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Preface

In this book, we review nonparametric Bayesian methods and models. The orga-
nization of the book follows a data analysis perspective. Rather than focusing on
specific models, chapters are organized by traditional data analysis problems. For
each problem, we introduce suitable nonparametric Bayesian models and show
how they are used to implement inference in the given data analysis problem. In
selecting specific nonparametric models, we favor simpler and traditional models
over specialized ones. The organization by inferential problem leads to some
repetition in the discussion of specific models when the same nonparametric prior
is used in different contexts.

Historically, Bayesian nonparametrics and indeed Bayesian statistics in general
remained largely theoretical except for very simple models. The “discovery” and
subsequent widespread use of Markov chain Monte Carlo and other Monte Carlo
methods in the 1990s has made Bayesian nonparametric models an attractive and
computationally viable possibility only in the last 20 years. Thus, a review of
Bayesian nonparametric data analysis would be incomplete without a discussion
of posterior simulation methods. We include pointers to available software, in
particular public domain R packages. R code for some of the examples is available
at a software page for the book at

https://www.ma.utexas.edu/users/pmueller/bnp/.
In the text, references to the software page are labeled as “Software note.”

Chapter 1 introduces the framework for nonparametric and semiparametric infer-
ence and discusses the distinction between Bayesian and classical nonparametric
inference. Chapters 2 and 3 start with a discussion of density estimation problems.
Density estimation is one of the simplest statistical inference problems, and has
traditionally been a popular application for nonparametric Bayesian methods. The
emphasis is on the Dirichlet process, Polya trees, and related models. Chapter 4
is about nonparametric regression, including nonparametric priors on residual
distributions, nonparametric mean functions, and fully nonparametric regression.
The latter is also known as density regression. Chapter 5 introduces methods for
categorical data, including contingency tables for multivariate categorical data and
methods specifically for ordinal data. Chapter 6 discusses applications to survival

v
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Fig. 1 Overview of some popular Bayesian nonparametric models for random probability mea-
sures. An arrow from model M1 to model M2 indicates that M2 is a special case of M1. For
the case of NRMI and NTR, the arrow indicates that the descendant model is defined through a
transformation of the CRM. Notice the central role of the Dirichlet process (DP) model

analysis. Probability models for a hazard function and random probability models
for event times are a traditional use of nonparametric Bayesian methods. Perhaps
this is the case because for event times it is natural to focus on details of
the unknown distribution, beyond just the mean. Chapter 7 considers the use of
random probability models in hierarchical models. Nonparametric priors for random
effects distributions are some of the most successful and widespread applications
of nonparametric Bayesian inference. In Chap. 8, we discuss models for random
clustering and for feature allocation problems. Finally, in Chap. 9, we conclude
with a brief discussion of some more problems. In the Appendix, we include a brief
introduction to DPpackage, a public domain R package that implements inference
for many of the models that are discussed in this book.

Figure 1 gives an idea of how popular nonparametric Bayesian models relate
to each other. The Dirichlet process (DP), Polya tree (PT), Pitman Yor process
(PY), normalized random measures (NRMI), and stick-breaking priors are discussed
as priors for random probability measures in Chaps. 2 and 3. The dependent DP
(DDP) is used to define a fully nonparametric regression model in Chap. 4, and
then also features again in Chap. 6 for survival regression, and again in Chap. 7 to
define a prior for a family of dependent random probability measures. Neutral to
the right (NTR) processes come up in Chap. 6. The product partition model (PPM)
and Gibbs-type priors are introduced as priors for random partitions, that is, cluster
arrangement, in Chap. 8. The Indian buffet process (IBP) is introduced as a feature
allocation model, also in Chap. 8.

The selection and focus is necessarily tainted by subjective choices and pref-
erences. Finally, we recognize that the outlined classification of data analysis
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problems is arbitrary. Meaningful alternative organizations could have focused on
the probability models, or on application areas.

Austin, TX, USA Peter Müller
Santiago, Chile Fernando Andrés Quintana
Santiago, Chile Alejandro Jara
Columbia, SC, USA Tim Hanson





Acronyms

We use the following acronyms. When applicable we list a corresponding section
number in parentheses. We omit acronyms that are only used within specific
examples.

AH Accelerated hazards (Sect. 6.2.4)
AFT Accelerated failure time (Sect. 6.2.2)
ANOVA DDP DDP with AN(C)OVA model on fmhx; x 2 Xg (Sect. 4.4.2)
BART Bayesian additive regression trees (Sect. 4.3.4)
BNP Bayesian nonparametric (model, inference)
CALGB Cancer and Leukemia Group B
CART Classification and regression tree (Sect. 4.3.4)
c.d.f. Cumulative distribution function
CI Credible interval
CPO Conditional predictive ordinate (Chap. 9)
CRM Completely random measure (Sect. 3.5.2)
CSDP Centrally standardized Dirichlet process (Sect. 5.2.1)
DDP Dependent Dirichlet process (Sect. 4.4.1)
DPK Finite Dirichlet process (Sect. 2.4.6)
DPM Dirichlet process mixture (Sect. 2.2)
DPT Dependent Polya tree (Sect. 4.4.3)
DP Dirichlet process (Sect. 2.1)
FFNN Feed-forward neural network (Sect. 4.3.1)
FPT Finite Polya tree (Sect. 3.2.2)
GLM Generalized linear model (Sect. 5.2.)
GLMM Generalized linear mixed model (Sect. 5.2.2)
GP Gaussian process (Sect. 4.3.3)
HDPM Hierarchical Dirichlet process mixture (Sect. 7.3.1)
IBP Indian buffet process (Sect. 8.5.2)
LDTFP Linear dependent tail-free process (Sect. 4.4.3)
LPML Log pseudo marginal likelihood (Chap. 9)
MAD MAP-based asymptotic derivation
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x Acronyms

MAP Maximum a posterior estimate
MCMC Markov chain Monte Carlo (posterior simulation)
m.l.e. Maximum likelihood estimator
MPT Mixture of Polya tree (Sect. 3.2.1)
NRMI Normalized random measure with independent increments (Sect.

3.5.2)
NTR Neutral to the right (Sect. 6.1.1)
p.d.f. Probability density function
PD Pharmacodynamics (Sect. 7.2)
PH Proportional hazards (Sect. 6.2.1)
PK Pharmacokinetics (Sect. 7.2)
PO Proportional odds (Sect. 6.2.3)
PPM Product partition model (Sect. 8.3)
PPMx Product partition model with regression on covariates (Sect. 8.4.1)
PT Polya tree (Sect. 3.1)
PY Pitman-Yor process (Sect. 2.5.2)
SSM Species sampling model (Sect. 2.5.2)
TF Tail free (Sect. 2.5.1)
WBC White blood cell counts
WDDP Weight dependent Dirichlet process (Sect. 4.4.4).

We use the following notational conventions. Probability measures: We use p.�/
to generically indicate probability measures. The use of the arguments in p.�/ or
the context clarifies which probability measure is meant. Only when needed we use
subindices, such as pX.�/, or introduce specific names, such as q.�/. We use �.�/
to indicate (upper level) prior probability models, usually BNP priors on a random
probability measure, for example, �.G/ for a random probability measure G. When
the use is clear from the context, we use p.�/, etc. to also refer to the p.d.f, and
introduce separate notation only when we wish to highlight something. We use f� .�/
for kernels and fG.�/ D R

f� .�/ dG.�/ for a mixture. We use notation like Be.� j a; b/
to indicate that the random variable � follows a Be.a; b/ distribution. Variables: We
use yi for observed outcomes, xi for known covariates, boldface (y) for vectors, and
uppercase symbols (A), or boldface uppercase (C) when needed for distinction or
emphasis, for matrices. Clusters: Many models include a notion of clusters. We use
? to mark quantities that are cluster-specific, such as y?j , �?j , etc.
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Chapter 1
Introduction

Abstract We introduce the setup of nonparametric and semiparametric Bayesian
models and inference.

Statistical problems are described using probability models. That is, data are
envisioned as realizations of a collection of random variables y1; : : : ; yn, where yi

itself could be a vector of random variables corresponding to data that are collected
on the i-th experimental unit in a sample of n units from some population of
interest. A common assumption is that the yi are drawn independently from some
underlying probability distribution G. The statistical problem begins when there
exists uncertainty about G. Let g denote the probability density function (p.d.f.) of
G. A statistical model arises when g is known to be a member g� from a family
G D fg� W � 2 ‚g, labeled by a set of parameters � from an index set ‚.

Models that are described through a vector � of a finite number of, typically,
real values are referred to as finite-dimensional or parametric models. Parametric
models can be described as G D fg� W � 2 ‚ � R

pg: The aim of the analysis
is then to use the observed sample to report a plausible value for � , or at least to
determine a subset of ‚ which plausibly contains � . In many situations, however,
constraining inference to a specific parametric form may limit the scope and type of
inferences that can be drawn from such models. Therefore, we would like to relax
parametric assumptions to allow greater modeling flexibility and robustness against
mis-specification of a parametric statistical model. In these cases, we may want to
consider models where the class of densities is so large that it can no longer be
indexed by a finite dimensional parameter � , and we therefore require parameters �
in an infinite dimensional space.

Example 1 (Density Estimation) Consider a simple random sample yi j G
iid� G, i D

1; : : : ; n, from some unknown distribution G. One could now proceed by restricting
G to a normal location family, say G D fN.�; 1/ W � 2 Rg. Figure 1.1a shows the
resulting inference conditional on an assumed random sample y1; : : : ; yn. Naturally,
inference about the unknown G is restricted to the assumed normal location family
and does not allow for multi-modality or skewness. In contrast, a nonparametric
model would proceed with a prior probability model � for the unknown distribution
G. For example, later we will introduce the Dirichlet process mixture prior for G.

© Springer International Publishing Switzerland 2015
P. Mueller et al., Bayesian Nonparametric Data Analysis, Springer Series
in Statistics, DOI 10.1007/978-3-319-18968-0_1
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Fig. 1.1 Example 1. Inference on the unknown distribution G under a parametric model (panel
a) and nonparametric model (panel b). The histogram of the observed data is also displayed. The
dotted lines in panel (b) correspond to posterior draws

Figure 1.1b contrasts the parametric inference with the flexible BNP inference under
a Dirichlet process mixture prior.

In Example 1 the unknown, infinite dimensional, parameter is the distribution
G itself. Another example of an infinite-dimensional parameter space is the
space of continuous functions defined on the real line, S D fm.z/ W z 2
R; m.�/ is a continuous functiong. This could arise, for example, in a regression
model with unknown mean function m.z/. Models with infinite-dimensional param-
eters are referred to as nonparametric models (Ghosh and Ramamoorthi 2003;
Tsiatis 2006). In some other cases, it is useful to write the infinite-dimensional
parameter � as .�1;�2/, where �1 is a q-dimensional parameter and �2 is an
infinite-dimensional parameter. These models are referred to as semiparametric
models because both a parametric component �1 and a nonparametric component
�2 describe the model (see e.g., Tsiatis 2006). As an example of a semiparametric
model, consider the proportional hazards model that is commonly used in modeling
a survival time T as a function of a vector of covariates z. The model was first
introduced by Cox (1972). Let

�.t j z/ D lim
h!0

�
p.t � T < t C h j T � t; z/

h

�

(1.1)
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denote the conditional hazard rate, conditional on some covariates z. The propor-
tional hazards model assumes

�.t j z/ D �0.t/ exp.z0ˇ/: (1.2)

where �0.�/ is the underlying or baseline hazard function and ˇ is a q-dimensional
vector of regression coefficients. In the classical semiparametric version of the
model, the underlying hazard function is left unspecified. Since this function can
be any positive function in t, subject to some regularity conditions, it is an infinite-
dimensional parameter. The parameters � D .ˇ; �0/ completely characterize the
data generating mechanism. In fact, the density fT of the survival time T is related
to the hazard function through

fT.t j z/ D �0.t/ exp.z0ˇ/ exp

�

� exp.z0ˇ/
Z t

0

�0.u/du

�

:

The parameters of interest can be written as �1 D ˇ and �2 D �0, where � D
.�1;�2/ 2 ‚ D R

q � S and S is the infinite-dimensional space of all nonnegative
functions on R

C with infinite integral over Œ0;1/.

Example 2 (Oral Cancer) We use a dataset from Klein and Moeschberger (2003,
Sect. 1.11). The data report survival times for 80 patients with cancers of the mouth.
Samples are recorded as aneuploid (abnormal number of chromosomes) versus
diploid (two copies of each chromosome) tumors. We define zi 2 f0; 1g as an
indicator for aneuploid tumors and carry out inference under model (1.2) with a
BNP prior on �0. Figure 1.2 shows the estimated hazard curves under z D 0 and
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Fig. 1.2 Example 2. Hazard curves for aneuploid and diploid groups under the proportional hazard
model with point-wise 50 % CIs
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z D 1. The prior on logf�0.�/g is a penalized B-spline, fit through the R package
R2BayesX.

To proceed with Bayesian inference in a nonparametric model we need to
complete the probability model with a prior on the infinite-dimensional parameter.
Such priors are known as Bayesian nonparametric (BNP) priors. We take this as a
definition of BNP models. That is, we define BNP priors as probability models for
infinite-dimensional parameters and refer to the entire inference model as a BNP
model. This highlights the similarities and distinctions of Bayesian versus classical
nonparametric inference. Under both BNP and classical nonparametric approaches
an infinite-dimensional parameter characterizes the family of sampling probability
models. The major difference between Bayesian and classical nonparametrics is that
Bayesian inference completes the model with a prior on the infinite-dimensional
parameter (random probability measure, regression function, etc.). As a result,
inference includes a full probabilistic description of all relevant uncertainties.
Classical nonparametrics, on the other hand, treats infinite-dimensional parameters
as nuisance parameters and derives procedures where they are left unspecified to
make inferences on finite-dimensional parameters of interest.

Infinite-dimensional parameters of interest are usually functions. Functions of
common interest include probability distributions, or conditional trends, e.g. mean
or median regression functions. Consideration of probability distributions requires
the definition of probability measures on a collection of distribution functions. Such
probability measures are generically referred to as random probability measures.

While our main focus is on data analysis and how to build models in some
important special cases, it is important to know that there is a solid body of theory
supporting the use of nonparametric models. In the upcoming discussion we will
briefly state some of the important results and the particular effect they have on
models. But we stop short of an exhaustive list of BNP prior models. An excellent
recent review of a large number of BNP models appears in Phadia (2013). See
also Figure 1.1 in Phadia (2013), which is an interesting variation of Fig. 1 in the
preface of the current text. Other recent discussions of BNP priors include Hjort
et al. (2010), including an excellent and concise review of BNP models beyond the
Dirichlet process in Lijoi and Prünster (2010), Hjort (2003), Müller and Rodríguez
(2013), Müller and Quintana (2004), Walker et al. (1999), and Walker (2013).
Gelman et al. (2014, Part V) includes a discussion of nonparametric Bayesian data
analysis. A mathematically rigorous discussion, with an emphasis on asymptotic
properties can be found in the forthcoming book by Ghoshal and van der Vaart
(2015).

In this text we will not prove any new results and therefore never need to
refer to measure theoretic niceties. We refer interested readers to Phadia (2013),
who discusses all the same models that also feature in this text. See also Ghosh
and Ramamoorthi (2003), Ghoshal (2010), and Ghoshal and van der Vaart (2015)
for a mathematically more rigorous discussion. Briefly summarized, assume an
underlying probability space .�;A; �/ and let S be a complete and separable metric
space equipped with the Borel �-algebraB. Denote by M.S/ the space of probability
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measures on S endowed with the topology of weak convergence which makes it a
complete and separable space. Most BNP priors that we introduce in the following
discussion are distributions over M.S/ or, in other terms, laws of random probability
measures i.e. random elements defined on � and taking values in M.S/.
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Chapter 2
Density Estimation: DP Models

Abstract We discuss the use of nonparametric Bayesian models in density estima-
tion, arguably one of the most basic statistical inference problems. In this chapter
we introduce the Dirichlet process prior and variations of it that are the by far most
commonly used nonparametric Bayesian models used in this context. Variations
include the Dirichlet process mixture and the finite Dirichlet process. One critical
reason for the extensive use of these models is the availability of computation
efficient methods for posterior simulation. We discuss several such methods.

Density estimation is concerned with inference about an unknown distribution G on
the basis of an observed i.i.d. sample,

yi j G
iid� G; i D 1; : : : ; n: (2.1)

If we wish to proceed with Bayesian inference, we need to complete the model with
a prior probability model � for the unknown parameter G. Assuming a prior model
on G requires the specification of a probability model for an infinite-dimensional
parameter, that is, a BNP prior.

2.1 Dirichlet Process

2.1.1 Definition

One of the most popular BNP models is the Dirichlet process (DP) prior. The DP
model was introduced by Ferguson (1973) as a prior on the space of probability
measures.

Definition 1 (Dirichlet Process—DP) Let M > 0 and G0 be a probability measure
defined on S. A DP with parameters .M;G0/ is a random probability measure G
defined on S which assigns probability G.B/ to every (measurable) set B such that
for each (measurable) finite partition fB1; : : : ;Bkg of S, the joint distribution of the

© Springer International Publishing Switzerland 2015
P. Mueller et al., Bayesian Nonparametric Data Analysis, Springer Series
in Statistics, DOI 10.1007/978-3-319-18968-0_2
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8 2 Density Estimation: DP Models

vector .G.B1/; : : : ;G.Bk// is the Dirichlet distribution with parameters

.MG0.B1/; : : : ;MG0.Bk// :

Using Kolmogorov’s consistency theorem (Kolmogorov 1933), Ferguson (1973)
showed that such a process exists. The process is usually denoted as DP .MG0/, or
DP.M;G0/. The parameter M is called the precision or total mass parameter, G0 is
the centering measure, and the product ˛ 	 MG0 is referred to as the base measure
of the DP.

An important property of the DP is the discrete nature of G. As a discrete
random probability measure we can always write G as a weighted sum of point
masses, G.�/ D P1

hD1 whımh.�/, where w1;w2; : : : are probability weights and ıx.�/
denotes the Dirac measure at x. Another important property of the DP is its large
weak support, which means that under mild conditions, any distribution with the
same support as G0 can be well approximated weakly by a DP random probability
measure. Formally, let Q be any probability measure with Q 
 G0, that is, Q does
not assign positive probability to any event that has probability 0 under G0. The large
support property means that for any finite number of measurable sets B1; : : : ;Bm,
and � > 0,

�fjG.Bi/� Q.Bi/j < �; for i D 1; : : : ;mg > 0:

That is, the random probability measure G can come arbitrarily close in a weak sense
to Q on the sets Bi. In this statement the probability �f: : :g refers to the probability
model � of G.

The DP arises naturally as an infinite-dimensional analogue of the finite-
dimensional Dirichlet prior, as suggested by the defining property. The definition
implies several other useful properties of a DP random measure G. Some are
easily seen by considering the partition of the sample space given by fB;Bcg
consisting of an event B and its complement Bc. In particular, G has the same
support as G0, i.e., �.G.B/ > 0/ D 1 if and only if G0.B/ > 0. Mean and
variance of the random probability G.B/ for any B are EŒG.B/	 D G0.B/ and
VarŒG.B/	 D G0.B/Œ1 � G0.B/	=.1C M/. The latter can be seen from the fact that
.G.B/;G.Bc// � DirfMG0.B/;MŒ1 � G0.B/	g. These results show the effect of the
precision parameter in a DP. If M is large, G is highly concentrated about G0. This
explains why M is also known as the precision parameter of a DP prior. Figure 2.1
demonstrates the effects of increasing the precision parameter. As M �! 1 the
process is essentially G0.

Stick Breaking Construction An often useful constructive definition of a DP
random probability measure is given by Sethuraman (1994) and is based on the
discrete nature of the process G.�/ D P1

hD1 whımh.�/. In this construction, the
locations mh are i.i.d. draws from the centering measure G0, and each weight wh

is defined as a fraction of f1 � P
`<h w`g, that is, a fraction of what is left after

the preceding h � 1 point masses. Formally, let wh D vh
Q
`<h.1 � v`/ with
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Fig. 2.1 Plots of 15 samples from a DP.MG0/, with G0 D N.0; 1/ a standard normal distribution,
for M D 1; 20 and 500. In all cases, G0 D E.G/ is overlaid on a plot of the realizations of G

vh
iid� Be.1;M/, and mh

iid� G0, where fvhg and fmhg are independent. Then

G.�/ D
1X

hD1
whımh.�/; (2.2)

defines a DP.MG0/ random probability measure. The definition of wh can be
pictured as successively breaking fractions vh of a stick of initially unit length. This
representation of a DP random measure is therefore known as “stick-breaking”.
A consequence of this representation is that if G � DP.MG0/, m � G0 and
W � Be.1;M/, and all of them are independent, then Wım.�/C.1�W/G.�/ follows
again a DP.MG0/ distribution.

Finally, the DP has an important conditioning property, which follows immedi-
ately from the definition. If A is a (measurable) set with G0.A/ > 0 (which implies
that G.A/ > 0 a.s.), then the random measure G jA, the restriction of G to A defined
by G jA .B/ D G.B j A/ D G.A \ B/=G.A/, is also a DP with parameters M and
G0 jA, and is independent of G.A/. The argument can be extended to more than one
set. Thus the DP locally splits into numerous independent DP’s.

2.1.2 Posterior and Marginal Distributions

Posterior Updating The DP is conjugate with respect to i.i.d. sampling. That is,
under the sampling model (2.1) with a DP on G, the posterior distribution for G
is again a DP. The base measure of the posterior DP adds a point mass to the
prior base measure at each observed data point yi. In other words, the posterior
DP centering measure is a weighted average of G0 and the empirical distribution
Ofn.�/ D 1

n

Pn
iD1 ıyi.�/, and the posterior total mass parameter is incremented to MCn.

In summary,
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Result 1 (Ferguson 1973) Let y1; : : : ; yn j G
iid� G and G � DP.MG0/. Then,

G j y1; : : : ; yn � DP

 

MG0 C
nX

iD1
ıyi

!

: (2.3)

Example 3 (T-Cell Receptors) Guindani et al. (2014) consider data on counts of
distinct T-cell receptors. The diversity of T-cell receptor types is an important
characteristic of the immune system. A common summary of the diversity is the
clonal-size distribution. The clonal-size distribution is the table of frequencies OGy

of counts y D 1; 2; : : : ; n. For example, OG2 D 11 means that there were 11 distinct
T-cell receptors that were observed twice, etc.

Table 2.1 shows the observed frequencies for one of the cell types considered in
Guindani et al. (2014). Consider a model yi � G, with prior G � DP.MG0/ on the
clonal size distribution. We use G0 D PoiC.2/, a Poisson distribution with mean 2,
constrained to positive counts, and M D 1. Figure 2.2a shows the base measure G0

together with the posterior mean E.G j y/. Figure 2.2b shows ten posterior draws
G � p.G j y/.

Software note: See the on-line software page for this chapter for R code to
implement sampling from (2.3) for Example 3.

Table 2.1 Example 3.
Frequencies OGy of counts
yi D 1; 2; : : :

Counts yi 1 2 3 4 � 5

Frequencies 37 11 5 2 0

1 2 3 4 5 6 7 8
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Fig. 2.2 Example 3. Prior mean G0 (dotted line) and posterior mean E.G j x/ (solid line) of
the clonal size distribution G (panel a), and posterior draws G � p.G j y/ (panel b). Only the
probabilities at the integer values y D 1; 2; : : : are meaningful. The points are connected only for
a better display
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Marginal Distribution A key property of the DP prior is its a.s. discreteness.
Consider a random sample, yi j G � G, i.i.d., i D 1; : : : ; n. The discreteness of
G implies a positive probability of ties among the yi. This is at the heart of the Polya
urn representation of Blackwell and MacQueen (1973) for the marginal distribution
p.y1; : : : ; yn/ D R Qn

iD1 G.yi/ d�.G/. The Polya urn specifies the marginal
distribution as a product of a sequence of increasing conditionals p.y1; : : : ; yn/ D
p.y1/

Qn
iD2 p.yi j y1; : : : ; yi�1/ with

p.yi j y1 : : : ; yi�1/ D 1

M C i � 1
i�1X

hD1
ıyh.yi/C M

M C i � 1
G0.yi/; (2.4)

for i D 2; 3; : : : ; and y1 � G0. Since the yi are i.i.d. given G the marginal joint
distribution of .y1; : : : ; yn/ is exchangeable, i.e., the probabilities remain unchanged
under any permutation of the indices. In particular, the complete conditional p.yi j
yh; h 6D i/ has the same form as (2.4) for yn. This will be important later for defining
posterior simulation. Another important special case is the (posterior) predictive
for a future observation ynC1 given data y1; : : : ; yn. It takes the form of (2.4) for
i D n C 1.

Later we will rewrite (2.4) more compactly by combining all terms with identical
yi, writing (2.4) in terms of the unique values y?j , j D 1; : : : ; k, for k � n distinct
unique values. As n ! 1, the expected number of distinct y’s grows as M log.n/
(Korwar and Hollander 1973), which is asymptotically much smaller than n. In the
following discussion we will frequently make use of the clustering that is implied
by these ties.

2.2 Dirichlet Process Mixture

2.2.1 The DPM Model

The DP generates distributions that are discrete with probability one, making
it awkward for continuous density estimation. This limitation can be fixed by
convolving its trajectories with some continuous kernel, or more generally, by
using a DP random measure as the mixing measure in a mixture over some simple
parametric forms. Such an approach was introduced by Ferguson (1983), Lo (1984),
Escobar (1988, 1994), and Escobar and West (1995). Let ‚ be a typically finite-
dimensional parameter space. For each � 2 ‚, let f� be a continuous p.d.f. In many
applications a normal kernel f� .y/ D N.y j �; �/ is used, with � D .�; �/. Given
a probability distribution G defined on ‚, a mixture of f� with respect to G has the
p.d.f.

fG.y/ D
Z

f� .y/dG.�/: (2.5)
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Such mixtures can form a very rich family. For example, a mixture with respect
to location and scale � D .�; �/ using f� .y/ D ��1k ..y � �/=�/, for some fixed
density k, approximates any density in the L1 sense if � is allowed to approach 0
(Lo 1984). Thus, a prior on densities may be induced by putting a DP prior on the
mixing distribution G. Such models are known as DP mixtures (DPM) models.

The mixture model (2.5), together with a DP prior on the mixing measure G can

equivalently be written as a hierarchical model. Assume yi j G
iid� FG as in (2.5). An

equivalent hierarchical model is

yi j �i
ind� f�i

�i j G
iid� G (2.6)

and G � DP.MG0/. The hierarchical model introduces new latent variables �i

specific to each experimental unit. It is easily seen that (2.6) is equivalent to (2.5).
Just integrate with respect to �i to marginalize the hierarchical model (2.6) with
respect to �i. The result is exactly the DPM (2.5). Under this hierarchical model, the
posterior distribution on G is a mixture of DP’s, i.e., p.G j y1; : : : ; yn/ is a mixture
of DP models, mixing with respect to the latent �i.

Result 2 (Antoniak 1974) If yi j �i
ind� f�i , i D 1; : : : ; n, �i

iid� G and G � DP.˛/,
then

G j y �
Z

DP.˛ C
nX

iD1
ı�i/ dp.� j y/; (2.7)

where � D .�1; : : : ; �n/ and y D .y1; : : : ; yn/.

Recall that we write ˛ D MG0 for the (un-normalized) base measure. In words,
conditional on � the posterior model is (2.3). Marginalizing with respect to � ,
the posterior given y becomes a mixture over (2.3) with respect to the posterior
distribution on � . Because of this result, DPM models are sometimes called mixture
of DP models. We find this terminology misleading, since models are not usually
named for the properties of their posterior distribution, and therefore avoid it here.

Property (2.7) can be exploited to impute G or certain summaries of G under the
posterior distribution by averaging summaries of DP.˛ C P

ı�i/ with respect to a
posterior sample on � . Computation further simplifies by noting that for large n we
can approximate G � DP.˛ CP

ı�i/ by G / ˛ CP
ı�i .

The choice of an appropriate kernel depends on the underlying sample space. If
the underlying density function is defined on the entire real line, a location-scale
kernel is appropriate. On the unit interval, beta distributions form a flexible two-
parameter family. On the positive half line, mixtures of gamma, Weibull or log-
normal distributions may be used. The use of a uniform kernel leads to random
histograms. Petrone and Veronese (2002) motivated a canonical way of viewing the
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Fig. 2.3 Example 4. Data (panel a) and posterior inference for G (panel b). Panel (b) shows 96
posterior draws of the mixture model fG based on G � p.G j y/ (thin black curves) and the
posterior mean E.fG j y/ (thick grey curve). For comparison the figure also shows a kernel density
estimate (dashed thick yellow line)

choice of a kernel through the notion of a Feller sampling scheme, and called the
resulting prior a Feller prior.

Example 4 (Gene Expression Data) Figure 2.3a shows measurements yi corre-
sponding to EIG121 gene expression for n D 51 uterine cancer patients. We assume
yi � fG with a DPM prior as in (2.6). Figure 2.3b shows posterior inference on fG.
Inference is based on 500 iterations of a Gibbs sampler, using an approximation
with a finite DP prior. See Sect. 2.4.6.

Software note: Simple R code to implement inference in the DPM model (2.6) for
Examples 4 and 3 (continued below) is available in the on-line software appendix
for this chapter.

In Example 4 we used the DPM model to estimate a continuous distribution.
The convolution with the kernel f�i.�/ in (2.6) serves to smooth out the discrete
point masses of G to define a continuous distribution. In some examples, the DPM
might also be used for extrapolation in inference for a discrete random probability
measure. Recall Example 3. We used a DP prior for inference on G.y/, y D 1; 2; : : :.
This inference ignored an important feature of the experiment. By the nature of the
experiment zero counts are censored. That is, yi D 0 is censored. In other words,
some rare T-cell receptors that are present in the probe might not be seen, simply
because of sampling variation. Let OG.y/ denote the empirical distribution. If we
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extrapolate OG.y/ in Fig. 2.2 to y D 0, we would expect a large number of rare T-
cell receptors. However, inference under a DP prior on G does not implement such
extrapolation. Consider a straightforward extension of the earlier analysis by using
G � DP.MG0/ with G0 D Poi.2/, now without the constraint to y � 1. The
posterior distribution for the extrapolation is p.G.0/ j x/ D Be.MG0.0/;M.1 �
G0.0//Cn/. This is a direct consequence of Definition 1 and Result 1 with B1 D f0g
and B2 D f1; 2; : : :g. There is no notion of extrapolation. Inference on G.0/ hinges
only on the number of observations n, but does not attempt to extrapolate the trend in
OG as y ! 0. In Guindani et al. (2014) we use a DPM to allow for such extrapolation.
We use (2.5) with a Poisson kernels f�i.�/ centered at the latent �i. Figure 2.4 shows
inference under this DPM prior.

Example 3 (T-Cell Receptors, ctd.) We now replace the DP prior on G by a DPM
model with Poisson kernels, yi � Poi.�i/ and �i � G with G � DP.M G0/.
Importantly, we drop the constraint yi � 1. Instead we assume that T-cell receptor
counts are generated as yi � fG, i D 1; : : : ; k for k � n, with yi D 0 for
i D n C 1; : : : ; k. Without loss of generality we assume that the observed non-zero
counts are the first n counts. The last k � n counts are censored. The total number
of T-cell receptors k becomes another model parameter. Figure 2.4a shows inference
on the estimated distribution fG.y/ D R

Poi.y j �/ dG.�/ together with posterior
draws fG � p.fG j y/. The right panel of the same figure shows the implied posterior
distribution p.k j y/.
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Fig. 2.4 Example 3. Prior mean G0 (dotted line) and posterior mean E.fG j y/ (solid line) of the
clonal size distribution G (panel a), and posterior draws fG � p.fG j y/. Only the probabilities at
the integer values y D 1; 2; : : : are meaningful. The points are connected only for a better display.
Panel (b) shows the implied posterior p.k j y/ for the total number of distinct T-cell receptors
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2.2.2 Mixture of DPM

A minor but practically important generalization of the DPM model (2.6) arises
when the base measure of the DP prior includes unknown hyper-parameters 
 and
the model is extended with a hyper-prior for 
. Similarly, the model could include
a hyper-prior on an unknown total mass parameter M. For reference, we state the
complete model

yi j �i � f�i

�i j G
iid� G

G j 
;M � DP.M;G
/

.
;M/ � �: (2.8)

For example, G
 D N.m; s/ with 
 D .m; s/ and a normal/inverse gamma prior on
.m; s/. The posterior characterization (2.7) remains valid, now conditional on 
 and
M. The additional layer in the hierarchical model does not introduce any significant
complication in posterior simulation. Implementation of posterior inference for M
becomes particularly easy with a gamma prior on M, M � Ga.a; b/. We will discuss
details later.

2.3 Clustering Under the DPM

An important implication of (2.6) is the fact that the DPM model induces a
probability model on clusters, in the following sense. The discrete nature of the DP
implies a positive probability for ties among the latent �i. Let �?j , j D 1; : : : ; k,
denote the k � n unique values, let Sj D fi W �i D �?j g, and let nj D jSjj
denote the number of �i tied with �?j . When n is not understood from the context
we include an additional index kn, nnj etc. The multiset �n D fS1; : : : ; Skg forms
a partition of the set of experimental units f1; : : : ; ng. Since �i are random, the
sets Sj are random. In other words, the DPM (2.6) implies a model on a random
partition �n of the experimental units. The model p.�n/ is also known as the Polya
urn. The probability model on �n might seem like an incidental by-product of
the construction, but actually many applications of the DPM model focus on this
partition �n. The posterior model p.�n j y/ reports posterior inference on clustering
of the data. We will discuss this in more detail later, in Chap. 8.

In the following discussion of posterior simulation for DPM models it is
convenient to represent the clustering by an equivalent set of cluster membership
indicators, si D j if i 2 Sj, usually with the convention that clusters are labeled by
order of appearance, i.e., s1 D 1 by definition, si2 D 2 for the lowest i2 > 1 with
�i2 6D �1, si3 D 3 for the smallest i3 > i2 with �i3 62 f�1; �i2g, etc. Eq. (2.4) implies
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p.si j s1; : : : ; si�1/. Let ki denote the number of unique �` among f�1; : : : ; �ig and let
ni;j denote the multiplicity of the j-th of these unique values. Note that by definition
Pki

jD1 nij D i. Then

p.si D j j s1; : : : ; si�1/ D
(

ni�1;j

MCi�1 for j D 1; : : : ; ki�1
M

MCi�1 j D ki�1 C 1:
(2.9)

Let s�i D .s1; : : : ; si�1; siC2; : : : ; sn/. By exchangeability of the �i the conditional
(prior) probability p.si D j j s�i/ takes the same form as (2.9) for i D n. Also, we
can now read off the prior p.�n/ as

p.s/ D
nY

iD2
p.si j s1; : : : ; si�1/ D Mk�1Qk

jD1.nj � 1/Š
.M C 1/ � � � .M C n � 1/

: (2.10)

Recall that s1 D 1 by definition. For later reference, we state the implied conditional
distribution for �i that follows from (2.9). Let �?i;j denote the j-th unique value among
f�1; : : : ; �ig. Noting that si D j implies �i D �?i�1;j and si D ki�1 C 1 implies that
�i � G0, we have

p.�i j �1; : : : ; �i�1/ /
ki�1X

jD1
ni�1;j ı�?i�1;j.�i/C MG0.�i/: (2.11)

Finally, note that the DPM (2.6) model is exchangeable in �1; : : : ; �n. That is,
the model remains invariant under arbitrary changes of the indexing of �i. There-
fore (2.11) must remain valid also for p.�i j �1; : : : ; �i�1; �iC1; : : : ; �n/,

p.�i j ��i/ /
k�

X

jD1
n�

j ı�?�

j
.�i/C MG0.�i/: (2.12)

Here ��i denotes � without the i-th element �i, k� is the number of unique values
in ��i and �?�

j is the j-th unique element.

2.4 Posterior Simulation for DPM Models

A critical advantage of using BNP methods compared to a parametric Bayesian
analysis is the ability to incorporate uncertainty at the level of distribution functions.
However, this flexibility comes at a computational cost. Much of the rapid develop-
ment of BNP models in the last decades has been a direct result of advances in
simulation-based computational methods, particularly Markov Chain Monte Carlo
methods (MCMC).
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MCMC algorithms (see Escobar 1988, 1994; Dey et al. 1998; Neal 2000; Griffin
and Walker 2011), sequential imputation (Liu 1996; MacEachern et al. 1999), and
predictive recursions (Newton et al. 1998; Newton and Zhang 1999) have been used
for fitting models with DP priors. In this section we focus the attention on MCMC
methods. MCMC methods allow the construction of general purpose algorithms,
and have been successfully used for posterior sampling under DP priors in many
diverse applications and modeling contexts.

2.4.1 Conjugate DPM Models

Escobar (1988) proposed the first posterior Gibbs sampler for the DPM model (2.6),
based on transition probabilities that update �i by draws from the complete
conditional posterior p.�i j ��i; y/. However, this Gibbs sampler can be argued
to suffer from a slowly mixing Markov chain.

Most currently used posterior MCMC methods for DPM models are based on
a variation proposed by Bush and MacEachern (1996). They use two types of
transition probabilities. One updates si by draws from the complete conditional
posterior probability p.si j s�i; y/, after marginalizing with respect to � . The other
type of transition probability generates �?j from p.�?j j s; y/. We first discuss the
latter. This will help us to establish notation that we will need for the other transition
probability.

Sampling from p.�?j j s; y/: We update �?j conditional on the imputed partition s
using

p.�?j j s; y/ / G0.�
?
j /
Y

i2Sj

f�?j .yi/: (2.13)

Recall that Sj D fi W si D jg is the j-th cluster under the DPM model. We used
that a priori p.�?j / D G0.�

?
j /. This follows from the stick-breaking definition of

the DP random measure. The posterior p.�?j j s; y/ is simply the posterior on �?j
in a parametric model with prior G0.�/ and sampling model f� .yi/ for data yi,
i 2 Sj.
Let y?j D .yi i 2 Sj/ denote yi arranged by cluster. We write p.�?j j s; y/ also as
p.�?j j y?j/. In this notation the conditioning on s is implicit in the selection of
the elements in y?j.

Sampling from p.si j s�i; y/: The probabilities p.si j s�i; y/ are derived as fol-
lows. First consider p.�i j ��i; y/. The prior p.�i j ��i/ is (2.12). Recall that
�?�

j denote the k� unique values among ��i and similarly for n�
j . Also, let

y?�
j D y?j n fyig, Multiply with the sampling distribution to get the posterior
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distribution

p.�i j ��i; y/ /
k�

X

jD1
n�

j f�?�

j
.yi/ ı�?�

j
.�i/C Mf�i.yi/G0.�i/: (2.14)

Some care is needed, as f�i.yi/G0.�i/ in the second term is not normalized. Let
H0.�i/ / f�i.yi/G0.�i/ with normalization constant h0.yi/ 	 R

f� .yi/G0.d�/, i.e.,

f�i.xi/G0.�i/ D h0.yi/ H0.�i/:

Note that h0 is a function of yi. Recognizing that �i D �?�
j implies si D j we can

write the same conditional as a joint distribution for .�i; si/

p.�i; si j ��i; y/ /
k�

X

jD1
n�

j f�?�

j
.yi/ ıj.si/ı�?�

j
.�i/C Mh0.yi/ ık�C1.si/H0.�i/:

Finally, we marginalize with respect to � , that is, with respect to �i and ��i. In
the last term the marginalization leaves

R
h0.yi/H0.�i/ d� D h0.yi/. In the first

k� terms the marginalization leaves
R

f�?j .yi/ dp.�?�
j j y?�

j/ D p.yi j y?�
j/.

Here p.�?�
j j y?�

j/ is defined similar to (2.13), just now excluding yi in the
conditioning subset. Note that �?�

j need not be the same as �?j . When i is a
singleton cluster, then removing the i-th unit from the partition might change the
indices of other clusters. We get

p.�?�
j j y?�

j/ / G0.�
?�
j /

Y

`2Sjnfig
f�?�

j
.y`/: (2.15)

Then

p.si D j j s�i; y/ /
(

n�
j p.yi j si D j; y?�

j/ for j D 1; : : : ; k�

M h0.yi/ j D k� C 1:
(2.16)

The posterior Gibbs sampler is summarized in the following algorithm. It is only
practicable for DPM models with conjugate G0.�/ and f� .�/. Without conjugacy the
evaluation of h0 would typically be analytically intractable. We therefore refer to the
algorithm as “MCMC for conjugate DPM”.

Algorithm 1: MCMC for Conjugate DPM.

1. Clustering: For i D 1; : : : ; n, draw si � p.si j s
�i; y/ using (2.16).

2. Cluster parameters: For j D 1; : : : ; k, generate �?j � p.�?j j s; y/ using (2.13).

One of the limitations of this algorithm is the slow mixing of the implied Markov
chain. For example, to split a current cluster, the algorithm has to first create a new
singleton cluster and then slowly grow it by adding one member at a time. Jain
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and Neal (2004) proposed a merge-split sampler for conjugate DPM models. Being
a merge-split algorithm (see e.g., Phillips and Smith 1996; Richardson and Green
1997), their method updates groups of indices in one update and thus is able to “step
over valleys of low probability” and move between high-probability modes. Their
algorithm involves a modified Gibbs sampler (restricted Gibbs scans) and, instead of
proposing naive random splits of components which are unlikely to be supported by
the model, proposes splits that are more probable by sweetening a naive split. The
algorithm reallocates the indices involved in the split among two split components
through as series of t, Gibbs-style updates. Jain and Neal (2004), recommend a small
number of intermediate restricted Gibbs scans, t D 4 to 6.

Dahl (2005) proposed an alternative merge-split sampler for conjugate DPM
models borrowing ideas from sequential importance sampling. The sampler,
referred to as SAMS, proposes splits by sequentially allocating observations to
one of two split components using allocation probabilities that are conditional on
previously allocated data. The algorithm does not require further sweetening and
is, hence, computationally efficient. In addition, no tuning parameter needs to be
chosen. While the conditional allocation of observations is similar to sequential
importance sampling, the output from the sampler has the correct stationary
distribution due to the use of the Metropolis-Hastings ratio. See Dahl (2005)
for details on its computation.

2.4.2 Updating Hyper-Parameters

Posterior inference under (2.8) requires some minor generalization of Algorithm 1.
Conditional on 
 and M, the conditional posterior distributions (2.16) and (2.13)
remain unchanged, leaving steps 1 and 2 of Algorithm 1 valid. But we add two
more steps to update the hyper-parameters. The stick-breaking definition of the DP

prior implies that �?j j 
; k iid� G
, j D 1; : : : ; k, a priori, leading to

p.
 j �?/ / p.
/
kY

jD1
G
.�

?
j /;

where p is the prior distribution for 
, and 
 is conditionally independent of s
and y, given �?. If p and G
 are a conjugate pair, we can add a Gibbs sampling
step to update 
 by a draw from the complete conditional posterior. In general, a
Metropolis-Hastings type transition probability might be needed.

Updating the total mass parameter M becomes easy under a gamma prior, M �
Ga.a; b/. From (2.10) we find the likelihood for M as

p.k j M/ / Mk�.M/�.M C n/ D Mk �.M C n/

M �.n/

Z 1

0


M.1� 
/n�1 d
;
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as a function of M. Here, the proportionality constant includes all factors that do not
involve M. The last equality exploits the normalizing constant of a Be.M C 1; n/
distribution. Escobar and West (1995) use this equality to devise a clever auxiliary
variable sampler. We first introduce a latent variable 
, such that

p.
 j M; k; : : :/ D Be.M C 1; n/:

Combined with M � Ga.a; b/, we get

p.M j 
; k/ D � Gafa C k; b � log.
/g C .1� �/Gafa C k � 1; b � log.
/g;

with �=.1 � �/ D .a C k � 1/=fn.b � log.
//g.
We include both additional steps to generalize Algorithm 1.

Algorithm 2: MCMC for Conjugate DPM with hyper-parameters.

1. Clustering: For i D 1; : : : ; n, draw si � p.si j s
�i; y/ using (2.16).

2. Cluster parameters: For j D 1; : : : ; k, generate �?j � p.�?j j s; y; 
/.
3. Hyper-parameters 
: Update hyper-parameters by an appropriate transition

probability for 
, based on the conditional posterior distribution p.
 j �?/ /
p
.
/

Qk
jD1 G
.�

?
j /.

4. Total mass parameter: First generate 
 � Be.M C 1; n/, evaluate �=.1 � �/ D
.a C k � 1/=fn.b � log.
//g, and then generate

M j 
; k �
(

Gafa C k; b � log.
/g with probability �

Gafa C k � 1; b � log.
/g with probability 1� �:

2.4.3 Non-Conjugate DPM Models

Algorithm 1 is only practicable when G0, or G
, is a conjugate prior for f� .�/. For
general, possibly non-conjugate choices, the required evaluation of h0 is usually
not analytically tractable. Also sampling from the posterior distribution p.�?j j s; y/
in (2.13) may be challenging.

West et al. (1994) suggested using either numerical quadrature or a Monte Carlo
approximation to evaluate the required integral. If

R
f� .yj/G0.d�/ is approximated

by an average over m values for � drawn from G0, it is also possible to approximate
a draw from p.�?j j s; y/, if required, by drawing from among these m points
with probabilities proportional to their likelihood. Unfortunately, this approach is
potentially quite inaccurate.

MacEachern and Müller (1998) propose the “no-gaps” algorithm that does allow
auxiliary values for � drawn from G0 to be used to define a valid Markov chain
sampler. Denoting by k the number of distinct elements in � , they proposed a model
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augmentation of .�?1 ; : : : ; �
?
k / to

f��
1 ; : : : ; �

�
k„ ƒ‚ …

��

F

; ��
kC1; : : : ; ��

n„ ƒ‚ …
��

E

g;

with �?j � G0, j D kC1; : : : ; n. The augmentation includes the constraint that there
will be no gaps in the values of the sj, i.e., nj > 0 for j D 1; : : : ; k, and nj D 0 for
j D kC1; : : : ; n. Therefore the name, “no gaps”, of the algorithm. The additional �?E
can be interpreted as potential but not yet used cluster locations, the empty clusters,
and �?F can be interpreted as full clusters. In this augmented model the Gibbs sampler
simplifies substantially. The evaluation of integrals is replaced by simple likelihood
evaluations. Consider updating si in Step 1 of Algorithm 1. Assume si D j in the
currently imputed partition. We need to distinguish two cases.

