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Preface

Nonparametric Bayesian (BNP) approaches are becoming increasingly more
common in biostatistical inference. Many problems involve an abundance of data
that allows the use of more flexible and complex probability models beyond tradi-
tional parametric families. One of the most traditional application areas for BNP is
in survival analysis, including in particular survival regression. The nature of the
recorded outcomes makes it natural to target inference on an entire unknown dis-
tribution, rather than focus on just a mean function. Many more recent applications
of BNP in biostatistics and bioinformatics involve inference on unknown partitions.
For example, this could be an arrangement of patients into clinically meaningful
subpopulations. This volume covers these and some more applications of BNP in
biomedical inference problems. The intention of this book is to provide a good re-
view of and introduction to related application areas.

Part I starts with two introductory chapters. Chapter 1 provides a brief review
of the most commonly used basic BNP models, including the Dirichlet process,
Dirichlet process mixtures, the dependent Dirichlet process, Polya trees and Gaus-
sian processes. These models and related variations act as the workhorses of BNP
methods in biostatistics applications. Chapter 2 discusses some related examples,
spanning a wide range of applications.

Part II includes several chapters that consider BNP methods for inference with
genomic data, including gene expression, mutations, copy number aberrations and
more. Many chapters in this part involve a notion of clustering biomolecular enti-
ties, e.g. genes, cells, genomic locations or proteins. The inferred clusters provide
insights into underlying biological structure and functionality of these entities. An-
other major feature for most chapters in this part is that the data are obtained from
state-of-the-art experimental platforms, e.g. next generation sequencing counts in
Chapter 4. Although the exact form of raw data vary across chapters, all chapters
are perfect illustrations of the ubiquitous applicability of the common BNP priors in
bioinformatics. For example, Chapter 3 discusses curve clustering methods, focus-
ing on Chinese restaurant process priors to cluster proteins based on their shapes.

v



vi Preface

The inference is centered around an inner product matrix that is built using a special
metric on the shape space. In this way, it efficiently reduces the computational scale
of the problem from infinite-dimensional curves to clustering patterns in a finite
matrix. Chapter 4 uses a variation of the Indian buffet process prior to address the
challenging issue of estimating tumor heterogeneity. Inferring subclones of tumor
cells based on genomic profile has important implications in genomics and cancer
research. Chapters 9 and 6 deal with clustering not as goals in themselves, but inter-
estingly, as efficient tools for dimension reduction. Chapter 9 clusters a large num-
ber of genes based on their expression and eventually uses these clusters to build
regression models for predicting severity of multiple myeloma. Chapter 6 addresses
the classical problem of SNP disease association through a normalized generalized
gamma (NGG) process. This is one of the first applications of this prior to large
scale biostatistical inference. A thorough review of Bayesian network models can
be found in Chapter 8. In addition, the chapter introduces novel and flexible semi-
parametric extensions of current approaches to inference for high dimensional gene
networks. Chapter 7 reviews the recent foray of BNP priors into the classical field
of population genetics. The chapter discusses the problem of detecting population
clusters based on allele frequencies using hierarchical DP priors. Population admix-
ture models are not only relevant for understanding the pattern of human migration
and evolution, but are also critical to account for confounding in gene association
studies. Finally, we would want the readers to take note that all clustering priors
discussed in this part are related to exchangeable distributions. That is, they assume
that there is no natural ordering of the variables, which restrains their straightfor-
ward application to segmentation problems where time or say, genomic locations
can be of great importance. Chapter 5 discusses an elegant way to circumvent this
issue by generalizing an exchangeable prior through latent variables. The method is
applied to detect regions of copy number variations in the genome and is compared
with standard segmentation methods like hidden Markov models.

Chapters in Part III discuss applications of BNP to survival analysis. Inference
for survival data were some of the first problems that motivated the early BNP lit-
erature. This is the case because for event time data it is natural to focus on the en-
tire distribution, including all detailed features, rather than just location and scale.
Chapter 10 motivates Markov processes as a flexible class of priors on hazard rates.
It discusses how such priors can be easily adapted to cure rate models and complex
multivariate settings, like competing risks and recurrent events. Chapter 11 links the
relevant priors for baseline hazard rates with the standard parametric models to pro-
vide a comprehensive review of some common semi-parametric approaches in the
literature. The chapter concludes with a discussion on spatially correlated survival
data. Chapter 12 introduces a fully nonparametric prior to address the challenging
and complex issues of interval censoring and misclassification.

Part IV groups together chapters that include a notion of modeling some ran-
dom function (or response surface). Chapter 13 uses Gaussian process (GP) priors
to model the temporal evolution of the firing patterns of a group of neurons. The two
main themes of this chapters are adapting GP priors to signaling data and multivari-
ate extensions to capture complex spatio-temporal effects. Next, in Chapter 14 we
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find an extensive review of general curve registration techniques that can account
for phase variability in functional data. These approaches are critical to many public
health applications, as illustrated in their application to growth data and pharma-
cokinetics. Chapter 15 delivers yet another flavor of BNP priors in the context of
new age adaptive clinical trials. The chapter focuses on a flexible modeling ap-
proach for a clinical outcome over a large covariate space, where the covariates are
biomarkers. The complexity of the related response surface is particularly relevant
for clinical trial settings where disease status and progression are related to higher
order interactions between biomarkers. Part IV finally concludes with a review of
non-parametric modeling of ROC curves in Chapter 16. ROC curves are ubiquitous
in classification problems, especially in medical diagnostic tests. While providing
another illustration of the utility of the DPM prior, this chapter also provides a lucid
description of Bayesian bootstrap methods.

Inference for spatio-temporal data gives rise to a specific set of challenges and
modeling needs. Part V discusses such models in considerable detail. Chapter 17
starts by providing an in-depth theoretical introduction to Gaussian processes and
other BNP priors for spatial data. This review starts from semi-parametric mod-
els and gradually builds up to fully non-parametric methods. Chapter 18 discusses
two specific priors for spatial data. One of the highlights of this chapter is a clever
method of adapting conventional product partition priors to the spatial context. The
final chapter in this part, Chapter 19, deals with the specialized problem of detecting
boundaries in spatial data. The chapter discusses some specific BNP priors for this
problem. In addition, it formulates this problem in the framework of Bayesian mul-
tiple hypothesis testing advocating ways to extract multiplicity-adjusted posterior
probabilities.

Increasingly stricter ethical standards, increasing cost and complexity of clini-
cal studies make it ever more difficult to carry out randomized studies. This leads
to an increased use of non-randomized data. Deriving meaningful conclusion from
such data requires adjustment for the lack of randomization by techniques known as
“causal inference.” Many of these methods deal with missing data as well. Chapters
in Part VI discuss this class of methods, including a BNP prior for random discon-
tinuation designs in Chapter 20 and BNP priors for inference with missing data in
Chapter 21.

Finally, besides popularizing the use of BNP methods in biostatistics and bioin-
formatics this volume supports BNP research by donating any royalties to the In-
ternational Society for Bayesian Analysis (ISBA) in support of travel awards for
young researchers for upcoming meetings of the biennial workshop in nonparamet-
ric Bayesian inference.

Louisville, KY, USA Riten Mitra
Austin, TX, USA Peter Müller
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Introduction



Chapter 1
Bayesian Nonparametric Models

Peter Müller and Riten Mitra

Abstract We briefly review some of the nonparametric Bayesians models that are
most widely used in biostatistics and bioinformatics. We define the Dirichlet pro-
cess, Dirichlet process mixtures, the Polya tree, the dependent Dirichlet process and
the Gaussian process prior. These few models and variations cover a major part
of the models that are used in the literature. The discussion includes references to
variations of the basic models that are defined in the chapters of this volume.

1.1 Nonparametric Bayesian Inference in Biostatistics
and Bioinformatics

The increased complexity of biomedical inference problems requires ever more
sophisticated and flexible approaches to statistical inference. The challenges include
in particular massive data, high-dimensional sets of potential covariates, highly
structured stochastic systems, and complicated decision problems. Some of these
challenges can be naturally addressed with a class of inference approaches known
as nonparametric Bayesian (BNP) methods. A technical definition of BNP models
is that they are probability models on infinite dimensional probability spaces. This
includes priors on random probability measures, random mean functions, and more.

BNP methods relax the sometimes restrictive assumptions of traditional para-
metric methods. A parametric model is indexed by an unknown finite dimensional

P. Müller (�)
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parameter vector θ . Bayesian inference proceeds by assuming a prior probability
model p(θ ) which is updated with the relevant sampling model p(y | θ ) for the
observed data y.

For example, consider a density estimation problem, with observed data yi ∼ G,
i = 1, . . . ,n. Inference under the Bayesian paradigm requires a completion of the
model with a prior for the unknown distribution G. If G is restricted to be in a
family {Gθ , θ ∈ ℜd}, then the prior is specified as a prior probability model p(θ )
for the d-dimensional parameter vector θ . In contrast, if G is not restricted to a finite
dimensional parametric family, then the prior model p(G) becomes a probability
model for the infinite dimensional G.

A very common related use of BNP priors on random probability measures is for
random effects distributions in mixed effects models. Such generalizations of para-
metric models are important when the default choice of multivariate normal random
effects might understate uncertainties and miss some important structures. Another
important class of BNP priors are priors on unknown functions, for example as prior
p( f ) for the unknown mean function f (x) in a regression model yi = f (xi)+ εi.

The chapters in this volume discuss important research problems in biostatistics
and bioinformatics that are naturally addressed by BNP methods. Each chapter int-
roduces and defines the BNP methods and models that are used to address the spe-
cific problem. In this introductory chapter we briefly introduce and review some of
the most commonly used BNP priors. Posterior inference in many of these mod-
els gives rise to challenging computational problems. We review some of most
commonly used computational methods and include some references. The brief
review in this introduction includes the ubiquitous Dirichlet process (DP) model,
the DP mixture model (DPM), the dependent DP (DDP) model, the Polya tree (PT)
prior, and the Gaussian process (GP) prior. These models and their variations are
the workhorses of BNP inference in biostatistics. The next chapter in this volume
discusses some typical examples by reviewing BNP methods in some important
applications.

For a more exhaustive discussion of BNP models, see, for example, recent dis-
cussions in Hjort et al. (2010), Müller and Rodrı́guez (2013), Walker et al. (1999),
Müller and Quintana (2004), Walker (2013) and Müller et al. (2015).

1.2 Dirichlet Process

Let δx(·) denote a point mass at x. The DP prior (Ferguson 1973) is a probability
model for a random distribution G,

G =
∞

∑
h=1

whδmh , (1.1)
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with independent locations mh ∼ G0, i.i.d., and weights that are constructed as
wh = vh ∏�<h(1− v�) with independent beta fractions vh ∼ Be(1,M), i.i.d. (Sethur-
man 1994). The prior on wh is known as the stick-breaking process. It can be des-
cribed as breaking off fractions vh of a stick of initially unit length. The DP prior
is characterized by the base measure G0 that generates the locations of the atoms
mh and the total mass parameter M that determines the distribution of the beta frac-
tions vh. We write G ∼ DP(M,G0). Implied in the constructive definition of the
stick breaking construction is an important property of DP random measures. A DP
random measure G ∼ DP(M,G0) is discrete with probability one.

The DP is a conjugate prior under i.i.d. sampling. That is, assume xi | G ∼ G,
i.i.d., i = 1, . . . ,n and G ∼ DP(M,G0). Let Fn =

1
n ∑n

i=1 δxi denote the empirical dis-
tribution. Then p(G | xxx) = DP(M + n,G1) with G1 ∝ MG0 + nFn. An interesting
limiting case occurs for M → 0, when the posterior on G is entirely determined
by the empirical distribution. This leads to a construction known as the Bayesian
bootstrap, which is discussed in Chap. 16 (Inácio de Carvalho et al. 2015).

One of the reasons for the wide use of the DP prior is ease of computation for
posterior inference in models based on the DP. In particular, the DP prior imp-
lies a particularly simple predictive probability function p(xn | x1, . . . ,xn−1). Under
i.i.d. sampling from a DP random measure the marginal distribution p(x1, . . . ,xn) =∫

∏n
i=1 G(xi) d p(G) reduces to a simple expression which is easiest characterized as

p(x1, . . . ,xn) = ∏n
i=1 p(xi | x1, . . . ,xi−1) with increasing conditionals

p(xi | x1, . . . ,xi−1) ∝ MG0(xi)+
i−1

∑
�=1

δx� . (1.2)

With probability π0 = M/(i− 1+M) the sample xi is a new draw from G0, and
with probability 1/(i− 1+M) the new sample is tied with a previous sample x�.
The conditional distribution (1.2) is also known as the Polya urn. We will return
to it below. Let xxx−i = xxx \ {xi}. For later reference we note that by symmetry the
conditional distribution p(xi | xxx−i) takes the same form.

1.2.1 DP Mixture

The discrete nature of a DP random measure is awkward in many applications and
is therefore often avoided by using an additional convolution with a continuous ker-
nel. Let k(xi | θ ) denote a continuous kernel, for example a Gaussian kernel. With-
out loss of generality we assume in the remaining discussion k(xi | θ ) = N(xi | θ ,s)
(with fixed s). The DP mixture (DPM) model assumes G =

∫
N(xi | θ ,s)dF(θ ),

with F ∼ DP(M,F0). We write G ∼ DPM(M,G0,k). It is often convenient to
rewrite the mixture as an equivalent hierarchical model. Instead of yi ∼ G and
G ∼ DPM(M,G0,k) we write

yi | θi ∼ N(θi,s) and θi ∼ F (1.3)
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with F ∼DP(M,G0). The DPM model is one of the most widely used BNP priors for
random distributions. In this volume we find it, for example, in Chap. 11 (Zhou and
Hanson 2015) to construct a semiparametric version of an accelerated failure time
model; in Chap. 16 (Inácio de Carvalho et al. 2015) as a prior for the distribution
of test outcomes to develop inference on ROC curves; in Chap. 21 (Daniels and
Linero 2015) for longitudinal outcomes under different missingness patterns; and
many more.

Consider again the θi in (1.3). As a sample from the discrete random measure F ,
the newly introduced latent variables θi include many ties. Let θθθ � = {θ �

1 , . . . ,θ �
k }

denote the k ≤ n unique values and let S j = {i : θi = θ �
j } denote the indices [n] ≡

{1, . . . ,n} arranged by the configuration of ties. Then ρn ≡ {S1, . . . ,Sk} defines a
partition of [n]. Since the θi were random, as a consequence the partition is random.
That is, the DP mixture model (1.3) induces a random partition p(ρn). At first glance
this seems like a coincidental detail of the model. However, many applications of the
DPM model exploit exactly this feature. It features in many chapters in this volume.
The implied prior p(ρn) on the random partition is also known as Chinese restaurant
process (CRP). It is used, for example, in Chap. 3 (Zhang et al. 2015).

Sometimes it is convenient to index the partition ρn alternatively by an equivalent
set of cluster membership indicators. Let si denote indicators with si = j if i ∈ S j,
that is when θi = θ �

j . Let n j = |S j| denote the size of the jth cluster, n−j = |S j \ {i}|
and let k− denote the number of unique values θ� in θθθ−i. Then we can rewrite
(1.2) as

si | sss−i =

{
j with prob

n−j
n−1+M , j = 1, . . . ,k−

k−+ 1 with prob M
n−1+M

(1.4)

The attraction of model (1.3) is the ease of posterior simulation. Consider a generic
model yi ∼ G with DPM prior (1.3) and similar to k− and n−j let θ �−

j denote the jth
unique value among θθθ−i. Then (1.4) implies

θi | yyy,θθθ−i =

{
θ �−

j with prob. ∝ n−j p(yi | θ �−
j )

∼ H1 with prob. ∝ M
∫

p(yi | θ ) dG0(θ )
(1.5)

with H1(θ ) ∝ p(yi | θ )G0(θ ). If p(yi | θ ) and G0(θ ) are chosen as a conjugate
pair of sampling model and prior, then generating from (1.5) is straightforward. In
the general case, the evaluation of h0 ≡

∫
p(yi | θ ) dG0(θ ) can be computationally

challenging. Several MCMC algorithms have been proposed to circumvent the eval-
uation of an analytically intractable integral h0 (Neal 2000). For a recent review of
the DP and related models, see, for example, Ghosal (2010).

1.2.2 Generalizations of the DP

Many generalizations of the DP prior have been proposed in the literature. One
example is the Poisson-Dirichlet (PD) process that is used in Chap. 9 (Guha et al.
2015). The PD arises by replacing the Be(1,M) prior on the fractions vh in the
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stick breaking construction by Be(1− a,b+ ha) priors. Other generalizations are
specifically focused on the implied random partition model, like the generalized
Ottawa sequence introduced in Chap. 5 (Bassetti et al. 2015) or the hierarchical DP
(HDP) model in Chap. 7 (Iorio et al. 2015). The latter defines a prior on a family of
random probability measures {G j; j = 1, . . . , j}.

1.3 Dependent Dirichlet Process

Many problems involve a family of unknown random probability measures F =
{Fx;x ∈ X}. For example, in a mixed effects model that includes data from several
related studies, Fj might be the random effects distribution for patients in study j.
More generally, a formalization of non-parametric regression could assume

yi | xxxi = x,F ∼ Fx (1.6)

i = 1, . . . ,n. That is, we denote by Fx the sampling model for the response of a
subject with covariates xxxi = x. If we are willing to assume Fx = N(xxx′iβββ ,σ2), then the
problem reduces to parametric inference on the finite dimensional parameter vector
θθθ =(βββ ,σ2). In other words, we restrict F to the family of probability measures ind-
exed by θθθ . In the absence of such restrictions Bayesian inference in (1.6) requires a
prior probability model p(F ) that allows for dependence and borrowing of strength
across x, short of the strict parametric assumption, but still more than in a model
with independent, separate priors on each Fx.

One of the most popular models in the recent literature for a family of random
probability measures F is the dependent DP (DDP) and variations of it. The model
was first introduced in MacEachern (1999). The idea is simple. We continue to use

Fx =
∞

∑
h=1

whδmxh , (1.7)

with independent locations mxh, i.i.d. across h and weights that are constructed with
independent beta fractions as before, in (1.7). The only addition is that we now
introduce dependence on the point masses mxh across x. For example, we could
assume that (mxh, x ∈ X) is a realization of a Gaussian process indexed by x. In the
simplest implementation the weights wh are shared across all x, as implied in the
notation wh without a subindex for x.

Similar to the DP mixture model, the DDP model (1.7) is often combined with a
continuous kernel, for example a normal kernel to define

Gx(y) =
∫

N(y | θ ,σ2) dFx(θ ) =
∞

∑
h=1

whN(y | mxh,σ2). (1.8)
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with a DDP prior on {Fx, x ∈ X}. Here N(y | m,s2) denotes a normal kernel in y.
We refer to (1.8) as a DDP mixture of normals. For categorical covariates x ∈ X the
dependent probability model for (mxh, x ∈ X) could be defined, for example, as an
ANOVA model. This defines the ANOVA DDP proposed in DeIorio et al. (2002).
A version of the same, with a general linear model in place of the ANOVA model is
the linear dependent DP (LDDP) (Jara et al. 2010).

1.3.1 Variations of the DDP

The DDP prior and variations of it are used in several chapters in this volume. Chap-
ter 12 (Jara et al. 2015) uses an LDDP to implement survival regression. Chapter 20
(Karabatsos and Walker 2015) constructs a variation of a DDP by introducing the
dependence on covariates in (1.7) by a probit regression in the weights wh, rather
than the atoms mh.

1.4 Polya Tree

The Polya tree (PT) prior (Lavine 1992, 1994) is an attractive alternative BNP prior
for a random probability measure. The PT prior is essentially a random histogram.
Without loss of generality, assume that we wish to define a random probability mea-
sure G on the unit interval [0,1]. We could start with a random histogram with
two bins {B0,B1}, say over B0 = [0,0.5) and B1 = [0.5,1]. Let Y0 = G(B0) and
Y1 = 1−Y0 denote the (random) probabilities of B0 and B1. Next we refine the
histogram by splitting the bins into B0 = B00 ∪B01 with B00 = [0,0.25), etc. Let
Y00 = G(B00 | B0), Y10 = G(B10 | B1), Y01 = 1−Y00, and Y11 = 1−Y10. We continue
refining the histogram to 2m bins, m = 1,2, . . . by repeating similar binary splits.
The process creates a sequence Π = {Πm, m = 1,2, . . .} of nested binary partitions
Πm = {Be1···em} with e j ∈ {0,1}. The PT defines a prior on G by assuming

Yε0 ∼ Be(αε0,αε1),

independently across ε and Yε1 = 1−Yε0. The nested partitions Π together with the
beta parameters A = {αε} characterize the PT prior. We write G ∼ PT(Π ,A ).

One of the attractions of the PT prior is the ease of centering the model. Let
0.e1 · · ·em = ∑ j e j2− j denote the number with binary digits ε = e1, . . . ,em and let
qε denote the corresponding quantile of a fixed probability measure G0. That is, for
example, q1,q01,q10 are the median and the first and third quartile of G0. Next define
Bε to denote the corresponding partitioning subsets and let ∏ denote the nested
partition sequence with partitioning subsets Bε . If G ∼ PT(Π ,A ) with αε0 = αε1,
then E(G) = G0. We write

G ∼ PT(G0,A ).
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A particularly attractive choice is αe1···em = c2m which can be shown to imply a
continuous random probability measure G. We write G ∼ PT(G0,c). Alternatively,
for an arbitrary nested partitioning sequence Π , define A by αεem = cG0(Bεem |Bε)
and assume G ∼ PT(Π ,A ). Then again E(G) = G0. We write

G ∼ PT(Π ,G0).

For a recent review of the PT prior, see, for example, Müller et al. (2015 Chapter 3).
PT priors are used, for example, in Chap. 11 (Zhou and Hanson 2015) to construct
a semi-parametric accelerated failure time model.

1.5 Gaussian Process

Gaussian Process (GP) priors are widely used in machine learning, medical imaging,
ecology, and various disease risk models. A GP is a stochastic process {Y (s);s ∈ S}
that extends (finite dimensional) multivariate Gaussians to infinite dimensions. Here
Y(.) is a function-valued random variable while S denotes the domain (typically ℜe)
of the function. The domain S and thus Y (.) can have very different interpretation
and meaning depending upon specific applications. For example, in Chap. 17 (Reich
and Fuentes 2015), and typically in the context of spatial models, S refers to all
location points in a given region. For machine learning applications, it can be the set
of all possible input stimuli. It could even represent the time domain for recording
neuronal activity as in the case study provided in Chap. 13 (Shahbaba et al. 2015). S
is usually endowed with its own specific metric, e.g. the Euclidean distance in spatial
applications. The problem of analyzing the random function Y (.) or predicting its
value Y(s) at a specific point s can be formulated within the framework of non-
parametric regression, where the values in S play the role of covariates and Y (.) is
the regression function to be estimated. A prior on the random function Y () would
simply refer to the probability law of the stochastic process.

We formally characterize a GP as a stochastic process with mean function
m(.) and covariance function k(·, ·) if every finite sub-collection of this process,
[Y (s1),Y (s2) . . .Y (sn)] is multivariate Gaussian

[Y (s1), . . . ,Y (sn)]∼ N(μ ,Σ) with μ = [m(s1), . . . ,m(sn)] and Σi j = k(si,s j).

We write Y ∼ GP(m,k). The covariance function is sometimes also referred to as
the kernel of the GP. The prior on the random Y (.), thus defined, is called a GP
prior. Simply put, a GP extends finite multivariate Gaussian models to infinite di-
mensions. It can be shown that such an extension is possible using Kolmogorov’s
consistency theorem. Naturally, the infinite process inherits many attractive prop-
erties of its finite version. For example, no restrictions are required for the mean
function m. However, since all finite dimensional subsets are required to be Gaus-
sian, a condition of positive semi-definiteness is implied on V for any finite subset
of S.
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A variety of different families of valid kernels are in common use. Some popular
choices include squared exponential (SE), polynomial, neural network, Ornstein-
Uhlenbeck (OU), Matern, etc. Each of these families typically has a number of free
hyper-parameters. Choosing a covariance function for a particular application thus
comprises both, the setting of hyper-parameters within a family, and sometimes the
comparison across different families through model-selection techniques. Alterna-
tively, flexible and non-parametric covariance functions can be built by exploiting
the spectral representation of a GP. Chapter 17 (Reich and Fuentes 2015) introduces
such general priors for spatial covariances by applying the DP and the DPM priors
to the coefficients of the spectral density.

In general, all covariance functions formally encode some notion of similar-
ity between a pair of random observations based on the distance between corre-
sponding elements of S. Consider, for example, the SE kernel given by k(s, t) =
exp(−||s− t||2/2τ2). The functional form suggests that observations corresponding
to proximal points are highly correlated, with the correlation dropping off exponen-
tially with the distance between the points.

Posterior inference and prediction with GP priors is made immensely easy by
using the analytical results for multivariate Gaussians. For this, it is enough to
observe that the collection of new and observed variables is a finite subset of the
GP and their joint density is a multivariate Gaussian. Hence, the posterior predic-
tive distribution, obtained by conditioning on the observed data, appears as another
multivariate normal. The infinite dimension of the prior, while providing substantial
modeling flexibility, poses no concern for inference and computation. These prop-
erties turn out to be critical for several analytical manipulations with the GP prior.

However a known computational bottleneck is the inversion of (n× n) matri-
ces that appear in the analytical results, thus making the computational complexity
cubic in the number of data points. For large datasets (n > 10,000) this is prohibitive
(in both time and space) for any inference, Bayesian or otherwise. So a number of
computational methods [e.g., reduced rank matrix approximations (Fine et al. 2001;
Smola and Schökopf 2000)] have been developed. Another approach is to exploit
structures of special classes of covariance functions for exact computation. These
methods are iterative and the computation scales linearly with the size of the data
(Johannesson and Cressie 2004). Cressie and Johannesson (2008) extended this ap-
proach to a flexible class of covariance functions. The computational complexity
also increases drastically in multivariate settings with several spatially dependent
response variables. Banerjee et al. (2008) used induced predictive process models
as a clever strategy for dimension reduction and to reduce computational cost in this
context. An alternative solution to the computational problem is the treed Gaussian
process of Gramacy and Lee (2008). The approach proceeds by first partitioning
the covariate space into a number of smaller regions, similar to a classification and
regression tree (CART). Next, independent GP’s are fit to each subregion. The over-
all inversion of a large matrix is replaced by a number of smaller, computationally
feasible inversions. Posterior inference is efficiently handled in the tgp package
for R.

An excellent reference on Gaussian process models for regression is Rasmussen
and Williams (2005).
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1.6 Conclusion

In this brief review we only introduced some of the most popular BNP models
and variations. Some of the chapters use models beyond this selection. Chapter 4
(Ji et al. 2015) uses an Indian buffet process as a prior probability model for a
feature allocation problem. Feature allocation generalizes random clusters, that is,
non-overlapping subsets, to families of possibly overlapping subsets. Chapter 10
(Nieto-Barajas 2015) introduces several alternative models, including, for example,
the normalized generalized gamma (NGG) process. The same NGG process appears
in Chap. 6. Some chapters define random functions based on spline bases, including
Chap. 14 (Telesca 2015) and Chap. 11 (Zhou and Hanson 2015). Finally, Chap. 8
(Ni et al. 2015) discusses prior probability models for random networks.

The next chapter, Chap. 2 continues this review by discussing some typical ap-
plications of basic BNP models.
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Chapter 2
Bayesian Nonparametric Biostatistics

Wesley O. Johnson and Miguel de Carvalho

Abstract We discuss some typical applications of Bayesian nonparametrics in
biostatistics. The chosen applications highlight how Bayesian nonparametrics can
contribute to addressing some fundamental questions that arise in biomedical re-
search. In particular, we review some modern Bayesian semi- and nonparametric ap-
proaches for modeling longitudinal, survival, and medical diagnostic outcome data.
Our discussion includes methods for longitudinal data analysis, non-proportional
hazards survival analysis, joint modeling of longitudinal and survival data, longi-
tudinal diagnostic test outcome data, and receiver operating characteristic curves.
Throughout, we make comparisons among competing BNP models for the various
data types considered.

2.1 Introduction

“Why Bayesian nonparametrics?” Motivation for Bayesian nonparametrics encom-
passes model flexibility and robustness, as parametric models are often inadequate
due to their constraints. Bayesian nonparametric models that embed parametric fam-
ilies of distributions in broader families seem eminently sensible since they allow for
flexibility and robustness beyond the constrained parametric family. The models we
consider here are in fact richly parametric (formally, using an infinite-dimensional
parameter space) rather than nonparametric, which is an unfortunate misnomer
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that we will not attempt to rectify. Bayesian nonparametric models involve placing
prior distributions on broad families of probability distributions; examples consid-
ered here include Mixtures of Polya trees (MPT) and Dirichlet Processes mixtures
(DPM).

The MPT will be seen to be a clear extension of a selected parametric family for
data. The DPM is more ambiguous but in some instances could be viewed in the
same way. A popular theme in much of the Bayesian nonparametrics literature is
to regard a parametric approach as a reference, while allowing data that are mod-
eled nonparametrically to inform a subsequent analysis about the adequacy of the
parametric model.

Other Bayesian nonparametric approaches involve the use of Gaussian process
priors and consist of probability models over spaces of functions. For these the nat-
ural probabilistic concept is that of a random function; conceptually, random func-
tions can be regarded as stochastic processes, and are the subject of Part IV of this
volume.

2.1.1 Organization of this Chapter

Section 2.2 Comments on the DPM and MPT. In this section we discuss some
features of Dirichlet and Polya tree processes; a technical introduction to these and
other prior processes can be found in Chap. 1 of this volume (Mitra and Müller
2015).

Section 2.3 Longitudinal Data: Semiparametric Autoregressive Modeling. Here
we discuss a model that generalizes standard mixed models for longitudinal data,
and which includes a functional mean function, and allows for compound symmetry
(CS) and autoregressive (AR) covariance structures. The AR structure is specified
through a Gaussian process (GP) with an exponential covariance function, which
allows observations to be more correlated if they are observed closer in time than
if they are observed farther apart. Quintana et al. (2015) generalize this model by
considering a DPM of Gaussian processes. In Sect. 2.3.2 we discuss their analysis
of data from the Study of Women’s Health across the Nation (SWAN) that involves
longitudinal outcomes of hormone data for women experiencing the menopausal
transition.

Section. 2.4 Survival Data: Nonparametric and Semiparametric Modeling. We
discuss Bayesian non and semi-parametric modeling for survival regression data;
Sect. 2.4 provides some preparation for Part III of this volume, which is entirely
dedicated to survival analysis. We first give a selective historical perspective of the
development of nonparametric Bayesian survival regression methods (Sect. 2.4.1).
We discuss an analysis of time to abortion in dairy cattle with fixed covariates, and
then discuss models for time dependent regression survival data, followed by anal-
yses of the Stanford Heart Transplant data and a data set involving the timing of
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cerebral edema in children diagnosed with ketoacidosis. We end the section with a
presentation of a Bayesian nonparametric survival model that allows survival curves
to cross, and a subsequent analysis of breast cancer data where survival curves are
expected to cross.

Section 2.5 Joint Modeling of Longitudinal and Survival Data. We consider the
joint modeling of survival data and a longitudinal process. In Sect. 2.4, we discussed
a number of survival regression models with time dependent covariates where we
fixed the time dependent covariates (TDC) in the same sense that we fix covariates
in regression. However, Prentice (1982) pointed out that fixing the TDCs rather than
modeling them could bias final estimates. The general rule has been to use the last
observation carried forward (LOCF) in the TDC process, despite the fact that the
last observation might have occurred some time ago, suggesting that it may not well
represent the current value of the process. In Sect. 2.5 we discuss a data analysis
performed by Hanson et al. (2011b), which uses the models and methods in Hanson
et al. (2009) in conjunction with longitudinal modeling to develop joint models for
longitudinal-survival data.

Section 2.6 Medical Diagnostic Data. In Sect. 2.6.1 we discuss the subject of Re-
ceiver Operating Characteristic (ROC) curve regression, and in Sect. 2.6.2 we con-
sider the issue of Bayesian semi-parametric estimation in ROC regression settings
that lack availability of a gold standard test, i.e., when there is no available test that
could perfectly classify subjects as diseased and non-diseased. Related literature is
reviewed in detail in Chap. 16 (Inácio de Carvalho et al. 2015). We illustrate meth-
ods by assessing the potential of a soluble isoform of the epidermal growth factor
receptor (sEGFR) for use as a diagnostic biomarker for lung cancer in men, and we
assess the effect of age on the discriminatory ability of sEGFR to classify diseased
and non-diseased individuals. In Sect. 2.6.3 we discuss joint longitudinal diagnostic
outcome modeling and analysis, and we illustrate with longitudinal cow serology
and fecal culture data.

In Sect. 2.7 we briefly comment on other types of data that are of interest in biomedi-
cal research, and on some current Bayesian nonparametric approaches for modeling.

2.2 Comments on the DPM and MPT

We briefly comment on two mainstream prior processes for data analysis: The
Dirichlet and Polya tree processes. By themselves, they are perhaps not practical
models for data analysis, but it is their mixture forms that are. The Dirichlet Process
Mixture (DPM) and the Mixture of Polya Trees (MPT) have been established to be
practical tools for data analysis. Models that employ the DPM in various forms are
by far the most popular for a variety of reasons including the fact that the DP has
been in the literature since at least Ferguson (1973), and DPMs have been developed



18 W.O. Johnson and M. de Carvalho

extensively for use in analyzing data since at least Escobar (1994). Polya Trees have
been around since at least Ferguson (1974), but did not seem to be particularly no-
ticed until the 1990s (Mauldin et al. 1992; Lavine 1992, 1994), and were not given a
lot of attention until Berger and Guglielmi (2001), and Hanson and Johnson (2002)
and Hanson (2006), who developed MPTs for survival analysis and beyond.

A key property of the DPM is that any inferential object that is modeled as a
DPM of continuous parametric densities is smooth. Moreover, under some condi-
tions, the DPM of location-scale normal densities has been shown to have strong
posterior consistency for the true density (Tokdar 2006). There are many other
theoretical works of this type, including Amewou-Atisso et al. (2003), who es-
tablished large sample consistency properties for semiparametric linear regression
models with error distributions that are modeled with median zero processes based
on both PTs and DPMs. The original and continuing appeal to DPMs was and
is at least partly based on the ease of marginalizing over the DP when perform-
ing numerical calculations. The marginalization led to computationally straightfor-
ward schemes involving the Polya Urn scheme that researchers often describe as
a Chinese restaurant process. Neal (2000) improved upon previous computational
schemes pioneered by Escobar (1994); Escobar and West (1995), and MacEach-
ern and Müller (1998), among others. In addition, there are many extensions of
the DPM, including the Dependent Dirichlet Process (DDP) (MacEachern 2000),
the Nested DP (NDP) (Rodriguez et al. 2008), and the Hierarchical DP (HDP)
(Tomlinson and Escobar 1999; Teh et al. 2006), among others, many discussed in
Chap. 1 of this volume (Mitra and Müller 2015).1 The Sethuraman (1994) repre-
sentation of the DP facilitated the development of all of these, and it provided an
easy understanding of the precise meaning of the DP and the DPM. In addition, it
facilitated the extension to more general stick-breaking processes, for example the
Dunson and Park (2008) application to density regression, among others. The point
here is that there is now a wealth of papers that have developed, extended, and used
various forms of and which stem from the DP, and which have used these tools to
analyze data of all complexities. The DPM is clearly here to stay.

The MPT has many positives as well. It can be selected to be absolutely con-
tinuous with probability one, so it is possible to use it directly as a model for data.
When used as a model for the error distribution in a linear regression, it is easy to
specify that the MPT has median zero with probability one, resulting in a semipara-
metric median regression model. In Sect. 2.4 we discuss such models for survival
data. In addition, it is a flexible model, allowing for multimodality, skewness, etc.
It is straightforward to perform MCMC computations for many complex models
(Hanson 2006), and there is no need to marginalize the process to make computa-
tions simpler. From our point of view, a major positive feature of the Mixture of
Finite Polya Tree (MFPT) prior is that it not only allows for a broad/flexible class
of distributions but that it has a parametric family of distributions for the data em-
bedded in it, and that the embedding is natural. Thus, if a scientist has previous
experience or information that suggests that a log normal family of distributions

1 See also Müller and Mitra (2013) for a recent survey.
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might be appropriate for their survival data, they could hedge their bets by embed-
ding that family as the centering family of an MFPT. Moreover, if they also had
scientific information about the log normal family parameters, they could construct
an informative prior for those parameters. See Bedrick et al. (1996) and Bedrick
et al. (2000) for illustrations of informative prior specification for generalized linear
models and for survival models. Thus far, we are not aware of any such nice prop-
erties for specifying prior distributions on the parameters of the base distribution in
the DPM. Berger and Guglielmi (2001) also took advantage of the fact that a para-
metric family can be embedded in the PT family in developing a method to test the
adequacy of the parametric family to fit data.

A possible advantage of the DPM over the MPT is the ease of extending the DPM
to multivariate data, which is straightforward for the DPM. Hanson (2006) has de-
veloped MPT methods for multivariate data, and Jara et al. (2009) and Hanson et al.
(2011a) improved them. While no comparison between the methods has been per-
formed to date, Hanson reports that the MPT-based method would perform well for
joint density estimation, and clearly better for “irregular densities” (personal com-
munication). Another advantage is the smoothness of the DPM. When the weight
associated with the MPT is small, density estimates can be quite jagged, despite
the fact that Hanson and Johnson (2002, Thm. 2) proved that predictive densities
in the context of the semiparametric model that they develop are differentiable un-
der some conditions. For applications, an important issue is prior elicitation for the
DPM; cf. Hanson et al. (2005).

In the illustrations below, we take examples that use the DPM, DDP, and MPT.
For the MPT based models, we always use a truncated version, which is termed an
MFPT. The truncation is at some level, usually termed M, of the basic tree structure.
In addition, MPTs have weights, c, just like the DPM, whereas small weight cor-
responds to the model being ‘more nonparametric.’ Some models discussed below,
e.g. Hanson and Johnson (2002, 2004), and De Iorio et al. (2009), can be fit using
the R package DPpackage (Jara et al. 2011).

2.3 Longitudinal Data: Semiparametric
Autoregressive Modeling

2.3.1 The Semiparametric Model

Assume that observations are made on individual i at times {ti1, . . . , tini}, namely
Yi = {Yi j : j = 1, . . . ,ni}. At time ti j we allow for a vector of possibly time-dependent
covariates xT

i j = (1,xi1(ti j), . . . ,xip(ti j)), and assume that E(Yi j) = xT
i jβ . Define the

ni × (p+ 1) design matrix Xi = (xi1, . . . ,xini)
T, leading to an assumed mean vector

E(Yi) = Xiβ . Then, allow for a corresponding ni × q design matrix Zi, with q � p
and with the column space of Zi restricted to be contained in the column space of Xi.
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The starting point for the model to be discussed is a well-known linear mixed
model (Diggle 1988) that also allows for AR structure, namely

Yi = Xiβ + fi(t)+Zibi +wi + εi, bi | ξ ∼ Nr(0,D(ξ )), wi | φ ∼ Nni(0,Hi(φ)),
(2.1)

Here, Hi(φ) is ni × ni and has a structural form, εi ∼ N(0,σ2 Ini), and fi(t) is a
function evaluated at subject-specific times ti j for individual i; in addition, ξ and φ
contain variance–covariance parameters for bi and wi, respectively.

The wi are generated by zero-mean Gaussian processes, {wi(t) : t > 0}. If
Cov(wi(t + s),wi(t)) = σ2

wρ(s), with ρ(s) = ρ s, the resulting stationary process
is an Ornstein–Uhlenbeck process (Rasmussen and Williams 2006), which yields
an exponential covariance function and induces AR structure.2 The combination of
choosing which terms to include in (2.1)—and making particular choices for H(φ)
and D(ξ )—when the corresponding effects are included in the model, determines
the covariance structure for the data.

The semiparametric autoregressive model extends (2.1) by introducing flexibility
beyond the exponential covariance structure. Consider first the GP, wi, for the ith
subject, with covariance matrix of the form Hi(φ) = σ2

wH̃i(ρ), where φ = (σ2
w,ρ)

and {H̃i(ρ)}k,� = ρ |ti�−tik|. Let φ | G ∼ G with G ∼ DP(α,G0) so that

f (wi | G) =
∫

N(wi | 0,σ2
wH̃i(ρ))dG(φ) =

∞

∑
k=1

πkNni(wi | 0, σ̃2
wkH̃i(ρ̃k)), (2.2)

is an infinite mixture of multivariate normal densities, where (σ̃2
wk, ρ̃k)

iid∼G0, and the
πk =Vk ∏l<k(1−Vl), where Vk

iid∼Be(1,α); here, G0 is the centering distribution and
α > 0 is the so-called precision parameter. A related spatial DP with exponential
covariance function in the base distribution was developed by Gelfand et al. (2005).

Model (2.2) implies clustering on autocorrelation structure across subjects, and
using the Sethuraman representation, it can be noticed that

Cov(wi(t + s),wi(t) | G) =
∞

∑
k=1

πkσ̃2
wkρ̃ s

k.

Hence, if the ith subject has equally spaced times between observations, the corre-
sponding covariance matrix has equal diagonals with decreasing correlations as s
increases, but not necessarily at a geometric rate.

2 Zeger and Diggle (1994) used ρ(s) = α +(1−α)ρ s. There are additional choices, including
the possibility that σ 2

w could depend on t , resulting in a nonhomogeneous Ornstein–Uhlenbeck
process (Zhang et al. 1998). Taylor et al. (1994) used an integrated Ornstein–Uhlenbeck process
(integrating over an Ornstein–Uhlenbeck with exponential covariance function) that results in a co-
variance function that depends on both t and s. With structured covariance functions, the marginal
covariance matrix for Yi is Cov(Yi) = Σi(ξ ,φ ,σ 2) = ZiD(ξ )ZT

i +Hi(φ )+σ 2Ini .
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It is useful to re-write the semiparametric autoregressive model (2.2) hierarchi-
cally based on latent parameters φ1, . . . ,φn, i.e.

Yi | β ,bi,wi,σ2 ind∼ Nni(Xiβ + fi(t)+Zibi +wi,σ2I),

wi | φi = (σ2
wi,ρi)

ind∼ Nni(0,σ
2
wiH̃i(ρi)),

φ1, . . . ,φn | G
iid∼ G, (2.3)

G ∼ DP(α,G0),

bi
iid∼ N(0,D(ξ )),

σ ,β ,ξ ∼ U(0,A)×N(β0,B)× p(ξ ),

where wi and bi are assumed independent for i = 1, . . . ,n.
What about posterior sampling? It can be shown that f (wi | φi) is easily obtained,

by noting that wi ∼ Nni(0,σ2
wiH̃(ρi)). Then, with

rik = ρ |ti,k+1−tik|
i , k = 1, . . . ,ni − 1,

Quintana et al. show that
{

wi1 ∼ N1(0,σ2
i ),

wik | wi1 = w̃1, . . . ,wik−1 = w̃k−1 ∼ N1
(
w̃k−1rik−1,σ2

i (1− r2
i k−1)

)
.

Thus, f (wi | φi) is obtained as the product of ni univariate normal probability den-
sities, making it simple to obtain the full conditional distribution of wi in a Gibbs
sampling algorithm.

2.3.2 Model Specification for Hormone Data

Quintana et al. (2015) considered a small subset of data that were obtained from
SWAN (Study of Woman Across the Nation, www.swanstudy.org). The data in-
cluded 9 observations for each of 162 women, and contained no missing observa-
tions. The data were grouped according to age at the beginning of the study (under
46 and over 46 years), and according to four racial/ethnic groups (African Ameri-
can, Caucasian, Chinese, and Japanese).

The main interest was to model the annual follicle stimulating hormone (FSH)
concentrations through the menopausal transition. Concentrations of FSH and other
hormones had been modeled to increase according to a (four parameter) sigmoidal
shape (Dennerstein et al. 2007). FSH concentrations were measured annually from
serum samples in days two through five of the menstrual cycle for women who
were still menstruating or on any day that women came in for their annual visit if
they were postmenopausal. Times of observation were centered on the year of final
menstrual period (FMP), namely ti = 0 corresponds to the year in which the final

www.swanstudy.org
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menses occurred, which is defined to be the actual time of last menses before a
12-month period in which there were none. Thus, year −3 is 3 years prior to the
FMP, and year +3 is 3 years after. The data included women who started at year −8
continuing through year 0, and women starting at year −2 and continuing through
year 6 (after FMP).

The functional part of the model involves a generalized sigmoid function allow-
ing for greater flexibility than the Dennerstein et al. model. Each of the eight age by
race-ethnicity groups was modeled with its own generalized sigmoid function. Let
c(i) ∈ {1, . . . ,8} be an indicator variable describing the particular combination of
four races and two ages corresponding to subject i. Here, we set β = (β1, . . . ,β8),
where βl is the vector of fixed parameters associated with combination l.

Quintana et al. used the five parameter generalized sigmoid curve that was dis-
cussed in Ricketts and Head (1999):

S(t | β ) = β1 +
β2

1+ ft exp{β3(β4 − t)}+(1− ft)exp{β5(β4 − t)} , (2.4)

where

ft =
1

1+ exp{−C(β4 − t)} , C =
2β3β5

|β3 +β5| ,

in which case the fixed effects become fi(ti j) = S(ti j | βc(i)). The parameters now
five-dimensional and the curves defined by (2.4) are not restricted to be monotone,
as would be the case of a pure sigmoidal curve. If β3 and β5 are however both
positive, then (2.4) is monotone and increasing, and if both are negative, then it is
decreasing. Using a model with fixed effects specified through (2.4), estimated mean
profiles can be compared for the eight groups.

The data analysis just below is based on the specification:

Yi = S(ti | βc(i))+ bi1+wi + εi, (2.5)

where tT
i = (ti1, . . . , ti9), bi

ind∼ N(0,σ2
b ) are individual-specific random effects, 1 is a

vector of ones, wi is distributed as a DPM of Ornstein–Uhlenbeck (OU) processes,
as specified in (2.3), and where S(ti | βc(i)) is a vector with entries S(ti j | βc(i)), for
j = 1, . . . ,9.

Hormone Data Analysis

Quintana et al. (2015) fitted a total of six models to the data, including (2.5) above.
The models considered included a parametric version of (2.5) without the OU pro-
cess, model (2.5) with mixed and fixed linear terms replacing the sigmoid function, a
model just like this one, except setting ρ = 0, model (2.5) again, but with ρ = 0, and
finally model (2.5) without OU structure and with a general nonparametric Bayes
mixture for the random effects.
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They calculated log pseudo-marginal likelihood (LPML) statistics for each
model; see Christensen et al. (2010, Sect. 4.9.2), or Gelfand and Dey (1994). This
criterion for model selection was first introduced by Geisser and Eddy (1979) and
has been used extensively for model selection in recent years; see, for example,
Hanson, Branscum, and Johnson (2011b). The pseudo-marginal likelihood used was
defined as ∏n

i=1 ∏ni
j=1 f (yi j | y(i j), Xi,M ), where f (yi j | y(i j),Xi,M ) is the predic-

tive density, under model M , corresponding to individual i at time j based on the
data minus yi j. LPML value for model (2.5) was −5966, and the range for the other
five models was −6673 to −6986; thus the sigmoid function with NP autoregressive
structure was the clear winner. Leaving out the AR part of the model was simply not
an option.

Plots of fitted values and corresponding probability bands (not shown) were vir-
tually identical for (2.5) and its linear counterpart was virtually identical. The model
with linear structure would have however been useless for prediction or for charac-
terizing mean curves as can be seen in Fig. 2.1.
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Fig. 2.1 Predictions of future hormone concentrations (y axis) for eight types of women, using
(2.3) (solid curve), linear version of (2.3) (dotted), parametric sigmoid (dot dash), nonparametric
random effects with sigmoid (dashed). Times of observation (x axis) are centered on the year of
final menstrual period (FMP) (ti = 0), so that year −3 is 3 years prior to the FMP, and year +3 is
3 years after
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Figure 2.1 shows model-based future predictions (posterior mean curves) for the
eight different types of patient, all on the same time scale. It thus makes sense to
compare shapes and levels across race/ethnicity for the same age group, and be-
tween age groups for the same race/ethnicity. Generally speaking, all models that
include sigmoid mean functions predict that women’s FSH hormones will go up
sigmoidally, and then curve downwards toward the end of the time frame, regardless
of age-race/ethnicity category. On the other hand, the linear effects model, labeled
as OU on the graph, predicts a simple linear increase in FSH hormone values in
contrast to the others.

Quintana et al. also made inferences comparing the maximum level achieved,
the timing of the maximum level achieved and the overall slope of increase in the
4 years before FMP. The most dramatic inference is that Chinese women who are
46 years old and under at baseline achieve their maximum approximately between
1 and 3 years after FMP with 95 % posterior probability, while corresponding in-
tervals for younger women in the other race/ethnic groups are below this interval.
Among older women at baseline, there is a 0.95 posterior probability that timing for
African Americans is greater than for Caucasians. The posterior probability that the
difference in timing comparing younger to older Chinese women is positive is one
to four decimal places. There is a clear statistical difference in timing comparing
age groups for Chinese women but not for the other groups.

Finally, they estimated correlations among repeated responses on a new patient
with equally spaced times of observation based on the joint predictive distribution
under (2.5). The estimated correlations for these times that were 1–8 years apart
were respectively {0.43,0.27,0.21,0.17,0.15,0.14,0.14,0.13}, which is quite dis-
tinct from an AR structure. Quintana et al. observe that, after about 4 years, the
correlations flatten out around 0.14. With a typical AR structure, the estimated cor-
relations would continue to decrease across time.

2.4 Survival Data: Nonparametric and Semiparametric
Modeling

2.4.1 Nonparametric and Semiparametric Survival Regression:
A Selective Historical Perspective

Survival modeling has a long and enduring history that continues. The field took
its initial directions from the landmark papers by Kaplan and Meier (1958) (KM)
and by Cox (1972).3 The former paper developed the most famous nonparametric
estimator of a survival function for time to event data with censoring called the
product limit estimator. The second paper extended the field of survival analysis to
semiparametric regression modeling of survival data; the model introduced there

3 According to Ryan and Woodall (2005); Cox (1972) and Kaplan and Meier (1958) are the two
most-cited statistical papers.



2 Bayesian Nonparametric Biostatistics 25

is termed the Cox proportional hazards (PH) model and is ubiquitous in medical
research. There have literally been hundreds if not thousands of papers addressing
various models and methods for performing survival analysis.

The main goal of a large proportion of these papers is to examine the relationship
between the time to event, say T , and covariate information, say x, through the sur-
vivor function S(t | x) ≡ Pr(T > t | x). This is often done by starting with a model
for T , like log(T ) = xβ +W where β is a vector of regression coefficients and W
is modeled to have a mean zero error distribution.4 Parametric models have W dis-
tributed as normal, or extreme value or logistic, resulting in parametric log normal,
Weibull and log logistic survival models. These models are termed parametric ac-
celerated failure time (AFT) models (Kalbfleisch and Prentice 2002, Sect. 2.3.3). If
the distribution of W is parameterized to have median zero, which is automatic for
the normal and the logistic and involves a slight modification for the extreme value
distribution, then the median time to event is med(T | x) = exβ .

Models that allow for flexible distributions for W are termed semiparametric.
Specifically, the AFT model with fixed covariates x discussed in Hanson and John-
son (2002) asserts log(T ) = −xβ +W with eW ∼ MFPT(M,c,Fθ ) and θ ∼ p(θ ),
where M is the truncation level for the tree structure and c is the weight that
is associated with how much flexibility there will be about the parametric cen-
tering model, Fθ . The nonparametric model embeds the family of distributions
{Fθ : θ ∈ Θ} in it, in the sense that E{FW (t) | θ} = Fθ (t) for all θ and t. Here,
for example Fθ could be a log normal distribution. The survivor function for this
model is S(t | x,β ,S0) = S0(texβ ) and the hazard is h(t | x,β ,h0) = exβ h0(texβ ).

Alternatively, models can be constructed by considering hazard functions, which
can be regarded as instantaneous failure rates, formally defined as h(t | x) =
limΔ s→0 Pr(T ∈ (t, t + Δs] | T > t,x)/Δs = f (t | x)/S(t | x), where f (t | x) is the
density for T . The Cox (1972) PH model is h(t | x) = h0(t)exβ where h0 is an arbi-
trary baseline hazard function. For two distinct individuals, it follows that the ratio
of their hazards involves the cancellation of the common baseline hazard and what
remains is a constant (in t) that only depends on their covariate vectors and the re-
gression coefficients, hence the PH model. The survival function can be written as
S(t | x,β ,H0) = exp{−exβ H0(t)}, where H0(t) =

∫ t
0 h0(s)ds, which is termed the

baseline cumulative hazard. Defining S0(t) = exp{−H0(t)}, the survival function

can be expressed as S(t | x,β ,S0) = S0(t)exβ
, where S0 is termed the baseline survival

function. Under the PH model, survival curves for individuals with distinct covariate
values cannot cross. We see that there is a parametric part to the PH model involv-
ing β , and a nonparametric part involving the unknown baseline hazard function,
or equivalently the corresponding cumulative hazard, or baseline survival distribu-
tion. Bayesian approaches place parametric priors on the former, and nonparametric
priors on the latter.

Bayesian methods for survival analysis were somewhat constrained until the
advent of modern MCMC methods. Susarla and Van Ryzin (1976) placed a DP
prior on S, and derived the posterior mean with censored survival data resulting in

4 For ease of notation, we often write xβ to denote of xTTT β .
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the Bayesian analogue to the KM estimator in the no covariate case. There were
many ensuing papers, including a paper by Johnson and Christensen (1986) who
again placed a DP prior on S and provided analogous results for interval censored
data. Kalbfleisch (1978) placed a gamma process prior distribution on H0 in the
PH model, and derived empirical Bayes (EB) results for that model by marginaliz-
ing over the gamma process and using the marginal likelihood to obtain estimates
of β . Christensen and Johnson (1988) considered the AFT model, placed a DP prior
on eW , marginalized over this distribution and maximized the marginal likelihood
to obtain EB estimates of regression parameters. Finally, Johnson and Christensen
(1989) established the analytical intractability of a fully Bayesian approach to that
model.

Subsequently, Kuo and Mallick (1997) developed a Bayesian semiparametric
model for AFT data by modeling W with a DP mixture of normal distributions.
They performed numerical approximations to posterior inferences using the ba-
sic ideas presented in Escobar (1994). Kottas and Gelfand (2001) then developed
an AFT model with error distribution modeled as a DPM of split normals that
was designed to have median zero and thus resulted in a regression model with
med(T | x,β ) = exβ , a semiparametric median regression model. Then, Hanson and
Johnson (2004) developed a fully Bayesian AFT model for interval censored re-
gression data by placing a mixture of DP priors on eW . While this model is analyt-
ically intractable, Hanson and Johnson were able to develop an MCMC algorithm
for numerically approximating posterior distributions for all parameters of interest,
including survival functions and regression coefficients. Hanson and Johnson (2002)
modeled eW with a mixture of finite Polya trees (MFPT).

Time-to-Abortion in Dairy Cattle Data Analysis

We illustrate the semiparametric AFT regression model with MFPT model for the
error distribution. The model and analysis of these data were presented in Hanson
and Johnson (2002). The data included n = 1344 dairy cattle that were observed to
naturally abort their fetus prematurely. Nine herds from the central valley of Cali-
fornia had been monitored and it was of interest to assess the relationship between
two characteristics of the dam: Days open (DO), the number of days between the
most recent previous birth and conception, and gravidity (GR), the number of pre-
vious pregnancies that the dam has had, and the timing to abortion. The herds were
followed for 260 days; 16 dams aborted after the 260 days, and hence were right-
censored. Hanson et al. (2003) also analyzed these data and determined that it was
likely that the baseline densities and hazard functions were bimodal thus ruling out
a standard parametric model.

The model used was:

logTi j =−β0 −β1DOi j −β2GRi j − γi +Wi j, Wi j | G
iid∼ G,

where Ti j is the fetal lifetime of the 1344 fetuses that aborted in each of the i =
1, . . . ,9 herds, with j = 1, . . . ,hi dams observed to have aborted in herd i.
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Fig. 2.2 Predictive densities, survival curves, and hazard curves for herds 4 (solid) and 9 (dashed);
here t denotes time in days

The baseline G was modeled as a mixture of finite (M = 10
•
= log2 1344) Polya

trees. The fixed effect for herd 1, γ1, was fixed at zero and hence herd 1 has the
baseline survival distribution. The mixture of Polya trees was centered about the
family Gθ = N(0,θ 2) and p(β ) ∝ 1 and the prior for θ was taken to be ∝ θ−2.
The parameter w was fixed at 10, signifying relative comfort in the parametric log
normal family, but small enough to allow for deviations from it. Table 2.1 displays
the posterior regression effects. All probability intervals include zero, however there
are herd differences. For example, fixing DO and GR, exp(γi− γ j), with j 	= i, is the
ratio of median survival times for herds j and i. The median and 95 % probability
interval for exp(γ4−γ9) is 1.3 (0.9, 2.0), that is, the median time-to-abortion of herd
9 is estimated to be 1.3 times that of herd 4, with a plausible range of 0.9 to 2.0.

Table 2.1 Posterior inference (posterior medians and 95 % probability intervals) for cow abortion
data

Parameter Posterior median 95 % Probability intervals

Intercept −4.79 (−4.89,−4.70)
DO −1.1×10−4 (−6.4×10−4, 3.3×10−4)
GR 0.01 (−0.01, 0.03)
γ2 −0.01 (−0.08, 0.05)
γ3 0.00 (−0.12, 0.10)
γ4 0.09 (−0.02, 0.21)
γ5 −0.03 (−0.14, 0.07)
γ6 0.02 (−0.16, 0.15)
γ7 0.05 (−0.02, 0.14)
γ8 −0.01 (−0.08, 0.06)
γ9 −0.20 (−0.56, 0.16)
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Figure 2.2 compares the predictive densities, survival, and hazard functions for
herds 4 and 9 evaluated at the population mean values of DO and GR. The predictive
survival densities are both clearly bimodal as suggested by Hanson et al. (2003). The
herd 4 hazard curve peaks at 86 days and 138 days. Hanson et al. (2003) described
these peaks as possibly being related to difficulty in previous calving (the first peak)
and the effect of leptospirosis infection (the second peak).

2.4.2 Semiparametric Models for Survival Data
with Time-Dependent Covariates

A number of semiparametric regression models associating survival time with time-
dependent covariates (TDC), have been proposed in the literature, including models
due to Cox (1972), Prentice and Kalbfleisch (1979), Aalen (1980), Cox and Oakes
(1984), and Sundaram (2006), among many others. In this section, we discuss the
extension of the Hanson and Johnson (2002) model, the Sundaram (2006) propor-
tional odds model, and the Cox PH model, to include TDCs, and we discuss the Cox
and Oakes (1984, Chap. 8) model—to which we refer as the COTD model—which
was designed to incorporate TDCs. This work is discussed in detail in Hanson et al.
(2009).

Consider the time-dependent covariate process {x(t) : t ∈ (t1, . . . , tk)} where tis
are times of observation, and x(t) is the possibly vector valued observation on the
TDC process. Also define h0 to be an arbitrary baseline hazard, and in particular,
let it correspond to an individual with constant covariate process values of zero
for all times. Let S0(t) = exp{−∫ t

0 h0(s)ds} be the corresponding baseline survivor
function. Prentice and Kalbfleisch (1979) extended the AFT model to TDCs as

h(t | x(t),β ,h0) = ex(t)β h0(te
x(t)β ), (2.6)

and Hanson et al. (2009) termed it as the PKTD model. The TD Cox model has
hazard function

h(t | h0(t),x(t),β ) = ex(t)β h0(t), (2.7)

and we will call it the CTD model. The TD covariate version of the Sundaram (2006)
proportional odds model is

d
dt

{
1− S(t | Xt)

S(t | Xt)

}

= ex(t)β d
dt

{
1− S0(t)

S0(t)

}

Xt = {x(s) : s � t}, (2.8)

and we will call it the POTD model. A generalization of the AFT model due to Cox
and Oakes (1984) is

S(t | xt ,β ,S0) = S0

(∫ t

0
ex(s)β ds

)

.

Hanson et al. show that S(t | x(t),β ,S0) for all of these models can be written as
easily computable functions of S0 and β .
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Hanson et al. (2009, 2011b) place the same MFPT prior on S0 for all of these
models and their model assumes independence of β and S0; they use an improper
uniform prior for β . It is however straightforward to incorporate the informative
priors for β that are discussed in Bedrick et al. (2000) for fixed covariates. This is
another nice feature of this semiparametric model.

Hanson et al. (2009) analyzed the classic Stanford Heart Transplant data (Crow-
ley and Hu 1977), and data involving cerebral edema in children with diabetic ke-
toacidosis. We present parts of their analyses below.

Stanford Heart Transplant Data Analysis

These data involve the time to death from after entry into the study, which was
designed to assess the effect of heart transplant on survival. Individuals entered the
study and either received a donor heart at some point according to availability of
an appropriate heart and a prioritization scheme, or they left the study and possibly
died before a suitable heart was found. The main TDC considered was an indicator
of having received a heart, yes or no, at each time t. The second and third TDCs
were a mismatch score that indicated the quality of the match between donor and
recipient hearts, which was centered at 0.5, and age at transplant (AT), which was
centered at 35 years. These TDCs switched on when a heart was transplanted.

Crowley and Hu (1977) and Lin and Ying (1995) analyzed these data using the
CTD and COTD models, respectively. Hanson et al. (2009) fit these models and the
PKTD model using the same MFPT prior on the baseline survivor function with a
log logistic base-measure. They truncated the trees at M = 5 levels, fixed the PT
weight at one, and placed an improper constant prior on β .

Patients not receiving a new heart have TDC process for the heart transplant,
age and mismatch score (MS) that are all zero for all t. Let zi denote the time of
transplant for individual i if they did receive a transplant, and define the TDCs

xi1(t) =

{
0, if t < zi,

1, if t � zi,

and

xi2(t) =

{
0, if t < zi,

AT− 35, if t � zi,
xi3(t) =

{
0, if t < zi,

MS− 0.5, if t � zi.

Let xi(t) = (xi1(t),xi2(t),xi3(t))T. Results from the three posterior distributions are
displayed in Table 2.2.

The models are decisively ranked in the order CTD, COTD, and PKTD, using the
LPML criterion. The integrated Cox–Snell residual plots (not shown) were consis-
tent with this ranking and showed nothing that could be construed as extreme lack
of fit for any of the models. The CTD model shows statistical importance for status
and age but not for mismatch, while the other models do not indicate the statistical
importance of status.
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Table 2.2 Posterior inference (posterior medians and 95 % probability intervals) for Stanford Heart
Transplant data; the PKTD and CTD models are, respectively, based on (2.6) and (2.7)

Model

Parameter PKTD COTD CTD

Status −1.76 (−3.86,1.57) −1.10 (−2.70,0.50) −1.04 (−1.99,−0.17)
AT−35 0.10 (−0.02,0.26) 0.05 (−.004,0.13) 0.06 ( .015, 0.11)
MS−0.5 1.63 (−0.38,3.89) 0.64 (−0.30,1.52) 0.49 (−0.09, 1.03)

LPML −468.0 −467.0 −464.1

AT denotes age at transplant while MS denotes mismatch score

Fig. 2.3 Estimated survival curves and 95 % probability intervals for individuals with mismatch
score 0.5 and age 35. Solid line is for individual with a heart transplant at 6 months and dashed
line is for an individual with no heart transplant

Under the CTD model, Hanson et al. (2009) considered two individuals aged 35
years with mismatch scores of 0.5. The first individual did not receive an HTP while
the second did after 6 months. The relative hazard comparing the individual with the
no heart transplant to the one with the heart transplant is of course one from time
zero to 6 months, and is e−β1 from that time on. A 95 % posterior probability interval
for the relative hazard after 6 months is (1.19, 7.31), and the posterior median is
2.83. Figure 2.3 displays estimated survivor curves for these two individuals, and
their 95 % limits. They also fitted the MFPT with a parametric exponential base that
resulted in quite different estimates of regression coefficients. The LPML for this
model was −486.3, much smaller than any value in Table 2.2. Chen et al. (2014)
later found an AFT model that fit the Stanford data better.
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Cerebral Edema Data Analysis

The data analyzed here were collected by Glaser et al. (2001), who assessed risk
factors associated with the onset of cerebral edema (CE) in children with diabetic
ketoacidosis. The description that follows is taken from Hanson et al. (2009):

Cerebral edema is a dangerous complication associated with emergency department and
in-patient hospital care of children with diabetic ketoacidosis. Children with symptoms
of diabetic ketoacidosis are initially treated in the emergency department, then moved to
the hospital, typically the pediatric intensive care unit, over the course of 24 h. The main
purpose of treatment is to normalize blood serum chemistry and acid-base abnormalities.
A major, but infrequent complication of children associated with diabetic ketoacidosis and
its treatment is CE, or swelling in the brain, which may result in death or permanent neuro-
logical damage.

Hanson et al. consider only the children in that study who developed CE (n= 58).
Their goal was to ascertain the effect of treatment procedures in time and fixed
covariates on the timing of CE.

Upon admission, various treatments were recorded hourly for up to 24 h, and sev-
eral initial measurements taken. The only fixed variable considered was age. Two
types of TDCs are considered, the first involving the monitoring of biochemical
variables over time; Hanson et al. considered serum bicarbonate (BIC) (concen-
tration in the blood measured in mmol per liter) and blood urea nitrogen (BUN)
(mg/deciliter). The second type involved actions by physicians; Hanson et al. used
fluids administered (FL) (volume of fluids in ml/Kg/hour) and sodium administered
(NA) (mEq/Kg/hour). None of the event times are censored. They again used the log
logistic family to center the three MFPT survival models, and they set the number
of levels for the finite tree to be M = 4 and the weight to be one. Table 2.3 gives
posterior summaries of the analysis of all three models.

Table 2.3 Posterior inference (posterior medians and 95 % probability intervals) for cerebral
edema data

Model

Parameter PKTD COTD CTD

Age (Fixed) 0.028 (−0.01,0.08) 0.021 (−0.02,0.07) 0.044(−0.02,0.11)
Serum-BUN (TD) −0.005 (−0.02,0.01) −0.01 (−0.022,0.005) 0.00 (−0.03,0.03)
Serum-BIC (TD) 0.04∗ (−0.01,0.13) 0.05∗ (−0.02,0.12) 0.06∗ (−0.05,0.17)
Serum-BIC2 (TD) −0.005 (−0.01,0.006) −0.006 (−0.02,0.003) −0.007 (−0.02,0.005)
Adm-FL (TD) −0.03 (−0.09,0.03) −0.05 (−0.10,0.02) −0.05 (−0.15,0.04)
Adm-NA (TD) 0.60∗ (0.16,0.93) 0.74∗ (0.18,1.2) 0.90∗ (0.19,1.57)
FL×NA (TD) −0.011∗ (−0.03,−0.00) −0.013∗ (−0.03,0.001) −0.014∗ (−0.04,0.003)

LPML −176 −176 −175

BUN denotes blood urea nitrogen, BIC denotes bicarbonate, while NA denotes sodium
administered; the PKTD and CTD models are, respectively, based on (2.6) and (2.7)
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Integrated Cox–Snell residual plots did not show radical departures from the as-
sumption of a correct model for any of the three models. Table 2.3 gives LPML
values for each model, and there is no obvious distinction among the models ac-
cording to this criterion. Estimates of regression coefficients for all variables in the
models have the same sign and general magnitude across models. Under all models,
there is a 99 % posterior probability that the coefficient for Admin-NA is positive
and at least a 96 % posterior probability that the coefficient for the interaction is
negative. The Serum-BIC variable has at least a 94 % probability of being positive
across models; thus the effect of sodium administration appears to be modified by
fluids administration. However, the estimated relative hazard under the CTD model,
comparing two patients identical in all respects, including the administration of k
units of fluids and with the numerator patient having an increase of one unit in NA
administration over the patient in the denominator, would be exp(0.9−0.014k). The
effect modification of fluids is thus demonstrated. For small values of k, there would
be little practical import.

Fig. 2.4 Cerebral edema hazard ratio for subject with NA = 0.7 versus NA = 0.35; the black
dashed, and solid lines correspond, respectively, to COTD and PKTD, whereas the solid gray line
corresponds to CTD; the PKTD and CTD models are, respectively, based on (2.6) and (2.7)

Hence, according to all models, larger values of Serum-BIC are associated with
earlier diagnosis of CE. For example, under the CTD model, comparing two children
that are otherwise being treated the same over a period of time and who are of the
same age, the hazard of cerebral edema for a child with a larger value for BIC will
be greater than for one with a lower value.

The posterior density estimates and hazard functions for time to CE correspond-
ing to patients with specified TDC profiles are simple to obtain. Consider hypotheti-
cal patients 1 and 2 of age 10, BUN = 35, fluids constant at 3.6, and BIC increasing
from 5 to 22, as was the case for patient 5 in the data. Figure 2.4 presents an es-
timated relative hazard comparing hypothetical subject 1, who has NA constant at
0.7, to hypothetical subject 2, who has NA constant at 0.35. Observe that the CTD
model gives a constant relative hazard since the only difference in the two subjects
is a TDC that is remaining constant over time for both subjects. According to this
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model, subject 1 is estimated to be about 1.35 times as much at risk of CE as subject
2 for all times. Under the PKTD and COTD models, subject 1 is usually at higher
risk of CE, but the estimated relative risk varies considerably over the first 18 h.
Observe the similarity of shapes of these two relative hazards, with both peaking
twice.

2.4.3 A Nonparametric Survival Regression Model

We now discuss the approach by De Iorio et al. (2009) who model censored survival
data using a DPM of linear regression models, and which can be shown to be a DDP
model. We discuss their analysis of breast cancer data from a cancer clinical trial
after describing the model. The model was developed because it was anticipated
that survival curves for different treatments would cross each other, which would
contraindicate the use of PH, AFT, and PO models.

If we were to posit a parametric survival regression model for the data, we could
use the log normal, log logistic, or log extreme value families, among others. These
models can be expressed as

log(T ) = xTβ +σW,

where x is a vector of covariates with a one in the first slot for the intercept. We could
let W have an N(0,1), or Logistic(0,1), or an Extreme-Value(0,1) (re-parameterized
to have median zero) distribution. Let f (t | x,β ,σ) be the density for an individual
with covariate x from one of these models, and let

f (t | x,G) =

∫

f (t | xTβ ,σ)dG(β ,σ),

with G ∼ DP(α,Gθ ) and θ ∼ p(θ ). This is a DPM of regression models where the
base of the DP can possibly have unknown parameters and where a further distribu-
tion is placed on them.

For simplicity, consider the case with a simple binary covariate, v, and a single
continuous covariate, z. Then xT = (1,v,z) takes on the values (1,0,z) or (1,1,z). So
the parametric version of this model would be an analysis of covariance model in
the log of the response. Let xi denote the covariate for individual i, for i = 1, . . . ,n.
Then xT

i β = β0 + ziβ2 or β0 + β1 + ziβ2. Let X = {xi : i = 1, . . . ,n} and let Gxi

be the induced distribution on xT
i β that is derived from the DP distribution on G.

The collection {Gxi : i = 1, . . . ,n} is a DDP for which the DPM distributions cor-
responding to the n observations in the data are dependent. The model is termed a
linear DDP by De Iorio et al. (2009), and interested readers can find details about
the choice of Gθ and p(θ ) there. Another nice feature of this model is that it can be
fit in DPpackage (Jara et al. 2011).
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Breast Cancer Data Analysis

De Iorio et al. (2009) illustrate the proposed approach using data on 761 women
from a breast cancer clinical trial. Survival times in months are the times until death,
relapse, or treatment-related cancer, or censoring. Fifty three percent of the 761
observations are censored. Interest lies in determining whether a high dose of the
treatment is more effective overall for treating cancer compared with lower doses.
High doses of the treatment are known to be more toxic. It was hoped that the
initial risk associated with toxicity would be offset by a subsequent improvement in
survival prospects. The main goal of the clinical trial was to compare high versus
low dose survival rates.

Two categorical covariates were considered; treatment dose (−1= low, 1= high)
and estrogen receptor (ER) status (−1 = negative, 1 = positive or unknown); stan-
dardized tumor size was also considered as a continuous covariate, and an inter-
action between treatment and ER was also included in the model. The centering
distribution was log normal.
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Fig. 2.5 Inference for high versus low dose. (a) Estimated survivor functions (solid lines) along
with pointwise 50 % probability intervals (grey bands). (b) Estimated hazard functions (solid lines)
along with pointwise 50 % probability intervals (grey bands). (c) Box-plots for posterior distribu-
tion of the difference in survival rates at 10, 20, 40, 60, 80, and 100 months between a patient who
receives high treatment dose versus a patient who receives the low dose. Remark: (a), (b), and (c)
correspond to positive ER status and tumour size equal 2.0

Figure 2.5a,b show the posterior survival and hazard function estimates with their
corresponding posterior uncertainty for ER positive patients with tumor size 2.0 cm
(equal to the first quartile). As expected, the survivor functions corresponding to
the two treatment groups cross, showing a higher level of risk associated with high
treatment dose in the first 20 months. Figure 2.5c shows box plots corresponding
to posteriors for the difference in survival rates between the two treatment groups
for positive ER status and tumour size equal 2.0 cm, across a range of times. There
is a statistically important negative effect of high dose due to toxicity early in the
study, and a non-statistically important positive effect later in the study. Ultimately,
the high dose treatment was abandoned as a result of the study.



2 Bayesian Nonparametric Biostatistics 35

2.5 Joint Modeling of Longitudinal and Survival Data

Many studies entail an event/survival time of interest and measurements on longitu-
dinal processes that might be associated with patient prognosis. Examples include:

• Blood pressure measurements in dialysis patients (event: Death).
• Daily fertility counts in Mediterranean fruit flies (event: Death).

In the former case, maintaining blood pressure to be sufficiently high plays a key
role in long-term prognosis for dialysis patients. In the latter case, it has been argued
in the literature that life span of fruit flies might be related to fertility (see Hanson
et al. 2011b, for references).

Hanson et al. (2011b) developed a general Bayesian semiparametric method-
ology for joint analysis. They illustrated and compared Bayesian joint models in
which the survival component was taken to be the POTD, CTD, or COTD models
that were discussed in Sect. 2.4.2. Comparisons were made using the LPML crite-
rion for model selection. In each instance, baseline survival functions were modeled,
as in Sect. 2.4.2, with an MFPT prior.

Two-stage procedures involve modeling the observed longitudinal processes, as,
for example, was done in Sect. 2.3.1. That model is then used to predict the ‘true’
underlying processes, namely the process without measurement error. The predicted
processes are then used as if they were the observed TDCs in fitting the time to event
data with the TDC survival models discussed in Sect. 2.4.2. Subsequently, we term
analyses that condition on the observed processes using LOCF (last observation
carried forward) as ‘raw’ analyses.

Drawbacks of raw and two-stage methods motivated a considerable flourish of
research on joint models for longitudinal and survival data (see Tsiatis and Da-
vidian 2004, for a review up to that time). Bayesian approaches to joint analysis in-
clude Faucett and Thomas (1996), Wang and Taylor (2001), and Brown and Ibrahim
(2003), among others. Joint modeling would appear to be a good idea since one
would expect potential benefits from modeling all of the stochastic data, especially
when there is the possibility of considerable measurement error, which would be the
case when measuring blood pressure, and also beneficial when observations on the
process are spaced out in time.

A joint analysis, on the other hand, involves simultaneously modeling longitudi-
nal and survival data and making inferences about the effect of the true process on
survival in a single stage of analysis. Let y(t) be the observed vector process. This
can be regarded as the vector TDC process discussed in Sect. 2.4.2, only now we
consider modeling it rather than simply conditioning on it. Since we expect most
processes to be observed with error, let x(t) denote the ‘true’ (vector) process. In the
absence of measurement error y(t) = x(t).

A joint model involving a single process proceeds as follows. All of the models
considered involve a baseline survivor curve, S0, and a regression coefficient
vector, β . In each instance, we specify

S0 | θ ∼ MFPT(M,c,Gθ ) , θ ∼ p(θ ) , p(β ) ∝ const,
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namely the baseline survivor function has an MFPT prior and the regression coeffi-
cients have an improper constant prior distribution. The data consist of {(Ti,yi, ti) :
i = 1, . . . ,n} where Ti is the minimum of the event time and the censoring time, ti is
the vector of observed times, and yi is the corresponding vector of observations on
the process yi(t), for individual i, in a sample of size n. We assume that xi(t) is the
‘true’ process and that

yi(t) = xi(t)+ εi , εi ∼ Fλ .

If we let Fλ be the distribution function of an N(0,σ2) distribution, one can glean
the particular xi(t) for model (2.1) in Sect. 2.3.1.

Survival modeling is conditional on the longitudinal process. We model the sur-
vivor function for individual i, Si(t | x(ti),S0,β ), using the POTD, CTD, and COTD
models discussed in Sect. 2.4.2, and where x(ti) = (x(ti1), . . . ,x(tihi))

T. From this,
we know the form of the hazard function and the density. Assuming a parametric
model of the form f (xi | Δ), then the full joint model for a non-censored observation
is expressed as

f (Ti,yi | xi,λ ,S0,β ) = f (Ti | xi,S0,β ) f (yi | xi,λ ) f (xi | Δ).

If an observation is censored, replace f (Ti | xi,S0,β ) with S(Ti | xi,S0,β ), making
the usual assumption that event times and censoring times are independent. We have
made the assumption that Ti is conditionally independent of the observed process
given the true process and the parameters. Details on inference can be found in
Hanson et al. (2011b).

2.5.1 Medfly Data Analysis

The data used for illustration came from a study reported in Carey et al. (1998) and
further analyzed by Chiou et al. (2003) and Tseng et al. (2005). Tseng et al. (2005)
analyzed a sample size of 251 Mediterranean fruit flies with lifetimes ranging from
22 to 99 days. The number of eggs produced per day was recorded throughout their
lifespan. We removed the first 2 days from each trajectory since all flies have zero
counts on those days.

We present some of the analysis presented in Hanson et al. (2011b). Our case
study makes the point that joint or two-stage modeling may not predict as well as
simply conditioning on the ‘raw’ process, for these data. For comparison with the
analysis by Tseng et al. (2005), Hanson et al. used the same longitudinal model
as they did, as well as some additional more flexible alternatives. Tseng et al. let
yi(t) = log{Ni(t)+ 1}, the natural log of one plus the number of eggs laid on day t,
and modelled trajectories as

yi(t)|(bi1,bi2),τ ∼ N(bi1 log(t)+ bi2(t − 1),τ−1), (bi1,bi2) | μ ,Σ iid∼ N2(μ ,Σ).
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where the mean is a log gamma function. Since there are no additional covariates
for survival, a single regression coefficient β connects the survival model to the
longitudinal process xi(t) = bi1 log(t)+ bi2(t − 1). The MFPT models used here set
M = 4 and c = 1, with flat priors otherwise. About 16 observations fall into each of
the 16 sets at level M = 4 if the log logistic family is approximately correct. They
also considered the prior c ∼ Gamma(5,1) for a subset of models, obtaining LPML
values slightly smaller than with fixed c = 1.

All models were fitted with both the MFPT with weight c = 1, and parametric
log logistic model, corresponding to a weight that grows without bound. According
to the LPML statistics presented in Table 2.4, the COTD model performs the worst
in this data analysis, regardless of the method used to incorporate the longitudinal
predictor (e.g., raw versus modeled) or whether parametric versus MFPT for S0 was
assumed. For the two types of raw analysis, the flexibility obtained from an MFPT
generalization of the log logistic model improves predictive performance, though
not dramatically so. Moreover, it is also clear that two-stage and joint methods pre-
dict almost identically but are inferior to simple raw analysis in this setting. Observe
from Table 2.5 that point estimates of β under the POTD model are similar across
types of analysis and that they are different for the COTD model.

From Table 2.4, the general conclusions about predictive model comparison are
that a raw LOCF analysis is preferred to two-stage or joint methods, the POTD
model is preferred over the COTD and CTD models, and that the COTD model
might be excluded from further consideration. On the other hand, Tseng et al. (2005)
rejected the CTD model based on a test involving Schoenfeld residuals and proposed
the COTD model as a plausible alternative. Hanson et al. (2011b) discuss why these
data might not be ideal for joint or two-stage modeling beyond the analysis per-
formed here.

Table 2.4 LPML across models (larger is better) for medfly data; the POTD and CTD are, respec-
tively, based on (2.8) and (2.7)

Model

Inference Method POTD CTD COTD

Parametric Raw −867 −870 −937
MFPT Raw −865 −866 −938
MFPT Two-stage −947 −959 −973
Parametric Joint −947 −959 −973
MFPT Joint −945 −956 −973

Hanson et al. (2011b) also pointed out that not all of the egg count trajectories fit
the log gamma structure that is posited for these data. Consequently, they considered
a more flexible longitudinal model that represents a compromise between the Tseng
et al. approach and using the empirical egg counts (LOCF). They considered a B-
spline longitudinal model in conjunction with the POTD model, which resulted in
the largest LPML among all models considered, namely LPML = −879 for the
parametric joint model, worse than parametric raw but much better than using the
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basis {log(t), t − 1}. Hanson et al. also argue that preference for the POTD model
over the CTD model in our analysis is tantamount to an acceptance that a change in
egg laying behavior at a particular time is eventually forgotten.

Table 2.5 Posterior inference (posterior medians and 95 % probability intervals) across models for
medfly data; the POTD and CTD are, respectively, based on (2.8) and (2.7)

Model

Method POTD CTD COTD

Par/Raw −0.75 (−1.02,−0.53) −0.65 (−0.74,−0.56) −0.36 (−0.44,−0.27)
MFPT/Raw −0.74 (−0.85,−0.64) −0.64 (−0.73,−0.55) −0.37 (−0.45,−0.29)

MFPT/Two-Stage −0.74 (−0.97,−0.52) −0.37 (−0.52,−0.24) 0.16 (−0.01, 0.30)
Par/Joint −0.78 (−1.02,−0.53) −0.39 (−0.54,−0.25) 0.19 ( 0.01, 0.33)

MFPT/Joint −0.79 (−1.00,−0.52) −0.40 (−0.54,−0.24) 0.19 ( 0.01, 0.32)

2.6 Medical Diagnostic Data

2.6.1 ROC Regression

We consider the quality of a medical diagnostic test for its ability to discriminate
between alternative states of health, generally referred to diseased/infected (D+)
and non-diseased/infected (D−) states. In many settings of clinical interest, covari-
ates can be used to supplement the information provided by a biomarker, and thus
can help to discriminate between D+ and D−. For example, consider diabetes test-
ing, where blood glucose levels are used to diagnose individuals with diabetes. The
covariate, age, plays a key role as older subjects tend to have higher levels of glu-
cose, without that necessarily meaning that there is a higher incidence of diabetes
at greater ages. However, since the aging process is believed to be associated with
relative insulin deficiency or resistance among the D− individuals, it is relevant to
adjust for age in the analysis; see Inácio de Carvalho et al. (2013) and the references
therein. The general area we now discuss is called ROC regression.

But first briefly consider the no covariate case using a diagnostic marker T . It
might be continuous, or dichotomous. If it is dichotomous, the marker outcomes
are T+, or yes, the individual tested has the infection/disease, or T−, or no, they
don’t. In the case of a continuous marker, a cutoff, c, is selected and, without loss
of generality, if the marker value exceeds the cutoff, the outcome is T+, and is T−
otherwise. In either case, observing the yes/no outcome is called a diagnostic test.
The quality of the test is determined by considering two types of test accuracy. The
sensitivity of the test is defined to be Se = Pr(T+ | D+), the proportion of the time
that the test says yes when it should, and the specificity, Sp = Pr(T− | D−), the
proportion of time the test says no when it should. In the continuous case, we write
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Se(c), and Sp(c), and in this case, it is common to plot the false positive rate versus
the true positive rate across all possible cutoffs. The ROC curve for a continuous
biomarker is thus the plot {(1− Sp(c),Se(c)) : for all c}. It is possible to re-write
this plot as {ROC(t) : t ∈ [0,1]}, where ROC(t) = 1− FD+{F−1

D−(1 − t)}, (Pepe
2003, Chap. 4), where FD+(·) and FD−(·) are the distribution functions for D+ and
D− individuals. We now extend this to include adjustment for covariates, x.

The key object of interest for modeling in Sect. 2.6.2 is the covariate-adjusted
ROC curve, which can be defined just as in the no covariate case, only now Se(c)
and Sp(c) are allowed to depend on covariates, x. So for every x, we have an ROC
curve. Here, we define the three-dimensional ROC surface:

{(t, x, ROC(t | x)) : t ∈ [0,1], x ∈ R
p},

where
ROC(t | x) = 1−FD+{F−1

D−(1− t | x) | x}. (2.9)

We now have two conditional distributions that are allowed to depend on covariates.
They may depend on distinct covariates, or one may depend on covariates and the
other not. The covariate-adjusted AUC is defined as

AUC(x) =
∫ 1

0
ROC(u | x)du,

and will be used as our preferred summary measure of covariate-adjusted discrimi-
native power.

In some cases a ‘perfect’ or gold-standard (GS) test exists, i.e., a test that cor-
rectly classifies the subjects as D+ and D−. In this case, data consist of two sam-
ples, one known to be D+ and the other known to be D−. Observed outcomes for
each unit consist of the pair

{Test Covariates,Test Scores};

we denote test covariates as x. A test score is a continuous diagnostic marker out-
come, and a test covariate is simply a covariate that is, at least believed to be, related
to a test score. With GS data, the model is identifiable regardless of the amount of
separation between FD+ and FD−; the case where a gold standard test exists is con-
sidered in detail in Chap. 16 (Inácio de Carvalho et al. 2015).

Section 2.6.2 focuses on ROC regression for the no gold-standard (NGS) case,
thus there is no direct information on whether individual subjects in a study are D+
or D−. The data consist of a single mixed sample with disease status unknown. The
NGS setting typically involves identification issues. However, if there are covariates
that allow us to learn about the probability of disease, the model is identifiable under
mild assumptions (see Branscum et al. 2015, Appendix 1). We refer to these as
disease covariates, and denote them as x∗. Hence in this setting we assume that data
consist of the triple,

{Disease Covariates,Test Covariates,Test Scores}.
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The model discussed in Sect. 2.6.2 was proposed by Branscum et al. (2015), and it
was built on the principle that Disease Covariates can be used to mitigate identifica-
tion issues in the NGS setting. See Branscum et al. (2013) for another GS approach
to this problem, and also see Branscum et al. (2008) for an approach that develops
much of the machinery used here.

2.6.2 A Semiparametric ROC Regression Model in the Absence
of a Gold Standard Test

Here we assume there are no test covariates available for D− subjects. For D+ sub-
jects we specify the model YD+ = xTβ + εD+, where x is a test covariate, β is a co-
efficient vector, and εD+ ∼ FεD+(·). With this specification, (2.9) can be rewritten as

ROC(t | x) = 1−FεD+{F−1
D−(1− t)− xTβ | x},

by noting that FεD+(y− xTβ ) = FD+(y | x).
Suppose continuous marker scores (yi) are obtained on n randomly sampled indi-

viduals from a population. Then let x∗i denote the disease covariate outcome, and let
zi denote latent disease status for subject i, with zi = 1 if they are D+, and zi = 0 oth-
erwise. Define πi as the probability that subject i is D+, for i = 1, . . . ,n. The latent
zis are independent and Bern(πi), with πi = G0(x∗T

i α), with α = (α0, . . . ,αs)
T and

where G0 is a standard distribution function, like normal, or logistic. These choices
result in probit and logistic regression models for the zis. Test scores are modeled
according to a mixture distribution with conditional density,

f (yi | zi,xi) = zi fεD+(yi − xT
i β )+ (1− zi) fD−(yi),

where β = (β0, . . . ,βp)
T, fεD+ is the density associated with FεD+ , and fD− is the

density associated with FD−. The model for D− subjects can also depend on covari-
ates; test and disease covariates may overlap.

The nonparametric part of the model involves placing independent MFPT priors
on FεD+ and FD−; here, FεD+ is constrained to have median zero to alleviate con-
founding between β0 and the location of FεD+ (Hanson and Johnson 2002). Since
the marker was log transformed, the MFPTs were centered on normal families, the
former family having mean zero and the latter having an arbitrary mean. Weights
for the PTs were either specified to be one, or given a diffuse gamma distribution.
Parametric priors were placed on all hyperparameters. See Branscum et al. (2015)
for further details.
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Lung Cancer Data Analysis

Branscum et al. (2015) investigated the potential of a soluble isoform of the epider-
mal growth factor receptor (sEGFR) to be considered as a diagnostic biomarker for
lung cancer in men. The data were gathered a case-control study that was conducted
at the Mayo Clinic. The data included 88 controls and 139 lung cancer cases; see
Baron et al. (1999, 2003) for further details. Branscum et al. (2015) analyzed the
data as if disease status was unknown and used these data to assess the impact of
age on the discriminatory ability of sEGFR to distinguish cases and controls. Age
was used as a test covariate for controls, and as a disease covariate. They also an-
alyzed the data using known disease status in a GS analysis of the same data for
comparative purposes.

Fig. 2.6 GS and NGS semiparametric estimates of covariate adjusted ROC curves for ages 40, 55,
and 70
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The sampling model for the natural log transformed test scores and latent dis-
eased status was:

zi ∼ Bern(πi), log

(
πi

1−πi

)

= α0 +α1x∗i ,

f (yi | zi,xi) = zi fεD+(yi −β0 −β1xi)+ (1− zi) fD−(yi).

In Fig. 2.6 we plot semiparametric estimates of the covariate-adjusted ROC curves
corresponding to ages 40, 55, and 70. Posterior inferences for covariate-adjusted
AUCs for the same ages are displayed in Table 2.6. It is clear that it is easier to
diagnose lung cancer in older men than in younger men, and that the NGS analysis
provides a reasonable approximation to the GS analysis for these data. As expected,
interval inferences are less certain in the NGS case than in the GS case.

LPML and corresponding pseudo Bayes factors were used to compare paramet-
ric and semi-parametric models. In the NGS setting, the LPML for the parametric
normal model was −439, which was larger than the values for all semi-parametric
models considered. The largest LPML statistic for all models considered was −422,

Table 2.6 Posterior inference (posterior medians and 95 % probability intervals) for the covariate-
adjusted AUCs corresponding to ages 40, 55, and 70 based on GS and NGS analyses of the lung
cancer data

Analysis

Parameter GS NGS

AUC40 0.78 (0.72, 0.84) 0.79 (0.71, 0.86)
AUC55 0.83 (0.77, 0.88) 0.83 (0.75, 0.89)
AUC70 0.87 (0.81, 0.92) 0.86 (0.77, 0.92)

for a model with the two MFPTs truncated at four levels and with both weights equal
to one. Compared to the parametric model, the pseudo Bayes factor of e17 provides
strong evidence in favor of the selected semi-parametric model.

2.6.3 Joint Longitudinal Diagnostic Outcome Modeling
and Analysis

Most diagnostic outcome data are cross-sectional, as was the case in the previous
section. A main goal in those studies was to estimate sensitivity and specificity of
one or more biomarker outcomes over a range of cutoffs, resulting in an estimate
of the ROC curve. With cross-sectional data, by definition, sampled individuals in-
clude a cross-section of the population. Individuals in this population are either dis-
eased/infected, D+, or not, and if they are D+, there will be a range of times at
which the disease/infection was acquired. For many such maladies, the ability to
detect will very much depend on the time of acquisition. For example, it is practi-
cally impossible to detect HIV infection in the near term after infection. However,
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after some time has passed, ELISA and Western Blot tests are able to detect it. If
the cross-sectional sample happened to include only newly infected individuals, the
estimated sensitivity of the test would be quite low. The purpose of developing the
model discussed below was to consider longitudinal or prospective diagnostic out-
come data so that it would be possible to estimate the sensitivity of a dichotomous
outcome test as a function of time from infection. A major difficulty faced in this en-
deavor is that it would rarely be known precisely when individuals in a population or
sample become infected, or even in many instances if they had become infected. If
a perfect/gold standard test is applied, the actual disease status could be known, but
not the exact timing. The model developed below does not assume a gold standard
and as a result, the latent status and timing of infection/disease are modeled.

Norris et al. (2009, 2014) developed a model for repeated observations in time
on a yes/no diagnostic test outcome and a continuous biomarker for a disease. They
analyzed longitudinal fecal culture and continuous serum ELISA outcomes for my-
cobacterium avium paratuberculosis (MAP), the causal agent for Johne’s disease in
dairy cattle. We discuss their model and analysis in the context of the cow data, but
the model would apply to many other data sets as suggested by Norris et al. (2009,
2014).

Once an animal is infected, it is expected that, after some delay, serum antibody
outcomes will increase. If animals are being monitored in time, as they are in the
cow data set, antibodies should increase to a point that the ELISA outcome exceeds
a cutoff, and thus becomes positive for MAP. If an animal is not infected during
the study, their ELISA outcomes should remain steady but variable around some
baseline value that depends on the cow. The model includes a latent disease status
indicator for all cows, and a change point corresponding to time of infection, t∗,
for animals with a positive disease indicator. The probability of a positive fecal
test changes at the time of infection, but the rise in serology score occurs some
time later. Norris et al. noted that there was literature that pointed to a 1 year lag
after infection. Nonetheless, they modeled lag as an unknown parameter. After the
lag, increase in antibodies was modeled to be linear. They also assumed that fecal
and serology results are independent for several reasons discussed in their paper.
The model takes account of the fact that the fecal test is viable soon after infection
whereas the production of detectable serum antibodies involves a lag.

The model incorporates three latent states: (1) no infection during the entire
screening period, (2) infection, but insufficient time to mount an antibody reac-
tion during screening period (since “lag” has not elapsed when screening ends), and
(3) infection with antibody reaction within screening period (since “lag” elapses be-
fore the end of screening period). They define the variable, ki ∈ {1,2,3}, to denote
the latent disease state of cow i, and they define ti j to be the time of the jth screen-
ing for the ith subject; (Si j,Fi j) are the serology and fecal culture outcomes of the
ith subject at time ti j; SeF is the sensitivity of fecal culture; SpF is the specificity
of fecal culture;lag is the time interval between infection and serology reaction, Θ
denotes vector of all model parameters, and U is the vector of all model latents.
Figure 2.7 describes the model, discussed below, for a cow with ki = 3.
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Fig. 2.7 Serology trajectory with data for cow with ki = 3

The models for cows in latent states 1 and 2 are:

Si j |Θ ,U,ki = 1 ∼ β0i + εi j, ⊥ Fi j |Θ ,U,ki = 1 ∼ Bern(1−SpF),

Si j |Θ ,U,ki = 2 ∼ β0i + εi j ⊥ Fi j |Θ ,U,ki = 2 ∼ Bern(πi j),

where β0i
⊥∼ N(β0,τβ0

), εi j
⊥∼ N(0,τe), β0i ⊥ εi j , and πi j = I(ti j � t∗i )SeF + I(ti j <

t∗i )(1−SpF) for all i, j. The model for cows in latent state 3 incorporates a random
cow-specific slope for the post-lag serology trajectory, allowing for differing rates
of antibody production among infected cows. The function z+ equals z if z > 0 and
0 otherwise. The model is:

Si j |Θ ,U,ki = 3 ∼ β0i+β1i(ti j − t∗i − lag)++εi j, ⊥ Fi j |Θ ,U,ki = 3 ∼ Bern(πi j),

with β1i,β0i, and εi j pairwise independent; β1i is zero until ti j = t∗i + lag. Hence,
the mean serology trajectory is a flat line until t∗i +lag, then it increases linearly
with slope β1i as shown in Fig. 2.7. We refer the interested reader to Norris et al. for
details about the change points, which were modeled with uniform distributions over
appropriate ranges, and the disease status variable, which is a simple multinomial
for each cow but requires reversible jump methodology to handle the fact that, from
one iteration to the next of the Gibbs sampler, the dimension of the parameter space
changes according to the (latent status) multinomial outcomes for all n cows.

Norris et al. (2009) analyzed the cow data using the above parametric model, and
Norris et al. (2014) extended this model to allow for a DPM of slopes for ki = 3
type cows. The scientific motivation for this was because it was believed that some
infected cows may have a more gradual slope, while others a steeper slope after
the infection time plus lag. Thus a DPM of slopes will allow for groups of cows
with different slopes. Since biology also dictates that antibody slopes must be non-
decreasing after infection slopes were constrained to be positive by modeling the
log-slope as a DPM of normals as follows:
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logβ1i = γi | μi,τi
⊥∼ N(μi,τi), for i : ki = 3,

(μi,τi) | G
⊥∼ G,

G | α,G0 ∼ DP(α,G0),

which can also be expressed as

γi | G
⊥∼
∫

N(·|μi,τi)G(dμi,dτi), G | α,G0 ∼ DP(α,G0).

Let (n1,n2,n3) be the latent numbers of cows in each of the three latent states.
Since G is discrete with probability one, at any given iteration of the Gibbs sampler,
there will be, say r, clusters of distinct values among the n3 realizations of θi =
(μi,τi). Cows associated with each of these clusters will have different slopes. At the
end of an MCMC run, cows will be belonged to different clusters and corresponding
slopes will have changed from iteration to iteration. It is possible to monitor the
number of clusters, and the number of modes, at each iteration of the Gibbs sampler
and Norris et al. report those results, some of them reproduced below. However, it
is impossible to define particular clusters precisely over the entire MCMC sample,
due to lack of identifiability of the individual components in the DPM. Nonetheless,
through post processing of output, it is possible to allocate cows to clusters that are
associated with particular modes in the slope distribution for infected cows using
ad hoc methods. The data analysis discussed below uses such a method to make
inferences about the sensitivity of the ELISA test, with a particular cutoff, as a
function of time since infection for groups of cows deemed to have distinct slopes.

Analysis of Longitudinal Cow Serology and Fecal Culture Data

The estimated sensitivity and specificity of the FC test were 0.57 (0.52, 0.63) and
0.976 (0.955, 0.990), respectively. The FC test is known to be highly specific. The
estimated proportions of animals falling into the three latent status groups is (0.048,
0.25, 0.26), thus the estimated prevalence of MAP in the population sampled at the
end of the study is 0.52. The estimated lag is 1.60 (1.32, 1.85), in years.

Figure 2.8 shows some iterates from the posterior log slope distribution; some
are bimodal with global maximum near zero and a smaller mode less than zero. The
posterior distribution of the number of modes showed a 0.62 probability of one and
0.30 of two modes.

ROC curves at selected times past infection for estimated high and low serology
reaction groups are displayed in Fig. 2.9a. By analyzing the posterior iterates of the
log-slope distribution shown in Fig. 2.8, Norris et al. obtained rough estimates of
the mean and standard deviation of the high and low clusters. Many of the iterates
suggest the low cluster is centered around −1.6 with a standard deviation of about
0.4 and the higher cluster is centered at about 0.6 with standard deviation of 0.9.
The curves depicted in Fig. 2.9 show that discriminatory ability is very poor in the
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Fig. 2.8 Posterior iterates of log-slope distribution, with posterior mean in bold, for cow serology
and fecal culture data

hypothetical low group, and can be very good in the hypothetical high group, and is
especially so the longer it has been since infection.

The corresponding graph for low and high groups depicting estimated sensitivity
of the dichotomized ELISA as a function of time past infection is shown in Fig. 2.9b.
There is a large difference in performance of the ELISA between these two groups.
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Fig. 2.9 (a) Estimated ROC curves for Johne’s disease data for hypothetical groups at selected
values of time past infection. (b) Estimated sensitivity as a function of time for hypothetical high
and low serology groups, with a cutoff level of −1.29
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At 3 years past infection, the ELISA applied to the ‘low’ group has estimated sensi-
tivity less than 0.20, while it is one in the ‘high’ group.

More sophisticated methods of post processing allocation to clusters have been
developed by Dahl (2006) and Bigelow and Dunson (2009).

