate normal distribution if every nonzero linear combination of its
components is normally distributed. If μ and � are the mean vector and variance
matrix of X we write this as X ∼ Nm(μ, �). Using (4.25) and (4.26) we thus char-
acterize X ∼ Nm(μ, �) by saying that for every nonzero m-dimensional vector w

we have wT X ∼ N (wTμ, wT �w).

Notice that, just as the univariate normal distribution is completely characterized
by its mean and variance, and the bivariate normal distribution is characterized by
means, variances, and a correlation, the multivariate normal distribution is completely
characterized by its mean vector and variance matrix. In many cases the components
of a multivariate normal random vector are treated separately, with each diagonal
element of the covariance matrix furnishing a variance, and the off-diagonal elements

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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being ignored. In some situations, however, the joint distribution, and thus all the
elements of the variance matrix, are important.

If X has an m-dimensional multivariate normal distribution then each of its com-
ponents has a univariate normal distribution. The following theorem extends this to
the various components of X .

Theorem If X has an m-dimensional multivariate normal distribution and Y consists
of the first k components of X , then Y has a k-dimensional multivariate normal
distribution.

Proof: Let w be a non-zero k-dimensional vector. We must show that wT Y is univari-
ate normal. Define v(w) to be the m-dimensional vector consisting of the components
of w followed by m − k zeroes. Then wT Y = v(w)T X and, by definition, v(w)T X
is univariate normal; thus, wT Y is univariate normal. �
Example 4.1 (continued from p. 71) It is convenient to assume that the voltage

amplitudes in Fig. 4.1 are 4-dimensional multivariate normal. According to the theo-
rem above, this would imply that every pair of voltage amplitudes is bivariate normal.
The 6 = (4

2

)
bivariate data plots in panel B of Fig. 4.1 indicate, very roughly, shapes

consistent with bivariate normality, as indicated by the overlaid elliptical contours.
Univariate histograms with normal pdfs and normal Q-Q plots are also given in that
figure. The Q-Q plots clearly indicate some departure from normality, due to heavy
tails in the first three channels. For many statistical analyses this degree of departure
from normality would be unlikely to produce severe inferential problems, but the
extent to which it is a cause for concern depends on the question being asked and the
procedure used to answer it. �

The multivariate normal distribution is even more prominent in multivariate data
analysis than the normal distribution is for univariate data analysis. The main reason
is that specifying only the first two moments, mean vector and variance matrix,
is a huge simplification. In addition, there is a generalization of the Central Limit
Theorem, which we give in Section 6.3.2.

5.5.2 The multivariate normal pdf has elliptical contours,
with probability density declining according to a χ2 pdf.

The definition given above, in Section 5.5.1, does not require � to be positive definite
(see p. 617 of the Appendix). In discussing the bivariate normal pdf for (X, Y ) we
had to assume σX > 0, σY > 0, and −1 < ρ < 1. This is equivalent to saying
that the variance matrix of the (X, Y ) vector is positive definite. When we work
with the multivariate normal distribution we usually assume the variance matrix is
positive definite. If X is m-dimensional multivariate normal, having mean vector μ
and positive definite covariance matrix �, then its pdf is given by

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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f (x) = 1√
(2π)m |�|e

− 1
2 Q(x) (5.18)

where
Q(x) = (x − μX )T �−1(x − μX )

with |�| being the determinant of �. We have labeled the exponent by Q(x) to
emphasize that it gives a quadratic in the components of x , so that Eq. (5.18) gener-
alizes Eq. (4.14). The positive definiteness of � implies that |�| > 0, so that the pdf
is well defined. It also implies that the contours of Q(x) and, therefore, of f (x) are
multidimensional ellipses (see Section A.8 of the Appendix), generalizing remarks
we made about the bivariate normal on p. 82.

Using simple matrix multiplication arguments, it is not hard to show that if X ∼
Nm(μ, �), and � is positive definite, then Q(X) has a chi-squared distribution with
m degrees of freedom.

Details: Let Z be m-dimensional multivariate normal with the
zero vector as its mean vector and the m-dimensional identity matrix
as its variance matrix. The components of Z follow Z ∼ N (0, 1),
independently. Thus, from the definition of the chi-squared distribu-
tion in Section 5.4.4, Z T Z ∼ χ2

m . Now, if X ∼ Nn(μ, �) then, by
the theorem on p. 92, Y = �−1/2(X − μ) satisfies Y T Y ∼ χ2

m . But
Y T Y = Q(X). �

Taken together these results imply that, for c > 0, each contour {x : Q(x) = c}
of the multivariate normal pdf is elliptical and encloses a region {x : Q(x) ≤ c}
having probability determined from the χ2

m distribution function.
The remarks we have just made about elliptical contours apply when � is positive

definite, so that we may write the pdf in (5.18). Occasionally, however, one must
deal with the non-positive definite case. This arises, for example, when one wants
to model the joint variation of m variables by assuming it is concentrated in fewer
than m dimensions (analogously to the bivariate case with ρ = 1). If X ∼ Nm(μ, �)

and � is not positive definite but instead has rank k where k < m, we may use the
spectral decomposition to find a k-dimensional subspace in which the distribution
may be represented by a pdf with elliptical contours. This arises in some applications
of multivariate analysis. See Chapter 17.

Details: If there are k positive eigenvalues of � we may write

� = PDPT

where the first k diagonal elements of D are the positive eigenvalues.
Let P1 be the m×k matrix consisting of the first k columns of P , which
are the eigenvectors corresponding to the positive eigenvalues. These
k eigenvectors span a k-dimensional subspace V . Let v j = col j (P)

for j = 1, . . . , k, so that every vector x ∈ V may be written in the

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_17
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form

x =
k∑

j=1

u j (x)v j

and the n-dimensional vector x may instead be represented as a k-
dimensional vector u(x) = (u1(x), . . . , uk(x)) = PT

1 x . The distrib-
ution of X then lies in V in the sense that (i) P(X ∈ V ) = 1 and (ii)
for all non-zero x ∈ V ,

xT �x = u(x)T Dλu(x) > 0,

where Dλ is the k× k diagonal matrix with (i, i) element equal to the
positive eigenvalue Dii ; in other words, Dλ is the k×k matrix formed
by eliminating all the zero column and row vectors of D. Furthermore,
setting U = u(X) it may be shown that U ∼ Nk(μU , Dλ), where
μU = P1μ, and U has pdf

fU (u) = 1√
(2π)k |Dλ|

e−
1
2 (u−μU )T D−1

λ (u−μU ).

�

We illustrate this kind of dimensionality reduction in Example 17.2 on p. 500.

5.5.3 If X and Y are jointly multivariate normal
then the conditional distribution of Y given X
is multivariate normal.

In Section 4.2.2 we introduced the bivariate normal distribution for a pair of random
variables X and Y and in Section 4.2.4 we discussed the conditional expectation
E(Y |X = x), which is the regression function. We now generalize this to the case
in which X and Y are random vectors. Let us suppose X and Y are, respectively,
m1-dimensional and m2-dimensional; they are m1 × 1 and m2 × 1 vectors. Let us
define U to be the concatenation of these two vectors,

U =
(

X

Y

)

with mean μ = E(U ). Let us partition the components of μ so that they correspond
to E(X) and E(Y ), and let us use subscripts a and b to indicate this partitioning:

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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μ =
(
μa

μb

)

so that μa = E(X) and μb = E(Y ). In this subsection we will partition matrices in
the same way, separating the first m1 rows and columns from the last m2 rows and
columns based on these subscripts. Thus, we write the variance matrix � = V (U )

as

� =
(

�aa �ab

�ba �bb

)
(5.19)

so that V (X) = �aa and V (Y ) = �bb.
The generalization of the normal regression results in Section 4.2.4 is the follow-

ing.

Theorem With the definitions above, if X and Y are jointly m-dimensional mul-
tivariate normal, then Y |X = x is m2-dimensional multivariate normal with mean
vector and variance matrix given by

μb|a = μb +�ba�−1
aa (x − μa) (5.20)

�b|a = �bb −�ba�−1
aa �ab. (5.21)

Outline of Proof: The theorem is proved by writing the quadratic
exponent in the multivariate normal pdf of U , breaking it into pieces
corresponding to the a and b components in the partitioning above,
using the definition of conditional density, and then simplifying while
applying the following matrix identity:

(
A B
C D

)−1

=
(

E −A−1 B F−1

−F−1C A−1 F

)

where
E = (A − B D−1C)−1

and
F = (D − C A−1 B)−1 �

In carrying out calculations such as those used in proving the theorem above it is
helpful to define the precision matrix,

� = �−1,

which is partitioned as

� =
(

�aa �ab

�ba �bb

)
.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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It is not generally true that �bb = �−1
bb . Instead we have

�bb =
(
�bb −�ba�−1

aa �ab

)−1

�ba = −
(
�bb −�ba�−1

aa �ab

)−1
�ba�−1

aa

and by reversing the subscripts a and b we get the corresponding expressions for �aa

and �ab.
Now suppose X and Y are random variables, U is a random vector, and (U, X, Y )

is multivariate normal. Then, putting V (U ) = �aa and V (X, Y ) = �bb and applying
the theorem, we write the components of the 2× 2 matrix �b|a as

σX X |U = �b|a,11

σY Y |U = �b|a,22

σXY |U = �b|a,12.

We may then define the partial correlation of X and Y given U to be

ρXY |U = σXY |U√
σX X |U · σY Y |U

. (5.22)

The partial correlation ρXY |U measures the remaining linear dependence of X and
Y after conditioning on U . The sample partial correlation is the analogous quantity
based on the sample covariance matrix S. That is, if we define the sample covariance
matrix S as in (4.24) based on samples x1, . . . , xn , y1, . . . , yn and u1, . . . , un (where
u is the vector sample analogue of U ), and we then partition S as we partitioned
� in (5.19), we write

sX X |U = Sb|a,11

sY Y |U = Sb|a,22

sXY |U = Sb|a,12

and then the sample partial correlation of x and y given u is8

ρ̂XY |U = sXY |U√
sX X |U · sY Y |U

. (5.23)

The sample partial correlation in (5.23) is an estimate of the partial correlation9 in
(5.22).

8 It may be shown that ρ̂XY |U is equal to the correlation between the pair of residual vectors found
from the multiple regressions (see Chapter 12) of x on u and y on u.
9 In fact, ρ̂XY |U is the maximum likelihood estimate; maximum likelihood estimation is discussed
in Chapter 7.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Example 5.9 Network models from fMRI Many investigations have sought to
describe large-scale network activity across the brain based on fMRI, particularly dur-
ing a task-free “resting state.” Suppose many regions of interest (ROIs) are defined,
and let xt be the sum of the fMRI signals across all voxels in one particular ROI at
time t , for t = 1, . . . , T . Let us call this ROI1. Similarly, let yt be the sum of the
fMRI signals across all voxels in another ROI at time t , and let us call this ROI2.
Then the sample correlation ρ̂XY of the vectors (x1, . . . , xT ) and (y1, . . . , yT ) may
be used to define a “network connection” between ROI1 and ROI2. However, this
measure suffers from the defect that any association between activity at these ROIs,
represented by random variables Xt and Yt , could be due to their correlated activity
with other ROIs, which could be represented by a random vector Ut . That is, the
other ROIs could be connected to both ROI1 and ROI2, and then Xt and Yt would be
correlated even if there were no connection between ROI1 and ROI2. An alternative
is to use the sample partial correlations ρ̂XY |U to define each network connection.
Smith et al. (2011) conducted a large simulation study of fMRI network activity and
found that partial correlation could be effective at identifying connected network
nodes defined by ROIs. �



Chapter 6
Sequences of Random Variables

One of the great ideas in data analysis is to base probability statements on
large-sample approximations, which are often easy to obtain either analytically or
numerically. This short chapter contains the two fundamental results that produce
most of the methodology, the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT). Both concern the behavior of the sample mean X̄ =∑n

i=1 Xi . These
theorems form a foundation for much data analytic theory because many statistical
functions may be either rewritten or approximated in terms of sample means.

While sample means are important, the power of the LLN and CLT reaches far
beyond means themselves to other summaries of the data. In general a numerical
summary of the data is called a statistic. That is, a statistic is scalar or vector-
valued function defined on the set of possible data values. For example, a regression
coefficient, i.e., the slope of a least-squares fitted line, is a statistic. Many statistics
may be written, at least approximately, as some function of a sample mean. This often
produces approximate normality of the statistic which, as we will see in Chapters 7
and 8, becomes the basis for statistical inferences, such as confidence intervals and
significance tests.

6.1 Random Sequences and the Sample Mean

We need a crucial piece of preliminary terminology: if X1, X2, …, Xn are drawn
independently from the same distribution, then X1, X2, …, Xn is said to form a
random sample from that distribution, and the random variables Xi are said to be
independent and identically distributed (i.i.d.). This section is about means computed
from random samples (sets of i.i.d. random variables). Let μ = E(Xi ). The LLN
says that X̄ gets arbitrarily close to μ as n increases indefinitely. The CLT says that
the distribution of X̄ becomes arbitrarily close to a normal distribution as n increases
indefinitely. Similar results hold for many other data summaries, as well (because they
may be written in terms of sample means). They are extremely important because
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they allow calculations based on normality, such as those in Section 5.3.1, to be
applied, producing simple and useful probability statements.

In analyzing the behavior of the sample mean, the first point to recognize is that
drawing a new sample would produce a new value of the sample mean, so that if we
were to repeat the process of drawing a new sample many times, we would observe
variability in the sample mean. In Example 5.7, p. 117, for example, we described
some data on re-learning time from Ebbinghaus (1885), and noted that he examined
84 means, each of which was obtained by averaging the re-learning time across 6 lists
of trigrams. Each mean was slightly different: they exhibited variation. The second
point is that, typically,1 the variation in the sample mean is smaller than that in the
original data, and it decreases with increasing sample size.

Example 3.4 (continued from p. 46) Figure 3.2 displays a histogram of 60 spike
counts from a motor cortical neuron during a reaching task. The mean among these 60
counts is 13.6 spikes. (The time interval was 600 ms, so this neuron’s mean firing rate
was 22 spikes per second.) Imagine drawing one spike count at random from among
the 60, and doing this repeatedly. The histogram gives a sense of the variability we
would see in these repeated random draws. Now suppose instead we were to draw 4
spike counts at random, and compute their mean, and then repeat this process many
times. Because it would be likely that some of the 4 values would be bigger than 13.6,
and some would be less, a mean of these 4 values would tend to be closer to 13.6
than any single random value would be—in other words, the mean of 4 observations
would tend to exhibit less variability than did the original observations themselves.
We can see this by considering the first 12 of the spike counts:

16 12 14 9 9 4 12 14 13 13 17 16

The mean count among these 12 is 12.4 spikes and the standard deviation is 3.7
spikes. Now consider the remaining 48 spike counts:

21 16 16 10 12 15 11 11 8 26 12 12
18 13 13 12 8 16 14 12 7 13 12 14
14 16 10 11 7 17 15 14 16 10 13 13
14 10 14 15 16 17 12 18 32 11 19 13

The data have been arranged in 12 columns of length 4 in order to consider
the column means. In this case, the mean of these 12 means is 13.9 spikes and the
standard deviation is 1.8 spikes: we find that the variation among the 12 means
(the standard deviation of 1.8) is smaller than the variation among the 12 raw
counts (the standard deviation of 3.7). �

The points illustrated by these motor cortical spike counts in Example 3.4 are (i)
if we calculate the mean of a set of observations (a set of 4 trials) repeatedly for

1 There are exceptions to this rule if the expectation does not exist, which can occur when the tails
of the pdf fall to zero very slowly. An example is the Cauchy distribution, which is the t distribution
on 1 degree of freedom.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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new data (12 repetitions of the sets of 4) we observe variation among the means,
and (ii) the variation among the means (the standard deviation of 1.8) is smaller
than the variation we would typically see among the raw spike counts (the standard
deviation of 3.7). However, this illustration was intended only to set the stage for
an entirely theoretical discussion. In this section we consider the random variable
X̄ . Its variation may be quantified by its standard deviation σX̄ . Notice that this is
not the same thing as the standard deviation σX of the original data. In fact, σX̄
decreases as the sample size increases; qualitatively, the larger the sample size, the
less variation in the sample mean. Specifically, we have σX̄ = σX/

√
n. After giving

this result in Section 6.1.1 we present the law of large numbers in Section 6.2.1 and
the Central Limit Theorem in Section 6.3.1. These theorems require the use of some
mathematics for dealing with sequences of random variables, which is the topic of
Section 6.1.2.

6.1.1 The standard deviation of the sample mean decreases
as 1/

√
n.

If we repeatedly draw random samples X1, . . . , Xn , and from them repeatedly com-
pute X̄ , the value of X̄ will fluctuate: it will be a random variable. The dominant
features of the distribution of X̄ are captured by its mean and variance, which may
be computed easily from the formulas (4.1) and (4.5).

Theorem If X1, X2, . . . , Xn form a random sample from a distribution having
mean μX and standard deviation σX then the expectation and standard deviation
of the mean X̄ are

(i) E(X̄) = μX , and
(ii) σX̄ = σX/

√
n.

Proof: The expectation E(X̄) is immediate from (4.1). For the variance, in formula
(4.5) plug in V (Xi ) = σ2

X to get V (X1 + X2 + · · · + Xn) = nσ2
X . Then take

square-roots and, remembering that X̄ = (X1 + X2 + · · · + Xn)/n, apply (3.6). �

The statement that E(X̄) = μX says that the average amount by which X̄ exceeds
μ is equal to the average amount by whichμ exceeds X̄ . The statement σX̄ = σX/

√
n

quantifies how rapidly the fluctuations in X̄ diminish as a function of sample size.
It is sometimes called “the square-root of n law.” A consequence of diminishing
fluctuations is that X̄ must tend to get closer and closer to μX . This is the LLN, given
in Section 6.2.1.

These results may be illustrated in the case of Bernoulli trials, where Xi is either
0 or 1. If p = P(Xi = 1) = .4 and n = 4 the sum

∑n
i=1 Xi takes possible values of

0, 1, 2, 3, 4, with binomial probabilities .0625, .25, .375, .25, .0625. Thus, the mean X̄

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 6.1 The pdf of the binomial mean X̄ when p = .4 for four different values of n. As n increases
the distribution becomes concentrated (σX̄ becomes small), with the center of the distribution getting
close to μX = .4 (the LLN). In addition, the distribution becomes approximately normal (the CLT).

takes possible values of 0, .25, .5, .75, 1, also with probabilities .0625, .25, .375, .25,
.0625. The pdf is plotted in Fig. 6.1. The pdfs when n = 10, 25 and 100 are also shown
there. For n = 4 the distribution is relatively wide, but as n increases it gets more
concentrated. Note that in the case of the binomial we may write Y =∑n

i=1 Xi , so
that Y ∼ B(n, p) and then X̄ = Y/n. Using the binomial formula V (Y ) = np(1− p)

(see p. 107) together with the general formula V (aY ) = a2V (Y ) (see Eq. (3.9)) we
get σX̄ =

√
p(1− p)/n.

For the square-root of n law to hold, the assumption of independence among the
random variables X1, . . . , Xn is crucial. Suppose instead that Cor(Xi , X j ) = ρ,
with ρ > 0, for i �= j and let σ2 = V (Xi ) for all i . A straightforward calculation
shows that

V (X̄) = σ2

n
+ n − 1

n
ρσ2 (6.1)

so that the variance does not vanish but instead reaches an asymptote: as n→∞we
have

V (X̄)→ ρσ2. (6.2)

Thus, even a small positive correlation among the variables destroys the result.

Details: For i �= j we have Cov(Xi , X j ) = ρσ2 and then

http://dx.doi.org/10.1007/978-1-4614-9602-1_3


6.1 Random Sequences and the Sample Mean 141

V (X̄) = 1

n2

⎡

⎣
n∑

i=1

V (Xi )+ 2
∑

i< j

Cov(Xi , X j )

⎤

⎦

= σ2

n
+ n − 1

n
ρσ2. �

Example 6.1 Neural spike count correlation could limit fidelity Shadlen and
Newsome (1998) noted that common input to neurons can produce small, positive
correlations in spike counts, and that this has been observed in recordings from
primate cortex. As a consequence, they suggested, the information transmitted by
groups of neurons acting together may be severely limited. The idea is that, according
to the conception of integrate-and-fire neural transmission, an ensemble of neurons
might transmit information to a downstream neuron based on their average spike
count over small time intervals. In recordings from the MT area of visual cortex,
correlations were estimated to be, on average, approximately ρ = .12. Shadlen and
Newsome used the formula (6.2), stating that the asymptote in mean spike counts
would be reached, approximately, by about 50–100 neurons. They concluded that
“50–100 neurons might constitute a minimal signaling unit in cortex.”

Details: Let R = V (X̄)/σ2 and suppose we want to have the variance
V (X̄) be within 10 % of its asymptotic value. Letting ε = 1/10 we set
R = ρ(1+ ε) and solve for n. From (6.1) we have

R = 1− ρ
n
+ ρ

and solving for n we get

n = 1− ρ
R − ρ .

We now insert R − ρ = ρε to get

n = 1− ρ
ρ

1

ε
.

With ρ = .12 and ε = .1 this gives n ≈ 73, supporting the observation
made by Shadlen and Newsome.

�

Various rebuttals to the argument in Example 6.1 have appeared in the literature,
the most convincing being simply that neural computations could be more compli-
cated than simple summation (averaging of spike counts), and more complicated
combinations of inputs need not suffer from this difficulty. In any case, it is impor-
tant to recognize the fundamental fact that small correlations can severely limit the
information in a mean.
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6.1.2 Random sequences may converge according to several
distinct criteria.

In discussing the large-n behavior of a sequence of random variables X1, X2, . . . ,

Xn, . . . we need a formalism for two kinds of statements. First, we want to be able
to say that the distribution of Xn is approximately of a particular form. We do this
by examining the cdfs. Suppose that the variables X1, X2, . . . , Xn, . . . have corre-
sponding cdfs F1(x), F2(x), . . . , Fn(x), . . . and suppose further that the particular
distribution that we want to consider an approximating distribution has cdf F(x). We
may then formalize the approximation by giving a precise meaning to the expression
Fn(x) ≈ F(x) for n large, meaning that Fn(x) is approximately equal to F(x) for
n large. We make this precise using limits. Recall that a sequence of numbers xn ,
for n = 1, 2, . . ., converges to x if for every ε > 0 we have |xn − x | < ε for all
sufficiently large n. This is written limn→∞ xn = x .

Definition Suppose X1, X2, . . . , is a sequence of random variables and Fn is the
cdf of Xn . We say that Xn converges in distribution to a continuous random variable
X with cdf F if

lim
n→∞ Fn(x) = F(x)

for all x . More generally, Xn converges in distribution to a random variable X with
cdf F (which may or may not be continuous) if

lim
n→∞ Fn(x) = F(x)

for all x at which F is continuous. We often write this as

Xn
D→ X.

In cases in which X follows a particular well-known distribution we put the distrib-
ution on the right-hand side; e.g., if X ∼ N (0, 1) we write

Xn
D→ N (0, 1).

The second kind of statement we want to make has to do with the case in which
the sequence of random variables X1, X2, . . . , Xn, . . . gets progressively closer to a
number, i.e., a fixed constant c rather than having some probability distribution. This
is needed for the LLN. We may think of the constant as a probability distribution
that has collapsed down to a point: we say that a random variable X is degenerate,
meaning that it is identically equal to a constant c, when P(Y = c) =1. In this
situation the cdf of X is F(x) = 0 for x < c and F(x) = 1 for x ≥ c.

Definition Suppose X1, X2, . . . , is a sequence of random variables and Fn is the cdf
of Xn . We say that Xn converges in probability to c if Xn converges in distribution
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to the degenerate random variable X for which P(X = c) = 1. We often write this
as

Xn
P→ c.

The notion of convergence in probability is more general than the definition above
indicates, but we do not need the general definition. There are also two stronger
notions of convergence, convergence in quadratic mean and convergence with prob-
ability one—but again we do not need these here.

Details: In applying convergence in probability, the criterion that is
used is the following.

Theorem A sequence X1, X2, . . . converges in probability to c if and
only if for every ε > 0, P(|Xn − c| > ε)→ 0 as n→∞.
Proof: This involves straightforward manipulations using the defini-
tion. The details are omitted. �

6.2 The Law of Large Numbers

6.2.1 As the sample size n increases, the sample mean converges to
the theoretical mean.

The LLN is an accessible result, in the sense that its statement may be understood
without advanced mathematics. The proof is not especially difficult, and we include
it here, but we will regard it as an inessential detail.

Theorem: The Law of Large Numbers If X1, X2, . . . is a sequence of i.i.d.
random variables having a distribution with mean μX and standard deviation
σX , then X̄ converges in probability to μX , i.e.,

Xn
P→ μX .

The form of the LLN given here is sometimes called the “weak” law of large
numbers. The strong law instead says that convergence occurs with probability 1.
However, considerably more machinery is needed in order to say this in precise
mathematical terms. Intuitively, “with probability 1” means that the convergence is
certain to occur.

Details: The proof will require the following lemma.
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Lemma (Markov’s Inequality) Let Y be a positive random variable
on (A, B) with μY = E(Y ) <∞. Then for any positive α,

P(Y > α) <
μY

α
.

Proof of Lemma: Let us assume that Y is continuous. We have

P(Y > α) =
∫ B

α
fY (y)dy

and

α

∫ B

α
fY (y)dy ≤

∫ B

α
y fY (y)dy.

Combining these, and continuing, we then have

αP(Y > α) ≤
∫ B

α
y fY (y)dy

≤
∫ α

A
y fY (y)dy +

∫ B

α
y fY (y)dy

=
∫ B

A
y fY (y)dy = E(Y ).

The case in which Y is not continuous may be handled by an analogous
argument. �
Proof of Theorem: We need to show that for any positive ε we may
find n sufficiently large that P(|X̄ − μX | > ε) becomes arbitrarily
close to 0. We have P(|X̄ − μX | > ε) = P((X̄ − μX )2 > ε2). Let
Y = (X̄ − μX )2, note that E(Y ) = σ2

X/n, and apply the Lemma to
get

P(|X̄ − μX | > ε) <
σ2

ε2n
.

This shows that for sufficiently large n, P(|X̄ − μX | > ε) becomes
arbitrarily close to 0. �

6.2.2 The empirical cdf converges to the theoretical cdf.

We introduced the empirical cdf F̂n(x) in Section 3.3 and noted there that, for large
n, it approximates the cdf FX (x) and illustrated the phenomenon in Fig. 3.9. We now
relate this behavior to the LLN.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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In the proof we need the following definition: for a random variable X , we let the
indicator variable I{X≤x} be 1 if X ≤ x and 0 otherwise.

Theorem If X1, X2, . . . is a sequence of i.i.d. random variables then, for every x ,
F̂n(x) converges in probability to F(x).

Proof: Another way to think about F̂n(x) is that it counts the number
of random variables Xi in the random sample X1, . . . , Xn for which
Xi ≤ x , and then divides by n. This is the same thing as adding 1/n
for each of the Xi variables that are less than x . Mathematically, we
express this counting operation using indicator variables. Consider a
sequence X1, X2, . . . of i.i.d. random variables with cdf F(x). We
may write the empirical cdf in the form

F̂n(x) = 1

n

n∑

i=1

I{Xi≤x}.

We now use

E(I{Xi≤x}) = 1 · P(Xi ≤ x)+ 0 · P(Xi > x)

= P(Xi ≤ x) = F(x)

and apply the LLN. �
In addition to supplying the theoretical foundation for P-P and Q-Q plots, as

discussed in Chapter 3, this result is also the starting point for the bootstrap method
of statistical inference, which we cover in Chapter 9.

6.3 The Central Limit Theorem

6.3.1 For large n, the sample mean is approximately normally
distributed.

The LLN concerns only the large-sample tendency of X̄ to get arbitrarily close
to μX . The CLT describes the large-sample probability distribution of X̄ . Actually,
we are speaking a bit loosely here: the LLN says that the distribution of X̄ becomes
degenerate at μX ; to get fluctuations that are described, approximately, by a normal
distribution we have to introduce rescaling. Instead of X̄ , the CLT describes the
behavior of the random sequence of variables Zn , in which X̄ is standardized by
subtracting its mean and dividing by its standard deviation (the standard deviation
of X̄ being σX/

√
n).

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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The Central Limit Theorem: Suppose X1, X2, . . . is an i.i.d. sequence of
random variables having mean μX and standard deviation σX , and let Zn =√

n(X̄−μX )/σX . Then Zn converges in distribution to a normal random variable
having mean 0 and variance 1, i.e.,

Zn
D→ N (0, 1).

Proof Outline: The CLT may be proved using the Fourier transform.
The Fourier transform of a pdf is called the characteristic function
of the distribution. If X1, X2, . . . , Xn, . . . is a sequence of random
variables with characteristic functions φn(t), for n = 1, 2, . . ., and
φn(t)→ φ(t) for all t with φ(t) being a characteristic function of the
distribution of a random variable X , then Xn converges in distribution
to X ; this basic result is a version of the continuity theorem. Let us
take φn(t) to be the sequence of characteristic functions of the distri-
butions of the normalized sample means Zn . Calculations show that
φn(t) converges to the characteristic function of a N (0, 1) distribution;
therefore, by the continuity theorem, Zn converges in distribution to
a N (0, 1) random variable. �

The effects of the LLN and CLT are illustrated in Fig. 6.1. For n = 4 the distribu-
tion of X̄ does not look very close to normal. However, as n increases the distribution
of X̄ gets more tightly concentrated near the mean μX = .4 (a consequence of the
LLN) and it looks more and more normal (the CLT).

What we have just done is looked at the distribution of X̄ for Bernoulli trials for
several values of n with p = .4. The distribution of n X̄ is binomial and the picture
of its distribution would look just like the pictures we had for the distribution of X̄
except that the x-axis would be multiplied by n. In particular, as n gets large we
see that the distribution looks normal. This effect of the CLT may be considered an
explanation for the normal approximation to the binomial.

In fact, there are much more general versions of the CLT. We do not want to build
up the machinery needed for a general theorem, but it is worth stating one result in
an imprecise form.

Roughly speaking, if X1, X2, . . . , Xn are independent random variables, possi-
bly having different distributions but with no individual Xi making a dominant
contribution to the mean X̄ , then for n sufficiently large, the distribution of X̄
is approximately normal with mean E(X̄) and standard deviation

√
V (X̄).

The “no dominant contribution” phrase may be made precise as the Lindeberg
condition, and the CLT then follows (see Billingsley 1995, Section 27). This version
of the CLT helps to explain why the normal distribution arises so often in statistical
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theory, and also why it seems to fit, at least crudely, so many observed phenomena.
It says that whenever we average a large number of small independent effects, the
result will be approximately normally distributed.

A detail: Another way to interpret the CLT uses entropy, as defined
in Eq. (4.33). Among all distributions having mean μ and standard
deviation σ, the N (μ,σ2) distribution is the most disorderly possi-
ble, in the sense of having maximal entropy. The CLT says that as
the sample size gets very large the distribution of the sample mean
becomes as disorderly as possible. This characterization provides an
alternative way to understand and prove the CLT. See Madiman and
Barron (2007).

There are also versions of the CLT for non-independent variables, though they
are considerably more complicated. Those results typically require the sequence to
be stationary, as defined on p. 515 of Chapter 18, and further limit the dependence
among the random variables Xi and X j within the sequence as j − i increases. See
Billingsley (1995, Theorem 27.4) and also Francq and Zakoian (2005).

6.3.2 For large n, the multivariate sample mean
is approximately multivariate normal.

The multivariate version of the CLT is analogous to the univariate CLT. We begin with
a set of multidimensional samples of size n: on the first variable we have a sample
X11, X12, . . . , X1n , on the second, X21, X22, . . . , X2n , and so on. In this notation,
Xi j is the j th observation on the i th variable. Suppose there are m variables in all,
and suppose further that E(Xi j ) = μi , V (Xi j ) = σ2

i , and Cor(Xi j , Xkj ) = ρik for
all i = 1, . . . , m, j = 1, . . . , n, and k = 1, . . . , m. As before, let us collect the
means into a vector μ and the variances and covariances into a matrix �. We assume,
as usual, that the variables across different samples are independent. Here this means
Xi j and Xhk are independent whenever i �= h. The sample means

X̄1 = 1

n

n∑

j=1

X1 j

X̄2 = 1

n

n∑

j=1

X2 j

...

X̄m = 1

n

n∑

j=1

Xmj

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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may be collected in a vector

X̄ =

⎛

⎜⎜⎜⎝

X̄1

X̄2
...

X̄m

⎞

⎟⎟⎟⎠ .

Multivariate Central Limit Theorem: Suppose X̄1, X̄2, . . . , X̄m are means
from a set of m random samples of size n, as defined above, with the covariance
matrix � being positive definite. For any m-dimensional vector w define

Zn(w) = √nwT �−
1
2 (X̄ − μ). (6.3)

Then for every nonzero m-dimensional vector w, Zn(w) converges in distribu-
tion to a normal random variable having mean 0 and variance 1.

More loosely, the multivariate CLT says that X̄ is approximately multivariate
normal with mean μ and variance matrix 1

n �. As in the univariate case, there are
much more general versions of the multivariate CLT.



Chapter 7
Estimation and Uncertainty

7.1 Fitting Statistical Models

The examples in previous chapters, involving experimental settings ranging from
human and animal behavior, to neuroimaging, EEG and EMG, neural spike trains,
and in vitro recording, have illustrated the way statistical models describe regularity
and variability of neural data. All of these models involve free parameters. In Example
1.5, on p. 11, we reviewed the use of least squares in demonstrating an approximately
linear relationship between conduction velocity and nerve diameter. Least squares is
easy to understand and often works well for models of the form

Yi = f (xi)+ εi.

But what about other situations? In Fig. 3.8 of Example 3.5, on p. 60, we displayed fits
of Gamma(α,β) distributions to histograms of ion-channel opening durations, but we
did not say how the parametersα andβ were chosen. A näive approach to the problem
of using the data to determine suitable values of parameters might propose a particular
method and argue for it on intuitive grounds. According to the doctrine of statistics,
however, principles may be introduced and used in analyzing the performance of
alternative methods. By demonstrating the properties of solutions under general
conditions, statistical theory brings coherence to an otherwise bewildering array
of disparate problems. In this chapter, together with Chapters 8 and 9, we present the
key ideas.

We start with a traditional, though somewhat artificial, separation of two aspects
of the fitting problem that are intimately connected in practice: estimation of para-
meters and assessment of uncertainty. In Section 7.2 we formalize the process of
estimation and then give two alternative methods, the method of moments and max-
imum likelihood (ML). In the 1920s Ronald Fisher proposed maximum likelihood
and demonstrated that it is optimal quite generally for large sample sizes. Fisher also
showed how uncertainty about the answer can be assessed, and an alternative perspec-
tive was provided at about the same time by Harold Jeffreys using Bayes’ Theorem.

R. E. Kass et al., Analysis of Neural Data, 149
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_7,
© Springer Science+Business Media New York 2014
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It took roughly 50 more years to refine the early concepts to its full-fledged modern
incarnation and, in fact, new variants of algorithms continue to be developed so that it
may be applied to ever more complicated situations. In contexts where finitely-many
parameter values completely specify1 the statistical model, implementation of ML
estimation is conceptually straightforward while, from a theoretical perspective, ML
estimation is also provably unbeatable—no other method offers better performance,
for large samples. ML estimation has, therefore, become the dominant approach to
parameter estimation. We will review basic properties and uses of ML estimation in
Chapter 8.

In Section 7.3 we discuss confidence intervals. In Chapter 1, on p. 13, we described
the use of a confidence interval to assess the uncertainty associated with responses
of patient P.S. when forced repeatedly to choose between pictures of burning and
non-burning houses; we noted that an approximate 95 % confidence interval for her
propensity to choose the non-burning house was (.64, 1.0) and we concluded it was not
very likely that she was choosing them with equal probabilities (a propensity of .5);
instead, she apparently saw the two complete pictures without conscious awareness
of processing their left ends, which is where the fire appeared. As a data-analytic tool,
confidence intervals have become straightforward to use in many, varied situations.
We treat several simple yet important problems in Section 7.3 and supplement with
more general methods in Chapters 8 and 9. As one thinks harder about interpretation,
the subject gets somewhat more subtle. We review the issues in Sections 7.3.8 and
7.3.9. On the other hand, confidence intervals are fundamental to statistical practice
and, from a contemporary standpoint, they seem very natural. Seen in historical
context, the introduction of confidence intervals by Jerzy Neyman in the 1930s was
quite ingenious, and a giant leap forward.

One of the ways confidence intervals are found in conjunction with maximum
likelihood is to apply the bootstrap, which is discussed in Chapter 9. As additional
motivation for the discussion in this and subsequent chapters, here is a concrete
example where these methods have been used in fitting a statistical model of mental
processes.

Example 7.1 A Model of Visual Attention Experiments on visual attention often
study the ability of subjects to see and remember multiple objects that are exposed
to them for a very short time. Following Sperling (1967), Bundesen and colleagues
developed a quantitative theory of visual attention (Bundesen, 1998) according to
which, objects in the visual field are compared with representations in visual memory,
and if the comparison is completed prior to the end of visual exposure, the object
is recognized. In this theory the time taken to process and store an object identity
is a random variable. For object i call this random variable Xi. The processing is
considered to begin after a latency of length t0, so that if t is the total time an object
is displayed then the ith object is recognized if Xi ≤ t − t0. Bundesen assumed
Xi ∼ Exp(λi). Letting fi(x) and Fi(x) be the Exp(λi) pdf and cdf, for exposure
of length x = t − t0, Fi(t − t0) is the probability of object recognition success

1 From the point of view of the mathematical theory, a nonparametric method does not eliminate
the parameters but rather makes them infinite dimensional.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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and 1 − Fi(t − t0) is the probability of object recognition failure. Suppose S is the
stimulus set and let R denote some particular subset of objects that are recognized.
If the subject’s memory capacity is not exceeded, and if recognition of object i is
independent of recognition of all other objects (and this is true for every i), then the
probability that the subject will recognize all objects in R, and fail to recognize all
objects not in R (i.e., fail to recognize those in the complement, which may be written
S − R), is given by

PS(R) =
∏

i∈R

Fi(t − t0)
∏

j∈S−R

(1− Fj(t − t0)). (7.1)

This model has several unknown parameters (the encoding ratesλi, the latency t0, and
the memory capacity) which must be determined in order to compute the probabilities
and compare them to data. Figure 7.1 displays fits of the model to data from three
subjects. The model fitting was performed by the method of maximum likelihood,
and uncertainties associated with each of the parameters of interest may be obtained
by bootstrap methods. See Kullingsbaek (2006). �

7.2 The Problem of Estimation

In order to fit a model to data, a parameter or set of parameters needs to be determined.
Following a convention in the statistical literature, we use θ to denote a generic
parameter. In much of our initial discussion we will focus on the case of a single,
scalar parameter, but in most real-world problems θ becomes a vector. For example,
in fitting a Gamma(α,β) model we would be taking θ = (α,β) and we would speak
of “the parameter” θ in place of “the parameters”α and β. The problem of estimation
is to determine a method of estimating θ from the data. To constitute a well-defined
method we must have an explicit procedure, that is, a formula or a rule by which
a set of data values x1, x2, . . . , xn produces an estimate. We consider an estimator
to have the form T = T(X1, X2, . . . , Xn), i.e., the estimator is a random variable
derived from the random sample. The properties of an estimator may be described
in terms of its probabilistic behavior.

Before presenting the method of moments and maximum likelihood, we need to
make two comments on notation. First, when we write T = T(X1, . . . , Xn) we are
using capital letters to indicate clearly that we are considering the estimator to be
a random variable, and the terminology distinguishes the random “estimator” from
an “estimate,” the latter being a value the estimator takes. Nonetheless, neither we
nor others in the literature are systematically careful in making this distinction;
it is important conceptually, but some sloppiness is tolerable. Second, we often
write θ∗ or θ̂ for the value of an estimator, so we would have, say, T = θ̂. The
latter notation, using θ̂ to denote an estimate, or an estimator, is very common in
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Fig. 7.1 Data from three subjects, together with fits of a model for probability of letter identification
as a function of exposure duration. Adapted from Bundesen (1998).

the statistical literature. Sometimes, however, θ̂ refers specifically to the maximum
likelihood estimator (MLE). This is another potential source of confusion, which the
context should clarify.
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7.2.1 The method of moments uses the sample mean
and variance to estimate the theoretical mean
and variance.

We have already indicated that ML is the dominant approach to estimating a para-
meter vector θ. For various reasons, however, other methods are sometimes used. In
this section we present one of these other methods, the method of moments, which
preceded the development of ML and is still used for some purposes. The idea is
simple: to fit a probability distribution to a set of data we equate the theoretical
mean and variance to the sample mean and variance and then solve for the unknown
parameters.

Illustration: Fitting a gamma distribution On p. 124 we noted that the mean and
variance of a Gamma(α,β) random variable are

μ = α

β

σ2 = α

β2 .

We may solve these for β and α: dividing the first equation by the second we get

β = μ

σ2 ;

squaring the first and dividing by the second we get

α = μ2

σ2 .

We then substitute x̄ and s2 for μ and σ2 to obtain the method of moments estimator:

β∗ = x̄

s2

α∗ = x̄2

s2 .

�
The method of moments is, in some cases, like the gamma, quite easy to apply.

In principle, higher-order moments could be used (e.g., E(
∑

(Xi − μ)3) could be
equated to the sample analogue).



154 7 Estimation and Uncertainty

7.2.2 The method of maximum likelihood maximizes
the likelihood function, which is defined
up to a multiplicative constant.

To introduce maximum likelihood estimation, let us begin by framing the estimation
problem concretely, using the binomial, and let us write the binomial pdf in the form

f (x|θ) =
(

n

x

)
θx(1− θ)n−x

which was previously denoted by f (x) = P(X = x), with p replacing θ. Here the
notation f (x|θ) is used to imply that we are examining the pdf of X given the value
of θ. The binomial pdf describes the probabilities to be attached to varying possible
values X = x for a given fixed value of θ. That is, once we plug in a value of θ we
have completely determined the pdf for all values of x. The problem of estimation,
however, attempts to find a sensible guess at θ given that X = x has been observed.
It thus reverses the situation: instead of assuming a value for θ and finding values of
x, we must assume a value of X = x and come up with a value of θ. In this sense,
it involves an inverse or inductive form of reasoning. The method of maximum
likelihood chooses the value θ̂ of θ that assigns to the observed data x the highest
possible probability:

f (x|θ̂) = max
θ

f (x|θ).

In the binomial problem we will, below, show that θ̂ = x/n. In other words, maximum
likelihood estimates the theoretical proportion (or propensity) θ by the observed
proportion x/n.

A detail: Why do we call θ a theoretical proportion? We have that X/n
is the mean of n Bernoulli trials, each having probability θ of being 1.
By the law of large numbers

X

n
P→ θ

so that θ is, roughly speaking, the proportion of 1s observed in infi-
nitely many trials. In this sense we can say that θ is a theoretical
proportion. �

To understand the maximum likelihood idea better we consider what the pdf f (x|θ)
tells us about the various possible values of θ. To do this we invert its functionality by
thinking of f (x|θ) as a function of θ rather than of x. That is, having observed X = x,
we fix x in the pdf f (x|θ) and then consider how each different choice of θ produces
a different probability f (x|θ). We do not regard this as an intuitively obvious thing to
do. It becomes much more intuitive from a Bayesian point of view, as we mention in
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Fig. 7.2 Comparison of pdf f (x|θ) when viewed as a function of x with θ fixed at θ = .5 (on
left) or of θ with x fixed at x = 1 (on right). On the right-hand side, the pdf is evaluated for 99
equally-spaced values of θ from .01 to .99 .

Section 7.3.8. For now we ask the reader to bear with us and make sure to understand
what we mean.

The distinction we are trying to draw here, between f (x|θ) as a function of x and
f (x|θ) as a function of θ is illustrated in Fig. 7.2, which displays the binomial pdf
viewed both ways when n = 4: first (on the left) as a function of x when θ = .5
and then (on the right) as a function of θ when x = 1. First, when θ = .5, the pdf is
evaluated for five possible values of x: 0, 1, 2, 3, 4. These are all the possible values
of x. (When n = 4, these are all the possible values of x regardless of the value of θ,
as long as it is a permissible value, i.e., it is between 0 and 1, which is often written
θ ∈ (0, 1).) When x = 1 and the pdf is regarded as a function of θ there is a whole
continuum of possible values of θ in (0, 1). In the second part of the figure we set
x = 1 and the pdf is evaluated for 99 values of θ, among all the possibilities for
θ ∈ (0, 1). There is nothing of interest about the contrast between the picture on the
left and the picture on the right except that the two representations are conceptually
different.

When the pdf is considered as a function of the parameter θ rather than the values
x of the random variable, it is called the likelihood function. We will denote it by
L(θ). (Other notations are variations on this; all authors use some form of the letter
“L.”) The maximum likelihood estimator (MLE) is the value of θ that maximizes
L(θ). We will denote it2 by θ̂.

So far, we have discussed the pdf and likelihood based on a single (scalar) ran-
dom variable. The concept generalizes immediately to vectors. In fact, one would
typically have a vector of observed data x = (x1, . . . , xn) that has a joint pdf
f (x|θ) = f (x1, . . . , xn|θ). In the subsequent parts of this chapter we will take x
to be a vector, often corresponding to a sample of data, and regard as a special case
any application when it becomes a scalar.

Note that the value of θmaximizing L(θ) is the same as the value of θmaximizing
c · L(θ) for any positive constant c. We therefore always understand the likelihood
function to be defined only up to a positive constant. Thus, we may write L(θ) in

2 There is some potential for confusion because, as we said on p. 152, in the literature the “hat”
sometimes denotes a generic estimator and sometimes specifies the MLE.
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proportionality form, using the proportionality symbol (∝), as

L(θ) ∝ f (x|θ)

and choose the constant for arithmetic convenience.

Illustration: Binomial likelihood We may write the binomial likelihood function as

L(θ) = θx(1− θ)n−x.

Here, in going from the pdf to the likelihood function we have omitted the factor
(n

x

)

because it does not involve θ. �
From the second part of Fig. 7.2 it is apparent that when x = 1 the MLE is θ̂ = .25,

which is an instance of the formula θ̂ = x/n. To find the maximum, more generally,
some combination of analytic (calculus-based) and numerical methods may be used.
In the simplest problems, analytic methods suffice. In either case, however, it is
easiest to begin by taking logs, because the value maximizing log L(θ) is the same as
the value maximizing L(θ), and because the pdf typically has a product form which
is thereby converted to a sum. Suitably enough, the log of the likelihood function is
called the loglikelihood function. We denote it here by �(θ):

�(θ) = log L(θ).

Note that in writing a formula for �(θ) we may omit any additive terms that do not
involve θ, because these become multiplicative constants in L(θ) and do not affect
the maximization.

Illustration: Binomial MLE. To derive the general form θ̂ = x/n for the MLE we
begin with the loglikelihood function

�(θ) = x log θ + (n− x) log(1− θ)

where we have omitted the term log
(n

x

)
because it does not involve θ. To maximize

this function we set its derivative equal to zero and solve:

0 = �′(θ) = x

θ
− n− x

1− θ
so that

x(1− θ) = (n− x)θ
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which gives the solution

θ̂ = x

n
.

It is also easy to check that �′′(θ̂) < 0, which verifies that θ̂ is a maximum. �
Illustration: Normal MLE. Suppose we have a sample x1, . . . , xn from a N(θ,σ2)

distribution, where σ is known and the problem is to estimate θ. The ith normal
density has pdf

f (xi|θ) = 1√
2πσ

exp

(
− (xi − θ)2

2σ2

)

and the random variables X1, . . . , Xn are independent, so the joint pdf is

f (x1, . . . , xn|θ) =
n∏

i=1

f (xi|θ)

=
n∏

i=1

1√
2πσ

exp

(
− (xi − θ)2

2σ2

)
.

From this, the loglikelihood function is

�(θ) = −
n∑

i=1

(xi − θ)2

2σ2

= − 1

2σ2

n∑

i=1

x2
i − 2xiθ + θ2

= − n

2σ2 (θ2 − 2x̄θ)+ R

where R is a term that does not involve θ. Because the loglikelihood function is
defined only up to an additive constant, we have

�(θ) = − n

2σ2 (θ2 − 2x̄θ). (7.2)

Setting its derivative equal to 0 we obtain

0 = n

2σ2 (θ − x̄)

so that θ̂ = x̄. �
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7.3 Confidence Intervals

7.3.1 For scientific inference, estimates are useless
without some notion of precision.

In Example 1.4 P.S. preferred the non-burning house about 80 % of the time. However,
this information by itself is not enough to say anything useful about her preferences:
four out of five trials would also provide a preference for the non-burning house 80 %
of the time, as would 80 out of 100 trials. But four out of five is far different than 80
out of 100. With 100 trials we could say pretty accurately what her preference rate
is, while with four out of five it would not be clear that this is different than guessing.
In scientific contexts, an estimate is useless unless we have some idea how accurate
it is. One need not always drag around a standard error or confidence interval, and
it is common to speak in terms of estimates without stating uncertainty; however,
this convention assumes the uncertainty to be small relative to the size of the effects
under discussion. It is important to include a statement of uncertainty whenever the
uncertainty is non-negligible. In our judgment, inclusion of uncertainty should be
considered the rule rather than the exception. We keep returning to Example 1.4
precisely because 14/17 is intermediate between the obvious situations where one
doesn’t need uncertainty (80/100) and where the estimate is hopelessly uncertain
(4/5). Even a trained statistician might have some trouble saying correctly where
14/17 falls in this continuum without doing some calculations. So let us look at
14/17 = .82 and ask, “How much error is there in this estimate”?

At first glance it appears impossible to answer this question: if we knew θ then
the error in estimating it with θ̂ would be θ̂ − θ; but we don’t know θ, which is why
we are trying to estimate it. Nonetheless, even though we can not say precisely how
big the error is, we can use probability and say something about the likely magnitude
of error. This is usually quantified with the standard error. The idea begins with
the recognition that every estimator T = T(X1, X2, . . . , Xn) exhibits variation. That
is, if we were to examine T across many different samples we would get many
different values. Because X1, . . . , Xn are random variables having some probability
distribution, T is a random variable. A simple summary of the magnitude of the
variation of T is its standard deviation

σT =
√

V(T). (7.3)

This is almost, but not quite, the standard error of T . The problem with formula (7.3)
is that V(T) is typically not known and so itself must be estimated from the data. We
illustrate in the context of Example 1.4.

Example 1.4 (Continued, see p. 13) Let Y ∼ B(n, p) and note that the usual
estimator of p is the sample proportion T = p̂ = Y/n. Because V(Y) = np(1 − p)

we have V(T) = p(1− p)/n. Thus, we have the formula
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σT =
√

p(1− p)

n
. (7.4)

The formula in Eq. (7.4) quantifies the variation we can associate with the observed
proportion p̂ = 14/17 = .824. However, we can not compute a numerical value
for σT from Eq. (7.4) because we do not know what value of p to use. The obvious
solution is to substitute p̂ for p in Eq. (7.4). When we do this we obtain the standard
error for the binomial proportion

SE(p̂) =
√

p̂(1− p̂)

n
. (7.5)

Applying this to the data from P.S. we get

SE =
√

14
17 (1− 14

17 )

17
= .092.

We then typically write the estimate in the form .824± .092, with the ± indicating
that the likely variability in the estimate is .092. When, instead, we write p̂ ± 2SE
we get the confidence interval (.64, 1.0), reported on p. 13. �

The general procedure for computing the standard error is, in essence, the same
as in the binomial case. To emphasize the substitution of the estimated parameter for
the unknown parameter we define the standard error of an estimator T to be of the
form

SE(T) =
√

V̂(T) (7.6)

with the hat on V indicating that we have estimated the variance. In fact, definition
(7.6) is very general in the sense that it does not specify how we estimate the variance.
As we will see in Chapters 8 and 9, several different methods are used to obtain
variance estimates. We have used T in (7.6) to emphasize that it is a random variable,
but in an alternative notation we use more often we may rewrite (7.6) as

SE(θ̂) =
√

V̂(θ̂).

One note on terminology: the term “standard error” is sometimes used to refer to the
standard error of the mean, as in Eq. (7.17), which is a special case of (7.6).

It is very common practice to report an estimate together with its standard error
in the form

θ̂ ± SE(θ̂).

This gives a simple, rough sense of how accurate the estimate is. A more refined
statement, made in terms of probability, comes from the use of a confidence interval:

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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a 95 % confidence interval (CI) for a parameter θ is an interval of the form (L, U)

(L for lower, U for upper), where L = L(X1, . . . , Xn) and U = U(X1, . . . , Xn) are
random variables derived from the data and

P(L < θ < U) = .95. (7.7)

This rather abstract definition becomes clear by examining particular problems, as we
do below. In words, Eq. (7.7) says that if θ were the value of the unknown parameter,
the probability that the interval would include this unknown value is 95 %. The
probability .95 is the level of confidence associated with the interval (L, U).

In many applications an estimator θ̂ follows an approximately normal distribution
(because estimators may often, at least approximately, be written in the form of the
mean of some random variables). This is a tremendous simplification because it gives
a simple method for finding L and U in (7.7). According to the 2/3–95 % rule (p. 117),
from the approximate normality of θ̂ we may get an approximate 95 % confidence
interval (L, U) by taking L = θ̂ − 2SE(θ̂) and U = θ̂ + 2SE(θ̂), that is,

approx. 95 % CI = (θ̂ − 2SE(θ̂), θ̂ + 2SE(θ̂)). (7.8)

The ingeniously simple construction that drives confidence intervals is most easily
understood in the case of estimating the mean of a normal distribution, which we
consider in Section 7.3.2. We then give some justification for the more general form
in (7.8) on p. 166.

7.3.2 Estimation of a normal mean is a paradigm case.

Suppose X1, . . . , Xn is a random sample from a N(μ,σ2) distribution with the value
of σ known. Here, for notational ease, we drop the subscript X from μ and σ. Note
that μmay be estimated by the sample mean X̄ and in this special case V(X̄) = σ2/n
so that the standard error is

SE(X̄) = σ√
n
. (7.9)

Theorem If X1, . . . , Xn is a random sample from a N(μ,σ2) distribution, with the
value of σ known, then

X̄ ∼ N(μ, (SE(X̄))2) (7.10)

where SE(X̄) is given by (7.9).

Proof: Let 1vec be the n-dimensional vector with all components equal to 1. Accord-
ing to the definition of a random sample, the random variables in the sample are
independent. Because X1, . . . , Xn is a random sample from a N(μ,σ2) distribution,
the vector X = (X1, . . . , Xn) is, therefore, multivariate normal with mean μ1vec and
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variance matrix σ2In where In is the n× n identity matrix. Note that

X̄ = 1

n
1T

vecX. (7.11)

From the definition of multivariate normality on p. 129 (which used Eqs. (4.25) and
(4.26)) we have that 1T

vecX is normally distributed with mean 1T
vecμ1vec = nμ and

variance σ21T
vecIn1vec = nσ2. Multiplying by 1/n and using (3.8) and (3.9), with

a = 1/n and b = 0, we have

1

n
1T

vecX ∼ N(μ,
σ2

n
). (7.12)

Combining (7.12) with (7.11) gives

X̄ ∼ N(μ,
σ2

n
) (7.13)

which is (7.9). �
Theorem If X1, . . . , Xn is a random sample from a N(μ,σ2) distribution, with the
value of σ known, then the interval (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)) is a 95 % CI for
μ, where SE(X̄) is given by (7.9).

Proof: We must show that

P(X̄ − 2 · SE(X̄) ≤ μ ≤ X̄ + 2 · SE(X̄)) = .95. (7.14)

From (7.13) we have

P(μ− 2
σ√
n
≤ X̄ ≤ μ+ 2

σ√
n
) = .95. (7.15)

We observe

μ− 2
σ√
n
≤ X̄ ≤ μ+ 2

σ√
n
⇐⇒ | X̄ − μ

σ/
√

n
| ≤ 2

⇐⇒ X̄ − 2
σ√
n
≤ μ ≤ X̄ + 2

σ√
n
.

Therefore, (7.15) gives (7.14). �
The beauty of confidence lies in the simple manipulations, given above, that allow

us to reason from (7.15) to (7.14). We take the description of variation given in (7.13)
and convert it to a quantitative inference about the value of the unknown parameter μ.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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7.3.3 For non-normal observations the central
limit theorem may be invoked.

Now suppose X1, . . . , Xn form a sample from a distribution with meanμ and standard
deviation σ, with the distribution not necessarily normal. For simplicity, suppose
again that σ is known.

By the CLT we have

√
n(X̄ − μ)

σ

D→ N(0, 1).

We now apply the same manipulations used in deriving (7.15). We have

P

(
| X̄ − μ
σ/
√

n
| ≤ 2

)
≈ .95

and, in turn, this is equivalent to

P

(
X̄ − 2

σ√
n
≤ μ ≤ X̄ + 2

σ√
n

)
≈ .95. (7.16)

Therefore, for n sufficiently large, Eq. (7.16) provides an approximate 95 % CI.
Written slightly differently, an approximate 95 % CI is given by X̄ ± 2 · SE(X̄),
where SE(X̄) = σ/

√
n. The important point here is that we do not require the dis-

tribution of the data to be normal, yet we still get a quantitative inference based on
asymptotic normality of the mean because of the CLT.

7.3.4 A large-sample confidence interval for µ is obtained
using the standard error s/

√
n.

In Sections 7.3.2 and 7.3.3 we assumedσwas known. This was for purely pedagogical
purposes. In practice, σ is almost always unknown and, as a consequence, we don’t
have a value to plug in when we want to calculate SE = σ/

√
n. The way to proceed,

however, is pretty clear. As in the binomial standard error formula (7.5), we simply
replace σ with an estimate, the obvious estimate being the sample standard deviation
s. In the scenario envisioned in Section 7.3.3, with σ unknown we replace it with s
in σ/
√

n to get the standard error of the mean,

SE(x̄) = s√
n

(7.17)
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and from this we obtain a more practical version of (7.16) for our approximate 95 %
CI. Because we state the result in terms of probability, we replace the observed value
s with its random-variable counterpart S.

Result If X1, . . . , Xn is a random sample from a distribution having mean μ
and standard deviation σ, and n is sufficiently large, then an approximate 95 %
CI for μ is given by x̄ ± 2 · SE(x̄), where SE(x̄) is given by (7.17), i.e., for n
sufficiently large,

P(X̄ − 2
S√
n

< μ < X̄ + 2
S√
n
) ≈ .95. (7.18)

This result follows from manipulations similar to those used in deriving (7.14) and
(7.16). In establishing (7.16) we applied the CLT. The following theorem modifies
the CLT used in Section 7.3.3 by replacing σ with S.

Theorem Suppose X1, . . . , Xn is a random sample from a distribution having mean μ
and standard deviation σ. Assume E

(
(Xi − μ)4

)
<∞, let Sn be the sample standard

deviation calculated from X1, . . . , Xn, and let Yn = √n(X̄−μ)/Sn. Then, as n→∞,
we have

Yn
D→ N(0, 1).

Details: In order to prove the theorem we first need two lemmas.

Lemma 1 Let X1, . . . , Xn, . . . be i.i.d. sequence for which E((Xi−
μ)4) < ∞ and let Sn be the sample standard deviation calculated
from X1, . . . , Xn. Then we have

Sn
P→ σ. (7.19)

Proof: Let Yi = (Xi − μ)2, so that Ȳ = 1
n

∑n
i=1 Yi. Note that E(Yi) =

σ2
X E(Yi) = σ2

x = σ2 and, from (3.10), V(Yi) = E
(
(Xi − μ)4

) − σ4

which shows that V(Yi) < ∞ so that the law of large numbers may
be applied. By the law of large numbers we have that Ȳ converges to
σ2. Because n/(n − 1)→ 1, we also have that n

n−1 Ȳ converges to σ
in probability. But Sn = n

n−1 Ȳ . �
Lemma 2 (Slutsky’s Theorem) If Un converges to c in probability
and Vn converges to Y in distribution, then UnVn converges to cY in
distribution.

Proof: The proof of this result, while straightforward, involves quite
a bit of detailed manipulation. We omit it. (See Bickel and Doksum
(2001, Theorem A.14.9).) �

http://dx.doi.org/10.1007/978-1-4614-9602-1_3


164 7 Estimation and Uncertainty

Proof of Theorem: By the CLT Zn = √n(X̄ − μ)/σ converges in
distribution to N(0, 1). Applying Lemma 1 we have that Sn converges
to σ in probability or, equivalently, σ/Sn converges to 1 in probability.
Writing Un = σ/Sn and Vn = Zn, and noting that Yn defined in the
statement of the theorem satisfies Yn = UnVn, we may apply Lemma
2 to obtain the desired convergence in distribution. �

Example 3.4 (continued from p. 138) On p. 138 we considered spike counts from
a motor cortical neuron across 60 trials, each spike count being recorded during a
600 millisecond interval. The mean spike count across the 60 trials was 13.63 spikes.
Converting the counts to firing rates (by dividing by .6 s (seconds)), we get a mean
of 22.72 spikes per second and a standard deviation of 7.17 spikes per second. This
gives a standard error of

SE = 7.17√
60
= .93.

We might then report the firing rate of this neuron, under the particular experimental
condition, to be 22.72 (±.93) spikes per second. An approximate 95 % confidence
interval for the firing rate is then (20.8, 24.6) spikes per second. �

The result is tremendously important in practice. However, it leaves open the
question of how large the sample must be in order for the approximation to be good,
i.e., for the probability of coverage (the probability the interval will cover μ) to
be nearly .95. There is no universal answer to this question. Because we have the
exact result in (7.14), this approximation tends to be good for moderate-size samples
when the data are nearly normal. It may not be very good in moderate-size samples
with strongly non-normal data. This is why it is important to check normality. The
small-sample case is more problematic. We return to it in Section 7.3.10.

7.3.5 Standard errors lead immediately to confidence intervals.

We now return to the general form for an approximate 95 % CI given by (7.8) and
derive it. First we consider the special case of the binomial probability p. Recall
that if X1, . . . , Xn are Bernoulli trials with probability p, and if Y = ∑n

i=1 Xi, then
Y ∼ B(n, p). We have Y/n = X̄, E(Xi) = p and V(Xi) = p(1− p) so the CLT gives

√
n(X̄ − p)√
p(1− p)

D→ N(0, 1). (7.20)

By the 2
3 –95 % rule (p. 117) this implies

P(−2 ≤
√

n(X̄ − p)√
p(1− p)

≤ 2) ≈ .95
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and, multiplying through the inequalities by
√

p(1−p)
n , we have

P(X̄ − 2 ·
√

p(1− p)

n
≤ p ≤ X̄ + 2 ·

√
p(1− p)

n
) ≈ .95.

Here p is unknown. Using X̄ as an estimator of p we replace p by X̄ and get

P(X̄ − 2 ·
√

X̄(1− X̄)

n
≤ p ≤ X̄ + 2 ·

√
X̄(1− X̄)

n
) ≈ .95 (7.21)

which is (7.8) for the binomial case, where the standard error is given by (7.5). The
replacement of p with p̂ in the standard error formula is analogous to the replacement
of σ with s in Section 7.3.4. The binomial case is sufficiently important that we state
it formally, rewriting (7.21) in terms of p̂, where p̂ = X̄ so that the standard error is

SE(p̂) =
√

p̂(1−p̂)
n .

Result If Y ∼ B(n, p) then p may be estimated by p̂ = Y/n with standard error

SE(p̂) =
√

p̂(1−p̂)
n . For large n, an approximate 95 % CI is given by

p̂± 2 · SE(p̂),

meaning that for n sufficiently large we have

P(p̂− 2 · SE(p̂) ≤ p ≤ p̂+ 2 · SE(p̂)) ≈ .95. (7.22)

Details: To justify the replacement of p with p̂ we first note that the
LLN gives us

X̄
P→ p.

Then, by Slutsky’s Theorem (p. 163), X̄(1− X̄) converges to p(1− p)

in probability and, from (7.20), we have

√
n(X̄ − p)√
X̄(1− X̄)

D→ N(0, 1)

which gives (7.21).
�

To generalize this argument we consider the problem of estimating a parameter
vector θ in some statistical model using an estimator Tn = T(X1, . . . , Xn). We
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have written the subscript n on T to indicate that we are examining its behavior
as n → ∞. Two things drove the derivation of (7.22) above. First, the CLT was
invoked to produce the approximate normality of X̄ according to (7.20) and, second,

in the standard deviation
√

p(1−p)
n , p was replaced by p̂ (which was justified by the

convergence of X̄ to p in probability). If we assume these two phenomena apply, then
we obtain (7.8) according to the following theorem.

Theorem If Tn is an asymptotically normal estimator of θ satisfying

Tn − θ
σTn

D→ N(0, 1)

and σ̂Tn satisfies

σ̂Tn

σTn

P→ 1

then we have

Tn − θ
σ̂Tn

D→ N(0, 1).

Proof: This follows by Slutsky’s theorem (p. 163), as in the binomial case. �
We now re-state the theorem as a “result”, by putting it in a form that is less precise

mathematically but more useful in practice.

Result If Tn is an asymptotically normal estimator of θ satisfying

Tn − θ
σTn

D→ N(0, 1) (7.23)

and σ̂Tn provides the standard error of Tn in the sense that

σ̂Tn

σTn

P→ 1

then

approx. 95 % CI = (Tn − 2σ̂Tn , Tn + 2σ̂Tn)

which may also be written, equivalently, in the form (7.8), i.e.,

approx. 95 % CI = (θ̂ − 2SE(θ̂), θ̂ + 2SE(θ̂)).
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The method given by (7.8) is widely applicable because (i) lots of estimators are
approximately normally distributed, as in the first assumption of the theorem, and
(ii) there are good ways to get standard errors, as in the second assumption of the
theorem. The useful “result” is imprecise because of the approximation. The precise
statement is in the theorem. This degree of imprecision, and the unclear relevance
of arguments that treat the sample size n as sufficiently large, or essentially infinite,
are core components of the bond between theory and practice in data analysis.

A Detail: An additional consequence of (7.23) returns us to the char-
acterization, on p. 158 of the standard error. After saying that the
standard error represents the likely magnitude of error T − θ we then
discussed standard error as estimating the standard deviation of T ,
which is not the same thing. It is in principle possible for the estimator
T to be systematically wrong (being close to, say, θ + 10 instead of
θ) and yet have a small variance; in this case the standard error would
not represent the likely magnitude of error. When (7.23) holds all is
well: it says that T − θ is approximately normally distributed with
mean 0 and approximate standard deviation σTn , so that σTn is indeed
the likely magnitude of error. This notion of standard error is justified
because (7.23) holds in a variety of commonly-found cases.

�
An important kind of application of (7.8) arises when we have two parameters φ1

and φ2 and we are interested in the magnitude of their difference θ = φ1−φ2. If we
have two independent estimators T1 and T2 (we could write T1,n1 and T2,n2 but are
suppressing the dependence on the sample sizes n1 and n2) with standard errors SE1
and SE2 then

V(Tj) = SE2
j

for j = 1, 2 and, by independence (see Eq. (4.4)),

V(T1 − T2) = SE2
1 + SE2

2 ,

and we get

SE(T1 − T2) =
√

SE2
1 + SE2

2 . (7.24)

This expression provides the standard error needed to produce a confidence interval
for the difference θ = φ1 − φ2, according to (7.8).

Example 7.2 Test-enhanced learning Tests are used to assess whether students
have learned subject-matter material. A line of research has emphasized the additional
value of testing as a way to enhance learning (Karpicke and Roediger 2008). The
idea is that when students are tested, they recall information and thereby reinforce
memory of it. In one study, Roediger and Karpicke (2006) had subjects read a short
passage and then get tested on it after a delay period during which they would forget

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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Fig. 7.3 Histograms of test-enhanced learning data. Data are assessment scores (number of recalled
idea units, out of a maximum of 30) for 30 subjects under the SSSS condition (top) and the SSST
condition (bottom). Data courtesy of J.D. Karpicke.

some of the material. Let us call this test the assessment test. After reading but
before the assessment test there was an experimental manipulation: some subjects
were asked to restudy the text, while other subjects were instead given a learning test,
identical to the assessment test. These tests simply asked the subjects to write down
everything they could remember about the passages. The tests were scored according
to the number of “idea units” correctly recalled. A key part of the study focused on
retention of the material following a delay period of 1 week, asking whether the
learning-test group retained the material better than in the restudying group.

After finding strong evidence of a benefit from testing, the authors did a second
experiment, using four study or testing sessions. In one condition, labelled SSSS,
there were four study sessions, and in another, labelled SSST, there were three study
sessions followed by a testing session. The assessment administered following a
delay of 1 week had a maximal score of 30 idea units. Data from 60 subjects, 30 in
each of the SSSS and SSST groups are displayed in Fig. 7.3.

For the data displayed in Fig. 7.3 the means were 11.9 and 16.7 idea units, with
medians 12 and 16 idea units, and lower and upper quartiles (8.25, 15) and (11.25,
21) idea units. It appears that the SSST scores tend to be higher than the SSSS scores.
To formalize the comparison, we consider the population mean scores under these
two conditions. If we let X1i be the score of the ith subject in the SSSS condition and
X2i be the score of the ith subject in the SSST condition and if μ1 and μ2 are the mean
scores within these two conditions, we may estimate the difference θ = μ1 − μ2.
Applying (7.8) with (7.24) we first used (7.17) to obtain SE1 and SE2, and then (7.24)
gave

SE(X̄1 − X̄2) = 1.5
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idea units. We then found the approximate 95 % confidence interval to be

11.9− 16.7± 2(1.5) = −4.8± 3.0

which produced the interval (1.8, 7.8) for the estimated mean number of additional
idea units recalled in the SSST condition, compared with the SSSS condition. �

7.3.6 Estimates and standard errors should be reported
to two digits in the standard error.

We recommend rounding standard errors to two leading (nonzero) digits, and then
rounding the estimate to match the standard error. For example, if we found an
estimate to be 5.582 and the standard error to be .207 we would report the result as
5.58 ± .21. Our reasoning is as follows. On the one hand, it is generally good to
avoid too many digits both because numbers with many digits become hard to read,
and also because extra digits may imply more accuracy than is present in the results.
In this illustration, because the standard error is .21, the second digit in the estimate
is already very uncertain: the 95 % CI is (5.2, 6.0) so we really don’t know much
about that second digit. We could report only a single digit in the standard error, but
we prefer to report two because a standard error of .249 is quite a bit larger than a
standard error of .151, yet to single-digit accuracy both would be rounded to .2. No
rule is perfect, but it seems to us that reporting standard errors to two digits, but not
more, is a good idea. Thus, in Example 1.4 on p. 159 we reported the estimate p̂ of
the propensity p to be .824 ± .092, and in Example 3.4 on p. 164 we reported the
firing rate of the M1 neuron to be 22.72 ± .93 spikes per second.

7.3.7 Appropriate sample sizes may be determined
from desired size of standard error.

In Example 1.4, based on the confidence interval reported on p. 13, the results seemed
conclusive but, in some situations, we would like even stronger evidence. A natural
question is then, How much data would we need to achieve a decisive result? By
assuming preliminary data give us a good idea of what to expect, we can answer
this question. In the case of Example 1.4, we found p̂ = .824 with SE = .092. If
we assume p is, in fact, somewhere around p̂, the way we would obtain stronger
evidence is by decreasing the standard error. In general terms we proceed in two
steps. First, we determine how small we want the standard error to be. Writing our
current standard error as SE1 and our desired standard error as SE2, we then write an
expression that tells us how big a sample size we would need in order to reduce SE1
to SE2.
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The key extra assumption is that the standard error tends to decrease as
√

n. This
holds for many estimators, including MLEs (which follows from the discussion in
Section 8.4.3). Let us suppose that SE1 is based on a sample of size n1 and we wish to
determine the sample size n2 that would give us SE2. Because we want the standard
error SE1 to decrease by a factor SE1/SE2 (e.g., if we want SE2 to be half the size of
SE1 we want to decrease SE1 by a factor of 2), we write

SE1

SE2
=

√
n2

n1

and solve for n2, which gives

n2 = n1

(
SE1

SE2

)2

. (7.25)

If, for instance, we wanted to decrease the standard error by a factor of 2 we would
have to multiply our current sample size by a factor of 4. This is just a restatement
of the

√
n decrease in the standard error, with (7.25) providing the explicit formula

we would use to compute n2 in practice.
Using confidence intervals, the simple rule3 in Eq. (7.25) is about as far as we

can go. An investigator may wonder about step one, the choice of the “desired” SE2.
The selection of SE2 must be determined by careful thinking about the scientific
issues involved in the particular case at hand. The desired size of the standard error
in Example 3.4, p. 164, for instance, depends on the way the information about spike
counts will be used as part of the overall project. In Example 3.4 a relatively large
number of trials were collected because the experiment was part of a comparative
study in which relatively small differences across conditions appeared possible—yet
still would have been of interest. According to the standard error on p. 164, the firing
rate was determined within about ±1 spike per second. If 15 trials had been used
instead of 60, according to the

√
n law and (7.25) we would expect an accuracy of

about ±2 spikes per second, which may or may not have seemed adequate.

7.3.8 Confidence assigns probability indirectly,
making its interpretation subtle.

Here are two interpretations of the confidence interval found for the propensity p of
P.S. to choose the non-burning house:

3 More complicated formulas exist; however, the uncertainties involved in replicating results when
collecting more data are often much larger than any extra precision one might gain from a more
detailed calculation.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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Interpretation A: If p were the true value, then the probability that the
interval given by (7.22) would contain p is approximately 95 %. Based
on the data from P.S., the approximate 95 % CI is (.64, 1.0).

Interpretation B: Based on the data from P.S., the probability that (.64,
1.0) contains p is approximately 95 %.

It may seem that interpretation B is an immediate consequence of interpreta-
tion A. After all, once we apply interpretation A to all values of p, then, regardless
of the data we observe, the CI will cover p with approximately 95 % probability;
we need only apply this to the data we actually did observe to get interpretation B.
Unfortunately, to the shock and dismay of many students of statistical inference, this
simple logic is fallacious. Interpretation B is a famously incorrect interpretation of a
confidence interval. The correct interpretation of confidence, in interpretation A, can
not be translated into interpretation B because interpretation A involves the random
variables L and U that specify the lower and upper endpoints of the CI; probability
concerns random variables, not constants; and in interpretation B, .64 and 1.0 are
constants, they are not random variables. Once the data have been observed, the
probability formalism at the foundation of (7.22) no longer speaks. So it is incorrect
to think that the confidence interval (.64, 1.0) tells us the probability that p is in the
range (.64, 1.0) is approximately 95 %. The math involved in deriving confidence
intervals is clear, neat and clean. If we want to provide a linguistic interpretation of
the confidence interval, however, we must revert to the somewhat clumsy and indirect
interpretation A. On p. 175 we give a more careful re-statement of interpretations A
and B.

To highlight the meaning of CIs let us consider the blindsight example further.

Example 1.4 (continued, see p. 13) The first three columns of the table below gives
possible CIs using (7.22) when X ∼ B(17, p). For example, when X = 11 we find
L = .415 and U = .879 so that the CI becomes (.42, .88).

x L U Cover

7 .17 .65 N
8 .23 .71 N
9 .29 .77 N

10 .35 .83 Y
11 .42 .88 Y
12 .49 .93 Y
13 .56 .97 Y
14 .64 1.01 Y
15 .73 1.04 Y
16 .83 1.06 N
17 1 1 N

Now suppose the true value of p were .8. We would find that the CI would contain
or “cover” p for some of the values of x but not others, as indicated in the fourth
column of the table (“Y” for yes, the interval (L, U) covers .8, “N” for no it does
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not). The table shows that (L, U) covers .8 when 10 ≤ x ≤ 15. To find the level
of confidence associated with (L, U) we may compute P(10 ≤ X ≤ 15) when
X ∼ B(17, .8). We find P(10 ≤ X ≤ 15) = .871, which says that the approximate
95 % CI found from (7.22) has probability .87 of containing the true value .8. The
value .87 is a little smaller than the probability of .95 the interval would have if it were
an exact, as opposed to an approximate CI. We discuss this further on p. 175. Here,
the point is that the probability attached to the CI refers to the theoretical calculation
based on drawing an observation X from a B(17, p) distribution, as in interpretation
A, rather than referring to the probability that p lies in the specific CI that was found
from the data x = 14, as in interpretation B. �

There is another way to look at confidence intervals. Suppose we draw N random
samples, independently, and compute CIs (L, U) for each. Let Yi = 1 if (L, U)

contains p for the ith random sample and Yi = 0 if not, so that P(L ≤ p ≤ U) =
P(Yi = 1). Then Ȳ is the fraction of random samples for which (L, U) contains p.
By the LLN,

Ȳ
P→ P(Yi = 1)

that is,

Ȳ
P→ P(L ≤ p ≤ U).

We may therefore consider the confidence level P(L ≤ p ≤ U) to be the long-run
limit of the fraction of confidence intervals that contain p.

Interpretation C: If we were to obtain CIs using (7.22) repeatedly,
indefinitely many times, then, in the long run, approximately 95 % of
those CIs would contain p. Based on the data from P.S., the CI is (.64,
1.0).

More generally, the level of confidence is usually considered to be the long-run
frequency with which the CI covers the true value. For this reason, level of confidence
is often called a frequentist property of a CI.

The big achievement of confidence intervals is the use of probability as a descrip-
tion of variation (the distribution X ∼ B(n, p)) to suggest values of a parameter that
are plausible in light of the data. However, this achievement comes at a cost: the
formal statement is very weak, as it only calibrates the variability of interval (inter-
pretations A and C). We might prefer interpretation B, which is analogous to saying
“I am 90 % sure the capital of Louisiana is Baton Rouge”, but, strictly speaking, con-
fidence intervals do not allow such a statement. At best we might regard a confidence
interval as a heuristic suggestion of uncertain knowledge. An alternative approach,
based on Bayes’ Theorem, does allow the more direct interpretation B. As we will
see in Section 7.3.9, it has its own cost.
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7.3.9 Bayes’ theorem may be used to assess uncertainty.

Recall Bayes’ Theorem for random variables and vectors, given in Section 4.3.3.
From Eq. (4.36), for continuous random variables or vectors U and V we have

fU|V (u|v) = fV |U(v|u)fU(u)∫
fV |U(v|u)fU(u)du

. (7.26)

Let us apply this to the problem of estimating the binomial parameter p. In this section
we replace p by θ, so we suppose X ∼ B(n, θ). To apply (7.26) we take U = θ and
V = X to get

fθ|x(θ|x) = fX|θ(x|θ)fθ(θ)∫
fX|θ(x|θ)fθ(θ)dθ . (7.27)

(We use θ for both capital and lower case theta.) Ordinarily we would take θ as a
known constant. Here, however, we acknowledge that θ is uncertain by considering it
to be a random variable and assigning it a probability distribution. We take fθ(θ) to be
the pdf representing our knowledge before seeing the data. It is the pdf corresponding
to the prior distribution. When we treat θ as a known constant it is implicitly part of
the binomial pdf, so we write the binomial pdf as fX(x). Here, however, the binomial
pdf must be determined conditionally on a value of θ, so it is written fX|θ(x|θ). The
pdf that summarizes our knowledge after observing the data X = x is fθ|X(θ|x). This
is the pdf corresponding to the posterior distribution. It is common to write the prior
pdf as π(θ) = fθ(θ) (this special notation makes it clear where the prior appears
in various equations) and, because the likelihood function is L(θ) ∝ fX|θ(x|θ), the
posterior pdf may be written

fθ|x(θ|x) = L(θ)π(θ)∫
L(θ)π(θ)dθ

. (7.28)

In order to do computations we must assign a specific probability distribution as
the prior distribution. Assuming we know very little about the value of θ a priori, a
natural choice is to use the uniform distribution, θ ∼ U(0, 1), i.e., fθ(θ) = 1. With
this prior pdf we obtain

f (θ|x) =
(n

x

)
θx(1− θ)n−x · 1

∫ (n
x

)
θx(1− θ)n−x · 1dθ

which reduces to

f (θ|x) = θx(1− θ)n−x
∫
θx(1− θ)n−xdθ

. (7.29)

This formula is a special case of a beta distribution introduced briefly in Chapter 5:
from Eq. (5.15), the Beta(α,β) pdf is

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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f (w) = �(α+ β)

�(α)�(β)
wα−1(1− w)β−1. (7.30)

Therefore, the posterior distribution of θ is Beta(x + 1, n− x + 1) which has mean
and standard deviation

μθ|x = x + 1

n+ 2

σθ|x =
√

(x + 1)(n− x + 1)

(n+ 2)2(n+ 3)
.

Example 1.4 (continued from p. 171) Let us apply this to the data from patient
P.S. From (7.29) and (7.30) we have just found the posterior distribution to be
Beta(x + 1, n − x + 1). Here n = 17 and x = 14 so the posterior distribution
is Beta(15, 4) and the posterior mean and standard deviation are μθ|x = .79 and
σθ|x = .091. Thus, roughly speaking, these data lead us to conclude that the fre-
quency with which P.S. will prefer the non-burning house is approximately .79 and
our uncertainty may be summarized by saying that the average amount by which
this guess misses the truth is approximately .091. These numbers are similar to those
obtained in earlier analyses of the data from patient P.S., but here they have a differ-
ent interpretation. Before giving this interpretation let us press on. We may obtain
an interval having 95 % posterior probability from the .025 and .975 quantiles (the
2.5 and 97.5 percentiles) of the Beta(15, 4) distribution, which gives (.59, .94). That
is, P(θ < .59|y) = P(θ > .94|x) = .025 so that P(.59 < θ < .94|x) = .95. The
posterior interval (.59, .94) is sometimes called a credible interval to distinguish it
from a confidence interval. Credible intervals are based on posterior distributions,
whereas confidence intervals may be obtained from other arguments. The interval
(.59, .94) is a succinct summary of what we know about θ based on the data. It is
close to, but a little different than, the approximate 95 % CI of (.64, 1.0), which was
obtained from (7.22). �

It is now legitimate to say what the posterior interval means, using words that are
in essence just like interpretation B of Section 7.3.8.

Bayesian interpretation: Based on the data from P.S., together with the uniform
prior, the probability that (.59, .94) contains θ is 95 %.

The use of Bayes’ Theorem has thus bought us a highly intuitive interpretation
of the credible interval. Like confidence intervals, credible intervals convert proba-
bility as a description of variation (the distribution X ∼ B(n, p)) into a statement of
knowledge. In this case, unlike the indirect situation with confidence intervals, the
Bayesian statement is very much analogous to saying “I am 90 % sure the capital of
Louisiana is Baton Rouge.”

The straightforward Bayesian interpretation is very appealing. We issue two notes
of caution. First, as we said at the end of Section 7.3.8, Bayes’ Theorem requires the
additional assumption of a particular form for the prior distribution. For the binomial
problem it makes a good deal of sense to use the U(0, 1) distribution for θ a priori.
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In many settings, however, it is not clear what prior distribution should be used.
Secondly, while confidence is undeniably less direct than posterior probability, we
must keep in mind the fundamental distinction between the theoretical world of
random variables and formal inferences, and the real world of data. There remains a
degree of indirectness in the Bayesian statements as well, because they always say
it is as if the data were to arise as random variables following the probability model
(e.g., the binomial distribution). There is an inescapable divide between theoretical
inferences and real-world conclusions; they are not quite the same thing, no matter
what approach we take. Thus, the following elaborations to interpretations A and B
on p. 171 would be more complete:

Interpretation A: If we were to draw a random sample of n = 17
Bernoulli trials with parameter p, then the probability that the interval
given by (7.22) would contain p is approximately 95 %. This is a theo-
retical statement. Assuming the theoretical and real worlds are aligned
well, “the approximate 95 % CI is (.64, 1.0)” is a useful statement of
knowledge.

Interpretation B: If we were to draw a random sample of n = 17
Bernoulli trials with parameter p, and if we were to obtain p̂ = 14/17,
then the probability that (.64, 1.0) contained p would be approximately
95 %. This is a theoretical statement. Assuming the theoretical and real
worlds are aligned well, “the probability that (.64, 1.0) contains p is
approximately 95 %” is a useful statement of knowledge.

Statistical methods that apply Bayes’ theorem are usually called Bayesian and
those that do not are usually called “frequentist”, because of the frequency interpre-
tation given on p. 172. Both Bayesian and frequentist methods have been applied in a
wide range of data analysis problems. The form of the problem and the predilections
of the practitioner dictate which approach is taken and, sometimes, both approaches
appear within a single scientific article. It is widely recognized that Bayesian proce-
dures should have good frequentist properties; for example, Bayesian 95 % credible
intervals should have close to 95 % frequentist coverage probability, as they often
do. We return to Example 1.4 to illustrate this.

Example 1.4 (continued from p. 171) We calculate the frequentist coverage prob-
ability of the posterior credible intervals obtained by the method on p. 174. To do
this we apply the same reasoning used previously on p. 171, where we computed the
coverage probability of the approximate CI based on (7.22). Note first that if we were
to observe a value x from X ∼ B(17, p) we would obtain a Beta(x + 1, 17− x + 1)

posterior distribution (according to (7.29) and (7.30)). The second and third columns
of the table below give the resulting possible credible intervals using .025 and .975
quantiles of the Beta(x + 1, 17− x + 1) distribution, labeled q.025 and q.975.

We again suppose p = .8. From this table we find that the Bayesian credible
intervals would cover the true value of p = .8 when 11 ≤ x ≤ 16 (again indicated
by “Y” for “yes” in the last column). To find the level of confidence associated with
the credible intervals we compute P(11 ≤ X ≤ 16) when X ∼ B(17, .8). We find
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x q.025 q.975 Cover

7 .22 .64 N
8 .26 .69 N
9 .31 .74 N

10 .36 .78 N
11 .41 .83 Y
12 .47 .87 Y
13 .52 .90 Y
14 .59 .94 Y
15 .65 .96 Y
16 .73 .99 Y
17 .81 1 N

P(11 ≤ X ≤ 16) = .94, which says that these credible intervals have probability .94
of containing the true value .8. This is very nearly equal to the desired value of .95, and
is much closer to .95 than the value of .87 obtained on p. 171 for the approximate CI.
The discrepancy between the putative value .95 and the correct coverage probability
.87 for the approximate CI is due to the small sample size (n = 17). As the sample
size gets large, the approximate 95 % CI found from (7.22) will have very nearly
probability .95 of covering the true value of p. The Bayesian method performs better
in this small-sample setting. When sample sizes are relatively small it is often possible
to study coverage probabilities numerically in order to determine whether they are
likely to be performing according to specifications, at least approximately. �

There are many important theoretical results concerning posterior distributions. In
particular, the approximate CIs given by (7.22) have a Bayesian justification for large
samples (see Section 8.3.3), making valid interpretation B of Section 7.3.8, which is
re-phrased above. We return to Bayesian methods in Chapter 16.

7.3.10 For small samples it is customary to use the t distribution
instead of the normal.

When the sample size is small, the approximation (7.18) may not be accurate. An
alternative is to derive an “exact” confidence interval analogous to (7.14) that corrects
for the substitution of s for σ. This leads to an adjustment of the multiplier put in front
of the standard error. The adjustment to the small-sample CI uses the t distribution.
Recall from Chapter 5 that if U ∼ N(0, 1) and V ∼ χ2

ν independently then

W = U√
V
n

has a t distribution on ν degrees of freedom. In the context of a single batch of
numbers, ν = n− 1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Note first that if Z ∼ N(0, 1) then P(Z ≤ 2) = .975. In other words, 2 is
the .975 quantile of the N(0, 1) distribution. We now replace Z with W , which has
a t distribution on ν degrees of freedom, and we write the .975 quantile of the t
distribution on ν degrees of freedom as t.975,ν , i.e., P(W ≤ t.975,ν) = .975. We then
replace the value 2 in (7.18) with the somewhat larger value t.975,ν , so that t.975,ν

multiplies the standard error. The distributional result that makes this work is the
following.

Theorem If X1, . . . , Xn is a sample from a N(μ,σ2) distribution, then X̄ and S2 are
independent random variables with

√
n(X̄ − μ)

σ
∼ N(0, 1)

and

S2

σ2 ∼ χ2
ν

with ν = n− 1.

Proof: We omit the proof of this theorem (which follows, with some effort, by
manipulation of the joint pdf). �

Theorem If X1, . . . , Xn is a sample from a N(μ,σ2) distribution, then a 95 %
CI is given by x̄± t.975,ν · SE(x̄), where ν = n− 1 and SE(x̄) is given by (7.17),
meaning

P(X̄ − t.975,n−1 · S√
n
≤ μ ≤ X̄ + t.975,n−1 · S√

n
) = .95. (7.31)

Proof: Let us write

√
n(X̄ − μ)

S
=
√

n(X̄−μ)

σ√
S2

σ2

.

The previous theorem then gives the required t distribution of
√

n(X̄−μ)

S . �
Formula (7.31) is the standard method used by most statistical software to provide

a confidence interval for an unknown mean μ. When the sample size is large, say,
n ≥ 12, then t.975,ν ≈ 2 and (7.31) agrees with (7.16). Customary terminology refers
to the CI in (7.31) as based on t (because the t distribution is used) while the CI in
(7.16) is based on z (because the standard normal distribution is used). One would
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not need to bother with the distinction between these two formulas unless n < 12,
except that as a matter of convention (found in many journals, for example), there
tends to be a preference for procedures based on a t, such as (7.31). In other words,
it is worth being aware that many people say they are reporting t-based intervals as
in (7.31) even when n is large and they might just as well say they are reporting
(7.16)—there is in that case no practical distinction between the two.

Example 3.4 (continued from p. 164) Let us now consider the first 12 trials of
counts from the motor cortical neuron, examined on p. 164. We get a mean firing
rate of 24.31 spikes per second, and a standard deviation of 5.20 spikes per second,
giving a standard error of

SE = 5.20√
12
= 1.50

spikes per second. The tν-based CI uses ν = 12 − 1 = 11 and we find t.975,11 =
2.20. For the 95 % CI we take L = 24.31 − 2.20(1.5) = 21.0 and U = 24.31 +
2.20(1.5) = 27.6, giving us the CI (21.0, 27.6) spikes per second. �

It is also worth emphasizing a fundamental difficulty with this approach. The
cases in which (7.31) differs from (7.16) are those in which n is small. But in such
situations it is quite hard to tell whether the sample is really close to being normal.
Application of (7.31) based on small samples should be considered only rough guides
to evaluation of uncertainty.



Chapter 8
Estimation in Theory and Practice

In Section 7.2.1 we showed how the method of moments may be used to estimate
the parameters of a Gamma(α,β) distribution, and we immediately stated that the
method of maximum likelihood provides a better solution. How do we know this? In
general, how should alternative methods of estimation be compared? In this chapter
we lay out a series of principles that serve as guides to practice. The main ideas came
from Ronald Fisher (1922); they were modified and made more precise by Jerzy
Neyman (1937), and have been refined and incorporated into textbooks on statistical
theory ever since, beginning notably with Cramér (1946).

Suppose we have a family of probability distributions that depends on a parame-
ter θ, which must be estimated, and we have an estimator T . For now let us assume
that θ is a scalar. If we were to say that T is a good estimator of θ, what might we
mean? In particular, what might we mean when we say that maximum likelihood
produces a good estimator? Clearly, for T to be a good estimator it must be “close”
to θ, but because T is a random variable the notion of closeness must be stated prob-
abilistically. For example, if we consider the mean X̄ of a random sample X1, . . . , Xn

from a N(θ, 1) distribution, we might want to say that the mean X̄ is close to θ when
|X̄−θ| < .1. Because X̄ ∼ N(θ, 1/n), even if n is large it is possible that |X̄−θ| > .1.
We can not say that |X̄ − θ| < .1. All we can say is the probability that |X̄ − θ| < .1
is large, meaning close to one or, equivalently, the probability that |X̄ − θ| > .1 is
small, meaning close to zero.

For a general estimator T we can use the same approach and say that T is a
good estimator of θ when it is highly probable that T is close to θ. Specifically, we
introduce a tolerance ε, understanding that εwill be some small positive number, and
then we require that P(|X̄ − θ| < ε) is close to one or, equivalently, P(|X̄ − θ| > ε)
is close to zero. It is, in general, rather difficult to provide guarantees on the size of
P(|X̄ − θ| > ε) for fixed sample sizes. In most realistically complicated problems
computer simulation studies must be used (as in Section 8.1.2) and they are based on
specific cases so they do not provide general assurances. On the other hand, general
results may be obtained asymptotically, letting the sample size grow indefinitely
large. To take a concrete case, because the mean X̄ of a random sample from a

R. E. Kass et al., Analysis of Neural Data, 179
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N(θ, 1) distribution follows a N(θ, 1/n) distribution, if we take n=10,000, from the
normal cdf we find P(|X̄ − θ| > .1) = 1.5 · 10−23. Indeed, no matter how small we
take ε we have P(|X̄ − θ| > ε)→ 0 as n→∞. This is simply a restatement of the
law of large numbers (p. 143)

X̄
P→ θ.

We discuss asymptotic results in Sections 8.2.1–8.3.1.
When we examine what happens as n → ∞ it is helpful to write the generic

estimator in the form Tn = T(X1, . . . , Xn) to emphasize its dependence on n as we
did in Section 7.3.5. One of the most important of the large-sample findings considers
estimators that are asymptotically normal, as in Eq. (7.23),

Tn − θ
σTn

D→ N(0, 1). (8.1)

For such estimators, in large samples, the probabilistic closeness of Tn to θ depends
entirely on σTn and we seek estimators that make σTn as small as possible. In Sec-
tions 8.2.2–8.3.1 we go over the remarkable discovery by Fisher that σTn can be
minimized, and the minimum is obtained by the MLE. There has been a lot of theo-
retical work on the general subject of large-sample optimality, all of which leads to
the conclusion that in well-behaved parametric problems, the method of maximum
likelihood is essentially unbeatable. This, coupled with its very wide applicability
(which began to be appreciated with the development of generalized linear models,
see Section 14.1.6), has made maximum likelihood an essential tool in data analysis.

Fisher’s theoretical insight seems to have been based on geometrical intuitions,
which were elaborated in a mathematically rigorous framework by Bradley Efron in
the 1970s and early 1980s. For details and references on the asymptotic arguments
and their geometrical origins see Kass and Vos (1997). For a rigorous treatment in a
more general context see van der Vaart (1998).

While asymptotic results are important, they have an inherent weakness: they
apply when the sample size is large, but they do not say what “large” means in
practice. In some cases n = 20 is more than adequate while in others n =20,000 is
not large enough. One approach to coping with this problem is to evaluate a measure
of likely deviation for specific cases, with specified sample sizes. The most common
assessment of deviation of T from θ is the mean squared error (MSE) defined by

MSE(T) = E((T − θ)2). (8.2)

In Chapter 4, p. 80, and 89, we considered the mean squared error in predicting
one random variable from another. We discuss mean squared error in estimation
in Section 8.1. In Section 8.4 we describe some of the practical considerations in
applying ML estimation.

The most important points about ML estimation are the following:

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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1. ML estimation is applicable when the statistical model depends on an unknown
parameter vector.1 See Sections 7.2.2 and 8.4.1.

2. Together with ML estimates it is possible to get large-sample confidence intervals
(Sections 8.2.2, 8.3.2, and 8.4.3).

3. In large samples, ML estimation is optimal (Section 8.3.1).
4. In large samples ML estimation agrees with Bayesian estimation (Section 8.3.3).

8.1 Mean Squared Error

The mean squared error criterion defined in (8.2) uses the squared magnitude of the
deviation T−θ rather than its absolute value |T−θ| because it is easier to work with
mathematically, and because it has a very nice decomposition given in Section 8.1.1.
Intuitively, because MSE(T ) is an average of the values (T − θ)2, when MSE(T ) is
small, large values of (T − θ)2 (and thus also large values of |T − θ|) must be highly
improbable. In fact, even more is true: we have

P(|T − θ| > ε) <
E((T − θ)2)

ε2 . (8.3)

Thus, we can make sure it is highly probable for T to be close to θ by instead making
sure that MSE(T ) is small.

Details: We can use Markov’s inequality, which appeared as a lemma
in Section 6.2.1, to guarantee that P(|T − θ| > ε) will be small if
MSE(T ) is small. First, we have

P(|T − θ| > ε) = P((T − θ)2 > ε2).

Now, assuming E((T − θ)2) <∞, Markov’s inequality gives (8.3).
�

In some cases MSE(T ) may be evaluated by analytical calculation, but in most
practical situations computer simulation studies are used. We give two examples of
such studies in Section 8.1.2.

8.1.1 Mean squared error is bias squared plus variance.

Two ways an estimator can perform poorly need to be distinguished. The first involves
the systematic tendency for the estimator T to miss its target value θ. An estimator’s

1 The parameter must be finite-dimensional; in nonparametric inference the parameter is, instead,
infinite-dimensional. Also, there are regularity conditions that make ML estimation work properly.
See Bickel and Doksum (2001).

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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high bias
low variance

low bias
high variance

low bias
low variance

high bias
high variance

Fig. 8.1 Drawing of shots aimed at a target to illustrate the way estimates can miss their “target.”
They may be systematically biased, or they may have high variability, or both. The best situation,
of course, is when there is little systematic bias and little variability.

bias is Bias(T) = E(T) − θ. When the bias is large, T will not be close to θ on
average. The second is the variance V(T). If V(T) is large then T will rarely be
close to θ. Figure 8.1 illustrates, by analogy with shooting at a bullseye target, the
situations in which only the bias is large, only the variance is large, both are large
(the worst case) and, finally, both are small (the best case). Part of the appeal of mean
squared error is that it combines bias and variance in a beautifully simple way.

Theorem Suppose E((T − θ)2) <∞. Then

E((T − θ)2) = (E(T − θ))2 + V(T).

That is,
MSE(T) = Bias(T)2 + Variance(T).

Proof: Let us write μT = E(T) and T − θ = (T − μT ) + (μT − θ),
and then square both sides to get

(T − θ)2 = (T − μT )2 + 2(T − μT )(μT − θ)+ (μT − θ)2.

Now consider taking the expectation of the cross-product term on the
right-hand side. The quantity μT − θ is a constant (it is not a random
variable), while because E(T) = μT , we have E(T − μT ) = 0 and,
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therefore, E(2(T − μT )(μT − θ)) = 0. Thus, we have

E((T − θ)2) = E((T − μT )2)+ (E(μT − θ))2

and, since V(T) = E((T − μT )2), we have proven the theorem. �
This decomposition of MSE into squared bias and variance terms is used in various

contexts to “tune” estimators in an attempt to decrease MSE. This typically involves
some increase in one term, either the squared bias term or the variance term, in order
to gain a larger decrease in the other term. Thus, reduction of MSE is often said to
involve a bias variance trade-off. For an example, see p. 434.

Before we present an illustration of a MSE calculation, let us mention a property of
the sample mean and sample variance. Assuming they are computed from a random
sample X1, . . . , Xn, we have E(X̄) = μX which may be written

E(X̄)− μX = 0.

This says that, as an estimator of the theoretical mean, the sample mean has zero bias.
When an estimator has zero bias it is called unbiased. If an estimator T is unbiased
we have MSE(T) = V(T) so that consideration of its performance may be based on
a study of its variance.

In addition to the sample mean being unbiased as an estimator of the theoretical
mean, it also happens that the sample variance, defined by

S2 = 1

n− 1

n∑

i=1

(Xi − X̄)2,

is unbiased as an estimator of the theoretical variance:

E(S2) = σ2
X . (8.4)

Details: We wish to evaluate

E(S2) = E

(
1

n− 1

n∑

i=1

(Xi − X̄)2

)
= 1

n− 1
E

(
n∑

i=1

(Xi − X̄)2

)
.

We write Xi − X̄ = (Xi − μX)+ (μX − X̄) and expand the square

n∑

i=1

(Xi − X̄)2 =
n∑

i=1

(
(Xi − μX)+ (μX − X̄)

)2

=
n∑

i=1

(Xi − μX)2 +
n∑

i=1

2(Xi − μX)(μX − X̄)
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+
n∑

i=1

(μX − X̄)2.

We now rewrite the three terms in the last expression above. Because
E(Xi − μX)2 = σ2

X , and the expectation of a sum is the sum of the
expectations, the first term has expectation

E

(
n∑

i=1

(Xi − μX)2

)
= nσ2

X . (8.5)

Next, the second term may be rewritten

n∑

i=1

2(Xi − μX)(μX − X̄) = 2(μX − X̄)

n∑

i=1

(Xi − μX)

= −2(X̄ − μX)

n∑

i=1

(Xi − μX)

= −2n(X̄ − μX)2,

where the last equality uses
∑n

i=1(Xi − μX) = n(X̄ − μX), and then,

because E((X̄−μX)2) = V(X̄) = σ2
X/n, the expectation of the second

term becomes

E

(
n∑

i=1

2(Xi − μX)(μX − X̄)

)
= −2σ2

X . (8.6)

Finally, because again, E((X̄ − μX)2) = σ2
X/n, the expectation of the

third term is

E

(
n∑

i=1

(μX − X̄)2)

)
= σ2

X (8.7)

and, combining (8.5), (8.6), and (8.7) we get

E

(
n∑

i=1

(Xi − X̄)2

)
= (n− 1)σ2

X

which gives (8.4). �
We use the unbiasedness of the sample mean and sample variance in the following

illustration of the way two estimators may be compared theoretically.

Illustration: Poisson Spike Counts On p. 164 we considered 60 spike counts from
a motor cortical neuron and found an approximate 95 % CI for the resulting firing
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rate using the sample mean. The justification for that approximate CI involved the
CLT, and the practical implication was that as long as the sample size is fairly
large, and the distribution not too far from normal, the CI would have approximately
.95 probability of covering the theoretical mean. In this case, the spike counts do,
indeed, appear not too far from normal. Sometimes they are assumed to be Poisson
distributed. This is questionable because careful examination of spike trains almost
always indicates some departure from the Poisson. On the other hand, the departure
is sometimes not large enough to make a practical difference to results. In any case,
for the sake of illustrating the MSE calculation, let us now assume the counts follow
a Poisson distribution with mean λ. The sample mean X̄ is a reasonable estimator
of λ, but one might dream up alternatives. For example, a property of the Poisson
distribution is that its variance is also equal to λ; therefore, the sample variance S2

could also be used to estimate the theoretical variance λ. This may seem odd, and
potentially inferior, on intuitive grounds because the whole point is to estimate the
mean firing rate, not the variance of the firing rate. On the other hand, once we take
the Poisson model seriously the theoretical mean and variance become equal and,
from a statistical point of view, it is reasonable to ask whether it is better to estimate
one rather than the other from their sample analogues. Our purpose here is to present
a simple analysis that demonstrates the inferiority of the sample variance compared
with the sample mean as an estimator of the Poisson mean λ. We are going through
this exercise so that we can draw an analogy to it later on.

Now, because, as we mentioned immediately before beginning this illustration, X̄
and S2 are unbiased for the theoretical mean and variance they are, in this case, both
unbiased as estimators of λ. As a consequence, MSE(T) = V(T) for both T = X̄ and
T = S2. Analytical calculation of the variance of these estimators (which we omit
here) gives

V(X̄) = λ

n

V(S2) = λ

n
+ 2λ2

n− 1

where n is the number of counts (the number of trials). Therefore, the MSE of S2 is
always larger than that of X̄ so that S2 tends to be further from the correct value of
λ than X̄ . For example, if we take n = 100 trials and λ = 10, we find V(X̄) = .10
while V(S2) = 2.12. The estimator S2 has about 21 times the variability as X̄, so
that estimating λ using S2 would require about 2,100 trials of data to gain the same
accuracy as using X̄ with 100 trials. Figure 8.2 shows a pair of histograms of X̄ and
S2 values calculated from 1,000 randomly-generated samples of size n = 100 when
the true Poisson mean was λ = 10. The distribution represented by the histogram on
the right is much wider. �

This illustration nicely shows how one method of estimation can be very much
better than another, but it is admittedly somewhat artificial; because the distribution
of real spike counts may well depart from Poisson, a careful comparison of X̄ versus
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X
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S2

4 6 8 10 12 14 16

Fig. 8.2 Histograms displaying distributions of X̄ and S2 based on 1,000 randomly-generated
samples of size n = 100 from a Poisson distribution with mean parameter μ = 10. In these
repeated samples both X̄ and S2 have distributions that are approximately normal. Both distributions
are centered at 10 (both estimators are unbiased) but the values of S2 fluctuate much more than do
the values of X̄.

S2 should consider their behavior also under alternative assumptions. In this regard,
the sample mean remains a reasonably good estimator of the theoretical mean in large
samples regardless of the probability distribution of the spike counts. The sample
variance, on the other hand, does so only if the theoretical variance is truly equal
to the theoretical mean; otherwise, as the sample size increases it will converge to
the wrong value. This is likely to be an important consideration. However, even if
one were convinced that counts truly followed a Poisson distribution, the analysis
above would be compelling. It would be grossly inefficient to use S2 instead of X̄ in
estimating λ.

Another thing to notice in Fig. 8.2 is the approximately normal shape of the two
histograms. Asymptotic normality of estimators is very common, and we have already
relied on it in Section 7.3.5.

8.1.2 Mean squared error may be evaluated by computer
simulation of pseudo-data.

In the Poisson spike count illustration on p. 184 we were able to compute the MSE
exactly. In more complicated situations this is often impossible. Instead we rely on
either large-sample arguments, such as those in Section 8.2.2, or numerical simula-
tions. The numerical method uses computer-generated pseudo-data, by which we
mean numbers or vectors that are generated from known probability distributions in
order to mimic the behavior of data. Because the distribution is known, there is a
known correct value of θ to which T may be compared.

Suppose we wish to compute MSE(T ) in estimating θ under the assumption that
a random sample comes from a particular probability distribution having cdf F(x).
Assuming we know how to generate random samples from F(x) on the computer,
we may use this algorithm:

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Fig. 8.3 Time of maximal firing rate. a displays a raster plot and Peri-Stimulus Time Histogram
(PSTH). As explained in Chapter 1, the PSTH represents the firing rate as a function of time. b
displays the time at which the maximal firing rate occurs, estimated (i) using the PSTH and (ii)
using instead a smooth curve. Adapted from Kass et al. (2003).

1. Take G to be a large integer (such as 1,000) and for g = 1, . . . , G do the following:

(i) Generate a random sample X(g)
1 , . . . , X(g)

n from F(x).

(ii) Compute T (g) = T(X(1)
1 , . . . , X(g)

n ), which is the value of the estimator T
based on the gth random sample.

(iii) Let Yg = (T (g) − θ)2.

2. Compute

Ȳ = 1

G

G∑

g=1

Yg. (8.8)

By the LLN, we have that Ȳ converges to the desired MSE = E((T − θ)2) in
probability. Thus, we take Ȳ as our MSE.

This kind of computation is used in the following illustration. It involves the
statistical efficiency of smoothing, a topic we take up in Chapter 15. In presenting
this now we omit details about the method.

Example 1.1 (continued, see p. 3) In Chapter 1 we discussed a study by Olson
et al. (2000), in which neuronal spike trains were recorded from the supplementary
eye field (SEF) under two different experimental conditions. As is usually the case
in stimulus-response studies, the neuronal response—in this case, the firing rate—
varied as a function time. For a particular neuron in one of the conditions, the PSTH
in Fig. 8.3 displays the way the firing rate changes across time. The data analytic
challenge in the Olson et al. study was to characterize the distinctions between the
firing rate functions under the two experimental conditions. One of the distinctions,

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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evident in some of the plots, was that the maximal firing rate occurred somewhat
later in one condition than in the other. How should this time of maximal firing rate
be computed? One possibility is to use the PSTH, by finding the time bin for which
the PSTH is maximized. Panel b of Fig. 8.3 displays the resulting solution: according
to the PSTH shown there, the maximal firing rate of about 133 spikes/s occurs at a
time marked by the arrow on the left along the time axis. However, this is clearly
a noisy estimate. Slight variations in location of time bin, or width, would change
this, as would consideration of new data from the same neuron. On the other hand, a
second method based on first fitting a smooth curve to the PSTH and then finding its
maximum, yields a different answer: the maximum firing rate of about 75 spikes/s
(seconds) occurs at a time indicated by the arrow on the right along the time axis. This
value is less subject to fluctuations in the data. If we assume that the theoretical firing
rate is, in fact, slowly varying in time, then the smooth curve should provide a better
estimate. Kass et al. (2003) used MSE to evaluate the extent to which smoothing
improves estimation.

Kass et al. (2003) evaluated MSE for the true firing rate function shown in panel
a of Fig. 8.4. To do so, they simulated, repeatedly, 16 trials of pseudo-data and then
constructed histograms and also fit smooth curves (there are 16 trials in the SEF data
shown in Fig. 8.3a). The PSTH and smooth curve from one sample of 16 trials of
pseudo-data are shown in panel b of Fig. 8.4. The smoothing method used by Kass et
al. (2003) involved regression splines, as discussed in Section 15.2.3. Note that the
smooth curve (“estimated rate”) is close to the true rate from the simulation, but it
misses by a small amount due to the small number of trials we used in the simulation.

To quantify the deviation of both the PSTH and the smooth curve at any one point
in time t the MSE could be used. That is, we would regard the true firing rate at time
t as the value θ = θt to be estimated, and we would compute MSE(T) = MSEt(T)

when T is based on the PSTH and when T is based on the smooth curve. Here the
subscript t is a reminder that we have chosen a particular time point. If MSEt(T) is
evaluated for every time value t the total of all the mean squared errors may be found
by integrating across time. This defines what is called the integrated mean squared
error or mean integrated squared error (MISE),

MISE(T) =
∫

MSEt(T)dt

where the integration is performed over the time interval of interest. The integral
may be evaluated easily simply by calculating the MSE along a grid of time values
separated by some increment �t

∫
MSEt(T)dt ≈ �t

∑

t

MSEt(T).

In order to compute the MSE at each time value t Kass et al. (2003) used computer
simulation: They generated data repeatedly, each time finding both the PSTH and the
smooth curve. They simulated 1,000 data sets, each involving 16 randomly-generated

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 8.4 a True rate from which 16 trials are simulated; their PSTH is shown in (b), with true
and estimated firing rates overlaid. c shows the true rate and 95 % simulation bands obtained from
smoothed and unsmoothed PSTHs. d shows the same curves as (c), as well as 95 % simulation
bands obtained from unsmoothed PSTHs with 16×14 trials instead of 16. Adapted from Kass
et al. (2003).

spike trains based on the true firing rate curve shown in Fig. 8.4a, and from these
1,000 data sets they computed the MISE. They also computed 95 % bands, within
which fall 95 % of the estimated curves. Figure 8.4c shows the two pairs of bands,
now labeled with the two values of MISE: the spline-based estimate has a MISE
of .34 (in spikes/s squared) while the PSTH has a MISE of 4.68, which is 14 times
larger. This means that when the PSTH is used to estimate firing rate, 14 times as
much data are needed to achieve the same level of accuracy. Similarly, the 95 %
bands for the PSTH are much further from the true firing-rate curve than the bands
for the spline-based estimate. Figure 8.4d includes a pair of 95 % bands obtained
from the PSTH when 224 trials are used rather than 16 (because 224 = 14 × 16).
This is another way of showing that the accuracy in estimating the firing rate using
spline smoothing based on 16 trials is the same as the accuracy using the PSTH based
on 224 trials. Clearly it is very much better to use smoothing when estimating the
instantaneous firing rate. �

A detail: One issue that arises in numerical simulation is the accuracy
of the computational results, because the value Ȳ in (8.8) is itself an
estimate of the MSE. However, if G is large, the standard error of
Ȳ will be small. Furthermore, because Ȳ is a sample mean, we can
apply the method of Section 7.3.4 and use s/

√
G as its standard error,

where s2 = 1
G−1

∑G
g=1(Yg− Ȳ)2. The standard error lets us determine

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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whether G is adequately large. For instance, if we wish the MSE to be
computed with accuracy δ, we can take G big enough to satisfy

s√
G

<
δ

2
.

By the result in Section 7.3.4, an approximate 95 % confidence inter-
val for MSE would be (θ − δ, θ + δ). Thus, we would have 95 %
confidence that the desired accuracy was obtained. �

8.1.3 In estimating a theoretical mean from observations having
differing variances a weighted mean should be used,
with weights inversely proportional to the variances.

In the illustration on Poisson spike counts, p. 184, we used the MSE criterion to
evaluate alternative estimators, based on an analytical expression. In that case both
estimators were unbiased and the comparison was based on variance. Another illus-
tration of this type arises when data are considered collectively across many similarly
measured objects, such as neurons or subjects, with the observations from the dif-
ferent individuals contributing varying amounts of information; specifically, with
the individual observations having different variances. In combining such discrepant
observations, it is preferable not to use the sample mean, but instead to weight each
observation according to the amount of information it contributes. Here we provide
a theoretical analysis of this problem, and give the basic result.

Suppose we have two independent random variables Xi for i = 1, 2, with E(X1) =
E(X2) = μ but V(X1) = σ2

1 and V(X2) = σ2
2, with the two variances possibly

being different. After analyzing the two-observation case, we will present analogous
results for n observations. Let us assume that σ1 and σ2 are known and ask how best
to combine X1 and X2 linearly in order to estimate μ. We write a general weighted
combination as

Yw = w1 · X1 + w2 · X2 (8.9)

where w1 + w2 = 1. It turns out that the optimal special case is

X̄w = w1 · X1 + w2 · X2 (8.10)

where

wi =
1
σ2

i

1
σ2

1
+ 1

σ2
2

(8.11)

for i = 1, 2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Theorem Suppose X1 and X2 are independent random variables with E(X1) =
E(X2) = μ and V(X1) = σ2

1 and V(X2) = σ2
2, and let Yw be defined as in (8.9). Then

Yw is unbiased, so that MSE(Yw) = V(Yw), and this quantity is minimized among
possible weighting pairs by taking Yw = X̄w, i.e.,

V(X̄w) ≤ V(Yw)

or, equivalently,
MSE(X̄w) ≤ MSE(Yw)

with equality holding in both cases only if Yw = X̄w defined by (8.10) and (8.11).

Proof of Theorem: First, we have

E(Yw) = w1 · μ+ w2 · μ
= (w1 + w2)μ

= μ.

Thus, Yw is unbiased and MSE(Yw) = V(Yw). To derive the variance
result we start with

V(w1 · X1 + w2 · X2) = w2
1 · σ2

1 + w2
2 · σ2

2 .

Now we use w1 + w2 = 1 and replace w2 with 1− w1 to get

V(w1 · X1 + w2 · X2) = w2
1 · σ2

1 + (1− w1)
2 · σ2

2

= σ2
1w2

1 + σ2
2 − 2σ2

2w1 + σ2
2w2

1

= (σ2
1 + σ2

2)w2
1 − 2σ2

2w1 + σ2
2 .

We now minimize this quantity by differentiating with respect to w1,
and setting the derivative equal to zero. We get

0 = 2(σ2
1 + σ2

2)w1 − 2σ2
2

and therefore

w1 = σ2
2

σ2
1 + σ2

2

.

Dividing the numerator and denominator of this fraction byσ2
1σ

2
2 gives

w1 =
σ2

2
σ2

1σ
2
2

σ2
1+σ2

2
σ2

1σ
2
2

=
1
σ2

1
1
σ2

1
+ 1

σ2
2
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which is the desired result. �
As an illustration, suppose we had 100 independent observations Ui ∼ N(μ,σ2),

i = 1, . . . , 100, and grouped them unequally defining, say, X1 = 1
10

∑10
i=1 Ui and

X2 = 1
90

∑100
i=11 Ui. It would seem strange to use 1

2 (X1 + X2) in this situation and
the intuitive thing to do would be to use the weighted mean: here the weights are
w1 = 10/100 and w2 = 90/100 (because σ2

1 = σ2/10 and σ2
2 = σ2/90) so we get

X̄w = Ū.
One way to interpret this is to say that using X̄ instead of X̄w is like throwing

away a fraction of the data. For example, suppose X1 and X2 both represent means of
counts from n trials. If σ1 is half the size of σ2 then, from the formula above, the ratio
of variances is 1.56. This means that to achieve the same accuracy in the estimator,
n would have to be 56 % larger if we used the sample mean instead of the weighted
mean. When σ1 is one-third the size of σ2 we would have to increase n by a factor
of 2.78 (instead of 50 trials, say, we would need 139). In these cases we might say
that the weighted mean is, respectively, 1.56 and 2.78 times more efficient than the
ordinary sample mean.

Example 8.1 Optimal integration of sensory information Ernst and Banks (2002)
considered whether humans might combine two kinds of sensory input optimally,
according to (8.10) and (8.11). Subjects were presented with raised bars either visu-
ally or by touch (known as haptic input) and had to judge the height of each bar in
comparison with a “standard” bar. The experimental apparatus was set up to allow
visual or haptic noise to be added to the height of each bar. Subjects were also
presented with both visual and haptic input simultaneously. The authors reported
evidence that when presented with the simultaneous visual and haptic input, subjects
judged heights by combining the two sensory modalities consistently with (8.10) and
(8.11). In other words, this was evidence that humans can integrate distinct sensory
inputs optimally. �

Here is the result for combining n observations. We have also included here the
formula for the standard error of the weighted mean.

Theorem Suppose X1, . . . , Xn are independent random variables with E(X1) =
E(X2) = · · · = E(Xn) = μ and V(Xi) = σ2

i for i = 1, . . . , n. Let

X̄w =
n∑

i=1

wi · Xi (8.12)

where, in (8.12),

wi =
1
σ2

i∑ 1
σ2

i

and for any set of weights w1, . . . , wn for which
∑n

i=1 wi = 1 define
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Fig. 8.5 When an action potential follows closely a previous action potential (with small ISI), the
second action potential is broader than the first. When a long ISI intervenes, however, the second
action potential is very similar to the first.

Yw =
n∑

i=1

wi · Xi.

Then we have
V(X̄w) ≤ V(Yw)

with equality holding if and only if Yw = X̄w. Furthermore we have

SE(X̄w) =
√

V(X̄w) (8.13)

where

V(X̄w) =
(

n∑

i=1

1

σ2
i

)−1

.

Proof: The proof is analogous to that for the case n = 2. �

Example 8.2 Action potential width and the preceding inter-spike interval As
part of a study on the effects of seizure-induced neural activity (Shruti et al. 2008)
spike trains were recorded from barrel cortex neurons in slice preparation. One of
the interesting findings2 involved the relationship between the width of each action
potential (spike) and its preceding ISI. As is well known, when a spike follows closely
on a preceding spike, so that the ISI is relatively short, then the second spike will
tend to be wider than the first. If, however, the ISI is sufficiently long, there will not
be any effect of the first spike on the second, and the spike widths should be roughly

2 The results here were obtained by Judy Xi.
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Fig. 8.6 Action potential width varies as function of previous ISI. The data are from many action
potentials recorded for a single neuron. A fitted curve with a change point is also shown, the change
point being indicated as a large blue dot.

equal. See (Fig. 8.5). How long is “sufficiently long?” This turns out to be dependent
on previous neuronal activity.

Let Y be the spike width and x the preceding ISI length, and let us assume there
is an ISI length τ such that, on average, Y is constant for all x > τ . Among neurons
taken from animals that had seizures, τ tended to be smaller than its value among
control animals. Figure 8.6 displays some of the data, together with a fitted curve.
The statistical model used for this curve assumes that, on average, Y decreases with
x for x < τ but remains constant for x ≥ τ . In statistical jargon, τ is called a change
point, because the relationship between Y and x changes at x = τ . The relationship
between y and x was assumed to be quadratic for x < τ (see Section 12.5.4) and
constant for x ≥ τ . The model was fit using nonlinear least squares. Additional
details are given on p. 408 in Section 14.2.1. The parametric bootstrap (Section 9.2.2)
was then applied to obtain the SE(τ̂ ). The method was repeated for neurons from
seizure and control animals to see whether there were systematic differences across
the two treatment conditions. Figure 8.7 shows results for both groups. Note the very
different standard errors across neurons. This suggests that in comparing the two
groups it is advisable to use weighted means, as in Eq. (8.12), together with standard
errors given by Eq. (8.13). The results were that the control group had weighted mean
change point of 190 (±32)ms and the seizure group reset earlier, with weighted mean
change point 108 (±.012)ms. �

Example 8.3 Neural response to selective perturbation of a brain-machine
interface In order to study learning-related changes in a network of neurons,
Jarosiewicz et al. (2008) introduced a paradigm in which the output of a cortical
network can be perturbed directly and the neural basis of the compensatory changes
studied in detail. Using a brain-computer interface (BCI), dozens of simultaneously
recorded neurons in the motor cortex of awake, behaving monkeys were used to
control the movement of a cursor in a three-dimensional virtual-reality environment.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 8.7 Change points and SEs for neurons of both seizure and control groups. The results for the
seizure group appear above those for the control group. The seizure group has change points that
occur earlier and they tend to be less variable.

This device creates a precise, well-defined mapping between the firing of the recorded
neurons and an expressed behavior (cursor movement). In a series of experiments,
they forced the animal to relearn the association between neural firing and cursor
movement in a subset of neurons and assessed how the network changes to com-
pensate. Their main finding was that changes in neural activity reflect not only an
alteration of behavioral strategy but also the relative contributions of individual neu-
rons to the population error signal. As part of their study the authors compared firing
rate modulation among neurons whose BCI signals had been artificially perturbed
with that among neurons whose BCI signals remained as determined from their con-
trol responses. Because the uncertainties varied substantially across neurons, these
comparisons among groups of neurons were carried out using weighted means. �

8.1.4 Decision theory often uses mean squared
error to represent risk.

At the end of Section 4.3.4, on p. 102, we mentioned that optimal classification may
be considered a problem in decision theory where, in general, the expected loss or
risk is minimized. In the context of estimation we may consider a decision rule d
to be a mapping from each possible vector of observations to a parameter value: we
may write d(X1, . . . , Xn) = T . If we use squared-error loss defined by

L(d(x1, . . . , xn), θ) = (d(x1, . . . , xn)− θ)2 ,

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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then MSE is the risk function

MSE(T) = E (L(d(X1, . . . , Xn), θ)) .

