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Preface

Patients are not alike! This simple truth is often ignored in the analysis of medi-
cal data, since most of the time results are presented for the “average” patient. As
a result, potential variability between patients is ignored when presenting, e.g., the
results of a multiple linear regression model. In medicine there are more and more
attempts to individualize therapy; thus, from the author’s point of view biostatisti-
cians should support these efforts. Therefore, one of the tasks of the statistician is to
identify heterogeneity of patients and, if possible, to explain part of it with known
explanatory covariates.

Finite mixture models may be used to aid this purpose. This book tries to show
that there are a large range of applications. They include the analysis of gene ex-
pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene
plasma levels. Other examples include disease clustering, data from psychophysiol-
ogy, and meta-analysis of published studies.

The book is intended as a resource for those interested in applying these methods.
So the main focus is on introducing the ideas of finite mixture models and their
ideas in various applications. The author hopes that this material is accessible to an
audience with some quantitative background, such as (bio)statisticians, epidemiolo-
gists, pharmacokineticists, and interested physicians. The book assumes knowledge
of statistics at an intermediate level; hence, familiarity with maximum likelihood
estimation is assumed, since such methods are the basis for the statistical inference
and estimation used throughout the book. The chapter on theory and algorithms is
perhaps mathematically a bit more demanding. This chapter follows the idea to pro-
vide the necessary background in convex optimization necessary to understand the
algorithms available for finite mixture models.

To provide easy to use software, the book is accompanied by the R (http://www.
r-project.org) package CAMAN, which can be used to carry out many of the anal-
yses performed in this book. The package and data sets available to the public may
be found at http://www.charite.de/biometrie/schlattmann/book. Some of the analy-
ses may also be performed with SAS. The corresponding code may also be found
on the appropriate Web page.
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Chapter 1
Overview of the Book

What can the reader expect from this book? The book intends to introduce the anal-
ysis of heterogeneity applied to medical data. A special tool for this kind of anal-
ysis are finite mixture models which may or may not be adjusted for covariates.
Using examples from the medical literature, the book shows that these model may
be useful in many medical applications. Possible applications range from early drug
development to the meta-analysis of clinical studies. Others are disease mapping or
the analysis of gene expression data, just to mention a few. Thus, another goal of
the book is to provide easy-to-use software to make these methods available for the
interested reader; therefore, a detailed description of how to use of the R package
CAMAN is part of the book.

The book also handles some of the theory of finite mixture models. The un-
derstanding of this theory requires some knowledge of convex sets and convex
optimization. The book attempts to provide the necessary mathematics needed for
convex optimization which is difficult to find in the condensed form needed here.

The following pages give a general overview of the book.

Introduction

Chapter 2 illustrates the idea of heterogeneity in medicine. It starts with the obser-
vation that patients are not alike. In a therapeutic setting patients react differently to
treatment regimes. Some patients do not respond to the treatment at all and others
recover quickly under the treatment. This may depend on known factors such as
genetic polymorphisms or age. This leads to the necessity to individualize therapy.

The clinical problem of individualizing therapy is related to the statistical prob-
lem of heterogeneity of treatment effects. Standard statistical models, such as linear
regression, model the population average, which is the mean response of all individ-
uals (“one size fits all”). Thus, the modest benefit observed in many clinical trials
can be misleading because moderate average effects may be a mixture of substantial

P. Schlattmann, Medical Applications of Finite Mixture Models, 1
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 1,
c© Springer-Verlag Berlin Hiedelberg 2009
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benefits for some, little, or no benefit for many and harm for a few. This is an indi-
cation of unobserved heterogeneity of patients which can be caused by an unknown
covariate.

From a statistical point of view the total variability of the data is divided into
two parts: The first part is the variability between individuals and the second part is
residual or error variability. This leads to subject-specific or random effects models.

One such model is a finite mixture model. The basic ideas of this model are in-
troduced in Chap. 2 for a hypothetical example from a clinical trial where only a
moderate treatment benefit is observable. This example shows that in this hypothet-
ical case the total population of patients consists of two subpopulations, one with
considerable benefit and a larger proportion with little benefit. The corresponding
proportions and average effects of each subpopulation need to be estimated from the
data. With use of data from a study looking at determinants of beta-carotene plasma
levels, a finite mixture model is applied to these data and it is shown how this model
can be extended to include covariates.

An important part in drug therapy and development is the investigation of phar-
macokinetics. Section 2.3 introduces the concept of population pharmacokinetics.
This approach aims to model the relationship between physiologic function (both
normal and disease altered) and pharmacokinetics while taking the interindividual
variability in these relationships into account. Variability of the pharmacokinetic re-
sponse between individuals may be caused by differences in absorption, elimination,
and clearance. These differences may be due to genetic polymorphisms or factors
such as age, gender, or reduced renal or hepatic function. However, these factors
are often unknown, and as a result models are needed which can take unobserved
covariates into account.

Analysis of Count Data

Chapter 3 describes the use of random effects models for count data. Here either
parametric random effects models which assume a gamma distribution for the ran-
dom effects or a finite mixture model is used.

The first part describes the analysis of count data without covariates. Here, data
from a cohort study in northeast Thailand where the health status of 602 preschool
children was checked every 2 weeks from June 1982 until September 1985 are ana-
lyzed. In this time period it was recorded how often the children showed symptoms
of fever, cough, running nose, or all symptoms together.

It turns out that a simple Poisson distribution is not sufficient to model these data;
thus, in Sect. 3.2 parametric mixture models and in Sect. 3.3 finite mixture models
are fit to these data. A crucial point in fitting finite mixture models is the choice of
the number of components k. Besides methods such as the likelihood ratio test, a
nonparametric bootstrap method introduced by the author is applied. The analysis
of the properties of this approach is one of the contributions of the author to the field
of mixture models (Schlattmann 2003, 2005).
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Section 3.5 analyses count data with covariates. This approach is developed us-
ing the Ames test as an example. This test simultaneously investigates the muta-
genicity and the toxicity of a chemical. The Ames test uses a number of Salmonella
strains with a preexisting mutation, which leaves the bacteria unable to synthesize
the amino acid histidine and as result unable to grow and form colonies. New muta-
tions can restore the gene’s function and allow the cells to produce histidine. These
newly mutated cells can grow in the absence of histidine and form colonies. This is
cast into a regression problem for count data and the ideas of this regression model
are developed starting from first principles. This leads to a standard Poisson regres-
sion model. Again, it turns out that this model does not describe the data well.

Thus, regression models based on the negative binomial distribution and
covariate-adjusted mixture models are also applied to the data. These models
provide a much better fit. To fit the covariate-adjusted finite mixture models, a
newly developed algorithm is applied. This algorithm is developed in Chap. 4.

Theory and Algorithms

Chapter 4 introduces a new algorithm for covariate-adjusted mixture models in
Sect. 4.6.4. It exploits the properties of the nonparametric maximum likelihood esti-
mator of the mixing distribution. Since these results rely on basic results of convex
analysis and optimization, these are introduced in Sect. 4.2.

Now we introduce a finite mixture model. Consider a sample x1,x2, . . . ,xn with

xi
iid∼ f (x,P) i = 1, . . . ,n, (1.1)

f (x,P) =
k

∑
j=1

p j f (x,λ j), (1.2)

where p j are the mixing weights, λ j are the component parameters, k is the number
of components, and f (.) is a density. Estimation of the parameters of the mixing dis-
tribution P is predominantly done using maximum likelihood. We are interested in
finding the maximum likelihood estimates of P which maximize the log likelihood
function

�(P) = logL(P) =
n

∑
i=1

log
k

∑
j=1

p j f (xi,λ j). (1.3)

When fitting finite mixture models, we must distinguish two cases. The first is the
f lexible support size case, where no assumption about the number of components k
is made in advance. This case is discussed in Sect. 4.3. In the fixed support size case
the number of components k is assumed to be known. Here the unknown parameters
are the mixing weights p j and the parameters λ j of the subpopulation. Section 4.4
discusses this case. Estimation of these models’ parameters is usually achieved by
application of the expectation maximization algorithm described in Sect. 4.4.3. This
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algorithm is well known to converge to local maxima depending on the starting
values. For the case of finite mixtures without covariates, a globally convergent
variant of the expectation maximization algorithm with gradient function update is
available. It uses information based on the directional derivative of the likelihood
function and exchanges the parameter which maximizes the gradient function to
perform a vertex exchange step. This algorithm is described in Sect. 4.4.6.

Often the inclusion of covariates into the model is desirable and the researcher
is interested in whether there is residual heterogeneity present after the inclusion
of known covariates. This task may be cast into the framework of the covariate-
adjusted mixture models described in Sect. 4.6. These fit into the framework of
generalized linear mixed models. Section 4.6.1 describes first generalized linear
models, then Sect. 4.6.2 shows how the expectation maximization algorithm for
finite mixture models can be extended to adjust for covariates. Again, this algorithm
converges to local maxima depending on the starting values. Hence, the expectation
maximization algorithm is modified using a gradient update step. Here the maxi-
mum of the gradient function is difficult to find, e.g., by a bisection method. As an
alternative we propose finding the maximum of the gradient function by simulated
annealing. This procedure enables us to find the maximum of the gradient func-
tion even for a high-dimensional parameter space with many covariates. This new
algorithm developed by the author is presented in detail in Sect. 4.6.4.

Finally, a case study demonstrates the use of the method for a population phar-
macokinetic analysis of the analgesic drug Dipyrone in Sect. 4.7; it is demonstrated
that the new algorithm provides an improved fit.

Disease Mapping and Cluster Investigations

Chapter 5 discusses the investigation of presumed clusters of disease. Frequently,
such a cluster is presumed to be the result of a so-called focus. Thus, the distinction
of generalized and focused clustering is introduced.

Investigations which seek to address “general clustering” determine whether or
not cases are clustered anywhere in the study area, without a prior assumption about
the location of a potential cluster. In contrast, tests addressing “focused” clustering
assess whether cases are clustered around a prespecified source of hazard, which is
frequently called a focus.

The first example in Sect. 5.2 investigates general clustering in the former
East Germany, addressing the question whether there is an increase of childhood
leukemia in the southeast or, more precisely, in the vicinity of the nuclear power
plant at Rossendorf. To avoid a selection bias this investigation looked at the pres-
ence of general clustering, i.e., at the presence of heterogeneity of disease risk in
the total region. In contrast to traditional methods such as percentile or probabil-
ity maps, methods based on mixture models show a homogeneous distribution of
disease risk.

Frequently, to assess the “nonrandomness” of a map, tests for autocorrelation
or heterogeneity are applied. The latter accounts for the extra-Poisson variation
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frequently present in the homogeneous Poisson model. In Sect. 5.4 it is shown
that overdispersion can be due either to autocorrelation or to heterogeneity of dis-
ease risk.

In contrast to general clustering, focused clustering studies investigate presum-
ably raised incidence of disease in the vicinity of prespecified putative sources of
increased risk. A frequently used test is the score test. It is shown that this test is
a special case of Poisson regression. The assumption of a Poisson distribution for
the data at hand is not necessarily true; hence, in Sect. 5.5.2 a robust version of the
score is developed. This version implicitly allows for heterogeneity of disease risk.
Section 5.5.3 develops a version of the score test which is based on the negative bi-
nomial distribution. This test thus explicitly allows for heterogeneity of disease risk.
A case study in Sect. 5.6 analyses the association between leukemia in adults and
the nuclear power plant at Krümmel. In this case the newly developed tests are ap-
plied to investigate the aforementioned association. Finally, Sect. 5.7 describes the
mathematical basis for the newly developed score tests.

Modeling Heterogeneity in Psychophysiology

In Chap. 6 a new method is introduced to model spatial heterogeneity in the anal-
ysis of electroencephalogram data. It is shown that by transforming the electroen-
cephalogram time series from the time into the frequency domain, one can describe
the data by a generalized linear model. On the basis of this result a covariate-
adjusted finite mixture model is developed to model spatial variability of electrical
scalp activity.

Investigating and Analyzing Heterogeneity in Meta-analysis

Meta-analysis is increasingly being used to summarize the evidence provided by
clinical trials and observational studies. Meta-analysis involves providing a report of
primary research using statistical methods and analysis. Chapter 7 first reviews the
statistical methods applied in meta-analysis and then introduces new contributions
to the field.

The first involves the analysis of heterogeneity, which is a crucial part of each
meta-analysis. To analyze heterogeneity, often a random effects model, which in-
corporates variation between studies, is considered. It is assumed that each study
has its own (true) exposure or therapy effect and that there is a random distribution
of these true exposure effects around a central effect. In other words, the random
effects model allows nonhomogeneity between the effects of different studies. The
variability between studies is quantified by the heterogeneity variance τ2. To com-
pare the performance of four estimators of τ2, a simulation study was performed.
This study compared the DerSimonian–Laird estimator described in Sect. 7.3.1 with
the maximum likelihood estimator based on the normal distribution for the random
effects described in Sect. 7.3.2. Further comparators were the simple heterogeneity
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variance estimator described in Sect. 7.3.3 and the finite mixture model approach
described in Sect. 7.3.5. The simulation study investigated bias, standard deviation,
and mean square error of all four estimators of τ2. On the basis of this study it turned
out that the simple heterogeneity estimator behaves well for almost all settings. Ad-
ditionally it is easy to compute. One drawback is that it relies on the assumption of a
normal distribution of the random effects. If one is in doubt regarding this assump-
tion, a finite mixture model may be considered. This estimator had the second-best
properties in terms of bias and mean square error; however, considering ease of im-
plementation and performance, the simple heterogeneity estimator seems to be a
good choice.

Then covariate-adjusted mixture models are introduced as a tool in metaregres-
sion. Here, heterogeneity between studies is explained by known covariates while
allowing for residual heterogeneity. By including covariates in the finite mixture
model, one combines two approaches to meta-analysis, i.e., the approach of identi-
fying heterogeneity and the approach of explaining heterogeneity by the means of
metaregression are combined. In contrast to the usual random effects metaregres-
sion, the assumption of a normal distribution of the random effects is no longer
required. Hence, if that assumption is violated, covariate-adjusted mixture models
provide a useful alternative to standard random effects metaregression.

The book also introduces a meta-analysis on Aspirin use and chemoprevention of
breast cancer in women. Here, also a discussion of how to perform a dose-response
analysis within a meta-analysis is introduced.

Analysis of Gene Expression Data

The analysis of gene expression data is a rapidly growing field of medical research
with a large and rapidly increasing body of statistical literature on the analysis of
microarray data. Chapter 8 deals with the analysis of differentially expressed genes,
i.e., finding differences in gene expression levels between subgroups of individuals.
First, approaches based on hypothesis tests are reviewed and the use of mixture
models in this setting is demonstrated.

Another part of this chapter introduces the use of meta-analytic methods for the
analysis of differential gene expression. This method is applied to a famous data
set dealing with the identification of the gene signature useful for breast cancer
prognosis.



Chapter 2
Introduction: Heterogeneity in Medicine

Patients are not alike. In a therapeutic setting patients react differently to treatment
regimes. Some patients do not respond to the treatment at all and others recover
quickly under the treatment. This may depend on known factors such as genetic
polymorphisms. For example, drugs known as beta blockers, which antagonize the
beta-adrenergic receptor, are an important component of the treatment regimen for
chronic heart failure (CHF). Genetic heterogeneity at the level of the beta-adrenergic
receptor is thought to be a factor explaining the variable responses of CHF pa-
tients to beta blockade (DeGeorge and Koch 2007). Subsequent trials in search
of personalized treatment of heart failure can take this genetic heterogeneity into
account.

However, often the underlying mechanism that causes variability of treatment ef-
fects is not known; thus, the modest benefit observed in many clinical trials can be
misleading because moderate average effects may be a mixture of substantial bene-
fits for some, little, or no benefit for many and harm for a few. This is a case of un-
observed heterogeneity of patients or populations since it is not possible to directly
observe to which subpopulation a patient belongs. Likewise in this case, the under-
lying covariate which causes the variability in treatment response is not known.

From a statistical point of view this warrants a method which identifies the pres-
ence of unobserved heterogeneity and in a second step enables us to take known
covariates into account to explain some of the heterogeneity. This leads to subject-
specific or random effects models. In this type of modeling one is interested in in-
vestigating the individual departures from the mean response in order to analyze the
results at the level of the individual patient. In these models the variability between
individuals is assumed to follow a random distribution. In principle this can be any
proper distribution.

This work focuses on a discrete unobserved distribution for the variability be-
tween individuals, which leads to finite mixture models.

Coming back to the possible outcome of a clinical trial with a modest average
effect, there are three latent subpopulations: one with substantial benefit, one with
little benefit, and one subpopulation which is harmed. The idea of a finite mixture
model is now to estimate the proportion of these respective subpopulations and the
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corresponding mean treatment effect in these groups. This approach resembles an
analysis of variance, albeit the membership of an individual to a certain subpopula-
tion is not known. As an example consider the outcome of a fictitious clinical trial
dealing with asthma. Here improvement of the forced expiratory volume (FEV1)
may be a dependent variable. Suppose that the average improvement of a new drug
was 221 ml in comparison with a placebo. Let us assume that the population of these
patients consists of subpopulations due to a genetic polymorphism which is not yet
known. For simplicity we postulate that only heterozygote alleles and not homozy-
gote alleles are of importance, which implies that only two subpopulations exist. In
this mind experiment we assume that the majority of patients do not benefit greatly
from the drug, that is 70% of the patients show an improvement of FEV1 of only
80 ml compared with the placebo. On the other hand, 30% of the patients benefit
from an improvement of 550 ml.

In a first model we assume that the data follow a normal distribution, N(μ ,σ2),
where μ = 221 ml denotes the mean and σ2 = 40,000 the variance. A second
model takes the presumed heterogeneity of populations into account. It consists of
a weighted sum of normal distributions with

y ∼ 0.7×N(80,22,500)+0.3×N(550,22,500), (2.1)

where the common standard deviation is assumed to be 150 ml. These two models
are depicted graphically in Fig. 2.1.
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Fig. 2.1 Homogenous model with mean treatment effect μ = 221 ml and a model with two sub-
populations. Seventy percent of patients with little benefit (μ1 = 80 ml) and 30% of patients with
considerable benefit (μ2 = 550 ml). FEV1 forced expiratory volume
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Table 2.1 Simulated data from a mixture of normal distributions

528.14 −49.63 283.65 152.99 472.42 365.29
672.86 167.65 649.12 338.38 612.13 115.80

Table 2.2 Simulated data from a two-component mixture of normal distributions with indicator
variables z with regard to their component membership

Data y z1 z2

528.14 0 1
−49.63 1 0
283.65 1 0
152.99 1 0
472.42 0 1
365.29 0 1
672.86 0 1
167.65 0 1
649.12 0 1
338.38 0 1
612.13 0 1
115.80 1 0

Table 2.1 shows simulated data from the second model. They correspond to
the data directly observable by an investigator analyzing the results of the clini-
cal trial. Mean and corresponding proportions of the respective subpopulations are
not known. Likewise, for an individual observation it is not known to which sub-
population it belongs.

Now, if the component membership of an individual were known, estimation of
the corresponding subpopulation’s mean and the corresponding mixture proportion
would be easy: To describe component membership, an indicator variable Z is in-
troduced. If an observation belongs to the first component, the indicator variable z1
will take the value 1 and 0 otherwise. For the second subpopulation the indicator
variable z2 is defined similarly. Table 2.2 shows the known indicator variables of the
component membership of a certain individual.

Using the known indicator variables in Table 2.2, it turns out that the proportion
of the first component equals the proportion of “ones” of the first component z1,
given by

p̂1 =
4

12
= 0.333. (2.2)

The proportion of the second component z2 is simply

p̂2 =
8

12
= 0.667 or p̂2 = 1− p̂1. (2.3)

In the same manner each subpopulation’s mean can be computed. The mean μ1 of
the first component is given by

μ̂1 =
−49.63+283.65+152.99+115.80

4
= 125.71. (2.4)
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Similarly, the mean μ2 of the second component can be computed as

μ̂2 =
528.14+472.42+ · · ·+338.38+612.13

8
= 475.75. (2.5)

Unfortunately, in general, component membership is an unobservable variable.
In this case, a frequently used algorithm for finite mixture models (see Sect. 4.4.3),
proceeds as follows. First, determine the number of subpopulations k. Then, provide
a first guess for the relative frequencies p1, . . . , pk of each component and the asso-
ciated mean values μ1, . . . ,μk. Applying Bayes’s theorem (see (4.38) on page 75 for
details) this information allows one to calculate ei j, which denotes the probability
that the ith observation belongs to the jth component.

By replacing the unknown indicator variables with the probabilities of compo-
nent membership, one obtains new estimates of the mixing proportions p j and pop-
ulation means μ j. This procedure is repeated until a convergence criterion is met.
This algorithm is known as the expectation maxmization. A formal derivation and
description of algorithms for finite mixture models is developed in Chap. 4.

In contrast to Fig. 2.1, mixtures of normal densities with two components are not
necessarily bimodal. This is shown in Fig. 2.2. The shape of mixture densities of
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Fig. 2.2 Mixture densities with two univariate normal distributions with p1 = p2 = 0.5, μ1 = 0,
and σ2 = 1 in the cases a μ2 = 1, b μ2 = 2, c μ2 = 3, and d μ2 = 4
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two univariate normal densities depends on how far the individual means of the two
distributions are apart. Figure 2.2 shows mixtures with μ1 = 0, p1 = p2 = 0.5, and
variance σ2 = 1. If the difference Δ = |μ1 −μ2| is 1 (see Fig. 2.2a) the shape of the
mixed distribution is unimodal. The same applies if the difference is 2. For Δ = 3
and Δ = 4 the resulting mixture distributions are bimodal.

Following this presentation of the general ideas of finite mixture models, Sect. 2.1
applies this model to data from an epidemiologic study.

2.1 Example: Plasma Concentration of Beta-Carotene

2.1.1 Identification of a Latent Structure

High intakes of fruits and vegetables, or high circulating levels of their biomarkers
(carotenoids, vitamins C and E), have been associated with a relatively low inci-
dence of cardiovascular disease, cataracts, and cancer. A high fruit and vegetable
diet increases antioxidant concentrations in blood and body tissues, and potentially
protects against oxidative damage to cells and tissues. This observation led to the
initiation of randomized clinical trials focusing on subjects with a high risk of can-
cer. One of these trials is the beta-Carotene and Retinol Efficacy Trial (CARET)
initiated by Goodman et al. (1993). This trial tested the effect of daily beta-carotene
(30 mg) and retinyl palmitate (25,000 IU) intake on the incidence of lung cancer,
other cancers, and death in 18,314 participants who were at high risk for lung cancer
because of a history of smoking or asbestos exposure. CARET was stopped ahead
of schedule in January 1996 because participants who were randomly assigned to
receive the active intervention were found to have a 28% increase in incidence of
lung cancer, a 17% increase in incidence of death, and a higher rate of cardiovas-
cular disease mortality compared with participants in the placebo group (Goodman
et al. 2004).

In a systematic review summarizing the evidence from controlled clinical trials
Caraballoso et al. (2003) concluded that there is currently no evidence to support
recommending vitamins such as alpha-tocopherol, beta-carotene, or retinol, alone
or in combination, to prevent lung cancer. Likewise, the risk of development of
nonmelanoma skin cancer was not found to be related to serum levels of any of the
carotenoids measured in a study performed by Dorgan et al. (2004). Even worse, a
recent meta-analysis of randomized trials (Bjelakovic et al. 2007) found increased
mortality of patients supplemented with antioxidants.

Despite these disappointing results with regard to supplementation of antioxi-
dants, the investigation of the determinants of plasma concentrations of micronutri-
ents is still an ongoing area of research (Goodman et al. 1996; Margetts and Jackson
1996; Lagiou et al. 2003; Faure et al. 2006). A common finding in these studies is a
negative association between cigarette smoking and plasma levels of beta-carotene.
Many of the investigators mentioned before used a linear regression model to inves-
tigate the association between factors such as smoking, age, or gender and plasma
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Fig. 2.3 Beta-Carotene plasma concentrations together with a four-component mixture model and
single mixture components

levels of antioxidants. In our example, we use the data on beta-carotene plasma
levels from Nierenberg et al. (1989) and Stukel (2008)1 to address the following
questions: Are there latent subgroups present in this data set and, if so, can this
heterogeneity be explained by covariates such as age, gender, or smoking?

Figure 2.3 shows that there is wide variability in subjects. Especially the as-
sumption of a normal distribution for these data seems not to be appropriate. For
that reason Nierenberg et al. (1989) used a log transformation of the data to find
determinants of plasma beta-carotene concentrations. But the multimodal shape of
the histogram suggests that the data were sampled from a population which consists
of several homogenous subpopulations.

Thus, the first step of an alternative analysis of these data tries to identify the la-
tent structure. Using the methods described in Chap. 4, Sect. 4.4.5 leads to a solution
which identifies four latent subpopulations. The first group has a mean concentra-
tion of beta-carotene of 126.05 ng ml−1 and constitutes 80.2% of the whole sample.
The next latent population has a mean concentration of 350.83 ng ml−1 and forms
another 16.8% of the total sample. The third subgroup has a mean concentration
of 854.55 ng ml−1 and constitutes 2% of the population. Finally, the last subgroup
has a mean concentration of 1,339.32 ng ml−1 and forms 1% of the overall popula-
tion. The variance is assumed to be the same for each subpopulation and is 4,371.2.
Hence, instead of a single normal distribution, these data can be described by a
weighted sum of normal densities, that is,

f (x) = 0.802×N(126.05,4371.2)+0.168×N(350.83,4371.2)+0.02
×N(854.55,4371.2)+0.01×N(1339.33,4371.2). (2.6)

1 The use of the data for this book and the accompanying R package is kindly permitted by Therese
Stukel, Dartmouth Hitchcock Medical Center, USA.
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Looking at the fitted line in Fig. 2.3, we see that this finite mixture model provides
an acceptable fit to the data.

2.1.2 Including Covariates

After identification of latent subpopulations, the question arises whether this la-
tent structure can be explained by known covariates. The corresponding theory of
covariate-adjusted finite mixture models may be found in Sect. 4.6.

In the simplest case this leads to a model with random intercepts. This implies
that there are several regression models for each subpopulation which have the same
slope but different intercepts. For example, consider the association of the amount
of beta-carotene in the patient’s diet with the beta-carotene plasma level of that
individual. This covariate is labeled diet. In the Sect. 2.1.1 four subpopulations were
identified. Now if the effect of diet is assumed to be the same in each subpopulation,
this leads to the following four regression equations:

μ̂i1 = 109.80+0.0087×dieti ,

μ̂i2 = 327.23+0.0087×dieti ,

μ̂i3 = 812.30+0.0087×dieti ,

μ̂i4 = 1303.52+0.0087×dieti . (2.7)

Since the effect of diet is assumed to be identical in each subpopulation, it is often
called a fixed effect. This model is depicted on the left-hand side of Fig. 2.4. Here,
the first component with the lowest intercept constitutes 81% of the total sample.
The second component forms 16% of the population. As before, in the model with-
out covariates the third component contributes 2% and the fourth component 1%.
In terms of interpretation, the majority of patients have rather low beta-carotene
plasma levels, 16% have intermediate concentrations, and only 3% have high
concentrations.
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Fig. 2.4 Beta-Carotene data: finite mixture models adjusted for covariates. Left: A model with
random intercepts. Right: A model with random slopes and intercepts
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In a more complex model the effect of the covariate may differ in each subpop-
ulation as well. This leads to a regression model with different intercept and slope
for each subpopulation:

μ̂i1 = 113.56+0.0014×dieti ,

μ̂i2 = 342.69+0.0062×dieti ,

μ̂i3 = 687.04+0.0046×dieti ,

μ̂i4 = 930.32+0.0089×dieti . (2.8)

This is depicted on the right-hand side of Fig. 2.4. Now the effect of diet varies
between subpopulations and is assumed to follow a random distribution; this is
often called a random effect. The corresponding mixing proportions are given by
p̂1 = 0.8, p̂2 = 0.17, p̂2 = 0.02, and p̂4 = 0.01. According to this model, 80% of
the individuals have a small intercept of 113.56 with a small effect of dietary beta-
carotene intake. Then there is an intermediate group with an intercept of 342.69
and a relatively large effect of dietary beta-carotene intake equal to 0.0062. Finally,
there are two small subpopulations with large intercepts and a intermediate effect
of the covariate dietary beta-carotene intake. After these preliminary considerations
other covariates can be included into the model as well. Nierenberg et al. (1989)
found a positive association between beta-carotene levels, dietary carotene, and
female gender. Cigarette smoking and body mass index were negatively related
to beta-carotene levels. Use of vitamins was also positively associated with beta-
carotene plasma levels, whereas age was not associated with beta-carotene levels to
a statistically significant extent.

Considering a covariate-adjusted finite mixture model, one obtains the results
shown in Table 2.3. According to this model there are four subpopulations. The cor-
responding mixture proportions are given by p̂1 = 0.8, p̂2 = 0.17, p̂2 = 0.02, and
p̂4 = 0.01. Again, the effect of dietary beta-carotene is different in these subpopula-
tions. In the first subpopulation, constituting 80%, the effect is rather small, whereas

Table 2.3 Beta-Carotene data: finite mixture model adjusted for covariates gender, body mass
index (BMI), smoking status (current smoker vs. never; former smoker vs. never), and dietary
beta-carotene

Component Weight p̂ j Estimate Standard error t Pr(> |t|)

Intercept 1 0.80 187.472 13.903 13.484 <0.001
Intercept 2 0.17 405.898 16.529 24.557 <0.001
Intercept 3 0.02 768.694 31.59 24.333 <0.001
Intercept 4 0.01 1,005.866 54.609 18.419 <0.001
BMI −3.637 0.405 −8.980 <0.001
Current vs. never −31.82 7.451 −4.271 <0.001
Former vs. never −19.935 5.318 −3.749 <0.001
Female vs. male 32.950 7.105 4.638 <0.001
Diet 1 0.002 0.003 0.667 0.414
Diet 2 0.089 0.002 44.5 <0.001
Diet 3 0.042 0.009 4.667 <0.001
Diet 4 0.084 0.013 6.462 <0.001
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in the fourth subpopulation the effect of dietary beta-carotene is much larger. Other
covariates did not turn out to behave differently in these subpopulations. In accor-
dance with Nierenberg et al. (1989) there is a negative association between the body
mass index, smoking status, and male gender. On the basis of this model, vitamin
use and age are not associated with beta-carotene levels to a statistically significant
extent. In conclusion, this type of model has at least two advantages. First, we could
identify subpopulations who react differently to dietary beta-carotene. This might be
a starting point for further investigations. Especially of interest would be the ques-
tion whether the recent adverse findings of supplementation of antioxidants apply to
all patients similarly. Second, this type of modeling is one way to handle the prob-
lem that the data apparently do not follow a normal distribution. In contrast to, e.g.,
a logarithmic transformation of the data, the interpretation of the results remains on
the original scale of the observations.

2.2 Computation

The previous models may be fit using the R package CAMAN. The first step in
using the program is to load the package and the data set. This is done typing

> library(CAMAN)
> data(betaplasma)

The next step is to identify the latent structure of the data. To obtain a first im-
pression of the potential number of subpopulations in our data the vertex exchange
method (VEM) algorithm is applied. This algorithm is based on a fixed grid of
potential means of subpopulations. The default in mixalg.VEM calculates the min-
imum and the maximum of the data and constructs a grid with k = 50 equidistant
grid points. Then, the algorithm finds the corresponding population proportions that
maximize the likelihood function. A detailed description of the algorithm may be
found in Sect. 4.3.2.

The function is called with

> beta0<-mixalg.VEM(obs="betacaro",data=betaplasma,
startk=50,family="gaussian")

Here the call takes as arguments the dependent variable betacaro, which is the
plasma level of beta-carotene. The number of grid points is set to k = 50. By de-
fault the mixing density is set to be the normal distribution. Also as a default the
variance is set equal to the empirical variance. Typing beta0 provides the following
output:

> beta0

Computer Assisted Mixture Analysis (VEM):

Data consist of 315 observations (rows) four grid
points with positive support
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p parameter
0.973285469 173.2653
0.017760636 895.2041
0.001319593 1299.4898
0.007634302 1328.3673

Log-Likelihood: -2029.80100 BIC: 4629.10600

This result suggests that the data could be described by a mixture model with four
components. In the next step we apply the function mixcov, which allows the inclu-
sion of covariates into the model. The call is given by

> beta1<-mixcov(c(dep="betacaro"),fixed=c("1"),
random=c(""),data=betaplasma,k=4,family="gaussian")

This gives the (shortened) result

> beta1

Computer Assisted Mixture Analysis with covariates:

Data consist of 315 observations (rows).

mixing weights:
comp. 1 comp. 2 comp. 3 comp. 4
0.8026 0.168 0.0199 0.0095

Coefficients :
Z1 Z2 Z3 Z4

126.0613 350.826 854.549 1339.32978

Log-Likelihood: -1927.117 BIC: 3894.50

In the next step the covariate betadiet is included as a fixed effect into the model.

beta2<-mixcov(c(dep="betacaro"),fixed=c("betadiet"),
random=c(""),data=betaplasma,k=4,family="gaussian")

This results in the following output:

> beta2

mixing weights:
comp. 1 comp. 2 comp. 3 comp. 4

0.811028183 0.157662064 0.021785704 0.009524049
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Coefficients :
Z1 Z2 Z3 Z4 betadiet

109.855 327.232 812.343 1303.201 0.009

Log-Likelihood: -1924.664 BIC: 3895.349

Inclusion of the covariate leads to an improvement of the likelihood. Thus, not sur-
prisingly, we deduce an association between dietary beta-carotene and plasma levels
of beta-carotene. Next, we fit a model with the covariate betadiet as a random effect.

beta3<-mixcov(c(dep="betacaro"),fixed=c("1"),random=
c("betadiet"),data=betaplasma,k=4,family="gaussian")

This leads to the result

> beta3

mixing weights:
comp. 1 comp. 2 comp. 3 comp. 4

0.80164319 0.16663101 0.01913382 0.01259198

Coefficients :
Z1 Z2 Z3 Z4
113.549 342.815 687.089 930.381

Z1:betadiet Z2:betadiet Z3:betadiet Z4:betadiet
0.001 0.006 0.046 0.090

Log-Likelihood: -1919.450 BIC: 3902.179

Comparing the log likelihoods of these models, we find again an improvement when
we allow varying effects of the covariate in the respective subpopulations.

More covariates can be included into the model, for example, we might be inter-
ested in the effect of smoking status. Here, we use the treatment contrasts current vs.
never and former vs. never The data set contains the variable smokestat, which is de-
fined as a factor variable. By default R uses treatment contrasts for factor variables
Now, the model is obtained with

beta4<-mixcov(c(dep="betacaro"),fixed=c("smokestat"),
random=c("betadiet"),data=betaplasma,k=4,
family="gaussian")

The result is given by

> beta4

mixing weights:
comp. 1 comp. 2 comp. 3 comp. 4

0.81527849 0.15298759 0.01911870 0.01261522
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Coefficients :
Z1 Z2 Z3 Z4

125.882 354.613 704.594 959.963

smokestatFormer smokestatCurrent
-20.667 -30.533

Z1:betadiet Z2:betadiet Z3:betadiet Z4:betadiet
0.007 0.002 0.045 0.084

Log-Likelihood: -1915.798 BIC: 3906.379

2.3 Example: Analysis of Heterogeneity in Drug Development

2.3.1 Basic Pharmacokinetic Concepts

Pharmacokinetics investigates the absorption and disposition of drugs. Disposition
is further subdivided into the investigation of distribution, metabolism, and excretion
of a drug. Thus, pharmacokinetics is sometimes referred to as ADME (absorption,
distribution, metabolism, excretion). A general introduction to the field of pharma-
cokinetics may be found in the books by Winter (2004), Rowland and Tozer (2005),
and Tozer and Rowland (2006). The absorption characteristics of a drug depend on
the properties of the chemical compound as well as on the route of administration
and the exact formulation used. Obviously, this is not of interest for drugs which
are administered by infusion or intravenous injection. On the other hand, absorption
characteristics play an important role in the kinetics of orally administered drugs.
The rate and the extent of absorption are important pharmacokinetic quantities for
orally administered drugs.

Once in circulation, a drug is distributed throughout the body. Owing to differing
characteristics of the various tissue types, this distribution is not uniform. Rather,
areas of higher or lower concentration can be observed. Again, the chemical char-
acteristics of the drug, and how it interacts with its surroundings at the molecular
level, are determinants of this behavior.

Metabolism and excretion are the two ways in which a drug is removed from the
body. Metabolism, which is also called “biotransformation,” takes place mainly in
the liver. The liver contains a host of enzymes, the cytochrome P450 (CYP) family,
whose function is to dispose of chemicals that have entered the body (Pelkonen and
Breimer 1994). These enzymes use iron to oxidize substances, often as part of the
body’s strategy to dispose of potentially harmful substances by making them more
water-soluble. Bertz and Granneman (1997) found that 56% of 315 drugs were
primarily cleared by CYP enzymes.
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The products of biotransformation are called “metabolites.” For some drugs, it
is a metabolite rather than the parent compound that is the active substance. This
applies, for example, to Dipyrone, an analgesic, antipyretic, and anti-inflammatory
drug which is studied in Sect. 4.7.2.

2.3.2 Pharmacokinetic Parameters

The study of pharmacokinetics is a central part of drug development. For the anal-
ysis of pharmacokinetic data two different approaches are available. The first one
is the so-called noncompartmental approach which relies on parameters such as
maximum concentration Cmax, the time of maximum concentration Tmax, and the
area under the time–concentration curve. The second approach is given by so-called
compartment models. Compartment models describe the flow of a substance (chem-
icals, drugs, information) between the components of a larger system. In general,
there are m components (the compartments) which may be linked to each other in
any way. The flow rates or exchange constants between linked compartments are
generally specified, and each compartment may also have output and input to and
from the outside world. Compartments are described by differential equations. An
overview of the use of compartment models in pharmacokinetics may be found in
the books by Notari (1975) and Gibaldi and Perrier (1982). Basic pharmacokinetic
parameters are defined and explained next.

Absorption Rate

In pharmacokinetics, absorption is the movement of a drug into the bloodstream.
Absorption is often assumed to be a first-order process (Notari 1975), meaning that
the rate of transfer is proportional to the amount to be transferred. In this case, the
absorption rate (ka) represents the constant of proportionality.

Elimination Rate

Similar to the absorption rate, the elimination rate (ke) is used to refer to the pro-
portionality constant in a first-order elimination process. Elimination refers to both
biotransformation and excretion, and many processes can participate in the elimi-
nation of a drug. Here, ke refers to the total elimination from all these processes.
Elimination is usually well estimated by a first-order process. This implies that a
constant fraction of the drug in the body is eliminated per unit time; thus, the rate
of elimination is proportional to the amount of drug in the body. Even though some
elimination processes may in fact be capacity-limited (e.g., in cases where enzymes
are involved), the typically low concentrations associated with therapeutic doses im-
ply that this usually does not affect first-order behavior (Gibaldi and Perrier 1982).
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Apparent Volume of Distribution

The apparent volume of distribution (V ) of a drug is defined by

V =
x
c
, (2.9)

where x is the amount of drug in the body and c denotes the concentration in blood or
plasma. V is not a physical volume because the distribution of the drug in the body
is nonuniform. It will not be lower than the blood or the plasma volume but for some
drugs it can be much larger than the body volume. The volume of distribution is a
mathematical factor relating the amount of drug in the body and the concentration
of drug in the measured compartment, usually plasma.

Clearance

Clearance (Cl) can be interpreted as the volume from which all drug molecules are
eliminated during a certain time span. This parameter is defined by

Cl = V ke. (2.10)

Thus, clearance relates the volume of distribution and the elimination rate, and is
a measure for the rate of elimination of a drug (Cawello 1999). The clearance is
often considered to be the most important pharmacokinetic parameter (Gibaldi and
Perrier 1982). Individual clearances can be defined for each elimination organ. Here
only the total body clearance will be considered, i.e., the sum of all clearances.

2.3.3 First-Order Compartment Models

One of the simplest compartment models is a first-order oral compartment model.
The principal idea is shown graphically in Fig. 2.5. This model can be obtained as
a solution to a differential equation and describes the plasma concentration c(t) at
time t. The corresponding nonlinear regression model is given in (2.11):

c(t) =
Dkake

Cl(ka − ke)
(e−ket − e−kat). (2.11)

In this equation ka and ke represent the constants of absorption and elimination,
respectively, whereas Cl denotes the clearance and D denotes the dose given. This
model implies that at the beginning the concentration–time curve is governed by
the absorption constant ka and later this curve is determined by the elimination con-
stant ke. This is shown schematically in Fig. 2.6. Equation (2.11) forms a nonlinear
regression problem. In general there exist no closed-form solutions for nonlinear
regression models. A solution has to be found by numerical techniques such as
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Drug
Dose

Stomach
ka keCentral compartment

Fig. 2.5 The one-compartment model. The drug is absorbed from the gastrointestinal tract and
then eliminated. ka and ke represent the rates of absorption and elimination, respectively

Fig. 2.6 Concentration–time
curve based on an oral
one-compartment model
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the Gauss–Newton algorithm. For details on nonlinear regression problems see the
monograph by Bates and Watts (1988). Many of the algorithms proposed and de-
scribed in that monograph are part of the R package nlme (Pinheiro and Bates 2000).

2.3.4 Population Pharmacokinetics

The foundations of population pharmacokinetic modeling were laid in the 1970s by
Sheiner et al. (1972, 1977). This approach aims to model the relationship between
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physiologic function (normal and disease altered) and pharmacokinetics while tak-
ing into account the interindividual variability in these relationships (Steimer et al.
1994). Thus, again the population pharmacokinetic approach tries to take hetero-
geneity of individuals into account. Variability of the pharmacokinetic response
between individuals may be caused by differences in, e.g., absorption or elimina-
tion. These differences may be a result of genetic polymorphisms as mentioned in
the introductory example. These differences may also be due to factors such as age,
gender, or reduced renal or hepatic function. Often these reasons are not known.
Hence, we search for a model which allows us to handle variability between indi-
viduals due to unobserved covariates.

As a result, the population pharmacokinetic approach has been gaining popular-
ity. Meanwhile it is an important part of the drug development process. In 1999, the
US FDA published a guidance for industry regarding population pharmacokinetics.
It underlines the interest in population pharmacokinetics within the pharmaceutical
industry (U.S. Department of Health and Human Services: Food and Drug Admin-
istration 1999). They conclude:

Use of the population pharmacokinetic approach can help increase understanding of the
quantitative relationships among drug input patterns, patient characteristics, and drug dis-
position. . . .

Another major asset of the method may be seen in the fact that sparse routinely col-
lected data may be used. In the 1970s, when Sheiner et al. laid the foundations of
population pharmacokinetic analyses, they showed that with data collected as part of
routine patient care such modeling can estimate the average values of pharmacoki-
netic parameters and the interindividual variances of those parameters in a patient
population. With such sparsely sampled data from patients receiving digoxin, their
method produced estimates that were similar to published values derived with tradi-
tional methods (Sheiner et al. 1975). In the following section the ideas of population
pharmacokinetic modeling are introduced using a data set on the pharmacokinetics
of theophylline.

2.3.5 Theophylline Pharmacokinetics

Theophylline, also known as dimethylxanthine, is a drug used in therapy of respi-
ratory diseases such as chronic obstructive pulmonary disease and asthma. Initial
metabolism of theophylline is primarily performed by the hepatic CYP enzymes
CYP1A2 and CYP2E1 (Tjia et al. 1996; Yoon et al. 2006). These data are taken
from a phase I clinical study (Boeckmann et al. 1994). Figure 2.7 shows the
concentration–time curve of 12 individuals whose theophylline concentrations were
measured at 11 points in time after oral administration of one dose. Looking at
these individual time–concentration curves, one sees a first-order oral compartment
model seems appropriate. The individual dose given depends on the body weight of
the subject.
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Fig. 2.7 Concentration–time curves of 12 subjects receiving an orally administered dose of theo-
phylline

Table 2.4 shows the weight of the subjects, the dose given, and the noncompart-
mental pharmacokinetic parameters Tmax and Cmax.

The simplest possible pharmacokinetic model is given by a so-called pooled
model which assumes for all individuals the same pharmacokinetic model with
identical parameters for absorption rate, elimination rate, and clearance. The cor-
responding result is shown in Fig. 2.8. The concentration–time curves of these indi-
viduals differ since they have received different doses; however, the plots indicate
substantial interindividual variability. It becomes clear that the assumption of ho-
mogeneity is too strong and that this model does not provide a satisfactory fit to the
data. Since this data set consists of 11 concentration measurements for each of the
12 subjects, an individual model for each subject could be calculated alternatively.
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Table 2.4 Subject characteristics and pharmacokinetic parameters Tmax and Cmax

Subject Weight (kg) Dose (mg) Cmax (ng ml−1) Tmax (h)

6 80.0 4.00 6.44 1.15
7 64.6 4.95 7.09 3.48
8 70.5 4.53 7.56 1.02
11 65.0 4.92 8.00 0.98
3 70.5 4.53 8.20 1.02
2 72.4 4.40 8.33 1.92
4 72.7 4.40 8.60 1.07
9 86.4 3.10 9.03 0.63
12 60.5 5.30 9.75 3.52
10 58.2 5.50 10.21 3.55
1 79.6 4.02 10.50 1.12
5 54.6 5.86 11.40 1.00
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Fig. 2.8 Pooled fixed effects model for concentration–time curves of 12 subjects receiving an
orally administered dose of theophylline
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However, fitting a model to each individual implies fitting 12× 3 = 36 parameters
for the whole data set. As a result, this approach does not provide substantial data
reduction. Thus, neither a pooled model nor individual models are particularly use-
ful. One model for all individuals is too strict and one model for each individual
does not provide sufficient data reduction. Additionally, many population pharma-
cokinetic studies do not provide sufficient data to be able to fit a model to each
individual.

Thus, alternatively a random effects model can be fit to the data. Here again, vari-
ability between subjects can be modeled using a finite mixture model. In general,
subpopulations with different absorption, elimination and clearance are considered.
More precisely, there might be a subpopulation which has a large absorption con-
stant but a low clearance. This would result in high, long-lasting serum levels of the
drug. On the other hand, there might be a subpopulation with a small absorption con-
stant but a high clearance. This would result in short-lasting, lower concentrations
of the drug. For each of these subpopulations the elimination constant is assumed to
be identical. In other words, absorption and clearance are assumed to vary between
individuals and the elimination constant is assumed to be fixed. Technically speak-
ing, absorption and clearance are assumed to follow a random distribution: They are
random effects in the model.

The assumption of random effects for absorption and clearance but a fixed effect
for elimination is motivated by Fig. 2.9. This figure shows the absorption rate, elim-
ination rate, and clearance on a log scale for each individual together with a 95%
confidence interval. It becomes clear that there is considerable variability between
individuals for absorption and clearance, but less so for elimination. With these
considerations a finite mixture model is fit to the data. The results are shown in
Table 2.5. It turns out that there are three subpopulations. One subpopulation forms
34.58% of all individuals with a small absorption constant and relatively large
clearance.
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Fig. 2.9 Confidence intervals of individual one-compartment models of 12 subjects receiving an
orally administered dose of theophylline, where lKe denotes the log of the elimination constant,
lKa denotes the log of the absorption constant, and lCl denotes the log of the clearance
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Table 2.5 Parameter estimates for the three-component mixture model fit to the theophylline data.
Residual error is expressed as the standard deviation

Group 1 Group 2 Group 3
Parameter (34.58%) (48.75%) (16.67%)

k̂e 0.082 0.082 0.082
k̂a 0.883 1.9332 2.409
Ĉl 0.038 0.042 0.028

Residual error 1.0247

1050

0
2

4
6

8
10

15 20 25 30
Time (hr)

T
he

op
hy

lli
ne

 c
on

ce
tr

at
io

n 
in

 s
er

um
 (

ng
/m

l)

ke = 0.083
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ka = 0.88 Cl = 0.039

Fig. 2.10 Mixture model for concentration–time curves of 12 subjects receiving an orally admin-
istered dose of theophylline

The next subpopulation forms another 48.75% and has a larger absorption con-
stant and higher clearance. Finally, the last subpopulation forms 16.7% of all indi-
viduals and is characterized by a large absorption constant k̂a = 2.409 and a small
clearance estimated to be 0.028. The corresponding concentration–time curves of
the three subpopulations are shown in Fig. 2.10. This model still needs to estimate
a large number of parameters, that is, two mixture proportions, one elimination
constant, three absorption constants, and three clearance parameters. Thus, a total
of nine parameters were estimated for these data. To achieve more data reduction,
a normal distribution for the random effects might be considered. In the simplest
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Fig. 2.11 Nonlinear mixed effects model for concentration time curves of 12 subjects receiving an
orally administered dose of theophylline

case, e.g., only variability between individuals for the absorption constant would be
assumed. This model has fewer parameters, but makes the additional assumption
that the variability of the absorption constant between individuals may be described
by a normal distribution. However, a satisfactory fit may be achieved if variability
between individuals is assumed for the absorption constant and for the clearance.
The corresponding estimated concentration–time curves are shown in Fig. 2.11. This
model seems to provide an acceptable fit requiring only five parameters.
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2.4 A Note of Caution

Finally, at the end of this chapter a note of caution seems in order. Following Box
(1979):

All models are wrong, but some models are useful.