2.7 Final Remarks

What is statistics all about? As put simply by A. Wald:

The purpose of statistics,. . . , is to describe certain real phenomena.
Wald (1952)

Different real phenomena lead us to different types of data, and beyond the ones
we have seen above (survival, longitudinal, and medical diagnostic data) there is a
wealth of other options arising naturally in biostatistics. These include, for instance:

• Binary Diagnostic Outcome Data: Binary diagnostic outcome data are ubiqui-
tous in human and veterinary medicine. While many Bayesian parametric models
have been developed, there appears to be a paucity of Bayesian nonparametric
approaches in this setting.

• Compositional Data: Nonnegative-valued variables constrained to satisfy a unit-
sum constraint also find their application in biostatistics. This type of data is
known as compositional data; for an application in biostatistics, see Faes et al.
(2011), who analyze the composition of outpatient antibiotic use through statis-
tical methods for unit simplex data. Bernstein polynomial-based approaches are
tailored for this setting; see, for instance, Petrone (1999) and Barrientos et al.
(2015), and the references therein.

• Functional Data: Recent advances in technology have led to the development of
more sophisticated medical diagnostic data, and, nowadays, applications where
measurements are curves or images are becoming commonplace. Dunson (2010,
Sect. 3) overviews some recent Bayesian nonparametric approaches for modeling
functional data.

• Missing Data: In a recent paper at the The New England Journal of Medicine,
Little et al. (2012) discuss how missing data can compromise inferences from
clinical trials. In Chap. 21 (Daniels and Linero 2015) this important subject is
considered in detail. An important question that remains after our chapter is: Can
we conduct reliable inferences based on the prior processes discussed above,
if we have missing data? In terms of Polya trees, Paddock (2002) provides an
approach for multiple imputation of partially observed data. Imputation via the
Bayesian bootstrap—which can be regarded as a non-informative version of the
DP (Gasparini 1995, Theorem 2)—has also been widely applied; more details on
the Bayesian bootstrap can be found in Chap. 16 (Inácio de Carvalho et al. 2015).

• Spatial Data: This is the subject of Part V of this volume.
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• Time Series Data: Connected with the topic of longitudinal data is also that of
time series data. In this direction some recently proposed models include Nieto-
Barajas et al. (2012), Jara et al. (2013), and Nieto-Barajas et al. (2014).

This list continues with multivariate data, shape data, and many more topics, includ-
ing combinations of the different types of data; see, for example, Chap. 11 (Zhou
and Hanson 2015), where models for spatial-survival data are discussed.

We close this introductory part of Nonparametric Bayesian Methods in Biostatis-
tics and Bioinformatics with the hope that the next chapters stimulate interaction be-
tween experts in Bayesian nonparametric biostatistics and bioinformatics, and that
they are useful for those entering this important field of research.
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Statistics, 68, 90–110.

Tomlinson, G. and Escobar, M. (1999). Analysis of densities. Technical report, Uni-
versity of Toronto.

Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated fail-
ure time and longitudinal data. Biometrika, 92, 587–603.

Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-
event data: An overview. Statistica Sinica, 14, 809–834.

Wald, A. (1952). On the principles of statistical inference. Notre Dame Mathemati-
cal Lectures, No. 1, Notre Dame, Ind.

Wang, Y. and Taylor, J. M. G. (2001). Jointly modeling longitudinal and event time
data with application to acquired immunodeficiency syndrome. Journal of the
American Statistical Association, 96, 895–905.

Zeger, S. L. and Diggle, P. J. (1994). Semiparametric models for longitudinal data
with application to CD4 cell numbers in HIV seroconverters. Biometrics, 50, 689–
699.



54 W.O. Johnson and M. de Carvalho

Zhang, D., Lin, X., Raz, J., and Sowers, M. (1998). Semiparametric stochastic
mixed models for longitudinal data. Journal of the American Statistical Asso-
ciation, 93, 710–719.

Zhou, H. and Hanson, T. (2015). Bayesian spatial survival models. In: Nonpara-
metric Bayesian Methods in Biostatistics and Bioinformatics, Eds: R. Mitra & P.
Müller, New York: Springer.



Part II
Genomics and Proteomics



Chapter 3
Bayesian Shape Clustering

Zhengwu Zhang, Debdeep Pati, and Anuj Srivastava

Abstract Curve clustering is an important fundamental problem in biomedical
applications involving clustering protein sequences or cell shapes in microscopy im-
ages. Existing model-based clustering techniques rely on simple probability models
that are not generally valid for analyzing shapes of curves. In this chapter, we talk
about an efficient Bayesian method to cluster curve data using a carefully chosen
metric on the shape space. Rather than modeling the infinite-dimensional curves,
we focus on modeling a summary statistic which is the inner product matrix ob-
tained from the data. The inner-product matrix is modeled using a Wishart with
parameters with carefully chosen hyperparameters which induce clustering and al-
low for automatic inference on the number of clusters. Posterior is sampled through
an efficient Markov chain Monte Carlo procedure based on the Chinese restaurant
process. This method is demonstrated on a variety of synthetic data and real data
examples on protein structure analysis.

3.1 Introduction

The chapter provides a review of the paper “Bayesian Clustering of Shapes of
Curves Using Dirichlet-Wishart Prior’ (Zhang et al. 2015). The work evolved from
our investigation of a long-standing problem of clustering protein sequences. Protein
structure analysis is an outstanding scientific problem in structural biology. A large
number of new proteins are regularly discovered and scientists are interested in
learning about their functions in larger biological systems. Since protein functions
are closely related to their folding patterns and structures in native states, the task of
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structural analysis of proteins becomes important. In terms of evolutionary origins,
proteins with similar structures are considered to have common evolutionary ori-
gin. The structural classification of proteins (SCOP) database (Murzin et al. 1995)
provides a manual classification of protein structural domains based on similarities
of their structures and amino acid sequences. Refer to Fig. 3.1 for a snapshot of
the proteins in R

3 and the three-coordinates of the protein sequences. Clustering
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Fig. 3.1 Protein sequences. (a) Raw protein structure data in R
3. (b) Three-dimensional compo-

nents of the protein sequences, where the x-axis indicates the length of each sequence

protein sequences based on their shapes is extremely important to trace the evolu-
tionary relationship between proteins and for detecting conserved structural motifs.
Since protein sequences are non-Euclidean objects, clustering poses several chal-
lenges. To address this problem, we first need to clarify the term “shape” of an
object living in a possibly non-Euclidean space. Shape is defined to be a property of
an object which are invariant to rotations, translations, and scaling. There are many
difficulties when analyzing shapes. Firstly, it is important to develop representations
and metrics such that the analysis is invariant to parameterization in addition to the
standard transformations (rigid motion and scaling). Furthermore, under the chosen
representations and metrics, the analysis must be performed on infinite-dimensional
and sometimes nonlinear spaces, which poses an additional difficulty. Before dis-
cussing these issues in detail, we start with a brief review of clustering.

Clustering is an important area of research in unsupervised classification of large
object databases. The general goal here is to choose groups of objects so as to max-
imize homogeneity within clusters and minimize homogeneity across clusters. The
clustering problem has been addressed by researchers in many disciplines. A few
well-known methods are metric based, e.g. K-means (MacQueen 1967), hierarchical
clustering (Ward 1963), clustering based on principal components, spectral cluster-
ing (Ng et al. 2002), and so on (Jain and Dubes 1988; Ozawa 1985). Traditional clus-
tering methods are complemented by methods based on a probability model where
one assumes a data generating distribution (e.g., Gaussian) and infers clustering
configurations that maximize certain objective function (Banfield and Raftery 1993;
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Fraley and Raftery 1998, 2002, 2006; MacCullagh and Yang 2008). A model-based
clustering can be useful in addressing challenges posed by traditional clustering
methods. This is because a probability model allows the number of clusters to be
treated as a parameter in the model, and can be embedded in a Bayesian frame-
work providing quantification of uncertainty in the number of clusters and clustering
configurations.

A popular probability model is obtained by considering that the population of
interest consists of K different sub-populations and the density of the observation
y from the kth sub-population is fk . Given observations y1, . . . ,yn, we introduce
indicator random variables (c1, . . . ,cn) such that ci = k if yi comes from the kth
sub-population. The maximum likelihood inference is based on finding the value of
(c, f1, . . . , fk) that maximizes the likelihood ∏n

i=1 fci(yi). Typically K is assumed to
be known or a suitable upper bound is assumed for convenience. When yi ∈R

p, fk is
commonly parametrized by a multivariate Gaussian density with mean vector μk and
covariance matrix Σk. An alternative is to use a nonparametric Bayesian approach
which has an appealing advantage of allowing K to be unknown and inferring it
from the data. A further bonus of a Bayesian approach is the easy availability of an
entire distribution of the inferred number of clusters.

The vast majority of the literature on model-based clustering is almost exclu-
sively focused on Euclidean data. This is primarily due to the easy availability of
parametric distributions on the Euclidean space as well as computational tractability
of estimating the cluster centers. For clustering functional data, e.g. shapes of pro-
teins, one encounters several challenges. Unlike Euclidean data, where the notions
of cluster centers and cluster variance are standard, these quantities and the result-
ing quantification of homogeneity within clusters is not obvious for shape spaces.
Moreover, it is important to use representations and metrics for clustering objects
that are invariant to shape-preserving transformations (rigid motions, scaling, and
re-parametrization). Such a metric will be referred to as the elastic metric. For exam-
ple, Kurtek et al. (2012) take a model-based approach for clustering of curves using
an elastic metric that has proper invariances. However, under the chosen representa-
tions and metrics, even simple summary statistics of the observed data are difficult
to compute. They presented a special representation of curves, called the square-root
velocity function (SRVF), under which a specific elastic metric becomes an L2 met-
ric and simplifies the shape analysis. Other existing shapes clustering methods (Be-
longie et al. 2002; Liu et al. 2012) either extract finite-dimensional features to rep-
resent the shapes or project the high-dimensional shape space to a low-dimensional
space (Yankov and Keogh 2006; Auder and Fischer 2012), and then apply clustering
methods for Euclidean data; these are not generally valid in all applications. Also,
several methods (Srivastava et al. 2005; Gaffney and Smyth 2005) have been pro-
posed to cluster non-Euclidean data based on a distance-based notion of dispersion,
thus, avoiding the computation of shape means (e.g., Karcher means), but they all
assume a given number of clusters.

In this chapter we develop a model-based clustering method for non-Euclidean
curve data that does not require the knowledge of cluster number K apriori. This
approach is based on modeling a summary statistic that encodes the clustering
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information, namely the inner product matrix. The salient points of this approach
are: (1) The comparison of curves is based on the inner product matrix under elastic
shape analysis (ESA), so that the analysis is invariant to all desired shape-preserving
transformations. (2) The inner product matrix is modeled using a Wishart distri-
butions with priors induced by the Chinese restaurant process (CRP) (Vogt et al.
2010). A model directly on the inner-product matrix has an appealing advantage of
reducing computational cost substantially by avoiding computation of the Karcher
means. (3) We formulate and sample from a posterior on the number of clusters, and
use the mode of this distribution for final clustering. We illustrate our ideas through
several synthetic and real data examples. The results show that our model on the
inner product matrix leads to a more accurate estimate of the number of clusters as
well as the clustering configurations compared to a Bayesian nonparametric model
directly on the data, even in the Euclidean case.

This chapter is organized as follows. The mathematical details of the metric
used for computing the inner product and the model specifications are presented
in Sect. 3.2. In Sect. 3.3, we illustrate our methodology on several synthetic data
examples and on clustering protein sequences.

3.2 Methodology

We develop a model based on the Wishart distribution for the inner product matri-
ces to cluster shapes of curves. Since we model a summary statistic of the data as in
Adametz and Roth (2011) and Vogt et al. (2010) instead of the infinite dimensional
data points, our method is computationally efficient. However, unlike Adametz and
Roth (2011) and Vogt et al. (2010) which consider a standard L

2 metric to calculate
the distance matrices, the inner product matrix is calculated using a specific rep-
resentation of curves called SRVF (Srivastava et al. 2011). This along with some
registration techniques makes the inner product invariant to the shape preserving
transformations, thus eliminating the drawback of Adametz and Roth (2011) and
Vogt et al. (2010). Moreover, a Bayesian nonparametric approach allows us to do
automatic inference on the number of clusters. Below, we describe the mathematical
framework for computing the inner product matrix.

3.2.1 Inner Product Matrix Using Elastic Shape Analysis

We adapt the ESA introduced in Srivastava et al. (2011) to calculate the inner prod-
uct matrix in the SRVF space for the non-Euclidean functional data. Let β : D →R

p

be a parameterized curve in R
p with domain D. We restrict our attention to those β

which are absolutely continuous on D. Usually D = [0,1] for open curves and D =
S

1 for closed curves. Define F = {β : D → R
p : β is absolutely continuous on D}

and a continuous mapping: Q : Rp → R
p as
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Q(x)≡
{

x/
√|x| if |x| 	= 0

0 otherwise.

Here, | · | is the Euclidean two-norm in R
p. For the purpose of studying the shape of

a curve β , we will represent it as: q : D → R
p, where q(t)≡ Q(β̇(t)). The function

q : D → R
p is called SRVF. It can be shown that for any β ∈F , the resulting SRVF

is square integrable. Hence, we will define L2(D,Rp) to be the set of all SRVFs. For
every q ∈ L

2(D,Rp) there exists a curve β (unique up to a constant, or a translation)
such that the given q is the SRVF of that β .

There are several motivations for using SRVF for functional data analysis. First,
an elastic metric becomes the standard L

2 metric under the SRVF representation
(Srivastava et al. 2011). This elastic metric is invariant to the re-parameterization
of curves and provides nice physical interpretations. Although the original elastic
metric has a complicated expression, the SRVF transforms it into the L

2 metric,
thus providing a substantial simplification in terms of computing the metric.

By representing a parameterized curve β by its SRVF q, we have taken care
of the translation variability, but the scaling, rotation, and the re-parameterization
variabilities still remain. In some applications like clustering of protein sequences,
it is not advisable to remove the scaling variabilities as the length can be a predictor
of its biological functions. On the contrary, in applications like clustering images
with the camera placed at variable distances, it is necessary to remove the scales
by rescaling all curves to be of unit length, i.e.,

∫
D |β̇ (t)|dt =

∫
D |q(t)|2dt = 1. The

set of all SRVFs representing unit-length curves is a unit hypersphere in the Hilbert
manifold L

2(D,Rp). We will use C o to denote this hypersphere, i.e., C o = {q ∈
L

2(D,Rp)|∫D |q(t)|2dt = 1}. A rigid rotation in R
p is represented as an element

of SO(p), the special orthogonal group of p× p matrices. The rotation action is
defined to be SO(p)×C o →C o as follows. If a curve is rotated by a rotation matrix
O ∈ SO(p), then its SRVF is also rotated by the same matrix, i.e. the SRVF of Oβ (t)
is Oq(t), where q is the SRVF of β . A re-parameterization function is an element of
Γ , the set of all orientation-preserving diffeomorphisms of D. For any β ∈F and
γ ∈ Γ , the composition β ◦ γ denotes the re-parameterization of β by γ . The SRVF
of β ◦ γ is given by: q̃(t) = q(γ(t))

√
γ̇(t). We will use (q,γ) to denote q(γ(t))

√
γ̇ in

the following.
It is easy to show that the actions of SO(p) and Γ on Co commute each other,

thus we can form a join action of the product group SO(p)×Γ on C o according to
((O,γ),q)=O(q◦γ)

√
γ̇ . The action of the product group Γ ×SO(p) is by isometries

under the chosen Riemannian metric. The orbit of an SRVF q ∈ C o is the set of
SRVFs associated with all the reparameterizations and rotations of a given curve
and is given by: [q] = closure{(q,(O,γ))|(O,γ) ∈ SO(p)×Γ }. The specification of
orbits is important because each orbit uniquely represents a shape and, therefore,
analyzing the shapes is equivalent to the analysis of orbits. The set of all such orbits
is denoted by S and termed the shape space. S is actually a quotient space given
by S = C o/(SO(p)×Γ ). Now we can define an inner product on the space S
which is invariant to translation, scaling, rotation, and reparameterization of curves.
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Definition 3.1 (Inner Product on Shape Space of Curves). For given curves
β1,β2 ∈F and the corresponding SRVFs, q1,q2, we define the inner product, sβ1,β2

or 〈[q1], [q2]〉H, to be:

sβ1,β2
= sup

γ∈Γ ,O∈SO(d)
〈q1,(q2,(O,γ))〉 .

Note that this inner product is well defined because the action on SO(p)×Γ is by
isometries.

Optimization over SO(p) and Γ : The maximization over SO(p) and Γ can be
performed iteratively as in Srivastava et al. (2011). In our case, we use Dynamic
Programming algorithm to solve for an optimal γ first. Then we fix γ , and search
for the optimal rotation O in SO(p) using a rotational Procrustes algorithm (Kurtek
et al. 2012).

3.2.2 Likelihood Specification for the Inner Product Matrix

Let S+n(R) denote the set of all n × n symmetric non-negative definite matrices
over R. Depending on whether we rescale the curves to have unit length or not,
we define two classes of inner product matrices: (1) U+n(R) = {A ∈ S+n(R) : aii =
1,
∣
∣ai j

∣
∣≤ 1,1≤ i 	= j ≤ n} and (2) S+n(R). In this chapter, we do not make a distinc-

tion between these two cases and specify our model for the larger subspace S+n(R)
irrespective of whether we rescale the curves or not. As illustrated using the exper-
imental results in Sect. 3.3, having a probability model on a slightly larger space
does not pose any practical issues when we actually rescale the curves.

For a scaled inner product matrix S ∈ S+n(R), let S ∼ Wn(Σ ,d), the Wishart
distribution with degrees of freedom d and parameter Σ =E(S) of rank n (d > n). To
allow rank-deficient S, a generalized Wishart distribution with degrees of freedom
d (d < n) can be defined as

p(S | Σ ,d) ∝ |S|(d−n−1)/2 ∣∣Σ−1
∣
∣d/2

exp

{

− d
2

tr(Σ−1S)

}

, (3.1)

where |·| implies the product of non-zero eigenvalues and tr(·) is the sum of the
diagonal elements.

For an observation of S, the log-likelihood function is

l(Σ ;S,d) ∝ −d
2

log(|Σ |)− d
2

tr(Σ−1S) (3.2)

for Σ ∈ S+n(R). One can easily identify this as an exponential family distribution
with canonical parameter W = Σ−1, and the deviance is minimized at Σ = S (Mc-
Cullagh 2009). Therefore, Σ encodes the similarity between the observed shapes
measured by the inner product matrix S. For instance, Σ jk encodes the similarity
between yi and y j as measured by the inner product 〈[qi], [q j]〉H, where qi and q j are
the SRVFs of yi and y j, respectively.
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Clustering is equivalent to finding an optimal partition of the data. We use
P = {P1,P2, . . . ,PK} ∈ P to denote a partition of set {1,2, . . . ,n} into K classes,
where P denotes the set of all partitions of {1,2, . . . ,n}. A partition P can also be
represented by membership indicators {ci, i = 1, . . . ,n}, where ci = j if i ∈ Pj, j =

1, . . . ,K, or a membership matrix B ∈ R
n×n, defined as Bi j =

{
1 if ci = c j

0 otherwise .
If

we assume: (1) observed shapes {yi ∈ F , i = 1, . . . ,n} come from several sub-
populations, and (2) observed shapes from the same population are placed next to
each other; one would expect to observe a block pattern in the inner product matrix
S because the observations from the same cluster will have similar inner product.
Figure 3.2 on the left panel shows one example of such inner product matrix, which
is calculated from simulated Euclidean data with three clusters. One can observe
three large-value-blocks along the diagonal.

To perform Bayesian inference on the clustering configuration, we define the fol-
lowing prior on Σ that enables clustering of the observations. Motivated by MacCul-
lagh and Yang (2008), Adametz and Roth (2011), and Vogt et al. (2010), consider
the following decomposition of Σ .

Let

Σ = αI +β B , (3.3)

where α,β ∈ R, I is the identity matrix and B ∈ R
n×n is the membership matrix.

Equation (3.3) decomposes the scalar matrix Σ into a sparse matrix αI and a low-
rank matrix β B, where B encodes the clustering information. For convenience of
introducing a conjugate prior for α (Vogt et al. 2010), we re-parameterize this
model into Σ =α(I+θB), where θ = β/α . Intuitively, the parameter θ controls the
strength of similarity between two observations measured by their inner product—
a large θ indicates a strong association, and vice versa. Refer to Fig. 3.2 for an
illustration of the membership matrix B and the corresponding Σ matrix.

In a clustering based on the inner product matrix S via Bayesian inference, the
primary goal is to infer the posterior distribution on the membership matrix B. To
clarify terms of model, likelihood and priors in the Bayesian framework, we refer
S ∼ Wn(Σ ,d) as our model on the inner product matrix S ∈ R

n×n, p(S|Σ ,d) as the
likelihood, and we put priors on Σ and d. The prior on Σ is induced by first letting
Σ = α(I+θB) and then put priors on α , θ , and B. Below, we discuss the specifica-
tion of prior distributions for those parameters.

3.2.3 Priors and Hyperpriors

A popular method of inducing a prior distribution on the space of partitions P
is the CRP (Pitman 2006) induced by a Dirichlet process (Ferguson 1973, 1974).
Since a prior on {ci, i = 1, . . . ,n} induces a prior on P and, hence, on the space
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of membership matrices B, it is enough to specify a prior on {ci, i = 1, . . . ,n}.
We assume

P(cn = j | c1, . . . ,cn−1) =

{ n j
n−1+ξ ifcn = j for some 1 ≤ j ≤ K

ξ
n−1+ξ otherwise,

(3.4)

where n j = #{i : 1 ≤ i < n,ci = j} and ξ > 0 is the precision parameter which
controls the prior probability of introducing new clusters. The expected cluster size
under CRP is given by ∑n

i=1
ξ

ξ+i−1 ∼ ξ log( ξ+n
ξ ).

3.2.3.1 Hyperpriors

We need to choose hyperpriors for parameters associated with the prior distributions.

Priors on α and θ : α is assigned an inverse Gamma distribution, denoted α ∼
Inv-Gamma(r,s) for constants r,s > 0. An inverse Gamma distribution for α al-
lows us to marginalize out α in the posterior distribution, thus obviating the need
to sample from its conditional posterior distribution in the Gibbs sampler (refer to
Sect. 3.2.3.2). Recall that θ controls the strength of similarity within cluster. Thus
a large θ will encourage tight clusters (elements in each cluster are very similar).
We will explore the sensitivity of the final clustering to θ in Sect. 3.3. We assume
a discrete uniform distribution for θ on the set {θ1, . . . ,θm}, with P(θ = θi) =

1
m ,

i = 1, . . . ,m.
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Fig. 3.2 From the left to right: an inner product matrix S, a partition matrix B, and a scale matrix Σ

Choice of ξ and d: Recall that the ξ controls the prior probability of introduction of
new clusters in the CRP (3.4). We start with an initial guess of the number of clusters
C0 using standard algorithms for shape clustering (Yankov and Keogh 2006; Auder
and Fischer 2012). In our experience, C0/ logn provides reasonable choice for ξ .
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Also, recall that d is the degrees of freedom for the Wishart distribution. Since d
represents the rank of the inner product matrix S, it is natural to estimate d using the
number of largest eigenvalues of S which explains 95% of the total variation. This
forms an empirical Bayes estimate of d, denoted dEB. Let the eigenvalues of S be
{λ1, . . . ,λm}, where m ≤ n and λ1 ≥ λ2 ≥ . . . ≥ λm. dEB is taken to be the smallest

integer such that
∑

dEB
j=1 λ j

∑m
i=1 λi

≥ 0.95.

3.2.3.2 Posterior Computation and Final Selection of Clusters

Next, we develop a Gibbs sampling algorithm to sample from the posterior distri-
bution of the unknown parameters. To that end, we propose the following simpli-
fications to the likelihood. The trace and determinant that involve the α and θ in
Eq. (3.1) can be computed analytically (Vogt et al. 2010; Adametz and Roth 2011).
Observe that

∣
∣Σ−1

∣
∣= α−n

J

∏
j=1

(1+θn j)
−1 , (3.5)

where n j is the number of elements in jth cluster. Clearly, the jth cluster corresponds
to the jth diagonal block in B; refer to Fig. 3.2a. Let S j j, j = 1, . . .J be a sub-square-
matrix in S corresponding to the jth diagonal block in B, and S̄ j j = It

jSI j. Let I j ∈
R

n×1 be such that the ith element is 111(ci = j) for i = 1, . . . ,n. Then

tr(Σ−1S) =
J

∑
j=1

1
α

{

tr(S j j)− θ
1+n jθ

S̄ j j

}

=
1
α

{

tr(S)−
J

∑
j=1

θ
1+n jθ

S̄ j j

}

. (3.6)

Substituting (3.5) and (3.6) in (3.1) with (3.3), we obtain

P(S | B,α,θ ,d) ∝

α−nd/2
J

∏
j=1

(1+θn j)
−d/2 exp

[

− d
2α

{

tr(S)−
J

∑
j=1

θ
1+ n jθ

S̄ j j

}]

. (3.7)

If α ∼ Inv-Gamma(r0d/2,s0d/2), it is possible to integrate out α analytically in
(3.7) as P(S | B,θ ,d) =

∫
P(α)P(S | B,α,θ ,d)dα yielding

P(S | B,θ ,d) ∝
J

∏
j=1

(1+θn j)
−d/2

[
d
2

{

tr(S)−
J

∑
j=1

θ
1+ nbθ

S̄ j j + s0

}]−(n+r0)d/2

.

(3.8)
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Using the prior distributions for θ ,B with the dEB plugged in the likelihood (3.7),
we get the posterior distribution of the membership matrix B:

P(B|S,θ ,d,ξ ) ∝ P(S|B,θ ,dEB)P(B|ξ )P(θ ). (3.9)

Figure 3.3 shows the graphical model representation of our Bayesian model. Some
suggestions of specifying hyper-priors are summarized in Table 3.1. We use Markov
chain Monte Carlo (MCMC) algorithm to obtain posterior samples B(1), . . . ,B(M) for
a suitable large integer M > 0 using (3.9). The detailed algorithm is described in the
following.

Table 3.1 Suggestions for specifying hyper-priors in our model

Hyper-parameters Description Suggested values
θ Parameter for Σ , θ ∼ Uniform(θ1, . . . ,θn)

Σ = α(I +θB) large θ—tight clusters, small θ—loose clusters
α Parameter for Σ α ∼ Inv-Gamma(r, s), where r, s are constants
d Degrees of freedom

of Wishart
Estimated using the rank of S

ξ Parameter for CRP ξ = K/ log(n), K is initial estimated # of clusters

Fig. 3.3 Graphical model representation of our Bayesian model. Squares indicate fix parameters
and circles indicate random variables
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Algorithm 1 Posterior sampling using the MCMC
Given the prior parameters dEB, r, s, ξ , θ , and the inner product matrix S
from the n observations, and let Nθ = length(θ ), we want to sample Iter
number of posterior samples of membership matrices B:

1. Initialize the cluster number K (a large integer), the cluster indices
{ci, i = 1, . . . ,n} and obtain the initial membership matrix B(0);

2. For each sweep of the MCMC (it = 0 to Iter)
a. For each θi, i = 1, . . . ,Nθ , obtain posteriors P(θi|·) ∝

P(S|θi,B(it),dEB)p(θi) using (3.8). Normalize {P(θi|·)} and
sample θ it from the discrete distribution on the support points
θi, i = 1, . . . ,Nθ with probabilities {P(θ1|·) , . . . ,P(θNθ |·)}. The
complexity for this step is O(Nθ ∗ kB(it) ), where kB(it) is the number
of clusters obtained from B(it).

b. For each observation (i = 1 to n)
i. For each cluster ( j = 1 to kB(it) + 1)

A. Assign current observation (yi) to the j-th cluster, update the
membership matrix B(it) to B′

it , and calculate the posterior
π j = P(B′

it |S,θ it ,dEB,ξ ) using (3.9). The complexity for this
step is O(1)1.

ii. Normalize {π1, . . . ,πk
B(it)

+1} and sample ci from a discrete dis-

tribution on support points {1,2, . . . ,kB(it) + 1} with probabili-
ties (π1, . . . ,πk

B(it)
+1). Update B(it). Complexity for this step is

O{log(kB(it) )} (Bringmann and Panagiotou 2012).
c. After completing Step 2b, we obtain one MCMC sample of B(it).

3. Repeat step 2 so that we have Iter many samples. Discard the first few
samples (burn-in), and relabel the remaining B(it)s as B(1), . . . ,B(M).

From Algorithm 1, the complexity of each sweep of the MCMC is O{Nθ K +
nK logK}. Usually Nθ ≤ n, leading to an overall complexity of O(nK log(K)).

Once we obtain the posterior samples {B(i), i = 1, . . . ,M}, our goal is to esti-
mate the clustering configuration. However, the space of membership matrices B
is huge, and we would expect the posterior to explore only an insignificant frac-
tion of the space based on a moderate values of M. Therefore, instead of using the
mode of {B(i), i = 1, . . . ,M}, we devise the following alternate strategy to estimate
the clustering configuration more accurately. We treat the set of the membership
matrices, denoted as FB, as a subset of symmetric n× n matrices with restrictions:
(1) B(i, j) = {0,1} for all i, j = 1, . . . ,n; (2) B(i, ·) = B( j, ·) and B(·, i) = B(·, j) if
ith observation and jth observation are in the same cluster. The final matrix B∗ is ob-
tained by calculating the extrinsic mean of the posterior samples defined as follows.

1 Since only one observation changes the cluster index, one can explicitly calculate the difference
between the old values of (3.5) and (3.6) and new values in O(1) steps.
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Algorithm 2 Calculating extrinsic mean of membership matrices
Given the samples B(1), . . . ,B(M), the extrinsic mean B∗ is calculated as
the following:

1. Find the mode of the number of clusters k0 based on the samples
B(1), . . . ,B(M).

2. Calculate the Euclidean mean and threshold it onto the set of mem-
bership matrices (FB):
a. Euclidean mean: Let B̄ = 1

M ∑M
t=1 B(t).

b. Thresholding: threshold the Euclidean mean onto FB: B∗ =
threshold(B̄, t∗), where t∗ is the largest threshold such that B∗ has
k0 clusters. Setting k = N and iter = M, the thresholding procedure
is described below:
While (k 	= k0), do

i. Set Jarray = {1, . . . ,N}, B∗ = zeros(N,N). Also set iter = iter−
1, let t∗ = iter/M.

ii. For j in Jarray, calculate
A. v = 111(B̄( j, ·) > t∗); record the index of elements in v equal

to 1, denoted as set C. Let Jarray = Jarray −C, which means
remove elements in C from Jarray.

B. For i in set C, set B∗(i, ·) = v, B∗(·, i) = vt and B̄(i, ·) =
0, B̄(·, i) = 0t .

iii. Set k = #B∗, which is number of clusters in B∗.

3.3 Experimental Results

We demonstrate the performance of our model (Wishart-CRP, denoted by W-CRP)
both on synthetic data (in Sect. 3.3.1) and the protein dataset discussed in the in-
troduction (in Sect. 3.3.2). For the Euclidean datasets, we generated 8000 samples
from the posterior distribution and discarded a burn-in of 1000, whereas those num-
bers for the non-Euclidean data are 4000 and 1000, respectively. Convergence was
monitored using trace plots of the deviance as well as several parameters. The high
effective sample size of the main parameters of interest shows good mixing of the
Markov chain. Also we get essentially identical posterior modes with different start-
ing points and moderate changes to hyperparameters.
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3.3.1 Synthetic Examples

Zhang et al. (2015) consider both Euclidean and non-Euclidean synthetic datasets.
In this review, we will mainly focus on the non-Euclidean examples since they
form a central part of our motivating study. Our goal is to cluster synthetic shapes
taken from the MPEG-7 database (Jeannin and Bober 1999). The full database has
1400 shape samples, 20 shapes for each class. We first choose 100 shapes to form
a subset of 10 classes with 10 shapes from each class. The observations are ran-
domly permuted and the inner product matrix S is calculated using Definition 3.1.
Then we perform our clustering method on S (note that S ∈ U+(R)) with parame-
ters dEB = 32, r = 3, s = 4, θ = {0.1,0.2,0.5,1,5,10,20,50,100,200,500,1000},
and ξ = 3. We impose a prior on α with Inv-Gamma(3,4), and ξ is estimated by
K̃/ log(100), where K̃ is an estimate of number of clusters (K̃ = 15 in this case).
The clustering result is shown in Fig. 3.4, where (a) and (b) show the inner product
(I-P) matrix before and after clustering, (c) shows the final clustering result, and (d)
shows the histogram of cluster number K obtained from 4000 MCMC samples of B.
From the result, one can see that our algorithm clusters these 100 shapes well other
than splitting one class.
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Fig. 3.4 Clustering process for 100 shapes. The histogram shows the posterior distribution of the
cluster number k obtained from 4000 MCMC samplings of B without any burn-in. (a) I-P matrix
before, (b) I-P matrix after, (c) clustering result, (d) histogram of k
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Next, we study the sensitivity of the cluster number K to the parameter d, degrees
of freedom of the Wishart distribution. Note that in the Euclidean case, d can be
easily estimated since d (in the case of d < n) is the dimension of the data. Figure
3.5 shows the estimated cluster number K versus the value of parameter d in the
dataset shown in Fig. 3.4. It is evident that the estimates of K are robust to different
choices of d.
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Fig. 3.5 Clustering sensitivity analysis of parameter d in the dataset shown in Fig. 3.4

To compare with the existing methods in shape analysis, we test our method
on another subset of MPEG-7 dataset that was used in Bicego and Murino (2004),
Bicego et al. (2004), and Bicego and Murino (2007). The dataset contains six classes
of shapes with 20 shapes per class. To quantify the clustering result, we use the
“classification rate” defined in Jain and Dubes (1988). For each cluster, we note
the predominant shape class, and for those shapes assigned to the cluster which do
not belong to the dominant class are recognized to be misclassified. The classifica-
tion rate is the total number of dominant shapes for all classes divided by the total
number of shapes. However, this measure is known to be sensitive towards larger
clusters.

The Rand index (Torsello et al. 2007) is an alternative measure of the quality
of classification which measures the similarity between the clustering result and
the ground truth, defined as RI = a/

(n
2

)
. Here a is the number of the “agreements”

between the clustering and the ground truth, which is defined as the sum of two
quantities: (1) the number of pairs of elements belonging to the same class that
are assigned to the same cluster; (2) the number of pairs of elements belonging
to different sets that are assigned to different classes. If the clustering result is the
same as the ground truth, RI = 1, otherwise RI < 1. The Rand index penalizes the
over-segmentation while the classification rate does not. Table 3.2 compares the
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overall classification rate and Rand index of our method with other methods, such as
Fourier descriptor combined with support vector machine based classification (FD +
SVM), hidden Markov model (HMM + Wtl) with weighted likelihood classification
(Bicego and Murino 2007), HMM with OPC approach (HMM + OPC) (Bicego
et al. 2004), ESA (Srivastava et al. 2011) with k-medians (K-medians), ESA with
pairwise clustering method (ESA + PW) (Srivastava et al. 2005). Our model, with
Wishart-CRP applied on the elastic inner product (EIP) matrix is denoted by EIP
+ W-CRP. The classification rate, Rand index and the computational time of K-
medians, ESA + PW and our method are obtained based on the average of 5 runs
on a laptop with an i5-2450M CPU and 8GB memory. The computational time of
our approach (EIP + DW) includes the cost of calculating the inner product matrix
S (642.6 s) and generating the 4000 MCMC samples (131.6 s). A faster approach
for calculating the elastic inner product matrix defined in our chapter is available in
Huang et al. (2014). For ESA + PW and K-medians method, we set K = 6 since we
know the true K in this case. The classification rates for FD+ SVM, HMM + Wtl,
and HMM + OPC are reported from Bicego and Murino (2007), and these rates
are based on the 1-nearest neighbor classification. As evident from the results, our
model can automatically find the cluster number K = 6, and the classification rate is
better than the competitors.

Table 3.2 Comparison of the classification rate on MPEG-7 dataset

FD+ HMM+ HMM+ K- ESA+ EIP+
Classifier SVM WtL OPC medians PW W-CRP
Classification rate (%) 94.29 96.43 97.4 81.5 96.67 100.00
Rand index – – – 0.91 0.98 1.00
Time (seconds) – – – 648.5 707.4 774.2

3.3.2 Clustering Real Protein Sequences

In the following experiments, we will use our model to cluster protein sequences
(refer to Fig. 3.1 in the Introduction). We obtained the protein sequences from
SCOP database (Murzin et al. 1995) which provides a manual classification of
protein structural domains based on similarities of their structures and amino acid
sequences.

In the first experiment, we choose a small protein structure dataset obtained from
SCOP with only 88 proteins. Based on SCOP, these proteins are from four classes
(SCOP provides the ground truth). Those proteins are pre-processed similar to an
earlier study (Liu et al. 2011). To have a good estimate of the SRVFs from the
raw data, we smooth the protein sequences with a Gaussian kernel. We also added
one residue at both N and C terminal of each protein chain by extrapolating from
the two terminal residues to allow some degrees of freedom on matching boundary
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residues. The added residues are removed after matching. Note that these smoothed
SRVFs will only be used for searching optimal re-parameterizations γ and rotations
SO(3) to get the inner product between protein structures. Then we apply our model
to the inner product matrix S ∈ U+(R) and get the clustering result, where we use
parameters θ ∈ {0.1,0.2,0.3,0.4} and ξ = 1. The final clustering results are shown
in Fig. 3.6. The clustering rate is 100% compared with the ground truth provided by
SCOP.
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Fig. 3.6 Protein structure classification on a SCOP subset containing 88 proteins. The first row
shows the inner product matrix between protein structures after clustering and the histogram of
cluster number k. The second row shows the four clusters

In the next experiment, we choose 20 classes with at least 10 elements in each
class from SCOP dataset to form a subset with 602 proteins. The final clustering
result shows some clusters with only a few elements which we consider as outliers.
In this experiment, our model identifies 17 outliers (seven small clusters). After
removing these outliers, the remaining 585 proteins are clustered into 38 classes.
The clustering rate is 84.1%. The first row in Fig. 3.7 shows the inner product ma-
trix corresponding to the 585 protein structures (after putting elements in the same
cluster together), and the posterior estimate of the partition matrix B. The second
row shows first four clusters of the clustering result after the alignment (removing
shape-preserving transformations). One can see that inside each cluster, the shapes
of these protein structures are very similar to each other. As comparisons, we re-
move the outliers detected by our method, then apply ESA + PW and K-medians
method to cluster the left 585 proteins by setting K = 20. ESA + PW gets 75.99%
of classification rate and K-medians gets 63.42%. The Rand indexes for our model,
ESA + PW and K-medians are 0.95, 0.93, and 0.91 respectively. As evident, we
obtain a good clustering result based on only the shape of the proteins.
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Fig. 3.7 Protein structure classification on a SCOP subset of 602 proteins. The first row shows the
inner product matrix between protein structures after clustering and the corresponding inferred B,
respectively. The second row shows the first four clusters
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Chapter 4
Estimating Latent Cell Subpopulations
with Bayesian Feature Allocation Models

Yuan Ji, Subhajit Sengupta, Juhee Lee, Peter Müller, and Kamalakar Gulukota

Abstract Tumor cells are genetically heterogeneous. The collection of the entire
tumor cell population consists of different subclones that can be characterized by
mutations in sequence and structure at various genomic locations. Using next-
generation sequencing data, we characterize tumor heterogeneity using Bayesian
nonparametric inference. Specifically, we estimate the number of subclones in a tu-
mor sample, and for each subclone, we estimate the subclonal copy number and
single nucleotide mutations at a selected set of loci. Posterior summaries are pre-
sented in three matrices, namely, the matrix of subclonal copy numbers (LLL), sub-
clonal variant alleles (ZZZ), and the population frequencies of the subclones (www). The
proposed method can handle a single or multiple tumor samples. Computation via
Markov chain Monte Carlo yields posterior Monte Carlo samples of all three matri-
ces, allowing for the assessment of any desired inference summary. Simulation and
real-world examples are provided as illustration. An R package is available at http://
www.cran.r-project.org/web/packages/BayClone2/index.html.
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4.1 Introduction

4.1.1 Biological and Statistical Background

Fig. 4.1 Evolving subclones over time result in TH. On days 90, 180, and 360, three somatic
mutations (represented by branching arrows) result in three tumor subclones

Inference for tumor heterogeneity (TH) remains a critical gap in current litera-
ture. The ability to precisely break down a tumor into a set of subclones with distinct
genetics would provide opportunities for breakthroughs in cancer treatment by po-
tentially facilitating individualized cancer treatment that exploits TH. It would open
doors for cocktail-type combinational treatments, with each treatment targeting a
specific tumor subclone based on its genetic characteristics. However, many details
of TH remain a mystery to scientists.

TH arises as a result of a sequence of somatic mutations over the life history of
a tumor. Figure 4.1 illustrates the single progenitor model in Russnes et al. (2011)
whereby tumor cells are originated from a single ancestor normal cell (on day 0).
Tumor subclones are generated over time as somatic mutations accumulate at var-
ious loci. On day 360, four subclones have formed, each possessing a unique but
overlapping set of mutations. Other biological models based on multiple progenitors
and cancer stem cells have also been proposed (Russnes et al. 2011; Nowell 1976).
The overall picture remains the same: as a result of the accumulation of somatic
mutations individual tumors harbor multiple subclonal genomes that are spatially
and temporally heterogeneous (Navin et al. 2010; Russnes et al. 2011). Numerous
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recent studies confirm this nature of tumors (Dexter et al. 1978; Weinberg 2007;
Stingl and Caldas 2007; Shackleton et al. 2009; Polyak 2011; Marjanovic et al.
2013; Almendro et al. 2013).

While there is broad agreement on the origin and nature of TH (Russnes et al.
2011; Greaves and Maley 2012; Frank and Nowak 2004; Biesecker and NB 2013;
Frank and Nowak 2003; De 2011; Bedard et al. 2013; Navin et al. 2011), the main
challenge remains to genetically characterize heterogeneous subclones within each
tumor sample. The characterization is in terms of sequence and structural variants.
Some progress has been made on quantifying structural variants such as subclonal
copy number variants (CNVs) (Oesper et al. 2013a). However, DNA nucleotide dif-
ferences between subclonal genomes have remained undetectable despite the tech-
nological breakthrough in short read-based sequencing (Mardis 2008) and more re-
cently single-cell sequencing (Shapiro et al. 2013). Some recent landmark work
(Serena et al. 2012; Roth et al. 2014a) has used statistical inference based on DP
priors, defining subclones based on non-overlapping clusters of mutations. These
methods proceed assuming that the clusters will need to fit into a phylogenetic tree
to describe the underlying genetic evolution of the tumors. It is unclear how sensitive
the final tree construction is to the estimated clusters. Also, variation of the mutation
frequencies within the same cluster is ignored in the phylogenetic tree construction.

4.1.2 Bayesian Feature Allocation Models for Tumor
Heterogeneity

Taking a different approach, in Lee et al. (2015a,b) we developed a new class of
Bayesian nonparametric (BNP) models for inference on TH that allows for overlap-
ping sets of mutations between subclones. To reflect the underlying biology, we use
random feature allocation models such as the Indian buffet process (IBP) to model
subclones (or haplotypes) as columns of a random categorical (trinary) (or binary)
matrix. In Lee et al. (2015b) we use an extension of the IBP known as the categor-
ical Indian buffet process (cIBP). Theoretically the extension is non-trivial and lays
the foundation for new BNP models that are suitable for TH inference and that other
researchers can build upon.

In Lee et al. (2015a) we focus on haplotypic inference based on short reads
from next-generation sequencing (NGS) data. Figure 4.2 shows a stylized illustra-
tion of pair-end reads in hypothetical NGS data. At the two loci, we observe three
different haplotypes, GG, GC, and AC. The identification of more than two hap-
lotypes implies the presence of multiple subclones with distinct genomes because
human cells are diploid. We infer the exact DNA sequences of each haplotype. In
Lee et al. (2015b) we further extend the model by integrating CNVs with single nu-
cleotide variants (SNVs). We provide the desired description of TH based on DNA
variations in both, sequence and structure. Such inference will significantly impact
downstream treatment of individual tumors, ultimately allowing personalized prog-
nosis. For example, tumor samples with large proportions of cells bearing somatic
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Fig. 4.2 Local haplotype variants (LHV) based on pair-end reads mapped to two proximal nu-
cleotides (NT). Three local haplotypes (GG, GC, AG) are directly observed from the pair-end
short reads that are mapped to at least one NT. A “–” in the bottom table indicates that the read is
not mapped to the corresponding NT

mutations on tumor suppressor genes should be treated differently than those that
have a small proportion or none of such cells. In addition, metastatic or recurrent
tumors may possess very different compositions of cellular genomes and should be
treated differently.

We study nucleotide differences between cellular genomes that characterize such
subclones within a single tumor (intra-tumor TH). Sets of phased SNVs define hap-
lotypes, which in turn we use to characterize TH. For example, in Fig. 4.1, by day
360, the tumor sample possesses five alleles for the haplotype of three loci, which are
(ACG, GGG, CGG, TGG, AGG). The presence of more than two alleles indicates
TH. We distinguish local and non-local haplotype variants (LHVs and nLHVs).

LHV When SNVs are proximal on the genome (say, a few hundred base pairs
apart), direct evidence of subclonality (the presence of subclones) can be identified
since they may be simultaneously mapped by the same short reads. For example, in
Fig. 4.2, an LHV consists of two loci about 100 base pairs apart and exhibit three
alleles (GG, GC, AG). After filtering artifacts in the data and ruling out other po-
tential genetic variations (such as copy number gain coupled with a mutation), the
only explanation for having three alleles is TH, that is heterogeneous tumor cells
possessing different DNA sequences at these loci. For instance, there could be two
different subclones, one with alleles (GG, GC) at the two SNVs and the other with
alleles (GG, AG). The two subclones could be equally distributed in the sample,
which could explain the observed read counts (23, 10, 9) for haplotypes (GG, GC,
AG), respectively, in Fig. 4.2.
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Fig. 4.3 Non-local haplotype variant (nLHV): (a) shows TH with three haplotypes defining two
subclones; (b) shows hypothetical short reads for this sample

We have developed a computational pipeline for the detection of LHVs across
genome using NGS data (http://www.compgenome.org/lochap).

nLHV When SNVs are distant, they will not be mapped by the same short reads.
Therefore, haplotypes that scaffold these SNVs are not directly observable and need
to be estimated. Figure 4.3 illustrates inference for nLHVs. Panel (a) presents a hy-
pothetical tumor sample consisting of two subclones with two long-range loci. One
subclone has alleles (AC, GT), and the other subclone has (AC, AC). Together, the
sample will present three alleles (AT, GT, AC). Panel (b) shows a stylized example
of short reads data if the tissue sample in panel (a) were sequenced. Since two loci
are far apart on the genome, short reads are separately mapped to each of them.
The observed variant allele fraction (VAF), defined as the fraction of reads bearing
the variant sequence, reflects the subclonal sequences and proportions in the orig-
inal sample. In this example, the observed VAFs are 1/4 and 3/4 for the two loci,
respectively. These numbers would change depending on absence/presence of the
mutation at the loci and/or different proportions of the subclones in the sample.

In the rest of this chapter we focus on nLHVs as they cannot be directly observed
from the NGS data.

4.1.3 Existing Methods

Recent literature introduced several useful tools for subclonal inference. This in-
cludes, in particular, ThetA (Oesper et al. 2013b), SciClone (Miller et al. 2014),
TrAp (Strino et al. 2013), PhyloSub (Jiao et al. 2014), PhyloWGS (Deshwar et al.
2014), and Clomial (Zare et al. 2014), CloneHD (Fischer et al. 2014). ThetA only
considers subclonal copy numbers and is among the earliest methods for subclonal
inference. TrAp emphasizes identifiability and sufficient sample size for unique
mathematical solutions. SciClone and Clomial assume a binary matrix, focusing
on SNVs at copy neutral regions with heterozygous mutations. PhyloSub and Phy-
loWGS consider possible genotypes at SNVs accounting for potential copy number
changes and phylogenetic constraints. CloneHD provides inference similar to our
method, but assumes the availability of data from matched normal samples. Also,

http://www.compgenome.org/lochap
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CloneHD only provides point estimates of the subclonal copy numbers and sub-
clonal mutations, lacking a description of uncertainty for the inferred subclones.
Most recently, CHAT (Li and Li 2014) adjusts the estimation of subclonal cellular
fractions for both CNVs and SNVs, but still stops short of directly inferring sub-
clonal copy numbers or variant allele counts.

Most of these methods are based on either finite mixture models or Dirichlet
process models and aim to infer subclones based on clusters of mutations. In this
chapter we review two recently proposed methods that are described in Lee et al.
(2015a,b). Our approach differs from previously proposed methods in key aspects.
Based on latent feature models, including the IBP and the novel cIBP (Sengupta
2013; Sengupta et al. 2015), we build hierarchical Bayesian models to facilitate
joint inference on subclonal copy number, mutations, and cellular fractions simulta-
neously. We do not exploit a phylogenetic tree structure for the inferred subclones.
We do so assuming that in any given tumor sample not all subclones on the phy-
logenetic tree may be present in sufficient proportion to allow inference. Instead,
existing subclones may only represent nodes on a subset of branches of the phylo-
genetic tree.

In the rest of this chapter we review the inference methods proposed in Lee et al.
(2015a,b). We summarize the underlying BNP models in Sect. 4.2. We also briefly
discuss a special Markov chain Monte Carlo (MCMC) scheme based on splitting
the data into a small training set and a large test set. The approach allows us to
implement practicable transdimensional MCMC posterior simulation. In Sect. 4.3
we describe a simulation study. Section 4.4 reports a data analysis for an in-house
data set to illustrate intra-tumor heterogeneity. The last section concludes with a
final discussion.

4.2 Probability Model

4.2.1 Models on SNVs Alone

Lee et al. (2015a) propose inference for TH using SNV only. The approach is based
on nonparametric Bayesian model-based inference. Examining the VAFs of short
reads mapped to multiple loci, we propose a binomial sample model and a fea-
ture allocation prior linking latent subclones and observed data. We do not directly
model subclones. Instead we model haplotypes, with pairs of haplotypes defining a
subclone. For a diploid organism, like humans, the existence of C > 2 haplotypes is
evidence for tumor heterogeneity.

To begin, let Nst denote the total number of reads in sample t that are mapped to
the genomic location s = 1, . . . ,S and t = 1, . . . ,T . Among Nst reads, let nst be the
number of variant reads. Here a variant read refers to a read that harbors a variant
allele at location s. For example, if the reference genome has an “A” at a genomic
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location and a read bears an “C” at the same location, the read is considered a variant
read for that location. We use a binomial sampling model

nst
indep∼ Bin(Nst , pst) with pst = wt0 p0 +

C

∑
c=1

wtczsc ≡ εt0 +
C

∑
c=1

wtczsc. (4.1)

The model for the expected allele fraction pst formalizes the assumption that the
tumor sample is composed of a mixture of different haplotypes, c= 1, . . . ,C, each of
which defined as a set of mutational statuses zsc ∈{0,1} at locus s (and see below for
the interpretation of the first term wt0 p0). Here zst = 1 (0) indicates that haplotype
c includes (does not include) mutation at location s. Sample-specific weights wtc

record the fraction of haplotype c in sample t. The construction of the haplotypes,
including the number of haplotypes,C and the indicators zsc are latent. The key term,
∑C

c=1 wtcztc, indirectly infers haplotypes by explaining pst as arising from sample t
being composed of a mix of hypothetical subclones which do (zsc = 1) or do not
(zsc = 0) include a mutation at location s. The indicators zsc are collected in a (S×C)
binary matrix Z. The number of latent haplotypes, C, is unknown. Conditional on
C, the binary matrix Z describes C latent tumor haplotypes that are present in the
observed samples. Joint inference on C, Z, and wwwt explains tumor heterogeneity.

In addition, we impose a special column in the Z matrix, labeled as c = 0, which
assumes that all the locations harbor mutations. That is, zs0 = 1,∀s. We call this col-
umn the “background subclone.” It does not represent any real biological subclone
in the sample but accounts for experimental noise such as sequencing error. For ex-
ample, it is known that NGS experiments would produce false base calls in a small
proportion of short reads due to technical and computational errors. As such, there
is a chance that a mutational base (nucleotide) may be falsely called at each SNV.
Subclone c= 0 accounts for these false calls. We let εt0 = wt0 p0 in (4.1) to represent
the sample-specific (wt0) and experiment-specific (p0) background noise.

Model (4.1) defines the sampling model. We complete the Bayesian inference
model with a prior on the unknown parameters (C,ZZZ,www). We use a geometric dis-
tribution, C ∼ Geom(r) where E(C) = 1/r. Conditional on C, we assume a feature
allocation model for the binary matrix ZZZ using a finite Indian buffet process (IBPC)

ZZZ ∼ IBPC(α). (4.2)

See below for a definition of the IBP prior. For the moment we only need that
IBPC(α) defines a prior for the (S×C) binary matrix ZZZ.

Finally, we complete the model with a prior distribution for the weights wtc in
(4.1). The haplotypes are common for all tumor samples, but the relative weights
wtc vary across tumor samples. We assume independent Dirichlet priors as follows.
Let θtc denote an (unscaled) abundance level of subclone c in tissue sample t. We

assume θtc | C
iid∼ Gamma(d,1) for c = 1, . . . ,C and θt0

iid∼ Gamma(d0,1). We then
define

wtc = θtc/
C

∑
c′=0

θtc′ ,
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as the relative weight of subclone c in sample t. This is equivalent to wwwt | C
iid∼

Dir(d0,d, . . . ,d) for t = 1, . . . ,T . Using d0 < d implies that the background subclone
takes a smaller proportion in a sample.

In summary, we assume a binomial sampling model (4.1) with success probabil-
ity, pst . Given C, ZZZ and www, we define pst as a mixture over C haplotypes. In specific,
pst is determined by C, ZZZ and wwwt with the earlier two describing the latent haplo-
types, and the last specifying the relative abundance of each subclone in sample t.
Based on this model, we carried out posterior inference using MCMC simulations.
Details are reported in Lee et al. (2015a).

4.2.1.1 The Finite IBP

We define a model for a random (S ×C) binary matrix. We define the model as
a hierarchical model p(ZZZ | μμμ ,C) p(μμμ | C) with latent column-specific probabilities
μμμ = (μ1, . . . ,μC). Let mc = ∑S

s=1 zsc denote the number of 1s in column c. We use

p(ZZZ | μμμ ,C) =
S

∏
s=1

C

∏
c=1

μ zsc
c (1− μc)

(1−zsc) =
C

∏
c=1

μmc
c (1− μc)

S−mc , (4.3)

p(μc |C) = Be(α/C,1), c = 1, . . . ,C. (4.4)

We write ZZZ ∼ IBPC(α). The limit of the model, as C → ∞ becomes a constructive
definition of the IBP (Griffiths and Ghahramani 2005; Teh et al. 2007). The model
is symmetric with respect to arbitrary indexing of the SNVs, simply because of
the symmetry in (4.3) and (4.4). Note that mc = 0 is possible with positive prior
probability.

4.2.2 Linked Models on SNVs and CNVs

Lee et al. (2015b) develop an important extension of model (4.1) and (4.2). Recall
that the columns of the binary matrix ZZZ do not represent subclones, but rather haplo-
types, with pairs of haplotypes defining subclones. In the previous model we stopped
short of inference on actual subclones and characterized TH by describing hetero-
geneity of haplotypes. Since humans are diploid, up to two copies of the genome
can be mutated at each locus. That is, for a given locus, the potential genotypes can
be 0, 1, and 2 mutational alleles, which represents the three possible genotypes at
a locus, namely, homozygous wild type, heterozygous and homozygous mutations.
A binary matrix ZZZ cannot capture this. In addition, CNVs further complicate the
matter as a copy number loss or gain will affect the number of mutational alleles
at each locus. To account for a biologically more accurate description, taking these
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details into account, Lee et al. (2015b) proposed a linked feature allocation model
based on cIBP (Sengupta 2013; Sengupta et al. 2015), which we review next.

4.2.2.1 Representing CNV (L) and SNV (Z)

We now define a subclone by two characteristics, subclonal copy numbers and sub-
clonal variant allele counts at a set of loci. For each locus, we want to infer the
number of alleles (copy number) and the number of variant alleles, which fully
describe the genotype at the locus. To start, we first construct an integer-valued ran-
dom matrix LLL to characterize subclonal copy numbers. Each column corresponds to
a subclone and each row corresponds to a locus. The number of columns is unknown
and random. The c−th column ���c = (�1c, . . . , �Sc) are the copy numbers across S loci
for subclone c. For example, in Fig. 4.4, �sc = 3 for s = 1 and c = 2 since subclone 2
has three alleles at locus 1. As a prior distribution for LLL, p(LLL), we use a finite version
of cIBP (Sengupta 2013; Sengupta et al. 2015).

a b c

Fig. 4.4 Three matrices describe a subclonal structure. (a) LLL describes the subclonal copy numbers,
(b) ZZZ describes the numbers of subclonal variant alleles, and (c) www describes the cellular fractions
of subclones

Next, we introduce a second integer-valued matrix ZZZ with dimensions matching
LLL. We use ZZZ to record SNVs. Denote by zzzc the c-th column of ZZZ. The vector zzzc =
(z1c, . . . ,zSc), zsc ≤ �sc records the number of variant alleles, out of the ���c copies, that
bear a mutant sequence different from the reference sequence at loci s, s = 1, . . . ,S
in subclone c. For example, in Fig. 4.4, zsc = 1 for s = 2 and c = 1, indicating that
one allele bears a variant sequence. By definition, the number of variant alleles
zsc in a subclone cannot be larger than the copy number �sc of the subclone, i.e.,
zsc ≤ �sc. Jointly, the two random integer vectors ���c and zzzc describe a subclone and
its genetic architecture at the corresponding loci. Lastly, we introduce the www matrix.
Each row wwwt = (wt1, . . . ,wtC) represents the cellular fractions of the C subclones in
each sample (for example, see the leftmost matrix in Fig. 4.4).

4.2.2.2 Sampling Model and Prior

The total number of reads mapped to locus s in sample t, Nst can be used to infer
CNVs at locus s in that copy number gain (loss) in subclones may lead to large
(small) value of Nst compared to those at loci without any CNV. We augment the
binomial sampling model (4.1) with a second model for Nst , to account for subclonal
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copy numbers. Following Klambauer et al. (2012), we assume a Poisson sampling
model for Nst . Conditional on Nst we continue to use the same binomial model for
nst as in (4.1). In summary,

Nst | φt ,Mst
indep∼ Poi(φtMst/2) and nst | Nst , pst

indep∼ Bin(Nst , pst). (4.5)

Here, Mst is the sample copy number that represents an average copy number across
subclones. We will formally define and model Mst using subclonal copy numbers
(LLL) next. The factor φt is the expected number of reads in sample t if there were no
CNV, that is, copy number equals 2. In other words, when Mst = 2, the Poisson mean
becomes φt . The interpretation of pst in (4.5) remains unchanged as the expected
VAF for mutation s in sample t. However, the representation and prior model for
pst is changed. In the following discussion we will represent pst in terms of the
underlying matrices LLL and ZZZ.

Recall that C and wtc denote the unknown number of subclones in T samples and
the proportion of subclone c, c = 1, . . . ,C, in sample t, respectively. We first relate
Mst to CNV at locus s in sample t. Let �sc ∈ {0,1,2, . . . ,Q} denote the number
of copies at SNV s in subclone c where Q is a prespecified maximum number of
copies. The event �sc = 2 means no CNVs at SNV s in subclone c, �sc = 1 indicates
one copy loss, and �sc = 3 indicates one copy gain. Then the mean number of copies
for sample t can be expressed as the weighted sum of the number of copies over C
latent subclones where the weight wtc denotes the cellular fractions of subclone c in
sample t. The expected VAF pst is written as the total number of recorded variant
alleles which is a mixture over the C latent subclones with the same weights wtc,
relative to the total number Mst . In summary, we assume

Mst = �s0wt0 +
C

∑
c=1

wtc�sc, and pst =
p0zs0wt0 +∑C

c=1 wtczsc

Mst
. (4.6)

The mixtures ∑wtc�sc and ∑wtczsc reflect the key assumption of decomposing the
sample copy number into a weighted average of subclonal copy numbers. The first
terms �s0wt0 and p0zs0wt0 account for noise that can arise from upstream bioinfor-
matics analysis. For example, a small number of short reads may be erroneously
mapped to locus s due to ambiguity in human reference genome or due to base
calling error. As such, we use �s0wt0 to denote the expected copy number from a
hypothetical background subclone to account for potential noise and artifacts in the
data, labeled as subclone c = 0. Arbitrarily we assume no CNVs at any locations for
the background subclone, that is, �s0 = 2 for all s. This use of c= 0 is also introduced
in the previous section.

Next we complete the sampling model (4.6) with a prior probability model on
the unknown parameters (LLL,ZZZ,www). We assume a feature-allocation prior for a latent
random matrix of copy numbers, LLL = [�sc], c = 1, . . . ,C and s = 1, . . . ,S, using a
finite cIBP

LLL ∼ cIBPC(C,α,Q). (4.7)
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See below for a definition of the cIBP. For the moment we only need that it defines
a random (n×C) categorical matrix with Q+ 1 levels �sc ∈ {0, . . . ,Q}.

Recall that the S×C matrix ZZZ with entries, zsc ∈ {0, . . . , �sc} reports the number
zsc ≤ �sc of alleles bearing a variant sequence among the total of �sc copies at locus
s in subclone c. Assume zsc = 0 if �sc = 0, and given �sc > 0 we assume a uniform
distribution

zsc | �sc ∼ Unif(0,1, . . . , �sc), (4.8)

where Unif(·) indicates a discrete uniform distribution.
The priors for www and C are unchanged from the previous model. Note that we

have accounted for different average read counts in T samples through φt , where φt

represents the expected read count with two copies in sample t and assume φt
indep∼

Gamma(at ,bt) where E(φt) = at/bt . This completes the model construction.

4.2.2.3 The Categorical Indian Buffet Process

We define a prior probability model for a random (n×C) categorical matrix LLL with
entries �sc ∈ {0, . . . ,Q}. Let πππc = (πc0,πc1, . . . ,πcQ) where p(�sc = q) = πcq and

∑Q
q=0 πcq = 1. As a prior distribution of πππc, we use a beta-Dirichlet distribution de-

veloped in Kim et al. (2012). Conditional on C, p(�sc 	= 2) = (1− πc2) follows
a beta distribution with parameters, α/C and β and π̃ππ = (π̃c0, π̃c1, π̃c3, . . . , π̃cQ),
where π̃cq = πcq/(1 − πc2) with q 	= 2, follows a Dirichlet distribution with pa-
rameters, (γ0,γ1,γ3, . . . ,γQ). Assuming a priori independence among subclones, we

write πππc
iid∼ Be-Dir(α/C,β ,γ0,γ1,γ3, . . . ,γQ). For β = 1, the marginal limiting dis-

tribution of LLL can be shown to define a cIBP as C → ∞ (Sengupta 2013; Sengupta
et al. 2015).

4.2.3 Posterior Simulation

Let xxx = (LLL,ZZZ,θθθ ,φφφ ,πππ, p0) denote all unknown parameters, where θθθ = {θtc} and
πππ = {πcq}. In Lee et al. (2015b), we implement inference via posterior MCMC sim-
ulation. That is, by generating a Monte Carlo sample of xxxi ∼ p(xxx | nnn,NNN), i = 1, . . . , I.
MCMC posterior simulation proceeds by repeatedly using transition probabilities
that update a subset of parameters at a time. See, for example, Brooks et al. (2011)
for a review.

For fixed C such MCMC simulation is straightforward. Gibbs sampling transi-
tion probabilities are used to update �sc, zsc, πcq and φt and Metropolis-Hastings
transition probabilities are used to update θθθ and p0.
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The construction of transition probabilities that involves a change of C is more
difficult, since the dimension of LLL, ZZZ, πππ , and θθθ changes as C varies. Lee et al.
(2015a) introduce a clever trick for transdimensional posterior MCMC simulation.
The method is not universally applicable, but works for inference in the earlier dis-
cussed models. We split the data into a small training set (nnn′,NNN′) with n′st = bnst ,
N′

st = bNst , and a test data set, (nnn
′′
,NNN

′′
) with n

′′
st = (1−b)nst , etc. In the implementa-

tion we actually use random bst ∼ Be(a,b), finding that a random bst worked better
than a fixed fraction b across all samples and loci. Let p1(xxx | C) = p(xxx | NNN ′,nnn′,C)
denote the posterior distribution under C using the training sample. We use p1 in
two instances. First, we replace the original prior p(xxx |C) by p1(xxx |C) and, second,
we use p1(·) as proposal distribution q(x̃xx | C̃) = p1(x̃xx | C̃) in a reversible jump (RJ)
style transition probability where C̃ is a proposed value of C. The test data is then
used to evaluate the acceptance probability. The critical advantage of using the same
p1(·) as prior and proposal distribution is that the normalization constant cancels out
in the Metropolis-Hastings acceptance probability.

To summarize the joint posterior distribution, we first find the maximum a pos-
teriori (MAP) estimate C� from its marginal posterior distribution and then obtain
posterior point estimates LLL�, ZZZ�, www�, φφφ �, and πππ� conditional on C�. See Lee et al.
(2015a,b) for more detailed discussion.

4.3 Simulation

We assess the proposed model in a simulation study. In short, we generate ran-
dom nst and Nst for a set of S = 100 loci in T = 25 hypothetical samples based
on simulated truth about subclones. We consider four subclones (CTRUE = 4) as
well as a background subclone (c = 0) in the simulation truth. We use the true LLL
shown in Fig. 4.5a where green color (light grey) in the panels implies a copy num-
ber gain (�sc = 3) and red color (dark grey) shows two copy loss (�sc = 0), for
c = 1, . . . ,4 and s = 1, . . . ,100. Panel (b) shows the simulation truth ZZZ. Similar to
LLLTRUE, green color indicates three variant alleles and red color zero. We generate
φ TRUE

t from Gamma(600,3) for t = 1, . . . ,25. We then generate wwwTRUE
t as follows. We

let aaaTRUE = (12,9,4.5,1.5) and for each t randomly permute aaaTRUE. Let aaaTRUE
π denote a

random permutation of aaaTRUE. We generate wwwTRUE ∼ Dir(0.3,aaaTRUE
π ). That is, the first

parameter of the Dirichlet prior for the (CTRUE +1)-dimensional weight vector is 0.3,
and the remaining parameters are a permutation of aaaTRUE. Using the assumed LLLTRUE,
ZZZTRUE and wwwTRUE and letting pTRUE

0 = 0.05, we generate Nst from Poi(φ TRUE
t MTRUE

st /2)
and nst from Bin(Nst , pTRUE

st ). The weights wwwTRUE are shown in Fig. 4.5c. Similar to
the other heatmaps, green color (light grey) in panel (c) represents high abundance
of a subclone in a sample, red color (dark grey) low abundance for c = 0, . . . ,4 and
t = 1, . . . ,30. The samples in rows are rearranged for better display.

To fit the proposed model in Sect. 4.2.2, we fix the hyperparameters as r = 0.2,
α = 2, γq = 0.5 for q = 0,1,3(= Q), d0 = 0.5, d = 1, a00 = 0.3 and b00 = 5. For
the prior of φt , we let b = 3 and a to be the median of the observed Nst . For each
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Fig. 4.5 Heatmaps of (a) LLLTRUE, (b) ZZZTRUE, and (c) wwwTRUE in the simulation study

value of C, we initialize ZZZ using the observed sample proportions and LLL using the
initial ZZZ. We generate initial values for θθθ tc and p0 by prior draws. We generate

bst
iid∼ Be(25,975) to construct the training set and run the MCMC simulation over

16,000 iterations, discarding the first 6,000 iterations as initial burn-in.
Figure 4.6a reports the posterior distribution of C in which the dashed vertical

line represents the true value CTRUE = 4. The posterior mode C� = 4 recovers the
truth. Panels (d) through (f) illustrate the posterior point estimates, LLL�, ZZZ�, and www�.
Compared to the simulation truth in Fig. 4.5, the posterior estimate recovers sub-
clones 1 through 3 with high accuracy. ����c for subclone 4 has large discrepancy. We
suspect that this is due to small wtc with c = 4 for almost all samples seen in the last
column of Fig. 4.5c. The discrepancy between ����4 and ���TRUE

4 is related to the under-
estimation of www�

tc under c = 4. More importantly, there is ambiguity about the true
latent structure, as is seen by the still excellent fit of the data. Conditional on C�, we
computed M̂st and p̂st and compared to the true values. Figure 4.6b,c show that the
fit under the model is great, except that the histograms have a slightly thicker left
tail, also possibly due to the misspecification of ���4.

For comparison, we implement PyClone (Roth et al. 2014b) with the same simu-
lated data. We let the normal copy number, the minor parental copy number, and the
major parental copy number to be 2, 0, and 3, respectively, at each locus. PyClone
considers copy number changes and estimates the variant allelic prevalence (fraction
of clonal population having a mutation) at a locus in a sample. The formulation of
their variant allelic prevalences (named as “cellular prevalences”) is similar to that
of our pst . It uses a Dirichlet process model to identify a non-overlapping clustering
of the loci based on their cellular prevalences. Cellular prevalences over loci and
samples may vary but the clustering of loci is shared by samples. Figure 4.7a shows
a heatmap of posterior estimates of the cellular prevalences (by color) and muta-
tional clustering (by separations with white horizontal lines) under PyClone. Panel
(b) of the figure shows a heatmap of pTRUE

st . The loci (rows) of the two heatmaps are
re-arranged in the same order for easy comparison. By comparing the two heatmaps,
the cellular prevalence estimates under PyClone are close to pTRUE

st and yields a rea-
sonable estimates of a clustering of the loci. However, PyClone does not attempt to
construct a description of subclones with genomic variants.
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Fig. 4.6 Posterior inference for the simulation study. (a) Posterior distribution of C, (b) M̂st −
MTRUE

st , (c) p̂st − pTRUE
st , (d) LLL�, (e) ZZZ�, (f) www�
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4.4 Lung Cancer Data

We record whole-exome sequencing for T = 4 surgically dissected tumor samples
taken from the same lung cancer patient. The four samples are spatially close to
each other. It is of interest to see if spatially proximal tumor samples are genetically
homogeneous. To this end, we extract genomic DNA from each tissue and construct
an exome library from these DNA using Agilent SureSelect capture probes. The
exome library is then sequenced in paired-end fashion on an Illumina HiSeq 2000
platform. About 60 million reads—each 100 bases long—are produced. We map the
reads to the human genome (version HG19) (Church et al. 2011) using BWA (Li and
Durbin 2009) and call variants using GATK (McKenna et al. 2010). Post-mapping,
the mean coverage of the samples is between 60 and 70 fold.

A total of nearly 115,000 loci and small indels are called within the exome co-
ordinates. We restrict our attention to loci that (1) make a difference to the protein
translated from the gene, and (2) that exhibit significant coverage in all samples with
nst/Nst not being too close to 0 or 1; and (3) we use expert judgment to some more
loci. The described filter rules leave in the end S = 101 loci for the four intra-tumor
samples.
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Fig. 4.8 Posterior inference for the lung cancer dataset. (a) p(C | nnn,NNN), (b) N̂st −Nst , (c) p̂st −
(nst/Nst )

We use hyperparameters similar to those in the simulation study. Figure 4.8 sum-
marizes posterior inference under the proposed model. Panel (a) shows C� = 2, i.e.,
two estimated subclones. Using posterior samples with C = C�, we computed N̂st

and p̂st and compared them to the observed data. The differences are centered at 0,
implying a good fit to the data. Conditional on C� = 2, we found LLL�, ZZZ�, and www�

(see Fig. 4.9). The loci in LLL� and ZZZ� are re-arranged in the same order for better
illustration. The estimated weights www� in Fig. 4.9 show a great similarity across the
four samples. This lack of heterogeneity across samples suggests that for this tumor,
spatial proximity is implicative of genetic homogeneity.
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Fig. 4.9 Posterior point estimates for the lung cancer dataset

4.5 Conclusions

We review Bayesian feature allocation models for the estimation of tumor hetero-
geneity, in terms of subclonal copy numbers, subclonal variant allele counts, and
cellular fractions. By jointly modeling CNV and SNV, we characterize the genetic
landscape of a tumor sample based on both sequence and structure variations. Such
inference impacts downstream treatment of individual tumors, ultimately allowing
precise prognosis. For example, a tumor with large proportions of cells bearing so-
matic mutations on oncogenes would respond more favorably to treatments that sup-
press the expression of the oncogenes. Also, temporal TH can be inferred if tumor
samples from different time points are available from the same patient. Treatment
options can be adaptively modified over time based on the heterogeneity among the
samples. Indeed, large effort has already been invested in clinic regarding treating
cancer based on the genetic contents instead of tumor origin (http://www.cancer.
gov/clinicaltrials/noteworthy-trials/match), and trials regarding TH are being con-
ducted (Catenacci 2014).

Many extensions are still needed to improve TH calling. For example, sometimes
additional sources of information on CNVs such as an SNP array may be available.
We then extend the proposed model to incorporate this information into the mod-
eling of LLL. Another extension is to cluster patients on the basis of the imputed TH.
This extension may help clinicians assign different treatment strategies, and be a
natural basis of adaptive clinical trial designs.

Acknowledgements Yuan Ji and Peter Müller’s research is partially supported by NIH R01
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Chapter 5
Species Sampling Priors for Modeling
Dependence: An Application to the
Detection of Chromosomal Aberrations

Federico Bassetti, Fabrizio Leisen, Edoardo Airoldi, and Michele Guindani

Abstract We discuss a class of Bayesian nonparametric priors that can be used to
model local dependence in a sequence of observations. Many popular Bayesian non-
parametric priors can be characterized in terms of exchangeable species sampling
sequences. However, in some applications, common exchangeability assumptions
may not be appropriate. We discuss a generalization of species sampling sequences,
where the weights in the predictive probability functions are allowed to depend on
a sequence of independent (not necessarily identically distributed) latent random
variables. More specifically, we consider conditionally identically distributed (CID)
Pitman-Yor sequences and the Beta-GOS sequences recently introduced by Airoldi
et al. (Journal of the American Statistical Association, 109, 1466–1480, 2014). We
show how those processes can be used as a prior distribution in a hierarchical Bayes
modeling framework, and, in particular, how the Beta-GOS can provide a reasonable
alternative to the use of non-homogenous Hidden Markov models, further allowing

F. Bassetti
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unsupervised clustering of the observations in an unknown number of states. The
usefulness of the approach in biostatistical applications is discussed and explicitly
shown for the detection of chromosomal aberrations in breast cancer.

5.1 Introduction

Due to their clustering properties, Bayesian nonparametric methods have been
widely employed for the analysis of various types of data in genetics, e.g. for identi-
fying disease subtypes and isolating discriminating genes, proteins or samples (see,
e.g., Kim et al. 2006; Guindani et al. 2009; Lee et al. 2013). In order to take into
account measurement characteristics (e.g., continuous support, long tails, skewness,
multimodality or overdispersion of the frequency distribution), it is often convenient
to employ a hierarchical model specification. At the top level of the hierarchy, ob-
servations are assumed to be conditionally independent given some “latent” process,
i.e. the sampling distribution is

yi|θi
ind∼ p(yi|θi) i = 1,2, . . . (5.1)

where p(·|θi) denotes a probability density function or probability mass function,
dependent on the values of a set of parameters θi. The distribution of the θi’s is then
assumed to follow a process that captures relevant features of the data. Let p denote
the unknown distribution of the model parameters, and Q be a prior probability
measure for p. Then, the hierarchical model specification can be concisely described
as follows:

θ1,θ2 . . . |p ∼ p

p ∼ Q.
(5.2)

Model (5.1), (5.2) schematically encompasses both popular Dirichlet Process mix-
tures (Lo 1984) and Dependent Dirichlet Process mixtures (MacEachern 1999). The
prior process p can often be represented by means of a sequence of predictive distri-
butions that typically encode exchangeability assumptions on the model parameters
and the data (see Sect. 5.2). In some applications, however, the usual exchange-
ability assumptions may be hardly justified. For example, if θ1,θ2, . . . represent a
process in time (space), then the model should properly account for the dependence
relations among nearby time points (neighboring locations).

To illustrate the point, in Fig. 5.1a we consider the frequency of genome copy
number abnormalities, as estimated from data obtained in a classical study of the
genetic determinants of breast cancer pathophysiologies (Chin et al. 2006). The
raw data measure genome copy number gains and losses over 145 primary breast
tumor samples, across the 23 chromosomes, obtained using BAC array comparative
genomic hybridization (CGH). Regions of relative gains or losses are identified by
measuring the fluorescence ratio of cancer and normal female genomic DNA, la-
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Fig. 5.1 (a) Frequencies of genome copy number gains and losses plotted as a function of ge-
nomic location. (b) Frequency of tumors showing high-level amplification. The dashed vertical
lines separate the 23 chromosomes

beled with distinct fluorescent dyes and co-hybridized on a microarray in the pres-
ence of Cot-1 DNA to suppress unspecific hybridization of repeat sequences (see
Redon et al. 2009). The reference DNA is assumed to have two copies of each
chromosome. If the test sample has no copy number aberrations, the log2 of the
intensity ratio is theoretically equal to zero.

Array CGH data are typically very noisy and spatially correlated. More specifi-
cally, copy number gains or losses at a region are often associated with an increased
probability of gains and losses at a neighboring region. Bayesian models for ar-
ray CGH data have been recently investigated by Guha et al. (2008), DeSantis
et al. (2009), Baladandayuthapani et al. (2010), Du et al. (2010), Cardin et al.
(2011), and Yau et al. (2011), among others. Guha et al. propose a four-state ho-
mogenous Bayesian HMM to detect copy number amplifications and deletions and
partition tumor DNA into regions (clones) of relatively stable copy number. De-
Santis et al. extend this approach and propose a supervised Bayesian latent class
approach for classification of the clones, which relies on a heterogenous hidden
Markov model to account for local dependence in the intensity ratios. In a hetero-
geneous hidden Markov model, the transition probabilities between states depend
on each single clone or the distance between adjacent clones (Marioni et al. 2006).
Using a Bayesian nonparametric approach, Du et al. propose a sticky Hierarchical
DP-HMM (Fox et al. 2011; Teh et al. 2006) to infer the number of states in an
HMM, while also imposing state persistence. Yau et al. (2011) also propose a non-
parametric Bayesian HMM, but use instead a DP mixture to model the likelihood in
each state.

In this chapter, we present an alternative approach, which flexibly models
the evolution of the parameters θ1,θ2, . . . by means of a general class of
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non-exchangeable species sampling sequences. As it is typical in a Bayesian non-
parametric setting, we allow clustering of the observations, further assuming that
the number of states is unknown and can be inferred from the data. Furthermore,
in finite HMMs, the distribution of state durations is necessarily restricted to a ge-
ometric form, so that departures from this assumption, e.g. state persistence, must
be appropriately accounted for in the modeling (Yu 2010; Fox et al. 2011; John-
son and Willsky 2013). The species sampling priors, which we discuss in the next
section, model “non-homogenous” assumptions in the state durations more flexibly,
since the weights in the species sampling rule can adapt to take into account local
dependences in the data.

5.2 Species Sampling Sequences: Basics and Extensions

In this section, we review basic definitions and properties of species sampling (SS)
sequences, and also discuss their generalizations to a class of random sequences that
are appealing for modeling non-exchangeable observations.
More specifically, for defining SS-sequences, we refer to the hierarchical formula-
tion (5.2), and characterize the sequence of random variables θ1,θ2, . . . by means of
the sequence of predictive probability functions,

P{θn+1 ∈ · |θ1, . . . ,θn}=
n

∑
i=1

qn,iδθi(·)+ qn,n+1G0(·), (5.3)

where δx(·) denotes a point mass at x, and G0 is a non-atomic probability measure
(base measure, Pitman 1996). The weights qn,i, i = 1, . . . ,n+ 1, are non-negative
functions of (θ1, . . . ,θn), such that ∑n+1

i=1 qn,i = 1, and define the probability that the
sampled value of θn+1 coincides with one of the previous values in the sequence or
is a new draw from the base measure. In (5.3), it is implicitly assumed that θ1 ∼ G0.
If qn,n+1 < 1, there’s a positive probability of ties among the θi’s, that is some of
the θi’s will share a common value. We can collect the unique values in a vector
(θ ∗

1 , . . .θ ∗
Kn
), where Kn indicates the (random) number of distinct values in the sub-

sequence θ (n) = (θ1, . . . ,θn). Alternatively, we can say that (5.3) implicitly defines

a random partition Π (n) = {Π (n)
1 , . . . ,Π (n)

Kn
} of the set {1, . . . ,n} into Kn blocks,

where i ∈ Π (n)
j if and only if θi = θ ∗

j .
If the probability of a tie, P(θn+1 = θ ∗

j |θ (n)), depends only on the cardinality of

each block, i.e. the frequency n jn = |Π (n)
j | of each value θ ∗

j in θ (n), j = 1, . . . ,Kn,
then the sequence θ1,θ2, . . . is exchangeable. The result characterizes all exchange-
able SS-sequences (see Fortini et al. 2000; Hansen and Pitman 2000; Lee et al.
2008, for more details). The most notable example of exchangeable SS-sequences
is the Blackwell MacQueen sampling rule, which defines a Dirichlet Process (see
Blackwell and MacQueen 1973; Ishwaran and Zarepour 2003). Let p be a DP with
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mass parameter γ and base measure G0(·), denoted as p ∼ DP(γ,G0). Then, the
corresponding sequence of predictive probability function is the well-known Black-
well MacQueen sampling rule, which sets qn,i =

1
n+γ and qn,n+1 =

γ
n+γ in (5.3).

The dependence of the weights only on the sequence θ (n) may be seen as a
limiting feature in some applications, e.g. whenever one could contemplate that ad-
ditional covariate information might affect the clustering of the observations. For
example, Park and Dunson (2010) propose a generalized product partition model
(GPPM) in which the clustering process is predictor-dependent. Their GPPM relax
the exchangeability assumption through the incorporation of predictors, implicitly
defining a generalized Pólya urn scheme. Similarly, Müller and Quintana (2010) de-
fine a product partition model that includes a regression on covariates, which allows
units with similar covariates to have greater probability of being clustered together.

Here, we consider a generalization of the predictive rule (5.3), where the weights
are allowed to depend on a sequence of independent (not necessarily identically
distributed) latent random variables W1,W2, . . . More specifically, we consider a se-
quence (θn)n≥1 characterized by the following predictive distributions,

P{θn+1 ∈ · |θ (n),W (n)}=
n

∑
i=1

pn,iδθi(·)+ rnG0(·), (5.4)

where W (n) = (W1, . . . ,Wn) and the weights pn,i are strictly positive functions of
the partitions Π (n) and the random variables W (n), i.e. pn,i = pn,i(Π (n),W (n))> 0,
with ∑n

i=1 pn,i < 1 and rn := 1−∑n
i=1 pn,i.

The specific choice of the weights pn,i’s determines the clustering behavior of
the sequence (θn)n. In this chapter, we focus on the general class of conditionally
identically distributed (CID) sequences (Berti et al. 2004). This class generalizes
the notion of exchangeable sequences, while still preserving some of their important
characteristics. Formally, a sequence (θn)n≥1 is CID with respect to a filtration G =
(Gn)n≥0, whenever for each n ≥ 0 all the random variables θn+i, with i ≥ 1, are
identically distributed conditionally on Gn. In the definition it is assumed that G
contains the natural filtration of (θi)i≥1. It is clear that every exchangeable sequence
is a CID sequence with respect to its natural filtration, but a CID sequence does
not necessarily need to be exchangeable nor stationary. Indeed, if a CID sequence
is stationary, then it is also exchangeable. A remarkable property of CID sequences
is that the θi’s are marginally identically distributed. No representation theorem is
known for CID sequences. However, it can be shown that given any bounded and
measurable function f , the predictive mean E[ f (θn+1)|θ1, ...,θn] and the empirical
mean 1

n ∑n
i=1 f (θi) converge to the same limit as n goes to infinity. For details, we

refer to Berti et al. (2004). Finally, if the sequence of observations (Y1,Y2, . . .)
follows the hierarchical model (5.1) and the latent process (θ1,θ2, . . . ) is a CID
sequence, then it can be shown that the sequence of observations Yi’s also forms
a CID sequence. This result has been proved in Airoldi et al. (2014) specifically
for the Beta-GOS prior (see below); however, the proof can be easily extended to a
general CID sequence.
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Two interesting types of CID sampling sequences are the following:

(a) CID Pitman-Yor sequences. A Pitman-Yor process (Pitman 2006) is an
exchangeable sequence characterized by the following predictive probability
functions,

P{θn+1 ∈ · |θ1, . . . ,θn}= ∑Kn
j=1

n jn −α
γ + n

δθ∗
j
(·)+ γ +αKn

γ + n
G0(·), (5.5)

for γ > 0 and α ∈ [0,1], as a function of the partition Π (n) = {Π (n)
1 , . . . ,Π (n)

Kn
}

of the set {1, . . . ,n} into Kn blocks. When α = 0, the sequence (5.5) defines
a Dirichlet Process, DP(θ ,G0). There exists a generalization of the classical
Pitman-Yor process (5.5) as a CID sequence. More specifically, the CID gener-
alization assumes that the weights in (5.4) are functions of a sequence of random
variables W (n), with weights pn,i(Π (n),W (n)) = (Wi −α/nkin)/(γ +∑n

j=1 Wj)

and rn(Π (n),W (n)) = (γ +αKn)/(γ +∑n
j=1 Wj) where nkin denotes the cardi-

nality of the block in Π (n) that contains observation i. Then,

P{θn+1 ∈ · |θ (n),W (n)}=
Kn

∑
j=1

(

∑
i∈Π (n)

j
Wi

)

−α

γ +∑n
i=1 Wi

δθ∗
j
(·)+ γ +αKn

γ +∑n
i=1Wi

G0(·),
(5.6)

which reduces to (5.5) if Wn = 1. Similarly to the Chinese Restaurant Process
(CRP) representation of the Dirichlet Process, Eq. (5.6) has an intuitive illus-
tration in terms of the seating allocation at a restaurant. In this representation,
each customer enters the restaurant with a distinctive “mark” (the random vari-
ables Wi’s). When customers enter the restaurant, they have the possibility to
start a new table (with probability dependent on the parameter γ) or join a table
already occupied by other customers. In the CID version, the “attractiveness” of
a table depends on ∑

i∈Π (n)
j

Wi in (5.6), i.e. the sum of the individual marks for

each customer already seating at the table. In other words, the process takes into
account possible additional variability in the “seating plan” due to individual
random effects.

In terms of clustering, the asymptotic behavior of the CID version of the DP,
obtained by setting α = 0 in (5.6), is similar to that of the classical DP: if the Wi’s
are i.i.d. with finite variance and mean E[Wi] = m, then Kn/ log(n) converges al-
most surely to γ/m (see Bassetti et al. 2010, Example 5.8). The situation is less
simple for the case in which α 	= 0.

(b) Beta-GOS sequences. An alternative specification of (5.4) considers weights
obtained as a product of independent Beta random variables. More specifically,
Airoldi et al. (2014) assume that the random variables (Wi)i≥1 are draws from
independent Beta(αi,βi) distributions, and then set pn,i = (1−Wi)∏n

j=i+1 Wj

and rn = ∏n
j=1 Wj in (5.4). The resulting sequence (θ1,θ2, . . .) defines the so-

called Beta-GOS sequence, a particular case of a generalized ottawa sequence
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(GOS) in the class of CID sequences (see, for details, Bassetti et al. 2010).
The choice of Beta latent variables allows for a flexible specification of the
species sampling weights, while it still retains simplicity and interpretability of
the sequence allocation scheme. As a matter of fact, this allocation rule can also
be described in terms of a preferential attachment scheme, similarly to the CID
Pitman-Yor sequences. Also in this scheme, each customer, θi, is characterized
by a random weight (or “mark”), 1−Wi, and can join the table where any of
the previous customer is sitting by means of a “geometric-type” assignment
scheme. More precisely, suppose we have customers θ1, . . . ,θn together with
their marks up to time n, (1−W1, . . . ,1−Wn). Then, the (n+ 1)-th individual
will be assigned to the same table as the previous customer, θn, with probability
1−Wn; the probability of pairing θn+1 to θn−1 will be Wn(1−Wn−1), and so
forth. In general, in this representation, Wi will represent a “repulsion” score
associated with customer i. Thus, each weight pn,i will be represented by the
product of the Wj’s associated with the latest n− j subjects and the “mark” or
“attractiveness” score of customer i, 1−Wi. Summarizing, customer θn+1 will
occupy a new table (i.e., θn+1 ∼G0) with probability rn, or instead they will join
one of the previously occupied tables, say table j, with probability ∑i:θi=θ∗

j
pn,i.

Of course, the seating assignment and the clustering behavior of the sequence is
determined by the specification of the parameters αi and βi in the distribution of
the Wi’s. We briefly discuss the issue in the next section, where we review some
asymptotic results and their interpretation in terms of clustering of the sequence,
for a set of parameter specifications.

In the next sections, we will focus specifically on the use of the Beta-GOS se-
quences for modeling latent dependence in Bayesian hierarchical models and we
will discuss their application to the detection of chromosomal aberrations in array
CGH data.

5.3 A Beta-GOS Hierarchical Model

In this section, we focus on the Beta-GOS sequences and discuss how they can be
used to define a prior in a hierarchical model (for a broader discussion, see Airoldi
et al. 2014). Although the discussion pertains specifically to the Beta-GOS process,
the basic modeling idea naturally extends to the CID Pitman-Yor sequences and the
general CID sequences. We then discuss the prior specification of the parameters of
the Beta random variables in the Beta-GOS. Finally, we briefly present the MCMC
sampling algorithm for conducting posterior inference with this type of models.

Similarly to the hierarchical Bayesian specification in (5.1), (5.2), we can assume
that at the highest level of the hierarchy the sampling distribution is specified as

Yi|θi
ind.∼ f (yi|θi), i = 1, . . . ,n, (5.7)
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where the vector (θ1, . . . ,θn)
T is a realization of a Beta-GOS process characterized

by auxiliary random variables Wi ∼ Be(αi,βi), i = 1, . . . ,n, and base measure G0.
We can succinctly denote the Beta-GOS prior as

θ1, . . . ,θm ∼ Beta-GOS(αααn,βββ n,G0), (5.8)

where αααn = (α1, . . .αn) and βββ n = (β1, . . . ,βn). As discussed in Sect. 5.2, the Beta-
GOS is a particular case of a CID sequence. Hence, in particular, marginally θi ∼G0,
i = 1, . . . ,n. Therefore, the base G0 can be regarded as a centering distribution, as it
is typical in DP mixture models: G0 represents a vague parametric prior assumption
on the distribution of the parameters of interest. The hierarchical model may be ex-
tended by putting hyper-priors on the remaining parameters of the model, including
the hyper-parameters of the base measure G0 as well as the vectors αααn and βββ n.

The parameters of the Beta random variables control the asymptotic behavior
of the sequence, and the clustering properties of the prior. For example, if we set
αi = i+ γ − 1,βi = 1, for given γ > 0, then Kn/ log(n) converges in distribution
to a Gamma(γ,1) random variable. As a comparison, for a DP(γ,G0), it is well
known that Kn/ log(n) converges almost surely to γ . If we set αi = a,βi = b, for
some a,b > 0, then Kn converges almost surely to a finite random variable. This
result naturally implies that the resulting partition is characterized by a few big
clusters, as n increases. We refer to Airoldi et al. (2014) for further details and
proofs. In addition, the parameters αi and βi implicitly model the autocorrelation
expected a priori in the dynamics of the sequence. The probability of a tie may
decrease with n and atoms that have been observed at farthest times may have a
greater probability to be selected if they have also been observed more recently.
More specifically, setting αi = γ − 1+ j (γ > 0) and βi = 1 implies that E[rn] =
γ/(γ + n) and E[pn,i] = 1/(γ + n), i = 1, . . . ,n. This specification can be seen as a
feature of a process with a long memory, since all the previous observations have
the same weight on average. For αi = a,βi = b, E[rn] = (a/(a+ b))n and E[pn,i] =
(a/(a+ b))n−i(b/(a+ b)). Hence, the probabilities of ties d decrease exponentially
as a function of the lag n− i, describing a short memory process. In practice, the
determination of the parameters of the Beta distributions is not trivial, and may be
problem dependent, especially given the sensitivity of the clustering behavior to
the values of αi and βi. As a general rule, following what it is usually done with
Dirichlet processes priors, we suggest to elicit the parameters on the basis of the
expected number of clusters a priori, i.e. E(Kn) = 1+∑n−1

j=1 E[r j]. For example, one
could set αi = a and βi = b to represent a short memory process, and the values of
a,b can be chosen based on the asymptotic relationship E(Kn) ≈ a+b

b . We further
suggest to choose b = 1, or anyway b < a, to encourage a priori low autocorrelation
of the sequence, since then E(pn,n) < 0.5. As a matter of fact, in Sect. 5.5 we will
follow the previous guidelines in the application to the detection of chromosomal
aberrations, since biological considerations lead to expect the true number of states
to be around 4. On the other hand, the single-parameter specification α j = j+γ −1,
β j = 1 should be the default choice in those applications where prior information
on the expected number of clusters is more vague, and the choice of the parameter
γ should be based on E(Kn) = ∑n−1

j=0
γ

γ+ j ∼ γ log(n), for large n.
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5.3.1 MCMC Posterior Sampling

Posterior inference for the model (5.7) and (5.8) entails learning about the cluster-
ing and corresponding estimates of the parameters θi. In this section, we describe
a Gibbs sampler scheme. The basic idea is to describe the partition Π (n) by intro-
ducing a sequence of labels Ci, i = 1, . . . ,n which record the pairing of observation i
with one of the previous observations, j < i. Hence, here the label Ci is not a simple
indicator of the cluster membership, as it is typical in most MCMC algorithms de-
vised for the Dirichlet process, although cluster membership can be easily retrieved
by analyzing the sequence of pairings. In what follows, Ci will be sometimes re-
ferred to as the i-th pairing label. In particular, if the i-th observation is not paired to
any of the preceding ones, we set Ci = i. Then, θi is a draw from the base distribu-
tion G0, and thus it generates a new cluster. This slightly different representation of
data points in terms of data-pairing labels, instead of cluster-assignment labels, turns
useful to develop an MCMC sampling scheme for non-exchangeable processes, as
described in Blei and Frazier (2011) and Airoldi et al. (2014). It is easy to see that
the pairing sequence (Cn)n≥1 assigns C1 = 1 and has full conditional distribution

P{Cn = i|C1, . . . ,Cn−1,W}= P{Cn = i|W1, . . . ,Wn−1}
= rn−1I{i = n}+ pn−1,iI{i 	= n}, (5.9)

for i = 1, . . . ,n, where I(·) denotes the indicator function, such that, given a set A,
I(A) = 1 if A is true and 0 otherwise. The clustering configuration is a by-product of
the representation in terms of data-pairing labels. If two observations are connected
by a sequence of interim pairings, then they are in the same cluster. Given C(n) =
(C1, . . . ,Cn), then we denote by Π(C(n)) the partition generated by the pairings
C(n), i.e. Π (n). For any n and any i ≤ n, let C−i = (C1, . . . ,Ci−1,Ci+1, . . . ,Cn); anal-
ogously, let W (n) = (W1, . . . ,Wn), and W−i =(W1, . . . ,Wi−1,Wi+1, . . . ,Wn). Then, the
full conditional for the pairing indicators Ci’s is

P{Ci = j|C−i,Y (n),W (n)} ∝ P{Ci = j,Y (n)|C−i,W (n)}
= P{Y(n)|Ci = j,C−i,W (n)}P{Ci = j|C−i,W (n)}. (5.10)

The second term in (5.10) is the prior predictive rule (5.9), whereas

P{Y (n)|Ci = j,C−i,W (n)}=
|Π(C−i, j)|

∏
k=1

∫

∏
l∈Π(C−i , j)k

f (Yl |θ ∗
j )G0(dθ ∗

j ),

where Π(C−i, j) denotes the partition generated by (C1, . . . ,Ci−1, j,Ci+1, . . . ,Cn).
If G0 and f (y|θ ) are conjugate, the latter integral has a closed form solution. The
non-conjugate case could be handled by appropriately adapting the algorithms of
MacEachern and Müller (1998) and Neal (2000). As far as the full conditional for
the latent variables Wi’s, we can show that Wi|C(n),W−i,Y (n)∼ Beta(Ai,Bi), where
Ai = αi +∑n

j=i+1 I{Cj < i or Cj = j}, and Bi = βi +∑n
j=i+1 I{Cj = i}; hence, they

depend only on the clustering configurations and not on the values of W−i.



106 F. Bassetti et al.

ll

l

l

l

ll

l
l

l

l

l
l

lll

l
l

l
l

l

l
ll

l

l
l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

800 850 900 950 1000

−
4

−
2

0
2

4

800 850 900 950 1000

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

l

llllll

l

lllllll

llllllllllllll

llllllllllll

l

l

lllllllllllllllllll

lllllllllllllllll

l

lllllllllll

llllllllllllllllllll

lllllllllllllllll

llllllllllllllllllllll

lllllll

l

lllllllllll

lllllll

lllllllllllllllll

llllllll

800 850 900 950 1000

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

l

llllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllll

llllll

l

llllllll

l

l

llllllllllllllllllllllllllllllll

l

lll

l

lllllll

l

l

l

ll

lllllllllllllllllll

llllllllllllllllllllll

l

ll

l

l

l

l

lllllllllllllllll

l

llllll

l

l

l

l

l

ll

l
l

l

l

l
l

lll

l
l

l
l

l

l
ll

l

l
l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

800 850 900 950 1000

−
4

−
2

0
2

4

800 850 900 950 1000

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0 ll

lllllllll

l

l

lll

lllllll

l

ll

l

l

l

llll

l

lll

ll

l

llll

l

lllllll

l

l

lllllllll

l

llll

l

llll

ll

l

l

lll

llll

l

llllllll

ll

ll

l

l

l

l

lll

ll

l

l

lllll

l

llllll

l

ll

l

lllllll

l

ll

l

l

ll

l

l

l

llll

lllllllllllllll

llllllll

l

lll

l

ll

lllllllllllllllllll

lllll

l

l

800 850 900 950 1000

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0 ll

lllllll

l

l

l

lll

l

lllllllllllllllllllll

l

l

l

l

l

ll

l

l

l

l

l

l

lll

l

llllllllllllllllllllllllll

l

llllll

l

lllllllll

l

l

lllllllllllllll

llllllllllllllllllll

llllll

l

ll

l

l

lllllllllllllll

llll

ll

l

l

llll

l

lll

llllllllllllllllll

l

l

lllll

Fig. 5.2 Illustrative segmentation-type plots for the simulation study in Sect. 5.4. Right column:
subset of data for two replicates. Center column top: an example of allocation for a Beta-GOS(αi =
1,βi = 1) plotted vs the truth (black line); bottom considers a Beta-GOS(αi = i,βi = 1). Left column
illustrates the fitting by a HMM with 4 states

Then, let’s consider the set of cluster centroids θ ∗
i ’s. The algorithm above allows

faster mixing of the chain by integrating over the distribution of the θ ∗
i . However,

in case inference on the vector (θ1, . . . ,θm) is of interest, it is possible to sample the
unique cluster values at each iteration, as

θ ∗
j |C(n),W (n),Y (n) ∝ ∏

i∈Π j(n)

p(Yi|θ ∗
j )G0(dθ ∗

j ), (5.11)

where Π j(n) denotes the partition set of those observations with θi = θ ∗
j , i= 1, . . . ,n.

Again, if f (y|θ ) and G0 are conjugate, the full conditional of θ ∗
j is available in

closed form, otherwise we can update θ ∗
j by standard Metropolis Hastings algo-

rithms (Neal 2000).
Finally, we note that if π(αααn,βββ n) is a prior distribution for the Beta hyper-

parameters αααn and βββ n, one could implement a Metropolis Hasting scheme to learn
about their posterior distribution, since

αααn,βββ n|C(n),Y (n) ∝ π(αααn,βββ n)
n

∏
i=1

B(Ai,Bi)

B(αi,βi)
, (5.12)

where Ai and Bi are defined as above and B(x,y) = Γ (x)Γ (y)/Γ (x+ y) denotes
the Beta function. Equation (5.12) is an adaptation of well-known results for the
Dirichlet Process (Escobar and West 1995).