This terminology, viewing MSE as “risk under squared-error loss,” is quite common.

8.2 Estimation in Large Samples

8.2.1 In large samples, an estimator should be very
likely to be close to its estimand.

In the introduction to this chapter we offered the reminder that the sample mean
satisfies

X̄
P→ θ

which is the law of large numbers. Suppose Tn is an estimator of θ. If, as n → ∞,
we have

Tn
P→ θ (8.14)

then Tn is said to be a consistent estimator of θ. This means that for every positive ε,
as n→∞ we have

P(|Tn − θ| > ε)→ 0.

Note that, by (8.3), if MSE(Tn)→ 0 then Tn is consistent. Also, if Tn satisfies (8.1)
and σTn → 0 then Tn is consistent.

Details: Multiplying the left-hand side of (8.1) by σTn and applying

Slutsky’s theorem we have Tn−θ P→ 0, which is equivalent to Tn
P→ θ.

�
In words, to say that an estimator is consistent is to say that, for sufficiently large

samples, it will be very likely to be close to the quantity it is estimating. This is
clearly a desirable property. When Tn satisfies (8.1) and σTn → 0 we will call Tn

consistent and asymptotically normal.

8.2.2 In large samples, the precision with which a parameter may
be estimated is bounded by Fisher information.

Let us consider all estimators of θ that are consistent and asymptotically normal in the
sense of Section 8.2.1. For such an estimator T = Tn we may say that its distribution
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is approximately normal, and we write

T
·∼ N(θ,σ2

T ), (8.15)

where the symbol
·∼means “is approximately distributed as.” The expression (8.15)

is a convenient way to think of the more explicit Eq. (8.1). From (8.15), σT may be
considered3 the standard error of T , and an approximate 95 % CI for θ based on T
would be (T − 2σT , T + 2σT ).

Now, suppose we had two such estimators TA and TB that both satisfy (8.15).
We would say that TA is asymptotically more accurate than TB if σTA < σTB . An
extreme case of this was displayed in Fig. 8.2, where TA = X̄ and TB = S2, with
both histograms being approximately normal in shape and σTB being more than four
times larger than σTA . In general, we would prefer to use an estimator with a small σT

because it would tend to be closer to θ than an estimator with a larger value of σT . In
addition, a small σT would produce comparatively narrow CIs, indicating improved
knowledge about θ. Ideally, we would like to find an estimator T for which σT would
be as small as possible. Fisher (1922) discovered that this is a soluble problem: there
is a minimum value of σT and, furthermore, this minimum value is achieved by the
method of maximum likelihood.

To understand how this works, we may use some rough heuristics4 based on the
normality in (8.15) to get an expression for σT . Let us first note an important fact
about normal distributions. Suppose X ∼ N(μ,σ2) with σ known, and consider the
loglikelihood function

�(μ) = log fX(x|μ).

We have

fX(x|μ) = 1√
2πσ

exp

(
− (x − μ)2

2σ2

)

so that

�(μ) = − (x − μ)2

2σ2 , (8.16)

and when we differentiate twice we get

�′(μ) = x − μ
σ2

and

�′′(μ) = − 1

σ2

3 In practice, σT may depend on the value of θ, which is unknown, so that a data-based version σ̂T
would have to be substituted in forming a confidence interval.
4 For a rigorous treatment along the lines of the argument here see Kass and Vos (1997, Chapter 2).
See also Bickel and Doksum (2001, Chapter 5).

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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which gives

σ2 = 1

−�′′(μ)
. (8.17)

That is, the standard deviation of a normal pdf is determined by the second derivative
of the loglikelihood function �(μ).

The result (8.17) suggests that when a pdf of an estimator is approximately normal,
its standard error may be found in terms of the second derivative of the corresponding
loglikelihood function. We now apply this idea to the approximate normal pdf based
on (8.15). We write the pdf of the estimator T as fT (t|θ) and define its loglikelihood
function to be

�T (θ) = log fT (t|θ). (8.18)

Using the approximate normality in (8.15) and applying (8.17) we get

σ2
T =

1

−�′′T (θ)
. (8.19)

Equation (8.19) implies that minimizing σT is the same as maximizing −�′′T (θ).
However, there is an important distinction between (8.19) and (8.17). In (8.17),
�′′(μ) is a constant whereas, because T is a random variable,−�′′T (θ) is also random
(it does not reduce to a constant except when T is exactly normally distributed, so
that its loglikelihood becomes exactly quadratic). Thus, regardless of how we were to
choose the estimator T , we could not guarantee that−�′′T (θ) would be large because
there would be some probability that it might be small. We therefore work with its
average value, i.e., its expectation, for which we use the following notation:

IT(θ) = E

(
− d2

dθ2 log fT (t|θ)
)

. (8.20)

If we replace −�′′T (θ) in (8.19) by its expectation, using (8.20), we get

σ2
T =

1

IT(θ)
. (8.21)

The quantity IT(θ) is called the information about θ contained in the estimator T .
Thus, an optimal estimator would be one that makes the information as large as
possible.

How large can the information IT(θ) be? Fisher’s insight was that the informa-
tion in the estimator can not exceed the analogous quantity derived from the whole
sample, which is now known as the Fisher information. For a parametric family of
distributions having pdf f (x|θ) the Fisher information is given by

IF(θ) = E

(
− d2

dθ2 log f (X|θ)
)

.
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To be clear, for a continuous random variable on (A, B) this expectation is

IF(θ) = −
∫ B

A

(
d2

dθ2 log f (x|θ)
)

f (x|θ)dx.

For a random sample drawn from this distribution the Fisher information is given
by5

I(θ) = E

(
− d2

dθ2 log
n∏

i=1

f (Xi|θ)
)

= E

(
− d2

dθ2

n∑

i=1

log f (Xi|θ)
)

=
n∑

i=1

E

(
− d2

dθ2 log f (Xi|θ)
)

and, because the sample involves identically distributed random variables, all of the
expected values in this final expression are the same, and equal to IF(θ). Therefore,
we have

I(θ) = nIF(θ).

Result Under certain general conditions, the information in an estimator T
satisfies

IT(θ) ≤ I(θ). (8.22)

Therefore, the large-sample variance σ2
T of a consistent and asymptotically

normal estimator satisfies

σ2
T ≥

1

I(θ)
. (8.23)

In words, (8.22) says that the information in an estimator can not exceed the infor-
mation in the whole sample. In Section 8.3.1 we add that the MLE attains this upper
bound asymptotically, as n→∞ and, therefore, has the smallest possible asymptotic
variance.

A detail: It is possible for an estimator T to achieve the information
bound exactly, in finite samples, i.e.,

IT(θ) = I(θ)

5 Because the expectation is used in defining I(θ), it is often called the expected information to
distinguish it from the observed information which we discuss in Section 8.3.2.
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for all n. When this happens the estimator contains all of the infor-
mation about θ that is available in the data, and it is called a sufficient
statistic. For instance, if we have a sample from a N(μ,σ2) distribu-
tion with σ known, then the sample mean X̄ is sufficient for estimating
μ. Sufficiency may be characterized in many ways. If T is a sufficient
statistic, then the likelihood function based on T is the same as the like-
lihood function based on the entire sample. For example, it is not hard
to verify that the likelihood function based on a sample (x1, . . . , xn)

from a N(μ,σ2) distribution with σ known is the same as the like-
lihood function based on X̄ . This property is sometimes known as
Bayesian sufficiency (see Bickel and Doksum 2001). In addition, if
θ is given a prior distribution as in Section 7.3.9, then T is sufficient
when the mutual information between θ and T is equal to the mutual
information between θ and the whole sample (see Cover and Thomas
1991). Parametrized families of distributions for which it is possible
to find a sufficient statistic with the same dimension as the parameter
vector are called exponential families. See Section 14.1.6. �

A related result is the following. If we let ψ(θ) = E(T), where the expectation is
based on a random sample from the distribution with pdf f (x|θ), it may be shown6

that

V(T) ≥ ψ′(θ)2

I(θ)
.

Therefore, if T is an unbiased estimator of θ based on a random sample from the
distribution with pdf f (x|θ) we have ψ′(θ) = 1 and

V(T) ≥ 1

I(θ)
. (8.24)

This is usually called the Cramér-Rao lower bound. Although Eq. (8.24) is of less
practical importance than the asymptotic result (8.23), authors often speak of the
bound in (8.23) as a Cramér-Rao lower bound.

Fisher information also arises in theoretical neuroscience, particularly in discus-
sion of neural decoding and optimal properties of tuning curves (see Dayan and
Abbott 2001).

8.2.3 Estimators that minimize large-sample
variance are called efficient.

A consistent and asymptotically normal estimator T satisfies (8.1) and it also satisfies
(8.22). In (8.1) we suppressed the dependence of T and σT on n. The information
IT(θ) also depends on n, as does I(θ). We now consider what happens as n→∞.

6 See Bickel and Doksum (2001, Chapter 3).

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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Suppose we have a consistent and asymptotically normal estimator T which, by
definition, satisfies (8.1). If we find a sequence of numbers c1, c2, . . . , cn, . . . such
that σTn

cn
→ 1 (8.25)

then we have
Tn − θ

cn

D→ N(0, 1). (8.26)

Details: We write
Tn − θ

cn
= Tn − θ

σTn

σTn

cn

and apply Slutsky’s Theorem (p. 163) using (8.25). �
Equation (8.26) says that cn can also serve as the large-sample standard error of

T . If we have two consistent and asymptotically normal estimators TA and TB what
matters is the limiting ratio η defined by

σTA

σTB
→ η

as n → ∞. If η < 1 then, in large samples, TA is more accurate than TB, while if
η = 1 the two estimators are equally accurate. This, together with (8.22), leads us to
conclude that the large-sample value of σT is minimized if

IT(θ)

I(θ)
→ 1 (8.27)

n→∞. In this case we also have

√
I(θ)(T − θ) D→ N(0, 1). (8.28)

When an estimator attains (8.27), and therefore (8.28), it is said to be efficient.

Details: In general, if a1, . . . , an, . . . and b1, . . . , bn, . . . are positive
sequences that satisfy

an

bn
→ 1

then √
an

bn
→ 1.

Applying this to (8.27) we get
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√
IT(θ)

I(θ)
→ 1. (8.29)

as n→∞. Let us rewrite 1/σT as

1

σT
=

√
IT(θ) =

√
IT(θ)

I(θ)

√
I(θ). (8.30)

Putting (8.30) in (8.1) we get

√
IT(θ)

I(θ)

√
I(θ)(Tn − θ) D→ N(0, 1). (8.31)

Therefore, by Slutsky’s Theorem (p. 163), if (8.27) holds for some
estimator T then (8.28) also holds. �

Fisher (1922) described efficient estimators by saying they contain the maximal
amount of information supplied by the data about the value of a parameter, and there
are rigorous mathematical results that justify Fisher’s use of these words. Roughly
speaking, the information in the data pertaining to the parameter value may be used
well (or poorly) to make an estimator more (or less) accurate; in using as much
information about the parameter as is possible, an efficient estimator uses the data
most efficiently and reduces to a minimum the uncertainty attached to it. Other
definitions of efficiency are sometimes used in statistical theory, but the one based on
Fisher information remains most immediately relevant to data analysis, and supports
Fisher’s observations about maximum likelihood.

8.3 Properties of ML Estimators

8.3.1 In large samples, ML estimation is optimal.

We now state Fisher’s main discovery about ML estimation.

Result Under certain general conditions, if T is the MLE then (8.27) and (8.28)
hold. That is, ML estimators are consistent, asymptotically normal, and efficient:

√
I(θ)(θ̂ − θ) D→ N(0, 1). (8.32)
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In other words, when we consider what happens as n → ∞, among all those
“nice” estimators that are consistent and asymptotically normal, ML estimators are
the best in the sense of having the smallest possible limiting standard deviation.

Results may also be derived7 in terms of MSE. Under certain conditions, an
estimator Tn must satisfy

I(θ) ·MSE(Tn)→ c

where c ≥ 1 and for the MLE, where T = θ̂, we have

I(θ) ·MSE(θ̂)→ 1.

This is a different way of saying that, for large samples, ML estimation is as accurate
as possible.

8.3.2 The standard error of the MLE is obtained from the second
derivative of the loglikelihood function.

Although we have emphasized the theoretical importance of Eq. (8.28), to be useful
for data analysis it must be modified: the quantity I(θ) depends on the unknown
parameter θ, so we must replace I(θ) with an estimate of it. In other words, when
we apply maximum likelihood and want to use (8.32) we must modify it to obtain a
confidence interval. One possible such modification is fairly obvious, based on the
way we modified initial asymptotic normality results in our discussion of confidence
intervals in Section 7.3: we replace θ with the MLE θ̂. Under certain conditions we
have √

I(θ̂)(θ̂ − θ) D→ N(0, 1). (8.33)

Details: Because θ̂ → θ in probability (i.e., the MLE is consistent),

it may be shown that we also have
√

I(θ̂)/I(θ) → 1 in probability,
so we can again apply Slutsky’s Theorem together with (8.28) to get
(8.33). �

It turns out that there is a more convenient version of the result. The difficulty with
(8.33) is that in some problems it is hard to compute I(θ) analytically because of the
required expectation. Instead, as a general rule, we replace I(θ) with the observed
information given by

IOBS(θ̂) = −�′′(θ̂). (8.34)

7 See the discussion and references in Kass and Vos (1997).

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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In other words, instead of the expected information evaluated at θ̂ in (8.33), we
use the negative second derivative of the loglikelihood, evaluated at θ̂, without8 any
expectation. Again, under certain conditions, we have

√
IOBS(θ̂)(θ̂ − θ) D→ N(0, 1). (8.35)

Details: Note that

−1

n
�′′(θ) = −1

n

n∑

i=1

d2

dθ2 log f (xi|θ)

and that the expectation of the right-hand side is IF(θ). From the LLN
we therefore have

−1

n
�′′(θ) P→ IF(θ),

and it may also be shown that

√
IOBS(θ̂)

I(θ̂)

P→ 1,

which, again by Slutsky’s Theorem, gives (8.35). �
Equation (8.35) provides large-sample standard errors and confidence intervals

based on ML estimation, given in the following result.

Result For large samples, under certain general conditions, the MLE θ̂ satisfies
(8.35), so that its standard error is given by

SE = 1√
−�′′(θ̂)

(8.36)

and an approximate 95 % CI for θ is given by (θ̂ − 2SE, θ̂ + 2SE).

Additional insight about the observed information can be gained by returning to
the derivation of (8.17) and applying it, instead, to the likelihood function based on
a sample x1, . . . , xn from a N(μ,σ2) distribution with σ known, as in Section 7.3.2.
There, we found the loglikelihood function to be

8 For the special class of models known as exponential families, which are used with the generalized
linear models discussed in Chapter 14, we have I(θ̂) = IOBS(θ̂) (see, e.g., Kass and Vos 1997) but
this is not true in general.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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�(θ) = −
n∑

i=1

(xi − θ)2

2σ2

which simplified to Eq. (7.2),

�(θ) = − n

2σ2 (θ2 − 2x̄θ).

Differentiating this twice we get

�′′(θ) = − n

σ2 ,

so that
σ√
n
= 1√−�′′(θ)

. (8.37)

In other words, 1/
√−�′′(θ) gives the standard error of the mean in that case.

Quite generally, for large samples, the likelihood function has an approximately
normal form and there is a strong analogy with this paradigm case. Specifically,
a quadratic approximation to the loglikelihood function (using a second-order
Taylor expansion) produces a normal likelihood (because if Q(θ) is quadratic then
exp(Q(θ)) is proportional to a normal likelihood function) and in this normal likeli-

hood the value of the standard deviation is 1/

√
−�′′(θ̂). This heuristic helps explain

(8.36).

Details: The quadratic approximation to �(θ) at θ̂ is

Q(θ) = �(θ̂)+ �′(θ̂)(θ − θ̂)+ 1

2
�′′(θ̂)(θ − θ̂)2.

Using �′(θ̂) = 0 and setting c = exp(�(θ̂)) we have

exp(Q(θ)) = c exp

(
−1

2
(−�(θ̂))(θ̂ − θ)2

)
. (8.38)

The function on the right-hand side of (8.38) has the form of a likeli-
hood function based on X ∼ N(θ,σ2) where θ̂ plays the role of x and

σ = 1/

√
−�′′(θ̂). �

We now consider two simple illustrations.

Illustration: Exponential distribution Suppose Xi ∼ Exp(λ) for i = 1, . . . , n,
independently. The likelihood function is

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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L(λ) =
n∏

i=1

λe−λxi

= λne−λ
∑

xi

= λne−λnx̄

and the loglikelihood function is

�(λ) = n logλ− nλx̄.

Differentiating this and setting equal to zero gives

0 = n(
1

λ
− x̄)

and solving this for λ yields the MLE

λ̂ = 1

x̄
.

Continuing, we compute the observed information:

−�′′(λ̂) = n

λ̂2

= nx̄2

which gives us the large-sample standard error

SE(λ̂) = 1

x̄
√

n
. �

Illustration: Binomial For a B(n, p) random variable it is straightforward to obtain
the observed information

−�′′(p̂) = n

p̂(1− p̂)
.

This gives

SE(p̂) =
√

p̂(1− p̂)

n
,

which is the same as the SE found in Section 7.3.5. Therefore, the approximate 95 %
CI in (7.22) is an instance of that provided by ML estimation with SE given by (8.36).

�

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Fig. 8.8 Normal approximation N(.6, (.049)2) to beta posterior Beta(61, 41).

8.3.3 In large samples, ML estimation is approximately Bayesian.

In Section 7.3.9 we said that Bayes’ theorem may be used to provide a form of
estimation based on the posterior distribution according to (7.28), i.e.,

fθ|x(θ|x) = L(θ)π(θ)∫
L(θ)π(θ)dθ

.

One of the most important results in theoretical statistics is the approximate large-
sample equivalence of inference based on ML and inference using Bayes’ theorem.

Result For large samples, under certain general conditions, the posterior distrib-
ution of θ is approximately normal with mean given by the MLE θ̂ and standard
deviation given by the standard error formula (8.36).

We elaborate in Section 16.1.5 and content ourselves here with a simple illustra-
tion.

Illustration: Binomial distribution Suppose Y ∼ B(n, θ) with n = 100 and we
observe y = 60. As we said in Section 7.3.9, if we take the prior distribution on
θ to be U(0, 1), which is also the Beta(1, 1) distribution, we obtain a Beta(61, 41)

posterior. The observed proportion is the MLE θ̂ = x/n = .6. The usual standard

error then becomes SE =
√
θ̂(1− θ̂)/n = .049. As shown in Fig. 8.8 the normal

distribution with mean θ̂ and standard deviation
√
θ̂(1− θ̂)/n is a remarkably good

approximation to the posterior. �
For the data from subject P.S. in Example 1.4, which involves a relatively small

sample, we already noted (see p. 174) that the approximate 95 % confidence interval
(.64, 1.0) found using (8.36) (which is the same as ( 7.22), see p. 206) differed by

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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only a modest amount from the exact 95 % posterior probability interval we obtained,
which was (.59, .94).

8.3.4 MLEs transform along with parameters.

It sometimes happens that we wish to consider an alternative parameterization of a
pdf, say γ rather than θ, and then want find the MLE of γ. If γ = g(θ) for a trans-
formation function g having nonzero derivative, then the MLE of the transformation
equals the transformation of the MLE:

γ̂ = g(θ̂).

This is often called invariance or equivariance. The derivation of invariance of ML
is perhaps most easily followed in a concrete example. The argument given next for
the exponential distribution could be applied to any parametric family.

Illustration: Exponential distribution (continued from p. 205) Suppose we para-
meterize the Exp(λ) distribution in terms of the meanμ = 1/λ so that its pdf becomes

f (x) = 1

μ
e−x/μ.

Previously (see p. 205) we found that the MLE of λ based on a sample from Exp(λ)

is λ̂ = 1/x̄. The invariance property of ML says that

μ̂ = 1/λ̂ = x̄.

To see why this works for the exponential distribution, let us use a subscript on
the likelihood function to indicate its argument, Lλ(λ) vs. Lμ(μ). We find Lμ(μ) by
starting with

Lλ(λ) = λne−λnx̄

and writing

Lμ(μ) = Lλ(
1

μ
) = 1

μn
e−nx̄/μ.

Thus, when we maximize Lμ(μ) over μ, we are maximizing Lλ(1/μ) over μwhich is
the same thing as maximizing Lλ(λ) over λ. We therefore must have μ̂ = 1/λ̂. More
generally, the same argument shows that when γ = g(θ) we must have γ̂ = g(θ̂). �

Invariance is by no means a trivial property: some methods of estimation are not
invariant to transformations of the parameter.
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8.3.5 Under normality, ML produces the weighted mean.

We now return to choosing the weights for a weighted mean, discussed in Section 8.1.3.
Previously (p. 190) we found the weights that minimized MSE. A different way to
solve the problem is to introduce a statistical model, and then apply the method of
maximum likelihood. Let us do this.

To apply ML, we assume that X1 and X2 are both normally distributed. The
loglikelihood is

�(μ) = − (x1 − μ)2

2σ2
1

− (x2 − μ)2

2σ2
2

and setting its derivative equal to zero gives

0 = −x1 − μ
σ2

1

− x2 − μ
σ2

2

= − x1

σ2
1

− x2

σ2
2

+ μ
(

1

σ2
1

+ 1

σ2
2

)
.

Therefore, dividing through by 1
σ2

1
+ 1

σ2
2

, the MLE is

μ̂ = w1 · X1 + w2 · X2,

where

wi =
1
σ2

i

1
σ2

1
+ 1

σ2
2

for i = 1, 2. This is Eq. (8.10).

8.4 Multiparameter Maximum Likelihood

The method of ML estimation was defined for the case of a scalar parameter θ
in Section 7.2.2, together with Eqs. (8.35) and (8.36). More generally, when θ is a
vector, the definitions of the likelihood function, loglikelihood function, and MLE
remain unchanged. The observed information instead becomes a matrix, and the
approximate normal distribution mentioned in conjunction with Eq. (8.36) instead
becomes an approximate multivariate normal distribution.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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8.4.1 The MLE solves a set of partial differential equations.

In Section 7.2.2 we computed the MLE by solving the differential equation

0 = �′(θ) (8.39)

when θ was a scalar. To obtain the MLE of an m-dimensional vector parameter, we
must solve precisely the same equation, except that now the derivative in Eq. (8.39)
is the vector

�′(θ) =

⎛

⎜⎜⎜⎜⎝

∂�
∂θ1
∂�
∂θ2
...
∂�
∂θm

⎞

⎟⎟⎟⎟⎠
.

This means that Eq. (8.39) is really a set of m equations, often called the likelihood
equations, which need to be solved simultaneously.

Illustration: Normal MLE Let us return to finding the MLE for a sample x1, . . . , xn

from a N(μ,σ2) distribution. Previously we assumed σ was known, but now we
consider the joint estimation ofμ andσ. The loglikelihood function now must include
a term previously omitted that involves σ. The joint pdf is

f (x1, . . . , xn|μ,σ) =
n∏

i=1

1√
2πσ

exp
(− (xi − μ)2

2σ2

)

and the loglikelihood function is

�(μ,σ) = −n logσ −
n∑

i=1

(xi − μ)2

2σ2 .

The partial derivatives are

∂�

∂μ
= 1

σ2

n∑

i=1

(xi − μ)

∂�

∂σ
= − n

σ
+ σ−3

n∑

i=1

(xi − μ)2

Setting the first equation equal to 0 we obtain

μ̂ = x̄.

Setting the second equation equal to 0 and substituting μ̂ = x̄ gives

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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σ̂ =
√√√√1

n

n∑

i=1

(xi − x̄)2.

The MLE is thus slightly different than the usual sample standard deviation s, which
is defined with the denominator n− 1 so that the sample variance becomes unbiased
as an estimator of σ2, as in (8.4). We have

σ̂ =
√

n− 1

n
· s.

Clearly the distinction is unimportant for substantial sample sizes.9 �
Illustration: Gamma MLE Let us rewrite the gamma loglikelihood function:

�(α,β) = nα logβ + (α− 1)

n∑

i=1

log xi − β
n∑

i=1

xi − n log �(α).

The partial derivatives are

∂�

∂α
= n logβ +

n∑

i=1

log xi − n
�′(α)

�(α)

∂�

∂β
= nα

β
−

n∑

i=1

xi

where �′(u) is the derivative of the function �(u) (sometimes called the “digamma
function”). Setting the second partial derivative equal to zero we obtain

β̂ = nα̂∑n
i=1 xi

.

When we set the first equation equal to zero and substitute this expression for β̂, we
get the nonlinear equation

n log α̂− n log x̄ +
n∑

i=1

log xi − n
�′(α̂)

�(α̂)
= 0.

To obtain the MLE (α̂, β̂) we may proceed iteratively: given a value β̂(j) we can
solve the first equation for α̂(j+1) and solve the second equation to obtain β̂(j+1); we

9 We may obtain σ̂ = s if we instead integrate out μ from the likelihood and then maximize the
resulting function; this function is sometimes called an integrated or marginal likelihood, and in
some situations maximizing the integrated likelihood yields a preferable estimator.
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continue until the results converge. The second equation must be solved numerically,
but it is not very difficult to use available software to do so. �

8.4.2 Least squares may be viewed as a special
case of ML estimation.

In Example 1.5 we discussed data collected by Hursh (1939), indicating the linear
relationship between a neuron’s conduction velocity and its axonal diameter. We
also briefly described the method of least-squares regression, based on the linear
regression model (1.4), which is

Yi = β0 + β1xi + εi (8.40)

where εi ∼ N(0,σ2), independently. Least-squares regression is discussed at length
in Chapter 12. Here we show that the method of least squares may be considered a
special case of ML estimation.

Least squares may be derived by assuming that the ε error variables in (8.40) are
normally distributed, and that the problem is to estimate the parameter vector θ =
(β0,β1). Specifically, we assume εi ∼ N(0,σ2), independently for all i. Calculation
then shows that the ML estimate of θ is the least squares estimate. In other words, in
the simple linear regression problem, ML based on the assumption of normal errors
reproduces the least-squares solution.

Details: In the illustration on p. 210 we wrote down the loglikelihood
function for a sample from a N(μ,σ2) distribution,

�(μ,σ) = −n logσ −
n∑

i=1

(xi − μ)2

2σ2

and obtained the MLE μ̂ = x̄. Notice that, as a function of μ,
the loglikelihood is maximized by minimizing the sum of squares∑n

i=1(xi−μ)2. Thus, the MLE μ̂ = x̄ is also a least-squares estimator
in the one-sample problem. For the simple linear regression model
(8.40) the loglikelihood function becomes

�(β0,β1,σ) = −n logσ −
n∑

i=1

(yi − β0 − β1xi)
2

2σ2 .

We can maximize �(β0,β1,σ) by first defining (β̂0(σ), β̂1(σ)) to be
the maximum of �(β0,β1,σ) over (β0,β1) for fixed σ, and then max-
imizing �(β̂0(σ), β̂1(σ),σ) over σ. However, from inspection of the
formula above, for every σ the solution (β̂0(σ), β̂1(σ)) (the maxi-
mum of �(β0,β1,σ)) is found by minimizing the sum of squares

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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∑n
i=1(yi−β0−β1xi)

2. Therefore, the MLE (β̂0, β̂1, σ̂) has the least-
squares estimate as its first two components. �

8.4.3 The observed information is the negative of the matrix
of second partial derivatives of the loglikelihood function,
evaluated at θ̂.

In the multiparameter case the second derivative �′′(θ) becomes a matrix,

�′′(θ) =

⎛

⎜⎜⎜⎜⎜⎝

∂2�

∂θ2
1

∂2�
∂θ1θ2

· · · ∂2�
∂θ1θm

∂2�
∂θ1θ2

∂2�

∂θ2
2
· · · ∂2�

∂θ2θm

· · · · · · · · · · · ·
∂2�
∂θ1θm

∂2�
∂θ2θm

· · · ∂2�
∂θ2

m

⎞

⎟⎟⎟⎟⎟⎠
.

This second-derivative matrix is often called the Hessian of �(θ). The observed
information matrix is −�′′(θ̂), which generalizes (8.34).

Result For large samples, under certain general conditions, the MLE θ̂ of the
m-dimensional parameter θ is distributed approximately as an m-dimensional
multivariate normal random vector with variance matrix

�̂ = −�′′(θ̂)−1, (8.41)

i.e.,

�̂−1/2(θ̂ − θ) D→ Nm(0, Im) (8.42)

as n→∞.

Example 5.5 (continued from p. 112) In the Hecht et al. experiments on threshold
for visual perception of light, the response variable was an indication of whether or
not light was observed by a particular subject (“yes” or “no”), and the explanatory
variable was the intensity of the light (in units of average number of light quanta
per flash). Several different intensities were used, and for each the experiment was
repeated many times. The results for one series of trials in one subject are plotted in
Fig. 8.9.

As illustrated in Fig. 8.9, the linear regression model (8.40) does not work very
well in this example. The proportions vary between 0 and 1 but a line y = a+ bx is
unrestricted and can not represent the variation accurately, at least not for proportions
that get close to 0 or 1. A solution is to replace the line y = a + bx by a sigmoidal
curve, which goes to zero as the explanatory variable x goes to −∞ and increases
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Fig. 8.9 Proportion of trials, out of 50, on which light flashes were perceived by subject S.S. as a
function of log10 intensity, together with fits. Data from Hecht et al. (first series of trials) are shown
as circles. Dashed line is the fit obtained by linear regression. Solid curve is the fit obtained by
logistic regression.

to one as x → ∞. The fitted curve in Fig. 8.9 is based on the following statistical
model: for the ith value of light intensity we let Yi be the number of light flashes on
which the subject perceives light and then take

Yi ∼ B(ni, pi) (8.43)

pi = exp(β0 + β1xi)

1+ exp(β0 + β1xi)
. (8.44)

This is known as the logistic regression model. There are many possible approaches
to estimating the parameter vector θ = (β0,β1) but the usual solution is to apply
maximum likelihood. The observed information matrix is then used to get stan-
dard errors of the coefficients. These calculations are performed by most statistical
software packages. For the data in Fig. 8.9 we obtained β̂0 = −20.5 ± 2.4 and
β̂1 = 10.7± 1.2. Further discussion of logistic regression, and interpretation of this
result, are given in Section 14.1. �

8.4.4 When using numerical methods to implement
ML estimation, some care is needed.

There are three issues surrounding the application of numerical maximization to ML
estimation. The first is that, while loglikelihood functions are usually well behaved

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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near their maxima, they may be poorly behaved away from the maxima. In particular,
a loglikelihood may have multiple smaller peaks, and numerical methods may get
stuck in a region away from the actual maximum. Except in cases where the loglike-
lihood is known to be concave (see Section 14.1.6.), it is essential to begin an iterative
algorithm with a good preliminary estimate. Sometimes models may be altered and
simplified in some way to get guesses at the parameter values. In some cases the
method of moments may be used to get initial values for an iterative maximization
algorithm.

Illustration: Gamma distribution On p. 153 we found the method of moments
estimator for the Gamma distribution,

β∗ = x̄

s2

α∗ = x̄2

s2 .

In order to obtain the MLE of (α,β) we may use an iterative maximization algorithm
beginning with (α̂(1), β̂(1)) = (α∗,β∗). �

With good initial values, iterative maximization software usually only needs to
run for a few iterations, after which the estimates don’t change by more than a
small fraction of the statistical uncertainty (represented by standard errors). In fact,
it may be shown, theoretically, that from any consistent estimator for which the MSE
vanishes at the rate 1/n, a single iteration of Newton’s method for maximizing the
loglikelihood function will produce an efficient estimator (see Lehmann, 1983).

A second important implementation issue is that the second derivatives used in
numerical maximization software are often themselves estimated numerically, and
they may be estimated rather poorly (because they do not need to be estimated
accurately to obtain the maximum). Thus, for the purpose of finding a variance matrix,
one should either evaluate second derivatives separately (from an analytical formula,
or from special-purpose software), or one should apply the parametric bootstrap (see
Section 9.2).

The third issue is that parameterization can be important. Numerical maximization
procedures tend to work well when the loglikelihood function is roughly quadratic,
which means that the likelihood function is approximately normal. Transformations
of parameters can improve this approximation. For example, before running maxi-
mization software it is often helpful to transform variance parameters by taking logs.

8.4.5 MLEs are sometimes obtained with the EM algorithm.

Certain statistical models have a structure that lends itself to a special method of
likelihood maximization known as the expectation-maximization (EM) algorithm.
We describe it in one special case.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Illustration: Mixture of Two Gaussians Suppose a random variable X follows
either a N(μ1,σ

2
1) distribution or a N(μ2,σ

2
2) distribution, and that the selection

of the distribution is determined probabilistically: with probability π we have X ∼
N(μ1,σ

2
1) and with probability 1− π we have X ∼ N(μ2,σ

2
2). The pdf of X is

fX(x) = πf (x;μ1,σ
2
1)+ (1− π)f (x;μ2,σ

2
2) (8.45)

where f (x;μ,σ2) is the N(μ,σ2) pdf. If we consider a large sample of values
x1, . . . , xn from the distribution of X, some proportion of xi values (approximately nπ
of them) would be from the N(μ1,σ

2
1) distribution, while the rest would be from the

N(μ2,σ
2
2) distribution. Such a sample would thus blend the N(μ1,σ

2
1) and N(μ2,σ

2
2)

distributions and (8.45) defines a mixture of two normal distributions, often called a
mixture of Gaussians model. Based on a sample of data the problem is to estimate
the parameter vector θ = (μ1,μ2,σ1,σ2,π).

Let us introduce a random variable Wi to represent the selected distribution for Xi

in the sense that Wi = 1 with probability π and if Wi = 1 a value U is drawn from
N(μ1,σ

2
1) and we set Xi = U, while Wi = 0 with probability 1− π and if Wi = 0 a

value V is drawn from N(μ2,σ
2
2) and we set Xi = V . The variables W1, . . . , Wn are

not observed. If they were known, however, the problem would be much simpler:
we could collect the values of Wi for which Wi = 1 and take the sample mean and
variance of those as estimates10 of μ1 and σ2

1 and then collect the values of Wi for
which Wi = 0 and take the sample mean and variance of those as estimates of μ2
and σ2

2. Because the Wis are unobserved, they are often called latent variables (see
Section 16.2). The data (x1, . . . , xn) are said to be augmented by (w1, . . . , wn). Let
us write Y = (X1, . . . , Xn) and Z = (W1, . . . , Wn) and then write the loglikelihood
function based on the original data y as �y(θ) and that based on the augmented data
(y, z) as �(y,z)(θ). We have

�(y,z)(θ) =
n∑

i=1

wi log f (xi;μ1,σ
2
1)+

n∑

i=1

(1− wi) log f (xi;μ2,σ
2
2)

+
n∑

i=1

wi logπ +
n∑

i=1

(1− wi) log(1− π)

=
∑

{i:wi=1}
log f (xi;μ1,σ

2
1)+

∑

{i:wi=0}
log f (xi;μ2,σ

2
2)

+
∑

{i:wi=1}
logπ +

∑

{i:wi=0}
log(1− π) (8.46)

and maximizing this with respect to (μ1,σ
2
1) is the same as maximizing the likelihood

for a sample a N(μ1,σ
2
1) pdf made up of the values xi for which wi = 1 (and similarly

10 As we said in Section 8.4.1 (see p. 210), the MLE of the variance has denominator n rather than
n− 1 but the sample variance is usually preferred.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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for (μ2,σ
2
2)). Thus, the introduction of the latent variables Wi has greatly simplified

the problem. However, because these latent variables have not been observed we
must get estimates that do not rely on them. To do this we may integrate out the Wi

variables (marginalize over them), as we next explain.
If we think of π as a prior probability that Wi = 1 then, after observing Xi = xi

we may compute the posterior probability from Bayes’ Theorem as

P(Wi = 1|Xi = xi) = πf (xi;μ1,σ
2
1)

πf (xi;μ1,σ
2
1)+ (1− π)f (xi;μ2,σ

2
2)

. (8.47)

We use the notation
γi = P(Wi = 1|Xi = xi). (8.48)

Note that, because Wi is a binary variable γi may also be written

γi = E(Wi|Xi = xi)

and, for later purposes, we make the dependence on θ explicit by writing

γi = E(Wi|Xi = xi, θ). (8.49)

With this framework in hand, the EM algorithm for this problem may be defined.
It produces an iterative sequence θ(1), θ(2), . . . that, with good initial values, will
converge to the MLE θ̂. Here is the algorithm.

1. Find an initial value θ(1) for θ and set j = 1.
2. Given a current value θ(j) compute γ(j)

i for i = 1, . . . , n by applying (8.48) using
(8.47) where θ = θ(j).

3. Using γ(j)
1 , . . . , γ

(j)
n from Step 2 compute the components of θ(j+1) as follows:

μ
(j+1)
1 =

∑n
i=1 γ

(j)
i xi

∑n
i=1 γ

(j)
i

μ
(j+1)
2 =

∑n
i=1(1− γ(j)

i )xi
∑n

i=1(1− γ(j)
i )

σ
2(j+1)
1 =

∑n
i=1 γ

(j)
i (xi − μ(j+1)

1 )2

∑n
i=1 γ

(j)
i

σ
2(j+1)
2 =

∑n
i=1(1− γ(j)

i )(xi − μ(j+1)
1 )2

∑n
i=1(1− γ(j)

i )

π(j+1) = 1

n

n∑

i=1

γ
(j)
i .



218 8 Estimation in Theory and Practice

4. Increment j and return to Step 2.
5. Repeat Steps 2–4 until convergence. �

A key step in formulating the EM algorithm in the mixture of two Gaussians
model, above, was the introduction of the random variables Wi. In order to maximize
the loglikelihood �Y (θ) defined by the pdf fY (y|θ) we effectively introduced the
loglikelihood �(Y ,Z)(θ) in (8.46) based on the augmented data pdf f(Y ,Z)(y, z|θ).
Step 2 of the algorithm, known as the expectation step, is based on the expectation
E(�(Y ,Z)(θ)|Y = y, θ = θ(j)). In Step 2 the conditional expectation in (8.49) was
evaluated for θ = θ(j). In Step 3 the loglikelihood was maximized in terms of the
expectations computed in Step 2.

In general, if Y = y is the data vector augmented by Z = z we define

Q(θ, θ(j)) = E(�(Y ,Z)(θ)|Y = y, θ = θ(j)). (8.50)

Beginning with an initial guess θ(1), for each j the EM algorithm computes Q(θ, θ(j))

and sets θ(j+1) equal to the maximizer of Q(θ, θ(j)) as a function of θ. The EM
algorithm works well for problems in which some kind of data augmentation greatly
simplifies the problem, so that Q(θ, θ(j)) is easy to compute (as in Step 2 of the
mixture of two Gaussians illustration above). In addition to models that incorporate
latent variables, the EM algorithm is often applied to problems with missing data,
where the missing data are treated as augmenting the observed data. (See also the
related discussion of Gibbs sampling in Section 16.2.2.)

One way to see that this iterative scheme should work is to apply the formula11

d

dθ
Q(θ, θ∗)|θ=θ∗ = �′Y (θ∗) (8.51)

(see the details below). If θ(1), θ(2), . . . is a sequence of EM iterates that converge to
a value θ∗ then, because each iterate maximizes Q(θ, θ(j)) its derivative is 0, i.e.,

d

dθ
Q(θ, θ∗)|θ=θ∗ = 0.

From (8.51) we then have
�′Y (θ∗) = 0.

Thus, for sufficiently good initial values, when the EM algorithm converges to θ∗
we get θ∗ = θ̂, i.e., the EM algorithm converges to the MLE θ̂.

Details: We derive Eq. (8.51). From (8.50) we have

Q(θ, θ∗) =
∫

f (y, z|θ∗)
f (y|θ∗) log f (y, z|θ)dz.

11 This formula was used by Fisher, in his discussion of sufficiency, to substantiate the argument
mentioned in Section 8.2.2 (see p. 200 and Kass and Vos 1997, Section 2.5.1)

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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We differentiate under the integral:

d

dθ
Q(θ, θ∗)|θ= θ∗ =

∫
f (y, z|θ∗)
f (y|θ∗)

d
dθ f (y, z|θ)|θ= θ∗

f (y, z|θ∗) dz

=
∫ d

dθ f (y, z|θ)|θ= θ∗
f (y|θ∗) dz.

We continue using f (y, z|θ) = f (z|y, θ)f (y|θ), differentiate the prod-
uct, and rewrite:

d

dθ
Q(θ, θ∗)|θ= θ∗

=
∫ d

dθ f (z|y, θ)f (y|θ)|θ= θ∗
f (y|θ∗) dz

=
∫

f (y|θ∗) d
dθ f (z|y, θ)|θ= θ∗ + f (z|y, θ∗) d

dθ f (y|θ)|θ= θ∗
f (y|θ∗) dz

=
∫

d

dθ
f (z|y, θ)|θ= θ∗ + f (z|y, θ∗) d

dθ
log f (y|θ)|θ= θ∗dz.

(8.52)

In this last expression the integral of the first term vanishes because

∫
f (z|y, θ)dz = 1

so that
d

dθ

∫
f (z|y, θ)dz = 0

and taking the derivative under the integral gives

∫
d

dθ
f (z|y, θ)|θ=θ∗dz = 0.

Therefore, expression (8.52) reduces to (8.51). �

8.4.6 Maximum likelihood may produce bad estimates.

The method of ML is not universally applicable, nor does it guarantee good statistical
results. The most serious concern with ML is that it is predicated on the description of
the data according to a particular statistical model. If that model is seriously deficient,
the MLE will be misleading. This underscores the essential role of model assessment,
and the iterative nature of model building, emphasized in Chapter 1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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The provably good performance of ML estimation also applies only for large
samples. What constitutes “large” is difficult to specify precisely, though attempts
have been made occasionally. A key observation is that sample size must be judged
relative to the number of parameters being estimated. In problems having large
numbers of parameters and only modest sample sizes, we should expect neither ML
estimates, nor their associated SEs, to be accurate. One standard approach to making
progress in such situations is to build models that effectively reduce the number
of parameters by restricting them in some way (often by introducing additional
probability distributions). In some cases, however, ML must be abandoned. There is
a large body of methods that are nonparametric, in the sense that they do not posit a
statistical model with a finite number of parameters. There are many situations where
nonparametric methods perform well, and save the difficulty and worry associated
with careful model building.



Chapter 9
Propagation of Uncertainty and the Bootstrap

At the beginning of this book we said that we wanted to lay out the key features of what
we called, “the statistical paradigm,” which consists of broadly applicable concepts
that guide reasoning from data in diverse contexts. One of its foundations is the idea
that data may be used to express knowledge and uncertainty about unknown values
of model parameters, especially through confidence intervals. This was the focus of
Chapter 7. Another is the notion that alternative estimators may be evaluated and
compared, which was the main subject of Chapter 8, together with the large-sample
optimality and utility of ML estimation. We now turn to a third building block of
statistical reasoning, which is a major source of the remarkable reach and flexibility of
modern data analysis, especially in complicated settings. It is based on the simple idea
that when we have an expression of uncertainty about a random variable or random
vector X, in the form of a standard error or variance matrix, we can propagate this
uncertainty to a new variable Y , where y = f (x) for some1 function f (x), in order to
get a standard error for Y . Let us be concrete by considering a simple example.

Example 5.5 (continued from p. 112) We previously displayed data from Hecht
et al. (1942), who investigated the threshold for visual perception by exposing human
observers to very weak flashes of light in a darkened room. In the bottom part of
Fig. 8.9 we overlaid on the data a sigmoidal curve found from the logistic regres-
sion model given by the pair of Eqs. (8.43) and (8.44), using maximum likelihood
estimation. We reported the values of the fitted coefficients and their standard errors.

Those data were from a single subject. What if we wanted to compare results
across subjects? We would get a set of sigmoidal curves with somewhat different
slopes, shifted to some extent to the left or right. One common way such curves are
characterized is by the intensity x50 at which the subject will perceive the light 50 %
of the time. To find x50 we begin with Eq. (8.44), which without subscripts on xi and
pi becomes

1 We are not intending f (x) to be a pdf. We are here, in this chapter, using the notation y = f (x) to
refer to some general function.
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p = exp(β0 + β1x)

1+ exp(β0 + β1x)
. (9.1)

In (9.1) we set p = .5 and solve for x50. That is, we solve the equation

.5 = exp(β0 + β1x50)

1+ exp(β0 + β1x50)

for x50 as a function of (β0,β1). Details given on p. 226 show that

x50 = −β0

β1
. (9.2)

In terms of the form y = f (x), here the role of y is played by x50, the role of x is
played by (β0,β1), and the function is f (β0,β1) = −β0/β1.

To estimate x50 we replace β0 and β1 in (9.2) by their fitted values β̂0 and β̂1. As
discussed in Section 8.4.3, an approximate variance matrix of (β̂0, β̂1) is given by the
inverse of observed information matrix for (β̂0, β̂1). It is available from the fitting
software. We want to use that variance matrix to express knowledge about x50 in the
form of a standard error SE(x̂50). This is a problem in propagation of uncertainty,
which we may write schematically in two ways:

uncertainty about (β0,β1)
propagate−→ uncertainty about x50 (9.3)

which states the uncertainty about x50 will have to be obtained from uncertainty
about the coefficients (β0,β1), and

uncertainty attached to (β̂0, β̂1)
propagate−→ uncertainty attached to x̂50 (9.4)

which, more prescriptively, suggests that we will use the uncertainty we have evalu-
ated along with the estimated coefficients (β̂0, β̂1) (i.e., the inverse of the observed
information matrix) to get an expression of uncertainty for x̂50. �

Propagation of uncertainty is an old concept2 but it was given a new, and pro-
foundly important twist with the development of bootstrap methods by Bradley Efron
(Efron 1979a). Bootstrap methods for confidence intervals rest on two ideas. First,
that the variability in the data, based on the statistical model, may be estimated rea-
sonably accurately and, second, that this variability may be propagated to express
uncertainty about any quantities computed from the data, such as functions of the
unknown parameters in the model. In the context of estimating x50 in Example 5.5
we might write this, schematically, in two steps:

2 The “law of propagation of error,” as it was called, is mentioned as a standard technique by Schultz
(1929).

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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variation in (y1, y2, . . . , y6)
propagate−→ uncertainty attached to (β̂0, β̂1)

uncertainty attached to (β̂0, β̂1)
propagate−→ uncertainty attached to x̂50. (9.5)

Efron’s insight was that propagation of uncertainty, from variability in the data to
uncertainty in estimates, could be carried out easily on the computer in a wide
variety of circumstances, and he followed up with convincing theoretical analysis of
the method using some of the principles articulated in Chapter 8. In the 1980s, when
desktop computers became available, the use of computers to propagate uncertainty
took off (see Efron 1979b).

We discuss propagation of uncertainty in Section 9.1 and then move on to bootstrap
methods in Section 9.2. In Section 9.3 we specify the circumstances under which
each of the several methods described here might be preferred to the others.

9.1 Propagation of Uncertainty

The problem of transferring uncertainty about a random vector X to a random vari-
able Y = f (X) is the problem of propagation of uncertainty, or what was histori-
cally called “propagation of error” and, sometimes, “the delta method.” There are
several varieties of propagation of uncertainty. The original method, historically, used
mathematical analysis with n→ ∞ to derive an approximate standard error for Y ,
which we write as SE(Y), based on an approximate variance matrix for X. In some
cases this is easy. We discuss it in Section 9.1.2. It is often even easier to use a brute
force computer simulation: if we can generate observations (on the computer) from
the approximate distribution of X, we can also immediately obtain the approximate
distribution of Y . We explain this method, enumerating the steps, in Section 9.1.1.
Propagation of uncertainty is also an essential part of modern Bayesian methods,
which appear in Chapter 16.

9.1.1 Simulated observations from the distribution
of the random variable X produce simulated observations
from the distribution of the random variable Y = f (X).

It is sometimes advantageous to work out analytically the approximate standard error
according to (9.19), derived below. However, the calculations can be complicated,
which may make them tedious and could also result in math mistakes. A remark-
ably effective way to propagate uncertainty, which may also reduce the chance of
overlooking a math error, is to use simulation. To understand the method, one must
first be sure to understand how to work with a probability distribution based on a
transformation y = f (x). Let us consider a simple illustration.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Illustration: A random variable having three possible values Suppose X can take
the values 2, 4, or 8 with probabilities .2, .5, .3, respectively, and we are interested
in the transformation y = log2(x). Then Y can take the values 1, 2, or 3. To find the
probability distribution of Y we simply note that

P(Y = 1) = P(log2(X) = 1) = P(X = 2) = .2

P(Y = 2) = P(log2(X) = 2) = P(X = 4) = .5

P(Y = 3) = P(log2(X) = 3) = P(X = 8) = .3.

Thus, for example, if we wanted to find the mean of Y we would obtain

μY = 1 · P(Y = 1)+ 2 · P(Y = 2)+ 3 · P(Y = 3)

= 1 · (.2)+ 2 · (.5)+ 3 · (.3).

= 2.1. �

The calculation in the discrete case (as above) is very simple. In the continuous
case, to get the pdf we would have to introduce a derivative factor | dy

dx |, as ordinary
calculus requires when a variable is transformed (see p. 62). The point, here, is that
once we know the probabilities for X, we can obtain them easily for Y using computer
simulations. Suppose we can, on the computer, generate observations (“draws”) from
the distribution of X, and let us denote a set of G such simulated observations by
U(1), U(2), . . . , U(G). If we define W (1) = f (U(1)), W (2) = f (U(2)), . . . , W (G) =
f (U(G)), we obtain a set of G draws from the distribution of Y . We will refer to these
simulated observations as pseudo-data.

Illustration: A random variable having three possible values (continued) In the
discrete illustration above, suppose we wanted to find P(Y = 1) without using
the formula P(Y = 1) = P(X = 2) = .2. We could get an approximate answer by
the following procedure:

1. For j = 1 to 10,000:
Generate U(g) from the distribution of X.
Compute W (g) = log2(U

(g)).
2. Let N be the number of W (g) such that W (g) = 1 and compute

P(Y = 1) ≈ N

10,000
.

To compute the mean of Y we could follow the same step 1, and then replace step 2
with
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μY ≈ 1

G

G∑

j=1

W (g). �

This computer-simulation procedure works for discrete and continuous random
variables and random vectors.

Algorithm: Simulation-Based Propagation of Uncertainty Suppose the random
variable or random vector X has a probability distribution from which we are able
to simulate observations, and we wish to find the distribution of a random variable
Y = f (X) defined by a real-valued function f (x). Proceed as follows:

1. For j = 1 to G:
Generate U(g) from the distribution of X.
Compute W (g) = f (U(g)).

2. Step 1 gives us a sample W (1), W (2), . . . , W (G) from the distribution of Y . We
can obtain whatever information we wish about the distribution of Y by taking G
to be sufficiently large. In particular,

(i) To get P(a < Y < b) let N be the number of W (g) such that a < W (g) < b
and compute

P(a < Y < b) ≈ N

G
.

(ii) To get σY , compute the sample mean W = 1
G

∑G
g=1 W (g) and use the sample

variance 1
G−1

∑G
g=1(W

(g) −W)2 to get

σY ≈
√√√√ 1

G− 1

G∑

g=1

(W (g) −W)2. (9.6)

(iii) To get the qth quantile of the distribution of Y use the qth sample quantile
wq (defined on p. 67) among the pseudo-data values W (1), W (2), . . . , W (G). �

The procedure is very general: it is applicable as long as it is possible to gen-
erate observations from the distribution of X. (The problem of creating algorithms
that generate observations from a given distribution is itself a sub-specialty field of
research; some additional comments about this may be found in Section 16.1.6.)
When we use simulation-based propagation of uncertainty together with the approx-
imate normality of Y , due to the results in Section 9.1.2, we have a very powerful
inference engine: we can apply them, together, to obtain approximate 95 % CIs in a
wide variety of settings.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Result: Simulation-Based Propagation of Uncertainty in Estimation Sup-
pose the random vector X is a consistent estimator of a parameter vector θ having
an approximate distribution from which we are able to simulate observations and
we wish to estimate φ = f (θ) for some real-valued function f (x). If we apply
simulation-based propagation of uncertainty, with G large, then an approximate
95 % CI for φ is given by (w.025, w.975) where w.025 and w.975 are the .025 and
.975 quantiles among the pseudo-data W (1), W (2), . . . , W (G).

The beauty of this simulation-based method of getting approximate confidence
intervals is its simplicity and practicality, as long as it is easy to generate observations
from the distribution of the estimator X. If, in addition, the estimator φ̂ = f (θ̂) is
approximately normal, then we have a slightly different option. Although it will
often produce essentially the same answers, it simplifies the reporting of results by
producing a standard error, which is connected to the confidence interval by the 95 %
rule (p. 117).

Result: Simulation-Based Propagation of Uncertainty in Estimation When the
Estimator is Approximately Normal Suppose X is an approximately multivariate
normal estimator of θ having estimated variance matrix �̂, and we want to estimate
φ = f (θ) for some real-valued (univariate) function f (x). Let us take Y = f (X) to
be the estimator of φ. We will write the observed estimate of θ as X = θ̂ and the
observed estimate of φ as Y = φ̂ = f (θ̂). If the function f (x) is approximately linear
near x = θ̂ and f ′(θ̂) is not the zero vector (i.e., not all of its partial derivatives are
zero) then

1. Y is approximately normally distributed, and
2. the standard error obtained from (9.6) by simulation-based propagation of

uncertainty

SE(φ̂) =
√√√√ 1

G− 1

G∑

g=1

(W (g) −W)2 (9.7)

furnishes approximate inferences. In particular, an approximate 95 % CI is given
by (Y − 2SE(Y), Y + 2SE(Y)). �

If these two methods differ, it is an indication that the distribution of φ̂ is noticeably
non-normal and it is better to use the quantiles as they are likely to be more accurate.
The second method, based on approximate normality, is justified by the theorem on
p. 235 leading to (9.20).

We illustrate both methods by returning to the example involving perception of
dim light.

Example 5.5 (continued from p. 221) At the beginning of the chapter we motivated
propagation of uncertainty using the problem of calculating x50, defined on p. 221,



9.1 Propagation of Uncertainty 227

and finding its standard error. If we drop the subscript i in Eq. (8.44), the logistic
function used in the logistic regression model may be written in the form

p = exp(u)

1+ exp(u)
(9.8)

where u = β0 + β1x. We can solve for u as follows:

p

1− p
=

exp(u)
1+exp(u)

1
1+exp(u)

= exp(u)

and taking logs gives

u = log
p

1− p
. (9.9)

If we set p = .5 we get u = 0. In other words, x50 must be the value of x for which

β0 + β1x = 0.

Solving for x we get (9.2), and when we plug in (β̂0, β̂1) we obtain

x̂50 = −β̂0

β̂1
. (9.10)

To get a standard error for x̂50 we propagate the uncertainty from the approximate
variance matrix �̂ for (β̂0, β̂1). That is, we assume that statistical software (for logistic
regression, which we discuss in Section 14.1.1) has provided the MLE (β̂0, β̂1) and
the variance matrix V̂ based on the observed information matrix as in (8.41), i.e.,
V̂ = IOBS(β̂0, β̂1)

−1. We can then set �̂ = V̂ and apply the computer-simulation
methods.

To obtain a 95 % confidence interval based on quantiles or the standard error
of x50, we generate many two-dimensional vectors that represent plausible values
of (β0,β1) according to the uncertainty in (β̂0, β̂1) and, for each such vector, find
x50. That is, we simulate two-dimensional vectors U(g) = (U(g)

1 , U(g)
2 ) whose first

component corresponds to β0 and whose second component corresponds to β1; we
then apply (9.10) to these components to get a simulated value

W (g) = −U(g)
1

U(g)
2

. (9.11)

The distribution of W (g) values represents the uncertainty in x50 propagated from the
uncertainty in (β̂0, β̂1).

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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We now spell this out in steps. We again assume we have (from software) the
MLE (β̂0, β̂1) and the variance matrix V̂ . The algorithm is as follows:

1. Initialize by setting

β̂ = (β̂0, β̂1)

�̂ = V̂

G = 1,000 (or some other suitable value).

2. For g = 1, . . . , G

simulate U(g) ∼ N(β̂, �̂)

compute W (g) using (9.11).

3. Set O(1), O(2), . . . , O(G) equal to the ordered values of W (1), W (2), . . . , W (G), so
that O(1) is the smallest W (g), O(2) is the second smallest, etc., with O(G) being
the largest.

If .025G is an integer, set r.025 = .025G and if .025G is not an integer set r.025
equal to the smallest integer larger than .025G. (If G = 1,000 then r.025 = 25.)

If .975G is an integer, set r.975 = .975G+1 and if .975G is not an integer set r.975
equal to the smallest integer larger than .975G. (If G = 1,000 then r.975 = 976.)

Define

w.025 = O(r.025)

w.975 = O(r.975). (9.12)

(If G = 1, 000 then w.025 is the 25th ordered value of W (g) and w.975 is the 976th
ordered value of W (g).)
The approximate 95 % CI for x50 is (w.025, w.975).

4. Compute

SE(x50) =
√

1

G− 1

∑
(W (g) −W

(g)
)2.

Using the percentile-based simulation algorithm we obtained

approx. 95 % CI for x.50 = (1.88, 1.96).

We found the standard error of x̂50 to be SE = .019. The usual standard-error based
approximate 95 % CI is then

(1.92− 2(.019), 1.92+ 2(.019)) = (1.88, 1.96)

in agreement with the percentile-based method. This agreement is an indication that
the MLE in (9.10) is approximately normally distributed, to a close approximation,
for the sample sizes in this data set. The log10 intensity at which subject S.S. (whose
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data were shown in Fig. 8.9, the scale on the x-axis having been log10(intensity))
would have perceived half the flashes is estimated to have been x̂50 = 1.921 ±
.019 with approximate 95 % CI (1.88, 1.96). Note that the logistic regression model
(Eqs. (8.43) and (8.44)) could be viewed here as a method of interpolating between
the experimental values, while also providing a standard error of the interpolated
quantity. �

In the simulation procedure above, a detail left unspecified is the value of the
simulation sample size G to be used, i.e., the number of random variables or vectors
U(g) to be generated on the computer. Typically we would expect G = 1,000 to be
sufficient, and when the computation is fast we might use G = 10,000 to be safe. In
general the size of G to be used is an empirical matter; if in doubt, one easy way to
proceed is to pick a convenient value of G, such as G = 1,000, and then run the entire
procedure several times, each with a new seed to the random number generator (as is
typically the default in software). Because new random variables will be generated
each time the procedure is run, the several values of the outputs (w.025, w.975, and
SE) will be different. If the output values on different runs are all close to each other
then it may be concluded that these quantities of interest are sufficiently accurate. If
not, the size of G must be increased.

9.1.2 In large samples, transformations of consistent
and asymptotically normal random variables become
approximately linear.

We now discuss the analytical approach to propagating uncertainty. Let us suppose
we have a random variable or vector X, and a function y = f (x), which we wish
to apply to X. This will produce a random variable Y = f (X). A handful of special
cases have been analyzed in the literature (mostly many years ago), which leads to
some standard distributions such as the chi-squared distribution, the t-distribution,
and the F-distribution. In practice, however, one often comes across cases that do not
fit any specialized framework. Fortunately, there is a simple and powerful method
that may be applied in conjunction with a general theoretical result in order to get
the approximate distribution of Y .

Suppose, first, that X is a random variable having mean μX and standard devi-
ation σX . The classical idea behind what is often called the delta method assumes,
first, that the distribution of X is concentrated around μX (so that σX is small), and,
second, that the function y = f (x) is approximately linear near μX . In addition, X is
often assumed to be approximately normally distributed. Under these assumptions
the linear transformation that approximates f (x) is applied to X to get the approx-
imate distribution of Y = f (X). In particular, if X were normal then the theorem
concerning linear transformation of a normal random variable on p. 63 would show
that this linear transformation of X would be normally distributed. As a consequence
(it may be shown) if X is approximately normal, then Y is approximately normal

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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Fig. 9.1 The effect of the transformation y = a + bx operating on a normally distributed random
variable X having mean μX and standard deviation σX . The random variable Y = a + bX is again
normally distributed, with mean μY = a + bμX and standard deviation σY = |b|σX . The normal
distributions are displayed on the x and y axes; the linear transformation is displayed as a line, which
passes through the point (μX ,μY ) so that it may be written, equivalently, as y− μY = b(x − μX ).

and the approximate mean and variance of Y is given from the approximating linear
transformation, as in the theorem on p. 63.

Theorem Suppose that a sequence of random variables X1, X2, . . . , Xn, . . . satisfies

Xn − μ
σXn

D→ N(0, 1)

as n→∞, and that the function f (x) is continuously differentiable with f ′(μ) �= 0.
Then

f (Xn)− f (μ)

σYn

D→ N(0, 1)

with σYn = |f ′(μ)|σXn .

Proof: We omit the proof, which is a consequence of Slutsky’s theorem (p. 163),
but give the essential idea.

First, from the theorem on transformation of a normal random variable (p. 63),
if Y = a + bX and X ∼ N(μX ,σ2

X) then Y ∼ N(μY ,σ2
Y ) with μY = a + bμX and

σY = |b|σX . A pictorial display of this situation is given in Fig. 9.1. Now, suppose that
f (x) is not linear, but let us assume that it is only mildly nonlinear within the “most
probable” range of X. That is, f (x) is mildly nonlinear within, say,μX±2.5σX , which
is the range over which we are assuming X to be approximately normally distributed.
Then we may approximate f (x) with the best-fitting linear approximation at x = μX :
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Fig. 9.2 The transformation y = log(x) operating on a normally distributed (or approximately
normally distributed) random variable X having mean μX and standard deviation σX produces an
approximately normally distributed random variable Y with mean and standard deviation approxi-
mately given by μY = log(μX ) and σY = σX/|μX |. The approximating line could also be written
in the form y − μY ≈ (x − μX )/|μX |.

f (x) ≈ f (μX)+ f ′(μX)(x − μX)

which is usually called a first-order Taylor series at x = μX . (See the Appendix.)
That is, we have

f (x) ≈ a+ bx

with a = f (μX)− f ′(μX)μX and b = f ′(μX). Note that a+bμX = f (μX). As a result,
we have that Y = f (X) is approximately normally distributed, with μY ≈ f (μX) and
σY ≈ |f ′(μX)|σX . �

We now re-state this theorem in a less mathematically precise but more practical
form.

Result: Propagation of Uncertainty in the Scalar Case If X is approximately
N(μX ,σ2

X) and the function f (x) is approximately linear with f ′(x) �= 0 near
μX (“near” being defined probabilistically, in terms of σX ), then
(1) Y = f (X) is approximately normal, and
(2) the approximate mean and standard deviation of Y are given by μY ≈ f (μX)

and σY ≈ |f ′(μX)|σX .

Note that both conclusions in this result are important: subsequently we will
rely on the approximate normality in (1) using computer simulation in place of the
analytical formula for the standard deviation appearing in (2). On the other hand, the
formulas are sometimes valuable.
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A detail: Here is a technical point. In the statement of the theorem the
numbers σXn do not have to be the standard deviations of Xn. They can,
instead, be some numbers that will serve as the approximate standard
deviations. In practice, we often do not have the exact standard devia-
tion but we do have a useful approximate value based on large-sample
theory, as in Chapter 8. �

Illustration: Log transformation Suppose g(x) = log(x). Then f ′(x) = 1/x, so
that if X is approximately normal, with small σX , then Y is approximately normal
with μY ≈ log(μX) and σY ≈ σX/|μX |. The picture is given in Fig. 9.2. Careful
examination of Fig. 9.2 reveals that the distribution of Y is not exactly normal (it is
mildly skewed toward low values), but it is close. �

The illustration above, using the log transformation, serves to show how the analyt-
ical calculation works in propagation of uncertainty. As we stressed in Chapter 2, the
log transformation is frequently used in practice to make data distributions more sym-
metrical. An additional benefit of the log transformation comes from its application in
statistical procedures such as analysis of variance (Chapter 13) that compare observa-
tions across groups or experimental conditions, where it is typically assumed that all
the observations have the same variance. Similarly, one of the standard assumptions
in linear regression (Chapter 12) is that the noise or error has the same variance for
all observations. Sometimes, however, this is clearly violated. Suppose it is found,
empirically, that the standard deviation is proportional to the mean. The illustration
above may be used to show that the log transformation removes this effect, making
the variances approximately homogeneous across observations.

Specifically, suppose we have random variables X1, . . . , Xm for which σXi is pro-
portional toμXi , with allμXi > 0. We may write this using the proportionality symbol
(∝) as

σXi ∝ μXi (9.13)

and if the proportionality constant is c we have

σXi = cμXi . (9.14)

Now let Yi = log(Xi). Then, by the analysis in the previous illustration, using |μXi | =
μXi because μXi > 0, we obtain

σYi ≈ c.

In this context the log transformation is called variance stabilizing. Improving
homogeneity of variances, making them more nearly equal, is an additional motiva-
tion for the log transformation in data analysis. Here is an example.

Example 2.3 (continued from p. 29) As part of their argument that it may be
advantageous to transform high-field BOLD signal infMRI data by taking

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 9.3 Plot of standard deviation versus mean in BOLD signal across 15 subjects, adapted from
Lewis et al. (2005). The plot is nearly linear, so the standard deviation is very nearly proportional
to the mean.

Fig. 9.4 Plot of standard deviation versus mean of log-transformed BOLD signal across 15 subjects,
adapted from Lewis et al. (2005). Here, in contrast to Fig. 9.3, the standard deviation is approximately
constant and shows no fixed relationship with mean.

logarithms, Lewis et al. (2005) provided plots of the standard deviation versus the
mean for the BOLD signal and for the log-transformed BOLD signal. These plots are
shown in Figs. 9.3 and 9.4. The standard deviation is nearly proportional to the mean
for the BOLD signal, but shows no relationship to the mean of the log-transformed
BOLD signal. Because standard statistical procedures assume the standard deviation
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is more or less constant regardless of the mean, the authors suggested that taking
logs might be a good idea. �

Example 9.1 Square-root transformation of spike counts in motor cortex When
the variance of spike counts is plotted against the mean it often happens that they are
roughly proportional. That is, the spike counts X1, . . . , Xm satisfy

σ2
Xi
∝ μXi , (9.15)

at least approximately. (There are many references to this phenomenon; see Shadlen
and Newsome 1998, for some of them.) Let us rewrite (9.15) analogously with
Eq. (9.14), putting it in the form

σ2
Xi
= cμXi (9.16)

for some proportionality constant c. By examining the analysis in the foregoing
illustrations of the log transformation it becomes apparent that a similar trick may
be used here. From the propagation of uncertainty result σY ≈ |f ′(μX)|σX , together
with (9.16) we have

σY ≈ |f ′(μX)|c√μX . (9.17)

In order to remove the effects in (9.16) we therefore should find f (x) such that

f ′(x) ∝ 1/
√

x (9.18)

because that will force the factors |f ′(μX)| and
√
μX to cancel. The square-root func-

tion does the job: if f (x) = √x then (9.18) is satisfied. For this reason, many authors
have chosen to use square-root transformations of spike counts in their statistical
analyses. In particular, Georgopoulos et al. (2000) reported improvements from a
square-root transformation when fitting spike counts to direction of movement by
linear regression. For a similar reason, Yu et al. (2009) used square-root transfor-
mations of spike counts in studying “neural trajectories” that summarize population
activity in motor cortex during movement planning. �

We now extend the propagation of uncertainty argument to the vector case, which
involves a multivariate linear approximation (a first-order Taylor series expansion).
The idea is to take a sequence of random vectors X1, X2, . . . that are approximately
multivariate normal and apply the function f (x) to each of them and, as in the scalar
case above, approximate f (x) using a first-order Taylor series based on the derivative
of f (x). In this multidimensional case the derivative becomes the vector of partial
derivatives. Specifically, for a vector x we let f ′(μ) be the vector of partial derivatives
(with respect to all components) of the real-valued function f (x), evaluated at x = μ.
That is, the ith component of this derivative is

f ′(μ)i = ∂f

∂xi

∣∣∣∣
x=μ

.
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Result: Multivariate Propagation of Uncertainty If X is approximately mul-
tivariate normal, given by Nm(μX , �X), and the function f (x) is approximately
linear with f ′(x) �= 0 near μX (“near” again being defined probabilistically),
then
(1) Y = f (X) is approximately normal, and
(2) the approximate normal mean and standard deviation are given by μY ≈
f (μX) and

σY ≈
√

f ′(μX)T �Xf ′(μX). (9.19)

Details: To see how we get this, consider the bivariate case. If we have
z = f (x, y) and we apply a first-order Taylor series expansion (a linear
approximation) near a point (x0, y0), we get

z ≈ f (x0, y0)+ ∂f

∂x

∣∣
(x0,y0)

(x − x0)+ ∂f

∂y

∣∣
(x0,y0)

(y − y0).

Analogously to what was done in the scalar case, we insert ran-
dom variables X and Y and replace (x0, y0) with (μX ,μy). With
Z = f (X, Y) we note that the first term in the variance σ2

Z = V(Z)

is V(f (x0, y0)) = 0 (because the variance of a constant is 0), and we
then get

σ2
Z =

(
∂f

∂x

∣∣
(x,y)=(μX ,μY )

)2

· σ2
X +

(
∂f

∂y

∣∣
(x,y)=(μX ,μY )

)2

· σ2
Y

+ 2 · ∂f

∂x

∣∣
(x,y)=(μX ,μY )

∂f

∂y

∣∣
(x,y)=(μX ,μY )

ρσXσY .

The general multidimensional case is analogous. �
The result relies on the following theorem.

Theorem Let μ be an m-dimensional vector, and let f (x) be a differentiable function
for which f ′(μ) �= 0. If X1, X2, . . . , Xn, . . . is a sequence of m-dimensional random
vectors and �n is a sequence of positive definite symmetric matrices such that for
every nonzero m-dimensional vector w,

wT �−1/2
n (Xn − μ)

D→ N(0, 1),

then, writing Yn = f (Xn), we have

(Yn − f (μ))

σY

D→ N(0, 1) (9.20)
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where

σY =
√

f ′(μ)T �nf ′(μ).

Proof: Omitted. �

Example 9.2 Neural firing rate selectivity index In single-unit electrophysiologi-
cal studies, neural firing rates are often estimated under two experimental conditions.
Let us label the conditions A and B, and suppose that for each neuron we have many
trials of recordings under each of the conditions. Averaging across the trials gives
sample mean firing rates, X̄A and X̄B, which may be compared. However, comparisons
are made across many neurons having quite different firing rates. For this reason,
some sort of normalization is usually invoked. One commonly-used comparative
measure is the index

Y = X̄A − X̄B

X̄A + X̄B
. (9.21)

For example, Roesch and Olson (2004) compared activity of neurons in the
orbitofrontal (OF) cortex under conditions involving large reward for success in
an eye movement task, a large penalty for failure (a time out for the monkey), or nei-
ther (i.e., a small reward and a small penalty). The authors compared the large reward
to the neutral condition using a measure of the form (9.21),with condition A being
large reward and B being neutral. This would identify neurons that tended to respond
to expected reward. It would be possible for a neuron to respond not specifically to
reward but to the importance of success, which the authors termed “motivation.” Both
large reward and large penalty should increase the subject’s motivation to perform
the task.The authors also compared the large penalty to the neutral condition using
a measure of the form (9.21), with A representing the large penalty condition and B
being neutral. By examining many neurons they concluded that neurons in the OF
cortex tend to fire more with large expected reward, and tend to fire less with large
expected penalty. They went on to contrast this with premotor cortex where neurons
tended to fire more with both large expected reward and large expected penalty. They
characterized the results as suggesting that OF cortex was more involved in reward
processing while PM activity tended to reflect motivation.

To put this in the general framework we write X1 = X̄A, X2 = X̄B, X = (X1, X2),
and then

f (x) = x1 − x2

x1 + x2
.

The problem of finding the standard error of Y defined by (9.21) then becomes a
special case of the general problem of finding the standard error of Y = f (X) when
the uncertainty in X is known.

In Example 12.3 we discuss an application of the difference index for firing rates
where propagation of uncertainty was used to obtain interesting results.Example 12.3
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is based on Behseta et al. (2009), which provides some details about propagation of
error for the difference index. �

Additional details: We may also propagate uncertainty analytically to
x50 = f (β0,β1) using Eq. (9.19) with (9.10), which gives the standard
error

SE =
√

f ′(β̂0, β̂1)T �̂f ′(β̂0, β̂1)

where the partial derivates are

∂f

∂β0
|
(β̂0,β̂1)

= − 1

β̂1

∂f

∂β1
|
(β̂0,β̂1)

= β̂0

β̂2
1

.

Plugging into the formulas above the values of β̂0, β̂1 and �̂, the log10
intensity at which subject S.S. would have perceived half the flashes
is estimated to have been x̂50 = 1.921 ± .019. This agrees with the
approximate 95 % CI obtained by the simulation method. �

9.2 The Bootstrap

The bootstrap is a very simple way to obtain standard errors and confidence inter-
vals. It has turned out to be one of the great inventions in the field of statistics. In
Section 9.2.1 we explain the essential idea, and we contrast the parametric boot-
strap with the nonparametric bootstrap, elaborating on these two distinct methods
in Sections 9.2.2 and 9.2.3.

9.2.1 The bootstrap is a general method of assessing uncertainty.

The algorithm for simulation-based propagation of uncertainty (p. 225) began with
a random vector X having a known distribution (from which observations could be
generated on the computer). In practice, applying the result on p. 226, X becomes
an estimator of a parameter vector θ and its distribution is known approximately;
typically it is a normal distribution. From this, uncertainty can be propagated from X
to an estimator φ̂ of φ = f (θ). As illustrated in Example 5.5 on p. 226, an essential
input to the algorithm is the variance matrix of X (in Example 5.5 we had X = (β̂0, β̂1)

and used �̂ = IOBS(β̂0, β̂1)
−1). But what if it is difficult to compute the variance

matrix of X? The bootstrap instead backs up a step, using the variation in the data
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themselves so that an explicit form for the variance matrix of X becomes unnecessary
(and the variance matrix of X can, in fact, also be obtained from the bootstrap).

Here is the idea. Let us suppose X1, . . . , Xn is a random sample from a distribution
having distribution function FX(x). We write this as Xi ∼ FX ,
independently, for i = 1, . . . , n. We wish to find the standard error of a scalar
statistic T = T(X1, . . . , Xn). Notice, as we have said before, that T is obtained
by applying some mapping to the random variables. Let us emphasize this still
further by using the function h(x1, x2, . . . , xn) to denote that mapping so that
T(X1, X2, . . . , Xn) = h(X1, X2, . . . , Xn). In the case of ML estimation, for instance,
h(x1, x2, . . . , xn) would be the function that gives the value of the MLE for a particu-
lar set of data x1, . . . , xn. In some cases the function h(x1, x2, . . . , xn) is explicit, as in
ML estimation of the binomial propensity p, while in other cases it is implicit—the
result of solving a differential equation, as in ML estimation of β1 in the logis-
tic regression model of Example 5.5 (p. 214). In either situation, however, SE(T)

is defined as the standard deviation of T = h(X1, X2, . . . , Xn) when the Xi random
variables follow the distribution with cdf FX . Now, if we were able to simulate obser-
vations from FX on the computer, we could simulate G samples where G is a large
number, proceeding as follows:

1. For g = 1 to G
Generate a sample U(g)

1 , U(g)
2 , . . . , U(g)

n from FX

Compute W (g) = h(U(g)
1 , U(g)

2 , . . . , U(g)
n )

2. Compute W = 1
G

∑G
i=1 W (g) and then

SEsim(T) =
√√√√ 1

G− 1

G∑

g=1

(W (g) −W)2.

Step 1 of this scheme would evaluate the estimator T on all the sets of pseudo-data
U(g)

1 , U(g)
2 , . . . , U(g)

n for g = 1, . . . , G. Each set of simulated values U(g)
1 , U(g)

2 , . . . ,

U(g)
n may also be called a sample of pseudo-data. The squared value SEsim(T)2

is simply the sample variance of the W (g) random variables, and for large G it
would become close to the variance V(T) (because, in general, the sample variance
converges to the theoretical variance, in probability, as in Section 7.3.4). Thus, for
large G we would get SEsim(T) ≈ SE(T).

The only problem with the scheme as we have described it so far is that, in practice,
we don’t know the distribution FX , so we don’t know how to generate the pseudo-
data. This situation is similar to the one we found in Section 7.3.4 where we could
not compute SE(X̄) = σX/

√
n because we did not know σX . There, we solved the

problem by substituting s for σX , which is often called a plug-in estimate, and this
worked because the plug-in estimate is consistent, i.e.,

S
P→ σX (9.22)

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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which is the same as ( 7.19). The idea of the bootstrap is analogous: we replace
FX by an estimate of it and then apply the algorithm above. If we have a paramet-
ric model and we use ML estimation to estimate the parameters, we can use the
model with the fitted parameters to generate the pseudo-data U(g)

1 , . . . , U(g)
n . This

scheme is called the parametric bootstrap. Otherwise, we replace FX by the empirical
cdf F̂n and draw the pseudo-data U(g)

1 , . . . , U(g)
n from F̂n. This is the nonparamet-

ric bootstrap. Both methods extend to cases in which we replace scalar estimates
(e.g., β̂1) by vectors of estimated quantities (e.g., (β̂0, β̂1)).

The parametric bootstrap and nonparametric bootstrap both begin, conceptually,
by estimating the data distribution FX . The parametric bootstrap uses a specific
assumption, such as normality of the data. The nonparametric bootstrap does not
require any specific data distributional assumption, and this is the sense in which it is
“nonparametric.” The nonparametric bootstrap is also usually easier to implement.
Its disadvantage is that it requires i.i.d. random variables to represent the variation
in the data. There are many cases where the data are not modeled as i.i.d., such as
in regression, time series, and point processes. Sometimes a clever transformation
makes the nonparametric bootstrap applicable (see Davison and Hinkley 1997, for
examples), but in other cases the parametric bootstrap is either the only available
approach or at least a more straightforward methodology to apply. Both forms of
bootstrap use propagation of uncertainty.

9.2.2 The parametric bootstrap draws pseudo-data from an
estimated parametric distribution.

Suppose we assume that a set of data x1, x2, . . . , xn is a random sample from a
distribution with pdf f (xi|θ), and we estimate θ with the MLE θ̂. If we assume for the
moment that the parameter θ is a scalar then, according to the scheme in Section 9.2.1,
we may obtain the standard error of θ̂ as SEsim(θ̂) by generating pseudo-samples
U(g)

1 , U(g)
2 , . . . , U(g)

n from the distribution with pdf f (xi|θ). Because we do not know

the value of θ we plug in the MLE θ̂ and instead generate pseudo-samples from the
distribution with pdf f (xi|θ̂). This is a parametric bootstrap, and the resulting value
of SEsim(θ̂) is a parametric bootstrap standard error.

Algorithm: Parametric bootstrap estimate of standard error To obtain the stan-
dard error SE(θ̂) we proceed as follows:

1. For g = 1 to G
Generate a random sample U(g)

1 , U(g)
2 , . . . , U(g)

n from the distribution having pdf

f (xi|θ̂).
Find the MLE θ̂(g) based on U(g)

1 , U(g)
2 , . . . , U(g)

n and set W (g) = θ̂(g).
2. Compute W = 1

G

∑G
i=1 W (g) and then

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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SE(θ̂) =
√√√√ 1

G− 1

G∑

g=1

(W (g) −W)2.

�
Why does the parametric bootstrap work? As in (9.22), the plug-in estimator θ̂

satisfies
θ̂

P→ θ (9.23)

which is part of the statement in (8.32). Let us write the cdf corresponding to f (xi|θ)
in the form FX(x|θ). From (9.23) it follows that

FX(x|θ̂) P→ FX(x|θ) (9.24)

for all x (we omit details), which is a formal way of saying that the distribution
of pseudo-data based on the distribution having pdf f (xi|θ̂) will be close to the
distribution of the data (which has pdf f (xi|θ)). Thus, simulating pseudo-data is very
much like simulating new data from the same distribution as the original data.

When θ is a vector, the same method may be used to estimate the value f (θ) of
any real-valued function f (x). We modify the procedure as follows.

Algorithm: Parametric bootstrap when estimating f (θ) Suppose we want to find
the standard error of f (θ̂) and get an approximate 95 % CI for f (θ). We proceed as
follows:

1. For g = 1 to G
Generate a random sample U(g)

1 , U(g)
2 , . . . , U(g)

n from the distribution having pdf

f (xi|θ̂).
Find the MLE θ̂(g) based on U(g)

1 , U(g)
2 , . . . , U(g)

n and set W (g) = f (θ̂(g)).
2. Compute W = 1

G

∑G
i=1 W (g) and then

SE(f (θ̂)) =
√√√√ 1

G− 1

G∑

g=1

(W (g) −W)2. (9.25)

In addition, an approximate 95 % CI for f (θ) is given by

approx. 95 % CI = (w.025, w.975) (9.26)

where w.025 and w.975 are the sample quantiles defined from the ordered W (g) values
as in (9.12).

If we have several functions f1(θ), f2(θ), . . . , fk(θ) we may obtain approximate
95 % CIs for each using (9.26) and we can get an approximate variance matrix

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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V̂ = V̂(f1(θ̂), f2(θ̂), . . . , fk(θ̂)),

by following step 1, above, for each of f1(θ), f2(θ), . . . , fk(θ) to get

W (g)
j = fj(θ̂

(g))

for j = 1, . . . , k, and then setting V̂ equal to the sample variance matrix (see p. 90)
of the k-dimensional vectors W (g) = (W (g)

1 , . . . , W (g)
k ). �

Example 8.2 (continued from p. 193) In discussing the way previous seizures
affect the relationship between spike width and preceding inter-spike interval length
we displayed results based on change-point models. The statistical model assumed
that, on average, Y decreases quadratically with x for x < τ but remains constant for
x ≥ τ , with τ being the change point. In Fig. 8.7 we displayed fitted change-points
together with standard errors, which led to the conclusion that the seizure group
reset to baseline average spike widths earlier than the control group. We said that the
standard errors shown in Fig. 8.7 were based on a parametric bootstrap. The specifics
of computing the bootstrap standard errors followed the steps given above: based on
the fitted τ̂ , together with the fitted parameters for the quadratic relationship when
x < τ and the constant relationship when x ≥ τ (see p. 408), pseudo-data samples
were generated and for the gth such sample a value τ̂ (g) was calculated following
the same procedure that had been used with the real data; then formula (9.25) was
applied. �

There are modifications of the bootstrap confidence interval procedure that offer
improvements. These are reviewed by DiCiccio and Efron (1996). Particularly
effective3 are the bias-corrected and accelerated (or BCa) intervals, which are often
used as defaults in bootstrap software.

9.2.3 The nonparametric bootstrap draws pseudo-data
from the empirical cdf.

In Section 9.2.2 we showed how the parametric bootstrap is used to get standard
errors and confidence intervals. The key theoretical point was captured by Eq. (9.24),
which says that, for large samples, the distribution of the pseudo-data based on the
MLE plug-in estimate will be close to the distribution of the data. The idea of the
nonparametric bootstrap is to generate pseudo-data, instead, from the empirical cdf

3 The bootstrap approximate 95 % CI based on percentiles in Eq. (9.26) has the property that as
n → ∞ the probability of coverage is .95 + ηn where ηn vanishes at the rate of 1/

√
n. The BCa

intervals have the analogous property with ηn vanishing at the rate 1/n, which means the theoretical
coverage probability should be closer to .95.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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F̂n(x), defined on p. 64. The theoretical justification for this is given by the theorem
on p. 145, which says that4 for i.i.d. random variables

F̂n(x)
P→ FX(x). (9.27)

This has a form very similar to (9.24). In words, for large samples, the distribution
of pseudo-data generated from the empirical cdf will be close to the distribution
of the data. The advantage of this nonparametric formulation is the reduction of
assumptions: we do not have to rely on a specific parametric model, but rather can
assume only that we are dealing with an i.i.d. sample.

How do we generate observations from the empirical cdf F̂n? This turns out to be
very easy. According to its definition (on p. 64), the empirical cdf assigns probability
1
n to each observation in the sample x1, x2, . . . , xn. This means that in order to draw

a single observation from the distribution F̂n, we randomly select one of the values
x1, x2, . . . , xn, with each value having probability 1

n . In order to draw a set of pseudo-
data, we simply repeat this process n times. In doing so the procedure is likely to
produce repeats: we are sampling the values x1, x2, . . . , xn each time; this is called
sampling with replacement; we “replace” each value after sampling it, before drawing
again from all the values x1, x2, . . . , xn. Using standard statistical software it is easy
to draw samples with replacement from a set of data.

Because we are sampling the sample of data, the process is often called resampling.
Bootstrap resampling is beautifully simple. We define the algorithm in terms of any
consistent estimator T of an unknown quantity φ. Here, φ could be defined in terms
of a parameter vector φ = f (θ) or it could be defined from the data distribution
FX without reference to any parameter vector (e.g., φ could be the median of the
distribution FX ). The algorithm is as follows:

Algorithm: Nonparametric bootstrap for an estimator T of φ To get a
nonparametric bootstrap approximate 95 % CI for φ from a sample x1, . . . , xn based
on T = h(X1, . . . , Xn), and to get the nonparametric bootstrap SE(T), we proceed
as follows:

1. For g = 1 to G

Generate a sample U(g)
1 , U(g)

2 , . . . , U(g)
n by resampling, with replacement, the

observations x1, . . . , xn.

Compute T (g) = h(U(g)
1 , U(g)

2 , . . . , U(g)
n ).

4 Actually, a stronger result is needed, and it is stated in terms of the supremum (also known as
the least upper bound). The supremum of a set of numbers S(x), written supx S(x), is the smallest
value c such that S(x) < c. (Thus the alternative name, “least upper bound.”) It is used when S(x)
is bounded but does not reach a maximum across the range of x. The stronger version of the result
in the theorem is that the convergence is uniform in the sense that

sup
x
|F̂n(x)− F(x)| P→ 0.

This holds when F(x) is a continuous cdf, and in many other cases.
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2. Set O(1), O(2), . . . , O(G) equal to the ordered values of T (1), T (2), . . . , T (G), so
that O(1) is the smallest T (g), O(2) is the second smallest, etc., with O(G) being
the largest.

If .025G is an integer, set r.025 = .025G and if .025G is not an integer set r.025
equal to the smallest integer larger than .025G.

If .975G is an integer, set r.975 = .975G + 1 and5 if .975G is not an integer set
r.975 equal to the smallest integer larger than .975G.

Define

t.025 = O(r.025)

t.975 = O(r.975). (9.28)

The approximate 95 % CI for φ is (t.025, t.975).
3. Compute T̄ = 1

G

∑G
i=1 T (g) and then

SE(T) =
√√√√ 1

G− 1

G∑

g=1

(T (g) − T̄)2.

�
This extends immediately to the case in which each Xi, and thus each U(g)

i , is a
random vector; the algorithm above is unchanged. As with the parametric bootstrap
(see p. 241), modifications to the percentile-based intervals can offer improvements
and the bias-corrected and accelerated (or BCa) intervals are often used as defaults
in bootstrap software.

In practice, the parametric and nonparametric bootstraps often produce very sim-
ilar confidence intervals and standard error assessments, so that the choice between
them may depend on convenience. There are important examples (e.g., in time series)
where the data do not form an i.i.d. sample and it can be difficult or impossible to
use the nonparametric bootstrap, but in many situations it is easy to take advantage
of theoretically identical replications, and resample the data.

Example 9.2 (continued from p. 236) In the SEF example introduced in Chapter 1
there were two experimental conditions, and the problem was to compare the firing
rates of a neuron under each of these conditions based on a limited number of trials.
In a particular time interval we found mean firing rates of 48 spikes per second for the
spatial condition versus 70 spikes per second for the pattern condition. As we have
noted previously, because studies involve many neurons with varying firing rates, it
is common to examine the difference index

5 With this convention, if G = 1,000 then there are 24 values smaller than r.025 and 24 values larger
than r.975. If G = 100 there are 2 values smaller than r.025 and 2 values larger than r.975.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1


244 9 Propagation of Uncertainty and the Bootstrap

Y = X̄A − X̄B

X̄A + X̄B
.

In Section 9.1.1 we discussed generation of a standard error for T using propagation
of uncertainty based on the asymptotic normality of X̄A and X̄B. An alternative would
be to apply the nonparametric bootstrap procedure given above. These would give
very similar results, but let us make sure it is clear how the bootstrap would be
applied. For each g in step 1 we would first draw a random samples of size 15 from
the 15 firing rates under the spatial condition and another random sample of size
15 from the 15 firing rates under the pattern condition; we would compute the two
sample means to get X̄(g)

A and X̄(g)
B ; then we would apply the difference index formula

to get

Y (g) = X̄(g)
A − X̄(g)

B

X̄(g)
A + X̄(g)

B

.

Having obtained Y (1), Y (2), . . . , Y (G) (where we would take something like G =
1,000), we would go to step 2 and, to find an approximate 95 % CI, we would order
the values Y (1), Y (2), . . . , Y (G) and compute the resulting 2.5 and 97.5 percentiles.
In Step 3 we would compute the mean and apply the formula for the standard error.

�

Example 9.3 (continued from p. 187) As we said in Section 8.1, one of the ques-
tions asked by Olson et al. was whether SEF neurons tend to reach their maximal fir-
ing rate later under one of the experimental conditions (the “pattern” condition) than
under the other (the “spatial” condition). To answer this, each neuron’s PSTH, under
each condition, was smoothed as in Fig. 8.3 (with methods described in Chapter 15),
and then the time tmax at which the maximum occurred was computed. This was
regarded as an estimator of the time τ of maximal firing rate. Olson et al. applied
bootstrap methods. To get a bootstrap confidence interval for τ the nonparametric
bootstrap algorithm above can be applied: we set φ = τ and in step 1, for each g,
the individual trials (each of which provides a spike train, as in Fig. 8.3) would be
resampled, then the resulting pseudo-data would be used to get a PSTH, this PSTH
would be smoothed, and a value T (g) = t(g)max would be computed; then step 2 would
be carried out. �

The point to be taken from these examples is that the nonparametric bootstrap,
like the parametric bootstrap, can produce confidence intervals relatively easily, even
for complicated estimation procedures: in step 1 of the algorithm we simply re-run
the estimation procedure from start to finish using each set of pseudo-data rather than
the original data. Step 2 is then accomplished with just a few software commands.
When the data may be considered i.i.d. samples the nonparametric bootstrap is typ-
ically even easier than the parametric bootstrap because resampling the data may be
accomplished with a single software command.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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The nonparametric bootstrap has been studied extensively, and has been shown
to work well in a variety of theoretical and empirical senses. For more information
about the bootstrap, see Efron and Tibshirani (1993) and Davison and Hinkley(1997).

An important caveat is that arbitrary shuffles of the data do not necessarily produce
bootstrap samples. The key assumption is independent and identically distributed
sampling of X1, . . . , Xn, so that the key result (9.27) applies. Many problems may
be put in this form, but the nonparametric bootstrap only applies once they are.

9.3 Discussion of Alternative Methods

At the beginning of this chapter we considered the data on perception of dim light
to illustrate propagation of uncertainty according to the diagram in (9.4). We went
on to discuss analytical propagation of uncertainty, simulation-based propagation
of uncertainty, and then both the parametric and non-parametric bootstrap methods
of obtaining uncertainty about the target estimand, in this case x50, the intensity at
which a flash of light is perceived 50 % of the time.

The choice among these methods is largely a matter of convenience. It is often
easy to obtain the variance matrix of the parameter MLEs and then simulation-based
propagation of uncertainty is easy to implement. Sometimes it is also easy to get
the derivatives analytically, and the analytical approach becomes an option. The
percentile method of getting confidence intervals from simulation becomes more
accurate than that based on ±2SE when the nonlinearity in the target estimand as a
function of the parameters is pronounced (relative to the uncertainty in the parameters,
as explained in Section 9.1.2). With i.i.d. data the nonparametric bootstrap is very
easy to apply, and is often the preferred method. But many examples involve non-
i.i.d. data. In regression or time series contexts, for instance, nonparametric bootstrap
methods require modification and may be difficult or impossible to apply (this is the
case for some point process models of neural spike train data). In such settings the
parametric bootstrap is often used.

These methods can produce valid 95 % confidence intervals, which cover the
estimand 95 % of the time, when the statistical model is correct and the sample size
is sufficiently large. The statistical model used with the nonparametric bootstrap, in
the form we have presented, assumes i.i.d. sampling but is otherwise very general.
All of the methods aim to provide an appropriate spread of the confidence interval
about the estimate, which is what leads to the correct coverage probability. The bias
in the estimator is ignored because, for sufficiently large samples, it becomes vanish-
ingly small. Furthermore, as we noted in Chapter 8, the bias squared often becomes
vanishingly small faster than the variance becomes vanishingly small, so that the
MSE is dominated by the variance. In practice, however, it is worth remembering
that nontrivial bias in the estimator can greatly diminish the coverage probability
of a putatively 95 % confidence interval. If a statistical model is grossly incorrect
because, for example, some important explanatory factor has not been considered,
then these procedures will not perform well. For reasonably good models bootstrap

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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methods are remarkably reliable, with large samples. Of course, with small samples
the coverage probability can be highly inaccurate but, in such cases, there may be
too little information to draw useful statistical inferences.



Chapter 10
Models, Hypotheses, and Statistical
Significance

The notion of hypothesis is fundamental to science. Typically it refers to an idea that
might plausibly be true, and that is to be examined or “tested” with some experimen-
tal data. Sometimes, the expectation is that the data will conform to the hypothesis.
In other situations, the hypothesis is introduced with the goal of refuting it. In either
case, however, variation and experimental noise prevent a perfect determination of the
veracity of the hypothesis. In reality, the hypothesis will at best predict only approx-
imately the results of an experiment. But then, one might ask, in order to be judged
favorably, how close to the data should a theoretical prediction be? Development of
a systematic method of answering this question, the chi-squared goodness-of-fit test,
was one of the great advances in the early part of the twentieth century.

We describe chi-squared tests in Section 10.1. The idea is to use a statistical
model to represent the theoretical predictions of the hypothesis. In this setting the
model embodies the hypothesis, and we usually speak of assessing the fit of the
model, as opposed to the accuracy of the hypothesis. The statistical model assigns
probabilities to possible data outcomes, and if the experimental data turn out to be
very rare—according to the model—then the model is deemed a poor fit. Because
the chi-squared procedure analyzes the discrepancy between model prediction and
data outcome, it might better be called, as John Tukey suggested, a “badness-of-fit”
test. On the other hand, it is often applied as a way of checking that a model fits
reasonably well—the expectation, or hope, being that it does.

When, instead, there is great interest in the possibility that the hypothesis may be
wrong, we usually label it a null hypothesis, and if the data provide sufficient evidence
against the null hypotheses we speak of rejecting it. Ronald Fisher introduced the
general concept of p-value, with p standing for probability, to quantify the rarity of
the data outcome under a null hypothesis. The notion is that when p is small, the data
outcome is rare under the hypothesis, and thus casts doubt on the hypothesis. Fisher
worked out specific procedures for obtaining p-values in many important problems,
and his methodology became standard practice. We introduce p-values in the context
of chi-squared tests, in Section 10.1.3, and we discuss the general framework and
methodology in Section 10.3.

R. E. Kass et al., Analysis of Neural Data, 247
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_10,
© Springer Science+Business Media New York 2014
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The null hypothesis and p-value are only part of the standard approach to testing
hypotheses. An additional idea is to introduce a specific alternative hypothesis, which
has the potential to replace the null. In the 1930s Jerzy Neyman and Egon Pearson
provided a theoretical framework that explicitly included an alternative hypothesis.
Specifically, Neyman and Pearson defined type one error (usually written Type I) as
the probability of incorrectly rejecting the null hypothesis and type two error (Type
II) as the probability of incorrectly rejecting the alternative hypothesis. The theory
considers both kinds of errors, and analyzes statistical hypothesis tests according to
the probabilities of making these errors. We go over the fundamental elements of
the Neyman-Pearson framework in Section 10.4, and we also discuss several differ-
ent points of view about the statistical assessment of hypotheses. The terminology
hypothesis test sometimes connotes application of the Neyman-Pearson framework.
In our discussion here we use “hypothesis test” and significance test, interchangeably,
without meaning to imply any particular theoretical posture.

It is unconventional to present goodness-of-fit tests before other hypothesis tests.
Our preference for this ordering1 is due to the smaller number of concepts and issues
that arise in goodness-of-fit testing: from a pedagogical point of view, in this context
it is easier to concentrate on the logic of p-values. We discuss other kinds of null
hypotheses in Section 10.2.

10.1 Chi-Squared Statistics

We have described several studies where a theoretical model seemed to fit the data
well and was then used for scientific inference. For instance, the Hardy-Weinberg
binomial model fit well the nicotinic acetylcholine receptor and ADHD data in
Example 5.1, the Poisson distribution was used to fit quantal response in synaptic
transmission data in Example 5.6, the normal distribution fit well the background
noise in MEG in Example 1.2, and the exponential and gamma distributions were
used to fit ion channel opening duration data in Example 3.5. Previously we judged fit
simply by looking at tables and graphs, informally. The chi-squared procedure pro-
vides a probabilistic quantification of the observed discrepancy between theoretical
prediction and data.

The essence of goodness-of-fit assessment is as follows:

(i) We define a statistical model that assigns probabilities to potentially-observed
outcomes;

(ii) We compute the discrepancy between the data values and the values obtained
from the fitted model; and

1 This order of presentation is the one followed by Fisher in his immensely influential Statistical
Methods for Research Workers, but it seems to have been abandoned later in the twentieth century
as the Neyman-Pearson approach became dominant.
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(iii) Assuming the data were generated by the hypothetical model, we determine
whether the observed discrepancy would be considered rare; if observing such
a large discrepancy constitutes a sufficiently rare event, then we consider this
to be evidence that the model does not hold.

The discrepancy between observed data and fit is evaluated using a statistic, here
a chi-squared statistic, and its rarity is judged by comparing the observed value to
a suitable probability distribution, here a chi-squared distribution, according to the
p-value. The chi-squared statistic is used when each observation may be considered
to arise as one of several possible categories.

10.1.1 The chi-squared statistic compares model-fitted
values to observed values.

To assess the fit of a theoretical model to a set of data we begin with the obvious idea
of examining the discrepancy between the model predictions and the data values.

Example 5.1 (continued, see p. 107) In Chapter 5, on p. 107, we displayed data
from a study of genotype frequencies for the nicotinic acetylcholine receptor subunit
α4 gene among children with ADHD and their parents. The table of frequencies (for
a T → C exchange in one base in the gene sequence) among the 136 parents in the
Kent et al. study is given again below:

TT CT CC

Number 48 71 17
Frequency .35 .52 .13
Hardy-Weinberg probability .38 .47 .15
Hardy-Weinberg expected number 51.7 63.9 20.4

We noted previously that the frequencies and Hardy-Weinberg probabilities are quite
close. We have now added a fourth line in the table to indicate the predicted or
“expected” number of each genotype. To judge the fit of the model we evaluate the
discrepancy between the values in the first and last lines of this table. �

In Example 5.1 there are many possible ways to measure the discrepancy between
the vector of observed values (48, 71, 17) and the vector of theoretically-expected
values (51.7, 63.9, 20.4). The most common assessment is based on the chi-squared
statistic. Let us denote observed values by O and theoretically-expected values by
E, so that the first pair of O and E values are 48 and 51.7, the second pair are 71 and
63.9, and the third pair are 17 and 20.4. The chi-squared statistic is

χ2
obs =

∑ (O− E)2

E
(10.1)

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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where the sum is over all pairs of values, in this case the three pairs, and we have
used the subscript on χ2

obs to indicate that it is calculated from the observed data. A
large χ2

obs indicates a failure of the model to fit the data. But how do we know when
χ2

obs should be considered large? The O values surely will, by chance fluctuation,
deviate from the theoretical E values. The key is that when the theoretical model is
valid the magnitude of this chance fluctuation becomes predictable.

To motivate χ2
obs let us note that each O value is a count, counts are usually

modeled as Poisson random variables, and for a Poisson random variable Y we have
V(Y) = E(Y). A reasonable way to combine the counts is to standardize each O
value by subtracting the corresponding expected value, which we here take to be E,
and dividing by the standard deviation which, if the observed value were Poisson
would be the square root of the expectation, here

√
E. Each contribution (O−E)2/E

may thus be considered the square of a standardized variable. It turns out that, for
large samples, these standardized variables approximately follow a standard normal
distribution. Recalling that the chi-squared distribution arises as a sum of squares
of standard normal variables it then becomes at least plausible that a chi-squared
distribution might be used to judge the magnitude of the chi-squared statistic. This
argument may be made rigorous. We comment further on theoretical aspects of the
method in Section 11.1.4.

To obtain the p-value for the chi-squared procedure we consider a random vari-
able X having a χ2

ν distribution and evaluate p = P(X > χ2
obs). This provides an

approximate p-value (approximate because the chi-squared statistic approximately
follows a chi-squared distribution, for large samples). We discuss the selection of
ν in Section 10.1.2. If p is sufficiently small we consider the observed value to be
rare. Typically, p < .05 is taken as modest evidence and p < .01 is taken as strong
evidence that the model doesn’t fit.

Example 5.1 (continued from p. 249) For the ADHD data we get

χ2
obs =

(48− 51.7)2

51.7
+ (71− 63.9)2

63.9
+ (17− 20.4)2

20.4
= 1.62.

We compare this to a χ2
1 distribution by taking X to be a random variable having a χ2

1
distribution and then computing P(X > 1.62). We find P(X > 1.62) = .20, so that
an approximate p-value is p = .20. This indicates a good fit of the Hardy-Weinberg
model to these data. �

10.1.2 For multinomial data, the chi-squared statistic follows,
approximately, a χ2 distribution.

In Example 1.4 we introduced a binary random variable to analyze the variation
across outcomes where each outcome was one of two possibilities, “burning house”
or “non-burning house.” In Example 5.1, we have a similar situation, except instead

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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of two possible outcomes we have three: each of the 136 subjects contributed a geno-
type that was classified as TT , TC, or CC. As discussed on p. 119, this leads to the
assumption of a multinomial distribution across the three categories of data, which
is the fundamental assumption for the application of the chi-squared test on p. 250.
More generally, the theoretical starting point of every chi-squared test is the idea
that the given set of counts may be considered an observation of a multinomial ran-
dom vector. Here is a particularly straightforward example where the genetic model
completely specifies the set of multinomial probabilities, leaving no free parameters.

Example 10.1 Allele frequencies in fruit flies Some basic genetic investigations
have involved the “vestigial” (vg) and “ebony” (e) strains of fruit flies. The vestigial
flies have small wings so that the animal can not fly, while the ebony flies are very dark
in color. Kempthorne (1957, p. 131) cites an investigation involving cross breeding of
vg with e flies. According to Mendelian equilibrium theory, the four possible results
(denoted +, vg, e, vge) should be in the proportions 9:3:3:1. The four respective
frequencies among 465 flies were 268, 94, 79, 24. The theoretical proportions are
(.563, .188, .188, .0625) while the observed proportions were (.576, .202, .170,
.0516). For instance, .576 = 268/465. In this case, we model the vector of numbers
of phenotypes among 465 flies as a M(n, p1, p2, p3, p4) distribution, where n = 465
and p1 is the probability that a given fly would be of type +, p2 the probability the
fly would be of type vg, etc. We would assume that the phenotypes are independent
of each other across flies (so that knowing one fly’s phenotype does not change
another fly’s phenotype probability distribution), and each has the same set of four
probabilities. Thus, under the model, the vector (268, 94, 79, 24) is treated as if it
were an observed value of the multinomial random vector. �

In applications of chi-squared methodology each O is a count associated with a
particular data category. In Example 5.1, for instance, the categories were TT , CT ,

CC. The number of categories is important in determining the degrees of freedom ν.
The value to use for ν depends on the problem. If we take the number of categories
to be k and the number of estimated parameters to be m then ν is found from the
formula

ν = k − 1− m. (10.2)

The degrees of freedom, often abbreviated d.f., may be considered the number of free
parameters. The idea and terminology of degrees of freedom come from mechanics:
we count the number of dimensions in which the random variable is “free to move,”
often beginning with some apparent maximal number of dimensions and subtracting
off constraints. The examples below should help clear this up, and there are general
formulas for each type of problem. In Eq. (10.2) we begin with a multinomial distri-
bution that has k categories with probabilities p1, . . . , pk . Because these sum to 1,
there are only k−1 free parameters. Then, after estimating m parameters for the null
hypothetical model we are left with ν = k − 1− m free parameters.

Example 10.1 (continued from p. 251) Returning to the allele frequencies example,
the “observed values” O are 268, 94, 79, 24. The “expected values” E values must be
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calculated. If the ratios were 9:3:3:1, the corresponding proportions would be 9/16,
3/16, 3/16, 1/16. With 465 flies, we would therefore expect to see 9

16 · 465 = 261.6,
3
16 ·465 = 87.2, 3

16 ·465 = 87.2, 1
16 ·465 = 29.1. The O and E values are compared

and summarized by the chi-squared statistic using (10.1):

χ2
obs =

(268− 261.6)2

261.6
+ · · · + (24− 29.1)2

29.1
= 2.34.

Here there are four categories, so three degrees of freedom. �
Just as the binomial may be approximated by a normal distribution for large n,

so too may the multinomial be approximated by a multivariate normal for large n.
This leads to the general result that the chi-squared statistic follows, approximately,
a chi-squared distribution.

Result Suppose X ∼ M(n, p1, p2, . . . , pk) and we have a statistical model
p1 = p1(θ), p2 = p2(θ), . . . pk = pk(θ) based on an m-dimensional parameter
vector θ. Let θ̂ be the MLE and let Yn be a random variable representing χ2

obs
according to (10.1), i.e.,

Yn =
k∑

i=1

(
Xi − npi(θ̂)

)2

npi(θ̂)
. (10.3)

Then, assuming suitable general conditions on the statistical model, as n→∞
we have

Yn
D→ χ2

ν (10.4)

where ν = k − 1− m.

A detail: The “suitable general conditions” on the model are that the
mapping θ → (p1(θ), p2(θ), . . . , pk(θ)) must be one-to-one and dif-
ferentiable with the derivative matrix having rank m. �

In practice, the most important input to this theoretical result, which leads to the
calculation of the p-value, is the assumption that the data may be represented by a
multinomial random vector. As in the binomial case, the multinomial assumption
will make sense when it is reasonable to assume the classification variables are
independent across observations (across subjects in Example 5.1). Thus, as before,
it is the judgment of independence that must be considered most carefully.
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10.1.3 The rarity of a large chi-squared is judged by its p-value.

The conventional cut-offs for the p-value are .05 and .01, with p < .05 and p < .01
reflecting modest and strong evidence. These two particular numbers were handed
down from Fisher and are now imbedded in standard practice, but they are some-
what arbitrary and should be considered rough guides rather than finely tuned cri-
teria.2 Articles in the literature often include statements in the form p < .05, with
the result typically being called statistically significant, or p < .01, which may be
labeled highly significant. However, it is not unusual to obtain a very small p-value
(e.g., 10−4), which is quite different than .01. Rather than saying p < .01, it is
preferable to report the p-value, and it is also good practice to say what statistic was
computed, e.g., in Example 5.1 on p. 250, one would report p = .20 for chi-squared
on one degree of freedom.

Example 10.1 (continued from p. 251) We use the computer to find p = P(X >

2.34) = 1− P(X ≤ 2.43) where X has a χ2
3 distribution. We obtain P(X ≤ 2.43) =

.4951 and therefore p = .50. This p-value is large, much larger than the conventional
values .05 and .01. Thus, data that deviate from expected values as much as these
would not be rare and we conclude there is a good fit of the theoretical model to
these data. �
Example 5.4 (continued from p. 111) In the radioactive disintegration example,
the statistical model is that the data are a sample from a P(λ) distribution. Here, we
have θ = λ so that pi(θ) = pi(λ). The O and E values are given in Table 10.1. The E
values are obtained as Ei = npi(λ̂) where pi(λ) = P(X = i) = e−λλi/i! and we then
substitute λ = λ̂ = x̄. Thus, after computing λ̂ = x̄ = 3.87 we obtain the values

p̂i(θ̂) = e−λ̂λ̂i/i!, which appear in the theoretical statement (10.3) and the values
Ei = npi(λ̂), which appear without the subscript i in (10.1). For example, the expected
number of times we would observe one particle emitted is 2608 times the probability
of getting one particle emitted, i.e., 2,608 · e−3.87(3.87) = 210.523.

Calculation of (10.1) gives χ2
obs = 12.9 and here there are ν = 11 − 1 − 1 = 9

degrees of freedom: we start with 11 − 1 = 10 degrees of freedom, because there
are 11 categories, but we lose one degree of freedom from estimating λ. From the
chi-squared cdf we find that when X ∼ χ2

10, P(X > 12.9) = .17. Thus, p =
.17 and there is no evidence of departure from the Poisson distribution despite the
large sample size, which would have given an opportunity to detect even a small
departure. �

A detail: A technical point arises in Example 5.4, above, from the
observation that the number of categories here is actually somewhat
arbitrary: we chose to use 11 categories, but could have chosen a
different number. As a result, the large-sample distribution is not the
claimed chi-squared, but a slightly different approximation (a pair of

2 Our characterization of p < .05 as “modest evidence” is consistent with Fisher’s view. In particular,
he felt p = .05 was inconclusive. See the footnote on p. 298.
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Table 10.1 Fit of Poisson distribution to the counts ofα-particle emissions from a specimen during
2,608 intervals.

k Observed counts Poisson fitted counts

0 57 54.399
1 203 210.523
2 383 407.361
3 525 525.496
4 532 508.418
5 408 393.515
6 273 253.817
7 139 140.325
8 45 67.882
9 27 29.189
≥ 10 16 17.075

bounds) may be used for the p-value. In this case, using 11 categories,
the p-value would be somewhere between those obtained for 9 and 10
degrees of freedom. This would make the p-value a bit bigger than
our reported p = .17. Many texts emphasize this technicality but, for
models such as these, with a single parameter, it has little effect on the
conclusions. �

10.1.4 Chi-squared may be used to test independence
of two traits.

Many studies seek to evaluate the association of two traits. In genetic epidemiology,
for instance, it is useful to know whether a particular genotype may be associated
with a disease. When the occurrence of each trait is considered a random variable, the
traits will fail to be associated if the two random variables are independent. Thus, the
issue becomes one of evaluating the fit of a statistical model based on independence.

Example 10.2 Alzheimer’s and APOE As part of a study of markers for late-onset
Alzheimer’s disease, Yu et al. (2007) looked for the presence of the ε4 allele of the
apolipoprotein E gene (APOE), which had previously been associated with increased
risk of Alzheimer’s, among both Alzheimer’s patients and controls. The following
table summarizes some of the data they presented from 193 Alzheimer’s patients
(AD) and 232 controls:

ε4 absent ε4 present
AD 58 135
Controls 162 70
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At first glance it appears that the ε4 allele is far more prevalent among the Alzheimer’s
patients than among the controls—and that this is probably not due to chance. This
may be verified using a χ2 test. �

Example 10.2 involves what is called a two-by-two table (written 2×2). In general,
the probabilities for a 2× 2 table may be represented as follows:

1 absent 1 present
2 absent p11 p12 p1+
2 present p21 p22 p2+

p+ 1 p+ 2

Here the subscript ij corresponds to the (i, j) element in the table, meaning that pij

is the probability in row i and column j. For example, p22 is the probability that a
random individual has both trait 1 and trait 2 (e.g., in Example 10.2 both ε4 and AD).
The probabilities along the margins of the table come from summing the probabilities
along rows or columns. For example, p+2 = p12 + p22 is the probability that the
individual has trait 1 (e.g., ε4) and p2+ = p21 + p22 is the probability that the
individual has trait 2 (e.g., AD). Now, if independence holds, then the probability of
having both trait 1 and trait 2 must equal the probability of having trait 1 times the
probability of having trait 2, i.e., p22 = p2+p+2. Filling out the rest of the table of
probabilities the same way gives the independence model

pij = pi+p+j

for all i, j.
In order to apply χ2

obs we need to compute the expected values, each of which
is the number of individuals we would expect in a particular entry of the table. In
principle, the expected value for the (i, j) entry in the table is E = n ·pij = n ·pi+p+j

for each of the four pij’s, but we don’t know the values of pi+ and p+j. Here we
resort to the standard “plug-in” method: we estimate these marginal probabilities
from the data. For instance, in the Alzheimer’s example there are a total of 425
individuals so we use p̂1+ = (58+ 135)/425, for the probability of having AD, etc.
(p̂2+ = (162+ 70)/425, p̂+1 = (58+ 162)/425, p̂+2 = (135+ 70)/425).

This estimation process causes the chi-squared distribution to lose degrees of
freedom, as in Example 5.4. In general, if there are r rows and c columns we begin
with rc − 1 degrees of freedom: there are rc probabilities in the table but they must
sum to 1, which means we lose one degree of freedom. We then lose another r − 1
degrees of freedom for estimating row marginal probabilities and c−1 for estimating
column marginal probabilities. This leaves rc−1−(r−1)−(c−1) = rc−r−c+1 =
(r − 1)(c− 1) degrees of freedom.

Example: 10.2 (continued from p. 254) In this example r = 2 and c = 2 so there
is one degree of freedom. Entering the data into an appropriate statistical software
package produces χ2

obs = 65 on one degree of freedom, and p = 7× 10−16, which
is truly tiny. Clearly there is an association here. �
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Software used to get chi-squared results, as in Example 10.2 above, typically
applies a variation of the chi-squared statistic that includes a “continuity correction.”
This adjusts the statistic slightly to make the continuous chi-squared distribution
match more closely the distribution of the discrete chi-squared statistic in small
samples. It is also possible to use so-called “exact” methods, which avoid the χ2

distribution altogether. While such methods are commonly applied, it is important
to keep in mind that we are usually looking for clear and compelling results, either
not significant or strongly significant, and borderline cases should be interpreted as
such. That is, when the continuity correction—or the distinction between exact and
approximate methods—is important to conclusions, this signals a case in which a
careful investigator ought to recognize the ambiguity of the data.

Example 10.2 (continued, introduced on p. 254) The Alzheimer’s and APOE data
may be examined further to see if there is a difference between men and women.
Here is the table for the AD patients:

ε4 absent ε4 present
Women AD 32 70
Men AD 26 65

The proportions appear to be about the same, and this time we get χ2 = .071 again
on one degree of freedom, and p = .79, so there is no evidence of any discrepancy
in ε4 prevalence among the male and female AD patients. �

One final subtlety should be noted. The logic we have described here assumes that
all subjects have the same underlying (theoretical) probabilities pij, as would occur
if each subject in the study were drawn randomly from a population of potential
subjects. That could be a good rough description of what happened in the Alzheimer’s
study. However, often a set of diseased patients is selected and then a set of controls
is chosen separately. In epidemiology this is called a case-control study. It generates
a different statistical model, but it turns out to give the same χ2 test. (The cited study
did not say which way the subjects were collected.) We return to the issue of data
collection strategies and their effects on scientific inference in Section 13.4.

10.2 Null Hypotheses

10.2.1 Statistical models are often considered null hypotheses.

In talking about assessing fit we have used a “hypothesized model,” i.e., the model
being fit to the data. The standard terminology is to take such a model to be the “null”
model, or the null hypothesis, often written as H0. Sometimes the null hypothesis
completely specifies the probability distribution, as in Example 10.1 (p. 251). In
other cases it merely identifies a family of distributions, as in theα-particle emissions
example (where there is still a free parameter λ), and in the Alzheimer’s and APOE

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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example (where there remain two free parameters p1+ and p+1). The “null” here
indicates that such a hypothesis is often used with an eye toward collecting evidence
against the hypothesis, the implicit understanding being that H0 would eventually be
replaced with something that could describe such data better.

10.2.2 Null hypotheses sometimes specify a particular value
of a parameter within a statistical model.

Another possibility is that the null hypothesis specifies a particular value of a para-
meter within a family of distributions.

Example 1.4 (continued, see p. 13) In the investigation of blindsight in patient P.S.
the possibility that P.S. was guessing corresponds to taking p = .5 in the binomial
model. We write this as X ∼ B(17, p) with H0: p = .5. One way to test this is
with χ2. We take the observed values to be 14 and 3 (for the two categories “non-
burning preferred” and “burning preferred”) and take the expected values to be np0
and n(1−p0), with n = 17 and p0 = .5, which gives np0 = 8.5 and n(1−p0) = 8.5.
The chi-squared statistic is then

χ2
obs =

(14− 8.5)2

8.5
+ (3− 8.5)2

8.5
= 7.12.

Here we have two categories and 0 estimated parameters, so ν = 1. Comparing 7.12
to a χ2

1 distribution gives a p-value of p = .0076, which3 is strong evidence against
H0. �

In Example 1.4 there is a simple null hypothesis and a chi-squared procedure to
test it. Because the sample size there is small, however, the continuity correction
mentioned on p. 256 would change the p-value somewhat. We will obtain a more
accurate p-value for Example 1.4 on p. 267.

10.2.3 Null hypotheses may also specify a constraint on two
or more parameters.

In the blindsight example (p. 257) we had a single binomial and tested H0 : p = .5.
Now suppose we have two binomials, X1 ∼ B(n1, p1) and X2 ∼ B(n2, p2) and we
wish to test H0 : p1 = p2. This is a special case of a widely-applied type of null
hypothesis, namely one that corresponds to a constraint on some parameters in a

3 In this example we use the notation p in two different ways: at first p stands for the probability
that P.S. would choose the non-burning house, and then later it stands for the p-value. These are
both such common notations that we felt we couldn’t change either of them. We hope our double
use of p is not confusing.
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statistical model. In the case of two binomials, H0 : p1 = p2 may be assessed by
comparingχ2

obs to aχ2
1 distribution: we begin with two free parameters p1 and p2 and

lose a degree of freedom due to the constraint. In fact, this special case of χ2
obs turns

out to be mathematically equivalent to the test of independence examined above.

Example 10.2 (continued, see p. 254) On p. 256 the way the Alzheimer’s data
were collected would affect the way the statistical problem would be posed. If AD
patients and controls were collected separately, then we would examine whether the
probability of having the ε4 genotype was the same in each population, i.e, we would
have two binomials and would test H0 : p1 = p2. To repeat, this test may be carried
out using χ2

obs, exactly as done previously, on p. 255. �
In a similar way, data from two independent samples X11, X12, . . . , X1n1 and

X21, X22, . . . , X2n2 may be used to test the hypothesis that the corresponding means
μ1 and μ2 are equal, H0 : μ1 = μ2.

Example 1.1 (continued from p. 3) In the case of the SEF neuronal activity under
two conditions there were 15 trials in both experimental conditions, generating mean
firing rates of 48 spikes per second for the spatial condition and 70 spikes per second
for the pattern condition across the time interval from 200 to 600 milliseconds after
the onset of the cue. The null hypothesis H0 : μ1 = μ2 would say that the two mean
firing rates are equal. �

The standard statistical procedure for testing H0 : μ1 = μ2 is called a t-test,
because it relies on the t distribution. We discuss this in Section 10.3.4. Example 7.2
provides another example.

Example 7.2 (continued from p. 167) For the test-enhanced learning study we
previously showed how to get a confidence interval for μ1 − μ2, where μ1 and μ2
were the mean scores within the SSSS and SSST conditions. As an alternative we
may test the null hypothesis H0 : μ1 = μ2, which says that the theoretical mean
scores in the SSSS and SSST conditions are identical. We present results based on
the t-test on p. 265. �

10.3 Testing Null Hypotheses

10.3.1 The hypothesis H0 : μ = μ0 for a normal random variable
is a paradigm case.

We have already noted that a null hypotheses may specify a particular value of a
parameter. To establish intuition based on a widely-used form of test statistic, let us
return to the prototypical situation we considered in Section 7.3.2, where we have a
sample X1, . . . , Xn from a N(μ,σ2) distribution with σ known. To test H0 : μ = μ0
we may form the ratio

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Z = X̄ − μ0

SE(X̄)
(10.5)

where
SE(X̄) = σ/

√
n (10.6)

is the standard error of the mean, as in Eq. (7.9). The data-based analogue, computed
from a sample x1, . . . , xn, is

zobs = x̄ − μ0

SE(x̄)
(10.7)

where x̄ is the sample mean computed from the data and SE(x̄) = σ/
√

n. (The SE
value is the same for the data-based mean and its theoretical counterpart because
the formula in this simple case does not depend on the actual values of the data.)
If the magnitude |zobs| is sufficiently large we would say there is evidence against
H0. To analyze this procedure we return to the theoretical statement (10.5). Because
X̄ ∼ N(μ,σ2/n), under H0 : μ = μ0 we also have

Z ∼ N(0, 1). (10.8)

We therefore obtain a p-value from

p = P(|Z| ≥ |zobs|). (10.9)

Together, (10.7) and (10.9) define a z-test for normal data with σ known.
As in Section 7.3.2 we have presented the z-test first in this special case for

conceptual simplicity. In practice, the data are typically not normally distributed and
σ is not known. We may treat the more general setting by approximation, analogously
to what was done in Section 7.3.4. The procedure is to replace σ with the sample
standard deviation s in SE(x̄), as in Eq. (7.17) and, having done so, invoke (10.7) as
above. For the purpose of formalizing the argument in theoretical terms let us replace
Z , in (10.5) with Y ,

Y = X̄ − μ0

SE(X̄)
. (10.10)

We do this because when the observations are non-normal Y will also typically be
non-normal and we want to reserve the notation Z for the case Z ∼ N(0, 1).