• If nj > 1, then

p.si D j j s�i; �
?�; y/ /

(
n�

j f�?j .yi/ j D 1; : : : ; k�
M

k�C1 f�?k�

C1
.yi/ j D k� C 1

(2.17)

• if nj D 1, i.e., when si D j is currently imputed to form a singleton cluster by
itself then with probability .k � 1/=k leave si unchanged. Otherwise remove si

from the j-th cluster, relabel the �?j to comply with the no-gaps rule, and then
update si using the same probabilities (2.17).

The probabilities (2.17) follow from a careful analysis of the augmented no-gaps
model. See MacEachern and Müller (1998) for details. The no-gaps posterior Gibbs
sampler is summarized in the following algorithm.

Algorithm 3: No-Gaps sampler for nonconjugate DPM.

1. Clustering: For i D 1; : : : ; n, draw si � p.si j s
�i; �

?; y/ using (2.17).
2. Cluster parameters: For j D 1; : : : ; n, generate �?j � p.�?j j s; y/. For j > k, use

p.�?j j s; y/ D G0.

In step 1, note that �?j remains unchanged when �?j moves from full to empty
clusters. Consider a situation where si D j1 and nj1 D 1, that is, i is the only member
in a singleton cluster. Assume now, in step 1 we re-allocate i to another, existing
cluster. Closing down the singleton cluster j1 involves (i) relabeling the remaining
clusters into j D 1; : : : ; k � 1; (ii) the old �?j1 becomes �?k ; and finally, (iii) update
k 	 k �1. In particular, the currently imputed value �?j1 remains as new �?kC1. In step
2, in an actual implementation one need not actually record �?j , j D k C 1; : : : ; n.
They can be imputed as needed, when the values are required (except for recycled
values, like �?j1 above).

The key feature of Algorithm 3 is that it does not require evaluation of the integral
h0 that featured in the MCMC algorithm for conjugate DPM models. The algorithm
can be implemented for any model as long as we can generate from G0 and compute
f� .yj/. There is no need for G0 to be the conjugate prior for F� .
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As noted by Neal (2000), however, there is a puzzling inefficiency in the
algorithm’s mechanism for setting sj D k� C 1, i.e., for assigning an observation
to a newly created mixture component. The probability of such a change is reduced
from what one might expect by a factor of k� C 1, with a corresponding reduction
in the probability of the opposite change. Neal (2000) described a similar algorithm
without this inefficiency and proposed three Metropolis-Hastings algorithms with
partial Gibbs sampling to update the configurations. We describe it in the following
section.

MacEachern and Müller have also developed an algorithm based on a “complete”
scheme for mapping �� to � i. It requires maintaining n values for ��, which may
be inefficient for large n. Finally, Dahl (2005) also proposed a version of the SAMS
sampler for non-conjugate DPM.

2.4.4 Neal’s Algorithm 8

Neal (2000) proposes a Gibbs sampler with auxiliary variables (Algorithm 8 in the
paper) that is similar to Algorithm 3, but without the reduced probability for creating
new clusters in the algorithm. We commented on this inefficiency before.

Algorithm 8 is based on a clever model augmentation. The DP prior in (2.6)
implies in particular a marginal prior p.�/ on the latent �i, which after marginalizing
w.r.t. G is shown in (2.11). Alternatively we can write p.�/ D p.s;�?/ D
p.s/ p.�? j s/ instead. Note that model (2.6) really defines a sequence of probability
models pn.�/, indexed by the sample size n. Let �n D .�1; : : : ; �n/ and let kn denote
the number of unique elements in �n. The sequence pn is coherent in the sense that
the marginal on .�n/ under pnC1.�/ is identical to pn.�n/, or, in short,

pnC1.�n/ D
Z

pnC1.�nC1/ d�nC1 D pn.�n/;

with the predictive for the .n C 1/-st �nC1 given by (2.4) with i D n C 1.
Neal (2000) augments the sequence of models pn.�/ to a sequence of augmented

models qn.�n; �
?
knC1; : : : ; �?knCm/, with �?knCj � G0, j D 1; : : : ;m. The model is

augmented with m additional latent variables zn D .�?knC1; : : : ; �?knCm/ that were
not defined in pn. The clever trick is to link zn with �nC1 under pnC1. Recall that
nn;j D Pn

iD1 I.�i D �?j / denotes the size of the j-th cluster among �1; : : : ; �n and
define

qnC1.�nC1 j �n; �
?
knC1; : : : ; �?knCm/ /

knX

jD1
nn;jı�?j .�nC1/C M

m

mX

jD1
ı�?knCj

.�nC1/:

(2.18)
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This expression replaces the prior (2.11) in (2.16). In other words, we use one of
the �?knCj as �nC1 if snC1 > kn opens a new cluster. Since �?knCj was generated from
G0, this leaves the implied prior qn.�n/, after marginalizing w.r.t. zn, unchanged as
qn.�n/ D pn.�n/. Thus, when implementing MCMC under the augmented model
qn.�/, we could in the end simply drop the augmented parameters and get a sample
from the posterior under pn.�/.

The critical difference between (2.11) and (2.18) is that the latter does not require
the integration w.r.t. G0 in (2.16). Instead we get

p.si D j j s�i;�
?;M; y/ /

(
M
m f�?j .yi/ j D k� C 1; : : : ; k� C m

nj f�?j .yi/ j D 1; : : : ; k�:
(2.19)

And there is no special case for nj D 1. The conditional (2.19) replaces (2.16).
Note that when m D 1, Algorithm 8 of Neal (2000) closely resembles the “no
gaps” algorithm of MacEachern and Müller (1998). The main difference is the
justification. The main practical difference is that the probability of changing sj

from a component shared with other observations to a new singleton component
is approximately k� C 1 times greater with Algorithm 8 and the same is true
for the reverse change. When M is small this seems to be a clear benefit, since
the probabilities for other changes are affected only slightly. Using a simulated
dataset, Neal (2000) also showed that the auxiliary Gibbs sampler (with a properly
chosen tuning parameter) has the best computational efficiency of one-at-a-time
non-conjugate samplers for DPM models.

Software note: R code to implement transition probabilities under Algorithm 8 is
given in the on-line software appendix for this chapter.

2.4.5 Slice Sampler

Walker (2007), Griffin and Walker (2011) and Kalli et al. (2011) developed a slice
sampler for the DPM model. The method also applies for other nonparametric Bayes
priors. But we focus on the DPM model here. In contrast to the earlier discussed
methods, they do not marginalize out the random probability measure G. Recall the
stick breaking representation

G.�/ D
1X

hD1
whımh.�/;

with wh D vh
Q
`<h.1 � v`/, vh

iid� Be.1;M/ and mh
iid� G0. Let w and m denote the

sequences of wh and mh, respectively. We can use this representation to explicitly
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state the DPM model fG.yi/ D R
f� .yi/ dG.�/ as

p.yi j w;m/ D
1X

hD1
wh fmh.yi/: (2.20)

Here p.yi j w;m/ is just a complicated way of writing fG.yi/. At this moment p.yi j
w;m/ is still an infinite sum, making it difficult to use for computing and posterior
simulation. The first trick is to introduce latent variables ui to reduce (2.20) to a
finite sum

p.yi; ui j m;w/ D
1X

hD1
I.ui < wh/fmh.yi/: (2.21)

Integration with respect to ui recovers (2.20), as intended. We verify that indeed
only finitely many terms are included in (2.21). Let Cw.u/ D fh W u < wh/ denote
the set of h that index the sum. In constructing Cw.ui/ we only need to consider all
indices ` < h?, where h? D minfh W ui > 1 � Ph

`D1 w`g. This is the case since
wh � 1 � Ph?

`D1 w` < ui for all h > h? (the first inequality simply follows fromP
wh D 1). In particular, the sum is over finitely many terms.
Next we add a latent selection indicator ri with p.ri D h j ui;w/ / I.ui < wh/,

that is, a uniform over Cw.ui/,

p.yi; ui; ri j m;w/ D I.ui < wri/ fmri
.yi/: (2.22)

Again, verify by integrating out, i.e., summing over ri, to find (2.21), and upon
integrating ui finally (2.20), as needed. This is all! The augmented model allows a
straightforward Gibbs sampling implementation for posterior simulation.

Under the model augmentation with u and r we get the joint model

p.y;u; r j w;m/ D
nY

iD1
I.ui < wri/ fmri

.yi/:

We can define a Gibbs sampler with transition probabilities that update wh, mh, ui

and ri by draws from the complete conditional posterior distributions. Recall wh D
vh
Q
`<h.1 � v`/ and vh � Be.1;M/. Let Ah D fi W ri D hg and Bh D fi W ri > hg.

Then

p.vh j : : :/ D Be.1C jAhj;M C jBhj/
Y

i

I.ui < wri/:
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The product of indicators simply amounts to a lower and upper bound for vh.
Similarly

p.mh j : : : ; y/ / G0.mh/
Y

i2Ah

fmh.yi/;

etc. We only need to update mh with non-empty index set Ah. Others can be
generated later, only as and when needed. The complete conditional posterior for
ui is a uniform, p.ui j ri;w/ � Unif.0;wri/. Finally, p.ri D h j u/ D Unif.Cw.ui//.

2.4.6 Finite DP

Ishwaran and Zarepour (2000) and Ishwaran and James (2001, 2002) proposed to
approximate DPM models by truncating the stick-breaking representation of the DP.
The fractions vh are truncated after H terms by setting vH D 1, leaving

G.�/ D
HX

hD1
whımh.�/; (2.23)

with wh D vh
Q
`<h.1 � v`/ with vh � Be.1;M/, h D 1; : : : ;H � 1 and vH D 1.

The prior on the point masses remains unchanged, i.e., mh
iid� G0, h D 1; : : : ;H. We

write G � DPH.MG0/ and DPMH for a DPM model (2.6) when a DPH replaces a
DP prior,

fG.y/ D
HX

hD1
whfmh.y/: (2.24)

The truncated DP is particularly attractive for posterior computation. Ishwaran and
James (2001) show a bound on the approximation error that arises when using
inference under a truncated DP to approximate inference under the corresponding
DP prior. The main use of the approximation with the DPH is in posterior simulation

for DPM models. Assume yi
iid� F, i D 1; : : : ; n, independently, with a DPMH prior

on F. First we replace the mixture (2.24) of the DPMH by the following equivalent
hierarchical model with latent indicators ri, i D 1; : : : ; n,

yi j ri D h � fmh and p.ri D h/ D wh:

The latent indicators ri are different from the cluster membership indicators that we
used in (2.9). If k is the number of unique values among the xi, then si 2 f1; : : : ; kg
links the data with the unique values, whereas ri 2 f1; : : : ;Hg with H � k links
the data with the point masses in G. Let r D .r1; : : : ; rn/, v D .v1; : : : ; vH�1/ and
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m D .m1; : : : ;mH/. We can then define posterior MCMC simulation with a Gibbs
sampler for p.r;w;� j x/.

Algorithm 4: MCMC for DPMH .

1. Clustering: For i D 1; : : : ; n, draw ri with p.ri D h j v;m; yi/ / whfmh.yi/, h D
1; : : : ;H.

2. Weights: Let Ah D P
i I.ri D h/ and Bh D P

i I.ri > h/. For h D 1; : : : ;H � 1,
generate vh � Be.Ah C 1;Bh C M/.

3. Locations: Let Sh D fi W ri D hg denote the set of observations with ri D h. For
h D 1; : : : ;H, generate mh � p.mh j y; r/ / g0.mh/

Q
i2Sh

fmh.yi/.

Note that Sh may be empty. If g0.m/ and fm.�/ are chosen as a pair of conjugate prior
and likelihood, then updating mh is straightforward by a draw from the complete
conditional posterior p.mh j y; r/. In the case of non-conjugate g0 and fm, we replace
the draw from the complete conditional posterior distribution by a Metropolis-
Hastings transition probability.

2.5 Generalizations of the Dirichlet Processes

While the DP is arguably one of the most widely used BNP model, its reliance
on only two parameters may sometimes be restrictive. One drawback of the DP
prior is that it always produces discrete random probability measure. Another
undesirable property is that the correlation between the random probabilities of two
sets is always negative. In some situations, random probabilities of sets that are
close enough are expected to be positively related if some smoothness is assumed.
Flexible priors may be constructed by generalizing the way the prior probabilities
are assigned.

2.5.1 Tail-Free Processes

The notion of a tail-free (TF) process was introduced by Freedman (1963) and
Fabius (1964), and predates that of the DP. Assume that � is a complete and
separable sample space, e.g. � D R. Let E D f0; 1g; Em D E � : : : � E, E0 D ;,
and E� D S1

mD0 Em. We will write � 2 Em as a binary integer � D "1 � � � "m. A TF
process is defined by allocations of random probabilities to sets in a nested sequence
of partitions of the sample space, using � 2 E? to index partitioning subsets B�
as follows. Let �0 D f�g, �1 D fB0;B1g, �2 D fB00;B01;B10;B11g, : : :, be a
sequence of nested partition of � such that B� D B�0 [ B�1 and B�0 \ B�1 D ;
for every � D "1 � � � "m 2 E�. In other words, the �n are partitions of �, with �nC1
being a refinement of �n by splitting each of the partitioning subsets B� 2 �n into
B� D B�0 [ B�1.
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Assume � D R and that B�0 lies below B�1 and that B� is a left open right
closed interval except for � D 1 � � �1, i.e., all ones. Further assume that

S1
mD0 �m

is a generator for the Borel �-field on �. Note that this is ensured if the collection
of right end points of B� is dense in �. A probability G may then be described
by specifying all the conditional probabilities fY" D G .B�0 j B�/ W " 2 E�g. A
prior for G may thus be defined by specifying the joint distributions of all Y"’s.
The specification may be written in a tree form. The probability distributions at the
different levels in the hierarchy can be interpreted as prior specification at different
levels of detail. A prior for G is said to be tail-free with respect to the sequence
of partitions f�mg1

0 if the collections fY;g, fY0;Y1g, fY00;Y01;Y10;Y11g, : : :, are
mutually independent. Note that variables within the same hierarchy need not be
independent; only the variables at different levels are required to be so.

The family of TF processes includes the DP as an important special case. The
DP is TF with respect to any sequence of partitions. Indeed, the DP is the only
prior that has this distinct property. See Ferguson (1974) and references therein.
TF priors satisfy some interesting zero-one laws, namely, the random measure
generated by a tail-free process is absolutely continuous with respect to a given
finite measure with probability zero or one. This follows from the fact that the
criterion of absolute continuity may be expressed as a tail event with respect to a
collection of independent random variables and Kolmogorov’s zero-one law may
be applied (see, Ghosh and Ramamoorthi 2003, for details). Dubins and Freedman
(1967), Kraft (1964), and Metivier (1971) gave sufficient conditions for the almost
sure continuity and absolute continuity of a tail-free process.

2.5.2 Species Sampling Models (SSM)

The infinite series representation (2.2) gives rise to several generalizations of the DP
prior, by changing the distribution of the weights, the support points, or the number
of terms. Natural candidates are truncations of the infinite series representation. In
this setup, the prior

P1
hD1 whımh ; is replaced by

PN
hD1 whımh for some appropriately

chosen value of N. A popular example is the finite DP (2.23). Another example of
this procedure is the �-DP proposed by Muliere and Tardella (1998), where N is
chosen such that the total variation distance between the DP and the truncation is
bounded by a given � > 0. Another variation is the Dirichlet-multinomial process
introduced by Muliere and Secchi (1995). Here the random probability measure is,
for some finite N,

G.�/ D
NX

hD1
whımh.�/;
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with

.w1; : : : ;wN/ j M;N � Dir.M=N; : : : ;M=N/ and mh j G0
iid� G0; (2.25)

h D 1; : : : ;N. Interestingly, as a limit as N ! 1 we can again recover a DP.M;G0/

prior (Green and Richardson 2001).
More generally, Pitman (1996) described a class of models

G.�/ D
1X

hD1
whımh.�/C

 

1 �
1X

hD1
wh

!

G0.�/;

where, for a continuous distribution G0, we have m1;m2; : : :
iid� G0, assumed inde-

pendent of the non-negative random variables wh. The weights wh are constrained
by
P1

hD1 wh � 1 a.s. The model is known as Species Sampling Model (SSM), with
the interpretation of wh as the relative frequency of the i-th species in a list of species
in a certain population, and mh as the tag assigned to that species. If

P1
hD1 wh D 1

the SSM is called proper and the corresponding prior random probability measure
is discrete. The stick-breaking priors studied by Ishwaran and James (2001) are a
special case of SSM, adopting the form

PN
hD1 whımh , where 1 � N � 1. The

weights are defined as wh D Q
j<h.1 � vj/vh with vh � Be.ah; bh/, independently,

for given sequences .a1; a2; : : :/ and .b1; b2; : : :/. The finite DP (2.23) is a special
case.

Stick-breaking priors are quite general, including not only the Dirichlet-
multinomial process and the DP as special cases, but also a two-parameter DP
extension, known as the Poisson-Dirichlet process (Pitman and Yor 1997), and the
two-parameter beta process (Ishwaran and Zarepour 2000). Additional examples
and MCMC implementation details for stick-breaking random probability measures
can be found in Ishwaran and James (2001). Further discussion on SSMs appears in
Pitman (1996) and Ishwaran and James (2003).

2.5.3 Generalized Dirichlet Processes

The k-dimensional Dirichlet distribution may be viewed as the conditional distribu-
tion of p D .p1; : : : ; pk/ given that

Pk
jD1 pj D 1, where pj D expf�Yjg and Yj’s are

independent exponential variables. In general, if .Y1; : : : ;Yk/ have a joint density h,
the conditional joint density of .p1; : : : ; pk�1/ is proportional to

h.� log p1; : : : ;� log pk/p
�1
1 � � � p�1

k ;
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where pk D 1 �Pk�1
jD1 pj. Hjort (1996) considered

h.Y1; : : : ;Yk/ /
kY

jD1
expf�˛jYjgg0.Y1; : : : ;Yk/;

and hence the resulting (conditional) density of .p1; : : : ; pk�1/ is proportional to
p˛1�11 � � � p˛k�1

1 g0.� log p1; : : : ;� log pk/. We may put g.p/ D expf���.p/g, where
�.p/ is a penalty term for roughness. The penalty term helps to maintain positive
correlation and hence smoothness. The tuning parameter � controls the extent to
which penalty is imposed for roughness. Under i.i.d. sampling the resulting posterior
distribution is conjugate with a posterior mode equivalent to a penalized maximum
likelihood estimator.
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Chapter 3
Density Estimation: Models Beyond the DP

Abstract The ubiquitous use of Dirichlet process models should not discourage
researchers from considering interesting features of alternative models. In particular,
the Polya tree model turns out to be an attractive choice for some applications.
In this chapter we discuss the use of the Polya tree prior and its variations for
density estimation. We define the model, introduce computation efficient methods
for posterior inference and identify relative advantages and limitations compared
with Dirichlet process models.

3.1 Polya Trees

3.1.1 Definition

Recall the discrete nature of a DP random probability measures G, that is, when
G j M;G0 � DP.MG0/. For many applications, especially for univariate and low
dimensional sample space (of G), an elegant alternative that avoids this limitation
is the Polya tree (PT) prior. The PT includes DP models as a special case. But
in contrast to the DP, an appropriate choice of the PT parameters allows the user
to generate continuous distributions with probability one. The construction of PT
priors was originally considered by Ferguson (1974) and Blackwell and MacQueen
(1973), and later studied by Mauldin et al. (1992), and Lavine (1992, 1994). The
prior can be seen as the De Finneti measure in a generalized Polya urn scheme
(Mauldin et al. 1992). The connection with Polya urn schemes justifies the name of
PT (see, Monticino 2001, for an illustrative explanation) and allows for direct proofs
of many of their properties.

The PT essentially defines a random histogram. Consider the bins of a histogram
defined by a partition of the sample space into nonempty, subsets fB`; ` D
0; : : : ; 2m � 1g (the size of the partition is written as 2m in anticipation of the
upcoming discussion). We could now define random probabilities G.B`/ for each
bin. Next consider refining the histogram by splitting each bin into two, B` D
B`0 [ B`1, and define random probabilities for the refined histogram by defining
Y`0 D G.B`0 j B`/ and Y`1 D 1 � Y`0 D G.B`1 j B`/. The recursive refinement of
bins defines a sequence of nested partitions. This construction is exactly the idea of
the PT prior. We create the nested partitions starting from the entire sample space,
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i.e., � D B0 [ B1. Thus the subindices of the partitioning subsets are sequences
" D "1 � � � "m of binary indicators "j 2 f0; 1g and G.B"1���"m/ D Qm

jD1 Y"1���"j . The PT
prior is the random probability measure G that arises when the Y"0’s are independent
beta random variables.

Recall from Sect. 2.5.1 the definition of a sequence of nested partitions … D
f�mI m D 0; 1; 2; : : :g. For example, if � D Œ0; 1	 is the unit interval, then we
could use �0 D Œ0; 1	, �1 D fŒ0; 1

2
/; Œ 1

2
; 1	g, �2 D fŒ0; 1

4
/; Œ 1

4
; 1
2
/; Œ 1

2
; 3
4
/; Œ 3

4
; 1	g, etc.

In general, we use sequences of binary indicators, � D "1 � � � "m with " 2 f0; 1g
to index the partitioning subsets in the level m partition �m. That is, �1 D fB"1g,
�2 D fB"1"2g, etc. The condition B� D B�0 [ B�1 makes �mC1 nested within �m.
Since we start with 2 subsets in �1, we have 2m subsets in �m. That is, the index set
of the B� 2 �m is � 2 f0; 1gm. Let E? D S1

mD0f0; 1gm, with f0; 1g0 	 ;. Then E? is
the index set of all partitioning subsets in ….

Definition 2 Let… D f�mg be a sequence of nested binary partitions as before and
A D f˛" W " 2 E?g be a collection of nonnegative numbers. A random probability
measure G on � is said to be a Polya tree with parameters .…;A/ if for every
m D 1; 2; : : : ; and every " D "1 � � � "m 2 Em,

G .B"1���"m/ D
mY

jD1
Y"1:::"j ; (3.1)

where the conditional probabilities Y"1 ���"j�10 are mutually independent beta random
variables

Y"1���"j�10 � Be
�
˛"1 ���"j�10; ˛"1 ���"j�11

�
; (3.2)

and Y"1���"j�11 D 1 � Y"1���"j�10. We write G � PT.…;A/.
From the definition, it follows that a PT process is a special case of a TF process,

where besides independence across rows, the random conditional probabilities
are also independent within rows and have beta distributions. Degenerate beta
distributions are permitted, for instance, by considering ˛"0 D 0.

The class of PTs contains the DP, which is characterized by the condition
˛"0 C ˛"1 D ˛", for every " 2 E� (Ferguson 1974). The advantage of a DP over
a more general PT is that the DP is the only TF process in which the choice of f�mg
does not affect inference. An attractive property of the PT model is that conditions
can be set on the elements of A D f˛" W " 2 E�g such that G is absolutely
continuous with probability one (see, Ferguson 1974). Dubins and Freedman (1967)
showed that when ˛" D 1 continuous singular distributions are generated. Kraft
(1964) and Metivier (1971) showed that ˛"1 ���"m D m2 is a sufficient condition to
guarantee that the PT assigns probability one to the set of continuous distributions.
More general sufficient conditions are given in Theorem 1.121 and Lemma 1.124
on pages 66–68 of Schervish (1995). Any choice ˛"1 ���"m D c�.m/ with �.m/ such
that

P1
mD1 �.m/�1 < 1 guarantees G to be absolutely continuous a priori.
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3.1.2 Prior Centering

From the TF property and the beta distribution of the Y"’s it is possible to find
expressions for the moments of G.B"/. For example, the mean and the variance
are given by the following expressions. For every " 2 E? let �"0 D E.Y"0/, �"1 D
1�E.Y"0/, s"0 D E.Y2"0/ and s"1 D E.Œ1�Y"0	2/ denote the first and second moments
of a Be.˛�0; ˛�1/ distribution. Then

E fG.B"1���"m/g D
mY

jD1
�"1 ���"j ; Var fG.B"1���"m/g D

mY

jD1
s"1���"j �

mY

jD1
�2"1 ���"j

: (3.3)

In practice, it is difficult to elicit the family A and the partitions… for a PT model.
Here, the moment conditions from above help. The moment conditions imply some
default choices that allow centering of G j …;A � PT.…;A/ at some desired prior
mean E.G/ D G0 for a PT random probability measure defined on the entire real
line or a subset of it.

Prior Centering by …: PT.G0;A/ Lavine (1992) proposed the following choice
to center the PT around a given centering probability measure G0. In short, fix … as
the dyadic quantiles of G0 and use ˛"0 D ˛"1, for every " 2 E�.

For a formal description of the construction, let G�1
0 denote the inverse cumula-

tive density function (c.d.f.) of G0, and define the partitioning subsets B"1���"m 2 �m

as the intervals defined by the quantiles G�1
0 .k=2

m/, k D 0; 1; : : : 2m. Let N."/
denote the integer with base-2 representation " D "1 � � � "m 2 Em, that is, interpret "
as the digits of a base-2 integer N. Then, for every for " D "1 � � � "m 2 Em, set

B"1���"m D
�

G�1
0

�
N."/
2m

�

;G�1
0

�
N."/C 1

2m

��

:

Also, take ˛"0 D ˛"1 for all " 2 E�. Then

EŒG.B"1���"m/	 D
mY

jD1
E.Y"1���"j/ D 1

2m
D G0 .B"1���"m/ :

Thus G0 has a similar role as the centering distribution in a DP. We write G �
PT.G0;A/. Later, when we include hyper-parameters 
 in G0;
 we will write …
 to
indicate the sequence of random partitions that we constructed in this centering.

Prior Centering by A: PT.…;G0/ Alternatively, one can fix … and select A to
achieve the desired prior expectation, EfG.B"1���"m/g D G0.B"1���"m/. For every " 2
E?, consider the split of B" into B" D B"0 [ B"1. The desired prior centering is
achieved with

˛"j / G0.B"j/; j D 0; 1
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Again it follows that EfG.B"1���"m/g D G0.B"1���"m/ for every "1 � � � "m 2 Em. We write
G j …;G0 � PT.…;G0/.

Canonical Choices for ˛"1���"m in PT.G0;A/ Consider now the first construction,
G � PT.G0;A/ to center a PT prior. Once the PT is centered around a probability
measure, G0, the family A D f˛" W " 2 E�g determines how much G can
deviate from G0, much like the role of the total mass parameter M in a DP.
Likewise, A determines how quickly prior shrinkage towards G0 is washed out by
the likelihood. In contrast to the DP prior, the PT has infinitely many parameters,
specified in A, which may be used to describe the prior belief. To mitigate the need
of extensive prior elicitation, a default method is usually adopted, where one chooses
˛" depending only on the length of the binary string ". Lavine (1992) proposes
˛"1���"m D m2 as a canonical choice. Walker and Mallick (1997) and Paddock (1999)
used ˛"1 ���"m D cm2, with c > 0. Berger and Guglielmi (2001) considered this family
and others of the form ˛"1���"m D c�.m/. Specifically, the choice �.m/ D 8m satisfies
a consistency theorem of Barron et al. (1999).

By considering different values of c, Hanson and Johnson (2002) found that the
family ˛"1 ���"m D cm2 was sufficiently rich to capture interesting features of the
distributions under consideration. For future reference, we denote this family as Ac.
That is

Ac D f˛" D cm2; " D "1 � � � "m 2 E?g:

Hanson and Johnson (2002) proved two results that indicate broadly the effect that
c has on inference. Consider a PT random measure on R, using G � PT.G0;Ac/,
that is, a PT prior that is centered at E.G/ D G0 by using dyadic quantiles of G0

to define the nested sequence of partitions. Assume y1; : : : ; yn j G
iid� G, and let

y D .y1; : : : ; yn/. Hanson and Johnson (2002) showed that

G..�1; t	/ j y
c!1�! G0..�1; t	/;

and

G..�1; t	/ j y
c!0�!

nX

jD1
pjI.yj < t/

in distribution, where .p1; : : : ; pn/ � Dirichlet.1; : : : ; 1/. The same results are
obtained for the DP as the precision parameter M tends to 1 and 0, respectively.
Figure 3.1 demonstrates the effects of increasing the precision parameter. As is the
case for the DP prior, when c �! 1 the PT process defines a random probability
measure that is essentially degenerate at G0.
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Fig. 3.1 Plots of n D 10 density gi samples from Gi � PT.Go;Ac/, i D 1; : : : ; n, centered on a
standard normal distribution Go, for c D 5; 100 and 1000. In all cases, E.gi/ is overlaid over a plot
of the realizations of gi

3.1.3 Posterior Updating and Marginal Model

Mauldin et al. (1992) and Lavine (1992, 1994) catalogue properties of the PT,
including a conjugacy result. In words, the PT is a conjugate prior on a random

probability measure G under i.i.d. sampling, y1; : : : ; yn j G
iid� G. The posterior

p.G j y1; : : : ; yn/ is again a PT, with updated beta parameters. The parameter ˛" is
incremented by 1 for each yi 2 B". Let n" D Pn

iD1 I.yi 2 B"/ denote the number of
observations in a partitioning subset B".

Result 3 Suppose that y1; : : : ; yn j G
iid� G, and G � PT.…;A/. Then

G j y � PT.…;A?/ (3.4)

where the updated beta parameters ˛?� 2 A? are ˛�
" D ˛" C n".

Lavine (1992) provided an expression for the marginal model p.y1; : : : ; yn/, when

y1; : : : ; yn j G
iid� G and a PT prior is assumed for G, that is, p.y1; : : : ; yn/ DR Qn

iD1 G.yi/ dp.G/, with a PT prior on G. Assume a centered PT, with G j G0;A �
PT.G0;A/ or with G j …;G0 � PT.…;G0/. Let g0 denote the p.d.f. of G0. We need
some notation to locate an observation y in partitioning subsets at various levels of
the nested partition. For every m D 1; 2; : : :, let �m.yi/ D "1 � � � "m 2 Em denote the
index of the level m subset that contains yi, i.e., yi 2 B"1���"m . Also, let m�.yi/ denote
the lowest level m such that yi is the only data point in B�m.yi/, among y1; : : : ; yi.
Finally, let

n. j/
� D

j�1X

iD1
I.yi 2 B"/ and ˛?. j/

" D ˛" C n. j/
"

denote the number of observations y1; : : : ; yj�1 that lie in B" and the beta parameters
updated with these counts, respectively.
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Result 4 The marginal distribution of a random sample .y1; : : : ; yn/ is given by

p.y1; : : : ; yn/ D
(

nY

iD1
g0.yi/

)
nY

jD2

m�.yj/Y

mD1

˛
?.j/
�m.yj/

˛�m.yj/

� ˛�m�1.yj/0 C ˛�m�1.yj/1

˛
?.j/
�m�1.yj/0

C ˛
?.j/
�m�1.yj/1

: (3.5)

We refer to Berger and Guglielmi (2001) and Hanson and Johnson (2002) for
more discussion. In particular, Berger and Guglielmi (2001) use the marginal model
to evaluate Bayes factors. The proof of (3.5) is straightforward. The innermost
product over the factors involving ˛?, that is,

Q
m ˛

?.j/
�m.yj/

=f˛?.j/
�m�1.yj/0

C ˛
?.j/
�m�1.yj/1

g,
is the posterior predictive probability p.yj 2 B� j y1; : : : ; yj�1/ for " D �m.yj/.
It follows from (3.4) applied for p.G j y1; : : : ; yj�1/, and (3.3), substituting
E.Y"/ D ˛"0=.˛"0 C ˛"1/. Conditional on yj 2 B�, the conditional prior predictive
distribution is G0 restricted to B� , i.e., has density g0.yj/

1
G0.B�/

. By construction,
G0.B�/ D EŒG.B�/	, the prior mean, which in turn can be written as a similar

product of factors,
Qm�.yj/

mD1 ˛�m.yj/=f˛�m�1.yj/0 C ˛�m�1.yj/1g, now involving the prior
parameters ˛".

The argument remains valid under either prior centering, PT.G0;A/ as well
as PT.…;G0/. In the earlier case, with ˛"1 ���"m D cm2 and G0.B"1���"m/ D 1=2m

by definition of B" as the quantile sets under G0, the expression can be further
simplified to

p.y1; : : : ; yn/ D
(

nY

iD1
g0.yi/

)

2m
nY

jD2

m�.yj/Y

mD1

cm2 C n.j/
�m.yj/

2cm2 C n.j/
�m�1.yj/

: (3.6)

Expressions (3.6) and (3.5) remain valid also when the base measure G0 is indexed
with unknown hyper-parameters, that is, when the base measure is G0;
. See the
upcoming discussion in Sect. 3.2.1.

Example 4 (Gene Expression, ctd.) We implement density estimation for the gene

expression data given before, in Example 4. We assume yi j G
iid� G, i D

1; : : : ; n, with

G � PT.G0;A/

with ˛"1 ���"m D cm2 and G0 D N.�; �2/. For the moment we fix .�; �/ D .�3; 4/
and c D 3. Figure 3.2b summarizes the inference (we will describe panel (a) later).

Software note: R code for Fig. 3.2b is shown in the software appendix for this
chapter. The code implements Algorithm 5, shown below.
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G ∼ PT(G0,µ, A)
μ ∼ N(m, sm)

(b)

G ∼ PT(G0, A)
dexfi G0.

Fig. 3.2 Example 4. Posterior inference for G under PT prior, G � PT.G0;A/, with G0 D
N.�; �2/. In panel (a) we use a hyper-prior on �. In panel (b) G0 is fixed. For comparison, panel (a)
also shows a kernel density estimate (dashed, thin line) and an estimate with an additional hyper-
prior p.c/ on the precision parameter in ˛"1 ���"m D cm2 (marked “DPpackage”). In both panels,
posterior draws are also overlaid as greyed out lines. See the discussion in Sect. 3.3

3.2 Variations of the Polya Tree Processes

3.2.1 Mixture of Polya Trees

Although the prior mean distribution function may have a smooth Lebesgue density,
the randomly sampled densities from a simple PT are very rough, being nowhere
differentiable (see, Fig. 3.1). Barron et al. (1999) noted that the posterior predictive
densities of future observations computed under a PT prior have noticeable jumps at
the boundaries of partitioning subsets and that a choice of centering distribution G0

that is particularly unlike the sample distribution of the data will make convergence
of the posterior very slow. Note also that a practical implementation requires some
meaningful elicitation of the centering distribution. Often a class of target measures
can be identified, like the normal family, but it is hard to choose a single member of
the family.

To overcome these difficulties it is natural to consider a centering measure
which contains unspecified parameters, G0;
, and a further prior on these hyper-
parameters, � . The resulting hierarchical prior is a mixture of Polya trees (MPT).
The additional parameter leads to inference that averages out jumps to yield smooth
densities (Hanson and Johnson 2002). Note, however, that the TF property is lost.
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Of particular interest is the situation where 
 is a scale parameter and G is forced to
have median zero. Such models are of interest for residual distributions.

Hanson and Johnson (2002, Theorem 1) show that a MPT model with a prior
on a scale parameter 
 in the base measure G0;
 implies a continuous predictive

distribution (except at 0). The result is under i.i.d. sampling, y1; : : : ; yn j G
iid� G,

with a PT prior G j 
 � PT.G0;
;A/ using ˛"1���"m D cm2, and a hyper-prior
�.
/. The PT is constrained to 0 median (to be suitable as residual distribution in
a regression model) and g0;
 is assumed to be continuous in R. There are two more
technical conditions to the result. We need the existence of a bound L.
/ such that
g0;
.y/ < L.
/ for every y 2 R and

R
ŒL.
/	j �.
/d
 < 1 for j D n; n C 1.

Under these conditions the predictive distribution p.ynC1 j y1; : : : ; yn/ is continuous
everywhere except at 0. By using similar arguments as in Hanson and Johnson
(2002) it is possible to prove that when 
 is a location parameter the posterior
expected density is continuous everywhere.

Another possible way of creating a MPT model is to keep the partition fixed
and vary the ˛" parameters. As the partitions do not vary, the resulting density is
discontinuous everywhere, just like a usual PT. This kind of MPT was considered
by Berger and Guglielmi (2001) for testing a parametric family against the
nonparametric alternative using a Bayes factor.

Example 4 (Gene Expression, ctd.) We now relax the setup of the PT prior for the

gene expression data. We continue to use y1; : : : ; yn j G
iid� G, with

G j � � PT.G0;�;A/;

where G0;� D N.�; �2/. But now we implement an MPT, mixing with respect to
� D .�; �2/. We assume

� � N.m; s2m/;

with m D �3, sm D 2 and � fixed at � D 4. In this implementation we
still fix c. However, including a Metropolis-Hastings step to update c would be
straightforward. See the R code in the online appendix for this chapter.

Figure 3.2a summarizes the inference. The solid line, marked “PT” shows the
density estimate under the MPT model. For comparison the figure also shows the
density estimate with respect to mixing on both � and � , as well as over c. Inference
is implemented using the R package DPpackage. The density estimate is marked as
“DPpackage” in the plot. Also for comparison, the figure shows a kernel density
estimate, marked as “density”.

Software note: Inference for density estimation with PT and MPT priors is
implemented in DPpackage, in the function PTdensity(�). For an example,
see the R code for this example in the on-line software appendix for this chapter.
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3.2.2 Partially Specified Polya Trees

Computation with PT priors might be hindered by the need to update the infinite
number of parameters which describe the tree. The finite Polya tree (FPT), which
is also known as “partially specified Polya tree” (Lavine 1994), is an alternative to
address this concern. The finite PT is constructed to be identical to the PT up to a
finite pre-specified level J. However, the PT parameters in the set f˛" W " 2 E�g are
updated only up to this level J in the FPT.

Lavine (1994) discusses two scenarios for which it might be reasonable to
update only to a pre-specified level J. The first scenario is when the parameters
in f˛" W " 2 E�g are constructed to increase rapidly enough as the level of the
tree increases. The posterior updating of the distributions of Y" beyond level J
does not affect the prior strongly. The second scenario in which FPT are appealing
arises from concerns related to prior elicitation. It might be possible to elicit prior
information about parameters near the top of the PT and information about aspects
of the distribution such as shape and modality, but it could be unreasonable to expect
to elicit meaningful prior distributions for each and every parameter of the PT prior.

Lavine (1994) detailed how such a level can be chosen by placing bounds on the
posterior predictive distribution at a point. Hanson and Johnson (2002) suggested
the rule of thumb J � log2.n/ and Hanson (2006) suggested J � log2.n=N/, where
N is a “typical” number of observations falling into each set at level J when there is
reasonable comfort in the centering family.

We write G � FPT.G0;�;Ac; J/ for a FPT that truncates a PT.G0;�;Ac/ at level
J. Recall that in our earlier notation Ac is defined by setting ˛"1 ���"m D cm2.

3.3 Posterior Simulation for Polya Tree Models

3.3.1 FTP and i.i.d. Sampling

Recall that the PT prior is conjugate under i.i.d. sampling (Result 3). Consider

y1; : : : ; yn j G
iid� G, with a finite PT prior G � FPT.G0;Ac; J/. That is, the

PT prior is centered around a distribution G0 by fixing the partitioning subsets
as dyadic quantile sets under G0 and we only consider the first J levels of nested
partitions. Recall the earlier discussion, in Sect. 3.1.2. Recall that Ac refers to using
˛"1���"m D cm2. In summary, the model is given by

y1; : : : ; yn j G
iid� G; G � FPT.G0;Ac; J/:

For the moment we fix c as well as the centering measure G0.
We state an explicit algorithm for posterior inference under this model. The

algorithm implements the prior centering of the FPT.G0;Ac; J/ prior and carries
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out the posterior updating of Result 3. Assume � D R, and let B"1���"m D
ŒL"1 ���"m ;R"1���"m/, with B0���0 D .�1;R0���0/. Let N.�/ denote the integer with dyadic
representation �, and let q.z/ D G�1

0 .z/ denote the inverse c.d.f. of the desired
centering measure G0. Below we will use indexing of vectors with binary integers
� D "1 � � � "m. In an implementation, for example, in R, it is convenient to map � to
decimal integer indices j D 1; : : : ; 2m.

Algorithm 5: Posterior simulation under a finite PT prior.

1. Construct …: For m D 1; : : : ; J and for all � 2 Em,
let R� D q .2�m.N.�/C 1// (right subset boundaries)

2. Evaluate A?: For m D 1; : : : ; J,

1. for all � 2 Em, let ˛� D ˛?� D cm2 (initializing ˛?� )
2. for i D 1; : : : ; n

• �m.yi/ D minf� 2 Em W R� � yig (index of the level m subset containing yi)
• ˛?�m.yi/

CD 1 (building up ˛?� D ˛� C n� for all subsets)

3. Posterior simulation:

1. For m D 0; : : : ; J � 1 and for all � 2 Em let

Y�0 � Be.˛?�0; ˛
?
�1/ and Y�1 D 1� Y�0:

2. G.B"1 ���"J / D QJ
mD1 Y"1 ���"m .

For large J, use G.B"1 ���"J / to plot G at printer resolution.

For example, Step 1 could be implemented in R by setting up a list
(R[[1]],...,R[[J]]) with R[[m]] = q(2ˆ(-m)*(1:2ˆm)), using,
e.g., q(z)=qnorm(z,m=m,sd=s) for G0 D N.m; s/ (substitute some large
number, say 99, for q.1:0/).

Algorithm 6: Posterior expectation under a finite PT prior. Start with steps 1 and 2 in
Algorithm 5 to evaluate ˛?� . Then evaluate

EfG.B"1 ���"J / j yg D
JY

mD1

E.Y"1 ���"m j y/ D
JY

mD1

˛?"1 ���"m

˛?"1 ���"m�10
C ˛?"1 ���"m�11

:

For large J, EfG.B"1 ���"J / j yg plots E.G j y/ at printer resolution.

Algorithm 6 can be adapted for a PT, without restriction to a finite level J of nested
partitions, by replacing the loop over m D 1; : : : ; J by an iteration until n" D 0.

3.3.2 PT and MPT Prior Under i.i.d. Sampling

Consider again y1; : : : ; yn j G
iid� G, now with a PT prior G j 
 � PT.G0;
;Ac/.

That is, the PT prior is centered around a distribution G0;
 with unknown hyper-
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parameters. As before, the partitioning subsets as dyadic quantile sets under G0;
. In
summary, the model is given by

y1; : : : ; yn j G
iid� G;

G j c;� � PT.G0;�;Ac/ D PT.…�;Ac/; (3.7)

completed with a hyper-prior, � , for c and �,

.c;�/ � �:

Here we used …� to indicate the nested partitions that are used in the centered
PT.G0;�;Ac/ model. The notation highlights the dependence of the sequence of
nested partitions on the hyper-parameters �.

MCMC for the Marginal Posterior p.�; c j y/ It is possible to marginalize (3.7)
with respect to G and base the inference on the predictive distribution p.y1; : : : ; yn j
c;�/. Recall Eq. (3.5). Note that ˛?.j/" in Eq. (3.5) is now a function of c and the
partition sequence …� is a function of the hyper-parameters �. The marginalization
removes the need for sampling the infinite-dimensional process G. The problem is
that the infinite-dimensional G can of course only be represented approximately,
with some finite approximation (such as the FPT). However, after marginalization,
sampling from the infinite-dimensional process G is no longer required, and
inference is exact up to MCMC error. In summary, substituting (3.5) for the
marginal, the joint posterior distribution is

p.�; c j y/ / p.y1; : : : ; yn j c;�/�.c;�/ D
(

nY

iD1
g0;
.yi/

)
nY

jD2

m�.yj/Y

mD1

˛
?.j/
�m.yj/

˛�m.yj/

� ˛�m�1.xj/0 C ˛�m�1.yj/1

˛
?.j/
�m�1.xj/0

C ˛
?.j/
�m�11.yj/

�.c;�/; (3.8)

and could be further simplified for a PT.G0;Ac/ by substituting (3.6),

p.�; c j y/ /
(

nY

iD1
g0;
.yi/

)
nY

jD2

m�.yj/Y

mD1

2cm2 C 2n.j/
�m.yj/

2cm2 C n.j/
�m�1.yj/

�.c;�/:

Hanson and Johnson (2002) use (3.8) to implement inference in a median regression
model with a PT prior for the residual errors. They implement a Metropolis-Hastings
algorithm to obtain posterior inference based on the simplified expression.
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We state an explicit step-by-step algorithm to evaluate (3.8) for a FPT. Write
p.y1; : : : ; yn j c; 
/ D ˚Qn

iD1 g0;
.yi/
	
 .y/ with

 .y/ D
nY

jD2

m�.yj/Y

mD1

˛
?.j/
�m.yj/

˛
?.j/
�m�1.yj/0

C ˛
?.j/
�m�1.yj/1

� ˛�m�1.yj/0 C ˛�m�1.yj/1

˛�m.yj/

:

Keep in mind that the partitioning subsets B"1���"m are quantile sets of G0;
, and thus

˛
?.j/
� are implicitly functions of 
 and c. In the algorithm below, we build up the

counts n?.j/.�/ and the posterior parameters ˛?.�/ over j D 2; : : : ; n, starting with
initial values for j D 1.

Algorithm 7: Marginal distribution p.y/ under a FPT prior. Start with steps 1. and 2. of
Algorithm 5 to evaluate ˛?� and ˛� .

Marginal distribution: We evaluate  .y/ only.

