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Preface

Growth Curve Models (GCM) are of immense help to study the movement of
important characteristics over time in different subject matters including branches
of natural science. This volume is an outcome of presentations made in a GCM
workshop held at the Indian Statistical Institute, Giridih, during the period 18-19
February 2014. The book describes some of the recent trends of research in GCM
on different subject areas in different disciplines, theoretical and applied.

We requested for contributions to the present volume, with more than one article
if possible, from authors working in different areas associated with GCM; like in
the case of compiling earlier volume ‘Advances in Growth Curve Models’. We are
thankful to the readers for well accepting the earlier volume. All the contributions
are peer-reviewed.

A volume of this size and nature can only be successfully completed with
constant support and encouragements from the contributing authors. My sincere
thanks and appreciation are for all my fellow contributors. I also thank the reviewers,
who in spite of their busy schedule could find time to assess the contributions at my
request. Thanks are also due to Springer for their keen interest in the project and
continuous encouragement from the very beginning.

The present endeavour about the research works on GCM that is going on by
the scientists of Indian Statistical Institute in different branches of science will be
considered successful if this can provide readers an insight on the broad area of
research in GCM.

Kolkata, India Ratan Dasgupta
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Fig. 1 Garlanding the statue
of Professor P.C.
Mahalanobis, founder of the
Indian Statistical Institute
(ISI); before the workshop is
inaugurated

Fig. 2 Some of the workshop participants in the year 2014
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Fig. 4 Tuber crop potatoes are being harvested from the experimental plots
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Fig. 6 Non-regular shaped yam produced in farm
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Fig. 7 A budding flower
from a yam of 10.8 kg weight,
grown in the year 2014; soil
of Giridih is conducive for
yam plantation, see https://
www.youtube.com/watch?v=
wONtZWuuVZO0. See also,
https://www.youtube.com/
watch?v=LboKuNcUp9E

Fig. 8 Honeycombs on Simul (Bombax) tree in Rosevilla campus of ISI Giridih. These consist
of two layers of small regular shaped sturdy hexagonal structures. The small bees are sometimes
friendly, see https://www.youtube.com/watch?v=tEFZqnZqcww


https://www.youtube.com/watch?v=w0NtZWuuVZ0
https://www.youtube.com/watch?v=w0NtZWuuVZ0
https://www.youtube.com/watch?v=w0NtZWuuVZ0
https://www.youtube.com/watch?v=LboKuNcUp9E
https://www.youtube.com/watch?v=LboKuNcUp9E
https://www.youtube.com/watch?v=tEFZqnZqcww

X Preface

Fig. 10 Flooded Ushri in rainy season, flowing by the boundary of ISI Giridih Farm
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Plant Sensitivity and Growth Curve Analysis
of Elephant Foot Yam

Ratan Dasgupta

Abstract Longitudinal growths of Elephant-foot-yam are studied by taking yam
from the ground, then measure underground growth and replant the structure. The
growth curve has a spike and takes a sharp upturn towards the end, indicating that a
small increase in plant lifetime at mature stage increases yield substantially, leading
to a possibility of high production. A plant was seriously endangered accidentally,
during the remaining short lifespan the growth slope of affected plant changed
significantly to a higher level than its growth slope before intervention, compared
to other plants. Two growth curves are compared by modelling the error component
by a continuous Gaussian process viz., Ornstein—Uhlenbeck process. Growth curve
corresponding to seed weight 650 g seems to indicate superior yield.

Keywords Amorphophallus paeoniifolius ¢ Elephant foot yam ¢ Growth curve °
Longitudinal study e Cross sectional study ¢ Archimedean principle ¢ Ornstein—
Uhlenbeck process

1 Introduction

Elephant foot yam (Amorphophallus paeoniifolius) may grow even in barren land
and is a cash crop like a boon to farmers. In order to decide about the appropriate
harvest time of yam cultivated in a land of lateritic soil full of gravels as in Giridih,
Jharkhand (India), with extreme weather in summer (26—44 °C), in winter (1-20 °C),
and having moderate (14 mm) to intense (70 mm) rainfall during May—October, we
consider the problem of estimating the growth of underground yam deposition over
time in a production season. In the above stated profile of cultivation scenario at
Indian Statistical Institute (ISI) Giridih Farm, we consider plant lifetime and seed
weight to be the independent variables in the present longitudinal growth study for
yam via nonparametric regression. It turned out that about 6 months are required for
yam to mature in the stated environment. Time component may play the dominant
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role in different growth studies, e.g., see Diggle et al. (2003) for a number of
examples. Growth curve model by considering skew-normal distribution for the
error terms and multiplicative heteroscedasticity covariance structure is studied in
Louzada et al. (2014).

In the present study we consider time and seed weight to be main variables for
yam growth experiment conducted in Giridih, assuming other variables to have
homogeneous effect on experimental units. The results obtained are comparable
over different production seasons over years, provided environmental parameters,
which regulate the physiological processes governing the matter partitioning to
underground corm, are more or less similar. We adopt nonparametric analysis
with general response function. Search for specific allometric relationships, and
associated error due to model misspecification is thus circumvented.

In longitudinal study the same experimental unit is followed over time. Frequent
checks on underground deposition by digging the yam out in order to take
readings and then replanting the structure to grow further over time may disturb
the experimental set-up. Uprooting even once, so as to take growth reading may
adversely affect the plant, if the delicate yam root structure is not properly taken
care of during replanting. Although a procedure that involves replanting is stressful
for plants in general, in this particular experiment care was taken during digging
out, then taking growth measurements and finally while replanting. The precaution
taken is of excellent category except for stress induced on plant number 2, caused by
two inexperienced field workers. The stress inflicted on this plant in the experiment
is seen as a marked outlier in the data analysis. Presence of weak spike is observed
in the growth curves in this longitudinal analysis.

Estimating interim weight of underground yam, without detaching the above-
ground plant from the yam in a longitudinal study is another task in growth
experiments. The problem may be circumvented in a cross-sectional study where
data on the final yam yield versus plant life are analysed, and the growth curve
is estimated by nonparametric regression. In earlier cross-sectional studies, sharp
upward turn and presence of a spike towards the end of the estimated growth curve
were observed; see Dasgupta (2013). Similar findings are observed in the present
non-destructive longitudinal study. A spike in the growth curve leads us to infer
that slight increase in the lifetime of the plant towards the end may increase yield
considerably, although farmers may sometimes prefer early harvesting for monetary
reasons.

In the present study, we estimate the yam growth curve in a longitudinal analysis
over a production season. The experiment was undertaken at the ISI Giridih farm,
with three fixed weight choices of cut-seed corm viz., 500, 650, and 800 g; and with
two plantations for each chosen corm weight; so as to study within and between
variations of growth curves over different seed weights.

Plant cells are known to be able to sense and respond to environmental stresses
such as light, hormone, carbon dioxide, temperature, gravity, humidity, etc., see,
e.g., Foyer et al. (1994) and Jia and Zhang (2008). Plant response to shock stress
is of interest, see, e.g., Bose (1902), Wildon et al. (1992), and Zimmermann et al.
(2009) on electrical nature of the conduction of stimuli. In the conducted experiment
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at ISI Giridih farm, when a plant’s delicate root structure is accidentally damaged
and consequently further survival of the plant is seriously endangered, then within
the remaining short lifespan the plant stored underground yam in a relatively
faster rate compared to its undisturbed state. Test of significance in parametric and
nonparametric set-up indicates that the slope change in yam storage in the affected
plant is significantly higher than that for other healthy yam plants surviving longer
in the conducted experiment. This may have potential in growth regulation.

Growth curve corresponding to seed weight 650 g seems to indicate superior
yield. The curve is markedly smooth indicating steady growth that has a spike
towards end. Error component in growth curves may be modelled by a continuous
Gaussian process viz., Ornstein—Uhlenbeck process; the process parameters are
estimated and interpreted in the present context. Growth curves with seed weight
650 g are seen to have less variation from error component. Technical details are
given in Appendix.

The objectives of the present study are: (1) to have an insight of yam growth
in a longitudinal study via parametric and nonparametric modelling; in view of
the fact that growth patterns observed in cross-sectional studies (Dasgupta 2013)
confirmed presence of a spike in yam growth curve towards end of plant lifetime,
(2) to examine the plant sensitivity from inadvertently induced possible grievous
hurt, in course of conducted experiment, involving uprooting and replanting in the
middle production season, especially on growth; and (3) to recommend appropriate
yam corm weight to farmers for field plantation in Giridih region located at 24.18°N,
86.3°E; at an average elevation of 289 m above sea level, in Jharkhand (India).

The paper is organized as follows. In Sect.2 we study a general nonparametric
model on yam growth and propose a Gaussian process, viz., Ornstein—Uhlenbeck
process for error component. The section includes materials and methods along
with the results obtained. Section 3 provides discussion and conclusion of the study.
Some theoretical results are explained in the appendix.

2  Growth Curve: Longitudinal Study on Yam

First we present a description of materials and methods used in the experiment.

2.1 Materials and Methods

Elephant foot yam of “Bidhan Kusum” variety was planted in the experimental site
of ISI, Giridih farm. Ready-to-sprout cut seed corms, much similar in shape to apple
slices having a part of “main eye” on top, with weights 500, 650, and 800 g were
made out of healthy yam. Two cut corms, with healthy skin on outer side, and each
of abovementioned weight were planted in a row. Each pit was of 1 foot deep.
Distance between plants in each row/column was 1 meter. Pieces were dipped in
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thick cow dung slurry mixed with Mancozeb and dried under shade before planting.
The experimental plot was treated with organic margosa cake powder before starting
the experiment on 3 July 2012. Plants were administered a little bit of organic
manure after 7/8 days from sprouting.

We examined the yam deposition by digging out six plants around the middle of
a season on 17 October 2012. The plants were uprooted with much care (except for
plant number 2 that suffered a damaged root structure); one at a time and then the
volume of grown yam attached below the plants were estimated by submerging the
soil-cleaned yam part in a water container and measuring the amount of displaced
water. An estimate of yam weight was then available by multiplying the volume
with density of yam.

To estimate density, another underground yam grown at that time was dug out
and detached from the plant, its weight found, and volume of the yam was measured
by Archimedean principle from the amount of displaced water when the yam was
totally submerged; the yam density was found to be ~4 g/cc.

All the plants were taken out of the ground on the same day for taking
measurement during the experimental period. Although sown simultaneously, the
date of sprouting is different for different plants. Thus plant lifetimes (counted from
sprouting date) are different on the same calendar date and that resulted in different
growths. Variation of growth may also be due to different seed weights.

While taking interim observations during the experiment, precaution has to be
taken to minimise the time-span between a plant being uprooted and replanted, so as
to minimise disturbance to the experimental set-up and damage to the root structure.
Replanting is done immediately after taking the relevant measurements. The process
is repeated sequentially, one plant at a time.

2.1.1 Data and Some Preliminary Look

Table 1 provides the six plant characteristics under the growth experiments: initial
yam weight, weight during intermediate lifetime, final weight, etc.

Table 1 Growth data on yam

Plant | Seed wt | Sprouting | Yam weight | Date till Final | Plant
no. (in gm) | date on 17.10.12 | plant alive | weight | life (day)

1 500 01.08.12 960.84 23.12.12 1,762 | 142
2 500 03.08.12 565.20 02.11.12 864 89
3 650 18.07.12 |2,486.88 08.01.13 4,198 | 170
4 650 07.07.12  |2,430.36 15.12.12  |3,558 | 158
5 800 10.07.12 |1,865.16 29.11.12  |2,406 |139
6 800 14.07.12 |3,052.08 07.12.12 3,992 | 143

The table above provides the plant characteristics under the growth experiments:
initial yam weight, weight during intermediate lifetime, final weight, etc.
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Fig. 1 Individual growth curves of yam. Growth curves corresponding to seed weight 500 g (lower
two from start), 650 g (middle two from start) and 800 g (fop two from start) are shown, with
intermediate weights joined by straight line. Except for plant number 6 the slope differences in
the two time segments are all positive, indicating presence of a weak upward spike in the growth
curves, see Table 2; this difference is the highest for plant number 2. The curve in the middle
joining 12 points represents overall growth i.e., the mean response j(x) of Eq. (2) estimated as
arithmetic mean of the weights (i.e., y values) over different plants, computed at a time point x
where at least one recorded observation on y is available for some plant

In Fig. 1, individual growth curves of yam are shown. Hollow square shaped
marks represent the mean of the y values over individual growth curves correspond-
ing to 12 distinct values of plant lifetime (x values). Figure 2 shows the same with
smoothing spline.

In this longitudinal analysis of underground yam growth data, presence of a weak
upward spike is seen in individual growth curves. Growth slopes before and after the
intervention, when yams are taken out of the ground, are estimated for each plant.

Two casual labours assigned to plant number 2 did not take proper care of the
plant while uprooting, thereby damaging the root structure of the plant. The plant
did not survive long afterward compared to other plants; see Table 1.
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Fig. 2 Individual growth curves (spline) of yam. In this counterpart of Fig. 1, individual growth
curves are obtained by spline smoothing in R software with shape parameter 0.5, instead of joining
the points by straight lines. Hollow square shaped marks represent mean response /4(x) of Eq. (2)
estimated as arithmetic mean of the weights (i.e., y values, now obtained by spline technique)
over different plants computed at a time point x, where at least one recorded observation on
y is available for some plant. The sharp upturn towards the end of the lowermost growth curve
corresponding to plant number 2 is seen to be quite prominent

Growth slopes are computed in Table 2, these show homogeneity under normal
plots, as seen in Figs. 3, 4, 5, and 6, except for plant number 2, after intervention of
uprooting. These homogeneity justify combining individual growth data to obtain
mean growth curve, as explained below.

2.1.2 The Model

Interim growth observations thus collected over the experimental period are a few
in number. Such recorded observations serve as a natural nonparametric estimate of
plant growth at that time point. For other time points we may assume growth to be
linear in between two immediate upper and lower time points where observations
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Table 2 Longitudinal slope Plant | First Second Slope difference
in yam growth curve no.i |slope slope u; = col(3) — col(2)
1 0.0060636842 | 0.01213879 0.0060751037
2 0.0008810811 | 0.01992000 0.0190389189
3 0.0206391011 | 0.02112494 0.0004858371
4 0.0178036000 | 0.01944207 0.0016384690
5 0.0109810309 | 0.01287714 0.0018961119
6 0.0242159140 | 0.01879840 | —0.0054175140

The table above provides the nonparametric estimates of growth
slopes as growth increments divided by the time taken for
growth in two time segments. The difference between two
slopes for each plant is also computed

Slope Quantiles
0.015 0.020 0.025
l

0.010

0.005

I I I
-1.0 -0.5 0.0 0.5 1.0

Normal Quantiles

0.000

Fig. 3 Normal quantile plot for first slope. Quantile—quantile plot of first slopes of yam growth
in the first time segment of plant lifetimes before intervention by uprooting the plants. The plot
indicates a normal distribution as the points lie around a straight line
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Slope Quantiles
0.018 0.020
|

0.016
|

0.014
|

0.012
|

I I I I I
-1.0 -0.5 0.0 0.5 1.0

Normal Quantiles

Fig. 4 Normal quantile plot for second slope. This is quantile—quantile plot of second slopes of
yam growth in the second time segment of the plant lifetimes after intervention. Normality is
somewhat doubtful

are recorded. Thus individual estimates of growth curves corresponding to different
plants are obtained by linear interpolation in between observations, when the
number of interim recorded observations for growth is small.

This accommodates a plant specific longitudinal slope 8, in growth models
varying over different time regions, extending the linear growth model in the
following manner.

E(Yi|x) = Be) + BranXit + ... + Brawy (Xie — Xi k—1) + Bra k+1y(x —xi) (1)

where for the i-th plant at lifetime x > xy(> 0), expected yam yield
E(Yy|x) is piecewise linear with longitudinal slopes B; over time segments

0, xi1], ooy (xikes Xi k1]
In the present case there are two time segments viz., before and after taking
intermediate readings for i = 1,...,6. The first term, namely B.;) may be

considered as initial seed weight. Coefficients B, represent expected change in Y
over time per unit change in x, see Diggle et al. (2003). These plant and time specific
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0.005 0.010 0.015 0.020
| |

Slope difference Quantiles

0.000

—-0.005
|

I I I I I
-1.0 -0.5 0.0 0.5 1.0

Normal Quantiles

Fig. 5 Normal quantile plot for slope differences. This is quantile—quantile plot of the difference
viz., second slope minus first slopes for individual plants. Topmost observation at right corner
(corresponding to plant number 2) seems to be an outlier

longitudinal slopes B, (;; are estimated in a nonparametric manner without assuming
any parametric functional relationship amongst variables. There are two plantations
per seed weight of 500, 650, and 800 g, and hence two growth curves are estimated
from two plants for each of the fixed seed weight. One may thus compute variations
between two growth curves for a fixed corm weight. Equation (1) is a special case
of the following model.

E(Yi|x) = p(x) 4 vi(x) 2

where for each x, average of v; (x) over all the plants is 0.

With a simple nonparametric model postulated in Egs. (1) and (2), we estimate
the slope in growth curves for six plants (Table 2), and show that plant number 2 has
markedly high growth rate after intervention, see Figs. 1 and 2. Statistical analysis
reconfirms this visual finding.
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0.004 0.006
| |

0.002
l
o

Slope difference Quantiles
0.000

-0.002
|

-0.004
|

I I I I I
-1.0 -0.5 0.0 0.5 1.0

Normal Quantiles

Fig. 6 Normal quantile plot for slope differences deleting extreme observation of plant 2. Deleting
the extreme observation in Fig. 5, normality seems to hold for slope difference in this quantile—
quantile plot

Estimate of the common growth or overall mean response p(x) is taken as
the arithmetic mean of the predicted weights (i.e., y values) over different plants
computed at a time point x, where at least one recorded observation is available for
some plant. One may take the average of the y quantiles for a fixed x value to obtain
pooled values of (x, y) for plotting. Finally the overall response curve is estimated
by nonparametric spline smoothing or lowess regression; see Cleveland (1979).

Lowess, a local polynomial regression estimator with smooth tricubic kernel and
variable bandwidth based on k-th nearest neighbour, employs weighted least square
criterion that assigns less weights to distant observations, to have a robust estimate
of response curve insensitive to large-residual outliers, by down-weighting these
over several iterations. However, lowess does not provide an explicit functional form
of response variable with predictor variables.

A broad idea about the growth of yam over plant lifetime is explained via these
techniques.
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The average curve reflects the overall pattern of growth representing the mean
component in curves. The individual curve is the mean component p(x) plus a
part v;(x) specific to i-th experimental unit. Thus an estimate of plant specific
component v;(x) is the difference between individual curves from the average
curve. In Eq. (1) the slope B; may be taken as simple nonparametric estimates viz.
increment of y per increment of x, as seen in individual growth curves obtained
by joining the points (x, y). The procedure circumvents specification of allometric
relationship, thereby avoiding error due to (allometric) model misspecification. With
longitudinal data the first graph is the scatter plot of the response variable over
time. See Fig. 1 for growth curves corresponding to grown plants arising out of field
experiment with different seed weights.

Regression analysis estimates the conditional expectation of the dependent
variable given the independent variables, i.e., the average value of the dependent
variable when the independent variables are fixed. Linear increments of growth in
time intervals are one of the simplest assumptions. However, other growth pattern
like smoothing spline is also undertaken. Apart from nonparametric regression
techniques of lowess and smoothing spline to obtain mean response or, growth
curve, we may also adopt parametric Gaussian Ornstein—Uhlenbeck (O-U) process
to model the error component and obtain a measure of variability of observed growth
(of two plants, for each seed weight) from the corresponding mean response curve.
The residuals, distance of the curve from mean response curve, will fluctuate more
when variability in curves is high. Actual growth ¥ may then be modelled by the
mean part of (1) plus a zero mean random residual component. Like many error
components, these are usually assumed to follow (correlated) normal distribution, as
in continuous time Ornstein—Uhlenbeck (O-U) process, see Uhlenbeck and Ornstein
(1930); since successive observations over time on an experimental unit may be
correlated.

Apart from some pathological examples, Ornstein—Uhlenbeck process is the only
continuous normal process that is strongly Markov (i.e., it depends on past values
only through the immediate past), strictly stationary (i.e., any finite dimensional
distribution of it is invariant under time shift). This satisfies the following differential
equation.

dV(x) = —aV(x)dx + ydB(x), a« >0, y >0 3)

where B(x) is the standard Brownian motion, y is the diffusion parameter, « is the
drift parameter; aV/(x) is a restoring force directed towards origin proportional to
the distance V' (x); see Karlin and Taylor (1981). In Dasgupta (2006), trimmed edge
curve of thin waste metal sheets to give these a regular shape were modelled by
O-U process. Distribution of an industrial characteristic burr is modelled by O-U
process in Dasgupta (2011). Parameters of the process are estimated from realisation
of curves therein. Let us see how the assumptions for O-U process work for error
component in yam growth.

While estimating the mean response curve via lowess regression in Dasgupta
(2013), position of the curves with respect to data points in different figures indicates
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symmetric error component. The same is observed in the present study as well.
Markov property is apparent from the fact that additional growth on a day is added
with earlier growth status of the day before. Continuity of the process is assumed
as growth is continuous over time. The distribution of measurement errors being
invariant over time contribute towards stationary. Different normal plots in the
present and earlier studies on yam indicate distribution of growth readings to be
normal.

For a class of generalised Ornstein—Uhlenbeck processes, which has particular
application in financial modelling, see e.g., Maller et al. (2009).

With a continuous response (x) + v;(x), the growth curve

Yi(x) = p(x) +vi(x) + V(x) “)

is continuous almost surely for x. This curve may mimic the actual growth when an
estimate of p(x) + v;(x) is available. Since there are two realised growth curves
for each seed weight, average curve of these two may be taken as nonparametric
estimate of the response p(x) + v;(x), fori = 1,2 for seed weight 500g; i = 3,4
for seed weight 650g; and i = 5, 6 for seed weight 800 g; with the understanding
that v; (xx) are same for i in a group, see Fig. 11 for three estimated response curves
nw(x) + v;i(x), for three seed weights 500, 650 and 800 g. Data from Plant number
2 after intervention is not taken into account to calculate mean response curve for
seed weight 500 g, as it turned out that the plant was damaged after intervention of
uprooting.

Estimation of overall response curve is of primary interest in regression analysis.
In the general nonparametric regression, the response function is left unspecified.
Most methods of nonparametric regression implicitly assume that response is a
continuous function.

Instead of linear interpolation used in the first stage to estimate intermediate
points of individual growth, we also considered cubic spline for smoothing indi-
vidual growths.

2.2 Results

In Fig. 1, individual growth curves corresponding to six different plants are shown,
where the yam weights are joined by straight lines. Arithmetic mean of the weights
(i.e., y values) over different plants is computed at a time point x where at least one
recorded observation on y is available for some plants. There are 12 such distinct x
points of yam lifetimes in the present case. The corresponding (x, y) points marked
by hollow squares are joined by lines.

One may use spline technique to estimate the individual growth curves as shown
in Fig.2, with shape parameter 0.5, by R software. This procedure seems more
accurate than linear interpolation between successive points (Fig. 1). Hollow square
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shaped marks in Fig. 2 represent the mean of the y values over individual smoothed
growth curves corresponding to 12 distinct values of plant lifetime (x values).

The curve corresponding to plant number 2 refers to a short lived plant. After
an intermediate observation was taken its life was cut short; see lowermost curves
in Figs. 1 and 2. There is a sharp upward turn in the corresponding growth curve
towards the end for plant number 2. Root structure for plant number 2 was
considerably damaged while digging it out, as the concerned field workers were
not experienced enough. Also, outside exposure for a long period after digging out,
while taking observation on 17.10.2012, may have caused the subsequent short life
span for the injured plant number 2 after replanting. Within the remaining short
lifespan, the plant deposited carbohydrate in a faster manner. In Table 2, for each
plant we compute the growth slopes for two time segments, before and after the
yams were taken from the ground for recording interim growth. For a particular plant
i, growth slopes B 1y and B2 are obtained by dividing the growth increments by
the time length; see Eq. (1).

The second and third columns of Table 2 provide the estimate of the two growth
slopes for the six plants. The fourth column provides the difference of the second
slope from the first slope. The second yam plant with damaged root structure while
taken off the ground corresponds to the highest difference, indicating a sharp change
of speed in food storage. Except for plant number 6 the slope differences are all
positive, indicating presence of a weak upward spike in growth curves. Higher rate
of yam deposition underground, towards end of lifetime is also seen to hold in
cross-sectional analysis on yam growth made earlier in Dasgupta (2013). It seems
plausible that a yam plant may sense when its lifespan is going to be over, which
prompts the plant to finish the remaining tasks faster when the end is approaching.

We now proceed to test whether the observed phenomenon of shift to a faster
growth rate in plant number 2 under duress of damaged root structure is statistically
significant compared to other healthy yam plants.

Observations related to different plants may be considered independent. From
Eq. (1), estimates of slope (and slope difference) do not involve initial seed weight
Beqy- Out of six independent observations, the second entry in column (4) is the
largest. Thus, considering the cases to be equally likely, the event that the highest
slope difference occurs for plant number 2, and the plants are of homogeneous
pattern, has probability 1/6. That is, the second plant incidentally accumulated more
food after root damage and the plants behaviour are indeed similar has a (low)
probability 1/6.

Estimate of slopes and their differences are linear combination of growth
observations Yj; these are normally distributed when the error components implicit
in Eq. (1) are normal. Figures 3 and 4 show normal quantile plots for the first and
second slopes of yam growth given in Table 2 (column no. 2 and 3, respectively).
Normal distribution apparent in the first slopes seems to have undergone a little bit
of change in the second slopes, those observed after replanting subsequent to taking
the interim readings.

The normal quantile plot for the difference of slopes is shown in Fig.5. The
extreme point on the right top corner represents reading for plant number 2.
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Deleting the highest slope difference corresponding to plant number 2 from the
set of points, the modified quantile plot is shown in Fig.6; the coefficient of
determination > = 0.9066 from linear regression. This seems to suggest that
growth-slope differences in remaining five plants may be considered as normally
distributed, i.e., u; ~ N(u,02),i € {1,3,4,5,6}.

Mean and variance based on the remaining five entries in last column are
o= Zie{l,3,4,5,6} u; /5 = 0.0009356015 and 02 = Zi€{1,3’4’5!6}(ui - [)?/5 =
1.709886 x 107, respectively. With these maximum likelihood estimates (m.l.e.)
of mean and variance, the estimated density function of growth-slope differences u
may be written as

_w—p)?

5)

1
S () NerTh
The entry u, = 0.0190389189 corresponding to plant number 2 seems to be an
outlier under normal set-up (5) as, T = (0.0190389189 — i)/6 = 4.377988, with
level of significance p = 5.989001 x 107°, indicating that it is highly improbable
that the high change in rate of food storage, as observed in plant 2 in contrast to
other plants may be attributed to chance.

The conclusion of the above approximate normal test may be validated by an
exact test with further calculations. Consider sum of squares due to errors, SSE
= Yietsase Wi — ) = 502, where 62 is m.Le. of ¢ under normal set-up.
Then SSE/o? has a Chi-square distribution with 4 degrees of freedom (d.f.), and
this is independently distributed of (uy — i) ~ N(0,602%/5), under the hypothesis
that {u;,1 < i < 6} are independent and identically distributed N (1, c?) random
variables. Then it can be shown that the test statistic f = 27/+/6 has an exact
distribution as that of a f-statistic with 4 d.f.; and the conclusion that growth-
slope difference u, corresponding to plant number 2 is an outlier holds, in view
of large value of observed t+ = 3.5746121. Level of significance in exact test is
p = 0.01164.

Computed growth slopes over different plants (shown in Figs. 3, 4, 5, and 6) indi-
cate homogeneity under normal plot, as mentioned before. This justifies combining
individual growth data, except for plant number 2 (after intervention).

To obtain the mean response curve in Fig. 1, arithmetic mean of the weights (i.e.,
y values) over different plants was computed at a time point x where at least one
recorded observation on y is available for some plants. There are 12 such distinct x
points of yam lifetimes in the present case. The corresponding (x, y) points marked
by hollow squares are joined by lines in Fig. 1. This provides an estimate of the
yam growth curve. To examine for possible presence of a spike in the growth curve,
points are smoothed by lowess and spline techniques; these are shown in Figs.7
and 8, respectively. Possibility of a spike towards the end of the growth curve is
seen to be more prominent in Fig. 8.

A similar procedure may be followed for growth curves of Fig.2. The hollow
square shaped marks in Fig. 2 representing average points are smoothed by lowess
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Fig. 7 Growth curve (lowess) of yam yield. Individual points of overall growth curve (see the
curve joining 12 points in Fig. 1) represented as circles are smoothed by lowess technique with
f = .51 in SPLUS software, and then joined by lines to show a smooth continuous broken line as
an estimate of p(x) in Eq. (2)

and spline techniques in Figs. 9 and 10, respectively. As before, these curves indicate
possibility of having a spike towards the end of the yam growth curve.

For O-U process of Eq. (3), o is a drift parameter (i.e., pull of the process
towards the mean value); and y is the diffusion parameter, as it relates to the
spread of the process. Note that o, = y/(2a)!/? may be interpreted as the standard
deviation of the limiting distribution of V(s), s — oo.

The growth curve lying on the top in Fig. 1 with seed weight 800 g has t = 143
days. For the higher curve with seed weight 650 g, t = 170. Mean response curves
are based on both upper and lower curves for a specific seed weight. Deviations of
upper curve from mean response is taken as V(s). The asymptotic distribution of
the maximum likelihood estimate (m.l.e.) & is normal see, e.g., Brown and Hewitt
(1975). By Egs. (8) and (9) of Appendix, the estimated process parameters from
realised curves V are as follows (Figs. 12 and 13). R

For seed weight 800g; & = 0.002144056, y?2 = 0.001029093, &, =
0.4898851. .

For seed weight 650g; @ = 0.0006754383,y2 = 1.977903 x 107°,6, =
0.1210026.

Small values of y and large values of « signify that the random variation of
growth curve from mean response is likely to be small in magnitude.



16 R. Dasgupta

v —
o
™ [¢)
2
k=1
Q
>
o4
(o)
T T T T T
0 50 100 150 200
Time(day)

Fig. 8 Growth curve (spline) of yam yield. Individual points (12 points in Fig. 1) of overall growth
curve represented as circles are smoothed by spline technique (using smooth.spline, spar=.00001
in SPLUS software) for a smooth continuous curve as estimated (4 (x)
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Fig. 9 Growth curve (lowess) of yam yield. In this counterpart figure of Fig.7, hollow square
shaped points of Fig. 2 are smoothed by lowess technique with f = .51 in SPLUS software, and
then joined by lines to obtain a smooth continuous broken line as an estimate of p(x) in Eq. (2)
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Fig. 10 Growth curve (spline) of yam yield. Hollow square shaped points of Fig.2 are smoothed
by spline technique (using smooth.spline, spar=.00001 in SPLUS software) to obtain a smooth
continuous line as an estimate of w(x). This is similar to Fig.9. Presence of an upward spike
towards the end is seen in these figures for overall growth

Asymptotic standard deviation (s.d.) of the process corresponding to seed weight
650 g is smaller than that for 800 g. Ratio of the estimated values of s.d. of residual
process corresponding to 800 g, to that for 650 g is approximately 4. The values of
a and y are smaller for seed weight 650 g, compared to those for 800 g.

Yet another estimate &, = maxo<s;<; | V(s) | /+/21ogZ of the asymptotic
standard deviation is available from the maximum fluctuation of observed process
V (s) on time segment [0, ¢], around mean response curve, see Appendix; Egs. (12)
and (13). This spread index of residual process is nonparametric in nature without
model assumptions, as these are based on maximum fluctuation. See Figs. 12 and 13.

These are actually absolute values of the residuals. We only need maximum
fluctuation of residuals for comparison. Central line estimated is equidistant from
two growth curves for each seed weight, thus there is a mirror reflection of Figs. 12
and 13 below the line y = 0 for residuals computed from second curve for a fixed
seed weight. These two curves (with fixed seed weight) have maximum fluctuation
of same magnitude. O-U process is mean reverting, that is the process is pulled
back to the (zero) mean. Since intermediate growths are linearly interpolated, the
residual pattern is so. This pattern will be different if nonlinear spline regression is
used. Here we are interested only in maximum fluctuations of process to compare
two processes.
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Fig. 11 Three mean response curves. Three estimated response curves p(x) 4+ v;(x) for three
seed weights 500, 650 and 800 g are shown. Curve corresponding to seed weight 500 g lies below
the other two. Curve corresponding to seed weight 650 g seems to be steady and seems superior
to curve corresponding to 800 g after about 100 days. Data from Plant number 2 after intervention
is not taken into account to calculate mean response curve for seed weight 500 g, as it turned out
that root structure of the plant was damaged after intervention of uprooting. Although in this figure
the points in a curve are not smoothed by lowess and spline techniques, the curve corresponding to
seed weight 650 g is markedly smooth indicating a steady growth that has a spike towards end

For seed weight 800g, 6, = 0.239772; and for seed weight 650¢g, 6, =
0.06029778. The ratio of 6, for residual process corresponding to seed weight 800 g,
with that for 650 g is almost same viz., 4; as before.

The growth curve for seed weight 650 g seems to have less fluctuation compared
to that for higher seed weight of 800 g. Estimated overall growth curve correspond-
ing to seed weight 650 g indicates a superior yield than seed weight 800 g.
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Fig. 12 Residuals in O-U model (seed wt 650 g). The deviations of the individual growth curve
from mean response curve are shown for seed weight 650 g. Maximum fluctuation is of order 0.2

3 Discussion and Conclusions

Presence of a spike in yam growth curve was noted in cross-sectional studies
(Dasgupta 2013). In this longitudinal study of Elephant foot yam growth, we
observe that the growth curve has a spike and the curve takes a sharp upturn towards
the end, indicating that a small increase in plant lifetime at mature stage increases
yield substantially, leading to a possibility of high production. Farmers usually do
not wait till the end for yam plant to die in its own course due to monetary reasons, as
an early harvest fetches good price in local markets. A little more wait may produce
good yield. A plant was seriously endangered accidentally in course of conducted
experiment. During the remaining short lifespan the growth slope of affected plant
changed significantly to a higher level than its growth slope before intervention
(of uprooting and replanting), compared to other plants. In view of superior features
observed in the yam growth curve corresponding to the seed weight 650 g, this
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Fig. 13 Residuals in O-U model (seed wt 800 g). The deviations of the individual growth curve
from mean response curve are shown for seed weight 800 g. Maximum fluctuation is of order 0.8,
approximately four times than that for seed weight 650 g

seed weight may be recommended for plantation by Elephant foot yam farmers in
Giridih, Jharkhand.

A follow-up study is conducted on longitudinal growth of yam with 60 plants,
as reported in Dasgupta (2015). This reconfirmed a number of results stated in
the present work including normality of growth slopes and slope differences. Seed
weight 650 g turns out to be recommended choice again in the follow-up study.
Even in small sample size, data may contain a lot of information, as the present
study explains.

Acknowledgements Thanks are due to the referees for constructive comments that improved the
presentation.
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Appendix: Parameter Estimation in O-U Process

In this section we provide some technical details regarding parameter estimation of
O-U process used in the main part.

Parameters of O—U processes in the proposed model (3)-(4) may be estimated
from the observed growth curves, and interpreted in the present context. By
transforming the process V(s) to the corresponding Brownian motion B(s) one
may write, according to a result given in Lemma 4.2, page 212 of Basawa and Rao
(1980), the following:

2”
ll>nolo ; Z[V(jt2_”) —V((j — Dt2™")]* = y? almost surely (a.s.) (6)

Jj=1

One may consider grids of finer length and then select that grid size for which the
estimate of 2 as evident from (6) stabilizes, see also Dasgupta (2006). In the present
case we may consider grid spacing as consecutive days. For each seed-weight the
deviations of realised growth curve (Fig. 1) from the corresponding mean response
curve (Fig.11), computed at consecutive days, may be considered as observed
values of residual V' = Y; — (u + v;) of model (4). Here ¢ is plant lifetime.

Following the example 5.4, page 187—188 of Basawa and Rao (1980), the m.l.e.
of « is the following:

t t 1 t
i =~ [ voave) [ vias=3I[ Ved i ro-vier o
0 0 0
Estimate of y? is given by
. 1<
yi=_ V() =V - DP ®)
j=1
Replacing the integral by finite sum, one may also write from (7) and (8)
~ 1< N 21—11.72 2 2
@~ S AV 2+ V20) - V() ©)
j=1
An estimate of the drift parameter i.e., pull of the process towards the mean value
may be obtained from (9). By law of iterated logarithm (LIL) of standard Brownian
motion, e.g., see Chung (1948);
lim; 00 (2t loglog?)™/?B(t) = 1 as. (10)
and

Iimy 00 (2¢ loglog )72 sup | B(s) |=1 a.s. (11)

0<s<t
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Using the relationship V(s) = e~ B[y*(e*** —1)/2a], see, e.g., Karlin and Taylor
(1981); one may thus write from (10) and (11)

2

Timmoo[ (1 + o(1) logr]™2V(1) = 1 as. (12)
o
and
im; S oo[—(1 4+ 0(1))log?]™"? sup | V(s) |=1, a.s. (13)
o 0<s<t

Hence the fluctuation of the O-U process as seen from (12) and (13) is dependent
on the parameter v/20, = y/a'/2. Equating the observed value of the maximum
fluctuation of the realised curve V (s) with \/21og7 o,, one may have an estimate
o, of gy,.

In general, maximum fluctuations of two processes may serve as basic estimates
of spread, without any model assumption.
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Some Remarks on Pseudo Panel Data

Ratan Dasgupta, Jayanta K. Ghosh, Sugato Chakravarty,
and Jyotishka Datta

Abstract We discuss the possibility of constructing pseudo panel data from
cross-sectional data, sampled at different points in time, by aligning individuals
sharing some common characteristics into groups called “cohorts”. Based on a real-
life example on income distribution in the USA, we construct and validate a pseudo
panel data and compare this with real panel data. The agreement is encouraging.

Keywords Repeated cross section ¢ Synthetic panel data ¢ Cohort ¢ Error-in-
variable

1 Introduction

In many problems, where we wish to study a cross section of the population over
time the natural approach is to use a panel data, also called longitudinal data by
statisticians. To ensure comparability, true panel data should be based on responses
to similar questions posed in a consistent manner and data collected from the same
individuals repeatedly over time. Several researchers including Moffitt (1993) and
Verbeek (2008) have pointed out the relative advantages of using a true panel data
over repeated cross-sectional data. Russell and Fraas (2005) have noted that the
formation of a true panel data is not problematic if the individuals belong to small set
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of entities, such as member countries of UN Security Council, and the data is based
on unambiguous questions, e.g. population or other stable demographic variables of
the member countries. However, issues like attrition and non-response pose a threat
to the comparability even in the highest-quality panel data sets. This effect is more
serious for studies involving a large number of entities defined as individual people
or individual households spanning a long time interval. A natural workaround is to
construct pseudo panel data from repeated cross-sectional surveys whenever they
are available. Important examples of large repeated cross-sectional database are the
Current Population Survey in the USA, and the Family Expenditure Survey in the
UK. In this short note, we provide a brief review of the methods of constructing
and validating a pseudo panel data and illustrate the methods on a publicly available
data set on US Survey of Consumer Finance (SCF).

As we shall discuss later, pseudo panel data often provides a way to build models
to study longitudinal effects of important variables, and has been widely applied in
many fields including microeconomic research, and many important areas of social
science where a genuine panel data is not available. One such example is lack of true
(or “genuine”) panel data on poverty related issues in India. Typically Indian data for
poverty has been cross-sectional data sampled at different points in time, also called
“waves”. It has been felt that such data is easier to collect and less prone to error
than panel data, which suffers from depletion as time proceeds and is expensive and
time consuming to sample. Cross-sectional data on poverty in India in the 1960s
and 1970s appear in detail in Bhattacharya et al. (1991). However, we have not seen
any book length treatment of longitudinal data on similar topics. One way to solve
this problem is to construct a pseudo panel data by following a number of cohorts
over time, and observe how different aspects of their life, for example consumption
of food, availability of clothes and shelter change.

In general, classification with respect to a suitably chosen cohort may reveal
interesting growth pattern of individuals. While computing the overall growth
pattern of height (in cm.) out of four yam stems sprouting on different dates from
a single seed corm, in Dasgupta (2013), see Figs. 6.9, 6.11-6.14 therein; much
different sprouting dates were observed for 4 stems, and corresponding dates were
considered as time origin for each relevant stem. That is age (in day) of stems in
a plant was taken as cohort for computing the response curve of that plant growth,
thus extracting information from multiple stems.

Panel data on income considered in this note for explanation has a shorter span
than the gap between successive cross-sectional data, stretching our imagination
on data trend along the perceived direction (Figs. 2 and 3). With available data in
hand, we construct pseudo panel data and compare this with panel data; some of the
agreements as explained by figures are encouraging. The data example considered
is not broad enough for demonstrating how pseudo panel data can be useful in
estimating changes in variables. We plan to come back to address this issue in future,
and the present report is preliminary.

Deaton (1985) observes that there are no panel data in the United Kingdom
on consumer expenditure or on household labour supply, but there are several
large household surveys carried out periodically. Deaton (1985) and Verbeek and
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Nijman (1992) suggest an artificial panel data can be constructed by sampling the
cross-sectional data suitably. This has been called a repeated cross section (RCS).
Literature on panel data includes papers by Browning et al. (1985), Deaton (1985),
Verbeek and Nijman (1992), Verbeek (2008) and Moffitt (1993).

One way of constructing pseudo panel data is as follows. First, synthetic panels
are constructed by grouping individuals sharing some common characteristics
(it may be the year of birth) into groups called “cohorts”, and the averages within
each cohort are taken as observations in a synthetic panel. This makes it possible to
follow the same cohorts of individuals over a larger period of time. It is probable that
this sort of construction would produce valid panel data, especially if the data size
at each point of time is large. How large is often a subjective decision, as Propper
et al. (2001) point out the trade-off between error in estimating the cohort mean
(larger number of cohorts but fewer individuals per cohort) and lack of information
(a few cohorts with many individuals in each cohort). In this note, we will follow
the approach taken by Deaton (1985), and other literature on this topic by defining
the cohorts by intervals of the year of birth and the race of the individual.

An important issue in the construction of pseudo panel data from repeated cross-
sectional data is a principled comparison between pseudo panel data and true panel
data. This is often rendered difficult by lack of co-existing true panel data and
repeated cross-sectional data for the same variables on the same population for a
common, reasonably large period of time. Assuming that such data sets are available
for comparison, one may plot both time series, namely the real panel data and the
pseudo panel data at the chosen point of time, and see how close the two data sets
are with respect to certain averages and measures of deviation from the average. We
will show a simple example of such a comparison for our SCF data set where we
have both the repeated cross-sectional data and true panel data, albeit for a short
period of time.

A further point worth studying is the effect of variations in the size of pseudo
panel and the true panel over time, and whether the pseudo panel is too close to the
true panel data.

If the pseudo panel is too close to the true panel data available; one needs
to be alert. Like in Mendel’s experiment, too low value of chi-square becomes
significant on the left tail of test statistic distribution. Very small value of chi-square
is an indication of possible over fitting and may raise uncomfortable question on
validity of experiment and/or underlying assumptions of data analysis. However,
if underlying error component is small, pseudo panel data may reproduce the
unseen panel data. Consider a general model for ith individual i=1, 2, ..., N,
with time dependent observation c,;(#) = ¢, () + &;; where ¢ is a cohort value and
error &; = () is negligible compared to the main component ((f) = ¢, (#). In such
a situation whether it is real panel or pseudo panel data, the random & part being
small; average over randomly selected individuals will produce similar results over
time, even with a small sample size n compared to N, where c is an arbitrarily fixed
cohort. Further, use of improved nonparametric regression techniques insensitive
to outliers e.g., LOWESS or spline regression with suitable choice of smoothing
parameters, may correctly produce the underlying response curve; screening out the
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error components &;(f) even when fluctuation of these are of substantial magnitude,
see e.g. Cleveland (1979, 1981). Response curve may then be deduced from either
from pseudo panel or true panel data.

2 Pseudo Panel Data

As discussed in the Introduction, for several countries like India, the UK and the
USA, there is a lack of true panel data where specific individuals or families are
followed over time, but there exists a series of independent waves of cross-sectional
data collected over time. One such example is the U.S. SCFs data set, which has both
panel data and repeated cross-sectional data at different time-points, e.g. surveys
during 1989-2007 are available as repeated cross-sections and the surveys during
2007-2009 are available as a panel data set.

While repeated cross-sections are considered inferior to genuine panel data for
their lack of individual histories, they are often free from problems such as attrition
and non-response, and are typically larger in number of individuals and the time-
span. To draw inferences on RCS datasets, synthetic panels are constructed by
grouping individuals sharing some common characteristics (for example, year of
birth) into cohorts, and the averages within each cohort are taken as observations in a
synthetic panel. Deaton (1985) suggests an error-in-variables estimator for obtaining
consistent estimators as the cohort-averages are error-ridden measurements of the
true cohort population parameters. However, in many cases, such as ours, as
described later, the number of observations per cohort is large, which leads one
to ignore the errors-in-variables problem and work with the synthetic panel as a
genuine panel to obtain reliable estimators. Early work such as those by Deaton
(1985) and Browning et al. (1985) have proposed the use of such estimators. For
a detailed discussion on the conditions under which the standard estimators ignore
the “errors-in-variable” problem, see Verbeek and Nijman (1992). Moffitt (1993)
extends the application of synthetic panel approach of Deaton to non-linear and
dynamic models. For an inclusive description of all the models, see Verbeek (2008).

Construction of Pseudo Panel Data We discuss the construction of pseudo panel
data. We assume that the data set is a series of repeated cross-sections. Deaton
(1985) suggests the use of cohorts to obtain consistent estimators, if repeated
cross-sections are available. Towards this, following the work of Deaton (1985),
Browning et al. (1985) and Verbeek (2008), we define C cohorts, which are groups
of individual sharing some common characteristics, for our example it is the year of
birth and the race of an individual. The cohorts are defined such that each individual
is a member of exactly one cohort, which remains the same for all periods. This
preempts the use of time-varying variables, like earning, to be used as a cohort
defining criterion. The seminal study of Browning et al. (1985) uses 5-year age
bands subdivided as to whether the head-of-household is a manual or a non-manual
worker. Banks et al. (1994) use 5-year age bands. In our study, involving the SCF
data there are repeated cross-sections available every 3 years from 1995 to 2007,
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which prompts us to use 3-year age bands as one of the variables to define our
cohorts. The lowest cohort takes into account all of the individuals aged 21 or less
as of 1995, and the highest cohort takes into account all of the individuals aged 60
or more as of 1995.

We also considered the public datasets available on the Federal Reserve website
from 1995 to 2007 in 3-year intervals (http://www.federalreserve.gov/econresdata/
scf/scfindex.htm). The website also has panel data sets for the years 2007 and 2009.
For both the repeated cross-sections and the true panel data, missing values were
imputed five times using a multiple imputation technique, thus there are 22,085
observations in the 2007 repeated cross-sectional datasets for 4,417 families and
19,285 observations in the 2007 panel for 3,857 families included in the survey.
We have randomly chosen one out of every five implicates for our analysis. For
constructing the cohorts, we chose 3-year age bands and Race class (1 = white non-
Hispanic, 2 = non-white or Hispanic), and define the cohorts as age-groups divided
by race class. As we discussed in the introduction, one important aspect of analysing
the pseudo panel data is a comparison of the pseudo panel data with the true panel
data if they are available for the same period of time. However, this is difficult in
practice due to unavailability of such data sets. In our case, the cross-sectional data
and the true panel data for the SCF data base overlap only in the year 2007. A simple
way of validating the constructed pseudo panel data is to compare the cohort-wise
distribution of a few variables from the pseudo panel data and the true panel data
over the period of overlap.

Figure 1 shows the distribution of mean income, mean asset and mean networth
over the cohorts for the pseudo panel data constructed from repeated cross-sectional
data sets from 1995 to 2007. The similarity between the top row and bottom row
of Fig. | indicates the cohorts for either data set have similar characteristics. There
is also remarkable similarity across different variables, particularly between mean
asset and mean networth.

To compare across different time-points and also to see how the cohort-wise
distribution changes over time, we have plotted the mean income for the pseudo
panel data for 1995-2007 and the true panel data for 2007 and 2009 versus the age
cohorts in Figs. 2 and 3. The distributions look similar providing further support to
the method of construction adopted in this note.

One may identify the positions of black hollow square data points in Fig. 3 with
similar position of green hollow square data points in Fig. 2; these correspond to the
year 2007, the common year of true panel and pseudo panel data, those we say are
close.

During the Great Recession, the median U.S. household income (in 2011 dollars)
dropped from $54,489 in 2007 to $52,195 in 2009, a loss of 4.2 %.

This is indicated as lowering the peak of income distribution in 2009 compared
to 2007 in Fig. 3.

The above-mentioned recession is discussed in National Bureau of Economic
Research (NBER), the largest economics research organization in the United States;
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Cohort-wise Distribution of True Panel Data and Pseudo Panel Data
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Fig. 1 Distribution of mean income, mean asset and mean networth by Cohorts for both the
pseudo and true panel data for the year 2007

business cycle dates are determined by the NBER (http://www.nber.org/cycles/
cyclesmain.html). According to NBER, the Great Recession started in December
2007 and ended in June 2009.

The disastrous economic event in the years 1930s is termed as “Great depression”
in the literature. The later event of 2007-2009 is termed as “Great recession”.