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Result If X1, . . . , Xn is a random sample from a distribution having mean μ and
standard deviation σ, and n is sufficiently large, then a test of the null hypothesis
H0 : μ = μ0 may be carried out by applying (10.7) with SE(x̄) defined by (7.17)
and computing an approximate p-value using (10.9). That is, under H0 : μ = μ0,
for sufficiently large n we have

P(|Y | ≥ |zobs|) ≈ P(|Z| ≥ |zobs|) (10.11)

where Y is defined by (10.10) and Z ∼ N(0, 1), so that the p-value based on
(10.7), where SE(x̄) is defined by (7.17), together with (10.9) is approximately
correct.

This result is an immediate consequence of the theorem following (7.18).

10.3.2 For large samples the hypothesis H0: θ = θ0 may be tested
using the ratio (θ̂ − θ0)/SE(θ̂).

The uncertainty associated with an estimate is quantified by the estimate’s standard
error, as defined in Eq. (7.6) on p. 159. In Example 1.4, concerning blindsight in
patient P.S. we reported on p. 13 an approximate 95 % confidence interval (.64, 1.0)

(based on calculations given on p. 158) and we noted that this was inconsistent with
the probability of .5, which would correspond to guessing. But if we are mainly
interested in whether the data are consistent with guessing, we could rephrase the
problem using the observed discrepancy between 14

17 and .5. The proportion θ̂ = 14
17

seems much too big to be consistent with guessing. So we may ask this question: If
P.S. were guessing, how unlikely would it be that θ̂ would be as far from .5 as was
14
17 ?

We will present several different procedures that provide slightly different numer-
ical answers to this question, all of which lead to the same conclusion. The one most
closely related to the approximate confidence interval in (7.8) assesses the discrep-
ancy between θ̂ and .5 in units of SE(θ̂). This relies on the approximate normality of
the MLE θ̂.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Result: Suppose X1, . . . , Xn has joint pdf f (x1, . . . xn|θ), with θ a scalar, and
suppose further that Tn is an asymptotically normal estimator of θ with standard
error SE(Tn) = σ̂Tn . Then the null hypothesis H0: θ = θ0 may be tested by
using the statistic

zobs = Tn − θ0

SE(Tn)
, (10.12)

with large values of |zobs| indicating evidence against H0. If the sample size is
large, an approximate p-value may be obtained from

p = P(|Z| ≥ |zobs|) (10.13)

where Z ∼ N(0, 1).

This result follows from the theorem in Section 7.3.5, which said that if σ̂Tn is the
standard error of Tn in the sense that

σ̂Tn

σTn

P→ 1

then
(Tn − θ)
σ̂Tn

D→ N(0, 1).

If θ = θ0 then the random variable

Z = Tn − θ0

SE(Tn)

follows, approximately, for large n, a N(0, 1) distribution and the p-value based on
Z ∼ N(0, 1) will be approximately correct. Because Z is a common notation for a
N(0, 1) random variable, the value zobs in (10.12) is often called a z-score and the
procedure in (10.12) and (10.13) is a z-test.

Example 1.4 (continued from p. 257) Suppose X ∼ B(n, θ) and we wish to test

H0 : θ = θ0. The usual formula for SE is SE(θ̂) =
√
θ̂(1−θ̂)

n . It is customary to

find SE under the null hypothesis, θ0 = .5, i.e., we replace4 θ̂ with θ0 = .5 in
the calculation of SE. In the case of the data from P.S. we had n = 17 so we get
SE = √(.5)(.5)/17 = .121, and zobs = (.824 − .5)/.121 = 2.68. This gives us a

4 The logic of the procedure does not demand that we use θ0 in place of θ̂. The justification of the
large-sample significance test, the Theorem in Section 7.3.5 that says Z is approximately N(0, 1), is
not refined enough to distinguish between the two alternative choices for SE(Tn) (both would satisfy
the theorem). However, because we are doing the calculation under the assumption that θ = θ0, it
makes some sense to use the value θ = θ0 in computing the standard error.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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p-value of .0074, which is nearly the same as the value .0076 obtained from the chi-
squared analysis (see p. 257). In fact, in this case, a little bit of manipulation shows
that we have the arithmetic identity z2

obs = χ2
obs, where zobs is defined in (10.12) and

χ2
obs is defined by (10.1) with (10.2). �

The identity above provides a way of understanding the chi-squared procedure.
The definition of a χ2

1 distribution is that it results from squaring a N(0, 1) random
variable. When we replace the data with random variables we get the theoretical
counterpart of the observed value zobs,

Z = θ̂ − θ0

SE(θ̂)
,

which has an approximate N(0, 1) distribution. Therefore, its square has an approxi-
mateχ2

1 distribution, but its square is the theoretical counterpart of the observed value
z2

obs = χ2
obs. In other words, the theoretical chi-squared statistic follows, approxi-

mately, a chi-squared distribution.
When θ is a vector essentially the same result as in (10.12) and (10.13) holds

again for each component. That is, if θi is one component of θ and Tn,i is the corre-
sponding component of an asymptotically normal vector estimator Tn (which would
be asymptotically multivariate normal as in (8.42)), then we can test H0 : θi = θi,0 by
replacing Tn by Tn,i and θi by θi,0 in (10.12) and again using (10.13). For example,
in simple linear regression we may have both an intercept and a slope, but we may
wish to test the null hypothesis that the slope is zero—which would correspond to
there being no linear relationship between the response and explanatory variables.
We return to this case in Chapter 12.

10.3.3 For small samples it is customary to test H0 : μ = μ0 using
a t statistic.

In Section 7.3.10 we presented the usual t-based confidence interval for a mean μ
of a normal distribution. The point was that, for small samples of observations that
are truly normal, the normal distribution of the standardized sample mean should be
replaced by a t distribution (with degrees of freedom given by the degrees of freedom
used in the estimation of σ by s). In the case of testing H0 : μ = μ0 with truly normal
observations the normal distribution in (10.9) is replaced by a t-based counterpart:

p = P(|T | ≥ |tobs|) (10.14)

where tobs is defined by replacing σ with s in (10.6) and (10.7), i.e.,

tobs = x̄ − μ0
s√
n

(10.15)

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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and T follows a t distribution, T ∼ tν where ν = n − 1. This is called a t-test. We
could consider n to be “large” and apply (10.9) with θ̂ = x̄ and SE(x̄) = s/

√
n. As

in Section 7.3.10, using the t distribution instead of the standard normal distribution
has the effect of making extreme values more probable; therefore, the p-value using
the t distribution with (10.14) will be larger (providing less evidence against H0)
than that found using the normal distribution (10.9), and the distinction vanishes as
n increases.

The t-test defined in Eq. (10.14) is often used when paired data of the form ui and
wi are observed and their differences xi = ui−wi are analyzed. The conception is that
U1, . . . , Un is a random sample from a N(μ1,σ

2
1) distribution and W1, . . . , Wn is a

random sample from a N(μ1,σ
2
1) distribution and the problem is to test H0 : μ1 = μ2.

The differences Xi = Ui −Wi, for i = 1, . . . , n then form a random sample from a
N(μ,σ2) distribution with μ = μ1 − μ2. The null hypothesis then may be rewritten
H0 : μ = 0, so that we obtain a normal random sample with null hypothesis of the
form H0 : μ = μ0 (where μ0 = 0), which is the problem solved by the t-test in
Eq. (10.14). In this setting the procedure is called a paired t-test.

Example 10.3 Glutamate increase in response to pain Mullins et al. (2005) used
proton magnetic resonance spectroscopy to study brain response to pain in humans.
The authors obtained spectra from the anterior cingulate cortex during application
of painfully cold compress to the subject’s foot and during several rest periods.
One analysis used the magnitude of the response associated with glutamate. This
involved a pair of measurements of the form ui and wi, for subject i, with ui being
the glutamate concentration during pain and wi being the glutamate concentration
during rest. The differences xi = ui − wi, for i = 1, . . . , n were then analyzed
with a paired t-test. In this study, which the authors called “preliminary,” results
from only seven subjects were reported. The authors reported a 9.3 % increase in
glutamate concentration during pain, with tobs = 3.85, yielding p = .006, which is
highly significant. In other words, even with only seven subjects, these data appear
to provide strong evidence of an increase in glutamate in anterior cingulate cortex
during administration of a painful stimulus. �

The t-test is justified by the following theorem.

Theorem If X1, . . . , Xn is a sample from a N(μ,σ2) distribution and H0 : μ = μ0
holds, then

P(|Y | ≥ |tobs|) = P(|T | ≥ |tobs|) (10.16)

where Y is defined by (10.10) with SE(X̄) = S/
√

n, tobs = zobs is given by (10.7)
with SE(x̄) defined by (7.17), and T follows a tν distribution with ν = n− 1.

Proof: The proof is the same as that of the theorem containing Eq. (7.31). �
In practice, as we said in Section 7.3.10 calculations based on t distributions

often agree pretty well with those based on normal distributions. However, for large
values of |tobs| the tails of the distribution come into play, and the p-values computed
with the t distribution may be quite a bit different than those based on the normal

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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distribution. In any case, throughout the scientific literature the t-test is considered
a standard approach, as long as the data do not deviate too far from normality. The
small sample size in Example 10.3 is worrisome because departures from normality
could affect the results. The p-value of .006, however, is sufficiently small to be
reassuring: substantial departures from normality would be required to change the
conclusion we would draw from the data. In Section 13.3 we discuss methods that
depend on neither the normality of the data, as in (10.16), nor normality of the sample
mean, as in (10.11).

10.3.4 For two independent samples, the hypothesis H0: μ1 = μ2
may be tested using the t-ratio.

Let us next apply the idea in Section 10.3.2 to the problem of testing H0 : μ1 = μ2
based on two independent samples X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 . The
obvious starting point is the difference between the sample means X̄1 − X̄2, which
should then be divided by its standard error.

Now, what is the standard error of X̄1 − X̄2? Because the two samples are inde-
pendent we have

V(X̄1 − X̄2) = σ2
1

n1
+ σ2

2

n2
(10.17)

where σ2
1 and σ2

2 are the respective variances of each X1i and X2i, within each of the
two samples. The standard error will be the square-root of the variance in (10.17)
after we plug in suitable estimates of σ1 and σ2 (as in Eq. (7.24)). The most common
procedure, the ordinary t-test, makes the assumption that σ1 = σ2, which greatly
simplifies the theoretical results. We now label these standard deviations by σ (so
that σ = σ1 = σ2). With this assumption, the two sample standard deviations s1 and
s2 both estimate σ. We then pool the data together by calculating

S2
pooled =

1

n1 + n2 − 2

(
n1∑

i=1

(X1i − X̄1)
2 +

n2∑

i=1

(X2i − X̄2)
2

)

which is taken as an estimator of σ2 and gets plugged into (10.17) for σ1 and σ2.
The test statistic becomes

T = X̄1 − X̄2

Spooled

√
1
n1
+ 1

n2

(10.18)

and, assuming μ1 = μ2, as n1 and n2 become infinite T converges in distribution to
N(0, 1). This gives the following method (where the notation converts the capital T ,
X and S to lower case once T is applied to observed data).

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Result: Suppose X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 are independent
random samples from distributions having means μ1 and μ2 and standard devi-
ations σ1 = σ2. The null hypothesis H0 : μ1 = μ2 may be tested using

tobs = x̄1 − x̄2

spooled

√
1
n1
+ 1

n2

, (10.19)

with large values of |tobs| indicating evidence against H0. If the sample sizes are
large, an approximate p-value may be obtained from

p = P(|Z| ≥ |tobs|) (10.20)

where Z ∼ N(0, 1).

The result above, using (10.20), is justified by the Central Limit Theorem. If,
in addition, we are willing to assume normality of the distributions then we have a
theoretically exact result, which applies in small samples.

Result: Suppose X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 are independent
random samples from normal distributions having meansμ1 andμ2 and standard
deviations σ1 = σ2. The null hypothesis H0 : μ1 = μ2 may be tested using
(10.19) with large values of |tobs| indicating evidence against H0. A p-value
may be obtained from

p = P(|T | ≥ |tobs|) (10.21)

where T ∼ tν , with ν = n1 + n2 − 2.

The method above, using (10.21) with (10.19), is called the two-sample t-test.
Sometimes the two samples are called “independent” to emphasize the distinction
between this setting and that of the paired t-test in Section 10.3.3. To be concrete,
suppose that the data come from human subjects. Typically, the data in the paired case
are paired because two observations come from the same subject, as in Example 10.3.
It is then natural to take advantage of the pairing by analyzing differences. In contrast,
the two samples in (10.19) come from separate subjects5 and there is no natural way
to identify a particular x1 observation with an x2 observation. Here is an example.

Example 7.2 (continued from p. 258) In the test-enhanced learning study Roediger
and Karpicke (2006) found strong evidence against H0, the hypothesis the
theoretical mean scores in the learning-test group and the restudy groups were iden-
tical. Applying the two-sample t-test to the data displayed in Fig. 7.3 we obtained
tobs = −3.19 on 58 degrees of freedom. Using the normal approximation this gives

5 We discuss this distinction again in Section 13.1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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p = .0014 while using the t distribution we get p = .0023. Either way there is strong
evidence against H0, indicating strong evidence that the mean assessment score
under the SSST condition is greater than the mean assessment score under the SSSS
condition. �

In Example 7.2 the p-value is larger when the t distribution is used than when the
normal distribution is used. This is generally the case, as the t distribution has thicker
tails, so that it gives higher probability to values with large magnitudes. Standard
practice is to report the t-based p-value.

Deviations from the assumption that σ1 = σ2, which motivates the use of (10.18),
typically must be quite large in order to have a strong effect on the p-value in (10.20)
or (10.21). (A rough rule of thumb would be that, for substantial sample sizes, the
conclusions are likely to be valid when the standard deviations are within a factor of
3 of each other.) However, a simple alternative is to define S1 = s1 and S2 = s2 to
be the sample standard deviations of the two respective samples and then define

tobs = x̄1 − x̄2√
s2
1

n1
+ s2

2
n2

. (10.22)

Replacing T in (10.18) with

T = X̄1 − X̄2√
S2

1
n1
+ S2

2
n2

, (10.23)

the large-sample result based on the central limit theorem again holds, with p-value
given by (10.20). This version of the two-sample t-test is often called6 Welch’s t-test,
or the unequal variance t-test. We provide simulation-based methods of computing
the p-value for this test in Sections 11.2.1 and 11.2.2.

10.3.5 Computer simulation may be used to find p-values.

We have gone over several examples of p-values. Let us now summarize the essen-
tial logic we have applied, and show how they may be obtained using computer
simulation.

In each case we have an observed value of some test statistic, which we now write
in generic form as qobs. The examples so far have involved various formulas for χ2

obs,
zobs and tobs, with context determining the formula. We then introduce a theoretical

6 Welch provided an approximate distribution from which p-values could be computed, which is
more accurate than the normal.

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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statistic Q, and use its distribution under the null hypothesis (chi-squared, normal,
tν) in a relevant statistical model to compute the p-value

p = P(Q ≥ qobs|H0) (10.24)

where we have used the conditioning notation to emphasize that7 the probability is
computed under the assumption that H0 holds.

In many situations it is possible to use the computer to generate artificial data under
the null hypothesis. That is, the statistical model specified by the null hypothesis
contains certain probability distributions, and it is often relatively easy to generate
observations from these probability distributions. We have done this previously, in
Section 9.1.1, and produced simulated data, which we have also called pseudo-data.
Each set of pseudo-data should resemble the real data in many respects that are crucial
to analysis, such as having the same number of observations as the real data. On the
other hand, the pseudo-data will have known variation with all the characteristics
we assume in our theoretical world of statistical modeling. If we can create sets
of pseudo-data repeatedly, a large number of times (each set of pseudo-data being
different due to the randomness specified by the statistical model) then we can also
compute the p value numerically.

The idea is to generate a large number G of pseudo-data sets (e.g., G = 10,000)
and apply the statistic Q to each set of pseudo-data. This produces G computer-
generated observations from the probability distribution of Q (under H0). To find
p = P(Q ≥ qobs) we then simply have to get the proportion of such generated
observations (out of G = 10,000) for which Q is as large as qobs. Let us use Q(g)

to denote a value of Q computed from a set of pseudo-data, where g = 1, 2, . . . , G.

Here is the algorithm.

Finding the p-value by simulation

1. Generate G sets of pseudo-data labelled g = 1, . . . , G and for the gth
set of pseudo-data compute Q(g).

2. Let N be the number of sets of pseudo-data for which Q(g) ≥ qobs.

3. The p-value is given by p = N
G .

Example 1.4 (continued from p. 261) Let us take X to be a random variable
representing the number of non-burning house preferences. Under the null hypothesis
we have X ∼ B(17, .5). As our test statistic we may use Q = |X − 8.5|, where 8.5

7 This may be considered an abuse of the notation because we usually consider H0 to be a fixed, non-
random entity, so we are not really “conditioning” on it in the usual sense developed in Chapter 3.
The exception occurs under the Bayesian interpretation given in Section 10.4.5, where H0 is formally
considered to be an event. In that scenario the probability in (10.24) does become a conditional
probability.

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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is the expected value of X and we are here judging small and large deviations from
8.5 to be equally important. We have qobs = 14− 8.5 = 5.5. We may then simulate
10,000 observations from a B(17, .5) distribution and count the number N for which
Q ≥ qobs. Doing this, we obtained N = 126 and p ≈ .013. �

One issue is that the accuracy of such computer-generated p-values depends on
the number of data sets generated. If we take G to be extremely large we can get a
very accurate p-value, but in complicated problems the computing time may get too
long. In most problems G = 10,000 is large enough to obtain reasonable accuracy.

Details: In fact, we may compute the accuracy of such computer-
generated p-values quite generally from the binomial standard error.
If we generate G data sets, we have N ∼ B(G, p) where p is the desired
p-value, which is estimated by p̂ = N/G. The standard error for this
binomial proportion is SE(p̂) = √

p̂(1− p̂)/G. Thus, in the exam-
ple above, the accuracy would be SE = √(.0126)(.9874)/10,000 =
.0011. Doubling this we get a 95 % CI for p of .013± .002. �

We used Example 1.4 to demonstrate the idea of simulation-based computation of
p-values. The great virtue of p-values based on pseudo-data is that they can be easy to
compute even in very complicated situations where direct calculation is impossible.
However, the binomial setting shares with some other common problems sufficient
simplicity that the exact p-value may be computed more directly.

Example 1.4 (continued) We have that Q ≥ qobs precisely when x ≥ 14 or x ≤ 3.
Thus, we have

p = P(X ≤ 3)+ P(X ≥ 14)

where X ∼ B(17, .5), which may be computed by evaluating the binomial cdf from
statistical software. Specifically, if F(x) is the B(17, .5) cdf, then

p = F(3)+ 1− F(13).

In this special case the B(17, .5) distribution is symmetrical so that P(X ≥ 14) =
P(X ≤ 3) and we also have

p = 2F(3) = .013

which agrees with the value obtained above, by simulation. �

10.3.6 The Rayleigh test can provide evidence against a uniform
distribution of angles.

When a random sample X1, . . . , Xn consists of angles, i.e., measurements between
0 and 360 degrees (with 0 being the same as 360) or, equivalently, 0 and 2π radians
(with 0 being the same as 2π) a common question is whether the angles tend to be
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clustered around a particular direction. A natural null hypothesis is that the angles are
uniformly distributed on the unit circle, i.e., Xi ∼ U(0, 2π) with the understanding
that x = 0 is the same as x = 2π.

There is a body of methods devoted to analyzing data on the unit circle, i.e.,
angles, which are usually called circular data. For data x1, . . . , xn let us define

C̄ = 1

n

n∑

i=1

cos(xi)

S̄ = 1

n

n∑

i=1

sin(xi)

Robs =
√

C̄2 + S̄2. (10.25)

Recall (see p. 610 of the Appendix) that the cosine and sine of an angle α are the
(x, y) coordinates of a point found by rotating the vector (1, 0) counter-clockwise
through an angle α. This implies that C̄ and S̄ are, respectively, the mean of the x
coordinate and the mean of the y coordinate when the data are plotted as points on
the unit circle. The vector (C̄, S̄) is called the sample mean resultant vector and R is
its magnitude. Note that (nC̄, nS̄) is the sum of n unit vectors so8 its maximal length
is n, which occurs when all the vectors (xi, yi) are equal. In this case we get R = 1.
When the vectors tend to be clustered together, R gets close to 1. The Rayleigh test
uses R as a test statistic and computes

p = P(R > Robs),

where R is the random variable defined as in (10.25) with random variables
X1, . . . , Xn replacing data values x1, . . . , xn, under the assumption that X1, . . . , Xn

form a sample from the uniform distribution on the unit circle.

Example 10.4 Hippocampal hemispheric differences among homing pigeons
Gagliardo et al. (2001) examined directional orienting after release among groups
of homing pigeons in three experimental conditions. In the first condition, at one
month of age each pigeon was subjected to left unilateral ablation of the hippocam-
pal formation. In the second condition, at 1 month of age each pigeon was subjected
to right unilateral ablation of the hippocampal formation. The third condition was
a control, with no ablation. At around four months of age the birds were released
from one of three locations and their direction of flight was recorded. This gener-
ated samples with sizes ranging from n = 11 to n = 30 across the nine groups
(Three locations for each of three treatments.) Each sample was a set of flight direc-
tion angles and the initial question was whether the birds tended to follow a par-
ticular direction (homeward). In this case the null hypothesis was no orientation

8 This generalizes (and follows from) Eq. (A.29), which says that the maximal length of the sum
of two unit vectors is 2 and it occurs when the vectors are equal.
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at all, i.e., a uniform distribution of angles. The authors applied the Rayleigh test
and found strong evidence against H0 for the control and right-side ablation groups
(p < .001 for four groups and p < .02 for two groups) but no evidence against H0
for the left-side ablation group. This, together with other analyses, led them to con-
clude that the left hippocampal formation appears to be critical for navigational map
learning. �

Statistical software is available for computing this p-value, but it is easy to compute
using simulation as in Section 10.3.5.

10.3.7 The fit of a continuous distribution may be assessed with the
Kolmogorov-Smirnov test.

The framework for statistical hypothesis testing, which includes specifying a null
hypothesis, choosing a statistic for evaluating it, and then computing a p-value, is
very flexible. Here is another case which, like the chi-squared tests of Section 10.1,
may be used to assess fit of a statistical model.

Suppose we have a sample of i.i.d. random variables X1, . . . , Xn each having
distribution function F(x), and we wish to examine whether F(x) takes a specified
form, such as N(0, 1) or Exp(1). Testing whether a batch of observations follow
an Exp(1) distribution is important in the analysis of spike train data (see Section
19.3.5). We write the specified distribution function as F0(x) and consider the null
hypothesis H0: F(x) = F0(x), and we assume F(x) and F0(x) are continuous.

To test H0 the discrepancy between empirical cdf F̂n(x), which satisfies Fn(x)→
F(x) for all x as n→∞ (see Section 6.2.2), and F0(x) may be examined. A standard
procedure is to consider the largest possible value of the magnitude |F̂n(x)−F0(x)|,
over all x. This is called the Kolmogorov-Smirnov (KS) statistic.

A detail: Strictly speaking, because x ranges from−∞ to∞ there may
not be a value of x at which the magnitude |F̂n(x) − F0(x)| achieves
a maximum. Instead, the supremum is used. (See p. 242.) Therefore,
the KS statistic is

KS = sup
x
|F̂n(x)− F0(x)|.

�
The distribution of the KS statistic under H0 has been studied and, it turns out,

does not depend on the choice of null cdf F0(x). Many statistical software packages
provide p-values for the KS test. In particular, for large n we have p < .05 when the
KS statistic is greater than 1.36/

√
n. See Bickel and Doksum (2001, Section 4.1).

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_6
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10.4 Interpretation and Properties of Tests

We now turn to some theoretical aspects of significance tests. In practice, new situa-
tions arise where no standard test is available. Researchers then invent significance
tests, and sometimes they are not valid. What do we mean by this? The key property
is Eq. (10.24). For an evaluation of statistical significance to be correct, theoretically,
(10.24) must be satisfied.

Let FQ(x) be the cdf of Q under the statistical model specified by H0 and let
us assume that Q follows a continuous distribution. We then have P(Q ≤ q) =
1− P(Q ≥ q) and we obtain from (10.24) the equivalent form

p = 1− FQ(qobs). (10.26)

This will help below. Sometimes (10.24) does not hold exactly, but it does hold
approximately, as in the case of chi-squared tests. In Section 10.4.1 we derive two
consequences that allow us to check whether (10.24) is approximately true. That
section describes the behavior of a valid significance test when H0 is true. In Section
10.4.3 we consider what happens when H0 is false.

10.4.1 Statistical tests should have the correct probability
of falsely rejecting H0, at least approximately.

The criteria for determining statistical significance, usually taken to be .05 or .01, are
called significance levels. Fisher suggested9 that research workers might routinely
use p < .05 as a “convenient convention” to summarize the evidence against H0.
Indeed, this became standard practice. Neyman and Pearson then considered, for-
mally, the behavior of such a procedure. They began by saying one might reject H0
for sufficiently large values of the test statistic Q. If we let c be the cut-off value for
which H0 is rejected whenever Q ≥ c, then c is called the critical value and

α = P(Q ≥ c)

is called the level of the test for the critical value c. Now, for the t-test on p. 265
based on Q = |T | and qobs = tobs defined in (10.19), at a particular level, such as
α = .05, we may reverse the process and, for any α, we can find a critical value cα
such that

α = P(Q ≥ cα). (10.27)

9 See pages 114 and 128 of the fourteenth (1970) edition of Fisher (1925).



272 10 Models, Hypotheses, and Statistical Significance

For example, the probability of falsely rejecting H0 based on the criterion p < .05 is
α = .05. Equation (10.27) should hold for any valid test, at least if Q has a continuous
distribution (and it should hold approximately for the discrete case).

A detail: For continuous statistics like that in the t-test we can find c.05
for which P(Q ≥ c.05) = .05 and P(Q ≥ c) < .05 whenever c > c.05.
In the discrete case, however, only particular values of probabilities
actually occur, so there may not exist c.05 for which P(Q ≥ c.05) = .05
and, furthermore, there will be values a > b such that P(Q > a) =
P(Q > b). We ignore this technical point here. �

Equation (10.27) gives us a way of checking any test to see whether the fundamen-
tal property (10.24) holds: we pick values of cα, compute the probability P(Q ≥ cα),
and see whether the answer isα. For instance, when H0 holds, we should find p < .05
(i.e., Q ≥ c.05) 5 % of the time and we should find p < .01 (i.e., Q ≥ c.01) 1 % of
the time. Another way to say this10 would be, “if we use p < .05 we will be making
an incorrect decision 5 % of the time and if we use p < .01 we will be making an
incorrect decision 1 % of the time.”

This calibration of p-values in terms of significance levels is satisfied when (10.24)
holds. That is, for any α between 0 and 1, a test that rejects H0 whenever p < α
will have α as its significance level. Formula (10.24) holds for the t-test under the
assumption of normality, but without the assumption of normality (10.24) is only
approximately correct, as in the first version in Section 10.3.4. Likewise, (10.24)
holds only approximately for the p-values computed from the chi-squared distribution
based on the chi-squared statistics in Section 10.1. Similarly, when a new statistical
test is proposed to deal with a complicated or unusual situation, it may provide
approximate p-values. For approximate tests it is good to know how close the p-
value is to being correct. In this case it is valuable to verify, by computer simulation,
that the test has approximately the level α = .05 when p < .05, and similarly for
other levels such as α = .01. For illustrative purposes we carried out the calculation
in the case of the example on blindsight of patient P.S.

Example: Blindsight of P.S. Let us consider the use of χ2
obs as we did on p. 257.

For a χ2
1 distribution we have c.05 = 3.84, i.e., if X ∼ χ2

1 then P(X ≥ 3.84) = .05.
For the case n = 17 and p0 = .5 we may compute the value of α = P(Q ≥ 3.84)

where Q is the chi-squared statistic. This is easily done by computer simulation.
We obtained α = .049. Repeating this for c.01 = 6.63 we obtained α = .013. For
these standard cut-off values for p, and for this sample size, we conclude that the χ2

1
distribution furnishes an accurate approximation.11 �

10 Fisher objected to the idea that statistical significance should be equated with decision making
about hypotheses. From our modern perspective this is an objection about the words used to describe
(10.27) but the formula itself is crucial. We say more about this in Section 10.4.7.
11 On the other hand, we should recall that the p-value we obtained for the data x = 14 was
p = .0076 based on χ2

obs and the chi-squared distribution while the exact p-value was p = .0127.
The discrepancy between approximate and exact values is a bit larger; the approximation apparently
gets worse as we move further out into the tails.
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Equations (10.24) and (10.27) provide explicit statements of the behavior of a
significance test under the assumption that H0 is true. Let us continue to assume that
H0 is true and go a step further by observing that the p-value is, itself, a random
variable and inquiring about its distribution. If we ask, “How often do we get p <

.05?” the answer, for any valid test, according to (10.27), is 5 % of the time; if we
ask “How often do we get p < .01?” the answer is 1 % of the time; if we ask “How
often do we get p < .25?” the answer is 25 % of the time. In general, we must get
p < α with probability α. But if a random variable X satisfies P(X < α) = α then
X ∼ U(0, 1). (Assuming X is continuous then P(X < x) = P(X ≤ x) = FX(x) = x,
which is the cdf of the U(0, 1) distribution.) Therefore, when H0 holds, the p-values
from a valid significance test will be uniformly distributed between 0 and 1.

Details: If we were to repeatedly sample data according to the statis-
tical model specified by H0, then we would get random values of qobs.
Let us denote such random values by the random variable Y . By the
way we are constructing Y it has the same distribution as Q. To be even
more specific, let us denote the mapping from data values x1, . . . , xn

to y values by y = T(x1, . . . , xn) so that Y = T(X1, . . . , Xn). The
definition (10.24) could be rewritten in terms of y as

p = P(Q ≥ y|H0) = P(Q ≥ T(x1, . . . , xn)|H0). (10.28)

Now, just as repeated samples would give random values of y so,
too, would repeated samples give random values of p. Let us denote
such random values by the random variable P. The random variable
P satisfies

P = P(Q ≥ Y |H0) = P(Q ≥ T(X1, . . . , Xn)|H0). (10.29)

With this notation in hand, we show that the theoretical distribution
of p-values under H0 is uniform.
Theorem Let X1, . . . , Xn be a random sample from which P is defined
from (10.29), and assume Q follows a continuous distribution. If H0
holds then P ∼ U(0, 1).
Proof: From the first equality in (10.29) we have

P = 1− FQ(Y),

which is the random variable version of (10.26). Because Y follows
the same distribution as Q, FQ(y) = FY (y), so that

P = 1− FY (Y)

and
1− P = FY (Y).
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From the probability integral transform given in Section 3.2.5 it fol-
lows that 1 − P has a U(0, 1) distribution. It is an easy exercise to
show that X ∼ U(0, 1) if and only if 1 − X is U(0, 1). Therefore,
P ∼ U(0, 1). �
We also have the following.
Theorem Let X1, . . . , Xn be a random sample from which P is defined
from (10.29), and assume Q follows a continuous distribution. Then,
under H0, the probability that P < α is equal to α, i.e.,

P(P < α|H0) = α. (10.30)

Proof: This is a corollary to the previous theorem: because P ∼
U(0, 1) we have FP(x) = x which, because Q is continuous, is the
same as (10.30). �

Example 7.2 (continued from p. 265) To illustrate the uniformity of p-values guar-
anteed by the theorem, we generated samples of pseudo-data based on the real data
used in the t-test on p. 265. The idea was to begin with the 60 data values under the
SSSS and SSST conditions and create 10,000 sets of pseudo-data like the real data
except that for each set of pseudo-data H0 was true. To force H0 to hold we sampled
the 60 data values and then arbitrarily put them into two groups of 30 values each,
so that each of the two groups of pseudo-data would follow the same distribution.12

We repeated this to get the 10,000 sets of pseudo-data, and then ran the t-test and
computed the p-value for each set of pseudo-data. Figure 10.1 is a histogram of the
resulting 10,000 p-values. The distribution is uniform. �

10.4.2 A confidence interval for θ may be used to test H0: θ = θ0.

Let us return to the “paradigm case” of Section 7.3.2 in which X1, . . . , Xn is a random
sample from a N(μ,σ2) distribution with the value of σ known. In Section 7.3.2 we
found a confidence interval for μ. Now let us consider, instead, the null hypothesis
H0: μ = 0. This hypothesis comes up frequently because many experiments generate,
for each subject, one observation under each of two conditions, and the data may be
reduced by taking the difference of the two observations. Thus, instead of n pairs
of observations we analyze n single-number differences Xi and the null hypothetical
question becomes whether the mean of these differences is zero. In practice, the
value of σ is unknown but here, as in Section 7.3.2, we assume it is known in order
to simplify the derivation below.

As in Section 7.3.2 we have standard error SE(X̄) = σ/
√

n. In Section 7.3.2 we
showed that the interval (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)) is a 95 % CI for μ, which

12 Specifically, both groups followed the distribution specified by the empirical cdf based on the 60
data values. This is an example of bootstrap sampling and will lead to a bootstrap test discussed in
Chapter 11.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_11


10.4 Interpretation and Properties of Tests 275

p−value

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 10.1 Histogram of test-enhanced learning p-values under H0. Each p-value was computed by
sampling at random the 60 data values under the SSSS and SSST conditions and arbitrarily putting
them into two groups of 30 each, then running a t-test, as in the t-test on p. 265. This was repeated
10,000 times. The histogram was normalized by dividing the number of observed p-values, in each
bin, by the number expected if they followed a U(0, 1) distribution.

means
P(X̄ − 2 · SE(X̄) ≤ μ ≤ X̄ + 2 · SE(X̄)) = .95.

To test H0: μ = 0 we can check whether our 95 % CI contains 0. If it does not, we
have evidence against H0.

Theorem Suppose X1, . . . , Xn is a random sample from a N(μ,σ2) distribution, with
the value of σ known. If H0 : μ = 0 holds, then we have

P(0 /∈ (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄))) = .05.

Proof: For every μ we have

P(μ /∈ (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)))

= 1− P(μ ∈ (X̄ − 2 · SE(X̄), X̄ + 2 · SE(X̄)))

= 1− .95 = .05.

The result follows by taking μ = 0. �
This theorem says that the confidence interval for μmay be inverted to produce a

test of H0: μ = 0. We use the term “inverted” because instead of looking within the
interval, as we do in the usual application of a confidence interval, in testing H0 we
are seeing whether it lies outside the confidence interval. When μ = 0 lies outside
the confidence interval we reject H0 with significance level α = .05, and can report
p < .05.
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The same logic may be used to state a version of the theorem in more general
form.

Theorem Suppose X1, . . . , Xn is a random sample from a distribution that depends
on a single parameter θ, and suppose (θ̂− 2 · SE(θ̂), θ̂+ 2 · SE(θ̂)) is a 95 % CI, i.e.,

P(θ̂ − 2 · SE(θ̂) ≤ θ ≤ θ̂ + 2 · SE(θ̂)) = .95.

If H0 : θ = θ0 holds, then we have

P(θ0 /∈ (θ̂ − 2 · SE(θ̂), θ̂ + 2 · SE(θ̂))) = .05.

Proof: The argument is the same here as for the previous theorem. �
This theorem says that whenever we have a 95 % confidence interval for a parame-

ter, we may invert it to get a test of a null hypothesis that takes the form H0 : θ = θ0.
We stated the theorem to indicate generality, but actually the paradigm case of the
normal sample with σ known furnishes one of the rare situations in which a stan-
dard confidence interval has exactly the correct overage probability of .95. More
commonly we rely on intervals that have approximate coverage probability .95. The
method of using an approximate 95 % confidence interval to test a hypothesis pro-
duces a significance level of approximately p = .05 (we might write p ≈ .05). In
practice, the null-hypothetical value should be far outside the confidence interval, as
in Example 1.4 in Chapter 1.

10.4.3 Statistical tests are evaluated in terms of their probability of
correctly rejecting H0.

In Section 10.4.1 we pointed out that a statistical test should have its significance
levels match reasonably well its reported p-values, at least in the case of .05 and .01,
and that this results in incorrect rejection of H0 with the putative frequency (e.g., 5
or 1 % of the time). But suppose we have two different ways of testing a hypothesis.
How should we judge which way is better?

To answer this question, we may consider not only incorrect rejection of H0 but
also an incorrect decision not to reject. The two possible decisions may be identified as
“reject H0” and “accept H0.” There are then two types of errors: incorrectly rejecting
H0 when it is in fact true, and incorrectly accepting H0 when it is in fact false. These
are called type I and type II errors. A good test would be one with small type I and
type II errors. In order to evaluate the type II error we must introduce a particular
non-null hypothesis. This is called the alternative hypothesis and is usually denoted
HA (or H1). The power of the test is then the probability of correctly rejecting H0

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Fig. 10.2 Power of the method proposed by Ventura et al. (2005a), shown in the black line (the
upper curve), compared with an alternative method, shown in the thin line (the lower curve). Power
is plotted against the maximum percentage excess firing above that predicted by independence.
Both tests have the same value α = .05, indicated by the y-axis value when the percentage excess
firing is zero (so that H0 holds). The power of the new method is much greater than the power of
the alternative method. Adapted from Ventura et al. (2005).

when HA is true, i.e., it is one minus the probability of a type II error. The probability
of a type II error is usually denoted by β. Thus, for a test based on a statistic Q, using
(10.27), we have

α = P(Q ≥ cα|H0) (10.31)

β = P(Q < cα|HA) (10.32)

and
power = 1− β. (10.33)

If we have two different tests that we want to compare, we may choose a value α,
such as α = .05, find for each test its critical values cα, such as c.05, and then ask, for
a particular HA, which test is more powerful in the sense of having a larger value of
1−β given by (10.32). This is the general program laid out by Neyman and Pearson,
and it is the standard way to evaluate competing statistical tests of hypotheses.

Example 10.5 Time-varying dependence between spike trains Ventura et al.
(2005a) proposed a bootstrap method of testing the null hypothesis of independence
between two spike trains. Their method not only tested independence but also found
a window of time over which the two spike trains had increased joint activity. To
compare the new method to an existing procedure (which instead used contiguous
time bins in the joint peri-stimulus time histogram), Ventura et al. computed power
using (10.32) and (10.33) for a particular series of scenarios as the excess joint firing,
above that predicted by independence, was increased. Figure 10.2 is a plot of power
as a function of excess firing rate for the two methods. The purpose of such a plot is
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to demonstrate the superiority of a proposed method to an existing alternative. The
plot in Fig. 10.2 indicates especially large gains in power for 15–20 % excess joint
activity. �

Another use of power is to determine sample size. The idea is to choose an
alternative HA, considered to be plausible, and ask how big a sample size would be
needed to achieve both a particular level α and a particular power 1− β. The values
α = .05 and 1 − β = .8 are often used in medical applications, and planners of
clinical trials typically must show to reviewers their calculation that the proposed
sample size meets such specifications under reasonable assumptions.

10.4.4 The performance of a statistical test may be displayed
by the ROC curve.

In (10.31), (10.32), and (10.33), the critical value cα was determined by the level, as
in (10.27). We can turn things around and instead think of varying the critical value
c = cα, which then makes the level and power depend on c, and we then make this
dependence explicit by writing

α(c) = P(Q ≥ c|H0) (10.34)

and
β(c) = P(Q < c|HA). (10.35)

The choice of c determines a trade-off of type I and type II errors: when c is increased,
α(c) gets smaller so type I error probability decreases and type II error probability
β(c) increases. An ideal test would have small level and large power. As c is increased
the level gets smaller—which is desirable—but the power 1−β(c) also gets smaller.
The performance of a test may be examined by plotting 1 − β(c) versus α(c) for a
range of values of c. The function y = f (x) that traces values (x, y) = (α(c), 1−β(c))
is called the receiver-operating characteristic (ROC) curve.

The simplest setting is the paradigm case of Section 10.3.1, where X̄ ∼ N(μ,σ2/n)

and we wish to test H0 : μ = μ0. If H0 holds, then the ratio Z defined in (10.5) sat-
isfies Z ∼ N(0, 1) but if HA : μ1 holds with μ1 
= μ0, then Z ∼ N(δ, 1) where
δ = (μ1−μ0)/SE(X̄). The ROC curves for δ = 2 and δ = 1 are shown in Fig. 10.3.
When δ = 1 it is more difficult to discriminate between the two alternatives; the
power (y = 1 − β) is lower for a given value of the level (x = α) and the ROC
curve is closer to the line y = x (which is the ROC curve when δ = 0). If we
were instead to pick a very small value of δ the ROC curve would essentially fall on
the line y = x, while if we picked a very large value of δ the ROC curve would
hug the y-axis near x = 0 and hug the asymptote y = 1 for increasing values of x.
Thus, the higher the curve, the better its overall performance. Sometimes tests are
compared by plotting their ROC curves. In addition, the area under the curve is often



10.4 Interpretation and Properties of Tests 279

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
0

0.
1

0.
2

0.
3

0.
4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

level

po
w

er

−4 −2 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0

level

po
w

er

Fig. 10.3 Two pairs of normal distributions and the resulting ROC curves. The Left-hand side shows
the pair of pdfs for N(0, 1) (solid) and N(δ, 1) (dashed) and to the Right are the corresponding
ROC curves. Top δ = 2. Bottom δ = 1.

evaluated: it is 1 (the area of the 0–1 square) for a perfect test and .5 (the area within
the square under the line y = x) for tests with no predictive ability at all (in the
normal case corresponding to δ = 0).

The ROC curve is also used in psychophysical analysis of perceptual detection of
stimuli, called signal detection theory (SDT). According to SDT, perception involves
a noisy unknown process in the brain of a subject, which may be considered a random
variable X. In SDT two stimuli are considered. The first is taken to be a null stimulus,
in analogy with a null hypothesis, and the second involves a stimulus of interest. For
example, a subject may be repeatedly shown images and asked to detect whether a
particular object appeared in the image. In null cases the images would not contain
the object, but in cases involving the stimulus of interest—those involving the signal
in addition to the noise—they would. The two stimuli, null (noise alone) and signal-
plus-noise, generate two distinct probability distributions for X, as in Fig. 10.3. If X
is sufficiently large, say X > c, then the subject responds. In the setting of object
recognition, the subject would respond that the object is present whenever X > c.
This will incur two types of errors, analogous to type I and type II errors. The SDT
problem is then to characterize the null and signal-plus-noise distributions of X.

To characterize the null and alternative distributions of X points along an ROC
curve are found by using judgment confidence to vary the cutoff c. That is, the
subject is asked to report the confidence with which the judgment of perception
is made: when confidence in perception is high, the probability of a type II error
should be low, which corresponds to c being small. A confidence rating scale such
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as 1–6 is typically used; from many repeated trials, with a 6 point scale, 5 points are
obtained along an empirical ROC curve. (For the lowest confidence value there is
never a perception of response at all, so it is considered to correspond to c = ∞.)
The common terminology used in SDT replaces the y-axis label of power with “hit
rate,” or “hits,” and the x-axis label of level with “false alarm rate,” or simply “false
alarms.” As in the case of statistical tests, the null and signal-plus-noise distributions
are often assumed to be normal, but that is not essential to the logic of the method.

Example 10.6 Dual-process theory of memory One method of studying mem-
ory has involved recall of words taken from a list that was previously studied.
A variant of this uses a list of words consisting of some previously studied (or “old”)
words together with some new words; then, for each word taken from the composite
list the experimental subject is asked to say whether the word is new or old. This
produces a series of binary judgments to which SDT may be applied: the old words
define the signal-plus-noise condition, while the new words define the null condition.
According to certain dual-process theories of memory, there is a distinction between
remembering based on some set of details or related events, and remembering with-
out such corresponding details being available and, instead, there is only a sense of
“familiarity.” Yonelinas (2001) reported an experiment in which 19 subjects were
each given a list of 58 words to study, and then were tested on a composite list of
75 words. Half of the old words were studied under “full attention” and half were
studied under “divided attention.” In the full attention condition subjects saw each
word for 1.5 s (seconds) and were instructed to try to remember it. In the divided
attention condition the subjects also had to judge the magnitude of a number, pre-
sented on the same screen as the word. The composite list of 75 test words consisted
of 25 old words studied under full attention, 25 studied under divided attention, and
25 new words. The subjects were required to judge whether each test word was new
or old using a 6 point scale (ranging from “sure it was new” to “sure it was old”) and
then, after the judgment had been made (and the word was no longer visible), they
were also required to indicate whether they could remember details about the word,
such as what it looked like or sounded like, and whether they would be able to report
such details. Words were considered to be recognized based on familiarity when no
details could be recalled.

According to the dual-process model of Yonelinas, ROC curves for familiar
objects should be similar to those obtained from a pair of displaced normal distribu-
tions, as in Fig. 10.3, whereas words recollected with details would have a constant
probability of memory retrieval once a minimal confidence threshold was exceeded.
A pair of ROC curves for the familiarity words, in both the full attention and divided
attention conditions, are shown in the left-hand part of Fig. 10.4. As support for the
dual-process theory, Yonelinas also presented ROC curves for the words recognized
with detailed recollection, and these curves were quite flat, with an apparent threshold
at which recollection occurred. These are in the right-hand part of Fig. 10.4. �
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Fig. 10.4 ROC curves, adapted from Yonelinas (2001). On the Left are curves from words recog-
nized based only on familiarity, and on the Right are curves from words for which recognition was
based on detailed recollection. Curves for full attention and divided attention words are plotted
separately.

10.4.5 The p-value is not the probability that H0 is true.

The p-value is commonly misinterpreted as the probability that the null hypothesis
is true. A correct statement is necessarily rather cumbersome. Let us continue to
write a generic test statistic as Q and the value it takes when calculated from data
as qobs. In the case of the chi-squared tests we used Q = X ∼ χ2

ν with xobs =
χ2

obs and for the two-sided t test (10.19) we used Q = |T | with qobs = |tobs|.
We chose the notation qobs so that we can clearly distinguish the observed value
from the theoretical random variable Q. The p-value is then given by Eq. (10.24).
In words, p is the probability that one would observe a value of the test statistic as
discrepant from the null hypothesis as the one observed from the data, if the null
hypothesis were true. Or, again, in slightly different words: if the null hypothesis
were true, the test statistic Q would have a probability distribution; the p-value is
the resulting probability that Q would be as discrepant from the null hypothesis
as the value qobs actually observed. There is no substantially simpler way to say
this. The important point about the correct interpretation is its subjunctive nature:
the p-value is a probability based on what might have happened if a random sample
had been drawn under H0.

Because the logic behind p-values is somewhat convoluted, they are very often
misinterpreted to mean something much simpler and more direct, namely the prob-
ability that H0 is true based on the data. That is, a value p = .05 is often misinter-
preted as meaning that .05 is the probability that H0 is true, which we would write as
P(H0|data) = .05. This is sometimes called the p-value fallacy (Goodman 1999a,
b). There is no denying how nice it would be to have P(H0|data). In principle, that
probability may be obtained, instead, from Bayes’ Theorem:
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P(H0|data) = P(data|H0)P(H0)

P(data|H0)P(H0)+ P(data|HA)P(HA)
. (10.36)

From a practical point of view, however, application of formula (10.36) requires
considerable care. We return to it in Section 16.3. Bayes’ Theorem does provide
some guidance on the calibration of p-values. As we discuss in Section 16.3.4, under
reasonable assumptions p = .05 corresponds to values of P(H0|data) much larger
than .05 and, in fact, only a little smaller than 1/2. In other words, in terms of
P(H0|data), a p-value of .05 is likely to provide only marginal evidence against H0.

10.4.6 Borderline p-values are especially worrisome
with low power.

To better understand the meaning of p-values it is also worth keeping in mind a
different Bayesian analysis than that described in Section 16.3 and alluded to in
Section 10.4.5. In Section 3.1.4 we applied Bayes’ Theorem to screening tests. There,
we calculated the probability that a patient might have a disease, which we denoted
as the event A, based on a positive screening test outcome B. That is, we computed
P(A|B) based on the sensitivity of the test P(B|A), the specificity of the test P(Bc|Ac)

and the prevalence of the disease P(A). We showed that when P(A) is small, P(A|B)

will be much smaller than one might expect based on seemingly good values of the
specificity and sensitivity.

The same kind of analysis may be applied to significance tests by viewing them
as analogous to screening tests. In this case A becomes the event that H0 is false, B
becomes the event that the test rejects H0, the sensitivity P(B|A) becomes the power
of the test, 1 − β (see (10.33)), the specificity P(Bc|Ac) becomes 1 − α, and the
prevalence P(A) becomes the prevalence of false null hypotheses. Plugging these
into Bayes’ Theorem, and using the definition of positive predictive value (PPV) on
p. 44 with Eq. (3.2), we get

P(H0 false|test rejects H0) = PPV

= (power)(prevalence)

(power)(prevalence)+ α(1− prevalence)
.

If we assume that prevalence of false null hypotheses is less than .5, so that truly false
null hypotheses are somewhat rare, and further that the power is low, then a borderline
p-value slightly less than .05, corresponding to a rejection rule with α = .05, will
lead to very weak evidence against H0. For example, if the prevalence of false null
hypotheses is .2 and the power is also .2, then using α = .05 we find

P(H0 false|test rejects H0) = 1

2
.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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In other words, in this situation p < .05 provides no evidence that the given null
hypothesis is false. More generally, when a study is based on a small sample size
and therefore lacks power, while false null hypotheses are uncommon, a finding of
marginal statistical significance is likely to provide little or no evidence against H0.
This argument has been used by Button et al. (2013) to suggest that many statistically
significant results in neuroscience are likely to be spurious.

These Bayesian analyses, here and in Section 16.3, referenced in Section 10.4.5,
lead us to advise that, in most situations, to be safely taken as supplying substantial
evidence against H0, p-values should be very much smaller than .05.

10.4.7 The p-value is conceptually distinct from type one error.

We began by presenting p-values as a way of assessing evidence against a null
hypothesis, and then reviewed the basic elements of the additional hypothesis testing
framework based on evaluation of the performance of a test under both null and
alternative hypotheses. The latter was introduced originally by Neyman and Pearson.
Fisher disliked the Neyman-Pearson conception because he thought the alternative
hypothesis was artificial and unnecessary—more than that, he thought it was counter-
productive. In the Neyman-Pearson scheme there was no apparent role for p-values:
in principle, one would pick a level α (such as α = .05) a priori and then determine
whether p < α rather than reporting the p-value itself. Furthermore, the implication
was that, in practice, the null hypothesis might routinely be accepted rather than
rejected. This was the point that Fisher found most troubling. He said, “It is certain
that the interest of statistical tests for scientific workers depends entirely [on] their
use in rejecting hypotheses which are thereby judged to be incompatible with the
observations.” (Fisher 1935.) From our current vantage point it is easy enough to
step back from that early controversy. On the one hand, Fisher was correct that p-
values and the rejection of statistical hypotheses would become a major activity of
everyday science. On the other hand, the Neyman-Pearson conceptions have proven
their worth in theoretical work, where evaluation of type I and type II errors have
been important in understanding alternative testing procedures. The modern point of
view is thus a synthesis of Fisher’s “significance testing” and the Neyman-Pearson
“hypothesis testing.” There is no longer a compelling need to distinguish between
these separate notions, which were once considered incompatible. We use the terms
“significance testing” and “hypothesis testing” interchangeably.

10.4.8 A non-significant test does not, by itself, indicate evidence in
support of H0.

In previous subsections we have laid out the logic of significance testing using
p-values. As we noted at the beginning of Section 10.4.1, Fisher’s original

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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conception was that small p-values could provide evidence against H0, and in Section
10.4.7 we cited his concern that they not be used for “accepting” a null hypothesis.
In this regard, the modern view is consistent with Fisher’s interpretation of p-values:
they can only be used to show how the data appear to be inconsistent with H0; they
do not supply support for H0. A non-significant test of H0 : θ = θ0 could occur either
because H0 holds or because the variability is so large that it is difficult to determine
the value of the unknown parameter. The latter possibility must be considered.

As an illustration, let us return to the blindsight example, Example 1.4, once
again and imagine a different outcome. Suppose that, instead of 14/17 “non-burning”
house selections, patient P.S. had chosen the non-burning house 12 out of 17 times.
If X ∼ B(17, .5), an exact calculation like that on p. 268 gives

p = 2F(5) = .14.

In this circumstance it would be incorrect to say that there is evidence in favor of H0. In
fact, for 12 out of 17, the estimate of the propensity of P.S. to choose the non-burning
house would be p̂ = 12/17 = .71 with standard error SE(p̂) = √

p̂(1− p̂)/n = .22.
While it is true that the value H0: p = .5 is clearly consistent with the data, the
standard error is so large that a wide range of non-null values are also consistent with
the data.

It is very common for investigators to interpret failure of a test to reach significance
as an indication that H0 : θ = θ0 holds. This is reasonable only if, in addition, the
standard error of the estimate SE(θ̂) is small: a confidence interval would have to
include only those values of θ that are, for practical purposes, essentially the same
as θ0.

It is especially tempting to misinterpret a non-significant test when results from
two situations are being compared, and statistical significance is obtained in one
situation but not the other. We return to this point in Section 13.2.2 when we discuss
interaction effects in ANOVA.

Example 10.7 Synchronous firing of V1 neurons Synchronous neural activity
is widely believed to play an important role in neural computation (e.g., Uhlhaas
et al. 2009) but its statistical assessment is subtle (see Harrison et al. 2013). Suppose
we have two spike trains, each represented as binary time series using some small
windows of time, as in Fig. 5.2, where a 1 signifies that a spike has occurred and a
0 that no spike has occurred. When both time series have a 1 in the same time bin
we say that the two neurons have fired synchronously. Under reasonable statistical
models, some synchronous spikes will occur by chance even if the two neurons are
firing independently. The statistical problem is to identify synchronous firing that
occurs more frequently than predicted by chance alone. Kass et al. (2011) provided
a statistical framework for evaluating synchronous spikes (see also Kelly and Kass
2012). They analyzed two pairs of neurons recorded from primary visual cortex (V1)
in an anesthetized monkey during visual exposure to moving grating stimuli. They
defined a quantity ξH that represented the proportional gain in synchronous firing
rate above that expected under independence (actually, conditional independence

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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given measured network activity). The null hypothetical value under independence
was H0 : ξH = 1, which they restated as H0 : log ξH = 0. For one pair of neurons
they reported log ξ̂H = .06 with SE = .15 giving a t-ratio of .39. Their conclusion
was that these data were consistent with H0. Here, they were not relying on the
significance test alone: a confidence interval would exclude substantial values of
log ξH . Specifically, an approximate 95 % confidence interval for log ξH based on
(7.8) is (−.24, .36) and when transformed to the ξH scale it becomes (.79,1.4),
which eliminates as highly unlikely excess synchronous firing rates of 40 % above
independence. (Here exp(−.24) = .79, exp(.36) = 1.4, and the 40 % figure comes
from the right-hand CI limit of 1.4.) The authors contrasted this pair of neurons with
a different pair, for which they obtained log ξ̂H = .82 with SE = .23 giving a t-ratio
of 3.57, which leads to an approximate 95 % confidence interval for ξH of (1.4, 3.6).

The physiological point was that distinct pairs of neurons in V1 may respond
quite differently with regard to synchronous spiking in excess of that produced by
network activity: the first pair produced synchronous spikes at roughly the rate they
would be produced under independence, while the second pair produced synchronous
spikes at roughly double the rate expected under independence (exp(.82) = 2.3, with
confidence interval (1.4, 3.6)). The statistical point is that the results of the signifi-
cance tests, alone, did not adequately convey what the data were able to show about
the excess synchronous firing rates in these neurons. Standard errors or confidence
intervals are also necessary. �

10.4.9 One-tailed tests are sometimes used.

We summarized the logic of p-values in Eq. (10.24), and the surrounding discussion,
taking qobs to represent the value of a generic statistic used to test a null hypothesis. In
nearly all of the special cases we have examined we have chosen qobs to be the absolute
value of some statistic, and then Q was the absolute value of the corresponding
random variable. For example, in testing H0 : μ = μ0 we used either qobs = |zobs|
or qobs = |tobs|. A different choice is to remove the absolute value. This version of
significance testing sometimes appears in the literature. It is called a one-sided test
and it corresponds to testing H0 against a one-sided alternative hypothesis, such as
HA : μ ≥ μ0. Let us discuss this by way of our most heavily-used example.

Example 1.4 (see p. 268) We previously posed the statistical problem of testing
H0: p = .5, which corresponds to saying that P.S. was guessing, and on p. 268 we
obtained the exact p-value p = .013. We might, instead, say that we are interested
only in the case in which P.S. might have chosen the non-burning house more often
than half the time. In other words, we might say that we care about the possibility
that her propensity to choose the non-burning house was p > .5 and, therefore, we
would pay attention only to data for which p̂ > .5. In this case we would replace
(10.13) with

p = P(Z ≥ zobs)

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_10


286 10 Models, Hypotheses, and Statistical Significance

which we compute (modifying the calculation on p. 268) as P(X ≥ 14) =
P(X ≤ 3) = .0064, where X ∼ B(17, .5). This new p-value is half the size of the
previous value, and thus would indicate stronger evidence against this null hypothesis
than suggested previously. �

This example introduces the standard dilemma of one-sided versus two-sided
testing. If one-sided testing is used, the p-value is cut in half and the evidence appears
stronger. On the other hand, the alternative hypothesis has been changed. Which
alternative hypothesis is more appropriate?

In order to use the one-sided hypothesis one must argue that a reverse result
would have been ignored by the data analyst. In Example 1.4, such a claim would
mean that if patient P.S. had consistently chosen the burning house, we would have
ignored the data. This seems implausible to us. In the extreme case, if P.S. always
chose the burning house, it might have been odd, but it surely would have provided
evidence that her brain perceived the flames on the left side of the visual field. Our
feeling is that the vast majority of cases are analogous to this example: the reverse
result would almost always be of some interest, and it is therefore almost always
preferable to use the two-sided test. Furthermore, the two-sided test is conservative
in the sense of providing double the p-value (it is less likely to lead, by chance alone,
to the conclusion that there is evidence against H0) and we regard this feature as
an advantage as well.13 If a one-sided test must be used in order to claim statistical
significance, the data are not conclusive and provide only weak evidence against the
null hypothesis.

13 Part of our reasoning comes from Bayesian calibration of significance tests, which is discussed
briefly in Section 10.4.5 and again in Section 16.3.4.
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Chapter 11
General Methods for Testing Hypotheses

In Chapter 10 we laid out the main ideas in assessing statistical significance. First,
there is a null hypothesis; second, there is a statistic that defines some deviation
away from a null model; third there is a p-value to judge the rarity of the observed
deviation under the null hypothesis. These are the three essential ingredients of a
statistical hypothesis test. We also discussed several aspects of the interpretation and
evaluation of statistical tests. While Chapter 10 provided the basic notions of testing,
it did so within a few simple settings. After presenting goodness-of-fit for data in
categories, we considered hypotheses involving restriction of a parameter to a single
value, equality of two proportions, and equality of two means. These hypotheses were
chosen partly because they occur very frequently, but also because the test statistic
in each case is highly intuitive. What happens when one is faced with a new problem
that does not fit one of these molds? How should the statistical test be defined?

In estimation, maximum likelihood plays a unifying role and helps solve new
problems: many familiar and intuitive estimators are actually maximum likelihood
estimators, ML estimation may be applied in many novel situations and, it turned
out, ML estimation was optimal for large samples. For testing problems there is an
analogous method: the likelihood ratio test. This test is also quite general; it has large-
sample optimality properties; and it produces as special cases familiar procedures
such as the t-test. Likelihood ratio tests are the subject of Section 11.1.

ML estimation is applicable to problems involving parametric specification of
statistical models. In Section 9.2.2 we discussed the parametric bootstrap, which may
be applied in conjunction with ML estimation and in Section 9.2.3 we showed how
the nonparametric bootstrap could be applied without the parametric specification in
the statistical model—thus, its name. Similarly, there is a nonparametric bootstrap
method of testing hypotheses. We discuss this, and the closely related permutation
tests, in Section 11.2.

The procedures in Chapter 10 and in Sections 11.1, 11.2 treat single, isolated
hypotheses. In practice one often faces many hypotheses, all of which need to be
tested. This creates what is known as the multiple testing problem, which we treat in
Section 11.3.
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11.1 Likelihood Ratio Tests

Where do statistical tests come from? Sometimes they are based on intuition.
A particular discrepancy measure may seem sensible as a way to capture the rel-
evant departure from H0. For instance, in the case of patient P.S. in Example 1.4 it
would seem reasonable to use a test based somehow on |p̂−p0|, and in Section 10.3.2
we suggested the ratio (θ̂−θ0)/SE(θ) could be used when H0 involves only a single,
scalar parameter, or a single component of a parameter vector, or a scalar function
of a parameter vector. What about hypotheses that involve multiple parameters? Just
as ML estimation is widely applicable to parametric estimation problems, the likeli-
hood ratio test may be used in parametric testing problems. In this section we review
the essential methods and results on the likelihood ratio test, but do not provide
many examples. A major source of applications is the body of methods associated
with generalized linear models, which provide important generalizations of linear
regression including the logistic regression model we presented in Example 5.5. We
discuss the way the likelihood ratio test is used with generalized linear models in
Chapter 14.

11.1.1 The likelihood ratio may be used to test H0 : θ = θ0.

The likelihood function assigns to alternative values of θ their plausibility in light of
the data L(θ). It can be used, analogously, when a particular value of θ is singled out
in the form of a null hypothesis H0 : θ = θ0. That is, we consider the value L(θ0)

and assess whether it is nearly the same as the maximal value L(θ̂). Here, θ could be
either a scalar or a vector. Suppose we have data x1, . . . , xn that are assumed to have
a joint pdf f (x1, . . . , xn|θ). We define the likelihood ratio test statistic to be

LRobs = f (x1, . . . , xn|θ0)

f (x1, . . . , xn|θ̂)
. (11.1)

Because the MLE maximizes the likelihood function, we have LRobs ≤ 1. If we apply
the same formula to a random sample X1, . . . , Xn, we get the theoretical version of
the likelihood ratio as the random variable

LR = f (X1, . . . , Xn|θ0)

f (X1, . . . , Xn|θ̂)
. (11.2)

We now define the test procedure.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Likelihood ratio test of H0 : θ = θ0. For a random sample X1, . . . , Xn with
joint pdf f (x1, . . . , xn|θ), the likelihood ratio test evaluates LRobs defined in
(11.1) and assigns the p-value

p = P(LR < LRobs|H0) (11.3)

where LR is defined in (11.2).

Note that it is equivalent to examine the log of the likelihood ratio: in (11.3) we
may take logs to get

p = P(log
f (X1, . . . , Xn|θ0)

f (X1, . . . , Xn|θ̂)
< log LRobs).

As when maximizing a likelihood function, taking logs generally simplifies the ex-
pression. In addition, the log likelihood ratio is often multiplied by−1 so that larger
values produce greater evidence against H0, i.e., we compute

p = P(− log
f (X1, . . . , Xn|θ0)

f (X1, . . . , Xn|θ̂)
≥ − log LRobs). (11.4)

Example 1.4 (continued from p. 268) Suppose X ∼ B(n, p) and we wish to test
H0 : p = p0. In the case of the data from P.S., we would have p0 = .5 and p̂ = x/n,
with n = 17 and x = 14. The pdf is

f (x|p) =
(

n

x

)
px(1− p)n−x

and the observed likelihood ratio statistic is

LRobs = px
0(1− p0)

n−x

p̂x(1− p̂)n−x

= 1

2n( x
n )x(1− x

n )n−x

= 1

2n( 14
17 )14(1− 14

17 )3
.

The negative log likelihood ratio becomes

− log LRobs = n log 2+ x log
x

n
+ (n− x) log(1− x

n
)

= 17 log 2+ 14 log
14

17
+ 3 log(1− 14

17
). �
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In Chapter 10 we described several methods of testing H0 in Example 1.4. The
statistic − log LRobs provides yet another approach. The conclusions reached are
consistent with each other and, for sufficiently large samples, the various methods
of testing H0 : p = .5 for the binomial parameter will give equivalent results. The
advantage of the likelihood ratio test is that it can be generalized and applied in
diverse problems. Furthermore, like ML estimation, it turns out to have an important
optimality property in large samples.

11.1.2 P-values for the likelihood ratio test of H0 : θ = θ0
may be obtained from the χ2 distribution
or by simulation.

How do we find p-values for the likelihood ratio test? One way is to use the following
convenient result.

Result Under certain conditions, for large samples, if θ is m-dimensional then
−2 log LR, defined in (11.2), is approximately distributed as χ2

m, so that an
approximation to the p-value in (11.3) may be obtained from the chi-squared
distribution with m degrees of freedom.

Example 1.4 (continued) Continuing from the calculation above, we obtain

−2 log LRobs = 2(17 log 2+ 14 log
14

17
+ 3 log(1− 14

17
)) = 7.72.

Here we have m = 1 degree of freedom for the chi-squared distribution. Writ-
ing Y ∼ χ2

1 we find P(Y ≥ 7.72) = .0055, i.e., we get p = .0055. This is
only slightly different than the value p = .0076 obtained on p. 257 from the χ2

statistic. �

We have now used several alternative methods to test H0 in Example 1.4. The
chi-squared statistic and χ2

1 distribution gave p = .0076. The likelihood ratio test
and χ2

1 distribution gave p = .0055. The exact calculation on p. 267 gave p = .013.
The discrepancies among these p-values are not very consequential for conclusions
in this case. On the other hand, the numbers are different. This is due to the relatively
small sample size. When conclusions depend on which test is used or the method of
computing the p-value, the main message should be that the data are not decisive.
When one must make a choice as to which p-value to report (in a publication), it
is generally preferable to use an exact calculation of the p-value. The computation
may be done by simulation. Specifically, under the assumption that H0 holds, we
generate a large number G of data sets and for each compute the test statistic—here,
the likelihood ratio statistic—then find the proportion of such simulated test statistic
that exceeds to observed value. We illustrate by returning again to the blindsight
example.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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Example 1.4 (continued) For the responses of patient P.S. it is actually very easy
to compute the exact p-value for the likelihood ratio. By symmetry about p = .5,
it is apparent that −2 log LR ≥ −2 log LRobs when X ≤ 3 or X ≥ 14. Thus, we
would simply find P(X ≤ 3 or X ≥ 14) under the null-hypothetical assumption
X ∼ B(17, .5). We computed this previously by simulation on p. 267, and we also
noted on p. 268 that simulation is unnecessary in this simple example. We found
p = .013. Let us now write out the steps in the simulation based on the likelihood
ratio statistic, because these would be followed in more general contexts.

We use x[g] to denote element g of the vector x and we write the sum of the
elements as sum(x), i.e.,

sum(x) =
G∑

g=1

x[g].

1. Define a function LLR(x) that evaluates the loglikelihood ratio statistic. Here

LLR(x) = 17 log(2)+ x log(
x

17
)+ (17− x) log(

17− x

17
).

2. Evaluate 2LLRobs using LLRobs = LLR(14). Here 2LLRobs = 7.72.
3. Make x a vector of G observations from the null distribution. Here we use G =

100,000 observations from B(17, .5).
4. If there are possible values of the data that make the loglikelihood ratio become

undefined (because the argument of a log would become zero), fix this. Here the
log likelihood ratio is not defined when x = 0 or x = 17 so: if x[g] = 0 set
x[g] = 1; if x[g] = 17 set x[g] = 16.

5. Set N equal to the number of values g for which 2LLR(x[g]) ≥ 2LLRobs. This may
be accomplished by creating a vector y of length G; if 2LLR(x[g]) ≥ 2LLRobs
set y[g] = 1; otherwise set y[g] = 0; then N = sum(y).
Here 2LLRobs = 7.72.

A detail: The value 7.72 was actually rounded down slightly, so
that we are computing P(X ≤ 3 or X ≥ 14) (rather than P(X <

3 or X > 14)). We would rather compute p = P(X ≤ 3 or X ≥
14) because it finds the probability of observing a value at least
as large as LLRobs instead of larger than LLRobs, and is therefore
more conservative in the sense of producing a larger p-value.

6. Compute p = N
G . �

11.1.3 The likelihood ratio test of H0: (ω,θ) = (ω,θ0)

plugs in the MLE of ω, obtained under H0.

We now consider the case in which the parameter vector may be decomposed into two
sub-vectors ω and θ, having respective dimensions m1 and m2. For example, in linear
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regression we would have a parameter vector (β0,β1) and we might decompose it as
ω = β0 and θ = β2. We consider null hypotheses of the form H0 : θ = θ0 which now
becomes a short-hand for H0 : (ω, θ) = (ω, θ0). In linear regression, for example, we
might consider whether there is a non-zero slope by introducing H0 : β1 = 0. This is
short for H0 : (β0,β1) = (β0, 0), which means that H0 does not put any restriction
on ω = β0. A wide variety of statistical models that are submodels of larger models
may be written in this form. (See for example, Kass and Vos (1997, Theorem 2.3.2).)
When we focus on a sub-vector θ of a larger vector (ω, θ) the parameter vector ω is
called a nuisance parameter.

To apply the likelihood ratio test, we must recognize that ω remains a free pa-
rameter under H0. To evaluate the likelihood ratio we must pick a particular value
of ω. We do so by maximizing the likelihood under the null-hypothetical restriction
θ = θ0. That is, we maximize L(ω, θ0) over ω. Let us denote the solution by ω̂0. In
general ω̂0 may not equal the global MLE ω̂ (though in some particular cases they
will be equal). We thus define the likelihood ratio test statistic as

LRobs = f (x1, . . . , xn|ω̂0, θ0)

f (x1, . . . , xn|ω̂, θ̂)
. (11.5)

For a sample X1, . . . , Xn with joint pdf f (x1, . . . , xn|ω, θ), the theoretical likelihood
ratio becomes

LR = f (X1, . . . , Xn|ω̂0, θ0)

f (X1, . . . , Xn|ω̂, θ̂)
(11.6)

and from this we can define the testing procedure.

Likelihood ratio test of H0 : (ω, θ) = (ω, θ0). For a sample X1, . . . , Xn with
joint pdf f (x1, . . . , xn|ω, θ), the likelihood ratio test evaluates LRobs in (11.5)
and assigns the p-value

p = P(LR < LRobs|H0) (11.7)

where LR is defined in (11.6).

The nuisance parameter ω presents a substantial complication for calculation of
an exact p-value by computer simulation. In principle, to compute an explicit p-value,
we would not only have to assume θ = θ0 (which we do to satisfy H0) but we would
also have to assume some value for ω: to obtain

p = P(
f (X1, . . . , Xn|ω̂0, θ0)

f (X1, . . . , Xn|ω̂, θ̂)
≥ LRobs)

we must have an explicit probability distribution. Put differently, if we were to use
computer simulation to find the exact p-value, we would have to know both the
parameters ω, θ in order to do the simulation.
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This problem is insoluble without introducing some further restriction or princi-
ple.1 Luckily, there are two good approximate solutions. Here is the first.

Result Under certain conditions, for large samples, if θ is a vector of length m
then −2 log LR, defined in (11.6), has an approximate χ2

m distribution, so that
an approximation to the p-value in (11.7) may be obtained from the chi-squared
distribution with m degrees of freedom.

The second method is to useω = ω̂0 as a “plug-in” value, under which to compute
the p-value by simulation. The procedure is to set (ω, θ) = (ω̂0, θ0), generate many
sets of pseudo-data (X(g)

1 , . . . , X(g)
n ), and then find the proportion of them for which

LR(g) < LRobs. This constitutes a parametric bootstrap likelihood ratio test.

11.1.4 The likelihood ratio test reproduces, exactly
or approximately, many commonly-used
significance tests.

The likelihood ratio test may be used to derive the t test and other standard tests used
in common situations, including the F test in regression (Chapter 12) and analysis of
variance (Chapter 13). For testing independence of two traits (as in Section 10.1.4),
in large samples the likelihood ratio test is approximately equivalent to the χ2 test
of independence, meaning that in large samples the likelihood ratio test gives very
nearly the same p-value as the χ2 test of independence.

11.1.5 The likelihood ratio test is optimal for simple hypotheses.

Let us consider the simplest form of statistical hypothesis testing where, under both
H0 and HA there is a distribution that is completely determined, with no free parame-
ters. Specifically, we take H0: X ∼ f (x) and HA : X ∼ g(x) and consider the problem
of testing H0 versus the alternative HA. This is often called the case of “simple versus
simple” hypotheses, because a simple hypothesis is one with no free parameters. If
T is a test statistic let us write its level and power (defined in Sections 10.4.1 and
10.4.3) as αT and 1− βT .

The likelihood ratio may be written

LRobs(x) = f (x)

g(x)

1 One idea is to find the “worst case” p-value (the largest) among all possible values of ω. However,
this often remains intractable, except in large samples.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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and its theoretical counterpart becomes

LR(X) = f (X)

g(X)
.

Note that the likelihood ratio test will reject H0 when LRobs(x) is sufficiently small
(which is equivalent to − log LR(x) being sufficiently large). In other words, the
likelihood ratio test will reject H0 when LR(x) < c for some suitable number c. The
level is then

αLR = P(LR(X) < c|H0)

and the power is
1− βLR = P(LR(X) < c|HA).

The Neyman-Pearson Lemma Letα be a positive number less than 1 and let c = cα
be chosen so that

αLR = α.

Let T(X) be another test statistic having level αT such that

αT ≤ α.

Then the power of these two tests satisfies

1− βLR ≥ 1− βT .

Proof: The argument is very similar to that used in proving the theorem on optimality
of Bayes classifiers in Section 4.3.4. �

In words, the Neyman-Pearson lemma says that the likelihood ratio test is the
optimal test, in the sense of power, for testing H0 versus HA. More generally, likeli-
hood ratio tests may be shown to be optimal for large samples (see Section 5.4.4 of
Bickel and Doksum (2001), and Section 16.6 of van der Vaart 1998).

11.1.6 To evaluate alternative non-nested models
the likelihood ratio statistic may be adjusted
for parameter dimensionality.

The likelihood ratio LRobs in (11.5) compared a statistical model having parameter
vector (ω, θ) with a reduced form of the model in which the parameter was (ω, θ0).
In this case, the statistical model based on (ω, θ0) is said to be nested within the
larger model based on (ω, θ). For instance, the model

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Yi ∼ N(β0,σ
2),

independently, for i = 1, . . . , n is nested within the simple linear regression model

Yi ∼ N(β0 + β1xi,σ
2),

independently, for i = 1, . . . , n. Note that LRobs satisfies LRobs ≤ 1: if

L(ω̂, θ̂) = max
(ω,θ)

L(ω, θ)

and
L(ω̂0, θ0) = max

ω
L(ω, θ0),

as in (11.5), then, by definition of the maximum, L(ω̂, θ̂) ≥ L(ω, θ) for any other
value of (ω, θ), including (ω̂0, θ0). Therefore, we have

L(ω̂, θ̂) ≥ L(ω̂0, θ0). (11.8)

The likelihood ratio test accounts for this necessity, and judges the degree to which
L(ω̂, θ̂) exceeds L(ω̂0, θ0) according to (11.7).

When two models are to be compared and neither is a reduced special case of the
other the models are called non-nested. For non-nested models the likelihood ratio test
no longer applies. How should non-nested models be compared? If the two models
have the same parameter dimensionality it is possible to compare their maximized
loglikelihood functions. However, because of (11.8), when non-nested models of
different dimensionality are to be compared, some adjustment for dimensionality
of the parameter vectors must be made. The most common methods introduce a
criterion that starts with the maximized loglikelihood and then subtracts a penalty
for dimensionality. By convention, to match the usual form of the loglikelihood ratio
statistic, these criteria are often defined to include a multiplier of −2 so that they
may be written as

criterion = −2 ·max loglikelihood+ penalty.

The most widely used criteria are the Akaike information criterion, or AIC (Akaike
1974), and the Bayesian information criterion, or BIC (Schwarz 1978), for which
the penalties are

AIC penalty = 2m

where m is the number of parameters in the model, and

BIC penalty = m log n,
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where n is the sample size. Thus, for a random vector X following a model M having
an m-dimensional parameter vector θ and pdf f (x|θ) we have

AIC(M) = −2 log f (x|θ̂)+ 2m

and
BIC(M) = −2 log f (x|θ̂)+ m log n.

Many variants on these two model selection criteria have also been proposed; they
begin with the same idea, and have more or less the same general form. Note that
according to the definition we have just given of AIC(M) and BIC(M), smaller
values indicate better models. Alternative equivalent forms, such as that obtained
by omitting the multiplier −2 (so that larger values indicate better models), are also
used frequently in the literature.

Example 11.1 Interspike interval distribution in resting retinalganglion cells In
Section 5.4.6 we introduced the inverse Gaussian distribution as the distribution of
interspike intervals for a theoretical integrate-and-fire neuron. Brown et al. (2003),
following Iyengar and Liao (1997), analyzed interspike intervals from a resting retinal
ganglion neuron recorded in vitro, and compared the fits of exponential, gamma,
and inverse Gaussian distributions. They obtained AIC = 8,598, 8,567, 8,174 for
these three models, respectively, indicating a much better fit for the inverse Gaussian
distribution than for either of the other distributions. Plots of fitted pdfs overlaid on
the interspike interval histogram were consistent with this evaluation. �

The motivation for AIC begins with the Kullback-Liebler divergence defined on
p. 92. Suppose we let f (x) be the true pdf and we wish to obtain a model with
pdf g(x) that is a close as possible to f (x) in the sense of minimizing DKL(f , g).
When we minimize over g(x) we are maximizing Ef (log(g(X))). Consider the spe-
cial case of trying to determine the value of a single scalar parameter θ, where the
true value is θ0, based on data x. Then we are trying to find the closest pdf g(x|θ) to
f (x) = g(x|θ0). It is not too hard to show that the expectation Ef (log g(X|θ)) is max-
imized by θ = θ0. Because θ0 is unknown we might use the loglikelihood log g(x|θ)
as an estimate of Ef (log g(X|θ), and thus might maximize to get the maximized

loglikelihood log g(x|θ̂). But this is, in general, a biased estimate of Ef (log g(X|θ).
Akaike proposed to subtract off an estimate of the bias, and then showed that the
bias is, in general, approximately equal to the dimensionality of θ. (See Konishi and
Kitagawa (2007) for full details.) Multiplying the maximized loglikelihood by −2
gives the form of AIC above.

BIC begins, instead, with the Bayesian formulation of choosing between models
M1 and M2 based on posterior probability:

P(M1|x) = f1(x|M1)P(M1)

f1(x|M1)P(M1)+ f2(x|M2)P(M2)
(11.9)

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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where fi(x|Mi) is the pdf under model Mi and P(Mi) is its prior probability, for
i = 1, 2. Equation (11.9) follows from an application of Bayes’ Theorem, as in
(4.38), and also (16.62). To eliminate the prior probabilities one may use the Bayes
factor, which is the ratio of posterior odds to prior odds:

BF12 = P(M1|x)
P(M2|x) ÷

P(M1)

P(M2)
(11.10)

(see Section 16.3) and, because

P(M1|x)
P(M2|x) =

f1(x|M1)P(M1)

f2(x|M2)P(M2)
,

we have

BF12 = f1(x|M1)

f2(x|M2)
(11.11)

(a variation on this appears again in Eq. (16.64)). It may be shown that asymptotic
approximation of log BF, as n→∞, leads to the form for BIC given above. Specif-
ically, writing BIC12 = BIC(M2)−BIC(M1) (so that positive values of BIC12 favor
model M1) we have

BIC12 − log BF12

log BF12

P→ 0. (11.12)

See Kass and Raftery (1995) and references therein. From a theoretical perspective,
BIC is consistent in the sense that, if we assume one of the models is correct (in the
sense of generating the data) then, for sufficiently large samples, the probability of
BIC choosing the correct model will get arbitrarily close to 1.

In practice, BIC is conservative compared to AIC in that it imposes a larger
penalty for dimensionality. Thus, BIC is used, rather than AIC, when there is a
strong preference for models of lower dimensionality.

11.2 Permutation and Bootstrap Tests

11.2.1 Permutation tests consider all possible
permutations of the data that would be consistent
with the null hypothesis.

The idea behind permutation tests is illustrated by a famous example introduced
by Fisher in his book Design of Experiments. There was, apparently, a lady who
claimed to be able to tell the difference between tea with milk added after the tea
was poured, and tea with milk added before the tea was poured. Fisher asked how
one might test this claim experimentally. His discussion emphasized the importance

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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of randomly allocating the two treatments (milk second versus milk first) to many
cups, without the subject’s knowledge, and then asking for a judgment on each. (See
Section 13.4 for discussion of randomization.) He also considered the question of
sample size, and the computation of a p-value. Fisher suggested using eight cups
of tea, four of which would have the tea put in first and four of which would have
the milk put in first. The lady had to identify tea first or milk first for each of the
eight cups. The null hypothesis was that every possible combination of responses
would be equally likely, which corresponds to having no ability to tell the difference.
There are

(8
4

) = 8!
4!4! = 70 ways to select four tea-first cups from the eight. Therefore,

considering all these possible permutations, if the lady were randomly guessing, there
would be a 1/70 chance she would correctly identify all cups of tea as either tea first or
milk first. Thus, Fisher pointed out, in the event that she correctly identified milk first
or tea first for all eight cups2 there would be evidence against H0 with p = 1

70 = .014.

Example 7.2 (continued, see p. 265) We previously applied two-sample t-test to
the data displayed in Fig. 7.3 obtained tobs = −3.19 on 58 degrees of freedom, giving
p = .0023. We now apply a permutation test analogous to that for the lady tasting
tea.

In this data set there are two groups of 30 subjects. The permutation test considers
all of the many ways that 60 subjects, with their learning results, could have been
split into two groups of 30 and then asks, out of all those many ways of permuting the
subjects, how many of them would have led to results as striking as the one actually
observed? The number of ways of splitting 60 individuals into two groups of 30 is

60!
30!30! ≈ 1.18× 1017.

In other words, there are 1017 different samples of pseudo-data that would be obtained
by permuting the group membership among the 60 subject values. The exact two-
sample permutation test would, in principle, examine all of these 1017 samples and
ask how many of them would produce a t-statistic at least as large in magnitude
as tobs = −3.19. This computation is possible, but it is a bit complicated and we
will skip it here. However, a variant on the idea is easy and will lead us naturally to
the bootstrap procedure. Instead of examining all 1017 permutations, we can sample
from this distribution. In statistical software there is typically a function that does
this sampling by providing random permutations. For example, a sample from the
values 1, 2, 3, 4, 5 might be 1, 5, 3, 2, 4, which is a permutation of the original values.
To get a relevant random permutation of the data we therefore sample the 60 data
values and assign the first 30 values to the first group (SSSS) and the last 30 values
to the second group (SSST). We then compute the t-statistic for this permuted data
set. If we repeat the procedure a large number of times (say, 10,000 times) we can
thereby generate the distribution of the t-statistic under the permutations. �

2 Fisher also pointed out that with six cups there would be only 20 permutations and thus one would
at best obtain p = .05; he considered this p-value too large to be useful.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Illustration: Permutation test based on two-sample t statistic To be clear about
the procedure in Example 7.2, above, let us define the t-statistic as a function of
data vectors x and y in several steps. We write the length of a vector x as length(x),
the mean of its components as mean(x), the sample variance of its components as
var(x), and we make the following definitions:

df = length(x)+ length(y)− 2

vpooled(x, y) = 1

df
((length(x)− 1)var(x)+ (length(y)− 1)var(y)) ,

spooled(x, y) =
√

vpooled(x, y)

and

t(x, y) = mean(x)− mean(y)

spooled(x, y)
√

1
length(x) + 1

length(y)

. (11.13)

We then use the following algorithm.

1. For i = 1 to G:
Generate U(g)

1 , . . . , U(g)
n1+n2

by permuting the components of the data vector
(x[1], . . . , x[n1], y[1], . . . , y[n2]).
Set x(g) = (U(g)

1 , . . . , U(g)
n1 ) and y(g) = (U(g)

n1+1, . . . , U(g)
n1+n2

) .

Compute t(g) = t(x(g), y(g)).
2. Set N equal to the number of values g for which |t(g)| ≥ |tobs|.
3. Compute p = N

G .

The result is a permutation-based p-value for the t-statistic defined in (10.19). The t-
test defined in (10.19) is formulated as a test of H0 : μ1 = μ2 under normality using
(10.21), or via large-sample approximation using (10.20). The permutation test is
more general in the sense that the p-value is valid even if the data are not normally
distributed, and even if the CLT fails to produce approximately-normal means for the
two samples. Furthermore, we may replace the t-statistic based on (10.19), which
uses the pooled estimate of variance under the assumption σ1 = σ2, with (10.22). In
the algorithm above we simply re-define t(x, y) as

t(x, y) = mean(x)− mean(y)√
var(x)

length(x) + var(y)
length(y)

. (11.14)

In either case, for large samples there is generally very little difference between the
p-values based on permutations and those based on the t or normal distributions.

The permutation test creates pseudo-data for which the distributions of the two
samples are the same; in this sense we may write the null hypothesis as H0 : FX = FY ,
which is much more restrictive than H0 : μ1 = μ2 and, therefore, in principle much

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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easier to reject. However, the t-statistic itself will be strongly sensitive to differ-
ences between means, and will tend to be only weakly sensitive to other distinctions
between FX and FY , such as differences in the variances. The permutation test based
on the t-statistic is therefore generally considered to be a reliable two-sample testing
procedure when the main interest is H0 : μ1 = μ2. �

Example 7.2 (continued) Applying the algorithm above with G = 10,000 using
(11.13) we obtained p = .0019. Note that here the simulation standard error is
SE = √(.0019)(.9981)/10,000 = .00044. Applying the version of the algorithm
based on (11.14) we found p = .0026. Clearly the conclusions are the same, and
they are the same as those based on the ordinary t-test. �

Permutation tests can involve very complicated test procedures. We give an
example in Section 11.3.2 on p. 306.

11.2.2 The bootstrap samples with replacement.

Suppose we have a vector x whose components are data values. A permutation of the
components of x is a special case of sampling from that data set where (i) the sample
size is equal to the length of x and (ii) the sampling is done without replacement,
meaning that once a data value is selected it can not be selected again. An alternative
type of sampling is with replacement. In this form, if n is the length of x, then one
component of x is drawn at random repeatedly, with all components having equal
probabilities of being drawn on all occasions, until a total n numbers are drawn. In
this case, there may be repetitions of values. For example, when x = (1, 2, 3, 4, 5) is
sampled with replacement we might obtain 3, 4, 1, 4, 2. Bootstrap tests are essentially
the same as permutation tests, except that the sampling is done with replacement.

Illustration: Bootstrap test based on two-sample t statistic Using the same
notation as in the illustration of the permutation test on p. 299, the bootstrap test
is as follows:

1. For i = 1 to G:
Generate U(g)

1 , . . . , U(g)
n1+n2

by sampling the components of the data vector
(x[1], . . . , x[n1], y[1], . . . , y[n2]) with replacement.
Set x(g) = (U(g)

1 , . . . , U(g)
n1 ) and y(g) = (U(g)

n1+1, . . . , U(g)
n1+n2

) .

Compute t(g) = t(x(g), y(g)).

2. Set N equal to the number of values g for which |t(g)| ≥ tobs.
3. Compute p = N

G .

The only distinction in software implementation (e.g., in Matlab) between the boot-
strap and permutation tests would be that the line involving sampling without
replacement is changed to sampling with replacement. �
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Example 7.2 (continued from p. 300) Applying the bootstrap procedure based on
the statistic (11.14) we obtained p = .0022. �

11.3 Multiple Tests

11.3.1 When multiple independent data sets are used to test
the same hypothesis, the p-values are easily combined.

Sometimes results for each of several subjects, or several experimental units (such as
neurons), are equivocal yet all lean in the same direction. Intuitively, such consistency
seems to provide additional evidence of a possible effect. Fisher (1925) suggested a
simple method of combining multiple independent p-values.

Example 11.2 Precisely repeated intracellular synaptic patterns It has been
suggested that precisely timed patterns of synchronous neural activity may propagate
across a cortical circuit and, indeed, that such propagation is a crucial mode of
information transmission in the brain (see Abeles 2009). Experimental evidence
aimed at supporting this idea, which is controversial, was provided by Ikegaya et al.
(2004), who recorded spontaneous intracellular activity in vitro from slices of mouse
primary visual cortex and in vivo from cat primary visual cortex. Ikegaya et al.
(2008) conducted additional experiments and reanalyzed the original data. The in
vitro recordings produced relatively long traces of post-synaptic currents which the
authors examined for repeated precise patterns. To judge whether observed patterns
might be explained by chance, in one of their analyses they performed a kind of
permutation test. Because the computations were very time consuming they used
only 50 permutations and, when they found their observed test statistic to exceed
the values obtained from all 50 sets of pseudo-data they thus achieved statistical
significance p < .02. This was repeated across 5 neurons. In other words, for each of
5 neurons they achieved p < .02, which would seem to be strong statistical evidence
that their null hypothesis should be rejected.3 �

Suppose we have p-values from n independent tests. Fisher observed that under
H0 the p-value for test i would be a uniformly distributed random variable Pi, with
i = 1, . . . , n (see p. 273) and, therefore, the random variable

X = −2
n∑

i=1

log Pi (11.15)

3 Some care is required to state correctly the null hypothesis, but roughly speaking it corresponds
to time intervals between post-synaptic currents being i.i.d., which they would not be if there were
repeated patterns.



302 11 General Methods for Testing Hypotheses

would follow the distribution
X ∼ χ2

ν (11.16)

where ν = 2n.

Details: Straightforward calculation using the change of variables
formula (the theorem on p. 62) shows that if W ∼ U(0, 1) then
− log W ∼ Exp(1). It follows that

−2 log W ∼ Exp(
1

2
)

and the sum of n such independent random variables is distributed as
Gamma(n, 1

2 ), which is the same as χ2
ν with ν = 2n. �

Thus, we may combine the observed p-values p1, . . . , pn by writing

xobs = −2
n∑

i=1

log pi (11.17)

and then, based on (11.15) and (11.16) we obtain

pcombined = P(Y > xobs) (11.18)

where Y ∼ χ2
ν with ν = 2n.

Example 11.2 (continued) To combine the 5 p-values of .02 we put pi = .02 for
i = 1, 2, 3, 4, 5, in (11.17) to get

xobs = (−2)(5) log(.02) = 39.

From (11.18) we use the χ2
10 distribution to obtain

pcombined = 2.5× 10−5.

Because the authors reported p < .02 for all five neurons, the combined result is
p < 2.5× 10−5, which is very strong evidence against the null hypothesis. �

11.3.2 When multiple hypotheses are considered, statistical
significance should be adjusted.

In Section 10.4 we tried to clarify the interpretation of significance tests. The whole
discussion concerned the interpretation of a test of a single hypothesis. In many
situations, however, multiple hypotheses must be considered within a single analysis.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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Example 11.3 Adaptation in fMRI activity among autistic and control subjects
Autism is characterized by difficulty in social interaction and communication. One
proposal is that autism may involve a defect in the mirror neuron system, which is
active in response to observation of activity by other subjects (thus the idea that an
individual subject’s brain may “mirror” the activity of the other subject). Several
studies found the human mirror system to contain subpopulations of neurons that
adapt when hand movements are observed or executed repeatedly.4 Specifically,
fMRI responses to observed or executed movements decreased when the movement
occurred for a second time. Dinstein et al. (2010) studied brain response adaptation
using fMRI, and found that adaptation occurred among autistic subjects as well as
controls across multiple regions of interest. The authors considered this to be evidence
against mirror system dysfunction in autism.

A crucial step in their argument involved the definition of each region of inter-
est (ROI). For this they combined anatomical and functional characterizations: for
each ROI they included every voxel that was both (i) located within 15 mm of an
anatomically-defined region and (ii) significantly active based on a t-test of experi-
mental condition versus baseline. Across their ROIs, however, there were thousands
of voxels to be examined. In other words, the authors had to perform thousands of
tests, of thousands of null hypotheses. This is very common in fMRI studies. �

To see that multiple tests require an additional calculation consider what happens
when 100 tests are made. It might be tempting to declare any of the tests significant
when p < .05. However, if each of the 100 null hypotheses were true, then we
would expect about (.05)(100) = 5 of the p-values to satisfy p < .05, indicating
statistical significance. Thus, we would expect several such tests (about 5) to yield
spurious (false) results of evidence against the null. An additional calculation makes
the situation even more worrisome. Let us suppose that we have 100 random variables
Ti representing test statistics for null hypotheses H0,i with5

P(|Ti| > cα|H0,i) = α. (11.19)

This implies
P(|Ti| ≤ cα|H0,i) = 1− α

for i = 1, 2, . . . , 100. If all the tests are independent then we have

P(|Ti| ≤ cα for all i|H0,i for all i) = (1− α)100

and, therefore,

4 This is important to the logic of the mirror neuron argument. See Dinstein (2008).
5 We use the absolute value form |Ti| > cα for consistency with the two-sided tests emphasized in
Chapter 10 but the logic is the same for all significance tests.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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P(|Ti| > cα for at least one i|H0,ifor alli) = 1− P(|Ti| < cα for all i|H0,i for all i)

= 1− (1− α)100. (11.20)

If we set α = .05 we have

P(|Ti| > cα for at least one i|H0,i for all i) = 1− .95100 = .994.

In other words, there is more than a 99 % chance of obtaining at least one spurious
result out of 100. Clearly there must be some re-calibration of significance in order
to guard against misleading findings.

One way to re-calibrate is to consider the version of (11.20) that applies to n tests,

P(|Ti| > cα for at least one i|H0,i for all i) = 1− (1− α)n (11.21)

and change the criterion cα to some value c such that

P(|Ti| > c for at least one i|H0,i for all i) ≤ α. (11.22)

In this case we say that the family-wise error rate for the collection (family) of n
tests is at most α. Let us refer to cα in (11.19) and (11.21) as the nominal criterion
for each test. The nominal criterion is the cutoff value we would use for any one test
in isolation. We call the criterion c in (11.22) the family-wise criterion. There is a
very simple way of choosing the family-wise criterion in order to satisfy (11.22).

Bonferroni Correction To test n hypotheses H0,i, i = 1, 2, . . . , n with family-
wise error rate at most α, as in (11.22), we may set

c = cα/n

where cα/n is the nominal criterion for each test.

For example, if we wish to test 5 hypotheses with family-wise error rate α = .05
we calculate .05/5 = .01 and use the criterion that each of the 5 tests must be
significant with p < .01. This ensures that we would find at least one spuriously
significant test no more than 5 % of the time. In the case of n two-sided t-tests, the
Bonferroni correction is to use the criterion tν(1− .025/n) and declare a particular
test significant if |Tobs| > tν(1− .025/n).

The Bonferroni correction is justified by the following inequality. Let Ai represent
the event that the ith test is declared significant, where i = 1, 2, . . . , n. If we examine
3 tests, then n = 3 and P(A1∪A2 ∪A3) is the probability that at least one of the tests
is significant. For n tests P(A1 ∪ A2 ∪ · · · ∪ An) is the probability that at least one
test is significant.
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Theorem: Bonferroni inequality For events A1, A2, . . . , An we have that

P(A1 ∪ A2 ∪ · · · ∪ An) ≤ P(A1)+ P(A2)+ · · · + P(An). (11.23)

Proof: Recall that for two events A and B we have

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B). (11.24)

This implies
P(A ∪ B) ≤ P(A)+ P(B). (11.25)

Now consider three events C, D, E. Applying the formula (11.24) with A = C ∪ D
and B = E we get

P(C ∪ D ∪ E) = P(C ∪ D)+ P(E)− P((C ∪ D) ∩ E)

and applying (11.24) to the right-hand side with A = C and B = D we obtain

P(C ∪ D ∪ E) = P(C)+ P(D)− P(C ∩ D)+ P(E)− P((C ∪ D) ∩ E)

which gives
P(C ∪ D ∪ E) ≤ P(C)+ P(D)+ P(E). (11.26)

The inequalities (11.25) and (11.26) are examples of the Bonferroni inequality. We
can continue the same argument to obtain (11.23). �

The Bonferroni correction is easy to apply, but it is usually quite conservative in the
sense that it tends to produce relatively few statistically significant tests. This has led
to development of many other ways to control the family-wise error rate, especially
in the context of analysis of variance, which we comment on in Section 13.1.7. A
different idea is to try to control the proportion of spuriously significant results,
which is known as theFalse Discovery Rate (FDR),

FDR = number of spuriously significant tests

total number of significant tests
. (11.27)

Here, the spuriously significant tests represent “false discoveries.” In practice one
does not know whether a particular H0 is true or false, so one also does not know
whether a particular statistically significant test is a false discovery (because its H0
is true) or a true discovery (because its H0 is false). Therefore, the numerator and
denominator in (11.27) are not known. However, under certain general conditions it
turns out to be possible to control the expected false discovery rate. We will use the
letter q to represent the desired false discovery rate, such as q = .05.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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FDR algorithm

1. Perform n tests using statistics Ti, for i = 1, . . . , n, and obtain n p-values.
2. Put the p-values in ascending order p(1), p(2), . . . , p(n) (so p(1) is the smallest

p-value) and let T(j) be the test having p-value p(j).
3. Let r be the largest value of j such that

p(j) ≤ jq

n
.

4. Consider the tests T(1), T(2), . . . , T(r) to be significant with expected false
discovery rate less than q.

The FDR procedure is justified by the following inequality (see Benjamini and
Yekutieli 2001 and Genovese et al. 2002).

FDR inequality Under certain conditions, when tests are declared significant
using the FDR algorithm we have

E(FDR) ≤ q.

Example 11.3 (continued) To define their regions of interest, Dinstein et al. (2010)
had to select functionally active voxels based on thousands of t tests. For this purpose
they used FDR, setting the rate at q = .05. �

Yet another strategy for grappling with multiple hypotheses is available in some
repeated-trial contexts. It is illustrated in Example 4.7.

Example 4.7 (continued from p. 100) Figure 4.4 displayed decoding accuracy
based on MEG sensor recordings in an experiment on overt and imagined wrist move-
ment. In that work, and in MEG studies generally, it is also of interest to find the brain
source locations of such sensor observations. This is called the source localization
problem (see Example 12.9). One issue is that large numbers of possible sources,
typically thousands, are examined and there is the potential for false discoveries.
Xu et al. (2011) described a method of finding regions of brain activity following
the application of a standard source localization algorithm, and they applied a per-
mutation test to guard against spurious results. In their scheme the sensor data from
a single subject formed a 3-way array with dimensions R × M × T , where R was
the number of repeated trials, M was the number of sensor signals, and T was the
number of time points. A source localization algorithm produced an N × T array of
source signals, where N was the number of sources. They then defined a collection
of N ×T likelihood ratio statistics aimed at identifying sources that contained direc-
tional hand movement information; these likelihood ratio statistics were thresholded
and clustered into spatio-temporal regions that could represent important sources of
activity. The finished product was nine spatial-temporal regions having directional
hand movement information from a single subject. This was a complicated procedure

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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involving several distinct algorithms. To determine a p-value for the set of regions
Xu et al. performed 100,000 permutations of the trials6 and for each resulting set
of pseudo-data they ran the the entire procedure. They then asked how many results
based on pseudo-data were as extreme as those obtained from the data. This allowed
them to report p < 10−5 for the set of activity regions obtained from the data, which
is very strong evidence that the activity regions were real as opposed to representing
statistically spurious7 results. The key idea here is that a p-value may be obtained for
a procedure that searches across many spatial-temporal locations, corresponding to
many null hypotheses of no directionally-related activity, by evaluating the procedure
on each set of pseudo-data generated by a permutation test. �

There is a large literature on testing multiple hypotheses. See, for instance, Gordon
et al. (2007) and the references therein.

6 The permutations were done in source space; see Xu et al. (2011).
7 The null hypothesis was that for every brain source the theoretical mean activities in all movement
directions were equal.



Chapter 12
Linear Regression

Regression is the central method in the analysis of neural data. This is partly because,
in all its guises, it is the most widely applied technique. But it also played a crucial
historical role1 in the development of statistical thinking, and continues to form a
core conceptual foundation for a great deal of statistical analysis. We introduced
linear regression in Section 1.2.1 (on p. 10) by placing it in the context of curve-
fitting, reviewing the method of least squares, and providing an explicit statement of
the linear regression model. This enabled us to use linear regression as a concrete
example of a statistical model, so that we could emphasize a few general points,
including the role of models in expressing knowledge and uncertainty via inductive
reasoning. The linear regression model is important not only because many noisy
relationships are adequately described as linear, but also—as we tried to explain in
Section 1.2.1—because the framework gives us a way of thinking about relation-
ships between measured variables. For this reason, we began with the more general
regression model in Eq. (1.2), i.e.,

Yi = f (xi)+ εi, (12.1)

and only later, in Eq. (1.4), specified that f (x) is taken to be linear, i.e.,

f (x) = β0 + β1x. (12.2)

Equation (1.2), repeated here as (12.1), gave substance to the diagram in Eq. (1.1),
i.e.,

Y ←− X. (12.3)

To incorporate multiple explanatory variables we replace f (x) in (12.1) with
f (x1, . . . , xp), and to extend beyond the additive form of noise in (12.1) we replace
the diagram in (12.3) with

1 See the appendix of Brown and Kass (2009).
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Y ←−
{

noise
f (x1, . . . , xp).

(12.4)

This diagram is supposed to indicate a variety of generalizations of linear regression
which, together, form the class of methods known as modern regression.

In this chapter we provide a concise introduction to linear regression. In
Sections 12.1–12.4 we treat the simple linear regression model given by

Yi = β0 + β1xi + εi (12.5)

for i = 1, . . . , n, where εi is a random variable. The adjective “simple” refers to the
single x variable on the right-hand side of (12.5). When there are two or more x vari-
ables on the right-hand side the terminology multiple regression is used instead. We
go over some of the most fundamental aspects of multiple regression in Section 12.5.
That section also lays the groundwork for modern regression. Generalizations are
described in Chapters 14 and 15.

12.1 The Linear Regression Model

To help fix ideas, as we proceed we will refer to several examples.

Example 12.1 Neural correlates of reward in parietal cortex Platt and
Glimcher (1999) suggested that cortical areas involved in sensory-motor processing
may encode not only features of sensation and action but also key inputs to decision
making. To support their claim they recorded neurons from the lateral intraparietal
(LIP) region of monkeys during an eye movement task, and used linear regression to
summarize the increasing trend in firing rate of intraparietal neurons with increasing
expected gain in reward (volume of juice received) for successful completion of a
task. Figure 12.1 shows plots of firing rate versus reward volume for a particular LIP
neuron following onset of a visual cue. �

Example 2.1 (continued from p. 24) In their analysis of saccadic reaction time in
hemispatial neglect, Behrmann et al. (2002) used linear regression in examining the
modulation of saccadic reaction time as a function of angle to target by eye, head, or
trunk orientation. We refer to this study in Section 12.5. �

In Chapter 1 we used Example 1.5 on neural conduction velocity to illustrate
linear regression. Another plot of the neural conduction velocity data is provided
again in Fig. 12.2.

Before we begin our discussion of statistical inference in linear regression, let us
recall some of the things we said in Chapter 1 and provide a few basic formulas.

Given n data pairs (xi, yi), least squares finds β̂0 and β̂1 that satisfy

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Fig. 12.1 Plots of firing rate (in spikes per second) versus reward volume (as fraction of the maximal
possible reward volume). The plot represents firing rates during 200 ms following onset of a visual
cue across 329 trials recorded from an LIP neuron. The 329 pairs of values have been reduced to
7 pairs, corresponding to seven distinct levels of the reward volume. Each of the 7 yi values in
the figure is a mean (among the trials with xi as the reward volume), and error bars representing
standard errors of each mean are also visible. A least-squares regression line is overlaid on the plot.
Adapted from Platt and Glimcher (1999).

n∑

i=1

(
yi − (β̂0 + β̂1xi)

)2 = min
β∗0 ,β∗1

n∑

i=1

(
yi − (β∗0 + β∗1 xi)

)2 (12.6)

where we use β∗0 and β∗1 as generic possible estimates of β0 and β1. The least-squares
estimates (obtained by calculus) are

β̂1 =
∑

i(yi − ȳ)(xi − x̄)∑
i(xi − x̄)2 (12.7)

and
β̂0 = ȳ − β̂1x̄. (12.8)

The resulting fitted line
y = β̂0 + β̂1x (12.9)

is the linear regression line (and often “linear” is dropped).

Details: To be clear what we mean when we say that the least-squares
estimates may be found by calculus, let us write

g(β0, β1) =
n∑

i=1

(yi − (β0 + β1xi))
2 .

The formulas (12.8) and (12.7) may be obtained by computing the
partial derivatives of g(β0, β1) and then solving the equations
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The least-squares fitted values at each xi are

ŷi = β̂0 + β̂1xi (12.10)

and the least-squares residuals are

ei = yi − ŷi. (12.11)

See Fig. 12.2. If we plug (12.8) into (12.9) we get

y− ȳ = β̂1(x − x̄) (12.12)

which shows that the regression line passes through the point (x̄, ȳ), as may be seen
in Fig. 12.2. Also, when we plug into (12.12) the (x, y) value (xi, yi) we get
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yi − ȳ = β̂1(xi − x̄)

or
yi = ȳ − β̂1(xi − x̄). (12.13)

A few more lines of algebra show that using (12.13) in (12.11) gives

n∑

i=1

ei = 0, (12.14)

which is useful as a math fact, and also can be important to keep in mind in data
analysis: linear least squares residuals fail to satisfy (12.14) only when a numerical
error has occurred.

Details: We have

n∑

i=1

ei =
n∑

i=1

(yi − ȳ + ȳ− ŷi). (12.15)

Because
∑

yi = nȳ we have

n∑

i=1

(yi − ȳ) = 0 (12.16)

and, similarly,
n∑

i=1

(xi − x̄) = 0. (12.17)

Combining (12.13) with (12.17) gives

n∑

i=1

(ŷi − ȳ) = 0. (12.18)

Finally, using (12.16) with (12.18) in (12.15) gives (12.14). �
It is worth drawing attention to one other interesting feature of the linear regression

model. While (12.1) and (12.4) emphasize potential nonlinearity in the way a variable
x, or multiple variables x1, . . . , xp may influence y, it turns out that linear regression
may be used to fit some nonlinear relationships. This is discussed in Section 12.5.4.
Here is a particularly simple, yet important additional example.

Example 12.2 BOLD hemodynamic response in fMRI In Fig. 1.3 of Example
1.3 we displayed fMRI images from a single subject during a simple finger-tapping
task in response to a visual stimulus. As we said there, fMRI detects changes in

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Fig. 12.3 The hemodynamic response function defined by Eq. (12.19).

blood oxygenation and the measurement is known as the BOLD signal, for Blood
Oxygen-Level Dependent signal. The typical hemodynamic response that produces
the signal is relatively slow, lasting roughly 20 s (seconds). Many experiments have
shown, however, that it has a reasonably stable form (see Glover 1999). Software for
analyzing fMRI data, such as BrainVoyager (see Goebel et al. 2006; Formisano et
al. 2006), often uses a particular hemodynamic function. Figure 12.3 displays a plot
of such a theoretical hemodynamic response function h(t) defined by

h(t) =
(

t

d1

)a1

exp(− t − d1

b1
)− c

(
t

d2

)a2

exp(− t − d2

b2
) (12.19)

where a1, b1, d1, a2, b2, d2 and c are parameters that have default values in the soft-
ware. Using this function the fMRI data at a particular voxel (a particular small
rectangular box in the brain) may be analyzed using linear regression. Let us sup-
pose we have an on/off stimulus, as is often the case, and let uj = 1 when the stimulus
is on and 0 otherwise, j = 1, . . . , T . The effect at time i of the stimulus being on
at time j is assumed to follow the hemodynamic response function, i.e., the effect is
determined by h(t) where t = i− j is the delay between the stimulus and the response
time i. It is also assumed that the effects of multiple “on” stimuli at different times
j produce additive effects at different time lags i − j. Therefore, the total stimulus
effect at time i is2

xi =
∑

j<i

h(i − j)uj. (12.20)

2 This expression is known as the convolution of the hemodynamic response function h(t) with the
stimulus function uj .
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The linear regression model (12.5) may then be fitted, and the coefficientβ1 represents
the overall magnitude of the increased BOLD response due to the activity associated
with the stimulus. �

12.1.1 Linear regression assumes linearity of f (x) and
independence of the noise contributions at the various
observed x values.

The model (12.1) is additive in the sense that it assumes the noise, represented by εi

is added to the function value f (xi) to get Yi. This entails a theoretical relationship
between x and y that holds except for the “errors” εi. Linear regression further
specializes by taking f (x) to be linear as in (12.2) so that we get the model (12.5).
The εi’s are assumed to satisfy

E(εi) = 0

for all i, so that E(Yi) = β0 + β1xi. In words, the linear relationship y = β0 + β1x
is assumed to hold “on average,” that is, apart from errors that are on average zero.
Additivity of the errors and linearity of E(Yi) are the most fundamental assumptions
of linear regression. In addition, the errors εi are assumed to be independent of each
other. In Section 12.2.3 we show how lack of independence can distort statistical
inferences about the regression model. The independence assumption may be vio-
lated when observations are recorded sequentially across time, in which case more
elaborate time series methods are needed. These are discussed in Chapter 18.

Important, though less potentially problematic, additional assumptions are that the
variances of the εi’s are all equal, so that the variability of the errors does not change
with the value of x, and that the errors are normally distributed. These latter two
assumptions guarantee that the 95 % confidence intervals discussed in Section 12.3.1
have the correct probability .95 of covering the coefficients and the significance tests
in Section 12.3.2 have the correct p-values. In sufficiently large samples the normality
assumption becomes unnecessary, as the confidence intervals and significance tests
will be valid, approximately (see (12.37)).

To summarize, the assumptions of linear regression may be enumerated, in order
of importance, as follows:

(i) the linear regression model (12.5) holds;
(ii) the errors satisfy E(εi) = 0 for all i;

(iii) the errors εi are independent of each other;
(iv) V(εi) = σ 2 for all i (homogeneity of error variances), and
(v) εi ∼ N(0, σ 2) (normality of the errors).

To repeat, the crucial assumptions are the first three: there is, on average, a linear rela-
tionship between Y and x, and the deviations from it are represented by independent
errors.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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12.1.2 The relative contribution of the linear signal to the total
response variation is summarized by R2.

As shown in Fig. 12.2, in Example 1.5 linear regression provides a very good repre-
sentation of the relationship between x and y, with the points clustering tightly around
the line. In other cases there is much more “noise” relative to “signal,” meaning that
the (xi, yi) values scatter more widely, so that the residuals tend to be much larger.
In this section we describe two measures of residual deviation.

The error standard deviation σ (see item (iv) in the assumptions in Section 12.1.1)
represents the average amount of deviation of each εi from zero. Thus, σ tells us how
far off, on average, we would expect the line to be in predicting a value of y at any
given xi. It is estimated by s = √s2 where

s2 = 1

n− 2
SSE (12.21)

and

SSE =
n∑

i=1

(yi − ŷi)
2 (12.22)

is the sum of squares for error or the residual sum of squares. (Here ŷi is defined
by (12.10).) The variance estimate s2 is then also called the residual mean squared
error and we often write

MSE = s2. (12.23)

This definition of s makes it essentially the standard deviation of the residuals, except
that n− 2 is used in the denominator instead of n− 1; here there are two parameters
β0 and β1 being estimated so that two degrees of freedom are lost from n, rather than
only one.

The other quantity, R2, is interpreted as the fraction of the variability in Y that is
attributable to the regression, as opposed to error. We begin by defining the total sum
of squares

SST =
n∑

i=1

(yi − ȳ)2. (12.24)

This represents the overall variability among the yi values. We then define

R2 = 1− SSE

SST
. (12.25)

The fraction SSE/SST is the proportion of the variability in Y that is attributable to
error, and R2 is what’s left over, which is attributable to the regression line. The value
of R2 is between 0 and 1. It is 0 when there is no linear relationship and 1 when there
is a perfect linear relationship. If we define the sum of squares due to regression as
the difference
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SSR = SST − SSE (12.26)

then we can re-write R2 in the form

R2 = SSR

SST
. (12.27)

From this version we get the interpretation of R2 as “the proportion of variability
of Y that is explained by X.” In different terminology, we may think of SSR as the
signal variability (often called “the variability due to regression”) and SSE as the
noise variability. Then R2 = SSR/(SSR + SSE) becomes the relative proportion
of signal-to-noise variability. (The ratio of signal-to-noise variabilities3 would be
SSR/SSE.)

In (12.26) we defined the sum of squares due to regression by subtraction. There is
a different way to define it, so that we may see how total variability (SST ) is decom-
posed into regression (SSR) and error components (SSE). The derivation begins with
the values yi, ŷi, and ȳ, as shown in Fig. 12.2, where ŷi = β̂0 + β̂1xi. Writing
yi − ȳ = yi − ŷi + ŷi − ȳ, we have

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi)
2 +

n∑

i=1

2(yi − ŷi)(ŷi − ȳ)+
n∑

i=1

(ŷi − ȳ)2

but after plugging in the definition of ŷi from (12.10) some algebra shows that the
cross-product term vanishes and, defining

SSR =
n∑

i=1

(ŷi − ȳ)2, (12.28)

we have
SST = SSR+ SSE. (12.29)

As we mention again in Section 12.5.3, the vanishing of the cross-product may
be considered, geometrically, to be a consequence of the Pythagorean theorem.
Equation (12.29) is important in understanding linear regression and analysis of vari-
ance: we think of the total variation as coming from different additive components,
whose magnitudes we compare.

The estimated standard deviation s has the units of Y and is therefore interpretable
—at least to the extent that the Y measurements themselves are interpretable. But
R2 is dimensionless. Unfortunately, there are no universal rules of thumb as to what
constitutes a large value: in some applications one expects an R2 of at least .99 while

3 The signal-to-noise ratio is a term borrowed from engineering, where it refers to a ratio of the
power for signal to the power for noise, and is usually reported in the log scale; under certain
stochastic models it translates into a ratio of signal variance to noise variance.
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in other applications an R2 of .40 or less would be considered substantial. One gets
a feeling for the size of R2 mainly by examining, and thinking about, many specific
examples.

12.1.3 Theory shows that if the model were correct then
the least-squares estimate would be likely to be
accurate for large samples.

In presenting the assumptions on p. 315 we noted that they were listed in order of
importance and, in particular, normality of the errors is not essential. The following
theoretical result substantiates the validity of least-squares for non-normal errors in
large samples.

Theorem: Consistency of least squares estimators For the linear regression model
(12.5) suppose conditions (i)–(iv) hold and let x1, x2, . . . , xn, . . . be a sequence of x
values such that

n∑

i=1

(xi − x̄)2 →∞ (12.30)

as n→∞. Then the least-squares estimator defined by (12.7) satisfies

β̂1
P→ β1

β̂0
P→ β0. (12.31)

In other words, under these conditions β̂1 and β̂0 are consistent estimators of β1 and
β0.

Proof: This is essentially a consequence of the law of large numbers in a non-i.i.d.
setting, where linear combinations of the Yi values are being used according to
(12.7) and (12.8). We omit the proof and refer the interested reader to Wu (1981),
which examines a more general problem but provides extensive references and
discussion. �

Note that to fit a line we must have at least 2 distinct values, so that not every
observation can be made at the same x value. The condition (12.30) fails when, for
all sufficiently large i and j, xi = xj. In other words, it rules out degenerate cases
where essentially all the observations (i.e., all but finitely many of them) are made at
a single x value.4 We may interpret this asymptotic statement as saying that for all
situations in which there is any hope of fitting a line to the data, as the sample size
increases the least-squares estimator of the slope will converge to the true value.

4 In fact, the results cited in Wu (1981) show that (12.30) is necessary and sufficient for (12.31).
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12.2 Checking Assumptions

12.2.1 Residuals should represent unstructured noise.

In examining single batches of data, in Chapter 2, we have seen how the data may
be used not only to estimate unknown quantities (there, an unknown mean μ) but
also to check assumptions (in particular, the assumption of normality). This is even
more important in regression analysis and is accomplished by analyzing the residuals
defined in (12.11). Sometimes the residuals are replaced by standardized residuals.
The ith standardized residual is ei/SD(ei), where SD(ei) is the standard deviation of
ei. Dividing by the standard deviation puts the residuals on a familiar scale: since
they are supposed to be normal, about 5 % of the standardized residuals should be
either larger than 2 or smaller than −2. Standardized residuals that are a lot larger
than 2 in magnitude might be considered outliers.

A detail: There are two different ways to standardize the residuals. We
have here taken SD(ei) to be the estimated standard deviation of ei.
The formula for SD(ei) involves the xi values. An alternative would
be to compute the sample variance of the residuals

s2
e =

1

n− 1

∑
(ei − ē)2

and take its square root. The standardization using SD(ei), which
allows the n residual standard deviations to be different, is often called
studentization (by analogy with the ratio that defines Student’s t dis-
tribution, see p. 129). The statistical software packages we are most
familiar with use SD(ei) to standardize the residuals. �

Two kinds of plots are used. Residual versus fit plots are supposed to reveal (i)
nonlinearity, (ii) inhomogeneity variances, or (iii) outliers. Plots having structure of
the kind that would indicate these problems are shown in Fig. 12.4. The first plot
is typical of data with no systematic variation remaining after linear regression: the
pattern is “random,” specifically, it is consistent with errors that are independent
and normally distributed, all having the same distribution. The second plot shows
departure from linearity; the third indicates more variability for large fitted values
than for smaller ones. The last plot has an outlier, indicating a point that is way off
the fitted line.

Histograms and Q-Q plots of the residuals are also used to assess assumptions.
These are supposed to (i) reveal outliers and (ii) check whether the errors may be
described, at least approximately, by a normal distribution.

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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Fig. 12.4 Residual plots: the Top Left plot depicts unstructured noise while the latter three reveal
structure, and thus deviations from the assumptions.

12.2.2 Graphical examination of (x, y) data can yield crucial
information.

As we tried to emphasize in Chapters 1 and 2, it is important to examine data with
exploratory methods, using visual summaries where possible. The following illus-
tration gives a nice demonstration of how things can go wrong if one relies solely on
the simplest numerical summaries of least-squares regression.

Illustration Figure 12.5 shows a striking example in which four sets of data all have
the same regression equation and R2, but only in the first case (data set 1) would the
regression line appropriately summarize the relationship. In the second case (data
set 2) the relationship is clearly nonlinear, in the third case there is a big outlier
and removing it dramatically changes the regression. In the fourth case the slope of
the line is determined entirely by the height of the point to the right of the graph;
therefore, since each point is subject to some random fluctuation, one would have to
be very cautious in drawing conclusions. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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Fig. 12.5 Plots of four very different data sets all having the same fitted regression equation
Y = 3+ .5x and R2 = .667. These were discussed in Anscombe (1973).

This illustration underscores the value of plotting the data when examining linear
or curvilinear relationships.

12.2.3 Failure of independence among the errors
can have substantial consequences.

In stating the assumptions of linear regression on p. 315 we stressed the importance
of independence among the errors εi. To be concrete, we now consider how inference
about the strength of the linear relationship between x1, . . . , xn and y1, . . . , yn, as
measured by R2, can be badly misled when the data are correlated. To do this we use
a simple model of serial dependence: we put

Ut = ρUt−1 + δt (12.32)

Wt = ρWt−1 + ηt (12.33)

for t = 2, 3, . . . , n where

δt ∼ N(0, 1)

ηt ∼ N(0, 1)

U1 ∼ N(0, 1)

W1 ∼ N(0, 1)



322 12 Linear Regression

all independently of each other. Models (12.32) and (12.33) are both examples of
first-order autoregressive models, which we discuss further in Chapter 18, with auto-
correlation coefficient ρ. According to these models the observations Ut and Wt are
likely to be close to the respective values Ut−1 and Wt−1, but with noise added. The
variation in experimental data observed across time may often be described well
using autoregressive models. Note that Ut and Wt are independent for all t. We sim-
ulate values u1, . . . , un and w1, . . . , wn from (12.32) and (12.33), using n = 100,
and we then define

xi = ui

yi = wi

for i = 1, . . . , n and compute R2 from the regression of y on x. We could say that
the correct linear model in this case is

Yi = εi

where εi follows the autoregressive model (12.33), so that in principle we should find
R2 = 0. Figure 12.6 gives the results from 100 simulations (each using n = 100).
When the autocorrelation coefficient is zero, we get values of R2 that deviate from
0 according to the null distribution so that about 5 % of the values are above the
threshold corresponding to p < .05 and about 1 % of the values are above the
threshold corresponding to p < .01. However, as the magnitude of the autocorrelation
coefficient increases we find many values of R2 that are substantial, many more than
would be predicted by the null distribution—thus, the p-values are no longer accurate.
In fact, for magnitudes of the autocorrelation that are close to 1 it becomes highly
probable to get what would look like a “significant” correlation in the data, even
though the x and y data were computer-generated to be independent.

This phenomenon may be appreciated further by contrasting the variation in inde-
pendent normal data with data generated from model (12.32) with ρ = .9. As seen
in the right-hand side of Fig. 12.7, data following this autoregressive model tend to
have patches of values that are all either above 0 or below 0. If we imagine two such
series, there are likely be patches of time where both series are very different from
0 and this will often lead to a substantial magnitude of the correlation coefficient
computed across time.