1. Initialize L D 0; for m D 1; : : : ; J and j D 2; : : : ; n and for all � 2 Em initialize
n.j/� D If� D �m.y1/g

2. For j D 2; : : : ; n

For m D 1; : : : ; J

• if n.j/�m�1.yj/
> 0 then

– Let �0 D �m�1.yj/0 and �1 D �m�1.yj/1 (last digit in �m.yj/ replaced by 0
and 1)

– po D ˛
?.j/
�m.yj/

=.˛
?.j/
�0 C ˛

?.j/
�1 /, and pr D ˛�m.yj/=.˛�0 C ˛�1/

– L CD log.po=pr/

• n.`/�m.yj/
CD 1, ` D j C 1; : : : ; n (building up n.`/)

3. Return log .y/ D L.

FPT and Conditionally Conjugate Models An alternative strategy is to consider
an FPT by terminating and updating the partition …� up to a finite level J. Under
i.i.d. sampling, the posterior distribution on the random probability measure is
described in Result 3.

The FPT becomes attractive when the random probability measure is part of a
larger model. Lavine (1994) described the use of the FPT to model the residual
errors in a regression problem. Inference can then make use of a Gibbs sampler
algorithm for the PT probabilities. That is, conditional on the parameters of the
regression mean function, posterior inference reduces to the conjugate problem
of inference for density estimation under i.i.d. sampling (of the residuals). The
posterior for the conditional probabilities in the FPT reduces to independent beta
distributions. And, vice versa, conditional on the FPT, posterior inference for
the parameters of the regression mean function reduces to a standard parametric
inference problem. Also, Eq. (3.8) remains valid, with m? capped at J.
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3.3.3 Posterior Inference for Non-Conjugate Models

Hanson (2006) developed posterior MCMC algorithms when the conjugacy prop-
erty of the PT is lost, that is, when we use sampling models different from i.i.d.
sampling, using a FPT with nested partitions up to level J. The finite truncation of
the nested partition sequence makes it possible to consider explicit expressions for
the p.d.f., c.d.f., quantile functions of the random probability measure, or hazard
rates. This, in turn, facilitates the development of MCMC transition probabilities,
even when conjugacy is lost. Details depend on the model. In the following
discussion we only assume that evaluation of the likelihood is possible if the p.d.f.,
the c.d.f., the hazard function, or quantile functions of the random probability
measure G were known, and pointwise evaluation were feasible.

To formally state the proposed transition probabilities, we introduce notation for
the random probabilities of the partitioning subsets at the finest level of the FTP. Let

YJ D fY"1���"m ; m D 1; : : : ; J and "j 2 f0; 1gg

denote the set of random conditional probabilities up to level J in an FPT. Set
p"1���"m 	 G.B"1���"m/ D QJ

mD1 Y"1���"m . In an FPT

p D fp"1���"J W "j 2 f0; 1g; j D 1; : : : ; Jg

are the 2J level J probabilities at the finest level of partition.
We can then use p"1���"J to evaluate the likelihood for the observed data. For

example, assume that evaluation of the likelihood function were to require the
p.d.f. of the random probability measure G. Recall that �J.y/ D "1 � � � "J denotes
the index of the level J partitioning the subset B"1���"J that contains y. Let g0;�.y/
denote the p.d.f. of the centering distribution G0;
 evaluated at y. The p.d.f. g of
G j �; c � FPT.G0;�; c; J/ can then be written as a function of the conditional
probabilities YJ as

g.y/ D p"1���"J � 2Jg0;�.y/ with "1 � � � "J D �J.y/:

The factor 2J arises from 1=G0;
.B"1���"J /, remembering that B"1���"m were defined as
dyadic quantiles under G0;
. Recall that p"1���"J is defined as a product of random
conditional probabilities in YJ . Hanson (2006) gives similar expressions for the
c.d.f. of G and the quantile functions G�1. Both are easily determined based on
g. Those expressions can be used to construct the likelihood and latent variable
distribution in different settings. Hanson (2006) considers simple Metropolis-
Hastings updates of the elements of YJ , where the candidates . QY"1���"m0; QY"1���"m1/ are
generated from a beta distribution with parameters .hY"1���"m0; hY"1���"m1/, with h > 0.
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3.4 A Comparison of DP Versus PT Models

Much of the recent BNP literature has concentrated on the development of new
models with less emphasis given to the practical advantage of the new proposals.
In general, the full support of the models and the extremely weak conditions under
which the different models have been shown to imply consistent posterior inference
might well trap the unwary into a false sense of security, by suggesting that good
estimates of the probability models can be obtained in a wide range of settings.
More research seems to be needed in that direction.

Early papers on PT’s (Lavine 1992; Walker and Mallick 1997, 1999) show
“spiky” and “irregular” density estimates. However, these papers picked a very small
precision c (in the definition of ˛"1 ���"m D cm2) and used a fixed centering distribution
(without a random scale �) that was often much more spread out than what the
data warranted. The MPT prior automatically centers the prior at a reasonable
centering distribution and smooths over partition boundaries. We argue that both
MPT and DPM are competitor models, with appealing properties regarding support
and posterior consistency, and that performance of each should be evaluated in real-
life applications with finite sample sizes. We will illustrate this point by means of
the analyses of simulated data. Other comparisons can be found in Hanson (2006),
Hanson et al. (2008) and Jara et al. (2009).

We compared MPT and DPM estimates using “perfect samples” (data are
percentiles of equal probability from the distribution, approximating expected order
statistics) from four densities, motivated by Figures 2.1 and 2.3 in Efromovich
(1999). Both models were fit under more or less standard prior specifications for
samples of size n D 500. Specifically, the MPT model was fit in DPpackage
(Jara et al. 2011) using the PTdensity function with a baseline measure G0;� D
N.�; �2/, and the following prior settings: J D 6, c � Ga.10; 1/, and �.�; �/ /
��1 (Jeffreys’ prior under the normal model). The DPM model was fit using the
DPdensity function included in DPpackage (Jara et al. 2011). This function
fits the DPM model considered by Escobar and West (1995),

yij�i; �i
iid� N.�i; �

�1
i /; .�i; �i/jG iid� G; Gj˛;G0;� � DP.˛G0;�/;

where the centering distribution, G0;� is the conjugate normal/gamma model, i.e.,
G0;�.�; �/ 	 N.� j m; .k�/�1/ � Ga.� j a� ; b� /. The model was fit by assuming
a� D 2 and b� D 1 and, m � N.0; 105/, k � Ga.0:5; 50/ and ˛ � Ga.1; 1/.

Figure 3.3 shows the true models and the density estimates under the DPM and
MPT models, along with a histogram of the data. Although it is difficult to see
differences between the estimates under the DPM and MPT models across true
models, the density estimates under the MPT are a bit rougher than under DPM,
but there are no obvious partitioning effects or unruly spikes where there should not
be. More importantly, either method can perform better than the other depending on
the data generating mechanism; both can do a good job.
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Fig. 3.3 Simulated data: The estimated density functions under the MPT and DPM models are
displayed as solid and dashed lines, respectively. The data generating model is represented as
dotted lines. Panels (a), (b), (c) and (d) display the density estimates, true model and the histogram
of the simulated data under a mixture of normals and uniform, double exponential, triangle and
standard normal distribution, respectively

When the true model is a mixture of two normals and a uniform distribution, the
L1 distance between the MPT estimates and the true model was L1 D 0:056, while
for the DPM, we find L1 D 0:034. When the true model was a double exponential
distribution, the MPT model outperformed the DPM. In this case L1 D 0:025

and L1 D 0:060 for the MPT and DPM model, respectively. A similar behavior
was observed when the model under consideration had a triangular shape. In this
case, L1 D 0:051 and L1 D 0:096 for the MPT and DPM model, respectively.
Finally, when the data generating mechanism was a standard normal distribution,
both models performed equally well; L1 D 0:009 for both MPT and DPM. From the
plots in Fig. 3.3 and the L1 distances, the MPT appears to be a serious competitor to
the DPM model, doing (two times) better or as well in three out of four cases.
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3.5 NRMI

3.5.1 Other Generalizations of the DP Prior

Many alternative priors for random probability measures have been proposed. Many
can be characterized as natural generalizations or simplifications of the DP prior.
Ishwaran and James (2001) propose generalizations and variations based on the
stick-breaking definition (2.2), including the finite DP that was introduced before,
in Sect. 2.4.6 for approximating inference under a DP prior. The DPK was defined
by truncating the sequence of fractions vh in (2.2). Besides truncation, the beta
priors for vh in (2.2) can be replaced by any vh � Be.ah; bh/, without complicating
posterior simulations. In particular, vh � Be.1 � a; b C ha/ defines the Poisson-
Dirichlet process, also referred to as Pitman-Yor process, with parameters a; b
(Pitman and Yor 1997).

Alternatively we could focus on other defining properties of the DP to motivate
generalizations. For example, the DP can be defined as a normalized gamma process
(Ferguson 1973). The gamma process is a particular example of a much wider class
of models known as completely random measures (CRM) (Kingman 1993, Chap. 8).
Consider any non-intersecting measurable subsets A1; : : : ;Ak of the desired sample
space. The defining property of the CRM � is that �.Aj/ be mutually independent.
The gamma process is a CRM with�.Aj/ � Ga.M�0.A/; 1/, mutually independent,
for a probability measure �0 and M > 0. Normalizing � by G.A/ D �.A/=�.S/
defines a DP prior with base measure proportional to �0. Replacing the gamma
process by any other CRM defines alternative BNP priors for random probability
measures.

Such priors are known as normalized random measures with independent
increments (NRMI) and were first described in Regazzini et al. (2003) and include
a large number of BNP priors. A recent review of NRMI’s appears in Lijoi and
Prünster (2010). Besides the DP prior, other examples are the normalized inverse
Gaussian (NIG) of Lijoi et al. (2005) and the normalized generalized gamma process
(NGGP), discussed in Lijoi et al. (2007). The construction of the NIG in many
ways parallels the DP prior. Besides the definition as a CRM, a NIG process G
can also be characterized by a normalized inverse Gaussian distribution (Lijoi et al.
2005) for the joint distribution of random probabilities .G.A1/; : : : ;G.Ak//, and just
as in the DP case, the probabilities for cluster arrangements defined by ties under
i.i.d. sampling are available in closed form. For the DP, we will still consider this
distribution in more detail in the next section. The NIG, as well as the DP are special
cases of the NGGP.
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3.5.2 Mixture of NRMI

Two recent papers (Barrios et al. 2013; Favaro and Teh 2013) discuss mixture
models with an NRMI prior on the mixing measure, similar to (7.5), but with any
other NRMI prior replacing the specific DP prior. Both discuss the specific case
of the normalized generalized Gaussian process (NGGP), which is attractive as it
includes the DP as well as several other examples as special cases.

They describe practicable implementations of posterior simulation for such
mixture model, based on a characterization of posterior inference in NRMIs
discussed in James et al. (2009) who characterize p.G j y/ under i.i.d. sampling

y1; : : : ; yn j G
iid� G, from a random probability measure G with NRMI prior.

Both describe algorithms specifically for the NGGP, conditioning on the same latent
variable U that is introduced as part of the description in James et al. (2009). Favaro
and Teh (2013) describe what can be characterized as a modified version of the
Polya urn. The Polya urn defines the marginal distribution of .y1; : : : ; yn/ under the
DP prior, after marginalizing with respect to G. We discuss the marginal model
under the DP in more detail in Sects. 2.3 and 8.2. A similar approach is described
in Argiento et al. (2010). In contrast, Barrios et al. (2013) describe an approach that
includes sampling of the random probability measure. This is particularly useful
when desired inference summaries require imputation of the unknown probability
measure. The methods of Barrios et al. (2013) are implemented in the R package
BNPdensity, which is available in the CRAN package repository (http://cran.r-
project.org/).
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Chapter 4
Regression

Abstract Regression problems naturally call for nonparametric Bayesian methods
when one wishes to relax restrictive parametric assumptions on the mean function,
the residual distribution or both. We introduce suitable nonparametric Bayesian
methods to facilitate such generalizations, including priors for random mean
functions, the use of nonparametric density estimation for residual distributions and
finally nonparametric Bayesian methods for fully nonparametric regression when
both mean function and residual distribution are modeled nonparametrically. The
latter includes approaches where the complete shape of the response distribution is
allowed to change as a function of the predictors, which is also known as density
regression. We introduce the popular dependent Dirichlet process model and several
other alternatives.

4.1 Bayesian Nonparametric Regression

Consider the generic regression problem of explaining an outcome yi as a function
of a covariate xi 2 X . For the moment we assume that both, outcome and covariate,
are univariate, and state the regression problem as

yi D f .xi/C �i (4.1)

i D 1; : : : ; n. Here f is an unknown centering function and �i are residuals, usually
assumed to be independent. In many cases, f would indicate the mean response, or
alternatively, f could mark a given quantile, such as the median. If the function f
and the residual distribution are indexed by a finite dimensional parameter vector � ,
then the problem reduces to traditional parametric regression, for example, normal
linear regression. Without the restriction to finite dimensional � we are led to
nonparametric extensions of (4.1).

This definition of nonparametric regression as a relaxation of the parametric
model makes it natural to distinguish three types of nonparametric regression
models: (i) when a nonparametric prior is used to model the residuals distribution,

i.e., when �i j G
iid� G and a BNP prior is specified for G; (ii) when a nonparametric

prior is assumed on the mean function f ; or (iii) when a nonparametric prior

© Springer International Publishing Switzerland 2015
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52 4 Regression

is used on the set of conditional distributions, i.e., when yi j G; xi
ind� Gxi

with a BNP prior on the family G D fGx; x 2 X g. We refer to these three
approaches as nonparametric residual distributions, nonparametric mean functions,
and fully nonparametric regression, respectively. The latter is also known as density
regression.

4.2 Nonparametric Residual Distribution

Inference under BNP regression with nonparametric residuals reduces essentially to
BNP density estimation. Assume f .�/ D f� .�/ is a parametric mean function, indexed

by a (finite-dimensional) parameter vector � with prior � , and �i j G
iid� G, with a

BNP prior on G. Posterior inference is most conveniently implemented by MCMC
simulation with two transition probabilities. Conditional on a currently imputed
parameter vector � , inference on G reduces to density estimation for �i 	 yi � f� .xi/.
We can use posterior simulation for BNP density estimation to define a transition
probability that updates G conditional on � . In a second step, we condition on the
currently imputed probability measure G and update � , using posterior simulation
in a regression model with known residual distribution G. Iterating between the two
steps defines posterior MCMC simulation.

To avoid lack of interpretability of the mean function f , nonparametric residual
distributions need to be restricted, for instance, to have zero-mean or zero-median.
This makes the PT prior particularly attractive, as it can easily be specified such
that G has zero-median with probability one. Walker and Mallick (1999) propose
a PT prior model for a residual distribution in an accelerated failure time model.
That is, in a regression of log event times yi D log.ti/ on a vector of risk
factors xi. They assume a PT prior for the residual distribution with the median-
zero restriction. A minor limitation of the model is the persistence of partition
boundaries in predictive inference. Hanson and Johnson (2002) address this problem
by using mixture of PT priors, still centered at median 0. Schörgendorfer et al.
(2013) extend this model for testing the suitability of logistic regression with
dichotomized continuous outcomes. Hanson and Johnson (2004) use a DP prior for
the (multiplicative, before the log transform) residual distribution in an accelerated
failure time model. See Sect. 6.3 for related discussion. Other constraints on
G can also be used. For example, Kottas and Gelfand (2001) use a DP scale
mixture of uniforms to represent a unimodal residual distribution in a regression
model.

Example 5 (Old Faithful Geyser) Azzalini and Bowman (1990) analyzed a data set
concerning eruptions of the Old Faithful geyser in Yellowstone National Park in
Wyoming. The data record eruption durations and intervals between subsequent
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Fig. 4.1 Example 5. Data and fitted regression curve (panel a) and estimated residual distribution
(panel b). The thin grey lines show posterior draws for f (panel a) and G (panel b)

eruptions, collected continuously from August 1st until August 15th, 1985. Of
the original 299 observations we removed 78 observations which were taken at
night and only recorded durations as “short”, “medium” or “long”. We implement
inference for a semi-parametric regression (4.1) with a finite DP prior. That is, we

assume �i j G
iid� G and G � DPH . Let xi denote the duration of the preceding

eruption, centered to zero-mean and let zC D z for z > 0 and zC D 0 for z � 0. We
use a linear function of xi, x2i and .x3i /

C as the regression mean function f .xi/ in (4.1).
Figure 4.1a plots the data and a fitted nonlinear mean function E.f j y/. Panel (b)
shows the estimated residual distribution G� , together with some posterior draws for
G. The posterior mean G� is shifted to achieve a zero-mean. Let �.G/ denote the
mean of a probability measure G. Then G� D E.G j y/�� ŒE.G j y/	. Similarly, the
plotted random G are shifted by the same offset. The left skewed nature of G and G�

accommodates the observations in the right lower part of panel (a). For comparison,
panel (b) also shows the base measure G? of the DP prior.

Software note: R code for Fig. 4.1 is shown in the software appendix to this
chapter.
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4.3 Nonparametric Mean Function

4.3.1 Basis Expansions

Many approaches do not define the probability model directly on f . Consider a
function basis F D f'kg and let � denote the set of coefficients with respect to
that basis, i.e.,

f .�/ D
KX

kD1
�k'k.�/: (4.2)

Defining a probability model on � implicitly defines a probability model on the
unknown mean function. Note that a fully nonparametric prior requires K D 1. In
practice, the sum is truncated in some fashion, e.g. the most highly oscillatory 'k

are not included. A good choice of the basis allows us to use an informative prior
on the space of basis coefficients. An orthonormal basis can lead to particularly
easy posterior inference. Assuming independent normal residuals and equally
spaced data implies (approximately) orthogonal columns in the design matrix,
and thus a likelihood function that factors across basis coefficients. Together with
an independent prior this can be exploited to achieve a posteriori independence,
making inference particularly simple. This construction is sometimes used, for
example, with wavelet bases.

Wavelets

A wavelets basis F D f
j0;k;  jkI j � j0; k 2 Zg is a set of orthonormal functions
that are defined as shifted and scaled versions of two underlying functions 
 and  ,
as  jk.x/ D 2j=2 .2jx � k/ and similarly for 
jk. Also,

R

jk D 1 and

R
 jk D 0.

The nature of this function basis is easiest understood by considering a specific
example. The Haar wavelet basis defines 
00.x/ D I.x 2 Œ0; 1	/ as an indicator of
the interval Œ0; 1	, and  00 D I.x 2 Œ0; 0:5// � I.x 2 Œ0:5; 1	/, i.e. a step function
that switches between 1 and �1 on the left and right half interval. See Fig. 4.2. The
set Aj D f
jk; k 2 Zg approximates a given function f as a step function on a grid
of intervals of length 2�j. The functions  jk are the orthogonal complement of AjC1
and Aj.

Let

f .x/ D
X

k2Z
cj0;k
j0;k C

JX

jDj0

X

k2Z
djk jk.x/ (4.3)

define the representation of f with respect to the wavelet basis AJ. The practical
attraction of wavelet bases is the availability of superfast algorithms to compute the
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Fig. 4.2 Haar wavelet basis:  jk for j D 1; 2.

coefficients cjk and djk given a function, and vice versa. In words, the algorithm
proceeds as follows. We start with the function evaluated on a dense equally
spaced grid, fk D f .k2�J/. Note that 
Jk is a narrowly rescaled version of the
original 
 function and integrates to 1. Thus, for sufficiently large J we approximate
2J cJk � fk. In the following argument we drop the scale 2J, noting that the argument
remains valid as long as we also drop the scale when using the reverse algorithm to
reconstruct f , starting from c0k and djk. Starting with cJk we iteratively proceed for
j D J � 1 through j0 to find fcjk; djkI k 2 Zg. To obtain cjk and djk from cjC1;k,
we only need a set of coefficients that define 
jk and  jk as functions of cjC1;k. It
can be argued that these coefficients remain the same across j, i.e., we only need to
iteratively apply one filter to obtain the coefficients cj0;k and another filter to obtain
djk, j0 � j � J from cJk � fk. The two filters are h.�/ and g.�/ in the pyramid scheme
shown below. It can be shown that g.�/ uses the same coefficients as h.�/, only
with alternating signs. By a symmetric argument we can reconstruct the function
fk from the set of wavelet coefficients by iterative application of the same filters.
Also, working with a compactly supported function, we can use a periodic extension
of the function to the entire real line. Wavelet coefficients beyond a certain shift k
can then be argued to be identical repetitions of other coefficients, and we can thus
restrict computations to a finite range of shifts k.

Algorithm 8: Pyramid Scheme for the Discrete Wavelet Transform. Let .h.`/; ` D 1; : : : ; L/
denote the wavelet filter for the chosen wavelet basis, and let g.`/ D .�1/`h.L � 1 � `/

denote the mirror filter. The filter length L varies across different wavelet bases.

1. Let cJk D f .k 2�J/.
2. For j D J � 1; : : : ; j0 compute cjk D P

n h.n � 2k/cjC1;n and djk D P
n g.n � 2k/cjC1;n

3. The coefficients fcj0;k; djkg define the representation of f with respect to the wavelet basis
Aj0 .

Reconstruction operates with the inverse filter cjn D P
k h.n � 2k/cj�1;k C P

k g.n �
2k/dj�1;k , starting with j D j0 C 1.

Assuming a prior probability model for the coefficients djk implicitly puts a prior
probability model on a random function f . Typical prior probability models for
wavelet coefficients include positive probability mass at zero. Usually this prior
probability mass depends on the scale j, p.djk D 0/ D �j. Given a non-zero
coefficient, an independent prior with level dependent variances is assumed, for
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example, djkjdjk 6D 0 � N.0; �2j /. In summary

djk � �jı0.�/C .1 � �j/N.� j 0; �2/: (4.4)

Appropriate choice of �j and �j achieves posterior rules for the wavelet coefficients
djk, which closely mimic the usual wavelet thresholding and shrinkage rules
(Chipman et al. 1997; Vidakovic 1998). Clyde and George (2000) discuss the use of
empirical Bayes estimates for the hyperparameters in such models.

Posterior inference is greatly simplified by the orthonormality of the wavelet
basis. Consider a regression model yi D f .xi/ C �i, i D 1; : : : ; n, with equally
spaced data xi, for example, xi D i=n. Substitute a wavelet basis representation (4.3),
let y, d and � denote the data vector, the vector of all wavelet coefficients and the
residual vector, respectively. Also, let B denote the design matrix of the wavelet basis
functions evaluated at the xi. Then we can write the regression in matrix notation
as y D Bd C �. The discrete wavelet transform of the data evaluates Od D B�1y,
using the computationally highly efficient pyramid scheme algorithm. Assuming

independent normal errors, �i j �2 iid� N.0; �2/, orthogonality of the design matrix B
implies Odjk � N.djk; �

2/, independently across .j; k/. Assuming a priori independent
djk leads to a posteriori independence of the wavelet coefficients djk. In other words,
we can consider one univariate inference problem p.djkjy/ at a time. Even if the
prior probability model for d is not marginally independent across djk, it typically
assumes independence conditional on hyper-parameters, still leaving a considerable
simplification of posterior simulation.

Example 6 (Doppler Function) Donoho and Johnstone (1994) consider a battery of
test functions to evaluate performance of wavelet shrinkage methods. One of them is
the Doppler function f .x/ D p

x.1 � x/ sinŒ.2:1�/=.x C 0:05/	; for 0 � x � 1:We

generated n D 100 observations with yi D f .xi/C�i, with noise �i
iid� N.0; 0:052/ and

unequally spaced xi. The simulated data, together with the estimated mean function
Nf .x/ D EŒf� .x/jy	 are shown in Fig. 4.3. Figure 4.4 shows the posterior distributions
for some of the wavelet coefficients djk.

The above detailed explanation serves to highlight two critical assumptions.
Posterior independence, conditional on hyper-parameters or marginally, only holds
for equally spaced data and under a priori independence over djk. In most appli-
cations prior independence is a technically convenient assumption, but does not
reflect genuine prior knowledge. However, incorporating assumptions about prior
dependence is not excessively difficult either. Starting with an assumption about
dependence of f .xi/, i D 1; : : : ; n, Vannucci and Corradi (1999) show that a
straightforward two dimensional wavelet transform can be used to derive the
corresponding covariance matrix for the wavelet coefficients djk.

In the absence of equally spaced data the convenient mapping of the raw data
yi to the empirical wavelet coefficients Odjk is lost. The same is true for inference
problems other than regression where wavelet decomposition is used to model
random functions. Typical examples are the unknown density in a density estimation
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Fig. 4.3 Example 6. The posterior estimated mean function Nf .x/ D EŒf� .x/jy	 (solid curve). For
comparison, the dashed line shows a smoothing spline (cubic B-spline, using the Splus function
smooth.spline()), and the thin dotted curve shows the true mean function f .x/ used for the
simulation. The circles are the data points .xi; yi/, i D 1; : : : ; 100
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Fig. 4.4 Example 6. Posterior distributions for some wavelet coefficients djk. Note the point mass
at 0

(Müller and Vidakovic 1998), or the spectrum in a spectral density estimation.
In either case evaluation of the likelihood p.y j d/ requires reconstruction of the
random function f .�/. Although a technical inconvenience, this does not hinder
the practical use of a wavelet basis. The superfast wavelet decomposition and
reconstruction algorithms still allow computationally efficient likelihood evaluation
even with the original raw data.

Example 5 (Old Faithful Geyser, ctd.) Figure 4.1 showed a regression of duration
yt on waiting time xt, using a non-parametric prior for the residual distribution.
Figure 4.5 shows the same regression, but now with a non-parametric mean function,
using a wavelet-based prior on f and normal residuals, �i � N.0; �2/.
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Fig. 4.5 Example 5.
Inference on a nonparametric
mean function f in (4.1)
under a wavelet-based prior
for f . The solid line shows
E.f j y/. The grey shaded
bands show pointwise central
50 % credible intervals. For
comparison the dashed line
shows a cubic spline fit
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Morris and Carroll (2006) build functional mixed effects models with hierarchi-
cal extensions of (4.3) and (4.4) across multiple functions.

Neural Networks

Neural networks can be used to define a BNP prior for an unknown regression
function f . In particular, we will focus on feed-forward neural networks (FFNN) that
represent f as a mixture of logistic functions. A FFNN model with p input nodes,
one hidden layer with M hidden nodes, one output node and activation functions ‰
is a model relating p explanatory variables x D .x1; : : : ; xp/ and a response variable
y of the form

Oy.x/ D
MX

jD1
ˇj‰.x

0�j C 
j/ (4.5)

with ˇj 2 R, �j 2 R
p. The terms 
j are designated biases and may be assimilated to

the rest of the �j vector if we consider an additional input with constant value one,
say x0 D 1. Cybenko (1989) and others show that when ‰ is a sigmoidal function,
finite sums of the form (4.5) are dense in C.Ip/, the set of real continuous functions
in the p-dimensional unit cube. For their proof, they assume that M ! 1 as the
approximation gets better.
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The typical setup for FFNNs is the following. Given regression data D D
f.x1; y1/; : : : ; .xN ; yN/g and fixed M, choose ˇ D .ˇ1; : : : ; ˇM/; � D .�0; : : : ; �M/

according to a least squares criterion minˇ;�
PN

iD1.yi�Oy.xi//
2, either via backpropa-

gation (Rumelhart and McClelland 1986), an implementation of steepest descent, or
other optimization methods such as quasi-Newton or simulated annealing. Hence,
at least implicitly, we are assuming a normal error model and we are viewing a
nonlinear parametric regression problem. A regularization term in the objective
function avoids data overfitting. Alternatively, Müller and Ríos-Insua (1998) cast
regression with a neural network as a Bayesian inference problem and discuss
suitable posterior simulation methods.

Other Basis Expansions

Wavelets or neural networks are not the only basis expansions used for nonpara-
metric regression models. Many alternative basis functions are used, for example
the orthogonal Legendre polynomials, sines and cosines (Lenk 1999) and fractional
polynomials (Bov́e and Held 2011); the latter is implemented in the bfp package
for R. In such expansions, priors that increasingly shrink coefficients associated with
the more oscillatory or “curvy” basis functions are common. Setting coefficients to
zero for coefficients beyond a cutoff yields a standard linear model, ably fit through,
for example, the INLA or DPpackage packages for R, or simply hand-coded.

Example 5 (Old Faithful Geyser, ctd.) One version of Lenk’s (1999) model for the
geyser data takes yi � N.�i; �

2/ where

�i D �C ˇ0xi C
JX

jD1
ˇj cos

�
�.xi � x.1//

x.n/ � x.1/

�

: (4.6)

The prior is p.�/ D N.0; 1000/, ˇ0 � N.0; �2/, and ˇj � N.0; �2=j/ for
j D 1; : : : ; J. Further taking ��2 � Ga.a; b/ and ��2 � Ga.c; d/ gives the
full conditional ˇj�; � � NJC2.M��2X0y;M/ where M D ŒX0X��2 C D� 	

�1,
��2jˇ; � � Ga.a C 0:5n; b C 0:5jjy � Xˇjj2/, and ��2jˇ; � � Ga.c C 0:5.J C
1/; d C 0:5.ˇ20 CPJ

jD1 jˇ2j //. Here D� is a diagonal matrix with the prior precisions
of �; ˇ0; ˇ1; : : : ; ˇJ on the diagonal. Figure 4.6a shows a fit of the cosine expansion
mean function with 95 % CI to the geyser data with a D b D c D d D 0:001.

4.3.2 B-Splines

A very flexible and popular basis expansion approach is based on a spline basis,
or B-splines (De Boor 2001). A B-spline is a particular piecewise-differentiable
polynomial of a given degree d, typically d D 2 or d D 3 for a quadratic or
cubic B-spline. In one dimension the polynomials comprising the B-spline differ
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Fig. 4.6 Example 5. Fitted mean function using cosine (panel a) and penalized B-spline basis
(panel b) expansions

between an increasing sequence of points, termed knots. The overall polynomial is
continuous .d � 1/ or differentiable .d � 2/ over the range of the knots. Knots can
be equispaced yielding a cardinal B-spline or else irregularly-spaced. Computation
is especially easy for equispaced knots and so we focus on that here; generalizations
can be found in Kneib (2006).

The quadratic B-spline “mother” basis function is defined on Œ0; 3	

'.x/ D

8
ˆ̂
<

ˆ̂
:

0:5x2 0 � x � 1

0:75 � .x � 1:5/2 1 � x � 2

0:5.3 � x/2 2 � x � 3

0 otherwise

9
>>=

>>;
:

Say the number of basis functions is J. The B-spline basis functions are shifted,
rescaled versions of '. The j-th basis function is Bj.x/ D '

� x�x.1/
�

C 3 � j
�

where

� D x.n/�x.1/
J�2 . The B-spline model for the mean is f .x/ D PJ

jD1 �jBj.x/. Note that
the B-spline includes polynomials of the same or lower degree as special cases; e.g.
a quadratic B-spline includes all constant, linear, and parabolic functions over Œa; b	.

B-splines are typically used with a rather large number J of basis functions,
e.g. 20–40. A global level of smoothness is incorporated into a B-spline model by
encouraging neighboring coefficients to be similar; the more regular the coefficients
are, the less wiggly f .�/ is. Classical spline estimation proceeds by maximizing
P
.yi � f .xi//

2 subject to the “wiggliness” penalty
R b

a jf 00.x/j2dx � c for some c > 0.
This is equivalent to maximizing a penalized log-likelihood. Borrowing from Eilers
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and Marx (1996), Lang and Brezger (2004) recast and developed this idea into a
Bayesian framework. Let D2 2 R

.J�2/�J and D1 2 R
.J�1/�J be defined as

D2 D

2

6
6
6
4

1 �2 1 0 � � � 0
0 1 �2 1 � � � 0
:::

:::
: : :

: : :
: : :

:::

0 0 � � � 1 �2 1

3

7
7
7
5

and D1 D

2

6
6
6
4

1 �1 0 � � � 0

0 1 �1 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � 1 �1

3

7
7
7
5
:

For equispaced, quadratic (and cubic) B-splines the penalty can be written as

Z b

a
j f 00.x/j2dx D jjD2��jj2:

Optimization with the D2 penalty is equivalent to assuming a second order random-
walk prior, that is, the improper prior D2� � NJ�2.0; ��1IJ�2/. As � becomes
large, f 00.x/ is forced toward zero and f .x/ becomes linear. Alternatively, a first order
random walk prior is given by D1� � NJ�1.0; ��1IJ�1/. When � is large, adjacent
basis functions are forced closer and f 0.x/ is forced toward zero, yielding a constant
f .x/.

Example 5 (Old Faithful Geyser, ctd.) Let the i-th row of the design matrix X be

ŒB1.xi/ � � � BJ.xi/	:

Taking ��2 � Ga.a; b/, � � Ga.c; d/, and using the D1 penalty gives the
full conditional � j�; � � NJ.M��2X0y;M/ where M D ŒX0X��2 C �D1D0

1	
�1,

��2jˇ; � � Ga.a C 0:5n; b C 0:5jjy � X� jj2/, and �j�; � � Ga.c C 0:5.J � 1/; d C
0:5jjD1� jj2/. Figure 4.6b shows a penalized B-spline fit to the Geyser data with
a D b D c D d D 0:001 using the D1 penalty.

For multivariate xi D .xi1; : : : ; xip/, the classical linear model yi D x0
iˇ C �i

can be generalized to a so-called additive model, yi D P
fj.xij/ C �i, where

f1.�/; : : : ; fp.�/ are functions to be estimated. See Lang and Brezger (2004) and
Brezger and Lang (2006). These models are further generalized to outcomes yi

from non-normal distributions that are members of the exponential family (e.g.
Poisson, Bernoulli, gamma, etc.) through generalized additive models (Hastie and
Tibshirani 1990). Two common examples are Poisson regression with a log-link

yi
ind� Pois.e
i/ and Bernoulli regression with the logit link yi

ind� Bernfe
i=.1Ce
i/g,
where 
i D PJi

jD1 fj.xij/. These models are fit via B-splines in the free-standing
program BayesX or in the PSgam function in DPpackage.

Example 7 (Nitrogen Oxide Emissions) Brinkman (1981) considers data on nitro-
gen oxide emissions from a single-cylinder engine. The data are available, for
example, in the R package lattice as data set ethanol. The concentration of
nitrogen oxides (NO and NO2) in micrograms/J was recorded for various settings
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Fig. 4.7 Example 7, generalized additive model with normal errors. Left panel is fE.�/ and right
panel is fC.�/

of the equivalence ratio, which measures the richness of the air/ethanol mixture,
and the compression ratio of the engine. Denote these three continuous variables as
NOx, E, and C. In all, n D 88 engine runs were recorded. The model to be fit is

NOxi D fE.Ei/C fC.Ci/C �i where �i
iid� N.0; ��1/. Figure 4.7 shows the estimated

functions fE and fC.

Software note: Generalized additive models are easily fit using the PSgam
function in DPpackage. Alternatively, the R package R2BayesX could be
used. Both model the transformations fj.�/ as penalized B-splines. Figure 4.7
shows a fit from the PSgam function in DPpackage under a default, vague
prior specification using quadratic B-splines with a second-order random-walk
penalty prior.

4.3.3 Gaussian Process Priors

Besides basis representations like (4.2), another commonly used BNP prior for a
random mean function f .�/ is the Gaussian process (GP) prior. Let �.x/, x 2 R

d

denote a given function and let r.x1; x2/ for xj 2 R
d denote a covariance function,

i.e., the .n �n/matrix R with Rij D r.xi; xj/ is positive definite for any set of distinct
xi 2 R

d.

Definition 3 (Gaussian Process) A random function f .x/ with x 2 R
d has a GP

prior if for any finite set of points xi 2 R
d, i D 1; : : : ; n, the function evaluated at
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those points is a multivariate normal random vector,

.f .x1/; : : : ; f .xn//
0 � N

�
.�.x1/; : : : ; �.xn//

0;R
�
:

Here R D Œr.xi; xj/	 is the n � n covariance matrix. We write f � GP .�.x/; r.x; y//.

The GP can be used as a prior for the unknown mean function in (4.1). Assuming
normal residuals, the posterior distribution for f D .f .x1/; : : : ; f .xn// is multivariate
normal again. Similarly, f .x/ at new locations xnCi that were not recorded in the data
is characterized by multivariate normal distributions again. See O’Hagan (1978)
for an early discussion of GP priors, and Kennedy and O’Hagan (2001) for a
discussion of Bayesian inference for GP models in the context of modeling output
from computer simulations.

Fully Bayesian GP regression can be very computationally demanding, as
the inverse of a large-dimensional covariance matrix needs to be computed at
each iteration of a Gibbs sampler or a maximization routine. As one solution
to this dilemma Gramacy and Lee (2008) posit treed Gaussian processes: the
predictor space is partitioned into a number of smaller regions—see Sect. 4.3.4—
and independent GP’s are fit to each subregion, leading to a nonstationary process
over the entire predictor space. The overall inversion of a large matrix is replaced
by a number of smaller, computationally feasible inversions. Posterior inference is
efficiently handled in the tgp package for R. Other approaches to reducing the
dimensionality of the problem include predictive processes (Banerjee et al. 2008)
and random projections (Banerjee et al. 2013). Generalized additive models using
Gaussian processes are considered by Shively et al. (1999).

Example 5 (Old Faithful Geyser, ctd.) Figure 4.8 shows a default treed Gaussian
process fit coupled with 95 % prediction intervals for the geyser data.

Software note: R code to call the tgp package commands is shown in the
software appendix to this chapter.

4.3.4 Regression Trees

Chipman et al. (1998) and Denison et al. (1998) developed the Bayesian CART
(classification and regression tree) model for non-parametric regression. The idea
is compelling. Consider a generic regression problem (4.7) with a multivariate
covariate vector xi D .xij; j D 1; : : : ; p/. For the moment we drop the i index,
considering a generic covariate vector x. We partition the covariate space into small
enough rectangular regions R described by thresholds on the covariates xj, such that
E.y j x 2 R/ � fR is approximately constant over each rectangular region.

The partition is described by a tree T. The leaves of the tree correspond to
the rectangular regions and are labeled with the mean response fR. The tree T is
a recursive structure T D .j; t;T0;T1/ of splitting rules consisting of a covariate
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Fig. 4.8 Example 5. Treed
Gaussian processes, mean
plus 90 % prediction interval
for new response
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index j and a threshold t that identify a splitting rule xj < t and two nested trees
.T0;T1/ with the tree T0 defining the branch xj < t and T1 defining the branch
xj � t. The recursion ends with final leaves that contain a value f` instead of a
tree T`. Chipman et al. (1998) and Denison et al. (1998) describe prior probability
models on T and posterior MCMC simulation. Posterior simulation requires trans-
dimensional MCMC, as the inclusion of new splits and the deletion of existing splits
change the dimension of the parameter space. For a more parsimonious model the
constant mean response fR in each leave can be replaced by any parametric model
p.y j x 2 R/ D f�R.y/, where �R are parameters specific to each leave.

An extension of CART to a sum of many CART trees, i.e., a forest of regression
trees, is defined in the BART (Bayesian additive regression tree) proposed by
Chipman et al. (2010). The idea of BART is to use many small trees to approximate
the desired mean function. The BART is implemented in an easy to use R package
BayesTree.

4.4 Fully Nonparametric Regression

A general statement of the generic regression problem (4.1) characterizes regression
as

yi j xi
ind� Gxi (4.7)
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with a family G D fGxI x 2 X g of probability measures indexed by x 2 X . The
model is completed with a BNP prior on G. Under this setup regression reduces to
inference on a family of related random probability measures G. A meaningful prior
on G needs to include dependence of the Gx’s, including some notion of continuity
across x.

4.4.1 Priors on Families of Random Probability Measures

Perhaps the most popular prior model for a family of random probability measures is
the dependent DP (DDP). It was originally introduced by MacEachern (1999), with
many variations defined in later papers. The basic idea is simple. Recall the stick
breaking construction (2.2) of a DP random probability measure Gx � DP.M;G?

x /.
In anticipation of the upcoming generalization we write the stick breaking definition
as

Gx.�/ D
1X

hD0
whımxh.�/;

with point masses at locations mxh
iid� G?

x and weights wh D vh
Q
`<h.1 � v`/ for

i.i.d. beta fractions vh
iid� Be.1;M/. By the following construction, the model is

easily generalized to a joint prior for G, keeping a DP prior as the marginal for Gx,
for every x 2 X , but introducing the desired dependence across x. To ensure the
marginal DP prior we have to keep the i.i.d. prior on mxh across h. But we are free to
introduce dependence of mxh across x (for every h). Let mh D .mhx; x 2 X / denote
the family of random variables mxh for fixed h. That is, mh is a stochastic process
indexed by x.

Definition 4 (Dependent DP, DDP) Let G D fGxI x 2 X g denote a family of
random probability measures indexed by x 2 X . We say that G is a dependent DP
(DDP) if, for every x 2 X ,

Gx.�/ D
1X

hD0
whımxh.�/; (4.8)

with a stick-breaking prior on the weights, wh D vh
Q
`<h.1 � v`/ for i.i.d. beta

fractions vh
iid� Be.1; ˛/. The locations mh D .mhx; x 2 X /, h D 1; 2; : : :, are

mutually independent realizations of a stochastic process fS.x/I x 2 X g indexed by
x. We write G � DDP.˛; S/, where S identifies the stochastic process across x.

For example, S could be a Gaussian process with index set X . In this definition we
used the same weights wh across x. Notice the single h subindex on the weights
in (4.8). In a more general DDP model the weights are replaced by wxh, with
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dependence across x. We refer to (4.8) as the varying location DDP, to the alternative
model with wxh and mh as the varying weight DDP, and the general model with
wxh;mxh as the varying weight and location DDP.

Posterior Simulation Under a DDP model

The DDP prior is often combined with a sampling model similar to the DPM (2.6),
as

yi j �i � f�i

�i j xi D x;G � Gx

G � DDP (4.9)

Posterior MCMC proceeds similar to inference under the DPM model. Before we
discuss details we introduce notation and construct clusters similar to the discussion
in Sect. 2.4. First we replace �i � Gx by a latent indicator ri 2 N. The indicators ri

select one of the point masses in (4.8), as

�i D mrixi and p.ri D h/ D wh:

Next let fr?1 ; : : : ; r
?
k g denote the k � n unique values ri, and let Sj D fi W ri D r?j g,

j D 1; : : : ; k. We index clusters by appearance, that is, r?1 D r1 etc. We denote with
nj D jSjj the size of the j-th cluster. Next let m?

j D .mhxi ; h D r?j ; i 2 Sj/. That is,
m?

j is a vector of the nj sampled observations mhx for h D r?j . Also, we introduce
cluster membership indicators si 2 f1; : : : ; kg with si D j when i 2 Sj. Note the
difference between the indicators ri and si. The earlier refer to unique point masses
in the random probability measure (4.8), whereas the latter refer to the finite list of
clusters.

Now we are ready to state the transition probabilities for posterior MCMC
simulation. The stochastic process in Definition 4 implies a finite dimensional
prior p.m?

j /. For example, when S.x/ is a Gaussian process, then p.m?
j / is the

multivariate normal given in Definition 3. We only discuss the conjugate case. Let
y?j D .yi; i 2 Sj/ denote the data arranged by clusters and let y?�

j D y?j n fyig.
And analogously for x?j and x?�

j , and nj and n�
j . We assume that p.m?

j j y?j ; x
?
j / and

p.yi j si D j; y?�
j ; xi; x?�

J / are available in closed form. By a slight abuse of notation
we include the fixed covariates xi in the conditioning set to highlight the dependence
on these covariates.

For example, under a GP prior on mhx with normal sampling, f� .yi/ D N.�; �2/
(with fixed �2), p.m?

j j y?j ; x
?
j / is a multivariate normal again and p.yi j si D

j; xi; y?�
j ; x?�

j / is the normal posterior predictive distribution for an .n�
j C 1/-st

observation at xi conditional on the n�
j observations y?�

j at locations x?�
j . See, for

example Sect. 1.3.1. in Müller and Rodríguez (2013).
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Posterior MCMC for a DDP model (4.9) proceeds exactly like Algorithm 1,
using (2.16) with p.yi j si D j; y?�

j ; xi; x?�
j / replacing p.yi j si D j; y?�

j /. Similarly
h0.y/ is replaced by

h0.yi j xi/ D
Z

fmhxi
.y/ dp.mhxi/

where p.mhx/ is the marginal prior on mhx under the assumed stochastic process. In
summary

p.si D j j s�i; y; x/ /
(

n�
j p.yi j si D j; xi; y?�

j ; x?�
j / for j D 1; : : : ; k�

M h0.yi j xi/ j D k� C 1:

(4.10)

Here k� is the number of clusters after removing i.

Algorithm 9: MCMC for a Conjugate DDP Mixture Model.

1. Clustering: For i D 1; : : : ; n, draw si � p.si j s
�i; y; x/ using (4.10).

2. Cluster parameters: For j D 1; : : : ; k, generate m?
j � p.m?

j j s; y? j; x
?

j/.

4.4.2 ANOVA DDP and LDDP

The perhaps simplest form of dependent prior on fmxh; x 2 X g is a normal linear
ANCOVA model. De Iorio et al. (2004) use this construction to define the ANOVA
DDP. Assuming, for example, x D .u; v/ is a pair of two factors, u 2 f0; : : : ; nug
and v 2 f0; : : : ; nvg, the model could be

mxh D �h C au C bv

with �h � N.0; �2�/, a0 D b0 D 0 and au � N.0; �2u / for u D 1; : : : ; nv ,
bv � N.0; �2v / for v D 1; : : : ; nv . In general, letting dx denote a design vector for
covariates x and collecting all ANOVA effects in a parameter vector ˇ, the ANOVA
DDP model defines dependent fmxh; x 2 X g as a linear model mxh D ˇ0dx with
ˇ � N.�b; Sb/.

