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Pavel Čížek • Wolfgang Härdle • Rafał Weron

Statistical Tools
for Finance
and Insurance

123
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Pavel Č́ıžek Center for Economic Research, Tilburg University

Kai Detlefsen Center for Applied Statistics and Economics, Humboldt-Universität
zu Berlin

Hansjörg Furrer Swiss Life, Zürich
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Agnieszka Wy�lomańska Institute of Mathematics, Wroc�law University of Tech-
nology

Uwe Wystup MathFinance AG, Waldems



Preface

This book is designed for students, researchers and practitioners who want to
be introduced to modern statistical tools applied in finance and insurance. It
is the result of a joint effort of the Center for Economic Research (CentER),
Center for Applied Statistics and Economics (C.A.S.E.) and Hugo Steinhaus
Center for Stochastic Methods (HSC). All three institutions brought in their
specific profiles and created with this book a wide-angle view on and solutions
to up-to-date practical problems.

The text is comprehensible for a graduate student in financial engineering as
well as for an inexperienced newcomer to quantitative finance and insurance
who wants to get a grip on advanced statistical tools applied in these fields. An
experienced reader with a bright knowledge of financial and actuarial mathe-
matics will probably skip some sections but will hopefully enjoy the various
computational tools. Finally, a practitioner might be familiar with some of
the methods. However, the statistical techniques related to modern financial
products, like MBS or CAT bonds, will certainly attract him.

“Statistical Tools for Finance and Insurance” consists naturally of two main
parts. Each part contains chapters with high focus on practical applications.
The book starts with an introduction to stable distributions, which are the stan-
dard model for heavy tailed phenomena. Their numerical implementation is
thoroughly discussed and applications to finance are given. The second chapter
presents the ideas of extreme value and copula analysis as applied to multivari-
ate financial data. This topic is extended in the subsequent chapter which
deals with tail dependence, a concept describing the limiting proportion that
one margin exceeds a certain threshold given that the other margin has already
exceeded that threshold. The fourth chapter reviews the market in catastro-
phe insurance risk, which emerged in order to facilitate the direct transfer of
reinsurance risk associated with natural catastrophes from corporations, insur-
ers, and reinsurers to capital market investors. The next contribution employs
functional data analysis for the estimation of smooth implied volatility sur-
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faces. These surfaces are a result of using an oversimplified market benchmark
model – the Black-Scholes formula – to real data. An attractive approach to
overcome this problem is discussed in chapter six, where implied trinomial trees
are applied to modeling implied volatilities and the corresponding state-price
densities. An alternative route to tackling the implied volatility smile has led
researchers to develop stochastic volatility models. The relative simplicity and
the direct link of model parameters to the market makes Heston’s model very
attractive to front office users. Its application to FX option markets is cov-
ered in chapter seven. The following chapter shows how the computational
complexity of stochastic volatility models can be overcome with the help of
the Fast Fourier Transform. In chapter nine the valuation of Mortgage Backed
Securities is discussed. The optimal prepayment policy is obtained via optimal
stopping techniques. It is followed by a very innovative topic of predicting cor-
porate bankruptcy with Support Vector Machines. Chapter eleven presents a
novel approach to money-demand modeling using fuzzy clustering techniques.
The first part of the book closes with productivity analysis for cost and fron-
tier estimation. The nonparametric Data Envelopment Analysis is applied to
efficiency issues of insurance agencies.

The insurance part of the book starts with a chapter on loss distributions. The
basic models for claim severities are introduced and their statistical properties
are thoroughly explained. In chapter fourteen, the methods of simulating and
visualizing the risk process are discussed. This topic is followed by an overview
of the approaches to approximating the ruin probability of an insurer. Both
finite and infinite time approximations are presented. Some of these methods
are extended in chapters sixteen and seventeen, where classical and anomalous
diffusion approximations to ruin probability are discussed and extended to
cases when the risk process exhibits good and bad periods. The last three
chapters are related to one of the most important aspects of the insurance
business – premium calculation. Chapter eighteen introduces the basic concepts
including the pure risk premium and various safety loadings under different
loss distributions. Calculation of a joint premium for a portfolio of insurance
policies in the individual and collective risk models is discussed as well. The
inclusion of deductibles into premium calculation is the topic of the following
contribution. The last chapter of the insurance part deals with setting the
appropriate level of insurance premium within a broader context of business
decisions, including risk transfer through reinsurance and the rate of return on
capital required to ensure solvability.

Our e-book offers a complete PDF version of this text and the corresponding
HTML files with links to algorithms and quantlets. The reader of this book
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may therefore easily reconfigure and recalculate all the presented examples
and methods via the enclosed XploRe Quantlet Server (XQS), which is also
available from www.xplore-stat.de and www.quantlet.com. A tutorial chapter
explaining how to setup and use XQS can be found in the third and final part
of the book.

We gratefully acknowledge the support of Deutsche Forschungsgemeinschaft
(SFB 373 Quantifikation und Simulation Ökonomischer Prozesse, SFB 649
Ökonomisches Risiko) and Komitet Badań Naukowych (PBZ-KBN 016/P03/99
Mathematical models in analysis of financial instruments and markets in
Poland). A book of this kind would not have been possible without the help
of many friends, colleagues, and students. For the technical production of the
e-book platform and quantlets we would like to thank Zdeněk Hlávka, Sigbert
Klinke, Heiko Lehmann, Adam Misiorek, Piotr Uniejewski, Qingwei Wang, and
Rodrigo Witzel. Special thanks for careful proofreading and supervision of the
insurance part go to Krzysztof Burnecki.

Pavel Č́ıžek, Wolfgang Härdle, and Rafa�l Weron

Tilburg, Berlin, and Wroc�law, February 2005
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Finance



1 Stable Distributions

Szymon Borak, Wolfgang Härdle, and Rafa�l Weron

1.1 Introduction

Many of the concepts in theoretical and empirical finance developed over the
past decades – including the classical portfolio theory, the Black-Scholes-Merton
option pricing model and the RiskMetrics variance-covariance approach to
Value at Risk (VaR) – rest upon the assumption that asset returns follow
a normal distribution. However, it has been long known that asset returns
are not normally distributed. Rather, the empirical observations exhibit fat
tails. This heavy tailed or leptokurtic character of the distribution of price
changes has been repeatedly observed in various markets and may be quan-
titatively measured by the kurtosis in excess of 3, a value obtained for the
normal distribution (Bouchaud and Potters, 2000; Carr et al., 2002; Guillaume
et al., 1997; Mantegna and Stanley, 1995; Rachev, 2003; Weron, 2004).

It is often argued that financial asset returns are the cumulative outcome of a
vast number of pieces of information and individual decisions arriving almost
continuously in time (McCulloch, 1996; Rachev and Mittnik, 2000). As such,
since the pioneering work of Louis Bachelier in 1900, they have been modeled
by the Gaussian distribution. The strongest statistical argument for it is based
on the Central Limit Theorem, which states that the sum of a large number of
independent, identically distributed variables from a finite-variance distribution
will tend to be normally distributed. However, as we have already mentioned,
financial asset returns usually have heavier tails.

In response to the empirical evidence Mandelbrot (1963) and Fama (1965) pro-
posed the stable distribution as an alternative model. Although there are other
heavy-tailed alternatives to the Gaussian law – like Student’s t, hyperbolic, nor-
mal inverse Gaussian, or truncated stable – there is at least one good reason



22 1 Stable Distributions

for modeling financial variables using stable distributions. Namely, they are
supported by the generalized Central Limit Theorem, which states that sta-
ble laws are the only possible limit distributions for properly normalized and
centered sums of independent, identically distributed random variables.

Since stable distributions can accommodate the fat tails and asymmetry, they
often give a very good fit to empirical data. In particular, they are valuable
models for data sets covering extreme events, like market crashes or natural
catastrophes. Even though they are not universal, they are a useful tool in
the hands of an analyst working in finance or insurance. Hence, we devote
this chapter to a thorough presentation of the computational aspects related
to stable laws. In Section 1.2 we review the analytical concepts and basic
characteristics. In the following two sections we discuss practical simulation and
estimation approaches. Finally, in Section 1.5 we present financial applications
of stable laws.

1.2 Definitions and Basic Characteristics

Stable laws – also called α-stable, stable Paretian or Lévy stable – were in-
troduced by Levy (1925) during his investigations of the behavior of sums of
independent random variables. A sum of two independent random variables
having an α-stable distribution with index α is again α-stable with the same
index α. This invariance property, however, does not hold for different α’s.

The α-stable distribution requires four parameters for complete description:
an index of stability α ∈ (0, 2] also called the tail index, tail exponent or
characteristic exponent, a skewness parameter β ∈ [−1, 1], a scale parameter
σ > 0 and a location parameter µ ∈ R. The tail exponent α determines the
rate at which the tails of the distribution taper off, see the left panel in Figure
1.1. When α = 2, the Gaussian distribution results. When α < 2, the variance
is infinite and the tails are asymptotically equivalent to a Pareto law, i.e. they
exhibit a power-law behavior. More precisely, using a central limit theorem
type argument it can be shown that (Janicki and Weron, 1994; Samorodnitsky
and Taqqu, 1994):{

limx→∞ xαP(X > x) = Cα(1 + β)σα,

limx→∞ xαP(X < −x) = Cα(1 + β)σα,
(1.1)
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Dependence on alpha 
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Figure 1.1: Left panel : A semilog plot of symmetric (β = µ = 0) α-stable
probability density functions (pdfs) for α = 2 (black solid line), 1.8
(red dotted line), 1.5 (blue dashed line) and 1 (green long-dashed
line). The Gaussian (α = 2) density forms a parabola and is the
only α-stable density with exponential tails. Right panel : Right
tails of symmetric α-stable cumulative distribution functions (cdfs)
for α = 2 (black solid line), 1.95 (red dotted line), 1.8 (blue dashed
line) and 1.5 (green long-dashed line) on a double logarithmic paper.
For α < 2 the tails form straight lines with slope −α.

STFstab01.xpl

where:

Cα =
(

2
∫ ∞

0

x−α sin(x)dx

)−1

=
1
π

Γ(α) sin
πα

2
.

The convergence to a power-law tail varies for different α’s and, as can be seen
in the right panel of Figure 1.1, is slower for larger values of the tail index.
Moreover, the tails of α-stable distribution functions exhibit a crossover from
an approximate power decay with exponent α > 2 to the true tail with exponent
α. This phenomenon is more visible for large α’s (Weron, 2001).

When α > 1, the mean of the distribution exists and is equal to µ. In general,
the pth moment of a stable random variable is finite if and only if p < α. When
the skewness parameter β is positive, the distribution is skewed to the right,
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Dependence on beta 
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Figure 1.2: Left panel : Stable pdfs for α = 1.2 and β = 0 (black solid line), 0.5
(red dotted line), 0.8 (blue dashed line) and 1 (green long-dashed
line). Right panel : Closed form formulas for densities are known
only for three distributions – Gaussian (α = 2; black solid line),
Cauchy (α = 1; red dotted line) and Levy (α = 0.5, β = 1; blue
dashed line). The latter is a totally skewed distribution, i.e. its
support is R+. In general, for α < 1 and β = 1 (−1) the distribution
is totally skewed to the right (left).
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i.e. the right tail is thicker, see the left panel of Figure 1.2. When it is negative,
it is skewed to the left. When β = 0, the distribution is symmetric about µ. As
α approaches 2, β loses its effect and the distribution approaches the Gaussian
distribution regardless of β. The last two parameters, σ and µ, are the usual
scale and location parameters, i.e. σ determines the width and µ the shift of
the mode (the peak) of the density. For σ = 1 and µ = 0 the distribution is
called standard stable.