The point is that one must be very careful about the assumption of independence
in linear regression. When regression or correlation analysis is to be performed on
data recorded across time, where dependence among errors is likely, the standard
advice is to first pre-whiten the data by removing temporal structure (for instance,
by fitting auto-regressive models and then analyzing the residuals) as discussed in
Section 18.5.2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 12.6 Values of R2 based on truly independent Y and X data that were simulated using (12.32)
and (12.33), with n = 100. The x-axis of the plot gives the value of the autocorrelation coefficient
ρ. The usual p-values, obtained from applying the t-distribution to (12.38), accurately represent the
probability of deviation as large as the observed R2 only when ρ = 0.
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Fig. 12.7 Plots of artificial data against a variable representing time, which takes on values
1, 2, . . . , 100. The data values have been connected with lines. Left plot of 100 independent N(0, 1)

random values. Right plot of 100 values from an autoregressive model, as in (12.32) with ρ = .9.
The independent values fluctuate without trends, while the autoregressive values show excursions
of several successive values that are consistently positive or negative.

12.3 Evidence of a Linear Trend

12.3.1 Confidence intervals for slopes are based on SE, according
to the general formula.

When reporting least-squares estimates, standard errors should also be supplied. That
is, one reports either β̂1± SE(β̂1) or a confidence interval. Standard errors are given
as standard output from regression software. The general formula for standard errors
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in linear regression appears in Eq. (12.61). To get an approximate 95 % confidence
interval for β1 based on β̂1 and SE(β̂1), we again use the general form given by (7.8),
i.e.,

approx. 95 % CI = (β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)). (12.34)

An alternative, in small samples, is analogous to the small sample procedure in (7.31)
used to estimate a population mean: we substitute for 2 the value t.975,ν , where now
ν = n− 2 because we have estimated two parameters (intercept and slope) and thus
have lost two degrees of freedom. Thus, we would use the formula

95 % CI = (β̂1 − t.025,n−2 · SE(β̂1), β̂1 + t.025,n−2 · SE(β̂1)). (12.35)

Example 1.5 (continued, see p. 11) Using least squares regression we found β̂1 =
6.07 and SE(β̂1) = .14. We would report this by saying that, on average, action
potential velocity increases by 6.07± .14 m/s for every micron increase in diameter
of a neuron. Applying (12.34), an approximate 95 % CI for the slope of the regression
line is 6.07± 2(.14) or (5.79, 6.35). For these data there were n = 67 observations,
so we have ν = 65 and t.975,n−1 = 2.0. Thus, the CI based on (12.35) is the same as
that based on (12.34). �

Formula (12.34) may be justified by an extension of the theorem on the consis-
tency of β̂1 in (12.31), which we present next.

Theorem: Asymptotic normality of least squares estimators For the linear regres-
sion model (12.5) suppose conditions (i)–(iv) hold and let x1, x2, . . . , xn, . . . be a
sequence of x values such that

1

n

n∑

i=1

(xi − x̄)2 → c (12.36)

for some positive constant c, as n → ∞. Then the least-squares estimator defined
by (12.7) satisfies

β̂1 − β1

SE(β̂1)

D→ N(0, 1)

β̂0 − β0

SE(β̂0)

D→ N(0, 1) (12.37)

where SE(β̂1) and SE(β̂0) are the standard errors given by (12.61).

Proof: This is a consequence of the CLT, but requires some algebraic manipulation.
We omit the proof and again refer the interested reader to Wu (1981) for references.

�

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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The condition (12.36) implies (12.30). It would be satisfied if we were drawing
xi values from a fixed probability distribution.5 In the context of a particular set of
data, the xi values, even when selected by an experimenter, are somehow spread out
and thus could be conceived as coming from some probability distribution (one that
is not concentrated on a single value). On the other hand, the Anscombe example
in Section 12.2.2 is a reminder that sensible interpretations require the fitted line
to represent well the relationship between the xi and yi values. In the theoretical
world this is expressed by saying that the model assumptions (i)–(iv) are satisfied. In
practice we would interpret the theorems guaranteeing consistency and asymptotic
normality of least-squares estimators, according to (12.31) and (12.37), as saying
that if the regression model does a good job in describing the variation in the data,
and the sample size is not too small, then the approximate confidence interval in
(12.34) will produce appropriate inferences. We typically do not need normality of
the errors, as specified in assumption (v). What we need is normality of the estimator,
as in (12.37).

12.3.2 Evidence in favor of a linear trend can be obtained
from a t-test concerning the slope.

In Examples 1.5 and 12.1 it is obvious that there are linear trends in the data. This
kind of increasing or decreasing tendency is sometimes a central issue in an analysis.
Indeed, in Example 12.1 the quantitative relationship, meaning the number of addi-
tional spikes per second per additional drop of juice, is not essential. Rather, the main
conclusion involved the qualitative finding of increasing firing rate with increasing
reward. In problems such as this, it makes sense to assume that y is roughly linear in x
but to consider the possibility that in fact the slope of the line is zero—meaning that y
is actually constant, on average, as x changes; that is, that y is really not related to x at
all. We formalize this possibility as the null hypothesis H0: β1 = 0 and we test it by
applying the z-test discussed in Section 10.3.2. In the one-sample problem of testing
H0: μ = μ0, considered in Section 10.3.3, the z-test is customarily replaced by a
t-test, which inflates the p-value somewhat for small samples and is justified under
the assumption of normality of the data. Similarly, in linear regression, the z-test may
be replaced by a t-test under the assumption of normality of errors (assumption (v)
on p. 315). The test statistic becomes the t-ratio,

t-ratio = β̂1

SE(β̂1)
. (12.38)

For large samples, under H0, this statistic has a N(0, 1) distribution, but for small
samples, if assumption (v) is satisfied, under H0 the t-ratio has a t distribution on
ν = n − 2 degrees of freedom. This is the basis for the p-value reported by most

5 Beyond (12.30), condition (12.36) says that the xi values do not diverge extremely quickly, which
would make β̂1 converge faster than 1/

√
n.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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statistical software. Here, the degrees of freedom are n− 2 because two parameters
β1 and β0 from n freely ranging data values yi. Generally speaking, when the mag-
nitude of the t-ratio is much larger than 2 the p-value will be small (much less than
.05, perhaps less than .01) and there will be clear evidence against H0: β1 = 0 and
in favor of the existence of a linear trend.

Example 1.5 (continued, see page 11) For the conduction velocity data, testing
H0: β1 = 0 with (12.38) we obtained p < 10−15. Keeping in mind that very extreme
tail probabilities are not very meaningful (they are sensitive to small departures from
normality of the estimator) we would report this result as very highly statistically
significant with p << .0001, where the notation << is used to signify “much less
than.” �
Example 12.1 (continued from p. 310) For the data shown in Fig. 12.1 the authors
reported p < .0001. �

In the data reported in Fig. 12.1 there are only 7 distinct values of xi, with many
firing rates (across many trials) corresponding to each reward level. Thus, the 329
data pairs have been aggregated to 7 pairs with the mean value of yi reported for
each xi. It turns out that the fitted line based on means is the same as the fitted line
based on all 329 values considered separately. However, depending on the details of
the way the computation based on the means is carried out, the standard error may
or may not agree with the standard error obtained by analyzing all 329 values. To
capture the full regularity and variation in the data, the hypothesis test should be
based on all 329 values.

12.3.3 The fitted relationship may not be accurate outside
the range of the observed data.

We have so far ignored an interesting issue that arises in Example 1.5. There, the fitted
line does not go through the origin (0, 0). In fact, according to the fitted line, when
the diameter of the nerve is 0, the conduction velocity becomes negative! Should we
try to fix this?

It is possible to force the line through (0, 0) by omitting the intercept in the
fitting process. Regression software typically provides an option for leaving out the
intercept. However, for this data set, and for many others, omission of the intercept
may be unwise. The reason is that the relationship may well be nonlinear near the
origin, and there are no data to determine the fitted relationship in that region. Instead,
we would view the fitted relationship as accurate only for diameters that are within
the range of values examined in the data. Put differently, when the linear regression
model does a good job of representing the regularity and variability in the data it
allows us to interpolate (predict values within the range of the data) but may not be
trustworthy if we try to extrapolate (predict values outside the range of the data).
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12.4 Correlation and Regression

Sometimes the “explanatory variable” x is observed, rather than fixed by the exper-
imenter. In this case the pair (x, y) is observed and we may model this by consid-
ering a pair of random variables X and Y and their joint distribution. Recall (from
Section 4.2.1) that the correlation coefficient ρ is a measure of linear association
between X and Y . As we discussed in Section 4.2.1, the best linear predictor β0+β1X
of Y satisfies

β1 = σY

σX
· ρ (12.39)

as in Eq. (4.9). Also, the theoretical regression of Y on X is defined (see Section 4.2.4)
to be E(Y |X = x), which is a function of x, and it may happen that this function is
linear:

E(Y |X = x) = β0 + β1x.

In Chapter 4 we noted that the regression is, in fact, linear when (X, Y) has a bivariate
normal distribution and then (12.39) holds. This linearity, and its interpretation, was
illustrated in Fig. 4.3. However, the right-hand plot in Fig. 4.3 concerns data, rather
than a theoretical distribution, and there is an analogous formula and interpretation
using the sample correlation r, which was defined in (4.7). Under the assumption of
bivariate normality, it may be shown that the sample correlation r is the MLE of ρ.

The sample correlation is related to the relative proportion of signal-to-noise
variability R2 by R2 = r2. Important properties are the following:

• −1 ≤ r ≤ 1 with r = 1 when the points fall exactly on a line with positive slope
and r = −1 when the points fall exactly on a line with negative slope;
• the value of r is unitless and does not change when either or both of the two

variables are linearly rescaled (e.g., when x is replaced by ax + b);
• just as ρ measures linear association between random variables X and Y , so too

may r be considered a measure of linear association.

As we said in discussing R2, there are no general guidelines as to what constitutes a
“large” value of the correlation coefficient. Interpretation depends on the application.

12.4.1 The correlation coefficient is determined by the regression
coefficient and the standard deviations of x and y.

Equation (12.39) gives the relationship of the theoretical slope β1 to the theoretical
correlation coefficient ρ. For data pairs (xi, yi) we have the analogous formula

β̂1 = sY

sX
· r.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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As a consequence, if x and y have about the same variability, the fitted regression
slope becomes approximately equal to the sample correlation. In some contexts it
is useful to standardize x and y by dividing each variable by its standard deviation.
When that is done, the regression slope will equal the sample correlation.

12.4.2 Association is not causation.

There are numerous examples of two variables having a high correlation while no one
would seriously suggest that high values of one causes high values of the other. For
instance, one author (Brownlee 1965) looked at data from many different countries
and pointed out that the number of telephones per capita had a strong correlation with
the death rate due to heart disease. In such situations there are confounding factors
that, presumably, have an effect on both variables and thus create a “spurious” cor-
relation. Only in well-performed experiments, often using randomization,6 can one
be confident there are no confounding factors. Indeed, discussion sections of articles
typically include arguments as to why possible confounding factors are unlikely to
explain reported results.

12.4.3 Confidence intervals for ρ may be based
on a transformation of r.

The sample correlation coefficient r may be considered an estimate of the the-
oretical correlation ρ and, as we mentioned on p. 327, under the assumption of
bivariate normality r is the MLE of ρ. To get approximate confidence intervals the
large-sample theory of Section 8.4.3 may be applied.7 If we have a random sample
(X1, Y1), . . . , (Xn, Yn) we may compute its sample correlation Rn, which is itself a
random variable (so that when X1 = x1, Y1 = y1, . . . , Xn = xn, Yn = yn we compute
the sample correlation Rn = r based on (x1, y1), . . . , (xn, yn)). Now, if we consider
a sequence of such samples from a bivariate normal distribution with correlation ρ

it may be shown that √
n(Rn − ρ)

(1− ρ2)

D→ N(0, 1)

6 Randomization refers to the random assignment of treatments to subjects, and to the process of
randomly ordering treatment conditions; we discuss this further in Section 13.4.
7 The usual derivation of the limiting normal distribution of r begins with an analytic calculation
of the covariance matrix of (Vx, Vy, C) where Vx = V(X), Vy = V(Y), and C = Cov(X, Y), in
which (X, Y) is bivariate normal. That calculation provides an explicit formula for the covariance
matrix in the limiting joint normal distribution of (Vx, Vy, C), and then propagation of uncertainty
is applied as in Section 9.1.2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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as n → ∞. This limiting normal distribution could be used to find confidence
intervals. However, Fisher (1924) showed that a transformation of the correlation
Rn = r improves the limiting normal approximation. This is known as Fisher’s z
transformation (z because it creates a nearly N(0, 1) distribution) defined by

zr = 1

2
log

(
1+ r

1− r

)
. (12.40)

For the theoretical statement we again consider a sequence of bivariate normal ran-
dom samples with sample correlations Rn and define

ZR = 1

2
log

(
1+ Rn

1− Rn

)

and

ζ = 1

2
log

(
1+ ρ

1− ρ

)

to get √
n− 3(ZR − ζ )

D→ N(0, 1) (12.41)

as n → ∞ (see8 p. 43 in DasGupta 2008). Consequently, we can define the lower
and the upper bounds of an approximate 95 % confidence interval for the theoretical
quantity ζ by

Lz = zr − 2

√
1

n− 3

Uz = zr + 2

√
1

n− 3
. (12.42)

To get an approximate 95 % confidence interval for ρ we apply the inverse transfor-
mation

ρ = exp(2ζ )− 1

exp(2ζ )+ 1

to L and U in (12.42) to get

L = exp(2Lz)− 1

exp(2Lz)+ 1

U = exp(2Uz)− 1

exp(2Uz)+ 1
. (12.43)

8 The z-transformation may be derived as a variance-stabilizing transformation, as on p. 232,
beginning with the limiting result mentioned in footnote 7. More general results are given by
Hawkins (1989).
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Confidence interval for ρ

Suppose we have a random sample from a bivariate normal distribution with
correlation ρ and Rn = r is the sample correlation. Then an approximate 95 %
confidence interval for ρ is given by (L, U) where L and U are defined by
(12.43), (12.42), and (12.40).

The result (12.41) may also be used to test H0:ρ = 0, which holds if and only if
H0: β1 = 0. The procedure is to apply the z-test in Section 10.3.2 using

zobs =
√

n− 3zr,

which is zr divided by its large-sample standard deviation 1/
√

n− 3, and is thus a
z-ratio.

12.4.4 When noise is added to two variables, their correlation
diminishes.

When measurements are corrupted by noise, the magnitude of their correlation
decreases. The precise statement is given in the theorem below, where we begin
with two random variables U and W and then add noise to each, in the form of
variables ε and δ. The noise-corrupted variables are then X = U+ε and Y = W+δ.

Theorem: Attenuation of Correlation Suppose U and W are random variables
having correlation ρUW and ε and δ are independent random variables that are also
independent of U and V . Define X = U + ε and Y = W + δ, and let ρXY be the
correlation between X and Y . If ρUW > 0 then

0 < ρXY < ρUW .

If ρUW < 0 then
ρUW < ρXY < 0.

Proof details: We assume that V(ε) > 0 and V(δ) > 0 and we begin
by writing

Cov(X, Y) = Cov(U + ε, W + δ)

= Cov(U, W)+ Cov(U, δ)+ Cov(W , ε)+ Cov(ε, δ).

Because of independence the last 3 terms above are 0. Therefore,
Cov(X, Y) = Cov(U, W), which shows that ρXY and ρUW have the
same sign. Suppose ρUW > 0, so that Cov(U, W) > 0. Then we have

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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ρXY = Cor(U + ε, W + δ)

= Cov(U, W)√
V(U + ε)V(W + δ)

= Cov(U, W)√
(V(U)+ V(ε))(V(W)+ V(δ))

<
Cov(U, W)√

Var(U)Var(W)
= ρUW .

If ρUW < 0 then Cov(U, W) < 0 and the inequality above is
reversed. �

The theorem above indicates that when measurements are subject to substantial
noise a measured correlation will underestimate the strength of the actual correlation
between two variables. In the notation above, we wish to find ρUW but the corrupted
measurements we observe would be (X1, Y1), . . . , (Xn, Yn), and if we compute the
sample correlation r based on these observations it will tend to be smaller than
ρUW even for large samples. Thus, it is often the case that the sample correlation
will underestimate an underlying correlation between two variables. However, if the
likely magnitude of the noise is known it becomes possible to correct the estimate.
Such corrections for attenuation of the correlation can be consequential.

Example 12.3 Correction for attenuation of the correlation in SEF
selectivity indices Behseta et al. (2009) reported analysis of data from an experiment
on neural mechanisms of serial order performance. Monkeys were trained to perform
eye movements in a given order signaled by a cue. For example, one cue carried the
instruction: look up, then right, then left. Based on recordings of neural activity in
frontal cortex (the supplementary eye field, SEF) during task performance, Behseta
et al. reported that many neurons fire at different rates during different stages of the
task, with some firing at the highest rate during the first, some during the second
and some during the third stage. These rank-selective neurons might genuinely be
sensitive to the monkey’s stage in the sequence. Alternatively, they might be sensitive
to some correlated factor. One such factor is expectation of reward. Reward (a drop
of juice) was delivered only after all three movements had been completed. Thus as
the stage of the trial progressed from one to three, the expectation of reward might
have increased.

To see whether rank-selective neurons were sensitive to the size of the anticipated
reward, the same monkeys were trained to perform a task in which a visual cue
presented at the beginning of the trial signaled to the monkey whether he would
receive one drop or three drops of juice after a fixed interval. The idea was that
neuronal activity related to expectation of reward would be greater after the promise of
three drops than after the promise of one. Spike counts from 54 neurons were collected
during the performance of both the serial order task and the variable reward task, and
selectivity indices for rank in the serial order task and size of the anticipated reward
in the variable reward task were computed. The rank selectivity index was Irank =
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(f3−f1)
(f3+f1)

, where f1 and f3 were the mean firing rates measured at the times of the first and
third saccades respectively, the mean being taken across trials. Similarly, the reward
selectivity index was Ireward = (fb−fs)

(fb+fs)
where fb and fs were the mean firing rates

during the post-cue delay period on big-reward and small-reward trials respectively.
The selectivity indices Irank and Ireward turned out to be positively correlated, but the
effect was smaller than expected, with r = .49. The correlation between the rank
and reward indices was expected to be larger because, from previous research, it was
known that (a) the expectation of reward increases over the course of a serial order trial
and (b) neuronal activity in the SEF is affected by the expectation of reward. Behseta
et al. speculated that the correlation between the two indices had been attenuated
by noise arising from trial-to-trial variations in neural activity, and they applied a
correction for attenuation discussed in Chapter 16. This gave a dramatically increased
correlation, with the new estimate of correlation becoming .83. Results given by
Behseta et al. showed that the new estimate may be considered much more reliable
than the original r = .49. �

12.5 Multiple Linear Regression

The simple linear regression model (12.5) states that the response variable Y arises
when a linear function of a single predictive variable x is subjected to additive noise
ε. The idea is easily extended to two or more predictive variables. Let us write the
ith observation of the jth predictive variable as xji. Then, for p predictive variables
the linear regression model becomes

Yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi (12.44)

where the εi’s have the same assumptions as in (12.5).
Let us start with the case p = 2. Just as y = β0+β1x1 describes a line, the equation

y = β0+ β1x1+ β2x2 describes a plane. When only a single variable x1 is involved,
the coefficient β1 is the slope: β1 = �y/�x. For example, if we increase x by �x = 2
then we increase y by �y = 2β1. In the case of the equation y = β0+β1x1+β2x2, if
we increase x1 by �x1 = 2 and ask what happens to y, the answer will depend on how
we change x2. However, if we hold x2 fixed while we increase x1 by �x1 = 2 then we
will increase y by �y = 2β1. When p = 2, β1 is interpreted as the change in y for a
one-unit change in x1 when x2 is held fixed. If p > 2 then β1 becomes the change in y
for a one-unit change in x1 when x2, . . . , xp are all held fixed. Thus, linear regression
is often used as a way of assessing what might happen if we were to hold one or
more variables fixed while allowing a different variable to fluctuate. Put differently,
regression allows us to assess the relationship between x1 and y after adjusting for the
variables x2, . . . , xp. In this context x2, . . . , xp are often called covariates, because9

they co-vary with x1 and y.

9 See also “analysis of covariance,” mentioned in the footnote on p. 379.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Example 12.4 Developmental change in working memory from fMRI Many
studies have documented the way visuospatial working memory (VSWM) changes
during development. Kwon et al. (2002) used fMRI to examine neural correlates of
these changes. These authors studied 34 children and young adults, ranging in age
from 7 to 22. Each subject was given a VSWM task while being imaged. The task
consisted of 12 alternating 36-s working memory (WM) and control epochs during
which subjects viewed items on a screen. During both the WM and control versions
of the task the subjects viewed the letter “O” once every 2 s at one of nine distinct
locations on the screen. In the WM task the subjects responded when the current
location was the same as it was when the symbol was presented two stimuli back.
This required the subjects to engage their working memory. In the control condition
the subjects responded when the “O” was in the center of the screen.

One of the y variables used in this study was the maximal BOLD activation (as a
difference between WM and control) among voxels within the right prefrontal cortex.
They were interested in the relationship of this variable with age (x1). However, it
is possible that Y would increase due to better performance of the task, and that
this would increase with age. Therefore, in principle, the authors wanted to “hold
fixed” the performance of task while age varied. This is, of course, impossible. What
they did instead was to introduce two measures of task performance: the subjects’
accuracy in performing the task (x2) and their mean reaction time (x3). �

Example 12.1 (continued, see p. 310) The firing rates in Fig. 12.1 appear clearly
to increase with size of reward, and the analysis the authors reported (see p. 326)
substantiated this impression. Platt and Glimcher also considered whether other vari-
ables might be contributing to firing rate by fitting a multiple regression model using,
in addition to the normalized reward size, amplitude of each eye saccade, average
velocity of saccade, and latency of saccade. This allowed them to check whether
firing rate tended to increase with normalized reward size after accounting for these
eye saccade variables. �

Equation (12.6) defined the least squares fit of a line. Let us rewrite it in the form

n∑

i=1

(yi − ŷi)
2 = min

β∗

n∑

i=1

(yi − y∗i )2 (12.45)

where ŷi = β̂0+ β̂1xi, y∗i = β∗0 +β∗1 xi and β∗ = (β∗0 , β∗1 ). If we now re-define y∗i as

y∗i = β∗0 + β∗1 x1i + · · · + β∗p xpi

withβ∗ = (β∗0 , β∗1 , . . . , β∗p ), Eq. (12.45) defines the least-squares multiple regression
problem. We write the solution in vector form as

β̂ = (β̂0, β̂1, . . . , β̂p), (12.46)
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where the components satisfy (12.45) with the fitted values being

ŷi = β̂0 + β̂1x1i + · · · + β̂pxpi. (12.47)

We interpret the multiple regression equation in Section 12.5.1 and discuss the
decomposition of sums of squares in Section 12.5.2. In Section 12.5.3 we show how
the multiple regression model may be written in matrix form, which helps in demon-
strating how it includes ANOVA models as special cases, and in Section 12.5.4 we
show that multiple regression also may be used to analyze certain nonlinear relation-
ships. In Section 12.5.5 we issue an important caveat concerning correlated explana-
tory variables; in Section 12.5.6 we describe the way interaction effects are fitted by
multiple regression; and in Section 12.5.7 we provide a brief overview of the way
multiple regression is used when there are substantial numbers of alternative explana-
tory variables. We close our discussion of multiple regression in Section 12.5.8 with
a few words of warning.

12.5.1 Multiple regression estimates the linear relationship
of the response with each explanatory variable,
while adjusting for the other explanatory variables.

To demonstrate multiple regression in action we consider a simple example.

Example 12.5 Toxicity as a function of dose and weight In many studies of
toxicity, including neurotoxicity (Makris et al. 2009) a drug or other agent is given
to an animal and toxicity is examined as a function of dose and animal weight. A
relatively early example was the study of sodium arsenate (arsenic) in silkworm
larvae (Bliss 1936). We reanalyzed data reported there. The response variable (y)
was log(w/1,000) where w was minutes survived, and the two predictive variables
were log weight, in log grams, and log dose, given in 1.5 plus log milligrams. A
plot of log survival versus log dose is given in Fig. 12.8. Because there were two
potential outliers that might affect the slope of the line fitted to the plotted data we
have provided in the plot the fitted regression lines with and without those two data
pairs. The results we discuss were based on the complete set of data.

The linear regression of log survival on log dose gave the fitted line

log survival = .140(±.057)− .704(±.078)log dose

which says that survival decreased roughly .704(±.078) log 1,000 min for every log
milligram increase in dose. The regression was very highly significant (p = 10−12),
consistently with the obvious downward trend.

The linear regression of log survival on both log dose and log weight gave the
fitted line
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Fig. 12.8 Plot of log survival time (log(w/1,000) where w was minutes survived) versus log dose
(1.5 plus log milligrams) of sodium arsenate in silkworm larvae; data from Bliss (1936). Lines are
fits based on linear regression: solid line used the original data shown in plot; dashed line after
removing the two high values of survival at low dose.

log survival = .140(±.057)− .734(±.058)log dose+ 1.07(±.16)log weight.

In this case, including weight in the regression does not change very much the
relationship between dose and survival: the slope is nearly the same in both cases. �

12.5.2 Response variation may be decomposed into signal
and noise sums of squares.

As in simple linear regression we define the sums of squares SSE and SSR, again
using (12.22) and (12.28) except that now ŷi is defined by (12.47). If we continue to
define the total sum of squares as in (12.24) we may again decompose it as

SST = SSR+ SSE

and we may again define R2 as in (12.25) or, equivalently, (12.27). In the multi-
ple regression context R2 is interpreted as a measure of the strength of the linear
relationship between y and the multiple explanatory variables.
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With p variables we may again use the sum of squares of the residuals to estimate
the noise variation σ 2 but we must change the degrees of freedom appearing in
(12.21). Because we again start with n− 1 degrees of freedom in total, we subtract
p to get n− 1− p degrees of freedom for error, and we have

s2 = 1

n− 1− p
SSE (12.48)

where SSE is defined by (12.22). In multiple regression the hypothesis of no linear
relationship between y and the x variables is H0: β1 = β2 = · · · = βp = 0. To test
this hypothesis we define and compare suitable versions of MSR and MSE, the idea
being that under H0, with no linear relationship at all, MSR and MSE should be about
the same size because both represent fluctuation due to noise. With p explanatory
variables there are p degrees of freedom for regression. We therefore define the mean
squared error for regression

MSR = SSR

p
.

We use (12.48) in (12.23) for the mean squared error. We then form10 the F-ratio

F = MSR

MSE
. (12.49)

In words, F is the ratio of the mean squared errors for regression and error, which
are obtained by dividing the respective sums of squares by the appropriate degrees
of freedom. Under the standard assumptions, if H0 holds this F-ratio follows an F
distribution, which will be centered near 1.

To state the result formally we must define a theoretical counterpart to (12.49). Let
Ŷi be the random variable representing the least-squares fit under the linear regression
assumptions on p. 315, i.e., it is the theoretical counterpart of (12.47). We define

UMSE = 1

p

n∑

i=1

(Yi − Ŷi)
2 (12.50)

and

UMSR = 1

n− 1− p

n∑

i=1

(Ŷi − Ȳi)
2. (12.51)

10 The letter F was chosen (by George Snedecor in 1934) to honor Fisher, who had first suggested
a log-transformed normalized ratio of sums of squares, and derived its distribution, in the context
of ANOVA, which we discuss in Chapter 13.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Fig. 12.9 Orthogonal projection of the vector y onto the vector subspace V resulting in the vector ŷ
in V . The residual vector y− ŷ is orthogonal to ŷ, which gives the Pythagorean relationship (12.57).
This corresponds to the total sum of squares (the squared length of y) equaling the sum of the
regression sum of squares (the squared length of ŷ) and the error sum of squares (the squared length
of y − ŷ).

Result: F-Test for Regression
Under the linear regression assumptions on p. 315, with (12.44) replacing (12.5),
if H0: β1 = β2 = · · · = βp = 0 holds then the F-statistic

F = UMSR

UMSE
(12.52)

follows an Fν1,ν2 distribution, where ν1 = p and ν2 = n− 1− p.

Proof outline: If H0 is true, it may be shown that

∑
(Ŷi − Ȳ)2 ∼ χ2

ν1

and ∑
(Yi − Ŷi)

2 ∼ χ2
ν2

where ν2 = n− 1− p is the degrees of freedom for error, and it may be shown that
these are independent. Therefore, the random variable F defined by (12.52) is a ratio
of independent chi-squared random variables divided by their degrees of freedom,
which, by the definition on p. 129 has an Fν1,ν2 distribution. �

We provide a geometrical interpretation of the sum of squares decomposition
below, in Fig. 12.9 and Eq. (12.57).

In simple linear regression, where there is only one explanatory variable, ν1 = 1
and F is equal to the square of the t-ratio. Because the square of a tν distributed
random variable has an F1,ν distribution, it follows that the t-test and the F-test of
H0: β1 = 0 are identical. In multiple regression, hypotheses may also be tested about
the individual coefficients, e.g., H0 : β2 = 0, using t-tests.
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Table 12.1 Simple linear regression results for Example 12.5.

Variable Coefficient SE tobs p-value

(Intercept) .120 .057 2.1 .038
Log dose −.704 .078 −9.1 10−12

Table 12.2 Multiple regression results for Example 12.5.

Variable Coefficient SE tobs p-value

(Intercept) −.140 .057 −2.49 .017
Log dose −.734 .058 −12.6 2× 10−16

Log weight 1.07 .16 6.8 6× 10−9

Example 12.5 (continued) Returning to the toxicity data, the results for the regres-
sion of log survival on log dose are given in Table 12.1. We also obtained s = .17
and R2 = .59. The F-statistic was F = 82 on 1 and 58 degrees of freedom, with
p = 10−12 in agreement with the p-value for the t-test in Table 12.1. The results for
the regression of log survival on both log dose and log weight are in Table 12.2 and
here s = .13 and R2 = .77, which is a much better fit. The F-statistic was F = 97
on 2 and 57 degrees of freedom, with p = 2× 10−16.

We would interpret the t ratios and F-statistics as follows: there is very strong
evidence of a linear relationship between log survival and a linear combination of
log dose and log weight (F = 97, p << 10−5); given that log weight is included in
the regression model, there is very strong evidence (t = −12.6, p << 10−5) that log
survival has a decreasing linear trend with log dose; similarly, given that log dose is
in the model, there is very strong evidence (t = 6.8, p << 10−5) that survival has
an increasing linear trend with log weight. �

Example 12.4 (continued from p. 333) Recall that in one of their analyses Kwon
et al. defined Y to be the maximal BOLD activation (as a difference between WM
and control) among voxels within the right prefrontal cortex, and they considered its
linear relationship with age (X1), accuracy (X2) and reaction time (X3). They then
performed multiple linear regression and found R2 = .53 with β1 = .75(±.20),
p < .001, β2 = −.21(±.19), p = .28, and β3 = −.15(±.17), p = .37. They inter-
preted the results as showing that the right PFC tends to become much more strongly
activated in the VSWM task as the subjects’ age increases, and that this is not due
solely to improvement in performance of the task. �

Example 12.1 (continued from p. 333) Platt and Glimcher fit a multiple regression
model to the firing rate data using as explanatory variables normalized reward size,
amplitude of each eye saccade, average velocity of saccade, and latency of saccade.
They reported the results of the t-test for the normalized reward size coefficient
as p < .05, which indicates that firing rate tended to increase with normalized
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reward size even after accounting for these eye saccade variables. A plot showing
the coefficient with SE makes it appear that actually p << .05, which is much more
convincing. �

The distributional results for the statistic F in (12.52) are based on the assump-
tion of normality of the errors. For sufficiently large samples the p-values for the
F-statistic, and the t-based p-values and confidence intervals, will be approximately
correct even if the errors are non-normal. This is due to the theorems on con-
sistency (p. 318) and approximate normality (p. 324), which extend to multiple
regression (p. 344). However, the independence assumption is crucial. The stan-
dard errors and other distributional results generally may be trusted for reasonably
large samples when the errors are independent, but they require correction other-
wise. The assumptions should be examined using residual plots, as in simple linear
regression.

12.5.3 Multiple regression may be formulated concisely
using matrices.

Mathematical manipulations in multiple regression could get very complicated. A
great simplification is to collect multiple equations together and write them as single
equations in matrix form. We start by writing the n random variables Yi as an n× 1
random vector

Y =

⎛

⎜⎜⎜⎝

Y1
Y2
...

Yn

⎞

⎟⎟⎟⎠

and then similarly write

β =

⎛

⎜⎜⎜⎝

β0
β1
...

βp

⎞

⎟⎟⎟⎠

ε =

⎛

⎜⎜⎜⎝

ε1
ε2
...

εn

⎞

⎟⎟⎟⎠
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and

X =

⎛

⎜⎜⎜⎝

1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

...

1 xn1 xn2 . . . xnp

⎞

⎟⎟⎟⎠ .

The linear regression model may then be written in the form

Y = Xβ + ε (12.53)

where it is quickly checked that both left-hand side and right-hand side are n × 1
vectors. The usual assumptions may also be stated in matrix form. For example, we
have

ε ∼ Nn(0, σ 2 · In) (12.54)

which says that ε has a multivariate normal distribution of dimension n, with mean
equal to the zero vector and variance matrix equal to σ 2 times the n-dimensional
identity matrix, i.e.,

V(ε) = σ 2 ·

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 · · · 0
...

. . .
...

0
. . . 0

0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Equation (12.53), together with the assumptions, is often called the general linear
model. It accommodates not only multiple regression but also a large variety of
models11 that compare experimental conditions, which arise in analysis of variance
(Chapter 13). For example, a standard approach to the analysis of fMRI data is based
on a suitable linear model.

Example 12.2 (continued from p. 313) In Eq. (12.20) we defined a variable xi

that could be used with simple linear regression to analyze the BOLD response due
to activity associated with a particular stimulus, according to an assumed form for
the hemodynamic response function.12 Suppose there are two stimuli with uj = 1
corresponding to the first stimulus being on, with uj = 0 otherwise, and vj = 1
corresponding to the second stimulus being on, with vj = 0 otherwise. We then
define

11 Sometimes when someone refers to the general linear model they may also allow the variance
matrix to be different, or they may allow for non-normal errors.
12 Before regression is applied various pre-processing steps are usually followed to make the
assumptions of linear regression a reasonable representation of the variation in the fMRI data.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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xi1 =
∑

j<i

h(i − j)uj

xi2 =
∑

j<i

h(i − j)vj

and set the X matrix equal to

X =

⎛

⎜⎜⎜⎝

1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

⎞

⎟⎟⎟⎠ .

If we apply (12.53) with β = (β0, β1, β2)
T the coefficient β1 will represent the

magnitude of the effect of the first stimulus on the BOLD response, the coefficient
β2 will represent the magnitude of the effect of the second stimulus on the BOLD
response, and the coefficient β0 will represent the baseline BOLD response. �

Because X often reflects the design of an experiment, as in Example 12.2 above, it
is called the design matrix. The assumptions associated with (12.53) are essentially
the same as those enumerated (i)–(v) for simple linear regression, where (i) becomes
the validity of Eq. (12.53) and (ii)–(v) refer to the components of ε.

In matrix form we may write the least-squares fit as ŷ according to

||y− ŷ||2 = min
β∗
||y− y∗||2

y∗ = Xβ∗

where ||w|| is used to indicate the length of the vector w. We assume here that XT X
is nonsingular (see the Appendix for a definition). The solution is found by solving
the equations

XT Xβ = XT y (12.55)

numerically (by numerically stable methods) and the solution may be written in the
form13

β̂ = (XT X)−1XT y. (12.56)

Formula (12.56) may be obtained by a simple geometrical argument. We begin by
thinking of y as a vector in n-dimensional space and we consider the subspace V
consisting of all linear combinations of the columns of X. We say that V is the linear
subspace spanned by the columns of X, which is the set of all vectors that may be
written in the form Xβ∗ for some β∗, i.e.,

13 The equations are not solved merely by inverting the matrix XT X; this can lead to grossly incorrect
answers due to seemingly innocuous round-off error. See Section 12.5.5.
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V = {Xβ∗, β∗ ∈ Rp+1}

(see the Appendix). The subspace V is the space of all possible fitted vectors. The
problem of least squares, then, is to find the closest vector in V to the data vector
y, i.e., the problem is to minimize the Euclidean distance between y and V . The
solution to this minimization problem is the fitted vector ŷ = Xβ̂. See Fig. 12.9. This
geometry also gives us the Pythagorean relationship

||y||2 = ||ŷ||2 + ||y− ŷ||2 (12.57)

which is the basis for the decomposition SST = SSR+ SSE.

Details: Euclidean geometry says that ŷ must be obtained by orthog-
onal projection of y onto the subspace spanned by the columns of X
and, as a result, the residual y− ŷ must be orthogonal to the subspace
spanned by the columns of X, which means that y− ŷ must be orthog-
onal to Xβ for every β. This, in turn, may be written in the following
form: for all β,

〈Xβ, y − ŷ〉 = 0 (12.58)

where 〈u, v〉 = uT v is the inner product of u and v. Substituting ŷ = Xβ̂

we have
〈Xβ, y − Xβ̂〉 = 0

for all β, and rewriting this we find that

βT XT y = βT XT Xβ̂

for all β, which gives us Eq. (12.55). Equation (12.55) is sometimes
called the set of normal equations (presumably using “normal” in the
sense of “orthogonal”; and plural because (12.55) is a vector equation
and therefore a set of scalar equations). Because (12.58) holds for all
β, it holds in particular for β = β̂, i.e.,

〈ŷ, y − ŷ〉 = 0

which, as illustrated in Fig. 12.9, gives (12.57).
For the SST decomposition we introduce the n × 1 vector having all
of its elements equal to 1, which we write 1vec = (1, 1, . . . , 1)T . In
the argument above we replace y by the residual following projection
of y onto 1vec,

ỹ = y − < y, 1vec >

< 1vec, 1vec >
1vec

= y − ȳ1vec
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(which is the vector of residuals found by regressing y on 1vec) and
similarly for all j = 2, . . . , p + 1 replace the j column of X by its
residual following projection onto 1vec (which produces the vectors
of residuals found by regressing each x variable on 1vec). When we
repeat the argument with these new variables we get a new fitted vector
ˆ̃y and everything goes through as before. We then obtain the version
of (12.57) needed for the decomposition:

||ỹ||2 = ||ˆ̃y||2 + ||y− ŷ||2.

It may be verified that this is the same as SST = SSR + SSE. For
example, ||ỹ||2 =∑

(yi − ȳ)2. �
The variance matrix of the least-squares estimator is easy to calculate using a

generalization of Eq. (4.26): with a little algebra it may be shown that if W is a p× 1
random vector with variance matrix V(W) =  and A is a k × p matrix, then the
variance matrix of AW is

V(AW) = AAT . (12.59)

Using (12.59) we obtain

V(β̂) = ((XT X)−1XT )σ 2In((X
T X)−1XT )T

= σ 2 · (XT X)−1XT X(XT X)−1

= σ 2 · (XT X)−1.

This variance matrix summarizes the variability of β̂. For instance, we have

V(β̂k) = σ 2 · (XT X)−1
kk ,

which is the kth diagonal element of the variance matrix. To use such formulas with
data, however, we must substitute s for σ . We then have the estimated variance matrix

V̂(β̂) = s2 · (XT X)−1 (12.60)

and the standard errors are given by

SE(β̂k) =
√

s2 · (XT X)−1
kk . (12.61)

For example, (12.61) is the formula that was used to produce the standard errors
in Table 12.2, and to get the standard errors and t-ratios, and thus the p-values, in
Example 12.4 reported on p. 338. For problems involving propagation of uncertainty
(Section 9.1) to a function of β̂, the variance matrix in (12.60) would be used.

The estimator (12.60), and resulting inferences, may be justified by the analogue
to (12.37).

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Theorem: Asymptotic normality of least squares estimators For the linear regres-
sion model (12.53) suppose conditions (i)–(iv) hold and let X1, X2, . . . , Xn, . . . be a
sequence of design matrices such that

1

n
XT X → C (12.62)

for some positive definite matrix C, as n → ∞. Then the least-squares estimator
defined by (12.56) satisfies

1

s
(XT

n Xn)
1/2(β̂ − β)

D→ Np+1(0, Ip+1). (12.63)

Proof: See Wu (1981) for references. �

A Detail: It is also possible to use the bootstrap in regression, but this
requires some care because under the assumptions (i)–(iv) the random
variables Yi have distinct expected values,

E(Yi) = (1, xi1, . . . , xip)β

and so are not i.i.d. The usual approach is to resample the studentized
residuals (see p. 319), which are approximately i.i.d. See Davison
and Hinkley (1997, page 275). Alternatively, when each vector xi =
(xi1, . . . , xip) is observed, rather than chosen by the experimenter, it
is possible to treat xi as an observation from an unknown multivariate
probability distribution, and thus (xi, yi) becomes an observation from
an unknown distribution, and the data vectors ((x1, y1), . . . , (xn, yn))

may be resampled.14 This was the bootstrap procedure mentioned in
Example 8.2 on p. 241. For additional discussion see Davison and
Hinkley (1997). �

There are many conveniences of the matrix formulation of multiple regression
in (12.53) together with (12.54). One is that the independence and homogeneity
assumptions in (12.54) may be replaced. Those assumptions imply

V(ε) = σ 2In,

as in (12.54). The analysis remains straightforward if we instead assume

V(ε) = R (12.64)

14 Here, Eq. (9.27) becomes

F̂n(x, y)
P→ F(X,Y)(x, y)

where F̂n is the empirical cdf computed from the random vectors ((X1, Y1), . . . , (Xn, Yn)).

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 12.10 MEG gradiometer background noise covariance matrix. The light blue corresponds to
zero elements and darker blue, yellow, and red indicate non-zero elements. (Figure furnished by
Gustavo Sudre.)

where R can be any n×n variance matrix (i.e., a positive definite symmetric matrix).
Example 1.2 (continued from p. 5) We previously noted that MEG imaging requires
sensor data to be obtained first from background scanner noise, meaning the sen-
sor data must be obtained with nothing in the scanner. We displayed on p. 54
a histogram of such data, from a single sensor, as an example of a normal dis-
tribution. The separate sensor readings are not independent but are, instead, cor-
related. Figure 12.10 displays a representation of the background noise variance
matrix from 204 gradiometer sensors in a MEG scanner. MEG analysis is based on
(12.53) together with (12.64), with R being based on the background noise variance
matrix. �

Given a matrix R in (12.64), and assuming it is positive definite, the least-squares
problem may be reformulated. Letting U = R−1/2Y and W = R−1/2X we have

R−1/2(Y − Xβ) = R−1/2ε ∼ Nn(0, In),

so that the new model
U = Wβ + δ,

where δ = R−1/2ε, satisfies the usual assumptions in (12.53) together with (12.54).
Therefore, to fit the model (12.53) with (12.64) we may first transform Y and X by pre-
multiplying with R−1/2 and then can apply ordinary least squares to the transformed
variables. This is called weighted least squares and it arises in various extensions of
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multiple regression. On p. 212 we showed that the least-squares estimator was also
the MLE under the standard assumptions of regression, including normality of the
errors. More generally, the weighted least squares estimator of β is the MLE under
(12.53) with (12.64).

Example 1.2, above, provides a case in which the non-independence of the com-
ponents of ε is due to the spatial layout of the sensors, and the resulting dependence
among the magnetic field readings at different sensors. Neuroimaging also typically
generates temporal correlation in the measurements, i.e., the measurements are time
series with some dependence across time. Using auto-regressive time series models
described in Section 18.2.3 the variance matrix may be determined from the data and
this furnishes an R matrix in (12.64). The model (12.53) with (12.64) then leads to
regression with time series errors.

12.5.4 The linear regression model applies to polynomial
regression and cosine regression.

In many data sets the relationship of y and x is mildly nonlinear, and a quadratic in x
may offer better results than a line. Even though a quadratic is nonlinear, a neat trick
allows us to fit quadratic regression via multiple linear regression. The trick is to set
w1 = x and to define a new variable w2 = x2. Then, when y is regressed on both
w1 and w2 this amounts to fitting a general quadratic of the form y = a+ bx + cx2,
where now a = β0, b = β1 and c = β2. To be clear, we define the vector w1 as

w1 =

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ (12.65)

and the vector w2 as

w2 =

⎛

⎜⎜⎜⎝

x2
1

x2
2
...

x2
n

⎞

⎟⎟⎟⎠ (12.66)

and then we regress y = (y1, . . . , yn) on w1 and w2.

In quadratic regression there are several possibilities. First, there may be evidence
of a linear association between y and x (from the simple linear regression), but the
relationship appears nonlinear and there is also evidence of a linear association
between y and both x and x2 combined. This latter evidence would come from
the combined regression output of (i) a statistically significant F-ratio and (ii) a

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 12.11 Plot of action potential width against length of previous ISI, together with quadratic
fitted by linear regression.

significant t-ratio for the coefficient of x2. This case is illustrated below. Note that it
is possible for the coefficient of x in the combined regression to be non-significant.
This should not necessarily be taken to mean that there is no linear component to
the relationship: it is generally preferable to use the general form y = a+ bx+ cx2,
which requires the bx term and thus the x variable. Actually, it is possible for the
coefficients of both x and x2 to be non-significant while the F-ratio is significant;
this occurs when the two variables are themselves so highly correlated that neither
adds anything to the regression when the other is already used.

As a second possibility, there may be evidence of a linear association between
y and x (from the simple linear regression), but there is no evidence of a quadratic
relationship. The latter would be apparent from (i) an OK (not curved) residual plot in
the simple linear regression and (ii) a non-significant t-ratio for the coefficient of x2.
The third possibility is that there may be no evidence of a relationship between y and
either x by itself or x combined with x2. This would be evident from an insignificant
t-ratio in the simple linear regression and an insignificant F-ratio in the combined
regression.

Let us now turn to an example.

Example 8.2 (continued from p. 193) On p. 193 we examined spike train data
recorded from a barrel cortex neuron in slice preparation, which was part of a study
on the effects of seizure-induced neural activity. Figure 8.5 displayed the decreas-
ing width of action potentials with increasing length of the interspike interval.
Figure 12.11 shows a plot of many action potential widths against preceding inter-
spike interval (ISI), where the data have been selected to include only ISIs of length

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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less than 120 ms. In the plot, the downward trend begins to level off near 100 ms,
and a quadratic curve fitted by linear regression is able to capture the leveling off
reasonably well within this range of ISI values. In this case the linear and quadratic
regression coefficients were both highly significant (p = 6 × 10−6 and p = .0017,
respectively, with the overall F-statistic giving p = 8× 10−14) and R2 = .61. �

In quadratic regression, illustrated in Example 8.2 above, we defined w1 = x and
w2 = x2. To fit cubic and higher-order polynomials we may continue the process
with w3 = x3, etc. An important caveat, however, is that the variables x1, x2, and x3
defined in this way are likely to be highly correlated, which may cause difficulties
in interpretation and, in extreme cases, may cause the matrix XT X to be singular
(non-invertible), in which case least-squares software will fail to return a useful
result. We discuss this issue further in Section 12.5.5.

A second nonlinear function that may be fitted with linear regression is the cosine.

Example 12.6 Directional Tuning in Motor Cortex In a well-known set of exper-
iments, Georgopoulos, Schwartz and colleagues showed that motor cortex neurons
are directionally “tuned.” Figure 12.12 shows a set of raster plots for a “center-out”
reaching task: the monkey reached to one of eight points on a circular image, and
this neuron was much more active for reaches in some directions than for others. The
bottom part of Fig. 12.12 shows a cosine function that has been fitted to the mean
firing rate as a function of the angle around the circle, which indicates the direction
of reach. For example (and as is also shown in the raster plots), reaches at angles
near 180◦ from the x-axis produced high firing rates, while those at angles close to
0◦ (movement to the right) produced much lower firing rates. The angle at which
the maximum firing rate occurs is called the “preferred direction” of the cell. It is
obtained from the cosine function.

To fit a cosine to a set of spike counts, multiple linear regression is used.
Let v = (v1, v2) be the vector specifying the direction of movement and let
d = (d1, d2) be the preferred direction for the neuron. Both v and d are unit vec-
tors. Assuming cosine tuning, the firing depends only on cos θ , where θ is the angle
between v and d. We have

cos θ = v · d = v1d1 + v2d2.

Letting μ(v) be the mean firing rate in a given interval of time when the movement
is in direction v, if we let the minimal firing rate be Bmin and the maximal firing rate
be Bmax , then cosine tuning may be written as the requirement that

μ(v) = Bmin + Bmax − Bmin

2
+ Bmax − Bmin

2
cos θ.

(Recall that the minimal value of the cosine is −1, and its maximal value is 1.) If
we now define β1 = Bmax−Bmin

2 d1, β2 = Bmax−Bmin
2 d2, and β0 = Bmin + Bmax−Bmin

2 we
obtain the linear form

μ(v) = β0 + β1v1 + β2v2. (12.67)
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Fig. 12.12 Directional tuning of motor cortex neurons (adapted from Georgopoulos et al. 1982).
Top displays raster plots (spike trains across five trials) for each of eight reaching directions. Bottom
displays corresponding mean firing rates.

Taking Ci(v) to be the spike count for the ith trial in direction v across a time interval
of length T , the observed spike count per unit time is
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Yi(v) = 1

T
Ci(v).

and we have
Yi(v) = μ(v)+ εi(v). (12.68)

Together, Eqs. (12.68) and (12.67) define a two-variable multiple linear regression
model from which the tuning parameters may be obtained. �

12.5.5 Effects of correlated explanatory variables
cannot be interpreted separately.

On p. 347 we used Example 8.2 to illustrate quadratic regression, and we then issued
a note of caution that x and x2 are often highly correlated. High correlation among
explanatory variables may cause numerical and inferential difficulties. Let us first
describe the numerical issue.

The least-squares solution (12.56) to Equation (12.55) results from multiplying
both sides of Equation (12.55) by (XT X)−1, under the assumption that XT X is non-
singular, i.e., that its inverse exists, which occurs when the columns of X are linearly
independent (see the Appendix). Linear independence fails when it is possible to
write some column of X as a linear combination of the other columns; in this case a
regression of that dependent column on the other columns would produce R2 = 1,
i.e., perfect multiple correlation. When the columns of X are very highly correlated,
even if they are mathematically linearly independent, they may be numerically essen-
tially dependent; for example, a regression of any one column on all the others might
produce R2 that is very nearly equal to 1 (e.g., R2 = .999). Because of this and related
considerations the details of the methods used to compute the least-squares solution
are important, as indicated in the footnote on p. 341. In the quadratic regression of
Example 8.2 on p. 347, for instance, the correlation between ISI and its square was
r = .98. An easy way to reduce correlation is to subtract the mean of the x variable
before squaring, i.e., take w1 = x and w2 = (x − x̄)2. With w1 and w2 defined in
this way for x = ISI in Example 8.2 we obtained r = −.08. Good numerical meth-
ods use general procedures that effectively transform the x variables to reduce their
correlations.

A deeper issue involves interpretation of results. The potential confusion caused
by correlated explanatory variables may be appreciated from the following concocted
illustration.

Illustration: Quadratic regression To demonstrate the interpretive subtlety when
explanatory variables are correlated we set x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and then
defined

yi = xi + ui
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Table 12.3 Quadratic regression results for the artificial data in the illustration.

Variable Coefficient SE tobs p-value

(Intercept) −2.4 2.5 −.95 .37
x 1.86 1.04 1.8 .12
x2 −.067 .092 −.73 .487

where ui ∼ N(0, 4). We then defined w1 and w2 using (12.65) and (12.66) and
regressed y = (y1, . . . , yn) on both w1 (representing x) and w2 (representing x2).
We obtained the results shown in Table 12.3, with R2 = .77, s = 2.1 and F = 11.9
on 2 and 7 degrees of freedom, yielding p = .0056. From Table 12.3 alone this
regression might appear to provide no evidence that y was linearly related to either
x or x2. However, regressing y on either x or x2 alone produces a highly significant
linear regression. Furthermore, the F-statistic from the regression on both variables
together is highly significant. These potentially puzzling results come from the high
correlation of explanatory variables: the correlation between x and x2 is r = .975.
Keep in mind that the t-statistic for x2 in Table 12.3 reflects the contribution of x2

after the variable x has been used to explain y and likewise the t-statistic for x reflects
the contribution of x after the variable x2 has been used to explain y. �

Let us consider this phenomenon further. Suppose we want to use linear regression
to say something about the degree to which a particular variable, say x1, explains y
(meaning the degree to which the variation in y is matched by the variation in the fit
of x to y) but we are also considering other variables x2, . . . , xp. We can regress y on
x1 by itself. Let us denote the resulting regression coefficient by b. Alternatively we
can regress y on x1, . . . , xp and, after applying Eq. (12.56), the relevant regression
coefficient would be β̂1, the first component of β̂. When the explanatory variables
are correlated, it is not generally true that b = β̂1 and, similarly, the quantities that
determine the proportion of variability explained by x1, the squared magnitudes of
the fitted vectors, are not generally equal. Thus, when the explanatory variables are
correlated, as is usually the case, it is impossible to supply a unique notion of the
extent to which a particular variable explains the response—one must instead be
careful to say which other variables were also included in the linear regression.

This lack of uniqueness in explanatory power of a particular variable may be
considered a consequence of the geometry of least squares.

Details: Let us return to the geometry depicted in Fig. 12.9. As in that
figure we take V to be the linear subspace spanned by the columns
of X. Because the columns of X are vectors, let us write them in the
form v1, . . . , vp, and let us ignore the intercept (effectively assum-
ing it to be zero, as we did when we related the SST decomposition
to the Pythagorean theorem). The observations on the first explana-
tory variable x1 then make up the vector v1. The extent to which x1
“explains” the response vector y now becomes the proportion of y that
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lies in the direction v1. This is the length of the projection of y onto
v1 divided by the length of y. However, length of the projection of y
onto v1 depends on whether we do the calculation using v1 by itself or
together with v2, . . . , vp. Let us write the projection as cv1 for some
constant c. If we consider v1 in isolation, we find

c = 〈v1, y〉
〈v1, v1〉 = b. (12.69)

If we consider v1 together with v2, . . . , vp, we must first project y
onto V , and then find the component in the direction v1. The result is
c = β̂1. The exception to this bothersome reality occurs when v1 is
orthogonal to the span of v2, . . . , vp (i.e., 〈v1, v〉 = 0 for every vector
v that is a linear combination of v2, . . . , vp). In this special case of
orthogonality we have b = β̂, and we regain the interpretation that
there is a proportion of y that lies in the direction of v1. Specifically,
in this orthogonal case we may write the projection of y onto V as
ŷ = c1v1 + v for some v in the span of v2, . . . , vp. We then have

〈v1, ŷ〉 = 〈v1, c1v1 + v〉 = c1〈v1, v1〉

so that the projection is c1v1 where

c1 = 〈v1, ŷ〉
〈v1, v1〉 .

On the other hand, we may reconsider the value c in (12.69). Because
y − ŷ is orthogonal to V when we write

〈v1, y〉 = 〈v1, ŷ + (y − ŷ)〉

we have 〈v1, y − ŷ〉 = 0. Therefore,

〈v1, ŷ〉 = 〈v1, y〉

so, in this case, c = c1. Thus, in this orthogonal case, b = β̂1. �

12.5.6 In multiple linear regression interaction effects
are often important.

We saw earlier that it is possible to fit a quadratic in a variable x using linear regression
by defining a new variable x2 and then performing multiple linear regression on x and
x2 simultaneously. Now suppose we have variables x1 and x2. The general quadratic
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in these two variables would have the form

y = a+ bx1 + cx2 + dx2
1 + ex1x2 + fx2

2 .

Thus, we may again use multiple linear regression to fit a quadratic in these two
variables if, in addition to defining new variables x2

1 and x2
2 we also define the new

variable x1 · x2. This latter variable is often called the interaction between x1 and x2.
To see its effect consider the simpler equation

y = a+ bx1 + cx2 + dx1x2. (12.70)

Here, for instance, we have �y/�x1 = b + dx2. That is, the slope for the linear
relationship between y and x1 depends on the value of x2 (and similarly the slope for
x2 depends on x1). When d = 0 and we graph y versus x1 for two different values of
x2 we get two parallel lines, but when d = 0 the two lines are no longer parallel.

Interaction effects are especially important in analysis of variance models, which
we discuss in Chapter 13.

12.5.7 Regression models with many explanatory variables
often can be simplified.

When one considers multiple explanatory variables it is possible that some of them
will have very little predictive benefit beyond what the others offer. In that eventu-
ality one typically removes from consideration the variables that seem redundant or
irrelevant, and then proceeds to fit a model using only the variables that help pre-
dict the response. When the number of variables p is small it is not difficult to sort
through such possibilities quickly, but sometimes there are much larger numbers of
variables, particularly if combinations of them, defining interactions as described in
Section 12.5.6, are considered. In this case choosing a suitable collection of variables
to fit is called the problem of model selection, and is based on model comparison
procedures such as those discussed in Section 11.1.6.

Example 12.7 Prediction of burden of disease in multiple sclerosis Li et al. (2006)
investigated the relationship between a measure of severity of multiple sclerosis,
known as burden of disease (BOD), and many clinical assessments. The response
variable, BOD, was based on MRI scans, and 18 different clinical measurements were
used as potential explanatory predictors, including such things as disease duration,
age at onset, and symptom types, as well as an important variable of interest the
Expanded Disability Status Scale (EDSS). One of their main analyses examined
data from an initial set of 1,312 patients who had been entered into 11 clinical trials
in multiple centers. The problem they faced was to determine the variables to use as
predictors from among the 18, together with possible interactions. Note that there
are

(18
2

) = 153 possible pairwise interaction terms. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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There is a huge literature on model selection in multiple regression. We very
briefly describe the ideas behind a few of the major methods, and then offer some
words of caution.

Let us begin with variables x1, x2, . . . , xp and the aim of selecting some subset
that predicts the response y well. Here, some of the x variables could be defined as
interaction terms. For example, if we had variables x1, . . . , xk and wanted to consider
all possible interaction effects, as defined in Section 12.5.6, then we would end up
with p = (k

2

)
variables in total. A very simple variable-selection algorithm is as

follows:

1. Regress y on each single variable xi and find the variable xa that gives the best
prediction (using R2).

2. Regress y on all two-variable models that include xa as one of the variables and
find the variable xb such that xa together with xb gives the best prediction.

3. Continue in this way: for k ≥ 3 and some set of variables we label xa1 , xa2 , . . . ,

xak−1 that have already been selected in previous steps, consider all regression
models that include, in addition, each of the remaining variables; find xj such that
(1) xa1 , xa2 , . . . , xak−1 , xj gives the best prediction and (2) the coefficient of xj is
statistically significant.

Note that criterion (2) provides a way of stopping the process with k < p.

This algorithm is an example of forward selection. It is also called a greedy algorithm
(because at every step in the process it is taking an apparently best next step). In the
form given above it is not yet completely specified because the level of significance,
or the value of the t-ratio, must be chosen; this will determine the number of vari-
ables k that are selected. It is also possible to reverse the process by starting with a
regression based on all variables x1, . . . , xp and then choosing, analogously to step
1 above, one variable to drop, and then repeatedly finding variables to drop until a
satisfactory model is found in which all variables are statistically significant. This
is called backward elimination. An algorithm that alternates between forward and
backward steps is called stepwise regression.

Within model selection algorithms, including forward selection, backward elimi-
nation, or stepwise regression, it is also possible to use criteria such as AIC and BIC
(see Section 11.1.6) to evaluate alternative regression models. (In regression, AIC is
very similar to another popular criterion known as Mallow’s Cp.) In principle, one
would examine all possible models and pick the one that is optimal with respect to
the chosen criterion, such as AIC. However, because each variable may be either
included in a model, or excluded from the model, there are 2p possible models and
it quickly becomes prohibitive to examine all possible models as p grows. Model
selection algorithms, therefore, provide search strategies but can not guarantee that
the optimal model is found.

Example 12.7 (continued) In their study, Li et al. used a stepwise procedure based
on AIC to select variables for predicting BOD. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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An additional, widely-used criterion for model selection is cross-validation. The
idea begins by considering the prediction of y by each model. Let us define an
observation from all the variables x1, . . . , xp to be a vector x. Then we are predicting
y by some function f (x). In the case of linear regression,

f (x) = β0 +
p∑

j=1

βjxj

where each model fixes some of the coefficients βj to be 0 (these are the coefficients
corresponding to variables excluded from the model). The corresponding theoretical
problem is to predict Y by some function f (x) of a random vector X, and we may
evaluate the prediction using mean squared error (MSE), E((Y− f (X))2). According
to the prediction theorem on p. 89 the MSE is minimized by the conditional expec-
tation E(Y |X = x), and we would, in principle, find this conditional expectation
through model selection and fitting. One possibility would be to attempt to choose
the model that gives the smallest MSE. However, because the MSE will depend on
unknown values of the coefficients, we must estimate it from the data. If we use the
same data both to fit models and to evaluate how well the models fit, we necessarily
obtain an overly optimistic answer for the MSE: we will have optimized the fit for
the particular data values at hand; if we were to get new data we probably would
not do as well. In other words, the estimated MSE will tend to be too small; it will
be downwardly biased. Furthermore, the amount of downward bias in the estimated
MSE will vary with the model, so the estimated MSE will not be a reliable model
comparison procedure.

Cross-validation attempts to get around the problem of optimistic MSE assessment
by splitting the n observations yi into a set of K groups, each group having the same
number of observations, or nearly the same number. Let us label the kth group Gk .
Then, for k = 1, . . . , K , we pick group Gk and call its observations “test data”
and the remainder of the observations “training data.” We use the training data to
fit models and we use the test data to evaluate the fits. Specifically, an observation
yi ∈ Gk is predicted by the fit from the training data in the K − 1 groups containing
all yi /∈ Gk . Letting ŷi,CV denote the fit of yi based on the training data that excludes
group Gk , the cross-validated estimate of MSE is

̂MSE = 1

n

K∑

k=1

∑

yi∈Gk

(yi − ŷi,CV )2.

This represents the quality of “out of sample” fit; conceptually, MSE is the average
squared error we would expect, theoretically, if we were to apply the fit on entirely
new data collected under precisely the same conditions. The model with the best
cross-validation performance ̂MSE is the model selected by K-fold cross-validation.
Cross-validation should, in principle, provide good estimates of MSE as K gets large
(so that the estimates of MSE will have good statistical properties). For any given
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sample size n the largest possible value of K is K = n. This results in leave-one-out
cross validation, a method recommended by Frederick Mosteller and John Tukey in
an influential book (Mosteller and Tukey 1968). Here is an example.

Example 12.8 Prediction of fMRI face selectivity using anatomical connectiv-
ity Saygin et al. (2011) used anatomical connectivities established from diffusion-
weighted imaging to predict differential responses to faces and objects in fMRI.
It is highly intuitive that functional activity in the brain, as measured by fMRI,
should depend on anatomical structure. Saygin et al. examined fMRI responses in
the fusiform face area of the temporal lobe, an area known to respond more strongly
when a subject is shown pictures of faces than when the same subject is shown pic-
tures of objects. They considered the response to pictures of faces, and to objects,
at every voxel in the fusiform face area and took as their yi variable in regression
analyses the normalized ratio of face response to object response for voxel i. The
xi vector of variables was made up of connectivities to 84 brain regions, which
were found using diffusion weighted imaging. This constituted their “connectiv-
ity” model. Leave-one-out cross-validation was used across 23 subjects to compare
this model with two other models that did not involve connectivity information. One
model defined the xi variables to be physical distances to the 84 brain regions. This
was the “distance” model. The other used the group average among all the other
subjects, as a single predictor xi. This was the “group average” model. For each
subject the authors fit these models to the other 22 subjects, then used the fits to
predict the fMRI responses among all the voxels for each subject. These authors
used mean absolute error instead of MSE. (We comment on this below.) Thus, they
computed the sample mean absolute error across all voxels for each subject. The
cross-validated estimate of mean absolute error was the sample mean15 of these 23
values. The results were as follows: connectivity model, .65; distance model, 1.06;
group average model, .78. This provided evidence that the connectivity model pre-
dicts fMRI activity better than either physical distances or group averaged responses.

�
In some problems it is computationally expensive to obtain n distinct fits, one for

each of the n training data sets needed for leave-one-out cross-validation. In such
cases, K is chosen to be much smaller, so that only K fits need to be computed. The
most popular value in this context is K = 10.

Cross-validation has been studied extensively (see Efron 2004; Arlot and Celisse
2010; and references therein). The argument that cross-validation should provide a
correction for a downwardly biased estimate of MSE is reminiscent of the motivation
for AIC given in Section 11.1.6. There, AIC was introduced to correct the bias in
estimating the Kullback-Liebler discrepancy between fitted model and true model. In

15 In K-fold cross-validation it is tempting to regard the average of the n MSE estimates as an
ordinary mean, and to apply the usual standard error formula (7.17). This does not work correctly,
however, because the n separate evaluations are not independent. Instead, the square of the standard
error in (7.17) is an underestimate of the variance. In fact, it is not possible to provide a simple
evaluation of the uncertainty attached to the cross-validation estimate of MSE, or risk (see Bengio
and Granvalet 2004).

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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regression, minimizing the Kullback-Liebler discrepancy corresponds to minimizing
MSE and, for large samples, AIC and leave-one-out cross-validation agree (Stone
1974). The great advantage of cross-validation is that it furnishes an estimate of MSE
even if the relationship between Y and X does not follow the assumed linear model.
On the other hand, if the linear model assumptions are roughly correct then AIC
tends to outperform cross-validation (Efron 2004).

Let us make two additional remarks. First, we phrased our comments above in
terms of MSE but, more generally, cross-validation provides an estimate of risk (see
p. 102) using loss functions other than that defined by squared error. In Example 12.8
absolute error was used. Second, cross-validation is not a substitute for replication
of experiments. Experimental replication provides much stronger evidence than any
statistical manipulation can create: new data will inevitably involve both small and,
sometimes, substantial changes in details of experimental design and data collection;
to be trustworthy, findings should be robust to such modifications and should therefore
be confirmed in subsequent investigations.

There is a different approach to the problem of using multiple regression in the
presence of a large number of possible predictor variables. Instead of thinking that
some variables are irrelevant, and trying to identify and remove them, one might
say that the coefficients are noisy and, therefore, on aggregate, likely to be too large
in magnitude. This suggests reducing the overall magnitude of the coefficients, a
process usually called shrinkage. We replace the least squares criterion (12.45) with

n∑

i=1

(yi − ŷi,p)
2 = min

β∗

(
n∑

i=1

(yi − y∗i )2 + λ magnitude(β∗)
)

(12.71)

where magnitude(β) is some measure of the overall size of β and is called a penalty.
The number λ is an adjustable constant and is chosen based on the data, often by cross-
validation (or, for some penalties, AIC or BIC). The criterion to be minimized in
(12.71) is penalized least squares and the solution ŷi,p is called penalized regression.
The two most common penalties are

magnitude(β) =
p∑

j=1

β2
j (12.72)

and

magnitude(β) =
p∑

j=1

|βj|. (12.73)



358 12 Linear Regression

These penalties are also called, respectively, L2 and L1 penalties.16 In the statistics
literature L2-penalized regression is often called17 ridge regression and L1-penalized
regression is called the LASSO (see Tibshirani 2011, and references therein). We give
a Bayesian interpretation of penalized regression in Section 16.2.3.

Example 12.9 MEG source localization In Example 1.2 we described, briefly,
the way MEG signals are generated and detected, and we discussed an application
in Example 4.7. There are 306 sensors and the sensor data may be analyzed directly
or, alternatively, an attempt may be made to identify the brain sources that produce
the sensor signals, a process known as source localization. One class of methods
overlays a large grid of possible sources on a representation of the cortex, and then
applies Maxwell’s equations in what is known as a “forward solution” that predicts
the sensor signals for any particular set of source activities. This results in a linear
model of the form (12.53) where X is determined by Maxwell’s equations and β

represents the source activity. A typical number of sources might be 5,000, so this
becomes a large problem. Furthermore, because n = 306 we have p > n which makes
the matrix XT X singular (non-invertible) and some alternative to least squares must
be used. The most common solutions involve L2 and L1 penalized least squares,18

which are used in the minimum norm estimate MNE and minimum current estimate
MCE methods of source localization in MEG. �

12.5.8 Multiple regression can be treacherous.

Multiple linear regression is a wonderful technique, of wide-ranging applicability. It
is important to bear in mind, however, the cautions we raised in the context of simple
linear regression, especially in our discussion of Fig. 12.5. With many explanatory
variables, the inadequacies of the linear model illustrated in Fig. 12.5 could be present
for any of the y versus xj relationships, for j = 1, . . . , p, and there are similar
but more complex possibilities when we use the multiple variables simultaneously.
Furthermore, it is no longer possible to plot the data in the form y versus x when
x = (x1, x2, . . . , xp) and p > 2. The assumption of linearity of the relationship
between y and x is crucial, and with multiple variables it is difficult to check.

An additional issue involves one of the most useful features of multiple regression,
that it allows an investigator to examine the relationship of y versus x while adjusting
for another variable u. This was discussed in Section 12.5.1 and its use in the inter-
pretation of neural data was described in Examples 12.4 and 12.1. In this context,
however, the phenomenon of attenuation of correlation, discussed in Section 12.4.4,

16 The penalty in (12.72) may also be written magnitude(β) = ||β||2 and in mathematical analysis
the Euclidean length is called an L2 norm. The penalty (12.73) is called an L1 penalty because it is
based, analogously, on the L1 norm.
17 Strictly speaking ridge regression refers to L2-penalized regression after the x variables are
normalized.
18 Actually, the penalty is applied to weighted least squares as described on p. 345.

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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must be considered. In Example 12.4, for instance, the authors wanted to examine
the effect of age on BOLD activity while adjusting for task performance. The vari-
ables used for adjustment were accuracy (x2) and mean reaction time (x3). For each
subject, the numbers x2 and x3 obtained for these variables were based on limited
data and therefore represent accuracy and reaction time with some uncertainty, which
could be summarized by standard errors. These standard errors were not reported by
the authors, and probably were small, but suppose, hypothetically, that the x2 and
x3 measurements had large standard errors. In this case, according to the result in
Section 12.5.1, the correlation of these noisy variables with BOLD activity would
be less than it would have been if accuracy and reaction time had been measured
perfectly. Therefore, the adjustment made with x2 and x3 would also be less than the
adjustment that would have been made in the absence of noise.

A similar concern arises when the measured variables capture imperfectly the
key features of the phenomenon they are supposed to represent. In Example 12.1,
the authors wanted to adjust the effect of reward size on firing rate for relevant
features of each eye saccade. They did this by introducing eye saccade amplitude,
velocity, and latency. If, however, a different feature of eye saccades was crucial
in determining firing rate (e.g., acceleration), then these measurements would only
be correlated with the key feature and would represent it imperfectly. In this sense,
the measured variables would again be noisy representations of the ideal variables.
The fundamental issue for adjustment is whether the measured variables used in a
regression analysis correctly represent the possible additional explanatory factors,
which are often called confounding variables. We discuss confounding variables
further in Section 13.4. The general problem of mismeasured explanatory variables
is discussed in the statistics and epidemiology literature under the rubric of errors
in variables. When multiple regression is used to provide statistical adjustments, the
accuracy of explanatory variables should be considered.

Finally, in Section 12.5.7 we noted the many alternative regression models that
present themselves when there are multiple possible explanatory variables, and we
described very briefly some of the methods used for grappling with the problem of
model determination. These approaches can be very successful in certain circum-
stances. However, there is often enormous uncertainty concerning the model that
best represents the data. A careful analyst will consider whether interpretations are
consistent across all plausible models. Furthermore, in assessing the relationship
between the response y and one of the explanatory variables xj, the process of model
selection can spuriously inflate the magnitude of an estimated coefficient β̂j. See
Kriegeskorte et al. (2010) for discussion.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13


Chapter 13
Analysis of Variance

Many experiments examine the effects of multiple experimental conditions. When
each measured response from a subject is a single-number, the data are usually ana-
lyzed with analysis of variance (ANOVA). The name has a certain logic because, as
we will see, the technique rests on a breakdown of sums of squares (assessing varia-
tion), but the null hypothesis typically takes the theoretical means to be equal among
the experimental conditions, specifying no treatment effect, so that one may think of
the methodology as an investigation of means. The general ideas developed in Chap-
ters 10 and 11 carry over to ANOVA. One additional, very important notion involves
the structure of the experiment. This is spelled out in Section 13.1. In Section 13.2
we indicate the way standard ANOVA models may be considered special cases of
linear regression, as treated in Section 12.5. This is important conceptually and com-
putationally. In Section 13.3 we take up nonparametric methods in ANOVA and in
Section 13.4 we discuss causality and the role of randomization, which is especially
relevant in clinical studies.

13.1 One-Way and Two-Way ANOVA

ANOVA can take many forms, depending on the design of the experiment and the
resulting structure of the data. We consider here only the two simplest kinds of
ANOVA and introduce them with a pair of examples.

Example 13.1 Stimulation and development of motor control Zelazo et al.
(1972) conducted a study to see whether stimulation of infants during the first eight
weeks of life could make them walk earlier. The stimulation involved a simulation
of walking in which a parent held the baby in a manner that would make it respond
reflexively with walking-type leg movements. The data in Table 13.1 are ages in
months at which 24 infants were judged to begin walking.1 Each 1-week-old infant

1 For pedagogical simplicity, we wanted the number of subjects per group to be equal. This is
not required for ANOVA; it merely makes things a bit easier to discuss. In the original data there were

R. E. Kass et al., Analysis of Neural Data, 361
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Table 13.1 Data from motor control experiment of Zelazo et al. (1972).

Active-exercise Passive-exercise No-exercise 8-Week control
Group Group Group Group

9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00
10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50
9.50 15.00 13.00 12.35

Entries are ages at which each of 24 infants began walking. The treatment group is “active-exercise”
and the other three groups served as controls

8 10 12 14 16

Age (months)

1

2

3

4

Fig. 13.1 Display of data from Table 13.1. The age of walking is shown for each of the four
conditions, with 1 being active exercise, 2 being passive exercise, 3 being no exercise, and 4 being
the 8-week control. Each larger plotted dot indicates the presence of 2 identical values of age within
a given condition (so that for each condition there are 6 observations at 5 locations on the graph).

was assigned to one of four groups, namely, an experimental group (active-exercise)
and three control groups (passive-exercise, no-exercise, 8-week control).2 The issue
is whether the active-exercise group walked earlier than the controls. From Fig. 13.1
it may be seen that the active-exercise group infants had somewhat earlier reported

(Footnote 1 continued)
only 5 subjects in the 8-week control group. We therefore added the 12.35 value to the 8-week
control group.
2 Infants in the active-exercise group received stimulation of the walking and placing reflexes during
four 3-minute sessions that were held each day from the beginning of the second week until the end
of the eighth week. The infants in the passive-exercise group received equal amounts of gross motor
and social stimulation as those who received active-exercise, but unlike the active-exercise group,
these infants had neither the walking nor placing reflex exercised. Infants in the no-exercise group
did not receive any special training, but were tested along with the active-exercise and passive-
exercise subjects. The 8-week control group was tested only when they were 8 weeks of age; this
group served as a control for the possible helpful effects of repeated examination.
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Table 13.2 Data from finger tapping experiment of Scott and Chen (1944).

Drug Subject No.
1 2 3 4

Pl 11 56 15 6
Th 26 83 34 13
Ca 20 71 41 32

Entries are tapping rates. Each of 4 subjects received all 3 treatments (drugs): placebo, theobromine,
and caffeine

ages of walking than those in the three control groups. However, there is quite a
bit of variability, with one of the 6 infants in the active group being relatively late
(13.0) and one in the no-exercise group being quite early (9.0). Thus, it’s hard to tell
whether there is a consistent pattern. �

Notice the layout of the data in the example above: it makes sense to display them
in columns, with each column identified with a different treatment. The next example
is different.

Example 13.2 Finger tapping in response to stimulants Scott and Chen (1944)
conducted an experiment on finger tapping in response to orally-administered stimu-
lants. Four subjects were each given three different treatments and then their finger-
tapping rates were analyzed. The treatments were caffeine (Ca); 1-ethyltheobromine
(Th: the stimulant in chocolate, similar to caffeine); and a placebo (Pl). The tapping
rates (rate minus 440, with “rate” not defined but possibly taps per minute) are shown
in Table 13.2.

In this case we would be interested in comparing the three treatments. The mean
tapping rates for Pl, Th, and Ca are 22, 39, and 41. Is this evidence that theobromine
and caffeine led to increased tapping rates? �

An important distinction between the two experiments above is that in the finger
tapping experiment in Example 13.2 each subject received all of the treatments.
Thus, the 12 data values were produced by only 4 subjects in the experiment, not
12. In the motor control experiment of Example 13.1, each subject received only one
treatment, and the 24 data values came from 24 subjects. The two situations require
related but different statistical methods. Table 13.1 is sometimes called a one-way
table and is treated by one-way ANOVA while Table 13.2 is called a two-way table
and is treated by two-way ANOVA.

13.1.1 ANOVA is based on a linear model.

The one-way ANOVA model is

Yij = μ+ αi + εij, (13.1)
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where Yij is the jth observation in the ith group, μ+ αi is the mean for the ith group
and εij is the error for the jth observation in the ith group (the discrepancy between Yij

and μ+ αi). Here, μ is the overall mean (the “grand mean”) and αi is the increment
added to that overall mean in obtaining the mean for the ith group, so that

1

I

I∑

i=1

μ+ αi = μ

and this implies
I∑

i=1

αi = 0. (13.2)

We take the number of groups to be I , so that i = 1, 2, . . . , I , and write the number
of observations in group i as ni. In some places we also write the ith group mean as

μi = μ+ αi.

The one-way ANOVA assumptions are

(i) the ANOVA model (13.1) holds;
(ii) the errors satisfy E(εi) = 0 for all i;

(iii) the errors εi are independent of each other;
(iv) V(εi) = σ 2 for all i (homogeneity of error variances), and
(v) εi ∼ N(0, σ 2) (normality of the errors).

Note that these are the same assumptions as those used in linear regression (apart
from the replacement of (12.5) with (13.1); see p. 315). As a result, residual analysis
may be used in very much the same way as in regression. Indeed, mathematically,
analysis of variance may be considered a special case of linear regression. We return
to this in Section 13.2.

The purpose of this model is to provide a basis for statistical comparison of the
group means μ + αi. That is, we ask whether there is evidence that the means are
different and, if so, we can estimate how different they are. Formally, we want to test
the null hypothesis that the groups means are equal:

μ+ α1 = μ+ α2 = · · · = μ+ αI .

The usual way the hypothesis is stated is as follows:

H0 : αi = 0 (13.3)

for all i, which implies that the group means are equal. It also satisfies the condition
that the grand mean μ remains the expectation of Yij under H0.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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13.1.2 One-way ANOVA decomposes total variability into average
group variability and average individual variability,
which would be roughly equal under the null hypothesis.

At the beginning of Section 12.5.2 we wrote the basic signal and noise decomposition
for regression,

SST = SSR+ SSE.

In ANOVA we decompose the variability in the data similarly into two pieces, replac-
ing SSR with a treatment or “group” sum of squares SSgroup. To test H0 defined by
(13.3) we compute a measure of the average amount of variability due to the groups,
and an average amount of variability due to error, then compare these. Under the null
hypothesis that the group means are equal, there should be no systematic variability
due to groups, so that the variability we see in our “average variability due to groups”
is the result of background variability in the measurements themselves, that is, the
error variability. In other words, the average variability due to groups should be about
the same size as the average variability due to error. Thus, to test H0 we use a ratio of
these measures of average variability and when the ratio is much larger than 1 there
is evidence against H0, in favor of there being differences among the groups. We first
specify and illustrate the procedure and then indicate its motivation as a likelihood
ratio test.

We begin with the total sum of squares

SST =
∑

i,j

(yij − ȳ..)
2

where the double dots in the subscript on y.. indicate that the mean is being taken over
all the values of y, averaging across both rows and columns. In the infant exercise
example we average across all 24 values. We also define the error (residual) sum of
squares to be

SSE =
∑

i,j

(yij − ȳi.)
2

where the single dot in the subscript on yi. indicates that the mean is being taken
within the ith group. In the infant exercise example there would be 4 means ȳi. for
i = 1, 2, 3, 4 and each would be an average across all 6 values in the appropriate
column. The group sum of squares is then

SSgroup = SST − SSE.

We next obtain averages of the group and error sums of squares by dividing by their
respective degrees of freedom, dfgroup and dferror . Because of the constraint (13.2)
we have dfgroup = I − 1 and, with n being the total number of observations, this
leaves n − 1 − (I − 1) = n − I degrees of freedom for error, i.e., dferror = n − I .

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Table 13.3 Group means and standard deviations for the data in Example 13.1.

Group N Mean St. Dev.

Active exercise 6 10.1 1.5
Passive exercise 6 11.3 1.9
No exercise 6 11.7 1.5
8-week control 6 12.35 .86

Table 13.4 Analysis of Variance table for data in Example 13.1.

Source DF SS MS F p-value

Groups 3 15.74 5.25 2.40 0.098
Error 20 43.69 2.18
Total 23 59.43

The table lists each source of variability, the degrees of freedom for that source, and the sum of
squares. For the groups and errors sources the mean squares (given by (13.4)) are also shown, and
the F-statistic (given by (13.5)) and p-value are shown on the groups line

The resulting averages, called the group mean square and the mean squared error,
are defined by

MSgroup = SSgroup/dfgroup

MSE = SSE/dferror . (13.4)

Finally, we obtain from these the F-ratio

F = MSgroup/MSE. (13.5)

Under the null hypothesis this ratio follows an Fν1,ν2 distribution, where ν1 = dfgroup

and ν2 = dferror which is used to compute the p-value. Equations (13.4) and (13.5)
should be compared with Eq. (12.49).

Note that in a certain sense “analysis of variance” is a misnomer. We are really
analyzing several means, and determining whether there’s evidence that they are
different. However, the basic tool for doing so is a comparison of sums of squares, that
is, a comparison of different sources of variability, which explains the terminology.

Example 13.1 (continued from p. 361) The means and standard deviations for
the 4 groups are shown in Table 13.3, and the basic ANOVA breakdown is given in
Table 13.4. The pooled standard deviation is s = √2.18 = 1.48. Because F = 2.40
on 3 and 20 d.f. with p = .098 there is no evidence of any differences among the
means. Although from the sample means it may appear that the mean age of walking
is somewhat smaller for the first group than those for the control groups, according to
the ANOVA F-test there is enough variability in the data that any differences among
the means are consistent with chance fluctuation. As we mentioned on p. 361, there

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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are a couple of points visible in Fig. 13.1 that increase the variability and, thus, the
denominator of the F-ratio. We will analyze these data further on p. 368. �

We now indicate how the F-test in (13.4) and (13.5) arises as a likelihood ratio
test by considering the simpler ANOVA problem in which σ is known. Let us write
the group means in the form μi = μ+ αi. The pdf for observation yij is

f (yij) = 1√
2πσ

e−
1
2

(yij−μi)
2

σ2

and from the joint pdf

f (y11, y12, . . . , yInI ) =
∏

ij

1√
2πσ

e−
1
2

(yij−μi)
2

σ2

the loglikelihood function (after dropping the constant involving
√

2πσ ) is

�(μ1, . . . , μI ) = − 1

2σ 2

∑

i,j

(yij − μi)
2. (13.6)

Under H0 we have μi = μ, for i = 1, . . . , I and the loglikelihood function becomes

�(μ) = − 1

2σ 2

∑

i,j

(yij − μ)2. (13.7)

When we maximize the loglikelihood in (13.6) we get

μ̂i = ȳi.

and

�(μ̂1, . . . , μ̂I ) = − 1

2σ 2

∑

i,j

(yij − ȳi.)
2

= − 1

2σ 2 SSE.

When we maximize the loglikelihood in (13.7) we get

μ̂i = ȳ..

and
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�(μ̂) = − 1

2σ 2

∑

i,j

(yij − ȳ..)
2

= − 1

2σ 2 SST .

The log of the likelihood ratio LR in (11.6) is

log LR = �(μ̂)− �(μ̂1, . . . , μ̂I )

and multiplying this by−2, and combining with (13.7) and (13.6) after inserting the
MLEs we get

− 2 log LR = 1

σ 2 SST − 1

σ 2 SSE

= SSgroup

σ 2 . (13.8)

From (13.8), the likelihood ratio test will reject H0 when SSgroup is sufficiently large
relative to σ 2.

The ANOVA F-statistic (13.5) arises from3 (13.8) when we estimate σ 2 by MSE
and normalize SSgroup by its degrees of freedom, which is done for mathematical
convenience (the ratio of MSgroup to MSE follows an Fν1,ν2 distribution).

13.1.3 When there are only two groups, the ANOVA F-test reduces
to a t-test.

In the special case of only two groups with two means μ1 and μ2, the null hypothesis
H0: μ1 = μ2 may be tested with a t-test. This turns out to be equivalent to the ANOVA
F test and, in fact, the square of the t-statistic is equal to the F-statistic (compare the
similar statements about regression on p. 337).

Example 13.1 (continued from p. 366) From the pooled standard deviation s =
1.48 reported on p. 366 we get the standard error of each mean SE = s/

√
6 = .60.

Comparing the active exercise group mean with the eight-week control we have a
difference of 12.35− 10.1 = 2.25. Using the pooled estimate s, this difference has

a standard error of SE(X̄4 − X̄1) = s
√

1
6 + 1

6 = .853 and the t ratio is

tobs = 2.25/.853 = 2.6

3 When σ is unknown the derivation is slightly different because σ must be included among the
parameters in the loglikelihood function, so its MLE must be found and the likelihood ratio is
different; but the end result is equivalent to the F-test.

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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analogously with Eq. (10.19). Here, however, we are using all the data from the 4
groups to compute s, rather than only the data from two groups we are currently
comparing. Therefore, we have 20 degrees of freedom going into s and thus 20
degrees of freedom for the t-test (rather than 10 degrees of freedom if we were using
only the 2 groups). We obtain p = .017.

An alternative analysis compares the active exercise group with the other three
groups, all of which could be considered controls. In this case, we would combine
the data from the 3 control groups and thereby end up with two groups: the active
exercise group and a single control group, the latter now having 18 observations.
We would then use the “two-sample t” analysis, as in (10.21). Carrying this out,
we obtain (i) a test of the null hypothesis that the means for these two groups are
equal, which we may write as H0: μactive − μcontrols = 0, and (ii) a 95 % CI for the
difference between the means μactive − μcontrols.

First, we find the two means and standard errors to be 10.12± 0.59 and 11.81±
.34, which gives a t-ratio of 2.46 on 22 degrees of freedom and p = .022. Second,
applying the formula for the 95 % CI in Eq. (7.31) we find our 95 % CI for the decrease
in mean age of walking for the active group compared with controls to be (.26, 3.1)
months.

The conclusions from this analysis are different from those on p. 366, based on
the F-test. We summarize on p. 374. �

13.1.4 Two-way ANOVA assesses the effects of one factor while
adjusting for the other factor.

On p. 363 we described the distinction between one-way and two-way tables by
contrasting Examples 13.1 and 13.2. To introduce the two-way analysis let us first
look further at the data in Example 13.2.

Example 13.2 (continued from p. 363) Figure 13.2 displays the tapping rates for
the three drugs across the four subjects. We can see that the subjects have very
different tapping rates, but for all four of them the placebo rate is noticeably lower
than that obtained with theobromine or caffeine. Also, the comparison of rates for
theobromine and caffeine is inconsistent across subjects. The quantitative analysis,
below, will support these qualitative observations. �

The two-way ANOVA model is

Yij = μ+ αi + βj + εij,

where Yij is the observation for the ith treatment on the jth subject, μ + αi + βj

is its mean, and εij is the error for the ith treatment and jth subject. Here, αi is the
increment added to the overall mean μ in obtaining the mean for the ith treatment
while βj is the increment added to overall mean in obtaining the mean for the jth
subject. We say that αi is the effect for the ith treatment and βj the effect for the

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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Fig. 13.2 Tapping rates displayed with identifiers “Pl” for placebo, “Ca” for caffeine, and “Th”
for theobromine.

Table 13.5 Analysis of Variance table for data in Example 13.2.

Source DF SS MS F p-value

Drugs 2 872 436 7.88 .021
Subjects 3 5478 1826 33 .0004
Error 6 332 55.3
Total 11 6682

The form of the table is similar to that in Table 13.4, except there are now F-ratios and p-values for
both drugs and subjects

jth subject. A common terminology replaces the subjects with blocks, so that one
would say βj is the effect for the jth block. This terminology comes from the origin
of ANOVA in agricultural field trials, where it referred to a block of land in a field.

As in one-way ANOVA, in two-way models the null hypothesis of interest is
H0: αi = 0 for all i. In the two-way case it is also possible to formulate the hypothesis
that all the βj’s are zero, as well. This is not usually an object of investigation in
experiments on multiple subjects because it would typically not be plausible for
the subjects all to react the same way to the various treatments. However, statistics
packages print out F-statistics and p-values for both hypotheses, so it’s important to
keep them straight (Table 13.5).

Example 13.2 (continued from p. 369) In the ANOVA for the finger tapping data
there are two “factors” to be considered, drugs and subjects. Here, F = 7.88 on
2 and 6 d.f. with p = .021 indicates some evidence that the treatment means are
different. There is also an F-ratio for subjects, which in fact is much larger and has a
considerably smaller p-value: in this example, there is a very substantial difference
among the subjects. In particular, the second subject has a much higher tapping rate
than the others. The variability among subjects might be important to the conclusions
one would wish to draw.
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We may say something about the means, as well. For the three groups the mean
tapping rates are, respectively, 22, 39, and 41. Standard errors are found by plugging
in an estimate s of σ and again applying SE = s/

√
n. We have s = √MSE =√

55.3 = 7.44. Since there are 4 observations per treatment group, we use n = 4 and
get 22 ± 3.7, 39 ± 3.7 and 41 ± 3.7. Clearly, the caffeine and theobromine groups
have tapping rates substantially above that for the placebo group. �

13.1.5 When the variances are inhomogeneous across
conditions a likelihood ratio test may be used.

The ANOVA F-test remains accurate for modest deviations from the homogeneity
of variance assumption, which is assumption (iv) on p. 364. A rough rule of thumb
is that as long as each ratio of pairs of standard deviations for two different groups
is less than 3, the F-test should be accurate. However, in extreme cases where group
i has a standard deviation σi that is much larger than the standard deviation σk for
group k, there will be much more information in an observation yij about μi than
in ykj about μk . In such situations the usual F-statistic fails to take account of the
differing contributions of data from different groups to the assessment of H0 and it no
longer has an F distribution. The problem may be fixed by re-deriving the likelihood
ratio statistic and applying a permutation or bootstrap test. See Behseta et al. (2007)
and references therein.

Example 4.7 (continued from p. 306) In examining directional information at each
MEG brain source Wang et al. (2010) found grossly different standard deviations for
the 4 different movement directions. They therefore applied the procedure of Behseta
et al. (2007) to get likelihood ratio test statistics at every source and every time point.
This was also used by Xu et al. (2011) within the permutation test described briefly
on p. 306. �

13.1.6 More complicated experimental designs
may be accommodated by ANOVA.

We have reviewed the fundamental ideas in ANOVA but have specified the procedures
only in the two simplest cases involving one or two experimental factors. In many
studies, especially involving human subjects, the designs can be more complicated.
Sometimes they involve multiple factors, e.g., when there are 3 factors the analysis
involves 3-way ANOVA. In Example 13.2 each subject’s tapping rate was measured
repeatedly, across 3 conditions. This is a special case of a repeated measures design.
In many situations each subject is measured for all treatment conditions, but there
is another factor, such as gender, that applies to groups of subjects. Such repeated-
measures designs require specialized ANOVA methods. An additional possibility is
that subjects, or other factors, may be considered themselves to provide an interesting
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source of variation. In this case their effects may be modeled as random variables.
This generates random-effects models and they too require specialized techniques.
We discuss random-effects models briefly in Chapter 16.

13.1.7 Additional analyses, involving multiple comparisons,
may require adjustments to p-values.

Because ANOVA involves comparison of several means, many possible hypotheses
may be of interest.

Example 13.1 (continued from p. 368) We have already looked at the data on
development of motor control in two different ways. On p. 366 we used ANOVA
to test the hypothesis of no differences among the mean age of walking, H0: μ1 =
μ2 = μ3 = μ4. Then, on p. 368, we reported two further analyses. The first used a
t-test to test the null hypothesis of no difference between the active exercise group
and the eight-week control group mean ages of walking, H0: μ1 = μ4 with a t-test.
The second used a t-test to test the null hypothesis of no difference between the
mean age of walking in the active exercise group and that in the three control groups
combined, H0: μ1 = 1

3 (μ2 + μ3 + μ4). We also could have singled out the other
control groups and tested H0: μ1 = μ2 and H0: μ1 = μ3. Furthermore, because the
p-value quantifies the rarity, or surprise, of the results, we ought to ask what other
results might have been as surprising as those we actually observed. What if the
passive exercise group had produced apparent earlier walking, similar to the active
exercise group, by comparison with the eight-week control group? Wouldn’t that
have been a result we would have found interesting? Once we admit that this, too,
would have been reported as a finding, then we realize that we were, effectively,
testing many possible null hypotheses. The problem of testing multiple hypotheses
was discussed in Section 11.3. �

As illustrated in Example 13.1, above, ANOVA often generates many plausible
null hypotheses and, in this context, the problem of multiple hypothesis testing is
also called the problem of multiple comparisons. In Section 11.3 we presented the
Bonferroni correction, which can be applied when the number of comparisons (null
hypotheses) is easily enumerated. We commented that the Bonferroni method is con-
servative, in the sense of yielding adjusted p-values that sometimes seem unnecessar-
ily large, making it relatively difficult to obtain statistically significant results. This
has spawned a large literature on multiple comparison procedures, most of which aim
to provide smaller p-values under specific circumstances, so that it becomes easier to
declare statistical significance. For example, a method due to Dunnett assumes there
is a single control group with mean μc and considers all null hypotheses of the form
H0: μi = μc, for i �= c. When there are I means, there are I−1 such null hypotheses
and, under the standard ANOVA assumptions it is possible to find an exact p-value
for this case. Similarly, when there is no single control group, a method due to Tukey
examines all pairs of means, i.e., all null hypotheses of the form H0: μi = μj for

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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distinct i and j. When there are I means, this narrows the number of hypotheses down
to

(I
2

)
and, again, an exact p-value can be obtained.

We have two general comments on the problem of multiple comparisons in
ANOVA. First, permutation tests discussed in Chapter 11 can be used to obtain
p-values that take account of multiple testing procedures, as illustrated in Exam-
ple 4.7 on p. 306. In Example 13.1, for instance, we might want to compare each
of the 3 control groups to the active exercise group, using 3 t-tests. We then might
focus on the t-test having the largest t-value. To obtain a p-value for this comparison
we could create permutation pseudo-data and for each set of pseudo-data we could
test all 3 null hypotheses of equality between mean of the active exercise group and
the mean of each of the three control groups and we could store the largest of the
3 t-statistics based on the pseudo-data. A comparison of the largest t-statistic com-
puted from the real data with those computed from the pseudo-data would give us a
p-value, as in the cases examined in Section 11.2.1.

A second point is that multiple comparisons procedures in ANOVA are different
than those arising in the neuroimaging of Example 11.3, which was used to motivate
the multiple testing procedures discussed in Section 11.3.2. In neuroimaging there
are typically thousands of null hypotheses, while in ANOVA, even when considering
many possible combinations, the number is usually much smaller. The adjustments in
ANOVA, including the Bonferroni correction, are therefore less severe. Importantly,
when different multiple comparison methods lead to inconsistent conclusions it is
an indication that the results are equivocal. In fact, in many ANOVA settings a
very workable way to proceed is to begin by relying on the F test. If one obtains
a significant F-statistic there is evidence for a difference among the means, and it
therefore makes sense to go ahead and examine whichever means happen to look
interesting, without worrying much about the process of selecting them. In other
words, a widely-advocated method, sometimes called the protected least-significant
difference, is to require a significant F statistic and then to report results from the
many t tests, or any of them that seem to be of interest.

Details: A contrast among the means is a linear combination
∑

i ciμi

for which
∑

ci = 0. For example, when I = 4, the contrast vector
c = (1,−1, 0, 0) would define the contrast μ1 − μ2. Corresponding
to any contrast we have the null hypothesis that the contrast is zero,
i.e.,

H0:
I∑

i=1

ciμi = 0. (13.9)

It is possible to define a test of this null hypothesis with a p-value
that adjusts for examining all possible contrasts. In other words, the
null hypothesis being tested is that H0 in (13.9) holds for all contrast
vectors c. This is usually called the Scheffé test. In terms of linear
combinations of the means, this is a maximally protective procedure:
it guards against spurious results from examining all possible linear

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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comparisons. Under the standard assumptions, it may be shown that
the F-test is significant at level α if and only if there exists a linear
contrast for which a test of H0 defined by (13.9) is significant at level
α according to the Scheffé test. �

Example 13.1 (continued from p. 372) Where does all this leave us in this example?
We may summarize by saying that there is some evidence, but not strong evidence,
that the active group mean age of walking is a bit younger than that for the control
groups. The marginal nature of this evidence becomes clear when we ignore the
special feature that the latter three groups are all controls and look for differences
among all four groups: we find no evidence for this, according to the F-test. Given
that it may be difficult to determine exactly when a given child walks, and it is not
clear that the parents made this determination in the absence of knowledge about
what to expect based on the experimental hypothesis, some skepticism would seem
appropriate.4 �

13.2 ANOVA as Regression

13.2.1 The general linear model includes both
regression and ANOVA models.

We now return to the matrix formulation of multiple regression, discussed in
Section 12.5.3, and show how linear regression may be used to solve problems of
analysis of variance. The points are, first, it can be helpful conceptually to re-frame
ANOVA as regression and, second, statistical software typically does this.

ANOVA concerns the comparison of means among several groups, corresponding
to experimental conditions. Let us consider two simple examples. Suppose X is the
n× 1 vector of 1s

X =

⎛

⎜⎜⎜⎝

1
1
...

1

⎞

⎟⎟⎟⎠ .

We then compute XT X = n and XT Y =∑
yi and find

(XT X)−1XT y = ȳ.

Therefore, the sample mean may be found by applying regression with this very
special version of the design matrix X.

4 On the other hand, the paper by Zelazo et al. presented an additional measure where the results
were more striking. On this subject, see Adolph (2002).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Next, consider two groups of m values y11, . . . , y1m and y21, . . . , y2m,
corresponding to two experimental conditions, having sample means ȳ1 and ȳ2. We
define

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11
...

y1m

y21
...

y2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.10)

and

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
...

...

1 0
0 1
0 1
...

...

0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.11)

where the first column contains m rows of 1s followed by m rows of 0s and the
second column contains m rows of 0s followed by m rows of 1s. The first column
of X is an indicator variable, indicating membership in the first group, i.e., the ith
element of the first column of X is 1 if the ith element of y is in the first group and is
0 otherwise. The second column of X is an indicator variable indicating membership
in the second group. We compute

XT X =
(

m 0
0 m

)

XT y =
(∑

y1i∑
y2i

)

and

(XT X)−1XT y =
(

ȳ1
ȳ2

)
.

Thus, the sample means are obtained from multiple regression based on the design
matrix in (13.11). In a similar manner we may use linear regression to compute means
across several experimental conditions: for each condition we introduce an additional
indicator variable as an additional column of the design matrix. The ANOVA from
this regression becomes the same as the ANOVA table used in 1-way ANOVA. In
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this case of two conditions, the regression results would be equivalent to those from
a t-test, as described in Section 13.1.3.

Before leaving the subject of indicator variables, let us make the further point that
there are typically many reasonable choices of the way to code the columns of the
X matrix. For example, if we reconsider two groups of m values y11, . . . , y1m and
y21, . . . , y2m, we could take

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
...

...

1 1
1 −1
1 −1
...

...

1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.12)

In this case, X is no longer made up of indicator variables, but its columns span the
same space as that spanned by the indicator variables given in (13.11). That is, a
vector v is a linear combination of the columns of X using (13.12) if and only if it
is a linear combination of the columns of X using (13.11), though the coefficients of
the linear combinations will be different in the two cases. Another way to say this is
that the space of fitted values V = {Xβ∗, β∗ ∈ R2}, defined in Section 12.5.3, is the
same regardless of whether the design matrix X takes the form of (13.11) or (13.12).
Using (13.12) we obtain

XT X =
(

2m 0
0 2m

)

XT Y =
(∑

y1i +∑
y2i∑

y1i −∑
y2i

)

and

(XT X)−1XT Y =
(

ȳ
(ȳ1 − ȳ2)/2

)

where ȳ is the overall mean. The second component (ȳ1 − ȳ2)/2 is often called a
contrast, because it is “contrasting” the means of the groups. Generally speaking, a
contrast vector (leading to a contrast estimate) is one whose components add to zero;
see the discussion surrounding (13.9). In ANOVA settings, where there are multiple
groups, it is often of interest to define an X matrix made up of contrast vectors,
together with the vector 1vec whose components are all equal to 1.5

A different way to represent ANOVA data is also useful, especially with statistical
software. The input to software is typically a vector of data, such as represented

5 It is also convenient to require the vectors to be orthogonal to one another, in which case they are
called orthogonal contrasts. For orthogonal contrasts, each estimate is independent of the others.
This is a topic discussed in many books on regression analysis and experimental design.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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in (13.10), and the software must be informed which observations correspond to
different groups. In conjunction with the data in (13.10) we define

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...

1
2
2
...

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.13)

where the first m rows are 1s and the last m rows are 2s. The values 1 and
2 in the vector L in (13.13) are called the levels of the conditions or factor.
In the case of the finger tapping data in Example 13.2 we could define y =
(11, 26, 15, 6, 26, 83, 34, 13, 20, 71, 41, 32)T and then set

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.14)

so that the first column of the level matrix L represents the “levels” of the drugs
(1 for Placebo, 2 for Theobromine, 3 for Caffeine) and the second column represents
“levels” of the subjects (1 for first subject, etc.). Statistical software used for 1-
way or 2-way ANOVA requires some identifier of group structure, such as (13.13)
and (13.14). It is possible to produce a design matrix X from a level matrix L, and
vice-versa. ANOVA software often provides functions for this purpose.

13.2.2 In multi-way ANOVA, interactions are often of interest.

In Section 12.5.6 we described the way interactions between explanatory variables
arise in multiple regression. Interactions play an important role in many ANOVA
settings. Here we consider the simplest case of interactions between two conditions
that each have two levels and then connect the ANOVA and regression contexts.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 13.3 Hypothetical plots of mean saccadic reaction time when angular distance from fixation
to target is either −15 or −5 degrees, i.e., when the eyes fixate either 15 or 5 degrees to the right
of the target. Solid lines correspond to patients; dashed correspond to controls. In the left plot the
lines are parallel, indicating the reaction time is longer among patients by the same amount for both
angular distances; there is no interaction between angular distance and subject classification. In the
right plot the increase reaction time among patients is greater at−15 degrees than at−5 degrees, so
the lines are no longer parallel; this represents an interaction between angular distance and subject
classification.

Example 2.1 (continued) In the experiment on saccadic reaction time, Behrmann
et al. (2002) sought to characterize the way eye saccades differed among patients
with hemispatial neglect compared with control subjects.6 We use this context to
illustrate presence and absence of interaction. Let Y be saccadic reaction time, x1
represent the distance from eye fixation to target, measured in degrees of angle to
the right. When the target was on the left side of fixation, which was the neglected
side for the patients, the angle was negative. We let x1 = 1 when the target was
at −15 degrees (15 degrees to the left of fixation) and x1 = 0 when the target
was at −5 degrees. We also let x2 be an indicator variable indicating patients,
i.e., x2 = 1 for patients and x2 = 0 for control subjects. These variables define
4 mean saccadic reaction times: μ11 is the mean reaction time among patients when
the target was at −15 degrees; μ10 is the mean reaction time among controls
when the target was at −15 degrees; μ01 is the mean reaction time among patients
when the target was at −5 degrees; and μ00 is the mean reaction time among
controls when the target was at−5 degrees. If patients and controls reacted similarly,
except that patients had a fixed latency of response, then the means would satisfy

H0: μ11 − μ10 = μ01 − μ00 (13.15)

which is the null hypothesis of no interaction. The left side of Fig. 13.3 displays a
possible set of four means satisfying H0 in (13.15). On the other hand, if the patients
also moved their eyes more slowly then their mean response would be even longer
at −15 than at −5, and we would have

6 The purpose of the study was to distinguish responses based on eye-centered coordinates,
head-centered coordinates, and trunk-centered coordinates.
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μ11 − μ10 > μ01 − μ00,

as shown on the right side of Fig. 13.3. The second case, but not the first, corresponds
to the presence of an interaction effect between x1 and x2. Statistical evidence of an
interaction effect would be found by obtaining a statistically significant interaction
of x1 and x2. �

In Section 12.5.6 we said that in regression based on explanatory variables x1 and
x2 the variable defined as the product x1x2 represents the interaction between these
variables. In the equation

y = a+ bx1 + cx2 + dx1x2, (13.16)

which was Eq. (12.70), we noted that when d = 0 the graphs of y versus x1 for two
different values of x2 produce two parallel lines, but when d �= 0 the two lines are no
longer parallel. Figure 13.3 displays an example of this phenomenon. In ANOVA the
variables correspond to the experimental design, as outlined briefly in Section 13.2.1,
and interaction effects are found via least-squares regression.7 We omit details. Here
is a neuroimaging example.

Example 13.3 Neural correlates of delay of gratification Successful decision
making often requires an ability to forgo immediate gain in favor of increased future
reward. Casey et al. (2011) reported fMRI results for group of individuals who had
been studied 40 years earlier, as preschool children, for their ability to delay grati-
fication. Previously it had been shown that performance on a delay-of-gratification
task during childhood predicted ability to perform on a go/no-go task as adults. The
authors imaged their subjects during go/no-go tasks. One of their findings involved
the inferior prefrontal gyrus, an area thought to be involved in impulse control during
similar tasks. Based on the childhood results, the authors categorized the subjects
has either “low” or “high” childhood ability to delay gratification. The question was
whether the two groups had different neural activity in the inferior prefrontal gyrus
40 years later, and the experimental prediction was that in the low ability group
neural activity in the inferior prefrontal gyrus would be similar on go and no-go
trials, but for the high ability group there would be much stronger activity on no-go
trials (when impulse control is operative) than on go trials. This corresponds to an
interaction between trial type (“go” vs. “no-go”) and subject group (low or high
childhood ability). Let us write the means of the neural activity in go and no-go

trials8 for the low and high ability groups as μlow
go , μlow

nogo, μ
high
go , μ

high
nogo. The null

hypothesis of no interaction would be

7 ANOVA may also be applied, as a special case of regression, when one explanatory variable is
quantitative and another variable is an ANOVA indicator variable. This is usually called analysis of
covariance or ANCOVA. Its purpose is to adjust the ANOVA for effects of the quantitative variable.
See p. 332.
8 We are here simplifying by ignoring some aspects of the experimental design.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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H0: μlow
nogo − μlow

go = μ
high
nogo − μ

high
go .

Casey et al. found evidence against H0, reporting a statistically significant interaction
(p = .014) between trial type and subject group. �

In Example 13.3 it was hypothesized that for one group of subjects (the low
ability group) the means under the two conditions (μgo and μnogo) would be very
close in magnitude while for the other group (the high ability group) they would
be quite different. It would be tempting to test H0 : μgo = μnogo for each of the
two groups: if the test were significant for the second group but not for the first
group one might then conclude that the two groups were different with regard to the
two conditions. In fact, such reasoning is common in neuroscience and psychology
(see Nieuwenhuis et al. 2011). Unfortunately, it is not correct. As pointed out in
Section 10.4.8, a non-significant test does not itself provide evidence for H0. Thus,
in particular, a non-significant test of H0 : μgo = μnogo does not provide evidence
that the two means are approximately the same. Instead, a confidence interval or test
for the interaction effect should be reported, as in Example 13.3.

13.2.3 ANOVA comparisons may be adjusted using analysis
of covariance.

In comparing results under two or more experimental conditions it often happens
that the subjects (or other experimental units) are not comparable with respect to
some background variable, often called a covariate. For instance, suppose we have
data under two conditions as in (13.10). As indicated in Section 13.2.1, the two means
ȳ1 and ȳ2 may be compared by performing the regression of y on the X matrix given
by (13.11), producing results that are equivalent to a t-test (and a t-based confidence
interval). Now suppose we have an additional covariate u with values given by

u =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11
...

u1m

u21
...

u2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.17)

If we regress y on both X and u we will obtain a comparison between the means under
the two conditions after adjusting for the covariate u. As explained at the beginning
of Section 12.5, this is a consequence of the regression formulation.

Example 13.4 Improving Working Memory in Children with ADHD Deficits
in working memory (WM) are associated with ADHD. Klingsberg et al. (2005)

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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reported results of a randomized, controlled double-blind trial aimed at assessing
the possible benefits of a computerized training program aimed at improving WM.
(The virtues of randomized, double-blind trials are discussed briefly in Section 13.4.)
The training program consisted of at least 25 sessions, each lasting roughly 40
minutes, in which subjects completed WM tasks. In the experimental condition the
difficulty of the WM tasks was automatically adjusted to match the current assess-
ment of the subject’s WM. In the control condition difficulty remained at an initial
low level. A total of 42 children with ADHD (ages 7–12) were randomly allocated
to one of the two conditions and completed the entire protocol.

The key outcome was “span-board” task performance, a standard assessment of
visuospatial WM. This was assessed at the subject’s initial visit and then twice after
training had been completed: both 5–6 weeks after the initial visit and, again, 3
months subsequent to this. Baseline score at the initial visit was used as a covariate,
together with age and number of days of training. The authors reported a highly
significant difference between span-board task performances under the experimental
and control conditions, after adjusting for the covariates, with p = .001 at 5–6 weeks
post initial visit and p = .002 at the second visit 3 months later. This constitutes strong
evidence that WM can be improved by training among ADHD children. �

The use of covariates to adjust comparisons in the context of ANOVA is usually
called analysis of covariance.

13.3 Nonparametric Methods

ANOVA assumption (v) on p. 364, normality, is often suspect. Because ANOVA is
a special case of regression and, under weak conditions, the least-squares estimates
are asymptotically normal according to (12.63), the ordinary ANOVA procedures
work well with large samples even for non-normal data. Sometimes, however, the
sample size may be modest while the data appear grossly non-normal. In the next
two subsections we discuss two approaches to ANOVA for non-normal data. The
first, in Section 13.3.1, is based on ranks, and the idea is to replace each data value
by its rank within the whole data set. Rank-based procedures remove the assumption
of a specific distributional form. The second approach involves permutation and
bootstrap tests, as discussed in Sections 11.2.1 and 11.2.2. We describe these very
briefly in Section 13.3.2.

The body of ANOVA methods under the assumption of normality are called
parametric, meaning that they are based on probability models characterized by a
small number of parameters. The methods in Sections 13.3.1 and 13.3.2 are nonpara-
metric. Please note, however, that all these procedures continue to make the more
consequential assumptions of additivity and independence of the errors.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 13.6 Data from Frezza
et al. (1990) on first-pass
alcohol metabolism.

Alcoholic Non-alcoholic Alcoholic Non-alcoholic
Women Women Men Men

0.6 0.4 1.5 0.3
0.6 0.1 1.9 2.5
1.5 0.2 2.7 2.7

0.3 3.0 3.0
0.3 3.7 4.0
0.4 4.5
1.0 6.1
1.1 9.5
1.2 12.3
1.3
1.6
1.8
2.0
2.5
2.9

13.3.1 Distribution-free nonparametric tests may be obtained
by replacing data values with their ranks.

To describe rank-based ANOVA we begin with an example.

Example 13.5 Alcohol metabolism among men and women Women seem to have
a lower tolerance for alcohol than men, and are more prone to develop alcohol-related
diseases. When men and women of the same size and history of drinking consume
equal amounts of alcohol, the alcohol in the bloodstream of the women tends to be
higher. In research by Frezza et al. (1990), the “first-pass” metabolism of alcohol
in the stomach was studied. The data shown in Table 13.6 come from 18 women
and 14 men who volunteered to be studied. Each subject was given two doses of
.3 g ethanol per kilogram of body weight, one orally and one intravenously on two
different days. The difference in concentrations of alcohol in the blood (at some
fixed time after administration), between the intravenous dose and the oral dose,
provides a measure of first-pass metabolism in the digestive system and liver; this
defines the response variable in the table, with units in mmols per liter per hour.
If first-pass metabolism were more effective in men than women, the difference in
levels following intravenous and oral administration would tend to be higher among
men.

We begin by ignoring the distinction between alcoholic and non-alcoholic sub-
jects. This reduces the data to two groups: women and men. The data in Table 13.6
are strikingly skewed toward high values. One possibility would be transform the
data and apply the usual t-test. Instead, we describe a rank-based analysis.
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Table 13.7 Data from
Table 13.6 together with
corresponding ranks, where
the smallest observation has
rank 1 and the largest has
rank n = 32.

Case Difference Female Rank

1 0.6 1 8.5
2 0.6 1 8.5
3 1.5 1 14.5
4 0.4 1 6.5
5 0.1 1 1.0
6 0.2 1 2.0
7 0.3 1 4.0
8 0.3 1 4.0
9 0.4 1 6.5

10 1.0 1 10.0
11 1.1 1 11.0
12 1.2 1 12.0
13 1.3 1 13.0
14 1.6 1 16.0
15 1.8 1 17.0
16 2.0 1 19.0
17 2.5 1 20.5
18 2.9 1 24.0
19 1.5 0 14.5
20 1.9 0 18.0
21 2.7 0 22.5
22 3.0 0 25.5
23 3.7 0 27.0
24 0.3 0 4.0
25 2.5 0 20.5
26 2.7 0 22.5
27 3.0 0 25.5
28 4.0 0 28.0
29 4.5 0 29.0
30 6.1 0 30.0
31 9.5 0 31.0
32 12.3 0 32.0

The data are printed out again in Table 13.7, with each rank listed at the end. The
rank goes from 1 up to 32, with the smallest value getting the rank 1 and the largest
value getting the rank 32. Ranks ending in .5 represent ties, i.e., cases in which
some data value appears twice. The women in the study have a 1 in the “females”
column. �

Rank-sum methods compare the ranks of the two groups. That is, if one group has
values of its ranks that are sufficiently much larger than those of the other group, there
will be evidence that the means of the two groups are different. More specifically, we
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Table 13.8 Four
observations from Table 13.7.

Case Difference Female Rank

1 0.6 1 1
18 2.9 1 3
19 1.5 0 2
32 12.3 0 4

may find the sum of the ranks from one of the groups and see whether it is either much
larger or much smaller than would be expected if, in fact, the two groups followed
the same distribution. Based on the null hypothesis that the probability distributions
for the two groups are the same, we can get a p-value. The test statistic W is the sum
of the ranks from one of the two groups. This is the rank-sum test. It is sometimes
called the Wilcoxon rank-sum test, and it is also often called the Mann-Whitney
test. Let us write the distribution functions for males and females as Fmales(x) and
Ffemales(x). The rank-sum test tests the null hypothesis

H0: Fmales(x) = Ffemales(x)

for all x.
To be specific about the procedure, suppose the alcohol metabolism data consisted

only of the four observations in Table 13.8. In this case we would rank the data as 1,
3, 2, 4 (0.6 is the smallest, 2.9 is the third smallest, 1.5 is the second smallest, and
12.3 is the fourth smallest). Then we would add up the values of the ranks for the
females to get the statistic W = 1+ 3 = 4.

Example 13.5 (continued) For the data in Table 13.7 we obtained the rank-sum test
statistic Wobs = 330 with p = .0002. This may be compared with the usual t-based
method gave Tobs = 3.41 with p = .0042. In this case, we get similar conclusions
and are reassured that the assumption of normality is not crucial. In fact, if we first
transform the data by taking logs, the usual t-test gives p = .0002. �

An analogous procedure for several groups is called the Kruskal-Wallis test. It
may be used in place of the usual F-statistic from an ANOVA.

Example 13.5 (continued) When all four groups are used and the data are trans-
formed by logs we find p = .003 from the usual ANOVA F-test. In fact, the residual
analysis for the log-transformed data looks pretty good and we would find little rea-
son to worry about the assumption of normality. However, using the Kruskal-Wallis
test we get p = .002, which again corroborates the conclusion.

In using this example to describe rank-based methods we have concentrated on
technique, but a more basic concern lurks here: we must wonder about the extent to
which the volunteers represent the population as a whole, and whether the particular
men and women in the study might for some reason self-select in a manner that was
related to their alcohol metabolism. We return to such considerations in Section 13.4.

�
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13.3.2 Permutation and bootstrap tests may be used to test ANOVA
hypotheses.

In Section 11.2 we described how permutation and bootstrap tests may be used as
alternatives to the t-distribution for computing a p-value in order to test H0: μ1 = μ2
based on data involving sample sizes n1 and n2. The essential method was to (i) merge
the data, then (ii) repeatedly resample the n1+n2 data values, putting them arbitrarily
into groups of size n1 and n2 to create pseudo-data, (iii) to each pseudo-data pair of
samples apply the t-statistic, and finally (iv) see what proportion of the pseudo-data
give t-statistic values greater than that observed in the real data. When the sampling
is done without replacement the method is a permutation test, and with replacement
it becomes a bootstrap test.

For one-way ANOVA the procedure is exactly analogous. For instance, with 3
conditions we would have data with sample sizes n1, n2, and n3; we would follow
step (i) then in (ii) resample the n1 + n2 + n3 data values and put them into groups
of sizes n1, n2, n3; in (iii) we would get the F-statistic, and likewise in (iv) we would
see what proportion of the pseudo-data F values exceed the F obtained for the real
data.

Two-way ANOVA is more complicated because the two-way structure must be
respected, but the concept is the same. See Manly (2007).

13.4 Causation, Randomization, and Observational Studies

13.4.1 Randomization eliminates effects of confounding factors.

Most studies aim to provide causal explanations of observed phenomena. To claim
causality, investigators must argue that alternative explanations of an observed rela-
tionship are implausible.

Example 13.6 IQ and breast milk Lucas et al. (1992) obtained IQ test scores from
300 children who had been premature infants and initially fed milk by a tube. The
children were 8 years old when they took the IQ test. The milk they had been fed by
tube was either breast milk or prepared formula, or some combination of the two. Of
interest was the relationship between IQ test scores and the proportion of milk the
infants received that was breast milk. The amount of breast milk a baby had drunk
was determined by whether or not the mother wished to feed the infant by breast
milk, and how much milk the mother was able to express. �

In Example 13.6, immediately we must be aware of possible confounding factors.
The decision to administer the treatment, i.e., to use breast milk or not, was the
mother’s; whatever might determine that decision and also be related to subsequent
IQ would affect the observed relationship between IQ and consumption of breast

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 13.9 Regression results from Lucas et al. (1992).

Explanatory variable Estimated coefficient p-Value

Social class −3.5 .0004
Mother’s education 2.0 .01
Female or not 4.2 .01
Days of ventilation −2.6 .02
Received breast milk or not 8.3 <0.0001

The increase in IQ after adjusting for the other variables was 8.3 points (with p < 0.0001)

milk. If, for example, mothers who chose to breast feed were also more likely to
provide intellectual stimulation to their young children, then the decision to breast
feed could appear to raise IQ even though it was the increased stimulation that had the
greater impact. The study would be free of these concerns if babies instead received
a randomly-determined percentage of breast milk, but few mothers would give up
this decision in order to be part of a scientific investigation.

Example 13.6 (continued) In an attempt to control confounding factors, and to
reduce variability and make the comparisons more sensitive, the researchers per-
formed a regression that included characteristics of both the mothers and the babies:
social class (ordered from 1 to 5 with 5 being highest), mother’s education (ordered
from 1 to 5 with 5 being highest), whether or not the child was a female (1 if female,
0 if male), the number of days of ventilation of the baby after birth, and whether or
not the baby received any breast milk (1 if yes, 0 if no). The results of the regression
are shown in Table 13.9.

Let us begin by interpreting the main finding. If we hold fixed social class, mother’s
education, sex of the baby, and days of ventilation, there is a highly significant effect of
whether or not the baby received breast milk, with breast milk increasing subsequent
IQ, on average, by 8.3 points. This is quite a large effect. If it were felt appropriate
to generalize from these data to the population at large, this effect would certainly
be something the pediatric professions would pay attention to.

Should we believe that early consumption of breast milk would tend to increase
IQ in the general population? �

To analyze the possibility of confounding factors it is useful to introduce some
terminology and list some basic points.

In both experiments and observational studies, we are typically interested in effects
of some explanatory variable or treatment on a response variable. A study is called an
experiment when it imposes treatment conditions on some subjects; measurements
on that subject are called the response variable. On the other hand, observational
studies examine relationships between response variables and potential explanatory
variables, which could become treatments, but there is no active administration of a
treatment. A confounding factor (or confounding variable) is one that affects both
the response variable and an explanatory variable; its effects on the response can
not be distinguished from the effects of the explanatory variable of interest on the
response.
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The particular subjects being experimented upon may have special characteristics
that make them different than those about which one may wish to draw conclusions.
In many situations, carefully designed experiments can avoid these difficulties. Ran-
domization, meaning the random allocation of the treatment to the subject provides
a way of avoiding confounding variables; double-blind experiments can avoid hid-
den biases in the response measurements. It is also important to keep in mind that
response variables and explanatory variables may not accurately capture what they
are purported to be measuring. Strict adherence to the experimental protocol can also
help avoid mismeasured variables. More generally, errors that can result from failure
to adhere to protocol have been emphasized by Simmons et al. (2011).