3 Linear Fixed Effects Model

In this section, we briefly state linear fixed effects model, which provides the effect
of the predictors that vary over time (analysis done in Sect. 4). The key assumption
underlying this model is that the unobserved variables that have an effect on both
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Fig. 2 Distribution of mean income by Cohorts for pseudo panel data over the years 1995-2007.
First 15 cohorts are 3-year age-groups for race class = 1 (white, non-Hispanic), the last 15 cohorts
are 3-year age-groups for race class = 2 (Hispanic or non-white)

YEAR
o 2007
& 2009
© o
<
un]
s <
Q -
S
-
Z o
<
L _ &
= o —
Q. PAARL ——
8 T T T T T T T
5 10 15 20 25 30

COHORT

Fig. 3 Distribution of mean income by Cohorts for true panel data over the years 2007 and 2009.
First 15 cohorts are 3-year age-groups for race class = 1 (white, non-Hispanic), the last 15 cohorts
are 3-year age-groups for race class = 2 (Hispanic or non-white)

the predictor and the response variable are time-invariant in nature. The fixed effects
model also assumes that these time-invariant characteristics are unique to the entity
(in our case, the cohort) and hence they are not correlated among themselves.

yie=xB+6+en i=12.. N, t=12....T (1)
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where x; denotes a k x I vector of explanatory variables and § is the parameter
(vector) of interest, where i indexes individuals and ¢ indexes time. We assume, for
simplicity, that

E(x,€j)=0Vs,t=12,....T and V i,
Aggregation of all observations to cohort level results in the following model

Vo =X f+0u+Ec=1,2,....C.t=12,..., T 2

where V., and x_(’,, are the averages of all observed y’s and Xx’s in cohort ¢
at time t. The resulting data set is a synthetic (or pseudo) panel data set with
repeated observations on C cohorts over T time-periods. The main problem with
this approach is that 6., depends on t and is likely to be correlated with x’s.
Therefore, the use of 9_6, as fixed will lead to identification problems, unless the
temporal variance of 9_6, over t can be neglected (9_0, = @) which is the case when
the number of observations per cohort is large, as is true in our case. Consider the
within-estimator on the pseudo panel,

C —T _  _ _ _N'«c ro_
Bw = (ZC=IZI=1 (¥er — %) (Xer — xc)) Zc=12t=1(x” —X)Ver = Vo)

3)

We assume that the number of cohort C is constant and the number of individuals
tends to infinity. Thus, the number of individuals per cohort tends to infinity.

4 Application to the SCF Data

For the results shown in this report, we consider a linear model with asset as the
dependent variable and income and net worth as the regressors. As mentioned
earlier, the number of observations per cohort is large for each time period. Below,
we describe the model we fitted to both the datasets using net worth as the dependent
variable and income as the regressor. We considered a fixed effects model as in
(1), 1.e.

yil‘:xl{tﬂ-’_@i-’_ei[, i=1,2,..., N(l), t=1,2,..., T “4)

where yj, is the asset and x;; is the net worth, and 8,’s are the fixed effects. We use the
standard within estimator for fixed effects model given in (3). The estimates and the
standard errors for the RCS data and the true panel data are given below. Standard
errors are small compared to estimates of parameters (Table 1).
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Table 1 The estimate of Variable

Estimate | Standard error
for the fixed effects model M h 0 11009518 |0.00278
using both true panel data and ean networth (true panel) | 1. :

pseudo panel data Mean networth (RCS) 1.0075 | 0.00157

5 Discussion

We give a brief overview of the method of constructing and validating pseudo panel
data from the widely available repeated cross-sectional surveys. The pseudo panel
data is easy to construct and it enjoys a few substantial advantages over both true
panel data and repeated cross-sectional data by avoiding errors due to non-response
or attrition. We illustrate, with the help of the U.S. SCF data, the construction of
pseudo panel data and discuss the validation of these by comparing the cohort-wise
distribution and comparing the parameter estimates obtained from same model fit
to both the datasets. Panel data considered has a shorter span than the gap between
successive cross-sectional data, making the task of practical demonstration a bit
difficult. We explained the pseudo panel data construction and comparison with
present data, some of the agreements as explained by figures are encouraging. There
are a few possible directions for future research, for example, one might construct
the cohorts in a non-parametric way to identify the natural clusters in the data, and
then finding suitable time-invariant variables to define the clusters. This could lead
to an optimal choice of the cohort width that ensures both prevention of loss of
information and sufficient estimation accuracy for the cohort means.
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Rates of Convergence in CLT for Two Sample
U-Statistics in Non iid Case and Multiphasic
Growth Curve

Ratan Dasgupta

Abstract We obtain nonuniform rates of convergence in central limit theorem
for two sample U-statistics in non iid case when moment generating function of
the kernel ¢ necessarily exists, but the kernel may not be bounded. The rates
are sharp when the kernel is bounded, like in the case of Wilcoxon two sample
U statistics. Precision of these results motivates to explore data analysis of plant
growth in the set-up of U-statistics. Growth patterns of Sisal plants, having high
economic return for extracted leaf fibres, are tested for two different growth
environment by two sample Wilcoxon U statistic. In the Indian Statistical Institute
(ISI) Giridih farm these plants are grown in two different types of land viz., a
high land with rock layer below topsoil having scarcity of irrigation, and the
other with sandy soil structure near a hilly rivulet occasionally flooded in rainy
seasons for a few days. The latter environment turns out to be more conducive
for growth. We study plant growth viz., growth in number of leaves and plant
height from field experiments. These variables are further studied for a subgroup
of randomly sampled plants. Length and mid width of sisal leaves are studied
for overall growth. Proliferation rates and second derivatives are also calculated.
Almost sure confidence bands for sisal growth curves are computed in the set-up of
U -statistics. These reveal multiphasic growth patterns. The study is of interest in
assessing economic potential of sisal plantation in Jharkhand.
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1 Introduction

We compute rates of convergence in central limit theorem for two sample U-
statistics in non iid case under a moment condition that ensures existence of
moment generating function for the kernel ¢, but the kernel is not necessarily
bounded. Nonuniform Berry Esseen bound gets sharper as the assumption varies
from existence of m.g.f. to boundedness of the kernel ¢. For decomposition of U
statistic in one sample and two sample cases and convergence rates in CLT along
with allied results see e.g., Hoeffding (1948), Ghosh and Dasgupta (1982), Dasgupta
(1984, 2008, 2013) and the references given therein.

In India Sisal (Agave sisalana) is mainly grown in arid and semi-arid regions of
Andhra Pradesh, Jharkhand, Orissa, Karnataka, Maharashtra, and West Bengal. By
two sample U statistic we compare growth pattern of Sisal planted in two types of
land. One is a high land with rock layer below topsoil and with less irrigation, and
the other has sandy soil structure occasionally flooded by a hilly rivulet Us#i in rainy
season. Comparison by two sample Wilcoxon U statistic indicates that the riverside
land is significantly better than the upper land for sisal growth.

Sisal fibres have high economic value, for these are stronger than jute fibre.
Strength for sisal fibre is studied in Inacio et al. (2010). From each sisal leaf
4-4.5 % of hard parallel fibres are extracted by machine decortications in which the
leaf is crushed between the rollers and then mechanically scraped. A healthy sisal
plant produces about 200-250 leaves during its 10—12 years of life span, after which
it produces long flowering axis called “pole”. A pole produces the bulbils which can
be 400-800 or more in numbers, and are used as seedlings for sisal cultivation. See,
e.g., Lock (1969) and Gentry (1982).

We examine the longitudinal growth of sisal plant height and number of leaves
for several years in Indian Statistical Institute (ISI) Giridih farm. Multiphasic growth
pattern over years is seen in the data analysed.

In Sect.2 we briefly recapitulate Hoeffding decomposition of two sample U
statistic in non iid case. We examine equivalence of two assumptions, one in terms
of moments of kernel ¢, the other is in terms of moment generating function of
some function of ¢. In Sect.3 we compute the nonuniform rates of convergence
in CLT and use these to obtain moment type convergences and nonuniform L p
version of Berry—Esseen theorem. Precision of these results motivates us to explore
data analysis of sisal growth in the set-up of U -statistics. Section 4 deals with cross
sectional comparison of two growth environment for sisal plants by two sample
Wilcoxon statistic. We further study longitudinal growth curve of sisal in terms of
plant height, leaf length and width and obtain almost sure confidence bands for
growth curves. Derivative, proliferation rate and second derivative curves of sisal
growth are obtained. Confidence band for growth curve for variance of sisal over
time is studied in a set-up of U -statistics. Seasonal variations over years are reflected
in multiphasic growth patterns in estimated curves.
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2 Decomposition of Two Sample U Statistic in Non Iid Case

Let U, ,, be a two sample U -statistic based on the independent but not necessarily
identically distributed random variables X, -, X, and Yy,--- , Y, with kernel ¢
and degree (1) i.e.,

U = (nc,me,)™" > ¢(Xiy, - X YY)
I<ij<---<i.<n (D
L<ji<-<josm

where the kernel ¢ is symmetric in X;’s and Y;’s. Without loss of generality we
may assume

Ed)(Xilv”'le'r;les"'vyjA):Os Vil#”'#irs jl#“'#jS' (2)

For Hoeffding decomposition of U statistics, we adopt the notations of Dasgupta
(2008, 2013). With r = s = 2, it was shown therein that the main part V; is sum of
independent random variables and the remainder with components V,, V3, V4 may
be considered negligible. The main part V) is of the form

2 o~ — 2 —
==+ = v,

i=1 is=1
and

U="+WNn+V+V, 3)
=Vi+ R, m where R, ,, =Vo+ V3 + V4.
Note that V; is a weighted sum of independent random variables for which
the standard theory applies. V; involves conditional expectation of ¢ fixing one
coordinate. In the general case the coefficients in the sum for V; are r/n and s/m
in the place of 2/n and 2/m, respectively.
A moment bound for the remainder R, ,, is stated in Proposition 1 of Dasgupta
(2013). The result in brief is presented below.

Proposition A. For a two sample U statistic defined in (1) with kennel ¢ with
degree (r, s) let (2) hold and for an integer g > 1, let

8q = sup [(Z)(’;)]_l Z E|¢(Xi1’ Xizv Yisv Yi4)|2q < 00.
m=>2 1<ij<i)<n 4
n>?2 1<iz<iz<m

Then, for a constant L(> 1) independent of m, n and q
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ER}, <n™% Li(vq)! §, (5)

under the assumption m = O,(n), and v = r + s is the number of arguments in ¢.
Now consider the bound

5, < Lievaed ©)
Vq > 1, where L > 0, v € (0, 1). The above condition is implied by

SUD, 5 s 1 ey Mey) ™! > E exp(s|g|'/") < oo,
1<ii<ir<n (7)
I<ji<j=<m

where 0 < s < s, =ve 'L™VV and ¢ = ¢(X;,, Xip, Y}, Y}y).

This follows along the lines of Dasgupta (2006), see Proposition 2.1 and Remark 2.2
therein. Existence of m.g.f. for ¢ corresponds to the case v = 1.
Under the above condition, one has ER}%, < n~24 L4¢(vtvqlozq,

3 Rates of Convergence for U Statistics

Two sample U statistic is of the form of a nonlinear statistic considered in Dasgupta
(2000),

T, =s," S, + Ry, (8)

where S, = Z0_ Xy, 52 = X0 EX2, inf,> n~! 52 > 0.
Xuts Xn2, - .., Xpn are independent random variables in a triangular array with
zero expectation and R, is a negligible remainder. For some 8 > 0, let R, be small

in the sense that
E| Ry | < c(q@n™"*(log n)P . q > 1, )

where c(q) < LieT9 4124 forsome § > 0and L; > 0.
Now write, as in Dasgupta (2013)

Uy = Uy, = [var(V)] ™ 2Uym = [var(V)] ™2V + RY,, (10)

where Vi = 230 9 (x) + 2 0, v 00: Ry, = ar(V)I R,
* n —=(1) m —=(1)
o ? = var(V1) = 4/ E[V (X))l /n* + Y E[Y (YD) /m?) =
Oc ()
ol =op,, = (n+m)?c*? = (n+m)*var(V}) = O,(n+m) = O,(n), provided
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infn™ Y ERXOP > 0, inf ™ YT EGU )P > 0. a

i=1 i=1

Let L > 1 be a generic constant. The first term in the r.h.s. of (10) is then a
standardised sum of independent random variables and the second term is remainder
with

E(R!,)* <n~% Li(vq)! 84, v =r + s is the number of arguments in ¢ (12)
< n™q [4e(tviqlogq, Vg > 1, under (6)

Then proceeding like Theorem 4.1 in Dasgupta (2006), one may obtain

Theorem 3.1. Under the assumption m = O,(n) and (6)/(7), i.e., averaged qth
absolute moment of kernel ¢ is of order LY exp(vqlogq), L > 0,0 <v <1, Vg >
1; or equivalently, averaged value of E exp(s | ¢ |'/7) is finite for some s > 0,
there exist constants b(> 0), and k € (0, 1/2) such that the following holds for the
standardised two sample U statistics U defined in (10),

| PUS <) = @) | < bn™"(log m)" exp (=k [ ¢ PA0FD),(13)

where v = r + s, the number of arguments in the kernel ¢ and —oo < t < oco.

The uniform bound of convergence associated with (12) is nearly optimal, the
nonuniform part depending on ¢ is exponentially decaying, and is of interest. In the
case of Wilcoxon statistic v =2 and v = 0.

The following results on moment type convergence and L, version of nonuni-
form Berry—Esseen theorems are immediate from Theorem 3.1. See also Theorem
2.5 and Corollary 2.1 of Dasgupta (1992).

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. Let g
(=00, 00) — [0, 00) be a even function, g(0) = 0 and Eg(T) < oo, where T is a
normal deviate. Suppose, g'(x) = Olexp(k | x PNV/CNA+ | x [)79], ¢ > L.
Then,

| Eg(U;) = E g(T) |= O(n™'7).
Corollary 3.1. Under the assumptions of Theorem 3.1,

lexp(k | £ PAVOEN A4 | x [)™/2(] P(UF < 1) — ()], = O(n™?),

forany g > 1.
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4 Data Analysis

Sisal is a drought resistant plant requiring little care with high economic value for
leaf fibres. To compare two growth environments, data on length (x;;) and mid leaf
width (y;), i =1,2;j =1,---,n;, for all healthy leaves were collected from two
fully grown mature plants, one grown in a high dry land and the other grown in a
riverside plot with sandy soil structure. These were planted years back, around the
same time (£+2/3 days). Data (in cm.) on n; = 46 and n, = 48 leaves from two
plants are presented in Tables 1 and 2.

Wilcoxon two sample U statistics with bounded kernels:

I(x; > x2), I(y1 > y») and I(x;y; > Xx3y,) may be considered for testing
equality of two population in terms of leaf length, width and a measure of leaf area,
respectively, for the sisal data of Tables 1 and 2.

For the null hypothesis that two populations are the same against an alternative
hypothesis, especially that a particular population tends to have larger values than
the other, the Wilcoxon test is an efficient nonparametric test with null asymptotic
distribution of standardised U as N(0, 1).

The standardised value of the statistic U* = (U — "222) / {1m20udmtDal/2 wigy
kernel involving x, y and xy are 6.739179, 0.4084351 and 4.008715, respectively,
to be compared with a normal deviate. First and last values are highly significant,
indicating that riverside plot is more conducive for sisal growth.

Sisal is a sturdy plant that can adapt to harsh environment. A plant from highland
was uprooted two years back that made its roots established on riverbank, outside
the boundary wall of farm. This unprotected plant prone to damage has number of
leaves, n; = 74. This unguarded plant nearer to hilly rivulet is compared with one
of the best Sisal plants from upland with number of leaves, n, = 106. Data (in cm.)
of these two plants are provided in Tables 3 and 4.

As before we compare leaf length x, mid leaf width y, and xy; a measure of leaf
area by the above mentioned Wilcoxon two sample U statistics; the standardised
value of the statistic U * in this case are 3.26775, 0.596, 2.46826, respectively, to be
compared with a normal deviate. Significance of first and last values provide ample
evidence of conducive growth by riverside land for Sisal plants.

We next consider longitudinal study of plants in high land. Sisal plants cultivated
in ISI Giridih farm show a growth pattern y = y(¢) that reveals a seasonal variation
over time . Growth curves of number of leaves averaged over 180 plants on
different time points, shown in Figs. 1 and 2 using the nonparametric regression
techniques of lowess (using SPlus with f = .11) and smoothing spline (using SPlus
smooth.spline, with spar= 0.00001), over a period of four years exhibit slow rate of
growth in summer and winter, both being extremely harsh in that region.

The same is reflected in the growth curve of height of 179 plants in Fig.3
(lowess smoothing in SPlus with f = .11), and Fig. 4 (spline smoothing in SPlus
smooth.spline, with spar= 0.00001); exhibiting features of step function.
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Rates of Convergence in CLT for Two Sample U-Statistics in Non iid Case
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Fig. 1 Growth curve of number of leaves averaged over 180 plants on 160 different time points is
shown in Fig. 1 using the nonparametric regression techniques of lowess (using SPlus with f =
0.11) over a period of about four years. This exhibits slow rate of growth in summer and winter,
both being extremely harsh in that region. The curve has step-function like features
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Fig. 2 In this counterpart of Fig. 1, nonparametric spine regression using SPlus smooth.spline
software with spar = 0.00001 provides a smoother growth curve of sisal leaf number. Features of
step function like growth present are similar to the previous figure



46 R. Dasgupta

Height(cm)

T T T T T T
0 200 400 600 800 1000 1200
Time(day)

Fig. 3 Similar step function like feature is reflected in the growth curve of height of 179 plants in
Fig. 3 obtained by lowess smoothing in SPlus with f = 0.11
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Fig. 4 The growth curve of height of 179 plants shown in Fig. 4 is obtained by spline smoothing in
SPlus smooth.spline, with spar = 0.00001. The curve is relatively smooth compared to the curve
in Fig. 3. Growth of sisal is steep in rainy season as seen in the curves. Giridih has two spells of
rain in a year, causing fluctuations in growth curves
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Fig. 5 Figure 5 shows the derivative of the growth curve for number of leaves with input from
Fig. 1; following a technique proposed in Dasgupta (2013) by lowess in SPlus with f = 1/7

Growth of sisal is steep in rainy season as seen in the curve. Giridih usually
has two spells of rain; the additional one is during September—October of a short
duration.

Figure 5 shows the derivative of the growth curve for number of leaves with
input from Fig. 1; following a technique proposed in Dasgupta (2013) by lowess
smoothing in SPlus with f = 1/7. Figure 6 shows the same by smooth.spline, with
spar= 0.00001.

Figure 7 shows the derivative of the growth curve for sisal plant height with input
from Fig. 3; by lowess smoothing in SPlus with f = 1/7. A similar variation in
growth velocity is nicely explained in Fig. 8 obtained by smooth.spline, with spar=
0.00001.

Proliferation rate %log y = %% does not depend on the unit of measurements
for y, the proliferation rate is calculated for number of leaves and height of sisal
plants by smooth.spline, with spar= 0.00001 in Figs. 9 and 10, respectively. There
is a sharp upturn in the beginning in these figures, the rates oscillates and slowly
decrease in a step function like manner. Like growth and velocity, the proliferation
rates of sisal are also affected by seasonal variation.

Similar oscillation in cell count and proliferation rate of wild type cells is
observed while incorporation of Bromodeoxyuridine, an analogue of thymidine, in
infected megakaryocytes; see Fig. 4b of Horsley et al. (2008).
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Fig. 6 Figure 6 is smooth spline counterpart of Fig.5. This smoother curve is obtained by
smooth.spline in SPlus, with spar = 0.00001
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Fig. 7 Velocity of sisal height with trimmed mean, wt. exp(—.01 x); lowess
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Fig. 8 Velocity of sisal height with trimmed mean, wt. exp(—.01 x); spline
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Fig. 9 Proliferation rate of leaf no. with trimmed mean, wt. exp(—.01 x); spline
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Fig. 10 Proliferation rate of sisal height with trimmed mean, wt. exp(—.01 x); spline

To obtain second derivative of growth curve, we proceed by lowess smoothing
with f = .11 and compute estimate of the growth curve from averaged points
of basic data, and next compute the first derivative by lowess smoothing with
f = .11. Finally lowess (with f = .11) and spline technique (smooth.spline,
with spar= 0.00001) are used for smoothing the second derivative point estimates
obtained by the technique of Dasgupta (2013). The resultant curves are shown in
Figs. 11 (with lowess) and 12 (with spline) for growth of sisal leave number. For
sisal plant height, the curve of second derivative is calculated in a similar manner
and is shown in Figs. 13 and 14 obtained by lowess and spline method, respectively.
Spline technique at final stage produces relatively smooth curves, although at initial
stages we preferred to use lowess technique (with f = .11) to preserve the main
features of data, avoiding much data smoothing.

We collected data on leaf length and leaf width of sisal for a period of 16 months.
Five plants in each row were selected at random to collect data. Then five leaves
were selected from each plant so marked. As such in each row, there were 25
selected leaves for data collection in a particular date. Average of length and width
of leaves were plotted at each time point. To examine the overall growth of the
plants, data were collected once in a month within the period (1/4/2011-1/8/2012).

A study on the length and width of sisal leaves at different time period shows that
these characteristics increase at a high rate initially and then a downward tendency
of basic points is observed for a while when the leaves are mature, and the curve
gradually increases to reach a stability. The minor ups and downs of the basic points
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Sisal leaf no. second derivative with trimmed mean, wt. exp(—.01 x); spline
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Fig. 13 Sisal leaf no. second derivative with trimmed mean, wt. exp(—.01 x); lowess
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Fig. 14 Sisal height second derivative with trimmed mean, wt. exp(—.01 x); spline
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Fig. 15 Growth curve (spline) of sisal leaf length

may be due to seasonal variations, as the growth of leaf decreases during winter
season and increases during summer.

Figures 15 and 16 are drawn in SPlus smooth.spline, with spar= .00081, these
describe growth curves of leaf length and leaf width, respectively. The length of the
sisal leaves is increasing sharply at the initial stage after emerging. Then we notice
slight downward trend in the basic points, possibly due to sampling fluctuation.
However an overall increasing tendency in growth curve is noticeable in this case
also, as was seen for the width of the leaves.

Ten representative plants were selected with systematic sampling starting from
plant number one, and the height and numbers of leaves of these plants are
recorded over time in Fig. 17 and Fig. 18, respectively. The mean curves are shown
in red colour. Almost sure convergence of an estimator to the parameter from a
particular direction (upper or lower) is termed as “one-sided estimation”. Such
conservative type of convergence is of interest when loss due to overestimation
and underestimation of the parameter may not be the same. For discussion on
one sided estimation and resultant almost sure confidence band see Sect. 2 and
Sect. 5 of Dasgupta (2015a) and the references given therein. See also Dasgupta
(2015b). Based on these ten sampled plants, in Fig. 19 and Fig.20, we compute
the central line of growth curve for plant height and leaf number, respectively, by
lowess with f = 1/5; and the upper and lower confidence band by lowess with
f = 1/7 in respective figures. Almost sure bands specify the position of the growth
curve of plant height/number of leaves with probability 1, for large sample size.
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Fig. 16 Growth curve (spline) of sisal leaf width
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Fig. 17 Sisal plant height growth
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Fig. 18 No. of leaves growth for Sisal plant

The a.s. bands are of stronger conclusion compared to conventional confidence
bands of probabilistic coverage. As almost sure band for the variance curve is
computed in Fig.21, with the U statistic kernel h(x;,x;) = (x; — x2)?/2; the
perturbation part being simplified to 27+w[|(x(1) - x2)%/2 = (x@ — x3))?/2| +
|(x@) = x1)?/2 = (xay — X@)*/2] + [(x@) — x3))*/2 = (x@3) — x1))*/2[], with
n =3, a = 2.25, where Xx(1), X(2), X(3) are the smallest, median and largest order
statistic of ten plant observations at a particular time point; choice of f in lowess
regression in Fig.21 are f = 2/3 for the central growth curve, and f = 1/3 for
upper and lower curves in the band. Position of basic data points is also shown in
Fig.21. A remarkable feature observed is that the ten sampled plants visually show,
as apparent from the above figures; almost similar longitudinal patterns present
in the larger group of 180 plants, from which these were chosen by systematic
sampling.

Data analysed is partly from ISI project ‘Integrated nutrient management for sisal
cultivation in laterite soil of Giridih, a subtropical plateau region of India’.
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Fig. 19 Almost sure band for growth curve of Sisal plant height
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Fig. 20 Almost sure band for growth curve of leaf numbers in Sisal plant
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Fig. 21 Red curve in the band represent the central line of variance as time progresses. Basic data

points of ten sisal plant height (in cm.) are also shown side by side to understand fluctuation of
variance

In studies on number of leaves and height of the sisal plants, we observed a step
function like increase in growth curve. This feature is due to seasonal variations.
Growth of sisal is high in rainy season compared to other seasons, especially in
winter the growth is retarded. The study indicates the land near rivulet to be more
conducive for growth of sisal plants having economic potential, although the plant
can adapt to harsh environment in Jharkhand.
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Estimation of Animal Abundance Through
Imperfectly Characterising Signatures

Debasis Sengupta

Abstract The problem of estimating population total of animals from imperfectly
characterising animal signs poses a number of interesting statistical questions that
are not addressed through conventional methods of estimating animal abundance.
A case in point is the estimation of tiger population total from pugmark (footprint)
measurements, which has been the traditional mode of tiger census in India for
several decades. Usual methods based on distance sampling would not work well
because, unlike dung produced by elephants or nests produced by birds, such signs
are not produced at a steady rate. On the other hand, these signs may not carry as
accurate and reliable characterising information as one expects from fingerprints. Is
it still possible to estimate the population total precisely and accurately? If so, what
should be the appropriate number of signs to be sampled? How can one cluster the
signs so that each group of signs belongs to a distinct animal? Is good clustering
a prerequisite for good estimation of population total? Is it possible to account
for animals missed in the sample? In this article, we attempt to answer to these
questions.

Keywords Population total ¢ Clustering ¢ Partially supervised learning * Train-
ing data  Data association * Maximum likelihood * Tiger census

1 Introduction

The methods of mark-recapture and distance sampling have been traditionally used
for estimating animal abundance in a closed region (see Brochers et al. 2002 for a
survey of methods). Sometimes it is difficult to use such methods of direct counting
because of non-uniform distribution of animals, mobile populations or logistical
constraints. In such cases, one can employ indirect methods of counting through
animal signs. For example, elephants are counted through dung-piles, and birds
through their nests (see, e.g., Liang et al. 2003). An estimate of the abundance of
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animal signs can lead to an estimate of the abundance of the animal itself, if the
rates of production and decay of these signs can be estimated accurately.

In India, pugmarks (footprints) of tigers have been used for estimation of
abundance of tigers in reserve forests for over seven decades (see Champion 1929;
Sharma et al. 2005). These signs are not produced by the tiger at a uniform
rate. Therefore, estimation of abundance would depend crucially on the linkage
between a pugmark and the tiger producing it. While there has been some statistical
work towards establishing this linkage in the case of other cat families (see, e.g.,
Smallwood and Fitzhugh 1993, for work on mountain lions), there have been lack
of similar work in the case of tigers. Gore et al. (1993), who showed that one
can discriminate between male and female tigers through pugmark measurements,
emphasised the need for quantification of the linkage between pugmarks and
individual tigers for successful estimation of population total through pugmark
data. In a scathing criticism of the Indian government’s conduct of tiger census
on the basis of pugmarks despite lack of proof of linkage, Karanth et al. (2003a,b)
showed through a controlled experiment that one cannot rely on “expert opinion” to
establish this linkage. The controversy received wider attention in January 2005 with
publication of media reports (see, e.g., Mazoomdaar 2005) that the Sariska National
Park, home to seventeen tigers according to the 2004 “Tiger Census,” did not have
any tiger at all—a fact that was subsequently acknowledged by the Government
of India. Sharma et al. (2005) showed, on the basis of samples collected from
tigers in reserve forests and zoological parks, that pugmarks can indeed be linked to
individual tigers with reasonable degree of accuracy, especially when one has a set
of replicated pugmarks of medium depth, collected from each sample trail. However,
there has been no study to determine whether this level of accuracy is adequate for
estimation of the population total. Indeed, no validated statistical method for this
estimation exists in the literature.

Other methods that have been either used or proposed in connection with
estimation of tiger population total include camera trap and genetic matching of
bio-materials such as dung (see, for example, Karanth et al. 2004; Tiger Task
Force 2005). Matching of images from camera trap (images captured automatically
by hidden camera) is far from a foolproof exercise, particularly because different
images may be taken from different angles. Genetic matching is also fraught with
the risk of contamination and erroneous linkage/non-linkage.

While such sign-based enumeration methods rely heavily on a perfect linkage
between animal sign and individual animal, available technology does not offer a
perfect linkage. There have been efforts to improve the linkage further. However,
there is no existing statistical method of estimating animal population on the basis
of a collection of signs, while accepting imperfect linkage as a fact of life. The aim
of the present article is to fill this void.

The problem of estimating the population total is as follows. The data consists
of measurement vectors y, y,, ..., y 5 extracted from animal signs (e.g., pugmark
image, camera-trap image, genetic features, etc.). If there are K animals represented
in the sample, then there exists a “true” partition Pj,..., Px of the index set
{1,2,....N}(withUK P, ={1,2,....,K}and , N P; = ¢ fori,j =1,...,K,
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i # J), such that the origin of the set of measurement vectors {y;};ep can be
attributed to the i th individual animal. This partition is unknown however, and the
task is to estimate the number K.

Note that the correct number K would be known if the correct partition (or
cluster) is known. However, there can be many wrong partitions leading to the
correct estimate of K, and many more wrong partitions leading to nearly correct
estimate of K. Thus, estimation of K is relatively an easier task than identifying the
correct partition.

While there is a “true” K in the present problem, the number of clusters is only a
notion in the vast majority of clustering problems. The estimation of the “number”
of clusters in these problems is akin to the selection of model order in parametric
inference problems. This problem has been addressed by several researchers. Some
of the early methods were summarised by Milligan and Cooper (1985). Kaufman
and Rousseeuw (1990) presented a number of new methods, including partitioning
around medoids (PAM), Divisive Analysis (DiAna) and the Silhouette method.
Fraley and Raftery (1998, 2002) sought to estimate the number of clusters through
model-based cluster analysis. Tibshirani et al. (2001) proposed the Gap statistic for
this purpose. McLachlan et al. (2002) provided another solution through a mixture
model-based approach to clustering.

Most of these methods attempt to ensure homogeneity (i.e., small variation)
among units within a cluster and heterogeneity (i.e., large variation) among units
belonging to different clusters. If there is no “true” number of clusters, then it is
impossible to calibrate the method of determination of the number of clusters. If a
method is applied without calibration to a clustering problem where there is a “true”
number of clusters, there is no guarantee that the chosen objective function would
have an optimum at or around the correct number of clusters.

An attractive feature of the present problem is that it may be possible to use
a limited amount of training data. (For example, multiple pugmark samples can
be collected from trails of distinct tigers.) Unlike in the problem of classification
where samples from all candidate populations/groups are generally available, here
the training data would consist of observations together with cluster labels in
respect of some groups only. These groups may not even be represented in the
eventual data that have to be clustered. In this sense, the problem corresponds to
partially supervised learning. In the literature of partially supervised learning, there
are instances where such “training data” are combined with unlabelled test data
to determine the number of clusters (see, e.g., Schliep et al. 2003). However, the
methods are usually very specific to the application at hand.

In this article, we propose a model-based method for estimating the number of
clusters which makes explicit use of the information obtained from the training data.
We leave aside the issue of variable/feature selection, noting that this selection can
be made using available methods (see, e.g., Fowlkes et al. 1988) on the basis of
the same training data. The proposed method does not require the selected features
to uniquely identify the correct clusters, and may work reasonably well even if the
clusters are not correctly estimated.
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In Sect.2, we present the model and develop the method for estimating the
number of animals represented in the sign sample. We also extend this method
to handle estimation of the population total (including animals not represented in
the sign sample), under some assumptions on the sampling scheme. We study the
performance of the estimation methods through simulation in Sect. 3, and propose
bias-corrected confidence intervals through parametric bootstrap in Sect. 4. Analysis
of a data set obtained from tiger “census” from the Sunderbans Tiger Reserve in
the year 2004 is reported in Sect.5. We conclude the article with some remarks
in Sect. 6.

2 Model and Estimation

We assume a random effects model for the p-variate observation:
y,=w; +e€;, jebP, i=1..K, (1)

where { P}, ..., Pk} is a partition of the index set of observations {1,..., N} such
that each set represents a distinct animal, g, is the effect of the ith animal and
the €;’s represent observation-specific random errors which are samples from a
distribution. The effects |, ..., ux are samples from another distribution and are
independent of the € ’s.

In this article we adopt a parametric approach and assume that the € ;’s have the
p-variate normal distribution N (0, W), and that the p;’s have the p-variate normal
distribution N(p, B), where W and B are positive definite matrices.

2.1 Estimation of W and B from Training Data

The problem of estimation of the covariance matrices B and W is that of estimating
multivariate variance components in the possibly unbalanced one-way classified
random effects model (1). Even in the univariate case, closed form unbiased
nonnegative estimators of the two components do not exist. In the multivariate
case, Calvin (1993) considered restricted maximum likelihood (REML) estimation
for this problem, and proposed an iterative solution based on an EM algorithm.
This method was extended by Calvin and Dykstra (1995) to handle parametric
restrictions or inequality constraints on the variance components. This iterative
estimator needs a good initial estimate. The following unbiased and closed-form
estimate of W can be used for this purpose.

K -1k
W (Zni_K> ZZ(J’;‘&;‘)(J’]’_&;‘)T’ (2)

i=1 i=1jep,

where y; =ni_1 E Y
JEP;
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and n; is the cardinality of the set P;. A possible initial estimator of B is

R K K K -1k
B = [Zm—<2”?)/<2mﬂ G -G - O

i=1 i=1 i=1 i=1

where § = (ini)_l XK: >y

i=1 i=1jep

It can be checked that this nonnegative definite estimator has expected value B +

[ZiK:l n; — (ZiK=1 nf) / (ZiK=1 ni)] 1 (K — 1)W. The bias can be shown to be
bounded from above by n, ' W, where n, is the average size of all the partitions
excluding the largest partition. The bias is small if the eigenvalues of W are much
smaller than those of B, or if n, is large. Thus, the explicit and nonnegative definite
initial estimates given by (2) and (3) may not be iterated upon when fast computation
is needed and B has large eigenvalues.

2.2 Estimation of K from Test Data

For the purpose of estimating K, we proceed with the assumption that the matrices
W and B are known, and look for the maximum likelihood estimate (MLE) of K
and the partition { Py, ..., Pk}, together with the nuisance parameter x. In practice,
W and B would be estimated from the training data, as indicated in Sect. 2.1.

If F FT is a rank factorisation of W ™!, then one can carry out a spectral analysis
of the matrix F BF T to identify different linear combinations of variables (referred
to as “features” in the field of machine learning) which are uncorrelated, have unit
variance, and have successively decreasing discriminating capability. A subset of
these uncorrelated features can then be used for clustering. Therefore, without loss
of generality, we assume in the sequel that W = I, where I is the identity matrix
of appropriate order.

The likelihood (with W = I) is

K

/ l’[[ﬂzwp_m exp {5 us = ) B = )]
My

<1 [en e |30, =m0, —u,»)}ﬂdul .

JEP;
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After explicit integration, the likelihood function simplifies to

K
@m) T +niBY exp[—%@,« ~w B+ DTG -0

i=1

1
5 2=y - m], @)

JEP;

where n; is the cardinality of the set P; and y; = n;! djer Vi

The above likelihood has to be maximised with respect to the nuisance parameter
I, the partition { Py, ..., Pg} and the population total K. The first maximisation
can be done explicitly. It can be shown that, for given K and given partitions
{P1,..., Px}, the likelihood (4) is maximised when

K -1k
n= (Z(l + n;‘B—l)—l) (Z(I + ni_lB_l)_lj:i) . 5)

i=1 i=1

Substitution of (5) in (4) yields a likelihood which needs to be maximised with
respect to the partition { Py, ..., Px} (for fixed K), and subsequently, with respect
to K.

Maximisation over all partitions of size K is computationally a very challenging
task. There are KV~K ways of partitioning a set of N objects into K clusters
such that there is at least one unit in each cluster. Searching over all these clusters
is a prohibitive task, even when N is only moderately large. As a computational
shortcut, we can evaluate the likelihood (4) and (5) at the partition obtained from
the k-means clustering algorithm with average linkage (instead of evaluating it at
the maximum likelihood partition), and then maximise the resulting function with
respect to K. We denote the maximising value of K by K.

Note that when the partition itself is regarded as a parameter to be estimated, the
corresponding parameter space is not compact, and hence the usual properties of
the maximum likelihood estimator need not hold. It may also be argued that, when
the main parameter of interest is K, the partition may be regarded as a nuisance
parameter and one might work with a weighted sum of the likelihood with respect to
a suitable distribution of the partition. However, we choose to estimate the partition
(together with K) instead of working with a weighted sum of the likelihood. The
reason for this choice is that evaluating the weighted sum of the likelihood involves
computing the likelihood at a huge number of candidate partitions, which is a
daunting task. Even if one seeks to approximate the weighted average by evaluating
the likelihood at a set of sampled partitions, the approximation may not be good
if the likelihood is very small (compared to its maximum value) at most of the
candidate partitions.
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2.3 Estimating Population Total

The method described in the foregoing section is meant for estimating the number
of distinct animals from which a particular set of signs has originated. When the
objective is to estimate the total number of animals in a closed region, it is necessary
to extrapolate this estimate to cover animals that may have been missed in the
sample.

Suppose that there is a total of K animals in a closed region (that is, no animal
moves into or out of it), and a sample of N signs (N > Kj) is collected in such a way
that each sign has equal chance of coming from every animal. (The latter assumption
is rather strong, but it may be quite reasonable for highly mobile animals in a not-
too-large region.) It can be shown that the probability that exactly K animals are
represented in the sample is

K
(fj) (KK 3 (1) (If) (1-i/K)",

i=0

and the expected number of animals represented in the sample is

< Ko N X i[ K . N
n(N.Ko) =Y K| ) (K/K)¥ 3= Ja=i/K)Y. (6)
K=1

i=0

The standard deviation of the number of animals in the sample can also be calculated
from the above distribution.

Table 1 depicts the expected value n(N, K) of the number of animals repre-
sented in a sign sample of size N, together with the standard deviation, for different
combination of values of N and K. It is clear from this table that N = 10K,
just about ensures inclusion of all animals in the sample. The expected number of
animals represented is consistently more than 95 % of K if the sign sample size is
3 Ko, and consistently more than 99 % of Ky, if the sign sample size is 5Kj.

If the sign sample size is a few times larger than the animal population total,
then one can use the relation (6) to obtain an estimator of the population total.
Specifically, we propose to estimate the population total by

Ko = ———F/K
n(N, K)

where K is the estimated number of animals represented in the sign sample, to be
computed in the manner described in the foregoing section.

In order to avoid confusion, we shall refer to K (defined in the previous section)
as an estimate of the number of animals in sign sample, and to Ky as an estimate of
the animal population total in a region.
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Table 1 Expected value and standard deviation of the number of animals repre-
sented in a randomly drawn set of N signs collected from an area containing K
animals

True number of | Sample size of animal signs (N)

animals (Ko) | 2K, 3K, 5K, 10K,

5 4.463 (0.608) |4.824(0.393) | 4.981(0.136) |5.000(0.008)
10 8.784(0.881) | 9.576(0.596) |9.948 (0.224) |10.00(0.016)
20 17.43 (1.257) |19.08 (0.869) | 19.88(0.338) | 20.00 (0.026)
50 43.37(1.998) |47.59(1.397) | 49.68(0.555) |50.00(0.045)
100 86.60(2.831) | 95.10(1.986) |99.34(0.795) | 100.0 (0.066)
150 129.8 (3.940) |142.6(2.437) | 149.0(0.977) | 150.0 (0.081)
200 172.9(5.132) |190.1(2.817) | 198.7(1.131) |200.0(0.094)

2.4 Confidence Intervals

A theoretical study of the properties of the estimates of the number of animals
represented in the sign sample (1%) and the population total (1%0) is difficult.
However, confidence intervals together with bias correction can be obtained through
parametric bootstrap.

In order to carry out this bootstrap for K, one can fix a trial value of K and
simulate a “training data set” and a “test data set” (independent of one another)
from the model (1) with the values of B, W and g same as the corresponding
estimates from the actual training data. The sizes of these two simulated data sets
should match those of the actual training and test data sets, respectively. The number
of distinct “animals” represented in the simulated training data should also match
that of the actual training data. For the simulated test data set, one has to ensure that
the number of “animals” represented in the test data is exactly equal to the fixed
value of K.

The simulated training data set can be analysed to generate simulated estimates
of B and W. Principal components analysis of FBF” (where FF” is a rank
factorisation of the estimate of W ') and selection of features can be made exactly
as has been done in the case of the actual training data, to generate the chosen
number of “normalised features”. The number of features would be exactly the same
as that used for the original estimation, but the features are specific to the current
simulation run. The simulated test data can then be analysed on the basis of the
simulated features. The likelihood described in (4), with g as in (5) and B as the
estimated covariance matrix of the simulated features, can be maximised to generate
a simulated estimate of K .

For the chosen value of K and a fixed confidence coefficient «, the above
simulation has to be repeated over a number of runs. The «/2 percentile, median,
and 1 — o/2 percentile of the resulting (simulated) K may be identified as /(K),
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m(K) and u(K), respectively. This entire exercise has to be repeated for different
trial values of K. Then, a bootstrap-revised estimate of K is

K =m™(K). (7)

The median of this estimate is approximately equal to the true value of K. A
bootstrap confidence interval of K with approximate coverage probability 1 — «
is W (K), 17 (K)).

A similar bootstrap procedure for Ky can be used. The steps are similar to those
indicated above, with the following modifications: (a) while generating the test data,
one only has to ensure that the underlying number of animals is fixed at a trial value
of Ky, and need not bother about the number of “animals” represented in the test
data set; the simulated K calculated from this test data has to be used to generate a
simulated estimate of 160 through (2.3). With these modifications, one can calculate
the /2 percentile, median, and 1 — «/2 percentile of the simulated K, for every
fixed Ky, and label them as [y(Ky), mo(Ko) and uo(Kyo), respectively. A bootstrap-
revised estimate of K, (with median approximately equal to the correct Kj) is

Ko = my"'(Ko). (8)

A bootstrap confidence interval of K with approximate coverage probability 1 — o
is (uy " (Ko), Iy ' (Ko)).-

2.5 Inclusion of Fixed Covariates

The model (1) can easily be expanded to include effects of fixed covariates such as
soil type. After estimation of the parameters of the model through the usual analysis
of a mixed effects model, one can proceed with the estimation of population total.

3 Simulation Results

A theoretical study of the properties of the estimates of the number of animals
represented in sign sample (K) and the population total (KO) mentioned in the
foregoing sections is difficult. We study their behaviour through Monte Carlo
simulations.

3.1 Estimation of Number of Animals in Sample

We run simulations with number of dimensions p chosen as 4. We choose the “true”
within-animal covariance matrix W as the identity matrix and the between-animal
covariance matrix B equal to a diagonal matrix with diagonal elements 500, 100,
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50 and 20. We fix the number of signs (V) and the “true” number of animals (Kj) at
different combinations of values. Subsequently, we carry out a parametric bootstrap
for the estimate K as follows.

STEP 1. We simulate a training data set consisting of a total of 40 sign feature
vectors from the sign feature model (1), such that each sign can originate from
all animals with equal probability and there are exactly 20 animals represented
in the sample.

STEP 2. We estimate W and B directly from (2) and (3), respectively, for simplicity
of computation (as the eigenvalues of B are much larger than those of W).

STEP 3. We simulate a test data set (independent from the training data) with N sign
feature vectors from the sign feature model (1), such that each sign can originate
from all animals with equal probability and there are exactly K = K, animals
represented in the sample (different from those represented in the training data).

STEP 4. Using the estimators of W and B calculated in step 2, we estimate K from
the test data set.

STEP 5. We repeat steps 1—4 a number of times, and store the resulting collection
of simulated estimates of K. These simulated estimates indicate the pattern of
randomness of the actual estimator K. In particular, the approximate bias (in
relation to the true value of K) and variance of the estimator can be calculated.

We repeat this exercise for different combinations of N and K. The findings are
summarised in Table 2. Each number reported in this table is based on 100 identical
runs of the simulation.

We observe from Table 2 that the estimate of K is generally good when N is three
to five times as large as K. Very large values of N can lead to gross over-estimation.

3.2 Accuracy of Clusters

We use the adjusted Rand Index which was proposed by Hubert and Arabie (1985),
for measuring the nearness of the true and estimated clusters. If { Py, ..., Py} and
{01, ..., Qum} are the two clusters being compared, n;;, n;. and n.; are the number
of elements in the sets P; N Q;, P; and O, respectively,i = 1,...,L, j,...,. M,
and

Table 2 Mean and standard deviation of estimated number of animals in sign sample

(13 ) for various combinations of number of signs (N) and “true” number of animals
represented in sign sample (K)

True value | Mean (and standard deviation) of estimated K when N is

of K 2K 3K 5K 10K 20K
5 5.33(0.47) |5.52(0.50) |5.81(0.44) |6.23(0.53) |7.79(1.63)
15 15.26(0.63) | 15.64(0.59) | 16.13(0.56) |16.89(1.41) | 21.86(4.24)

50 47.98 (1.65) |49.58(1.33) |50.87(1.15) |54.41(3.91) | 71.33(12.07)
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Table 3 Mean and standard deviation of adjusted Rand index between true cluster (K groups)
and estimated cluster (K groups) for various combinations of number of signs (N ) and “true”
number of animals represented in sign sample (K)

True value | Mean (and standard deviation) of adjusted Rand index when N is

of K 2K 3K 5K 10K 20K

5 0.943 (0.091) |0.924 (0.096) | 0.931(0.060) |0.906(0.055) |0.804(0.119)
15 0.965 (0.046) | 0.960(0.040) | 0.967 (0.024) | 0.957(0.038) | 0.858 (0.089)
50 0.940(0.037) |0.960(0.031) | 0.966(0.022) |0.957(0.033) | 0.867 (0.069)

DTS 3R 3

i=1 i=1j=1

then the adjusted rand index for the nearness of these clusters is

Y X () = L () () (G)
Y ()2 + X () 2= S () (9 /G)

This measure is less than one in magnitude, attains the value 1 if and only if the
two clusterings are identical and has the average value O when the two clusterings
are completely independent. This measure had been compared with other measures
through simulations, and had been recommended by Milligan and Cooper (1985).

The mean and standard deviation of the adjusted Rand index for the estimated
clusters corresponding to the simulated K’s reported in Table 2 are summarised in
Table 3.

The index is generally high when N not more than 5K.

3.3 Estimation of Animal Population Total

The steps for carrying out simulations for Ky are as in the case of the simulations
for K , with two differences: (a) in step 3, there is no need to ensure K = Kj (i.e.,
some of the K animals may not be represented in the sample), and (b) in steps 4-5,
we have to calculate simulated estimates of K to study properties of Ko, instead of
those of K.

Table 4 shows the mean and standard deviation of the estimator 1%0 for various
values of N and Ky, based on 100 simulation runs. A careful comparison with
Table 2 would reveal that K, generally has slightly larger standard deviation than
K. This deterioration is the price one has to pay in order to extrapolate from an
estimate of K to an estlmate of K.

As in the case of K KO is also observed to have least error when N is three to
five times K (after bias and variance have both been taken into account).
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Table 4 Mean and standard deviation of estimated animal population total for various
combinations of number of signs (V) and “true” population total (K)

True value | Mean (and standard deviation) of estimated Ky, when N is

of Ky 2K, 3K, 5K, 10K, 20K,

5 541(1.22) |5.39(0.60) |5.84(0.44) |6.17(0.47) |7.57(1.59)

15 15.45(1.84) | 15.72(1.10) |16.04(0.85) | 17.13 (1.61) |22.45(4.34)
50 47.10(2.96) | 49.02(2.39) |51.32(2.49) |55.03(4.59) |70.51(12.40)

4 Bias Correction and Confidence Interval

The observations of the previous section can be used to further improve the estimates
of “animals in sample” (12 ) and “population total” (1%0), and to obtain confidence
intervals.

The simulations of Sect.3.1 can be run repeatedly for different trial values of
true K, and the /2 percentile, median, and 1 — «/2 percentile of the resulting
(simulated) K for a specified K may be identified as /(K), m(K) and u(K),
respectively. Then, a revised estimate of K is

K =m™(K). 9)

The median of this estimate is approximately equal to the true value of K.
A confidence interval of K with approximate coverage probability 1 — o is
(! (K). I7H(K)).