1.2.1 Characteristic Function Representation

Due to the lack of closed form formulas for densities for all but three dis-
tributions (see the right panel in Figure 1.2), the α-stable law can be most
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Figure 1.3: Comparison of S and S0 parameterizations: α-stable pdfs for β =
0.5 and α = 0.5 (black solid line), 0.75 (red dotted line), 1 (blue
short-dashed line), 1.25 (green dashed line) and 1.5 (cyan long-
dashed line).
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conveniently described by its characteristic function φ(t) – the inverse Fourier
transform of the probability density function. However, there are multiple pa-
rameterizations for α-stable laws and much confusion has been caused by these
different representations, see Figure 1.3. The variety of formulas is caused by
a combination of historical evolution and the numerous problems that have
been analyzed using specialized forms of the stable distributions. The most
popular parameterization of the characteristic function of X ∼ Sα(σ, β, µ),
i.e. an α-stable random variable with parameters α, σ, β, and µ, is given by
(Samorodnitsky and Taqqu, 1994; Weron, 2004):

ln φ(t) =

⎧⎪⎨⎪⎩
−σα|t|α{1 − iβsign(t) tan πα

2 } + iµt, α �= 1,

−σ|t|{1 + iβsign(t) 2
π ln |t|} + iµt, α = 1.

(1.2)
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For numerical purposes, it is often advisable to use Nolan’s (1997) parameter-
ization:

ln φ0(t) =

⎧⎪⎨⎪⎩
−σα|t|α{1 + iβsign(t) tan πα

2 [(σ|t|)1−α − 1]} + iµ0t, α �= 1,

−σ|t|{1 + iβsign(t) 2
π ln(σ|t|)} + iµ0t, α = 1.

(1.3)
The S0

α(σ, β, µ0) parameterization is a variant of Zolotariev’s (M)-parameteri-
zation (Zolotarev, 1986), with the characteristic function and hence the density
and the distribution function jointly continuous in all four parameters, see the
right panel in Figure 1.3. In particular, percentiles and convergence to the
power-law tail vary in a continuous way as α and β vary. The location parame-
ters of the two representations are related by µ = µ0−βσ tan πα

2 for α �= 1 and
µ = µ0 − βσ 2

π ln σ for α = 1. Note also, that the traditional scale parameter
σG of the Gaussian distribution defined by:

fG(x) =
1√

2πσG

exp
{
− (x − µ)2

2σ2
G

}
, (1.4)

is not the same as σ in formulas (1.2) or (1.3). Namely, σG =
√

2σ.

1.2.2 Stable Density and Distribution Functions

The lack of closed form formulas for most stable densities and distribution
functions has negative consequences. For example, during maximum likeli-
hood estimation computationally burdensome numerical approximations have
to be used. There generally are two approaches to this problem. Either the
fast Fourier transform (FFT) has to be applied to the characteristic function
(Mittnik, Doganoglu, and Chenyao, 1999) or direct numerical integration has
to be utilized (Nolan, 1997, 1999).

For data points falling between the equally spaced FFT grid nodes an inter-
polation technique has to be used. Taking a larger number of grid points in-
creases accuracy, however, at the expense of higher computational burden. The
FFT based approach is faster for large samples, whereas the direct integration
method favors small data sets since it can be computed at any arbitrarily cho-
sen point. Mittnik, Doganoglu, and Chenyao (1999) report that for N = 213

the FFT based method is faster for samples exceeding 100 observations and
slower for smaller data sets. Moreover, the FFT based approach is less uni-
versal – it is efficient only for large α’s and only for pdf calculations. When
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computing the cdf the density must be numerically integrated. In contrast, in
the direct integration method Zolotarev’s (1986) formulas either for the density
or the distribution function are numerically integrated.

Set ζ = −β tan πα
2 . Then the density f(x; α, β) of a standard α-stable random

variable in representation S0, i.e. X ∼ S0
α(1, β, 0), can be expressed as (note,

that Zolotarev (1986, Section 2.2) used yet another parametrization):

• when α �= 1 and x > ζ:

f(x; α, β) =
α(x − ζ)

1
α−1

π | α − 1 |
∫ π

2

−ξ

V (θ; α, β) exp
{−(x − ζ)

α
α−1 V (θ; α, β)

}
dθ,

(1.5)

• when α �= 1 and x = ζ:

f(x; α, β) =
Γ(1 + 1

α ) cos(ξ)

π(1 + ζ2)
1
2α

,

• when α �= 1 and x < ζ:

f(x; α, β) = f(−x; α,−β),

• when α = 1:

f(x; 1, β) =

⎧⎪⎪⎨⎪⎪⎩
1

2|β|e
−πx

2β
∫ π

2
−π

2
V (θ; 1, β) exp

{
−e−

πx
2β V (θ; 1, β)

}
dθ, β �= 0,

1
π(1+x2) , β = 0,

where

ξ =

{
1
α arctan(−ζ), α �= 1,
π
2 , α = 1,

and

V (θ; α, β) =

⎧⎪⎪⎨⎪⎪⎩
(cos αξ)

1
α−1

(
cos θ

sin α(ξ+θ)

) α
α−1 cos{αξ+(α−1)θ}

cos θ , α �= 1,

2
π

(
π
2 +βθ

cos θ

)
exp

{
1
β (π

2 + βθ) tan θ
}

, α = 1, β �= 0.

The distribution F (x; α, β) of a standard α-stable random variable in represen-
tation S0 can be expressed as:
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• when α �= 1 and x > ζ:

F (x; α, β) = c1(α, β) +
sign(1 − α)

π

∫ π
2

−ξ

exp
{−(x − ζ)

α
α−1 V (θ; α, β)

}
dθ,

where

c1(α, β) =

{
1
π

(
π
2 − ξ

)
, α < 1,

1, α > 1,

• when α �= 1 and x = ζ:

F (x; α, β) =
1
π

(π

2
− ξ

)
,

• when α �= 1 and x < ζ:

F (x; α, β) = 1 − F (−x; α,−β),

• when α = 1:

F (x; 1, β) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
π

∫ π
2

−π
2

exp
{
−e−

πx
2β V (θ; 1, β)

}
dθ, β > 0,

1
2 + 1

π arctan x, β = 0,

1 − F (x, 1,−β), β < 0.

Formula (1.5) requires numerical integration of the function g(·) exp{−g(·)},
where g(θ; x, α, β) = (x − ζ)

α
α−1 V (θ; α, β). The integrand is 0 at −ξ, increases

monotonically to a maximum of 1
e at point θ∗ for which g(θ∗; x, α, β) = 1,

and then decreases monotonically to 0 at π
2 (Nolan, 1997). However, in some

cases the integrand becomes very peaked and numerical algorithms can miss
the spike and underestimate the integral. To avoid this problem we need to
find the argument θ∗ of the peak numerically and compute the integral as a
sum of two integrals: one from −ξ to θ∗ and the other from θ∗ to π

2 .

1.3 Simulation of α-stable Variables

The complexity of the problem of simulating sequences of α-stable random
variables results from the fact that there are no analytic expressions for the
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inverse F−1 of the cumulative distribution function. The first breakthrough
was made by Kanter (1975), who gave a direct method for simulating Sα(1, 1, 0)
random variables, for α < 1. It turned out that this method could be easily
adapted to the general case. Chambers, Mallows, and Stuck (1976) were the
first to give the formulas.

The algorithm for constructing a standard stable random variable X ∼ Sα(1, β, 0),
in representation (1.2), is the following (Weron, 1996):

• generate a random variable V uniformly distributed on (−π
2 , π

2 ) and an
independent exponential random variable W with mean 1;

• for α �= 1 compute:

X = Sα,β · sin{α(V + Bα,β)}
{cos(V )}1/α

·
[

cos{V − α(V + Bα,β)}
W

](1−α)/α

, (1.6)

where

Bα,β =
arctan(β tan πα

2 )
α

,

Sα,β =
{

1 + β2 tan2
(πα

2

)}1/(2α)

;

• for α = 1 compute:

X =
2
π

{(π

2
+ βV

)
tan V − β ln

( π
2 W cos V
π
2 + βV

)}
. (1.7)

Given the formulas for simulation of a standard α-stable random variable, we
can easily simulate a stable random variable for all admissible values of the
parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0) then

Y =

⎧⎪⎨⎪⎩
σX + µ, α �= 1,

σX + 2
π βσ ln σ + µ, α = 1,

(1.8)

is Sα(σ, β, µ). It is interesting to note that for α = 2 (and β = 0) the Chambers-
Mallows-Stuck method reduces to the well known Box-Muller algorithm for
generating Gaussian random variables (Janicki and Weron, 1994). Although
many other approaches have been proposed in the literature, this method is
regarded as the fastest and the most accurate (Weron, 2004).
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Figure 1.4: A double logarithmic plot of the right tail of an empirical symmetric
1.9-stable distribution function for a sample of size N = 104 (left
panel) and N = 106 (right panel). Thick red lines represent the
linear regression fit. The tail index estimate (α̂ = 3.7320) obtained
for the smaller sample is close to the initial power-law like decay of
the larger sample (α̂ = 3.7881). The far tail estimate α̂ = 1.9309 is
close to the true value of α.

STFstab04.xpl

1.4 Estimation of Parameters

Like simulation, the estimation of stable law parameters is in general severely
hampered by the lack of known closed-form density functions for all but a few
members of the stable family. Either the pdf has to be numerically integrated
(see the previous section) or the estimation technique has to be based on a
different characteristic of stable laws.

All presented methods work quite well assuming that the sample under con-
sideration is indeed α-stable. However, if the data comes from a different
distribution, these procedures may mislead more than the Hill and direct tail
estimation methods. Since the formal tests for assessing α-stability of a sample
are very time consuming we suggest to first apply the “visual inspection” tests
to see whether the empirical densities resemble those of α-stable laws.
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1.4.1 Tail Exponent Estimation

The simplest and most straightforward method of estimating the tail index is
to plot the right tail of the empirical cdf on a double logarithmic paper. The
slope of the linear regression for large values of x yields the estimate of the tail
index α, through the relation α = −slope.

This method is very sensitive to the size of the sample and the choice of the
number of observations used in the regression. For example, the slope of about
−3.7 may indicate a non-α-stable power-law decay in the tails or the contrary
– an α-stable distribution with α ≈ 1.9. This is illustrated in Figure 1.4. In
the left panel a power-law fit to the tail of a sample of N = 104 standard
symmetric (β = µ = 0, σ = 1) α-stable distributed variables with α = 1.9
yields an estimate of α̂ = 3.732. However, when the sample size is increased to
N = 106 the power-law fit to the extreme tail observations yields α̂ = 1.9309,
which is fairly close to the original value of α.