Models are by their very nature only approximations to a complex and complicated
reality and thus they are of course literally false. On the other hand, models are the
only instruments we have for understanding complex phenomena. The usefulness
of the models presented here is hopefully given by the fact that they allow us to
identify heterogeneity of individuals and to include known covariates in order to
explain some of the diversity between them.



Chapter 3
Modeling Count Data

As already emphasized in Chap. 2, patients are not alike. Sometimes there is sub-
stantial variability between patients which cannot be immediately explained by
known covariates. For example, the frequency of symptoms may show consider-
able heterogeneity. Often covariates which are responsible for this behavior are not
known or not observable. As a result, this phenomenon is frequently called unob-
served heterogeneity. From a biostatistical perspective the statistician needs to find
a suitable model which identifies unobserved heterogeneity and which if covariates
are available accounts for these known covariates. In this chapter this type of model
is applied to count data.

3.1 Example: Morbidity in Northeast Thailand

In a cohort study in northeast Thailand the health status of 602 preschool children
was checked every 2 weeks from June 1982 until September 1985 (Schelp et al.
1990). In this time period it was recorded how often the children showed symptoms
of fever, cough, running nose, or these symptoms together. The frequencies of these
illness spells are given in Table 3.1. The data set has been discussed by several
authors (Böhning et al. 1992; Eilers 1995). Frequently for this kind of count data a
Poisson distribution with X ∼ Po(λ ),

Pr(X = x) =
e−λλ x

x!
= f (x,λ ), (3.1)

is assumed. On the basis of this assumption we obtain an estimate of the Poisson pa-
rameter λ̂ = 4.485. This simple Poisson distribution does not fit the empirical distri-
bution of the data very well. Looking at the χ2 goodness-of-fit test statistic, we find
a poor fit (χ2 = 3667.28, 11 degrees of freedom with the last 12 cells combined).

A useful diagnostic tool for densities from the one-parameter exponential family
are overdispersion tests which exploit the mean variance relationship of the Poisson

P. Schlattmann, Medical Applications of Finite Mixture Models, 29
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 3,
c© Springer-Verlag Berlin Hiedelberg 2009



30 3 Modeling Count Data

Table 3.1 Distribution of the counting variable illness spells

Number of illness spells
0 1 2 4 5 6 7 8 9 10 11 12 13 14 15

Frequency
120 64 69 72 54 35 36 25 25 19 18 13 4 3 6

Number of illness spells
16 17 18 19 20 21 23 24

Frequency
6 5 1 3 1 2 1 2

distribution, which states E(X) = var(X) = λ . In the case of overdispersion the
empirical variance of the data is larger than the variance explained by the model.
A simple test for overdispersion exploits this phenomenon and was developed by
Tiago de Oliveira (1965). This test has been referenced by Everitt and Hand (1981,
p. 118) and by Titterington et al. (1985, p. 152). Böhning (1994) showed that the
formula for the variance used for the test statistic was incorrect and developed the
following simple test statistic:

Onew
T =

√
(n−1)/2

S2 − x̄
x̄

, (3.2)

which is approximately standard normal if the sample is from a homogeneous Pois-
son population with parameter λ . For the data at hand we have the statistics n = 602,
x̄ = 4.48, and S2 = 20.44, indicating strong overdispersion S2 − x̄ = 15.96. This
leads to the value of Onew

T = 43.70 and to the rejection of the null hypothesis of a
homogeneous Poisson distribution. Assessment of overdispersion is still an active
area of research. As an alternative to the test presented here, score tests may be ap-
plied. See, for example, the paper by Xiang and Lee (2005) and the application of
the score test for overdispersed data in Sect. 5.5.2.

3.2 Parametric Mixture Models

The presence of overdispersion indicates that a simple Poisson distribution is not
appropriate for the data at hand. As a result, a mixture distribution which takes this
extra variability into account is assumed. Thus, if the Poisson parameter λ is not
considered fixed, but assumed to follow a distribution itself, we obtain a mixture
model. In the context of count data the negative binomial distribution described
below can be thought of as a Poisson distribution with unobserved heterogeneity,
which, in turn, can be conceptualized as a mixture of two probability distributions,
namely, Poisson and gamma.
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More formally, assume a family of densities { f (x,λ )} parameterized by λ . Let Λ
be the totality of values that can be taken by λ . If Λ is a (possibly infinite) interval
and g(λ ) is a probability density function, then the marginal density f (x) will be
given by

f (x) =
∫

Λ
f (x|λ )g(λ )dλ . (3.3)

One possible approach is to assume that λ follows a gamma distribution with

g(λ ;α,ν) =
αν

Γ (ν)
λν−1e−αλ , λ ,α,ν > 0, (3.4)

where Γ (u) denotes the gamma function

Γ (u) =
∫ ∞

0
tu−1e−tdt, u > 0. (3.5)

Then it follows that
∫ ∞

0
f (x,λ )g(λ )dλ =

∫ ∞

0

e−λλ x

x!
αν

Γ (ν)
λν−1e−αλ dλ

=
αν

x!Γ (ν)

∫ ∞

0
λν+x−1e−(α+1)λdλ

=
αν

x!Γ (ν)
1

(α+1)ν+x

∫ ∞

0
[(α+1)λ ]ν+x−1 e−(α+1)λd [(α+1)λ ] ,

with z = (α +1)λ

=
αν

x!Γ (ν)
1

(α +1)ν+x

∫ ∞

0
zν+x−1e−zdz

=
(

α
1+α

)ν Γ (ν + x)
x!Γ (ν)

(
1

α +1

)x

since
∫ ∞

0
zν+x−1e−zdz = Γ (ν + x)

=
(
ν + x−1

x

)(
α

α +1

)ν ( 1
α +1

)x

(3.6)

=
(
ν + x−1

x

)
pν(1− p)x. (3.7)

This is the density function of a negative binomial distribution with parameters ν
and p = α

α+1 . Its expectation and variance are given by

μ = ν
1− p

p
=

ν
α

(3.8)
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and

σ2 = ν
1− p

p2 = μ
1
p

=
ν
α

+
ν
α2 , (3.9)

respectively (Mood et al. 1974, Chap. 2). Johnson et al. (1992, Chap. 5) presented
a series of methods for estimating the parameters of the negative binomial distribu-
tion. The method of moments simply equates the sample mean x̄ and sample vari-
ance S2 with the theoretical moments μ and σ2. This leads to the moment estimates

μ̂ = x̄ ,

ν̂ =
x̄2

S2 − x̄
,

p̂ =
x̄
S2 . (3.10)

On the basis of (3.10), estimates μ̂ = 4.485, p̂ = 0.218, and ν̂ = 1.237 are obtained
for the illness spell data. Estimation of the dispersion parameter of the negative
binomial distribution is still an active area of research (see also Sect. 5.5.3 for a
discussion of the topic). For a recent discussion of methods based on maximum
likelihood see, for example, Saha and Paul (2005).

On the basis of these estimates the negative binomial density in Fig. 3.1 is ob-
tained. Obviously, judging from this graph, this conjugate Poisson mixture model

Fig. 3.1 Empirical density,
Poisson density, and negative
binomial density of the illness
spell data
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provides a much better fit to the data than a single Poisson density. However,
the choice of the gamma distribution as the mixing distribution is somewhat ar-
bitrary and is mainly guided by mathematical convenience. Likewise, looking at
the χ2 goodness-of-fit test statistic, we find a better, but still not a satisfactory fit
(χ2 = 36.217, p = 0.029, 22 degrees of freedom with the last two cells combined).

3.3 Finite Mixture Models

Another potential class of models is finite mixture models, possibly adjusted for
covariates. The books by Everitt and Hand (1981), McLachlan and Basford (1988),
Böhning (1999a), McLachlan and Peel (2000), and more recently Frühwirth-
Schnatter (2006) cover a wide range of applications of finite mixture models.

Frequently, we assume a one-parameter density f (x|λ ) for the phenomenon of
interest. λ denotes the parameter of the population, whereas x is in the sample space
X a subset of the real line. As already demonstrated for the illness spell data this
simple model is too strict to describe real data. Thus, a natural extension of this sim-
ple model would be the heterogeneous case, where we assume that the population of
interest consists of several subpopulations denoted by λ1,λ2, . . . ,λk. In contrast to
the homogenous case, we have the same type of density for each subpopulation but
different parameters λ j in subpopulation j. In contrast to the mixture model, where
a gamma distribution was assumed for the Poisson parameter λ , here no specific
assumption of the form of the distribution of λ is made.

In the sample x1,x2, . . . ,xn it is not observed to which subpopulation the informa-
tion belongs; therefore, this phenomenon is called unobserved heterogeneity. Now
let a latent variable Z describe population membership. Then the joint density f (x,z)
may be written as

f (x,z) = f (x|z) f (z) = f (x|λz)pz, (3.11)

where f (x|z) is the density conditional on membership in subpopulation z. Thus, the
unconditional density f (x) is given by the marginal density summing over the latent
variable Z

f (x,P) =
k

∑
j=1

f (x,λ j)p j. (3.12)

In this case p j is the probability of belonging to the jth subpopulation having param-
eter λ j. As a result, the p j are subject to the constraints p j ≥ 0 and p1 + · · ·+ pk = 1.
Thus, (3.12) denotes a semiparametric mixture distribution with mixing kernel
f (x,λ j) and mixing distribution

P ≡
[
λ1 . . . λk
p1 . . . pk

]
(3.13)

in which weights p1, . . . , pk are given to parameters λ1, . . . ,λk. Note that also the
number of components k needs to be estimated.
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Coming back to the example, we could use a finite mixture model of Poisson
distributions instead of the parametric mixture model or the simple Poisson model

f (x,P) =
k

∑
j=1

f (x,λ j)p j,

where f (x,λ j) = exp(−λ j)λ x
j /x!.

This model assumes that there are k latent subgroups with parameters λ j and cor-
responding mixing weights p j. Thus, each subpopulation is described by a Poisson
distribution with parameter λ j.

3.3.1 Diagnostic Plots for Finite Mixture Models

An initial diagnostic plot indicative of mixture models is the plot of the logarithm
of the homogeneity residuals obtained under the homogenous model against the
observations. If a mixture is present, Lindsay and Roeder (1992) have shown that
such a plot will be convex. A diagnostic technique which exploits the properties
of the nonparametric maximum likelihood estimator (NPMLE) has been suggested
by Lindsay and Roeder (1992). Details may be found in Sect. 4.3. The approach of
Lindsay and Roeder focuses on the graphical analysis of the residuals

Observed− expected
expected

,

where “observed” is defined to be w(x), the relative frequency of the sample el-
ements equal to x. “Expected” is the expected frequency under the model consid-
ered; under the model f (x,λ ) we obtain the homogeneity residual rλ̂ (x) = w(x)

f (x,λ̂ )
−1,

whereas rP̂(x) = w(x)
f (x,P̂)

−1 leads to the heterogeneity residuals. If the mixture mod-
els holds a certain pattern of homogeneity residuals plotted against the observations,
x can be indicative of a mixture model. This is very similar to regression diagnostics
where certain patterns are indicative of other models. Lindsay and Roeder (1992)
have shown that a plot of log(rλ̂ (x)+ 1) should have a convex structure if a mix-
ture model is present. The graph in Fig. 3.2 clearly shows a convex pattern and we
conclude that a mixture model may be appropriate for the data. Again, a Poisson
distribution is assumed for the mixing kernel f (x;λ j).

3.3.2 A Finite Mixture Model for the Illness Spell Data

For the construction of a finite mixture model it is necessary to make a choice with
regard to the number of components k. Either we can treat k as fixed and known,
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Fig. 3.2 Diagnostic plot of homogeneity residuals (circles) and the smoothed curve

which is called the fixed support size case, or the number of components k can be
treated as unknown, which is the flexible support size case. In the latter case, we
think of P as a completely unknown discrete distribution on the values of λ with at
most n support points.

For an initial data analysis it is useful to treat the number of components k as
unknown. This has the advantage that it may serve as a diagnostic for the num-
ber of components and that suitable starting values are provided for the algorithms
for the fixed support size case model. This strategy is implemented in the program
C.A.MAN (Computer Assisted Analysis of Mixtures; Böhning, Schlattmann, and
Lindsay (1992), Böhning, Dietz, and Schlattmann (1998)). The functionality of the
program is now available in the R package CAMAN, which is used for the cal-
culations at hand. See also Sect. 3.4 for more information. In this program sev-
eral algorithms for the estimation of the parameters of a mixture are available.
These algorithms include the vertex exchange method for flexible support size and
the expectation maxmization for fixed support size. A detailed description of the
algorithms is given in Sect. 4.3.2. The description of the VEM algorithm is given
in Algorithm 4.3.2 on page 69 and the EM algorithm is given in Algorithm 4.4.1
described on page 76.

The first choice in using the VEM algorithm for the flexible support size involves
the selection of a grid of parameter values λ1, . . . ,λm over which we wish to find the
corresponding population proportions that maximize the likelihood function. This
forms the first step of a mixture algorithm. Here, using C.A.MAN, the NPMLE
turns out to consist out of at least three distinct groups. A bar chart of the NPMLE
is shown in Fig. 3.3. These grid points with positive support may be used as starting
values for the EM algorithm. Combining coinciding parameter values leads to the
following five-component solution:
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Fig. 3.3 Nonparametric estimation of heterogeneity for a sample of 602 preschool children in
northeast Thailand

f (x, P̂) = 0.0025 f (x,0.0)+0.1945 f (x,0.1456)+0.4799 f (x,2.8175)
+0.2693 f (x,8.1643)+0.0538 f (x,16.1559). (3.14)

This might be interpreted in such a way that there is a small proportion of children
who are always healthy, another proportion who are almost always healthy, some
who have intermediate risk of infection, some who have above intermediate risk of
infection, and there is small proportion of children with high risk of infection.

3.3.3 Estimating the Number of Components

After having found the fully iterated maximum likelihood estimate, we might be
interested in finding a parsimonious model. A natural approach would be to apply a
forward or backward selection procedure to the data based on the values of the log
likelihood for the respective model. Looking at the results in Table 3.2, we would
conclude that a solution with four components seems to be appropriate for the data.
The change in the likelihood from five to four components is negligible. As a result,
the initial solution of the combination of the VEM and the EM algorithms overes-
timates the number of components k. A model with three components leads to a
drastic decrease of the log likelihood. As a result, the final model is the model based
on four components.
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Table 3.2 Results of finite mixture model fit to the illness spell data

Components k Parameter λ̂ j Weights p̂ j log L BIC

1 4.485 1 −2,135.422 4,277.244

2 1.823 0.646 −1,633.529 3,286.260
9.236 0.354

3 0.342 0.260 −1,573.427 3,178.855
3.674 0.525

11.246 0.215

4 0.142 0.197 −1,553.694 3,152.19
2.812 0.480
8.145 0.270

16.140 0.053

5 See (3.14) −1,553.693 3,165.225

BIC Bayesian information criterion

Model Selection Based on the Likelihood Ratio Test

In order to apply a more formal procedure for the selection of the number of com-
ponents k a generalized likelihood ratio test can be used. Statistical inference us-
ing the likelihood ratio statistic (LRS) for the number of components in a mixture
model is complicated if the true number of components is less than that of the pro-
posed model since this represents a nonregular problem: the true parameter is on the
boundary of the parameter space. As a result, the limiting distribution of the LRS
does not follow the usual χ2 distribution. This is a well-known problem and still
an area of active research. Lo et al. (2001) have studied the distribution of the LRS
for various settings. One approach that has been found to simplify the asymptotic
results while preserving the power of the test is to modify the likelihood function by
incorporating a penalty term to avoid boundary problems. See, for example, Chen
et al. (2001, 2004).

As a general result, the limiting distribution of the LRS has to be found by
simulation techniques. One way to solve this problem for an individual data set
is the application of the parametric bootstrap approach (McLachlan and Basford
1988; Feng and McCulloch 1996). This implies simulating from a certain mixture
model under H0 with k = k0 and then fitting a model with k and k + 1 compo-
nents for these simulated data and evaluating the corresponding LRS. This proce-
dure is repeated independently a number of times B and the replicated values of
−2logξ , ξ = logL0 − logL1, i = 1, . . . ,B formed from the successive bootstrap
samples provide an assessment of the bootstrap, and hence of the true null distribu-
tion of the LRS. A detailed description of this approach is given in Sect. 4.5.2. This
procedure then leads to a forward elimination procedure for the number of com-
ponents k (Schlattmann and Böhning 1993; Karlis and Xekalaki 1999). Of course
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this procedure can also be used to perform a backward selection for the number of
components of the mixture model.

Looking for a parsimonious model, we compute a model with a four-component
solution and compare this with a model with five components. Computing the LRS,
we obtain a value of 0.001 which indicates a negligible decrease in the log like-
lihood. Testing a three-component model against the four-component model, we
obtain a value of −2logξ = 39.466. Thus, for these data a four-component model
seems to be appropriate on the basis of the use of the LRS.

The Nonparametric Bootstrap Approach To Estimate the Number
of Components

As an alternative procedure for the estimation of the number of components
Schlattmann and Böhning (1997) proposed using the nonparametric bootstrap
(Efron 1979, 1982; Efron and Tibshirani 1993). This approach is based on sampling
with replacement from the original data and applying the mixture algorithm B times
independently to the bootstrap samples. This gives an estimate of the number of
components k for each bootstrap replication and hence we obtain the distribution
of the number of components k. The mode of this distribution can then be used as
an estimate of the actual number of components k. A detailed description of this
procedure may be found in Sect. 4.5.3 starting on page 84. By simulation stud-
ies Schlattmann (2003, 2005) has shown that this estimator is mode-consistent in
the homogeneous as well as in the heterogenous case when mixtures of Poisson
densities are considered.

As a result, on the basis of the data in Table 3.3 we would conclude that four com-
ponents are needed, which is consistent with the result obtained using the likelihood
ratio test.

Looking at Fig. 3.4, we clearly conclude that this mixture density provides a sat-
isfactory fit to the data. Looking at the χ2 goodness-of-fit test statistic, we find a
satisfactory fit (χ2 = 3.444, p = 0.999, 22 degrees of freedom with the last two
cells combined). Summarizing, comparing the simple Poisson, the negative bino-
mial (Poisson–gamma mixture) model, and the semiparametric mixture model, the
finite mixture model with four components gives a superior fit. For a detailed dis-
cussion of when to use the negative binomial or the Poisson mixture model, see Joe
and Zhu (2005).

Table 3.3 Nonparametric bootstrap distribution of k̂ for illness spell data based on B = 2,500
replications

k̂ 3 4 5 6 7 8

Relative frequency 0.0004 0.564 0.3708 0.054 0.0092 0.0016
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Fig. 3.4 Empirical density, Poisson density, and mixture density of the illness spell data

3.4 Computation

3.4.1 Combination of VEM and EM Algorithms

This section shows how to use the R library CAMAN to produce the result of the
previous sections. The workhorse of the library is the adaptation of the program
C.A.MAN written in Fortran and C by Böhning and Schlattmann to R. The library
is named “CAMAN” and must be called with

> library(CAMAN)

The next step involves loading the example data from the cohort study in northeast
Thailand. This is done using the command

> data(thai_cohort)

The function mixalg combines as a default the VEM algorithm and the EM algo-
rithm. The first choice in using the VEM algorithm for the flexible support size
involves the selection of a grid of parameter values λ1, . . . ,λk over which we wish
to find the corresponding population proportions that maximize the likelihood func-
tion. The default in mixalg calculates the minimum and the maximum of the data
and constructs a grid with k = 25 equidistant grid points. In this case this produces
a grid of integers with 0,1, . . . ,24 and the call of the function mixalg gives
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> mix0 <- mixalg(obs="counts", weights="frequency",
family="poisson",

> data=thai_cohort, numiter=18000,
acc=0.00001,startk=25)

Here we assume a Poisson distribution for the mixing kernel, and each observa-
tion given in “counts” has frequency weights defined in “frequency.” The option
“startk = 25” determines the number of grid points. Then, typing

> mix0

gives the basic result

Computer Assisted Mixture Analysis:

Data consist of 602 observations. The Mixture Analysis
identified five components of a poisson distribution:

DETAILS:
p lambda

1 0.007138942 0.000000
2 0.189933532 0.149804
3 0.479856504 2.817818
4 0.269237565 8.164432
5 0.053833458 16.155972

This is the result of the combination of the VEM and the EM algorithms. A more
detailed output is obtained by typing the command

> summary(mix0)

This gives

Summary of a Computer Assisted Mixture Analysis:

Data consist of 602 observations The Mixture Analysis
identified five components of a poisson distribution:

DETAILS:
p lambda

1 0.007138942 0.000000
2 0.189933532 0.149804
3 0.479856504 2.817818
4 0.269237565 8.164432
5 0.053833458 16.155972

number of iterations done: 8440
Log-Likelihood: -1553.811
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Fig. 3.5 Result of the vertex exchange method algorithm for a sample of 602 preschool children
in northeast Thailand

BIC: 3165.225
accuracy at final iteration: 9.691139e-06

User-defined parameters:
max number of iterations: 18000
limit for combining components: 0.1
number of grid points: 25

Useful information is given by the final result of the VEM algorithm. This can
be obtained using the command

> vem<-mix0@VEM_result

This command returns a matrix with two columns. The first column contains the
mixing weights p j and the second column contains the grid points λ j on which
the mixing weights were searched. A plot of the grid points together with the mix-
ing weights as shown in Fig. 3.5 may be constructed using the standard R function
barplot.

> barplot(vem[,1],names=vem[,2],
xlab="Number of symptoms",ylab="Weights")

3.4.2 Using the EM Algorithm

Of course the EM algorithm may be used as a standalone algorithm. If the algorithm
is used in this way the only thing the user has to do is to provide starting values. In
order to construct Table 3.2 we could start with a homogeneous mixture model. This
is done by typing

> em0<-mixalg.EM(mix0,p=c(1),t=c(1))
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This function returns the mixing weights p j, the subpopulation means λ j, the log
likelihood at iteration, and the corresponding Bayesian information criterion (BIC).

> em0

p lambda
1 1 4.448505

Log-Likelihood: -2135.422 BIC: 4277.244

The next entry in Table 3.2 is obtained with the command

> em1<-mixalg.EM(mix0,p=c(0.7,0.3),t=c(2,9))

The starting values for the mixing weights p and the subpopulation means λ j are
expected to be given as vectors using standard R syntax. This leads to the following
result:

p lambda
1 0.6457857 1.822729
2 0.3542143 9.235688

Log-Likelihood: -1633.529 BIC: 3286.259

3.4.3 Estimating the Number of Components

Apparently the log likelihood of the two-component mixture model is much better
than that of the homogenous model. More formally, these models can be compared
using the function anova. To apply the parametric bootstrap outlined previously
in the section “Model Selection Based on the Likelihood Ratio Test,” the function
anova(.) can be used. This function takes as argument two objects of type mix-
alg.EM. The first argument is the model serving as H0 with k = k0 from which the
parametric bootstrap observations are sampled. The second argument is the model
presenting the alternative with k = k +1. The third argument denotes the number of
bootstrap replications B. For each bootstrap sample the LRS is computed and the
percentiles of the bootstrap distribution of the LRS are returned.

> ll<-anova(em0,em1,nboot=2500)

This leads to the following result

> ll

0.9 0.95 0.975 0.99
2.842339 4.551752 5.936260 7.793375
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The observed value of the LRS is certainly much larger than any relevant per-
centile of the LRS distribution and the null hypothesis of a homogenous distribution
is rejected.

3.5 Including Covariates

3.5.1 The Ames Test

Tumors arise and progress through the accumulation of serial genetic changes, in-
cluding successive mutations, which involve activation of proto-oncogenes and in-
activation of tumor suppressor genes, leading to the uncontrolled proliferation of
progeny cells.

As a result, the identification of substances capable of inducing mutations is an
important procedure in the safety assessment of drugs and chemicals. The Ames
Salmonella/microsome test (Ames et al. 1975a,b) holds an eminent position among
the tests available for investigation of a chemical’s mutagenicity. Mutation can occur
as a point (gene) mutation where only a single base is modified, or as large deletions
or rearrangement of DNA, as chromosome breaks or changes or as gain or loss of
whole chromosomes.

Mutagenicity is readily measured in bacteria when a substance causes a change
in the growth requirements of the cell. The Ames test uses a number of Salmonella
strains with a preexisting mutation which leaves the bacteria unable to synthesize
the amino acid histidine and as result unable to grow and form colonies. New muta-
tions can restore the gene’s function and allow the cells to produce histidine. These
newly mutated cells can grow in the absence of histidine and form colonies. The
Salmonella strains used in the test have different mutations in different genes in
the histidine operon. Each of these mutations is designed to respond to mutagenes
with different mechanisms. Microbiological details may be found in the review by
Mortelmans and Zeiger (2000). An overview of the historical development and the
rationale of genotoxic testing is given in the review article by Zeiger (2004). To
assess mutagenicity, several doses (usually at least five) of each test chemical and
multiple strains of bacteria are used in each experiment. In addition, cultures are set
up with and without added liver S9 enzymes at various concentrations. Therefore, a
variety of culture conditions are employed to maximize the opportunity to detect a
mutagenic chemical.

In analyzing the data, one takes the pattern and the strength of the mutant re-
sponse into account in determining the mutagenicity of a chemical. All observed
responses are verified in repeated tests. If no increase in mutant colonies is seen af-
ter testing several strains under several different culture conditions, the test chemical
is considered to be nonmutagenic in the Ames test.
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Table 3.4 Ames test: 4-nitro-o-phenylenediamine (4NoP)

Dose (μg/plate)

0 0.3 1.0 3.0 10.0

11 39 88 222 562
13 39 90 233 587
14 42 92 251 595
14 43 92 251 604
15 44 102 253 623
15 45 104 255 666
15 46 104 259 689
15 50 106 275 692
16 50 109 276 701
17 50 113 283 702
17 51 117 284 703
18 52 117 294 706
18 52 119 299 710
19 52 119 301 714
20 55 120 306 733
21 61 120 312 739
22 62 121 315 763
23 63 122 323 782
25 67 130 337 786
27 70 133 340 789

Fig. 3.6 Chemical
structure of 4-nitro-o-
phenylenediamine (4NoP)

NH2

NH2

N+

O−O

Table 3.4 shows an example of Ames test data where a strain of Salmonella
TA98 was activated with a homogenate of rat liver cells and exposed to 4-nitro-o-
phenylenediamine (4NoP) with various doses.

4NoP is a nitrated aromatic amine (Fig. 3.6). This chemical is a component of
both semipermanent and permanent hair dye formulations. The substance is fre-
quently used as a comparator in mutagenicity tests. See, for example, Chung et al.
(2000), Ajith et al. (2005), and Ajith and Soja (2006). The data in Table 3.4 were
taken from Margolin et al. (1989) and denote the bacteria count for various doses of
4NoP. The primary question of interest is whether 4NoP acts mutagenically in the
Ames test.
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Fig. 3.7 Dose versus microbe counts of the 4NoP data

A plot of the data is shown in Fig. 3.7. Apparently the variance of the data in-
creases with higher doses of 4NoP. This phenomenon should be covered by an anal-
ysis of the data.

In the analysis of the example data we employ a simple Poisson regression model,
a model based on the negative binomial distribution (Lawless 1987), and a finite
Poisson mixture model as suggested by Wang et al. (1996). The ideas and the nota-
tion of the respective models are developed in the following section.

Assessment of Mutagenicity

The primary issue in the analysis of an Ames test is whether there is evidence for
mutagenicity. Unfortunately, the Ames test does not include a parallel assay for the
toxicity of the test chemical. As a result, mutagenicity and toxicity have to be mod-
eled and addressed simultaneously. Eckardt and Haynes (1977) proposed a model
of mutagenesis and killing in the context of UV irradiation under the assumptions
(1) the untreated cell population is homogenous, (2) the end points are measured
all or none (mutant vs. nonmutant, survivor vs. nonsurvivor), and (3) stochastic in-
dependence of mutation and toxicity. Following these ideas, Margolin et al. (1981)
proposed a class of models for the Ames test with the expected counts λ (D) as a
function of dose:

λ (D) = N0Pr(D). (3.15)

Here D denotes the dose in micrograms of the chemical, N0 is the average number of
microbes placed on the plate, and Pr(D) is the probability that a particular microbe
will give rise to a revertant colony.



46 3 Modeling Count Data

Assuming a Poisson distribution as given in (3.1) leads to a Poisson regression
model with λ = exp(β +β1D) for the count of colonies. The occurrence of mutation
implies that at least one colony is revertant, that is,

Pr(X ≥ 1) = ∑
x≥1

e−λλ x

x!
= 1− exp(−λ ) = Pr(M). (3.16)

The probability of no lethal hit Pr(S) is given by

Pr(X = 0) = exp(−λ ) = Pr(S). (3.17)

Introducing the effect of dose D, this leads to the following probabilities:

• Probability of mutation: Pr(M) = 1− exp[−(β0 +β1D)]
• Probability of no lethal hit: Pr(S) = exp(−β2D)

Here spontaneous mutation is quantified by β0, the effect of the chemical on muta-
genicity is denoted by β1, and toxicity is denoted by β2.

Assuming (statistical) independence of the processes of mutagenicity and toxic-
ity, the joint probability is given by

Pr(D) = Pr(M∩S) = {1− exp [−(β0 +β1D)]}
︸ ︷︷ ︸

Pr(M)

×exp(−β2D)
︸ ︷︷ ︸

Pr(S)

. (3.18)

Here the term Pr(M) = 1− exp[−(β0 +β1D)] remains to be dealt with. In the lit-
erature several proposals have been made. For an overview, see the review paper
by Kim and Margolin (1999) and their Table 2 on page 115. Since Pr(M) is small,
using only the first two terms of the Taylor series expansion

f (x) = exp(x) =
∞

∑
k=0

xk

k!
(3.19)

yields the approximation

Pr(D) ≈ (β0 +β1D)× exp(−β2D). (3.20)

In epidemiology, see, for example, Breslow and Day (1987), many observed dose-
response relations for relative risks (RR) can be described by a power relationship
of the form

RR(D) = (d0 +D)β .

This implies that the RR increases as a power function instead of an exponential
relationship such as RR(D) = exp(βD). Breslow (1984) suggested this power model
for the Ames test as well. The parameter d0 is a nuisance parameter which either can
be estimated from the data or in the simplest case is approximated in advance by the
lowest positive dose used in the assay. This leads to the approximation of Pr(M):

Pr(M) ≈ exp(β0)(d0 +D)β1 . (3.21)
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Taking the natural logarithm of (3.15) and computing the expected number of counts
and using the approximation (3.21) leads to

logλ (D) = logN0 + logPr(D)
= β ∗

0 +β1 log(d0 +D)−β2D.

Note that the often unknown value of N0 is incorporated into β ∗
0 . This model for-

mulation has the advantage that the parameters of this log-linear model can be fit
with standard software packages for generalized linear models (GLIMs) such as
SAS or R.

3.5.2 Poisson and Negative Binomial Regression Models

From a statistical point of view the Ames test initiated a large body of research. An
overview of statistical methods applied to Ames test data may be found in the review
by Kim and Margolin (1999); see also Krewski et al. (1993). Besides the paramet-
ric and semiparametric models pursued here, also nonparametric (Wahrendorf et al.
1985) or test-based approaches (Bretz and Hothorn 2003; Hothorn and Bretz 2003)
are available for the analysis of the Ames test. Early attempts to model data based on
the Ames test used the assumption of a Poisson distribution for the count data. Mar-
golin et al. (1981) demonstrated that this assumption is often invalid. They presented
five sets of random samples of size 20, each under control conditions. They reported
mean to variance ratios larger than 3.5 for two of these samples. They concluded that
mixtures of Poissons should be used and applied the negative binomial model.

Poisson regression models belong to the class of GLIMs, which extend simple
linear regression to distributions other than the normal distribution for the dependent
variable (Dobson 2008). An overview of GLIMs is given in Sect. 4.6.1. The applica-
tion of GLIMs requires the specification of an error distribution, which in this case
is the Poisson distribution, the specification of a linear predictor which is given by
a vector β of length m×1, and a design matrix X which has dimension n×m. To-
gether they form the linear predictor η = Xβ . Finally, a link function which maps
the linear predictor to the scale of the error distribution is needed. In the present case
we use a logarithmic link. Thus, the expected counts based on a Poisson model are
given by

E(Y ) = λ = N0 exp(Xβ ). (3.22)

For the data at hand this leads to the following Poisson regression model:

logλ (D) = β ∗
0 +β1 log(d0 +D)−β2D. (3.23)

Here d0 denotes a predefined constant, as before taken to be equal to the smallest
dose. For the Poisson regression model we still have to deal with the variance mean
relationship given by

E(Y ) = var(Y ) = λ . (3.24)
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Table 3.5 Poisson regression model: Ames test data with a strain of Salmonella TA98 exposed
to 4NoP

Parameter Estimate Standard error t Pr(> |t|)

Intercept 4.458 0.014 327.12 0.00
log (0.3 + dose) 1.163 0.023 53.84 0.00
Dose −0.063 0.005 −12.44 0.00
Dispersion 0

Frequently, this assumption is not valid and the possibility of overdispersion has
to be addressed. Looking at Fig. 3.7, we see the variability of the data seems to be
increasing with dose; thus, a proper model should take this into account.

This model, with results shown in Table 3.5, has a residual deviance of 305.28 on
97 degrees of freedom; thus, the ratio of residual deviance and degrees of freedom
is 3.147. This indicates the presence of overdispersion. A problem associated with
overdispersion is given by the fact that the standard errors of the parameter estimates
are underestimated and need to be corrected. In terms of interpretation there is both
mutagenicity and toxicity present. Toxicity is indicated by the significant effect of
dose and mutagenicity is indicated by the significant effect of log (0.3 + dose). For
further comparison, note that the corresponding log likelihood for this model is
−481.274.

Again, we consider the negative binomial distribution in order to deal with
overdispersion. In the context of count regression models the negative binomial dis-
tribution can be thought of as a Poisson distribution with unobserved heterogeneity,
which, in turn, can be conceptualized as a mixture of two probability distributions,
namely, Poisson and gamma. For the negative binomial distribution the parameter-
ization sometimes differs from that used in Sect. 3.2. According to (3.8) the expec-
tation is given by E(Y ) = ν

α = λ . As a result, α = ν
λ and thus

p =
α

α +1
=

ν
λ +ν

. (3.25)

Thus, expectation and variance of the negative binomial distribution in this pa-
rameterization are given by

E(Y ) = λ .

var(Y ) = λ +λ 2/ν = λ (1+λ/ν). (3.26)

For the negative binomial regression model again a logarithmic link with λ =
exp(Xβ ) is used. This leads to the model

logλ (D) = β ∗
0 +β1 log(d0 +D)−β2D. (3.27)

Owing to the extra parameter the negative binomial distribution is capable of dealing
with overdispersion, as apparent in (3.26). Computation of this model may be done
with the function glm.nb which is part of the R package MASS provided by Venables
and Ripley (2002). Alternatively, software packages such as SAS and STATA may
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Table 3.6 Negative binomial regression model: Ames test data with a strain of Salmonella TA98
exposed to 4NoP

Parameter Estimate Standard error t Pr(> |t|)

Intercept 4.462 0.020 220.89 0.0
log (0.3 + dose) 1.186 0.032 38.01 0.0
Dose −0.069 0.009 −7.66 0.0
Dispersion 108.695 36.232

be used. Note that SAS and STATA use a different parameterization for the disper-
sion parameter ν , namely, ν−1. The results of the model are shown in Table 3.6
and were obtained with SAS, Proc Genmod. The dispersion parameter ν was cor-
rected accordingly. The log likelihood for this model is −427.075, which is a much
larger value than the log likelihood of the Poisson model (−481.274). The nega-
tive binomial model and the Poisson model are nested. However, the parameter ν
is on the boundary of the parameter space (e.g., the null distribution of the LRS is
not the usual χ2

1 distribution). Instead the asymptotic distribution of the LRS has
probability mass of one half χ2

0 and one half χ2
1 distribution (Cameron and Trivedi

1998). As a result, to test the null hypothesis at the significance level α , the critical
value of the χ2 distribution corresponds to significance level 2α . Comparing the log
likelihoods of the two models, we conclude that heterogeneity is present and that
an additional dispersion parameter is needed. Here the dispersion parameter is es-
timated as 108.695. The residual deviance of this model is given by 106.285 on 97
degrees of freedom. The ratio of residual deviance and degrees of freedom is 1.096,
which indicates a satisfactory fit of the model. The interpretation of the model in
terms of mutagenicity and toxicity remains unchanged. Looking at Table 3.6, we
see there is still a significant effect of dose indicating toxicity and mutagenicity is
indicated by the significant effect of log (11 + dose). However, allowing for variabil-
ity between plates leads to larger standard errors for the regression coefficients. For
example, the standard error of β2 increases from se(β2) = 0.022 to se(β2) = 0.031.

3.5.3 Covariate-Adjusted Mixture Model for the Ames Test Data

Instead of a parametric mixture, a finite mixture model adjusted for covariates can
be applied. We have the same semiparametric mixing distribution as in (3.13):

P ≡
[
λ1 . . . λk
p1 . . . pk

]
(3.28)

The major difference is now that the parameters λ1, . . . ,λk are no longer scalar
quantities but vectors, e.g.,

λ1 = (β01,β11, . . . ,βm1), (3.29)

where m denotes the number of covariates. In contrast to the homogenous case we
have the same type of density f for each subpopulation but a different parameter
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vector λ j in subpopulation j. The expectation of the ith observation in the jth sub-
population is then given by

E(Yi j) = exp(β0 j +β1 jxi1 + · · ·+βm jxim). (3.30)

Estimation of the model’s parameters is again performed by maximum likeli-
hood, e.g., with the EM algorithm as outlined in Sect. 4.6. The results of the finite
mixture model with covariates are shown in Table 3.7

The corresponding log likelihood of this model is −421.08, which is consider-
ably better than the log likelihood of the homogenous Poisson regression model
with a log likelihood of −481.27. The interpretation of this model is that there are
three distinct groups in the data, which all have the same estimates for mutagenicity
and toxicity but differ in their baseline characteristics. This is expressed by the three
different intercepts. This result is in accordance with the well-known variability be-
tween plates of the Ames test. A graphical representation of the model can be seen
in Fig. 3.8.

Table 3.7 Covariate adjusted mixture model: Ames test data with a strain of Salmonella TA98
exposed to 4NoP

Component Weight p̂ j Estimate Standard error t Pr(> |t|)

Intercept 1 0.298 4.319 0.025 174.358 0.0
Intercept 2 0.492 4.491 0.021 208.765 0.0
Intercept 3 0.210 4.581 0.026 178.055 0.0
log (0.3 + dose) 1.186 0.031 38.414 0.0
Dose −0.069 0.007 −9.638 0.0
Heterogeneity 810.311
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Fig. 3.8 Dose versus microbe counts of the 4NoP data with estimated regression lines based on a
covariate-adjusted mixture model
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Overall, there is considerable heterogeneity between plates indicated by the pres-
ence of overdispersion. In this example overdispersion was modeled using both a
parametric and a semiparametric mixture model. Both types of models indicated
that the substance is mutagenic and toxic (in the Ames test), while taking overdis-
persion or unobserved heterogeneity into account.

3.6 Computation

3.6.1 Fitting Poisson and Negative Binomial Regression Models
with SAS

To fit these models with SAS the data need to put into the program. This may done
by performing first a data step:
data nop;
input dose N; Do I=1 to N; Input count@@; output; end;
cards;
0 20
11 13 14 14 15 15 15 15 16 17 17 18 18 19 20 21 22 23 25 27
0.3 20
39 39 42 43 44 45 46 50 50 50 51 52 52 52 55 61 62 63 67 70
1.0 20
88 90 92 92 102 104 104 106 109 113 117 117 119 119 120 120

121 122 130 133
3.0 20
222 233 251 251 253 255 259 275 276 283 284 294 299 301 306 312

315 323 337 340
10.0 20
562 587 595 604 623 666 689 692 701 702 703 706 710 714 733 739

763 782 786 789
proc sort; by Dose;

In the next step the covariate logd, namely, log(dose+0.3), is computed:

data nop;
set nop;
logd=log(dose+0.3);
run;

With use of this data set a Poisson regression model is estimated using the code

proc genmod data = nop;
model count = dose logd /dist = poisson;
run;

The negative binomial regression model is fit with

proc genmod data = nop;
model count = dose logd /dist = negbin;
run;
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3.6.2 Fitting Poisson and Negative Binomial Regression Models
with R

The models presented before may be fit with R and the package CAMAN. We start
with the Poisson regression model. The data presented in Table 3.4 are part of the
package CAMAN. After the package has been called the data are loaded.

> library(CAMAN)
> data(NoP)

The calculations start with the construction of the variable logd given by logd =
log(dose+0.3), where 0.3 refers to the lowest nonzero dose. This variable is already
part of the dataframe NoP. The homogenous model is obtained with

> m0<-glm(count˜dose+logd,family=poisson(),data=NoP)

This leads to the result

> summary(m0)

Call:
glm(formula = count ˜ dose + logd, family = poisson(),
data = nop)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.09775 -1.17659 -0.02442 0.87859 3.61901

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.458168 0.013628 327.12 <2e-16
dose -0.063136 0.005074 -12.44 <2e-16
logd 1.163001 0.021624 53.78 <2e-16
---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 24783.24 on 99 degrees of freedom
Residual deviance: 305.28 on 97 degrees of freedom
AIC: 968.55

Number of Fisher Scoring iterations: 4

This model does not provide an acceptable fit and thus as an alternative a negative
binomial regression model is fit to the data. Using the library MASS (Venables and
Ripley 2002) allows application of the function glm.nb.

> library(MASS)
> m1<-glm.nb(count˜dose+logd,data=NoP)
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Typing summary(m1) gives

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.462365 0.020187 221.054 < 2e-16 ***
dose -0.069302 0.008563 -8.093 5.83e-16 ***
logd 1.186139 0.030746 38.579 < 2e-16 ***
--
(Dispersion parameter for Negative Binomial(108.1436)

family taken to be 1)

Null deviance: 8515.51 on 99 degrees of freedom
Residual deviance: 106.29 on 97 degrees of freedom
AIC: 862.15

Number of Fisher Scoring iterations: 1

Theta: 108.1
Std. Err.: 27.6

2 x log-likelihood: -854.15

3.6.3 Fitting Finite Mixture Models with the Package CAMAN

The function mixcov of the R package CAMAN allows computation of covariate-
adjusted finite mixture models. To fit the homogenous model the following call of
the function mixcov is used

> m2<- mixcov(dep=c("count"),fixed=c("dose","logd"),random=c(""),
data=NoP,k=1,family="poisson")

This call implies that count is the dependent variable, that dose und logd are
independent variables, that NoP is the dataframe, that the number of components k
is 1, and that the mixing kernel is the Poisson distribution. This gives the standard
output

> m2

coefficients:
(Intercept) dose logd

4.45817 -0.06314 1.16300

Degrees of Freedom: 99 Total (i.e., Null);
97 Residual Null

Deviance: 24,780 Residual Deviance: 305.3 AIC: 968.5
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To model the three-component covariate-adjusted mixture model displayed in
Table 3.7 the following code can be used:

> m3<- mixcov(c("count"),c("dose", "logd"),c(""),NoP,
3,fam="poisson")

This gives the result

> m3

Computer Assisted Mixture Analysis with covariates:

Data consists of 100 observations (rows).

mixing weights:
comp. 1 comp. 2 comp. 3

0.2978747 0.4924652 0.2096601

Coefficients :
Z1 Z2 Z3 dose logd

4.319 4.491 4.584 -0.070 1.186

Log-Likelihood: -421.018 BIC: 874.2722



Chapter 4
Theory and Algorithms

4.1 The Likelihood of Finite Mixture Models

Estimation of the parameters of the mixing distribution P is predominantly done
using maximum likelihood. Given a sample of

xi
iid∼ f (x|P), i = 1, . . . ,n, (4.1)

we are interested in finding the maximum likelihood estimates (MLEs) of P, denoted
as P̂, that is

P̂ = argmax
P

L(P),

L(P) =
n

∏
i=1

k

∑
j=1

f (xi,λ j)p j (4.2)

or alternatively finding the estimates of P which maximize the log likelihood
function

�(P) = logL(P) =
n

∑
i=1

log
k

∑
j=1

f (xi,λ j)p j. (4.3)

An estimate of P̂ can be obtained as a solution to the likelihood equation

S(x,P) =
∂�(P)
∂P

= 0, (4.4)

where S(x,P) is the gradient vector of the log likelihood function, where differenti-
ation is with respect to the parameter vector P. Maximum likelihood estimation of
P is by no means trivial, since there are mostly no closed-form solutions available.

P. Schlattmann, Medical Applications of Finite Mixture Models, 55
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 4,
c© Springer-Verlag Berlin Hiedelberg 2009
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Thus, a lot of research has been done to find reliable algorithms for the mixture
problem at hand. Two cases must be distinguished:

1. The flexible support size case, where no assumption about the number of compo-
nents k is made in advance. This case is discussed in Sect. 4.3.

2. The fixed support size case, where the number of components k is assumed to be
known. Here the unknown parameters are the mixing weights p j and the param-
eters λ j of the subpopulation. This case is discussed in Sect. 4.4.

The algorithms used in the flexible support size case require some knowledge of
convex geometry and optimization. Section 4.2 introduces the ideas of convex op-
timization in order to provide the necessary mathematical background.

4.2 Convex Geometry and Optimization

According to Rockafellar (1993):

The great watershed in optimization isn’t between linearity and nonlinearity but convexity
and nonconvexity.

Many statistical procedures, such as least-squares estimation, are solutions of con-
vex optimization problems. There exists a large body of literature on convex opti-
mization. A comprehensive overview of convex optimization may be found in the
book by Boyd and Vandenberghe (2004) which covers theory, algorithms, and prac-
tical examples. Another useful reference with regard to optimization from a statis-
tical point of view is the book by Lange (2004). A more theoretical development
is given in the books on convex analysis by Rockafellar (1996) and Hiriart-Urruty
(2001).

In the following some basic definitions and important results of convex sets and
functions are presented in order to provide the necessary background for the theory
of semiparametric mixture models with flexible support size.

Definition 4.1. The set X ⊆X , with X a vector space, is convex if ∀x1,x2 ∈ X and
α ∈ [0,1] the vector x = αx1 +(1−α)x2 ∈ X .

Thus, in Fig. 4.1 the representation on the left is not a convex set, whereas on the
right-hand side a convex set is displayed.

. .

Fig. 4.1 Nonconvex (left) and convex (right) sets in the plane
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A convex set has interior and extreme points. An interior point x ∈ X can be
generated by a linear combination of other vectors ∈ X such as the point x4. For an
extreme point this is not possible. As a result, the points x1,x2, and x3 in Fig. 4.2 are
extreme points. More formally this leads to the definition of the vertex of a set

Definition 4.2. A point x1 ∈ X is a vertex of X if ∀x2 ∈ X , with x1 �= x2, and ∀α > 1
the point αx1 +(1−α)x2 /∈ X .

Lemma 4.1. Intersection of convex sets. Denote by X ,Y ⊂X two convex sets. Then
X ∩Y is also a convex set.

Proof. If X ∩Y ⊂X , then for any α ∈ [0,1] the point xα := αx+(1−α)y satisfies
xα ∈ X ∧ xα ∈ Y ; thus, xα ∈ X ∩Y (Fig. 4.3). ��

Another important definition is that of a convex hull. For an arbitrary set X a
convex hull is the smallest convex set containing X . It is denoted by co[X ]. In other
words the convex hull of a set of points is the smallest convex set that includes the
points. For a two-dimensional finite set the convex hull is a convex polygon.

Again, more formally:

Definition 4.3. Let X be a set in a vector space. Then the convex hull co[X ] is de-
fined as

co[X ] :=

{

x̃|x̃ =
n

∑
i=1

αixi, xi ∈ X , n ∈ N and
n

∑
i=1

αi = 1

}

. (4.5)

Fig. 4.2 Interior and extreme
points of a convex set

.

. .
.

.

x2 x3

x4

x1

x5

Fig. 4.3 Intersection of two
convex sets
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Fig. 4.4 Convex hull of a set

Fig. 4.5 An illustration of
Carathéodory’s theorem for a
square in R

2

1/4,1/4

(0,0)

(0,1)

(1,0)

(0,0)

In other words the convex hull co[X ] is the set of all convex combinations of ele-
ments of X . Figure 4.4 shows an example of a convex hull.

An important result from the geometry of convex sets for the theory of semipara-
metric mixture models is the Carathéodory’s theorem:

Theorem 4.1. Carathéodory’s theorem on convex sets states that if a point x of R
d

lies in the convex hull of a set X, then there is a subset X∗ of X consisting of no more
than d +1 points such that x lies in the convex hull of X∗. In other words, x lies in a
d-simplex with vertices in X.

This result is important for the number of components k of the mixture model.