5 Species Sampling Priors for Array CHG Data 107

5.4 A Comparison with Hidden Semi-Markov Models

In many problems (e.g., change point detection), hidden Markov Models are used
as computationally convenient substitutes for temporal processes that are known to
be more complex than what could be implied by first order Markovian dynamics.
Here, we generate non-exchangeable sequences from a hidden semi-Markov process
(HSMM; Ferguson 1980; Yu 2010) and study how the Beta-GOS process performs
in fitting this type of data. Hidden semi-Markov processes are an extension of the
popular hidden Markov model where the time spent in each state (state occupancy
or sojourn time) is given by an explicit (discrete) distribution. A geometric state
occupancy distribution characterizes ordinary hidden Markov models. Therefore,
hidden semi-Markov process have also been referred to as “hidden Markov Models
with explicit duration” (Mitchell et al. 1995; Dewar et al. 2012) or “variable-
duration hidden Markov Models” (Rabiner 1989).

We generate 1000 datasets (1000 observations each) using a hidden semi-Markov
process with four states and a negative binomial distribution for the state occupancy
distribution. More specifically, we parametrize the negative binomial in terms of its
mean and an ancillary parameter, which is directly related to the amount of overdis-
persion of the distribution (Hilbe 2011; Airoldi et al. 2006). If the data are not
overdispersed, the Negative Binomial reduces to the Poisson, and the ancillary pa-
rameter is zero. For the simulations presented here, we consider a NegBin(15,0.15),
which corresponds to assuming a large overdispersion (17.25). We also consider
τ = 0.5 for the noise. We fit the data by means of a Beta-GOS model with Beta
hyper-parameters defined by: (a) αi = i,βi = 1; (b) αi = 5,βi = 1; (c) αi = 1,βi = 1,
i = 1, . . . ,n. Those choices correspond to assuming different clustering behaviors;
in particular, different expected number of clusters a priori. We then compare the
Beta-GOS with the fit resulting from hidden Markov models, assuming 3, 4, and
5 states, respectively. Results from the simulations are reported in Fig. 5.3, where
the HMM was implemented using the R package “RHmm” (Taramasco and Bauer
2012). Figure 5.3 shows that the Beta-GOS is a viable alternative to HMM, as it
can provide more accurate inference than a single hidden Markov model where
the number of states is fixed a priori. The fit obtained with the Beta-GOS ap-
pears quite robust to the different choices of the hyper-parameters. Figure 5.2 il-
lustrates the clustering induced by the Beta-GOS and a 4-state HMM for a subset
of the data generated in two specific simulation replicates. The middle column il-
lustrates the allocation, respectively, from a Beta-GOS(αi = 1,βi = 1) (top) and a
Beta-GOS(αi = i,βi = 1) (bottom), whereas column (c) illustrates the clustering
attained by the HMM. Overall, the segmentation-plots suggest similarity in the allo-
cations induced by the Beta-GOS and the HMM. In some instances, the Beta-GOS
fit seems to allow shorter stretches of contiguous identical states, as illustrated in
the top row of Fig. 5.2. On the other hand, when data are characterized by elevated
intra-claster variability, as in the bottom row of Fig. 5.2, both the Beta-GOS and the
HMM could fail to attain a fair representation of the true clustering structure of the
data. Our practical experience suggests that the issue is more prominent for the “de-
fault” Beta-GOS(αi = i,βi = 1) than for the “informative” Beta-GOS(αi = a,βi = b)
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i) Data Generating Process: Hidden Semi Markov Model (HSMM) with 4 states and NegBin(15,0.15)
Model Fitting Method Beta-GOS HMM

an = n; bn = 1 an = 5; bn = 1 an = 1;bn = 1 3 States 4 States 5 States
Estimated Number of Clusters 3.69±0.81

0.86±0.14
3.89±0.96

0.90±0.12
4.06±0.97 2.99±0.12  3.96±0.25  4.90±0.48

0.71±0.11  0.83±0.12  0.88±0.130.90±0.12Accuracy of Cluster Assignment

Fig. 5.3 Summary statistics for the simulation studies described in Sect. 5.4. The table compares
the Beta-GOS and a hidden Markov model under different specifications of hyper-parameters.
The data generating process assumes a hidden semi-Markov with state occupancy distribution
NegBin(15,0.15) and two levels of the sampling noise τ = 0.25 and τ = 0.5

formulations. This is in accordance with the discussion in Sect. 5.3 and, in particu-
lar, with the consideration that a Beta-GOS(αi = i,βi = 1) should represent a long
memory process.

5.5 Application to the Analysis of Array CGH Data

We apply the Beta-GOS model (5.7) and (5.8) to the analysis of the array CGH
data from Chin et al. (2006) which we presented in Sect. 5.1. More specifically,
we consider the raw log2 intensity ratio measurements and seek to identify and
cluster clones with similar levels of amplification/deletion for each breast tumor
sample and each chromosome in the dataset. For array CGH data, it is typical to
distinguish regions with a normal amount of chromosomal material, from regions
with single copy loss (deletion), single copy gain and amplifications (multiple copy
gains). Therefore, we present here the results of the analysis where the latent Beta
hyper-parameters are set to αi = 3 and βi = 1, corresponding to E(Kn) = 4 states
for large n. We have also considered αn = n and βn = 1, with no remarkable dif-
ferences in the results. We complete the specification of model (5.7) and (5.8) with
a vague base distribution, Normal(0,10), and a vague inverse gamma distribution
for τ centered around τ = 0.1. This choice of τ is motivated by the typical scale of
array CGH data and is in accordance with similar choices in the literature (see, for
example, Guha et al. 2008).

Figure 5.4 exemplifies the fit to chromosome 8 on two tumor samples. The model
is able to identify regions of reduced copy number variation and high amplification.
Note how contiguous clones tend to be clustered together, in a pattern typical of
these chromosomal aberrations. Figure 5.1 shows the frequencies of genome copy
number gains and losses among all 145 samples plotted as a function of genome
location. In order to identify a copy number aberration for this plot, for each chro-
mosome and sample, at each iteration we consider the cluster with lowest absolute
mean and order the other clusters accordingly. The lowest absolute mean is chosen
to identify the copy neutral state. Following Guha et al. (2008) any other cluster is
identified as a copy number gain or loss if its mean, say μ̂( j), is farther than a spec-
ified threshold from the minimum absolute mean, say μ̂(1), i.e. if μ̂( j) − μ̂(1) > ε .
We experimented with choices of ε in the range [0.05,0.15], but we report here only
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Fig. 5.4 Model fit overview: Array CGH gains and losses on chromosome 8 for two samples of
breast tumors in the dataset in Chin et al. (2006). Points with different shapes denote different
clusters

the results for ε = 0.1. Furthermore, if the mean of a cluster is above the mean of
all declared gains plus two standard deviations, all genes in that cluster are con-
sidered high level amplifications. We identify a clone with an aberration (or high
level amplification) if it is such in more than 70 % of the MCMC iterations; then,
we compute the frequency of aberrations and high level amplifications among all
145 samples, which are the values reported, respectively, at the top and bottom of
Fig. 5.1. As expected, the clusters identified by the model tend to be localized in
space all over the genome. This feature may be facilitated by the increasingly low
reinforcement of far away clones embedded in the Beta-GOS, and corresponds to
the understanding that clones that live at adjacent locations on a chromosome can
be either amplified or deleted together due to the recombination process.

Table 5.1 False discovery rate analysis for clones with high-level amplification previously identi-
fied by Chin et al. (2006)

Amplicon Flanking clone Flanking clone Kb Kb FDR
(left) (right) start end q-value

8p11-12 RP11-258M15 RP11-73M19 33579 43001 0.021
8q24 RP11-65D17 RP11-94M13 127186 132829 0.021
11q13-14 CTD-2080I19 RP11-256P19 68482 71659 0.022
11q13-14 RP11-102M18 RP11-215H8 73337 78686 0.024
12q13-14 BAL12B2624 RP11-92P22 67191 74053 0.011
17q11-12 RP11-58O8 RP11-87N6 34027 38681 0.017
17q21-24 RP11-234J24 RP11-84E24 45775 70598 0.017
20q13 RMC20B4135 RP11-278I13 51669 53455 0.021
20q13 GS-32I19 RP11-94A18 55630 59444 0.017

The individual amplicons are reported together with the locations of the flanking clones on the
array platform
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Finally, we considered some regions of chromosomes 8, 11, 17, and 20 that have
been identified by Chin et al. (2006) and have been shown to correlate to increased
gene expression in their analysis. We adapt the procedure described in Newton et al.
(2004) to compute a region-based measure of the false discovery rate (FDR) and de-
termine the q-values for the neutral-state and aberration regions estimated from our
model. The q-value is the FDR analogue of the p-value, as it measures the minimum
FDR threshold at which we may determine that a region corresponds to significant
copy number gains or losses (Storey 2003, 2007). More specifically, after conduct-
ing a clone based test as described in the previous paragraph, we identify regions of
interest by taking into account the strings of consecutive calls. These regions then
constitute the units of the subsequent cluster based FDR analysis. Alternatively, the
regions of interest could be pre-specified on the basis of the information available
in the literature. The optimality of the type of procedures here described for cluster
based FDR is discussed in Sun et al. 2015. See also Heller et al. 2006, Müller
et al. 2007 and Ji et al. 2008. In Table 5.1 we report the q-values from a set of can-
didate oncogenes in well-known regions of recurrent amplification (notably, 8p12,
8q24, 11q13–14, 12q13–14, 17q21–24, and 20q13). Our findings also lead to detect
chromosomal aberrations in the same locations reported by Chin et al. (2006).

5.6 Final Remarks

We have discussed a set of generalizations of the predictive rules that characterize
the species sampling mechanism underlying many commonly used Bayesian Non-
parametric priors, such as the Dirichlet process and the Pitman Yor process. Those
generalizations allow the clustering of the observations in the sequence to depend
on latent random variables or “marks”, which are associated with each observation.
Although the resulting sequence is in general not exchangeable, the framework pro-
vides a flexible way to model latent and local dependence in the observations.

We illustrated this feature in an application to a study of chromosomal aberra-
tions in breast cancer. Although it’s known that copy number gains and losses are
spatially correlated, the extent of such correlation varies along the genome. Homo-
geneous Hidden Markov models have been widely employed to model copy number
data (Guha et al. 2008), but it’s been recognized that such models may not com-
pletely capture local dependence in the intensity ratios, which results in location-
dependent transition probabilities and corresponding locally varying state persis-
tence properties of the aberrations (DeSantis et al. 2009; Du et al. 2010; Fox et al.
2011). By considering species sampling sequences where the weights are modeled
as functions of latent Beta random variables, we have defined a Beta-GOS process
prior that provides an alternative Bayesian nonparametric formalism to model het-
erogeneity and local spatial dependence across observations that are sequentially
ordered. In particular, since the Beta-GOS model does not rely on the estimation
of a single transition matrix across time points, as in a homogenous HMM, we do
not need to consider an explicit parameter to account for state persistence, as in Fox
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et al. (2011), or assume a distribution for the sojourn times, as assumed in Hidden
Semi-Markov models. Indeed, since the predictive weights depend on the sequence
of observations itself, the use of such prior appears to be particularly convenient
when the underlying generative process is non-stationary, e.g. as a possible alterna-
tive to more complicated non-homogeneous HMMs. In addition, our modeling ap-
proach enables unsupervised clustering of the observations in an unknown number
of states, as it is typical of Bayesian nonparametric priors.

The previous considerations remain valid also for the CID Pitman-Yor sequences
we presented in Sect. 5.2 and can be extended to other types of conditionally iden-
tically distributed sequences characterized by the predictive rule (5.4). We believe
that the flexibility of the latent specification and the possibility to tie the clustering
implied by the Generalized Pólya Urn scheme directly to a set of latent random vari-
ables provides an opportunity to flexibly model the complex relationships typical of
many heterogenous datasets encountered in biostatistics. For example, the approach
may be helpful for modeling individual random effects in longitudinal studies. In
functional data analysis, these priors could be used to detect change points in a
curve. Further developments may substitute the latent variable specification with a
probit/logistic specification, and define a generalized Pólya Urn scheme that allows
the clustering at each observation to be dependent on a set of individual covariates,
possibly varying with time.
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Chapter 6
Modeling the Association Between Clusters
of SNPs and Disease Responses

Raffaele Argiento, Alessandra Guglielmi, Chuhsing Kate Hsiao,
Fabrizio Ruggeri, and Charlotte Wang

Abstract The aim of the paper is to discuss the association between SNP geno-
type data and a disease. For genetic association studies, the statistical analyses with
multiple markers have been shown to be more powerful, efficient, and biologically
meaningful than single marker association tests. As the number of genetic markers
considered is typically large, here we cluster them and then study the association
between groups of markers and disease. We propose a two-step procedure: first a
Bayesian nonparametric cluster estimate under normalized generalized gamma pro-
cess mixture models is introduced, so that we are able to incorporate the information
from a large-scale SNP data with a much smaller number of explanatory variables.
Then, thanks to the introduction of a genetic score, we study the association between
the relevant disease response and groups of markers using a logit model. Inference is
obtained via an MCMC truncation method recently introduced in the literature. We
also provide a review of the state of art of Bayesian nonparametric cluster models
and algorithms for the class of mixtures adopted here. Finally, the model is applied
to genome-wide association study of Crohn’s disease in a case-control setting.
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6.1 Introduction

In recent years, researchers have been trying to identify genetic variants influencing
complex diseases through genetic association studies. For genome-wide association
studies, single marker tests are common approaches to figure out possible disease-
associated markers; however, these methods are often criticized for the problem of
multiple testing and low power (Asimit and Zeggini 2010; Bansal et al. 2010). Deal-
ing with these problems, multiple-marker tests, such as candidate multiple-marker
tests, haplotype analysis, SNP-set analysis, gene-set analysis, and pathway analy-
sis, have become popular solutions. SNP-set analysis is more flexible in terms of
defining an analytic genomic region based on investigators’ prior knowledge and
available biological information (Huang et al. 2011; Nguyen et al. 2011). Such
methods are beneficial to evaluate the joint effects of grouped variants in a pre-
specified region. For instance, at the genome-wide level, the information about the
relation among an enormous set of genes may not be complete, and thus it can
be difficult to decipher the association between the genome-wide markers and the
disease phenotypes. In that case, scientists resort to methodologies that cluster or
categorize the genomic markers into several relatively smaller and manageable sets
before performing multiple-marker association tests. Therefore, clustering methods
are usually considered as the first step in the analysis of SNP genotypes. Algorithms
utilizing mathematical formulations of similarity include principal component anal-
ysis, k-means, and Hamming distance metric. Even if the actual computation is easy,
these tools do not call for any statistical model for the data, and hence inference is
poor. In addition, such clustering algorithms present one more limitation, i.e., the
determination of the number of clusters a priori.

From the statistical perspective, Bayesian nonparametrics can handle the prob-
lems of clustering in a natural way through species sampling mixtures, where the
mixing distribution represents the proportion of (possibly infinite) groups, and the
estimation of its number is a by-product of the model. There is a quite lively litera-
ture on the topic. We refer here to the early works by Quintana and Iglesias (2003),
Medvedovic et al. (2004), and Dahl (2006) for the Dirichlet process mixture DPM.
However, none of these papers considered categorical genotype data, while a DPM
model for clustering single nucleotide polymorphisms (SNPs) is described in Onogi
et al. (2011).

When data collection aims at studying a disease, even when a cluster procedure
has been selected and performed, the impact of its uncertainty on subsequent asso-
ciation analysis is rarely assessed. Previous genome association studies include Wei
et al. (2010), Wakefield (2007), Wakefield (2009). More recently, Molitor et al.
(2010) and Papathomas et al. (2012) propose a Bayesian nonparametric model for
grouping patients according to the clustering of categorical covariates, then associ-
ated with a relevant outcome through a regression model. See Liverani et al. (2015)
for an R package to perform inference under these models. On the other hand,
Müller et al. (2011) achieve a covariate-driven clustering including the covariates
directly into the prior of the partition induced by the infinite species-sampling mix-
ture model and modeling the likelihood at the cluster level. Since in genomics the



6 Modeling the Association Between Clusters of SNPs and Disease Responses 117

covariate matrix usually includes a very large number of columns (i.e., p >> n),
another stream of research within Bayesian Nonparametrics aims at identifying
the relevant covariates for clustering patients; see Tadesse et al. (2005), Yau and
Holmes (2011), and Chung and Dunson (2009).

In the paper we propose a two-step procedure: we first cluster SNPs, i.e. columns
of the covariate matrix, where the rows identify patients, and then, thanks to the in-
troduction of a genetic score, we study association between the relevant disease
response and selected groups of markers. In particular, we induce clustering among
SNPs through a nonparametric model, based on normalized generalized gamma
mixtures. The class of normalized generalized gamma processes has been recently
introduced in the statistical literature by Lijoi et al. (2007). This class encompasses
the Dirichlet process, and has been proved to be very flexible in its clustering ability.
With this flexible Bayesian nonparametric clustering model, the number of genome-
wide markers can be reduced effectively to a manageable number of marker-sets
(clusters) for association studies, and then markers in the same cluster can be inves-
tigated simultaneously to retain their possible, though unknown, interacting relation.

It is worth mentioning that our approach is similar to the one in Papathomas et al.
(2012). The latter authors cluster individuals in groups (e.g., high risk, average risk
and low risk for a certain disease) and then evaluate which covariates are influent in
clustering, using DPMs. In our approach the procedure is reversed: we first cluster
the SNPs according to a normalized generalized gamma mixture model with multi-
nomial kernels, and then investigate which groups of SNPs affect the risk of disease
of an individual via the logit model.

The paper is organized as follows. Section 6.2 introduces a quite general for-
mulation for clustering in Bayesian Nonparametrics, using the normalized general-
ized gamma process as species sampling mixing measure. Moreover, we revise the
approach to the definition of point estimates of the partition parameter assigning
the clustering structure, and the MCMC algorithms under normalized generalized
gamma process mixtures. Section 6.3 details the clustering model for general SNP
data; in particular, we describe SNP data for non-experts in Sect. 6.3.1, the model
in Sect. 6.3.2 and introduce the genetic score in Sect. 6.3.3. Section 6.4 provides the
application to genotyping of Crohn’s disease patients and Sect. 6.5 concludes.

6.2 Clustering Through Bayesian Nonparametric Models

A standard approach in Bayesian nonparametrics dealing with clustering can be
described as follows. If (X1, . . . ,Xn) represents the data, its conditional distribution
can be assigned as:

(X1, . . . ,Xn)|S1, . . . ,Sk,φ1, . . . ,φk ∼
k

∏
j=1

{

∏
i∈S j

f (xi|φ j)

}

, (6.1)
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where ρ := {S1, . . . ,Sk} is a partition of the data label set {1, . . . ,n} and { f (·|φ),φ ∈
Θ} is a parametric family of densities on X, the space of data values. Observe that
here k is the number of clusters in the partition ρ . From (6.1), it is clear that, condi-
tionally on ρ , data are independent between different clusters and independent and
identically distributed (i.i.d.) within each cluster. To complete the Bayesian model
we need to assign a prior for (ρ ,φφφ), with φφφ := (φ1, . . . ,φk). We assume that

π(ρ) = P(ρ = {S1, . . . ,Sk}) = p(|S1|, . . . , |Sk|), (6.2)

where p(·) is an infinite exchangeable partition probability function. Moreover, con-
ditionally on ρ , we assume that the parameters (φ1, . . . ,φk) in (6.1) are i.i.d. from
some fixed distribution P0 on Θ . According to Pitman (1996), for any distribution
P0 and any exchangeable partition probability function p(·), there exists a unique
species sampling prior Π(·; p,P0) on the space of all probabilities on Θ , such that
model (6.1) under the specified prior is equivalent to

Xi|θi
ind.∼ f (·|θi) i = 1, . . . ,n

θi|P i.i.d.∼ P i = 1, . . . ,n P ∼ Π(·; p,P0),
(6.3)

where P0 represents the expectation of P. In this case, we say that θi is the latent
variable corresponding to Xi in the mixture model (6.3).

In particular, in this work, P is the normalized generalized gamma (NGG) process
prior, introduced in Regazzini et al. (2003). It is well known that such a process P
can be represented as

P =
+∞

∑
i=1

ξiδτi =
+∞

∑
i=1

Ji

T
δτi (6.4)

where ξi := Ji/T , (Ji)i are the points of a Poisson process on R
+ with mean inten-

sity (κ/Γ (1−σ)) s−1−σ e−s
I(0,+∞)(s), and T = ∑i Ji; the random variables τi are

independent from {Ji}, and τi’s are i.i.d. from P0. Here 0 ≤ σ < 1, κ ≥ 0. We write
P ∼ NGG(σ ,κ ,P0), where (σ ,κ ,P0) are the parameters of the NGG-process. See
Lijoi et al. (2007) and Argiento et al. (2010) for more details. This class encom-
passes the Dirichlet processes: when σ = 0 and κ > 0, P is the Dirichlet process
(Ferguson 1973) with measure parameter κP0(·). On the other hand, when σ = 1/2,
P reduces to the normalized inverse-Gaussian process.

One of the main arguments in favor of NGG processes, when compared with
DPs, is its higher flexibility in clustering. For instance, when considering a sample
of size n from an NGG process, the distribution of the number Kn of distinct values
in the sample has a further degree of freedom, σ , which tunes its variance, unlike
the DP case where the distribution of Kn can be highly peaked. The parameter σ
also drives a richer reinforcement mechanism in the predictive distributions of the
sample. Moreover, NGG processes are of Gibbs-type, a class of random probabili-
ties which stands out for their mathematical tractability (see De Blasi et al. 2014).
Figure 6.1 shows the prior induced on Kn when we consider a sample of size n= 150
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from an NGG-process, under different values of (σ ,κ), with E(Kn) set to 27. As σ
increases, the prior becomes vaguer and vaguer.
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Fig. 6.1 Prior distribution of Kn, the number of distinct values in a sample of size n = 150 from an
NGG process. All the couples (σ ,κ) here yield E(Kn) = 27

Observe that the equivalence between models (6.1), (6.2), on the one hand,
and (6.3), on the other, holds thanks to the natural clustering rule and identifia-
bility of the likelihood. By natural clustering rule we mean the following: given
θ1, . . . ,θn, Xi and Xj belong to the same cluster if, and only if, θi = θ j . The partition
ρ = {S1, . . . ,Sk} of the data label set {1, . . . ,n} is induced by the natural clustering
rule, and φφφ = (φ1, . . . ,φk) are the distinct values among the θi’s. Under both model
formulations, cluster estimates are based on the posterior distribution of ρ , given the
data, i.e. L (ρ |data).

In the Bayesian nonparametric model-based context, the choice of a suitable
point estimate ρ̂ of the random partition ρ is a key point. From a computational
point of view, once we have obtained an MCMC sample from the posterior law
L (ρ |data), a Bayesian estimate of ρ is computed via a summary of the latter sam-
ple. Nevertheless, in general, the search for such a posterior estimate can be a diffi-
cult task because of the large support of the prior, and consequently of the posterior,
of ρ . All the methods that we are going to shortly revise here were originally pro-
posed for DPMs, but, of course, they can be extended to any species sampling model
mixtures, since they are all based on the marginal posterior law L (ρ |data) only; see
Argiento et al. (2014). Medvedovic et al. (2004) estimate the pairwise similarity
matrix induced by L (ρ |data), and then use a hierarchical clustering algorithm to
estimate ρ . A different approach (Quintana and Iglesias 2003; Dahl 2006; Lau and
Green 2007; Fritsch and Ickstadt 2009) follows a theoretical-decision perspective: a
suitable loss function L(ρ , ρ̂) is fixed, giving the cost of estimating the “true” ρ by
ρ̂ . The Bayesian estimate is therefore given by any ρ̂ which minimizes the posterior
expectation of the loss function, i.e.

ρ̂ ∈ argmin
y

E[L(ρ ,y)|data].
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However, the “exact” computation of such an estimate is generally difficult; Quin-
tana and Iglesias (2003) provide an algorithm tailored for the loss function they
use, while Lau and Green (2007) adopt Binder’s loss function. The latter authors
formulate an equivalent binary integer programming problem, which can be solved
exactly; unfortunately, this is only computationally feasible for very small sample
sizes, so that the same authors resort to a Monte Carlo plug-in estimate, like the
one we are using here. We consider Binder’s function as in Lau and Green (2007)
assigning cost b when two elements are wrongly clustered together and cost a when
two elements are erroneously assigned to different clusters. If no information is
available, we set a = b. Indeed, we run the MCMC algorithm, approximating the
posterior L (ρ |data) once in order to estimate the loss function, and then we plug
this estimate in and run the MCMC a second time, obtaining a posterior sample of
configurations. Finally we choose as ρ̂ the configuration, among the latter sampled
ones, that minimizes the sampled values of the (approximated) loss function.

To the best of our knowledge there are few papers, with an applied perspective,
adopting NGG-processes as an ingredient. This probably happens because NGG
processes yield inherent computational difficulties. Recent works that include NGG
processes as an ingredient in their models are Caron (2012) and Caron and Fox
(2014), both on statistical networks: the former for bipartite random graphs, and the
latter for sparse and exchangeable random graphs. See also Chen et al. (2012) for an
application of such multivariate priors in a dynamic topic modeling context. How-
ever, there is a recent and very lively literature on algorithms to draw inference for
NGG-mixtures, which has resulted into a number of efficient algorithms. Here we
refer to marginal and conditional Gibbs samplers. The former integrate out the in-
finite dimensional parameter (i.e., the random probability), resorting to generalized
Polya urn schemes; see Favaro and Teh (2013). On the other hand, by a conditional
algorithm we mean a Gibbs sampler imputing the nonparametric mixing measure
and updating it as a component of the algorithm itself. This latter group includes the
slice sampler, which has been extended also to NGG-mixtures in Griffin and Walker
(2011).

Conditional algorithms are called truncation methods if the infinite parameter
(i.e., the mixing measure) is approximated by truncation of the infinite sums defin-
ing the process. Truncation can be achieved a-posteriori, when one approximates
the infinite parameter P given the data, or a-priori to approximate the nonparamet-
ric mixing distribution with a finite dimensional random probability measure, so
that a simpler mixture model need to be implemented. In the latter framework, the
best known method for DPM models is the blocked Gibbs sampler in Ishwaran and
James (2001). Barrios et al. (2013) propose an a-posteriori truncation algorithm
for mixtures of normalized completely random measures (and therefore for NGG-
mixtures) using the so-called Ferguson–Klass representation of completely random
measures. Argiento et al. (2010) propose a simple adaptive truncation method evalu-
ating an upper bound in probability for the jumps excluded from the summation. Re-
cently, two a-priori truncation methods have been introduced by Griffin (2014), who
proposes an adaptive truncation algorithm for posterior inference with priors either
of stick-breaking or normalized random measure with independent increments type,
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and Argiento et al. (2015). As in Muliere and Tardella (1998), Argiento et al. (2015)
build a finite-dimensional approximation of the NGG process, so that a blocked
Gibbs sampler can be implemented as in Ishwaran and James (2001).

Finally, we highlight the difference between the approaches in Papathomas et al.
(2012) and Müller et al. (2011) on the one hand, and ours on the other. First of
all, note that the aims behind the product partition model (PPMx) in Müller et al.
(2011) and Papathomas et al. (2012) are similar. The latter is based on Dirichlet
processes, while the former is more general. However, the PPMx model is built by
considering the prior of the partition given the covariates, while the likelihood is
cluster-specific; Papathomas et al. (2012) consider the likelihood of the covariates
given the partition and variable selection parameters. Both papers provide cluster-
ing of patients, i.e. of the rows of the covariate matrix as shown by gray boxes in
right panel of Fig. 6.2; then, the association with the relevant responses is assessed
through a cluster-specific model. On the contrary, we group columns of the covari-
ate matrix (left panel of Fig. 6.2), so that, for each patient, the genotype of multiple
markers in each group is summarized through the genetic score (see (6.7)) and the
association can be studied by a regression model with a few covariates.
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Fig. 6.2 Scheme of our (left) and Papathomas et al. (2012) (right) models. In both graphs, the first
cluster contains only two elements for ease of notation

6.3 Application to SNPs: Data Description and Model
Specification

In this section we describe the model illustrated above when applied to general SNP
data. In the first subsection we shortly describe what usually is meant by SNP data.
In particular, we revise elementary definitions of the human genome, SNP data,
and minor alleles frequencies. For a deeper understanding of this notions, see, for
instance, Reece et al. (2014) and Mooney (2005). In the second subsection we detail
the model for clustering SNP covariates, while the third introduces a suitable genetic
score to incorporate either the posterior distribution or the posterior estimate of the
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random partition into a logistic model; this will allow us to perform an association
study between groups of SNPs and the disease.

6.3.1 SNP Data for Beginners

The human genome is an ordered sequence of 22+1 pairs of chromosomes. The
members of each pair are nearly (but not exactly) identical to each other. Chromo-
somes are very long molecules of a double-stranded chemical known as DNA. The
two strands are linked by a long sequence of units called nucleotides pairs, or base
pairs. Each nucleotide can assume four base specifications (A,T,G, and C), which
only pair as A-T, and G-C. Genetic information is stored in the exact list, or se-
quence of nucleotides pairs. It is worth mentioning that, when a DNA sequence is
recorded, the genotype of only one strand is registered, since the nucleotides on the
other strand are determined. The human genome sequence is 99.6 % identical in
all people. This is true for everyone, regardless of race or heritage. However, there
are certain positions where people might have different nucleotide pairs. These po-
sitions are known as SNPs. It seems there is no consistent conclusion about the
frequency of SNPs occurring in human genome. Actually, the probability to find
an SNP on the DNA sequence depends on the density of the genes, i.e. the proba-
bility of SNPs to appear is higher for a region with more genes than a region with
less genes. According to the dbSNP database, 112,743,739 SNPs were found in hu-
mans as of October 14, 2014 (NCBI dbSNP Build 142 http://www.ncbi.nlm.nih.
gov/projects/SNP/snp summary.cgi ). The total length of the human genome is over
3 billion base pairs. So, the average may roughly be 112,743,739/3 billion = 0.038
per base pair; that is, 38 SNPs per 1 kb. An SNP may be thought of as an address:

Fig. 6.3 Left: a segment of a chromosome pair where the box identifies an SNP address. Right:
illustrative table reporting chromosome pairs for four individuals

it is a physical location on a particular chromosome, and may have various “occu-
pants,” A, T, G, or C. The term allele is used to identify the nucleotide which may

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi
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occupy an SNP; see left panel of Fig. 6.3 for a graphical illustration. As chromo-
somes are paired, an SNP genotype consists of two alleles, one from each member
of the paired chromosome. A minor allele frequency is defined as the frequency at
which the least common allele of an SNP is present in a given population.

As an illustrative example, Fig. 6.3 (right) represents a possible segment of the
two sequences of DNA from chromosome pair 1 at the rs123556 SNP for four in-
dividuals. It is known that A is the minor allele in rs123556 SNP; from the figure,
Michelangelo and Leonardo have the G allele on both of their copies of this chromo-
some (no minor allele). However, Raffaello has one G and one A allele (one minor
allele), and Caravaggio has two A alleles (two minor alleles). Therefore, to code
the categorical random variable X representing the minor allele configuration of an
individual at a specific SNP (genotyping), one has simply to count the number of
minor alleles assuming values in {0,1,2}. Referring to the right panel of Fig. 6.3,
we have:

Categorical variable X

Michelangelo
genotype→ 0

Raffaello
genotype→ 1

Leonardo
genotype→ 0

Caravaggio
genotype→ 2

.

The data that we are going to analyze in this paper are of the same kind we have
discussed so far. Since our final goal is the detection of the association between
SNPs and a disease, we will consider data from n patients: a binary response (expe-
riencing the disease or not) and a long list of m categorical covariates reporting the
SNP genotype of the patient. Summing up, we will analyze data of this kind:

• a vector YYY = (Y1, . . . ,Yn) of the disease indicators;
• a matrix XXX = {Xi j} i = 1, . . . ,n and j = 1, . . . ,m, where Xi j ∈ {0,1,2} is the

genotype for the j-th SNP of patient i.

Generally the SNPs are located in different regions of many chromosomes. To fix
notation, suppose that we observe m1 SNPs from region 1, m2 SNPs from region 2,
. . ., mL SNPs from region L, where m = m1 +m2 + · · ·+mL. So, our SNPs can be
arranged into a large matrix XXX , where its rows are described by the vectors XXXi =
(XXXi,1, . . . ,XXXi,L), i = 1, . . . ,n; here, XXXi,l is the subvector containing the SNPs of the
i-th patient from region l, l = 1, . . . ,L, that is

XXXi = (

XXXi,1︷ ︸︸ ︷
Xi,1, . . . ,Xi,m1 ,

XXXi,2︷ ︸︸ ︷
Xi,m1+1, . . . ,Xi,m1+m2 , . . . ,

XXXi,L︷ ︸︸ ︷
Xi,m1+···+mL−1+1, . . . ,Xi,m )

where ml is the number of SNPs in region l = 1, . . . ,L.
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6.3.2 Cluster Model Specification

Let Njls =
n

∑
i=1

I(Xi m0+···+ml−1+ j = s) be the total number of subjects whose geno-

types on the j-th SNP (in region l) are recorded as s, where s ∈ {0,1,2}, and m0 = 0.
We model NNN jl = (Njl0,Njl1,Njl2), for j = 1, . . . ,ml , l = 1, . . . ,L, as conditionally
independent multinomial distributed random variables, given θθθ jl = (θ jl0,θ jl1,θ jl2).
Specifically, data, both within and between regions, are conditionally independent,
according to the following likelihood

NNN1l , . . . ,NNNml l |θθθ 1l , . . . ,θθθ mll ∼
ml

∏
j=1

Mult(n,θθθ jl). (6.5)

All the blocks θθθ1l , . . . ,θθθ ml l , l = 1, . . . ,L, of latent parameters are a priori indepen-
dent, and distributed as follows:

θθθ 1l , . . . ,θθθ ml l |Pl
i.i.d.∼ Pl l = 1, . . . ,L

P1, . . . ,PL
i.i.d.∼ NGG(σ ,κ ,P0l),

(6.6)

where σ ∈ [0,1),κ ∈ R
+ and P0l(·) are Dirichlet distributions Dir(a0l ,a1l ,a2l) on

the simplex {(x1,x2,x3) ∈ R
3 : 0 < x1,x2,x3 < 1,x1 + x2 + x3 = 1}, and

a0l,a1l ,a2l ∈ R
+.

Observe that, since P1, . . . ,PL are a priori independent, and the likelihood can be
factorized, they will be independent a posteriori as well. This is a precise choice that
we are going to make: in fact, we do not want to share information across different
regions of the chromosomes; it is well recognized in the geneticist community that
different chromosome regions, not close to each others, may not be passed from
parents to offspring together due to the so-called random crossover, so that indepen-
dence among different regions may be assumed. On the contrary, if we had wanted to
share information among the regions, we could have resorted to a dependent prior
for the vector of the random probabilities (P1, . . . ,PL), as, for instance, the nested
Dirichlet process (see Rodriguez et al. 2008).

Model (6.5) and (6.6) induces a partition on the indices {1, . . . ,ml} of NNN1l , . . . ,NNNml l

through the natural clustering rule described in Sect. 6.2, for each l = 1, . . . ,L. The
SNPs in the same cluster within each region share the same allele probabilities φφφ ’s,
which are the unique values of a sample of size ml from the same Pl . Therefore, our
model specifies the overall fraction of minor alleles across all SNPs in the cluster.

The natural clustering rule also induces a partition of indices of the columns of
the data matrix XXX , which varies in {1, . . . ,m1, . . . ,m1+ · · ·+mL−1+1, . . . ,m1+ · · ·+
mL} (m1 + · · ·+mL = m). We will adopt the same notation ρρρ = (ρ1, . . . ,ρL), where
ρl = (S1l, . . . ,Skl l), l = 1, . . . ,L, denotes both the partition of {1, . . . ,nl} (i.e., the
index of the observed NNN jl’s) and a partition of the column indices of XXX .
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6.3.3 Association Study Between SNP Clusters and Disease

Our goal is the identification of groups of important SNPs within each region l,
l = 1, . . . ,L, in genomic association studies.

Let us denote by φφφhl the parameter vector of the likelihood of all the NNN jl’s
belonging to the same group Shl, where h = 1, . . . ,kl . For any vector of cluster
configurations (ρ1, . . . ,ρL), and vectors of distinct values in the latent variables
φφφ l = (φφφ1l , . . . ,φφφ kl l

), l = 1, . . . ,L, we construct a genetic score η(Shl , i) of the i−th
subject with respect to group Shl,

η(Shl, i) = ln
P(Xi,Shl |φφφ hl)

|Shl| (6.7)

where

P(Xi,Shl |φφφhl) = ∏
j∈Shl

P(Xi j|Shl ,φφφhl) = ∏
j∈Shl

φhlXi j .

The genetic score η(Shl , i) can be interpreted as the standardized log-probability
of observing the SNP genotype configuration of patient i within cluster Shl, given
the parameters ρl’s and φφφ l’s. Substantially, conditional to the cluster estimation,
η(Shl , i) quantifies how likely the i-th individual genotypes are carried in the group
Shl. It is essentially the genetic content of this subject in a specific chromosome
region. This representation provides the information of the genotype via latent vari-
ables φhl , without using directly the observed SNP genotype vectors so that the
group characteristics can be enhanced and the sparseness due to the discrete Xi,Shl

can be avoided.
Here, the association study can be carried out for the disease status of each pa-

tient, fitting the following logit regression model; for each i = 1, . . . ,n, conditionally
on the parameters, the patients are independent and

logit(P(Yi = 1)) = β0+

k1 regressors from region 1
︷ ︸︸ ︷
β1η(S11, i)+ · · ·+βk1η(Sk11, i)

k2 regressors from region 2
︷ ︸︸ ︷
+βk1+1η(S12, i)+ · · ·+βk1+k2η(Sk22, i)

. . .

kL regressors from region L
︷ ︸︸ ︷
+βk1+···+kL−1+1η(S1L, i)+ · · ·+βkη(SkLL, i) .

(6.8)

Observe that the overall number of groups is k = k1 + · · ·+ kL, that is generally
much smaller than m, the observed number of SNPs. It is better to consider multiple
marker tests instead of a single marker test since for genetic association studies, the
statistical analyses with multiple markers have been shown to be more powerful, ef-
ficient, and biologically meaningful than single marker association tests. Examples
include regularized regression models like lasso or ridge regression (Chen et al.
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2010), gene-set enrichment analysis (Hu and Tzeng 2014), pathway (Ramanan et al.
2012), and network analysis (Lee et al. 2011). These analyses are useful for a large
number of markers from pre-specified genetic regions in which genes are interacting
in the same pathway or network. Such tools, however, may be limited when utilized
on a genome scale.

A vague prior is assumed on the regression parameters (β1, . . . ,βk), and the pos-
terior distribution is computed via an MCMC algorithm. We resort to a variable
selection procedure (hard shrinkage, Johnstone and Silverman 2004) to study the
association between the disease and the clusters of SNPs: a group Shl is not signi-
ficative if the posterior 90% credible interval of the corresponding parameter β does
not contain zero; if this posterior credible interval is entirely contained in R

+ (R−),
then it denotes positive (negative) association between the clusters and the disease
phenotype Yi.

The likelihood in (6.8) is conditioned not only on the parameters βp’s, but also
on the partition ρ and the corresponding φ ’s. Therefore, under this model, we may
alternatively consider two strategies to perform the association study. On the one
hand, we can plug in Bayesian point estimates ρ̂ and φ̂ to compute first the genetic
score (6.7) and later infer through the regression model. In this way we take into ac-
count the collective association effect of multiple markers (SNPs) to the disease. On
the other hand, we can incorporate the uncertainty on the clustering in our associa-
tion study, i.e. we use the information contained in the whole posterior distribution
of ρ . In this case observe that, given ρ and φ , once we have chosen a rule to classify
a cluster (whether associated or not to the disease), for each j = 1, . . . ,m, we can
define single marker effect indices as

A j := A j(ρρρ,φφφ ) =

⎧
⎨

⎩

1 if SNP j belongs to a positively associated cluster
0 if SNP j belongs to a non associated cluster

−1 if SNP j belongs to a negatively associated cluster.

If (ρρρ(1),φφφ (1)), . . . ,(ρρρ(G),φφφ (G)) is a sample from L (ρρρ ,φφφ |X), we can evaluate the
posterior frequencies that A j = a with a = −1,0,1. If the mode of these posterior
frequencies, for each SNP j, occurs at −1, 1, and 0, then the SNP is classified as
carrying negative, positive, or no association with the disease, respectively.

6.4 Application to SNPs: Bayesian Inference

Our data come from the genotyping of Crohn’s disease patients from the The Well-
come Trust Case Control Consortium (2007) (WTCCC). Using the same dataset,
Wei et al. (2010) concluded that the disease is associated with five chromosome
regions:
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Chro. 10 region q24.1 Chro. 16 region q12.1
Chro. 1 region p313 Chro. 5 region p13.1

Chro. 2 region q37.1

In this study 1748 patients with Crohn’s disease and 2938 share controls were con-
sidered, so that the total number of patients is n = 4686. After excluding SNPs with
minor allele frequency lower than 0.01 or in Hardy-Weinberg disequilibrium, a total
number of m = 3704 SNPs were left for our analysis; therefore, here L = 5, whereas
m1, . . . ,m5 are in Table 6.1.

We assume model (6.5) and (6.6) but resort to the a-priori truncation algorithm
in Argiento et al. (2015) in order to deal with the random probability measures Pl ,
which have infinite supports (i.e., the sum in (6.4) is infinite). As mentioned in the
Introduction, this algorithm uses an approximation of NGG processes which is a
discrete measure where the weights are obtained by normalization of the jumps of a
Poisson process, however considering only jumps larger than a threshold ε > 0. The
number of jumps of this new process, called ε-NGG process, turns out to be a Pois-
son random variable. Argiento et al. (2015) prove that, as ε goes to 0, the ε-NGG
process converges in distribution to the NGG process. Here we assume ε very small,
ε = 10−6. The prior specification is completed assuming that, a priori, σ and κ are
independent, and σ ∼beta(2,18), κ ∼gamma(2,0.1). It is well known that, when
considering parametric mixtures, the hyperparameters of the mean distribution P0

strongly affect the inference on clusters. Here we have fixed them according to the
empirical Bayes approach, i.e. al =

1
m ∑m

j=1 S jl , l = 0,1,2. We considered a final
sample size of 5000 iterations after 10,000 iterations as burn-in. On average, we got
20-min run times on a laptop with Intel Core i7-2620M processor.

Table 6.1 reports the estimated numbers of clusters for each region. The fourth

Table 6.1 Descriptive statistics and posterior summaries of SNPs and clusters

l Region ml k̂
Cluster size Association
min median max positive negative

1 1p31.3 1357 38 8 34.5 72 6 3
2 2q37.1 662 33 6 18 44 2 8
3 5p13.1 554 31 2 16 43 3 7
4 10q24.2 390 27 2 15 39 0 4
5 16q12.1 742 36 1 20.5 42 5 8

column (k̂) shows the estimated number of clusters, corresponding to the sizes of
the estimated partitions according to Binder’s loss function with equal costs (see
Sect. 6.2). The next three columns show the minimum, the median, and the maxi-
mum, respectively, of the cluster sizes of the estimated partition of each region.

Following the allocation of SNP clusters prescribed by the estimated partitions,
we compute the genetic score, as in (6.7), of each cluster to investigate the cluster
effects under the logit linear model (6.8). The regression parameters βp’s are a pri-
ori independent, all marginally Gaussian distributed with zero mean and variance
equal to 1000. As mentioned in Sect. 6.3.3, we may alternatively compute the plug-
in estimates of the genetic scores (6.7), or evaluate them at each iteration of the
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MCMC chain. Here we report the association results under the former strategy. Of
course, this computation requires an estimate of the parameters φ in each cluster.
However, when one is interested in cluster specific inference, label-switching can
be a problem. To solve it, a variety of strategies have been proposed (for a review
see Jasra et al. 2005), typically using post-processing strategies (see Molitor et al.
2010; Müller et al. 2011).

Here we follow a simple strategy: we take advantage of the conjugacy of P0,

so that, if ρ̂l =
{

Ŝ1l, . . . , Ŝk̂l l

}
is the estimated partition, φ̂φφ hl is fixed as the within-

cluster posterior mean E(φφφ hl |XŜhl
).

Figure 6.4 displays the posterior 90 % credible intervals of all cluster-specific
regression parameters for the five different regions; the dashed intervals are those
overlapping 0, while the dark gray ones are those significative. The last two columns
in Table 6.1 report the numbers of positive and negative associated clusters. On the
whole, we found 41 groups of significative SNPs. Observe that, to fix notation in
(6.8), within each region, clusters are labeled according to their sampling biased
order of appearance, i.e. cluster 1 contains observation i = 1, then cluster 2 contains
the first observation not in cluster 1, and so on.

Figure 6.5 shows the observed frequencies S1 and S2 for each SNP; observations
are depicted as red squares (blue diamonds) if they belong to a cluster that is posi-
tively (negatively) associated with the Crohn’s disease, while gray points represent
the others. We found 46 significant clusters containing 1070 SNPs in total. These
SNPs are located in 106 genes: 16 of them have been mentioned to be in relationship
to Crohn’s disease in literature, including ATG16L1, IL23R, and IL12RB2 (de Paus
et al. 2013; Cho 2008; Duerr et al. 2006). Moreover 6 SNPs have been reported in
association with Crohn’s disease: rs10889675, rs11805303, and rs2201841, located
in gene IL23R of region 1p31.1, belong to our cluster 26, 16, and 16, respectively.
SNP rs6871834 of region 5p13.1 is in cluster 11, and rs1861759 and rs2066843 of
region 16q12.1 are in cluster 27 and 11, respectively.

The significant clusters show exciting results. For example, in region 1p31.3,
cluster 2, 5, 15, 16, and 26 are all parts of the gene IL23R, while cluster 2 and 5
are part of gene IL12RB2. On the other hand, cluster 11 and 30 in region 2q37.1 are
parts of gene ATG16L1. These clusters reveal different effects on Crohn’s disease.
Cluster 16 in 1p31.3 and cluster 30 in 2q37.1 are protective, while cluster 2, 5, 15,
and 26 in 1p31.3 and cluster 11 in 2q37.1 are deleterious. This may be a reason why
previous association studies did not have consistent findings about the association
between IL23R and Crohn’s disease (Duerr et al. 2006; Glas et al. 2007; Jostins
et al. 2012).

The genetic findings obtained under the NGG mixture model just discussed are
similar to those obtained under the DPM model (see Wang et al. 2014). Under
both models the significative clusters contain SNPs that have been recognized to
be related to Crohn’s disease in the genetic literature, and under both models the
significative clusters belong to genes related with the disease. However the cluster
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Fig. 6.4 90 % posterior credible intervals of βk, for each of the five regions. The credible intervals
are colored and depicted according to their significance: solid (red) for deleterious, solid (green)
for protective, and dashed (gray) for non-associated effects

estimates under the two Bayesian nonparametric models are different. Under the
NGG mixture model the median of the cluster sizes is generally higher, and it varies
less (among the five regions) with respect to the DMP model. Part of our current
research concerns further quantitative comparison of the two models from statistical
and genetic point of views.
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Fig. 6.5 Observed frequencies S1 and S2 for each SNP in the five regions. Observations are de-
picted as red squares (blue diamond) if they belong to a cluster that is positively (negatively) asso-
ciated with Crohn’s disease, while gray points represent SNPs in cluster which were not associated
with the disease
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6.5 Conclusions

The paper presents an approach, based on an NGG mixture model, useful to detect
association between SNPs and a disease. In particular, we proposed a two-step pro-
cedure: we first clustered group of SNPs, i.e. columns of the covariate matrix, and
then, studied association between the relevant disease response and groups of mark-
ers via a logit model, identifying clusters having positive, negative, or null effect on
the disease. From a computational point of view, we used a blocked Gibbs sampler
recently introduced in the literature, which approximates the infinite dimensional
mixing measure via a finite sum. This yields a direct and efficient algorithm, so that
computations are simplified (from infinite to finite dimension). We also provided a
review of the state of art of Bayesian nonparametric cluster models and algorithms
for NGG mixtures.

Besides the positive aspects discussed in the paper, the procedure could be use-
ful when considering chromosomes which could be associated with more than one
disease. In such situation, the proposed method would be computationally more ef-
ficient of existing ones based on association first and then clustering; in fact, SNPs
could be clustered only once and then just association studies would be performed
for each disease.

As discussed in the paper, here, in order to cluster SNPs, an NGG mixture model
has been considered, unlike in Wang et al. (2014) who used a Dirichlet process
mixture. Since the Dirichlet process is a special case of NGG, we plan to perform
comparisons between the findings of the two approaches, in a more formal way with
respect to the discussion of the previous section, for instance computing the Bayes
factor of σ = 0 versus σ > 0.

Empirical Bayes has been used to choose the hyperparameters of the Dirichlet
distributions P0l, l = 1, . . . ,L. Given the large number of SNPs, it is difficult to have
experts’ opinions on all of them to choose the hyperparameters subjectively but we
recommend to use them when available.

Supported by biological reasons, we have assumed that SNPs from different
chromosomes are independent but it would be interesting, especially from a statis-
tical viewpoint, to check if there is some significant relation across chromosomes;
dependent hierarchical NGG could be a possible model fit for such analysis.
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Chapter 7
Bayesian Inference on Population Structure:
From Parametric to Nonparametric Modeling

Maria De Iorio, Stefano Favaro, and Yee Whye Teh

Abstract Making inference on population structure from genotype data requires to
identify the actual subpopulations and assign individuals to these populations. The
source populations are assumed to be in Hardy-Weinberg equilibrium, but the al-
lelic frequencies of these populations and even the number of populations present
in a sample are unknown. In this chapter we present a review of some Bayesian
parametric and nonparametric models for making inference on population structure,
with emphasis on model-based clustering methods. Our aim is to show how recent
developments in Bayesian nonparametrics have been usefully exploited in order to
introduce natural nonparametric counterparts of some of the most celebrated para-
metric approaches for inferring population structure. We use data from the 1000
Genomes project (http://www.1000genomes.org/) to provide a brief illustration of
some of these nonparametric approaches.
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7.1 Introduction

Population stratification or structure refers to the presence of a systematic differ-
ence in allele frequencies between populations due to the fact that populations
are typically heterogeneous in terms of their genetic ancestry. A particular type of
population structure is genetic admixtures, which derive from the genetic mixing
of two or more previously separated groups in the recent past. A typical exam-
ple is offered by African-Americans. The analysis of population structure based on
genotypes at co-dominant marker loci presents an important problem in population
genetics. In particular it is central to the understanding of human migratory history
and the genesis of modern populations, while the associated admixture analysis of
individuals is important in correcting the confounding effects of population ances-
try in gene mapping and association studies. As allele frequencies are known to
vary among populations of different genetic ancestry, similarly phenotypic varia-
tion, such as disease risk, is observed among group of different genetic ancestry.
Population structure is also relevant in the analysis of gene flow in hybridization
zones (Field et al. 2011) and invasive species (Ray and Quader 2014), conservation
genetics (Wasser et al. 2007), and domestication events (Park et al. 2004).

The advent of high density genotyping arrays and next generation resequencing
technologies has led to the production of enormous quantity of data, offering an
opportunity to investigate ancestry and genetic relationships among individuals in
a population in unprecedented level of details. Nevertheless, this enormous quan-
tity of available data poses new statistical and computational challenges. Making
inference on population structure from genotype data requires to identify the ac-
tual subpopulations and, in particular, assign individuals to these populations. The
source populations are assumed to be in the Hardy-Weinberg equilibrium, namely
the likelihood of the genotype of an individual, conditional on its subpopulation of
origin, is simply the product of the frequencies of its alleles in that population. The
allelic composition of these populations and even the number of populations are
unknown and, therefore, object of inference.

A full range of statistical approaches, parametric and nonparametric as well as
frequentist and Bayesian, have been proposed for inferring population structure.
Two of the prevailing approaches used to infer genetic ancestry from a sample of
chromosomes are Principal Components Analysis (PCA) and Structured Associa-
tion. PCA has been used to infer population structure from genetic data for several
decades (Novembre and Stephens 2008) and consists in projecting individuals in a
lower dimensional space so that the locations of individuals in the projected space
reflect the genetic similarities among them. Clusters of individuals in the projected
space can be interpreted as genetic populations, while admixture of two populations
results in sets of individuals lying along a line. PCA is a computationally efficient
method which can handle large numbers of markers, and is useful for visualizing
population structure. The first few principal components are often used to correct
for population stratification in genetic association studies. PCA is implemented in
EIGENSTRAT (Patterson et al. 2006). In a structured association approach the goal
is to explicitly infer genetic ancestry: individuals are assigned to subpopulation
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clusters, possibly allowing fractional cluster membership in the case of genetic ad-
mixtures. Techniques from model based clustering are usually employed.

In this chapter we focus on structured association methods, in particular con-
centrating on Bayesian approaches which model population structure and admix-
ture using mixture models. An influential early Bayesian parametric mixture model
has been proposed by Pritchard et al. (2000). Specifically, assuming that marker
loci are unlinked and at linkage equilibrium with one another within populations,
each individual is assumed to come from one of K populations and alleles at dif-
ferent loci are modeled conditionally independently given population specific allele
frequencies. In the case of genetic admixtures, each individual is associated with
proportions of its genome coming from different populations, while alleles at dif-
ferent loci are suitably modeled conditionally independently given the admixture
proportions. Independent prior distributions on the allelic profile parameters of each
population are introduced and full posterior inference is performed through Markov
chain Monte Carlo (MCMC) algorithms. With regard to the determination of the
number of extant populations K, Pritchard et al. (2000) proposed the use of model
selection techniques based on marginal likelihoods, though it has been noted that
such estimates are highly sensitive to the prior specification.

Falush et al. (2003) improved the admixture model of Pritchard et al. (2000) by
taking into account the correlations among neighboring loci. In particular Falush
et al. (2003) model linked loci by using a Markov model which segments each chro-
mosome into contiguous regions with shared genetic ancestry. This Markov model
allows for the estimation of local genetic ancestry information from genotype data,
as opposed to the global admixture proportions in Pritchard et al. (2000). Such local
ancestry estimation gives more fine-grained information about the admixture pro-
cess. The nonparametric counterpart of the simple population structure model in
Pritchard et al. (2000) is described in Huelsenbeck and Andolfatto (2007), while the
Hierarchical Dirichlet process of Teh et al. (2006) offers the Bayesian nonparametric
extension of the admixture model. Recently, De Iorio et al. (2015) have proposed
a Bayesian nonparametric counterpart of the linkage admixture model of Falush
et al. (2003). In particular the nonparametric approach provides a methodology for
modeling population structure that simultaneously gives estimates of local ances-
tries and bypasses difficult model selection issues arising in the parametric models
by Pritchard et al. (2000) and Falush et al. (2003).

The chapter is structured as follows. In Sect. 7.2 we review the Bayesian para-
metric approaches introduced by Pritchard et al. (2000) and Falush et al. (2003)
for modeling population structure with and without admixture and in presence of
linked loci and correlated allele frequencies. In Sect. 7.3 we show how recent devel-
opments in Bayesian nonparametrics have been usefully exploited in order to intro-
duce natural nonparametric counterparts of the parametric approaches by Pritchard
et al. (2000) and Falush et al. (2003). Some of these Bayesian nonparametric ap-
proaches are briefly illustrated using data from the 1000 Genomes project (http://
www.1000genomes.org/). The goal of the 1000 Genomes project consists in finding
most genetic variants that have frequencies of at least 1 % in the populations under
study by sequencing the genomes of a large number of individuals, providing in this
way a valuable resource on human genetic variation.

http://www.1000genomes.org/
http://www.1000genomes.org/
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7.2 Parametric Modeling

Suppose we sample N haploid individuals at L loci from a population with unknown
structure. For simplicity we discuss the haploid case, extension to the diploid case

is straightforward. We denote by X = (X (i)
l )1≤i≤N,1≤l≤L the observed data, i.e., x(i)l

is the genotype of individual i at locus l. Assuming K subpopulations characterized
by a set of allele frequencies at each locus, and with K being fixed, in this section
we review some Bayesian parametric models for making inference on the unknown
population structure.

7.2.1 Models with and Without Admixture

We start by assuming that marker loci are unlinked and at linkage equilibrium with
one another within populations. Let Z = (z(i))1≤i≤N denote the unknown allocation
vector which assigns each individual to a population of origin, i.e., z(i) denotes the
population from which individual i originated. Let Q = (qk)1≤k≤K denote the un-
known population proportions, i.e., qk is the proportion of individuals that originated
from population k. Furthermore, let Jl be the number of distinct alleles observed at
locus l, and let P = (pkl j)1≤k≤K,1≤l≤L,1≤ j≤Jl be the unknown allele frequencies in
the populations, i.e., pkl j is the frequency of allele j at locus l in population k.
Throughout this chapter we use “allele copies” to refer to an allele carried at a par-
ticular locus by a particular individual.

Under this framework Pritchard et al. (2000) introduced a model without admix-
ture among populations, namely the genome of each individual is assumed to be
originated entirely from one of the K populations. Given the population of origin of
each individual, the genotype is generated by drawing alleles copies independently
from the appropriate population frequency distribution. Formally, the model without
admixture is specified as

Pr[z(i) = k |Q] = qk (7.1)

and
Pr[x(i)l = j |Z,P] = pz(i)l j (7.2)

independently for each x(i)l . This model can be easily extended to diploid or, in
general, to polyploid data. For polyploid data the allocation variables z(i)’s along
each of the chromosomes of individual i form independent vectors. We refer to
Falush et al. (2003) for details.

The model (7.1)–(7.2) is completed by specifying a prior distribution for Q and P.
As regard to Q, Pritchard et al. (2000) assumed that the probability that individual
i originated in population k is the same for all k. Hence, they proposed to use the
uniform distribution qk = 1/K, independently for all individuals. Different distribu-
tions for Q have been considered in Anderson and Thompson (2002) to model cases
with some populations being more represented in the sample than others. As regard
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to P, Pritchard et al. (2000) followed Balding and Nichols (1995) and Ranalla and
Mountain (1997) in using the Dirichlet distribution to model the allele frequencies
at each locus within each populations, i.e.,

pkl· ∼ Dirichlet(λ1, . . . ,λJl ), (7.3)

for the allele frequencies pkl·, independently for any k and l. Furthermore, they
assumed λi = 1 for all j = 1, . . . ,Jl , which gives a uniform distribution over the
allele frequencies. By means of (7.2) and (7.3) we can use the following MCMC
scheme to construct a Markov chain with stationary distribution Pr[Z,P |X ]. Start
with initial values Z(0) for Z and, for m ≥ 1: i) sample P(m) from Pr[P |X ,Z(m−1)]
and ii) sample Z(m) from Pr[Z |X ,P(m)]. For sufficiently large m and c, (Z(m),P(m)),
(Z(m+c),P(m+c)), (Z(m+2c),P(m+2c)), . . . are approximately random samples from the
target distribution Pr[Z,P |X ].

An obvious limitation of the model without admixture is that, in practice, individ-
uals may have recent ancestors in more than one population. In order to overcome
this fundamental drawback, Pritchard et al. (2000) introduced a more flexible model
in which only a fraction of the individual’s genome is assumed to have originated
from one of the K populations. This more general model allows individuals to have

mixed ancestry. Let Z = (z(i)l )1≤i≤N,1≤l≤L be the unknown populations of origin of

the allele copies, i.e., z(i)l is the population from which the allele copies at locus

l of individual i are originated. Furthermore, let Q = (q(i)k )1≤i≤N,≤k≤K be the un-

known admixture individual proportions, i.e., q(i)k is the proportion of the genome of
individual i that originated from population k.

Under this more general framework, Pritchard et al. (2000) introduced a model
which allows for admixture: given the population of origin of each allele copies, the
genotype is generated by drawing allele copies independently from the appropriate
population frequency distribution. Formally, the model with admixture is specified
as follows:

Pr[z(i)l = k |Q] = q(i)k (7.4)

and
Pr[x(i)l = j |Z,P] = p

z
(i)
l l j

(7.5)

independently for each x(i)l . This model can be easily extended to diploid or, in
general, to polyploid data. For polyploid data the allocation variables z(i)’s along
each of the chromosomes of individual i form independent vectors. We refer to
Falush et al. (2003) for details.

The admixture model (7.4)–(7.5) is completed by specifying a prior distribution
for Q and P. Pritchard et al. (2000) proposed the use of the Dirichlet distribution
(7.3) for P, as for the model without admixture. The specification of a prior distri-
bution for Q depends on the type and amount of mixed ancestry we expect to see.
In particular Pritchard et al. (2000) proposed the use of a symmetric Dirichlet dis-
tribution to model the admixture proportions of each individual. Specifically, they
specified the distribution
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q(i) ∼ Dirichlet(α, . . . ,α) (7.6)

for the admixture proportions q(i), independently for each individual. If α tends
to 0, then the admixture model reduces to the model without admixture. Differ-
ent distributions for Q have been considered in Anderson and Thompson (2002).
The following MCMC scheme may be used to sample from Pr[Z,P,Q |X ]. Start
with initial values Z(0) for Z and, for m ≥ 1: i) sample P(m) and Q(m) from
Pr[P,Q |X ,Z(m−1)], ii) sample Z(m) from Pr[Z |X ,P(m),Q(m)] and update α using
a Metropolis-Hastings step. As before, for sufficiently large m and c, note that
(Z(m),P(m),Q(m)), (Z(m+c),P(m+c),Q(m+c)),(Z(m+2c), P(m+2c),Q(m+2c)), . . . are ap-
proximately random samples from the target distribution Pr[Z,P,Q |X ].

7.2.2 Extensions: Linked Loci and Correlated Allele Frequencies

Falush et al. (2003) extended the admixture model of Pritchard et al. (2000) to allow
for linkage between loci. In particular they considered the correlations in ancestry,
which cause linkage disequilibrium between linked loci. This linkage disequilibrium
naturally occurs because the chromosome is composed of a set of chunks that are
derived, as intact units, from one or another of the ancestral populations. In order to
model linked loci, Falush et al. (2003) assumed that the breakpoints between succes-
sive segments occur as a Poisson process at a rate r per unit of genetic distance, and
that the population of origin of each chunk in individual i is independently drawn
according to the vector q(i), which continues to represent the admixture proportions
of the i-th individual.

More formally the linkage admixture model of Falush et al. (2003) assumes that

for each individual i the random variables z(i)l ’s are dependent across l and, in par-
ticular, they form a reversible Markov chain. Specifically, for any positive r, one has
the following specification

Pr[z(i)1 = k |Q] = q(i)k (7.7)

and

Pr[z(i)l+1 = k′ |z(i)l = k,Q] =

⎧
⎪⎨

⎪⎩

e−dlr +(1− e−dlr)q(i)k′ if k′ = k

(1− e−dlr)q(i)k if k 	= k′
(7.8)

independently for each individual, where dl denotes the genetic distance from locus
l to locus l + 1, assumed known. The admixture model (7.4)–(7.5) is recovered by
letting r → +∞. We refer to Falush et al. (2003) for details on the MCMC scheme
for sampling from Pr[Z,P,Q |X ].
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Falush et al. (2003) also introduce an extension of the admixture model of
Pritchard et al. (2000) in order to allow for correlated allele frequencies, namely
the allele frequencies in one population provide information about the allele fre-
quencies in another population. Indeed it is expected that allele frequencies in
closely related populations tend to be very similar. In order to model closely re-
lated populations, Pritchard et al. (2000) replaced the prior distribution (7.3) with

pkl· ∼ Dirichlet( f (l)Jlμ
(l)
1 , . . . , f (l)Jlμ

(l)
Jl
), where μ (l)

j is the mean sample frequency

at locus l, and f (l) > 0 determines the strength of the correlations across populations
at locus l. Clearly, when f (l) is large, the allele frequencies in all populations tend
to be similar to the mean allele frequencies in the sample.

Alternatively, Falush et al. (2003) assume that the populations all diverged from
a common ancestral population at the same time, but allow that the populations may
have experienced different amounts of drift since the divergence event. Specifically,
let pAl j be the frequency of allele j at locus l in a hypothetical ancestral population
A. The K populations in the sample have each undergone independent drift away
from the ancestral allele frequencies, at rates parameterized by F1, . . . ,FK , respec-
tively. More formally,

pAl· ∼ Dirichlet(λ1, . . . ,λJl ) (7.9)

independently for each l. Note that the prior distribution has the same form as that
used in the model with uncorrelated population frequencies. Then, conditionally
on PA,

pkl· ∼ Dirichlet

(

pAl1
1−Fk

Fk
, . . . , pAlJl

1−Fk

Fk

)

(7.10)

independently for each population k and for each locus l. According to (7.10) the
size of the parameter Fk tells us about the effective size of population k during the
time since divergence, with large values of Fk indicating a smaller effective popu-
lation size. We refer to Falush et al. (2003) for details on the MCMC scheme for
sampling from Pr[Z,P,Q |X ].

The Bayesian parametric approaches described in this section are implemented in
STRUCTURE (http://pritchardlab.stanford.edu/structure.html), which is arguably
the most widely used software for estimating genetic ancestry. The reader is referred
to Pritchard et al. (2000) and Falush et al. (2007) for a description of the basic al-
gorithms. Extensions can be found in Falush et al. (2007) and Hubisz et al. (2009).
ADMIXTURE (http://genetics.ucla.edu/software/admixture/index.html) is an alter-
native software which provides a faster implementation of a similar model to the
one defined in STRUCTURE. In particular ADMIXTURE uses maximum likeli-
hood inference to estimate population allele frequencies and ancestry proportions,
rather than sampling from posterior distribution through MCMC algorithms. See,
e.g., Alexander et al. (2009) for details.

http://pritchardlab.stanford.edu/structure.html
http://genetics.ucla.edu/software/admixture/index.html
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7.3 Nonparametric Modeling

The Bayesian parametric models reviewed in Sect. 7.2 assume the number of pop-
ulations K to be fixed. In order to deal with an unknown K, Pritchard et al. (2000)
suggest a method based upon an ad hoc approximation of the marginal likelihood to
determine the number of populations needed to explain the observations. In particu-
lar STRUCTURE is run for different values of K, and the number of populations is
determined by the value of K which maximises the marginal likelihood of the data.
Alternatively, ADMIXTURE uses a cross validation approach to estimate K, by fit-
ting the model on a subset of genotype data and then predicting the excluded geno-
types. Other parametric approaches have been proposed by Corander et al. (2003),
Corander et al. (2004), and Evanno et al. (2005). In this section we review some
Bayesian nonparametric models for making inference on population structure. In
the nonparametric framework both the allocation vectors Z and the number of an-
cestral populations K are unknown.

7.3.1 Models with and Without Admixture

A Bayesian nonparametric counterpart of the model without admixture of Pritchard
et al. (2000) has been proposed in Huelsenbeck and Andolfatto (2007). This model
makes use of the Dirichlet process by Ferguson (1973), which allows both the as-
signment of individuals to populations and the number K of populations to be ran-
dom variables. A simple and intuitive definition of the Dirichlet process follows
from the stick-breaking construction introduced by Sethuraman (1994). Specifi-
cally, let (v j) j≥1 be a collection of independent Beta random variables with pa-
rameter (1,α0), and let (θi)i≥1 be a collection of random variables, independent of
(v j) j≥1, and independent and identically distributed according to a nonatomic prob-
ability measure G0. The discrete random probability measure Q0 =∑ j≥1 q jδθ j , with
q j = v j ∏1≤l≤ j−1(1− vl), is a Dirichlet process with parameter α0G0.

Here and in the following discussion we denote with DP(α0,G0) the distribution
of a Dirichlet process with parameter (α0G0). The Bayesian nonparametric model
without admixture introduced by Huelsenbeck and Andolfatto (2007) can be speci-
fied as follows:

z(i) |Q0
iid∼ Q0

Q0 ∼ DP(α0,G0) (7.11)

and

x(i)l |Z,P ind∼ PZ

PZ ∼ Dirichlet(λ1, . . . ,λJl ), (7.12)



7 Bayesian Inference on Population Structure 143

for i = 1, . . . ,N and l = 1, . . . ,L. See, e.g., Dawson and Belkhir (2001) and Pella
and Masuda (2006) for alternative Bayesian nonparametric models which exploit
the Dirichlet process at the allocation level.

The sample Z from Q0 induces a random partition of {1, . . . ,N} which deter-
mines the allocation of individuals into a random number K of populations with
random frequencies (n1, . . . ,nK). The parameter α0 determines the degree to which
individuals are grouped together into the same population. Indeed, Blackwell and
MacQueen (1973) show that

Pr[z(N) ∈ ·|z(1), . . . ,z(N−1)] =
K

∑
i=1

ni

N − 1+α0
δθi(·)+

α0

N − 1+α0
G0(·). (7.13)

The allocation directed by the predictive distribution (7.13) can be intuitively de-
scribed by means of the following Chinese restaurant metaphor. See, e.g., Aldous
(1985) for a detailed account. Consider a Chinese restaurant with an unbounded
number of tables. Each z(i) corresponds to a customer who enters the restaurant,
whereas the distinct values θ j’s correspond to the tables at which the customers sit.
Customer i sits at the table indexed by θ j with probability proportional to the num-
ber n j of customers already seated there, in which case we set z(i) = θ j, and it sits
at a new table with probability proportional to α0, in which case we increment K by
1, draw θK from G0 and set z(i) = θK .
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Fig. 7.1 Left panel: posterior distribution of the number K of populations present in the sample.
Right panel: logPr(Data |K) from STRUCTURE

The approach of Huelsenbeck and Andolfatto (2007) is implemented in STRUC-
TURAMA (http://cteg.berkeley.edu/structurama/). Posterior inference is performed
through an MCMC scheme which aims at determining the mean partition, a par-
titioning of individuals among populations which minimizes the squared distance
to the sampled partitions. To illustrate the model (7.11)–(7.12), we consider 305
individuals from the 1000 Genomes project. The sample is composed of 95 chro-

http://cteg.berkeley.edu/structurama/
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mosomes with European ancestry (CEU), 107 chromosomes of African (YRI) ori-
gin, and 103 individuals of East Asian (CHB) ancestry. In order to phase the
genotype data we use SHAPEIT2 (http://mathgen.stats.ox.ac.uk/genetics software/
shapeit/shapeit.html), providing a sample of 610 haplotypes. We have analyzed a
collection of 1000 bi-allelic loci from chromosome 2. Posterior inference on the
number of populations in the sample is shown in the left panel of Fig. 7.1. The pos-
terior distribution of K has its mode in 3, which is the true number of populations
present in the sample. We have also run the model without admixture implemented
in STRUCTURE for each value of K, K = 1, . . . ,6. The right panel of Fig. 7.1 shows
the estimated logPr(Data |K). Note that the value K = 3,4 seems to maximize the
model log-likelihood. With this regard, it is worth pointing out that Pritchard et al.
(2000) warn against possible drawbacks of using this criterion and to interpret the
results with caution and give suggestions for improvement.

A Bayesian nonparametric counterpart of the linkage admixture model of Falush
et al. (2003) has been recently introduced and investigated in De Iorio et al. (2015).
This model extends the hierarchical Dirichlet process introduced by Teh et al.
(2006). The hierarchical Dirichlet process is defined as a distribution over a collec-
tion of discrete random probability measures. Specifically, let α0 and α be positive
constants and let G0 be a nonatomic probability measure. The hierarchical Dirichlet
process defines a set of local discrete random probability measures (Qi)i∈{1,...,N},
for some index N ≥ 1, and a global discrete random probability measure Q0 such
that Q0 is a Dirichlet process with parameter α0G0 and, given Q0, (Qi)i∈{1,...,N} is
a collection of independent Dirichlet processes, each one with the same parame-
ter αQ0. Because the global Q0 has support at the points (θi)i≥1, each local ran-
dom probability measure Qi necessarily has support at these points as well, and
thus can be written as Qi = ∑ j≥1 qi jδθ j , with qi j = wi j ∏1≤l≤ j−1(1−wil), where
(wi j |v1, . . . ,v j) j≥1 are independent random variables from a Beta distribution with
parameter (αv j,α(1−∑1≤l≤ j vl)). Note that the Dirichlet process with parameter
α0G0 is recovered by letting α → 0.

Due to the sharing of atoms among discrete random probability measures, the
hierarchical Dirichlet process is the natural generalization of the Dirichlet process
to model linked sets of admixture proportions and constitutes the Bayesian non-
parametric counterpart of the admixture model defined in (7.4)–(7.5). Individual
genotypes will have portions that arise from different populations which are shared
among individuals. The hierarchical Dirichlet process models the allocation vector

Z = (z(i)l )1≤i≤N,1≤l≤L that specifies the populations of origin of the allele copies.
Accordingly, the resulting Bayesian nonparametric “admixture” model can be spec-
ified as follows:

z(i)l |Qi
iid∼ Qi

Qi |Q0
iid∼ DP(α,Q0),

Q0 ∼ DP(α0,G0) (7.14)

http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
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and

x(i)l |Z,P ind∼ PZ

PZ ∼ Dirichlet(λ1, . . . ,λJl ), (7.15)

for i = 1, . . . ,N and l = 1, . . . ,L. Note that the hierarchical Dirichlet process prior
assumption allows to model Z in terms of an unknown number of populations K
with unknown frequencies that are shared out across individuals; each individual’s
genome is then modeled according to an unknown number of populations with un-
known allocation frequencies. For polyploid data the z’s along each of the chromo-
somes of individual i are assumed to be independent.

The allocation mechanism induced by the hierarchical Dirichlet process can
be intuitively described by the following generalization of the Chinese restaurant
metaphor. Consider a finite collection of Chinese restaurants, one for each index

i ∈ {1, . . . ,N}, with a shared menu. Each z(i)l corresponds to customer l in restaurant

i. Let ψ(i)
t be the t-th table in restaurant i and let θk denote the k-th dish. If nitk is the

number of customers in restaurant i seated around the table t and being served dish
k, mik is the number of tables in restaurant i serving the dish k, and K is the number
of unique dishes served in the franchise, then

Pr[z(i)L ∈ ·|z(i)1 , . . . ,z(i)L−1,Q0] =
mi·
∑
t=1

nit·
L− 1+α

δ
ψ(i)

t
(·)+ α

L− 1+α
Q0(·). (7.16)

where nit· = ∑k nitk and mi· = ∑k mik. In other words, the customer z(i)l sits at the

table indexed by ψ(i)
t with probability proportional to the number of customers nit·

already seated there, in which case we set z(i)l = ψ(i)
t , and it sits at a new table with

probability proportional to α , in which case we increment mi·, set nimi·· = 1, draw

ψ(i)
mi·· from Q0 and set z(i)l = ψ(i)

mi· . Note that ψ(i)
mi·· is drawn from Q0 and this is the

only reference to Q0 in the predictive (7.16). In particular, one has

Pr[ψ(i)
t ∈ ·|ψ(1)

1 , . . . ,ψ(i)
t−1] =

K

∑
k=1

m·k
m··+α0

δθk (·)+
α0

m··+α0
G0(·). (7.17)

where m·k = ∑i mik and m·· = ∑i ∑k mik. In other words, to table ψ(i)
t it is assigned

the dish indexed by θk with probability proportional to the number of tables which

have previously served that dish in the franchise, in which case we set ψ(i)
t = θk,

and it is assigned a new dish with probability proportional to α0, in which case we

increment K, draw θK from G0, and set ψ(i)
t = θK . Dishes are chosen with probabil-

ity proportional to the number of tables which have previously served that dish in
the franchise. We refer Teh et al. (2006) for additional details.

We have fitted the hierarchical Dirichlet process admixture model (7.14)–(7.15)
to a set of 188 phased haplotypes from the Colombian (CLM) sample in the
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1000 Genomes project. We have considered a collection of 500 bi-allelic loci from
chromosomes 2. A value of K = 3 covers 99 % of the typed loci across individuals.
This is in agreement with what is known about Colombian ancestry. Latin Amer-
ica has a well-documented history of extensive mixing between Native Americans
and people arriving from Europe and Africa. This continental admixture, which has
occurred for the past 500 years (or about 20–25 generations), gives rise to haplo-
type blocks. For example, in Fig. 7.2 we show posterior inference for the allocation
of loci on a segment of chromosome 2 to one of the three major ancestral popula-
tions detected in the sample. The results are based on the Maximum A Posteriori
clustering configuration. Notice the mosaic structure of the chromosomes.

Fig. 7.2 MAP estimates of population assignment for single nucleotide polymorphism (SNP) data.
Each color corresponds to a different ancestral population

Recently, De Iorio et al. (2015) propose the Bayesian nonparametric counterpart
of the linkage admixture model defined in (7.7)–(7.8), allowing for dependence in
the allocation vector z(i). Specifically, let dl denote the genetic distance from locus l

to locus l + 1, and let s(i)l be a binary random variable which denotes whether locus

l and locus l + 1 are on the same segment (s(i)l = 1) or not (s(i)l = 0). The Bayesian
nonparametric linkage admixture model of De Iorio et al. (2015) can be specified as
follows:

z(i)1 |Qi ∼ Qi

s(i)l
iid∼ Bernoulli(e−dlr)

z(i)l+1 |z(i)l ,s(i)l ,Qi
ind∼ s(i)l δ

z
(i)
l
+(1− s(i)l )Qi
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Qi |Q0
iid∼ DP(α,Q0),

Q0 ∼ DP(α0,G0) (7.18)

and

x(i)l |Z,P ind∼ PZ

PZ ∼ Dirichlet(λ1, . . . ,λJl ), (7.19)

for i = 1, . . . ,N and l = 1, . . . ,L. Qi describes the proportion of the alleles on x(i)

coming from each of the populations, as well as the parameters of the populations.
Given Qi, the sequence x(i) is modelled by (i) first placing segment boundaries ac-
cording to a nonhomogeneous Poisson process with rate dlr (ii) and then generating
alleles on each segment by picking a population according to Qi and sampling the
alleles according to the population specific distribution. The model of Huelsenbeck
and Andolfatto (2007) is obtained by letting r →+∞ and α → 0. By letting r →+∞
one obtains the standard hierarchical Dirichlet process.

We would like to conclude this section with a note of caution. In particular, within
the Bayesian nonparametric settings, inference on K can be sensitive to the choice
of the prior on the number of populations, in particular to the prior specification on
α and α0, as well as on the λi’s. We note that as the number of sequences and/or
markers increases the model tends to generate spurious clusters, i.e. clusters with
very few individuals in them. This is in agreement with recent results on the clus-
tering properties of the Dirichlet Process. See, e.g., Miller and Harrison (2014) for
details. Nevertheless, the number of clusters explaining the majority of the data, i.e.
95–99 %, is quite robust to prior specifications. In general, the biological interpreta-
tion of K is difficult. See, e.g., Pritchard et al. (2000) and the references therein for
a detailed discussion. See Fritsch and Ickstadt (2009) for a description of methods
for summarizing posterior clustering output.

7.3.2 The MCMC Algorithm

We briefly present the MCMC algorithm for posterior sampling from the Bayesian
nonparametric linkage admixture model (7.18)–(7.19). The conditional distributions

of (Qi)0≤i≤N , given (z(i)l )1≤i≤N,1≤l≤L and (s(i)l )1≤i≤N,1≤l≤L, follow from standard

results on the hierarchical Dirichlet process. Conditionally to (z(i)l )1≤i≤N,1≤l≤L and

(s(i)l )1≤i≤N,1≤l≤L, let K∗ be the number of populations. Then,

Q0 =
K∗

∑
j=1

q0 jδθ j +w0Q′
0
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and

Qi =
K∗

∑
j=1

qi jδθ j +wiQ
′
i,

for i = 1, . . . ,N, where Q′
0 is independent of (q01, . . . ,q0K∗ ,w0) and Q′

i is indepen-

dent of (qi1, . . . ,qiK∗ ,wi). Let nik be the number of chunks in z(l)l that are assigned
to population k, and let mik be a random variable such that mik = 0 if nik = 0 and
mik ∈ {1, . . . ,nik} if nik > 0. Moreover, let us define n0k = ∑1≤i≤N mik. Then, we
have

(q01, . . . ,q0K∗ ,w0) |(nik,mik)0≤i≤N,1≤k≤K∗ ∼ Dirichlet(n01, . . . ,n0K∗ ,α0), (7.20)

Q′
0 |(nik,mik)0≤i≤N,1≤k≤K∗ ∼ DP(α0,G0), (7.21)

(q01, . . . ,q0K∗ ,wi) |(nik,mik)0≤i≤N,1≤k≤K∗ ,(q01, . . . ,q0K∗ ,w0) (7.22)

∼ Dirichlet(αq01 + ni1, . . . ,αq0K∗ + n0K∗ ,αw0)

and
Q′

i |(nik,mik)0≤i≤N,1≤k≤K∗ , G′
0 ∼ DP(α,G′

0). (7.23)

Equations (7.20) and (7.22) form a hierarchy of Dirichlet distributions while Eqs.
(7.21) and (7.23) form a hierarchy of Dirichlet processes. The two hierarchies are
independent. The reader is referred to Teh et al. (2006) for a detailed account on
Eqs. (7.20), (7.21), (7.22), and (7.23).

In order to sample from (7.21) and (7.23), De Iorio et al. (2015) adopted
the slice sampling approach of Walker (2007). See also Papaspiliopoulos and
Roberts (2008). The slice sampling allows to truncate the series representations of
Q′

0 |(nik,mik)0≤i≤N,1≤k≤K∗ and Q′
i |(nik,mik)0≤i≤N,1≤k≤K∗ ,G′

0 while retaining exact-
ness in sampling from them. The idea consists in introducing an auxiliary random
variable Ci, the so-called slice variable, such that

Ci |(nik,mik)0≤i≤N,1≤k≤K∗ , (Qi)0≤i≤N ∼ Uniform(0,min
l

q
iz(i)l

).

Conditionally on Ci, only the atoms with mass above the minimum threshold miniCi

need to be simulated. This can be easily achieved by using the stick-breaking rep-
resentation until the left-over mass falls below the threshold. We refer to De Iorio
et al. (2015) for additional details on the implementation of the slice sampling for
(7.21) and (7.23).

Finally, forward-filtering backward-sampling can be used to update the latent

state sequences (z(i)l )1≤i≤N,1≤l≤L and (s(i)l )1≤i≤N,1≤l≤L. Note that, conditionally on
Ci, only populations with qi,k >Ci will have positive probability of being selected, so
that the forward-filtering backward-sampling is computationally tractable. However,

as the random variable Ci depends on the latent state sequences (z(i)l )1≤i≤N,1≤l≤L

and (s(i)l )1≤i≤N,1≤l≤L, conditioning on Ci introduces complex dependencies among
the latent state variables which precludes an exact and efficient forward filtering
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algorithm. De Iorio et al. (2015) proposed instead to ignore the dependencies caused
by the slice variable, and use the resulting efficient forward-filtering backward-
sampling as a Metropolis-Hasting proposal. The forward-filtering backward-sampling
has a computational scaling of the order O(LKi), linear in both the number L of
loci and potential populations Ki, and it represents the most computationally expen-
sive part of the MCMC algorithm. MATLAB software implementing this MCMC
scheme is available at http://BigBayes.github.io/HDPStructure.

7.4 Discussion and Concluding Remarks

The analysis of population stratification is an increasingly important component of
genetic studies. Many different methods have been proposed in the literature and
often software implementing such methods has been developed and made publicly
available. The main goals of population structure analysis can be summarized as
follows: detection of population structure in a sample of chromosomes, estimation
of the number of populations present in a sample, and consequent assignment of
individuals to sub-populations. In the case of genetic admixtures scientific interest
focuses on inferring the number of ancestral population to a sample, estimating
ancestral population proportions to admixed individuals and identifying the genetic
ancestry of chromosomal segments within an individual. No single method is able
to deal with the variety of research questions relating to genetic ancestry and it is
helpful in applications to use a combinations of approaches.

In this chapter we have reviewed model-based clustering methods for population
structure within a Bayesian framework. We have shown how the initial parametric
modeling strategies have a natural counterpart in Bayesian nonparametrics, which
allows for joint estimation of the number of ancestral populations and the popu-
lation allocation vector for each individual. In this framework, posterior inference
is usually performed through MCMC algorithms. These methods can be used for
both haplotype and genotype data, although in the latter case at an extra computa-
tional cost. It is in theory straightforward to include further prior information such as
geographical locations of sampled chromosomes, ethnicity and phase information.
Moreover, it is possible to pre-specify the population of origin of some individu-
als to aid ancestry estimation for individuals of unknown origin and also to include
phenotype information. The inferred clustering structure will generally be sensible
and able to explain most of the variability in the data, but clusters will not necessar-
ily correspond to “real” populations and biological interpretation of the number of
clusters is often difficult, as pointed out in Pritchard et al. (2000).
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Chapter 8
Bayesian Approaches for Large Biological
Networks

Yang Ni, Giovanni M. Marchetti, Veerabhadran Baladandayuthapani,
and Francesco C. Stingo

Abstract Bayesian methods have found many successful applications in high-
throughput genomics. We focus on approaches for network-based inference from
gene expression data. Methods that employ sparse priors have been particularly suc-
cessful, as they are properly designed to analyze large datasets in which the amount
of measured variables can be greater than the number of observations. Here, we de-
scribe Bayesian approaches for both undirected and directed networks; we discuss
novel approaches that are computationally efficient, do not rely on linearity assump-
tions, and perform comparatively better than state-of-the-art methods. We demon-
strate the utility of our methods via applications to glioblastoma gene expression
data.

8.1 Introduction

In this chapter, we review novel approaches for the analysis of large biological
networks, motivated by application to cancer genomic datasets. Cancer is a set of
diseases characterized by several cellular alterations, the complexity of which is
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defined at multiple levels of cellular organization (Reimand et al. 2013; Hanahan &
Weinberg 2011). Understanding the complex functions of the genes, proteins, and
other aspects of the genome requires the integration of data from different sources,
as realized by both the biostatistical (Hamid et al. 2009; Huang 2014; Huang et al.
2014; Ni et al. 2014; Stingo et al. 2010; Stingo et al. 2011; Wang et al. 2013; Wu
et al. 2014) and medical (Chin et al. 2011; Kristensen et al. 2014; Weinstein et al.
2013; Parsons et al. 2008) communities. A primary objective of this large effort is to
exploit the knowledge gained about the biological mechanisms of cancer for treat-
ment development; this goal can be achieved if functional molecular mechanisms
and novel targets/genes that can be pharmacologically modulated by targeted drugs
are identified.

A key task to this end is to develop flexible and efficient quantitative models for
the analysis of dependence structures of these high-throughput assays. Graphical
models, which describe the conditional dependence relationships among random
variables, have been widely applied in genomics and proteomics to infer various
types of networks, including co-expression, gene regulatory, and protein interaction
networks (Dobra et al. 2004a; Mukherjee & Speed 2008; Stingo et al. 2010; Telesca
et al. 2012).

The chapter is organized as follows. In Sect. 8.2, we first introduce general
methodological frameworks for both directed and undirected graphical models un-
der the Bayesian paradigm. In Sect. 8.3, we focus on a recent approach for nonlin-
ear directed graphical models, and, in Sect. 8.4, on a recent approach for undirected
graphical models. In Sect. 8.5, we provide a brief discussion.

8.2 Introduction to Graphical Models

Graphical models are a class of statistical models for a random vector XXX = (X1, . . . ,
Xp)

T that provide a graphic representation of conditional independencies among
the variables, with the additional aim of describing their essential interrelations.
The general theory of graphical models also plays an important role in simplifying
inferences, implementing variable selection algorithms, and defining a framework
for causal reasoning.

In a graphical model, variables are represented by a set of nodes, any pair of
which may or may not be adjacent, i.e., joined by an edge. A missing edge represents
the independence between the associated variables conditional on a set of other
variables. The conditioning set depends on the chosen type of graph. Here, we focus
on two types of graphs: undirected graphs and directed acyclic graphs (DAGs).

A graph is defined by a pair G= (V,E) where V = {1, . . . , p} is a set of nodes and
E is a set of edges. We consider only graphs containing at most one edge between
any pair of nodes. We say that G is undirected if E contains only undirected edges
represented by {u,v} = u− v for (u,v) ∈ V ×V . G is said to be directed if all the
edges are directed and represented by an ordered pair (u,v) = u→ v. The distinction
between undirected and directed edges is important because undirected edges are
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typically used when variables are considered to have equal standing while directed
edges, i.e., arrows such as u→ v, indicate that v is a response and u is an explanatory
variable.

8.2.1 Undirected Graphical Models

Given an undirected graph G = (V,E), with V = {1, . . . , p}, the random vector XXX =
(X1, . . . ,Xp)

T with joint distribution P is said to be (globally) Markov with respect
to G if for any three disjoint subsets A, B, and C of V such that C separates A and B
(i.e., all the paths between A and B contain at least one node in C), all the variables
XXXA are independent of XXXB given XXXC, written as XXXA ⊥⊥ XXXB | XXXC. This establishes a
connection between the graphical concept of separation in the graph and the concept
of conditional independence in the random vector XXX .

If in addition P > 0, i.e., it is strictly positive, XXX is Markov with respect to G if
and only if for any pair of non-adjacent nodes u and v, the conditional independence
XXXu ⊥⊥ XXXv | XXXV\{u,v} holds. Furthermore, the Hammersley and Clifford theorem estab-
lishes that an equivalent condition is that the joint probability density function f (xxx)
factorizes according to certain components of the graph called maximal cliques. A
maximal clique is a complete subgraph of G that is not contained in a larger com-
plete graph. A graph is complete if every pair of distinct edges is connected. Then
the factorization is

f (xxx) = ∏
C∈C

ψC(xxxC),

where C is the set of cliques of G and the non-negative functions ψG depend on x
only through the components xxxC = (xu)u∈C.

In the Gaussian case, which is the main subject of our discussion in this chapter,
undirected graphical models are defined by zero constraints on the canonical pa-
rameter. The canonical parameter of a Gaussian random vector XXX ∼ Np(000,ΣΣΣ) with
positive definite covariance matrix ΣΣΣ is the concentration matrix ΩΩΩ = ΣΣΣ−1 = (ωuv)
and the density can be written as

f (xxx) = exp
(
α − 1

2 ΣuΣvωu,vxuxv
)
,

so that a conditional independence Xu ⊥⊥ Xv | XXXV\{u,v} holds if and only if the con-
centration ωuv is zero. Therefore, a Gaussian model that is Markov with respect to
an undirected graph G is defined by a family of multivariate normal distributions
Np(000,ΣΣΣ) with ωu,v = 0 whenever {u,v} /∈ E . The model’s parameter space is the
cone M+ of the positive definite p× p matrices ΩΩΩ that satisfy the above zero con-
straints.

By the formula of the partial correlation coefficient between Xu and Xv given all
the other variables

ρuv.V\{u,v} =
−ωuv√
ωuuωvv

,
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one sees that in a multivariate normal distribution, conditional independence is
equivalent to zero partial correlation. This happens because the normal distribu-
tion has only linear dependencies. However, in general, this is not the case and we
may have both zero partial correlation with strong nonlinear dependence and condi-
tional independence but nonzero partial correlation (we introduce a novel approach
for nonlinear dependence in Sect. 8.3).

If a random sample of n iid multivariate observations XXX (1), . . . ,XXX (n) from a Gaus-
sian undirected graph model with graph G is available, the log-likelihood function is

logL(ΩΩΩ |SSS) ∝ log |ΩΩΩ |||− tr(ΩΩΩSSS), ΩΩΩ ∈ M+,

where SSS = ∑n
i=1 XXX (i)XXX (i)T

is the sample sum-of-products matrix. Inference for undi-
rected graphical models is not straightforward. For example, maximum likelihood
(ML) estimation requires an equality-constrained convex optimization (Whittaker
2009).

For a subclass of graphical models, there is an explicit ML estimate of ΩΩΩ . This
subclass, which plays a special role in inference and computations, is that of de-
composable graphs. A partition (A,B,C) of the nodes V is said to be a proper de-
composition of the graph G if C separates A and B, C is complete, and A and B are
nonempty. If no proper decomposition exists, then G is said to be prime. Any graph
can be recursively decomposed into its maximal prime subgraphs. Then G is decom-
posable if all maximal prime subgraphs are cliques. It can be shown that a graph is
decomposable if and only if it is chordal, meaning that every cycle of length n ≥ 4
has a chord. The space of decomposable graphs is much smaller than the space of
general undirected graphs. However, as decomposable graphical models allow for
several simplifications in the computation, inference and model determination, the
assumption of decomposability is often made.

8.2.1.1 Bayesian Estimation of Undirected Graphical Models

The Bayesian analysis of a Gaussian undirected graphical model is based on the de-
termination of the posterior distribution p(G,ΩΩΩ | xxx) = p(G | xxx)p(ΩΩΩ | xxx,G). The first
step is to define the prior distribution for the concentration matrix ΩΩΩ and the graph
structure G: p(G,ΩΩΩ) = p(ΩΩΩ | G)p(G). The standard conjugate prior for the con-
centration matrix ΩΩΩ is the Wishart distribution; this prior implicitly assumes that G
is complete. Equivalently, one can specify that the covariance matrix ΣΣΣ = ΩΩΩ−1 fol-
lows the inverse-Wishart distribution. Early work on Gaussian graphical models in
the Bayesian framework (Dawid & Lauritzen 1993; Giudici & Green 1999) focused
on restrictions of the inverse-Wishart to decomposable graphs, called hyper inverse-
Wishart. The assumption of decomposability greatly simplifies computation, but can
constitute a restrictive assumption for several real world applications.

To address this limitation, Roverato (2002) proposed the G-Wishart prior as the
conjugate prior for arbitrary graphs. The G-Wishart is the Wishart distribution re-
stricted to the space of concentration matrices with zeros as specified by a graph
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G that may be either decomposable or non-decomposable. The G-Wishart density
WG(b,D) can be written as

f (ΩΩΩ |G,b,D) = IG(b,D)−1|ΩΩΩ |(b−2)/2 exp
{
− 1

2
tr(ΩΩΩDDD)

}
, ΩΩΩ ∈ M+,

where b> 2 is a scalar parameter, DDD is a p× p positive definite symmetric matrix, IG

is the normalizing constant, and M+ is the set of all p× p positive definite symmetric
matrices with ωi j = 0 if and only if (i, j) /∈ E .

Although this formulation is more flexible for modeling, it introduces computa-
tional difficulties. A number of approaches for sampling from the G-Wishart distri-
bution have been made in recent years, including direct sampling (Wang & Carvalho
2010), Metropolis-Hastings algorithms (Mitsakakis et al. 2011; Dobra et al. 2011),
and non-ordinary block Gibbs sampling (Wang & Li 2012). One particularly chal-
lenging aspect of computation for the G-Wishart distribution is that not only is the
posterior normalizing constant intractable, but the prior normalizing constant is also
intractable. Proposed approaches for estimating the G-Wishart normalizing constant
include importance sampling (Roverato 2002), Monte Carlo sampling (Atay-Kayis
& Massam 2005), and Laplace approximation (Lenkoski & Dobra 2011).

In many applications, we are interested in not just inferring the precision matrix
given a graph G, but also in learning the graph structure itself. A joint search over
the space of graphs and precision matrices poses computational challenges. Jones
et al. (2005) and Lenkoski & Dobra (2011) simplified the problem by integrating
out the precision matrix and performing a stochastic search to identify the most
probable graphs based on their marginal likelihood. Dobra et al. (2011) proposed
a reversible jump algorithm to sample over the joint space of graphs and precision
matrices, which relies on perturbation of the elements of the Cholesky decomposi-
tion of the precision matrix. This method does not scale well to large graphs due to
the requirement of a matrix completion step at every iteration. Wang & Li (2012)
proposed a sampler that does not require a reversible jump and circumvents compu-
tation of the prior normalizing constant through the use of the exchange algorithm,
improving both the accuracy and efficiency of computation.

8.2.2 Directed Graphical Models

A directed acyclic graph (DAG) is a directed graph G = (V,E) without cycles, i.e.,
with no directed paths that start from a node and return to the same node. DAG
models on discrete variables are often called Bayesian networks. The name follows
from the use of Bayes’ rule in computations, not from the choice of the Bayesian
paradigm in inference. Bayesian treatments of model selection for Bayesian net-
works were considered by Madigan & Raftery (1994) and Madigan et al. (1995).

We define the parents of a node i, pa(i), as the set of nodes v distinct from i such
that v → i. Moreover, we say that a subgraph of G such that u → v ← w and with u
and v not adjacent is a V-structure. A DAG with no V-structures is said to be perfect.
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A distribution is said to be Markov with respect to the DAG G if the joint density
factorizes recursively as

f (xxx) =
p

∏
i=1

f (xi | xxxpa(i)), (8.1)

where xxxpa(i) = (x j : j ∈ pa(i)). This defines a directed acyclic graphical model, and
it can be shown that the factorization is equivalent to a set of conditional indepen-
dencies,

Xi ⊥⊥ XXXnd(i)\pa(i) | XXXpa(i) for any i ∈V.

This factorization decomposes the likelihood into a sequence of local likelihoods
with variation independent parameters. In a Gaussian DAG model, each local like-
lihood is a normal linear regression model

f (xi | pa(i),θθθ i) = N(xi | ∑
x j∈pa(i)

βi jx j; ti), (8.2)

where N(xi | μ ;t) is a normal density with mean μ and conditional variance t. The
local parameters are θθθ i = (βββ i, ti), where βββ i = (β1i, . . . ,βi−1,i)

T is the vector of re-
gression coefficients; see Geiger & Heckerman (2002).

Different DAGs may induce the same independencies, in which case they are said
to be Markov equivalent. For instance, the graphs u ← v → w and u ← v ← w induce
the same independency, u⊥⊥ w | v. We note that an undirected graph and a DAG
may be Markov equivalent. In fact, any perfect DAG G is Markov equivalent to a
decomposable undirected graph G. Conversely, given an undirected decomposable
graph G, there exists a Markov-equivalent perfect DAG G; see Lauritzen (1996).
This result will be used in Sect. 8.4.1.

8.2.2.1 Bayesian Estimation of Gaussian DAG Models

Learning the structure of DAGs, in general, is a very challenging task, in part be-
cause the dimensionality of the DAG space increases super-exponentially with the
number of variables. Also, any algorithm searching in the entire DAG space would
waste efficiency in evaluating Markov-equivalent DAGs. However, if there exists a
known natural ordering of the variables, the problem is simplified because a DAG
can be written as a system of recursive regressions, which greatly reduces the DAG
space.

Specifically, suppose the joint distribution of XXX = (X1, . . . ,Xp)
T is a multivariate

normal distribution with mean 0. Without loss of generality, the natural ordering is
defined as {1,2, . . . , p}. The DAG model for vector XXX can be written as

X1 −β12X2 −β13X3 −·· ·−β1,p−1Xp−1 −β1pXp = ε1 ∼ N(0, t1)
X2 −β23X3 −·· ·−β2,p−1Xp−1 −β2pXp = ε2 ∼ N(0, t2)

...
Xp = εp ∼ N(0, tp)

(8.3)
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In practice, the ordering may be obtained from additional experiments, a reference
network, “arrow of time” and so on. Let EEE = (ε1, . . . ,εp)

T , TTT = diag(t1, . . . , tp) and
let AAA = (−βi j) be a unit upper triangular matrix. Then, the system of recursive re-
gressions can be written in matrix form:

AAAXXX = EEE with EEE ∼ N(000,TTT ). (8.4)

The matrix AAA = (−βi j) encodes the network structure: there is a missing arrow from
node j to node i if βi j = 0. From (8.4) it follows that the concentration matrix of XXX is

ΩΩΩ = AAATTTT−1AAA; (8.5)

see Wermuth (1980). This is sometimes called a modified Cholesky decomposition
of ΩΩΩ ; see Pourahmadi (2007).