The true tail behavior (1.1) is observed only for very large (also for very small,
i.e. the negative tail) observations, after a crossover from a temporary power-
like decay (which surprisingly indicates α ≈ 3.7). Moreover, the obtained
estimates still have a slight positive bias, which suggests that perhaps even
larger samples than 106 observations should be used. In Figure 1.4 we used
only the upper 0.15% of the records to estimate the true tail exponent. In
general, the choice of the observations used in the regression is subjective and
can yield large estimation errors, a fact which is often neglected in the literature.

A well known method for estimating the tail index that does not assume a
parametric form for the entire distribution function, but focuses only on the
tail behavior was proposed by Hill (1975). The Hill estimator is used to estimate
the tail index α, when the upper (or lower) tail of the distribution is of the
form: 1−F (x) = Cx−α, see Figure 1.5. Like the log-log regression method, the
Hill estimator tends to overestimate the tail exponent of the stable distribution
if α is close to two and the sample size is not very large. For a review of the
extreme value theory and the Hill estimator see Härdle, Klinke, and Müller
(2000, Chapter 13) or Embrechts, Klüppelberg, and Mikosch (1997).

These examples clearly illustrate that the true tail behavior of α-stable laws
is visible only for extremely large data sets. In practice, this means that in
order to estimate α we must use high-frequency data and restrict ourselves to
the most “outlying” observations. Otherwise, inference of the tail index may
be strongly misleading and rejection of the α-stable regime unfounded.
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Figure 1.5: Plots of the Hill statistics α̂n,k vs. the maximum order statistic
k for 1.8-stable samples of size N = 104 (top panel) and N = 106

(left and right panels). Red horizontal lines represent the true value
of α. For better exposition, the right panel is a magnification of
the left panel for small k. A close estimate is obtained only for
k = 500, ..., 1300 (i.e. for k < 0.13% of sample size).
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We now turn to the problem of parameter estimation. We start the discussion
with the simplest, fastest and ... least accurate quantile methods, then develop
the slower, yet much more accurate sample characteristic function methods
and, finally, conclude with the slowest but most accurate maximum likelihood
approach. Given a sample x1, ..., xn of independent and identically distributed
Sα(σ, β, µ) observations, in what follows, we provide estimates α̂, σ̂, β̂, and µ̂
of all four stable law parameters.

1.4.2 Quantile Estimation

Already in 1971 Fama and Roll provided very simple estimates for parame-
ters of symmetric (β = 0, µ = 0) stable laws when α > 1. McCulloch (1986)
generalized and improved their method. He analyzed stable law quantiles and
provided consistent estimators of all four stable parameters, with the restric-
tion α ≥ 0.6, while retaining the computational simplicity of Fama and Roll’s
method. After McCulloch define:

vα =
x0.95 − x0.05

x0.75 − x0.25
, (1.9)

which is independent of both σ and µ. In the above formula xf denotes the f -th
population quantile, so that Sα(σ, β, µ)(xf ) = f . Let v̂α be the corresponding
sample value. It is a consistent estimator of vα. Now, define:

vβ =
x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
, (1.10)

and let v̂β be the corresponding sample value. vβ is also independent of both
σ and µ. As a function of α and β it is strictly increasing in β for each α. The
statistic v̂β is a consistent estimator of vβ .

Statistics vα and vβ are functions of α and β. This relationship may be inverted
and the parameters α and β may be viewed as functions of vα and vβ :

α = ψ1(vα, vβ), β = ψ2(vα, vβ). (1.11)

Substituting vα and vβ by their sample values and applying linear interpolation
between values found in tables provided by McCulloch (1986) yields estimators
α̂ and β̂.

Scale and location parameters, σ and µ, can be estimated in a similar way.
However, due to the discontinuity of the characteristic function for α = 1 and
β �= 0 in representation (1.2), this procedure is much more complicated. We
refer the interested reader to the original work of McCulloch (1986).
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1.4.3 Characteristic Function Approaches

Given a sample x1, ..., xn of independent and identically distributed (i.i.d.)
random variables, define the sample characteristic function by

φ̂(t) =
1
n

n∑
j=1

eitxj . (1.12)

Since |φ̂(t)| is bounded by unity all moments of φ̂(t) are finite and, for any
fixed t, it is the sample average of i.i.d. random variables exp(itxj). Hence,
by the law of large numbers, φ̂(t) is a consistent estimator of the characteristic
function φ(t).

Press (1972) proposed a simple estimation method, called the method of mo-
ments, based on transformations of the characteristic function. The obtained
estimators are consistent since they are based upon estimators of φ(t), Im{φ(t)}
and Re{φ(t)}, which are known to be consistent. However, convergence to the
population values depends on a choice of four points at which the above func-
tions are evaluated. The optimal selection of these values is problematic and
still is an open question. The obtained estimates are of poor quality and the
method is not recommended for more than preliminary estimation.

Koutrouvelis (1980) presented a regression-type method which starts with an
initial estimate of the parameters and proceeds iteratively until some prespec-
ified convergence criterion is satisfied. Each iteration consists of two weighted
regression runs. The number of points to be used in these regressions depends
on the sample size and starting values of α. Typically no more than two or
three iterations are needed. The speed of the convergence, however, depends
on the initial estimates and the convergence criterion.

The regression method is based on the following observations concerning the
characteristic function φ(t). First, from (1.2) we can easily derive:

ln(− ln |φ(t)|2) = ln(2σα) + α ln |t|. (1.13)

The real and imaginary parts of φ(t) are for α �= 1 given by

�{φ(t)} = exp(−|σt|α) cos
[
µt + |σt|αβsign(t) tan

πα

2

]
,

and

�{φ(t)} = exp(−|σt|α) sin
[
µt + |σt|αβsign(t) tan

πα

2

]
.
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The last two equations lead, apart from considerations of principal values, to

arctan
(�{φ(t)}
�{φ(t)}

)
= µt + βσα tan

πα

2
sign(t)|t|α. (1.14)

Equation (1.13) depends only on α and σ and suggests that we estimate these
parameters by regressing y = ln(− ln |φn(t)|2) on w = ln |t| in the model

yk = m + αwk + εk, k = 1, 2, ...,K, (1.15)

where tk is an appropriate set of real numbers, m = ln(2σα), and εk denotes an
error term. Koutrouvelis (1980) proposed to use tk = πk

25 , k = 1, 2, ...,K; with
K ranging between 9 and 134 for different estimates of α and sample sizes.

Once α̂ and σ̂ have been obtained and α and σ have been fixed at these values,
estimates of β and µ can be obtained using (1.14). Next, the regressions are
repeated with α̂, σ̂, β̂ and µ̂ as the initial parameters. The iterations continue
until a prespecified convergence criterion is satisfied.

Kogon and Williams (1998) eliminated this iteration procedure and simplified
the regression method. For initial estimation they applied McCulloch’s (1986)
method, worked with the continuous representation (1.3) of the characteristic
function instead of the classical one (1.2) and used a fixed set of only 10 equally
spaced frequency points tk. In terms of computational speed their method
compares favorably to the original method of Koutrouvelis (1980). It has a
significantly better performance near α = 1 and β �= 0 due to the elimination
of discontinuity of the characteristic function. However, it returns slightly worse
results for very small α.

1.4.4 Maximum Likelihood Method

The maximum likelihood (ML) estimation scheme for α-stable distributions
does not differ from that for other laws, at least as far as the theory is concerned.
For a vector of observations x = (x1, ..., xn), the ML estimate of the parameter
vector θ = (α, σ, β, µ) is obtained by maximizing the log-likelihood function:

Lθ(x) =
n∑

i=1

ln f̃(xi; θ), (1.16)

where f̃(·; θ) is the stable pdf. The tilde denotes the fact that, in general,
we do not know the explicit form of the density and have to approximate it
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numerically. The ML methods proposed in the literature differ in the choice of
the approximating algorithm. However, all of them have an appealing common
feature – under certain regularity conditions the maximum likelihood estimator
is asymptotically normal.

Modern ML estimation techniques either utilize the FFT-based approach for
approximating the stable pdf (Mittnik et al., 1999) or use the direct integration
method (Nolan, 2001). Both approaches are comparable in terms of efficiency.
The differences in performance result from different approximation algorithms,
see Section 1.2.2.

Simulation studies suggest that out of the five described techniques the method
of moments yields the worst estimates, well outside any admissible error range
(Stoyanov and Racheva-Iotova, 2004; Weron, 2004). McCulloch’s method comes
in next with acceptable results and computational time significantly lower than
the regression approaches. On the other hand, both the Koutrouvelis and the
Kogon-Williams implementations yield good estimators with the latter per-
forming considerably faster, but slightly less accurate. Finally, the ML esti-
mates are almost always the most accurate, in particular, with respect to the
skewness parameter. However, as we have already said, maximum likelihood
estimation techniques are certainly the slowest of all the discussed methods.
For example, ML estimation for a sample of a few thousand observations us-
ing a gradient search routine which utilizes the direct integration method is
slower by 4 orders of magnitude than the Kogon-Williams algorithm, i.e. a few
minutes compared to a few hundredths of a second on a fast PC! Clearly, the
higher accuracy does not justify the application of ML estimation in many real
life problems, especially when calculations are to be performed on-line.

1.5 Financial Applications of Stable Laws

Many techniques in modern finance rely heavily on the assumption that the
random variables under investigation follow a Gaussian distribution. However,
time series observed in finance – but also in other applications – often deviate
from the Gaussian model, in that their marginal distributions are heavy-tailed
and, possibly, asymmetric. In such situations, the appropriateness of the com-
monly adopted normal assumption is highly questionable.

It is often argued that financial asset returns are the cumulative outcome of
a vast number of pieces of information and individual decisions arriving al-

most continuously in time. Hence, in the presence of heavy-tails it is natural
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Table 1.1: Fits to 2000 Dow Jones Industrial Average (DJIA) index returns
from the period February 2, 1987 – December 29, 1994. Test statis-
tics and the corresponding p-values based on 1000 simulated samples
(in parentheses) are also given.

Parameters: α σ β µ

α-stable fit 1.6411 0.0050 -0.0126 0.0005
Gaussian fit 0.0111 0.0003

Tests: Anderson-Darling Kolmogorov
α-stable fit 0.6441 0.5583

(0.020) (0.500)

Gaussian fit +∞ 4.6353
(<0.005) (<0.005)

STFstab06.xpl

to assume that they are approximately governed by a stable non-Gaussian dis-
tribution. Other leptokurtic distributions, including Student’s t, Weibull, and
hyperbolic, lack the attractive central limit property.

Stable distributions have been successfully fit to stock returns, excess bond
returns, foreign exchange rates, commodity price returns and real estate returns
(McCulloch, 1996; Rachev and Mittnik, 2000). In recent years, however, several
studies have found, what appears to be strong evidence against the stable model
(Gopikrishnan et al., 1999; McCulloch, 1997). These studies have estimated the
tail exponent directly from the tail observations and commonly have found α
that appears to be significantly greater than 2, well outside the stable domain.
Recall, however, that in Section 1.4.1 we have shown that estimating α only
from the tail observations may be strongly misleading and for samples of typical
size the rejection of the α-stable regime unfounded. Let us see ourselves how
well the stable law describes financial asset returns.