Likewise, if /o(K), mo(K) and uo(K) are the oo/ 2 percentile, median, and 1 —a/2
percentile of simulated 120 for a specified Ky, then a revised estimate of K, with
approximately correct median is

Ko = my'(Ko), (10)

and a confidence interval of K with approximate coverage probability 1 — « is
(' (Ko). Ig" (Ko)).-

5 Analysis of Data From Sunderbans Tiger Reserve

The context of the present work has been the pugmark-based tiger “census”
conducted by the Government of West Bengal in January 2004. The “census”
actually consists of extensive collection of left hind pugmarks obtained through a
comb search along the banks of all accessible waterways which are exposed during
low tide, and should not be confused with a complete enumeration exercise. In order
to use the method for estimation of the population total proposed in this paper, one
has to have additional data where the pugmarks originating from each distinct tiger
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Fig. 1 Typical contour of a
tiger pugmark

Bounding
box

are clearly labelled. Replicated pugmarks of a particular tiger may be obtained from
a single trail, and geographical separation of the trails and a narrow time window
for data collection would ensure that there is no realistic chance of two trails having
originated from the same tiger. The labelled data for the present exercise consisted
of 76 observations, in which 20 distinct trails were represented. These included
observations from a few right hind pugmarks that were reflected so that they become
similar to left hind pugmarks. Following the convention followed during the tiger
“census”, these training samples were collected from three strata of soil: clay,
loam and sandy. A total of 37 features were extracted from the contour of a tiger
pugmark (see Fig. 1) drawn from a replica made of plaster of Paris, obtained from
the pugmark impression. All these features are rotation and translation invariant,
and are log-transformed so that these take values over the unrestricted real line.
The details of the computations will appear in a forthcoming paper. Here we give
only a gist of the findings. At the outset, we eliminated the features that showed
heterogeneity across soil types and/or across left and reflected right pugmarks,
and also the features that did not discriminate between trails (individuals). This
produced a pruned list of 24 features, for which we can use model (1). Five other
features were eliminated in order to ensure numerical stability of inversion of the
estimated matrix W . Normalised orthogonal features for clustering were obtained

. AT A AT | ..
from eigenvectors of the matrix F B F, where FF is a rank factorisation of

W_l. Subsequently we used a lower rank approximation by minimising the cross-
validation error-rate of the linear discriminant analysis (LDA) classifier for the 20
classes at hand. A rank-8 approximation was obtained in the process. The largest
three eigenvalues of the rank-8 matrix accounted for more than 97 % of the trace,
and therefore only the corresponding eigenvectors were used as linear combinations
of variables for clustering.

The (unlabeled) test data consisted of entire collection of 1,059 pugmarks from
2004 Tiger “census” in the Sunderbans Tiger Reserve, which reduced to a total of
966 after screening for front and right hind pugmarks. Estimation was done as per
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Fig. 2 Typical shape of likelihood function from bootstrap resamples

the method described in Sect.2 with bootstrap based bias correction described in
Sect. 4. The plot of the likelihood calculated from a typical resample is shown in
Fig.2.

The number of tigers represented in sample was estimated as 75, while a
bootstrap confidence interval with 95 % coverage was 42—107. The estimated
population total was also 75, with bootstrap confidence interval 45-106.

The confidence intervals are somewhat wide. This fact may be attributed to the
excessively large size of the data in relation to the estimated population total. Going
by the findings of the simulations reported earlier, collection of two to four hundred
pugmark samples during the “census” operation would have been ideal.

6 Tracking Population Growth

Estimation of the population total and estimation of the correct cluster of the animal
sign sample are related but distinct problems (see discussion of page 61). There
may be an accurate solution of one problem but not the other. The quality of the
estimator of the population total depends on the discriminating power of the chosen
features, i.e., the size of the eigenvalues of the between-animals covariance matrix
(B) relative to the within-animals covariance matrix (W'). It appears from the work
of Sharma et al. (2005) that, the level of contrast between B and W assumed in the
simulations of Sect.4 may very well be achievable in the case of tiger pugmarks.
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Our simulation results indicate that, for the assumed values of these matrices, it
should be possible to estimate the population total up to an accuracy of +10 %,
provided the size of the sign sample is reasonable (see last remark of Sect. 3.3).

In view of the fact that the proposed method is meant for estimating the
population total, and not for tracking the presence of a particular animal in a
sequence of studies, one has to make use of the trajectory of estimated population
totals at different points of time in order to track population growth.

One can make use of location information for this purpose, in different ways.
First, the method presented here can be used for animal signs obtained from sub-
regions. However, the same animal may leave signs in more than one sub-region.
Therefore, the sum of the estimated totals in different sub-regions may be more than
the estimate obtained for the entire region. Even so, the growth of population in a
sub-region may be tracked by using the proposed method on data obtained from that
sub-region at different points of time. Second, positional data on the location of each
sign can be used as additional features. In order for these data to be valuable for the
present purpose, the entire data needs to be collected over a short span of time, and
there should be information about the maximum possible geographical separation
between two signs originating from the same animal.

Another quantity relevant for population growth is the number of cubs. For the
tiger pug-mark data (and similar other examples), it may be possible to use the
proposed method to exclusively estimate the cub population total. By tracking this
estimate across studies conducted at various times, one may get a clearer idea about
the growth of population.
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Growth Curve of Elephant Foot Yam, One Sided
Estimation and Confidence Band

Ratan Dasgupta

Abstract Almost sure convergence of an estimator to a real valued parameter
from a particular side (above/below), termed one sided estimation, is of interest
in conservative estimation. Such estimator converges to the parameter from a
particular direction almost surely (a.s.) for all large sample size n. We consider
one sided estimation of growth curve for Elephant foot yam from experimental data
and examine the resultant confidence band of the curve. Almost sure upper and
lower bounds for yield over time may be used as conservative estimates of crop
yield with probability 1. Deviation probabilities and convergence rates in central
limit theorem for proposed estimators are studied under the set-up of U -statistics.
Probability bounds of tail events concerning error in approximation are shown
to be exponentially decaying. Some special types of L statistics relevant to one
sided convergence are also considered for computing rates in CLT. Implications of
results are discussed in the context of Yam growth curve estimation with live data.
Associated a.s. confidence band for estimated growth curve may be narrow even
for a widely dispersed data, as the goal of constructing confidence band here is
different from including all data points inside the band. Upper and lower estimate of
the growth curve of yam are seen to cover the mean response curve in general.
Confidence band for variance of yam yield over time exhibits similar coverage
properties. Presence of an upward spike is observed in the growth curve of yam
yield towards the end of yam plant lifetime. The spike is prominent when yam is
harvested at the end of second season in a 2-year study, instead of harvesting the
crop after first year.

Keywords Elephant foot yam ¢ Growth curve ¢ U-statistics ¢ L-statistics ®
Order statistics * One sided estimates ¢ Berry—Esseen theorem ¢ Moderate
deviation ¢ Large deviation

MS Subject classification: Primary 62P10; Secondary 62J02, 62G05, 60F05,
60F10, 60F15, 62G20, 62G30

R. Dasgupta (><)

Theoretical Statistics and Mathematics unit,

Indian Statistical Institute, 203 B T Road, Kolkata 700108, India
e-mail: rdgupta@isical.ac.in; ratandasgupta@gmail.com

© Springer International Publishing Switzerland 2015 75
R. Dasgupta (ed.), Growth Curve and Structural Equation Modeling, Springer
Proceedings in Mathematics & Statistics 132, DOI 10.1007/978-3-319-17329-0_5


mailto:rdgupta@isical.ac.in
mailto:ratandasgupta@gmail.com

76 R. Dasgupta
1 Introduction

Consider the problem of estimating confidence band of growth curve for a tuber
crop like Elephant foot yam. A conservative confidence band may be constructed
following the idea of one sided estimation. Let X, X,,--- be a sequence of iid
random variables and let 7 be a symmetric kernel of m arguments. Let § =
Eh(X1, -+, X;u) be the parameter of interest. For example, with m = 1 and
h(x) = x, @ is the population mean; with m = 2 and (x|, x2) = (x| — x2)?/2, 0
represents the population variance.

There are situations when one needs to estimate the parameter 6 either from
above or from below. That is, for an estimator 6, of 6, one may require 6, — 6
almost surely, and 8, > 6 a.s. for all large n. When this happens we say that 6, is an
upper estimate of 6, and write 8, —4 6. Convergence from below may be defined
in a similar fashion, and we denote 6, —_ 6. Such estimators may be required
when the loss due to over and under estimation are not the same and conservative
estimates are preferred. For example, one may like to have an underestimate of
the strength of a dam rather than have an overestimate of it. As another example,
consider estimation of maximum level of flood water from above to be in safer side.

The problem of estimating the mean of a population in such a manner was first
considered in Gilat and Hill (1992). An upper estimate was derived by taking the
weighted average of the sample observations with more weights to the higher order
statistics and lesser weight to the lower order statistics. Subsequently, Bose and
Dasgupta (1994) showed that this estimate has an underlying U -statistics structure
which may be utilised for estimating 6 = Eh(X,--- , X;;). We denote by U, (g) the
U -statistic based on the symmetrised version of the kernel g. Consider the function
DXy, -, Xom) = |W( X1, -, Xin) —h(Xm+1, -+, X2m)| and define the estimator

where a, is a suitable sequence of positive constants converging to zero. Indeed
ay is selected in such a way that it overcomes the maximum fluctuation of U, (k)
around 6 as specified by LIL, and pulls the estimator to the right of 8. We establish
the uniform and nonuniform Berry—Esseen bound for the one sided estimate 6,
in Theorems 2.1 and 2.2, exploiting the U statistics structure of our proposed
estimates. These results are analogous to the sample mean given in Katz (1963)
and Ghosh and Dasgupta (1978). Similarity of the results indicates that the new
estimator inherits the nice properties of sample mean, thus opening up the possibility
of real life applications; even after suitable modifications so as to converge from a
particular side. Probabilities of deviation results are provided in the second part
of Theorems 2.2, Remark 1 and Theorem 2.3. Variance and MSE of the proposed
estimates are also computed, see Remark 2.

Assuming that data on plant lifetime versus yam yield recorded in a small time
domain to be iid observations, one may estimate the growth from above or below.
Large variability in agricultural yield data on yam requires appropriate technique
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of estimation and we adopt nonparametric lowess regression for estimating the
mean response curve and its confidence band from cross sectional studies. Almost
sure band for growth curve is estimated from live yam data arising from several
experiments conducted in different types of soil at Indian Statistical Institute (ISI)
Giridih farm. Presence of an upward spike in the growth curve of yam yield is
generally observed towards the end of plant lifetime. The spike is prominent when
yam is harvested at the end of second season in a 2-year study, rather than harvesting
the crop at the end of first season.

The large sample properties of modified estimators for one sided convergence
are seen to be similar to the original U statistics, since the amount of perturbation
converges to zero with increase in sample size.

In Sect.2 we study convergence rates and deviation probabilities of one sided
estimators. Subsequently, based on these estimators, confidence bands are con-
structed. Section 3 deals with nonuniform CLT rates for general U statistic under
moment assumption on the kernel / that ensures m.g.f. of /& necessarily exists but
h may not be bounded. These sharp results are then extended to the proposed one
sided estimators 6,, justifying its applicability. Some special types of L statistic
relevant to one sided convergence are also considered in Sect. 4. In Sect.5 almost
sure nonparametric confidence bands for growth curve are computed with five
sets of farm data collected during the production season 2013-2014 on yam. In
Sect. 6 we search for parametric models to explain underground yam growth, in
view of drying up of quantifiable biomass aboveground and simultaneous fast yam
deposition underground towards the end of plant lifetime.

2 Convergence Rates of One Sided Estimator

To state the results recall that 0 = Eh(X1,--- , X,;) and 6, as in (1).

2.1 Speed of Convergence and Probabilities of Moderate
Deviations for 6,

To compute the rates of convergence of standardised 6,, we use the representation
of 8, as a U statistic with a kernel that depend on n. This will enable us to use
the theory of U statistics to obtain uniform and nonuniform rates of convergence to
normality for standardised 6,.

Extend % to a function of 2m arguments by defining

h*(X17“' asz) = [h(Xla”' 7Xm) +h(Xm+17"' 7X2m)]/2
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Observe that for n > 2m, the estimator 6, defined in (1) may also be expressed as
On = Uy(h*) + a,Uy(D) = U,(h* + a, D) 2
Define
A=FEhXy, -, Xm) = h(Xnt1, Xom)|
and observe that
E6,) =0+ a,A
Therefore,

6, — E(0,) = U,(h* +a,D) — (0 + a,A)
= U,(h* +a,D)— (0 +a,A) + R, 3)
= U,(h*) — 0 + a,(U,(D) = A) + R, = V, + R,

where U, is Hajek’s projection and R, is the corresponding remainder.
V, may also be written as

7 2M o -~ 2m o~ -
Vo= ;hl(x,-) +an— ;Dl(x,-) == ;[h1<xi>/2+ a,D1(X))] (4)

where ﬁl(x) = Eh(x, X3,+-+, X;y) — 0 and
Di(x) = E|h(x, Xo,-+ , X)) — h(Xpmgts -+ Xom)| — A

V, and R, are orthogonal and E(R2) = O(n™?), if ER? < oc. See, for example,
Serfling (1980, page 188).

Under the assumption that E |1|>T¢ < oo, where 0 < ¢ < oo, following the idea
of Funk (1970) or Grams and Serfling (1973), one may show that

E[n'?R,)*™ = O(n™"™) 5)

for any integer m, satisfying ¢ < 2moy < c + 2.

Observe that although the kernel corresponding to 6, is changing with n, order
of moment bound of R, are not affected by this. This is because the sequence a, is
bounded (in fact a,, is going to zero). Assume that

info? > 0 (6)

n
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where 02 = Var[ﬁl(Xi)/Z + a,D1(X;)]. To study rates of convergence of the

n
n'/2(6,—6)

estimator, one needs to consider 7, = 5
moy

. However, to apply martingale

n'2(0,—E(6,))

central limit theorems directly, it is convenient to consider 7,, = —

Note that T, — T,) = R 2 O(n'’*a,). Thus the results on T, may

2moy,
easily be converted to a corresponding result on 7.

From Friedrich (1989, Remark 5; p. 175), see also Theorem 1 of Ghosh and
Dasgupta (1978) and Lee (1990), it is possible to obtain the following Berry—Esseen
theorem:

Theorem 2.1. Let E|l~11(X)|2+C < 00, E|h|4FI3 < oo, for some ¢ > 0 and (6)
holds. Then for some constant K > 0,

sup | P(T, < x) — ®(x)| < Kn~™min(D/2

Using the general results of Ghosh and Dasgupta (1978), see pages 363-364,
one can also obtain nonuniform Berry—Esseen bound and moderate deviation
probabilities of standardised 6,. In view of (5) above, (3.18) and (3.21) of Ghosh
and Dasgupta (1978) hold with u(x) = 1. Thus using (3.1) of the above paper and
(5), we have the following theorem.

Theorem 2.2. Let E|h|>T¢ < oo for some ¢ > 0. Then

(i) for some constant K > 0, g(c) > 0 and for all real x

|P(T, < x)) — D(x)| < Kn~ ™™ D2 (logn) (1 + |x|+9)~!
(ii) if x, — oo such that
x,f <clogn+2(c+ 1)log|x,| + M
for some M > 0, we have
1= P(T,y = xp)) ~ O(=xn) ~ P(T) < —x).
Observe that the range of x,, in (ii) above may also be written as
x,% <clogn +2(c + 1)loglogn + M

Remark 1. Theorem 2.2(i) and (ii) provide a nonuniform Berry—Esseen bound and
probability of moderate deviation, respectively.

It is also possible to obtain such results for ¢ = 0, when no ordinary moment
higher than 2 exists; see Theorems 2-3 of Dasgupta (2008), see also Remark 2 and
(3.16) of Ghosh and Dasgupta (1978). In such case we have the following. Proofs
are similar.
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Let ER2u(h) < oo and u(h) be a slowly varying even function. Then there exist a
constant b > 0 dependent only on u such that
| P(T, < x)—®(x) |<blu(/n)] (1 + x?), —o00<x < 0.
Further, if
x2 < [2log | x, | +2logu(rn'/?0,x,)] + M,0 <r < 1/2, M > 0; then
1= P(T, < xp)) ~ ®(=xn) ~ P(Tyy < —x,); x4 — 00.
For u(x) = log“(1+ | x |),a > 0, the above normal approximation zone
becomes
x2 < 2a loglogn + 2alogloglogn + M.

This normal approximation zone is smaller than moderate deviation zone, since
no ordinary moment higher than 2 exists for /.

Sharper nonuniform bounds and probabilities of deviations of higher order for
the estimator are possible by using the results of Dasgupta (1989) under stronger
moment assumptions. In Dasgupta (2008, 2013a) deviation probabilities of two
sample U -statistics are considered under different moment assumptions. Probabili-
ties of deviations are useful in computing efficiencies of test statistics. Chernoff type
large deviations are discussed next.

2.2 Chernoff Type Large Deviation Probabilities

We discuss the case when the order m = 1. Further, without loss of generality, we
assume that 4(x) = x.
Then we have

6, — E(6,) = (X, — ) + a,U,(D) 7
where
D(x1,x2) = |x1 — 2| — E|X; — Xo| = |x; —x2] — A

Thus the large deviation probabilities of 6, — E (,) will be the same as (X, — )
provided the second term in (7) is negligible.

Assume that for some sy > 0, E exp(so|X|) < oo. Then it follows that for
0<s < s,

¥5(s) = Eexp(sD (X1, X)) < exp(—sA)[E(so] X )] < R? say

Using this and Lemma C of Serfling (1980, page 200), with k = [n/2],t = sk
and 0 < 5 < s, it follows that

P(a,U,(D) > 8,a) < exp(—ta, ' 8,a) E[exp(tU,(D))]

< exp(—ta, ' 8,a) [ 5(5)"]
< exp(—tan_lé’,,a)(Rz)k = exp(—s[n/Z]an_l8na)(RZ)["/z]
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A similar bound holds for P (—a,U, (D) > 8,a). Choosing 8, — 0 such that b, =
an_18n — 00, we have for some ¢; > 0,

P(an|Un(D)| > §,a) < exp(—cinby) )

We then have the following theorem

Theorem 2.3. Assume that E exp(so|X|) < oo, for some sy > 0. Further assume
that P(X — it > a) > 0. Then

n~'log P(6, — E(6,) > a) — log p,
where,

pa = infe ¥ E[e" ¥~
1>0

Proof. The proof is easy by using relation (8) and the following fact from Bahadur
(1971, page 9, relation (3.12))

1 _
—log P(X,, — > (1—36,)a) — logp,.
n

Chernoff type large deviation for U statistics when the order m > 1 may be
obtained under more stringent assumption of “strong-orthogonality” of the kernel
¢ as mentioned in Dasgupta (2008), Remark 1. In the set-up of independent random
variables, not necessarily iid, the restriction on kernel ¢ which should ensure that
EV? (X X)) (Xiyg. X1ng) = 0, unless each pair of suffixes (ix. ji) is
repeated at least twice in the above expansion, provides a sharp bound on the
remainder; consequently, Chernoff type large deviation behaviour of U statistics in
such cases is similar to that of independent random variables appearing in Hajek’s
projection U, see Dasgupta (1984, 2008). As the perturbation a, — 0, one may
apply the result from Bahadur (1971, page 9, equation (3.12)) to projection U,
to show that the same large deviation property holds for the proposed one sided
estimator (2) based on U statistics under this stringent assumption. O

Remark 2 (Variance of the Estimator 6,). To obtain approximation for the variance
and hence the mean square error of 6,, the representation (3), (4), and (5) with
mgy = 1, are useful. Using these relations we have when EW? < oo and a;1 = 0(n),
Var(n'/26,) = m*Var(hy(X1)) + 4m>a,Cov(hi(X,), D1(X1))
+ 4m2a®Var(h(X,)) + O(n™")
= m?Var(h;(X))) + O(a,)
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One sided estimators are biased, E(6,) = 0 + a,A, because of the stringent
restrictions imposed on these to converge from a particular direction. Hence

2 ~
MSE(6,) = a2A? + " Var(h, (X1)) + O™ ay)
n

3 Rates of Convergence for U Statistics

In this section we prove some general results regarding nonuniform rates of
convergence in CLT for U statistics when m.g.f. of the kernel & necessarily exist.
Similar results may be proved for one sided estimator 6, exploiting the U statistics
structure (1) and (2).

Recall the notations: X, X1, ---, X, are iid with distribution function F, U, (h)
is a U statistic based on kernel 7 = h(xy,--- ,x,),and 8 = Eph.

Following the steps used in Proposition 1 of Dasgupta (2008), it is possible to
obtain the following. We adopt the notations of Serfling (1980).

Theorem A. Let U, be a U statistic based on a symmetric kernel h where E|h|’ <
oo, for some real v > 1. Then

Un_ezﬁn_9+R2n+"'+Rmn (9)
where
Elen|v < Lvn—jv/Ze/'vlogUElhlv (10)

and L > 1 is a constant that does not depend on n and v.

When the first conditional variance of h is positive i.e., {; > 0, then Un -0 =
Y h(X;), where hi(x) = Eh(x,X5.---.X,) — 6. When first (c — 1)
conditional variances are zero and the cth one is positive i.e., { = -+ = (] =
0 < ¢, then one may define

N _mm—=1)---(m—c+1) v v
On=b6= D n—egD 2 e X AD

1<ij<-<i.<n

see Serfling (1980, page 180). This reduces to the usual projection taking ¢ = 1.
We shall prove a bound for P(sup;., |U; — U,| > t) and use this to obtain

nonuniform CLT bound for standardised U statistic in the nondegenerate case. The

following result is nontrivial for all values of ¢ and is of independent interest.

Theorem 3.1. Let U, be a U statistic based on a symmetric kernel h of degree m.
Let§ = - = (1 = 0 < (.. Define Uy, as in (11), then under the following
moment bound

Eh|" < Le"°8" ¥y >2. L >0and y > 0, (12)
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one has

P(sup |U; — Ui| > 1) < exp[—a(n'ctD/2)l/(rm) (13)

i>n

where o > 0 is a constant depending only on L,y, m and c.
For a nondegenerate U statistic, {; > 0 and ¢ = 1 in the above.

Proof. Note that (U, — Un) is itself a U statistic and using reverse martingale
property of U statistics (see page 189 of Serfling 1980), we can write from (10)
and Minkowski’s inequality

P(sup;s, Ui — U;| > 1) <t E|U, — U, "

< t—vLvn—(c+l)v/22(’"+7”“°g”Elhlv (14)

under (12), considering higher power of terms over index j in the product. In the
above L > 0 represents a generic constant.

Taking logarithm of the term in r.h.s. above and differentiating it with respect to
v, we find the optimal choice of v as

v = e—l{n(c+l)/2tL—l}l/(m+y)

The minimum value of the r.h.s. of (14) corresponding to above v is
exp[—(m + y)v] = exp[—(m + y)e” {n V2 L7 ]

Hence the theorem. O

Remark 3. A slight improvement of Theorem 3.1 is possible. Rewrite (14) as
m
P*:= P(sup|U; —U;| >t) <¢t7°L" Z n=Iv2 el FrIviogy
i>n .
= j=c+1

under (12). Observe that the common ratio of the geometric series in the above sum
over j is (v/n)"?> = r, say. Therefore in the case r > I, replacing the sum by
(m — ¢) times the mth term, one gets

P* < I_ULU(I’)’Z _ c)n—mv/Ze(m+y)UlogU

< t—vLUn—mv/2e(m+y)vlogv

for some L > 1. Minimising the r.h.s. with respect to v one gets

P* < exp[—a(n™/?t)"/0*T™] for some a > 0.
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Similarly, considering the term corresponding to j = ¢ + 1 when r < 1, one may
write

P* < exp[—a(n T2V +etD] for some o > 0.
Combining the above two inequalities for P*, we get an overall bound.
P* < exp[—an©TV/2HFN I/ GHm] for some o > 0. (15)

This is an improvement over (13), the bound given in Theorem 3.1. The results
(13), (15) provide sharp rate of strong convergence for U statistics under stronger
assumptions.

Consider a nondegenerate U statistic. So {; > 0, and write

n'2(U,—60) _n'2U,—6)  n'2U, - Uy

1/2 - 1/2 1/2
m{'l/ mé’l/ mtl/

\ (16)
= (&)Y hi (X)) + R, say

i=1

Representation (16) is clearly of the type (4.1) of Dasgupta (2006). From (13)
one may get the following

P(IRY| > a,(1)) = P(|U, — U, > n="2me|%a, (1))

a7
< exp[—a(n'?a, (1)) "+
for some o > 0, letting ¢ = 1 in (13). This bound is similar to (4.2) of Dasgupta
(2006), with 8 = 0 and § = m.

It may be mentioned that k = k(y) in (4.6) of Dasgupta (2006) may be taken
arbitrarily large for y + 8 € (1/2, 1), with the notations used therein. Supplemented
by the results of Dasgupta (1989) [see, e.g., (2.27) of Dasgupta (1989), with A,
arbitrarily large] while computing the first term in the r.h.s. of (4.5) in Dasgupta
(2006), it is evident that the coefficient k of |¢|**!/V*9) in Theorem 4.1 of Dasgupta
(2006) may be taken arbitrarily large for an extended zone y + 6 € (1/2, 00).

Now proceeding like Theorem 4.1 of Dasgupta (2006), one may obtain the
following theorem on nonuniform rates in CLT for U statistics.

Theorem 3.2. Let U, be a U statistic based on a symmetric kernel h of degree m.
Let &y > 0 and (12) hold for y > 0. Let k be an arbitrary large constant. Then there
exists a constant b > 0 depending on k and y such that for t € (—o0, o),

n'/2(U, — )
mg)”?

1/(y+m)

|P( < 1) = ®()| < bn~*(logn) eI
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4 Rates of Convergence in CLT for Some Special L Statistics

Let X;,---, X, be iid copies of a random variable X from a distribution with
E|X| < oo. Alsolet X(1y, X(2) -+ , X(n) be the ordered observations.
Consider an L statistic of the form

k n
L,(k) = prs Zi=1 ik_lX(i), where k is a positive integer. (18)

Then L, (k) - E(max(Xy,---, X)) = My as.

L statistic of this form is useful in one sided estimation, see, e.g., Gilat and Hill
(1992).

L, (k) can be related to a U statistic U, with kernel & = hy = h(xy,---,x¢) =
max(xy, -+, xx). Note that for k = 1, Li(1) = n7' Y, X4y = U,(hy), the
sample mean.

Fork = 2,
—1 —1
n n
Un(hz) = (2) > max(Xp). X)) = (2) > Xy
I<i<j<n I<i<j<n
n n
= = DXy = —L,(2) — ——L,(1
(J > U =DXg) = =L@ = = La(D)
I<j=n
Therefore,

2 1
Ln(z) - Un(hZ) = ;Un(hl) - ;Un(hZ)
In a similar fashion, it can be shown that
Ly (k) = Uy(hg) = aiUy(h1) + a1Uy(hy) + -+ - + ap Uy (hy) (19)

where the coefficients a;,i = 1,--- , k have order of magnitude at most 1/n.
The above representation (19) enables us to obtain an estimate of E|L,(k) —
U,(h)|”, v > 1. We show the following.

Proposition 4.1. Let L, (k) defined in (18) be an L statistic based on iid random

variables X1,-++ , X,. Let a U, = U,,(hAk) be a U statistic with kernel h = h; =

h(xy,---,x;) = max(xy,---,xx), and U be Hdjeck’s projection of U. Then
E|Ly(k) = Uy ()" < B'n™"e*" 2" E| X |" (20)

forall v > 1, where B > 0 is a constant which may depend on k.
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Proof. In what follows, let B > 1 denote a generic constant. Observe that
max(xy, -+, x¢) < Y°_, |x;.| Therefore

Elh(m)|" = E|max(xy,--- ,xx)|" < B'E|X|"m=1,---,k 21)

In view of (9), (10) and (21), one gets

E|Uy(hw) = Un(hy)|” < B* Y " n™/"/2e/V 2V E| X | (22)
j=2

Recall a moment bound for general stochastic processes including martingales
stated in Dasgupta (1993) (there is an error in page 151, as

E max(|S,["2X2,|S¥[V72X2) < E(|S,|"72X2 + |S¥|""2X2). Thus an addi-
tional multiplicative factor 2 appears in the r.h.s. of (4) therein, and the modified
value is ¢, = {2(v — 1)8}*/? in (1) therein).

With an application of said bound to the sum of iid random variables, one may
write

E|Uy(hy) — My|" < B'n 2" 2 VE|X|"m = 1,--- ,k (23)

where M,, = E max(Xy,---,Xy) <mE|X| < kE|X|.
Next write

E|Uy(h) — My |” < (E\Un(h) — Uy (i) | + E|Uy(hy) — My |") B?

< BV Z;ﬂzon—jv/ZejvlonglXP (24)

for all v > 1, from (21) and (23). Therefore from (19) and (24), recalling that
a; = 0(1/n),i =1,---,k, one gets
k

E|Ly(k) = Up(h)|" <n™"B" Yy n™/"2e/V e E| X" (25)
-

From (22) with m = k, and (25) we get

k k
E|L,(k) = U, (hp)|" < Bv(zn—jvﬂe/’vlogv +n? Zn—jv/Zejvlogv)E|X|v
j=2 j=0

k
v —jv/2 jvlogv v
<B n e E|X|
Jj=2

< an—vekvlong|X|v

This completes the proof. O
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Now assume the following moment bound for the basic random variable X .
E|X|’ < LVe""°8? Yy > 1, and for some L > 1 (26)
Then from (25) one may write
E|L,(k) = Uy (hy)|" < B'n~ektrivioey 27)
Define

(k) 1= n'(L, (k) — My) _ n'2(U, (k) = My) | n'*(L, (k) — Uy (hy))
T k'

28
where ¢ = var[h(X)], h(x) = E max(x, Xa,--- , Xi). 29
When the distribution of X is nondegenerate, {; > 0; and from (27) we observe
that a representation like (4.1) of Dasgupta (2006) holds for the standardised L
statistic L} (k). From (27), we further observe that the remainder term in the
representation (28) satisfies (4.2) of Dasgupta (2006) with § = 0 and § = k.
Hence the following nonuniform CLT bound on L statistics holds, this is similar
to Theorem 3.2.

Theorem 4.1. Let the distribution a random variable X be nondegenerate and (26)
hold. Then for the standardised L statistic L (k) defined in (28) the following holds
fork > 2

|P(L*(k) < 1) — ()| < bn~2(logn) e 4 ¢ (—00,00)

where b = b(k,y) > 0 and a > 0 may be taken arbitrarily large.

Remark 4. A linear combination of L,(j),j = 1,---,k of the following form,
where the coefficients o might depend on #n is also an L statistic for which the
above results may be extended. Consider

L, =0 L,(1) + L, (2) + -+ 4+ arLy(k),cx = i #0 (29)

This may be expressed as a linear combination of U statistics, in view of represen-
tation (19).
The estimator proposed in Gilat and Hill (1992) is

n
N Zl n+1
Xn = (;_ 2n¢

i=1

i

+ _a)X(i) = alnLn(l) + aZnLn(z)
n

a € (2,5/2), s of the form (29). Let

k
Uy: = alUn(hl) + U, (ho) + -+ anUn(hn)a Un/ = Zaj Un(hj) (30)

j=1
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Following the steps to prove Proposition 4.1, one can show that
E|L,—U,)" < B'n """V E| X |" 31)

Observe that U,; is expressible as sample mean of independent random variables
to which standard theory applies; see also (3.4) of Dasgupta (2006). Define the
standardised version L, of L as

L= (L, =Y _ M)/ (ar@)'") (32)

In view of (31) and following the steps to prove Theorems 3.2 and 4.1, see also
Theorem 4.1 of Dasgupta (2006), it is possible to extend the results of Theorem 4.1
for L, replacing L.

5 Almost Sure Confidence Band for Yam Growth

Data analysed below refers to experiments on Elephant foot yam conducted in
ISI Giridih Farm in the years 2013-2014. Average seed corm weight is 500 g in
Experiments 1, 2, 3 and 5; for Experiment 4, the average seed weight is 20 g.
Farmers sometimes do not harvest yam at the end of a production season, keep
this underground for another year to sprout again. The yield at the second year is
much higher even if the initial seed size was small, due to accumulated affect of 2
years.

Lowess, a local polynomial regression estimator with smooth tricubic kernel
and variable bandwidth based on k-th nearest neighbour, employs weighted least
square criterion that assigns less weights to distant observations, to have a robust
estimate of response curve insensitive to large-residual outliers, by down-weighting
these over several iterations; see Cleveland (1979, 1981). However, lowess does not
provide an explicit functional form of response variable with predictor variables.

A broad idea about the (mean) growth of yam over plant lifetime is explained via
these techniques.

Lowess regression is done with the proportion of the data in the smoothing
window f = 2/3 for all concerned plots, except for Figs. 7, 12, 13 and 17 where
f = 1/3, the number of iteration performed is 3 in all cases. The goal here is to
estimate a continuous curve by gaining strength from adjacent points.

With 96 observations of Experiment 1, the yam growth curve is estimated by
nonparametric lowess regression in Fig. 1. This experimental plot is of lateritic
soil and full of gravels. One seed corm did not germinate and 3 observations
arising from weak plants were not considered out of seed plantations in 100 pits.
At each observed point on lifetime 7 of yam plant, we compute the perturbation
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Fig. 1 Almost sure band for growth curve: Exptl

4’1% Z?,j:l |X; — X;|, 0 € (2,2.5) as proposed in Gilat and Hill (1992). We take
two immediate points above and below ¢ and consider the corresponding yam yield
X = X(t) to compute the perturbation part with n = 3, = 2.25. The points
so obtained by addition/subtraction from lowess curve fall above/below the lowess
growth curve, and the points falling in a particular side of the curve are again lowess
smoothed to obtain approximate a.s. upper/lower confidence bands as seen in Fig. 1.

We next obtain estimate of variance by considering the kernel i(x;,x;) =
(x1 — x2)?/2. At each observed point of time ¢, a U statistic is computed out of
3 observed times points viz., a particular point along with immediate above and
below lifetime observations from that particular time point. This results in (;) =3
such values of observed kernel for the middle time point. Mean of these values
i.e., value of U(h) so computed, is assigned to the middle lifetime point. The
procedure is carried out for all observed lifetime, except for the smallest and largest
plant lifetime, where no value is available to the left/right of the smallest/largest
lifetime. By lowess regression to these U values we then compute the central
curve of variance estimate. The perturbation part 4’1%, Z:’ =1 | X; — X ;| is computed
after X values are replaced by & values and choosing n = 3,0 = 2.25. Apart
from a multiplicative constant, the U statistic U(D), corresponding to symmetrised
version of the kernel D(x1, x3, x3) = |h(x1, x2) — h(x2, Xx3)|, is used for computing
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Fig. 2 Almost sure band for variance curve: Exptl

perturbation component. The a.s. upper and lower confidence band for variance are
obtained by lowess regression on these shifted points above and below, respectively,
of the central curve. These three curves, lower, central and upper, are shown in
Fig. 2, variance seems to increase slightly over lifetime. To understand the nature
of variation, these curves (with measurement unit kg?) are plotted along with data-
scatter.

Since the upper and lower points are lowess smoothed to gain strength from
adjacent points, central line may not always remain equidistant from upper and
lower band as seen in Figs. 1 and 2.

Scatterplot of data related to crop yields often show high scattering. Growth curve
shown in Fig. 1 may be further smoothed if the observations are locally averaged
before lowess regression is made to the observed data on plant lifetime and yield
(tj,y;);1 < j < n. Attime point ¢;,1 < j < n we assign the average yield
Vi = (yj-1+y; +y;+1)/3 to smooth out local irregularities. The central line and
the bandwidth points (¢;,7;),1 < j < n following the similar procedure used to
obtain Fig. | are shown in Fig. 3.
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Fig. 3 Almost sure band for smoothed growth curve: Exptl

Figures 4, 5, 6, and 7 refer to Experiment 2, conducted in a slightly elevated
experimental plot in a fertile land exposed to harsh summer, and the plot was
partly subjected to water logging during rainy season. Out of 100 seed corms, one
corm did not germinate. Organic fertilisers namely mustard oil-cake, vermicompost,
etc. were administered before starting the experiment, and several times during the
experiment. On harvest, some yams were seen damaged as these were infested by
small white ants and worms. To deal with initial irregularities in Experiment 2 we
plot plant lifetime after yam plants cross a height of 15 cm. The growth curve and
the band are shown in Fig. 4. The initial point at lifetime as 52 days with weight
170 g pulls down the curve at start, and a hump in growth is observed around plant
lifetime of 165 days. The variance curve is shown in Fig. 5, this seems to exhibit an
increasing trend.

A smoothed version of growth curve for this experiment is obtained in Fig. 6,
following local averaging as adopted to obtain Fig. 3. The features noted in Fig. 6
are similar to that of Fig. 4, except that the central line now remains within the band
in smoothed version.

We may examine the effect of ignoring the point corresponding to lowest lifetime
in the scatter. Figure 7 shows the resultant growth curve along with confidence
bandwidth 98 data points, the central line lies within band most of the times and
the curves are lifted up in the start compared to Figs. 4 and 6.
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Fig. 4 Almost sure band for growth curve: Expt2

In Figs. 8, 9, and 10, we plot the yam data from Experiment 3 in the Rose villa
campus of ISI. Two corms did not germinate out of 100 pits made in an unfertile
plot of land exposed to harsh weather of Jharkhand. The growth curve in the middle
of Fig. 8 shows that around plant life of 80 days the mean yield is more than double
the seed size, then a slow upward growth continues till plant life of 140 days; a
change in rate of growth occurs afterwards and the peak growth is seen around 172
days. Upper and lower a.s. confidence band exhibit a similar pattern. For monetary
reasons, farmers sometimes opt for early harvest around 90 days, the doubling time.
The variance curve of Fig.9 exhibits an upward trend, except around 160 days,
where this seems to be more or less steady with a little bit of fluctuation within band.
Growth curve after locally averaging, as obtained in Fig. 3 and Fig. 6 for Experiment
1 and 2, respectively, is shown in Fig. 10 for Experiment 3. Figure 10 seem to ignore
the effects of three data points seen in low right corner; of these two points, (187,
0.92) and (187,0.917) are overlapping. A similar effect like Fig. 10 is seen in Fig. 11,
when these two overlapping points are not considered for lowess regression.
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Fig. 7 Almost sure band for growth curve deleting lowest lifetime: Expt2
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Fig. 8 Almost sure band for growth curve: Expt3
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Fig. 9 Almost sure band for variance curve: Expt3

Experiment 4 refers to a 2-year study where the average seed weight is 20 g. In
this experiment, yams were not harvested at the end of first year, but were allowed to
remain underground that sprouted again; these were harvested at the end of second
harvesting season. Figure 12 distinctly shows the presence of an upward spike in the
growth curve of yam yield at the end of second season. Upper and lower confidence
bounds are nearly equidistant from central growth curve. A yield of 3.7kg was
observed corresponding to a yam seed weight of 15g. Smoothed version of the
growth curve shown in Fig. 13 is similar to Fig. 12. The variance curve and upper
and lower bands are seen in Fig. 14. This shows increase in variance towards higher
values of plant lifetime.

In the harsh climate of Jharkhand, Experiment 5 was conducted in a shady region
under the shade of Delonix regia, a species of flowering plant in the family Fabaceae;
also known as Krishnachura tree to protect the plants from strong sun in summer.
Direct and strong sunlight for long time may sometimes adversely affect plant
growth. This experiment was disturbed over a large segment of yam plantation due
to fall of a heavy branch from a tree above around middle of the growing season. One
seed corm did not germinate out of 100. Increasing features of mean response curve
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Fig. 10 Almost sure band for smoothed growth curve: Expt3

and the band are nicely revealed in Fig. 15 with 99 observations. The increasing
trend is slightly dampened towards end when one considers the smoothed version
of the growth curve as shown in Fig. 16, other features remain almost the same as
those of Fig. 15. Variance of yield observations, as an increasing function of time
is shown in the middle curve in Fig. 17. The upper and lower confidence bands are
also shown; these exhibit increasing features while these stabilise towards end of
yam lifetime with slight decrease.

Here we are estimating the response curve from data, and a band for response
curve; the procedure works even though the data may be widely dispersed.
Confidence bands constructed seem astonishingly narrow taking the large spread of
data into account. The goal of constructing band here is different from including all
data points inside it. Upper and lower estimate of yam growth curve cover the mean
response curve in general, even for small values of n. Confidence band for variance
of yam yield over time exhibits similar properties. Theoretical results indicate that
the procedures suggested can be confidently used for applied purposes.
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Fig. 11 Almost sure band for growth curve deleting two observations: Expt3

6 Search for a Parametric Model for Yam Growth

Nonparametric estimates of yam growth exhibit an upward spike towards end of
plant lifetime, as seen in repeated studies. Traditional parametric curves like logistic,
Gompertz lack this feature. Logistic and Gompertz growth curves can be deduced
as a limiting form of a model that has exponentially decaying proliferation rate
(Dasgupta 2013b).

The observed growth of yam stems to some extent resembles Gompertz curve

y(t) = aexp(bexp(ct));a >0,b <0,c <0. (33)

In a confined space where the availability of nutrients is limited, growth rate is high
in the beginning and then it slows down due to competition for nutrients. However,
underground yam deposition is faster towards end of plant lifetime. Physiological
processes governing the matter partitioning to the tubercles seem rapid towards end.
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Fig. 12 Almost sure band for growth curve: Expt4 (small seed)

Growth pattern may sometimes vary in different time segments. Yam deposition
is rapid towards end while the mature plant is shrinking and drying up. Yam growth
Y(¢) beyond a time point #y may be modelled as a mirror reflection of the concave
part of stem growth curve near its highest value a attained at time ¢* say, the convex
reflection being on the line £(¢) connecting the points origin and (¢*, a). Usually
lifetime of an yam plant in a production season ¢* < 210 days.

At time (> ), consider the stem height y following a Gompertz model (33).
Then vertical distance between stem height and £ at time ¢ is y(¢) — £(¢). For yam
yield the corresponding point is below the line £ and at same distance. Thus Y () =
L) — (y(t) —L(t)) = 2at/t* — y(t) = a(2t/t* — exp(bexp(ct))) may serve
as an empirical parametric model for underground yam deposition at time ¢ (> t),
depending on the growth pattern of stem observed above ground. A rescaled version
of the above is

72(t) = w(2t/t* —exp(bexp(ct)));w > 0,b < 0,¢c < 0,8 <t <t* (34)

where w is the maximum attainable (plant specific) yam weight.
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Fig. 15 Almost sure band for growth curve: Expt5
Model (34) may explain yam growth curve with sharp upward turn towards the

end of plant lifetime. For ¢ < 7y, a Gompertz model (33) may be appropriate for
underground yam deposition.
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Fig. 16 Almost sure band for smoothed growth curve: Expt5
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Interrelationship Between Economic Growth
and Income Inequality: The Indian Experience
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Abstract Kuznets’s “inverted U” hypothesis postulates that inequality initially
rises with economic prosperity and after reaching a certain maximum, falls there-
after. The recent literature on growth and inequality suggests a possible relationship
on how income distribution affects economic growth. Keeping these two literatures
in perspective, we attempt to examine the Kuznets’s inverted U hypothesis in a
two-way error component panel data framework. We argue that the per capita
real consumption expenditure is expected to be endogenous, the feature which is
surprisingly missing in the literature on Kuznets’s hypothesis and try to account
for this possible endogeneity between inequality and per capita real consumption
expenditure. We use panel level data of Indian states on consumption expenditures.
Constructing a suitable price index we establish a relationship between income
inequality and per capita real consumption expenditure. To account for the possible
endogeneity between these two variables, we formulate appropriate instruments
for our fixed-effects model. From the findings, it is evident that the dynamics of
inequality in India do not support the hypothesis as suggested by Kuznets. Indeed,
we find that, initially inequality falls as the per capita real consumption expenditure
rises and after reaching a certain minimum, it increases with the per capita real
consumption expenditure.
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1 Introduction

In developing countries, the effect of economic performance on inequality is a
topic of interest to development economists and policy makers alike. This is so
because economic growth and income distribution are closely related to people’s
lives and to social stability. Although the relationship between inequality and
economic performance was first discussed by Kuznets (1955), the whole literature
on Kuznets’s hypothesis fails to account for an inherent problem of endogeneity
between these two macroeconomic aggregates, which is well documented in the
literature on endogenous growth theory. This present work studies this particular and
important relationship in the Indian context where we put special emphasis on the
issue of endogeneity. We attempt to find some valid instruments based on economic
theory and then try to estimate the relationship based on instrumental variable
method. We follow the exact definition of inequality as used by Kuznets as opposed
to the more popular inequality measures like Gini, etc. We construct the inequality
measure based on unit level data. Since unit level income data is not available in
India, we use the data on consumption expenditure. As there are no price indices
for rural and urban area separately, we are forced to independently construct new
price indices. Here it may be noted that the popularly used Consumer Price Indices
for agricultural labourers and industrial workers are only crude approximations of
the rural and urban price indices, respectively. Thus we construct Laspeyres price
indices for each panel level from the consumption expenditure data and use it to
deflate our nominal variables.

According to Kuznets (1955), the relationship between inequality and per capita
income may be described by a curve in the shape of an inverted “U”. In other words,
Kuznets’s hypothesis advocates that, as an economy prospers income inequality
first increases and after a certain “turning point” declines thereafter. Kuznets argues
that this is due to a shift of labour from low-productivity to high-productivity
sectors in the early stage of development, which results in an increasing disparity in
wages. Later, however, the high-productivity sector comes to dominate the economy,
and wage inequality decreases (for alternative explanations, see Acemoglu and
Robinson 2002). There have been a large number of studies regarding the above
hypothesis with contradicting and inconclusive conclusions (see Lecaillon et al.
1984 for a survey of literature). Studies in the 1960s and 1970s in general supported
the hypothesis. The centerpiece of such studies comprises of articles by Ahluwalia
(1976) and Ahluwalia et al. (1979). However, this hypothesis has been challenged
and several empirical studies found that there is no significant relationship between
inequality and per capita income (see, for example, Anand and Kanbur 1993).
Li et al. (1998a, b) find that Kuznets curve works better for a cross-section of
countries at a particular point of time rather than for the evolution of inequality
over time within countries. There are few studies on Indian economy as well
(see, for example, Andrew and Pal 2004 and the references therein). A number of
econometric concerns are quite evident in cross-section based studies. In particular,
cross-section based methods fail to allow for unobserved (and persistent) differences
across countries/states, and they are susceptible to endogeneity biases. Therefore, it
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necessitates testing the hypothesis using panel data as panel data models circumvent
all these well-known problems involved in studies based on cross-sectional data.

Earlier empirical studies in the literature investigating this relationship primarily
focus on unidirectional causality, that is to say, how a country’s economic growth
influences its income distribution. However, after the endogenous economic growth
theory has been introduced since the mid-1980s, economists’ interests have altered
to the opposite direction, that is how income distribution affects economic growth.
Recent studies on income distribution and endogenous growth by Alesina and
Perotti (1993), Bertola (1991), Perotti (1993, 1994), Persson and Tabellini (1994),
Persson and Guido (1994) and Forbes (2000) return to the old debate. This new
literature looks at the impact of inequality on growth rather than the reverse as
was the case with the earlier literature influenced by Kuznets. In fact, economic
performance and income distribution both may be endogenous variables in the
empirical model. Treating one as a dependent variable and other one as an
independent variable could lead to biased and inconsistent estimation. In the light
of these research works, the present paper tries to revisit the hypothesis for Indian
economy using panel data models that allows for possible endogeneity between
the variables of interest. The results suggest that after accounting for the possible
endogeneity and “controlling for” a host of other factors, inequality initially falls
with economic performance and after reaching a certain minimum, it increases
thereafter thus suggesting a possible U relationship.

The plan of the paper is as follows. Section 2 provides a brief description of
data and also discusses the econometric model. Some naked eye observations based
on descriptive statistics are provided. The construction of the price indices and
inequality measure are also discussed in this section. Empirical findings are depicted
next in Sect. 3 which also highlights the issues that need to be addressed via suitable
policy prescriptions. Section 4 concludes the paper summarising the major findings.

2 Data and Model

This study is based on the last six major rounds of survey on “Household Consumer
Expenditure” provided by the National Sample Survey Organization (NSSO) of
India. The data covers 32 states and Union territories' of India and was collected
in the years 1987-1988 (43rd round), 1993-1994 (50th round), 1999-2000 (55th
round), 2004-2005 (61st round), 2009-2010 (66th round) and 2011-2012 (68th
round) comprising of various socio-economic characteristics of a household. Apart
from the household specific characteristics, data is also provided on the localization
of the sampled households. The localization of a sampled household includes the

I The states and the Union territories are: Andaman & Nicobar Islands, Andhra Pradesh, Arunachal
Pradesh, Assam, Bihar, Chandigarh, Dadra & Nagar Haveli, Daman & Diu, Delhi, Goa, Gujarat,
Haryana, Himachal Pradesh, Jammu & Kashmir, Karnataka, Kerala, Lakshadweep, Madhya
Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Pondicherry, Punjab,
Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttar Pradesh, West Bengal.
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sector (rural or urban), state, region (a subdivision of each state based on certain
broad geographical features) and the district in which the household resides. For
our purpose, we have considered only the sector (rural or urban), and the state of the
sampled households.

For our present study, we have considered the sampled households’ principal
occupation, social group, religion, amount of land possessed and the amounts of
various items consumed together with the associated expenditure adjusted to a
suitable reference period. Apart from the household specific observations, we have
also considered the age, sex and education of each household members. Using this
data, we have constructed various state-sector specific aggregates which constitute
our individual panel unit. With the data in hand, we have a panel with 62 state-
sector combinations (N = 62) and six time periods (T = 6) with some gaps in the
availability of the data, resulting in a dataset having 367 observations.