We assume that AAA is sparse, i.e., for each node, there are only a few nodes con-
nected to it and most of the edges are missing. Learning the network structure then
reduces to a variable selection problem for linear regressions, which has been exten-
sively studied in the literature. The penalized likelihood approaches such as LASSO
(Tibshirani 1996), SCAD (Fan & Li 2001), and SIS (Fan & Lv 2008) have gained
popularity due to their ability to handle high-dimensional data in a time-efficient
manner. Meanwhile, Bayesian approaches, including SSVS (George & McCulloch
1993) and Bayesian shrinkage (Park & Casella 2008; Carvalho et al. 2010; Griffin
et al. 2010), have also been developed to tackle the high-dimensional variable se-
lection problem in scenarios where the number of parameters greatly exceeds the
number of samples. Bayesian approaches have been shown to be very effective for
estimating DAGs as they naturally account for graph structure uncertainty, produce
regularized estimators, and have good control of the false discovery rate, all of which
are desirable features for high-dimensional complex models.

In the Bayesian paradigm, sparsity can be induced by the “spike-and-slab” prior
on the regression coefficients:

βi j ∼ γi j f (βi j)+ (1− γi j)δ0(βi j),

where the “slab” f (·) is some continuous distribution and the “spike” δ0(·) is a point
mass at zero. The binary indicators, γi j, are latent variables that specify the relevant
variables. If γi j = 1, the jth variable is included in the ith regression and hence the
edge from j to i is selected in the DAG; otherwise, γi j = 0. Model determination
is then accomplished by evaluating the marginal likelihood and using a search al-
gorithm to inspect the model space. The former is straightforward if we impose
conjugate priors. If non-conjugate priors are used (such as non-local priors Johnson
& Rossell (2010, 2012)), we can approximate the marginal likelihood via, for ex-
ample, Markov chain Monte Carlo (MCMC) algorithm. The latter is, however, more
complicated. Although the model space is substantially reduced through natural or-
dering, enumerating all possible DAGs is not feasible even for moderately large p.
Therefore, instead of using a deterministic algorithm, a stochastic search algorithm
is usually adopted.



160 Y. Ni et al.

A popular approach is MCMC, which sequentially samples all the parameters
from the posterior distribution and outputs a list of visited models

{γγγ,AAA,TTT}(1),{γγγ,AAA,TTT}(2), . . . ,{γγγ,AAA,TTT}(N),

where N is the total number of iterations. A simple approach to use in summariz-
ing the model is to select the edges for which the (marginal) posterior inclusion
probability p(γi j = 1|XXX) is higher than a pre-specified threshold. A common thresh-
old is 0.5, which results in the median probability model (Barbieri & Berger 2004).
Marginal posterior probabilities can be approximated by the fraction of time each γi j

is visited by the Markov chain. An alternative approach is to pick the model with the
highest (joint) posterior probability based on the MCMC samples. However, when
the dimension is high, the posterior probability of any model might be extremely
small and consequently many models would have similar posterior probabilities.

There are recent developments in stochastic search algorithms other than MCMC,
including shotgun stochastic search (SSS, Hans et al. (2007)) and feature-inclusion
stochastic search (FINCS, Scott & Carvalho (2008); Altomare et al. (2013)). SSS
evaluates many neighboring states (graphs) at each step in parallel and moves to a
new state with a probability proportional to its marginal posterior. The advantage of
SSS over MCMC is parallelization: when multi-core computing resources are avail-
able, each state can be evaluated independently on separate processors. However,
when such computing power is not accessible, FINCS, a serial algorithm, provides
an alternative. FINCS involves three types of moves: local moves, global moves,
and resampling moves. It is motivated from the intuition that a move that has al-
ready improved some models is more likely to improve other models than a random
move. While the MCMC approach aims to converge to a stationary distribution, SSS
and FINCS intend to search for a list of high posterior models.

DAGs have been successfully applied in many areas such as genomics, causal
inference, and expert systems. In the next section, we will introduce one specific
example of using DAGs to construct biological networks (Ni et al. 2015).

8.3 Bayesian Nonlinear Model Selection for Gene Regulatory
Networks

Gene regulatory networks (GRNs) represent the regulatory relationships between
genes. We consider the problem of constructing a GRN in glioblastoma multi-
forme (GBM) using microarray gene expression data from The Cancer Gene At-
las (TCGA). We focus on genes that are mapped to three core pathways (Furnari
et al. 2007): The (1) RTK/PI3K pathway; (2) p53 pathway; and (3) Rb pathway.
Since the underlying biochemistry is known to be very complicated because of ex-
traneous factors, some gene interactions are likely to be nonlinear. This motivates us
to develop a novel semiparametric DAG model that allows for the detection of in-
terpretable nonlinear functional relationships. Since pathway information is widely
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available, we incorporate such information by assuming a natural ordering of the
genes obtained from reference networks. To achieve parsimonious estimation, we
adopt a hierarchical two-level model selection approach. The first level, edge selec-
tion, chooses relevant gene interactions, and the second level, functional selection,
which is conditional on the first level, classifies the functional relationship. Our ap-
plication to gene expression data from patients with GBM found some regulatory
mechanisms that are consistent with those described in the biological literature as
well as a few novel nonlinear interactions that need further experimental validation.

8.3.1 Model

Suppose the data consist of p gene expression levels for n GBM patients, which can
be organized into an n× p data matrix XXX . The joint distribution of the DAG model
for XXX can be factorized according to (8.1). Without loss of generality, the ordering

is defined as {1,2, . . . , p}. Denote x(l)g to be the expression level of sample l and
gene g, for g = 1, . . . , p and l = 1, . . . ,n. Let [g−] denote the set {g+ 1, . . . , p} and

xxx(l)
[g−]

denote {x(l)i : i ∈ [g−]}. Each conditional distribution in the product term of
Eq. (8.1) can be expressed by the following regressions:

x(l)g = fg(xxx
(l)
[g−]

)+ ε(l)g , g = 1,2, . . . , p, l = 1,2, . . . ,n,

where the error term ε(l)g ∼ N(0,λ−1
g ). The predictor function fg(x

(l)
[g−]

) is modeled
semiparametrically using a set of cubic penalized spline (P-spline) basis functions:

fg(x
(l)
[g−]

) = μg + fg,1(x
(l)
1 )+ fg,2(x

(l)
2 )+ · · ·+ fg,g−1(x

(l)
g−1), g = 1, . . . , p,

with intercept μg and fg,i(·) = ∑M
k=1 β (k)

gi Bik(·). Here, Bik(·) represents the kth cu-

bic B-spline basis and β (k)
gi are the corresponding spline coefficients, which are as-

sumed to follow a discrete mixture (“spike-and-slab”) of a second order Gaussian
random walk (Lang & Brezger 2004) and a unit point mass at zero, βββ g j|τg j ,λg,γg j ∼
γg jN(0,(τg jλgKKK)−1)+ (1− γg j)δ0(βββ g j), where KKK is the penalty matrix constructed
from the second order differences of the adjacent spline coefficients and γg j is an
indicator of edge selection. The smoothing parameter τg j controls the degree of
smoothness of the fitted curve: a large value of τg j results in a smoother fit, while a
small value of τg j leads to an irregular fit and essentially interpolates the data.

Note that when γg j = 0, the whole vector βββ g j is set to zero and hence the
corresponding edge is excluded from the DAG. Conditional on γg j, the func-
tional form of the relationship between genes is defined through τg j, as these
parameters control the smoothness of the curve fitting. We enforce a discrete
mixture of the inverted Pareto distribution and Gamma distribution: τg j |φg j ∼
φg jGamma(kτ ,θτ )+ (1− φg j)Ip(aτ ,bτ), where φg j is the indicator of the mixture
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component. The density of the inverted Pareto distribution Ip(aτ ,bτ) is given by
π(τg j|aτ ,bτ) =

aτ
bτ
(

τg j
bτ
)aτ−1, for aτ > 0, 0 < τg j < bτ . We set aτ > 1 so that the dis-

tribution concentrates on large values, which then encourages linear smooth fits of
the data. The Gamma distribution is concentrated at small values of τ , thus induc-
ing nonlinear smoothing. Unlike a unimodal prior (such as the Gamma and inverted
Pareto distributions), which is concentrated at either small values or large values
(but not both), this mixture prior provides a sharper separation between “linear” and
“nonlinear” relationships among genes because of its bimodal nature. Essentially,
φg j = 1 implies that τg j is distributed as a Gamma distribution (concentrated on
small values) and hence is likely to be small, which in turn suggests a nonlinear in-
teraction between gene g and gene j whereas φg j = 0 implies that τg j is distributed
as an inverted Pareto distribution (concentrated on large values) and therefore a lin-
ear interaction. We refer to this model that has two-level selection as the nonlinear
mixture DAG (nMixDAG).

We complete our model by specifying the prior on the precision of error term λg,
constant term μg, network parameter γg j and its hyperparameter ρ , and the mixture
component indicator φg j and its hyperparameter ω .

We assume conjugate priors for the error precision λg ∼ Gamma(aλ ,bλ ) and
the constant term μg ∼ N(0,(λgκμ)

−1). For the network parameter γg j, we use a
Bernoulli prior with success probability ρ , γg j|ρ ∼ Bernoulli(ρ). The prior prob-
ability of inclusion ρ follows a Beta distribution, ρ ∼ Beta(aρ ,bρ), which yields
an automatic multiplicity penalty since the posterior distribution of ρ will be-
come more concentrated at small values near 0 as the total number of variables
increases (Scott & Berger 2010). Similar to the prior for γg j, a Bernoulli distribu-
tion is assumed for φg j, with the success probability following a Beta hyper-prior,
φg j|ω ∼ Bernoulli(ω), ω ∼ Beta(aω ,bω). See Ni et al. (2015) for a description of
the MCMC algorithm developed to fit nMixDAG.

8.3.2 Application to GBM Data

Our analysis involves TCGA-based microarray gene expression data for n = 241
GBM tumor specimens. We focus on the p = 49 genes that overlap with the three
core pathways. Hence, in this case, XXX is a 241× 49 matrix. We obtain the natural
ordering of the 49 genes from the induced subgraph of the GBM signaling pathways
(McLendon et al. 2008), which is shown in Fig. 8.1. In Fig. 8.2, we show the net-
work reconstructed by nMixDAG. The solid lines represent linear regulations and
the dotted lines represent nonlinear ones. The line width is proportional to the pos-
terior inclusion probability, with thicker lines indicating a higher probability of the
edge. The node size is proportional to its degree, i.e., the number of edges connected
to the node. In total, we find 95 connections (85 are linear and 10 are nonlinear) and
5 highly connected genes (AKT1, FOXO3, SPRY2, GAB1, and PDPK1). Some of
our findings are consistent with previous results reported in the biological literature.
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Fig. 8.1 GBM reference signaling pathways—the RTK/PI3K, p53, and Rb signaling pathways.
The prior ordering is obtained from this network

For example, the NF1 protein inhibits RAS function (Malumbres & Barbacid 2003)
and RAS proteins activate PI3K complexes (Blume-Jensen & Hunter 2001). Those
highly connected genes (also known as hub genes) may participate in multiple reg-
ulatory events and hence play an important role in the GRN. For instance, the AKT
family is frequently amplified and the FOXO family is often mutated (McLendon
et al. 2008) in GBM.

Our study also reveals some novel findings. In Fig. 8.3, we plot the nonlinear
functional reconstructions of nine edges, together with their 95 % credible bands.
Marginal posterior inclusion probabilities are shown at the top of each plot. We
can see that the expression level of RAF1 decreases with that of ERBB3 when
ERBB3 is low in expression, but starts to increase with ERBB3 after a cut-point
around −0.7. It is even more interesting that CDKN2A manifests a sinusoidal
trend with CDK4. These relationships have not been reported previously to the best
of our knowledge and may deserve further validation via biological experiments.
To quantify the evidence for the nonlinearity of each fitted curve, we define the
nonlinearity measure (N ) as Ng j = p(φg j = 1|YYY ,γg j = 1), the probability that a
given connection (γg j = 1) is nonlinear (φg j = 1) a posteriori, which can be easily

computed from MCMC samples of φg j,γg j: Ng j ≈ ∑N
i=1 I(φ (i)

g j = 1,γγγ(i) = γγγselect ,

γ(i)g j = 1)/∑N
i=1 I(γγγ(i) = γγγselect ,γ(i)g j = 1), where the superscript (i) labels the ith

MCMC sample, N is the number of MCMC samples, and γγγselect indicates the se-
lected γγγ from the highest posterior model. The nonlinearity measure is also shown
at the top of each plot in Fig. 8.3. For example, the evidence for nonlinearity between
PIK3C2B and MDM4 is strong (0.997), while the evidence between PIK3CA and
RAF1 is much weaker (0.510), which is consistent with our observations.
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8.4 Efficient Approaches for Undirected Networks

Bayesian model determination for undirected graphical models is commonly per-
formed by running a Markov chain for which the state variable has the form (G,ΩΩΩ)
where G = (V,E) is an undirected graph, and ΩΩΩ is the concentration matrix of the
random vector XXX . The computational strategy is typically based on sequential ran-
dom choices of pairs of distinct nodes: if they are currently connected, the algorithm
proposes the removal of the edge; otherwise, it proposes an edge addition. If the
search is limited to the space of decomposable graphs, the algorithm needs to check
whether the edge perturbation is legal, i.e., yields a graph G′ that is still decompos-
able. Frydenberg & Lauritzen (1989) and Giudici & Green (1999) showed how to
efficiently verify, through local computation, whether decomposability is preserved.
If the proposal is accepted, then the parameter values for the new graph G′ are up-
dated, and a Metropolis-Hastings acceptance ratio is computed.

Green & Thomas (2013) used recent advancements in graph theory for decom-
posable graphs and found that the construction of samplers is more efficient if the
state variable contains a further object J(G) that is associated with the graph, called
the junction tree. The search is then based on the state variable (G,J(G),ΩΩΩ ) and on
local updates of the junction tree. In fact, a graph is decomposable if and only if it
has a junction tree representation (in general not unique) for the maximal cliques.
A junction tree J(G) is a connected graph with no cycles (thus a tree), whose nodes
are the maximal cliques of G, and with the so-called running intersection property.
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Fig. 8.3 Nine functional reconstructions with 95 % credible bands for selected genes with nonlin-
ear relationships. The marginal posterior inclusion probability (p) and nonlinearity measure (N)
are shown at the top of each plot

This means that given any two maximal cliques, C and K, and considering their
common nodes, C∩K, then all the maximal cliques along the unique path between
C and K must contain C ∩K. In fact, G is decomposable if and only if it admits
a perfect elimination order of its nodes, such that for each node v of the graph,
the neighbors of v that are previous in the ordering, plus v itself form a clique
(Lauritzen 1996). Whichever approach is used, within an MCMC that explores the
model space of decomposable graphs by moves that add or remove one or multi-
ple edges at a time, it is essential to have a fast method to update the junction tree
and/or the perfect elimination order. At the start, the algorithm of maximum cardi-
nality search (Tarjan & Yannakakis 1984) can be used to obtain an initial perfect
elimination order and a junction tree. As recalculating the full junction tree at each
step is highly inefficient, strategies have been developed to update it dynamically;
see Green & Thomas (2013) and Stingo & Marchetti (2015). This allows for simul-
taneous local updates of the perfect elimination order.
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8.4.1 Inference on Directed Graphical Models Via Regression
Modeling

Stingo & Marchetti (2015) proposed an alternative approach that is built upon the
decomposable Gaussian graphical model framework, but where the state variable
is instead (G,σ(G),Cholesky(ΩΩΩ σ )) where σ(G) is a perfect elimination order of
the nodes of the graph, and Cholesky(ΩΩΩ σ ) is the modified Cholesky decomposition
(8.5) of the concentration matrix rearranged according to σ . When the rows and
columns of the concentration matrix are permuted according to a perfect elimination
order, the modified Cholesky decomposition of the resulting matrix ΩΩΩ σ defines a
parameterization of a Gaussian DAG model which is Markov equivalent to the given
decomposable model. This regression parameterization allows for greater flexibility
in the prior specification.

As seen in Sect. 8.2.2.1, a Gaussian DAG model is equivalent to a recursive sys-
tem of linear regression equations (8.3). The new parameterization of decomposable
Gaussian graphical models as a system of linear regressions brings several advan-
tages. The regression coefficients are variation independent, whereas the elements
of the concentration matrix ΩΩΩ are not. Priors on Ω have to be defined on a subset of
the cone of the positive definite matrices PG defined by G, such as the G-Wishart dis-
tributions whereas the parameter space of Γ is R

|E|. Alternative approaches to the
G-Wishart distribution, like the Bayesian graphical lasso (Wang 2012) or similar
priors marginally defined on the elements of the precision matrix, have substantial
computational disadvantages since the positive definiteness of ΩΩΩ has to be checked
at each step of the optimization/sampling algorithm.

From standard distribution theory, the distributions of βi j and ti are functions
of the elements of the concentration matrix ΩΩΩ ; see Dawid & Lauritzen (1993) and
Dobra et al. (2004b), among others. An inverse-Wishart prior on ΣΣΣ ∼ Inv-Wishart
(c,η−1III), with III being an identity matrix of the same dimension of ΣΣΣ , implies that

βi j ∼ N(0,η ti) (8.6)

ti ∼ Inv-Ga((c+ |βi|)/2,2η), (8.7)

where |βi| is the number of covariates in equation i, and η and c are hyperparameters
set to a fixed value.

Within this model framework, any prior distribution p(G) on the graph space can
be specified. Of the most commonly used among the set of decomposable graphs,
we can mention (a) the uniform prior p(G) ∝ 1, (b) the prior that assumes the edge
inclusion probability to be equal to p1 ∈ (0,1), and (c) the prior of Armstrong et al.
(2009), which gives equal probability to the size, defined as the number of selected
edges, of the graph and equal probability to graphs of each size. Prior (a) gives more
probability to graphs of a medium size and can be seen as a special case of prior (b),
with p1 = 0.5 whereas smaller values of p1 favor sparse graphs. Prior (c) can be
used when there is strong prior information about the expected size of the graph.
All the described priors have to be normalized since every nondecomposable graph
has zero probability.
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A further advantage of the regression parameterization is that it suggests a
probabilistic framework for learning the structure of nondecomposable Gaussian
graphical models. Let GGG = (gi j) be the p× p adjacency matrix of the graph G and
HHH = (hi j) be a further p× p symmetric binary matrix that will be used to induce a
double selection prior for the soft and hard selection of edges. An edge {i, j} is said
to be hard selected if gi j = 1 and hi j = 1 whereas it is soft selected if gi j = 1 and
hi j = 0. The matrix HHH can assume any value on the model space of the unrestricted
graphs with p nodes, as long as this graph is a sub-graph of G. The graph space then
can be defined by all pairs (GGG,HHH) such that GGG is an adjacency matrix of a decom-
posable graph and HHH is an adjacency matrix of an (unrestricted) sub-graph of G.
Following the approach of George & McCulloch (1993), we introduce a soft/hard
selection prior defined as a two-component mixture distribution on the regression
coefficients

(βi j | gi j = 1,hi j)∼ hi jN(0,ηti)+ (1− hi j)N(0,τti), (8.8)

with τ set to a very small value, such that the first component in the mixture puts
most of its mass on values close to zero (George & McCulloch 1993), and η is a hy-
perparameter to be specified. This approach encourages the soft selection of decom-
posable graphs that contain both edges supported by the data and an additional set
of edges that makes the graph decomposable. Edges supported by the data are iden-
tified through the mixture prior (8.8). The model specification is completed by using
conjugate inverse-Gamma priors on the ti’s and by using independent Bernoulli pri-
ors on the hi j’s, with p2 being the prior probability of labeling {i, j} as a hard edge,
given {i, j} ∈ G; and p2 can be set to a value that favors sparse graphs.

8.4.2 An Undirected Graphical Model Analysis of GBM Data

Our analysis involves the same TCGA-based microarray gene expression data de-
scribed in Sect. 8.3.2. Here, we are interested in learning the structure of an undi-
rected gene network (no gene ordering needs to be pre-specified) and comparing it
with the findings described in Sect. 8.3.2. We used 1,000 Gibbs scans over all possi-
ble edges of the decomposable graph for the hard selection, and 200,000 Metropolis-
Hastings iterations for the soft selection. We set the hyperparameters by following
the guidelines given in Stingo & Marchetti (2015). We ran two Monte Carlo Markov
chains with different starting points.

We select strong edges with posterior probability greater than 0.5. We find
98 connections and 8 hub genes: FOXO3 (14), SPRY2(12), NF1(11), ARAF(10),
GAB1(8), IGF1R(8), PIK3CG(8), and PTEN(8). Three of these hub genes were also
detected by nMixDAG (FOXO3, SPRY, GAB1). In Fig. 8.4, we show the network
reconstructed by our approach for undirected networks. The line width is propor-
tional to the posterior inclusion probability and the node size to its degree. This
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Fig. 8.4 Recovered network from GBM data with our approach for undirected networks. The line
width is proportional to its posterior probability; and the node size is proportional to its degree

graph is not decomposable, consequently some interaction patterns discovered by
this analysis could not be identified by nMixDAG; on the other hand, 7 of the 10
nonlinear edges picked by nMixDAG were not selected in our undirected graph.

8.5 Discussion

We have reviewed Bayesian approaches for large biological networks, both directed
and undirected. The Bayesian approaches we have presented offer a coherent frame-
work in which edge selection and parameter estimation are performed simultane-
ously. There are several other topics related to Bayesian approaches for large bio-
logical networks that have not been discussed in this chapter. These topics include
approaches for multiple graphs (Oates et al. 2014; Peterson et al. 2014), approaches
for matrix-variate data (Wang & West 2009; Dobra et al. 2011), and hierarchical
models that include biological networks as a component of a more complex model
(Chekouo et al. 2015), among others.

Approaches for multiple graphs are most appropriate when a given population
can be divided into homogeneous sub-populations, each of which can be character-
ized by a graphical model. Peterson et al. (2014) designed a Bayesian approach that
simultaneously infers multiple undirected networks in situations where some net-
works may be unrelated, while others may have similar structures. Their approach
infers a separate graphical model for each group but allows for shared structures
when supported by the data; moreover, that approach yields a measure of relative
network similarity across groups.

When the observed variables have the form of matrix-variate random variables,
such as multiple platforms measured on the same subjects, matrix-variate graphical
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models (Wang & West 2009; Dobra et al. 2011) can be used to investigate the
(conditional) dependencies along each dimension, i.e., between rows and between
columns of the matrix-variate observations. This method directly considers the
structural information naturally contained in the data.

We note the recent use of network approaches within regression models to guide
the selection of molecular markers. We can classify these methods into two groups.
Approaches that consider known biological networks as given and fixed external
information (Li & Zhang 2010; Stingo & Vannucci 2011; Stingo et al. 2013) are
classified in the first group. The second group is composed of methods that estimate
a large biological network among the molecular predictors of a regression model
(Chekouo et al. 2015). Compared to the approaches belonging to the first group,
methods in the second group have the advantage of accounting for the uncertainty
in the estimation of the biological network. Methods in the first group usually deal
with undirected networks and can be easily extended to directed networks whereas
methods belonging to the second group have been limited thus far to directed
networks.
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Chapter 9
Nonparametric Variable Selection, Clustering
and Prediction for Large Biological Datasets

Subharup Guha, Sayantan Banerjee, Chiyu Gu,
and Veerabhadran Baladandayuthapani

Abstract The development of parsimonious models for reliable inference and
prediction of responses in high-dimensional regression settings is often challeng-
ing due to relatively small sample sizes and the presence of complex interaction
patterns between a large number of covariates. We propose an efficient, nonpara-
metric framework for simultaneous variable selection, clustering and prediction in
high-throughput regression settings with continuous outcomes. The proposed model
utilizes the sparsity induced by Poisson-Dirichlet processes (PDPs) to group the
covariates into lower-dimensional latent clusters consisting of covariates with sim-
ilar patterns among the samples. The data are permitted to direct the choice of a
suitable cluster allocation scheme, choosing between PDPs and their special case,
a Dirichlet process. Subsequently, the latent clusters are used to build a nonlinear
prediction model for the responses using an adaptive mixture of linear and nonlin-
ear elements, thus achieving a balance between model parsimony and flexibility.
Through analyses of gene expression microarray datasets we demonstrate the relia-
bility of the proposed method’s clustering mechanism and show that the technique
compares favorably to, and often outperforms, existing methodologies in terms of
the prediction accuracies of the subject-specific clinical outcomes.
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9.1 Introduction

Suppose the available data in an investigation consist of continuous responses and
p continuous covariates on n subjects, arranged in an n× p matrix. We assume that
only a subset of the covariates are statistically associated with the responses, i.e., for
subjects i = 1, . . . ,n, the responses wi ∈R are assumed to be associated with an un-
known subset of the covariates xi1, . . . ,xip. The goal of the analysis is two-pronged.
First, we wish to infer a common, sparse set of predictor indices for all the sub-
jects, i.e., a subset S ⊂ {1, . . . , p} of dimension q � p consisting of the indices of
the covariates that are significantly associated with the responses. Second, we wish
to predict the responses of ñ additional subjects for whom only covariate informa-
tion is available. The development of parsimonious regression models that can be
used for reliable predictions is challenging. This is especially true of “small n, large
p” regression problems arising in many areas such as high-throughput genomics,
imaging and environmental applications.

Several innovative strategies have been developed to meet these challenges in
various contexts, with reasonable degrees of success. Most (if not all) of these
approaches can be classified into three broad categories based on their basic con-
struction: (a) linear variable selection methods, (b) regression methods using low-
dimensional projections of the covariate space, and (c) nonlinear prediction methods.
The linear variable selection methods include stepwise selection (Peduzzi et al.
1980), penalized regression approaches such as lasso (and its variants) (Tibshi-
rani 1997), and non-concave penalized likelihood approaches (Fan and Li 2002).
Bayesian linear variable selection approaches include spike and slab mixture pri-
ors (Mitchell and Beauchamp 1988), stochastic search variable selection (George
and McCulloch 1993), Gibbs-based variable selection (Dellaportas et al. 1982),
Bayesian model averaging (Madigan and Raftery 1994; Volinsky et al. 1997) and
indicator priors (Kuo and Mallick 1997). The stochastic search variable selection
approach of George and McCulloch (1993) has been extended to multivariate set-
tings by Brown et al. (1998) and to generalized linear mixed models by Cai and
Dunson (2006). Effective variable selection methods have also been developed for
multinomial probit models by Sha et al. (2004), and for microarray data with cen-
sored outcomes by Lee and Mallick (2004) and Sha et al. (2006). Work related to the
method we present is the product partition model on covariates proposed by Müller
et al. (2011). Methods based on regression using low-dimensional projections of the
covariate space include partial least squares (Nguyen and Rocke 2002; Li and Gui
2004) and (supervised) principal components methods (Bair and Tibshirani 2004).
Non-linear prediction methods include statistical and machine learning techniques
such as support vector machines (Cristianini and Shawe-Taylor 2000), and ensemble
methods such as random forests (Ishwaran et al. 2010) and Bonato et al. (2010).

Our motivating application arises from a high-throughput genomics setting where
microarray-based expression levels of genes (usually thousands) are available for a
limited number of patient samples (tens or hundreds). We wish to select impor-
tant genes (variables) as well as develop efficient prediction models for continuous
patient-specific clinical outcomes. To illustrate our method, we use an accelerated
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failure time (AFT) model (Buckley and James 1979; Cox and Oakes 1984) to
analyze the motivating datasets which have the following general structure. For ind-
ividuals i = 1, . . . ,n, the data consist of (i) the failure time wi > 0, and (iii) exp-
ression levels xi1, . . . ,xip for p genes, with p being much larger than n. Thus, the
log–failure-time yi equals log(wi).

In a regression setting, we refer to y1, . . . ,yn as the regression outcomes, and fit
the model:

yi
indep∼ N

(
ηi ,σ2), (9.1)

where the regression mean ηi = β0 +∑ j∈S β jxi j. George and McCulloch (1993),
Kuo and Mallick (1997), and Brown, Vannucci, and Fearn (1998) have proposed
the use of latent indicator variables to identify the covariate matrix columns that
are associated with the regression outcomes: ηi = β0 +∑p

j=1 γ jβ jxi j, where γ j is
an indicator that corresponds to the jth covariate column being a predictor. The
γ j’s are assumed to be i.i.d. Bernoulli(ω). The number of model predictors is then
|S |= ∑p

j=1 γ j. With XXXγγγ denoting the n by (|S |+1) predictor matrix including the
intercept column consisting of all ones, a g prior (Zellner 1986) is assumed for the
regression coefficients: βββ γγγ ∼ N|S |+1

(
000,σ2

β (XXXγγγ
′XXX γγγ)

−1
)

for an unknown σ2
β > 0.

For small n, large p regression problems, we propose a nonparametric technique
for clustering, variable selection, and prediction in high-dimensional regression set-
tings (Guha and Baladandayuthapani 2014). Since the data are informative regard-
ing the joint effects of correlated covariates rather than the individual covariates,
the proposed method utilizes the sparsity-inducing (i.e., dimension reduction) prop-
erty of Poisson-Dirichlet processes (PDPs) to group the p columns of the covariate
matrix into q latent clusters, where q � p, with each cluster consisting of columns
with similar patterns across the subjects. The data are allowed to direct the choice
between a class of PDPs and their special case, a Dirichlet process, for a suitable
allocation scheme for the covariates. The within-cluster patterns, common to all the
members of the clusters, are flexibly modeled using Dirichlet processes, as opposed
to linear projections such as principal components and partial least squares.

This reduces the small n, large p problem to a “small n, small q” problem, facil-
itating an effective stochastic search of the indices S ∗ ⊂ {1, . . . ,q} of the cluster
predictors, from which we may infer the indices S ⊂ {1, . . . , p} of the covariate
predictors associated with the responses, as opposed to the typical “black-box” non-
linear prediction methods mentioned before. In addition, the technique is capable
of detecting nonlinear functional relationships through elements such as nonlinear
functional kernels and basis functions such as splines or wavelets. The adaptive mix-
ture of linear and nonlinear elements in the regression relationship aims to achieve a
balance between model parsimony and flexibility. In essence, the technique specifies
a random, bidirectional nested clustering of the high-dimensional covariate matrix
and builds a nonlinear prediction model for the responses using the latent clusters as
covariates. Together, these components define a joint model for the responses and
covariates that results in an effective model-based clustering and variable selection
procedure, improved posterior inferences and accurate test case predictions.
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The rest of the chapter is organized as follows. We develop the proposed model in
Sect. 9.2. In Sect. 9.3, we describe a posterior inference strategy based on Markov
chain Monte Carlo (MCMC) techniques. In Sect. 9.4, we analyze the motivating
gene expression microarray datasets in Multiple Myeloma to demonstrate the effec-
tiveness of the proposed method and compare its prediction accuracy with those of
several existing variable selection procedures for continuous outcomes.

9.2 Model Construction

We model the responses and covariates in a hierarchical manner. Section 9.2.1
details the models for the covariates and their allocation to the latent clusters.
Section 9.2.2 describes the choice of the cluster-specific predictors and nonlin-
early relates them to the subject-specific Gaussian regression outcomes. Together,
these components define a coherent model that could be used for both inference and
prediction.

9.2.1 Modeling the Covariates and Latent Clusters

For the columns xxx1, . . . ,xxxp of the (continuous) covariate matrix, suppose each col-
umn vector belongs to exactly one of q � p clusters, where the cluster memberships
and q are unknown. For the covariate (column) j = 1, . . . , p, the covariate-to-cluster
assignment is determined by an allocation variable c j that equals k if the jth co-
variate belongs to the kth cluster, where k = 1, . . . ,q.

Furthermore, the clusters are associated with latent vectors vvv1, . . . ,vvvq, each of
length n. Typically, the covariates are noisy versions of the latent vector components,
resulting in high correlations among covariates that belong to a cluster. However,
within each cluster, the covariates of a few individuals may be highly variable. To
account for this greater heterogeneity, we model the covariates of these individuals
with a larger variance. Specifically, for the jth covariate, given that the allocation
variable c j equals k and given an indicator variable zik, we assume for i = 1, . . . ,n
that

xi j | zik,c j = k
indep∼

{
N(vik,τ2

1 ) if zik = 0

N(vik,τ2) if zik = 1

where τ2
1 and τ2 are component-specific parameters with inverse Gamma priors such

that τ2
1 � τ2. The value zik = 0 indicates that the covariates of subject i belonging

to the kth cluster have an unusually high variance. The indicator variables for the
(individual, cluster) combinations are apriori distributed as

zik
iid∼ Ber(ξ ), i = 1, . . . ,n and k = 1, . . . ,q,

where ξ ∼ beta(ι1, ι0) with ι1 � ι0, so that P(zik = 1) is high and only a small
proportion of covariates have a large variance.
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Allocation Variables

To gain an intuitive understanding of an appropriate model for the covariate-to-
cluster allocation, we performed an exploratory data analysis (EDA) of the multiple
myeloma datasets explained in Sect. 9.4. We randomly selected p = 500 probes
and n = 100 individuals, iteratively applying the k-means procedure to group the
covariates into clusters.

The iterations were terminated when the following conditions were satisfied: (i)
all within-cluster pairwise correlations of the covariates exceeded 0.3, and (ii) the
allocation R2 exceeded 0.7. Under the assumption that all the zik’s are equal to 1,
the stopping conditions encourage within-cluster concordance and a small value
of τ2. Figure 9.1 displays a barchart of the cluster sizes. The pattern we observe
is uncharacteristic of a Dirichlet process, which is usually dominated by a small
number of clusters with exponentially decreasing sizes. Specifically, for p= 500, the
large number of clusters (q̂= 125) and the predominance of relatively small clusters
are strongly suggestive of a non-Dirichlet type of allocation for the covariate-cluster
assignments.

Barplot of covariate−cluster sizes
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Fig. 9.1 Barchart of cluster sizes for the exploratory data analysis

The aforementioned EDA suggests the need for a wider range of allocation pat-
terns, such as that provided by a class of generalizations of a Dirichlet process called
the two-parameter PDP, introduced by Perman et al. (1992) and further studied by
Pitman (1995) and Pitman and Yor (1997). The allocation variables are apriori exc-
hangeable for PDPs, and more generally, for product partition models (Barry and
Hartigan 1993; Quintana and Iglesias 2003) and species sampling models (Ishwaran
and James 2003). We assume the following prior for the allocation variables of the
covariates:

c1, . . . ,cp ∼ PDP
(
α1,d

)
(9.2)
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where the discount parameter 0 ≤ d < 1 and mass parameter α1 > 0. The number
of distinct clusters, q, is stochastically increasing in α1 and d. For a fixed d, all the
covariates are assigned to separate clusters (i.e., q = p) as α1 → ∞. For a fixed α1,
setting d = 0 yields a Dirichlet process with mass parameter α1.

Conditional on the parameters α1 and d, the allocation variables of a PDP evolve
as follows. We may assume without loss of generality that c1 = 1. Subsequently,
for j = 2, . . . , p, suppose there are q( j−1) distinct clusters among c1, . . . ,c j−1, with

the kth cluster containing n( j−1)
k number of covariates, where k = 1, . . . ,q( j−1). The

predictive probability that the jth covariate belongs to the kth cluster is then

P
(
c j = k | c1, . . . ,c j−1

)
∝

{
n( j−1)

k − d if k = 1, . . . ,q( j−1)

α1 + q( j−1) ·d if k = q( j−1) + 1

where the event c j = q( j−1) + 1 corresponds to the jth covariate opening a new
cluster. When d = 0, we obtain the well-known Pòlya urn scheme for Dirichlet pro-
cesses (Ferguson 1973). Refer to Lijoi and Prünster (2010) for a detailed discussion
of Bayesian nonparametric models, including Dirichlet processes and PDPs.

The use of PDPs in this setting achieves dimension reduction for the covariate
clusters because the random number of clusters, q = q(p), is asymptotically equiva-
lent to

{
α1 · log p if d = 0 (Dirichlet process)

Td,α1 · pd if 0 < d < 1
(9.3)

for a random variable Td,α1 > 0. This implies that, as p → ∞, the number of clusters
of a Dirichlet process is of smaller order than that of a PDP with discount parameter
d > 0. Dirichlet processes have been previously utilized for dimension reduction; for
example, see Medvedovic et al. (2004), Kim et al. (2006), Dunson et al. (2008) and
Dunson and Park (2008). In essence, this provides an effective dimension reduction
clustering technique for regression settings that we exploit in our model.

The parameter d in the PDP model, Eq. (9.2), is given the mixture prior 1
2 δ0 +

1
2U(0,1), where δ0 denotes a point mass at 0. This allows the data to flexibly choose
between a Dirichlet process and a more general PDP for a suitable clustering mech-
anism of the covariates.

Latent Vector Elements

The PDP prior specification is completed by a base distribution in Rn for the i.i.d.
latent vectors. The nq number of components of the latent vectors vvv1, . . . ,vvvq are
assumed to have the following distribution:

vik
iid∼ G i = 1, . . . ,n, and k = 1, . . . ,q, (9.4)
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allowing the clusters to borrow strength and communicate through shared latent
vector elements. Furthermore, the real-valued distribution G is given a nonparamet-
ric Dirichlet process prior, which allows the latent vectors to flexibly capture the
within-covariate patterns of the subjects:

G ∼DP
(
α2 ;N(μ2,τ2

2 )
)

(9.5)

with mass parameter α2 > 0 and base distribution N(μ2,τ2
2 ). This implies that G

is discrete and that the number of distinct values among the vik’s is asymptotically
equivalent to α2 lognq. In Sect. 9.3, we demonstrate that this allocation scheme for
the latent vector elements is validated by the real dataset.

In essence, the aforementioned probability model specifies a random, bidirec-
tional nested clustering of the n× p covariate matrix. Unlike the model based clus-
tering approaches of Fraley and Raftery (2002), Quintana (2006) and Freudenberg
et al. (2010), the proposed method does not assume that it is possible to globally
reshuffle the rows and columns of the covariate matrix to reveal a clustering pat-
tern. Instead, somewhat similarly to the nonparametric Bayesian local clustering
(NoB-LoC) approach of Lee et al. (2013), the proposed method clusters the covari-
ates locally using two sets of product partition models (Hartigan 1990; Barry and
Hartigan 1993; Crowley 1997). However, there are significant differences between
NoB-LoC and the clustering aspect of our method, in that we are primarily moti-
vated by high-dimensional regression problems rather than bi-clustering, which is
the emphasis of NoB-LoC. In addition, NoB-LoC relies solely on Dirichlet pro-
cesses for clustering whereas the proposed method permits a mixture of Dirichlet
processes and PDPs.

9.2.2 Modeling the Predictor Choices and Regression Outcomes

For k = 1, . . . ,q, let nk be the number of covariates belonging to the kth cluster, so
that nk =∑p

j=1I (c j = k) and ∑q
k=1 nk = p. To gain an intuitive understanding, imag-

ine that each cluster nominates from its covariate members a representative uuuk. In
the prior, all nk covariates belonging to a cluster have an equal chance of being nom-
inated as the representative. Let sk denote the index of the covariate belonging to the
kth cluster that is chosen as its representative, so that csk = k and uuuk = xxxsk . In accor-
dance with our cluster-based strategy for dimension reduction, the responses are di-
rectly related to the cluster representatives rather than the individual covariates. The
regression predictors are then chosen from the set of q cluster representatives, and
the indices of their clusters constitute the set of cluster predictors, S ∗ ⊂ {1, . . . ,q}.
We emphasize that the latent vectors vvvk of Sect. 9.2.1 determine the allocation of the
covariates to the clusters, and so indirectly but significantly inf‘luence the choice of
the influence of the cluster representatives. As an alternative modeling strategy, we
could also choose the latent vectors themselves as the cluster representatives. The
former approach is more interpretable because practitioners often think in terms of
individual regressors and their corresponding effects on the outcome.
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The nominated cluster representatives are featured in an additive regression
model that can accommodate nonlinear functional relationships. Specifically, the
log–failure-times yi = log(wi) are the regression outcomes and have the distribution

yi
indep∼ N

(
ηi, σ2) , where

ηi = β0 +
q

∑
k=1

γ(1)k β (1)
k uik +

q

∑
k=1

γ(2)k h(uik,βββ
(2)
k ) (9.6)

for a nonlinear function h. The expression for ηi implicitly relies on the triplet of

cluster-specific indicators, γγγk = (γ(0)k ,γ(1)k ,γ(2)k ), where γ(0)k + γ(1)k + γ(2)k = 1. The

value γ(0)k = 1 corresponds to the cluster representative uuuk not appearing in Eq. (9.6)
and none of the covariates in latent cluster k being associated with the responses. The

value γ(1)k = 1 corresponds to uuuk appearing as a simple linear regressor in Eq. (9.6),

and γ(2)k = 1 corresponds to its occurrence in a nonlinear form. This adaptive mix-
ture of linear and nonlinear elements aims to achieve a balance between model par-
simony and flexibility.

Possible options for the function h in Eq. (9.6) include nonlinear function ker-
nels such as those based on reproducible kernel Hilbert spaces (Mallick et al. 2005),
nonlinear basis smoothing splines (Eubank 1999), and wavelets. Especially attrac-
tive due to their ease of construction and interpretability as a linear model are order-r
splines with m number of knots (de Boor 1978; Hastie and Tibshirani 1990; Denison
et al. 1998a):

hrm(uik,βββ
(2)
k | κκκ sk) = β (2)

k,1 uik · · ·+ · · ·β (2)
k,r ur

ik +
m

∑
t=1

β (2)
k,r+t(uik −κskt)

r
+

where ar
+ = (max{0,a})r and κκκsk denotes the vector of m knots associated with the

skth covariate. This construction allows one to capture the linear dependencies, and
perhaps more crucially, the nonlinear functional structures between the covariates
and responses. This formulation can be viewed as a special case (without interac-
tions) of multivariate adaptive regression splines, proposed by Friedman (1991) and
extended in the Bayesian framework by Denison et al. (1998b) and Baladandayutha-
pani et al. (2006).

The set of covariate predictors is then S = {sk : γ(1)k + γ(2)k > 0,k = 1, . . . ,q}
and it is a subset of {1, . . . , p}. The number of cluster predictors that appear as

simple linear regressors in Eq. (9.6) is q1 = ∑q
j=1 γ(1)j , and the number that appear

as nonlinear predictors is q2 = ∑q
j=1 γ(2)j . The number of cluster representatives that

are non-predictors is q0 = q− q1 − q2. The total number of cluster predictors is
|S ∗|= q1 + q2, which equals the number of covariate predictors, |S |.

For models with nonlinear functions h that can be interpreted as a linear model,
let γγγ = (γγγ1, . . . ,γγγq) and UUU γγγ be a matrix of n rows consisting of the intercept column
and the independent regression variables based on the cluster representatives. Let
col(UUU γγγ ) denote the number of columns of UUU γγγ . For example, if we use order-r splines
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with m number of knots in Eq. (9.6), then col(UUUγγγ) = q1 +(m+ r) ·q2 + 1. With the
symbol [·] representing densities, the prior for γγγ is

[γγγ] ∝ ωq0
0 ωq1

1 ωq2
2 ·I

(

col(UUU γγγ )< n

)

(9.7)

where ω0 +ω1 +ω2 = 1, and (ω0,ω1,ω2) ∼ D3(1,1,1), a Dirichlet distribution.
The restricted support of γγγ induces model sparsity, as discussed below. As before, a
g prior is assumed for the regression coefficients:

βββ γγγ ∼ N|S ∗|+1

(

000,σ2
β (UUU γγγ

′UUUγγγ)
−1
)

. (9.8)

An advantage of the procedure is its ability to quantify nonlinear functional re-
lationships between the responses and covariates. The nonlinearity measure N ∈
[0,1] is defined as the posterior expectation,

N = E
( ω2

ω1 +ω2
|www,XXX). (9.9)

The nonlinearity measure can be interpreted as the posterior predictive probabil-
ity that a hypothetical, additional cluster appears as a predictor in Eq. (9.6) in a
nonlinear form, rather than as a simple linear regressor. That is, N is the poste-

rior probability that γ(2)q+1 = 1. A value of N close to 0 (1) corresponds to linear
(nonlinear) associations between the response and a majority of the predictors.

The schematic architecture of the model is shown in Fig. 9.2 using a directed
acyclic graph.

9.3 Posterior Inference

Starting with an initial configuration obtained by a naı̈ve, preliminary analysis, the
model parameters are iteratively updated by MCMC methods. Section 9.3.1 des-
cribes the generation of the allocation variables. Section 9.3.2 describes the updates
of the latent vector elements and their binary indicators. Section 9.3.3 describes the
MCMC updates of the cluster predictors. Section 9.3.4 discusses the prediction of
responses for individuals with only covariates available.

Due to the intensive nature of the posterior inference, the analysis can be done in
two stages, with cluster detection followed by predictor discovery:

Stage 1 Focusing on only the covariates and ignoring the responses:

Stage 1a The procedures of Sects. 9.3.1 and 9.3.2 are iteratively performed un-
til the MCMC chain converges. Monte Carlo estimates are computed
for the posterior probability of clustering for each pair of covariates.
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Fig. 9.2 Directed acyclic graph of the proposed model in which the cluster representatives are
chosen from the set of co-clustered covariates. Circles represent stochastic model parameters, solid
rectangles represent data and deterministic variables, and dashed rectangles represent model con-
stants. Solid (dashed) arrows represent stochastic (deterministic) relationships

Applying the technique of Dahl (2006), these pairwise probabilities
are used to compute a point estimate for the allocation variables,
which is called the least-squares allocation.

Stage 1b As an optional step, if the latent vector elements are parameters of int-
erest, a second MCMC sample could be generated conditional on the
least-squares allocation using the procedure described in Sect. 9.3.2.
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Again applying the technique of Dahl (2006), we may compute a point
estimate, called the least-squares configuration, for the set of latent
vector elements {vik} and indicators {zik}.

Stage 2 Conditional on the least-squares allocation, and focussing on the responses,
a third MCMC sample is generated using the strategies of Sect. 9.3.3. The
sample is post-processed to obtain posterior inferences for the predictors.
As described in Sect. 9.3.4, the sample can also be used to predict the
outcomes of subjects with unknown responses.

As a further benefit of having a well-defined model for the covariates, as part
of the MCMC procedure, we are able to perform model-based imputations of any
missing covariate values.

9.3.1 Covariate-to-Cluster Allocation

For j = 1, . . . , p, the full conditional distribution of allocation variable c j is not
available in closed form. Nevertheless, we borrow ideas from sequential importance
sampling (refer to Liu 2008, chap. 3) to devise a Gibbs sampler. Applying this strat-
egy, new clusters were successfully opened 8.5 % of the time. Key to the fast mixing
rate of this strategy is the assumption that the clusters borrow strength through a
common distribution G for their latent vector elements.

Given the full set of allocation variables, the PDP discount parameter d ∈ [0,1) is
updated by a Metropolis-Hasting algorithm. The proposal distribution for this algo-
rithm exploits the fact that the likelihoods for a set of d’s can be quickly computed
in closed form (Lijoi and Prünster 2010).

For the motivating data, the upper left panel of Fig. 9.3 displays the estimated
posterior density of the PDP’s discount parameter d. The estimated posterior prob-
ability of the event [d = 0] is exactly zero, implying that a non-Dirichlet process
clustering mechanism is strongly favored by the data, as suggested earlier by the
EDA. The upper right panel of Fig. 9.3 plots the estimated posterior density of the
number of clusters. The a posteriori large number of clusters (for p = 500 covari-
ates) is suggestive of a PDP model with d > 0 (i.e., a non-Dirichlet process model).
The lower left panel of Fig. 9.3 summarizes the cluster sizes of the least-squares
allocation (Dahl 2006). The large number of clusters (q̂ = 111) and the multiplicity
of small clusters are very unusual for a Dirichlet process, justifying the use of the
more general PDP model.

9.3.2 Latent Vectors and Indicators

Among the allocation variables c1, . . . ,cp, suppose there are q clusters, with cluster
k consisting of nk = ∑p

j=1I (c j = k) covariates for k = 1, . . . ,q. As i = 1, . . . ,n
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Fig. 9.3 Posterior summaries for the motivating dataset. The top panels and the lower left panel
summarize the least-squares covariate-to-cluster PDP allocation of the 500 genes. The lower right
panel depicts the least-squares Dirichlet process configuration of more than 15,000 latent vector
elements with binary indicators equal to 1

and k = 1, . . . ,q vary, the sufficient statistics x̄ik = ∑p
j=1 xi j ·I (c j = k)/nk are

independently distributed as N(0,τ2
1/nk) if zik = 0, and as N(vik,τ2/nk) if zik = 1.

Dirichlet process prior (9.5) is conjugate to the above distribution and to the sam-
pling distribution of the zik’s. For i = 1, . . . ,n, and k = 1, . . . ,q, we can therefore
update the bivariate vector (vik,zik) by Gibbs sampling. To accommodate the large
number of latent vector elements, we apply a fast and accurate data squashing algo-
rithm developed by Guha (2010) for high-dimensional settings.

In Stage 1b of the two-stage analysis, we computed the least-squares configura-
tion of the latent vector elements. More than 90 % of the nq̂ = 11,100 latent vector
elements have ẑik = 1, implying that a relatively small proportion of covariate val-
ues for the motivating dataset can be regarded as random noise having no clustering
structure. The lower right panel of Fig. 9.3 presents a summary of the least-squares
configuration for the latent vector elements with ẑik = 1. For more than 9,000 latent
vector elements with ẑik = 1, there are only 195 distinct values representing the est-
imated point masses of the distribution G. The configuration has mainly large clus-
ters and closely resembles the typical configuration for a Dirichlet process model,
justifying assumption (9.5).

For each of the q̂ = 111 clusters in the least-squares allocation of Stage 1a, we
computed the correlations between its member covariates and the latent vector for
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individuals with ẑik = 1. The cluster-wise median correlations are plotted in Fig. 9.4.
The plots reveal fairly good within-cluster concordance regardless of the cluster
size.
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Fig. 9.4 For the motivating dataset, median pairwise correlations for the q̂ = 111 PDP clusters in
the least-squares allocation of Stage 1a

9.3.3 Cluster Predictors and Cluster Representatives

The choice of basis functions such as splines and wavelets for the nonlinear func-
tionals h in (9.6) results in nonlinear terms that are additive in analytic (e.g., polyno-
mial or periodic) functions of the cluster representatives. In such cases, it is possible
to integrate out the regression coefficients βββ γγγ to iteratively update the vector of

indicators γγγk = (γ(0)k ,γ(1)k ,γ(2)k ), for clusters k = 1, . . . ,q. Given the cluster represen-
tative uuuk and the set of indicators for the remaining (q−1) clusters, the sub-models

corresponding to γ(0)k = 1, γ(1)k = 1, and γ(2)k = 1, are then progressively nested.
Theoretical properties of Gaussian outcomes are exploited to quickly compute,

up to a multiplicative constant, the likelihood functions for these three sub-models.
This makes it possible to easily perform joint updates for the cluster representatives
uuuk and indicators γγγk. After a cycle of updates of q indicators and cluster represen-
tatives has been completed, the regression coefficients βββ γγγ may be jointly generated
from the full conditional if necessary.

9.3.4 Predictions

Suppose there are ñ additional individuals with unobserved responses but with avail-
able covariates x̃i1, . . . , x̃ip for i = 1, . . . , ñ. As with the training set, we arrange the
cluster representative elements for the test cases in an ñ× col(UUUγγγ ) matrix. Given
the set of predictors γγγ , expressions for the posterior predictions of the regression
outcomes, ỹyy, can be obtained (Guha and Baladandayuthapani 2014).
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9.4 Application to Gene Expression Data in Multiple Myeloma

The data we consider here comes from the Multiple Myeloma Research Consor-
tium Reference Collection, containing a total of 304 multiple myeloma patient sam-
ples, of whom the gene expression profiles were measured using Affymetrix U133
Plus 2.0 microarrays. Robust Multichip Average (RMA) was used to normalize and
quantify the expression levels of the data. We excluded samples without appropriate
clinical information, which resulted in 208 patients with Multiple Myeloma (MM),
and then randomly selected 100 patients for further downstream analysis. Hence,
the resulting dataset consists of the results of microarray assays of gene expres-
sion levels for 500 probes/genes from the 100 patients with MM. In addition to the
gene expression data, clinical information is also contained in the database, includ-
ing the patient’s age, gender, and measurements of clinical outcomes such as the
β2-microglublin—a serum protein which is a powerful prognostic factor and is an
indicator of the severity of MM. Plots of data show the distribution of the log ratios
are approximately symmetric about 0 thus justifying our gaussian assumptions.

We performed 50 independent replications of the three steps that follow. (i) We
randomly split the data into training and test sets in a 2:1 ratio. (ii) We analyzed
the failure times and p = 500 gene expression levels of the training cases using the
proposed method and the techniques lasso, adaptive lasso, elastic net, and super-
vised principal components. (iii) The different techniques were used to predict the
test case outcomes.

For the proposed procedure, a single covariate from each cluster was chosen to be
the cluster representative. From a practical perspective, we have observed that the
reliability of inferences and future predictions rapidly deteriorates as the number
of cluster predictors and the number of additive nonlinear components in Eq. (9.6)
increase. In spline-based models, this puts a constraint on the order of the splines,
often necessitating the use of linear splines with m = 1 knot per cluster in Eq. (9.6).
In this application, we fixed the knot for each covariate at the sample median.

Posterior inferences for some model parameters are summarized in Table 9.1.
The number of clusters for the least-squares allocation of covariates, q̂, computed in
Stage 1a of the analysis, is considerably smaller for the breast cancer dataset. The
relatively high estimates for the nonlinearity measure N indicate that the responses
have nonlinear relationships with a majority of the predictors. In spite of being ass-
igned a prior probability of 0.5, the estimated posterior probability of the Dirichlet
process model (corresponding to discount parameter d = 0) is exactly 0 for both
datasets, justifying the allocation scheme in Eq. (9.2).

Table 9.1 Posterior inferences for selected model parameters

Parameter Motivating dataset
q̂ 111
ˆN 0.52 (0.00)

P̂[d = 0| data] 0
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Fig. 9.5 Side-by-side boxplots of percentage concordance error rates for the motivating dataset

Comparing the test case predictions with the actual β2-microglublin outcomes,
boxplots of numerical summaries of the concordance error rates for all the methods
are presented in Fig. 9.5. The proposed method had the lowest error rate for the
dataset, demonstrating its effectiveness in producing highly predictive models with
small model sizes.

9.5 Conclusions

In summary, we offer an efficient methodology for high-dimensional clustering,
variable selection, and prediction for continuous responses. The model exploits the
sparsity of PDPs as dimension-reduction devices. Specifically, the covariates are
grouped into lower-dimensional latent clusters consisting of covariates having sim-
ilar patterns for the subjects, and are permitted to choose between PDPs and their
special case, a Dirichlet process, for a suitable cluster allocation scheme. We theo-
retically determine how a PDP-based clustering is able to be distinguished from a
Dirichlet process in terms of the number and relative sizes of their clusters.

We exploit different features of the model to develop an MCMC strategy that in-
cludes Metropolis-Hastings steps and a Gibbs sampler with efficient sequential im-
portance sampling moves for cluster allocation. In predictive accuracy, the technique
compares favorably with several existing methodologies for failure time datasets,
consistently outperforming nonlinear techniques. These findings make a compelling
case for the use of the proposed in high-dimensional regression settings such as ge-
nomics where it is critically important to detect predictive (or prognostic) models
relying on a few, but important, genes that can be further biologically validated via
functional experiments.
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Chapter 10
Markov Processes in Survival Analysis

Luis E. Nieto-Barajas

Abstract This chapter presents some discrete and continuous Markov processes
that have shown to be useful in survival analysis and other biostatistics applica-
tions. Both discrete and continuous time processes are used to define Bayesian non-
parametric prior distributions. The discrete time processes are constructed via latent
variables in a hierarchical fashion, whereas the continuous time processes are based
on Lévy increasing additive processes. To avoid discreteness of the implied random
distributions, these latter processes are further used as mixing measures of the pa-
rameters in a particular kernel, which lead to the so-called Lévy-driven processes.
We present the use of these models in the context of survival analysis. We include
univariate and multivariate settings, regression models and cure rate models.

10.1 Introduction

All the chapters in this book are meant to be related to Bayesian nonparametrics.
There is no point in me going deeper in the definition of the approach, but I will use
some lines to share with you my understanding of the topic.

Bayesian nonparametric theory handles statistical inference by assuming a non-
parametric sampling distribution and making decisions via the Bayesian paradigm.
By nonparametric sampling distributions we mean distribution families with infinite
(or large) dimensional parameter spaces. Since Bayesian decision theory requires to
express prior knowledge on the unknown quantities, a Bayesian nonparametric prior
is a probability measure on an infinite dimensional space. What makes a prior to be
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nonparametric was clearly stated by Ferguson (1973) “a nonparametric prior must
have large support in the sense that any fixed probability measure can be arbitrarily
approximated by a probability measure generated by the prior.”

In notation, let X1, . . . ,Xn be a sample of random variables (r.v.) such that, condi-
tionally on a cumulative distribution function (c.d.f.) F defined on (X ,B), the r.v.’s

are independent and identically distributed (i.i.d.), that is, Xi|F iid∼ F , where X ⊂ IR
is the sample space and B the Borel’s σ -algebra. Under a Bayesian nonparametric
approach, the law F that describes the behaviour of the Xi’s can itself be treated
as unknown. To place a prior on F , we rely on stochastic processes whose paths
are c.d.f.’s. In notation, F ∼P , where P , defined on (F ,A ), is the nonparamet-
ric prior, with F the set of all c.d.f.’s and A an appropriate σ -algebra of subsets
of F . If we think on the probability measure induced by F , then we say that this is
a random probability measure.

In this chapter we will present some stochastic processes that are used to define
Bayesian nonparametric priors in survival analysis. In Sect. 10.2 we define some
discrete and continuous Markov processes and present some of their properties. In
Sect. 10.3 we describe survival analysis models in discrete and continuous time, we
include univariate and multivariate models, regression models and cure rate models.
We illustrate the behaviour of some of the models in Sect. 10.4.

Before we proceed we introduce notation: Be(a,b) denotes a beta density with
mean a/(a+b); Ga(a,b) denotes the gamma density with mean a/b; Bin(c, p) den-
otes a binomial density with number of trials c and probability of success p; Po(c)
is a Poisson density with mean c; Pg(a,b,c) denotes a Poisson-gamma density with
mean ca/b; N(μ ,σ2) is a normal density with mean μ and variance σ2.

10.2 Markov Processes

A stochastic process can be thought of as a family of random variables linked via
a parameter which takes values on a specific domain. According to Doob (1953),
a stochastic process is the mathematical abstraction of an empirical process whose
development is governed by probabilistic laws. Let {Z(t); t ∈T } denote a stochas-
tic process with domain or index set T and range or state spaceZ . IfT is a discrete
(countable) set, say the natural or the integer numbers, then the process is said to
be a discrete time process, whereas if T is a continuous (uncountable) set, like the
real numbers or a bounded interval, then the process is said to be a continuous time
process. To distinguish between them, we will use the notation Zt for discrete time
processes and Z(t) for continuous time processes.

Let (Z ,B,P) be a probability space, then the process {Zt} is said to be a Markov
Process if for any B ∈B and for every s, t ∈T with s < t the following Markovian
property is satisfied: P(Zt ∈ B | {Zu},u ≤ s) = P(Zt ∈ B | Zs). In words, a stochastic
process is Markov if the probability of the future given the present does not depend
on the past.
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10.2.1 Discrete Time Processes

There are several ways of constructing discrete time Markov processes. Here we
review a generative definition that is based on latent variables with priors that belong
to the class of conjugate distributions in Bayesian analysis. Therefore these pro-
cesses are also called Gibbs Markov processes. Since most of these processes are
used to define prior distributions for infinite dimensional parameters in a Bayesian
nonparametric context, we will use Greek letters to denote them.

Let {θt} be a discrete time stochastic process such that t ∈ T = {1,2, . . .}. Let
{ηt} for t ∈T be a latent discrete time stochastic process. Nieto-Barajas and Walker
(2002) defined a Markov process with dependence of order one. Their construction
can be represented graphically as in the diagram depicted in Fig. 10.1. Information
between θt and θt+1 is passed only thorough ηt .

η1 η2 η3 η4 η5

θ1 θ2 θ3 θ4 θ5

� � � � �

� � � �

Fig. 10.1 Graphical representation of a Markov process with dependence of order one

Specifically, Nieto-Barajas and Walker (2002) constructed beta and gamma
Markov processes with the following specifications. The beta process relies on a
latent binomial process, that is

θ1 ∼Be(a,b), ηt | θt ∼Bin(ct ,θt ), and θt+1 | ηt ∼ Be(a+ηt ,b+ct −ηt), (10.1)

for t = 1,2 . . .. The gamma process, on the other hand, relies on a latent Poisson
process, that is

θ1 ∼ Ga(a,b), ηt | θt ∼ Po(ctθt), and θt+1 | ηt ∼ Ga(a+ηt ,b+ ct), (10.2)

for t = 1,2, . . .. In any case, the joint distribution of the variables (θ1, . . . ,θT ) is

f (θ1,θ2, . . .) = f (θ1)∑
η1

· · ·∑
ηT

T

∏
t=1

f (ηt | θt) f (θt+1 | ηt)

from which the Markovian property can be verified. In particular, the conditional
expectation of θt+1 given θt has a linear form, E(θt+1 | θt) becomes (a+ctθt)/(a+
b+ ct) for the beta process, and (a+ ctθt)/(a+ ct) for the gamma process.

Processes defined by (10.1) and (10.2) take their name not only because they use
conditional beta and gamma distributions in their constructions, but also because
marginally θt is Be(a,b) and Ga(a,b), respectively. Therefore, parameters (a,b)
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determine the form of the marginal distribution of θt and parameters {ct} determine
the strength of dependence, in fact, Corr(θt + 1,θt) is ct/(a+ b+ ct) for the beta
process, and ct/(b+ct) for the gamma process. Furthermore, if ct = c for all t, then
the processes {θt} become strictly stationary.

10.2.2 Lévy-Driven Processes

An independent increments process, or additive process, is a continuous time pro-
cess such that for t1 < t2 < · · · < tk ∈ T , the increments Z(ti),Z(t2)− Z(t1), . . . ,
Z(tn)− Z(tn−1) are independent. The two principal members of this class are the
Wiener and Poisson processes. According to, e.g., Gikhman and Skorokhod (1969),
every stochastically continuous process with independent increments can be repre-
sented as the sum of a Wiener process and an integral of Poisson processes.

A stochastic process Z(t) with independent increments is said to be homogeneous
if the increments are stationary, that is, if the distribution of Z(t + s)− Z(t) only
depends on s. Lévy processes are homogeneous independent increments processes,
and are usually referred to as random walks in continuous time.

Lévy processes can have non-monotonic paths. However, the Lévy processes
used to construct priors in Bayesian nonparametric inference are usually nonde-
creasing, nonnegative and with piecewise constant paths. They are known as pure
jump Lévy processes. Moreover, the homogeneity constraint that characterizes a
Lévy process is relaxed to nonhomogeneous cases in the definition of nonparametric
priors. Strictly speaking such processes are not Lévy any more and a more appro-
priate name would be increasing additive processes, but we will still refer to them
as nonhomogeneous Lévy processes.

The probability law of a pure jump (homogeneous or nonhomogeneous) Lévy
process is characterized by its Laplace transform and is given by

E
{

e−φZ(t)
}
= exp

{

−
∫ t

−∞

∫ ∞

0

(
1− e−φv)ν(dv,ds)

}

, (10.3)

where ν(dv,ds) = ρ(dv|s)α(ds) is called the Lévy intensity, ρ(·|s) is a measure on
IR+ that controls the jump sizes for every location s, and α(·) is a measure on IR
that determines the jump locations. The Lévy intensity must satisfy the condition

∫

A

∫ ∞

0
min{v,1}ν(dv,ds)< ∞,

for any bounded A ⊂ Z . If the measure ρ is independent of the locations s, i.e.,
ρ(dv|s) = ρ(dv), the process Z(t) is homogeneous.
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There are several Lévy intensities that satisfy the previous condition, most of
them can be seen as particular cases of the following two nonhomogeneous Lévy
intensities:

(i) Generalized gamma: ρ(dv|s) = Γ (1− ε)−1v−(1+ε)e−β (s)vdv, with ε ∈ {(0,1)∪
{−1}}, and

(ii) Log-beta: ρ(dv|s) = (1− e−v)−1e−β (s)vdv,

with a nonhomogeneous parameter function β (s)≥ 0 for all s ∈ IR, together with a
measure α(s) on IR. In particular, for case (i) and with ε = −1, the Lévy measure
becomes finite, i.e., the number of jumps in a finite interval is finite, whereas infinite
Lévy measures have an infinite number of jumps in a finite interval.

A Lévy process can be generalized to include fixed jump locations τ1,τ2, . . ., with
independent nonnegative jump sizes Z{τ1},Z{τ2}, . . . (also independent of the rest
of the process). A general Lévy process becomes

Z(t) = Zc(t)+∑
j

Z{τ j}I(τ j ≤ t),

where Z{t}= Z(t)−Z(t−) and Zc(t) is a Lévy process without fixed points of dis-
continuity, also known as “continuous” part, whose law is characterized by (10.3).
Although Zc(t) is called “continuous”, Zc(t) is almost surely discrete, so it can be
represented as Zc(t) = ∑ j Jc

j I(τc
j ≤ t) e.g. Ferguson and Klass (1972), where {Jc

j}
are random jump sizes and {τc

j} are random locations.
Let μ denote the measure induced by the Lévy process Z(t). That is, for a set A⊂

T , say A = (a0,a1] for a0,a1 ∈T , define μ(A) := Z(a1)−Z(a0). Then, in measure
theory, μ is called completely random measure. These measures are important since
they can be generalized to more general complete and separable metric spaces. We
refer the reader to Daley and Vere-Jones (2008) for details.

In general, a Lévy-driven process is any process defined as a function of a Lévy
process. A specific form of the Lévy-driven processes used to construct Bayesian
nonparametric priors are Lévy-driven mixtures of a kernel k(x,s) with weights (or
mixing measure) given by a Lévy process Z(s). In notation, a Lévy-driven process
W (t) has the form

W (t) =
∫

k(t,s)Z(ds) (10.4)

Like a Lévy process, the Lévy-driven process defined in (10.4) is a Markov pro-
cess. Depending on the choice of the kernel k, a Lévy-driven process can have piece-
wise constant paths, smooth increasing paths, or non-monotonic paths. Examples
can be seen in Fig. 10.2, where we show random paths of Lévy-driven processes for
different choices of the kernel k. Note that the jump sizes and locations were kept
the same across the different panels in Fig. 10.2 to better appreciate the influence of
the kernel. The general condition we require on a kernel k(x,s) is to be nonnegative
for all x and s. Further conditions are imposed according to the specific use of the
process to properly define a prior. These will be described later in this section.
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Fig. 10.2 Random Lévy-driven paths for different kernels: k(t, s) = I(s ≤ t) (top left); k(t, s) =
{1 − (s/t)}I(s ≤ t) (top right); k(t, s) = exp{−(t − s)}I(s ≤ t) (bottom left); and k(t, s) =
3(t − s)2 exp{−(t − s)3}I(s ≤ t) (bottom right). In each panel the lines represent different random
realizations of the process W (t)

10.2.3 From Discrete to Continuous Time Processes

Nieto-Barajas and Walker (2007b) established a connection between Gibbs and au-
toregressive processes. Considering this connection and by taking a suitable limit,
they showed that a particular autoregressive gamma process converges to a Lévy-
driven process. We sketch the derivation here.

Consider the (Gibbs) gamma process (10.2) in its stationary form, that is, ct = c
for all t, and with b = 1. Nieto-Barajas and Walker (2007b) derived the innovation
term for an autoregressive process to be also stationary gamma. In particular they
obtained that by taking

θt = ρθt−1 +ρζt , (10.5)

where ρ = c/(1+ c), and

ζt |ξt ∼ Ga(ξt ,1), ξt |γt ∼ Po(γt/c) and γt ∼ Ga(a,1),

implies that {θk} is a strictly stationary process with Ga(a,1) marginals and with
conditional expected value E(θt+1 | θt) = (a+cθt)/(1+c), matching the Gibbs type
process (10.2).

To avoid confusion from now on we denote the discrete time index by k and
use t ∈ T = IR+ to index a process in continuous time. Nieto-Barajas and Walker
(2007b) defined a partition of T for each n, via 0 = τn,0 < τn,1 < τn,2 < · · · , with
τn,k = k/n for k = 0,1, . . ., and made cn depend on n via cn = cn for some c > 0.
They thus defined a piecewise constant process Wn(t) as Wn(0) = θn,0 and, for t > 0

Wn(t) =
∞

∑
k=1

θn,k I
(
τn,k−1 < t ≤ τn,k

)
,
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where θn,0 ∼ Ga(α,1) and {θn,k} is either the Gibbs process (10.2) or the autore-
gressive process (10.5). This continuous time process Wn(t) is strictly stationary
with marginal distribution Ga(a,1) for all t ≥ 0.

Nieto-Barajas and Walker (2007b) showed that the autocorrelation function of
process Wn(t), regardless of the choice of {θn,k} to be of Gibbs type or autoregres-
sive, is Corr(Wn(t),Wn(0)) = {cn/(1+ cn)}�nt� and converges to e−t/c as n → ∞,
which is the autocorrelation function of a Lévy-driven process of the form (10.4).
However, the only process that does converge to a Lévy-driven is Wn(t) defined in
terms of the autoregressive process. In this case, the limiting Lévy-driven process,
say W (t), is a shot-noise process of the form

W (t) =
∫ t

0
e−(t−s)/cZ(ds),

where Z(s) is a Lévy process with a fixed jump at zero and finite Lévy measure
for the continuous part ν(dv,ds) = (a/c)e−vdvds. This implies that W (t)∼ Ga(a,1)
marginally for all t ≥ 0. Bottom left panel in Fig. 10.2 presents random paths from a
shot-noise process. They have non-monotonic paths and present sudden increments
(shots) with exponential decays.

10.3 Nonparametric Priors

As was mentioned in Sect. 10.1, a nonparametric prior is a probability measure P
on the space F of all cumulative distribution functions. Broadly speaking, we can
think of a nonparametric prior as a probability measure on the space of probability
models. Therefore, we can place the prior on densities, cumulative distributions, sur-
vival functions, hazard rates, or any other function that characterizes the behaviour
of the observable random variables. In survival analysis, for instance, it is custom-
ary to place the prior on the space of survival or hazard functions. For density es-
timation, the nonparametric prior is usually placed on the density or cumulative
distribution functions.

10.3.1 Survival Models

Discrete time processes (10.1) and (10.2) have been used in survival analysis to
construct priors on hazard rates (Nieto-Barajas and Walker 2002). Here we review
these models. In survival analysis the variable of interest is denoted by T and is
usually referred to as a failure time.

Let T be a nonnegative discrete random variable taking values on {τ1,τ2, . . .}
(a possible infinite set) with density function f (t) such that f (t) = P(T = τ j)
if t = τ j and f (t) = 0 otherwise. Let S(t) = P(T > t) be the survival function
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associated with f (t), and h(t) the corresponding hazard rate function such that
h(t) = P(T = t | T ≥ t). This hazard rate only takes values θ j = h(τ j) different than
zero at times t = τ j, j = 1,2, . . .. We can therefore express the density function in
terms of the hazard rate h(t), i.e. {θ j}, as

f (τ j) = θ j

j−1

∏
k=1

(1−θk) j = 1,2, . . . . (10.6)

We can think of h(t) to be defined by an infinite set of parameters {θ j}, then by
assigning a prior on {θ j} we induce a nonparametric prior on h and f . Nieto-Barajas
and Walker (2002) took {θ j} to be the beta process (10.1). This beta process prior on
the hazard rates allows us to borrow information across adjacent times τ j and τ j+1

and thus produce a smoothed version of the Nelson-Aalen nonparametric classical
estimator (Aalen 1978).

Let us now consider T to be a nonnegative continuous random variable with
support on the positive real line IR+ and density function f (t) for t ≥ 0. Denote
by S(t) = P(T > t) the survival function and by h(t) the hazard (intensity) function
defined as h(t) = f (t)/S(t) = −S′(t)/S(t), where prime (′) denotes derivative with
respect to t. From the hazard intensity function we can recover the density function
via the expression

f (t) = h(t)exp

{∫ t

0
h(s)ds

}

. (10.7)

If we think of {h(t)} as an infinite dimensional parameter, we can place a prior on
h to induce a nonparametric prior on f .

There are several ways of defining a prior on h(t) based on the Markov processes
of Sect. 10.2. One way is by defining h(t) as a piecewise constant function of the
form

h(t) =
J

∑
j=1

θ jI(τ j−1 < t ≤ τ j), (10.8)

with 0 = τ0 < τ1 < · · · ,τJ = ∞ and {τ j} forming a partition of the positive real line
in intervals (τ j−1,τ j ], j = 1,2, . . . ,J. The value J controls the flexibility of the piece-
wise constant hazard. J = 1 implies a fully parametric exponential model whereas
larger values of J induce a more nonparametric model. Potentially J could be infi-
nite. Nieto-Barajas and Walker (2002) took {θ j} to be the gamma process (10.2) to
define a nonparametric prior.

Alternatively, instead of partitioning the positive real line, we can directly put a
prior on h(t) based on a continuous time process. Nieto-Barajas and Walker (2004)
took

h(t) =W (t) (10.9)

with W a Lévy-driven process of the form (10.4).
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10.3.2 Survival Regression Models

Survival regression models with covariates are also available. Let Ti be the failure
time of individual i with p-dimensional covariate vector X′

i = (X1i, . . . ,Xpi), for i =
1, . . . ,n. In its more general form, the covariates could sometimes be time dependent,
that is Xji = Xji(t), for some j ∈ {1, . . . , p}.

The most widely used model that accounts for covariates is the proportional haz-
ards model (Cox 1999). This model is specified semiparametrically by assuming
that the hazard function of individual i is

hi(t | xi) = λi h0(t), (10.10)

with λi = exp{βββ ′xi(t)}, βββ ′ = (β1 . . . ,βp) is a vector of regression coefficients with
no intercept and h0(t) is a baseline hazard function which corresponds to the hazard
function of an individual with xi = 0.

The baseline function h0(t) is unspecified. We can assign a nonparametric prior
on h0(t) to induce a Bayesian semiparametric model for the survival times Ti’s.
Nieto-Barajas (2003), for instance, used a piecewise constant function of the form
(10.8) together with the gamma process prior (10.2). On the other hand, Nieto-
Barajas and Walker (2005) used a continuous specification of h0(t) as in (10.9)
together with a Lévy-driven process prior (10.4).

Alternative survival regression models have been proposed. Recently, based on
the two groups survival model (Yang and Prentice 2005), Nieto-Barajas (2014a)
proposed a regression model where the hazard rate for individual i has the form

hi(t | xi) =
λiϕiR′(t)

ϕi +λiR(t)
, (10.11)

where λi = exp(βββ ′xi), ϕi = exp(γγγ ′xi) and R(t) is a baseline nonnegative mono-
tone increasing function, with βββ and γγγ vectors of coefficients with no intercept. If
we consider the “baseline individual” for which xi = 0 (⇒ λi = ϕi = 1), then R(t)
becomes the odds function {1− Si(t)}/Si(t).

Model (10.11) can be seen as a generalization of model (10.10). To see this we
consider the hazard ratio between individual i and the baseline individual,

h(t | xi)

h(t | 0)
=

λiϕi

λi +(ϕi −λi)/{1+R(t)}.

By taking limits as the time approaches zero or infinity we get that λi corresponds to
the short-term (t → 0) hazard ratio whereas ϕi corresponds to the long-term (t → ∞)
hazard ratio. When both parameters are equal, i.e. λi = ϕi, means that the hazard
ratio remains constant for any value of t, which corresponds to the proportional
hazards model (10.10) when the covariates do not depend on time. If ϕi = 1, the
resulting model corresponds to the proportional odds model (Bennet 1983). More-
over, when (λi − 1)(ϕi − 1)< 0 the hazard functions of individual i and that of the
baseline individual cross.
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Noting that the nonparametric function R(t) behaves like a cumulative hazard
function and therefore R′(t) behaves like a hazard function, Nieto-Barajas (2014a)
use a Lévy-driven process of the form (10.4) to model R′(t).

To complete the overview of the most common survival regression models, we
mention the accelerated failure time model (e.g. Klein and Moeschberger 1997).
This model defines a hazard rate for individual i as

hi(t | xi) = λi h0(λi t), (10.12)

where again λi = exp{βββ ′xi} and h0(t) is a baseline hazard function. A different
way of seeing model (10.12) is by writing Ti = T0/λi, where T0 is the failure time
of the baseline individual. Therefore the covariates effect through λi accelerate o
decelerate the failure time, i.e., an individual with failure time t under xi = 0 would
have a failure time t/λi under xi.

Although the Markov process defined in Sect. 10.2 could be used to define a prior
on h0(t), they have not been studied. However, alternative nonparametric priors for
model (10.12) have been proposed. For instance, Christensen and Johnson (1988)
use Dirichlet processes, and Hanson and Johnson (2002) use Pólya trees.

10.3.3 Cure Rate Models

In the study of time-to-event data for certain diseases, there exists a positive proba-
bility of not observing the failure event. In other words, there exists a fraction of the
population that is cured of or insusceptible to the disease, who thus will never expe-
rience the failure. Survival models that incorporate a cure fraction are often referred
to as cure rate models.

In a typical (proper) survival model, when the time goes to infinity, the survival
function vanishes at zero which means that all individuals in the population will
die or present the failure event. On the other hand, in a cure rate model, the sur-
vival function does not go to zero as time approaches infinity, but remains positive,
implying an improper survival model.

Berkson and Gage (1952) represented a cure rate model as a mixture of two sub-
populations, the immune people and the susceptible people. Let g(t) and G(t) be the
density and the survival function, respectively, of the susceptible people. Then the
survival function of the entire population can be written as S(t) = π +(1−π)G(t),
where π ∈ (0,1) is the cure proportion. Note that in the previous expression the
survival function for the cured sub-population is 1. In terms of the hazard function,
this mixture model can be written as

h(t) =
(1−π)g(t)

π +(1−π)G(t)
(10.13)



10 Markov Processes in Survival Analysis 205

On the other hand, Yakovlev and Tsodikov (1996) modelled directly the (imp-
roper) survival function as S(t) = exp[−λ{1−G(t)}], where λ > 0 is a nonnegative
parameter related to the cure proportion as π = exp(−λ ), and G(t) is a (proper)
survival function, nonnecessarily associated with a susceptible group as in (10.13).
In terms of the hazard function this model becomes

h(t) = λ g(t). (10.14)

Noting that a sufficient condition to have a cure rate model is that the area under
the hazard function is finite, Nieto-Barajas and Yin (2008) proposed a cure threshold
model of the form

h(t) = h0(t)I(t ≤ τ), (10.15)

where h0(t) is a baseline hazard function and τ is the cure threshold time after
which an individual could be considered cured or risk-free. In this model the cure
proportion becomes

π = exp

{

−
∫ τ

0
h0(s)ds

}

.

The baseline hazard function h0 was modelled using the piecewise function (10.8)
together with the gamma process prior (10.2). Due to the piecewise nature of h0,
the threshold parameter becomes discrete, say τz, with z the index from where the
baseline hazard becomes zero, i.e. θz+1 = θz+2 = · · · = 0. The model is completed
by assigning a prior distribution for z of the form z−1 ∼ Po(μ) to ensure that z > 0,
with μ > 0 a hyperparameter.

The previous cure rate models have all been extended to include covariates in dif-
ferent ways. Kuk and Chen (1992) extended model (10.13) by considering a logistic
regression model for the cure proportion defining πi = exp(βββ ′xi). For the suscepti-
ble group only they further considered a proportional hazards model as in (10.10).
However, they assumed a parametric form for the hazard g(t).

Chen et al. (1999) generalized model (10.14) by taking λi = exp(βββ ′xi). This
extension is equivalent to considering a proportional hazards assumption. A further
generalization of model (10.14) was introduced by Yin and Nieto-Barajas (2009) to
include multiplicative and additive covariates. Their model is of the form

hi(t | xi) = λi g(t)+ϕi, (10.16)

where λi = exp(βββ ′xi) and ϕi = γγγ ′xi, in which either βββ or γγγ includes and intercept
but not both. Note that ϕi ≥ 0 for the model to be well defined. Depending on the
covariates space, this induces a constraint in the coefficients γγγ .

Model (10.16) can also be used to test the existence of a cure proportion since
γγγ = 0 implies a positive cure proportion, whereas γγγ 	= 0 induces a proper survival
model where the cure proportion is zero. Yin and Nieto-Barajas (2009) took a non-
parametric prior for the density g(t) in (10.16) induced by a prior on the correspond-
ing hazard function which was assumed to be piecewise as in (10.8) with the gamma
process prior (10.2).
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Extensions of model (10.15) to include covariates were also proposed by Nieto-
Barajas and Yin (2008) in two ways. First, covariates were assumed to have a
proportionality effect in the hazards, and second, covariates were also thought of
determining the cure threshold time τz. The extended model is

hi(t | xi) = λi h0(t)I(t ≤ τi), (10.17)

where λi = exp(βββ ′xi) and in the particular case when h0 is piecewise constant, as in
(10.8), then τi becomes τzi with zi −1 ∼ Po(μi), μi = exp(γγγ ′xi) and βββ and γγγ vectors
of coefficients where βββ has no intercept.

10.3.4 Multivariate Models

There are several settings in survival analysis where multivariate time to event ob-
servations arise. These include competing risks, recurrent events and frailty models
(e.g. Klein and Moeschberger 1997). Here we describe the latter case.

Let us concentrate on the bivariate case where (T1,T2) are two (dependent) failure
times with joint survival function S(t1, t2). Let G1 and G2 be two univariate survival
functions. The common frailty model (Clayton 1978) is usually written in terms
of the hazard function and assumes a multiplicative random effect. In terms of the
bivariate survival function this model becomes a mixture of the form

S(t1, t2) =
∫

{G1(t1)G2(t2)}ωm(ω)dω , (10.18)

where ω is the random effect or frailty with distribution m(ω).
Allowing each failure time to have its own frailty, Marshall and Olkin (1988)

propose the model

S(t1, t2) =
∫ ∫

{G1(t1)}ω1{G2(t2)}ω2m(ω1,ω2)dω1dω2, (10.19)

where m(ω1,ω2) is a bivariate distribution of the two frailties.
In (10.18) and (10.19) the marginal survival function S j is not G j. Their rela-

tion is given by G j(t) = exp[−φ−1
j {S j(t)}], where φ j(·) is the Laplace transform of

ω j, j = 1,2. A typical additional requirement for the frailties is that E(ω j) = 1 to
ensure estimability when combined with proportional hazards model (10.10). Most
frailty models give G j a parametric form. But a nonparametric form is certainly also
possible.

Similar to the previous mixture models, Nieto-Barajas and Walker (2007a) pro-
posed a bivariate model parametrized in terms of the marginal hazard functions.
Let h j(t) be the marginal hazard function of Tj with corresponding cumulative
hazard function Hj(t) =

∫ t
0 h j(s)ds, j = 1,2. The joint density function f (t1, t2) is

expressed as
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f (t1, t2) =
∫ ∫

h1(t)
ω1

I{ω1 > H1(t)}h2(t)
ω2

I{ω2 > H2(t)}m(ω1,ω2)dω1dω2,

(10.20)

where m(ω1,ω2) is a bivariate distribution such that marginally m(ω j) = Ga(ω j |
2,1) for j = 1,2. This requirement is needed so that h j is the marginal hazard func-
tion of Tj. Specifically, Nieto-Barajas and Walker (2007a) defined the joint frailty
m(ω1,ω2) by taking ω j | δ ∼Ga(2+δ ,1+d) conditionally independent for j = 1,2
and δ ∼ Pg(2,1,d) and d > 0 a hyper-parameter. This implies that ω j ∼ Ga(2,1)
marginally, for j = 1,2 with correlation Corr(ω1,ω2) = d/(1+ d).

Construction (10.20) defines a copula (e.g. Nelsen 1999). Its association proper-
ties have also been studied in Nieto-Barajas and Walker (2007a). The two marginal
hazard functions h j, j = 1,2 can be assigned a nonparametric prior of the form
(10.8) together with the gamma process prior (10.2), or a Lévy-driven process prior
(10.4) as in (10.9). Moreover, the model can be extended to cope with covariates
in a proportional hazards manner (10.10) by taking hi j(t | xi) = λih j(t), where as
before λi = exp(βββ ′xi) for i = 1, . . . ,n and j = 1,2.

10.4 Numerical Illustrations

Posterior inference in the previous models requires us to update the law that des-
cribes the underlying process. For priors that rely on discrete time processes, poste-
rior distributions are obtained in the same way as parametric models, the only con-
sideration is that the number of parameters to be updated can be very large. For the
prior that rely on continuous time processes, and specially Lévy-driven processes,
posterior distributions are slightly more difficult to obtain. The complexity depends
on the specific model. But in all cases the posterior law can be characterized through
the Laplace transform (10.3) conditional on the data. Specific guidelines on how
to obtain the posterior characterizations of Lévy-driven processes can be found in
Nieto-Barajas (2014b) and in the specific references of each model. For the regres-
sion models, posterior distributions are characterized through the full conditionals
and therefore a Gibbs sampler (Smith and Roberts 1993) will often be required.

In this section we illustrate the performance of some of the survival models des-
cribed above. Inference in models that rely on the beta and gamma processes (10.1)
and (10.2), apart from the cure rate models and bivariate models, all are imple-
mented in the R package BGPhazard that can be available from CRAN (Team
2014). The manual that comes with the package explains the use of the different
routines. However, if that is not enough, further explanation and examples run with
the package can be obtained from Garca-Bueno and Nieto-Barajas (2014).
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10.4.1 Example 1

In this first example we illustrate the use of the Markov beta process (10.1) to model
hazard rates as in (10.6) in a discrete survival model. We analyse the 6-MP clin-
ical trial data (Freireich et al. 1963) which consists of remission duration times
(in months) for children with acute leukemia. The study consisted in comparing
drug 6-MP versus placebo. We concentrate on the 21 patients who received placebo.
Observed time values range from 1 to 23 and there are no censored observations.
To define the prior we took a = b = 0.0001 and ct = 50 for all t. We use command
BeMRes to fit the model and the command BePloth to produce graphs.

Figure 10.3 (top panel) presents the hazard rate estimates together with 95 %
credible intervals. Nelson-Aalen estimates were also included for comparison. Haz-
ard rate estimates obtained with the beta process model are available for all times,
whereas the Nelson-Aalen estimates are only available for those observed times.
Most of the frequentist estimates are contained in the credible intervals, but in gen-
eral the beta process estimates tend to have smaller values. Although this might not
look right, the implication in the survival function estimates (bottom panel) are sur-
prising. The big steps produced by the Kaplan–Meier estimator are all smoothed out
in smaller steps with the beta process model. Moreover, the uncertainty in the poste-
rior estimates of the survival function is greatly reduced (tighter bands) as compared
with the Kaplan–Meier estimator.

10.4.2 Example 2

For this second example we illustrate the use of the gamma process prior (10.2)
to define a piecewise hazard function as in (10.8), without and with covariates,
Eqs. (10.9) and (10.10), respectively. The data are survival times of 33 leukemia
patients (Feigl and Zelen 1965). Times are measured in weeks from diagnosis. Rep-
orted covariates are white blood cell counts (WBC) and a binary variable AG that
indicates a positive or negative test related to the white blood cell characteristics.
Three of the observations were censored.

We first analyse the data without considering the covariates. The prior was

defined by taking a = b = 0.0001 and c j | ζ iid∼ Ga(1,ζ ) for j = 1, . . . ,J and
ζ ∼ Ga(0.01,0.01). We took J = 10 intervals and chose the partition {τ j} such
that each interval contains approximately the same number of exact (not censored)
observations. We fitted the model with the command GaMRes to fit the model and
command GaPloth to produce graphs. Survival function estimates are included in
Fig. 10.4. For comparison the Kaplan–Meier estimates are also included. As can be
seen, the Bayesian nonparametric estimators follow the path of the Kaplan–Meier
curve but in a lot smoother way. The uncertainty in the 95 % credible intervals is
also reduced.
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Fig. 10.3 Hazard rate (top) and survival (bottom) estimates for the placebo group of the 6-MP
dataset

We now perform a survival regression analysis using the proportional hazards
model (10.10) together with the piecewise constant baseline hazard and with the
gamma process prior. Both available covariates were used, with WBC on a loga-
rithmic scale. Prior specifications are the same as in the analysis without covariates
and for the covariate coefficients we took βr ∼ N(0,100), for r = 1,2. The model
was fit with command CGaMRes and summaries were obtained with the command
PlotTheta. The estimated effect of the covariates in the survival was β̂1 = −1.18
with 95 % CI (−1.98,−0.34); and β̂2 = 0.25 with 95 % CI (0.03,0.47). Point esti-
mates were obtained as the posterior mean. Interpreting these values we have that
an increment of one blood cell (in logarithmic scale) reduces the risk of dying in
70 %, whereas a positive AG indicator increases the risk of dying in 28 %.
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Fig. 10.4 Survival function estimates for the leukemia dataset

10.4.3 Example 3

In this example we illustrate the use of a Lévy-driven process in the survival regres-
sion model (10.10) in the presence of time dependent covariates. We consider the
well-known Stanford heart transplant data. There are several versions of these data,
one of them is that studied in Crowley and Hu (1977) and includes survival informa-
tion of 103 patients who were accepted into the heart transplant program. Patients
were accepted into the program and when a donor heart became available, medical
judgement was used to select the receiving candidate. Among the 103 patients, 69
received transplants, and from them 24 were still alive at the end of the study. The
data are available as the object heart in the R package survival.

The reason why this dataset has been so famous is because patients change treat-
ment status during the course of the study, and thus defining a time dependent cov-
ariate. If we denote by wi the waiting time from acceptance to the day of transplant,
for those lucky enough to have a matching donor, then xi(t)= I(t ≥wi) is a time dep-
endent indicator variable which takes the value of one or zero according to whether
the patient has or has not received a transplant by time t.

To analyse these data we specify model (10.10) with a single covariate and with
the baseline hazard described in terms of a Lévy-driven process of the form (10.4)
with kernel

k(t,s) = ab(t − s)b−1e−a(t−s)b
I(s ≤ t)

which corresponds to a location Weibull density. Here b is a smoothing parameter
and a determines the rate of decay, so in particular we take b = 2 and a hyper prior



10 Markov Processes in Survival Analysis 211

a ∼ Ga(1/2,1/2). The Lévy intensity measure is characterized by the generalized
gamma ρ measure (i), with ε = 1 so that the measure is discrete, β (s) = 1 and
α measure given by α(ds) = Ga(s|1,0.001)ds. Finally, the prior for the covariate
coefficient β ∼ N(0,10). The model was implemented in Fortran and is available
upon request from the author.
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Fig. 10.5 Hazard function estimates for stanford heart transplant data. With no transplant made
(solid thin line), transplant made at time zero (dashed line), and transplant made at time 500 days
(thick grey line)

Posterior hazard rate estimates (posterior means) are shown in Fig. 10.5. The
solid thin line corresponds to the hazard rate for a patient who did not receive trans-
plant, i.e. wi = ∞. The dashed line corresponds to a patient who received a heart
transplant immediately after being accepted in the program, i.e. wi = 0. The effect
of a heart transplant can be clearly seen by a lower hazard rate for the patient who
did receive a transplant. In fact, this reduction can be quantified by the parameter β
which has a posterior mean of −0.68 and a 95 % credible interval (−1.09,−0.24).
These values imply a 50 % reduction (in average) in the risk of dying after the trans-
plant. Moreover, the thick grey line in Fig. 10.5 corresponds to the hazard rate esti-
mate of a patient who received a heart transplant 500 days after being accepted into
the program (wi = 500). In the figure, we can see that this hypothetical patient starts
with the no transplant group (higher) hazard function and at time 500 it changes to
the transplant group (lower) hazard function. This clearly shows the implication for
a patient when changing treatment group during the course of the study.
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analysis via Lévy driven Markov processes. Statistica Sinica, 14, 1127–1146.

Nieto-Barajas, L. E. and Walker, S. G. (2005). A semiparametric Bayesian analy-
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Chapter 11
Bayesian Spatial Survival Models

Haiming Zhou and Timothy Hanson

Abstract Survival analysis has received a great deal of attention as a subfield of
Bayesian nonparametrics over the last 50 years. In particular, the fitting of survival
models that allow for sophisticated correlation structures has become common due
to computational advances in the 1990s, in particular Markov chain Monte Carlo
techniques. Very large, complex spatial datasets can now be analyzed accurately
including the quantification of spatiotemporal trends and risk factors. This chap-
ter reviews four nonparametric priors on baseline survival distributions in common
use, followed by a catalogue of semiparametric and nonparametric models for sur-
vival data. Generalizations of these models allowing for spatial dependence are then
discussed and broadly illustrated. Throughout, practical implementation through ex-
isting software is emphasized.

11.1 Introduction

This chapter reviews several semiparametric Bayesian survival models, and summa-
rizes some recent proposals to allow for spatial and covariate-adjusted dependence
among the survival times. Two generalizations of the accelerated failure time model
that allow crossing cumulative hazards for different covariate combinations, and
hence crossing survival curves, are also discussed.

Four prior specifications in broad use are first reviewed in Sect. 11.2. A catalogue
of Bayesian survival models is presented in Sect. 11.3. Section 11.4 discusses the
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incorporation of dependence among survival times across the models in Sect. 11.3,
focusing mostly on spatial dependence followed by several real-data illustrations in
Sect. 11.5. The chapter concludes with a short discussion in Sect. 11.6. Please note
at the outset that, although a review is attempted, the cited papers and approaches
are biased toward what the authors are aware of and have found useful.

11.2 A Selection of Nonparametric Priors

A common starting point in the specification of a regression model for time-to-event
data is the definition of a baseline survival function, S0, that is modified (either di-
rectly or indirectly) by subject-specific covariates x. Let T0 be a random survival
time from the baseline group (with all covariates equal to zero). The baseline sur-
vival function is defined by S0(t) = P(T0 > t) = exp{−H0(t)} where H0(t) is the
baseline cumulative hazard. For continuous outcomes, the baseline density and haz-
ard functions are f0(t) =− d

dt S0(t) and h0(t) = f0(t)/S0(t) =
d
dt H0(t), respectively.

The cumulative distribution, survival, density, and hazard functions for a member
of the population with covariates x will be denoted by Fx(t), Sx(t), fx(t), and hx(t),
respectively.

A wide variety of priors have been used in Bayesian survival analysis over the
last 40 years. We focus on four of these: the gamma process, B-splines, Dirichlet
process mixtures, and mixtures of Polya trees. Additional reviews can be found in
Sinha and Dey (1997), Ibrahim et al. (2001), Müller and Quintana (2004), Hanson
et al. (2005), Nieto-Barajas (2013), and Müller et al. (2015).

11.2.1 Gamma Process

Kalbfleisch (1978) proposed the gamma process (GP) to model the cumulative haz-
ard function H0 in the context of the proportional hazards (PH) model (Cox 1972).
Let Hθθθ (t) be an increasing, left-continuous function on [0,∞) indexed by θθθ , where
Hθθθ (0) = 0; typically, Hθθθ is parametric. Let H0(·) be a stochastic process such that
(i) H0(0) = 0, (ii) H0(·) has independent increments in disjoint intervals, and (iii)
H0(t2)−H0(t1) ∼ Γ {α(Hθθθ (t2)−Hθθθ (t1)),α} for t2 > t1, where Γ (α,β ) implies
mean α/β . Then {H0(t) : t ≥ 0} is said to be a GP with parameter (α,Hθθθ ) and
denoted H0 ∼ GP(α,Hθθθ ).

Note that E{H0(t)} = Hθθθ (t) so that H0 is centered at Hθθθ . Also, Var{H0(t)} =
Hθθθ (t)/α so that, similar to the Dirichlet process and Polya trees described below,
the precision parameter α controls how “close” H0 is to Hθθθ and provides a prior
measure of how certain one is that H0 is near Hθθθ . Ferguson (1973) recast the Dirich-
let process (DP) as a scaled GP.

The posterior of the GP is characterized by Kalbfleisch (1978); his results for
the PH model simplify when no covariates are specified. With probability one, the
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GP is a monotone nondecreasing step function, implying that the corresponding
survival function S0 is a nonincreasing step function. Similar to the DP, matters
are complicated by the presence of ties in the data with positive probability. When
present in the observed data, such ties make the resulting computations awkward.
Clayton (1991) described a Gibbs sampler for obtaining inferences in the PH model
with a GP baseline.

Burridge (1981) and Ibrahim et al. (2001) suggest that the model as proposed
by Kalbfleisch (1978) and extended by Clayton (1991) is best suited to grouped
survival data. Walker and Mallick (1997) considered an approximation to the GP
for continuous data. Define a partition of (0,∞) by {(a j−1,a j]}J

j=1 ∪ (aJ ,∞) where
0 = a0 < a1 < a2 < · · ·< aJ+1 = ∞. Here, aJ is taken to be equal to be largest event

time recorded. If H0 ∼ GP(α,Hθθθ ), then by definition h0 j = H0(a j)−H0(a j−1)
ind.∼

Γ {α(Hθθθ (a j)−Hθθθ (a j−1)),α}. Walker and Mallick (1997) make this assumption
for the given partition and further assume that h0(t) is constant and equal to h0 j for
t ∈ (a j−1,a j], j = 1, . . . ,J, yielding a particular piecewise exponential model. So the
piecewise exponential model, which has a long and fruitful history in both Bayesian
and frequentist survival analysis, can be viewed as an approximation to the GP when
gamma increments are used.

11.2.2 B-Splines and Bernstein Polynomials

A flexible and popular basis expansion approach to modeling functions over a fi-
nite interval [a,b] is based on B-splines (de Boor 2001). A B-spline is a piecewise-
differentiable polynomial of a given degree d; d = 2 and d = 3 give quadratic and
cubic B-splines, respectively. The B-spline is defined over the union of intervals
with endpoints termed knots. The overall polynomial is continuous (d ≥ 1) or dif-
ferentiable (d ≥ 2) over the range of the knots. Knots can be equispaced yielding a
cardinal B-spline or else irregularly spaced. Computation is especially easy for eq-
uispaced knots and so we focus on that here; generalizations can be found in Kneib
(2006). The B-spline includes polynomials of the same or lower degree as special
cases; e.g. a quadratic B-spline includes all constant, linear, and parabolic functions
over [a,b].

For degree d = 2, the quadratic B-spline “mother” basis function is defined on
[0,3]

ϕ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5x2 0 ≤ x ≤ 1
0.75− (x− 1.5)2 1 ≤ x ≤ 2
0.5(3− x)2 2 ≤ x ≤ 3
0 otherwise

⎫
⎪⎪⎬

⎪⎪⎭
.

Say the number of basis functions is J. The B-spline basis functions are shifted,
rescaled versions of ϕ . Let x1, . . . ,xn be event times of interest and x(1), . . . ,x(n) their

order statistics. The j-th basis function is B j(x) = ϕ
(

x−x(1)
Δ + 3− j

)
, where Δ =
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x(n)−x(1)
J−2 . A B-spline is typically used with a rather large number of basis functions

J, e.g. 20–40. The B-spline model for an unknown function is

g(x) =
J

∑
j=1

θ jB j(x). (11.1)

A global level of smoothness can be incorporated into a B-spline model by encour-
aging neighboring coefficients to be similar; the more regular the coefficients are,
the less wiggly g is. The hazard can be modeled directly as h0(t) = g(t) with the
constraint θ j ≥ 0 (Wang and Dunson 2011; Pan et al. 2014; Lin et al. 2015; Li
et al. 2015b); typically, θ1, . . . ,θJ have exponential or gamma priors. Komárek and
Lesaffre (2008) consider a limiting case of the B-spline order as a model for densi-
ties and model the θ j ≥ 0 via a generalized logit transformation so that ∑J

j=1 θ j = 1.
Alternatively, to avoid the positivity constraints on θi, one can model h0(t) =

exp{g(t)} (Hennerfeind et al. 2006; Kneib and Fahrmeir 2007) with θ j ∈ R. Clas-
sical spline estimation on {(xi,yi)}n

i=1 proceeds by minimizing ∑n
i=1(yi − g(xi))

2

subject to the “wiggliness” penalty
∫ b

a |g′′(x)|2dx ≤ c for some c > 0. This is equiv-
alent to maximizing a penalized log-likelihood. Borrowing from Eilers and Marx
(1996), Lang and Brezger (2004) recast and developed this idea into a Bayesian
framework. Let D2 ∈ R

(J−2)×J and D1 ∈ R
(J−1)×J be defined as

D2 =

⎡

⎢
⎢
⎢
⎣

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 1 −2 1

⎤

⎥
⎥
⎥
⎦

and D1 =

⎡

⎢
⎢
⎢
⎣

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 −1

⎤

⎥
⎥
⎥
⎦
.