Well-designed, randomized experiments can support causal explanations for asso-
ciations between response and explanatory variables. More specifically, based on a
well-designed experiment, it may be possible to say that, up to some degree of statis-
tical uncertainty (represented by a standard error or confidence interval), a response
will on average increase or decrease by a particular amount when an explanatory
variable changes its value by some number of units (including being present rather
than absent, as is the case for typical treatments).

In fact, it is possible to define a causal effect, and the corresponding association
effect that would be observed in data. There is then a theorem saying that in a random-
ized experiment the causal effect is equal to the association effect (e.g., Wasserman
(2004, Chapter 16)). In other words, for a randomized experiment, association is
causation (see Section 12.4.2).

13.4.2 Observational studies can produce substantial evidence.

Although it is preferable to have data from a well-designed randomized experiment,
there are situations in which it is impossible to randomly assign subjects to treatments.
For example, one can not tell people whether they will be in “smoking” or “non-
smoking” groups. Still, very convincing evidence can accumulate from observational
studies—as in fact has happened in the case of smoking. Several observed patterns
may increase the plausibility of an explanatory variable as a cause of a response
variable:9

• The explanatory variable or treatment precedes observation of the response, and
in terms of timing can thus act as a cause.
• Large effects are observed; this makes it less likely that the association is due to

a confounding variable. One often-cited example is that mortality due to scrotum
cancer among chimney sweeps was about 200 times above the population levels
early in the 20th century.

9 A widely-cited source for many of these ideas is Hill (1971).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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• A quantitative “dose-response” relationship is observed, in which an increase in the
explanatory variable increases (or decreases) the observed response, as opposed to
simply an observation of an effect when a treatment is applied versus not applied.
• There is physiological evidence to support a theory that could explain the putative

causal relationship.
• There are no anomalous results that seem difficult to explain; anomalous results

may signal the presence of confounding variables.
• Similar results are obtained under differing experimental studies; confounding

variables are often less likely to be present in each of the different studies.

Example 13.6 (continued) Now, let us reexamine the IQ and breast milk results with
these principles in mind. First, the study is prospective, in the sense that children
received some percentage of breast milk and then were followed over time to see
what IQ score they got many years later. Second, the estimated effect is reasonably
large—8 IQ points is about half of a standard deviation in the population as a whole.
Third, there is physiological relevance: pediatricians recommend that mothers breast-
feed their babies for nutritional reasons. We have not done a careful review of the
literature, however, and do not have the expertise to comment critically on this basic
scientific issue.

Concerning the dose-response relationship, in the regression reported above the
breast milk variable merely indicates whether or not the infant received breast milk;
but the authors reported a similar regression using instead percentage breast milk
where the regression coefficient was .09, which says that holding the same variables
fixed, for every 10 % increase in breast milk the subsequent IQ would go up on
average by nearly a full point. This last result is important: by removing the decision
of whether or not to use breast milk as an explanatory variable, the confounding
variables associated with that decision are no longer a concern.10 Now we must shift
to the question of whether some confounding variables may affect both the amount
of milk a mother can express and the subsequent IQ of the child. If not, we would
be regarding the percentage breast milk actually delivered as if it were a randomly-
determined percentage. One possible confounding variable would be the health of
the mother during pregnancy: mothers who are unable to express much milk might
conceivably have been providing worse nutrition to the fetus.

As far as anomalous results are concerned, here are two possibilities: first, given the
other variables, subsequent IQ decreases as social class increases, which is surprising;
second, given the other variables, female babies have higher subsequent IQs. There
should be explanations for these outcomes. Otherwise, they raise doubts.11

Overall, from the report of this study we have given here, there is clearly a sub-
stantial association between increased administration of breast milk and increased

10 We are here assuming that the reported regression is not being driven primarily by inclusion of
lots of babies with zero percent breast milk, but rather holds among the non-zero percentage babies.
11 We do not have the full results when percentage breast milk is used, so we don’t know whether
these associations diminish or change sign in that case.
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IQ, when social class (measured in the way the authors did), mother’s education, and
days of ventilation are held fixed. However, it remains possible that some confound-
ing variables affect breast-milk expression and IQ. As we write this, 20 years has
passed since the publication of the 1992 paper. While the topic remains controversial,
subsequent research has been informative. For further information see Brion et al.
(2011) and the references therein. �
Example 13.5 (continued) Returning to the alcohol metabolism example, let us
now consider the possibility of confounding due to the use of volunteers in the
study. The chief concern is whether volunteers are different than the rest of the
population with respect to alcohol metabolism. This is at least plausible, though in
order to affect the study, the volunteer men and women would have to be differ-
ent. For example, if the women who volunteered tended to have trouble with alco-
hol metabolism (perhaps they thought the study sounded interesting because they
knew they had a high susceptibility to the effects of alcohol) but men just wanted
the money, then the differential effect would tend to be larger in this sample than
in the population. Is this kind of hypothetical scenario reasonable, or really a stretch
of the imagination? Your answer to this question determines how much faith you
will put in the results. �



Chapter 14
Generalized Linear and Nonlinear Regression

Multiple linear regression is a powerful method of exploring relationships between a
response Y and a set of potential explanatory variables x1, . . . , xp, but it has an obvi-
ous limitation: it assumes the predictive relationship is, on average, linear. In addition,
in its standard form it assumes that the noise contributions are homogeneous and fol-
low, roughly, a normal distribution. During the latter part of the twentieth century a
great deal of attention was directed toward the development of generalized regres-
sion methods that could be applied to nonlinear relationships, with non-constant and
non-normal noise variation. In this chapter and in Chapter 15 we discuss several of
the most common techniques that come under the heading modern regression.

We alluded to modern regression in Chapter 12 by displaying diagram (12.4),

Y ←
{

noise
f (x1, . . . , xp).

To be more specific about the models involved in modern regression let us write the
multiple linear regression model (12.44) in the form

Yi = μi + εi (14.1)

μi = β0 + β1x1i + · · · + βpxpi (14.2)

where εi ∼ N(0,σ2). In (14.1) and (14.2) we are separating two parts of the model.
The deviations from the mean appear in (14.1) as additive noise while, according to
Eq. (14.2), the mean itself is a linear function of the x variables. Modern regression
models have the more general form

Yi ∼ fYi(yi|θi) (14.3)

θi = f (x1i, . . . , xpi) (14.4)
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where fYi(y|θ) is some family of pdfs that depend on a parameter θ, which1

is related to x1, . . . , xp according to a function f (x1, . . . , xp). Here, not only is
f (x1, . . . , xp) in (14.4) allowed to be nonlinear, but also the probabilistic repre-
sentation of noise in (14.3) is more general than in (14.1). The family of pdfs
fYi(y|θ) must be specified. In Sections 14.1.1–14.1.3 and 14.1.4–14.1.5 we take the
response distributions in (14.3) to be binomial and Poisson, respectively, but in
applying (14.4) we retain the linear dependence on x1, . . . , xp for suitable parameters
θi. In Section 14.1.6 we discuss the formal framework known as generalized linear
models that encompasses methods based on normal, binomial, and Poisson distrib-
utions, along with several others. In Section 14.2 we describe the use of nonlinear
functions f (x1, . . . , xp) = f (x1, . . . , xp; θ) that remain determined by a specified
vector of parameters θ (such as f (x; θ) = θ1 exp(−θ2x)).

Modern regression is also used to analyze spike trains, where it becomes point
process regression. We discuss this in Chapter 19. We lay the foundation for
point process regression with our description of Poisson regression, especially in
Examples 14.4 and 14.5 in Section 14.2.2.

We hope that our presentation will make the generalization of the regression
framework to (14.3) and (14.4) seem straightforward. From our current perspective, it
is. Historically, however, the step from least squares to generalized linear models was
huge: it required not only the advent of ML estimation, but also the recognition that
some widely-used probability distributions had well-behaved likelihood functions
(see Section 14.1.6) together with sufficient computational power to perform the
fitting in a reasonable amount of time. All of this came together in the publication
Nelder and Wedderburn (1972).

14.1 Logistic Regression, Poisson Regression,
and Generalized Linear Models

14.1.1 Logistic regression may be used to analyze binary responses.

There are many situations where some y should be a noisy representation of
some function of x1, . . . , xp, but the response outcomes y are binary. For instance,
behavioral responses are sometimes either correct or incorrect and we may wish
to consider the probability of correct response as a function of some explana-
tory variable or variables, or across experimental conditions. Sometimes groups of
binary responses are collected into proportions.
Example 5.5 (continued from p. 226) In Fig. 8.9 we displayed a sigmoidal curve
fitted to the classic psychophysical data of Hecht et al. (1942) on perception of dim
light. There, each response was binary and the 50 binary responses at a given light

1 We apologize for the double use of f to mean both a pdf in fYi (y|θ) and a general function
in f (x1, . . . , xp). These two distinct uses of f are very common. We hope by pointing them out
explicitly we will avoid confusion.

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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intensity could be collected into a proportion out of 50 that resulted in perception.
We fit the data by applying maximum likelihood estimation to the logistic regression
model in (8.43) and (8.44). This2 is known as logistic regression. �
Example 2.1 (continued from p. 378) In Section 13.2.2 we discussed ANOVA inter-
actions in the context of the study by Behrmann et al. (2002) on hemispatial neglect,
where the response was saccadic reaction time and one of the explanatory variables
was angle of the starting fixation point of the eyes away from “straight ahead.”
A second response variable of interest in that study was saccadic error, i.e., whether
the patient failed to execute the saccade within a given time window. Errors may
be coded as 0 and successful execution as 1. Behrmann et al. (2002) used logistic
regression to analyze the error rate as a function of the same explanatory variables.
They found, for example, that the probability of error increased as eyes fixated further
to the right. �

From (14.1) and (14.2) together with normality, for a single explanatory variable
x, in linear regression we assume

Yi ∼ N(β0 + β1xi,σ
2).

There are three problems in applying ordinary linear regression with binary responses
to obtain fitted probabilities: (i) a line won’t be constrained to (0, 1), (ii) the variances
are not equal, and (iii) the responses are not normal (unless we have proportions
among large samples, in which case the proportions would be binomial for large
n and thus would be approximately normal, as in Section 5.2.2). The first problem,
illustrated in Fig. 8.9, is that the linear regression may not make sense beyond a limited
range of x values: if y = a + bx and b > 0 then y must become infinitely large,
or small, as x does. In many data sets with dichotomous or proportional responses
there is a clear sigmoidal shape to the relationship with x. The second problem was
discussed in the simpler context of estimating a mean, in Section 8.1.3. There we
derived the best set of weights to be used for that problem, and showed that an
estimator that omits weights can be very much more variable, effectively throwing
away a substantial portion of the data. Much more generally it is also possible to solve

2 The analysis of Hecht et al. (1942) was different, but related. They wished to obtain the minimum
number of quanta, n, that would produce perception. Because quanta are considered to follow a
Poisson distribution, in the notation we used above, they took W ∼ P(λ) and c = n, with λ, the
mean number of quanta falling on the retina, being proportional to the intensity. This latter statement
may be rewritten in the form logλ = β0 + x, with x again being the log intensity. Then Y = 1 (light
is perceived) if W ≥ n which occurs with probability p = 1− P(W ≤ n− 1) = 1− F(n− 1|λ),
where F is the Poisson cdf. This is a latent-variable model for the proportional data (similar to but
different than the one on p. 399). It could be fitted by finding the MLE of β0, though Hecht et al.
apparently did the fitting by eye. Hecht et al. then determined the value of n that provided the best
fit. They concluded that a very small number of quanta sufficed to produce perception, but see also
Teich et al. (1982).

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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problem (ii) by using weighted least squares, as discussed surrounding Eq. (12.64),
and such solutions apply to the logistic regression setting. The third problem can
make distributional results (standard errors and p-values) suspect. The method of
logistic regression, which applies maximum likelihood to the logistic regression
model, fixes all three problems.

The logistic regression model begins with the log-odds transformation. Recall that
when p is a probability the associated odds are p/(1− p). The number p lies in the
range (0, 1) while the associated odds is in the range (0,∞). If we then take logs, the
number log(p/(1 − p)) will lie in the range (−∞,∞), which corresponds to what
we need for infinite straight lines. Therefore, instead of taking the expected value of
Y to be linear in x (E(Yi) = β0 + β1xi) we note that when Yi ∼ B(ni, pi) we have
E(Yi/ni) = pi and we apply log(pi/(1−pi)) = β0+β1xi. First, from the algebraic
manipulations given in our discussion of Example 5.5 on p. 226, substituting z for u
and w for p in (9.8) and (9.9), we have

z = log(
w

1− w
)⇐⇒ w = exp(z)

1+ exp(z)
. (14.5)

In (14.5) we replace w with pi and z with β0 + β1xi. The logistic regression model
(8.43) and (8.44) may then be written in the form

Yi ∼ B(ni, pi)

log
pi

1− pi
= β0 + β1xi.

The log-odds (or logit) transformation is helpful in interpreting results. The log odds
(of a response) are linear in x. Thus, β1 is the change in the log odds for a unit change
in x.

The log odds scale itself is a bit awkward to think about, though if the base of
the logarithm is changed from e to 2 or 10 it becomes easier. It is often useful to
transform back to the odds scale, where an increase of 1 unit in x is associated with an
increase in the odds (that Y = 1) by a factor of exp(β1). If we wish to interpret the
change in probabilities, we must pick a particular probability p and conclude that a
unit increase in x is associated with an increase from p to expit(logit(p)+β1), where
logit(z) = log(z/(1 − z)) and expit(w) = exp(w)/(1 + exp(w)). To illustrate, we
provide some interpretation in the context of Example 5.5.

Example 5.5 (continued) On p. 213 we found β̂1 = 10.7 with standard error
SE = 1.2. We interpret the fitted model as saying that, on average, for every increase
of intensity by a factor of 10 (1 unit on the scale of the explanatory variable) there is
a 10.7 ± 1.2 increase in the log odds of a response. To get an approximate 95 % CI
for the factor by which the odds increase we exponentiate, exp(10.7 ± 2(1.2)), i.e.,
(4023, 489000). A more interpretable intensity change, perhaps, would be doubling.
An increase in intensity by a factor of 2 corresponds to .30 units on the scale of the
explanatory variable (because log10(2) = .301). For an increase of intensity by a

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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factor of 2 the log odds thus increase by 3.22 ± .72 (where 3.22 = (.301)(10.7) and
.72 = (.301)(2.4)). This gives an approximate 95 % CI for the factor by which the
odds increase, when the intensity doubles, of exp(3.22 ± .72) = (12.2, 51.4).

We can go somewhat further by converting odds to the probability scale by
inverting

odds = p

1− p

to get

p = odds

1+ odds
.

Let us pick p = .5, so that the odds are 1. If we increase the odds by a factor ranging
from 12.2 to 51.4 then the probability would go from .5 to somewhere between .92
and .98 (where .92 = 12.2/(1+12.2) and .98 = 51.4/(1+51.4)). Thus, if we begin
at the x50 intensity (where p = .5) and then double the intensity, we would obtain a
probability of perception between .92 and .98, with 95 % confidence. This kind of
calculation may help indicate what the fitted model implies. �

Logistic regression extends immediately to multiple explanatory variables: for m
variables x1, . . . , xm we write

log
pi

1− pi
= β0 + β1x1i + · · · + βmxmi.

The multiple logistic regression model may be written in the form

Yi ∼ B(ni, pi)

log
pi

1− pi
= xiβ (14.6)

where β is the coefficient vector and xi is the 1 × (m + 1) vector of values of the
several explanatory variables corresponding the ith unit under study.

14.1.2 In logistic regression, ML is used to estimate
the regression coefficients and the likelihood
ratio test is used to assess evidence
of a logistic-linear trend with x.

It is not hard to write down the likelihood function for logistic regression. The
responses Yi are independent observations from B(ni, pi) distributions, so each pdf
has the form

(ni
yi

)
pyi

i (1− pi)
ni−yi and the likelihood function is
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Table 14.1 Linear regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value

Intercept −1.78 .30 −5.9 .0042
Intensity 1.20 .16 7.5 .0017

Table 14.2 Logistic regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value

Intercept −20.5 2.4 −8.6 p < 10−6

Intensity 10.7 1.2 8.9 p < 10−6

L(β0,β1) =
n∏

i= 1

pyi
i (1− pi)

ni−yi

pi = exp(β0 + β1xi)

1+ exp(β0 + β1xi)

where the second equation is substituted into the first. Standard statistical software
may be used to maximize this likelihood. The standard errors are obtained from the
observed information matrix, as described in Section 8.3.2.

For a single explanatory variable, the likelihood ratio test of Section 11.1.3 may
be used to test H0 : β1 = 0. More generally, if there are variables x1, . . . , xp in
model 1 and additional variable xp+1, . . . , xp+m in model 2, then the likelihood ratio
test may again be applied to test H0 : βp+1 = · · · = βp+m = 0. The log likelihood
ratio has the form

−2 log LR = −2[log(L̂1)− log(L̂2)]

where L̂i is the maximum value of the likelihood under model i. For large samples,
under H0, −2 log LR follows the χ2 distribution with m degrees of freedom.

In some software, the results are given in terms of “deviance.” The deviance for a
given model is−2 log(L̂). The null deviance is the deviance for the “intercept-only”
model, and we denote it by−2 log L̂(0). Often, the deviance from the full fitted model
is called the residual deviance. In this terminology, the usual test of H0 : β1 = 0 is
based on the difference between the null deviance and the residual deviance.

Example 5.5 (continued) The output from least-squares regression software is given
in Table 14.1. The F statistic in this case is the square of tobs and gives the p = .0017,
as in Table 14.1. The results for logistic regression are given in Table 14.2. The null
deviance was 257.3 on 5 degrees of freedom and the residual deviance was 2.9 on 4
degrees of freedom. The difference in deviance is

null deviance − residual deviance = 257.3− 2.9 = 256.4

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 14.3 Quadratic logistic regression results for data from subject S.S. in Example 5.5.

Variable Coefficients SE tobs p-value

Intercept −4.3 15.8 −.27 .78
Intensity −6.6 17.0 −.39 .70
Intsq 4.6 4.6 1.0 .31

Table 14.4 Quadratic logistic regression results for data from subject S.S. in Example 5.5, after
first centering the intensity variable.

Variable Coefficient SE tobs p-value

Intercept −20.3 2.3 −8.7 p < 10−6

Intensity 10.5 1.2 8.6 p < 10−6

Int2 4.6 4.6 1.0 .31

which should be compared to the chi-squared distribution on 1 degree of freedom.
It is very highly significant, consistently with the result in Table 14.2. �

Polynomial terms in x may be handled in logistic regression just as they are in
linear regression (Section 12.5.4).

Example 5.5 (continued) To consider whether an additional, nonlinear component
might contribute usefully to the linear logistic regression model, we may square
the intensity and try including it in a two-variable logistic regression model. In this
case it is interesting to note that intensity and its square are highly correlated. To
reduce the correlation it helps to subtract the mean before squaring. Thus, we define
intsq = (intensity)2 and int2 = (intensity − mean(intensity))2. The results using
the alternative variables intsq and int2 are shown in Tables 14.3 and 14.4, respectively.
Using either of these two logistic regression summaries we would conclude the
quadratic term does not improve the fit. The results in Table 14.3 might, at first, be
confusing because of the nonsignificant p-values. As we noted in Section 12.5.5, this
is a fairly common occurrence with highly correlated explanatory variables, as x
and x2 often are. Recall that each nonsignificant p-value leads to the conclusion that
its corresponding variable contributes little in addition to the other variable. Since
we already found a very highly significant logistic linear relationship, we would
conclude that the quadratic doesn’t improve the fit. Again, though, the interpretation
appears cleaner in the second formulation. �

In non-normal regression models there is no fully satisfactory generalization of the
measure of fit R2. One useful measure, proposed by Nagelkerke (1991) and usually
called the Nagelkerke R2, is defined by

R2
N = 1−

(
L̂(0)

L̂

) 2
n

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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where, again, L̂(0) is the maximized likelihood for the intercept-only model and L̂
is the maximized likelihood for the model being considered. Because the maximum
value of R2

N may be less than 1, a scaled version is often used:

R2
scaled N

= R2
N

R2
max

where

R2
max = 1−

(
L̂(0)

) 2
n
.

14.1.3 The logit transformation is one among many that may be
used for binomial responses, but it is the most commonly
applied.

The expit function exp(x)/(1 + exp(x)), defined in Section 14.1.1, is one of many
possible sigmoidal curves and thus logistic regression is only one of many possible
models for binary or proportion data. In fact, expit(x) has an asymptote at 0 as
x → −∞ and at 1 as x → ∞, and is increasing, so it is a cumulative distribution
function. The distribution having expit(x) as its cdf is called the logistic distribution,
but the cdf of any continuous distribution could be used instead. One important
alternative to logistic regression is the Probit regression model, which substitutes the
normal cdf in place of the expit: specifically, the probit model is

Yi ∼ B(ni, pi)

�−1(pi) = β0 + β1xi

where �(z) = P(Z ≤ z), with Z ∼ N(0, 1). The fitted curve is then obtained from
y = �(β̂0 + β̂1x).

Example 5.5 (continued) Figure 14.1 displays the fitted curves from probit and
logistic regression for the data shown previously in Fig. 8.9. The two models produce
nearly identical fitted curves. �

As with the threshold data, the fitted curves from probit and logistic regression are
generally very close to each other. This is because the graph of the logistic cdf (the
expit function) is close to the graph of the normal cdf. Two things are special about
the logistic regression model. First, it gives a nice interpretation of the coefficients
in terms of log odds. Second, in the logistic regression model (but not the Probit or
other versions) the loglikelihood function is necessarily concave (as long as there
are at least two distinct values of x). This means that there is a unique MLE, which
can be obtained from an arbitrary starting value in the iterative algorithm. Logistic

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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Fig. 14.1 Two curves fitted to the data in Fig. 8.9. The fitted curve from probit regression (dashed
line) is shown together with the fitted curve from logistic regression. The fits are very close to each
other.

regression is the standard method for analyzing dichotomous or proportional data,
though in some contexts probit regression remains popular.3

An interesting interpretation of binary phenomena involves the introduction of
latent variables, meaning random variables that become part of the statistical model
but are never observed (see the illustration on p. 216 and Section 16.2). Let us discuss
this in terms of perception, and let us imagine that the binary experience of perception,
as “perceived” or “not perceived” is controlled by an underlying continuous random
variable, which we label W . We may think of W as summarizing the transduction
process (from light striking the retina to firing rate among multiple ganglion cells),
so that perception occurs whenever W > c for some constant c. Neither the precise
meaning of W , nor the units of c need concern us. Let us take W to be normally
distributed and, because the units are arbitrary, we take its standard deviation to be 1.
Finally, we take this latent transduction variable, on average, to be a linear function of
the log intensity of light x and we write this in the form μW = c+β0+β1x. We now
have the probit regression model: Y = 1 when W > c but, defining−Z = W−μW

(so that −Z ∼ N(0, 1) and Z ∼ N(0, 1)),

W > c⇐⇒ W − μW > c− μW ⇐⇒ −Z > c− μW ⇐⇒ Z < μW − c.

In other words, Y = 1 when Z < β0 + β1x, which occurs with probability p =
�(β0 + β1x).

This latent-variable interpretation helps transfer the intuition of linear regression
models over to the binary case, and provides an appealing way to think about many

3 We have not discussed residual analysis here. It may be performed using deviance residuals, or
other forms of residuals. See Agresti (1990) or McCullagh and Nelder (1989).

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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Table 14.5 Spike counts
from an SEF neuron during
directional saccades.

left 9 6 9 9 6 6 8 5 7 9 4 8 8 3 6
Up 2 0 6 4 4 0 0 0 5 2 1 0 3 0
Right 4 8 2 2 4 0 3 4 1 1 0 3 4 0 2
Down 1 5 1 2 0 4 4 4 4 3 6 1 1 1

phenomena. Note that logistic regression is obtained by taking W to have a logistic
distribution,4 having cdf

F(w) = 1

1+ e−w
.

14.1.4 The usual Poisson regression model transforms the mean λ
to log λ.

The simplest distribution for counts is Poisson, Y ∼ P(λ). Here, the Poisson mean
must be positive and it is therefore natural to introduce dependence on explanatory
variables through logλ. In Section 14.1.6 we will note that models defined in terms
logλ have special properties. The usual multiple Poisson regression model is

Yi ∼ P(λi)

logλi = xiβ

where β is the coefficient vector and xi is the 1 × (m + 1) vector of values of the
explanatory variables corresponding to the ith unit under study. Poisson regression
is useful when we have counts depending on one or more explanatory variables.

Example 14.1 Directional sensitivity of an SEF neuron Olson et al. (2000)
reported data collected from many individually-recorded neurons in the supplemen-
tary eye field (SEF). In this experiment, a monkey was trained to translate one of
four possible icons displayed at the fixation point into an instruction of a location
to which he was to move his eyes: either left, up, right, or down. SEF neurons tend
to be directionally sensitive. To establish direction sensitivity, Olson et al. examined
the number of spikes occurring 600–750 ms after presentation of the cue. The spike
count data for one neuron across the various trials are given in Table 14.5. Is this
neuron directionally sensitive?

By eye it appears that the firing rate is higher for the “left” condition than for the
other conditions. There are various versions of ANOVA that may be used to check
this. Analysis of spiking activity from these SEF neurons revealed that while the

4 Probit regression was introduced by Chester Bliss in 1934, but the latent variable idea and normal
cdf-transformation was part of Fechner’s thinking about psychophysics in 1860; logistic regression
was apparently discussed first by Ronald Fisher and Frank Yates in 1938. See Agresti (1990) for
much more extensive discussion of the methods described briefly here.
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spike counts deviated from that predicted by a Poisson distribution, the deviation
was small (Ventura et al. 2002). Here we will use the data to illustrate a version of
ANOVA based on Poisson regression. Note that in Table 14.5 there are a total of 58
spike counts, from 58 trials. �

The problem of fitting counts is analogous to, though less extreme than, that
of fitting proportions. For proportions, the (0,1) range could make linear regression
clearly inappropriate. Counts have a range of (0,∞). Because the ordinary regression
line is not constrained, it will eventually go negative. The simple solution is to use a
log transformation of the underlying mean. The usual Poisson regression model is

Yi ∼ P(λi) (14.7)

λi = exp(β0 + β1xi). (14.8)

To interpret the model we use the log transformation:

logλi = β0 + β1xi.

For example, in the SEF data of Example 14.1 Yi is the spike count and xi is the
experimental condition (up, down, left, right) for the ith trial. The advantage of
viewing ANOVA as a special case of regression is apparent: we immediately gen-
eralize Poisson ANOVA by applying our generalization of linear regression to the
Poisson regression model above.

14.1.5 In Poisson regression, ML is used to estimate coefficients
and the likelihood ratio test is used to examine trends.

As in logistic regression we use ML estimation and the likelihood ratio test (“analysis
of deviance”).

Example 14.1 (continued) We perform Poisson regression using indicator variables
as described in Section 13.2.1 to achieve an ANOVA-like model. Specifically, we
concatenate the data in Table 14.5 so that the counts form a 58× 1 vector and define
a variable left to be 1 for all data corresponding to the left saccade direction and
0 otherwise, and similarly define vectors up and right. The results from ordinary
least-squares regression are shown in Table 14.6. The F-statistic was 18.76 on 3 and
54 degrees of freedom, giving p < 10−6. The Poisson regression output, shown in
Table 14.7 is similar in structure. Here the null Deviance was 149.8 on 57 degrees of
freedom and the residual Deviance was 92.5 on 54 degrees of freedom. The difference
in deviances is

null deviance - residual deviance = 149.8− 92.5 = 57.3

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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Table 14.6 ANOVA Results
for the SEF data in Table 14.5
shown in the form of
regression output.

Variable Coefficient SE tobs p-value

Intercept 3.49 .26 13.2 p < 10−6

Left 2.11 .37 5.6 p < 10−6

Up −.74 .21 −3.5 .0011
Right −.52 0.15 −3.4 .0014

Table 14.7 Poisson
regression results for the SEF
data in Table 14.5. The form
of the results is similar to that
given in Table 14.6.

Variable Coefficients SE tobs p-value

Intercept 1.12 .079 14.2 p < 10−6

Left .475 .096 4.9 3× 10−6

Up −.173 .063 −2.76 .0039
Right −.155 .052 −2.96 .0023

which should be compared to the chi-squared distribution on 3 degrees of freedom.
It is very highly significant. �

In Example 14.1 the results from Poisson regression were the same as with
ordinary linear regression (standard ANOVA), but the details are different. In some
situations the conclusions drawn from the two methods could be different.

14.1.6 Generalized linear models extend regression methods
to response distributions from exponential families.

We began this chapter by saying that modern regression models have the form given
by (14.3) and (14.4), which for convenience we repeat:

Yi ∼ p(yi|θi)

θi = f (xi).

The simple logistic regression model may be put into this form by writing

Yi ∼ B(ni, pi)

θi = β0 + xiβ1

where
θi = log

pi

1− pi

or, more succinctly,
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Yi ∼ B(ni, pi)

log
pi

1− pi
= β0 + xiβ1.

Similarly, the simple Poisson regression model may be written

Yi ∼ P(λi)

logλi = β0 + xiβ1.

Logistic and Poisson regression are special cases of generalized linear models. These
generalize linear regression by allowing the response variable to follow a distribution
from a certain class known as exponential families. They also use a link function that
links the expected value (the mean) μi of the data with the linear model β0 + β1xi.
For example, the usual link functions for binomial and Poisson data are the log odds
and the log, respectively, as shown above.

Exponential families have pdfs of the form

fY (y|η(θ)) = h(y) exp(η(θ)T(y)− B(θ)). (14.9)

For instance, in the Poisson case Y ∼ P(λ), the pdf (from Chapter 5, p. 112) is

P(Y = y) = 1

y!λ
ye−λ.

We can rewrite this in the form

1

y!λ
ye−λ = 1

y! exp(y logλ− λ).

If we let θ = λ, η(θ) = logλ, B(λ) = λ, T(y) = y and h(y) = 1/y! we obtain
(14.9). Now, with μ = λ, if we define the link function to be

g(μ) = logμ (14.10)

the simple Poisson regression model becomes

g(μ) = β0 + β1xi.

Here, the log provides the link in the sense that it is the function by which the mean
is transformed before being equated to the linear model.

We may rewrite (14.9) in the form

fY (y|η) = h(y) exp(ηT(y)− A(η))

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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in which case η = η(θ) is called the natural parameter (or canonical parameter). In
the Poisson case the natural parameter is logλ. The logarithmic link function is thus
often called the canonical link. In the binomial case the log odds function becomes
the canonical link. The statistic T(y) is sufficient in the sense described on p. 200. The
extension to the multiparameter case, in which η and T(y) are vectors, is immediate:

fY (y|η) = h(y) exp(ηT T(y)− A(η)). (14.11)

Assuming that Yi comes from an exponential family, we obtain a generalized linear
model by writing

g(μi) = β0 + β1xi, (14.12)

where μi = E(Yi). Equation (14.10) provided an example in the Poisson case, but
in (14.12) g(μ) may be any link function.

Common distributions forming exponential families include binomial, multino-
mial, Poisson, normal, inverse Gaussian, gamma, and beta. The introduction of gen-
eralized linear models allowed regression methods to be extended immediately to all
of these families, and a multiple-variable generalized linear model may be written

Yi ∼ fYi(yi|ηi)

g(μi) = xiβ (14.13)

where fYi(yi|ηi) is an exponential family pdf as in (14.11), μi = E(Yi), and g(μ) is
the link function. The unification of mathematical form meant that implementation
of maximum likelihood, and likelihood ratio tests, could use the same algorithms
with only minor changes in each particular case. Furthermore, for the canonical
link it turns out (under relatively mild conditions on the x and y variables5) that the
loglikelihood function is concave so that the MLE is unique. This guarantees that
the maximum of the loglikelihood function will be found by the function maximizer
(using Newton’s method, i.e., iterative quadratic approximation) beginning with any
starting value, and convergence will tend to be fast. Generalized linear models are
part of most statistical software.

In addition to the canonical link, several other link functions are usually available
in software. For example, it is usually possible to perform binomial regression using
the probit link instead of the log odds, or logit link. Similarly, a Poisson regression
could be performed using the identity link so that

logλi = β0 + β1xi

is replaced by

5 The regularity conditions insure non-degeneracy. For example, if there is only one x variable,
it must take on at least two distinct values so that a line may be fitted. The y observations also
must correspond to values that are possible according to the model; in dealing with proportions, for
instance, the observed proportions can not all be zero.
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λi = β0 + β1xi.

Occasionally, the identity link provides a better description of the data than the
canonical link, as in Example 14.3 on p. 406.

The terminology “generalized linear model” should not to be confused with “the
general linear model,” which is the matrix form of regression and includes ANOVA.
Both have the acronym GLM. Also, the “linear” part of the terminology is mislead-
ing because the framework really includes nonlinear and nonparametric models, as
well. Specifically, while linear models with the canonical link have especially nice
properties, more generally in Equation (14.4) f (xi) does not need to be linear. See
Examples 14.3, 14.4, and 14.5 in Section 14.2.1 and 14.2.2.

14.2 Nonlinear Regression

14.2.1 Nonlinear regression models may be fitted by least squares.

In Section 12.5.4 we pointed out that when f (x) is a polynomial in x, linear regression
could be used to fit a function of the form y = f (x) to (x, y) data. This involved the
“trick” of starting with an initial definition of x, relabeling it as x1 and then defining
the new variable x2 = x2

1, and so on for higher-order polynomials. The resulting
expectation of Y ,

E(Y) = β0 + β1x1 + β2x2,

followed the form required in the linear regression model. In particular, although the
relationship of Y and x, on average, was nonlinear, the coefficients entered linearly
into the model and therefore—as in any linear regression model—the likelihood
equations could be solved easily by linear algebra. A similar trick was used to fit
directional tuning data with a cosine function.

There are, however, many nonlinear relationships where this sort of manipulation
does not apply. For example, if

E(Y) = θ1e−θ2x

it is not possible to redefine the x variable so that the form becomes linear in the
parameters. Instead, we have the nonlinear regression model,

Yi = f (xi; θ)+ εi (14.14)

f (xi; θ) = θ1eθ2xi . (14.15)

Here, the usual assumption is εi ∼ N(0,σ2), independently (though, again, normality
is not crucial).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Models of the form (14.14)–(14.15) may still be fit by least-squares and, in fact,
least squares remains a special case of ML estimation. What is different is that the
equations defining the least-squares solution (the likelihood equations) are no longer
solved by a single linear algebraic step. Instead, they must be solved iteratively.
The problem is thus usually called nonlinear least squares. Example 1.6 on p. 14
provided an illustration, with the nonlinear function given by (1.6) and the fit based
on nonlinear squares given in Fig. 1.5.

Example 14.2 Magnesium block of NMDA receptors NMDA receptors, which
are ubiquitous in the vertebrate central nervous system, may be blocked by Mag-
nesium ions (Mg2+). To investigate the quantitative dependence of NMDA-receptor
currents on the concentration of Mg2+, Qian et al. (2005) measured currents at various
concentrations, then summarized the data using the equation

I

I0
= 1

1+ (
[Mg2+]

IC50
)nH

where the measurements are the current I and the Magnesium concentration [Mg2+],
I0 being the current in the absence of Mg2+. The free parameters are the “Hill
constant” nH and the 50 % inhibition concentration IC50 (when [Mg2+] = IC50 we
get I/I0 = .5). The authors estimated these constants using nonlinear least squares,
and they examined IC50 across voltages, and across receptor subunit types. �

The term “nonlinear regression” usually refers to models of the form (14.14). How-
ever, similar models may be used with binomial or Poisson responses, and may be
fit using ML. The next example illustrates nonlinear regression models using both
normal and Poisson distributions.

Example 14.3 Non-cosine directional tuning of motor cortical neurons
Amirikian and Georgopoulos (2000) investigated cosine and non-cosine directional
tuning for 2-dimensional hand movement among motor cortical neurons. In Sec-
tion 12.5.4 we considered the cosine tuning model given by (12.67) and (12.68)
where, according to (12.67), a neuron’s firing rate μ(v) when the movement is
in direction v was linear in the components v1 and v2 and the model could be fit
using linear regression. To investigate departures from cosine tuning, Amirikian and
Georgopoulos used a class of functions involving exponentials that are not amenable
to reconfiguration in a linear model and, as a result, reported that the tuning curves in
motor cortical neurons, for 2-dimensional hand movement, tend to be substantially
narrower than cosine tuning curves.

Examples of nonlinear fits to data from two neurons are shown in Fig. 14.2. The
functions fitted were

μ(v) = μ+ β exp(κ cos(θ − τ + η cos(θ − τ ))) (14.16)

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 14.2 Fits to activity of two neurons in primate motor cortex (reprinted with permission from
Kaufman et al. 2005). Each datapoint represents the observed firing rate of a neuron in the motor
cortex of a monkey during one repetition of a wrist movement to a particular target. The cosine
fits use the cosine function in Eq. (12.67) and the von Mises fits use more complicated parametric
forms given by Eq. (14.16), for Neuron 1, and Eq. (14.17) for Neuron 2. The cosine and von Mises
parametric fits use Poisson maximum likelihood for Neuron 1 and least squares for Neuron 2. Also
shown is the fit from a nonparametric regression method called cBARS, described by Kaufman
et al. (2005).

for the first neuron, where θ = arctan(v2/v1), and

μ(v) = μ+ β1 exp(κ1 cos(θ − τ1))+ β2 exp(κ2 cos(θ − τ2)) (14.17)

for the second neuron. These results come from Kaufman et al. (2005), who also
considered nonparametric methods, discussed in Chapter 15. The function in (14.16)
includes parameters corresponding roughly to the baseline firing rate, the amplitude,
width, and location of the mode, and the skewness about the mode. The function in
(14.17) includes parameters corresponding to two modes, one of which is constrained
to be in the positive direction and the other in the negative direction. This is of use
in fitting the data for the Neuron 2 in Fig. 14.2. For both neurons the data indicate
mild but noticeable departures from cosine tuning.

In fact, the data in Fig. 14.2 coming from Neuron 1 exhibited roughly Poisson
variation. The fits shown there were based on Yi ∼ P(μi) with μi = μ(v) given by
Eq. (14.16). This is a Poisson nonlinear regression model (with the identity link, as
defined in Section 14.1.6). �

Another example of nonlinear least squares has been discussed in earlier chapters.
We provide some more details here.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Example 8.2 (continued from p. 241) In presenting this example on p. 193 we said
the model took Y to be the spike width and x the preceding ISI length, and assumed
there was an ISI length τ such that, on average, Y is quadratic for x < τ and constant
for all x ≥ τ . As we noted, τ is called a change point. Specifically, the statistical
model was

Yi ∼ N(μ(xi),σ
2) (14.18)

independently for i = 1, . . . , n where

μ(x;β0,β1, τ ) =
{
β0 + β1(x − τ )2 if x < τ

β0 if x ≥ τ (14.19)

and the least-squares estimate (β̂1, β̂1, τ̂ ) becomes defined by

n∑

i= 1

(
yi − μ(xi; β̂0, β̂1, τ̂ )

)2 = min
β0,β1,τ

n∑

i= 1

(yi − μ(xi;β0,β1, τ ))
2 . (14.20)

The parameter τ enters nonlinearly into the statistical model, and this makes (14.20)
a nonlinear least squares problem. However, for every value of τ we may for-
mulate a simple linear regression problem as follows. Let us define new values
u1(τ ), . . . , un(τ ) by

ui(τ ) =
{

(xi − τ )2 if xi < τ
0 if x ≥ τ

so that μ(xi) in (14.19) may be rewritten as

μ(xi;β0,β1, τ ) = β0(τ )+ β1(τ )ui(τ ).

We then define (β̂0(τ ), β̂1(τ )) by

n∑

i= 1

(
yi − (β̂0(τ )+ β̂1(τ )ui)

)2 = min
β0(τ ),β1(τ )

n∑

i= 1

(yi − (β0(τ )+ β1(τ )ui))
2

which has the form of the simple least-squares regression problem on p. 12 and thus
is easily solved. Finally, defining

g(τ ) =
n∑

i= 1

(
yi − (β̂0(τ )+ β̂1(τ )ui)

)2
,

the nonlinear least squares problem in (14.20) is found by minimizing g(τ ). This can
be achieved in software (e.g., in Matlab) with one-dimensional nonlinear minimiza-
tion. Therefore, it was easy to implement nonlinear least squares for this change-point
problem. �
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Fig. 14.3 Initiation of firing in a neuron from the basal ganglia: change-point and bootstrap
confidence intervals when a quadratic model is used for the post-change-point firing rate. Two
forms of approximate 95 % confidence intervals are shown. The first is the usual estimate ±2SE
interval. The second is the interval formed by the .025 and .975 quantiles among the bootstrap
samples. The latter typically performs somewhat better, in the sense of having coverage probability
closer to .95. See Sect. 9.2.2.

14.2.2 Generalized nonlinear models may be fitted using maximum
likelihood.

Nonlinear relationships also arise in the presence of non-normal noise. We use the
term generalized nonlinear model to refer to a model in which the linear function
g(μi) in (14.13) is replaced by a nonlinear function. We give two examples of non-
linear Poisson regression. The first involves determination of a change-point, and is
similar to Example 8.2 in Section 14.2.1.

Example 14.4 Onset latency in a basal ganglia neuron An unfortunate symp-
tom of Parkinson’s disease (PD) is muscular rigidity. This has been associated with
increased gain and inappropriate timing of the long latency component of the stretch
reflex, which is a muscular response to sudden perturbations of limb position. One
of the important components of the stretch reflex is mediated by a trans-cortical
reflex, probably via corticospinal neurons in primary motor cortex that are sensi-
tive to kinesthetic input. To investigate the neural correlates of degradation in stretch
reflex, Dr. Robert Turner and colleagues at the University of Pittsburgh have recorded
neurons in primary motor cortex of monkeys before and after experimental produc-
tion of PD-like symptoms. One part of this line of work aims at characterizing neu-
ronal response latency following a limb perturbation (see Turner and DeLong 2000).
Figure 14.3 displays a PSTH from one neuron prior to drug-induced PD symptoms.
The statistical problem is to identify the time at which the neuron begins to increase

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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its firing rate, with the goal being to compare these latencies in the population of
neurons before and after induction of PD.

To solve this problem we used a change-point model similar to that used in
Example 8.2 on p. 408. In this case, we assume the counts within the PSTH time
bins—after pooling the data across trials—follow Poisson distributions. Let Yt be
the pooled spike count in the bin centered at time t and let μ(t) be its mean. The
change-point model assumes the mean counts are constant up until time t = τ ,
at which time they increase. For simplicity, we assume the count increases as a
quadratic. This gives us the Poisson change-point model

Yt ∼ P(μ(t))

with

μ(t) =
{

β0 if t ≤ τ
β0 + β1(t − τ )2 if t > τ .

The value τ is the change point. For any fixed τ the change-point model becomes
simply a Poisson regression model. Specifically, for a given τ we define

x =
{

0 if t ≤ τ
(t − τ )2 if t > τ .

We then apply Poisson regression with the regression variable x.
However, the parameter τ is unknown and is, in fact, the object of interest. We may

maximize the likelihood function iteratively over τ . That is, in software such as R or
Matlab we set up a loop within which, for a fixed τ , we perform Poisson regression
and obtain the value of the loglikelihood. We then iterate until we maximize the
loglikelihood across values of τ . This gives us the MLE of τ . We may then obtain a
SE for τ by applying a parametric bootstrap. Results are given in Fig. 14.3. �

Here is another example of a nonlinear model for spike counts.

Example 14.5 A Poisson regression model for a hippocampal place cell Neu-
rons in rodent hippocampus have spatially specific firing properties, whereby the
spiking intensity is highest when the animal is at a specific location in an environ-
ment, and falls off as the animal moves further away from that point (e.g., Brown et
al., 1998). Such receptive fields are called place fields, and neurons that have such
firing properties are called place cells. The left panel of Fig. 14.4 shows an example
of the spiking activity of one such place cell, as a rat executes a free-foraging task
in a circular environment. The rat’s path through this environment is shown, and the
location of the animal at spike times is overlain as dark dots. It is clear that the firing
intensity is highest slightly to the southwest of the center of the environment, and
decreases when the rat moves away from this point.

One very simple way to describe this hippocampal neural activity is to use a
Poisson generalized linear model for spike counts in successive time bins while the
rat forages, and to assume that the spike count depends on location in the environment
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Fig. 14.4 Spiking activity of a rat Hippocampal place cell during a free-foraging task in a circular
environment. Left Visualization of animal’s path and locations of spikes. Right Place field model
for this neuron, with parameters fit by the method of maximum likelihood.

based on a 2-dimensional bell-shaped curve. For this purpose of specifying the de-
pendence of spiking activity on location a normal pdf may be used. Let us take
Yt ∼ P(λt), with t signifying time, and then define

λt = exp

{
α− 1

2

(
x(t)− μx y(t) − μy

) (
σ2

x σxy

σxy σ
2
y

)−1 (
x(t)− μx

y(t)− μy

)}
. (14.21)

The explanatory variables in this model are x(t) and y(t), the animal’s x and
y-position. The model parameters are (α,μx,μy,σ

2
x ,σ2

y ,σxy), where (μx,μy) is the
center of the place field, expα is the maximum firing intensity at that point, and σ2

x ,
σ2

y , and σxy express how the intensity drops off away from the center. Note that it is
the shape of the place field that is assumed normal, not the distribution of the spiking
activity. The right panel of Fig. 14.4 displays a fit of the place field to the data in the
left panel. We will discuss models of this sort when we discuss point processes in
Chapter 19. �

14.2.3 In solving nonlinear optimization problems, good starting
values are important, and it can be helpful to
reparameterize.

As in maximization of any likelihood, use of the numerical procedures requires care.
Two important issues are the choice of initial values, and of parameterization. Both
of these may be illustrated with the exponential model (14.15).

Illustration: Exponential regression To fit the exponential model (14.15) a first
step is to reparameterized from θ to ω using ω1 = log(θ1) and ω2 = θ2 so that the
expected values have the form

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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E(Y) = exp(ω1 + ω2x).

The loglikelihood is typically closer to being quadratic as a function of ω than as a
function of θ. Taking logs of both sides of this expectation equation gives

log E(Y) = ω1 + ω2x.

This suggests we may define Ui = log(Yi) and apply the linear model,

Ui = β0 + β1xi + εi. (14.22)

The resulting fitted values β̂0 β̂1 make good starting values for the iterative procedure
used to obtain ω1 and ω2. �

It is important to recognize the distinction between the exponential model in
(14.14) and (14.15) and the linearized version (14.22). Either could be used to fit
data, but they make different assumptions about the way the noise contributes. In
many examples, the fits based on (14.14) and (14.22) would be very close, but
sometimes the resulting inferences would be different. It is an empirical question
which model does a better job of describing the data. The point here, however, is that
if the exponential form is preferred, the log-linear form may still be used to obtain
starting values for the parameters. The linearization method of obtaining starting
values is frequently used in fitting nonlinear models. (See Bates and Watts (1988)
for further discussion.) These issues also arise in generalized nonlinear models.



Chapter 15
Nonparametric Regression

At the beginning of Chapter 14 we said that modern regression applies models dis-
played in Eqs. (14.3) and (14.4):

Yi ∼ fYi(yi|θi)

θi = f (x1i, . . . , xpi)

where fYi(y|θ) is some family of pdfs that depend on a parameter θ, which is related
to x1, . . . , xp according to a function f (x1, . . . , xp). In Section 14.1 we discussed the
replacement of the normal assumption in (14.3) with binomial, Poisson, or other
exponential-family assumptions. In Section 14.2 we showed how the linear assump-
tion for f (x1, . . . , xp) in (14.4) may be replaced with a specified nonlinear modeling
assumption. What if we are unable or unwilling to specify the form of the function
f (x1, . . . , xp)? In this chapter we consider fitting general functions, which are cho-
sen to provide flexibility for fitting purposes. This is the subject of nonparametric
regression. The terminology “nonparametric” refers to the absence of a specified
parametric form, such as in (14.6) or (14.15). We focus almost exclusively on the
simplest case of a single explanatory variable x, and thus consider functions f (x).
Here is an example.

Example 15.1 Peak minus trough differences in response of an IT neuron Some
neurons in the inferotemporal cortex (IT) of the macaque monkey respond to visual
stimuli by firing action potentials in a series of sharply defined bursts. Rollenhagen
and Olson (2005) found that displaying an object image in the presence of a different,
already-visible “flanker” image could enhance the strength of the oscillatory bursts.
Figure 15.1 displays data (in the form of PSTHs) from an IT neuron under two
conditions: in the first, a black patterned object was displayed as the stimulus for
600 ms; in the second condition, prior to the display of the stimulus a pair of blue
rectangles appeared (as a flanker image) and these remained illuminated while the
patterned-object stimulus was displayed. Overlaid on the PSTHs are fits obtained
by the nonparametric regression method BARS, which will be explained briefly in
Section 15.2.6. In part b of Fig. 15.1 the BARS fits are displayed together, to highlight

R. E. Kass et al., Analysis of Neural Data, 413
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Fig. 15.1 a PSTHs and BARS fits for an IT neuron recorded by Rollenhagen and Olson (2005)
under two conditions. b The two BARS fits are overlaid for ease of comparison. See text for
explanation. Adapted from DiMatteo et al. (2001).

the differential response. One way to quantify the comparison is to estimate the drop in
firing rate from its peak (the maximal firing rate) to the trough immediately following
the peak in each condition. Let us call these peak minus trough differences, under the
two conditions, φ1 and φ2. BARS was used to propagate the error (see DiMatteo et
al. 2001). The results, for this neuron, were φ̂1 = 131.8(±4.4), φ̂2 = 181.8(±20.4)

spikes per second, and φ̂1−φ̂2 = 50.0(±20.8) spikes per second (where parenthetical
values are SEs). �

There are two general approaches to nonparametric regression. The first attempts
to represent a function f (x) in terms of a set of more primitive functions, such as
polynomials, which are often called basis functions. The methods following the sec-
ond approach estimate f (x) by weighting the data (xi, yi) according to the proximity
of xi to x, a process called local fitting. We take up these two topics in Sections 15.2
and 15.3. The fitted values ŷi = f̂ (xi) produce fitted points (xi, ŷi) which collectively
become a smoothed version of the original data points. Thus, the nonparametric
regression algorithm that is applied to the data is often called a smoother. The prob-
lem of smoothing (xi, yi) data to obtain a curve y = f̂ (x) is also called curve-fitting.

15.1 Smoothers

As always, we are concerned with the use of statistical models both to generate esti-
mates of scientifically interesting quantities and to provide measures of uncertainty.
For both purposes we need to begin by defining the quantities we want to know
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about. In linear regression and generalized linear models, and in their nonlinear
counterparts, these are usually coefficients or simple functions of them such as x50
in Example 5.5 of Chapter 9, where we discussed propagation of uncertainty. With
nonparametric regression the trick is to phrase inferential problems in terms of the
function values themselves, which avoids any reference to a specific functional form.
In fact, x50 in Example 5.5 could be considered an example of this, because even
if some other function (some nonlinear, nonparametric function) were used to link
log odds of perception with light intensity, that function would necessarily define a
value x50 of the intensity at which the probability of perception would be 50 %.

A variety of nonparametric regression methods have been proposed. Some are
linear and some nonlinear in a sense spelled out in Section 15.1.1.

15.1.1 Linear smoothers are fast.

We say that a nonparametric regression method results from a linear smoother if
the fitted function values f̂ (xi) are obtained by linear operations on the data vector
y = (y1, . . . , yn)

T , that is, if we can write

(f̂ (x1), f̂ (x2), . . . , f̂ (xn))
T = Hy (15.1)

for a suitable matrix H. In other words, according to (15.1), for these linear smoothers,
each fitted value is a linear combination of the data values yi. The only nonlinear
smoothing method we mention is that used in Example 15.1, BARS.

Because the multiplication in (15.1) involves relatively few arithmetic operations,
linear smoothers are fast. They are therefore advantageous especially for large data
sets, where computational speed becomes important.

15.1.2 For linear smoothers, the fitted function values are obtained
via a “hat matrix,” and it is easy to apply
propagation of uncertainty.

The matrix H in (15.1) is called the hat matrix, because it produces estimates denoted
with “hats.” For example, in linear regression we have

β̂ = (XT X)−1XT y

(see Chapter 12) so that

(f̂ (x1), f̂ (x2), . . . , f̂ (xn))
T = Xβ̂

= X(XT X)−1XT y

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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and the hat matrix is H = X(XT X)−1XT . In the case of linear regression we are able
to propagate uncertainty using the distribution of β̂ (as we did, similarly, for logistic
regression in Chapter 9), but we could instead propagate the uncertainty from the
distributions of the fitted values Xβ̂: we simply need the variance

V((f̂ (x1), f̂ (x2), . . . , f̂ (xn))
T ) = HV(Y)HT

= σ2HHT . (15.2)

In the case of linear regression this simplifies because (as is easily checked) HT = H
and HHT = H so that

V((f̂ (x1), f̂ (x2), . . . , f̂ (xn))
T ) = σ2H.

For linear smoothers more generally, H �= HHT but, in the case of data for which
V(Yi) = σ2 with the Yis being independent of each other, the variance formula (15.2)
continues to hold, and it remains easy to apply propagation of uncertainty. In other
words, even though we do not have an estimated parameter vector, such as β̂, from
which to compute quantities of interest and their SEs, we can often compute quantities
of interest directly from the fitted values, as in the peak minus trough example above,
and can then obtain SEs from the variance formula (15.2) together with the large-
sample result that the fitted values are approximately normally distributed. Similarly,
when linear smoothing methods extend to logistic or Poisson regression it again
remains easy to propagate uncertainty.

15.2 Basis Functions

Suppose f (x) is a continuous function on an interval [a, b]. A famous theorem in
mathematical analysis, the Weierstrass Approximation Theorem, says that f (x) may
be approximated arbitrarily well by a polynomial of sufficiently high order. One
might therefore think that polynomials could be effective for curve fitting. That is,
we could try to fit an unknown function y = f (x) by instead fitting a pth order
polynomial

y = b0 + b1x + b2x2 + · · · + bpxp,

which we can do using least squares, as described in Section 12.5.4. It turns out
that polynomials do not perform as well as the theoretical result might suggest.
As illustrated in Fig. 15.2, even a twentieth-order polynomial can fail to represent
adequately a relatively well-behaved function in the presence of minimal noise. The
idea of replacing f (x) with a set of simple functions, however, is very powerful. In
the case of polynomials, for data (x1, y1), . . . , (xn, yn) we could fit a quadratic using
(12.65) and (12.66) and regressing y = (y1, . . . , yn) on w1 and w2, and we could
similarly define higher-order terms up to

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 15.2 Data simulated from function f (x) = sin(x) + 2 exp(−30x2) together with twentieth-
order polynomial fit (shown as line). Note that the polynomial is over-fitting (under-smoothing) in
the relatively smooth regions of f (x), and under-fitting (over-smoothing) in the peak. (In the data
shown here, the noise standard deviation is 1/50 times the standard deviation of the function values.)

wp =

⎛

⎜⎜⎜⎝

xp
1

xp
2
...

xp
n

⎞

⎟⎟⎟⎠ (15.3)

and could regress y = (y1, . . . , yn) on w1, w2, . . . , wp. This is an example of regres-
sion using basis functions.

The “basis function” terminology comes from the conception that the theoretical
functions f (x) that are, in principle, to be fitted make up an infinite-dimensional
vector space for which the chosen simple functions (such as polynomials), form1 a
basis (see Section A.9 of the Appendix). In practice we use data (x1, y1), . . . , (xn, yn)

to fit only the values (f (x1), f (x2), . . . , f (xn)) and thus we have an n-dimensional

1 In Section A.9 of the Appendix we give the definition of a basis for Rn, which is an n-dimensional
vector space. The basis function terminology refers to an extension of this idea to infinitely many
dimensions: the functions f (x) on an interval [a, b] that satisfy

∫ b

a
f (x)dx <∞

(here the Lebesgue integral is used) form an infinite-dimensional vector space and if the functions
Bj(x) form a basis then every f (x) may be written as

f (x) =
∞∑

j=1

cjBj(x).
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vector space for which n vectors, defined by the simple functions (such as those in
(12.65), (12.66), up through (15.3) with p = n), form a basis.

A pth order polynomial regression will work well for functions y = f (x) that look
a lot like pth order polynomials. The inability of a 20th-order polynomial to fit the
function in Fig. 15.2 is an indication that the function is different than a 20th-order
polynomial. The challenge of nonparametric regression using basis functions is to
find simple alternatives to polynomials that are flexible enough to fit a variety of
functions with relatively few terms.

15.2.1 Splines may be used to represent complicated functions.

The problem in Fig. 15.2 is that the function f (x) is not very close to being a low-
order polynomial. In particular, it has a different form near x = 0 than it does
as the magnitude of x increases. A possible solution here, and in other problems,
is to glue together several pieces of polynomials. If the pieces are joined in such
a way that the resulting function remains smooth, then it is called a spline. We
will discuss cubic splines. Let [a, b] be an interval and suppose we have values
ξ1, ξ2, . . . , ξp, where a < ξ1 < ξ2 < · · · < ξp < b. There are then p + 2 sub-
intervals [a, ξ1], [ξ1, ξ2], . . . , [ξp−1, ξp], [ξp, b]. A function f (x) on [a, b] is a cubic
spline with knots ξ1, ξ2, . . . , ξp if f (x) is a cubic polynomial on each of the p+2 sub-
intervals defined by the knots such that f (x) is continuous and its first two derivatives
f ′(x), and f ′′(x) are also continuous. This restriction of continuity, and continuity
of derivative, applies at the knots; in between the knots, each cubic polynomial is
already continuous with continuous derivatives. A cubic spline is shown in Fig. 15.3,
and the result of fitting a cubic spline to the data of Fig. 15.2 is shown in Fig. 15.4.
In contrast to the 20th order polynomial in Fig. 15.2, the cubic spline in Fig. 15.4 fits
the data remarkably well.

15.2.2 Splines may be fit to data using linear models.

It is easy to define a cubic spline having knots at ξ1, ξ2, . . . , ξp. Let (x − ξj)+ be
equal to x − ξj for x ≥ ξj and 0 otherwise. Then the function

f (x)=β0 + β1x + β2x2 + β3x3

+ β4(x − ξ1)
3+ + β5(x − ξ2)

3+ + · · · + βp+3(x − ξp)
3+ (15.4)

is twice continuously differentiable, and is a cubic polynomial on each segment
[ξj, ξj+1]. Furthermore, with f (x) defined by (15.4),

Yi = f (xi)+ εi

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 15.3 A cubic spline with three knots, on an interval [0, T ]. The function f (x) depicted here
is made up of distinct cubic polynomials (cubic polynomials with different coefficients) on each
sub-interval [0, ξ1], [ξ1, ξ2], [ξ2, ξ3], [ξ3, T ].
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Fig. 15.4 A cubic spline fit to the data from Fig. 15.2. The spline has knots (ξ1, ξ2, . . . , ξ7) =
(−1.8,−.4,−.2, 0, .2, .4, 1.8).

becomes an instance of the usual linear regression model (assuming εi ∼ N(0,σ2),
independently), so that regression software may be used to obtain spline-based curve
fitting. Specifically, we define x1 = x, x2 = x2, x3 = x3, x4 = (x − ξ1)

3+, …,
xp+3 = (x − ξp)

3+ and then regress Y on x1, x2, . . . , xp+3. To be concrete, let us
take a simple special case. Suppose we have 7 data values y1, . . . , y7 observed at 7 x
values (−3,−2,−1, 0, 1, 2, 3) and we want to fit a spline with knots at ξ1 = −1 and
ξ2 = 1. Then we define y = (y1, . . . , y7)

T , x1 = (−3,−2,−1, 0, 1, 2, 3)T , x2 =
(9, 4, 1, 0, 1, 4, 9)T , x3 = (−27,−8,−1, 0, 1, 8, 27)T . The variables x1, x2, x3 rep-
resent x, x2, x3. We continue by defining x4 = (0, 0, 0, 1, 8, 27, 64)T and x5 =
(0, 0, 0, 0, 0, 1, 8)T , which represent (x− ξ1)

3+ (which takes the value 0 for x ≤ −1)
and (x− ξ2)

3+ (which takes the value 0 for x ≤ 1). Having defined these variables we
regress y on x1, x2, x3, x4, x5. Putting this regression in the form of (12.53) we have

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1
Y2
Y3
Y4
Y5
Y6
Y7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 9 −27 0 0
1 −2 4 −8 0 0
1 −1 1 −1 0 0
1 0 0 0 1 0
1 1 1 1 8 0
1 2 4 8 27 1
1 3 9 27 64 8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

β0
β1
β2
β3
β4
β5

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
ε2
ε3
ε4
ε5
ε6
ε7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15.5)

When (15.4) is used the variables x, x2, x3, (x − ξ1)
3+, . . . , (x − ξp)

3+ are said
to form the power basis for the set of cubic splines with knot set ξ1, . . . , ξp. This
terminology indicates that any cubic spline with knots ξ1, . . . , ξp may be represented
in the form (15.4), which is a linear combination of x, x2, x3, (x−ξ1)

3+, . . . , (x−ξp)
3+

(together with the constant intercept).
An important caveat in applying (15.4), however, is that the variables x1, x2, . . . ,

xp+3 will be highly correlated. The possibility of polynomial x variables being corre-
lated was considered in Section 12.5.4 and again in Section 14.1.2. Here there are two
good solutions to this problem. The first is to orthogonalize the x variables. The trick
of subtracting the mean, used in the earlier sections, is a special case of orthogonal-
ization. The general method is to first replace x with x∗1 = x− x̄; then regress (x∗1)2 on
x∗1 and replace x2 with x∗2 defined to be the residual from that regression; then regress
(x∗1)3 on x∗1 and x∗2 and replace x3 with x∗3 defined to be the residual from that regres-
sion; etc., continuing through the remainder of the regression variables to get a new set
of variables x∗1, x∗2 , . . . , x∗p+3 which are used instead of x1, x2, . . . , xp+3. The second,
more commonly-applied alternative is to use a different version of splines, known as
B-splines. B-splines may be used to form an alternative basis with which to represent
cubic splines having knots ξ1, . . . , ξp, replacing the power basis in (15.4). The power
basis and the B-spline basis represent the same set of cubic splines, but the B-spline
basis offers better numerical stability. Thus, statistical software using B-splines for
nonparametric regression will typically take the knot locations as input, and then
will compute the X matrix as in (15.5), except that the columns will change because
B-splines are used.2 A variant of B-splines, known as natural splines, assumes the
function is linear for x outside a specified range—which is often taken to be the
range of the data (i.e., the function is linear for x < xmin and x > xmax where xmin

and xmax are the smallest and largest values of x in the data). Because there is very
little data near xmin and xmax , and none outside the range of the data, the fits based
on the power basis and B-spline basis are often highly variable near the extremes
of x. By introducing a strong assumption, natural splines are much less variable at
the extreme values of x and typically provide nicer-looking fits. Natural splines are
often recommended, and are an option in most statistical curve-fitting software. The
power basis and B-spline basis each have p + 4 free parameters. Due to the addi-

2 Because the span of the columns of the X matrix using B-splines will be the same as the span of
X matrix using the orthogonalized power basis, the resulting least-squares estimated fits Xβ̂ will be
the same in both cases.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Fig. 15.5 LFP and smoothed version representing slowly-varying trend. A 1 s (seconds) sample of
data is shown together with a smooth fit using natural splines.

tional constraints at each end of the range of x, the natural spline basis has p+ 2 free
parameters.

Example 15.2 Local field potential in primary visual cortex Kelly et al. (2010)
examined the activity of multiple, simultaneously-recorded neurons in primary visual
cortex in response to visual stimuli under anesthesia. As we noted in Example 2.2,
under anesthesia the EEG displays strong delta range (1–4 Hz) wave-like activity. It
is also common to see even lower frequency activity (less than 1 Hz), often called
“slow waves,” the effects of which are visible in Fig. 2.2. This activity appears in
local field potential (LFP) recordings as well. In the data analyzed by Kelly et al.,
waves of firing activity were observed across the population of recorded neurons,
and these were correlated with the waves of activity in the LFP. A short snippet of
LFP is displayed in Fig. 15.5. In Chapter 18 we will examine the oscillatory content
of this sample of the LFP. A preliminary step, discussed on p. 517, is to remove any
slow trends in the data. Spline-based regression is useful for this purpose. A fit based
on the natural-spline basis using knots at time points 200, 400, 600, 800 is shown in
Fig. 15.5. �

15.2.3 Splines are also easy to use in generalized linear models.

Splines may also be used with logistic regression or Poisson regression, or other
generalized regression models. When splines are used in regression models, they are
often called regression splines. Standard statistical software usually includes options
for using regression splines in generalized linear models.

http://dx.doi.org/10.1007/978-1-4614-9602-1_2
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Example 1.1 (continued from p. 187) In Chapter 1, p. 3, we discussed the problem
of describing a neural response to a stimulus under two different experimental con-
ditions in the context of recordings made from the SEF. In Chapter 8 we returned to
the example to describe the value of smoothing the PSTH, using Fig. 8.3, on p. 187
to illustrate. We did not, however, say specifically how the smoothing was done.
We obtained the smooth curve in Part b of Fig. 8.3 by fitting a Poisson regression
spline. Specifically, spike counts Y were pooled across trials in 10 ms bins centered
at times x = −295,−285,−275, . . . , 635, 645 relative to appearance of the cue at
time x = 0. Then the statistical model was

Yi ∼ P(λi)

logλi = f (xi)

with f (x) being a regression spline having knots at−200, 200. The fitted values f̂ (xi)

were obtained using generalized linear model software and xmax was the value of xi

at which maximum among the f̂ (xi) values occurred. (Interpolation could be have
been used to get a more refined maximum, but this was not considered necessary.) In
Fig. 8.3, the arrow indicating the maximum of the fitted curve was plotted at x = xmax .
A standard error for x = xmax may be obtained by propagation of uncertainty (see
Chapter 9).

In this example we would get similar results using a normal kernel density esti-
mator (a Gaussian filter), which is discussed on pp. 431 and 578. �

15.2.4 With regression splines, the number and location of knots
controls the smoothness of the fit.

Splines are very easy to use because the problem of spline fitting may be formulated
in terms of a linear model. This, however, assumes that the knot set ξ1, ξ2, . . . , ξp

has been determined. The choice of knots can be consequential: with more knots,
the spline has greater flexibility, but also provides less smoothness. In addition, the
placement of knots can be important. Figure 15.6 displays three alternative spline fits.
The first two use splines with five and 15 knots having locations that are equally-
spaced according to the quantiles of x so, for example, 5 knots would be placed at
the 1

6 , 1
3 , 1

2 , 2
3 , 5

6 quantiles. Spacing the knots according to the quantiles of x allows
more knots to be placed where there are more data values. The third spline uses seven
knots chosen by eye. The spline with seven knots fits well because five knots are
placed in the middle of the range, where the function variation is large, while only
two are placed on the flanks where the variation is small.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 15.6 Three cubic spline fits to data generated from the same test function as Fig. 15.2, but
with more noise. Splines with 5 and 15 knots are shown (blue and red lines), with knot locations
selected by default in R. The spline with five knots provides more smoothing than the spline with
15 knots and, as a result, does a poorer job of capturing the peak in the function. The spline shown
in the black line has seven knots chosen to be ξ = (−1.8,−.4,−.2, 0, .2, .4, 1.8).

15.2.5 Smoothing splines are splines with knots at each xi, but with
reduced coefficients obtained by penalized ML.

The problem of choosing knots may be solved in various ways, and in many situations
it is adequate to select knots based on preliminary examination of the data and/or
some knowledge of the way the function f (x) is likely to behave. This is admittedly
somewhat arbitrary, and two kinds of alternatives have been proposed that are more
automated.

The first approach is to use a large number of knots, but to reduce, or “shrink,”
the values of the coefficients. One intuition here is that using a large number of knots
in a regression spline would allow it to follow the function well, but would make it
very wiggly; reducing the size of the coefficients will tend to smooth out the wiggles.
A second intuition is obtained by replacing the least-squares problem of minimizing
the sum of squares

SS =
n∑

i=1

(yi − f (xi))
2

with the penalized least squares problem of minimizing the penalized sum of squares

PSS =
n∑

i=1

(yi − f (xi))
2 + λ

∫
(f ′′(x))2dx
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where λ is a constant. The problem of minimizing PSS is similar to that of mini-
mizing the penalized regression sum of squares in (12.71). Here, the squared second
derivative is a roughness penalty: wherever (f ′′(x))2 is large, the function is fluctuat-
ing substantially, and the integral of this quantity is a measure of the total fluctuation,
or roughness. Thus, the value of the coefficient vector β∗ that minimizes PSS will
achieve some compromise between fitting the yi values and keeping the function
smooth. As λ increases, the resulting fit becomes increasingly smooth, and in the
limit λ → ∞ it becomes a line. It turns out that the solution to the penalized least
squares problem is a cubic spline with knots at every value of xi, but with coefficients
that are smaller in magnitude than those of the regression spline with knots at every
xi (which would correspond to taking λ = 0). This solution is called a smoothing
spline.

Smoothing spline technology has a strong theoretical foundation, and is among
the most widely-used methods for nonparametric regression. There is also much
well-developed software for smoothing splines. In the case of binomial or Poisson
regression, the smoothing spline will maximize a penalized likelihood.

There remains the problem of choosing λ. Various alternative choices of λ may
be tried. Statistical software typically provides options for choosing λ automatically
by a variant of cross-validation (see p. 356) known as generalized cross-validation
or by variants of ML called generalized maximum likelihood or restricted maximum
likelihood. A smoothing spline fit to the data of Fig. 15.2 is visually indistinguishable
from the spline fit in Fig. 15.4.

15.2.6 A method called BARS chooses knot sets automatically,
according to a Bayesian criterion.

One defect of smoothing spline technology, and many other nonparametric methods,
is that it assumes the degree of smoothness of f (x) remains about the same across its
domain, i.e., throughout the range of x values. An alternative is to devise a method that
selects good knot sets based on the data. One of the most successful such procedures
is called BARS (DiMatteo et al., 2001). In Fig. 1.6 of Example 1.7 BARS was
applied to data from an electrooculogram, which produces voltage traces that are
similar to many others, including EEG, ECoG, and LFP. There, BARS was able to
retain the high-frequency signal (the sudden drop and sudden increase in voltage
associated with an eye blink) while filtering high-frequency noise. In Figure 15.1 of
Section 15.1 we displayed BARS fits to two peristimulus time histograms. BARS
uses a Bayesian framework, and produces a posterior probability distribution on
knot sets (see Section 16.1). Knot sets are then generated by simulation from the
posterior distribution (Section 16.1.6). Based on each simulated knot set a fitted
curve is obtained (the mean of these fitted curves is used for displays, as in Figs.
1.6 and 15.1). Finally, propagation of uncertainty is used to provide standard errors

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_16
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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Fig. 15.7 Data from the test function of Fig. 15.2, but with more noise, as in Fig. 15.6, together
with smoothing spline fit (dotted line) and BARS fit (solid line).

or intervals for quantities of interest. Figure 15.7 compares BARS and smoothing
spline fits to the data from Fig. 15.6.

15.2.7 Spline smoothing may be used with multiple
explanatory variables.

At the beginning of this chapter we recalled Eqs. (14.3) and (14.4), which we had
used to define modern regression. In Section 15.2.2 we showed how splines are used
to define a function f (x) in ordinary linear regression and in Section 15.2.3 we gave
the extension to binomial and Poisson regression. Those sections involved a single
explanatory variable x. With p variables x1, . . . , xp it is too difficult to fit a function
f (x1, . . . , xp) in full generality: there are too many possible ways that the variables
may interact in defining f (x1, . . . , xp). However, a useful way to proceed is to make
the strong assumption of an additive form:

f (x1, . . . , xp) =
p∑

j=1

fj(xj). (15.6)

With this restriction, spline smoothing (or alternative smoothing methods) may be
applied to each variable successively in order to fit the model

Yi =
p∑

j=1

fj(xj)+ εi (15.7)

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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under the usual assumptions for linear regression. More specifically, an iterative
algorithm may be used3 to find the least-squares fit when a spline basis represents
each function fj(xj).

Example 15.3 Decoding natural images from V1 fMRI Kay et al. (2008) showed
that natural images could be identified with above-chance accuracy from V1 activity
picked up in fMRI responses. Vu et al. (2011) re-analyzed the data and showed how
decoding accuracy could be improved by 30 % when additive models of the general
form (15.7) were used. Kay et al. had applied a model of fMRI activity in a V1 voxel
based on Gabor wavelet filters. Briefly, as shown in Fig. 15.8, a Gabor wavelet is a
product of a sinusoidal factor and a factor based on a Gaussian (normal) pdf (see
Section 15.2.8). The Gaussian factor is similar to that used in the hippocampal place
cell model in (14.21). It has the effect of producing a response, for a particular voxel,
based only on a small region in the visual image. The sinusoidal factor produces a
central peak together with neighboring troughs that represent lateral inhibition, as is
characteristic of the response of V1 neurons. The response due to each filter also has
a particular orientation. The activity of each voxel in response to a particular image
was regressed on filtered representations of the image. A set of 48 Gabor filters at 8
orientations and 6 spatial scales, as shown in Fig. 15.8, was used. Each image in the
stimulus set produced a set of magnitudes xj(v), with j = 1, . . . , 48, corresponding to
the 48 filters, for each voxel v. These were the explanatory variables in the regression
model, while the fMRI voxel activity was the response. Due to visible nonlinearities,
Kay et al. performed a version of least squares based on

√
xj(v). Vu et al. found

substantial nonlinearity in the residuals from the model of Kay et al., see Fig. 15.9.
They then applied a model of the form (15.7) based on splines having 9 knots placed
at the 10th, 20th, . . ., 90th percentiles of each explanatory variable. Because they
had relatively large numbers of regression variables for each voxel, they applied a
version of L1 penalized regression (see p. 358). The resulting additive model greatly
improved the residual plots, see4 Fig. 15.10. Vu et al. also showed that the additive
model is more sensitive to weak stimuli, and this has the effect of broadening voxel
tuning in space, frequency, and contrast. This, presumably, was the main source of
improved performance. �

Equation (14.13) may be generalized to

Yi ∼ fYi(yi|ηi)

g(μi) =
p∑

j=1

fj(xj) (15.8)

3 One method, known as backfitting, cycles through the variables xj , using smoothing (here, spline
smoothing) to fit the residuals from a regression on all other variables.
4 There remain upward trends in the residual plots. This is due to the penalized fitting, which induces
correlation of residuals and fitted values.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Fig. 15.8 Examples of Gabor wavelets at eight orientations (columns) and 6 spatial scales (rows).
Adapted from Vu et al. (2011).

Fig. 15.9 Plots of residuals versus fitted values at four selected voxels for the model based on√
xj(v). Solid curve is a local linear fit, as outlined in Section 15.3.2. Adapted from Vu et al. (2011).

where fYi(yi|ηi) is an exponential family pdf as in (14.11), μi = E(Yi), and g(μ) is
the link function. The model (15.8) is known as a generalized additive model.

15.2.8 Alternatives to splines are often used in nonparametric
regression.

We have discussed splines at some length because they are effective, easy to under-
stand, and easy to use with available software. Other basis functions are often used.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Fig. 15.10 Plots of residuals versus fitted values at the same four voxels as in Fig. 15.9, but using
the additive model. Solid curve is a local linear fit, as outlined in Section 15.3.2. Adapted from Vu
et al. (2011).
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Fig. 15.11 Left The Haar mother wavelet ψ(x). Right The Haar wavelet ψ2,2(x).

One popular choice is wavelets, which are often applied in time-frequency analysis
of neural signals (see Section 18.3.7).

Wavelets use a wavelet function, or mother wavelet ψ(x), and a scaling function,
or father wavelet φ(x). A set of wavelet functions used for fitting is then defined by

ψj,k(x) = 2j/2ψ(2jx − k) (15.9)

together with the scaling function. For example, the Haar wavelets begin with

ψ(x) =
{−1 if 0 ≤ x ≤ 1

2
1 if 1

2 < x ≤ 1

and

φ(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Figure 15.11 shows the Haar mother wavelet together with the Haar wavelet ψ2,2(x),
which is concentrated in a narrow range. From the definition (15.9), the range of
ψj,k(x) becomes narrower as j increases. Haar wavelets are very simple and display
the locality and scaling structure of wavelets in general. In practice other forms are
used for the mother and father wavelets. For example, for Gabor wavelets or Morlet
wavelets, the mother wavelet is a product5 of a normal pdf and a sinusoidal term
(see Fig. 15.8).

Wavelet-based nonparametric regression proceeds by defining a relatively large
set of wavelets and then shrinking the coefficients (see p. 357), typically in such a
way that most coefficients become zero, leaving a sparse representation involving
few non-zero terms. The computations can be performed fast, using a method called
the discrete wavelet transform.

Wavelets tend to be very good for automated, sparse representation of low-noise
signals. When noise becomes more substantial there is unlikely to be a great advan-
tage in using wavelets for nonparametric regression. In general, the choice of basis
functions is largely a matter of preference and convenience.

15.3 Local Fitting

The second general approach to nonparametric regression is to use local fitting.
Recall that in ordinary linear regression, the regression line is the expectation of
Y as a function of x: we have E(Yi) = β0 + β1xi and could extend this to some
newly-observed value of x by writing

E(Y |x) = β0 + β1x. (15.10)

In (15.10) we mean to include the case in which the data collection process makes it
more reasonable to think of x as non-random. However, we have written E(Y |x) to
be reminiscent of our discussion, in Section 4.2.4, where we said that the regression
of Y on a random variable X is the conditional expectation of Y given X = x. See
the prediction theorem on p. 89.

Now, just as the expectation of a random variable is generally estimated by a
sample mean, so the conditional expectation in (15.10) may be estimated as the
mean of yi values for which X = xi, at least approximately. This is indicated in
Fig. 4.3. When we generalize (15.10) to

E(Y |x) = f (x) (15.11)

5 The names Gabor and Morlet both get attached to what is perhaps more properly known as the
Morlet wavelet, which has the form of a product of a normal pdf and a complex exponential, the
real and imaginary parts of which are sinusoidal.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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Fig. 15.12 Data simulated from function f (x) = sin(x)2 exp(−30x2) (shown as dark line). The
idea of local fitting begins with the notion that, just as in linear regression, for large data sets, the
regression curve f (x) at x = 1.5 should average the y-values among the points within the dashed
lines. However, for smaller data sets, like that shown here, the region within the dashed lines contains
relatively few points.

we may, in principle, also estimate f (x) by averaging yi values for X = xi, approx-
imately, as illustrated in Fig. 15.12. For large data sets the average gives an answer
very close to the expectation. An immediate issue, however, is how to choose the size
of the window (between the dashed lines in Fig. 15.12). Furthermore, in estimating
f (x) even with moderate-size data sets, it is possible to improve on the arithmetic
mean among yi values corresponding to xi near x. For instance, in Fig. 15.12, there
are not many values of xi that are very close to any particular x. The idea of local
fitting is to consider xi values that are somewhat more distant from x, but to weight
the various xi values according to their proximity to x.

Two different ways to accomplish local fitting are distinguished by the names
kernel regression and local polynomial regression.

15.3.1 Kernel regression estimates f (x) with a weighted
mean defined by a pdf.

In Section 8.1.3 we defined the the weighted mean of y1, . . . , yn to be

ȳw =
∑n

i=1 wiyi∑n
i=1 wi

where w1, . . . , wn are positive numbers and wi becomes the weight attached to the
ith value. In kernel regression, each value f (x) is estimated as a weighted mean of
the observations yi, with the weights increasing as xi gets closer to x. The weights

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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Fig. 15.13 Data showing the relationship of spike width to preceding ISI length for a neuron
recorded in slice preparation. A kernel regression estimator is superimposed on the plot (dashed
line) together with a local linear fit (solid line).

are defined by

wi = K(
x − xi

h
) (15.12)

for a suitable function K(u), which is called a kernel. The constant h is usually called6

the bandwidth. The most commonly-used kernel is the N(0, 1) pdf, in which case h
effectively plays the role of a standard deviation, i.e., we have wi ∝ Kh(x−xi) where
Kh(u) is the N(0, h2) pdf. That is, K( x−xi

h ) is proportional to a normal pdf centered
at zero having standard deviation h. This puts very nearly zero weight on yi values
for which |x − xi| > 3h. Because many applications of smoothing arise in signal
processing, some of the terminology is taken from that domain. In particular, when
a normal kernel is used, it is often called a normal filter or Gaussian filter. Filtering
is explained in Section 18.3.4.

More generally, any pdf could be used as a kernel. The formula for the kernel-
regression fit is

f̂ (x) =
∑n

i=1 K( x−xi
h )yi∑n

i=1 K( x−xi
h )

. (15.13)

Example 8.2 (continued, see p. 193) Previously we provided some results from
a study of action potential width as a function of the preceding ISI, and Fig. 8.6
displayed a plot of some data from one neuron recorded from rat barrel cortex in
a slice preparation. A portion of the data are shown again here, in Fig. 15.13. Only
the data points for which ISI was less than 200 ms are displayed, and the analysis
here only considered this truncated data set. Kernel regression, with a normal kernel,

6 The terminology comes from spectral analysis (see Section 18.3.3) where the width corresponds
to a band of frequencies.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 15.14 MEG signal from a single sensor on a single trial. (Adapted from Wang et al. 2010.)
This trial involved wrist movement, and time t = 0 corresponded to onset of movement. The dashed
line through the sensor tracing is the smoothed version obtained from the normal kernel regression
(a Gaussian filter).

produced the fitted relationship shown by the dashed line in the figure. The bandwidth
used was 30 ms. �

The choice of bandwidth h in kernel regression is important, and affects smooth-
ness: when h is small, the estimate tends to follow the data closely, but is very rough,
while when h is large the estimate becomes smooth but may ignore places where the
function seems to vary. Bandwidth selection involves a “bias versus variance” trade-
off: small h reduces bias (and increases variance) while large h reduces variance (but
increases bias). See Section 15.3.3.

Example 4.7 (continued from p. 358) The MEG decoding study of Wang et al.
(2010), described on p. 100, involved predicting actual or imagined wrist movement
from sensor signals. A preliminary step was to smooth each sensor signal, recorded
on each trial. One such signal is shown in Fig. 15.14 together with a smoothed
version based on a normal kernel. The bandwidth was 25 ms. This value of the
bandwidth was chosen because it is a round number and provided what seemed to be
a reasonable amount of smoothing when many plots were examined by eye, taking
into consideration the temporal accuracy required in the subsequent analyses. �

15.3.2 Local polynomial regression solves a weighted least squares
problem with weights defined by a kernel.

A second idea in local fitting of f (x) is to solve a weighted least-squares problem
defined at x by suitable weights wi = wi(x). In particular, local linear regression at
x minimizes
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WSS(x) =
n∑

i=1

wi(yi − β0 − β1(x − xi))
2 (15.14)

where the weights wi are defined in terms of a kernel, as in (15.12). A normal pdf
may be used as the kernel, but an alternative is

K(u) = (1− |u|3)3

for |u| < 1 and K(u) = 0 otherwise. The latter form of the kernel is used in
some statistical software. Extensive study of this methodology has shown that local
linear regression is effective in many situations. As with kernel regression, in local
polynomial regression7 there remains a choice of bandwidth. See Loader (1999) for
further discussion, references, and extensions.

Example 8.2 (continued) In Fig. 15.13 we displayed a plot of some action potential
width data together with a nonparametric regression fit based on a normal kernel (or
Gaussian filter). A local linear fit is also shown in Fig. 15.13. In this example the
local linear fit is nearly identical with the kernel regression fit. �
An important feature of local linear regression is that it may be extended to non-
normal families such as binomial and Poisson. The idea is very simple. In place of
the locally weighted sum of squares in (15.14) we can, for any value of the explanatory
variable xi, maximize a locally weighted loglikelihood having the form

WLL(x) =
n∑

i=1

wi�(β0 − β1xi).

More specifically, in the case of binomial local linear fitting, with Yi ∼ B(ni, pi), we
have

WLL(x) =
n∑

i=1

wi(yi log pi + (n− yi) log(1− pi))

log
pi

1− pi
= β0 + β1xi.

Maximizing this loglikelihood for each successive xi produces the fit at xi.

7 A popular variation on this theme, called loess, modifies the weights so that large residuals
(outliers) exert less influence on the fit. The terminology comes from the English meaning of loess,
which is a silt-like sediment, and is derived from German word löss, which means “loose.”
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15.3.3 Theoretical considerations lead to bandwidth
recommendations for linear smoothers.

Recall, from Section 8.1.1, that MSE = Bias2 + Variance. A minimal requirement
of an estimator, in large samples, is that its bias and variance vanish (as n → ∞).
Consider estimation of f (x) at the single point x. A linear smoother is, at x, a linear
combination of the data response values yi, so that the estimator may be written in
the form

f̂ (x) =
n∑

i=1

wi(x)yi

where wi(x) emphasizes that the weights are determined for each x. We want

E(f̂ (x))→ f (x) (15.15)

and
V(f̂ (x))→ 0. (15.16)

Because E(Yi) = f (xi) we also have

Ef̂ (x) =
n∑

i=1

wi(x)f (xi)

so that the bias vanishes, as stated in (15.15), if the weights wi(x) become concen-
trated near x and the function f (x) is smooth. For the weights to become concentrated
it is sufficient that

n∑

i=1

(xi − x)2wi(x)→ 0.

Assuming V(Yi) = σ2 (or, at least, that the variances do not vary rapidly), the
variance vanishes if

n∑

i=1

wi(x)
2 → 0.

Conditions like these on the weights, to guarantee (15.15) and (15.16), need to be
assumed by any large-sample theoretical justification of a linear smoothing method.
An explicit expression for the MSE of kernel estimators was given by Gasser and
Muller (1984). This allows a theoretical bias versus variance trade-off, i.e., a formula
for bandwidth selection as a function of n.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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15.4 Density Estimation

Suppose we have a sample U1, . . . , Un from a distribution having pdf fU(u). If fU(u)

is specified by a parameter vector θ (so that fU(u) = fU(u|θ)) we may apply ML
to estimate θ and thereby determine fU(u). Sometimes, however, we do not wish to
assume a particular parametric form, yet we still want to obtain an estimate of the
pdf. This presents the problem of nonparametric density estimation.

15.4.1 Kernels may be used to estimate a pdf.

One of the most popular ways to estimate a density is to apply a kernel, in the form we
give below. It is possible to view the problem of density estimation as a special case of
the problem of nonparametric regression, and in particular to derive a kernel density
estimate from (15.13). We provide some discussion of this in the next subsection.
Here we consider a somewhat simpler motivation for the procedure.

Recall that, for small h,

fU(u) ≈ P(u− h < U < u+ h)

2h
.

Then a direct estimate of fU(u) is

f̂U(u) ≈ no. obsn’s falling in (u − h, u + h)

2nh
. (15.17)

This estimate can be written in terms of the kernel K(z) = 1
2 for |z| < 1 and 0

otherwise: we have

f̂U(u) = 1

nh

n∑

i=1

K(
u− ui

h
). (15.18)

This direct (or “näive”) estimate is also essentially a histogram with bins centered at
the observations: if we normalize an ordinary histogram to give it the form of a pdf
we get

f̂U,hist(u) = no. obsn’s in same bin as u

2nh
.

Both the histogram and the estimate in (15.17) suffer from being rectangular, and
thus unable to produce a smooth curve as an estimate of the pdf. If we instead replace
the kernel K(z) = 1

2 for |z| < 1 with a smooth kernel, such as the normal pdf, we
will get a smooth density estimate. In this general form the result of applying (15.18)
produces what is known as a kernel density estimate. Kernel density estimation
may be considered a way of getting a smooth density to replace the histogram. The
normal (Gaussian) kernel is often used, though other choices are generally available
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Fig. 15.15 A Gaussian kernel density estimator superimposed on an ISI histogram for the ISI data
of Fig. 15.13. Here the histogram bin width was chosen using the “oversmoothed” rule from Scott
(1992, p. 46), which produced 10 bins of width 100 ms; the bandwidth of the Gaussian kernel was
set at 100 ms.

in density estimation software. As stated in Section 15.3.1, when a normal kernel
is used it is often called a normal filter or Gaussian filter. Filtering is explained in
Section 18.3.4.

As in kernel regression, the bandwidth parameter h is important. As we discussed
in Chapter 2, choice of bin width is similarly important when using a histogram.
For small h the estimate will tend to follow the data, but will be wiggly, while for
large h the estimate will be smooth, but may not respond quickly to bunching of
points that should indicate an increase in probability density. A variety of methods
have been proposed for automatic selection of h, but many analysts choose h based
on examination of the data, and experience with similar data (often picking a round
number for h, which indicates the arbitrariness in the choice).

Example 8.2 (continued): We now examine only the ISI component of the data
considered earlier, including all ISIs under 1,000 ms. A Gaussian kernel density
estimate is shown in Fig. 15.15 superimposed on an ISI histogram. �

15.4.2 Other nonparametric regression methods
may be used to estimate a pdf.

Many alternatives to kernel density estimation have been studied, and some of these
can provide better estimates in certain situations. The virtue of kernel density estima-
tion is that it is fast, easy, and often effective. When some imprecision in the estimate
is tolerable, kernel density estimation is often a method of choice.

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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It is possible to view density estimation as a problem in binary nonparametric
regression: we consider a very fine grid of values of u and define a variable that is
one whenever a grid interval contains an observation, and 0 otherwise; estimating
the expectation of these binary random variables amounts to estimating the pdf of
U. Thus, with any method of nonparametric regression for binary data, after the
regression estimate is normalized so that it integrates to one it may be considered a
density estimate.

Details: Let us suppose we wish to obtain f̂U(u) at some grid of u
values, as we would in order to plot f̂U(u), and let us write the grid as
x1, x2, . . . , xm, so that the pairs we would plot would be (xj, f̂U(xj)), for
j = 1, . . . , m. We are using the notation xj to distinguish the grid points
from the random variable observations ui. For the purpose of plotting
this pdf we would, typically—as in plotting any function—choose
m to be a fairly large value (such as 200), so that the plotted graph
would not appear jagged. For convenience, let us take �x = xj−xj−1,
assuming the grid points to be equally spaced. Then taking a large m
is equivalent to making �x small. Let us assume that the grid is cho-
sen to be sufficiently fine that there is at most one observation ui in
any given interval (xj−1, xj). (We may take x0 = x1 − �x.) View-
ing this procedure probabilistically, we can set up our grid prior to
observing U1, . . . , Un and take it to be sufficiently fine that the prob-
ability of obtaining more than one observation in any given interval is
negligible. The probability that an observation Ui will fall in interval
(xj−1, xj) is approximately fU(xj)�x. (We could improve the approx-

imation somewhat by instead taking it to be fU(
xj+xj−1

2 )�x, but will
ignore this distinction here, as we are assuming �x is small, so that
fU(xj) ≈ fU(

xj+xj−1
2 ).) Now let Yj = 1 if the interval (xj−1, xj) con-

tains an observation Ui (for some i) and 0 otherwise. Then Yj, for
j = 1, . . . , m, forms a sequence of binomial random variables with

E(Yj) ≈ nfU(xj)�x. (15.19)

Because Yj varies with j, it varies also with xj and we may think of
this expectation as a conditional expectation E(Yj|xj); and because
nonparametric regression methods estimate such conditional expecta-
tions, we may apply a kernel method to the estimation of the left-hand
side of (15.19) in order to obtain an estimate of fU (u), which appears on
the right-hand side. Specifically, writing x = xj and applying (15.13),
we have
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nf̂U(x)�x =
∑m

j=1 K(
x−xj

h )yj
∑m

j=1 K(
x−xj

h )

= �x
∑n

j=1 K(
x−xj

h )yj
∑m

j=1 K(
x−xj

h )�x
. (15.20)

For large m we have

m∑

j=1

K(
u− xj

h
)�x ≈

∫
K(

u− x

h
)dx

and, setting z = (u − x)/h, because K(z) is itself a pdf its integral is
one, so from x = u− hz we have

∫
K(

u− x

h
)dx = h

∫
K(z)dz = h.

Thus, for large m, the sum appearing in the denominator of (15.20)
is approximately h. In the numerator, we note that yj = 0 except
when there is an observation ui in (xj−1, xj), in which case xj ≈ ui.
Plugging these into (15.20), canceling �x from the left-hand side
and the numerator of (15.20), and replacing x with u then gives
(15.18). �



Chapter 16
Bayesian Methods

Few results are as consequential for data analysis as Bayes’ Theorem. The theorem
itself, which we introduced in Sections 3.1.4 and 4.3.3, is a simple re-formulation
of conditional probability and is easy to derive. Its conceptual power has been illus-
trated already in three previous chapters. In Example 3.2, p. 44, we calculated the
probability of having vascular dementia based on a positive result from a screening
test and found it to be surprisingly small. In Section 4.3.4 we showed that Bayes clas-
sifiers are optimal, in the sense of having the smallest possible mis-classification rate,
and mentioned that such optimality has been used in theoretical studies of vision,
where object-recognition is often considered a problem of classification. Then, in
Section 7.3.9, we described the Bayesian approach to providing inferential intervals,
called credible intervals, that display knowledge and uncertainty about the value of
an unknown parameter; and in the context of Example 1.4 (on p. 175) we showed
that credible intervals can have good frequentist coverage probability, getting closer
to the nominal .95 probability than the standard approximate confidence interval
we had applied earlier. These vignettes indicate some of the ways Bayes’ theorem
can generate important data analytic procedures. There are many texts on Bayesian
statistical methods. In this chapter we limit our discussion to several fundamen-
tal topics. In Section 16.1 we present key concepts that help in understanding, and
computing, posterior distributions. In Section 16.2 we describe a setting in which
Bayesian formalism is especially valuable: the use of latent variables, including so-
called “hidden states.” Finally, in Section 16.3 we return to the Bayesian approach to
hypothesis testing, which we mentioned in Section 10.4.5, and discuss it at greater
length.

Bayes’ theorem has been the source of great debates across more than 200 years
(see McGrayne 2011). On the one hand, Bayesian inference has seemed compelling to
many people. In the first place, as we pointed out on p. 174, Bayes’ theorem provides
a straightforward interpretation of what we know based on the data at hand. Secondly,
because Bayes’ theorem is a law of probability, Bayesian inference is self-consistent
(it does not yield1 logical paradoxes). Thirdly, as we showed in Section 4.3.4, it yields

1 Exceptions occur for improper priors; see Section 16.1.4.
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optimal decisions. Furthermore, as we say on p. 450, it produces one of the guiding
principles of science, namely that with sufficiently good data any two investigators
will come to agreement. Taken together, these properties inspire awe among many
who are able to appreciate them. Yet when people become captivated by the spell
of Bayes’ theorem they tend to proselytize, and become blinded to its fundamental
vulnerability: its powers depend on the accuracy of its probabilistic inputs. Just as
other kinds of zealots have always found combative foes, so Bayesians for many
years joined battle with non-believers. The arguments turned out to be partly pro-
ductive, but mostly futile. The contemporary view is much more civilized and Bayes’
theorem is now2 widely recognized as a crucial tool for data analysis.

Within neuroscience enthusiasm for Bayesian inference has been voiced, with
many theoreticians claiming that it can yield important insights into human behavior
and the functioning of the nervous system. We hinted at this when we mentioned
Bayesian decision-making, beginning on p. 102. Further discussion may be found in
Griffiths et al. (2012), Jacobs and Kruschke (2010), Knill and Pouget (2004), Körding
(2007), and Wolpert et al. (2011), and the references therein. Bayesian inference is
not a panacea, but it has supplied a fruitful conceptual framework. While the aim
of this chapter is to present essential Bayesian concepts for analysis of neural data,
the constructions we review here are also crucial components of Bayesian thinking
about neural systems.

16.1 Posterior Distributions

A central formula in deriving Bayesian methods is (7.28), which gives the posterior
pdf of a parameter θ given data x in terms of the likelihood function L(θ) and the
prior pdf π(θ). We repeat that formula here:

fθ|x(θ|x) = L(θ)π(θ)∫
L(θ)π(θ)dθ

. (16.1)

In this chapter we drop the subscript on the posterior pdf and write it as f (θ|x).
As we have already seen in Section 7.3.9, estimation and uncertainty about an

unknown parameter θ may be summarized with the posterior mean and standard
deviation, which become an alternative to the MLE and SE. For skewed posterior
distributions, where the mean and mode may differ, sometimes the mode is used
instead of the mean; and sometimes the mode is easier to compute than the mean.
Because the mode maximizes the posterior pdf it is often called the maximum a
posteriori (MAP) estimate. As an estimator of θ, the posterior mean is sometimes
motivated by the theorem on p. 90 which, in this context, says that the posterior

2 See Kass (2011) for an elaboration of the current philosophical pragmatism among most practicing
statisticians.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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mean will be optimal in terms of minimizing the posterior mean squared error, i.e.,
the value of d that minimizes E((θ − d)2|x) is d = E(θ|x).

16.1.1 Bayesian inference equates descriptive
and epistemic probability.

Bayesian methods may be considered to supply good solutions to a limited range of
statistical problems—particularly those involving latent variables, as we discuss in
Section 16.2. In this sense, they are specialized. However, the application of Bayes’
theorem to problems of statistical inference as in (16.1) involves a broadly important
conceptualization. This is worth appreciating.

As we stated on p. 14, probability is used in two distinct ways. It is used descrip-
tively in modeling variation, as when we said on p. 37 that the probability of rolling
an even number with a fair six-sided die is 1

2 or, in fact, as in any of the statistical
models we have used throughout the book. Probability is also used to quantify a state
of uncertain knowledge, as we illustrated on p. 172 with the statement “I am 90 % sure
the capital of Louisiana is Baton Rouge.” This second use of probability, to indicate
a state of knowledge is often called epistemic. In Eq. (16.1), the likelihood function
comes from the pdf f (x|θ), which is a descriptive use of probability. The prior and
posterior distributions, however, use probability to quantify uncertain knowledge. As
we highlighted in Section 7.3.9, the indirect interpretation of confidence intervals,
which is based solely on descriptive probability, contrasts sharply with the stronger
and more intuitive epistemic interpretation of posterior credible intervals. Bayesian
analysis is based on an inferential principle of equivalence, which asserts that there
is only one kind of probability for both descriptive and epistemic purposes, and
that epistemic statements can be made using descriptive quantifications merely by
applying the laws of probability, i.e., by Bayes’ theorem. Let us return to the version
of formula (16.1) in which we see explicitly how Bayes’ theorem is used, namely
Eq. (7.27), which we repeat here:

fθ|x(θ|x) = fX|θ(x|θ)fθ(θ)∫
fX|θ(x|θ)fθ(θ)dθ . (16.2)

The pdf fX|θ(x|θ) in (16.2) is where probability enters descriptively (describing the
variation in the data), but the posterior pdf fθ|x(θ|x) produces epistemic statements, as
on p. 174. The inferential principle of equivalence says that we may convert descrip-
tive uses of probability to epistemic ones, as in (16.2).

This simple principle is attractive partly for the reasons we enumerated in the
introduction, on p. 439, and also because it is remarkably powerful in its ability
to solve complicated statistical problems: once a statistical model is able to do a
reasonably good job in describing variation, and prior information is formulated, at

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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least approximately, then Bayesian inference can produce useful quantifications of
the way the data produce new knowledge.

16.1.2 Conjugate priors are convenient.

Let us return to the binomial setting discussed in Sections 7.3.9 and 8.3.3. There we
used a uniform prior π(θ) = 1 and obtained the posterior pdf

f (θ|x) = θx(1− θ)n−x
∫
θx(1− θ)n−xdθ

which matched the beta pdf form given on p. 125,

f (w) = �(α+ β)

�(α)�(β)
wα−1(1− w)β−1, (16.3)

producing the posterior distribution θ|X = x ∼ Beta(x+1, n−x+1). Interestingly, as
may be seen from Eq. (16.3), the uniform distribution on (0, 1), which has pdf f (w) =
1, is the same as the Beta(1, 1) distribution. Therefore, with the binomial likelihood
a Beta(1, 1) prior produces a Beta(x + 1, n + 1) posterior. We may generalize by
instead using a Beta(απ,βπ) prior: in this case the posterior pdf becomes

f (θ|x) = θx(1− θ)n−xθαπ (1− θ)βπ∫
θx(1− θ)n−xθαπ (1− θ)βπdθ

(16.4)

and, from Eq. (5.15), above, this may be recognized as a Beta(αpost,βpost) pdf where

αpost = x + 1+ απ
βpost = n− x + 1+ βπ.

Thus, in conjunction with the binomial likelihood, a beta prior distribution produces
a beta posterior poster distribution. In such situations, where a prior distribution leads
to a posterior within the same parametric family of distributions, the prior is called
conjugate.

Here is another example. Let X1, X2, . . . , Xn be a sample of N(θ,σ2) random
variables, write X = (X1, . . . , Xn), take X to be the usual sample mean of the Xi vari-
ables so that X ∼ N(θ,σ2/n), and assume σ is known. If we let the prior distribution
be normal with θ ∼ N(μπ,σ

2
π) then the posterior distribution is also normal. This

is because the likelihood function based on the data (x1, . . . , xn) is the same as the
likelihood function based on x (the sample mean is sufficient, and Bayes sufficient,
as mentioned on p. 200), and is given by

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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L(θ) = exp
(
− n

2σ2 (x − θ)2
)

(16.5)

which may be written as L(θ) = exp(Q1(θ)) for a quadratic function Q1(θ), while
the prior similarly has the form π(θ) = exp(Q2(θ)) for another quadratic function
Q2(θ). The posterior therefore has the form

f (θ|x) ∝ exp(Q3(θ)) (16.6)

where Q3(θ) = Q1(θ)+ Q2(θ) is quadratic and the symbol ∝ means “proportional
to,” i.e.,

f (θ|x) = c exp(Q3(θ)) (16.7)

for some nonzero constant c. Equation (16.6) implies that the posterior pdf is normal.
(The normal pdf has the form (16.7) where the constant c is chosen so that f (θ|x)
integrates to 1.) Thus, for the problem of estimating a normal mean, the normal
prior is conjugate. In Section 16.1.3 we give the formulas for the posterior mean and
variance in this case.

More generally, exponential family models (see Section 14.1.6) have conjugate
priors. For instance, for Poisson likelihood functions gamma distributions become
conjugate priors. Conjugacy is advantageous because formulas for pdfs, and also
means and variances, may be derived and software for conjugate families is available.

16.1.3 For exponential families with conjugate priors
the posterior mean is a weighted combination of the MLE
and the prior mean.

In Section 16.1.2 we noted that when X1, . . . , Xn form a sample from a N(θ,σ2)

distribution and the prior is a N(μπ,σ
2
π) distribution, the posterior is also normal,

due to Eq. (16.6). To be explicit, with X = (X1, . . . , Xn), we have

θ|X = x ∼ N(μpost,σ
2
post)

where

μpost = σ2
x̄

σ2
x̄ + σ2

π

μπ + σ2
π

σ2
x̄ + σ2

π

x (16.8)

σ2
post =

(
1

σ2
x̄

+ 1

σ2
π

)−1

(16.9)

in which

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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σx̄ = σ√
n
. (16.10)

Details: Taking logs in Eq. (16.6) and inserting σx̄ according to
(16.10), we have

log f (θ|x) = −1

2

(
x − θ
σx̄

)2

− 1

2

(
θ − μπ
σπ

)2

+ constant

where “constant” refers to all terms that are constant in θ. We then
note that

1

σ2
x̄

(θ − x)2 + 1

σ2
π

(θ − μπ)2 = (
1

σ2
x̄

+ 1

σ2
π

)(θ − μpost)
2 + constant

where μpost is given by (16.8). Therefore, we have

log f (θ|x) = (
1

σ2
x̄

+ 1

σ2
π

)(θ − μpost)
2 + constant

and, exponentiating,

f (θ|x) ∝ exp

(
(

1

σ2
x̄

+ 1

σ2
π

)(θ − μpost)
2

)

which shows the posterior is normal with mean μpost and variance
σ2

post given by (16.9). �
Equation (16.8) has a deeply useful interpretation. Let us rewrite it in the form

μpost = wx + (1− w)μ (16.11)

where

w = σ2
π

σ2
x̄ + σ2

π

.

In the special case n = 1 we write x = x1 and get

μpost = wx + (1− w)μ. (16.12)

Equations (16.11) and (16.12) say that the posterior mean is a weighted combination
of the MLE and the prior mean, with the weights determined by the relative precision
(the inverse of the variance) of data and prior. In (16.11), as the precision in the data
increases relative to the prior (i.e., as σ2

π/σ
2
x̄ increases), w increases, more weight is

placed on x, and the posterior mean becomes nearly the same as x. Intuitively, when
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the weight w is large, the data contribute more knowledge than the prior, and so the
posterior is centered near the data value x. When the data are imprecise relative to
the prior (i.e., when σ2

π/σ
2
x̄ is small), more weight is placed on the prior mean, so that

the posterior mean is pulled away from x and toward the prior mean. The posterior
mean is often said to shrink the value x toward μ, particularly when μ = 0 (so that
the magnitude of μpost is smaller than that of x). In this terminology, the amount
of shrinkage is determined by 1 − w. In Section 16.2.3 we discuss the connection
between the use of “shrinkage” in this context and in regression (see p. 357).

Example 16.1 Sensorimotor learning Körding and Wolpert (2004) designed an
experiment in which visual input could be combined with a learned prior distribution
in order to produce a finger movement. Subjects moved their index finger from a
starting location toward a target, which was represented on a computer monitor. Half-
way through the finger movement they were given visual feedback as to where their
finger was at that moment (a cursor was shown briefly on the monitor) but, relative
to a straight path between starting location and target, it was (a) corrupted by noise
and (b) displaced to the right. The noisy location was indicated by a cloud of points
drawn from a spherical bivariate normal distribution with one of 4 possible values
of standard deviation (the standard deviation here refers to the standard deviation
of each marginal distribution determined by the bivariate normal). This standard
deviation would correspond to σx̄ in Eqs. (16.8) and (16.9), and the center of the
displayed cloud of points would correspond to x. The size of the displacement varied
with each trial, and was drawn from another normal distribution. The mean and
standard deviation of this displacement distribution would correspond to μπ and σπ
in Eqs. (16.8) and (16.9). In other words, the displacement distribution formed a prior
and the center of the cloud of points (together with the standard deviation) became
the subject’s input data for each trial.

Subjects were given 1,000 training trials during which they could learn the prior
displacement distribution. When queried afterwards they had no awareness of the
displacement. The authors used an additional 1,000 trials to collect experimental
data about the final location of each subject’s finger. The authors showed that the
displacement of the final location from the target was predicted well by Eqs. (16.8)
and (16.9). In other words, in attempting to reach the target, subjects combined
the visual input information with their prior knowledge of the displacement, at least
approximately, as if their nervous system were computing a posterior mean according
to Eqs. (16.8) and (16.9). �

Formulas analogous to Eq. (16.8) also hold for other exponential families with
conjugate priors. For example, in the binomial setting let us reparameterize the
Beta(α,β) distribution by defining

μ = α

α+ β (16.13)

ν = α+ β. (16.14)
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Here,μ is the mean of the beta distribution and ν is its variance−1 (see Section 5.4.5).
The beta distribution may then be written Beta(μν, (1 − μ)ν) and the beta prior
θ ∼ Beta(απ,βπ) instead becomes θ ∼ Beta(μπνπ, (1 − μπ)νπ). Similarly, the
posterior based on a binomial B(n, θ) observation X = x becomes

θ|X = x ∼ Beta(μpostνpost, (1− μpost)νpost)

and we have
μpost = νπ

n+ νπ μπ +
n

n+ νπ x̄ (16.15)

where we have written the observed proportion in the form x̄ = x/n (thinking of
the binomial as resulting from n Bernoulli trials). In (16.15) the data precision is not
exactly the reciprocal of the variance but is instead represented by n and the prior
precision is represented by νπ . With these definitions of precision it is again true
that as the precision in the data increases relative to the prior more weight is placed
on the observed proportion x̄ and the posterior mean becomes nearly the same as x̄,
while when the data precision gets relatively smaller the posterior mean is pulled
away from x̄ toward the prior mean.

The binomial posterior mean may be interpreted as equivalent to the MLE that
would be obtained from the original data x together with some pseudo-data repre-
sented by the prior. For example, with a uniform prior (so that α = β = 1), the
posterior is a Beta(x + 1, n− x + 1) distribution which, from (16.13), has mean

μpost = x + 1

n+ 2
,

and this is equal to the MLE based on x+1 successes (1s) and n−x+1 failures (0s).
That is, we imagine first supplementing the actual data with 1 success and 1 failure,
and then finding the observed proportion of successes; this is the posterior mean. A
similar statement remains true whenever α and β are integers. The non-integer case
is sometimes interpreted by analogy. For example, if we use the conjugate prior with
α = β = 1

2 the posterior mean is equal to the MLE we would get by “adding half a
success and half a failure” to the data before finding the proportion of successes.3

The normal case may be interpreted similarly. Let us suppose, first, that σπ = σ.
In this case, in (16.11), we have w = n/(n + 1) and the posterior mean is the same
as the sample mean from the original n observations supplemented by 1 observation
having the value μπ . Similarly, if σ2

π = σ2/k, in (16.11), we have w = n/(n+ k) and
the posterior mean is the same as the sample mean from the original n observations
supplemented by k observations having mean μπ . When the ratio σ2/σ2

π is not an
integer the interpretation works by analogy: the prior again injects some additional

3 Adding 2 successes and two failures has been advocated as a way of achieving good frequentist
coverage probability of approximate 95 % CIs, i.e., intervals based on (7.22) with p̂ replaced by
(x + 2)/(n+ 4). See Agresti and Caffo (2000).

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_7
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information, beyond the data, represented as if based on other data having sample
mean μπ and variance of that mean equal to σ2

π .

16.1.4 There is no compelling choice of prior distribution.

In the case of a binomial B(n, θ) distribution, it is intuitive to take the prior for θ
to be uniform on (0, 1), so that the prior pdf is π(θ) = 1. This uniformity seems to
capture the notion that the prior is not favoring particular values of the parameter
above others. Working by analogy, in the case of estimating a normal mean based on
a sample from a N(θ,σ2) distribution, with σ known, the prior on θ could taken to
be uniform on (−∞,∞) with π(θ) = 1. This is not a pdf because its integral is

∫ ∞

−∞
1dθ = ∞

while the integral of a pdf must equal 1. However, in this particular case the posterior
turns out to be a well-defined probability distribution: it is normal with mean and
variance given by Eqs. (16.8) and (16.9) where 1/σπ = 0. That is, in this case the
posterior is normal with mean μpost = x and standard deviation is σpost = σ/

√
n.

Formal priors that have infinite integrals are called improper. In estimating a normal
mean there is an identification of ML estimation with the improper Bayesian solution
based on the prior π(θ) = 1.

It is tempting to call a uniform prior “non-informative,” and to apply it in other
problems. An immediate difficulty, however, is that such a choice is not invariant to
reparameterization: if θ is given a uniform distribution, the pdf of φ = g(θ) for any
one-to-one nonlinear function g (such as φ = eθ) will be non-uniform, according to
the theorem on p. 62, and one needs some justification for being “non-informative” for
θ rather than φ. This forces the data analyst to decree a particular parameterization to
be special. In some problems, such as the binomial or normal, a particular parameter,
such as the binomial mean or the normal mean, may indeed play a special role in the
problem. In particular, in estimating a normal mean, different values of x produce
likelihood functions L(θ) in (16.5) that are exactly the same aside from the location of
their peak (which is at x). That is, as the value of x is translated along the real line, so
too is the likelihood function; and this would not be the case for the likelihood L(φ)

for any nonlinearly transformed parameter φ. It has been argued that if we wish the
prior to represent maximal uncertainty, and inject minimal information, this special
translational property should be respected by the posterior as well and, therefore, the
prior should be uniform on θ. In other words, it has been argued that the special form
of the likelihood function in (16.5) makes θ an exceptional parameterization for this
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model, so that it becomes reasonable to consider the uniform prior π(θ) = 1 to be4

non-informative.
The binomial parameter θ, and the normal mean μ have a special status. In most

statistical models, however, it is difficult to argue in favor of some particular choice of
parameterization about which one might wish to be non-informative. In Example 7.1,
for instance, there was a memory capacity parameter, and at first glance one might
wish to be non-informative about it. But it might seem equally plausible to use
its reciprocal or logarithm. There is no strong analogy with the argument about a
normalμ in this case. Similarly, for the gamma model discussed in Section 7.2 it is not
clear what parameterization should gain some special consideration. Furthermore,
especially in multidimensional problems, there can be unanticipated consequences of
uniformity, including especially the possibility that the posterior itself is improper and
therefore no longer able to provide inferential statements such as credible intervals.
As reviewed by Kass and Wasserman (1996), numerous methods have been proposed
in an attempt to resolve these issues and provide rules for selecting prior distributions.
(The bibliography in Kass and Wasserman (1996), has over 200 entries.) While
particular choices often seem reasonable, there is a degree of arbitrariness in all
and no consensus has emerged. Although this situation may seem problematic, it is
balanced by considerations reviewed in Section 16.1.5.

16.1.5 For large samples, posteriors are approximately
normal and centered at the MLE.

In Section 8.3.3 we cited the result that for large samples the posterior distribution of
θ is approximately normal, with the normal distribution centered at the MLE θ̂ and
having variance equal to the inverse of the observed information. We illustrated this
for the binomial setting in Fig. 8.8, using a plot of a normal approximation to a beta
posterior. We now elaborate.

The general argument uses the quadratic approximation to the loglikelihood func-
tion. For simplicity let us assume θ is a scalar. Because �′(θ̂) = 0 we may simplify
the quadratic approximation (second-order Taylor series approximation),

�(θ) ≈ �′(θ̂)(θ − θ̂)+ 1

2
�′′(θ̂)(θ − θ̂)2

to get

�(θ) ≈ 1

2
�′′(θ̂)(θ − θ̂)2. (16.16)

4 A similar argument may be applied to the case of estimating a normal standard deviation σ when
the mean μ is assumed known, and this produces a uniform prior πξ(ξ) = 1 on ξ = logσ, with the
change of variables formula (see the theorem on p. 62) giving π(σ) = 1/σ.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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This approximation holds for θ close to θ̂, in the sense that for sufficiently small values
of |θ− θ̂| the difference between the left and right-hand sides of (16.16) may be made
arbitrarily small. The argument then proceeds by showing that for sufficiently large
n, the only values of θ that have appreciable posterior probability are those for which
|θ − θ̂| is small, and the prior contributes negligibly to the posterior, so that the
posterior pdf satisfies

log f (θ|x) ≈ 1

2
�′′(θ̂)(θ − θ̂)2 + constant (16.17)

where “constant” means constant in θ (and determined by the condition
∫

f (θ|x)dθ
= 1). Thus, the posterior pdf may be written, approximately, as

f (θ|x) ≈ k exp

(
1

2
�′′(θ̂)(θ − θ̂)2

)
(16.18)

where k is a proportionality constant.5 In other words, the posterior pdf is approxi-
mately the same as a normal pdf with mean θ̂ and variance given by the inverse of
the observed information IOBS(θ̂) = −�′′(θ̂). We now say a few more words6 about
the steps involved in obtaining (16.17).

First, as we said in Section 8.3.1, MLEs are consistent,

θ̂
P→ θ. (16.19)

For example, in the binomial case X ∼ B(n, θ), we have θ̂ = x
n and we get θ̂

P→ θ by
the law of large numbers (because X may be considered a sum of n Bernoulli trials
so that X/n is a sample mean).

Second, the observed information increases at the rate of n, and in fact (for i.i.d.
samples)

1

n
IOBS(θ̂)

P→ IF(θ). (16.20)

(Compare the details following Eq. (8.35).) For example, in the binomial case we
have

IOBS(θ̂) = n

θ̂(1− θ̂)
and

IF(θ) = 1

θ(1− θ) .

5 In order for the right-hand side to integrate to 1 we must have k =
√
−�′′(θ̂)/2π.

6 Additional details may be found in many sources including Kass and Vos (1997, Theorem 2.2.13)
and Chen (1985).

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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so that (16.20) holds due to (16.19) (by an application of Slutsky’s theorem).
Because the observed information increases as n → ∞, the loglikelihood func-
tion becomes more highly peaked about its maximum as n→∞. Furthermore, the
likelihood function may be approximated by the normal pdf found by exponentiating
the right-hand side of (16.16), which has standard deviation SE = IOBS(θ̂)

−1/2 (the
standard error associated with the MLE). From Eq. (16.20), this standard deviation
is decreasing as 1/

√
n. Therefore the width of the peak in the likelihood function is

decreasing at the rate of 1/
√

n. We can write the values of θ for which the likelihood
is substantial in the form

(an, bn) = (θ̂ − c · SE, θ̂ + c · SE) (16.21)

where we take c to be a positive constant, such as c = 4.
Finally, we consider the contribution of the prior to the posterior as n→∞. As

in (16.19), the posterior pdf is a normalized product of the likelihood function and
prior pdf. While the likelihood function becomes increasingly close to the form of
a normal pdf, with standard deviation decreasing as 1/

√
n, the prior pdf π(θ) is a

fixed function that does not change with n. The intervals in (16.21) will have lengths
bn− an that decrease as 1/

√
n and, for θ in these intervals, when n is large the value

of θ − θ̂ will be small so that we get

π(θ) ≈ π(θ̂). (16.22)

In other words, for values “within the peak” of the loglikelihood function, the prior
is approximately constant. Therefore, (16.16) gives us (16.17) and the posterior
becomes concentrated near θ with an approximately normal form, as in (16.18). We
have sketched the argument in the scalar case, but the steps are the same when θ is
a vector.

The approximate N(θ̂, IOBS(θ̂)
−1) distribution of the posterior not only gives an

easy way to compute posterior probabilities, for large samples, but it also provides
a very nice mathematical expression of one of the guiding principles of science:
any two investigators who start with differing beliefs (in the form of two different
priors π1(θ) and π2(θ)), will, with sufficiently much data, come to agreement (their
posterior distributions will be essentially the same).

16.1.6 Powerful methods exist for computing
posterior distributions.

In our introduction to this chapter we reviewed briefly the conceptual appeal of
Bayesian inference. Bayesian methods have become indispensable in the analy-
sis of neural data mainly because (i) inferences agree reasonably well with those
based on ML estimation (due to the result outlined in Section 16.1.5), (ii) sometimes
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there is available structure that can be formalized as part of a prior specification
(see Section 16.2), and (iii) in many complicated statistical models there are general
computational tools for computing posteriors. In this section we sketch the essential
ideas behind the main such computational tool, posterior simulation.

We have already, in Chapter 9, described the great utility of simulation methods in
statistical inference. In posterior simulation a sequence θ(1), . . . , θ(G) of observations
from the posterior distribution is generated, and inference is based on the methods
outlined in our discussion of simulation-based propagation of uncertainty (p. 225).
For example, to compute the probability in

P(a < θ < b|x) =
∫ b

a
f (θ|x)dθ (16.23)

we could use

P(a < θ < b|x) ≈ N1

G

where N1 is the number of θ(g) such that a < θ(g) < b. Similarly, if φ = f (θ) for
some function f (x) we could compute probabilities involving φ (again, as on p. 225),
as

P(c < φ < d|x) ≈ N2

G

where we let W (g) = f (θ(g)) and N2 is the number of W (g) such that c < W (g) < d.
This kind of computation is used in the following example.

Example 16.2 Methylphenidate-Induced Emergence from General Anesthesia
When general anesthesia is administered for surgery, or for an invasive diagnostic
procedure, patients recover by resting until the anesthesia’s effects wear off. As an
alternative, Solt et al. (2011) considered the possibility that methylphenidate might
induce emergence from general anesthesia. Methylphenidate (Ritalin) is widely used
to treat Attention Deficit Hyperactivity Disorder (ADHD), and acts primarily by
inhibiting dopamine and norepinephrine reuptake. But dopamine and norepinephrine
can also promote arousal. The authors applied isoflurane anesthesia to rats at a dose
sufficient to maintain them in a supine position (lying down) for 40 min. Five minutes
after establishing their anesthetized state (from an equilibration procedure) the ani-
mals were given one of three doses of methylphenidate intravenously ranging from
a maximum of 5 mg/kg to a minimum of .05 mg/kg. At the maximum dose, 12 out of
12 rats regained their upright position and made purposeful movements within 30 s
(seconds) of drug administration. At the minimum dose, 0 out of 6 regained their
upright position within 30 min. Apparently, 5 mg/kg of methylphenidate is sufficient
to remove the immobilizing effects of isoflurane-induced anesthesia in rats. (At the
intermediate dose of .5 mg/kg 11 out of 12 regained their upright position.)

To evaluate the strength of this evidence, 12/12 versus 0/6, the authors considered
the binomial model X1 ∼ B(12, p1) and X2 ∼ B(6, p2), introduced independent

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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uniform priors on p1 and p2 as in Example 1.4 on p. 174, and computed the posterior
probability P(p1 > p2|X1 = 12, X2 = 0). This may be done very easily by pos-
terior simulation: the two posterior distributions on p1 and p2 are Beta(13, 13) and
Beta(1, 7), and they are independent. (It is easy to check that if X1 and X2 are inde-
pendent, and the prior distributions on p1 and p2 are independent, then the posterior
distributions on p1 and p2 are independent.) We therefore do the following:

1. Draw G = 10, 000 observations from a Beta(13, 13) distribution and put them
in a vector A.

2. Draw G = 10, 000 observations from a Beta(1, 7) distribution and put them in
a vector B.

3. Compute the number of components i for which A[i] > B[i], and divide by G.
This is, approximately, the desired posterior probability.