These aggregates of course include the two variables of interest: a state-sector
specific inequality index and the corresponding aggregate per-capita real consump-
tion expenditure. The index of inequality (following Kuznets 1955) is calculated as
the difference between the aggregate share of monthly consumption expenditures
of the households above the top (fifth) consumption expenditure quintile to the
aggregate share of monthly consumption expenditures of the households below the
bottom (first) quintile residing in the state and sector of interest. As briefed in the
introduction, to be thorough with our analysis, we compute our own price indices
suited to the panel structure of the data. For any given time point and panel unit,
we aggregate the quantity and value of consumption of all commodities excluding
the durables. From this data, we readily compute the item wise prices and use it to
construct our Laspeyre’s price index with the year 2004 as the base period. We use
this index to obtain the state-sector specific per-capita real expenditure.

Various statistics related to the distributions of these two constructed variables
across the combinations of the state-sector is tabulated in Tables 1, 2, 3,4, 5, 6, 7 and
8 for each of the six NSSO rounds. Various graphical representations of these two
variables are also depicted in Figs. 1 and 2. Figure 1a, and b depict how the rural and
urban income distributions have progressed over time respectively. It is quite evident
that mean incomes both for rural and urban area have more or less increased over
time. Tables 3 and 4 suggest that both for rural and urban area, each section (quarter)
of the population has been better off in terms of real income. Moreover, there is

Table 1 Descriptive for the state wise inequality measure for rural India

Standard | First
Year |Mean |deviation |quantile |Median | Third quantile | Skewness | Kurtosis

1987 10.3337 |0.0141 0.3282 1 0.3353 |0.3435 —1.6487 |10.3792
1993 10.3199 |0.0199 0.3082 | 0.3186 |0.3382 —0.6923 3.2988
1999 |0.2979 |0.0216 0.2805 0.3033 |0.3172 —0.2876 2.6334
2004 | 0.3175 |0.0267 0.3060 |0.3265 |0.3315 —0.6073 3.6419
2009 |0.2991 |0.0271 0.2953 1 0.3023 | 0.3071 —0.3380 3.1281

2011 |0.2979 |0.0242 0.2897 0.3069 |0.3111 —1.0239 3.4919
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Table 2 Descriptive for the state wise inequality measure for urban India

Year

Mean

1987 |0.3506
1993 | 0.3488
1999 |0.3348
2004 | 0.3660
2009 |0.3643

2011

0.3605

Standard
deviation
0.0229
0.0229
0.0316
0.0233
0.0282
0.0269

First

quantile | Median
0.3423 1 0.3475
0.3326 | 0.3446
0.3102 |0.3370
0.3638 |0.3714
0.3447 | 0.3702
0.3419 |0.3582

Third quantile | Skewness
0.3661 —0.4783
0.3571 0.1106
0.3507 0.4697
0.3774 —1.6986
0.3949 —0.5439
0.3850 —0.9000
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Kurtosis
6.5376
3.5664
2.9214
6.7518
3.5767
4.6525

Table 3 Descriptive for the state wise monthly per-capita real consumption expenditure for rural

India

Year
1987
1993
1999
2004
2009
2011

Mean

393.3884
393.9833
492.7826
586.0752
553.6098
600.1614

Standard
deviation
112.5156

98.0205

95.2384
134.4901
173.4677
196.6000

First
quantile
328.2205
315.9030
438.8170
539.2877
407.6331
425.1906

Median Third quantile
368.6754 | 432.2861
363.7263 | 447.3277
492.4627 |507.5273
575.6547 | 601.6321
538.8271 | 606.3124
574.3254 | 722.5880

Skewness

2.0373
1.8717
1.6423
1.8084
1.4121
1.1302

Kurtosis
8.4451
9.2935
7.2100
6.3929
4.6791
3.8018

Table 4 Descriptive for the state wise monthly per-capita real consumption expenditure for urban

India

Year
1987
1993
1999
2004
2009
2011

Mean
715.7302
749.5914
849.1603

1108.2491

1150.3853

1202.7876

Standard
deviation

187.8960
171.7440
197.7756
178.7918
251.6907
271.0289

First

quantile
678.0958
683.2816
710.2099
944.5705
968.5101

1054.9183

Median
718.5422
753.5291
883.4963

1158.9690

1240.3491

1319.5826

Third
quantile
763.2227
833.4937
933.9968
1228.4292
1325.6998
1406.4446

Skewness

2.1350
1.2849
0.3859
—0.0175
—0.3225
—0.6413

Kurtosis
10.5304
7.6688
4.5695
3.5689
42712
2.6433

Table 5 Intertemporal Spearman rank correlation for the state wise inequality
measure for rural India (figures in brackets indicate p-values)

Year | 1987 1993 1999 2004 2009 2011
1987 | 1.0000
1993 04302 | 1.0000
(0.0157)
1999 |0.5758 | 0.3242 | 1.0000
(0.0007) | (0.0752)
2004 03262 02786 | 05415 | 1.0000
(0.0733) | (0.1291) | (0.0017)
2009 03629 |0.0794 | 0.5488 | 0.7093 | 1.0000
(0.0448) | (0.6710) | (0.0014) | (0.0000)
2011 02794 03702 |0.5044 | 0.6093 | 0.5665 | 1.0000
(0.1279) | (0.0404) | (0.0038) | (0.0003) | (0.0009)



110

S. Santra and S. Das

Table 6 Intertemporal Spearman rank correlation for the state wise inequality
measure for urban India (figures in brackets indicate p-values)

Year
1987
1993

1999

2004

2009

2011

1987
1.0000
0.4359
(0.0142)
0.0879
(0.6382)
0.5895
(0.0005)
0.4532
(0.0105)
0.3137
(0.0857)

1993

1.0000

0.4242
(0.0174)
0.4431
(0.0125)
0.3935
(0.0285)
0.4411
(0.0130)

1999

1.0000

0.4238
(0.0175)
0.4681
(0.0079)
0.4536
(0.0104)

2004

1.0000

0.8173
(0.0000)
0.7081
(0.0000)

2009 2011
1.0000

0.7137 1.0000
(0.0000)

Table 7 Intertemporal Spearman rank correlation for the state wise monthly
per-capita real consumption for rural India (figures in brackets indicate
p-values)

Year
1987
1993

1999

2004

2009

2011

1987
1.0000
0.7774
(0.0000)
0.8347
(0.0000)
0.7786
(0.0000)
0.7855
(0.0000)
0.7625
(0.0000)

1993

1.0000

0.7423
(0.0000)
0.6262
(0.0002)
0.9327
(0.0000)
0.9202
(0.0000)

1999

1.0000

0.8565
(0.0000)
0.7677
(0.0000)
0.7133
(0.0000)

2004

1.0000

0.6673
(0.0000)
0.6468
(0.0001)

2009 2011
1.0000

0.9633 1.0000
(0.0000)

Table 8 Intertemporal Spearman rank correlation for the state log monthly
per-capita real consumption for urban India (figures in brackets indicate
p-values)

Year
1987
1993

1999

2004

2009

2011

1987
1.0000
0.8093
(0.0000)
0.7065
(0.0000)
0.7726
(0.0000)
0.6798
(0.0000)
0.7347
(0.0000)

1993

1.0000

0.7173
(0.0000)
0.6677
(0.0000)
0.7919
(0.0000)
0.8052
(0.0000)

1999

1.0000

0.8165
(0.0000)
0.6234
(0.0002)
0.6383
(0.0001)

2004

1.0000

0.6044
(0.0003)
0.6597
(0.0001)

2009 2011
1.0000

0.9722 1.0000
(0.0000)
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Fig. 1 (a) Density plot of log monthly per-capita real consumption expenditure for rural India for
the various rounds. (b) Density plot of log monthly per-capita real consumption expenditure for

urban India for the various rounds

some amount of churning within the distribution. The extent of this churning can
be summarised by using Spearman rank correlation (given in Tables 5, 6, 7 and 8).
These tables show that the churning is more prominent for inequality as compared

to per capita consumption expenditure.
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Fig. 2 Overall scatter of the inequality against the log monthly per-capita real consumption
expenditure with different markers differentiating the rural and urban state combinations

Apart from these two variables, we have also considered other quantities specific
to each panel unit. These include the total land possessed by the households, the
amount of cultivable land possessed by the households, the proportion of house-
holds belonging to three broad principal occupation types (professional, technical,
administrative, executive, managerial and related workers dubbed as occupation
group 1, clerical, sales, service, farmers, fishermen, hunters, loggers, production and
related works, transport equipment operators and labourers clubbed into occupation
group 2 and workers not classified by occupations including unemployed labourers,
grouped as 3), the overall population, the working population (defined as the number
of people with ages between 18 and 62), the number of people belonging to
four different classes of education (illiterate, literate but below secondary level of
education, secondary and higher secondary level of education and above secondary
level of education), the proportion of people belonging to the various social
(scheduled tribes, scheduled castes and others) and religious (Hinduism, Islam,
Christianity, Sikhism, Jainism, Buddhism, Zoroastrianism and others) groups. These
variables are used either in their level values or as ratios with other variables as
controls for our empirical model or as instruments to the per-capita real consumption
expenditure.

The basic form of the Kuznets’s hypothesis suggests a quadratic relation between
income inequality and economic performance, in which inequality increases with
real income at early stages and starts declining after reaching a peak. A natural
specification in panel data with a very general form can be hypothesised as:

Ineq, = Bo+ P1Yi + BoY2 +a; + A +0Z; + i = 1.N;t =1,2,3 (1)
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where Y, denotes the per capita real monthly consumption expenditure transformed
in logarithmic scale, Z; is a vector of controls, o; and A, are the state and time
specific unobserved heterogeneity effects, respectively; and u;, is the disturbance
term. Initially, we have considered a model where we do not account for the pos-
sible endogeneity between inequality and per-capita real consumption expenditure.
However, Hausman test as presented in Table 10 strongly suggests for the use of
instruments for our fixed effect model.

In order to find suitable instruments for the above empirical model, we turn to
a constant returns to scale production function for possible indications. A constant
returns to scale production function is given by: Y = F (K, H, L),where Y denotes
the aggregate production, K the physical capital inputs, H the human capital inputs
and L denotes the labour employed in the production. Because of constant returns
to scale we can rewrite the above relationship as: y = F (k,h, 1) where the
capitalization is removed to indicate the respective variables as a ratio of the amount
of labour employed. Based on this simple yet general production formulation, for
any panel unit of a particular round we take the respective total land, cultivated
land and the number of people belonging to the two highest categories of education
qualifications as proportions of the working population as the suitable instruments
for the per capita real monthly consumption expenditure. The results from the
various model specifications illustrated thus, are detailed in the next section.

3 Empirical Findings

At the outset, it is worthwhile to mention that, finding suitable well-specified model
is of utmost importance. To this end, we have tried several specifications for the Eq.
(1) including the cubic and fourth order income variables on the right-hand side.
It turns out that both cubic and fourth order variables are insignificant. Throughout
the whole exercise, we have considered two-way error component model to take into
account both unobserved individual and time specific effects. It may be noted that
the panel fixed effect model is considered without loss of generality. The individual
heterogeneity parameter, «;, is invariant across the time and accounts for state-sector
specific unobserved structural heterogeneity, state and rural-urban specific fiscal,
monetary and industrial policies, labour laws, etc. On the other hand, the unobserved
time effect, A,, is invariant across the panel units and accounts for time-specific
effects, such as common shocks, the impact of central fiscal, monetary and industrial
policies, labour laws, etc.

Now we turn to examine Kuznets’s hypothesis. Here it may be noted that the
economic theory on the growth-inequality nexus is quite inconclusive. The reason
of positive relationship may be found in Aghion et al. (1999). The primary reason
for such positive relationship is that if the growth rate is positively related to the
proportion of national income that is saved, more unequal economies are bound
to grow faster than economies with a high level of income distribution, since
the marginal propensity to save of the rich is higher than that of the poor. In a
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Table 9 Fixed effect regression results

Dependent variable: inequality

Independent variables Coefficient | Robust standard error | P-value
In(MPCE) —0.4888*** | 0.1196 0.0000
In(MPCE) squared 0.0411%** | 0.094 0.0000
Social group
1 0.1377* 0.0741 0.0640
2 0.0908 0.0691 0.1910
Religion
2 0.0240 0.0779 0.7580
3 0.0786 0.1467 0.5920
4 0.1173 0.2338 0.6160
5 —0.8760 0.5546 0.1150
6 0.4351** | 0.1865 0.0200
7 3.6676 4.4579 0.4110
8 (Omitted)
9 0.3571 0.2228 0.1100
Occupational inequality —0.0787 0.0581 0.177
R square 0.8483

Note that *, ** and *** indicate significance at 1, 5 and 10 % levels, respectively

democratic political set-up, the inverse relationship between income inequality and
growth would be expected to be stronger if the income distribution is tilted to
the left, giving lower-income groups more political power (Persson and Tabellini
1994). From Table 9, it is found that the slope coefficient corresponding to the
per-capita real monthly consumption expenditure variable is significantly negative.
On the other hand, the slope coefficient corresponding to square of the variable
is significantly positive. The signs of both the slope coefficients are contrary to
the conjecture of Kuznets. Thus, the empirical results indicate that in the context
of India, the relationship between inequality and economic well being measured
by per-capita real monthly consumption expenditure exhibits a U relationship
contradicting Kuznets’s inverted U hypothesis. We have also used several forms
of robust standard errors. It is needless to mention that overall conclusion remains
unchanged across various forms of standard errors. It may be interesting to look into
the plot given in Fig. 3 which is derived from the panel regression after removing the
contributions of control variates. The plot (Fig. 3) visibly and unambiguously shows
that growth-inequality relationship is in U shape and strongly evidences against the
Kuznets’s hypothesis. The empirical findings and the fitted plot strongly signify the
presence of some nontrivial dynamics of economic growth and income distribution.

It may be worthwhile to scrutinise the above findings in the light of endogeneity.
As we have already mentioned earlier that there is a possibility of presence of
endogeneity. Studies by Alesina and Perotti (1993), Bertola (1991), Perotti (1993,
1994), and Persson and Tabellini (1994) and Forbes (2000) look at the impact
of inequality on growth rather than the reverse as was the case with the earlier
literature influenced by Kuznets (1955). In fact, economic performance and income
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Fig. 3 Plot of the inequality against net of the effects of control variates against the log monthly
per-capita real consumption expenditure with different markers differentiating the rural and urban
state combinations. The fitted line corresponds to the predicted values of inequality constructed
from the log monthly per-capita real consumption expenditure and its square as depicted in Table 9

distribution both may be endogenous variables in the empirical model. Treating one
as a dependent variable and other one as an independent variable could lead to biased
and inconsistent estimation. In the light of these research works, it is necessary
to revisit the above findings incorporating this endogeneity issue. To this end, we
apply the Hausman test for endogeneity. The results given in Table 10 strongly
suggest that growth variable is an endogenous variable. The weak identification test
(Cragg-Donald Wald F statistic) statistic is far away from the generally accepted
critical value of 10, indicating that the considered instruments are quite strong.
Furthermore, Hansen’s J test for over-identification strongly suggests that the
instruments are valid. The IV-based parameter estimates are given in Table 10. The
results corresponding to Table 10 strongly corroborate with the findings of Table 9.
In other words, even after taking care of endogeneity, Kuznet’s hypothesis fails
to exist for the Indian context. The plot (Fig. 4), which is derived from the panel
instrumental variable regression after removing the contributions of control variates,
visibly and unambiguously shows that growth-inequality relationship is in U shape
and strongly evidences against the Kuznets’s hypothesis.

Our finding has definite policy implications. Kuznets’s argument behind the
inverted “U” association between income inequality and real income follows from
the nature of adoption of new technology. Technological progress which results
in the growth of an economy initially favours only a few, therefore augmenting
inequality, but as the technology is adapted more and more, the inequality decreases.
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Table 10 Fixed effect regression using instrumental variables estimated using iterated
GMM

Dependent variable: inequality

Independent variables Coefficient | Robust standard error | P-value
In(MPCE) —0.5126*% | 0.2880 0.0760
In(MPCE) squared 0.0431* | 0.0222 0.0530
Social group
1 0.1496* | 0.0777 0.0550
2 0.0673 0.0683 0.3250
Religion
2 0.0258 0.0787 0.7430
3 0.0356 0.1401 0.8000
4 0.1732 0.2196 0.4310
5 —1.1141*%*% | 0.5115 0.0300
6 0.4341** | 0.1878 0.0210
7 3.3309 4.4351 0.4530
9 0.3175 0.2212 0.1520
Occupational inequality —0.0847 0.0715 0.2370
Uncentred/centred R2 0.4559
Hausman test for endogeneity 42.1100
Chi%(16) P-value 0.0004
Weak identification test (Cragg-Donald 21.2360
Wald F statistic):

Hansen J statistic (overidentification test 3.9470
of all instruments)

Chi?(3) P-value 0.2672

Note that *, ** and *** indicate significance at 1, 5 and 10 % levels, respectively

In other words, this argument presupposes a dynamics in technological progress
which ultimately leads an economy to “mends its self” ensuring an equitable
distribution of resources. Our empirical results calls into question the validity of
such dynamics in the context of India and instead vindicates a tradeoff between
growth and inequality. From a normative standpoint, since a significant amount of
the population still live in poverty, there is a need for policy interventions to tackle
the socio-economic fallout of inequality which seems to persist in India despite the
growth of the economy. But this does not necessarily entail the cost of a lower rate of
growth for the economy. The literature on endogenous growth has produced models
(see, for example, Sarkar 1998) that demonstrate how the size of the middle class
plays an extremely important role in determining the rate of growth of an economy.
In our exercise, the lower middle class registers the least amount of inequality. This
opens up the possibility of government policies aimed towards the sufficiently large
Indian middle class which might lead to a sustainable growth prospect for India in
the near future.
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Fig. 4 Plot of the inequality against net of the effects of control variates against the log monthly
per-capita real consumption expenditure with different markers differentiating the rural and urban
state combinations. The fitted line corresponds to the predicted values of inequality constructed
from the log monthly per-capita real consumption expenditure and its square as depicted in
Table 10

4 Concluding Remarks

In this paper we test the Kuznets’s U curve hypothesis with balanced panel data
of the 32 states and Union territories’ of India covering the time span of 1987—
2011 comprising of various socio-economic characteristics of a household. Based
on the estimated model, we find that one should reject Kuznets’s U curve hypothesis.
Income inequalities are highly explained by level of real income along with state and
time specific factors. The fitted curve evidences that initially inequality decreases as
income level increases up to a limiting point, where after it starts to increase as
income increases further.

Future research may commence to unearth the more specific causes for such
findings. It may also be useful to employ various other measures of indicators
of economic performance and also various income inequalities along with other
dimensional inequalities to examine robustness of such empirical findings.

2The states and the Union territories are: Andaman & Nicobar Islands, Andhra Pradesh, Arunachal
Pradesh, Assam, Bihar, Chandigarh, Dadra & Nagar Haveli, Daman & Diu, Delhi, Goa, Gujarat,
Haryana, Himachal Pradesh, Jammu & Kashmir, Karnataka, Kerala, Lakshadweep, Madhya
Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Pondicherry, Punjab,
Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttar Pradesh, West Bengal.
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Growth Curve Reconstruction in Damaged
Experiment via Nonlinear Calibration

Ratan Dasgupta

Abstract Consider the problem of estimating growth curve of a bulb crop over
time in an agricultural experiment. Harsh environment in experimental land of farm
may result in an incomplete and damaged data set. Under certain mild assumptions
we model the original data by nonlinear calibration, estimate the growth curve
and derive almost sure confidence band for the curve by adopting a technique
of Dasgupta (Growth curve and structural equation modeling, 1st edn. Springer
proceedings in mathematics & statistics. Springer, New York, 2015). A yield-
environment model is proposed and properties of the maximum likelihood estimator
therein are investigated. A technique of computing derivative of response curve
by nonparametric regression is shown to be strongly consistent for higher order
derivatives. Growth data set on a bulb crop is analysed. First derivative, proliferation
rate and second derivative curves of calibrated growth for garlic crop are estimated.
Associated errors in estimation of the growth curve, its derivative and proliferation
rate from composite function, attributed to individual component functions are
studied. To a first degree of approximation, error in estimation is symmetric in
individual errors, but asymmetric in individual functions.

Keywords Growth curve * Bulb crop ¢ Allium sativum ¢ Lowess

MS Subject classification: Primary: 62J02, secondary: 62P10.

1 Introduction

Garlic (Allium sativum) is a year round crop grown in moderate climates. Garlic
plant cannot withstand extreme temperature. Exposure to dormant cloves or young
plants to temperature of around 20°C or lower for a period hastens subsequent
bulbing. In dry weather conditions, with increase in evaporation rate during Indian
summer, plant growth may be substantially affected. The maximum summer
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temperature can be as high as 47°C in Jharkhand, India. We consider estimating
growth curve of garlic yield in an experiment conducted during February—May in
the farm of Indian Statistical Institute (ISI), Giridih; Jharkhand. Hot summer in
later period of cultivation caused dehydration of the crop, making estimation of the
growth curve from damaged experiment a difficult task. We estimate the growth
curve from such experiment by nonlinear calibration of available data on yield.
Techniques developed involving composite function may be used for estimating
growth curve arising in similar situations. Associated errors in estimation by such
calibration are derived in large samples. We obtain almost sure confidence band
for the growth curve based on one-sided estimators, following a technique of
Dasgupta (2015). A simple model for proportionate gain in crop yield with dominant
environment effect is proposed.

Previous studies, experimental set-up and data. Growth of garlic plants are
studied in Diriba-Shiferaw et al. (2013). Apart from culinary use, garlic has
medicinal value in reducing blood glucose, antibacterial effects, etc., see, e.g.,
Jelodar et al. (2005) and Matthew et al. (2007). Tissue culture produces virus-free
clones that are more productive and keep the desired traits of the cultivar of garlic.
Scotton et al. (2013) analysed the in vitro regeneration of eight marketable cultivars
of garlic using root segments as explants.

In the present study, one hundred garlic clove seedlings were planted in an
experimental plot at ISI Giridih farm on 12 February 2014, in winter season. The
plot had topsoil eroded, this is part of a barren land having sandy soil composition
mixed with “dhoincha” (Sesbania bispinosa) plant compost manure, so as to make
survival of plants easier in the unfertile plot of land. In each row there were
ten plantations. Plant to plant distance was 15 cm. There were ten rows; distance
between rows was 30 cm. A little bit of vermicompost manure was also provided
in the experimental plot. Out of 100 plantations, 87 resulted in healthy garlic plants
having positive yields on maturity. For remaining 13 plants, there were no yields.
In Fig. 1 we plot the plant lifetime (in day) and weight of 87 dehydrated crops (in
gram). A nonparametric regression curve for mean response is also shown. Garlic
yield data indicate high scattering especially for higher values of plant lifetime.

The paper is arranged as follows. In Sect.2 we analyse the data set on growth
experiment conducted in Giridih, where summer maximum temperature reached as
high as 43.5 °C during the experiment. We obtain growth curve for garlic before and
after calibration of data obtained from the experiment conducted in this extreme
environment. Following the technique described in Dasgupta (2015), almost sure
band of the growth curve is derived from the properties of one sided estimators,
where convergence to the parameter is restricted to a particular direction viz., from
above/below; see Gilat and Hill (1992). In Sect. 3, we model proportionate gain in
yield with dominant environmental affect, study properties of the proposed model
and analyse observed data. The model explains some uncommon behaviour of the
maximum likelihood estimate. Consistency of derivative estimates are shown in
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Fig. 1 Growth curve of a bulb crop (dehydrated). Growth curve of garlic is estimated by lowess
regression with f = 2/3. The curve shows an upturn after a lifetime of 79 days

Sect. 4, these are computed from yield data. Section 5 deals with accuracy of growth
curve estimation and resultant proliferation rate based on composite function in
large samples.

2 Data Analysis and Some Comments

We start with available data on dehydrated garlic. Growth curve by lowess regres-
sion, see Cleveland (1981), with f = 2/3 for yield data in Fig. 1 shows a marked
increasing trend after a lifetime of 79 days.

To estimate the garlic weights before dehydration, we observed that the outer
structures of the dehydrated crop remained intact. Thin and dry membranous outer
scales still resemble original shape of the crop that developed underground, making
it possible to have an estimate for volume of the crop.
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Fig. 2 Calibration factor obtained by lowess and spline regression. Calibration factor shown by
lowess and spline regression are almost overlapping

Next we find weight of healthy garlic corresponding to similar volume of
dehydrated garlic, dry garlic being selected evenly from the weight range of crop
yield. Lowess regression with f = 0.8 based on weight of 13 dried garlic (~15 %)
selected from yield observations, versus weight of healthy garlic of similar volume
are shown in Fig. 2. Spline regression, with shape parameter 1, is also shown in the
same figure; smoothing spline is almost overlapping with the lowess regression. One
may select either of the curves for a valid calibration of data points.

Concave graphs of Fig. 2 indicate that for a garlic of small weight having small
volume, dehydration is relatively high resulting in more weight loss. For large
weights, losses due to dehydration seem less. This is in conformity with the fact
that harsh and extreme summer affects the bulb of less weight through hot soil.
For heavier bulbs, hot soil may not be able to affect innermost core region of crop,
saving underground garlic from much weight loss.

For each weight of dried garlic, a calibrating factor is now available from the
lowess graph to predict the original weight of garlic yield, which may be obtained
by multiplying the dehydrated weight with corresponding calibrating factor. Such
calibration techniques are also used in Dasgupta and Pan (2015).
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Fig. 3 Growth curve (lowess) based on calibrated yield. Growth curve of calibrated garlic weight
is estimated by lowess regression with f = 2/3. The curve shows an upturn after a lifetime of 78
days

The scatter diagram of plant lifetime versus modified weight of the crop is shown
in Fig. 3. Lowess regression (with f = 2/3) to the scatter shows a distinctive
increasing trend in the growth curve after a lifetime of 78 days. Curves shown in
Figs. 1 and 3 show similarity, the latter curve is pulled up, especially towards large
values of lifetime, due to calibration. Presence of spikes is also observed in the
upward turn of the growth curves towards end of the lifetime. It appears that the
plants may have a hunch when their lifetime is going to be over, as a result plants
may accumulate food in the bulb faster towards end.

To obtain an estimate of percentage gain in cultivation of the crop in Giridih, we
plot the scatter diagram of planted initial weight versus modified weight of the crop
yield in Fig. 4. The slope of the least square regression line passing through origin
is 1.67, whereas a ratio estimate of the multiplicative factor obtained as ratio of total
yield by total initial weight is 1.71.
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Fig. 4 Least square regression line through origin for initial vs final weight. Least square
regression line through (0, 0) for initial (seed) and final (calibrated) weight of garlic is shown.
Slope of the line is 1.67

Thus, on an average, the gain is about 70 % for garlic cultivation in Giridih farm.

In Fig.5 we obtain almost sure confidence band for the growth curve based
on dehydrated garlic data, following the technique described in Dasgupta (2015).
At each observed point on lifetime ¢ of garlic plant, we compute the perturbation
‘m% Z?,j:l |Xi—X;|,a € (2,2.5) as proposed in Gilat and Hill (1992). We take two
immediate points above and below a lifetime ¢ and consider the corresponding garlic
yield X = X; to compute the perturbation part with n = 3, ¢ = 2.25. Exception is
made for the lowest time point, where we consider another additional repeat point
to draw the band from start. The points so obtained by addition/subtraction from
lowess curve fall above/below the lowess growth curve, and the points falling in
a particular side of the curve are again lowess smoothed to obtain approximate
a.s. upper/lower confidence bands as seen in Fig. 5. The curve in blue/black, lying
on the top/bottom of the central curve in red for garlic growth, is the upper/lower
confidence curve.

Confidence band based on calibrated weights of garlic is shown in Fig. 6. The
almost sure bands cover the central curves in both the figures.
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Fig. 5 Almost sure band for growth curve of a bulb crop (dehydrated). With 87 observations, the
garlic growth curve is estimated by nonparametric lowess regression in Fig. 1. At each observed

point on lifetime ¢ of garlic plant, we compute the perturbation # Z;l =1 |Xi—X;l,a € (2,2.5)

as proposed in Gilat and Hill (1992). We take two immediate points above and below ¢ and consider
the corresponding garlic yield X = X; to compute the perturbation part withn = 3,a = 2.25.
Exception is made for the lowest time point, where we consider another additional repeat point to
draw the band from start. The points so obtained by addition/subtraction from lowess curve fall
above/below the lowess growth curve, and the points falling in a particular side of the curve are
again lowess smoothed to obtain approximate a.s. upper/lower confidence bands

3 Modeling Crop Yield With Dominant Environment Affect

Extreme weather in general adversely affects crop production, e.g., see Gourdji
et al. (2013). As seen from the experiment described above, healthy garlic plants
result in positive yield in the experiment, and on an average a single clove of garlic
produced 1.7 times yield in summer of Jharkhand. In other words, average number
of additional garlic clove from a single clove planted is 0.7, on harvest. This estimate
of additional clove is indirect, as this is based on weight. Later we shall examine a
direct estimate.

Consider a situation where condition of weather, a random variable x is regulated
by the parameter 0 in a scale of 6 € [0, 1], indicating weather conduciveness for
good yield in a region having generally harsh environment for agriculture. For
near 0, i.e., in extreme weather there may not be any significant additional gain in
yield.
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Fig. 6 Almost sure band for growth curve on calibrated yield. Almost sure confidence bands are
drawn for growth curve based on calibrated weight (shown in Fig. 3), following a similar technique
that is adopted for Fig. 5

Let the modeled proportionate gain in yield be 6, i.e., gain is 6 times the seed
weight, where 6 is the true value of parameter. Then on an average, the number of
additional clove from a single garlic clove planted is 6. Modeled crop production is
approximately the same as the amount of seed planted in that region, if the weather is
extremely harsh (6 =~ 0). A suitably scaled garlic production on an average may be
twice the initial investment in ideal condition (6 ~ 1). Let the observed weather
index x be a point binomial variable with parameter . The maximum summer
temperature can be as high as 47 °C in that place. Damage to the major grain crops
begins when temperatures rise above 30°C during flowering. In rice, wheat, and
maize, grain yields are likely to decline by 10 % for every 1°C increase over 30°C.
At about 40 °C, yields are drastically reduced to zero; see Halweil (2014).

We consider temperature >38°C as extremely harsh for garlic. Proportion of
days where maximum temperature is 38°C and above is 0.08696, during the
experiment. This proportion can be considered as average of x values, where
x; = 1, if the maximum temperature on i th day is > 38°C, and x; = 0, otherwise.
The proportion 0.08696 may be considered as a priori value of 8, in absence of any
additional information on relevant variables, e.g., on yield.
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Let the observed number of cloves be (1 + y), grown out of a single garlic clove
planted in the experiment, where y (> 0) is a Poisson variable with parameter 6. We
find maximum likelihood estimate (m.l.e.) of € on the basis of independent samples
on (x, ).

Likelihood based on plant characteristics and field environment (x;, y;),i =
1,---,n1is

L(6) « e—n09(27=1x1'+2?=1yi)(1 _ 9)(n—227=1«w)’ 0 e[0,1] (1)
From (1), log likelihood based on (x;, y;),i = 1,--- ,nis
log L(0) —n9+(Z:l=l xi+2j=1 yi)logQ—l—(n—Zj:l xi)log(1—6),0 € (0,1) (2)

One of the roots of resulting quadratic equation in 6 in log likelihood equation
% log L(6) = 0 from (2) lies outside the parametric space; the other root is

6 =1-[(40 -0+ -51/2 3)
This lies within the parametric space and is strongly consistent for 6. Second
derivative of log likelihood is negative, ;—922 log L(0) = — "(?{y ) '(11(1_;’;2) .The m.Le.

depends on the coordinates of (x, y) values via their mean X and y.

Note that 6 — 1 as ¥ — 1 and/or y — oo. Equation (3) represents a three-
dimensional relation for § on X € [0, 1], 7 € [0, 00).

Figure 7 shows the m.l.e. of 6 as a function of y, plotted for different values of x.
Initial values of m.l.e. are quite sensitive to x.

For the present case, ¥ = 0.08696 and y = 0.7. An estimate of the parameter 0
from Eq. (3) provides 6 = 0.3324.

Now consider the case X = 1. The term involving (1 — 6) vanishes in the
likelihood function given by (1), and the function L is increasing as 6 1 1,
%logL(Q) =-n+ "4'0# > 0.

Thus, for x = 1, m.Le. of 8 is 1, irrespective of the y values. The m.l.e. then
relies on x values only.

If the weatheAr condition is conducive over several seasons, then under the
proposed model 6 = 1, irrespective of the observed value of crop yield.

Farmers may expect twice the initial investment as yield, in such a situation.

Behaviour of the m.l.e. in this case has some similarity with Bayesian viewpoint
in data analysis. If the joint distribution involving prior and data is such that a seg-
ment of information is convincing, then the remaining part becomes redundant. In
the proposed environment-yield model, information on y is ignored for computation
of m.Le., in a part of sample space of (x, y); where x = 1.

Instead of taking the ratio of total seed weight and final weight of garlic produced,
one may consider the ratio of number of cloves that resulted in healthy plants with
positive yield, and total number of cloves in harvested garlic, in order to calculate
gain in crop yield. In the present case the ratio is 98/87 = 1.1267, thus gain in yield
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Fig. 7 MLE of theta. Maximum likelihood estimate of 6 of environment-yield model is shown
as a function of y, the mean of additional yield; plotted for different values of x, the mean of
environment index. Initial values of the m.l.e are quite sensitive to x

is 0.1267; this may provide a new estimate of 6 from Eq. (3) with X = 0.08696 and
¥ = 0.1267, leading to a modified estimate 6 = 0.10572.

Estimate of 6 with a prior value 0.08696, and different yield input values 0.7 and
0.1267, as described above, turns out to be 0.3324 and 0.10572, respectively.

In view of low return of crop yield in harsh environment, garlic does not seem
to be a worthwhile cultivable crop in Giridih, Jharkhand, unless adequate fertilizers
e.g., DAP, organic manure etc. are administered and additional cares like regular
irrigation, loosening the soil near plants are undertaken.

In a follow-up study to be reported later, the growth scenario is seen to improve
by front shifting the time zone of garlic cultivation, with early winter plantation of
seedlings. Simultaneously the other concerns of land fertility and plant care are also
attended.
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4 Consistency of Derivative Estimates and Estimation
of Higher Derivatives

First we show the consistency of estimates.

4.1 Consistency of Derivative Estimates

Lowess, as least square estimates, inherits properties like almost sure convergence
with appropriate rates, see, e.g., Lai et al. (1979) and Kritschmer (2006). We
mimic the steps of Dasgupta (2013a) to show consistency of higher order derivative
estimates obtained by lowess technique explained in Dasgupta (2013b).

Consider the model y = g(x) + €, where g has continuous second derivative
and € denotes error term, and let (x;, y;),i = 1,--- ,n be the growth observations
y; at time X;.

Growth estimate from lowess curve is weighted least square (ls) regression of
a low degree polynomial p usually of degree < 2, to (x;, y;),i = 1,---,n; fitted
locally at the point x = x;, i.e., §i = p(xi) = p\)(X)|x=e, = pD(x;). With
smooth weight function the lowess estimates p(x) are smooth and continuous in
the sense that, |pl(;)(x) - pl(sj)(x)| — 0, as |x; — x;| — 0, where x;,x; € [a,b],
a finite interval; interpolation is linear in lowess regression for intermediate points
X € (X, Xi41)-

Let 8 = B, = maxi<j<u|x; — xj41] — 0, as n — oo. Then there
are sufficiently many observations in a small neighbourhood of x;, where g’ is
continuous. Empirical slope estimates (y(x;) — y(x;))/(x; — x;),j # i;in that
small neighbourhood are close to the derivative. For small grid spacing,

d
Gxi) =Y (xi+1))/ (xi = xi41) = d—xp(x)|x=x,-(1 +o(1))

as |x; — x;j+1| = 0.
Since the lowess estimate is a.s. consistent, i.e., y; = g(x;) + R, where R =
R, = o0(1), a:s. as n — oo, we have for small |x; — x|

Ry(xi) — Ru(x;)
Xi — Xj

mi(j) = (i = ¥/ (xi = x;) = g'(x;) + o(lxi —x;]) +

= g'(x;)) + o(lxi — xj|) + o(1), as., n — oo.

— g'(x;), as., n > oo and |x; —x;| = 0. (4)

The o() terms in (4) are negligible for sufficiently large n and small grid spacing.
Weighted average of empirical slopes m;(j) defined in (4) is then a consistent
estimate for g’(x;). Weights w(d;;) = w(|x; — x;|) at x; for x; are standardised



130 R. Dasgupta

with sum of the weights over j as 1, e.g., w — w/w. Distant x values from x; are
down-weighted to have negligible contribution to the sum #i;. Thus,

i =y wdymi(j) = g'(x;) + o(1), as.. n — 00 5
J

as the weights w(dj;), j # i are concentrated near x;.

Usually in practice, exponentially decaying w are considered, this performs
well in most of the cases. Estimate ni; of (5) are linear combination of y, the
lowess values, these in turn are least square estimates and hence linear function
of observations y;,i = 1,---,n. In most of the applications a robust estimate is
taken as #i;, e.g., median or trimmed mean of the elements {w(dy)m;(j),] =
1,---,n;j # i}, these estimates are insensitive to outliers and choice of weight
function.

Lowess smoothing of (x;,n1;),i = 1,--- , n; with tricubic weight u, and variable
bandwidth based on k-th nearest neighbour is taken as the estimate m; of g'(xi).
The lowess estimate 71; , being a least square estimate, is consistent almost surely.
Repeating the above steps with (x;, n%i),i = 1,---,n lowess estimates of second
derivative g’ of g is computed and strong consistency follows. Almost sure limits
are considered on the intersection of different sets of probability 1, to obtain
convergence results. From earlier proof sketched in Dasgupta (2013a), assumption
that R is Lipschitz of order ¢ > 0 may be dropped; there is a typo regarding o
therein. Since the function g is differentiable, and at each iteration lowess estimate
¥ is approximated by polynomials in x, the difference R = y — g is then a well-
behaved function.

Almost sure consistency of higher order derivatives by lowess follows similarly.

4.2 Growth Curve Derivatives from Calibrated Garlic Yield

We compute first two derivatives and proliferation rates of garlic growth, shown to
be consistent as above. In Fig. 8 we plot velocity of calibrated growth that remains
nearly constant for garlic weight till 72 days and then it drops down to reach
a minimum at plant lifetime of 78 day. Afterwards the velocity rises again with
lifetime.

Figure 9 shows the proliferation rate of calibrated garlic weight. This gradually
decreases till plant lifetime of 78 days to reach a minimum, and then it rises again
with increase of lifetime.

The second derivative curve is shown in Fig. 10. Second derivative reflects
curvature of growth. In the beginning the curve of second derivative remains more
or less stable, it drops to a minimum at 77 day of plant lifetime, the curve rises again
and shows a downward trend near the end.
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Fig. 8 Velocity of calibrated yield: trimmed mean, wt. exp(-.01 x); spline. Velocity remains nearly

constant for garlic weight till 72 days and then it drops down to reach a minimum at plant lifetime
of 78 day. Afterwards the velocity rises again with lifetime
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Fig. 9 Proliferation rate of calibrated yield: trimmed mean, wt. exp(-.01 x); spline. Proliferation
rate gradually decreases till plant lifetime of 78 days to reach a minimum, and then it rises again
with increase of lifetime
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Fig. 10 Calibrated garlic wt second derivative: trimmed mean, wt. exp(-.01 x);spline

S Estimation of Composite Function and Associated Error

Growth curve may sometimes require non linear calibration for modeling of
characteristic growth in ideal environment as explained above. The calibration
function may have to be estimated independently. Proliferation rate of composite
function and associated errors are of interest, see, e.g., Dasgupta and Pan (2015).

Consider a real valued composite function fog(x) = f(g(x)). Let f and g be
estimates of real valued functions f and g, respectively, from available data. Then
fog(x) = f (£(x)) is a natural estimate of f(g(x)). Usually f , & are based on
weighted average type estimates having negligible errors. We would like to study
the effect of error in estimation of individual function while estimating composite
function. . . A

Write fog(x) = f(3(x)) = flg(x)+e€]and f = f +§, where the errors € and
d in estimating f and g, respectively, are small in large sample. Next, suppose f is
thrice differentiable in a neighbourhood of g(x). Then,

fog(x) = f([g(x) + €] +8)
= f([g(x) + € + 81 ([g(x) + €1 + o(1))
= f(g(x) +€f" ()1 + o(1) + 8[f(g(x)) + f " (g(x)I(1 + o(1))
= f(8(x)) + (e + 8) £ (g()) (1 + o(1) + €8f"(g(x)(1 + 0(1))  (6)

where o(1) terms are negligible compared to the main terms.
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To a first degree of approximation, error in estimation (fég(x) — flgx))) is
symmetric in € and §, but not in f and g. The magnitude of error depends on first
two derivatives of f. The product term €5/ " (g(x)) is of lower order than the sum
(e +8)f"(g(x)).

The technique of estimating derivative proposed in Dasgupta (2013a) is strongly
consistent, ¥/’ (x) — ¥'(x), a.s. Results of Dasgupta (2013b), pp. 82-84 indicate
the gap is small.

One can heuristically assess error of estimation for derivative of composite
function as follows. Considering only those terms of (6) explicitly written in x for
differentiation, and pretending others terms to be free from x, write

V() ~ P () + [(e + 8) /" (2(x)) + 8" (g(x)]g’ () (1 + o(1))
~ P (L + (e + 8) £ (g(x)) + €8 (2(x)))g (0)/¥ ()1 + o(1)}

Hence,

V' (x) ~ ¥ @[1+H{(e+8) £ (g(x)+ebf” (g () e (1) (1+o(1) /¥ (x)]
¥ (x) V() [1+{(e48) /7 (g (x)+e8 /" (g (X))} (1+0(1)) /¥ (x)]

~ Y 17(gCNg’x) [ (g(x)) 17(gC)g"x) [ (g(x))
~Y(x) {1+(€+5)( W/(x) ¥ (x) )+€5( W/(x) ¥ (x) )}(1+0(1))

from which convergence ¥/ (x) — ¥’(x) and ‘Z{((:)) — ‘5&‘;
already mentioned, proliferation rate V) of ¥ = fog are computed from data
points by a technique proposed in Dasgupta (2013a) with exponentially decaying
normalised weight assigned to individual slope estimates computed at a point,
and then considering a robust estimate like trimmed mean or median of these
weighted slopes for a particular x. The trimmed mean/median estimates are then
smoothed by smooth.spline in SPlus software over the range of x. As a result
random jig-jag behaviour in point estimates of proliferation/derivative arising from
error components are smoothed out by cubic splines, only the main parts remain.
Nonparametric lowess regression may also be alternatively used for smoothing the
trimmed mean/median estimates. In large samples, variation of the quantities ¢, §
and the o(1) terms are then small compared to the main terms written explicitly
involving x, and this heuristic works.

are apparent. As
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Growth Curve of Phase Change in Presence
of Polycystic Ovary Syndrome

Ratan Dasgupta and Anwesha Pan

Abstract We study the time gap between two menstrual phases of semi-rural PCOS
patients from West Bengal in relation to age at menarche, body mass index (BMI)
and age of women. Mean response curve of phase gap based on spline regression
starting from the age at menarche 9+ years reaches a maximum at the menarche age
11+ years. Growth curve of phase gap then gradually decreases till the menarche age
of 16+. Phase gap of menstrual cycle is positively correlated with age of women.
BMI also affects phase gap in an increasing manner. Effect of oral contraceptive
pill medication on growth curve of phase gap and on proliferation rate is studied in
terms of composite function. Discrete time proliferation rates computed from data,
as approximation of proliferation rates are proposed and convergence rate of these
estimates is studied in terms of the height of discrete steps in time measurements,
and on errors in estimating the individual components functions.

Keywords Menarche » PCOS ¢ Phase gap * BMI  Lowess regression ¢ Spline
regression * Proliferation rate

MS subject classification: Primary: 62P10, secondary: 62G08.

1 Introduction

Polycystic ovary syndrome (PCOS) refers to accumulation of multiple cysts in the
ovaries, associated with high male hormone levels, chronic absence of ovulation
and other metabolic disorders. Symptoms include excess facial and body hair, acne,
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obesity, irregular menstrual cycles and infertility. Pre-pubertal obesity and early
menarche are some of the possible factors for developing PCOS at later stage.
Females who reach menarche at an early age expose their reproductive organs to
the female hormone estrogens at an earlier age. This combined with a late marriage,
results in a long gap between menarche and pregnancy, leading to other health
problems. A child, who has irregular menstruation that continues into adulthood,
develops imbalance in hormones, which often leads to problems conceiving a child.
Exposure to inappropriate content in the media leads to early mental and physical
maturity in girls. This also has an effect on a girl’s hormones that have a strong
feedback mechanism from the brain.

A long time gap between two menstrual phases instead of normal cycle creates
confusion and tension. Phase gap is a measure of severity of the problem. Agrawal
et al. (2004) studied prevalence of PCOS based on lifestyle. Association between
PCOS and metabolic complications is discussed in Kelley et al. (2014). Correlation
between biochemical and clinical features of PCOS is studied in Yousouf et al.
(2012). Anti-mullerian hormone as a marker of PCOS is studied in Wiweko et al.
(2014).

In the present study we investigate the association of phase gap with menarche
age, body mass index (BMI) and age of patients having PCOS. Seventy-three
females of semirural background were interviewed in a well-known hospital of
North Kolkata on these variables in 2014. Some information was not available
for recording. We observe that menarche age has an initial increasing and then
decreasing effect on time gap between menstrual cycles; the peak on phase gap
is seen for women with 114 years of menarche age. The two variables BMI and
age of patients are seen to have an overall increasing effect on phase gap for a long
range. We study the multiple regression of phase gap on BMI, menarche age and
age of patient. Regression on logarithmic scale provides improved value of R? than
usual scale, thus the relationship seems to be nonlinear.

A model for assessing efficacy of oral contraceptive pill treatment on PCOS
patients to regularise menstrual cycle is studied.

In Sect. 2 we explain materials and the methodology adopted. Results obtained
from analysed data are discussed and interpreted. Growth of phase gap over age in
PCOS patients without other complications is seen to slow down under oral contra-
ceptive pill treatment, indicating improvement in patient status. Section 3 explores
the relationship between continuous and discrete time proliferation rate for growth
in composite function. Convergence rate of discrete time proliferation estimate is
analytically seen to depend on the height of discrete steps in time measurements,
and on errors in estimating the components functions of the composite function
from observed data.
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2 Materials, Methodology and the Results

Seventy-three patients with PCOS were interviewed during once in a week visit by
interviewer, when the patients came for treatment in a government hospital at North
Kolkata in the time period March—October 2014. Data recorded on the variables
include age of patient, BMI, age at menarche and “phase gap”, collected from
willing patients. Nonparametric lowess and spline regression are used to obtain the
response curves. Proliferation rate d log y(¢)/dt of growth y(¢) is a measure of rate
of change in y(¢) independent of unit of measurement for y. One may estimate this
from observed data by a technique proposed in Dasgupta (2013).

In Fig. 1 we observe that the distribution of menarche age, starting from an early
age of 9+, is positively skew in the interviewed patients with PCOS. Mode of the
distribution is at 12+ years. The distribution of phase gap has a sharp fall towards
right, as seen in Fig. 2. Largest value of the phase gap observed in the sample is
1 year, in contrast to normal gap of 28 days. The response curves are obtained by
nonparametric lowess (with f = 0.58) and spline regression (with shape parameter
1/3) in Fig. 3. Menarche age has an initially increasing and then a decreasing effect
on time gap between menstrual cycles; the peak of phase gap is seen for women with
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Fig. 1 Histogram of menarche age in PCOS patients
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Fig. 2 Histogram of menstrual gap in PCOS patients

11+ years of menarche age in spline regression. The same feature is seen in lowess
regression, with peak at age 13+. However, with f = 0.5 in lowess regression (not
shown in figure) the peak is once again seen at the age 11+, as in spline regression.
There is some evidence that the phase gap is highest for women with menarche age
at 11+. The least square fit for linear regression is shown as a straight line in Fig. 3.
The line has a decreasing trend with intercept 135.001 and slope —4.926.

Histogram of BMI in patients with PCOS is shown in Fig. 4, the distribution
seems to be negatively skew.

A large percentage (>37 %) of patients with PCOS is obese with BMI > 25.

In Fig. 5 we plot lowess regression on data points and group means, BMI is seen
to have an overall increasing effect on phase gap. Except near end of the graph,
for two points, one with BMI 32.23 (for a woman aged 36 years, having androgen
excess, performing regular physical exercise and yoga exercise to remain fit), and
the other point with BMI 32.41 (for a young woman aged 22, under treatment for
primary infertility for four years), increasing trend in the curves of Fig. 5 is apparent.
These two extreme points have a pull down effect on the curve towards end. Lowess
regression on data (with f = 1/3) and on group mean (with f = .38) are of similar
increasing pattern. The least square linear fit has an increasing trend with intercept
71.1503 and slope 0.1736.
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Fig. 3 Growth curve of phase gap on menarche age

Figure 6 indicates a positively skew age distribution of PCOS patients with long
tail in the right, PCOS may affect women’s health in the long range of reproductive
age. The mode of the age distribution when the problem is reported is 21+. Difficulty
in conceiving child is one of the main reasons for patients’ problem reporting from
semi-rural area.