Definition 5 (ANOVA DDP) Let x D .x1; : : : ; xp/ denote a vector of categorical
covariates xj 2 f0; : : : ; nj/, and let dx denote .q � 1/ design vector for x. Let G D
fGxI x 2 X g denote a family of random probability measures

Gx.�/ D
1X

hD1
whımxh.�/; (4.11)
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indexed by x. An ANOVA DDP prior for G is induced when wh D vh
Q
`<h.1� v`/,

vh
iid� Be.1;M/ and

mhx D ˇ0
hdx; with ˇh � po.ˇh/:

We write fGxI x 2 X g � ANOVA DDP.M; po/. When we want to highlight that
the design vector includes a continuous covariate we also write ANCOVA DDP.

Example 8 (Breast Cancer) De Iorio et al. (2009) illustrate inference under the
ANOVA DDP model with the analysis of data from a cancer clinical trial described
in Rosner (2005). The primary outcome in the study was event free survival. The
trial enrolled n D 761 women, and recorded several baseline covariates, including
treatment dose, estrogen receptor (ER) status and tumor size (TS). Treatment dose
is coded as a categorical variable with HI D 1 for high dose and HI D �1 for low
dose. Similarly, ER status is coded as ER D 1 for ER positive and ER D �1 for
ER negative; and tumor size is coded as a continuous variable, standardized to mean
0 and variance 1. Additionally, the model includes an interaction term for dose/ER
status (HI*ER) coded as 1 for high dose and positive ER status, and 0 otherwise.
Figure 4.9a shows the data as Kaplan-Meier survival curves separately for patients
arranged by ER status and treatment dose. Panel b of the same figure shows the
estimated survival functions under the ANOVA DDP regression model.

We will revisit the ANOVA-DDP again later, in Sect. 6.3.2 and in Sect. 7.3.2,
in different applications. A variation of the model is included in the R package
DPpackage as the LDDP (linear dependent Dirichlet process) model.
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Fig. 4.9 Example 8. Data and posterior estimated Gx under a DDP ANOVA model for overall
survival with xi D .HI;ER; TS/. (a) Data. (b) E.Sx j y/
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Definition 6 (Linear Dependent Dirichlet Process) Under the setup of Defini-
tion 5, define

Gx.�/ D
1X

hD1
whN.� j ˇ0

hdx; �
2
h /: (4.12)

with base measure po.ˇh/ D N.�b; Sb/, po.�2h / D Ga.�21 =2; �
2
2 =2/ and hyperprior

M � Ga.a; b/. We write fGx; x 2 X g � LDDP.p0/.

The LDDP model defines a variation of the ANOVA-DDP by adding a convolution
with a normal kernel in the definition of Gx and including a hyper-prior on the total
mass M.

In the previous example the design vector dx in mhx D ˇ0dx was

dx D .1;ER;HI;TS;HI � ER/:

Alternatively we could model mhx with, for example, a B-spline basis. In the next
example dx includes B-spline basis functions to allow for flexible modeling of mhx

as a function of x.

Example 5 (Old Faithful Geyser, ctd.) We fit a regression of waiting time (yi,
INTERVAL) on the duration of the preceding eruption (xi, DURATION). We use
the LDDP model, modeling mhx as a B-spline expansion (as a function of x). This
is achieved by defining the design vector dx as six B-spline basis functions. We use
the implementation in DPpackage, with the additional normal kernel in (4.12).
Figure 4.10 shows the estimated interval density at the first and third quartiles of
DURATION, i.e. x D 1:97 and x D 4:47 under this ANOVA DDP model.
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Fig. 4.10 Example 5. Conditional DDP mixture density estimates at the first and third quartile of
the predictor
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Posterior MCMC for the ANOVA DDP Model

We discuss posterior simulation for the ANOVA DDP model (4.12) with additional
normal residuals. The model can be written as

Gx.�/ D
Z

N.� j ˇ0dx; �
2/ dF.ˇ; �2/

with

F.�/ D
X

h

whıˇh;�
2
h
.�/;

and wh generated by the stick breaking prior and .ˇh; �
2
h / � po, i.i.d. That is, the

ANOVA DDP model can be alternatively written as a DPM of ANOVA models. This
representation allows the use of any of the many approaches that have been proposed
to implement posterior inference for DPM models. See Sect. 2.4 for a brief review.

4.4.3 Dependent PT Prior

Linear Dependent Tail-Free Process (LDTFP) Similar to the DDP, the PT prior
can be extended to a prior on a family fGx; x 2 X g of probability measures. One
construction is the LDTFP of Jara and Hanson (2011). The LDTFP replaces the
beta prior (3.2) by a logistic regression on covariates. We will discuss the LDTFP
in more detail later, as a model for survival regression in Sect. 6.3.3. The LDTFP
model is implemented for standard regression data in the LDTFPdensity function
in DPpackage.

Example 5 (Old Faithful Geyser, ctd.) Recall Example 5. Figure 4.11 shows the
estimated interval density at the duration first and third quartiles, i.e. x D 1:97

and x D 4:47 based on the LDTFP. The median trend is modeled using a B-spline
with six basis functions, as are the conditional probabilities of the tail-free process.

Dependent PT (DPT) A similar construction is the DPT proposed in Trippa
et al. (2011). The construction leaves the marginal PT prior for Gx intact. That
is, the random splitting probabilities in the binary tree for one random probability
measure remain marginally beta distributed. Let Y"0.x/ D Gx.B"0 j B"/ denote the
random splitting probability for the partitioning subset B" D B"0 [ B"1. The desired
dependence is introduced by making Y".x/ dependent across x 2 X . The partitioning
subsets B" are the same across x. For the moment drop the index ". The construction
exploits the representation of a beta random variable as a ratio of gamma random
variables, writing Y.x/ D CC.x/=ŒCC.x/ C C�.x/	 where CC.x/ and C�.x/ are
two independent gamma random variables. The trick is to define CC and C� in a
way that induces the desired dependence across x. This is achieved by introducing
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Fig. 4.11 Example 5. Conditional LDTP density estimates at the first and third quartile of the
predictor
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Fig. 4.12 Construction of dependent beta random variables Y.x1/ and Y.x2/. Let CC.xj/ denote

the measure of the kernel SC

j under a gamma process, j D 1; 2. And similar for C�.xj/. Then

Y.xj/ D CC.xj/=.CC.xj/ C C�.xj// defines a beta distributed random variable and induces the
desired dependence across x

a gamma process GaP.�/ on X � R. Define CC.x/ as the random measure under
the gamma process GaP.�/ for an area centered around x, say an area circumscribed
by a kernel SC.x/ centered at x. Similarly C�.x/ is defined as the random measure
under the gamma process of the area circumscribed by another kernel S�.x/. The
definition of S� and SC as non-overlapping sets keeps C� and CC independent, as
needed. The construction is illustrated in Fig. 4.12. Note how the two kernels are
placed on X � Œ0;1/ and X � .�1; 0	, respectively, giving rise to independent
CC.x/ D GaP.SC.x// and C�.x/ D GaP.S�.x//. Now consider two covariates, x1
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and x2. As x2 moves closer to x1 the kernels centered at x1 and x2 have increasingly
more overlap, leading to correlated Y�.x1/ and Y�.x2/, as desired.

4.4.4 Conditional Regression

With a slight abuse of statistical inference the general regression problem of
inference on f .�/ in (4.7) can be reduced to a density estimation problem. We
proceed as if the pairs .xi; yi/ were independent random samples from a joint
distribution .xi; yi/ � G, and report inference on G. The implied conditional
distributions fGx.y/ D G.y j x/I x 2 X g solve the regression problem. Let
fG.x/ D EG.y j x/ denote the conditional mean under G as a function of x. The
posterior distribution p.fG j y/ provides the desired inference on the regression mean
curve. We characterized the construction as a slight abuse of statistical inference,
because the likelihood function in the augmented model for the pairs .xi; yi/ includes
a sampling model for xi, even when there might be nothing random about the
covariates xi.

Müller et al. (1996) and Park and Dunson (2010) propose this approach using
a DP mixture model for inference on the unknown joint distribution G. Regression
curves fG estimated under this approach take the form of locally weighted linear
regression lines, similar to traditional kernel regression in classical nonparametric
inference. Considering .xi; yi/ as an i.i.d. sample—wrongly—introduces an addi-
tional factor

Q
G.xi/ in the likelihood

Q
G.xi; yi/ D Q

G.xi/ G.yi j xi/ and thus
provides only approximate inference.

Consider DP mixture of normal kernels, mixing with respect to location and
scale. Write the DPM as a hierarchical model as in (2.6),

.xi; yi j �i; †i/
ind� N.�i; †j/

�i 	 .�i; †i/ j G � G and G � DP.MG0/: (4.13)

Let �?j D .�?j ; †
?
j /, j D 1; : : : ; k, denote the unique values of �i, i D 1; : : : ; n, with

multiplicities nj. Let f .y j x; �?j / denote the conditional normal density in y given
x under the multivariate normal N.�?j ; †

?
j / and let s.x j �?j / denote the marginal

normal density in x under N.�?j ; †
?
j /. Similarly, let f0.y j x/ and s0.x/ denote the

implied conditional and marginal when �? is generated from G?.�?/, i..e., f0.y j
x/ D R

f .y j x; �/ dG?.�/ and s0.x/ D R
s.x j �/ dG?.�/.

Now consider (2.11) for a future observation �nC1, add an additional convolution
with p.ynC1 j �nC1/ and write .x; y/ as short for .xnC1; ynC1/. We get the predictive
distribution

p.y j x; �?1 ; : : : ; �
?
k / / M s0.x/f0.y j x/C

kX

jD1
nj s.x j �?j / f .y j x; �?j /: (4.14)
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The predictive p.y j x; �?1 ; : : : ; �
?
k / takes the form of a locally weighted mixture

of linear regressions, each regression line being indexed by a unique �?j , and the
weights being the normal kernels njs.x j �?j /. Plus one term corresponding to
the base measure G0. Inference under (4.14) is implemented in the DPpackage
function DPcdensity. Model (4.14), that is, conditional regression under a DPM
model for the augemented response vector .xi; yi/ is also known as WDDP (weight
dependent Dirichlet process).

Park and Dunson (2010) point out that such inference can be interpreted as
replacing the original Polya urn prior on the random partition by what would be the
posterior conditional on xi, i D 1; : : : ; n, only. They refer to the random partition
implied by p.G j x/ as the predictor dependent product partition model. That is, the
factors M and nj that would appear in the predictive distribution for y in a model
without covariates xi, are replaced by Ms0.x/ and njs.x j �?j /.
Example 5 (Old Faithful Geyser, ctd.) Figure 4.13 shows the estimated mean func-
tion f .�/ as a conditional regression function in a bivariate density estimation
for G.x; y/. The bivariate density estimation is implemented as a DP mixture of
normals (4.13).

DURATION

W
A

IT
IN

G

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90
10

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 4.13 Example 5. Estimated joint density G.x; y/ (contour lines), and conditional mean
process fG.x/ D E ŒG.y j x; data/	. The dashed lines show pointwise posterior standard deviations.
Dotted grey lines show random draws fg � p.fG j y/
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Chapter 5
Categorical Data

Abstract We discuss nonparametric Bayesian methods that are suitable for infer-
ence with binary, ordinal and general categorical data. Modeling for such data
becomes particularly interesting in the presence of covariates, when non- and semi-
parametric Bayesian models can generalize the link function in a generalized linear
model setup, the regression on covariates or both. An important application arises in
inference for diagnostic screening and related inference for ROC (receiver-operator
characteristic) curves. We include some discussion of a rapidly growing literature
on non-parametric Bayesian inference for ROC curves.

5.1 Categorical Responses Without Covariates

5.1.1 Binomial Responses

We start with an example to illustrate a number of key issues of a BNP approach for
binary outcomes.

Example 9 (Baseball Data) Albright (1993) describes a dataset involving the
complete sequence of hits and outs for a number of players from both American
and National Baseball Leagues over the 1987–1990 seasons. The data are available
from: http://www.kelley.iu.edu/albright/Free_downloads.htm. Albright assumes the
operational definition of a success to mean a player moving through the bases. We
stick to that definition, and therefore, a success consists of either a hit, walk or
sacrifice. From this large dataset, we consider now the total number of successes
for the subset of n D 129 players from both leagues who were at bat at least on
500 occasions during the 1987 season. Denote by yi, i D 1; : : : ; n, the number
of successes for the ith player. The simplest possible model for these data would
assume just a single success probability, common to all players, that is, y1; : : : ; yn j
�

ind� Bin.`i; �/; � � Be.a; b/, where `i is the total number of at-bats for player
i and .a; b/ are fixed hyperparameters, e.g., a D b D 1. The posterior distribution
p.� j y/ is a Be.28178; 49494/ distribution. Of course, this would be ridiculously
precise inference that fails to accommodate any notion of variation of success
probabilities across players. The posterior p.� j y/ is essentially a point mass at
the posterior mean 28178=77672D 0:36.

© Springer International Publishing Switzerland 2015
P. Mueller et al., Bayesian Nonparametric Data Analysis, Springer Series
in Statistics, DOI 10.1007/978-3-319-18968-0_5
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In Example 9, a hierarchical model with subject-specific success rates, �i,
provides for more variability across players

yi j �i
ind� Bin.`i; �i/; �i j a; b

iid� Be.a; b/; .a; b/ � �; (5.1)

where i D 1; : : : ; n, a; b > 1, and � is a suitable prior distribution for .a; b/.
We choose �.a; b/ D �.a/�.b/, where a and b are i.i.d. with Ga.0:001; 0:001/
distributions. The hierarchical model allows for the success probabilities to vary
across players, and the hyper-parameters a; b allow for learning about the level
of borrowing strength across players, that is, how diverse the rates can be across
players. However, the Be.a; b/ prior still represents a strong prior assumption, as
it implies that the distribution of player strengths is unimodal. It fails to allow for
population heterogeneity that could lead to a multimodal distribution of �i across the
population of players. A generalization that removes such restrictions is a typical
application of BNP priors. One possible nonparametric alternative appears in Liu
(1996), who considers a hierarchical model,

yi j �i
ind� Bin.`i; �i/; �i j F

iid� F; F � DP.MF0/; (5.2)

where i D 1; : : : ; n and F0 is the Be.a; b/ distribution. The same prior assumption
for .a; b/ as in the parametric case may be used. Model (5.2) replaces the beta prior
of the parametric hierarchical model by a random probability measure F. From a
data analysis perspective, the important feature of the model is the representation
of arbitrary distributions of success rates across the population. Figure 5.1 contrasts
the estimated distributions in Example 9 under the parametric hierarchical model
versus the multimodal estimate E.F j y/ under the BNP model. There is a second
important feature to the model that is often exploited in data analysis. Recall the
discrete nature of the DP random probability measure F and the implied clustering
in DP mixture models that we discussed in Sect. 2.3. The DP mixture model yi j
F

ind� R
Bin.`i; �i/F.d�i/ and F � DP.MF0/ implies a partition of players into

clusters of equal values �i D �?j for k � n unique values f�?1 ; : : : ; �?k g. Recall the
cluster membership indicators si D j that were introduced in Sect. 2.3. Let si D j if

�i D �?j , that is �si D �?j with �?j
iid� Be.a; b/. The implied grouping is then defined

by the prior distribution on the indicators s1; : : : ; sn, which follows the Polya urn
scheme (Sect. 2.3). The fact that F0 is conjugate to the binomial likelihood makes it
possible to easily implement any of the posterior simulation schemes discussed in
Sect. 2.4, or the sequential importance sampling algorithm used in Liu (1996).

Example 9 (ctd.) We implemented inference under the DP mixture model (5.2).
Figure 5.1 compares the results of fitting both, the hierarchical parametric
model (5.1) and the nonparametric model (5.2) to the at-bat performance of a
group of players during the 1987 season. The top panels show a histogram of
the (empirical) proportion of successes at the end of the season, with smoothed
versions of the corresponding posterior predictive densities. In the BNP model
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Fig. 5.1 Example 9. At bat performance of 1987 season players. The top panel shows histograms
of the proportion of successes for the n D 129 players overlayed with the posterior predictive
density p.�nC1 j y/ for the parametric (left) and nonparametric (right) models. Note that for the
nonparametric model, p.�nC1 j y/ D E.F j y/. The bottom panel shows contours of the posterior
distribution p.a; b j y/ for the same models

p.�nC1 j y/ D E.F j y/. That is, the posterior predictive equals the posterior
estimated random effects distribution.

Considering the large sample size, the histograms provide substantial evidence
for a multimodal distribution for the true at-bat success rates. Of course, the
parametric model fails at recognizing this multimodality, as it only supports
unimodality. Inference under the nonparametric model includes a trimodal density
estimate that better reflects the multimodality in the empirical distribution.

Similar inference can be implemented when replacing the DP prior with any
other random probability measure, for example any of the models discussed in
Chap. 3. Any discrete prior random probability measures would maintain the notion
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of clustering of experimental units, that is, players in the case of Example 9.
The main computational challenge in the implementation is the updating of the
configurations s.

5.1.2 Categorical Responses

We introduced the DP mixture of binomial model (5.2) for binary data. Many
problems involve categorical responses with c � 2 possible outcomes. The model
can easily be extended to accommodate such more general outcomes. Assume
that for the ith experimental unit, i D 1; : : : ; n; we record `i trials with c � 2

possible outcomes each. Let mij, j D 1; : : : ; c; denote the number of these trials
that resulted in category j being observed. Let yi D .mi1; : : : ;mic/ be the vector of
counts for the ith experimental unit, and denote the entire collection of responses by
y D .y1; : : : ; yn/. Let Multin.yI `;�/ denote a multinomial distribution with sample
size ` and classification probabilities �1; : : : ; �c. We generalize model (5.2) to this
data structure, by assuming

yi j � i
ind� Multin.yiI `i;� i/; � i j F

iid� F; F � DP.M;F0/; (5.3)

where i D 1; : : : ; n, F0 	 Dir.c;˛/, the Dirichlet distribution on the .c � 1/-
dimensional simplex �c�1 D f.x1; : : : ; xc/ W Pc

jD1 xj D 1; and xj � 0 for all jg,

and ˛ 2 �RC�c
. Model (5.3) reduces to (5.2) when c D 2 and ˛ D .a; b/.

Test of Homogeneity Data with such structure are often represented in a contin-
gency table with n rows and c columns. When n is a small number it is even possible
to carry out exact analytical posterior calculations under model (5.3). Quintana
(1998) uses such results to propose a test for homogeneity (of classification
probabilities) in contingency tables with fixed (right) margins. In this context
homogeneity means that �1 D � � � D �n, and therefore, the probability of being
classified into any of the c categories is the same for all rows in the contingency
table. Because the DP total mass parameter M plays a key role in the derivation
of the test, Quintana (1998) assumed additionally a prior distribution �.M/ D
Ga.a1; b1/ which allows for a better control of the prior structure, as explained
below.

Recall the discussion in Sect. 2.3, about the random partition of experimental
units that is implied by a DP mixture model as in (5.3). Recall our earlier notation
for a random partition � D .S1; : : : ; Sk/ of S D f1; : : : ; ng into k nonempty and
disjoint subsets. The contingency table is homogeneous if � D fSg, i.e., if there is
a single cluster and the partition has exactly one subset (of size n), namely, S. The
number of clusters in a given partition � of S will be denoted by j�j.
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We develop now the calculations to implement the test of homogeneity that is
proposed in Quintana (1998). For a vector of positive entries ˛ 2 �RC�c

let

D.˛/ D �

0

@
cX

jD1
˛j

1

A
. cY

jD1
�.˛j/;

be the normalization constant of a Dirichlet distribution with parameter vector˛. Let
n` D jS`j denote the size of the `-th subset in the partition �, and let y?` D P

i2S`
yi

denote the counts aggregated by clusters. Write also for r D 1; : : : ; n

�r D
Z 1

0

0

B
B
B
@

Mr

nQ

jD1
.M C j � 1/

1

C
C
C
A
�.M/ dM and Lr.y/ D

X

�Wj�jDr

(
rY

`D1

.n` � 1/ŠD.˛/
D.˛C y?` /

)

;

where the summation in the right-hand side of the last expression is over all size
r partitions � D .S1; : : : ; Sr/ (i.e., with exactly r nonempty subsets). It can be
shown (Quintana 1998) that the posterior distribution of the number of clusters is
given by

p.j�j D r j y/ D �rLr.y/
nP

qD1
�qLq.y/

; r D 1; 2; : : : ; n:

It is also easy to find that the posterior probability of a given partition � with exactly
r D j�j subsets can be written as

p.� j y/ D 1
Pn

sD1 �sLs.y/

(

�r

rY

`D1
.n` � 1/Š D.˛/

D.˛C y?` /

)

: (5.4)

To carry out the test of homogeneity we compare the prior and posterior odds
of homogeneity. The above results imply that the Bayes factor (BF) in favor of
homogeneity is given by

BF D L1.y/.1 � .n � 1/Š�1/
.n � 1/Š

nP

rD2
�rLr.y/

; (5.5)

which follows from the fact that the prior probability of a single cluster is simply
�1.n � 1/Š Of special interest is the case of n D 2 rows in the table, in which
case (5.5) reduces, after some algebra, to BF D L1.y/=L2.y/.
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Table 5.1 Example 10. Word counts from books by Jane Austen, including part of Sanditon, as
completed by an admirer

Word

Novel a an this that with without Total

Sense and sensibility 147 25 32 94 59 18 375

Emma 186 26 39 105 74 10 440

Sanditon (Chaps. 1 and 3) 101 11 15 37 28 10 202

Sanditon (Chaps. 12 and 24) 83 29 15 22 43 4 196

Example 10 (Jane Austen Word Counts) Rice (1995) analyzes a dataset on literary
style, using data from Morton (1978). The data consist of counts of different words
used by Jane Austen in some of her books, including the novel Sanditon, which
was left unfinished at her death. An admirer completed the novel trying to imitate
the writer’s style, and the mixed result was later published. Comparing word counts
between authenticated and disputed works is a traditional way to settle disputes on
authorship. Morton presented results on counts for certain words in Chaps. 1 and 3
of Sense and Sensibility, Chaps. 1–3 of Emma, Chaps. 1 and 6 of Sanditon, which
were written by Austen, and Chaps. 12 and 24 of Sanditon, written by the admirer.
The data, as presented in Rice (1995) are reproduced in Table 5.1.

To analyze these data, we treat the rows in Table 5.1 as samples from multinomial
distributions, with categories defined by the words and considering the right margin
totals to be fixed. Homogeneity would then mean that the usage of these words
occurs with the same proportions across books, in particular, implying that the
admirer truly emulated Austen’s style, at least as far as the usage of the chosen
words is concerned.

Following the analysis in Rice (1995), we first consider the top three rows of
Table 5.1, the authenticated output by Austen. The idea is to analyze the writer’s
own consistency in the use of these words across the selected novels. Thus, we take
n D 3 and c D 6. Choosing an exponential with mean 1 as prior for M, we find
numerically .�1; �2; �3/ D .0:24; 0:13; 0:15/ and .log.L1.y//; : : : ; log.L3.y/// D
.�1535:5;�1541:9;�1550:0/, and the Bayes factor in favor of homogeneity (5.5)
is BF D 1265:099. This is strong evidence that Austen used the chosen words
consistently across the three authenticated novels.

Next, we consider the analysis of the complete table, i.e. n D 4 and c D 6, using
the same prior as before. With this, we find .�1; : : : ; �4/ D .:068; :031; :032; :054/

and .L1.y/; : : : ;L4.y// D .�1844:8;�1830:0;�1846:4;�1854:4/, so that the
Bayes factor for homogeneity becomes BF D 0:0248. This is evidence in favor
of the non-homogeneity of the word usage distribution. In fact, using (5.4) we find
posterior odds

p.� D ff1; 2; 3g; f4gg j y/
p.� D ff1; 2; 3; 4gg j y/

D 58:63;
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which explains the result of the homogeneity test. The evidence thus points to the
fact that the admirer used the selected words in different proportion than Jane Austen
did in her books.

Software note: In the software appendix for this chapter we show R code to
implement the test of homogeneity in Example 10.

We note here that any discrete random probability measure implies a distribution
on partitions and could therefore be potentially used to induce a prior probability
on homogeneity, along the lines discussed here for the DP. In fact, most of the
calculations developed above, such as Eq. (5.5), can be readily generalized, provided
there is an analytical expression for the prior probability of a single cluster.

5.1.3 Multivariate Ordinal Data

A variation of the above example arises when data can still be accommodated in a
contingency table but without margins that are fixed by design. In problems with
data in this format a common inference goal is to study associations between the
categorical variables.

Kottas et al. (2005) proposed a nonparametric approach for the case of multiple
categorical variables of ordinal type. Consider a total of k ordinal categorical
variables V D .V1; : : : ;Vk/, with corresponding numbers of categories C1; : : : ;Ck.
For each of n experimental units, the values of the k variables are recorded,
and the results are stored as cell counts m`1;��� ;`k , which record the number of
observations with V D .`1; : : : ; `k/. Data of this type can be arranged in a
multidimensional contingency table with C D Qk

jD1 Cj cells, and frequencies
fm`1���`k g, now constrained only by

P
`1���`k

m`1���`k D n. Denote by p`1���`k D p.V1 D
`1; : : : ;Vk D `k/ the classification probability for cell .`1; : : : ; `k/. A popular
probability model for such multivariate ordinal data structure is based on latent
variables. See, for instance, Albert and Chib (1993), and Johnson and Albert (1999).
Introducing cutoffs �1 D �j;0 < �j;1 < � � � < �j;Cj�1 < �j;Cj D 1, for each
variable, j D 1; : : : ; k, and a k-dimensional latent vector Z D .Z1; : : : ;Zk/, a latent
variable model assumes

p`1���`k D p .�1;`1�1 < Z1 � �1;`1 ; : : : ; �k;`k�1 < Zk � �k;`k / : (5.6)

In other words, variable Vj takes on the value ` if the corresponding latent variable Zj

lies on the interval .�j;`�1; �j;`	. The classification probabilities are then completely
determined by the cutoffs and latent variables.

A standard assumption is that the latent vector Z has a multivariate normal
distribution. As a consequence, if any two of the latent vector components are
uncorrelated, the corresponding ordinal categorical variables are independent. The
correlation coefficients ru;w D Cor.Zu;Zw/ are called polychoric correlations and
are widely used in the social sciences as a measure of association among ordinal
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variables. See further discussion about this and related concepts in Olsson (1979),
Ronning and Kukuk (1996) and references therein.

Despite its popularity, there are serious limitations to this multivariate probit
model. One practical concern is that the use of cutoffs complicates posterior
simulation. This is because of the high posterior correlation of the cutoffs �j;`

and the latent variables Z. And secondly, a multivariate normal assumption for
Z concentrates most of the probability mass in cells that are located in one
portion of the table. But this is inappropriate for cases where substantial mass is
placed at or near the (multiple) corners. Motivated by these considerations, Kottas
et al. (2005) proposed a flexible DPM-based approach to replace the multivariate
normal assumption. An important feature of the proposed model is that the flexible
distribution for the latent variables removes the need for variable cutoffs. Cutoffs
can be fixed and arbitrarily chosen.

Kottas et al. (2005) propose the following model. Denote by Vi D .Vi1; : : : ;Vik/,
the vector of ordinal responses for the ith experimental unit, i D 1; : : : ; n, and let
Zi D .Zi1; : : : ;Zik/ represent the vector of corresponding latent variables, so that
Vij D ` 2 f1; : : : ;Cjg if and only if Zij 2 .�j;`�1; �j;`	. That is, Vij D Vij.Zij/,
is a deterministic function of the latent variables. The joint likelihood function is
therefore entirely determined by whatever probability model we choose for Zi. Let

k.x j m;S/ denote the p.d.f. of a k-variate normal distribution with moments m
and S. Kottas et al. (2005) use a DP mixture model

Zi j F �
Z

k.Zi j m;S/ dF.m;S/; (5.7)

and F j M;F0 � DP.MF0/, with centering distribution F0 defined as the
joint distribution of independent multivariate normal and inverse Wishart random
variables, F0.m;S/ D N.m j �;†/ � IWisk.S j �;D/. The model replaces the
standard multivariate normal model by a DP location-scale mixture of normals. A
practical consequence of this assumption is that now the distribution of the latent
Zi’s can place mass in arbitrary ways. In particular, probability mass can be centered
around multiple modes spread across the table. Tables with arbitrary classification
probabilities can be represented as (5.7). The model is completed with

M � Ga.a0; b0/; � � N.q;Q/;

† � IWis.b;B/; and D � IWis.c;C/;

with fixed scalar hyperparameters �, a0, b0, b, c, a k-dimensional vector q, and
k � k positive definite matrices B, C and Q. The hyper-priors are chosen to be of
conjugate-style to simplify posterior simulation.

Example 11 (Teacher Evaluations) Bishop et al. (1975) discuss data arising from
two different supervisors rating the classroom style of 72 student teachers. Specifi-
cally, they were asked to classify each teacher by degree of strictness as permissive,
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Table 5.2 Example 11. Classification of student teachers as rated by two supervisors

Ratings by Ratings by supervisor 2

supervisor 1 Permissive Democratic Authoritarian Total

Permissive 13 3 10 26

Democratic 0 12 5 17

Authoritarian 8 4 17 29

Total 21 19 32 72

democratic or authoritarian. The data originally appeared in Gross (1971) and are
reproduced here in Table 5.2.

Kottas et al. (2005) propose default choices for the hyperparameters. In Exam-
ple 11 with k D 2 ordinal variables, and C1 D C2 D 3 categories each, the default
choices amount to �j;1 D �1 and �j;2 D 0, for j D 1; 2. The choice of the hyper-
parameters is guided by considering the limiting case M ! 0, when the model for

the latent variables becomes parametric, with Zi j m;S
iid� N.m;S/. Fixing m;B;C

and Q we aim to specify a distribution for Z that is centered around the chosen
cutoffs and covers the range of cutoffs. Note that the cutoffs �jk are centered around
m� D �0:5, and their range can be characterized as s� D 4, which is four times
�j;2 � �j;1. Define H D .s�=4/2I which reduces to the identity matrix I. We define
the prior for m by matching its prior moments to the center and range previously
defined, so that q D .m� ;m� / and .b � k � 1/�1B C Q D 2H, where an extra
inflation factor of 2 was introduced in the right-hand side. For simplicity, we assume
.b � k � 1/�1B D Q D H, and b D k C 2 D 4, the smallest integer value giving
a finite mean. Also, since E.S/ D .� � k � 1/�1cC, we set E.S/ D H, � D 4 and
c D k D 2, which implies C D 1

2
I.

Posterior simulation is based on the usual MCMC posterior simulation methods
for DP mixture models, as we discussed in Sect. 2.4. The only nonstandard transition
probability is the resampling of the latent vector Z. For Vi D .`1; : : : ; `k/ the
corresponding full conditional for Zi is a multivariate normal truncated to the set
.�1;`1�1; �1;`1 	�� � ��.�k;`k�1; �k;`k 	. We can define a set of Gibbs sampling transition
probabilities by noting that the distribution of each coordinate conditional on the
others is a univariate normal, truncated to the corresponding interval. See further
details in Kottas et al. (2005).

Example 11 (Teacher Evaluations, ctd.) We used the described default hyper-
parameter choices and implemented posterior simulation. We find that the posterior
mode of the number of clusters was k D 4 (with posterior probability 0.256) and
most of the mass concentrated between k D 3 and 6 clusters (0.8226). Table 5.3
summarizes the estimated cell probabilities for all possible combinations, including
the observed relative frequencies to facilitate comparison.
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Table 5.3 Example 11. Observed and fitted (in boldface) frequencies for students teachers
example, including 95 % credibility intervals (in parentheses)

Ratings by Ratings by supervisor 2

supervisor 1 Permissive Democratic Authoritarian

Permissive 0.1806 0.1816 0.0417 0.0414 0.1389 0.1356
(0.1709,0.1923) (0.0359,0.0469) (0.1261,0.1451)

Democratic 0.0000 0.0018 0.1667 0.1672 0.0694 0.0652
(0.0006,0.0030) (0.1569,0.1775) (0.0584,0.0720)

Authoritarian 0.1111 0.1168 0.0556 0.0600 0.2361 0.2308
(0.1079,0.1257) (0.0534,0.0666) (0.2191,0.2425)

One limitation of the model can be seen in Table 5.3: structural zeroes can not
be accurately predicted in the sense that the model assigns positive albeit possibly
very low probability to any cell. See, for example, the combination of categorical
variables .V1;V2/ D .2; 1/. Of course, this is only a concern if a particular
combination were judged impossible. If a zero count could arise by sampling
variation, then the shrinkage towards a positive prior mean is more appropriate.
In this example, the estimated cell probability of 0:0018 is more reasonable than the
exact zero maximum likelihood estimate.

5.2 Categorical Responses with Covariates

Many statistical inference problems involving categorical responses include covari-
ates. In that case the sampling model for the categorical responses yi should include
a regression on these covariates. Assume then that for each of n experimental units,
categorical responses y1; : : : ; yn are recorded, together with a corresponding set of
covariates xi D .xi1; : : : ; xiq/, i D 1; : : : ; n. We include here the possibility that
xi1 D 1 for all i for an intercept term as in the usual regression-like models.

In a parametric context, a standard approach is to relate responses and covariates
by means of a generalized linear model (GLM) (McCullagh and Nelder 1983). The
distribution of responses yi is assumed to be a member of the exponential family, and
the mean responses �i D E.yi/ are related to a linear combination x0

iˇ by means of

g.�i/ D 
i.ˇ/ D x0
iˇ: (5.8)

Here, g is referred to as the link function, and it is defined in a possibly bounded
space �, depending on the nature of the yi. For example, for binary yi we use � D
Œ0; 1	. In addition, we assume that g is a strictly increasing differentiable function.

Several approaches to introduce a semiparametric component into GLMs
have been considered in the literature. The two most common ones involve a
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nonparametric model either for the link function g.�/, or for random effects that
interact with the linear part of the specification. We discuss some of these next.

5.2.1 Nonparametric Link Function: A Semiparametric GLM

Centrally Standardized DP Link Function Newton et al. (1996) consider the
particular case of binary responses. They model the inverse link function as the c.d.f.
of a random probability measure. This is possible, since the inverse link function for
a binary response and under the usual monotonicity and smoothness assumptions
can be interpreted as a c.d.f. We therefore denote g�1 simply as F and consider
models of the form p.yi D 1 j ˇ/ D F.x0

iˇ/. This can be rewritten equivalently in
terms of a latent random variable Vi as

yi D IfVi � x0
iˇg with Vi � F: (5.9)

To verify, note that p.yi D 1 j ˇ/ D p.Vi � x0
iˇ/ D F.x0

iˇ/, as claimed. In the usual
parametric case, F is assumed to be a known and fixed c.d.f. For instance, logistic
regression arises when F.t/ D exp.t/=.1Cexp.t//, probit regression corresponds to
F.t/ D ˆ.t/, the standard normal c.d.f. etc. Assume x0

iˇ includes an intercept term.
Then a nonparametric approach where F is an arbitrary c.d.f. would suffer from a
double confounding. First, the intercept will be confounded with the location of F.
Second, the overall scale of the elements ofˇ will be confounded with the scale of F.
Motivated by these considerations, Newton et al. (1996) proposed a nonparametric
model for F subject to identifiability constraints. They restrict F to have median
F�1.0:5/ D 0 and a central probability-p interval of length d. Using p D 0:5 the
latter becomes a constraint on the inter-quartile range. In general

F�1.0:5/ D 0; F�1 .0:5 � p=2/ D � � d and F�1 .0:5C p=2/ D �;

for some fixed values 0 < p < 1, d > 0 and 0 < � < d. They modify the DP
to generate distributions that satisfy these requirements, resulting in the centrally
standardized DP (CSDP). For instance, when p D 1=2, every distribution F that
satisfies the above restrictions would have zero median and inter-quartile range d. To
do so, they start with a c.d.f. F0 on the real line that has some positive mass outside
.�d; d/, a positive constant M, and a probability density function h supported on
.0; d/, e.g., the Uni.0; d/ distribution. Next, draw � � h and partition R into four
intervals

A1.�/ D .�1; � � d	; A2.�/ D .� � d; 0	; A3.�/ D .0; �	; A4.�/ D .�;1/:

Define now four measures by restricting m D M � F0 to each of the Aj subsets, i.e.,
mj.B/ D m.B \ Aj.�//, j D 1; : : : ; 4; and for any Borel set B. Note that the total
mass of mj is Mj D M � F0.Aj.�// and that F0j D mj=Mj is a c.d.f. on Aj.�/. With
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the above settings, define four independent DPs, Fj � DP.Mj;F0j/. By construction
the support of Fj is restricted to Aj. Finally, we paste them together to get a CSDP as

F.�/ D 1 � p

2
.F1.�/C F4.�//C p

2
.F2.�/C F3.�//: (5.10)

We denote this by F � CSDP.m; p; d; h/. It follows (Newton et al. 1996) that any
F � CSDP.m; p; d; h/ satisfies the desired constrains and will therefore be suitable
for a random link function model.

Example 12 (Unemployment Data) We consider unemployment data from the R
package catdata. The data are discussed in Tutz (2012). We use the complete
set of n D 982 observations and two variables: age of the person in years (from 16
to 61, AGE) and a binary indicator of short-term (0) or long-term (1) unemployment
(UNEMP). We are interested in studying the effect of xi D AGE on yi D UNEMP.
Using the previous notation, we take q D 2 and 
i.ˇ/ D ˇ0 C ˇ1xi.

The model proposed in Newton et al. (1996) is implemented in DPpackage as
the function CSDPbinary. The function implements inference in the model

yi D IfVi � xt
iˇg with Vi j F

iid� F; (5.11)

and prior F � CSDP.m; p; d; h/. The model specification is completed with

ˇ j ˇ0;S � N.ˇ0;S/:

A prior on M, e.g, M � Ga.a0; b0/ could be also adopted.

Example 12 (Unemployment Data, ctd.) We implement inference using the R func-
tion CSDPbinary. We fix F0.t/ to be the logistic distribution and use d D 2 log.3/.
Under F0 the mass outside the interval Œ�d; d	 is 1 � .F0.d/ � F0.�d// D 0:2.
Next we let h be the uniform distribution on .0; d/. We set p D 0:5, that is,
the centralization is on the median and interquartile range, and ˇ0 D .0; 0/ and
S D diag.100; 100/.

Figure 5.2 summarizes the resulting inference for the unemployment data. Most
of the marginal posterior mass of ˇ0 is on the negative numbers, which is explained
by the fact that most of the cases reported short-term unemployment, that is,
yi D 0 (640 out of 982, or 34.83 %). Most of the posterior marginal mass for
ˇ1 is on the positive numbers, suggesting that long-term unemployment tends
to increase with age. Panel (c) shows the estimated random link function (solid
line), including 95 % pointwise credible bands. For comparison, also the centering
logistic distribution function (dashed line) is shown. The two curves are similar,
but model (5.11) allows inference on the uncertainty of the link function (shown
as light grey margins). Finally, panel (d) shows the mean posterior predictive
probabilities of long-term unemployment for all available individuals in the sample
(solid line). For comparison, the figure also includes the m.l.e. in a simple parametric
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Fig. 5.2 Example 12. Panels (a) and (b) show the marginal posterior densities p.ˇ0 j y/ (left)
and p.ˇ1 j y/ (right). Panel (c) shows the estimated random link function E.F j y/ with 95 %
(point wise) posterior credible bands. Panel (d) shows the fitted posterior predictive probabilities
of long-term unemployment for all individuals in the sample, plotted against age

logistic regression model (dashed line). The CSDP-based model captures substantial
deviations from the simple logistic regression. The largest differences occur around
the median age (27 years) and around the maximum age (61 years).

Software note: See the software appendix to this chapter for R code for
Example 12.
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A Mixture of Beta Link Function Mallick and Gelfand (1994) discuss an
interesting alternative to a BNP prior on the link function. They consider a model
for the inverse link function, that is, the function g�1 based on a (transformed) finite
mixture of beta c.d.f.’s. Their approach is defined for general�, using an additional
mapping T to map from a general � into Œ0; 1	 if needed. Let J.
/ D T.g�1.
//
denote the inverse link function with the possibly additional mapping T. They model
J.�/ as a mixture of r beta c.d.f.’s. The construction is centered around a baseline link
function g0.�/. Letting J0.
/ D T.g�1

0 .
//, Mallick and Gelfand (1994) propose the
model

J.
/ D
rX

`D1
w`IB.J0.
/I a`; b`/; (5.12)

where w1; : : : ;wr are nonnegative weights such that
Pr

`D1 w` D 1, and IB.uI a; b/
is the incomplete beta function associated to the beta density Be.uI a; b/, that is,
IB.uI a; b/ D R u

0
Be.tI a; b/ dt for a; b > 0, and 0 � u � 1.

The representation as a finite mixture of beta functions is motivated by Diaconis
and Ylvisaker (1985), who argue that discrete mixtures of beta densities form a
dense class of models for densities on the unit interval. Following this argument,
the proposal in (5.12) constructs a semiparametric model by treating a transformed
inverse link function as part of the rich class of mixtures of incomplete beta
functions.

Generalized Additive Models An alternative to random links is the use of
generalized additive models (GAM), described in Sect. 4.3.2. A GAM essentially
considers a transformation of each of the p predictors xi D .xi1; : : : ; xip/

0 in a GLM
simultaneously. Such models can be fit in the gam function in DPpackage or the
freely-available BayesX package.

5.2.2 Models for Latent Scores

In Sect. 5.2.1 we introduced a regression on covariates in the linear predictor of a
GLM and then proceeded with nonparametric extensions of the link function. We
discuss an alternative interpretation of the same nonparametric model that arises
from the following construction. Instead of targeting the link function we now
focus on the distribution of the latent scores. Of course, the two are mathematically
equivalent, as can be seen from (5.9). Jara et al. (2006) considered the following
model formulation

yi D IfZi � x0
iˇg with Zi j F

iid� F; F � DP.M;F0/; (5.13)

i D 1; : : : ; n, and where F0 may be taken to be the standard normal, logistic
or Cauchy distributions. Similarly, Hanson (2006) considers a PT for the random
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link F, with first and second quartiles fixed; this model can be fit via FPTbinary in
DPpackage. Again, the idea in these constructions is to center the nonparametric
model on the usual parametric models. The CSDP process and the PT-based
approach of Hanson (2006) address the confounding issue related to location and
scale of the random probability measure F.

Example 12 (Unemployment Data ctd.) We consider again the data from Exam-
ple 12, this time under model (5.13). The model is completed with priors

ˇ j ˇ0;S � N.ˇ0;S/ and M � Ga.a0; b0/:

Figure 5.3 shows the marginal posterior distribution of the regression coefficients
ˇ0 and ˇ1 and the estimated link function F.t/. The plot shows results under three
different choices for the centering distribution F0, including a logistic (solid line),
normal (dashed line) or Cauchy (dotted line) distribution. For more comparison, we
also include the earlier results under the CSDP model (semi-dotted line). Table 5.4
shows some posterior summaries of the regression coefficients for the four models
considered here. The centering distribution F0 plays a key role in the reported
inferences. Comparing the effect of different F0 choices we see non-negligible
shifts in the posterior distributions. A more concentrated F0 tends to produce more
concentrated posterior distributions, specially for the intercept coefficient ˇ0. This
concentration is also notable when comparing models (5.13) and (5.10) with a
logistic F0. A possible explanation is the confounding problem mentioned above,
which is addressed by the CSDP construction, but not by the DP-based model.

Model (5.13) can be extended in many possible ways. Jara et al. (2007), for
example, considered the case of multiple binary responses for each individual. The
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Fig. 5.3 Example 12. Panels (a) and (b) show the posterior marginal distributions of intercept
ˇ0 and slope ˇ1. Panel (c) shows the estimated link function. Each plot shows inference under
model (5.13), with F0 equal to a logistic (solid line), normal (dashed line) or Cauchy (dotted line)
distributions. For comparison, we also include the corresponding earlier results, under model (5.10)
(semi-dotted line)
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Table 5.4 Example 12. Posterior summaries for unemployment data

ˇ0 ˇ1

Model Mean C.I. SD Mean C.I. SD

DP logistic �2.076 (�6.082,�0.608) 1.325 0.039 (0.012,0.103) 0.022

DP normal �1.045 (�1.986,�0.331) 0.423 0.021 (0.008,0.039) 0.008

DP Cauchy �3.366 (�11.716,�0.658) 2.880 0.060 (0.014,0.207) 0.051

CSDP �1.525 (�2.877,�0.445) 0.632 0.030 (0.006,0.059) 0.014

For each of the models indicated in the rows, we show the posterior mean, 95 % credibility interval
and standard deviation of each of the two regression coefficients ˇ0 and ˇ1

approach involves a matching vector Z D .Zi1; : : : ;Zik/ of latent scores from which
the binary responses yi D .yi1; : : : ; yik/ are obtained as yij D IfZij � 0g for all
j D 1; : : : ; k and i D 1; : : : ; n. Their proposal considers a flexible model for the
latent score vectors Z1; : : : ;Zn, which may be thought of as a multivariate extension
of model (5.13).

5.2.3 Nonparametric Random Effects Model

A traditional and very common use of nonparametric models involves the modeling
of random effects in various settings. Later, in Chap. 7, we will discuss nonparamet-
ric random effects models as an example of hierarchical models. Below we briefly
consider the special case of random effects models that arise as a generalization
of GLM’s. Consider a GLM with data that are arranged in groups, in the sense
that groups of outcomes are related to each other, e.g. as in longitudinal studies
or in experiments with multiple measurements on a given group of individuals. To
account for correlation within each group, Zeger and Karim (1991) considered a
generalized linear mixed model (GLMM), where cluster-specific random effects
induce the desired correlation among responses in each group. Let �ij D E.yij/,
let g denote a link function, and let xij and zij denote design vectors for fixed and
random effects, respectively. Zeger and Karim (1991) assume

g.�ij/ D x0
ijˇ C z0

ijbi; j D 1; : : : ; ni; i D 1; : : : ; n (5.14)

with group-specific random effects bi. Here i indexes groups of data, e.g., all
repeat measurements on patient i, and j indexes observations within each group. A
standard distributional assumption for the random effects bi is a multivariate normal
model. The assumption is usually motivated only by computational convenience.
Many applications involve heterogeneous populations of experimental units, such
as heterogeneous patient populations, that would more appropriately be modeled
with multimodal random effects distributions. Similarly, outliers are better accom-
modated with more general random effects distributions. These considerations led
many investigators to propose semi-parametric generalizations of GLMMs.
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A standard approach is to replace the multivariate normal distribution assump-
tions by a nonparametric alternative. Kleinman and Ibrahim (1998) considered a
DP-based approach with

bi j F
iid� F; F � DP.M;F0/; (5.15)

where F0 is the N.0;D/ multivariate normal distribution in the appropriate space,
i.e., the nonparametric model is a priori centered at the parametric proposal in Zeger
and Karim (1991). It is straightforward to generalize F0 to a N.�;D/ distribution,
with an additional hyperprior on both � and D, like in (2.8).