Example 4.1. Consider a set X = {(0,0),(0,1),(1,0),(1,1)} which is a subset of
R

2. The convex hull of this set is a square. Consider now a point x = (1/4,1/4),
which is in the convex hull of X . Then the convex hull X∗ = {(0,0),(0,1),(1,0)} ⊂
X is a triangle and encloses x. Since |X∗|= 3, it is easy to see that the theorem works
in this instance. A visualization is given in Fig. 4.5.

Definition 4.4. Let X be a convex set. A real-valued function f defined on a set X
is called “convex” if for any x1,x2 ∈ X ∧α ∈ [0,1]. If the inequality is strict, then f
is a strictly convex function:

f (αx1 +(1−α)x2) ≤ α f (x1)+(1−α) f (x2). (4.6)

As an example the convex function ex + x2 is plotted in Fig. 4.6.
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(x,f(x))

(y,f(y))

Fig. 4.6 The convex function ex + x2

Definition 4.5. Let X be a convex set. A function f : X → R is said to be concave if
for any points x1 ∧ x2 ∈ X

f (αx1 +(1−α)x2) ≥ α f (x1)+(1−α) f (x2). (4.7)

In other words, the function f is concave if the function − f (x) is convex on X .
Again, if the inequality is strict, then f is a strictly concave function.

Lemma 4.2. Denote by f : X → R a convex function on a convex set X. Then the set

Y := {x|x ∈ X ∧ f (x) ≤ c} (4.8)

is convex ∀c ∈ R.

Proof. We need to show the condition in Definition 4.1. For any x, x̃ ∈ Y the condi-
tion f (x), f (x̃) ≤ c is true. Moreover since f is convex, it follows that

f (αx+(1−α)x̃) ≤ α f (x)+(1−α) f (x̃) ≤ c ∀α ∈ [0,1]. (4.9)

Thus, ∀α ∈ [0,1] we have [α f (x)+(1−α) f (x̃)] ∈ Y , which proves the claim. This
is depicted graphically in Fig. 4.7 for the function f (x1,x2) = ex1 +x2

1 +ex2 +x2
2. ��

Theorem 4.2. If the convex function f : x = (x1,x2)→R has a minimum on a convex
set X ⊂ X , then its arguments x ∈ X for which the minimum is attained from a
convex set. If f is strictly convex, then this set contains only one element.

Proof. Denote by c the minimum of f on X . Then the set Xm := {x|x ∈ X ∧ x ≤ c}
according to Lemma 4.2 is clearly convex. In addition, owing to Lemma 4.1 Xm ∩X
is also convex, and f (x) = c,∀x ∈ Xm∩X . (otherwise c would not be the minimum).
If f is strictly convex, then for any x,y ∈ X and for any x,y ∈ Xm ∩X for x �= y and
α ∈ (0,1)
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Fig. 4.7 Left: Convex function in two variables. Right: The corresponding convex level sets
{x| f (x) ≤ c} for different values of c

f (αx+(1−α)y) < α f (x)+(1−α)y = αc+(1−α)c = c. (4.10)

This contradicts the assumption that Xm ∩X contains more than one element. ��

Theorem 4.3. Let X be a convex set with convex hull co[X ]. Then for any convex
function f on co[X ]:

sup{ f (x)|x ∈ X} = sup{ f (x)|x ∈ co[X]} . (4.11)

Proof. Let sup{ f (x)|x ∈ X}. As X ⊂ co[X ] c ≤ sup{ f (x)|x ∈ co[X ]}. But on the
other hand it follows from Lemma 4.2 that

Y := {x|x ∈ co[X ]| f (x) ≤ c} ⊂ co[X ]

is convex. By definition of c, X ⊂ Y . Owing to the definition of co[X ] this
implies that Y ⊂ co[X ]. Hence, f (x) ≤ c, ∀x ∈ co[X ]. Finally, it follows that
sup{ f (x)|x ∈ co[X ]} ≤ c ≤ sup{ f (x)|x ∈ co[X ]}. ��

Theorem 4.3 has an important implication for the construction of algorithms
since it can be used to restrict search operations over sets X by subsets X∗ ⊂ X
if the convex hull of the latter generates X . In particular, it can be used so that the
vertices of convex sets are sufficient to reconstruct the whole set.

Theorem 4.4. A compact convex set is the convex hull of its vertices.

The proof is rather technical and may be found in the monograph by Rockafellar
(1996). For a finite number of points the convex hull is called a convex polyhedron



4.2 Convex Geometry and Optimization 61

Fig. 4.8 Convex polyhedron

Fig. 4.9 Approximation of a
convex set by convex polyhe-
drons

as shown in Fig. 4.8 and the extreme points of a convex polyhedron are again called
vertices.

A closed convex set X can be approximated by closed convex polyhedrons with
arbitrary precision:

co[x1, . . . ,xn] ⊇ X ⊇ co[y1, . . . ,ym]. (4.12)

This is shown schematically in Fig. 4.9.

4.2.1 Derivatives and Directional Derivatives of Convex Functions

Proposition 4.1. Let f (x) be a continuously differentiable function on the open con-

vex set X ⊂R
d with gradient ∇ f (x) =

(
∂ f (x)
∂x1

, ∂ f (x)
∂x2

, . . . , ∂ f (x)
∂xd

)
. Then f (x) is convex

if and only if
f (y) ≥ f (x)+∇ f (x)T(y− x) ∀x,y ∈ X . (4.13)

Additionally f (x) is strictly convex if and only if strict inequality holds in (4.13)
∀y �= x.

Proof. We can arrange (4.6) to

f (αx+(1−α)y) ≤ α f (x)+(1−α) f (y)
⇔ f (αx+(1−α)y) ≤ α f (x)+ f (x)− f (x)+(1−α) f (y)

⇔ f (αx+(1−α)y)− f (x)
1−α

≤ f (y)− f (x).

��
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(z,f(z))
f(z)+f’(z)(z−x)

f(x)

Fig. 4.10 The convex function ex + x2 with a tangent below the curve

For α → 1 inequality (4.13) is proven. To show the converse let z = αx+(1−α)y.
Then with some notational changes

f (x) ≥ f (z)+∇ f (z)T(x− z),

f (y) ≥ f (z)+∇ f (z)T(y− z).

Multiplying the first of these inequalities by α and the second by 1−α and adding
the results leads to

α f (x)+(1−α) f (y) ≥ f (z)+∇ f (z)(z− z) = f (z). (4.14)

This is just inequality (4.13). The proof for strict convexity is performed accord-
ingly. Figure 4.10 illustrates how a tangent line to a convex curve lies below the
curve. In other words the first-order approximation of f is the global underestimator.

It is certainly useful to have simpler tests for convexity than those of (4.6) and
(4.13). This leads to the following proposition:

Proposition 4.2. Let f (x) be a twice continuously differentiable function f (x) on

the open convex set X ⊂ R
d. If the Hessian ∇2 f (x) = ∂ 2 f (x)

∂xi∂x j
is positive semidefinite,

then f (x) is convex. If ∇2 f (x) is positive definite, then f (x) is strictly convex.

A proof of the proposition may be found in the book by Lange (2004, Chap. 5).

Example 4.2. The least-squares objective function minimize f (β ) = ‖y−Xβ‖2
2 is

convex. To see this consider

∇ f (β ) = 2XT(Xβ − y), ∇2 f (β ) = 2XTX ≥ 0. (4.15)
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Directional Derivative

The idea of a directional derivative is first developed using a one-dimensional func-
tion f : R → R. If f is a convex function and x < y < z, then

f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

≤ f (z)− f (y)
z− y

. (4.16)

This is depicted in Fig. 4.11. Careful examination of the inequalities in (4.16) leads
to the conclusion that the slope

f (y)− f (x)
x− y

is bounded below and increases in y for x fixed. Likewise, this slope is bounded
above and increases in x for y fixed. On the basis of this result it is clear that left and
right directional derivatives exist with

f +(x) = lim
α→0

f (x+α)− f (x)
α

, (4.17)

f−(x) = lim
α→0

f (x)− f (x−α)
α

. (4.18)

The concept of directional derivatives can be generalized to multiple dimensions.
If f : R

d → R, then the directional derivative of f at x in the direction y �= 0 is
defined as

Φ(x,y) = lim
α→0

f (x+αy)− f (x)
α

. (4.19)

f(x
)=

x2
+

ex

zyx

f(y)−f(x)
y−x

f(z)− f(y)
z−y

f(z) − f(x)
z − x

Fig. 4.11 Three-slopes relation for a convex function f : R → R
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Note that the directional derivative can be expressed as the inner product of the
gradient ∇ f (x) and y. If f is continuously differentiable, then Φ(x,y) = ∇ f (x)Ty.

4.3 Application to the Flexible Support Size Case

Algorithms with flexible support size, i.e., when the number of mixture components
k is not fixed in advance, are based on results of the topology and geometry of the
likelihood.

Looking at algorithms for the flexible support size case leads to the mixture
nonparametric maximum likelihood estimator (NPMLE) theorem (Böhning 1982;
Lindsay 1983a,b, 1995). The idea of finding a NPMLE of a latent distribution has
a long tradition. Substantial theoretical development was provided by Kiefer and
Wolfowitz (1956), but there has been no development of numerical methods to use
these results. The development of such methods together with further properties of
the estimator P̂ arose in papers that were published 20 and more years later. Par-
ticularly, Simar (1976), Laird (1978), Jewell (1982), Böhning (1982), and Lindsay
(1983a,b, 1995) made major contributions to the field. In the following the most
important developments will be summarized.

4.3.1 Geometric Characterization

One of the key tools to understand the nature of the NPMLE is to characterize the
maximization problem in geometric terms. In the flexible support size case, i.e., with
k not fixed, P may vary in the set of all probability measures with finite support.
Thus, if we have two discrete distributions P and Q, both ∈ Ω with α ∈ [0,1], the
convex combination (1−α)P+αQ is again in Ω . This implies that we can form a
path in the space of distribution functions from P to another distribution, say, Qα ; by
letting Qα = (1−α)P+αQ for every α this generates an intermediate distribution,
which again belongs to Ω . Thus, Ω is a convex set. In addition, the log likelihood
l(P) is a concave functional on the set of all discrete probability measures Ω .

Lemma 4.3. The log likelihood function is concave on Ω .

Proof. If we have a random sample x1,x2, . . . ,xn

�((1−α)P+αQ) = ∑
i

log f (xi,(1−α)P+αQ)

= ∑
i

log [(1−α) f (xi,P)+α( f (xi,Q)]

> (1−α)∑
i

log f (xi,P)+α∑
i

log f (xi,Q)

= (1−α)�(P)+α�(Q).
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The proof only uses the fact that the logarithm is a concave function that is
log [(1−α)x+αy] ≥ (1−α) logx+α logy. ��

These two results form the basis for the strong results of nonparametric mixture
distributions. In particular, owing to Theorem 4.2 we know that a global maximum
exists.

Now the task to deal with is to find the mixing distribution P that maximizes the
likelihood

L(P) =
n

∏
i=1

Li(P) =
n

∏
i=1

Li, with Li =
k

∑
j=1

p j f (xi,λ j) (4.20)

over the set of all distributions Ω . If we have a random sample x1,x2, . . . ,xn, the
objective function takes the form

�(P) =
n

∑
i=1

log
k

∑
j=1

p j f (xi,λ j). (4.21)

The problem of finding P̂ that maximizes �(P) over all possibly infinitely many dis-
tributions P ∈ Ω is obviously hard to solve. If the data are discrete, for example,
categorical, then many of the xi will be the same and there will be m distinct obser-
vations. Thus, each of the xi, i = 1, . . . ,m will occur wi times. Now the log likelihood
takes the form

�(P) =
m

∑
i=1

wi log
k

∑
j=1

p j f (xi,λ j) =
m

∑
i=1

wi log f (xi,P). (4.22)

As a result, the log likelihood problem depends on P only through the possible
values taken by the m-dimensional vector

�(P) = [�1(P), �2(P), . . . , �m(P)]T .

Now we change our perspective from maximizing the likelihood over all latent
distributions P to the question of which of the eligible classes of mixture likeli-
hood vectors �(P) gives the largest value for the log likelihood. In other words
we cast our problem into an optimization problem. In the first step the feasible
region is constructed. Here the feasible region is given by the set Ω = {�(P)|P
is a distribution with finite support}. In the next step the objective function is de-
fined. The problem of maximizing �(P) over all distributions P can be written as the
problem of maximizing the objective function

�(p) :=
m

∑
i=1

wi log pi
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over the elements p = (p1, p2, . . . , pm)T in the set Ω . Now the set Ω is convex and
the objective function is concave; thus, convex optimization theory can be applied
to find the maximum likelihood solution. First the set Ω is described. Consider
the m-dimensional set Γ of all possible likelihood kernels that could arise from a
degenerate one-component mixing distribution

Γ = { f (x1,λ ), f (x2,λ ), . . . , f (xm,λ )|λ ∈Λ} .

The convex hull of Γ , i.e., the set of all convex combinations of Γ is co[Γ ], is
denoted as

co[Γ ] =

{

∑
i

pi fi(xi,λ )| fi ∈ Γ , pi ≥ 0,∑ pi = 1

}

.

If the unicomponent likelihood curve is defined as Γ = {L(λ )|λ ∈Λ}, then it fol-
lows that co[Γ ] is also the set Ω . Thus, the elements of Γ can be thought of as a
basis such as that all eligible mixture vectors are convex combinations from this
basic set.

Now if Γ is closed and bounded, then co(Γ ) is a compact subset of R
m and also

closed and bounded. This guarantees that the continuous function f (φ) = ∑wi log fi
obtains its maximum on co(Γ ). Following from Theorem 4.2, it is unique. Accord-
ing to the theorem of Carathéodory (Therorem 4.1) the solution has no more than m
points of support, since the solution is on the boundary of the convex hull. This is
summarized in Theorem 18 of Lindsay (1995).

Theorem 4.5.

1. Suppose that co(Γ ) is closed and bounded and that Ω contains at least one point
with positive likelihood. Then there exists a unique P̂ ∈ ∂Ω the boundary of Ω ,
such that P̂ maximizes �(p) over Ω .

2. The associated P̂ has at most m points of support.

Example 4.3. Consider a random sample of size two from a mixture of normal com-
ponent densities with unknown means λ j and variances equal to 1 and x1 = 1.5 and
x2 = 2.5. Then the curve Γ has the form

Γ =
{

1√
2π

exp
[
− (1.5−λ )2

2

]
,

1√
2π

exp
[
− (2.5−λ )2

2

]
|λ ∈Λ

}
.

Figure 4.12 shows the set Γ as a solid line and co[Γ ] is the convex region in-
side the boundary of co[Γ ]. The dashed lines are contours of the objective function
�(p). The point marked with an asterisk on the boundary of co[Γ ] is the point that
maximizes the log likelihood.

This geometric characterization has moved us closer to a solution. One strategy
to find a solution would be to maximize the likelihood over k components each
k less or equal to m and then to choose the number of components with the largest
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Fig. 4.12 The solid line is the curve Γ for two observations (x1 = 1.5; x2 = 2.5) from normal
component densities with variances equal to one. The region within the solid curve is co[Γ ]. The
dotted lines show the contours of the log likelihood. The point marked with a plus is the point
p1, p2 at which the likelihood is maximized, subject to the constraint that p1, p2 ∈ co[Γ ]

likelihood. Of course, this is still computationally expensive and it would be difficult
to decide whether the global maximum has been attained.

The Directional Derivative

Fortunately the optimal solution P̂ can be characterized in terms of directional
derivatives. They are the major tool for obtaining characterizations and algorithms
for the flexible support size case, where P and Q are probability measures with finite
support. For α ∈ [0,1] we define

�∗(α) := �((1−α)P+αQ) =
n

∑
i=1

log f (xi,(1−α)P+αQ)

=
n

∑
i=1

log
(
(1−α) f (xi,P)+α f (xi,Q)

)
.

(4.23)

Taking the derivative of �∗(α) at α = 0 gives

Φ(P,Q) = lim
α→0

�((1−α)P+αQ)− �(P)
α

. (4.24)
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Applying l’Hôpital’s rule to (4.24) leads to

Φ(P,Q) = lim
α→0

[�((1−α)P+αQ)] ′

= lim
α→0

n

∑
i=1

[
(1−α) f (xi,P)+α f (xi,Q)

]′

(1−α) f (xi,P)+α f (xi,Q)

= lim
α→0

n

∑
i=1

− f (xi,P)+ f (xi,Q)
(1−α) f (xi,P)+α f (xi,Q)

=
n

∑
i=1

f (xi,Q)− f (xi,P)
f (xi,P)

. (4.25)

In particular, for the one point mass Qλ at λ the directional derivative is given by

DP(λ ) = Φ(P,Qλ )

=
n

∑
i=1

f (xi,λ )− f (xi,P)
f (xi,P)

=
n

∑
i=1

f (xi,λ )
f (xi,P)

−n

=
n

∑
i=1

f (xi,λ )

∑k
l=1 pl f (xi,λl)

−n. (4.26)

The determining part in this directional derivative, namely, 1
n ∑n

i=1
f (xi,λ )
f (xi,P) , is called

the gradient function and is denoted by d(λ ,P).

Example 4.4. For the Poisson distribution the gradient function is given by

d(λ ,P) =
1
n

n

∑
i=1

e−λλ xi

∑ j p je−λ jλ xi
j

.

Now, the general mixture maximum likelihood theorem states

Theorem 4.6.

1. P̂ is discrete and has at most n support points λ .
2. P̂ is the NPMLE if and only if DP(λ ) ≤ 0 ∀λ or

1
n ∑n

i=1
f (xi,λ )
f (xi,P) ≤ 1 ∀λ , respectively.

3. DP(λ ) = 0 for all support points of P̂.
4. The final part is that the fitted values of the likelihood, namely,

L(Q̂) = (L1(Q̂), . . . ,Ln(Q̂)),

are uniquely determined. That is, even if there were two distributions maximizing
the likelihood, they would generate the same likelihood.

Details and proofs may be found in the monographs of Lindsay (1995) and Böhning
(1999b) .
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4.3.2 Algorithms for Flexible Support Size

The concept of directional derivatives is important in developing reliable converging
algorithms; see Böhning (1995) and Lindsay and Lesperance (1995) for a review.
Here we present only the basic ideas of two algorithms for the flexible support size
case. The first one is the vertex direction method (VDM). This method is based
on the following property of the directional derivative DP(λ ): If DP(λ+) > 0 for
some λ+, then the likelihood can be increased over �(P) by using a distribution
with additional mass at λ+. Formally there exists an α such that

�((1−α)P+αQ+
λ ) > �(P), (4.27)

where Q+
λ is a distribution with mass 1 at λ . Hence, the VDM first chooses

λ+ to maximize DP(λ ) and then maximizes over α in the one-parameter family
(1−α)P +αQ+

λ . The maximization over α has no explicit solution and requires a
secondary univariate algorithm. The parameter α may be seen as a step-length pa-
rameter. This leads to the following algorithm: The VDM is a natural algorithm to

Let P0 be any initial value
Step 1: Find λmax such that DP(λmax) = supλ DP(λ )
Step 2: Find αmax such that
�((1−αmax)P(l) +αmaxQλmax ) = supα �((1−αmax)P(l) +αmaxQλmax)
Step 3: Set P(l+1) = (1−αmax)P(l) +αmaxQλmax, l=l+1 and go to step 1

Algorithm 4.3.1: Vertex direction method

compute the NPMLE. However, it may be painfully slow and thus a faster algorithm
is desirable. One faster algorithm available is the vertex exchange method. The basic
idea is as follows. If λ+ maximizes DP(λ ) and λ− minimizes DP(λ ), it is possible
to increase the likelihood by adding more mass to λ+ and subtracting mass from
λ−. Thus, the algorithm first chooses λ+ and λ−. Then we maximize the likelihood
(or at least ensure monotonic increase) by incorporating a step α in a one-parameter
family that exchanges the mass between λ+ and λ−: P +αP(λ−)(Qλ+ −Qλ−),
where Qλ is again a distribution with mass 1 at λ . Clearly, if α = 1 the “bad” sup-
port point λ− is exchanged with the “good” support point λ+. Thus, we have the
following algorithm:

Let P0 be any initial value
Step 1: Find λmax such that DP(λmax) = supλ DP(λ ) and find λmin such that DP(λmin) =
min(DP(λ )|λ ∈ support of P(l))
Step 2: Find αmax such that
�(P(l) +αP(l)(λ−)(Qλ+ −Qλ−)) = supα �(P(l) +αP(l)(λ−)(Qλ+ −Qλ−))
Step 3: Set P(l+1) = P(l) +αmaxP(l)(λ−)(Qλ+ −Qλ−), l = l +1 and go to step 1

Algorithm 4.3.2: Vertex exchange method (VEM) algorithm
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4.3.3 VEM Algorithm: Computation

Example: Vitamin A Supplementation and Childhood Mortality

Supplementation of vitamins is not only supposed to be beneficial for the prevention
of cancer as discussed in Sect. 2.1. Fawzi et al. (1993) study the effect of vitamin
A supplementation and childhood mortality in preschool children. They concluded
that vitamin A supplements are associated with a significant reduction in mortality
when given periodically to children at the community level.

These data were also used by Böhning (2003) and we will reproduce this au-
thor’s calculations in this example. The data are listed in Table 4.1. All studies were
community randomized trials from South Asia or Southeast Asia, except the sec-
ond study, which was from northern Sudan. The incidence density was estimated
according to ID = E/T , where E is the number of child deaths and T denotes the
person time. The latter is calculated as the product of the number of children at
risk and the number of years of observation. Hence, the rate ratio (RR) was esti-
mated as RR = IDA

IDC
. The index refers to intervention with vitamin A supplemen-

tation (A) or to the control group (C). The variance of log (RR) is estimated as
var(log (RR)) = 1/EA + 1/EC, with the indices as previously defined. The ques-
tion is whether vitamin A supplementation is beneficial and whether the effect is
more beneficial in some studies than in others. Apparently, there is heterogeneity
of treatment effects xi = log (RR), which can be modeled using a finite mixture
model f (xi) = p1 f (xi,θ1)+ · · ·+ f (xi,θk), where f (xi,θ) = N(xi,θ ,σi) is the nor-
mal density with mean θ and variance σ2

i . This is the variance as provided in the
last column of Table 4.1. Thus, we are dealing with a meta-analysis, as described in
detail in Chap. 7. As outlined there, a key point of any meta-analysis is the analysis
of heterogeneity. A natural tool to do this is the application of finite mixture models
as described in Sect. 7.3.

Table 4.1 Meta-analysis of mortality in community-based trials of vitamin A supplementation in
children aged 6–72 months (cases; population)

Location Observation time Vitamin A Control log (RR) Variance

Sarlahi (Nepal) 12 152; 14,487 210; 14,143 −0.34726 0.011341
Northern Sudan 18 123; 14,446 117; 14,294 0.03943 0.016677
Tamil Nadu (India) 12 37; 7,764 80; 7,655 −0.78525 0.039527
Aceh (Indonesia) 12 101; 12,991 130; 12,209 −0.31450 0.017593
Hyderabad (India) 12 39; 7,691 41; 8,084 −0.00017 0.050031
Jumla (Nepal) 5 138; 3,786 167; 3,411 −0.29504 0.013234
Java (Indonesia) 12 186; 5,775 250; 5,445 −0.35455 0.009376
Mumbai (India) 42 7; 1,784 32; 1,644 −1.60155 0.174107

RR rate ratio
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VEM Algorithm

We begin our analysis with the application of the VEM algorithm. First, we need to
load the library CAMAN and the data set vitA. This is done by typing

> library(CAMAN)
> data(vitA)

The first choice in using the VEM algorithm for the flexible support size involves
the selection of a grid of parameter values θ1, . . . ,θm over which we wish to find the
corresponding population proportions that maximize the likelihood function. The
default in mixalg.VEM calculates the minimum and the maximum of the data and
constructs a grid with k = 25 equidistant grid points. Here we use a grid of 20 points.
Now, the VEM algorithm is used as follows:

> m0<-mixalg.VEM(obs="logrr",var.lnOR="var",
family="gaussian",data=vitA,startk=20)

The algorithm identified four grid points with positive weight. These are shown by
typing

> m0

Computer Assisted Mixture Analysis (VEM):

Data consist of 8 observations (rows)

4 grid points with positive support

p parameter
.0994 -1.600000
.1175 -.823158
.6189 -.305263
.1643 .040000

Log-Likelihood:-1.27124

A plot of the grid point θ versus the gradient function d(θ ,P) is obtained as follows:

> plot(m0@totalgrid[,2],m0@totalgrid[,3],
type="l",xlab="parameter",ylab="gradient")

This plot is shown in Fig. 4.13. Note that in this plot the gradient function takes
the value unity if there is a positive weight.

We proceed with a discussion of the expectation maximization (EM) algorithm,
which assumes the number of components k to be known, i.e., the fixed support
size case.
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Fig. 4.13 Parameter θ versus gradient function d(θ ,P)

4.4 The Fixed Support Size Case

4.4.1 Fixed Support Size: The Newton–Raphson Algorithm

Also in the fixed support size case maximum likelihood estimation of P is by no
means trivial, since again there are mostly no closed-form solutions available. One
of the frequently used iterative methods in maximum likelihood estimation is the
Newton–Raphson (NR) method.

This algorithm maximizes the log likelihood:

�(P) = logL(P) =
n

∑
i=1

log
k

∑
j=1

f (xi,λ j)p j. (4.28)

The NR method solves the likelihood equation for a fixed number of compo-
nents k

S(x,P) = 0 (4.29)

by approximating the gradient vector S(x,P) of the log likelihood function �(P) by
a linear Taylor series expansion about the current fit P(l) for P. This approach gives

S(x,P) ≈ S(x,P(l))− I(x,P(l))(P−P(l)), (4.30)

where I(x,P) is the information matrix. A new fit P(l+1) is obtained by equating
S(x,P) of the right-hand side to zero and solving for P(l+1):

P(l+1) = P(l) − I−1(x,P(l))S(x,P(l)). (4.31)
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The NR algorithm converges quadratically, which is very fast and is regarded as a
major strength of the algorithm. Everitt (1984) compared several algorithms for the
estimation of the parameters of a mixture of two normals and found the NR algo-
rithm to be the fastest. But there can be potentially severe problems in applications.
First the algorithm requires at each iteration the computation of the inverse of the
d×d information matrix I(x,P(l)) and the solution of a system of d linear equations.
Thus, the computation required for an iteration is likely to become expensive when
d is large. Also one must allow for the storage of the Hessian or some set of fac-
tors of it. Second, for some applications the algorithm also requires an impractically
accurate guess of P for the sequence of iterates P(l) to converge to the global maxi-
mum. For the mixture problem at hand there is no guarantee that the algorithm will
converge from any arbitrary starting value. Titterington et al. (1985) demonstrated
for mixtures of normals divergence of the algorithm depending on the starting val-
ues. Another difficulty lies in the fact that besides initial values for the parameters
also the number of components k needs to be fixed in advance.

4.4.2 A General Description of the EM Algorithm

For the fixed support size case the maximum likelihood procedures for the estima-
tion of the parameters rely on the use of the EM algorithm (Dempster et al. 1977;
Aitkin and Wilson 1980; Redner and Walker 1984; Aitkin and Rubin 1985). A de-
tailed overview of the theory and applications of the EM algorithm may be found in
the monographs of McLachlan and Krishnan (1997) and Watanabe and Yamaguchi
(2004). The application and modification of the EM algorithm for finite mixtures is
still an active area of research. Recent developments and modifications of the EM
algorithm in the mixture framework are given, for example, in the articles by Pilla
and Lindsay (2001), Vlassis and Likas (2002), Arcidiacono and Jones (2003), and
Verbeek et al. (2006). The EM algorithm, in general, requires a particular model
structure. The key idea of the EM algorithm is data augmentation. Suppose that we
have in our model with parameters Ψ both observed data X and missing data Z.
We need to maximize the likelihood of the observed data X , labeled LX (Ψ), this
likelihood is difficult to maximize, as for example in the mixture setting. If we as-
sume that we know the unobserved data Z, then the maximization of the complete
data likelihood Lc(Ψ) = LX ,Z(Ψ) of the pair (X ,Z) would be easy. In the ideal case
it would have explicit solutions. For the application of the algorithm the “missing
data” may be completely imaginary. The important idea is that the distribution of
the variable X is the same as the marginal distribution of X in some hypothetical
pair X ,Z which has an easier to deal with likelihood.

The E-step in the EM algorithm involves taking a current value Ψ (0) and find-
ing Q(Ψ ;Ψ (0)), which is the conditional expectation of the full data log likelihood
logLc(Ψ) given the observed data

Q(Ψ ;Ψ (0)) = EΨ (0) [logLc(Ψ | x)] . (4.32)
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The M-step then requires the maximization of Q(Ψ ;Ψ (0)) with respect to Ψ over
the parameter space Ω . This implies choosing Ψ (1) such that

Q(Ψ (1);Ψ (0)) ≥ Q(Ψ ;Ψ (0)), ∀Ψ ∈Ω . (4.33)

The E-step and the M-step are then carried out again with Ψ (0) replaced by the
current fit Ψ (1). On the (l + 1)th iteration the E-step and the M-step are defined as
follows:

E-step: Calculate Q(Ψ ;Ψ (l)) with

Q(Ψ ;Ψ (l)) = EΨ (l) [logLc(Ψ | x)] . (4.34)

M-step: Choose Ψ (l+1) to be any value of Ψ ∈Ω that maximizes Ψ (l):

Q(Ψ (l+1);Ψ (l)) ≥ Q(Ψ ;Ψ (l)). (4.35)

Detailed investigations of the convergence properties of the EM algorithm may
be found in Dempster et al. (1977), Wu (1983), and McLachlan and Krishnan
(1997).

4.4.3 The EM Algorithm for Finite Mixture Models

In the mixture model setting we treat the component membership as the missing
data. Thus, we have the observed data X and the unknown indicator variable Z
which indicates the membership of the ith observation in the jth component. Let
zi j ∈ {0,1} denote the value of Z j for observation xi. The likelihood for the pair
(xi,zi1, . . . ,zik)T is

Pr(Xi = xi,Zi1 = zi1, . . . ,Zik = zik)
= Pr(Xi = xi | Zi1 = zi1, . . . ,Zik = zik)Pr(Zi1 = zi1, . . . ,Zik = zik)

=
k

∏
j=1

p
zi j
i f (xi,λ j)zi j .

Hence, the likelihood is as follows

Lc(P) =
n

∏
i=1

k

∏
j=1

p
zi j
i f (xi,λ j)zi j . (4.36)

The complete data log likelihood is given by

logLc(P) =
n

∑
i=1

k

∑
j=1

zi j log pi +
n

∑
i=1

k

∑
j=1

zi j log f (xi,λ j). (4.37)
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To perform the E-step of the EM algorithm we replace the zi j with their expected
values given the data x1, . . . ,xn. Applying Bayes’s theorem, we obtain

Pr(Zi j = 1 | Xi = xi) =
Pr(Xi = xi | Zi j = 1)Pr(Zi j = 1)

∑l Pr(Xi = xi | Zil = 1)Pr(Zil = 1)

=
p j f (xi,λ j)

∑l pl f (xi,λl)
:= ei j. (4.38)

Hence, replacing zi j with ei j in (4.37) leads to

Q(P,P(l)) = EP(l) (logLc(P))

=
n

∑
i=1

k

∑
j=1

ei j log p j +
n

∑
i=1

k

∑
j=1

ei j log f (xi,λ j). (4.39)

This is the E-step in a mixture model. The M-step involves maximization of the
current expected complete data likelihood. Since p j appears only in the left term,
and λ j only in the right term, we can maximize the two terms separately. For the
mixing weights this simply involves

p(l+1)
j =

∑i ei j

n
=∑

i

p j f (xi,λ j)
∑l pl f (xi,λl)

/n. (4.40)

If the component parameters are unknown, they are estimated by finding the maxi-
mum likelihood estimator for the second sum of the expected complete data likeli-
hood. In the Poisson case this gives

λ (l+1)
j =

∑i ei jxi

∑i ei j
. (4.41)

Now, let us consider the normal density

f (x,λ j) =
1√

2πσ2
e−

(x−λ j)
2

2σ2 . (4.42)

Again, λ (l+1)
j is given by (4.41). Taking the derivative of (4.37) with respect to σ2

leads to the likelihood equation

n

∑
i=1

k

∑
j=1

ei j(xi −λ j)2/σ4 +
n

∑
i=1

k

∑
j=1

ei j/σ2.

This likelihood equation has the solution

σ2
l+1 =

1
n

n

∑
i=1

k

∑
j=1

ei j(xi −λ j)2. (4.43)
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Note that we assume a common variance for all components. The reason for this
is the well-known degeneracy of the likelihood function for component-specific
variances σ2

j . Nityasuddhi and Böhning (2003) investigated the EM algorithm to
find estimators of the normal mixture distribution with unknown component spe-
cific variances and identify situations in which the EM algorithm works in that case.
Ridolfi and Idier (1999) proposed applying penalized maximum likelihood to cir-
cumvent the problem. In summary, the EM algorithm for the fixed support size case
is given as

Step 0: Let P be any vector of starting values
Step 1: Compute the E-step according to (4.38)
Step 2: Compute the M-step according to (4.40) and (4.41), leading to P(l) and λ (l)

Step 3: Let P=P(l) and go to step 1

Algorithm 4.4.1: Expectation maximization (EM) algorithm

One major advantage of the EM algorithm is given by the fact that it always
converges, but with the disadvantage that it converges to a local maximum. An-
other disadvantage of the EM algorithm is its sometimes very slow convergence.
Thus, there have been many attempts to accelerate the speed of convergence. The
most commonly used method is the multivariate Aitken acceleration (Louis 1982).
Other attempts to accelerate the EM algorithm are based on quasi-Newton methods
(Meilijson 1989; Jamshidian and Jennrich 1993, 1997; Lange 1995). These meth-
ods require some convergence diagnostics and do not keep the simplicity of the EM
algorithm. Another line of research tries to conserve the simplicity of the EM algo-
rithm by using different methods of data augmentation. These ideas are presented
in the articles by Meng and Rubin (1993) and Liu and Rubin (1994). An overview
of these methods may be found in the paper by Meng and van Dyk (1997). More re-
cently Ng and McLachlan (2004) showed how a modified EM algorithm can be sped
up by adopting a multiresolution kd-tree structure in performing the E-step. Several
authors have published program code for the estimation of the parameters of a mix-
ture model using the EM algorithm; see, for example, Agha and Ibrahim (1984),
Agha and Branker (1997), and DerSimonian (1986). Jones and McLachlan (1990)
provided Fortran code for mixtures of grouped and truncated mixtures of normals.
The EM algorithm is implemented in the programs C.A.MAN (Böhning et al. 1992,
1998) and DismapWin (Schlattmann et al. 1996) as well. Schlattmann et al. (2003)
developed the program META, which provides mixture model estimation in the con-
text of meta-analysis. See also Chap. 7 for an application of mixture models in this
field. Recently Biernacki et al. (2006) introduced the MIXMOD program for model-
based discrimination and clustering. Proust and Jacqmin-Gadda (2005) applied the
EM algorithm in their program HETMIXLIN which extends the method to linear
mixed models for longitudinal data. Finite mixture models for longitudinal data are
also discussed in Sect. 4.7, where this type of model is fit to pharmacokinetic data.
The choice of starting values is crucial when applying the EM algorithm (Karlis and
Xekalaki 2003). Depending on the starting values, the algorithm may converge to a
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local rather than to a global maximum. Laird (1978) suggested a grid search, which
leads to a large number of parameters. McLachlan and Basford (1988, Sect. 1.7) sug-
gested first applying a clustering algorithm and using this result as starting values for
the EM algorithm. More recently Biernacki et al. (2003) and Biernacki (2004) pro-
posed the use of the stochastic EM algorithm (Celeux et al. 1996), which at each EM
iteration selects new random weights p j. Dias and Wedel (2004) found in a simu-
lation study that this algorithm is superior to the EM algorithm. A disadvantage of
this procedure lies in the fact it does not converge pointwise. Berchtold (2004) found
by simulation that two-stage procedures combining both an exploration phase and
an optimization phase provide the best results, especially when these methods are
applied on several sets of initial conditions rather than on one single starting point.
One such hybrid procedure is the following algorithm proposed and developed by
the author of this monograph. Before we introduce this algorithm, we present in the
next section the use of the R package CAMAN with regard to the EM algorithm.

4.4.4 EM Algorithm: Computation

Coming back to our example on vitamin A supplementation and childhood mortality
on page 70, we now fit various models using the EM algorithm. The simplest one
is the homogenous model, which states that all studies find the same effect. This
model is fit using the following code:

> m1<-mixalg.EM(obs="logrr",var.lnOR="var",
family="gaussian",p=c(1),t=c(0),data=vitA)

Here, the function mixalg.EM is called with starting values for a single component.
This implicitly indicates that k is set equal to unity.

Typing m1 shows the shortened results of this model:

> m1

p mean
1 1 -0.3087638

Log-Likelihood: -5.003965 BIC: 12.08737

Obviously, the log likelihood is worse than that obtained with the VEM algorithm,
which was −1.271. Thus, next a model with two components is fit to the data. Here
we give equal weight to −1.6 and −0.5 as starting values. This is done using the
following code:

> m2<-mixalg.EM(obs="logrr",var.lnOR="var",
family="gaussian",p=c(0.5,0.5),t=c(-1.6,-0.5),
data=vitA)
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The result is obtained as

> m2

p mean
1 0.1186638 -1.5990254
2 0.8813362 -0.2924686

Log-Likelihood: -3.103066 BIC: 12.44446

In terms of the Bayesian information criterion (BIC) defined as BIC=−2�(P) +
(2k−1)+ log(n) this model is only slightly better than a homogenous model. But,
as mentioned before, the EM algorithm may converge to a local maximum and it
is thus recommended to use several different starting values. The next model gives
equal weight to −0.5 and 0 as starting values. The call to the function is then

> m3<-mixalg.EM(obs="logrr",var.lnOR="var",
family="gaussian",p=c(0.5,0.5),t=c(-0.5,0),data=vitA)

This gives the result

> m3

DETAILS:
p mean

1 0.8170025 -0.37132965
2 0.1829975 0.02792931

Log-Likelihood: -3.237008 BIC: 12.71234

This model is even worse. The next set of starting values is given by equal weights
to −1.6 and 0.

> m4<-mixalg.EM(obs="logrr",var.lnOR="var",
family="gaussian",p=c(0.5,0.5),t=c(-1.6,0),data=vitA)

This leads to the result

> m4
p mean

1 0.2245207 -0.9462519
2 0.7754793 -0.2666073

Log-Likelihood: -2.730582 BIC: 11.69949

On the basis of this result, the model m4 with k = 2 components would be chosen
according to the BIC. However, the likelihood of the flexible support size model was
better, i.e., equal to 1.271.

In terms of interpretation, a beneficial effect of vitamin A supplementation is
revealed, but this effect is certainly heterogeneous. It would be interesting to identify
the determinants of this heterogeneity.
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It seems natural to combine the EM and VEM algorithms to start the EM algo-
rithm with starting values at the global maximum provided by the VEM algorithm.

4.4.5 A Hybrid Mixture Algorithm

This hybrid mixture algorithm (Algorithm 4.4.2) proposed by Schlattmann (2003)
combines the VEM algorithm (Algorithm 4.3.2) for flexible support size and the EM
algorithm (Algorithm 4.4.1). The solution of the VEM algorithm provides starting
values for the EM algorithm. By the NPMLE theorem, the EM algorithm thus starts
very close to the global maximum and proper convergence of the EM algorithm to a
global maximum is ensured. This sequential algorithm leads to an initial estimate of
the NPMLE and a proper solution for the subsequent EM algorithm. Crucial points
are the definitions of δ and ε . Depending on these settings, different solutions could
result from this algorithm.

Step 1: Define an approximating grid λ1, . . . ,λL
Step 2: Use the VEM algorithm to maximize L(P) in the simplex Ωgrid and identify grid
points with positive support. Here positive support is defined as p j ≥ ε (often ε = 10−2),
j = 1, . . . ,L.
This gives an initial estimate of k̂
Step 3: Use these k̂ points and corresponding mixing weights p j as starting values for the
EM algorithm
Step 4: Collapse identical components if | λ j −λi |< δ (often δ = 0.05) i �= j
Step 5: Obtain the final number of components k̂

Algorithm 4.4.2: A mixture algorithm combining the VEM and EM algorithms

Computation

This hybrid algorithm is called as follows:

> m5<-mixalg(obs="logrr",var.lnOR="var",
family="gaussian",data=vitA,startk=20)

This gives the result

> m5
Computer Assisted Mixture Analysis:

Data consist of 8 observations (rows).
The Mixture Analysis identified 4 components
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DETAILS:
p mean

1 0.1004267 -1.60088222
2 0.1066273 -0.82222330
3 0.6157952 -0.32872949
4 0.1771508 0.02822363

Log-Likelihood: -1.195960 BIC: 16.94801

This model has four components with a log likelihood of −1.19. In terms of the
BIC this model is worse than the two-component model identified previously. This
is due to the large number of parameters.

An alternative algorithm which applies the information given by the gradient
within the framework of the EM algorithm is described in the next section.

4.4.6 The EM Algorithm with Gradient Update

Another algorithm to improve the behavior of the EM algorithm proposed by
Böhning (2003) applies a combination of gradient function steps and EM steps to
achieve global convergence. More specifically, the general mixture maximum like-
lihood theorem (Theorem 4.6) states that P̂ is the NPMLE if and only if the di-
rectional derivative Φ(P,Qλ ) ≤ 0 for all λ or alternatively if the gradient function
∑n

i=1
f (xi,λ )

∑k
j=1 p j f (xi,λ j)

−n is equal to unity.

Thus, a natural extension of the EM algorithm incorporates the information pro-
vided by the gradient as described in Algorithm 4.4.3. Coming back to our example

Step 0: Let P be any vector of starting values
Step 1: Use the EM algorithm to estimate P̂EM
Step 2: Determine λmax to maximize d(λ , P̂EM)
Step 3: Determine λmin such that
�(PEM +PEM(λ j) [Qmax −Qmin] | j = 1, . . . ,k) is largest
Step 5: Exchange λmax with λmin. Go to step 2

Algorithm 4.4.3: EM algorithm with gradient update

dealing with vitamin A supplementation, we saw that different starting values for the
EM algorithm led to different log likelihoods. Owing to different likelihoods, differ-
ent values of the BIC were obtained. As a result, depending on the starting values,
different conclusions with regard to the number components could be drawn.

The EM algorithm with gradient update circumvents these problems and gives
the correct result. One of the key points in applying this algorithm is to find
λmax in step 2 of the algorithm. Figure 4.14 shows a plot of the parameter λ
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Fig. 4.14 Gradient function d(λ ,P) versus λ ,with λ ∈ [−1.6,0.4]

versus the gradient function after step 1 of Algorithm 4.4.3. The arrow indicates
λmax = 0.0377, which is exchanged with λmin in step 5 of the algorithm.

Note that in Algorithm 4.4.3 the gradient is a scalar and the maximum of the
gradient can easily be found on a grid or by a line search. If a vector of parameters
is to be found as in regression models, finding λmax may be more complicated. This
problem is addressed in Sect. 4.6.4.

Computation

The EM algorithm with gradient update is used by setting the flag gradup = T in the
call of the function mixalg.EM. In this case it is not necessary to define starting
values; this is taken care of by the program.

> m6<-mixalg.EM(obs="logrr",var.lnOR="var",
family="gaussian",gradup=T,data=vitA)

This leads to the result

> m6
p mean

1 0.2245207 -0.9462519
2 0.7754793 -0.2666073

Log-Likelihood: -2.730582 BIC: 11.69949

Applying the EM algorithm with gradient update, one obtains the correct result.
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4.5 Estimating the Number of Components

The estimation of the number of components of the mixture is one of the most dif-
ficult problems of the method. Regularity conditions do not hold for large-sample
likelihood theory, so likelihood ratio tests cannot easily be implemented. As a result,
there exists a large body of research which has tried to solve this problem. This
includes graphical techniques, methods which use the accuracy of classification
based on the mixture model (Tenmoto et al. 2000), and parametric and nonparamet-
ric bootstrap techniques among others. We start with the description of graphical
techniques.

4.5.1 Graphical Techniques

The simplest way to estimate the number of components is to plot the empirical
density of the data. If X is continuous, grouping the observations and counting the
number of modes has to be considered. However, a mixture density is multimodal
only under certain conditions and thus this approach may be quite insensitive. An
overview of these techniques is given in the book by Everitt and Hand (1981);
they also discuss conditions for mixtures of univariate normals to be multimodal.
Inferential procedures for assessing the number of modes are given by Titterington
et al. (1985, Sect. 5.6). Other approaches to assess the number of modes use kernel
density estimates; see, for example, Silverman (1981). Efron and Tibshirani (1993,
Sect. 16.5) considered bootstrap techniques to test the multimodality of a popu-
lation. Roeder (1994) showed that a mixture of two normals divided by a normal
density having the same mean and variance as the mixed density is always bimodal.
A diagnostic technique which exploits the properties of the NPMLE was suggested
by Lindsay and Roeder (1992). This approach focuses on the graphical analysis of
the residuals

Observed− expected
expected

,

where “observed” is defined to be w(y), the relative frequency of the sample el-
ements equal to y. “Expected” is the expected frequency under the model consid-
ered; under the model f (y,λ ) we obtain the homogeneity residual rλ̂ (y) = w(y)

f (y,λ̂ )
−1,

whereas rP̂(y) = w(y)
f (y,P̂)

−1 leads to the heterogeneity residuals. A certain pattern of
homogeneity residuals plotted against the observations y can be indicative of a mix-
ture model. This is very similar to regression diagnostics, where certain patterns are
indicative of other models. Lindsay and Roeder (1992) have shown that a plot of
log(rλ̂ (y) + 1) should have a convex structure if a mixture model is present. See
Fig. 3.2 on page 35 for an example.
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4.5.2 Testing for the Number of Components

Frequently, it is necessary to test for the number of components of the mixture
model. As before let f (x,Pk) = f (x,λ1)p1 + · · ·+ f (x,λk)pk denote the mixture den-
sity. But now the number of components is explicitly indexed in f (x,Pk). Thus, the
log likelihood is given by �(P) = ∑ log f (xi,Pk).

We wish to test the following hypothesis

H0 : number of components = k
versus

H1 : number of components = k +1

and make use of the LRS using the statistic (Cox and Hinkley 1974, p. 323)

LRS = −2logξn

= −2
[
�(P̂k)− �(P̂k+1)

]
. (4.44)

An extensive discussion of the problem of likelihood ratio testing in mixture models
may be found in the books by Titterington et al. (1985), McLachlan and Basford
(1988), Lindsay (1995) , and Böhning (1999a). Aitkin and Rubin (1985) tried to
overcome the problem of the irregular parameter space and to make the problem
regular by using a prior distribution on the mixing weights p j. However, Quinn et al.
(1987) showed that even with this approach the regularity conditions are violated.
Another way to establish regularity conditions was followed by Feng and McCul-
loch (1992). They showed that enlarging the parameter space leads to a classical
asymptotic distribution. Chen (1998) obtained regularity by subtracting a penalty
term from the log likelihood for a mixture of two binomials.

Goffinet et al. (1992) found the exact limiting distribution in several problems
involving the normal distribution. Their results are based on the assumption that
the mixing proportions are known a priori under the alternative, which in practice
is hardly the case. Thus, in general, only little is known about the distribution of
the LRS.

As a result, over the years many simulation studies have been performed to ob-
tain the distribution of the LRS. Thode et al. (1988) performed a simulation study to
test k = 1 compared with k = 2 for a mixture of two normals with an additional free
and common variance parameter. They concluded that the distribution of the LRS
is asymptotically χ2 with two degrees of freedom, although convergence is slow.
Mendell et al. (1991) considered the asymptotic distribution of −2logξn under the
alternative hypothesis. They conjectured that the asymptotic distribution could be
noncentral χ2 possibly with two degrees of freedom. Feng and McCulloch (1994)
investigated the distribution for the LRS for mixtures of normals with unequal vari-
ance. Böhning et al. (1994) considered several densities from the one-parameter
exponential family and found that the limiting distribution might be described by
mixtures of χ2 distributions. Atwood et al. (1996) did extensive simulations for the
mixtures of normals. They concluded that although the asymptotic distribution is
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not a χ2 distribution with two degrees of freedom, it does appear to be a good ap-
proximation to the upper 15% of the distribution (Fu et al. 2006).