For equispaced, quadratic (and cubic) B-splines the penalty can be written as∫ b
a |g′′(x)|2dx = ||D2θθθΔ ||2, where θθθ = (θ1, . . . ,θJ).

Optimization with the D2 penalty is equivalent to assuming a second order
random-walk prior, that is, the improper prior D2θθθ ∼ NJ−2(0,λ−1IJ−2). As λ be-
comes large, g′′(x) is forced toward zero and g(x) becomes linear. Alternatively, a
first order random walk prior is given by D1θθθ ∼NJ−1(0,λ−1IJ−1). When λ is large,
adjacent basis functions are forced closer and g′(x) is forced toward zero, yielding
a constant g(x).

The Bernstein polynomial is a special case of the B-spline with support [0,1]
(Petrone 1999a,b). A Bernstein polynomial prior for a function g on [0,1] is a dis-
crete mixture of beta distributions with equispaced means and integer parameters;
i.e., the functions B j(x) in (11.1) are

B j(x) =
Γ (J+ 1)

Γ ( j)Γ (J− j+ 1)
x j−1(1− x)J− j.

The resulting g is then transformed to [0,b) (b = ∞ for some transformations) for
use in baseline survival modeling (Gelfand and Mallick 1995; Carlin and Hodges
1999; Banerjee and Dey 2005; Chang et al. 2005; Chen et al. 2014).
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B-splines are now a standard tool for modeling hazard functions. Like the GP,
the piecewise constant hazard is a special case, i.e. a first order B-spline with d = 0;
piecewise exponential models have been used extensively in Bayesian survival anal-
ysis, e.g. Ibrahim et al. (2001). Existing approaches to modeling hazard functions
using B-splines (Gray 1992; Hennerfeind et al. 2006; Sharef et al. 2010) choose
either equispaced knots over the spread of the observed data or knots at the empir-
ical quantiles of the observed event times. Chen et al. (2014) and Li et al. (2015b)
instead choose knot locations based on an approximation of underlying parametric
family, e.g. Sθθθ indexed by θθθ .

11.2.3 Dirichlet Process Mixture Model

A random probability measure G follows a DP (Ferguson 1973) with parameters
(α,G0), where α > 0 and G0 is an appropriate probability measure defined on R

d ,
written as

G | α,G0 ∼ DP(αG0), (11.2)

if for any measurable nontrivial partition {Bl : 1 ≤ l ≤ k} of R
d , then the vec-

tor (G(B1), . . . ,G(Bk))
′ has a Dirichlet distribution with parameters (αG0(B1), . . . ,

αG0(Bk)). It follows that

G(Bl) | α,G0 ∼ Beta(αG0(Bl),αG0(B
c
l )),

and therefore E{G(Bl) | α,G0}= G0(Bl) and

Var{G(Bl) | α,G0}= G0(Bl)G0(Bc
l )

α + 1
.

Thus G is centered at G0 with precision α . The DP was used by Susarla and
Van Ryzin (1976) to model and estimate the survival function for right-censored
data; Müller et al. (2015) provide R code to implement this approach.

If G|α,G0 ∼DP(αG0), then the process can be represented by the stick-breaking
representation (Sethuraman 1994),

G(·) =
∞

∑
i=1

wiδθθθ (·), (11.3)

where δθθθ (·) is Dirac measure at θθθ , wi =Vi ∏ j<i(1−Vj), with Vi|α iid∼ Beta(1,α), and

θθθ i|G0
iid∼ G0. Note that E(wj)> E(wj+1) for all j, so the weights are stochastically

ordered.
Convolving a DP with a parametric kernel, such as the normal, gives a DP mix-

ture (DPM) model (Lo 1984; Escobar and West 1995). A simple DPM of Gaussian
densities for continuous data ε1, . . . ,εn is given by



220 H. Zhou and T. Hanson

εi|G iid∼
∫

N(μ ,σ2)dG(μ ,σ2), (11.4)

where N(μ ,σ2) denotes the normal density with mean μ and σ2, and the mixing
distribution, G, is a random probability measure defined on R×R

+, following a DP.
The stick-breaking representation recasts (11.4) as a countably infinite mixture of
normals given by

εi|G iid∼
∞

∑
j=1

[

Vj

j−1

∏
k=1

(1−Vk)

]

N(μ j,σ2
j ). (11.5)

The prior distribution on εi is centered at the normal distribution; Griffin (2010)
discusses prior specifications that control the “non-normalness” of this distribution.

11.2.4 Polya Tree

A Polya tree (PT) successively partitions the reals R (or any other domain) into
finer and finer partitions; each refinement of a partition doubles the number of
partition sets by cutting the previous level’s sets into two pieces; there are two
sets at level 1, four sets at level 2, eight sets at 3, and so on. We focus on a
PT centered at the standard normal density, that is, N(0,1) is the centering dis-
tribution for the Polya tree. At level j, the Polya tree partitions the real line into
2 j intervals B j,k = (Φ−1((k − 1)2− j),Φ−1(k2− j)) of probability 2− j under Φ ,
k = 1, . . . ,2 j, where Φ(·) is the cumulative distribution function of N(0,1). Note
that B j,k = B j+1,2k−1 ∩ B j+1,2k. Given an observation ε is in set k at level j, i.e.
ε ∈ B j,k, it could then be in either of the two offspring sets B j+1,2k−1 or B j+1,2k at
level j+ 1. The conditional probabilities associated with these sets will be denoted
by Yj+1,2k−1 and Yj+1,2k. Clearly they must sum to one, and so a common prior
for either of these probabilities is a beta distribution (Ferguson 1974; Lavine 1992,
1994; Walker and Mallick 1997, 1999; Hanson and Johnson 2002; Hanson 2006a;
Zhao et al. 2009), given by

Yj,2k−1|c ind.∼ Beta(c j2,c j2), j = 1, . . . ,J; k = 1, . . . ,2 j−1,

where c > 0, which ensures that every realization of the process has a density, al-
lowing the modeling of continuous data without the need of convolutions with con-
tinuous kernels.

The user-specified weight c > 0 controls how closely the posterior follows
N(0,1) in terms of L1 distance (Hanson et al. 2008), with larger values forcing the
PT process G closer to N(0,1); often a prior is placed on c, e.g. c ∼Γ (a,b). The PT
is stopped at level J (typically J = 5,6,7); within the sets {BJ,k : k = 1, . . . ,2J} at the
level J, G follows N(0,1) (Hanson 2006a). The resulting model for data ε1, . . . ,εn

is given by

εi|G iid∼ G, (11.6)
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where
G ∼ PTJ(c,N(0,1)). (11.7)

The corresponding density is given by

p(ε|{Yj,k}) = 2Jφ(ε)
J

∏
j=1

Yj,�2 jφ(ε)�, (11.8)

where �·� is the ceiling function, and so a likelihood can be formed. For the simple
model, the PT is conjugate. Let εεε = (ε1, . . . ,εn). Then

Yj,2k−1|εεε ind.∼ Beta

(

c j2 +
n

∑
i=1

I{�2 jφ(εi)�= 2k− 1},c j2 +
n

∑
i=1

I{�2 jφ(εi)�= 2k}
)

,

and Yj,2k = 1−Yj,2k−1.
Location μ and spread σ parameters are melded with expression (11.6) and

the PT prior (11.7) to make a median-μ location-scale family for data y1, . . . ,yn,
given by

yi = μ +σεi,

where the εi | G
iid∼ G and G follows a PT prior as in expression (11.7), with the

restriction Y1,1 = Y1,2 = 0.5. Allowing μ and σ to be random induces a mixture of
Polya trees (MPT) model for y1, . . . ,yn, smoothing out predictive inference (Lavine
1992; Hanson and Johnson 2002). Note that Jeffreys’ prior under the normal model
is a reasonable choice here (Berger and Guglielmi 2001), and leads to a proper
posterior (Hanson 2006a).

11.3 Survival Models

11.3.1 Proportional Hazards

A proportional hazards (PH) model (Cox 1972), for continuous data, is obtained by
expressing the covariate-dependent survival function Sx(t) as

Sx(t) = S0(t)
exp(x′βββ ). (11.9)

In terms of hazards, this model is

hx(t) = exp(x′βββ )h0(t).

Note then that for two individuals with covariates x1 and x2, the ratio of hazard

curves is constant and proportional to
hx1 (t)
hx2 (t)

= exp{(x1 − x2)
′βββ}, hence the name

“proportional hazards.” Cox (1972) is the second most cited statistical paper of all
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time (Ryan and Woodall 2005), and the PH model is easily the most popular semi-
parametric survival model in statistics, to the point where medical researchers tend
to compare different populations’ survival in terms of instantaneous risk (hazard)
rather than mean or median survival as in common regression models. Part of the
popularity of the model has to do with the incredible momentum the model has
gained from how easy it is to fit the model through partial likelihood (Cox 1975)
and its implementation in SAS in the procedure PHREG. The use of partial like-
lihood and subsequent counting process formulation (Andersen and Gill 1982) of
the model has allowed ready extension to stratified analyses, proportional intensity
models, frailty models, and so on (Therneau and Grambsch 2000).

The first Bayesian semiparametric approach to PH models posits a gamma pro-
cess as a prior on the baseline cumulative hazard H0(t) =

∫ t
0 h0(s)ds (Kalbfleisch

1978); partial likelihood emerges as a limiting case (of the marginal likelihood as
the precision parameter approaches zero). The use of the gamma process prior in PH
models, as well as the beta process prior (Hjort 1990), piecewise exponential priors,
and correlated increments priors are covered in Ibrahim et al. (2001) (pp. 47–94)
and Sinha and Dey (1997). Other approaches include what are essentially Bernstein
polynomials (Gelfand and Mallick 1995; Carlin and Hodges 1999) and penalized
B-splines (Hennerfeind et al. 2006; Kneib and Fahrmeir 2007). The last two mod-
els are available in the free software BayesX (Belitz et al. 2015) which can be
called from R via the packages R2BayesX and BayesX (Umlauf et al. 2015). The
BayesX functions allow for a general additive (including partially linear) PH model
to be easily fit, including time-dependent covariates; BayesX also accommodates
spatial frailties, discussed in Sect. 11.4.1. PH models with Polya tree baselines were
considered by Hanson (2006a), Hanson and Yang (2007), Zhao et al. (2009), and
Hanson et al. (2009) and can be fit in the SpBayesSurv package for R.

Stratified PH model posits a separate hazard function across levels of strata s =
1, . . . ,S,

hx,s(t) = exp(x′βββ )h0s(t).

A version of this model based on Bernstein polynomials is given by Carlin and
Hodges (1999); B-splines were considered by Cai and Meyer (2011). The stratified
PH model can also be fit using SAS PHREG assuming piecewise exponential priors,
i.e. piecewise constant baseline hazard functions. A version of the stratified model
that SAS fits, but with a “Polya tree” type prior on the hazard was considered by
Dukić and Dignam (2007). Note that BayesX can also fit stratified models based
on B-splines by including a time-varying regression effect for the categorical strata
variable.

11.3.2 Accelerated Failure Time

An accelerated failure time (AFT) model is obtained by expressing the covariate-
dependent survival function Sx(t) as
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Sx(t) = S0{exp(−x′βββ )t}. (11.10)

This is equivalent to the linear model for the log transformation of the corresponding
time-to-event response variable, T ,

logT = x′βββ + ε, (11.11)

where exp(ε)∼ S0. The mean, median, and any quantile of survival for an individual
with covariates x1 is changed by a factor of exp{(x1 − x2)

′βββ} relative to those with
covariates x2.

An early frequentist least-squares treatment of the AFT model with right-censored
data is due to Buckley and James (1979); the Buckley-James estimator is imple-
mented in Frank Harrell’s Design library for R (Alzola and Harrell 2006). The
R packages emplik and bujar have various extensions. More refined estimators
followed in the 1990s (Ying et al. 1995; Yang 1999) focusing on median-regression.

From a Bayesian nonparametric perspective, the first approach, based on a
Dirichlet process prior, obtained approximate marginal inferences to the AFT model
(Christensen and Johnson 1988); a full Bayesian treatment using the Dirichlet pro-
cess is not practically possible (Johnson and Christensen 1989). Approaches based
on Dirichlet process mixture models have been considered by Kuo and Mallick
(1997), Kottas and Gelfand (2001) and Hanson (2006b). Dirichlet process mixtures
“fix” the discrete nature of the Dirichlet process, as do other discrete mixtures of
continuous kernels. We refer the reader to Komárek and Lesaffre (2007) for an al-
ternative approach based on finite mixtures of normal distributions, and Komárek
and Lesaffre (2008) based on an approximating B-spline, both available in the R
package bayesSurv. Polya tree priors that have continuous densities can directly
model the distribution of ε in expression (11.11) (Walker and Mallick 1999; Hanson
and Johnson 2002; Hanson 2006a; Hanson and Yang 2007; Zhao et al. 2009). AFT
models with Polya tree baseline densities can be fit in the spBayesSurv package
for R.

Although PH is by far the most commonly used semiparametric survival model,
several studies have shown vastly superior fit and interpretation from AFT
models (Hanson and Yang 2007; Hanson 2006a; Kay and Kinnersley 2002; Orbe
et al. 2002; Hutton and Monaghan 2002). Cox pointed out himself (Reid 1994)
“. . . the physical or substantive basis for . . . proportional hazards models . . . is one
of its weaknesses . . . accelerated failure time models are in many ways more appeal-
ing because of their quite direct physical interpretation . . . ”. However, similar to
the PH model, standard AFT models also impose constraints so that survival curves
from different covariate levels are not allowed to cross, which is unrealistic in many
practical applications (e.g., De Iorio et al. 2009). For these data that do not follow
AFT assumptions, we next discuss two generalizations of the AFT model that allow
for crossing survival and hazard curves. The two approaches are the linear depen-
dent Dirichlet process mixture, which can be interpreted as a mixture of parametric
AFT models, and the linear dependent tailfree process, which is an AFT model
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with very general baseline functions that are covariate-dependent. Both augmen-
tations are examples of “density regressions,” allowing the entire survival density
fx(t) to change smoothly with covariates x.

11.3.2.1 Linear Dependent Dirichlet Process

By considering a Dirichlet process mixture of normal distributions for the errors in
(11.11) (Kuo and Mallick 1997), the distribution for the log survival time is the dis-
tribution of εi, given by (11.5), shifted by the linear predictor ηi = x′iβββ . Specifically,

yi|βββ ,G ind.∼
∞

∑
j=1

wjN(μ j + x′iβββ ,σ
2
j ),

where G(·) = ∑∞
j=1 wjδ(μ j ,σ 2

j )
(·) is a Dirichlet process. The interpretation of the

components of βββ is as usual and the model can be fit using standard algorithms for
Dirichlet process mixture models (Neal 2000).

The linear dependent Dirichlet process mixture (LDDPM) (De Iorio et al. 2009;
Jara et al. 2010; Jara et al. 2011; Zhou et al. 2015b) can be interpreted as a gener-
alization of the previous model, which arises by additionally mixing over the reg-
ression coefficients, yielding a mixture of log-normal AFT models. Specifically, the
LDDPM model is given by

yi|G ind.∼
∞

∑
j=1

wjN(x′iβββ j,σ
2
j ), (11.12)

where xi now includes a ‘1’ for the intercept, wi = Vi ∏ j<i(1−Vj), with Vi|α iid∼
Beta(1,α), and βββ j

iid∼ N(mmm0,V0) and σ−2
j

iid∼ Γ (a0,b0).
The model trades easy interpretability offered by a single βββ for greatly increased

flexibility. In particular, the LDDPM model does not stochastically order survival
curves from different predictors xi1 and xi2 , and both the survival and hazard curves
can cross.

11.3.2.2 Linear Dependent Tailfree Process

A Polya trees defines the conditional probabilities Yj+1,2k−1 and Yj+1,2k as beta dis-
tributions. However, one can instead define a logistic regression for each of these
probabilities, allowing the entire shape of the density to change with covariates; this
is the approach considered by Jara and Hanson (2011). Given covariates x, the lin-
ear dependent tailfree process (LDTFP) models (Yj+1,2k−1,Yj+1,2k) through logistic
regressions

log{Yj+1,2k−1(x)/Yj+1,2k(x)}= x′τττ j,k,
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where x includes an intercept. There are 2J − 1 regression coefficient vectors
τττ = {τττ j,k}; e.g. for J = 3, {τττ0,1, τττ1,1, τττ1,2, τττ2,1, τττ2,2, τττ2,3, τττ2,4}. Let X = [x1 · · ·xn]

′
be the n× p design matrix. Following Jara and Hanson (2011), each is assigned

an independent normal prior, τ j,k ∼ Np

(
0, 2

c( j+1)2ΨΨΨ
)

. Jara and Hanson (2011) dis-

cussed the case ΨΨΨ = n(X′X)−1, generating a g-prior Zellner (1983) for the tailfree
regression coefficients. By setting τττ0,1 ≡ 0, the resulting LDTFP is almost surely a
median-zero probability measure for every x∈X , important to avoid identifiability
issues.

Augmenting (11.8), the random density is given by

gx(ε) = φ(ε)2J
J

∏
j=1

Yj,�2 jΦ(ε)�(x).

Since the {Yj,k} are modeled with logistic-normal distribution instead of beta, the
resulting random density is a tailfree process. The final AFT model with LDTFP
baseline is given by

yi = x′iβββ +σεi, εi|τττ ind.∼ gxi . (11.13)

Unlike the LDDPM, the LDTFP separates survival into one distinct trend x′βββ and an
evolving log-baseline survival density gx. By forcing gx to be median-zero, eβ j gives
a factor by how median survival changes when x j is increased just as in standard
AFT models. This heightened interpretability in terms of median-regression in the
presence of heteroscedastic error allows a fit of the LDTFP model to easily relate
covariates x to median survival.

The LDTFP models the probability of falling above or below quantiles of the
N(x′βββ ,σ2) distribution, but in terms of conditional probabilities. This model can
be viewed as a particular kind of quantile regression model. Koenker and Hallock
(2001) suggest that “. . . instead of estimating linear conditional quantile models, we
could instead estimate a family of binary response models for the probability that
the response variable exceeded some prespecified cutoff values.” However, Koenker
and Hallock (2001) prefer the linear (in covariates) quantile specification because
“. . . it nests within it the iid error location shift model of classical linear regression.”
By augmenting a median-zero tailfree process with a general trend x′βββ we accom-
plish the same objective, nesting the ubiquitous normal-errors linear model within a
highly flexible median regression model, but with heteroscedastic error that changes
shape with covariate levels x ∈X .

Both the LDDPM and the LDTFP model the entire density at every covari-
ate level x ∈ X , so full density and hazard estimates are available, accompanied
by reliable interval estimates, unlike many median (and other quantile) regression
models. Both models are implemented as user-friendly functions calling compiled
FORTRAN in DPpackage or calling compiled C++ in spBayesSurv for R.
These functions accommodate general interval-censored data (including current sta-
tus data); the latter package also allows for spatial correlation. If only a trend func-
tion is desired one could instead use quantile regression models, such as the ones
implemented in the excellent quantreg package in R (Koenker 2008).
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11.3.3 Proportional Odds

The proportional odds (PO) model has recently gained attention as an alternative to
the PH and AFT models. PO defines the survival function Sx(t) for an individual
with covariate vector x through the relation

Sx(t)
1− Sx(t)

= exp{−x′βββ}
(

S0(t)
1− S0(t)

)

. (11.14)

The odds of dying before any time t are exp{(x1 − x2)
′βββ} times greater for those

with covariates x1 versus x2.
The first semiparametric approaches to PO models involving covariates are due

to Cheng et al. (1995), Murphy et al. (1997), and Yang and Prentice (1999). A
semiparametric frequentist implementation of the PO model is available in the pack-
age timereg (Martinussen and Scheike 2006) for R. Bayesian nonparametric ap-
proaches for the PO model have been based on Bernstein polynomials (Banerjee
and Dey 2005), B-splines (Wang and Dunson 2011; Lin and Wang 2011), and Polya
trees (Hanson 2006a; Hanson and Yang 2007; Zhao et al. 2009; Hanson et al. 2011).

The PH, AFT, and PO models all make overarching assumptions about the data
generating mechanism for the sake of obtaining succinct data summaries. An impor-
tant aspect associated with the Bayesian nonparametric formulation of these models
is that, by assuming the same, flexible model for the baseline survival function, they
are placed on a common ground (Hanson 2006a; Hanson and Yang 2007; Zhang
and Davidian 2008; Zhao et al. 2009; Hanson et al. 2011). Furthermore, parametric
models are special cases of the nonparametric models. Differences in fit and/or pre-
dictive performance can therefore be attributed to the survival models only, rather
than to additional possible differences in quite different nonparametric models or
estimation methods.

Of the Bayesian approaches based on Polya trees considered by Hanson (2006a),
Hanson and Yang (2007), Zhao et al. (2009) and Hanson et al. (2011), the PO
model was chosen over PH and AFT according to the log-pseudo marginal likeli-
hood (LPML) criterion (Geisser and Eddy 1979). In three of these works, the para-
metric log-logistic model, a special case of PO that also has the AFT property, was
chosen. This may be due to the fact that the PO assumption implies that hazard ratios

limt→∞
hx1 (t)
hx2 (t)

= 1, that is, eventually everyone has the same risk of dying tomorrow.

These authors also found that, everything else being equal, the actual semiparamet-
ric model chosen (PO, PH or AFT) affects prediction far more than whether the
baseline is modeled nonparametrically. It is worth noting that none of these papers
favored the semiparametric PH model in actual applications.
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11.3.4 Other Semiparametric Models

PH, AFT, and PO are three of many semiparametric survival models used in prac-
tice. There are a few more hazard-based models including the additive hazards (AH)
model (Aalen 1980, 1989), given by

hx(t) = h0(t)+ x′βββ ,

which is implemented in the timereg package for R. An empirical Bayes approach
to this model based on the gamma process was implemented by Sinha et al. (2009).
Fully Bayesian approaches require an elaborate model specification to incorporate
the rather awkward constraint h0(t) + x′βββ ≥ 0 for t > 0 (Yin and Ibrahim 2005;
Dunson and Herring 2005). Recently, there has been some interest in the accelerated
hazards model (Chen and Wang 2000; Zhang et al. 2011; Chen et al. 2014), given by

hx(t) = h0{exp(−x′βββ )t}.
This model allows hazard and survival curves to cross.

Finally, several interesting “super models” have been proposed in the literature,
including non-proportional hazard regression models that include PH as a special
case (Devarajan and Ebrahimi 2011), generalized odds-rate hazards models that in-
clude PH and PO as special cases (Dabrowska and Doksum 1988; Scharfstein et al.
1998), Box-Cox transformation regression models that include PH and AH as spe-
cial cases (Yin and Ibrahim 2005; Martinussen and Scheike 2006), and extended
hazard regression models that include both PH and AFT as special cases (Chen and
Jewell 2001; Li et al. 2015b).

11.4 Spatial Dependence

When survival data are spatially correlated, it is often of scientific interest to inves-
tigate possible spatial dependence in survival outcomes after adjusting for known
subject-specific covariate effects. Such spatial dependence is often due to region-
specific similarities in ecological and/or social environments that are typically not
measurable. We next discuss two general approaches, frailty and copula, for incor-
porating spatial dependence into the semiparametric models presented in Sect. 11.3,
followed by some other possibilities.

11.4.1 Spatial Frailty Modeling

Frailties have been frequently used to induce correlation among related survival
times in models which have a linear predictor. The linear predictor is augmented
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ηi = x′iβββ + vi, where vi is a random effect, termed “frailty,” accounting for hetero-
geneity after adjusting for covariates. The so-called shared frailty models have one
common random effect within each group, e.g. vi = zgi where gi ∈ {1, . . . ,G} is the
group—e.g. county, hospital, family—to which observation i belongs. Early litera-

ture considered exchangeable frailties with z1, . . . ,zG
iid∼ H, where H was constrained

to be mean or median zero to avoid confounding with the baseline function.
In the case of spatial survival data, one can extend the frailty model by including

a spatial effect, e.g.,
ηi = x′iβββ + γi, γi = vi +wi,

where the frailty term γi incorporates the effects of both heterogeneity (via the non-
spatial frailty vi) and spatial dependence (through the spatial frailty wi); note that,
however, in applications often only spatial dependence is modeled (γi = wi) or ex-
changeable dependence (γi = vi). Spatial frailty models have been widely discussed
in the literature and correspond to particular cases of hierarchical models. Such
models are usually grouped into two general settings according to their underlying
data structure: point-referenced (geostatistical) data, where the location si varies
continuously throughout a fixed study region D , and areal (lattice) data, where
the study region is partitioned into a finite number of areal units with well-defined
boundaries (Banerjee et al. 2015).

11.4.1.1 Point-Referenced Data Modeling

In modeling point-referenced data, the non-spatial frailty term vi is often specified

vi
iid∼ N(0,σ2), and the spatially correlated frailties w= (w1, . . . ,wn) can be specified

to have a multivariate Gaussian distribution:

w ∼ Nn(0,θ 2R), (11.15)

where Nn denotes the n-dimensional Gaussian distribution, θ 2 measures the amount
of spatial variation across locations, and the (i, j)th element of R, denoted by Ri j,
is the correlation between wi and wj. An isotropic correlation function is commonly
used to construct R, where the correlation of any two subjects is a function solely
of the distance di j between their locations si and s j, i.e., Ri j = ρ(di j). A flexible,
frequently used correlation function is the Matérn

ρ(di j) =
(φdi j)

ν Kν (φdi j)

2ν−1Γ (ν)
, (11.16)

where Kν is a modified Bessel function of the third kind, φ > 0 measures the spatial
decay over distance, and ν > 0 is a parameter controlling the smoothness of the
realized random field. Interested readers are referred to Banerjee et al. (2015) for
further discussion of correlation functions. Note that the Matérn reduces to the exp-
onential ρ(di j) = exp(−φdi j) for ν = 0.5 and the Gaussian ρ(di j) = exp(−φ2d2

i j)
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when ν → ∞. Under the above prior specifications of exchangeable normal vi and
spatially correlated wi, the resulting multivariate Gaussian distribution on frailties
γγγ = (γ1, . . . ,γn) is

γγγ ∼ Nn
{

0,θ 2R+σ2I
}
. (11.17)

With this representation, the non-spatial effect variance σ2 is often called the
nugget, the spatial effect variance θ 2 is called the partial sill, and the total effect
variance θ 2 +σ2 is called the sill. The rationale of including the nugget effect is
that we don’t expect all remaining individual heterogeneity to be accounted for by
the spatial story, as other factors (e.g., measurement error, replication error, micro-
scale error) may also potentially explain the heterogeneity. In Henderson et al.
(2002), the term τ = θ 2/(θ 2 +σ2) is called the nugget effect and interpreted as the
proportion of the heterogeneity variance that is explained by spatial effects.

For posterior inference, MCMC requires computing the inverse and determinant
of n-dimensional correlation matrix R in each iteration. With an increasing sam-
ple size n, such computation becomes very expensive and even unstable due to a
large amount of numerical operations. This situation is often referred to as “the big
n problem.” Various approaches have been developed to approximate the correla-
tion function such as predictive process models (Banerjee et al. 2008; Finley et al.
2009), sparse approximations (Furrer et al. 2006; Kaufman et al. 2008), and the
full scale approximation (FSA) method (Sang and Huang 2012). The last approxi-
mation is the summation of the former two approximations, which can capture both
large- and small-scale spatial dependence. The FSA has been successfully applied
to model point-referenced survival data in Zhou et al. (2015b) and implemented in
the R package spBayesSurv.

11.4.1.2 Areal Data Modeling

In the case of areal data, the whole study region D is often partitioned into a finite
number of areas, say B1, . . . ,BG, and a common frailty is assumed for the subjects
within each area, i.e.

ηi = x′iβββ + γgi , γ j = v j +wj, j = 1, . . . ,G.

Here the non-spatial frailty v j for each area is typically assigned a mean-zero normal
distribution with variance σ2. For the spatial frailty term wj, there has been two
general approaches. First, one can assume a fully specified mean-zero multivariate
Gaussian distribution on w = (w1, . . . ,wG) with covariance matrix θ 2R, where Ri j

is modeled using a traditional correlation function like the Matérn in (11.16) but
with di j representing the distance between two areal centroids. Another way is to
consider an intrinsic conditionally autoregressive (ICAR) model. Let ai j = 1 if areas
Bi and B j share a nontrivial border (i.e., a connected curve in R

2 that is more than
one point) and ai j = 0 otherwise; set aii = 0. Then the G×G matrix A = [ai j] is
called the adjacency matrix for the region D . The ICAR prior is defined through the
set of all conditional distributions
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wj |{wi : i 	= j} ∼ N
(
w̄ j , θ 2/a j+

)
, j = 1, . . . ,G, (11.18)

denoted w ∼ ICAR(1/θ 2), where a j+ is the number of neighbors of area B j, w̄ j =
1

a j+
∑i:ai j=1 wi is the sample mean of the a j+ values of the neighboring areal unit

frailties, and θ 2/a j+ is the conditional variance. Note that the ICAR model induces
an improper joint density, and the constraint ∑G

j=1 wj = 0 is commonly used to avoid
identifiability issues. Another common fix is to assume a proper CAR model by
multiplying the conditional mean w̄ j in (11.18) by a shrinkage scale parameter ρ ,
where 0 ≤ ρ < 1; it is generally difficult to estimate ρ and θ 2 simultaneously.

11.4.1.3 Related Literature

Henderson et al. (2002) modeled the spatial structure of leukemia survival data
using both district-level and point-referenced frailty effects in the context of the
PH model. In their point-referenced analysis, a multivariate gamma distribution for
(eγ1 , . . . ,eγn)′ was constructed so that each marginal has a gamma distribution with
mean 1 and variance σ2 + θ 2, and the correlation between eγi and eγ j takes the
form defined in (11.17). In their district-level analysis, they considered a linear pre-
dictor with individual frailties as ηi = x′iβββ + γi, where eγi |μgi ∼ Γ (1/ξ ,1/(ξ μgi)).
They then assumed a multivariate Gaussian distribution on the latent effects μμμ =
(μ1, . . . ,μG) with the correlation function between the ith and jth district modeled
via the powered exponential and Matérn. They also considered the ICAR specifi-
cation on μμμ and found that the multivariate Gaussian via a Matérn correlation with
ν = 2 had the best fit based on the DIC goodness-of-fit criterion.

Pan et al. (2014) fitted the semiparametric PH model with ICAR frailties to inter-
val censored data with the baseline hazard function modeled via B-splines. Lin et al.
(2015) duplicated this model without the ICAR frailties. Using the same methodol-
ogy, a special case of interval-censored data, current-status data, was presented in
Cai et al. (2011). The aforementioned models can be fit in the ICBayes R package.
Li and Ryan (2002) modeled the district-level frailty effect using a fully specified
multivariate normal prior within the framework of PH, and applied the model to
detect prognostic factors leading to childhood asthma. All of these approaches are
essentially a special case of the general models previously presented in Kneib (2006)
and Hennerfeind et al. (2006), which can be efficiently fit in the freely available pro-
gram BayesX or the R package R2BayesX; the latter package uses compiled code
and places the B-spline prior on the log-hazard instead of the hazard. An advan-
tage of the models fitted in BayesX is that both areal and point-referenced data are
accommodated as well as nonparametric additive effects. In addition, the R package
spatsurv can also fit the PH model with multivariate Gaussian frailties, where the
baseline hazard is modeled either parametrically or nonparametrically via B-splines.

Banerjee and Carlin (2003) developed a semiparametric PH frailty model for
capturing spatio-temporal heterogeneity in survival of women diagnosed with breast
cancer in Iowa, using a mixture of beta densities baseline. Banerjee et al. (2003)
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applied the Weibull parametric PH frailty model to infant mortality data in Min-
nesota, where the county-level frailties were assumed to have either an uncorrelated
zero-mean Gaussian prior, an ICAR prior, or a fully specified multivariate Gaus-
sian prior as in (11.15). They showed that the fully specified prior provides the best
model fitting in terms of DIC in the analysis of the infant data. Banerjee and Dey
(2005) utilized the same frailty modeling technique for capturing spatial heterogene-
ity within the framework of semiparametric PO, found that the proper CAR prior
yielded the best fit in the application to a subset of surveillance epidemiology and
end results (SEER) breast cancer data. Zhao et al. (2009) considered either an AFT,
PH, or PO model with ICAR frailties, where the baseline function was assumed to
have a mixture of Polya trees prior. Zhang and Lawson (2011) and Wang et al.
(2012) developed parametric and semiparametric AFT models with ICAR frailties,
respectively. Chernoukhov (2013) extended the additive hazards model for allowing
various spatial dependence structures in his dissertation. Zhou et al. (2015a) ext-
ended the generalized model in (11.13) by allowing frailties accommodating spatial
correlation via the ICAR prior distribution. The models proposed in Zhao et al.
(2009) and Zhou et al. (2015a) can be fit in the R package spBayesSurv. Other
references focusing on spatial frailty modeling and its application include McKinley
(2007), Diva et al. (2008), Darmofal (2009), Liu (2012), Ojiambo and Kang (2013),
Dasgupta et al. (2014), Li et al. (2015a), and among others.

11.4.2 Spatial Copula Modeling

Spatial copulas are just beginning to become popular in geostatistics. The use of
copulas in the spatial context was first proposed by Bárdossy (2006), where the
empirical variogram is replaced by empirical copulas to investigate the spatial dep-
endence structure. The spatial copula approach offers an appealing way to separate
modeling from the spatial dependence structure for multivariate distributions. Cop-
ulas completely describe association among random variables separately from their
univariate distributions and thus capture joint dependence without the influence of
the marginal distribution (Li 2010). In the context of survival models, the idea of
spatial copula approach is to first assume that the survival time Ti at location si

marginally follows a model Sxi(t) introduced in Sect. 11.3, then model the joint
distribution of (T1, . . . ,Tn)

′ as

F(t1, . . . , tn) =C(Fx1(t1), . . . ,Fxn(tn)), (11.19)

where Fxi(t) = 1− Sxi(t) is the cumulative distribution function and the function C
is an n-copula used to capture spatial dependence. If we let Ui = Fxi(Ti), then the
problem is reduced to constructing a copula for modeling the joint distribution of
U = (U1, . . . ,Un). Hereafter we assume that Ui follows a uniform distribution on
[0,1] for all locations si; i.e., the survival model Sxi(t) is assumed to be correctly
specified. In fact, copulas are all the joint cumulative distribution functions on the
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unit hypercube with uniform marginal distributions. We refer interested readers to
Nelsen (2006) for general introduction to copulas and to Smith (2013) for Bayesian
approaches to copula modeling.

In the geostatistical framework, the multivariate spatial copula of U is often con-
structed so that for any selected two locations si and s j , the bivariate copula (i.e.,
joint distribution) of (Ui,Uj) does not depend on the locations si and s j but on their
distance di j only. However, such construction is not a trivial task. Here we introduce
a spatial version of the Gaussian copula and refer readers to Li (2010) for further
discussion of other theoretical spatial copulas. Define Zi = Φ−1 {Ui}, where Φ(·)
is the standard normal cumulative distribution function, then we have Zi ∼ N(0,1)
for all i. If we further assume that Z = (Z1, . . . ,Zn)

′ follows a multivariate normal
distribution with mean zero and covariance R, i.e., Z ∼ Nn(0,R), then the induced
joint distribution of U is called the Gaussian copula, which is given by

C(u1, . . . ,un) = Φn
(
Φ−1{u1}, . . . ,Φ−1{un};R

)
, (11.20)

where Φn(. . . ;R) denotes the distribution function of Nn(0,R). Note that all the
diagonal elements of R are ones, so we refer to R as the correlation matrix thereafter.
The Gaussian copula has a symmetrical density, which can be written as

c(u1, . . . ,un) = |R|−1/2 exp

{
1
2

z′(R−1 − I)z
}

, (11.21)

where z = (zi, . . . ,zn)
′ with zi = Φ−1 {ui} and I is the identity matrix. The spatial

dependence structure of the Gaussian copula is induced by constructing the correla-
tion matrix R using classical geostatistical models. For example, the (i, j)th element
of R can be defined using the Matérn in (11.16) with a nugget effect τ , that is,
Ri j = τρ(di j) for i 	= j, where 1 < τ < 1. Under the spatial Gaussian copula, the
joint density of (T1, . . . ,Tn) takes the form

f (t1, . . . , tn) = |R|−1/2 exp

{

−1
2

z′(R−1 − In)z
} n

∏
i=1

fxi(ti), (11.22)

where zi = Φ−1 {Fxi(ti)} and fxi(ti) is the density function of Ti. The use of spa-
tial copulas has not been widely applied for modeling survival data that are subject
to spatial correlation. Li and Lin (2006) successfully applied the spatial Gaussian
copula approach to a semiparametric PH model and proposed spatial semiparamet-
ric estimating equations that yield consistent and asymptotically normal estimators.
Zhou et al. (2015b) considered the LDDPM marginal model given in (11.12) using
the same Gaussian copula for capturing spatial dependence structure, where MCMC
algorithms were used to obtain posterior inferences. Zhou et al. (2015b) also pro-
vided a Bayesian version of the model considered in Li and Lin (2006) using piece-
wise exponential baseline specifications. The R package spBayesSurv can fit the
aforementioned copula-based Bayesian survival models.

The spatial Gaussian copula approach can also be extended for fitting lattice
data, for which constructing the correlation matrix R of Z = (Z1, . . . ,Zn) becomes
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a challenging task. One may consider a random effects model for Z based on the
partition of the domain D into G districts, that is,

Zi = μgi +εi, μμμ ∼NG(0,BΩΩΩB), εi
ind∼ N

(

0,
σ2

ωgigi +σ2

)

,gi ∈ {1, . . . ,G}, (11.23)

where μμμ = (μ1, . . . ,μG)
′ are the random effects, ΩΩΩ = [ωi j] is a G×G matrix intro-

ducing spatial dependence to μμμ , B = diag
(

1/
√

ω11 +σ2, . . . ,1/
√

ωGG +σ2
)

, and

εi is the error term independent of the spatial random effects. Note that Var(Zi) = 1.
Popular models for Ω include multivariate Gaussian coupled with a spatial covari-
ance function, ICAR, proper CAR, and many others. Li et al. (2015b) derived the
implied correlation matrix R = cov(Z) under the ICAR model, which only involves
one unknown quantity ψ∗. A smaller value of ψ∗ corresponds to stronger spatial
dependence. With the specification of R, one can model joint cumulative distribu-
tion function of (T1, . . . ,Tn) by

F(t1, . . . , tn) = Φn
(
Φ−1{Fxi(ti)}, . . . ,Φ−1{Fxn(tn)};R

)
. (11.24)

11.4.3 Other Spatial Dependence Modelings

Zhao and Hanson (2011) considered a stratified PH model:

Sxi(t) = S0gi(t)
exp(x′iβββ ), gi ∈ {1, . . . ,G},

where each region-specific baseline S0 j(·) approximately follows a mixture of Polya
trees prior centered at a parametric log-logistic family. The spatial dependence
among the {S01(·), . . . ,S0G(·)} is induced through proper CAR priors on the logit
transformed Polya tree conditional probabilities {Yl,k}. Hanson et al. (2012) ext-
ended this idea to fit a Bayesian semiparametric temporally stratified PH model
with spatial frailties. Stratified AFT models with ICAR areal frailties are considered
by Zhou et al. (2015a).

In modeling areal data, spatial dependence is often due to unadjusted district-
level risk factors that may potentially relate to survival outcomes. Zhao and Hanson
(2011) note that spatial frailties serve as proxies to unmeasured region-level covari-
ates, but are less-precise adjustments since region-level covariates (such as shortest
distance to a clinic) are unlikely to sharply change at areal boundaries. Therefore it
is natural to introduce spatial dependence by allowing frailties to depend on region-
level covariates, especially when information is available on each region that may
affect the survival outcome beyond the recorded covariates. For this reason, Zhou
et al. (2015c) proposed a region-level covariate adjusted frailty PH model. Specifi-
cally, with the linear predictor ηi = x′iβ + γgi , they assume an LDTFP prior on the
frailties, i.e., γ j|z j ∼ gz j(·), where z j is a vector of region-level covariates. This
model can be fit in the DPpackage for R.
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11.5 Illustrations

Both of the frailty and copula modeling approaches are illustrated using real-life
datasets. All the analyses are implemented using the R packages spBayesSurv.
The fitted models are compared in terms of the log pseudo marginal likelihood
(LPML) developed by Geisser and Eddy (1979). Note that the frailties used in frailty
models are either exchangeable vi or spatial wi, but not both vi +wi.

11.5.1 SEER Cancer Data

The SEER program of the National Cancer Institute (seer.cancer.gov) is an author-
itative source of information on cancer incidence and survival in the US, providing
county-level cancer data on an annual basis for particular states for public use.
Areal-referenced SEER data have been analyzed by many authors in the context
of spatial frailty models (e.g., Banerjee and Carlin 2003; Banerjee and Dey 2005;
Zhao et al. 2009; Zhao and Hanson 2011; Wang et al. 2012; Zhou et al. 2015c,a).

For illustration, we analyze a subset of the Iowa SEER breast cancer survival
data, which consists of a cohort of 1073 Iowan women, who were diagnosed with
malignant breast cancer starting in 1995, and enrollment and follow-up continued
through the end of 1998. This data set has been analyzed in Zhao et al. (2009) and
Zhou et al. (2015c). The observed survival time, from 1 to 48, is defined as the num-
ber of months from diagnosis to either death or the last follow-up. Here we assume
that only deaths due to metastasis of cancerous nodes in the breast are events, while
the deaths from other causes are censored at the time of death. The right-censoring
rate is 54.5%. For each patient, the observed survival time and county of residence
at diagnosis are recorded. The considered individual-level covariates include age at
diagnosis and the stage: local, regional, or distant, where two dummy variables are
created for regional and distant, respectively, and the reference group is local. Zhou
et al. (2015c) point out that some county-level socioeconomic factors (e.g., median
household income, poverty level, education, rurality) are also potentially associated
with breast cancer and argue that rural counties present more heterogeneity in ac-
cess to quality care and screening for breast cancer. Therefore, we also include a
county-level covariate “Rural-Urban Continuum Codes” (RUCC) measuring degree
of urbanization; see Zhou et al. (2015c) for a detailed description.

We fit each of the PH, AFT, and PO frailty models with a mixture of Polya trees
prior on baseline survival S0(t) and the ICAR prior on the frailties γγγ ∼ ICAR(λ ),
where the PH is centered at the Weibull Gθθθ (t) = 1− exp

{
−(eθ1t)exp(θ2)

}
and the

AFT and PO are centered at the log-logistic Gθθθ (t) = 1 − {1 + (eθ1t)exp(θ2)}−1.
We consider the following prior settings: J = 4, c ∼ Γ (5,1), θθθ ∼ N2(θ̂θθ , V̂), βββ ∼
Np(β̂ ,30Σ̂ΣΣ) and λ ∼ Γ (1,1), where θ̂θθ , β̂ββ , V̂, and Σ̂ΣΣ are maximum likelihood est-
imates from the underlying parametric model. Using the same priors, we also fit

seer.cancer.gov
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the above models with Gaussian exchangeable frailties and without frailties. For
all models considered, a burn-in of 100,000 iterations is followed by a run of
100,000 thinned down to 10,000 iterations. All these models are fitted using the
survregbayes function available in the package spBayesSurv.

Table 11.1 SEER breast cancer data: Posterior medians (95 % credible intervals) of fixed effects
from various models

Model Centered age Regional stage Distant stage RUCC
PH/CAR 0.019 (0.013, 0.025) 0.26 (0.03, 0.48) 1.69 (1.45, 1.93) −0.069 (−0.136, 0.002)
AFT/CAR 0.018 (0.011, 0.023) 0.22 (0.01, 0.43) 1.51 (1.26, 1.75) −0.045 (−0.105, 0.013)
PO/CAR 0.030 (0.021, 0.038) 0.40 (0.12, 0.69) 2.59 (2.25, 2.95) −0.087 (−0.174, −0.001)
PH/LDTFP 0.019 (0.013, 0.025) 0.27 (0.03, 0.49) 1.64 (1.43, 1.88) −0.105 (−0.185, −0.041)

Note the AFT model is parameterized as Sx(t) = S0(ex′βββ t)

The LPML values under ICAR frailty PH, AFT, and PO are −2226, −2228,
and −2210, respectively, while the corresponding LPMLs are −2230, −2224 and
−2214 under exchangeable frailty models and are −2230, −2228, and −2214 un-
der non-frailty models. We can observe that the ICAR frailty model has the best
predictive ability within the context of either PH or PO, and the exchangeable frailty
model performs best in terms of LPML under the AFT. Table 11.1 presents poste-
rior means and equal-tailed 95% credible intervals (CI) for covariate effects under
each of above model with ICAR frailties. All individual covariate effects are sig-
nificant in each model. Higher age at diagnosis increases the hazard; e.g. a 20-year
increase in age is associated with an exp(0.019× 20)≈ 1.46-fold increase in haz-
ard. Using women with local stage of disease as the reference, the hazard rate of
women of the same age who live in the same county will be exp(0.26)≈ 1.30 times
larger if their cancer is detected at the regional stage, and exp(1.69) ≈ 5.42 times
larger if detected at the distant stage. Under the AFT assumption, among patients
living in the same county and having same age, a woman with local stage typi-
cally survives exp(0.22) ≈ 1.25 times longer than a woman with regional stage,
and exp(1.51)≈ 4.53 times longer than a woman with distant stage. Finally, for the
PO model, after adjusting for the age at diagnosis and the RUCC, the odds of dy-
ing from breast cancer before any time t are exp(0.40) ≈ 1.49 greater for regional
stage versus local stage, and are exp(2.59)≈ 13.33 greater for distant stage versus
local stage. These findings are confirmed in Fig. 11.1, which shows the fitted sur-
vival functions for women aged at 68.8 years and living a county with RUCC at 5
for distant and local stages under the three competing models and assuming a spatial
frailty of zero. Turning to the county-level RUCC effect, only the PO model provides
a significant result at the 0.05 level; living in more urban counties is associated with
poorer survival after a breast cancer diagnosis on average.

Zhou et al. (2015c) fitted a PH model with LDTFP frailty terms using the package
DPpackage and found more variability for frailties of rural counties. The resulting
LPML is −2222 when RUCC is included into both the linear predictor and frailty
terms. The pseudo Bayes factor for the LDTFP frailty model versus the ICAR frailty
PH model is exp(2226− 2222)≈ 55, implying that allowing frailties depending on
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Fig. 11.1 SEER breast cancer data. Panels (a), (c), and (d) show estimated survival curves for
women aged at 68.8 years and living a county with RUCC at 5 for distant (dashed lines) and local
(dotted lines) stages, under PH, AFT, and PO, respectively. The pointwise 95% credible bands are
also displayed as grey areas. Panel (b) displays frailty densities for RUCC=2, 5, and 9, which are
displayed as dashed, continuous, and dotted lines, respectively

RUCC improves the model’s predictive ability about 55 times. Table 11.1 also shows
the covariate effects under the LDTFP frailty PH model. An interesting finding is
that now the RUCC effect becomes significant at the 0.05 level. This may be due
to the fact that frailty distributions are covariate-dependent as shown in Fig. 11.1b.
After controlling for individual covariates and county, the hazard rate of women
living in urban counties (with RUCC = 2) will be exp(0.105× 7)≈ 2 times larger
than that of women in rural counties (with RUCC = 9).

11.5.2 Leukemia Data

We consider a dataset on the survival of acute myeloid leukemia in n = 1,043 pa-
tients, analyzed by Henderson et al. (2002) fitting a multivariate gamma frailty
PH model. This dataset is available for access in Fahrmeir and Kneib (2011). It is
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of interest to investigate possible spatial variation in survival after accounting for
known subject-specific prognostic factors, which include age, sex, white blood cell
count (WBC) at diagnosis, and the Townsend score, for which higher values indi-
cate less affluent areas. The censoring rate is 16%. Both exact residential locations
of all patients and their administrative districts (24 districts that make up the whole
region) are available. Therefore, we can fit both geostatistical and lattice models.

For the geostatistical case, we fit the copula model (11.19) proposed by Zhou
et al. (2015b) using the function spCopulaDDP, where the marginal model Fx(·) is
defined via the LDDPM in (11.12) and the copula function C is specified through the
Gaussian spatial copula in (11.20) assuming the exponential correlation function.
We then use the function spCopulaCoxph to fit the copula model assuming a
piecewise exponential PH model for Fx(·), where the partition is based on J = 20
cut-points with each ak defined as the k

J th quantile the empirical distribution of
observed survival times (see Sect. 11.2.1). For comparison, standard non-spatial
LDDPM and piecewise exponential PH models are also fitted using the functions
anovaDDP and indeptCoxph, respectively. The default priors are considered
for above models as suggested in Zhou et al. (2015b). Regarding the lattice case,
we fit each of the Polya trees PH, AFT, and PO models with ICAR frailties as
in Sect. 11.5.1 using the function survregbayes and their corresponding non-
frailty models, where the Polya trees are truncated at level J = 5. Finally, we fit the
generalized AFT model (11.13) with and without ICAR frailties using the function
frailtyGAFT, where εi is allowed to depend on age and WBC. We refer readers
to Zhou et al. (2015a) for discussion of prior specifications and posterior samplings.
For all models, we retain 10,000 scans thinned from 50,000 after a burn-in period
of 10,000 iterations.

The LPML measures for the copula with LDDPM, copula with piecewise expo-
nential PH, PH, AFT, and PO with Polya trees baselines and ICAR frailties, and
generalized AFT with ICAR frailties are −5932, −5939, −5930, −5953, −5925,
and −5936, respectively. Without spatial components, the above LPML values be-
come −5934, −5941, −5934, −5950, −5925, and −5942. The PO models sig-
nificantly outperform others from a predictive point of view regardless of whether
spatial dependence is taken into account. Within the context of LDDPM and PH,
the use of the Gaussian spatial copula slightly improves the model’s predictive abil-
ity, indicating that the spatial dependence is relatively weak in this dataset. Under
the framework of PH, the Polya trees prior works much better than piecewise ex-
ponential prior for modeling baseline functions. The AFT models provide the worst
LPML values, while allowing the baseline varying with covariates (i.e., generalized
AFT) can significantly improve the models’ predictive ability; the Bayes factors for
age and WBC effects on the baseline survival are 124 and 23, respectively, under
the ICAR frailty model, and are 73 and 31 under the non-frailty model.

For the copula LDDPM model, the posterior median of the nugget effect param-
eter θ1 is 0.051 with the 95% CI (0.000,0.176), indicating that only 5% of the
heterogeneity variance is explained by spatial effect on average. The posterior me-
dian of θ2 is 0.831 with the 95% CI (0.001, 3.075) indicates that the correlation
decays by 1− e−0.831 ≈ 56% for every kilometer increase in distance on average.
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However, given such a small value θ1, the spatial decay becomes less important.
Figure 11.2a shows the survival curves under the PO ICAR frailty model for female
patients aged at 49 (25%th quantile) and aged at 74 (75%th quantile) holding other
covariates at population averages, where we see that higher age is associated with
lower survival probability. Figure 11.2b shows the baseline survival curves under
the generalized AFT ICAR frailty model for female patients aged at 49 and aged at
74 holding WBC at its population average, where we can see that the baseline varies
with age which clearly violates the AFT assumption.
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Fig. 11.2 Leukemia data. Panel (a) shows estimated survival curves for women aged at 49 years
(dotted lines) and aged at 75 years (dashed lines), holding other covariates at population averages
and frailties at zeros, under the PO model with ICAR frailties. Panel (b) shows estimated baseline
survival curves for women aged at 49 years (dotted lines) and aged at 75 years (dashed lines),
holding WBC at its population average and frailties at zeros, under the generalized AFT with
ICAR frailties. The pointwise 90% credible bands are also displayed as grey areas

11.6 Concluding Remarks

We have reviewed commonly used priors on baseline functions, semiparametric
and nonparametric Bayesian survival models, and recent approaches for accom-
modating spatial dependence, both frailty and copula. Many R packages are dis-
cussed for implementation including DPpackage, spBayesSurv, R2BayesX,
and spatsurv. Two interesting data sets are illustrated, where both analyses show
that PO models perform significantly better than all other models we considered
including the PH, AFT, and two generalizations of AFT.
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Chapter 12
Fully Nonparametric Regression Modelling
of Misclassified Censored Time-to-Event Data

Alejandro Jara, Marı́a José Garcı́a-Zattera, and Arnošt Komárek

Abstract We propose a fully nonparametric modelling approach for time-to-event
regression data, when the response of interest can only be determined to lie in an
interval obtained from a sequence of examination times and the determination of
the occurrence of the event is subject to misclassification. The covariate-dependent
time-to-event distributions are modelled using a linear dependent Dirichlet process
mixture model. A general misclassification model is discussed, considering the pos-
sibility that different examiners were involved in the assessment of the occurrence
of the events for a given subject across time. An advantage of the proposed model is
that the underlying time-to-event distributions and the misclassification parameters
can be estimated without any external information about the latter parameters.

12.1 Introduction

Considerable attention has been given to estimation of survival functions and regres-
sion coefficients from a variety of standard regression models for time-to-event data
(see, e.g., Hougaard 2000; Sun 2006). Nevertheless, classical survival regression
models assume that the determination of the event of interest is done without error
which can be unrealistic. As a matter of fact, in many applications, ascertainment
of the event of interest is based on a screening test which may not have perfect sen-
sitivity and specificity. In this context, the use of standard survival models can lead
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to wrong inferences about the distribution of the time-to-event (see, e.g., Garcı́a-
Zattera et al. 2014). Compared to the rich literature on methods for correcting for
misclassification in regression models for categorical data (see, e.g., Garcı́a-Zattera
et al. 2010, 2012, and the references therein), the study of models in the context of
time-to-event data has received much less attention and has been almost exclusively
focussed on misclassification and measurement errors in covariates (see, e.g., Gong
et al. 1990).

The effect of response misclassification on estimation and hypothesis testing has
been widely investigated in the literature (see, e.g., Buonaccorsi 2010). For regres-
sion models, non-differential (covariate independent) misclassification can cause the
estimates of the regression coefficients to be attenuated strongly towards the null and
that, although the associated significance tests are still valid, its power may be dras-
tically reduced. Under differential (covariate dependent) misclassification, the bias
of the estimates can be in both directions, leading to an apparent effect or an appar-
ent lack of effect of the covariate when the reverse is true (see, e.g., Buonaccorsi
2010).

In cross-sectional studies, where the data contain no information regarding the
misclassification parameters, several strategies have been proposed in the literature
for correcting for misclassification (see, e.g. Neuhaus 1999, 2002; Mwalili et al.
2005; Küchenhoff et al. 2006). In the context of longitudinal categorical data, gener-
alized linear mixed models (see, e.g., Neuhaus 2002), generalized estimating equa-
tion (GEE) based approaches (see, e.g., Neuhaus 2002), and transition models (see,
e.g., Garcı́a-Zattera et al. 2010, 2012) have been proposed for correcting for mis-
classification.

Transition models for the analysis of misclassified alternating longitudinal re-
sponses have been considered in the literature by Cook et al. (2000), Rosychuk and
Thompson (2001), Rosychuk and Thompson (2003), Nagelkerke et al. (1990), and
Rosychuk and Islam (2009), whereas Espeland et al. (1988, 1989), Schmid et al.
(1994), Singh and Rao (1995), Albert et al. (1997), Garcı́a-Zattera et al. (2010),
and Garcı́a-Zattera et al. (2012) addressed the problem of misclassified monotone
longitudinal responses. It is important to stress that in a longitudinal setting, un-
like cross-sectional studies, the model parameters might be estimated without the
use of external information about the misclassification parameters. Garcı́a-Zattera
et al. (2010, 2012) showed that under simple restrictions on the parameter space,
the model parameters associated with an inhomogeneous hidden Markov model for
monotone responses are identified by the available data. They also proposed univari-
ate and multivariate models to account for predictors allowing for irregularly spaced
time intervals and different classifiers.

Here we extend the misclassification modelling approach proposed by Garcı́a-
Zattera et al. (2010, 2012) to account for misclassification of the determination of
the event in the context of continuous censored time-to-event data. To avoid specific
assumptions on the relationship between the predictors and the time-to-event dis-
tribution, a dependent Bayesian nonparametric (BNP) model is considered. A gen-
eral misclassification model allowing for different classifiers for each subject across
examinations is discussed. The chapter is organized as follows. The commonly
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used regression approaches for the analysis of time-to-event data are discussed in
Sect. 12.2. The dependent BNP modelling approach is introduced in Sect. 12.3. The
computational implementation of the model is given in Sect. 12.4. In Sect. 12.5, the
modelling approach is illustrated using simulated and real-life data. A final discus-
sion section concludes the chapter.

12.2 Commonly Used Continuous Time-to-Event Regression
Models

A starting point in the construction of a regression model for time-to-event data is
the definition of a baseline survival function, S0, that is modified (either directly or
indirectly) by subject-specific covariates x. The baseline survival function is denoted
by S0(t), and corresponds to the survival function for the group with all covari-
ates equal to zero. We assume that the time-to-event variable is continuous. There-
fore, the baseline density and hazard functions are defined by f0(t) =− d

dt S0(t) and
h0(t) = f0(t)/S0(t), respectively. The survival, density, and hazard functions for a
member of the population with covariates x will be denoted by Sx(t), fx(t), and
hx(t), respectively.

12.2.1 The Proportional Hazards Model

A proportional hazards (PH) model (Cox 1972) is obtained by expressing the
covariate-dependent survival function Sx(t) as

Sx(t) = S0(t)
exp(x′βββ ),

which, in terms of hazard function, reduces to

hx(t) = exp(x′βββ )h0(t),

where βββ is a vector of regression coefficients. The model assumptions imply that
for two individuals with covariates x1 and x2, the ratio of hazard curves is constant
and proportional to

hx1(t)
hx2(t)

= exp{(x1 − x2)
′βββ},

hence the name “proportional hazards.”
The first Bayesian semiparametric approach to PH models considered a gamma

process prior for the baseline cumulative hazard function (Kalbfleisch 1978)

H0(t) =
∫ s

0
h0(s)ds.
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The use of the gamma process prior in PH models, as well as the beta process
prior (Hjort 1990), piecewise exponential priors, and correlated increments priors
are discussed in detail in Ibrahim et al. (2001) and Sinha and Dey (1997). Other
approaches include the use of Bernstein polynomials (Gelfand and Mallick 1995;
Carlin and Hodges 1999).

12.2.2 The Accelerated Failure Time Model

An accelerated failure time (AFT) model is obtained by expressing the covariate-
dependent survival function Sx(t) as

Sx(t) = S0{exp(−x′βββ )t}.

This is equivalent to the linear model for the log transformation of the corresponding
time-to-event variable, T ,

logT = x′βββ + ε,

where exp(ε)∼ S0. The mean, median, and any quantile of survival for an individual
with covariates x1 is changed by a factor of exp{(x1 − x2)

′βββ} relative to those with
covariates x2.

The first BNP approach for AFT models was introduced in Christensen and John-
son (1988), who obtained approximate marginal inference under a Dirichlet process
(DP) prior. Approaches based on DP mixture (DPM) models have been considered
by Kuo and Mallick (1997), Kottas and Gelfand (2001) and Hanson (2006b). We
refer the reader to Komárek and Lesaffre (2008), for an alternative approach based
on mixtures of normal distributions. Tailfree priors can be used to directly model
the distribution of ε without using an additional mixture (Walker and Mallick 1999;
Hanson and Johnson 2002; Hanson 2006a; Zhao et al. 2009).

12.2.3 Other Models and Extensions

PH and AFT are only two of many other time-to-event models used in practice.
For instance, the proportional odds (PO) model has recently gained attention as an
alternative to the PH and AFT models. PO defines the survival function Sx(t) for an
individual with covariate vector x through the relation

Sx(t)
1− Sx(t)

= exp{−x′βββ}
(

S0(t)
1− S0(t)

)

.

The odds of the occurrence of the event before any time t are exp{(x1 − x2)
′βββ}

times greater for those with covariates x1 versus x2. The PO assumption implies
that hazard ratios
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lim
t→∞

hx1(t)
hx2(t)

= 1.

BNP approaches for the PO model have been based on Bernstein polynomials
(Banerjee and Dey 2005) and Polya trees (Hanson 2006a; Hanson and Mingan 2007;
Zhao et al. 2009; Hanson et al. 2011).

There are a few more hazard-based models including the additive hazards (AH)
model (Aalen 1980, 1989), given by

hx(t) = h0(t)+ x′βββ .

An empirical Bayes approach to this model based on the gamma process was im-
plemented by Sinha et al. (2009). Fully Bayesian approaches require an elaborated
model specification to incorporate the rather awkward constraint h0(t)+x′βββ ≥ 0 for
t > 0 (see, e.g., Yin and Ibrahim 2005). Recently, there has been some interest in the
accelerated hazards model (Chen and Wang 2000; Zhang et al. 2011), given by

hx(t) = h0{exp(−x′βββ )t}.

This model allows hazard and survival curves to cross. A highly interpretable model
that relates covariates to the baseline residual life function is the proportional mean
residual life model (Chen et al. 2005). Under this model, the residual life function
for a subject with covariates x is given by

mx(t) = exp(x′βββ )m0(t),

with m0(t) =E(T −t|T > t), where the expectation is taken with respect to the base-
line distribution function. It is important to stress that there have been no Bayesian
approaches to these two models to date.

Different “super models” have been proposed in the literature, including trans-
formation models that include PH and PO as special cases (Scharfstein et al. 1998;
Mallick and Walker 2003), transformation and extended regression models that in-
clude PH and AH as special cases (Yin and Ibrahim 2005; Martinussen and Scheike
2006) and hazard regression models that include both PH and AFT as special cases
(Chen and Jewell 2001). While highly flexible, all these models suffer from the
limitation that, once fitted, the resulting regression parameters lose any simple in-
terpretability.

Finally, there are several generalizations of the models discussed here. For in-
stance, a common approach for dealing with correlated data has been the introduc-
tion of frailty terms to the linear predictor (e.g., x′i jβββ +γi for the jth subject in cluster
i). Frailty models have been widely discussed in the literature and correspond to par-
ticular cases of hierarchical models. Hazard-based models (proportional, additive,
and accelerated) naturally accommodate time-dependent covariates; the linear pre-
dictor is simply augmented to be x(t)′βββ . Similarly, hazard-based models can also
include time-dependent regression effects via x′βββ (t) or even x(t)′βββ(t). A traditional
“quick fix” for non-proportional hazards is to introduce an interaction between
a continuous covariate x and time, e.g. hx(t) = exp(xβ1 + xtβ2)h0(t), yielding a
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particular focused deviation from PH. These extensions allow one to continue using
the familiar PH model in situations where the PH assumption does not hold. Other
model modifications include cure rate models, joint longitudinal/survival models,
recurrent events models, multi-state models, competing risks models, and multi-
variate models that incorporate dependence more flexibly than frailty models.

12.3 A Nonparametric Model with Misclassification
and Censoring

Let Ti ∈ IR+ be the time-to-event for the ith subject, i = 1, . . . ,n. Suppose that the
occurrence of the event is assessed by using a sequence of Ji subject-specific evalu-
ations. Let 0 < v(i,1) < v(i,2) < · · · < v(i,Ji) < +∞ be the ordered examination times
for the ith subject, i = 1, . . . ,n. In a regular interval-censored data context, the time-
to-event Ti is unobserved but is exactly known to lie in an interval

Ti ∈
(
v(i,l(i, j)−1),v(i,l(i, j))

]
,

obtained from the sequence of examinations, li ∈
{

1, . . . ,Ji + 1
}

, where v(i,0) ≡ 0
and v(i,Ji+1) ≡ +∞. However, in our setting the determination of the event is prone
to misclassification and the observed data are given by the binary variables Y(i, j),
j = 1, . . . ,Ji, indicating whether the (potentially) error-corrupted evaluation indi-
cates that the event has occurred in the time interval (vi, j−1,vi, j] (Y(i, j) = 1) or not
(Y(i, j) = 0).

In the following, let T= (Ti, . . . , Tn) be the vector of unobserved event times, and
Y = (Y1, . . . , Yn), where Yi =

(
Y(i,1), . . . ,Y(i,Ji)

)
, i = 1, . . . ,n, is the subject-specific

vector of observed binary indicators of potentially misclassified event status. Fur-
ther, we assume that for each subject and unit, a p-dimensional design vector includ-
ing exogenous covariates is recorded, xi ∈X ⊆ IRp, i = 1, . . . ,n. The aim here is
to develop a fully nonparametric method to make inferences about the dependence
of the event times Ti on covariates xi, where the event times Ti are observed only
through sequences of possibly misclassified binary indicators Y(i, j) of the event sta-
tus. To this end, we specify a BNP for the dependence of event times on covariates in
Sect. 12.3.2. Second, link between the observable binary variables Y and unobserv-
able event times T will be specified by the misclassification model in Sect. 12.3.1.
The implied probability model for the observed data Y is discussed in Sect. 12.3.3.

12.3.1 The Misclassification Model

Suppose that the evaluation of the event status at each visit is performed by Q exam-
iners. Denote by ξ(i, j) ∈ {1, . . . ,Q} the variable indicating the examiner that evalu-
ates subject i at examination time v(i, j), and let ξ i = (ξ(i,1), . . . ,ξ(i,Ji)) be the vector
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of indicators of the examiners that score the responses of subject i over time. We
further assume that the scoring behavior of each examiner is the same across the
study. Let ηq and αq, q = 1, . . . ,Q, be the specificity and sensitivity parameters for
the qth examiner, respectively. The misclassification process is characterized by the
following assumptions:

(i) ⊥⊥1≤i≤n Yi | T1, . . . ,Tn,ξ 1, . . . ,ξ n,η ,α , i.e. the observed response vectors for
each subject are independent given the true unobserved times-to-event, exam-
iner indicators, and sensitivity and specificity parameters,

(ii) Yi⊥⊥ T1, . . . ,Ti−1,Ti+1, . . . ,Tn | Ti,ξ i,η ,α , ∀ i, i.e. the distribution of the ob-
served response vector for a subject only depends on his true unobserved time-
to-event, the examiners that score his responses, and the sensitivity and speci-
ficity parameters,

(iii) ⊥⊥1≤ j≤Ji Yi, j | Ti,ξ i,η ,α , ∀ i, i.e. the observed binary responses for a subject
are independent across time given his unobserved time-to-event, the examiners
that score his responses and the sensitivity and specificity parameters,

(iv) Y(i, j) | Ti,ξ i,η ,α ∼ Bern
(
π(i, j)

)
, where

π(i, j) = P
(
Y(i, j) = 1

∣
∣Ti ∈ (0,v(i, j)]

)
= αξ(i, j) ,

or
π(i, j) = P

(
Y(i, j) = 1

∣
∣Ti ∈ (v(i, j),+∞)

)
= 1−ηξ(i, j),

if Ti ∈ (0,v(i, j)] or Ti ∈ (v(i, j),+∞), respectively.

Extensions of the general misclassification model are also possible, by includ-
ing examiner-specific characteristics in the misclassification parameters. Following
Garcı́a-Zattera et al. (2010, 2012), we consider the following identifying restriction
on the misclassification parameters space

{
(ηq,αq) ∈ [0,1]2 : ηq +αq > 1

}
, q = 1, . . . ,Q.

Finally, we assume that for every q ∈ {1, . . . ,Q},

(ηq,αq)
ind.∼ Beta

(
a(η,0)
(q) ,a(η,1)

(q)

)
× Beta

(
a(α ,0)
(q) ,a(α ,1)

(q)

)
×

II(ηq,αq){(ηq,αq): ηq+αq>1} . (12.1)

12.3.2 The Underlying Time-to-Event Model

Even though the models described in Sect. 12.2 provide useful summary information
in the absence of estimates of a baseline survival distribution and may be formulated
in a parametric or semi-parametric fashion, they arise from specific assumptions on
the relationship between the covariates and the time-to-event. All these assump-
tions may be considered too strong in many practical applications. This issue is
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particularly relevant for misclassified censored data, where the degree of available
information to perform diagnostic techniques is rather reduced due to the misclassi-
fication mechanism.

We extend the recent developments on dependent nonparametric priors, ini-
tially proposed by MacEachern (1999, 2000), to provide a framework for modelling
interval-censored time-to-event data. Specifically, rather than assuming a functional
form for a particular functional of the survival distribution, such as the conditional
hazard function, the time-to-event regression problem is cast as inference for a com-
plete family of conditional time-to-event distributions F = {Fx : x ∈X ⊆ IRp},

where Ti | xi
ind.∼ Fxi . Here the family F is modelled using a dependent DP (DDP)

mixture of lognormals model for its densities,

fx(t) =
∫

1
t

φ(log t | μ ,σ2)dGx(μ ,σ2),

where φ( · | μ ,σ2) denotes the density of the Gaussian distribution with mean μ and
variance σ2, and, for every x ∈X , Gx is probability measures defined on IR× IR+.
The probability model for the conditional densities is induced by specifying a prob-
ability model for the collection of mixing distributions GX = {Gx : x ∈X ⊆ IRp}.
Justified by results in Barrientos et al. (2012), on the full support of models for
predictor-dependent probability measures, we focused on predictor-dependent dis-
crete mixing distributions where only the support points are indexed by the predic-
tor values. Specifically, we consider a “single-weights” dependent Dirichlet process
prior (DDP) (MacEachern 2000) for GX . A “single-weights” DDP prior defines a
family of almost surely discrete random probability measures, which extends the
DP stick-breaking representation (Sethuraman 1994), such that, for every x ∈X,

Gx(·) =
∞

∑
l=1

wlδθθθ l (x)(·),

where δη (·) denotes the Dirac measure at η , {θθθ l(x) : x ∈ X }, l ∈ IN, are inde-
pendent stochastic processes with index set X , and the weights arise from a stick-
breaking construction: w1 = v1 and, for k = 2,3, . . ., wl = vk ∏l−1

r=1 (1− vr), with

vl | α i.i.d.∼ Beta(1,α),

for α ∈ IR+, independent across the support point processes.
We build our proposal on a linear DDP (LDDP) prior formulation (De Iorio

et al. 2004, 2009; Jara et al. 2010), which corresponds to a particular version of
the “single-weights” DDP, where the component of the atoms defining the location
in a DDP mixture model follows a linear regression model θθθ l(x) = (x′βββ l ,σ2

l ). An
important advantage of this model for related random probability measures is that
it can be represented as the following DPM of linear (in the coefficients) regression
models



12 Misclassified Censored Time-to-Event Data 255

logTi | βββ i,σ
2
i

ind.∼ N
(
x′iβββ i,σ

2
i

)
, (12.2)

(βββ i,σ
2
i ) | G

i.i.d.∼ G, (12.3)

and

G | α,G0 ∼ DP(αG0) , (12.4)

where N(μ ,σ2) denotes the Gaussian distribution with mean μ and variance σ2,
G0 ≡ Np (βββ |μb,Sb)Γ

(
σ−2|τ1/2,τ2/2

)
, with Np(· | μ ,A) being the p-dimensional

Gaussian distribution with mean μ and covariance matrix A, and Γ (· | a,b) being
the gamma distribution with parameter a and b. The LDDP model specification is
completed with the following hyper-priors

α|a0,b0 ∼ Γ (a0,b0) , (12.5)

τ2|τs1 ,τs2 ∼ Γ (τs1/2,τs2/2), (12.6)

μb|m0,S0 ∼ Np(m0,S0), (12.7)

and

Sb|ν,ΨΨΨ ∼ IWp(ν,ΨΨΨ ), (12.8)

where IWp(ν,ΨΨΨ) denotes a p-dimensional inverted—Wishart distribution with de-
grees of freedom ν and scale matrix ΨΨΨ , parameterized such that E(ΣΣΣ) =ΨΨΨ−1/(ν −
p− 1).

12.3.3 The Implied Statistical Model

The misclassification model assumptions (i)–(iv), along with the assumptions as-
sociated with the dependent mixture model for the underlying time-to-event data
(12.2)–(12.8), imply that the joint probability model for the observed binary indica-
tors and unobserved time-to-event variables for each subject is given by

p
(
Y1, . . .Yn,T1, . . . ,Tn

∣
∣α,η ,G

)
=

n

∏
i=1

p(Yi | Ti,α ,η) fxi(Ti | G),

=
n

∏
i=1

{
Ji

∏
j=1

p
(
Y(i, j)

∣
∣Ti,ηξ(i, j) ,αξ(i, j)

)
}

fxi(Ti | G),
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where

p
(
Y(i, j)

∣
∣ Ti, ηξ(i, j) ,αξ(i, j)

)

=

{

α
Y(i, j)
ξ(i, j)

(
1−αξ(i, j)

)1−Y(i, j)
}II(Ti){Ti∈(0,v(i, j)]} ×

{(
1−ηξ(i, j)

)Y(i, j)
η

1−Y(i, j)
ξ(i, j)

}II(Ti){Ti∈(v(i, j) ,+∞)}
,

=
j

∏
l=1

{

α
Y(i, j)
ξ(i, j)

(
1−αξ(i, j)

)1−Y(i, j)
}II(Ti){Ti∈(v(i,l−1),v(i,l)]} ×

Ji+1

∏
l= j+1

{(
1−ηξ(i, j)

)Y(i, j)
η

1−Y(i, j)
ξ(i, j)

}II(Ti){Ti∈(v(i,l−1),v(i,l)]}
.

Therefore, the induced probability model for observed data is given by

p
(
Y1, . . .Yn

∣
∣α,η ,G) =

n

∏
i=1

∫

IR+

p(Yi | Ti,α,η) fxi(Ti | G)dTi,

=
n

∏
i=1

∫

IR+

{
Ji

∏
j=1

p
(
Y(i, j)

∣
∣Ti,ηξ(i, j) ,αξ(i, j)

)
}

×
{∫

1
Ti

φ
(
logTi | x′iβββ ,σ

2)dG(βββ ,σ2),

}

dTi.

12.4 The Computational Implementation

A Markov chain Monte Carlo algorithm for exploring the posterior distribution
of the proposed model is implemented in the LDDPmissurv function of the li-
brary DPpackage (Jara 2007; Jara et al. 2011) of the R program (R Development
Core Team 2015), which is available from the Comprehensive R Archive Network
(CRAN). This function fits a marginalized version of the model, where the random
probability measure G is integrated out. Full inference on the conditional density,
survival, and hazard functions at a given covariate level are obtained using the ε−DP
approximation proposed by Muliere and Tardella (1998), with ε = 0.01. The pos-
terior distribution for the model parameters is explored by considering a data aug-
mented version. Specifically, we consider the posterior distribution arising after in-
troducing the time-to-event times Ti, i = 1, . . . ,n. The full conditionals for the char-
acteristic parameters of the proposed models, arising from the augmented posterior
are described next.



12 Misclassified Censored Time-to-Event Data 257

12.4.1 The Full Conditional for the Unobserved Time-to-Events

Assumptions (i)–(iv), along with the assumptions of the fully nonparametric re-
gression model, imply that for i = 1, . . . ,n, the full conditional distribution for the
corresponding time-to-event is given by

p
(
Ti
∣
∣ · · ·) ∝

Ji

∏
j=1

p
(

Y(i, j) | Ti,ηξ(i, j) ,αξ(i, j)

)
p
(
Ti | βββ i,σ

2
i

)
,

=
Ji+1

∑
j=1

W(i, j)(Yi,ξ i,α,η)
1
Ti

φ
(

logTi | x
′
iβββ i,σ

2
i

)
II(Ti){Ti∈(v(i, j−1),v(i, j)]} ,

where for j = 1, . . . ,Ji + 1,

W(i, j)(Yi,ξ i,α,η) =

{
Ji

∏
l= j

α
Y(i,l)
ξ(i,l)

(
1−αξ(i,l)

)1−Y(i,l)

}

×
{

j−1

∏
l=1

(
1−ηξ(i,l)

)Y(i,l)
η

1−Y(i,l)
ξ(i,l)

}

. (12.9)

12.4.2 The Full Conditional for the Misclassification Parameters

The full conditionals for the misclassification parameters are truncated beta distri-
butions given by

ηq | · · · ∼ Beta
(

a(η,0)q + n00
q ,a(η,1)q + n+0

q − n00
q

)
I (ηq){ηq:ηq>1−αq} ,

and

αq | · · · ∼ Beta
(

a(α ,0)
q + n11

q ,a(α ,1)
q + n+1

q − n11
q

)
I (αq){αq:αq>1−ηq} ,

where

n00
q =

n

∑
i=1

Ji

∑
j=1

I
(
Y(i, j),Ti

)
{Y(i, j,k)=0,T(i, j)∈(v(i,k),+∞)} I

(
ξ(i,k)

)
{ξ(q,k)=i} ,

n+0
q =

N

∑
i=1

J

∑
j=1

Ki

∑
k=1

I
(
T(i, j)

)
{T(i, j)∈(v(i,k),+∞)} I

(
ξ(i,k)

)
{ξ(q,k)=i} ,

n11
q =

N

∑
i=1

J

∑
j=1

Ki

∑
k=1

I
(
Y(i, j,k),T(i, j)

)
{Y(i, j,k)=1,T(i, j)∈(0,v(i,k)]} I

(
ξ(i,k)

)
{ξ(q,k)=i} ,
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and

n+1
q =

N

∑
i=1

J

∑
j=1

Ki

∑
k=1

I
(
T(i, j)

)
{T(i, j)∈(0,v(i,k)]} I

(
ξ(i,k)

)
{ξ(q,k)=i} .

12.5 Illustrations

12.5.1 Simulated Data

To illustrate our approach, we conducted the analysis of two simulated data sets. In
both cases, we consider the time-to-event variable for n = 500 subjects. We assume
a binary predictor, di, and 250 subjects in each level (groups A and B). Different
distributions were assumed for each level of the predictor such that

logT1, . . . , logT250
i.i.d.∼ fA ≡ 0.5×N(1.8,0.005)+ 0.5×N(2.4,0.0025),

and
logT251, . . . , logT500

i.i.d.∼ fB ≡ N(2.1,0.0324).

An important characteristic of the simulation scenario is the bimodal behavior of
the distribution of the time-to-event in group A. In group B, a unimodal behavior for
the distribution of the time-to-event variables was assumed. The true time-to-event
for each subject was interval-censored by simulating subject-specific visit times. A
total number of Ji = 8 visit times were considered. The first visit was drawn from an
N(6,0.0025) distribution. Each of the distances between the consecutive visits was
drawn from an N(0.8,0.01252) distribution.

Two misclassification scenarios were considered. In both cases, we assume that
the assessment of the occurrence of the event was performed by Q = 10 examiners,
allocated randomly to each subject and visit. In Scenario I, an imperfect determina-
tion of the event was assumed for all examiners. In Scenario II, a perfect determina-
tion of the event was assumed for all examiners. The values for the examiner-specific
sensitivity and specificity parameters under Scenario I are given in Fig. 12.2.

The proposed model was fitted to both simulated data sets by considering xi =
(1,di)

′ and using the following values for the hyper-parameters: a0 = 10, b0 = 1,

τ1 = τs1 = 6.01, τs2 = 2.01, ν = 4, ΨΨΨ = I2, m0 = 02, S0 = 102 × I2, a(η,0)1 = · · · =
a(η,0)Q = a(η,1)1 = · · ·= a(η,1)Q = 1 and a(α ,0)

1 = · · ·= a(α ,0)
Q = a(α ,1)

1 = · · ·= a(α ,1)
Q = 1.

In each analysis 110,000 samples of a Markov chain cycle were completed. Because
of storage limitations and dependence, the full chain was subsampled every 10 steps
after a burn-in period of 10,000 samples, to give a reduced chain of length 10,000.

Figure 12.1 displays the true and estimated survival curves for the time-to-event
in both groups under scenarios I and II. The predictive survival functions closely
approximate the true survival ones, which were almost entirely enclosed in point-
wise 95 % highest posterior density (HPD) intervals. We note that these results are
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for one random sample from two particular densities, and these conclusions should
not be overinterpreted. Nonetheless, these examples do show that our proposal is
highly flexible and is able to capture different behaviors of the time-to-event survival
functions. The examples also show that when misclassification is not present, the
proposed model does not overfit the data.
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Fig. 12.1 Simulated data: True (dotted line) and posterior mean (continuous line) of the marginal
survival functions for group A (panel (a) and (c)) and B (panel (b) and (d)). A point-wise 95 %
credible band is displayed as a gray area in each case. Panels (a)–(b) and (c)–(d) display the results
for the simulation scenario I (misclassification) and II (no misclassification), respectively

Figure 12.2 shows the posterior mean and 95 % HPD credible interval for the
sensitivity and specificity of each examiner. Similarly to the observed for the time-
to-event parameters, the results suggest that the misclassification parameters can be
estimated with only a minimal bias and with a reasonable precision. The results
of both simulation scenarios strongly suggest that concentrated information on the
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misclassification parameters is not needed to obtain precise estimates for the model
parameters. Thus, they can be estimated from the raw data without extra information
on the misclassification parameters.
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Fig. 12.2 Simulated data: True value (cross), posterior mean ( f illedcircle), and 95 % HPD cred-
ible intervals for the examiner’s sensitivity (panel (a) and (c)) and specificity (panel (b) and (d)).
Panels (a)–(b) and (c)–(d) display the results for the simulation scenario I (misclassification) and
II (no misclassification), respectively

12.5.2 The Signal Tandmobiel R© Data

We consider data gathered in a longitudinal oral health study conducted in Flanders
(Belgium) between 1996 and 2001, the Signal-Tandmobiel R© (ST) study (see, e.g.,
Vanobbergen et al. 2000). For this project, 4468 children were examined on a yearly
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basis during their primary school time (between 7 and 12 years of age) by one of
sixteen dental examiners. The purpose of the investigation is to examine the effect of
covariates on the distribution of the time-to-caries experience (CE), which is defined
as a binary variable indicating whether a tooth is decayed at d3 level, missing or
filled due to caries. This involves the analysis of a misclassified time-to-event data
since: (1) due to the setup of the study, the tooth status was assessed yearly and,
thus, the time to CE can only be determined to lie in a given interval of time, and
(2) several examiners were involved in the study and their caries classification may
not perfectly reflect the tooth’s true condition and, therefore, the presence/absence
of CE can be misdiagnosed.

We evaluated the effect of gender, frequency of brushing (once or more a day
versus less than once a day) (freqrus), and geographical location (in terms of stan-
dardized x- and y-coordinates) of the municipality of the school to which the child
belongs, on the time-to-CE for one of the permanent first molars on the maxilla,
teeth 16. The inclusion of the geographical components, expressed in terms of the
x- and y-coordinates, was motivated by the results of previous analyses (without
correcting for misclassification) that showed a significant East–West gradient in the
prevalences of CE in Flanders. A possible cause for the apparent trend in CE is a
different scoring behavior of the 16 dental examiners and their non-homogeneous
spatial distribution in the study area (Mwalili et al. 2005).

The proposed model was fitted to the ST data sets by considering xi =(1,genderi,
freqrusi,xi,yi)

′ and using the following values for the hyper-parameters: a0 = 10,
b0 = 1, τ1 = τs1 = 6.01, τs2 = 2.01, ν = 4, ΨΨΨ = I5, m0 = 05, S0 = 102 × I5,

a(η,0)1 = · · ·= a(η,0)Q = a(η,1)1 = · · · = a(η,1)Q = 1 and a(α ,0)
1 = · · · = a(α ,0)

Q = a(α ,1)
1 =

· · ·= a(α ,1)
Q = 1. Again, 110,000 samples of a Markov chain cycle were completed.

Because of storage limitations and dependence, the full chain was subsampled every
10 steps after a burn-in period of 10,000 samples, to give a reduced chain of length
10,000.

The posterior inference about the survival curves for different values of the pre-
dictors suggest that boys have a higher probability of developing CE and that the
higher the frequency of brushing the lower the probability of developing CE. The
results also suggest a lack of effect of the geographical location of the time-to-
event distributions. The lack of a significant geographical trend in the prevalences
and incidences of CE would support the hypothesis that the observed geographi-
cal gradient is due to the different scoring behavior of the examiners rather than to
real local geographical differences. However, this could also be explained by the
loss of power associated with the presence of misclassification.These findings are
illustrated in Fig. 12.3, where the posterior predictive survival curves for different
covariates values are displayed.

Finally, Fig. 12.4 shows the posterior means and 95 % HPD credible intervals for
the sensitivity and specificity for each examiner. The results suggest a greater vari-
ability in the sensitivity than in the specificity estimates, which can be explained
by the low prevalences and incidences of CE. All examiners showed a sensitivity
greater than 0.60, with relatively narrow 95 % HPD credible intervals, with one
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Fig. 12.3 Signal Tandmobiel R© data: Posterior mean of the survival function for different combi-
nation of the covariates. In each panel the results are display for girls that brush regularly their teeth
(solid line), girls who do not brush regularly their teeth (dashed line), boys who brush regularly
their teeth (dotted line) and boys who do not brush regularly their teeth (dotdashed line). Panel (a),
(b), (c) and (d) display the results for (x,y)/100 =(1.0440,1.8120), (x,y)/100 =(1.0440,2.0400),
(x,y)/100 = (1.7850,1.8120), and (x,y)/100 = (1.7850,2.0400), respectively

exception. The latter result is explained by the fact that this examiner was only in-
volved in the first 2 years of the ST study, having less information for the estimation
of his parameters. The posterior means for the specificity parameters were higher
than 0.90 for all examiners.

12.6 Concluding Remarks

We have proposed a fully nonparametric regression framework for the analysis
of mismeasured time-to-event response data, and where different classifiers are
present. We provided empirical evidence showing that under simple restrictions on
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Fig. 12.4 Signal Tandmobiel R© data: posterior mean ( f illedcircle) and 95 % HPD credible inter-
vals for the examiner’s sensitivity (panel (a)) and specificity (panel (b))

the parameter space, the model parameters in the proposed model can be estimated
from the raw data only, thus avoiding the need of external information on the mis-
classification parameters. The results suggest that even under the use of uniform
priors on the misclassification parameters, correct estimates can be obtained. We
noted that if external information on the misclassification parameters is available,
this can be easily incorporated into the model specification.

Several extensions of this work can be done. Justified by the existence of
easy/difficult to diagnose subjects, the relaxation of some of the assumptions (i)–
(iv) could be of interest; for instance, a possible improvement of the scoring behav-
ior of the examiners across the study could be considered. Finally, the extension of
the proposed models for handling multivariate responses is the subject of ongoing
research.
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Garcı́a-Zattera, M. J., Jara, A., and Komárek, A. (2014). A flexible AFT model for
misclassified clustered interval-censored data. Technical report, Department of
Statistics, Pontificia Universidad Católica de Chile, Chile.
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Chapter 13
Neuronal Spike Train Analysis
Using Gaussian Process Models

Babak Shahbaba, Sam Behseta, and Alexander Vandenberg-Rodes

Abstract Statistical analysis of simultaneously recorded neurons plays an important
role in understanding complex behaviors, decision making process, and neurophys-
iological disorders. Here, we briefly review several statistical methods specifically
developed for analysis of neuronal spike trains. We then focus on application of
Gaussian process models for estimating time-varying firing rates of neurons and
show how this approach can be extended for modeling synchrony among multiple
neurons. We finish this chapter by discussing some possible future directions where
more advanced nonparametric Bayesian methods can be utilized to improve existing
models.

13.1 Introduction

A common approach in neuroscience involves recording spiking activities or action
potentials of neurons using microelectrodes. Subsequently, neuronal data may be
represented as the times at which spikes occur. The main objective of a considerably
large number of statistical methods then is to model the temporal evolution of the
firing patterns of a group of neurons (Brillinger 1988; Brown et al. 2004; Kass et al.
2005; Gerstner and Kistler 2002; Tuckwell 1988; H.C. 1989; Riccardi 1977; Holden
1976; West 2007; Rigat et al. 2006). For a comprehensive review of the topic see
Kass et al. (2005).
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Fig. 13.1 Raster and PSTH plots for a neuron under repeating (left panel) and random (right panel)
modes

As an example, consider a study of neurons recorded from the primary motor
cortex (M1) area of a Macaque monkey, performing a sequential task of reach-
ing five targets arranged horizontally on a touch sensitive screen (Matsuzaka et al.
2007). The targets were numbered 1 to 5 from left to right and could be illuminated
upon reaching them. The animal was trained to respond to the visual stimuli under
two experimental conditions or modes. In the “repeating mode,” a sequence of tar-
gets appeared on the screen in a repeating order. In the “random mode,” targets ap-
pear in a pseudo-random order. An experimental window of 300 milliseconds (ms)
was used. This time window began at 200 ms prior to the target reach and continued
for 100 ms after that. The upper segment of Fig. 13.1 shows the corresponding raster
plots for a neuron recorded under both modes of this task. Rows in the raster plot
represent trials, and the tick-marks are spike time occurrences.

Typically, neuronal data are summarized through peri-stimulus time histograms
(PSTH). For the above example, by dividing the window of 300 ms into bins of
10 ms, and pooling the spike occurrences within each bin, one can create the PSTH
plots shown in the lower segment of Fig. 13.1.

Let Y1, . . . ,Yn denote the number of spike occurrences within the bins centered
at times t1, . . . , tn. A common approach to modeling the neuronal firing rates is by
discretizing an inhomogeneous Poisson point process, resulting in a hierarchical
model of the form

Yj ∼ p(y j|θ j , ζ )
θ j = f (t j),

(13.1)

where the data model p(y j|θ j, ζ ) is usually a Poisson(θ j) density. If the bins are
narrow enough they can safely be assumed (or thresholded) to contain at most one
spike, so that Yj can be modeled as a Bernoulli random variable. The model includes
a vector of nuisance parameters ζ to allow for generality.
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The (latent) firing rates f (t j) are often the key quantity of interest. In particular—
ignoring the details of binning or the data model—one should think of f (t) as a
latent function over the whole time interval of interest. Thus in the Bayesian ap-
proach a key challenge is to produce an appropriately realistic and flexible prior
distribution over latent functions, and to then provide computationally efficient pro-
cedures for approximating the posterior distribution of f given the observed spike
data Y1, . . . ,Yn.

One highly flexible approach is known as Bayesian adaptive regression splines
(BARS) (Dimatteo et al. 2001). In this model the latent function f is assumed to be
a spline having knots at unknown locations ξ1, . . . ,ξk. Writing f (t) in terms of basis
functions bξ ,h(t) as f (t) = ∑h bξ ,h(t)βξ ,h, the function evaluations f (t1), . . . , f (tn)
may be collected into a vector ( f (t1), . . . , f (tn))T = Xξ βξ , where Xξ is the design
matrix and βξ the coefficient vector. BARS then employs a reversible jump MCMC
algorithm (Green 1995) to sample from a suitable approximate posterior distribution
on the knot set ξ . Eventually, curves are fitted via model averaging.

One advantage of using BARS for modeling PSTH is the ability to develop in-
ferential methods, suitable for comparing the patterns of spiking activities for com-
parative problems similar to the one depicted in Fig. 13.1 (Behseta and S. 2011;
Behseta et al. 2005). Kottas et al. (2012) and Kottas and Behseta (2010) also treated
the problem of comparing the spike trains resulting in the experiments similar to the
ones shown in Fig. 13.1, and subsequently developed a fully-Bayesian inferential
methodology for such comparative studies; however, they used a Dirichlet process
mixture of Beta densities as the prior for f .

Although single-neuron analysis of this type has led to many interesting dis-
coveries, it is widely perceived that complex behaviors are driven by networks of
neurons instead of a single neuron (Buzsáki 2010). Therefore, investigators have
been recording neuronal activity from multi-probe electrodes. From the statistical
point of view, multiple channel recordings greatly facilitate assessing the temporal
properties of networks of neurons in real time.

Early analysis of simultaneously recorded neurons focused on correlation of
activity across pairs of neurons using cross-correlation analyses (Narayanan and
Laubach 2009) and analyses of changes in correlation over time, i.e., by using a
Joint Peri-Stimulus Time Histogram or PSTH (Gerstein and Perkel 1969). Simi-
lar analyses were performed in the frequency domain by using coherence analy-
sis of neuron pairs using Fourier-transformed neural activity (Brown et al. 2004).
For the Bayesian correction for attenuation of correlation in multi-trial spike see
Behseta et al. (2009). There are also a number of multivariate analysis techniques
for the investigation of simultaneously recorded populations of neurons (Chapin
1999; Nicolelis 1999; Grün et al. 2002; Pillow et al. 2008; Harrison et al. 2013;
Brillinger 1988; Brown et al. 2004; Kass et al. 2005; West 2007; Rigat et al. 2006;
Patnaik et al. 2008; Diekman et al. 2009; Sastry and Unnikrishnan 2010; Kottas
et al. 2012).

Recently, Kelly and Kass (2012) proposed a new method to quantify synchrony
among multiple neurons. The authors argued that separating stimulus effects from
history effects would allow for a more precise estimation of the instantaneous
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conditional firing rate. Specifically, given the firing history Ht , define λ A(t|HA
t ),

λ B(t|HB
t ), and λ AB(t|HAB

t ) to be the conditional firing intensities of neuron A, neu-
ron B, and their synchronous spikes respectively. Independence between the two
point processes may be examined by testing the null hypothesis H0 : ζ (t) = 1, where

ζ (t) = λ AB(t|HAB
t )

λ A(t|HA
t )λ B(t|HB

t )
. where ζ represents the excess firing rate (ζ > 1) or the sup-

pression of firing rate (ζ < 1) due to dependence between two neurons (Ventura
et al. 2005; Kelly and Kass 2012). That is, ζ accounts for the excess joint spiking
beyond what is explained by independence.

In this chapter we discuss alternative approaches that place a Gaussian process
(GP) prior over the latent function in order to model the time-varying and history-
dependent firing rate for each neuron. The joint distribution of spikes for multiple
neurons is connected to their marginals using a parametric copula model. We first
provide a brief overview of univariate GP models in Sect. 13.2. Then, in Sect. 13.3
we discuss the application of GP for single neuron analysis. The copula model for
simultaneously recorded neurons is presented in Sect. 13.4. In Sect. 13.5, we discuss
some future directions.

13.2 Gaussian Process Models

A Gaussian process (GP) on the real line is a random real-valued function x(t), with
statistics determined by its mean functionEx(s) and kernel κ(s, t) =Cov(x(s),x(t)).
More precisely, all finite-dimensional distributions (x(t1), . . . ,x(tn)) are multivariate
Gaussian with mean (Ex(t1), . . . ,Ex(tn)), and with covariance matrix (κ(tk, t�))n

k,�=1.
Since the latter must be positive semi-definite for every finite collection of inputs
t1, . . . , tn, only certain kernels κ are valid. Thus when using Gaussian processes,
a practitioner often chooses from among the few popular classes of kernels, such
as the Squared Exponential (SE), Ornstein–Uhlenbeck (OU), Matérn, Polynomial,
and linear combinations of these. For example, we can use the following covariance
form, which combines a random constant with the SE kernel and iid observation
noise (Rasmussen and Williams 2006; Neal 1998):

Ci j = Cov[x(ti),x(t j)]

= λ 2 +η2 exp[−ρ2(ti − t j)
2]+ δi jσ2

ε . (13.2)

Here, λ ,η ,ρ , and σε are hyperparameters with their own hyperpriors. In general, the
choice of kernel encodes our qualitative beliefs about the underlying signal. For in-
stance, samples from a GP with OU kernel are always non-differentiable functions
x(t), and the SE kernel generates only infinitely differentiable functions. Despite
such differences, both kernels have the inverse length-scale ρ as a hyperparameter:
smaller values of ρ result in more slowly varying functions. In practice we only
observe GPs at a finite number of points, hence local properties of GPs such as
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differentiability are irrelevant—in Cunningham et al. (2007), for example, it was
observed that using the Matérn instead of SE kernel resulted in negligible differ-
ences when modeling spike trains.

It should be remarked that many dynamical models such as autoregressive pro-
cesses with Gaussian noise are also multivariate Gaussian and hence can be situated
within the GP framework, albeit with a usually less interpretable kernel.

13.3 Gaussian Process Model of Firing Rates

With the model (13.1), note that the latent firing rates f (ti) need to be non-negative,
hence a Gaussian process cannot be directly used as a prior distribution for f . In
the case of Poisson observations one can use an exponential link function, letting
f (t) = exp(x(t)), where x(t) is a GP. In Cunningham et al. (2007) it was instead
proposed to set the constant mean function μ(t) = μ > 0 as an additional hyper-
parameter for a GP, and then to let the latent rate f be this GP conditioned to be
non-negative.1 In a recent work, Shahbaba et al. (2014) also use the model (13.1)
to estimate the underlying firing rate of neurons, but after discretizing time so that
there is at most one spike within each time interval, resulting in a binary time se-
ries Y1, . . . ,Yn comprised of 1 s (spike) and 0 s (silence). To model the latent firing
probabilities f (ti) = P(Yi = 1), they apply the sigmoidal transformation

f (ti) =
1

1+ exp[−u(ti)]
,

where u(t) has a GP prior. Note that as u(t) increases, so does f (ti). The prior
autocorrelation imposed by this model allows the firing rate to change smoothly
over time. When there are R trials (i.e., R spike trains) for each neuron, we can
model the corresponding spike trains as conditionally independent given the latent
variable u(t). Figure 13.2 shows the posterior expectation of firing rate (blue curve)
overlaid on the PSTH plot of a single neuron with 5 ms bin intervals.

13.4 Detecting Synchrony Among Multiple Spike Trains

For multiple neurons, Shahbaba et al. (2014) propose to use a generalization of the
method by Kelly and Kass (2012) (see Sect. 13.1) to model the joint distribution as a
function of marginals. In general, models that couple the joint distribution of two (or
more) variables to their individual marginal distributions are called copula models.
See Nelsen (1998) for detailed discussion of copula models. Onken et al. (2009) and
Berkes et al. (2009) also use copula models for capturing neural dependencies.

1 Their data model is somewhat different from (13.1), as the spike times are assumed to follow a
conditionally inhomogeneous gamma-interval process instead of a Poisson process.
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Fig. 13.2 Using the Gaussian process model of Shahbaba et al. (2014) to capture the underlying
firing rate of a single neuron from prefrontal cortical areas in rat’s brain. There are 51 spike trains
recorded over 10 s. The PSTH plot is generated by creating 5 ms intervals. The curve shows the
estimated firing rate (posterior expectation)

Let H be n-dimensional distribution functions with marginals F1, . . . ,Fn. Then,
an n-dimensional copula is a function of the following form:

H(y1, . . . ,yn) =H (F1(y1), . . . ,Fn(yn)), for all y1, . . . ,yn.

Here, H defines the dependence structure between the marginals. For example,
the Farlie–Gumbel–Morgenstern (FGM) copula family (Farlie 1960; Gumbel 1960;
Morgenstern 1956; Nelsen 1998) is defined as follows:

H =
[
1+

n

∑
k=2

∑
1≤ j1<···< jk≤n

β j1 j2... jk

k

∏
l=1

(1−Fjl)
] n

∏
i=1

Fi, (13.3)

where Fi = Fi(yi). As shown by Wilson and Ghahramani (2012), this idea can be
generalized to multivariate processes. Restricting the above model to second-order
interactions, we have

H(y1, . . . ,yn) =
[
1+ ∑

1≤ j1< j2≤n

β j1 j2

2

∏
l=1

(1−Fjl)
] n

∏
i=1

Fi, (13.4)

where Fi = P(Yi ≤ yi). Here, we use y1, . . . ,yn to denote the firing status of n neurons
at time t; β j1 j2 captures the relationship between the jth

1 and jth
2 neurons.