Performing the calculation gives P(p1 > p2|X1 = 12, X2 = 0) = .986. The authors
concluded that methylphenidate actively induces emergence from isoflurane anes-
thesia. We re-evaluate this evidence using Bayes factors on p. 478. �

In Section 16.1.2 we noted that posterior probabilities may be computed easily
when conjugate priors are used, and Example 16.2 made use of posterior simulation
with conjugate beta posterior distributions. As soon as we leave conjugacy, numerical
difficulties become apparent. Even in the simple case of estimating a normal mean
θ from a sample X1, . . . , Xn, with Xi ∼ N(θ,σ2) and σ known, if we take the prior
to be a non-normal probability distribution on (−∞,∞), the posterior pdf becomes
intractable, in the sense that L(θ)π(θ) in Eq. (16.1) has a non-normal form, and we can
not evaluate analytically the integrals needed to compute posterior probabilities such
as that in (16.23). The usual approach to solving this problem is to apply posterior
simulation based on Markov chain Monte Carlo (MCMC).

The nomenclature is descriptive of the idea behind MCMC: “Monte Carlo” refers
to7simulation methods, and “Markov chain Monte Carlo” indicates that the approach
is based on Markov chains. To explain, we begin by returning to an example.

Example 3.5 (Continued, see p. 58) In our discussion of Colquhoun and Sakman’s
results on ion channel openings we noted from Fig. 3.8, panel B, the good fit of an
exponential distribution to the histogram of open durations, when there was only one
opening in an activation burst. The major purpose of the paper was to demonstrate
the existence of activation bursts. Let us, however, ignore bursts and imagine an
ideal ion channel that opens and closes with open and closed durations governed by
exponential distributions. The defining property of exponential distributions is that
they are memoryless (see the theorem on p. 120). Now consider an ion channel that
is observed to be either open or closed for a sequence of discrete time values, e.g.,
every ms for 10 min, and let Xt = 1 if it is open at time t and Xt = 0 if it is closed
at time t. We refer to the channel’s state at time t as the value of Xt , with 1 or 0

7 When computer-based simulation methods were first being used, Monte Carlo was the site of a
famous gambling establishment, which was frequented by the uncle of one of the developers of
these methods. See Metropolis (1987).

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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signifying either open or closed. If we assume8 the ion channel is memoryless, then
its state at time t+1 will depend on its state at time t, but not on any of the preceding
states prior to time t. There are then four possibilities: the channel can be closed at
time t and stay closed at t + 1, it can be closed at t and be open at t + 1, it can be
open at t and close at t + 1, or it can be open at t and stay open at t + 1. The four
possibilities have conditional probabilities given by P(Xt+1 = j|Xt = i) where i and
j can take values 0 or 1. �

Abstracting from this example, suppose we have a sequence of random variables
X1, X2, . . . , Xt, . . ., which take values 0 and 1, and suppose further that

P(Xt+1|X1, X2, . . . , Xt) = P(Xt+1|Xt) (16.24)

and that these conditional probabilities are time-invariant in the sense that

P(Xt+1 = j|Xt = i) = P(Xs+1 = j|Xs = i)

for all s, t = 0, 1, 2, . . . . Then the sequence X1, X2, . . . , Xt, . . . is said to form a
two-state Markov chain having transition probabilities P(Xt+1 = j|Xt = i), which
we write as

Pij = P(Xt+1 = j|Xt = i). (16.25)

Let us note that (16.25) implies

P(Xt+1 = 0) = P(Xt = 0)P00 + P(Xt = 1)P10 (16.26)

P(Xt+1 = 1) = P(Xt = 0)P01 + P(Xt = 1)P11. (16.27)

The definition extends immediately to the case of m states, for m an integer with
m ≥ 2.

The key property of a Markov chain is its lack of memory: the probability of
being in state j at time t + 1 depends only on the state of the chain at time t. Under
some mild conditions9 it is possible to say something about the long-run behavior
of the chain. In the case of the ideal ion channel considered above, we may ask
for the probability that the channel is open at time t =600,000, corresponding to
10 min after the commencement of observation. In principle this probability depends
on the initial condition, whether the channel was open at time t = 1. However,
because the state at time t =600,000 is the result of 599,999 random draws from the
distributions given by the transition probabilities (16.25) the influence of the initial

8 Because we are assuming discrete time the memoryless distribution of durations becomes geo-
metric rather than exponential, as we noted on p. 120.
9 The chain must be irreducible (if the chain is in state i at time t it is possible for it to get to state j in
the future), aperiodic (the chain does not cycle deterministically through the states), and recurrent
(if the chain is in state i at time t it will eventually return to state i in the future), see for example,
Ross (1996, Theorem 4.3.3).
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state is miniscule.10 Thus, we have a limiting distribution which we write as

lim
t→∞P(Xt = 1) = P∞(1)

and P∞(0) = 1− P∞(1). This limiting distribution is called the stationary distrib-
ution because it satisfies

P∞(0) = P∞(0)P00 + P∞(1)P10 (16.28)

P∞(1) = P∞(0)P01 + P∞(1)P11. (16.29)

Comparing (16.28) and (16.29) to (16.26) and (16.27) we see that if at any time t the
chain satisfies P(Xt = 1) = P∞(1) (and thus also P(Xt = 0) = 1−P(X + t = 1) =
1− P∞(1) = P∞(0)) it continues to satisfy P(Xt+h = 1) = P∞(1) for all positive
h. In words, once the chain reaches its stationary distribution, it stays there. Again,
all of this extends immediately to the case of m states.

The existence of a stationary distribution for a Markov chain is profoundly
important for posterior simulation.11 If a simulation procedure is set up as a sequence
of random draws that form a Markov chain, and if the chain has the posterior as its
stationary distribution, then once the chain runs for a sufficiently long time that it
reaches its stationary distribution, it will thereafter be generating observations from
the posterior distribution. This is the idea behind MCMC.

Let us backtrack just a little to acknowledge that we are glossing over the dis-
tinction between discrete and continuous distributions: in our discussion here we
are considering the discrete case, with discrete states (in fact, two states), while for
posterior simulation we would usually be concerned with a continuous posterior
distribution.12

There is a remarkably simple algorithm that creates a Markov chain having the pos-
terior as its stationary distribution. It is the Metropolis-Hastings algorithm (Hastings
1970; Metropolis et al. 1953).

Let q(u|v) be a pdf of an m-dimensional random vector U that depends on an
m-dimensional vector v. For example, q(u|v) could be an m-dimensional multivariate
normal pdf with mean v. Suppose we have simulated an m-dimensional parameter
vector θ(g). The Metropolis algorithm proceeds by generating a candidate vector
θ
(g+1)
c from the proposal pdf q(θ

(g+1)
c |θ(g)) and then either accepts θ(g+1)

c as the next

10 It is not too difficult to derive the formula, but we omit the arithmetic. For large t the probability
of the channel being open is

P(Xt = 1) ≈ P01

P01 + P10

which depends on the probability P01 of switching from closed to open relative to the probability
P10 of switching from open to closed.
11 It is also very important in many other situations, where Markov chains are used as statistical
models.
12 Details concerning the continuous case may be found in many sources (for example, Robert and
Casella 2004) for a parameter θ.
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simulated vector, θ(g+1) = θ(g+1)
c , or rejects it and sets θ(g+1) = θ(g). Acceptance is

determined probabilistically from the quantity

α(g+1) = L(θ
(g+1)
c )π(θ

(g+1)
c )q(θ(g)|θ(g+1)

c )

L(θ(g))π(θ(g))q(θ
(g+1)
c |θ(g))

. (16.30)

Metropolis-Hastings Algorithm:
Initialize by setting a value of θ(0).
For g = 0, . . . , G − 1, draw a candidate θ

(g+1)
c from the proposal pdf

q(θ
(g+1)
c |θ(g)) and compute α(g+1) from (16.30), then

if α(g+1) > 1 set θ(g+1) = θ(g+1)
c

otherwise

set θ(g+1) =
{
θ
(g+1)
c with probability α(g+1)

θ(g) with probability 1− α(g+1)

In theory the Metropolis-Hastings algorithm “works” in the sense that it eventually
converges to its stationary distribution, and then starts generating observations from
the posterior. In practice, however, the number of iterations leading to convergence,
often called the burn-in period, is crucially important and depends on the choice of
the proposal pdf. Notice that if the candidate proposal pdf is equal to the posterior pdf,
then α(g+1) = 1 so that every candidate is accepted and convergence is immediate
(for g ≥ 1, every θ(g) is simulated from the posterior distribution). In practice, the
proposal pdf is chosen for convenience, but with the hope that it will provide at
least a rough approximation to the posterior pdf and a reasonable fraction of the
candidates will be accepted. If the dimension of θ is small, it is not hard to find a
proposal distribution for which the number of iterations needed to reach convergence
is manageable (perhaps several hundred or a few thousand) in the sense that the
necessary computing time is tolerable. Furthermore, especially when the statistical
model has an advantageous structure, general-purpose MCMC algorithms, which
are variations on Metropolis-Hastings, can be effective. We return to this comment
at the end of Section 16.2.2.

A second practical concern with MCMC is that it is necessary to remove the sim-
ulated values θ(g) that occur during burn-in, and retain only those that are generated
after convergence. The data analyst must, therefore, apply some method aimed at
determining when convergence is reached. These and other issues are addressed in
the literature (see Robert and Casella (2004), and references therein).

Derivation of the Metropolis-Hastings algorithm:
We consider the discrete case and begin with an arbitrary target dis-
tribution, which we label P∞. We wish to construct a Markov chain
such that P∞ is the stationary distribution for the chain. We start with
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another Markov chain having transition probabilities {Qij} and show
how to modify it so that we obtain a chain with transition probabil-
ities {Pij} having P∞ as its stationary distribution. The idea is that
{Qij} would represent transition probabilities for the chain based on
the candidate proposal distributions, and {Pij} would be the transition
probabilities for the resulting Metropolis-Hastings chain.
First, let us note that a distribution P∞ is said to satisfy detailed bal-
ance for a Markov chain having transition probabilities {Pij} if for all
i, j, P∞(i)Pij = P∞(j)Pji. If P∞ satisfies detailed balance then we
also have

P∞(j) = P∞(j)
∑

i

Pji

=
∑

i

P∞(j)Pji

=
∑

i

P∞(i)Pij

which shows that P∞ is a stationary distribution for the chain. Thus,
detailed balance implies stationarity.
Now suppose P∞ is a given target distribution and we have avail-
able a Markov chain with transition probabilities {Qij}. This available
chain will be used to generate candidates. We would like to define a
Markov chain for which P∞ is its stationary distribution. If detailed
balance were satisfied by P∞ for the chain with transition probabilities
{Qij} then we would be done. If not, then P∞(i)Qij 
= P∞(j)Qji. For
definiteness, suppose

P∞(i)Qij > P∞(j)Qji. (16.31)

We wish to construct transition probabilities {Pij} such that equality
holds in Eq. (16.31) when {Pij} is substituted for {Qij}. Examining
(16.31), we need to make the values Pij that we will substitute on the
left-hand side of (16.31) smaller than Qij while setting Pji = Qji for
the values we will substitute on the right-hand side of (16.31). Toward
this end, we introduce a set of numbers αij with 0 < αij ≤ 1, and
define Pij = Qijαij. To make sure we are setting Pji = Qji for the
values we will substitute on the right-hand side of (16.31), we make
the restriction

Pij = Qijαij when (16.31) holds
Pij = Qij otherwise
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(because the Qji that appear on the right-hand side of (16.31) are
simply those that appear on the left-hand side when the inequality is
reversed). We then solve for the values of αij that produce equality in
(16.31). That is, we write

P∞(i)Qijαij = P∞(j)Qji

and solve for αij:

αij = P∞(j)

P∞(i)

Qji

Qij
. (16.32)

Note that αij < 1 if and only if (16.31) holds.
We have now produced a specification of the transition probabilities
required for a chain having the target distribution P∞ as stationary
distribution: if (16.31) holds, set Pij = Qijαij, whereαij are defined by
(16.32), otherwise set Pij = Qij. To create a chain with these transition
probabilities is easy. Suppose the chain is in state i. If we accept
the candidate (which is generated from the chain having transition
probabilities {Qij}) with probabilityαij, then the probability of moving
to state j will be Qijαij. Thus, we use the following scheme:

define αijby(16.32)

if αij < 1 then accept the candidate with probability αij

otherwise accept the candidate.

This is the Metropolis-Hastings algorithm. �

16.2 Latent Variables

When we introduced the concept of random variable (on p. 46) we were careful to
distinguish the mathematical object from the data: we said that random variables and
their probability distributions live in the theoretical world of mathematics while data
live in the real world of observations. Random variables that are theoretical coun-
terparts of observed data are sometimes called observable. But it is also possible
to insert into a statistical model random variables that affect the distribution of the
observable random variables without themselves representing data; instead they rep-
resent unobserved, hypothetical quantities. Such unobservable random variables are
called13 latent variables. Models that incorporate latent variables can be powerful

13 The noise random variable εi in the regression model (12.1) is unobservable, but would not
typically be called latent. To exclude such cases a random variable could be called latent only if
it can not be written in terms of observable random variables. Thus, under this definition, because
(12.1) implies εi = Yi − f (xi), εi would not be a latent variable. See Bollen (2002).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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Fig. 16.1 First 3 s of spikes recorded over about 30 s in vitro, from a goldfish retinal ganglion
neuron. Data from Levine (1991), furnished by Satish Iyengar; see Iyengar and Liao (1997). These
data are discussed in Example 19.1.

and intuitive ways to describe variation in the data. We discussed the mixture-of-
two-Gaussians model on p. 216, and we will return to mixtures of Gaussians in
Section 17.4.3. Here is another example.

Example 16.3 Burst Detection from spike trains In many contexts neurons exhibit
burstiness, meaning that action potentials (also called “spikes,” see p. 3), appear
across time in small clusters, or bursts. For instance, burstiness of dopamine neurons
in the midbrain is believed to be a functionally relevant signal indicating reward and
goal-directed behavior (see Grace et al. 2007). In the analysis of bursting neural spike
trains, the epochs during which the neuron is bursting must somehow be inferred from
the data. In Fig. 16.1, for example, due to the inherently erratic nature of the spiking,
it is not always obvious whether the neuron is in a burst or not, or where a burst
begins and ends.

To provide an algorithm together with statistical inferences, Tokdar et al. (2010)
described bursty neurons by introducing a latent binary variable, which was 1 when
the neuron was bursting and 0 when it was not bursting. Let us assume the recording
time to occur in discrete steps t = 1, 2, . . . , T , and define the random variable Yt be 1
if a spike occurs at time t and 0 otherwise. Tokdar et al. discussed several alternative
models. The simplest uses latent variables Xt that take the value 1 if the neuron is
bursting at time t and 0 if non-bursting, and assumes that Yt has a Bernoulli pdf
with mean θ1 if Xt = 1 and with mean θ0 if Xt = 0. Here, θ1 and θ0 represent the
firing rates of the neuron when bursting and when not bursting, and if θ1 is much
larger than θ0 the neuron will tend to fire in rapid succession when Xt = 1, compared
with its slower rate when Xt = 0. This describes the tendency to produce bursts. By
introducing probability distributions for the latent variables Xt , and then estimating
the value of each Xi, it is possible to infer where in time the bursts occurred.14 �

In most statistical models the distribution of the random variables representing
the data depends on some unknown parameters. In the model cited in Example 16.3
the distributions of the random variables representing the data depended on unknown
parameters, but they also depended on the latent variables. The point is that the latent
variables themselves followed probability distributions. In other words, one set of
probability distributions—those describing the variation in the data—depended on
random variables following another set of probability distributions, which described

14 To speed computation Tokdar et al. chose to work with the inter-spike intervals instead of the
variables Yt we have defined here.

http://dx.doi.org/10.1007/978-1-4614-9602-1_17
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variation among certain theoretically interesting but unobserved quantities, namely
the bursting or non-bursting status of the neuron within each ISI.

The parameters in statistical models are usually fixed coefficients (though they
are typically unknown, and therefore estimated from the data). In Section 16.2.1 we
describe models in which the parameters become random variables, and thus latent
variables. We then briefly re-interpret penalized regression in Section 16.2.3 and
return to the general structure underlying Example 16.3 in Section 16.2.4.

16.2.1 Hierarchical models produce estimates of related quantities
that are pulled toward each other.

Nearly all the statistical models we have considered15 begin with a parameterized
family of probability densities f (x|θ), and the first statistical problem is to determine
from the data x the likely values of the parameter θ. Sometimes there is an obvious
source of variability among values of the parameter θ, as when θ could vary from
subject-to-subject, or neuron-to-neuron, etc. In such cases we may introduce a sec-
ond layer into the statistical model by considering a family of densities f (θ|λ). For
generality, we will refer to individual subjects or individual neurons, etc., as units. In
other words, we will say that we are interested in the variation of some parameter θ
across units. In neuroimaging, for example, we might have task-related effects at par-
ticular voxels whose magnitude varies across subjects, and these could be assumed
to follow some probability distribution. In analyzing neural responses, the way a
particular measure of neural activity varies across neurons may be of interest, and
might be assumed to follow a given probability distribution. In these situations we
introduce both a probability density f (x|θ) for the data given a parameter vector θ
and a probability density f (θ|λ) for θ that itself depends on a parameter λ. Such a
specification is called a two-stage16 hierarchical model.

Example 12.3 (continued from p. 331) As described previously, Behseta et al.
considered spike counts from 54 neurons during performance of a serial-order eye-
movement task, and the authors computed a rank order selectivity index

Irank = (f3 − f1)

(f3 + f1)

where f1 and f3 were the mean firing rates measured at the times of the first and third
saccades respectively, the mean being taken across trials. As part of the analysis,
the rank selectivity indices across neurons were considered to follow a normal dis-
tribution. Let Xi represent Irank for neuron i. Behseta et al. assumed a model of the

15 Nonparametric methods (Section 13.3) are based on statistical models of a more general form
that do not depend on a finite-dimensional parameter vector.
16 In principle this process can continue, with λ distributed according to a family of densities, and
so on, but they do not arise very often in practice.

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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form

Xi ∼ N(θi,σ
2
i ) (16.33)

θi ∼ N(μ, τ2). (16.34)

Here, θi is the theoretical mean of the the rank order selectivity index for neuron i
and σ2

i is its variance. The value of θi becomes a quantity to be estimated, but is here
considered to follow a distribution across the population of neurons, with population
mean μ and variance τ2. �

Equations (16.33) and (16.34) are an instance of a general structure. Let Xi be a ran-
dom vector representing measurements made on unit i. For instance, in Eqs. (16.33)
and (16.34) of Example 12.3, we took Xi to be the rank order selectivity index for
neuron i. We assume the observations Xi, and the parameters θi, are conditionally
independent across units, with variation being described by a two-stage hierarchical
model:

Stage one: Conditionally on (θ1, . . . , θk) and λ, the vectors Xi are independent
with pdfs f (xi|θi,λ), i = 1, . . . , k, belonging to a family {f (x|θ,λ)}.

Stage two: Conditionally on λ, the vectors θi are i.i.d. with pdf belonging to a
family {f (θ|λ)}.

In general, θ andλ are multidimensional, and we obtain what is sometimes called a
conditionally independent hierarchical model. In (16.33) we would have λ = (μ, τ ).

In (16.33) and (16.34) let us pick a particular unit, with label h, so that i = h.
If we were to consider the data Xh = xh in isolation, without reference to all the
other data values xi for i 
= h, we would estimate θh as xh. The hierarchical model
suggests something different: it assumes that the values of θi are related to each other,
according to the second stage of the model, and the posterior therefore uses data from
the other units in estimating θh. Tukey referred17 to this as “borrowing strength.” It
would be especially valuable if σ2

h happened to be large, possibly due to a very small
number of trials for that neuron; in this case the strength of the signal in xh would be
small, and additional strength for estimating θh would come from the other units.

Great insight is obtained by examining the formulas for the posterior distribution
of θi in the normal hierarchical model in Eqs. (16.33) and (16.34), where we assume
τ known but μ unknown, and we let μ have the improper uniform prior π(μ) = 1.
We will call this the canonical normal hierarchical model. In most practical cases
τ is unknown and must be estimated, but we are ignoring that complication for the
time being.

17 See, for example, his 1973 article “Exploring data analysis as part of a larger whole,” reprinted
in Tukey (1987).
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Result for the Canonical Normal Hierarchical Model
Suppose Xi ∼ N(θi, σ2

i ), independently and θi ∼ N(μ, τ2) i.i.d. for i = 1, . . . , k
with the σi’s and τ known but μ unknown, and suppose μ has the improper
uniform prior. The posterior distribution of θi given x = (x1, . . . , xk) is normal
with

E(θi|x) = τ2

σ2
i + τ2

xi + σ2
i

σ2
i + τ2

xα (16.35)

V(θi|x) =
(

1

σ2
i

+ 1

τ2

)−1

+
(∑

i

1

σ2
i + τ2

)−1(
σ2

i

σ2
i + τ2

)2

(16.36)

where
xα = (

∑

i

αixi)/(
∑

i

αi) (16.37)

with αi = (σ2
i + τ2)−1.

We postpone the derivation of the result until Section 16.4.
The expression for the posterior mean in Eq. (16.35) is beautifully simple. Note

first that we may consider each random variable Xi to arise as a compound distribution,
obtained by first drawing θi from a N(μ, τ2) distribution and then drawing Xi from
a N(θi,σ

2
i ). Conditionally on θi the random variable Xi has the same distribution as

Yi = θi + εi (16.38)

where εi ∼ N(0,σ2
i ) and εi is independent of θi. In (16.38) we use θi ∼ N(μ, τ2)

and, holding μ and τ fixed, compute the variance to get V(Xi) = V(Yi) = σ2
i + τ2.

The weights appearing in (16.37) are thus αi = V(Xi)
−1 and, therefore, xα is the

usual weighted mean of Eq. (8.12). Keeping this in mind, we re-express the posterior
mean as

E(θi|xi) = wixi + (1− wi)xα (16.39)

where

wi = τ2

σ2
i + τ2

.

Comparing (16.39) with (16.12) we see that we have a very similar interpretation. In
(16.12) the posterior mean was a weighted combination of the data value x and the
prior mean μ, and the posterior mean resulted from shrinking the value x toward μ.
In (16.39) the posterior mean is a weighted combination of the data value xi and the
data mean xα, so posterior mean results from shrinking the value xi toward xα. Here
the weight takes essentially the same form as in (16.12), with σi substituted for σ.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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According to (16.34) the values θi are all related to each other and, from (16.33),
every Xi will contribute some information about the value of θj. When there is large
uncertainty about θi based on xi alone, relative to the variability among the θi values
so that τ/σi is small, wi is small, the values of xj for j 
= i become very relevant to
the estimation of θi, and the posterior mean is nearly equal to xα. On the other hand,
when xi contributes a lot of knowledge about θi, relative to the variability among the
θi values so that τ/σi is large, wi is large and the posterior mean is nearly equal to
xi. As on p. 445, we say the posterior mean shrinks xi toward xα with the amount of
shrinkage determined by 1− wi.

Example 12.3 (continued from p. 459) In the case of rank order selectivity index,
each value of σi could be estimated directly from the data and was therefore taken to
be known. But these values varied across neurons. Some neurons could have highly
variable Xi, and thus poorly-determined values of θi, while other neurons could have
less variable Xi and better-determined values of θi. The posterior mean (16.39) takes
into account the diversity of precision in the selectivity index across neurons. We
continue our analysis on p. 464. �

Example 16.4 Genetic Linkage Across Multiple Related Strains Bacterial
meningitis is an inflammation of the meninges, the membranes that cover the brain
and spinal cord. Prior to antibiotics it was usually fatal. In outbreaks of bacterial
meningitis, the antibiotic rifampicin is highly effective (Gaunt and Lambert 1987).
However, bacteria can mutate to become resistant to rifampicin. An experiment
on mutation mechanisms in E. Coli concerned the genetic linkage between resis-
tance to rifampicin and a neighboring gene known as uvrE which, when absent, pro-
duces acetate utilization deficiency. One result of this work was to show uvrE to be
involved in DNA repair. Sklar and Strauss (1980) noted that if the acetate utiliza-
tion deficiency mutation occurred during DNA replication then it would be linked
to rifampicin resistance but if, instead, the mutation resulted from error-prone DNA
repair there would be no such linkage. These investigators created two cell lines, one
selected for rifampicin resistance and the other not selected. The absence of linkage,
predicted by the error-prone repair hypothesis, would imply that the proportions p1
and p2 exhibiting acetate utilization deficiency in the selected and unselected cell
lines would be equal. The authors looked at 13 closely-related strains of E. coli, all
of which sometimes exhibited acetate utilization deficiency. We will return to these
data in Section 16.3, where we describe evidence in favor of H0 : p1 = p2 for the
uvrE strain. Here we describe an analysis reported by Kass and Steffey (1989), who
evaluated the difference between the proportions pi1 and pi2 on the logit scale (as
used in logistic regression, p. 394). That is, for i = 1, . . . , 13 they defined

θi = log
pi1

1− pi1
− log

pi2

1− pi2
(16.40)

and estimated θ1, . . . , θ13. Because the strains were related, the data for strain j
provided at least some relevant information about the value of θi, even when i 
= j.
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Table 16.1 Observed
difference in logits together
with posterior means among
13 closely-related strains of
E. coli. The values xi are the
observed differences of logits,
σi are the corresponding
standard errors, and E(θi|x)
are the posterior means from
(16.39), where τ2 was set
equal to .39, which was the
MLE. The weighted mean
was xα = 1.30.

Strain xi σi E(θi|x)
1 1.36 .28 1.35
2 2.26 1.04 1.56
3 2.23 .75 1.68
4 1.32 .36 1.31
5 1.21 .38 1.24
6 1.27 .49 1.28
7 1.43 .57 1.37
8 1.85 .54 1.62
9 1.34 .56 1.30
10 3.44 .73 2.20
11 −0.42 .69 .53
12 −0.10 .31 .17
13 1.25 .39 1.27

The raw data for each strain were two pairs of sample sizes and corresponding pro-
portions (ni1, p̂i1) and (ni2, p̂i2). Kass and Steffey assumed the data to be distributed
as binomial proportions and transformed to the logit scale according to

Xi = log
p̂i1

1− p̂i2
− log

p̂i2

1− p̂i1
(16.41)

taking σ2
i to be known and equal to the value obtained from the large-sample vari-

ance formula given on p. 231 (based on propagation of uncertainty) which, after
simplifying, yields

σ2
i =

1

ni1p̂i1
+ 1

ni1(1− p̂i1)
+ 1

ni2p̂i2
+ 1

ni2(1− p̂i2)
. (16.42)

The transformed data, together with values of σi are shown in the first two columns
of Table 16.1. From preliminary analysis, it appeared (as seen in Table 16.1) that pi1
was greater than pi2 in most strains. In two strains, however, p̂i1 was less than p̂i2 and
the issue was whether this was due to sampling fluctuation (insufficiently large ni1
and ni2) or a genuinely different phenomenon for either or both of the two strains in
question. The results for the canonical normal hierarchical model (defined on p. 460)
shed light on the issue. Model (16.33) may be applied to the variables Xi defined
in (16.41) where the parameters θi and σi are defined by (16.40) and (16.42), and
then (16.34) may be assumed. The value of τ was fixed with τ2 = .39 (which is the
MLE, as we discuss below), and then (16.35) produces the posterior means, which
are shown in the third column of Table 16.1.

The values in the table exhibit the effect of σi on the shrinkage behavior described
above. For example, strain 2 has nearly the same value of xi as strain 3 but it also has
a larger standard error σi. This leads the posterior mean of strain 2 to shrink closer
to xα = 1.30 than that for strain 3 (1.56 is closer than 1.68). Similarly, xi for strain 8
is quite a bit smaller than that for strain 2, but its standard error is also much smaller,
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and the posterior mean for strain 2 shrinks closer to xα than that for strain 8 (1.56
is closer than 1.62). Similarly, because strain 11 has a much larger standard error
than strain 12, strain 11 starts out at xi = −.42 and shrinks to .53 while strain 12
starts out at xi = −.10 but only shrinks to .17. These latter two strains are especially
interesting because, under the repair hypothesis, the difference of the logits should
be zero. In fact, as we discuss in Section 16.3.1, further analysis suggests that the
repair hypothesis holds for strain 12 and not18 for strain 11. �

The canonical normal hierarchical model on p. 460 assumes τ is known, and on
p. 463 we said that we fixed its value using τ2 = .39. This value was obtained as
the MLE. It is easy to write down the likelihood function L(λ) on λ = (μ, τ ) after
integrating out the parameters θ1, . . . , θ13 (we have Xi ∼ N(μ,σ2

i + τ2), indepen-
dently, for i = 1, . . . , 13), and L(λ) may be maximized.19 The MLE of μ is μ̂ = xα.
This approach, using maximum likelihood for the second-stage parameter vector
(the hyperparameter) λ, is often called empirical Bayes, to distinguish it from fully
Bayes, which would instead introduce a prior on λ and then compute the posterior
in a more elaborate model. In (16.33) and (16.34) this involves introducing a prior
on τ as well as μ. With the fully Bayes approach the posterior means E(θi|x) would
no longer have analytical expressions; instead, posterior simulation would typically
be used to evaluate the posterior means, using methods outlined in Section 16.1.6.
However, it may be shown that, for large samples, the empirical Bayes estimates
are very nearly equal to the fully Bayes estimates (see Kass and Steffey 1989). In
Example 16.4 the extent to which the estimate of θi is based on data from the other
strains j 
= i depends on the relative magnitudes of σi and τ , according to (16.39).
Because τ was actually estimated from20 the data, the data themselves determined
the relevance of the information from the strains j 
= i to the estimate of θi.

Example 12.3 (continued from p. 459) When we introduced this example, on
p. 331, we said that Behseta et al. were concerned with two indices: the rank index
Irank = (f3−f1)

(f3+f1)
, where f1 and f3 were the mean firing rates measured at the times of the

first and third saccades respectively (the mean being taken across trials), and the

reward index was Ireward = (fb−fs)
(fb+fs)

where fb and fs were the mean firing rates

during the post-cue delay period on big-reward and small-reward trials respectively.
The indices Irank and Ireward were positively correlated, but the effect was smaller
than expected, with r = 0.49 and the authors suspected that the correlation had been
attenuated due to noise arising from trial-to-trial variation in the spike counts. We

18 The data analyzed here were based on a pre-publication draft of the Sklar and Strauss paper and
are slightly different than those reported in the final version. Because strain 11 had such a large
uncertainty the authors replicated their experiment for strain 11 with a much larger sample and
obtained results that were much more consistent with the other strains.
19 Alternatively, this likelihood may be integrated overμ and then maximized over τ , which produces
a slightly different and sometimes preferable estimate often known as the REML estimate of τ , for
restricted maximum likelihood estimate.
20 In the jargon of computer science we would say that the hyperparameter τ was learned from the
data, as opposed to fixed within the estimation algorithm.
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added that Behseta et al. developed a method to correct for the attenuation and when
they applied it to these data the new estimate of correlation was .83, which was more
reasonable. We now provide some details about the method.

On p. 459 we let Xi be the random variable representing Irank for the ith neuron and
we said that Behseta et al. used the normal hierarchical model (16.33) and (16.34).
Let us reformulate (16.33) by writing

Xi = θi + εi

εi ∼ N(0,σ2
εi
)

and then let Yi represent the value of Ireward for the ith neuron and write

Yi = ξi + δi

δi ∼ N(0,σ2
δi
).

Here θi and ξi represent the theoretical values of Irank and Ireward for neuron i that
would be obtained from noiseless measurements (or from infinitely many trials).
The quantities σεi and σδi are the standard errors associated with xi and yi (they were
obtained by propagation of uncertainty from the spike count means). Taking εi and
δi to be independent we may combine the assumptions on Xi and Yi by saying these
random variables are bivariate normal according to

(
Xi

Yi

)
∼ N(mi, Vi), (16.43)

where

mi =
(
θi

ξi

)
and Vi =

(
σ2
εi

0
0 σ2

δi

)
.

Equation (16.43) is the first stage of a bivariate normal hierarchical model. Behseta
et al. wrote the second stage in the form

(
θi

ξi

)
∼ N(μ, �), (16.44)

where

μ =
(
μθ
μξ

)
and � =

(
σ2
θ ρθξσθσξ

ρθξσθσξ σ2
ξ

)

withμθ,μξ ,σ2
θ , andσ2

ξ being the means and the variances of θi and ξi respectively. The
quantity of interest is ρθξ , which represents the correlation between the theoretical
values θi and ξi. Let us refer back to the theorem on attenuation of the correlation on
p. 330. In the notation used here, that theorem says that if ρθξ > 0 then

ρXY < ρθξ .
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Fig. 16.2 Plots of reward-selective versus rank-selective indices, before and after Bayesian correc-
tion. Left uncorrected indices. The x-axis represents the index value for the the serial order saccade
task. This is obtained through Irank = (f3−f1)

(f3+f1)
, where f1 and f3 were the mean firing rates measured

at the times of the first and third saccades respectively. The y-axis indicates the index of selectivity
for the size of the anticipated reward: Ireward = (fb−fs)

(fb+fs)
where fb and fs were the firing rates during

the post-cue delay period on big-reward and small-reward trials respectively. Right plot of posterior
means representing values after correction for noise. Adapted from Behseta et al. (2005).

In words, the correlation is attenuated (ρXY is smaller than ρθξ) due to measurement
noise. Because the model in (16.43) and (16.44) incorporates the uncertainty of the
measurements (represented by σεi and σδi ), a good estimate of ρθξ will adjust for
measurement error and thereby correct the attenuated estimate (which, according to
(16.43) and (16.44), mistakenly estimates ρXY rather than ρθξ).

To get a good estimate of ρθξ , ML estimation could be used, but Behseta et al.
found it easiest to introduce prior distributions on μ and � and then apply MCMC, as
outlined on p. 468. They obtained an estimate ρ̂θξ = .83 with 95 % credible interval
(.77, .88). The resulting shrinkage of the posterior means using (16.43) and (16.44),
compared with the raw values of Irank and Ireward, may be seen in Fig. 16.2. Behseta et
al. provided simulations to show that this procedure produced estimates with small
MSE and credible intervals with good coverage probability, especially compared
with alternative methods that had appeared in the literature. �

16.2.2 For hierarchical models, posterior distributions
are often computed by Gibbs sampling.

If random vectors X and Y have joint pdf f (x, y), with f (x, y) > 0 for all x, y,
then21 fX(x) > 0 for all x and fY (y) > 0 for all y. From Section 4.2.3, this implies

21 In the discrete case fX (x) = ∑
y f (x, y) and the sum of positive quantities is positive. In the

continuous case the integral of a positive function is positive.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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there is a conditional distribution of X given Y with pdf fX|Y (x|y) and a conditional
distribution of Y given X with pdf fY |X(y|x). Furthermore (see Section 4.2.3), the
two-step procedure

(a) draw a random variable X = x from the marginal pdf fX(x), and then
(b) draw a random variable Y from the conditional pdf fY |X(y|X = x)

produces a draw (X, Y) from the distribution having joint pdf f (x, y).
Now suppose (X(g), Y (g)) = (x(g), y(g)) is a draw from the joint distribution with

pdf f (x, y), for which f (x, y) > 0 for all x, y, and consider the following two-step
process:

1. draw X(g+1) = x(g+1) from the conditional distribution having pdf fX|Y (x|Y =
y(g));

2. draw Y (g+1) = y(g+1) from the conditional distribution having pdf fY |X(y|X =
x(g+1)).

Because Y (g) has the marginal pdf fY (y), step 1 corresponds to steps (a) and (b)
above and produces a draw (X(g+1), Y (g)) = (x(g+1), y(g)) from the joint distribution
having pdf f (x, y). Therefore, X(g+1) = x(g+1) is a draw from the distribution having
marginal pdf fX(x) and then step 2 corresponds again to steps (a) and (b) above
and produces a draw (X(g+1), Y (g+1)) = (x(g+1), y(g+1)) from the joint distribution
having pdf f (x, y). Thus, if we use steps 1 and 2 to define a Markov chain, then the
pdf f (x, y) is its stationary distribution. This version of MCMC is known as22 Gibbs
sampling.

What we have just described is called the two-block version of Gibbs sampling
because the vector (X, Y) appears as two sets or “blocks,” X and Y , of components.
Specifically, the two-block Gibbs sampling algorithm initializes by setting a value
of (x(0), y(0)) then for g = 0, . . . , G− 1 repeats steps 1 and 2 above.

To simulate from an m-dimensional posterior Gibbs sampling can involve cycling
through k steps corresponding to k blocks of components, where k ≤ m. In the case
k = m, each component of the parameter vector θ = (θ1, . . . , θm) is updated using
the conditional distribution conditionally on all other components. That is, letting

θ−i = (θ1, . . . , θi−1, θi+1, . . . , θm),

the ith component is updated using the conditional distribution having pdf
fθi|θ−i(θi|θ−i). More specifically, the first step of the m-step Gibbs sampling algorithm
is

Step 1: draw θ(g+1) from the conditional distribution having pdf fθ1|θ−1(θ1|θ(g)
−1),

and for i = 2, . . . , m, the ith step in the m-step Gibbs sampling algorithm
becomes

22 Theoretical analysis of Gibbs sampling shows that the conditions mentioned in footnote 9 are
satisfied (see Robert and Casella 2004). The name comes from Geman and Geman (1984), who
applied it to image restoration, where there is a close analogy with the Gibbs distribution in statistical
mechanics.

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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Step i: draw θ(g+1) from the conditional distribution having pdf fθi|θ−i(θi|θ(g+1)
1 ,

. . . , θ
(g+1)

i−1 , θ
(g)

i+1, . . . , θ
(g)
m ).

The distributions with pdfs fθi|θ−i(θi|θ−i) are called full conditional distributions.
Gibbs sampling is particularly convenient when the full conditional distributions
have a standard form so that random draws may be obtained from existing software.

Example 12.3 (continued from p. 464) The unknown parameters in (16.43) and
(16.44) are the vector μ = (μθ,μξ), the matrix �, which includes components
(σ2
θ ,σ

2
ξ , ρθξ), and the vectors mi = (θi, ξi), for i = 1, . . . , 54. Behseta et al. put inde-

pendent diffuse normal priors on μθ and μξ , meaning normal priors with large vari-
ances, which approximate uniform priors. They used a particular conjugate prior,23

following Kass and Natarajan (2006), for �. Gibbs sampling proceeds by, first,
getting initial values of μ and � (e.g., using24 method-of-moments estimators, see
Section 7.2.1), and then iterating the steps

1. draw mi, for i = 1, . . . , 54, conditionally on the current values of μ and �;
2. draw μ conditionally on the current values of � and mi, for i = 1, . . . , 54;
3. draw � conditionally on the current values of μ and mi, for i = 1, . . . , 54.

Each of these steps is straightforward because of the conjugate structure of the model.
In step 1, because μ and � are fixed (by conditioning) the second stage in Eq. (16.44)
becomes analogous to the univariate N(μπ,σ

2
π) prior leading to (16.8) and (16.9).

The posterior on each mi is thus the bivariate normal with mean and variance given
by the bivariate extension of (16.8) and (16.9). In step 2, because � and all of the
mi are fixed, we use Eq. (16.44) together with the conjugate normal prior to get a
bivariate normal posterior on μ. Step 3 is similar to step 2, except now μ is fixed
and the conjugate prior on � is used to get a conjugate posterior. Because all three
steps involve standard distributions, they may be carried out with existing software.
Behseta et al. used the MCMC software package BUGS, which is freely available
(see Lunn et al. 2012). �

The key to making Gibbs sampling easy in Example 12.3 is that the full conditional
distributions become tractable when we consider not only the parameter vectors μ, �

but also all of the parameter vectors (θi, ξi), for i = 1, . . . , 54. One way to look at
this is to consider the (θi, ξi) parameters to “augment” the data observations (xi, yi),
for i = 1, . . . , 54, in the sense of Section 8.4.5. In Section 8.4.5 we presented an
illustration (a mixture of two Gaussians model) in which the data were augmented
with latent variables, and then the EM algorithm could be implemented easily. In

23 For a univariate normal variance parameter σ2 the conjugate prior family is called inverse-gamma
because σ−2 follows a gamma distribution. The multivariate extension is called inverse-Wishart.
For a p×p variance matrix the inverse-Wishart itself has 1+p(p+1)/2 free parameters that must be
selected. Kass and Natarajan (2006) suggested a method of doing so in the context of hierarchical
models.
24 A rough estimate of � may be obtained by setting V1 = · · · = Vk = V∗ in (16.43), where V∗ is
some kind of average of the Vi matrices (such as the inverse of the mean of the inverse matrices)
and then applying the method of moments.

http://dx.doi.org/10.1007/978-1-4614-9602-1_7
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
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general, both Gibbs sampling and EM algorithms are easy to implement for problems
in which data augmentation produces tractable conditional distributions.

16.2.3 Penalized regression may be viewed as Bayesian estimation.

The multiple regression model (12.44) is

Yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi (12.44)

for i = 1, . . . , n where the εi random variables are assumed i.i.d. N(0,σ2). We can
form a hierarchical model by assuming a second-stage distribution

βj ∼ N(0, τ2) (16.45)

for j = 1, . . . , p, independently. Calculations show that the posterior pdf on β =
(β0,β1, . . . ,βp) conditionally on the data y = (y1, . . . , yn) and τ is

f (β|y,λ) ∝ exp

⎛

⎝− 1

2σ2 [
n∑

i=1

(yi − yi(β))2 + σ2

τ2

p∑

j=1

β2
j ]
⎞

⎠ (16.46)

where
yi(β) = β0 + β1x1i + β2x2i + · · · + βpxpi

and
λ = σ2/τ2.

Noticing that yi(β) in (16.46) is the same as y∗i in Eq. (12.45), we see that maximizing
the posterior in (16.46) is equivalent to finding the penalized least-squares solution
in (12.71) with the L2 penalty (12.72).

The interpretation is this: the second-stage distribution (16.45) models the vari-
ation among the βj coefficients as if they are normally distributed around 0; if this
is more-or-less accurate, then the coefficients are likely to be closer to 0 than the
least-squares solution would suggest (because the least-squares values are noisy)
and, because the posterior shrinks the coefficients toward zero, the L2-penalized
solution should provide a good estimate of β.

An alternative is to introduce a different second-stage distribution. It turns out
that L1-penalized regression corresponds to using a hierarchical model of the form
(16.45) but instead using the Laplace distribution, which has much thicker tails
than the normal. In addition to suggesting a multitude of different procedures that
correspond to different second-state distributions, the Bayesian formulation also
opens the door to alternative computational methods. See Kyung et al. (2010) for
additional discussion and references.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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16.2.4 State-space models allow parameters to evolve dynamically.

The essential ideas in our discussion of Example 16.3, on p. 458, were that (i) the
latent variables Xt represented the bursting or non-bursting status of the neuron at
time t, and (ii) the value of this random variable (1 if bursting, 0 if non-bursting)
could be estimated from the data. The bursting or non-bursting “status” is often called
a state, and because it is represented by a latent variable it is often called hidden.

Example 16.3 (continued from p. 458) If we assume that the binary random vari-
ables Xt form a Markov chain (see p. 453) then we have a hidden Markov model.
According to this model, the neuron25 evolves from bursting to non-bursting states,
and from non-bursting to bursting states, stochastically with fixed probabilities, as
in Eq. (16.25). That is, the state variables Xt evolve as a Markov chain, and the prob-
abilities for the observation variables Yt are determined from the state variables.

�
The structure illustrated above, in Example 16.3 has two stages: the observation

random variables Yt have distributions that depend on the state variables Xt , while
the state variables themselves evolve stochastically in a relatively simple way. In
Example 16.3 the state variables were binary and satisfied the Markov condition
(16.24). We now allow both the observation variables and the state variables to be
general. We assume the vector Yt is p-dimensional and the vector Xt is m-dimensional.
The Markov condition becomes

f (xt |x1, x2, . . . , xt−1) = f (xt |xt−1) (16.47)

and the pdf of Yt may be written f (yt |xt), which indicates its dependence on the value
of the state variable Xt . This is the general form of a state-space model.

Because at time t we are considering a collection of variables

{X1, X2, . . . , Xt, Y1, Y2, . . . , Yt}

we modify (16.47) to the more inclusive equation

f (xt |x1, x2, . . . , xt−1, y1, y2, . . . , yt−1) = f (xt |xt−1) (16.48)

and we similarly write

f (yt |x1, x2, . . . , xt, y1, y2, . . . , yt−1) = f (yt |xt). (16.49)

We also assume that at time t = 1 we have an initial state distribution with

X1 has pdf f (x1). (16.50)

25 In fact, according to this assumption on the Yt variables, the neuron’s spike trains flip back and
forth between two discrete-time versions of Poisson processes, a bursting Poisson process and a
non-bursting Poisson process; see Chapter 19.

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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Fig. 16.3 Stick figure representation of brain-computer interface application.

Equations (16.48), (16.49), and (16.50) are standard assumptions for state-space
models and for the remainder of our presentation we assume they hold.

Example 16.5 Decoding Hand Movement from Cortical Activity In Example
12.6 we described a statistical model for neural activity in primary motor cortex
(M1) in terms of two-dimensional directional hand movement. Since the time of
the original experiments by Georgopoulos, Schwartz, and colleagues, it has been
recognized that simultaneous recordings from multiple M1 neurons could produce
predictions of hand movement, and that this could furnish the basis for a brain-
computer interface, which could assist severely disabled patients. See26 Fig. 16.3.
This is usually called decoding of hand movement, from the neural activity; see also
Example 4.7 on p. 100. One way to perform the decoding is to introduce observation
variables Yt to represent neural activity, and state variables Xt to represent movement
parameters, such as direction or velocity. More specifically, if we have N neurons
and we let Yi

t be the spike count for neuron i during an interval centered at time t,
which we might for simplicity assume to be normally distributed, then we could take
Yt to be the vector Yt = (Y1

t , Y2
t , . . . , YN

t ) and we could let Xt be the hand movement
direction27 at time t and define a suitable distribution for the variables Xt , subject to
the Markovian constraint (16.48). Estimation of the state variables Xt then produces
the desired decoding prediction of hand movement. �

For a sequence of numbers or vectors a1, a2, . . . , at let us use the notation

26 For a review of these ideas together with commentary on algorithms see Brockwell et al. (2007).
27 Often movement velocity is used, and sometimes direction, velocity, and acceleration are all used
as components of Xt .
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a1:t = (a1, . . . , at).

We give the basic result on sequential Bayesian estimation of the state variables
Xt = xt via the posterior pdf f (xt |y1:t) based on the data Y1:t = y1:t .

Filtering and Prediction Equations Under the conditions (16.48), (16.49), and
(16.50) the posterior pdf of Xt given Y1:t = y1:t is given by the filtering equation,

f (xt |y1:t) ∝ f (yt |xt)f (xt |y1:t−1) (16.51)

where

f (xt |y1:t−1) =
∫

f (xt |xt−1)f (xt−1|y1:t−1)dxt−1, (16.52)

which is the prediction equation. The estimate of xt is then the posterior mean

x̂t = E(Xt |Y1:t = y1:t). (16.53)

The filtering and prediction equations provide a recursive prescription for finding
the posterior pdf. Specifically, we initialize with the prior distribution for X1 having
pdf f (x1) (as in (16.50)) which we substitute for f (xt |y1:t−1) in (16.51) to get f (x1|y1),
then use this in (16.52) to get f (x2|y1), then put f (x2|y1) in (16.51) to get f (x2|y1:2),
etc., repeatedly alternating between the filtering and prediction equations. Based on
the successive posterior pdfs f (x1|y1), f (x2|y2), . . . we compute posterior means (as
in (16.53)) x̂1, x̂2, . . ., which become the sequential estimates of x1, x2, . . ..

We provide the derivation in Section 16.4.
In (16.51), f (xt |y1:t−1) plays the role of the prior: it represents what is known about

xt prior to observing yt . The factor f (xt |xt−1) in (16.52) is based on the modeling
assumptions, which must conform to (16.48). This framework is very general. Here
is an example in which (16.49) involved a detailed spike train model.

Example 16.6 Plasticity of hippocampal place fields Neural receptive fields are
frequently plastic: a neural response to a stimulus can change over time as a result
of experience. Frank et al. (2002) used a spike train model (along lines discussed
in Section 19.3.4) to characterize spatial receptive fields of neurons from both the
CA1 region of the hippocampus and the deep layers of the entorhinal cortex (EC) in
awake, behaving rats. In this context, the spatial receptive fields are usually called
place fields, because they indicate where the animal is currently located or moving.
By then formulating a state-space model where features of the neural place fields
were treated as state variables, the authors could describe the evolution of the place
fields during the experiment. They found consistent but distinct patterns of plasticity
in CA1 hippocampal neurons and deep entorhinal cortex (EC) neurons. We return to
this example in Section 19.3.4. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_19


16.2 Latent Variables 473

When the observation model (16.49) and the state model (16.48) both involve
linear equations and normal (Gaussian) errors, the filtering and prediction equations
simplify greatly, and the sequential estimation steps can be written analytically. We
discuss this important special case in Section 16.2.5.

16.2.5 The Kalman filter may be used to estimate state variables for
linear, Gaussian state-space models.

The state-space conception is stunning in its generality and simplicity of logical
argument, but for its power to be realized computational methods are crucial. A
special case, in which the recursions in (16.51) and (16.52) yield easily-computed
algebraic expressions, has the form

Xt = AXt−1 + εt (16.54)

Yt = BXt + ηt (16.55)

where A is an m×m matrix, B is a p×p matrix, and εt and ηt are multivariate normal
for all t, all independently of each other, and we assume

V(εt) = Q

V(ηt) = R

for all t. Equations (16.54) and (16.55) define what is usually called a linear, Gaussian
state-space model. Sometimes the matrices A and B and/or the covariance matrices
Q and R are allowed to vary with time, but we ignore that possibility here. The
algorithm that implements the sequential estimates (16.53) given by the filtering and
prediction Eqs. (16.51) and (16.52) under the linear, Gaussian assumptions (16.54)
and (16.55) is called the Kalman filter (Kalman 1960). To completely specify the
distributions given by the filtering and prediction equations we must also have an
initial distribution for X1, as in (16.50), which we assume to be m-dimensional normal

X1 ∼ Nm(x̂0|0, Ŵ0|0) (16.56)

for some initializing mean vector x̂0|0 and variance matrix Ŵ0|0. We have introduced
the subscripts to conform to those we use below. In particular, in the following,
our notation for the posterior mean (from the pdf based on the filtering equation)
replaces x̂t in (16.53) with x̂t|t , which is supposed to indicate that we are estimating
the state xt at time t using all the data available at time t. We also use Ŵt|t to represent
the corresponding posterior variance. The posterior mean from the pdf based on the
prediction equation will be written x̂t|t−1.
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The Kalman Filter
Under the model (16.54) and (16.55) with (16.56) the filtering and prediction
equations yield posterior means (16.53) given by

x̂t|t = x̂t|t−1 + Ŵt|t−1BT (BŴt|t−1BT + R)−1(yt − Bx̂t|t−1) (16.57)

where

x̂t|t−1 = Ax̂t−1|t−1 (16.58)

Ŵt|t−1 = AŴt−1|t−1AT + Q. (16.59)

Ŵt|t = Ŵt|t−1 + Ŵt|t−1BT (BŴt|t−1BT + R)−1BŴt|t−1. (16.60)

Example 16.5 (continued from p. 471) Hand movement follows continuous paths
which, at least for ordinary ballistic movements to a target, do not suddenly jump
from one direction to another. A simple way to model such movement is to take

Xt = Xt−1 + δt (16.61)

where the δt are assumed to be independently N(0, �δ). When the magnitude of �δ

is small (e.g., if �δ is diagonal and the diagonal elements, representing variances, are
small) this constrains the path from X1 to X2 to · · ·Xt to vary smoothly. Model (16.61)
is called a normal (or Gaussian) random walk (confer p. 126 and 530), because each
increment Xt − Xt−1 is analogous to taking a step of random length while walking.
Random walk models in conjunction with normal observation assumptions produce
analytically tractable filtering and prediction pdfs. They are often used in brain-
computer interface applications. For instance, Wu et al. (2006) considered spike count
data recorded from 42 neurons in primary motor cortex while a monkey performed
a hand-movement task. These authors used a Kalman filter with (16.61) to recon-
struct hand-movement position, velocity, and acceleration. Figure 16.4 shows some
typical hand position data, together with the Kalman filter estimates, indicating that
the Kalman filter does a very good job in reconstructing hand position. Such recon-
structions are called “off-line” or “open loop” because they indicate the potential of
the methodology, as opposed to “on-line” or “closed-loop” applications in which the
decoding method is used by the subject to control the movement of a cursor or robotic
device. See Koyama et al. (2010) for comparison of several decoding methods, and
a discussion of performance differences in off-line and on-line control. �

We have not yet said how the parameters A, B, Q, R in the model (16.54) and
(16.55) are estimated. Let us assume some preliminary training data are available to
use for this purpose. If the state vectors Xt were known, then all of these parameters
could be estimated by regression in (16.55) and auto-regression in (16.54). This
suggests the following iterative algorithm.
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Fig. 16.4 Decoding performance of Kalman filter in a two-dimensional hand movement task. The
dashed traces show x and y coordinates of hand position on a single trial, and the solid traces are
the reconstructed movements using the Kalman filter. Adapted from Wu et al. (2006).

• Initialize A, B, Q, R.
• Iterate to convergence:

1. Run the Kalman filter28 to get estimates of the state vectors X1, X2, . . . , XT

(where t = T is the last value of t).
2. Using the estimates of X1, X2, . . . , XT use regression and auto-regression to

estimate A, B, Q, R.

This is an instance of the EM algorithm. As discussed in Section 8.4.5, the EM
algorithm iteratively maximizes a likelihood by combining, at each iteration, an
expectation step (here the estimation of the state vectors) with a maximization step
(here maximizing the likelihood of A, B, Q, R given the state vectors).

16.3 Bayes Factors

As we said in Section 10.4.5, a common mistake among näive users of statistics is to
commit the p-value fallacy, which is to interpret the p-value as P(H0|data). It is not
surprising that this mistake occurs frequently: on the one hand, the logic of p-values
is indirect, and correct statements interpreting them may seem convoluted while, on
the other hand, P(H0|data) is a simple and intuitive summary of knowledge about the
null hypothesis based on the data; it is easy to jump to the conclusion that the p-value
must be delivering P(H0|data). Instead of erroneously interpreting the p-value as if it
were P(H0|data), one can apply Bayes’ theorem to calculate P(H0|data) according
to Eq. (10.36), which we repeat here:

P(H0|data) = P(data|H0)P(H0)

P(data|H0)P(H0)+ P(data|HA)P(HA)
, (10.36)

28 In practice one also runs a version of the Kalman filter backwards in time, beginning at the last
time point t = T and ending with t = 1. This pair of forward and backward algorithms is called
the Kalman smoother.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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where P(HA) = 1−P(H0). When this formula is applied to statistical models under
H0 and HA, as in Section 11.1.6, P(data|H0) becomes a discrete or continuous pdf
for a random vector X, so we substitute

f0(x) = P(data|H0) and f1(x) = P(data|HA),

where we are using the subscript 1 to signify the alternative, and we write

P(H0|x) = f0(x)P(H0)

f0(x)P(H0)+ f1(x)P(HA)
. (16.62)

As we pointed out in Section 11.1.6, p. 297, the prior probability P(H0) may be
removed by considering instead the Bayes factor, which is the ratio of posterior odds
to prior odds,

BF01 = P(H0|x)
P(HA|x) ÷

P(H0)

P(HA)
(16.63)

and from
P(H0|x)
P(HA|x) =

f0(x)P(H0)

f1(x)P(HA)

we have

BF01 = f0(x)

f1(x)
. (16.64)

The subscript on BF01 indicates that we are considering the Bayes factor in favor of
H0. Its reciprocal, BF10, would be the Bayes factor in favor of HA. In Section 16.3.1
we describe the way the Bayes factor quantifies evidence in favor of a hypothesis,
in Section 16.3.2 we review briefly the contribution of Bayes factors and posterior
probabilities to epistemology, in Section 16.3.3 we issue a note of caution concerning
the strong dependence of Bayes factors on prior distributions, and in Section 16.3.4
we discuss their use in calibrating p-values.

Bayes factors were first discussed by Harold Jeffreys, who saw them as a way of
evaluating the strength of evidence in favor of a new scientific theory (represented
by HA) that might replace an old one (H0). A modern view was provided by Kass
and Raftery (1995). Jeffreys (1961, Appendix B) suggested interpreting BF10 (the
evidence in favor of the new theory) in half units on the log10 scale. Although
probability itself provides a meaningful scale, as do the odds, Jeffreys felt it was
useful to provide a rough statement about standards of evidence in scientific practice.
Table 16.2 is a mildly modified version of his interpretive categories (taken from Kass
and Raftery 1995). Interpretation may depend on context, but these categories remain
useful. They are stated in terms of BF10 because weighing evidence against a null
hypothesis is more familiar, but Bayes factors can equally well provide evidence
in favor of a null hypothesis. Indeed, this is one of the strengths of the Bayesian
approach. We illustrate by returning to Example 16.4 in Section 16.3.1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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Table 16.2 The
interpretation of Bayes
factors, in the form
BF10 = (BF01)

−1, based on
Jeffreys’s recommendations.

log10(BF10) BF10 Evidence against H0

0– 1
2 1–3.2 Not worth more than a bare mention

1
2 –1 3.2–10 Substantial
1–2 10–100 Strong
> 2 > 100 Decisive

16.3.1 Bayes factors can provide evidence in favor of hypotheses.

Equation (10.36) hides the important complication that the pdfs appearing in (16.64)
typically contain unknown parameters. Let ω be the parameter vector corresponding
to the pdf f1 under H0 and ξ the parameter vector corresponding to the pdf f2 under
HA. As in Sections 11.1.3 and 11.1.6, these parameter vectors could have differing
dimensionalities. For example, if X ∼ N(μ,σ2) and H0 : μ = 0, while under HA μ
is unrestricted, then ω = σ and ξ = (μ,σ). If the values of ω and ξ are unknown,
they must be estimated. Within the Bayesian framework they then must have prior
pdfs π0(ω) and π1(ξ) and we then get the expressions

f0(x) =
∫

f0(x|ω)π0(ω)dω

f1(x) =
∫

f1(x|ξ)π1(ξ)dξ

so that (16.64) becomes

BF01 =
∫

f0(x|ω)π0(ω)dω∫
f1(x|ξ)π1(ξ)dξ

. (16.65)

Writing the normal pdf with mean m and variance v evaluated at x as n(x;m, v), we
have

BF01 =
∫

n(x; 0,σ2)π0(σ)dσ∫
n(x;μ,σ2)π1(μ,σ)dμdσ

. (16.66)

Equation (16.66) is an instance of (16.65) with ω = μ and ξ = (μ,σ). If σ is known,
formula (16.66) simplifies. Let us substitute θ = μ. We then have

BF01 = n(x; 0,σ2)∫
n(x; θ,σ2)π1(θ)dθ

(16.67)

which is in a form we can apply to Example 16.4.
Example 16.4 (continued) When we introduced this example on p. 462 we said
that the investigators were interested in the possibility that, for a particular strain of
E. coli, mutations (producing acetate utilization deficiency) might arise from error-
prone DNA repair; if so, that strain would satisfy H0 : pi1 = pi2 or, from (16.40),

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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H0 : θi = 0. The results in Table 16.1 suggested that strain 12 might satisfy this
hypothesis, i.e.,

H0 : θ12 = 0. (16.68)

We now consider the evidence in favor of H0 defined by (16.68), presenting results
reported in Kass and Raftery (1995).

Under H0 the data random variable X12 follows a normal distribution with mean 0
and known variance σ2

12, and so the numerator of BF01 has the form of the numerator
in (16.67). Under HA we may assume X12 ∼ N(θ12,σ

2
12) and we now must choose

π1(θ12), which appears in the denominator of (16.67). Because, under HA, strain 12
would be judged similar to all the other strains, we may use the second-stage normal
distribution that appeared in the hierarchical model considered previously (p. 462),
i.e., the pdf takes the form

π1(θ12) = n(θ12;μ, τ2) (16.69)

whereμ and τ are found from the data involving strains j 
= 12 (using ML estimation,
as discussed in Section 16.2.1). Kass and Raftery reported that when this was done,
the Bayes factor was

B01 = 15

indicating that these data produced29 strong evidence in favor of H0. �
Example 16.2 (continued) On p. 451 we described the way Solt et al. (2011) used
the posterior probability P(p1 > p2|X1 = 12, X2 = 0) to judge their result that
12 out of 12 rats regained their upright position following a substantial dose of
methylphenidate whereas 0 out of 6 did following a negligible dose. We may instead
use Bayes factors.

We begin by considering the hypotheses to be tested. The data 0 out of 6 confirmed
that the very small dose of methylphenidate left the rats unable to regain their upright
position. If p is the probability of regaining upright position we might want to take
H0 : p = 0 and HA : p 
= 0. Under H0 the outcome 0 out of 6 has probability 1.
Under HA we may introduce a uniform prior on [0, 1] for the unknown value of p.
Using

(6
0

) = 1, the Bayes factor in (16.65) becomes

BF01 = 1
∫ 1

0 p0(1− p)6dp

and, from Eq. (5.16), the denominator integral is equal to 6!/7! = 1/7 and we get

29 A possible issue is the extent to which strain 12 was selected post hoc, after the data had been
examined. It is possible to correct the Bayes factor for such post hoc selection, analogously to
(though differently than) the way p-values may be adjusted (see Section 11.3). The investigators
repeated the experiment on strain 12 and found similar results, which provided strong confirmation
of H0.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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BF01 = 7.

From this calculation, 0 out of 6 corresponds to substantial, but not strong evidence
that rats will not regain an upright position.

Similarly, the data 12 out of 12 confirmed that at the high dose of methylphenidate,
rats did regain their upright position. Here, we might take H0 : p = 1 and HA : p 
= 1.
A similar calculation then gives

BF01 = 1
∫ 1

0 p12(1− p)0dp
= 13.

This would be considered strong evidence that rats regain their upright position for
the high dose.

One might argue, however, that these two Bayes factors do not fully summarize
the weight of evidence because they do not compare the 0 out of 6 and 12 out of 12
results to each other. The null hypothesis for the data from the higher dose of the
drug could be formulated differently. If methylphenidate had no effect one might
take H0 : p = 0. However, under this null it is impossible for even one rat to regain
its upright position. Therefore, if only one rat out of the whole sample were to regain
its upright position there would be infinite odds against H0. But, actually, if only one
rat had regained upright position the results would not have been very convincing:
experiments are not perfectly precise, and for reasons beyond the experimenter’s
control it might have happened that, even with a null effect, an occasional animal
might, even if rarely, regain its upright position. Indeed, one could argue that the
reason the authors demonstrated the null effect with six rats was to reassure readers
that regaining an upright position, at a low dose, is rare. A more useful null hypothesis
would be to take H0 : p ∼ B(1, 7). That is, we use the 0 out of 6 data to form a null
hypothesis for the high-dose data. With the alternative HA : p ∼ B(1, 1), i.e., a
uniform prior on p, we obtain (using

(12
12

) = 1)

BF01 =
∫ 1

0 p12(1− p)0 �(8)
�(1)�(7)

p0(1− p)6dp
∫ 1

0 p12(1− p)0dp
.

The numerator reduces to

7
∫ 1

0
p12(1− p)6dp = 7

12!6!
19! = 1.98× 10−5

while the denominator is ∫ 1

0
p12(1− p)0dp = 1

13
.

We then get
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BF01 = .00026

which conforms with the intuition that the evidence is overwhelmingly in favor of
an effect of methylphenidate in enabling rats to regain an upright position. �

16.3.2 Bayes factors provide an interpretation
of scientific progress.

At the end of Section 16.1.5 we said that the approximate N(θ̂, IOBS(θ̂)
−1) distribu-

tion of the posterior provides an expression of one of the guiding principles of science,
namely that investigators with different knowledge or opinions will eventually come
to agreement after taking into account sufficiently much data. This concerns the value
of a parameter θ. An analogous statement can be made concerning the scientific law
that describes a particular phenomenon. Following Eq. (11.12) we noted that BIC is a
consistent model selection procedure in the sense that, for sufficiently large samples,
the probability of BIC choosing the correct model will get arbitrarily close to one. By
virtue of (11.12) the same is true of Bayes factors.30 To re-phrase this fundamental
result in terms of posterior probability, suppose we have a set of m candidate models
Mk , with m being as large as we like, and suppose further that we place positive prior
probabilities P(Mk) on them. For sufficiently much data, the posterior probability
on the correct model will get arbitrarily close to one. This means that investigators
having different opinions about the merits of competing scientific laws (represented
as statistical models) will eventually come to agreement after taking into account
sufficiently much data.

The result was recognized by Jeffreys and Wrinch (1921), and was a primary
motivation for Jeffreys’ monumental treatise Theory of Probability. In the preface to
the first edition of his book (in 1939) he wrote:

In opposition to the statistical school, [physicists] and some other scientists are liable to say
that a hypothesis is definitely proved by observation, which is certainly a logical fallacy;
most statisticians appear to regard observations as a basis for possibly rejecting hypotheses,
but in no case for supporting them. The latter attitude, if adopted consistently, would reduce
all inductive inference to guesswork; the former, if adopted consistently, would make it
impossible ever to alter the hypotheses, however badly they agreed with new evidence....
In the present book I ... maintain that the ordinary common-sense notion of probability is
capable of precise and consistent treatment when once an adequate language is provided
for it. It leads to the results that a precisely stated hypothesis may attain either a high or a
negligible probability as a result of observational data.

30 Mathematically the situation is reversed: an elegant theorem due to Doob establishes the con-
sistency of the posterior distribution, and thus of Bayes factors, under weak conditions. Equation
(11.12) then provides consistency of BIC. For precise statements see Schervish (1995, Section 7.2.1)
and the references in Kass and Raftery (1995, Section 4.1.3).

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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From a philosophical perspective, Jeffreys’ use of Bayes factors and posterior prob-
ability of hypotheses represented a huge advance in understanding the nature of
scientific inductive reasoning.

16.3.3 Bayes factors can be difficult to use when there is little
information about unknown parameters.

The appearance of unknown parameters in (16.65) introduces a non-trivial compli-
cation. In Example 16.4, on p. 478, the prior π0 in (16.68) was completely specified
by H0 and the prior π1 was found from related data. When there are no available
relevant data, it can be difficult to know how to select such priors. As we reviewed in
Section 16.1.5, in problems involving estimation of a parameter θ, for large samples
the influence of the prior diminishes to the point that answers based on two distinct
priors will be essentially the same. One way to say this is that within the peak of
the posterior distribution, Eq. (16.22) holds, and so regardless of the prior chosen
we get (16.17). However, when large-sample analysis is applied to the numerator
and denominator of (16.65), and (16.22) is applied, a factor π0(ω̂) remains in the
numerator and π1(ξ̂) remains in the denominator. In other words, even for large sam-
ples the value of the Bayes factor depends on the choice of priors. In practice, this
dependence of the Bayes factor on prior pdfs limits its applicability. Bayes factors
are much more compelling when, as in Example 16.4, the prior pdfs are themselves
determined by data.

Sometimes a wide range of plausible priors may be defined and sensitivity of
conclusions within this range may be evaluated. See Application 5 in Kass and
Raftery (1995). Another possibility is to use the BIC as if it were the log of the Bayes
factor, according Eq. (11.12). In fact, Kass and Wasserman (1995) showed that BIC
corresponds to the use of a particular prior they called the unit information prior
because it injects the same amount of information as a single data value xi within a
sample x1, . . . , xn. Sometimes the unit information prior is used in order to obtain a
rough quantification of evidence based on the Bayes factor.

Example 16.7 Set Shifting in ADHD Wagenmakers et al. (2010) reanalyzed data
from Geurts et al. (2004) who, among other things, compared the performance of
children with ADHD with controls on the Wisconsin Card Sorting Test (WCST). The
WCST requires subjects to learn to sort cards according to implicit rules that change
during the course of the experiment; performance is thus thought to quantify cognitive
flexibility or set shifting ability. The data came from 52 children with ADHD and
26 control children. Wagenmakers et al. used hierarchical models to describe the
variation in ability across subjects within each of the two experimental groups. They
introduced a unit information prior on the mean difference in abilities between the
groups and then computed BF01 = 4.0. The authors concluded there was modest
evidence in favor of the null hypothesis that the mean ability on the WCST was the
same for ADHD and control subjects. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
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16.3.4 Bayes factors can be used to calibrate p-values.

On p. 282 and 476 we distinguished between the p-value and the quantity
P(H0|data), which is computed from Bayes’ theorem. In order to compute
P(H0|data) based on the data X = x, according to (16.62), we need f0(x) and
f1(x). The pdf f0(x) is used in calculating31 the p-value. If f1(x) is either known or
assumed known, as in (16.69), the Bayes factor may be computed and if we further
take P(H0) = P(HA) = 1

2 then Eq. (16.62) gives

P(H0|x) = BF01

1+ BF01
. (16.70)

By making assumptions about f1(x) it therefore becomes possible to compare the
p-value with P(H0|x). This was done by Jeffreys (Jeffreys 1961, pp. 373–374), and
subsequently by Edwards et al. (1963) and others. See Sellke et al. (2001) for a
thorough discussion. The approach taken by Edwards et al. (1963) and by Sellke
et al. (2001) was to assume that the pdf f1 lies in some family of distributions,
and for data x such that a given p-value occurred (such as p = .05) they then
minimized BF01 over all possible members of that family. This minimum represents
the strongest possible evidence against H0 that the p-value could provide, under the
given assumptions. Under assumptions considered reasonable32 by Sellke, Bayarri,
and Berger, the value p = .05 corresponds to a minimum of BF01 = .41. In other
words, under those assumptions, using (16.70), the value p = .05 corresponds to
P(H0|data) ≥ .41/1.41 = .29. Calculations of this sort lead to the general conclusion
that p = .05 is relatively weak evidence against H0.

16.4 Derivations of Results on Latent Variables

Derivation of the results for the normal hierarchical model:
Let us use the notations x = (x1, . . . , xk) and θ = (θ1, . . . , θk). We begin with

31 In Eq. (10.24) the statistic Q could follow a standard distribution, such as a tν -distribution, in
which case the calculation would be based on the distribution of Q. However, Eq. (10.24) may be
rewritten as

p =
∫

R
f0(x)dx

where R = {x : Q ≥ qobs}.
32 For the normal testing problem of Section 10.3.1, one may consider the class of all pdfs that
are symmetric around μ = μ0, and also have their mode at μ = μ0. Sellke et al. (2001) reported
results based on this assumption. They also considered the distribution of the p-value. Under H0
this distribution is uniform (see Section 10.4.1) and under HA they assumed it to take the form
f (p) = ξpξ−1 for some ξ, which provided another way to formalize the family of alternatives and
compute the minimum value of the Bayes factor.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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f (θ|x) =
∫

f (θ,μ|x)dμ (16.71)

and rewrite f (θ,μ|x), first using Bayes’ theorem to get

f (θ,μ|x) ∝ f (x|θ,μ)f (θ|μ, τ2)

and then using
f (x|θ,μ) =

∏

i

f (xi|θi)

to get

f (θ,μ|x) ∝
(
∏

i

f (xi|θi)

)
f (θ|μ, τ2). (16.72)

Combining (16.71) and (16.72) we get

f (θ|x) ∝
(
∏

i

f (xi|θi)

)∫
f (θ|μ, τ2)dμ

and substituting the normal pdfs, while ignoring factors that do not involve θ, gives

f (θ|x) ∝ exp

(
−1

2

∑

i

σ−2
i (xi − θi)

2

)∫
exp

(
−1

2
τ−2

∑

i

(θi − μ)2

)
dμ.

(16.73)
We next need to evaluate the integral in (16.73), again retaining only the factors
involving θ. Letting θ = k−1 ∑

i θi we expand and simplify:

∑

i

(θi − μ)2 =
(
∑

i

θ2
i

)
− 2kμθ + kμ2

=
(
∑

i

θ2
i

)
+ k(μ2 − 2μθ

2 + θ2
)− kθ

2

= k(μ2 − 2μθ + θ2
)+

(
∑

i

θ2
i

)
− kθ

2

= k(μ2 − 2μθ + θ2
)+

∑

i

(θi − θ)2. (16.74)

From (16.74), the integral in (16.73) may be written, again retaining only terms
involving θ, as
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∫
exp{−1

2
τ−2

∑

i

(θi − μ)2}dμ ∝ exp{−1

2
τ−2

∑

i

(θi − θ)2}

so that (16.73) becomes

f (θ|x) ∝ exp

(
−(1/2)[

∑

i

σ−2
i (xi − θi)

2 + τ−2
∑

i

(θi − θ)2]
)

. (16.75)

We next expand the exponent in (16.75) and collect terms:

∑

i

σ−2
i (xi − θi)

2 + τ−2
∑

i

(θi − θ)2

=
∑

i

(σ−2
i + τ−2)θ2

i − 2
∑

i

(σ−2
i xi + τ−2θ)θi + τ−2kθ

2 +
∑

i

σ−2
i x2

i

=
∑

i

(σ−2
i + τ−2)θ2

i − 2
∑

i

σ−2
i xiθi − 2kτ−2θ

2 + τ−2kθ
2 +

∑

i

σ−2
i x2

i

=
∑

i

(σ−2
i + τ−2)θ2

i − 2
∑

i

σ−2
i xiθi − kτ−2θ

2 +
∑

i

σ−2
i x2

i . (16.76)

We now note that ∑

i

∑

j

θiθj = k2θ
2

so that
− kτ−2θ

2 = −k−1τ−2
∑

i

∑

j

θiθj (16.77)

and inserting (16.77) in (16.76) gives

∑

i

σ−2
i (xi − θi)

2 + τ−2
∑

i

(θi − θ)2 =
∑

i

(σ−2
i + τ−2)θ2

i

− k−1τ−2
∑

i

∑

j

θiθj − 2
∑

i

σ−2
i xiθi

+ constant (16.78)

which is quadratic in θ (and where “constant” stands for terms not involving θ). In
general, for a matrix V and vector z we have

θT V−1θ − 2zTθ = (θ − m)T V−1(θ − m)− zT m

where m = Vz. We use this by setting vij = (V−1)ij and defining V−1 and z according
to
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vij = −k−1τ−2 + (σ−2
i + τ−2)δij

zi = σ−2
i xi

where δij is 1 if i = j and 0 otherwise. We use these definitions in (16.78) to get

∑

i

σ−2
i (xi− θi)

2+ τ−2
∑

i

(θi− θ)2 = (θ−m)T V−1(θ−m)+ constant (16.79)

and putting (16.79) in (16.75) gives

f (θ|x) ∝ exp
(
−(1/2)(θ − m)T V−1(θ − m)

)
. (16.80)

Therefore, the posterior distribution of θ is multivariate normal with expectation
vector m and variance matrix V .

All that remains is to write down the explicit formulas for m and V . For this we
use the following matrix identity: writing cij = (C−1)ij, if

cij = −k−1b+ (ai + b)δij

then

cij =
(
∑

i

aib

ai + b

)−1 (
b

ai + b

)(
b

aj + b

)
+ (ai + b)−1δij, (16.81)

which may be verified by direct calculation. Here we will use

ai = σ−2 and b = τ−2 (16.82)

together with the identities

σ−2
i τ−2

σ−2
i + τ−2

=
(

1

σ2
i

+ 1

τ2

)−1

(16.83)

and
τ−2

σ−2
i + τ−2

= σ2
i

σ2
i + τ2

. (16.84)

Putting (16.82) in (16.81) and applying (16.83) and (16.84), the components of the
matrix V become

vij = (
∑

i

(σ2
i + τ2)−1)−1

(
σ2

i

σ2
i + τ2

)(
σ2

j

σ2
j + τ2

)
+

(
σ2

i τ
2

σ2
i + τ2

)
δij
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and the components vii give the posterior variances (16.36). The posterior means in
(16.35) are the components of the vector m, which then become

mi =
∑

i

vijσ
−2
j xj

= wixα + (1− wi)xi

where

wi = σ2
i /(σ2

i + τ2)

αi = (σ2
i + τ2)−1

xα = (
∑

i

αixi)/(
∑

i

αi).

�
Derivation of the filtering and prediction equations:
In general, to derive Bayes’ Theorem for continuous random vectors X and Y we
could combine

f (x, y) = f (x|y)f (y) (16.85)

and its role-reversed counterpart

f (x, y) = f (y|x)f (x)

to write

f (x|y) = f (y|x)f (x)
f (y)

,

and then would use

f (y) =
∫

f (x, y)dx (16.86)

to get

f (x|y) = f (y|x)f (x)∫
f (y|x)f (x)dx

,

which is often written as
f (x|y) ∝ f (y|x)f (y). (16.87)

Let us put x = (u, z) and y = w in (16.85). We have

f (u, z|w) = f (u, z, w)

f (w)

and dividing and multiplying the right-hand side by f (z, w) gives
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f (u, z|w) = f (u, z, w)

f (z, w)

f (z, w)

f (w)
.

Applying (16.85) to each of the fractions on the right-hand side now gives the vari-
ation on (16.85) after conditioning:

f (u, z|w) = f (u|z, w)f (z|w). (16.88)

We may also derive a variation on (16.86): we write

f (u|w) = f (u, w)

f (w)
=

∫
f (u, w, z)dz

f (w)

and bringing the denominator into the integral we get

f (u|w) =
∫

f (u, z|w)dz. (16.89)

Equations (16.88) and (16.89), together with (16.48) and (16.49), are all that are
needed to derive the filtering and prediction equations. We begin by writing

f (xt |y1:t) = f (xt |yt, y1:t−1)

and then set z = yt , w = y1:t−1 and u = xt in (16.88) to get

f (xt |y1:t) = f (xt |yt, y1:t−1)

= f (yt, xt |y1:t−1)

f (yt |y1:t−1)
.

We continue by applying (16.88) again with u = yt , z = xt and w = y1:t−1,

f (xt |y1:t) = f (yt, xt |y1:t−1)

f (yt |y1:t−1)

= f (yt |xt, y1:t−1)f (xt |y1:t−1)

f (yt |y1:t−1)

and then by (16.89),

f (xt |y1:t) = f (yt |xt, y1:t−1)f (xt |y1:t−1)

f (yt |y1:t−1)

= f (yt |xt, y1:t−1)f (xt |y1:t−1)∫
f (yt |xt, y1:t−1)f (xt |y1:t−1)dxt

.

From (16.49), omitting the denominator as in (16.87), this gives (16.51). Now, putting
z = xt−1, w = y1:t−1 and u = xt we apply (16.89) and then (16.88) to get
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f (xt |y1:t−1) =
∫

f (xt, xt−1|y1:t−1)dxt−1

=
∫

f (xt |xt−1, y1:t−1)f (xt−1|y1:t−1)dxt−1

and from (16.48) we then have (16.52). �
Derivation of the Kalman filter:
To obtain the posterior distribution of Xt conditionally on Y1:t = y1:t we will use
the theorem in Section 5.5.3 that gives the conditional distribution of one random
vector given another when they are jointly multivariate normal. First, we observe
that, conditionally on Y1:t−1 = y1:t−1 the vector (Yt, Xt) is multivariate normal. We
will need the formulas for the mean and variance of Xt given Y1:t−1 = y1:t−1. We
begin with

x̂t|t−1 = E(Xt |Y1:t−1 = y1:t−1)

and then rewrite:

x̂t|t−1 = E(AXt−1 + εt |Y1:t−1 = y1:t−1)

= AE(Xt−1|Y1:t−1 = y1:t−1)+ E(εt |Y1:t−1 = y1:t−1)

= Ax̂t−1|t−1

which is (16.58). Next we define

Ŵt|t−1 = V(Xt |Y1:t−1 = y1:t−1)

and have

Ŵt|t−1 = V(AXt−1 + εt |Y1:t−1 = y1:t−1)

= AV(Xt−1|Y1:t−1 = y1:t−1)A
T + V(εt |Y1:t−1 = y1:t−1)

= AŴt−1|t−1AT + Q

which is (16.59). Now let μb = E(Xt |Y1:t−1 = y1:t−1). By Eq. (16.58) we have

μb = Ax̂t−1|t−1.

We also let μa = E(Yt |Y1:t−1 = y1:t−1) and then

μa = E(BXt + ηt |Y1:t−1 = y1:t−1)

= BE(Xt |Y1:t−1 = y1:t−1)+ E(ηt |Y1:t−1 = y1:t−1)

= Bx̂t|t−1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Next, we compute the covariance matrix. Let �bb = V(Xt |Y1:t−1 = y1:t−1). By
Eq. (16.59) we may write �bb = AŴt−1|t−1AT + Q. Let �aa = V(Yt |Y1:t−1 =
y1:t−1). We have

�aa = V(BXt + ηt |Y1:t−1 = y1:t−1)

= BV(Xt |Y1:t−1 = y1:t−1)B
T + V(ηt |Y1:t−1 = y1:t−1)

= BŴt|t−1BT + R.

Finally, let �ab = Cov(Yt, Xt |Y1:t−1 = y1:t−1). We get

�ab = Cov(BXt + ηt, Xt |Y1:t−1 = y1:t−1)

= BV(Xt |Y1:t−1 = y1:t−1)+ Cov[ηt, Xt |Y1:t−1 = y1:t−1)

= BŴt|t−1.

Because � is symmetric, �ba = �ab.
We have defined μa, μb, �ab and �ba to match the notation in Section 5.5.3. Using

the theorem in that section, the joint multivariate normal distribution can be written

(
Yt

Xt

)∣∣∣∣Y1:t−1 = y1:t−1 ∼ N2t(μ, �)

where

μ =
(
μa

μb

)

and � is given by Eq. (5.18), with μa, μb, �ab and �ba defined above.
To conclude the derivation we write x̂t|t = μb|a and Ŵt|t = �b|a which, by

Eqs. (5.19) and (5.20), are given by

μb|a = μb +�ba�
−1
aa (yt − μa)

= x̂t|t−1 + Ŵt|t−1BT (BŴt|t−1BT + R)−1(yt − Bx̂t|t−1)

and

�b|a = �bb −�ba�
−1
aa �ab

= Ŵt|t−1 − Ŵt|t−1BT (BŴt|t−1BT + R)−1BŴt|t−1

which are (16.57) and (16.60). �

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5


Chapter 17
Multivariate Analysis

17.1 Introduction

Much of this book has been devoted to describing relationships among multiple noisy
variables, yet we have until now managed to avoid a general discussion of multi-
variate co-variation. The regression and generalized regression models discussed in
Chapters 12, 14, and 15 involved a response variable y that was related to one or
more explanatory variables x and this asymmetry of response and explanatory vari-
ables allowed us, for the most part, to ignore the co-variation among the whole set
of measured variables. In some contexts, however, there are advantages to analyz-
ing multiple measurements together. For instance, in Example 4.7 (p. 100), which
involved decoding of wrist movement from MEG signals, the signals came from 87
MEG sensors and it made sense to analyze these collectively, as an 87-dimensional
vector at each time point. In this chapter we provide a short overview of methods that
have been developed for such purposes, which fall under the heading of multivariate
analysis, and we return to Example 4.7 on p. 494.

The starting point is the sample mean and sample variance matrix (see
Section 4.3.1), while the theory is based largely on the theoretical mean and variance
of a random vector (see Section 4.3.1) together with the multivariate normal distri-
bution (see Section 5.5). Section 17.2 reviews the multivariate extensions of t-tests
and one-way ANOVA, which are special cases of the general class of methods called
multivariate analysis of variance (MANOVA). MANOVA balances two competing
tendencies. On the one hand, when several variables respond similarly to a change in
experimental conditions there is stronger evidence for differential response in their
combined data than would be provided if each variable were considered separately.
This was the idea behind the method of combining p-values from independent tests of
the same null hypothesis, described in Section 11.3.1; in Example 11.2 we found that
five separate p-values of .02 led to a combined p-value of 2.5× 10−5. On the other
hand, if the multiple variables are correlated, the assessment must take account of the
correlation, and this tends to decrease the effect: in the extreme case of perfect cor-
relation, observing multiple variables becomes the same thing as observing a single

R. E. Kass et al., Analysis of Neural Data, 491
Springer Series in Statistics, DOI: 10.1007/978-1-4614-9602-1_17,
© Springer Science+Business Media New York 2014
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variable. MANOVA incorporates correlation by comparing multivariate co-variation
across conditions to that within conditions.

Section 17.3 reviews the main ideas behind dimensionality reduction. When the
multiple variables are, collectively, so highly correlated that a variance matrix is no
longer of full rank, i.e., no longer positive definite (see p. 618 of the Appendix),
some formulas are voided. A solution to this problem is to define a smaller set of
new variables that are linear combinations of the original variables, the process of
which is called “dimensionality reduction” (though, in general, the combinations do
not have to be linear). Dimensionality reduction is also useful for data simplification.
For example, data are often displayed by plotting with x and y axes that are suitably
defined by a reduction to 2 dimensions.

Section 17.4 returns to the problem of classification, introduced in Section 4.3.4.
We first show how Bayes classifiers take a nice form when the classes are defined by
multivariate normal distributions, and then go on to describe two commonly-applied
alternative methods of classification. In Section 17.4.3 we discuss the concept of
clustering, which involves putting observations into classes when the classes have
not yet been defined and must be estimated or1 learned from the data.

Multivariate analysis uses more advanced mathematics than univariate analysis,
and many theoretically-inclined students find in the subject a majestic elegance.
While nearly all the methods presented in our synopsis here were developed more
than 50 years ago, it is a very active area of continuing research.

17.2 Multivariate Analysis of Variance

17.2.1 MANOVA provides a multivariate extension of ANOVA.

The one-way ANOVA model, given in Eq. (13.1), involves a set of random variables
Yij. We repeat Eq. (13.1) here as Eq. (17.1). The model is

Yij = μ+ αi + εij, (17.1)

for i = 1, . . . , I and j = 1, . . . , ni and the usual assumptions are

(i) the ANOVA model (13.1) holds;
(ii) the errors satisfy E(εi) = 0 for all i;

(iii) the errors εi are independent of each other;
(iv-1D) V(εi) = σ2 for all i (homogeneity of error variances), and
(v-1D) εi ∼ N(0,σ2) (normality of the errors).

1 The term “learning” tends to be used interchangeably with “estimation,” i.e., the process of
determining a parameter value from data. Because it may sometimes refer to significance testing,
learning is somewhat broader, and it is often associated with techniques used heavily in the field of
machine learning. See Hastie et al. (2009).

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_13
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In Eq. (17.1) each εij is a random variable, and μ and each αi are numbers. If we
instead take all Yij and εij to be p-dimensional random vectors, and μ and all αi to
be vectors, then the model becomes

Yij = μ+ αi + εij, (17.2)

which is identical to (17.1) when p = 1. The usual assumptions (i–iii) have the same
form for (17.2) as for (17.1) while the assumptions we labeled (iv-1D) and (v-1D)
become

(iv) V(εi) = � for all i;
(v) εi ∼ N(0, �).

Equation (17.2) together with these multivariate assumptions (i–v) then becomes a
multivariate analysis of variance (MANOVA) model. Note that in this section we are
using Yij to denote our generic random vector, while in the rest of this chapter we
use X.

The idea behind one-way ANOVA is to test the null hypothesis

H0 : αi = 0 (17.3)

by, first, decomposing the total sum of squares

SST =
∑

i,j

(yij − ȳ..)
2 (17.4)

using the error sum of squares

SSE =
∑

i,j

(yij − ȳi.)
2 (17.5)

as
SST = SSgroup + SSE (17.6)

where SSgroup is defined from (17.6) by subtraction and, second, considering
whether2 SSgroup is improbably large relative to SSE under H0. The same idea may
be applied in the multivariate case: formulas (17.4) and (17.5) become

SST =
∑

i,j

(yij − ȳ..)(yij − ȳ..)
T (17.7)

and

2 In constructing the F-statistic, the values of SSgroup and SSE are first standardized by dividing by
their respective degrees of freedom, but that is for the convenience of judging the ratio relative to
the number 1.
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SSE =
∑

i,j

(yij − ȳi.)(yij − ȳi.)
T (17.8)

and then (17.6) may be applied. In addition, under the homogeneity of variance
assumption (iv), an estimate of � is the pooled sample variance matrix

Spooled = 1

N − I
SSE (17.9)

where

N =
I∑

i=1

= ni.

On p. 367 we outlined the way the usual one-way ANOVA F-test arises as a
likelihood ratio test. This suggests applying a likelihood ratio test in the multivariate
setting. The result rejects the null hypothesis of (17.3) when SST is large relative to
SSE, where “large” now refers to a matrix and is measured by the determinant (see
the appendix, p. 616). Equivalently, the test rejects when the quantity

� = |SSE|
|SST| (17.10)

is small. The test was derived by Wilks (1932) and the value � is usually called
Wilks’ lambda. An F statistic may be defined in terms of � (the expression is not
very intuitive; we omit it) and this statistic has, approximately, an F distribution
under H0. The results are usually displayed in a table, much like the ANOVA table
given as Table 13.4.

Example 17.1 Functional Specialization of Mouse Visual Areas Because of the
potential for genetic manipulation, there is great interest in mouse models of brain
function. Cortical areas in the primate visual system can be distinguished according
to their differing neural responses. Marshel et al. (2011) sought to provide a sim-
ilar characterization of mouse visual areas. Specifically, they examined the tuning
properties of individual neurons with respect to direction, orientation, spatial fre-
quency, and temporal frequency, across seven visual areas. For each tuning property
they devised a measure of sensitivity, yielding a 4-dimensional vector for each neu-
ron. The authors then applied MANOVA to look for differential neural responses in
these 4-dimensional vectors across the seven areas. They found the seven areas to
be distinguishable using MANOVA, and then proceeded to provide more detailed
comparisons for each metric. �

Example 4.7 (continued from p. 100) In their study of decoding wrist movement
from MEG sensor recordings, Wang et al. used Bayes classifiers to produce the
results in Fig. 4.4. They also evaluated the classification accuracy after averaging the

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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Fig. 17.1 Normalized MEG sensor signals from one subject in the Wang et al. study, averaged
across trials. Four traces are shown for a single sensor, corresponding to the four directions of
movement. The shadowed gray region is the optimal time window found by MANOVA. Adapted
from Wang et al. (2010).

sensor recordings across 200 ms time windows. To compute classification accuracy,
leave-one-out cross-validation was used. For each subject, and for each trial i, the
movement direction on trial i was predicted after the remainder of the trials were
used as training data. Using the training data, first an optimal time window for each
subject was chosen and then a Bayes classifier was defined (it was assumed that sensor
measurements were multivariate normal and the mean and variance parameters were
estimated for each of the four directions of movement; see p. 506). The optimal
time window of length 200 ms was chosen from 150 possible windows, centered at
150 time points spaced 10 ms apart. To select the optimal time window the authors
applied MANOVA in each of the 150 windows, then found the window that produced
the largest F statistic. See Fig. 17.1. �

In Section 13.1.3 we said that in the case of two groups, one-way ANOVA reduces
to the usual t-test. Similarly, in the case of two groups, MANOVA may be reduced to a
simpler form. Let us assume there are n1 observations in group 1 and n2 observations
in group 2. The pooled sample variance matrix of Eq. (17.9) becomes

Spooled = 1

n1 + n2 − 2

⎛

⎝
n1∑

j=1

(y1j − ȳ1)(y1j − ȳ1)
T +

n2∑

j=1

(y2j − ȳ2)(y2j − ȳ2)
T

⎞

⎠

(17.11)
which is analogous to the univariate S2

pooled defined in Section 10.3.4. Let us change
the notation x used in Section 10.3.4 to y as used here and then write the t-statistic
(10.19) in the squared form

t2
obs = (ȳ1 − ȳ2)

(
(

1

n1
+ 1

n2
)s2

pooled

)−1

(ȳ1 − ȳ2). (17.12)

http://dx.doi.org/10.1007/978-1-4614-9602-1_13
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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The standard test statistic for testing H0 : α1 − α2 = 0 in the multivariate case is

T2 = (ȳ1 − ȳ2)
T
(

(
1

n1
+ 1

n2
)Spooled

)−1

(ȳ1 − ȳ2), (17.13)

where Spooled is defined above, which is a generalization of (17.12). The statistic T2

is usually called Hotelling’s T2. In this case, under H0 and the assumptions following
Eq. (17.2), including the normality assumption (v), the approximate F distribution
of the MANOVA F statistic found by the likelihood ratio test becomes exact and3

we have
n1 + n2 − p

(n1 + n2 − 1)p
T2 ∼ Fp,n1+n2−p.

We have discussed one-way MANOVA here, but similar ideas apply to multivariate
extensions of two-way ANOVA and more complicated ANOVA designs.

17.2.2 When the variance matrices across conditions
are unequal, the likelihood ratio test may be applied.

It sometimes happens that the homogeneity assumption (iv) in the multivariate model
(17.2) is violated. The likelihood ratio test may still be used, and p-values may be
obtained by simulation.

Example 17.2 Testing Equality of Time-Varying Firing Rates One way to com-
pare the responses of a neuron across two or more experimental conditions is to pick
a window of time, compute the spike counts within that window for each of many
trials, and then apply a t-test or ANOVA or, possibly, a generalized version of these as
in Table 14.7. Sometimes, however, the firing rate may fluctuate across the recorded
time interval and it may not be clear what time window would be most appropriate.

Behseta and Kass (2005) and Behseta et al. (2007) suggested, instead, testing the
null hypothesis that the firing rate, as a varying function of time, remains the same
across the two or more conditions. The situation is illustrated in Fig. 17.2. In the
two upper left panels are PSTHs for a motor cortical neuron under two experimental
conditions together with smoothed versions of the PSTHs, obtained by methods
similar to those of Example 1.1 on p. 422.

The smooth curves in Fig. 17.2 may be considered estimated firing-rate functions,
which vary across time. Section 19.3.3 spells this out by defining what is called
the marginal intensity function λ(t) (Eq. (19.23), which is the trial-averaged firing

3 Here we are using T2 both as an observed value of a statistic based on data and as a random
variable that has a probability distribution. To be consistent with earlier notation, in using T2 as a
random variable we should replace ȳ1 and ȳ2 in (17.13) and (17.11) with Ȳ1 and Ȳ2.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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Fig. 17.2 Left Responses of two motor cortical neurons. Shown are PSTHs together with smoothed
versions (black curves) obtained from BARS (Section 15.2.6). In the two upper panels are the
estimated firing-rate functions of neuron 1 under two different experimental conditions; for this
neuron the firing-rate functions look very similar. In the lower two panels are the corresponding
estimated firing-rate functions of neuron 2, which look clearly different. Adapted from Behseta
and Kass (2005). Right Responses of two neurons from the supplementary eye field during eye
movements in eight different directions. The first neuron has nearly flat firing-rate functions in all
directions, while the second neuron has modulated firing-rate functions which look clearly different.
Adapted from Behseta et al. (2007).

rate function (Eq. (19.25)) and, as explained there, the PSTH may be considered an
estimate of λ(t). To avoid confusion with our use, in this chapter, of λ to denote
an eigenvalue, we will here write the trial-averaged firing-rate function instead as
g(t). In the case of two firing-rate functions g1(t) and g2(t) under two experimental
conditions, the null hypothesis becomes H0 : g1(t) = g2(t) for all t.The smooth
curves in the left panels of Fig. 17.2 become estimates ĝ1(t) and ĝ2(t). Behseta and
Kass (2005) showed how a version of the T2 test in (17.13) could be defined from
the smooth curves ĝ1(t) and ĝ2(t), together with their estimated variance matrices
that come from the smoothing algorithm. As would be expected from Fig. 17.2, the
test was not significant for the firing-rate curves in the two upper left panels but was
highly significant for the firing-rate curves in the two lower left panels.

Behseta et al. (2007) went on to derive a likelihood ratio test for the more general
case in which there are I conditions (I ≥ 2) and the null hypothesis becomes H0 :
g1(t) = g2(t) = · · · = gI(t) for all t. This applies to the right-hand panels of
Fig. 17.2, which display smoothed firing-rate functions from a pair of supplementary
eye field neurons for eye movements in eight directions (I = 8). To treat this situation,
Behseta et al. 2007 had to allow for the possibility that the variance matrices in each
group might be different. Again, the test was not significant for the curves shown
for the first neuron but was highly significant for the curves shown for the second
neuron. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_19
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17.3 Dimensionality Reduction

17.3.1 A variance matrix may be decomposed into principal
components.

The variability of an m-dimensional random vector X is summarized by4 its variance
matrix �. According to the spectral decomposition (see p. 617 of the Appendix), we
may decompose � in the form

� = PDPT (17.14)

where D is an m × m diagonal matrix and P is an m × m orthogonal matrix. As
discussed on p. 618, the equation xT �x = 1 defines an m-dimensional ellipse (or
ellipsoid) the axes of which are defined by the columns of P, which are eigenvec-
tors of �. The lengths of these axes are twice the square-root of the corresponding
eigenvalues, which are the diagonal elements of D.

Using (12.59) together with the orthogonality relationships PTP = PPT = Im,
where Im is the m-dimensional identity matrix, the transformed random vector

Y = PT X (17.15)

has variance matrix
V(Y) = PT (PDPT )P = D. (17.16)

Let us assume that the columns of P and diagonal elements of D have been ordered
so that D11 ≥ D22 ≥ · · · ≥ Dmm. These diagonal elements, which are eigenvalues
of �, are usually written λj = Djj, so that

λ1 ≥ λ2 ≥ · · · ≥ λm.

Then, if colj(P) is the jth column of P (the jth eigenvector of �) the jth component
Yj of Y is given by

Yj = colj(P)T X (17.17)

and its variance is
V(Yj) = colj(P)T X = λj. (17.18)

Also, when i �= j, Yi and Yj are uncorrelated. If X is multivariate normal, then Yi and
Yj are independent.

Now for any unit vector u we have

4 This assumes that the variance matrix is well-defined in the sense that every linear combination
aT X has finite variance. There exist multivariate distributions for which nonzero linear combinations
aT X have infinite variance. We do not consider these here.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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V(uTX) ≤ λ1. (17.19)

Details: Let w = PT u. Notice that

wT w = uT PPT u = uT u = 1

so that w is also a unit vector. We compute V(uT X):

V(uT X) = uT PDPT u = wT Dw =
m∑

j=1

w2
j λj

and because λj ≤ λ1, we get

m∑

j=1

w2
j λj ≤ λ1

m∑

j=1

w2
j = λ1.

�
Meanwhile, from (17.18) we have that the special case u = col1(P) gives

V(Y1) = λ1. (17.20)

Together, (17.19) and (17.20) show that Y1 is the linear combination of components
of X that maximizes the variance, among all linear combinations scaled so that
the coefficients define a unit vector. In this sense, colj(P), the first eigenvector of
�, defines the direction of maximal variation of the random vector X. The linear
combination Y1 is called the first principal component of � or, more loosely, the first
principal component of the distribution of X. Sometimes the term “first principal
component” is applied to the first eigenvector col1(P).

A similar argument shows that Ym is the linear combination of components of
X that minimizes the variance, among all linear combinations scaled so that the
coefficients define a unit vector. With a little more algebra it may also be shown
that among all unit vectors u that are perpendicular to col1(P), the variance V(uT X)

is maximized by u = col2(P). Similarly, colj(P) maximizes the variance V(uT X)

among all unit vectors u that are perpendicular to all of col1(P), col2(P), . . . , colk(P),
where k = j−1. The linear combination Yj is called the jth principal component of �.

To summarize, the transformation (17.15), based on the eigenvectors of �, pro-
duces a new version of X consisting of its principal components. The principal
components, given by (17.17), are rotated versions of the components of X that are
uncorrelated. If X is multivariate normal, then the principal components are mutually
independent. Furthermore, the principal components indicate directions of maximal
variation of X in the sense outlined above: the first principal component is in the direc-
tion of maximal variation of X, the second principal component is in the direction of
maximal variation of X subject to being orthogonal to the first principal component,
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the third principal component is in the direction of maximal variation of X subject
to being orthogonal to the first two principal components, and so on.

Similar analysis may be applied to the sample variance matrix S, defined on p. 90.
In this case, we speak of the principal components of S, or of the data vector. This
assumes S is of full rank m, i.e. it is positive definite (see p. 617 of the Appendix).

On p. 131 we noted that when a variance matrix � is less than full rank, some
of its eigenvalues are equal to 0. Suppose there are k positive eigenvalues. Then,
as noted on p. 131, � may be decomposed instead in terms of the first k eigenvec-
tors, corresponding only to the k positive eigenvalues. These eigenvectors define a
k-dimensional subspace in which the variation of X is concentrated. In the case of
a sample variance matrix S, which may be considered a noisy estimate of a theo-
retical variance matrix �, the smallest eigenvalues may not be numerically equal to
0 but several may be very close to 0. If we choose a suitable cutoff value c, below
which we will say that the smallest eigenvalues are, for practical purposes, the same
as 0, then we have effectively determined that there are k positive eigenvalues and
the data vector lies in a k-dimensional space. This is the starting point for the idea
of dimensionality reduction via principal components: to reduce the dimensionality
of a random vector we consider the subspace (the set of linear combinations of its
components) corresponding to the positive eigenvalues of its covariance matrix.

Example 17.2 (continued from p. 496) The analysis of Behseta and Kass (2005)
involved picking a grid of time values t1, . . . , tm at which to evaluate ĝ1(t) and ĝ2(t).
This produced m-dimensional data vectors (ĝ1(t1), . . . , ĝ1(tm)) and (ĝ2(t1), . . . , ĝ2
(tm)) that could be compared based on estimated variance matrices S1 and S2 that
came from the smoothing method. The authors showed how a statistic similar to T2

could be defined by replacing the matrix representing the variance of the difference
of means, ( 1

n1
+ 1

n2
)Spooled, with W = S1 + S2, where

S1 = V
(
(ĝ1(t1), . . . , ĝ1(tm))

)

S2 = V
(
(ĝ2(t1), . . . , ĝ2(tm))

)

which, by independence of the data under the two conditions, satisfies

W = V
(
(ĝ1(t1), . . . , ĝ1(tm))− (ĝ2(t1), . . . , ĝ2(tm))

)
.

Specifically, letting

U1 = (ĝ1(t1), . . . , ĝ1(tm))

U2 = (ĝ2(t1), . . . , ĝ2(tm))

they wished to use a statistic T2
curves given by

T2
curves = (U1 − U2)

T W−1(U1 − U2). (17.21)
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However, because the grid comprised many time points (m was relatively large), the
matrix W was less than full rank, so that (17.21) could not be applied. The authors
therefore reduced dimensionality by choosing a suitable small positive number c
and retained only the eigenvalues λj of W for which λj > c. (The value of c will
be discussed below p. 501.) Let us suppose there were k retained eigenvalues, let
Dk be the k × k diagonal matrix having λj as its jth diagonal element, and let Pk
be the corresponding matrix of the first k eigenvectors of W . Although the matrix
W = PDPT was not of full rank, the k × k matrix Wk defined by

Wk = PkDkPT
k

was of full rank k and the new version of the statistic

T2
curves = (U1 − U2)

T W−1
k (U1 − U2)

was well-defined. �
The choice of the cutoff c, below which the remaining eigenvalues are treated

as equal to 0, is important. As c increases, additional eigenvalues are set to 0 and
dimensionality is further reduced. For a given theoretical variance matrix � we may
identify the eigenvalues that are zero and then consider the subspace corresponding
to the positive eigenvalues. But if all we have is a sample variance matrix S, which
we view as a noisy estimate of �, it may be difficult to determine how many of
the corresponding theoretical eigenvalues of � are 0. This gives rise to a dramatic
extension of the idea of dimensionality reduction: instead of finding a cutoff for
which the remaining eigenvalues are nearly 0, the value c could represent a cutoff
for which “most of the variation” in the data occurs in the remaining subspace. For
this purpose, a standard procedure is to compute the eigenvalues λ̂1, λ̂2, . . . , λ̂m of
S (which are considered to be estimates of λ1,λ2, . . . ,λm) and to declare that the
subspace corresponding to the first k eigenvalues contains a proportion q of the
variability in the data, where q is defined by

q = λ̂1 + λ̂2 + · · · + λ̂k

λ̂1 + λ̂2 + · · · λ̂k + λ̂k+1 + · · · + λ̂m
.

Data analysts often pick k such that 90 or 95 % of the variability is, in this sense,
contained in the subspace defined by the first k principal components.

Example 17.3 Postural Hand Synergies Santello et al. (1998) asked subjects to
shape their hand as if grasping and using many familiar objects. The authors defined
hand shape using 15 joint angles formed when the subjects were in a static grasp
position. The authors reported that roughly 90 % of the variability in these hand
shape vectors was accounted for by the first three principal components. They inter-
preted the 3-dimensional representation to be defined by “synergies,” meaning shape
combinations resulting from the redundancies in hand movement. �
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Fig. 17.3 Top left A segment of an extracellular electrode voltage recording. Top right A plot
overlaying the many waveforms from a well-isolated neuron. Bottom Three clusters, with cluster
boundaries, plotted using axes defined by the first two principal components. The boundaries sepa-
rating the clusters are defined by K−means clustering (see Section 17.4.3). Adapted from Lewicki
(1998).

Principal components are also used to visualize data. Let us write the data vectors
as x1, x2, . . . , xN . Typically, plots are made of the first two principal components,
that is, of the data pairs (col1(P)T xi, col2(P)T xi), for i = 1, . . . , N .

Example 17.4 Spike sorting Forebrain Recordings In Example 4.1 we described
the problem of spike sorting. Lewicki (1998) reviewed methods and issues and, to
illustrate, used a recording from a Zebra finch forebrain. An extracellular electrode
records voltage impulses from many different neurons, but each neuron contributes
waveforms that are very similar in shape. Several waveforms, apparently from the
same neuron, are overlaid in the left panel of Fig. 17.3. Spike sorting attempts to
put similar waveforms together into groups or clusters, under the assumption that
those within a given cluster are likely to emanate from a particular neuron. This
poses the statistical machine learning problem of clustering, which we discuss in
Section 17.4.3.

A spike waveform has a duration of roughly 1.5 ms. If voltage is sampled at 40 kHz
(kilohertz) each waveform is a vector of length 60. The data are then all of the wave-
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forms in a recording session, represented as vectors of length 60. Some methods of
clustering (including the mixture-of-Gaussians method discussed in Section 17.4.3)
have difficulty in high dimensions and it is advantageous to reduce dimensionality. In
addition, it can be useful to visualize the data in a two-dimensional space. Principal
components may be used for these purposes. The bottom panel of Fig. 17.3 displays a
set of the Zebra finch forebrain data plotted using the first two principal components.
Three distinct clusters appear, corresponding to waveforms that become identified
as coming from three distinct neurons. �

The use of principal components for any purpose is usually called principal com-
ponent analysis (PCA).

17.3.2 Methods other than PCA may be used to reduce
dimensionality.

Principal component analysis can be very effective in reducing dimensionality of
multivariate data that are more-or-less normally distributed. The assumption is that a
substantial fraction of the variation lies in a linear subspace, which may be obtained
from the principal components corresponding to the large eigenvalues of the variance
matrix. Alternatives include methods that attempt to find latent factors, possibly
while assuming the data to be non-normal, and methods that assume variation is
concentrated in nonlinear subspaces (concentrated in subspaces known5 as smooth
manifolds). We do not discuss methods aimed at finding smooth manifolds on which
the variation of X is concentrated, which come under the rubric manifold learning.
We very briefly describe two other approaches to dimensionality reduction.

The usual factor analysis model for an m-dimensional random vector X is given
in terms of an m× p matrix A and a p-dimensional random vector S, with p < m, by

X = AS+ ε

where the components of S and ε satisfy Si ∼ N(0, 1) and εi ∼ N(0,σ2
i ), all

independently, for i = 1, . . . , m. (In this section we are using S to stand for a vector
“source” of variation, rather than a sample variance matrix.) The intuition is that
the variation of X is driven by a set of p latent factors, which are the unobserved
(thus, latent, as in Section 16.2) components of S, plus independent noise, and the
rows of the matrix A contain the coefficients, called factor loadings, that define the
combination of factors determining each component of X. Because a fit of the model
to data will produce latent factors, and the factor loadings become interpretable,
this conception is very appealing. It suffers, however, from a serious difficulty: the

5 A subspace N of Rm is a smooth manifold if at every point x ∈ N there is a local coordinate
representation in which all points near x in N have the form (u, v) where v = 0. In other words,
everywhere in N there is a local coordinate system that makes N look like a linear subspace. See
Appendix A of Kass and Vos (1997).

http://dx.doi.org/10.1007/978-1-4614-9602-1_16


504 17 Multivariate Analysis

unknown parameters are the components of the variance matrix V(X) = � and for
any orthogonal matrix P, if we define B = AP, using (12.59) and PPT = Im we have

V(BS+ ε) = BV(S)BT + Im = APImPTAT + Im

= AAT + Im

= �.

In other words, we obtain the same variance matrix using both B and A, so an
interpretation of factor loadings based on B would be neither more or less valid than
an interpretation based on A. There are thus infinitely many equivalent interpretations.
Various methods have been used to specify a unique factor loading matrix, but there
often remains a degree of arbitrariness that leaves many practitioners wary of resulting
interpretations.6

A related, but different approach is to begin by allowing the latent vector S to be
non-normal, but with independent components, in the linear latent variable model

X = AS,

where S and X are both m-dimensional and A is taken to be orthogonal. The idea is
that the independent components in S would drive the vector X through the linear
combinations in A. If S is assumed to be normally distributed, then so is X, and the
solution is given by PCA, i.e., S consists of the principal components. However, if S
is allowed to be non-normal it can be quite different.

Let us assume the data vector X = x has been standardized (or pre-whitened, see
p. 557) so that its sample variance matrix is the m-dimensional identity. We wish to
find A and s such that x = As. By orthogonality AT A = Im so that AT x = s. The
matrix A may be defined to minimize the mutual information among the components
of s = AT x, where mutual information is the Kullback-Leibler divergence between
the joint pdf and the independence pdf (estimated from the data), as in (4.28). That is,
the components of s are taken to be as close to independent as possible, in the sense
of mutual information. The resulting procedure is called independent components
analysis (ICA). It turns out that minimizing mutual information in AT s has the effect
of making the distribution of s as far from normal as possible (measured in terms of
entropy).

Example 17.4 Efficient coding of natural sounds Lewicki (2002) used ICA to
find components of auditory signals. Some of the components he found from human
speech are shown in Fig. 17.4. For comparison, response properties of cochlear
neurons are also displayed. There is a qualitative resemblance between the ICA
components and the neural response functions. Lewicki argued that ICA may capture
an efficient representation of auditory input. �

6 The most famous example is Spearman’s general intelligence index g, which is obtained from
factor analysis. See, e.g., Gould (1996); Devlin et al. (1997).

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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Fig. 17.4 Left panel components determined by ICA from human speech. Right panel response
functions from cochlear neurons. The latter used linear regression of the binary spike train (see
Chapter 19) on the input signal at multiple time lags (see p. 530). Adapted from Lewicki (2002).

17.4 Classification and Clustering

17.4.1 Bayes classifiers for multivariate normal distributions take a
simple form.

Suppose each of many m-dimensional observation vectors X = x comes from one of
K classes C1, C2, . . . , CK , and when it comes from class k the random vector X has
pdf fk(x), for k = 1, . . . , K . The problem of classification (see Section 4.3.4) is to
determine, for each observation X = x, the class to which x belongs. As we showed
in Section 4.3.4, the expected number of classification errors is minimized by using
a Bayes classifier. For each x the Bayes classifier finds the class Ck that maximizes
the posterior probability given by Eq. (4.38), which we repeat here:

P(C = Ck |X = x) = fk(x)πk∑m
i=1 fi(x)πi

. (17.22)

In the special case where, for each class k, we have X ∼ Nm(μk, �) for some μk
and �, the solution takes a simple form. If we write the ratio of posterior probabilities
for two classes j and k by plugging the pdfs given by Eq. (5.17) into (17.22), and take
logs, after some algebra we obtain

log
P(C = Cj|X = x)

P(C = Ck |X = x)
= log

fj(x)

fk(x)
+ log

πj

πk

= δj(x)− δk(x) (17.23)

http://dx.doi.org/10.1007/978-1-4614-9602-1_19
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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where, for i = j, k

δi = xT �−1μi − 1

2
μT

i �−1μi + logπi. (17.24)

In other words, we have P(C = Cj|X = x) > P(C = Ck |X = x) if and only if
δj(x) > δk(x), so that the posterior probability is maximized by selecting the class
k that maximizes δi(x). The function δi(x) is a linear function of x. It is called the
linear discriminant function. Classification based on the linear discriminant function
is optimal when the classes are defined by multivariate normal distributions all having
the same variance matrix.

A similar argument may be applied to the case in which the classes continue to
be defined by multivariate normal distributions but the variance matrices are allowed
to be different. In this case the linear discriminant functions δi(x) are replaced by
quadratic functions of x, which are then called quadratic discriminant functions.

In practice, we do not know πk , μk or �k , even when the latter is assumed to
satisfy �1 = · · · = �K = �. Assuming we have preliminary data arising from
known classes from which to train the classifier (such data being called training
data), each prior probability πk may be estimated by the proportion of training data
vectors that fall in class k, i.e., number of training vectors within class k divided by
the total number of training data vectors; and we may replace the theoretical means
and variance matrices μk and �k by the corresponding sample mean and variance
calculated within class k. When, for simplicity, it is assumed that �1 = · · · = �K =
� the sample variance matrix is pooled across classes as in MANOVA, i.e., the matrix
Spooled defined in (17.9) is used, where the groups become the classes. The resulting
classification method is called linear discriminant analysis (LDA).

Example 4.7 (continued from p. 494) To classify movement directions based on the
MEG sensor signals within a 200 ms time window (see Fig. 17.1), Wang et al. used
LDA. With this approach the authors reported 4-direction classification accuracies
(with chance being 25 %), among nine subjects, ranging from 51.3 to 88.6 % (with
a mean of 67 %) for overt movement and 39.6–95 % (with a mean of 62.5 %) for
imagined movement. �

LDA often performs well for noisy data, even when the variation is strikingly
non-normal. However, for highly structured data alternative methods can do better.
See Section 17.4.2.

17.4.2 Bayes classifiers are not always practical.

The optimal performance of Bayes classifiers depends on the use of the pdf fk(x)
that generates the m-dimensional random vector X when it comes from class k. In
practice, fk(x) must be estimated from training data which, as m increases, becomes
a hard problem unless strong assumptions are made, such as multivariate normality.
Even with multivariate normality there are m(m+1)/2 parameters to be estimated in
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the variance matrix �, and for large m the data may be insufficient to get good esti-
mates. Sometimes � is assumed to be diagonal, so that the components of X become
independent. The resulting Bayesian classification procedure is then called näive
Bayes, which is fast and sometimes effective but it excludes potentially important
correlation among the components of X. In general, as the match of the estimated pdfs
to the variation in the data deteriorates, the performance of any Bayes classifier may
decline. This leads to the problem of designing alternative methods of classification.
We describe two popular approaches.

When the data vector satisfies X ∼ N(μk, �) for each class Ck , with k = 1, . . . , K ,
Eqs. (17.23) and (17.24) give the form of the Bayes classifier in terms of the linear
discriminant function. Let us consider, first, the case of binary classification, where
k = 1, 2. Examining (17.23) and (17.24), if we combine the terms that do not depend
on x we may write (17.23) in the alternative form

log
P(C = C1|X = x)

P(C = C2|X = x)
= α0 + xTα

where α = �−1(μ1 − μ2) is an m-dimensional vector. Because, in this binary case,
P(C = C2|X = x) = 1− P(C = C1|X = x), we have

log
P(C = C1|X = x)

1− P(C = C1|X = x)
= α0 + xTα. (17.25)

Equation (17.25) puts the linear discriminant function in the form of a logistic regres-
sion model for binary data, as given by Eq. (14.6), i.e., we could rewrite (17.25) as

log
P(C = C1|X = x)

1− P(C = C1|X = x)
= β0 + xTβ (17.26)

and this suggests solving the binary classification problem using logistic regression.
More specifically, given training data, the parameters β0 and β may be estimated
using logistic regression applied to the training data to get ML estimates β̂0 and β̂
(as outlined in Section 14.1.2) and then observations may be classified by replacing
β0 and β with β̂0 and β̂ in (17.26) and then assigning an observation to class 1 when-
ever the function in (17.26) is positive. This method is called a logistic regression
classifier. The method may be extended to multiple classes using a multi-category
generalization of logistic regression, often called polytomous regression or multino-
mial logistic regression.

The model in (17.25) looks the same as the model in (17.26) but according to
Section 17.4.1, in applying LDA using (17.25) we would estimate the parameters
using the sample means and pooled variance matrix. On the other hand, logistic
regression would estimate the parameters using maximum likelihood, which is dif-
ferent. The distinction is that logistic regression does not make the assumption of
multivariate normality and, instead, treats the x values as fixed.

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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The general wisdom is that logistic regression classifiers often perform similarly
to LDA classifiers. See Hastie et al. (2009) for additional discussion. Although the
form of the right-hand side of (17.26) is linear, logistic regression can accommodate
complicated nonlinear relationships using the methods discussed in Chapter 15.

A different idea lies behind the support vector machine (SVM) classifier, which we
explain briefly by first describing the perceptron neural network model. A perceptron
model is a function that takes a set of input variables x1, . . . , xm and performs a linear
computation followed by binary thresholding:

ν = φ(u)

u =
(

m∑

i=1

wixi

)
− b (17.27)

where w1, . . . , wm are a set of weights associated with that specific perceptron, and
φ(u) = 1 when u ≥ 0 and φ(u) = −1 when u < 0. This is a binary classifier in the
sense that a vector x = (x1, . . . , xm) is put into class 1 when φ(x) = 1 and into class
2 when φ(x) = −1.

Let us now consider the performance of the perceptron classifier when the data
may be separated cleanly into two classes.

Suppose w is an m-dimensional vector. The set {x ∈ Rm : 〈x, w〉 = 0} is the
(m− 1)-dimensional plane perpendicular to the vector w. It separates two halves of
Rm, namely the sets {x ∈ Rm : 〈x, w〉 > 0} and {x ∈ Rm : 〈x, w〉 < 0}. It is thus
called a separating hyperplane. The hyperplane S0 = {x ∈ Rm : 〈x, w〉 = 0} passes
through the origin, i.e., the m-dimensional 0 vector is in this hyperplane (0 ∈ S0). If
v ∈ Rm we can define Sv = v + S0 to be the set of all vectors in S0 added to v. This
Sv is another separating hyperplane: it may be written

Sv = {x ∈ Rm : 〈x − v, w〉 = 0} = {x ∈ Rm : 〈x, w〉 = b}

where b = 〈v, w〉 and it separates the sets {x ∈ Rm : 〈x, w〉 > b} and {x ∈ Rm :
〈x, w〉 < b}.

The separating hyperplane concept applies to data when one set of data vectors lies
in a set {x ∈ Rm : 〈x, w〉 > b} and another set of data lies in a set {x ∈ Rm: 〈x, w〉 < b}.
See Fig. 17.5. If two such sets of data come from two distinct classes, then the
classifier defined by (17.27) would perfectly classify such data.

The original perceptron learning rule attempted to estimate or “learn” the weights
w1, . . . , wm from data in order to perform classification. The simple method we have
described would be considered ineffective for general-purpose classification, partly
because data are not usually perfectly separated in this way and partly because there
is not a unique solution: as seen in Fig. 17.5, there are infinitely many separating
hyperplanes that fall in the shaded region.

Both of these problems are overcome by classifiers known as support vector
machines (SVMs). Lack of uniqueness is solved by finding the separating hyperplane
that maximizes the distance to the closest point in each class. This is found in terms

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 17.5 Optimal classification boundary and support vectors for a problem with separable classes.
Hypothetical data from two classes are indicated by x and o. The dark black line is defined by an
optimal classifier that separates the two classes of data. However, any parallel line falling within the
gray region would produce the same classification of the given data. The points labeled “support
vectors” lie on the boundary of this gray region. The optimal classifier is then determined by
maximizing the distance from the separating line to each of the two boundaries of the gray region,
which are determined by the support vectors.

of the support vectors, which are illustrated in Fig. 17.5. Separation of data vectors
is improved by using transformations to higher-dimensional spaces, analogously to
what is done in regression when one transforms a single variable x to a polynomial
(see Section 12.5.4) or a spline (see Section 15.2). Such transformations take the
form h(x) = (h1(x), h2(x), . . . , hM(x)). As the space gets larger, it becomes easier
to separate the data vectors from the two classes. One might expect difficulties in
implementation, and problems with over-fitting, but there is a so-called kernel trick
that makes the method7 practical. It turns out that all of the required computations
can be carried out in terms of a kernel function K(u, v) that specifies an inner product
between m-dimensional vectors u and v,

K(u, v) = 〈h(u), h(v)〉. (17.28)

For example, if we assume m = 2, so that u = (u1, u2) and v = (v1, v2), and we
define

K(u, v) = (〈u, v〉)2

then (17.28) is satisfied when h(x) (for x = (x1, x2)) is defined by

h(x) = (x2
1,
√

2x1x2, x2
2).

This simplification allows theory and implementation to be developed.