Another idea in this setting is to include a penalty term such as Akaike’s infor-
mation criterion (AIC) or the BIC. This implies the introduction of penalty terms
for the number of parameters estimated for the model at hand. An overview of the
use of these criteria for model selection may be found in Carlin and Louis (1996).
Leroux and Puterman (1992) applied these criteria in a mixture model setting. How-
ever, these criteria are useful in a model selection process, but they suffer from the
same difficulties as the likelihood ratio test, i.e., violation of the regularity condi-
tions. Polymenis and Titterington (1998) used an information-based eigenvalue that
in theory becomes zero as soon as too many mixture components are included in the
model. In a simulation exercise, their method appears to be equivalent to the boot-
strap likelihood ratio method for large sample sizes Chen et al. (2001) proposed a
modified LRS for homogeneity in finite mixture models with a general parametric
kernel distribution family. The modified LRS has a χ2 type of null limiting distribu-
tion and is asymptotically most powerful under local alternatives. The same authors
(Chen et al. 2004) extended this approach to the problem of testing the hypothesis
k = 2 compared with k ≥ 3. Chen and Kalbfleisch (2005) incorporated a penalty
term to avoid boundary problems. They considered the use of likelihood ratio results
when an unknown structural parameter is involved in the model. They studied an ap-
plication of the modified likelihood approach to finite normal mixture models with a
common and unknown variance in the mixing components and considered a test of
the hypothesis of a homogeneous model compared with a mixture on two or more
components. They showed that the χ2 distribution with two degrees of freedom has
a stochastic lower bound to the limiting distribution of the LRS. Fu et al. (2006)
applied the modified likelihood ratio test to two binomial mixture models arising in
genetic linkage analysis. The limiting distribution of the test statistic for both mod-
els wass shown to be a mixture of χ2 distributions. An overview of more recent
asymptotic results in the problem of testing homogeneity against a two-component
mixture was provided by Garel (2007).

Lo (2005) provided a discussion of the dependence of the rate of convergence of
the LRS to its limiting distribution on the choice of restrictions imposed on the com-
ponent variances to deal with the problem of unboundedness of the likelihood using
simulation techniques. Susko (2003) introduced weighted versions of homogeneity
tests that can be used to test for the presence of additional components in a mixture.
Simulation studies performed suggest that the tests have power comparable to that
of the bootstrap likelihood ratio test presented in the next section.

4.5.3 The Bootstrap Approach

All the results of the simulation studies mentioned before are more often than not
difficult to apply to an individual data set. Aitkin et al. (1981) had reservations
about the adequacy of χ2 approximations for the null distribution of the LRS.
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In the context of latent class analysis they approached the problem essentially us-
ing a bootstrap approach. The bootstrap was introduced by Efron (1979) and was
investigated further in a series of articles. An overview is given in the book by
Efron and Tibshirani (1993). A detailed overview of the theoretical properties of
the bootstrap may be found in the book by Shao and Tu (1995). The bootstrap is
a powerful technique that allows one to assess the variability in a random quantity
using just the data at hand. An estimate F̂ of the underlying distribution is obtained
from the observed sample. Conditional on the latter, the sampling distribution of
the quantity of interest with F replaced by F̂ defines the bootstrap distribution. This
bootstrap distribution is an approximation to the true distribution. An important fea-
ture is given by the fact that F̂ is assumed to preserve the stochastic structure of the
model. Usually there are no closed-form expressions available for the bootstrap dis-
tribution and they have to be approximated by Monte Carlo methods where (pseudo)
random samples are drawn from F̂ . If the bootstrap is implemented nonparametri-
cally, then it is based on the empirical distribution function of the data.

The Parametric Bootstrap To Estimate the Distribution of the LRS

To obtain the distribution of the LRS for the test of the null hypothesis H0 : k = k1
groups compared with H1 : k = k2 groups a parametric bootstrap can be applied
as follows. Proceeding under H0, one generates a bootstrap sample from a mixture
of k1 groups where unknown parameters are replaced by their likelihood estimates
formed under H0 from the original sample. The value of 2 logξn defined in (4.44)
is computed for the bootstrap sample after fitting mixture models with k = k1 and
k = k2 components in turn. This process is repeated independently B times and the
replicated values of −2logξn formed by the successive bootstrap samples provide
an assessment of the bootstrap and hence of the true null distribution of 2 logξn.
Thus, it allows one to obtain an approximation to the achieved level of significance
corresponding to the value of −2logξ obtained from the original sample. The test
which rejects H0 if −2logξ for the original data is larger than the jth smallest of its
B bootstrap replications has size (Aitkin et al. 1981)

α = 1− j
B+1

. (4.45)

This approach is widely used to obtain the distribution of the LRS. See, for exam-
ple, McLachlan et al. (1995), Karlis and Xekalaki (1999), and McLachlan and Khan
(2004). A crucial point here is the number of bootstrap replications performed. An
accurate result will require a large number of replications B. Efron and Tibshirani
(1986) have shown that whereas for the estimation of a standard error 50–100 repli-
cations are sufficient, a larger number, say, 350, are necessary to obtain a useful
estimate of a percentile or a p value.

The bootstrap simulation of the LRS is usually based on the EM algorithm.
Seidel et al. (2000a) showed that different starting strategies and stopping rules
yield completely different estimators of the model parameters. They demonstrated
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for the likelihood ratio test of homogeneity against two-component exponential mix-
tures that when the test statistic is calculated by the EM algorithm different critical
values for the LRS may occur. As a result, statistical inference may be incorrect.
Thus, alternatively nonparametric bootstrap methods were suggested and evaluated
by Schlattmann (2003, 2005).

The Nonparametric Bootstrap Approach To Estimate the Number
of Components k

Recently there has been growing interest in Bayesian methods for estimating the
parameters of the mixture model. An overview may be found in Titterington et al.
(1985) or Robert (1996). More recently the book by Frühwirth-Schnatter (2006)

Step 1: Sample B bootstrap samples and calculate k̂∗
b
, b = 1, . . . ,B for each sample

Step 2: Estimate the number of components k̂B using the mode of the B replications: k̂B =
argmax fB(k̂), where fB(k̂) is the frequency of the value k̂ based on the B bootstrap replications

Algorithm 4.5.1: Nonparametric bootstrap algorithm to estimate k

covers Bayesian estimation of finite mixture models. These algorithms keep the
number of components fixed. A Bayesian approach which does not need to keep the
number of components fixed has been provided by Richardson and Green (1997). It
makes use of reversible jump Markov chain Monte Carlo methods that are capable
of jumping between the parameter subspaces corresponding to different numbers of
components in the mixture. A sample from the full joint distribution of all unknown
variables is thereby generated and this is used to investigate the posterior distribution
of the number of components k. This approach does not require an initial estimate
of the number of components k, but there is a need to define many prior distributions
for the hyperparameters for this Bayesian setting.

In the discussion of this paper the nonparametric bootstrap approach was sug-
gested by Schlattmann and Böhning (1997). Here the hybrid mixture algorithm was
applied to bootstrap samples of the original data and repeated B times and hence the
distribution of the number of components k was obtained.

Using the hybrid mixture algorithm (Algorithm 4.4.2) as outlined on page 79,
we obtain an initial guess of the number of components k. If one is interested in the
variability of k on empirical grounds, the bootstrap is a natural choice. Bootstrap
methods depend on the notion of a bootstrap sample. This sample x∗ is obtained
from the original sample x with replacement. Corresponding to the bootstrap data
set x∗, we obtain k̂∗ by applying the mixture algorithm to the bootstrap sample. The
bootstrap algorithm involves drawing B independent bootstrap samples and estimat-
ing k̂ using the mixture algorithm. The result is the bootstrap distribution of the
number of components k̂. The stopping rule for both the VEM algorithm and the
EM algorithm is given by DP(l) (λmax) < ε , where ε = 10−7. The maximum number
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of iterations is 10,000. The use of the VEM algorithm, which according to Theo-
rem 4.6 provides the global maximum of the likelihood, ensures optimal starting
value for the EM algorithm. The use of the high number of maximum iterations and
the small value of ε ensures that the fully iterated maximum likelihood estimator is
obtained. This is an important condition for the use of this algorithm to bootstrap
the number of components k.

4.6 Adjusting for Covariates

4.6.1 Generalized Linear Models

For the distributions considered in this monograph, adjusting for covariates leads to
generalized linear models. This includes the normal, Poisson, negative binomial, and
exponential distributions. Before covariate-adjusted finite mixture models are intro-
duced, generalized linear models as formulated by Nelder and Wedderburn (1972)
are briefly described. An overview of the theory and applications of generalized lin-
ear models may be found in the books by McCulloch and Searle (2001), McCullagh
and Nelder (1989), Dobson (2008) and Aitkin et al. (2006). For generalized linear
models it is assumed that observations yi come from a distribution in the exponential
family, that is,

f (yi,θi,φ) = exp
(

yiθi −b(θi)
ai(φ)

+ c(yi,φ)
)

, (4.46)

where θi and φ are parameters and a(·),b(·), and c(·) are specific and known func-
tions. In all models considered here, ai(φ) has the form

ai(φ) = φ/pi, (4.47)

where pi denotes a known prior weight; usually pi = 1. Taking logs leads to the log
likelihood function:

log f (yi,θi,φ) = �(θi,φ ,yi) =
yiθi −b(θi)

ai(φ)
+ c(yi,φ). (4.48)

Using the results with regard to the expectation of the score (5.70) on page 138 leads
to the following results for the expectation μi and the variance σ2

i of the random
variable Yi:

E
(

∂�

∂θi

)
= E

(
yi −b′(θ)

ai(φ)

)
= 0. (4.49)

Thus,

E(Yi) = μi = b′(θi). (4.50)
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Likewise, using (5.71), we obtain

E
(

∂ 2�

∂θ 2
i

)
+E

(
∂�

∂θi

)2

= 0. (4.51)

With μi = b′(θi) the variance is given by

var(Yi) = E
[
(yi −b′(θi))2] . (4.52)

Using the well-known formula

0 = − b′′

ai(φ)
+

var(Yi)
ai(φ)2 , (4.53)

we obtain the variance as

var(Yi) = −b′′(θi)ai(φ). (4.54)

Here b′(·) and b′′(·) denote the first and the second derivative of b(θi).

Example 4.5. Consider the Poisson density (3.1) on page 29. Substituting x with y
and taking logs using the natural logarithm gives

log f (yi) = yi logλi −λi − log(yi!). (4.55)

Looking at the coefficients of yi, it is obvious that θi = logλi. Likewise, c(yi,φ) =
− log(yi!). Hence, λi = eθi and as a result the second term can be written as
b(θi) = eθi . Finally, set the dispersion parameter a(φ) = φ and φ = 1. Thus,
E(Y ) = b′ = eθi = λi and var(Y ) = ai(φ)b′′(θi) = λi.

Example 4.6. As another example consider the exponential distribution with f (y) =
λe−λy. Taking logs gives

log f (yi) = −yiλi + logλi. (4.56)

Obviously θi = λi and c(yi,φ) = 0. Thus, the second term can be written as b(θi) =
logθi. Finally, set the dispersion parameter a(φ) = φ and φ = 1. As a result, E(Y ) =
b′(θ) = 1

λi
and var(Y ) = ai(φ)b′′(θi) = 1

λ 2
i

.

The second part of the generalization of the linear model is that instead of modeling
directly the mean a one-to-one continuous differentiable transformation of the mean
g(μi) is introduced:

ηi = g(μi). (4.57)

The function g(·) is called the link function and introduces the transformed mean.
The link function satisfies necessary constraints, such as μ > 0 for Poisson-
distributed count data. It is further assumed that the transformed mean follows
a linear model, such that
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ηi = xiβ . (4.58)

The quantity ηi is the linear predictor, where xi = (xi1,xi2, . . . ,xim) is a row of the
design matrix X and β is a vector of unknown regression coefficients. Since the link
function is a one-to-one transformation, it can be inverted to obtain

μi = g−1(xiβ ). (4.59)

Example 4.7. For the Poisson distribution, the so-called canonical link function is
the logarithm, since λi = exiβ .

Note that a generalized linear model consists of three ingredients. The first part
involves a distribution from the exponential family, the second part is the linear
predictor, and the final part is the link function. Since the link function is a strictly
monotonic function, it can be inverted to map the linear predictor to the scale of the
observations yi. For the Poisson distribution this is achieved by exponentiating the
linear predictor.

Maximum Likelihood Estimation for Generalized Linear Models

The standard approach to estimate the parameters of generalized linear models is
via maximum likelihood. The log likelihood function is given by

�(β ) =
n

∑
i=1

yiθi −b(θ)
ai(φ)

+
n

∑
i=1

c(yi,φ). (4.60)

The likelihood equation when differentiating (4.60) with respect to β can be written
as (McCullagh and Nelder 1989, pp. 40–43)

∂�

∂β j
=

n

∑
i=1

wi
yi −μi

ai(φ)
dηi

dμi
xi j = 0, (4.61)

with weights wi defined as

wi = τi/

[

b′′(θi)
(

dηi

dμi

)2
]

. (4.62)

Here b′′(·) is the second derivative evaluated at θ and ai(φ) takes the usual form:
φ/τi, with weights τi. Usually (4.61) cannot be solved analytically, since it is non-
linear in β ; hence, an iterative algorithm is required. All generalized linear models
can be fit using the same algorithm, namely, iterative weighted least squares.

Using starting values β̂ , the first step of the algorithm calculates the estimated
linear predictor η̂i = xiβ . This is used to calculate the fitted values μ̂i = g−1(μi). On
the basis of these quantities the so-called working dependent variable zi is calculated

zi = η̂i +(yi − μ̂i)
dηi

dμi
, (4.63)



90 4 Theory and Algorithms

where the rightmost term is the derivative of the link function evaluated at the trial
estimate. In the next step iterative weights are calculated according to (4.62). These
weights wi are inversely proportional to the variance of the working variate zi based
on the current parameter estimates and proportionality factor φ . Finally, a new esti-
mate of β is obtained regressing the working dependent variable zi on the predictors
xi using weights wi, that is, in matrix notation

β̂ = (XTWX)−1XTWz, (4.64)

where X is the design matrix and W is a diagonal matrix of weights with entries wi
defined in (4.62). Finally, z is a response vector with entries zi defined in (4.63). This
procedure is repeated until successive estimates change by less than a specified small
amount, e.g., ε = 0.00001. These steps form the iterative weighted least squares
algorithm for generalized linear models are summarized in Algorithm 4.6.1.

Step 0: Choose a vector of starting values β̂ (0) and calculate η̂
Step 1: Calculate a working variate zi = η̂i +(yi − μ̂i)

dηi
dμi

Step 2: Calculate weights wi = τi/

[
b′′(θi)

(
dηi
dμi

)2
]

Step 3: Estimate β̂ (l) = (XTWX)−1XTWz
Step 4: Calculate η̂ based on β̂ (l) and go to step 1

Algorithm 4.6.1: Iterative weighted least squares algorithm for generalized linear
models

Example 4.8. Consider a Poisson regression model with canonical link, that is, we
model ηi = log(λi) = xIβ . The derivative of the link function is given by dηi

dλi
= 1

λi
.

Then the working variate is given by

zi = η̂i +
yi − λ̂i

λi
. (4.65)

The iterative weight, with τi = 1, is given by

wi = 1/

[

b′′(θi)
(

dηi

dμi

)2
]

= 1/

(
λi

1
λ 2

i

)
= λi. (4.66)

Again, the weights are inversely proportional to the variance of the working variate.



4.6 Adjusting for Covariates 91

4.6.2 The EM Algorithm for Covariate-Adjusted Mixture Models

There is a growing body of literature on covariate-adjusted finite mixture models.
See, for example, McLachlan and Peel (2000), Wedel (2002), Viele and Tong
(2002), Ng and McLachlan (2003), Xiang et al. (2005), or Frühwirth-Schnatter
(2006). The starting point of the covariate-adjusted mixture model is the defini-
tion of the mixture density of the response variable Yi belonging to the exponential
family. In this case the mixture density with k components is defined as

f (yi,P) =
k

∑
j=1

p j f (yi,θi j,φ j) j = 1, . . . ,k, (4.67)

where the log density for the jth component is given by

log f (yi,θi j) =
yiθi j −b(θi j)

ai(φ j)
+ c(yi,φi j). (4.68)

Typically, for each mixture component the same density is assumed and thus for
the jth component μi j denotes the mean of Yi, g(·) denotes the link function, and
η j = g(μi j) = xT

i β j denotes the linear predictor. Thus, each component is described
by a generalized linear model with a different linear predictor, but the same error
distribution and the same link function. The semiparametric mixing distribution may
now be written as in (3.13) on page 33. This leads to

P ≡
[
λ1 . . . λk
p1 . . . pk

]
. (4.69)

Now the parameters λ1, . . . ,λk are no longer scalar quantities, but vectors, e.g.,

λ1 = (β01,β11, . . . ,βm1), (4.70)

where m denotes the number of covariates in the model. As before p j, j = 1, . . . ,k
denotes the mixing weights. Since the error distribution and the link function are as-
sumed to be identical for each component, the componentwise vectors of regression
coefficients are the systematic part of the model.

Example 4.9. A covariate-adjusted finite mixture model based on the Poisson distri-
bution may be written as

f (yi,P) =
k

∑
j=1

p j f (yi,λ j), λ j = exp(xiλ j) j = 1, . . . ,k. (4.71)

Here, a logarithmic link is assumed and λ j denotes the vector of regression coeffi-
cients of the jth component.
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The EM Algorithm

The EM algorithm for covariate-adjusted finite mixture models is again based on
the complete data likelihood and in this case is given by

logLc(P) =
n

∑
i=1

k

∑
j=1

zi j log pi +
n

∑
i=1

k

∑
j=1

zi j log f (yi,θi j,φ j). (4.72)

As before the E-step of the EM algorithm involves replacing the unobserved indi-
cator variables zi j with their expected values given the data (y1, . . . ,yn). Thus, the
E-step denotes the posterior probability of the ith observation belonging to the jth
component and is given by

ei j =
p j f (yi,θi j,φ j)

∑l pl f (yi,θil ,φl)
. (4.73)

The M-step involves maximization of the current expected complete data likelihood.
For the mixing weights this is again given by the simple formula

pnew
j =

∑i ei j

n
=∑

i

p j f (yi,θi j,φ j)
∑l pl f (yi,θil ,φl)

/n. (4.74)

Concerning the computation of the component parameters β j they are estimated
by finding the maximum likelihood estimate for the second sum of the expected
complete data likelihood. This implies that the solution of the following equation
needs to be obtained:

n

∑
i=1

k

∑
j=1

ei j
∂
∂β

log f (yi,θi j,φ j) = 0. (4.75)

It follows from Sect. 4.6.1 on homogenous generalized linear models that (4.75) can
be written as

n

∑
i=1

k

∑
j=1

ei jwi
yi −μi j

ai(φ j)
dηi

dμi
xi = 0. (4.76)

Comparing (4.76) with (4.60) reveals that the former has the same form as a homo-
geneous generalized linear model with component-specific prior weights τi j = ei j.
Note that for a full random effects model, i.e., if the parameter vectors β j have no
elements in common for each component, new estimates of β l+1 may be fit compo-
nentwise. If there are some common elements, the parameters β j may be estimated
using standard software packages for generalized linear models such as R or SAS.

This is achieved by expanding the response vector to have length n× k. That
is, for a mixture of generalized linear models with k = 2 components, the new re-
sponse vector ỹ would have n× k elements. Likewise, the design matrix needs to
be augmented as well. Usually a design matrix with n observations and m covari-
ates would have dimension n×m. Now for each covariate (including the intercept)
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Table 4.2 Response vector ỹ and design matrix X̃ for the covariate-adjusted mixture model of the
Ames test data

ỹ β01 β02 β03 Dose log (0.3 + dose)

11 1 0 0 0 −1.204
11 0 1 0 0 −1.204
11 0 0 1 0 −1.204
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
789 1 0 0 10 2.332
789 0 1 0 10 2.332
789 0 0 1 10 2.332

which will have random effects, the augmented design matrix X̃ needs to have k
additional columns. Additionally, for each k, the number of rows of the augmented
design matrix needs to be the same as for the augmented response vector.

Consider, for example, the design matrix for the finite mixture model in
Sect. 3.5.3. The data set has n = 100 observations and uses the covariates dose
and log (0.3 + dose). The final mixture model has three components with different
intercepts and common slopes. Thus, the response vector has length 100× 3. The
design matrix has 100 × 3 = 300 rows and k + 2 = 5 columns. The elements of
the design matrix X̃ and the augmented response vector ỹ are shown in Table 4.2.
On the basis of this design matrix with vectorized weights ei j the parameter es-
timates β l+1

j may be estimated using standard software. Thus, the EM algorithm
for covariate-adjusted mixture models implies performing first the necessary data
augmentation, and then based on starting values for p j and β j the computation of
posterior probabilities ei j. This is the E-step. In the M-step new mixing weights p j
and regression coefficients β j are computed. This is summarized in Algorithm 4.6.2.

Step 0: Let P be any vector of starting values
Step 1. Compute the E-step according to (4.73)
Step 2: Compute the M-step according to (4.74) and (4.6.1), leading to P(l) and β (l)

Step 3: Let P=P(l) and go to step 1

Algorithm 4.6.2: EM algorithm for covariate-adjusted mixture models

4.6.3 Computation: Vitamin A Supplementation Revisited

Covariate-adjusted finite mixture models can be fit with the function covmix of the R
package CAMAN. To demonstrate its use we continue with our example of vitamin
A supplementation and childhood mortality.

As an alternative to a “standard” meta-analysis we apply a covariate-adjusted
finite mixture model to the data. Table 4.3 shows the data prepared for a Poisson
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Table 4.3 Vitamin A supplementation: data prepared for Poisson regression. 0 indicates the control
group and 1 denotes the vitamin A group

Location Observation time Cases At risk Treatment Person time

Sarlahi (Nepal) 12 152 14,487 1 173,844
12 210 14,143 0 169,716

Northern Sudan 18 123 14,446 1 260,028
18 117 14,294 0 257,292

Tamil Nadu (India) 12 37 7,764 1 93,168
12 80 7,655 0 91,860

Aceh (Indonesia) 12 101 12,991 1 155,892
12 130 12,209 0 146,508

Hyderabad (India) 12 39 7,691 1 92,292
12 41 8,084 0 97,008

Jumla (Nepal) 5 138 3,786 1 18,930
5 167 3,411 0 17,055

Java (Indonesia) 12 186 5,775 1 69,300
12 250 5,445 0 65,340

Mumbai (India) 42 7 1,784 1 74,928
42 32 1,664 0 69,888

regression model. Here the covariate treatment uses value 0 for the control and
value 1 for the supplementation group. The analysis starts with a Poisson regression
model using treatment as a covariate and person time (observation time × popula-
tion at risk) as an offset. The corresponding call to the standard R function glm is as
follows:

> library(CAMAN)
> data(vitamin)
> m0<-glm(cases˜treatment,offset=log(py),family =
poisson(),data=vitamin)

This leads to the result

> m0

Coefficients:
(Intercept) treatment

-6.7919 -0.2969

Degrees of Freedom: 15 Total (i.e., Null);
14 Residual Null Deviance: 1683
Residual Deviance: 1644 AIC: 1748

It is of note that we find a protective effect of vitamin A supplementation on child-
hood mortality In the next step a covariate-adjusted mixture model is fit to the data.

We try a model with random intercepts and random slopes for treatment and
k = 3 components. This is achieved with the call
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> m3 <- mixcov(dep="cases", fixed=c("1"),
random=c("treatment"),pop.at.risk=vitamin$py,
family="poisson",data=vitamin, k=3)

In contrast to the function glm, the logarithm of person time is calculated within the
function mixcov.

The result is given by

> m3

Data consist of 16 observations (rows).

mixing weights:
comp. 1 comp. 2 comp. 3

0.4375004 0.3124996 0.2500000

Coefficients :
Z1 Z2 Z3
-7.711 -6.879 -5.286

Z1:treatment Z2:treatment Z3:treatment
-0.124 -0.294 -0.321

Log-Likelihood: -167.3646 BIC: 356.91

The BIC of model m1 is 1,748.773, whereas the current model has a BIC of 356.91,
which is considerably better. Note that besides treatment heterogeneity there is, ac-
cording to varying intercepts, also baseline heterogeneity present. This information
is not available in a “standard” meta-analysis.

4.6.4 An Extension of the EM Algorithm with Gradient Update
for Covariate-Adjusted Mixture Models

The EM algorithm (Sect. 4.6.2) is known to converge often only to a local maxi-
mum. As a result, this section introduces an extension of the EM algorithm which
incorporates information from the gradient as outlined in Sect. 4.4.6 for finite mix-
ture models.

The crucial part in extending Algorithm 4.4.3 for covariate-adjusted finite mix-
ture models is step 3 where finding λmax is required to maximize the gradient
d(λ j, P̂EM). This was discussed by Seidel et al. (2006) for mixtures of exponen-
tials. Finding λmax implies finding the maximum of a potentially high dimensional
function in the case of covariate-adjusted mixture models.

For that reason the use of simulated annealing, as a stochastic optimization algo-
rithm, is introduced to find the maximum of the gradient function. The idea of sim-
ulated annealing comes from statistical mechanics. Here the behavior of a system
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of particles undergoing a change in temperature is of interest. At high temperatures
the molecules of a liquid move freely with respect to one another. If the liquid is
cooled slowly, thermal mobility is lost. For slowly cooled systems nature finds a
state of minimum energy where the atoms line themselves up and form a pure crys-
tal. This crystal is the state of minimum energy (Press et al. 2007). Kirkpatrick et al.
(1983) introduced simulated annealing as a general optimization technique. Robert
and Casella (2004) translated these ideas into statistical terms.

The basic idea in statistical terms is that a change in temperature T allows for
faster moves on the surface of the function f to be maximized. The negative of
this function is called energy. As a result, rescaling the temperature T avoids the
trapping in local maxima. Given a temperature T > 0, a potentially vector valued
sample λ1,λ2, . . . is generated from the distribution

π(λ ) ∝ exp( f (λ )/T ).

This distribution can be used to find the maximum of f (λ ). As T decreases towards
zero, the values simulated from this distribution become concentrated in a narrower
neighborhood of the maxima of f (λ ). This becomes clearer when the simulation
method proposed by Metropolis et al. (1953) is used. Starting from λ0, a value ξ is
generated from a uniform distribution in the neighborhood υ(λ0) and the new value
λ is generated as follows:

λ1 =
{

ξ , with probability π = exp(Δ f /T )∧1,
λ0, with probability 1−π,

(4.77)

where Δ f = f (ξ )− f (λ0). Thus, if f (ξ ) > f (λ0), ξ is accepted with probability 1
and λ0 is changed into ξ . Otherwise if f (ξ ) < f (λ0), ξ may still be accepted with
probability π �= 0 and λ0 is changed into ξ . This property allows the algorithm to
escape a local maximum with a probability which depends on the temperature T .
This idea leads to the general simulated annealing Algorithm 4.6.3.

Step 1: Simulate ξ from a distribution with density g(|ξ −θ0|)
Step 2: Accept λi+1 with probability π = exp( f (Δ f /T )∧1 and take λi+1 = λi otherwise
Step 3: Update Ti to Ti+1

Algorithm 4.6.3: Simulated annealing

To apply this algorithm to find the maximum of the potential multidimensional
gradient function, the result of the first step of Algorithm 4.6.2 is used. That is, the
solution λEM of the EM algorithm for covariate-adjusted mixture models provides
starting values for simulated annealing. Simulate now ξ in the neighborhood of
λEM. This implies using the result of the EM iterations and finding a new random
configuration of λEM. If this configuration leads to a larger value of the gradient,
then this configuration is accepted. Otherwise, choose a uniform random number u
on the interval [0,1]. If
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u < exp
(

D(ξ ,P)−D(λ .P)
T

)
, (4.78)

then the new configuration is accepted as well; otherwise the current configuration
remains unchanged. Then in the next step the temperature is decreased. This algo-
rithm is summarized in Algorithm 4.6.4.

Step 1: Choose an initial configuration λEM given by the result of the EM algorithm, initial
and final temperatures T0 and Tf
Step 2: Simulate a new configuration ξ in the neighborhood of λi based on a uniform
distribution U(−r,r)
Step 3: If D(ξ ,P) > D(λ ,P), then λi+1 = ξ .
Otherwise choose random u in the range (0,1).
If u < exp

(
D(ξ ,P)−D(λ .P)

T

)
, then λi+1 = ξ , otherwise λi+1 = λi

Step 4: Update Ti to Ti+1 and go to step 2

Algorithm 4.6.4: Simulated annealing step of the hybrid EM gradient update
algorithm

4.7 Case Study: EM Algorithm with Gradient Update
for Nonlinear Finite Mixture Models

4.7.1 Introduction

Population pharmacokinetic analysis is an important task in drug development. This
approach was introduced in Sect. 2.3. One of the most crucial parts is the choice of
the distribution for the random effects. The most common choice is to assume a
normal distribution for the random effects (Davidian and Giltinan 1995). Assuming
a normal distribution has the disadvantage that the integrand inside the likelihood
function has no closed-form solution. Thus, it has to be approximated, e.g., by a
Taylor series expansion, Gaussian quadrature, or Monte Carlo integration (Pinheiro
and Bates 1995). Alternatively a full Bayesian approach using Monte Carlo Markov
chain methods can be applied.

Another approach is to assume a discrete distribution for the random effects, i.e.,
a finite mixture model. This idea was pioneered by Mallet (1986). The algorithm
developed by Mallet fits random effects for all coefficients of the model. Hence,
here we develop a variant of the EM algorithm which allows both fixed and random
effects. The EM algorithm converges to a local maximum of the likelihood function
(Dempster et al. 1977) where the particular solution is determined by the starting
values. Thus, we apply the hybrid EM algorithm with gradient update described in
the previous section.
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4.7.2 Example: Dipyrone Pharmacokinetics

Dipyrone is an analgesic, antipyretic, and anti-inflammatory drug still widely used
in many countries. It is also known under the names metamizole, noramidopyrine,
methampyrone, and sulpyrine, as well as brand names Analgin, Novalgin, Baralgan,
and Ultragin.

Although Dipyrone is recognized as an effective analgesic, anti-inflammatory,
and antipyretic, its in humans is controversial. Since the 1930s it has been known
that Dipyrone can cause agranulocytosis (severe reduction in the number of white
blood cells). Prior to the connection with Dipyrone, this adverse drug reaction had
already been observed with another drug, amidopyrine, which has a similar chemical
structure. Owing to the link with agranulocytosis, Dipyrone has been banned in
many countries (including the USA, the UK, and Sweden).

However, there is general disagreement about the increase in risk of agranulo-
cytosis associated with Dipyrone use. A large case-control study was conducted
in Europe and Israel, the so-called Agranulocytosis and Aplastic Anaemia (IAAA)
study. The results, published in 1986, reported an estimate of the risk at an accept-
ably low level of 1.1 cases per million users (IAAAS 1986). A more recent analysis
of Dipyrone-related agranulocytosis in Sweden estimated the risk to be much higher,
one case per 1,439 users (Hedenmalm and Spigset 2002).

Its pharmacokinetics are characterized by rapid hydrolysis to the active moiety,
4-methylaminoantipyrine (MAA), which has 85% bioavailability after oral admin-
istration in tablet form. MAA is further metabolized to 4-formylaminoantipyrine,
which is an end metabolite, and to 4-aminoantipyrine, which is further acetylated
to 4-acetylaminoantipyrine by the polymorphic N-acetyltransferase. The analgesic
effect of Dipyrone was found to correlate mainly to the time course of MAA (Levy
et al. 1995).

Our analysis deals with an experimental data set that was compiled in the course
of a phase I clinical trial conducted by Flusser et al. (1988). This data set ex-
hibits the high design restrictions associated with experimental data, with 12 healthy
volunteers each being administered the same dose orally and measurements being
recorded at a number of predetermined time points.

For an initial graphical analysis of the data, plots of MAA concentration versus
time are constructed. The concentration–time curves for each of the 12 subjects are
plotted in Fig. 4.15.

The individual plots indicate that there is substantial interindividual variability in
the disposition of Dipyrone and an analysis taking heterogeneity between individu-
als into account seems appropriate.

4.7.3 First-Order Compartment Models

Because Dipyrone was administered orally, we assume a first-order absorption rate
as in Fig. 2.5. The simplest model we can try is the one-compartment model with
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Fig. 4.15 Individual concentration–time curves for the metabolite 4-methylaminoantipyrine
(MAA) in 12 healthy volunteers after oral administration of a single dose of Dipyrone

first-order absorption rate to describe the concentration c(t) at time t (4.79). In this
model ka and ke represent the constants of absorption and elimination , respectively,
whereas Cl denotes the clearance (the amount of drug cleared from the body per
unit time):

c(t) =
Dkake

Cl(ka − ke)
(e−ket − e−kat), (4.79)

where D denotes the dose given. For the model to be meaningful all parameters need
to be positive. As a result, we use the following parameterization proposed by Pin-
heiro and Bates (2000): β1 = logke, β2 = logka, and β3 = log(Cl/F). Throughout
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Table 4.4 Parameter estimates for the pooled model fit to the experimental data. Residual error is
expressed as the standard deviation

Parameter Mean 95% CIa

logke −0.9941 [−1.503 −0.4848]

logka −0.1389 [−0.692 0.4145]

log(Cl/F) 2.997 [2.860 3.135]

Residual error 2.734 [2.492 3.028]

aEstimated 95% confidence interval

this analysis, when we refer to clearance (Cl) we use apparent total body clearance
(Cl/F). This is usual for orally administered doses, where the bioavailability is un-
known (Lunn et al. 1999). In Sect. 2.3.5 this was omitted for the ease of presentation.

If the individual grouping of concentration measurements according to individ-
uals is ignored, a single nonlinear model can be fitted to all the data. The MAA
concentration yi j in individual i out of M individuals at time t j is of interest. For a
specific individual i, we will use the letter j to denote a value in the range 1, . . . ,ni,
with ni observations per individual Thus, we can use the subscript i j to designate a
single observation.

The simplest possible model pools all the data and computes a single nonlinear
model for all individuals ignoring potential variability between subjects (Table 4.4).
This model additionally assumes that the data are normally distributed with common
variance. This model is given by the following equation:

yi j = η(ti j,λ )+ εi j, εi j ∼ N(0,σ2)

η(ti j,λ ) =
Dexp(β1)exp(β2)

exp(β3)(exp(β2)− exp(β1))

(
e−exp(β1)t j − e−exp(β2)t

)
,

i = 1, . . . ,M, j = 1, . . . ,ni.

The parameter vector λ = (β1,β2,β3) needs to be estimated from the data. This
can be done using maximum likelihood or nonlinear least squares (Bates and Watts
1988).

This model was fit using maximum likelihood with corresponding log likelihood
of −448.07. However, looking at Fig. 4.16, we can see that for some individuals the
residuals are mostly positive, while for others they are mostly negative. This indi-
cates heterogeneity between individuals. Thus, a common model for all individuals
doe not seem to be appropriate.

If there are sufficient data, one can attempt to fit a nonlinear model to the
concentration–time curve of each individual. Using the one-compartment model,
we attempt to fit the data for each of M individuals separately. Thus, we can con-
sider M separate nonlinear regression problems, the ith model being expressed by
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Fig. 4.16 Boxplots of residu-
als grouped by subject for the
pooled model
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Fig. 4.17 Ninety-five percent confidence intervals for the estimates of the three pharmacokinetic
parameters according to a one-compartment model fit to the data of each subject separately

yi j = η(ti j,λi)+ εi j, i = 1, . . . ,M, j = 1, . . . ,ni, εi ∼ N(0,σ2). (4.80)

Here yi j denotes the measured concentration on the jth observation of individual i
with ni observations. The combined statistical parameters are λi = (β1i,β2i,β3i, i =
1, . . . ,M).

For six out of the 12 subjects in the experimental data set, the nonlinear least-
squares algorithm fails. Apparently, the data exhibit complex characteristics that
make fitting a simple one-compartment model difficult.

Confidence intervals for the estimates of the three pharmacokinetic parameters
in each individual are a useful means of assessing whether the parameters differ sig-
nificantly from one individual to another (see Fig. 4.17). Judging from this Fig. 4.17,
we could say that clearance and absorption rate show significant variability, while
the elimination rate does vary very substantially from one individual to another.
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4.7.4 Finite Mixture Model Analysis

As indicated by the residuals of the model in (4.80) and the confidence intervals
of the pharmacokinetic parameters in Fig. 4.17, the assumption of a homogenous
model for all individuals is too strict. This leads to nonlinear mixed effects models.
These models are often called hierarchical models. On the first level of the hierarchy
intraindividual variability is modeled as

yi j = η(ti j,λi)+ εi j, εi j ∼ N(0,σ2), i = 1, . . . ,M, j = 1, . . . ,ni. (4.81)

On the second level interindividual variability is modeled. Here, it is assumed that
the variability between individuals can again be described by a distribution P. It is
assumed that the individual’s parameter vector λi follows a distribution with mean
μ and between-individuals variance Ψ :

λi ∼ P(μ ,Ψ). (4.82)

The distribution P of the random effects is often assumed to be normal (Sheiner and
Grasela 1991; Lunn et al. 2002; Davidian and Giltinan 1995; Pinheiro and Bates
2000). A natural alternative would be the case where we assume that the population
of interest consists of several subpopulations denoted by λ1,λ2, . . . ,λk. Here, e.g.,
λ1 = (β11,β12,β13). In this setting, mixture estimation can be used to look for sub-
groups within the total population. This makes sense, for example, if genetic poly-
morphisms influence the pharmacokinetics of a drug, resulting in a small number
of distinct phenotypes. The N-acetylation polymorphism has been found to affect a
number of drug compounds, including Dipyrone (Levy et al. 1995). There are two
phenotypes, slow acetylator and rapid acetylator, each making up about 50% of the
population (Kroemer et al. 1994).

In a mixture model, in contrast to the homogenous case we have the same type
of density for each subpopulation but a different parameter vector λ j in subpopu-
lation j. In our population Y1,Y2, . . . ,YM it is not observed to which subpopulation
the ith individual with its measurements yi = yi1, . . . ,yini belongs. Therefore, this
phenomenon is called unobserved heterogeneity. If we take this into account, the
conditional distribution is given by

yi ∼ p1 f (yi,λ1)+ · · ·+ pk f (yi,λk) k components

f (yi,λ j) =
ni

∏
l

N(yil ,η(til ,λ j),σ) ni observations.

Assuming conditional independence for each individual, the density f (·) is given
by the product of the normal densities of this individual. Conditional independence
means that while the observations from a single individual are not independent of
one another, observations from different individuals are independent and further-
more, conditional on the random effects bi, all observations are independent. We
shall use this assumption in the next section to develop an expression for the likeli-
hood of this model.

Each mixture component is described by a separate nonlinear regression model
with parameter vector λ j. The discrete finite random parameter P is given by
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Table 4.5 Parameter estimates for the three component mixture model fit to the experimental data.
Residual error is expressed as the standard deviation

Parameter Group 1 Group 2 Group 3
(0.6%) (16.38%) (83.02%)

logke 7.894 −0.9783 −1.0219
logka −2.794 −0.9912 0.0125
log(Cl/F) −3.836 −3.7146 −3.968

Residual error 5.1766

P =
[
λ1 . . .λk
p1 . . . pk

]
,

with λ j = (β j1, . . . ,β jm)T, m parameters, and j = 1, . . . ,k components.
Coefficients λ j, mixing weights p j, and the number of components k must be

estimated from the data, e.g., using maximum likelihood using the EM algorithm.
Alternatively a variant of the VDM algorithm might be used (Lai and Shih 2003).
Here we start with the basic EM algorithm. The result is shown in Table 4.5 and
is truly disappointing. The log likelihood is −466.948, which is much worse than
the fit of the simple pooled model with a log likelihood of −448.07. Likewise, the
residual standard error is larger than that estimated by the pooled model.

Possible reasons for this result lie in the fact that the likelihood for mixtures has
many local maxima. Also the results of the EM algorithm depend on starting values
as noted by Seidel et al. (2000b) and Seidel and Sevcikova (2004). Thus, here the
EM algorithm with gradient update for mixture models with covariates as described
in Sect. 4.6.4 is applied to the data.

Figure 4.18 shows that indeed using the hybrid EM algorithm the local maximum
can be left and the potential global maximum is reached. Likewise, looking at the
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Table 4.6 Parameter estimates for the three component mixture model fit to the experimental data.
Residual error is expressed as the standard deviation

Parameter Group 1 Group 2 Group 3
(25%) (16.6%) (58.4%)

logke −0.5590 −0.9551 −1.305
logka −0.5084 −1.032 0.4078
log(Cl/F) 2.705 3.200 3.014

Residual error 1.668
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Fig. 4.19 Individual curves predicted by a mixture model with a three-component fit to the exper-
imental data
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corresponding log likelihoods, a much better fit is obvious. The log likelihood of the
current model is −409.215. The previous log likelihood of the solution provided by
the EM algorithm was −448.07. The results of this model are shown in Table 4.6.

This model indicates variability in absorption, clearance, and elimination. Look-
ing at Fig. 4.19, the fit of this model is much better than that of the pooled model, but
there seems to be room for improvement. Likewise, to fit this model, a large number
of parameters have to be estimated, that is, a total of 11. However, this result is a
good starting point for other population pharmacokinetic analyses since this result
can be used as a starting value for sparse data. Work is in progress to analyze data
from a study performed by Levy et al. (2007) using a finite mixture model. Levy
et al. used a model which relies on a normal distribution for the random effects.
A recent simulation study (Bustad et al. 2006) has shown that finite mixture models
are often superior with regard to performance and thus this reanalysis is in progress.



Chapter 5
Disease Mapping and Cluster Investigations

5.1 Introduction

Geographic epidemiology has become a popular tool in epidemiology and public
health. A general overview of applications and methods of spatial or geographic
epidemiology may be found in the books by Lawson et al. (1999) and Elliott et al.
(2000) or in the Handbook of Epidemiology, where Bithell (2007) provides an
introduction to the field. An overview on advanced statistical methods for spatial
epidemiology is given in the monograph by Lawson (2006).

Applications

The use of geographic epidemiology includes the construction of cancer atlases
which are often applied to generate hypotheses about the causes of disease. One
such example is the second edition of the German cancer atlas (Becker et al. 1984).
Maps of stomach cancer revealed higher rates in northeast Bavaria, which led to
subsequent analytic studies identifying risk factors for stomach cancer in that area.
Another application is given in health care evaluation. One example is the access to
expert psychiatric services in the city of Hamburg (Maylath et al. 2000a,b). These
studies, based on routine data, identified factors which influence access to specialist
care. One of these factors is the social status of patients. Other applications deal with
the regional distribution of “avoidable deaths” caused by potentially fatal diseases
which can be cured by modern medical treatment. Holland (1993) collected data on
such deaths throughout the European Community and presented it in the form of
maps and tables. Schlattmann (2000) investigated the regional distribution of breast
cancer mortality in women in Germany 1995 and identified differences in mortality
between rural and urban areas and the western and eastern parts of Germany.

A more prominent application is so-called cluster investigations. Frequently,
there is public concern about putative disease clusters around a presumed hazardous
institution. Famous examples are given by the leukemia cluster around Sellafield
in the UK or the cluster of childhood leukemia around the nuclear power plant at

P. Schlattmann, Medical Applications of Finite Mixture Models, 107
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 5,
c© Springer-Verlag Berlin Hiedelberg 2009
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Krümmel in Germany. There is an ongoing debate whether these clusters can be
linked to a single exposure such as a nuclear power plant (Alexander et al. 1998;
Bellec et al. 2006; Bithell 2001). Recently, this discussion was fueled by new find-
ings of the German childhood cancer registry (Kaatsch et al. 2008; Spix et al. 2008).
The researchers performed a case-control study with population-based matched con-
trols (1:3) which were selected from the corresponding registrar’s office. Residential
proximity to the nearest nuclear power plant was determined for each subject indi-
vidually with a precision of about 25 m. The study focused on leukemia and mainly
on cases in the inner 5-km zone around the plants. A categorical analysis showed
a statistically significant odds ratio of 2.19 (lower 95% confidence level 1.51) for
residential proximity within 5 km compared with residence outside this area.

The cause of (childhood) leukemia is largely unknown. In this framework several
hypotheses are under discussion. One of these is the Gardner hypothesis (Gardner
et al. 1990) suggesting that an excess of childhood leukemia near a nuclear installa-
tion is caused by parental exposure to ionizing radiation. Besides the environmental
hypothesis, an infectious cause is discussed as well, which is the so-called ‘Kinlen’
hypothesis (Kinlen 1988, 1997). This hypotheses states that population mixing and
infection are a possible explanation for the clusters of childhood acute leukemia
around nuclear processing plants. More precisely Kinlen’s hypothesis implies that
population groups who were relatively isolated in the past but have recently received
a large influx of newcomers may experience an increase in the incidence of child-
hood leukemia, because of changes in herd immunity. Another hypothesis in this
context is Greaves’s hypothesis. Greaves formulated the hypothesis that delayed ex-
posure to common infections leads to an increased risk of childhood leukemia, espe-
cially common pre-B acute lymphoblastic leukemia (ALL). Childhood ALL is con-
sidered to be a rare response to common infections (Greaves 1988, 1997; Greaves
and Alexander 1993). The pathogenesis of leukemia is believed to occur in two
phases. The first genetic event is considered to take place during the expansion of
B-cell precursors in pregnancy. The second genetic event is thought to occur in the
same mutant clone, following an immune stress, such as a common infection. The
delayed exposure to infection is considered to increase the number of target cells,
with the “first hit” present at older ages. On the basis of this hypothesis, a child
isolated from infectious agents at the beginning of his/her life would have a higher
risk of acquiring ALL, while a high birth order value, early common infections, and
early day care would be protective factors.

However, when performing an investigation of a presumed cluster the question
arises of how to define a cluster. A working definition of a cluster is given by Last
(2000) in A Dictionary of Epidemiology:

Definition 5.1. ‘Cluster: Aggregation of relatively uncommon events or diseases in
space and/or time in amounts that are believed or perceived to be greater than could
be expected by chance.’

Unfortunately, this definition does not provide a quantifiable and testable hypothe-
sis. Thus, in analyzing putative clusters of disease, one may distinguish two main
strategies. Besag and Newell (1991) described tests of clustering either as general or
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focused. Investigations that seek to address “general clustering” determine whether
or not cases are clustered anywhere in the study area, without a prior assumption
about the location of a potential cluster. In contrast, tests addressing “focused” clus-
tering assess whether cases are clustered around a prespecified source of hazard,
which is frequently called a focus. When dealing with focused investigations, the
“Texas sharp shooter phenomenon” frequently occurs. It states that the target is de-
fined after firing and thus hit perfectly. Thus, focused analyses may be biased by
selecting the study area and the way exposure is operationalized. Therefore, from
the author’s point of view the analysis of “general clustering” should be a starting
point of any cluster investigation.

5.2 Investigation of General Clustering

There has been debate in the media about whether there is excess childhood
leukemia in the vicinity of the nuclear power plant at Rossendorf close to Dresden
in the southeast of the former East Germany. The area is shown in Fig. 5.1. The data
were analyzed by Böhning and Schlattmann (1999)1 and the results are presented in
the following section together with a more detailed description of empirical Bayes
methods.

Fig. 5.1 Suspected childhood leukemia cluster in the area of Dresden as published in Der Spiegel
(1996)

1 The use of part of the material in this book is kindly permitted by John Wiley & Sons.
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As already mentioned, the analysis of this potential focus is based on an analysis
of generalized clustering to avoid a selection bias. In the following, the investigation
of general clustering is based on disease mapping methods. Traditional approaches
would include the construction of percentile or probability maps. In a first step the
construction of disease maps requires the choice of an epidemiologic measure which
shall be presented on a map. Frequently the standardized mortality ratio (SMR) of
the individual region given by SMRi = oi

Ei
is used. Here, oi denotes the number of

observed cases, while Ei denotes the expected cases based on an internal standard,
i.e., the age-specific rates of the total region.

5.2.1 Traditional Approaches

In our first example we present data from the former East Germany within the time
period from 1980 to 1989. The data are taken from the cancer atlas of the for-
mer East Germany (Möhner et al. 1994). Traditional approaches of categorization
are based on the percentiles of the SMR distribution. Most cancer atlases use this
approach commonly based on quartiles, quintiles, or sextiles. The map shown in
Fig. 5.2 presents the regional distribution of childhood leukemia in the former East
Germany. According to this percentile map there is an increased risk in the districts
of Sebnitz and Dresden, both of them close to the power plant. These districts are
located in the southeast of the former East Germany, close the Czech border. This
map seems to support the hypothesis of an increased risk of leukemia in that area.
But maps based on the percentiles of the SMR distribution are likely to reflect only
random fluctuations in the corresponding small counts.

Rossendorf

Fig. 5.2 Childhood leukemia in the former East Germany from 1980 to 1989. The map is based
on percentiles. The blank area in the map refers to the former western part of Berlin
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They are likely only to reflect the heteroscedasticity of the underlying SMRs
especially for small areas; thus, frequently probability maps are used instead of
percentile maps. For the construction of probability maps the Oi are assumed to
follow a Poisson distribution with Oi ∼ Po(λEi) and

Pr(Oi = oi) = f (oi,λ ,Ei) =
e−(λEi)(λEi)

oi

oi!
. (5.1)

Under this assumption the variance of the SMRi is given by

var(SMRi) = var
(

oi

Ei

)
=

oi

E2
i

=
SMRi

Ei
. (5.2)

In other words the variance is proportional to 1
Ei

. Thus, areas with a small population
size tend to give more extreme results. To see this consider an area with Ei = 0.5.
If we observe one case, the SMR is 1/0.5 = 2. A further case leads to a SMR of
2/0.5 = 4. In contrast if Ei = 5 and five cases are observed the SMR is 5/5 = 1. And
one additional case will lead to a SMR of 6/5 = 1.25. This example illustrates that
a percentile map of crude SMRs might simply reflect heteroscedasticity between
areas and might be misleading.