Growth curves of phase gap based on lowess regression (with f = 0.61) and
smooth.spline (with spar= .01) in Splus software are shown in Fig.7 and Fig. 8§,
respectively. Lowess oversmooths the data points in this case. Figure 8 indicates
a general upward trend of phase gap with progress of age, eventually towards
menopause, although a little bit of downward tendency of the curve within the age
range (24,29) years is observed, indicating temporary relief. This growth pattern
matches with the general experience of expert doctors where these patients were
treated.
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Next we consider multiple regression of phase gap (y) in days, on age of the
patient (x;) in years, BMI (x;) and menarche age (x3) in years, by the method of
least square. The estimated regression line is

y = 130.4300 4 1.3823x; — 0.5751x, — 5.8471x3

The residual standard error is 72.97 on 47 degrees of freedom. Multiple correlation
squared is R> = 0.01866, a low value; and the intercept term and the coefficients
of x;,i = 1,2,3 are all insignificant. Absolute residual plot of phase gap versus
phase gap is shown in Fig. 9a. The residuals show an increasing trend towards upper
right corner of the plot and five data points seem to be outliers. Deleting these five
outliers we have the multiple regression as

y =56.061 —2.614x; + 1.649x, 4+ 1.582x3

This improves the value of multiple correlation squared to R> = 0.1373, still a
low value. Residual standard error is 30.07 on 42 degrees of freedom. Intercept
term is insignificant, so are the coefficients of x,, x3. Coefficient of x; is barely
significant with p = 0.0218. Absolute residual plot of phase gap versus phase gap
after deleting the five outliers is shown in Fig. 9b.
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Next we check the performance of multiple regression in logarithmic scale. The
accuracy of regression is slightly lower in logarithmic scale, R? = 0.0178.

logy =5.6992 — 0.41951og x; + 0.14801log x, — 0.320910g x3

The residual s.e. is 0.6932 on 47 degrees of freedom. Absolute residual plot of phase
gap versus phase gap in logarithmic scale is shown in Fig. 10a. The residuals show
an increasing trend towards upper right corner of the plot as before, and the same
five data points those were detected earlier seem to be outliers. Deleting the outliers
the multiple regression in logarithmic scale turns out to be

y = 3.7344 — 1.1185x; + 0.7808x; + 0.4643x3
This improves the value of multiple correlation squared as R> = 0.194. Intercept

term is insignificant, so are the coefficients of x;, x3. Coefficient of x; is highly
significant with p = 0.00598. The residual s.e. is 0.4561 on 42 degrees of freedom.
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Fig. 10 Absolute residual plot of phase gap in multiple regression(log scale), (a) With all
observations, (b) With five outliers deleted

Absolute residual plot of phase gap versus phase gap in logarithmic scale after
deleting the five outliers is shown in Fig. 10b. No specific pattern in residual
scatterplot in Fig. 10b is observed.

A low value of R? is not surprising, PCOS is heterogeneous disorders of
uncertain causes. Not all the underlying processes surrounding it are properly
understood at present.

Proliferation rate d log y(¢)/dt is a measure of how rapidly phase gap changes
over time, the measure is independent of y unit. To compute this, first y values are
smoothed by smooth.spline in SPlus with spar= 0.01. By a technique described in
Dasgupta (2013), proliferation rate of phase gap is computed and shown in Fig. 11,
taking spar= 0.00001 in Splus. The proliferation rate decreases initially, and then
stabilises in the age interval [26,28] years, and then the curve rises again before
falling beyond age 32.

Standard treatment of oligomenorrhoea with oral contraceptive pill may reduce
the phase gap in absence of further complicacy in patients. Proportion relief may be
defined as proportionate lowering of the excess time gap over a normal period of 28
days when contraceptive pill medication is taken by a patient over a time span of
6/7 months. Proportion relief curve is computed in Fig. 12 by smooth.spline (spar=
.001) from data on two patients with age 21 and 26 years, with the assumption that
relief is full at age 9 years, the smallest observed menarche age; and relief is almost
nil towards the fag end of the growth curve for aged patients nearing menopause.
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Fig. 13 Growth (spline) of modeled phase gap on age under treatment

In PCOS patients, benefitting from OCP treatment to regularise cycle, there are
individuals with full relief having normal cycle after treatment. A common belief is
sooner the medical treatment starts, the better the outcome. The mean benefit from
OCP treatment for PCOS in the favorable outcome group may then be taken as full
at 9+ years, the lowest age of menarche observed in the present data.

Menopause is a natural biological process in women approaching old age. So,
benefit from OCP treatment to restore normal menstruation cycle for aged women
may be considered almost nil.

Combining Fig. 8 (the function g, say) and Fig. 12 (the function f, say), we
obtain slightly dampened modeled growth curve fog of phase gap with age for PCOS
patients under treatment with oral contraceptive pill; the modeled curve, indicating
efficacy of treatment, is shown in Fig. 13.

Proliferation rate of modeled growth curve is computed in two stages following
similar procedures to obtain Fig. 11, modeled data points are smoothed initially
by smooth.spline (spar= .00001), and then the rates are obtained by a technique
described in Dasgupta (2013) with spar= 0.00001 in SPlus; the proliferation
curve is shown. The pattern in Fig. 14 is almost similar to Fig. 11; except that for
medicated patients the unique minimum of proliferation rate is attained at the age of
26 years. The age 26 years is slightly lower than the midpoint of the range (24, 29)
years, the time period of temporary relief for patients in between with slightly lower
phase gap, as seen in the growth curve of Fig. 8.
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Fig. 14 Proliferation rate of treated phase gap: trimmed mean, wt. exp(—.01 x); spline

Proliferation rate based on composite function increases beyond the stage of 26
years and up to age 32, indicating aggravation of the problem in that time range.
Errors associated with proposed estimation from composite function are derived in
Dasgupta (2015).

The lowess regression of growth curve of phase gap on age of patients with
PCOS (Fig.7, oversmoothing the data points) leads to negative proliferation rate
(not shown in figures) for age higher than 13, implying that on an average from age
13 onward women with PCOS would have a lowering trend in phase gap, which
seems unrealistic. Thus an upward trend of phase gap, as shown in Fig. 8, seems
plausible.

3 Discrete Time Proliferation Rate of Growth
in Composite Function

In the above analysis we considered proliferation rate d log y/dt for a continuous
function y = y(¢) = fog(t) of time ¢. The proliferation rate

f'(g(1))

e0) W

d
E(r) = o logy = g
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is then a calibration i.e., a scale multiplication of g’(¢) that may be nonlinear, with
proliferation rate of f computed at g(¢). However, in many practical situations, data
may only be available at discrete time points. Thus, it is of interest to study discrete
version of proliferation rate and its relation to the continuous case (1).

Let the time spacing be & for observations taken at discrete time. A discrete
version of proliferation rate £(¢) is then &,(t) = £ ("‘%’,zt_)y 0 = [ ”1}??@{ &)
order to obtain a convergence rate of discrete proliferation, assume that for some
a € (1,2) the function y = fog satisfies the following differentiability condition.

ly(t +h)—y(t) —hy'(t)] = o(|h|%) (2)

Condition (2) is weaker than assuming second derivative of y. In the Young’s form
of Taylor’s expansion this is equivalent in assuming that remainder term in first order
expansion for y in a small neighbourhood of ¢ with radius % is o(|1]%), « € (1,2).
That is,

flg+h)—fg@) , . f'(gl)
g @)

—_—| = — — ha—l
hf(g()) Tley | = BO—EON=0(h*H ()

For « > 1, difference between discrete proliferation rate and continuous prolifera-

tion rate in (3) decreases polynomially fast with small grid size.

Sf(gt+h)—f(g(®)
hf(g(®))

Individual slope estimates from data points are smoothed by

[(g®)

e S described

spline or lowess technique to obtain estimates of £(¢) = g’(¢)
in Dasgupta (2013).

The functions f and g are usually estimated from data. Effect of error in
estimation of individual function, while estimating composite function, is studied
in Dasgupta (2015). Effect of such errors in discrete time proliferation may be
investigated. Write fog(r) = f(g(t)) = f[g(t) + €] and f = f + &, where
the errors € and § in estimating f and g, respectively, are small in large sample.
Next, suppose f is twice differentiable in a neighbourhood of g(¢). Then, following

Dasgupta (2015)

fog(t) = f(g() + (¢ +8) [ (g@)(1 + o(1)) + 8" (g(1)(1 + o(1))
= f(g®) + O +9) “4)

where o(1) terms are negligible compared to the main terms.

To a first approximation, error in estimation (fég(t) — f(g(?))) is symmetric in
€ and §, but notin f and g. The magnitude of error depends on first two derivatives
of f. The product term €§f " (g(¢)) is of lower order than the sum (¢ + §) f'(g(¢)).
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Thus from (3) and (4)

f@e+n)—f@@ ,  flg)
| -g'@)

k = & (1) = o(|h|*" ")+ O0(e+$§
WP GO) f(g(t))l 161 (1)=E(@))] = o(|h]*")+ O(e+)

&)

Equation (5) provides an order of overall error approximation in estimating the
proliferation rate.
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Declining Patterns of Average Height of Adult
Indians Between 20 and 49 Years: State Wise
Trends and Influence of Socioeconomic Factors
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Abstract In the present study, changes in the average height over ages among
women and men have been studied through third round National Family Health
Survey data. It is also aimed to study the extent of influence of the different
socioeconomic variables on such changes. The sample sizes for female and male
are 94,417 and 52,460, respectively. For this study, only adult male and female data
and the age ranges 20—49 years have been considered. During the 30 years span,
the data set has been divided into three consecutive time periods with 10 years
span for each period like (20-29), (30-39) and (40-49) years. Height has been
considered as the dependent variable. The background explanatory variables are
type of places, educational attainment, religion, ethnicity, occupational categories
and wealth index of the families. The study shows that negative changes occur in the
heights over the successive age-groups for men and women separately. The changes
are found to be negative in all the zones and most of the states in India though it
varies in its intensities. It is also an interesting feature to note that the maximum of
absolute growth occurs among the men and women in urban areas, among the richest
families, higher educated persons and professionals, while it is not so pronounced
among the manual labourers, and scheduled tribes. Is it because of the changing
lifestyles of most of the urban families and some of the rural families?
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1 Introduction

There is a considerable variation in trend in adult stature with changes in age and
this trend is generally negative with the advancement of age. The negative effect
in stature in human body becomes conspicuous in post adulthood phase, i.e., after
when one attains around 40 years of age. For some adults it may be visible even in
late thirties. There is considerable variation of it among different populations in the
world (Harvey 1974; Roche et al. 1981; Malina et al. 1982) and in India (Sidhu et al.
1975; Singh 1978; Bagga 2010, 2013). In India, this type of studies has been carried
out for adults who have already attained 60 years and the adults in their twenties
(Sharma et al. 1975). It has been found that magnitude of differences between young
adults (around 20 years) and late adults (around 70 years) is generally 7-10 cm,
though it varies among different communities widely. It may seem to be quite a
considerable difference. But Miall et al. (1967) found the decline in stature about
6—7.2 cm among the Welsh women. Among Indian population, very recently, Bagga
(2013) studied on Maratha women of 30-70 years and found that it declines up to
3.6 cm.

The decline in the stature with the advancement of age is mainly associated with
the changes in the vertebral column, i.e. mainly compression of inter-vertebral discs
and hypnosis. This decrement is related with the advancement of age. So, to study
the decadal changes, along with the total changes, may reveal features including the
intensity of decline in the stature over ages. This change in the length of vertebrae is
also associated with osteoporosis and vertebral diseases which cause degenerative
changes in vertebral column. Besides this, a few studies in India also stated that
socio-economic status has effect on the intensity of degeneration in the stature of
human irrespective of gender.

Though there have been studies on the decline in the stature of adults in India,
most of the studies, except Bagga’s study, dealt with very old data. Even Bagga’s
study consists of very small sample size and no conclusion can be drawn from such
a small sample. In this context, our study provides an opportunity to investigate
among adult Indian population through national level data. The objective of the
study is to find (1) the decadal changes of the height of women and men of 20—49
years of age and (2) the extent of influence of the different socio-economic variables
on such changes.

2 Materials and Methods

For this study, we have used the National Family Health Survey (NFHS-III) data
conducted by the International Institute for Population Sciences (IIPS), Mumbai, in
2005-2006 (ITPS 2007). IIPS collected unit level data on reproductive aged men
of age (15-54) years and women of age (15-49) years from 29 states in India.
However, to maintain parity we have taken age range of (15—49) years for both
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males and females. The sample sizes thus consist of 94,417 women and 52,460
men in the age-group 20—49 years. It may be noted that each round of NFHS is a
cross-section data. The background explanatory variables are (1) type of place—
rural and urban areas, (2) educational attainment of women grouped into four
categories—illiterate (those who can neither read nor write), primary (literate up
to class IV standard), middle (Class V to Class X standard) and high school &
above (Class XI and above), (3) religion which is classified into four categories,
namely Hindu, Muslim, Christian and Others, (4) ethnicity having four categories
such as Scheduled Castes (SC), Scheduled Tribes (ST), Other Backward categories
(OBC) and Others, (5) Occupations of the women are clubbed into five major groups
like not working; professionals, managers, technicians; engaged in service or sales;
engaged in agriculture related works and skilled, unskilled or manual labourers, and
(6) wealth index of the families. Wealth index represents the economic status of
the households. It is an indicator of the level of the wealth, which is consistent with
expenditure and income measure (Rutstein 1999). It is based on 33 household assets
and housing characteristics like type of windows, sources of drinking water, types of
toilet facility, flooring, roofing, ownership of a mattress, a pressure cooker, a chair, a
cot/bed, a table, an electric fan, a radio/transistor, television, telephone, a computer,
a car, etc. Each household was assigned a score for each asset and the scores were
summed for each household and individuals were ranked according to the score of
the household and the scores were divided into five quintile groups starting from
lower strata to higher strata like poorest, poorer, medium, richer and richest.

Since the ages of males and females span 30 years, the data set has been divided
into three consecutive time periods with 10 years span for each period taking age
ranges (20-29), (30-39) and (40—49) years. Height has been considered as the
dependent variable. To measure the decadal changes of mean height, the mean
height of youngest group (20-29 years) has been subtracted from elder groups
(30-39 and 4049 years) and also the mean height of the middle group (30-39 years)
has been subtracted from the mean height of the eldest group (4049 years), so
that the differences between the two consecutive age-groups as well as between the
two extreme groups can be compared. Besides correlation between height with age,
education and wealth index, we have carried out a regression analysis to see how
the socio-economic variables influence the height or rather changes in the height.
It was done for each decadal age-group separately for males and females. Thus six
regression equations have been found. Here height is the dependent variable and
place of residence, education, religion, ethnicity, occupation and wealth index have
been considered as independent or explanatory variables. Symbolically we can write

yi = o+ Bixii + Baxai + Baxzi + Baxai + Bsxsi + Bexei + Prx7i + . (1)

where y is the dependent variable, i.e., height and the independent variables
are x; =Place of residence, x, =Education, x3 = Religion, x4 = Caste/tribe,
x5 = Respondent’s occupation, x¢ = Wealth Index and x7 = Age in years. o is
the intercept term and the regression coefficients are By, B2, B3, B, Ps, P and B7,
corresponding to the variables x;, X2, X3, X4, X5, X6 and X.
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We have taken binary data for all explanatory variables but age. The binary
variables take only O for base and 1 for the other category. The base categories are
‘Rural’ for Place of Residence, ‘Primary educated or less’ for Education, ‘Hindus
or Muslims’ for Religion, ‘SC, ST or OBC’ for Castes, ‘Other than not working,
professionals, technicians or managers’ for Occupation and ‘Poor or middle income
persons’ for Economic level. The details of variables, sample sizes, etc. used in the
analysis are given in the Appendix. The statistical package for the social sciences
(SPSS, version 16.0) has been used for all the analysis.

3 Results

Table 1 and Fig. 1a, b give a vivid picture of the mean heights of women of ages
(20-29) years, (30-39) years and (40-49) years, along with decadal changes of the
mean heights by zones and states in India. The adult decadal growth in height is
found to be negative with a reduction of 0.12 cm from 20-29 years to 30-39 years
aged women and 0.31 cm from 30-39 years to 40—49 years, the total reduction being
0.43 cm. Small positive changes have occurred only in eight states out of 29 states
in India. As many as 21 states witnessed negative changes. The growth is negative
in all the zones. The highest total change occurs in South zone (—1.32 cm) and the
lowest total change occurs in North zone (-0.10 cm). Out of total eight states in
India, where positive changes have been observed, four states, namely Haryana,
New Delhi, Punjab and Rajasthan belong to the north zone of India. The other
positive growths are seen in Nagaland, Orissa, Uttar Pradesh and Goa. Almost same
trend is seen for both the decadal changes. In India, it is also seen that magnitude
of reduction in height due to decadal change from 30-39 to 40—49 years is more
than 20-29 to 30-39 years. Since there are six zones in India and for each zone two
changes are observed, we have altogether 12 changes for the zones. Out of these 12
changes, only 1 case shows positive growth from 20-29 years to 30-39 years in the
central zone and the growth is only 0.11 cm.

Table 2 gives almost similar picture for men so far as positive and negative trends
in the height, but here positive changes are found to be lesser in number. Also, the
amounts of changes are seen to be more than those of women. The total difference
is 1 cm, i.e., the change from 20-29 years to 40-49 years is less by 1 cm on the
average for all men taken together. When seen zone-wise, the highest difference is
—1.79 cm in west zone. The lowest difference is observed in North-east zone. Out
of 29 states, the averages in the heights increased for 6 states, namely Arunachal
Pradesh, Meghalaya, Jharkhand, Orissa, New Delhi and Punjab, and for the other 23
states the changes are either negative or remain more or less same. The magnitude
of difference of this change for men is a bit more than that of women.

Table 3 describes the total difference and decadal changes in the mean height
of women in respect of different socio-economic variables. It is seen that total
difference is negative in older aged women than in the younger aged women and
the magnitude of difference is more or less double in urban areas (—0.59 cm)
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Fig. 1 (a) State wise changes in the mean height of adult female and male between the age-groups
(20-29) years and (40-49) years in India. (b) Zone-wise changes in the mean height of adult female
and male between the age-groups (20-29) years and (40-49) years in India

than in rural areas (-0.31 cm). In case of relationship with the status of education,
illiteracy and primary educated women show positive increments at younger ages
and negative growth in older age. The highest educated women have substantially
higher heights than other women and do not show much negative trend. Among
the Christian and other ethnic groups of women, positive changes are observed,
while among Hindus and Muslims, always negative changes occur for all the age-
groups. In case of ethnicity, highest negative changes have been found among
other backward classes followed by scheduled castes and the lowest differenceis
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observed among scheduled tribes. Occupation-wise the highest total difference
is found among service holders (-0.90 cm) and it is followed by professionals
(—0.81 cm) while lower magnitudes of differences are observed among non-working
women (—0.28 cm) and women engaged in agriculture (-0.24 cm) as well as for
skilled/unskilled women labourers (—0.34 cm).The trend is same in both the decades
but magnitude is higher in later period than younger ages. Regarding wealth Index,
magnitude of negative changes is the highest among the richest women and the
lowest among the poorest women.

Table 4 also describes the relationship between decadal changes in
stature with different socio-economic variables among Indian men of aged
(20-49 years).Secular total change is negative irrespective of all socio-economic
variables. High magnitude of total negative changes has been observed in case
of urban areas, Hindu religious group, not working and professional occupation
holders and richest wealth index families. The same trend is more or less observed
in case of decadal changes also.

Table 5 and Fig. 2 show the correlation between adult height with age, wealth
index and educational level of men and women. The result shows that height is
significantly positively correlated with these three socio-economic variables either
negatively or positively. It is also seen that adult height is significantly negatively
correlated with the age. Thus it proves that there is a negative trend in the heights
with the advancement of adult age.

Table 6 contains the decadal age-group wise results of the linear regression of
height with different socio-economic variables separately for female and male data
in India. The six fitted regression equations are as follows:

Female height (40—49 years)
Y = 154.6 — 0.668 x; + 0.615 X, + 0.758 x3 + 0.983 x4 — 0.122 x5 + 1.309 x4 — 0.088x5.

(0.000) (0.000)  (0.000)  (0.000)  (0.000)  (0.188)  (0.000)  (0.000)
(2)

Male height (4049 years)
Y =165.0—0.518 x; + 1.155 x, — 0.462 x3 + 1.451 x4 + 0.329 x5 + 1.784 x5 — 0.063 x5.

(0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.072)  (0.000)  (0.001)
(3)

Female height (30-39 years)

V= 151.6 —0.445 x; + 0.719 x, + 0.178 x3 + 0.763 x4 — 0.055 x5 + 1.441 x¢ — 0.002x;.
(0.000)  (0.000)  (0.000)  (0.065)  (0.000)  (0.440)  (0.000)  (0.096)

“
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Table 5 Correlation between adult heights with age, wealth index and educa-
tional level of men and women in India

Variables
Height | Highest educational level | Wealth index Age
Men 0.198%%* (52,442) 0.223** (52,460) | —0.066** (52,460)
Women | 0.158%** (94,408) 0.183%* (94,417) | —0.030** (94,417)

**The correlation is significant at 0.01 level (figures in parentheses show the
number of individuals for which data are available for both the variables of the
correlation coefficient)
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Fig. 2 Trend in the mean height of men and women over decadal age-groups

Male height (30-39 years)

YV =163.7—0.239 x; + 1.229 x, — 0.959 x3 + 1.302 x4 + 0.260 x5 + 1.775 x¢ — 0.031 x7.
(0.000)  (0.038)  (0.000)  (0.000) (0.000) (0.112)  (0.000)  (0.081)

&)
Female height (20-29 years)

¥ =150.7—0.514 x; 4+ 1.099 x, + 0.101 x3 4 0.846 x4 — 0.065 x5 + 1.623 x¢ — 0.002x;.
(0.000)  (0.000)  (0.000) (0.237)  (0.000)  (0.330)  (0.000)  (0.860)

(6)
Male height (20-29 years)
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(Figures in parentheses represent level of significance)
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Table 6 Linear regression of height with different socio-economic variables for each
decadal group of ages among adult females and males in India

Dependent variables

Female height Male height
Decadal age-group | Explanatory variables Coeff. | Sig* |Coeff. |Sig*

40-49 years Intercept 154.6 | 0.000 165.0 | 0.000
Place of residence —0.668 | 0.000 | —0.518 |0.000
Education 0.615 | 0.000 1.155 |0.000
Religion 0.758 | 0.000 | —0.462 |0.006
Caste/tribe 0.983 | 0.000 1.451 | 0.000
Respondent’s occupation | —0.122 | 0.188 0.329 | 0.072
Wealth Index 1.309 | 0.000 1.784 | 0.000
Age —0.088 | 0.000 |—0.063 |0.001
30-39 years Intercept 151.6 | 0.000 163.7 | 0.000
Place of residence —0.445 | 0.000 | —0.239 |0.038
Education 0.719 |0.000 1.229 | 0.000
Religion 0.178 | 0.065 | —0.959 |0.000
Caste/tribe 0.763 | 0.000 1.302 |0.000
Respondent’s occupation | —0.055 | 0.440 0.260 |0.112
Wealth index 1.441 | 0.000 1.775 | 0.000
Age —0.019 |.096 |—0.031 |0.081
20-29 years Intercept 150.7 | 0.000 163.4 | 0.000
Place of residence —0.514 | 0.000 | —0.275 |0.011
Education 1.099 | 0.000 1.635 |0.000
Religion 0.101 |0.237 | —1.230 |0.000
Caste/tribe 0.846 | 0.000 1.366 |0.000
Respondent’s occupation 0.065 |0.330 0.971 | 0.000
Wealth index 1.623 | 0.000 1.984 | 0.000
Age —0.002 | 0.860 | —0.039 |0.021

*The p-values are shown in this column

The results of the linear regressions can easily be understood if the values of
the regressors are known. When we look at the regression results we see that some
relations give different or opposite results than those obtained from taking the simple
group means. The place of residence is consistently negatively related with height
in the regression equation and the coefficient is significant in all the cases. Observe
that we have taken the value 1 for urban and O for rural and the negative coefficient
of place of residence clearly indicates that rural adults have more height if the effect
of other variables is eliminated. The mean values of height in the rural and urban
cases give the opposite results. The mean height of urban adults is always more
than the mean height of rural adults for each combination of age-group and gender.
Other regression coefficients, except religion, more or less give expected results.
Age is seen to have a negative relation with height both for the regressions and
for group averages. Wealthier or more educated persons have higher heights on the
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average. Caste is also positively related with height. This means that General Caste
Hindus, Christians, etc. have higher heights than SC, ST and OBC people. However,
occupation is not significantly related with height for most cases. Religion needs
special mention here, because it is positively related with height for females, but
negatively related with height for males. This result conforms to the result of the
corresponding group means.

4 Discussion

The paper investigates the changes in height vis-a-vis changes in age-groups of adult
men and women in India taking three age-groups, namely (20-29), (30-39) and
(40-49) years. The reduction in the average height is 0.12 cm from 20-29 years to
30-39 years aged women and 0.31 cm from 30-39 years to 40-49 years, the total
reduction being 0.43 cm. So the study shows negative changes in the heights over
the successive age-groups. The decadal changes are found to be negative in all the
zones of India though it varies zone-wise greatly. Among the women, south zone
shows the highest (1.32 cm) and north zone shows the lowest (0.10 cm) change.
In most of the states, negative growth occurs but in a few states, positive growth
occurs for both the gender groups. In case of men, the highest (1.79 cm) and the
lowest (0.28 cm) changes are observed in west and north-east zones, respectively.
When male and female heights are compared, the magnitude in the total change is
found to be more in males more than in females. The changes in the heights have
also been seen among the different socio-economic groups. It is seen in almost all
cases that negative changes occur regardless whether it is found for men and women
separately or found for all adults in India. It is also an interesting feature that in
urban areas, among the richest and richer families, maximum negative increments
occur, while among the manual labourers, and scheduled tribes, low magnitude of
negative increment occurs. But it is firmly confirmed that height reduces with the
advancement of age. Thus it propagates the idea that in human body, post adulthood
changes do occur in height. It is supported by many findings (Miall et al. 1967;
Roche et al. 1981; Malina et al. 1982; Kirchengast 1994). The most supporting
relevant work staking Indian data are (Bagga 1998, 2013; Bagga and Sakurkar
2013).This type of study was mainly done in India or around the world during
1980s and 1990s and in that period, the difference was 5-7 cm (approximately)
from younger to older generation, but in our study, the difference is found to be only
0.43 cm. It may be due to the fact that we have taken a smaller span of total years
(20-49 years) compared to the time span (20-70 years) taken by them. But, even
then, the change in height found by us is too less compared to the changes found
by them. It is true that the degeneration starts after 40 years (Roche et al. 1981;
Noppa et al. 1980; Sussame 1977; Cline et al. 1989). To understand the changes in
the height over age, the span of age must be from 30 to 70 or 80 years. But here, the
terminal point of age is 49 years only. As the data is from secondary sources, the
male data is available up to 54 years and female data is available up to 49 years. So
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we have taken all data from 20 years to 49 years to maintain the parity between male
and female data. It needs further investigations to see when the degeneration starts
and how much degeneration occurs. The effect of the socio-economic variables also
needs to be further explored. Is it true that more changing lifestyle in a broad sense
which includes changing food habits also result into more degeneration of height?
We have in fact seen that more negative changes occur among the urban people, and
richer and richest families as age increases.

Appendix

Data Type Unit level data as obtained from the third National Family Health
Survey (NFHS - III) conducted by the International Institute for Population
Sciences (IIPS), Mumbai, in 2005-2006.

Sample Size The sample sizes consist of 94,417 women and 52,460 men in the age-
group 2049 years. IIPS collected unit level data on reproductive aged men of age
(15-54) years and women of age (15-49) years from 29 states in India. However,
to maintain parity we have taken age range of (15—49) years for both males and
females

Time span for total and consecutive period for Decadal changes: 2049 years
with three consecutive time span like (20-29), (30-39) and (40—49) years.

The Variables Considered in the Paper All the variables, except height, are
grouped into categories. (For regression analysis the variables are treated in a
different manner.)

Height: The height is measured in centimetres.

Age: (1) 20-29 years, (2) 30-39 years and (3) 40—49 years.

Place of residence: (1) Rural and (2) Urban areas.

Educational level: (1) Illiterate (those who can neither read nor write), (2) Primary
level (literate up to class IV standard), (3) Middle level (Class V to class X
standard) and (iv) High school & above (class XI and above).

Religion: (1) Hindu (2) Muslim (3) Christian and (4) Others,

Ethnicity: (1) Scheduled Castes (SC) (2) Scheduled Tribes (ST), (3) Other Back-
ward Categories (OBC) and (4) Others.

Occupations: (1) Not working; (2) Professionals, managers and technicians,
(3) Service or sales (4) Agriculture related works and (5) Skilled, unskilled
or manual labourers, and

Wealth index of the families: (1) Poorest (2) poorer (3) Middle (4) Higher and
(5) Highest. The details of how wealth index is classified into these categories
are given in the main text.
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The Variables Taken in the Linear Regression Analysis

The dependent variable is Height. All the independent variables, except age, are
taken as binary variables where ‘0’ is the base category and the rest of the categories
are grouped and given the value ‘1°. Age is taken in years. We shall mention only
the base categories below:

Place of residence: Rural;

Educational level: Primary level or less, i.e., Illiterate or literate up to class IV
standard;

Religion: Hindu or Muslim;

Ethnicity: SC, ST or OBC;

Occupations: ‘Service or sales’, ‘Agriculture related works or Skilled’, ‘Unskilled
or manual laborers’, i.e., Other than not working, professionals, technicians or
managers; and

Wealth index of the families: Poorest, poorer or Middle income persons.

Age: Age is taken in years. It should be mentioned here that the regression analyses
were performed separately for each group of (1) 20-29 years, (2) 30-39 years and
(3) 4049 years. Thus for the group 20-29 years, say, the age as an explanatory
variable takes values from 20 to 29 years.

References

Bagga A (1998) Normality of ageing - a cross cultural perspective. J Hum Ecol 9:35-46

Bagga A (2010) Anthropological studies in the new millennium: biological anthropological
research in gerontology. Indian Anthropol 40:1-24

Bagga A (2013) Age changes in some linear measurements and secular trend in height in adult
Indian women. Acta Biol Szeged 57:51-58

Bagga A, Sakurkar A (2013) Women ageing and mental health. Mittal Publications, New Delhi

Cline MG, Meredith KE, Boyer JT, Burrows B (1989) Decline of height with age in adults in a
general population sample: estimating maximum height and distinguishing birth cohort effects
from actual loss of stature with aging. Hum Biol 61: 415425

Harvey RG (1974) An anthropometric survey of growth and physique of the populations of
KarkarLisland and LufaSubdistricts, NewBuinee. Phil Trns R Soc Lord B 268:279-292

International Institute for Population Sciences (IIPS) and ORC Macro (2007) National Family
Health Survey (NFHS-3), 2005-2006, vol 1. IIPS, Mumbai

Kirchengast S (1994) Body dimensions and thyroid hormone levels in pre-menopausal and post-
menopausal women from Austria. Am J Phys Anthropol 94:487-497

Malina RH, Buschang PH, Aronson WL, Selby HA (1982) Ageing in selected anthropometric
dimensions in a rural Zapotec speaking community in the valley of Oaxaco Mexico. Soc Sci
Med 16:217-222

Noppa H, Anderson M, Bengtsson C, Ake B, Isaksson B (1980) Longitudinal studies of
anthropometric data and body composition, The population study of women in Goteberg,
Sweden. Am J clin nutr 33:155-162

Miall WE, Ascheroft MT, Lovel HG, Moore F (1967) A longitudinal study of decline adult height
with age in two welsh communities. Hum Biol 39:445-454

Roche AF, Garn SM, Reynold EL, Robinew M, Sontag LW (1981) The first seriatim study of
human growth and middle ageing. Am J Phys Anthropol 54:23-24



170 S. Bharati et al.

Rutstein S (1999) Wealth versus expenditure: comparison between the DHS wealth index and
household expenditures in your departments of Guatemala. ORC Macro, Calverton

Sharma A, Sapra P, Saran AB (1975) Effects of age-changes in some segmental measurements in
Mundas/Oraons of Chotanagpur. Ind J Phys Anthropol Hum Genet 1:9-16

Sidhu LS, Sodhi NS, Bhatnagar DP (1975) Anthropometric changes from adulthood to old age.
Ind J Phys Anthropol Hum Genet 1:119-127

Singh AP (1978) Effects of age changes in some somatic measurements in the adult Bhoska males
of Nainital. Ind J Phys Anthropol 9:311-324

Susanne CF, Orbach HL (1977) Individual age changes of the morphological characteristics. J
Hum Evol 6:181-189



Growth Model of Some Vernacular Word
Usage During Political Transition

Ratan Dasgupta

Abstract We consider frequencies of some vernacular and other words having
relevance in democratic elections. In periods of intense political activities, usages
of certain words are frequent. Relative cumulative frequencies of some words
and inflections appearing in a vernacular daily in West Bengal are modeled by a
modification of Gompertz curve. Estimates of the relevant parameters are obtained
from observed data over the period 2001-2010, covering several elections at state
and the national level in India. Proliferation rates of the words indicate intensity
of use and possibility of further appearance in subsequent news reporting, having
impact on public opinion and poll results. The rates are calculated from observed
data and compared with theoretical proliferation rates. The proposed growth model
explains the data satisfactorily. Discrete versions of Gompertz and related models
are considered in limiting form of the model parameters. Under certain assumptions
Gompertz growth model is derived.

Keywords Relative cumulative frequency ¢ Gompertz curve * Vernacular daily
» Lowess regression ¢ Spline regression ¢ Proliferation rate

MS subject classification: Primary: 62G05, secondary: 62P25

1 Introduction

Words used in newspapers have applications e.g., in vocabulary learning and
analysis of socio-economic-political scenarios. Frequencies of words used in spe-
cialised vocabularies are of interest in psycholinguistic research. Subtitle-based
word frequency list is studied by Cuetos et al. (2011).

Transitions of political scenarios occurred in last several elections in both state
and national levels in India. At that time some specific vernacular words together
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with inflections were in frequent use in West Bengal and Bengali speaking areas.
Appearances of some of these words are transitory in nature. With sudden and sharp
rise in frequency of use mainly for a limited period, these reflect mass opinion with
an impact on election results. We model frequencies of some such words along with
other associated words of common use in election scenario, appearing during the
period 2001-2010, in a vernacular daily of high circulation published from West
Bengal.

Gompertz curve may sometimes be more appropriate model for phenomenon
of sharp rise compared to other models like logistic. The model is generally used
in bacterial growth, tumour-immune system, etc. See, e.g., d’Onofrio (2005). In
treatment of malignant tumours following Gompertzian growth, O’Rourke et al.
(2009) observed that nature of repopulation resulted in a poorer prognosis for the
patient due to higher potential to repopulate the tumour. Berger (1981) noted that
Gompertz model has an edge over its competitors in modeling plant diseases.

However, SSgompertz package in software R grossly overestimated the relative
cumulative word frequencies in all the cases under present study, prompting for a
modification of the Gompertz growth curve to be fitted only in a bounded time zone.
Relative cumulative frequencies of each word over time are computed with respect
to the total number (n = 142985088) of all words appearing in that particular daily
newspaper during the years 2001-2010. Relative cumulative frequencies of words
in log (-log) scale are shown in Fig. la—c.

We fit a modification of Gompertz growth curve to relative cumulative frequen-
cies y(¢) of words over a segment of time. Specifically, we fit the Gompertz curve
y = y(t) = ae D g > 0,b > 0,c > 0; t € [1,10]. We estimate
the parameters by the method of least squares to the transformed growth data
y — y/a, and approximate the asymptote of the curve by the largest value observed
in data. The fit seems satisfactory in all the cases. Linearisation being achieved in
log(—log y) scale for transformed y € [0, 1], we do not attempt to fit other lower
rate growth models to the observed data. See Fig. 2a—c.

Proliferation rate of the words used over time indicates how aggressively a
word is used and how likely it is to appear in subsequent news reporting. This
has application in impact analysis of public opinion affecting election results.
Proliferation rates are calculated from observed data and compared with the model.

For growth observations recorded at discrete time, discrete equivalent of prolifer-
ation rates are relevant, e.g., see Novile et al. (1982). We consider discrete versions
of growth curves relevant to Gompertz model while studying models in terms of
limiting behaviour of parameters. Gompertz growth curve is derived from some
basic considerations.

The paper is arranged as follows. In Sect.2 we observe some features of data
on word frequencies and search for a model. In Sect. 3 we discuss Gompertz curve
fitting in a bounded time zone. Behaviour of proliferation rates in related models
along with discrete versions of these is also discussed in the section. Gompertz
growth curve is derived in Sect. 4.



Growth Model of Some Vernacular Word Usage During Political Transition 173
2 Some Features of Data and Search for a Model

As already mentioned, data were collected on 12 words together with inflections
used in a widely circulated daily vernacular newspaper of West Bengal, frequencies
are obtained from electronic version of the newspaper.

The words are Manmohan (name of ex. Prime Minister of India), Modi (present
PM of India), Congress (name of a political party), Trinamul (grass-root, name of a
political party), Harmad (goons, antisocial elements, armed cadres, etc.), BJP (name
of a political party), Sonia (Congress leader), CPM (name of a political party),
Paribartan (change), Singur (name of a place, where land acquisition from farmers
for industry led to agitation), Andolan (agitation), Ma-Mati-Manush (mother-land-
people; a term coined during political campaigns).

Relative cumulative frequencies of each word over time are computed with
respect to the total number of all words appearing in that daily, during the years
2001-2010. Each word with successive appearances over time may have cumulative
effect. Division by the total number of words (n = 142985088) in that period
helps to analyse the frequencies on equal footing as bounded variables. Relative
cumulative frequency of 12 words over 10 years is given in Table 1. First 4 years’
entries of the word Ma-Mati-Manush are zero. Initially not much in use, the word
made a sharp increase in frequency during 2008—2009 and then remained steady;
see the uppermost curve in Fig. 1a. All the curves of relative cumulative frequencies
in Fig. 1a are plotted in log(—log) scale to check appropriateness for a Gompertz
growth, the curves lie within the band of Ma-Mati-Manush and that for Congress,
one of the oldest political parties. Linear trend in data points is quite prominent for
some words, e.g., CPM, and Trinamul. Presence of approximate linearity indicates
sharp growth, as in a Gompertz model.

During the year 2005-2006, no change in cumulative frequency is seen for the
word Harmad. This word and the word Ma-Mati-Manush seem transient in nature.

3 Fitting the Model and Some Theoretical Issues

Since the rise of cumulative frequencies are steep, Gompertz growth curve is a
candidate model. Discrete versions of the growth curve become relevant when
observations are taken in discrete time. Proliferation rates and its analogue in
discrete case for these models are of interest.

We assume that cumulative frequencies of words do not blow up in the limit
t — oo, for which no normalisation is possible. For the time being, we assume that
the rise of cumulative frequencies is not that high so that we are able to deal with
bounded quantilies like relative cumulative frequencies y(¢).
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3.1 Fitting the Model

In Fig. 1a behaviour of relative cumulative frequencies y(¢) in a transformed scale
is explained. This indicates approximate linear relationship of the transformed
variables with time, as expected in a Gompertz curve; the figure becomes clumsy as
cluster of lines appear towards bottom of the graph. To understand the pattern better,
we plot curves for six words in Fig. 1b, and plot the remaining six curves in Fig. Ic;
the pictures of linear relationship become clearer.

The word Ma-Mati-Manush made its appearance in the year 2005. As such there
are six points only in the corresponding curve with equal values in last two years,
indicating transient appearance of the word.

Usual fit for Gompertz curve y(¢) = ae~bee(=) 4 > 0.bh > 0,c > 0 over
the entire range ¢ > 0 do not perform well for the word Paribartan; the package
SSgompertz in R provides the following values of parameters a = 0.1002742,b =
0.00001875003, ¢ = 0.00000001152055. The fit is bad as seen from Fig. 2d, the
model overestimates the observed values. The same holds true for other words as

'/)

log(-log(relative cumulative frequency))
b

Manmohan
Modi
Congress
Trinamul
Harmad
BJP

Sonia

CPM
Paribartan
Singur
Andolon
MaMatiManush

I I I I I
2 4 6 8 10

year

1okthe

#

Fig. 1 (a) Gompertz model for 12 words appearing in a vernacular daily. (b, ¢) Gompertz model
for six words appearing in a vernacular daily
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Fig. 2 (a) Gompertz model for 12 words: asymptote estimated as max. (b, ¢) Gompertz model
for six words: asymptote estimated as max. (d) Gompertz and modified model for the word
“Paribartan”
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well. The package provides a high value of the asymptote a = 0.1002742, whereas
the estimate of asymptote taken as the highest observed value from Table 1 for the
word Paribartan is a = 0.0000109802.

An alternative method is to explore fitting the model on observed time range
with estimate of asymptote taken as the highest observed value from Table 1 for the
concerned word. The parameter a(> 0) in Gompertz model represents the limiting
value of the increasing curve. One of the reasons SSgompertz fails to model the data
on time range ¢ > 0 with overestimated model values could be that the limit a is
approached for large ¢, and transient nature of some of the words may cause this
assumption to remain unfulfilled.

To overcome the problem, we estimate the asymptote a by the observed highest
value i.e., the value at the largest time t = 10 and then estimate the remaining
two parameters of the (modified) model from least squared linear regression of
log(—log(y/a)) values on time ¢. The intercept and slope of regression line provide
estimates for b and c.

The red curve in Fig. 2d represents the modified Gompertz model fitted to the
word Paribartan. The model fit seems good to the observed data represented by
black curve. The red curve and black curve are almost indistinguishable, compared
to the distant blue curve derived from SSgompertz at the bottom of Fig. 2d.

Figures 3,4,5,6,7,8,9,10, 11, 12, 13, and 14 refer to modified Gompertz model
and show least squared regression fit for 12 words. The estimated values of the
parameters of the fitted model y(¢) = ae"**=) q > 0,b > 0,c > 0;¢ € [1,10]

log(~log(relative cumulative frequency/max))

year

Fig. 3 Gompertz fit for relative cumulative frequency of the word “Manmohan”
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log(~log(relative cumulative frequency/max))

year

Fig. 4 Gompertz fit for relative cumulative frequency of the word “Modi”

log(-log(relative cumulative frequency/max))

-2
1

year

Fig. 5 Gompertz fit for relative cumulative frequency of the word “Congress”
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Fig. 6 Gompertz fit for relative cumulative frequency of the word “Trinamul”
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Fig. 7 Gompertz fit for relative cumulative frequency of the word “Harmad”
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Fig. 9 Gompertz fit for relative cumulative frequency of the word “Sonia”
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Fig. 10 Gompertz fit for relative cumulative frequency of the word “CPM”
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Fig. 11 Gompertz fit for relative cumulative frequency of the word “Paribartan”
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Fig. 12 Gompertz fit for relative cumulative frequency of the word “Singur”
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Fig. 13 Gompertz fit for relative cumulative frequency of the word “Andolon”
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Fig. 14 Gompertz fit for relative cumulative frequency of the word “MaMatiManush”

are given in Table 2. The least squared fit is remarkably good in Figs. 3, 4, 5, and
6. The fit is moderate in Fig. 7 that refers to the word Harmad, a word of transient
nature. Least squared fit is remarkably good in Figs. 8 and 9. For the word CPM the
fit is good as seen in Fig. 10, although there is a tendency of sharp rise in frequency
towards tail. The same can be said about the word Singur, having a sharp increase
of frequency towards tail as shown in Fig. 12. For the word Paribartan, the least
squared fit shown in Fig. 11 is very good.

The coefficient of determination r? given in the last row of Table 2 is high for all
the words, indicating that the modified Gompertz model fits the data well.

Observed values of relative cumulative frequency are given in Table 1 for 12
words, and Table 3 provides relative cumulative frequency of these words over
10 years under fitted Gompertz model. The values obtained from model provide
a glimpse of political atmosphere prevailing at that period and may be used in
prediction purposes.

We also consider the problem of estimating the proliferation rate of some of
the words. To this end, for the word Manmohan, observed values of y(¢) from
Table 1 are lowess smoothed with parameter f = 1/5. Then with exponentially
decaying normalised weights, ten crude individual slope estimates at a time point
are obtained and divided by y value at that time point; and the resultant values are
ordered from lowest to largest. Consider these as point estimates on proliferation at
a time-point. The median of these ten values (trimmed mean of 5-th and 6-th order
statistics) for each time point are then smoothed by SPlus package smooth.spline
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g. 15 Proliferation rate of “Manmohan” with trimmed mean, wt. e (—.01 x); spline
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with parameter spar = 0.0001. The resultant proliferation curve thus estimated for
the word Manmohan is shown in Fig. 15. See Dasgupta (2013) for details of the
adopted technique.

In a similar manner proliferation rates of the words Paribartan, Harmad and
Trinamul are computed, these are shown in Figs. 16, 17 and 18, respectively. The
transitory nature of the word Harmad is reflected in haphazard behaviour of the
curve shown in Fig. 17. The curve may be rectified if the modeled values of y(¢)
for the word Harmad are considered from Table 3, for computing proliferation.
The resultant curve from modeled values is obtained in Fig. 19, following a similar
procedure described above for observed data sets.

Figures 16 and 18 of proliferation rates computed from data for the words
Paribartan and Trinamul, respectively, mimic the theoretical proliferation rate of
a Gompertz model. The modeled proliferation rate the word Ma-Mati-Manush are
computed from reconstructed y values given in the last column of Table 3. The
smooth curve is shown in Fig. 20.

Instead of considering model fitting in a finite range, unrestricted ¢ € (0, co)
may be considered via the above proposed method. The parameter a is then
underestimated. In Fig. 2d the curve corresponding to fitted model lies above that
of data towards the end, indicating that the theoretical values by Gompertz model
before transformation are smaller than the data points for large f. The Gompertz
model on unrestricted time zone provides a bad fit (see the blue curve, and the
distant black curve corresponding to data), in contrast to a limited range Gompertz
fit, which seems appropriate for observed data.
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Fig. 16 Proliferation rate of “Paribartan” with trimmed mean, wt. e”(—.01 x); spline

Proliferation rate of the word 'Harmad'’/ year
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Fig. 17 Proliferation rate of “Harmad” with trimmed mean, wt. e”(—.01 x); spline
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Fig. 18 Proliferation rate of “Trinamul” with trimmed mean, wt. €”(—.01 x); spline
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Fig. 19 Proliferation rate of modeled word “Harmad”, ref. Fig. 17
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g. 20 Proliferation rate of modeled “MaMatiManush”

3.2 Some Discrete and Continuous Models

Proliferation rate of Gompertz curve may be considered as a limit of proliferation
rate in logistic model. These distributions along with discrete versions of these are
interconnected by model parameters. Gompertz and other models in discrete time
are studied by difference equations on growth.

3.2.1 Gompertz Curve, Discrete Version and Other Related
Growth Models

Proliferation rate ¢ log(a/y(t)) for Gompertz curve is relatively slow in decay than
that of generalised logistic function having proliferation rate cv[l — {%}1/ Y1.
The former is logarithmically decaying with growth y(¢), whereas the latter is
polynomially decaying.

An exponentially decaying proliferation rate may reduce to polynomial decay
in limiting form of the model parameters ¢ > 0,c¢ > 0,8 > 0,v > 0, see, e.g.,
Dasgupta (2013).

v t
cvB[l — /Y BB 5 cv[l — {y( )}l/vL B — oo,
a

— clog(a/y(t)), v—>o00,t >0 (1)
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One may then consider discrete version Ay(¢)/{y(¢)At} of the three proliferation
rates given in (1) for continuous curves, which gives rise to the discrete growth
curves for t € N = {1,2,3,...} satisfying the following similar difference
equations in (2).

yt+1)

—1=cvB[l - e{(y(t)/u)‘/”—l}/ﬂ] — cv[l — {y( )}l/v] B — oo,
y(1)

— clog(a/y(t)), v—>o00 (2)

That is, fort € Ny = {0,1,2,3,...}

Y4 1) = [1 4 cvp{l = OO0y (1) 3)
v+ D =0+ evtt = A0 4
y(@+1)=[14clog(a/y))]y(t) %)

For growth observations recorded at discrete time, the above family of models (3)-
(5) with some assigned initial value for y(0) may be appropriate. This family
covers a broad spectrum of discrete proliferation rates, starting from exponential
to logarithmic order of decay, with no “gap” in between, as the next class in the
series (3)—(5) is a limit of the former.

4 Derivation of Gompertz Model

Gompertz model may be derived from basic considerations on rate behaviour.
Assume that the growth y = y(¢) has a limiting value a and the proliferation rate,
being independent of unit of measurements, is a decreasing function of y* = % €
[0, 1], the ratio between growth at ¢ with optimal growth. In other words, for an
increasing function f, let

—1@—f()—ﬂ)—f a-y

fa—d)d ==

=wo +wid + wad?> +w3d> + --- (6)

€ [0,1]

by Taylor’s series expansion. Here d = d(y) represents relative difference between
optimal growth a with present growth. Note that d — 0 < y — a, with
proliferation rate %% — 0, as time ¢ — oo; and therefore wy = 0.

Let all the coordinates in w = (wj, wy, w3, ...) be nonzero, implying that the

proliferation cannot be expressed in terms of a polynomial of finite degree.
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Selecting a general harmonic sequence of monotonic constants w;, = —c/1,
i =1,2,3,...,c > 01in (6), one has Gompertz model %% = clog(%).

The series convergences as —log(l — x) = Y o7 * x € [-1,1). For x =

n=1 7
1, the series diverges and so does the proliferation rate of Gompertz curve for
y—>0,d—1.