7 This use of “kernel” is different than that in Section 15.3.1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Example 17.5 Predicting Reading Improvement in Dyslexic Children from
fMRI To see whether fMRI or diffusion tensor imaging (DTI) might predict future
gains in reading ability among dyslexic children, Hoeft et al. (2011) followed 20
such subjects for 2.5 years. The authors split the subjects into two groups based
on their improvement in single-word reading skill across the period of observation
(high improvement vs. low improvement). They then applied SVM to whole-brain
fMRI, and also DTI, to see whether these imaging modalities could be used to pre-
dict outcome. They reported 92 % classification accuracy from leave-one-out cross-
validation, based on the fMRI data. �

In many situations SVM classifiers behave similarly to logistic regression classi-
fiers, but they are in principle very flexible and sometimes outperform other methods.
See Hastie et al. (2009) for additional discussion.

17.4.3 Multivariate observations may be clustered into groups.

In Section 17.4.1 we showed that when a data vector X in class k satisfies X ∼
Nm(μk, �), the Bayes classifier takes the simple form of linear discriminant analysis,
given in (17.23) and (17.24). Under the multivariate normality assumption, together
with homogeneity of the variance matrices, linear discriminant analysis solves the
problem of optimally assigning observations to classes. This, however, requires that
the class parameters are known—or that they can be estimated from training data
and then treated as known. Estimating parameters from training data is an instance
of supervised learning because the knowledge of class membership in the training
data could be considered a form of supervision. The corresponding unsupervised
problem of putting data into classes with no prior knowledge of class structure is
called clustering, and the resulting empirically-defined classes are called clusters.
We provided an illustration of clustering in Example 17.4 on p. 502.

To discuss the problem in generality, let us assume there are K classes, that X is
drawn from class k with probability πk , and that, conditionally on X being drawn
from class k, X follows an m-dimensional multivariate normal distribution with mean
μk and variance matrix �k . We could write this latter statement as X|C = k ∼
Nm(μk, �k). We then have a two-stage distribution for X, the first stage involving the
distribution of class membership C and the second stage involving the multivariate
normal distribution. Taking account of both of these, the marginal distribution of X
(after marginalizing over the distribution of C) has pdf found by averaging over C:

f (x) =
K∑

k=1

πkfk(x;μk, �k) (17.29)

where fk(x;μk, �k) is the Nm(μk, �k) pdf given by (5.17). This is a mixture model
in the sense that the K multivariate normal distributions are “mixed” according to

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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the prior probabilities π1, . . . ,πK . The distribution defined by (17.29) is a mixture
of Gaussians model, as in the illustration in Section 8.4.5. Mixture of Gaussians
clustering applies ML estimation to the collection of observations x to estimate
the parameters μ1, . . . ,μK , �1, . . . , �K and the prior probabilities π1, . . . ,πK , and
then uses the resulting Bayes classifier to assign each observation x to a cluster. As
discussed in Section 8.4.5, ML estimation in mixture of Gaussian models is often
implemented using the EM algorithm. Because, in practice, the number of clusters is
not known in advance, the model is typically fitted for several different values of K
and then a model selection procedure such as AIC or BIC is used (see Section 12.5.7).

In mixture of Gaussians clustering the variance matrices �1, . . . , �K must be
estimated from the data, and sometimes the data are too sparse to get good estimates
of the many variance and covariance parameters. In this case the variance matrices
are often assumed8 equal, �1 = · · · = �K . A more extreme assumption is to take
�1 = · · · = �K = σ2Im for some σ, i.e., to assume all the variance matrices are
equal to a multiple of the m-dimensional identity matrix. This turns out to be closely
related to another method, known as K-means clustering.

In K-means clustering it is assumed there are K clusters, with the kth cluster
having a mean μk . The idea is to put the data vector x into the cluster having its mean
closest to x. Thus, after the procedure is applied, so that the clusters are determined
and the means μk are fixed (by setting them equal to estimated values), every data
vector x in cluster j will satisfy

||x − μj|| = min
k=1,...,K

||x − μk ||. (17.30)

However, initially the clusters are not known. They are determined iteratively. After
an arbitrary initialization that assigns each data vector to one of K clusters, the
following steps are iterated:

1. For k = 1, . . . , K , the mean vectors μk is set equal to the sample mean x̄k of the
vectors assigned to cluster k;

2. Each x is assigned to the cluster that minimizes distance as in (17.30).

At each iteration, this algorithm will reduce the sum of squared distances ||x−μj||2,
summed over all data values, with μj being the mean of the cluster to which x
is assigned. The algorithm converges to a local minimum of the sum of squared
distances (it may not be the global minimum).

Example 17.4 (continued from p. 502) The three clusters in the bottom panel of
Fig. 17.3 were identified by K-means clustering (here, with K = 3). Three boundary
lines are also drawn in Fig. 17.3. Each line is equally distant from the sample means
in two of the clusters. �

The relationship of K-means clustering to mixture-of-Gaussian clustering is
spelled out in many sources (e.g., Hastie et al. 2009). If it is assumed that �1 =

8 Each matrix �k has m(m + 1)/2 parameters so there are Km(m + 1)/2 parameters when the
matrices are allowed to be different and only m(m + 1)/2 if they are assumed to be equal.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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· · · = �K = σ2Im for some σ, and we write the ith data vector as xi, for i = 1, . . . , n,
then the maximum likelihood estimate of μk in the mixture-of-Gaussians model, for
k = 1, . . . , K , is given by

μ̂k =
∑n

i=1 γikxi
∑n

i=1 γik
(17.31)

where γik is the posterior probability that observation xi is in class k (see Eq. (8.48)),
and is estimated from the data (see p. 217). This is not the same estimate as the
sample mean x̄k over the observations within cluster k. However, when the posterior
probabilities become close to 0 and 1 we get

μ̂k ≈ x̄k .

This occurs when the data form highly distinct clusters or, equivalently, when σ is
close to 0 relative to the distance between the means of the clusters.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8


Chapter 18
Time Series

18.1 Introduction

In the analysis of neural data, time is important. We experience life as evolving, and
neurophysiological investigations focus increasingly on dynamic features of brain
activity. If we wish to understand the signals produced by nervous system processes
we must use an analytical framework that is built for time-varying observations.

From a mathematical point of view, time is a number with an arbitrarily-chosen
origin, the value t = 0 typically representing an experimental or behavioral marker
such as the onset of a visual cue. We may work backward in time by taking t to be
negative. Although measurements are always made with some resolution of temporal
accuracy, often determined by a sampling rate (such as 20 KHz, giving a precision
of �t = .05 ms), mathematically we allow t to be any real number, such as t = π

2 s.
When measurements depend on time we may think of them as functions of time, as
in y = f (t), and when we acknowledge that the measurements are noisy we might
write

Y = f (t)+ ε

where ε is a random variable representing noise and Y is written as a capital
letter to emphasize that it, too, is a random variable. Given n observation pairs
(t1, y1), . . . , (tn, yn) we might write

Yi = f (ti)+ εi, (18.1)

and this returns us to the usual nonparametric regression model of Chapter 15, in
which the variables ε1, . . . , εn are assumed independent. While at first glance (18.1)
may seem natural, this kind of formulation does not yet go far enough in dealing with
measurements that vary across time because it does not take account of the sequential
nature of the argument t. In (18.1) the values i = 1, 2, . . . , n are generally no longer
arbitrary labels but rather important and meaningful indications of temporal ordering
with t1 < t2 < · · · < tn. If time matters, then even the noise variables ε1, . . . , εn may
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be related to one another, and thus no longer independent. In this case, specialized
methods can produce powerful results. The term time series, refers both to data
collected across time and to the large body of theory and methods for analyzing such
data.

Let us switch over to the general notation for random variables and write a the-
oretical sequence of measurements as X1, X2, . . ., and a generic random variable in
the sequence as Xt . Another way to say the Xt variables are dependent is that know-
ing X1, X2, . . . , Xt−1 should allow us to predict, at least up to some uncertainty, Xt .
Predictability plays an important role in time series analysis.

Example 2.2 (continued from p. 27) On p. 27 we displayed several EEG spec-
trograms taken under different stages of anesthesia. We noted earlier that both the
roughly 10 Hz alpha rhythm and the 1–4 Hz delta rhythm are visible in the time series
plot. In this scenario we can say a lot about the variation among the EEG values based
on their sequence along time: in the time bin at time t the EEG voltage is likely to
be close to that at time t − 1 and from the voltage in multiple time bins preceding
time t we could produce a good prediction of the value at time t. �
The spectrograms in Example 2.2 display the rhythmic, wave-like features of the EEG
signals contrasting them across phases of anesthesia. They do so by decomposing
the signal into components of various frequencies, using one of the chief techniques
of time series analysis. The decompositions are possible in this context because the
EEGs may be described with relatively simple and standard time series models,
but this is not true of all time series. The EEG series are, in a sense, very special
because their variation occurs on a time scale that is substantially smaller than the
observation interval. By contrast, if we go back to Fig. 1.5 of Example 1.6 we see
another time series where the variation is on a longer time scale. The EPSC signal
drops suddenly, and only once, shortly after the beginning of the series, then recovers
slowly throughout the remainder of the series. In other words, the variation in the
EPSC takes place on a time scale roughly equal to the length of the observation
interval. Another way to put this is that the EEG at time xt may be predicted reasonably
well using only the preceding EEG values xt−1, xt−2, . . . , xt−h, going back h time
bins, where h is some fairly small integer, but a prediction of the EPSC at xt based
on earlier observations would require nearly the entire previous series and still might
not be very good. The most common time series methods, those we describe here,
assume predictability on relatively short time scales.

So far we have said that the EEG at time xt may be predicted using the preceding
EEG values xt−1, xt−2, . . . , xt−h, but we did not specify which value of t we were
referring to. Part of the point is that it doesn’t much matter. In other words, it is
possible to predict almost any xt using the preceding h observations. (We say “almost”
any xt because we have to exclude the first few xt observations, with t ≤ h, where
there do not exist h preceding observations from which to predict.) Furthermore, the
formula we concoct to combine xt−1, xt−2, . . . , xt−h in order to predict xt may be
chosen independently of t. This is a very strong kind of predictability, one that is
stable across time, or time-invariant. The notion of time invariance is at the heart of
time series analysis.

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
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We now begin to formalize these ideas. Let Xt be the measurement of a series at
time t, with t = 1, . . . , n. Let μt = E(Xt) and �ij = Cov(Xi, Xj). As soon as we
contemplate estimation of this mean vector and covariance matrix we are faced with a
serious difficulty. For simplicity consider time t and the problem of estimating μt and
σ2

t = �tt . If we have many replications of the measurements at time t (as is usually
the case, for example, with evoked potentials) we can collect all the observations
across replications at time t and compute their sample mean and sample variance.
However, if we have only one time series, and therefore one observation at t, we
do not have a sample from which to compute the sample mean and variance. The
only way to apply any kind of averaging is by using observations at other values of
time. Thus, we can only get meaningful estimates of mean and covariance by making
assumptions about the way Xt varies across time. Let us introduce a theoretical time
series, or discrete-time stochastic process {Xt; t ∈ Z}, Z being the set of all integers.
We are now in a position to define the kinds of time invariance we will need. We
say that the series Xt is strictly stationary if it is time-invariant in the sense that the
joint distribution of each set of variables {Xt, Xt+1, . . . , Xt+h} is the same as that
of the variables {Xs, Xs+1, . . . , Xs+h} for all t, s, h. Because the time index takes all
possible integer values it is an abstraction (no experiment runs indefinitely far into
the past and future) but it is an extremely useful one. A standard notation in the
time series context is γ(s, t) = �st . The function γ(s, t) is called the autocovariance
function and the autocorrelation function (ACF) is defined by

ρ(s, t) = γ(s, t)√
γ(s, s)γ(t, t)

.

The prefix “auto,” which signifies here that we are considering dependence of the
time series on itself, is a hint that one might instead consider dependence across
multiple time series, where we would instead have “cross-covariance” and “cross-
correlation” functions (which we discuss in Section 18.5). A time series is said to be
weakly stationary or covariance stationary if (i) μt is constant for all t and (ii) γ(s, t)
depends on s and t only through the magnitude of their difference |s− t|. This weaker
sense of stationarity is all that is needed for many theoretical arguments. Under either
form of stationarity we follow the convention of writing the autocovariance function
in terms of a single argument, h = t − s, in the form γ(h) = γ(t − h, t). Note that
γ(0) = V(Xt). It is not hard to show that γ(0) ≥ |γ(h)| for all h, and γ(h) = γ(−h).
In the stationary case the autocorrelation function becomes

ρ(h) = γ(h)

γ(0)
. (18.2)

Illustration: The 3-point moving average process

Xt = 1

3
(Ut + Ut−1 + Ut−2)



516 18 Time Series

where the Ut variables are independent, with E(Ut) = 0 and V(Ui) = σ2
U , is a

stationary process with autocovariance and autocorrelation

γ(0) = σ2
U

3

γ(±1) = 2σ2
U

9

ρ(±1) = 2

3

γ(±2) = σ2
U

9

ρ(±2) = 1

3
γ(±h) = ρ(h) = 0, for |h| ≥ 3. �

Having defined what it means for a process to be stationary, and also having
defined the autocorrelation function, let us return to the distinction we were trying
to draw between the EEG and EPSC time series. The EEG series may be modeled as
stationary, and furthermore its variation is consistent with what is called short-range
dependence. A theoretical time series exhibits short-range dependence when its cor-
relation function ρ(h) vanishes quickly as h becomes infinite. For the most common
time series models the correlation function vanishes exponentially fast (i.e., there
is a positive number a for which ρ(h)ea|h| → 0 as h → ±∞). On the other hand,
it is questionable whether one would want to model the EPSC time series as sta-
tionary and, if so, it would be necessary to use a model that assumes long-range
dependence, where the correlation function dies out slowly as h becomes infinite.
Time series analysis is concerned with variation across time while being cognizant
of the role of stationarity. Much time series theory explicitly assumes stationarity.
There is also considerable interest in non-stationary series, but the theoretical devel-
opments involve particular kinds of non-stationarity or modifications of methods that
apply to stationary series. In contrast, nonparametric regression does not consider
time-invariance arguments at all. In (18.1) the usual nonparametric assumption is
E(εt) = 0, and we have μt = E(Yt) = f (t). In other words, instead of a constant
mean required by stationarity, the nonparametric problem focuses on the evolution
of the mean as a function of time. In fact, many investigations involve a mix of these
two possibilities: there is a stimulus that produces a time-varying mean component of
the response, but there is also a wave-like time-invariant component of the response.
From a practical point of view, it is very important to consider these components
separately.

Example 15.2 (continued) For illustrative purposes we analyze here a small record
of an LFP, which was recorded for 30 s (seconds) and sampled at 1 KHz as part of the
experiment described briefly on p. 421. We confine our attention to the first second
and the last second (each consisting of 1,000 observations), and will consider whether
the signal appears consistent across these two time periods in the sense of containing



18.1 Introduction 517

0 200 400 600 800 1000

−
60

−
20

0
20

40

time

lfp
1

0 200 400 600 800 1000

0
50

10
0

time

lfp
30

Fig. 18.1 LFP and smoothed versions representing slowly-varying trends. Top First second of aver-
age LFP. Bottom Last (thirtieth) second of average LFP. Smoothing was performed using regression
splines with a small number of knots, as described on p. 421.

the same delta-wave content. Figure 18.1 displays these two time series, together with
smoothed versions of the average LFP in these two periods. When we focus on a
single second of observation time, the slow-wave activity shows up as slowly-varying
mean signals, or trends, represented by the smoothed versions of the two LFP traces
in the figure. Even though the slowly-varying trends could be considered roughly
oscillatory on a longer time scale, at this time scale they can not be represented as
oscillatory and are, instead, sources of long-range dependence or non-stationarity
akin to that in Fig. 1.5. In order to capture the higher-frequency, stationary activity
in these plots (with short-range dependence) we must first remove the slow trends.
We analyze these data further in subsequent sections. �
In motivating stationarity we brought up the problem of estimating the mean and
covariance functions, pointing out that in the absence of replications some assump-
tions must be made. Under stationarity the value of the constant mean μt = μ may
be estimated by the sample mean and an obvious estimator of the autocovariance
function is the sample autocovariance function

γ̂(h) = 1

n

n−h∑

t=1

(xt+h − x)(xt − x) (18.3)

for h = 0, 1, . . . , n − 1 and then γ̂(−h) = γ̂(h).We then have the sample autocor-
relation function (sample ACF),

ρ̂(h) = γ̂(h)

γ̂(0)
(18.4)

http://dx.doi.org/10.1007/978-1-4614-9602-1_1


518 18 Time Series

which is an estimator of the autocorrelation function (18.2).
In this chapter we provide an overview of key concepts in time series analysis.

Section 18.2 describes the two major approaches to time series analysis. Section 18.3
gives some details on methods used to decompose time series into frequencies,
as in Example 2.2. There are several important subtleties, and we discuss these
as well. Section 18.4 discusses assessing uncertainty about frequency components,
and Section 18.5 reviews the way these methods are adapted to assess dependence
between pairs of simultaneous time series.

18.2 Time Domain and Frequency Domain

In discussing Example 2.2, on p. 514, we alluded to the decomposition of the signal
into frequency-based components. In general, time series analysis relies on two
complementary classes of methods. As the name indicates, time domain methods
view the signal as a function of time and use statistical models that describe temporal
dependence. Frequency domain methods decompose the signal into frequency-based
components, and describe the relative contribution of these in making up the signal.
In this section we provide a brief introduction to these two approaches, starting with
frequency-based analysis. Here are two examples.

Example 18.1 Gamma oscillations in MEG during learning Cortical oscillatory
activity in the gamma band (roughly 30–120 Hz) has been associated with many
cognitive functions. Chaumon et al. (2009) used MEG imaging to investigate the
role of gamma oscillations during unconscious learning. They used a paradigm in
which subjects were to find the letter “T” within a set of distractors and determine
its orientation. On some trials, which they called “predictive,” the distractors were
repeated and the location of the “T” remained the same. On other trials, which they
called “nonpredictive,” the distractors changed configurations and the location of the
“T” changed. The subjects were shown many blocks containing 12 trials of each type.
Although they remained unaware of the information provided by the configuration
type, their reaction time decreased faster across blocks for the predictive trials than
for the nonpredictive trials. The authors were interested in whether this unconscious
learning was associated with changes in gamma band activity recorded with MEG.

�

Example 18.2 fMRI BOLD signal and neural activity To investigate the neural
basis of the fMRI BOLD signal, Logothetis et al. (2001) recorded local field potential
(LFP) and multi-unit activity (MUA) together with fMRI from a region in primary
visual cortex across 29 experimental sessions using 10 macaque monkeys. The stim-
ulus involved rotating checkerboard patterns. In examining the relationship between
LFP and BOLD, the authors focused on gamma band activity from 40 to 130 Hz. �

We now introduce another example, which we will use repeatedly in several parts of
this chapter to demonstrate analytical techniques.
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Fig. 18.2 Core temperature on a human subject, recordings taken every 20 min; y-axis in units of
degrees Celsius (data shown with a solid line). Overlaid on the data is the least-squares fit of a
cosine (shown with a dashed line), having a period of 24 h (hours).

Example 18.3 The circadian rhythm in core temperature Human physiology,
like that of other organisms, has adapted to the cycle of changing environmental
conditions, and resulting levels of activity, across each day and night. The result
is a clear day/night pattern in hormone levels in the blood, and other indicators
of the body’s attempt to maintain homeostasis. In a study of methodology used to
characterize circadian rhythms, Greenhouse et al. (1987) analyzed core temperatures
of a human subject measured every 20 min across several days. Figure 18.2 displays
the data. There is an obvious daily cycle in the temperatures. Figure 18.2 also shows
a cosine curve, with a 24 h period, that has been fitted to the data using ordinary
least-squares regression. �

The cosine curve in Fig. 18.2 was obtained by applying linear regression. We dis-
cussed fitting a cosine curve previously, in Example 12.6, in the context of directional
tuning. Here, we begin with a cosine function cos(2πω1t), where ω1 is the frequency
(in cycles per unit time), then introduce an amplitude Ramp, an offset average value
μavg, and a phase φ to put it in the functional form

f (t) = μavg + Ramp cos(2π(ω1t − φ)). (18.5)

Details: The function Ramp cos(2πω1t) varies between a minimum
of −Ramp and a maximum of Ramp, and its average on [0, 1] is 0.
Adding the constant μavg makes the cosine oscillate around μavg with
minimum μavg − Ramp and maximum μavg + Ramp. It is also worth
mentioning that the regression in Example 12.6 was set up slightly
differently because the explanatory variable of interest was not time
but rather the angle θ = 2π(ωt − φ). �
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Based on (18.5) the statistical model for observations y1, . . . , yn at time points
t1, . . . , tn is then

Yi = μavg + Ramp cos(2π(ω1ti − φ))+ εi

where, for the core temperature data, ω1 = 1/72 cycles per 20 min is the frequency
corresponding to 1 cycle per day (a 24 h period). To simplify fitting, this model may
be converted to a linear form, i.e., a form that is linear in the unknown parameters.
Using

cos(u− v) = cos u cos v + sin u sin v (18.6)

with u = 2πω1ti and v = 2πφ we have

Ramp cos(2π(ω1ti − φ)) = A cos(2πω1ti)+ B sin(2πω1ti) (18.7)

where A = Ramp cos(2πφ) and B = Ramp sin(2πφ). We may therefore rewrite the
statistical model as

Yi = μavg + A cos(2πω1ti)+ B sin(2πω1ti)+ εi, (18.8)

which has the form of a linear regression model, and may be fitted using ordinary
linear regression. Specifically, we do the following:

1. Assume the data (t1, . . . , tn) and (y1, . . . , yn) are in respective variables time
and temp.

2. Define

cosine = cos(2πtime/72)

sine = sin(2πtime/72).

3. Regress temp on cosine and sine.

For future reference we note that the squared amplitude of the cosine function in
(18.7) is

R2
amp = A2 + B2 (18.9)

and the phase is

φ = 1

2π
arctan(

B

A
). (18.10)

In the core temperature data of Example 18.3 there is a clear, dominant periodicity,
which is easily described by a cosine function using linear regression. We may do
a bit better if we allow the fitted curve to flatten out a little, compared to the cosine
function. This is accomplished by introducing a second frequency, ω2 = 2ω1 to
produce the model
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Fig. 18.3 Plot of core temperature, as in Fig. 18.2, together with fit of (18.8), shown in the black
dashed line, using the fundamental frequency ω1 = 1/72 (one oscillation every 72 data points, i.e.,
every 24 h ), and fit of (18.11), shown in red dashed line. The latter improves the fit somewhat in
the peaks and troughs.

Yi = μavg + A1 cos(2πω1ti)+ B1 sin(2πω1ti)

+ A2 cos(2πω2ti)+ B2 sin(2πω2ti)+ εi. (18.11)

Example 18.3 (continued from p. 519) Least-squares regression using model
(18.11) yields a highly significant effect for the second cosine–sine pair (p < 10−6)
and Fig. 18.3 displays a modest improvement in fit. �
Model (18.8) was modified in (18.11) by introducing the additiona1 cosine–sine pair
corresponding to the frequency ω2. In principle this process could be continued by
introducing frequencies of the form ωk = kω1 for k = 3, 4, . . .. Here, ω1 is called
the fundamental frequency, the additional frequencies ωk are harmonic frequencies,
and the resulting regression model is often called harmonic regression. For the core
temperature data it turns out that k = 2 is a satisfactory choice (see Greenhouse
et al. 1987) but, in general, one might use linear regression to fit many harmonics
and ask how much variation in the data is explained by each cosine–sine pair. For
this purpose one might use contributions to R2, which is the germ of the idea behind
one of the main topics in time series, spectral analysis. Spectral analysis can be a
very effective way to describe wave-like behavior, as seen in the EEG signals of
Example 2.2.
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18.2.1 Fourier analysis is one of the great achievements
of mathematical science.

Spectral analysis, otherwise known as Fourier analysis,1 decomposes an oscillatory
signal into trigonometric components. Because many physical phenomena may be
described by applying this technique (and it is at the heart of quantum mechanics),
the physicist Richard Feynman called2 the ability to create such decompositions
“probably the most far-reaching principle in mathematical physics.” From a practical
point of view, our world has been changed dramatically by applications of Fourier
analysis.

The argument may be broken into several steps.

1. The signal may be represented by a smoothly varying function f (t), for values of
t (usually thought of as time) in a suitable interval [a, b], which, for convenience,
we may take3 to be [0, 1].

2. If we pick n values of t spaced evenly across the interval, say, t1, t2, . . . , tn, then
f (t) may be determined to a close approximation by its values at these points, i.e.,
by f (t1), f (t2), . . . , f (tn), for sufficiently large n. That is, if f (t) varies smoothly
then, for practical purposes, interpolation will suffice to reproduce it from its
values f (t1), f (t2), . . . , f (tn).

3. The cosine and sine functions cos(2πt) and sin(2πt) are periodic, completing a
single cycle on [0, 1], and thus having frequency 1 (per unit time). This is the fun-
damental frequency and the corresponding harmonic frequencies are 2, 3, 4, . . ..
The cosine and sine functions at harmonic frequencies may be considered prim-
itive functions—meaning building blocks of other functions—on [0, 1]. When
we evaluate a sufficiently large number of primitive functions at t1, t2, . . . , tn,
and take linear combinations of them, we are able to reproduce f (t) at the val-
ues t1, t2, . . . , tn, which, according to step 2, suffices for reconstructing f (t)
throughout [0, 1]. That is, we can decompose f (t) into harmonic trigonomet-
ric components. This has the potential to provide the appealing interpretation
that f (t) is “made up” of particular harmonic components in particular amounts,
according to the linear combinations.

4. In order to have this interpretation make sense, the “particular amount” of each
component given by the decomposition in step 3 must not depend on the number
of components being considered, for that would make the interpretation self-
contradictory. In non-orthogonal decompositions the amount, or weight, given to
a particular component does depend on the other components being considered,
but for orthogonal decompositions it does not. (See the discussion in Chapter 12,

1 The term “spectral analysis” sometimes connotes statistical analysis, rather than purely mathe-
matical analysis, but for now we are ignoring any noise considerations.
2 Feynman et al. (1963 Volume I, p. 49–1).
3 The argument we sketch here makes the most sense for functions that are periodic on [0, 1], mean-
ing that they satisfy f (0) = f (1). In Section 18.3.6 we discuss what happens when this condition
fails to hold.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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p. 351.) Harmonic trigonometric functions are orthogonal, so the interpretation
is internally consistent.

These steps all involved major conceptual breakthroughs for mathematics.4 Taken
together they suggest that a signal represented by a smoothly varying function f (t)
may be decomposed into cosine and sine harmonic components. This is what Fourier
analysis accomplishes.

To be a little more specific, suppose that f (t) is a function on the interval [0, 1]
and let us consider time points tj = j

n for j = 1, 2, . . . , n where, for simplicity, we
assume n is odd so that (n− 1)/2 is an integer. If we evaluate f (t) at the time points
tj we get an n-dimensional vector

y = (f (t1), f (t2), . . . , f (tn))
T . (18.12)

Now define the harmonic trigonometric functions fk(t) = cos(2πkt) and gk(t) =
sin(2πkt), for k = 1, 2, . . . , (n−1)/2. By evaluating these functions at t1, t2, . . . , tn
we form vectors fk = (fk(t1), fk(t2), . . . , fk(tn))T and gk = (gk(t1), gk(t2), . . . , gk
(tn))T and, it turns out, the collection of vectors

1vec, f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2

are orthogonal, where 1vec = (1, 1, . . . , 1)T . (This follows from straightforward
algebraic manipulation, together with properties of sines and cosines, see Bloomfield
2000). They therefore form an orthogonal basis for Rn (see Section A.9), which means
that any vector y, such as in (18.12), may be written in the form

y = μavg1vec + A1f1 + · · · + A(n−1)/2f(n−1)/2

+ B1g1 + · · · + B(n−1)/2g(n−1)/2. (18.13)

If we define

pn(t) =μavg + A1f1(t)+ · · · + A(n−1)/2f(n−1)/2(t)

+ B1g1(t)+ · · · + B(n−1)/2g(n−1)/2(t) (18.14)

4 The first requires the notion of function, which emerged roughly in the 1700s, especially in the work
of Euler (the notation f (x) apparently being introduced in 1735). The second may be considered
intuitively obvious, but a detailed rigorous understanding of the situation did not come until the
1800s, particularly in the work of Cauchy (represented by a publication in 1821) and Weierstrass (in
1872). The notion of harmonics was one of the greatest discoveries of antiquity, and is associated
with Pythagoras. The third and fourth steps emerged in work by D’Alembert in the mid-1700s, and
by Fourier in 1807. Along the way, representations using complex numbers were used by Euler (his
famous formula, given below, appeared in 1748), but they were considered quite mysterious until
their geometric interpretation was given by Wessel, Argand, and Gauss, the latter in an influential
1832 exposition. A complete understanding of basic Fourier analysis was achieved by the early
1900s with the development of the Lebesgue integral. Recommended general discussions may be
found in Courant and Robbins (1996), Lanczos (1966), and Hawkins (2001).
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then we have
f (t) = pn(t) (18.15)

for t = tj for j = 1, . . . , n and, by interpolation we get the approximation

f (t) ≈ pn(t), (18.16)

for all t ∈ [0, 1], which may be considered a decomposition of f (t) into trigonometric
components based on the n data values f (t1), f (t2), . . . , f (tn). The constants
μavg, A1, . . . , Ak, B1, . . . , Bk are called the Fourier coefficients of f (t). By analogy
with the approximate representation of functions by polynomials, the expression
pn(t) in (18.14) is often called a trigonometric polynomial. With reference to (18.7),
we may say that Akfk and Bkgk together determine the component of f (t) having
frequency k.

We now consider the magnitude of y. Using the orthogonality of the component
vectors, Eq. (18.13) gives

||y||2 = ||μavg1vec||2 + ||A1f1||2 + · · · + ||A(n−1)/2f(n−1)/2||2
+ ||B1g1||2 + · · · + ||B(n−1)/2g(n−1)/2||2

and re-writing this we get

||y||2 = ||μavg1vec||2 +
(n−1)/2∑

k=1

||Akfk||2 + ||Bkgk ||2. (18.17)

Equation (18.17) decomposes the squared magnitude of y into magnitudes corre-
sponding to its trigonometric components. Using (18.15) we say that any vector of
function evaluations may be written in terms of the trigonometric basis vectors, and
its squared length is equal to the sum of squares of its trigonometric components.
From (18.16) we see that an analogous statement should hold for functions on [0,1].

We can also use (18.17) to give a nice interpretation of the Fourier decomposition
in terms of least-squares regression. We begin by considering (18.13) to be a noiseless
regression equation. If we regress y on the variables f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2
we obtain the coefficients A1, B1, . . . , A(n−1)/2, B(n−1)/2. Furthermore, because the
trigonometric vectors are orthogonal, the coefficient found by regressing y on all the
variables f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2 is the same as the coefficient of fk (or gk)
in the regression of y on fk (or gk) alone. Thus, it makes sense to say that Akfk and
Bkgk together uniquely represent the component of y corresponding to frequency
k. Because (18.13) provides an exact fit of y, if we regress y on all the variables
f1, . . . , f(n−1)/2, g1, . . . , g(n−1)/2 we get R2 = 1. The regression of y on 1vec gives
μavg = ȳ and μavg1vec = ȳ1vec has squared length nȳ2 so that (18.17) may be
rewritten in terms of the total sum of squares
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||y||2 − nȳ2 =
(n−1)/2∑

k=1

||Akfk ||2 + ||Bkgk ||2

and, dividing both sides by ||y||2 − nȳ2 while using R2 = 1 we get

R2 =
(n−1)/2∑

k=1

R2
k , (18.18)

where

R2
k =
||Akfk||2 + ||Bkgk ||2
||y||2 − nȳ2 , (18.19)

which is the proportion of variation in y, and therefore f (t), at frequency k. In
other words, this trigonometric representation, using sines and cosines at harmonic
frequencies, has the wonderful property that it decomposes the variability of the
function f (t) into frequency-based components, the magnitudes of which add to
the total variation in f (t). The decomposition (18.18) into components (18.19) is
the starting point for spectral analysis.

18.2.2 The periodogram is both a scaled representation
of contributions to R2 from harmonic regression
and a scaled power function associated with the discrete
Fourier transform of a data set.

We now apply to data x1, x2, . . . , xn the spectral analysis decomposition discussed in
Section 18.2.1. We write y = (x1, x2, . . . , xn) and use (18.13). We may get a rough
idea of the relative contributions to the variability in the data due to the harmonic
frequency components simply by plotting R2

k , defined in Eq. (18.19), against the
frequency k. A scaled plot of R2

k against frequency is known as the periodogram,
with the precise definition appearing in Eq. (18.25). The periodogram, together with
some important modifications of it, is enormously useful in practice.

Example 18.3 (continued from 521) The periodogram for the core temperature
data (introduced on p. 519) is shown in Fig. 18.4. Note the dominant contribution to
R2 corresponding to the roughly daily cycle. �
The coefficients Ak and Bk in (18.13) and (18.19) turn out to be
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Fig. 18.4 Periodogram of core body temperature data. There is a peak at the frequency representing,
very nearly, daily oscillation and this peak is much higher than the remainder of the periodogram.

μavg = 1

n

n∑

j=1

xj

Ak = 2

n

n∑

j=1

xj cos(2kπj/n) (18.20)

Bk = 2

n

n∑

j=1

xj sin(2kπj/n) (18.21)

for k = 1, . . . , (n−1)/2. Because the cosine and sine terms always occur in pairs, it
is often simpler to represent expressions (18.20) and (18.21) instead in exponential
form via Euler’s formula,

eiθ = cos θ + i sin θ, (18.22)

which is also Eq. (A.31) in the Appendix. This formula is extremely helpful in
Fourier analysis. On the one hand, it provides a kind of “book-keeping” of cosine
and sine terms within a complex exponential while, on the other hand, it simplifies
many manipulations because multiplication becomes addition of exponents. Apply-
ing Euler’s formula (18.22), we have

n∑

j=1

xj cos(2kπj/n)+ i
n∑

j=1

xj sin(2kπj/n) =
n∑

j=1

xje
2kπij/n

and then (18.20) and (18.21) may be replaced with
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Ak + iBk = 2

n

n∑

j=1

xje
2πikj/n

for k = 1, . . . , (n− 1)/2. By convention the equivalent form

Ak − iBk = 2

n

n∑

j=1

xje
−2πikj/n (18.23)

for k = 1, . . . , (n − 1)/2, is used instead. Aside from the multiplier, the right-hand
side of (18.23) is the discrete Fourier transform. Specifically, for a data sequence
x1, . . . , xn, we let

ωj = j/n

denote frequency, for j = 0, . . . , n − 1. Then the discrete Fourier transform (DFT)
is given by

d(ωj) = 1√
n

n∑

t=1

xte
−2πiωj t (18.24)

and the periodogram is
I(ωj) = |d(ωj)|2. (18.25)

Here we are interested only in the first (n− 1)/2 frequencies (if n is odd; otherwise,

the first n/2 frequencies). From (18.23) we have d(ωj) =
√

n
2 (Aj− iBj), and because

||Aj + iBj||2 = A2
j + B2

j , we get

|d(ωj)|2 = n

4
(A2

j + B2
j ).

According to the definition in Eq. (18.19), A2
j + B2

j is proportional to R2
j (meaning

that the constant multiple does not depend on j) and so we arrive at

I(ωj) ∝ R2
j ,

which justifies the interpretation of the periodogram we gave on p. 525. Algorithms
for computing the DFT are based on the fast Fourier transform, which had a huge
impact on signal processing following a 1965 publication of the method by James
Cooley and John Tukey. The DFT also has an interpretation using the terminol-
ogy of signal processing. If we return to the interpretation of x1, . . . , xn as func-
tion values f (t1), . . . , f (tn) as in Eq. (18.16), then ||y||2 = ||(f (t1), . . . , f (tn))||2 is
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(approximately, by (18.16)), the power of the function f (t) on [0, 1] and I(ωj) is
(approximately5) proportional to the power of f (t) at frequency ωj.

Unfortunately, in spectral analysis, the various notational conventions that get
invoked are not consistent across authors. In particular, we have introduced the
Fourier frequencies ωj = j/n for j = 0, 1, . . . , n − 1. Because we divided the
harmonic integers by n, the Fourier frequencies are restricted to the interval [0, 1]. In
fact, because we use only the first (n− 1)/2 frequencies (if n is odd and the first n/2
frequencies if n is even) they are restricted to [0, 1

2 ]. In some texts j = 1, . . . , n is
used. Furthermore, the multiplier of the complex exponential sum we used in (18.24)
to define the DFT is also not universal. For some purposes one must pay attention to
the definitions being used by a particular book or piece of software.

It is also important to notice that the Fourier frequencies we have defined on [0, 1]
(or [0, 1

2 ]) have units of cycles per observation. If the units of time (such as seconds)
involve m observations (such as m observations per second) then mωj will be in
cycles per unit time. See the legend to Fig. 18.6.

With some additional mathematics, these concepts carry over to infinite-
dimensional vector spaces with inner products. The infinite-dimensional
representation is analogous: periodic functions (actually, square-integrable periodic
functions) form a vector space for which the harmonic trigonometric functions pro-
vide an orthogonal basis. The resulting infinite-dimensional harmonic trigonometric
expansion is called a Fourier expansion, and the coefficients are the Fourier coef-
ficients.6 In mathematics, Fourier analysis concerns infinite-dimensional function
spaces, but in statistics and engineering these terms are also applied, as here, to the
finite-dimensional setting involving data.

The DFT and its inverse are finite versions of the usual Fourier transform and its
inverse, which is used extensively in mathematical analysis and signal processing,
including theoretical studies of stationary time series. We discuss stationary time
series in Section 18.3.1. We also discuss, in the remainder of Section 18.3, several
practical issues that arise when using and interpreting the periodogram. We have
already mentioned one of these in our discussion of Example 15.2.

Example 15.2 (continued from p. 421) Fig. 18.5 displays the log periodogram for
the first second of average LFP, which was plotted previously in the top portion of
Fig. 18.1. In Section 18.3.6 we explain why the log transform is used. The point, for
now, is that the periodogram does not have a peak corresponding to delta range or
other frequencies. This is quite common in series that have slowly varying trends.
In contrast, after we remove the trends seen in Fig. 18.1 from the two series (by
subtraction, so that the residuals are analyzed instead) the peaks of interest become
visible, as seen in Fig. 18.6. �

5 The approximation becomes exact when f (t) is periodic, f (t)2 has a finite integral, and the
expansion involves all of the infinitely many harmonics.
6 With appropriate mathematics (especially the theory of Lebesgue integration) it may be shown
that every square-integrable function on [0,1] may be represented, equivalently, by its set of Fourier
coefficients, and its integrated squared magnitude is equal to the sum of squares of the coefficients.
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Fig. 18.5 Log periodogram for the first second of average LFP data in Example 15.2.
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Fig. 18.6 Periodograms and smoothed periodograms from LFP detrended series. Top First second
of average LFP. Bottom Last second of average LFP. Notice that the frequency units are cycles per
observation. To get cycles per second (Hz) we must multiply by the number of observations per
second, which is 1,000. Thus, the first peak of power in these plots is centered roughly at .005,
which corresponds to 5 Hz.

The contrast between Figs. 18.5 and 18.6 illustrates the importance of checking
time series for slowly-varying trends, and removing them from the data before per-
forming spectral analysis. This is often called detrending the series.
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18.2.3 Autoregressive models may be fitted by lagged regression.

As we have indicated, time series are special among kinds of data because of their
serial dependence, e.g., the value of Xt is likely to depend on the value of Xt−1. The
simplest form of dependence is linear dependence, as in the autoregressive model
given by

Xt = φXt−1 + εt .

This says that Xt has a regression on Xt−1, and otherwise is determined by noise. For
consistency with later notation let us write the noise variables as7 Wt :

Xt = φXt−1 +Wt . (18.26)

The natural generalization,

Xt =
p∑

i=1

φiXt−i +Wt, (18.27)

is called an autoregressive model of order p, written AR(p). The Wt variables are
usually assumed to be i.i.d. N(0,σ2). Model (18.26) then becomes the standard
AR(1) model. The parameter φ in (18.26) is usually assumed to satisfy |φ| < 1,
and analogous, but more complicated constraints are assumed for the parameters in
(18.27).

Some details: It may be shown that the case of (18.26) with φ = 1,
known as a random walk model (confer p. 126), is non-stationary. This
makes it unsuitable for most auto-regressive modeling methodology.
φ = −1 is also non-stationary. The case |φ| > 1 is somewhat more
subtle, and it turns out to be non-causal in the sense that Xt depends
on Wt+i for i > 0. The condition |φ| < 1 restricts the AR(1) so that
it is neither non-stationary nor non-causal. Additional explanation is
provided in time series texts such as Shumway and Stoffer (2006).

�
Because the AR(p) model (18.27) has the form of an ordinary linear regression model,
we may apply it to data x = (x1, . . . , xn) using ordinary least squares regression after
first defining suitable lagged variables. In the simplest case, with p = 1, we begin
by defining a pair of variables y and xB1, each of length n− 1:

7 W is often used to represent time series noise out of deference to Norbert Wiener, a major figure
in the development of time series theory.
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⎞
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⎞
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x1
x2
...

xn−1

⎞

⎟⎟⎟⎠ .

We use the subscript B1 for “back 1” because xB1,t = yt−1 (xB1 “lags” behind y
and is often called the lag-1 version of y). We then fit the AR(1) model (18.26)
by performing least-squares regression of y on xB1, without using an intercept. The
resulting regression coefficient becomes the estimate φ̂ of the AR(1) parameter φ.

More generally, to fit an AR(p) model using ordinary least squares we begin by
defining yn−p = xn, yn−p−1 = xn−1, . . . , y1 = xn−p+1 and then also defining xB1 to
be the lag-1 version of y, xB2 to be the analogous lag-2 version of y, etc., until we
reach xBp. We then regress y on the variables xB1, xB2, . . . , xBp.

It is often unclear what order p should be used in the AR(p) model. Sometimes
the model selection criteria AIC or BIC are used (see Section 11.1.6). One simple
idea is to pick a relatively large value of p, perform the regression, and examine the
coefficients from first to last to see when they become non-significant. A similar idea
is to use the sample autocorrelation function (ACF), which was defined in (18.4),
and the partial autocorrelation function (PACF). Under fairly general conditions, if
X1, . . . , Xn are i.i.d. with finite variance, and the sample ACF is computed for the
random variables Xt , then √

nρ̂(h)
D→ N(0, 1).

Based on this result, the sample ACF is usually plotted together with horizontal
lines drawn at ±2/

√
n. If the series were i.i.d., then roughly 95 % of the sample

autocorrelation coefficients would fall between theses lines. The ACF coefficients
outside these lines are considered significant, with p < .05, approximately, for large
n. This is illustrated for Example 18.3 below.

A difficulty with the sample ACF plot, however, is that it is based on the indi-
vidual correlations of each lagged variable with the original data. That is, its results
come from many single-variable regressions, of y on xBk for various values of k. A
significant regression of y on xB2, for example, could be based on the correlation
between xB1 and xB2 and may reflect a relationship between y and xB1. An alternative
is to perform the multiple linear regression of y on both xB1 and xB2 and examine
whether the coefficient of xB2 is significant, which assesses the explanatory power of
xB2 after including xB1 in the model. The sample PACF at lag h is the sample partial
correlation, defined by (5.22), between the time series and itself at lag-h given the
lag-1 through lag-h−1 series. The lag-h partial autocorrelation coefficient measures

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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the lag-h correlation after adjusting for the effects of lags 1 through h− 1, adjusting
as in multiple linear regression. It may be computed as the normalized lag-h regres-
sion coefficient found from an AR(h) model, normalized by dividing the series by
the sample variance γ̂(0).

A detail: Suppose Xt is a mean-zero stationary Gaussian series. Then
the theoretical PACF is given by φ11 = Cor(Xt, Xt+1) and for h ≥ 2,

φhh = Cor(Xt, Xt+h|Xt+1, Xt+2, . . . , Xt+h−1).

More generally, for any mean-zero stationary series let Xh−1
t =∑h−1

j=1 βjXt−j where the coefficients β1, . . . ,βh−1 minimize E((Xt −∑h−1
j=1 αjXt−j)

2) over the αjs. Then, for h ≥ 2,

φhh = Cor(Xt − Xh−1
t , Xt+h − Xh−1

t+h ). �

Once again, using large-sample theory, horizontal lines may be drawn on the
sample PACF to indicate where the coefficients stop being significant. The sample
PACF is often used to choose the order of the autoregressive model.

Example 18.3 (continued from p. 525) Let us consider an AR(p) model for the core
temperature residuals following the cosine regression reported on p. 519, and then
detrending (using BARS, see Section 15.2.6). We take p = 22. The fitted coefficients
are plotted in Fig. 18.7. Here is an abbreviated table of coefficients:

Variable Coefficient Std. Err. t-ratio p-value

xB1 .906 .057 15.9 < 10−15

xB2 −.205 .077 −2.7 .008
xB3 −.147 .078 −1.9 .06
xB4 .005 .078 .1 .95
xB5 −0.154 .078 −1.9 .05
xB6 .115 .078 .9 .35
. . .

xB21 −.031 .076 −.4 .69
xB22 .011 .057 −.2 .84

Only the first two lagged variables have large t statistics, so it appears that only
the first two lagged variables are likely to be helpful in predicting the response
variable. Also shown in Fig. 18.7 is the sample ACF, together with horizontal lines
drawn at±2/

√
n. The PACF in Fig. 18.7 has nonzero lag-1 and lag-2 coefficients, but

the remaining coefficients are not distinctly different from zero relative to statistical
uncertainty. Using an AR(2) fit to the residuals added to the fitted 24 h cycle produces
the overall fit to the temperature data shown in Fig. 18.8. �
In general, autoregressive models may be fit by maximum likelihood. We now connect
ML estimation with lagged least-squares regression (p. 531), by writing down the

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 18.7 Autoregressive model of order p = 22 for core temperature residuals. Top
Coefficients φ̂i as a function of lag i. Middle The sample autocorrelation function. Bottom The
sample partial autocorrelation function.

likelihood function for the AR(1) model, assuming Xt is Gaussian with mean zero
and |φ| < 1. We have X1 ∼ N(0,σ2

1) where

σ2
1 = σ2

W/(1− φ2). (18.28)

We also have Xt |Xt−1 = xt−1 ∼ N(φxt−1,σ
2
W ) for t = 2, . . . , n. The joint pdf is

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2|X1(x2|X1= x1) · · · fXn|Xn−1(xn|Xn−1= xn−1)

= 1

σ1
fZ(

x1

σ1
)

n∏

t=2

1

σW
fZ(

xt − φxt−1

σW
)

where fZ(z) is the N(0, 1) pdf. The factors in the product above may be written

1

σW
fZ(

xt − φxt−1

σW
) = 1√

2πσW
exp(− (xt − φxt−1)

2

2σ2
W

)

= 1√
2πσW

exp(− (yt−1 − φxB1,t−1)
2

2σ2
W

).
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Fig. 18.8 Core temperature data together with fit. Top plot of temperature data. Bottom Plot of
temperature data together with fit (in red) based on the sum of an AR(2) fit to residuals and the fitted
24 h cycle.

This final form of each factor is the same as would appear in the likelihood for
the regression of y on xB1, with no intercept. Thus, if we ignore x1, maximizing
the likelihood L(φ,σW ) amounts to solving the ordinary least-squares problem in
the regression of y on xB1. This maximization is called conditional maximum likeli-
hood because we act as if the distribution of X1 is given, i.e., it involves no unknown
parameters. Because σ1 in (18.28) is a function of φ and σW , when we include the
factor due to X1, which is fZ(x1/σ1)/σ1, the maximization problem changes and it
is no longer solvable by least squares. Thus, the MLE must be found by an iterative
method, but it is likely to be very close to the conditional MLE. Similar considerations
hold also for AR(p) models: the likelihood is nonlinear in the autoregressive parame-
ters, but if we condition on the first p values then ML estimation reduces to ordinary
least squares lagged regression. Statistical software for fitting autoregressive models
typically either uses ML estimation, or a method that is very nearly equivalent. (The
Kalman filter, described in Section 16.2.5, is sometimes used to obtain ML estimates
in time series models.) For large samples, the fitted coefficients are essentially the
same as those obtained using lagged regression.

The fit to the core temperature data in the bottom panel of Fig. 18.8 combines the
fitted 24 h cycle and the AR(2) fit to the residuals. This is an example of regression

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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with time series errors. As mentioned on p. 346, a general approach to regression
with time series errors may be based on weighted least squares. Specifically, the
model (12.64) may be used with the variance matrix R defined by the AR(p) process
and a fit, together with confidence intervals and significance tests, may be obtained8

from the following steps:

1. Fit the regression variables X to the response variable Y using ordinary least
squares;

2. Fit an AR(p) model to the residuals from step 1;
3. Re-fit the regression variables X to the response variable Y using weighted least

squares (see p. 345), based on the estimated R matrix found from the fitted
auto-regressive model in step 2.

In practice, steps 1-3 may be adequate but, in addition, steps 2 and 3 could be iterated,
or ML estimation could be applied once the AR(p) model is determined in Step 2
(e.g., Greenhouse et al. 1987). Statistical software for regression with time series
errors is usually based on ML estimation.

18.3 The Periodogram for Stationary Processes

18.3.1 The periodogram may be considered an estimate
of the spectral density function.

The DFT is relatively easy to use without thinking about its continuous analogue.
However, to understand the way the DFT behaves, and to derive statistical assess-
ments of uncertainty, we must consider the analogous object defined for a theoretical
stationary time series {Xt; t ∈ Z}.

Assume σ2
t = V(Xt) < ∞ and let μt = E(Xt). Recall that the autocovariance

function is given by

γ(h) = E((Xt − μt)(Xt+h − μt+h)).

Under the summability condition

∞∑

h=−∞
|γ(h)| <∞ (18.29)

general results give the existence of a spectral density function f (ω) for which

8 The fit in Fig. 18.8 avoided step 3, and would not change very much if step 3 were included, but
the statistical inferences involving confidence intervals and significance tests do require step 3.

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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γ(h) =
∫ 1

2

− 1
2

e2πiωhf (ω)dω (18.30)

and

f (ω) =
∞∑

h=−∞
γ(h)e−2πiωh. (18.31)

From (18.31) it follows immediately that the spectral density is positive, f (ω) =
f (−ω), f (ω) is periodic with period 1, and

γ(0) =
∫ 1

2

− 1
2

f (ω)dω. (18.32)

Equation (18.32) says that the total variability V(Xt) is the integral of the spectral
density function. This is a continuous analogue of the discrete decomposition (18.18).

Note that (18.29) rules out pure sinusoids. Signals that have purely periodic (com-
posite sinusoidal) components have “mixed” spectra consisting of “line spectra”
representing the pure sinusoids and spectral densities representing everything else.

Returning to the periodogram, defined in Equation (18.25), some manipulations
(which we omit) show that it may be written in the form

I(ωj) =
n−1∑

h=−(n−1)

γ̂(h)e−2πiωjh (18.33)

where γ̂(h) is the sample autocovariance function defined in (18.3). Comparing
(18.33) with (18.31), we see that the periodogram may be considered an estimator of
the spectral density. In addition, using γ̂(−h) = γ̂(h), Equation (18.33) shows that
the periodogram is proportional to the DFT of the sample covariance function.

Further manipulations show that the periodogram may also be written as

I(ωj) = 1

n

n−1∑

h=−(n−1)

n−|h|∑

t=1

(xt+|h| − μ)(xt − μ)e−2πiωjh

for j �= 0 and if we replace xt and xt+|h| with their theoretical counterparts Xt and
Xt+|h|, and then take the expectation, we get

E(I(ωj)) =
n−1∑

h=−(n−1)

(
n− |h|

n

)
γ(h)e−2πiωjh.
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Let us consider what happens9 when ωj → ω as n→∞. Assuming the summability
condition (18.29) holds we get

E(I(ωjn))→
∞∑

h=−∞
γ(h)e−2πiωh,

that is,
E(I(ωjn))→ f (ω). (18.34)

This result forms a connection between the data-based periodogram and the the-
oretical spectral density: when the periodogram is considered an estimator of the
spectral density, for large samples it is approximately unbiased. However, as we will
see in Section 18.3.3, the periodogram only becomes a reasonable estimator after
smoothing is applied.

18.3.2 For large samples, the periodogram ordinates computed
from a stationary time series are approximately independent
of one another and chi-squared distributed.

In Section 18.3.1 we showed that the periodogram may be considered an estimator
of the spectral density function, but we ended with the remark that it only becomes
reasonable after smoothing. We develop this important observation in Section 18.3.3.
Here we first review some basic results on the large-sample distribution of the DFT
and periodogram. These allow us to get confidence intervals for quantities based on
the periodogram, including smoothed periodograms.

The starting point is to imbed the data x1, . . . , xt in a hypothetical infinite sequence
of random variables Xt , where t is taken to run through all integers, including nega-
tive integers. The assumptions needed for the distributional results are (1) the time
series {Xt} is stationary; (2) for sufficiently large h, the variables {Xt, t < t0} are
nearly independent of the variables {Xt, t > t0 + h} (for any, and therefore—under
stationarity—every, t0); and (3) the spectral density f (ω) exists. These conditions
allow application of the Central Limit Theorem(CLT) to the sum that defines the
DFT. We are being deliberately vague in the statement of (2). For technical discus-
sion see Lahiri (2003a).

To get asymptotic variances and covariances, and the asymptotic distribution of
the periodogram, let us replace xt by Xt in (18.20) and (18.21) and consider the
large-sample distribution of the coefficients

9 To get a sequence of Fourier frequencies ωj that converge to ω, define ωjn = jn/n with jn a
sequence of integers for which jn/n→ ω.
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Ak = 2

n

n∑

j=1

Xj cos(2kπj/n)

Bk = 2

n

n∑

j=1

Xj sin(2kπj/n).

To simplify a little, let us write

dc(ωk) = 1√
n

n∑

j=1

Xj cos(2kπj/n)

ds(ωk) = 1√
n

n∑

j=1

Xj sin(2kπj/n).

We assume that the expectation of Xt is zero (if not, we can subtract E(Xt) from each
variable). By the CLT, dc(ωj) and ds(ωj) are approximately normally distributed. In
addition, we have E(dc(ωk)) = E(ds(ωk)) = 0 and, it turns out, for the large-sample
variances we have

V(dc(ωk)) ≈ 1

2
f (ωk) (18.35)

V(ds(ωk)) ≈ 1

2
f (ωk) (18.36)

while the covariances are approximately zero: for j �= k,

Cov(dc(ωj), dc(ωk)) ≈ 0 (18.37)

Cov(ds(ωj), ds(ωk)) ≈ 0 (18.38)

and for all j, k,
Cov(dc(ωj), ds(ωk)) ≈ 0. (18.39)

The asymptotic independence in (18.37)–(18.39) greatly simplifies statistical infer-
ence based on the DFT.

The periodogram is related to dc(ωk) and ds(ωk) by

I(ωk) = dc(ωk)
2 + ds(ωk)

2.

From the CLT together with (18.35) and (18.36), we have
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√
2

f (ωk)
dc(ωk)

D→ N(0, 1)

√
2

f (ωk)
ds(ωk)

D→ N(0, 1).

By (18.39) these two random variables are approximately independent. Recalling
that if Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1), independently, then Z2

1 + Z2
2 ∼ χ2

2 we
therefore have

2I(ωk)

f (ωk)
is approximately χ2

2 (18.40)

which we may also write as

I(ωk) is approximately
f (ωk)

2
χ2

2.

Furthermore, from (18.37)–(18.39), we have that I(ωj) and I(ωk) are approximately
independent for j �= k.

The limiting distribution in (18.40) is a beautifully convenient result, making it rel-
atively easy to get confidence intervals for quantities derived from the periodogram.
We describe the methods in Section 18.4.1.

18.3.3 Consistent estimators of the spectral density function result
from smoothing the periodogram.

As we discussed in Chapter 8, in large samples the distribution of an estimator T
should become concentrated near the quantity θ it is estimating. While (18.40) gives
a nice way to assess uncertainty about the periodogram, it also shows that the large-
sample distribution of the periodogram does not become concentrated around the
spectral density: its variance does not decrease with the sample size. In statistical
parlance, the periodogram is not a consistent estimator. However, under conditions
analogous to those used for consistency of linear smoothers in nonparametric regres-
sion, as discussed in Section 15.3.3, smoothed versions of the periodogram will be
consistent. This is strong theoretical motivation for smoothing the periodogram.

In the statistical and neuroscientific literatures there are five main approaches to
smoothing the periodogram. The first is to apply a smoother, such as a Gaussian
kernel smoother to the sequence of values I(ωk). Kernel smoothers were discussed
in Section 15.3.1 in the context of nonparametric regression and Section 15.4.1 in the
context of density estimation. Because kernel smoothers compute linear combina-
tions of the data they are linear smoothers or linear filters. We make some further
comments about linear filters in Section 18.3.4. When applied to time series Gaussian
kernel smoothers are usually called Gaussian filters.

http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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The second method of smoothing a periodogram is to split the time domain into
a set of many long intervals (long enough to capture low frequencies of potential
interest), estimate the spectral density within each interval, and average the resulting
estimates. With this method it may be shown that it is advantageous to allow the
intervals to have some overlap (Welch 1967). The estimator based on such averag-
ing is sometimes known by the acronym WOSA for weighted overlapping segment
averaging or Welch’s method.

The third approach applies a simple generalized linear model based on the asymp-
totic distribution of the periodogram in (18.40). Recall that the χ2

2/2 distribution is
the same as the standard exponential distribution Exp(1). We may then write

I(ωk)
·∼ f (ωk)Exp(1) (18.41)

or
I(ωk)

·∼ Exp(λk) (18.42)

where

λk = 1

f (ωk)
.

This says that the periodogram ordinates form, approximately, a generalized linear
model and therefore may be smoothed using the technology in Section 15.2.3, adapted
for exponential regression. The likelihood function based on (18.42) is called the
Whittle likelihood.

The fourth class of methods for smoothing the periodogram again uses the
asymptotic distribution in the form of (18.41) but instead deals with the log ordinates.
Letting Yk = log I(ωk), (18.41) may be written

Yk ≈ log f (ωk)+ εk (18.43)

where the εk variables are independently distributed as log X where X ∼ Exp(1). This
provides a standard nonparametric regression model, and the log of an exponential
random variable is reasonably close to being normal. However, E(εk) �= 0, so there
is some bias introduced into the estimation process. Nonetheless, in many cases the
bias is small relative to the variation in the log periodogram.

The fifth way to smooth a periodogram is to assume the data follow an autore-
gressive model, and then use the resulting form of the spectral density. Specifically,
calculations show that the AR(p) model (18.27) has spectral density

fX(ω) = σ2
W

|1− φ1e−2πiω − φ2e−4πiω − · · · − φpe−2pπiω|2 .

In addition, a more concise class of models, known as autoregressive moving average
or ARMA models, is often used, and these too have closed-form expressions for their
spectral densities.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Fig. 18.9 Spectral density estimates for the BARS-detrended residuals from the core body tem-
perature data, after removing the fitted 24 h cycle. The tapered periodogram is highly variable; the
Whittle smoothed version is overlaid in blue; and the estimate from the AR(3) model is overlaid in
red.

Example 18.3 (continued from p. 525) We obtained smooth versions of the peri-
odogram for the core temperature data after first removing the trend. (Recall our
discussion of Example 15.2 on p. 528; to fit the trend we used the nonparametric
regression methodas described briefly in Chapter 15). The AR(3) spectral density
estimate is shown in Fig. 18.9. Note that it is very smooth. (An AR(2) based estimate
gives similar results.) The Whittle smoothed periodogram is shown for comparison,
and agrees reasonably well. There appears to be a peak near ωj = .1. To interpret
this, we need units. The temperature was sampled every 20 min, and there were 352
observations. If ωj = .1, then the frequency is .1 per time unit (or 35.2 per 352 time
units). To get frequency per day we multiply by 72 and get roughly 7. There appears
to be a roughly oscillatory component with a period of about 3.5 h. �
We elaborate briefly on linear smoothing in Section 18.3.4 but otherwise omit details
on smoothing periodograms.10 Smoothing is typically handled in spectral analysis
software. Regardless of the method used, the most important point is that some
smoothing is essential.

18.3.4 Linear filters can be fast and effective.

We indicated in Section 18.3.3 that kernel smoothers are linear filters. In this section
we say what we mean by a linear filter, and indicate why linear filters are widely
applied.

10 A reference advocating methods three and four, above, is Fan and Kreutzberger (1998).

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Suppose we have time series data x1, . . . , xn. A linear filter is a set of numbers
(coefficients) {ar, ar+1, . . . , as} and its application to the series xt results in the
filtered series

yt =
s∑

h=r

ahxt−h (18.44)

where, typically, s − r is much less than n. For example, the result of applying the
five-point filter with coefficients (1, 2, 3, 2, 1)/9 would be

yt = 1

9
(xt−2 + 2xt−1 + 3xt + 2xt+1 + xt+2) (18.45)

for t = 3, . . . , n − 2. A Gaussian filter would be similar but would instead use a
normal (Gaussian) pdf to define the coefficients.

It may be shown that the DFT of {yt} is related to the DFT of {xt} according to

dy(ω) = √nda(ω)dx(ω) (18.46)

where da(ω) is the Fourier transform of {ar, ar+1, . . . , as, 0, 0, . . . , 0}, with the
zeroes being added to fill up the rest of the n data values. (This is called “padding”
the sequence.) The quantity

√
nda(ω) is called the transfer function and its squared

magnitude is the power transfer function. Expression (18.46) makes it possible to
analyze easily the effects of linear filters. This, coupled with their simplicity and the
high speed with which they may be computed makes them a very common method
of choice for smoothing a time series and the resulting periodogram.

Example 18.3 (continued) We applied the 5-point linear filter described above to
the residuals from the core temperature data following simple harmonic regression,
yielding a series of the form (18.45). The top panel of Fig. 18.10 shows the residual
series and the middle panel shows the power transfer function. The power transfer
function decreases to nearly zero as the frequency increases so that high-frequency
components have been essentially eliminated from the filtered series. The resulting
series is shown in the bottom panel of Fig. 18.10. The filtered series is smoother than
the original series. This 5-point linear filter is predominantly a high frequency filter
but, as the middle panel of Fig. 18.10 shows, its effects are not restricted to the highest
frequencies: there is a gradual squelching of middle-range frequencies as well. �
We have just found that the 5-point linear filter used in (18.45), and applied above to
the data from Example 18.3, acts mostly as a high-frequency filter but also displays
some gradual mid-range filtering. This might be considered undesirable and one
might consider trying to use an ideal high-frequency (or low-pass) filter that has a
power transfer function of the form

H(ω) =
{

1 for 0 ≤ |ω| ≤ ωc

0 for ωc < |ω| ≤ 1
2
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Fig. 18.10 Top Core temperature data after removing dominant 24 h effect, i.e., the residuals after
simple harmonic regression. Middle The power transfer function of the five-point linear filter with
coefficients (1, 2, 3, 2, 1)/9, showing a strong diminution of the higher frequency components. Bot-
tom Core temperature data after applying the five-point linear filter with coefficients (1, 2, 3, 2, 1)/9.

which would remove all components with frequencies ω > ωc and leave all other
components of the series unchanged. One might then, in principle, try to find a filter
that corresponds to this power transfer function. This approach turns out to introduce
certain technical problems associated with Fourier transforms of discontinuous func-
tions. In practice, time series software typically provides some option for low-pass
filtering based on a linear filter, or a combination of linear filters, which aims to
approximate the effect of the ideal power transfer function. Similarly, most software
provides options for high-pass filtering, which approximates an ideal filter that would
remove frequencies ω < ωc for some ωc, and band-pass filtering, which approxi-
mates an ideal filter that would remove frequencies outside some interval (ωa,ωb);
the range (ωa,ωb) then becomes the frequency band that is retained by the band-pass
filter. We illustrated a form of high-pass filtering when we detrended the LFP series
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in Example 15.2, with our discussion surrounding Fig. 18.6 (see p. 528), and then
again filtered the data in Example 18.3 before fitting the auto-regressive model on
p. 532. In the latter case, the detrending method was nonlinear. The advantage of
linear filters in practice is the speed with which results may be computed.

All of these remarks about linear filters have theoretical counterparts.

Some details: Suppose {Xt; t ∈ Z} is a stationary process with spectral
density fX(ω) and the series {ah; h ∈ Z} satisfies

∞∑

h=−∞
|ah| <∞.

If we let

A(ω) =
∞∑

h=−∞
ahe−2πiωh,

then the filtered process {Yt; t ∈ Z} defined by

Yt =
∞∑

h=−∞
ahXt−h

is stationary with spectral density

fY (ω) = |A(ω)|2fX(ω).

Here, the series of coefficients {ah; h ∈ Z} is known as the impulse
response function. �

18.3.5 Frequency information is limited by the sampling rate.

While the Fourier frequencies ωk = k/n are defined for k = 1, . . . , n, the resulting
cosine functions are constrained by the important restriction

cos(2π
k

n
t) = cos(2π

n− k

n
t) (18.47)

for every integer t.

Details: In (18.6) put u = 2πt and v = 2π k
n t to get

cos(2π
n− k

n
t) = cos(2πt) cos(2π

k

n
t)+ sin(2πt) sin(2π

k

n
t)
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Fig. 18.11 A plot illustrating aliasing of two frequencies for n = 10. Two cosine functions are
plotted: cos(2πω1t) and cos(2πω2t) for ω1 = 2/10 and ω2 = 8/10. At all the values t = 1, . . . , 10
these cosine functions agree, so that the frequencies ω1 and ω2 are aliased. Note that the time
interval between peak and trough corresponding to the second frequency is less than the sampling
interval of 1 (equivalently, ω2 > 1/2) so that, in a sense, the second cosine is oscillating too fast
to be determined at this sampling rate. Simple harmonic regression fits for any data sampled at
t = 1, . . . , 10 will be the same using ω2 as using ω1.

and when t is an integer sin(2πt) = 0 while cos(2πt) = 1. �
Thus, any cosine with a frequency 1

2 < ωk < 1 will have precisely the same values
at all integers t as the cosine with frequency 1 − ωk . This is known as aliasing: it
is not possible to distinguish a cosine function having frequency ω∗ > 1

2 from
another cosine with a frequency in (0, 1

2 ). By sampling xt = cos(2πωt) at points
t = 1, . . . , n, the fastest visible oscillations occur at the frequency ω = 1

2 , for which
xt = cos(πt) = (−1)t . (When multiplied by n to get back to the original units of
time, this fastest visible frequency of oscillation is called the Nyquist frequency.) The
situation is illustrated in Fig. 18.11. Corresponding to (18.47) we also have

sin(2π
k

n
t) = − sin(2π(

n− k

n
)t).

These aliasing relations have analogues in the DFT. They imply that11 the second
half of the components of the DFT, those for which ωk > 1

2 , are redundant with
the first. Plots of the periodogram therefore correspond to frequencies only up to
ωk = 1

2 .

11 This assumes the data are real numbers. It is occasionally useful, instead, to examine data that
consist of complex numbers.
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18.3.6 Tapering reduces the leakage of power from non-Fourier to
Fourier frequencies.

The intuitive description of Fourier analysis in Section 18.2.1 left out an important
fact. If we consider the fundamental cosine and sine functions cos(2πt) and sin(2πt),
these are functions not only on [0, 1] but on the whole real line. They and all of
the resulting cosine and sine functions at harmonic frequencies, i.e., the functions
cos(2πkt) and sin(2πkt) for k = 1, 2, . . ., will be periodic on the interval [0, 1]. So
that all of these functions satisfy

f (0) = f (1). (18.48)

The rough arguments we gave in Section 18.2.1 make the most sense for functions
that satisfy (18.48). When this constraint does not hold, it turns out that the Fourier
approximation (18.16) suffers from a failure to adequately represent f (t), which is
known as the Gibbs phenomenon. The corresponding effect when applying the DFT
to data is known as leakage.

To describe the problem of leakage, let us consider the periodogram of the cosine
function xt = cos(2πωt), for t = 1, . . . , n. Calculation shows that this periodogram
(for each Fourier frequency ωj) is given by

I(ωj) = n|Dn(ω − ωj)|2 (18.49)

where

Dn(φ) = sin(πnφ)

n sin(πφ)

is known as the Dirichlet kernel. If ω is a Fourier frequency, then I(ωj) has a single
spike at ωj = ω and is zero at all other Fourier frequencies ωj. In other words, in this
case the periodogram correctly finds the sole cosine component.

Details: Note that as φ → 0, Dn(φ) → 1
n (by L’Hopital’s rule), so

Dn(φ) at φ = 0 is defined to be Dn(0) = 1
n . Thus, when ωj = ω

we have I(ωj) = 1
n . If ω is a Fourier frequency then ω − ωj has the

form k
n for some integer k and Dn(ω − ωj) = 0 for all j except when

ωj = ω. �
On the other hand, when ω is not a Fourier frequency the Dirichlet kernel cre-

ates “side lobes,” as shown in Fig. 18.12, where Dn(ω − ωj) will be nonzero even
for frequencies ωj that are not immediately non-adjacent to ω. As a consequence,
the power at frequency ω will “leak” to other frequencies in the periodogram, so the
periodogram indicates misleadingly that those other frequencies are present in the
data.
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Fig. 18.12 Top The Dirichlet kernel D100(j/100), here plotted for values of j ranging from −6 to
6. A continuous curve was generated by taking non-integer values of j. Bottom The periodogram
I(j/100) = 100|D100(j/100)|2, after scaling by dividing by 100.

The problem of leakage is very dramatic when the dynamic range of the data is
large. Dynamic range refers to the ratio of the largest to smallest positive periodogram
values (usually measured on the log10, or decibel, scale).

Illustration: As an illustration, consider

xt = 20 cos(2πω1t)+ cos(2πω2t) (18.50)

where n = 100, ω1 = .05 and ω2 = .15. Its periodogram is shown in the top panel
of Fig. 18.13. To see the second frequency it is necessary to use a log scale to plot the
periodogram, as shown in the bottom panel of Fig. 18.13. Log periodogram plots are
used as defaults in many contexts. Now consider the leakage-prone variant where
we take ω1 = 1/22 rather than 1/20. Its periodogram is shown in Fig. 18.14. In this
case leakage obscures the second peak almost entirely, and if the periodogram were
noisy (as it is with real data) it would be extremely difficult to see the second peak
at all. �

Leakage is also a problem when there are trends, which cause large low-frequency
coefficients in the periodogram.

Example 15.2 (continued from p. 528) We previously showed the log periodogram
for the LFP data in Fig. 18.5. The very low frequency trends cause leakage, which
obscures the higher frequencies of interest. �
The standard solution to the problem of leakage is to force the data to satisfy (18.48)
by applying tapering. Tapering decreases bias due to leakage in spectral density
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Fig. 18.13 Top Periodogram of xt = 20 cos(2πω1t)+ cos(2πω2t), where n = 100, ω1 = .05 and
ω2 = .15. Bottom Log periodogram of xt . In the log scale the second peak becomes visible.

estimation by damping down the ends of the series toward zero, forcing the series
to have period equal to its length (and thus satisfying (18.48)). This is accomplished
in standard spectral analysis software. Because the beginning and end of the tapered
series have values close to zero, however, this reduces the effective sample size of
the series and therefore loses some information. It has been shown that the use of
the mean of multiple tapers can recover this information.12 Multi-taper estimation is
used as a default in some software.

18.3.7 Time-frequency analysis describes the evolution
of rhythms across time.

Up until this point, Section 18.3 has presented powerful methods for spectral analysis
of time series under the assumption of stationarity. We have emphasized that time
series should not be considered stationary when there are slowly varying trends, as
displayed in Fig. 1.5 of Example 1.6 and Fig. 18.1 of Example 15.2. In many cases,
however, a different kind of non-stationarity is present and, in fact, may be of great
interest: the frequency content of a signal may change across time.

Example 2.2 (continued from p. 514) The spectrograms in Fig. 2.2 on p. 27 dis-
played nicely some changes in the frequency content of EEGs across the course of

12 See Mitra and Pesaran (1999), Percival and Walden (1993), and Thomson (1982).

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_2
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Fig. 18.14 Top Periodogram of xt = 20 cos(2πω1t) + cos(2πω2t), where n = 100, ω1 = 1/22
and ω2 = .15. Bottom Log periodogram of xt . Due to leakage, the second peak is obscured.

the experiment. Specifically, the alpha rhythm appeared during an epoch in which
the subject’s eyes closed, and during induction of anesthesia. �

Spectrograms, such as that in Example 2.2, may be created by segmenting the
observation time interval [0, T ] into a set of subintervals [0, T1], [T1, T2], . . . , [Tk, T ],
and then computing spectral density estimates within each interval. The estimated
spectrum is then plotted on the y-axis for every time interval, with time labeled
along the x-axis. The intervals must be chosen to be long enough so that there are
substantial series from which to estimate the spectrum, yet short enough that the series
may be considered stationary within each interval. Some spectrogram software takes
as a default 512 observations per interval (with corrections to this to allow for T
not being divisible by 512). Some smoothing (and tapering) of the spectral density
estimates across time is often incorporated. One way to smooth across time, which
is available as an option in most spectrogram software, is to choose the analysis
intervals to be overlapping. In some experiments there are repeated trials, in which
case the spectrograms may be averaged across trials.

Example 18.2 (continued from p. 518) To display the LFP response to the stimulus
Logothetis et al. (2001) used a spectrogram that incorporated tapering and was aver-
aged across trials and across subjects. It showed strong power in the gamma range
after onset of the stimulus. �

Time-frequency analysis is often performed using wavelets (Section 15.2.8).
Because of the scaling property (the narrowing range) in the definition (15.9), wavelet
regression provides a representation that is localized in both time and frequency, with
frequency here defined by the scale of the wavelets. See Percival and Walden (2000).

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Example 18.1 (continued from p. 518) In their study of MEG oscillatory activ-
ity during learning, Chaumon et al. (2009) used Morlet wavelets (see p. 429) to
decompose MEG sensor signals across time and frequency. They analyzed the log-
transformed power within a 30–48 Hz, band at time 100–400 ms after target onset,
from one group of sensors over the occipital lobe and another group of sensors over
the frontal lobe. They found that during the learning phase (the first few blocks) of
the experiment this gamma band power in the sensors over the occipital lobe was
higher for the predictive trials than for the nonpredictive trials (p < .005 based on an
across-subject paired t-test, using 16 subjects) with the power for the predictive trials
being elevated above baseline. On the other hand, during the same learning period,
the gamma band power in the sensors over the frontal lobe was depressed for the
nonpredictive trials (p < .0001), but not for the predictive trials (with the predictive
and nonpredictive gamma band power being different, p < .01). �

18.4 Propagation of Uncertainty for Functions
of the Periodogram

18.4.1 Confidence intervals and significance tests may be carried
out by propagating the uncertainty from the periodogram.

The large-sample result described by (18.41) together with the approximate inde-
pendence of I(ωj) and I(ωk), for j �= k, provide uncertainty about the estimate of the
spectral density and also make it easy to propagate this uncertainty. Importantly, this
result holds in the same form for periodograms computed with suitable tapers. (See
the brief discussion in Percival and Walden (1993, p. 190), which cites Brillinger
(1981, p. 107).)

Now suppose we have computed some feature of the periodogram and we want
a 95 % confidence interval associated with that feature. For example, we may have
smoothed the periodogram and may want bands to represent our uncertainty. Let
m = (n−1)/2 if n is odd; n/2 if n is even. For a range ofω values, write the smoothed
version at frequency ω in the form gω(I(ω1), . . . , I(ωm)). That is, the operation that
produced the smooth value at frequency ω is being written as a function gω of the
periodogram values. We would say that gω(I(ω1), . . . , I(ωm)) is an estimator of f (ω).
To apply propagation of error we do the following.

1. For j = 1 to J:

For i = 1, . . . , m:
generate observations Yi from an Exp(1) distribution;
define U(j)

i = f̂ (ωi)Yi, where f̂ (ωi) is an estimate of f (ωi) (based on a
smoothed periodogram).

Compute W (j) = gω(U(j)
1 , U(j)

2 , . . . , U(j)
m ).
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Fig. 18.15 Smoothed periodogram and approximate, pointwise 95 % confidence bands, from the
beginning-period LFP detrended series.

2a. Set W = 1
J

∑
W (j) and then SE2 = 1

J−1

∑
(W (j) −W)2 is the squared standard

error of gω(I(ω1), . . . , I(ωm)).
2b. Let W.025 and W.975 be .025 and .975 quantiles in the sample W (1), . . . , W (J).

Then (W.025, W.975) is an approximate 95 % confidence interval (for f (ω)) asso-
ciated with gω(I(ω1), . . . , I(ωm)).

In practice, we would compute a whole set of W (j) values for different gω functions,
corresponding to different values of ω. This would give us approximate pointwise13

confidence bands on the smoothed periodogram.
In step 1 of the algorithm above an estimate f̂ (ωi) (based on the smoothed peri-

odogram) is used in place of f (ωi), because the latter is unknown and so can’t be
computed. This is usually called a bootstrap, analogously to the bootstrap procedures
in Chapter 9.

Example 15.2 (continued from p. 528) Returning to the pair of 1 s average LFP
recordings, we noted previously, in Figs. 18.1 and 18.5, the need to detrend the
time series before looking for periodicities under the assumption of stationarity.
Figure 18.6 displayed the smoothed periodograms of the detrended series. Pointwise
95 % confidence bands together with the smoothed periodogram for the first period,
obtained by propagation of uncertainty, are shown in Fig. 18.15.

We next consider whether the first and last periods have the same spectral density
(an indication of stationarity). Figure 18.16 shows the two smoothed periodograms
overlaid. A significance test may be based on the integrated squared difference
between the two smooth curves. Specifically, if f̂1(ω) and f̂2(ω) are the two spectral

13 By pointwise we mean that at any given frequency ω the bands would provide an approximate
95 % confidence interval. An alternative is to compute approximate simultaneous confidence bands,
meaning bands that provide approximate 95 % confidence simultaneously for all ω. This may be
accomplished with a suitable adaptation of the algorithm.

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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Fig. 18.16 Smoothed periodograms from beginning and end periods, overlaid.

density estimates, then we use

tobs =
∑

k

(f̂1(ωk)− f̂2(ωk))
2

as the test statistic. To compute a p-value under H0 = f1(ω) = f2(ω) for all ω, we
take as a “pooled” estimate

f̂ (ωk) = 1

2
(f̂1(ωk)+ f̂2(ωk))

for k = 1, . . . , m. We then generate a pseudo-sample of pairs of periodograms using
f̂ (ω) as the spectral density, and for each generated pair of periodograms, apply
smoothing and compute t. We then see what fraction of the generated t values is
greater than tobs. This is our approximate p-value. In this case, we obtained p =
0.53, indicating no evidence that the spectra from the two recording intervals are
different. �

18.4.2 Uncertainty about functions of time series may be obtained
from time series pseudo-data.

The method above propagates the uncertainty from the asymptotic distribution of the
periodogram to anything computed from it. If, however, an analytical technique by-
passes the periodogram a different method must be used to propagate uncertainty. A
more general idea is to use the approximate normal distributions on the coefficients,
in order to propagate the uncertainty from the DFT itself. In other words, one may
begin with the uncertainty in the DFT obtained from the data, and then apply an
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inverse DFT to generate time series that behave the same as the original series in
the sense of having (approximately) the same spectrum. The resulting time series
pseudo-data are sometimes called surrogate data.

An efficient method of carrying out such simulations (based on “circulant embed-
ding”) is described in Percival and Constantine (2006). Code by these authors is avail-
able in the CRAN library of R packages, within the package fractal. See below.
As described in the Percival and Constantine paper, the method is closely related
to surrogate time series, e.g., Schreiber and Schmitz (2000). Additional “bootstrap”
resampling methods for spectral analysis, with an emphasis on theoretical results, are
discussed in Chapter 9 of Lahiri (2003b). We omit detailed discussion of this topic
and note only that the pseudo data generated by this approach are normal (Gaussian),
and so do not reflect any sources of uncertainty arising from substantial non-normal
variation in the data.

18.5 Bivariate Time Series

Suppose x1, x2, . . . , xn and y1, y2, . . . , yn are sequences of observations made across
time, and the problem is to describe their sequential relationship. For example, an
increase in yt may tend to occur following some increase or decrease in a linear
combination of some of the preceding xt values. This is the sort of possibility that
bivariate time series analysis aims to describe.

Example 18.4 Beta oscillations during a sensorimotor task. Brovelli et al. (2004)
recorded local field potentials from multiple sites simultaneously while a subject
(a rhesus monkey) performed a Go/No-Go visuomotor task. Results were reported
for two monkeys. The task required the subject hold down a lever during an interval
having a randomly determined length while a stimulus appeared. On Go trials, a
reward was given if the monkey released the lever within 500 ms. The purpose of
the study was to look for coordinated rhythmic activity across the recording sites
during a task that required focused attention. Of particular interest was the range of
frequencies identified as beta oscillations, which the authors took to be 14–30 Hz.
The specific question was whether local field potentials in sensory and motor regions
exhibit co-ordinated patterns within the beta range of frequencies. �

The theoretical framework of such efforts begins, again, with stationarity. A joint
process {(Xt, Yt), t ∈ Z} is said to be strictly stationary if the joint distribution of
{(Xt, Yt), . . . , (Xt+h, Yt+h)} is the same as that of {(Xs, Ys), . . . , (Xs+h, Ys+h)} for
all integers s, t, h. The process is weakly stationary if each of Xt and Yt is weakly
stationary with means and covariance functions μX , γX(h) and μY , γY (h), and, in
addition, the cross-covariance function

γXY (s, t) = E((Xs − μX)(Yt − μY ))

http://dx.doi.org/10.1007/978-1-4614-9602-1_9
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depends on s and t only through their difference h = t − s, in which case we write
it in the form

γXY (h) = E((Xt−h − μX)(Yt − μY )).

Note that γXY (h) = γYX(−h). The cross-correlation function of {(Xt, Yt)} is

ρXY (h) = γXY (h)

σXσY

whereσX = √γX(0) and similarly for Yt . The cross-correlationρXY (h) is the ordinary
correlation between the random variable Xt−h and Yt . Just as the ordinary correlationρ
may be interpreted as a measure of linear association between two random variables,
the cross-correlation ρ(h) may be interpreted as a measure of linear association
between two stationary processes at lag h. The cross-covariance and cross-correlation
functions are estimated by their sample counterparts:

γ̂XY (h) = 1

n

n−h∑

t=1

(xt − x̄)(yt+h − ȳ)

with γ̂XY (−h) = γ̂YX(h), and

ρ̂(h) = γ̂XY (h)

σ̂X σ̂Y
.

The univariate Eqs. (18.29)–(18.31) have immediate extensions to the bivariate
case: if ∞∑

h=−∞
|γXY (h)| <∞

then there is a cross-spectral density function fXY (ω) for which

γXY (h) =
∫ 1

2

− 1
2

e2πiωhfXY (ω)dω (18.51)

and

fXY (ω) =
∞∑

h=−∞
γXY (h)e−2πiωh.

The cross-spectral density is, in general, complex valued. Because γYX(h) =
γXY (−h) we have

fYX(ω) = fXY (ω) (18.52)

i.e., fYX(ω) is the complex conjugate of fXY (ω). In Section 18.3.1 we said that a
smoothed periodogram could be considered an estimator of the theoretical spectral
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density, and we based that interpretation on a finite-sample expression (18.33), which
gave the periodogram as a scaled DFT of the sample covariance function. Similarly,
an estimate f̂XY (ω) of fXY (ω) may be obtained by smoothing a scaled DFT of the
sample cross-covariance function γ̂XY (h). In Section 18.5.1 we discuss the important
concept of coherence, which is defined in terms of the cross-spectral density.

18.5.1 The coherence ρXY(ω) between two series X and Y
may be considered the correlation of their ω-frequency
components.

There is a very nice way to decompose into frequencies the linear dependence
between a pair of stationary time series. This frequency-based measure of linear
dependence forms an analogy with ordinary correlation which, as we noted in
Section 4.2.1, may be interpreted as a measure of linear association. To substan-
tiate this interpretation for the ordinary correlation ρ between two random variables
Y and X we provided on p. 81 a theorem concerning the linear prediction of Y from
α + βX, giving the formula for α and β that minimized the mean squared error of
prediction, E

(
(Y − α− βX)2

)
and showing that when these optimal values ofα and

β are plugged in, the minimum mean squared error became

E
(
(Y − α− βX)2

)
= σ2

Y (1− ρ2), (18.53)

which was Eq. (4.11).
In Eq. (18.53) we considered the linear prediction of Y based on X, meaning

the prediction of Y based on a linear function of X. The analogous problem for
{(Xt, Yt), t ∈ Z} is to assume

Yt =
∞∑

h=−∞
βhXt−h +Wt, (18.54)

where Wt is a stationary process independent of {Xt}, with E(Wt) = 0 and V(Wt) =
σ2

W , and to minimize the mean squared error

MSE = E

⎛

⎝Yt −
∞∑

h=−∞
βhXt−h

⎞

⎠
2

. (18.55)

Some manipulations show that the solution satisfies

min MSE =
∫ 1

2

− 1
2

fY (ω)(1− ρXY (ω)2)dω (18.56)

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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where

ρXY (ω)2 = |fXY (ω)|2
fX(ω)fY (ω)

(18.57)

is the squared coherence. Thus, in analogy with (18.53), fY (ω)(1− ρXY (ω)2) is the
ω-component of the minimum-MSE fit of (18.54). In (18.56) we have MSE ≥ 0 and
fY (ω) ≥ 0, which together imply that 0 ≤ ρXY (ω)2 ≤ 1 for all ω, and when

Yt =
∞∑

h=−∞
βhXt−h

we have ρXY (ω)2 = 1 for allω. These facts, together with (18.56), give the interpreta-
tion that the squared coherence is a frequency-based analogue to squared correlation
between two theoretical time series.

Additional details: The interpretation of coherence in terms of corre-
lation may be pushed further, but is somewhat subtle. In defining the
cross-spectral spectral density we mentioned that it is complex valued.
Let θ(fXY (ω)) be the phase of fXY (ω), which we may write in terms of
the real and imaginary parts of fXY (ω),

θ(fXY (ω)) = arctan
Im(fXY (ω))

Re(fXY (ω))

so that
fXY (ω) = |fXY | exp (iθ(fXY (ω))) .

The function θ(fXY (ω)) is often called the phase coherence. The coher-
ence is then the complex-valued function defined by

ρXY (ω) = fXY (ω)√
fX(ω)fY (ω)

.

This complex-valued coherence contains phase information, which is
necessary when considering the tendency of two signal components
at frequency ω to vary together. The magnitude of the coherence is
often considered to be a measure of phase-locking of the two signals,
but it also depends on the relationship of their amplitudes.
A more complete explanation of coherence is beyond the scope of our
presentation here.14 �

From a pair of observed time series the squared coherence may be estimated by

14 One helpful fact is that an average coherence across a given frequency band may be shown to be
equal to the complex-valued correlation between band-pass filtered versions of the two series; see
Ombao and Vanbellegem (2008).
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ρ̂2
XY (ω) = |f̂XY (ω)|2

f̂X(ω)f̂Y (ω)
(18.58)

where, again, f̂XY (ω) is a smoothed version of the DFT of γ̂XY (h). However, the
smoothing in this estimation process is crucial. The raw cross-periodogram IXY (ω)

satisfies the relationship
|IXY (ω)|2 = IX(ω)IY (ω)

so that plugging the raw periodograms into (18.58) will always yield the value 1.
Thus, again, it is imperative to smooth periodograms before interpreting them.

Example 18.4 (continued from p. 553) Brovelli et al. collected approximately
900 successful Go trials, using data from 90 ms prior to stimulus onset to 500 ms
after onset. They subtracted out the trial-averaged signals to produce approximately
stationary multiple time series. To look for the presence of beta oscillations in sen-
sorimotor cortex they recorded from six sites in one animal and four in another. The
sites are shown in Fig. 18.17. The sites shown in part A of the figure appear to be in
(1) the arm area of primary motor cortex (M1), (2) the arm area of sensory cortex
(S1), (3) anterior intraparietal cortex (AIP, object and hand shape representation),
(4) lateral intraparietal cortex (used in guiding saccades and identifying visual loca-
tions), (5) ventral premotor cortex, (6) dorsal premotor cortex. In part B of the figure
the sites appear to be in (1) the wrist area of M1 or ventral premotor cortex, (2) the
wrist area of S1, (3) AIP, (4) medial intraparietal cortex (related to goals or targets
of intended reach).

The authors computed squared coherence for each pair of sites, as in (18.57), with
ω in the beta range, then found the maximum squared coherence across all values of
ω, and performed a permutation significance test (see Section 11.2.1) to see whether
that maximum was sufficiently large to form clear evidence of underlying coherence
in LFP across brain regions. Their results are depicted on the left side of Fig. 18.17.
The authors found that primary motor cortex (M1, site 1 in both monkeys), primary
sensory cortex (S1, site 2), and anterior intraparietal cortex (AIP, site 3) were all
engaged in coherent oscillatory activity during the task. �

18.5.2 In examining cross-correlation or coherence of two time
series it is advisable first to pre-whiten the series.

In Section 12.2.3 we highlighted the importance of the assumption of independent
errors in linear regression: we showed that the squared correlation between two
independent AR(1) time series is likely to be statistically significant, erroneously
indicating association. A similar phenomenon occurs for the cross-correlation, and
for coherence. To avoid it, the serial dependence should be removed from the two
series before the cross-correlation or coherence is computed. For example, if we
have two series x1, . . . , xn and y1, . . . , yn we could fit appropriate AR models to each

http://dx.doi.org/10.1007/978-1-4614-9602-1_11
http://dx.doi.org/10.1007/978-1-4614-9602-1_12


558 18 Time Series

(a)

(b)

Fig. 18.17 Figure adapted from Brovelli et al. showing coherence and Granger causality among six
recording sites in one monkey (part A) and four in another (part B). On the left are lines representing
statistically significant coherence between a pair of sites (p < .005 based on a permutation test
with a correction for multiple comparisons), with thickness indicating the magnitude of coherence
as shown on the scale graphic in the middle of the figure. On the right are lines, some of which have
arrows, representing statistically significant Granger causality, with magnitudes again indicated by
line thickness as shown on the scale graphic in the middle of the figure. Recording sites are shown
above and below the scale graphic.

series and then work instead with the residuals obtained from subtracting the AR fits.
An alternative procedure involves fitting an AR (or ARMA) model then applying a
suitable filter that removes the serial dependence. See Box et al. (2008) for discussion
of this approach.
Example 18.2 (continued from p. 518) In their study Logothetis et al. (2001)
reported the distribution of R2 values between15 LFP and BOLD signals across
trials, which were generally substantial, with a mean of .52. Before computing these
correlations, however, they pre-whitened the series using AR(10) models. �

15 Actually, they reported R2 between stimulus-based impulse response functions (see p. 544) found
from the LFP and BOLD signals.
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18.5.3 Granger causality measures the linear predictability
of one time series by another.

The squared coherence provides a frequency-based measure of linear association
between two time series. Just as the correlation Cor(X, Y) is symmetrical in its argu-
ments X and Y , so too is the squared coherence. In contrast, regression is directional.
We now develop a simple directional assessment of linear predictability of one time
series from another.

The idea is very simple. In ordinary regression we assess the influence of a variable
(or set of variables) X2 on Y in the presence of another variable (or set of variables)
X1 by examining the reduction in variance when we compare the regression of Y on
(X1, X2) with the regression of Y on X1 alone. If the variance is reduced sufficiently,
then we conclude that X2 helps explain (predict) Y . Here, we replace Y with Yt ,
replace X1 with {Ys, s < t} and X2 with {Xs, s < t}. In other words, we examine
the additional contribution to predicting Yt made by the past observations of Xs after
accounting for the autocorrelation in {Yt}. The “causality” part comes when the past
of Xs helps predict Yt but the past of Ys does not help predict Xt .

Let us begin by defining what it means for {(Xt, Yt), t ∈ Z} to follow a joint
AR(p) process. Working by analogy with the definition (18.27), we write

(
Xt

Yt

)
=

p∑

i=1

(
φXX

i φXY
i

φYX
i φYY

i

)(
Xt−i

Yt−i

)
+

(
WX|XY

t

WY |XY
t

)
(18.59)

where WX|XY
t and WY |XY

t are independently N(0,σ2
X|XY ) and N(0,σ2

Y |XY ). The nota-
tional superscripts and subscripts X|XY and Y |XY are used to indicate variables
or variances for the joint AR(p) model (18.59), in which both X1, . . . , Xt−p and
Y1, . . . , Yt−p appear on the right-hand side. This is in contrast to the usual univariate
AR(p) models for {Yt, t ∈ Z},

Yt =
p∑

i=1

φY
i Yt−i +WY

t , (18.60)

where WY
t are independently16 N(0,σ2

Y |Y ), and for {Xt, t ∈ Z},

Xt =
p∑

i=1

φX
i Xt−i +WX

t , (18.61)

where WX
t are independently N(0,σ2

X|X). We may now say that {Xt, t ∈ Z} is pre-
dictive of {Yt, t ∈ Z} if σY |XY < σY |Y . In this situation, {Xt, t ∈ Z} is also said to be

16 Here σ2
Y |Y is a constant; the notation is intended only to indicate that it is the error variance when

Y appears on both the left-hand side and the right-hand side of the model.
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Granger causal of {Yt, t ∈ Z}. Similarly, we say {Yt, t ∈ Z} is predictive (Granger
causal) of {Xt, t ∈ Z} if σX|XY < σX|X . This kind of predictability is often quantified
by the Granger causality measure

FX→Y = 2 log
σY |Y
σY |XY

.

Theoretical analysis of this approach was given by Geweke (1982), based on earlier
work by Granger (1969).17

In applications, to evaluate whether a time series xt , t = 1, . . . , n is predictive of
yt , t = 1, . . . , n, the basic procedure is to (1) fit a bivariate AR(p) model, then (2) test
the hypothesis H0 : φYX

i = 0 for all i, which is equivalent to testing H0 : FX→Y = 0.

Illustration As an illustration, we simulated a bivariate time series of length 1,000
using the model

Xt = .5Xt−1 + Ut

Yt = .2Yt−1 + .5Xt−1 + Vt

where Ut ∼ N(0, (.2)2) and Vt ∼ N(0, (.2)2), independently. We then fit a linear
regression model of the form

Yt = β0 + β1Yt−1 + β2Xt−1 + εt

and, similarly, fit another model of the same form but with the roles of X and Y
reversed. The results for the two regressions are shown in the following table.

Variable Coefficient Std. Err. t-ratio p-value

Intercept −.001 .006 −.211 .83
xt−1 .496 .012 42.7 <10−15

yt−1 .192 .018 10.7 <10−15

Intercept .008 .016 .536 .59
xt−1 .508 .029 17.1 < 10−15

yt−1 −.055 .045 −1.3 .228

As expected, the first fit indicates that Xt−1 provides additional information beyond
Yt−1 in predicting Yt , while the second fit shows that Yt−1 does not provide additional
information beyond Xt−1 in predicting Xt . This is sometimes summarized by saying

17 In addition, Geweke (1982) defined a spectral measure fX→Y (ω) representing the ω-component
of Granger causality in the sense that

FX→Y =
∫ 1

2

− 1
2

fX→Y (ω)dω.
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Xt is causally related to Yt , but we must keep in mind that “causal” is used in a
predictive, time-directed sense. �
This illustration sweeps under the rug the selection of auto-regressive order p in part
of the problem, in step (1) above. In applications this is non-trivial, and care should
be taken to make sure interpretations do not depend on choices of p that involve
substantial uncertainty.

Example 18.4 (continued from p. 556) Results of Brovelli et al. based on coher-
ence analysis were discussed on p. 556 and were displayed on the left-hand side
of Fig. 18.17. Those authors went on to fit an AR(10) model to the data from both
monkeys, noting that AR(5) and AR(15) gave consistent results, and that AIC (see
Section 11.1.6) would select AR(15) (they considered AR(p) models up through order
p = 15). They then applied Granger causality18 analysis, which allowed them to
produce the additional directional interpretations shown on the right-hand side of
Fig. 18.17. In particular, beta rhythms in primary sensory cortex (site 2 in both mon-
keys) were predictive of the rhythms in other locations, while primary motor cortex
(site 1) tended to be predicted by both sensory and AIP signals and was itself only
weakly predictive of signals at other sites. �

18 They used the spectral decomposition mentioned in the footnote on p. 559 to plot the frequency
representation of Granger causality, found its peak, and performed a permutation test analogously
to what they had done in analyzing coherence.

http://dx.doi.org/10.1007/978-1-4614-9602-1_11


Chapter 19
Point Processes

At the beginning of this book, in Example 1.1 (p. 3), we described the activity of a
neuron recorded from the supplementary eye field. Interpreting Fig. 1.1 we said that,
toward the end of each trial, the neuron fired more rapidly under one experimental
condition than under the other. In that discussion we took for granted one of the
foundational teachings1 of neurophysiology, that neurons respond to a stimulus or
contribute to an action by increasing their firing rate. But what, precisely, do we
mean by “firing rate?” The definition of firing rate turns out to be both subtle and
important for statistical analysis of neural data.

Perhaps the simplest conception is that firing rate (FR) is number of spikes (action
potentials) per unit time. To compute it we would then count spikes over a time
interval of length �t and write

FR = number of spikes

�t
. (19.1)

While useful in many contexts, Eq. (19.1) suffers from a fundamental difficulty: it
depends strongly on the interval used in the calculation. As an extreme case, suppose
we were to examine an interval of length �t = 100 ms containing a single spike.
Rewriting in terms of seconds, we get �t = .1 s (seconds) and this would give us
FR = 10 spikes per second (10 Hz). But now suppose we shrink the interval down
to �t = 5 ms. Then we would have �t = .005 s and we would get FR = 200 Hz,
which is drastically different. How would we know what interval to choose?

To avoid this conundrum, and to begin the process of formulating a statistical
model, we do two things. First, we replace the spike count by its theoretical coun-
terpart, the expected spike count, and then we pass to the limit as �t → 0 so
that we obtain a firing rate at time t that no longer involves an interval. In other
words, we define a theoretical instantaneous firing rate. Note that for small �t the

1 Description of this phenomenon began with work of Edgar Adrian and Keffer Hartline and their
colleagues (e.g., Adrian and Zotterman 1926; Hartline and Graham 1932).
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spike count in (19.1) is either 0 or 1, which is a Bernoulli event with expected value
P(spike in (t, t+�t)). The theoretical instantaneous firing rate at time t then becomes

FR(t) = lim
�t→0

P(spike in (t, t +�t))

�t
. (19.2)

However, the definition in (19.2) omits any mention of the experimental context of
the observed firing rate. A more inclusive way to write firing rate as a function of
time is to allow it to depend on variables we write, collectively, as a vector xt . The
vector xt might refer to an experimental condition or it could involve such things as
refractory effects due to a previous spike shortly before time t (see Section 19.1.3),
or a local field potential that represents a substantial component of synaptic input
to the cell. We therefore have a more complete conceptualization of firing rate by
putting it in the form

FR(t|xt) = lim
�t→0

P(spike in (t, t +�t)|xt)

�t
. (19.3)

To flesh this out we must say how we calculate the probability in the numerator of
(19.3), which will take us through Section 19.3.2. Granting that we will get there,
we may state the central idea in statistical modeling of spike train data: neurophys-
iological phenomena may be represented through variables xt that are thought to
influence spiking activity. A statistical model for spike trains involves two things:
(1) a simple, universal formula for the probability density of the spike train in terms
of the instantaneous firing rate function, and (2) a specification of the way the firing
rate function depends on variables xt .

A major theme of this book is the use of probability to describe variation. In
Chapter 3 we considered events, which led to our description of variation using
probability distributions, and in Chapter 18 we examined sequences of temporally-
dependent observations, which were modeled as time series. Spike trains, however,
don’t quite fit into any of the molds we have constructed in the foregoing chap-
ters. They are sequences of varying event times, times at which action potentials
(spikes) occur—in repeated trials the spike times typically vary, as may be seen in
Fig. 1.1 of Example 1.1. To handle such sequences of event times we invoke a spe-
cial class of models called point processes. As we discuss in Section 19.3.4, the tools
needed for fitting point processes to spike train data are generalized linear models
(Chapter 14) and nonparametric regression (Chapter 15). Indeed, the models we dis-
cuss that involve instantaneous firing rate, conceptualized by (19.3), are called point
process regression models. The purposes of this chapter are, first, to review the way
point process representations of spike trains are defined in terms of instantaneous
firing-rate functions and, second, to show how point process regression models help
in understanding neural behavior.

The name “point process” reflects the localization of the events as points in time
together with the notion that the probability distributions evolve across time accord-
ing to a stochastic process. Point processes can be more general, so that the points

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_14
http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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can lie in a higher-dimensional physical or abstract space. In PET imaging, for exam-
ple, a radioisotope that has been incorporated into a metabolically active molecule is
introduced into the subject’s bloodstream and after these molecules become concen-
trated in specific tissues the radioisotopes decay, emitting positrons which may be
detected. These emissions represent a four-dimensional spatiotemporal point process
because they are localized occurrences both spatially, throughout the tissue, and in
time. Here, however, we focus on point processes in time and their application to
modeling spike trains.

The simplest point processes are Poisson processes, which are memoryless in the
sense that the probability of an event occurring at a particular time does not depend
on the occurrence or timing of past events. In Section 19.2.1 we discuss homogeneous
Poisson processes, which can describe highly irregular sequences of event times that
have no discernible temporal structure. When an experimental stimulus or behavior is
introduced, however, time-varying characteristics of the process become important.
In Section 19.2.2 we discuss Poisson processes that are inhomogeneous across time.
In Section 19.3 we describe ways that more general processes can retain some of the
elegance of Poisson processes while gaining the ability to describe a rich variety of
phenomena.

Spike trains are fundamental to information processing in the brain, and point
processes form the statistical foundation for distinguishing signal from noise in spike
trains. We have already seen in Chapters 14 and 15 examples of spike train analysis
using Poisson regression with spike counts. For this purpose, the Poisson regression
model may be conceptualized as involving counts observed over time bins of width
�t based on a neural firing rate FR(t). In Poisson regression, each Poisson distribution
has mean equal to FR(t) ·�t and then FR(t) is related to the stimulus (or the behavior)
by a formula we may write in short-hand as

log FR(t) = stimulus effects, (19.4)

meaning that log FR(t) is some function that is determined by the stimulus or behav-
ior. In Example 14.5, for instance, the right-hand side of (19.4) involved a quadratic
function that represented the effective distance of a rat from the preferred location of
a particular hippocampal place cell, and the result was a Poisson regression model
of the place cell’s activity. This sort of model may be considered a kind of simplified
prototype. When we pass to the limit as in (19.2) and use instantaneous firing rate,
the Poisson regression model becomes a Poisson process regression model.

Poisson processes are important, and they are especially useful for analyzing the
trial-averaged firing rate. When, in Example 15.1, we displayed the smoothed PSTH
under two experimental conditions, we were comparing two trial-averaged firing-
rate functions. We spell this out in Section 19.3.3. On the other hand, many phenom-
ena can only be studied within trials. For instance, oscillatory behavior, bursting,
and some kinds of influences of one neuron on another show substantial variation
across trials and may be difficult or impossible to detect from across-trial sum-
maries like the PSTH. Careful examination of spike trains within trials usually reveals
non-Poisson behavior: neurons tend not to be memoryless, but instead exhibit effects

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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of their past history of spiking (e.g., of refractory effects or recent burst activity).
Non-Poisson models that incorporate history effects are described in Section 19.3,
and methods developed in that section produce within-trial analyses of spike trains.
In such cases, the instantaneous firing rate takes the form (19.3) and Eq. (19.4) must
be modified by including additional terms (as components of the variable xt) on the
right-hand side to incorporate effects that occur differently on each trial. For instance,
a firing-rate model might have the form

log FR(t|xt) = stimulus effects+ history effects+ coupling effects. (19.5)

In Section 19.3.4 we indicate how spike train data may be analyzed by fitting models
suggested by conceptualizations like (19.5), again using the methods developed in
Chapters 14 and 15.

19.1 Point Process Representations

19.1.1 A point process may be specified in terms of event times,
inter-event intervals, or event counts.

If s1, s2, . . . , sn are times at which events occur within some time interval we may
take xi = si − si−1, i.e., xi is the elapsed time between si−1 and si, and define
x1 = s1. This gives the inter-event waiting times xi from the event times and we
could reverse the arithmetic to find the event times from a set of inter-event waiting
times x1, . . . , xn using sj = ∑j

i=1 xi. In discussing point processes, both of these
representations are useful. In the context of spike trains, s1, s2, . . . , sn are the spike
times, while x1, . . . , xn are the inter-spike intervals (ISIs). Nearly all of our discussion
of event-time sequences will involve modeling of spike train behavior.

To represent the variability among the event times we let X1, X2, . . . be a sequence
of positive random variables. Then the sequence of random variables S1, S2, . . .

defined by Sj = ∑j
i=1 Xi is a point process on (0,∞). In fitting point processes to

data, we instead consider finite intervals of time over which the process is observed,
and these are usually taken to have the form (0, T ], but for many theoretical purposes
it is more convenient to assume the point process ranges across (0,∞).

Another useful way to describe a set of event times is in terms of the counts of
events observed over time intervals. The event count in a particular time interval may
be considered a random variable. For theoretical purposes it is helpful to introduce
a function N(t) that counts the total number of events that have occurred up to
and including time t. N(t) is called the counting process representation of the point
process. See Fig. 19.1. If we let �N(t1,t2] denote the number of events observed in
the interval (t1, t2], then we have �N(t1,t2] = N(t2) − N(t1). The count �N(t1,t2] is
often called the increment of the point process between t1 and t2. In the case of a

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Fig. 19.1 Multiple specifications for point process data: the process may be specified in terms of
spike times, waiting times, counts, or discrete binary indicators.

neural spike train, Si would represent the time of the ith spike, Xi would represent
the ith inter-spike interval (ISI), and �N(t1,t2] would represent the spike count in the
interval (t1, t2]. For event times Si and inter-event waiting times Xi we are dealing
with mathematical objects that are already familiar, namely sequences of random
variables, with the index i being a positive integer. The counting process, N(t), on
the other hand, is a continuous-time stochastic process, which determines count
increments that are random variables.

Keeping track of the times at which the count increases is equivalent to keeping
track of increments. Furthermore, for successive spike times si and si+1,if we set
t1 = si and consider t2 < si+1 then �N(t1,t2] = 0 but when t2 = si+1 then �N(t1,t2] =
1. Thus, keeping track of the times at which the count increases is equivalent to
keeping track of events themselves and, therefore, the counts provide a third way to
characterize a point process.

As an example of the way we may identify the event times with the counting
process, the set of times for which the counting process is less than some value j,
{t : N(t) < j}, is equivalent to the set of times for which the jth spike has not yet
occurred,

{
t : Sj > t

}
. Both of these representations express the set of all times that

precede the jth spike, but they do so differently. We can describe a point process
using spike times, interspike intervals, or counting processes and specifying any
one of these fully specifies the other two. It is often possible to simplify theoretical
calculations by taking advantage of these multiple equivalent representations.

19.1.2 A point process may be considered, approximately,
to be a binary time series.

At the beginning of the chapter we said that point process data are analyzed using
the framework of generalized linear models. This requires the discrete representation
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given at the bottom of Fig. 19.1. The event times, inter-event intervals, and count-
ing process all specify the point process in continuous time. Suppose we take an
observation interval (0, T ] and break it up into n small, evenly-spaced time bins.
Let �t = T/n, and ti = i · �t, for i = 1, . . . , n. We can now consider the discrete
increments �Ni = N(ti)−N(ti−1), which count the number of events in a single bin.
If we make �t small enough, it becomes extremely unlikely for there to be more than
one event in a single bin. The set of increments {�Ni; i = 1, . . . , n} then becomes a
sequence of 0s and 1s, with the 1s indicating the bins in which the events are observed
(see Fig. 19.1). In the case of spike trains, data are often recorded in this form, with
�t = 1 ms. To emphasize the point, we define Yi = �Ni, and put pi = P(Yi = 1),
so that Yi ∼ Bernoulli(pi). The Yis form a binary time series, that is, a sequence
of Bernoulli random variables that may be inhomogeneous (the pi may be differ-
ent) and/or dependent. Such a discrete-time process is yet another way to represent
a point process, at least approximately. It loses some information about the precise
timing of events within each bin, but for sufficiently small �t this loss of information
becomes irrelevant for practical purposes. Also, for small �t we have small pi and
the Bernoulli distributions may be approximated by Poisson distributions, according
to the result in Section 5.2.2. In other words, for small �t we may consider the point
process to be essentially a sequence of Poisson random variables. This will allow
us to use Poisson regression methods (which are part of generalized linear model
methodology) in analyzing data modeled as point processes. The rest of this chapter
is largely devoted to filling in the details and fleshing out the consequences, thereby
supplying the substance behind the informal statements (19.4) and (19.5).

19.1.3 Point processes can display a wide variety
of history-dependent behaviors.

In many stochastic systems, past behavior influences the future. The biophysical
properties of ion channels, for example, make it impossible for a neuron to fire
again immediately following a spike, creating a short interval known as the absolute
refractory period. In addition, after the absolute refractory period there is a relative
refractory period during which the neuron can fire again, but requires stronger input
in order to do so. These refractory effects are important cases of history dependence in
neural spike trains. To describe spike train variability accurately (at least for moderate
to high firing rates where the refractory period is important), the probability of a spike
occurring at a given time must depend on how recently the neuron has fired in the
past. A more complicated history-dependent neural behavior is bursting, which is
characterized by short sequences of spikes with small interspike intervals. In addition,
spike trains are sometimes oscillatory. For example, neurons in the CA1 region of
rodent hippocampus tend to fire at particular phases of the EEG theta rhythm. Thus,

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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in a variety of settings, probability models for spike trains make dependence on
spiking history explicit.

Example 19.1 Retinal ganglion cell under constant conditions Neurons in the
retina typically respond to patterns of light displayed over small sections of the visual
field. When retinal neurons are grown in culture and held under constant light and
environmental conditions, however, they will still spontaneously fire action poten-
tials. In a fully functioning retina, this spontaneous activity is sometimes described
as background firing activity, which is modulated as a function of visual stimuli.
A short segment of the spiking activity from one neuron appeared in Fig. 16.1. A
histogram of the ISIs appears in the left panel of Fig. 19.10. Even though this neuron
is not responding to any explicit stimuli, we can still see structure in its firing activity.
Although most of the ISIs are shorter than 20 ms, some are much longer: there is a
small second mode in the histogram around 60–120 ms. This suggests that the neu-
ron may experience two distinct states, one in which there are bursts of spikes (with
short ISIs) and another, more quiescent state (with longer ISIs). From Fig. 16.1 we
may also get an impression that there may be bursts of activity, with multiple spikes
arriving in quick succession of one another. �

Example 19.2 Beta oscillations in Parkinson’s disease Parkinson’s disease, a
chronic progressive neurological disorder, causes motor deficits leading to difficulty
in movement. Clinical studies have shown that providing explicit visual cues, as
guides, can improve movement in many patients, a possible explanation being that
cortical drive associated with cues may lead to dampening of pathological beta oscil-
lations (10–30 Hz) in the basal ganglia. To investigate this phenomenon, Sarma et al.
(2012) recorded from neurons in the basal ganglia (specifically, the substantia nigra)
while patients carried out a hand movement task. Because the period associated with
a 20 Hz oscillation is 50 ms, if a neuron’s activity is related to a beta oscillation it will
tend to fire roughly every 50 ms. Therefore, its probability of firing at time t will be
elevated if it fired previously 50 ms prior to time t. This is a form of history effect,
which the authors built into their neural models in order to examine whether it was
dampened due to visual cues. �

Example 19.3 Spatiotemporal correlations in visual signaling To better under-
stand the role of correlation among retinal ganglion cells, Pillow et al. (2008) exam-
ined 27 simultaneously-recorded neurons from an isolated monkey retina during
stimulation by binary white noise. The authors used a model having the form of
(19.5). They concluded, first, that spike times appear more precise when the spiking
behavior of coupled neighboring neurons is taken into account and, second, that in
predicting (decoding) the stimulus from the spike trains, inclusion of the coupling
term improved prediction by 20 % compared with a method that ignored coupling
and instead assumed independence among the neurons. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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19.2 Poisson Processes

19.2.1 Poisson processes are point processes
for which event probabilities do not depend on
occurrence or timing of past events.

The discussion in Section 19.1.3 indicated the importance of history dependence in
spike trains. On the other hand, a great simplification is achieved by ignoring history
dependence and, instead, assuming the probability of spiking at a given time has
no relationship with previous spiking behavior. This assumption leads to the class
of Poisson processes, which are very appealing from a mathematical point of view:
although they rarely furnish realistic models for data from individual spike trains,
they are a pedagogical—and often practical—starting point for point processes in
much the way that the normal distribution is for continuous random variables. As we
shall see below, it is not hard to modify Poisson process models to make them more
realistic.

Two kinds of Poisson processes must be distinguished. When event probabilities
are invariant in time Poisson processes are called homogeneous; otherwise they are
called inhomogeneous. We begin with the homogeneous case.

Definition: A homogeneous Poisson process with intensity λ is a point process
satisfying the following conditions:

1. For any interval, (t, t +�t], �N(t,t+�t] ∼ P(μ) with μ = λ�t.
2. For any non-overlapping intervals, (t1, t2] and (t3, t4], �N(t1,t2]

and �N(t3,t4] are independent.

For spike trains, the first condition states that for any time interval of length �t,
the spike count is a Poisson random variable with mean μ = λ ·�t. In particular, the
mean, which is the expected number of spikes in the interval, increases in proportion
to the length of the interval. Furthermore, the distribution of the spike count depends
on the length of the interval, but not on its starting time: �N(t,t+ h] has the same
distribution as �N(s,s+ h] for all positive values of s, t, h. This homogeneous process
is time-invariant, and is said to have stationary increments. The second condition
states that the spike counts (the counting process increments) from non-overlapping
intervals are independent. In other words, the distribution of the number of spikes
in an interval does not depend on the spiking activity outside that interval. Another
way to state this definition is to say that a homogeneous Poisson process is a point
process with stationary, independent increments.

A detail: There is one technical point to check: we need to be sure
that the distributions of overlapping intervals, given in the definition
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above, are consistent. For example, if we consider intervals (t1, t2) and
(t2, t3) we must be sure that the Poisson distributions for the counts
in each of these are consistent with the Poisson distribution for the
count in the interval (t1, t3). Specifically, in this case, we must know
that the sum of two independent Poisson random variables with means
μ = λ(t2 − t1) and μ = λ(t3 − t2) is a Poisson random variable with
mean μ = λ(t3− t1). But this follows from the fact that if W1 ∼ P(μ1)

and W2 ∼ P(μ2) independently, and we let W = W1 + W2, then
W ∼ P(μ1 + μ2). We omit the details. �

We now come to an important characterization of homogeneous Poisson processes.

Theorem: A point process is a homogeneous Poisson process with intensity λ if and
only if its inter-event waiting times are i.i.d. Exp(λ).

Proof: We derive the waiting-time distribution for a homogeneous
Poisson process. Recalling that Xi is the length of the inter-event
interval between the (i − 1)st and ith event times, we have Xi > t
precisely when �N(Si−1,Si−1+t] = 0. From the definition of a homo-
geneous Poisson process, P

(
�N(Si−1,Si−1+t] = 0

) = e−λt . Therefore,
the CDF of Xi is FXi(t) = P (Xi ≤ t) = 1 − e−λt , which is the CDF
of an Exp(λ) random variable.
The converse of this theorem involves additional calculations and is
omitted. �

Recall from Section 5.4.2 that the exponential distribution is memoryless. Accord-
ing to this theorem, for a homogeneous Poisson process, at any given moment the
time at which the next event will occur does not depend on past events. Thus, the
homogeneous Poisson process “has no memory” of past events.

Another way to think about homogeneous Poisson processes is that the event times
are scattered “as irregularly as possible.” One characterization of the “irregularity”
notion is that, as noted on p. 120, the exponential distribution Exp(λ) maximizes the
entropy among all distributions on (0,∞) having mean μ = 1/λ. Here is another.

Result: Suppose we observe N(T) = n events from a homogeneous Poisson process
on an interval (0, T ]. Then the distribution of the event times is the same as that of
a sample of size n from a uniform distribution on (0, T ].
Proof: This appears as a corollary to the theorem on p. 577, where it is also stated
more precisely. �

Example 19.4 Miniature excitatory post-synaptic currents Figure 19.2 displays
event times of miniature excitatory postsynaptic currents (MEPSCs) recorded from
neurons in neonatal mice at multiple days of development. To record these events, the
neurons are patch clamped at the cell body and treated so that they cannot propagate
action potentials. These MEPSCs are thought to represent random activations of the
dendritic arbors of the neuron at distinct spatial locations, so that the two assumptions
of a Poisson process are plausible. The sequence of events in Fig. 19.2 looks highly

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Fig. 19.2 A sequence of MEPSC event times. The inter-event intervals are highly irregular.

Fig. 19.3 Histogram and P–P plot of MEPSC inter-event intervals. Left Overlaid (in red) on the
histogram is an exponential pdf. Right P–P plot falls within diagonal bands, indicating no lack of
fit according to the Kolmogorov-Smirnov test (discussed in Section 19.3.5).

irregular, with no temporal structure. Figure 19.3 displays a histogram of the intervals
between MEPSC events. The distribution of waiting times is captured well by an
exponential fit, as shown both in left panel of Fig. 19.3 and in the P–P plot, in the
right panel, which compares2 the empirical CDF to that of an exponential. �

Important intuition may be gained by considering a discrete time representation
of a sequence of event times, as discussed in Section 19.1.2. Suppose we have an
observation interval (0, T ] and we consider partitioning (0, T ] into successive time
bins of width �t. If we make �t sufficiently small we can force to nearly zero the
probability of getting more than 1 event in any time bin. We then ignore the possibility
of getting more than 1 event in any bin and, as in Section 19.1.2, we then let Yi be
the binary random variable that indicates whether an event has occurred in the ith
time bin with P(Yi = 1) = pi, for i = 1, . . . , n (so that there are n time bins and
T = n�t). Each Yi is a Bernoulli (pi) random variable. If these Bernoulli random
variables are homogeneous (p1 = p2 = · · · = pn = p for some p) and independent,
so that they form Bernoulli trials, then we have

1. For the ith time bin (i�t, (i + 1)�t], �N(i�t,(i+1)�t) ∼ Bernoulli (p).

2 The small deviation of the curve from the diagonal in the lower left-hand corner of the P–P plot
is probably due to inaccuracy of measurement for very short inter-event intervals.
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2. For any two distinct time bins, (i�t, (i + 1)�t] and (j�t, (j + 1)�t],
�N(i�t,(i+1)�t) and �N(j�t,(j+1)�t) are independent.

Let us now put λ = p/�t and use the Poisson approximation to the binomial dis-
tribution (see Section 5.2.2) as �t → 0. The two properties above then become
essentially (for sufficiently small �t) the same as the two properties in the definition
of a Poisson process, given on p. 570. Therefore, leaving aside some mathematical
details (see (19.11)), we may say that the sequence of Bernoulli trials converges to a
Poisson process as �t→ 0. That is, a homogeneous Poisson process is essentially a
sequence of Bernoulli trials. We used this idea repeatedly in interpreting the Poisson
distribution in Section 5.2. Rewriting μ = p/�t as p = λ�t and replacing �t with
the infinitesimal dt we obtain the shorthand summary

P(event in (t, t + dt]) = λdt. (19.6)

We extend the fundamental connection between Bernoulli random variables and
Poisson processes (and therefore also Poisson distributions) to the inhomogeneous
case in Section 19.2.2.

19.2.2 Inhomogeneous Poisson processes have time-varying
intensities.

We made two assumptions in defining a simple Poisson process: that the increments
were (i) stationary, and (ii) independent for non-overlapping intervals. The first step in
modeling a larger class of point processes is to eliminate the stationarity assumption.
For spike trains, we would like to construct a class of models where the spike count
distributions vary across time. In terms of the Bernoulli-trial approximation, we wish
to allow the event probabilities pi to differ.

Definition: An inhomogeneous Poisson process with intensity function λ(t) is
a point process satisfying the following conditions:

1. For any interval, (t, t +�t], �N(t,t+�t] ∼ P(μ) with μ = ∫ t2
t1
λ(t)dt.

2. For any non-overlapping intervals, (t1, t2] and (t3, t4], �N(t1,t2] and �N(t3,t4]
are independent.

This process is called an inhomogeneous Poisson process because it still has
Poisson increments but each increment has its own mean, determined by the value of
the rate function over the interval in question. The inhomogeneous Poisson process is
no longer stationary, but its increments remain independent and, as a result, it retains
the memoryless property, according to which the probability of spiking at any instant

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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does not depend on occurrences or timing of past spikes. In shorthand notation we
modify (19.6) by writing

P(event in (t, t + dt]) = λ(t)dt. (19.7)

At the beginning of the chapter we said that point process data are analyzed using
the framework of generalized linear models, and in Section 19.1.2 we identified as
a key step the representation of a point process as a binary time series, at least
approximately. To take this step we need to equate, at least approximately, the point
process likelihood function and the likelihood function for a suitable binary time
series. In general, a likelihood function is proportional to the joint pdf of the data.
Suppose we have observed event times s1, . . . , sn. We assume these arise as observed
values of random variables S1, . . . , SN(T), where N(T) is the number of event times
in (0, T ] and is itself a random variable. We write the joint pdf of s1, . . . , sn as
fS1,...,SN(T)

(s1, . . . , sn), where we acknowledge in our subscript notation3 that N(T)

is also a random variable (taking the value N(T) = n in data consisting of n events).
Now suppose this joint pdf depends on some parameter vector θ. The likelihood
function becomes

L(θ) = fS1,...,SN(T)
(s1, . . . , sn|θ). (19.8)

In Example 14.5, for instance, we could consider the spike times to follow an inhomo-
geneous Poisson process and the parameter vector in (19.8) would consist of the para-
meters characterizing the spatial place cell distribution, θ = (μx,μy,σx,σy,σxy). To
get a formula for the likelihood function, the mathematical result we need is the
formula for the joint pdf of the spike times. To be sure we get essentially the same
likelihood function when we instead treat the spike train as a binary time series we
also need a statement that the joint pdf of the spike times is approximately equal
to the joint pdf for the binary time series. We provide both of these results below.
We then also present an additional fact about inhomogeneous Poisson processes that
aids intuition.