Probability maps based on Poisson probabilities Pr(Oi ≥ oi) imply performing a
statistical test individually for each region. The parameter λ is given either as the
indifference value λ = 1 or as the maximum likelihood estimate λ̂ = ∑oi

∑Ei
.

Again, based on this probability map, Fig. 5.3 shows a significant excess in the
district of Sebnitz. But probability maps based on a Poisson assumption face the

Rossendorf

Fig. 5.3 Childhood leukemia in the former East Germany from 1980 to 1989. The map is based
on a significance level with maximum likelihood estimate λ̂ = 0.99
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problem of misclassification: Regions with a large population tend to show signifi-
cant results. Additionally, even if the null hypothesis of constant disease risk is true,
misclassification occurs: Schlattmann and Böhning (1993) showed that probability
maps do not provide a consistent estimate of heterogeneity of disease risk. A false-
positive probability map may cause unnecessary public concern. This is especially
true if a map of a disease such as childhood leukemia is presented, which is attached
to highly emotional effects. Thus, here the question remains of whether the observed
excess risk in the Dresden area is merely a methodological artifact.

In summary, the approaches based on percentile and probability maps are not
particularly helpful. If a Poisson distribution is assumed for the data, overdispersion
frequently occurs. This implies that the variability of the data is much greater than
the variability explained by the model. In other words there is an indication that not
all areas have the same disease risk. A simple of test of overdispersion in disease
maps is the test of Potthoff and Whittinghill (1966). This test is still widely used in
cluster investigations; see, for example, Alexander et al. (1998), Bellec et al. (2006),
or Muirhead (2006). The null hypothesis of this test states

H0 : λ1 = λ2 = · · · = λn = λ , i = 1,n,

HA : λi ∼ Γ (α,ν),

where λi denotes the area-specific relative risk. The alternative hypothesis states that
area-specific relative risks follow a gamma distribution with scale parameter α and
shape parameter ν . Details on the gamma distribution may be found in Sect. 3.2.
Thus, the mean is μ = ν

α and the variance is τ2 = ν
α2 . In other words, under the

alternative hypothesis heterogeneity of disease risks is assumed. The test statistic is
given by

V = E+

n

∑
i=1

oi(oi −1)
Ei

, E+ =
n

∑
i=1

Ei. (5.3)

Asymptotically V follows a normal distribution with expectation o+(o+ − 1) and
variance (2n− 1)o+ + (o+ − 1), where o+ = ∑n

i=1 oi. For the data at hand we ob-
tain E(V ) = 1,332,870 and var(V ) = 582,464,190 with a corresponding z value of
−0.37. According to this result, we would not reject the null hypothesis of homo-
geneity of disease risk.

5.2.2 The Empirical Bayes Approach

Tests such as that of Potthoff–Whittinghill or tests for autocorrelation are not par-
ticularly helpful in cluster investigations, since they only tell the researcher whether
heterogeneity of disease risks exists or not. Furthermore, from a public health
point of view, it is of special interest to make a statement about an individual area.
On the one hand, such a statement should take the variability between areas into
account; on the other hand, it should not lead to spurious elevations of disease risk.
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One way to deal with both problems is the use of empirical Bayes methods. The
use of empirical Bayes methods for dealing with area-specific relative risks was de-
scribed by Böhning and Schlattmann (1999), Ugarte et al. (2006), and Ainsworth
and Dean (2006).

The Parametric Model

One very flexible approach is given in random effects models, i.e., models where
the distribution of relative risks λi between areas is assumed to have a probability
density function g(λ ). The Oi are assumed to be Poisson distributed conditional on
λi with expectation λiEi.

Several parametric distributions such as the gamma distribution or the log-normal
distribution have been suggested for g(λ ). For details see Clayton and Kaldor (1987)
or Mollie and Richardson (1991). A discussion of the choice of the random effects
distribution in an empirical Bayes framework was, for example, given by Yasui et al.
(2000) and Leyland and Davies (2005).

Among the parametric prior distributions the gamma distribution has been used
several times for epidemiologic purposes (Martuzzi and Hills 1995). In the case that
the λi are assumed to be gamma-distributed, i.e., λi ∼ Γ (α,ν), the parameters α
and ν have to be estimated from the data. The marginal distribution is given by

Pr(Oi = oi) =
∫ ∞

0
Po(oi,λ ,Ei)g(λ )dλ , (5.4)

where g(λ ) follows a gamma distribution with scale parameter α and shape para-
meter ν . Here, we are led to a parametric mixture distribution, namely, the negative
binomial distribution (3.6). By applying Bayes’s theorem, we can estimate the pos-
terior expectation for the relative risk of the individual area with

E(λi|oi,α,ν) =
oi +ν
Ei +α

. (5.5)

Proof.

Pr(λi ≤ λ |Oi = oi) =
Pr(λi ≤ λ ,Oi = oi)

Pr(Oi = oi)

=
1

Pr(Oi = oi)

∫ λ

0
f (Oi = oi,λi = θ) f (θ)dθ

=

∫ λ
0 e−θEi (θEi)oi

oi!
αν

Γ (ν)θ
ν−1e−αθdθ

(ν+oi−1
oi

)( α
α+Ei

)ν ( EI
α+Ei

)oi

=
∫ λ

0
e−θ(Ei+α)θ (oi+ν−1)(Ei +α)oi+ν 1

Γ (oi +ν)
. (5.6)
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Thus, the conditional distribution of λ is a gamma distribution with scale parameter
Ei +α and shape parameter oi +α . Hence, the mean is given by oi+ν

Ei+α , which ends
the proof. ��

Usually α and ν are unknown. Estimates of the parameters α and ν can be ob-
tained either by a method of moments or by combining a method of moments and
maximum likelihood estimation. Details of this procedure are given in Sect. 5.5.3.

Note that the empirical Bayes estimates are a compromise between the maximum
likelihood estimate of the area-specific relative risk λ with

λ̂i =
oi

Ei
(5.7)

and the mean of the gamma distribution

μ̂ =
ν̂
α̂

. (5.8)

This leads to

λ̂EB
i = wi

oi

Ei
+(1−wi)μ̂,

wi =
(

1− μ̂
τ̂2Ei

)−1

, (5.9)

where τ̂2 = ν̂
α̂2 . As a result, in areas with a large population size the SMRi based

on this empirical Bayes approach changes very little compared with the maximum
likelihood estimates, whereas for areas with small population size the SMRi shrinks
to the global mean. On the other hand, if the prior distribution is estimated to have
small variance τ2, this is reflected in a large amount of shrinkage. Thus, parametric
empirical Bayes methods provide variance-minimized estimates of the relative risk
of the individual area. But these methods still face the problem that they need a
post hoc classification of the posterior estimate of the epidemiologic measure to
produce maps. Often, this is again done using percentile maps, which may lead to
misclassification.

However, as demonstrated in Fig. 5.4 when using the same scale as in Fig. 5.2,
we obtain a homogenous map of disease risk of childhood leukemia in the former
East Germany. The main distinction between empirical and full Bayesian methods
can be seen in the fact that in the case of the empirical Bayes method the parame-
ters of the prior distribution are estimated as point estimates α̂ and ν̂ from the data.
Thus, the posterior expectation of the relative risk is obtained conditional on these
point estimates. In a full Bayesian approach a probability model for the whole set
of parameters is specified (including the prior distribution of α and ν) and the pos-
terior expectation of the relative risk is integrated over the posterior distribution of
α and ν .
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Rossendorf

Fig. 5.4 Childhood leukemia in the former East Germany from 1980 to 1989. The map is based
on a gamma distribution

The Nonparametric Mixture Model Approach

Now let us assume that our population under scrutiny consists of k subpopula-
tions with different levels of disease risk λ j, j = 1, . . . ,k. Each of these subpopu-
lations with disease risk λ j represents a certain proportion p j of all regional units.
Statistically, this means that the mixing distribution reduces to a finite-mass point
distribution. Here we face the problem og identifying the level of risk for each sub-
population and the corresponding proportion of the overall population. One can
think of this situation as a hidden (or latent) structure, since the subpopulation to
which each area belongs remains unobserved. These subpopulations may have dif-
ferent interpretations. For example, they could indicate that an important covariate
has not been taken into account. Consequently, it is straightforward to introduce an
unobserved or latent random vector Z of length k consisting of only 0s besides one 1
at some position (say jth), which then indicates that the area belongs to the jth sub-
population. Taking the marginal density over the unobserved random variable Z, we
are led to a discrete semiparametric mixture model. If we assume a nonparametric
mixing distribution

P =
[
λ1 . . . λk
p1 . . . pk

]
(5.10)

for the mixing density g(λ ) (which can be shown to be always discrete in its nature),
we obtain the mixture density as a weighted sum of Poisson densities
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f (Oi,P,E j) =
k

∑
j=1

p j f (Oi,λ j,Ei), with
k

∑
j=1

p j = 1 and ≥ 0, j = 1, . . . ,k .

(5.11)

Note that the model consists of the following parameters: the number of compo-
nents k, the k unknown relative risks λ1, . . . ,λk, and k−1 unknown mixing weights
p1, . . . , pk−1.

For the special case of disease mapping the package DismapWin (Schlattmann
1996) was developed and may be used for this purpose. A general strategy implies
calculating the nonparametric maximum likelihood estimator and then applying a
backward or forward selection strategy to determine the number of components
by means of the likelihood ratio statistic (LRS) (Schlattmann and Böhning 1993).
Applying Bayes’s theorem and using the estimated mixing distribution as a prior
distribution, we are able to compute the probability for each region belonging to a
certain component, which is given by

Pr(Zi j = 1 | Oi = oi) =
Pr(Zi j = 1)Pr(Oi = oi | Zi j = 1)

Pr(Oi = oi)
. (5.12)

With the parameter estimates obtained from the data this leads to

Pr(Zi j = 1 | oi, P̂,Ei) =
p̂ j f (oi, λ̂ j,Ei)

k
∑

l=1
p̂l f (oi, λ̂l ,Ei)

. (5.13)

The ith area is then assigned to that subpopulation j for which it has the highest
posterior probability of belonging. In terms of the latent vector Z Bayes’s theorem
gives us its posterior distribution. For the leukemia data we find a one-component
or homogenous model, with constant disease risk λ̂ = 0.99 and common weight
p̂ = 1. Clearly, in contrast to Figs. 5.2 and 5.3 we obtain a homogenous map for
the leukemia data in accordance with Fig. 5.4. The corresponding map is shown in
Fig. 5.5. This could also be thought of as using the empirical Bayes estimate based
on a posterior distribution which is a constant value for all regions equal to λ̂ = ∑Oi

∑Ei
,

in this case.
In general we can compute the posterior expectation for this model as

ˆSMRi = E(λi|oi, P̂,Ei) =

k
∑
j=1

p̂ j f (oi, λ̂ j,Ei)λ̂ j

k
∑

l=1
p̂l f (oi, λ̂l ,Ei)

. (5.14)

In this special case of a homogenous solution the posterior expectation reduces
to the maximum likelihood estimate of the relative risk λ̂ . Results for areas in the
vicinity of Rossendorf are listed in Table 5.1. This table contains the crude SMR, the
Poisson probability, and empirical Bayes estimates for regions in the Dresden area.
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Rossendorf

Fig. 5.5 Childhood leukemia in the former East Germany from 1980 to 1989. The map is based
on a mixture distribution

Table 5.1 Relative risk estimates for areas close to Rossendorf

Area Cases Expected cases SMR EB MIX-EB Pr(O ≥ oi)

Dresden (city) 32 34.41 0.93 0.99 0.99 0.66
Dresden (area) 10 6.8 1.47 0.99 0.99 0.14
Sebnitz 9 3.53 2.55 0.99 0.99 0.01
Pirna 7 7.07 0.99 0.99 0.99 0.55
Bischofswerda 2 4.44 0.45 0.99 0.99 0.93

SMR standardized mortality ratio, EB empirical Bayes estimates based on the gamma
distribution as a prior distribution, MIX-EB posterior expectation of the relative risk
based on the mixture distribution

Clearly, looking at Table 5.1 displaying relative risk estimates for areas close to
Rossendorf, we conclude that there is no excess risk in the Dresden area on the basis
of the spatial resolution of “Landkreise.” Further investigations would need to refine
the spatial resolution. However, in the case of routine maps produced by a cancer
registry we would avoid a false-positive result.

5.3 Computation

Again, we start by loading the package CAMAN and the leukemia data from the
former East Germany:

> library(CAMAN)
> data(leukDat)
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In the next step the parameters of a finite mixture model are estimated using a com-
bination of the expectation maximization and vertex exchange method algorithm,
that is, the function mixalg is used as follows:

> mix.leuk <- mixalg(obs="oleuk", pop.at.risk="eleuk",
data=leukDat,family="poisson")

Typing mix.leuk gives the result

Computer Assisted Mixture Analysis:

Data consist of 219 observations (rows).

The Mixture Analysis identified 2 components

DETAILS:
p lambda

1 0.00816673 0.1695436
2 0.99183327 0.9943916

Log-Likelihood: -457.3391 BIC: 930.8454

Apparently, there is only little heterogeneity present. Thus, we investigate whether a
homogenous model is sufficient to describe the data and the expectation maximiza-
tion algorithm is used to fit a homogenous model.

> mix.leuk1<- mixalg.EM(mix.leuk, p=c(1), t= c(1))

Typing mix.leuk1 leads to the shortened output

p lambda
1 1 0.989624

Log-Likelihood: -457.4043 BIC: 920.1976

The corresponding log likelihood is only marginally smaller than that of the initial
solution and one would use the homogenous model. However, in order to perform a
formal test, a model with components is fit and the parametric bootstrap distribution
of the LRS is obtained.

Two calls of the function mixalg.EM are possible. The first option implies deliv-
ering a mixalg object as an argument and providing starting values for the mixing
weights and subpopulation means as done in the last call of the function. Alterna-
tively, the data may be given directly together with relevant information such as
starting values and the distribution of the mixing kernel. This is shown in the fol-
lowing call of the two-component mixture model:

> mix.leuk2<-mixalg.EM(obs="oleuk",pop.at.risk="eleuk",
data=leukDat,family="poisson",p=c(0.01,0.99),
t=c(0.16,0.99))
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To obtain the distribution of the LRS the function anova can be used:

> compare<-anova(mix.leuk1,mix.leuk2,nboot=2500)
> compare

mixture model k BIC LL LL-ratio
1 mix.leuk1 1 920.1976 -457.4043 NA
2 mix.leuk2 2 930.8454 -457.3391 0.1303425

$‘LL ratios in bootstrap-data‘
0.9 0.95 0.975 0.99

2.608402 3.862130 5.139111 7.024005

Clearly, we do not reject the null hypothesis of a homogenous model. To construct
a map, first the map of the former East Germany is loaded:

> library(maptools)
> data(GDRmap)

Then the map is constructed with the command

> plot(GDRmap,col= mix.leuk1@classification)

5.4 A Note on Autocorrelation Versus Heterogeneity

Frequently, to assess the “nonrandomness” of a map tests for autocorrelation, e.g.,
Moran’s I (Moran 1948), or heterogeneity, e.g., the test of Potthoff and Whittinghill
(1966), are used. The latter accounts for the extra-Poisson variation frequently
present in the homogeneous Poisson model. In the following it will be shown that
overdispersion can be due to autocorrelation or heterogeneity.

5.4.1 Heterogeneity

Consider a two-level model where the random variable Y has a probability density
function f (y|λ ) with a ≤ y ≤ b. The second level of the model assumes that the
parameter λ has probability density function g(λ ) with α ≤ λ ≤ β . Under this
assumption we are interested in partitioning the unconditional variance var(Y ) into
two terms:

var(Y ) = E [var(Y |λ )]+var [E(Y |λ )] . (5.15)

That is, the total variance of Y is decomposed into the variation in the subpopulation
with parameter λ and the variation due to the heterogeneity distribution of λ , which
is frequently denoted as the heterogeneity variance τ2. This is sometimes called an
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analysis of variance with a latent factor. To develop this decomposition we start with
the expectation under heterogeneity

E(Y ) =
∫ b

a
y f (y)dy =

∫ b

a
y
(∫ β

α
f (y|λ )g(λ )dλ

)
dy

=
∫ β

α

(∫ b

a
y f (y|λ )dy

)
g(λ )dλ =

∫ β

α
E(Y |λ )g(λ )dλ

= E(E(Y |λ )). (5.16)

The variance var(Y ) is given by

var(Y ) = E(Y −E(Y ))2 =
∫ b

a
(y−E(Y ))2 f (y)dy

=
∫ b

a
(y−E(Y ))2

(∫ β

α
( f (y|λ )g(λ )dλ

)
dy

=
∫ b

a
(y−μ(λ )+μ(λ )−E(Y ))2

(∫ β

α
f (y|λ )g(λ )dλ

)
dy

=
∫ β

α

(∫ b

a
(y−μ(λ ))2 f (y|λ )dy

)
g(λ )dλ

+
∫ β

α
(μ(λ )−E(Y ))2

(∫ b

a
y f (y|λ )dy

)
g(λ )dλ

= E [var(Y |λ )]+var [E(Y |λ )] . (5.17)

This is the well-known result, that the variance of Y is the expectation of the
conditional variance of Y plus the variance of the conditional mean of Y ; see, e.g.,
Mood et al. (1974, Chap. V, Theorem 7).

The Poisson Case

For the special case f (y,λ ) = Po(y,λ ) we get E(Y |λ ) = λ and var(Y |λ ) = λ . This
leads to the result

var(Y ) = E [var(Y |λ )]+var [E(Y |λ )] (5.18)

=
∫ β

α
λg(λ )dλ + τ2

= μλ + τ2

= μλ +φμλ

= μλ (1+φ). (5.19)
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5.4.2 Autocorrelation

Suppose that the response variable is the sum of N identically distributed correlated
variables Xi, where N itself is a random variable. Given that Y = X1 +X2 + · · ·+XN
the expectation E(Y ) is given by

E(Y ) = EN(EX (X1 +X2 · · ·+XN))

= EN(NμX ) = μX E(N) = μXμN . (5.20)

This follows from the property of the expectation that E(∑Xi) = ∑E(Xi). The vari-
ance is then given by

var(Y ) = EN
(
EX (Y −μXμN)2)

= EN
(
EX (Y −NμX +NμX −μXμN)2)

= EN
(
EX (Y −NμX )2)

+2EN (EX [(Y −NμX )(NμX −μXμN)])

+EN
(
EX
[
(NμX −μXμN)2]) .

Consider the three terms constituting the variance separately. Starting with

EN(EX
[
(Y −NμX )2]) = EN

⎛

⎝EX

⎡

⎣
(

N

∑
i=1

(Xi −μX )

)2
⎤

⎦

⎞

⎠

and using the standard result

var

(
n

∑
i=1

Xi

)

=
n

∑
i=1

var(Xi)+
n

∑
i=1

∑
i �= j

cov(Xi,Xj)

leads to

EN
(
EX
[
(Y −NμX )2]) = EN

⎛

⎝EX

⎡

⎣
(

N

∑
i=1

(Xi −μX )

)2
⎤

⎦

⎞

⎠

= EN

(

Nσ2
X +

n

∑
i=1

∑
i �= j

cov(Xi,Xj)

)

= EN
(
Nσ2

X +(N2 −N)ρσ2
X
)

= μNσ2
X +(σ2

N +μ2
N −μN)ρσ2

X , (5.21)

where the last line follows from E(N2) = σ2
n +μ2

N .
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The next term involves

EN (EX [(Y −NμX )(NμX −μNμX )]) = μX EN

⎡

⎢
⎢⎢⎢
⎣

(N −μN)EX

(
N

∑
i=1

(Xi −μX )

)

︸ ︷︷ ︸
=0

⎤

⎥
⎥⎥⎥
⎦

= 0,

since EX (Xi −μX ) = 0. Finally,

EN
(
EX
[
(NμX −μXμN)2])= μ2

X EN
[
(N −μN)2]= μ2

Xσ2
N . (5.22)

Combining (5.21) and (5.22) gives the variance of the sum of correlated data:

var(Y) = μNσ2
X +(σ2

N +μ2
N −μN)ρσ2

X +μ2
Xσ2

N . (5.23)

Application to the Poisson Case

First consider the sum of N independent Bernoulli random variables Xi each taking
values 0 or 1, where N is assumed to be a Poisson random variable with parameter λ .
Then the sum ∑N

i=1 Xi of Bernoulli variables follows a Poisson distribution with
parameter λπ , where π = Pr(xi = 1).

To prove this, consider the probability generating function of an arbitrary discrete
random variable Y . If we write pk = Pr(Y = k) the probability generating function
of Y is given by GY (s):

GY (s) =
∞

∑
k=0

pksk = E(sk). (5.24)

For Bernoulli random variables this takes the form

GX (s) = E(sk) = (1−π)s0 +πs1 (5.25)

and for the Poisson distributed random variable the probability generating function
is given by

GN(s) = e−λ + s
λe−λ

1!
+ s2 λ 2e−λ

2!
+ · · ·

= e−λ
(

1+
(sλ )1

1!
+

(sλ )2

2!
+ · · ·

)

= e−λ esλ

= eλ (s−1). (5.26)
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Following Feller (1968) the probability generating function of a sum SN = X1 +
· · ·+XN of a random number N of independent variables is given by

GSN(s) = GN(GX (s)). (5.27)

For the problem at hand this leads to

GN(GX (s)) = eλ (GX (s)−1

= eλ (1−π+πs−1)

= eλπ(s−1). (5.28)

Thus, GN(s) is the probability generating function of a Poisson random variable
with parameter λπ . Suppose now that we have Poisson count data with Y = X1 +
X2 + · · ·+ XN , with correlated binary random variables, each taking values 0 or 1,
then Pr(Xi = 1) = π , Pr(Xi = 0) = 1−π , and Corr(Xi,Xj) = ρ(i �= j).

Coming back to the random sum of correlated Bernoulli data, (5.23) can be used
to calculate the variance of these data. The following terms are needed:

μX = E(Xi) = π ,

σ2
X = var(Xi) = π(1−π) ,

μN = E(N) = λ ,

σ2
N = λ .

Thus, E(Y ) = λπ and

var(Y ) = λπ(1−π)+(λ +λ 2 −λ )ρπ(1−π)+π2λ

= λπ +λ 2ρπ(1−π)

= λπ(1+φ),

where φ = λρ(1−π).
Hence, autocorrelation leads to overdispersion in a similar way as heterogeneity!

Thus, heterogeneity models may be used to model correlated count data. However,
in the literature there is often the distinction between unstructured and structured
heterogeneity. The latter incorporates spatial dependency into the model. One such
model is a frequently used Bayesian model which takes a Gaussian random field as
an a priori distribution (Besag et al. 1991). In a case study (Schlattmann et al. 1999)
it turned out, not surprisingly, that the empirical Bayes methods and full Bayesian
methods come to different results. In a large simulation study where the author was
involved, it could be shown that the full Bayesian model performed best in most
settings (Lawson et al. 2000). However, the second-best performing model was the
Poisson–gamma model which is easily used in routine applications, for example,
with DismapWin (Schlattmann 1996).



124 5 Disease Mapping and Cluster Investigations

5.5 Focused Clustering

In contrast to general clustering, focused clustering studies investigate the presum-
ably raised incidence of disease in the vicinity of prespecified putative sources of
increased risk. As mentioned before, this type of analysis comprises considerable
danger of selection bias, since most focused cluster analyses are performed post
hoc. There is ongoing public concern with regard to clustering of leukemia in the
vicinity of nuclear power plants. Notorious examples are Sellafield in the UK and
Krümmel in Germany.

As a result, a large body of statistical methodology was developed to investigate
focused clustering. Many of these methods are based on statistical tests where the
distance to the point source is considered as a surrogate measure of exposure (Bithell
and Stone 1989; Hills and Alexander 1989; Lawson 1993; Stone 1988; Waller et al.
1992). Recently Lawson et al. (2007) proposed a refinement of these methods based
on the logistic mode if a control disease is available.

5.5.1 The Score Test for Focused Clustering

The score test by Waller et al. (1992) and Lawson (1993) is widely used in the
assessment of focused clustering. Focused cluster tests utilize alternative hypotheses
defining increased risk in areas exposed to a focus:

H0 : E(Oi) = λEi,

HA : E(Oi) = λEi(1+giβ ), i = 1, . . . ,n, (5.29)

where gi is a function of the distance di between the areas considered (i = 1, . . . ,n)
and the focus. In the absence of direct exposure data several functions g are used as
an exposure surrogate. Note that the additive risk function 1 + giβ can be approxi-
mated by expβ . This follows from the Taylor series expansion (3.19) on page 46 of
the function eβ which gives expβ ≈ 1+βgi.

The simplest function of exposure is the inverse distance from the source:

gi = 1/di, i = 1, . . . ,n. (5.30)

Here, distance is computed as the distance from the centroid of the area with coor-
dinates (xi,yi) to the focus. Other possible functions are based on exponential func-
tions. See, for example, Tango (2002) for the motivation for the following surrogate
measures of exposure:

gi = exp(−di/τ), i = 1, . . . ,n, τ > 0 or (5.31)
gi = exp[−4(di/L)2], i = 1, . . . ,n, L > 0. (5.32)

Figure 5.6 shows a comparison of the three functions. Actually there exist two ver-
sions of the score test. These are based on the assumption that the overall relative
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Fig. 5.6 Comparison of three functions of distance as surrogate measures of exposure with τ = 10
and L = 10

risk (SMR) is either known or not. For internally standardized data with the whole
area as a standard, the overall relative risk λ is unity. In this case the test statistic is
given by

U∗ = ∑n
i=1 gi(oi −Ei)√

∑n
i=1 g2

i Ei

. (5.33)

The Score Test as a Special Case of Poisson Regression

The test statistic (5.33) is obtained as a score test based on the likelihood of a Poisson
regression model. To see this consider the likelihood of a simple Poisson regression
model with logarithmic link function and expected cases Ei as an offset

L(β ) =
n

∏
i=1

e−[exp(β0+β1gi+logEi)] exp(β0 +β1gi + logEi)oi

oi!
.

This leads to the following log likelihood function

�(β ) =
n

∑
i=1

oi(β0 +β1gi + logEi)− exp(β0 +β1gi)Ei − log(oi!). (5.34)

Taking the derivative of (5.34) with respect to the parameter vector β leads to

U(β ) =
∂�

∂β
=

n

∑
i=1

[oi − exp(β0 +β1gi)Ei]
[

1
gi

]
. (5.35)
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The observed information matrix − ∂ 2�
∂β 2 is given by

IY =
n

∑
i=1

[exp(β0 +β1gi)Ei]
[

1 gi
gi g2

i

]
. (5.36)

The hypothesis of interest is H0 : β1 = 0. If, additionally λ is assumed to be known,
with λ = 1, it follows that β0 = 0, since λ = expβ0. Thus, (5.35) reduces to

U =
n

∑
i=1

gi(oi −Ei). (5.37)

Since (5.37) denotes the score, the expectation of U is zero. The information matrix
is given by

∂ 2�

∂β 2
1

=
n

∑
i=1

g2
i Ei. (5.38)

Thus, the score test is given by (5.33). If λ is not known, then β0 is a nuisance para-
meter which has to estimated. In this case the score test has the form U2(β̃ )T (If22 −
If12I−1

f11If21)−1U2(β̃ ). The mathematical background for this equation is developed
in the section “The Score Test for Model Comparison.” In particular this is an appli-
cation of (5.86) developed on page 141. On the basis of this equation the score test
is given by

TS =

[
∑n

i=1 gi(oi − λ̂Ei)
]2

λ̂ ∑n
i=1 g2

i Ei − (∑n
i=1 giEi)2/∑n

i=1 Ei
, λ̂ = ∑i oi

∑i Ei
. (5.39)

If ∑oi = ∑Ei, e.g., owing to internal standardization, this reduces to

TS =
[∑n

i=1 gi(oi −Ei)]
2

∑n
i=1 g2

i Ei − (∑n
i=1 giEi)2/∑n

i=1 Ei
. (5.40)

An equivalent form of the test (5.39) is as follows:

TS =

[
∑n

i=1 gi(oi − λ̂Ei)
]2

∑n
i=1 λ̂Ei(gi − ḡ)2

, ḡ = ∑i giEi

∑i Ei
. (5.41)

Note that ḡ is a weighted mean of the area’s exposure measure. Weights are the
expected number of cases in that area. Under H0, TS follows a χ2 distribution with
one degree of freedom (Cox and Hinkley 1974, Sect. 9.3).
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Example

The apparent excess of cases of childhood leukemia in the village of Seascale near
the nuclear reprocessing plant at Sellafield was extensively investigated in the com-
prehensive report by Black (1984). In addition the focus has also turned to other
nuclear installations. For example, Sizewell, a small fishing village in the county of
Suffolk, England, located on the East Anglian coast has been under scrutiny. The
village itself is overshadowed by two separate nuclear power stations, Sizewell A
and Sizewell B. The analysis considers cases of leukemia registered at all ages be-
tween 1967 and 1981 in the vicinity of Sizewell within a radius of approximately
17 km. The data were taken from the paper by Bithell and Stone (1989), who ap-
plied a Poisson maximum statistic to the data. This test is based on the rank of
distances. To use methods based on actual distance, the distance to the power plant
was recalculated. In this example inverse distance is used as a surrogate measure
of exposure, that is, gi = 1/di. According to Fig. 5.7 the relative risk of leukemia
apparently decreases with increasing distance from the power plant. Applying the
score test (5.41) to the data gives TS = 8.332. Comparing this result with a χ2

1 distri-
bution leads to a p value of 0.004. Thus, on the basis of this test the null hypothesis
is rejected at the 5% level. An association between the distance to the power plant
and the relative risk of leukemia might be deduced. However, this result relies on
the appropriateness of the Poisson distribution for these data. This is not necessarily
the case. Therefore, Sect. 5.5.2 is dedicated to the development and application of
more robust versions of the score test.
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Fig. 5.7 Standardized incidence ratio (SIR) of childhood leukemia versus distance to the Sizewell
power plant
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5.5.2 The Score Test Adjusted for Heterogeneity

The formulation of the score test heavily relies on a Poisson distribution for the data.
If the observed cases oi exhibit overdispersion the variance estimate based on the
Fisher information will be too small. Hence, the score test will be anticonservative.
Thus, it is desirable to have a form of the score test which allows one to address
overdispersion without the need to estimate the parameters of a generalized linear
mixed model. A generalized score test is presented consecutively. From (5.96) in
the section “Generalized Score Test” the generalized score test is given by

TGS = U2(β̂ )T V−1
GS U2(β̂ ), (5.42)

where VGS = Dg22−Ig21I−1
g11DT

g21−Dg21I−1
g11IT

g21 +Ig21I−1
g11Dg11I−1

g11IT
g21. The observed

information is contained in (5.36). The matrix DY is given by

DY =
n

∑
i=1

[oi − exp(β0 +β1gi)Ei]2
[

1 gi
gi g2

i

]
. (5.43)

Thus, the variance VGS evaluated at β1 = 0 with λ̂ = exp(β̂0) = ∑oi
∑Ei

is given by

VGS = ∑(oi − λ̂Ei)2g2
i −

λ̂ ∑Eigi ∑(oi − λ̂ )2gi

λ̂ ∑Ei

−∑(oi − λ̂ )2giλ̂ ∑Eigi

λ̂ ∑Ei
+

λ̂ 2 ∑i=1(oi − λ̂Ei)2 (∑Eigi)
2

λ̂ 2(∑Ei)
2

= ∑(oi − λ̂Ei)2g2
i −2× ∑(oi − λ̂ )2gi ∑Eigi

∑Ei
+ ∑(oi − λ̂Ei)2 (∑Eigi)

2

(∑Ei)
2

= ∑
(

gi −
∑giEi

∑Ei

)2

(oi − λ̂Ei)2

= ∑(gi − ḡ)2 (oi − λ̂Ei)2, ḡ = ∑i giEi

∑i Ei
. (5.44)

In contrast to (5.41), the model-based variance is replaced by the empirical variance
(without the denominator). This leads to the test statistic

TGS =

[
∑n

i=1 gi(oi − λ̂Ei)
]2

∑n
i=1(gi − ḡ)2(oi − λ̂Ei)2

, ḡ = ∑i giEi

∑i Ei
. (5.45)

Example Revisited

Coming back to the example and applying the generalized score test given by (5.45)
leads to a value of the test statistic TGS = 2.9755. Comparing this result with a χ2

1
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distribution leads to a p value of 0.0846. Thus, if we allow for misspecification
of the model, the null hypothesis is no longer rejected at the 5% level. This is in
accordance with the result of Bithell and Stone (1989). Using Stone’s test, they also
found that

The Sizewell data are altogether less statistically significant. Geographical proximity to the
nuclear power station does not seem to be particularly important.

5.5.3 The Score Test Based on the Negative Binomial Distribution

Here, the parameterization as in (3.25) is used. This leads to the likelihood

L(β ,ν) =
n

∏
i=1

Γ (oi +ν)
Γ (oi)Γ (ν)

[
ν

exp(β0 +β1gi)Ei +ν

]ν [ exp(β0 +β1gi)Ei

exp(β0 +β1gi)Ei +ν

]oi

.

(5.46)
Since

Γ (y+ c)
Γ (c)

= c(c+1)+ · · ·+(c+ y−1), c > 0, y ∈ N, (5.47)

as shown by Lawless (1987), the log likelihood function is given by

�(β ,ν) =
n

∑
i=1

(
oi−1

∑
j=0

log(1+ν j)+ν log(ν)− (oi +ν) log(λiEi +ν)+oi log(λEi)

)

,

(5.48)

where λi = exp(β0 +β1gi). Taking the derivative with respect to the parameter vec-
tor β leads to

U(β ) =
∂�

∂β
= ν

n

∑
i=1

[
oi −λiEi

ν +λiEi

][
1
gi

]
. (5.49)

Hence, the observed information matrix is given by

IY = ν
n

∑
i=1

[
λiEi

oi +ν
(λiEi +ν)2

][
1 gi
gi g2

i

]
. (5.50)

Again, the variance estimate based on the observed information matrix is given by

var(U) = IY 22 − IY 12I−1
Y 11IY 21. (5.51)

Thus, the variance of the score evaluated at β1 = 0 is obtained as

var(U) = νλ

⎡

⎢
⎣

n

∑
i=1

g2
i Ei(oi +ν)
(λEi +ν)2 −

(
∑n

i=1
giEi(oi+ν)
(λEi+ν)2

)2

∑n
i=1

(oi+ν)Ei
(λEi+ν)2

⎤

⎥
⎦ . (5.52)
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Considering IY 11 and replacing λ = ν
α leads to

n

∑
i=1

(oi +ν)Ei

(λEi +ν)2 =
n

∑
i=1

(oi +ν)Ei

( ν
α )2(Ei +α)2

=
1
λ 2

n

∑
i=1

θ̂iEi

Ei +α
, since θ̂i =

oi +ν
Ei +α

. (5.53)

Thus, expressing the observed information in terms of the empirical Bayes es-
timators θ̂i simplifies the presentation considerably. Additionally, defining E∗

i =
1/(1+ α

Ei
) allows us to write (5.52) as

var(U) = α

[
n

∑
i=1

g2
i θ̂iE∗

i −
(∑n

i=1 giθ̂iE∗
i )2

∑n
i=1 θ̂iE∗

i

]

= α
n

∑
i=1

θ̂E∗
i (gi − ḡ)2, ḡ = ∑giθiE∗

i

∑θ̂iE∗
i

. (5.54)

Since α and ν are not known they need to be estimated from the data as outlined
in Sect. 5.5.4. Using (5.54), we obtain the score test statistic based on the negative
binomial distribution as

TSNB =
ν̂2

α̂

[
∑n

i=1
gi(oi−λ̂Ei)

ν+λEi

]2

∑n
i=1 θ̂iE∗

i (gi − ḡ)2
, ḡ = ∑giθ̂iE∗

i

∑θ̂E∗
i

. (5.55)

This test statistic is quite similar to (5.41). The weighted mean ḡ is again a weighted
mean of the individual area’s surrogate exposure measure, weighted with the pseudo
expected number of cases E∗

i and the empirical Bayes estimates θ̂i in that area.
Under H0, TSNB follows again asymptotically a χ2 distribution with one degree of
freedom (Cox and Hinkley 1974).

5.5.4 Estimation of α and ν

Finally, the unknown parameters α and ν need to be replaced with their estimates.
Here the method proposed by Clayton and Kaldor (1987) and a method of moments
is applied. The method by Clayton and Kaldor combines maximum likelihood and
method of moments estimation. We start with the log likelihood. For the case of no
covariates the log likelihood function (5.48) reduces to

�(β ,ν) =
n

∑
i=1

[
oi−1

∑
j=0

log(1+ν j)+ν logα− (oi +ν) log(Ei +α)

]

. (5.56)
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Equating the first derivative of (5.56) with respect to α to zero leads to the equation

ν̂
α̂

=
1
n

n

∑
i=1

oi + ν̂
Ei + α̂

=
1
n

n

∑
i=1

θ̂i. (5.57)

Next, equating the sum of the squared Pearson residuals rP to its asymptotic expec-
tation (n−1) leads to a moment estimate for the variance of the mixing distribution.
Here rP is given by

rP =
oi − λ̂Ei√
ν̂
α̂ Ei +E2

i
ν̂
α̂2

. (5.58)

Solving for the heterogeneity variance ν
α2 leads to

ν̂
α̂2 =

1
n−1

n

∑
i=1

(
1+

α̂
Ei

)
(θ̂i − λ̂ )2. (5.59)

Set starting values for α̂(0) = 1 and ν̂(0) = 1
Step 1: Compute κ1 = ν̂

α = ∑n
i=1 θ̂i

Step 2: Find κ2 = ν
α̂2 = 1

n−1 ∑n
i=1

(
1+ α̂

Ei

)
(θ̂i − ν̂

α̂ )2

Step 3: Set α̂(l) = κ1
κ2

and ν̂(l) = κ2
1

κ2
and go to step 1

Algorithm 5.5.1: Combined moment and maximum likelihood estimator algorithm
for the estimation of the parameters of the negative binomial distribution

Thus, Algorithm 5.5.1 for the computation of α̂ and ν̂ is obtained. The algorithm
is usually stopped when two consecutive estimates are close to each other, where
closeness is defined by some value ε . Here ε is taken to be 0.00001. Usually this
algorithm converges very fast, i.e., after five iterations. However, if the amount of
heterogeneity between areas is small, the algorithm sometimes fails to converge and
the iteration jumps back and forth between two points. To avoid this complication a
moment estimator is considered for the dispersion parameter ν . In simulation studies
for simple count data conducted by Saha and Paul (2005) the moment estimator
based on the sample mean x̄ and the sample variance S2

ν̂ =
x̄2

S2 − x̄
(5.60)

has acceptable properties in terms of bias and variance. Applying the general re-
sult var(Y ) = E [var(Y |λ )]+var [E(Y |λ )] to the negative binomial distribution and
taking the number of expected cases E into account leads to

var(O) = λE +
λ 2

ν
E2. (5.61)
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Now we consider a random sample O1, . . . ,On with i = 1, . . . ,n and correspond-
ing expected cases E1,E2, . . . ,En. Assuming independence yields an estimate of the
variance

∑var(Oi) = λ∑Ei +
λ 2

ν ∑E2
i . (5.62)

Replacing var(Oi) by (Oi−λEi)2 and solving for ν leads to the following estimator
for ν

ν̂ =
λ 2 ∑E2

i

∑(oi −λEi)2 −λ ∑Ei
. (5.63)

Usually λ is not known and needs to be estimated from the data too. Here the arith-
metic mean of the SMRi is used:

λ̂ =
1
N ∑ oi

Ei
. (5.64)

Now, an estimate for α is obtained by

α̂ =
v̂

λ̂
(5.65)

Example Revisited

Coming back to the example of childhood leukemia in the vicinity of the Sizewell
power plant, we obtain an estimate ν̂ = 0.369. With λ̂ = 0.547 the estimate of α̂ is
given by 0.675. Finally, applying the test statistic (5.55) leads to TSNB = 2.247 with
a corresponding p value of 0.1334. Again, on the basis of this result, geographic
proximity to Sizewell does not seem to be an important risk factor for leukemia.
Both score tests which allow for heterogeneity between areas do not suggest that
proximity to Sizewell is of major concern. The initial association based on the stan-
dard Poisson score test might be the result of unobserved confounding factors, such
as social deprivation. Taking unobserved heterogeneity into account results in dif-
ferent conclusions.

5.6 Case Study: Leukemia in Adults in the Vicinity of Krümmel

Hoffmann and Schlattmann (1999)2 analyzed the association between leukemia
in adults and proximity to the nuclear power plant at Krümmel in the northern
part of Germany. Figure 5.8 shows the location of the power plant. The above-
mentioned authors found no association between leukemia and proximity to the
power plant. This case study provides a partial reanalysis of these data of Hoffmann
and Schlattmann (1999) applying the newly developed score tests and covariate-
adjusted mixture models.

2 The use of part of the material in this book is kindly permitted by John Wiley & Sons.
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Fig. 5.8 Geographic loca-
tion of the “Kernkraftwerk
Krümmel” in northern
Germany (the diameter of
the circle represents approxi-
mately 30 km)

5.6.1 Background

Between February 1990 and the end of the year 1995 six cases of childhood
leukemia were diagnosed among residents of the small rural community of Elb-
marsch in northern Germany. Five of these cases were diagnosed in only 16 months
between February 1990 and May 1991 (Dieckmann 1992). All patients lived in close
proximity (500–4,500 m) to Germany’s largest capacity nuclear boiling water re-
actor, the 1,300-MW (electric) Kernkraftwerk Krümmel. This plant was commis-
sioned in 1984. It is situated on the northern bank of the Elbe, a major river which
separates Schleswig-Holstein and Lower Saxony. Standardized incidence ratios for
childhood leukemia in a circular area with a radius of 5 km around the plant were
4.60 (95% confidence interval 2.10–10.30) for the time period 1990–1995 and 11.80
(95% confidence interval 4.90–28.30) if the analysis is restricted to the years 1990
and 1991, respectively (Hoffmann et al. 1997). From January 1, 1996 until 1998,
three additional childhood leukemia cases have been confirmed in the 5-km area
around the plant, rendering the magnitude of the childhood leukemia cluster in Elb-
marsch unprecedented worldwide with respect to the number of cases together with
the narrow spatial and brief temporal dimension. It initiated a large body of ongoing
research based on data of the German childhood cancer registry; see, for example,
Michaelis et al. (1992), Michaelis (1998), or Kaatsch et al. (1998, 2008).

Soon after the cluster had been identified, the governments of Lower Saxony
and Schleswig-Holstein established boards of experts to advise on useful inves-
tigations and appropriate methods to identify possible causes for the cluster. The
board’s members’ scientific backgrounds included hematology, pediatrics, toxicol-
ogy, radiobiology, medical physics, geology, virology, statistics, public health, and
epidemiology. An extended array of established or suspected risk factors have been
investigated. However, measurements of outdoor and indoor air, soil, drinking wa-
ter, private wells, milk, vegetables, other garden products, and mushrooms for heavy
metals, organochlorine compounds, benzene, toluene, and aromatic amines, respec-
tively, did not reveal any clue indicative of unusual contamination. An indoor-air
radon concentration of 610 Bq m−3 was measured inside the home of one child, but
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not in the homes of the other children. Moreover, this activity was only slightly
above the current recommendation for existing houses in Germany. A thorough re-
view of medical and hospital records, and extensive semistructured personal inter-
views with the afflicted families failed to reveal any unusual dose of medical or
occupational radiation or exposure to cytostatic or other leukemogenic drugs. None
of the children had a preexisting medical condition known to be associated with a
higher risk of leukemia. All children were born in the local area and most of the
parents had lived there for many years prior to the children’s births. Despite this
residential stability, none of the patients’ families were found to be related to any
of the others and the afflicted children had not had direct contact with each other
prior to their diagnoses. Biological samples (breast milk, urine, blood) taken from
members of the afflicted families and other inhabitants of Elbmarsch yielded low
background values of 2,3,7,8-TCDD, various organochlorines, lead, and cadmium.
The prevalence of antibodies against viruses that are discussed as potentially leuke-
mogenic was below the German average, if any were present. At this point both
boards of experts came to the conclusion that further investigations on the basis of
only the diseased children and their families would hardly shed much more light
on the cause of the cluster. Instead, a comprehensive retrospective incidence study
was suggested which should cover all ages, a sufficiently large study area, and a
sufficient time period to generate a study base suited for an analytic epidemiologic
investigation.

5.6.2 The Retrospective Incidence Study Elbmarsch

A retrospective incidence study (“Retrospective Incidence Study Elbmarsch”;
RIS-E) was conducted between November 1992 and August 1994. The study region
included three counties adjacent to the nuclear power plant, i.e., the counties of
Lüneburg and Harburg in Lower Saxony and the county of Herzogtum Lauenburg
in Schleswig-Holstein. The total study population was about 470,000. Case ascer-
tainment included all leukemias, malignant lymphomas, and multiple myelomas
as well as the myelodysplastic and myeloproliferative syndromes (ICD-9 200-208,
238.7), covering the 10-year period from 1984 to 1993.

Leukemia cases were categorized as acute and chronic leukemia, respectively,
according to the Ninth International Classification of Diseases (German version).
This case study is restricted to chronic leukemia in men since this was the only
category with a hint of an association between the disease and the power plant.

Inclusion criteria were (1) first diagnosis of a target disease in the study period,
(2) place of residence within the study area at the time of first diagnosis, and (3)
German citizenship. Since no epidemiologic cancer registry exists in Lower Saxony
and Schleswig-Holstein, cases had to be ascertained exclusively from primary data
sources. Extraction was based exclusively on original documents.

For calculation of incidence rates, population figures for all of the 217 rural com-
munities of the study area were provided by the State Statistical Offices of Lower
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Saxony and of Schleswig-Holstein by 5-year age groups, gender, and citizenship for
the whole observation period from 1984 to 1992. One of the rural communities was
uninhabited over the entire study period. All analyses presented in this section are
based on 216 geographical units representing rural communities which contributed
to the denominator. Population data for 1992 were substituted for population data
for 1993.

For the purposes of the analyses presented here, rural communities were used as
the unit of observation; hence all incident cases were assigned to the community of
residence of the patients at the time of their first diagnosis. The number of expected
cases were then calculated using the total number of incident cases in the study area
and each community’s respective fraction of age-specific population years at risk.

In this case study we simply deal with the point source of the nuclear power plant
at Krümmel; hence, we predominantly investigate a focused clustering problem.
Nevertheless, we feel that an analysis of general clustering is also necessary since
the use of disease maps based on (empirical) Bayes models allows us to separate
signal from noise in the geographic distribution of disease within small areas. A
thorough description of the data is given in the article by Hoffmann and Schlattmann
(1999).

5.6.3 Focused Analysis

For the focused analysis we start with the traditional descriptive approach of cal-
culating the standardized incidence ratio for each concentric region together with
a 95% confidence interval, the latter being calculated using Byar’s method as de-
scribed by Breslow and Day (1987, Chap. 2, p. 69). On the basis of the results shown
in Table 5.2, there seems to be an excess risk of chronic leukemia for men within the
first circle closest to the power plant. This might be a spurious association. Another
choice of circles might lead to different results! Implicitly many statistical tests are
performed, which leads to the problem of multiple comparisons. Thus, tests using
all the information should be preferred. According to the results from the disease
mapping in Sect. 5.6.4 there is overdispersion present. That is why the extensions of
the standard score test developed in the previous sections are called for.

Table 5.2 Chronic leukemia in men: traditional method

Distance (km) oi Ei SIR 95% CI

<5 20 11.74 1.70 1.03–2.63
5 < 10 9 10.23 0.88 0.40–1.67
10 < 15 26 32.35 0.80 0.52–1.18
15 < 20 24 33.25 0.72 0.46–1.07
≥20 118 109.41 1.07 0.89–1.29

SIR standardized incidence ratio, CI confidence interval
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Table 5.3 Results of the score and generalized score tests for chronic leukemia in men in the
vicinity of Krümmel

Test TS TGS TNBS

Value 1.96 0.451 0.339
p 0.162 0.520 0.560

In assessing the association between the distance to the power plant we restrict
our analysis to the function of distance g(d) = exp(−di/L)2, with L = 10. The
reason for doing so is that in the analysis by Hoffmann and Schlattmann (1999)
only this function suggested a potential association between the power plant and
chronic leukemia in men. The results displayed in Table 5.3 do not indicate that ge-
ographic proximity to the power plant should be of concern. Using other functions
of distance, such as inverse distance, does not change the results.

5.6.4 Disease Mapping and Model-Based Methods

In their case study Hoffmann and Schlattmann (1999) found a homogeneous dis-
tribution of disease risk for acute leukemias in men and women, whereas for
chronic leukemias heterogeneity of disease risk was present. For chronic leukemias
we obtain a two-component solution for both men and women. For men, the
two-component solution has a log likelihood of −165.895 compared with a log
likelihood of −168.18 for the homogenous solution. The LRS is 4.56, with a 95%
simulated critical value of 4.01; therefore, we accept the two-component model.