In this section we want to apply the discussed techniques to financial data. Due
to limited space we chose only one estimation method – the regression approach
of Koutrouvelis (1980), as it offers high accuracy at moderate computational
time. We start the empirical analysis with the most prominent example –
the Dow Jones Industrial Average (DJIA) index, see Table 1.1. The data set
covers the period February 2, 1987 – December 29, 1994 and comprises 2000
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Figure 1.6: Stable (cyan) and Gaussian (dashed red) fits to the DJIA returns
(black circles) empirical cdf from the period February 2, 1987 –
December 29, 1994. Right panel is a magnification of the left tail
fit on a double logarithmic scale clearly showing the superiority of
the 1.64-stable law.
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daily returns. Recall, that it includes the largest crash in Wall Street history
– the Black Monday of October 19, 1987. Clearly the 1.64-stable law offers
a much better fit to the DJIA returns than the Gaussian distribution. Its
superiority, especially in the tails of the distribution, is even better visible in
Figure 1.6.

To make our statistical analysis more sound, we also compare both fits through
Anderson-Darling and Kolmogorov test statistics (D’Agostino and Stephens,
1986). The former may be treated as a weighted Kolmogorov statistics which
puts more weight to the differences in the tails of the distributions. Although
no asymptotic results are known for the stable laws, approximate p-values for
these goodness-of-fit tests can be obtained via the Monte Carlo technique, for
details see Chapter 13. First the parameter vector is estimated for a given
sample of size n, yielding θ̂, and the test statistics is calculated assuming that
the sample is distributed according to F (x; θ̂), returning a value of d. Next,
a sample of size n of F (x; θ̂)-distributed variates is generated. The parameter
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Figure 1.7: Stable (cyan) and Gaussian (dashed red) fits to the Boeing stock
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vector is estimated for this simulated sample, yielding θ̂1, and the test statistics
is calculated assuming that the sample is distributed according to F (x; θ̂1). The
simulation is repeated as many times as required to achieve a certain level of
accuracy. The estimate of the p-value is obtained as the proportion of times
that the test quantity is at least as large as d.

For the α-stable fit of the DJIA returns the values of the Anderson-Darling and
Kolmogorov statistics are 0.6441 and 0.5583, respectively. The corresponding
approximate p-values based on 1000 simulated samples are 0.02 and 0.5 allowing
us to accept the α-stable law as a model of DJIA returns. The values of the
test statistics for the Gaussian fit yield p-values of less than 0.005 forcing us to
reject the Gaussian law, see Table 1.1.

Next, we apply the same technique to 1635 daily returns of Boeing stock prices
from the period July 1, 1997 – December 31, 2003. The 1.78-stable distribution
fits the data very well, yielding small values of the Anderson-Darling (0.3756)
and Kolmogorov (0.4522) test statistics, see Figure 1.7 and Table 1.2. The
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Table 1.2: Fits to 1635 Boeing stock price returns from the period July 1, 1997
– December 31, 2003. Test statistics and the corresponding p-values
based on 1000 simulated samples (in parentheses) are also given.

Parameters: α σ β µ

α-stable fit 1.7811 0.0141 0.2834 0.0009
Gaussian fit 0.0244 0.0001

Tests: Anderson-Darling Kolmogorov
α-stable fit 0.3756 0.4522

(0.18) (0.80)

Gaussian fit 9.6606 2.1361
(<0.005) (<0.005)

STFstab07.xpl

approximate p-values based, as in the previous example, on 1000 simulated
samples are 0.18 and 0.8, respectively, allowing us to accept the α-stable law as
a model of Boeing returns. On the other hand, the values of the test statistics
for the Gaussian fit yield p-values of less than 0.005 forcing us to reject the
Gaussian distribution.

The stable law seems to be tailor-cut for the DJIA index and Boeing stock
price returns. But does it fit other asset returns as well? Unfortunately, not.
Although, for most asset returns it does provide a better fit than the Gaussian
law, in many cases the test statistics and p-values suggest that the fit is not
as good as for these two data sets. This can be seen in Figure 1.8 and Table
1.3, where the calibration results for 4444 daily returns of the Japanese yen
against the US dollar (JPY/USD) exchange rate from December 1, 1978 to
January 31, 1991 are presented. The empirical distribution does not exhibit
power-law tails and the extreme tails are largely overestimated by the stable
distribution. For a risk manager who likes to play safe this may not be a bad
idea, as the stable law overestimates the risks and thus provides an upper limit
of losses. However, from a calibration perspective other distributions, like the
hyperbolic or truncated stable, may be more appropriate for many data sets
(Weron, 2004).
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Table 1.3: Fits to 4444 JPY/USD exchange rate returns from the period De-
cember 1, 1978 – January 31, 1991. Test statistics and the corre-
sponding p-values (in parentheses) are also given.

Parameters: α σ β µ

α-stable fit 1.3274 0.0020 -0.1393 -0.0003
Gaussian fit 0.0049 -0.0001

Tests: Anderson-Darling Kolmogorov
α-stable fit 4.7833 1.4520

(<0.005) (<0.005)

Gaussian fit 91.7226 6.7574
(<0.005) (<0.005)

STFstab08.xpl
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Figure 1.8: Stable (cyan) and Gaussian (dashed red) fits to the JPY/USD ex-
change rate returns (black circles) empirical cdf from the period
December 1, 1978 – January 31, 1991. Right panel is a magnifica-
tion of the left tail fit on a double logarithmic scale. The extreme
returns are largely overestimated by the stable law.
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2 Extreme Value Analysis and
Copulas

Krzysztof Jajuga and Daniel Papla

2.1 Introduction

The analysis of financial data, usually given in the form of financial time series,
has recently received a lot of attention of researchers and finance practitioners,
in such areas as valuation of derivative instruments, forecasting of financial
prices, risk analysis (particularly market risk analysis).

From the practical point of view, multivariate analysis of financial data may be
more appropriate than univariate analysis. Most market participants hold port-
folios containing more than one financial instrument. Therefore they should
perform analysis for all components of a portfolio. There are more and more
financial instruments where payoffs depend on several underlyings (e.g. rain-
bow options). Therefore, to value them one should use multivariate models of
underlying vectors of indices. Risk analysis is strongly based on the issue of
correlation, or generally speaking dependence, between the returns (or prices)
of the components of a portfolio. Therefore multivariate analysis is an appro-
priate tool to detect these relations.

One of the most important applications of financial time series models is risk
analysis, including risk measurement. A significant tendency, observed in the
market, is the occurrence of rare events, which very often lead to exceptionally
high losses. This has caused a growing interest in the evaluation of the so-
called extreme risk. There are two groups of models applied to financial time
series: “mean-oriented” models, aiming at modeling the mean (expected value)
and the variance of the distribution; and “extreme value” models, aiming at
modeling tails (including maximum and minimum) of the distribution.
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In this chapter we present some methods of time series analysis, both univariate
and multivariate time series. The attention is put on two approaches: extreme
value analysis and copula analysis. The presented methods are illustrated by
examples coming from the Polish financial market.

2.1.1 Analysis of Distribution of the Extremum

The analysis of the distribution of the extremum is simply the analysis of the
random variable, defined as the maximum (or minimum) of a set of random
variables. For simplicity we concentrate only on the distribution of the max-
imum. The most important result is the Fisher-Tippet theorem (Embrechts,
Klüppelberg, and Mikosch, 1997). In this theorem one considers the limiting
distribution for the normalized maximum:

lim
n→∞P

(
Xn:n − bn

an
≤ x

)
= G(x), (2.1)

where Xn:n = max(X1, X2, ..., Xn). It can be proved that this limiting dis-
tribution belongs to the family of the so-called Generalized Extreme Value
distributions (GEV), whose distribution function is given as:

G(x) = exp

{
−
[
1 + ξ

(
x − µ

σ

)]−1/ξ
}

,

(2.2)
1 + ξσ−1(x − µ) > 0.

The GEV distribution has three parameters Reiss and Thomas (2000): the lo-
cation parameter µ, the scale parameter σ, and the shape parameter ξ, which
reflects the fatness of tails of the distribution (the higher value of this param-
eter, the fatter tails).

The family of GEV distributions contains three subclasses: the Fréchet distri-
bution, ξ > 0, the Weibull distribution, ξ < 0, and the Gumbel distribution,
ξ → 0. In financial problems one usually encounters the Fréchet distribution.
In this case the underlying observations come from a fat-tailed distribution,
such as the Pareto distribution, stable distribution (including Cauchy), etc.

One of the most common methods to estimate the parameters of GEV dis-
tributions is maximum likelihood. The method is applied to block maxima,
obtained by dividing the set of observations into subsets, called blocks, and
taking maximum for each block.
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The main weakness of this approach comes from the fact that the maxima for
some blocks may not correspond to rare events. On the other hand, in some
blocks there may be more than one observation corresponding to rare events.
Therefore this approach can be biased by the selection of the blocks.

2.1.2 Analysis of Conditional Excess Distribution

To analyze rare events, another approach can be used. Consider the so-called
conditional excess distribution:

Fu(y) = P (X − u ≤ y |X > u ) =
F (u + y) − F (u)

1 − F (u)
, (2.3)

where 0 ≤ y < x0 − u; and x0 = sup(x : F (x) < 1). This distribution (also
called the conditional tail distribution) is simply the distribution conditional
on the underlying random variable taking value from the tail. Of course, this
distribution depends on the choice of threshold u.

It can be proved (Embrechts, Klüppelberg, and Mikosch, 1997) that the con-
ditional excess distribution can be approximated by the so-called Generalized
Pareto distribution (GPD), which is linked by one parameter to the GEV dis-
tribution. The following property is important: the larger the threshold (the
further one goes in the direction of the tail), the better the approximation. The
distribution function of GPD is given by Franke, Härdle and Hafner (2004) and
Reiss and Thomas (2000):

Fu(y) = 1 − (1 + ξy/β)−1/ξ, (2.4)

where β = σ + ξ(u − µ). The shape parameter ξ has the same role as in GEV
distributions. The generalized parameter β depends on all three parameters of
the GEV distribution, as well as on the threshold u.

The family of GPD contains three types of distributions, the Pareto distribu-
tion – ξ > 0, the Pareto type II distribution – ξ < 0, and the exponential
distribution – ξ → 0.

The mean of the conditional excess distribution can be characterized by a linear
function of the threshold and of the parameters of GPD:

E(X − u |X > u ) =
βu

1 − ξ
+

ξ

1 − ξ
u (2.5)

for ξ < 1. One of the most common methods of estimating the parameters of
GPD is maximum likelihood. However, the GPD depends on the choice of the
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threshold u. The higher the threshold, the better the approximation of the tail
by GPD – this is a desired property. Then one has fewer observations to perform
maximum likelihood estimation, which weakens the quality of estimation.

To choose the threshold, one can use the procedure, based on the fact that
for GPD the mean of the conditional excess distribution is a linear function of
the threshold. Therefore, one can use the following function, which is just the
arithmetic average of the observations exceeding the threshold:

∧
e(u) =

n∑
i=1

max{(xi − u), 0}
n∑

i=1

I(xi > u)
. (2.6)

We know that for the observations higher than the threshold this relation should
be a linear function. Therefore a graphical procedure can be applied. In this
procedure the value of

∧
e(u) is calculated for different values of the threshold

u. Then such a value is selected, that for the values above this value the linear
relation can be observed.