For a pair of neurons with firing probabilities p and q respectively, we can show
that β = ζ−1

(1−p)(1−q) . As discussed in Sect. 13.1, ζ represents the excess firing rate

(ζ > 1) or the suppression of firing rate (ζ < 1) due to dependence between two
neurons (Ventura et al. 2005; Kelly and Kass 2012). In our model, β = 0 indicates
that the two neurons are independent; the excess firing rate and the suppression of
firing rate between two dependent neurons are represented by β > 0 and β < 0
respectively.
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To ensure that probability distribution functions remain within [0,1], the following
constraints on all

(n
2

)
parameters β j1 j2 are imposed:

1+ ∑
1≤ j1< j2≤n

β j1 j2

2

∏
l=1

ε jl ≥ 0, ε1, · · · ,εn ∈ {−1,1}.

Considering all possible combinations of ε j1 and ε j2 in the above condition, there are
n(n− 1) linear inequalities, which can be combined into the following inequality:

∑
1≤ j1< j2≤n

|β j1 j2 | ≤ 1.

13.4.1 Computation

Sampling from the posterior distribution of β ’s in the above copula model is
quite challenging because of the imposed constraints. Lan et al. (2014) devel-
oped a novel Markov Chain Monte Carlo algorithm for constrained target dis-
tributions of this type based on Hamiltonian Monte Carlo (HMC) (Duane et al.
1987; Neal 2011). They show that in many cases, bounded connected constrained
D-dimensional parameter spaces can be bijectively mapped on to the D-dimensional
unit ball. Their method then augments the original D-dimensional parameter θ with
an extra auxiliary variable θD+1 to form an extended (D+ 1)-dimensional param-

eter θ̃ = (θ ,θD+1) such that ‖θ̃‖2 = 1 so θD+1 = ±
√

1−‖θ‖2
2. This way, the do-

main of the target distribution is changed from the unit ball to the D-dimensional
sphere. Using the above transformation, they define the Hamiltonian dynamics on
the sphere. This way, the resulting HMC sampler can move freely on the sphere, SD,
while implicitly handling the constraints imposed on the original parameters. As il-
lustrated in Fig. 13.3, the boundary of the constraint, i.e., ‖θ‖2 = 1, corresponds
to the equator on the sphere SD. Therefore, as the sampler moves on the sphere,
passing across the equator from one hemisphere to the other translates to “bouncing
back” off the boundary in the original parameter space.

Lan et al. (2014) show that by defining HMC on the sphere, besides handling the
constraints implicitly, the computational efficiency of the sampling algorithm could
be improved since the resulting dynamics has a partial analytical solution (geodesic
flow on the sphere). They used this approach, called Spherical HMC, for sampling
from the posterior distribution of β ’s in the above copula model and showed that the
resulting sampler is substantially more efficient than alternative methods.

13.4.2 Results for Experimental Data

We now consider an experiment designed to investigate the role of the prefrontal
cortex in rats in conjunction with reward-seeking behaviors and inhibition of
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Fig. 13.3 Transforming unit ball BD
0 (1) to sphere SD

reward-seeking in the absence of a rewarded outcome. The neural activity (spike
trains) of several prefrontal neurons were recorded simultaneously. There are two
conditions during the experiment: rewarded and non-rewarded. During the record-
ing/test sessions, two different stimuli were presented: tone 1 (10 KHz) or tone 2
(5 KHz) individually and in pseudorandom order. At the same time, one of two
levers was presented: an active-lever, paired with tone 1 (Rewarded-Stimulus—RS)
and an inactive-lever paired with tone 2 (Non-rewarded Stimulus—NS). Pressing
the active lever resulted in the offset of tone 1, retraction of the lever, and illumi-
nation of the reward receptacle. If the rat then went to the reward receptacle, 0.1 ml
of 15 % sucrose solution was delivered as a reward. Pressing the inactive lever pro-
duced no effect. See Moorman and Aston-Jones (2014) for more details.

Here, we focus on five simultaneously recorded neurons. There are 51 trials per
neuron under each scenario. We set the time intervals to 5 ms. Tables 13.1 and 13.2
show the estimates of βi, j, which capture the association between the ith and jth
neurons, under the two scenarios. Figure 13.4 shows the schematic representation
of these results under the two experimental conditions. The solid line indicates
significant association.

These results show that neurons recorded simultaneously in the same brain
area are correlated in some conditions and not others. This strongly supports the
hypothesis that population coding among neurons (here though correlated activity)
is a meaningful way of signaling differences in the environment (rewarded or non-
rewarded stimulus) or behavior (going to press the rewarded lever or not pressing)
(Buzsáki 2010). It also shows that neurons in the same brain region are differen-
tially involved in different tasks, an intuitive perspective but one that is neglected by
much of behavioral neuroscience. Finally, these results indicate that network cor-
relation is dynamic and that functional pairs—again, even within the same brain
area—can appear and disappear depending on the environment or behavior. This
suggests (but does not confirm) that correlated activity across separate populations
within a single brain region can encode multiple aspects of the task. For example,
the pairs that are correlated in reward and not in non-reward could be related to
reward-seeking whereas pairs that are correlated in non-reward could be related to
response inhibition. Characterizing neural populations within a single brain region
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Table 13.1 Estimates of β ’s along with their 95 % probability intervals for the first scenario
(Rewarded) based on the copula model. Statistically significant values are shown in bold

β 2 3 4 5

1 0.22(0.07,0.39) 0.00(−0.07,0.04) 0.03(−0.02,0.15) 0.01(−0.04,0.08)
2 0.03(−0.02,0.18) 0.06(−0.02,0.22) 0.07(0.00,0.25)
3 0.08(−0.01,0.26) 0.21(0.04,0.38)
4 0.23(0.09,0.40)

Table 13.2 Estimates of β ’s along with their 95 % probability intervals for the second scenario
(Non-rewarded) based on the copula model. Statistically significant values are shown in bold

β 2 3 4 5

1 0.05(−0.02,0.25) −0.01(−0.09,0.04) 0.15(−0.01,0.37) 0.05(−0.03,0.22)
2 0.21(0.03,0.41) 0.18(0.00,0.37) 0.03(−0.02,0.19)
3 0.17(0.00,0.34) 0.03(−0.02,0.19)
4 0.07(-0.01,0.24)

Fig. 13.4 A schematic representation of connections between five neurons under two experimental
conditions. The solid line indicates significant association

based on task-dependent differences in correlated firing is a less-frequently stud-
ied phenomenon compared to the frequently pursued goal of identifying the overall
function of the brain region based on individual neural firing (Stokes et al. 2013).

13.5 Future Directions

The methods discussed here can be generalized in several ways as discussed below.
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13.5.1 Multivariate GPs

The multivariate model presented in the previous section uses univariate Gaus-
sian processes for the marginal distributions and a copula model for the joint
distribution of multiple neurons in terms of these marginals. Alternatively, we can
use a multivariate GP for modeling the joint distribution of multiple neurons di-
rectly. A multivariate Gaussian process can be defined in a similar way as a uni-
variate GP, but this time the kernel function depends on two pairs of inputs. For
simplicity we can assume that the mean of each process is the zero function. The
kernel κ is now defined for i, j = 1, . . . , p and s, t ∈R as

κ([i,s], [ j, t]) = Exi(s)x j(t). (13.5)

The initial challenge within the Gaussian process context is to produce a valid and
interpretable kernel. A common technique for generating multivariate GP kernels is
known as co-kriging, borrowed from the geostatistical literature (Cressie 1993).

One variant of co-kriging describes (x1(t), . . . ,xp(t)) as linear combinations of
latent factors. We suppose u1(t), . . . ,uq(t) are independent mean zero Gaussian pro-
cesses, and let

xi(t) =
q

∑
k=1

ai,kuk(t), for i = 1,2, . . . p. (13.6)

Let κi(s, t) = Eui(s)ui(t) be the kernel for the ith latent process. Then the observed
processes x(t) = (x1(t), . . . ,xp(t)) are jointly mean-zero Gaussian with covariances

Exi(s)x j(t) =
q

∑
k=1

ai,ka j,kκk(s, t). (13.7)

This is the semi-parametric latent factor model of Teh et al. (2005), so-called be-
cause the linear combination of latent GPs is parameterized by the matrix of coeffi-
cients A = (ai,k), while each Gaussian process is of course a non-parametric model.
See Alvarez et al. (2011) for a survey of co-kriging and other multivariate GPs seen
in the literature.

Recently, Vandenberg-Rodes and Shahbaba (2015) proposed a multivariate Gaus-
sian processes model for multiple time series X(t)= (x1(t), . . . ,xp(t)) such that each
marginal process x j(t) is a stationary mean-zero Gaussian process with Matérn ker-
nel. Crucially, the marginal processes are not required to share the same hyperpa-
rameter values. This approach can be used to model the joint distribution of the
firing rates of multiple neurons directly, and allows for significant heterogeneity
among neurons while also providing a high degree of interpretability.
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13.5.2 Dynamic Networks

The static (stationary) model discussed here aggregates cross-neuronal spike-train
interactions over time. This can lead to misleading results. Although there exist
many dynamic methods developed for modeling brain functional and effective con-
nectivity (Friston et al. 1997; Cribben et al. 2013; Ombao et al. 2005; Ombao and
Van Bellegem 2008; Motta and Ombao 2012; Park et al. 2014; Lindquist et al. 2014),
these approaches are primarily designed for continuous-valued signals such as func-
tional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) data.
The GP-based method discussed here can be extended to model neuronal connec-
tions dynamically.

13.5.3 Community Detection

Besides allowing for time-varying firing rates and interactions among neurons, the
GP-based method can also be extended to cluster neurons based on their cross-
dependencies in order to detect subnetworks (communities). To this end, stochastic
block models could be used to identify network partitions (Holland et al. 1983).
For example, Rodriguez (2012) recently proposed a stochastic block model for net-
work analysis where interactions among factors are observed at multiple time points.
This method uses a Bayesian hierarchical stochastic block model to detect possible
structural changes in a network. Alternatively, one can use a method similar to the
product partition model (PPM) of Müller and Quintana (2010). In general, these
methods assume a prior probability on all possible partitions. The assumed prior
probability could be influenced by some covariates. This approach can be used to
partition neurons into subnetworks.
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Chapter 14
Bayesian Analysis of Curves Shape Variation
Through Registration and Regression

Donatello Telesca

Abstract Misalignment of functional features in a sample of random curves leads
to potentially misleading inference, when variation in timing is ignored. This chap-
ter reviews the use of Bayesian hierarchical curve registration in Biostatistics and
Bioinformatics. Several models allowing for unit-specific random time scales are
discussed and applied to longitudinal data arising in biomedicine, pharmacokinet-
ics, and time-course genomics. We consider representations of random functionals
based on P-spline priors. Under this framework, straightforward posterior simula-
tion strategies are outlined for inference. Beyond curve registration, we discuss joint
regression modeling of both random effects and population level functional quan-
tities. Finally, the use of mixture priors is discussed in the setting of differential
expression analysis.

14.1 Introduction

Longitudinal studies in Biostatistics often aim to characterize time-dependent dy-
namics associated with the evolution of specific biological or bio-behavioral pro-
cesses. Several examples are reported, for example, in Pinheiro and Bates (2000).
A more comprehensive treatment of statistical analysis strategies for longitudinal
designs has been discussed by Wakefield (2012).

In cases where observed outcomes arise as the realization of nonlinear stochastic
processes, some care is needed in the characterization of its variability. In particular,
it is reasonable to expect that outcomes will be observed over unit-specific random
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time scales, resulting in phase-varying random curves. Ignoring phase variability
may lead to inconsistent estimates of time-dependent quantities (Kneip and Gasser
1992, 1988), as well as hard to interpret inferential summaries.

We illustrate this point by describing two simple studies and aiming to provide
a simple point estimate of the mean over time. Figure 14.1a reports the growth ve-
locity, intended as the yearly change in height, for a sample of 39 boys and 54 girls
from the Berkeley growth study (Tuddenham and Snyder 1954). We observe an
overall deceleration trend in growth from infancy to adulthood, with acceleration-
deceleration pulses in velocity. In particular, the most prominent velocity pulse cor-
responds to the pubertal spurt. Even though children experience a similar sequence
of hormonal events affecting growth, such events do not occur at the same rate/time
in all children. Ignoring the individual timing of growth pulses, a naı̈ve point esti-
mate of the average growth profile is the cross-sectional mean. Clearly, this estimate
appears immediately inadequate, as it misrepresents the amplitude and length of
typical pubertal growth spurts.
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Fig. 14.1 Phase variability of nonlinear profiles. (a) Berkeley growth study: growth velocity
for 93 subjects, defined as yearly changes in the subjects height. The cross-sectional mean growth
velocity is superimposed. (b) Pharmacokinetics of Remifentanil: normalized drug blood concen-
tration (ng/ml) monitored over phases of infusion and absorption. The cross-sectional mean PK
curve is superimposed

Figure 14.1b shows the blood concentration trajectories of the drug Remifen-
tanil for 65 post-surgical patients receiving i.v. infusion of the drug for up to
20 min until reaching a target sedation level. As the drug is infused for a length of
time which varies across patients, we observe pharmacokinetic (PK) profiles over
subject-specific time scales. This case study illustrates even more transparently the
inadequacy of the cross-sectional mean as an estimate of average PK dynamics. In
particular, timing artifacts in the study design seem to induce a two-phase excretion
rate in the mean, which is not justified from a physiological perspective and clearly
atypical when compared to subject-level PK profiles.
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These illustrative examples highlight how different experimental and observa-
tional settings may define a differential genesis of phase variation in the observed
outcome. In cases where variability in timing is related to the measurement process
or the design of the study itself, technical or experimental information may be useful
in devising pre-processing techniques aimed at removing timing artifacts. However,
most commonly, variability in the timing of subject-level functional features relates
to the very nature of the observed process and a rigorous approach to alignment
strategies is needed to provide valid inference.

The structure of this chapter is as follows. We introduce the problem of curve
registration in Sect. 14.2 and review Bayesian hierarchical curve registration in
Sect. 14.3. In relation to this model, we introduce a simplified regression strategy in
Sect. 14.4. More involved regression approaches based on varying-coefficient mod-
els are introduced in Sect. 14.5. Finally, in Sect. 14.6 we introduce and discuss ap-
plications of curve registration models to the analysis of time-course genomic data.
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Fig. 14.2 Time transformation. (a) Time transformation functions for three random profiles. In
solid grey, we report the identity transform. (b) A function of time evaluated over the random time
scales in (a)

14.2 Phase Variability and Curve Registration

The case studies summarized in Fig. 14.1 illustrate how naı̈ve estimation of a func-
tional mean may result in inadequate inferential summaries. In order to formal-
ize these concepts, let us define a notation for observations yi(t), as the observed
outcome for subject i, (i = 1,2, . . . ,n) at time t ∈ T . Typically one only observes
yi = (yi(ti1), . . . ,yi(timi))

′ over a discrete sampling grid. However, for ease of nota-
tion, we entertain the possibility of observing y continuously. A standard working
assumption sees observations arising as a realization of the following compound
stochastic process:
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yi(t) = fi(t)+ εi(t) = μ{ui(t)}+ εi(t), (14.1)

where μ(·) is some shape function, ui(·) is a random, unit-specific time transforma-
tion function, and εi(·) a mean-zero, stationary stochastic process. An illustration of
how random time scales ui(t) act on μ(t) is reported in Fig. 14.2.

We are interested in estimating μ(·) as a function quantifying a representative
shape. In this setting, it may be tempting to estimate this quantity using the cross-
sectional mean ȳ(t) = 1

n ∑i yi(t). However, in general, E{yi(t)} 	= μ(t), therefore
ȳ(t) is not a consistent estimator of μ(t). Similar considerations extend to estimators
associated with more ambitious statistical analyses, including functional PCA (Rice
and Silverman 1991) and functional regression (Guo 2002; Yao et al. 2005).

This simple observation is perhaps a reflection of the deeper tension between
marginal and conditional models in longitudinal data analysis. When interest cen-
ters on nonlinear dynamics, inference naturally focuses on quantities summarizing
typical time-dependent evolutions (Wakefield 2012). Therefore, explicit modeling
of all random components of variation is needed for meaningful inference.

There are a number of proposals that deal with the problem of phase variabil-
ity. A common methodological thread aims to estimate the processes ui(t) and then

compute aligned profiles y∗i (t) = yi

{
u(−1)

i (t)
}

. The shape function μ(t) is then es-

timated by the structural mean μ̂(t) = ȳ∗(t).
This procedure goes under the name of curve registration, also known as curve

alignment in biology, or time warping in the engineering literature. Several time
warping methods have been devised to date. In the engineering literature, Sakoe
and Chiba (1978) pioneered a registration technique called dynamic time warping
for pairwise alignment. Wang and Gasser (1997) introduced the technique to the
statistical literature and provided large sample properties of the time transforma-
tion estimators (Wang and Gasser 1999). Gasser and Kneip (1995) proposed the
landmark registration method, which consists of identifying the timing of certain
features (landmarks) in the curves. Profiles are then aligned so that they occur at
the same transformed times. More recently, alignment models have focused on rep-
resenting time transformation functions as continuous monotone transformations
(Ramsay and Li 1998; Kneip et al. 2000). Improved estimation has been reported in
Gervini and Gasser (2004) and Brumback and Lindstrom (2004) as well as Liu and
Müller (2004).

Bayesian approaches to the area of curve registration are more recent. Telesca
and Inoue (2008) introduced a hierarchical representation of curve registration. A
more recent perspective, focusing on invariance, was introduced by Cheng et al.
(2013).

14.3 Bayesian Hierarchical Curve Registration

The problem of curve registration admits a natural probabilistic representation in
terms of hierarchical models (Telesca and Inoue 2008). A Bayesian approach to
the problem confers extended flexibility in modeling both the shape μ(t) and
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time-transformation functions ui(t). This modeling framework is well adapted to
both intensive and sparse sampling time grids as information across curves is shared
via partial exchangeability assumptions. As usual, extended flexibility and a formal
inferential structure come at the cost of having to specify a full probability model.
If the focus of analysis is more exploratory, several alternatives are available as re-
viewed in Sect. 14.2.

14.3.1 Hierarchical Model

Let yi(t) denote the observed level of the ith curve at time t, with i = 1,2, . . . ,n and
t ∈ T = [t0, tm] ⊂ R. In order to allow for linear shifts in the timing of functional
features, we define an extended evaluation time window T ⊂ R, compact, with
T ⊂ T . The data generating mechanism in (14.1) is naturally represented via the
following three-stage hierarchical model.

Stage One. Let μ(t) be a real valued function, s.t. μ(t) : T → R; let ci ∈R and
ai > 0, be two scalars. Furthermore, let ui(t) be a monotone smooth function, s.t.
ui(t) : T →T . The observed value of each curve i at time t is modeled as:

yi(t) = ci + ai μ(t)◦ ui(t)+ εi(t) = ci + ai μ{ui(t)}+ εi(t); (14.2)

where, for any t ∈ T , εi(t) ∼ N (0,σ2
ε ). In practice we only observe yi(t) over a

discrete sampling time grid, which translates into standard assumptions of iid Nor-
mal random errors. In (14.2), μ(t) denotes a common shape function generating
the individual curves and ui(t) denotes a curve-specific time transformation func-
tion. Unit-specific variability in the level and amplitude of individual profiles are
modeled through ci and ai respectively.

Upon registration of the curves, we identify the ith aligned curve at time t as

y∗i (t) = yi(t)◦ u−1
i (t). (14.3)

All functional quantities are easily represented in finite dimensional form using lin-
ear combinations of appropriate basis functions. Additional considerations about
specific modeling choices are deferred to Sect. 14.3.2.

Stage Two. Given a common shape function μ(t), individual curves may ex-
hibit different scales and levels of response. Assuming ci ∼ N (0;σ2

c ) and ai ∼
N (1;σ2

a )I{ai > 0}, defines a straightforward mechanism for curve-specific random
affine transformations. For interpretation and identifiability purposes, it is often use-
ful to assume ∑i ci = 0 and ∑i ai = n. Normality assumptions enable conjugacy with
the likelihood. Moreover, the assumption of strictly positive amplitudes can be re-
laxed. For example, Telesca et al. (2009) consider a mixture prior in an application
to time course expression data.
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Curve-specific random time transformation functions ui(t) are assumed to be
smooth realizations of a functional stochastic process, monotone increasing with
probability one. Additional image and identifiability constraints are usually needed
for implementation. In particular, defining 0 < δ < (tm − t0)/2, it is appropriate to
require ui(t0) ∈ [−δ ,δ ] and ui(tm) ∈ [tm − δ , tm + δ ].

Stage Three. The hierarchical model is completed with priors over population
level parameters. Common assumptions exploit conditional conjugacy to define
Gamma priors1 over precision parameters:

1/σ2
a ∼ Ga(aa;ba), 1/σ2

c ∼ Ga(ac;bc), 1/σ2
ε ∼ Ga(aε ;bε).

Additional priors are needed in the definition of random functional quantities.
Specific choices are discussed in Sect. 14.3.2.

14.3.2 Penalized Regression Splines Representation
of Random Functionals

The shape function μ(t) is the principal object of inference in curve registration ex-
ercises. Specific parametric or semi-parametric forms may indeed be suggested by
the application at hand. A general non-parametric approach is based on represent-
ing μ(t) as a random smooth function using linear combinations of B-spline basis
functions (De Boor 1978).

Specifically, representation of the common shape function μ(t) may proceed se-
lecting a set of knots (κ1,κ2, . . . ,κp) partitioning the extended evaluation interval
T into p+ 1 subintervals. Using piecewise polynomials of degree r and given the
set of interior knots, we define S μ(t) as a K-dimensional design vector of B-spline
basis evaluated at time t, with K = p+ r + 1. In this framework, letting βββ be a
K-dimensional vector of basis coefficients, we represent the shape function as the
following linear combination

μ(t) = μ(t;βββ) =S ′
μ(t)βββ .

Similarly, given a set of interior knots (ω1,ω2, . . . ,ωh), partitioning the sampling
interval T into h + 1 subintervals, we may represent the individual time trans-
formation functions ui(t) following the same strategy. In particular, let S u(t) be
a Q-dimensional vector of B-spline bases of degree r evaluated at time t, with
Q = h+ 1+ r. Defining φφφ i as a Q-dimensional vector of spline coefficients, curve-
specific time transformation functions may then be represented according to the
following linear combination

ui(t) = ui(t; φφφ i) =S ′
u(t)φφφ i.

1 In our development, X ∼ Ga(a;b) is parametrized so that E[X ] = a/b.



14 Bayesian Analysis of Curves Shape Variation Through Registration and Regression 293

Monotonicity and boundary conditions are insured by the following constraints
on φφφ i:

(t1 − δ )≤ φi1 < · · ·< φiq < φi(q+1) < · · ·< φiQ ≤ (tm + δ ). (14.4)

Similar strategies may be adopted to impose structural constraints on the form of
the shape function μ(t;βββ). For an example requiring unimodality of the common
shape see Telesca et al. (2012a).

The representation of functional quantities via spline bases requires choosing the
degree of local spline polynomials, the number of interior knots as well as the lo-
cation of the knots for both the common shape function μ(t;βββ) and the individual
time transformation functions ui(t;φφφ i). This model selection problem is often ad-
dressed with the minimization of measures of prediction error (Hastie et al. 2001)
and cross-validation procedures (Gervini and Gasser 2004).

An alternative modeling strategy relies on penalized regression splines (Eilers
and Marx 1996; Ruppert et al. 2003). Specifically, a relatively large number of
equidistant knots is selected in order to purposely overparametrize the model. A
penalty, dependent on a smoothing parameter λ , is then placed on coefficients of
adjacent B-splines. In a frequentist framework the choice of λ is usually made in
the model selection stage and is based on cross-validation analysis. From a Bayesian
perspective this strategy is equivalent to the definition of appropriate dependent pri-
ors for functional coefficients βββ and φφφ i.

In particular, following Lang and Brezger (2004), one may consider a second-
order random walk shrinkage prior on the shape coefficients βββ , so that, for k =
1, . . . ,K:

βk = 2βk−1 −βk−2 + ek, ek ∼N (0;λβ ). (14.5)

Assuming β−1 = β0 = 0, conditional on λβ , βββ has a multivariate Normal distribution
with null mean vector and precision matrix ΩΩΩ/λβ . Under the above second-order
random walk, ΩΩΩ is a banded precision penalization matrix

ΩΩΩ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

6 −4 1 0
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
1 −4 6 −4 1

1 −4 5 −2
0 1 −2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14.6)

Note that the random walk variance λβ can be interpreted as the smoothing parame-
ter. In particular, small values of λβ shrink the shape function μ(t,βββ) toward a linear
function of time. Following Lang and Brezger (2004) we place a relatively diffuse
conjugate inverse gamma hyperprior on the variance, so that λβ ∼ IG(aλ 1;bλ 1).

A similar approach may be adopted to model time transformation functions
ui(t;φφφ i). Defining identity transform coefficients ϒϒϒ ′ = (ϒ1, . . . ,ϒQ), s.t. ui(t,ϒϒϒ ) = t;
for all i = 1,2, . . . ,n, q = 1, . . . ,Q:

(φiq −ϒq) = (φi(q−1)−ϒq−1)+ηq, ηq ∼N (0;λφ ). (14.7)
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Assuming that (φi0 −ϒ0) = 0, it can be shown that φφφ i ∼ N (ϒϒϒ ;PPP/λφ ), where PPP
is a banded precision matrix and λφ is the smoothing parameter associated with
the transformation functions ui(t;φφφ i). Small values of λφ shrink ui(t;φφφ i) toward
the identity transformation. The model is completed with a prior for λφ , s.t. λφ ∼
IG(aλ 2;bλ 2).

14.3.3 Inference for Hierarchical Curve Registration Models

In applications we observe functional data over a finite sampling grid t′i = (ti1, . . . ,
ti j, . . . , timi). Let yi(ti)

′ = (yi(ti1), . . . ,yi(timi)) be an mi-dimensional vector, repre-
senting the observed trajectory for unit i, (i = 1, . . . ,n), over time. Using B-spline
representations, the functional model in (14.2) simplifies into a standard hierarchi-
cal model involving random quantities of finite dimensional form. In particular, let
S μ(ti) : mi ×K and S u(ti) : mi ×Q be the shape and time transformation spline
design matrices, respectively. The sampling model can be expressed as

yi(ti) = ci 1mi + aiS μ(ti)βββ ◦S u(ti)φφφ i + εi(ti); (14.8)

with εi(ti)∼Nmi(0,σ2
ε Imi).

Given priors on population level quantities βββ and σ2
ε , and unit-specific param-

eters ci, ai and φφφ i, (i = 1,2, . . . ,n); inference about all functionals of interest is
directly available from their posterior distribution. In particular, MCMC simulation
from the posterior is relatively straightforward. Given φφφ i, for all i, simulation from
all remaining parameters is easily implemented following any sampling strategy ap-
plicable to hierarchical linear models (Gelman et al. 2013). Some care is needed in
the sampling of φφφ i as the support of these parameters is defined over random cuts
insuring monotonicity of time transformation functions. However, for these quanti-
ties, relatively simple Metropolis Hastings transitions tend to work well in practice.
Telesca and Inoue (2008) discuss implementation of these strategies in detail.

Let a( j)
i , c( j)

i , φφφ ( j)
i and βββ ( j), ( j = 1, . . . ,M), denote M draws from the marginal pos-

terior distributions of respective parameters. To register the observed curves one
may use the posterior expectation E{ui(t) | y} as a point estimate of the stochastic
time scale for unit i. That is, given posterior samples from time transformation pa-

rameters φφφ ( j)
i ,( j = 1, . . . ,M), posterior samples for the functional quantity ui(t) are

easily calculated as

u( j)
i (t) = ui(t;φφφ ( j)

i ) = S u(t)
′φφφ ( j)

i . (14.9)

Similarly, draws from the marginal posterior distribution of the shape function
μ(t;βββ), for any time t ∈ T , are given by:

μ ( j)(t;βββ ) =S μ(t)
′ βββ ( j). (14.10)
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Clearly, inference about several functional summaries, including extrema,
differentials, etc., are obtained in the same straightforward fashion.

Simultaneous credible bands for any function of interest, say f (.), are easily ap-
proximated using a fine grid of evaluation time points t1 < .. . < t� (Baladandayutha-
pani et al. 2005). Let Γα denote the 100(1−α)% sample quantile of

max
1≤i≤�

|[ f (ti)−E{ f (ti) | y}]/SD{ f (ti) | y}| ;

a simultaneous 100(1−α)% credible band for f (t) is estimated as

I(t) = E{ f (t) | y}±Γα SD{ f (t) | y}.
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Fig. 14.3 Berkeley Growth Study. (a) Posterior expectation of time transformation functions
ui(t). (b) Aligned growth velocity profiles, with superimposed posterior expectation of μ(t) (solid
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panels grey profiles identify girls, while black profiles identify boys

14.3.4 Case Studies in Bayesian Curve Registration

We illustrate the application of Bayesian hierarchical registration techniques to
the analysis of the two illustrative case studies reported in Fig. 14.1. In particular,
Fig. 14.3 reports estimates for the posterior expected time transformation functions
ui(t) (a) and aligned growth velocity profiles (b). In the same figure we report the
posterior expectation for the structural average curve μ(t) (solid line). When com-
pared to the naı̈ve cross-sectional estimate, the structural average appears clearly as
a better representation of typical growth velocity patterns.
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Similarly Fig. 14.4, reports a hierarchical registration analysis of drug concentra-
tion dynamics associated with the drug Remifentanil. In panel (a) we plot posterior
expected time transformation functions. As information about differing functional
features becomes more sparse in later sampling time points, the estimated warping
functions exhibit higher variance near the end of the sampling time domain. Panel
(b) reports aligned drug concentration trajectories and superimposed posterior ex-
pected structural mean (solid line). As for the growth study, alignment removes
artifacts in the cross-sectional average and produces estimates of average concen-
tration kinetics, which are more representative of typical individual profiles. The
application of this technique to pharmacokinetic data is indeed non-standard as one
often seeks to learn about compartment model parameters in a system of differential
equations. Nevertheless, we find this analysis useful and essentially informative as
a primitive exploration of drug concentration dynamics.

14.4 Regression Models for Timing and Amplitude
of Functional Features

Consider the growth study in Fig. 14.3. A more in depth look at individual profiles
is indeed made easier after removing phase variability. We code individual curves
in grey-levels to reflect the subject sex. Black profiles indicate boys and grey pro-
files indicate girls. An explorative examination of the estimated time transformation
functions (a) reveals that the time scale for girls tends to lie above the identity trans-
form, whereas boys tend to lie below it. This observation indicates that girls tend to
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experience pubertal growth at earlier ages, when compared to boys. Beyond varia-
tion in timing, a visual examination of the aligned profiles in (b) allows for a clearer
distinction of sex-related amplitude variation patterns. In particular, pubertal spurts
for girls tend to be attenuated when compared to pubertal spurts in boys.

These observations motivate a natural extension of curve registration models as
formal tools to relate individual covariate information to simple and interpretable
components of variation in functional data. Specifically, following Brumback and
Lindstrom (2004) and Telesca et al. (2012a) we develop a class of models aimed at
explaining amplitude and phase variability in a sample of curves using individual-
level predictors.

14.4.1 Generalized Curve Registration Models

The hierarchical model in (14.2) need not be restricted to assumptions of Gaussian
sampling. In fact this assumption may be relaxed to accommodate a wider range of
sampling scenarios, usually encountered in biostatistical application. In particular,
we consider hidden Gaussian random fields (HGRF) models, as a suitable family
amenable to straightforward adaptations of the formulation introduced in Sect. 14.3.

In HGRF observations yi(ti j) are equipped with mirroring latent Gaussian quan-
tities, say zi(ti j). A sampling model for yi(ti j) | zi(ti j),ψψψ i ∼ F(zi(ti j); ψψψ i), is fully
defined conditionally on zi(ti j) and a possible set of parameters ψψψ i. Registration is
then achieved at the latent Gaussian level. More precisely, by assuming the stochas-
tic dynamic generating zi(ti j) is centered around a compound process, defined as an
affine transformation of a population mean trajectory μ(t), evaluated over subject-
specific random time schedules ui(t), with random scales ci and amplitudes ai,
(i = 1,2, . . . ,n) as in (14.2).

For example, longitudinal counts arise naturally in many applications, like im-
munology, bioinformatics, and behavioral studies. In this case one may follow the
approach outlined in Telesca et al. (2012a) and model

yi(ti j) | zi(ti j)∼ Poisson[exp{zi(ti j)}],

with zi(ti j)∼N (gi(ti j), σ2
ε ) and gi(ti j) = ci + ai μ(ti j)◦ ui(ti j).

Similarly Erosheva et al. (2014) apply this representation to model censored
Gaussian observations. In particular, given a left censoring point η0 and right cen-
soring η1, common for all subjects, zi(ti j) is defined as an uncensored latent variable.
The outcome at time ti j, for individual i is then modeled as

yi(ti j) = min
[

max{η0, zi(ti j)}, η1
]
,

with zi(t j) ∼ N (gi(ti j), σ2
ε ). Other common applications of the latent Gaussian

Field framework include models for binary and ordinal data (Albert and Chib 1993).
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14.4.2 Amplitude and Phase Regression

Let Xi be a p-dimensional vector of subject specific covariate information. The
assessment of how amplitude and phase variability are explained by predictors is
naturally achieved at the second stage of the hierarchical model, through covariate-
dependent priors for amplitude parameters ai and time transformation coefficients φφφ i.

Amplitude regression. Let ba be a p-dimensional vector of amplitude regression
coefficients, we explain amplitude variability by defining the hidden linear model:

ai ∼ N(1+X ′
i ba, σ2

a )I(ai > 0). (14.11)

In the foregoing formula, regression coefficients are offset by a factor of 1, to define
coefficients with respect to a reference amplitude. The coefficients ba are interpreted
as in common linear regression models. Additionally, it is customary to assume
∑i ai = n, for amplitude identifiability.

Phase regression. Let bφ be a p-dimensional vector of phase regression coef-
ficients, we explain phase variability by defining the hidden autoregressive linear
model:

γiq = ϒq +X ′
i bφ , (14.12)

φiq − γiq = φi(q−1)− γi(q−1) +ηiq; (14.13)

with ηiq ∼ N (0,σ2
φ )I(M ) and M = {φiq : φi(q+1) > φiq, φi1 ≥ (t1 − δ ), φiQ ≤

(tm + δ ), q = 1,2, . . . ,Q}. As for the case of amplitude, regression coefficients are
offset by the identity transform coefficients ϒ , in order to fix a reference time scale.
Regression coefficients bφ are then interpreted as changes in the average time scale
associated with changes in predictor values.

Random scales ci are most commonly treated as nuisance parameters and simply
modeled as ci ∼N (0,σ2

c ), with ∑i ci = 0 for scale identifiability.
In the setting of HGRF models, prior distributions for regression coefficients may

still exploit conditional conjugacy. For example, if we denote the covariates matrix
with X : n× p, standard Zellner priors may be considered for amplitude and phase
regression as follows:

ba | σ2
a ∼N

(
0, nσ2

a (X
′X)−1) , (14.14)

bφ | σ2
φ ∼N

(
0, nσ2

φ (X
′X)−1) . (14.15)

Variance components σ2
a and σ2

φ are commonly assigned conditionally conjugate
Inverse Gamma priors.
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Table 14.1 Amplitude and phase regression

Berkeley Growth Study
Amplitude Phase (years)

Predictor E(ba | y) 95 % CI E(bφ | y) 95 % CI

Baseline
Male 0.019 [−0.027, 0.064] 0.44 [−0.65, 1.49]

Main Effects
Female −0.031 [−0.093, 0.031] −0.39 [−1.76, 1.06]

Pharmacokinetics of Remifentanil
Amplitude Phase (years)

Predictor E(ba | y) 95 % CI E(bφ | y) 95 % CI

Baseline
Female −0.03 [−0.19, 0.13] −0.67 [−13.23, 12.27]

Main Effects
Male 0.05 [−0.19, 0.282] −0.77 [19.22, −18.22]
Age 0.01 [−0.01, 0.022] 0.02 [−0.33, 0.36]
Weight −0.01 [−0.02,−0.001]* −0.03 [−0.63, 0.59]

*95 % Credible Interval does not cover zero.

14.4.3 Growth Velocities and Drug Concentrations Revisited

We apply the model introduced in Sect. 14.4.2 to our two case study data-sets. Re-
gression results are reported in Table 14.1.

For the Berkeley growth study, we consider sex as a predictor of amplitude and
phase variation in growth velocity. Our intuition being the plot in Fig. 14.3 is con-
firmed, in that girls tend to experience both attenuated amplitude (−0.031) and ac-
celerated timing (−0.39), when compared to boys. Our formal analysis, however,
highlights that there is too much uncertainty around amplitude and phase variation
in growth, therefore no significant group differences are detected.

A similar question may be asked of the PK dynamics of Remifentanil, that is, are
drug concentration amplitude and phase variability explained by sex, when adjusting
for potential confounding factors? In this case we perform a regression analysis
involving patients sex, body weight, and age. This analysis reveals that weight plays
a possible role in the concentration dynamic of Remifentanil, with heavier patients
experiencing lower (−0.01) concentration amplitude per Kg.

For these analyses to produce conclusive evidence, we often require large amounts
of data (large n), as high variability often characterizes estimates of individual level
amplitude and phase. At the same time, these results warn against the meaningful-
ness of step-wise regression approaches, where asymptotic validity may not result
in acceptable finite-sample conclusions.
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14.5 Joint Functional Regression and Registration

From a statistical perspective our goal is to develop models that: (1) deal with regis-
tration by aligning response trajectories, so that they are defined over a standardized
time scale and (2) allow for the estimation of covariate effects on a functional re-
sponse, that are representative of typical response patterns. Some progress can be
made using the approach outlined in Sect. 14.4. However, regression coefficients ob-
tained using this technique average across the entire function evaluation domain and
are likely to miss more nuanced, time-dependent effects. As an example, consider
the growth data in Fig. 14.3. Timing differences between girls and boys are most
evident between the ages of 10 and 15. However, the regression analysis reported in
Table 14.1 averages across periods of homogenous timing, revealing no conclusive
difference between sexes.

A more nuanced approach to joint regression and registration finds motivation in
the original generative model in (14.1). In particular, one often assumes that individ-
ual trajectories are centered around common structural mean function μ(t) evaluated
over unit-specific time scales ui(t). When predictors Xi are available in the form of a
p-dimensional vector of subject-level covariates, the assumption of a common mean
may be relaxed and a new generative model for a sample of random trajectories is
more realistically represented as:

yi(t) = μ(t,Xi)◦ ui(t), (14.16)

where the form of μ(t,Xi) is made dependent on the vector or predictors Xi.
In the following we review common approaches to the estimation of functional

regression coefficients (Hastie and Tibshirani 1993; Guo 2002; Morris and Carroll
2006). Finally we discuss a natural extension of Bayesian hierarchical curve regis-
tration (Telesca and Inoue 2008) to a unified framework for functional mixed effects
modeling and curve registration. We name this class of models functional mixed
registration models (FMRM).

14.5.1 Functional Regression and Mixed Models

Approaches extending linear models to the functional context often build on the
idea of varying-coefficients (Hastie and Tibshirani 1993). Varying-coefficient mod-
els are linear in the regressors, but their coefficient are allowed to vary smoothly
with the value of other variables, known as effect-modifiers. Given a set of p
predictors x1, . . . ,xp and p effect modifiers r1, . . . ,rp, varying coefficient models
consider a general link function as η = s0 +∑p

j=1 x j S j(r j). Hastie and Tibshirani
(1993) showed that additive and generalized additive models represent a special
case of varying-coefficient models. Several authors have extended these modeling



14 Bayesian Analysis of Curves Shape Variation Through Registration and Regression 301

approaches to incorporate intra-curve dependence (Hart and Wehrly 1986; Wypij
et al. 1993; Zeger and Diggle 1994; Wang and Gasser 1999; Verbyla et al. 1999;
Silverman 1995).

From a mixed effects perspective, functional mixed models (FMMs), as proposed
by Shi et al. (1996), extend the work of Laird and Ware (1982) to functional data
by leaving the forms of the fixed and random effect functions unspecified. These
models inherit the flexibility of mixed effects models in handling complex designs
and correlation structures. We review a general and flexible view of the problem
as discussed by Guo (2002) who used smoothing splines to model both fixed and
random effects.

Let yi(t) denote the value of curve i (i = 1, . . . ,n), at time t ∈ T compact. Fol-
lowing Guo (2002) we define:

yi(t) = X′
iB(t)+Z′

iUi(t)+ εi(t) , (14.17)

where, for any time t ∈ T , B(t) = (β1(t), . . . ,βp(t))′ is a p-dimensional vector
of fixed effect functions with corresponding design vector Xi = (Xi1, . . . ,Xip)

′ and
Ui(t) = (Ui1(t), . . . ,Uim(t))′ is an m-dimensional vector of random effect functions
with corresponding design vector Zi = (Zi1, . . . ,Zim)

′. Finally, εi(t) represents the
residual error process for curve i at time t.

Guo (2002) discussed FMM in the context of smoothing splines proposing two
estimation approaches based on restricted maximum likelihood and Kalman filters.
Morris and Carroll (2006) discussed wavelet-based FMM in a Bayesian framework
proposing inferences based on posterior samples of the functions of interest. FMM
include several other models like linear mixed effect models, functional regression,
and functional ANOVA, as special cases.

While the FMM approach is flexible enough to account for curve-specific vari-
ability, it fails to discriminate between the different sources of variation in functional
data, namely, amplitude and phase variability. If phase variability is ignored, FMM
tend to provide an estimate of the covariate effect which oversmoothes with respect
to curve-specific functional features occurring on a stochastic time scale.

14.5.2 Functional Mixed Registration

We introduce our FMRM as a natural extension of the Bayesian hierarchical curve
registration framework (Telesca and Inoue 2008).

Following the notation introduced in Sect. 14.5.1, we model a sample of curves
yi(t) (i = 1, . . . ,n, t ∈ T ) as:

yi(t) = {X′
iB(t)+Z′

iUi(t)} ◦ ui(t)+ εi(t) , (14.18)

so that,
yi(t) = X′

iB{ui(t)}+Z′
iUi{ui(t)}+ εi(t) , (14.19)
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where ui(t) is a smooth monotone time transformation function as defined in
Sect. 14.3.

The FMRM framework includes naturally several existing modeling strategies.
In fact, given specific configurations of the time transformation functions or the
covariate set, we may obtain the following models as special cases:

(a) Functional Mixed Effect Models. By setting the time transformation functions
μi to the identity transformation so that μi(t) = t, for any t ∈ T , our FMRM
reduces to the FMM.

(b) Hierarchical Curve Registration Models. By setting the random effect func-
tions Ui(t) = ci + ai B(t), with Xi = 1 and Zi = 1 (i = 1, . . . ,N), t ∈ T , our
FMRM reduces to:

yi(t) = {B(t)+ (ci+ ai B(t)} ◦ ui(t)+ εi(t), (14.20)

= (ci +(1+ ai)B(t))◦ ui(t)+ εi(t), (14.21)

which is equivalent to (14.2).
The FMRM in Eq. (14.19) is, however, not identifiable. Given any fixed effect

function B(t), a number of combinations of random effects Ui(t) and time transfor-
mation functions ui(t) may, in fact, lead to the same likelihood or posterior density.
The identifiability issue is mainly due to the arbitrary flexibility with the random ef-
fects functions. Choosing a reference curve or considering constrained formulations
may help with the identification problem. However, this is not usually a straightfor-
ward task. Here we choose to focus on random effects which are assumed to have
a strictly parametric form. In particular, we will only allow for individual random
scale or amplitude transformations, so that model (14.19) can be rewritten as:

yi(t) = ci + ai X′
iB(t)◦ ui(t), i = 1, . . . ,N; (14.22)

where ci is a curve-specific scale parameter and ai is a curve-specific amplitude
parameter.

The finite dimensional representation of functional quantities in (14.22) may fol-
low the penalized B-spline formulation introduced in Sect. 14.3.2. More precisely,
given a K-dimensional set of kernels S β (t), evaluated at time t ∈ T , and a p×K
matrix of regression coefficients βββ , one may represent the fixed effect functions B(t)
as B(t) = βββ S β (t).

More generally, of course, specific choices for the kernels S β (t) may depend
on the study and should reflect reasonable assumptions about the functional form of
B(t). For example, in the analysis of the Berkeley growth study, it is reasonable to
consider functions that are smooth and continuous. Thus, one may choose S β (t) to
belong to the spline family. On the other hand, if the outcome consists of a set of
long time series, characterized by highly localized features, such as in mass spec-
trometry data, then S β (t) could be represented by wavelet basis functions (Morris
and Carroll 2006).

Given the representation in (14.22), prior settings and MCMC simulation strate-
gies may follow the same approach outlined in Sect. 14.3.
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14.5.3 Functional Mixed Registration of Growth Velocities
and Drug Concentrations

We apply the FMRM approach to the pharmacokinetics of Remifentanil. Our anal-
ysis replicates the regression exercise attempted in Sect. 14.4.3. The goal of our
analysis is to assess differences in the pharmacokinetics of Remifentanil between
males and females adjusting for age and body weight.
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Fig. 14.5 FMRM analysis of drug concentration. (a) Unadjusted mean posterior drug concen-
trations for males (blue) and females (magenta). (b) Posterior mean drug concentration trajectories
for males (blue) and females (magenta), adjusted for age and body weight. (c) Time varying effect
of body weight. (d) Time varying effect of age. In all panels we report simultaneous 95 % credible
bands

Figure 14.5, panels (a) through (d), shows the results from our analysis. All
figures are plotted over a transformed time scale (log t)2 in order to better dis-
play differences between curves. Panel (a) shows the unadjusted posterior common
scaled shape functions for the blood concentration trajectories of male (blue) and
female (magenta) patients. Without adjusting for other predictors it appears that
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females have a faster metabolism and excretion of the drug. Panel (b) shows the
mean posterior pharmacokinetic profile for males (blue) and (females) adjusted by
age (years) and body weight (Kg). Panel (c) shows the time varying effect of body
weight and panel (d) shows the time varying effect of age. We highlight in green
areas where the effect of the predictors are significantly different from 0. We note
that the differences in the metabolism of Remifentanil between males and females
are now fully accounted for by differences in body weight. As one may reasonably
expect, we no longer see significant sex-related effects on the pharmacokinetics of
the drug.

14.6 Differential Expression and Gene Profile Similarities

In this section we discuss the application of registration models in Bioinformatics.
Specifically, time course genomics data consist of measurements from a common
set of genes collected at different time points and provide new opportunities into the
understanding of gene regulation.

In particular, clues about the temporal structure of expression may be informative
about co-regulation and gene–gene relationships (Qian et al. 2001; Leng and Müller
2006). In this section we discuss the approach of Telesca et al. (2009), who intro-
duced a model-based selection of differentially expressed genes, and a probabilistic
framework for the investigation of regulatory relationships between genes.

14.6.1 A Functional Mixture Model for Differential Expression

Following the formulation of Sect. 14.3, we let yi(t) denote the observed expression
level of gene i at time t where i= 1,2, . . . ,n and t ∈T . We assume that gene-specific
expression profiles arise following the same stochastic generative mechanism in
(14.2). Given a common shape function μ(t), individual curves may exhibit different
levels and amplitudes of response and different timing schedules associated with
time-dependent expression features.

In this setting, the parameters ai describe the amplitude of the mRNA signal for
gene i. A formalization of our statistical definition of differentially expressed genes
may be achieved via a mixture approach. This idea follows naturally from similar
formalizations introduced by Parmigiani et al. (2002) and extended by Telesca et al.
(2012b).

For each gene (i = 1,2, . . . ,n), we specify the following prior for the amplitude
of the expression signal,

ai = π−N(a−0 ,σ
2
a−)I(ai < 0)+π+N(a+0 ,σ

2
a+)I(ai > 0)+π0N(0,σ2

a0); (14.23)
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with (π− + π0 + π+) = 1. Here π0 identifies the overall proportion of genes in
their normal range of variation, while (π−+π+) identifies the proportion of overly
active genes. The mixture characterization with two truncated normals [that is,
N−(·, ·)I(ai < 0) and N+(·, ·)I(ai > 0)] allows us to account for genes with a syn-
chronous expression signal of opposite sign (negative dependence).

From an inferential perspective, a decision to flag specific genes as being dif-
ferentially expressed corresponds to testing the following set of hypotheses for all
i = 1,2, . . . ,n:

H0i : ai ∼ N(0,σ2
a0)

H1i : ai ∼ N(a+0 ,σ
2
a+) or ai ∼ N(a−0 ,σ

2
a−).

(14.24)

Give posterior samples from ai | y, decision rules controlling for pre-defined er-
ror rates, like the false discovery rate (FDR) of Benjamini and Hochberg (1995),
are easily derived, for example, following the approach described by Müller et al.
(2006).

14.6.2 Posterior Measures of Profile Similarities

The underlying idea for the investigation of gene networks using time course mi-
croarray data is that genes that share similar expression profiles may share simi-
lar biological functions and thus could be related. Posterior inference about gene-
specific time transformation functions may be used to derive measures of gene–gene
relationships which are based on functional similarities.

In the context of the model described in Sect. 14.6.1, for differentially expressed
profiles, local measures of profile similarity may be derived as follows:

Local warping distance. Let τ ⊂ T , we define a local distance dik(τ) between genes
i and k (i 	= k) as

dik(τ) =
∫

τ
| ui(t)− uk(t) | dt, (14.25)

that is, as the absolute distance between the time transformation functions of genes
i and k along time points t ∈ τ . This measure may be interpreted as the average
difference in the timing of expression features between the expression of two genes
over a period of time τ . From a global perspective one may of course consider a
warping distance integrating over the entire sampling window T .

Relevant summaries from the marginal posterior distribution of time transforma-
tion functions may be extracted to draw inference about gene–gene relationships.
In particular, one may formalize inference about profile similarities as the series of
hypotheses:

H0ik : dik(τ)≥ γ, vs. H1ik : dik(τ)< γ; for all i 	= k.

For this series of decisions, optimal rules controlling for error rates are derived as
discussed in Sect. 14.6.1.
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While recognizing the importance of the timing characteristics of gene expres-
sion, the selection of an appropriate timing envelope γ must, however, be aided
by biological knowledge about the timing of gene–gene regulation in the specific
process under investigation. For example, in cell cycle experiments, regulatory en-
velopes of interest may span only a few minutes, while in the study of androgen
refractory tumors the timing of interest is of the order of days (Pound et al. 1999).

14.6.3 A Case Study of Time-Course Gene Expression Analysis

Here we illustrate the application of registration models with mixture priors, to the
analysis of time-course expression data. In particular, we consider data on 100 gene
reporters of 13 time-points mouse Affimetrix microarray gene expression from a
study on primary mouse keratinocytes, with induced activation of the TRP63 tran-
scription factor (Della Gatta et al. 2008).

The data has been processed using rma (affy) and the profiles are centered (zero-
mean) across the time points. As the original data is composed of direct targets of
TRP63, we expect all genes to be differentially expressed over time. For illustrative
purposes, in order to test the performance of registration models for differential
expression analysis, we augment the original data-set with 900 pseudo-genes of
constant average expression.

Results are summarized in Fig. 14.6. In particular, panel (a) highlights a random
sample of profiles, and panel (b) shows model fits and associated posterior predictive
bands for a representative set of profiles. Even though a registration model of time-
dependent expression makes what seem like restrictive assumptions about possible
gene-specific time-dependent dynamics, this figure illustrates the actual flexibility
of the model in its ability to recover heterogenous time-course profiles. Our analysis
of differential expression is reported in panels (c) and (d), where we show the model
selection, aimed at controlling the posterior expected FDR at 10 %. The model se-
lects 96 genes as differentially expressed, all of which are in the original TRP63
target set.

A full analysis of profile similarities is beyond the scope of this chapter. For more
examples we refer the reader to Telesca et al. (2009).

14.7 Concluding Remarks

We have reviewed the application of curve registration techniques to the analysis
of functional data arising in Biostatistics and Bioinformatics. Our review is by no
means exhaustive and is clearly biased toward the author’s expertise.

Modeling frameworks using the idea of stochastic time scales have a strong tra-
dition in several fields and are indeed the subject of active research efforts (Zhang
and Telesca 2014; Cheng et al. 2013)
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Fig. 14.6 Time-course gene expression. (a) Time course gene-expression profiles. (b) Individual
model fit for a representative set of genes. (c) Volcano plot of posterior expected amplitude vs.
posterior probability of no time-dependent expression. (d) Posterior expected FDR vs. gene index

Our discussion is focused on Bayesian inference with smoothing priors. In the
setting of kernel-based regression the selection of diffuse priors remains controver-
sial and default choices are based on purely intuitive arguments. Attempts at formal-
ization do exist, for example, Wakefield (2012), Chapter 11 discusses approaches
based on effective degrees of freedom.

Finally, while inference based on posterior simulation is straightforward, the ap-
plication of standard MCMC techniques may be unrealistic for cases where the anal-
ysis involves a large number of subjects. Similarly, computational feasibility is of-
ten in question for studies where technology allows for highly intensive sampling
of individual profiles. In these situation, one must consider careful computational
nuances and the potential development of efficient approximation techniques.
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Chapter 15
Biomarker-Driven Adaptive Design

Yanxun Xu, Yuan Ji, and Peter Müller

Abstract We review some principles and implementations of Bayesian model-based
adaptive enrichment and population finding designs that exploit biomarker informa-
tion to propose adaptive treatment allocation and recommend patient subpopulations
that might most benefit from the treatments under consideration.

15.1 Introduction

We review some recently proposed approaches to Bayesian adaptive clinical trial
design based on subgroup analysis, including in particular the implementation pro-
posed in Xu et al. (2014). In Xu et al. (2014) we use a classification and regression
tree (CART) to construct a partition of the covariate space; see Fig. 15.1. Partitioning
subsets are then used as candidates for identifying subgroups of patients with sub-
stantially different treatment effect, which in turn is exploited for adaptive treat-
ment allocation. Upon conclusion of the trial final inference about the identified
subgroups is reported. We refer to the proposed approach as subgroup-based adap-
tive (SUBA) design. The design was developed for a breast cancer trial that includes
three candidate treatments and makes use of protein biomarkers to adaptively iden-
tify the best treatment for different patient subpopulations. Besides optimal alloca-
tion of treatment arms to patients during the trial, the main outcome is an estimated
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Fig. 15.1 Partitions of the covariate space with an increasing CART tree. This illustration shows
that the initial space of two biomarkers is partitioned into five sets after three rounds of split

partition of the patient population into distinct subpopulation that relate to different
treatment recommendations. In this chapter we review some related literature and
the proposed SUBA design.

Bayesian methods have been widely used for the identification of biomarker
groups that could be truly responsive to targeted treatments. Dixon and Simon
(1991) analyze subgroup effects by considering a single model that includes main
effects of treatment, covariates and the first-order interactions between treatment
and covariates. Simon (2002) uses a similar approach with independent priors on
the interaction parameters. Sivaganesan et al. (2011) consider subgroup analysis as
a model selection problem with each covariate defining a family of models. Ruberg
et al. (2010) and Foster et al. (2011) develop tree-based algorithms to identify and
evaluate subgroup effects by searching for regions with substantially enhanced treat-
ment effects compared to the average effect, averaging across the covariate space.
Sivaganesan et al. (2013) report subgroups within a Bayesian decision-theoretic
framework. They determine rules using an extension of a 0/1/K utility function.
The utility function is based on the posterior odds of subgroup models relative to
the overall null and alternative models.

Several recent studies explore the use of Bayesian adaptive designs, including
population finding designs. Examples include the breast cancer trial ISPY-2 (Barker
et al. 2009), which uses indicators for several biomarkers and a MammaPrint risk
score to define 14 subpopulations of possible practical interest. The design gradu-
ates subpopulations, that is, recommends a future phase III study; or drops subpop-
ulations or treatment arms, that is, remove one of the 14 subpopulations or treat-
ment arms from further consideration. A similar example is the BATTLE design of
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Zhou et al. (2008) who define five subpopulations of lung cancer patients based on
biomarker profiles and proceed to adaptively allocate patients to alternative treat-
ments. Another recent discussion is Berry et al. (2013) who report an extensive
comparison of Bayesian adaptive design, including a design based on a hierarchical
model over different subpopulations with a comparable design using Simon’s opti-
mal Two-Stage design (Simon 2012). Some of earlier discussion appear in Simon
and Maitournam (2004), Sargent et al. (2005), and Freidlin et al. (2010).

15.2 Bayesian CART Models

The design proposed in Xu et al. (2014) makes use of a Bayesian nonparametric
(BNP) regression of the outcome on patient-specific covariates. In particular, the
approach uses a variation of Bayesian CART. The Bayesian CART was introduced
in Chipman et al. (1998) and Denison et al. (1998) as an attractive model for BNP
regression. Consider a regression problem yi = f (xxxi)+εi with a multivariate covari-
ate vector xxxi = (xik, k = 1, . . . ,K). For the moment we drop the i index, considering
a generic covariate vector xxx. To start, we partition the covariate space into small
enough rectangular regions R described by thresholds on the covariates xk, such that
E(y | xxx ∈ R)≈ fR is approximately constant over each rectangular region.

The partition is described by a tree T . The leaves of the tree correspond to the
rectangular regions and are labeled with the mean response fR. The tree T is a re-
cursive structure T = (k, t,T0,T1) of splitting rules consisting of a covariate index
k and a threshold t that identify a splitting rule xk < t and two nested trees (T0,T1)
with the tree T0 defining the branch xk < t and T1 defining the branch xk ≥ t. The
recursion ends with final leaves that contain a value f� instead of a tree T�. Chipman
et al. (1998) and Denison et al. (1998) describe prior probability models on T and
posterior simulation. For a more parsimonious model the constant mean response
fR in each leave can be replaced by any parametric model p(y | xxx ∈ R) = fθR(y),
where θR are parameters specific to each leave. In general, the random partition that
is indexed by the tree T is interpreted as creating more homogeneous patient sub-
populations. Here, homogeneity could be described in terms of sharing a common
set of logistic regression parameters θR, or any other sampling model.

The Bayesian additive regression tree (BART) of Chipman et al. (2010) creates
a useful variation of the CART by constructing a random forest as a (random) sum
of many small CART trees. The idea of BART is to use many small trees to ap-
proximate the desired mean function. The BART is implemented in an easy-to-use
R package BayesTree.

The SUBA design uses a massively reduced version of the CART as a basis for
model-based adaptive design. The model is restricted to a small maximum number
of splits in the tree. Such restrictions on parsimony are critical for design problems
that involve inference with little and no data in the early stages of the study. Upon
completion of the study it is important to assure investigators and reviewers that
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the assumed model structure and the strength of the prior assumptions do not dom-
inate the reported inference. This is one of the reasons for the limited use of BNP
methods in clinical trial design. In fact, upon a quick review of recent texts that
review Bayesian clinical trial design we find no mention of BNP methods (Berry
et al. 2011; Yin 2012). The reason is the apparent conflict between the flexibility
and infinite dimensional parameter space of a BNP model and the limited data and
emphasis on parsimony of clinical trial design.

The SUBA design offers one way to use the flexibility of BNP methods without
compromising on the restrictions of clinical trial design. The Bayesian approaches
among the methods that we briefly reviewed in the introductory section all make use
of parametric inference models.

15.3 The Model

The adaptive design proposed in Xu et al. (2014) is based on a reduced version of
a Bayesian CART model. The design exploits the interpretation of the leaf nodes as
characterizing a (rectangular) partition of the covariate space, that is, a partition of
the patient population into subpopulations that are characterized by the correspond-
ing thresholds on the covariates and biomarkers.

The model is a tree with up to a maximum number M of splits. In the current im-
plementation we use M = 3. The prior probability model on the tree is constructed
by considering at each possible branching point in the tree construction a categorical
choice a of no further split (a= 0), or a split on the kth variable (a= k), k = 1, . . . ,K.
Specifying p(a= k) = vk, k = 0,1, . . . ,K, defines a probability for a tree structure. In
addition, if a biomarker is selected to split in previous steps, it is expected to be rel-
evant to the response of treatment and therefore should have a higher chance being
split again facilitating the identification of true subgroups. To realize this, in each
possible tree T , we calculate hT as the number of biomarkers chosen in the three
rounds of splits. Then we add an additional penalty term φhT −1 to the prior proba-
bility of T , here φ ∈ (0,1). Therefore, the smaller hT , the larger prior probability the
tree T receives, which encourages repeated splits along the same biomarker. The re-
maining choice is the selection of the thresholds for each split. Here we again depart
from the traditional CART construction and impose a deterministic threshold speci-
fication. Assume we are considering a split of a current subset S, and the split is de-
cided to be on xk. The threshold is the median of xk among all patients i with xxxi ∈ S.
The deterministic threshold selection is important to keep inference computation-
ally efficient and allow for a parsimonious model. In summary the prior model on
the tree is characterized with (v0, . . . ,vK ,φ ,M) only, that is p(T | v0, . . . ,vK ,φ ,M).
As an example, in Fig. 15.1,

p(T | v0, . . . ,vK ,φ ,M) ∝ v2 × v2 × v1 × v0 × v0 × v0 × v2 ×φ2−1.
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We assume that the outcome yi for patient i is a binary indicator for response,
i = 1, . . . ,N. Conditional on the tree we assume independent Bernoulli models for
each partitioning subset. Let {S j, j = 1, . . . ,nS} denote the partition of the covariate
space that is implied by the tree. Let zi ∈ {1, . . . ,D} denote the treatment assignment
for patient i. Let θd j denote the probability of response for a patient with covariates
xxxi ∈ S j under treatment d. We assume

p(yi = 1 | xxxi ∈ S j,zi = d) = θd j.

The model is completed with independent beta priors on θd j with hyperparameters
b1 and b2, d = 1, . . . ,D and j = 1, . . . ,nS. The conjugate beta/Bernoulli framework
allows for analytic marginalization of the joint probability model with respect to
θθθ = (θd j, d = 1, . . . ,D and j = 1, . . . ,nS).

One major aim of the SUBA design is to assign future patients to the treatment
that is most promising for that specific patient, based on the response data from
previous patients and the new patient’s biomarker profile. Formally, we use the pos-
terior predictive probability that the new patient would respond to treatment d as the
basis for assignment. In particular, suppose that n patients have been treated in the
trial and their response vector is yyyn. We also know their treatment allocation vector
zzzn = (z1, . . . ,zn), and their baseline biomarker profiles xxxn. The posterior predictive
probability of response if patient (n+ 1) is under treatment d is given by

qn+1(d) = Pr(yn+1 = 1 | xxxn+1,zn+1 = d,yyyn,xxxn,zzzn)

=

∫

Pr(yn+1 = 1 | xxxn+1,zn+1 = d,T ) p(T | yyyn,xxxn,zzzn)dT.

Denote z̃n+1 the treatment decision for the (n + 1)th patient. We allocate the
(n+ 1)th patient to treatment z̃n+1 by

z̃n+1 = argd maxqn+1(d). (15.1)

15.4 SUBA Design

15.4.1 Design

By calculating the posterior predictive response rates of all candidate treatments, we
can compare treatments and monitor the trial. For instance, if one treatment is no
better than all other treatments, that treatment should be dropped. Also, we should
stop the trail early if there is only one treatment left after dropping all other treatment
arms as inferior treatments. We monitor the trial and update posterior distributions
after each patient beyond an initial run-in phase. The trial continues until we either
make an early stop decision or we reach the maximum sample size N.
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The comparison of treatments for possible inferiority needs to account for base-
line covariates. In words, we determine a treatment to be inferior if its posterior
predictive probability of response is lower than all other treatments across all pos-
sible biomarker profiles. To formalize the latter condition we set up a grid in the
biomarker space RK . We fix H grid points, g1, . . . ,gH . For example, if our biomarker
space is [−1,1]K, we can choose H0 equally spaced points on [−1,1] for each di-
mension. Then the total number of grid points will be H = HK

0 . Each grid point
is treated as a possible biomarker profile. After an initial run-in phase with equal
randomization, we evaluate the posterior predictive response rate under each pos-
sible biomarker profile under each treatment d, using qgh(d) in (15.1). If we find a
treatment d∗ satisfying

qgh(d
∗)< qgh(d)

for all d 	= d∗ on all possible biomarker profiles h = 1, . . . ,H, then treatment d∗ is
dropped from the trial. If there is only one treatment left, we stop the trial early and
assign all the untreated patients to that superior treatment.

We are now ready to state the simple algorithm of the SUBA design.

Run-in: The first n patients are equally randomized to D treatment arms.
Stopping for futility: Drop treatment d� if the posterior predictive response rate

is uniformly inferior to all d 	= d� based on the posterior predictive response rate.
Here, uniform inferiority is across all H biomarker profiles on a grid and across
all other treatments.

Adaptive treatment allocation: Assign patient (n+ 1) to treatment z̃n+1 using
rule (15.1).

Posterior updating: When the response yn+1 is available, go back to step 2 and
repeat for patients n+ 2,n+ 3, . . .,N.

Final report: Upon conclusion of the study we report the estimated partition
and the recommended treatment allocation for each subset. See Sect. 15.4.2 for
details.

15.4.2 Posterior Inference on the Partition

In the final report, a practical problem arises in summarizing the inference on the
partition into subpopulations. It is not straightforward to summarize a posterior dis-
tribution on random partitions. There is no such thing as a posterior mean partition.
To address this problem, Medvedovic et al. (2004) proposed to first compute poste-
rior co-clustering probabilities. That is, posterior probabilities for each pair of pa-
tients (i, j) we record the posterior probabilities of i and j sharing the same cluster.
To this end we average association matrices, as follows.

For each partition T , an association matrix GT of dimension N ×N is formed.
Let GT

i j denote an indicator of whether patient i is in the same subgroup as patient j
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under the tree T . Next we evaluate G̃ as an element by element posterior average of
these association matrices GT . We refer to G̃ as the pairwise probability matrix. It
serves as a summary of the posterior distribution p(T | data).

Alternatively, Dahl (2006) introduced the least-squares partition for estimating a
random partition. Following Dahl (2006), we propose a least-square summary

T LS = argmin
T

||GT − G̃||2.

The minimum goes over all T in a posterior Monte Carlo sample T ∼ p(T | data).
That is, T LS is the posterior simulated partition T that minimizes the sum of squared
deviations of the corresponding association matrix GT from the pairwise probability
matrix G̃. In other words, the least-square partition is the posterior simulated par-
tition T that minimizes the Frobenius distance (L2 norm for matrices) between GT

and G̃.

15.5 Example

15.5.1 Simulation Setup

We carried out simulation studies that were designed to mimic the motivating breast
cancer trial. The maximum sample size was set at N = 300 patients in a three-arm
study with three treatments labeled as 1, 2, and 3. For each patient, we measured
K = 4 biomarkers at baseline. We generated biomarker values xik ∼ Unif(−1,1),
i = 1,2, . . . ,N. In the prior specification we assumed vk = 1/(K+1), k = 0,1, . . . ,K,
φ = 0.5, b1 = 1 and b2 = 1. The stopping rule is implemented with H0 = 10 equally
spaced points on each biomarker subspace, leading to a size H = 10,000 grid of
biomarker profiles. During the initial run-in phase, n = 100 patients were equally
randomized to three candidate treatments.

We considered three scenarios and simulated 100 trials for each scenario. In
scenario 1, we assumed the following simulation truth for the response rates:

θ1i = Φ(1.5xi1 + xi2), θ2i = Φ(1.5xi1), θ3i = Φ(1.5xi1 − xi2),

for treatments 1,2,3, respectively. Here Φ is the standard normal cumulative dis-
tribution function (CDF). In this simulation truth, biomarkers 1 and 2 are relevant
to response, but not biomarkers 3 and 4. Figure 15.2 plots the response rates of
three treatments versus the first biomarker xi1, given different values of the sec-
ond biomarker xi2. Treatment 3 is always the most effective arm when the second
biomarker is fixed at a negative value; three treatments perform the same when
the second biomarker is fixed at 0; and treatment 1 is superior when the second
biomarker is fixed at a positive value. Therefore, in terms of deciding the superior-
ity of treatment effects, the second biomarker is predictive. The response rates of
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three treatments increase as the measurement of first biomarker increases, but the
ordering of the three treatments does not change. Therefore, the first biomarker is
only predictive of response but not treatment selection.
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Fig. 15.2 The probabilities of response versus the measurements of the first biomarker given fixed
values of the second biomarker. Red, green, and black lines represent three treatments 1, 2, and 3
respectively

In scenario 2, we assumed that biomarkers 1, 2, and 3 were related to the response
and we assumed an interaction between biomarkers. The response rate of patient i
with treatments 1, 2, and 3 were

θ1i = Φ(1.5xi1 + 0.5xi2− xi3 − 2xi1xi3), θ2i = Φ(−1.5xi1 − 1.5xi3),

θ3i = Φ(−1.5xi1 − xi2 − 2.5xi1xi2),
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for treatments 1,2, and 3, respectively. Figure 15.3 plots a 3D illustration of re-
sponse rates of three treatments versus the measurements of the first biomarker
and the second biomarker given the third biomarker is fixed at 0.5 (Fig. 15.3a) or
−0.5 (Fig. 15.3b). In summary, all three biomarkers together determine the optimal
treatment.

Fig. 15.3 The probabilities of response versus the measurements of the first and the second
biomarkers given the fixed values of the third biomarker at 0.5 (a) and −0.5 (b). Red, green, and
black lines represent three treatments 1, 2, and 3, respectively

Scenario 3 was a null case with no biomarker related to response. We assumed
that the response rates of three treatments were the same at 30 %, i.e., θ1i = θ2i =
θ3i = 0.3.

15.5.2 Comparison

For comparison, we implemented three alternative designs. The first is a standard
design with equal randomization (ER). All patients are equally randomized. The
model assumed independent Bernoulli outcomes yi ∼ Bern(θdi) for patient i under
treatment d. The simulation truth for θdi was generated as before.

The second comparison is to an outcome-adaptive randomization (AR) design.
To highlight the sensitivity of AR to predefined subgroups, we defined three bio-
marker subgroups that were selected similar to the BATTLE trial (Kim et al. 2011)
based on the first biomarker. We used the subgroups

{xi1 <−0.5},{−0.5≤ xi1 ≤ 0.5} and {xi1 > 0.5}.
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The subgroups are deliberately selected to not match the simulation truth in all three
scenarios. Let pd j be the response rate of treatment d in subgroup j, and nd j the total
number of patients receiving treatment d in subgroup j, d = 1,2,3 and j = 1,2,3.
We assumed yi ∼ Bin(nd j, pd j) and a conjugate beta prior distribution beta(1,1) on
pd j. The posterior on pd j can be easily computed as a Be(nd j1 + 1,nd j − nd j1 + 1)
distribution, where nd j1 is the number of patients who respond to treatment d in
subgroup j. In the AR design, we included an initial run-in with 200 patients being
equally randomized to the three treatments. The next 200 patients were adaptively
randomized. Let p̂d j = (nd j1 + 1)/(nd j + 2) denote the posterior mean for pd j. The
adaptive treatment allocation used

π jd = p̂d j/(p̂1 j + p̂2 j + p̂3 j)

to assign a patient in subgroup j to treatment d.
The third comparison is with a probit regression (Reg) design. We modeled bi-

nary outcome variables using a probit regression. In the probit model, the response
rate is modeled as a probit transform of a linear combination of the biomarkers and
treatment. That is,

Pr(yi = 1 | zi,xxxi) = Φ(β0zi +βββ 1xxxi).

The parameters β0 and βββ 1 are estimated using maximum likelihood method. In the
Reg design, we again included an initial burn-in with 100 equally randomized pa-
tients, and then assigned the remaining patients sequentially to the treatment with
the respective highest success probability under the currently estimated probit re-
gression parameters. That is, we evaluated the probit regression with the posterior
means E(β0,β1 | data).

15.5.3 Simulation Results

Overall Response Rate

We define the overall response rate (ORR)

ORR =
1

N − n

N

∑
i=n+1

I(yi = 1),

as the proportion of responders among the patients who are treated after the run-in
phase. We computed ORRs for the four designs under comparison, ER, AR, Reg,
and SUBA for all three scenarios. Figure 15.4 plots the ORR differences between
SUBA and ER, AR, Reg, respectively.

In scenario 1, SUBA and Reg are preferable to ER and AR, indicating higher
efficacy. It is not surprising that Reg also performs well in this scenario since the
fitted model matches the simulation truth.
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In scenario 2, SUBA outperforms ER, AR, and Reg with higher ORR in all the
simulated trials. ER and AR with predefined biomarker subgroups perform simi-
larly, suggesting that no gains are obtained with AR when the biomarker subgroups
are wrongly predefined.

In scenario 3, the true response rates are the same across all three treatments and
not related to biomarkers, so the four designs have similar ORRs across simulated
trials.
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Fig. 15.4 Overall response rates (ORR) across ER, AR, Reg, and SUBA designs in 100 simulated
trials under the three scenarios. We plot the ORR differences between SUBA and ER, AR, Reg,
respectively, in each scenario. Blue color represents that the ORR of SUBA is higher than ER, AR,
or Reg; red color represents lower. (a) Scenario 1, (b) Scenario 2, (c) Scenario 3
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The average numbers of patients under the SUBA design are reported in
Table 15.1. In scenario 3 the early stopping rule became active and allowed for

Table 15.1 The average numbers of patients needed to make the decision of stopping trials early
in 100 simulated trials in scenarios 1–3

Scenario 1 2 3
# of patients 298.05 300.00 202.00

an early termination.

Average Number of Patients Assigned

Next we compare the designs on the basis of the average number of patients (ANP)
assigned to treatment d after the run-in phase. Denote by NPw

d the number of patients
assigned to treatment d in the wth simulated trial (excluding the run-in phase). That
is, NPw

d = ∑N
i=n+1 I(zw

i = d), d = 1,2,3 and w = 1, . . . ,100. We define

ANPd =
1

100

100

∑
w=1

NPw
d .

Table 15.2 shows the results. Since ER, AR, and Reg do not include early stopping
rules, for a fair comparison, the summaries for SUBA are based on assigning in the
case of early stopping all remaining patients until the maximum sample size N to
the surviving active arm.

Table 15.2 The average numbers of patients assigned to three treatments after the run-in phase in
three defined subsets by ER, AR, and SUBA in 100 simulated trials in scenarios 1–3

Scenario ER AR Reg SUBA
Subset 1 2 3 1 2 3 1 2 3 1 2 3

1
S1 33.36 33.19 33.91 33.86 33.02 33.58 74.46 18.67 7.33 75.78 16.56 7.48
S2 32.28 33.44 33.82 33.25 32.83 33.46 9.65 17.59 72.30 8.51 17.70 73.98

2
S1 24.77 24.84 25.94 33.25 19.75 22.55 8.21 21.93 45.41 60.24 4.62 10.69
S2 16.60 16.33 16.65 10.96 18.80 19.82 5.20 15.01 29.37 3.15 33.34 13.09
S3 24.27 25.46 25.14 21.71 25.99 27.17 8.50 21.85 44.52 10.30 13.34 51.23

3 / 65.64 66.63 67.73 66.36 67.48 66.16 69.18 66.28 64.54 66.89 64.20 68.91

The results in Table 15.2 are arranged by subsets that are formed as follows.
In scenario 1, we split the biomarker space to two sets S0

1 = {i : xi2 < 0} and
S0

2 = {i : xi2 > 0} and separately report the average numbers of patients assigned
to three treatments after the run-in phase, among those whose second biomarker is
positive or negative. We separately report these two averages to demonstrate the ben-
efits of using the SUBA design since depending on the sign of the second biomarker,
different treatments should be selected as the most beneficial and effective ones for
patients. For example, when the second biomarker is positive, treatment 1 is the
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most superior arm; when the second biomarker is negative, treatment 3 is the most
effective arm according to our simulation settings. From Table 15.2, among the 200
patients after the run-in phase, about 100 patients each had positive or negative val-
ues of the second biomarker. Among the 100 patients with positive values, 76 were
allocated to treatment 1, 17 to treatment 2, and 7 to treatment 3. Among the 100
with negative values, 9 were allocated to treatment 1, 18 to treatment 2, and 74 to
treatment 3. According to those numbers, most of the patients were assigned to the
correct superior treatments demonstrating the contribution of the SUBA design, em-
phasized by bold numbers. In Table 15.2, Reg assigned similar number of patients
to three treatments like SUBA, while ER and AR designs assigned far fewer patients
to the most effective treatments, which explained the contrast shown in Fig. 15.4a.

In scenario 2, biomarkers 1, 2, and 3 were related to the response. In a similar
fashion, we report patient allocations by splitting the biomarker space to three sub-
sets that are indicative of the true best treatment decision. Denote θ̃1i = 1.5xi1 +
0.5xi2 − xi3 − 2xi1xi3, θ̃2i = −1.5xi1 − 1.5x3, and θ̃3i = −1.5x1 − x2 − 2.5x1x2. Ac-
cording to the simulation truth, we defined S0

1 = {i : θ̃1i > θ̃2i and θ̃1i > θ̃3i},
S0

2 = {i : θ̃2i > θ̃1i and θ̃2i > θ̃3i} and S0
3 = {i : θ̃3i > θ̃1i and θ̃3i > θ̃2i}. Under

this assumption, the best treatment for patients in set S0
d is treatment d according

to the simulation truth. In Table 15.2, SUBA assigned most of the patients to their
correct superior treatments. In contrast, ER, AR, and Reg failed to do so.

Scenario 3 is a null case in which the biomarkers were not related to response
rates that were the same across three treatments. All four designs assigned similar
number of patients to three treatments.

In summary, SUBA continuously learns the biomarker subgroups to determine
superior treatments with targeted patients and can substantially outperform ER and
AR in terms of OOR.

We also performed sensitivity analysis with respect to the choices of n and the
penalty parameter φ . The more patients we observe, the more accurate assignments
for future patients. And for different values of φ , the reported summaries vary lit-
tle across the considered hyperparameter choices (results not shown), indicating
robustness with respect to changes within a reasonable range of values.

15.5.4 Report on Partition

Figure 15.5 shows the least-square partition for scenario 1. The number in each cir-
cle represents the biomarker used to split the biomarker space. In scenario 1, treat-
ment 1 is the best treatment when the second biomarker is positive and treatment
3 is the best one when the second biomarker is negative. The least-square partition
shows that biomarker 2 is chosen to split the biomarker space in the first round of
split, which agrees with the simulation truth.
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15.6 Conclusion and Discussion

We demonstrate the importance of subgroup identification in adaptive designs, es-
pecially when such subgroups are predictive of treatment selection. The key con-
tribution of the modeling is the construction of the random partition prior p(T )
which allows a flexible and simple mechanism to implement subgroup explo-
ration. Under the Bayesian paradigm adaptive allocation based on interim out-
comes is natural. Posterior inference includes formal learning about relevant sub-
groups. The proposed construction for T is easy to interpret and, most impor-
tantly, achieves a good balance between the computational burden for posterior
computation and the flexibility of the resulting prior distribution. The priors on
θd j are i.i.d uniform priors in our simulation studies. If desired, this prior can be
calibrated to reflect the historical response rate of the drug. The i.i.d assumption
simplifies posterior inference. Alternatively, one could impose dependence across
the θθθ ’s; for example, one could assume that adjacent partition sets have similar
values.

By identifying subgroups of patients who react most positively to each of the
treatments, the proposed SUBA design concentrates on the treatment success for
the patients. One could easily add to the SUBA design a final recommendation of a
suitable patient population for a follow-up trial. Future research directions include

2

1 1

1 2 1 2

S1 S2 S3 S4 S5 S6 S7 S8
Fig. 15.5 The tree-type least-square partition by SUBA design in scenario 1. The number in the
circle represents the biomarker used to split the biomarker space

also an extension of SUBA to incorporate variable (biomarker) selection for trials
with a large number of candidate biomarkers.
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Chapter 16
Bayesian Nonparametric Approaches
for ROC Curve Inference

Vanda Inácio de Carvalho, Alejandro Jara, and Miguel de Carvalho

Abstract The development of medical diagnostic tests is of great importance in
clinical practice, public health, and medical research. The receiver operating char-
acteristic (ROC) curve is a popular tool for evaluating the accuracy of such tests.
We review Bayesian nonparametric methods based on Dirichlet process mixtures
and the Bayesian bootstrap for ROC curve estimation and regression. The methods
are illustrated by means of data concerning diagnosis of lung cancer in women.

16.1 Introduction

Medical diagnostic tests are designed to discriminate between alternative states of
health, generally referred throughout as diseased and non-diseased/healthy states.
Their ability to discriminate between these two states must be rigorously assessed
trough statistical analysis before the test is approved for use in practice. In what
follows, we assume the existence of a gold standard test, that is, a test that perfectly
classifies the individuals as diseased and non-diseased. Compared to the truth one
wants to know how well the test being evaluated performs.

The accuracy of a dichotomous test, a test that yields binary results (e.g., posi-
tive or negative), can be summarized by its sensitivity and specificity. The sensitivity
(Se) is the test-specific probability of correctly detecting diseased subjects, while the
specificity (Sp) is the test-specific probability of correctly detecting healthy subjects.
In turn, the accuracy of a continuous scale diagnostic test is measured by the sep-
aration of test outcomes distribution in the diseased and non-diseased populations.
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The receiver operating characteristic (ROC) curve, which is a plot of Se against
1− Sp for all cutoff points that can be used to convert continuous test outcomes
into dichotomous outcomes, measures exactly such amount of separation and it is
probably the most widely used tool to evaluate the accuracy of continuous or ordinal
tests.

A critical aspect when developing inference for ROC curves is the specification
of a probability distribution for the test outcomes in the diseased and healthy groups.
The main issue is that parametric models, such as the binormal model (arising when
a normal distribution is assumed for both populations), are often too restrictive to
capture nonstandard features of the data, such as skewness and multimodality, po-
tentially leading to unsatisfactory inferences on the ROC curve. In these situations,
we would like to relax parametric assumptions in order to gain modeling flexibility
and robustness against misspecification of a parametric statistical model. Specifi-
cally, we would like to consider flexible modeling approaches that can handle non-
standard features of the data when that is needed, but that do not overfit the data
when parametric assumptions are valid.

Moreover, recently, the interest on the subject has moved beyond determining
the basic accuracy of a test. It has been recognized that the discriminatory power
of a test is often affected by patient-specific characteristics, such as age or gender.
In this situations, the parameter of interest is a collection of ROC curves associated
with different covariate levels. In this context, understanding the covariate impact on
the ROC curve may provide useful information regarding the test accuracy toward
different populations or conditions. On the other hand, ignoring the covariate effects
may lead to biased inferences about the test accuracy. As in the no-covariate case,
here it is also important to consider flexible modeling approaches for assessing the
effect of the covariates on test accuracy and, consequently, on the corresponding
ROC curves.

In this chapter, we discuss two Bayesian nonparametric (BNP) approaches that
are used to obtain data-driven inferences for a single ROC curve, based on mixtures
induced by a Dirichlet process (DP) and on the Bayesian bootstrap. We also discuss
an approach to model covariate-dependent ROC curves based on mixture models
induced by a dependent DP (DDP), which allows for the entire distribution of the
test outcomes, in each population, to smoothly change as a function of covariates.
The chapter is organized as follows. In Sect. 16.2 we provide background material
on ROC curves. BNP approaches for single ROC curve estimation are discussed in
Sect. 16.3. A BNP ROC regression model is discussed in Sect. 16.4. In Sect. 16.5
we illustrate the methods using data concerning diagnosis of lung cancer in women.
We conclude with a short discussion in Sect. 16.6.

16.2 ROC Curves

Let Y0 and Y1 be two independent random variables denoting the diagnostic test
outcomes in the non-diseased and diseased populations, with cumulative distribution
function (CDF) F0 and F1, respectively. Further, let c be a cutoff value for defining a
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positive test result and, without loss of generality, we proceed with the assumption
that a subject is classified as diseased when the test outcome is greater or equal
than c and as non-diseased when it is below c. Then, for each cutoff value c, the
sensitivity and specificity associated with such decision criterion are

Se(c) = Pr(Y1 ≥ c) = 1−F1(c), Sp(c) = Pr(Y0 < c) = F0(c).

Obviously, for each value of c, we obtain a different sensitivity and specificity. The
ROC curve summarizes the tradeoffs between Se and 1−Sp (also known as false
positive fraction) as the cutoff c is varied and it corresponds to the set of points

{(1−F0(c),1−F1(c)) : c ∈ IR}.

Alternatively, and letting p = 1−F0(c), the ROC curve can be expressed as

ROC(p) = 1−F1{F−1
0̄

(1− p)}, 0 ≤ p ≤ 1, (16.1)

where F−1
0 (1− p) = inf{z : F0(z) ≥ 1− p}. ROC curves measure the amount of

separation between the distribution of the test outcomes in the diseased and non-
diseased populations. Figure 16.1 illustrates the effect of separation on the resulting
ROC curve. When both distributions completely overlap, the ROC curve is the di-
agonal line of the unit square (that is, Se(c) = 1−Sp(c) for all c), thus indicating an
useless test. On the other hand, the more separated the distributions the closer the
ROC curve is to the point (0,1) in the unit square. A curve that reaches the point
(0,1) has Sp(c) = Se(c) = 1 for some cutoff c, and hence corresponds to a perfect
test. As it is clear from expression (16.1), estimating the ROC curve is basically a
matter of estimating the distribution functions of the diseased and non-diseased pop-
ulations and, hence, flexible models for estimating such distributions are in order.

Related to the ROC curve is the notion of placement value (Pepe and Cai 2004),
which is simply a standardization of test outcomes with respect to a reference popu-
lation. Let U = 1−F0(Y1) be the placement value of diseased subjects with respect
to the non-diseased population. This variable quantifies the degree of separation be-
tween the two populations. Specifically, if the test outcomes in the two populations
are highly separated, the placement of most diseased individuals is at the upper tail
of the non-diseased distribution, so that most diseased individuals will have small
placement values. In turn, if the populations overlap substantially, U will have a
Uniform(0,1) distribution. Interestingly, the ROC curve turns out to be the CDF
of U

Pr(U ≤ p) = Pr(1−F0(Y1)≤ p) = 1−F1{F−1
0 (1− p)}= ROC(p). (16.2)

It is common to summarize the information of the ROC curve into a single summary
index and the most widely used is the area under the ROC curve (AUC), which is
defined as

AUC =

∫ 1

0
ROC(p)dp. (16.3)
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Fig. 16.1 ROC curve illustrations: The first column displays the densities of the test outcomes for
diseased (solid black line) and non-diseased populations (dashed grey line). The second column
displays the corresponding distribution functions of the test outcomes for diseased (solid black
line) and non-diseased populations (dashed grey line). The third column displays the corresponding
ROC curves
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The AUC can be interpreted as the probability that an individual chosen from the
diseased population exhibits a test outcome greater than the one exhibited by a ran-
domly selected individual from the non-diseased population, that is, AUC = Pr(Y1 >
Y0). A test with a perfect discriminatory ability would have AUC = 1, while a test
with no discriminatory power would have AUC = 0.5. Although there are some
other summary indices available, such as the Youden index (Fluss et al. 2005), which
has the nice feature of providing an optimal cutoff for screening subjects in practice,
or the partial AUC (Dodd and Pepe 2003), which is a meaningful measure for cases
where only a specific region of the ROC curve (e.g., high sensitivities or specifici-
ties) is of clinical interest, throughout this chapter we use the AUC as the preferred
summary measure of diagnostic accuracy.

Now, suppose that along with Y0 and Y1, covariate vectors x0 and x1 are also avail-
able. Hereafter, we assume that these covariates are the same in both populations.
However, this not always have to be the case. For instance, the severity of disease
could play an important role on the discriminatory power of the test. As a natural
extension of the ROC curve, the conditional or covariate-dependent ROC curve, for
a given covariate level x, is defined as

ROC(p | x) = 1−F1{F−1
0 (1− p | x) | x}, (16.4)

where F0(· | x) and F1(· | x) denote the conditional distribution function of Y0 and Y1

given covariate x, respectively. For each value of x, we possibly obtain a different
ROC curve and, hence, also a possibly different AUC value, which is computed
simply by replacing (16.4) in (16.3).

There is a vast literature on parametric, semiparametric, and nonparametric fre-
quentist ROC data analysis. The books by Pepe (2003) and Zhou et al. (2011) dis-
cuss many frequentist approaches to ROC curve estimation and regression. See also
the recent surveys by Gonçalves et al. (2014) and Pardo-Fernández et al. (2014).
The amount of existing work in the Bayesian literature is by comparison reduced.
This is particularly valid for the BNP literature, which is fairly limited. Recent work
on the latter includes the DP mixture (DPM) model-based approach of Erkanli et al.
(2006), the Bayesian bootstrap ROC curve estimator of Gu et al. (2008), and the
stochastic ordering approach of Hanson et al. (2008a). Moreover, Branscum et al.
(2008) used mixtures of finite Polya trees to analyze ROC data when the true dis-
ease status is unknown (that is, when there is no gold standard), while Hanson et al.
(2008b) used bivariate mixtures of finite Polya trees to model data from two contin-
uous tests. Additionally, Inácio et al. (2011) proposed the use of mixtures of finite
Polya trees to model the ROC surface for problems where the patients have to be
classified into one of three ordered classes. In what respects ROC regression, Inácio
de Carvalho et al. (2013) proposed to model the conditional ROC curve using DDPs,
whereas Rodrı́guez and Martı́nez (2014) used Gaussian process priors to model the
mean and variance functions in each population and then computed the correspond-
ing induced ROC curve. Finally, Branscum et al. (2014) proposed a method based
on mixtures of finite Polya trees to model ROC regression data when there is not a
gold standard test available.



332 V. Inácio de Carvalho et al.

16.3 Modeling Approaches for the No Covariate Case

16.3.1 DPM Models

When seeking for flexible modeling approaches and inferences for the distributions
of the test outcomes in each population, mixture models appear as a natural option.
More specifically, mixtures of normal distributions are particularly well suited for
our purposes. Let (Y01, . . . ,Y0n0) and (Y11, . . . ,Y1n1) be random samples of sizes n0

and n1 from the non-diseased and diseased populations, respectively. It would be
natural to assume that

Y01, . . . ,Y0n0 | F0
ind.∼ F0,

and
Y11, . . . ,Y1n1 | F1

ind.∼ F1,

with

Fh(·) =
Kh

∑
k=1

ωhkΦ(· | μhk,σ2
hk), h ∈ {0,1}, (16.5)

where Φ(· | μ ,σ2) denotes the CDF of the normal distribution with mean μ and
variance σ2. Thus, each test outcome would arise from one of the Kh mixture com-
ponents, with each component having its own mean and variance. The model in
(16.5) can be equivalently written as

Fh(·) =
∫

Φ(· | μ ,σ2)dGh(μ ,σ2),

where Gh is a discrete mixing distribution given by

Gh(·) =
Kh

∑
k=1

ωhkδ(μhk,σ 2
hk)
(·),

with δa(·) denoting the Dirac measure at a. Usually, the weights {ωhk} are assigned
a Dirichlet distribution, while the component specific parameters {(μhk,σ2

hk)} arise
from a prior distribution, say, G0h(μh,σ2

h ), typically, a normal-inverse-gamma dis-
tribution. Hence, placing a prior on the collection

({ωhk},{(μhk,σ2
hk)}),

is equivalent to placing a prior on the discrete mixture distribution Gh. A drawback
of this model specification is that we must choose the number of components Kh,
which is not a trivial task in general. Although there are methods available that
place an explicit parametric prior on Kh, they tend to be quite difficult to implement
efficiently. An alternative is to use a DP prior (Ferguson 1973, 1974) for Gh, which,
on one hand, offers the theoretical advantage of having full weak support on all
mixing distributions and, on the other hand, the practical advantage of automatically
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determining the number of components that best fits a given dataset. We write Gh ∼
DP(αh,G0h) to denote that a DP prior is being assumed for Gh, which is defined
in terms of a parametric centering distribution G0h (for which E(Gh) = G0h), and a
precision parameter αh (αh > 0) which controls the uncertainty of Gh about G0h.

Undoubtedly, the most useful definition of the DP is its constructive definition
(Sethuraman 1994), according to which Gh has an almost sure representation of the
form

Gh(·) =
∞

∑
k=1

ωhkδ(μhk,σ 2
hk)
(·), (16.6)

where (μhk,σ2
hk)

iid∼ G0h and the weights arise from a stick breaking construction

ωh1 = vh1, and ωhk = vhk ∏l<k(1− vhl), for k ≥ 2, with vhk
iid∼ Beta(1,αh).

The resulting model for the test outcomes in each population is then a DPM of
normals and is written as

Fh(·) =
∫

Φ(· | μ ,σ2)dGh(μ ,σ2), Gh ∼ DP(αh,G0h), (16.7)

where the centering distribution G0h is defined on IR× IR+. More specifically, we
take G0h to be the normal-inverse-gamma distribution, that is,

G0h ≡ N(mh,Sh)IG(τh1/2,τh2/2),

where N(μ ,σ2) is the normal distribution with mean μ and variance σ2 and IG(a,b)
refers to the inverse-gamma distribution with parameters a and b. The stick-breaking
representation of the DP given in (16.6) allows us to rewrite (16.7) as the following
countably infinite mixture of normals

Fh(·) =
∞

∑
k=1

ωhkΦ(· | μhk,σ2
hk).

The model specification is completed by assuming the following independent
hyper-priors

αh ∼ G(ah,bh), τh2 ∼ G(τsh1/2,τsh2/2),

mh ∼ N(μmh ,Smh), Sh ∼ IG(νh,Ψh),

where G(a,b) refers to the gamma distribution with parameters a and b.
Posterior inference can be conducted using two different kinds of Markov chain

Monte Carlo (MCMC) strategies: (i) to employ a truncation of the stick-breaking
representation (Ishwaran and James 2001) or (ii) to use a marginal Gibbs sampling
where the mixing distributions are integrated out from the model (MacEachern and
Müller 1998; Neal 2000). Finally, we can plug-in each MCMC realization of F0 and
F1 in (16.1) and compute the corresponding realization of the ROC curve. Note that
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the computation of the ROC curve requires the evaluation of the quantile function
of F0, which is done numerically. A model similar to the one described here was
proposed by Erkanli et al. (2006).

16.3.2 Bayesian Bootstrap

The Bayesian bootstrap (BB) estimator of the ROC curve was proposed by Gu et al.
(2008) and it is a computationally simple, yet robust, estimator. We start by outlin-
ing how the BB works in the one-population setting. Let (Y1, . . . ,Yn) be a random
sample from an unknown distribution F and suppose that F itself is the parameter
of interest. In Efron’s frequentist bootstrap (Efron 1979), estimation and inference
about F are obtained by repeatedly generating bootstrap samples, where each sam-
ple is drawn with replacement from the original data. In the bth bootstrap replicate,
F (b) is computed as

Fb(·) =
n

∑
i=1

π (b)
i δYi(·), (16.8)

where π (b)
i is the proportion of times Yi appears in the bth bootstrap sample, with

π (b)
i taking values on {0,1/n, . . . ,n/n}. By contrast, in Rubin’s BB (Rubin 1981),

the weights π (b)
i in expression (16.8) are assigned an Dirichletn(1, . . . ,1) distribu-

tion and thus are smoother than those from the frequentist bootstrap. It is important
to stress that in the BB the data is regarded as fixed and so we do not resample
from it. The BB has connections with the DP. Specifically, it can be regarded as a
non-informative version of the DP, which can be obtained by letting the precision
parameter tending to zero (Gasparini 1995, Theorem 2).

The representation of the ROC curve given in (16.2) provides the rationale for the
following two-step BB algorithm, which we fully describe due to its simplicity. Let
us suppose, again, that (Y01, . . . ,Y0n0) and (Y11, . . . ,Y1n1) are random samples from
the non-diseased and diseased populations and let B be the number of BB resamples.

Bayesian bootstrap algorithm

For b = 1, . . . ,B:
Step 1 (Compute the placement values based on the BB resam-
pling)
For j = 1, . . . ,n1, compute the placement values

Uj =
n0

∑
i=1

q(b)i I(Y0i ≥ Y1 j), (q(b)1 , . . . ,q(b)n0 )
ind.∼ Dirichletn0(1, . . . ,1).

(continued)
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Step 2 (Generate a random realization of the ROC curve)
Based on (16.2), generate a random realization of ROC(p), the cu-
mulative distribution function of (U1, . . . ,Un1), where

ROC(b)(p)=
n1

∑
j=1

r(b)j I(Uj ≤ p), (r(b)1 , . . . ,r(b)n1 )
ind.∼ Dirichletn1(1, . . . ,1),

with 0 ≤ p ≤ 1. Compute the AUC associated with ROC(b)(p),
AUC(b), using numerical integration.

The BB estimate of the ROC curve, denoted as R̂OC
BB

(p), is then obtained by
averaging the random realizations of the ROC curve, that is,

R̂OC
BB

(p) =
1
B

B

∑
b=1

ROC(b)(p), 0 ≤ p ≤ 1.

Similarly,

ÂUC
BB

=
1
B

B

∑
b=1

AUC(b).

16.4 Modeling Approaches for the Covariate Case

Let {(x01,Y01), . . . ,(x0n0 ,Y0n0)} and {(x11,Y11), . . . ,(x1n1 ,Y1n1)} be regression data
for the non-diseased and diseased groups, respectively, where x0i ∈ X ⊆ IRp and
x1 j ∈ X ⊆ IRp are p-dimensional covariate vectors and Y0i and Y1 j are test out-
comes, for i = 1, . . . ,n0, j = 1, . . . ,n1. It is assumed that given the covariates, the
test outcomes in the diseased and non-diseased populations are independent and
that

Y0i | x0i
ind.∼ F0(· | x0i), i = 1, . . . ,n0,

Y1 j | x1 j
ind.∼ F1(· | x1 j), j = 1, . . . ,n1.

Here, we detail the approach proposed by Inácio de Carvalho et al. (2013) for the
conditional ROC curve estimation problem, which extends the no covariate ap-
proach of Sect. 16.3.1. Specifically, these authors proposed a model for the con-
ditional ROC curves based on the specification of a probability model for the entire
collection of distributions Fh = {Fh(· | x) : x ∈ X }, for h ∈ {0,1}, and they fur-
ther modeled the conditional distributions in each population using the following
covariate-dependent mixture of normal models
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Fh(· | x) =
∫

Φ(· | μ ,σ2)dGhx(μ ,σ2), h ∈ {0,1}.

The probability model for the conditional distributions is induced by specifying a
prior for the collection of mixing distributions

GhX = {Ghx : x ∈X } ∼ Gh,

where Ghx denotes the random mixing distribution at covariate x, which is defined
on IR× IR+, and Gh is the prior for the collection GhX .

One possibility for modeling Gh is the DDP proposed by MacEachern (2000),
which is built upon the constructive definition of the DP in (16.6), where the atoms
and the components of the weights are realizations of a stochastic process over X ,
and the weights arise from a stick-breaking representation. Justified by results in
Barrientos et al. (2012), on the full support of MacEachern’s DDPs, Inácio de Car-
valho et al. (2013) considered the ‘single weights’ DDP (De Iorio et al. 2004, 2009;
De la Cruz et al. 2007; Jara et al. 2010), where only the atoms are indexed by the
covariates, thus resulting in the following specification for the conditional random
mixing distribution

Ghx(·) =
∞

∑
k=1

ωhkδθ hk(x)(·), (16.9)

where the weights {ωhk} match those from a standard DP and the atoms are given by
θ hk(x) = (mhk(x),σ2

hk), where {mhk(x) : x ∈X } are iid. Gaussian processes which
are independent across h.

Although such formulation leads to a very flexible prior, it implies sampling re-
alizations of the Gaussian processes at each distinct value of the covariate and, thus,
inferences could take prohibitively long. This motivated Inácio de Carvalho et al.
(2013) to elaborate on a linear DDP (LDDP) prior formulation (De Iorio et al. 2004,
2009; Jara et al. 2010), where the Gaussian processes are replaced by sufficiently
rich linear (in the coefficients) functions, mhk(x) = z′β hk. Here z is a q-dimensional
design vector possibly including nonlinear transformations of the original covariates
x. To this end, the authors considered an additive formulation based on B-splines
(Eilers and Marx 1996), referred to as B-splines DDP,

mhk(x) = βhk0 +
p

∑
l=1

(
Kl

∑
n=1

βhklnψ(xl ,dl)

)

,

where ψn(x,d) corresponds to the nth B-spline basis function of degree d evalu-
ated at x, and β hk = (βhk0, . . . ,βhkpKp). This formulation allows for the inclusion of
discrete and continuous predictors.