Looking at the map in Fig. 5.9 it becomes clear that there are “low-risk” and “high
risk” areas; however “high-risk” areas do not seem to be concentrated in the vicinity
of the power plant. To investigate this impression more formally, a natural extension
of the model is to include a distance-based covariate. In the simplest case of the
homogenous model a Poisson regression model with offset logEi is considered. This
implies that logEi in the linear predictor

ηi = β0 +β1g(di)+ logEi (5.66)

has a fixed regression coefficient equal to unity. Again, this model can be extended to
covariate-adjusted finite mixture models (Schlattmann et al. 1996). The expectation
of the ith observation in the jth subpopulation is then given by

E(Oi j) = exp(β0 j +β1 jxi1 + · · ·+βm jxim)Ei. (5.67)

This leads to the mixture density

f (oi,λ j,Ei) =
k

∑
j=1

p j f (oi,λ j,Ei). (5.68)
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Fig. 5.9 Map of chronic leukemia in men: incidence in the vicinity of Krümmel

Table 5.4 Poisson and covariate-adjusted mixture model for chronic leukemia in men with a func-
tion g(d) of distance to the power plant as a covariate

k Parameter Weight p j Estimate Standard error logL

1 Intercept 1 0.000 −168.180

1 Intercept 1 −0.025 0.074 −167.430
g(d) = exp(−di/10)2 − 0.673 0.484

2 Intercept 1 0.6 −0.329 0.119 −165.895
Intercept 2 0.4 0.305 0.085

2 Intercept 1 0.575 −0.345 0.121 −165.559
Intercept 2 0.425 0.266 0.021

g(d) = exp(−di/10)2 − 0.404 0.519

Using this class of models and looking for a parsimonious model, we find on the
basis of the results in Table 5.4 that there is no association between the occurrence
of leukemia and the distance to the power plant. Comparing the homogenous models
with and without the distance-based covariate, the LRS is 1.5 and thus the null
hypothesis is not rejected. When heterogeneity is taken into account by using a
covariate-adjusted finite mixture model, the value of the likelihood ratio test for the
effect of distance is 0.672. Comparing this with a χ2

1 distribution does not lead to
the rejection of the null hypothesis!
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In summary, on the basis these data using a variety of methods there is no indi-
cation of an association between chronic leukemia in men and living in the close
vicinity of the power plant at Krümmel.

5.7 Mathematical Details of the Score Test

5.7.1 Expectation and Variance of the Score

The score U is of fundamental importance in statistical inference. Before developing
the score test, we determine the expectation and the variance of the score. To do
so we suppose that the random variables Y1, . . . ,Yn are independently identically
distributed with probability density function f (yi|θ), where θ is potentially vector
valued with m elements. Then Y = (Y1,Y2, . . . ,Yn) is absolutely continuous with
density p(y|θ) = ∏n

i=1 f (yi|θ). For simplicity of exposition, the one-parameter case
is considered subsequently.

Definition 5.2. The score U of Y is given by the first derivative of the log likelihood
function:

U(Y |θ) =
∂ log p(Y |θ)

∂θ
. (5.69)

Proposition 5.1. The score U(Y |θ) has expectation E(U(Y |θ)) = 0.

Proof. Since p(y|θ) is a probability density function
∫

p(y|θ)dy = 1. Assuming
exchangeability of differentiation and integration leads to

∫
p(y|θ)dy = 1 ⇔ ∂

∂θ

∫
p(y|θ)dy = 0 ⇔

∫ ∂ p(y|θ)
∂θ

1
p(y|θ)

p(y|θ)dy

=
∫ ∂ log p(y|θ)

∂θ
p(y|θ)dy

= E(U(Y |θ)) = 0. (5.70)

��

As a result, the variance of the score is given by

var(U(Y |θ)) = E(U(Y |θ)2)−E(U(Y |θ))2 = E(U(Y |θ)2). (5.71)

Proposition 5.2. The variance of the score var(U) is given by the expected Fisher

information If(θ) = −E
(

∂ 2 log p(y|θ)
∂θ2

)
.
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Proof. Differentiating (5.70) leads to

0 =
∂
∂θ

(∫ ∂ log p(y|θ)
∂θ

p(y|θ)dy
)
⇔ (5.72)

0 =
∫ ∂ log p(y|θ)

∂θ
∂ p(y|θ)

∂θ
dy+

∫ ∂ 2 log p(y|θ)
∂θ 2 p(y|θ)dy ⇔ (5.73)

∫ (
∂ log p(y|θ)

∂θ

)2

p(y|θ)dy = −
∫ ∂ 2 log p(y|θ)

∂θ 2 p(y|θ)dy ⇔ (5.74)

E(U2) = −E
(

∂ 2 log p(y|θ)
∂θ 2

)
= If(θ) ⇔ (5.75)

var(U) = If(θ) with(5.71). (5.76)

��

5.7.2 The Score Test

The Score Test as a Likelihood Ratio Test

Theoretical development of the score test may be found in Cox and Hinkley (1974,
Sect. 9.3). It is reviewed in part in this section as far as necessary for the develop-
ment of generalized score tests. For simplicity the one-parameter notation is used.
In the following, the score test is developed as an approximation to the likelihood
ratio test given by

e
1
2W =

L(θ̂ | Y )
L(θ0 | Y )

. (5.77)

On the log scale this results in

W = 2(logL(θ̂ | Y )− logL(θ0 | Y ). (5.78)

Now the first term is expanded as

logL(θ̂ | Y ) = logL(θ0 | Y )+(θ̂ −θ0)U(θ̂)+
1
2
(θ̂ −θ0)2 ∂U

∂θ0
+op(1), (5.79)

where op(1) denotes a quantity that converges to 0 in probability. Then,

W = 2(logL(θ0 | Y )− logL(θ0 | Y )− (θ̂ −θ0)U(θ̂)− 1
2
(θ̂ −θ0)2 ∂U

∂θ0
+op(1)

= −(θ̂ −θ0)2 ∂U
∂θ0

+op(1)

= (θ̂ −θ0)2If(θ0)+op(1).
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The score U(θ̂) can be expanded by a Taylor series as follows:

U(θ̂) = U(θ0)+
∂U(θ)
∂θ

(θ̂ −θ0)+op(1). (5.80)

Thus, since U(θ̂) = 0 it follows that

(θ̂ −θ0) = I−1
f (θO)U(θ0)+op(1). (5.81)

Substituting (5.81) into (5.80) gives the score statistic (Rao 1948) for the multi-
parameter case as

W = U(θ0)T I−1
f (θ0)U(θ0)+op(1). (5.82)

The Score Test for Model Comparison

Suppose we have a set of observations whose log likelihood function depends on
an unknown parameter vector θ = (θ1, . . . ,θm)T. Then the score test can then be
used for model comparison (McCullagh and Nelder 1989). Consider two models,
one (M1) with r1 and a second extended model (M2) with m = r1 + r2 parameters.
Comparison of these two models can be performed with the LRS, the Wald test,
and the score test. All these tests are asymptotically equivalent. In contrast to the
Wald test, the LRS and the score test are invariant to transformations, which makes
these tests more attractive. Comparing the LRS and the score test, we find that the
latter is computationally less expensive and is therefore of special interest in some
applications.

To consider the properties of the score test in more detail let �(y,θ1,θ2) be a log
likelihood function depending on a response vector y and parameter vector θ :=
(θ1,θ2). We wish to test the composite hypothesis H0 : θ2 = 0 versus the alternative
that θ2 is unrestricted. Here, θ2 corresponds to the additional parameters in model
M2. The components of θ1 are called nuisance parameters since they are not of
interest in the test for θ2. But, nevertheless the parameters θ1 need to be estimated
in order to perform the test.

The partitioned vector θT = (θT
1 ,θT

2 ) leads to a simple form of Rao’s test, where
the partitioned vector is given by

U =
∂�

∂θ
=

⎛

⎜
⎜⎜
⎝

∂�

∂θ11
, . . . ,

∂�

∂θ1r1︸ ︷︷ ︸
U1

,
∂�

∂θ21
, . . . ,

∂�

∂θ2m︸ ︷︷ ︸
U2

⎞

⎟
⎟⎟
⎠

. (5.83)

If θ̂ is the maximum likelihood estimate of the restricted model, then

U1(θ̂) = 0. (5.84)
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The Fisher information If is given by

If =

⎡

⎣
−E

(
∂UT

1
∂θ1

)
−E

(
∂UT

1
∂θ2

)

−E
(

∂UT
2

∂θ1

)
−E

(
∂UT

2
∂θ2

)

⎤

⎦=
[

If11 If12
If21 If22

]
. (5.85)

Then (5.82) with U2(θ evaluated at θ1 = θ̂1 and θ2 = 0) takes the form

TS = [0,U2(θ)]
[

If11 If12
If21 If22

]−1 [ 0
U2(θ)

]
.

= U2(θ)T (If22 − If21I−1
f11If12)−1U2(θ) (5.86)

Under H0 and a correctly specified likelihood, TS
d→ χ2

r2
.

Generalized Score Test

Frequently, the problem arises that the likelihood of the current model is mis-
specified and accordingly the statistical inference might be incorrect. For example,
overdispersion frequently occurs in the case of count data where a Poisson model is
assumed. Thus, it is desirable to allow for model misspecification. For that matter,
see, for example, Boos (1992) or Breslow (1990), who suggest the use of gener-
alized score tests. As before the key element is given by E(U) = 0 and θ̂ , which
solves U(θ̂) = 0. This result not only applies to maximum likelihood estimation,
but also to least-squares or generalized estimating equations.

The following ideas on generalized score tests are asymptotic results based on
Taylor series expansions. The asymptotic distribution of θ̂ is given by the Taylor
series expansion

0 = U(θ̂) = S(θ)+
∂U(θ)
∂θ

(θ̂ −θ)+op(1), (5.87)

where op(1) denotes a quantity that converges to 0 in probability. From results
of Iganaki (1973), the estimator θ̂ is asymptotically normal and consistent with
variance

var(θ̂ −θ) = I−1
g DgI−1

g , (5.88)

Ig = lim
n→∞

[
−E

∂U(θ)
∂θ

]
, (5.89)

(Dg)r1r2 = lim
n→∞

[
1
n

n

∑
i=1

E
(

∂�

∂θr1

∂�

∂θr2

)]

. (5.90)

Then θ̂ has variance covariance matrix Vg = I−1
g DgI−1

g . This is a familiar result from
robust statistics (Huber 1967), generalized estimating equations (Liang and Zeger
1986), or misspecified maximum likelihood estimation; see, for example, White
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(1982). Instead of the matrices of expectations Ig and Dg, the empirical covariance
matrix is frequently used:

VY = I−1
Y DY I−1

Y , (5.91)

where IY is the observed information and DY (the empirical version of Dg) is
given by

DY =
n

∑
i=1

ui(θ)ui(θ)T, (5.92)

where ui is the ith contribution to the score U(θ).
As an example consider a linear model with dependent variable Y : E(Y ) = Xβ .

Standard likelihood inference leads to an estimate for the variance IY = σ̂2(XTX).
The score is given by U = 1

σ̂2 (y− X β̂ )X . Applying (5.91) leads to the variance
estimate VY = (XTX)−1XTRX(XTX)−1, where R are the squared residuals. Note
that if R is replaced by R = Iσ̂2, the identity matrix times the average residuals
squared, the usual variance estimate is obtained. In other words, if the variance is
correctly specified, (5.91) gives the usual variance estimate.

Now, returning to the score test on subvectors, we expand U1 and U2 by a Taylor
series. If θ̂1 is the maximum likelihood estimator for the restricted model and θ =
(θ̂T

1 ,θT
2 ) for any arbitrary θ2 ∈ R

r2 model, we get

0 = U1(θ̂) = U1(θ)+
∂U1

∂θ1
(θ̂1 −θ1)+op(1) ⇔

(θ̂1 −θ1) ≈
[
∂U1

∂θ1

]−1

U1(θ), (5.93)

and for U2 we get

U2(θ̂) = U2(θ)+
∂U2

∂θ1
(θ̂1 −θ1)+op(1) ⇔ (5.94)

U2(θ̂) = U2(θ)− ∂U2

∂θ1

[
∂U1

∂θ1

]−1

U1(θ). (5.95)

This can be written as

U2(θ̂) =
[
Ir2 ,−Ig21I−1

g11

][U2
U1

]
. (5.96)

Since the variance of the score var(U) = E(UTU), it follows that the variance of
(5.96) is given by

VGS =
[
Ir,−Ig21I−1

g11

]
Dg

[
Ir,−Ig21I−1

g11

]T
(5.97)

= Dg22 − Ig21I−1
g11DT

g21 −Dg21I−1
g11IT

g21 + Ig21I−1
g11Dg11I−1

g11IT
g21. (5.98)

Replacing Ig and Dg by the observed quantities leads again to the empirical
score test.



Chapter 6
Modeling Heterogeneity in Psychophysiology

6.1 The Electroencephalogram

Neuronal population activity in the human cortex generates electric fields which are
measurable by placing electrodes at the skull. The electroencephalography (EEG)
electrodes are fixed with paste on the scalp and electrical activity is recorded on
paper or is stored digitally. The voltage of EEG is low and is measured in tens of
microvolts. Traditional EEG systems use 20 electrodes which are fixed to the scalp
using paste. The location of the electrodes on the scalp often follows the 10-20
system in order to provide a standardized way to place the electrodes. For example,
the locations Fz, Cz and Pz are obtained by subdividing the distance between nasion
and inion in pieces of 10 or 20%, which led to the name of the 10-20 system.

Figure 6.1 shows a schematic representation of the 10-20 system with standard
electrode names and positions. Obviously there is only limited spatial information,
but EEG offers high temporal resolution. Owing to the low spatial resolution, EEG
is no longer the only method which provides information on the functioning of the
brain. It has to be contrasted with methods such as positron emission tomography
and functional magnetic resonance imaging. EEG is totally noninvasive (in contrast
to positron emission tomography) and offers a very high temporal resolution on
the order of milliseconds. Thus, the major advantage of EEG is its relative ease of
application together with low cost of data acquisition.

6.1.1 Digitization

The electroencephalogram is nowadays almost always recorded and stored elec-
tronically. The analogue signals are digitized with a sampling rate ν of 200 Hz or
more on modern machines. This implies a sampling interval Δt = 1/ν = 0.005 s.
Thus, at a sampling rate of 200 Hz, we record discrete signals xi(t), t = 0, . . . ,N−1,
where an epoch of T seconds leads to N = T/Δt discrete values. This is recorded

P. Schlattmann, Medical Applications of Finite Mixture Models, 143
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 6,
c© Springer-Verlag Berlin Hiedelberg 2009
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Fig. 6.1 Standard electroencephalography (EEG) electrode locations

at l = 1, . . . ,L electrode positions. Thus, performing EEG studies leads to a massive
amount of data. Suppose that a study with 20 patients and 20 controls is conducted,
where for each subject 10 min of EEG data with a sampling rate of 200 MHz are
recorded at 20 electrode positions. This leads to 96 million data points! Thus, suit-
able methods for data reduction have to be found which provide meaningful infor-
mation for each subject.

An initial useful representation of EEG data is to present a plot of the time series
of the EEG recordings at each electrode. A time series plot of an example electroen-
cephalogram according to the 10-20 system with a recording length of 3 s is shown
in Fig. 6.2.

6.2 Modeling Spatial Heterogeneity Using Generalized Linear
Mixed Models

6.2.1 The Periodogram and its Distributional Properties

One frequently used method of data reduction in the EEG literature is the transfor-
mation of the EEG time series from the time domain into the frequency domain. This
is achieved by considering an observed time series as the realization of a stationary
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Fig. 6.2 Three seconds of EEG recording of a healthy male individual

random process Y (t), t = 1, . . . ,n with spectral density f (ω) which needs to be es-
timated from the data. Note that the assumption of stationarity is not necessarily
true for EEG data. As a result, mainly short time intervals are considered for an
analysis in the frequency domain. The literature on spectral analysis is extensive.
A text from a biostatistical point of view is the monograph by Diggle (1990). Other
accessible texts are the monographs by Bloomfield (2000), Schlittgen and Streitberg
(2001), and Chatfield (2004). The spectrum of a stationary process {Y} is defined as
the discrete Fourier transform of its autocovariance function. If γk = Cov{Yt ,Yt−k}
denotes the autocovariance function, then its Fourier transform is given by

f (ω) =
∞

∑
−∞

γk exp(−ikω), (0 < ω < π). (6.1)

Here ω denotes the frequency and exp(iωk) is defined as the exponential function
based on complex numbers:

eiω = cos(ωk)+ i sin(ωk), (6.2)

where cos(ωk) is the real part and isin(ωk) is the imaginary part, with imaginary
unit i. The imaginary unit has the property i2 =−1. One possible estimator for f (ω)
is the periodogram ordinate I(ω). Considering only Fourier frequencies, i.e., of the
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form ω j = 2π j/n for a positive integer j < n/2 leads to the following equivalent
formulae for I(ω):

I(ω j) = n−1
n

∑
t=1

xt exp(iω jt)2, j = 1, . . . ,M, M =
n−1

2
, ω j = 2π j/n (6.3)

I(ω j) = n−1

⎡

⎣
(

n

∑
t=1

xt cos(ω jt)

)2

+

(
n

∑
t=1

xt sin(ω jt)

)2
⎤

⎦ .

The periodogram ordinates I(ω j) may be obtained by decomposing the time se-
ries y(t) into harmonic components, each with two degrees of freedom. That is,

y(t) =
M

∑
j=1

(α j cos(ω jt)+β j(ω jt))+ εi, t = 1, . . . ,n, (6.4)

where ε is a white noise sequence and each ω j is a Fourier frequency. This model
is linear in the coefficients α j and β j and estimation may simply be done by treat-
ing this task as a multiple linear regression problem. The regressors are mutually
orthogonal and thus the explicit solutions are given by

α̂ j = 2

(
n

∑
i=1

yi cos(ω jt)

)

/n, (6.5)

β̂ j = 2

(
n

∑
i=1

yi sin(ω jt)

)

/n. (6.6)

Note that the periodogram is usually calculated using a fast Fourier transform
algorithm (Cooley and Tukey 1965). These algorithms are available in statistical
packages such as R and SAS. The fast Fourier transform is much faster than direct
calculation and from it the periodogram is available at the fundamental frequencies
ω j, 2π j/n, 0 ≤ j ≤ M = n/2.

As seen in Fig. 6.3, the raw periodogram is too variable to be useful visually and
according to some authors (Gasser and Molinari 1996) it is also not useful quanti-
tatively. The kernel estimated spectrum shows a peak structure, with a strong alpha
rhythm at about 8 Hz. In the EEG literature many derivatives of the raw periodogram
are used for further analysis. Among these are peak frequencies, some measures of
broadness of the peak, and a parameter of power obtained by summing the power
of the peak. Based on the periodogram, the most frequently used spectral power
parameters are depicted in Fig. 6.3 and are listed in Table 6.1. The categorization
of the spectrum into categories, i.e., frequency bands, is mostly based on clinical
convention; however, attempts to find categorization-based quantitative methods by
means of a factor analysis lead to similar categories (Herrmann et al. 1978). Fre-
quently, data analysis is restricted to certain bands such as the alpha band. Clearly,
this results in a loss of information. Thus, we propose and develop model-based
approaches which make use of the entire information provided by the periodogram.
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Table 6.1 Clinical electroencephalography frequency bands

Frequency (Hz) Name State of mind

0–3.5 Delta Coma, deep sleep
4–8 Theta Sleep, relaxation
8–13 Alpha Relaxed wakefulness
14–40 Beta Agitated wakefulness

The periodogram evaluated at the Fourier frequencies is readily interpretable and
has nice statistical properties such as that the periodogram ordinate I(ω j) may be
interpreted as the sum of squares with two degrees of freedom attributable to the
harmonic regression function:

μ j(t) = α j cos(ω jt)+β j sin(ω jt), t = 1, . . . ,n. (6.7)

The periodogram ordinate at the jth Fourier frequency

I(ω j) =
n

4(α2
j +β 2

j )
, j = 1, . . . ,2π j/n,

is therefore half of the sum of squares due to regression on the pair of sinusoids with
that frequency.

The asymptotic distribution theory of the periodogram ordinates I(ω j) is remark-
ably simple. For a stationary process the distributional properties may be summa-
rized by the following. Asymptotically in n, for each j = 1, . . . ,n we have

I(ω j) ∼ exp[ f (ω j,θ)], ω j = 2π, (6.8)
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and for each i �= j

I(ωi) and I(ω j) are independent. (6.9)

Thus, at the Fourier frequencies the periodogram simply follows an exponential
distribution exp(·). Details and proofs may be found in Priestley (1991, Sect. 6.1) or
Brillinger (2001).

6.3 Connection to Generalized Linear Models

Bloomfield (1973) proposed the following exponential model for the spectrum as an
alternative to autoregressive moving average models in the time domain:

f (ω,θ) = exp

(

2
m

∑
k=0

βk cos(kω)

)

. (6.10)

As a result of the distributional properties of the periodogram ordinates in (6.8)
and (6.9), time series models based on the spectrum fall into the generalized lin-
ear models framework as described in Sect. 4.6.1 on page 87. This idea in connec-
tion with the spectrum of scalar time series was pioneered by Cameron and Turner
(1987). Thus, fitting a generalized linear regression model to the EEG data, one finds
that the error distribution of the dependent variable I(ω j) is given by the exponential
or more generally the gamma distribution. The link function g(·) is the logarithmic
link and the linear predictor is given by the term η = Xθ . Here θ is the vector of m
unknown regression coefficients and X is the design matrix as described in (6.11):

Design matrix X : x jk = 2cos(kω j) k = 0, . . .m, (6.11)

θ = (β0,β1, . . . ,βm)T , (6.12)
η = Xθ , (6.13)

g(μ j) = η j. (6.14)

Estimation of the model’s parameters is usually done using maximum likelihood.
The likelihood to be maximized is given by

L(I(ω1,θ), . . . , I(ωM,θ)) =
M

∏
i=1

f (ω j,θ)exp [− f (ω j,θ)I(ω j)] .

The corresponding log likelihood function is given by

�(θ) =
M

∑
j=1

Xjθ − f (ω j,θ)I(ω j),

�(θ) =
M

∑
j=1

η j − exp(η j)I(ω j). (6.15)
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This log likelihood can be maximized using the iterative weighted least squares
algorithm (Algorithm 4.6.1) on page 90 since the exponential distribution belongs
to the exponential family. This is shown in Example 4.6 on page 88.

As for other generalized linear models, parameter estimates may be obtained us-
ing standard software packages such as R, SAS, and STATA. Figure 6.4 shows
the periodogram ordinates I(ω j) together with a fitted regression line for each elec-
trode b to the 10-20 system based on a generalized linear model based on the EEG
time series displayed in Fig. 6.2. The number of regression parameters m is set to 6.
Thus, in terms of data reduction this procedure does not offer a real advantage over
classical methods based on periodogram ordinates since 144 parameters need to be
estimated from the data.

6.3.1 Covariate-Adjusted Finite Mixture Models for the EEG Data

To reduce the number of parameters which need to be estimated and to address
spatial variability between electrodes a covariate-adjusted finite mixture model can
be applied to the data. This is quite similar to the applications in other contexts
because a discrete latent distribution for the random effects P is assumed. The only
difference is that is the periodogram ordinates are assumed to follow an exponential
distribution. The mixing distribution is given by

P =
[
θ1 . . . θq
p1 . . . pq

]
. (6.16)

Again, the parameters θ1, . . . ,θq are no longer scalar quantities but vectors, e.g.,

θ1 = (β01,β11, . . . ,βm1), (6.17)

where m denotes the number of covariates in the model. Again, in contrast to the
homogenous case we have the same type of density f (·) for each subpopulation but
a different parameter vector θ j in subpopulation j = 1, . . . ,q.

Similar to the development in Sect. 4.7 where the latent distribution considers
a mixture of concentration–time curves and a mixture of individual concentration
curves is considered, here a mixture of time series per electrode is analyzed. If
we assume conditional independence for each electrode, the density f (·) is given
by the product of the exponential densities of that electrode. That is, the mixture
distribution for the ith electrode is given by Ii(ω):

f (Ii(ω),P) ∼ p1 f (Ii(ω),θ1)+ · · ·+ pk f (Ii(ω),θq) q components,

f (Ii(ω),θr) =
Mi

∏
j

exp(I(ω j,exp(ηi j)) Mi frequencies.

In contrast to the pooled model for all electrodes shown in Fig. 6.5, a covariate-
adjusted mixture model does provide a satisfactory fit to the periodogram ordinates
(Fig. 6.6). This framework can be easily extended to many individuals and thus may
be used for model-based analysis of EEG data.
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Chapter 7
Investigating and Analyzing Heterogeneity
in Meta-analysis

7.1 Introduction

Meta-analysis may be defined as (Glass 1976):

The statistical analysis of a large collection of analysis results for the purpose if integrating
these findings.

This has to be contrasted with primary research, which denotes the direct investiga-
tion of human or animal data. Providing a report of primary research using statistical
methodology and analysis is often called a quantitative review in contrast to a nar-
rative review. In principle, a meta-analysis provides the same methodological rigor
to a literature review that is required for primary research.

Meta-analysis has become popular in many areas of medical and social sciences.
It has been estimated by Egger et al. (1998) that from articles retrieved by MED-
LINE with the medical subject heading (MeSH) term “meta-analysis” some 33% re-
ported results of a meta-analysis from randomized clinical trials and nearly the same
proportion (27%) were from observational studies, including 12% papers in which
the cause of a disease was investigated. The remaining papers include methodolog-
ical publications or review articles. Reasons for the popularity of meta-analyses
are the growing amount of information in the scientific literature and the need for
timely decisions for risk assessment or in public health. Often a meta-analysis tries
to combine the evidence of many independent studies and thus aims to provide a
quantitative review of the literature. Methods for meta-analyses to summarize or
synthesize evidence from randomized controlled clinical trials have been continu-
ously developed. These methods are now summarized in several textbooks; see, for
example, Sutton et al. (2000) and Whitehead (2001) and the handbook by Egger
et al. (2001). A general overview of recent developments in statistical methods for
meta-analysis may be found in the review by Sutton and Higgins (2008). In epi-
demiology a recent review on meta-analysis may be found in the article by Blettner
and Schlattmann (2007) published in the Handbook of Epidemiology (Ahrens and
Pigeot 2007). Dickersin (2002) argued that statistical methods for meta-analyses of

P. Schlattmann, Medical Applications of Finite Mixture Models, 153
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 7,
c© Springer-Verlag Berlin Hiedelberg 2009
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epidemiologic studies still lag behind in comparison with the progress that has been
made for randomized clinical trials. The use of meta-analyses for epidemiologic re-
search resulted in many controversial discussions; see for, example, Blettner et al.
(1999), Berlin (1995), Greenland (1994), Feinstein (1995), Olkin (1994), Shapiro
(1994a,b), and Weed (1997) for a detailed overview of the arguments. The most
prominent arguments against meta-analyses are the fundamental issues of confound-
ing, selection bias, as well as the large variety and heterogeneity of study designs and
data collection procedures in epidemiologic research. Despite these controversies,
results from meta-analyses are often cited and used for decisions. They are often
seen as the fundamentals for risk assessment. They are also performed to summa-
rize the current state of knowledge often prior to designing new studies.

7.1.1 Different Types of Overviews

Approaches for summarizing evidence include four different types of overviews:

1. Traditional narrative reviews that provide a qualitative but not a quantitative as-
sessment of published results. Methods and guidelines for reviews have been
published (Weed 1997).

2. Meta-analyses from the literature which are generally performed using freely
available publications without the need of cooperation and without agreement of
the authors from the original studies. They are comparable to a narrative review
in many respects but include quantitative estimate(s) of the effect of interest. One
example is a meta-analysis by Zeeger et al. (2003) of studies investigating some
familial clustering of prostate cancer. A meta-analysis on the association between
Parkinson disease, smoking, and family history was recently published in Allam
et al. (2003).

3. Meta-analyses with individual patient data in which individual data from pub-
lished and sometimes also unpublished studies are reanalyzed. Often, there is
close cooperation between the researcher performing the meta-analysis and the
investigators of the individual studies. The new analysis may include specific in-
clusion criteria for patients and controls, new definition of the exposure and con-
founder variables, and new statistical modeling. This reanalysis may overcome
some but not all of the problems of meta-analyses of published data (Blettner
et al. 1999). They have been performed in epidemiologic research for many years.
One of the largest investigations of this form was an investigation on breast can-
cer and oral contraceptive use, where data from 54 case-control studies were
pooled and reanalyzed (Breast Cancer 1996). A further international collabora-
tion led by Lubin et al. (1995) was set up to reanalyze data from 11 large cohort
studies on lung cancer and radon among uranium miners. The reanalysis allowed
a refined dose-response analysis and provided data for radiation protection is-
sues. Pooled reanalyses are mostly performed by combining data from studies
of the same type only. For example, Hung et al. (2003) reanalyzed data from all
case-control studies in which the role of genetic polymorphisms for lung cancer
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in nonsmokers were investigated. The role of diet for lung cancer was recently
reviewed by Smith-Warner et al. (2002) in a qualitative and quantitative way by
combining cohort studies. An overview of methodological aspects for a pooled
analysis of data from cohort studies was published in Bennett (2003). Currently,
methods are under development which allow one to combine individual and ag-
gregate data. See, for example, the work by Riley et al. (2007) or Sutton et al.
(2008) .

4. Prospectively planned pooled meta-analyses of several studies in which pooling
is already a part of the protocol. Data collection procedures and definitions of
variables are standardized as far as possible for the individual studies. The sta-
tistical analysis has many similarities with the meta-analysis based on individual
data. A major difference, however, is that joint planning of the data collection and
analysis increases the homogeneity of the data sets included. However, in con-
trast to multicenter randomized clinical trials, important heterogeneity between
the study centers may still exist. This heterogeneity may arise from differences in
populations, in the relevant confounding variables (e.g., race may only be a con-
founder in some centers), and potential differences in ascertainment of controls.

7.2 Basic Statistical Analysis

The statistical analysis of aggregated data from published studies was first devel-
oped in the fields of psychology and education (Glass 1977; Smith and Glass 1977).
Since the mid-1980s these methods have been adopted in medicine primarily for
randomized clinical trials and are also used for epidemiologic data. We will give
a brief outline of some issues of the analysis using an example based on a meta-
analysis performed by Sillero-Arenas et al. (1992). This study was one of the first
meta-analyses which tried to summarize quantitatively the association between hor-
mone replacement therapy (HRT) and breast cancer in women. Sillero-Arenas et al.
based their meta-analysis on 23 case-control studies and 13 cohort studies. The data
extracted from the paper by Sillero-Arenas et al. are displayed in Table 7.1. This ta-
ble shows the study number and the logarithm of the odds ratio (OR) or relative
risk, the last two denoted as log (OR) for brevity. Additionally the corresponding
estimate of variance on the log scale and the covariate study type is listed, where a
case-control study has the value 0 and a cohort study has the value 1.

7.2.1 Single Study Results

A first step of the statistical analysis is the description of the characteristics and the
results of each study. Tabulations and simple graphical methods should be employed
to visualize the results of the single studies. Plotting the ORs and their confidence
intervals (so-called forest plot) is a simple way to spot obvious differences between



156 7 Investigating and Analyzing Heterogeneity in Meta-analysis

Table 7.1 Data on hormone replacement therapy and breast cancer extracted from Sillero-Arenas
et al. (1992). Here 0 denotes a case-control study and 1 a cohort study

Study log(OR) Variance Type

1 0.10436 0.299111 0
2 −0.03046 0.121392 0
3 0.76547 0.319547 0
4 −0.19845 0.025400 0
5 −0.10536 0.025041 0
6 −0.11653 0.040469 0
7 0.09531 0.026399 0
8 0.26236 0.017918 0
9 −0.26136 0.020901 0
10 0.45742 0.035877 0
11 −0.59784 0.076356 0
12 −0.35667 0.186879 0
13 −0.10536 0.089935 0
14 −0.31471 0.013772 0
15 −0.10536 0.089935 0
16 0.02956 0.004738 0
17 0.60977 0.035781 0
18 −0.30111 0.036069 0
19 0.01980 0.024611 0
20 0.00000 0.002890 0
21 −0.04082 0.015863 0
22 0.02956 0.067069 0
23 0.18232 0.010677 0
24 0.26236 0.017918 1
25 0.32208 0.073896 1
26 0.67803 0.489415 1
27 −0.96758 0.194768 1
28 0.91629 0.051846 1
29 0.32208 0.110179 1
30 −0.13943 0.086173 1
31 −0.47804 0.103522 1
32 0.16551 0.004152 1
33 0.46373 0.023150 1
34 −0.52763 0.050384 1
35 0.10436 0.003407 1
36 0.55389 0.054740 1

OR odds ratio

the study results. Figure 7.1 shows a forest plot of 36 studies investigating the asso-
ciation of HRT and breast cancer in women.

An alternative way to display the individual study’s results graphically is a bubble
plot, where the size of the bubble is inversely proportional to the study-specific
variance. An example is shown in Fig. 7.2

Looking at the plots in Figs. 7.1 and 7.2, we see there is a high variability of
effects between studies. Later we will describe how to account for heterogeneity of
studies quantitatively.
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Fig. 7.1 Forest plot of the breast cancer data

7.2.2 Publication Bias

An important problem of meta-analysis is publication bias. This bias has received a
lot of attention particularly in the area of clinical trials. Publication bias occurs when
studies that have nonsignificant or negative results are published less frequently than
studies with positive results. For randomized clinical trials, it has been shown that
even with a computer-aided literature search not all of the relevant studies will be
identified (Dickersin et al. 1994). For epidemiologic observational studies additional
problems exist, because often a large number of variables will be collected in ques-
tionnaires as potential confounders. If one or several of these potential confounders
yield significant or important results, they may be published in additional papers,
which have often not been planned in advance. In general, publication bias yields a
nonnegligible overestimation of the risk estimate. As a result, prior to further statis-
tical analyses, publication bias should be investigated.
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Fig. 7.2 Bubble plot of the breast cancer data with the individual studies marked as case-control
studies (gray) and cohort studies (black)

A simple graphical tool to detect publication bias is the so-called funnel plot.
The basic idea is that studies which do not show an effect and which are not statis-
tically significant are less likely to be published. If the sample size, or alternatively
the precision (i.e., the inverse of the standard error (σ−1

i )), is plotted against the
effect, a hole in the lower-left quadrant is expected. Figure 7.3 shows examples of
funnel plots. The left subplot in Fig. 7.3 shows a funnel plot with no indication of
publication bias. The right subplot shows a so-called apparent hole in the lower-left
corner. In the case of the right subplot in Fig. 7.3 the presence of publication bias
would be assumed. Figure 7.4 shows a funnel plot for the breast cancer data, where
no apparent hole in the lower-left corner is present. Thus, no publication bias would
be assumed.

For a quantitative investigation of publication bias, several methods are avail-
able. These may be based on statistical tests; see, for example, Begg and Mazumdar
(1994) or Schwarzer et al. (2002). A recent simulation study performed by Macaskill
et al. (2001) favored the use of regression methods. The basic idea is to regress the
estimated effect sizes θ̂i directly on the sample size or the inverse variance σ−2

i as
a predictor. An alternative idea is to use Egger’s regression test (Egger et al. 1997),
which uses standardized study-specific effects as a dependent variable and the cor-
responding precision as an independent variable. Simulation studies by Macaskill
et al. (2001) and by Peters et al. (2006) have indicated that the method proposed
by Macaskill is superior to Egger’s method. Thus, our analysis is restricted to the
method of Macaskill, which leads to the following regression model :

θ̂i = α +β
1
σ̂2

i
+ εi, i = 1, . . . ,k, εi ∼ N(0,σ2

i ). (7.1)
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Fig. 7.3 Examples of funnel plots based on simulated data with (right) and without (left) publica-
tion bias present. The dotted line shows the true effect
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Fig. 7.4 Funnel plot of the breast cancer data

Here, the number of studies to be pooled is denoted by k. Note that we used the in-
verse variance as a surrogate for the sample size ni of the ith study. In this model it is
assumed that the estimated treatment effects are independently normally distributed.
With no publication bias present the regression line should be parallel to the x-axis,
i.e., the slope should be zero. A nonzero slope would suggest an association between
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Fig. 7.5 Funnel regression plot of the breast cancer data

sample size or inverse variance and effect size, possibly due to publication bias.
Additionally the observations are weighted by the inverse variance.

The estimated regression line in Fig. 7.5 shows no apparent slope. Likewise, the
model output (not shown) does not indicate the presence of publication bias for the
data at hand.

7.2.3 Estimation of a Summary Effect

Frequently, one of the aims of a meta-analysis is to provide an estimate of the over-
all effect of all studies combined. Methods for pooling depend on the data available.
In general, a two-step procedure has to be applied. First, the risk estimates and vari-
ances from each study have to be abstracted from the publications or calculated
if data are available. Then, a combined estimate is obtained as a (variance-based)
weighted average of the individual estimates. The methods for pooling based on the
2×2 table include the approaches of Mantel-Haenszel and Peto; see Pettiti (1994)
for details. Recently Hamza et al. (2008) pointed out that the exact binomial likeli-
hood is preferable to the normal approximation. However, if data are not available
in a 2×2 table, but are available as an estimate from a more complex model (such
as an adjusted relative risk estimate), the Woolf approach can be adopted using the
estimates and their (published or calculated) variance resulting from the regression
model. In the following it will be shown how a summary effect θ̂ can be obtained as
a weighted average of the log (ORs) θ̂i of the individual studies. The weights wi are
given by the inverse of the study-specific variance estimates σ̂2

i . Note that the study-
specific variances are assumed to be fixed and known although they are estimates.
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As a result, the uncertainty associated with the estimation of σ2
i is ignored. Thus, in

the following the σi are treated as constants and the “hat” notation is omitted.
Estimation of the summary effect θ may be done using maximum likelihood.

Assuming a normal distribution for the individual study leads to the following like-
lihood:

L(θ) =
k

∏
i=1

1
√

2πσ2
i

exp

[

−
(
θ̂i −θ

)2

2σ2
i

]

i = 1, . . . ,k. (7.2)

More convenient is the log likelihood:

�(θ) =
k

∑
i=1

[

− log
(√

2πσ2
i

)
−
(
θ̂i −θ

)2

2σ2
i

]

. (7.3)

The score is given by taking the first derivative of the log likelihood function:

�′(θ) =
d�(θ)

dθ
=

k

∑
i=1

(θ̂i −θ)
σ2

i
. (7.4)

This leads to the score equation:

�′(θ) = 0 or
k

∑
i=1

θ̂i

σ2
i

= θ
k

∑
i=1

1
σ2

i
. (7.5)

The estimate of the summary effect of all studies is then given by

θ̂ = ∑k
i=1 wiθ̂i

∑k
i=1 wi

, wi =
1
σ2

i
.

Using the expected Fisher information, the variance is

I(θ) = E
[
−d2�(θ)

dθ 2

]

= E

[

−
n

∑
i=1

−1
σ2

i

]

=
k

∑
i=1

1
σ2

i
,

var(θ̂) =
1

∑k
i=1

1
σ2

i

. (7.6)

Applying this approach to the HRT data leads to a pooled risk estimate of 0.065598
with an estimated variance of 0.00051. Transforming this back to the original scale
leads to an OR of 1.058 with a 95% confidence interval of 1.012–1.11. Thus, we
would conclude from combining all studies that there is a small harmful effect
of HRT.
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Fig. 7.6 Fixed effects model: common effect with different study variances

The major assumption here is that of a fixed effects model, i.e., it is assumed that
the underlying true exposure effect in each study is the same. The overall variation
and, therefore, the confidence intervals will reflect only the random variation within
each study but not any potential heterogeneity between the studies. Figure 7.6 dis-
plays this idea. Whether pooling of the data is appropriate should be decided after
investigating the heterogeneity of the study results. If the results vary substantially,
no pooled estimator should be presented or only estimators for selected subgroups
should be calculated (e.g., combining results from case-control studies only).

7.3 Analysis of Heterogeneity

The previous remark notwithstanding, as Senn (2007) points out a fixed effect meta-
analysis is always valuable, since it tests the null hypothesis that, e.g., treatments
were identical in all trials. If the null hypothesis is rejected, then the alternative
may be asserted that at least one treatment differs. Thus, the investigation of hetero-
geneity between the different studies is a main task in each review or meta-analysis
(Thompson 1994). For the quantitative assessment of heterogeneity, several statisti-
cal tests are available (Paul and Donner 1989; Pettiti 1994). A simple test for het-
erogeneity is based on the following test statistic

χ2
het =

k

∑
i=1

(θ̂ − θ̂i)2

σ2
i

∼ χ2
k−1, (7.7)
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which under the null hypothesis of homogeneity follows a χ2 distribution with k−1
degrees of freedom. Hence, the null hypothesis is rejected if χ2

het exceeds the 1−α
quantile of χ2

k−1 denoted as χ2
k−1,1−α . For the data at hand we clearly conclude that

there is heterogeneity present (χ2
het = 116.076, 35 degrees of freedom, p = 0.0000).

Thus, using a combined estimate is at least questionable. Pooling the individual
studies and performing this test can be done with any statistical package capable of
weighted least squares regression.

However, this test only carries information about the presence versus the absence
of heterogeneity, and it does not report on the extent of such heterogeneity. As a
result, the I2 index has been proposed to quantify the degree of heterogeneity:

I2 = max
(

0,
χ2

het −df
χ2

het

)
. (7.8)

Basically this statistic compares the test statistic χ2
het with its expectation under the

homogeneity model. I2 takes values between 0 and 1. The I2 statistic may be in-
terpreted as the variation in effect size attributable to heterogeneity For the data at
hand I2 is 0.6985, indicating strong heterogeneity. Recently Huedo-Medina et al.
(2006) investigated the power of both procedures. Their results show the utility of
the I2 index as a complement to the χ2

het test, although it has the same problems
of power with a small number of studies. Recently, Jackson (2006) confirmed this
well-known fact analytically from simulation studies (Jones et al. 1989).

A more powerful method is given by model-based approaches. A model-based
approach has the advantage that it can be used to test specific alternatives and thus
has higher power to detect heterogeneity. So far we have considered the following
simple fixed effects model:

θ̂i = θ + εi, i = 1, . . . ,k, εi ∼ N(0,σ2
i ). (7.9)

Obviously, this model is not able to account for any heterogeneity, since deviations
from θ̂i and θ are assumed to be explained only by random error.

Thus, alternatively, a random effects model which incorporates variation between
studies should be considered. It is assumed that each study has its own (true) expo-
sure effect and that there is a random distribution of these true exposure effects
around a central effect. This idea is presented in Fig. 7.7. Frequently, it is assumed
that the individual study effects follow a normal distribution with mean θi and vari-
ance σ2

i and the random distribution of the true effects is again a normal distribution
with variance τ2. In other words, the random effects model allows nonhomogeneity
between the effects of different studies. This leads to the following model:

θ̂i = θi + εi = θ +bi + εi , i = 1, . . . ,k , (7.10)

with θ̂i ∼N(θ ,τ2 +σ2
i ),bi ∼N(0,τ2),εi ∼N(0,σ2

i ). The observed effects from dif-
ferent studies are used to estimate the parameters describing the fixed and random
effects. This may be done using maximum likelihood procedures (Brockwell and
Gordon 2001; Hardy and Thompson 1996), methods of moments (DerSimonian
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Fig. 7.7 Random effects model: variable effects drawn from a population of study effects

and Laird 1986), or an approach based on weighted least squares linear regression.
In the following sections these approaches are described. Of particular importance
is the estimation of the variability between studies which is quantified by the het-
erogeneity variance τ2. To compare the performance of these methods, a simulation
study was performed.

7.3.1 The DerSimonian–Laird Approach

The widely used approach by DerSimonian and Laird (1986) applies a method of
moments to obtain an estimate of τ2. Taking the expectation of (7.10) leads to

E(θ̂i) = θ

and calculating the variance leads to

var(θ̂i) = var(bi)+var(εi) = τ2 +σ2
i = σ∗2

i ,

assuming that bi and εi are independent. The heterogeneity variance τ2 is unknown
and has to be estimated from the data. The method of DerSimonian and Laird
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equates the heterogeneity test statistic (7.7) to its expected value. This expectation
is calculated under the assumption of a random effects model and is given by

E(χ2
het) = k−1+ τ2

(

∑wi −
∑w2

i

∑wi

)
.

The weights wi are given by the inverse variance. Equating χ2
het to its expectation in

the heterogeneity model and solving for τ2 gives

τ̂2 =
χ2

het − (k−1)

∑wi − ∑w2
i

∑wi

. (7.11)

In the case χ2
het < k− 1, the estimator τ̂2 is truncated to zero. An advantage of the

estimator (7.11) of τ is that a closed form is available and no iterative procedures
are required. The estimator (7.11) of τ2 will be denoted as the “DL estimator.”

Under model (7.10) the variance of the study-specific effects θi is given by

var(θ̂i) = σ2
i + τ2. (7.12)

This follows directly from the result var(Y ) = E [var(Y |λ )] + var [E(Y |λ )] on the
variance decomposition in (5.17) on page 120. Thus, instead of using weights wi =

1
σ2

i
, we need new weights with w∗

i = 1
σ2

i +τ2 to compute the summary estimate θ̂ . As

a result, the pooled estimator θ̂DL under heterogeneity can be obtained as a weighted
average using τ̂2 as a plug-in estimate for τ2:

θ̂DL = ∑k
i=1 w∗

i θ̂i

∑k
i=1 w∗

i
. (7.13)

With

w∗2

i =
1

σ∗2
i

=
1

τ̂2 +σ2
i

(7.14)

we obtain

θ̂DL = ∑k
i=1 θ̂i/(τ̂2 +σ2

i )

∑k
i=1 1/(τ̂2 +σ2

i )
. (7.15)

The variance of this estimator is given by

var(θ̂DL) =
1

∑k
i=1

1
σ∗2

i

, (7.16)

=
1

∑k
i=1

1
τ̂2+σ2

i

. (7.17)
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The between-study variance τ2 can also be interpreted as a measure of heterogene-
ity between studies. It should be noted that, in general, random effects methods
yield larger variance and confidence intervals than fixed effects models because
a between-study component τ2 is added to the variance. If the heterogeneity be-
tween the studies is large, τ2 will dominate the weights and all studies will be
weighted more equally (in random effects models weight decreases for larger stud-
ies compared with the fixed effects model). For our example we obtain a pooled
DerSimonian–Laird estimate of θ̂DL = 0.0337 with heterogeneity variance τ̂2 =
0.0453. The variance of the pooled estimator is given by var(θ̂DL) = 0.0024. Trans-
formed back to the original scale we obtain an OR of 1.034 with 95% confidence
interval (0.939–1.139). On the basis of this analysis we would conclude that af-
ter adjusting for heterogeneity this meta-analysis does not provide evidence for an
association between HRT and breast cancer in women.

One comment is in order. Within the DerSimonian–Laird approach the study-
specific variances are assumed to be known constants. This is one of the reasons why
this method can lead to a considerable bias when pooling estimates as demonstrated
by Böhning et al. (2002).

Besides the moment-based method of DerSimonian and Laird, estimates of τ2

can be obtained using likelihood-based methods. See the tutorials by Normand
(1999) and van Houwelingen et al. (2002) for an introduction. Both tutorials re-
fer mainly to the use of the software package SAS for the estimation of τ2 without
methodological details. These details are developed in the next section.

7.3.2 Maximum Likelihood Estimation of the Heterogeneity
Variance τ2

Again, a random effects model is assumed. The likelihood to be maximized is
given by

L(θ̂i;θ ,τ2) = (2π)−
k
2

k

∏
i=1

(
1

σ2
i + τ2

) 1
2

exp

(

−1
2

k

∑
i=1

(θ̂i −θ)2

σ2
i + τ2

)

. (7.18)

Applying logs and computing derivatives with respect to θ and τ2 and equating
them to 0 leads to the equations

k

∑
i=1

θ̂i

σ2
i + τ2 = θ

k

∑
i=1

1
σ2

i + τ2 , (7.19)

∑ 1
σ2

i + τ2 = ∑ (θ̂i −θ)2

(σ2
i + τ2)2 . (7.20)
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The estimate of the summary effect of all studies is then given by

θ̂ = ∑k
i=1 w∗

i θ̂i

∑k
i=1 w∗

i
, w∗

i =
1

σ2
i + τ2 i = 1, . . . ,k. (7.21)

As before, the summary estimate is a weighted sum of individual estimates of the
respective studies. Usually, the heterogeneity variance τ2 is not known and needs to
be estimated from the data.

Equation (7.20) has no closed-form solution. After some algebra (7.20) can be
transformed into the following equation:

τ̂2 = ∑w∗2
i ((θ̂i − θ̂)2 −σ2

i )
∑w∗2

i
i = 1, . . . ,k. (7.22)

Based on (7.21) and (7.22), Algorithm 7.3.1 can be used to estimate τ2.