2.1.3 Examples

Consider the logarithmic rate of returns for the following stock market indices:

• Four indices of the Warsaw Stock Exchange (WSE): WIG (index of
most traded stocks on this exchange), WIG20 (index of 20 stocks with
the largest capitalization), MIDWIG (index of 40 mid-cap stocks), and
TECHWIG (index of high technology stocks);

• Two US market indices: DJIA and S&P 500;

• Two EU market indices: DAX and FT-SE100.

In addition we studied the logarithmic rates of return for the following exchange
rates: USD/PLN, EUR/PLN, EUR/USD.

The financial time series of the logarithmic rates of return come from the pe-
riod January 2, 1995 – October 3, 2003, except for the case of exchange rates
EUR/PLN and EUR/USD, where the period January 1, 1999 – October 3,
2003 was taken into account. Figures 2.1–2.3 show histograms of those time
series.
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Figure 2.1: Histograms of the logarithmic rates of return for WSE indices
STFeva01.xpl

The most common application of the analysis of the extremum is the estimation
of the maximum loss of a portfolio. It can be treated as a more conservative
measure of risk than the well-known Value at Risk, defined through a quantile
of the loss distribution (rather than the distribution of the maximal loss). The
limiting distribution of the maximum loss is the GEV distribution. This, of
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Figure 2.2: Histograms of the logarithmic rates of return for world indices
STFeva01.xpl

course, requires a rather large sample of observations coming from the same
underlying distribution. Since most financial data are in the form of time
series, the required procedure would call for at least the check of the hypothesis
about stationarity of time series by using unit root test e.g. Dickey-Fuller
test, (Dickey and Fuller, 1979). The hypothesis of stationarity states that
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Figure 2.3: Histograms of the logarithmic rates of return for exchange rates
STFeva01.xpl

the process has no unit roots. With the Dickey-Fuller test we test the null
hypothesis of a unit root, that is, there is a unit root for the characteristic
equation of the AR(1) process. The alternative hypothesis is that the time
series is stationary. To verify stationarity hypotheses for each of the considered
time series, the augmented Dickey-Fuller test was used. The hypotheses of a
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Table 2.1: The estimates of the parameters of GEV distributions, for the stock
indices.

Data ξ µ σ

WIG 0.374 0.040 0.012
WIG20 0.450 0.037 0.022
MIDWIG 0.604 0.033 0.011
TECHWIG 0.147 0.066 0.012
DJIA 0.519 0.027 0.006
S&P 500 0.244 0.027 0.007
FT-SE 100 -0.048 0.031 0.006
DAX -0.084 0.041 0.011

STFeva02.xpl

unit root were rejected with the level of significance lower than 1%, so all time
series in question are stationary.

One of the most important applications of the analysis of conditional excess
distribution is the risk measure called Expected Shortfall – ES (also known as
conditional Value at Risk, expected tail loss). It is defined as:

ES = E(X − u |X > u ). (2.7)

So ES is the expected value of the conditional excess distribution. Therefore
the GPD could be used to determine ES.

Then for each time series the parameters of GEV distributions were estimated
using maximum likelihood method. The results of the estimation for GEV
are presented in Table 2.1 (for stock indices) and in Table 2.2 (for exchange
rates). The analysis of the results for stock indices leads to the following
conclusions. In most cases we obtained the Fréchet distribution (estimate of
the shape parameter is positive), which suggests that underlying observations
are characterized by a fat-tailed distribution. For FTSE-100 and DAX indices
the estimate of ξ is negative but close to zero, which may suggest either a
Weibull distribution or a Gumbel distribution. In the majority of cases, the
WSE indices exhibit fatter tails than the other indices. They also have larger
estimates of location (related to mean return) and larger estimates of the scale
parameter (related to volatility).
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Table 2.2: The estimates of the parameters of GEV distributions, for the ex-
change rates.

Data ξ µ σ

USD/PLN 0.046 0.014 0.005
EUR/PLN 0.384 0.015 0.005
EUR/USD -0.213 0.014 0.004

STFeva03.xpl

The analysis of the results for the exchange rates leads to the following conclu-
sions. Three different distributions were obtained, for USD/PLN – a Gumbel
distribution, for EUR/PLN – a Fréchet distribution, for EUR/USD – a Weibull
distribution. This suggests very different behavior of underlying observations.
The location and scale parameters are almost the same. The scale parameters
are considerably lower for the exchange rates than for the stock indices.

2.2 Multivariate Time Series

2.2.1 Copula Approach

In this section we present the so-called copula approach. It is performed in two
steps. In the first step one analyzes the marginal (univariate) distributions.
In the second step one analyzes the dependence between components of the
random vector. Therefore the analysis of dependence is “independent” from the
analysis of marginal distributions. This idea is different from the one present
in the classical approach, where multivariate analysis is performed “jointly” for
marginal distributions and dependence structure by considering the complete
covariance matrix, like e.g. in the MGARCH approach. So one can think
that instead of analyzing the whole covariance matrix, where the off diagonal
elements contain information about scatter and dependence) one analyzes only
the main diagonal (scatter measures) and then the structure of dependence
“not contaminated” by scatter parameters.

The fundamental concept of copulas becomes clear by Sklar theorem (Sklar,
1959). The multivariate joint distribution function is represented as a copula
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function linking the univariate marginal distribution functions:

H(x1, ..., xn) = C{F1(x1), ..., Fn(xn)} (2.8)

where H the multivariate distribution function; Fi the distribution function
of the i-th marginal distribution; C is a copula. The copula describes the
dependence between components of a random vector.

It is worth mentioning some properties of copulas for modeling dependence.
The most important ones are the following:

• for independent variables we have:

C(u1, ..., un) = C¬(u1, ..., un) = u1u2...un

• the lower limit for copula function is:

C−(u1, ..., un) = max{u1 + ... + un − n + 1; 0}

• the upper limit for copula function is:

C+(u1, ..., un) = min(u1, ..., un)

The lower and upper limits for the copula function have important consequences
for modeling the dependence. It can be explained in the simplest, bivariate
case. Suppose there are two variables X and Y and there exists a function (not
necessarily a linear one), which links these two variables. One speaks about
the so-called total positive dependence between X and Y , when Y = T (X)
and T is the increasing function. Similarly, one speaks about the so-called
total negative dependence between X and Y , when Y = T (X) and T is the
decreasing function. Then:

• in the case of total positive dependence the following relation holds:

C(u1, u2) = C+(u1, u2) = min(u1, u2)

• in the case of total negative dependence the following relation holds:

C(u1, u2) = C−(u1, u2) = max{u1 + u2 − 1; 0},
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The introduction of the copula leads to a natural ordering of the multivariate
distributions with respect to the strength and the direction of the dependence.
This ordering is given as:

C1(u1, ..., un) ≤ C2(u1, ..., un)

and then we have:

C−(u1, ..., un) ≤ C¬(u1, ..., un) ≤ C+(u1, ..., un).

The presented properties are valid for any type of the dependence, not just
linear dependence. More facts of copulas is given in Franke, Härdle and Hafner
(2004); Rank and Siegl (2002) and Kiesel and Kleinow (2002).

There are very possible copulas. A popular family contains the so-called
Archimedean copulas, defined on the base of strictly decreasing and convex
function, called generator. In the bivariate case it is given as:

C(u1, u2) = ψ−1{ψ(u1) + ψ(u2)}, (2.9)

where ψ : [0; 1] → [0;∞), and ψ(1) = 0. The most popular and well-studied
Archimedean copulas are:

1. The Clayton copula:

ψ(t) =
{

(t−θ − 1)/θ, θ ≥ −1, θ �= 0,
− log(t), θ = 0,

θ ∈ [−1,∞). (2.10)

2. The Frank copula:

ψ(t) =

{
− log

(
exp(−θt)−1
exp(−θ)−1

)
θ �= 0,

− log(t), θ = 0.
(2.11)

3. The Ali-Mikhail-Haq copula:

ψ(t) = log
(

1 − θ(1 − t)
t

)
, θ ∈ [−1; 1]. (2.12)

Among other copulas, which do not belong to Archimedean family, it is worth
to mention the Farlie-Gumbel-Morgenstern copula, given in the bivariate case
as:

Cθ(u, v) = uv + θuv(1 − u)(1 − v), θ ∈ [−1; 1]. (2.13)
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In all these copulas there is one parameter, which can be interpreted as depen-
dence parameter. Here the dependence has a more general meaning, presented
above and described by a monotonic function.

An often used copula function is the so-called normal (Gaussian) copula, which
links the distribution function of multivariate normal distribution with the
distribution functions of the univariate normal distributions. This means that:

C(u1, ..., un) = Φn
R{Φ−1(u1), ..., Φ−1(un)} (2.14)

The other commonly used example is the Gumbel copula, which for the bivari-
ate case is given as:

C(u1, u2) = exp[−{(− log u1)δ + (− log u2)δ}1/δ] (2.15)

Figure 2.4 presents an example of the shape of the copula function. In this case
it is a Frank copula (see (2.11)), with parameters θ taken from results presented
in Section 2.2.2. The estimation of the copula parameters can be performed by
using maximum likelihood given the distribution function of marginals. As the
simplest approach to the distribution function of marginals one can take just
the empirical distribution function.

2.2.2 Examples

Consider different pairs of stock market indices and exchange rates, studied in
Section 2.1.3. For each pair we fitted a bivariate copula, namely the Clayton,
Frank, Ali-Mikhail-Haq, and the Farlie-Gumbel-Morgenstern.

We present here the results obtained for Frank copula. Table 2.3 presents
selected results for pairs of exchange rates and Table 2.4 for pairs of stock
indices. The important conclusion to be drawn from Table 2.3 is that one
pair, namely USD/PLN and EUR/USD, shows negative dependence, whereas
the other two show positive dependence. This is particularly important for the
entities that are exposed to exchange rate risk and they want to decrease it by
appropriate management of assets and liabilities.

There is positive extreme dependence between all stock indices. As could have
been expected, there is strong dependence between indices of the WSE and
much lower between WSE and the other exchanges, with weaker dependence
between WSE and NYSE than between WSE and large European exchanges.
The copula approach can be applied in the so-called tail dependence coefficients.
The detailed description of tail dependence is given in Chapter 3.
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Figure 2.4: Plot of C(u, v) for the Frank copula for θ = −2, 563 in left panel,
and θ = 11.462 in right panel.
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Table 2.3: The estimates of the Frank copula for exchange rates.

Bivariate data θ

USD/PLN and EUR/PLN 2.730
USD/PLN and EUR/USD -2.563
EUR/PLN and EUR/USD 3.409

STFeva06.xpl

2.2.3 Multivariate Extreme Value Approach

The copula approach also gives the possibility to analyze extreme values in the
general multivariate case. This is possible by linking this approach to univariate
extreme value analysis. In order to make this possible, we concentrate on the
multivariate distribution of extrema, where the extremum is taken for each
component of a random vector.
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Table 2.4: The estimates of the Frank copula for stock indices.