Model (5.14) and (5.15) gives rise to identifiability problems when some random
effects are paired with corresponding fixed effects, that is, zijk D xij` for some k; `
(Li et al. 2011). The problem originates in the fact that the DP prior implies a non-
zero mean for the random effects distribution. For a more detailed description of the
mean of a DP, see Hjort and Ongaro (2005). This creates an interpretation problem,
and complicates inference. Li et al. (2011) solve the problem by adjusting inference
using a post-processing technique based on an analytic evaluation of the moments
of the random moments of the DP. Jara et al. (2009) propose an alternative approach
modeling the random effects distribution with a PT prior. They also consider a
simple extension of the Kleinman and Ibrahim (1998) model which consists of
replacing the DP by a DP mixture, based in turn on an earlier proposal by Müller
and Rosner (1997) in the context of random effects models.

Example 13 (Epilepsy Trial) Thall and Vail (1990) consider data from a clinical
trial on epilepsy. The data consist of sequences of seizure counts in each of the
2 week intervals between four consecutive occasions, j D 1; : : : ; 3, for n D 59

epileptic patients, randomly assigned to treatment with progabide or to placebo.
These data have been considered by many authors, including Breslow and Clayton
(1993), Diggle et al. (1994) and Jara et al. (2009). Let yij denote the number of
epileptic seizures for the ith patient in the jth period. Additional baseline covariates
include the seizure counts in the 8-week period prior to the trial (CT8), and age at
the beginning of the trial (AGE). We introduce a binary indicator xi1 for treatment
assignment (TRT) with xi1 D 1 if patient i was assigned to progabide and 0
otherwise. Let xi2 D log.CT8i=4/ and xi3 D log.AGEi/. Finally, let xj4 D 1 if j D 4

and 0 otherwise be an indicator of the fourth visit. We consider here a variation of
model III in Breslow and Clayton (1993). We start by assuming Poisson-distributed
responses yij with

logŒE.yij/	 D ˇ0 C ˇ1xi1 C ˇ2xi2 C ˇ3xi3 C ˇ4xj4 C ˇ5xi1xi2 C bi: (5.16)

The model includes main effects for the covariates, plus an interaction of treatment
and previous number of seizures. Also, the indicator for the fourth visit was added to
account for the notable decay of counts in the 2 weeks prior to the fourth visit. The
model also includes a subject-specific random effect bi which introduces correlation
across the repeated measurements for each patient. The data are given in Thall and
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Vail (1990) and are also available as part of the Examples Guide in OpenBUGS
software (Lunn et al. 2009).

Software note: Inference for model (5.15) is implemented in the function
DPglmm in DPpackage. The function assumes model (5.16) and (5.15) where
in this case, F0 is a univariate normal distribution with mean � and variance D.
To complete the model specification, DPglmm assumes

M � Ga.a0; b0/; ˇ � N.ˇ0;S0/;

� � N.�b; Sb/; D � IWis.�0;T/;

where the inverse Wishart distribution is parametrized in such a way that E.D/ D
T�1=.�0 � 2/.

Figure 5.4b–f shows the marginal posterior distribution for the fixed effects specified
in model (5.16) (solid line). For comparison, we also include results under a
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Fig. 5.4 Example 13. Panels (b)–(f) show the marginal posterior distribution p.ˇj j y/ for the
fixed effects ˇ1; : : : ; ˇ5 for the nonparametric model (solid line), together with the corresponding
results for a parametric model (dashed line). Panel (a) shows the posterior predictive distribution
of random effects (solid line), together with the intercept term for the parametric model (dashed
line)
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corresponding parametric model (dashed line) that uses the multivariate normal
baseline F0 of (5.15) as a random effects distribution. Panel (a) in the same figure
shows the posterior predictive distribution of a new random effect, p.bnC1 j y/
together with the intercept term in the parametric model. Generally speaking,
inference for ˇ1; : : : ; ˇ5 is similar under the two models. The non-parametric
model (5.16) tends to produce slightly less dispersed distributions. Inference in
both models agrees in finding a treatment effect. Treated patients have a lower
expected number of seizure counts than placebo patients, as determined by the fact
that most of the posterior mass in p.ˇ1 j y/ is on ˇ1 < 0. Finally, we use log-pseudo
marginal likelihood statistics (LPML) (Geisser and Eddy 1979) for an overall model
comparison of model (5.16) versus the corresponding parametric model. We find
only a minor difference in LPML scores, with �669:9741 for the parametric case
and �669:9499 for the nonparametric version.

Software note: The software appendix to this chapter shows R code with the call
to the DPglmm function of DPpackage.

5.2.4 Multivariate Ordinal Regression

Recall the DP mixture of multivariate ordinal probit model (5.7). Bao and Hanson
(2015) generalize the model to accommodate predictors. The data are f.xi;Vi/gn

iD1
where xi D .xi1; : : : ; xip/

0 are the predictors for subject i. Bao and Hanson (2015)
replace the normal kernel in (5.7) by a normal linear regression,

Zi j xi;F �
Z

k.Zi j Xiˇ;S/ dF.ˇ;S/ (5.17)

Here, Xi D block-diag.x0
i1; : : : ; x

0
ik/ is a design matrix allowing for different

predictors to affect each of the k ordinal responses. The hyperpriors are largely the
same as before. Model (5.17) is a multivariate version of the LDDP model (4.12)
that we already saw in Sect. 4.4.2.

Example 14 (New Mexican DWI Offenders) McMillan et al. (2005) consider bivari-
ate ordinal data on drinking behavior. The Lovelace Comprehensive Screening
Instrument (LCSI) was given to over 2000 driving-while-intoxicated (DWI) offend-
ers mandated by the court to undergo screening. Among other topics, the LCSI asks
offenders questions about psychological issues, drug and alcohol use, and sexual
abuse history. The study sample includes n D 1964 offenders who completed the
LCSI and were self-reported beer drinkers. Subjects were asked “How many times
each month do you drink beer?” and could reply that they drank beer “up to 1–
2 times per month,” “a few times per month,” “a few times per week,” or “almost
daily;” these correspond to Vi1 D 1; 2; 3; 4 respectively. Respondents also were
asked, “How much beer do you drink?’ and specified the quantity of beer consumed
per drinking occasion as “1,” “2–3,” “4–5” or “6 or more” beers, corresponding
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to Vi2 D 1; 2; 3; 4 respectively. In addition, subjects were asked, “When you were
growing up, were you ever sexually abused or molested by anyone?” (xi1 D 0 for
no and xi1 D 1 for yes). Because beer is the primary source of alcohol intoxication
among DWI offenders, interest is in how history of sexual abuse as a child, along
with gender (xi2 D 0 for female and xi2 D 1 male) and age (xi3 D 0 for � 30 years
old and xi3 D 1 for > 30), is associated with current beer-drinking patterns.

Model (5.17) was fit to these data; Fig. 5.5 shows the fitted densities p.ZnC1 j
xnC1/ on frequency and quantity. The fitted density is obtained by averaging (5.17)
with respect to the posterior on F. Note that having been abused places more
mass into frequency 4 (almost daily) across all four levels of age and gender. The
nonparametric models were grossly preferred over parametric models, judging by
the log pseudo marginal likelihood criterion of Geisser and Eddy (1979).

5.3 ROC Curve Estimation

A widely-used application of binary regression models is diagnostic screening:
the classification of individuals y based on predictors x into one of two mutually
exclusive categories, often “diseased” (y D 1) or “non-diseased” (y D 0). Initially
consider univariate x D x. Each individual has an associated biomarker x (e.g.
ELISA test, cholesterol level, age, etc.) such that increased values of x increase the
probability of disease, yielding data f.xi; yi/gn

iD1. These can be viewed as training
data for classification, with the ultimate goal to accurately choose between OynC1 D 0

and OynC1 D 1 based on a new biomarker value xnC1. Assume that the biomarker x
has c.d.f. F1 among the diseased and c.d.f. F0 among the non-diseased. A threshold
t is used to classify disease via the biomarker value x through y D Ifx > tg. The
sensitivity of the test is se.t/ D p.x > t j y D 1/ D 1 � F1.t/, the probability
of a true positive. The specificity of the test is the probability of a true negative
sp.t/ D p.x < t j y D 0/ D F0.t/.

A receiver-operator characteristic (ROC) curve plots the probability of a true
positive se.t/ versus the probability of a false positive 1� sp.t/ across all t. The area
under the ROC curve (AUC) can be shown to be the probability that a randomly
selected diseased individual will have a value of x larger than a randomly selected
non-diseased individual. The AUC is unity when the supports of F0 and F1 do not
overlap, i.e. diseased and non-diseased scores x are perfectly separated; this yields
an ROC curve of 1 across .0; 1/. The closer an ROC curve is to 1, the better the
discriminatory ability of the biomarker. ROC curves and associated AUC summarize
the diagnostic utility of a biomarker x for discriminating among diseased and non-
diseased across all decision rules, independent of the prevalence of the disease in
the general population. Empirical estimates are often used to estimate F0 and F1 as
OF0 D 1

n0

P
iWyiD0 Ifxi � tg and OF1 D 1

n1

P
iWyiD1 Ifxi � tg where n0 D Pn

iD1 Ifyi D
0g and n1 D Pn

iD1 Ifyi D 1g are the number of non-diseased and diseased in the
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Fig. 5.5 Latent bivariate traits underlying drinking frequency (x-axis) and frequency (y-axis) for
different groups
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sample, respectively. This defines the empirical ROC curve .1 � OF0.t/; 1 � OF1.t//
plotted for all t.

Model-based approaches to ROC curve estimation posit independent probability
models for F0 and F1, for example MPT or DPM. Branscum et al. (2008) consider
MPT models for F0 and F1 under various scenarios; Hanson et al. (2008) generalize
a single biomarker to multiple, i.e. multivariate F0 and F1; and Hanson et al. (2008)
compare MPT to DPM models for ROC estimation enforcing a stochastic ordering
constraint on the diseased and non-diseased subpopulations. DPpackage includes
DProc for simple ROC estimation using DPM of normals.

Example 15 (Sperm Deformity Index) This example follows the DPpackage doc-
umentation for DProc. The sperm deformity index (SDI) was recorded from
n D 158 men who took part in an infertility study. The event of interest is whether
each male’s partner did not become pregnant. Greater values of the SDI increase the
likelihood of pregnancy not being achieved.
DProc provides posterior p.d.f. and c.d.f. estimates for F0 and F1, an optimal

threshold to suggested by Kraemer (1992), as well as the estimated ROC curve with
the error rates cleanly illustrated at the optimal threshold .1 � OF0.to/; 1 � OF1.to//.
Figure 5.6 shows the estimated ROC curve from DPpackage’s DProc function fol-
lowing the DPpackage documentation. Superimposed is the nonparametric estimate;
this is also the estimate from a logistic regression fit from regressing pregnancy
outcome onto SDI.

Software note: See the on-line software page for this chapter for R code.

So far we assumed a univariate predictor xi. In general, let zi denote a covariate
vector (reserving xi in anticipation of the upcoming argument). A simple trick
reduces the general case again to the same univariate setting. Let O�i D 1=f1 C
exp.� Ǒ 0

zi/g denote a logistic regression of yi on zi and use xi D O�i as a composite

Fig. 5.6 DProc function
ROC curve for evaluating the
use of SDI in predicting
pregnancy
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“biomarker” and proceed as before. Thresholds t 2 .0; 1/ are then introduced to
classify subjects as diseased or non-diseased as before. That is, O� > t implies
diseased and O� < t implies non-diseased. Then the empirical sensitivity and
specificity is bse.t/ D 1

n1

P
iWyiD1 If O�i > tg and bsp.t/ D 1

n0

P
iWyiD0 If O�i < tg.

Note that any monotone transformation of xi gives the same ROC curve, including
xi D ˇ0zi. These types of ROC curves are automatically provided by standard
statistical software.

Also model-based estimation of ROC curves can use covariates beyond a
univariate biomarker. The prior on F0 and F1 can be defined to depend on additional
covariates, producing so-called covariate-adjusted ROC curves; these ROC curves
exhibit how a biomarker’s ability to discriminate changes with predictors. The
DPpackage function LDDProc nicely ties together separate LDDPdensity fits
to the diseased and non-diseased subpopulations, allowing for easy estimation,
evaluation of covariate-dependent ROC curves, etc. This function was developed
and illustrated in de Carvalho et al. (2013).
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Chapter 6
Survival Analysis

Abstract Inference for event time data is one of the most traditional applications
of nonparametric Bayesian inference. For survival data, especially in biomedical
applications, it is natural to focus on inference for detailed features of the survival
function rather than only summaries like mean and variance. We extensively discuss
semi- and nonparametric Bayesian methods for survival regression. Inference for
such data has been traditionally dominated by the proportional hazards model. We
review in detail nonparametric Bayesian alternatives which we introduce as natural
generalizations of a parametric accelerated failure time model. We conclude with a
discussion of three case studies.

6.1 Distribution Estimation for Event Times

A special case of density estimation arises in survival analysis as density estimation
with event time data, usually involving censoring. Survival analysis is a very
traditional application of BNP in the early literature. Any of the earlier discussed
models for density estimation can be used for event time data, including DP, DP
mixtures, PT, etc. In the following example we use a mixture of finite PTs (MPT)
and a DP prior to estimate an event time distribution.

Example 2 (Oral Cancer, ctd.) Let F denote the unknown distribution of survival
times for patients with aneuploid cancers, that is, we assume Ti j F � F, i D
1; : : : ; n0. We consider a mixture of finite PT prior, F � MPT (see Sect. 3.2.1) with
c D 0:1 and J D 4 levels (Hanson 2006a). Let S.t/ D p.T � t/ denote the survival
function. Figure 6.1a shows the estimated survival curve EfS.t/ j datag, together
with pointwise approximate 80 % CIs. The model is fit via the MCMC algorithm
described in Hanson (2006a). Alternatively, we fit a DP model, F � DP.M;F?/.
The centering distribution F? is fixed as an exponential model with m.l.e. rate and
the DP mass parameter is M D 1. Figure 6.1b shows the estimated survival curves
under the DP prior.

Software note: R code for the fit under the DP prior is available at this chapter’s
software page on-line.

Besides the PT and DP models, many other priors for baseline hazard, cumulative
hazard, or survival functions have been successfully employed over the last 20
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Fig. 6.1 Example 2. Estimated survival curve EŒS.t/ j data	 for the aneuploid group assuming a
finite MPT (left panel) and assuming a DP prior (right panel) as prior for the unknown distribution
F of survival times. The two dotted curves show pointwise 80 % credible intervals. For comparison
the figures also show a Kaplan-Meier plot of the observed event times. The event (censoring) times
are also shown as filled (open) circles along the x-axis. (a) F � MPT. (b) F � DP

years. Recent reviews appear in Sinha and Dey (1997), Ibrahim et al. (2001), and
Hanson et al. (2005). Historically the DP (Susarla and Van Ryzin 1976), gamma
process (Kalbfleisch 1978), and beta process (Hjort 1990) were some of the earlier
proposals. An important family of priors that includes all three of these as special
cases is the class of neutral to the right priors.

6.1.1 Neutral to the Right Processes

Many stochastic process priors that have been proposed as nonparametric prior
distributions for survival data analysis belong to the class of neutral to the right
(NTR) processes. A random probability measure F on the real line is an NTR
process if 1 � F.t1/, .1 � F.t2//=.1 � F.t1//, : : :, .1 � F.tm//=.1 � F.tm// are
independent for any m and t1 < t2 � � � < tm, (assuming that the denominators
are non-zero) (Ferguson 1974). Equivalently, F is NTR if and only if it can be
expressed as F.t/ D 1 � expf�Y.t/g, where Y.t/ is a stochastic process with
independent increments, almost surely right-continuous and non-decreasing with
PfY.0/ D 0g D 1 and Pflimt!1 Y.t/ D 1g D 1 (Doksum 1974). Walker et al.
(1999) call Y.t/ an NTR Lévy process. The posterior under a NTR prior and i.i.d.
sampling is again a NTR process (Doksum 1974). This remains true under right
censoring (Ferguson and Phadia 1979).
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Recall from Chap. 1 the definition of the hazard rate �.t/ D limh!0
1
h p.t �

T < t C h j T � t/ and let ƒ.t/ D R t
0
�.s/ ds denote the cumulative

hazard function. Independent increment processes are used in many approaches that
construct probability models for � or ƒ, rather than directly for F. Dykstra and
Laud (1981) define the extended gamma process, generalizing the gamma process
studied in Ferguson (1973). The idea is to consider first a gamma process process
fY.t/g such that Y.t/ � Y.s/ � Ga.˛.t/ � ˛.s/; 1/ for all t > s � 0, where ˛ is
a nondecreasing left-continuous function on Œ0;1/. A new process is defined asR t
0
ˇ.s/ dY.s/ for a positive right-continuous function ˇ. Dykstra and Laud (1981)

consider such processes as a prior probability model for the hazard function �,
studying their properties and obtaining estimates of the posterior hazard function
without censoring and with right-censoring. In particular, the resulting function � is
monotone.

An alternative model was proposed by Hjort (1990), by placing a beta process
prior on ƒ. To understand this construction, let us look at a discrete version of the
process first. Following Nieto-Barajas and Walker (2002), consider a partition of the
time axis 0 D �0 < �1 < �2 � � � , and failures occurring at times chosen from the set
f�1; �2; : : :g. Let �j denote the hazard at time �j, �j D p.T D �j j T � �j/. Hjort
(1990) assumes independent beta priors for f�jg. This generates a discrete process
with independent increments for the cumulative hazard function ƒ.�j/ D Pj

iD0 �i.
The class is closed under prior to posterior updating as the posterior process is again
of the same type. The continuous version of this discrete beta process is derived by
a limit argument as the interval lengths �j � �j�1 approach zero (Hjort 1990). Full
Bayesian inference for a model with a beta process prior for the cumulative hazard
function using Gibbs sampling can be found in Damien et al. (1996). A variation of
this idea was used by Walker and Mallick (1997). They assumed � to be constant at
�1; �2; : : : over the intervals Œ0; �1	; .�1; �2	; : : : with independent gamma priors on
f�jg. As pointed out in Nieto-Barajas and Walker (2002), there is no limit version
of this process.

6.1.2 Dependent Increments Models

We have already discussed independent increments models for the cumulative
hazard functionƒ. In the discrete version this implies independence for the hazards
f�jg. A different modeling perspective is obtained by assuming dependence. A con-
venient way to introduce dependence is a Markov process prior on f�kg. Gamerman
(1991) proposes the following model: log.�j/ D log.�j�1/ C �j for j � 2, where
f�jg are independent with E.�j/ D 0 and Var.�j/ D �2 < 1. In the linear Bayesian
method of Gamerman (1991) only a partial specification of the f�jg is required.
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Later, Gray (1994) used a similar prior process but directly on the hazards f�jg,
without the log transformation. A further generalization involving a martingale
process was proposed in Arjas and Gasbarra (1994). More recently, Nieto-Barajas
and Walker (2002) proposed a model based on a latent process fukg such that f�jg
is included as

�1 ! u1 ! �2 ! u2 ! � � �

and the pairs .u; �/ are generated from conditional densities f .uj�/ and f .�ju/
implied by a specified joint density f .u; �/. The main idea is to ensure linearity in the
conditional expectation: E.�kC1j�k/ D ak Cbk�k. Nieto-Barajas and Walker (2002)
show that both the gamma process of Walker and Mallick (1997) and the discrete
beta process of Hjort (1990) are obtained as special cases of their construction, under
appropriate choices of f .u; �/.

In the continuous case, Nieto-Barajas and Walker (2002) proposed a Markovian
model where the hazard rate function is modeled as

�.t/ D
Z t

0

exp f�a.t � u/g dL.u/; (6.1)

for a > 0, and where L is a pure jump process, i.e., an independent increments
process on Œ0;1/ without Gaussian components (Ferguson and Klass 1972; Walker
and Damien 2000). This model, called Lévy driven Markov process, extends
Dykstra and Laud’s (1981) proposal by allowing non-monotone sample paths for
�. In addition, the sample paths are piece-wise continuous functions. Nieto-Barajas
and Walker (2002) obtain posterior distributions under (6.1) for different types of
censoring and discuss applications in several special cases, including the Markov-
gamma process.

6.2 Semiparametric Survival Regression

A common starting point in the specification of a regression model for time-to-
event data is the definition of a baseline survival function, S0, that is modified
(either directly or indirectly) by subject-specific covariates xi. Let T0 be a random
survival time from the baseline group (with all covariates equal to zero). The
baseline survival function is defined as S0.t/ D p.T0 > t/. Continuous survival
is assumed throughout. Thus, the baseline density and hazard functions are defined
by f0.t/ D � d

dt S0.t/ and h0.t/ D f0.t/=S0.t/, respectively. The survival, density and
hazard functions for a member of the population with covariates x will be denoted
by Sx.t/, fx.t/, and hx.t/, respectively.
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6.2.1 Proportional Hazards

The proportional hazards (PH) model (Cox 1972), for continuous data, is obtained
by expressing the covariate-dependent survival function Sx.t/ as

Sx.t/ D S0.t/
exp.x0ˇ/:

In terms of hazards, this model reduces to

hx.t/ D exp.x0ˇ/h0.t/: (6.2)

Note then that for two individuals with covariates x1 and x2, the ratio of hazard
curves is constant, equal to hx1 .t/=hx2 .t/ D expf.x1 � x2/0ˇg, hence the name
“proportional hazards.” Cox (1972) is the second most cited statistics paper of all
time (Ryan and Woodall 2005), and the proportional hazards model is easily the
most popular semiparametric survival model in statistics, to the point where medical
researchers tend to compare different populations’ survival in terms of instantaneous
risk (hazard) rather than mean or median survival as in common regression models.
Part of the popularity of the model has to do with the incredible momentum the
model has gained from how easy it is to fit the model through partial likelihood (Cox
1975) and its implementation in SAS in the procedure proc phreg. The use of
partial likelihood and subsequent counting process formulation (Andersen and Gill
1982) of the model has allowed ready extension to stratified analysis, proportional
intensity models, frailty models, and so on (Therneau and Grambsch 2000).

Full Bayesian inference under (6.2) requires a prior for the baseline hazard
(or survival function). This is where BNP comes in. By adding a BNP prior for
S0, model (6.2) becomes a semiparametric Bayesian model. The first Bayesian
semiparametric approach to PH models posits a gamma process as a prior on
the baseline cumulative hazard H0.t/ D R s

0
h0.s/ds (Kalbfleisch 1978); partial

likelihood emerges as a limiting case (of the marginal likelihood as the precision
approaches zero). The use of the gamma process prior in PH models, as well as
the beta process prior (Hjort 1990), piecewise exponential priors, and correlated
increments priors are covered in Ibrahim et al. (2001) (pp. 47–94) and Sinha and
Dey (1997). Other approaches include what are essentially Bernstein polynomials
(Gelfand and Mallick 1995; Carlin and Hodges 1999) and penalized B-splines
(Hennerfeind et al. 2006; Kneib and Fahrmeir 2007). The last two models are
available in a public domain program called BayesX (Belitz et al. 2009), which
can be called from the R package R2BayesX.

Example 2 (Oral Cancer, ctd.) Recall that data comprised of n D 80 survival
times for mouth cancer patients, some right-censored. Samples are recorded as
aneuploid (abnormal number of chromosomes) versus diploid (two copies of each
chromosome) tumors. We define xi 2 f0; 1g as an indicator for aneuploid tumors and
carry out inference under model (6.2) with a BNP prior on h0.�/. Figure 6.2a shows
the estimated hazard curves under x D 0 and x D 1. The log-baseline hazard is
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Fig. 6.2 Example 2 (ctd.). Survival curves for aneuploid (solid lines) and diploid (dashed lines)
groups under the proportional hazard model (a), an AFT model with penalized B-spline (b), a PO
model with a MPT prior (c), and under a DDP ANOVA model (d). In all figures the thin (solid and
dashed) lines centered around each of the survival curves show pointwise 80 % CIs. The piecewise
constant lines plot Kaplan-Meier estimates for each group independently

modeled as a penalized B-spline (Hennerfeind et al. 2006), described in Sect. 4.3.2.
The model is fit through the R2BayesX package. Use the function bayesx(: : :,
family="cox").



6.2 Semiparametric Survival Regression 107

6.2.2 Accelerated Failure Time

The accelerated failure time (AFT) model is obtained by expressing the covariate-
dependent survival function Sx.t/ as

Sx.t/ D S0fexp.�x0ˇ/tg: (6.3)

This is equivalent to a linear model for the log time-to-event T,

log T D x0ˇ C �; (6.4)

where p.� > log t/ D S0.t/. The mean, median, and any quantile of survival for an
individual with covariates x1 is changed by a factor of expf.x1 � x2/0ˇg relative to
those with covariates x2.

The first nonparametric Bayesian AFT model was introduced by Christensen and
Johnson (1988). Based on a DP prior they derive approximate marginal inferences
under the AFT model. A fully Bayesian treatment using the DP is not practically
possible (Johnson and Christensen 1989). Approaches based on DPM models have
been considered by Kuo and Mallick (1997), Kottas and Gelfand (2001) and Hanson
(2006b). The DPM “fixes” the discrete nature of the DP, as do other discrete
mixtures of continuous kernels. Alternatively, continuous densities for the residuals
� in (6.4) can directly be modeled with tail-free priors (Walker and Mallick 1999;
Hanson and Johnson 2002; Hanson 2006a; Zhao et al. 2009). In the example below
we use an approach from Komárek et al. (2007), which models the � density directly
as an approximate penalized B-spline.

Example 2 (Oral Cancer, ctd.) Here we consider an AFT model where the baseline
error density on � is modeled as a penalized B-spline (Komárek et al. 2007).
Figure 6.2b shows the estimated survival curves under x D 0 and x D 1, fitted
using the function bayessurvreg2(�) from R package bayesSurv.

Although the PH model is by far the most commonly-used semiparametric
survival model, several studies have shown vastly superior fit and interpretation
from AFT models (Hanson 2006a; Hanson and Yang 2007; Kay and Kinnersley
2002; Orbe et al. 2002; Hutton and Monaghan 2002; Portnoy 2003). Cox pointed
out himself (Reid 1994) “: : : the physical or substantive basis for : : : proportional
hazards models : : : is one of its weaknesses : : : accelerated failure time models are
in many ways more appealing because of their quite direct physical interpretation
: : :”.

Since the AFT model is a log-linear model, one can obtain a point estimate
of survival for covariates x as simply exp.x0 Ǒ /, where Ǒ is an estimate of ˇ.
Prediction is impossible within the PH model framework without an estimate of
the baseline hazard function. So reporting only coefficients—which is common—
disallows others to predict survival.
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6.2.3 Proportional Odds

The proportional odds (PO) model has recently gained attention as an alternative to
the PH and AFT models. The PO model defines the survival function Sx.t/ for an
individual with covariate vector x through the relation

Sx.t/

1 � Sx.t/
D exp

˚�x0ˇ
	 S0.t/

1� S0.t/
: (6.5)

The odds of dying before any time t are expf.x2�x1/0ˇg times greater for those with
covariates x1 versus x2. Bayesian nonparametric approaches for the PO model have
been based on Bernstein polynomials (Banerjee and Dey 2005), B-splines (Wang
and Dunson 2011), and Polya trees (Hanson 2006a; Hanson and Yang 2007; Zhao
et al. 2009; Hanson et al. 2011).

Example 2 (Oral Cancer, ctd.) Here we consider a PO model where S0 is modeled
as a finite MPT with c D 1 and J D 4 levels (Hanson 2006a; Hanson and Yang
2007). A flat prior is assumed for the regression effect. Figure 6.2c shows estimated
survival curves for x D 0 and x D 1, with approximate 80 % CIs, fit via MCMC
Algorithm 3 in Hanson and Yang (2007). The implementation was hand-coded in
R. The posterior median and 95 % CI for the type effect is 0.986 (0.318, 1.737). The
odds of surviving past any time t is estimated to be e0:986 � 2:7 times greater for
the aneuploid group.

The PH, AFT, and PO models all make overarching assumptions about the
data generating mechanism for the sake of obtaining succinct data summaries. An
important aspect associated with the BNP formulation of these models is that, by
assuming the same, flexible model for the baseline survival function, they can be
placed on a common ground (Hanson 2006a; Hanson and Yang 2007; Zhang and
Davidian 2008; Zhao et al. 2009; Hanson et al. 2011). Compare Fig. 6.2, panels (a),
(b), and (c).

Hanson (2006a), Hanson and Yang (2007), Zhao et al. (2009) and Hanson
et al. (2011) considered several variations of PT-based BNP models for survival
regression. Of these models, the PO model was chosen over the PH and AFT models
on the basis of the LPML criterion (Geisser and Eddy 1979). In three of these
references, the parametric log-logistic model, a special case of PO that also has
the AFT property, was chosen. This may be due to the fact that the PO assumption
implies that limt!1

hx1 .t/
hx2 .t/

D 1, that is, eventually everyone has the same risk of
dying tomorrow. These authors also found that, everything else being equal, the
actual semiparametric model chosen (PO, PH or AFT) affects prediction far more
than whether the baseline is modeled nonparametrically. Remarkably, none of these
papers favored the semiparametric PH model in actual applications.
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6.2.4 Other Semiparametric Models and Extensions

PH, AFT, and PO are the three most widely-used semiparametric survival models in
practice. There are a few more hazard-based models including the additive hazards
model (Aalen 1980), given by

hx.t/ D h0.t/C x0ˇ:

An empirical Bayes approach to this model based on the gamma process was
implemented by Sinha et al. (2009). Fully Bayesian approaches require elaborate
model specification to incorporate the rather awkward constraint h0.t/ C x0ˇ � 0

for t > 0, e.g. Yin and Ibrahim (2005). Recently, there has been some interest in the
accelerated hazards (AH) model (Chen and Wang 2000), given by

hx.t/ D h0fexp.�x0ˇ/tg:

This model allows hazard and survival curves to cross. A Bayesian treatment of
the AH model can be found in Chen et al. (2014) where baseline is modeled as
a transformed Bernstein polynomial. Li et al. (2015) consider a extended hazard
model that includes PH, AFT, and AH as formally nested special cases, generalized
to areal spatial data that models the baseline using a parametric family-centered
B-spline.

There are several generalizations for the models of Sect. 6.2.1–6.2.3. A standard
approach for accomodating correlated data has been the introduction of frailty
terms to the linear predictor, e.g., x0

ijˇ C �i for the jth subject in cluster i. Frailties
can be assumed exchangeable (either parametric or nonparametric) or have some
additional structure. Banerjee et al. (2004) broadly discuss both georeferenced
(e.g. latitude/longitude) and areal (e.g. county-level) frailties �i. Zhao et al. (2009)
compare PH, AFT, and PO models with exchangeable parametric, nonparametric
MPT, and spatially-smoothed intrinsic conditionally autoregressive (ICAR) frailties.
Spatially smoothing frailties can improve the estimation of fixed effects as well as
improve the prediction of survival for new patients. Both georeferenced as well as
areal spatial frailties can be fit via R2BayesX for the PH model; general additive
predictor effects (see Sect. 4.3.2) can also be included (Belitz et al. 2009). The
recently contributed R package spBayesSurv, written by Haiming Zhou, has
compiled functions to fit areal and georeferenced PO, AFT, and PH survival models
for general interval-censored data using a MPT baseline. Other spBayesSurv
functions allow for copula-based marginal spatial analysis using a generalization of
the ANOVA DDP AFT discussed in Sect. 6.3.2 and spatial-frailty generalizations of
the LDTFP survival model in Sect. 6.3.3.

Hazard-based models (proportional, additive, and accelerated) naturally accom-
modate time-dependent covariates; the linear predictor is simply generalized to be
x.t/0ˇ. Similarly, hazard-based models can also include time-dependent regression
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effects via x0ˇ.t/ or even x.t/0ˇ.t/. All of these are possible for the PH model in
BayesX.

Other model modifications include cure rate models, joint longitudinal/survival
models, recurrent events models, multistate models, competing risks models, and
multivariate models that incorporate dependence more flexibly than frailty models.

6.3 Fully Nonparametric Survival Regression

6.3.1 Extensions of the AFT model

In earlier chapters we introduced fully nonparametric regression or density regres-
sion. Two of these models are easily generalized to accommodate censored data:
(i) the ANOVA DDP (De Iorio et al. 2009) (Definition 5), the related LDDP
(Definition 6) and (ii) the linear dependent tail-free process (LDTFP) (Jara and
Hanson 2011) (Sect. 4.4.3). As we show below, both can be viewed as natural
heteroscedastic generalizations of the AFT model, allowing for crossing hazard
and/or survival curves. Later, in Sect. 6.4, both approaches are compared on three
survival data sets. The two models provide roughly the same inferences, although
the DDP gives slightly better prediction according to the LPML criterion. However,
the LDTFP has the advantage that regression parameters retain the same simple
interpretation as in standard accelerated failure time models, describing how median
survival changes with covariates.

Data analysis for event time data naturally includes inference on the entire
density, in contrast to traditional linear models that focus on the trend (mean or
median) only. Perhaps this is one of the reasons why inference for event time data
has been a traditional focus of BNP applications. In what follows, consider standard
interval-censored failure time data f.li; ui; Qxi/gn

iD1, where the responses are known
up to an interval, Ti 2 .li; ui	, and Qxi are covariates for subject i, without the intercept
term. Recall the AFT model (6.4) as yi D log.Ti/ D Qx0

iˇ C �i:

6.3.2 ANCOVA-DDP: Linear Dependent DP Mixture

In Sect. 4.4.2 we introduced the ANOVA DDP for a family of dependent probability
measures fGx; x 2 Xg. Recall Definition 5. Let yi D log.Ti/. We use the ANOVA
DDP model to generalize (6.4) to

yi j xi;Gxi

ind�
Z

N.�; �2/ dGxi.�; �
2/ and fGxI x 2 Xg � ANOVA DDP:

(6.6)
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This is exactly (4.12), that is, the ANOVA DDP with an additional normal kernel.
See De Iorio et al. (2009) and Jara et al. (2010) for more discussion. We refer to (6.6)
as ANOVA DDP AFT model.

Software note: Inference under model (6.6) is implemented as LDDPsurvival
in the R package DPpackage (Jara et al. 2011).

The model can be characterized as a natural nonparametric extension of the AFT
model (6.4), and the name of the DPpackage function is based on another
characterization of the model that was introduced as a separate definition as the
LDDP. Both characterizations arise by the following alternative construction of the
model. We start with the AFT model (6.4). In a first step consider a DPM of normals

for the residual distribution in (6.4). That is, assume �i
ind� N.�i; �

2/; �1; : : : ; �n j
G

iid� G, and G j M;G0 � DP.M G0/. This model is proposed and discussed in Kuo
and Mallick (1997). Writing Qxi for the covariate vector without intercept, we get

yi j ˇ;G ind�
1X

hD1
whN.�h C Qx0

iˇ; �
2
h /; (6.7)

with the stick-breaking prior for wh and �h
iid� G0, for some base measure G0. The

interpretation of the components of ˇ remains as usual and the model can be fit
using standard algorithms for DPM models. See Kuo and Mallick (1997) for more
discussion.

Now consider additional mixing over the regression coefficients. Let xi D
.1; Qx0

i/
0. We get

yi j G
ind�

1X

hD1
whN.x0

iˇh; �
2
h /:

We complete the model with the stick-breaking prior on wh D vh
Q
`<h.1 � v`/ for

vh
iid� Be.1;M/, and independent priors ˇh

iid� N.m0;V0/ and �2h
iid� IGamma.a; b/.

But this is exactly (6.6).

Example 16 (Columbian Children Mortality) Somoza (1980) considers data on
childhood mortality in Columbia. The data report overall survival for n D 1437

children. Covariates Qxi D .ui; vi;wi/ include sex (ui), birth cohort (3 levels, vi),
and an indicator for urban versus rural home (wi). Let Gx denote the distribution of
overall survival times yi for children with covariates Qxi D x. We use the ANOVA-
DDP model (6.6) to define a dependent prior for the 12 D 2 � 3 � 2 distributions
Gx. Figure 6.3 shows E.Gx j y/ for three covariate combinations corresponding to
urban male children and the three birth cohorts.

The model trades easy interpretability offered by a single ˇ for greatly increased
flexibility. In particular, the ANOVA-DDP model does not stochastically order
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Fig. 6.3 Example 16. E.Gx j y/ (as survival function) for urban male children from the three birth
cohorts, under a fully nonparametric regression model. (a) E.Sx j y/. (b) Data as KM plot

survival curves from different predictors xi1 and xi2 , and both the survival and hazard
curves can cross.

If the data warrant only a few weights from fw1;w2; : : :g with non-negligible
mass, the model can be re-fit using simple, finite mixture of log-normal distributions.
The number of components J in the finite mixture can be estimated from the
posterior number of components from a fit of (6.6) yielding

yijw;ˇ;� ind:�
JX

jD1
wjN.x0

iˇj; �
2
j /; (6.8)

where w D .w1; : : : ;wJ/, ˇ D .ˇ1; : : : ;ˇJ/ and � D .�21 ; : : : ; �
2
J /. This model

defines J homogeneous subpopulations with simple unimodal survival densities
LN.ˇj1; �j/ and accompanying acceleration factors given through .ˇj2; : : : ; ˇjp/.
These can be viewed as homogeneous subpopulations corresponding to an omitted
variable with J levels. Generalization of this model, where weights also depend
on covariates naturally lead again to conditional density regression models, as in
Sect. 4.4.4, can be found in, for instance, Müller et al. (1996) and Chung and Dunson
(2009).

Example 2 (Oral Cancer, ctd.) Earlier in this section we reported inference using
the PH, PO and AFT models. As a final comparison we add inference under the
DDP ANOVA AFT model (6.6). Figure 6.2d shows estimated survival curves for
x D 0 and x D 1, with approximate 80 % CIs.
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6.3.3 Linear Dependent Tail-Free Process (LDTFP)

Recall the definition of the Polya tree (PT) prior in Sect. 3.1. We construct a survival
regression based on a variation of the PT prior to define another semi-parametric
generalization of the AFT model (6.4). We have already briefly introduced the
model earlier as the LDTFP, in Sect. 4.4.3, but deferred the formal definition until
now, simply because the model was originally proposed in the context of survival
regression.

Recall that the PT defines the conditional probabilities Ye in (3.1) as beta random
variables. We use e D "1 � � � "m to denote the binary sequence that indexes the
partitioning subsets (we use e instead of �, as in Sect. 3.1, to avoid confusion with
the residual � in the AFT model). Maintaining the same structure of independent
splitting probabilities in a nested sequence of partitions …, we can replace the beta
prior with a logistic regression for each of these probabilities Ye, allowing the entire
shape of the density to change with predictors. This is the approach considered by
Jara and Hanson (2011). Recall that Ye1 D 1 � Ye0. Given covariates x, we model
.Ye0;Ye1/ as a logistic regression

logfYe0.x/=Ye1.x/g D x0�e:

If e D "1 � � � "m is a length m binary vector, then there are 2m�1 vectors of regression
coefficients, T D f�eg. For instance, for m D 3, T D f��;�0, �1, �00, �01, �10, �1;1,
�2;4g. Let X D Œx1 � � � xn	

0 be the n � p design matrix. Let m.e/ denote the number
of binary digits in e. Following Jara and Hanson (2011), each �e is assigned an
independent normal prior,

�e � N
�

0;
2

c.m.e/C 1/2
‰

�

; (6.9)

independently across e, and scaled by the depth in the nested partition tree ….
Several options could be considered for ‰ . Jara and Hanson (2011) discussed in
detail the case where ‰ D n.X0X/�1, that is, a g-prior (Zellner 1983) for the
regression coefficients.

In the previous construction, the beta random variables in the PT definition from
Sect. 3.1 are replaced by Ye.x/. Also, we truncate the PT at a finite level, say level
J. We also assume the PT to be centered at a standard normal distribution, by using
standard normal quantiles to define the nested partition boundaries, that is we use the
nested partition sequence … of a PT.G?;A/ with a standard normal G? D N.0; 1/.
In summary,

Definition 7 (Linear Dependent Tail-Free Process, LDTFP) Let … D fBe; e 2SJ
jD1f0; 1gjg denote a nested partition sequence defined by the dyadic quantiles of

a fixed distribution G?. Let Ye0.x/ D Gx.Be0 j Be/ and Ye1.x/ D 1 � Ye0.x/. A
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family of random probability measures G D fGx; x 2 X g has an LDTFP prior if (i)
logfYe0.x/=Ye1.x/g D x0�e; (ii) �e � Np

�
0; 2=Œc.m.e/C 1/2	‰

�
. We write

fGx; x 2 Xg � LDTFP.c;‰ ;G?; J/:

We use gx.�/ to denote the corresponding p.d.f. The parameter c 2 R
C is the

coefficient in (6.9). It controls how non-normal gx.e/ is, and can be interpreted as a
measure of the random L1 distance jjgx � 
jj (Hanson et al. 2008).

Software note: Inference under the LDDTFP is implemented as
LDTFPsurvival in the R package DPpackage (Jara et al. 2011).

We now use the LDTFP as a prior for the residual distribution in (6.4) and add a
restriction to a zero median. This defines the LDTFP AFT model

yi D x0
iˇ C ��i; �i j � ind� gxi :

Unlike the ANOVA DDP, the LDTFP separates survival into one distinct trend
x0ˇ and an evolving log-baseline survival density gx. By setting gx to have median-
zero, eˇj gives a factor by which the median survival changes when xj is increased
just as in standard AFT models. This convenient interpretability in terms of median-
regression in the presence of heteroscedastic error allows a fit of the LDTFP model
to easily relate covariates x to median survival.

The LDTFP models the probability of falling above or below quantiles of the
N.x0ˇ; �2/ distribution, but in terms of conditional probabilities. This model can
be viewed as a particular kind of quantile regression model. By augmenting a
median-zero tail-free process with a general trend x0ˇ we accomplish the objective
of nesting the ubiquitous normal-errors linear model within a highly flexible median
regression model, but with heteroscedastic error that changes shape with covariate
levels x 2 X .

6.4 More Examples

The two generalizations of the AFT model described in Sect. 6.3 are illustrated
now in three data sets. The generalized AFT models were fit using the R functions
LDDPsurvival and LDTFPsurvival in DPpackage (Jara et al. 2011).

6.4.1 Example 17: Breast Retraction Data

We consider a dataset involving time to cosmetic deterioration of the breast for
women with stage 1 breast cancer who have undergone a lumpectomy (Beadle et al.
1984). The data come from a retrospective study designed to compare the cosmetic
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effects of radiotherapy versus radiotherapy plus chemotherapy on women with early
breast cancer. Both treatments are alternatives to a mastectomy that preserve (and
thus enhance the appearance of) the breast. It is postulated that chemotherapy in
addition to radiotherapy (treatment A) reduces the cosmetic effect of the procedure
by inducing breast retraction more quickly than radiotherapy alone (treatment B).

There are nB D 46 radiation only and nA D 48 radiation plus chemotherapy
patients. Patients were typically observed every 4–6 months, at which point a
clinician graded the level of breast retraction as none, moderate, or severe. We
compare time to moderate or severe retraction across treatments. That is, the
event of interest is moderate or severe breast retraction. Event times are interval
censored, with interval endpoints occurring at clinic visits. Hanson and Johnson
(2004) analyzed the same data using the (homoscedastic) AFT model (6.7) with a
mixture of DPs as a prior for the baseline distribution F0.

We fit the same data using the ANOVA DDP and the LDTFP models. The only
predictor is the treatment indicator. For the LDTFP model we set J D 4 and ‰ D
n.X0X/�1, where n is the sample size. The median function parametersˇ D .ˇ0; ˇ1/

were given a Zellner’s g-prior (Zellner 1983), ˇ � N.0; g.X0X/�1/, with g D 2n.
For the LDTFP parameters, we assume ��2 � Ga.5:01; 2:01/ and c � Ga.10; 1/.

For the ANOVA DDP model, we assume m0 � N.02; 100 � I2/, V�1
0 � Wis.4,

I2/, a D 3:01, b � Ga.3:01; 1:01/ and M � Ga.10; 1/. For all models, a burn-in of
20,000 iterates was followed by a run of 100,000 thinned down to 10,000 iterates.

The two models based on dependent process priors outperformed a classical
semiparametric analysis based on the AFT assumption. Rounded to the nearest
integer, the LPML values for the ANOVA DDP and LDTFP model were �147
and �149, respectively. For comparison we consider as a third alternative inference
under the DP mixture model (6.7) of Hanson and Johnson (2004). Fixing the total
mass parameter ˛ D 5 and using a centering distribution, G0 D N.�; �2/, we find a
LPML of �159. Figure 6.4 shows the estimated survival curves for the two treatment
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Fig. 6.4 Example 17. Panels (a), (b) and (c) show estimated survival curves for treatments A
(continuous line) and B (dashed line) under the LDTFP, ANOVA-DDP and mixture of DP model,
respectively. In all cases, the pointwise 95 % credible bands are also displayed as a grey area for
treatment A. The widths of the pointwise 95 % CIs for the treatment B are of comparable size in
all cases
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groups under the three different models, evaluated on a grid of 200 equally-spaced
points. The survival curves under the two fully nonparametric survival regressions
are similar to the ones reported by Hanson and Johnson (2004), with the exception
that the estimated survival curves under the ANOVA DDP and LDTFP model are
initially indistinguishable up to 15 months after treatment; the AFT model forces a
more pronounced stochastic ordering of the survival curves. Although the ANOVA
DDP model shows marginally better predictive performance than the LDTFP model
for these data, the survival point estimates obtained under the two models are
qualitatively similar. The better predictive performance of the ANOVA DDP models
is explained by its lower posterior variability.