Set τ̂2 = 0 as the initial value

Step 1: Compute θ̂ = ∑k
i=1 θ̂i/(τ̂2+σ2

i )
∑k

i=1 1/(τ̂2+σ2
i )

Step 2: Compute τ̂2 = ∑w∗2
i ((θ̂i−θ̂)2−σ2

i )
∑w∗2

i
i = 1, . . . ,k. and go to step 1

Algorithm 7.3.1: Algorithm to compute the maximum likelihood estimate of τ2

This procedure is repeated until convergence is achieved, e.g., when there is no
further improvement of the log likelihood. We will refer to this estimator as the
“ML estimator.” For the breast cancer data an estimate of τ̂2 = 0.086 is obtained.
Estimates based on likelihood methods offer the advantage that they provide the
option to formally test which model is appropriate for the data by applying the
likelihood ratio test or penalized criteria such as the Bayesian information criterion
(BIC). The BIC is obtained by the formula BIC = −2× log likelihood+ log(k)×q,
where q is the number of parameters in the model and k denotes the number of
studies. A comparison of various models is shown in Table 7.2.

Table 7.2 Estimates of τ2 and model comparison for the breast cancer data

Method Residual Estimates (SE) Heterogeneity logL BIC
heterogeneity intercept (τ̂2)

Fixed None 0.056 (0.023) – −33.19 70.0
Mixed Additive 0.027 (0.061) 0.086 −18.65 44.4
FM Additive 0.033 0.079 −17.63 53.2
DL Additive 0.034 0.045
SH Additive 0.045 0.199

SE standard error, BIC Bayesian information criterion, FM finite mixture, DL DerSimonian
and Laird, SH simple heterogeneity
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7.3.3 Another Estimator of τ2: The Simple Heterogeneity Variance
Estimator

Recently, Sidik and Jonkman (2005) proposed a simple method for the estimation
of the heterogeneity variance τ2. As before, they consider a random effects model
as in (7.10) with bi ∼ N(0,τ2). For the purpose of their estimation method they
reparameterize the variance of

var(θ̂i) = τ2 +σ2
i = τ2 σ2

i + τ2

τ2 = τ2(ri +1),

with ri = σ2
i /τ2. Then the problem of estimating τ2 is cast into the framework of

simple linear regression:

E(θ̂) = Xθ ,

var(θ̂1) = τ2V. (7.23)

Here, X is a vector of 1s with dimension k× 1 and V is diagonal matrix with el-
ements r1 + 1, . . . ,rk + 1. In the framework of the usual weighted least squares an
estimate of θ is obtained as

θ̂ν =
∑k

i=1 ν
−1
i θ̂i

∑k
i=1 ν

−1
i

, (7.24)

with νi = ri + 1. Note that this is equivalent to (7.15) and (7.21). The advantage
of casting the problem into the usual weighted least squares approach is that an
estimate for τ2 can be obtained as the usual weighted residual sum of squares as
follows:

τ2 =
1

k−1

k

∑
i=1

ν−1
i (θ̂i − θ̂ν)2. (7.25)

Of course an estimate of τ is needed to compute the ratios ri of the within-study
variance σ2

i and the between-study variance τ2. Here, Sidik and Jonkman propose
using the empirical variance of the study-specific estimates θ̂i:

τ̂2
0 =

1
k

k

∑
i=1

(θ̂i − θ̄)2. (7.26)

Plugging this into (7.25) leads to

τ̂2
SH =

1
k−1

k

∑
i=1

ν̂−1(θ̂i −θν)2, (7.27)

with ν̂i = r̂i +1 and r̂i = σ2
i /τ̂2

0 . Note that this estimator is strictly positive, in con-
trast to the DL estimator. This estimator will be referred to as the simple hetero-
geneity (SH) variance estimator. For the data at hand an estimate for τ̂2 is 0.199.
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7.3.4 A Comment on Summary Estimates Under Heterogeneity

Pooling in the presence of heterogeneity may be seriously misleading. As already
outlined in Chap. 2, medicine tries to reach individualized therapy and as a re-
sult population-averaged estimates are not particularly helpful. Heterogeneity be-
tween studies should yield careful investigation of the sources of the differences.
If there are a sufficient number of different studies available, further analyses, such
as “metaregression,” may be used to examine the sources of heterogeneity (Green-
land 1987, 1994). Sometimes it seems more fruitful to consider a meta-analysis as a
“study over studies” rather than to summarize a number of studies in a single num-
ber plus confidence interval. A natural approach for treating a meta-analysis as a
study over studies is the finite mixture model approach since it allows classification
of the individual study. This categorization may then be used to learn more specific
aspects of the individual studies, leading to heterogeneity of effects.

7.3.5 The Finite Mixture Model Approach

When random effects models are used, another topic of interest is the form of
the random effects’ distribution. Besides a parametric distribution for the random
effects, a discrete distribution may be assumed. Here we suppose that the study-
specific estimators θ̂1, θ̂2, . . . , θ̂k come from q subpopulations θ j, j = 1, . . . ,q.
Again, assuming that the effect of each individual study follows a normal
distribution,

f (θ̂i,θ j) =
1

√
2πσ2

i

exp

[

−
(
θ̂i −θ j

)2

2σ2
i

]

, j = 1, . . . ,q, (7.28)

Note that (7.28) is the nonparametric discrete random effects analogue to (7.10),
where a continuous parametric distribution is assumed for the random effects.

This leads to a finite mixture model with

f (θ̂i,P) =
q

∑
j=1

p j f (θ̂i,θ j,σ2
i ). (7.29)

The parameters of the mixing distribution P are

P =
[
θ1 . . . θq
p1 . . . pq.

]
, with p j ≥ 0 j = 1, . . . ,q, (7.30)

p1 + · · ·+ pq = 1. (7.31)

These parameters need to be estimated from the data. The mixing weights p j de-
note the a priori probability of an observation belonging to a certain subpopulation
with parameter θ j. Note that the number of components q needs to be estimated as
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Table 7.3 Finite mixture model for the breast cancer data

Components Parameter θ̂ j Weights p̂ j logL

1 0.0056 1 −33.191

2 −0.3367 0.280 −22.863
0.1137 0.720

−0.3365 0.2804
3 0.0778 0.5671 −17.631

0.5446 0.1524

well. Estimation may be done with the program C.A.MAN (Böhning et al. 1998;
Schlattmann and Bohning 1993). Alternatively, the software package META espe-
cially developed by the author (Schlattmann et al. 2003) for meta-analysis could be
applied to estimate the parameters of the mixture model. Additionally the R pack-
age CAMAN can be used, which provides the functionality of C.A.MAN within an
R library. For the HRT data we find a solution with the three components shown in
Table 7.3 which provides a much better fit to the data than a fixed effects model.
Here, the weights correspond to the mixing weights p j and the parameter corre-

sponds to the subpopulation mean θ j, j = 1, . . . ,q. These results imply that about
28% of the studies show a protective effect of HRT, whereas the majority of the
studies show a harmful effect. About 57% of the studies show an increased risk of
0.08 and 15% of the studies show a log (OR) of 0.54 Thus, using a finite mixture
model, we find again considerable heterogeneity where the majority of studies find
a harmful effect of HRT. It is noteworthy that some of the studies find a beneficial
effect. Of course this needs to be investigated further. One way to do this is to clas-
sify the individual studies using the finite mixture model. Doing so, we find that
for the example study nine of the data given in Table 7.1 belong to this category.
This is a case-control study for which no information about confounder adjustment
is available. This would be a starting point for a sensitivity analysis.

Estimation of the Heterogeneity Variance τ2

On the basis of the finite mixture model, an estimate of the heterogeneity variance
τ2 is given by

τ̂2 =
q̂

∑
j=1

p̂ j
(
θ̂ j − θ̄

)2
, with θ̄ =

q̂

∑
j=1

p̂ jθ̂ j. (7.32)

Note that the special case of q̂ = 1 denotes the fixed effects model with a corre-
sponding heterogeneity variance τ2 = 0. For our example an estimate of 0.079 is
obtained using this approach.
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Table 7.2 gives an overview of the models fitted so far. These include the fixed
effects model with a BIC of 70.0 and the mixed effects model using a normal dis-
tribution for the random effects with a BIC of 44.4. The finite mixture model has a
BIC value of 53.2. Thus, from the data in Table 7.2 it is quite obvious that a fixed
effects model does not fit the data well and that a random effects model should be
used. Of course, the question remains which random effects model should be chosen
for the analysis. Solely based on the likelihood, the finite mixture model provides
a slightly better fit than the linear mixed effects model. However, based on the BIC
given in Table 7.2, one would choose the parametric mixture model provided the
assumption of a normal distribution of the random effects is justifiable. This can be
investigated, for example, by a normal quantile–quantile plot of the estimated indi-
vidual random effects given by the parametric model. This will be presented later
when using metaregression methods.

In terms of the estimates of the heterogeneity variance τ2 a large variability is
observable. The smallest estimate of τ2 is given by the method of DerSimonian and
Laird, with a value of 0.045 for τ̂2. Then follows the finite mixture model estimate,
with a value of τ2 = 0.079, and then the linear mixed model, with an estimate of
τ̂2 = 0.086. The largest estimate is given by the SH variance, with τ̂2 = 0.199.
Clearly, this variability raises the question of which estimator should be applied in
practical data analysis.

7.4 A Simulation Study Comparing Four Estimators of τ2

To assess the performance of the various estimators a simulation study was per-
formed. This study compared the finite mixture model approach, the SH variance
estimator, the ML estimator based on the normal distribution for the random effects,
and the DL estimator. The simulation study investigated bias, standard deviation,
and mean square error (MSE) for all four estimators of τ2.

7.4.1 Design of the Simulation Study

To provide comparability with simulation studies from the literature, the simulation
set-up of Sidik and Jonkman (2005) was applied in this study. Five meta-analysis
sample sizes were chosen, with k =10, 20, 30, 50, and 80. The true overall effect
of θ was set to be 0.5. Eight values of τ2 were considered, specifically τ2 = 0.10,
0.25, 0.50, 0.75, 1.00, 1.25, 1.50, and 2.00. For each combination of k and τ2 and θ
2×2 tables were generated for given k. This method was proposed by Berkey et al.
(1995) and was also applied by Platt et al. (1999) and Knapp and Hartung (2003).
In the first step θi was generated from N(0,τ2) for i = 1, . . . ,k. For a given k the
sample niC of the control groups were randomly chosen from the integers 20, 21,



172 7 Investigating and Analyzing Heterogeneity in Meta-analysis

22,. . . ,200. In addition, the sample sizes for the treatment groups were randomly
chosen from the integers 30,31, . . . ,300. The responses for the control group were
generated from a binomial distribution Bin(niC, piC), where the binomial probability
piC was randomly chosen from a uniform distribution on the interval 0.05–0.65.
The responses xiT for the treatment were generated from a binomial distribution
Bin(niT, piT) with

piT = piC exp(θi)/(1− piC + piC exp(θi)) i = 1, . . . ,k .

With use of this method k 2×2 tables were generated. From cell counts of the ith
table denoted by ai = xiT, bi = niC − xiC, ci = niT − xiT, di = xiC log (ORs) for the
ith study with corresponding variance estimates were calculated as

θ̂i = log
(ai +0.5)(di +0.5)
(ci +0.5)(di +0.5)

,

σ̂2
i =

1
ai +0.5

+
1

bi +0.5
+

1
ci +0.5

+
1

di +0.5
.

As before, the estimates σ2 are treated as constants and not as random variables. For
these simulated data an estimate of the heterogeneity variance τ2 was obtained us-
ing the method of DerSimonian and Laird (7.11) , the maximum likelihood estimate
(Algorithm 7.3.1), the finite mixture model (7.32), and the SH variance (7.27). Us-
ing finite mixture models the number of components q needs to be estimated as well.
For the purpose of this simulation study the mixture algorithm (Algorithm 4.4.2) on
page 79 was used. This algorithm gives an estimate of the number of components
by combining the vertex exchange method (VEM) algorithm (Algorithm 4.3.2) and
the expectation maxmization (EM) algorithm (Algorithm 4.4.1). An advantage of
this algorithm lies in the fact that the number of components q must not be spec-
ified in advance. The VEM algorithm identifies population means θ j with positive
support which may coincide using the EM algorithm. Thus, this algorithm provides
an estimate of the number of components q, the mixing weights p j, and population
means θ j which are then used to estimate τ2.

The whole procedure was replicated N = 20,000 times. From the N estimates,
the mean, the standard deviation, the bias, and the MSE for each of the four methods
are calculated as

Bias =
1
N

N

∑
i=1

τ̂2
i − τ2, (7.33)

Variance =
1
N

N

∑
i=1

(τ̂2
i − τ̄2)2, (7.34)

MSE =
1
N

N

∑
i=1

(τ̂2
i − τ2)2. (7.35)
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Software and Computing Facilities

The algorithms and the simulation studies were programmed in C++ using the GNU
GCC 3.3.5-5 compiler. Random numbers were generated using portable random
number generators using C code provided by L’Ecuyer (1988). The programs made
use of a PC UNIX(Linux) system. Plots were produced using the statistical comput-
ing package R (R Development Core Team 2008), which is a freely available clone
of the commercial package S-plus.

7.4.2 Simulation Results

The results of the simulation study performed to investigate the accuracy of the four
heterogeneity variance estimators are shown in Table 7.4. The most notable results
of the simulation study are given in terms of bias. From Table 7.4 it can be seen
that the SH estimator offers the best performance with respect to bias. Especially
for large heterogeneity variances τ2 the SH variance has the smallest bias, whereas
the other estimators underestimate τ2. The second-best estimator in terms of bias
is based on the finite mixture model, which provides a smaller bias in comparison
with the linear mixed effect model estimates and the DL estimator. With increasing
heterogeneity variance τ2, the bias of the DL estimator increases dramatically in
magnitude, especially for values of τ2 greater than or equal to 0.75. This applies to
all meta-analysis sample sizes with the exception of k = 10 and k = 20. As may be
seen also from Fig. 7.8 the linear mixed effects model estimator has smaller bias than
the DL estimator but larger bias than the finite mixture model and the SH variance
estimator. For increasing k and τ2 the bias of the ML estimator increases.

Evaluating the estimators in terms of the MSE, it is apparent that the values
depend on τ2 and the number of studies k. For a large value of τ2, i.e., τ2 ≥ 0.75, and
k ≥ 50 the SH estimator has a smaller MSE than the other estimators. In this setting
the MSEs of the finite mixture model and the linear mixed effects model provide
reasonable estimates, whereas the MSE of the DL estimator increases greatly. For
large values of k and small values of τ , all estimators have similar MSEs.

Overall, the SH variance estimator has acceptable bias and MSE. The second-
best estimator in terms of bias and variance is given by the finite mixture model,
followed by the linear mixed effects model. The DL estimator has unfavorable bias
and MSEs for larger values of k and τ .

7.4.3 Discussion

On the basis of this simulation one would recommend the SH estimator as the
method of choice to compute the heterogeneity variance τ2 in a meta-analysis. This
is in line with the results of the simulation study performed by Sidik and Jonkman
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Table 7.4 Empirical statistics of four estimators of τ2 based on N simulation replicates

k τ2 Bias MSE

FM ML SH DL FM ML SH DL

10 0.10 0.004 −0.022 0.037 −0.003 0.008 0.006 0.009 0.007
0.25 −0.013 −0.049 0.021 −0.018 0.025 0.023 0.026 0.025
0.50 −0.037 −0.086 0.007 −0.049 0.074 0.070 0.079 0.072
0.75 −0.068 −0.129 −0.008 −0.099 0.144 0.139 0.158 0.135
1.00 −0.105 −0.176 −0.027 −0.164 0.241 0.233 0.265 0.219
1.25 −0.135 −0.220 −0.037 −0.233 0.361 0.350 0.398 0.324
1.50 −0.173 −0.273 −0.056 −0.321 0.511 0.490 0.558 0.450
2.00 −0.251 −0.374 −0.090 −0.513 0.856 0.837 0.944 0.785

20 0.10 0.001 −0.016 0.037 −0.006 0.004 0.004 0.005 0.004
0.25 −0.009 −0.032 0.021 −0.019 0.012 0.012 0.013 0.012
0.50 −0.028 −0.059 0.006 −0.054 0.037 0.036 0.037 0.035
0.75 −0.051 −0.090 −0.008 −0.106 0.072 0.072 0.074 0.069
1.00 −0.075 −0.122 −0.022 −0.172 0.122 0.121 0.126 0.117
1.25 −0.102 −0.160 −0.036 −0.254 0.183 0.182 0.188 0.184
1.50 −0.135 −0.202 −0.054 −0.345 0.256 0.255 0.262 0.273
2.00 −0.208 −0.292 −0.097 −0.556 0.424 0.434 0.433 0.534

30 0.10 −0.000 −0.013 0.037 −0.007 0.003 0.002 0.004 0.002
0.25 −0.009 −0.025 0.022 −0.018 0.008 0.008 0.008 0.008
0.50 −0.029 −0.052 0.003 −0.057 0.024 0.024 0.024 0.024
0.75 −0.049 −0.079 −0.010 −0.111 0.050 0.050 0.049 0.050
1.00 −0.071 −0.107 −0.022 −0.178 0.081 0.083 0.082 0.088
1.25 −0.101 −0.143 −0.040 −0.261 0.122 0.125 0.122 0.145
1.50 −0.130 −0.178 −0.057 −0.352 0.173 0.177 0.172 0.224
2.00 −0.208 −0.270 −0.104 −0.574 0.297 0.311 0.292 0.474

50 0.10 −0.002 −0.011 0.036 −0.007 0.001 0.001 0.003 0.001
0.25 −0.009 −0.020 0.023 −0.018 0.005 0.005 0.005 0.005
0.50 −0.026 −0.042 0.007 −0.056 0.015 0.015 0.015 0.016
0.75 −0.048 −0.068 −0.010 −0.112 0.031 0.032 0.029 0.035
1.00 −0.069 −0.094 −0.022 −0.181 0.050 0.052 0.049 0.066
1.25 −0.098 −0.126 −0.040 −0.264 0.077 0.080 0.073 0.115
1.50 −0.129 −0.161 −0.058 −0.359 0.110 0.116 0.105 0.188
2.00 −0.208 −0.247 −0.107 −0.583 0.193 0.206 0.177 0.424

80 0.10 −0.004 −0.009 0.036 −0.007 0.001 0.001 0.002 0.001
0.25 −0.011 −0.019 0.022 −0.019 0.003 0.003 0.003 0.003
0.50 −0.028 −0.039 0.005 −0.058 0.009 0.010 0.009 0.011
0.75 −0.049 −0.063 −0.010 −0.113 0.020 0.021 0.018 0.027
1.00 −0.072 −0.089 −0.025 −0.184 0.033 0.035 0.030 0.054
1.25 −0.102 −0.121 −0.044 −0.270 0.052 0.055 0.046 0.101
1.50 −0.132 −0.153 −0.060 −0.364 0.074 0.079 0.065 0.168
2.00 −0.213 −0.237 −0.111 −0.590 0.138 0.147 0.114 0.400

MSE mean square error, FM finite mixture model, ML maximum likelihood estimator,
SH simple heterogeneity variance, DL DerSimonian–Laird estimator

(2005), who also found the SH variance estimator is superior to the DL estimator.
Since this method is easily extended to include covariates, as it is a special case of
weighted linear regression, it could easily be used for metaregression.
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Fig. 7.8 Bias of four estimates of the heterogeneity variance τ2. FM a finite mixture model, ML the
maximum likelihood estimator, SH the simple heterogeneity variance, DL the DerSimonian–Laird
estimator

Another method to compute the heterogeneity variance is based on finite mixture
models. This method performs second best in terms of bias and MSE, but tends to
underestimate τ2 for large τ and k. On the other hand, no distributional assumption
about the form of the random effects distribution has to be made. Unfortunately
the estimation of the model parameters cannot be obtained using a simple closed
formula as for the SH estimator.
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For small sizes the DL estimator has a small MSE, but for large k and τ the MSE
tends to be larger than those of the other methods. However, as Sidek and Jonkman
pointed out, the bias might be a more convincing parameter than the MSE when
comparing variance estimators since zero is a natural lower bound for any variance
parameter.

Thus, from a comparison of the bias of the four methods the DL estimator and
the ML estimator do not have particularly convincing properties. The latter result for
the ML estimator was also found by Sidik and Jonkman (2007) in a simulation study
comparing seven estimators which included the DL estimator and the ML estimator
from those considered here. The same applies for the DL estimator.

In drawing practical conclusions regarding an estimator on the basis of this sim-
ulation study, the SH estimator behaves well for almost all settings. Additionally
it is easy to compute. One drawback is that it relies on the assumption of a nor-
mal distribution of the random effects. If one is in doubt regarding this assumption,
a finite mixture may be considered. However, considering ease of implementation
and performance, the SH estimator seems to be a good choice.

7.5 Metaregression

The explanation of heterogeneity plays an important role in meta-analysis. As a
result, once heterogeneity is detected a sensitivity analysis is performed. This im-
plies calculating pooled estimators only for subgroups of studies (according to
study type, quality of the study, period of publication, etc.) to investigate varia-
tions of the OR. Metaregression as proposed by Greenland (1987) is an extension
of this approach; see also Berkey et al. (1995), Thompson and Sharp (1999), van
Houwelingen et al. (2002), and Knapp and Hartung (2003). Ideally, metaregression
explains heterogeneity between studies by including study-specific covariates. For
the breast cancer meta-analysis example, a potential covariate is study type; case-
control studies may show results different from cohort studies owing to different
exposure assessment. For our data case-control studies are coded as xi1 = 0 and
cohort studies are coded as xi1 = 1. Hence, the fixed effect model is given by

θ̂i = β0 +β1xi1 + εi, εi ∼ N(0,σ2
i ), i = 1, . . . ,k. (7.36)

Here, based on the regression equation θ̂i = 0.0015 + 0.145xi, we find that co-
hort studies show an association between HRT and breast cancer. Obviously, cohort
studies provide results different from case-control studies. Clearly, after adjustment
for covariates the question remains of whether there is still residual heterogeneity
present. Again, we can analyze the data using a random effects model in this case
with a random intercept:

θ̂i = β0 +β1xi1 +bi + εi, bi ∼ N(0,τ2), εi ∼ N(0,σ2
i ). (7.37)
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For this model the regression equation for the fixed effects is θ̂i = −0.009 +
0.1080xi1 for a cohort study and the corresponding heterogeneity variance is es-
timated as τ̂2 = 0.079 by the maximum likelihood method.

On the basis of model (7.37), the estimates of the random effects bi are
obtained by

E(bi|θ̂i) =
τ2

σ2
i + τ2 (θ̂i − (β0 +β1xi1)).

Immediately, there is the serious problem that τ2,β0, and β1 are not known. Plugging
their estimates into (7.38) leads to the following empirical Bayes estimates of bi:

b̂i =
τ̂2

σ2
i + τ̂2 (θ̂i − (β̂0 + β̂1xi)). (7.38)

From the factor τ̂2/(σ2
i + τ̂2) it is clear that b̂i is a weighted average of zero (the

prior mean of bi) and the residual ri = θ̂ − β̂0 − β̂1xi. Equation (7.38) also shows
that shrinkage will be large for studies with a large study-specific variance.

Besides the ML estimators (Hardy and Thompson 1996) used here, several esti-
mators for τ2 are available. See, for example, a confidence interval based approach
proposed by Knapp et al. (2006).

7.5.1 Finite Mixture Models Adjusted for Covariates

Again, instead of a parametric distribution for the random effects a discrete dis-
tribution can be assumed. Instead of a parametric mixture, a finite mixture model
adjusted for covariates can be applied. We have the same semiparametric mixing
distribution as in (3.13) on page 33:

P =
[
λ1 . . . λq
p1 . . . pq

]
. (7.39)

The major difference is now that parameters λ1, . . . ,λq are no longer scalar quanti-
ties but are vectors, e.g.,

λ1 = (β01,β11, . . . ,βm1), (7.40)

where m denotes the number of covariates in the model. In contrast to the homoge-
nous case we have the same type of density f for each subpopulation but a different
parameter vector λ j in subpopulation j. The expectation of the ith observation in the
jth subpopulation is then given by

E(θi j) = xiλ j = β0 j +β1 jxi1 + · · ·+βm jxim. (7.41)
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Table 7.5 Covariate-adjusted finite mixture model for the breast cancer data

Component Weight p j Estimate Standard error t

Intercept 1 0.239 −0.386 0.066 −5.867
Intercept 2 0.614 0.035 0.029 1.211
Intercept 3 0.147 0.484 0.086 5.601
Type 0.097 0.044 2.201
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Fig. 7.9 Bubble plot of the breast cancer data with the individual studies categorized on the basis
of a covariate-adjusted mixture model

In the simplest case a discrete random distribution only for the intercepts is assumed:

θi j = β j +β1xi1 + εi, εi ∼ N(0,σ2
i ). (7.42)

The results found by the EM algorithm (Algorithm 4.6.4) for the covariate-adjusted
mixture model are given in Table 7.5.

As before some of the studies seem to identify a beneficial effect of HRT, while
a large proportion of the studies reveal only a small effect of 0.035 on the log scale
with a corresponding OR of 1.036. About 15% of the studies find an OR of 1.642.
Thus, after the inclusion of the covariate study type only little heterogeneity could
be explained.

The probabilities ei j which indicate the probability of the ith study belonging to
jth component which are obtained in the estimation process of the mixture model
(see (4.73) on page 92) can be used to classify the individual study using a maxi-
mum rule, i.e., the ith study is classified into that category for which the posterior
probability ei j is the highest. This idea is applied to the breast cancer data and is
shown in Fig. 7.9.
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Table 7.6 Comparison of fixed and random effects models

Method Residual Estimates (SE) Heterogeneity BIC
hetero. intercept Slope (τ̂2)

Fixed effects model 1 None 0.056 (0.023) – – 70.0
Linear mixed effects 1 Additive 0.027 (0.061) – 0.086 44.4
Fixed effects model 2 None 0.001 (0.029) 0.145 (0.046) – 63.9
Linear mixed effects 2 Additive −0.009 (0.072) 0.108 (0.126) 0.081 47.3
Finite mixture model 1 Additive 0.033 (–) – 0.079 53.2
Finite mixture model 2 Additive 0.003 (–) 0.097 (0.044) 0.071 53.7

Table 7.6 compares fixed and random effects models for the HRT data. The table
shows models with and without an estimate for the slope. Model selection can be
based again on the BIC. Apparently, on the basis of BIC both fixed effects models do
not fit the data very well since their BIC values are considerably higher than those
of the random effects models. Note that if only the fixed effects models were con-
sidered this meta-analysis would show a harmful effect. In the fixed effects metare-
gression model this would apply only to cohort studies.

Comparing both linear mixed effects models which are based on the assumption
of a normal distribution of the random effects the model with the covariate does
not provide an improved fit of the data. The log likelihood is only slightly larger
and penalizing the number of parameters leads to a larger BIC for the mixed effects
model with the covariate.

Another interesting point is to compare the heterogeneity variance estimated by
both models. Here, no substantial portion of heterogeneity is explained by the co-
variate, since the heterogeneity variance is reduced to 0.081 from 0.086. The same
applies for the models where a discrete distribution is assumed for the random ef-
fects. Owing to the larger number of parameters which have to be estimated here
the BIC values are larger. Thus, if the assumption of a normal distribution for the
random effects is satisfied, judging from the BIC we would choose the model with
random intercept based on a normal distribution for the random effects. To inves-
tigate the normality of the random effects Fig. 7.10 shows a quantile–quantile plot
of the estimated random effects. According to Fig. 7.10 the assumption of a normal
distribution seems to be compatible with the data, although there is a slight indica-
tion of departure from normality at the tails. As a result, the normal random effects
model (intercepts only) would be chosen.

These conclusions are merely data-driven; thus, from a statistical point of view
further covariates need to be identified and included in the model. From a public
health point of view the conclusion is perhaps less straightforward. Although inclu-
sion of the covariate study type does not explain the heterogeneity of the studies
very well, we find that cohort studies find a harmful effect. One might argue that
although these results are far from perfect they should not be ignored as absence
of evidence does not imply evidence of absence. Looking back at these data in the
light of the results from the Women’s Health Initiative study (Rossouw et al. 2002),



180 7 Investigating and Analyzing Heterogeneity in Meta-analysis

−2

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

−1 0 1 2
Theoretical Quantiles

Normal Q–Q Plot

S
am

pl
e 

Q
ua

nt
ile

s

Fig. 7.10 Normal quantile–quantile plot for estimated random effects

it becomes clear that caution is required in the analysis and interpretation of meta-
analyses of observational studies. The major finding of the Women’s Health Initia-
tive study was that the group of subjects undergoing treatment with combined HRT
in the form of PREMPRO (0.625 mg/day conjugated equine estrogens + 2.5 mg/day
medroxyprogesterone acetate) was found to have an increased risk of breast can-
cer (hazard ratio 1.26, 95% confidence interval 1.00–1.59) and no apparent cardiac
benefit. This is contradictory to the prior belief that HRT provides cardiovascular
benefit. As a result, although several benefits were considered, these interim find-
ings at 5 years were deemed sufficiently troubling to stop this arm of the trial after
5.2 years.

7.6 Interpretation of the Results of Meta-analysis
of Observational Studies

The example in the previous section shows that the interpretation of the results of
a meta-analysis should not only discuss the pooled estimator and the confidence
interval but should also focus on the examination of the heterogeneity between the
results of the studies. Strengths and weaknesses as well as potential bias should be
discussed.
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7.6.1 Bias

For epidemiologic studies in general, the main problem is not the lack of preci-
sion and the random error but the fact that the results may be distorted by different
sources of bias or confounding; for a general overview of the problem of bias, see
Hill and Kleinbaum (2000). That means that the standard error (or the size of the

study) may not be the best indicator for the weight of a study. If more or better data
are collected on a smaller number of subjects, the results may be more accurate than
in a large study with insufficient information on the risk factors or on confounders.
The assessment of bias in individual studies is therefore crucial for the overall inter-
pretation.

The central problem of meta-analyses of clinical trials is publication bias. It was
the topic of a paper by Berlin et al. (1989) as early as 1989 and is still a topic of
recent methodological investigations; see, for example, Copas and Shi (2001). This
bias has received a lot of attention particularly in the area of clinical trials. Publica-
tion bias occurs if studies that have nonsignificant or negative results are published
less frequently than studies that have positive results. For randomized clinical trials,
it has been shown that even with a computer-aided literature search only some of the
relevant studies will be identified (Dickersin et al. 1994). For epidemiologic obser-
vational studies additional problems exist, because often a large number of variables
will be collected in questionnaires as potential confounders (Blettner et al. 1999). If
one or several of these potential confounders yield significant or important results,
they may be published in additional papers, which have often not been planned in
advance. In general, publication bias yields a nonnegligible overestimation of the
risk estimate.

However, as has been pointed out, there exist few systematic investigations of
the magnitude of the problem for epidemiologic studies. A major worry is that non-
significant results are neither mentioned in the title nor in the abstract and publica-
tions may be lost in the retrieval process.

7.6.2 Confounding

Another problem arises because different studies adjust for different confounding
factors. It is well known that the estimated effect of a factor of interest is (strongly)
influenced by the inclusion or exclusion of other factors if these factors have an
influence on the outcome and if they are correlated with the risk factor of interest.
Combining estimates from several studies with different ways of adjusting for con-
founders yields biased results. If only literature data are used, crude estimates may
be available for some of the studies and model-based estimates for others. However,
as the adjustment for confounders is an important issue for the assessment of an
effect in each single study, it is obvious that combining these different estimates in a
meta-analysis may not give meaningful results. It is necessary to use “similar” con-
founders in each study to adjust the estimated effect of interest in the single studies.
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In general that would require a reanalysis of the individual study. Obviously, that
requires the original data and a meta-analysis with individual patient data is needed
for this purpose.

7.6.3 Heterogeneity

In epidemiologic research different study designs are in use and none of them can
be considered as a gold standard compared with the randomized clinical trial for
therapy studies. Therefore, it is necessary to evaluate the comparability of the indi-
vidual designs before summarizing the results. Often, case-control studies, cohort
studies, and cross-sectional studies are used to investigate the same questions and
results of those studies need to be combined. Egger et al. (2001) pointed out several
examples in which results from case-control studies differ from those of cohort stud-
ies. For example, in a paper by Boyd et al. (1993), it was noted that cohort studies
show no association between breast cancer and saturated fat intake, while the same
meta-analysis using results from case-control studies only revealed an increased,
statistically significant risk. Other reasons for heterogeneity may be different uses
of data collection methods, different control selection (e.g., hospital vs. population
controls), and differences in case ascertainment. Differences could be explored in
a formal sensitivity analysis, but also by graphical methods (forest plot). However,
meta-analyses from published data provide only limited information if the reasons
for heterogeneity are to be investigated in depth. The problem of heterogeneity can
be well demonstrated with nearly any example of a published meta-analysis. For ex-
ample, Ursin et al. (1995) investigated the influence of the body mass index (BMI)
on the development of premenopausal breast cancer. They included 23 studies, of
which 19 were case-control studies and four were cohort studies. Some of these
studies were designed to investigate BMI as a risk factor; others measured BMI
as confounders in studies investigating other risk factors. One can speculate that
the number of unpublished studies in which BMI was mainly considered as a con-
founder and did not show a strong influence on premenopausal breast cancer is
nonnegligible and that this issue may result in some bias. As is usual practice in epi-
demiologic studies, relative risks were provided for several categories of BMI. To
overcome this problem the authors estimated a regression coefficient for the relative
risk as a function of the BMI; however, several critical assumptions are necessary
for this type of approach. The authors found severe heterogeneity across all studies
combined (the p value of a corresponding test was almost zero). An influence of
the type of study (cohort study or case-control study) was apparent; therefore, no
overall summary was presented for case-control and cohort studies combined. One
reason for the heterogeneity may be the variation in adjustment for confounders.
Adjustment for confounders other than age was used only in ten of the 23 studies.
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7.7 Case Study: Aspirin Use and Breast Cancer Risk –
A Meta-analysis and Metaregression of Observational
Studies from 2001 to 2007

7.7.1 Introduction

With a prevalence of about 4.4 million women and a lethality rate of more than
410,000 cases per year, breast cancer is the most common cancer and the leading
cause of death in women worldwide (Parkin et al. 2005; WHO 2002).

This large public health burden calls for preventive measures. One such potential
preventive action might be chemoprevention given by regular intake of Aspirin or
similar drugs.

Cyclooxygenase (COX) is an enzyme that is responsible for formation of biolog-
ical mediators called prostanoids, which include prostaglandins, prostacyclin, and
thromboxane. COX has two isonenzmyes: COX-1 and COX-2. COX-1 is considered
a constitutive enzyme found in most mammalian cells. On the other hand, COX-2
is considered an inducible enzyme becoming abundant in inflammation. Pharmaco-
logical inhibition of COX-2 leads to symptom relief of inflammation and pain. This
is the method of action of well-known drugs such as Aspirin and Ibuprofen, known
as nonsteroidal anti-inflammatory drugs (NSAIDs). In the last few years, there has
been an increasing body of evidence supporting the role of COX-2 in breast can-
cer development and progression (Arun and Goss 2004; Denkert et al. 2004; Vainio
1998). Aspirin and other NSAIDs are well-known inhibitors of COX and are there-
fore attractive agents for a potential chemoprevention in breast cancer. Animal and
in vitro studies showed that NSAIDs are able to inhibit breast cancer cells and to
suppress tumor growth (Harris et al. 2000; McCormick et al. 1985). Consequently,
several observational studies were carried out but they provided inconsistent results.
Two meta-analyses have been conducted that calculated a pooled risk reduction of
18% (Khuder and Mutgi 2001) and 23% (Gonzalez-Perez et al. 2003), respectively,
for NSAID intake (relative risk 0.82, 95% confidence interval 0.66–0.88) and a rel-
ative risk of 0.77 (95% confidence interval 0.69–0.86) for Aspirin alone (Khuder
and Mutgi 2001). It remains unclear which exposure categories were used to calcu-
late the pooled relative risk and which criteria were used to chose them. Moreover,
the reasons for heterogeneity between the individual studies and the dose-response
relationship between NSAID intake and breast cancer risk were not examined.
A review by Harris et al. (2005) dealt with dose response but took only frequency
and not duration of use into account. Mangiapane, Blettner, and Schlattmann (2008)
examined recent epidemiologic studies on Aspirin use and breast cancer published
from 2001 to 2005, to investigate reasons for heterogeneity between the individ-
ual studies and to analyze a dose-response relationship considering frequency and
duration of use. The analysis presented here is an extension of this meta-analysis
incorporating studies until December 2007.
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7.7.2 Literature Search and Data Extraction

We searched for published and unpublished literature evaluating the association be-
tween Aspirin and breast cancer risk. We systematically searched for cohort studies
and case-control studies in the MEDLINE, CANCERLIT, and EMBASE databases
for the period from January 1, 2001 to December 31, 2007. The search was re-
stricted to publications in English and German. Medical subject headings (MeSH)
and keywords used for the MEDLINE search were “Aspirin” or “anti-inflammatory
drugs” or “NSAIDs” for the exposure and “breast cancer” for the outcome. The
same keywords were used for the CANCERLIT and EMBASE search. Studies were
included if they met the following criteria: (1) cohort study or case-control study; (2)
evaluated the association between Aspirin and breast cancer; (3) reported a relative
risk or odds ratio (OR) including confidence intervals or information to permit their
calculation. Studies which investigated different types of NSAIDs were excluded
if they did not present stratified estimates for Aspirin use alone. We checked refer-
ences cited in original or review articles that were not found by the database search.
To find unpublished material we contacted the authors of the epidemiologic litera-
ture in this field if their e-mail addresses were available. Additionally, we checked
the Web sites of the American Society of Clinical Oncology, of the British Asso-
ciation of Cancer Research, of the European Association of Cancer Research, and
of the Deutscher Krebskongress to find online published abstracts of their confer-
ences. Data abstracted included study design, year of publication, country, match-
ing used, percentage of response, exposure assessment (e.g., questionnaire, phar-
macy database), frequency and duration of Aspirin use, total number of persons or
person-years in each comparison group, outcome assessment, and relative risk with
95% confidence interval. We assumed that the OR from case-control studies pro-
vided a valid estimate for the relative risk. The estimators of the relative risk and
related variances were abstracted, and were adjusted for the greatest number of co-
variates. If several exposure categories for the frequency and duration of Aspirin use
had been published within one article, all of them were extracted. For each study,
that exposure category which corresponded to the least common denominator of all
studies was included in the meta-analysis.

7.7.3 Study Characteristics

A total of 15 studies (seven cohort studies and eight case-control studies) met the
inclusion criteria. All studies were published in the English language. Estimates
for the relative risk ranged from 0.71 to 1.12 within the prospective studies and
from 0.4 to 1.13 within the retrospective studies. All but two studies compared As-
pirin use with nonuse. One study defined nonexposure as Aspirin use shorter than
1 year and another study as Aspirin use less frequently than once per week. The
definition of exposure was very heterogeneous and ranged from any use up to ten
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Fig. 7.11 Forest plot with summary estimate for the Aspirin and breast cancer data. OR odds ratio,
CI confidence interval

different exposure categories. One study only gave information on the frequency
of Aspirin use (Johnson et al. 2002), another presented estimates for both but not
in combination (Garcia Rodriguez and Gonzalez-Perez 2004), and seven studies
gave estimates for the combination of the duration and the frequency of Aspirin use
(Cotterchio et al. 2001; Harris et al. 2005; Marshall et al. 2005; Swede et al. 2005;
Terry et al. 2004; Zhang et al. 2005). The number of adjusted covariates ranged
from one (Harris et al. 2003) to 17 (Zhang et al. 2005). Figure 7.11 shows the
studies included sorted by year of publication.

7.7.4 Publication Bias

The regression model in which the estimated effect sizes were directly regressed on
inverse variance as a predictor found no evidence of publication bias (p = 0.87).
Furthermore, assessment of the funnel plot did not show strong patterns, although
there were a few missing beyond an inverse variance of 40, which is an indicator
for a lack of very small studies. Overall, the results did not reveal evidence for a
substantial influence of publication bias.
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Table 7.7 Estimates of τ2 and model comparison for the case study of Aspirin and breast cancer

Method Residual Estimates (SE) Heterogeneity log L BIC
heterogeneity intercept (τ̂2)

Fixed None −0.205 (0.029) – 1.349 0.009
Mixed Additive −0.213 (0.042) 0.012 3.142 −0.869
FM Additive −0.242 0.042 5.235 3.069
DL Additive −0.216 (0.046) 0.017 – –
SH Additive −0.223 (0.059) 0.035 – –

7.7.5 Results

The combined estimate of the relative risk was 0.82 (95% confidence interval 0.77–
0.86) using the fixed effects model. This result is shown in Fig. 7.11. On the basis
of the fixed effects model Aspirin intake seems to prevent breast cancer in women.
Looking at a first test of heterogeneity, we find χ2

het = 31.16 (14 degrees of free-
dom) with a corresponding p value of 0.002. Thus, the I2 statistic, i.e., the variation
in log relative risks attributable to heterogeneity is 55.1%. There seems to be con-
siderable heterogeneity between studies. This also becomes clear when estimating
the heterogeneity variance τ2. These estimates are shown in Table 7.7. Looking at
the goodness-of-fit statistic BIC, at least the finite mixture model seems to provide
a better fit than the homogenous model. The results of the mixture model are shown
in Sect. 7.8.3.

The results of the heterogeneity analysis raise the question of whether known
covariates explain at least some of the observed heterogeneity. This is considered in
the next section.

7.7.6 Results of a Metaregression

In this metaregression we consider the covariates type of study (0 for case-control
study, 1 for cohort study) and the year of publication centered on the year 2001.
We start with the interpretation of the results in Table 7.8, looking first at the linear
mixed model. In terms of the likelihood ratio test, the third mixed effects model
with the covariates study type and year of publication provides the best fit to the
data. The results of the metaregression provide several interesting insights. Looking
at linear mixed effects models, the following comments are in order.

First, cohort studies provide less optimistic results than do case-control studies.
In model 2 case-control studies estimate the mean OR of 0.74 cohort studies esti-
mate a mean OR of exp(−0.305+0.187) = 0.89. This is certainly less encouraging.
Second, it is important to note that more recent studies provide less optimistic re-
sults than earlier studies. With each year from 2001 the OR on the log scale increases
by 0.031 when adjustments are made for study type. Third, the covariates explain
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Table 7.8 Metaregression for the Aspirin and breast cancer data

Type of model Intercept Type Year Heterogeneity (τ2) log L BIC

Fixed effects −0.412 0.165 0.031 – 8.61 −9.09
(0.078) (0.071) (0.016)

Linear mixed effects 1 −0.213 – – 0.012 3.14 −0.869
(0.042)

Linear mixed effects 2 −0.305 0.187 – 0.002 6.21 −4.375
Linear mixed effects 3 −0.412 0.165 0.031 0 8.61 −6.382

Finite mixture model
Intercept 1 p̂1 = 0.12 −0.9154 0.079 0.034 0.03 10.53 −7.51

(0.075) (0.05) (0.012)
Intercept 2 p̂2 = 0.87 −0.357 – –

(0.054)

variability between studies. The estimate of τ2 drops from 0.012 for the random ef-
fects model without covariates to zero when the covariates study type and year are
included.

Now switching to the covariate-adjusted finite mixture model, we can still state
an effect of study and year of publication. However, in contrast to the linear mixed
effects model, the mixture model still identifies residual heterogeneity. Thirteen per-
cent of the studies find a strong protective effect reflected by the intercept of that
component equal to −0.92.

In terms of interpretation based on the linear mixed effects model the protec-
tive nature of Aspirin use seems questionable, whereas the mixture model seems to
identify a subgroup with strong protective effects.

7.7.7 Modeling Dose Response

Investigation of a dose-response relationship is an important part in applying the cri-
teria for a causal association in epidemiology (Hill 1965). Technically, the analysis
of dose response may be seen as a special case of a meta-analysis or metaregression.
In published studies which investigate a quantal relationship, most frequently the
available information is given by the log relative risks (logRRi) at each dose level
xi. = 1, . . . ,m. Dose response is then modeled by fitting a weighted least squares lin-
ear regression to the adjusted log (ORs) or relative risks (Greenland and Longnecker
1992):

logRRi j = αi +βixi j , (7.43)

where αi is the intercept of the ith study, βi is the corresponding slope of the ith
study, and xi j is the value of exposure in the jth exposure category.

One question to deal with is the use of the unexposed group. Following Smith
et al. (1995), including the intercept αi in the model results in the variable inter-
cept model. This implies that the risk between two groups may differ before the
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initial dose. Forcing the intercept through zero is frequently called the zero intercept
model. This implies that xi j indicates exposure in the j = 1, . . . ,J −1 nonreference
categories.

In this case the model reduces to

logRRi j = βixi j . (7.44)

Most commonly xi j = 0 is used as the reference category and by definition the log
relative risk is zero in the reference category; thus, this model has no intercept.
Hence, a meta-analysis of dose-response data may be undertaken using estimated
regression coefficients β̂i and corresponding standard errors se(βi). Regression co-
efficients β̂i may be obtained using a weighted linear regression with weights

wi j =
1
σ2

i j
. (7.45)

Again, σ2
i is the variance of the jth relative risk or OR of the ith study. The slope

standard error can be obtained as

se(βi) =
1

∑wi jx2
i j

. (7.46)

Example Revisited

To investigate a dose-response relationship only studies could be included which
reported information on the frequency and on the duration of Aspirin use. Studies
which reported only the exposition category any use had to be excluded. We as-
signed scores to the categories of Aspirin intake. In the case of the category a to
b, we chose the midpoint and in the case of the lowest categories <a, we assigned
the score a/2. Since the score assignment for the upper, open-ended categories (≥a)
most sensitively influences the estimated slope in categorical regression (Berlin et al.
1993; Il’yasova et al. 2005), Mangiapane et al. (2008) explored two approaches to
assign a score to this category. If bi represents the lower bound of the ith interval,
where the intervals are indexed i = 1, . . . ,n, the first approach assigned the nth inter-
val score as function of its lower bound multiplied by 1.233. Since Il’yasova et al.
(2005) showed that more valid results can be obtained by using a function of the
lower bound and the width of the previous interval, a second approach assigned
the nth interval score as a function of bn +(bn − bn−1). Scores were calculated for
the frequency of use (pills per week) as well as for the duration of use. To combine
frequency and duration of use, we calculated a combined variable (pill-years) by
multiplying the number of pills per day and the number of years of Aspirin use.
This leads to the combined variable pill-years (pills per day× years of use).

An initial analysis involves fitting model (7.44) to each study with sufficient data
to combine frequency and duration into the variable pill-years. Table 7.9 shows the
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Table 7.9 Aspirin and breast cancer: dose-response data

Study Type PPW Duration Pill-years RR 95% CI β̂ SE(β̂ )

Harris (2003) Cohort 7 2.5 2.50 0.83 0.64–1.08
7 7 7.00 0.87 0.60–1.25 −0.022 (0.011 )
7 12 12.00 0.79 0.60–1.04

Terry (2004) Case control 3.5 2.5 1.25 1.13 0.64–1.99
8.4 2.5 3.00 0.74 0.54–1.01
3.5 6 3.00 0.89 0.64–1.24 −0.044 (0.019 )
8.4 6 7.20 0.77 0.57–1.04

Jacobs (2005) Cohort 9 2.5 3.21 1.08 0.94–1.23 −0.002 (0.013 )
9 6 7.71 0.88 0.69–1.12

Swede (2005) Case control 0.5 0.5 0.04 0.8 0.67–0.96
1 1.2 0.17 0.95 0.74–1.23
4 1.2 0.69 0.8 0.65–0.99
8.4 1.2 1.44 0.74 0.59–0.92
1.2 5 0.86 0.74 0.59–0.94 −0.040 (0.011)
1.2 12 2.06 0.91 0.78–1.06
7 5 5.00 0.77 0.59–1.02
7 12 12.00 0.72 0.53–0.97

Zhang (2005) Case control 4.8 1 0.69 0.79 0.45–1.37
4.8 3 2.06 0.89 0.53–1.49
4.8 7 4.80 1.11 0.57–2.17 −0.023 (0.020)
4.8 14.5 9.94 0.89 0.45–1.74
4.8 24 16.46 0.59 0.25–1.36

Marshall (2005) Cohort 3.5 2.5 1.25 1.05 0.87–1.25
3.5 6 3.00 1.12 0.99–1.26
7 2.5 2.50 1.00 0.84–1.2 0.011 (0.012)
7 6 6.00 0.96 0.79–1.18

Harris (2006) Case control 2.5 5 1.79 1.02 0.3–3.57 −0.378 (0.11)
4 5 2.86 0.39 0.22–0.72

Ready (2007) Cohort 2 1.5 2.14 0.76 0.55–1.05 0.035 (0.024)
2 6 6.85 1.43 1.02–2.00

PPW pills per week, RR relative risk, CI confidence interval, SE standard error

relative risk and ORs, respectively, for study-specific dose-response data together
with the estimated regression coefficients.

The estimated regression coefficients β̂ from Table 7.9 can now be subjected to
meta-analysis as described within this chapter. That is, a weighted pooled estimate
may be obtained together with a test for heterogeneity. Figure 7.12 shows a for-
est plot of the estimated regression coefficients together with their 95% confidence
intervals.