Acknowledgements Thanks are due to Dr. Utpal Garain and Sharod Roy Choudhury for some
interesting discussions and providing data on word frequencies.
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Some Further Results on Nonuniform Rates
of Convergence to Normality in Finite
Population with Applications

Ratan Dasgupta

Abstract Rates of convergence in CLT are studied while sampling from a finite
population under suitable moment assumptions on super population. We assume that
all the moments for variate values exist in super population, having specific types
of moment bound; but variate values are not necessarily bounded. Consequently
probabilities of deviations, nonuniform L, version of the Berry—Esseen theorem
and moment type convergences are proved for standardised sample sum from
finite population. In cross-sectional growth data, for each value of time ¢, the
growth observations y; = y;(#) may be considered as sample arising from a finite
population. Average of observations falling in a small window of time may then be
considered as an estimate of growth to be assigned at the average of time points
in that interval. Convergence rates in CLT for sample mean in a finite population
are compared with optimal rates in iid set-up, in order to assess performance of
growth estimates. Growth data of a bulb crop onion is analysed. Derivative and
proliferation rate of growth curve of the bulb crop are estimated to find appropriate
time for harvesting the crop.

Keywords Nonuniform L, version of the Berry—Esseen theorem ¢ Probabilities
of deviations * Smoothing spline * Bulb crop ¢ Entire function

MS subject classification: Primary: 60F99, secondary: 62P10

1 Introduction and Some Preliminaries

We consider a finite population of N units. Suppose n units are selected by
simple random sampling without replacement from this population. In the classical
approach with non-random norming, we would like to study the limiting behaviour
of the sum of variate values in selected sample as the sample size n increases.
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The quantities n and N may increase independently, » < N. A standard assump-
tion usually made is that in the limit n/N — A € (0, 1). From the convergence
results on CLT for independent random variables X,; in a triangular array under
the condition inf,-; n ! Z?=1 V(X,i) > 0, e.g., see Dasgupta (1989); it is seen
that the above assumption on n/N may be relaxed to obtain convergence rates in
finite population. The essential requirement turns out to be inf, n~'V(n*) > 0, for
computing the normal approximation zone of tail probability in terms of n, where
n* is the Hjek’s projection of centred sample sum from a finite population; see also
(2.18) of Dasgupta (1994).

The asymptotic normality of the standardised sample sum was proved by Erdos
and Rényi (1959) and Hijek (1960). The uniform Berry—Esseen type bounds are
obtained by Bikelis (1969) and Hoglund (1978). Bloznelis and Gotze (2000) studied
Edgeworth expansion for finite-population U-statistics. Dasgupta (1994) studied the
nonuniform rates of convergence to normality under the assumption of existence
of moments of order >2 of variate values under a super population model and
obtained moderate deviation and allied results on moment convergence, L, version
of Berry—Esseen theorem. Robinson (1977) obtained Chernoff type large deviation
results, assumptions made therein were relaxed by Hu et al. (2007) in a set-up where
the variables are self-normalised to obtain Cramer type large deviation results. The
approximation zone in terms of 0 < x < (1/A)wyo/ maxy |ay — |, computed
therein is in a different direction and cannot be readily compared with best normal
approximation zone o(n'/®) for tail probability available for iid set-up in the general
case under classical norming, see, e.g., Dasgupta (1989). Assumptions of Hu et al.
(2007) are different from moment bounds in the super population model used in the
present paper for comparison with standard moment assumptions usually made in
the iid set-up.

In the present paper we develop large deviation results in traditional set-up
extending the earlier results of Dasgupta (1994) on moderate deviation to higher
order deviations. One of the goals is to show that it is possible to obtain best possible
normal approximation zone as that for iid r.v’s, in the case of finite population
sampling as well, in a comparable set-up. We use the same notations of Dasgupta
(1994).

A moment bound of Dasgupta (1993) for general stochastic processes that
includes martingales as a special case is required to estimate remainder in Hajek’s
lemma. Slightly modified version of the result on moment bound is given below for
completeness.

Theorem A. Let {X;,i > 1} be a stochastic process with E[sgn(S;—1)X;| |S;—1]]
<0, EQ/_, £X:)* < nB3,, where S; = Y\, X;, yon = E|X,|", B}, =
maxi<;<p Yv,j. If the Lh.s. of (1) is finite, then for v > 2

E|S,|" < c,n"/*B*,  where ¢, = [2(v — 1)8]"/? (1)

v’

and for largen, § ~ (1 + 5.).
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An extra term 2 in ¢, above appears due to the fact that expectation of
maximum of the terms in (2.2) of Dasgupta (1993) is bounded above by sum of the
expectations in (2.3) therein, leading to an extra factor 2; i.e., the correct expression
is Emax(|S, [V 72 X2, |S¥"2X2) < E(|Su|"2X2+S|"~2X?2). This modification
does not affect the results in Dasgupta (1994), as L therein is a generic positive
constant.

Let y represent a random variable taking the values y, y»,- - , yn ; the attributes
of the N units of the finite population A with equal probabilities /N and ¥ =
N='S¥ 'y, be the population mean.

Although in a finite population of N elements all the characteristics are finite
valued, it may not remain so with increase in N, the size of the population from
which the sample is drawn. Consequently, some regularity conditions are assumed
on the super population from which the present population A of N elements is
considered to be a subset. In a super population model we shall assume that

N
sup Eg(y —Y) = sup Exg(y = Y) =supN™' ) g(yi—Y) <oo (2)
N>1 N>1 N=1

i=1

where g(x) is an even, nondecreasing function on [0,00). The case of finite
moments g(x) = |x|>*€u(x),c > 2, and u(x) having growth less than any power
of |x|, was considered in Dasgupta (1994). Here we consider a higher spectrum of
g that ensures existence of all the moments of j = y — Y.

Let

E=Y yi 3)

i€a,

be the sum of attributes in a simple random sample a, of size n. Hdjek (1960)
explored the fact that Poisson sampling may be interpreted as simple random
sampling of size K, where K is a binomial (N,n/N) variable, to split n =
(E—E&) =n*+(m—n*)intoamainpartn* =Y '_ &, & = (yi —Y)(ak 2 i)
consisting sum of iid random variables, plus a negligible remainder (n — n™*).

A standardised version of § =}, y; may then be written in the form.

T, =Y (v = YV)/yvar(n®) = n/yvar(n*) = [varn®)] > Y 6+ Ry (4)
i€ay i=1

where R, = (n — n™)/+/var(n*) is the standardised remainder. We shall assume
that

N
Ny =2 .n
IZI\IIfNZ(Yi ~¥)*>0. lim - =21¢€(.1) 5)

i=1
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R, has the following moment bound.

l
E{(—n*)"|K =k} = E[(D_(vi = V)}"K = k] (6)

i=1
where
| = |k —n| @)
With an application of Theorem A, the following moment bounds for R, hold.

ERi’" < n_’"/zL’”e(3m/2)1°g’”E(y —Y)?" form = O(n)

< nM2Lmem/Aloem gy _ y)2™ for unrestricted m )

where

_ 1 & _
E(y=1)" =23 (i = 1)p" ©)

i=1

see (2.19)—(2.20) of Dasgupta (1994); the case of finite order moment, i.e., m is finite
was considered therein to obtain rates of convergence and allied results. Here we
consider finiteness of all the moments. Specifically we shall assume the following
types of moment bounds for j = y — Y.

Type I:

sup Ej*" = sup E(y — Y)*" < Le"™ (10)
N>1 N>1

Vm > 1, and for some L. > 1, where wy > 0, v > 1. The above condition is
equivalent to

sup E exp[s{log, (1 + [7])}"/* "] < o0 n
N>1
wheres = w, 'V, see (4.15)—(4.16) of Dasgupta or similar assumptions.
h 07D see (4.15)~(4.16) of Dasgupta (2013) f 1 p

Assumption (10) is equivalent to finiteness of m.g.f. in a neighbourhood of zero for
the transformed random variable {log, (1 + |7|)}"/"~!. The original variable 7 has
moment bounds of high magnitude. After logarithmic transformation the variables
are tamed, and some power of transformed random variable y possess m.g.f.



Some Further Results on Nonuniform Rates of Convergence to Normality. . . 199

We shall also consider the following type of moment bounds.
Type 2:

sup Ey~2m = sup E(y _ Y_v)Zm < Lmevmlogm (12)
N>1 N>1

Vm > 1, where L > 0, v > 1. The above condition is implied by

sup E exp(s]7|'") < oo (13)
N>1

where 0 < s < s = ve 'L7V see (4.34)—(4.35) of Dasgupta (2013) for
similar assumptions. Assumption (12) is equivalent to finiteness of m.g.f. in a
neighbourhood of zero for the transformed random variable |7|'/". The assumption
is weaker than existence of m.g.f. as v > 1.

We shall further consider the following type of bound.
Type 3: Bound of Type 2 with a different parametric zone, where v € (0, 1]. That is,

sup E exp(s|7|"/") < o0, v € (0,1] (14)
N>1

This ensures m.g.f. of y exists, but y may not be bounded over supremum of N > 1.
Nonuniform Berry—Esseen bound in such cases were considered in Dasgupta (2006)
for independent random variables in a triangular array.

Rates of convergence in CLT for finite population model are quite sharp and
comparable with iid set-up, indicating that the former model may be used for
analysing crop yield data.

In Sect.2 we obtain nonuniform rates of convergence from general results of
independent random variables see, e.g., Dasgupta (1989, 1994, 2006), by treating
the remainder in H4jek’s projection for sample sum from finite population to be
negligible. Optimal normal approximation zone for probabilities of deviations, as
in the iid case is shown to be attainable. Nonuniform L, version of the Berry—
Esseen theorem and moment type convergences are proved for standardised sample
sum from finite population under different moment bounds in Sect. 2. The results
obtained are compared with those for iid random variables to ascertain precision of
finite population techniques applied in growth curve estimation.

From Indian Statistical Institute Giridih farm, yield data are collected on a bulb
crop onion that takes about 3—4 months of lifetime from sprouting stage to mature.

We estimate crop growth curve in Sect.3 from clustered yield observations in
small time window and the average of observations in a window is treated like
sample sum arising from finite population, for which the theory applies. We estimate
derivative and proliferation rate of the growth curve. These have applications to
decide harvest time. The appropriate time to harvest the crop turns out to be 90 days
from plantation in that region.
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2 Nonuniform CLT Bounds in Finite Population

First we consider the Type I moment bound given in (10). The next theorem
states the normal approximation zone for tail probability of the standardised sample
sum 7,.

Theorem 1. Under the assumptions (5) and (10), for the standardised sample sum
T, from a finite population defined in (4), one has

1- P(Tn = tn) ~ q)(_tn) ~ P(Tn = —tn)fO}’

tf < a(logn)/=V + M, M > 0, t, — oo, where o = (2 — e)w,jl/(v_l)
(v —Dy™/0=D g = w;l/(v_l), € > 0 is arbirtary small, w, and v are defined
in (10) and M > 0 may be arbitrary large.

Proof. This is similar to the proof of Theorem 1, given in Dasgupta (2013). As noted
therein the order of normal approximation zone is optimal.

Remark 1. The leading term for ¢> in Theorem 1 is of order (log n)"/ =1 The
normal approximation zone for standardised sample sum of iid random variables is
also of same order, see also Theorem 2.3 of Dasgupta (1989). These zones are larger
than moderate deviation zone, as v > 1. Moderate deviation results hold when some
finite moment (>2) exists. In (10)/(11) we assumed existence of all the moments of
7 = y — Y, and hence the resulting zone gets extended beyond moderate deviation.

Denote G,(t) = P(T, < t). The next theorem provides an overall nonuniform
bound in the CLT for standardised sample sum from finite population. The theorem
and remark below follow along the lines of Theorem 2 and Remark 2 of Dasgupta
(2013).

Theorem 2. Under the assumptions of Theorem 1, there exists a constant b > 0,
depending on w > wy and v such that the following holds.

G, (t) — ®(t)| < b n=2+ene=cloe+C70 1y o 10 g cf <00 (15)

where ¢ = w(v — D{2/(wv)}/0 D > 0, and €, = (2¢)~"V/ (logn)~/" =
O((logn)™""y - 0, as n — oo.

Remark 2. Observe that in the nonuniform bound (15), the part depending on
|t| decreases at a faster rate than any polynomial power of |z|. Uniform bound
of the rate approaches to the optimal bound O(n~!/?), as the excess €, =
O((logn)™"") = 0, n — oo.

As a consequence of Theorem 2, the following two theorems on nonuniform L,
version of Berry—Esseen theorem and moment type convergence are immediate, see
Dasgupta (2013).
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Theorem 3. Under the assumptions of Theorem 2,
[l (1 |1 )79/7 (G (1) — DI, = O™ 7F)

for p > landany q > 1.

Theorem 4. Under the assumptions of Theorem 2 and for a non-negative even
Sfunction g with

d o
d—[ng(x)] = O((1 + x) 7€M+ D™y "y S 0 and g > 1
X

the following holds for standardised sample sum T, from finite population and a
N(0, 1) variable T.

Next we consider the Type 2 moment bound given in (12). The next theorem
states the normal approximation zone for tail probability of the standardised sample
sum 7,,.

Theorem 5. Under the assumptions (5) and (12), for the standardised sample sum
T, from a finite population defined in (4), one has

1 —P(T, <t,) ~ ®(=t,) ~ P(T, < —t,), t, = o0, fort, = o(n"/+),

Proof. This is similar to the proof of Theorem 5, given in Dasgupta (2013) with a
value of v = 3/2, where one may use the moment bound (8) for m = O(n). Note
that the order of ¢ in (4.39)—(4.40) of Dasgupta (2013)is ¢ = O (n!=2/@+) In
the present context v = 3/2,v > 1. So m = On*'=2/%) satisfies m = O(n)
of (8), as m here takes the role of ¢ in Dasgupta (2013).

Remark 3. In the above theorem we considered v > 1. The proof goes through
for a wider zone 1/2 < v < oo. For v = 1/2 the normal approximation zone is
t = o(n'/@+9) = o(n'/°). This zone, in general, is the best possible zone even for
iid random variables, see Theorem 2.3 of Dasgupta (1989). The condition v = 1/2
implies that the characteristic function of # = y — Y is an entire function of order
<2, possibly having zeroes. For rates of convergence in CLT in independent set-up
with this condition, see Dasgupta (1992).

The next theorem provides an overall nonuniform bound for |G, (¢) — ®(z)|.

Theorem 6. Under the assumptions of Theorem 5, there exists a constant b > 0,
depending on B, v and § such that the following holds.

B |(1/MAGE/@v+5)
)56 Bl

G, (1) — B(t)] < b n~2(logn . 0o <t <00

where B > 0, may be arbitrary large and § > (2v + 5)/4, may be arbitrary near to
(2v + 5)/4.
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Proof. Proof of the above follows the lines similar to that for Theorem 6 of
Dasgupta (2013), with v = 5/2, where one uses the moment bound (8) for
unrestricted m; see (4.44) of Dasgupta (2013), where ¢ is unbounded in a,(?)
requiring the unrestricted bound of ER?".

As a consequence of Theorem 6, following two theorems are immediate; see
Dasgupta (2013).

Theorem 7. Under the assumptions of Theorem 5, for any p > 1

[P (G (1) — @(0)]] ) = O (logn)?)

where B(> 0) is a fixed constant that may be made arbitrary large; and § > (2v +
5)/4, may be taken arbitrary near to 2v + 5)/4.

Theorem 8. Under the assumptions of Theorem 5, and for a non-negative even
function g with

i[ng(x)] _ O(eﬂ|x|(1/vw4/<zu+s>>

, Vx>0
dx ), ¥x

where B(> 0) may be arbitrary large, the following holds for the standardised
sample sum T, from a finite population defined in (4), and an N(0,1) random
variable T,

|E(T2g(T,)) — E(T?g(T))| = O(n~* (logn)®).

Next consider the moment bound of Type 3, i.e., take v € (0,1] in (13). This
assumption ensures the existence of m.g.f for y = y — Y in the super population.
However, y may not be bounded as n — co. We then have

sup E72" = sup E(y —Y)*" < L™e"™°¢™ ¥m > 1,L >0, ve(0,1] (16)
N>1 N>1

The above condition is implied by

sup E exp(s|7|'") < oo 17)
N>1

where 0 < s < 5o = ve 'L7Y v € (0,1].
Observe that from (8), the remainder has the bound
ER,%’" < nM2Lmem/Aloem gy, _ )2 for unrestricted m

< n /2 [ (vt3)mlogm under (16), for unrestricted m (18)

Then proceeding like Theorem 4.1 in Dasgupta (2006), one may obtain
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Theorem 9. Under the assumption (5) and (16)/(17), there exist constants b(> 0),
and k € (0, 1/2) such that the following holds for the distribution function G, (t) =
P(T, <t), where T, is standardised sample sum (4) from a finite population.

| Gu(t) — ®(t) | < bn="2(log n)"*3 exp (=k | t PAV0+3)
Consequently, following two theorems are immediate.

Theorem 10. Under the assumptions of Theorem 9, for any p > 1

|ek‘t‘2/\l/(v+%)

I (Gat) — ()|, = O™ (log n)"*3)

where k € (0, 1/2) may be taken arbitrary close to 1/2.

Theorem 11. Under the assumptions of Theorem 5, and for a non-negative even
Sfunction g with

2A1/(0+3)

;—x[ng(x)] = O™ ), Vx>0

and k € (0,1/2) may be taken arbitrary close to 1/2; the following holds for the
standardised sample sum T, defined in (4).

|E(T2g(T,)) — E(Tg(T))| = O(n™ 2 (logn)®)

where T is a N(0, 1) random variable.

3 An Application

Onion is a bulb crop that takes about 3—4 months time from sprouting stage to
mature for harvest. The following yield versus lifetime data of onion is obtained
from Indian Statistical Institute Giridih farm experiments. In total 100 sprouting
seeds were planted underground on 3 February 2014 in plots of barren land having
sandy soil composition mixed with “dhoincha” (Sesbania bispinosa) plant compost
manure. Out of 100 seedlings planted, 7 did not germinate.

The followings are the grouped frequency distribution of onion plant lifetime x
in day (Table 1).

Table 1 Frequency distribution of onion plant lifetime

x |75 8283 |87 |88 (89|90 |91 92 93 94|95 |96 97 98 |99 |100 | 106 | 117
fe !l |1 |1 |4 |14|5 |9 |11 |3 |11|3 |4 |3 |9 (3 |2 |7 |1 |1
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Fig. 1 Scatter diagram of bulb crop lifetime and yield. Scatter diagram of 93 onion lifetime versus
yield data shows wide fluctuation

Scatter diagram of lifetime versus yield with 93 observations is shown in Fig. 1.
Results proved in previous section indicate that the data analysis techniques under
finite population model can be considered. Wide fluctuations among the yield data
points over narrow time zones are observed, indicating moment bounds of large
magnitude for yield as considered in earlier section. One more data point is added
at lifetime zero for mean of 93 initial weights of seed-onion used in planting, thus
making 94 points in the scatter diagram for estimating the growth curve. Next, the
lines joining the group means, shown in green colour summarise the fluctuations
of points at fixed lifetime. Blue line corresponds to smoothed spline curve with
shape parameter 1 drawn in R software. The lowess curve with f = 2/3 in
red is seen to be almost overlapping with the spline curve in blue (Fig.2). These
curves still show some fluctuations that require being straightened out further, to
have a smooth estimate of growth curve. To this end, the cross-sectional data
was grouped with at least three observations in a cluster. The group mean of
yield was assigned to the weighted average of the corresponding time points.
These simple averages of observations inherit the property of sample mean from
a finite population; the population is of Jharkhand cultivar of onion to be modeled
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Fig. 2 Group means, lowess and spline curve of a bulb crop yield

from a super population of global hypothetical onion production in a season with
this soil structure. According to the results proved in previous section, estimated
growth curve under super population model has optimal properties comparable
to that computed from iid observations in traditional set-up. To obtain a smooth
response curve, lowess regression was used to the above-mentioned group mean of
yield in clusters. A three-point moving average of the lowess points so obtained,
along with a smoothing spline with shape parameter 0.48 fitted over the points is
shown in Fig. 3 as an estimate of smooth growth curve for the bulb crop onion. The
growth curve is sharply increasing in the beginning. Transformed leaf structures in
onion plants constitute the food storage part at the bottom of the crop at mature
stage. Harsh summer of April in Giridih, Jharkhand made the storage suffer due
to evaporation of water content, thus causing a fall of the growth curve of onion
towards end beyond 20 April 2014; farmers in Jharkhand Giridih farm should have
harvested the bulb crop by that time. The plants that could withstand hard summer
beyond 20 April 2014, have contributed to the rise of curve again towards end.
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Fig. 3 Smoothed spline growth curve of a bulb crop

In Fig.4 we compute derivative of the onion growth curve y = y(f) using
a technique of Dasgupta (2013). The derivative remains positive slightly beyond
80 days of lifetime, after which the curve falls down below zero, and then again
moves upward about 100 days onward.

Proliferation rate d log y(¢)/dt is computed by a similar technique and shown in
Fig. 5, this exhibits a downward tendency till about 100 days before rising up again.
Proliferation rate is independent of unit of weight measurements. The peak of onion
growth curve is seen around 90 days, which seems appropriate time for harvesting
the crop.
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Fig. 4 Velocity of bulb crop yield: trimmed mean, wt. exp(-.01 x); spline
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Unbounded Growth Model for Word
Frequencies in Political Transition

Ratan Dasgupta

Abstract Frequencies of some words appearing in a vernacular newspaper are
studied. Usages of certain politically flavoured words are without any bound during
poll time. Cumulative frequencies of some such words appearing in a vernacular
daily from West Bengal are modeled by an unbounded growth curve y(t) =
ebexee) p > 0.¢ > 0t € (0, 00), resembling the structure of a Gompertz
model. The present study is a relook at the same data set considered in Dasgupta
(Growth curve and structural equation modeling, 1st edn. Springer proceedings
in mathematics & statistics. Springer, New York, 2015) in a different approach.
Such studies have relevance in prediction of poll results. Estimates of the model
parameters are obtained from observed data over the period 2001-2010, covering
several elections in India. Unbounded growth models in continuous time and
discrete time are discussed in terms of interrelated proliferation rates.

Keywords Gompertz curve * Vernacular daily « Unbounded growth e Prolifera-
tion rate

MS subject classification: Primary: 62G05, secondary: 62P25.

1 Introduction

An upper bound in growth models arise mainly due to constraints on available
resources, e.g., see Dempster and McLean (1998) on population growth. Growth
of tumour spheroids eventually stops in models proposed by Wallace and Xinyue
(2013).
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In contrast, time dependent variables may sometimes have sharp growth without
an upper bound. As for example, words with political flavour are frequently spoken
in election rallies and reported in newspapers, having an impact on public opinion,
affecting poll results in a multiparty democracy. Cumulative frequency of these
words over time may increase without any bound. Gompertz curve has an upper
asymptote, and may not be an appropriate model in such situations.

Gompertz model is generally appropriate for bacterial growth, tumour immune
system, etc., where initially there is no competition for resources, followed by
decrease in growth rate due to competition for the nutrients as cellular population
expands. Tumours are cellular populations growing in a confined space, where
availability of nutrients becomes limited after a time lapse from start.

The scenario is different with rampant use of politically flavoured words with
no restriction on upper bound during election time. Dasgupta (2015) proposed a
Gompertz model over a limited time zone for some words along with inflections
appearing in a vernacular newspaper during the period 2001-2010, covering general
elections in India. Although the fit is good, the problem of long range forecasting
persists in a Gompertz analysis over limited time.

In this paper we address the problem by modifying the parameters in Gompertz
model so as to accommodate unbounded growth. Specifically, we fit a Gompertz
like growth curve

y = y(t) = "D b > 0,¢> 01 € (0,00) (1)

to the available data. The form retains the structure of Gompertz model although
y(t) > 00, ast — oo.

In Dasgupta (2015), cumulative relative frequency data on a time span of 10
years for 12 words appearing in a vernacular daily is modeled. Relative cumulative
frequencies of each word over time are computed with respect to the total number
(n = 142985088) of all words appearing in that daily newspaper during the years
2001-2010. In the present case we analyse the cumulative frequencies of the words,
i.e., a scaled version of earlier data by unbounded growth model (1).

Unbounded models are useful in other studies as well. In a closed quantum
system of many interacting particles Bardarson et al. (2012) proposed unbounded
growth model in the propagation of entanglement, where entropy develops approx-
imately logarithmically over a diverging time scale.

Proliferation rate d log y /dt for model (1) is ¢ log y, ¢ > 0, this is an increasing
function of growth, in contrast to the traditional Gompertz model with decreasing
proliferation rate. Fitting the model is done by plotting the growth observations
in loglog scale over time and ascertaining approximate linearity in plotted data.
Estimate of the model parameters is obtained from the slope and intercept of the
fitted least squared regression line. Proliferation rates that have relevance in poll
prediction are computed from estimated parameters.

In Sect.2 we analyse the word frequency data considered in Dasgupta (2015)
by the unbounded growth model (1). High value of coefficient of determination
indicates that the proposed model fits the data well. Sharp growth patterns of
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some words are reflected in large values of estimated parameters. In Sect.3 we
discuss continuous and discrete versions of unbounded growth models in terms of
proliferation rates.

2 Analysis of Data with Unbounded Growth Model

Data of cumulative frequencies on 12 words including inflections versus time are
presented in loglog scale in Fig. 1. Approximate linearity with increasing trend is
observed for all the words, especially for higher values of time. This indicates that
the unbounded growth model (1) may be appropriate in the present case. In Figs. 2,
3,4,5,6,7,8,9, 10, 11, 12, and 13 we fit least squared regression lines to the
data points for each word. Model parameters b and ¢ of (1) are estimated from the
exponential of the intercept and slope, respectively, of the fitted line. Accuracy of
the model fit is determined by the value of rZ2, the coefficient of determination, vide
Table 1. The value of 7> may improve considerably, if some initial data points are
purged for some of the words, see Fig. 1.
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Fig. 1 Unbounded growth model for 12 words appearing in a vernacular daily
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Fig. 2 Unbounded growth fit for cumulative frequency of the word “Manmohan”

In Fig. 2 cumulative frequencies of the word Manmohan over 10 years time show
increasing trend, fit of the least square regression line would have been better than
the present 72 = 0.8212, if three initial points were purged; an increasing trend with
remaining data points seems prominent.

Figure 3 plots the data points for the word Modi after purging the first data point,
the value of 2 is improved from 0.5844 to 0.9885. The values of the parameter b
and c in Table 1 are also changed 6.340578 (7.580256); 0.04722 (.0228655) after
deleting the first data point; the least square fit in Fig. 3 is excellent.

Least squared fit shown in Fig. 4 for the word Congress is good with a value of
r? = 0.9013. Increasing trend in the data points are prominent.

The same can be said about Fig.5 for the word Trinamul. This is name of a
political party like Congress. The value of r> = 0.9149 is slightly higher than that
for the latter.

If we ignore the apparent stability of the word Harmad during the time period
5-6 years, then an increasing trend in last four data points is prominent for the word
as seen in Fig. 6. The value of r? is high, r? = 0.9347.

The coefficient of determination for the word BJP in the model fitting is r?> =
0.7635. However, if the initial three data points are purged, the value is much higher
r? = 0.993, see Table 1 and Fig. 7.
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Fig. 4 Unbounded growth fit for cumulative frequency of the word “Congress”
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Fig. 6 Unbounded growth fit for cumulative frequency of the word “Harmad”
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Fig. 7 Modified unbounded growth fit for cumulative frequency of the word “BJP”

Model fit for the word Sonia is satisfactory with 7> = 0.8406, see Fig.8. It
appears that a better fit would have been possible, if the first data point was purged
in modeling.

Model fit shown in Fig.9 for the word CPM is excellent with a value of r? =
0.9616, and estimated value of slope ¢ = 0.070136 for regression line in loglog
scale for model (1). Amongst the names of all political parties viz., Congress,
Trinamul, BJP, CPM considered in this analysis, the word Trinamul corresponds
to the highest value of the slope of increase with ¢ = 0.088332, indicating a rapid
growth of the word in the considered time segment.

The word paribartan has cumulative frequency that conforms to the model with
a high value of 72 = 0.9034. Regression line of Fig. 10 is nearly touching all the
data points.

Singur is name of the place from where an agitation started, out of dispute
arising from land acquisition for industry. Growth of this word is modeled in Fig. 11.
Estimated slope ¢ = 0.110099 for Singur is high, like that of the word Harmad with
¢ = 0.15415. The value of r? is 0.9406 for the word Singur.

Growth of the word Andolon is depicted in Fig. 12. The value of 72 is 0.8947 for
the word Andolan. The pattern is similar to that of the word paribartan as shown in
Fig. 10. Values of the estimated slope of these two words are moderate compared to
other words.
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Fig. 8 Unbounded growth fit for cumulative frequency of the word “Sonia”
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Fig. 9 Unbounded growth fit for cumulative frequency of the word “CPM”
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Fig. 10 Unbounded growth fit for cumulative frequency of the word “Paribartan”
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Fig. 11 Unbounded growth fit for cumulative frequency of the word “Singur”
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Fig. 12 Unbounded growth fit for cumulative frequency of the word “Andolon”

In Fig. 13 the growth of the word MaMatiManush is seen to be steepest among
all the 12 words. This is reflected in the highest value of the estimated slope viz.,
¢ = 0.39613. The value of r2 is 0.9642 for the word MaMatiManush.

The values of r? being high, the proliferation rates may be computed from the
estimated parameters b and ¢ of the model (1).

3 Continuous and Discrete Versions of Unbounded Model

In Sect.2 we have seen the adequacy of unbounded growth model to the word
frequency data. The proposed model structure resembles Gompertz curve. A number
of growth curve families are related to this unbounded growth model in terms of the
proliferation rate. Below we discuss properties of the families and discrete time
versions of these in terms of proliferation rates in the context of limiting behaviour
of parameters involved in the models.
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Fig. 13 Unbounded growth fit for cumulative frequency of the word “MaMatiManush”

3.1 Unbounded Gompertz Type Growth Curve & Other Related
Growth Models

Proliferation rate ¢ log y(¢) of unbounded curve (1) is relatively slow in growth than
that for unbounded generalised logistic function having proliferation rate cv[l —
{ﬁ}l/ Y1,¢ > 0,v > 0. The former is logarithmically growing with y(¢), whereas
the latter is polynomially growing. Here, one uses the fact that
lim,_, ., u(l — x"/") = —log(x)

An exponentially growing proliferation rate may reduce to polynomial growth in
limiting form of the model parameters ¢ > 0,8 > 0,v > 0, see also Dasgupta
(2013) and Dasgupta (2015).

cvp[l — e{(l/y(t))‘/”—l}/ﬂ] - cv[l — {L}l/v]’ B — oo,
y()
— —clog(1/y(t)), v > 00, t >0 2)

where y > 1. An appropriate unbounded model may be selected by checking
steepness of growth from observed data.
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3.2 Discrete Version of Unbounded Growth Models

In view of the relationship of proliferation rates among growth curve families in
continuous time, one may consider discrete version Ay(t)/{y(¢)At} of the three
proliferation rates given in (2) that gives rise to the discrete growth curves for ¢ €
No ={0,1,2,3,...} satisfying the following difference equations in (3).

y(it+1)

22T = cvp[l — OB ey —
y()

BLERSVEPN
y(t)} I, B— oo,
— —clog(1/y(t)), v —>o00 (3)

That is, fort € Ny = {0,1,2,3,...}

Y 4 1) = [+ cvp{l = OBy 1) 4)
Y+ 1) =[1+ev{l = (@)™ iy () (5)
Y+ 1) = [1+clog y(0)]y(1) (©)

For unbounded growth observations recorded at discrete time, the above family of
models (4)—(6) with some assigned initial value for y(0) > 1 may be appropriate.
This family of discrete proliferation rates, like its continuous time counterpart,
covers a broad spectrum starting from exponential to logarithmic order of growth in
a continuous manner, as the next class in the series (4)—(6) is a limit of the former.
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A Statistical Analysis of MicroRNA:
Classification, Identification and Conservation
Based on Structure and Function

Mohua Chakraborty, Ananya Chatterjee, Krithika S, and Vasulu T.S.

Abstract The microRNAs (miRNAs) are small non-coding RNAs which play an
important role in gene regulation and are involved in several biological functions.
Studies have shown that there are several hundreds of them across (human) genome.
And one miRNA may be involved in several genes and several miRNA may target a
gene. In this regard it is interesting to know whether these several known miRNAs
show structural and functional similarities. Do they fall into recognisable groups
with respect to their structure and function and does the length of miRNA follow
evolutionary principles and are highly conserved?. This study with the help of
statistical tools explores characterising, identification of (human) miRNA based on
their structure and function, network analysis of their relationship and target genes
and conservation of their length and sequence structure across species.

Keywords Pre and mature miRNA ¢ Length variation ¢ Clustering ¢ Star
graphs * miRNA target ¢ Network analysis * Gene-specific-miRNA ¢ miRNA
across species

1 Introduction

In genome biology, there are two major discoveries that have helped us to
understand the structure of the ‘gene’—the biological unit of heredity that transfers
genetic information from parents to offspring among living things. These are: (a)
double-helix model proposed for DNA structure (Watson and Crick 1953; Franklin
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and Gosling 1953; Wilkins et al. 1953); and (b) the discovery of non-coding part
of the gene the ‘introns’—the genes in pieces (Gilbert 1978; Doolittle 1978).
The molecular structure of ‘gene’ is the sequential arrangement of four types of
nucleotides of DNA molecules (A, T, G, C) and constitutes ‘exons’ the coding
part which is involved in the transcription and translation responsible for protein
formation; and the ‘introns’ the non-coding part not involved in the synthesis of
proteins (Watson 1965; Woese 1967, 2001; Crick 1968, 1988; Jeffreys and Flavel
1977; Gilbert 1978; Doolittle 1978). In human genome, most of the genes constitute
‘exons’ and ‘introns’, while a few of the genes have only ‘exons’. Overall, genes
control the biological fate of living organisms.

How do the genes function? While we are still far from understanding the
complex function of genes, at least there are two major discoveries that help us to
get an insight into the function of the gene. One is, the so-called, ‘central dogma of
molecular biology’ and ‘sequence hypothesis’ proposed by Crick which describes
the flow of genetic information from DNA to RNA to synthesis of ‘proteins’ (Crick
1958, 1968, 1970; Fantini 2006; Morange 2006, 2008). Cricks’s central dogma of
molecular biology describes the genetic mechanism that explains the transcription
of information from DNA to messenger RNAs (mRNA) and each mRNA contains
program to synthesis or translation of mRNA into a particular protein (Crick 1958,
1970). ‘The central dogma of molecular biology deals with the detailed residue-by-
residue transfer of sequential information. It states that such information cannot be
transferred from protein to either protein or nucleic acid’ (Crick 1970). Sequence
hypothesis: ‘in its simplest form it assumes that the specificity of a piece of nucleic
acid is expressed solely by the sequence of its bases, and that this sequence is a
(simple) code for the amino acid sequence of a particular protein’ (Crick 1958, 1970;
Fantini 2006; Morange 2006, 2008; Doolittle et al. 2013). The second one is the
recent discovery of a variety of non-coding RNAs: microRNA (miRNA), piwiRNAs
(piRNA), small interfering RNAs (SiRNA), long non-coding RNAs (IncRNA),
Enhancer and Promoter-associated RNAs (PARs) (Lee et al. 1993; Wightman et al.
1993; Lee and Ambros 2001; Lau et al. 2001; Doolittle et al. 2013). While Crick’s
model is concerned about the function of about 1 % of coded information of the
(human) genome, the discovery of non-coding small RNAs explains the role of
introns [constitutes a major portion (human) genome] and other transient RNAs
in regulating the gene expression.

The small or ncRNAs help us to understand the epigenetic mechanism underlying
the RNA splicing and post-transcriptional regulation of gene expression of protein
coding genes (Brody and Abelson, 1985). The non-coding RNAs (ncRNAs) can be
of two types: infrastructural and regulatory. The infrastructural ncRNAS are more
related to housekeeping function whereas regulatory ncRNAS are concerned with
epigenetic control of other RNAs.
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2 MicroRNA

The miRNA, one of the non-coding RNAs, plays an important role in the regulation
of gene expression (Ruvkun 2001). The miRNAs are most extensively characterised
in plants and worms (in which they were first recognised). They arise from
precursors (about 70-90 nucleotides long) transcribed from non-protein encoding
genes. These transcripts contain sequences that form stem loop structures, which are
processed by Dicer (or DCLI, for Dicer-like 1, in plants). The miRNAs they produce
lead to the destruction (typically the case in plants) or translational repression (in
worms) of target mRNAs with homology to the miRNA. The ‘mature’ miRNA—
derived from primary (pri-miRNA) and precursor miRNA (pre-miRNA)—is short,
single-stranded non-coding RNA molecule of length of about 22 base pairs (vary
from 17 to 24) found in some viruses, plants, animals and appear to be nonexistent
among bacteria.

The miRNAs are transcribed from different genomic locations, for exam-
ple by RNA polymerase II/Il, as long primary transcripts known as (primary)
‘pri-miRNA’ that form stem-loop structure and range in size from hundreds of
nucleotides to tens of kilo bases. This gets cleaved by the complex in nucleus
(microprocessor complex, consisting of the RNase III enzyme Drosha, and the
double-stranded-RNA-binding protein, Pasha/DGCRS) to single-stranded/double-
stranded RNA junction producing ~70 nucleotide hairpin precursor (pre-miRNA).
The pre-miRNAs get cleaved in the cytoplasm to produce mature miRNA of length
of about 22 nt. The mature miRNA has target sites in hundreds of genes. The
human genome harbours a variety of multitude miRNA which plays a crucial role
in epigenetic regulation of gene expression of several biological processes. Also,
strikingly, 30 % of miRNAs found in worms have close homologous miRNAs in
flies and/or mammals. Thus, it seems that miRNAs are an ancient part of programs
of gene regulation during development (Watson 1965; Priyapongsa et al. 2007).

2.1 miRNA Function

Since its discovery by Ambros (Lee et al. 1993; Olsen and Ambros 1999; Reinhart
et al. 2000; Lee and Ambros 2001), several studies have reported myriad variety
of miRNAs and their regulatory role across whole spectrum of biological func-
tions/processes across species including Man (Ambros 2004; Vergoulis et al. 2015).
A variety of miRNAs regulate the expression of target genes at post-transcriptional
level. They are considered to regulate expression of genes involved in development,
cell proliferation, apoptosis, response to stress, etc. (Fig. 1). Recently discovered
functions of miRNA include control of cell proliferation, cell death fat metabolism,
heart diseases, cancer biology (Brennecke et al. 2003, 2005; Xu et al. 2003;
Soifer et al. 2007; van Rooij et al. 2007; Vergoulis et al. 2012; Xie et al. 2013).
These (miRNA) form another layer of regulatory circuitry that exists in the cell
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Fig. 1 Dlustration showing steps of miRNA binding to the 3’ UTR region of the target mRNA

(Smielewska 2008). Thus any misregulation of miRNAs can lead to great regulatory
imbalance in the cell, which in certain cases leads to cancerous phenotypes. In fact
it was shown that miRNA profiles are changed in large number of cancer cells and
over expression of miRNAs can lead to the development of cancers. The miRNA
regulates gene expression either by switching off or by tuning target expression
levels. A detailed account on miRNA and its functions can be obtained from a recent
publication (Vergoulis et al. 2015).

2.2 miRNA and Target Gene

The miRNAs are produced from either their own genes or from introns. They can be
encoded by independent genes, but also be processed (via the enzyme Dicer) from
a variety of different RNA species, including introns, 3’ UTRs of mRNAs, long
non-coding RNAs, snoRNAs and transposons (Priyapongsa et al. 2007).

The genes encoding miRNAs are much longer than the processed mature miRNA
molecule; miRNAs are first transcribed as primary transcripts or pri-miRNA with a
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cap and poly-A tail processed to short, 70-nucleotide stem-loop structures known
as pre-miRNA in the cell nucleus. This processing is performed in animals by a
protein complex known as the Microprocessor Complex, consisting of the nuclease
Drosha and the double-stranded RNA-binding protein Pasha (Denli et al. 2004;
Gregory et al. 2004; Han et al. 2004). These pre-miRNAs are then processed to
mature miRNAs in the cytoplasm by interaction with the endonuclease Dicer, which
also initiates the formation of the RNA-induced silencing complex (RISC). This
complex is responsible for the gene silencing observed due to miRNA expression
and RNA interference. The pathways in plants vary slightly due to their lack of
Drosha homologs; instead, Dicer homologs alone effect several processing steps.
The pathway is also different for miRNAs derived from intronic stem-loops; these
are processed by Dicer but not by Drosha. Either the sense strand or antisense strand
of DNA can function as templates to give rise to miRNA.

Efficient processing of pri-miRNA by Drosha requires the presence of extruded
single-stranded RNA on both 3’ and 5’ ends of hairpin molecule. These sSRNA
motifs could be of different composition while their length is of high importance if
processing is to take place at all. The Drosha complex cleaves the RNA molecule
~22 nucleotides away from the terminal loop. Most pre-miRNAs do not have a
perfect double-stranded RNA (ds RNA) structure topped by a terminal loop. There
are a few possible explanations for such selectivity. One could be that dsRNAs
longer than 21 base pairs activate interferon response and anti-viral machinery in the
cell. A miRNA may target more than one gene, often in several sites, and that one
gene may be targeted by many miRNAs acting cooperatively. Individual miRNAs
and their targets can share common regulators, also miRNAs and transcription
factors (TFs) co-regulate their target genes. MiRNA in this motif stabilises the
feedback loop to resist environmental perturbation (Sarazin and Voinnet 2014). Two
classes of miRNAs exist with distinct preference for network subgraph: the first
class is regulated by a large number of transcription factors while the second class
of miRNAs regulates TFs. These two classes have different biological roles (Lee
et al. 2004; Yu et al. 2008).

The epigenetic role of miRNAs in several biological functions at the cellular
level implies that they have evolved along with other genes and organisms from
lower organisms to Homo sapiens sapiens. Studies indicate that several miRNAs
related to cell regulation appears to be common to animals and therefore must have
co-evolved across the species.

2.3 miRNA Database

Since the discovery of miRNA and its role in the regulation of gene expression,
in recent years, studies have come out with hundreds and hundreds of a variety
of miRNA and their active role in gene expression related to different biological
processes. Soon there has been catalogue of miRNA and the list has identified
more than one thousands miRNAs and their role and target gene (Griffiths-Jones
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et al. 2005; Soifer et al. 2007; Jiang et al. 2009; Vergoulis et al. 2012; Xie et al.
2013). This has led to development of databases like miRBase, miRecord, mirPub,
mirCancer, etc., http://www.microrna.gr/mirpub/, Griffiths-Jones et al. 2003, 2005).
This has opened up further issues of its identification, bioinformatics methods for
motifs related to network pathways, regulatory loops linking diseases (Zamore
2002; Zeng et al. 2002; Zhang et al. 2015) and studies on population genetics issues
concerning the evolutionary significance, selection and the conservation of miRNA
across species.

Myriad variety of miRNAs has raised some of the problems of prediction,
identification of miRNA especially due to factors like similar structure and some
are even ‘pseudo miRNA’ which mimic but are not related to gene target (Mathews
et al. 1999). Various methods of classification and categorization of miRNAs
into families have been employed based on various parameters such as sequence
similarity, homology, seed sequence similarity, etc., (e.g., Sinha et al. 2009). Some
of the widely popular classification methods include the naming convention used in
miRBase and division into conserved, non-conserved family used in TargetScan and
the Phylogeny-Bootstrap-Cluster (PBC) pipeline.

The miRBase classified miRNAs with similar mature forms together and
assigned them the same id numbers. In recent releases of miRBase, a ‘miRNA
family (miFam)’ feature was present, which clustered similar miRNA precursors
together based on computational analysis and manual inspection. In miRBase
miRNAs are named using the ‘mir’ prefix and a unique identifying number
(e.g., miR-1, miR-2, ..., miR-89, etc.). The identifying numbers are assigned
sequentially, with identical miRNAs having the same number, regardless of
organism. Nearly identical orthologs are also given the same number. Identical
or very similar miRNA sequences within a species are given the same number,
with their genes distinguished by letter and/or numeral suffixes, according to the
convention of the organism. A uniform system for miRNA annotation can be found
from Ambros et al. (2003).

In this regard, a few bioinformatics softwares have been developed to recog-
nise and identify the miRNA types. For example, the ‘TargetScan’ software for
Human miRNAs is categorised into conserved and non-conserved families. The
categorization is in the following manner: broadly conserved: conserved across
most vertebrates, usually to zebra fish and conserved: conserved across most
mammals, but usually not beyond placental mammals and third category is poorly
conserved: it includes all others. Whereas the ‘Phylogeny-Bootstrap-Cluster (PBC)
pipeline’ identifies miRNA families based on branch stability in the bootstrap trees
derived from overlapping genome-wide miRNA sequence sets. A ‘Vote’ algorithm
was designed to automate the process of identifying and evaluating potential
families (Huang and Gu 2007). The above computational methods are limited to
identification and classifying miRNA and do not consider categorization of miRNA
for investigating the patterns or identification based on structure or target or other
criterion.

There are some underlying problems with the current methods. First, the mature
miRNAs were often used as the classification criteria in the methods. This can
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decrease the sensitivity of finding paralogous miRNAs, as the mature part of a
duplicated copy of a miRNA is not necessarily under strong selective pressure.
Secondly, due to the short length of the mature forms, false classification caused
by convergent evolution is very likely to happen. A classification method based
on a wide set of parameters rather than one single property will provide a
better classification scheme for miRNAs. Since mature miRNAs are derived from
precursor miRNA, variation in properties of precursor miRNA should also be
taken into account while defining a classification scheme. In the present study we
investigate the classification and characterization of miRNA (microRNA database)
using statistical methods so as to get patterns, and examine the network analysis
of miRNA function. The study compares a couple of miRNAs sequences across
species to investigate the conservative nature or evolutionarily stable structure.

2.4 Objectives of the Study

The study investigates three aspects of miRNA structure and function: (1) Classifica-
tion and characterization, (2) Interrelationship between miRNA and target genes and
(3) Evolutionary conservation of miRNA across species. This has been attempted
by using various statistical techniques used to observe and understand the pattern
of distribution of these parameters in the entire human miRNA dataset derived from
miRBase and the biological significance of the variation of these parameters within
different human miRNAs.

Here we have attempted to identify, classify and characterise human miRNAs
into certain groups based on various parameters viz., length of the precursor miRNA,
chromosomal distribution of miRNA, length of the mature miRNA, target genes
and function of target genes. Further, miRNA and target interaction is studied by
building networks that represent association of miRNAs and their target genes.
Each of the parameters shows a particular distribution pattern within the human
miRNA dataset, based on which we tried to cluster the miRNAs into groups. The
study investigates the conserved nature of miRNA across species by comparing a set
of same miRNAs related to a set of corresponding common genes across selected
species.

3 Materials and Methods

3.1 Data Source

MiRNA sequences of human (both pre-miRNA and mature miRNA) were down-
loaded from miRBase of 2010.The validated targets of respective miRNA were
retrieved from miRECORDS.
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3.1.1 miRBASE

The miRBase database is a searchable database of published miRNA sequences and
annotation. Each entry in the miRBase Sequence database represents a predicted
hairpin portion of a miRNA transcript (termed mir in the database), with information
on the location and sequence of the mature miRNA sequence (termed miR). Both
hairpin and mature sequences are available for searching and browsing, and entries
can also be retrieved by name, keyword, references and annotation. All sequence
and annotation data are also available for download.

3.1.2 miRECORD

The ‘miRecord’ is resource for animal miRNA—target interactions. miRecords con-
sists of two components. The Validated Targets component is a large, high-quality
database of experimentally validated miRNA targets resulting from meticulous
literature curation. The Predicted Targets component of miRecords is an integration
of predicted miRNA targets produced by 11 established miRNA target prediction
programs (Xiao et al. 2009). Identical or very similar miRNA sequences within a
species, which are either present in different genomic loci or have distinct precursor
sequences, have the same number with genes distinguished by letter or numeral
suffixes.

3.2 Methods

For examining the variation among human miRNA datasets, we first consider length
of the precursor miRNA as a parameter. For the present study, we have considered
two separate datasets: the first set includes all such miRNA subtypes and named
as the ‘Redundant group’ (R type) while the second set has been cleared off the
redundancy caused by inclusion of these subtypes and only one member from each
subtype has been included, this group is named as the Non-redundant group (NR
type).

As mentioned above the entire human miRNA dataset retrieved from miRBASE
is divided into (1) Redundant (R type) and (2) Non-redundant groups (NR type).
Members of these groups are further classified separately based on length variation
into four different clusters of 96, 109, 81 bp length, respectively, and the remaining
pre-miRNAs are put into the fourth group. We then analyse these groups for the
presence of patterns. We have used several softwares for statistical and bioin-
formatics analyses: Mega 4.1, for nucleotide substitution, composition, distance
matrix and clustering analysis; SPSS, for principal component analysis and other
statistical estimates (Kumar 2007); OligoSCAN, for estimating the GC content;
Matlab, for counting the length of sequences and PAJEK (http://vlado.fmf.uni-lj.
si/pub/networks/pajek/) for obtaining miRNA network and target gene analysis.
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3.2.1 Analysis of miRNA Subgroups Classified According
to Variation in Length

The members of each group were subject to different analyses. All the miRNAs
of each (length wise clustered) group were analysed for nucleotide composition,
nucleotide substitution, conserved motif and GC content. Mutational variation
between members of each length wise clusters was analysed by calculating the
pairwise distance between these miRNAs through MEGA 4.1 and by generating
the distance matrix, which is further used to construct tree by neighbour joining
method. This helps us to identify and cluster together closely related miRNAs. The
distance matrix is also used for Principal Component Analysis through SPSS .The
miRNAs having high loadings under the same principal component were further
clustered into smaller groups. These clusters were viewed with the help of scatter
plot diagram (built by SPSS) and tree diagram (constructed by neighbour joining
method through MEGA).