Bivariate data θ

WIG and WIG20 11.462
WIG and DJIA 0.943
WIG and FTSE-100 2.021
WIG and DAX 2.086

STFeva07.xpl

The main result in the multivariate extreme value analysis is given for the
limiting distribution of normalized maxima:

lim
n→∞P

(
X1

n:n − b1
n

a1
n

≤ x1, ...,
Xm

n:n − bm
n

am
n

≤ xm

)
= G(x1, ..., xm), (2.16)

It was shown by Galambos (1978) that this limiting distribution can be pre-
sented in the following form:

G(x1, ..., xm) = CG{G1(x1), ..., Gm(xm)}. (2.17)

where CG is the so-called Extreme Value Copula (EVC). This is the repre-
sentation of the multivariate distribution of maxima, called here Multivariate
Extreme Value distribution (MEV), in the way it is presented in the Sklar
theorem. It is composed of two parts and each part has a special meaning:
univariate distributions belong to the family of GEV distributions, therefore
they are the Fréchet, Weibull or Gumbel distributions.

Therefore, to obtain the MEV distribution one has to apply the EVC to univari-
ate GEV distributions (Fréchet, Weibull, or Gumbel). Since there are many
possible extreme value copulas, we get many possible multivariate extreme
value distributions.

The EVC is a copula satisfying the following relation:

C(ut
1, ..., u

t
n) = Ct(u1, ..., un) for t > 0. (2.18)

It can be shown that the bivariate extreme value copula can be represented in
the following form:

C(u1, u2) = exp{log(u1u2)A(log(u1))/ log(u1u2)}. (2.19)
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Here A is a convex function satisfying the following relations:

A(0) = A(1) = 1,

(2.20)
max(w, 1 − w) ≤ A(w) ≤ 1.

The most common extreme value copulas are:

1. Gumbel copula, where:

C(u1, u2) = exp[−{(log u1)θ + (log u2)θ}1/θ],
with A(w) = {wθ + (1 − w)θ}1/θ, (2.21)
and θ ∈ [1,∞).

2. Gumbel II copula, where:

C(u1, u2) = u1u2 exp{θ(log u1 log u2)/(log u1 + log u2)},
with A(w) = θw2 − θw + 1, (2.22)
and θ ∈ [0, 1].

3. Galambos copula, where:

C(u1, u2) = u1u2 exp[{(log u1)−θ + (log u2)−θ}−1/θ],
with A(w) = 1 − {w−θ + (1 − w)−θ}−1/θ, (2.23)
and θ ∈ [0,∞).

All three presented copulas are one parameter functions. This parameter can be
interpreted as dependence parameter. The important property is that for these
copulas, as well as for other possible extreme value copulas, there is positive
dependence between the two components of the random vector.

The main application of multivariate extreme value approach is the estimation
of the maximum loss of each component of the portfolio. We get then the
limiting distribution of the vector of maximal losses. The limiting distributions
for the components are univariate GEV distributions and the relation between
the maxima is reflected through extreme value copula.
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Table 2.5: The estimates of the Galambos copula for exchange rates.

Bivariate data θ

USD/PLN and EUR/PLN 34.767
USD/PLN and EUR/USD 2.478
EUR/PLN and EUR/USD 2.973

STFeva08.xpl

2.2.4 Examples

As in Section 2.2.2 we consider different pairs of stock market indices and
exchange rates. In the first step we analyze separate components in each pair
to get estimates of generalized extreme value distributions. In the second step,
we use empirical distribution functions obtained in the first step and estimate
three copulas belonging to EVC family: Gumbel, Gumbel II, and Galambos.
We present here the results obtained for Galambos copula (Table 2.5) and
Gumbel copula (Table 2.6)

It turns out that in the case of exchange rates we obtained the best fit for
the Galambos copula, see Table 2.5. In the case of stock indices the best fit
was obtained for different copulas. For the comparison we present the results
obtained for the Gumbel copula, see Table 2.6. The dependence parameter
of the Galambos copula takes only non-negative values. The higher the value
of this parameter, the stronger the dependence between maximal losses of re-
spective variables. We see that there is strong extreme dependence between
the exchange rates of USD/PLN and EUR/PLN and rather weak dependence
between EUR/PLN and EUR/USD as well as for USD/PLN and EUR/USD.
The dependence parameter for Gumbel copula takes values higher or equal to
1. The higher the value of this parameter, the stronger the dependence between
maximal losses of respective variables. The results given in this table indicate
strong dependence (as could have been expected) between stock indices of the
Warsaw Stock Exchange. It also shows stronger extreme dependence between
WSE and NYSE than between WSE and two large European exchanges.
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Table 2.6: The estimates of the Gumbel copula for stock indices.

Bivariate data θ

WIG and WIG20 21.345
WIG and DJIA 14.862
WIG and FTSE-100 2.275
WIG and DAX 5.562

STFeva09.xpl

2.2.5 Copula Analysis for Multivariate Time Series

One of the basic models applied in the classical (mean-oriented) approach in
the analysis of multivariate time series was the multivariate GARCH model
(MGARCH) aimed at modeling of conditional covariance matrix. One of the
disadvantages of this approach was the joint modeling of volatilities and corre-
lations, as well as relying on the correlation coefficient as a measure of depen-
dence.

In this section we present another approach, where volatilities and dependences
in multivariate time series, both conditional, are modeled separately. This is
possible due to the application of copula approach directly to univariate time
series, being the components of multivariate time series. Our presentation is
based on the idea presented by Jondeau and Rockinger (2002), which combines
the univariate time series modeling by GARCH type models for volatility with
copula analysis. The proposed model is given as:

log(θt) =
16∑

j=1

djI{(ut−1, vt−1) ∈ Aj}, (2.24)

where Aj is the jth element of the unit-square grid. To each parameter dj , an
area Aj is associated. For instance, A1 = [0, p1] × [0, q1] and A2 = [p1, p2] ×
[0, q1], where p1 = q1 = 0.15, p2 = q2 = 0.5, and p3 = q3 = 0.85. The choice
of 16 subintervals is, according to Jondeau and Rockinger (2002), somewhat
arbitrary. Therefore the dependence parameter is conditioned on the lagged
values of univariate distribution functions, where the 16 possible sets of pairs
of values are taken into account. The larger value of parameter dj , the stronger
dependence on the past values.
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Table 2.7: Conditional dependence parameter for time series WIG, WIG20.

[ 0, 0.15) [0.15, 0.5) [0.5, 0.85) [0.85, 1]
[0, 0.15) 15.951 4.426 5.010 1.213
[0.15, 0.5) 6.000 18.307 8.704 1.524
[0.5, 0.85) -0.286 8.409 19.507 5.133
[0.85, 1] 0.000 2.578 1.942 19.202

STFeva10.xpl

We also give the description of the method, which was used in the empirical
example. We describe this procedure for the case of bivariate time series.
The proposed procedure consists of two steps. In the first step, the models
for univariate time series are built for both time series. Here the combined
procedure of ARIMA models for conditional mean and GARCH models for
conditional variance was used. In the second step, the values of the distribution
function for residuals obtained after the application of univariate models were
subject to copula analysis.

2.2.6 Examples

In this example we study three pairs of time series, namely WIG and WIG20,
WIG and DJIA, USD/PLN and EUR/PLN. First of all, to get the best fit: an
AR(10)-GARCH (1,1) model was built for each component of bivariate time
series. Then the described procedure of fitting copula and obtaining conditional
dependence parameter was applied. In order to do this, the interval [0, 1] of
the values of univariate distribution function was divided into 4 subintervals:
[0, 0.15), [0.15, 0.5); [0.5, 0.85); [0.85, 1]. Such a selection of subintervals
allows us to concentrate on tails of the distributions. Therefore we obtained
16 disjoint areas. For each area the conditional dependence parameter was
estimated using different copula function. For the purpose of comparison, we
present the results obtained in the case of the Frank copula. These results are
given in the Tables 2.7–2.9.

The values on “the main diagonal” of the presented tables correspond to the
same subintervals of univariate distribution functions. Therefore, the values for
the lowest interval (upper left corner of the table) and highest interval (lower
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Table 2.8: Conditional dependence parameter for time series WIG, DJIA.

[ 0, 0.15) [0.15, 0.5) [0.5, 0.85) [0.85, 1]
[0, 0.15) 2.182 1.169 0.809 2.675
[0.15, 0.5) 1.868 0.532 0.954 2.845
[0.5, 0.85) 1.454 1.246 0.806 0.666
[0.85, 1] -0.207 0.493 1.301 1.202

STFeva11.xpl

Table 2.9: Conditional dependence parameter for time series USD/PLN,
EUR/PLN.

[ 0, 0.15) [0.15, 0.5) [0.5, 0.85) [0.85, 1]
[0, 0.15) 3.012 2.114 2.421 0.127
[0.15, 0.5) 3.887 2.817 2.824 5.399
[0.5, 0.85) 2.432 3.432 2.526 3.424
[0.85, 1] 7.175 3.750 4.534 4.616

STFeva12.xpl

right corner of the table) correspond to the notion of lower tail dependence
and upper tail dependence. Also, the higher are values concentrated along
“the main diagonal”, the stronger conditional dependence is observed.

From the results presented in Tables 2.7–2.9, we can see, that there is a strong
conditional dependence between returns on WIG and WIG20; the values of
conditional dependence parameter “monotonically decrease with the departure
from the main diagonal.” This property is not observed in the other two tables,
where no significant regular patterns can be identified.

We presented here only some selected non-classical methods of the analysis of
financial time series. They proved some usefulness for real data. It seems that
the plausible future direction of the research would be the integration of econo-
metric methods, aimed at studying the dynamic properties, with statistical
methods, aimed at studying the distributional properties.
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3 Tail Dependence

Rafael Schmidt

3.1 Introduction

Tail dependence describes the amount of dependence in the tail of a bivariate
distribution. In other words, tail dependence refers to the degree of dependence
in the corner of the lower-left quadrant or upper-right quadrant of a bivariate
distribution. Recently, the concept of tail dependence has been discussed in
financial applications related to market or credit risk, Hauksson et al. (2001)
and Embrechts et al. (2003). In particular, tail-dependent distributions are of
interest in the context of Value at Risk (VaR) estimation for asset portfolios,
since these distributions can model dependence of large loss events (default
events) between different assets.

It is obvious that the portfolio’s VaR is determined by the risk behavior of
each single asset in the portfolio. On the other hand, the general dependence
structure, and especially the dependence structure of extreme events, strongly
influences the VaR calculation. However, it is not known to most people which
are not familiar with extreme value theory, how to measure and model de-
pendence, for example, of large loss events. In other words, the correlation
coefficient, which is the most common dependence measure in financial appli-
cations, is often insufficient to describe and estimate the dependence structure
of large loss events, and therefore frequently leads to inaccurate VaR estima-
tions, Embrechts et al. (1999). The main aim of this chapter is to introduce
and to discuss the so-called tail-dependence coefficient as a simple measure of
dependence of large loss events.

Kiesel and Kleinow (2002) show empirically that a precise VaR estimation
for asset portfolios depends heavily on the proper specification of the tail-
dependence structure of the underlying asset-return vector. In their setting,
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different choices of the portfolio’s dependence structure, which is modelled
by a copula function, determine the degree of dependence of large loss events.
Motivated by their empirical observations, this chapter defines and explores the
concept of tail dependence in more detail. First, we define and calculate tail
dependence for several classes of distributions and copulae. In our context, tail
dependence is characterized by the so-called tail-dependence coefficient (TDC)
and is embedded into the general framework of copulae. Second, a parametric
and two nonparametric estimators for the TDC are discussed. Finally, we
investigate some empirical properties of the implemented TDC estimators and
examine an empirical study to show one application of the concept of tail
dependence for VaR estimation.