Under the LDTFP model, the estimated treatment effect was Ǒ
1 D 0:30 and non-

significant with a 95 % highest posterior density (HPD) interval of .�0:07; 0:68/.
The median time to retraction under treatment B is estimated to be e0:30 � 1:38

times longer than under treatment A with 95 % HPD interval .0:90; 1:91/. Priors
favoring smaller values of c yielded qualitatively similar inferences, although
estimated point estimates of the survival curves cross at about 15 months.

The results of the AFT analyses with homoscedastic error show a significant
regression effect, indicating lower times to retraction under treatment A as expected,
somewhat contradicting the LDTFP analysis where no significant difference in
median survival was found. However, a glance at Fig. 6.4 shows marginal evidence
of different median lifetimes given the large variability of the survival curves across
the groups. Under the homoscedastic AFT model the regression parameter affects
all quantiles simultaneously and indicates a net scale shift in probability; under the
LDTFP model the conditional probabilities change beyond the median function. The
significant effect under the homoscedastic model can be viewed as an averaging
of the overall warping of the density across treatment levels, embodied in the
parameters f�j;kg in the LDTFP.

6.4.2 Example 8 (ctd.): Breast Cancer Trial

We consider data from a cancer clinical trial described in Rosner (2005), and
analyzed by De Iorio et al. (2009) using a ANOVA DDP mixture of normals model.
The data record the event-free survival time in months for 761 women. That is,
the response of interest is time until death, relapse or treatment-related cancer.
Researchers are interested in determining whether high doses of the treatment are
more effective for treating the cancer compared to lower doses. High doses of the
treatment are known to be associated with a high risk of treatment-related mortality.
The clinicians hope that this initial risk is offset by a substantial reduction in
mortality and disease recurrence or relapse, consequently justifying more aggressive
therapy. Thus the primary reason for carrying out the clinical trial was to compare
low versus high dose. Following De Iorio et al. (2009), we consider two categorical
covariates, one continuous covariate, and one interaction term: treatment dose—low
(LO) or high (HI), estrogen receptor status—negative (ER�) or positive (ERC),
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tumor size (TS, standardized to zero mean and unit variance), and the treatment
dose and ER status interaction (HI*ER).

The ANOVA DDP and LDTFP models were fit to the data. For the LDTFP, we
set J D 5 and ‰ D 103I5, and the median function parameters were assigned
independent normal priors ˇ � N.05; 103I5/, ��2 � Ga.1:5; 6:0/, and c �
Ga.7:0; 0:1/. For the ANOVA DDP model, we assume m0 � N.05; 100 � I5/,
V�1
0 � Wis.7; I5/, a D 1:01, b � Ga.1:51; 3:01/ and M � Ga.5; 1/. For both

models, a burn-in of 20,000 iterates was followed by a run of 100,000 thinned down
to 10,000 iterates.

Qualitatively similar inference was obtained under the two models. Figures 6.5
and 6.6 show the estimated survival curves, and corresponding posterior uncertainty,
under the LDTFP and ANOVA DDP model, respectively. The two models based on
dependent process priors outperformed a classical semiparametric analysis based
on the AFT assumption. Rounded to the nearest integer, the LPML for the ANOVA
DDP and LDTFP model was �2048 and �2052, respectively, better than �2063
obtained under a parametric AFT log-normal regression model.

An advantage of the LDTFP model over the ANOVA DDP model is that direct
inference can be made on the median survival time. In order to evaluate the posterior
evidence against the hypothesis of null effect of the covariates on the median
survival function, the pseudo contour probability (PsCP) was evaluated for each
hypothesis. The PsCP is defined as one minus the smallest credible level for which
the null hypothesis is contained in the corresponding HDP.
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Fig. 6.5 Example 8: LDTFP model. In both panels the results are displayed for TS 2.0 cm (first
quartile) under the LDTFP model. Panel (a) shows the posterior mean (and pointwise 95 % HPD
band in grey) for the survival curve for patients with low dose treatment and ER- status. Panel (b)
shows the posterior mean for all four combinations of treatment dose and ER status, including LO,
ER- (solid line); HI, ER- (dashed); LO, ER+ (dotted); and HI, ER+ (dotdash). The widths of the
95 % HPD bands in the other cases are all comparable to the length of the pointwise C.I.’s in (a)
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Fig. 6.6 Example 8: ANOVA DDP model. Same as Fig. 6.5, but now under the ANOVA DDP
model. (a) LO, ER- (b) posterior means

The PsCP was computed based on the highest posterior density (HPD) intervals,
which were estimated using the method proposed by Chen and Shao (1999). The
results suggest a non-important effect of the treatment dose (PsCP D 0:55) and its
interaction with ER status (PsCP D 0:5), and an important effect of the ER status
(PsCP < 0:01) and a negative effect of the tumor size (PsCP < 0:01) on the median
survival time.

6.4.3 Example 18: Lung Cancer Data

We consider data from Maksymiuk et al. (1994) on the treatment of limited-stage
small-cell lung cancer in n D 121 patients. The data have been analyzed in the
literature using median-regression models (Ying et al. 1995; Walker and Mallick
1999; Yang 1999; Kottas and Gelfand 2001; Hanson 2006a). In the study, it was
of interest to determine which sequencing of the drugs cisplaten and etoposide
increased the lifetime from time of diagnosis, measured in days, for patients
with limited-stage small-cell lung cancer. Treatment A applied cisplaten followed
by etoposide, whereas treatment B applied etoposide followed by cisplaten. The
patients’ ages in years at entry into the study was also included as a concomitant
variable. The LDTFP model was fit to the data using J D 5 and ‰ D 103I3. The
median function parameters were assigned independent priors ˇ � N.03; 103I3/,
��2 � Ga.3; 1:5/, and c � Ga.1:0; 1:0/. For the ANOVA DDP model, we assume
m0 � N.03; 100I3/, V�1

0 � Wis.5; I3/, a D 3:01, b � Ga.3:01; 3:01/ and
M � Ga.5; 1/. For both models, a burn-in of 20,000 iterates was followed by a
run of 100,000 thinned down to 10,000 samples.
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The LPML measures for the ANOVA DDP and LDTFP models were �732 and
�733, respectively. These results suggest that both dependent models slightly out-
perform from a predictive point of view alternative parametric and semiparametric
survival models. In fact, the LPML for the Weibull, log-logistic, and PO, PH, and
AFT models, using a MPT prior for the baseline survival function, were �747,
�735, �734, �737, and �734, respectively (Hanson 2006a). The ANOVA DDP
and LDTFP models in some sense predict the data “best”, but there is little real
predictive difference among the ANOVA DDP, LDTFP, PO and AFT models. The
Weibull model is clearly inferior, whereas the ANOVA DDP and LDTFP models
have a pseudo Bayes factor of about 50 relative to the PH model. The similar
predictive behavior of the dependent model is confirmed by the density plots in
Figs. 6.7 and 6.8. Table 6.1 presents posterior inference for the regression parameter
under the MPT AFT, PO, and PH models and under the LDTFP model. Holding age
fixed, patients typically survive e0:345 � 1:4 times longer under treatment A versus
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Fig. 6.7 Example 18. Posterior mean (and pointwise 95 % HPD band in grey) for the densities at
age 56, 61.1 and 68 for treatments A and B under the ANOVA-DDP model
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Fig. 6.8 Example 18. Posterior mean (and pointwise 95 % HPD band in grey) for the densities at
age 56, 61.1 and 68 for treatments A and B under the LDTFP model

Table 6.1 Example 18. Posterior mean (95 % credible interval) for the regression coefficients

Coefficient MPT AFT MPT PO MPT PH LDTFP

ˇ1 (Age) 0.007 0.034 0.028 �0.019

(�0.004, 0.036) (�0.001, 0.071) (0.003, 0.054) (�0.037 , �0.001)

ˇ2 (Treatment) 0.345 0.930 0.533 0.407

(0.157, 0.533) (0.292, 1.568) (0.130, 0.926) (0.130, 0.691)

treatment B under the AFT assumption. The PO model indicates that the odds of
surviving past any time t is e0:93 � 2:5 greater for treatment A versus treatment B.
Similarly to the inference under the MPT AFT model, the results of the LDTFP
suggest that the median survival time for patients under treatment A is e0:407 � 1:5

times the median survival time for patients under treatment B.
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Chapter 7
Hierarchical Models

Abstract One of the great success stories of Bayesian methods in biostatistics is
inference in hierarchical models. The model-based Bayesian approach allows for
coherent propagation of uncertainties and borrowing of strength across submodels
and more. In this chapter we discuss nonparametric Bayesian approaches in
hierarchical models, including nonparametric priors on random effects distributions
and extensions of such models across multiple related studies. Honest accounting
for uncertainties becomes particularly important for applications to classification,
when we use posterior predictive inference for a future experimental unit to estimate
unknown membership in one of several subpopulations.

7.1 Nonparametric Random Effects Distributions

An important application of BNP approaches arises in modeling random effects
distributions in hierarchical mixed effects models. We have already briefly discussed
this use of BNP models before, in Sect. 5.2.3, in the context of GLM’s. When
modeling random effects distributions, often little is known about the specific form
of the distribution. Assuming a specific parametric form is typically motivated by
technical convenience rather than by genuine prior beliefs. Although inference about
the random effects distribution itself is rarely of interest, it can have implications on
the inference of interest. A typical example is the classification in the upcoming
Example 23. Thus it is important to allow for population heterogeneity, outliers,
skewness, etc.

In the context of a traditional randomized block ANOVA model with random
effects �i a BNP can be used to allow for more general random effects distributions.
Let

yik D �i C ˇ0xik C �ik

denote a generic block ANOVA with residuals �ij j �2 iid� N.0; �2/, fixed effects
ˇ and random effects �i for blocks i D 1; : : : ; I. Let Ga.a; b/ denote a gamma
distribution with mean a=b. For technically convenient posterior analysis we often

assume a normal random effects distribution �i j �2 iid� N.0; �2/, i D 1; : : : ; I, and
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conditionally conjugate priors ˇ � N.�;†/, ��2 � Ga.s=2; sS=2/ and ��2 �
Ga.r=2; rR=2/ (see Gelman 2006 for a discussion of alternative priors on variance
parameters in hierarchical models). While the prior for the fixed effects might be
based on substantive prior information, the choice of the random effects distribution
is rarely based on actual prior knowledge. The relaxation of the convenient, but often
arbitrary distributional assumption for the random effects distribution is a typical
application of BNP models. A BNP model allows us to relax the assumption without
losing interpretability and without substantial loss of computational efficiency. We

replace the normal random effects distribution by �i j G
iid� G; with a BNP prior

for the unknown G. The random effects distribution itself becomes an unknown
quantity. For later reference we state the full mixed effects model

p.yik j ˇ; �i/; k D 1; : : : ; ni

�i j G
iid� G and G j 
 � �.� j 
/: (7.1)

Here ˇ are additional parameters in the sampling model. The sampling model p.� j
ˇ; �i/ could be, for example, the earlier mentioned ANOVA model. The BNP prior
�.� j 
/ is a prior for density estimation for the random effects �i, indexed with
possible hyper-parameters
. We could use any prior that was discussed in the earlier
chapters on density estimation. The only difference is that now the latent �i replace
the observed data in the earlier density estimation problem.

Many BNP models allow us to center the random probability measure G around
some parametric model p
, indexed by hyper-parameters 
. For example, we could
center G around a N.0; 
2/ model. The construction allows us to think of the
nonparametric model as a natural extension of the fully parametric model.

Bush and MacEachern (1996) propose a DP prior for G, G � DP.MG0/.
Kleinman and Ibrahim (1998) propose the same approach in a more general
framework for a linear model with random effects. They discuss an application to
longitudinal random effects models. Müller and Rosner (1997) use DPM of normals
to avoid the awkward discreteness of the implied random effects distribution.
Also, the additional convolution with a normal kernel significantly simplifies
posterior simulation for sampling distributions beyond the normal linear model.
Mukhopadhyay and Gelfand (1997) implement the same approach in generalized
linear models with linear predictor �i C x0

iˇ and a DPM model for the random
effect �i. In Wang and Taylor (2001) random effects Wi are entire longitudinal paths
for each subject in the study. They use integrated Ornstein-Uhlenbeck stochastic
process priors for Wi.

Example 19 (Example: Mammogram Usage) Malec and Müller (2008) model
mammogram usage for counties across 50 states in the US. The data are reported
in the National Health Interview Survey (NHIS). They use a semi-parametric
mixed effects model with a logistic regression and a BNP prior on the random
effects distribution to model the number of respondents in each county who have
used a mammogram. The data are reported by six demographic domains. Each
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demographic domain is characterized by an age bracket and an ethnicity, including,
for example, “non-black, age 30–39”, etc. Let nid denote the number of individuals

interviewed in demographic domain d and county i and let yid j nid; pid
ind�

Bin.nid; pid/ denote the number of positive responses among these nid individuals.
Here pid is the unknown mammography usage in county i and demographic group d.
Counties are nested within strata, s D 1; : : : ; S. Strata are groups of between 1 and
23 counties (average of 4.8), that are defined for census purposes. For notational
convenience we index the counties across strata i D 1; : : : ; I and let s.i/ denote
the stratum that contains county i. The aim of this study was inference on state
level mammography usage. The state level mammography usage Pstate is simply
the weighted average of the pid, weighted with the known total populations in each
county and demographic group. Malec and Müller (2008) use a hierarchical logistic
regression model with county specific random effects

logit.pid/ D x0
idˇ C bid C vs;

with a regression on county and demographic domain level covariates xid and
county-specific random effects bi D .bi1; : : : ; biD/. In this analysis, the domain level
covariates included the proportion of persons aged 25C, with less than ninth grade
education (xid1) and the proportion of persons in the work-force, 16C with white-
collar job (xid2). The model is completed with a random effects distribution

bi j G
iid� G;

and priors vs � N.0; ı/ and ˇ � N.m;V/.
The choice of the random effects distribution G is determined by several con-

siderations. First, the random effects bid across demographic groups d D 1; : : : ;D
within the same county i are different but highly correlated. That is why we consider
a multivariate random effects distribution G for the D-dimensional vector of county
specific random effects. Second, the recorded covariates only account for some of
the population heterogeneity. The random effects distribution needs to allow for
considerable remaining heterogeneity. Finally, the model needs to accommodate
outliers without unduly influencing inference. These considerations lead us to use
a DPM of normals prior for G. Figure 7.1 shows some summaries of the estimate
E.G j data/. The figure shows two bivariate marginals of the 6-dimensional random
effects distribution. A traditional parametric random mixed effects model would use
a multivariate normal distribution and miss the skewed nature of G.

Figure 7.2 shows posterior estimated rates for each state (as a percentage of
total population for each state). For comparison the figure also shows the empirical
fractions for each state and the synthetic estimates. The latter are based on
estimating mammogram usage for each demographic group and using the known
composition of demographic groups in each state.

There are many examples in the recent literature that develop and use BNP priors
for random effects distributions. We mention a few more that use models similar
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Fig. 7.1 Example 19. Estimated by random effects distribution

Fig. 7.2 Example 19. Estimated rates Pstate of mammogram usage per state under the proposed
model (bar plot), the synthetic method (dashed line) and as sample averages over observed samples
in each state (dotted line). The short bars below the horizontal axis show one posterior standard
deviation SD.Pstate j y/ for the state totals. Error bars at each sample average estimate indicate
corresponding sampling errors (assuming that all observations in a given state were independent).
The sample did not include any data for NE and ND. Thus, there is no “sample estimate” for these
states

to those that we introduced in earlier sections. As noted before, in Sect. 5.2.3,
Jara et al. (2009) propose a smoothed multivariate MPT prior for the random
effects distribution G � PT.G0 D N.0;S/; Ac/. The model compares favorably
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to both the DP and DPM models. The density of G is further smoothed through
the use of a novel decomposition of the centering covariance matrix S D M L M0
via the usual spectral decomposition. The covariance matrix is written as S D
ŒM L1=2 O	ŒM L1=2 O	0, using random orthogonal matrices O with a Haar prior.
These models are implemented in DPpackage using the PTglmm function. This
MPT prior on G was used in Ghosh and Hanson (2010) for the analysis of bivariate
longitudinal outcomes.

An interesting generalization of random intercept models within the context of a
GLMM is developed by Jara and Hanson (2011). They consider standard GLMMs
with univariate-random effects admitting cluster-specific predictors. Restated in
other words, model (7.1) is generalized to �i j Gzi where Gzi is a median-zero
LDTFP that changes smoothly with covariates zi. This model is implemented in
DPpackage as the function LDTFPglmm. Similarly, Zhou et al. (2015) generalize
a static nonparametric MPT random effects distribution G to a covariate-adjusted
version through the use of a LDTFP to analyze time to death of breast cancer
patients in Iowa; they consider a particular proportional hazards model which leads
to a Poisson GLMM. Instead of the spatially smoothed county-level random effects
�1; : : : ; �99 considered by Zhao et al. (2009), the random effects instead follow a
LDTFP that smoothly changes with two measures: a score from 1 to 9 indicating
how rural/urban each county is, and median household income, both obtained from
census data. The model provides unique insight into the effect of ruralness (which
serves as a proxy for healthcare access), showing much greater variability, including
bimodality, in random effect densities for more rural counties. The inclusion of
county-level covariates into the random effects density obviates the need for a
spatially-smoothed version and also enhances interpretation.

7.2 Population PK/PD Models

Mixed effects models find use in many diverse application areas. As a typical
example we consider in some more detail models for population pharmacokinetic
and population pharmacodynamic studies. The pharmacokinetics (PK) of a drug
relate to what happens to the drug once it enters the body. The time course of
the drug and its metabolites in the body reflect each patient’s individual PK.
Pharmacodynamics (PD) concerns the reaction of the body to the drug. Toxic side
effects, tumor shrinkage, reduced nausea and vomiting are all examples of PD
effects. In short, PK is what the body does to the drug, and PD is what the drug
does to the body. Researchers study PK and PD of drugs in a population of patients
to learn about variation in response or reaction to therapy. The slower a drug clears
from the body, the greater the systemic exposure (PK). The greater the systemic
exposure to the active agent, the greater the chance of effect (PD), both good (e.g.,
tumor shrinkage) and bad (e.g., toxicity). Statistical models that implement the
desired inference on the variation of PK and PD parameters over a population of
interest are known as population PK/PD models.
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From the perspective of statistical modeling, the analysis of population PK/PD
data is inference for repeated measurement data. Let yik denote the kth measurement
on the ith patient, and let xi denote patient-specific covariates. A traditional
mechanism to induce dependence across repeated measurements for the same
patient is the use of mixed-effects models with patient-specific random effects. Let
�i denote a random-effects vector for patient i. The common structure of population
PK or PD models is

p.yik j �i/; p.�i j xi; 
/; �.
/: (7.2)

Here p.yik j �i/ is typically a parametric nonlinear regression for response over
time, such as a compartmental PK model for drug concentrations. The second level
of the model (called the population model) specifies the prior for the random-
effects vectors �i, possibly including a regression on patient-specific covariates,
xi; 
 denotes the hyper-parameters. Bayesian models similar to (7.2) have been
considered in Zeger and Karim (1991) for generalized linear mixed models and
Wakefield et al. (1994) for the general population model assuming a multivariate
normal population distribution. Wakefield et al. (1999) review popular Bayesian
approaches. Davidian and Giltinan (1995) provide an extensive treatment of the
analysis of repeated measurements with nonlinear models.

Heterogeneity in the patient population, outliers, and over-dispersion make a
strict parametric model for the population distribution p.�i j xi; 
/ unrealistic.
Concerns about the effects of such aberrations led to research into nonparametric
extensions. In maximum likelihood-based inference, two popular approaches to
nonparametric extensions are the nonparametric maximum likelihood estimator
(Mallet et al. 1988; Schumitzky 1993) and the so called semi-nonparametric family
(SNP) of Davidian and Gallant (1993). BNP extensions are described in Walker
and Wakefield (1998), Rosner and Müller (1997), Müller and Rosner (1997), and
Kleinman and Ibrahim (1998), all with DP and DPM priors. The DPM prior model
is specified as

�i j S;G
iid�
Z

N.�i j �; S/ G.d�/; G j M;G? � DP.MG?/:

Here S;M and the parameters defining G? are all part of the generic hyper-parameter
vector 
 in (7.2). To include an additional regression on patient-specific covariates xi

in (7.2) we can use the same approach as in density regression (compare Sect. 4.4.4)
and replace the DPM for �i by a DPM prior for the distribution of Q�i 	 .xi; �i/,

.xi; �i/ j �i
ind� N.�i; S/ and �i j G

iid� G; (7.3)

with a DP prior for G, that is, G j M;G? � DP.MG?/. This approach is taken, for
example, in Rosner and Müller (1997).
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Fig. 7.3 Example 20. WBC profiles for three patients in study CALGB 8881. The sudden drop
at the beginning of chemotherapy and the slow S-shaped recovery back to baseline are typical for
most patients. Some patients are outliers

Example 20 (Population PD — CALGB 8881) In Müller and Rosner (1997) we
consider data from a study carried out by the Cancer and Leukemia Group B
(CALGB) (Lichtman et al. 1993). The trial was carried out to find the highest dose
of cyclophosphamide that could be given every two weeks. The study enrolled
n D 52 patients who were administered different doses of cyclophosphamide
(CTX). Patients also received the drug GM-CSF to help reduce the ill effects of
cyclophosphamide on the patients marrow. The measured outcome was white blood
cell count (WBC) for each patient over time. Let yik denote the WBC for patient
i at occasion k D 1; : : : ; ni. WBC is recorded on a logarithmic scale. Figure 7.3
shows WBC profiles for three typical patients. Typical WBC profiles show an initial
horizontal baseline, a sudden drop at the beginning of chemotherapy followed by a
slow S-shaped recovery, and eventually leveling off close to the initial baseline. We
define a sampling model for yik as a non-linear regression E.yik j �i/ D f .tikI �i/

that fits these typical shapes. Here tik are the (known) sampling times. We use
a piecewise linear, linear, logistic function. The function is described with a 7-
dimensional parameter vector �i. The parameters include the level of the initial
baseline, the change points before and after the sudden drop, and slope, intercept,
offset and scale for a shifted and scaled logistic function to model the final recovery.
We use patient-specific parameters, making �i patient-specific random effects.

The model construction continues with a random effects model p.�i j xi/,
including a regression on baseline covariates xi. The baseline covariates are the
doses for CTX and GM-CSF. We implement the random effects model as a BNP
regression p.�i j xi D x/ D Gx.�/. We use conditional regression as described in
Sect. 4.4.4. That is, we define an augmented random effects vector Q�i D .�i; xi/ and

assume Q�i j G
iid� G. The model is completed with a DPM of normals prior on G.

The fitted lines in Fig. 7.3 show the estimated mean functions E ff .tikI �i/ j datag,
together with pointwise posterior standard deviations. More importantly, the model
allows us to report posterior predictive inference for a future .n C 1/-st patient.
Figure 7.4 shows summaries of the posterior predictive distribution for a future
patient.
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Fig. 7.4 Example 20. Predictive inference for a future .n C 1/-st patient. Panels (a) and (b) show
predictive WBC profiles. Panel (c) shows the probability of WBC beyond a critical threshold after
14 days plotted by dose CTX and GM-CSF

Yang et al. (2010) defined a variation of (7.2) for repeated measurement
outcomes that are fractions. The need to include a positive probability for fractions
of 0 or 1 introduces a minor complication in the desired inference. Such data often
arise, for instance, in immunohistochemistry. Yang et al. (2010) use a DPM prior on
random effects and latent continuous variables to define a sampling model for the
fractional outcomes. The data are modeled as a mixture of point masses at 0 and 1,
along with a normally-distributed random variable for values between 0 and 1. A
regression model for the continuous component allows inclusion of covariates, as
well as subject-specific random effects. These random effects were modeled with a
PT prior (Lavine 1992, 1994). See further details in Yang et al. (2010).

7.3 Hierarchical Models of RPMs

7.3.1 Finite Mixtures of Random Probability Measures

If we want to analyze several related studies, j D 1; : : : ; J we require a hierarchical
extension of model (7.1) to multiple studies:

yjik j ˇ; �ji
ind� p.� j ˇ; �ji/; k D 1; : : : ; nji

�ji j Gj
ind� Gj; i D 1; : : : ; ni; and G1; : : : ;Gj j 
 � �.� j 
/: (7.4)

Let yji D .yjik; k D 1; : : : ; nji/, denote the data vector for patient i in study j.
After marginalization with respect to �ji, model (7.4) implies a marginal model
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Fig. 7.5 Combining data from related studies assuming exchangeable subjects across studies (a)
or independent sub-models (b). The desired level of borrowing strength across the sub-models is
in-between these two extremes (c)

p.yji j ˇ;Gj/ D R
p.yji j �ji; ˇ/ dGj.�ji/. The use of fully parametric hierarchical

models to “borrow strength” across different but related sub-models is a common
theme in statistical modeling. For a hierarchical model over related studies where
each sub-model p.yji j Gj/ is a nonparametric model, however, the nonparametric
nature of Gj complicates modeling, except in two extreme cases shown in panels
(a) and (b) of Fig. 7.5. If the sub-models Gj are independent given the hyper-
parameters (panel b), then the problem reduces to analyzing J separate studies
linked only by the finite dimensional hyper-parameter vector. At the other extreme,
if the observations yji can be considered exchangeable across studies (panel a), then
the problem reduces to estimating one random measure G D G1 D � � � D GJ .
For many applications, the latter case enforces too much borrowing by assuming
essentially one population, and the earlier allows too little borrowing of strength
across studies. Lopes et al. (2003) and Müller et al. (2004) develop a model that
allows one to link the sub-models at the desired intermediate level. A graphical
representation is given in Fig. 7.5c. The model includes a common measure F0,
representing a baseline model that is common to all studies and random probability
measures Fj that characterize any idiosyncratic behavior in study j D 1; : : : ; J. The
split into a common effect and study-specific effects is akin to the setup of ANOVA
models which include a similar distinction between overall means and study-specific
offsets. When i indexes patients within studies, model (7.4) has an interpretation as
modeling patient populations. The random probability measure Gj characterizes the
j-th patient subpopulation.

We assume

Gj.�/ D � F0.�/C .1 � �/Fj.�/; j D 1; : : : ; J; (7.5)

with random measures

F0; : : : ;FJ j � iid� p.� j �/; (7.6)
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and a hyper-prior � � �0ı0.�/C�1ı1.�/C .1��0 ��1/Be.� j a; b/ that includes
point masses at � D 0 and � D 1. The weight �, 0 � � � 1, represents the level
of borrowing strength across studies. A fraction � of the total mass is shared by all
studies, and the rest .1� �/ remains specific to each particular study. Thus, the data
collected from each study contributes to the global learning about F0, but learning
on Fj can be accomplished only through fyji; i D 1; : : : ; njg. We decompose the
distribution Gj into a common measure F0 and a study-specific or idiosyncratic
measure Fj. The common measure induces the desired dependence. The prior point
masses at � D 0 and � D 1 allow for positive posterior probability of either of the
two extreme models shown in Fig. 7.5a,b.

Lopes et al. (2003) implement model (7.5) with a finite mixture of normal prior
for Fj in (7.6). That is, we write the common measure F0 as a mixture of N
multivariate normals F0.�kij
0/ D PN

mD1 �mN.�Cdm; S/;where �m are the mixing
weights, � is the overall mean (location), and dm are component-wise deviations
or offsets from �. We set d1 	 0 to ensure identifiability. Mengersen and Robert
(1996) and Roeder and Wasserman (1997) discuss this parametrization for finite
mixtures of normals. Similarly, the study-specific measures Gj are considered finite
mixtures of multivariate normal densities, each with N0 components.

In Müller et al. (2004) we developed an alternative approach, building a
structure as in Fig. 7.5c with semi-parametric infinite mixtures of normals. The
prior (7.6) is specified as a DPM of normals. Posterior inference in this model
can be implemented with minimal changes to any posterior simulation algorithm
that is used for DPM models. DPpackage refers to (7.5) with DPM prior as
hierarchical Dirichlet process mixture (HDPM) and implements inference in the
function HDPMdensity.

Example 21 (Two Related Studies — CALGB 8881 and 9160) Müller et al. (2004)
use the hierarchical model (7.5)–(7.6) as a prior probability model for random
effects distributions in two related studies. The data are log white blood cell counts
over time for breast cancer patients in two related studies. Figure 7.3 showed some
selected patients from the first study, CALGB 8881, j D 1. We discussed analysis
of the data from CALGB 8881 before, in Example 20. Figure 7.6 shows data for
a second similar study, CALGB 9160, j D 2. In CALGB 9160 patients received
cyclophosphamide (CTX) and GM-CSF at the doses determined by CALGB 8881.
That is, CTXD 3=m2 and GM-CSFD 5�g/kg. In CALGB 9160 some patients
received an additional drug, amifostine (AMF). Patients were randomized to recieve
AMF or not.

The model includes a non-linear regression mean curve f .tI �ji/ for blood count
data for patient i, in study j, i D 1; : : : ; ni and j D 1; 2. The mean curve is indexed
with patient-specific random effects �ij, similar to Example 20. The random effects
�ij are assumed to arise from a study-specific random effects distribution Gj. The
model is completed with the hierarchical prior in (7.5) for fG1;G2;G3g, including
a future third study j D 3. A future third study with n3 D 0 patients is included to
allow posterior predictive inference for a patient in the population at large, beyond
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Fig. 7.6 Example 21. Some typical patients. The data show yijk for three arbitrarily selected
patients from study j D 2. The triangles are the observed WBC. The solid line shows the posterior
fitted mean curve, and the dotted lines show 95 % central HPD intervals for the mean curve
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Fig. 7.7 Example 21. Posterior predictive inference for a hypothetical future patient in a future
study j D 3 at CTX D 3, GM-CSF D 5 and with (AMF D 1) and without (AMF D 0) AMF.
For AMF D 1, only CTX D 3.0 is shown (to avoid extrapolation beyond the range of the data).
The point for (CTX D 3, AMF D 1) is overlaid with AMF D 0. The short vertical bars indicate
one posterior predictive standard deviation. (a) Estimated WBC profile. (b) PrfWBC > 1000 g on
day 14. (c) E.T14 j y/ T14 D days WBC below 1000

the first two studies. Figure 7.7 shows posterior predictive inference for a patient
from a future third study j D 3.

Kolossiatis et al. (2013) discuss an interesting variation of the model (7.5)
and (7.6). They propose a specific choice of prior for � that together with the DP
priors for Fj ensures an implied DP prior for the linear combination Gj. In general,
a linear combination (7.5) of DP random measures does not define a DP random
measure.
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7.3.2 Dependent Random Probability Measures

The problem of defining nonparametric dependent random effects distributions Gj

for a set of studies can be considered to be a special case of BNP priors for families
of dependent random probability measures. We ran into this problem already once
before, when discussing fully nonparametric regression models in Sect. 4.4. First
we generalize the hierarchical extension from fGj; j D 1; : : : ; Jg to a more general
family of subpopulations G D fGx W x 2 X g, where x could, for example,
index different studies as well as different dose levels within studies. To be specific,
without loss of generality, in the following discussion we assume x D .j;w/ with j
indexing multiple studies and w indexing different doses of two drugs used in these
studies. The goal is to borrow strength across different studies and doses.

In the presence of covariates it is now more convenient to include the study index
j with the covariate vector, and use one running index for patients, i D 1; : : : ; n for
n D P

j nj and rewrite model (7.1) as

yik j �i
ind� p.� j �i/

�i j xi
ind� Gxi

G D fGx W x 2 X g � �: (7.7)

Many alternative BNP prior models for fGx W x 2 X g have been proposed. The
most popular is arguably the DDP prior.

Recall from Sect. 4.4.1 the DDP prior for F D fFx W x 2 X g with Fx.�/ DP1
hD1 �hı�xh.�/ from Definition 4 (Sect. 4.4.1). The random probability measures

Fx 2 F are made dependent by introducing dependence on .�xh; x 2 X / across x
(maintaining independence across h). For categorical covariates, like the assumed
x D .j;w/ here, the perhaps simplest method to induce dependence across �xh is
through an ANOVA model

�xh D mh C Ajh C Bwh; (7.8)

with a prior po on the terms mh, Ajh and Bwh. We impose any of the usual ANOVA-
type identifiability constraints, such as A1h D B1h 	 0. We denote the joint
probability model as fFx W x 2 X g � ANOVA DDP.M; po/, as in Definition 5
(Sect. 4.4.2). The model is parameterized by the total mass parameter M and the
base measure po on the ANOVA effects in (7.8). Marginally, for each x D .j;w/,
the random distribution Fx follows a DP with total mass M and centering measure
Fo

x given by the convolution of po
m, po

Aj and po
Bw. In summary, Model (7.8) defines

dependence across x by defining an ANOVA structure of the point masses �xh across
the levels of x. Model (7.8) is not constrained to univariate distributions Fx. The
point masses �xh and the ANOVA effects mh, Ajh, Bwh can be q-dimensional vectors.
This is important, for example, if the random distributions Fx are used for random
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effects in a hierarchical model. Model specification and computation, however, are
dimension independent.

The ANOVA DDP model can be used to model random effects’ distributions G
in related studies, in (7.7). We use an additional convolution with a normal kernel to
avoid the discrete nature of the DP random measure. That is, we assume

Gx.�/ D
Z

N.� j �; S/ dFx.�/ (7.9)

with a DDP prior on F , treating both, study index j and dose w as categorical factors.
This is exactly the LDDP model (4.12) that is implemented as function LDDP in the
R package DPpackage (Jara et al. 2011), with ˇh D .mh;Ajh;BwhI x D .j; h/ 2 X /

Example 22 (Multiple Studies — CALGB 8881, 9160 and 8541) In the previous
two examples we analyzed data from two clinical studies. In Example 20 we used
a DPM for inference in one study, CALGB 8881. In Example 21 we extended the
model and inference to jointly analyze data from two related early phase studies,
CALGB 8881 and CALGB 9160 using a finite mixture of DPM models. We now
extend the analysis one step further to joint inference for the two early phase studies,
CALGB 8881 and 9160, and a large phase III study, CALGB 8541 (Wood et al.
1994). The large phase III study required collecting blood count measurements only
once a week. There are between 1 and 4 WBC measurements per patient. These
are too few data points to estimate with much precision summaries like nadir WBC
or other measures of myelosuppression, as we did for the earlier studies. Compare
Figs. 7.4 and 7.7. In Müller et al. (2005) we used the ANOVA DDP model (7.7) to
borrow strength across all three studies, the small early phase studies with frequent
blood count measurements on a small number of patients (Figs. 7.3 and 7.6) and the
large phase III study with few repeat measurements on many patients.

The sample sizes of the three studies were n1 D 52, n2 D 46 and n3 D 513,
respectively (in CALCG 8541 we only use data on the group of women assigned
to the most dose-intense regimen). Figure 7.8 compares posterior predictive mean
profiles for a future patient in the large study under two models: the proposed
hierarchical model and a model using data from only the large study. We used
identical prior assumptions in both analyses. Without incorporating the information
from the earlier studies, prediction is much more uncertain about the time of the
nadir count and the start of the recovery, as would be expected for inference
conditional on only the sparse phase III data. In contrast, the predicted WBC profile
based on the hierarchical model is more consistent with what one would expect to
see for patients receiving anticancer chemotherapy and has reasonable predictive
precision.
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Fig. 7.8 Example 22.
Posterior estimated mean
profile for a future patient
from a large clinical trial. The
figure shows the pointwise
posterior quantiles of the
WBC profile. The figure
compares inference under the
hierarchical model (solid)
with inference using only data
from the large randomized
clinical trial (dashed)
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7.3.3 Classification

An interesting use of dependent random probability measures arises in classifica-
tion. Consider data as in (7.7), and assume that responses yik and covariates xi are
observed for i D 1; : : : ; n. But now assume that we want to predict an unknown
xnC1 for a new experimental unit with observed responses ynC1;k, k D 1; : : : ; nnC1.
De la Cruz et al. (2007) propose a simple extension of (7.7) to implement the desired
inference by augmenting (7.7) with a prior p.xi j 
/ on xi. Let y and x denote the
data for i D 1; : : : ; n. The desired classification is formalized as

p.xnC1 j ynC1; y; x/: (7.10)

Example 23 (Classifying Pregnancies) De la Cruz et al. (2007) implement (7.10)
to classify pregnancies as normal versus abnormal on the basis of hormone
measurements yik. The data include longitudinal hormone measurement yik for
women i D 1; : : : ; n; and the known status xi 2 f0; 1g of their pregnancies, with
xi D 0 for a normal pregnancy. We could not obtain permission to use the original
data for this example. We instead simulate similar data shown in Fig. 7.9. The data
are simulated using as simulation truth an instance of model (7.7), including a
sampling model

yik j xi D x; �i; b
ind� N.�ik; �

2/ with �ik D �i

1C e�.tik�bx0/bx1
; (7.11)

where i D 1; : : : ; n and k D 1; : : : ;Ki. That is, a non-linear regression with subject-
specific random effects �i and fixed effects bx D .bx0; bx1/ for normal (x D 0)
and abnormal (x D 1) pregnancies. As random effects distribution Gx we use the
ANOVA DDP model of Sect. 4.4.2 with design vectors d.0/ D .1; 0/ and d.1/ D
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Fig. 7.9 Example 23. Simulated data for n0 D 124 normal (left panel) and n1 D 49 abnormal
pregnancies. Repeat measurements yik for each woman are connected. (a) Data yik for xi D 0

normal pregnancies. (b) Data yik for xi D 1 abnormal pregnancies

.1; 1/ for normal and abnormal pregnancies, respectively. We simulated hypothetical
data for n0 D 124 normal pregnancies and n1 D 49 abnormal pregnancies, that is
a total of n D n0 C n1 D 173 patients. The prior on x was then chosen to be
p.x D 0/ D 124=173 and p.x D 1/ D 49=173, i.e. the empirical distribution of x.
We generated between Ki D 1 and Ki D 6 repeat observations per patient, with an
average of 1=n

P
Ki D 2:2.

We then implemented inference under model (7.11) with the DDP mixture
prior (4.12) on Gx. Figure 7.10a shows the estimated random effects distributions
Gx, x D 0; 1, together with the simulation truth. Evaluating the reported inference,
keep in mind that the data inform on Gx only indirectly through the latent
random effects that have to be imputed on the basis of a small number of repeat
measurements for a moderate number of patients. Considering this limitation the
reported posterior inference is reasonable. More importantly, despite the limited
information in the data about the underlying random effects distributions, posterior
inference implies rather decisive posterior predictive classification (7.10), shown in
Fig. 7.10b.

Software note: R code to implement inference in this example is included in the
on-line software page for this chapter.

7.4 Hierarchical, Nested and Enriched DP

Many applications call for hierarchical priors on a set fGj W j 2 J g of random
probability measures. Example 22 is typical for such applications. The nature of
borrowing strength across the random probability measures Gj in (7.5) is appropriate
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Fig. 7.10 Example 23. Panel (a) summarizes p.Gx j y/, x D 0; 1. The figure shows posterior
estimated random effects distributions E.Gx j y/ (dashed light grey curves), posterior simulations
Gx � p.Gx j y/ (thin dotted curves), and the simulation truth (thick red dashed curves). The curves
peaked around 4.75 are for x D 0. The set of curves to the left are for x D 1. Panel (b) shows
p.xnC1 j ynC1;k; k D 1; : : : ; j; y/ as a function of j for two hypothetical future pregnancies (marked
“3” and “128”). Measurements corresponding to the hypothetical future woman marked “3” were
simulated assuming x D 0. The measurements marked “128” were simulated using x D 1

for that example, with different studies sharing a common subpopulation of patients
in addition to study-specific subpopulations. The notion here is a subpopulation
with a large number of experimental units (patients, in the case of Example 22)
in each subpopulation. This is in contrast to applications of similar models for
fully nonparametric regression. Recall also the related discussion in Sect. 4.4.1
when we introduced the DDP model for a family fGx W x 2 X g of random
probability measures indexed by any set of covariates x. In general, many other
forms of borrowing strength are possible. We discuss two more. A hierarchy of
random probability measures defined by the hierarchical DP (HDP), and the closely
related nested DP (NDP). Teh et al. (2006) propose the HDP as a prior for
random probability measures Gj, j D 1; : : : ; J, with Gj j M;G0 � DP.M;G0/,
independently. By completing the model with a prior on the common base measure,
G0 j B;G00 � DP.B;G00/, they define a joint probability model for .G1; : : : ;GJ/.
Importantly, the discrete nature of the G0 as a DP random measure itself introduces
positive probabilities for ties in the atoms of the random Gj, and thus the possibility
of ties among samples �ij � Gj, i D 1; : : : ; nj, and j D 1; : : : ; J. We could again use
these ties to define a random partition. Let f�?k ; k D 1; : : : ;Kg denote the unique
values among the �ij and define clusters Sk D f. ji/ W �ij D �?k g. This defines
random clusters of experimental units across j. In summary, the HDP generates
random probability measures Gj that share the same atoms across j. However, the
random distributions Gj are different. The common atoms have different weights
under each Gj.
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This distinguishes the HDP from the related NDP of Rodríguez et al. (2008).
The NDP allows for some of the Gj to be identical. While the HDP uses a common
discrete base measure G0 to generate the atoms in the Gj’s, the NDP uses a common
discrete prior

Q.�/ D
1X

hD1
whı QGh

.�/

for the distributions Gj themselves. In particular, under the HDP all Gj are distinct,
but the HDP allows a positive prior probability for Gj1 D Gj2 . This is the case
because Q is a (discrete) probability measure on probability measures. That is, with
probability wh a random distribution Gj is equal to QGh, thus allowing p.Gj D Gj0/ >

0 for j 6D j0. The prior for Q is a DP prior whose base measure has to generate
random probability measures which serve as the atoms of Q. Another instance of

a DP prior is used for this purpose. In summary, Gj j Q
iid� Q and Q j M; ˛;G0 �

DP.M;DP.˛;G0//. Other related extensions of the DP are the matrix stick-breaking
of Dunson et al. (2008) and the enriched DP of Wade et al. (2011).
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Chapter 8
Clustering and Feature Allocation

Abstract An important byproduct of inference in discrete mixture models is an
implied random partition of experimental units. In fact, such random partitions are
the main inference targets for many recently published applications of nonparamet-
ric Bayesian discrete mixture models. In this chapter we systematically consider
the use of nonparametric Bayesian priors for inference on such random partitions.
Many scientific inference problems are formalized as the related, more general
problem of feature allocation. That is, inference on possibly overlapping random
subsets of experimental units. We introduce some examples from data analysis for
bioinformatics data and introduce the Polya urn model, product partition models,
model based clustering and the Indian buffet process prior.

8.1 Random Partitions and Feature Allocations

Clustering Many applications call for a partition of experimental units into more
homogeneous subgroups. This is known as clustering and feature allocation. Let
Œn	 D f1; : : : ; ng denote a set of experimental units, for example patients in a clinical
study. To simplify the discussion we will from now on refer to the experimental
units as “subjects”, keeping in mind that the described models could just as well
describe arrangements of any other experimental units, like studies, genes, proteins,
schools etc.

A cluster arrangement �n D fS1; : : : ; SKg of Œn	 is a partition, i.e., a family of
subsets Sj with Sj \ Sj0 D ; for j 6D j0 and

SK
jD1 Sj D Œn	. The size K of �n is

part of the partition. When we want to highlight the dependence of K on n we write
Kn. Sometimes we will find it more convenient to equivalently describe a partition
by cluster membership indicators. Let si D j if i 2 Sj denote cluster membership
indicators. We add the convention of labeling clusters by appearance. That is, s1 D 1

by definition, and si � Ki�1 C 1, where Ki D maxfs`; ` � ig. There is a one-to-one
mapping between �n and .s1; : : : ; sn/. A probability model p.�n/ describes a random
partition of the subjects. When n is understood from the context, we will drop the
subindex and just write p.�/.

Feature Allocation In some problems it is more natural to introduce an over-
lapping and not necessarily exhaustive grouping. For example, when grouping

© Springer International Publishing Switzerland 2015
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consumers by preferences for different genres of movies, we might want to consider
features like drama, documentaries, etc. A feature is then a subset S � Œn	. A feature
allocation is a multiset Fn D fS1; : : : ; SKg of features Sj without the restriction
to mutually exclusive and exhaustive subsets. Consumers might have preferences
for multiple genres, and some consumers might not record any preferences. We
add a technical constraint that any subject can only be member in finitely many
features. A partition is a special case of a feature allocation. Similar to cluster
membership indicators, feature allocations can be alternatively represented by
feature membership sets, Yi D fj W i 2 Sjg. Yet another representation of feature
allocations that is often convenient is as an .n � K/ binary matrix Z with Zij D 1 if
i 2 Sj and Zij D 0 otherwise.

Sampling Model When random partitions p.�n/ or feature allocations p.Fn/ are
used for statistical modeling, the model construction is usually continued with some
sampling model that relates observed responses yi to the subgroups. For example,

p.y j �n; �
?/ D

KY

jD1

8
<

:

Y

i2Sj

p.yi j �?j /
9
=

;
D
Y

i

p.yi j �?j ; j D si/: (8.1)

Here �?j are cluster specific parameters. We discuss some examples below. In a
feature allocation problem we might use

p.y j Fn;�
?/ D

nY

iD1
p.yi j �?j ; j 2 Yi/; (8.2)

using, for example, p.yi j �?j ; j 2 Yi/ D N.�i; �
2/ with �i D P

j2Yi
�?j .