Thus, under the LDDP formulation, the base stochastic processes are replaced
with a group-specific distribution G0h that generates the component specific regres-
sion coefficients and variances. Therefore, the B-splines DDP mixture model can be
equivalently formulated as a DPM of Gaussian regression models
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Fh(· | x) =
∫

Φ(· | z′β ,σ2)dGh(β ,σ2), Gh ∼ DP(αh,G0h). (16.10)

For each group, normal-inverse-gamma distributions were used for the parametric
centering distribution,

G0h ≡ Nq(μh,ΣΣΣh)× IG(τh1/2,τh2/2).

The model specification is completed by specifying the following hyper-priors

αh ∼ G(ah,bh), τh2 ∼ G(τsh1/2,τsh2/2),

μh ∼ Nq(mh,Sh), ΣΣΣh ∼ IWq(νh,ΨΨΨh).

With regard to posterior inference, the computational strategies for Dirichlet process
mixture models referred in Sect. 16.3.1 apply here in the covariate setup directly. Fi-
nally, after obtaining MCMC samples for each of the parameters, we can plug-in,
for each covariate x, each MCMC realization of F0(· | x) and F1(· | x) in (16.4) and
compute the corresponding realization of the conditional ROC curve. The model
previously described is implemented in the function LDDProc of the R library
DPpackage (Jara et al. 2011).

16.5 Illustration

The accuracy of a soluble isoform of epidermal growth factor receptor (sEGFR),
present in blood, as a diagnostic test for lung cancer in women is investigated. How
this accuracy may vary with age is also subject of interest. The data were collected
from a case–control study conducted at the Mayo clinic in Minnesota between 1998
and 2003. The dataset includes information for 140 non-diseased women and 101
lung cancer cases. This dataset was previously analyzed by Branscum et al. (2013).

Figure 16.2 shows the histogram of the − log(sEGFR) in both populations. The
minus sign is due to the fact that the values of sEGFR tend to be lower for lung
cancer cases than for controls, and so with the minus sign the usual convention
that diseased individuals tend to have larger test outcomes than the non-diseased
ones applies. As it can be observed, normality does not seem to apply, especially
for the non-diseased population, where a bimodality is easily noticed. Figure 16.2
also displays the estimated densities, in each group of women, under the DPM of
normals model, and we can see that the model captures well the bimodality in the
non-diseased group, as well as, a certain skewness in the diseased group. The hyper-
priors of the DPM of normals model were set to ah = 5, bh = 1, τh1 = 2, τsh1 = 2,
τsh2 = 10, μmh = 0, Smh = 100, νh = 5, and Ψh = 1, for h ∈ {0,1}, while the BB
estimates were obtained using 5000 resamples. With respect to the estimation of the
CDFs, which are displayed in Fig. 16.3 [Panels (a) to (f)], it can be observed that
the estimates provided by the DPM of normals and the BB are almost indistinguish-
able. When superimposing these fits (DPM and BB) with the one obtained by the
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binormal model, a discrepancy can be seen, especially in the non-diseased group.
The resulting ROC curves, also presented in Fig. 16.3, are smooth and practically
identical (except the one obtained by the binormal fit) and the corresponding poste-
rior means (95% credible interval) of the AUC are 0.792 (0.728,0.848) under the
DPM model and 0.792 (0.731,0.848) under the BB method. These values reveal a
quite good discriminatory ability of the sEGFR to detect lung cancer in women.
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Fig. 16.2 sEGFR data: Histogram of the − log(sEGFR) in the nondiseased (Panel a) and diseased
(Panel b) populations along with a rug representation of the data. The posterior mean of the density
for each population under the DPM of normals models is displayed as a solid line

We now examine the age effect on the accuracy of the sEGFR. The B-splines
dependent DPM of normals model was fit by assuming K1 = 3, ah = 5, bh = 1,
τh1 = 2, τsh1 = 2, τsh2 = 10, mh = (0,0,0,0), Sh = 100× I4, νh = 5, and ΨΨΨ h = I4,
for h∈ {0,1}. Figure 16.4 shows the posterior means for the conditional mean func-
tions, along with point-wise 95% credible bands for − log(sEGFR) levels. These
estimates are overlaid on the top of the raw data. This figure suggests that the
− log(sEGFR) levels are more concentrated in the non-diseased than in the dis-
eased women, across age and, further, a slightly nonlinear behavior of the condi-
tional mean function of both groups can be observed.

Figure 16.5 presents the estimated posterior means, along with 95% point-wise
credible bands, of the conditional distribution functions in the two groups of women
at three selected ages (40, 55, and 70 years old), and a change across age is clearly
seen. Obviously, the same is visible in terms of the corresponding estimated ROC
curves.
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Fig. 16.3 sEGFR data: Panels (a) and (b) show the estimated posterior mean (solid black line),
along with the point-wise 95% credible bands (grey area) of the cumulative distribution function
of the non-diseased population, under the DPM of normals model and the Bayesian bootstrap,
respectively. In Panel (c) the two estimates are superimposed along with the estimates obtained
under the binormal model (solid black line represents the DPM estimate, light grey dashed line
represents the BB estimate, and dark grey dotted line is the binormal estimate). Panels (d), (e), and
(f) show the analogous figures but in terms of the cumulative distribution function of the diseased
population, and panels (g), (h), and (i) in terms of the ROC curve
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Fig. 16.4 sEGFR data: Posterior mean (solid line) and 95% point-wise credible band (grey area)
for the conditional mean function in the group of non-diseased women (Panel (a)) and in the group
of diseased women (Panel (b))

To examine the age effect further, Fig. 16.6 shows the estimated posterior mean,
as well as the 95% point-wise credible band, of the AUC as a function of age. This
figure suggests a decrease in AUC until an age around 60 years old, and then a slight
increase.

16.6 Concluding Remarks

ROC curves are a valuable tool for assessing the discriminatory power of continuous
diagnostic tests. We have described and illustrated BNP approaches for ROC curve
estimation and regression. Specifically, we have discussed DPM models and the BB
for ROC curve estimation and an extension for the regression case based on DDP
mixture models. A nice feature of the latter model is that the complete distribution
of the test outcomes is allowed to smoothly change with the values of the covariates
instead of just one or two characteristics (such as the mean and/or variance), as
implied for most ROC regression models.

Topics of future research on BNP methods for ROC analysis include, among oth-
ers, modeling diagnostic tests with mass at zero, optimal combinations of multiple
tests, and time-dependent ROC curves. We end remarking that R packages for the
implementation of ROC analysis tools are of great importance for practitioners.
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Fig. 16.5 sEGFR data: Panels (a), (d), and (g) display the estimated posterior mean (solid line),
as well as, the 95% point-wise credible bands (grey area) of the conditional distribution function,
in the non-diseased group, for ages of 40, 55, and 70 years old. Panels (b), (e), and (h) show the
analogous figures for the diseased group. Panels (c), (f), and (i) show the corresponding ROC
curves
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Fig. 16.6 sEGFR data: Posterior mean (solid line) along with the 95% point-wise credible band
(grey area) for the AUC as a function of age
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Spatial Data



Chapter 17
Spatial Bayesian Nonparametric Methods

Brian James Reich and Montserrat Fuentes

Abstract We review nonparametric Bayesian approaches to inference for spatial
data. The discussion is organized by increasing level of relaxation of traditional
parametric assumptions. We start by considering nonparametric priors for covari-
ance functions in a Gaussian process model. Next we allow for non-Gaussian
marginal distributions by introducing Gaussian copulas. Finally, we go fully non-
parametric and discuss Dirichlet process mixtures for the coefficients in a kernel
convolution, Dirichlet process mixtures of Gaussian processes and spatial stick-
breaking priors.

17.1 Introduction

Classical geostatistics (Cressie 1993; Banerjee et al. 2004; Gelfand et al. 2010)
is based almost exclusively on Gaussian process representations of spatial data.
The canonical problem is to observe the process Y at n spatial locations s1, . . . ,sn,
denoted Y = [Y (s1), . . . ,Y (sn)]

T , and to interpolate the process Y to all spatial lo-
cations s in the measurable spatial domain D ∈R2. For example, in a study of the
health impacts of air pollution, we may observe air pollution concentrations at n
monitoring locations and use these data to predict the concentration of the resid-
ual locations of study participants. Given that the data consist of a single partially
observed realization of the process, parametric assumptions about the mean, co-
variance, and distribution of the process are natural. On the other hand, paramet-
ric assumptions are often questionable and difficult to verify and so more flexible
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approaches are attractive. In this chapter we review the recent literature on Bayesian
nonparametric (BNP) methods for geostatistical data.

Let Y (s) be the real-valued response at spatial location s. The Gaussian pro-
cess is defined by the mean function E[Y (s)] = μ(s) and covariance function
Cov[Y (s),Y (t)] =σ(s, t). If the covariance is stationary, then we may write Cov[Y (s),
Y (t)] = C(h), where h = s− t. A typical parametric analysis takes the mean func-
tion to be a linear combination of spatial covariates, μ(s) = X(s)T β , and the
covariance to be a parametric form such as the exponential covariance C(h) =
σ2 exp(−||h||/ψ). The finite dimensional distribution of the Gaussian process at the
n locations s1, . . . ,sn is multivariate normal, Y ∼ N(μ ,Σ), where μ = [μ(s1), . . . ,
μ(sn)]

T is the mean vector and the (i, j) element of the covariance matrix Σ is
σ(si,s j). In particular, the marginal distribution at location s is Y (s) ∼ N[μ(s),
σ(s,s)].

In this chapter we discuss several extensions of this classic parametric model us-
ing BNP methods. Standard BNP methods for the mean function μ(s) using meth-
ods such as splines or wavelets apply here, and so we focus on flexible priors for the
covariance function and BNP priors for the response distribution that relax the nor-
mality assumption. In Sect. 17.2, we discuss a BNP prior for the covariance function
using spectral methods. Section 17.3 reviews methods that remove the normality
assumption about the marginal distribution of Y , but retain the spatial dependence
properties of the Gaussian process. Finally, Sect. 17.4 presents a series of BNP meth-
ods for the entire spatial process model.

17.2 Bayesian Non-parametric Priors for a Covariance Function

An essential step in the analysis of spatial data is the estimation of the spatial co-
variance function that explains the dependence between the spatial process at two
different locations: The spatial covariance of Gaussian responses, or of the Gaussian
random effects in a model for non-Gaussian data. The standard approach for covari-
ance modeling is to select a parametric covariance function (Gelfand et al. 2010).
Instead of restricting to a particular parametric model for the covariance function,
Zheng et al. (2010) and Reich and Fuentes (2012) treat the covariance function as
an unknown to be estimated from the data. This can be challenging because we
need to ensure the covariance is a nonnegative definite function. A convenient way
to specify a flexible model for the covariance is by modeling the corresponding
spectral density, which involves fewer restrictions. In this section we follow Reich
and Fuentes (2012) and specify a prior for the covariance function using spectral
methods and the Dirichlet process (DP) prior.

An important result in the spectral domain is Bochner’s theorem (e.g. Gelfand
et al. 2010) stating that any stationary covariance function C can be represented as
an inverse Fourier transform

C(h) =
∫

R2
exp(ih′ω)G(dω), (17.1)
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where the function G is called the spectral measure or spectrum for Y and ω =
(ω1,ω2) is a bivariate spectral frequency. We assume there exists a continuous dif-
ferentiable spectral density g(ω) such that G(dω) = τ2g(ω)dω , where τ > 0 and∫

g(ω)dω = 1. The spatial process Y is real if and only if the spectral density is
even, i.e., g(ω) = g(−ω). The representation in (17.1) illustrates the most general
strategy for constructing a stationary covariance function: we use (17.1) with an
arbitrary spectral density. Conversely, any function which cannot be written in this
form cannot be positive definite and hence is not the covariance of a valid stationary
process.

The scaler τ controls the variance and can be given a standard prior for a variance,
such as an inverse gamma prior. A prior for the spectral density g is more compli-
cated because g is a density function. We model the spectral density using the DP
prior (Ferguson 1973), a common nonparametric prior for unknown distributions.
The DP prior can be written as the infinite mixture

g(ω) =
∞

∑
l=1

πlδ (ν l), (17.2)

where δ (ν) is the point mass at ν ∈ R and the mixture probabilities πl sat-
isfy ∑∞

l=1 πl = 1 almost surely. The mixture probabilities have priors π1 = V1 and

πl = Vl ∏ j<l(1−Vj) for l > 1, where Vl
iid∼ Beta(1,D). The frequencies ν l have a

parametric prior such as a bivariate student-t prior, which centers the prior for the
covariance function on the Matérn covariance function.

To ensure that the spectral density is an even function, the prior can be modi-
fied as

g(ω) =
1
2

∞

∑
l=1

πl [δ (ν l)+ δ (−ν l)] . (17.3)

The spectral representation theorem (e.g. Gelfand et al. 2010) states that the real
process Y (s) can be written as

Y (s) =
∫

R2
cos(ω ′s)dU(ω)+

∫

R2
sin(ω ′s)dW (s), (17.4)

where U and W are independent Gaussian processes with mean zero, orthogonal
increments, and E(|dU(ω)|2)+E(|dW(ω)|2) = G(ω) < ∞. Therefore, using a DP
prior for g, (17.4) becomes a countable linear combination of sine and cosine basis
functions. The spatial covariance of Y is a random function of ν j and Vj, such that
given ν j and Vj (through π j),

Cov[Y (s),Y (t)] = τ2
∞

∑
l=1

πl cos(ν ′
lh). (17.5)

Thus, the conditional covariance is stationary and the conditional variance of Y is
τ2, and although the spectral density is discrete, the corresponding covariance is a
continuous function of h.
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The DP prior for the spectral density is discrete and in some situations a
continuous spectral density may be desirable. Therefore, we consider a Dirichlet
process mixture (DPM) model (Antoniak 1974), that substitutes the discrete point
mass δ (ν l) with a continuous parametric distribution, kγ(ω |ν l) with location ν l and
scale γ . To ensure the spectral density is even, we select k to be a location family
with location ν l that is even in ν l ,

g(ω) =
1
2

∞

∑
l=1

πl
[
kγ (ω |ν l)+ kγ(ω |−νl)

]
(17.6)

where πl and ν l are modeled as before.
In this section we are able to introduce very flexible priors for spatial covariances

by applying the DP prior and the DPM prior to the spectral density. This model does
not require spatial locations on a regular grid. However, in practice it does require
truncating the infinite mixture in (17.6) to a finite mixture of L terms. After this
truncation the covariance function depends on 3L parameters (the Vl and vectors
ν l). These parameters do not have conjugate full conditionals, and so Metropolis
updates are required for these parameters.

17.3 Priors for the Marginal Distribution Using a Spatial
Gaussian Copula

While the Gaussian process forms the basis of geostatistics, the normality assump-
tion is often inappropriate. Spatial interpolation may still be reasonable using a
Gaussian model even for non-Gaussian data. However, statistical inference such as
coverage of prediction intervals or significance tests for covariates are more reliable
when accounting for non-normality. Also, Gaussian processes are notoriously poor
for estimating the probability of extreme events (Coles 2001).

The Gaussian copula (Nelsen 1999) is a tractable model for non-Gaussian spatial
data. The Gaussian copula represents the response in terms of a latent Gaussian
process, Z(s). The increasing function t links the latent process and the observations,
Y (s) = t[Z(s)]. To ensure identification, it is common to assume that E[Z(s)] = 0
and V[Z(s)] = 1, since the location and scale of the response can be included in t.
Without loss of generality, we may express t(x) = q[Φ(x)], where q is an increasing
function and Φ is the standard normal distribution function. In this form, Φ[Z(s)]
follows a Uniform(0,1) distribution, and by the probability inverse transform q is the
quantile (inverse distribution) function of Y . If q is invertible, then F(y) = q−1(y) is
the distribution function Prob[Y (s)< y] = F(y), and f (y) = dF(y)/dy is the density
function.

This construction provides a general approach for non-Gaussian data, and by
selecting the appropriate parametric quantile function q has been used in many
settings, including spatial extremes (Sang and Gelfand 2010), quantile regres-
sion (Reich 2012), and local variable selection (Boehm Vock et al. 2015). For a
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parametric model, the likelihood required for computation is straight-forward. If f
is a parametric density function with parameters θ and Σψ is the correlation ma-
trix (with parameter ψ) for Z = [Z(si), . . . ,Z(sn)]

T , then the joint likelihood for
Y = [Y (s1), . . . ,Y (sn)]

T is

p(Y|ψ ,θ ) = φ(Z|0,Σψ)
n

∏
i=1

f [Y (si)|θ ]
φ [Z(si)|0,1] , (17.7)

where Z(s) = Φ−1F [Y (s)|θ ] and φ is the multivariate normal density function.
In this chapter, our interest lies in BNP methods to estimate the marginal density,

f . One avenue for specifying a prior for f is via the corresponding quantile function,
q. Reich (2012) proposed a semi-parametric model for q as a linear combination of
basis functions

q(x) = α0 +
L

∑
l=1

Bl(x)αl , (17.8)

where Bl(x) are known basis functions and αl are unknown coefficients that de-
termine the shape of the quantile function. Restrictions are required on the basis
functions and coefficients to ensure that the quantile function is increasing. Reich
(2012) define the basis functions through knots 0 = κ0 < κ1 < .. . < κL = 1 and
basis functions

B1(x)=

{
Φ−1(x) x ≤ κ1

Φ−1(κ1) x > κ1
and Bl(x)=

⎧
⎨

⎩

0 x < κl−1

Φ−1(x)−Φ−1(κl−1) κl−1 < x ≤ κl

Φ−1(κl)−Φ−1(κl−1) x > κl
(17.9)

for l > 1. Assuming these basis functions, q(x) is increasing if and only if αl > 0
for all l > 0, and therefore truncated normal priors are used to satisfy this constraint.
Also, if α1 = . . . = αL, then f is the Gaussian density with mean α0 and standard
deviation α1, providing a way to center the prior on the parametric model. Finally,
it can also be shown that allowing L → ∞, the prior can approximate any continuous
quantile function.

Several authors including Rodriguez et al. (2010) and Petrone et al. (2009) have
considered the fully nonparametric approach of treating f as an unknown function
with Dirichlet process prior; here we outline the general approach. A flexible model
for f is the Dirichlet process mixture of normals (DPMN)

f (x) =
L

∑
l=1

πlφ(x|θl ,σ2
1 ), (17.10)

where πl are the mixture weights with stick-breaking prior as in (17.2) and θl
iid∼

N(0,σ2
2 ) are the mixture means. In the spatial setting, the infinite-dimensional

model with L = ∞ presents a major computational challenge because closed forms
for f and F are required to evaluate the likelihood in (17.7). However, if the mixture
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is truncated using a sufficiently large L, MCMC can be used to implement this
model, though because of the non-Gaussian responses most parameters do not have
conjugate full conditional distributions.

17.4 Nonparametric Spatial Process Models

While the methods in Sect. 17.3 based on the Gaussian copula ease assumptions re-
quired about the marginal distribution, the form of spatial dependence remains dic-
tated by the latent Gaussian model. This is inadequate, for example, for modeling
dependence between extreme observations (Coles 2001). Other copulas are possi-
ble, such as the student-t copula (Nelsen 1999) or even the non-parametric Bayesian
copula (Fuentes et al. 2013). However, to fully capture complex dependency struc-
tures, more general methods are required, such as those discussed in the remainder
of this section.

17.4.1 Kernel Convolution of a Dirichlet Process

Reich et al. (2013) present a BNP approach via a kernel convolution (Higdon et al.
1999) of a Dirichlet process. Spatial dependence is captured via L predetermined
spatial knots v1, . . . ,vL ∈ D and the kernel basis function wψ (s,v). For example,
Reich et al. (2013) consider L = n knots at the n data locations and the squared
exponential kernel function

wψ (s,v) = exp

(

−||s− v||2
ψ2

)

, (17.11)

where ψ > 0 is the kernel bandwidth and determines the range of spatial depen-
dence. The response is then modeled as

Y (s) =
L

∑
l=1

wψ(s,vl)αl + ε(s), (17.12)

where ε(s) iid∼ N(0,σ2
1 ) and αl

iid∼ f . In this model with finite L, the added local
variation (nugget) term ε(s) is required to give a full-rank model.

The standard approach (Higdon et al. 1999) is to use Gaussian priors for the αl .
In this case, letting L → ∞ provides an approximation to a continuous Gaussian pro-
cess. To provide modeling flexibility, the kernel coefficient density f can be modeled
using BNP methods. Reich et al. (2013) use a DPMN prior for f as in (17.10). Un-
like the Gaussian copula model, f is not the marginal distribution of Y because the
coefficients αl are convolved to obtain the response. However, Reich et al. (2013)
prove that for fixed L and ψ and any continuous marginal distribution for Y , there
exists a density f that leads to this marginal distribution for Y , and therefore this
construction spans the entire space of continuous marginal distributions.



17 Spatial Bayesian Nonparametric Methods 353

With this prior, the full conditional distributions are conjugate for all parameters
except the kernel bandwidth ψ , leading to straightforward MCMC. Computation
is further improved for large datasets by using a small number of basis functions
L and thus reducing the dimension of the model. Additionally, allowing for non-
stationarity is possible by allowing each knot to have its own bandwidth, ψ(vl),
and smoothing the bandwidths with a second Gaussian spatial prior for ψ(v) (Hig-
don et al. 1999). Drawbacks of this approach include the requirement of the nugget
term, and that the extension to an infinite dimensional process (L → ∞) leads to a
Gaussian process for fixed ψ and f because the response becomes an average of
infinitely-many coefficients. However, the method is implemented with fixed L, and
given full span of the model for any fixed L, further theoretical work may show
that allowing f to change with L can produce a process that spans a wide class of
marginal distributions.

17.4.2 Dirichlet Process Mixture of Gaussian Processes

Gelfand et al. (2005) propose a more general BNP model for the entire joint dis-
tribution of non-Gaussian data. This approach requires replication of the process.
Therefore, define Yt(s) as the response at location s and replication (e.g., time point)
t. Let θl(s) be independent and identically distributed spatial Gaussian processes
with mean zero and Cov[θl(s),θl(t)] = σ(s, t). The marginal distribution at location
s is given by the DPMN model

L

∑
l=1

πlφ [y;θl(s),σ2
1 ], (17.13)

where πl are the mixture probabilities and L may be infinite. This extends (17.10) by
allowing the mixture means θl(s) to vary spatially, and thus the marginal distribution
is allowed to vary by location capturing spatial heterogeneity.

A joint distribution with this marginal distribution is given as the following
clustering model. Denote gt ∈ {1,2, . . .} as the cluster label for replication t, with
Prob(gt = j) = π j. Then (17.13) arises as the marginal (over gt ) distribution of the
hierarchical model

Yt(s)|gt = θgt (s)+ εt(s), (17.14)

where εt (s) is a Gaussian process with mean zero and variance σ2
1 , independent

across t. In this representation, the labels gt group the replications into clusters,
with θ j(s) representing the common spatial pattern in cluster j.

An advantage of this approach is that for any collection of n < ∞ spatial loca-
tions, the resulting prior for the n-dimensional joint distribution is an n-dimensional
DPMN and thus this model spans the entire space of joint distributions for any col-
lection of locations. Also, implementing this approach using MCMC is straightfor-
ward as most parameters (including gt , Vl, and θ (s)) have conjugate full conditional
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distributions, permitting Gibbs updates. A potential drawback of the global cluster-
ing model is that for a large and heterogeneous spatial domain, it may not be possible
to group entire replications into meaningful clusters. In this case, the posterior may
have many clusters with a single member, causing difficulty in estimating the joint
distribution. The global clustering model is generalized in Duan et al. (2007), who
consider local cluster allocation.

17.4.3 Stick-Breaking Methods

In this section, we present several methods that introduce spatial variation into var-
ious aspects of the stick-breaking representation of a DP given in (17.2). As in
Sect. 17.4.1, the response is decomposed as Y (s) = μ(s) + ε(s), where μ(s) is a

spatial random effect and ε(s) iid∼ N(0,σ2
1 ). Spatial extensions of the stick-breaking

model for the random effect distribution lead to a broad class priors that can deal
with skewness, multimodality, etc. In addition, even though the prior predictive dis-
tributions induced by these models are stationary, the posterior predictive distribu-
tions can accommodate nonstationary behavior.

Density function f has stick-breaking prior if

f (μ) =
L

∑
l=1

πlδ (θl), (17.15)

where δ (θ ) denotes a Dirac measure at μ = θ , πl = Vl ∏ j<l(1−Vl) where Vl are
independent with Vl ∼ Beta(1,D) and θl are independent draws from a centering
distribution H. The definition in (17.15) allows for either finite or infinite L (with
the latter corresponding to the conventional definition of nonparametrics). In order
to make this nonparametric prior useful for our spatial context, we need to index it
by space. This can be achieved by allowing either the masses, V = (V1,V2, . . . ), or
the locations of the atoms, θ = (θ1,θ2, . . . ), to change with s. The idea in Gelfand
et al. (2005) is to introduce spatial dependence through the locations, by indexing θ
with the location s and making θ (s) a realization of a random field with H being a
stationary Gaussian process.

An alternative approach to extending the prior in (17.15) to the spatial setting is
followed by Griffin and Steel (2006), who define the ranking of the elements in the
vectors V and θ through an ordering o(s) = [o1(s),o2(s) . . .], which changes with
the spatial index (or other covariates). The density function at location s is taken
to be

f (μ ;s) =
L

∑
l=1

πl(s)δ (θl) where πl(s) =Vl(s)∏
j<l

[1−Vj(s)] (17.16)

and Vl(s) = Vol(s). Since weights associated with atoms that appear earlier in
the stick-breaking representation tend to be larger (i.e., e[πl(s)] < e[πl−1(s)]),
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this induces similarity between distributions with similar ordering. The similarity
between o(s1) and o(s2) controls the dependence between f (μ ;s1) and f (μ ;s2).
The induced class of models is called order-based dependent Dirichlet processes.
This specification preserves the usual Dirichlet process for the marginal distribution
at each location, but, in contrast with the single-π approaches, leads to local up-
dating, where the influence of observations decreases as they are further away. The
main challenge is to define stochastic processes o(s). Griffin and Steel (2006) use
a point process and a sequence of sets which define the region in which points are
relevant for determining the ordering at s.

Reich and Fuentes (2007) introduce a spatial kernel stick-breaking (SSB) prior
to extend the stick breaking construction to the spatial setting. Similar to Griffin and
Steel (2006), the weights πl vary spatially. However, rather than random permutation
of Vl , Reich and Fuentes (2007) introduce a series of kernel functions to allow the
masses to change with space. This results in a flexible spatial model, as different
kernel functions lead to different relationships between the distributions at nearby
locations. This model is similar to that of Dunson and Park (2008), who use kernels
to smooth the weights in the non-spatial setting.

The spatial effects μ(s) are assigned a random prior distribution, i.e., μ(s) ∼
f (μ ;s), that are smoothed spatially. The density f (μ ;s) has the form of (17.16), but
with

Vl(s) = wψ (s,vl)Vl , (17.17)

where wψ (s,vl) ∈ [0,1] is a kernel function such as (17.11) that depends on spatial
knot vl ∈ D and kernel bandwidth ψ . The distributions f (μ ;s) are related through
their dependence on the Vl and θl , which are given the priorsVl ∼Beta(a,b) and θl ∼
H, each independent across l. However, the distributions vary spatially according to
the kernel functions wψ (s,vl).

A potential drawback of the SSB prior is that realizations of μ(s) are discontin-
uous functions of s. To remedy this issue, Fuentes and Reich (2013) allow both the
probabilities πl and the locations θl to depend on space. The prior for f (μ ;s) is the
potentially infinite mixture

f (μ ;s)=
L

∑
l=1

πl(s)δ [X(vl)] where πl(s) =Vl(s)∏
j<l

[1−Vj(s)], (17.18)

X is a Gaussian process, and Vl(s) = wψ (s,vl)Vl as in the previous SSB model.
In this representation, X is a spatial process on the knot space. However, by con-
struction, as the kernel bandwidth ψ → 0, μ(s)→ X(s). Therefore, by introducing
the latent Gaussian process X , this formulation includes the parametric continuous
Gaussian process as a special case.

These kernel stick-breaking models are computationally convenient in the sense
that they avoid inversion of large covariance matrices which often hinder spatial
data analysis. Many of the parameters have conjugate full conditionals, including
the latent process X(s). The primary challenge is updating the kernel knots vl , which
require Metropolis updates.
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Chapter 18
Spatial Species Sampling and Product Partition
Models

Seongil Jo, Jaeyong Lee, Garritt Page, Fernando Quintana,
Lorenzo Trippa, and Peter Müller

Abstract Inference for spatial data arises, for example in medical imaging, epi-
demiology, ecology, and other areas, and gives rise to specific challenges for non-
parametric Bayesian modeling. In this chapter we briefly review the fast growing
related literature and discuss two specific models in more detail. The two models
are the CAR SSM (species sampling with conditional autoregression) prior of Jo et
al. (Dependent species sampling models for spatial density estimation. Technical re-
port, Department of Statistics, Seoul National University, 2015) and the spatial PPM
(product partition model) of Page and Quintana (Spatial product partition models.
Technical report, Pontificia Universidad Católica de Chile, 2015).

S. Jo
Department of Statistics, Korea University, Seoul, South Korea
e-mail: joseongil@gmail.com

J. Lee (�)
Department of Statistics, Seoul National University, Seoul, South Korea
e-mail: leejyc@gmail.com

F.A. Quintana • G.L. Page
Departamento de Estadı́stica, Pontificia Universidad Católica de Chile, Santiago, Chile
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18.1 Introduction

An important class of statistical inference problems arise with the analysis of spatial
data. Spatial data is broadly understood as measurements {Y (sssi) : i= 1, . . . ,n} made
at coordinates sss1, . . . ,sssn ∈ D for some set D ⊂ R

d . In point-referenced data, the
coordinates may vary continuously over the fixed set D . The case of areal data
arises when D is partitioned into a finite number of smaller (areal) units. Finally,
the case of point-pattern data follows when D is itself random. See further details
in Banerjee et al. (2015). Spatio-temporal data includes additional indexing by time.

Much of the effort in spatial data analysis revolves around ways to introduce spa-
tial dependence. This makes Gaussian process models an attractive modeling choice
and a common element of many nonparametric Bayesian spatio-temporal models.

18.1.1 Models Based on the Dirichlet Process

Many approaches are based on variations of the Dirichlet process (DP) model.
One of the earliest attempts at a nonparametric model for spatial data appears
in Gelfand et al. (2005). They considered replicated point-referenced data. Let
YYY = (Y (sss1), . . . ,Y (sssn)) generically denote the complete responses for a given repli-
cate, and let YYY 1, . . . ,YYY T denote the entire dataset. Assuming replicate-specific co-
variate vectors xxxt , they assume

YYYt | μμμ t ,βββ ,τ
2 ind∼ N(xxx′tβββ + μμμ t ,τ

2III), μμμ t | G
iid∼ G, G ∼ DP(M,G0), (18.1)

where G0 is a zero-mean Gaussian process (GP) with covariance function σ2HHHφ
(·, ·), and G ∼ DP(M,G0) denotes a Dirichlet process prior. A random distribution

G = ∑ phδθθθ h
(18.2)

is said to follow a Dirichlet process with parameter M ·G0 if ph = Vh ∏l<h(1−Vl)
with Vh ∼ Beta(1,M), i.i.d. and θθθ h ∼ G0, i.i.d. Here M > 0 and G0 is a distribution.
This representation is called Sethuraman representation (Sethuraman 1994) of the
Dirichlet process and the construction of ph from the i.i.d. sequence (Vh) is known as
the stick-breaking representation. The DP in (18.1) generates a random distribution
G. It is a discrete distribution with point masses ph at surfaces θθθh. The surfaces θθθ h

are generated from a GP prior.
Model (18.1) is completed with conjugate hyper priors for βββ , τ2, σ2, and a

gamma prior for M. Here HHH(φ) is a suitable covariance function with parameter
φ , for instance, an exponential function of the form HHH(φ)i, j = exp(−φ‖sss j − sssi‖), in
which case φ is assigned a uniform prior on (0,bφ ].

Model (18.1) introduces spatial correlation through the random effects vec-
tor μμμ t , which are in turn assumed to originate from a DP model. This describes
the sampling model as a countable location mixture of normals. Thus, given the
collection of surfaces, any realization μt ∼ G of the process selects a single sam-
pled surface θθθ h. A modification of the spatial DP by Duan et al. (2007) yields the
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generalized spatial DP, where the random effects distributions allow for different
surface selection at different sites. Their model involves a multivariate stick-breaking
construction, where weights may be allowed to depend on spatial coordinates. They
provide details for a specific case where weights vary smoothly with sss, and show
that the spatial DP is a particular case of the proposed construction.

A spatial stick-breaking prior was introduced by Reich and Fuentes (2007) in
the context of the analysis of hurricane surface wind fields. Their model can be
described as

Y (sss) = μ(sss)+ x(sss)′βββ + ε(sss),

where sss = (s1,s2), μ(sss) ∼ Fsss, and Fsss is a (potentially infinite) mixture of point
masses with weights carrying the dependence on spatial coordinates sss. Specifically,
they considered

Fsss(·) =
m

∑
h=1

ph(sss)δθθθ h
(·) with ph(sss) =Vh(sss)∏

�<h

(1−V�(sss)), h > 1,

including p1(sss) = V1(sss) and θθθ h
iid∼ N(0,τ2), similar to the stick-breaking con-

struction. The difference lies in the definition of the location-dependent fractions
Vh(sss) = Vh(sss) = wh(sss)Vh, which introduces spatial dependence in the weights
via the kernel functions wi(sss). Here, wi(sss) is centered at a knot ψψψ i = (ψi1,ψi2)
and the spread is controlled by a bandwidth parameter εεε i = (εi1,εi2). Reich and
Fuentes (2007) considered several examples of kernel functions, including wi(sss) =
∏2

j=1 I(|s j −ψ ji| < ε ji/2), with suitable hyper priors on ψψψ i and εεε i. Another option

is a square-exponential kernel of the form wi(sss) = ∏2
j=1 exp{−(s j −ψ ji)

2/ε2
ji}. Re-

ich and Fuentes (2007) also discuss how to ensure posterior propriety and details of
posterior simulation.

18.1.2 Approaches Based on the Product Partition Model

Some alternative nonparametric Bayesian models for spatial data are based on the
product partition model (PPM) introduced in Hartigan (1990) and Barry and Harti-
gan (1992). We briefly review the PPM construction. Assume we have observations
(either scalar or vector-valued) y1, . . . ,yn for a set of n individuals and suppose we
adopt a sampling model that involves a corresponding set of parameters θ1, . . . ,θn.
The PPM starts by assuming conditional independence in the sampling model, i.e.,
p(yn | θ n) = ∏n

i=1 p(yi | θi), where yn = (y1, . . . ,yn) and θ n = (θ1, . . . ,θn) are the
complete sets of observations and parameters. A key feature of the PPM is a parti-
tion {1, . . . ,n} =

⋃kn
j=1 S j so that all observations in a cluster share a common pa-

rameter value, θi = θ �
j for all i ∈ S j. That is, {θ �

1 , . . . ,θ �
kn
} are the kn ≤ n unique

values of θi and observations are clustered by the arrangement of ties among the
θi. Observe that a partition ρn = (S1, . . . ,Skn) can be equivalently described by a set
of cluster membership indicators c1, . . . ,cn with ci = j if i ∈ S j, i.e., θi = θ �

ci
. The

sampling model then becomes
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p(yn | θ n,ρn) =
kn

∏
j=1

∏
i∈S j

p(yi | θ �
j ), (18.3)

i.e., with conditional independence within clusters. To complete the model, the PPM
considers a distribution for ρn, that is, a random partition model p(ρn). The PPM
assumes

P(ρn = (S1, . . . ,Skn)) ∝
kn

∏
j=1

c(S j), (18.4)

where c(S) is the cohesion of S ⊂ [n], which states how tightly grouped the elements
of S are thought to be a priori, and with normalization constant ∑ρn∈Rn ∏kn

j=1 c(S j).
A common definition of cohesion function is c(S) = M × (|S| − 1)!, which agrees
with the marginal distribution on Rn that arises from the well-known clustering
property of the DP. See, e.g., Quintana and Iglesias (2003).

Hegarty and Barry (2008) adapt the PPM (18.4) for spatial inference, in an appli-
cation to disease mapping. Their goal is to identify areas of unusually high or low
risk. To this effect, they propose a model that involves a random partition of a set of
areas Ai, i= {1, . . . ,n}. They define the desired partition using a PPM with cohesion
functions for sets of areas, in what they refer to as short boundary model. Specifi-
cally, they define the cohesion of any subset S ⊂ {1, . . . ,n} of areas, as c(S) = β �(S),
where �(S) = ∑Ai∈S �(Ai) and �(Ai) is the number of neighbors of Ai not in S. With
this definition, they discourage maps with a large number of fragmented compo-
nents. The model includes a Poisson-style likelihood function. See further details
such as posterior simulation and applications in Hegarty and Barry (2008).

In the rest of this chapter we discuss in more detail two nonparametric Bayesian
models for spatial data proposed in Jo et al. (2015) and Page and Quintana (2015). In
Sect. 18.2 we discuss a spatial variation of species sampling models (SSM), which
are introduced in Jo et al. (2015) as a generalization of DP priors. In Sect. 18.3 we
discuss the approach proposed in Page and Quintana (2015) who construct a model
based on the computationally attractive form of PPM’s.

18.2 A Dependent Species Sampling Models for Spatial
Density Estimation

18.2.1 Species Sampling Models

Jo et al. (2015) introduce a nonparametric Bayesian model for spatial data based
on a generalization of the DP prior known as SSM. In words, the proposed model
introduces spatial dependence for a family of random probability measures {Gi =

∑h≥1 phiδθh , i = 1, . . . ,n}, indexed by spatial location si, i = 1, . . . ,n. The desired
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dependence is introduced by defining a conditionally autoregressive (CAR) prior
for the weights phi. Below we first introduce the specific SSM prior. Then we define
the CAR prior, and finally combine the two to construct the proposed nonparametric
Bayesian CAR SSM.

A SSM is a discrete random probability distribution represented as G = ∑∞
h=1 ph

δθh , where (ph, h ≥ 1) is a sequence of positive random variables with ∑h≥1 ph =
1 a.s., (θh, h ≥ 1) is a sequence of i.i.d. (independent and identically distributed)
random variables sampled from a nonatomic distribution G0, and (ph) and (θh)
are independent. The class of SSM is a large class of random discrete distributions
which includes the DP (Ferguson 1973) and the Pitman-Yor (PY) process (Pitman
and Yor 1997) as special cases. The PY process is a variation of the DP prior, which
is defined by replacing the prior for Vh in (18.2) by Vh ∼ Beta(1− a,b+ ha), for
h ≥ 1 and with 0 ≤ a < 1, b >−a. We say G ∼ PY (a,b,G0).

The family of SSMs includes any random discrete probability measure with
independent prior on the location of the point masses. For example, Lee et al.
(2013) construct SSMs from an arbitrary sequence of positive random variables.
Let (wh, h ≥ 1) be a sequence of independent positive random variables and define
weights as

ph =
wh

∑∞
l=1 wl

, h = 1,2, . . . . (18.5)

For the normalization to be well defined, the infinite sum of (wh) needs to be finite
a.s., i.e., ∑h wh < ∞,a.s. A simple set of sufficient conditions exists for the finiteness
of the sum. If

∑
h

E(uh)< ∞ and ∑
h

Var(uh)< ∞,

then ∑h wh < ∞ with probability 1. We will use (18.5) as a basic building block for
the upcoming construction of the spatial SSM.

18.2.2 Gaussian CAR Model

We will use a CAR model to introduce the desired spatial dependence for ph. We
therefore briefly review the definition of CAR models. The CAR model is a popular
model for spatial dependence, that is, for dependence between random variables in-
dexed by locations. Let D = {1,2, . . . ,n} be the set of locations and y = (y1, . . . ,yn)
be the collection of random variables where yi = Y (si) corresponds to location si,
i = 1,2, . . . ,n. The CAR is a method of modeling the joint distribution by specifying
the full conditional distributions

yi | y−i, i = 1,2, . . . ,n,

where y−i is the collection of yi’s omitting yi. The CAR is intuitive to understand,
because the full conditionals are a natural way to describe the dependency between
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variables. But not every set of full conditionals defines a joint distribution, and the
conditions that ensure a valid joint distribution need to be checked. For the normal
distribution, a set of conditions that ensure a joint distribution is known.

Suppose

yi | y−i ∼ N(μi − ∑
j: j 	=i

ξi j(y j − μ j),τ2
i ), i = 1,2, . . . ,n, (18.6)

where τ2
i > 0 and ξi j, μi ∈ R. Define an n× n matrix

Λ = (λi j, i, j = 1,2, . . . ,n),

where λii = 1/τ2
i , i = 1,2, . . . ,n, λi j = ξi j/τ2

i , i, j = 1,2, . . . ,n. If Λ is symmetric
and positive definite, then

y ∼ N(μ ,Λ−1),

where μ = (μ1,μ2, . . . ,μn). See Rue and Held (2005), Besag (1974) or Cressie
(1993) for details.

We are now ready to define a spatial SSM using a CAR model on the weights.
Jo et al. (2015) consider two specifications of Gaussian CAR models for this
construction.

1. Mercer CAR model. A Mercer kernel K(s, t) is a kernel function defined on D
such that for all integer n and s1, . . . ,sn ∈D , the n×n matrix H =(K(si,s j), i, j =
1,2, . . . ,n) is positive definite. For example, K(·, ·) could be a negative squared
exponential kernel, K(s, t) = exp(−ρ ||s− t||2). The matrix H is called a Gram
matrix. Let K(s, t) be a Mercer kernel defined on D with K(s,s) = 1 for all s∈D .
Define ξi j = K(si,s j) and τ2

i = τ2 > 0. Then, the joint distribution of y with full
conditionals (18.6) exists. We call the distribution of y the Mercer CAR model.

2. Clayton- Kaldor CAR model (Clayton and Kaldor 1987; Sun et al. 1999). Let
N(si) be the set of neighbors of location si and

ξil =

{−ρ , if l ∈ N(si);
0, if l /∈ N(si),

(18.7)

where ρ ∈ (1/ψ1,1/ψn) and ψ1 and ψn are the minimum and maximum of the
adjacency matrix C = (ci j, i, j = 1,2, . . . ,n) with cii = 0 and ci j = I(i ∈ N(s j)),
i, j = 1,2, . . . ,n, and I(a) is the indicator function whose value is 1 if a is true
and 0, otherwise. This also allows the joint distribution of y. In our application,
we defined the neighbor of si by N(si) = {s j : ||si − s j||< B} with B > 0.

18.2.3 CAR SSM and CAR SSM Mixtures

Let Gi be a random distribution corresponding to location si. We define a collection
of random distributions {Gi, i = 1,2, . . . ,n}. Jo et al. (2015) propose the following
construction:
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Gi =
∞

∑
h=1

pi,hδθh , i = 1,2, . . . ,n, (18.8)

where (pih) is the normalization of positive random variables (wi,h) and (θh) is a
sequence of i.i.d. random variables following an non-atomic distribution G0. The
positive random variables wi,h are defined by

wi,h = eui,h , i = 1,2, . . . ,n, h = 1,2, . . .

and (ui,h, i = 1,2, . . . ,n) is generated by either the Mercer or the Clayton- Kaldor
CAR model.

In particular,

ui,h | ul,h, l 	= i ∼ N(mi,h − ∑
l:l 	=i

ξil(ul,h −ml,h),τ2), i = 1,2, . . . ,n,

where τ2 > 0, mih = log(1− (1+ eb−ah)−1), i = 1,2, . . . ,n with a,b > 0 and the
coefficients ξil are defined by either the Mercer kernel

K(s, t) = e−ρ ||s−t||2 , s, t ∈D ,

or by the Clayton- Kaldor CAR model (18.7). We refer to the two models as Mercer
CAR SSM (MCS) and Clayton- Kaldor CAR SSM (CKCS) and write

{Gs,s ∈D} ∼ MCS(G0,a,b,τ2,ρ) and {Gs,s ∈D} ∼CKCS(G0,a,b,τ2,ρ ,B).

Here a,b,τ2 and ρ are fixed hyperparameters. For example, a typical choice is a= 1,
b = 10, τ = 0.1, B = 1.1, ρ = 0.1. See also the upcoming example. The CAR SSMs
are flexible enough to cover all possible collections of distributions indexed by lo-
cations, i.e., it has full weak supports. See Jo et al. (2015). One remaining limitation
for many applications is the discrete nature of SSMs. Similar to the popular DP mix-
ture models, the discrete nature of the CAR SSM is easily avoided by introducing
an additional convolution with a continuous kernel.

We define the CAR SSM mixture model for a collection of densities. Let

yi, j
i.i.d.∼

∫
f (y | θ )dGi(θ ), i = 1,2, . . . ,n, j = 1,2, . . . ,Ni, (18.9)

where (Gi, i = 1,2, . . . ,n) ∼ MCS or CKCS. Here f (y | θ ) is a kernel density with
parameter θ . The integral in (18.9) is then a sum over all point masses in (18.8).

18.2.4 Posterior Computation

For the posterior computation in a CAR SSM mixture model, the following equiv-
alent formulation of mixtures of CAR SSM is useful. Let yi j, j = 1, . . . ,Ni, denote
the data at spatial locations si, i = 1, . . . ,n. We replace the mixture in (18.9) by an
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equivalent hierarchical model with latent variables zi j. Also, we approximate the
full infinite mixture by a finite truncation after K terms. The construction is similar
to the finite DP prior (Ishwaran and James 2001a):

yi j | φ ,zi j ∼ f (· | φzi j), j = 1,2, . . . ,Ni,

zi j | u ∼
K

∑
h=1

eui,h

∑K
k=1 eui,k

δh,

with the CAR prior on the transformed weights uuuh = (u1h, . . . ,un,h),

uuuh | sss ∼ p(uh | η2), h = 1,2, . . . ,K,

where p(uuuh | η2) is the density under the MCS or CKCS with parameter η2. For
example, in the case of the MCS, η2 = (a,b,τ2,ρ). And, finally, the independent
prior on the atoms of the SSM random measure,

θh
iid∼ G0(· | η1),

with hyperprior η1 ∼ π1(η1).
Posterior simulation is based on the blocked Gibbs algorithm (Ishwaran and

James 2001b) and a data augmentation method for multinomial logit model (Scott
2011) and the Albert and Chib (1993) algorithm. The details of the algorithm can
be found in Jo et al. (2015).

18.2.5 Data Analysis

We analyze monthly average apartment market price in Seoul, South Korea. A data
set was obtained from KB apartment market price database of Kookmin bank. These
data cover the 3-year period between July 2003 and July 2006, for a total of 37
months. Data and additional details are available at http://www.nland.kbstar.com.
Figure 18.1 shows the apartment market price (in South Korean won, KRW) in each
period.

After scaling observations by 10,000,000, we applied the mixtures of CAR SSMs
using an MCS(G0,a,b,τ2,ρ) and an CKCS(G0,a,b,τ2,ρ ,B) model. We applied the
CAR SSMs with hyperparameters: μ00 = 0,κ2 = 1000,ν1 = 1,ν2 = 100,ν = 4, and
ψ = 1/2. For the spatial parameters of the CKCS and the MCS we used ρ = 0.1
and ρ = 4, respectively. Inference is based on 5000 samples of the Markov chain
Monte Carlo (MCMC) posterior simulation which are thinned by a factor 10, after
a burn-in period of 10,000 samples.

Figures 18.2 and 18.3 show the posterior mean estimates and a 95 % credible
interval of the MCS(G0,a,b,τ2,ρ) and CKCS(G0,a,b,τ2,ρ ,B), respectively. The
apartment price rose rapidly in the period of data collection. Interestingly, the den-
sity estimates show two modes clearly indicating that apartments are clustered into

http://www.nland.kbstar.com
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Fig. 18.1 Apartment market price per 3.3 m2 for a total of 37 months

two groups, high-priced apartments and moderate-priced apartments. The time se-
ries of density estimates show that in the period of inflation the prices of the high-
priced apartments tend to rise faster than those of the moderate-priced apartments.

18.3 Spatial Product Partition Models

18.3.1 The Model

Page and Quintana (2015) propose an interesting class of spatial models based on
the PPM. They build on the covariate-dependent product partition models (PPMx)
developed by Müller et al. (2011). To introduce covariate dependence in the prior
product distribution, Müller et al. (2011) add an extra factor in the prior (18.4). Let
xxxi be a p-dimensional covariate vector of possibly mixed types for the ith subject,
xn = (xxx1, . . . ,xxxn), and let x�j = {xxxi : i ∈ S j} and similarly y�j = {yi : i ∈ S j} denote
the covariates and responses arranged by cluster j = 1, . . . ,kn. Let g(x�j) denote any



368 S. Jo et al.

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

Oct 2003

Apartment market price (log KRW)

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

Apr 2004

Apartment market price (log KRW)

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

Oct 2004

Apartment market price (log KRW)

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

Apr 2005

Apartment market price (log KRW)

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

Oct 2005

Apartment market price (log KRW)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Apr 2006

Apartment market price (log KRW)

Fig. 18.2 Results under the MCS(G0,a,b,τ2,ρ) model for the apartment market price data. The
figure shows the posterior mean estimates of the location-specific densities (blue solid), 95 % cred-
ible intervals (blue dashed)

function of x�j that assigns high values for homogeneous elements in x�j , and low
values otherwise (this function will be referred to as the similarity function). The
PPMx model changes (18.4) by
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Fig. 18.3 Results under the CKCS(G0 ,a,b,τ2,ρ ,B) model. The figure shows the posterior mean
estimates of the location-specific densities (blue solid), 95 % credible intervals (blue dashed)

P(ρn = (S1, . . . ,Skn)) ∝
kn

∏
j=1

c(S j)g(x
�
j), (18.10)

that is, the cohesion of S j is replaced by c(S j)g(x�j), which then, a priori, encourages
clusters that group individuals with similar covariate values. This is seen to be useful



370 S. Jo et al.

for the purpose of predictive inference. See further details in Müller and Quintana
(2010) and Müller et al. (2011), particularly, on default choices for the similarity
function considering various covariate types. In particular, writing xxxi =(xi1, . . . ,xip),
they suggest to consider g(x�j) = ∏p

�=1 g�(x�j�), where g�(x�j�) is a cohesion function
defined solely in terms of x�j� = {xi� : i ∈ S j}, i.e., the values of the �-th covariate for
the jth cluster.

From a spatial modeling perspective, the covariate vector xn could be comprised
of a set of spatial coordinates sn = (s1, . . . ,sn). Here, si may be a two- or three-
dimensional vector with a continuous range. To focus the discussion on spatial as-
pects, we restrict the attention to the case of PPMx models for which xn = sn. Like-
wise, write s�j = {si : i ∈ S j}. In what follows we assume that the si vectors have
been standardized to zero mean and unit standard deviation.

A simple method to define spatially oriented clusters within the PPMx framework
is to adapt the proposal in Müller et al. (2011) and consider a similarity function of
the form

g1(s�j ) =
∫

∏
i∈S j

N(si;0,Σ)d IW (Σ ;ν,V ), (18.11)

where N(si;0,Σ) is the multivariate normal evaluated at si with zero-mean and co-
variance matrix Σ , and IW (Σ ;ν,V ) is the inverse-Wishart density evaluated at Σ
with ν degrees of freedom and scale matrix V .

Invoking the PPMx to incorporate spatial information in modeling is certainly
appealing as Müller et al. (2011) show that employing the similarity function found
in (18.11) results in the PPMx retaining some nice properties (e.g., coherent across
sample sizes). However, g1(·) was not necessarily constructed with spatial structure
in mind. From a spatial modeling perspective, it would be more natural to consider
ρ’s influence on the correlation between two observations as a function of distance.
Now if spatial structure exists among the realizations of a response variable mea-
sured at various locations, then the values measured at locations near each other
would tend to be more similar than those that are far apart. However, this does not
exclude the possibility that two locations far apart produce similar response values
and clustering in the absence of spatial information would group these two loca-
tions together (as would be the case in a non-spatial PPM). As a result, the marginal
correlation between observations far apart could possibly be stronger than that of
observations near each other. Since this runs counter to correlation structures often
desired in spatial modeling it would be appealing for ρ to contain clusters that are
in some sense “local.” One way to encourage these types of clusters is to construct
the cohesion/similarity functions so that with high probability a priori ρ is made up
of local clusters.

This idea is carried out by constructing an alternative similarity function that
employs tessellation ideas found in Denison and Holmes (2001). Let s̄ j denote the
centroid of cluster S j and D j = ∑i∈S j

d(si, s̄ j) the sum of all distances from the cen-
troid (typically euclidean norm || · || will be employed). Penalizing partitions with
large D j would certainly produce partitions with small local clusters, but would also
encourage the creation of many singleton clusters. To counteract this, the regular
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DP linked cohesion c(S j) = M×Γ (|S j|) is employed which favors a small number
of large clusters. Now since Γ (|S j|) would overwhelm D j as cluster membership
grows, Γ (D j) is considered instead. Finally, to provide more flexibility regarding
penalization of distances, we introduce a tuning parameter (α) resulting in the fol-
lowing cohesion function

g2(s�j ) =

{
(Γ (αD j)I[D j ≥ 1]+ (D j)I[D j < 1])−1 if |S j|> 1

1 if |S j|= 1. (18.12)

where the partitioning of D j was motivated by the fact that the gamma function is
not monotone on [0,1] and does not tend to zero as D j tends to zero. Also, we set
g2(s�j ) = 1 for |S j|= 1 to avoid issues associated with D j = 0. Notice that since all
s1, . . . ,sn are distinct D j = 0 ⇐⇒ |S j|= 1. See further details in Page and Quintana
(2015).

18.3.2 Example

To illustrate clustering and predictions available from both similarity functions, con-
sider the scallops data found in Banerjee et al. (2015). In this data set the total
scallop catch was measured at 148 locations in the New York/New Jersey Bight.
Figure 18.4 displays the raw data with the circle circumference proportional to total
catch amount. Letting z(si) be the total scallop catch at location i, we follow sug-
gestion of Banerjee et al. (2015) and model the log transformed total scallop catch
y(si) = log(z(si)+ 1).

In what follows we refer to a PPM that incorporates spatial information as a
spatial PPM (sPPM). Now after introducing cluster labels c1, . . . ,cn, the hierarchical
model we employ to model the scallops data is

y(si) | ci,θ ∗
ci
(si),σ 2 ind∼ N(θ ∗

ci
(si),σ 2) and σ ∼UN(0,10)) (18.13)

θ ∗
j (si)

iid∼ N(θ0,σ 2
0 ) for j = 1, . . . ,kn and θ0 ∼ N(0,102), σ0 ∼UN(0,10)

{ci}n
i=1 ∼ sPPM.

To provide a bit of context regarding model fit, we also fit the spatial stick breaking
(SSB) process of (Reich and Fuentes 2007) to the data. This procedure is opera-
tionally similar to the sPPM. More precisely, given cluster labels {ci}n

i=1, the SSB
can be expressed as the following hierarchical model

y(si) | ci,θ ∗
ci
(si),σ 2 ind∼ N(θ ∗

ci
(si),σ 2) with σ ∼UN(0,10)

θ ∗
j (si)

iid∼ N(θ0,σ 2
0 ) for h = 1, . . . ,kn and θ0 ∼ N(0,102), σ0 ∼UN(0,10)

ci ∼Categorical(p1(si), . . . , pm(si)),



372 S. Jo et al.

Fig. 18.4 Locations at which scallop catch amounts of New York/New Jersey coast were recorded.
Total catch is proportional to circle circumference

where p j(s) = wj(s)Vj ∏k< j [1−wk(s)Vk] for Vj
iid∼ beta(1,M). The wj(s) are loca-

tion weighted Gaussian kernels which introduce spatial dependence in the model.
Following suggestions found in Page and Quintana (2015), we set M = 1 for g1(·)

and M = 0.0001 for g2(·). The tuning parameters associated with g1(·) and g2(·) are
set to ν = 2 and V = diag(1,1) and α = 1 respectively. For the SSB M = 1.

Three model fit metrics are used to assess model fit. The log pseudo marginal
likelihood (LPML) which is a goodness-of-fit metric (see Christensen et al. 2011)
that takes into account model complexity, MSE = 1

n ∑i=1(y(si)− ŷ(si))
2, and the

Watanabe-Akaike information criterion (WAIC) which is a fairly new hierarchical
model selection metric advocated in Gelman et al. (2014). Table 18.1 contains the
results for the three procedures. It appears that the sPPM with g1(·) fits the data
better than the other two procedures. We also note that the sPPM with g2(·) fits
better than the SSB.

Table 18.1 Model fit comparisons between sPPM and SSB models for the scallops data

Procedure LPML MSE WAIC
sPPM g1 −138.66 0.09 196.98
sPPM g2 −140.01 0.06 182.31

SSB −167.37 0.11 243.22
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The average number of clusters a posteriori for the two procedures were very
similar (10.9 for g1(·) and 10.1 for g2(·)). Using the least squares method of Dahl
(2006) a point estimate of ρ for each similarity function was obtained and is pro-
vided in Fig. 18.5. Both partitions appear to contain clusters that are visually “spa-
tially pleasing” as all cluster members are located in the same general area. In
Fig. 18.5 predictive maps associated with a regular grid of locations that belonged
to the convex hull created by the observed locations are provided. These two maps
are somewhat similar but with the “hot spot” of larger total catch associated with
g1(·) stretching further southwest compared to that of g2(·).
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Fig. 18.5 Estimated ρ and predictive maps produced by the sPPM based on g1(·) and g2(·) as
applied to the scallops data. (a) Estimated partition associated with g1, (b) Estimated partition
associated with g2, (c) Predictive map associated with g1, (d) Predictive map associated with g2
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18.4 Conclusion

Inference for spatial data gives rise to some interesting challenges for nonparametric
Bayesian inference. We reviewed some of the recent literature and discussed in some
more detail two models based on SSM and on PPMx, respectively.
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Chapter 19
Spatial Boundary Detection for Areal Counts

Timothy Hanson, Sudipto Banerjee, Pei Li, and Alexander McBean

Abstract Two Bayesian nonparametric model-based approaches to areal boundary
detection for count outcomes are proposed, compared, and illustrated. The linear
predictor in a standard Poisson regression is augmented with random effects stem-
ming from modified stick-breaking representations of the Dirichlet process. The
modifications induce spatial correlation among counts from differing counties such
that closer counties are more highly correlated. The discrete nature of the Dirichlet
process is an advantage in this setting as two counties can have the same random
effect, implying no boundary, with positive probability. The methods are compared
on counts of patients hospitalized due to pneumonia and influenza in Minnesota.
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19.1 Introduction

With routine accessibility to geographical information systems (GIS) and large
patient record databases, researchers and administrators in public health are increas-
ingly encountering datasets that are aggregated as case counts or rates over areal
units or regions (e.g., counties, census-tracts or ZIP codes). Aggregated counts are
reported to protect patient privacy, as fully georeferenced (e.g., latitude and longi-
tude of an individual’s address) outcomes can lead to patient identification, espe-
cially in the case of rare diseases.

Statistical models for areal data accommodate sparsely sampled regions by
smoothing across and borrowing information from spatial neighbors (see, e.g.,
Anselin 1988; Le Sage and Pace 2009; Banerjee et al. 2015). Subsequent inferential
interest often resides in the formal identification of “barriers” or “boundaries” on
the spatial surface or map. The ‘boundary’ here is a geographical unit border with
sharply discrepant outcomes on either side. In particular, interest lies in quantify-
ing statistically significant differences among neighboring regions, identifying the
spatial barriers or difference boundaries that delineate them. Ultimately, the under-
lying influences responsible for these boundaries or barriers are typically of scien-
tific and administrative interest. This ‘boundary’ detection problem is often referred
to as “wombling,” after a foundational article by Womble (1951). While statistical
boundary analysis has been applied extensively to point-referenced and gridded (or
lattice) data (e.g. Banerjee and Gelfand 2006), formal statistical inference in areal
contexts present unique challenges that we address in this chapter.

Deterministic areal wombling is often carried out using algorithms (e.g. Jacquez
and Greiling 2003a,b) that are fast and easy to implement; however these approaches
fail to account for sources of uncertainty such as extremes in counts corresponding
to thinly populated regions. Such exceptions naturally arise in observed data, and are
not due to systematic differences; such variability should be accounted for in model-
ing. Li et al. (2011) proposed statistical learning for boundaries using the Bayesian
information criterion (BIC). In hierarchical model based approaches, Lu and Carlin
(2005), Lu et al. (2007), Ma et al. (2010), and Fitzpatrick et al. (2010) investigated
estimation of an areal adjacency matrix (defined as W in Sect. 19.2) within a hierar-
chical framework using priors on the edges. However, inference from these models
are usually highly sensitive to prior specifications on certain parameters.

In this chapter we discuss Bayesian hierarchical models that overcome the afore-
mentioned problems, providing inference for areally aggregated health outcome
data, including assessment of difference boundaries, using classes of flexible non-
parametric Bayesian hierarchical models. Section 19.2 offers a brief review of mod-
els for areally referenced count data. Section 19.3 elucidates key issues in areal
boundary analysis and reviews the Bayesian nonparametric modeling approaches
first presented in Li et al. (2015). Sections 19.4 and 19.5 discuss, respectively, a
simulation study and the analysis of a Minnesota Pneumonia & Influenza (P & I)
dataset to detect spatial health barriers between neighboring counties in Minnesota.
Finally, Sect. 19.6 concludes the chapter.
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19.2 Hierarchical Models for Areal Data

Let Yi be the observed random number of patients who experienced a particular
clinical outcome in areal unit i, i = 1, . . . ,n, and let Ei be the fixed expected number
of outcomes for that unit. The Ei are typically the expected number of outcomes in
the region assuming the outcome is equally likely across space. For rare outcomes,
a Poisson approximation to the binomial sampling distribution of outcome counts
yields

Yi
ind∼ Poisson(Eie

μi) , i = 1, . . . ,n, (19.1)

where μi = x′iβ +φi represents the log-relative risk, xi includes explanatory covari-
ates for region i and β are the corresponding regression coefficients.

The φi represent the spatial random effect associated with region i; they are often
modeled using Markov random fields (MRF), e.g., Cressie (1993) and Banerjee et al.
(2015, Chapter 3) that imply a joint distribution for φ = (φ1,φ2, . . . ,φn)

′:

φ ∼ Nn

(
0 , σ2 (D−ρW)−1

)
, (19.2)

where Nn denotes the n-dimensional normal distribution, D is a n× n diagonal ma-
trix with diagonal elements mi equal to the number of neighbors of area i, and
W = {wi j} is the adjacency matrix with wii = 0, and wi j = 1 if i is adjacent to j and 0
otherwise. In the joint distribution (19.2), σ2 is the spatial dispersion parameter, and
ρ is a spatial autocorrelation parameter. We term this distribution as conditionally
autoregressive with parameters ρ and σ2, denoted CAR(ρ ,σ2) for short. A suffi-
cient condition for D−ρW to be positive definite is that ρ ∈ (1/λ(1),1), where λ(1)
is the minimum eigenvalue of W (Banerjee et al. 2015). Note that λ(1) < 0.

The CAR model has been especially popular in Bayesian inference as its condi-
tional specification is convenient for Gibbs sampling and MCMC schemes. The dis-
tribution in (19.2) reduces to the intrinsic conditionally autoregressive (ICAR) prior
if ρ = 1, or an independence model if ρ = 0. The ICAR model induces maximal “lo-
cal” smoothing by borrowing strength from the neighbors, while the independence
model assumes independence of spatial rates and induces “global” smoothing. The
smoothing parameter ρ in the CAR prior (19.2) controls the strength of spatial de-
pendence among regions, though it is well-appreciated that a fairly large ρ may be
required to deliver significant spatial correlation (Wall 2004).

19.3 Bayesian Nonparametric Models for Areal Data

19.3.1 Modeling Considerations for Areal Boundary Analysis

Areal boundary analysis can be approached from different perspectives. For exam-
ple, Li et al. (2011) treat the problem as one of statistical learning for the edges,
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where each model represents a different boundary hypothesis. Emphasizing speed
of execution and ease of use, they consider a leave-one-edge-out mechanism, where
each model has exactly one geographical boundary omitted from the adjacency ma-
trix. There are as many models as there are edges and the BIC is used to arrive at
a ranking of the boundaries and detect difference boundaries. This fails to account
for the joint effects of the edges and what impact deleting one may have on the
other. More generally, one can consider models varying in their specification of the
neighborhood matrix W that controls spatial smoothing. One extreme case is that
the whole map is one big cluster without any difference boundaries. At the other
extreme all the geographical edges may in fact be difference boundaries. Any inter-
mediate model that lies between these extremes is completely specified by modify-
ing the original map to delete some edges. Ideally we would like to consider a class
of models M = {M1, . . . ,MK} representing all possible models or all possible maps
derived from W by deleting combinations of geographical edges. In other words, Mk

denotes a model with the adjacency matrix Wk that has been derived by changing
some of the 1’s to 0’s in W . This amounts to dropping some edges from the original
map or, equivalently, combining two regions into one. However, now we encounter
an explosion in the number of models: 21′W 1/2 models where 1′ = (1,1, . . . ,1). This
requires sophisticated MCMC model composition, MC3 algorithms, or other types
of stochastic variable selection algorithms for selecting models (see, e.g., Hoeting
et al. 1999); these methods are computationally intensive in relatively large maps. Li
et al. (2012) reformulate the problem as one of Bayesian hypothesis testing within a
class of spatial moving average models adjusting for multiple tests using false dis-
covery rates (FDR). The method, though still computationally intensive, is compet-
itive and provides a benchmark for our simulation studies. Another approach seeks
to estimate the adjacency matrix within a hierarchical framework using priors on
the adjacency relationships, see Ma et al. (2010). These involve incorporating “edge
effects,” i.e., random effects corresponding to the edges, in addition to regional ef-
fects. These edge effects would be modeled by another CAR model, or some other
MRF, leading to rather complex site-edge models (Ma et al. 2010). However, these
models often involve weakly identifiable parameters that are difficult to tune caus-
ing the MCMC algorithms to be substantially slower in converging to the desired
posterior distributions.

Instead of incorporating random “edge effects,” we explore an alternative stochas-
tic mechanism that allows us detect difference boundaries by considering probabil-
ities such as P(φi = φ j | i ∼ j). Clearly, continuous priors for the φi’s do not work
as they render P(φi = φ j | i ∼ j) = 0. Therefore, we seek to model the spatial effects
in an almost surely discrete fashion, while at the same time accounting for the spa-
tial dependence. The Dirichlet process (Ferguson 1973), and more generally stick-
breaking priors, are a natural Bayesian nonparametric approach to this problem. In
Sect. 19.3.3 and 19.3.4 modifications of the Dirichlet process to accommodate areal
dependence are explored.
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19.3.2 Dirichlet Process Mixture Models for Clustered Data

The starting point for both spatial models reviewed below is the Dirichlet process
mixture (DPM) model, a very popular choice for analyzing clustered data. This
model encourages clustering of observations without borrowing information from

geographical neighbors. In the context of (19.1), a DPM prior specifies φi
iid∼ G,

where G ∼ DP(α,G0) is a random distribution modeled as a Dirichlet process (DP)
with baseline measure G0 (Ferguson 1973). The data hierarchically follow

Yi|β ,φi ∼ Poisson
(

Eie
x′iβ+φi

)
, φi|G iid∼ G, G ∼ DP(α,G0), (19.3)

where DP(α,G0) denotes the Dirichlet process prior: a random probability distribu-
tion over a measurable space (Ω ,B) such that the random vector (G(A1), . . . ,G(Ak))
is distributed as a finite-dimensional Dirichlet distribution with parameters
(αG0(A1), . . . ,αG0(Ak)) for any finite measurable partition (A1,A2, . . . ,Ak) of Ω .
Here α > 0 is a real-valued parameter and G0 is probability distribution called
the base measure. The Dirichlet distribution is a family of continuous multivariate
probability distributions parameterized by a vector of positive real numbers. It is
the multivariate generalization of the beta distribution and forms a conjugate prior
for the multinomial distribution in Bayesian statistics. Further technical details on
DPs are available in Ferguson (1973) from a formal probabilistic perspective. More
explicitly, we write

P(G(A1), . . . ,G(Ak) |α,G0) =
Γ (α)

∏k
i=1 Γ (αG0(Ai))

×
k

∏
i=1

{G(Ai)}αG0(Ai)−1,

For any measurable set A, E{G(A)}=G0(A), var{G(A)}=G0(A)G0(AC)/(α +1),
and so the parameter α represents the degree of concentration of the DP. The pos-
terior distribution for (G(A1), . . . ,G(Ak)) given φ = (φ1, . . . ,φn) is again a Dirichlet
distribution:

G(A1), . . . ,G(Ak) |α,φ ∼ Dir(α∗,{G∗
0(A j)}k

j=1), (19.4)

where ni = ∑n
j=1 1(φ j ∈ Ai) , α∗ = α + n and G∗

0(Ai) =
ni+αG0(Ai)

α+n . Making the par-
titions (A1, . . . ,Ak) infinitely finer, the infinite measure G|φ is seen to be a DP in the

form DP
(

α + n,
∑n

i=1 δφi
+αG0

α+n

)
, where δφi is Dirac point mass at φi.

When the φi’s are modeled as in (19.3), then marginalizing over the measure G
yields the predictive distribution of φn+1, given {φi}n

i=1 as

φn+1 |{φi}n
i=1,α,G0(·)∼ αG0(·)+∑n

i=1 δφi(·)
α + n

. (19.5)

Thus the number of distinct values of φ j’s is controlled by the precision parameter
α . For i ≥ 1, the observation φi takes on a new value with probability α/(α + i−1),
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thus the expected number of distinct values of φ is ∑n
i=1

α
α+i−1 . The conditional

distributions in (19.5) can be used to determine the joint distribution of φi’s condi-
tional upon G0 and α , i.e., after integrating out G. Blackwell and MacQueen (1973)
related the Dirichlet process to a generalized Polya urn scheme that leads to effective
MCMC sampling strategies (Escobar and West 1995).

The stick-breaking representation of the DP (Sethuraman 1994) says that a
draw from the Dirichlet process can be written as G(·) = ∑∞

k=1 pkδθk (·) a.s., where

θk
iid∼ G0, pk =Vk ∏ j<k(1−Vj), and Vk

iid∼ Beta(1,α). The pk’s are called the “stick-
breaking” weights (their infinite sum equals 1) and the θk’s are called atoms.
By Sethuraman’s representation it is immediate that G is a.s. discrete, implying

P(φi = φ j)> 0 for a random sample φ1, . . . ,φn|G iid∼ G.
In practice, the infinite sum is often replaced by the sum of the first K (K � n)

terms, since the probability masses p1, p2, . . . decay rapidly. We can simply let VK =
1 to truncate the sum (Ishwaran and Zarepour 2000) yielding a finite approximation.
Many authors simply choose K to be a number large enough that there exists some
empty components during the MCMC run or by examining the size of the last weight
pK under the prior. Following Reich and Fuentes (2007), we choose K according to
the latter. For concerns regarding truncation bias, exact sampling can be executed
using slice-sampling (Kalli et al. 2011). Note however, for areal data, K is naturally
bounded above by the number of areal units and so the infinite representation is not
necessary or even appropriate.

The stick-breaking representation is an extremely rich framework that includes
the DP but allows for immediate generalizations; in particular the introduction
of dependence is straightforward and intuitive. The dependent Dirichlet process
(DDP, MacEachern 2001) introduces dependence through either the stick-breaking
weights, atoms, or both. De Iorio et al. (2004) induced dependence across related
random distributions by consideration of ANOVA-type models for the atoms; De
Iorio et al. (2009) and Hanson and Jara (2013) extended this idea to atoms that are
regressions on covariates for the analysis of survival data. Chung and Dunson (2009)
consider weights that are regressions on covariates.

In terms of spatially varying Dirichlet processes, Gelfand (2005) developed a
DDP for point-referenced spatial data through an underlying Gaussian process base
measure G0 yielding a probability distribution defined on a space of surfaces that
yields almost surely discrete realizations with countable support; Duan et al. (2007)
extended this model by allowing different surface selection at different sites. Griffin
and Steel (2006) proposed an order-based DDP which induced dependence in the
stick-breaking weights across predictors (including space) via permutations. Reich
and Fuentes (2007) developed a spatial stick-breaking prior to analyze hurricane
surface wind fields where weights are spatially correlated. Petrone et al. (2009)
and Rodrı́guez et al. (2010) develop spatial DPs where the weights follow a cop-
ula representation. Zhou et al. (2015) consider a spatial model where marginal dis-
tributions follow the survival DDP of De Iorio et al. (2009), but a copula induces
dependence for georeferenced data. The local Dirichlet process (Chung and Dun-
son 2011), developed to accommodate predictor-dependent weights in a DDP with
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identical margins, offers an approach to the localized spatial “sharing” of atoms that
could conceivably be extended to the areal setting through a suitable definition of
what a neighborhood is at each areal location; also see Theorem 4 in Dunson et al.
(2007) for a related idea. However, as presented, the aforementioned spatial DP ap-
proaches do not directly apply to areal data; we now consider such modifications.

The spatial models for areal data reviewed next employ the DP for two funda-
mental reasons: (1) the DP naturally allows for clustering among regions in that
P(φi = φ j) > 0, and (2) the DP provides a rich, robust model for the spatial ef-
fects φ . The models we propose below correspond to a subclass of stick-breaking
process priors that includes the DP as a special case. In particular, we construct an
areally referenced stick-breaking process (ARSB) and an areally referenced Dirich-
let process (ARDP) for areal data allowing natural formal boundary analysis. These
models, described next, are easily adapted to multivariate settings using multivariate
SAR or CAR models (e.g. Banerjee et al. 2015).

19.3.3 Areally Referenced Spatial Stick-Breaking Prior

We adapt the point-referenced spatial stick-breaking approach of Reich and Fuentes
(2007) to areal data by incorporating spatial dependence in the DP by introducing
additional weights that borrow strength across the neighbors using CAR priors.

The spatially varying random effects φi are each assigned a stick-breaking prior
G(i) whose weights (pi1, . . . , piK) are given by pi1 = wi1V1, pik = wikVk ∏ j<k(1−
wi jVj), i = 1, . . . ,n, k = 1,2, . . . ,K; the weights depend not only on the usual stick-
breaking (V1, . . . ,VK), but also on “location” weight parameters (wi1, . . . ,wiK). Since
the CAR marginals have support over the entire real line, we introduce a transfor-
mation logit(wik) = zik and take the (z1k, . . . ,znk) to be distributed as CAR yielding
a MRF on the location weights and encouraging smoothing across neighbors. Of
course, any other link mapping the unit interval to the real line could be used. For
example Cai et al. (2013) generalize the logit link in the ARSB model for Poisson
data of Li et al. (2015) to allow for spatially varying regression coefficients, and
apply their model to the spatial assessment of low birth-weight across South Car-
olina counties. Larger values of ρ induce greater smoothing and setting ρ = 1 gives
the ICAR prior. This prior is improper as D−W is singular, but for a map without
islands this issue can be resolved by imposing the additional constraint ∑n

i=1 zik = 0.
The ARSB model truncated to K terms with Poisson outcomes is

Yi ∼ Poisson(Eie
μi), μi = x′iβ +φi, φi ∼ G(i),

G(i)(·) =
K

∑
k=1

pikδθk(·), θk
iid∼ N(0,σ2

s )

pik = wikVk ∏
j<k

(1−wi jVj),

Vk
iid∼ Beta(1,α), {log wik

1−wik
} ∼CAR(ρ ,σ2

k ), (19.6)
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for i = 1, . . . ,n and k = 1, . . . ,K; define pi1 = wi1V1. Recall that the α parameter
stochastically controls the number of distinct elements of φ among the n observa-
tions. The covariance between φi and φ j can is derived as follows.

Cov(φi,φ j) = Ep[Cov(φi,φ j) |p]+Cov(E[φi |p],E[φ j |p])

= σ2
s Ep

[

Σ∞
k=1wikVkwjkVk ∏

l<k

(1− (wil +wjl)Vl +wilwjlV
2
l )

]

Letting ci = E[wis] and ci j = E[wiswjs], the marginal covariance between φi and φ j is

σ2
s Ep

{

Σ∞
k=1wikVkwjkV

2
k ∏

l<k

(1− (wil +wjl)Vl +wilwjlV
2
l )

}

= σ2
s Σ∞

k=1ci jEV 2 ∏
l<k

(1− (ci+ c j)EV + ci jEV 2)

= σ2
s Σ∞

k=1ci jE[V
2](1− (ci+ c j)E[V ]+ ci jE[V

2])k−1

= σ2
s ci jE[V

2]
1

(ci + c j)E[V ]− ci jE[V 2]
.

EV and EV 2 are just functions of α according to Vk
iid∼ Beta(1,α).

19.3.4 Areally Referenced Dirichlet Process

The ARSB model incorporates dependence between the discrete distributions on
different regions but does not yield identical marginal distributions for the φi. The
ARDP, described next, maintains the marginal distribution of each spatial random
effect φi to be a regular univariate DP, incorporating the spatial dependence between
these DPs via a copula representation for the weights.

Consider spatial random effects φi, i = 1, . . . ,n, arising marginally from an iden-
tical random measure G, where G ∼ DP(α,G0). We introduce spatial dependence
between these DPs by constructing dependent uniform (0,1) random variables. Sup-
pose γ1, . . . ,γn are jointly distributed as a CAR(ρ ,σγ), and F (1)(·), . . . ,F(n)(·) denote
the cumulative distribution functions of the marginal distributions of each compo-
nent of the CAR random vector. Marginally, each F (i)(γi) is uniform (0,1) but they
are dependent through γ1, . . . ,γn.

We formulate our hierarchical ARDP model as follows.
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Yi ∼ Poisson(Eie
μi), μi = x′iβ +φi,

φ = (φ1, . . . ,φn)
′ ∼ Gn, Gn = ∑

u1,...,un

πu1,...,unδθu1
. . .δθun

,

πu1,...,un = P

(
u1−1

∑
k=1

pk < F (1)(γ1)<
u1

∑
k=1

pk, . . . ,
un−1

∑
k=1

pk < F(n)(γn)<
un

∑
k=1

pk

)

,

θk
iid∼ N(0,σ2

s ), γγγ = (γ1, . . . ,γn)
′ ∼ Nn(000,σ2

γ (D−ρW)−1)

pk = Vk ∏
j<k

(1−Vj), Vk
iid∼ Beta(1,α). (19.7)

where p1 = V1, k = 1,2, . . . ,K, and σ2
γ (D− ρW )−1 is the covariance matrix of a

proper CAR distribution (ρ < 1). Using the cumulative distribution function of the
γi’s to model the weights is an adaptation of the hybrid Dirichlet process (Petrone
et al. 2009) and the latent stick-breaking process (Rodrı́guez et al. 2010), where
point-referenced continuous spatial copulas are used to model weight dependency;
the latter uses ordered atoms. In contrast, we model dependent areal counts using
copula-based MRF’s. Bayesian nonparametric copula-based approaches that model
dependence on the observables directly (vs. latent surfaces or random effects) are
given by Li et al. (2015) for areal data and Zhou et al. (2015) for georeferenced data.

Like the hybrid Dirichlet process and the latent stick-breaking process, the
marginal distribution of G(i)(φi), for each i, follows an identical DP

G(i)(φi) =
K

∑
k=1

∑
u1,...,ui=k,...,un

πu1,...,ui=k,...,unδθu1
. . .δθui=k . . .δθun

=
K

∑
k=1

pkδθk , (19.8)

where pk = ∑K
k=1 P

(
Σ k−1

t=1 pt < F(i)(γi)< Σ k
t=1 pt

)
= Vk ∏ j<k(1−Vj). The covari-

ance between φi and φ j is given by

Cov(φi,φ j) = σ2
s

K

∑
l=1

P(ui = u j = l)

= σ2
s

K

∑
l=1

P
(

Σ l−1
k=1 pk < F (i)(γi)< Σ l

k=1 pk,Σ l−1
k=1 pk < F ( j)(γ j)< Σ l

k=1 pk

)

= σ2
s

K

∑
l=1

plP
(

F (i)−1
(Σ l−1

k=1 pk)< γi < F (i)−1
(Σ l

k=1 pk) |

F ( j)−1
(Σ l−1

k=1 pk)< γ j < F ( j)−1
(Σ l

k=1 pk)
)
,

where (γi,γ j) follows a bivariate normal distribution with covariance specified by
the CAR model. Posterior inference for the ARSB and ARDP models are based
upon Markov chain Monte Carlo simulations, presented in the Appendix.
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19.3.5 A Practical FDR-Based Method to Select Difference
Boundaries

To obtain a threshold for detecting difference boundaries, our approach treats the
spatial boundary analysis problem as one of multiple hypothesis testing. For each
pair of adjacent regions, say i and j, we test φi = φ j against φi 	= φ j. This produces
as many hypotheses as there are edges. Recently, several authors have advocated
the use of the FDR to adjust for multiplicities in hypothesis testing problems (e.g.,
Benjamini and Hochberg 1995; Efron et al. 2001; Storey 2002, 2003).

We identify a boundary (i, j) as a difference boundary if the posterior probability
that P(φi = φ j |Y ) exceeds a certain threshold t, where Y = (Y1,Y2, . . . ,Yn)

′. For each
pair of neighboring regions, we construct A(i, j)(Y ;t) = {Y : P(φi 	= φ j |Y ) > t}, a
critical region that indicates evidence in favor of (i, j) being a difference boundary.
The choice of t will control the FDR below a level δ = 0.05. If Z(i, j) = I(φi = φ j)
and v(i, j) = P(Z(i, j) = 0 |Y ), then the FDR is

FDR =
∑i∼ j Z(i, j)I(v(i, j) > t)

∑i∼ j I(Z(i, j) > t)
where i ∼ j if wi j 	= 0 . (19.9)

Estimation of (19.9) is straightforward. It is obtained as the posterior expectation

F̂DR = E[FDR |Y ] = ∑i∼ j(1− v(i, j))1(v(i, j) > t)

∑i∼ j 1(v(i, j) > t)
, (19.10)

where v(i, j) is computed as a Monte Carlo mean of the posterior samples for Zi j.
Rejection rules can be then constructed to bound the FDR at target level δ : reject if
v(i, j) > t, where

t = sup

{

u :
∑i∼ j I(v(i, j) > u)(1− v(i, j))

∑i∼ j I(v(i, j) > u)
≤ δ

}

.

Li et al. (2012) explored FDR-based methods in conjunction with a parametric
class of smoothed moving average models using a Bayesian spike-slab prior to ad-
just for multiple tests; these models require rather awkward constraints on the ran-
dom effects. Their approach required estimating as many models as there are geo-
graphical boundaries making it computationally expensive. For example, for test-
ing county boundaries in the state of Minnesota, they had to estimate 211 models.
More importantly, their method does not provide posterior estimates from any single
model: obtaining model-averaged estimates is not straightforward. These drawbacks
are circumvented with the ARDP and ARSB.
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19.4 A Simulation Study

To evaluate our methods, we conducted a simulation study using the template of a
Minnesota county map in Li et al. (2011). There are n = 87 counties in Minnesota,
and 211 pairs of neighboring counties. We simulated 50 datasets on a map of Min-
nesota, where the state was divided into six regions. Each dataset was generated
from (19.1), where μi was one of five different means corresponding to the five dif-
ferent shades mapped on Fig. 19.1; the darker shades correspond to higher means.
To add some irregularity, we also included one county (Sherburne county shaded
white in Fig. 19.1) that has all its boundaries as true difference boundaries. This
resulted in “six” different clusters on the map and 47 “true difference boundaries”
delineating the clusters with substantially different means.

0−20%
20%−40%
40%−60%
60%−80%
80%−100%

Fig. 19.1 A map of the simulated data with the grey-scales showing the six different clusters, each
having its own mean. There are 47 boundary segments that separate regions with different means
(shades). The percentages reflect the quantiles for the distribution of the outcomes

For every pair of geographical neighbors (i, j), we computed the posterior prob-
ability P(φi 	= φ j |Y ) and chose the T = 35,40,45,50 and 55 edges with the highest
posterior probabilities. As there are 47 true difference boundaries, these choices
encompass settings where we could, theoretically have obtained 100% accuracy
(when T = 35,40,45) and also where we are assured of a few false positives (when
T = 50,55).



388 T. Hanson et al.

The prior specification and computational details of the ARDP model are in the
Appendix. The parameter α can be fixed based upon the expected number of clusters
a priori. In this case, six clusters suggest a value of α around 1.25. We experimented
with α ranging from 0.25 to 1.75 without much change in posterior inference. The
results presented here correspond to α = 0.5, leading to an expected number of
clusters of about 3, half the number of true clusters. We also fixed ρ = 0.98 in the
ARDP model (ICAR is inappropriate since the covariance matrix must be proper
and nonsingular). Higher values of ρ provide more smoothing; values greater than
0.95 are recommended (Wall 2004; Banerjee et al. 2015). For the ARSB model,
we used ICAR (ρ = 1) coupled with the sum-to-zero constraint. We assumed a re-
gression structure with only an intercept (i.e., xi ≡ 1) and placed a flat prior on the
corresponding β . The vague prior Γ (0.01,0.01) was specified for the precision pa-
rameters τs and τγ . In both models, the stick-breaking truncation was set at K = 15
terms.

We compared the performance of DPM, ARSB, and ARDP with three ex-
isting methods: the deterministic boundary likelihood value (BLV) algorithm of
Jacquez and Greiling (2003a,b) using the BoundarySEER software (see http://
www.biomedware.com) with default thresholds set from a BLV histogram; the
model-based approach of Lu and Carlin (2005), which we call the “LC method”;
and the class of discrete spatial moving average (SMA) models outlined in Li et al.
(2011). We ran these models within the R statistical software environment running
three parallel chains for each model and dataset. Convergence was diagnosed after
12,000 iterations of burn-in using Gelman-Rubin diagnostics and autocorrelation
plots from the coda package in R. A subsequent 5,000×3= 15,000 samples were
used for posterior inference. On a workstation using a Intel dual core 4 GHz proces-
sor, each model took less than 5 h of CPU time to deliver its entire inferential output
for all the 50 simulated datasets.

Table 19.1 presents the average detection rates for these different methods ap-
plied to the 50 simulated datasets. The DPM and the BLV methods do not explicitly
borrow strength across neighbors, while the other four methods in Table 19.1 exploit
the adjacency structure of the underlying map. There is little difference between the
ARDP and ARSB, but both methods slightly outperform the others in both sensitiv-
ity and specificity under all five scenarios. In addition, while the performance of the
SMA model is perhaps comparable, it is computationally onerous and less robust to
prior assumptions (Li et al. 2011) than ARDP or ARSB.

The LC method is based upon a parametric CAR model that does not render itself
to probabilistic boundary analysis (since P(φi = φ j) will always be zero for i 	= j).
However, one could fit parametric CAR models and use the posterior expectation
of the absolute differences of the rates E(‖ηi −η j‖|Y ), where ηi =

μi
Ei

acts as a
boundary difference score. Higher values indicate spatial barriers between units i
and j. The DPM, ARSB, and ARDP models not only yield estimates of ηi, as in the
“LC” method, but they also deliver nonzero posterior probabilities P(φi = φ j |Y ).
Therefore, we used the posterior expectation metric to compare its performance.
The SMA model does not deliver posterior estimates of spatial effects from a single
model. Hence, we exclude it from this comparison.

http://www.biomedware.com
http://www.biomedware.com
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Table 19.1 Sensitivity and specificity in the simulation study (50 datasets generated on a Min-
nesota map) for the ARDP, ARSB, DPM, LC, and BLV methods

T Method Sensitivity Specificity T Method Sensitivity Specificity
ARDP 0.768 0.998 ARDP 0.822 0.990
ARSB 0.771 0.991 ARSB 0.821 0.989

35 DPM 0.737 0.989 40 DPM 0.791 0.991
BLV 0.711 0.990 BLV 0.778 0.979
LC 0.702 0.989 LC 0.767 0.976

SMA 0.740 0.998 SMA 0.818 0.991
ARDP 0.881 0.971 ARDP 0.927 0.962
ARSB 0.878 0.972 ARSB 0.930 0.968

45 DPM 0.870 0.968 50 DPM 0.897 0.952
BLV 0.831 0.964 BLV 0.869 0.944
LC 0.813 0.959 LC 0.859 0.941

SMA 0.872 0.975 SMA 0.901 0.955
ARDP 0.940 0.943
ARSB 0.941 0.940

55 DPM 0.895 0.915
BLV 0.891 0.920
LC 0.881 0.917

SMA 0.925 0.930

Table 19.2 presents the results for four of the methods. The deterministic BLV
method detects 89.6% of the boundaries. The promise of our stochastic models is
evident from the superior performances of the ARDP and the ARSB models. Since
we know the true boundaries in Fig. 19.1, we can assess the performances of these
approaches in detecting the true boundaries. We find that the DPM, ARDP, and the
ARSB models are each able to detect about 90% of the true boundaries; the ARDP
model performs slightly better than the other two.

Table 19.2 Assessment of the true wombling boundaries with those produced by LC, ARDP, and
ARSB based on P(φi = φ j |Y ) and E(‖ηi −η j‖|Y ) in the simulation study

Assessment using P(φi = φ j |Y ) Assessment using E(‖ηi −η j‖|Y )
LC – 78.7%

DPM 89.3 % 82.2 %
ARDP 91.4% 88.3%
ARSB 89.1% 83.3%

Using the posterior expectation metric, we again find that the proposed ARSB
and ARDP models outperforming the LC method; they outperform the DPM model
as well in terms of the posterior expectation metric.

Finally, we compare the estimated FDR computed from (19.10) and the true
FDR in (19.9). Figure 19.2 plots the estimated FDR from the ARSB model against
the number of edges selected from a cutoff value t. We also plot the realized FDR
(dashed line) based on the boundary detections and the underlying truth. For each
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Fig. 19.2 The realized FDR and the estimated FDR curves in the simulation study. The x-axis is
number of edges selected as difference boundaries

number of edges selected, the FDR curves are averages over the 50 simulated
datasets. Overall, we find that the FDR is well estimated by the proposed approach.
The slight overestimation when number of edges selected is < 100 and the underes-
timation for > 100 indicates conservatism since only the lower values are of interest
when the FDR is controlled by a certain target, say 10%. This figure is almost indis-
tinguishable for the ARDP model (not shown) and also the SMA model (reported
in Li et al. 2012).

19.5 Analysis of Minnesota P&I Dataset

We applied our method to the Minnesota Pneumonia and Influenza (P&I) diagnosis
dataset. P & I rank as the eighth leading cause of death in the United States and the
sixth leading cause in people over 65 years of age, with Pneumonia consistently acc-
ounting for the overwhelming majority of deaths of the two. Together, they cost the
U.S. economy in 2005 an estimated $40.2 billion. Identifying difference boundaries
that perform well with regard to sensitivity and specificity can help identify so-called
“health barriers” more accurately and buttress an active surveillance program for an
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influenza-like illness. Reported difference boundaries can provide information to
the surveillance system to limit unnecessary entry or egress of people from affected
areas, thereby thwarting the spread of infection. Furthermore, health policy analysts
can exploit difference boundaries to better coordinate between local administrators
and execute plans for hospital needs and antiviral or vaccine interventions. Finally,
difference boundaries can lead to better identification of lurking covariates or latent
factors that may better explain the discrepant hospitalization rates between neigh-
boring counties.

We analyzed a dataset consisting of Minnesota residents above 65 years of age
who were enrolled in the Medicare fee-for-service program as of December 31,
2001. The Medicare Denominator file for 2001 was used to define the cohort. The
medicare provider analysis and review (MedPAR) manages patient records based
on date of discharge and supplied information regarding hospitalizations resulting
from P&I. Rates of P&I hospitalization are traditional measures of the impact of
influenza virus in the elderly population. We identify the ‘boundaries’ that separate
the more affected areas from the less affected areas.

If Yi and Oi are the observed number of hospitalizations and the population in

county i respectively, then Ei =
∑n

k=1 Yi

∑n
k=1 Oi

Oi is the expected number of cases (under the

assumption of no spatial variation in rates), where n is the total number of counties.
The choropleth map of the raw data is shown in Fig. 19.3. The high-valued SMR
(standard mortality ratio) counties are scattered over the map, with a clump in the
southwest and some isolated regions surrounded by sparsely inhabited counties that
also have lower counts.

We employed the models in Sect. 19.4 to detect boundaries on the P&I hospital-
ization map. The same prior specification and model settings were applied here as
the simulation study, except we took α = 1, a customary choice when one does not
seek a prior distribution on this parameter (Hanson 2006) or has no a priori infor-
mation about the number of clusters. Three parallel MCMC chains were executed
on the same computing environment as described in Sect. 19.4. Convergence was
diagnosed after 10,000 iterations of burn-in using Gelman-Rubin diagnostics and
autocorrelation plots and a subsequent 5,000× 3 = 15,000 samples were used for
posterior inference. Each model consumed less than 10 min of CPU time to produce
its entire inferential output for the Minnesota Pneumonia and Influenza dataset with
very little difference between the ARSB, ARDP, and the (non-spatial) DPM model.

Health administrators may prefer to use a “top bracket” of most likely differ-
ence boundaries for policy formulation. The top 50 difference boundaries detected
by each model are highlighted in Fig. 19.4. Table 19.3 presents a comprehensive
“lookup table” containing the names of adjacent counties that have been ranked in
decreasing order according to 1−P(φi = φ j |Data) from the ARDP model. Instead
of selecting this “bracket” arbitrarily, statisticians may prefer a threshold obtained
by controlling the FDR. Setting δ = 5% yields Numbers 1–33 as difference bound-
aries, while setting δ = 10% detects Numbers 1–42 as difference boundaries. This
table offers an easy reference for health administrators and officials to identify the
more substantial spatial health barriers in the state.
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Fig. 19.3 Choropleth map of the SMR in MN (P&I) dataset. The percentages reflect the quantiles
for the distribution of the SMR

About 90% of the boundaries listed in Table 19.3 are detected by all four mod-
els. As a specific example consider Cook and Koochiching county. The outcome
variable in the former is substantially higher than its only neighbor, Lake, while
Koochiching county is separated from all its neighbors due to its extremely high
P&I SMR, even after being smoothed by the model. Among the 50 difference
boundaries detected by the ARDP model, 47 are also detected by the ARSB model.
The three county-pairs that went undetected by ARSB were Goodhue and Olmsted,
Freeborn and Steele, and Big Stone and Traverse. The ARSB model detected bound-
aries between counties Becker and Wadena, Cotton Wood and Jackson, and Cook
and Lake.

The map in Fig. 19.3 does not display clustering as pronounced as did the sim-
ulation example. It does, however, reflect well on our models that the rankings in
Table 19.3 are very consistent with competing methods. The agreement between the
ARDP and the SMA in terms of identifying the difference boundaries using FDR-
based thresholds is very strong with over 95% agreement in boundary selection.

Lastly, the minimum predictive loss approach of Gelfand and Ghosh (1998) was
implemented to compare the four models. Specifically, for each posterior sample
β (l) and φ (l), l = 1, . . . ,L obtained using Markov chain Monte Carlo, we generate

replicates for each data point as y(l)rep,i ∼ Poisson(μ (l)
i ), where μ (l)

i = x′iβ +φ (l)
i . Pre-

ferred models should perform well under a decision-theoretic balanced loss func-
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LC DPM

ARDP ARSB

Fig. 19.4 Difference boundaries detected by various models in the Minnesota (P&I) dataset

tion that penalizes both departure from fit and departure from smoothness as re-
flected by variation in replicates. We compute the departure from fit, say G, as

∑n
i=1(yobs,i−μrep,i), where μrep,i =(1/L)∑L

l=1 y(l)rep,i, and the departure from smooth-

ness, say P, as ∑n
i=1 σ2

rep,i, where σ2
rep,i = (1/L)∑L

l=1(y
(l)
rep,i − μrep,i)

2. This yields a
model comparison score, D = G + P, with lower values of D suggesting better model
performance. The D scores are summarized in Table 19.4 which reveals that all four
models perform almost equally well here in terms of the criterion based upon depar-
ture from the ‘fit’ and the departure from the ‘smoothness’. The LC model performs
slightly better than the rest of the three and the nonspatial DPM model is slightly
inferior for this specific dataset.
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Table 19.3 Names of adjacent counties that have significant boundary effects from the ARDP
model. The numbers in the first column are the ranks according to P(φi = φ j |Y )

1 Beltrami, Koochiching 26 Koochiching, Lake of the Woods
2 Cass, Wadena 27 Isanti, Mille Lacs
3 Douglas, Pope 28 Chippewa, Renville
4 Freeborn, Steele 29 Murray, Pipestone
5 Goodhue, Olmsted 30 Becker, Mahnomen
6 Itasca, Koochiching 31 Rice, Waseca
7 Kandiyohi, Pope 32 Blue Earth, Brown
8 Koochiching, St. Louis 33 Dodge, Olmsted
9 Pope, Stearns 34 Chisago, Isanti

10 Anoka, Isanti 35 Redwood, Yellow Medicine
11 Dakota, Goodhue 36 Pennington, Polk
12 Lincoln, Pipestone 37 Goodhue, Wabasha
13 Murray, Redwood 38 Pope, Swift
14 Steele, Waseca 39 Morrison, Todd
15 Renville, Yellow Medicine 40 Fillmore, Olmsted
16 Cottonwood, Murray 41 Cook, Lake
17 Jackson, Martin 42 Douglas, Grant
18 Kandiyohi, Swift 43 Mahnomen,Norman
19 Pope, Stevens 44 Grant, Wilkin
20 Todd, Wadena 45 Mahnomen, Polk
21 Lyon, Redwood 46 Jackson, Nobles
22 Murray, Nobles 47 Morrison, Todd
23 Isanti, Sherburne 48 Dodge, Olmsted
24 Otter Tail, Todd 49 Big Stone, Traverse
25 Clay, Otter Tail 50 Morrison, Stearns

Table 19.4 Predictive loss criterion under all four models for Minnesota (P&I) dataset. G is a
goodness-of-fit term while P is a penalty term which penalized departure from “smoothness”

G P D
LC 0.47 2.81 3.29

DPM 0.82 2.76 3.58
ARDP 0.76 2.73 3.49
ARSB 0.64 2.77 3.41

19.6 Conclusion and Future Work

The paper presented a class of nonparametric Bayesian hierarchical models for det-
ecting difference boundaries on maps. An advantage of the new approach is that it
permits the probabilistic estimation of an edge as a difference boundary, and im-
proves the percentage of true detection. A disadvantage is that the model cannot be
easily fit into any existing commercial software. We fit these models in R (www.
r-project.org), and we hope to collect these models in an R package in the near
future.

http://www.r-project.org
http://www.r-project.org
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The ARDP and ARSB models in conjunction with the FDR controlled thresh-
old selection provide a major improvement over earlier work by Li et al. (2012).
However, issues related to optimal selection of boundaries warrants further inves-
tigation, especially regarding the sensitivity of the inference to FDR-based cutoffs
and to prior specifications. Further extensions can be formulated by incorporating
classes of loss functions, as discussed by Müller et al. (2006), for a more com-
prehensive decision-theoretic framework. Such developments may, in turn, lead to
more definitive conclusions regarding the performance of these models in maps that
display weaker clustering patterns.

Acknowledgements This work was supported by NSF/DMS 1106609, and NIH grants 1-RC1-
GM092400-01, 1R03CA165110, and 1R03CA176739-01A1.

Appendix

Posterior inference for our models are based on MCMC posterior simulations. There
are two main strategies used. The first avoids computing parameters characterizing
G by marginalizing it out and relying on the Polya urn scheme of Blackwell and
MacQueen (1973). A limitation of this approach is that it is only applicable when
the prior can be characterized by a generalized Polya urn mechanism. Ishwaran
and James (2001) proposed the blocked Gibbs Sampler that directly sampled from
the posterior of the random measure, avoiding the marginalization over G. We use
the blocked Gibbs Sampler with some Metropolis-Hasting steps nested in it to upd-
ate all random parameters in our model. We truncate the infinite sum in G by the first
m terms. We only provide details for the ARDP model. That for the ARSB model
is similar (and even simpler), while algorithms for the DPM model may be found in
Escobar and West (1995).