3.2 What is Tail Dependence?

Definitions of tail dependence for multivariate random vectors are mostly re-
lated to their bivariate marginal distribution functions. Loosely speaking, tail
dependence describes the limiting proportion that one margin exceeds a certain
threshold given that the other margin has already exceeded that threshold. The
following approach, as provided in the monograph of Joe (1997), represents one
of many possible definitions of tail dependence.

Let X = (X1, X2)� be a two-dimensional random vector. We say that X is
(bivariate) upper tail-dependent if:

λU
def= lim

v↑1
P
{
X1 > F−1

1 (v) | X2 > F−1
2 (v)

}
> 0, (3.1)

in case the limit exists. F−1
1 and F−1

2 denote the generalized inverse dis-
tribution functions of X1 and X2, respectively. Consequently, we say X =
(X1, X2)� is upper tail-independent if λU equals 0. Further, we call λU the
upper tail-dependence coefficient (upper TDC). Similarly, we define the lower
tail-dependence coefficient, if it exists, by:

λL
def= lim

v↓0
P
{
X1 ≤ F−1

1 (v) | X2 ≤ F−1
2 (v)

}
. (3.2)

In case X = (X1, X2)� is standard normally or t-distributed, formula (3.1)
simplifies to:

λU = lim
v↑1

λU (v) def= lim
v↑1

2 · P
{
X1 > F−1

1 (v) | X2 = F−1
2 (v)

}
. (3.3)
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Figure 3.1: The function λU (v) = 2 · P{X1 > F−1
1 (v) | X2 = F−1

2 (v)} for
a bivariate normal distribution with correlation coefficients ρ =
−0.8, −0.6, . . . , 0.6, 0.8. Note that λU = 0 for all ρ ∈ (−1, 1).

STFtail01.xpl

A generalization of bivariate tail dependence, as defined above, to multivariate
tail dependence can be found in Schmidt and Stadtmüller (2003).

Figures 3.1 and 3.2 illustrate tail dependence for a bivariate normal and t-
distribution. Irrespectively of the correlation coefficient ρ, the bivariate normal
distribution is (upper) tail independent. In contrast, the bivariate t-distribution
exhibits (upper) tail dependence and the degree of tail dependence is affected
by the correlation coefficient ρ.

The concept of tail dependence can be embedded within the copula theory. An
n-dimensional distribution function C : [0, 1]n → [0, 1] is called a copula if it
has one-dimensional margins which are uniformly distributed on the interval
[0, 1]. Copulae are functions that join or “couple” an n-dimensional distribution
function F to its corresponding one-dimensional marginal distribution functions
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Figure 3.2: The function λU (v) = 2 · P{X1 > F−1
1 (v) | X2 = F−1

2 (v)}
for a bivariate t-distribution with correlation coefficients ρ =
−0.8, −0.6, . . . , 0.6, 0.8. STFtail02.xpl

Fi, i = 1, . . . , n, in the following way:

F (x1, . . . , xn) = C {F1(x1), . . . , Fn(xn)} .

We refer the reader to Joe (1997), Nelsen (1999) or Härdle, Kleinow, and Stahl
(2002) for more information on copulae. The following representation shows
that tail dependence is a copula property. Thus, many copula features transfer
to the tail-dependence coefficient such as the invariance under strictly increas-
ing transformations of the margins. If X is a continuous bivariate random
vector, then straightforward calculation yields:

λU = lim
v↑1

1 − 2v + C(v, v)
1 − v

, (3.4)

where C denotes the copula of X. Analogously, λL = limv↓0
C(v,v)

v holds for
the lower tail-dependence coefficient.
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3.3 Calculation of the Tail-dependence Coefficient

3.3.1 Archimedean Copulae

Archimedean copulae form an important class of copulae which are easy to con-
struct and have good analytical properties. A bivariate Archimedean copula
has the form C(u, v) = ψ[−1]{ψ(u) + ψ(v)} for some continuous, strictly de-
creasing, and convex generator function ψ : [0, 1] → [0,∞] such that ψ(1) = 0
and the pseudo-inverse function ψ[−1] is defined by:

ψ[−1](t) =
{

ψ−1(t), 0 ≤ t ≤ ψ(0),
0, ψ(0) < t ≤ ∞.

We call ψ strict if ψ(0) = ∞. In that case ψ[−1] = ψ−1. Within the framework
of tail dependence for Archimedean copulae, the following result can be shown
(Schmidt, 2003). Note that the one-sided derivatives of ψ exist, as ψ is a convex
function. In particular, ψ′(1) and ψ′(0) denote the one-sided derivatives at the
boundary of the domain of ψ. Then:

i) upper tail-dependence implies ψ′(1) = 0 and λU = 2 − (ψ−1 ◦ 2ψ)′(1),

ii) ψ′(1) < 0 implies upper tail-independence,

iii) ψ′(0) > −∞ or a non-strict ψ implies lower tail-independence,

iv) lower tail-dependence implies ψ′(0) = −∞, a strict ψ, and
λL = (ψ−1 ◦ 2ψ)′(0).

Tables 3.1 and 3.2 list various Archimedean copulae in the same ordering as
provided in Nelsen (1999, Table 4.1, p. 94) and in Härdle, Kleinow, and Stahl
(2002, Table 2.1, p. 42) and the corresponding upper and lower tail-dependence
coefficients (TDCs).
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Table 3.1: Various selected Archimedean copulae. The numbers in the first
column correspond to the numbers of Table 4.1 in Nelsen (1999), p.
94.

Number & Type C(u, v) Parameters

(1) Clayton max
{

(u−θ + v−θ − 1)−1/θ, 0
}

θ ∈ [−1,∞)\{0}

(2) max
[
1 −

{
(1 − u)θ + (1 − v)θ

}1/θ

, 0
]

θ ∈ [1,∞)

(3)
Ali-
Mikhail-Haq

uv

1 − θ(1 − u)(1 − v)
θ ∈ [−1, 1)

(4)
Gumbel-
Hougaard

exp
[
− {

(− log u)θ + (− log v)θ
}1/θ

]
θ ∈ [1,∞)

(12)
[
1 +

{
(u−1 − 1)θ + (v−1 − 1)θ

}1/θ]−1

θ ∈ [1,∞)

(14)
[
1 +

{
(u−1/θ − 1)θ + (v−1/θ − 1)θ

}1/θ]−θ

θ ∈ [1,∞)

(19) θ/ log
(
eθ/u + eθ/v − eθ

)
θ ∈ (0,∞)

3.3.2 Elliptically-contoured Distributions

In this section, we calculate the tail-dependence coefficient for elliptically-
contoured distributions (briefly: elliptical distributions). Well-known elliptical
distributions are the multivariate normal distribution, the multivariate t-distri-
bution, the multivariate logistic distribution, the multivariate symmetric stable
distribution, and the multivariate symmetric generalized-hyperbolic distribu-
tion.

Elliptical distributions are defined as follows: Let X be an n-dimensional
random vector and Σ ∈ Rn×n be a symmetric positive semi-definite matrix.
If X − µ, for some µ ∈ Rn, possesses a characteristic function of the form
φX−µ(t) = Ψ(t�Σt) for some function Ψ : R+

0 → R, then X is said to be el-
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Table 3.2: Tail-dependence coefficients (TDCs) and generators ψθ for various
selected Archimedean copulae. The numbers in the first column
correspond to the numbers of Table 4.1 in Nelsen (1999), p. 94.

Number & Type ψθ(t) Parameter θ Upper-TDC Lower-TDC

(1) Pareto t−θ − 1 [−1,∞)\{0} 0 for θ > 0 2−1/θ

for θ > 0

(2) (1 − t)θ [1,∞) 2 − 21/θ 0

(3)
Ali-
Mikhail-Haq

log
1 − θ(1 − t)

t
[−1, 1) 0 0

(4)
Gumbel-
Hougaard

(− log t)θ [1,∞) 2 − 21/θ 0

(12)
(

1
t
− 1

)θ

[1,∞) 2 − 21/θ 2−1/θ

(14)
(
t−1/θ − 1

)θ
[1,∞) 2 − 21/θ 1

2

(19) eθ/t − eθ (0,∞) 0 1

liptically distributed with parameters µ (location), Σ (dispersion), and Ψ. Let
En(µ, Σ, Ψ) denote the class of elliptically-contoured distributions with the lat-
ter parameters. We call Ψ the characteristic generator. The density function,
if it exists, of an elliptically-contoured distribution has the following form:

f(x) = |Σ|−1/2g
{

(x − µ)�Σ−1(x − µ)
}
, x ∈ Rn, (3.5)

for some function g : R+
0 → R+

0 , which we call the density generator.

Observe that the name “elliptically-contoured distribution” is related to the el-
liptical contours of the latter density. For a more detailed treatment of elliptical
distributions see the monograph of Fang, Kotz, and Ng (1990) or Cambanis,
Huang, and Simon (1981).
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In connection with financial applications, Bingham and Kiesel (2002) and Bing-
ham, Kiesel, and Schmidt (2002) propose a semi-parametric approach for el-
liptical distributions by estimating the parametric component (µ, Σ) separately
from the density generator g. In their setting, the density generator is estimated
by means of a nonparametric statistics.

Schmidt (2002b) shows that bivariate elliptically-contoured distributions are
upper and lower tail-dependent if the tail of their density generator is regularly
varying, i.e. the tail behaves asymptotically like a power function. Further,
a necessary condition for tail dependence is given which is more general than
regular variation of the latter tail: More precisely, the tail must be O-regularly
varying (see Bingham, Goldie, and Teugels (1987) for the definition of O-regular
variation). Although the equivalence of tail dependence and regularly-varying
density generator has not been shown, all density generators of well-known el-
liptical distributions possess either a regularly-varying tail or a not O-regularly-
varying tail. This justifies a restriction to the class of elliptical distributions
with regularly-varying density generator if tail dependence is required. In par-
ticular, tail dependence is solely determined by the tail behavior of the density
generator (except for completely correlated random variables which are always
tail dependent).

The following closed-form expression exists (Schmidt, 2002b) for the upper
and lower tail-dependence coefficient of an elliptically-contoured random vector
(X1, X2)� ∈ E2(µ, Σ, Ψ) with positive-definite matrix

Σ =
(

σ11 σ12

σ11 σ12

)
,

having a regularly-varying density generator g with regular variation index
−α/2 − 1 < 0 :

λ
def= λU = λL =

∫ h(ρ)

0

uα

√
1 − u2

du∫ 1

0

uα

√
1 − u2

du

, (3.6)

where ρ = σ12/
√

σ11σ22 and h(ρ) =
{

1 + (1−ρ)2

1−ρ2

}−1/2

.