Least Squares Clustering Any prior model p.�/, together with a sampling model
such as (8.1) defines a posterior random partition p.� j y/, which formalizes
posterior uncertainty about the unknown cluster arrangement �. The use of such
inference for any application gives rise to the practical problem of how to summarize
the posterior p.� j y/. There is no such thing as a posterior mean clustering, or
posterior median. The posterior mode �? D arg max�fp.� j y/g is often not very
informative or typical of the probability model p.� j y/. This is because, first,
p.�? j y/ often is a very small probability only, and second, because the partition
� with the second highest posterior probability might have only negligibly less
posterior probability, but might look entirely different. One summary that is often
reported are posterior co-clustering probabilities, that is Pij 	 p.si D sj j y/,
arranged as an .n � n/ matrix. Alternatively, Dahl (2006) proposes the least squares
partition �LS. For any partition �, let P� denote the .n � n/ matrix of co-clustering
indicators P�;ij D I.si D sj/. The least squares partition �LS is the partition with the
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least posterior mean distance to P�. That is,

�LS D arg min
O�

�Z
d.P�;P O�/ dp.� j y/

�

(8.3)

The integral is a sum over all possible partitions. The distance counts the number of
distinct elements. A simple program to implement the evaluation of �LS is available
at http://dahl.byu.edu/. The required input is a posterior Monte Carlo sample of
partitions � from p.� j y/. A similar summary, for more general utility (or loss)
functions is discussed in Quintana and Iglesias (2003). A similar construction is
possible for feature allocations, to summarize p.Fn j y/.

8.2 Polya Urn and Model Based Clustering

Random Partitions and Random Probability Measures A common way to
define priors p.�n/ on partitions is through an indirect definition by sampling from
a discrete random probability measure. Consider a discrete distribution G.�/ D
P

whımh.�/ with probability masses wh in locations mh. A random sample �i j G
iid�

G, i D 1; : : : ; n, implicitly defines a partition �n by the following construction.
Sampling from a discrete distribution implies a positive probability for ties, i.e.,
�i1 D �i2 for some i1 ¤ i2. Let �?j , j D 1; : : : ;K; denote the K � n unique values
and define Sj D fi W �i D �?j g. Then fS1; : : : ; SKg defines a random partition of Œn	.
In other words, i.i.d. sampling from G implies a random partition p.�n j G/. If G is
a random probability measure then p.�n/ can be defined by marginalizing w.r.t. G.
We have already seen this construction before, in Sect. 2.3, under sampling from a
random distribution with DP prior.

This indirect way of defining p.�n/ could be criticized for building up an
unnecessarily general and large model. If G is not of interest, but only the implied
model p.�n/, then one should think about modeling p.�n/ directly. There seems to
be no need for the detour via the random probability measure G. However, there
are at least three good reasons to model p.�n/ via G. First, the indirect construction
ensures that p.�n/ arises from marginalizing p.�nC1/. The marginalization property
is formally stated as

p.�n/ D
KnC1X

snC1D1
p.�nC1/: (8.4)

Such coherence across sample sizes is desirable. It would be embarrassing if
inference for �n were to depend upon whether or not we will ever consider an .nC1/-
st experimental unit. Another reason for the construction via G is that in the limit, for
large sample size n, the relative cluster sizes are asymptotically equal to the weights
of the point masses wh in G. A related third reason is that any exchangeable sequence

http://dahl.byu.edu/
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of random partitions p.�n/ can be represented as arising from random sampling
under a discrete random probability measure G. Here p.�n/ is called exchangeable
if it is invariant under permutations of the indices f1; : : : ; ng. The result is known
as Kingman’s representation theorem (Kingman 1978, 1982). See, for example, Lee
et al. (2013c), for a recent review.

DP Random Partition (Pólya Urn) The perhaps most popular random partition
model p.�n/ is the random partition that is induced by random sampling from a DP
random probability measure. In other words, the generative model is as follows. First
we generate G j M;G0 � DP.MG0/ from a DP prior. Next generate an i.i.d. sample

�i j G
iid� G, i D 1; : : : ; n. Now record the configuration of ties to define clusters

Sj. The implied prior p.�n/ is known as the Polya urn. We already encountered the
Polya urn before, in Sect. 2.3, when discussing properties of the DP. Recall

p.�n/ D MK�1QK
jD1.nj � 1/Š

.M C 1/ � : : : � .M C n � 1/
; (8.5)

where nj D jSjj is the number of elements in cluster j, or simply, the jth cluster
size. There is an important subtlety about the representation of the partition. If the
partition is recorded as a multiset �n D fS1; : : : ; SKg or as cluster membership
indicators .s1; : : : ; sn/ with cluster labels that are indexed by appearance then
the stated probability is correct. If, however, the partition is recorded as cluster
membership indicators without any restrictions on the cluster labels, then an
additional factor 1=KŠ needs to be added to (8.5). This is because, for example,
s D .1; 1; 1; 2; 3; 2/ and s0 D .2; 2; 2; 3; 1; 3/ record the same partition. The
additional factor accounts for the KŠ different ways of coding the partition with
cluster membership indicators. Usually, an additional convention is added, requiring
labeling by order of appearance. In the last example, this would single out partition
s only.

Model Based Clustering A similarly popular prior on random partitions is model
based clustering (Dasgupta and Raftery 1998; Fraley and Raftery 2002). The basic

idea is simple. Consider sampling from a mixture model yi
iid� PH

hD1 whf .yi j �?h /,
i D 1; : : : ;H, for example, a location mixture of normal distributions with f .� j
�?h / D N.� j �?h ; �2/ for known �2. Next we replace the mixture model with an
equivalent hierarchical model by introducing latent variables si 2 f1; : : : ;Hg with

yi j si D h;�?
ind� f .yi j �?h /;

p.si D h/ D wh: (8.6)

If we interpret s D .s1; : : : ; sn/ as cluster membership indicators, then (8.6)
implicitly defines a prior p.�n/. A minor detail is the labeling of clusters. If order
of appearance labeling is desired, then the labels si might have to be re-arranged.
Also, it is possible that only K � H distinct labels are generated (this is why we
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Table 8.1 Example 24.
Reported number of
responses yi and number of
patients mi for each one of the
sarcoma subtypes

Subtype yi mi

Leiomyosarcoma 6 28

Liposarcoma 7 29

MFH 3 29

Osteosarcoma 5 26

Synovial 3 20

Angiosarcoma 2 15

MPNST 1 5

Fibrosarcoma 1 12

Ewing’s 0 13

Rhabdo 0 2

used H instead of K for the number of terms in the mixture model). There is a
connection between model-based clustering and the DP random partitions (Green
and Richardson 2001). Consider model based clustering with a Dirichlet prior

.w1; : : : ;wH/ � Dir.ıH; : : : ; ıH/ for the weights in (8.6) and �?h j G0
iid� G0. For

fixed n consider now a limit with H ! 1 and ıH ! 0, such that HıH ! ˛ > 0.

The limiting model on .y1; : : : ; yn/ is identical to a DP mixture model yi j G
iid�R

f .yi j �/ G.d�/, with G j ˛;G0 � DP.˛G0/.

Example 24 (Clustering Sarcoma Subtypes) Leon-Novelo et al. (2012) consider a
clinical study of patients with up to 10 subtypes of sarcoma. Table 8.1 shows the
number of patients in each sarcoma subtype (mi) and the number of tumor responses

(yi). We model the sarcoma data using a binomial likelihood, yi j �i
ind� Bin.mi; �i/

for i D 1; : : : ; n D 10. Here �i represents the true (and unknown) tumor incidence
probability. To account for groupings among disease subtypes, we used model (8.6)
with a fixed value of H and

yi j si D h; �?h
ind� Bin.mi; �

?
h /:

The prior in (8.6) in particular implies that disease subtypes are a priori inde-
pendently assigned to cluster h with probability wh for h D 1; : : : ;H. Model
specification is completed by assuming

.w1; : : : ;wH/ � Dir.˛/; ��
1 ; : : : ; �

�
H

iid� Be.a; b/;

independently, with ˛ an H-dimensional vectors with all components equal to 1.
Rather than adopting a prior distribution for the number of mixture components,

we fitted the above model for every H 2 f1; : : : ; 7g and computed the LPML
(Geisser and Eddy 1979). The highest value was attained when H D 3. Figure 8.1a
summarizes the posterior similarity matrix, with entries p.si D sj j y/ for all
1 � i; j � n. The figure suggests the presence of two clusters, a large one including
at least the first eight disease subtypes, and a second, smaller one, including Ewing’s
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Fig. 8.1 Example 24. Panel (a) shows the posterior similarity matrix p.si D sj j y/ for model (8.6)
with H D 3. Panel (b) shows for each sarcoma the central 95 % credible interval for tumor response
rates, with posterior means indicated as circles, obtained under model (8.6) with H D 3. For
comparison, the empirical fraction O�i, that is, the m.l.e.’s, are included as “�”

and possibly Rhabdo sarcomas. For comparison, least squared clustering (8.3)
results in one large cluster including all subtypes except for Ewing’s. Figure 8.1b
shows inference for individual sarcoma subtypes. For each of the observed disease
types we show the central 95 % credible interval for �i and the corresponding
posterior mean, marked as a circle. For comparison, the empirical fractions of tumor
responses, O�i, that is, the maximum likelihood estimates, are marked by a cross.
Except for the last two subtypes, for which no tumors were observed, all credible
intervals include O�i. The long intervals reflect the small sample sizes. Note also
that with high posterior probability (32.6 %), the nine disease subtypes other than
Ewing’s are clustered together, which explains the closeness of the corresponding
posterior means.

Software note: See the software appendix for this chapter for simple R code to
implement model based clustering for this example.

8.3 Product Partition Models (PPMs)

8.3.1 Definition

Product partition models (PPMs) were introduced by Hartigan (1990) and Barry
and Hartigan (1992). Their most characteristic feature is the so called product
distribution for the random partition, which adopts the form of a product

p.�n D fS1; : : : ; SKg/ /
KY

jD1
c.Sj/; (8.7)



8.3 Product Partition Models (PPMs) 151

where c.Sj/ is known as cohesion function of subset Sj, which represents how
strongly we believe the elements in Sj are thought to be clustered together a priori.

The normalization constant in (8.7) is
P

�2P
Qj�j

jD1 c.Sj/, where P is the set of all
possible partitions of Œn	 into nonempty sets. The cohesion functions are restricted
to be nonnegative functions of Sj, but in principle, any such function is valid. If c.S/
is only a function of the size of S, then the resulting model for �n is invariant under
permutations of the labels of units in Œn	. Naturally, in practice one may wish to avoid
defining c.S/ for every one of the 2n � 1 nonempty subsets of Œn	, and resort instead
to a more structured definition. A popular choice is c.S/ D M � .jSj �1/Š, where jSj
is the number of elements in S. It follows (see, e.g., Quintana and Iglesias 2003) that
the resulting probability model for �n is exactly (8.5), which can be characterized as
the arrangement of ties under independent sampling from a DP random measure.

However, not every PPM can be interpreted as the implied random partition under
some discrete random probability measure. Relatedly, not every possible choice of
cohesion function generates a coherent family of models, that is, a class of models
for which p.�n/ in (8.7) arises from p.�nC1/ by marginalization of the .nC1/st unit,

p.�n/ D
KnC1X

snC1D1
p.�nC1/:

Recall that Kn D j�nj denotes the size of the partition. One example that violates
this marginalization property is c.S/ D M � .jSj/2. For further discussion about this
and related issues, see Lee et al. (2013b).

Assume now a corresponding set of responses y D .y1; : : : ; yn/, and let y?S

denote the responses arranged by cluster, that is, y?S D .yi W i 2 S/ for any
S � Œn	. The PPM then assumes that the joint model for y can be described
in terms of independent sub-models for the partitioned data subsets, independent
across clusters,

p.y j �n D fS1; : : : ; SKg/ D
KY

jD1
p.y?Sj

/: (8.8)

For later reference we summarize the definition of a PPM.

Definition 8 (Product Partition Model) Let c.S/ � 0 define a cohesion function
for subsets S � f1; : : : ; ng. A random partition p.�n D fS1; : : : ; SKg/ / QK

jD1 c.Sj/

together with independent sampling across clusters as in (8.8) defines a product
partition model (PPM).

The posterior distribution of �n under (8.8) and (8.7) is again a PPM of the
form (8.7), with cohesion functions given by cpost.Sj/ D c.Sj/ pSj.y

?
Sj
/. Barry and

Hartigan (1992) considered also the case where partitions are restricted to be of
contiguous type or in blocks, that is, �n D ff1; : : : ; i1g; fi1C1; : : : ; i2g; : : : ; fiK�1C
1; : : : ; ngg, where 1 � i1 < i2 < � � � < iK�1 < n, which is a particularly
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suitable framework for change-point detection problems. In this context Yao (1984)
proposed cohesion functions of the form

c.fi C 1; : : : ; jg/ D
(

p.1� p/j�i�1 if j < n

.1 � p/j�i�1 if j D n,

for any 1 � i < j � n. The definition implies that the sequence of change
points form a discrete renewal process having i.i.d. occurrence times with geometric
distribution. See also Barry and Hartigan (1993), Loschi and Cruz (2005) and
references therein.

We now complete the PPM with specific assumptions for a sampling model (8.8).
We assume that the sampling model is exchangeable within clusters, and can be
written as independent sampling conditional on cluster-specific parameters �?j .
Recall that a partition can be equivalently defined in terms of the cluster membership
indicators si introduced earlier, with si D j if i 2 Sj. We assume

yi j �?; �n
ind� p.yi j ��

si
/; ��

1 ; : : : ; �
�
Kn

iid� F0; p.�n/ /
KnY

iD1
c.Si/: (8.9)

Such an approach is adopted, for example, in the case of normal means in Crowley
(1997).

We already mentioned the connection between parametric PPMs like (8.9) and
BNP models based on the DP. With c.S/ D M � .jSj �1/Š, model (8.9) is equivalent
to what is left of

yi j �i
ind� p.yi j �i/; �1; : : : ; �n j F

iid� F; F � DP.M;F0/

after marginalizing with respect to the random probability measure F. See further
discussion in Sect. 2.3 and in Quintana and Iglesias (2003) and Quintana (2006).

8.3.2 Posterior Simulation

Posterior simulation for PPMs is quite similar to inference for DP-based models
(Sect. 2.4). The main change is in the updating of cluster membership indicators si.
Let K� denote the number of clusters after removing the ith individual from the
sample. Denote by S�

1 ; : : : ; S
�
K�

the corresponding clusters and similarly for s�i.
Then

p.si D j j s�i/ /
(

c.S�

j [fig/
c.S�

j /
for j D 1; : : : ;K�

c.fig/ for j D K� C 1.
(8.10)
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If, for instance, c.S/ D M � .jSj � 1/Š then, after normalization, (8.10) becomes
the Polya urn (2.9). Another common example is c.S/ D M for all S � Œn	, in
which case (8.10) becomes p.si D j j s�i/ D 1=.K� C M/ for j D 1; : : : ;K� and
p.si D K� C 1 j s�i/ D K�=.K� C M/. With M D 1, the latter distribution reduces
to the uniform on f1; : : : ;K� C1g. We refer to it as the uniform cohesion function. It
is easy to adapt posterior simulation schemes for DP mixtures to the case of general
PPMs. For example, recall Algorithm 8 of Neal (2000) from Section 2.4.3. The key
step of the algorithm is the introduction of additional auxiliary parameters that can
be created and discarded at every iteration. This has the effect of carrying along
empty clusters, thus avoiding the need to perform analytical integrations that may
or may not be available. Recall from Sect. 2.4.3 that m represents the number of
extra clusters, to be carried along MCMC iterations. Equation (2.19) in Sect. 2.4.4
is replaced, after appropriate relabeling of the clusters, by

p.si D j j s�i; y;��/ /
8
<

:

p.yi j ��
j /

c.S�

j [fig/
c.S�

j /
for j D 1; : : : ;K�

p.yi j ��
j /

c.fig/
m for j D K� C 1; : : : ;K� C m.

(8.11)

Example 24 (ctd.) We consider again the sarcoma data of Table 8.1. This time, we
adopt (8.7) as prior p.�n/ for the partitions, again with a binomial sampling model
with cluster-specific response rates �?j ,

yi j �?si
; �n

ind� Bin.mi; �
?
si
/; �?1 ; : : : ; �

?
k j a; b

iid� Be.a; b/; and p.�n/ /
kY

jD1
c.Sj/;

(8.12)

We fit the model using Algorithm 8 of Neal (2000) modified as in (8.11).

Software note: R code to implement the model is provided in the on-line software
page for this chapter.

Figure 8.2a shows the posterior similarity matrix under model (8.12), with
c.S/ D M � .jSj � 1/Š and M D 1. The induced prior mean and variance of the
number of clusters are E.K/ D 2:929 and Var.K/ D 1:379. Fixing the prior mean
at E.K/ � 3 makes inference comparable with the earlier analysis under model-
based clustering with fixed H D 3. Compare with Fig. 8.1. The summaries are very
similar, the main difference being a more marked separation between Ewing’s and
Rhabdo subtypes. In fact, the least squares clustering method of Dahl (2006) reports
the same partition as before as posterior summary, namely, one singleton containing
Ewing’s, and a big cluster containing everything else. This is also supported by the
fact that the posterior mode, mean and variance for K were 2, 2.032 and 0.768,
respectively. The complete posterior distribution p.K j y/ is shown in Table 8.2.

We repeat the analysis using the uniform cohesion functions, for which the prior
mean and variance of the number of clusters are E.K/ D 4:851 and Var.K/ D
1:098. The posterior similarity matrix under this analysis is shown in Fig. 8.2b. It
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Fig. 8.2 Example 24. Posterior inference under the PPM (8.12). The graph shows the posterior
similarity matrix p.si D sj j y/ when using DP-style cohesion functions (left panel) (a) and when
using uniform cohesion functions (right panel) (b)

Table 8.2 Example 24, inference under the PPM (8.12)

Posterior distribution of number of clusters

c.S/ 1 2 3 4 5 6 7

M � .jSj � 1/Š 0.293 0.448 0.201 0.051 0.006 0.001 0

M 0.001 0.022 0.252 0.435 0.223 0.060 0.007

The table shows the posterior probability distribution of the number of clusters under each of the
displayed cohesion functions. Both distributions have theoretical support on Œn	, but the estimation
suggests a negligible probability mass after 6 and 7 clusters for DP and uniform cohesion functions,
respectively

is quite different from the DP case and the inference under model based clustering.
The median value of the co-clustering probabilities p.si D sj j y/ is 0.2875. The low
estimated similarity of the subtypes is also reflected in the least squares partition,
which contains 7 clusters: one formed by Leiomyosarcoma and Liposarcoma,
another formed by MFH, Synovial and Angiosarcoma, and all the other disease
subtypes forming singletons. The posterior distribution p.K j y/ has mean, mode
and variance 4, 4.065 and 0.872, respectively. See Table 8.2. By spreading its
probability mass uniformly across all �, the prior with uniform cohesion functions
implicitly favors small clusters relative to large ones. There is no preference for
large coherent clusters.

Finally, we estimated the tumor response probabilities for all ten disease
subtypes, under both choices of cohesion function discussed above. Figure 8.3 sum-
marizes posterior inference as posterior means and central 95 % credible intervals,
with circles and dashed lines for c.S/ D M � .jSj � 1/Š and triangles and dotted
lines for c.S/ D M. Empirical frequencies O�i, that is, m.l.e. estimates, are marked
by a cross. Compare with Fig. 8.1b. The posterior means under the PPM with DP-
style cohesion functions are very close to those under model (8.6), but different
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Fig. 8.3 Example 24.
Inference under the
PPM (8.12). For each
sarcoma subtype we show the
central 95 % credible interval
for individual tumor
incidence probabilities, with
dashed lines and posterior
means indicated as circles
(DP-style cohesion functions)
and dotted lines and triangles
(uniform cohesion functions).
For comparison, the empirical
fraction of observed tumors
are included as “X”
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from those under the uniform cohesion functions. The posterior credible intervals
are generally a bit shorter under the PPM with DP-style cohesion functions than
for model based clustering, and generally longer for uniform cohesion functions.
In the former case, the posterior means for sarcoma cases other than Ewing’s are
similar, because the model is borrowing strength across these subtypes. In turn, for
c.S/ D M, there is little borrowing strength, which explains the longer credible
intervals and also the fact that the posterior means E.�i j y/ are closer to O�i.
In summary, the choice of cohesion function can have substantial impact on the
posterior inference, especially in problems with little data.

8.4 Clustering and Regression

8.4.1 The PPMx Model

We now add dependence on covariates to the PPM model (8.7). Consider, for
example, a problem that involves clustering of patients into subpopulations. We
would want to include a feature in the prior to favor clustering of patients with
comparable baseline characteristics. Patients with similar prior treatment history,
similar biomarkers, et cetera, should be more likely to cluster together in the same
subpopulation. In other words, we want to introduce a regression on patient-specific
covariates xi in the random partition. Let X D .x1; : : : ; xn/ denote subject-specific
covariates. We want to generalize the PPM prior p.�n/ to a model p.�n j X/. Müller



156 8 Clustering and Feature Allocation

et al. (2011) implement the desired regression on xi by modifying the cohesion
function c.S/ to include an extra factor that depends on covariates. Assume a q-
dimensional covariate vector xi D .xi1; : : : ; xiq/, possibly including continuous,
ordinal and categorical variables. Denote by x�

j D fxi W i 2 Sjg the set of covariate
arranged by cluster. We introduce a similarity function as any nonnegative function
g of the covariate values x�

j such that high values of g.x�
j / indicate homogeneous

covariate vectors, i.e. a cluster Sj of experimental units with covariates xi that are
judged to be similar.

Definition 9 (PPMx.) A PPMx model with similarity function g.x?j /, g.�/ � 0 is a
random partition

p.�n D fS1; : : : ; SKg j X/ /
KY

jD1
c.Sj/g.x�

j /; (8.13)

with normalization constant
P

�2P
Qj�j
`D1 c.S`/g.x�̀/.

Equation (8.13) includes a slight abuse of notation. The covariates xi need not be
random variables. They could include selected dose levels or treatment choices.
We put them in the conditioning set to indicate that the random partition model is
indexed by x. The key component of (8.13) is the similarity function.

Defining the Similarity Function Formally, any nonnegative function g is a valid
similarity function. In practice, though, ease of computation in the evaluation of
g.x?j/ is important. Müller et al. (2011) considered generic forms to construct
similarity functions. A natural and easy way to compute g.x?j/ is by introducing
an auxiliary probability model that is used only to get an easy expression for the
similarity function. The idea is to think of x�

j as if xi, i 2 Sj, were randomly sampled
from a hypothetical probability model with q.xi j �?j / and prior q.�?j /. Then

g.x�
j / D

Z Y

i2Sj

q.xi j �?j /q.�?j / d�?j ; (8.14)

which can be analytically evaluated when the distributions are chosen as conjugate
pair. In summary, we use the marginal model under q.�/ to define g.x�

j /. Under
most models the marginal is highest for sets of covariate values x?j that would be
considered to be similar. Importantly, q.�/ is only introduced for easy and efficient
computation, without any notion of modeling a distribution of covariates xi. Using
candidate’s formula, that is, Bayes theorem for the marginal model on x?j in (8.14),
we get

g.x�
j / D

Q
i2Sj

q.xi j Q�?j /q. Q�?j /
q. Q�?j j x?j/

; (8.15)
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where Q�?j is any fixed value of �?j . Note that this expression can be readily evaluated

and the dimension of Q�?j does not depend on the cluster size. Some specific choices
for particular data formats are as follows, assuming first, for simplicity, that the
covariate xi is univariate.

Continuous xi: Define �?j D .mj; vj/. Let q.xi j �?j / D N.xi j mj; vj/, and
q.mj; vj/ be the conjugate normal-inverse chi-square (or gamma) prior distribu-
tion (see, for example, Gelman et al. 2004). Then (8.15) is easily evaluated. In
this case, g.x�

j / is a scaled and correlated nj-dimensional multivariate t density.
Here nj D jSjj is the size of the j-th cluster. Equation (8.15) avoids the explicit
evaluation of this potentially high-dimensional density.

Categorical xi: Consider a categorical covariate with c levels, xi 2 f1; : : : ; cg. Let
�?j D .�1; : : : ; �c/where 0 � �r for all r D 1; : : : ; c and

Pc
rD1 �r D 1. Then use

q.xi j �?j / 	 Multin.xi j 1; �?j / and q.�?j / 	 Dir.�?j j ˛/ for some suitable choice
of ˛. In this case, q.�?j j x�

j / is again a multinomial distribution, and g.x�
j / is a

Dirichlet-multinomial distribution. In the particular binary case (c D 2) we get
the beta-binomial distribution.

Count covariates xi: Assume �?j > 0. For q.xi j �?j / we assume a Poisson
distribution with rate �?, and for q.�?/ we assume a gamma distribution. Then,
q.�?j j x�

j / is again a gamma distribution and g.x�
j / reduces to the Poisson-gamma

distribution.
Ordinal covariates xi: we use the following construction. Assume an ordinal

covariate with c categories. Johnson and Albert (1999) define an auxiliary
probability model for x by introducing a latent variable z and a set of cutoffs
�1 D �0 < �1 < � � � < �c�1 < �c D 1 and then set x D r if �r�1 < z � �r. For
simplicity we fix the cutoffs as �r D r � 1 for r D 1; : : : ; c. As in the continuous
case, let �?j D .mj; vj/. We use q.z j �?j / D N.z j mj; vj/ and a normal-inverse
chi-square (or gamma) distribution q.�?j /. Then q.xi D r j �?j / D q.�r�1 < z �
�r j �?j /. Let njr D P

i2Sj

Ifxi D rg count the number of covariates with value r in

cluster j. The similarity function becomes

g.x�
j / D

Z

R�RC

cY

rD1

˚
ˆmj;vj .�r/ �ˆmj;vj .�r�1/

	njr q.�?j / d�?j ;

where ˆm;v.�/ is the N.m; v/ c.d.f.

Two more important details, about multiple covariates, of the same type, and of
mixed types. First, the above procedures can be extended to the case of multivariate
covariates of the same type by appropriately adjusting the auxiliary probability
models. For instance, if xi is a d-dimensional vector, then we may take �?j D
.mj; vj/, q.xi j �?j / 	 N.x j mj; vj/, and q.�?j / to be a normal-Inverse Wishart
distribution. Candidate’s formula (8.15) can be used to evaluate the similarity
function.
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Second, to define a joint similarity function when x is a q-dimensional vector of
mixed types of covariates, use

g.x�
j / D

qY

`D1
g`.x�

j`/; (8.16)

where ` indexes covariates (or covariate types) and g`.�/ is the similarity function
for the `-th covariate (type).

Similar to the PPM model the PPMx prior (8.13) is usually used to define a
statistical inference model together with a sampling model of the form (8.9).

Posterior Simulation A useful feature of a similarity function of the form (8.14)
with DP-style cohesion functions is that the resulting joint model for data, param-
eters and random partition becomes formally equal to that obtained after marginal-
izing the random probability measure in a hypothetical DP mixture model for an
augmented response vector Qyi D .yi; xi/ with kernel p.Qyi j �?j ; �?j / D p.yi j
�?j / q.xi j �?j / and centering distribution in the DP prior F0.�?; �

?/ D p.�?/q.�?/.
This observation is useful for implementing posterior simulation.

The proposed choices of similarity functions g.x?j / were driven by compu-
tational convenience. There are many other reasonable and valid alternatives
(Figs. 8.4 and 8.5). For example, for categorical covariates one may use g.x�

j / D
exp



�Pc

rD1 Ofjr log.Ofjr/
�
; where Ofjr is the proportion of covariate values equal to r

in cluster j, and where we interpret 0 � log.0/ D 0.

8.4.2 PPMx with Variable Selection

In problems with a large number of covariates it is plausible that meaningful clusters
might be characterized by just a subset of the covariates. We achieve this by
introducing binary indicators �j` for the jth cluster and `th covariate and assuming

p.�n j 	;X/ /
KnY

jD1

(

c.Sj/ �
"

qY

`D1
g.x?j`/

�j`

#)

: (8.17)

Model (8.17) defines a prior distribution on partitions, indexed by covariates with
cluster-specific sets of covariates. Covariates can be active (�j` D 1) or inactive
(�j` D 0). The model retains the product form. The model is completed with a
prior model p.	/ for the indicators. In Quintana et al. (2013) we use a normal
hierarchical prior on logits. Let zj` D logit p.�j` D 1/ denote the logit of the
inclusion probability for covariate ` in cluster j on a logit scale. We assume a normal
hierarchial model on zj`.
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Adding covariate selection in the similarity function requires that the similarity
function be calibrated such that g.x?j/ > 1 for a set of covariates x?j that are judged
to be similar. A prior model with g.x?j/ < 1 for all x?j would a priori always favor
no covariate selection and fail to formalize any prior preference for homogeneous
clusters. We therefore use

Qg.x?j/ D g.x?j/
Q

i2Sj
q.xi j Q�/ ; (8.18)

for some conveniently chosen value of Q� such as the m.l.e. of � given the complete
set of covariate values X under the auxiliary model q.X j �/. Posterior simulation
is greatly facilitated by the choice of (8.18), which has an important computational
advantage. Candidate’s formula (8.15) reduces to

Qg.x�
j / D q. Q�/

q. Q� j x?j/
: (8.19)

The equality is true for any Q� on the right hand side. The important advantage over
direct evaluation of the marginal is that the dimension of � does not vary with cluster
size.

Example 25 (ICU Readmission Rates) Quintana et al. (2013) discuss inference for
readmission rates to a ICU (intensive care unit) in Portugal. Data from n D 996

patients include 17 variables: 12 physiology variables (heart rate, systolic blood
pressure, body temperature, the ratio Pao2/Fio2 for ventilated patients, urinary
output, serum urea level, WBC count, serum potassium, serum sodium level, serum
bicarbonate level, bilirubin level and Glasgow coma score), age, type of admission
(scheduled surgical, unscheduled surgical or medical) and three underlying disease
variables (acquired immunodeficiency syndrome, metastatic cancer and hemato-
logic malignancy). Covariates include a variety of different data formats. Covariates
1–12 are of continuous type, 13–14 are categorical, with 3 levels each, and 15–17 are
binary. All variables are recorded in a vector of p D 17 covariates xi D .xi1; : : : ; xip/,
i D 1; : : : ; n.

Let yi denote a binary indicator of death for the ith patient admitted to the
ICU, i D 1; : : : ; n, with yi D 1 if the patient died, and yi D 0 otherwise. The
proposed joint probability model for cluster-specific variable selection includes a
sampling model expressed as a logistic regression for mortality with cluster-specific
parameters. We recode each categorical covariate using two binary indicators, and
add an extra intercept term, so that the resulting design vector Qxi has dimension 20.
Given a partition �n, represented as .k; s1; : : : ; sn/, we assume

logitfp.yi D 1 j si D j;ˇ?j /g D ˇ?j Qxi: (8.20)
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We use similarity function (8.16) with a double-dipping similarity function g` which
is defined as

g.x?j/ D
Z Y

i2Sj

q.xi j �?j / q.�?j j x?j/ d�?j :

with q.�?j j x?j/ / Q
i2Sj

q.xi j �?j / q.�?j / for conjugate pairs q.xi j �?j / and q.�?j /.
It is important to point out here that g.�/ need not be a probability model. There is
no notion of modeling a distribution of covariates. As a probability model g.x?j/

would be inappropriate due to the double use of the observed covariates.
The model is completed with a hierarchical prior on the regression coefficients

ˇ?j . Figure 8.6 shows a summary of the inference.

8.4.3 Example 26: A PPMx Model for Outlier Detection

We discuss in more detail an application of the PPMx model to inference with
possible outliers. We use the example to illustrate the impact of different choices
of cohesion and similarity functions. Quintana and Iglesias (2003) considered
estimating the slope or systematic risk in a normal Sharp model (Elton and Gruber
1995) for data on stock returns for Concha y Toro, one of the principal Chilean wine
producers. The model is

yi j ˛; ˇ; �2 ind� N.˛ C ˇxi; �
2/; (8.21)

where observations fyig are the monthly Concha y Toro stock returns, and covariates
fxig are the corresponding Índice de Precio Selectivo de Acciones (IPSA) values (the
Chilean version of Dow-Jones index). It has been argued (Fama 1965; Blattberg
and Gonedes 1974) that monthly stock returns data tend to exhibit little serial
correlation. This is why such models usually include no serial correlation.

The example motivates a model for outlier detection. Without loss of generality
we consider a regression as in (8.21). Quintana and Iglesias (2003) considered a
PPM model for outlier detection and accurate estimation of the common parameter
ˇ. The proposed model considered observation-specific intercept parameters to
capture atypical and possibly influential observations. We adopt here a PPMx
version of that model, and assume

yi j �?; ˇ; �2 ind� N.�?si
C ˇxi; �

2/; and �?j j �2 ind� N.a; �20�
2/; (8.22)

with a hierarchical structure completed by assuming ˇ j �2 � N.b; �20�
2/, �2 �

IGamma.�0; �0/ and a PPMx random partition model (8.13).
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Fig. 8.4 Example 26. (a) The panels show the posterior distributions of ˇ for prior 1 (left) and (b)
prior 2 (right) under three versions of the PPMx model. One uses g.x�

j / D 1 (g1), another g.x�

j / D
exp.�Var.x�

j // (g2) and a third one (g3) uses (8.14) with a normal-inverse gamma auxiliary model
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Fig. 8.5 Example 26. The left panel shows the raw data with IPSA values in the horizontal axis
and Concha y Toro stock returns in the vertical axis. Outlying observations 43, 58, 98, 105, 106, and
111 are marked with special characters. The right panel shows the estimated posterior similarity
matrix under Prior 1 and similarity function g2. Observations have been relabeled so that the six
outlying observations are in the last six positions

Prior Quintana and Iglesias (2003) chose the following hyper-parameter values:
a D 0, b D 1, �20 D 1=3, �20 D 1=4, �0 D 2:01 and �0 D 0:0101. They were
selected to express an informative prior under which only few observations are to
be deemed as outliers. In particular, it follows that E.�2/ D 0:01 and Var.�2/ D
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Fig. 8.6 Example 25. Panel (a) plots posterior estimated mortality against Glasgow score (keeping
all other variables fixed). The solid line shows the prediction for the proposed model. The other
lines show alternative models. Panel (b) shows posterior marginal variable inclusion probabilities.
The averages are weighted with respect to the cluster sizes, that is E.

P
j �j`nj=n j data/, plotted by

covariate

0:01, with corresponding induced prior for ˇ and baseline distributions being tightly
concentrated around 1 and 0, respectively. Alternatively we also consider a different,
vague prior with �20 D �20 D 100. In the sequel we refer to the former as Prior 1 and
to the latter as Prior 2.

Similarity Function We are interested in the effect of the similarity function on
posterior inference and compare three alternative choices. Recall that jSjj is the size
of the j-th cluster. The three similarity functions are: (1) g1.x�

j / D 1, which reduces
the model to a regular PPM; (2) a function of the empirical variance, g2.x�

j / D
exp



�Var.x�

j /
�

, where Var.x�
j / D jSjj�1Pi2Sj

.xi � Nx�
j /, and Nx�

j D jSjj�1Pi2Sj
xi;

and (3) a version of (8.14), which we refer to as g3, with � D v, q.x j v/ 	 N.x j
0; v/ and q.v/ 	 IGamma.v j r0; r1/ with r0 D 2:0938 and r1 D 0:02956, which
are determined so as to match the empirical mean and variance of the observed
covariate values.

Results Figure 8.4 shows the resulting inference on the systematic risk. The left
panel shows the posterior distribution of ˇ for each of the three similarity functions
for the informative Prior 1, while the right panel shows results under the vague Prior
2. The choice of similarity function, g1, g2 or g3, has little effect under either prior.
However, there is a striking difference on the support of p.ˇ j y/ under one versus
the other prior. This is because under Prior 1 the ˛i are much more concentrated
around their prior mean, in this case, a D 0. In contrast, under Prior 2 the ˛i

coefficients are free to adjust to the responses, leading to a considerable reduction
in the slope ˇ.
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Similarity functions g1 and g2: Applying the least squares algorithm of Dahl
(2006) we find interesting results. Under the PPM model without covariates, that is
g1, and Prior 1 the selected partition has two clusters: one containing the subset
f43; 98; 105; 106; 111g and the other all the remaining observations. To a large
extent, this agrees with the results in Quintana and Iglesias (2003), where the same
subset of outlying points was detected, although grouped into two clusters rather
than one. When using g2 the result was again one large and one small cluster,
the small one given by subset f43; 58; 98; 105; 106; 111g and the large one with
all the rest. Comparing these two, g2 finds one more outlying observation, namely
58. These observations, together with a graphical representation of the posterior
similarity matrix under Prior 1 and similarity function g2 can be found in Figure 8.5.
In the posterior similarity matrix under g2, observations were relabeled so that the
six potential outliers become the last six ones, placed together, and in the order stated
above. For observation 58, all of the co-clustering probabilities in the similarity
matrix lie below 50 %, which gives some support to its interpretation as an outlier.

While the previous results under Prior 1 using g1 and g2 are quite similar, under
Prior 2 we find many more outliers. They can be grouped into 5 and 6 clusters under
g1 and g2, respectively. The explanation is again the much less restrictive nature of
the prior on the ˛i coefficients. From the viewpoint of detecting outliers, Prior 2 is
thus of little help as the main idea is to identify a few outliers, and not to declare a
large portion of the sample as outlying observations.

Similarity functions g3: Under either prior choice, that is Prior 1 or 2, when using
g3 the least squares algorithm gives over 50 clusters in both cases. The posterior
similarity matrix in these two last cases has very small entries, with 99 % percentiles
of 0.06 and 0.18. This means that g3 induces many more clusters a posteriori than g1
and g2. However, when computing the LPML for each of the six models considered
here, we find that Prior 2 with similarity function g3 provides the best fit (Table 8.3).

Finally, Fig. 8.7 shows posterior predictive distributions under all combinations
of Prior 1 and 2 and similarity functions g1, g2 or g3. The predictions are for
observations 1, 34, and 66, which represent, respectively, the minimum, median,
and maximum observed values of x. We can see the shift in all these distributions as
x increases. Prior 1 produces unimodal posteriors in all cases. Only Prior 2 and g1
or g2 lead to multimodal posteriors.

In summary, Prior 1, in particular in combination with g1 or g2, allows for
reasonable outlier detection, but Prior 2, in particular with g3, yields a better fit
to the data, as seen from the LPML values.

Table 8.3 Example 26. The
table shows the LPML values
for each of Priors 1 and 2 and
similarity functions g1, g2 and
g3, as defined in the text

Similarity function

Prior g1 g2 g3
1 76:74 76:51 71:34

2 133:85 136:80 186:04
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Fig. 8.7 Example 26. Posterior predictive distributions for stock returns example under Prior 1
(top row) and under Prior 2 (bottom row)

8.5 Feature Allocation Models

8.5.1 Feature Allocation

So far we discussed partitions of Œn	 D f1; : : : ; ng into mutually exclusive and
exhaustive subsets. We now extend the notion of partitions to feature allocations,
that is, a family of subsets fS1; : : : ; SKg which need not be mutually exclusive.
Following Broderick et al. (2013), a feature is a subset S � Œn	 and a feature
allocation is a multiset Fn D fS1; : : : ; SKg of features Sj, also called blocks, such
that each index i can belong to any finite number of blocks. It follows that not every
feature allocation is a partition, but every partition is a feature allocation. Recall
the brief discussion of feature allocation models in Sect. 8.1. In particular, recall the
.n � K/ binary matrix Z D ŒZik	 with feature membership indicators Zik. A feature
allocation model is a prior p.Z/. If Z is directly observed, as it might be the case
in the earlier example with recording movie preferences when the observed data
are indicators Zij for customer i liking movies of type j, then the only inference
of interest might be inference on hyper-parameters that index p.Z/ or posterior
predictive inference for future experimental units, i > n C 1, and not much is left to
do. In many applications, however, the feature allocation Z is latent and only linked
to the observed data through some sampling model. For example we might only
observe movie choices rather than preferences for different movie genres. Let yi

denote the observed movie choices for the i-th customer. We would add an assumed
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sampling model p.yi j Z;�?/ conditional on latent unobserved preferences Z. Here
�? could be additional feature-specific parameters. Below, in Example 27 we will
discuss an inference problem where Z represents the unknown latent composition
of a tumor sample as a mixture of K cell subtypes. The observed data y are related
to Z by an assumed sampling model. In general, let y D .yi; i D 1; : : : ; n/ denote
the observed outcomes, and assume that the sampling model makes use of feature-
specific parameters �?j and some additional common parameters 
. Also, we assume
conditional independence across i conditional on Z;�?; 
. This is the case in the
later example. In summary,

yi
ind� p.yi j Z;�?; 
/; (8.23)

i D 1; : : : ; n. The specific nature of p.yi j Z;�?; 
/ depends on the problem. In
most applications the sampling model for yi might depend on Z only through the
i-th row of Z.

8.5.2 Indian Buffet Process

The most popular prior model p.Z/ in feature allocation problems is the Indian
Buffet Process (IBP), proposed in Griffiths and Ghahramani (2006). The name arises
as follows. Consider n customers entering a restaurant one after another. Imagine a
buffet with an unlimited number of dishes. The dishes will become the features
in the IBP, that is, the dishes correspond to the columns of Z and the customers
correspond to the rows of Z. The first customer selects a number of dishes, KC

1 j ˛ �
Poi.˛/. Without loss of generality we assume that the customer chooses the first KC

1

dishes in the buffet. Thus Z1j D 1, j D 1; : : : ;KC
1 . Now consider the i-th customer

entering the restaurant. Let Ki�1 D Pi�1
`D1 KC

` denote the total number of dishes
selected by the first i � 1 customers and let Zi�1 denote the .i � 1/ � Ki�1 binary
matrix for the first i � 1 customers and let mi�1;j D Pi�1

`D1 Z`j denote the number
of customer so far who selected dish j, j D 1; : : : ;Ki�1. The ith customer takes a
serving from each of the earlier selected dishes, j D 1; : : : ;Ki�1 with probability

p.Zij D 1 j Zi�1/ D mi�1;j
i
; (8.24)

i.e. with probability proportional to the popularity of this dish. After reaching the
end of all previously selected dishes, the i-th customer then tries

KC
i j ˛ � Poi.˛=i/ (8.25)

new dishes. The new dishes are indexed j D Ki�1 C 1; : : : ;Ki 	 Ki�1 C KC
i , we

add KC
i new columns to Z, and set Zij D 1 and Z`j D 0 for earlier customers

` D 1; : : : ; i � 1. It is possible that a customer goes hungry, with
P

j Zij D 0. After
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the last, n-th customer has selected dishes we are left with K D Kn dishes. This
provides a constructive definition of a .n � K/ random binary matrix Z. Note that
the number of columns, K, is random. Letting hn D Pn

iD1 1=i,

Kn j ˛ � Poi.˛hn/:

Implicit in the construction is a restriction of Z to indexing features by appearance.
For reference we summarize the definition. Let mj D mn;j denote the total number
of customers who chose dish j.

Definition 10 (IBP) A random .n � K/ binary matrix Z is said to follow an Indian
buffet process (IBP) if

p.Z/ D ˛K

Qn
iD1 KC

i Š
e�˛hn

KY

jD1

.n � mj/Š.mj � 1/Š

nŠ
:

The model includes a random number of columns K and Z is constrained to indexing
features by appearance.

It is sometimes convenient to use a slightly stricter restriction to so called left
ordered form. Let zj D .Z1j; : : : ;Znj/ denote the j-th column and interpret zj as
dyadic integer with Z1j being the most significant digit. In left ordered form the
columns are sorted by zj. See Griffiths and Ghahramani (2006) for p.Z/ under
constraint to left order form.

Similar to the DP prior, the IBP can be obtained as the limit of a finite feature
allocation construction (Teh et al. 2007). For k D 1; : : : ;K and i D 1; : : : ; n let

wk j ˛;K ind� Be.˛=K; 1/ and Zik j wk
ind� Ber.wk/; (8.26)

be independent Bernoulli random variables. Taking the limit as K ! 1, and
dropping columns with all zeros we get the IBP prior p.Z/, except for the re-
arrangement into left ordered form (or ordering by appearance).

The construction (8.26) is symmetric in i. This is important for posterior
simulation under the IBP. Consider a statistical inference problem with a sampling
model of the form (8.23) under an IBP prior on the feature allocation Z. Assume that
the model is completed with a prior probability model on the remaining parameters.
Posterior inference is best implemented as posterior MCMC simulation. Let Z�i

denote the feature allocation without the i-th experimental unit, that is Z after
removing the i-th row and any column that remains all zeroes after removing the
i-th row. In setting up the MCMC transition probabilities we need the conditional
prior probabilities p.Zij j Z�i/. The symmetry in the construction implies that the
IBP prior is exchangeable across rows i. We can therefore assume without loss of
generality that i D n and use (8.24) and (8.25) to evaluate p.Zij j Z�i/.
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Another, useful and instructive stick-breaking representation is given by Teh et al.
(2007):

Zik j wk
ind� Ber.wk/; wk D

kY

jD1
vj; vj j ˛ iid� Beta.˛; 1/; (8.27)

k D 1; 2; : : :. The binary matrix Z is obtained after removing all columns that
contain only zeros, which leaves us with a random n � Kn matrix with a random
number of columns Kn. If desired, the columns could be re-arranged to restrict Z to
left ordered form.