We place a flat prior on parameter β and reparameterize the variance parameters
with its inverse, τs = σ−2

s ,τγ = σ−2
γ , then place a conjugate gamma prior of the

precision parameters τs and τγ . The likelihood of the model is expressed as

L =
n

∏
i=1

Poisson(Yi |x′iβ +φi) (19.11)

The posterior density given the data Y= {Yi} is proportional to the likelihood multi-
plied by all the prior distributions: L(Yi |β ,{φi})p(β)p(φ |τs)p(γ |τγ )p(V)p(τs)p(τγ ) .
Note that φi = θui and we updated φi by updating θ and ui. The MCMC algorithm
proceeds as follows.

1. Update β |θθθ ,γγγ,V,τs,τγ : The full conditional distribution only depends on the
likelihood due to the flat prior. Sample candidate β ∗ from N(β ,Kβ I) (Kβ = 0.05
worked well), then accept the candidate ∗ with probability
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min

{

1,
exp(∑n

i=1(−Ei exp(x′iβ
∗+φi)+ yi(x′iβ

∗+φi)))

exp(∑n
i=1(−Ei exp(x′iβ +φi)+ yi(x′iβ +φi)))

}

(19.12)

2. Update θ j |βββ ,γγγ,V,τs,τγ : Sample candidate θ ∗
j from N(θ j ,Kθ ) (Kθ = 0.05 worked

well), then accept the candidate θ ∗
j with probability

min

{

1,
exp(∑i:ui= j(−Ei exp(x′iβ +θ ∗

j )+ yi(x′iβ +θ ∗
j ))− τs

2 θ ∗2
j )

exp(∑i:ui= j(−Ei exp(x′iβ +θ j)+ yi(x′iβ +θ j))− τs
2 θ 2

j )

}

(19.13)

3. Update γγγ iii |βββ ,θθθ ,V,τs,τγ : Sample candidate γ∗ from N(γi,Kγ ) (Kγ = 0.01 worked

well), compute the corresponding candidate u∗ through u∗i = ∑n
j=1 jI(Σ j−1

k=1 pk <

F (i)(γi)< Σ j
k=1 pk), then accept the candidate γ∗ with probability

min

{

1,
exp

(− 1
2 γ�′Σ−1

2 γ�
)

exp(−Ei exp(x′iβ +θu∗i )+ yi(x′iβ +θu∗i ))

exp
(− 1

2 γ ′Σ−1
2 γ

)
exp(−Ei exp(x′iβ +θui)+ yi(x′iβ +θui))

}

(19.14)

4. Update V |βββ ,θθθ ,γγγ,τs,τγ : Sample candidate V∗ from N(V,0.01Im), compute the
corresponding p∗ and u∗. Accept the candidate V∗ with probability

min

{

1,
∏m

k=1(1−V∗
k )

α−1 ∏n
i=1 exp(−Ei exp(x′iβ +θu∗i )+ yi(x′iβ +θu∗i ))

∏m
k=1(1−Vk)α−1 ∏n

i=1 exp(−Ei exp(x′iβ +θui)+ yi(x′iβ +θui))

}

(19.15)

5. Update τs |βββ ,θθθ ,γγγ,V,τγ : Sample from Gamma

(
n
2
+ a,

Σn
i=1φ2

i

2
+ b

)

, where a=

b = 0.01, which is the conjugate gamma full conditional distribution for τs.

6. Update τγ |βββ ,θθθ ,γγγ,V,τs : Sample from Gamma

(
n
2
+ c,

γγγ ′(D−ρW)γγγ
2

+ d

)

, where

c = d = 0.01, which is the conjugate gamma full conditional distribution for τγ .
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Causal Inference and Missing Data



Chapter 20
A Bayesian Nonparametric Causal Model
for Regression Discontinuity Designs

George Karabatsos and Stephen G. Walker

Abstract For non-randomized studies, the regression discontinuity design (RDD)
can be used to identify and estimate causal effects from a “locally randomized” sub-
group of subjects, under relatively mild conditions. However, current models focus
causal inferences on the impact of the treatment (versus non-treatment) variable
on the mean of the dependent variable, via linear regression. For RDDs, we pro-
pose a flexible Bayesian nonparametric regression model that can provide accurate
estimates of causal effects, in terms of the predictive mean, variance, quantile, prob-
ability density, distribution function, or any other chosen function of the outcome
variable. We illustrate the model through the analysis of two real educational data
sets, involving (resp.) a sharp RDD and a fuzzy RDD.

20.1 Introduction

A basic objective in scientific research is to infer causal effects from data. Ran-
domized studies are the gold standard of causal inference. In an ideal randomized
study, the investigator randomly assigns each subject into one of the treatment con-
ditions, with equal probability, and each subject complies with her/his treatment ass-
ignment. Then, treatment subjects are the same as non-treatment subjects, in terms
of the distribution of all observed and unobserved pretreatment covariates, aside
from sampling error (e.g., Rubin 2008); and the outcome variable is independent of

G. Karabatsos (�)
University of Illinois-Chicago, Chicago, IL, USA
e-mail: gkarabatsos1@gmail.com

S.G. Walker
The University of Texas at Austin, Austin, TX, USA
e-mail: s.g.walker@math.utexas.edu

© Springer International Publishing Switzerland 2015
R. Mitra, P. Müller (eds.), Nonparametric Bayesian Inference in Biostatistics,
Frontiers in Probability and the Statistical Sciences,
DOI 10.1007/978-3-319-19518-6 20

403

mailto:gkarabatsos1@gmail.com
mailto:s.g.walker@math.utexas.edu


404 G. Karabatsos and S.G. Walker

the chosen treatment intervention, conditionally on the treatment variable (Dawid
2002). Then the causal effect is given by a comparison of the outcome variable under
the treatment intervention, against the outcome variable under the non-treatment
intervention.

Often, it is necessary to estimate causal effects from a non-randomized, observa-
tional study, because a randomized study can be infeasible due to financial, ethical,
or time constraints (Rubin 2008). However, causal inference from a non-randomized
study is more challenging. This is because without randomization, treated and non-
treated subjects differ almost-surely in terms of the pretreatment covariates.

The regression discontinuity design (RDD) (Thistlewaite and Campbell 1960;
Cook 2008) is a type of non-randomized design where a continuous-valued assign-
ment variable (Lee and Lemieux 2010) assigns each subject to the treatment (non-
treatment, resp.) condition, whenever her/his observed value of the assignment vari-
able equals or exceeds (resp. is less than) a fixed cutoff value. Under relatively mild
conditions, notably when subjects have imperfect control of the assignment vari-
able, the RDD provides a “locally-randomized experiment.” Then treatments are
“as good as randomly assigned” for the subgroup of subjects with assignment vari-
able values near the cutoff (Lee 2008), making the causal effect identifiable for that
subgroup. As proven in Goldberger (2008), the RDD can empirically produce causal
effect estimates that are similar to those estimates of a standard randomized study
(Aiken et al. 1998; Buddelmeyer and Skoufias 2004; Black et al. 2005; Schochet
2009; Berk et al. 2010; Shadish et al. 2011).

The RDD has existed for over 50 years, with little initial interest (Cook 2008).
However, since 1997, more than 74 RDD-based empirical studies have emerged
from these fields (Lee and Lemieux 2010; Bloom 2012; Wong et al. 2013), for at
least three reasons (Van der Klaauw 2008; Lee and Lemieux 2010). First, many
non-randomized studies employ treatment assignment rules that can be easily con-
ceptualized as RDDs. Second, the empirical results of RDDs are intuitive and can be
easily conveyed graphically, say, by a plot of the outcomes against the assignment
variable. Third, the identification of causal effects in an RDD requires weaker and
hence more credible assumptions, compared to the stronger assumptions that are re-
quired by other popular causal models, mentioned below. This gives the researcher
the flexibility to choose from a range of causal estimation methods.

The other popular causal models for non-randomized studies assume a “poten-
tial outcomes” (counterfactual) framework of causal inference (e.g., Rubin 1974,
1978). This is typically done assuming using notation that is simplified by the Stable
Unit Treatment Value Assumption (SUTVA), which implies no interference between
subjects and no versions of treatments (Rubin 1990). The popular models make fur-
ther assumptions of unconfoundedness (i.e., treatment and non-treatment outcomes
are independent of treatment assignments, conditionally on all pretreatment covari-
ates) and overlap (i.e., there is a chance to receive either the treatment or the non-
treatment, conditionally on any value of the pretreatment covariates) (Imbens 2004).
These models are defined by a regression of the outcome variable, on variables of
treatment receipt and observed pretreatment characteristics, and/or involves match-
ing/weighting subjects on the observed pretreatment variables and/or on propensity
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scores (e.g., Imbens 2004). The regression may also be on a hypothesized set of
unobserved pretreatment covariates, in order to study the sensitivity of causal effect
estimates over varying degrees of hidden bias (e.g., Rosenbaum and Rubin 1983),
i.e., over changes in the distribution of these covariates. However, it may be argued
that for typical non-randomized studies, unconfoundedness and overlap are not very
credible assumptions (e.g., Imbens 2004; Lee 2008). Even SUTVA is questionable.

For RDDs, the mainstream causal models are linear, polynomial, or local-linear
models that employ a regression of the outcome variable on the assignment vari-
able. Such models aim to provide causal inferences in terms of mean comparisons
of treatment outcomes and non-treatment outcomes, and to provide sufficiently flex-
ible modeling of the regression function (Imbens 2004; Lee and Lemieux 2010), in a
neighborhood around the cutoff. However, in many settings, it may also be of inter-
est to base causal inferences on comparisons of additional features of the outcome
variable, such as the variance, quantiles (percentiles), and/or the entire probability
density function.

To address these open issues, we propose a Bayesian nonparametric regression
model (Karabatsos and Walker 2012) for causal inference in RDDs. It is an infinite-
mixture model that allows the entire probability density of the outcome variable to
change flexibly as a function of covariates. Our model can provide inferences of
causal effects in terms of how the treatment variable impacts the mean, variance,
a quantile, probability density function (p.d.f.), distribution function, and any other
chosen function of the outcome variable. Finally, the accurate estimation of causal
effects relies on an appropriate model for the data. Karabatsos and Walker (2012)
showed that their Bayesian nonparametric regression model tended to have better
predictive performance than other parametric and flexible nonparametric regression
models of common usage, over many real data sets.

Also, our model can be extended to handle causal inferences from a fuzzy RDD
(Trochim 1984). In contrast to a standard “sharp” RDD, a fuzzy RDD involves a
study where not all subjects adhere to the treatment assignment rule. This is be-
cause, for example, some subjects do not comply with their respective treatment
assignments, or because some subjects receive treatments for which they are not
eligible.

In Sect. 20.2, we review the data assumptions that are required to identify and es-
timate causal effects from an RDD. Unlike all previous guides to performing causal
inference from RDDs (e.g., Imbens and Lemieux 2008; Lee and Lemieux 2010;
Bloom 2012; Wong et al. 2013), we do not rely on the potential outcomes approach.
Instead we focus on the extended conditional independence approach, which ad-
dresses the problem of causal inference entirely by the concepts of standard proba-
bility theory (Dawid 2000, 2002). We should also mention that we will not address
SUTVA, as this assumption only makes sense in the potential outcomes framework
(Dawid 2000).

In Sect. 20.3, we describe our Bayesian nonparametric model that can estimate
causal effects from the various RDDs. In Sect. 20.4, we illustrate our model through
the analysis of two educational data sets, involving (resp.) a sharp RDD and a
fuzzy RDD. Section 20.5 concludes with a short discussion of the free user-friendly



406 G. Karabatsos and S.G. Walker

software that can be used to implement our Bayesian nonparametric approach to
RDDs, and a discussion of possible extensions of our approach to multivariate
RDDs, involving cutoffs in more than one dimension.

Throughout, we denote by Pr(X ∈ A) the probability of an event A, for a given
random variable, X . Also, we assume that a continuous (resp., discrete) random
variable X admits a cumulative distribution function (c.d.f.), denoted by a capi-
tal letter, such as F(x) = Pr(X ≤ x), with corresponding probability density (resp.,
mass) function or p.d.f., denoted by a lower case letter, with f (x) =

∫
dF(x). We use

the notation X ∼ F(x), X ∼ F , or X ∼ f (x) to refer to X as having the distribution
F . Accordingly, we denote by n(· |μ ,σ2) as the density of the normal N(· |μ ,σ2)
c.d.f. with mean and variance (μ ,σ2); with Φ (·) = N(· |0,1) the c.d.f. of the nor-
mal n(· |0,1) p.d.f.; ga(· |a,b) and ig(· |a,b) (resp.) denotes the p.d.f.s of the gamma
Ga(· |a,b) distribution and inverse gamma IG(· |a,b) distribution (c.d.f.), with shape
parameter a and rate parameter b; and U(· |a,b) is the c.d.f. of a uniform distribu-
tion.

20.2 Identifying Causal Effects in an RDD

A non-randomized study from an RDD involves three variables that are observable
from each individual from a sample of n subjects, indexed by i = 1, . . . ,n. They
are the outcome variable, Y ; a binary treatment variable T , where T = 1 refers
to treatment receipt and T = 0 refers to non-treatment receipt; and a continuous-
valued assignment variable R. Each subject i is assigned the treatment whenever
Ri ≥ r0, and is assigned the non-treatment whenever Ri < r0, given a known fixed
cutoff r0. As will be further described below, in a fuzzy RDD, being assigned treat-
ment does not imply receiving treatment. The treatment assignment variable is thus
1R≥r0 , with 1(·) the indicator function. An RDD study gives rise to a sample data
set, Dn = {(ri, ti,yi)}n

i=1, including derived observations 1ri≥r0 , and possibly ob-
servations of p pretreatment covariates, xi = (x1i, . . . ,xpi)

�. Also, we introduce a
non-random regime parameter, ΨT ∈ { /0,0,1}. An “idle” or “observational” regime
is indicated by ΨT = /0, when the joint distribution of (R,T,Y ) “arises naturally.”
An intervention regime is indicated by setting ΨT = 0 or 1. Here, ΨT = 1 indicates
the treatment intervention, and ΨT = 0 indicates the nontreatment intervention. The
observational regime is none other than the RDD itself, whereas the intervention
regimes are hypothetical.

A characterizing assumption of the RDD is that the conditional probability of
treatment receipt is discontinuous at r0. That is:

Assumption RD: lim
r↓r0

Pr(T = 1 |r) 	= lim
r↑r0

Pr(T = 1 |r). (20.1)

There are two types of RDDs. In the classical, sharp RDD (Thistlewaite and
Campbell 1960; Cook 2008), the probability function Pr(T = 1 |r) has a discontin-
uous jump of size 1 at R = r0, with point mass probability function:



20 A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs 407

f (t |r) = Pr(T = t |R = r) = 1t
r≥r0

(1− 1r≥r0)
1−t . (20.2)

Then the treatment receipt is identical to treatment assignment, with T = 1R≥r0 .
In the fuzzy RDD (Trochim 1984), Pr(T = 1 |R = r) has a discontinuous jump

that is smaller than 1 at r0. Then f (t |r) is not a point mass density. The smaller
jump results from imperfect treatment adherence (e.g., treatment non-compliance),
where some of the subjects of the given study were either assigned 1r≥r0 = 0 but
received T = 1, or assigned 1r≥r0 = 1 but received T = 0.

For either type of RDD, a typical measure of the causal effect is defined by the
difference of conditional means (expectations) of Y at R = r0:

τ = lim
r↓r0

E(Y |R = r,ΨT = 1)− lim
r↑r0

E(Y |R = r,ΨT = 0) (20.3a)

= E(Y |R = r0,ΨT = 1)−E(Y |R = r0,ΨT = 0) (20.3b)

whereE(Y |r, t) = ∫
ydF(y |r, t). Also if r+0 = limr↓r0 r, r−0 = limr↑r0 r, and r+0 = r−0 =

r0, then R is continuous. A motivation for restricting to R = r0 in the definition of
the causal effect (20.3b) is that this is the only effect that can be directly estimated
from given data (Dn) of an RDD.

In general, for any choice of function H{·} of Y , the causal effect is given by:

τH = lim
r↓r0

E(H{Y}|r,ΨT = 1)− lim
r↑r0

E(H{Y}|r,ΨT = 0) (20.4a)

= E(H{Y}|r0,ΨT = 1)−E(H{Y}|r0,ΨT = 0). (20.4b)

Therefore, depending on the choice of function H{·}, causal effects are not only
interpretable in terms of the mean of Y (when H{Y} = Y ), but also in terms of
the variance (H{Y} = {Y −E(Y |r, t)}2), cumulative distribution function (c.d.f.)
F(y |r, t) (H{Y} = 1Y≤y), probability density function (p.d.f.) ( f (y |r, t)), survival
function 1−F(y |r, t), and so on. Inverting the c.d.f. obtains F−1(u |r, t), for u ∈
[0,1]. Then causal effects can also be interpreted in terms of the uth quantile of Y .

If R is discrete, then obviously r+ 	= r− 	= r0. Then Eq. (20.4) [including (20.3)]
still provides a measure of causal effect, which may require additional extrapolation
in its estimation.

Next we describe how a causal effect τH is identified from the sharp RDD.

20.2.1 Identification in the Sharp RDD

The sharp RDD can be characterized in terms of the extended conditional inde-
pendence framework of causal inference, extending the ideas from (Dawid 2002,
Sections 6.2, 7). In this RDD, it is typically assumed that the joint p.d.f. of (R,T,Y ),
conditionally on ΨT = ψT , is given by:

f (r, t,y |ψT ) = f (r) f (t |r,ψT ) f (y |r, t). (20.5)
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This p.d.f. (20.5) gives rise to the conditional independence properties (a) R ⊥⊥ΨT

and (b) Y ⊥⊥ΨT |R,T , where ⊥⊥ denotes conditional independence (Dawid 1979).
Property (a) states that the distribution of R is the same in both observational and
interventional circumstances. Meanwhile, (b) is a causal property, because it says
that the distribution of Y is unaffected by the choice of interventional regime ΨT ,
conditionally on (R,T ) (Dawid 2002). Properties (a) and (b) together imply that R
is a sufficient covariate (Dawid 2002, 2010).

Motivated by the causal property (b), we now focus on the conditional p.d.f.:

f (t,y |r,ψT ) = f (t |r,ψT ) f (y |r, t). (20.6)

If the intervention parameter takes on a null value ΨT = /0, then the joint distribution
of the random variables (T,Y ) arises naturally. Then (20.6) reduces to the joint p.d.f.
f (t,y |r) = f (t |r) f (y |r, t), where f (t |r) is the point mass density (20.2).

In contrast, an intervention that sets ΨT = t0 ∈ {0,1}, modifies f (t |r,ψT ) to
1(t = t0), in the joint p.d.f. (20.6). Also, recall that the causal effect is estimable
only conditionally on R = r0. Then the conditional p.d.f. of Y can be written as:

f (y |r0, t0) = f (y ||r0, t0), (20.7)

where || denotes “conditioning by intervention” (Lauritzen 2000). The equality
in (20.7) holds by virtue of the causal property mentioned above. Then for a
general choice of function H{·}, the causal effect is given by a comparison of
E(H{Y}|r0, t0), for t0 = 0,1, including the p.d.f.s f (y |r0, t0). For example, the
causal effect in terms of the difference, as in the general definition (20.4).

Now we turn to the issue of identifying the causal effect from data. Suppose that
there is a reason to believe that in the absence of treatment, subjects close to the
threshold r0 are similar. Then for the sharp RDD, the causal effect τH is identified
by assumption RD (20.1) and:

Continuity at r0 for ΨT = 0: f (y | r,ΨT = 0) is continuous in r at r0 for all y.
(20.8)

Equation (20.8) is a density version of the assumption in Hahn et al. (2001), who
only look at mean shifts and hence assume that

E(Y | r,ΨT = 0) is continuous in r at r0. (20.9)

We believe it is important to model mean shifts not by having a mean shift model
but rather by modeling the density of the observations and then picking out the
mean from this. This is the correct approach. Our contribution involves replacing
identifying assumption (20.9) by (20.8), and hence we need to model the density
nonparametrically.

Assuming (20.8) rather than only (20.9) allows the treatment effect to exhibit
itself in more ways than a mean shift. For example, a variance shift would also be
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informative, even in the absence of a mean shift. The model we employ is quite
general and allows many aspects of treatment effect to be explored by studying any
differences between density estimate either side of the cut-off at r0. However, we
can obviously estimate the key mean shift, having modeled the density functions
either side of the cut-off point r0, simply by estimating the means of the two density
functions.

Authors such as Lee (2008) and Lee and Lemieux (2010) further elaborated on
the continuity assumption (20.8). They showed that if subjects have imprecise con-
trol of R at r0, then this continuity condition holds, and that treatments are “as good
as randomly assigned” for the subgroup of subjects having values of the assignment
variable R located in a small neighborhood around r0.

20.2.2 Identification in the Fuzzy RDD

In the fuzzy RDD, the probability function Pr(T = 1 |r) has a discontinuous jump
that is smaller than 1 at r0, meaning that R does not determine T . Then 1R≥r0 and T
are distinct variables since the event 1R≥r0 	= T is possible; and T and Y may both
depend on unobserved confounding variables, collectively labeled as U . Given these
considerations, we may extend the joint p.d.f. (20.5) to:

f (r, t,y,u |ψT ) = f (r |u) f (t |r,u,ψT ) f (y |r, t,u) f (u). (20.10)

This p.d.f. admits the conditional independence properties (a) R ⊥⊥ΨT |U and (b)
Y ⊥⊥ΨT |R,T,U (and condition (a) can be strengthened to (R,U)⊥⊥ΨT |U). Here,
(b) is a causal property, and (a) and (b) together imply the assumption that R is a
sufficient covariate, conditionally on U . But for the purposes of making causal in-
ferences from real data, we cannot condition on (R,T,U) because U is unobserved.

However, for the fuzzy RDD, the assumptions RD (20.1) and continuity (20.8),
along with certain additional assumptions also imply that the causal effect (20.4) is
identified by the ratio:

τH =
limr↓r0 E(H{Y}|r)− limr↑r0 E(H{Y}|r)

limr↓r0 E(T |r)− limr↑r0 E(T |r) , (20.11)

for a general function H{·} of Y . The numerator of (20.11) is the Intention to Treat
(ITT) effect. The denominator is a measure of treatment adherence, which decreases
as noncompliance increases. In the sharp RDD, where 1R≥r0 = T , the denominator
is 1 (i.e., perfect adherence), and then the ITT effect coincides with the causal effect
τH . See Hahn et al. (2001) for more details.
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20.3 Estimating Causal Effects in an RDD

Here, we propose our Bayesian nonparametric model for causal inference in RDDs.

20.3.1 Bayesian Nonparametric Model

For the sharp RDD, our Bayesian nonparametric model (Karabatsos and Walker
2012) is defined by:

f (yi |ri, ti; ζζζ ) =
∞

∑
j=−∞

n(yi |μ j,σ2
j )ω j{η(ri, ti),σ(ri, ti)},

i = 1, . . . ,n, (20.12a)

ω j(η ,σ) = Φ
(

j−η
σ

)

−Φ
(

j− 1−η
σ

)

(20.12b)

η(r, t) = β0 +β1r+β2t (20.12c)

σ2(r, t) = exp(λ0 +λ1r+λ2t) (20.12d)

μ j,σ2
j |μμ ,σ2

μ ,bσ ∼ N(μ j |μμ ,σ2
μ)IG(σ2

j |1,bσ ), j = 0,±1,±2, . . .

(20.12e)

μμ ,σ2
μ ∼ N(μμ |μ0,σ2

0 )U(σμ |0,bσ μ) (20.12f)

bσ ,βββ ,λλλ ∼ Ga(bσ |a0,b0)N(βββ ,λλλ |0,vI) (20.12g)

where the mixture weights ω j{η(r, t),σ(r, t)} sum to 1 at each value of (r, t). Also,
the terms (20.12a) and (20.12b) may be deconstructed via the generation of a latent
indicator variable Z ∼ N(η ,σ2), and then taking Y ∼ N(μ j,σ2

j ) if j− 1 < Z ≤ j.
The model (20.12) allows the entire probability density of the outcome variable

Y to change flexibly as a function of covariates. The parameter σ(r, t) measures the
multimodality of f (y |r, t) (Karabatsos and Walker 2012). Specifically, as σ(r)→ ∞,
the density f (y |r, t) becomes more multimodal, with weights ω j{η(r, t),σ(r, t)}
converging to a discrete uniform distribution; and as σ(r, t)→ 0, the density f (y |r, t)
becomes more unimodal, and “local,” with f (y |r, t) ≈ n(yi |μ j,σ2

j ) and

ω j{η(r, t),σ(r, t)} ≈ 1 if j− 1 < η ≤ j.

Furthermore, the model has a discontinuity at r0 due to the presence of the term
T in both (20.12c) and (20.12d). The effect, controlled by the coefficients (βββ ,λλλ ),
is to reallocate the weights either side of r0, resulting in different densities either
side of this value. Obviously, there is a discontinuity if and only if either of the
coefficients (λ2,β2) is nonzero. The normal prior N(βββ ,λλλ |0,vI) consists of a prior
variance parameter v, which controls for both the prior support for the range of the
mixture density component indices j = 0,±1,±2, . . . (via the parameter β ), and for
the range of the level of multimodality in f (y |r, t). As v → ∞, a wider range of com-
ponent densities and multimodality is supported; and as v → 0, f (y |r, t) becomes a
normal density.
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When prior information is limited about the model parameters, we may attempt to
specify non-informative priors, for example, by choosing μ0 = 0,σ2

0 → ∞, a0 → 0,
b0 → 0, and v = 105, and by choosing bσ μ according to prior knowledge about
range of the Y variance. For instance, if Y is known to have a variance of 1, then
bσ μ = 5 provides a vague prior choice. For such choices of prior parameters, the
Bayesian model (20.12), over 22 real data sets, demonstrated very good predictive
accuracy, and better predictive accuracy compared to many other regression models,
and compared to the Bayesian model under different choices of prior (Karabatsos
and Walker 2012).

The model (20.12) has infinite-dimensional parameter, ζ = ((μ j,σ2
j )

∞
j=−∞, μμ ,

σ2
μ , bσ , βββ , λλλ ), with prior density π(ζζζ). A set of data Dn = {(yi,ri, ti)}n

i=1 updates
the prior π(ζ ) to a posterior density, given by

π(ζζζ |Dn) =
∏n

i=1 f (yi |ri, ti;ζζζ )π(ζ )
∫

∏n
i=1 f (yi |ri, ti;ζ )dΠ(ζζζ )

,

with Π(ζζζ ) (and Π(ζζζ |Dn), resp.) the c.d.f. of π(ζζζ) (of π(ζζζ |Dn)). Also, let
F(y |r, t;ζζζ ) be the c.d.f. of f (y |r, t;ζζζ ). Then the posterior predictive density,
fn(y |r, t), and the conditional posterior predictive expectation (En) and variance
(Vn) of the outcome H{Y} are given (resp.) by:

fn(y |r, t) =
∫

f (y |r, t; ζζζ )dΠ(ζζζ |Dn),

En(H{Y}|r, t) =
∫

{∫ H{y}dF(y |r, t;ζζζ )}dΠ(ζζζ |Dn),

Vn(H{Y}|r, t) =
∫ [∫ {H{y}−En(H{Y}|r, t)}2dF(y |r, t; ζζζ )

]
dΠ(ζζζ |Dn).

Depending on the choice of function H{·}, the posterior mean En and variance
Vn of the conditional expectation E(Y |r, t), variance V(Y |r, t), c.d.f. F(y |r, t) at a
point y, are given (resp.) by En{E(Y |r, t)} and Vn{E(Y |r, t)}; En{V(Y |r, t)} and
Vn{V(Y |r, t)}; and En{F(y |r, t)} = Fn(y |r, t) and Vn{F(y |r, t)}. For assessing the
fit of the Bayesian model to data, a standardized residual for each observation yi

may be computed by

zi = {yi −En(Y |ri, ti)}/{Vn(Y |ri, ti)}1/2.

If |zi|> 2, then yi can be judged as an outlier.

20.3.2 Estimating Causal Effects with the Bayesian Model

For our Bayesian model, the posterior estimates of the causal effect of T on H{Y},
conditionally on R = r0, are given as follows, under the assumptions RD (20.1) and
continuity at r0 (20.8).
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For the sharp RDD, the estimate τ̂H of the causal effect is given by

τ̂(S)H = En(τ
(S)
H ) = En(H{Y}|r0,T = 1)−En(H{Y}|r0,T = 0), (20.13)

with posterior variance Vn(τ
(S)
H ) =Vn(H{Y}|r0,1)+Vn(H{Y}|r0,0). Then τ̂(S)H ±

2[Vn(τ
(S)
H )]1/2 provides an approximate 95 % posterior confidence band around τ̂(S)H .

When inferring the causal effect in terms of the uth quantile, via τ̂(S)H =F−1
n (u |r,1)−

F−1
n (u |r,0), we may judge whether τ̂H is significantly different from zero by using

a P-P plot (Wilk and Gnanadesikan 1968) to check for non-overlap of the 95 % pos-
terior credible intervals (Fn(0.025)(y |r, t),Fn(0.975)(y |r, t)) at u, for T = 0,1, and over
a wide range of points y ∈ Y . Here, Fn(0.025)(y |r, t) (Fn(0.975)(y |r, t), resp.) denotes
the posterior 2.5th percentile (97.5th percentile, resp.) of F(y |r, t).

For the fuzzy RDD, the causal effect estimate τ̂H , in terms of the ratio estima-
tor (20.11), may be obtained by two independent regressions. The first involves
estimating the numerator using our regression model (20.12), after replacing the
covariate T with 1R≥r0 . The second involves a regression of T on (R,1R≥r0) to esti-
mate the denominator, via the posterior predictive expectations:

En(T |r,1r≥r0 = a) =
∫

Pr(T = 1 |r,a; ζζζ T )dΠ(ζζζ T |Dn), a = 0,1.

Our model (20.12) can be extended to binary regression, by modeling the response
density by:

Pr(Ti = 1 |ri,1ri≥r0 ; ζζζ T )

=

∞∫

0

[
∞
∑

j=−∞
n(t∗i |μ j,σ2

j )ω j{η(ri,1ri≥r0),σ(ri,1ri≥r0)}
]

dt∗i , i = 1, . . . ,n.

(20.14)

analogous to (20.12a). This provides flexible modeling of the inverse link function
by a covariate dependent, infinite mixture of normal c.d.f.s (Karabatsos and Walker
2012).

As before, denote π(ζζζ |Dn) as the posterior density for the model (20.12) for
the Y outcome; and denote π(ζζζ T |Dn) as the posterior density for the version of
the model for the T outcome, using (20.14). Then both posterior densities ad-
mit the conditional independence property ζζζ ⊥⊥⊥⊥⊥⊥ ζζζ T |Dn, so then we can write
π(ζζζ ,ζζζ T |Dn) = π(ζζζ |Dn)π(ζζζ T |Dn). This means that the posterior densities of both
models, π(ζζζ |Dn) and π(ζζζ T |Dn), can be estimated either separately or jointly.

For the fuzzy RDD, an estimate of the causal effect, in terms of the ratio (20.11),
is given by the posterior average of the ratio:

En(τ
(F)
H ) =

∫ {
E(h{Y}|r0,1; ζζζ )−E(h{Y}|r0,0; ζζζ )
E(T |r0,1; ζζζ T )−E(T |r0,0; ζζζ T )

}

π(ζζζ ,ζT |Dn)d(ζζζ ,ζζζ T ),
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for a given choice of function h{·}, where the differences in the ratio above are based
on values of 1r≥r0 = 0,1. A computationally fast (but somewhat ad-hoc) first-order

Taylor approximation to En(τ
(F)
H ) is given by:

τ̂(F)
H = τ̂(S)H /{En(T |r0,1r≥r0 = 1)−En(T |r0,1r≥r0 = 0)}= τ̂(S)H /En(DT ). (20.15)

For example, given the choice of function H{Y} = 1Y≤y, we have the causal effect
defined by a comparison of c.d.f.s at a point y, weighted by En(DT ), with

τ̂(F)1(Y≤y) = {Fn(y |r,1)−Fn(y|r,0)}/En(DT ).

The second-order approximation is given by

τ̂(F [2])
H = {τ̂(S)H /En(DT )}+[{τ̂(S)H V(DT )}/{En(DT )}3}],

with V(DT ) =Vn(T |r0,1)+Vn(T |r0,0). The posterior variance Vn(τ
(F)
H ) has first-

order approximation:

Vn(τ
(F)
H )≈ {τ̂(S)H /En(DT )}2[Vn(τ

(S)
H )(τ̂(S)H )−2 +V(DT ){En(DT )}−2]. (20.16)

These approximations are derived from standard results involving the distribution

of the ratio of two random variables (e.g., Stuart and Ord 1998, p. 351). Then τ̂(F)
H ±

2{Vn(τ
(F)
H )}1/2 gives a 95 % posterior interval around τ̂(F)

H . Also, when inferring

the causal effect τ̂(F)
H in terms of treatment and non-treatment differences at the uth

quantile, we may judge whether τ̂H is significantly different from zero by using a P-

P plot of the 95 % posterior intervals Fn(y |r,a)±2{Vn(τ
(F)
1(Y≤y))}, over points y ∈R,

and then checking for nonoverlap for these intervals at point u.
Alternatively, it may be of interest to investigate the sensitivity of the causal effect

estimate τ̂(F)
H to variations of treatment adherence (e.g., compliance). This can be

achieved by estimating the ratio τ̂(F)
H for each of a set of fixed nonzero values (e.g.,

1, .9, .8, . . . ,−1) for the denominator, with each estimate having posterior variance

Vn(τ
(F)
H )≈ (τ̂(S)H /En(DT ))

2{(Vn(τ
(S)
H ))(τ̂(S)H )−2}.

Using Markov Chain Monte Carlo (MCMC), Gibbs sampling methods, along
with a slice sampling step for σμ , can be used to estimate all of the aforemen-
tioned posterior quantities (Karabatsos and Walker 2012). We use Rao-Blackwell
(RB) methods to estimate all the posterior linear functionals, such as En(H{Y}|r,a),
Vn(H{Y}|r,a), ri, En(T |r,a) (for a = 0,1), Vn(T |r0,a), En(τ

(S)
H ), Vn(τ

(S)
H ),

En(τ
(F)
H ), and Vn(τ

(F)
H ) (Gelfand and Mukhopadhyay 1995).
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20.4 Illustrative Applications

The Bayesian nonparametric model was illustrated through the analysis of two data
sets, using menu-driven software that was developed by the first author (Karabatsos
2014a,b). The first data set was collected from four Chicago University schools of
education, which established a new curriculum that aims to train teachers to help
improve Chicago public schools. This data set involved a sharp RDD. The second
data set, obtained from Angrist and Lavy (2008), involves a fuzzy RDD, from a
study of the effect of class size on student achievement (Angrist and Lavy 1999).
For each data set, it seems reasonable to make the assumptions of RD (20.1) and
continuity (20.8) at r0 (i.e., imprecise control at r0), in order to identify the causal
effects of treatment on the outcome, conditionally on r0 (see Sect. 20.2).

For both data sets, the Bayesian nonparametric model assumed the same vague
priors that were mentioned in Sect. 20.3.2. According to standardized residuals, the
model under these priors provided good predictive accuracy for each data set.

All posterior estimates of this model, reported in the next two subsections, are
based on 40K MCMC samples. These samples were obtained from every fifth it-
erate of a run of 200K MCMC sampling iterations, after discarding the first 2K
burn-in samples. This provided accurate posterior estimates according to standard
convergence assessments (Geyer 2011). Specifically, univariate trace plots displayed
good mixing of model parameters and posterior predictive samples, and all poste-
rior predictive estimates obtained 95 % MC confidence intervals with half-width
sizes near .01.

20.4.1 Learning Math Teaching: Time Series Data

For the first data set, the aim is to estimate the effect of the new teacher education
curriculum on math teaching ability, among n = 347 undergraduate teacher edu-
cation students attending one of four Chicago universities. This data set involves
a sharp RDD, an interrupted time-series design (Cook and Campbell 1979) using
an assignment variable of time, ranging from fall semester 2007 through spring
semester 2013. The new curriculum (treatment) was instituted in Fall 2010 (the cut-
off, r0), and the old teacher curriculum (non-treatment) was active before then. The
outcome variable (Y ) is the number-correct score on the 25-item Learning Math
for Teaching (LMT) test (LMT 2012). Each of the students completed the LMT
test (89.9% female; 135 and 212 students under the old and new curriculum), after
finishing a course on teaching algebra. Among them, the average LMT score was
12.9 (s.d. = 3.44), with Cronbach’s alpha reliability 0.63. The LMT scores were
transformed to z-scores, having sample mean 0 and variance 1.

Using our Bayesian model, we analyzed the data to estimate the effect of the
new curriculum, versus the old curriculum, on student ability to teach math (LMT
score), at the Fall semester 2010 cutoff. The model included the LMT test z-score
as the dependent variable (Y ), and included covariates of the assignment variable
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(R), given by TimeF10 = Year− 2010.6, and of the treatment assignment variable
CTPP = 1Year≥2010.6. The cutoff 2010.6 is the time midpoint between Spring 2010
(2010.3) and Fall 2010 (2010.9).

For the model, R-squared was 0.99, and nearly all the standardized residuals
ranged between −1 and 1 over the 347 observations, with one residual slightly ex-
ceeding 2. Figure 20.1 presents the model’s posterior predictive density estimate of
the LMT outcome, for the new curriculum (treatment) and for the old curriculum
(non-treatment), at Fall 2010. The new curriculum, compared to the old, increased
the LMT scores, by shifting the density of LMT scores to the right. This shift cor-
responds to an increase in the mean (from −0.17 to −0.13), the tenth percentile
(−2.01 to −1.97), and the 25th percentile (−1.43 to −1.31), but these increases
were not statistically significant from zero according to 95 % credible intervals of
the predictive mean and of the posterior c.d.f. estimates. Also, each density presents
two modes (clusters) of students, indicating the presence of a latent binary covariate.
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Fig. 20.1 Posterior predictive density estimates of Y , under treatment (T = 1, red), and under
non-treatment (T = 0, blue)

20.4.2 Maimonides’ Data: Fuzzy RDD

The twelfth-century rabbinic scholar Maimonides proposed a rule that specifies a
maximum class size of 40, under the belief that smaller class sizes promote higher
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student achievement (see Hyamson 1937, p. 58b). Specifically, for a given class c
in school s, the rule assigns average class size (Psizesc) as a function of beginning-
of-the-year school enrollment (es), according to the prediction equation Psizesc =
es/floor[((es − 1)/40)+ 1]. The rule (equation) assigns students of a school into a
single classroom when the school’s enrollment is less than 41, assigns students into
two classrooms of average size 20.5 when school enrollment reaches 41; assigns
students into three classrooms of average size 27 when enrollment reaches 81; and
so on. The cutoff number 20.5 distinguishes between small and large classes.

Here, we study the effect of class size on average class verbal achievement,
through the analysis of data on fourth grade students who each attended one of 2,056
classes in Israeli public schools during 1991. These schools used Maimonides’ rule
to allocate students into classrooms. Demographic statistics are reported in Angrist
and Lavy (1999) (three other classes were not analyzed because they had missing
achievement data). For the Bayesian model, the dependent variable (Y ) is average
class verbal score (avgverb), which we transformed to z-scores with sample mean 0
and variance 1. The covariates include the assignment variable (R), defined by the
rule-predicted class size centered at the cutoff 20.5 (i.e., Psize205 = Psize − 20.5),
and include the indicator of large (vs. small) class assignment, Plarge = 1Psize≥20.5.
Now, while Maimonides’ rule may assign a given class to be a large (small, resp.),
the class could become small (large, resp.). For example, one school in the data set
had an enrollment of 41, leading to some students receiving a large class of 21, and
other students receiving a small class of 20. Therefore, the data arise from a fuzzy
RDD, and for the data analysis, we also consider a variable defined by the indi-
cator of large class receipt, large = 1classize≥20.5. We also fit the Bayesian model,
with the treatment (T ) variable, large, as the dependent variable, and with covariates
Psize205 and Plarge.

For the avgverb (Y ) dependent variable, the Bayesian model obtained an R-
squared of 0.88, with standardized fit residuals ranging from −1.1 to 1.3 over the
2,056 observations. Thus the model had no outliers. For the treatment (T ) depen-
dent variable, large, the Bayesian model had no outliers, and estimated 0.93 as the
denominator of the causal effect estimator (20.11). Figure 20.2 presents the model’s
posterior predictive density estimates of the avgverb outcomes, for the treatment ver-
sus the non-treatment, each divided by 0.93. It was found that large class size (versus
small) causally increased the verbal score, in terms of the 5th percentile (−2.45 to
−2.19), 10th percentile (−1.81 to −1.66), 25th percentile (−0.94 to −0.88), and
causally decreased the score in terms of the 75th percentile (0.90 to 0.79), 90th per-
centile (1.48 to 1.37), and 95th percentile (1.76 to 1.66). Each of these estimates is
based on taking the predictive quantile estimates of the Bayesian model for avgverb
(Y ), and dividing them by 0.93. Also, each density presents two modes (clusters) of
students, indicating the presence of a latent binary covariate.
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Fig. 20.2 Posterior predictive density estimates of Y , under treatment (T = 1, red), and under
non-treatment (T = 0, blue)

20.5 Conclusions

We proposed and illustrated a flexible Bayesian nonparametric regression model
for causal inference in RDDs. Such designs identify causal effects under relatively
mild conditions. While the existing linear models for RDDs only focus on mean
causal effects, the Bayesian model provides inferences of causal effects in terms of
the mean, variance, distribution function, quantile, probability density, or any other
functional of the outcome variable.

In future work, the Bayesian nonparametric regression modeling approach will
be extended to handle RDDs involving a multivariate assignment variable, R ∈R

K ,
which assigns to the treatment condition (versus nontreatment) if and only if R ∈ S,
for some set S. In this case, the measure of the causal effect (τH ) no longer depends
on a single cutpoint r0, but instead depends on multiple cutpoints, defined by the
boundary points of S. In principle, it is straightforward to extend the model to handle
a multivariate RDD, because then the model would simply include R, along with a
0-1 indicator of the event R ∈ S, as covariates. A future study will carefully study
how causal effects can be summarized over the multiple boundary points of S, via
the model’s posterior predictive distribution.
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For the Bayesian nonparametric model discussed in this chapter, a user-friendly
and menu-driven software is freely available, entitled: “Bayesian Regression:
Nonparametric and Parametric Models” (Karabatsos 2014a,b). This free software
package can be downloaded and installed from:

http://tigger.uic.edu/∼georgek/HomePage/BayesSoftware.html.

The Bayesian nonparametric model can be easily specified for data analysis, by
clicking the menu options “Specify New Model” and “Infinite probits regression
model.” Afterwards, the item response (dependent) variable, covariates, and prior
parameters can be easily selected (clicked) by the user. Then, to run for data anal-
ysis, the user clicks the “Run Posterior Analysis” button to run the MCMC sam-
pling algorithm for a chosen number of sampling iterations. Immediately after the
completion of the MCMC run, the software automatically opens a text output file
containing the results of the data analysis, including summaries of the posterior dis-
tribution of the model, obtained from the MCMC samples. The software also allows
the user to conveniently check for MCMC convergence, through a menu option that
can be clicked to construct trace plots, and through another menu option that can
be clicked to run a batch means analyses to construct 95 % Monte Carlo confidence
intervals of the posterior estimates of the model parameters. Other menu options
of the software allow the user to construct plots and (additional) text output of the
(MCMC estimated marginal) posterior distributions of the model parameters (e.g.,
box plots), and allow the user to output text and residual plots that report the fit
of the model in greater detail. Additional menu options allow the user to construct
posterior predictions of the model, as a function of the covariates, in terms of the
mean, variance, quantile, probability density, distribution function, or other chosen
functions of the outcome variable.

Currently, the software provides the user a choice of 59 statistical models, in-
cluding a large number of Bayesian nonparametric regression models. The software
allows the user to specify Dirichlet process (DP) mixture models, and more gener-
ally, mixture regression models based on the stick-breaking process (Ishwaran and
James 2001). The mixing can be done either on the intercept parameter, or on the
entire vector of regression coefficient parameters, depending on the user’s choice.
The latter mixture model gives rise to a Dependent Dirichlet (DDP) process mix-
ture model (see DeIorio et al. 2004). In principle any one of these DP or DDP
mixture models can also be used to perform causal inferences from an RDD design,
using the inference methods discussed earlier in this chapter.
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Chapter 21
Bayesian Nonparametrics for Missing Data
in Longitudinal Clinical Trials

Michael J. Daniels and Antonio R. Linero

Abstract We discuss the problem of performing inference on a causal effect of in-
terest, such as an intention-to-treat effect, in the context of longitudinal clinical tri-
als with informatively missing data. Addressing this problem requires the modeling
of infinite-dimensional nuisance parameters; modeling these nuisance parameters
poorly can result in substantial bias in the original estimation problem. Additionally,
the presence of informative (nonignorable) missingness results in effects of interest
being unidentified in the absence of strong, unverifiable, assumptions. We argue that
Bayesian nonparametric methods are natural in this setting because they (1) allow
for flexible modeling and (2) allow for uncertainty in untestable assumptions to be
taken into account through the use of informative priors elicited from subject matter
experts. We further argue that a sensitivity analysis to assess the impact of unverifi-
able assumptions is essential. Flexible Bayesian approaches which incorporate the
longitudinal structure of the data are presented in the context of categorical and
continuous outcomes, and strategies for sensitivity analysis are discussed in both
cases. The methods are illustrated on data from a clinical trial designed to assess the
efficacy of treatments for acute Schizophrenia.
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21.1 Introduction

In longitudinal clinical trials, typically one only observes a subset of the data in-
tended to be collected. In regulatory settings, one is usually interested in assess-
ing the effect of a treatment on a well-defined causal effect of interest, such as the
intention-to-treat effect of randomization to different treatment regimes. The pres-
ence of missing data results in such causal effects being unidentified in the absence
of strong, untestable assumptions.

This chapter provides a Bayesian nonparametric perspective on the problem of
estimating these effects. Proper analysis in the presence of missing data inher-
ently depends on subjective assessments made by the analyst. Here, we find the
Bayesian approach particularly attractive, as it allows for the principled incorpo-
ration of subject-matter expertise directly into the analysis through an informative
prior. Quoting Hogan et al. (2014), to address identifiability issues, one might:

(i) Make an assumption—for example, that the missing data are missing at ran-
dom (MAR)—and assume it holds with no further critique.

(ii) Fit several different models to the joint distribution of the response and miss-
ingness and assess how inferences change.

(iii) Fit an under-identified model and focus on obtaining uncertainty regions for
the effect of interest (Manski 2009; Vansteelandt et al. 2006).

Unless an assumption like MAR is known to hold due to subject-matter considera-
tions, we view approach (i) to be unwise. We will primarily consider approach (ii).
Our focus will be on methods which consider different identifying assumptions, but
which—crucially—leave the model for the observed data generating distribution
unchanged. We term an assessment of the impact of missingness assumptions on
inferences a sensitivity analysis. The Bayesian approach is then used to incorporate
uncertainty in the identifying assumptions and allow the analyst to reach a final in-
ference. The use of informative priors on unidentified components of the model is
also closely related to the frequentist approach of accounting for uncertainty about
missingness assumptions via bounds; for example, Hogan et al. (2014) illustrate that
basing inference on uncertainty regions often coincides with a particular choice of
prior distribution.

Unlike many applications of Bayesian nonparametrics, our interest is in low-
dimensional functionals of the underlying distribution, such as the mean response
at completion of the study. In the absence of missing data the use of Bayesian non-
parametrics here might be criticized as being unnecessarily complex; for example,
one might assume that the distribution of the response is multivariate Gaussian with
the inferences robust to violations of this assumption. Unfortunately, the presence
of missing data requires us to model quantities which would normally be consid-
ered nuisance parameters; moreover, the accuracy with which we estimate these
nuisances has a direct impact on the quality of inference about the quantities we are
interested in. Under ignorability, for example, one needs to estimate either the condi-
tional regression functions of a response given its history, or the probability of com-
pleting the study given the response; in the absence of parametric assumptions, both
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options require the estimation of an infinite-dimensional object. The nonparametric
Bayes approach is then a natural approach to take, with the Bayesian paradigm being
used (a) to construct flexible models which are appropriately shrunk toward simpler
parametric models and (b) to allow for uncertainty in underlying assumptions.

21.1.1 Notation and Definitions

The J × 1 vector yi = (yi1, . . . ,yiJ) is a vector of observations intended to be col-
lected on subject i = 1, . . . ,n, and ri is the vector of observed data indicators
such that yi j is observed if ri j = 1. The response vector yi can be partitioned
into yobs,i = (yi j : ri j = 1) and ymis,i = (yi j : ri j = 0). We assume that complete data
ci = (yi,ri) is drawn jointly from some joint density p(y,r). The observed data is
written oi = (yobs,i,ri). We will let o1:n = (o1, . . . ,on) denote the collection of ob-
served data on all subjects, and similarly let c1:n denote the collection of complete
data.

Let ψ( f ) denote a target functional of interest of the full data response model
f (y) =

∫
p(y,r) dr. Our focus will primarily be on mean functionals ψ j =∫

y j f (y) dy. The model for the conditional distribution of missingness given y will
be written π(r | y) and is called the missing data mechanism.

Missing data is often classified based on the form of the missing data mechanism
(Rubin 1976). Missing completely at random (MCAR) corresponds to the missing-
ness not depending on the full data response,

π(ri | yi) = π(ri), i = 1, . . . ,n.

MCAR may hold, for example, if budget constraints force analysts to follow up on
only a random subset of the respondents; it is typically only a reasonable assump-
tion if the missingness was designed by the investigator. Missing at random (MAR)
corresponds to the missingness being independent of the missing responses, condi-
tional on the observed responses,

π(ri | yi) = π(ri | yobs,i), i = 1, . . . ,n.

MCAR is implied by MAR. We say the missingness is missing not at random
(MNAR) if the missingness is not MAR. MNAR missingness is sometimes called
informative missingness.

Π will denote the prior on (p,c1:n). We will abuse notation writing, for exam-
ple, p(r | yobs) for the conditional probability of r given yobs, and Π(d f | o1:n) for
the marginal posterior of f given the observed data, when it will not create any
ambiguity.

For likelihood-based inference, a more informative categorization is ignorable
versus nonignorable missingness. For Bayesian inference, missingness is ignorable
(Rubin 1976) when the following conditions hold:

1. Missingness is MAR.
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2. f and π are a priori independent, Π(d f ,dπ) = Π(d f )×Π(dπ).

When these conditions hold, it can be shown that:

Π(d f ,dπ | o1:n) = Π(d f | yobs,1, . . . ,yobs,n)×Π(dπ | o1:n).

As such, only the full data response model f (y) needs to be modeled to make infer-
ence on functionals ψ( f ). Missingness is nonignorable when any of the conditions
above do not hold. If MAR holds but f and π are a priori dependent then one has
nonignorable MAR missingness. For nonignorable missingness, the joint distribu-
tion p(y,r) needs to be modeled.

In the setting of a longitudinal study, missingness is said to be monotone if miss-
ingness is solely due to dropout, i.e., r j = 0 implies rk = 0 for all k > j. If this is
not true, we call the missingness non-monotone; in longitudinal studies with non-
monotone missingness, non-dropout missingness is also called intermittent. For
monotone missingness, the information in the observed data indicators r is com-
pletely contained in the number of observed responses s = max{ j : r j = 1}. In this
setting (and in longitudinal data analysis in general), it is convenient to summarize
the response history up to j by ȳi j = (yi1, . . . ,yi j).

Monotonicity of missingness simplifies analyses, but does not always hold. Gen-
eralizations of the concepts of MAR and ignorability provide a default way to ad-
dress intermittent missingness. The missing data ymis is said to be partially missing
at random (PMAR) (Harel and Schafer 2009) given h(r) if there exists some coars-
ening h(r) of r such that

p(r | y,h(r)) = p(r | yobs,h(r)).

This expresses the notion that any dependence between ymis and r can be captured
through the dependence between ymis and h(r). If h(r) is the dropout time s, then
we are making the assumption that the only aspect of the missingness which is
dependent on ymis is the dropout time. Similarly, when the functions p(r | y,h(r))
and p(y,h(r)) are a priori independent, missingness is said to be partially ignorable
given h(r), and one is free to model only the coarsening h(r) and the response y
when conducting inference.

21.1.2 Literature on Bayesian Nonparametrics in Missing
Data Models

Bayesian approaches deal very naturally with missing data. Because the Bayesian
approach quantifies all uncertainties via probability, one may address missingness
by treating the missing data in the same manner one treats any unknown parame-
ter. The literature on this topic is too large to do justice; for comprehensive sum-
maries see Little and Rubin (1986), Daniels and Hogan (2008) and Molenberghs
et al. (2014). Under ignorability, likelihood-based inference does not depend on the
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missing data mechanism, so frequently the analyst will use whatever model they
would have used had there been no missing data. The missing data may then be
accommodated in a straight-forward manner during computations using data aug-
mentation. This procedure aligns so closely with the Bayesian perspective that miss-
ing data can often be handled automatically by black-box Gibbs sampling platforms
like BUGS or JAGS. Unfortunately, the simplicity of the computations often leads
investigators to think of missingness as a nuisance that can be handled in a default
manner.

Similarly, many Bayesian nonparametric methods have been proposed which
capture time-varying dependencies. Dunson (2006, 2007) proposed a dynamic
Dirichlet process (dDP) to model the change in underlying latent-trait distributions
over time in a flexible manner. Ren et al. (2008) proposed a dynamic hierarchi-
cal Dirichlet process (dHDP) in the spirit of the hierarchical Dirichlet process (Teh
et al. 2006) to give a more flexible sharing of atoms across time. Dunson and Her-
ring (2006) proposed a functional Dirichlet process to flexibly model and cluster the
responses of individuals based on their latent trajectories. Beyond the Dirichlet pro-
cess and similar constructions, time varying analogues of the Indian Buffet Process
have also been considered (Gael et al. 2009; Williamson et al. 2010). In principle,
these methods can be easily adapted to accommodate ignorable missing data.

Bayesian nonparametrics have also been used to facilitate multiple imputation
(MI) (Little and Rubin 1986; Rubin 1987). MI methods impute the missing data
from the predictive distribution Π(dc1:n | o1:n) a fixed number of times. The com-
pleted datasets are then analyzed separately, with the inferences obtained for each
dataset combined in a principled manner. General wisdom holds that the imputa-
tion model should be “big enough” to preserve whatever relationships might be
studied later. Bayesian nonparametric methods are attractive because they allow
for the preservation of complex relationships in the data. In this direction, Si and
Reiter (2013) proposed a Dirichlet mixture model for multiple imputation of high-
dimensional survey data. However, it is often the case that the model used for im-
putation is not compatible with the model used for inference; for details see Meng
(1994) and Daniels et al. (2014).

21.1.2.1 Likelihood Factorizations

Likelihood-based approaches for nonignorable missingness can largely be catego-
rized by how the joint distribution p(y,r) is factorized when setting up the model.
Selection models (Heckman 1979; Diggle and Kenward 1994) are based on the fac-
torization

p(y,r) = f (y)×π(r | y).

Selection models often possess the “benefit” of fully identifying the effects of in-
terest. We feel that full identification of p(y,r) masks inherent identifiability dif-
ficulties. This can be overcome by making the model suitably nonparametric; for
example, in a cross-sectional setting, Scharfstein et al. (2003) used a Dirichlet
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process model for the response f (y), with the selection model parametrized by
a weakly-identified sensitivity parameter. By contrast, in the context of spatial
statistics, Pati et al. (2011) developed a Gaussian process model for a spatial
response and addressed informative choice of sampling locations with a selection
model, completely identifying the joint. In general, it is difficult to specify a selec-
tion model in non-simple settings that allows a true sensitivity analysis.

Pattern-mixture models (Little 1993, 1994; Hogan and Laird 1997) consider the
opposite factorization,

p(y,r) = g(y | r)×φ(r).

In the absence of further assumptions, the model φ(r) is fully identified by the data
while the mixture model g(y | r) is not. A benefit of pattern-mixture models is that
they force the analyst to confront identifiability issues directly. g(y | r) may be iden-
tified by specifying parametrically how information is shared across missingness
patterns or by making modeling assumptions in unidentified patterns, or may be left
partially identified to facilitate a sensitivity analysis (Daniels and Hogan 2000; Thijs
et al. 2002; Daniels and Hogan 2008).

Shared parameter models (Wu and Carroll 1988; Henderson et al. 2000), intro-
duce latent variables such that

p(y,r) =
∫

p(y,r | b) G(db). (21.1)

To simplify the structure, it is typical to assume independence of y and r conditional
on the random effect b, although Fieuws and Verbeke (2006) note potential pitfalls.
If b has support {1,2, . . . ,K}, then this is referred to as a latent class model (Roy
2003).

An advantage of shared parameter models is their ability to express complex rel-
ationships between y and r in a small number of latent variables. This is especially
useful in multivariate longitudinal settings (Dunson and Perreault 2001). The form
of (21.1) suggests modeling the random effects distribution G(db) nonparametri-
cally. This possibility was remarked on by Dunson (2007). Random measures have
been used to model random effects distributions in this spirit (Kleinman and Ibrahim
1998). Shared parameter models have similar full identification problems as selec-
tion models. Some relatively recent work (Creemers et al. 2010; Njagi et al. 2014)
shows how to introduce sensitivity parameters into shared parameter models, but we
feel it is not in the spirit of the shared parameter model specification.

21.2 Our Framework

Our approach starts from the following factorization, termed the extrapolation fac-
torization by Daniels and Hogan (2008):

p(y,r) = pmis(ymis | yobs,r)× pobs(yobs,r). (21.2)
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The second component on the right-hand side is the observed data model and the
first component on the right-hand side is the extrapolation model. This factorization
is consistent with the pattern mixture model factorization,

p(y,r) = g(y | r)×φ(r)
= g(ymis | yobs,r)︸ ︷︷ ︸

pmis

×g(yobs | r)×φ(r)
︸ ︷︷ ︸

pobs

.

We advocate specifying a Bayesian nonparametric prior Πobs directly on the obs-
erved data distribution pobs.

Because the observed data likelihood is pobs(yobs,r), the choice of pmis does not
impact the fit of the model to the observed data, i.e., (yobs,r) only informs directly
about pobs. Therefore, the impact of unverifiable assumptions on inferences must be
honestly assessed. This can be done by varying parameters which do not impact
the fit of pobs to the observed data and/or by specifying informative priors for these
parameters; such parameters are called sensitivity parameters. The absence of pmis in
the observed data likelihood also suggests that when assessing model fit one should
only use criteria that are invariant to choice of the extrapolation distribution—see
Property I in Daniels et al. (2012).

Sensitivity parameters are directly related to the extrapolation factorization. We
give a nonparametric version of the definition given by Daniels and Hogan (2008)
and Hogan et al. (2014). Other definitions are given by Robins (1997) and Vanstee-
landt et al. (2006). Let Pobs and Pmis denote appropriate spaces of distributions as-
sociated with pobs and pmis respectively. Let ξ ∈ Ξ and define g : {Pobs ×Ξ}→Pmis

such that g(pobs,ξ ) = pmis. We will call the function g(pobs,ξ ) an identifying restric-
tion. The parameter ξ is called a sensitivity parameter. Some properties of sensitiv-
ity parameters include:

1. Sensitivity parameters are unidentified in the sense that

Π(dξ | pobs,o1:n) = Π(dξ | pobs).

Additionally, the likelihood L = ∏i p(yobs,i,ri) does not depend on the sensitivity
parameter.

2. For fixed and known ξ , pmis—and hence the joint p(y,r)—is identified, provided
that g(pobs,ξ ) is suitably smooth in pobs.

Our approach is to elicit clinically meaningful informative priors on the sensitiv-
ity parameters ξ ; hence, it is essential that the function g(pobs,ξ ) be interpretable to
clinicians. Our approach is to anchor our analysis at a well-understood identifying
restriction. In our examples, we will choose g(pobs,ξ ) such that g(pobs,000) corre-
sponds to the MAR assumption, with deviations of ξ from 000 interpreted as devi-
ations from MAR. Additionally, ξ itself will be easily interpretable as, for example,
a location-shift parameter or an effect on the log-odds ratio of dropout.

An additional benefit of working directly with the extrapolation factorization is
that different types of dropout can be accounted for by allowing the extrapolation
distribution pmis to depend on cause of dropout; hence, assumptions about the miss-
ing data can be allowed to depend on the reason for dropout. This is illustrated in
Sect. 21.6.
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Our overall approach can be broken down into two steps.

(i) Choose a prior Πobs for pobs to obtain a good fit to the data without overfitting,
conducting model selection in a manner which is invariant to pmis.

(ii) Identify pmis by specifying a family of clinically meaningful identifying restric-
tions g(pobs,ξ ). Then, vary ξ smoothly to assess the impact of assumptions on
inferences, and conclude with a final inference by placing an informative prior
on ξ .

Section 21.3 focuses on (i), while Sect. 21.4 focuses on (ii).

21.3 Examples of Models for the Observed Data

As with Bayesian nonparametric models in general, it is important to control the
flexibility of our models by using the prior to achieve shrinkage toward simpler
parametric models. In this section, we describe priors Πobs for pobs which induce
shrinkage toward simple models and leverage the longitudinal structure of the data.
For simplicity, we assume in the examples to follow that any intermittent missing-
ness is partially ignorable given the dropout time si = max{ j : ri j = 1}.

21.3.1 Longitudinal Binary Responses

The joint distribution of binary longitudinal data and the missing data indicators can
always be specified nonparametrically in terms of a “big” multinomial distribution.
However, due to sparsity, the cell probability estimates will be unstable and highly
variable. Informative Dirichlet priors on the cell probabilities can induce stability.
A better option is to factor this distribution to exploit the longitudinal structure of
the data; the following specification, which shrinks toward a lag-1 Markov model,
follows Wang et al. (2010).

We specify saturated models for the distribution oi = (ȳisi ,si) using the following
two sets of factors:

{p(y j = 1 | s ≥ j, ȳ j−1) : j = 1, . . . ,J}
{p(s = j− 1 | s ≥ j− 1, ȳ j−1) : j = 2, . . . ,J}.

We parameterize these models as follows:

p(y1 = 1) = α1

p(y2 = 1 | s ≥ 1,y1 = y) = α2,y

p(y j = 1 | s ≥ j,y j−1 = y, ȳ j−2) = α j,ȳ j−2,y

p(s = 1 | y1 = y) = γ1,y

p(s = j− 1 | s ≥ j− 1,y j−1 = y, ȳ j−2) = γ j−1,ȳ j−2,y, (21.3)
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for j = 2, . . . ,J and y = 0,1. Note that the parameters (α,γ) specify a saturated
model for pobs. The model proposed here is rich enough to provide an exact fit to the
observed data. Unfortunately, the number of parameters increases exponentially in
J and there will be many combinations of ȳ j−1 (i.e., cells) which will be sparse or
empty. This has been called the curse of dimensionality (Robins and Ritov 1997).
Although these parameters are not themselves of interest, our interest is often in
some functional of p(yJ = 1), which is a function of all the parameters in (21.3). To
overcome this, we specify informative priors for these parameters. Given that each
parameter is a Bernoulli probability, we specify beta priors for these parameters
such that the distribution is centered on a first order Markov model for y, with an
unknown shrinkage parameter. More specifically, we use the following priors:

α j,ȳ j−2,y ∼ beta(m(α)
j,y /ηα

j,y,(1−m(α)
j,y )/ηα

j,y)

γ j−1,ȳ j−2,y ∼ beta(m(γ)
j−1,y/ηγ

j−1,y,(1−m(γ)
j−1,y)/ηγ

j−1,y),

for j = 2, . . . ,J and y = 0,1. Note for all values of ȳ j−2, the prior mean, m(α)
j,y is

the same. As the η’s tend to 0 the model for the observed data approaches a first
order Markov model. Wang et al. (2010) then place Unif(0,1) priors on all m par-
ameters and specify independent uniform shrinkage priors (Daniels 1999) on the η
parameters.

To illustrate the effect of shrinkage, Fig. 21.1 presents an analysis on the cell
probabilities in the Breast Cancer Prevention Trial given by Wang et al. (2010),
giving the probability of depression under an assigned treatment at each time. We
see that estimated posterior probabilities of depression given each possible history
is stabilized substantially relative to the saturated model.

21.3.2 Longitudinal Continuous Responses

We describe an approach for continuous data with a somewhat different spirit than
the approach used in Sect. 21.3.1. The general approach described here can be app-
lied to data types other than continuous data through the introduction of latent con-
tinuous variables. For consistency with the analysis in Sect. 21.6 we describe the
method assuming monotone dropout with dropout time s = max{ j : ri j = 1}.

Our goal is to place a prior Πobs on pobs; the previous section effectively con-
structed this prior directly on Pobs. We instead construct Πobs indirectly by consider-
ing a working prior Π � on P , the space of models for the complete data distribution
p(y,s). Rather than using Π � for inference, however, we use it to induce the prior
on pobs,

Πobs(A) = Π �(pobs ∈ A). (21.4)

To understand this approach, we can think of Π � as a prior on a working model
p� with p� giving its own interpretation of how the observed data was generated.
This is depicted in Fig. 21.2. Because Π � is a prior on P , this prior could be used
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a

b

Fig. 21.1 (a) The empirical rate and model-based posterior mean of p(y j = 1 | ȳyy j−1,S≥ j) and j =
6,7. (b) The difference between the empirical and model-based posterior mean of the depression
rate. The x-axis is the pattern of historical response data ȳyy j−1. (a) Conditional depression rate.
(b) Shrinkage difference

to identify pmis; however, we will not use Π �(d p | o1:n) for inference, instead using
only the induced posterior Πobs(d pobs | o1:n) and handling the extrapolation model
pmis separately, as in Sect. 21.4 below. This discards any information Π � gives about
pmis.

There are several reasons for wanting to take the indirect approach described
above. First, in light of the curse of dimensionality, borrowing information across
timepoints j and dropout times s is required for sample sizes encountered in prac-
tice. In constructing models which share information across timepoints, we have
found it easier to construct reasonable priors on P than to construct priors on Pobs.
The working-model analogy can provide intuition about how a given prior shares
information across time and dropout patterns. Second, strategies for posterior com-
putation can leverage the working prior/working model analogy in order to conduct
efficient posterior inference. If inference is being conducted through MCMC, the
top path in Fig. 21.2 suggests a data-augmentation algorithm. Inference algorithms
can then be based on an appropriate full data model.

A final benefit is that theoretical properties of the induced prior Πobs in the
presence of missing data, such as weak and strong consistency, follow readily from
standard sufficient conditions on Π � when there is no missing data (Linero 2015a,b);
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Fig. 21.2 Graphical depiction of the working-model approach; the working prior Π� induces the
prior Πobs on pobs, while having a latent interpretation has having the data come from a work-
ing model p�. The solid path describes the model for the observed data, while the dashed path
describes a latent explanation for the observed data

this is particularly convenient if Π � is chosen to be a prior for which these sufficient
conditions have already been verified.

21.3.2.1 A Dirichlet Process Mixture Working Prior

We describe a working prior based on Dirichlet process mixtures which was used
by Linero and Daniels (2015). The prior Π � is a truncated Dirichlet process mixture
model such that if p� ∼ Π � then

p�(y,s) =
K

∑
k=1

wk fθ (k) (y)πγ(k) (s | y),

where (θ (k),γ(k)) iid∼ H for some base distribution H and w = (w1, . . . ,wK) is given
a truncated stick-breaking prior. Typically fθ (·) will be a normal kernel, with θ =
(μ ,Σ). One possible choice for πγ(s | y) is the sequential hazard model (Diggle and
Kenward 1994),

πγ(s | y) = expit(ζs +λ T
s ȳs)∏

j<s
(1− expit(ζ j +λ T

j ȳ j)),

where expit(x) = [1+ e−x]−1 is the logistic function and γ = (ζ ,λ ). p� is then a
mixture of models which satisfy the MAR assumption. While this may seem overly
restrictive, any joint p(y,s) can be approximated arbitrarily well by an appropriate
mixture of MAR (or even MCAR) models.
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A possible choice for the prior on (μ (k),Σ (k)) is the standard normal-inverse-
Wishart prior. We instead favor a prior which reparametrizes Σ (k) in terms of
autoregressive parameters (Daniels and Pourahmadi 2002); given that yi belongs
to mixture component k, we may write

yi j = μ (k)
j +

j−1

∑
�=1

φ (k)
� j (yi�− μ (k)

� )+ εi j, εi j ∼N (0,ρ2(k)
j ).

The reparametrization in terms of (μ (k),φ (k),ρ (k)) offers more possibilities for the
practitioner to exploit the longitudinal structure of the data; for example, φ (k) terms
associated with higher-order lag terms may be shrunk toward 0 to achieve shrinkage
toward a structured covariance matrix.

In Sect. 21.6, we impose the restriction that πγ(s | y) = expit(ζs +λsys)∏ j<s[1−
expit(ζ j + λ jy j)]. The λ (k)

j and ζ (k)
j were then given N (μλ ,σ2

λ ) and N (μζ ,σ2
λ )

priors. In the spirit of Gelman et al. (2008), the yi j’s were standardized to have mean
0 and standard deviation 0.5, and the parameters μζ and μλ were both given Cauchy
priors with location 0 and scales 5 and 2.5 respectively. Inverse-gamma priors were
used on σ2

ζ and σ2
λ . In principle, however, we might treat (ζ ,λ ) in the same manner

as (μ ,φ), shrinking to, rather than assuming, the lag-1 model within class.

21.4 Identifying Restrictions and Sensitivity Parameters

We now discuss the choice of identifying restrictions g(pobs,ξ ). Identifying restric-
tions are a convenient and parsimonious way to identify the extrapolation distribu-
tion for monotone missingness.

The available case missing value (ACMV) restriction (Little 1994) equates the
unidentified distributions to their identified counterparts,

p(y j | ȳ j−1,s = k) = p(y j | ȳ j−1,s ≥ j), (21.5)

for j > k. Molenberghs et al. (1998) showed that this restriction is equivalent to
MAR for monotone missingness,

p(s = j | y) = p(s = j | ȳ j).

A parsimonious way to introduce sensitivity parameters is to embed the ACMV
restriction into a class of non-future dependent (NFD) restrictions. The non-future
dependent restrictions introduced by Kenward et al. (2003) identify all but one con-
ditional distribution for each dropout pattern (s) and assume missingness does not
depend on future responses. In particular,

p(y j | ȳ j−1,s = k) = p(y j | ȳ j−1,s ≥ j− 1), (21.6)



21 Bayesian Nonparametrics for Missing Data in Longitudinal Clinical Trials 435

for j−1> k. For monotone missingness, under the above restriction, the probability
of the j’th response being missing conditional on having seen the ( j−1)’st response
depends on the past (ȳ j), the present (y j+1), but not the future ({yk : k > j+ 1}),

p(s = j | y) = p(s = j | ȳ j,y j+1).

Table 21.1 gives a schematic representation of the NFD assumption. Under NFD,
for each value of s there is one unidentified distribution, p(y j | ȳ j−1,s= j−1). Thus,
the right-hand side in (21.6) is unidentified, unlike in (21.5). Setting p(y j | ȳ j−1,s =
j− 1) = p(y j | ȳ j−1,s ≥ j) shows that ACMV is a special case of NFD.

Table 21.1 Schematic representation of NFD when J = 4

j = 1 j = 2 j = 3 j = 4
S = 1 p1(y1) ? p≥2(y3 | ȳ2) p≥3(y4 | ȳ3)
S = 2 p2(y1) p2(y2 | y1) ? p≥3(y4 | ȳ3)
S = 3 p3(y1) p3(y2 | y1) p3(y3 | ȳ2) ?
S = 4 p4(y1) p4(y2 | y1) p4(y3 | ȳ2) p4(y4 | ȳ3)

Subscripting p with j or ≥ j denotes conditioning on the events s = j and s ≥ j
The distributions above the dividing line correspond to pmis

In what follows, we review several approaches to identify these distributions.
First, we consider an exponential tilting approach (Birmingham et al. 2003; Scharf-
stein et al. 1999). We take

p(y j | ȳ j−1,s = j− 1) ∝ p(y j | ȳ j−1,s ≥ j)exp[q j(ȳ j;ξ )] (21.7)

This assumption is equivalent to the assumption that

log

{
Odds(s = j− 1 | ȳ j,s ≥ j)
Odds(s = j− 1 | ȳ′j,s ≥ j)

}

= q j(ȳ j;ξ )− q j(ȳ
′
j;ξ ) (21.8)

provided that ȳ′j−1 = ȳ j−1. The tilting function q j(ȳ j;ξ ) represents the effect on the
scale of log-odds ratios of y j on dropout holding ȳ j−1 fixed. For example, one might
take q j(ȳ j;ξ ) = ξ jy j with ξ j a sensitivity parameter which can be interpreted as the
effect of changes in y j on the probability of dropout at time j − 1 on the log-odds
scale. The identifying restriction g(pobs,ξ ) is determined by the combination of NFD
and the exponential tilting assumption. This approach was used with the model in
Sect. 21.3.1 by Wang et al. (2010).

Next, we consider a transformation based approach. Suppose that y is continu-
ously valued. We assume the existence of a transformation T j(y j; ȳ j−1,ξ ) such that

[
y j | ȳ j−1,s = j− 1

] d
=
[
T j(y j; ȳ j−1,ξ ) | ȳ j−1,s ≥ j

]
, (21.9)

where
d
= denotes equality in distribution. The transformation T j can be thought of

as a correction for missingness in the following sense. Suppose that two subjects,
A and B, are identical up-to time s = j−1, but that A continues on study (s ≥ j) but
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Fig. 21.3 Depiction of coupling interpretation of transformation approach; two subjects have the
same response value at times j = 1,2,3, but one continues (s ≥ 4) while the other does not (s = 3).
The conditional distribution for both observations is the same after applying the correcting trans-
formation

B does not (s = j−1). T −1
j functions as a correction to the response of B such that

the response at time j has the same conditional distribution for both subjects. This
is expressed in Fig. 21.3. A commonly used choice of T j is a location-scale shift

T j(y j; ȳ j−1,ξ ) = ξ1 jy j +(1− ξ1 j)Ep[y j | ȳ j−1,s ≥ j]+ ξ2 j,

which has the effect of shifting the conditional mean of y j by ξ2 j and scaling the
conditional standard deviation of y j by ξ1 j.

The transformation method may be less appropriate for non-continuous re-
sponses. For binary responses, it may be more appropriate to consider transforming
the mean,

Ep[y j | ȳ j−1,s = j− 1] =T j
(
Ep[y j | ȳ j−1,s ≥ j];ξ

)
.

For example, one might set

Ep[y j | ȳ j−1,s = j− 1] = expit
{

logit
(
E[y j | ȳ j−1,s ≥ j]

)
+ ξ j

}
,

which gives ξ j the interpretation of a shift in probability of success on the scale of
log odds-ratios. See, for example, (Daniels and Hogan 2008, page 248) or (National
Research Council 2010, page 92) for examples of this approach.
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21.4.1 Incorporation of Information on Reason for Dropout

In longitudinal clinical trials with attrition the analyst often has access to infor-
mation on cause of dropout for given individuals. Presumably, a subject who was
removed from study due to an incidental protocol violation ought to be handled
differently than a subject who dropped out specifically because his prescribed treat-
ment was ineffective.

One approach (Hogan and Laird 1997) is to divide causes of dropout into “infor-
mative” and “noninformative” causes, and regard the true dropout time of an indi-
vidual to be censored if the cause of dropout is noninformative. Another approach
is to model the cause of dropout itself and incorporate it into the analysis (Linero
and Daniels 2015).

21.4.2 Intermittent Missingness

The identifying restrictions outlined above are useful for monotone missingness. As
mentioned in Sect. 21.1.1, invoking the partial ignorability assumption with h(r) =
max{ j : r j = 1} allows the use of techniques for monotone missingness even in the
presence of non-monotone missingness.

As with any other assumption about the missing data, partial ignorability must be
assessed on subject-matter grounds and may or may not be reasonable in any given
situation. Alternative assumptions for intermittent missingness may be used when
it fails, such as sequential explainability (Vansteelandt et al. 2007) or selection-bias
permutation missingness (Robins et al. 2000). Briefly, the sequential explainability
assumption states that

p(r j = 1 | r̄ j−1,y) = p(r j = 1 | ō j−1),

where r̄ j−1 and ō j−1 denote the missingness pattern and observed data history up-
to time j − 1. One may then introduce sensitivity parameters to allow for smooth
departures from sequential explainability in order to facilitate a sensitivity analysis.
Unlike MAR, sequential explainability is not sufficient to identify p(y,r); it is, how-
ever, strong enough to identify the marginal distributions f (y j) and hence effects of
interest such as the marginal means ψ j =

∫
y j f (y j) dy j. An appropriate modifica-

tion of the inference algorithm given in Sect. 21.5 can be extended to the case of
sequential explainability.
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21.5 General Strategy for Posterior Inference

By constructing models based on the extrapolation factorization, we can outline a
general three step strategy for posterior inference. For each iteration of our MCMC
scheme we do the following.

1. Generate a sample pobs from our Markov chain targeting Πobs(d pobs | o1:n).
2. Generate ξ from its prior Π(dξ | pobs).
3. Combine pobs and ξ via the chosen identifying restriction to get p(y,r) = f (y)×

π(r | y) and calculate desired functionals ψ( f ).

Steps 1 and 2 are standard, with the approaches in Sects. 21.3.1 and 21.3.2 allowing
for sampling of pobs, potentially using packages such as JAGS or BUGS. Step 3 is
more problematic, as quantities of interest are complicated functionals of (pobs,ξ ).

To address Step 3 in general, Linero and Daniels (2015) estimate linear function-
als ψ( f ) =

∫
t(y) f (y) dy via Monte Carlo at each iteration by forward-sampling a

large number of observations from p(y,s). This Monte Carlo approach is frequently
used in the context of estimating causal effects via the so-called G-computation for-
mula, and has a long history (Robins 1986, 1989; Robins et al. 2000). A very similar
strategy was used by Scharfstein et al. (2014). Our use of G-computation is compu-
tationally expensive, though we have not found it prohibitive and we believe there
is scope for improving it substantially.

The steps needed to forward-sample from p(y,r) under NFD are:

(i) Draw (ȳs,s) from pobs.
(ii) Draw ys+1 from p(ys+1 | ȳs,s), making use of our identifying restriction.

(iii) For each j > s+ 1:

a. Draw r j ∼ Bern(ρ) where ρ = p(s ≥ j | ȳ j−1,s ≥ j− 1).
b. If r j = 1, draw y j from p(y j | ȳ j−1,S ≥ j), otherwise draw y j from p(y j |

ȳ j−1,s = j− 1) making use of our identifying restriction.

This algorithm is tractable for the models described in Sects. 21.3.1 and 21.3.2,
though for small J, it is not needed for the model in Sect. 21.3.1 as the G-
computation formula can be calculated exactly; see Wang et al. (2010) for details.

21.6 Example Data Analysis

We illustrate the proposed approach on data from a clinical trial designed to assess
the efficacy of a treatment for acute schizophrenia. A more detailed analysis of this
data, including a detailed simulation study to assess frequentist properties, is given
by Linero and Daniels (2015). The trial was double-blinded with subjects random-
ized to one of three treatments: a test drug (81 subjects), an active control drug
(45 subjects), and a placebo (78 subjects). The Positive and Negative Syndrome
Scale (PANSS) was used to assess severity of schizophrenia symptoms in subjects.
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Interest was primarily in the causal effects of the baseline randomization at each
time point (known as the intention-to-treat effect)

ψ j = Ep [y j − y1 | on drug]−Ep [y j − y1 | not on drug] , j = 2, . . . ,6.

Moderate attrition was observed, with dropout rates of 33 %, 19 %, and 25 % on the
test drug, placebo, and active control arms, respectively.

We use the working-model approach for continuous data outlined in Sect. 21.3.2,
employing the non-future dependence assumption. Figures 21.4 and 21.5 provide
some motivation for the use of the Dirichlet process working prior. Displayed are
two latent classes of observations on the Placebo arm of the study, consisting mostly
of completers (s = 6), along with a symmetric heatmap displaying the posterior
pairwise probability of individuals belonging to the same cluster according to the
Dirichlet process. The heatmap reveals several non-overlapping groups. These plots
suggest that a standard multivariate Gaussian model is likely to be inadequate.

Information was also available on cause-of-dropout, with dropouts on the placebo
and test drug arms more likely to be for informative reasons. The transformation
method was used, with the additional restriction that the transformation is not ap-
plied if the dropout was for a noninformative reason. A location shift transformation
was used, as in Fig. 21.3, i.e., T j(y j; ȳ j−1,ξ j−1) = y j +ξ j−1. Formally, we assumed

[y j | ȳ j−1,S = j− 1]
d
= ϑ [y j + ξ j−1 | ȳ j−1,s ≥ j]+ (1−ϑ)[y j | ȳ j−1,s ≥ j],

where ϑ is a modeled probability of informative missingness. ϑ was given a
Uniform(0,1) prior and estimated from the information on cause of dropout in the
data. Figure 21.6 presents an assessment of how well our model matches various
aspects of the observed data, and the extent to which the model-based credible in-
tervals match model-free credible intervals. We find little disagreement between the
model and model-free approaches.

To get a sense of the overall impact on inferences of missingness through the
sensitivity parameters, ξ j, we consider a sensitivity analysis wherein we restrict
ξ j = ξ j′ but allow ξ to vary across treatments with ξA for the active treatment and
ξP for the placebo. Inferences for fixed sensitivity parameters are given in Fig. 21.7;
we see that generally as the role of informative missingness becomes more drastic
(i.e., as ξP = ξA increases) the posterior probability Π(ψ6 > 0 | o1:n) tends toward 1.

Once we understand the role of the sensitivity parameters by conducting a sensi-
tivity analysis, a final inference can be reached through the use of informative priors
on the sensitivity parameters. Each of the ξ j were given a Uniform(0,8) prior to ref-
lect the prior belief that deviations due to informative missingness were not thought
to plausibly exceed one conditional standard deviation; similar calibration was done
in Daniels and Hogan 2008, Section 10.2.8. Final results of the analysis are given in
Fig. 21.8. In this case, we see that the presence of informative missingness masks
the effect of the treatment if MAR is incorrectly assumed. The magnitude of the
masking is of course dependent on the prior chosen for ξ j; had our prior placed
more mass on larger values of the ξ j then one would obtain more extreme results.
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Fig. 21.4 Trajectories of two latent classes of subjects on the placebo arm of the trial (dashed) with
mean response over time (solid). Each figure contains 16 trajectories for the purpose of comparison
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Fig. 21.5 Clustering of subjects in the placebo arm of the study; groups in Fig. 21.4 were chosen to
be completers with uniformly high pairwise probability of clustering together, with low posterior
probability of overlap
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Fig. 21.6 Top: Modeled (solid) and model-free (dashed) estimates and intervals for the marginal
dropout probabilities at each time. Bottom: The same plots, but with respect to the marginal mean
at each time. Error bars represent 95 % confidence/credible intervals
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Fig. 21.7 Contour plot giving inference for the effect ψ6 for different values of the sensitivity
parameters ξA and ξP. Coloring is associated with the posterior mean E[ψ6 | Observed Data,ξ ]
while the solid lines give contours of the posterior probability that ψ6 > 0
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Fig. 21.8 Posterior means, quartiles, and 95 % credible intervals for the ψ j’s

The final posterior mean of ψJ , the intention-to-treat effect at completion of the
study, was (−6.2) with 95 % credible interval (−12.6,2.3).

21.7 Open Issues

In this section, we point out some areas for future work.
The observed data models proposed in Sect. 21.3 could be modified to account

for ordinal responses. In particular, for the models in Sect. 21.3.2, it would require
the introduction of latent variables (Kottas et al. 2005; Johnson and Albert 1999),
potentially with identifying restrictions constructed on the scale of the latent vari-
ables. A challenge in this setting is to ensure that the identifying restrictions are
clinically meaningful. Related extensions to multivariate longitudinal data would
have similar issues with identifying the extrapolation distribution.

We discussed a common strategy for non-monotone missingness earlier, using
identifying restrictions (with potential sensitivity parameters) for dropout and par-
tial ignorability for intermittent missingness. Alternative strategies, mentioned in
Sect. 21.4.2, which rely on different models for the observed data distribution and
different types of identifying restrictions need further exploration.

It is not uncommon to include additional covariates in the analysis that we do
not want to include in our causal estimand of interest, but are predictive of missing-
ness. Such covariates, called auxiliary covariates, can make an (auxiliary variable)
MAR assumption more realistic and potentially reduce the range of sensitivity pa-
rameters. Such covariates are often included by specifying (i) a model to impute the
missing responses which includes these covariates and (ii) a separate model which
uses the completed datasets for inference (Rubin 1987). These two models are often
not compatible (Meng 1994). In recent work Daniels et al. (2014) took a Bayesian
approach which ensured compatibility and obtained the desired inference model.
Related Bayesian nonparametric extensions related to those developed here have
yet to be developed.
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In order to conduct a meaningful sensitivity analysis, it is essential to be able
to introduce interpretable sensitivity parameters. Accomplishing this while main-
taining tractable inference algorithms—in particular, being able to forward-sample
p(y,r) as discussed in Sect. 21.5—is often the primary obstacle to our approach;
how to do this in complicated models is essentially an open problem.

There are direct connections of our recommended approach for missing data to
causal inference. In particular, a Bayesian nonparametric model can be used for the
observed data. Untestable assumptions, similar to the specification of the extrapo-
lation distribution here, need to be specified with sensitivity parameters. A recent
illustration in the setting of assessing the causal effect of mediators can be found in
Kim et al. (2015).
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Lévy-driven process, 198
linear dependent tailfree process, 224

Markov process
discrete, 197, 430

normalized generalized gamma process, 118
normalized inverse-Gaussian process, 118

© Springer International Publishing Switzerland 2015
R. Mitra, P. Müller (eds.), Nonparametric Bayesian Inference in Biostatistics,
Frontiers in Probability and the Statistical Sciences,
DOI 10.1007/978-3-319-19518-6

447



448 Index

Pitman-Yor process, 102, 179
Poisson-Dirichlet process, 6, 177, 179
Polya tree, 8, 220, 224

finite, 331
mixture of, 17, 221, 331
mixture of finite, 18

Polya urn, 5
Poya tree

mixture of, 29
Poya urn, 18
product partition model, 121, 361

generalized, 101
spatial, 367

proportional hazards model, 25, 203, 221, 249
proportional odds model, 226, 250

species sampling model, 362, 410
conditionally autoregressive, 364
varying weight regression, 410

species sampling sequences, 100
stick-breaking prior, 5, 18

areally-referenced, 383

time-dependent covariate
Cox, 28
Cox and Oakes, 28
proportional odds, 28

undirected graph, 155


	Preface
	Contents
	List of Contributors
	Editors’ Biography
	Part I Introduction
	1 Bayesian Nonparametric Models
	1.1 Nonparametric Bayesian Inference in Biostatistics and Bioinformatics
	1.2 Dirichlet Process
	1.2.1 DP Mixture
	1.2.2 Generalizations of the DP

	1.3 Dependent Dirichlet Process
	1.3.1 Variations of the DDP

	1.4 Polya Tree
	1.5 Gaussian Process
	1.6 Conclusion
	References

	2 Bayesian Nonparametric Biostatistics
	2.1 Introduction
	2.1.1 Organization of this Chapter

	2.2 Comments on the DPM and MPT
	2.3 Longitudinal Data: Semiparametric Autoregressive Modeling
	2.3.1 The Semiparametric Model
	2.3.2 Model Specification for Hormone Data

	2.4 Survival Data: Nonparametric and Semiparametric Modeling
	2.4.1 Nonparametric and Semiparametric Survival Regression: A Selective Historical Perspective
	2.4.2 Semiparametric Models for Survival Data with Time-Dependent Covariates
	2.4.3 A Nonparametric Survival Regression Model

	2.5 Joint Modeling of Longitudinal and Survival Data
	2.5.1 Medfly Data Analysis

	2.6 Medical Diagnostic Data
	2.6.1 ROC Regression
	2.6.2 A Semiparametric ROC Regression Model in the Absence of a Gold Standard Test
	2.6.3 Joint Longitudinal Diagnostic Outcome Modeling and Analysis

	2.7 Final Remarks
	References


	Part II Genomics and Proteomics
	3 Bayesian Shape Clustering
	3.1 Introduction
	3.2 Methodology
	3.2.1 Inner Product Matrix Using Elastic Shape Analysis
	3.2.2 Likelihood Specification for the Inner Product Matrix
	3.2.3 Priors and Hyperpriors
	3.2.3.1 Hyperpriors
	3.2.3.2 Posterior Computation and Final Selection of Clusters


	3.3 Experimental Results
	3.3.1 Synthetic Examples
	3.3.2 Clustering Real Protein Sequences 

	References

	4 Estimating Latent Cell Subpopulations with Bayesian Feature Allocation Models
	4.1 Introduction
	4.1.1 Biological and Statistical Background
	4.1.2 Bayesian Feature Allocation Models for Tumor Heterogeneity
	4.1.3 Existing Methods

	4.2 Probability Model
	4.2.1 Models on SNVs Alone
	4.2.1.1 The Finite IBP

	4.2.2 Linked Models on SNVs and CNVs
	4.2.2.1 Representing CNV (L) and SNV (Z)
	4.2.2.2 Sampling Model and Prior
	4.2.2.3 The Categorical Indian Buffet Process

	4.2.3 Posterior Simulation

	4.3 Simulation
	4.4 Lung Cancer Data
	4.5 Conclusions
	References

	5 Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations
	5.1 Introduction
	5.2 Species Sampling Sequences: Basics and Extensions
	5.3 A Beta-GOS Hierarchical Model
	5.3.1 MCMC Posterior Sampling

	5.4 A Comparison with Hidden Semi-Markov Models
	5.5 Application to the Analysis of Array CGH Data
	5.6 Final Remarks
	References

	6 Modeling the Association Between Clusters of SNPs and Disease Responses 
	6.1 Introduction
	6.2 Clustering Through Bayesian Nonparametric Models
	6.3 Application to SNPs: Data Description and Model Specification
	6.3.1 SNP Data for Beginners
	6.3.2 Cluster Model Specification
	6.3.3 Association Study Between SNP Clusters and Disease

	6.4 Application to SNPs: Bayesian Inference
	6.5 Conclusions
	References

	7 Bayesian Inference on Population Structure: From Parametricto Nonparametric Modeling
	7.1 Introduction
	7.2 Parametric Modeling
	7.2.1 Models with and Without Admixture
	7.2.2 Extensions: Linked Loci and Correlated Allele Frequencies

	7.3 Nonparametric Modeling
	7.3.1 Models with and Without Admixture
	7.3.2 The MCMC Algorithm

	7.4 Discussion and Concluding Remarks
	References

	8 Bayesian Approaches for Large Biological Networks
	8.1 Introduction
	8.2 Introduction to Graphical Models
	8.2.1 Undirected Graphical Models
	8.2.1.1 Bayesian Estimation of Undirected Graphical Models

	8.2.2 Directed Graphical Models
	8.2.2.1 Bayesian Estimation of Gaussian DAG Models


	8.3 Bayesian Nonlinear Model Selection for Gene Regulatory Networks
	8.3.1 Model
	8.3.2 Application to GBM Data

	8.4 Efficient Approaches for Undirected Networks
	8.4.1 Inference on Directed Graphical Models Via Regression Modeling
	8.4.2 An Undirected Graphical Model Analysis of GBM Data

	8.5 Discussion
	References

	9 Nonparametric Variable Selection, Clustering and Predictionfor Large Biological Datasets
	9.1 Introduction
	9.2 Model Construction
	9.2.1 Modeling the Covariates and Latent Clusters
	9.2.2 Modeling the Predictor Choices and Regression Outcomes

	9.3 Posterior Inference
	9.3.1 Covariate-to-Cluster Allocation
	9.3.2 Latent Vectors and Indicators
	9.3.3 Cluster Predictors and Cluster Representatives
	9.3.4 Predictions

	9.4 Application to Gene Expression Data in Multiple Myeloma
	9.5 Conclusions
	References


	Part III Survival Analysis
	10 Markov Processes in Survival Analysis
	10.1 Introduction
	10.2 Markov Processes
	10.2.1 Discrete Time Processes
	10.2.2 Lévy-Driven Processes
	10.2.3 From Discrete to Continuous Time Processes

	10.3 Nonparametric Priors
	10.3.1 Survival Models
	10.3.2 Survival Regression Models
	10.3.3 Cure Rate Models
	10.3.4 Multivariate Models

	10.4 Numerical Illustrations
	10.4.1 Example 1
	10.4.2 Example 2
	10.4.3 Example 3

	References

	11 Bayesian Spatial Survival Models
	11.1 Introduction
	11.2 A Selection of Nonparametric Priors
	11.2.1 Gamma Process
	11.2.2 B-Splines and Bernstein Polynomials
	11.2.3 Dirichlet Process Mixture Model
	11.2.4 Polya Tree

	11.3 Survival Models
	11.3.1 Proportional Hazards
	11.3.2 Accelerated Failure Time
	11.3.2.1 Linear Dependent Dirichlet Process
	11.3.2.2 Linear Dependent Tailfree Process

	11.3.3 Proportional Odds
	11.3.4 Other Semiparametric Models

	11.4 Spatial Dependence
	11.4.1 Spatial Frailty Modeling
	11.4.1.1 Point-Referenced Data Modeling
	11.4.1.2 Areal Data Modeling
	11.4.1.3 Related Literature

	11.4.2 Spatial Copula Modeling
	11.4.3 Other Spatial Dependence Modelings

	11.5 Illustrations
	11.5.1 SEER Cancer Data
	11.5.2 Leukemia Data

	11.6 Concluding Remarks
	References

	12 Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data
	12.1 Introduction
	12.2 Commonly Used Continuous Time-to-Event Regression Models
	12.2.1 The Proportional Hazards Model
	12.2.2 The Accelerated Failure Time Model
	12.2.3 Other Models and Extensions

	12.3 A Nonparametric Model with Misclassification and Censoring
	12.3.1 The Misclassification Model
	12.3.2 The Underlying Time-to-Event Model
	12.3.3 The Implied Statistical Model

	12.4 The Computational Implementation
	12.4.1 The Full Conditional for the Unobserved Time-to-Events
	12.4.2 The Full Conditional for the Misclassification Parameters

	12.5 Illustrations
	12.5.1 Simulated Data
	12.5.2 The Signal Tandmobiel® Data

	12.6 Concluding Remarks
	References


	Part IV Random Functions and Response Surfaces
	13 Neuronal Spike Train Analysis Using Gaussian Process Models
	13.1 Introduction
	13.2 Gaussian Process Models
	13.3 Gaussian Process Model of Firing Rates
	13.4 Detecting Synchrony Among Multiple Spike Trains
	13.4.1 Computation
	13.4.2 Results for Experimental Data

	13.5 Future Directions
	13.5.1 Multivariate GPs
	13.5.2 Dynamic Networks
	13.5.3 Community Detection

	References

	14 Bayesian Analysis of Curves Shape Variation Through Registration and Regression
	14.1 Introduction
	14.2 Phase Variability and Curve Registration
	14.3 Bayesian Hierarchical Curve Registration
	14.3.1 Hierarchical Model
	14.3.2 Penalized Regression Splines Representation of Random Functionals
	14.3.3 Inference for Hierarchical Curve Registration Models
	14.3.4 Case Studies in Bayesian Curve Registration

	14.4 Regression Models for Timing and Amplitude of Functional Features
	14.4.1 Generalized Curve Registration Models
	14.4.2 Amplitude and Phase Regression
	14.4.3 Growth Velocities and Drug Concentrations Revisited

	14.5 Joint Functional Regression and Registration
	14.5.1 Functional Regression and Mixed Models
	14.5.2 Functional Mixed Registration
	14.5.3 Functional Mixed Registration of Growth Velocities and Drug Concentrations

	14.6 Differential Expression and Gene Profile Similarities
	14.6.1 A Functional Mixture Model for Differential Expression
	14.6.2 Posterior Measures of Profile Similarities
	14.6.3 A Case Study of Time-Course Gene Expression Analysis

	14.7 Concluding Remarks
	References

	15 Biomarker-Driven Adaptive Design
	15.1 Introduction
	15.2 Bayesian CART Models
	15.3 The Model
	15.4 SUBA Design
	15.4.1 Design
	15.4.2 Posterior Inference on the Partition

	15.5 Example
	15.5.1 Simulation Setup
	15.5.2 Comparison
	15.5.3 Simulation Results
	15.5.4 Report on Partition

	15.6 Conclusion and Discussion
	References

	16 Bayesian Nonparametric Approaches for ROC Curve Inference
	16.1 Introduction
	16.2 ROC Curves
	16.3 Modeling Approaches for the No Covariate Case
	16.3.1 DPM Models
	16.3.2 Bayesian Bootstrap

	16.4 Modeling Approaches for the Covariate Case
	16.5 Illustration
	16.6 Concluding Remarks
	References


	Part V Spatial Data
	17 Spatial Bayesian Nonparametric Methods
	17.1 Introduction
	17.2 Bayesian Non-parametric Priors for a Covariance Function
	17.3 Priors for the Marginal Distribution Using a Spatial Gaussian Copula
	17.4 Nonparametric Spatial Process Models
	17.4.1 Kernel Convolution of a Dirichlet Process
	17.4.2 Dirichlet Process Mixture of Gaussian Processes
	17.4.3 Stick-Breaking Methods

	References

	18 Spatial Species Sampling and Product Partition Models
	18.1 Introduction
	18.1.1 Models Based on the Dirichlet Process
	18.1.2 Approaches Based on the Product Partition Model

	18.2 A Dependent Species Sampling Models for Spatial Density Estimation
	18.2.1 Species Sampling Models
	18.2.2 Gaussian CAR Model
	18.2.3 CAR SSM and CAR SSM Mixtures
	18.2.4 Posterior Computation
	18.2.5 Data Analysis

	18.3 Spatial Product Partition Models
	18.3.1 The Model
	18.3.2 Example

	18.4 Conclusion
	References

	19 Spatial Boundary Detection for Areal Counts
	19.1 Introduction
	19.2 Hierarchical Models for Areal Data
	19.3 Bayesian Nonparametric Models for Areal Data
	19.3.1 Modeling Considerations for Areal Boundary Analysis
	19.3.2 Dirichlet Process Mixture Models for Clustered Data
	19.3.3 Areally Referenced Spatial Stick-Breaking Prior
	19.3.4 Areally Referenced Dirichlet Process
	19.3.5 A Practical FDR-Based Method to Select Difference Boundaries

	19.4 A Simulation Study
	19.5 Analysis of Minnesota P& I Dataset
	19.6 Conclusion and Future Work
	Appendix
	References


	Part VI Causal Inference and Missing Data
	20 A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
	20.1 Introduction
	20.2 Identifying Causal Effects in an RDD
	20.2.1 Identification in the Sharp RDD
	20.2.2 Identification in the Fuzzy RDD

	20.3 Estimating Causal Effects in an RDD
	20.3.1 Bayesian Nonparametric Model
	20.3.2 Estimating Causal Effects with the Bayesian Model

	20.4 Illustrative Applications
	20.4.1 Learning Math Teaching: Time Series Data
	20.4.2 Maimonides' Data: Fuzzy RDD

	20.5 Conclusions
	References

	21 Bayesian Nonparametrics for Missing Data in Longitudinal Clinical Trials
	21.1 Introduction
	21.1.1 Notation and Definitions
	21.1.2 Literature on Bayesian Nonparametrics in Missing Data Models
	21.1.2.1 Likelihood Factorizations


	21.2 Our Framework
	21.3 Examples of Models for the Observed Data
	21.3.1 Longitudinal Binary Responses
	21.3.2 Longitudinal Continuous Responses
	21.3.2.1 A Dirichlet Process Mixture Working Prior


	21.4 Identifying Restrictions and Sensitivity Parameters
	21.4.1 Incorporation of Information on Reason for Dropout
	21.4.2 Intermittent Missingness

	21.5 General Strategy for Posterior Inference
	21.6 Example Data Analysis
	21.7 Open Issues
	References


	Index