3.2.2 Analysis of miRNA Subgroups of Similar Length Classified
According to Variation in Chromosomal Location

All the miRNAs of each (length wise clustered) group were further clustered
according to their chromosomal location and similar set of analyses were carried
out to collect information regarding nucleotide composition, nucleotide substitution,
conserved motif and GC content. This was done to check if any pattern or similarity
exists between miRNAs of same length located on same chromosome. In this
regard Redundant miRNA dataset is considered because similar miRNAs located
in different chromosome are given the same ID followed by numeral suffixes.

3.2.3 Analysis of miRNA Based on Chromosomal Distribution

Chromosome wise distribution of the miRNA in human is studied by counting the
total number of miRNA located in each chromosome .The frequency distribution
graph of miRNA in each chromosome summarises the scenario of distribution of
miRNA into different chromosomes in human genome.

3.2.4 Analysis of Mature miRNA

Length variation among all human mature miRNA is studied by analysing the
frequency distribution graph where total number of miRNA having a given length
is plotted for each length. The average nucleotide composition of mature miRNA
is calculated from the sum of each nucleotide through the entire dataset of mature
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human miRNA. The variation of length of mature miRNA derived from precursor
miRNA of equal length is studied by analysing the length variation within mature
miRNA derived from precursor miRNAs of length 96 and 109 bp.

3.2.5 Analysis of miRNA and Targets

Validated targets of all human miRNAs were downloaded from miRECORDS.
There are 774 targets for a total of 127 miRNAs. A network showing the association
of these miRNAs with their respective target genes is then constructed through
PAJEK. Various clusters of miRNA and their associated target genes were identified
and the related function of each of the target gene is retrieved from ‘GeneCards’
along with its associated GO-Identity. Based on the type of function and cellular
location of the site of action, the functions are further grouped into general classes,
so as to provide a way to cluster the targets of each miRNA into further groups
which describe the functions of the group members.

3.2.6 Comparison of miRNA Across Species

1 Collection of DNA nucleotide sequence: For the construction of phylogenetic
tree, five species, namely Homo sapiens sapiens (human), Gallus gallus
(chicken), Canis familiaris (dog), Mus musculus (mouse), Rattus norvegicus
(rat) had been selected.

Then five genes had been selected which are common to all the five species;
viz., carbonic anhydrase II (ca II), phosphofructokinase (muscle) (pfkm), cleavage
and polyadenylation specific factor 2 (cpsf2), zinc finger CCCH type containing
15 (zc3h), Coagulation Factor II (Thrombin) receptor like II (cf2rl2). The above
information was obtained from the NCBI website (www.ncbi.nlm.gov).

2 Collection of miRNA sequence of respective genes: The number of miRNAs have
been obtained from www.miRDB.org. The miRNA sequences have been obtained
from http://microsanger.ac.uk/, which target all the genes which are obtained
above.

3 The given table (Table 1) indicates the particulars of five selected genes with their
Gene IDs, among five species and their number of miRNAs targeting each gene.

4 Softwares used for the analysis of data obtained from databases for the above five
genes from five species:- For across species comparison we have used SWORDS.
SWORDS is a statistical software designed to handle large genome sizes of
individual species data and does statistical analysis of DNA-WORD frequency
distribution, clustering of species and plots based on ‘nj-clustering’ and ‘star
graphs’ based on ‘DNA-word frequencies’ (Chaudhuri and Das 2001, 2002; Basu
et al. 2003). In this study we have used SWORDS to compare genomes of five
species and mature miRNA sequences of a few specific genes across five species.


www.ncbi.nlm.gov
www.miRDB.org
http://microsanger.ac.uk/
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Table 1 List of five genes across five species with details of gene identity and

number of miRNA targeting the genes (obtained from ncbi)
Sl. no. | Species name Gene ID No. of MiRNAs targeting the gene
Gene name: (A) Carbonic anhydrase 11

Homo sapiens GI:760 21

Gallus gallus GI:396257 | 4

Canis familiaris GIL:477684 | 8

Mus musculus GI:12349 |11

Rattus norvegicus | G1:54231 10

Gene name: (B) Cleavage and polyadenylation specific factor 2

Homo sapiens GI:53981 |26

—_

B WN

—_

2 Gallus gallus GI:423416 |10
3 Canis familiaris GI:480230 | 4
4 Mus musculus GI:51786 |19
5 Rattus norvegicus | G1:299256 | 10
Gene name: (C) Phosphofructokinase (muscle)
1 Homo sapiens GI:5213 7
Gallus gallus GI:374064 | 1

Canis familiaris GI:403849 | 2

Mus musculus GI:18642 3

Rattus norvegicus | G1:65152 2

Gene name: (D) Coagulation factor II (thrombin) receptor—Ilike II
Homo sapiens GI:2151 23

Gallus gallus GI:768449 1

Canis familiaris GI:607963 |10

Mus musculus GI:14064 |15

Rattus norvegicus | G1:29636 2

Gene name: (E) Zinc finger CCCH type containing 15

B WN

—_

B WN

1 Homo sapiens GI:55854 7
2 Gallus gallus GI:423992 |12
3 Canis familiaris GI:478831 | 6
4 Mus musculus GI:69082 |14
5 Rattus norvegicus | G1:362154 | 7

4 Results

4.1 Length Variation of Pre-miRNA

The length variation of precursor miRNAs is analysed in two ways. In the first
method we took into account all the miRNA subtypes, while in the second one
we took only one miRNA from each subtype. The redundant dataset consists of all
similar miRNA types, some of them have been identified as subtypes (e.g., has-mir-
584a-1, has-mir-584a-2, has-mir550-1, has-mir-550-2, etc.). This way we got two
datasets, the former one designated as ‘redundant miRNA dataset (R-dataset)” while
the latter as ‘Non-redundant dataset’ (NR-dataset).
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Length of human precursor miRNAs is found to vary within the range of 43—
148 bp for Redundant dataset while for Non-redundant dataset it varies between 47
and 140 bp. The length variation in both Redundant and Non-Redundant dataset is
seen to vary in a near about uniform manner, with maximum number of miRNAs
having length between 80 and 109 and very few miRNAs lying in the extreme edges.

In redundant dataset length of 109 bp has the highest count of miRNAs, ranking
up to a number of 41 followed by length 96 bp with a count of 37 miRNAs, while in
case of Non-Redundant dataset 96 bp length holds the highest count of 42 miRNAs
followed by 109 bp length with a total of 40 miRNAs (Fig. 2a, b).

The obtained database of about 800 human pre-miRNA shows variation in length
from a range of 43 bp length to about 150 bp with variable copy numbers across the
human chromosomes. Several studies have shown that a number of miRNA and
its target are conserved across species (Piriyapongsa et al. 2007; Kamanu et al.
2013; Warnefors et al. 2014). This implies that the length of miRNA is also under
natural selection and influenced by other evolutionary forces. If so, the distribution
pattern of the length variation in R and NR types of pre-miRNA should reflect
the evolutionary significance. Figure 2a, b, shows a similar distribution pattern for
both R and NR types, in case of R type pre-miRNA shows higher range of length
variation than NR types. Overall, the distribution of length variation of pre-miRNA
shows similar pattern in R and NR types. This possibly suggests that the additional
duplicate or similar copies of pre-miRNA types that co-occur in the human genome
do not appear to change the overall distribution significantly. The distribution of pre-
miRNA length shows a trend of multiple modes with high frequency in case of 85 bp
length, 96 and 109 bp being the highest of the three pre-miRNA types. The more
frequent occurrence of 109 bp length pre-miRNA suggests its relative importance
in several biological processes in Man. To further investigate the pattern in each
class of miRNA types in human genome, we have selected two most frequently
occurring pre-miRNA types’ viz., (1) pre-miRNA lengths of 96 bp [with a frequency
of 52 redundant (R) and 35 non-redundant (NR) varieties] and (2) 109 bp (with a
frequency of about 40 bp length).

4.1.1 Length 96 bp Pre-miRNA

The miRNAs having 96 bp length, one of the frequently occurring pre-miRNA
is considered for analysis. From the database of miRNA having 96 bp length we
have obtained a total of 52 varieties (has-miRNA) of redundant type (R type)
and 35 varieties of non-redundant types (NR) which are associated with different
target genes. The nucleotide composition, nucleotide substitution, chromosome
wise distribution of the miRNAs in each cluster varies. Four miRNA are located at
Chromosome 7 and 8, whereas three miRNAs occur at chromosomes; 5, 9, 12, 14,
15 and X, respectively. The GC content varies from 33 to 60 % with an average of
44 % for both redundant (R) and non-redundant (NR) 96 bp length miRNA (Fig. 3).
The frequency (%) distribution of GC content in both the datasets shows a trend of
bimodal with two equal peaks at 35 and 50 % in R and NR types with a cut off
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Fig. 3 Percentage distribution of GC content in case of 96 bp length human pre-miRNA (R)
redundant (red colour—series 2) and non-redundant (NR) (blue colour—series 1) of 52R and
35NR varieties, respectively

two clusters at 40 bp length which shows least GC (6 %) content. It is interesting
to observe two clusters with different percentage of GC content: 30—40 % and 40—
60 % (consisting of about 20 types of miRNA in the second and about 15 in the first
clusters).

Clustering of Pre-miRNA of Length 96 bp

To investigate the further classification and groups among the 35 pre-miRNA
96 bp length type, we have considered clustering based on distance analysis and
by principal component analysis. The neighbour joining tree clustering obtained
by MEGA 4.1 shows two major clusters (Fig. 4). The first major cluster has 12
members and second with 23. The second major cluster has two subclusters with
further two subclusters with 17 and 6 members. The principal component analysis
displays about ten components showing ~82 % of variance. Further based on the
first two components we have obtained a scatter plot (Fig. 5). Based on the high
loadings of different miRNAs of 96 bp length under each principal component, all
the miRNAs are grouped into five separate clusters. Each of the five clusters was
further analysed for investigating further subgroupings. A PC plot based on principal
component analysis showed clusters, miRNA types identified by their numbers 6,
8, 10, 11 and 21 forms a cluster. In another cluster, miRNA members with numbers
25, 27 and 32 form a group.

By comparing the results obtained by scatter plot and tree diagram we observe
considerable similarity in the distribution pattern of the miRNAs of each cluster
in both the figures. Based on the structural similarity several of the 35 different
varieties of pre-miRNA of 96 bp length do show clustering. Studies indicate that
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Fig. 4 Clustering of 96 bp length pre-miRNA by rooted nj-tree clustering
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Fig. 5 Scatter plot (PC Plot) showing distribution of miRNA types of fixed 96 bp based on PC1
and PC2

the miRNA are in general conserved through evolutionary scale. As the results
shown below gives credence to the possibility that similar miRNA types that target
genes associated with similar functions across the species must have co-evolved,
and were selectively neutral thus conserving the sequence structure of miRNA types
associated with the biological functions.

4.1.2 Length 109 bp Pre-miRNA

The pre-miRNA with 109 bp length has 35 varieties of redundant type and 26 non-
redundant types distributed across several chromosomes, the first chromosome has
seven members and chromosomes 9 and x has four members (Fig. 6). In both
the groups the GC content varies from 35 to 59 % with an average of 51 %
(Fig. 7). The percentage distribution of GC content among the class of 109 bp
pre-miRNA type shows a trend of single distribution, despite a dent at 50 %
of GC content, whereas 96 bp length shows more than 70 % GC content. We
want to investigate whether the miRNA located in the same chromosome does
show structural similarity. For example, seven members of has-mir-181a-1 type
located in chromosome 1 show similar structure and form a cluster! The clustering
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tree obtained from the distance matrix shows (Fig. 8) two major clusters, the
second major cluster with two subclusters. The clustering pattern shows miRNAs
located in different chromosomes do cluster together. The first cluster has members
from chromosome 19, 6, 10, 1, 2, 5 and 11. Similar pattern emerges in case of
other clusters. Interestingly it does show some outliers as well. The miRNA in
chromosome 12 (has-mir-196a), 9 (has-mir-204) and 3 (has-mir-720) tend to form
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outliers in respective clusters (Fig. 8). Similar clustering pattern is obtained in
case of redundant dataset, though it does not show outliers like the one that has
been observed in non-redundant dataset. Chromosome wise location of pre-miRNA
shows unequal distribution: X-chromosomes and ch-19 show the highest density
miRNA located, whereas a few miRNA types are located in chromosomes ch-18,
ch-23, 24.

The principal component analysis of 27 types of pre-miRNA which has a fixed
length 109 bp shows about ten components (covering of about 82 % of variance).
Further based on first two components we have obtained a scatter plot (Fig. 9). The
figure shows clusters involving two to seven members spread throughout the plot.
For example, 14, 16, 25, 8, 24, 21 form a cluster. Similarly 26, 11, 27, 23, 2, 4
form another cluster. Both the tree- clustering and pca-plot overall show a trend of
similar clustering of miRNA types, though several of them form different clusters,
for example, pre-miRNA 210 and 212, 196-a-2 and pre-miRNA 223, 720 are in the
same cluster in both the clustering patterns.

4.2 Mature miRNA
4.2.1 Length Variation of Mature-miRNA

The length of mature miRNA is seen to vary between 17 and 27 bp. The percent
frequency distribution graph of length variation of mature miRNA (derived from
non-redundant pre-miRNA) shows normal distribution pattern with the peak at
22 bp (45 %) and decreasing uniformly on both the sides of the peak. Overall,
the variation in length of different types of mature miRNA in Man shows normal
distribution. This is an indication of its evolutionarily conserved nature. The
percentage composition of each of the four nucleotides in mature miRNA also shows
an overall uniform distribution (A: 22.3 %, C: 23.0 %, G: 26.2 and T: 28.5).

Mature miRNA of Length 96 bp and 109 bp

Figure 10 indicates that in general, the mature miRNA (irrespective of variation in
length of its corresponding pre-miRNA 96 or 109 bp) shows normal distribution. It
will be interesting to investigate whether the subtypes of mature miRNA (derived
from pre-miRNA with length 96 and 109 bp) also show normal distribution!
Figure 11 shows the distribution of length (# bp) variation of mature miRNAs
derived from pre-miRNA 96 and 109 types, respectively. Both differ in length:
mature miRNA of pre-miRNA 96 bp vary from a range of 21 to 24 bp, whereas
the mature miRNA of pre-miRNA 109 bp shows wide variation from 17 to 24 bp.
In both the cases the mature miRNA 22 bp length shows a maximum frequency
(45 and 35) of occurrence. Both show a single mode with normal distribution, the
former shows a trend of positively skewed and the latter negatively skewed. This
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Fig. 9 Distribution of 27 miRNAs of fixed length (109 bp) by PC1 and PC2 plot

suggests that the length variation (number of bp) of mature miRNA is independent
of its corresponding pre-miRNA lengths. However the results suggest that 22 bp
length of mature miRNA is evolutionary stable and is under selection.

4.3 Mature miRNA and Function

The studies indicate a very complex nature of variety of functions for each mature
miRNA type. Each of the mature miRNA type is involved in different biological
process (one miRNA—many functions) and each biological function is governed
by numerable number of miRNAs (one function-many miRNAs). Here for the study
we have considered two miRNA-target clusters: hsa-miR-1 and hsa-miR-124. Both
show very complex interactions of involving several functions and target genes.
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The function of the targets of hsa-miR-124 and hsa-miR-1 basically belongs to
the general category that has been analysed from the information obtained from
online sources (as given in Table 2). While grouping the functions into classes,
related functions have been grouped into certain general classes like cell transforma-
tion, cell differentiation have been grouped into a general class of Cell development;
cell membrane filaments, nuclear membrane filaments, membrane filaments related
enzymes are grouped within Membrane filaments class; all immune cells related
proteins and enzyme that is related to either T cell, B cell or complement system
are grouped within Immune cells related protein class. Table 2 shows has-mir-1 is
involved in at least 28 major functions while has-mir-124 is involved in at least in 36
functions and both play a crucial role in a few common functions (e.g., membrane
filament and cell development). In some biological functions they were reported to
be associated more frequently than others. For example, hsa-mir-1 is more active in
case of cell development (10 times) and signal transduction (9 times) while has-mir-
124 is more active in case of TF (17 times), membrane filament protein (16 times)
and cell development (13 times) (Table 2 and Fig. 12a, b).

4.4 miRNA and Targets

From the information available (Table 2) about the function and frequency of
occurrence of the has-miRNAs we have built a network of miRNAs interrelationship
between variety of functions and its corresponding target genes. Figure 13a, b shows
complex interaction of miRNA and its target genes. A large number of clusters are
seen where one single miRNA regulates more than one target, hsa-miR-124 controls
about 201 targets and hsa-miR-1 influences 101 target genes followed by hsa-miR-
373 which has control over 64 target genes. Each miRNA is seen to control target
genes having different function. An analysis of two miRNA and its associated gene
cluster shows how a single miRNA can influence gene related to a wide different
variety of function.

4.4.1 A miRNAs Targeting ‘VEGF’

We take an example of network relationship between single genes which is targeted
by several miRNA. For example, VGEF gene is targeted by a large number of
miRNAs. The phylogenetic clustering of the variety of miRNAs that target VGEF it
is given below (Fig. 14). Vascular endothelial growth factor (VEGF) is a chemical
signal produced by cells that stimulates the growth of new blood vessels. It is part
of the system that restores the oxygen supply to tissues when blood circulation
is inadequate. VEGF’s normal function is to create new blood vessels during
embryonic development, new blood vessels after injury, muscle following exercise,
and new vessels (collateral circulation) to bypass blocked vessels.
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Table 2 Different type of functions of hsa-mir-1 and hsa-miR-124 and related frequency of
occurrence of each type

Serial Functions of Frequency of | Functions of Frequency of
number | hsa-mir-1 occurrence hsa-mir-124 occurrence
1 Cell development 1 Biodegradative 1
pathway
2 Protein trafficking 1 Biomineral formation 1
3 (Metalloproteinases) 1 Biosynthetic and 1
degradative pathway
4 RAS GTPase 1 Biosynthetic pathway | 14
superfamily
5 Adenosine deaminase 1 Cell cycle 9
6 Biosynthetic/degradative 1 Cell cycle/Protein 1
pathway transport
7 Biosynthetic pathway 7 Cell development 13
8 Cell cycle 1 DNA binding protein 1
9 Cell development 10 Energy metabolism 3
10 DNA repair enzyme 1 Enzyme 1
11 DNA-mediated 1 G proteins 2
transposons
12 Enzyme 1 G-protein dependent 2
13 GTP binding 2 Guanine dependent 1
enzyme
14 Histone protein 2 Immune cells related 6
protein
15 HSP 2 Inhibitory protein 2
16 Immune cells dependent 1 Membrane filament 16
protein protein
17 Inhibitory protein 1 Membrane protein 6
18 Membrane filament 9 Membrane trafficking 1
protein
19 Membrane protein 5 Metabolic pathway 1
20 Phospho-transferase 1 Mitochondrial matrix 1
enzyme
21 Post TF 3 Mitochondrial oxidase | 3
22 Protein trafficking 1 Post replication 1
enzyme
23 Protein-DNA and 1 Post TF 3
protein—protein
interactions
24 RAS GTPase 1 Protein trafficking 2
superfamily
25 Signal transduction 9 Regulatory protein 2
26 TF 6 Replication protein. 2

(continued)
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Table 2 (Continued)

Serial Functions of Frequency of | Functions of Frequency of
number | hsa-mir-1 occurrence hsa-mir-124 occurrence
27 TR 2 Repressor in Signal 1
transduction
28 Transport protein 5 Signal transduction 10
Total 78 TF 17
Function not defined 31 TF(RNA pol) 1
Grand total 109 TF/TR 1
TR 4
Transferase activity 1
Transport protein 9
Tumour suppressor 1
Total 141
No information 55
available

Total including blanks | 196

When VEGEF is over-expressed, it can contribute to disease. Solid cancers
cannot grow beyond a limited size without an adequate blood supply; cancers
that can express VEGF are able to grow and metastasize. Over expression of
VEGF can cause vascular disease in the retina of the eye and other parts of the
body. VEGF expression is regulated by multiple miRNAs. Some miRNAs share a
common binding site, whereas other miRNAs have their own binding sites in the
3/-UTR of VEGEF. Different miRNA combination patterns can produce coordinate
action, which increases the repressive effect of miRNAs on VEGEF translation, or
competitive action, which failed to generate further repression of VEGF translation.
Competitive action among miRNAs can weaken the total repressive power of a
miRNA group. 12miRNA types related to the function form a single cluster showing
structural similarity, while another 25 miRNA types basically cluster into three
clusters, each with subclusters.

4.5 miRNA: Across Species
4.5.1 Comparison of Genome Sequence Across Species

Evolution is primarily changed in the genetic structure across species. However, the
rate of evolutionary change varies widely, it varies between species and between
regional populations within species. Evolutionary rate also varies with respect to
some genetic traits or genes within and between species—some are slow, fast
and some are stable and conserved. Some of the biological functions which are
common across the species similar across the species and the genes that are involved
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Fig. 12 (a) Frequency variation of mature miRNA—hsa-mir-1 and its multiple functions. (b)
Frequency variation of mature miRNA—hsa-mir-124 and its multiple functions

in these common biological functions therefore are stable across species and are
evolutionarily conservative. And some of the miRNAs involved in these genes and
their functions are also stable and found to be conserved across species. The normal
distribution observed in case of mature miRNA is an indication that the length 22 bp
for mature miRNA is stable and is selectively neutral across species. To further
illustrate the stability of miRNA across species we have investigated four miRNA
that are common among four/five species. Figure 15a shows the comparison of
five species with respect to four genes (Carbonic anhydrase II—(Ca II), Cleavage
polyadenyhlation specific factor 2 (cpsf2), Phosphofructokinase (muscle)—(Pfkm)
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Fig. 13 (a) A 2D network representing interaction between miRNA (red dots) and their target
genes (green dots). (b) A 2D network representing interaction between miRNA (red dots) and
their target genes (green dots)
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Fig. 14 Tree showing distribution of miRNA targeting VEGA based on pair wise distances

and Zinc Finger CCCH type—(zfc3h)) which are common to the species. The star
graphs shown are based on trinucleotide DNA word frequency and nj-tree shows
the clustering of five species based on genomes of the five species (Homo sapiens
(Hs), Canis familiaris (cf), Mus musculus (Mm), Rattus norvegicus (Rt) and Gallus
gallus (Ga). The nj-tree and star graphs based on genome sequence comparison of
the five species for the gene CA II show two clusters (nj-tree) where Homo sapiens
clusters with Canis familiaris, Ms and Rt form another cluster, whereas Ga departs
as an outlier of the group. Same clustering pattern is observed in case of rest three
genes. Similar pattern is also seen in case of star graphs. The results suggest that the
evolutionary relationship between the five species remains the same with respect to
each of the four selected genes.

4.5.2 Comparison of Gene Specific miRNA Across Species

Figure 15b shows the clustering pattern of four/five species based on gene specific
miRNA for each of the four genes which are common to four/five species compared.
In general the clustering pattern of the four/five species differs with respect to the
miRNA and the clustering pattern based on genome sequences. In case of Zfc3h
gene Mm, Rn and Cf form a very close cluster, except in Man with little differences
in their miRNA for the gene. The mature miRNA shows evolutionarily stable
sequence in case of three species and it differs in case of Man. The star graphs
show similar pattern. In case of Call the clustering pattern shows a single cluster
with increasing differences from Mm, Rt, Cf, Ga to Hs. A comparison of the star
graphs (drawn from trinucleotide miRNA sequences) for the gene Zfc3h across the
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Fig. 15 (a) Gene (sequence) specific NJ-tree Clustering and star graphs of (based on trinucleotide
word frequency distribution) species—Homo sapiens (Hs), Canis familiaris (Cf), Mum musculus
(Mm), Ratus norvegicus (Rn) and Gallus gallus (Gg) for four genes (Call, cpsf2, pfkm and z3ch).
(b) Star graphs (based on trinucleotide word frequency distribution) and NJ-tree draw based on
(mature) four miRNA sequences of three target genes (z3ch, call and cpsf2) among 4/5 species:
Homo sapiens (Hs), Canis familiaris (Cf), Mum musculus (Mm). Ratus norvegicus (Rn) and Gallus

gallus (Ga)
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five species show almost identical pattern indicating the conserved nature of the
miRNA across the species. Both Zfc3h and Cpsf2 genes show a single tree with
increasing differences across the species in case of nj-clustering. However the star
graphs show remarkable shape suggesting stability of miRNA associated with the
two genes across the species. Overall, the nj-tree based on gene specific miRNA
shows that the phylogeny tree is different from the miRNA tree in case of specific
genes.

4.5.3 Comparison of mature microRNA across species

A comparison of sequence lengths of three selected mature miRNAs viz., miR-26b-
5p, miRNA-429 and miR-200c-3p that are common to 6 species (obtained from
online sources) have been shown in Figs. 16a, 16b, 16c. In case of miR-26b-5p
the length of mature miRNA varies between 21 — 22bp: 21 bp length among the
three species: Homo sapiens, Mus musculus and Rattus norvegicus and Macaca
mulatta and is 22bp in case the rest four species (petromyzon marinus, Cricetulus
grseus, Salmo salar and Tupaia chinensis). In all the eight species compared for
the miR-26b-5p the entire length is identical and the extra bp (U), an addition as
the 22nd bp in the latter four species. Therefore the eight species shows structural
identity from 1-21bp length and are highly conserved, and when compared to man,
the four species show one difference — extra (insertion) bp in four species. A
comparison of the sequence lengths of mature miR-429 across the six species shows
conserved nature. It is identical and a consistent length of 22bp except Xenopus,
where it differ by one nucleotide — deletion of U at 22nd position. The figure
16¢ shows comparison of structure of miR-200c-3p across six species. The length
varies from 21bp (in Rattus norvegicus), 22bp in two species (Macaca mulatta and
Mondephis domestica) to 23bp in three species (Homo sapiens, mus musculus,
Tupaia chinensis). The sequence is identical in all the 23bp length in three species
(Homo sapiens, mus musculus, Tupaia chinensis) and in all the 21bp and 22bp
lengths in two species (Rattus norvegicus and Mondephis domestica) with deletion
of 2bp (end bps GA) and 1bp (end bp A) respectively. The species Macaca mulatta
shows least identical of the six species compared and differs at 12 positions.

5 Conclusions

A statistical analysis of classification, characterization and conservative nature of
miRNA based on the structure and function reveals: PRE-miRNA:1. Length of
human precursor miRNAs (pre-miRNA) are found to vary within the range of 43bp-
148bp for Redundant data set (R) while for Non-redundant dataset (NR) it varies
between 47bp to 140bp, with a maximum number of miRNAs vary a length between
80 to 109bp. The length variation of both the types appears to follow binormal
distribution with an antimode between 90bp to 93bp length. 2. The distribution of
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a miR-26b-5p: Across species
miR-26b-5p Length  Diff
UUCAAGUAAUUCAGGAUAGGU Homo sapiens miR-26b 21
UUCAAGUAAUUCAGGAUAGGU Mus musculus miR-26b 21 0
UUCAAGUAAUUCAGGAUAGGU Rattus norvegicus miR-26b 21 0
UUCAAGUAAUCCAGGAUAGGUU Petromyzon marinus miR-26b 22 1
UUCAAGUAAUUCAGGAUAGGU Macaca mulatta miR-26b 21 0
UUCAAGUAAUUCAGGAUAGGUU Cricetulus griseus miR-26b 22 1hamster
UUCAAGUAAUCCAGGAUAGGUU Salmo salar miR-26b 22 1
UUCAAGUAAUUCAGGAUAGGUU Tupaia chinensis miR-26b 22 1treeshrew
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® Length m Diff
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b miR-429 Across species
miR-429 Length Diff
UAAUACUGUCUGGUAAUGCCG Xenopus 21 1
UAAUACUGUCUGGUAAAACCGU  human 22 0
UAAUACUGUCUGGUAAUGCCGU mouse 22 0
UAAUACUGUCUGGUAAUGCCGU Canis familiaris miR-429 22 0
UAAUACUGUCUGGUAAUGCCGU  Fugu rubripes miR-429 22 0
UAAUACUGUCUGGUAAUGCCGU Tetraodon nigroviridis miR-429 22 0
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human mouse Canis familiaris Xenopus Fugu rubripes Tetraodon nigroviridis
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Fig. 16 (a, b) Comparison of length variation and number of differences (with respect to
Homosapiens sapiens) across 8/6 species in case of miR-26-b, miR-429. (¢) Comparison of length
variation and number of differences (with respect to Homosapiens sapiens) across six species in
case of miR-420
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c miR-200c-3p Across species
miR200c-3p Length Diff
UAAUACUGCCGGGUAAUGAUGGA Homo sapiens miR-200c 23
UAAUACUGCCGGGUAAUGAUGGA Mus musculus miR-200c 23 0
UAAUACUGCCGGGUAAUGAUG Rattus norvegicus miR-200c 21 2
AAUACUGCCGGGUAAUGAUGGA Macaca mulatta miR-200c 22 12
UAAUACUGCCGGGUAAUGAUGG Monodelphis domestica miR-200c 22 1
UAAUACUGCCGGGUAAUGAUGGA Tupaia chinensis miR-200c 23 0
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Fig. 16 (Continued)

GC content of the pre-miRNA 96bp length shows binormal distribution with modes
at 35-39 and at 50-54, whereas pre-miRNA 109bp length shows a trend of normal
distribution with a tendency of antimode at 50-54bp. Both 96bp length and 109
bp length pre-miRNAs types can be further classified into several clusters based on
sequence similarity. 3. Classification based on chromosomal location suggests about
a maximum of them are located at 19th and X-chromosomes. Mature miRNA: 1.
The mature miRNA in Man shows a length variation between 17bp to 27bp with
a peak at 22bp and follows a normal distribution. 2. In case of the mature miRNA
derived from 96bp pre-miRNA and 109bp pre-miRNAs however show positively
and negatively skewed distribution s respectively. The miRNA Function: 1. The
has-mir-1 and has-mir-124 are known to be associated with 31 and 141 different
functions with varying frequency respectively. 2. The net work relationship between
miRNA and its functions reveal that has-mir-124 controls about 201 targets and
has-mir-1 influences 101 targets. 3. Whereas VEGF gene (involved in the growth
of blood vessels) is targeted by about 36 miRNAs. The miRNA across species:
Comparison of the mature miRNA sequences across species and with respect
specific genes reveals that the length of mature miRNA and the sequence structure
is evolutionarily conserved across species.
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Longitudinal Growth of Elephant Foot Yam
and Some Characterisation Theorems

Ratan Dasgupta

Abstract We estimate growth curve of yam in a longitudinal study with 60 plants
comprising of three groups, each group having twenty plants corresponding to
500, 650 and 800 g of seed weight. The study is relevant for appropriate choice
of initial weight for plantation and harvest time of yam. Longitudinal growths of
Elephant-foot-yam are studied by taking yam from the ground with care in the
middle of a production season, then measure underground growth by Archimedean
principle and replant the structure for further growth in remaining lifetime. Yam
growth curve has a spike and takes a sharp upturn towards the end. Harvest of the
crop at mature stage of plant lifetime increases yam yield substantially, as seen
in sharp increase of growth curve towards end. Growth slopes before and after
intervention while taking interim observation and difference of these two slopes
for each plant are considered. These yam characteristics are linear combinations
of yield observations, and are seen to follow normal distribution in quantile—
quantile plot; the finding has implications in testing of hypothesis concerning slopes.
Experimental results obtained in the present study from 60 plants supplement
and reconfirm earlier findings of Dasgupta (Growth curve and structural equation
modeling, Chap. 1, Ist edn. Springer proceedings in mathematics & statistics.
Springer, New York, 2015) on yam growth based on six plants, two plants per above-
mentioned seed weights. Growth curve corresponding to seed weight 650 g indicates
superior yield when crops are harvested at the end of season. Growth curve variation
in each group of seed weight in parametric and nonparametric set-up is also studied.
Seed weight 650 g corresponds to growth curve with minimal variation. Above
ground biomass of yam, in the middle of crop season, is higher for seed weight 800 g
than that for 500 g. Prediction problem of underground yam weight on the basis
of observable above ground biomass and plant lifetime is discussed. Accuracy of
prediction is high in logarithmic scale, suggesting that the relationship is nonlinear.
Growth of plant lifetime that has applications in crop harvest rate and forecasting
market supply of yam is approximated by a Weibull model. For some specific choice
of parameters, hazard rate of Weibull distribution is shown to be the limiting form
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of that for folded normal variable, characterising the limiting distribution. An error
bound of hazard rate approximation is obtained. Discrete versions of the folded
normal distribution and Weibull distribution are also discussed.

Keywords Amorphophallus paeoniifolius ¢ Elephant foot yam ¢ Longitudinal
study ¢ Cross sectional study * Archimedean principle * Quantile ¢ Wilcoxon
2-sample U statistics * Ornstein—Uhlenbeck process ¢ Burr ¢ Hazard rate ¢
Weibull distribution * Folded normal distribution

MSC classification 2010: Primary 62P10; Secondary 62J02

1 Introduction

We study longitudinal growth curve of Elephant foot yam (Amorphophallus paeoni-
ifolius) over plant lifetime for different seed weights, with applications to selection
of initial seed weight and harvest time. Growth curve with less variation with respect
to the choice of seed weight is also of interest. This helps the experimenter to select
appropriate seed weight with ascertained yield during the growth period.

This is a confirmatory follow-up study with a relatively large number of plants
compared to an experiment with six plants considered in Dasgupta (2015), where
seed weight 650 g turned out to be the recommended weight for cut yam corm. Plant
sensitivity to inadvertently induced hurt is also examined therein.

Sixty plants consisting of three groups, each group having twenty plants corre-
sponding to 500, 650 and 800 g of seed weights are considered in the experiment.
Cut yam of above-mentioned weights as seed corm were planted on 2 April 2014 at
the Indian Statistical Institute, Giridih Farm, Jharkhand.

In the middle of production season plants were uprooted with care, volume of
underground yam attached to plant is measured by Archimedean principle and an
indirect estimate of underground yam weight is obtained by multiplying volume
with yam density, following a procedure adopted in Dasgupta (2015). We also
record the total weight of uprooted plant. Relationship of above ground biomass
with underground yam is also studied.

We observe presence of a spike towards end of yam growth curve; see also
Dasgupta (2013a), Dasgupta (2015).

Yam plant lifetime may extend approximately to 7 months. Harvesting the mature
crop provides approximately five times the initial weight in Giridih farm. The yam
vield is doubled in about 75 days when harvested early by farmers for monetary
reasons. Tender yam shoots and stems from early harvest also have a market value.
Above ground biomass of yam is significantly higher for seed weight 800 g than that
for 500 g, in the middle of the crop season, when compared by Wilcoxon 2-sample
U statistics.
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Growth slopes before and after intervention for taking interim readings of
yam, and difference of growth slopes may be expressed as linear combinations
of observations. Distributions of these characteristics are of interest in testing of
hypothesis on growth pattern. Analysed data indicates that the growth slopes and
differences of slopes are normally distributed.

Variation of the growth curves in each group of seed weight is also of interest,
less variation in curve makes the corresponding seed weight preferable. Seed weight
650 g has less residual variation in yam growth.

The problem of predicting underground yam weight based on above ground
biomass and plant lifetime is also studied. Accuracy of yam yield prediction over
time is higher in log scale compared to usual scale, suggesting that the relationship
is nonlinear.

Yam plant lifetime may be well approximated by Weibull distribution, see e.g.
Dasgupta (2014). This is of interest in studying crop maturity, and subsequent
market supply prediction. We prove a characterisation result of Weibull distribution
in terms of limiting hazard rate of folded normal distribution. Discrete version of
these distributions are of similar properties.

In the next section we describe the experimental layout, longitudinal data on
yam, analysis of data and the results. In Sect. 3 we show that Weibull model with
some specific choice of parameters is the only distribution that has the limiting
hazard rate of a folded normal variable Y = |X|, where X ~ N(0,0?). The
distribution has applications in contexts where signs of characteristics are ignored.
Error bound in hazard rate approximation is obtained. Discrete versions of the
distributions are considered. Proximity of these distributions with Weibull model
is of interest in survival analysis and plant lifetime modeling. Discussion of the
results and conclusions are stated in Sect. 4.

2 Experimental Layout, Analysis of Yam Data
and the Results

The experimental layout consists of six columns, in each columns there are ten
equidistant pits at a distance of 1 m. First two columns are for seed weight 500 g,
next two are for seed weight 650 g, and the last two columns are for plants with seed
weight 800 g. Column to column distance is also 1 m. Little bit of organic manure
like cow dung was given in the pits while planting the fungicide treated cut yam
seed corms of specified weights at the start of the experiment on 2 April 2014 in
Giridih farm of the Indian Statistical Institute. Little amount of vermicompost was
further added at the time of replanting after taking interim observations on yam.

Table 1 provides 60 plant characteristics recorded in the growth experiments viz.,
initial yam weight, weight during intermediate lifetime, above ground biomass, final
weight, etc.
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Table 1 Growth data on yam

Above
Seed Interim ground Final |Plant
Plant | wt Sprouting | Interim obs. | yam wt biomass |Datetill |wt life
no. (kg) date date (kg) (kg) plant alive | (kg) (day)
1 0.50 | 27-05-14 | 04-09-14 0.445068 | 1.205932 | 02-11-14 |0.812 | 155
2 0.50 16-05-14 | 04-09-14 1.48356 |3.84444 | 06-12-14 |2.736 |200
3 0.50 19-05-14 | 04-09-14 0.935784 | 2.711216 |06-12-14 |1.761 |197
4 0.50 | 20-05-14 | 20-09-14 2270988 |3.481012 |21-11-14 |2.926 |181
5 0.50 19-05-14 | 20-09-14 2202516 |4.056484 |28-11-14 |3.045 |189
6 0.50 19-05-14 | 20-09-14 1.791684 |3.087316 |28-11-14 |2.593 | 189
7 0.50 15-05-14 | 20-09-14 2.16828 | 3.70972 |28-11-14 |2.976 |193
8 0.50 | 29-05-14 | 20-09-14 0.91296 | 2.68304 | 28-11-14 |1.994 |179
9 0.50 | 26-05-14 | 20-09-14 1.392264 | 2.267736 |21-11-14 |2.237 | 175
10 0.50 | 27-05-14 | 20-09-14 0.524952 | 1.760048 |21-11-14 |1.294 | 174
11 0.50 | 02-05-14 | 04-09-14 2.693232 |3.253768 | 18-09-14 |2.964 | 136
12 0.50 | 07-05-14 | 04-09-14 0.79884 | 2.76516 | 12-11-14 |1.595 |185
13 0.50 12-05-14 | 04-09-14 2.51064 | 4.18836 |28-11-14 |3.402 |196
14 0.50 | 25-05-14 | 04-09-14 1.266732 | 2.582268 |06-12-14 |2.429 | 191
15 0.50 16-05-14 | 20-09-14 2.008512 |2.681488 |05-11-14 [2.993 | 169
16 0.50 | 28-05-14 | 20-09-14 1.586268 | 3.480732 |28-11-14 2913 | 180
17 0.50 15-05-14 | 20-09-14 1.962864 |3.767136 |28-11-14 |3.086 | 193
18 0.50 19-05-14 | 20-09-14 1.837332 | 3.787668 | 12-11-14 |2.577 | 173
19 0.50 | 31-05-14 | 20-09-14 0.239652 | 1.150348 | 28-11-14 |0.742 | 178
20 0.50 | 28-05-14 | 20-09-14 1.19826 | 2.44874 | 05-11-14 |1.061 |157
21 0.65 19-05-14 | 04-09-14 1.380852 |3.537148 | 14-10-14 |1.874 | 145
22 0.65 | 23-05-14 | 04-09-14 1.59768 | 3.31532 | 14-10-14 |2.623 | 141
23 0.65 19-05-14 | 04-09-14 1.380852 | 1.342148 | 28-11-14 |2.354 | 189
24 0.65 | 29-05-14 | 20-09-14 0.79884 | 1.73316 | 06-12-14 |1.578 | 187
25 0.65 | 28-05-14 | 20-09-14 2.373696 |4.485304 |28-11-14 |3.37 180
26 0.65 17-06-14 | 20-09-14 0.821664 |2.193336 |06-12-14 | 1.495 | 169
27 0.65 | 26-04-14 | 20-09-14 251064 |5.15036 | 28-11-14 |4.158 |212
28 0.65 | 26-05-14 | 20-09-14 0.924372 | 3.246628 |21-11-14 |2.196 | 175
29 0.65 15-05-14 | 20-09-14 2.05416 |3.85484 | 12-11-14 |3.185 |177
30 0.65 |26-05-14 | 20-09-14 1.48356 |3.20544 | 28-11-14 |2.408 |182
31 0.65 | 05-05-14 | 04-09-14 2.179692 | 1.820308 | 18-09-14 |2.399 |133
32 0.65 15-05-14 | 04-09-14 2.807352 |5.049648 |28-11-14 |3.896 |193
33 0.65 | 06-05-14 | 04-09-14 2.79594 | 4.47506 | 25-10-14 |3.569 |169
34 0.65 | 02-05-14 | 04-09-14 2213928 |3.505072 |21-11-14 |3.301 |199
35 0.65 | 25-04-14 | 21-09-14 245358 | 1.78642 | 14-10-14 |2.932 |169
36 0.65 | 28-05-14 | 21-09-14 2.122632 |5.383368 |21-11-14 |3.698 |173
37 0.65 | 27-05-14 | 21-09-14 1.563444 | 4.624556 |28-11-14 |2.796 | 181
38 0.65 | 27-04-14 | 21-09-14 3.446424 | 4.966576 |21-11-14 |4.105 | 204
39 0.65 | 27-05-14 | 21-09-14 1.48356 | 3.49744 |21-11-14 [2.235 | 174

(continued)
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Table 1 (continued)

Above
Seed Interim ground Final | Plant
Plant | wt Sprouting| Interim obs. | yam wt biomass | Datetill | wt life
no. (kg) date date (kg) (kg) plant alive | (kg) (day)

40 0.65 16-05-14 | 21-09-14 1.038492 | 1.994508 |05-11-14 |1.611 | 169
41 0.80 11-06-14 | 04-09-14 1.928628 |5.126372 |06-12-14 |2.818 | 175
42 0.80 19-05-14 | 04-09-14 2.544876 |5.706124 |25-10-14 |3.381 | 156
43 0.80 16-05-14 | 04-09-14 2.407932 | 3.933068 |14-10-14 |3.368 | 148
44 0.80 19-05-14 | 21-09-14 1.688976 |2.614024 |14-10-14 |2.059 | 145
45 0.80 |07-05-14 | 21-09-14 3.1383 4.4257 14-10-14 |4.116 | 157
46 0.80 |24-04-14 | 21-09-14 1.643328 | 3.118672 |14-10-14 |2.383 | 170
47 0.80 |29-05-14 | 21-09-14 2.704644 | 5.968356 |28-11-14 |3.355 | 179
48 0.80 | 25-05-14 | 21-09-14 1.723212 | 2.627788 | 14-10-14 |2.327 | 139
49 0.80 12-05-14 | 21-09-14 2.487816 |4.794184 |28-11-14 |3.508 | 196
50 0.80 |24-04-14 | 21-09-14 3.663252 | 3.463748 | 14-10-14 |4.431 |170
51 0.80 | 27-04-14 | 04-09-14 3.925728 | 4.634272 | 14-10-14 |4.603 | 167
52 0.80 15-05-14 | 04-09-14 1.186848 | 1.825152 |25-10-14 |1.546 | 160
53 0.80 16-05-14 | 04-09-14 1.015668 |3.632332 |21-11-14 |2.012 | 185
54 0.80 | 01-06-14 | 04-09-14 1.65474 | 4.25526 | 28-11-14 |2.716 | 177
55 0.80 |27-05-14 | 21-09-14 2213928 |3.634072 |21-11-14 |3.048 | 174
56 0.80 30-05-14 | 21-09-14 2.39652 | 4.01748 14-10-14 |3.003 | 134
57 0.80 |27-04-14 | 21-09-14 2.5677 4.0933 28-11-14 | 2.987 | 211
58 0.80 |27-05-14 | 21-09-14 2.05416 | 4.44484 |25-10-14 |2.807 | 148
59 0.80 |28-04-14 | 21-09-14 1.974276 | 3.139724 |25-10-14 |2.84 177
60 0.80 19-05-14 | 21-09-14 2.62476 | 3.88824 12-11-14 | 3.483 | 173

In Fig. 1, individual growth curves joining the yam weights by straight lines for
each of the 60 yam plants are shown. Upward movement in growth is generally
seen in individual curves. Circular points in red colour are median of y values over
individual growth curves for grid spacing of 1 day for time on x axis. These provide
a robust estimate of response curve. Indication of steep growth towards end is seen.
The picture is messy with curves from many plants. Next, partition of the curves in
groups is made.

Consider the plants with seed weight of 500 g each; Fig. 2 shows the individual
growth curves of twenty such plants. The response curve is shown in red colour, the
median of y values on grid spacing are joined by straight lines. Plant number 11 and
13 have same trajectory up to an extent as seen in the uppermost curve.

In a similar manner we obtain Fig. 3 that represents plants with seed weight 650 g.
The response curve shown here in red is superior than the corresponding curve for
seed weight 500 g; elevation in the response curve is prominent in Fig. 3 for 650 g
compared to that in Fig. 2 for 500 g.

Figure 4 corresponds to the growth trajectories of 20 yams having seed weight
800 g, the picture shows an upper trend of growth. However, the response curve
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Fig. 1 Individual growth of yam and median response curve

shown in red colour in this case does not seem to be superior than that for 650 g of
seed weight.

By nonparametric lowess regression, see, e.g., Cleveland (1981), on median
values plotted in red colour in Figs. 2, 3, and 4, we estimate the three growth curves
in Fig. 5 corresponding to three different seed weights. We also compute the overall
response curve from the median values denoted by red points in Fig. 1, representing
the 60 plants combining all seed weights. The lowermost curve in Fig. 5 represents
the response for 500 g of seed weight by lowess technique with f = 0.18. Index
f represents the fraction of observations used by lowess regression at a particular
point. The next prominent curve in blue is response curve for seed weight 650 g,
obtained by lowess technique with f = 0.18. The dot-dash curve merged with it
in the beginning, and separated towards end represents the overall response curve,
obtained by lowess with f = 0.18. The uppermost curve from start in black colour
in Fig. 5 corresponds to the seed weight 800 g. This is obtained by lowess regression
with f = 0.2. The black curve in Fig.5 corresponding to seed weight 800 g,
although starts from a higher value, has comparatively lower rate of growth and
crosses the two curves below it slightly after 150 days of plant lifetime.
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Fig. 2 Individual growth of yam and median response for seed wt. 500 g

Farmers sometime opt for early harvest due to monetary reasons. Figure 5
indicates that if the yam harvest time is less than 5 months, then a higher seed
weight 800 g is preferred compared to 650 or 500 g. However, this may not be the
case if a farmer prefers to wait till the crop matures. From Fig. 5, it appears that the
growth curve corresponding to seed weight 650 g is superior. This confirms earlier
findings stated in Dasgupta (2015), to recommend 650 g as seed weight of yam to
farmers of Giridih, Jharkhand.

Growth slopes before and after the intervention, when yams are taken out of the
ground, are estimated for each plant, see also Dasgupta (2015). The slopes and the
difference of second slope from first slope for each plant are shown in Table 2.

The normal quantile plots for the first slopes, categorised by date of intervention,
and next combined for all dates are shown in Fig. 6. The coefficient of determination
is exceptionally high in each of the cases, indicating a strong possibility of normal
distribution for these characteristics in hypothesis testing problems.

Figure 7 describes the second slope in normal quantile plot classified according
to the date of intervention, and then combined for all dates. Like the previous figure,
the coefficients of determinations r? are high in each of the cases, indicating a
possibility of normal distribution. Presence of a few outliers is also observed. The
values of 2 are slightly lower than previous figure.
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Fig. 3 Individual growth of yam and median curve for seed wt. 650 g

Difference of slopes i.e., first slope minus second slope are shown in Fig. 8 with
normal quantile plot, categorised with respect to date of intervention. Figure 8a—c,
categorised with respect to date of intervention, and Figure 8d (for combined dates,
with r> = 0.9903433) indicate normal distribution for slope differences as well.

In Dasgupta (2015) fluctuations in growth curves are modeled by Ornstein—
Uhlenbeck (O-U) process V(s). An almost sure type estimate 6, = maXo<s<; |
V(s) | //2Togt of the asymptotic standard deviation of the process is available
from the maximum fluctuation of observed process V(s) on time segment [0, ],
around mean response curve. Figure 9 shows the maximum fluctuation (in absolute
value) of the curves in Figs. 1, 2, 3, and 4 over grid spacing of 1 day on X axis
for time i.e., for each day Fig.9 plots the maximum variation in ¥ axis among
the growth curves shown in Figs. 1, 2, 3, and 4 for various seed weights. The
time range is almost same for plants corresponding to different seed weights viz.,
t = 201,213,212 days for seed weights 500, 650, 800 g, respectively; In Fig. 9 the
peak of the lower three curves viz., 2.532274, 2.340403, 2.938477 is conservative
estimate of /2log7 times the corresponding asymptotic standard deviation of the
underlying O-U process, ¢t ~ 200. None of the three curves with different seed
weights uniformly dominates the other for all values of time. In Fig. 9 the curve
corresponding to seed weight 650 g lies below the curves of other seed weights
for a larger time region and have lower magnitude of peak, it is apparent that the
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Fig. 4 Individual growth of yam and median response curve for seed wt. 800 g

seed weight 650 g is superior in terms of lowering variation in growth curve as
well. These spread index of process fluctuations are nonparametric in nature without
model assumptions, as these are based on maximum fluctuation of curves.