Example 27 (Tumor Heterogeneity) Lee et al. (2013a) and Xu et al. (2015) use an
IBP prior to study tumor heterogeneity. The data are counts of point mutations in
different samples. The underlying biological hypothesis is that a tumor is composed
of different subpopulations of cells. We use the presence (Zij D 1) or absence (Zij D
0) of point mutations to characterize latent subpopulations. The data are counts from
a next generation sequencing experiment. For each point mutation i, i D 1; : : : ; n,
and each sample t, t D 1; : : : ;T we count the number of reads that are mapped to
the locus of that mutation (Nti) and the number of reads out of those Nti reads that
actually carry the mutation (yti). We assume binomial sampling,

yti j pti
ind� Bin.Nti; pti/: (8.28)

The key assumption is that pti is due to the sample being composed of a small
number of cell subpopulations, j D 1; : : : ;K, which include (Zij D 1) or not (Zij D
0) a particular mutation. The indicators Zij are combined into a .n�K/ binary matrix
Z D ŒZij	. In this description, the columns zj of Z represent the latent cell types.
They are not directly observed, only indirectly by trying to explain the observed yti

by representing sample t as being composed of these cell types. Let �?tj , j D 1; : : : ;K
denote the fraction of cell type j in sample t. We assume

pti D
KX

jD1
�?tj Zij C �?t0p0; (8.29)

where the final term is added to allow for model mis-specification, measurement
error and for subtypes that are too rare to be detected. We assume a Dirichlet prior
on �?t D .�?t0; �

?
t1; : : : ; �

?
tK/.

The key model element is the prior p.Z/. This is where we use the IBP prior,

Z � IBP.˛/:

Figure 8.8 summarizes the estimated Z matrix. This formalizes the desired descrip-
tion of tumor heterogeneity. In this discussion we simplified the description.
For diploid organisms, like humans, cell subtypes are characterized by pairs of
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Fig. 8.8 Example 27. The left panel shows the estimated tumor heterogeneity characterized by the
feature allocation matrix Z. The columns are the cell types, j D 1; : : : ; 5. The rows are the SNV’s,
i D 1; : : : ; S. The right panel shows the corresponding posterior estimated weights wtj arranged by
sample t in the circle

haplotypes. In that case the columns of Z should be interpreted as defining possible
haplotypes, with K > 2 indicating tumor heterogeneity. See Lee et al. (2013a) for
more discussion.

Finally we owe an explanation for the edges connecting the IBP with other
models in Fig. 1 in the Preface. Thibaux and Jordan (2007) discuss an alternative
definition of the IBP using a construction based on the Beta process (BP) and the
Bernoulli process (BeP).

8.5.3 Approximate Posterior Inference with MAD Bayes

For large n and/or specific sampling models posterior inference with MCMC
simulation becomes impractical due to slow mixing of the implemented Markov
chain. This is the case in Example 27. The sampling model (8.28) introduces high
posterior correlation of the �?t and Z, making it difficult to implement efficient
posterior MCMC. Posterior simulation requires a transdimensional MCMC with
reversible jump (RJ) transition probabilities that add or delete features. It is difficult
to define RJ moves with practicable acceptance probabilities. This is not a critical
problem in Example 27. A priori plausible numbers of distinct subclones are small,
say between 1 and 10. Lee et al. (2013a) propose model selection to implement
inference across K as an alternative to a more complicated transdimensional
MCMC.
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Alternatively, Broderick et al. (2013) introduce a clever scheme for approximate
posterior inference that exploits an asymptotic similarity of the log posterior with
a criterion function in a k-means clustering algorithm. The k-means algorithm is a
fast popular rule-based clustering method (Hartigan and Wong 1979). The approx-
imation is known as MAP-based asymptotic derivation (MAD) Bayes. The method
is suitable for problems with a normal sampling model (8.23). The asymptotics are
small-variance asymptotics for small variance in the normal sampling model. A
similar asymptotic argument can be constructed with binomial sampling as in (8.28)
and (8.29).

MAD Bayes Posterior Maximization

For reference we state the complete statistical inference model. We assume a
sampling model

p.y j Z;�?/ (8.30)

together with an IBP prior for Z and a prior for feature specific parameters �? D
.�?1; : : : ;�

?
K/:

p.Z j ˛/ � IBP.˛/ and p.�?1; : : : ;�
?

K/:

For example, the sampling model could be the binomial sampling p.y j Z;�?/
of (8.28), noting that pit D pit.Z;�?/ is determined by (8.29). The prior p.�?/
could be the independent Dirichlet priors for the row vectors �?t D .�?t0; �

?
t1; : : : ; �

?
tK/

in Example 27. Note that in the example, we use �?t to indicate the rows of the
.n � K/ matrix �? (rather than the feature-specific columns). The simple reason is
the constraint to the row sums of 1.0, and the independence across rows. Also, we
included the additional weight �?t0.

The idea of MAD Bayes is to rescale log p.y j Z;�?/ by a factor ˇ and take the
limit as ˇ ! 1. At the same time, we reduce the parameter of the IBP prior as
˛ D exp.�ˇ�2/ ! 0, for a fixed constant �2. The decreasing ˛ avoids overfitting
that would otherwise occur by maximizing the rescaled log likelihood function. In
a moment we will recognize �2 as a penalty parameter for introducing additional
features. For large ˇ we get (Broderick et al. 2013; Xu et al. 2015)

� 1

ˇ
log p.Z;�? j y/ D c � log p.y j Z;�?/C K�2 	 Q.Z;�?/: (8.31)

Here c is a constant (in Z;�?). The last term is all that is left of the log IBP prior
after taking the limit ˇ ! 0. We recognize it as a penalty for the number of columns
in Z, that is, for introducing additional features.

We are now ready to state the MAD Bayes algorithm to minimize the criterion
function Q.Z;�?/. We state it in the version of Xu et al. (2015), who adapt the
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MAD Bayes algorithm of Broderick et al. (2013) for inference in Example 27. The
algorithm is a variation of k-means. In the algorithm �?t D .�?t1; : : : ; �

?
tK/ denotes the

t-th row of the .T � K/ matrix �?, rather than the feature-specific columns, simply
because it makes it easier to impose the constraint to unit row sums. Similarly, row
zi D .Zi1; : : : ;ZiK/ denotes the i-th row of the .n � K/ binary matrix Z. Also, let �?�t
denote �? with the t-th row removed. Similarly for Z�i.

Algorithm 10: MAD-Bayes.

1. K D 1 and p.Zi1 D 1/ D 0:5, i D 1; : : : ; n (initialize Z)
2. �?t � Dir.1; 1; : : : ; 1/ for t D 1; : : : ; T (initialize �?).
3. Repeat

3.1 for i D 1; : : : ; n: fixing �?, Z
�i and K find

zi D arg minzi Q.Z; �?/,
3.2 for t D 1; : : : ; T: fixing Z (and thus K) and �?

�t find

�?t D arg min�?t Q.Z; �?/, subject to
PK

cD1 �tc D 1,
3.3 Let Z0 equal Z but with one new feature (labeled K C 1) with Zi;KC1 D 1 for one

randomly selected index i.
3.4 Find �?0 that minimizes the objective given Z0.
3.5 if (Q.Z0; �?0/ < Q.Z; �?/) then

.Z; �?/ WD .Z0; �?0/

until (no changes made)

8.6 Nested Clustering Models

Some applications call for clustering in more than one direction.

Example 28 (RPPA Data) Lee et al. (2013b) consider the following problem.
Figure 8.9 shows levels of protein activation for G D 55 proteins in samples from
n D 256 breast cancer patients. The data come from a reverse phase protein array
(RPPA) experiment that allows to record protein activation for a large number of
samples and proteins simultaneously. The idea is to identify sets of proteins that give
rise to a clinically meaningful clustering of patients. The eventual goal is to exploit
these subgroups for the development of optimal adaptive treatment allocations. This
goal is in the far future.

The immediate goal is to identify subsets of proteins that are characterized by
a common partition of patients. That is, two proteins g1 and g2 are in the same
cluster if observed protein activation in the patient samples move in tandem for g1
and g2 and give rise to the same (nested) clustering of patients. In other words, we
represent how different biologic processes give rise to different clusterings of the
patient population by using that feature to define clusters of proteins. An important
detail is that two proteins g1 and g2 can give rise to the same clustering of patients
even if protein g1 is always de-activated whenever g2 is activated and vice versa.
That is, sharing the same nested clustering of patients is more general than sharing
a common parameter in a sampling model for protein activation.



8.6 Nested Clustering Models 171

6 45 50 14 23 29 49 9 3 28 17 55 54 2 11 12 20 42 25 51 27 26 13 7 8 30 53 24 31 39 19 52 10 16 44 46 1 35 32 36 41 34 22 38 40 43 37 33 48 21 15 47 4 5 18



−4 0 2 4

Column Z−Score

0
30

00
70

00
Color Key

and Histogram

C
ou

nt

Fig. 8.9 Example 28. Protein activation for n D 256 patients (rows) and G D 55 proteins
(columns). The dendrograms are estimated using hierarchical clustering

Let wg denote cluster membership indicators to index a partition of proteins into
fSjI j D 0; : : : ;Kg. For each subset Sj we define a protein-set specific partition of
patients with respect to that protein set. Let cji denote cluster membership indicators
for the partition of patients i D 1; : : : ; n with respect to protein set j. In other
words, we seek to identify a partition of proteins, w D .w1; : : : ;wG/, and a nested
partition of patients, cj D .cj1; : : : ; cjn/, nested within each protein set. Figure 8.10
indicates protein clusters by vertical white lines, and the nested patient clusters by
horizontal lines. There are two more important details. We allow for some proteins
to be unrelated to any biologic process of interest, i.e., they do not give rise to a
nested partition of patients. We collect these proteins in a special cluster wg D 0

and define nested patient partitions only for clusters j D 1; : : : ;K. Similarly, we
allow for the fact that some patients might not meaningfully fall into clusters with
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Fig. 8.10 Example 28. The image shows protein activation by patient (rows) and proteins
(columns). The vertical white lines separate subsets Sj of proteins that give rise to different
partitions of patients. Partitions of patients are indicated by horizontal white lines

respect to a particular protein set. We combine these patients in the special patient
cluster cji D 0.

Lee et al. (2013b) define a prior model p.w/ for protein clusters, and conditional
on w a prior p.c j w/ D QK

jD1 p.cj/ on random patient clusters with respect to each
of the protein sets. Specifically, let mj D jSjj denote the size of the j�th protein
cluster.

p.w/ D �
m0
0 .1 � �0/G�m0

MK�1QK
jD1.mj � 1/Š

.M C 1/ � : : : � .M C G � m0 � 1/ (8.32)

and similarly let njk D jfi W cji D kgj denote the size of the k-th patient cluster with
respect to the j-th protein set. We define

p.cj j w/ D �
nj0

1 .1 � �1/n�nj0
˛Kj�1QKj

kD1.njk � 1/Š
.˛ C 1/ � : : : � .˛ C n � nj0 � 1/

: (8.33)
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The prior p.w/ can be characterized as a zero-inflated Polya urn. Each protein is in
cluster S0 with probability�0. The proteins that are not in S0 form clusters S1; : : : ; SK

using the Polya urn defined in (8.5), with total mass parameter M. Similarly, p.cj j
w/ is another zero-inflated Polya urn, with probability �1 for the zero cluster and a
Polya urn with total mass parameter ˛ for the remaining patients.

The prior model for the nested clusters on columns and rows is completed to a
full inference model by defining a sampling model for observed data ygi. We use a
normal sampling model with protein and patient cluster specific parameters �ig D
�?kg for all i in the k-th cluster with respect to the protein set Sj that contains g, i.e.

yig
ind� N.�?kg; �

2
` /; for wg D j and cji D k (8.34)

and yig
ind� N.m; �22 / for wg D j and cji D 0, and yig

ind� N.m; �23 / for wg D 0. The
model is completed with conjugate priors on �?kg, m and �2` , ` D 1; 2; 3.

An important detail is that �?kg can vary across proteins g 2 Sj in the same protein
set. The only feature that characterizes Sj is the shared nested clustering cj, not any
shared parameters.

Example 28 (RPPA Data, Ctd.) We implement inference on the desired nested clus-
tering of patients with respect to different protein sets using the prior model (8.32)
and (8.33), together with the sampling model in (8.34). The posterior distribution
p.w j y/ and p.cj; j D 1; : : : ;K j w; y/ is a probability model on a partition of
patients nested within protein sets. Protein sets are formed to give rise to meaningful
patient clusters. Figure 8.10 shows a summary of the posterior distribution on the
random partitions. The displayed partition is found by the algorithm proposed in
Dahl (2006).
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Chapter 9
Other Inference Problems and Conclusion

Abstract In this final chapter we briefly discuss some more specialized applica-
tions of nonparametric Bayesian inference, including the analysis of spatio-temporal
data, model validation and causal inference. These themes are introduced to show
by example the nature of the many application areas of nonparametric Bayesian
inference that we did not include in earlier chapter.

We have discussed BNP approaches for some of the most common statistical
inference problems, without any claim of an exhaustive discussion. We excluded
several important problems, including, for example, inference for time-series data,
spatio-temporal data, model validation, and causal inference. We briefly list some
relevant references.

Spatio-Temporal Data Spatial data are measurements fY.si/ W i D 1; : : : ; ng made
at coordinates s1; : : : ; sn 2 D for some set D � R

d. In point-referenced data, the
coordinates may vary continuously over the fixed set D. The case of areal data
arises when D is partitioned into a finite number of smaller (areal) units. Finally, the
case of point-pattern data follows when D is itself random (Banerjee et al. 2004).
Spatio-temporal data includes additional indexing by time.

One of the earliest nonparametric models for spatial data appears in Gelfand
et al. (2005). They considered replicated point-referenced data. Let y D
.Y.s1/; : : : ;Y.sn// generically denote the complete responses for a given replicate,
and let y1; : : : ; yT denote the entire dataset. Assuming also the availability of a
replicate-specific covariate vector xt, their model assumes

yt j �t;ˇ; �
2 ind� N.x0

tˇ C �t; �
2I/; �t j G

iid� G; G � DP.M;G0/; (9.1)

where G0 is a zero-mean Gaussian process (compare Sect. 4.3.3) with covariance
function �2H
.�; �/. The model is completed with conjugate hyper priors for ˇ, �2,
�2, and a gamma prior for M. Here H
 is, for example, an exponential function of
the form H
.sj; si/ D exp.�
ksj � sik/, in which case 
 is assigned a uniform prior
on .0; b
	.

Model (9.1) introduces spatial correlation through the random effects vectors
�t, which are in turn assumed to originate from a DP model. This describes
the sampling model as a countable location mixture of normals. Thus, given the
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collection of surfaces, any realization of the process selects a single sampled surface.
Duan et al. (2007) extend the model to the generalized spatial DP which allows
for different surface selection at different sites. The model involves a multivariate
stick-breaking construction, where weights may be allowed to depend on spatial
coordinates.

Reich and Fuentes (2007) introduced the spatial stick-breaking prior. The model
introduces the spatial dependence in the construction of the weights. They use

Y.s/ D �.s/C x.s/0ˇ C �.s/;

where s D .s1; s2/, �.s/ � Fs and Fs is a (potentially infinite) mixture of point
masses with weights carrying the dependence on spatial coordinates s. Specifically,
they considered Fs.�/ D Pm

iD1 pi.s/ı�i.�/ with a spatially varying stick breaking
construction,

pi.s/ D Vi.s/
Y

j<i

.1� Vj.s// with Vi.s/ D wi.s/Vi;

starting with p1.s/ D V1.s/, and �i
iid� N.0; �2/, independent of the weights. Spatial

dependence in the weights is introduced via the kernel functions wi.s/. Here, wi.s/
is centered at a knot  i D . i1;  i2/ and the spread is controlled by a bandwidth
parameter "i D ."i1; "i2/. Reich and Fuentes (2007) considered several examples
of kernel functions, for example, wi.s/ D Q2

jD1 I.jsj �  jij < "ji=2/; with suitable
hyper priors on i and "i. Another option is a square-exponential kernel of the form
wi.s/ D Q2

jD1 exp.�.sj �  ji/
2="2ji/.

An alternative approach involving PPMs for disease mapping was developed
by Hegarty and Barry (2008). Their goal is to identify areas of unusually high
or low risk. The model involves a definition of cohesion functions for sets of
areas. Cohesion of any subset S of areas is defined as c.S/ D ˇ`.S/, where
`.S/ D P

Ai2S `S.Ai/ and `S.Ai/ is the number of neighbors of Ai not in S. With this
definition, they discourage maps with a large number of fragmented components.
The model includes a Poisson-style likelihood function. See further details such as
posterior simulation and applications in Hegarty and Barry (2008).

Model Comparison and Model Validation Many BNP priors can be naturally
centered around a parametric model. This feature can be exploited to construct
model validation of a parametric model by comparison with an encompassing non-
parametric model. Carota et al. (1996) discuss the pitfalls of trying to implement
such inference with a DP prior. Comparing yi j G � G and G � DP.M;G0;
/

versus an alternative parametric model yi � G0;
 fails. This is because the random
probability measure G is a.s. discrete. The presence (or absence) of ties among the yi

would decide any model comparison. Berger and Guglielmi (2001) propose model
validation of a parametric model by comparison with a BNP model based on a PT
prior. The Bayes factor is evaluated using Eq. (3.5) (in Sect. 3.1.3). Alternatively the
problems related to the discrete nature of the DP prior could be avoided by using
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model comparison with a DPM model. Basu and Chib (2003) discuss an elegant
and computationally efficient strategy to evaluate the marginal probability under the
DPM model, and thus the Bayes factor.

Besides using BNP models to validate a parametric model, a related problem is
the comparison of alternative BNP models. Throughout the text we used log pseudo
marginal likelihood (LPML) to compare competing models (Geisser and Eddy
1979), which only requires the evaluation of conditional predictive ordinates (CPO).
Without loss of generality, assume that the model includes independent sampling
conditional on some unknown parameters, yi � p.yi j �/, i.i.d., i D 1; : : : ; n, and
let y�i D .yj; j ¤ i/. This is the case, for example, for DPM models (2.6). Then
CPOi D p.yi j y�i/ D R

p.yi j �/ dp.� j y�i/ and LPML D Pn
iD1 log.CPOi/.

An interesting use of BNP in model comparison arises in approaches for massive
multiple comparisons. Guindani et al. (2009) use a DPM prior to interpret and
generalize the optimal discovery procedure of Storey (2007).

Causal Inference A typical applications of causal inference is to clinical trials
without randomization. Consider a stylized clinical study with two treatment arms,
experimental therapy (E) versus control (C), a set of patient-specific baseline
covariates (xi), indicators zi 2 fC;Eg for treatment allocation and an outcome yi.
If treatment allocation is randomized then any difference in outcomes across the
two treatment arms can be attributed to the treatment. Such randomized clinical
trials are the gold standard of clinical research. However, in many cases such
randomization is not possible. Inference that aims to compensate for the lack of
randomization and report a causal treatment effect is known as causal inference.
BNP methods have recently been proposed for such inference by Hill (2011) and
Karabatsos and Walker (2012). Hill (2011) focused on modeling outcomes flexibly
using Bayesian additive regression trees (BART). Karabatsos and Walker (2012)
use a nonparametric mixture model with a stick-breaking prior for the probability
of treatment assignment to provide a more accurately estimated propensity score
in the inverse probability of treatment weighting (IPTW) method. Xu et al. (2013)
use a DDP model to provide causal inference in dynamic treatment regimens by
evaluating an average treatment effect as posterior inference on the difference of
possible outcomes under competing treatments.

And we could continue the discussion with a long list of more applications
of BNP methods to important, but perhaps also increasingly more specialized
applications. In the selection of inference problems that we discussed at length
earlier we tried to focus on generic and basic inference problems, recognizing
that this categorization of BNP models does injustice to many important but more
specialized applications. Many interesting applications appear in recent biostatistics
literature. A good review of more sophisticated models for inference in biostatistics
and bioinformatics appears in Dunson (2010).

Finally, the focus on data analysis problems lead us to not discuss any asymptotic
properties of the proposed approaches. A major part of BNP research over the
past years is concerned with such results. We refer interested readers to recent
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discussions in Ghosh and Ramamoorthi (2003), Phadia (2013) and the forthcoming
book by Ghoshal and van der Vaart (2015).
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Appendix A
DPpackage

While BNP models are extremely powerful and have a wide range of applicability,
they are not as widely used as one might expect. One reason for this has been the gap
between the type of software that many users would like to have for fitting models
and the software that is currently available. The most general programs currently
available for Bayesian inference are BUGS (see, e.g., Gilks et al. 1994), OpenBugs
(Thomas et al. 2006), and JAGS (Plummer 2003). BUGS can be accessed from
the publicly available R program (R Development Core Team 2014), using the
R2WinBUGS package (Strurtz et al. 2005). OpenBugs can run on Windows and
Linux, as well as from inside R. JAGS can also run on Windows and Linux, and from
R using the rjags package. In addition, various R packages exist that directly fit
particular Bayesian models. We refer to Appendix C in Carlin and Louis (2008), for
an extensive list of software for Bayesian modeling. Although the number of fully
Bayesian programs continues to burgeon, with many available at little or no cost,
they generally do not include semiparametric models. Two exceptions to this rule are
the R package bayesm (Rossi et al. 2005; Rossi and McCulloch 2008), including
functions for some models based on DP priors (Ferguson 1973), and the Bayesian
regression software by Karabatsos (2014), which includes a wide variety of BNP
regression problems in a menu-driven package. However, the range of different BNP
models is huge. It is practically impossible to build flexible and efficient software
for the full generality of such models.

Here we provide a brief introduction to a publicly available R package that
is designed to bridge the previously mentioned gap, the DPpackage, originally
presented in Jara (2007) and Jara et al. (2011). Although the name of the package
is due to the DP, the package now includes many other priors on function spaces.
Currently, DPpackage includes models based on the DP (Sect. 2.1), mixtures of
DP (MDP, Sect. 2.2) DPM models (DPM, Sect. 2.2), linear dependent DP (LDDP,
Sect. 4.4.2), linear dependent Poisson-Dirichlet processes (LDPD, Jara et al. 2010),
weight dependent DP (WDDP, Sect. 4.4.4), finite mixture of DPM of normals
(HDPM, Sect. 7.3.1), centrally standardized DP (CSDP, Sect. 5.2.1), PTs (Sect. 3.1),
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mixtures of PTs (MPT, Sect. 3.2.1), mixtures of triangular distributions (Perron and
Mengersen 2001), random Bernstein polynomials (Petrone 1999a,b; Petrone and
Wasserman 2002) and dependent Bernstein polynomials (Barrientos et al. 2011).
The package also includes models based on penalized B-splines (Sect. 4.3.2). The
package is available from the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=DPpackage.

A.1 Overview

The design philosophy behindDPpackage is quite different from most comparable
general purpose languages. The most important design goal has been the implemen-
tation of model-specific MCMC algorithms. A direct benefit of this approach is that
the sampling algorithms can be made dramatically more efficient than in a general
purpose function based on black-box algorithms.

Fitting a model in DPpackage begins with a call to an R function, for instance,
DPmodel, or PTmodel. Here “model” is a descriptive name for the model
being fitted, for example DPcdensity. Typically, the model function will take
a number of arguments that control the MCMC sampling strategy. In addition,
the model(s) formula(s), data, and prior parameters are passed to the model
function as arguments. The common arguments in every model function are listed
next.

(i) prior: A list with values for the prior hyper-parameters.
(ii) mcmc: A list which must include the integers nburn giving the number

of initial burn-in scans, nskip giving the thinning interval, nsave giving
the total number of scans to be saved, and ndisplay giving the number of
saved scans to be displayed on the screen, that is, the function reports on the
screen when every ndisplay iterations have been carried out and returns
the process runtime in seconds. For some specific models, one or more tuning
parameters for Metropolis steps may be needed and must be included in this
list. The names of these tuning parameters are explained in each specific model
description in the associated help files.

(iii) state: An object list giving the current value of the parameters, when the
analysis is the continuation of a previous MCMC simulation, or giving the
starting values for a new Markov chain. The latter is useful to run multiple
chains starting from different points.

(iv) status: A logical variable indicating whether it is a new run (TRUE) or
the continuation of a previous analysis (FALSE). In the latter case, the current
value of the parameters must be specified in the object state.

Inside the R function the inputs are organized in a more useable form, MCMC
simulation is implemented in a shared library that is written in a compiled language,
and the posterior Monte Carlo sample is summarized, labeled, assigned into an
output list, and returned. The output list includes,

http://CRAN.R-project.org/package=DPpackage
http://CRAN.R-project.org/package=DPpackage
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(i) state: A list containing the current value of the parameters.
(ii) save.state: An object list containing the MCMC samples for the param-

eters. This list contains two matrices randsave and thetasave, which
contain the MCMC samples of the variables with random distribution (errors,
random effects, etc.) and the parametric part of the model, respectively.

As an example of the extraction of the output elements, consider the generic
model fit:

fit <- DPmodel(..., prior, mcmc, state, status, ....)

The lists can be extracted using the following code:

fit$state
fit$save.state$randsave
fit$save.state$thetasave

Based on these output objects, it is possible to use, for instance, the boa (Smith
2007) or the coda (Plummer et al. 2009) R packages to evaluate convergence
diagnostics. For illustration, we consider the coda package here. It requires a
matrix of posterior draws for relevant parameters to be saved as a mcmc object.
Assume that we have obtained fit1, fit2, and fit3, by running a model
function three times, specifying different starting values for each run. To compute
the Gelman-Rubin convergence diagnostic statistic for the first parameter stored in
the thetasave object, the following commands may be used:

library("coda")
coda.obj <- mcmc.list(

chain1 = mcmc(fit1$save.state$thetasave[,1]),
chain2 = mcmc(fit2$save.state$thetasave[,1]),
chain3 = mcmc(fit3$save.state$thetasave[,1]))

gelman.diag(coda.obj, transform = TRUE)

The second command line saves the results as a mcmc.list object class and the
third command line computes the Gelman-Rubin statistic from these three chains.

Generic R functions such as print, plot, summary and anova have methods
to display the results of a DPpackage model fit. The function print displays
the posterior means of the hyper-parameters in the model, and summary displays
posterior summary statistics (mean, median, standard deviation, naive standard
errors, and credibility intervals). By default, the function summary computes the
95 % highest posterior density (HPD) intervals using the Monte Carlo method
proposed by Chen and Shao (1999). Alternatively the user can display the order
statistic estimator of the 95 % credible interval by using the following code:

summary(fit, hpd = FALSE)

The plot function displays the trace plots and a kernel-based estimate of the
posterior distribution for the parameters of the model. Similarly to summary, the
plot function displays the 95 % HPD regions in the density plot and the posterior
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mean. The same plot but considering the 95 % credible region can be obtained by
using the following code:

plot(fit, hpd = FALSE)

The anova function computes simultaneous credible regions for a vector of
parameters from the MCMC sample using the method described by Besag et al.
(1995). The output of the anova function is an anova-like table containing the
pseudo-contour probabilities for each of the factors included in the linear part of the
model.

A.2 An Example

We show how model fitting functions in DPpackage are implemented in the
context of density regression. Conditional density estimation (Sect. 4.4.4) is the
fully nonparametric version of traditional regression problems for data f.xi; yi/gn

iD1,
where xi 2 X � R

p is a set of predictors, and yi 2 R is the response variable. Rather
than assuming a functional form for the mean function and/or a common error
distribution the problem is cast as inference for a family of conditional distributions

fGx W x 2 X � R
pg ;

where yi j xi
ind:� Gxi . The current version of DPpackage considers several

BNP models for related random probability distributions including particular
implementations of the DDP model proposed in MacEachern (1999, 2000), a natural
generalization of the approach discussed by Müller et al. (1996) for nonparametric
regression to the context of conditional density estimation. In this section we
show how to perform conditional density estimation using BNP models for related
probability distributions, also referred to as Bayesian density regression, using the
DPcdensity and LDDPdensity functions. See the discussion in Sects. 4.4.4
and 4.4.2, Eq. (4.12) for a discussion of the models. We briefly review these models
below.

A.2.1 The Models

The LDDP Model In Sects. 4.4.1 and 4.4.2 we reviewed the DDP model as an
approach to define a prior model for an uncountable set of random measures indexed
by a single continuous covariate, say x, fGx W x 2 X � Rg. We will use the version
of the model defined in (4.12) as the linear dependent DP (LDDP). We augment
ˇh to .ˇh; �h/, to include the kernel variance in the mixture of (4.12). Inference in
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this model is implemented in the LDDPdensity function. In summary, we fit the
following model to the regression data .yi; xi/, i D 1; : : : ; n:

yi j G
ind:�
Z

N
�
yijx0

iˇ; �
2
�

dG.ˇ; �2/;

and Gj˛;G0 � DP .˛G0/ ; where G0 	 N .ˇj�b;Sb/Ga
�
��2j�1=2; �2=2

�
. The

LDDP model specification is completed with the following hyper-priors:

˛ja0; b0 � Ga .a0; b0/ ; �2j�s1 ; �s2 � Ga.�s1=2; �s2=2/;

�bjm0;S0 � N.m0;S0/ and Sbj�;‰ � IWis.�;‰/:

The WDDP Model Alternatively we will implement conditional regression as in
Sect. 4.4.4. Let xi denote a p-dimensional vector of continuous predictors. We fit a
DPM of multivariate Gaussian distributions to an augmented response vector Qyi D
.yi; xi/

0, i D 1; : : : ; n. The implied conditional distribution (4.14) takes the form

fz.yi/ D
1X

lD1
!l .xi/N.yi j ˇ0l C x0

iˇl; �
2
l /: (A.1)

This is (4.14) under a DPM model for Qy before marginalizing w.r.t. G. Recall
from Sect. 4.4.4 that we refer to this model as weight dependent Dirichlet process
(WDDP). A similar density regression is proposed in Dunson et al. (2007).

Inference under the WDDP is implemented in the DPpackage function
DPcdensity. In summary, the model is

Qyi j G
iid�
Z

N .Qyij�;†/ dG.�;†/; and G j ˛;G0 � DP .˛G0/ : (A.2)

The baseline distribution G0 is the conjugate normal-inverted-Wishart (IW) distri-
bution G0 	 N

�
�jm1; �

�1
0 †

�
IWis .†j�1;‰1/. The model is completed with the

hyper-priors ˛ j a0; b0 � Ga .a0; b0/, m1 j m2;S2 � N .m2;S2/, �0j�1; �2 �
Ga .�1=2; �2=2/, and ‰1 j �2;‰2 � IWis .�2;‰2/ : The model implies a weight
dependent mixture model, as in expression (A.1), with

!l.z/ D !lN.z j �2l;†22l/P1
jD1 !jN.z j �2j;†22j/

; ˇ0l D �1l �†12l†
�1
22l�2l; ˇl D †12l†

�1
22l;

and

�2l D �211l �†12l†
�1
22l†21l;

where the weights !l follow a DP stick-breaking construction and the remaining
elements arise from the standard partition of the vectors of means and (co)variance
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matrices given by

�l D
�
�1l

�2l

�

and †l D
�
�211l †12l

†21l †22l

�

;

respectively.
The DPcdensity function fits a marginalized version of the model, where the

random probability measure G is integrated out. Full inference on the conditional
density at covariate level z is obtained by using the �-DP approximation proposed
by Muliere and Tardella (1998), with � D 0:01.

A.2.2 Example 29: Simulated Data

Data We replicate the results reported by Dunson et al. (2007), where a different
approach is proposed. Following Dunson et al. (2007), we simulate n D 500

observations from a mixture of two normal linear regression models, with the
mixture weights depending on the predictor, different error variances and a non-
linear mean function for the second component,

yi j xi
ind:� expf�2xigN.yijxi; 0:01/C .1 � expf�2xig/N.yijx4i ; 0:04/; i D 1; : : : ; n:

The predictor values xi are simulated from a uniform distribution, xi
iid� U.0; 1/. The

following code is useful to plot the true conditional densities and the mean function:

R> dtrue <- function(grid, x) {
+ exp(-2 * x) * dnorm(grid, mean = x, sd = sqrt(0.01)) +
+ (1 - exp(-2 * x)) * dnorm(grid, mean = x^4, sd = sqrt(0.04))
+ }
R> mtrue <- function(x) exp(-2 * x) * x + (1 - exp(-2 * x)) * x^4

The data were simulated using the following code:

R> set.seed(0)
R> nrec <- 500
R> x <- runif(nrec)
R> y1 <- x + rnorm(nrec, 0, sqrt(0.01))
R> y2 <- x^4 + rnorm(nrec, 0, sqrt(0.04))
R> u <- runif(nrec)
R> prob <- exp(-2 * x)
R> y <- ifelse(u < prob, y1, y2)

Fit Using DPcdensity Inference under model (A.2) is implemented in the
DPpackage function DPcdensity. We fit the model using the hyper-parameters
a0 D 10, b0 D 1, �1 D �2 D 4, m2 D .Ny; Nx/0, �1 D 6:01, �2 D 3:01 and
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S2 D ‰�1
2 D 0:5S, where S is the sample covariance matrix for the response and

predictor. The following code illustrates how the hyper-parameters are specified:

R> w <- cbind(y, x)
R> wbar <- apply(w, 2, mean)
R> wcov <- var(w)
R> prior <- list(a0 = 10, b0 = 1, nu1 = 4, nu2 = 4, s2 = 0.5 * wcov,
+ m2 = wbar, psiinv2 = 2 * solve(wcov), tau1 = 6.01, tau2 = 3.01)

A total number of 25,000 scans of the Markov chain cycle implemented in the
DPcdensity function were completed. A burn-in period of 5000 samples was
discarded and the chain was then subsampled at every fourth iterate to get a final
Monte Carlo sample size of 5000. The following code implements this MCMC
specification:

R> mcmc <- list(nburn = 5000, nsave = 5000, nskip = 3, ndisplay = 1000)

The following commands were used to fit the model, where the conditional density
estimates were evaluated on a grid of 100 points on the range of the response:

R> fitWDDP <- DPcdensity(y = y, x = x, xpred = seq(0, 1, 0.02),
+ ngrid = 100, compute.band = TRUE, type.band = "HPD",
+ prior = prior, mcmc = mcmc, state = NULL, status = TRUE)

Fit Using LDDPdensity Using the same MCMC specification, we also fitted the
LDDP model to the same data. We used the functionLDDPdensity to fit a mixture
of B-splines models with x0ˇ D ˇ0 C P6

jD1  j.x/ˇj, where  k.x/ corresponds to
the kth B-spline basis function evaluated at x, as implemented in the bs function
of the splines R package. The LDDP model was fitted using Zellner’s g-prior
(Zellner 1983), with g D 103. The following values for the hyper-parameters were
considered: a0 D 10, b0 D 1, m0 D �

X0X
��1

X0y, S0 D g
�
X0X

��1
, �1 D 6:01,

�s1 D 6:01, �s2 D 2:01, � D 9, and ‰�1 D S0. The following code shows the prior
specification:

R> library("splines")
R> W <- cbind(rep(1, nrec), bs(x, df = 6, Boundary.knots = c(0, 1)))
R> S0 <- 1000 * solve(t(W) % * % W)
R> m0 <- solve(t(W) % * % W) % * % t(W) % * % y
R> prior <- list(a0 = 10, b0 = 1, m0 = m0, S0 = S0, tau1 = 6.01,
+ taus1 = 6.01, taus2 = 2.01, nu = 9, psiinv = solve(S0))

The following commands were used to fit the model, where the conditional density
estimates were evaluated on a grid of 100 points on the range of the response,

R> xpred <- seq(0, 1, 0.02)
R> Wpred <- cbind(rep(1, length(xpred)),
+ predict(bs(x, df = 6, Boundary.knots = c(0, 1)), xpred))
R> fitLDDP <- LDDPdensity(formula = y ~ W - 1, zpred = Wpred, ngrid = 100,
+ compute.band = TRUE, type.band = "HPD", prior = prior, mcmc = mcmc,
+ state = NULL, status = TRUE)
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Results Figures A.1 and A.2 show the true density, the estimated density and
pointwise 95 % HPD intervals for a range of values of the predictor for the WDDP
and LDDP model, respectively. The estimates correspond approximately to the true
densities in each case. The figures also display the plot of the data along with the
estimated mean function, which is very close to the true one under both models.
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Fig. A.1 Example 29. WDDP model: True conditional densities of y j x (in red), posterior mean
estimates (black continuous line) and pointwise 95 % HPD intervals (black dashed lines) for x as
indicated in the first five panels. The last panel shows the data, along with the true and estimated
mean regression curves
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Fig. A.2 Example 29. LDDP model: True conditional densities of y j x (in red), posterior mean
estimates (black continuous line) and pointwise 95 % HPD intervals (black dashed lines) for x as
indicated in the first five panels. The last panel shows the data, along with the true and estimated
mean regression curves

In both functions, the posterior mean estimates and the limits of pointwise 95 %
HPD intervals for the conditional density for each value of the predictors are stored
in the model objects densp.m, and densp.l and densp.h, respectively. The
following code illustrates how these objects can be used in order to get the posterior
estimates for x D 0:1 in the LDDP model. This code was used to draw the plots
displayed in Figs. A.1 and A.2.
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R> par(cex = 1.5, mar = c(4.1, 4.1, 1, 1))
R> plot(fitLDDP$grid, fitLDDP$densp.h[6,], lwd = 3, type = "l", lty = 2,
+ main = "", xlab = "y", ylab = "f(y|x)", ylim = c(0, 4))
R> lines(fitLDDP$grid, fitLDDP$densp.l[6,], lwd = 3, type = "l", lty = 2)
R> lines(fitLDDP$grid, fitLDDP$densp.m[6,], lwd = 3, type = "l", lty = 1)
R> lines(fitLDDP$grid, dtrue(fitLDDP$grid, xpred[6]), lwd = 3,
+ type = "l", lty = 1, col = "red")

Finally, both functions return the posterior mean estimates and the limits of point-
wise 95 % HPD intervals for the mean function in the model objects meanfp.m,
and meanfp.l and meanfp.h, respectively. The following code was used to
obtain the estimated mean function under the LDDP model, along with the true
function.

R> par(cex = 1.5, mar = c(4.1, 4.1, 1, 1))
R> plot(x, y, xlab = "x", ylab = "y", main = "")
R> lines(xpred, fitLDDP$meanfp.m, type = "l", lwd = 3, lty = 1)
R> lines(xpred, fitLDDP$meanfp.l, type = "l", lwd = 3, lty = 2)
R> lines(xpred, fitLDDP$meanfp.h, type = "l", lwd = 3, lty = 2)
R> lines(xpred, mtrue(xpred), col = "red", lwd = 3)
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List of Examples

Some examples appear in multiple places when we use the same data to illustrate
different methods. Below is a list of all examples, with the section numbers.

1. Density estimation: Chap. 1
2. Oral cancer: Chap. 1, Sects. 6.1, 6.2.1, 6.2.2, 6.2.3
3. T-cell receptors: Sects. 2.1.2, 2.2
4. Gene expression: Sects. 2.2, 3.1.3
5. Old Faithful geyser: Sects. 4.2, 4.3.1, 4.3.2, 4.3.3, 4.4.1, 4.4.2, 4.4.3
6. Doppler function: Sect. 4.3.1
7. Nitrogen oxide: Sect. 4.3.2
8. Breast cancer: Sects. 4.4.1, 6.4
9. Baseball: Sect. 5.1.1

10. Jane Austen: Sect. 5.1.2
11. Teacher evaluation: Sect. 5.1.3
12. Unemployment data: Sects. 5.2.1, 5.2.2
13. Epilepsy trial: Sect. 5.2.3
14. Mexican DWI Sect. 5.2.4
15. Sperm deformity: Sect. 5.3
16. Columbian children mortality: Sect. 6.3.2
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17. Breast retraction: Sect. 6.4
18. Lung cancer: Sect. 6.4.
19. Mammogram usage: Sect. 7.1
20. Population PD—CALGB 8881: Sect. 7.2
21. Two related studies—CALGB 8881 and 9160: Sect. 7.3.1
22. Multiple studies—CALGB 8881, 9160 and 8541: Sect. 7.3.2
23. Pregnancies: Sect. 7.3.3
24. Sarcoma: Sects. 8.2, 8.3
25. ICU readmission: Sect. 8.4.2
26. Concha y Toro: Sect. 8.4.3
27. Tumor heterogeneity: Sect. 8.5.2
28. RPPA data: Sect. 8.6
29. Simulated data: Appendix
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classification and regression tree (CART),

63
clustering. See partition

model based (see model based clustering)
coda, 181
cohesion function, 150

uniform, 153
completely random measure (CRM), 48
conditional regression, 72, 183
contingency table, 80, 83
cosine expansion, 59
covariance function, 62, 175
CRM. See completely random measure (CRM)
CSDP. See centrally standardized Dirichlet

process (CSDP)

DDP. See dependent Dirichlet process (DDP)
density regression. See conditional regression
dependent Dirichlet process (DDP), 65, 136,

177
ANOVA, 67, 67, 70, 136
linear, 185
posterior simulation, 67

dependent increments models, 103
Dirichlet-multinomial process, 27
Dirichlet process (DP), 8, 27, 34, 48, 65, 78,

127, 177, 180
centrally standardized, 87, 91, 180
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enriched, 141
�-, 184
finite (see finite Dirichlet process)
generalized (see generalized Dirichlet

process)
hierarchical, 140
linear dependent (see linear dependent

Dirichlet process)
marginal distribution, 11
mean, 93
mixture of, 15
nested, 140
partition, 15, 148, 152
posterior updating, 9
weight dependent, 73, 183

Dirichlet process mixture (DPM), 12, 72, 78,
84, 98, 127, 180, 183

ANOVA, 70
clustering, 15
finite mixture of (see finite mixture of

DPM)
hierarchical (see hierarchical DPM)
posterior distribution, 12
posterior simulation, 18, 20–22

discrete wavelet transform, 55
DP. See Dirichlet process (DP)
DPM. See Dirichlet process mixture (DPM)
DPpackage

CSDPbinary, 88
DPcdensity, 73, 183, 184
DPdensity, 46
DPglmm, 94
DProc, 98
FPTFbinary, 91
gam, 90
HDPMdensity, 134
LDDP, 68, 137
LDDPdensity, 99, 183, 185
LDDProc, 99
LDDPsurvival, 111, 114
LDTFPdensity, 70
LDTFPglmm, 129
LDTFPsurvival, 114
PSgam, 61
PTdensity, 40
PTglmm, 127

feature allocation, 145, 164
finite Dirichlet process, 25, 53

posterior simulation, 26
finite mixture of DPM, 180
finite mixture of random probability measures,

132

finite Polya tree (FPT), 41
posterior simulation, 42, 45

FPT. See finite Polya tree (FPT)
frailty, 109
functional mixed effects model, 58

gamma process, 70
Gaussian process, 62, 65, 66, 175

generalized additive models, 63
treed, 63

generalized Dirichlet process, 28
generalized linear mixed model (GLMM), 92,

127
generalized linear model (GLM), 86

semiparametric, 87
GLM. See generalized linear model (GLM)
GLMM. See generalized linear mixed model

(GLMM)
GP. See Gaussian process (GP)

hazard rate, 3
time-dependent covariates, 109
time-dependent regression, 109

HDPM. See hierarchical Dirichlet process
mixture (HDPM)

hierarchical DPM, 134
homogeneity test, 80

IBP. See Indian buffet process (IBP)
Indian buffet process, 165

JAGS, 179
rjags, 179

k-means, 169

LDDP. See linear dependent Dirichlet process
(LDDP)

LDTFP. See linear dependent tail-free process
(LDTFP)

linear dependent Dirichlet process (LDDP),
68, 99, 111, 114, 180, 183

linear dependent Poisson-Dirichlet, 180
linear dependent tail-free process (LDTFP),

70, 113, 114, 127
locally weighted linear regression, 72
log pseudo marginal likelihood (LPML), 95,

108, 115, 149, 177
LPML. See log pseudo marginal likelihood

(LPML)
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MAD Bayes. See MAP-based asymptotic
derivation

MAP-based asymptotic derivation, 169
matrix stick breaking process, 141
mixed effects model, 126
mixture of beta, 90
mixture of Polya tree (MPT), 39, 52, 98, 101,

108, 109, 180
multivariate, 127

model based clustering, 148
model comparison, 176
model validation, 176
MPT. See mixture of Polya tree (MPT)

neural network, 58
neutral to the right (NTR), 102
nonparametric regression

basis expansion, 54
B-spline, 69
Dirichlet process mixture, 52
Dirichlet process residuals, 52
Polya tree residuals, 52

normalized generalized gamma process, 48
normalized generalized Gaussian process, 49
normalized inverse Gaussian, 48
Normalized random measures with

independent increments (NRMI), 48
NRMI

mixture of, 49
NTR. See neutral to the right (NTR)

OpenBugs, 179
ordinal response

multivariate, 83
regression, 95

partition, 145
least squares, 146
nested, 170

PH. See proportional hazards (PH) model
pharmacodynamic models, 129
pharmacokinetic models, 129
Pitman Yor process, 28
Poisson Dirichlet process, 28
Polya tree (PT), 34, 52, 70, 91, 101, 177

dependent, 70
marginal, 37
mixture of (see mixture of Polya tree

(MPT))
partially specified (see finite Polya tree

(FPT))
posterior, 37

posterior simulation, 43
predictive distribution, 40
prior centering, 35

Polya urn, 15, 78, 148, 153
zero-inflated, 173

population PK/PD models, 129
PPM. See product partition model (PPM)
PPMx model, 156
probit model

multivariate, 84
product partition model (PPM), 150

change-point problem, 152
predictor dependent, 73
spatial, 176

proportional hazards (PH) model, 2, 105, 109,
127

proportional odds, 108, 109
pseudo contour probability, 117
PT. See Polya tree (PT)
PY. See Pitman Yor process
pyramid scheme, 55

R2BayesX, 4, 105, 109
bayesx, 106

ROC curve, 96
area under the curve, 96
empirical, 98

similarity function, 156
slice sampler, 23
spatio-temporal data, 175
spBayesSurv, 109
species sampling model (SSM), 27
splines

bs, 185
SSM. See species sampling model (SSM)
stick breaking construction, 8, 28, 65, 176

multivariate, 176
spatial, 176

tail free (TF) process, 26, 34, 114
linear dependent (see linear dependent tail

free process)
TF. See tail free (TF) process
tgp, 63

wavelets, 54
WDDP. See weight dependent Dirichlet

process (WDDP)
weight dependent Dirichlet process (WDDP),
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