We begin with the joint pdf.

Theorem The event time sequence S1, S2, . . . , SN(T) from a Poisson process
with intensity function λ(t) on an interval (0, T ] has joint pdf

fS1,...,SN(T)
(s1, . . . , sn) = exp

{
−

∫ T

0
λ(t)dt

} n∏

i=1

λ(si). (19.9)

Proof: See Section 19.4. �

3 A more explicit notation would be fS1,...,SN(T),N(T)(S1 = s1, . . . , SN(T) = sn, N(T) = n), see
p. 577, where we make explicit the randomness due to N(T).
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We now turn to our ability to treat an inhomogeneous Poisson process as if it were
approximately the same as a binary time series described in Section 19.1.2, with

P(event in (t, t +�t]) ≈ λ(t)�t. (19.10)

We give a rigorous statement that the joint pdf of the spike times is approximately
equal to the joint pdf for the corresponding binary time series. More specifically, we
show that the joint pdf in Eq. (19.9) is the limit of relevant binary pdfs as �t→ 0.

Let us consider a set of points s1, . . . , sn in the interval (0, T ] that, while concep-
tually representing event times, are for the purposes of the analysis below, taken to
be fixed. They represent the observed data. We will call them “atoms” because they
are points where probability mass will be placed. Suppose (0, T ] is decomposed into
N subintervals of length �t, so that �t = T/N . For i = 1, . . . , N let xi = 1 if the
ith subinterval contains one of the atoms and 0 otherwise.

Theorem Let λ(t) be a continuous function on [0, T ], set λi = λ(ti) for subinterval
midpoints ti, and let pi = (�t)λi. Then as �t→ 0 we have

1

(�t)n

n∏

i=1

pxi
i (1− pi)

1−xi → e−
∫ T

0 λ(t)dt
n∏

i=1

λ(si). (19.11)

To prove this result we need two lemmas. Let S = Sn be the set of i indices for
which xi = 1 and Sc the set of indices for which xi = 0.

Lemma 1 As �t→ 0 we have

∏

S

λ(ti)→
n∏

i=1

λ(si).

Proof: The lemma follows immediately from continuity of λ(t). �
Lemma 2 As �t→ 0 we have

∑

Sc

log(1− (�t)λi)→−
∫ T

0
λ(t)dt.

Proof: This follows immediately from a first-order Taylor series expansion of the log
(Equation (A.5)), together with the definition of the integral as a limit4 of sums. �
Proof of the theorem: Putting the two lemmas together we easily prove the theorem.
We have

4 The limit of the sum over Sc is the same as the limit of the sum over S ∪ Sc because S has n
elements for all sufficiently small values of �t, so that lim

∑
S �tλi = 0.
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1

(�t)n

N∏

i=1

pxi
i (1− pi)

1−xi = 1

(�t)n
(
∏

S

(�t)λi)(
∏

Sc

1− (�t)λi)

= (
∏

S

λi)e
∑

Sc log(1−(�t)λi)

→ e−
∫ T

0 λ(t)dt
n∏

i=1

λ(si). �

To recap: taken together, the two theorems above show that the inhomogeneous
Poisson process spike time joint pdf is approximately equal to a binary time series
joint pdf, which allows us to use the binary random variables Yi (with pi = P(Yi = 1))
defined in Section 19.1.2 in place of the Poisson process. The memorylessness of the
Poisson process translates into independence among the Yis. However, the values of
pi may vary across time, corresponding to the inhomogeneity of the process. Impor-
tantly, we may estimate λ(t) by likelihood methods, applying Poisson regression
with suitably small time bins (e.g., having width 1 ms).

Example 1.1 (continued) In Chapter 1 we introduced the SEF neuron example, the
problem being to characterize the neural response under two different experimen-
tal conditions. In Chapter 8 we returned to the example to describe the benefit of
smoothing the PSTH, and in Chapter 15, p. 422, we showed how smoothing may be
accomplished using Poisson regression splines. The smoothing model was

Yi ∼ P(λi) (19.12)

logλi = f (ti) (19.13)

where ti was the time at the midpoint of the ith time bin (of the PSTH), Yi was the
corresponding spike count in that bin, and f(t) was taken to be a natural cubic spline
with two knots at specified locations.

An inhomogeneous Poisson process model may be constructed that is very similar
to the PSTH-based regression model. To get a Poisson process model we must take
the time bins to be smaller—small enough that on any trial there is at most one spike
in any bin. For instance, we may take the bins to have width 1 ms. Then, we must
define the resulting binary counts: for trial r let Yri be 1 if a spike occurs in the ith
bin and 0 otherwise. We write the model

Yri ∼ P(λi) (19.14)

logλi = f (ti) (19.15)

where, again, f(t) is a natural cubic spline with two knots at the locations specified
previously. Comparing (19.14) and (19.15) with (19.12) and (19.13) we have a model
of almost the same form. Aside from the width of the time bins, the distinction is that
(19.14) and (19.15) is a within-trial model, in terms of Yri, while (19.12) and (19.13)
is a model that pools events across trials by using the PSTH spike counts Yi. It turns

http://dx.doi.org/10.1007/978-1-4614-9602-1_1
http://dx.doi.org/10.1007/978-1-4614-9602-1_8
http://dx.doi.org/10.1007/978-1-4614-9602-1_15


19.2 Poisson Processes 577

out that the intensity that results from fitting (19.14) and (19.15) is nearly identical to
the fit of f(t) resulting from (19.12) and (19.13). The closeness of results holds quite
generally because the smoothing of the PSTH is not very sensitive to the choice of
bin widths as long as the firing rate varies slowly enough to be nearly constant within
bins. Smoothing the PSTH amounts to fitting a Poisson process after jittering all the
spike times within a bin so that they are equal to the midpoint of that bin. �

The final theorem of this section gives another interesting way to think about
inhomogeneous Poisson processes. Let us begin by considering the PSTH, as used
in Examples 1.1 and 15.1. The PSTH is the peristimulus time histogram. But in what
sense is it a histogram? A histogram is a plot that displays counts, as does the PSTH,
but the counts are presumed to be repeated observations from a random variable, and
the histogram is supposed to be a rough estimate of the random variable’s pdf. What
are the repeated observations that generate the PSTH? And what pdf is it estimating?
The data are the event times. But, as we have already taken pains to point out, these
event times are not i.i.d. observations from a fixed distribution: they follow a point
process, which is different. How are they transformed into i.i.d. observations that
are suitable for making a histogram and estimating a pdf? While these questions are
puzzling at first, the answer turns out to be simple. According to the next theorem,
given some number n of events in an interval (0, T ], the event times will be scattered
across (0, T ] as if they were i.i.d. observations from a distribution having as its pdf
the normalized intensity λ(t). In other words, the positions of the event times are
just like i.i.d. observations; therefore, the PSTH is just like a histogram, and could
be treated as if it were an estimator of the normalized intensity function.

To state the result, let us first recall that the length of the sequence of event times
S1, S2, . . . , SN(T) depends on the random quantity N(T). Thus, to be more thorough
we might write the joint pdf above in the form

fS1,...,SN(T)
(s1, . . . , sn) = fS1,...,SN(T),N(T)(S1 = s1, . . . , SN(T) = sn, N(T) = n).

That is, the pdf on the left-hand side is really a short-hand notation for the pdf on
the right-hand side. This observation is used in the proof of the following theorem.
We will write fN (n) for the pdf of N(T) and note that, for a Poisson process with
intensity λ(t), N(T) ∼ P(μ) with μ = ∫ T

0 λ(t)dt.

Theorem Let S1, S2, . . . , SN(T) be an event sequence from a Poisson process with
intensity functionλ(t) on an interval (0, T ]. Conditionally on N(T) = n, the sequence
S1, S2, . . . , Sn, has the same joint distribution as an ordered set of i.i.d. observations
from a univariate distribution having pdf

g(t) = λ(t)
∫ T

0 λ(u)du
.

Proof: We write the conditional pdf as
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fS1,...,SN(T)
(s1, . . . , sn|N(T) = n) = fS1,...,SN(T)

(s1, . . . , sn)

fN (n)

= e−
∫ T

0 λ(t)dt ∏n
i=1 λ(si)

e−
∫ T

0 λ(t)dt

(∫ T
0 λ(t)dt

)n

n!

= n!
n∏

i=1

λ(si)∫ T
0 λ(t)dt

= n!
n∏

i=1

g(si).

Noting that there are n! ways to order the observations s1, . . . , sn, this completes the
proof. �

The theorem says that we may consider an inhomogeneous Poisson process with
intensity λ(t) to be equivalent to a two-stage process in which we (1) generate an
observation N = n from a Poisson distribution with mean μ = ∫ T

0 λ(t)dt; this tells
us how many events are in (0, T ]; we then (2) generate n i.i.d. observations from a
distribution having g(t) = λ(t)/

∫ T
0 λ(u)du as its pdf. We motivated the theorem by

suggesting that it shows how the PSTH acts like a histogram: the intensity function
λ(t) describes the event times that come from pooling together all the spike times
across all of the trials; the PSTH then estimates λ(t)/

∫ T
0 λ(u)du. Not only does

this explain the sense in which the PSTH is actually a histogram, it also motivates
application of a density estimator (e.g., a normal kernel density estimator or Gaussian
filter), as in Section 15.4, to smooth the PSTH.

When we specialize the theorem above to homogeneous Poisson processes we
get, as a corollary, the result stated as a theorem on p. 571.

Corollary Let S1, S2, . . . , SN(T) be an event sequence from a homogeneous Pois-
son process with intensity λ on an interval (0, T ]. Conditionally on N(T) = n, the
sequence S1, S2, . . . , Sn, has the same joint distribution as an ordered set of i.i.d.
observations from a uniform distribution on [0, T ].
Proof: This is a special case of the theorem in which λ(t) = λ so that g(t) = 1/T ,

i.e., g(t) is the pdf of the uniform distribution on (0, T ]. �

19.3 Non-Poisson Point Processes

19.3.1 Renewal processes have i.i.d. inter-event waiting times.

The homogeneous Poisson process developed in Section 19.2.1 assumed that the
point process increments were both stationary and independent of past event history.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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To accommodate event probabilities that change across time, we generalized from
homogeneous to inhomogeneous Poisson processes. This eliminated the assump-
tion of stationary increments but it preserved the independence assumption, which
entailed history independence. Systems that produce point process data, however,
typically have physical mechanisms that lead to history-dependent variation among
the events, which cannot be explained with Poisson models. Therefore, it is necessary
to further generalize by removing the independence assumption.

The simplest kind of history-dependent behavior occurs when the probability of
the ith event depends on the occurrence time of the previous event si−1, but not on
any events prior to that. If the ith waiting time Xi is no longer memoryless, then
P(Xi > t + h|Xi > t) may not be equal to P(Xi > u + h|Xi > u) when u �= t, but
Xi is independent of event times prior to Si−1, and is therefore independent of all
waiting times Xj for j < i. Thus, the waiting time random variables are all mutually
independent. In the time-homogeneous case, they also all have the same distribution.
A point process with i.i.d waiting times is called a renewal process. We already saw
that homogeneous Poisson processes have i.i.d. exponential waiting times. There-
fore, renewal processes may be considered generalizations of homogeneous Poisson
processes.

A renewal model is specified by the distribution of the inter-event waiting times.
Typically, this takes the form of a probability density function, fXi(xi), where xi

can take values in [0,∞). In principle we can define a renewal process using any
probability distribution that takes on positive values, but there are some classes of
probability models that are more commonly used either because of their distributional
properties, or because of some physical or physiological features of the underlying
process.

For example, the gamma distribution, which generalizes the exponential, may be
used when one wants to describe interspike interval distributions using two para-
meters: the gamma shape parameter gives it flexibility to capture a number of char-
acteristics that are often observed in point process data. If this shape parameter is
equal to one, then the gamma distribution simplifies to an exponential, which as we
have shown, is the ISI distribution of a simple Poisson process. Therefore, renewal
models based on the gamma distribution generalize simple Poisson processes, and
can be used to address questions about whether data are actually Poisson. If the shape
parameter is less than one, then the density drops off faster than an exponential. This
can provide a rough description of ISIs when a neuron fires in rapid bursts. If the
shape parameter is greater than one, then the gamma density function takes on the
value zero at xi = 0, rises to a maximum value at some positive value of xi, and
then falls back to zero. This can describe the ISIs for a relatively regular spike train,
such as those from a neuron having oscillatory input. Thus, this very simple class
of distributions with only two parameters is capable of capturing, at least roughly,
some interesting types of history dependent structure.

While the gamma distribution is simple and flexible, it doesn’t have any direct
connection with the physiology of neurons. For neural spiking data, a renewal model
with a stronger theoretical foundation is the inverse Gaussian. As described in
Section 5.4.6, the inverse Gaussian also has two parameters and is motivated by

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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the integrate-and-fire conception of neural spiking behavior. Thus, a renewal process
with inverse Gaussian ISIs would be a simple yet natural model for neural activity
in a steady state.

One way to quantify the regularity of a renewal process is through the ISI coeffi-
cient of variation. We noted in (3.14) that exponentially-distributed random variables
have CV = 1, so this corresponds to a Poisson process. When CV < 1 the process
is more regular than Poisson (as would be a spike train from an oscillatory neuron),
while when CV > 1 the process is more irregular than Poisson (as would be a spike
train from a bursty neuron). This regularity or irregularity of a renewal process will
also be apparent in the distribution of counts and is often measured by the Fano
factor,

F(t, t +�t) = V(�N(t,t+�t])
E(�N(t,t+�t])

.

For a Poisson process we have F(t, t +�t) = 1. The counts will be relatively less
dispersed for regular renewal processes, so that F(t, t+�t) < 1, and more dispersed
for irregular processes, so that F(t, t +�t) > 1.

A general result that has implications for spike train analysis is the renewal the-
orem, which5 examines the expected number of events in an interval (t, t + h] as
t → ∞. For a Poisson process with intensity λ we have E(�N(t,t+ h]) = λh, and
the waiting time distribution is exponential with mean μ = 1/λ. In other words, the
expected number of events in (t, t + h] is λh = h/μ, so that the expected number
of events is just the length of the interval divided by the average waiting time for an
event. For a renewal process the same statement is approximately true for large t.

Renewal Theorem Suppose a renewal process has waiting times with a continuous
pdf and a mean μ. Defining λ = 1/μ we have

lim
t→∞E(�N(t,t+ h]) = λh.

Proof: Omitted. �
Notice that if we take h sufficiently small in the renewal theorem, the count

�N(t,t+h] will, with high probability, be either 0 or 1 and then its expectation is
E(�N(t,t+h]) = P(�N(t,t+h] = 1). Thus, if we pick a large t and ask for the proba-
bility of an event in the infinitesimal interval (t, t + dt] by ignoring the time of the
most recent event and instead letting the renewal process start at time 0 and run until
we get to time t, we find that (19.6) continues hold.

A related result arises when we consider what happens when we combine multi-
ple renewal processes by pooling together all their event times. This sort of pooling
occurs, for example, in a PSTH when multiple spike trains are collected across mul-
tiple trials: in making the PSTH every spike time is used but the trial on which
it occurred is ignored. Such combination of point processes is called superpo-
sition. Specifically, if we have counting processes Ni(t), for i = 1, . . . , n then

5 A more general version of this result is often called Blackwell’s Theorem.

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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N(t) = ∑n
i=1 Ni(t) is the process resulting from superposition. First, we consider

the Poisson case.

Theorem For i = 1, . . . , n, let Ni(t) be the counting process representation of a
homogeneous Poisson process having intensity λi. Then the point process specified
by N(t) = ∑n

i=1 Ni(t) is a homogeneous Poisson process having intensity λ =∑n
i=1 λi.

Sketch of Proof: Because the sum of independent Poisson random variables is Pois-
son, condition 1 of the definition of a homogenous Poisson process is satisfied for
the superposition process. Because condition 2 is satisfied for all n independent
processes, it is also satisfied for the superposition process. �

Result The superposition of a large number of independent renewal processes
having waiting times with continuous pdfs and finite means is, approximately,
a Poisson process.

Proof: The mathematics involved in stating this result precisely are
rather intricate. We omit the proof, but offer the following heuristics
to make the result plausible.

Suppose that the n independent renewal processes have mean waiting
times μi = 1/λi, for i = 1, . . . , n. Let us consider intervals (t, t + h],
with h so small that, with large probability, across all n processes
at most 1 event occurs. Then the superposition increments �N(t,t+h]
are essentially binary variables. For the superposition to be Poisson,
these binary variables must be homogeneous and independent. By the
renewal theorem, for large t,

P(�Ni
(t,t+h] = 1) ≈ λih,

where λi = 1/μi and

P(�Ni
(t,t+h] = 0) ≈ 1− λih.

When we pool all the processes together, the event �N(t,t+ h] = 1 will
occur if at least one process has an event, and otherwise�N(t,t+ h] = 0,
which has probability

P(�N(t,t+h]=0) ≈ (1−λ1h)(1−λ2h) · · · (1−λnh) ≈ e−λt ≈ 1−λh

and this, in turn, shows that

P(�N(t,t+h] = 1) ≈ λh,
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as for a Poisson process, so that homogeneity holds, approximately.
As far as independence is concerned, the key point is that the renewal
processes are independent of one another, so that the only depen-
dence in the superposition is due to events from the same process,
which are very rare among the large numbers of events in the super-
position process. That is, if we assume n is so large that, for all k,
P(�N(t,t+h] = 1) >> P(�Nk

(t,t+h] = 1), then when we consider two
non-overlapping intervals (t1, t1 + h] and (t2, t2 + h], relative to the
superposition process, the probability that the kth process has events
in both intervals is negligible. This is another way of saying that the
identity of events in the superposition gets washed out as the number
of processes increases. �

By combining this superposition result and the renewal theorem we obtain a prac-
tical implication: the superposition of multiple renewal processes will be approxi-
mately a Poisson process, but we can expect the approximation to be better for large
t, after initial conditions die out. If, for example, we take multiple spike trains, and if
time t = 0 has a physiological meaning related to the conditions of the experiment,
then we may expect the initial conditions to affect the spike trains in a reproducible
way from trial to trial so that even after pooling we might see non-Poisson behavior
near the beginning of the trial; as such effects dissipate across time we would expect
the pooled spike trains to exhibit Poisson-process-like variation.

19.3.2 The conditional intensity function specifies the joint
probability density of spike times for a general point process.

In Section 19.2.2 we described the structure of an inhomogeneous Poisson process
in terms of an intensity function that characterized the instantaneous probability of
firing a spike at each instant in time, as in (19.6). In an analogous way, a general point
process may be characterized by its conditional intensity function. Poisson processes
are memoryless but, in general, if we want to find the probability of an event in a
time interval (t, t +�t] we must consider the timing of the events preceding time t.
Let us denote the number of events prior to t by N(t−),

N(t−) = maxu<tN(u).

We call the sequence of event times prior to time t the history up to time t and write
it as Ht = (S1, S2, . . . , SN(t−)). For a set of observed data we would write Ht =
(s1, s2, . . . , sn) with the understanding that N(t−) = n. The conditional intensity
function is then given by

λ(t|Ht) = lim
�t→0

P(�N(t,t+�t] = 1|Ht)

�t
, (19.16)
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where P(�N(t,t+�t] = 1|Ht) is the conditional probability of an event in (t, t +�t]
given the history Ht . Taking �t to be small we may rewrite Eq. (19.16) in the form

P(�N(t,t+�t] = 1|Ht) ≈ λ(t|Ht)�t. (19.17)

Or, in shorthand,
P(event in (t, t + dt]|Ht) = λ(t|Ht)dt, (19.18)

which generalizes (19.6). According to (19.18) the conditional intensity function
expresses the instantaneous probability of an event. It serves as the fundamental
building block for constructing the probability distributions needed for general point
processes.6 A mathematical assumption needed for theoretical constructions is that
the point process is orderly, which means that for a sufficiently small interval, the
probability of more than one event occurring is negligible. Mathematically, this is
stated as

lim
�t→0

P(�N(t,t+�t] > 1|Ht)

�t
= 0. (19.19)

This assumption is biophysically plausible for a point process model of a neuron
because neurons have an absolute refractory period. In most situations, the probability
of a neuron firing more than one spike is negligibly small for �t < 1 ms.

Once we specify the conditional intensity for a point process, it is not hard to
write down the pdf for the sequence of event times in an observation interval (0, T ].
In fact, the argument is essentially the same as in the case of the inhomogeneous
Poisson process, with the conditional intensity λ(t|Ht) substituted for the inten-
sity λ(t). The key observation is that the conditional intensity behaves essentially
like a hazard function, the only distinction being the appearance of the stochastic
history Ht .

Theorem The event time sequence S1, S2, . . . , SN(T) of an orderly point process on
an interval (0, T ] has joint pdf

fS1,...,SN(T)
(s1, . . . , sn) = exp

{
−

∫ T

0
λ(t|Ht)dt

} n∏

i=1

λ(si|Hsi) (19.20)

where λ(t|Ht) is the conditional intensity function of the process.

6 Because the history Ht = (S1, S2, . . . , SN(t−)) is itself a point process, it is stochastic and,
therefore, the conditional intensity is stochastic. The definition (19.18) includes two separable
steps: first, we define the conditional intensity

λ(t|s1, . . . , sn) = lim
�t→0

P(�N(t,t+�t] = 1|N(t−) = n, S1 = s1, . . . , Sn = sn)

�t

for every possible vector (s1, . . . , sn) making up the history Ht , and then we replace the specific
values N(t−) = n and (S1 = s1, . . . , Sn = sn) with their stochastic counterparts written as
Ht = (S1, S2, . . . , SN(t−)).
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Proof: See Section 19.4. �
Equation (19.20) has the same form as (19.9), the only distinction being the

replacement of the Poisson intensity λ(t) in (19.9) with the conditional intensity
λ(t|Ht) in (19.20).

We may also approximate a general point process by a binary process. For small
�t, the probability of an event in an interval (t, t +�t]

P(event in (t, t +�t]|Ht) ≈ λ(t|Ht)�t (19.21)

and the probability of no event is

P(no event in (t, t +�t]|Ht) ≈ 1− λ(t|Ht)�t. (19.22)

Equation (19.21) generalizes (19.10). If we consider the discrete approximation,
analogous to the Poisson process case, we may define pi =

∫
λ(t|Ht)dt where the

integral is over the ith time bin. We again get Bernoulli random variables Yi with
P(Yi = 1) = pi but now these Yi random variables are dependent, e.g., we may
have P(Yi = 1|Yi−1 = 1) �= pi. The theorem giving (19.11) holds again when we
replace λ(t) with λ(t|Ht). In practice, spike train analyses using dependent binary
variables are a little more complicated than those using independent binary vari-
ables, but it remains relatively easy to formulate history-dependent models for these
dependent variables by following a regression strategy that is very similar to that
used previously, on p. 576. We give examples in Section 19.3.4.

19.3.3 The marginal intensity is the expectation
of the conditional intensity.

Equation (19.16) gave the definition of the conditional intensity function. We now
define the unconditional or marginal intensity function as

λ(t) = lim
�t→0

P(�N(t,t+�t] = 1)

�t
. (19.23)

Definition (19.23) may be rewritten in some informative ways. First, note that if X
is a binary random variable its expectation is E(X) = P(X = 1), as in (15.2). For
�t sufficiently small, �N(t,t+�t] is a binary random variable so that (19.23) may be
written

λ(t) = lim
�t→0

E(�N(t,t+�t])
�t

. (19.24)

That is, the marginal intensity is the expected spike count density.

http://dx.doi.org/10.1007/978-1-4614-9602-1_15
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Next, according to the law of total probability (p. 86), for a pair of random variables
Y and X and an event A we have P(X ∈ A) = EY (P(X ∈ A|Y)). Letting Ht play the
role of Y and �N(t,t+�t] = 1 the role of X ∈ A, we get, similarly,

P(�N(t,t+�t] = 1) = EHt

(
P(�N(t,t+�t] = 1|Ht)

)

and

λ(t) = lim
�t→0

EHt

(
P(�N(t,t+�t] = 1|Ht)

)

�t
.

By interchanging7 the expectation and limiting operation we may then write

λ(t) = EHt (λ(t|Ht)). (19.25)

Equation (19.25) explains the name “marginal” intensity. The intensity λ(t) is mar-
ginal in much the same sense as when we have a pair of random variables (X, Y) and
speak of the distribution of X as a marginal distribution because it is derived by aver-
aging over all possible values of Y . Here, λ(t) results from averaging the conditional
intensity over all possible histories Ht . In the case of spike trains, the conditional
intensity would apply to individual trials, while the marginal intensity would be the
theoretical time-varying firing rate after averaging across trials. Importantly, we may
consider λ(t) to be the function being estimated by the PSTH. This does not require
us to assume the trials are in any sense all the same. There could be some source of
trial-to-trial variation, or even systematic variation (such as effects associated with
learning across trials). Consideration of λ(t) takes place whenever the average across
trials seems meaningful and interesting.

As in Eq. (19.17) we may also write

P(�N(t,t+�t] = 1) ≈ λ(t)�t (19.26)

and we have the shorthand

P(event in (t, t + dt]) = λ(t)dt, (19.27)

keeping in mind that we also take the left-hand side to mean

P(event in (t, t + dt]) = EHt P(event in (t, t + dt]|Ht).

Equation (19.27) must be compared with (19.18) and, of course, it has the same form
as (19.6). We may therefore think of the average across histories (for spike trains,
the average across trials) as defining a theoretical inhomogeneous Poisson process
intensity. This is the intensity that is estimated by the PSTH.

7 General theory justifying the interchange of limit and expectation applies here.
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The distinction between conditional and marginal intensities is so important for
spike train analysis that we emphasize it, as follows.

If we consider spike trains to be point processes, within trials the instantaneous
firing rate is λ(t|Ht) and we have

P(spike in (t, t + dt]|Ht) = λ(t|Ht)dt,

while the across-trial average firing rate is λ(t) and we have

P(spike in (t, t + dt]) = λ(t)dt.

19.3.4 Conditional intensity functions may be fitted
using Poisson regression.

On p. 576 we discussed the way Poisson regression may be used to fit inhomoge-
neous Poisson process models. The key theoretical result that made this possible was
Eq. (19.11) in conjunction with (19.10). As we said on p. 584, that theorem holds
again for conditional intensity functions using Eq. (19.21). This means that Poisson
regression can again be used for non-Poisson point processes.

We now give some examples in which conditional intensity functions have been
fitted to spike train data.

Example 19.1 (continued from p. 569) Let us take time bins to have width �t = 1
ms and write λk = λ(tk|Htk ), where tk is the midpoint of the kth time bin. Defining

logλk = α0 +
120∑

j=1

αj�N(k−j−1,k−j], (19.28)

we get a model with 120 history-related explanatory variables, each indicating
whether or not a spike was fired in a 1 ms interval at a different time lag. The para-
meter α0 provides the log background firing rate in the absence of prior spiking
activity within the past 121 ms. Using Poisson regression with ML estimation (as in
Section 14.1) we obtained α̂0 = 3.8 so that, if there were no spikes in the previous
121 ms, the conditional intensity would become λk = exp(α̂0) = 45 spikes per
second, corresponding to an average ISI of 22 ms. The MLEs α̂i obtained from the
data are plotted in Fig. 19.4, in the form exp{α̂i}. The α̂i values related to 0–2 ms
after a spike are large negative numbers, so that exp{α̂i} is close to zero, leading
to a refractory period when the neuron is much less likely to fire immediately after

http://dx.doi.org/10.1007/978-1-4614-9602-1_14
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Fig. 19.4 Parameter estimates for history-dependent retinal conditional intensity model (bold line)
together with confidence intervals (dotted line), which indicate uncertainty in the estimates (based
on maximum likelihood). The x-axis indicates the lag time in milliseconds.

another spike. However, the estimates related to 4–13 ms after a spike are substan-
tially positive, leading to an increase in the firing probability. For example, if the only
spike in the 120 ms history occurred 6 ms in the past, then the background conditional
intensity of 45 spikes per seconds is multiplied by a factor of about 3.1, leading to
a conditional intensity of 140 spikes per second. This phenomenon accounts for the
rapid bursts of spikes observed in the data. (The same data were discussed in the con-
text of burst detection in Example 16.3 on p. 458.) Many of the remaining parameters
are close to zero, and hence exp{α̂i} is close to one, indicating that the correspond-
ing history term has no effect on the spiking probability. Figure 19.5 displays the
ISI histogram with exponential and Inverse Gaussian renewal model pdfs overlaid,
and also the pdf for the model of Eq. (19.28). The exponential model overestimates
the number of very short ISIs (0–4 ms), and both renewal models underestimate the
number of ISIs between 5–10 ms and overestimate the number of ISIs between 10–
60 ms. In contrast, the conditional intensity model in Eq. (19.28) accurately predicts
the number of ISIs across all ISI lengths. �
Example 19.2 (continued) On p. 569 we said that a beta oscillation at 20 Hz could
be represented in the history effects as an elevated probability of firing at time t
when the neuron fired previously 50 ms prior to time t. Using Eq. (19.28) this would
be represented by positive αj coefficients around j = 50. Sarma et al. reduced the
number of parameters, replacing (19.28) with

logλk = α0 +
10∑

j=1

αj�Nk−j +
14∑

i=1

γi�N(k−(10i+9),k−10i]. (19.29)

In this version of the model, when γi is positive there is an increase in the log prob-
ability of firing when the neuron previously fired in the interval from 10i to 10i + 9
ms in the past. Thus, the presence of a beta oscillation would produce a positive
coefficient γ5 (corresponding to 50–59 ms in the past, or 17–20 Hz). An example of
a neuron having a positive γ5 coefficient was given by the authors, reproduced here
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(a) (b)

Fig. 19.5 ISI histogram and fitted pdfs. Panel a: ISI histogram overlaid with pdfs from exponential
(solid line) and inverse Gaussian (dashed line) renewal models. Panel b: ISI histogram overlaid
with pdf (solid line) from model defined by Eq. (19.28).

Fig. 19.6 Plots of γ coefficients using model (19.29) for a neuron recorded from the substantia
nigra for a cued hand movement. Left coefficients before initiation of movement. Right coefficients
after initiation of movement. Adapted from Sarma et al.

in Fig. 19.6. Results before and after movement initiation are shown in Fig. 19.6,
when an explicit visual cue showed the subject where to move. In this case there
was a dampening of beta oscillations during movement. The authors decomposed
the timing of beta oscillations further and found that, among many substantia nigra
cells, there was evidence of decreased beta oscillation beginning immediately fol-
lowing illumination of the visual cue. Based on additional results they suggested that
execution of a motor plan following a cue may be suppressing pathological activity
in the substantia nigra, which may explain improved task performance. �

A second way to introduce history dependence is to begin with the hazard function
of a renewal process and then modify the conditional intensity so that it can vary
across time. This extends to renewal processes the method used for allowing Poisson
processes to become inhomogeneous. In a homogeneous Poisson process, the waiting
times are not only i.i.d., they are also memoryless: the probability of an event does not
depend on when the last event occurred. To get an inhomogeneous Poisson process,
we retain the memorylessness but introduce a time-varying conditional intensity.
A simple idea is to take a renewal process and, similarly, introduce a time-varying
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factor. For a renewal process, the probability of an event at time t depends on the
timing of the most recent previous event s∗(t), but not on any events prior to s∗(t).
If we allow the conditional intensity to depend on both time t and the time of the
previous event s∗(t) we obtain a form

λ(t|Ht) = g(t, s∗(t)) (19.30)

where g(x, y) is a function to be specified. Models of this type are sometimes called
Markovian or Inhomogeneous Markov Interval (IMI) models.8 In an inhomogeneous
Poisson process the conditional intensity takes the form

λ(t|Ht) = g0(t)

where g0(t) becomes the intensity λ(t). In a renewal process the conditional intensity
takes the form

λ(t|Ht) = g1(t − s∗(t))

where g1(t − s∗(t)) becomes the hazard function for the waiting time distribution.
The IMI model generalizes both of these, creating an inhomogeneous version of a
renewal model.9 The simplest IMI model takes the conditional intensity to be of the
multiplicative form10

λ(t|Ht) = g0(t)g1(t − s∗(t)). (19.31)

A point process having conditional intensity of the form (19.30) or (19.31) may be
fitted using binary Poisson regression, as in Example 1.1 on p. 576, except now with
the additional terms representing the function g1(u) (where u = t− s∗(t)). A simple
method is to fit the functions g0(t) and g1(u) using Poisson regression splines, in
much the same way as discussed previously on p. 422 and 576 for Example 1.1.

Example 1.1 (continued from p. 576) Kass and Ventura (2001) fitted a model of
the form (19.31) to data from an SEF neuron recorded for the study of Olson et al
(2000). To do this they wrote

logλ(t|Ht) = log g0(t)+ log g1(t − s∗(t))

8 The terminology is intended to signify that the history dependence is limited to the previous spike
time. A discrete-time stochastic process is a Markov process if the probability that the process will
be in a particular state at time t depends only on the state of the process at time t − 1.
9 Because integrate-and-fire neurons reset to a baseline subthreshold voltage after firing, they
necessarily follow Eq. (19.30). Further discussion of IMI models and their relationship to integrate-
and-fire neurons is given in Koyama and Kass (2008).
10 The functions g0(t) and g1(u) are defined only up to a multiplicative constant. That is, for any
nonzero number c if we multiply g0(t) by c and divide g1(u) by c we do not change the result. Some
arbitrary choice of scaling must therefore be introduced. In Fig. 19.7 the constant was chosen so
that g0(t) was equal to the Poisson process intensity at time t = 50 ms after the appearance of the
visual cue.
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Fig. 19.7 Plot of the function g1(t − s∗(t)) defined in (19.31) for the SEF data. The function is
scaled so that a value of 1 makes the conditional intensity equal to the Poisson process intensity at
time t = 50 ms after the appearance of the visual cue. Adapted from Kass and Ventura (2001).

Fig. 19.8 Refractory effects in sciatic nerve of a frog. The y-axis is the reciprocal of the voltage
threshold required to induce a second spike following a previous spike. The value 100 on the y-axis
indicates the required reciprocal voltage when there was a long gap between the two successive
action potentials. Adapted from Adrian and Lucas (1912).

which is an instance of (19.5) without coupling terms. Kass and Ventura took both
log g0(t) and log g1(u) to be splines with a small number of knots and applied Poisson
regression (see p. 422) using standard software. They showed that the model fitted
the data better than an inhomogeneous Poisson model (using the graphical method
in Section 19.3.5), and that inclusion of cross-product terms did not improve the fit
(the likelihood ratio test for the additional terms was not significant).

A plot of the resulting non-Poisson recovery function g1(u) is shown in Fig. 19.7.
For a Poisson process this function would be constant and equal to 1. The plot shows
neural firing to be inhibited, compared with Poisson, for about 10 milliseconds and
then it becomes more likely to fire, with the increase declining gradually until it
returns to a baseline value. �
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Fig. 19.9 Plots of inverse Gaussian hazard function for three different values of the coefficient
of variation, .7 (top curve), 1 (middle curve), and 1.3 (bottom curve). These values correspond to
the rough range of those commonly observed in cortical interspike interval data. The theoretical
coefficient of variation is given by Eq. (5.16).

The non-monotonic behavior of the recovery function g1(t− s∗(t)) in the forego-
ing analysis of Example 1.1 may seem somewhat surprising, but anecdotal evidence
suggests it may be common. Interestingly, Adrian and Lucas (1912) found a qualita-
tively similar result by a very different method. They stimulated a frog’s sciatic nerve
through a second electrode and examined the time course of “excitability,” which
they defined as the reciprocal of the voltage threshold required to induce an action
potential. Figure 19.8 plots this excitability as a function of time since the previous
stimulus. There is again a relative refractory period of approximately 10 ms followed
by an overshoot and a gradual return to the baseline value. Furthermore, the the-
oretical inter-spike interval distribution for an integrate-and-fire neuron (following
a random walk generated by excitatory and inhibitory post-synaptic potentials) is
inverse Gaussian (see Section 5.4.6), and the hazard function for an inverse Gaussian
has a non-monotonic shape, shown in Fig. 19.9, that closely resembles the typical
recovery function. The qualitative shape of the recovery function shown in Fig. 19.7
is thus consistent with what we would expect from the point of view of theoretical
neurobiology.

In many experimental settings spike trains are collected to see how they differ
under varying experimental conditions. The conditions may be summarized by a
variable or vector, often called a covariate (as in regression, see p. 332). Furthermore,
there may be other variables that may be related to spiking activity, which could be
time-varying, such as a local field potential. Let us collect any such covariates into
a vector denoted by ut if we regard them as fixed by the experimenter, and Vt if

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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they should be considered stochastic. We then write Xt = (Ht, ut, Vt) and let the
conditional intensity become a function not only of time and history, but also of
the covariate vector Xt . Thus, for an observation Xt = xt we write the conditional
intensity in the form λ(t|xt). With this in hand we may generalize the statement on
p. 586, allowing it to cover the interesting cases implied by our discussion surrounding
Eq. (19.5), as follows:

If we consider spike trains to be point processes, within trials the instantaneous
firing rate is λ(t|xt) and we have

P(spike in (t, t + dt]|Ht) = λ(t|xt)dt. (19.32)

We may also generalize formula (19.20).

Theorem If the conditional intensity of an orderly point process on an interval
(0, T ] depends on the random process Xt , so that when Xt = xt it may be written
in the form λ(t|xt), then, conditionally on Xt = xt , the event time sequence
S1, S2, . . . , SN(T) has joint pdf

fS1,...,SN(T)|Xt (s1, . . . , sn|Xt = xt) = exp

{
−

∫ T

0
λ(t|xt)dt

} n∏

i=1

λ(si|xt).

(19.33)

Proof: The proof is the same as that given for (19.20) in Section 19.4 with xt replacing
Ht . �

A detail: If we are interested in the variation of the conditional intensity
with the random vector Xt we can emphasize this by writing it in the
form λ(t|Xt). For example, in a multi-trial experiment, the firing rate
may vary across trials, and the conditional intensity could include a
component that changes across trials (see Ventura et al. 2005b). In
such situations, the model includes two distinct sources of variability:
one due to variability described by the point process pdf in (19.33)
and the second due to the way the conditional intensity varies with Xt .
The resulting point process is often called doubly stochastic. �

Example 16.6 (continued from p. 472) We now give some additional details about
the model used by Frank et al (2002). They applied a multiplicative IMI model to
characterize spatial receptive fields of neurons from both the CA1 region of the
hippocampus and the deep layers of the entorhinal cortex (EC) in awake, behaving
rats. In their model, each neuronal spike train was described in terms of a conditional
intensity function of the form (19.31), where the temporal factor g0(t) became
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g0(t) = gS(t, ut)

where ut is the animal’s two-dimensional spatial location at time t. In other words,
gS(t, ut) is a time-dependent place field. As we said on p. 472 the authors adopted
a state-space model (see Section 16.2.4), where the state variables involved features
of the place field. By modeling the resulting conditional intensity in the form

λ(t|xt) = gS(t, ut)g1(t − s∗(t))

the authors found consistent patterns of plasticity in both CA1 hippocampal neurons
and deep entorhinal cortex (EC) neurons, which were distinct: the spatial intensity
functions of CA1 neurons showed a consistent increase over time, whereas those of
deep EC neurons tended to decrease. They also found that the ISI-modulating factor
g1(t − s∗(t)) of CA1 neurons increased only in the “theta” region (75–150 ms),
whereas those of deep EC neurons decreased in the region between 20 and 75 ms. In
addition, the minority of deep EC neurons whose spatial intensity functions increased
in area over time fired in a more spatially specific manner than non-increasing deep
EC neurons. This led them to suggest that this subset of deep EC neurons may
receive more direct input from CA1 and may be part of a neural circuit that transmits
information about the animal’s location to the neocortex. �

It is easy to supplement (19.31) with terms that consider not only the spike
s∗(t) immediately preceding time t, but also the spike s2∗(t) preceding s∗(t), s3∗(t)
preceding s2∗(t), etc. One way to do this is to write

λ(t|Ht) = g0(t)g1(t − s∗(t))g2(t − s2∗(t))g3(t − s3∗(t)) (19.34)

or, equivalently,

logλ(t|Ht) = log g0(t)+ log g1(t − s∗(t))
+ log g2(t − s2∗(t))+ log g3(t − s3∗(t))

and then use additional spline-based terms to represent log g2(t − s2∗(t)) and
log g3(t − s3∗(t)) in a Poisson regression.

Example 1.1 (continued) In their study of the model (19.31) for SEF neurons,
described on p. 589, Kass and Ventura also used a model that included several spikes
preceding time t, as in (19.34). The implementation again used splines with a small
number of knots to represent each of the additional functions g2(t− s2∗), g3(t− s3∗),
etc. The authors found the extra terms did not improve the fit (the likelihood ratio
test was not significant). �

A detail: In applying (19.34) using regression splines, Kass and Ven-
tura allowed the functions g1(t − s∗), g2(t − s2∗), g3(t − s3∗), to be
distinct. A plausible alternative is to assume they have the same func-
tional form, which would mean that they have the same knots and the

http://dx.doi.org/10.1007/978-1-4614-9602-1_16
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same coefficients. This would say that the way a spike at time s prior
to time t alters the probability of neural firing at time t depends only
on t − s and not on how many spikes occur between time s and time
t. In this case (19.34) is replaced by

λ(t|Ht) = g0(t)g1(t − s∗(t))g1(t − s2∗(t))g1(t − s3∗(t)).

This simplification reduces the number of parameters in the model.
Models of this type were used by Pillow et al (2008). �

Another way model (19.31) may be extended is to include terms corresponding
to coupling between neurons, as indicated by (19.5). To illustrate, we may consider
the effect of neuron B on a given neuron A by letting u∗(t) be the time of the
neuron B spike that precedes time t and, similarly, letting u2∗(t) and be the time of
the spike preceding u∗(t) and u3∗(t) the time of the spike preceding u2∗(t). Then
we may append to (19.34) a series of factors that represent the coupling effects. In
logarithmic form, considering 3 spikes back in time, this becomes

logλ(t|Ht) = log g0(t)+ log g1(t − s∗(t))
+ log g2(t − s2∗(t))+ log g3(t − s3∗(t))
+ log h1(t − u∗(t))+ log h2(t − u2∗(t))
+ log h3(t − u3∗(t)). (19.35)

Once again (19.35) takes the form of (19.5), and some version of Poisson regression
may be applied.

Example 19.3 (continued) In introducing this example on p. 569 we said that the
authors used a model having the form of (19.5). Let us be somewhat more specific.
In terms of (19.35), Pillow et al. took the receptive-field stimulus effects (g0(t), here
spatio-temporal as in Example 16.6) to be linear, i.e., a linear combination of 5× 5
stimulus pixel intensities across 30 time bins. For the history effects and the coupling
effects they did not use splines but rather used an alternative set of basis functions
such that logλ(t|Ht) remained linear, as it does with regression splines in (19.35).
They then applied Poisson regression. However, because their model involved a
large number of free parameters they had to use a modified fitting criterion (a form
of penalized fitting similar to that used with smoothing splines) which is beyond the
scope our presentation here. �

19.3.5 Graphical checks for departures from a point process model
may be obtained by time rescaling.

As described in Section 3.3.1, Q–Q and P–P plots may be used to check the fit of
a probability distribution to data. These plots indicate the discrepancy between the

http://dx.doi.org/10.1007/978-1-4614-9602-1_3
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empirical cdf F̂(x) and the theoretical cdf F(x), the idea being that when F̂(x) is based
on i.i.d. random variables we have F̂(x)→ F(x) for all x (if the distribution is contin-
uous) as the sample size grows indefinitely large. In the case of point processes we
may examine the inter-event waiting times X1, . . . , Xn. For a homogeneous Poisson
process these are i.i.d. Exp(λ). Thus, to assess the fit of a homogeneous Poisson
process to a sequence of event times we may simply compute the inter-event waiting
times and examine a Q–Q or P–P plot under the assumption that the true waiting-
time distribution is exponential. For an inhomogeneous Poisson process, or a more
general point process, the waiting times are no longer i.i.d. Thus, this method can
not be applied in the same form. However, a a version of the probability integral
transform (p. 122) may be used to create a homogeneous Poisson process from any
point process. We begin with a conditional intensity function in the general form of
Eq. (19.32).

Time Rescaling Theorem. Suppose we have a point process with conditional inten-
sity function λ(t|xt) on (0, T ] and with occurrence times 0 < S1 < S2, . . . , <

SN(T) ≤ T . Suppose further that the waiting time distributions are continuous with
fXj |Sj−1(x) > 0 on (sj−1, T ], for all j ≥ 1. If we define

Z1 =
∫ S1

0
λ(t|xt)dt (19.36)

and

Zj =
∫ Sj

Sj−1

λ(t|xt)dt (19.37)

for j = 2, . . . , N(T), then Z1, . . . , ZN(T) are i.i.d. Exp(1) random variables.11

Proof: See Section 19.4. �
This result is called the time rescaling theorem because we can think of the

transformation as stretching and shrinking the time axis based on the value of the
conditional intensity function. If λ(t|xt) were constant and equal to one everywhere,
then the process would be a homogeneous Poisson process with independent, expo-
nential ISIs, and time does not need to be rescaled. When λ(t|xt) is less than one, the
transformed event times zj accumulate slowly and represent a shrinking of time, so
that distant event times are brought closer together. Likewise, when λ(t|xt) is greater
than one, the event times zj accumulate more rapidly and represent a stretching of
time, so that neighboring event times are drawn further apart.

With time rescaling in hand, we may now apply Q–Q or P–P plots to detect
departures from a point process model: using the conditional intensity function we
transform the time axis and judge the extent to which the resulting waiting times
deviate from those predicted by an Exp(1) distribution. Furthermore, in conjunction
with a P–P plot, the Kolmogorov-Smirnov test (Section 10.3.7) may be applied to test

11 Extending the argument slightly to include the interval (sN , T) it may also be shown that
Z1, . . . , ZN(T) follow a homogeneous Poisson process with intensity λ = 1.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10
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Fig. 19.10 Left Histogram of ISIs for the retinal ganglion cell spike train. Right Histogram of
time-rescaled ISIs. Dashed red line is the Exp(1) pdf.

the null hypothesis that the transformed waiting times follow an Exp(1) distribution,
which becomes an assessment of fit of the conditional intensity function. If the P–P
plot consists of pairs (xr, yr), for r = 1, . . . , n, the usual approach is to use the points
(xr, yr+1.36/

√
n) and (xr, yr−1.36/

√
n) to define upper and lower bands for visual

indication of fit, as illustrated in Fig. 19.11. Specifically, to make a P–P plot for a
conditional intensity function λ(t|xt) used to model spike times s1, s2, . . . , sn we do
the following:

1. From (19.36) and (19.37) find transformed spike times z1, . . . , zn;
2. for j = 1, . . . , n define uj = 1− exp(−zj);
3. put the values u1, . . . , un in ascending order to get u(1), . . . , u(n);

4. for r = 1, . . . , n (see p. 67) plot the (x, y) pair
(

r−.5
n , u(r)

)
;

5. produce upper and lower bands: for r = 1, . . . , n plot the (x, y) pair(
r−.5

n , u(r) + 1.36/
√

n
)

and
(

r−.5
n , u(r) − 1.36/

√
n
)

.

Example 19.1 (continued from p. 586) Using the conditional intensity of Eq. (19.28)
we may apply time rescaling. Figure 19.10 displays a histogram of the original ISIs
for this data. The smallest bin (0–2 ms) is empty due to the refractory period of the
neuron. We can also observe two distinct peaks at around 10 and 100 ms respec-
tively. It is clear that this pattern of ISIs is not described well by an exponential
distribution, and therefore the original process cannot be accurately modeled as
a simple Poisson process. However the histogram in the right panel of the figure
shows the result of transforming the observed ISIs according to the conditional
intensity model. Figure 19.11 displays a P–P plot for the intervals in the right panel
of Fig. 19.10. Together, these figures show that the model in Eq. (19.28) does a good
job of describing the variability in the retinal neuron spike train. �
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Fig. 19.11 P–P plot for the distribution of rescaled intervals shown in Fig. 19.10.

Example 19.5 Spike trains from a locust olfactory bulb. Substantial insight about
sensory coding has been gained by studying olfaction among insects. An insect
may come across thousands of alternative odors in its environment, among millions
of potential possibilities, but only particular odors are important for the animal’s
behavior. A challenge has been to describe the mechanisms by which salient odors
are learned. A series of experiments carried out by Dr. Mark Stopfer and colleagues
(e.g., Stopfer et al. 2003) has examined the way neural responses to odors may evolve
over repeated exposure. To capture subtle changes it is desirable to have good point
process models for olfactory spike trains. Figure 19.12 displays P–P plots for the fit
of an inhomogeneous Poisson model and a multiplicative IMI model to a set of spike
trains from a locust olfactory bulb. The spike trains clearly deviate from the Poisson
model; the fit of the multiplicative IMI model to the data is much better. �

19.3.6 There are efficient methods for generating
point process pseudo-data.

It is easy to devise a computer algorithm to generate observations from a homoge-
neous Poisson processes, or some other renewal process: we simply generate a ran-
dom sample from the appropriate waiting-time distribution; the ith event time will
then be the sum of the first i waiting times. In particular, to generate a homogeneous
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Fig. 19.12 P–P plots of inhomogeneous Poisson and multiplicative IMI models for spike train data
from a locust olfactory bulb. For a perfect fit the curve would fall on the diagonal line y = x. The
data-based (empirical) probabilities deviate substantially from the Poisson model but much less
so from the IMI model. When the curve ranges outside the diagonal bands above and below the
y = x line, some lack of fit is indicated according to the Kolmogorov-Smirnov test (discussed in
Section 10.3.7).

Poisson process with rate λ, we can draw a random sample from an Exp(λ) distrib-
ution and take the ith event time to be si =∑i

j=1 xj.
Generating event times from a general point process is more complicated. One

simple approach, based on the Bernoulli approximation, involves partitioning the
total time interval into small bins of size �t: in the kth interval, centered at tk , we
generate an event with probability pk = λ(tk|xtk )�t, where xtk depends on the history
of previously generated events. This works well for small simulation intervals. How-
ever, as the total time interval becomes large and as �t becomes small, the number of
Bernoulli samples that needs to be generated becomes very large, and most of those
samples will be zero, since λ(t|xt)�t is small. In such cases the method becomes
very inefficient and thus may take excessive computing time. Alternative approaches
generate a relatively small number of i.i.d. observations, and then manipulate them
so that the resulting distributions match those of the desired point process.

Thinning To apply this algorithm, the conditional intensity function λ(t|xt) must be
bounded by some constant, λmax. The algorithm follows a two-stage process. In the
first stage, a set of candidate event times is generated as a simple Poisson process
with a rate λmax. Because λmax ≥ λ(t|xt), these candidate event times occur more
frequently than they would for the point process we want to simulate. In the second
stage they are “thinned” by removing some of them according to a stochastic scheme.
We omit the details. In practice, thinning is typically only used when simulating
inhomogeneous Poisson processes with bounded intensity functions.

http://dx.doi.org/10.1007/978-1-4614-9602-1_10


19.3 Non-Poisson Point Processes 599

Time rescaling Another approach to simulating general point processes is based
on the time-rescaling theorem. According to the statement of the theorem in
Section 19.3.5, the transformed Zi random variables follow an Exp(1) distribution,
with the transformation being based on the integral of the conditional intensity func-
tion. This suggests generating a sequence of Exp(1) random variables and then back-
transforming to get the desired point process. That idea turns out to work rather well
in practice. Here is the algorithm for generating a process on the interval (0, T ] with
conditional intensity λ(t|xt):

1. Initialize s0 = 0 and i = 1.
2. Sample zi from an Exp(1) distribution.
3. Find si as the solution to

zi =
∫ si

si−1

λ(t|xt)dt.

4. If si > T stop.
5. Set i = i + 1 and go to 2.

19.3.7 Spectral analysis of point processes requires care.

Because point processes may be considered, approximately, to be binary time series
(see Section 19.1.2) it is tempting to treat them as a time series and use spectral
methods to find frequency-based components, as in Section 18.3. This is possible,
but requires attention to the nature of point processes.

In the first place, spectral analysis applies to stationary time series. To define
stationarity (see on p. 515) for a point process we require that the counts �N(t1,t2],
�N(t2,t3], . . . ,�N(tk−1,tk ] have the same joint distribution as �N(t1+h,t2+h],
�N(t2+h,t3+h], . . . ,�N(tk−1+h,tk+h] for all h and all t1 < t2 < · · · < tk . However, we
previously defined point processes only on the positive real line (0,∞) and for sta-
tionarity to make sense the process must be defined on the whole real line (−∞,∞).
One way to extend a point process to the negative half of the real line is to define the
counts to be negative when t < 0. For example, suppose we have a homogeneous
Poisson process on (0,∞) with rate λ. Let its counting process representation be
M1(t). Now take another homogeneous Poisson process with rate λ and counting
process M2(t) and define N(t) = M1(t) for t > 0 and N(t) = −M2(−t) for t < 0,
and set N(0) = 0. Then N(t) becomes the counting process representation of a
stationary Poisson process with rate λ.

We now assume that we have counts �N(t1,t2] defined for all t and that the resulting
point process is stationary. In Section 18.3 the spectral density was defined as the
Fourier transform of the autocovariance function. The expectation of a count was
given in terms of the marginal intensity in (19.24). In the stationary case the marginal
intensity must be time-invariant and therefore equal to a constant λ. We may define
a covariance intensity function analogously as

http://dx.doi.org/10.1007/978-1-4614-9602-1_18
http://dx.doi.org/10.1007/978-1-4614-9602-1_18
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Fig. 19.13 Estimated spectral density from a simulated spike train. The simulated spike train had
an average firing rate of roughly 28 Hz, a 5 ms refractory period, and an increased probability of
spiking after a previous spike roughly 8 ms in the past. The estimated spectral density does not
appear to reflect these properties and is easily misinterpreted.

κ(s, t) = lim
�t→0

E(�Ns,s+�t]�Nt,t+�t])− E(�Ns,s+�t])E(�Nt,t+�t])
(�t)2

= lim
�t→0

E(�Ns,s+�t]�Nt,t+�t])
(�t)2 − λ2. (19.38)

This holds for s �= t. In the stationary case κ(s, t) is a function only of the difference
h = t − s so we write κ(h) and use (19.38) for h �= 0. For s = t we have, for small
�t (because �Nt,t+�t] is binary),

E(�Nt,t+�t]�Nt,t+�t]) = E(�Nt,t+�t])

which implies that the limit in (19.38) vanishes. Instead, we define

κ(0) = lim
�t→0

V(�Nt,t+�t])
�t

= λ. (19.39)

We therefore must analyze separately12 the casesκ(0) andκ(h) when h �= 0. Keeping
this in mind, we may now state that the point process spectrum is the Fourier transform
of the covariance function. We omit details (see Brillinger 1972).

These technicalities are an indication that point process spectra are likely to behave
somewhat differently than continuous spectra. It is possible to apply the discrete
Fourier transform to spike train data and then try to interpret the result. Figure 19.13
displays an example of the estimated spectrum of a simulated spike train. Visual
inspection of the estimated spectrum shows a dip at low frequencies, a large peak
around 120 Hz, and maintained power out to 500 Hz. A näive interpretation from

12 These may be combined by writing the covariance function, often called the complete covariance
function as κ(0)δ(h)+ κ(h) where δ(h) is the Dirac delta function, which is infinite at 0 and 0 for
all other values of h.
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this spectrum might presume that this spiking process has no very low frequency
firing, tends to fire around 120 Hz, but also has considerable high frequency activity,
suggesting no refractoriness. However, this interpretation is incorrect. The point
process generating this spike train actually has an average firing rate around 28 Hz and
reflects realistic spiking features including a 5 ms refractory period and an increased
probability of firing 8 ms after a previous spike. The error here does not come from
the computation of the estimated spectrum, but rather from the näive interpretation.

We do not pursue further the estimation of point process spectra. Our discussion of
Fig. 19.13 is intended to show that point process spectra must be interpreted carefully.

19.4 Additional Derivations

Derivation of Equation (19.9) We start with a lemma.

Lemma The pdf of the ith waiting-time distribution is

fSi (si|Si−1 = si−1) = λ(si) exp

{
−

∫ si

si−1

λ(t)dt

}
. (19.40)

Proof of the lemma: Note that {Si > si|Si−1 = si−1}, is equivalent to there being
no events in the interval (si−1, si]. Therefore, from the definition of a Poisson process
on p. 574 together with the Poisson pdf in Eq. (5.3), we have P (Si > si|Si−1 = si−1)

= P
(
�N(si−1,si] = 0

) = exp
{
− ∫ si

si−1
λ(t)dt

}
, and the ith waiting time CDF is there-

fore P (Si ≤ si|Si−1 = si−1) = 1− exp
{
− ∫ si

si−1
λ(t)dt

}
. The derivative of the CDF

fSi (si|Si−1 = si−1) = d

dsi

(
1− exp

{
−

∫ si

si−1

λ(t)dt

})

gives the desired pdf. �
Proof of the theorem: We have

fS1,...,SN(T)
(s1, . . . , sn)

= fS1(s1)fS2(s2|S1 = s2) · · · fSN(T)
(sn|Sn−1 = sn−1) · P(�N(sn,T ] = 0).

The factors involving waiting-time densities are given by the lemma. The last factor
is

P(�N(sn,T ] = 0) = exp

(
−

∫ T

sn

λ(t)dt

)
.

Combining these gives the result. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_5
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Derivation of Equation (19.20) We need a lemma, which is analogous to the lemma
used in deriving (19.9).

Lemma For an orderly point process with conditional intensity λ(t|Ht) on [0, T ], the
pdf of the ith waiting-time distribution, conditionally on S1 = s1, . . . , Si−1 = si−1,
for t ∈ (si−1, T ] is

fSi|S1,...,Si−1 (si|S1 = s1, . . . , Si−1 = si−1) = λ(si|Ht) exp

{
−

∫ si

si−1

λ(t|Ht)dt

}
.

(19.41)
Proof of the lemma: Let Xi be the waiting time for the ith event, conditionally on

S1 = s1, . . . , Si−1 = si−1. For t > si−1 we have Xi ∈ (t, t + �t) if and only if
�N(t,t+�t) > 0. Furthermore, if the ith event has not yet occurred at time t we have
Ht = (s1, . . . , si−1). We then have

lim
�t→0

P(Xi ∈ (t, t +�t)|Xi > t, S1 = s1, . . . , Si−1 = si−1)

�t

= lim
�t→0

P(�N(t,t+�t) > 0|Ht))

�t

and, because the point process is regular, the right-hand side is λ(t|Ht). Just as we
argued in the case of hazard functions, in Section 3.2.4, the numerator of the left-hand
side may be written

P(Xi ∈ (t, t +�t)|Xi > t, Ht) = F(t +�t|Ht)− F(t|Ht)

1− F(t|Ht)

where F is the CDF of the waiting time distribution, conditionally on Ht . Passing to
the limit again gives

lim
�t→0

P(Xi ∈ (t, t +�t)|Xi > t, Ht)

�t
= f (t|Ht)

1− F(t|Ht)
.

In other words, just as in the case of a hazard function, the conditional intensity
function satisfies

λ(t|Ht) = f (t|Ht)

1− F(t|Ht)
.

Proceeding as in the case of the hazard function we then get the conditional pdf

f (t|Ht) = λ(t|Ht)e
− ∫ t

si−1
λ(u|xu)du

as required. �
Proof of the theorem: The argument follows from the lemma by the same steps as
the theorem for inhomogeneous Poisson processes. �

http://dx.doi.org/10.1007/978-1-4614-9602-1_3


19.4 Additional Derivations 603

Proof of the time rescaling theorem Note that the transformed waiting times are

Zj =
∫ sj

sj−1

λ(u|xu)du

where s0 = 0. Applying the theorem on producing exponential random variables
from the probability integral transform (p. 122) to X1 = S1 with Z1 = G(X1) and
G(t) = G1(t) where

G1(t) =
∫ t

0
λ(u|xu)du,

we get Z1 ∼ Exp(1). Continuing to the next event time and defining X2 = S2 − S1
with Z2 = G(X2) and G(t) = G2(t) where

G2(t) =
∫ t

s1

λ(u|xu)du,

we get Z2 ∼ Exp(1) and, furthermore, this same distribution results regardless of
the value of Z1 = z1. Thus, the conditional density fZ2|Z1(z2|Z1 = z1) does not
depend on z1; therefore Z2 is independent of Z1. Continuing on, we get Zj ∼ Exp(1)

independently of all Zi for i < j, for all j = 1, . . . , n and for all possible values
n = N(T) of the random variable N(T). �



Appendix
Mathematical Background

A.1 Introduction

The data we discuss in this book consist of numbers we conceptualize, abstractly, as
values of variables in the sense of elementary algebra: a variable x can take on many
possible numerical values. We talk about relationships between measured variables,
such as x and y, in terms of functions, writing expressions like y = f (x). Strings of
numbers form vectors, while arrays of numbers form matrices, and matrix algebra
extends many concepts and manipulations involving one or two variables to those
involving many variables. The purpose of this appendix is to review the essential
properties of numbers, vectors, matrices, and functions that are used repeatedly in
the analysis of neural data. Our goal is not to teach the concepts, but rather to offer
convenient reminders.

A.2 Numbers and Vectors

Rational numbers have the form m
n where m and n are integers. Real numbers include

not only rational numbers but also algebraic numbers like
√

2 and transcendental
numbers like π. Real numbers are those that correspond to points on the number
line. They are used to represent measurements. When we say that a variable x (rep-
resenting a measurement) may take on a range of values in an interval (a, b) we
mean that x may be any real number such that a < x < b. However, every measure-
ment is limited to a certain accuracy, and thus to a pre-specifiable finite number of
possible values. Thus, data that are somehow recorded by a physical device and are
represented in the output of software are rational numbers and it is, therefore, not
literally true that a measurement can take on any real value in (a, b); for example,
most of the values in (a, b) are irrational. Instead, the use of intervals of real numbers
to represent measurements is an abstraction, but it is the starting point in applying
modern mathematics to the real world. When we speak of a number we mean a real
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number unless we specifically say otherwise. Complex numbers are discussed in
Section A.10.

Throughout the book we identify multiple unspecified values of a particular vari-
able by using subscripts. Thus, x1, x2, x3 might represent three values of x. We then
also use the summation notation,

3∑

i=1

xi = x1 + x2 + x3

and, more generally,
n∑

i=1

xi = x1 + x2 + · · · + xn.

Similarly, we use the product notation

3∏

i=1

xi = x1x2x3 = x1 × x2 × x3

and, more generally,
n∏

i=1

xi = x1x2 · · · xn.

We also use subscripts in another way when we work with vectors. A 2-
dimensional vector is an ordered pair (x, y) and a 3-dimensional vector is an ordered
triple (x, y, z). More generally, n-tuples have the form (x1, x2, . . . , xn). We say that
(x1, x2, . . . , xn) is an n-dimensional vector having ith component xi, for i = 1, . . . , n.
The set of all such n-dimensional vectors is labelled Rn (which we read as “r n”),
for reasons we discuss in Section. A.9. Vectors and vector manipulations are a con-
venient way to consider, together, all the components. When we consider matrix
manipulations we need to distinguish column vectors

x =

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠

from row vectors (x1, . . . , xn), but for other purposes we may ignore this dis-
tinction. The sum of two n-dimensional vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) is

x + y = (x1 + y1, . . . , xn + yn)

and their dot product is
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x · y =
n∑

i=1

xiyi. (A.1)

A 1-dimensional vector is a number, and in the context of vector and matrix ma-
nipulations is often referred to as a scalar. The product of multiplying a vector
x = (x1, . . . , xn) by a scalar c is

cx = (cx1, . . . , cxn).

A.3 Functions and Linear Approximation

A function is a mapping from one set to another such that each element of the first
set is taken to a particular element of the second set. We will be interested mainly in
functions of real numbers or vectors that map into real numbers. If x is a real number
or vector, we often write y = f (x) to indicate that the function f maps x to y.

Suppose f is a function on a real interval. For many, many calculations it is useful
to approximate f linearly, i.e., to write y = f (x) ≈ a+ bx for suitable coefficients a
and b. This is accomplished using the derivative of f , which is given by

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

assuming this limit is well-defined. We may also write

df

dx
= f ′(x)

and if we wish to specify that the derivative is evaluated at x = x0 we write

df

dx

∣∣∣∣
x=x0

= f ′(x0).

The linear approximation of f at a value x0 is given by b = f ′(x0). If y0 = f (x0) we
may then plug (x0, y0) into y = a + bx to get a = y0 − f ′(x0)x0 and then we have
y ≈ a+bx as the linear approximation to f for values of x close to x0. By rearranging
terms we can also write this in the form

y ≈ f (x0)+ f ′(x0)(x − x0) (A.2)

or
f (x) ≈ f (x0)+ f ′(x0)(x − x0). (A.3)
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When this kind of linear approximation is put in a form that explicitly recognizes the
approximation error it is called a first-order Taylor series. Thus, a first-order Taylor
series of the function f (x) is the linear approximation having the form

f (x) = f (x0)+ f ′(x0)(x − x0)+ R

where the remainder R satisfies R→ 0 as x→ x0. Taylor series may be carried out
to higher terms, involving higher derivatives.

Functions of several variables also have linear approximations based on deriva-
tives, but the derivatives must be taken with respect to each of the function arguments
and are then called partial derivatives. If y = f (x1, x2) we write the partial derivatives
as

∂f

∂x1
= lim

h→0

f (x1 + h, x2)− f (x1, x2)

h
∂f

∂x2
= lim

h→0

f (x1, x2 + h)− f (x1, x2)

h
,

if these limits exist, and then the linear approximation of y = f (x1, x2) near (x1, x2) =
(a, b), which generalizes (A.2), is

y ≈ f (a, b)+ ∂f

∂x1

∣∣∣∣
(x1,x2)=(a,b)

(x1 − a)+ ∂f

∂x2

∣∣∣∣
(x1,x2)=(a,b)

(x2 − b).

Linear approximations of functions y = f (x1, x2, . . . , xn) are analogous.

A.4 The Exponential Function and Logarithms

For a number A and positive integer k, Ak is the k-fold product of A with itself.
Exponentiation begins with this process, and extends to cases Az where z is any
complex number. For now let us assume x is real, and write f (x) = Ax , but let us
leave the value of A arbitrary. The inverse function is the logarithm: logA(y) = f−1(y),
in other words, logA(f (x)) = x.

The defining property of exponentiation is that it converts addition into multipli-
cation, i.e.,

f (a+ b) = f (a)f (b). (A.4)

Logarithms convert multiplication into addition:

f−1(ab) = f−1(a)+ f−1(b).

Although mathematics books usually define exponentiation via convergent Taylor
series (which is quick), Eq. (A.4) may, literally, be used to define exponentiation: if
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a function satisfies (A.4) it must have the form f (x) = Ax for some A. The derivative
of f (x) has the form f ′(x) = cf (x) for some proportionality constant c. If we choose
the proportionality constant to be 1, i.e., f ′(x) = f (x), we obtain the “natural” base
for exponentiation, which is the number A = e. We sometimes write ex = exp(x).
We will always mean the natural logarithm (base e) when we write log(x), unless we
say otherwise. It may be shown that the only solutions to the differential equation

f ′(x) = cf (x)

for a constant c are functions of the form f (x) = aebx .
Using (A.3) with x0 = 0 we get

exp(x) ≈ 1+ x

when x is near zero. More formally, we say that as t → 0 we have exp(x)/(1+x)→ 1.
Similarly, the derivative of log(x) is 1/x, and with f (t) = log(1+t) we have f (0) = 0
and f ′(0) = 1. Equation (A.3) then gives

log(1+ t) ≈ t (A.5)

for small t. Formally, we say that as t→ 0 we have (1/t) log(1+ t)→ 1.
Now consider log(1+ x/n). For n large use (A.5) to get

log(1+ x

n
) ≈ x

n

so that
n log(1+ x

n
) ≈ x.

From the logarithm property log(ab) = b log(a) we have

log
(
(1+ x

n
)n
)
≈ x

and exponentiating both sides we obtain, for large n,

ex ≈ (1+ x

n
)n,

or, more formally, we say that as n→∞ we have

(1+ x

n
)n → ex. (A.6)
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A.5 Trigonometry, Inner Products, and Orthogonal Projections

In any right triangle, if θ is one of the acute angles, its cosine, written as cos θ, is
the ratio of the length of the adjacent side to the length of the hypotenuse and its
sine, written as sin θ, is the ratio of the length of the opposite side to the length of the
hypotenuse. More generally, if we let the two-dimensional vector (x, y) lie on the unit
circle defined by x2+y2 = 1, and if the angle of this vector with the horizontal vector
(1,0) is θ, then the cosine and sine functions are given by x = cos θ and y = sin θ.
From this definition of sine and cosine the vector (cos θ, sin θ) is the rotation of
the vector (1,0) counter-clockwise through an angle θ. Because (cos θ, sin θ) is on
the unit circle we also obtain (cos θ)2 + (sin θ)2 = 1 for all θ, which is usually
written cos2 θ + sin2 θ = 1 for all θ. The tangent function is tan θ = sin θ/ cos θ.
Angles are measured either in radians or degrees. We will almost always use radians:
2π radians = 360 degrees.

Because (0, 1) results from rotating (1, 0) by an angle π
2 , the y-component of a

point on the unit circle at angle θ is the same as the x-component of a point at angle
θ − π

2 , so the sine and cosine functions are simply phase translations of each other:

sin θ = cos(θ − π

2
). (A.7)

The cosine and sine functions are periodic, with period 2π, that is, cos(θ + 2kπ) =
cos θ for any integer k. The sine is an odd function, sin(−θ) = − sin θ, and the
cosine is an even function, cos(−θ) = cos θ. The inverse functions of sine, cosine,
and tangent are the arcsine, arccosine, and arctangent, and they are written arccos(x),
arcsin(x), and arctan(x).

Consider a triangle with angles A, B, C having opposite sides of length a, b, c.
The value of A (in radians) may be determined from B and C using A = π− B−C.
The value of a may be determined from b, c, and A as follows (see Fig. A.1). Let h be
the height of the perpendicular dropped from the vertex having angle C onto the side
of length c. We have h = a sin A. This perpendicular, together with the side of length
a, form a right triangle. Call the length of its third side d. We have d = c− b cos A.
Because it is a right triangle, a2 = h2 + d2. Plugging in the expressions for h and d
we get the law of cosines,

a2 = b2 + c2 − 2bc cos A. (A.8)

Next, consider two unit vectors v1 and v2 at angles θ1 and θ2 with the x-axis. They
have coordinates v1 = (cos θ1, sin θ1) and v2 = (cos θ2, sin θ2). Let v = v1 − v2.
The length ||v|| may be found by the ordinary (Euclidean) distance formula

||v||2 = (cos θ1 − cos θ2)
2 + (sin θ1 − sin θ2)

2

and by the law of cosines (see the bottom panel of Fig. A.1)
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Fig. A.1 Top two panels Illustration of law of cosines. The top panel displays a triangle with sides
of lengths a, b, c, and opposite angles A, B, C. The second panel displays the same triangle, but
with the addition of the perpendicular of length h dropped from the top vertex onto its opposite
side. Bottom panel The vector version of the law of cosines. The vectors v1, v2 and v = v1 − v2
form a triangle. If we take a = ||v||, b = ||v1|| and c = ||v2|| the law of cosines may be applied to
produce the formula for ||v||2 given in the text.

||v||2 = 2− 2 cos(θ1 − θ2). (A.9)

Equating these gives the important cosine addition (or subtraction) formula

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2. (A.10)

The corresponding formula for sine addition, obtained from (A.10) by rewriting
cosines as sines according to (A.7), is

sin(θ1 − θ2) = sin θ1 cos θ2 − sin θ2 cos θ1. (A.11)

A general sinusoidal function of period T is given by

f (t) = R cos(2πωt − φ),

where ω = 1/T is the frequency in cycles per unit t and φ is the phase. Using the
addition formula (A.10), this function may instead be written

f (t) = A cos(2πωt)+ B sin(2πωt)
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where A = cosφ, B = sin φ, R = √A2 + B2, and φ = arctan(−B/A). This repre-
sentation is very important in regression analysis of periodic data.

The derivatives of the cosine and sine functions are

d

dθ
sin(θ) = cos θ

and
d

dθ
cos(θ) = − sin θ.

For θ near zero we have
sin θ ≈ θ (A.12)

and
cos θ ≈ 1. (A.13)

Now consider a pair of two-dimensional vectors v1 = (x1, y1) and v2 = (x2, y2)

(which need not be unit vectors), let θ be the angle between them and let v = v1−v2.
We may, as above, obtain the length ||v|| from both the ordinary distance formula
and the law of cosines. The distance formula gives

||v||2 = (x1 − y1)
2 + (x2 − y2)

2 = x2
1 − 2x1y1 + y2

1 + x2
2 − 2x2y2 + y2

2

and the law of cosines gives

||v||2 = ||v1||2+||v2||2−2||v1||||v2|| cos θ = x2
1+ y2

1+ x2
2+ y2

2−2||v1||||v2|| cos θ.

Equating these gives
x1y1 + x2y2 = ||v1||||v2|| cos θ

the left-hand side of which is the dot product v1 · v2, as in (A.1). This is also the
Euclidean inner product:

〈v1, v2〉 = x1y1 + x2y2.

The Euclidean inner product formula extends immediately to n-dimensional vec-
tors v1 = (x1, . . . , xn) and v2 = (y1, . . . , yn). The vectors v1 and v2 lie in a plane
(which is the set of all vectors formed as linear combinations of v1 and v2), and when
we speak of the angle between v1 and v2 we mean the angle between them within
that plane. We have
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Fig. A.2 Top panel Orthogonal projection of the vector y onto the vector v, resulting in the vector
ŷ in the direction of v. Bottom panel Orthogonal projection of the vector y onto the vector subspace
V resulting in the vector ŷ in V .

〈v1, v2〉 =
n∑

i=1

xiyi (A.14)

= x1y1 + x2y2 + · · · + xnyn

= ||v1||||v2|| cos θ

where θ is the angle between v1 and v2. The squared length of a vector v =
(x1, . . . , xn) is

||v||2 = 〈v, v〉 = v · v =
n∑

i=1

x2
i .

If ||v|| = 1 the vector v is called a unit vector. For any vectors v and w and constants
a and b, 〈av, bw〉 = ab〈v, w〉.

Two n-dimensional vectors v1 and v2 are said to be orthogonal if 〈v1, v2〉 = 0.
They are orthonormal if, in addition, they are unit vectors. The orthogonal projection
of a vector y onto a vector v is the vector ŷ that has the form ŷ = cv, for some nonzero
constant c, and satisfies

〈ŷ, y − ŷ〉 = 0 (A.15)

(see Fig. A.2). From (A.15) the vector ŷ satisfies the Pythagorean relationship
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||y||2 = ||y− ŷ||2 + ||ŷ||2 (A.16)

and ŷ is the closest vector to y having the form cv in the sense that it minimizes the
Euclidean distance

||y− ŷ|| = min ||y− cv|| (A.17)

where the minimum is taken over nonzero constants c.
We may solve for c by substituting cv for ŷ in (A.15) to get

〈cv, y〉 = 〈cv, cv〉

so that

c = 〈v, y〉
〈v, v〉 (A.18)

and, therefore,

ŷ = 〈v, y〉
〈v, v〉v. (A.19)

Let u1 = v/||v||, which is the normalized version of v, meaning the unit vector in
the same direction as v. Another expression for ŷ is

ŷ = 〈u1, y〉u1 = (||y|| cos θ)u1

where θ is the angle between y and v. The vector y− ŷ is in the same plane as y and
v. Let r = y − ŷ and define u2 = r/||r||. Then u1 and u2 are an orthonormal pair of
vectors that lie in the same plane as y and v. We return to orthogonal projections in
Section A.9.

A.6 Matrices

An m × k rectangular array of numbers, with m rows and k columns, is called an
m × k matrix. The numbers m and k are are the dimensions of the matrix. We refer
to the elements of a matrix by using subscripts of the form ij where i is the row and
j is the column. For example, the 2 × 3 matrix A having rows (A11, A12, A13) and
(A21, A22, A23) is

A =
(

A11 A12 A13
A21 A22 A23

)
.

The value Aij is the (i, j) element of A. To distinguish matrices from numbers, in
several places we will instead use lower case aij (a number) to denote the (i, j)
element of A (a matrix). An n× 1 dimensional matrix is an n-dimensional vector. If
A is an m × k matrix then its ith row, written rowi(A), is a 1 × k vector and its jth
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column, written colj(B) is an m×1 vector. We say that a vector or matrix is non-zero
if at least one of its elements is non-zero. The n-dimensional zero vector is the vector
consisting of n zeroes and the m × k zero matrix is the m × k matrix all of whose
elements are zero.

If A is an m× k matrix having elements aij for i = 1, 2, . . . , m, j = 1, 2, . . . , k its
transpose, denoted by AT , is the k×m matrix with elements aji for j = 1, 2, . . . , k, i =
1, 2, . . . , m. That is, AT is obtained from A by interchanging the rows and columns
(rowi(AT ) = coli(A)). If A is a k × k (square) matrix for which A = AT it is said to
be symmetric.

Matrices are added element-wise. If A and B are both m × k matrices, having
elements aij and bij, for i = 1, 2, . . . , m, j = 1, 2, . . . , k, then the sum of A and B is
an m× k matrix C, written C = A+ B, having elements cij given by

cij = aij + bij i = 1, 2, . . . , m j = 1, 2, . . . , k.

Note that the addition of matrices is defined only for matrices of the same dimensions.
If c is a number A is an m × k matrix with elements aij then cA = Ac is an m × k
matrix B with elements bij that satisfy bij = caij for i = 1, 2, . . . , m, j = 1, 2, . . . , k.
If A is an m× n matrix having elements aij and B is an n× k matrix having elements
bij then their product C = AB is the m× k matrix C whose element cij is given by

cij = rowi(A) · colj(B)

=
n∑

�=1

ai�b�j

for all i = 1, 2, . . . , m, j = 1, 2, . . . , k. For the product AB to be defined, the column
dimension of A must equal the row dimension of B. Then the row dimension of AB
equals the row dimension of A and the column dimension of AB equals the column
dimension of B. If A is an m × n matrix and B is an n × k matrix with m 	= k then
BA is not defined.

A square matrix A is said to be diagonal if its only non-zero entries are on its main
diagonal, i.e., Aij = 0 when i 	= j. The k-dimensional identity matrix, denoted by Ik ,
is the k × k diagonal matrix having all of its main diagonal elements equal to 1.

A.7 Linear Independence

A pair of vectors v1 and v2 is linearly dependent if they are multiples of each other,
meaning that v2 = kv1 for some nonzero number k or, equivalently, if c1v1+c2v2 = 0
where 0 represents the zero vector (the vector all of whose components are zero) and
where c1 = k and c2 = −1. Otherwise, if v1 and v2 are not multiples of each other,
and neither is the non-zero vector, then there are no nonzero numbers c1 and c2 for
which c1v1 + c2v2 = 0 and we say that v1 and v2 are linearly independent. More
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generally, we say that a set of several vectors v1, v2, . . . , vk are linearly independent
if for every set of numbers c1, c2, . . . , ck that are not all zero,

c1v1 + c2v2 + · · · + ckvk 	= 0.

Equivalently, v1, v2, . . . , vk are linearly independent if c1v1+ c2v2 + · · · + ckvk = 0
implies that c1 = c2 = · · · = ck = 0. When v1, v2, . . . , vk are not linearly inde-
pendent then c1v1 + c2v2 + · · · + ckvk = 0 for some nonzero set of coefficients
c1, c2, . . . , ck , and the vectors are instead linearly dependent. In this case it becomes
possible to write at least two of the vectors as linear combinations of the others for
suitably chosen coefficients. For example, assuming c1 	= 0 we can set ai = −ci/c1
for i = 2, . . . , k and by dividing c1v1 + c2v2 + · · · + ckvk = 0 through by c1 and
then subtracting v1 from both sides we get v1 = a2v2 + · · · + akvk .

For an m × k matrix A we may consider the set of m vectors consisting of the
rows of A, i.e., the vectors vi = rowi(A) for i = 1, . . . , m. The row rank of A
is the maximum number of these row vectors that can be collected together and
still remain linearly independent. Similarly, if we consider the k column vectors
col1(A), col2(A), . . . , colk(A), the column rank of A is the maximum number of
these vectors that may be collected together and remain linearly independent. It may
be shown that the row rank and the column rank of a matrix are equal. Thus, we
speak of the rank of A, which is both the row rank and the column rank and is written
rank(A). Note that for an m × k matrix A we must have rank(A) ≤ min(m, k). If
rank(A) = min(m, k) then A is said to be of full rank. When a square matrix is of
full rank it is called nonsingular.

Two key characterizations of nonsingular matrices are the following. First, a k×k
matrix A is nonsingular if and only if for every non-zero vector x the vector Ax is
also non-zero. Second, a k× k matrix A is nonsingular if and only if it has an inverse
A−1 such that

AA−1 = A−1A = Ik .

A third important characterization involves the determinant of A, denoted by |A|, and
defined to be the scalar

|A| = a11 if k = 1
|A| =∑k

j=1 a1j|A1j|(−1)1+j if k > 1

where A1j is the (k − 1)× (k − 1) matrix obtained by deleting the first row and jth
column of A. Also, |A| =∑k

j=1 aij|Aij|(−1)i+j using the ith row in place of the first
row. We have that A is nonsingular if and only if |A| 	= 0. If A is nonsingular then
|A−1| = 1/|A|.

If A is a k × k matrix with elements aij, its trace, written tr(A) is the sum of its
diagonal elements: tr(A) =∑k

i=1 aii.
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A.8 Orthogonal Matrices and the Spectral Decomposition

A square matrix A is said to be orthogonal if its columns form an orthonormal set of
vectors. This means that coli(A) · colj(A) = 1 if i = j and is 0 for i 	= j. Another way
to say this is that AT A = Ik and, because IT

k = Ik , we also have AAT = Ik . These
relations show that a square matrix A is orthogonal if and only if AT = A−1. As a
special case, suppose A is a 2 × 2 orthogonal matrix. Then col1(A) is a unit vector,
so it lies on the unit circle, and therefore may be written in the form (cos θ, sin θ)T

for some θ; by orthogonality col2(A) then has the form vector ±(− sin θ, cos θ)T . If
we take col2(A) = (− sin θ, cos θ)T then for every two-dimensional vector x, Ax is
the rotation of x counter-clockwise by the angle θ. We say that A is a rotation matrix.
Note that AT x (which is also A−1x) becomes a rotation of x clockwise by the angle θ.
If instead col2(A) = −(− sin θ, cos θ)T then Ax results from first re-orientating the
y-axis that it points in the opposite direction (down, instead of up) and then rotating
x counter-clockwise by the angle θ. Thus, every 2× 2 orthogonal matrix is either a
rotation matrix or a combination of rotation and re-orientation of the axes. In higher
dimensions every orthogonal matrix is also necessarily a combination of rotation
matrix and re-orientation of axes.

If A is a k × k square matrix, λ is a scalar, and x is a vector satisfying

Ax = λx

then λ is said to be an eigenvalue of A and x is an eigenvector corresponding to
λ. Suppose A is a symmetric matrix. If for all non-zero x we have xT Ax > 0 then
A is positive definite; if for all non-zero x we have xT Ax ≥ 0 then A is positive
semi-definite. Note that variance matrices are positive semi-definite (see Section 4.3,
p. 91). We now state one of the most powerful and important theorems in matrix
algebra.

The Spectral Decomposition Theorem If A is a k × k symmetric matrix then it
has a representation in the form

A = PDPT (A.20)

where D is a k × k diagonal matrix with Dii being an eigenvalue of A, and P is
orthogonal with coli(P) being an eigenvector corresponding to Dii.

The spectral decomposition of a k×k symmetric matrix A gives a way of specifying
a set of eigenvalues and eigenvectors for A. In general, if Ax = λx and v = x/c for a
non-zero scalar c then Av = (cλ)v, so that cλ is also an eigenvalue. If, however, we
require each eigenvector to be a unit vector, as in the spectral decomposition, then the
corresponding eigenvalue is uniquely determined. When eigenvalues are computed
by software they are usually put in descending order: λ1 ≥ λ2 ≥ · · · ≥ λk . If A is
also positive semi-definite then λi ≥ 0 for all i = 1, . . . , k and the number of positive
eigenvalues is equal to its rank. We note that a symmetric matrix is positive definite
if and only if it is non-singular (which is also stated by saying it is positive definite

http://dx.doi.org/10.1007/978-1-4614-9602-1_4
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if and only if it is of full rank). Thus, a positive semi-definite matrix is non-singular
if and only if all its eigenvalues are positive.

The spectral decomposition has a very nice geometrical interpretation. First, the
set of two-dimensional points (u1, u2) satisfying

u2
1

E11
+ u2

2

E22
= c2 (A.21)

where E11 and E22 are positive numbers, forms an ellipse centered at the origin.
Furthermore, the ellipse is oriented so that its two axes fall along the u1 and u2
coordinate axes, and the lengths of its two axes are 2c

√
E11 and 2c

√
E22. If we let

u = (u1, u2) then Eq. (A.21) may be written

uT Du = c2 (A.22)

where D is the diagonal matrix with diagonal elements E−1
11 and E−1

22 . Now let Rθ be
the 2 × 2 orthogonal matrix that rotates each vector counter-clockwise through an
angle θ. As pointed out above, RT

θ is the 2 × 2 orthogonal matrix that rotates each
vector clockwise through an angle θ. If we define x = Rθu then u = RT

θ x, and from
(A.22) we have

xT RθDRT
θ x = c2 (A.23)

so that (A.23) must be the equation of an ellipse whose axes fall along the axes
defined by the vectors col1(Rθ) and col2(Rθ) and have lengths 2c

√
E11 and 2c

√
E22.

Because every orthogonal matrix is a rotation followed by a possible re-orientation
of the axes, and such a re-orientation of axes defining x would not change the location
of the ellipse defined by (A.23), for any 2× 2 orthogonal matrix P, the equation

xT PDPT x = c2, (A.24)

is the equation of an ellipse whose axes fall along the axes defined by the vectors
col1(P) and col2(P) and have lengths 2c

√
E11 and 2c

√
E22. An analogous interpre-

tation of Eq. (A.24) holds when x is k-dimensional and P and D are k × k matrices.
Thus, for a positive definite matrix A, the equation xT Ax = 1 defines an ellipse,
and the spectral decomposition of A shows that the axes of this ellipse are oriented
along the eigenvectors of A and have lengths equal to twice the square-root of the
reciprocal of the corresponding eigenvalues.

A.9 Vector Spaces

The n-dimensional vectors e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0), …, en =
(0, . . . , 0, 1) play a special role because they specify the axes or coordinate directions
corresponding to each component of an n-dimensional vector x = (x1, x2, . . . , xn)
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(note also that each ei has length 1). We may write

x = x1e1 + x2e2 + · · · + xnen. (A.25)

We think of the set of n-tuples as forming a vector space, which we call n-dimensional
real space and write as Rn. When we have any set of n linearly independent vectors
v1, . . . , vn (such as e1, . . . , en) the vectors v1, . . . , vn are said to form a basis for Rn.
The basis is the set of vectors, which we write as {v1, . . . , vn}. Note that every vector
x in Rn may be written as a linear combination of these basis vectors, i.e., there are
numbers c1, . . . , cn for which x = c1v1 + · · · + cnvn. The basis vectors are said to
span the vector space Rn and Rn is said to be the span of {v1, . . . , vn}. If we have a
smaller set of linear independent vectors, say {w1, . . . , wk}, where k < n, then the set
of all linear combinations of those vectors (including the zero vector) is also called
their span; let us denote it by V . Then V is a k-dimensional vector space, which is a
subspace of Rn. We may now generalize the notion of orthogonal projection given in
Section A.5. If y ∈ Rn the orthogonal projection of y onto V , written ŷ, is the vector
ŷ for which

〈v, y − ŷ〉 = 0 (A.26)

for all v ∈ V . It may be shown that for any y there is only one vector ŷ with this
property. If the columns of an n × k matrix X span a k-dimensional vector space V
in Rn then we may write

V = {Xβ such that β ∈ Rk}. (A.27)

Equation (A.27) provides an important way to think about linear regression: by (A.27)
we may rewrite (A.26) in the form

〈Xβ, y − ŷ〉 = 0 (A.28)

for all β ∈ Rk . This is the same as Eq. (12.58).

A.10 Complex Numbers

Imaginary numbers were introduced to solve equations that do not have real solutions,
like x2 = −1. One solution of this equation is the imaginary1 number i (sometimes

1 Imaginary numbers are like real numbers in being abstract constructions that do not represent
perfectly any measurement process, and so they live in what might be called a theoretical world (of
mathematics, physics, statistics, etc.) rather than our real world of sensations and physical tools.
The name “imaginary” (apparently given by Descartes in 1637), is perhaps somewhat misleading
in that it seems to imply real numbers are more “real” than imaginary numbers, which they are not.
The great mathematician Gauss lamented this name for example, suggesting it might have been
better to call square-roots of negative numbers “lateral.” (See Dantzig (1954).)

http://dx.doi.org/10.1007/978-1-4614-9602-1_12
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instead denoted by j). The other solution is −i. If we multiply i by any real number
y we get an imaginary number iy. A complex number is one that may have both real
and imaginary components. The usual notation writes a generic complex number as
z = x+ iy, with x = Re(z) being the real part of z and y = Im(z) being the imaginary
part of z. A real number x = x + i0 is also considered a complex number; similarly,
an imaginary number iy = 0+ iy is also considered complex. The number z = x− iy
is called the complex conjugate of z. The magnitude of z is

|z| =
√

x2 + y2 = √zz.

Once we allow complex numbers, every polynomial equation can be solved.
Some amazing properties of complex numbers are derived fairly easily2 by repre-

senting them in the form of two-dimensional vectors (x, y), where again x and y are
the real and imaginary components, and then also using the polar coordinate form
(R, θ), where x = R cos θ and y = R sin θ. Here, R = √

x2 + y2 is the length of the
vector (x, y) and θ is the angle between (x, y) and the x-axis. In this representation
the real number 1 becomes (1, 0), -1 becomes (-1, 0) and i becomes (0, 1). Consider
the product z = z1z2 of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.
Applying the addition formulas for cosine and sine we have

z = x1x2 − y1y2 + i(x1y2 + x2y1)

= R1R2(cos(θ1 + θ2)+ i sin(θ1 + θ2)).

Let us specialize to the case in which |z1| = |z2| = 1 so that z1 and z2 become vectors
on the unit circle, and we have

z = z1z2 = cos(θ1 + θ2)+ i sin(θ1 + θ2). (A.29)

This is illustrated in Fig. A.3. Equation (A.29) says that multiplication of complex unit
vectors corresponds to addition of the corresponding angles. We thus have an instance
of addition (of angles) being transformed to multiplication (of complex unit vectors).
But conversion of addition to multiplication is carried out by the exponential function.
Apparently, there is some kind of exponentiation going on here. This exponential
transformation is revealed in Euler’s Formula, given by Eq. (A.31).

In Eq. (A.29), let us set θ1 = θ2 = θ/2, where z = cos θ + i sin θ. We then have

z =
(

cos(
θ

2
)+ i sin(

θ

2
)

)2

.

Repeating this multiplication for n vectors each having angle θ/n we obtain

2 A rigorous argument would require additional details about convergence. In particular, Euler’s
formula (A.31) follows immediately from a comparison of the infinite Taylor series expansions
of the complex exponential, cosine, and sine functions—but that requires proof of convergence of
these series.
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z

z

Z

θ

θ

θ

2

1

Fig. A.3 Multiplication of complex unit vectors. The complex numbers z1 and z2 are pictured as
vectors with coordinates xi = cos θi and yi = sin θi for i = 1, 2, θi being the angle between zi and
the x-axis. Their product z = z1z2 is a new complex number which, when pictured as a unit vector,
has coordinates x = cos θ and y = sin θ where θ = θ1 + θ2.

z =
(

cos(
θ

n
)+ i sin(

θ

n
)

)n

,

or,

cos θ + i sin θ =
(

cos(
θ

n
)+ i sin(

θ

n
)

)n

(A.30)

for every positive integer n. Now consider what happens as we make n indefinitely
large. Applying Eqs. (A.12) and (A.13) we get

cos(
θ

n
)+ i sin(

θ

n
) ≈ 1+ iθ

n

and then, inserting this in the right-hand side of (A.30), letting n→∞, and applying
(A.6) we get (

cos(
θ

n
)+ i sin(

θ

n
)

)n

→ eiθ.

In other words, (A.30) together with (A.6) gives

cos θ + i sin θ→ eiθ

which, because the left-hand side does not involve n, can only be true if these quan-
tities are equal; we thereby obtain Euler’s formula:

eiθ = cos θ + i sin θ. (A.31)
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This formula is the foundation for Fourier analysis. On the one hand, it provides a
kind of “book-keeping” of cosine and sine terms within a complex exponential while,
on the other hand, it simplifies many manipulations because multiplication becomes
addition of exponents. We also have

cos θ = eiθ + e−iθ

2
(A.32)

and

sin θ = eiθ − e−iθ

2
(A.33)

which are used to convert results involving complex exponentials to results involving
sines and cosines. Using Euler’s formula (A.31) we may represent any complex
number z, in an exponential polar co-ordinate form,

z = Reiθ

where R = |z| = √
x2 + y2 and θ = arctan(y/x), with x = Re(z) and y = Im(z).

Just as the cosine and sine functions are periodic with period 2π, the complex
exponential function is periodic with period 2πi, i.e., ez = ez+i2kπ for every integer
k. Special values of ez include 1 = e0 (and thus 1 = ei2kπ for every integer k),
i = eiπ/2, and −1 = eiπ . The latter may be written

eiπ − 1 = 0,

which appeals to many people’s sense of mathematical aesthetics because it combines
the five most fundamental numbers in a single equation. It is often called Euler’s
equation.
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fMRI in a visuomotor experiment, 6
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antagonist injection, 108
Local field potential in primary visual cortex,

421, 516, 528, 547, 551

M
Magical number seven, 97
MEG background noise, 5, 54, 65, 345
Membrane conductance, 109
Methylphenidate-induced emergence from

general anesthesia, 451, 478
Miniature excitatory post-synaptic currents,

571
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Temporal coding in inferotemporal cortex, 97
Test-enhanced learning, 167, 258, 265, 274,
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Tetrode spike sorting, 71
Time-varying dependence between spike

trains, 277
Time-varying firing rates, 496, 500
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V
Vascular dementia diagnostic test, 44
Vision as Bayesian decision-making, 102
Visual attention model, 150
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Working memory in children with ADHD, 380
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Action potential, 3, 193, 564
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AIC (Akaike information criterion), 295, 354,
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Akaike information criterion, see AIC
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Alignment of theoretical and real worlds, 175
Alternative hypothesis, 248, 276
Alzheimer’s disease, 254
Analysis of covariance, see ANCOVA
Analysis of variance, see ANOVA
ANCOVA (Analysis of covariance), 379, 380
Anesthesia, 27, 451
ANOVA (Analysis of variance), 284, 361

assumptions, 364
decomposition, 342, 365

Aperiodic, 453
APOE (Apolipoprotein E), 254
Apolipoprotein E, see APOE
Approximate 95 % confidence interval, 160,
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ARMA model, 540, 558
Association, 8, 328, 387
Asymptotic normality, 180
Asymptotic normality of least squares

estimators, 324, 344
Attention, 150
Attention deficit hyperactivity disorder, see

ADHD
Attenuation of correlation, 330, 465
Augmented data, 216
Autocorrelation coefficient, 322
Autocorrelation function, see ACF
Autocovariance function, 515
Autoregressive model, 322, 530
Autoregressive moving average, 540
Axioms of probability, 38

B
B-splines, 420
Backward elimination, 354
Band-pass, 543
BARS (Bayesian Adaptive Regression

Splines), 16, 413, 415, 424, 532, 541
Basal ganglia, 409
Basis, 417, 523, 617
Basis functions, 414
Batch of numbers, 25
Bayes classifier, 98
Bayes factor, 297, 476
Bayes sufficient, 442
Bayes’ rule, 102
Bayes’ theorem, 43, 45, 98, 173, 174
Bayesian, 14
Bayesian Adaptive Regression Splines, see

BARS
Bayesian decision-making, 102
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Bayesian decoding, 46
Bayesian information criterion, see BIC
Bayesian interpretation, 174
Bayesian methods, 175
Bayesian sufficiency, 200
Bell-shaped curve, 25
Bernoulli random variable, 105
Bernoulli trials, 107
Bernoulli, Jacob, 37
Beta distribution, 52, 124, 174
Beta oscillations, 553, 569, 588
Bias, 182
Bias variance trade-off, 183, 432, 434
BIC (Bayesian information criterion), 295,

354, 357
Bimodal, 24
Binary data, 22
Binary events, 115
Binomial distribution, 48, 106
Bivariate dependence, 76
Bivariate normal distribution, 82
Blindsight, 9
Blocks, 370
Blood-oxygen-level dependent, see BOLD
BOLD (Blood-oxygen-level dependent), 6, 29,

232, 313, 518
Bonferroni correction, 304, 373
Bootstrap, 145, 222, 237
Bootstrap BCa confidence intervals, 241, 243
Bootstrap in regression, 344
Bootstrap sampling, 274
Bootstrap test, 274, 300, 385
Box, George, 17, 18
Brain–computer interface, 471
Brain–machine interface, 194
Brownian motion, 126
BUGS, 468
Burn-in, 455
Burst activity, 458, 566
Burst detection, 458

C
Canonical link, 404
Canonical normal hierarchical model, 460
Canonical parameter, 404
Case-control study, 256
Cauchy, Augustin-Louis, 523
Cauchy–Schwartz inequality, 78
Causal effect, 387
Causation, 385
cBARS (circular Bayesian Adaptive Regression

Splines), 407

cdf (Cumulative distribution function), 48, 54
Central limit theorem, see CLT
Central tendency, 26
Change of variables formula, 62
Change point, 194, 241, 408, 410
Characteristic function, 146
Chi-squared distribution, 124, 131
Chi-squared statistics, 248
CI (Confidence interval), 160, 164
Circadian rhythm, 519
circular Bayesian Adaptive Regression Splines,

see cBARS
Circular data, 269
Classification, 99
CLT (Central limit theorem), 30, 137, 145, 162,

163, 537
Clustering, 492, 502, 510
Coefficient of variation, 56, 126, 580
Coherence, 555
Combining multiple independent p-values, 301
Common log, 31
Complete covariance function, 600
Complex numbers, 619
Conditional and marginal intensities, 586
Conditional density, 84
Conditional expectation, 85
Conditional maximum likelihood, 534
Conditional probability, 40
Conditionally independent hierarchical model,

460
Conduction velocity, 11
Confidence interval, interpretation, 170
Confidence interval, see CI
Confidence intervals and tests, 274
Confounding, 359, 385
Conjugate prior, 442, 468
Consistency of least squares estimators, 318
Consistent, 196
Consistent and asymptotically normal, 196
Continuity theorem, 146
Continuous data, 22
Continuous distribution, 48
Continuous random variable, 48, 52
Contour, 82
Convergence in distribution, 142
Convergence in probability, 143
Convolution, 314
Cooley, James, 527
Correction for attenuation, 331
Correlation, 20, 77
Correlation coefficient, 78, 327
Cortex, 236
Cosine regression, 346
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Count data, 22
Counting process, 566
Covariance, 77
Covariance matrix, 91
Covariate, 332, 380, 591
Coverage probability, 276
Cramér-Rao lower bound, 200
Credible interval, 174, 439
Critical value of test, 271
Cross-correlation function, 554
Cross-covariance function, 553
Cross-validation, 20, 355
Cubic spline, 418
Cumulative distribution function, see cdf
Curve fitting, 414

D
Data analysis, 1, 23
Data augmentation, 216
Data category, 251
Decibels, 28
Decision rule, 99, 102
Decision theory, 102, 195
Decoding, 100, 426, 471
Deductive reasoning, 13
Degenerate distribution, 142
Degrees of freedom, 124, 128, 176
Delta method, 229
Density estimation, 435
Derivative, 607
Descriptive probability, 13
Design matrix, 341
Determinant, 616
Detrending, 529
Development, 368
Development of motor control, 372, 374
Deviance, 396
Digamma function, 211
Dimensionality reduction, 492
Dirac delta function, 600
Direction of maximal variation, 499
Dirichlet kernel, 546
Discrete data, 22
Discrete distribution, 48
Discrete Fourier transform, 527
Discrete random variable, 48, 52
Discrete-time stochastic process, 515
Disjoint, 38
Distribution, 47
Distribution function, 54
Distribution of a random variable, 48
Distribution of data, 24

Double-blind experiment, 387
Doubly stochastic point process, 592
Dynamic range, 547

E
Ebbinghaus, Hermann, 117
EDA (Exploratory data analysis), 17, 23, 26
EEG (Electroencephalogram), 16, 27
Efficient estimator, 201
Efron, Bradley, 180, 222
Eigenvalue, 131, 617
Eigenvector, 131, 617
Electroencephalogram, see EEG
Electromyogram, see EMG
Electrooculogram, see EOG
Ellipse, 82
Elliptical contours, 130
EM (expectation maximization) algorithm,

215, 468, 475, 511
EMG (Electromyogram), 34
Empirical Bayes, 464
Empirical cumulative distribution function, 64
Entropy, 95
EOG (Electrooculogram), 16
Epistemic probability, 13
EPSC (Excitatory post-synaptic current), 14,

571
Errors in variables, 359
Estimation and learning, 492
Estimator, 151, 179
Estimators, asymptotically normal, 180
Euler’s equation, 622
Euler’s formula, 526, 621
Euler, Leonhard, 523
Event times, 564
Events, 38
Evidence in favor of a hypothesis, 477
Excitatory post-synaptic current, see EPSC
Expectation, 50
Expectation maximization (EM) algorithm,

see EM (expectation maximization)
algorithm

Expected information, 199
Expected value, 50, 55
Exploratory data analysis, see EDA
Exponential distribution, 52, 56, 120
Exponential family, 200, 402, 443
Exponential function, 608

F
F distribution, 129
F-ratio, 336, 366
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F-test for regression, 337
Factor analysis, 503
False discovery rate, see FDR
Family-wise error rate, 304
Fano factor, 580
Fast Fourier transform, 527
FDR (False discovery rate), 305
Feynman, Richard, 522
Filtering, 16
Filtering equation, 472
Firing rate, 563
Fisher information, 199
Fisher’s z transformation, 329
Fisher, Ronald, 149, 179, 247
Fitted value, 12
fMRI (Functional magnetic resonance

imaging), 1, 6, 29, 135, 303, 313,
340, 356

Forward selection, 354
Fourier analysis, 27, 522
Fourier coefficients, 524, 528
Fourier frequencies, 528
Fourier, Joseph, 523
Frequency domain, 518
Frequentist, 14, 172, 175
Frontal lobe, 108
Full conditional distributions, 468
Full rank, 616
Fully Bayes, 464
Function, 607
Function of a random variable, 62
Functional magnetic resonance imaging, see

fMRI
Fundamental frequency, 521

G
Gabor wavelet, 426, 429
Gamma distribution, 52, 58, 123
Gamma oscillations, 518
Gauss, Karl Friedrich, 523
Gaussian distribution, 25, 116
Gaussian filter, 422, 431, 435, 436, 539, 578
Gaussian state-space model, 473
General linear model, 340, 374
Generalized cross-validation, 424
Generalized linear model, see GLM
Generalized maximum likelihood, 424
Generalized nonlinear model, 409
Geometric distribution, 120, 453
Gibbs phenomenon, 546
Gibbs sampling, 218, 466, 467

GLM (Generalized linear model), 392, 402,
405, 421

Glutamate, 263
Goodness-of-fit, 247, 248
Granger causality, 559
Gratification, 379
Guiding principles of science, 440, 450

H
h (hours), 52, 93, 519–521
Hand synergies, 501
Hardy-Weinberg model, 108
Harmonic frequencies, 521
Harmonic regression, 521
Hartline, Keffer, 563
Hat matrix, 415
Hazard function, 61, 121, 583
Heavy-tailed distribution, 69
Hemispatial neglect, 24
Hemodynamic response function, 314, 340
Hessian, 213
Hidden Markov model, 470
Hidden states, 439
Hierarchical model, 459
High-pass, 543
Highly significant, 253
Hippocampal place cell, 410, 472, 592
Histograms, 25
History of spiking, 564, 582
Homogeneity assumption, 106, 107
Homogeneous Poisson process, 570
Hotelling’s T2, 496
Human memory, 117
Hypothesis, 247
Hypothesis test, 248

I
ICA (Independent components analysis), 504
Ideal observer, 102
Identity, 615
i.i.d (Independent and identically distributed),

137
Imaginary number, 620
Imagined movement, 100
IMI (Inhomogeneous Markov interval), 589
Improper prior, 447
Impulse response function, 544
Increment, 566
Independence, 106
Independence assumption, 107
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Independent and identically distributed, see
i.i.d

Independent components analysis, see ICA
Independent events, 41
Independent random variables, 75
Indicator variable, 145
Inductive reasoning, 13, 154, 481
Inferential principle of equivalence, 441
Inferotemporal cortex, 97
Infinitesimal interval, 84
Information, 20, 94
Information in an estimator, 198
Inhomogeneous Markov interval, see IMI
Inhomogeneous Poisson process, 573
Inhomogeneous variances, 371
Initial values, 215
Instantaneous firing rate, 563
Integrate-and-fire neuron, 126, 127, 141, 589
Integrated likelihood, 211
Intelligence, 504
Inter-spike intervals, see ISIs
Interaction effects, 352, 377
Interquartile range, 26
Interspike interval distribution, 579
Inverse Gaussian distribution, 125
Inverse-gamma distribution, 468
Inverse-Wishart distribution, 468
Ion channel activation, 58
IQ, 385, 504
Irreducible, 453
ISIs (Inter-spike intervals), 127, 566
IT neural response, 167, 413

J
Jeffreys, Harold, 40, 149, 476
Joint distribution, 73
Joint pdf, 73

K
K-fold cross-validation, 355
K-means clustering, 511
Kalman filter, 473
Kalman smoother, 475
Kernel density estimate, 435
Kernel density estimator, 422, 578
Kernel function, 509
Kernel regression, 430
Kernel trick, 509
Knots, 418
Knowledge, 13
Kolmogorov-Smirnov test, 270

Kruskal-Wallis test, 384
KS statistic, 270
Kullback-Leibler (KL) divergence, 92

L
L1-penalized regression, 358, 469
L2-penalized regression, 358, 469
Lag, 531
Laplace distribution, 469
Large-sample optimality, 180
LASSO, 358
Latent factors, 503
Latent variables, 216, 399, 457
Lateral intraparietal cortex, see LIP
Law of cosines, 610
Law of large numbers, see LLN
Law of total expectation, 85
Law of total probability, 43, 86
Law of total variance, 86
LDA (Linear discriminant analysis), 506
Leakage, 546
Learning, 108
Learning a hyperparameter, 464
Learning and estimation, 492
Learning trials, 108
Least upper bound, 242
Least-squares estimates, 311
Least-squares regression, 11, 212
Leave-one-out cross-validation, 101, 356
Lebesgue integration, 59, 417
LFP (Local field potential), 1, 421, 518
Likelihood function, 155
Likelihood ratio test, 287
Limulus, 32
Lindeberg condition, 146
Linear association, 327
Linear discriminant analysis, see LDA
Linear discriminant function, 506
Linear filters, 539
Linear independence, 615
Linear prediction, 80
Linear regression, 89
Linear regression assumptions, 315
Linear smoother, 415
Linear trend, 323
Linearity of expectation, 74
LIP (Lateral intraparietal cortex), 86, 310
LIP neuron, 310
LLN (Law of large numbers), 137, 143
Local field potential, see LFP
Local fitting, 414, 429
Local polynomial regression, 432
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Loess, 433
Log odds, 394
Log transformation, 28, 232
Logarithm, 28, 608
Logic, 394
Logistic distribution, 398
Logistic regression, 214, 392
Logistic regression classifier, 507
Logit transformation, 394
Loglikelihood function, 156
Long-range dependence, 516
Long-run frequency, 172
Loss function, 102
Low-pass, 542

M
Machine learning, 492
Magnetoencephalography, see MEG
Mallow’s Cp, 354
Manifold learning, 503
Mann-Whitney test, 384
MANOVA (Multivariate analysis of variance),

491, 493
MAP estimate, 440
Marginal distribution, 73
Marginal intensity, 584
Marginal pdf, 73
Markov chain, 453
Markov chain Monte Carlo, see MCMC
Markov’s inequality, 144
Matrix, 614
Maximum entropy, 120, 147
Maximum likelihood, see ML
Maximum likelihood estimator, see MLE
Maximum a posteriori estimate, 440
MCMC (Markov chain Monte Carlo), 452
Mean, 25, 50
Mean integrated squared error, 188
Mean squared error, 80, 180, 181
Mean squared error, minimum, 80
Mean vector, 90
Median, 25
MEG (Magnetoencephalography), 1, 5, 100,

358, 518, 550
Membrane conductance, 109
Memory, 151
Memoryless, 120
Method of moments, 153
Methylphenidate, 451
Metropolis-Hastings algorithm, 454, 455
Milner, Brenda, 1
Minimal signaling unit, 141

Missing data, 218
Mixture model, 216, 510, 511
Mixture of Gaussians, 216, 511
ML (Maximum likelihood), 149, 154
MLE (Maximum likelihood estimator), 152,

155
Mode, 25
Model comparison, 353
Model selection, 353
Models, scientific and statistical, 17
Modern regression, 310, 391, 413
Monte Carlo, 452
Morlet wavelet, 429
Mosteller, Frederick, 356
Motor cortical neuron, 46, 348, 406
Multimodal, 24
Multinomial distribution, 119
Multinomial logistic regression, 507
Multiple regression, 310
Multiple factors, 371
Multiple hypotheses, 302
Multiple regression, 332
Multiple testing problem, 287
Multiplication rule, 40
Multi-taper estimation, 548
Multivariate analysis, 491
Multivariate analysis of variance, see

MANOVA
Multivariate central limit theorem, 148
Multivariate data analysis, 130
Multivariate normal distribution, 129, 130
Mutual information, 20, 92
Mutual information versus correlation, 94
Mutually exclusive, 38

N
Näive Bayes classifier, 507
Nagelkerke R2, 397
Natural log, 31
Natural parameter, 404
Natural splines, 420
Neural network model, 508
Neuromuscular junction, 110, 113
Newton’s method, 404
Neyman, Jerzy, 179, 248
Neyman-Pearson lemma, 294
NMDA antagonist, 108
NMDA receptor, 406
Noise, 10, 13
Noise variability, 317
Nominal criterion, 304
Non-informative prior, 447
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Non-nested models, 295
Non-significant test, 283
Non-stationary series, 516
Nonlinear least squares, 406
Nonlinear regression, 16, 405
Nonparametric, 220
Nonparametric bootstrap, 237, 241
Nonparametric methods, 381
Nonparametric regression, 16, 413
Nonparametric statistical model, 14
Nonsingular, 616
Normal approximation to binomial, 118
Normal approximation to Poisson, 118
Normal distribution, 25, 52, 116, 118
Normal equations, 342
Normal hierarchical model, 460
Nuisance parameter, 292
Null deviance, 396
Null hypothesis, 247, 256
Nyquist frequency, 545

O
Observable variables, 457
Observational studies, 385
Observed information, 199, 203, 449
Observed information matrix, 213
Odds, 394
Olfactory bulb, 597
One-sided test, 285
Optimal decision rule, 102
Optimal integration of sensory information,

192
Optimality of MLE, 202
Optimality, large-sample, 180
Orbitofrontal, 236
Orderly, 583
Orthogonal matrix, 617
Orthogonal projection, 337, 613, 619
Orthogonalize, 420
Oscillatory, 27
Outcomes, 38
Outliers, 25

P
P-P plot, 65
p-value, 247, 281, 283
p-value calibration, 482
p-value fallacy, 281, 475
p-value, uniform distribution of, 273
p-values, combining, 301
PACF (Partial autocorrelation function), 531

Parameter, 14
Parameterization, 215, 411
Parametric bootstrap, 237, 239
Parametric regression, 16
Parametric statistical model, 14
Parkinson’s disease, 569
Partial autocorrelation function, see PACF
Patch-clamp methods, 58
PCA (Principal component analysis), 503
pdf (Probability density function), 48, 52
Pearson correlation, 78
Pearson, Egon, 248
Pearson, Karl, 78
Penalized least squares, 357
Penalized regression, 357, 469
Percentile, 56
Percentile, sample and theoretical, 67
Perception of light, 112
Perceptron, 508
Perceptron learning rule, 508
Peri-stimulus time histogram, see PSTH
Periodogram, 525
Permutation test, 298, 385
PET (Positron emission tomography), 1
pH, 28
Place cells, 410
Place field, 472
Point process, 22, 564, 566
Point process regression, 392, 562
Poisson approximation to binomial, 114
Poisson distribution, 110, 115
Poisson process, 122, 570
Poisson regression, 400
Poisson regression splines, 576
Poisson spike counts, 184
Polynomial regression, 346
Polytomous regression, 507
Pooled sample variance matrix, 494, 495
Population, 49
Population mean, 51
Positive definite, 82, 91, 131, 617
Positive predictive value, 44, 282
Positive semi-definite, 91, 617
Positron emission tomography, see PET
Post hoc selection, 478
Posterior distribution, 173, 440
Posterior normality, 448
Posterior odds, 476
Posterior probability, 99
Posterior simulation, 451
Power basis, 420
Power law, 31, 32
Power of a test, 276
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Power transfer function, 542
Pre-whitening, 322, 504, 557
Precision matrix, 133
Prediction, 89
Prediction equation, 472
Prevalence, 44, 282
Principal component, 499
Principal component analysis, see PCA
Principle of equivalence, inferential, 441
Prior distribution, 173
Probabilistic, 38
Probability density function, see pdf
Probability distribution, 24, 47, 48, 105
Probability integral transform, 63
Probability mass function, 48
Probability, descriptive, 441
Probability, epistemic, 441
Probability-probability plot, 65
Probit regression, 398
Procedural memory, 103
Propagation of uncertainty, 221
Proportional effects, 30
Proportionality symbol, 156, 232
Proposal pdf, 454
Prostatic acid phosphatase, see PSA
Protected least-significant difference, 373
Protocol, 387
PSA (Prostatic acid phosphatase), 44
Pseudo-data, 224, 239, 267, 552
Pseudo-random numbers, 59
PSTH (Peri-stimulus time histogram), 3, 188

Q
Q–Q plot, 65
Quadratic discriminant function, 506
Quadratic regression, 350
Quantal response, 113
Quantile, 56
Quantile, sample and theoretical, 67
Quantile-quantile plot, 65
Quartile, 24, 26

R
R2, 316
R2 generalization, 397
Random number, 59
Random sample, 137
Random sequences, 137
Random variable, 46, 48
Random vector, 71
Random walk, 126, 474, 530

Randomization, 385
Rank-sum test, 384
Rare events, 111
Raster plots, 3
Rayleigh test, 268
Reaction time, 24
Real world, 18
Recovery function, 591
Recurrent, 453
Refractory effects, 566, 568
Regression, 85, 87
Regression splines, 421
Regression with time series errors, 346, 535
Regress toward the mean, 88
Regularity and variability, 9
Reject a null hypothesis, 271
Relative frequencies, 49
REML estimator, 464
Renewal process, 579, 580
Repeated measures, 371
Resampling, 242
Residual, 12
Residual analysis, 319
Residual deviance, 396
Residual mean squared error, 316
Residual sum of squares, 316
Resting state, 5, 135
Restricted maximum likelihood, 424, 464
Resultant vector, 269
Retinal ganglion cell, 296
Reward, 236, 310
Ridge regression, 358
Risk, 195
Ritalin, 451
ROC curve, 278
Rotation matrix, 617
Roughness penalty, 424

S
s (seconds), 7, 8, 24, 26, 111, 112, 164, 188,

189, 280, 314, 324, 333, 421, 451,
458, 516, 551, 563

Sample mean vector, 90
Sample ACF (Sample autocorrelation

function), 517
Sample autocorrelation function, see Sample

ACF
Sample autocovariance function, 517
Sample correlation, 78
Sample covariance, 78
Sample mean, 51, 137
Sample Pearson correlation, 78
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Sample percentile, 67
Sample quantile, 67
Samples, 51
Sample space, 38
Sample standard deviation, 51
Sample variance, 183
Sample variance matrix, 91
Sampling with replacement, 242, 300
Scalar, 607
Scatterplots, 26
Scheffé test, 373
Scientific models, 17
Scientific progress, 480
SEF (Supplementary eye field), 3, 187, 331,

400, 401
Selectivity index, 236, 331, 459, 462
Sensitivity, 43, 282
Separating hyperplane, 508
Sequential Bayesian estimation, 472
Set shifting, 481
Shannon, Claude, 95
Short-range dependence, 516
Shrinkage, 357, 445, 462
Sigmoidal curve, 213
Signal, 10, 13
Signal detection theory, 279
Signal variability, 317
Signal-to-noise ratio, 317
Significance level, 271
Significance test, 248
Simple linear regression, 310
Simulated data, 224, 267
Simulation sample size, 229
Simulation-based propagation of uncertainty,

225
Skewness, 24
Slutsky’s theorem, 163
Smoothing, 188, 414
Smoothing splines, 423
Source localization, 306, 358
Specificity, 43
Spectral analysis, 521
Spectral decomposition, 131, 617
Spectral density function, 535
Spectrogram, 27, 514, 549
Spike, 3, 563
Spike count correlation, 141
Spike sorting, 21, 71, 502
Spike train, 3, 564
Splines, 418
Square-root of n law, 139
Square-root transformation, 234
Squared-error loss, 195

Standard deviation, 26, 50, 51, 55
Standard error, 158, 159
Standard error of the mean, 162
Standard normal, 117
Standardized, 117
Standardized residuals, 319
Starting values, 411
State, 452
State-space model, 470, 593
Stationarity, 6, 147
Stationary increments, 570
Statistic, 137
Statistical model, 10, 13, 17

nonparametric, 14
parametric, 14

Statistical paradigm, 2, 9
Statistical procedures, 19
Statistical reasoning, 13
Statistical thinking, 2
Statistically significant, 253
Steady-state, 5
Stepwise regression, 354
Stimulus-response, 7, 32
Stochastic, 38
Stochastic process, 564, 567
Strictly stationary, 515, 553
Student’s t, 129
Studentization, 319
Sufficient statistic, 200, 404
Sum of squares due to regression, 316
Sum of squares for error, 316
Superposition, 581
Supervised learning, 510
Supplementary eye field, see SEF
Support vector machine, see SVM
Supremum, 242, 270
Surrogate data, 553
SVM (Support vector machine), 508
Symmetric, 25, 615
Synaptic transmission, 113
Synchrony, 284

T
t distribution, 128, 176
t-ratio, 325
t-test, 258, 263, 265
Tapering, 547
Taylor series, 608
Temporal coding, 97
Test data, 355
Test of independence, 254
Test-enhanced learning, 167
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Tests and confidence intervals, 274
Tetrode, 71
Theobromine, 363
Theoretical distribution, 51
Theoretical world, 19
Theta rhythm, 593
Time domain, 518
Time series, 22, 315, 514
Time-frequency analysis, 548
Time-rescaling theorem, 595, 603
Time-varying firing rates, 496
Total sum of squares, 316
Training data, 355, 506
Transfer function, 542
Transformations, 33, 69
Transition probability, 453
Transpose, 615
Treatment effect, 369
Trial, 3, 4
Trigonometric polynomial, 524
Tukey, John, 23, 247, 356, 527
Two-by-two table, 255
Two-sample t-test, 265
Two-way ANOVA, 361
Type one error, 248, 276, 283
Type two error, 248, 276

U
Unbiased estimator, 51, 183
Uncertain inference, 14
Uncertainty, 13, 94
Unequal variance t-test, 266
Uniform distribution, 52
Uniformity test, 268
Unimodal, 24
Unit information prior, 481
Unsupervised learning, 510
Utility function, 102

V
Variability, 26
Variance matrix, 90, 129, 130, 133
Variance of a sum of independent random

variables, 76
Variance of a sum of random variables, 77
Variance-stabilizing transformation, 34, 232
Variation in data, 14
Vascular dementia, 44
Vector, 606
Vector space, 619
Visual attention, 150

W
Wavelets, 428
Weak law of large numbers, 143
Weakly stationary, 515, 553
Weber–Fechner law, 32
Weighted least squares, 345, 535
Weighted mean, 190, 209
Weighted overlapping segment averaging, 540
Weirstrass approximation theorem, 416
Weirstrass, Karl, 523
Welch’s method of spectral density estimation,

540
Welch’s t-test, 266
White noise, 38
Whittle likelihood, 540
Wilcoxon rank-sum test, 384
Wilks’ lambda, 494
Working memory, 333

Z
Zons, 261
z-score, 118, 261
z-test, 259, 261
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