The topmost curve in Fig.9 corresponds to fluctuation of the curves shown
in Fig. 1 i.e., for all seed weights combined. As such, this curve has the highest
fluctuation of magnitude 3.942262, the topmost curve starts from (0.8 — 0.5) = 0.3
kg for y value, the maximum difference between seed weights.

Yet another nonparametric method for comparison of fluctuations around the
response curve is available by comparing the magnitudes of fluctuations on n grid
points of time, n; = 201,n, = 213,n3 = 212 for seed weight 500g, 650¢g,
and 800 g, respectively. For curves corresponding to seed weights 500 and 650 g,
probabilistic ordering of absolute values of residual variables u, v can be quantified
in terms of Wilcoxon two sample U statistic of the formU = ) /L, Z';z:l I(|u;| >
|vj|). While comparing growth curve fluctuations, or absolute deviations d =
dsoo, deso for seed weight 500 g with that for 650 g over time grids, a point estimate
of P(dso0 > deso) is 13(d500 > deso) = U/(niny) = 25344 /42813 = 0.5919697.
The value is significantly different from 0.5 as the standardised value of U is
U* = (U — 2 qmintudnthi/2 — 39375/1216.8058 = 3.236. When
compared with a normal deviate, one sided p-value of significance is 0.0006.
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Fig. 5 Growth curve of yam. By nonparametric lowess regression on median values plotted in
red color in Figures 2—4, we estimate the three growth curves in Figure 5 corresponding to three
different seed weights. The lowermost curve in Figure 5 represents the response for 500 g of seed
weight by lowess technique with f = 0.18. The next prominent curve in blue is response curve
for seed weight 650 g, obtained by lowess technique with f = 0.18. We compute the overall
response curve from the median values denoted by red points in Figure 1, representing the 60 plants
combining all seed weights. The dot-dash curve merged with the blue curve in the beginning, and
then gradually separated towards the end represents the overall response curve, obtained by lowess
with f = 0.18. The uppermost curve from start in black color in Figure 5, corresponds to the seed
weight 800 g. This is obtained by lowess regression with f = 0.2. The black curve in Figure 5
corresponding to seed weight 800 g, although starts from a higher value, has comparatively lower
rate of growth and crosses the two curves below it slightly after 150 days of plant lifetime. Figure 5
indicates that if the yam harvest time is less than 5 months, then a higher seed weight 800 g is
preferred compared to 650 g or 500 g. However, this may not be the case if a farmer prefers to wait
till the crop matures. From Figure 5, it appears that the growth curve corresponding to seed weight
650 g is superior. This confirms earlier findings stated in Dasgupta (2015), to recommend 650 g as
seed weight of yam in Giridih, Jharkhand

Similarly, to compare dggo with dgso we compute P (dgoo > dgs0) = U/ (n3ny) =
25290/45156 = 0.5600585. The standardised value statistic in this case is U* =
2712/1266.1114 = 2.142. The value is significant, one sided p-value is 0.0161.

Next, to compare dggo With dspp we compute ﬁ(dg()() > dso0) = U/(n3ny) =
21719/42612 = 0.5096921. The standardised value of U in this case is U* =
413/1211.0173 = 0.341. The value is insignificant when compared to normal
deviate.

Thus fluctuation of growth curve corresponding to seed weight 650 g is signifi-
cantly smaller compared to those for other two seed weights considered.
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Fig. 6 Normal Quantile plot. (a) First slope (4/9/14); (b) first slope (20/9/14); (c) first slope
(21/9/14); (d) first slope (combined)

Next consider the problem of predicting underground yam weight y on the basis
of above ground biomass x. Figure 10 plots linear regression of these two variables
in usual scale. Coefficient of determination 7> = 0.6816 is high for seed weight
500 g. The regression line being y = —0.4385 + 0.6620x.

For seed weight 650g and 800g, the value of r? is 0.3594 and 0.2153,
respectively.

For all seed weight combined > = 0.445 and the estimated regression line is
y = 0.30879 + 0.45646x.

Accuracy of regression is improved in logarithmic scale. Figure 11 plots linear
regression of two variables x and y in log scale. Coefficient of determination
r? = 0.8073 is higher for seed weight 500 g. The regression line being log y =
—1.3388 + 1.5602 log x.

For seed weight 650 g and 800 g, the value of 72 in log scale is 0.301 and 0.3026,
respectively.

For all seed weight combined r> = 0.5294 in log scale and the estimated
regression line is log y = —0.6430 4+ 0.9933 log x.
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Table 2 Growth slopes and slope difference for 60 yams

Plant no. | First slope Second slope Slope difference
1 —0.0005663093 0.0063264140 | —0.0068927233
2 0.0091070370 0.0136134780 | —0.0045064410
3 0.0041503238 0.0089697390 | —0.0048194152
4 0.0147582333 0.0107379020 0.0040203313
5 0.0140703802 0.0123894710 0.0016809092
6 0.0106750744 0.0117840590 | —0.0011089846
7 0.0133462400 0.0118782350 0.0014680050
8 0.0037203604 0.0158976470 | —0.0121772866
9 0.0078268772 0.0138481310 | —0.0060212538

10 0.0002208142 0.0126073440 | —0.0123865298

11 0.0179773115 0.0193405710 | —0.0013632595
12 0.0025541880 0.0117082350 | —0.0091540470
13 0.0179521429 0.0106114290 0.0073407139
14 0.0077447677 0.0126333480 | —0.0048885803
15 0.0121654194 0.0218775110 | —0.0097120916
16 0.0096988214 0.0195107650 | —0.0098119436
17 0.0117029120 0.0165167060 | —0.0048137940
18 0.0110523306 0.0142243850 | —0.0031720544
19 —0.0023668000 0.0073874710 | —0.0097542710
20 0.0062344643 | —0.0030502220 0.0092846863
21 0.0069604952 0.0123287000 | —0.0053682048
22 0.0093829703 0.0256330000 | —0.0162500297
23 0.0069604952 0.0115850950 | —0.0046245998
24 0.0013409009 0.0102521050 | —0.0089112041
25 0.0153901429 0.0146515290 0.0007386139
26 0.0018458495 0.0088596840 | —0.0070138345
27 0.0129211111 0.0242258820 | —0.0113047709
28 0.0024067719 0.0208463610 | —0.0184395891
29 0.0112332800 0.0217469230 | —0.0105136430
30 0.0073119298 0.0135947060 | —0.0062827762
31 0.0128545546 0.0156648570 | —0.0028103024
32 0.0197922202 0.0129600950 0.0068321252
33 0.0181859322 0.0151580390 0.0030278932
34 0.0128190820 0.0141178180 | —0.0012987360
35 0.0123532877 0.0208008700 | —0.0084475823
36 0.0130321416 0.0262561330 | —0.0132239914
37 0.0080126667 0.0183963580 | —0.0103836913
38 0.0194196111 0.0109762670 0.0084433441
39 0.0073119298 0.0125240000 | —0.0052120702
40 0.0031079360 0.0130115450 | —0.0099036090
41 0.0135979277 0.0096670870 0.0039308407
42 0.0166178667 0.0163945880 0.0002232787

(continued)
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Table 2 (continued)

Plant no. | First slope Second slope Slope difference
43 0.0148882593 0.0240017000 | —0.0091134407
44 0.0072866885 0.0160880000 | —0.0088013115
45 0.0174500000 0.0425086960 | —0.0250586960
46 0.0057369252 0.0321596520 | —0.0264227268
47 0.0170057500 0.0097068060 0.0072989440
48 0.0079587241 0.0262516520 | —0.0182929279
49 0.0130838450 0.0152266270 | —0.0021427820
50 0.0194779048 0.0333803480 | —0.0139024432
51 0.0246120315 0.0169318000 0.0076802315
52 0.0035490642 0.0070421960 | —0.0034931318
53 0.0019969259 0.0129393770 | —0.0109424511
54 0.0091907527 0.0126340480 | —0.0034432953
55 0.0124028772 0.0139012000 | —0.0014983228
56 0.0143830631 0.0263686960 | —0.0119856329
57 0.0122756944 0.0062582090 0.0060174854
58 0.0110014035 0.0221423530 | —0.0111409495
59 0.0082117203 0.0254624710 | —0.0172507507
60 0.0149570492 0.0168282350 | —0.0018711858

271

The absolute residual versus the predictor in usual scale and log scale are shown
in Fig. 12 and Fig. 13, respectively. These do not show any specific pattern. For seed
weight 500 g, four predicted values of yam weight were negative; as such these are
not seen in Fig. 13a.

Similar plots of absolute residual versus yam weight, the dependent variable in
usual scale and log scale are shown in Fig. 14 and Fig. 15, respectively. These figures
do not show any specific pattern.

Next we consider multiple regression of interim yam weight based on above
ground biomass and interim plant lifetime (¢), in days. Multiple regression squared
R?> = 0.7439 is high for seed weight 500g. The regression line being y =
—3.01163 + 0.53668x + 0.02571¢.

For seed weight 650g and 800g, the value of R? is 0.6003 and 0.5105,
respectively.

For all seed weight combined, R?> = 0.6425 and the estimated regression line is
y = —2.570078 4 0.425820x + 0.025493¢.

Accuracy of regression is improved in logarithmic scale. Multiple regression
squared R> = 0.8204 is high for seed weight 500 g. The regression line being
logy = —6.8715+ 1.43111logx + 1.1957 log¢.

For seed weight 650 g and 800 g, the value of R? in log scale is 0.5359 and
0.5573, respectively.

For all seed weight combined, R> = 0.6496 in log scale and the estimated
regression line is log y = —8.0125 4 0.9284logx 4 1.56551log?.
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The absolute residual versus the interim yam weight in usual scale and log scale
are shown in Fig. 16 and Fig. 17 respectively. Once again, these do not show any
specific pattern.

Farmers have an idea about final yield based on the above ground biomass at
the middle of season. Consider multiple regression on final yield based on above
ground biomass and plant lifetime till the end. For seed weight 500 g, R? of multiple
regression is 0.774. The regression line being y = 0.383917 4 0.841309x —
0.003094¢. Biomass is highly significant with p = 1.76 x 107,

For seed weight 650g and 800g, the value of R? is 0.6635 and 0.3052,
respectively. Biomass is significant in both the cases.

For all seed weight combined R?> = 0.5858 and the estimated regression line
is y = 0.465162 4 0.570168x + 0.001582¢. Biomass is highly significant with
p=4.94x10712,

Accuracy of multiple regression is improved in logarithmic scale. For
seed weight 500g, R? of multiple regression in logarithmic scale is 0.8121.
The regression line being y = —0.07992 + 1.14006logx —0.065101og¢. Biomass
is highly significant with p = 3.68 x 1077, For seed weight 650 g and 800 g, the
value of R? is 0.5357 and 0.4697, respectively, in logarithmic scale. Biomass is
significant in both the cases.
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slope difference (21/9/14); (d) slope difference (combined)

For all seed weight combined R?> = 0.623 and the estimated regression line is
y = —0.37435 + 0.78323 log x 4+ 0.07546log ¢. Biomass is highly significant with
p = 2.5 x 10713, Absolute residual plots (not shown in figures) do not exhibit any
pattern in this case.

Above ground biomass is seen to be significant in all cases as a predictor of final
yield of the crop.

Since the growth curve corresponding to seed weight 650 g is superior, it is of
interest to examine the proliferation rate of this. In Fig. 18 we plot the proliferation
curve obtained by a technique described in Dasgupta (2013b). To start with, median
of the (normalised) exponentially weighted individual 213 slope estimates obtained
from the lowess estimate of growth (the blue curve in Fig.5) are considered for a
particular time point. These median values of slope estimates for 213 time points
are smoothed by SPlus smooth.spline with spar=0.2 to obtain Fig. 18.

Proliferation rate of yam growth shown in Fig. 18 for seed weight 650 g decreases
in the beginning and gradually takes an upturn slightly before 100 days, and then
increases sharply towards the end indicating the final days in yam lifetime are
important in yam growth.
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Fig. 9 Maximum fluctuation of growth curves over time

One may compare above ground biomass over different seed weights. Tender
yam stems have a market value. To test whether biomass b,, is higher for higher
seed weight w, w = 500, 650, 800 g, consider first the Wicoxon 2 sample U statistic
with kernel 7(bgs9 > bs09), based on column 6 of Table 1, computed on the basis of
20 plants in each group of seed weight. The standardised value of U = Ugs 500 for
comparing seed weight 650 g with 500g is U* = (U — 200)/{%}1/2 =
(250 — 200)/36.97 = 1.35, and P (bgso > bsoo) = U/400 = 250/400 = 0.625.
When compared with a normal deviate, one sided p-value of significance for U* is
0.0885.

Similarly, ﬁ(bgoo > bgso) = U/400 = 242/400 = 0.605. The standardised
value of U is U* = (U — 200)/{ 22220172 — (242 — 200)/36.97 = 1.14,
one sided p-value of significance is p = 0.127.

Finally, to compare biomass bgyy with bsp, one has ﬁ(bg()() > bsp) =
310/400 = 0.775, with U* = (310 — 200)/36.97 = 2.97; one sided p-value
of significance for U* is 0.0015.

The above ground yam biomass for seed weight 800 g is significantly higher than
that for 500 g.
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650 g; (c) seed wt. 800 g; (d) all seed wt.

3 Plant Lifetime, Folded Normal Distribution
and Weibull Model

(i) Continuous variable: Growth curve of yam plant lifetime may be modeled by a
Weibull distribution e.g., see Dasgupta (2014).

Hazard rate of plant lifetime distribution is associated with crop harvest rate and
market supply. Figure 19 shows 60 yam plant lifetimes in Weibull probability plot.
Data points adhere to 95 % confidence band, justifying Weibull model for plant
lifetime. Growth curve of yam plant lifetime is shown in Fig. 20. The curve shows a
sharp rise towards end.

Weibull distribution has wide applications in industrial context and is a candidate
model for burr, see Dasgupta (2011). Effect of crossing a (large) threshold on the
quantiles of Weibull distribution is considered in Dasgupta (2013c). Such studies are
of interest for analyzing excessively large yam plant lifetime, following a Weibull
model.

Consider the hazard rate of distribution G for folded normal variable Y = |X|,
where X ~ N(0,0?). The distribution of Y is positively skew. Folded normal
distributions also have applications in modeling industrial job characteristics when
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Fig. 11 Regression of interim yam wt. on above ground biomass in log scale. (a) Seed wt. 500 g;
(b) seed wt. 650 g; (c) 800 g; (d) all seed wt.

signs of the variables are ignored; see, e.g., Dasgupta (2005) and Leone et al.
(1961). From normal tail probability expansion up to third order for large values
of ¢, one may write for hazard rate k() of an approximate folded normal variable
Y, ~Y(1 + 0,(1)) with density 2¢(¢ /o)(1 + o(1)),f > 0 as

by = 290y iy W)

1+o0(1
(/o) b + oz

= L= /o) +30/0) 7 (1 + 0(1)

~ 3{1 (/o) =3/o) Nt > 00 ()

The leading term in the approximation (3.1) for ¢ large is é = g(¢), say. Error in
approximation for folded normal is small, as this is of order ¢ 2.

Since the hazard rate characterises a distribution, the only distribution with
hazard rate g has the distribution function

F(x) = 1—e o gWdy = | _ p=x*/(20%)

This is a Weibull model of the form F(¢) = 1 — exp(—(t/8)%), > O,
a > 0, > 0, having hazard rate g, (¢) = %(%)“‘1.
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Fig. 12 Absolute residual plot of yam wt. in above ground biomass regression. (a) Seed wt. 500 g;
(b) seed wt. 650 g; (c) seed wt. 800 g; (d) all seed wt.

With « = 2,8 = +/20, F matches G in terms of the limiting form of hazard
rate. Hence the following.
Theorem 3.1. Weibull model F(t) = 1 —exp(—(t/B8)%),8 > 0, > 0,¢ > 0, with

hazard rate h(t) = %(%)”‘_1 is the only distribution for « = 2,8 = /20, that has
the limiting hazard rate of a folded normal variable Y = |X |, where X ~ N(0,?).
The error in hazard rate approximation is O(t™2), ast — oo.

(ii) Discrete variable: Dasgupta (1993) characterised discrete version of the normal
distribution by considering the m-dimensional random variable (Xi,: -, Xy),
where the X; are independent, radially symmetric, and discrete, and found that if
their joint distribution depends only on the displacement r> = X? +--- + X2 then
for m > 4 the marginal distributions have p.m.f. P(X; = x) = cexp(—Bx?),
i =1,---,m, where the supportis Z = {0, +1,+2,+3,---},8 > 0, and c is a
normahslng constant involving Theta function of order 3. The characterisation does
not hold for m = 2, 3 is also shown therein.

For a relationship between the sum of series involving the terms exp(—Sx?) and
expansion of Theta functions, see, e.g., Whittaker and Watson (1927).

Characterisation results are possible with similar assumptions for discrete ran-
dom variables on the set of nonnegative integers Z* = {0,1,2,3,---}, so as to
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Fig. 13 Absolute residual plot of yam wt. in above ground biomass regression (log scale). (a)
Seed wt. 500 g; (b) seed wt. 650 g; (c) seed wt. 800 g; (d) all seed wt.

accommodate nonnegative discrete random variables like plant lifetime measured in
days. Characterisation theorems help us to focus on appropriate choice of models.
Proceeding in a similar fashion like Theorem 1 of Dasgupta (1993), it is possible to
obtain the following.

Proposition 3.1. Let (Xy,---, X)) be the m-dimensional random variable where
the X; are independent with support as Z*. If the joint distribution depends only on
the displacement r* = X12 + ++-+ X2, then for m > 4 the marginal distributions
have p.m.f. P(X; = x) = cexp(=Bx?),i = 1,--- ,m,x € Z*,8 > 0,andc isa

normalising constant. This characterisation does not hold for m = 2, 3.

The p.m.f. stated in Proposition 3.1 refers to a discrete version V' of folded normal
distribution, folded at origin. To avoid confusion with notations let us write the form
as

PV =k)=pr =ce ¥/ 52>0 kez* (3.2)
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with hazard rate

hy =

Dk e K/
Z;)o k PJ Z

Next, write the denominator in (3.3) as

(2k+1)

_jz/(ZGZ) =¢(k/o)/ Zjik

)

_(6k+9)

_ (8k+16)

2
e 202 {l+e

> 2
E e_2(772 =
Jj=k

202

+e

202

+e

202

+e 22

— K ] | o= CRHD/207 (] O(e_n%))}

Thus from (3.3) and (3.4), one gets

k_
he =1—ye "1+ 0 ) ~1—ye P k - o0

where B =072,y = e P2

If U is Weibull with survival function F (1) = exp(—Au®),
A > 0,a > 0, then the integer part V* = [U] € Z* is a discrete Weibull variable

with survival function

¢(j/o)
3.3)

+ .- }
(3.4)
3.5)
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P(V* > k)= P(U > k) = exp(=Ak%) = ¢, q = exp(=L); k € Z*.

The p.m.f. of V* is,

pi=PWV*=k)=q¢" —q*tV" ke z*.

Hazard rate of discrete Weibull variable V* for k € Z* has the following
representation.

rE(g.a) = p/ Y02 pE = 1= (@*V TR = 1— (@)1 ky € (k. k + ).

The r.h.s. of (3.5) is of the form (8) of Dasgupta (2014) with ¢ = 2, as seen from

the above expression of r*. Hence the following,

Proposition 3.2. Consider the discrete version of folded normal distribution with
p.m.f. given in (3.2). The hazard rate of distribution (3.2) is hy ~ 1 — ye Pk,
B =072y =eP? k — oo, resembling the form (8) with a = 2 given in
Dasgupta (2014) for hazard rate of a discrete Weibull variable.

Proximity of these distributions with Weibull model is of interest in survival analysis
including plant lifetime modeling.
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Fig. 16 Absolute residual vs. yam wt. in multiple regression. (a) Seed wt. 500 g; (b) seed wt.
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4 Discussion and Conclusions

Growth curve of Elephant foot yam with seed weight 650 g shows superior yield in
longitudinal study. As such this seed weight may be recommended to the farmers of
Giridih, Jharkhand. The curve has a spike towards end of the plant lifetime. Yield
will be much higher, to the tune of five times, if the crop is harvested at the end of
season. Farmers sometime prefer early harvesting for monetary reasons. The yield
is approximately double, if the crop is harvested after 75 days from sprouting of the
plant; young and tender stems also have a market value. Above ground biomass
of yam is significantly higher for seed weight 800 g than that for 500 g, in the
middle of crop season. Growth slope and difference of growth slopes over different
time segments for individual plants are linear combinations of yield observations,
and are seen to follow normal distribution. Residual variations of the growth curve
are modeled by the asymptotic variance of Ornstein—Uhlenbeck process. These are
also compared with Wilcoxon 2 sample U statistics. Curve corresponding to 650 g
of seed weight seems superior for less variation. Prediction of underground yam
weight based on observable above ground biomass reveals a nonlinear relationship;
the coefficient of determination r? is high in logarithmic scale. The same holds
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Fig. 17 Absolute residual vs. yam wt. in multiple regression (log scale). (a) Seed wt. 500 g; (b)
seed wt. 650 g; (c) seed wt. 800 g; (d) all seed wt.

true for R? of multiple regression with additional predictor variable ¢ of plant
lifetime while recording interim yield. Multiple regression on final yield based on
above ground biomass at the middle of the season along with plant lifetime till the
end is high in logarithmic scale. At each stage of analysis, above ground biomass at
the middle of season remains significant for yield prediction, indicating that biomass
is a good predictor for crop yield.

Modeling of plant lifetime is made by Weibull distribution. For some specific
choice of parameters Weibull is the only distribution that has the limiting hazard
rate of folded normal variable. Similar results hold for discrete version of variables.

With a sample size 60, the present study reconfirms some of the results stated in
Dasgupta (2015) based on a sample size 6, which is 10 % of the present size. This
conforms to the general assertion that data contains a lot of information, even in
small sample sizes.
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Fig. 19 Weibull probability plot of 60 yam plant life, 2014
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Fig. 20 Growth curve of 60 yam plant life time resembling Weibull growth
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Optimal Choice of Small Regular Shapes
for Accidentally Damaged Tessellation

Ratan Dasgupta

Abstract Objects of regular shapes like triangles, squares, pentagons, etc., are
assembled to construct differently designed tessellation. We study the optimal
choice of small regular shapes (SRS) so as to minimise replacement cost due to
accidental damage in an assembled structure. The SRS are often used to cover
regions vulnerable to damage from a sudden hit. Efficiency and “equivalent edge
number” of an SRS ensemble are defined and applications indicated. Monotonicity
of “equivalent edge number” in tessellations is proved under certain assumptions.
Growth in efficiency of SRS with respect to increase in the number of sides of SRS is
studied. An example discussed, modeling of the crack lengths in damaged shield by
Ornstein—Uhlenbeck process is made and severities of damage in two occasions are
compared. A data set arising from growth experiments having a structured layout
like tessellations of seedling is analysed in a similar technique to study possible
propagation of damage due to pest infection in plants from afflicted pits to adjacent
pits.

Keywords Small regular shape * Regular polygon ¢ Equivalent edge number ¢
Tessellation * Fractal dimension ¢ Ornstein—Uhlenbeck process

MS subject classification: Primary: 60D05, secondary: 62P30.

1 Introduction

Consider a floor or window glass pane that has to be covered with small regular
shaped tiles. We consider tessellation by small regular shapes (SRS) to minimise the
repair cost of accidental damage/crack caused due to sudden hit by some external
body e.g., random hit by a hard object like bullet. Subsequently those broken SRS
have to be replaced by new tiles to repair the damaged panel.
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The regular shapes are seen to arise in nature, e.g., hexagonal structure of a
honeycomb cell, pentagonal cross-section of okra, sea star, star-fruit with cross
section having fivefold radial symmetry, etc.

To cover an area by objects of SRS i.e., small regular polygons of same type, we
need to restrict the number of edges in SRS. Only three regular polygons tessellate in
the Euclidean plane resulting in uniform pattern viz., triangles, squares or hexagons,
see Branko and Shephard (1987). Since the regular polygons in a tessellation must
fill the plane at each vertex, the interior angle must be an exact divisor of 360°. This
works for the triangle, square and hexagon. For all the other SRS, the interior angles
are not exact divisors of 360°, and therefore those figures cannot tile the plane.

Hirschhorn and Hunt (1985) considered tessellation of plane with convex
pentagon having different internal angles at cojoined edges. It is possible to cover
areas in a plane by adjusting edges of different SRS giving rise to different designs
in architecture, e.g., see Steinhaus (1999).

Some broken/incomplete shapes may be required near the edges of a large square
panel to fill the gaps.

To start with, we shall make the following simplifying assumption (to be relaxed
later): the size of the hitting object is small enough compared to the size of an SRS,
so that if the hit is made completely within the periphery of a particular SRS and
cause damage, then a single SRS is affected, and only that SRS has to be replaced
for damage repair. In such a situation inside crack may extend up to the periphery
of that SRS, and we assume that it will not cross the boundary of that SRS. If the
hit occurs on an edge of SRS affecting the nearby SRS as well, replacement cost is
more. The scenario may be generalised to a higher dimension. SRS of dimension 3
are of interest when a given volume has to be filled by objects of smaller volume;
replacement cost will be less when only one such SRS is accidentally damaged.
Cost will increase if accidental damage crosses the boundary of originating SRS
and affects adjacent SRS as well. We show that SRS that are more near to circular
(spherical) shapes are superior for damage control and cost reduction.

In Sect.2 we state the main results and develop a measure of efficiency to
compare two tessellations with different combinations of SRS. For an SRS ensemble
we introduce a notion of “equivalent” edge number that may not be an integer, this
is much like a fractal dimension in self-similar patterns, and show that “equivalent”
edge number is monotone. Assumption that a single SRS be affected is relaxed.
Modeling the crack lengths by Ornstein—Uhlenbeck process and comparison of
damage severity in two occasions are made in terms of process parameters. Some
examples are discussed. The results may be extended to higher dimensions. In
Sect. 3 we analyse a data set on agricultural growth experiment taking into account
propagation of damage due to infection in adjacent pits percolated from damaged
pits, where the experimental data arise from a structured layout like tessellation. In
Sect. 4, three dimensional honeycomb structure and choice of SRS are examined.
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2 Efficiency in SRS Ensemble and Main Results

Denote the perimeter and area of a planar shape by L and A, respectively. Then
4wA < L? (D)

This is known as the Isoperimetric Inequality, e.g., see Osserman (1986). The
equality holds only for a circle. Isoperimetric Inequality can be extended to higher
dimensional spaces. For example, if S is a surface area while V a volume of a three
dimensional body, then

36nV? < §3 2

The inequality states that among all three dimensional solid bodies with a given
surface area the sphere has the largest volume.

Inequality (1) provides an indication that an SRS that is nearer in shape to circle
of same area has lower perimeter and may have advantage over other SRS in two
dimensions for replacement cost reduction due to damage. Lower perimeter of SRS
with area fixed makes it less likely for a bullet to hit on edges.

It may be mentioned that the terminology “isoperimetric” is also commonly used
in a metric space associated with Borel probability measure, and should not be
confused with the problem considered in the present context. Isoperimetric (literal
meaning “having the same perimeter”) inequalities in the context of probability and
associated concentration of Borel probability measure on a compact metric space
lead to exponential bounds for concentration function. Under certain conditions,
complement of the neighbourhood of radius r of a set with probability larger than
1/2 decreases exponentially fast when » 1 oo; for example, see Ledoux and
Talagrand (2002).

Since the SRS are adjusted side-by-side, an edge of the SRS is cojoined with the
edge of adjacent SRS. As a result, total length of small edges inside the large panel,
ignoring possibly those incomplete edges near the panel sides, is approximately
equal to the total length of cojoined edges, and that equals half of the total perimeter
of these SRS.

2.1 Computation of Efficiency

Assuming that the bullet hits the panel at random, the probability of damage to more
than one SRS is proportional to its perimeter to a first degree of approximation,
when we consider SRS with different number of edges having equal area. To have
an optimal choice, we compare perimeters of SRS. The restriction of equal area is
made from the viewpoint of production-cost of SRS. To a first approximation, cost is
proportional to amount of production material required, which in turn is proportional
to area.
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It is possible to cojoin SRS of different types to have different type of patterns.
We consider broader class of shapes of the type squares (four sides), pentagon
(5), hexagon (6), heptagon (7), octagon (8), nonagon (9), etc., to compare relative
advantage in minimising the perimeter. We prove the following.

Proposition 1. Let the probability of hitting the edge of an individual SRS in an
ensemble of SRS in a tessellation be proportional to the perimeter of SRS. Let the
efficiency e; 4 of an i-edged SRS, compared to a square SRS with same area, be
defined as the ratio of the corresponding probabilities, i > 3.

Then,

ez4 = 0.8773827, es4 = 1.049336, es4 = 1.07457, e74 = 1.089304,
eg4 = 1.098684, eg4 = 1.105034, - ec4 = 1.1283709.

Proof. Let N be the number of sides and r be length from centre to a corner. Then
area of a regular polygon with N sides is (1/2)N sin(27/N)r>.
Area of a pentagonal SRS with side length # and perimeter 5¢ is

As = '2—"25:'10‘5 ~ 1.720477t%. Area of a square shaped SRS with side length
d and perimeter 4d is A4 = d*. Equating the areas A, = As, one gets advantage
of pentagonal SRS over square SRS as the ratio of the probabilities (or, ratio of
perimeters) expressed approximately as

esq = (4d)/(5t) = 1.049336.

Similarly, area of a hexagonal SRS with side length ¢ and perimeter 6¢ is A¢ =
%gtz ~ 2.5981¢2. Equating the areas A4, = A, one gets advantage of hexagonal
SRS over square SRS as the ratio of the probabilities expressed approximately as
eca = (4d)/(61) = 1.07457.

For heptagonal SRS with side length ¢ and perimeter 7¢, the area is
A; = Z—Jz cot 7 ~ 3.633912444¢%, and e74 = (4d)/(7t) = 1.089304.

For octagonal SRS with side length # and perimeter 8¢, the area is
Ag = 2(1 + /2)12 ~ 4.82842712, and es4 = (4d)/(81) = 1.098684.

For nonagonal SRS with side length 7 and perimeter 9¢, the area is
Ay = %IZ coty ~ 6.18182¢2 and efficiency under the restriction of same area
Ag = Aygiseqs = (4d)/(91) = 1.105034.

For a triangular SRS with side length ¢ and perimeter 3¢, the area is
Ay = L2 and ey = (4d)/(31) = 2(3/%)/3 = 0.8773827.

It is evident that as the number of sides in SRS increases, efficiency also increases
and the shapes gradually tend to be circular.

The limiting efficiency can be computed in terms of ratio of approximate

probabilities as follows:
Tr? =d? eoos = 2L =2/ /m = 1.128379.

2rr
Note that triangular shaped SRS are inferior to square shaped SRS. Gain in

efficiency due to the variation of SRS is about 25 %. Tessellations of plane by two
or more convex regular polygons such that the same polygons in the same order
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surround each polygon vertex are called semiregular tessellations, or sometimes
Archimedean tessellations. Demiregular (or polymorph) tessellations are orderly
compositions of regular and semiregular tessellations.

Assume that the cost of replacing an SRS is proportional to its area. Further
assume that the number of SRS is large enough so that the edge perimeter of the
panel to be covered is negligible compared to the combined perimeters of the SRS
required for tessellation of a large area. Broken, incomplete shapes to fill the gaps
near periphery may also be ignored in the approximation. We have the following.

Proposition 2. Let the number of regular polygon with i-edge be n;,i = 3,4,5---
used for a general polymorph tessellation A of a two dimensional area. The
efficiency of such a tessellation against damage by a random bullet-hit with respect
to tessellation made by squares alone, having same respective area with those SRS
used in tessellation A is approximately,

1
eas =~ Zn,-e,% +o0(1), asn — oo 3)

wheren =Y n;.

Note: The measure e 4 4 represents ratio of the two probabilities of damage for more
than one SRS in the ensemble A, and that for a hypothetical ensemble made up with
squares only, having respective areas with SRS in 4.

Proof. The proof follows from the fact that probability of a striking bullet or small
object damaging more than one SRS is proportional to the sum of perimeters of SRS
to a first degree of approximation, from the assumptions made.

Since e; 4 is increasing in the first coordinate, it is clear that regular polygons with
more number of edges are more desirable for less damage, if the area of the polygons
remain same to the respective squares.

Proposition 1 gives rise to the possibility of comparing two different tessellations,
A with respect to B for the same area with the following measure of efficiency

eAB =€44/€B4 “4)

Tessellations A and B for a region may be compared by Eq. (4), even though the
same region may not be tessellated by square SRS of different areas, as those used
in A and B.

Simple to complex patterns are studied as time progressed, see, e.g., Devlin
(2001). While studying patterns of regular shapes in geometry, the simplest figure
is an equilateral triangle, where the sides are all equal and the angle of each vertex
is 60°. Then comes a square, followed by a regular pentagon (a 108° angle between
touching edges), a regular hexagon, and so on. One may plot the gain in above-
mentioned efficiency when geometrical shapes are sequentially considered from
edge 3 onwards, see Fig. 1; the curve is drawn in SPLUS using cubic spline (with
smoothing parameter n = 300). The boundary of the convex hull of points e; 4
considered in (3) is obtained by joining these points by straight lines. The spline
curve mimics this boundary of convex hull.
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Fig. 1 Efficiency of SRS with respect to square. The above growth curve explains that efficiency
of SRS increases with increase in equivalent number of edges. The resultant SRS approaches to a
circular shape to achieve the limiting efficiency, as stated in Proposition 1

The y coordinate on the curve in Fig. 1 represents the collection of efficiency
e € [0.8773827, 1.128379] for different assembly of SRS as mentioned on the r.h.s.
of Eq. (3). The x coordinate corresponding to this value of y on the curve may
be interpreted as the “equivalent” number of edges for such an assembly of SRS
giving rise to this particular efficiency for the least value of the “number of edges”.
This “equivalent” edge number may contain fraction, much like a fractal dimension.
This summary characteristic represents the closeness of the assembly (in terms of
the efficiency) to a single number for the edge of SRS. The curve of Fig. 1 explains
growth in efficiency in terms of equivalent edge number.

Denote n = (n3, ng4,ns,---); we show that for an assembly of SRS the equivalent
edge number m = m(n) is monotone in the following sense.

Proposition 3. Let the number of regular polygon with i -edge be n;, i = 3,4,5---
used for a general polymorph tessellation A of a two dimensional area. Let there be
another tessellation B with SRS of similar areas and there exists an integer p > 3,
such that the number of regular polygons with i-edge n;,i = 3,4,5--- satisfies
n; <n;for3 <i < pand n; > n; fori > p. Then considering only the main
terms of (3), the corresponding equivalent edge numbers for the assembly A and B

satisfy
m < m (®)]

where m = m(m), m’ = m(n'). The inequality in (5) is strict unlessm = n’.
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Proof. This follows from the fact that from Eq. (3), e4 4 < ep 4. The curve in Fig. 1
is monotone and strictly increasing as the quantities e¢; 4 1, as i 1 . Note that the
x coordinate corresponding to the value of y on the boundary of the convex hull is
defined as the “equivalent” number of edges for an assembly of SRS giving rise to
this particular efficiency for the least value of the “number of edges”.

In three dimensions, a polyhedron which is capable of tessellating space is called
a space-filling polyhedron. Examples include the cube, rhombic dodecahedron and
truncated octahedron. There is also a 16-sided space-filler and a convex polyhedron
known as the Schmitt—Conway biprism which fills space only aperiodically, making
a nonperiodic structure. In three dimensions the optimal solution is sphere, as seen
from inequality (2). Thus the SRS that is nearer to spherical shape has advantage
over other SRS of same volume.

2.2 Generalisations

Assumption made that the cracks are contained in a single SRS when bullet hits
inside an SRS may be relaxed. Even then SRS with nearly circular shape has
advantage. A circular region is severely affected surrounding the point of bullet hit
from which lateral cracks propagate. Consider the maximum length of propagating
lateral cracks in a hit. The distribution of the maximum of a random number of
random variables is an extreme value distribution under mild assumptions, e.g., see
Galambos (1973). The angle 8 of direction of the maximum length may be measured
w.r.t. a fixed coordinate system, & may be taken to be uniform (0, 27]. It therefore
follows that to contain a crack of maximum-length inside an SRS assembled, the
SRS has to be of nearly circular shape; as the direction is uniform.

Consider W,, = max{Xi, X2,---, X,,} to be the maximum of different crack
lengths originating from a single hit, where the number of cracks v, is random.
From Theorem 1 of Galambos (1973), under certain regularity condition, one may
write lim,,— 0o P [(W,, —by,)/a,, < x] = e™*), where w(x) can have three specific
forms corresponding to three extreme value distributions.

2.3 An Example

In Fig. 2, we plot in X axis the length of 12 linear cracks on glass due to a sudden
hit in a car shield, versus normal quantile plot in Y axis. Approximate linear
relationship is observed with a high value of = 0.980125, where r? is coefficient
of determination, indicating that crack length may be approximated by a normal
random variable, leading to w(x) = e~ in the limit law of maximum length, when
total number of cracks v, is random.
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Fig. 2 Normal quantile vs. crack length quantile. Length of 12 glass cracks due to sudden hit
versus normal quantile plot indicates that the distribution of crack length may be approximated by
a normal random variable

2.4 Superiority of Nearly Circular SRS

One may probabilistically approximate number of affected SRS from the constants
involved in the model and radius of SRS, r. Assume that the variables X of crack
lengths are standardised: X — Xd_". Leta, = i — %bn (loglogn + log4r), b, =
(2logn)~'/2.

From (Galambos 1973), (W,, —a.,)/b, i exp(—e™),—0o < x < 00,

ie, W,, = 2logv,)2(1 4+ 0,(1)).

Approximate length of maximum crack is
€= (2logvy)'? + ¢)d(1 + 0,(1)).

Approximate number of SRS to be replaced in the direction of maximum length
is then £ = ((2logv,)"? + )£ (1 + 0,(1)).

Since each directional angle is equally likely, the total number N of SRS to be
replaced due to crack has an approximate bound,

N < (€/r)*(1 4 0,(1)).

In the case of exponential distribution for length of cracks, similar bounds hold
with a different choice of standardising constants a,,, b, .
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Angle made by the crack having maximum length is equally likely in each
direction, indicating superiority of nearly circular SRS to minimise replacement
cost, even when cracks are likely to affect the adjacent SRS.

2.5 A Measure for Severity of Hit

Maximum length of crack originating from point of hit is a measure of impact sever-
ity. Bullet proof glass is usually constructed using polycarbonate, thermoplastic,
and layers of laminated glass. A piercing bullet in glass forms a nearly circular
hole with a series of outward cracks propagating towards periphery from the centre.
High impact at the point of hit makes the cracks look like a continuous curve with
spikes around a hole of large perimeter at centre. Dissecting the formed hole at
a point on the rim and then by straightening the perimeter of length T along the
X -axis, one may visualise the cracks at each point ¢ € [0, T') on rim along Y -axis.
Successive crack magnitudes may be (weakly) correlated. Figure 2 indicates these
may be Gaussian. Justification of quantile plot to assess normal distribution for
weakly correlated process is made in Dasgupta (2013). In the following we state
a modification of relevant result. The proof is similar.

Theorem A. Consider a Gaussian process X(t), 0 <t < T with mean m(t) and
covariance kernel o(t,u) = o(t)o(u)p(t,u), where m(t) — 0, o(t) —> o; t —
0o. Assume X (t) has the weak limit denoted by X(0o) and the correlation function
lo(t,u)| < K|t—u|™", K >0, B > 0. Consider the empirical distribution function
of the process based on the observations at time points t,t,,- - , t, which are not
necessarily equispaced. Let the time interval [0, T') of recording the observations be
subdivided into k subintervals and the length of all except finitely many subintervals
and the number of observations in each subinterval, except finitely many increase
to oo. Also let the time gap between two consecutive observations within each
subinterval be homogeneous and the number n* of “isolated” observations which
do not fall in any one of the homogeneous subintervals, be negligible compared
to n, i.e., n* = o(n). Then the empirical distribution function of the recorded
observations from the process is a strongly consistent estimate for distribution
Sfunction of the limiting variable X (00), as n — oo.

Bullet hit may cause extensive damage to a glass shield in which some region
projected outward from centre is blown up due to excessive impulse with possible
missing observations on crack length. Theorem A applies even in that case. The
crack lengths, measured from point of hit may then be examined for modeling by
Ornstein—Uhlenbeck process V(s), a stationary continuous Gaussian process with
exponentially decaying autocorrelation function.

The Ornstein—Uhlenbeck (O-U) process is continuous, strongly Markov, strictly
stationary and Gaussian. Apart from some pathological examples, the above
properties characterise O-U process. In the present case, the crack lengths are
Gaussian, the variables may be taken stationary due to arbitrary choice of axis in
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polar coordinates, with origin at the point of hit. Markov property is a simplifying
assumption in view of the fact that an in-between crack may deter a crack to
influence another crack. High pressure exerted from bullet hit causes material grains
to displace and oscillate around its steady state resulting in crack formation.
Ornstein—Uhlenbeck process satisfies the following differential equation.

dV(s) = —BV(s)ds + ydB(s), B >0, y > 0 6)

where B(s) is the standard Brownian motion, y is the spread parameter, f is the
drift parameter; BV (s) is a restoring force directed towards origin proportional to
the distance V(s).

The parameter y in (6) reflects the magnitude of hit, parameter § is related to the
resistance of glass to minimise crack due to bullet hit.

Using the relationship V(s) = e #*B[y2(e** — 1)/2p]. see, e.g., Karlin and
Taylor (1981), one may write

2
mt_mo[%(l +o(1))logt]™"? sup | V(s) |=1, as. @)

0<s<t

From (7), the value of (2log?)~!/? SUpg<s<, | V(s) | may be taken as an estimate
of y/(2B)'/?, which equals to the standard deviation of the Ornstein—Uhlenbeck
process. In the present case, ¢ represents the rim-perimeter of holes, on which the
cracks are formed. The crack lengths, caused by bullet hit, over the rim of pierced
hole at different points s, 0 < s < ¢, are modeled by the Gaussian process V(s).
Intensity of hit may cause formation of several layers of ring-cracks propagating
from the point of hit, see Fig.3. These curves indicate propagation of impact as
distance from centre increase.

Cracks formed in hit 1 and 2 may be compared by the ratio of maximum crack
lengths occurring in two occasions, with associated index

[{g—f logt1}/ {g—zj log 1,}]'/? for relative severity of damages, where B;, y;.1; rep-
resent the drift, spread and hole perimeters, respectively, in occasion i = 1, 2.

If the hole perimeters are same to a first approximation, #; X f,, then the ratio of
maximum crack lengths is an estimate of ratio of two asymptotic standard deviations
v/(2B)"/? for the associated processes. Applications of O-U process in industrial
context are also made in Dasgupta (2006) and Dasgupta (2011).

In the following we consider damage assessment in an agricultural experiment
on yam. The data arise from a structured layout of seed weight and seed skin texture.

3 Damage Assessment in a Designed Growth Experiment

Growth model experiments in Graeco—Latin square design with Elephant foot yam
are conducted in Indian Statistical Institute, Giridih farm to examine inter alia
the effect of seed weight and seed skin texture on yield. Two Latin squares are
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Fig. 3 Bullet hit glass shield. A bullet hit shield shows several layers of circular type damage rings
propagating outwards from centre, the point of hit. The lateral cracks of high magnitudes are also
seen

orthogonal if the two squares when superimposed have the property that each pair of
letter appears only once. The superimposed square is called a Graeco—Latin square.
A 5 x 5 Graeco—Latin square is shown below.

Aa BB Cy D§ Ee
By C§ De Ea AP
Ce Da EB Ay B$§
DB Ey A Be Cu
ES§ Ae Ba CB Dy

In the field experiment two characteristics of the planted cut seed of yam corm
tested are represented by Latin and Greek letters; viz. weight and surface area,
respectively. Here A = 200, B = 350, C = 500, D = 650, E = 800 are weights
in grams of the seed, and the Greek letters o represents largest and smoothest surface
area of the seed, B being the second largest & smoothest and so on; € represents the
smallest and roughest surface area.

The above Graeco-Latin square were repeated four times side by side in a block
of two squares, and the pit-holes are numbered 1-5 for the first row in reverse
direction i.e., as Ee€, D§, Cy, BB, Aa, in the first experiment. The numbering goes
on in the same row of adjacent second design as 6 to 10, and so on. Finally,
the pit holes are numbered 91-95 for the last row of the 2 x 2 block viz.,
Dy, CB, Ba, Ae, E§, in the third experiment; and the numbering goes on in the
same row i.e., the 10-th row with above combination of alphabets in adjacent design
number 4, as 96-100.
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White ant and fungal infection are two main causes that hampers the sprouting
of seed corm, and these may percolate to geographically nearest neighbours from
an infected pit.

The following data relates to weights in kilogram of 100 yams from a growth
experiment conducted in the year 2010 at Indian Statistical Institute, Giridih farm
in the above-mentioned serial order from 1 to 100 (from start, left to right; row
wise). Data structure presented below mimics the actual layout adopted in the yam
experiment on field. We wish to see the observed efficacy of the design for damage
control with respect to random uniform weight and skin structure of the seed corms
allotment.

4.50, 3.20, 2.60, 3.15, 2.05, 2.10, 2.65, 0.80, 1.70, 1.15,
2.90, 3.50, 4.35, 3.85, 3.60, 1.30, 2.20, 1.70, 3.70, 2.50,
3.40, 3.10, 4.45, 5.60, 4.15, 1.50, 1.90, 2.00, 3.10, 3.00,
3.10, 2.25, 2.65, 2.90, 3.60, 1.50, 1.20, 0.70, 2.80, 2.70,
3.75, 2.05, 1.60, 1.50, 3.60, 2.20, 1.40, 1.20, 0.00, 2.40,
2.50, 1.45, 1.05, 0.70, 0.00, 2.25, 2.00, 2.45, 1.55, 0.90,
0.75, 2.65, 2.25, 1.20, 2.25, 2.00, 3.80, 3.00, 3.00, 2.35,
1.05, 0.80, 3.80, 2.30, 3.80, 1.60, 0.00, 3.60, 1.60, 4.00,
3.00, 1.95,2.00, 3.65, 3.60, 1.40, 1.40, 1.30, 3.90, 3.60,
5.50, 2.90, 2.60, 1.70, 2.80, 1.90, 1.70, 1.80, 1.10, 2.80.

Observe that the yield is nil for pit number 49 with combination Ae, pit number
55 with combination A«, and pit number 77 with combination Ay. For pit number
49 with nil yield, adjacent one-step pits surrounding it diagonally and sidewise are
having yield as (0.70, 2.80, 2.70, 1.20, 2.40, 2.45, 1.55, 0.90). Simultaneous damage
due to fungal & white ant infection from one pit to adjacent pits in semi-porous land
stretch with heterogeneous soil structure at ISI Giridih farm land is possible. Such
damages can be assessed by digging up the corms when no sprouting was observed
after a sufficient time-gap. For pit number 49, 55 and 77 damage did not percolate
to adjacent pits. This observation is similar to the assumption made for SRS in
tessellation: only one SRS (pit) is affected when the hit (infection) is not on the
periphery.

The average seed weights in these infected pits is A4, i.e., 200 g, the average skin
texture is the middle rank i.e., y.

Expected damage putting uniform weight to all pits, given that in total three pits
are infected, is the mean weight 500 g with middle rank of skin texture y. This is
because the average is taken over all possible combination in a symmetrical manner
in the adopted design. Observed damage is less than the expected damage in the
experiment conducted.

Similar case of damage propagation may arise in three dimensions e.g., in
packing of fruits, when items may be infected by immediate neighbours, and
assessment may be made in a similar fashion.
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4 A Three Dimensional Structure and Different
SRS Combinations

The three dimensional structure of honeycomb with partly elliptical cross section
consists of two sided layers of hexagonal cells. These layers are separated by a thin
membrane. The backside layer of hexagonal cells (i.e., cells having hexagonal cross
section) are so arranged as to keep the honeycomb sturdy, when assembled with
front side layer of hexagonal cells. Each cell on backside has edges passing through
centre of the circumscribing circle of hexagonal cell in the front, the outward
corner points of both sides do meet at the common edge points. Such structure of
tessellation by hexagonal SRS makes honeycomb damage resistant on both sides.

For covering a plane area, regular hexagonal SRS are seen to be cost efficient
compared to triangular and square SRS, when replacement due to accidental damage
is of concern. Tessellation by SRS combinations of different sizes and shapes are
common. While covering with different SRS, gain in efficiency with respect to
square SRS of same sizes is the weighted average of efficiencies for individual
SRS weights depending on the number of SRS of particular types. “Equivalent edge
number” represents the property of an ensemble of different SRS in terms of a single
edge number that may contain fraction, this index is much like a fractal dimension
representing nearness of a self-similar pattern.

Acknowledgements Thanks are due to Dr. Avinash Dharmadhikari, Tata Motors for suggesting
the problem and interesting discussions.
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