Performing a fixed effects meta-analysis on the estimated slopes leads to an over-
all estimate of β̂ = −0.02 with a 95% confidence interval (−0.03 to −0.01). This
indicates that there seems to be a dose-response relationship present and that with
increasing dose the relative risk decreases. However, Fig. 7.12 shows substantial
variability between studies. The variation among studies seems to be greater than
the variation which can explained by the standard errors of the slopes. One way to
address this problem would be to fit random effects models for the slopes as outlined
by Dumouchel (1995).
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Fig. 7.12 Slope estimates (ES) and 95% confidence intervals for the Aspirin and breast cancer data

Instead of this two-step approach (first estimating regression coefficients and
then performing a meta-analysis on these coefficients) here a one-step approach
is proposed.

7.7.8 A Metaregression Model for Dose-Response Analysis

Consider fitting a zero-intercept model with random effects

θ̂i j = β1xi j +bixi j + εi, bi ∼ N(0,τ2
1 ), εi ∼ N(0,σ2

i j), (7.47)

where θ̂i j are given by the logRRi j of the respective studies and σ2
i j are the corre-

sponding variances. As pointed out by Greenland and Longnecker (1992) the vari-
ance estimators of the regression coefficients βi underestimate the true variance.
This is due to the fact that using the same reference category for each exposure
category induces a correlation which is ignored. Thus, Greenland and Longnecker
(1992) estimated the covariance matrix based on the observed relative risks and the
number of subjects in the respective exposure category. Often, these numbers are
not available.

The application of a linear mixed effects model helps to account for the correla-
tion within each study. To see this consider the intraclass correlation coefficient ρis
in the ith study with dose levels xi j and xis. Then the respective variances and the
covariance are given by
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Table 7.10 Random effects dose-response regression

Model Intercept (SE) Slope (SE) Heterogeneity (τ2
1 ) BIC

Zero intercept
Fixed – −0.016 (0.005) – 9.6
Random – −0.016 (0.009) 0.0003 6.3

Variable intercept
Random −0.071 (0.068) −0.0089 (0.0086) 0.012 −8.5

var(θ̂i j) = τ2
1 x2

i j +σi j,

var(θ̂is) = τ2
1 x2

is +σis,

cov(θ̂i j, θ̂is) = τ2
1 xi jxis. (7.48)

As a result, the intraclass correlation ρis is given by

ρis =
τ2xi jxis√

τ2
1 x2

i j +σi j

√
τ2

1 x2
is +σis

. (7.49)

Hence, this model is able to account for the induced correlation. Applying this
model to our data, we obtain the results shown in Table 7.10. Calculating the likeli-
hood ratio test for the models given in Table 7.10 leads to 6.2−2.1 = 4.1. Thus, on
the basis of the likelihood ratio statistic we would conclude that there is structural
variability between the dose-response relationship in this meta-analysis. We would
stick to the random effects model although the improvement looking at the BIC is
not that strong. However, the more complex model also addresses the correlation
within studies and is thus preferable. With the same argument we present only the
random effects version of the model with variable intercepts.

Using the random effects model, the fixed effect of the variable “pill-years” is no
longer statistically significant. As a result, there is no clear dose-response relation-
ship when applying this model. The same applies if a model with variable intercepts
is considered.

7.7.9 Discussion

At first sight this meta-analysis seems to support the hypothesis that Aspirin use has
a protective effect with regard to breast cancer risk judging from the pooled relative
risk of 0.82 (95% confidence interval 0.77, 0.86) based on the fixed effects model.
However, this new meta-analysis of observational studies published between 2001
and 2007 does not provide a clear-cut protective association between Aspirin intake
and breast cancer risk when a metaregression with covariates study type and year
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of publication based on a linear mixed effects model is performed. Cohort studies
provide less optimistic results than case-control studies. Likewise, newer studies
provide less support for a protective association. Additionally, the dose-response
analysis neither using the variable-intercept model nor using the zero-intercept
model provides substantial evidence of a clear-cut dose-response relationship.

However the metaregression based on the finite mixture with the same covariates
still identifies residual heterogeneity and a subgroup with a strong protective effect.
As a result, from the author’s point of view it would be desirable to perform simu-
lation studies for the estimation of the heterogeneity variance and covariate effects
for metaregression.

7.8 Computation

7.8.1 “Standard Meta-analysis”

This section provides R and S-plus code which estimates the parameters of the vari-
ous models. The dataframe containing the data for the meta-analysis and the metare-
gression is called “aspirin” and is part of the package CAMAN. In the beginning
we start with the construction of a forest plot. A simple command is provided by
the R library rmeta by Lumley (2008). In a first step a variable called “annotate”
combining the name of the study and year of publication of the study is created.
Then the function metaplot is used to build a forest plot on the log scale. The func-
tion takes as necessary arguments the effect sizes and corresponding standard errors.
Additionally, we give the new variable “annotate.”

> library(CAMAN)
> library(rmeta)
> data(aspirin)
> attach(aspirin)
> annotate<-cbind(name,year)
> metaplot(logrr,se,labels=annotate)

The result is shown in Fig. 7.13.
We continue with the fixed effects model. The standard fixed effects model can be

fit using various R packages, e.g., meta by Schwarzer (2007). The function metagen,
which has the log relative risks and corresponding standard errors as arguments, can
be used to fit fixed effects and random effects models based on the DerSimonian–
Laird approach. After installing the package and invoking the library, one uses the
command metagen.

> library(meta)
> metagen(logrr,se)



7.8 Computation 193

Odds ratio

S
tu

dy
 R

ef
er

en
ce

−1.4 −1.0 −0.6 −0.2 0.2

Zhang 2005
Swede 2005
Garcia−Rodriguez 2004
Terry 2004
Moorman 2003
Cotterchio 2001
Marshall 2005
Jacobs 2007
Harris 2003
Johnson 2002
Harris 2006
Gill 2007
Gallichio 2007
Kirsh 2007
Ready 2007

Fig. 7.13 Forest plot constructed with the function metaplot

This gives the shortened output

Number of trials combined: 15

Fixed effects model
95%-CI z p.value

-0.2044 [-0.2630; -0.1459] -6.8478 < 0.0001
Random effects model
-0.2157 [-0.3078; -0.1235] -4.5883 < 0.0001

Quantifying heterogeneity:
tauˆ2 = 0.0168; H = 1.49 [1.12; 1.99];

Iˆ2 = 55.1% [19.6%; 74.9%]

Test of heterogeneity:
Q d.f. p.value

31.16 14 0.0053

Various Estimates of the Heterogeneity Variance with the R/S-plus
Function mima

The R/S-plus function mima (Viechtbauer 2006) may be used to obtain various es-
timates of the heterogeneity variance. To calculate the SH variance the following
steps are required. For the very first use the function needs to be loaded with the



194 7 Investigating and Analyzing Heterogeneity in Meta-analysis

source statement, which assumes that the function is stored in the current directory.
Then an empty matrix of covariates needs to be created and the variances of the
individual studies are calculated from the standard errors of the individual studies.
Finally the function is called with the option method = “SH”

> source("mima.ssc")
> covar<- c()
> var<-seˆ2
> mima(logrr,var,covar,method="SH")

This gives the (shortened) output:

Estimate of (Residual) Heterogeneity: 0.0358

estimate SE zval pval CI_L CI_U
intrcpt -0.2246 0.0597 -3.7596 2e-04 -0.3416 -0.1075

If the DL estimator is desired, the call is changed to

> mima(logrr,var,method="DL")

which gives the output

Estimate of (Residual) Heterogeneity: 0.0168

7.8.2 Meta-analysis with SAS

To the author’s knowledge there are no specialized tools available to perform a meta-
analysis in SAS; however, proc mixed may be used to perform maximum likelihood
estimation.

data aspirin;
input name$ year logrr est type;
cards;
Cotterchio 2001 -0.31471 0.00820 0
Johnson 2002 -0.34249 0.01070 1
Moorman 2003 -0.91629 0.04672 0
Harris 2003 -0.21072 0.01070 1
Garcia-Rodriguez 2004 -0.15082 0.02906 0
Terry 2004 -0.26136 0.02353 0
Zhang 2005 -0.15082 0.02302 0
Swede 2005 -0.30111 0.01284 0
Marshall 2005 -0.04082 0.01048 1
Harris 2006 -0.67334 0.10749 0
Kirsh 2007 -0.27444 0.00539 0
Jacobs 2007 -0.18633 0.02022 1
Gill 2007 0.04879 0.00802 1
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Gallichio 2007 -0.10536 0.01660 1
Ready 2007 -0.04082 0.01458 1
;
run;

After the data have been read, some auxiliary variables are created in a data step,
more precisely, weights wi = (1/σ2

i ), study number, and the centered variable year
of publication are created:

data aspirin;
set aspirin;
study=_N_;
wgt=1./est;
yearc=year-2001;
run;

The study-specific variances σ2
i are fixed and known. In SAS terminology, we say

that the R matrix for the residuals is known. There is no need to estimate the resid-
ual variance as long as we supply this information in the model and constrain R to
be fixed at this value while estimating other parameters in the model. This require-
ment can be implemented through the weight and parms statements in the mixed
procedure. A fixed effects model is then obtained by

proc mixed method=ml data=aspirin;
class study;
weight wgt;
model logrr= /s cl;
Parms (1)/hold=(1);
run;

A random effects model is obtained with

proc mixed method=ml covtest cl data=aspirin;
class study;
weight wgt;
model logrr= /s cl;
Random int /type=un sub=study;
Parms (0.1) (1)/hold=(2);
run;

Again, the study-specific variances are kept fixed; additionally a starting value for
the heterogeneity variance is given.
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7.8.3 Finite Mixture Models

A finite mixture model without covariates can be fit using the commands

> library(CAMAN)
> data(aspirin)
> mix.result<-mixalg(obs="logrr",var.lnOR="var",

data=aspirin)

This command expects the log relative risk and the corresponding variance. After
running the combination of the VEM algorithm and the EM algorithm, one obtains
the following result after typing mix.result on the command prompt:

> mix.result

p mean
1 0.07091158 -0.90089604
2 0.67435310 -0.25244617
3 0.25473532 -0.03451365

Log-Likelihood: 5.235441
BIC: 3.069368

Thus, the initial solution leads to a mixture of three components. This may be com-
pared with a fixed effects model (one component only) using the EM algorithm.

This is achieved by typing

> m0<-mixalg.EM(mix.result,p=c(1),t=c(0))

This function expects the object of the previous analysis mix0 and vectors of starting
values for the mixing weights and component means, respectively.

This gives the result

> mix0

p mean
1 1 -0.2044453

Log-Likelihood: 1.349750
BIC: 0.008551024

To perform a forward selection, a solution with two components is obtained as
follows:

> m1<-mixalg.EM(mix.result,p=c(0.75,0.25),t=(-0.25,0))

or equivalently

> m1<-mixalg.EM(obs="logrr",var.lnOR="var",
p=c(0.75,0.25),t=c(-0.25,0),data=aspirin)
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This gives the shortened result

> m1
p mean

1 0.7245986 -0.27411554
2 0.2754014 -0.03765404

Log-Likelihood: 3.794848 BIC: 0.5344549

To compare both models the function anova can be used. This function performs a
parametric bootstrap to obtain the distribution of the likelihood ratio statistic.

> anova(m0,m1,nboot=2500)

mixture model k BIC LL LL-ratio
1 m0 1 0.00914527 1.349452 NA
2 m1 2 0.53445492 3.794848 4.890791

LL ratios bootstrap distribution‘
0.9 0.95 0.975 0.99

2.126616 3.633158 4.887770 6.546906

Judging from the likelihood ratio statistic, we reject the null hypothesis of a ho-
mogenous model, although the BIC is not considerably better.

7.8.4 Metaregression

Linear Mixed Effects Models with S-plus

Linear mixed effects models may be estimated using either SAS or S-plus, but un-
fortunately, to the author’s knowledge, not with R. The reason for this is that the
function lme of the package nlme does not handle fixed variances as needed. The fol-
lowing S-plus code computes the linear mixed effects model with covariates study
type (0 for case-control study; 1 for cohort study) and year of publication centered
on the year 2001.

> m2<-lme(fixed=logrr˜type+yearc,data=aspirin,
random=˜1|study,

> weights=varFixed(˜var),control=lmeControl(sigma=1),
method="ML")

This gives the result

> m2

Linear mixed-effects model fit by maximum likelihood
Data: aspirin
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Log-likelihood: 8.607365
Fixed: logrr ˜ type + yearc
(Intercept) type yearc
-0.4115349 0.1646794 0.03089528

Random effects:
Formula: ˜ 1 | study

(Intercept) Residual
StdDev: 0.0001318665 1

Variance function:
Structure: fixed weights
Formula: ˜ var

Number of Observations: 15
Number of Groups: 15

Linear Mixed Effects Models with SAS

Likewise, a random effects model with covariates study type and year of publication
is obtained with the following code:

proc mixed method=ml covtest cl data=aspirin;
class study;
weight wgt;
model logrr= type yearc /s cl;
Random int /type=un sub=study;
Parms (0.1) (1)/hold=(2);
run;

Covariate-Adjusted Finite Mixture Models

The covariate-adjusted finite mixture model may be fit using the function covmix.
The first entry gives the dependent variable “logrr.” The second entry gives the vari-
ables for the fixed effects; the next entry gives the variables for the random effects. In
this case none are given; this implies that different intercepts are fit. The next entry
gives the dataframe to be used. Finally, the number of components is set to k = 2.

> mixcov(dep=c("logrr"),fixed=c("yearc","type"),
random=c(""),data=aspirin,k=2)
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This function gives the shortened output

Fit of the 2 -component mixture model:

coefficients:
Estimate Std. Error t value Pr(>|t|)

Z1 -0.915363239 0.074710396 -12.2521535 8.4297221e-16
Z2 -0.357015980 0.053778983 -6.6385781 7.7594519e-10
yearc 0.034441624 0.012115832 2.8426958 4.4353250e-04
typecohort 0.079095186 0.050181724 1.5761751 3.4666127e-02

mixing weights:
comp. 1 comp. 2

0.1333334 0.8666666

Log-Likelihood: 10.52891 BIC: -7.517567



Chapter 8
Analysis of Gene Expression Data

The analysis of gene expression data is a rapidly growing field of medical research.
There is a large and increasing body of statistical literature on the analysis of mi-
croarray data. See, for example, the books by Parmigiani (2003), Simon et al.
(2003), McLachlan et al. (2004), and Gentleman et al. (2005). Each human con-
sists of a vast number of cells. With only a few exceptions, every cell of the body
contains a full set of chromosomes contained in the nucleus. The human genome
consists of 23 pairs of chromosomes which are the blueprint for all cellular activi-
ties. One pair of chromosomes is inherited from the father, the other one from the
mother. Each chromosome consists of a chain of intertwined DNA, the double he-
lix. Only small portions of DNA contain information for protein construction. These
are called genes. “Gene expression” is the term used to describe the transcription of
the information contained within the DNA into messenger RNA (mRNA), which is
translated into proteins after a mRNA processing step. These perform most of the
critical functions of cells. Thus, each gene specifies the composition and structure
of proteins via mRNA. This gene expression is a complex and tightly regulated
process that allows a cell to respond dynamically both to environmental stimuli and
to its own needs.

8.1 DNA Microarrays

The great advancement of DNA microarrays is given by the fact that it is now pos-
sible to investigate simultaneously thousands of genes instead of looking at only a
few. Technically speaking, DNA microarrays are small, solid supports containing
the sequences of thousands of different genes attached at fixed locations. The sup-
ports themselves are usually glass microscope slides, but silicon chips and nylon
membranes are used as well. The DNA is printed, spotted, or actually synthesized
directly on the support. Gene sequences in a microarray are attached to their support
in an orderly way, because the location of each spot in the array is used to identify a
particular gene sequence. These spots are oligonucleotides consisting of fragments
of DNA that are typically five to 50 nucleotides long.

P. Schlattmann, Medical Applications of Finite Mixture Models, 201
Statistics for Biology and Health, DOI: 10.1007/978-3-540-68651-4 8,
c© Springer-Verlag Berlin Hiedelberg 2009



202 8 Analysis of Gene Expression Data

8.2 The Analysis of Differential Gene Expression

8.2.1 Analysis Based on Simultaneous Hypothesis Testing

Since the seminal paper of Golub et al. (1999), there has been considerable growth
of the literature on analysis of gene expression and microarray data. At the be-
ginning of microarray data analysis, research focused on clustering of genes and
individuals on the basis of similar outcomes. In the terminology of statistical learn-
ing this is called unsupervised learning. Another approach involves the analysis of
differentially expressed genes, that is, finding differences in gene expression levels
between subgroups of individuals. For example, differences in gene expression be-
tween healthy tissue and tumor samples might be of interest. This is shown schemat-
ically in Fig. 8.1.

Statistical significance of differential gene expression can be tested by perform-
ing a hypothesis test for each of the m genes of the microarray, starting with a col-
lection of null hypotheses

H1,H2, . . . ,Hm, (8.1)

Fig. 8.1 A microarray. mRNA
messenger RNA, cDNA com-
plementary DNA
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resulting in corresponding test statistics

T1,T2, . . . ,Tm (8.2)

and their p values P1,P2, . . . ,Pm which indicate how strongly the observed values ti
of the test statistics Ti contradict Hi, that is, PrHi(|Ti| > |ti|).

Assuming normality for the data and unequal variances, one such test would be
the two-sample t test given by

ti =
x̄i − ȳi√

SD2
xi

N +
SD2

yi
M

, i = 1, . . . ,m , (8.3)

where x̄i is the mean of the expression values xi1, . . . ,xiN of the ith gene of the
healthy tissues from 1, . . . ,N individuals. Likewise, ȳi is the mean of measure of ex-
pression yi1, . . . ,yiM from the of the ith gene from the tumor tissues of 1, . . . ,M indi-
viduals. Here, SDx and SDy denote the standard deviation of the respective groups.
This test is then performed for each gene in the array.

The corresponding p value Pi of the respective test statistic is then obtained from

Pi = 1−F0(ti)+F0(−ti), (8.4)

where F0 is the true distribution of the test statistic Ti under the null hypothesis.
To demonstrate the method, we apply data from the paper of Golub et al. deal-

ing with patients suffering from leukemia. This is a famous and widely used data
set. The author’s interest was how could one use an initial collection of samples of
bone marrow tissue belonging to known diagnostic categories such as acute myeloid
leukemia (AML) and acute lymphatic leukemia (ALL) to distinguish those cate-
gories on the basis of microarray data. In our example we use both the training and
the validation set of Golub et al. (1999) which consisted of 72 bone marrow samples
(45 ALL, 27 AML) obtained from acute leukemia patients at the time of diagnosis.
RNA prepared from bone marrow mononuclear cells was hybridized to high-density
oligonucleotide microarrays, produced by Affymetrix, which contained probes for
7,129 human genes. Nowadays gene chips contain probes coding for up to 35,000
genes called “whole genome chips.” A plot of the t test statistics and the correspond-
ing p values is shown in Fig. 8.2. There are a total of 2,046 genes with a p value
smaller than 0.05.

The main statistical problem in the analysis of microarray data is that the num-
ber m of genes is much larger than the number of samples. Thousands of genes are
tested simultaneously. If, for example, a significance level of 0.01 is applied and
10,000 genes are tested, if no single gene is differentially expressed, we would ex-
pect 10,000×0.01 = 100 false-positive results. Multiple testing methods allow us to
assess the statistical significance of findings. In the following, the notation of Ben-
jamini and Hochberg (1995) for labeling correct and incorrect rejections is applied.
When testing m hypotheses there are m0 true null hypotheses and m1 truly differ-
entially expressed genes. The observable statistic R counts how many hypotheses
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Fig. 8.2 Histogram of t statistics and corresponding p values of the data of Golub et al. (1999)

Table 8.1 Type I and Type II errors in multiple hypothesis testing

No. of nonrejected No. of rejected Total
hypotheses hypotheses

No. of true null hypotheses U V m0
(non-differentially expressed genes) Type I error

No. of false hypotheses T S m1
(differentially expressed genes) Type II error

Total m−R R m

are rejected, that is, how many genes are called differentially expressed. Conse-
quently V denotes the number of type I errors, i.e., false-positive results among the
m tests. S = R−V counts the number of correctly rejected hypotheses and T de-
notes the number of type II errors (false negatives). Table 8.1 gives an overview of
the notation.

One approach to control the type I error rate is to control the familywise error
rate (FWER). The FWER is defined as the probability of at least one type I error
(false positive) among the genes selected as significant:

FWER = Pr(V > 0). (8.5)

A famous procedure to control the FWER is the Bonferroni correction. Suppose that
for each gene i = 1, . . . ,m a hypothesis test is conducted. Then for each gene a test
statistic Ti with corresponding unadjusted p value Pi is obtained. The Bonferroni
adjusted p values are then given by

P̃i = min(mPi,1). (8.6)
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Step 1: Rank the observed p values P(1) ≤ P(2) ≤, . . . ,≤ P(m)
Step 2: To control FDR= E(V/R) at level α calculate

ĵ = max
1≤ j≤m

j : P( j) ≤
j

m
α

Step 3: If ĵ exists, reject the null hypotheses corresponding to P(1) ≤ P(2) ≤, . . . ,≤ Pr( ĵ)

Algorithm 8.2.1: Benjamini–Hochberg procedure to control the false discovery rate
(FDR)

Selecting all genes with P̃≤α controls the FWER at level α , that is, Pr(V > 0)≤α .
In other words, the simplest Bonferroni procedure rejects those Hi for which Pi ≤
α/m. As a result, Bonferroni correction requires very small significance levels and
leads to a loss of power. For our example 143 genes are selected when a Bonferroni
corrected p value of 0.00000706 is applied. In this case we would conclude that
there are 143 differentially expressed genes.

To obtain substantially more power the false discovery rate (FDR) may be used.
In a seminal paper, Benjamini and Hochberg (1995) introduced the FDR as the
expected proportion of type I errors (false positives) among the rejected hypotheses:

FDR = E(Q), (8.7)

with

Q =

{
V/R, if R > 0;
0, if R = 0.

(8.8)

One approach to controlling the FDR is to fix an acceptable FDR in advance and
then to find a data-dependent threshold so that the FDR of this rule is less than or
equal to the prechosen level. This was proposed by Benjamini and Hochberg (1995)
and is referred as the BH procedure . The first step involves ranking the unadjusted
p values. According to this step-down procedure the test of H(1) has p value P(1),
the test of H(2) has p value P(2) and so forth. If P(1) > α/m, the BH procedure stops
and no hypothesis is rejected. If P(1) ≤ α/m, the procedure rejects H(1) and moves
to H(2). Instead of comparing P(2) with α/m the BH procedure compares P(2) with
2α/m and so on. This is the procedure given by Algorithm 8.2.1. Obviously this
sequence of increasing thresholds has more power than a Bonferroni correction.

This rejection rule has
FDR ≤ α. (8.9)

Inequality (8.9) becomes an equality when the p values Pi are independently and
uniformly distributed. Obviously in gene expression studies dependence may occur.
More recent articles have investigate the FDR under certain types of dependencies;
see, for example, Benjamini and Yekutieli (2001) and Benjamini and Heller (2007).
Revisiting our example, we apply both a Bonferroni correction and the FDR to the

data. Figure 8.3 compares the number of rejected hypotheses when no adjustment
for multiple testing is performed, Bonferroni correction, and the approach based on
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Fig. 8.3 Number of rejected hypothesis versus nominal type I error rate. BH Benjamini–Hochberg
procedure

the FDR. Apparently, in this case the lowest number of rejections occurs when the
FWER is controlled using the Bonferroni correction. The question arises whether
this is always called for. One might argue that control of the FWER has to be chosen
if high confidence in all selected genes is desired. This leads to a loss of power owing
to the large number of tests. As a result, many differentially expressed genes may
not appear significant.

On the other hand, if a certain proportion of false positives is tolerable, proce-
dures based on the FDR are more flexible. In this case the researcher is free to select
as many genes as practical considerations suggest.

In some cases even the unadjusted p values may be most appropriate, for exam-
ple, if a comparison of functional categories of affected versus unaffected genes is
desired.

8.2.2 A Mixture Model Approach

The problem of finding differentially expressed genes can be cast into a two-
component mixture model framework. This idea was pursued by Lee et al. (2000),
by Efron et al. (2001) and more recently by McLachlan et al. (2006).

The basic idea implies that a gene in the simplest case is either nondifferentially
expressed or differentially expressed. Let p0 be the probability that a gene is non-
differentially expressed, p1 be the probability that a gene is differentially expressed,
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f0(wi) be the density of a test statistic W of genei which is nondifferentially ex-
pressed, and f1(wi) be the density of a test statistic W of genei which is differentially
expressed. Then the marginal density for the ith gene is given by

f (wi) = p0 f0(wi)+(1− p0) f1(wi), i = 1, . . . ,m. (8.10)

Using Bayes’s theorem, the posterior probability that the ith gene is nondifferen-
tially expressed is given by

τ0(wi) =
p0 f0(wi)

p0 f0(wi)+(1− p0) f1(wi)
. (8.11)

Likewise, the posterior probability that the ith gene is differentially expressed is
given by

τ1(wi) = 1− p0 f0(wi)
p0 f0(wi)+(1− p0) f1(wi)

. (8.12)

In this setting the gene-specific posterior probabilities provide the basis for statisti-
cal inference concerning differential expression. There is a close connection to the
FDR method proposed by Benjamini and Hochberg (1995). It can be seen as an
empirical Bayes version of the Benjamini and Hochberg (1995) method, using den-
sities rather than tail areas. The posterior probability τ0(wi) was termed the “local
false discovery rate” by Efron and Tibshirani (2002) and quantifies the gene-specific
evidence for each gene.

It is obvious from (8.11) that to use this posterior probability of nondifferen-
tial expression in practice we need to be able to estimate p0, the mixture density
f (wi), and the null density f0(wi). Efron et al. (2001) developed a simple empirical
Bayes approach for this problem with minimal assumptions. This problem has been
studied ever since under more specific assumptions by many authors see, for exam-
ple, Newton et al. (2001), Newton et al. (2004), and Gottardo et al. (2006); Lo and
Gottardo (2007).

Efron (2004) and McLachlan et al. (2006) propose working with z scores instead
of p values Pi. Thus, we transform the p value Pi (whatever the test statistic) to a
z score given by the following equation:

zi = Φ−1(1−Pi), (8.13)

where Φ(·) is the N(0,1) standard normal cumulative distribution function. For
example, Φ−1(0.95) = 1.645. This definition of zi in (8.13) indicates that departures
from the null are indicated by large positive values of zi. If F0 in (8.4) is the exact
true null distribution, then zi will have a standard normal distribution

zi|Hi ∼ N(0,1). (8.14)

This is often called the theoretical null distribution.



208 8 Analysis of Gene Expression Data

Normal Mixture Model

Using z scores, one can cast the problem of finding differentially expressed genes
into the framework of fitting a two-component mixture model of normals:

f (zi) = p0N(zi,0,1)+(1− p0)N(zi,μ ,σ2), (8.15)

where N(·) denotes the normal density. Then N(zi,0,1) denotes the theoretical null
and N(zi,μ ,σ2) denotes the nonnull density of zi, which is a normal density with
mean μ and variance σ2. For some microarray data sets the null distribution does
not appear to be the standard normal distribution (Efron 2004). In this case the
empirical null distribution needs to be estimated. To do this we replace the standard
normal density N(0,1) by a normal density with mean μ0 and variance σ2. Also the
assumption of a single component of differentially expressed genes can be relaxed.
The nonnull distribution f1 can be approximated by a mixture of k normal densities.
Thus, combining the empirical null and an arbitrary number of components k, one
can fit a normal mixture model to the data (z scores):

f (ẑi,P) =
k

∑
j=1

p jN(zi,μ j,σ2), (8.16)

where again N(·) denotes the normal density. The parameters of the mixing distri-
bution P are given by

P =
[
μ1 . . . μk
p1 . . . pk.

]
, with p j ≥ 0 j = 1, . . . ,k , (8.17)

p1 + · · ·+ pk = 1. (8.18)

These parameters need to be estimated from the data. The mixing weights p j de-
note the a priori probability of an observation belonging to a certain subpopulation
with parameter μ j. Note that the number of components k needs to be estimated as
well. This may again be done by combining the vertex exchange method and the
expectation maximization (EM) algorithms outlined in Sect. 4.4.5.

Using the R package CAMAN, one can estimate the parameters of the model.
See Table 8.2 for the results and Sect. 8.2.3 for a detailed description. This analysis
leads to a mixture model with three components. About 61% of the genes are non-
differentially expressed with π̂0 = 0.61 and a mean z score of 0.152. Note that the

Table 8.2 Finite mixture model for the data of Golub et al. (1999)

Component Weights p̂ Mean μ̂

1 0.610 0.152
2 0.343 1.817
3 0.047 3.964
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empirical null differs from the theoretical null in this example. Another 34.5% of the
genes show some evidence of differential expression (mean z score of 1.817). An-
other 4.7% of the genes are definitely differentially expressed with a mean z score
of 3.964. On the basis of this approach the likelihood ratio statistic can be used as
a formal test, whether differential gene expression is present or not. For the data
at hand, a homogenous model leads to a log likelihood of −12,874.2, whereas the
three-component mixture model shows a much larger log likelihood of −12,757.12.
Thus, we would conclude that differential gene expression is present.

8.2.3 Computation

The following R code shows how to perform the calculations for the example using
the data of Golub et al. (1999).

> data(golubMerge)
> idxALL <- which(sample.labels== "ALL")
> idxAML <- which(sample.labels == "AML")

The indicators “idxALL” and “idxAML” define the index of samples suffering from
either ALL or AML, respectively. The gene expression data are then extracted from
the gene expression data set.

In the next step the standard two-sample t test is applied to each of the 7,129
genes of the data set. The corresponding p values are stored in the variable pvals.
This variable is then transformed to z scores.

> pvals <- apply(golubMerge.exprs, 1,
> function(x){t.test(x[idxAML],x[idxALL])[[3]]})
> zvals <- qnorm(1-pvals)

Now a mixture of normals is fit to the data, assuming a normal distribution for the
z scores. Potential means are searched for on a grid with 25 grid points by applying
the mixture algorithm described in Sect. 4.4.5. Here the empirical variance is auto-
matically used as a fixed variance estimate for the normal density. This is the default
for the function mixalg.

> mix <- mixalg.VEM(obs=zvals, family="gaussian",
startk=25)

> vem.gene<-mix@VEM_result

A plot of the grid points together with the mixing weights as shown in Fig. 8.4 is
constructed using the standard R function barplot. From Fig. 8.4 there seem to be at
least two classes of different gene expression.

> barplot(vem.gene[,1],names=round(vem.gene[,2],2),
xlab="z-scores", ylab="Weights")
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Fig. 8.4 Result of the vertex exchange method (VEM) algorithm for the 7,129 genes of the data of
Golub et al. (1999)

The hybrid mixture algorithm continues then with the EM algorithm. Here the
variance is updated in every EM iteration as defined in (4.43). This leads to a mixture
model with three components. Typing mix shows the result of this model:

> mix
p mean

1 0.60919177 0.1523333
2 0.34319415 1.8162507
3 0.04761408 3.9643716

common variance: 1.09246943625579

Log-Likelihood: -12757.12 BIC: 25558.6

This result is then used to construct a histogram of the z scores together with the
superimposed mixture model. The following code leads to Fig. 8.5:

hist(mix)

8.3 A Change of Perspective: Applying Methods
from Meta-analysis

In the previous section differentially expressed genes where identified using hy-
pothesis tests. The problem of multiplicity was addressed either by controlling the
FWER using Bonferroni correction or by applying the BH procedure. To circum-
vent the problem of multiplicity, the problem was cast into a finite mixture model
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Fig. 8.5 Histogram of z scores and superimposed mixture model for the data of Golub et al. (1999)

framework using mixtures of normals by transforming p values into z scores. In this
section it is proposed to change the perspective from considering hypothesis tests
H1,H2, . . . ,Hm that specify values for parameters θ1,θ2, . . . ,θm with null hypothe-
ses Hi : θi = 0 to effect sizes θi. This leads to the application of the meta-analytic
methods described in Chap. 7 to the analysis of microarray data.

In order to apply meta-analytic methods the standardized mean difference, also
known as Cohen’s d, is calculated for each gene:

di =
x̄i − ȳi

si
, i = 1, . . . ,m, (8.19)

where again x̄i is the mean of the ith sample xi1, . . . ,xinx from the m genes of the
healthy tissues from 1, . . . ,nx individuals and ȳi is the mean of the sample yi1, . . . ,yiny

from the m genes from the tumor tissues of 1, . . . ,ny individuals. In other words,
calculating Cohen’s d implies standardizing the mean fold change x̄i − ȳi with the
pooled standard deviation si of each gene (study):

si =

√
(nxi −1)SD2

xi +(nyi −1)SD2
yi

nxi +nyi −2
, i = 1, . . . ,m, (8.20)

where SDxi and SDyi denote the standard deviation of the respective groups in the
ith sample. In the next step the variance σ2

i of Cohen’s di is calculated as

σ2
i =

nxi +nyi

nxinyi
+

d2
i

2(nxi +nyi −2)
. (8.21)

In principle nx and ny would be expected to be constant for each gene. However,
missing values occur. This is one reason to index sample sizes nx and ny. The other
reason is to use standard notation from the meta-analytic literature.
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Cohen (1988) hesitantly defined effect sizes as “small” with d = 0.2, “medium”
with d = 0.5, and “large” with d = 0.8, stating that:

There is a certain risk inherent in offering conventional operational definitions for those
terms for use in power analysis in as diverse a field of inquiry as behavioral science (p. 25).

Cohen’s d is the “standard approach” to estimate the standardized mean differ-
ence. It overestimates the effect size with small samples sizes. As a rule of thumb
in a meta-analysis it should only be used if all trials have a sample size greater than
10. Alternatively, a bias-corrected version called “Hedge’s g” could be used:

gi =
x̄i − ȳi

si

(
1− 3

4Ni −9

)
, i = 1, . . . ,m, (8.22)

where Ni = nxi +nyi. The variance σi of Hedge’s gi is calculated as

σ2
i =

Ni

nxinyi
+

g2
i

2(Ni −3.94)
. (8.23)

Now applying either Cohen’s d or Hedge’s g, we are in are in a situation where
we have an effect size θ with corresponding variance σ2

i . In contrast to many meta-
analyses summarizing the evidence from the published literature, the interest here
is in identifying differentially expressed genes. This leads immediately to the need
to perform an analysis of heterogeneity, which may be done using a finite mixture
model.

Again, we suppose that the gene-specific estimators θ̂1, θ̂2, . . . , θ̂m come from k
subpopulations θ j, j = 1, . . . ,k. Assuming normality for the effect of each gene,

f (θ̂i,θ j) =
1

√
2πσ2

i

exp

[

− (θ̂i −θ j)2

2σ2
i

]

, j = 1, . . . ,q , (8.24)

This leads to a finite mixture model with

f (θ̂i,P) =
k

∑
j=1

p j f (θ̂i,θ j,σ2
i ). (8.25)

In this setting it is interesting to identify differentially expressed genes by calcu-
lating their posterior probability of component membership Zi j. Applying Bayes’s
theorem and using the estimated mixing distribution as a prior distribution, we are
able to compute the probability of each region belonging to a certain component,
which is given by

τi j = 1 | θ̂iP̂,σ2
i =

p̂ j f (θi, λ̂ j,Ei)
k
∑

l=1
p̂l f (oi, λ̂l ,Ei)

. (8.26)

The ith gene is then assigned to that subpopulation j for which it has the highest
posterior probability τi j of belonging.
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8.4 Case Study: Identification of a Gene Signature
for Breast Cancer Prognosis

8.4.1 Introduction

It is well known that breast cancer patients with the same stage of disease can have
markedly different treatment responses and overall outcome. The strongest predic-
tors for metastases such as lymph node status and histologic grade often fail to
classify breast tumors according to their clinical behavior. This led to a new line of
research which aims to individualize therapy on the basis of the analysis of gene
expression of the tumor cells; for an overview see, for example, van’t Veer et al.
(2005) and Brennan et al. (2007). The basic idea is to identify patients with tumor
cells with a “good” signature who are likely to have a good prognosis and to identify
patients with a “poor” signature whose prognosis is worse and who might benefit
from adjuvant therapy. This is shown schematically in Fig. 8.6.

To this aim van’t Veer et al. (2002) used DNA microarray analysis supervised
classification to identify a gene expression signature strongly predictive of a short
interval to distant metastases (“poor prognosis” signature) in patients without tumor
cells in local lymph nodes at diagnosis, that is, lymph-node-negative patients. More

Fig. 8.6 Gene expression profiling. Samples of tumor tissue obtained during surgery are the ma-
terial for gene expression profiling. Expression levels of a set of prognostically relevant genes are
determined by DNA microarray analysis. On the basis of these molecular signatures patients are
classified into groups with a poor or a good prognosis. (Reprinted with permission from Sauter and
Simon (2002). Copyright 2002 Massachusetts Medical Society)
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Fig. 8.7 Prognosis of breast cancer patients: “good” versus “poor” signature according to the study
of van de Vijver et al. (2002)

precisely, employing univariate ranking of the genes and supervised classification
led to a signature profile of 70 genes predictive of disease outcome. The “poor”-
outcome group consisted of 34 patients with a distant metastasis within 5 years
(mean follow-up of 2.5 years). The “good”-outcome group consisted of 44 patients
with no distant metastasis during a mean follow-up of 8.7 years (minimum 5 years).

This gene signature was later validated in a study by van de Vijver et al. (2002).
The authors classified a series of 295 consecutive patients with primary breast car-
cinomas as having a gene expression signature associated with either a poor or a
good prognosis on the basis of the 70 genes from the study of van’t Veer et al.
(2002). Among the 295 patients, 180 had a poor-prognosis signature and 115 had
a good-prognosis signature. Mean (±standardc error) overall 10-year survival rates
were 54.6± 4.4% for the “good”-outcome group and 94.5± 2.6% for the “poor”-
outcome group. This is shown in Fig. 8.7.

8.4.2 Application of the Meta-analytic Mixture Model
to the Breast Cancer Data

To apply the approach derived in Sect. 8.3 we used the data from van’t Veer et al.
(2002) as a training data set. The expression levels of approximately 25,548 genes
were available for the study consisting of 78 patients. For all of these genes the log
mean ratio of the intensities of the red and green channels was used. This reflects
the extent of induction or repression of a given gene. Note that we did not perform
a preselection of genes. Like Bair and Tibshirani (2004) we used the total of 25,548
genes to develop our model.



8.4 Case Study: Identification of a Gene Signature for Breast Cancer Prognosis 215

Table 8.3 Data of van’t Veer et al. (2002): result of the mixture model

Component Weights p̂ j Standardized effect sizes θ̂ j

1 0.002 −0.570
2 0.442 −0.157
3 0.411 0.124
4 0.131 0.169
5 0.014 0.299

Now calculating for each gene Cohen’s di with corresponding variance σ2
i al-

lows us to treat the data as an analysis of heterogeneity within a meta-analysis. The
first step involves estimating the parameters of the finite mixture model given by
(8.25). Using Algorithm 4.4.5 within the R package CAMAN leads to the result
in Table 8.3. Here a solution consisting of five mixture components is found. In
terms of the magnitude of the effect, the first and the fifth components are notable.
The first component has a mean effect size θ̂1 =−0.570 with corresponding weight
p̂1 = 0.002. This may be called a medium effect size. For the fifth component, we
have a mean standardized effect size θ̂5 = 0.299 with mixing weight p̂5 = 0.014.

To identify potentially predictive genes the posterior probability τi j is calculated
as defined in (8.26) and the individual gene is categorized using a maximum rule.
This leads to the selection of 30 genes with potential predictive power. Eight of these
genes belong to the 70 genes which form the gene expression profile of van’t Veer
et al. (2002).

8.4.3 Validation of Results

The above-mentioned selected 30 genes were then applied to the data from the
validation study of van de Vijver et al. (2002). This study comprised 295 women
with breast cancer. Tumor tissues were selected from the fresh-frozen-tissue bank of
the Netherlands Cancer Institute. The women were selected if the primary invasive
breast carcinoma had a diameter less than 5 cm. The age at diagnosis was 52 years
or younger and the year of diagnosis was between 1984 and 1995. Finally there was
no previous history of cancer, except nonmelanoma skin cancer. All patients had
been treated by modified radical mastectomy or breast-conserving surgery, includ-
ing dissection of the axillary lymph nodes. The 78 patients used to build the model
in the original study were included in the larger data set of 295 patients.

The 30 genes were used to build a prognostic index PI given by

PI = X β̂ . (8.27)

Here the matrix X denotes the design matrix with dimension 295×30 and β̂ denotes
the vector of estimated ridge regression coefficients obtained by using a Cox regres-
sion with the end point overall survival. Figure 8.8 shows the prognosis of patients
based on the median split prognostic index.
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Fig. 8.8 Prognosis of breast cancer patients based on the prognostic index derived by the mixture
model

Table 8.4 Comparison of the values of the R2 statistic of the Cox proportional hazards model
obtained by fitting the times of death to the mixture-derived prognostic indices and the discrete
predictor described in van’t Veer et al. (2002)

Method No. of genes R2

Mixture model 8 0.142
Mixture model 30 0.201
Method of van’t Veer et al. (2002) 70 0.120

To evaluate the predictive performance of the respective methods a Cox pro-
portional hazards model was fit to each predictor. For each model the R2 statistic
was computed. R2 measures the percentage of the variation in survival time that
is explained by the model. As a result, when comparing models, one would prefer
the model with the larger R2 statistic (Table 8.4). Apparently the mixture approach
based on either eight or 30 genes produced a stronger predictor of survival than
the procedure described in van’t Veer et al. (2002). Furthermore, our method used
only eight or 30 genes, whereas the predictor of van’t Veer et al. (2002) used 70
genes. Utilization of fewer genes results in a higher predictive power for this data
set. This was also found by Bair and Tibshirani (2004), who applied their method
of supervised principal components to the data. They applied five genes which were
in common with the 70 genes of van’t Veer et al. (2002). Jiang and Zhao (2006)
discovered 13 genes as the most informative ones to predict the clinical outcomes
of breast cancer patients with lymph-node-negative status. van Houwelingen et al.
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(2006) applied cross-validated proportional hazards ridge regression to a subset of
4,096 genes of the said data set. This diversity of methods indicates the lack of
standards and the need for further research.

From the medical point of view as pointed out by Bueno-de Mesquita et al.
(2007) future studies should assess whether use of the prognosis signature could im-
prove survival or equal survival while avoiding unnecessary adjuvant systemic treat-
ment without affecting patients’ survival. Additionally, studies are needed which
assess the factors that physicians use to recommend adjuvant systemic treatment.
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Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer Series in
Statistics. Berlin: Springer. xix, 492 p.

Fu, Y. J., J. H. Chen, and J. D. Kalbfleisch (2006). Testing for homogeneity in genetic linkage
analysis. Statistica Sinica 16(3), 805–823.

Garcia Rodriguez, L. A. and A. Gonzalez-Perez (2004). Risk of breast cancer among users of
aspirin and other anti-inflammatory drugs. Br. J. Cancer 91, 525–529.

Gardner, M., M. Snee, A. Hall, C. Powell, S. Downes, and J. Terrell (1990). Results of case-control
study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West
Cumbria. BMJ 300(6722), 423–9.

Garel, B. (2007). Recent asymptotic results in testing for mixtures. Computational Statisics & Data
Analysis 51(11), 5295–5304.

Gasser, T. and L. Molinari (1996). The analysis of the EEG. Stat Methods Med Res. 5, 67–99.
Gentleman, R., V. Carey, W. Huber, R. Irizarry, and S. Dudoit (Eds.) (2005). Bioinformatics and

Computational Biology Solutions Using R and Bioconductor. Springer, Berlin.
Gibaldi, M. and D. Perrier (1982). Pharmacokinetics (second ed.). New York, NY: Marcel Dekker.
Glass, G. (1976). Primary, Secondary and Meta-Analysis of research. Educational Researcher 5,

3–8.
Glass, G. (1977). Integrating findings: The meta-analysis of research. Rev Res 5, 3–8.
Goffinet, B., P. Loisel, and B. Laurent (1992). Testing in normal mixture models when the propor-

tions are known. Biometrika 79(4), 842–846.
Golub, T., D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh,

J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander (1999). Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439),
531–7.



References 225

Gonzalez-Perez, A., L. A. Garcia Rodriguez, and R. Lopez-Ridaura (2003). Effects of non-
steroidal anti-inflammatory drugs on cancer sites other than the colon and rectum: a meta-
analysis. BMC. Cancer 3, 28.

Goodman, G., G. Omenn, M. Thornquist, B. Lund, B. Metch, and I. Gylys-Colwell (1993). The
Carotene and Retinol Efficacy Trial (CARET) to prevent lung cancer in high-risk populations:
pilot study with cigarette smokers. Cancer Epidemiol Biomarkers Prev 2(4), 389–96.

Goodman, G., M. Thornquist, J. Balmes, M. Cullen, F. Meyskens, Jr, G. Omenn, B. Valanis, and
J. Williams, Jr (2004). The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer
and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and
retinol supplements. J Natl Cancer Inst 96(23), 1743–50.

Goodman, G., M. Thornquist, M. Kestin, B. Metch, G. Anderson, and G. Omenn (1996). The asso-
ciation between participant characteristics and serum concentrations of beta-carotene, retinol,
retinyl palmitate, and alpha-tocopherol among participants in the Carotene and Retinol Effi-
cacy Trial (CARET) for prevention of lung cancer. Cancer Epidemiol Biomarkers Prev 5(10),
815–21.

Gottardo, R., A. Raftery, K. Yeung, and R. Bumgarner (2006). Bayesian robust inference for dif-
ferential gene expression in microarrays with multiple samples. Biometrics 62(1), 10–8.

Greaves, M. F. (1988). Speculations on the cause of childhood acute lymphoblastic leukemia.
Leukemia 2(2), 120–5.

Greaves, M. F. (1997). Aetiology of acute leukaemia. Lancet 349(9048), 344–9.
Greaves, M. F. and F. E. Alexander (1993). An infectious etiology for common acute lymphoblastic

leukemia in childhood? Leukemia 7(3), 349–60.
Greenland, S. (1987). Quantitative methods in the review of epidemiologic literature. Epidemiol

Rev 9, 1–302.
Greenland, S. (1994). Invited commentary: a critical look at some popular meta-analytic methods.

Am J Epidemiol 140, 290–296.
Greenland, S. and M. P. Longnecker (1992). Methods for trend estimation from summarized dose-

response data, with applications to meta-analysis. Am. J. Epidemiol. 135, 1301–1309.
Hamza, T. H., H. C. van Houwelingen, and T. Stijnen (2008). The binomial distribution of meta-

analysis was preferred to model within-study variability. J Clin Epidemiol 61(1), 41–51.
Hardy, R. and S. Thompson (1996). A likelihood approach to meta-analysis with random effects.

Stat Med 15(6), 619–29.
Harris, R. E., G. A. Alshafie, H. Abou-Issa, and K. Seibert (2000). Chemoprevention of breast

cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 60, 2101–2103.
Harris, R. E., J. Beebe-Donk, H. Doss, and D. D. Burr (2005). Aspirin, ibuprofen, and other non-

steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective cox-2
blockade (review). Oncol. Rep. 13, 559–583.

Harris, R. E., R. T. Chlebowski, R. D. Jackson, D. J. Frid, J. L. Ascenseo, G. Anderson, A. Loar,
R. J. Rodabough, E. White, and A. McTiernan (2003). Breast cancer and nonsteroidal anti-
inflammatory drugs: prospective results from the women’s health initiative. Cancer Res. 63,
6096–6101.

Hedenmalm, K. and O. Spigset (2002). Agranulocytosis and other blood dyscrasias associated with
dipyrone (metamizole). European Journal of Clinical Pharmacology 58, 265–274.

Herrmann, W. M., K. Fichte, and S. Kubicki (1978). [The mathematical rationale for the clinical
EEG-frequency-bands. 1. Factor analysis with EEG-power estimations for determining fre-
quency bands]. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 9(3), 146–54.

Hill, A. (1965). The environment and disease: association or causation? Proceedings of the Royal
Society of Medicine 58, 295–300.

Hill, H. and D. Kleinbaum (2000). Bias in observational studies, pp. 94–100. John Wiley and Sons,
Chichester.

Hills, M. and F. Alexander (1989). Statistical methods used in assessing the risk of disease near
a point source of possible environmental pollution: a review. Journal of the Royal Statistical
Society, Series A 152, 353–363.

Hiriart-Urruty, JB. and Lemarichal, C (2001). Fundamentals of Convex Analysis. Springer, Berlin.



226 References

Hoffmann, W., H. Dieckmann, and I. Schmitz-Feuerhake (1997). A cluster of childhood leukemia
near a nuclear reactor in northern Germany. Arch Environ Health 52(4), 275–80.

Hoffmann, W. and P. Schlattmann (1999). An analysis of the geographical distribution of leukaemia
incidence in the vicinity of a suspected point source: a case study. In A. Lawson, A. Biggeri,
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Schlattmann, P., U. Malzahn, and D. Böhning (2003). META - A software package for meta-
analysis in medicine, social sciences, and the pharmaceutical industry” in D. Böhning,
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