Note that ρ corresponds to the “correlation” coefficient when it exists (Fang,
Kotz, and Ng, 1990). Moreover, the upper tail-dependence coefficient λU co-
incides with the lower tail-dependence coefficient λL and depends only on the
“correlation” coefficient ρ and the regular variation index α, see Figure 3.3.
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Figure 3.3: Tail-dependence coefficient λ versus regular variation index α for
“correlation” coefficients ρ = 0.5, 0.3, 0.1. STFtail03.xpl

Table 3.3 lists various elliptical distributions, the corresponding density gener-
ators (here cn denotes a normalizing constant depending only on the dimension
n) and the associated regular variation index α from which one easily derives
the tail-dependence coefficient using formula (3.6).
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Table 3.3: Tail index α for various density generators g of multivariate elliptical
distributions. Kν denotes the modified Bessel function of the third
kind (or Macdonald function).

Density generator g or α for
Number & Type characteristic generator Ψ Parameters n = 2

(23) Normal g(u) = cn exp(−u/2) — ∞

(24) t g(u) = cn

(
1 +

t

θ

)−(n+θ)/2

θ > 0 θ

(25)
Symmetric
general.
hyperbolic

g(u) = cn

Kλ−n
2
{√ς(χ + u)}

(
√

χ + u)
n
2 −λ

ς, χ > 0
λ ∈ R

∞

(26)
Symmetric
θ-stable Ψ(u) = exp

{
−
(

1
2u
)θ/2}

θ ∈ (0, 2] θ

(27) logistic g(u) = cn
exp(−u)

{1 + exp(−u)}2
— ∞

3.3.3 Other Copulae

For many other closed form copulae one can explicitly derive the tail-dependence
coefficient. Tables 3.4 and 3.5 list some well-known copula functions and the
corresponding lower and upper TDCs.
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Table 3.4: Various copulae. Copulae BBx are provided in Joe (1997).

Number & Type C(u, v) Parameters

(28) Raftery
g {min(u, v), max(u, v); θ} with

g {x, y; θ} = x − 1−θ
1+θ

x1/(1−θ)
(
y−θ/(1−θ) − y1/(1−θ)

)
θ ∈ [0, 1]

(29) BB1
[
1 +

{
(u−θ − 1)δ + (v−θ − 1)δ

}1/δ]−1/θ θ ∈ (0,∞)
δ ∈ [1,∞)

(30) BB4

[
u−θ + v−θ − 1−

−
{

(u−θ − 1)−δ + (v−θ − 1)−δ
}−1/δ]−1/θ

θ ∈ [0,∞)
δ ∈ (0,∞)

(31) BB7
1 −

(
1 −

[{
1 − (1 − u)θ

}−δ
+

+
{
1 − (1 − v)θ

}−δ − 1
]−1/δ)1/θ

θ ∈ [1,∞)
δ ∈ (0,∞)

(32) BB8

1

δ

(
1 −

[
1 − {

1 − (1 − δ)θ
}−1·

·{1 − (1 − δu)θ
}{

1 − (1 − δv)θ
}]1/θ) θ ∈ [1,∞)

δ ∈ [0, 1]

(33) BB11 θ min(u, v) + (1 − θ)uv θ ∈ [0, 1]

(34)
CΩ in
Junker and
May (2002)

βCs
(θ̄,δ̄)

(u, v) − (1 − β)C(θ,δ)(u, v) with

Archim. generator ψ(θ,δ)(t) =
(
− log e−θt−1

e−θ−1

)δ

Cs
(θ̄,δ̄)

is the survival copula with param. (θ̄, δ̄)

θ, θ̄ ∈ R\{0}
δ, δ̄ ≥ 1

β ∈ [0, 1]

3.4 Estimating the Tail-dependence Coefficient

Suppose X, X(1), . . . , X(m) are i.i.d. bivariate random vectors with distribu-
tion function F and copula C. We assume continuous marginal distribution
functions Fi, i = 1, 2. Tests for tail dependence or tail independence are given
for example in Ledford and Tawn (1996) or Draisma et al. (2004).

We consider the following three (non-)parametric estimators for the lower and
upper tail-dependence coefficients λU and λL. These estimators have been dis-
cussed in Huang (1992) and Schmidt and Stadtmüller (2003). Let Cm be the
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Table 3.5: Tail-dependence coefficients (TDCs) for various copulae. Copulae
BBx are provided in Joe (1997).

Number & Type Parameters upper-TDC lower-TDC

(28) Raftery θ ∈ [0, 1] 0
2θ

1 + θ

(29) BB1
θ ∈ (0,∞)
δ ∈ [1,∞) 2 − 21/δ 2−1/(θδ)

(30) BB4
θ ∈ [0,∞)
δ ∈ (0,∞) 2−1/δ (2−

2−1/δ)−1/θ

(31) BB7
θ ∈ [1,∞)
δ ∈ (0,∞) 2 − 21/θ 2−1/δ

(32) BB8
θ ∈ [1,∞)
δ ∈ [0, 1]

2−
−2(1 − δ)θ−1 0

(33) BB11 θ ∈ [0, 1] θ θ

(34)
CΩ in
Junker and
May (2002)

θ, θ̄ ∈ R\{0}
δ, δ̄ ≥ 1
β ∈ [0, 1]

(1 − β)·
·(2 − 21/δ)

β(2 − 21/δ̄)

empirical copula defined by:

Cm(u, v) = Fm(F−1
1m(u), F−1

2m(v)), (3.7)

with Fm and Fim denoting the empirical distribution functions corresponding
to F and Fi, i = 1, 2, respectively. Let R

(j)
m1 and R

(j)
m2 be the rank of X

(j)
1 and

X
(j)
2 , j = 1, . . . ,m, respectively. The first estimators are based on formulas

(3.1) and (3.2):
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λ̂
(1)
U,m =

m

k
Cm

((
1 − k

m
, 1
]
×
(

1 − k

m
, 1
])

=
1
k

m∑
j=1

I(R(j)
m1 > m − k,R

(j)
m2 > m − k) (3.8)

and

λ̂
(1)
L,m =

m

k
Cm

( k

m
,

k

m

)
=

1
k

m∑
j=1

I(R(j)
m1 ≤ k,R

(j)
m2 ≤ k), (3.9)

where k = k(m) → ∞ and k/m → 0 as m → ∞, and the first expression
in (3.8) has to be understood as the empirical copula-measure of the inter-
val (1 − k/m, 1] × (1 − k/m, 1]. The second type of estimator is already well
known in multivariate extreme-value theory (Huang, 1992). We only provide
the estimator for the upper TDC.

λ̂
(2)
U,m = 2 − m

k

{
1 − Cm

(
1 − k

m
, 1 − k

m

)}
= 2 − 1

k

m∑
j=1

I(R(j)
m1 > m − k or R

(j)
m2 > m − k), (3.10)

with k = k(m) → ∞ and k/m → 0 as m → ∞. The optimal choice of k is re-
lated to the usual variance-bias problem and we refer the reader to Peng (1998)
for more details. Strong consistency and asymptotic normality for both types
of nonparametric estimators are also addressed in the latter three reference.

Now we focus on an elliptically-contoured bivariate random vector X. In the
presence of tail dependence, previous arguments justify a sole consideration of
elliptical distributions having a regularly-varying density generator with regular
variation index α. This implies that the distribution function of ||X||2 has also
a regularly-varying tail with index α. Formula (3.6) shows that the upper
and lower tail-dependence coefficients λU and λL depend only on the regular
variation index α and the “correlation” coefficient ρ. Hence, we propose the
following parametric estimator for λU and λL:

λ̂
(3)
U,m = λ̂

(3)
L,m = λ

(3)
U (α̂m, ρ̂m). (3.11)
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Several robust estimators ρ̂m for ρ are provided in the literature such as estima-
tors based on techniques of multivariate trimming (Hahn, Mason, and Weiner,
1991), minimum-volume ellipsoid estimators (Rousseeuw and van Zomeren,
1990), and least square estimators (Frahm et al., 2002).

For more details regarding the relationship between the regular variation index
α, the density generator, and the random variable ||X||2 we refer to Schmidt
(2002b). Observe that even though the estimator for the regular variation
index α might be unbiased, the TDC estimator λ̂

(3)
U,m is biased due to the

integral transform.

3.5 Comparison of TDC Estimators

In this section we investigate the finite-sample properties of the introduced
TDC estimators. One thousand independent copies of m = 500, 1000, and 2000
i.i.d. random vectors (m denotes the sample length) of a bivariate standard t-
distribution with θ = 1.5, 2, and 3 degrees of freedom are generated and the
upper TDCs are estimated. Note that the parameter θ equals the regular
variation index α which we discussed in the context of elliptically-contoured
distributions. The empirical bias and root-mean-squared error (RMSE) for all
three introduced TDC estimation methods are derived and presented in Tables
3.6, 3.7, and 3.8, respectively.

Table 3.6: Bias and RMSE for the nonparametric upper TDC estimator λ̂
(1)
U

(multiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161
Estimator λ̂

(1)
U λ̂

(1)
U λ̂

(1)
U

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 25.5 (60.7) 43.4 (72.8) 71.8 (92.6)
m = 1000 15.1 (47.2) 28.7 (55.3) 51.8 (68.3)
m = 2000 8.2 (38.6) 19.1 (41.1) 36.9 (52.0)
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Table 3.7: Bias and RMSE for the nonparametric upper TDC estimator λ̂
(2)
U

(multiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161
Estimator λ̂

(2)
U λ̂

(2)
U λ̂

(2)
U

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 53.9 (75.1) 70.3 (88.1) 103.1 (116.4)
m = 1000 33.3 (54.9) 49.1 (66.1) 74.8 (86.3)
m = 2000 22.4 (41.6) 32.9 (47.7) 56.9 (66.0)

Table 3.8: Bias and RMSE for the parametric upper TDC estimator λ̂
(3)
U (mul-

tiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters λU = 0.2296 λU = 0.1817 λU = 0.1161
Estimator λ̂

(3)
U λ̂

(3)
U λ̂

(3)
U

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 1.6 (30.5) 3.5 (30.8) 16.2 (33.9)
m = 1000 2.4 (22.4) 5.8 (23.9) 15.4 (27.6)
m = 2000 2.4 (15.5) 5.4 (17.0) 12.4 (21.4)

Regarding the parametric approach we apply the procedure introduced in Sec-
tion 3.4 and estimate ρ by a trimmed empirical correlation coefficient with
trimming proportion 0.05% and α (= θ) by a Hill estimator. For the latter we
choose the optimal threshold value k according to Drees and Kaufmann (1998).
The empirical bias and RMSE corresponding to the estimation of ρ and α are
provided in Tables 3.9 and 3.10. Observe that Pearson’s correlation coefficient
ρ does not exist for θ < 2. In this case, ρ denotes some dependence parameter
and a more robust estimation procedure should be used (Frahm et al., 2002).
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Table 3.9: Bias and RMSE for the estimator of the regular variation index α
(multiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters α = 1.5 α = 2 α = 3
Estimator α̂ α̂ α̂

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 2.2 (211.9) −19.8 (322.8) −221.9 (543.7)
m = 1000 −14.7 (153.4) −48.5 (235.6) −242.2 (447.7)
m = 2000 −15.7 (101.1) −60.6 (173.0) −217.5 (359.4)

Table 3.10: Bias and RMSE for the “correlation” coefficient estimator ρ̂ (mul-
tiplied by 103). The sample length is denoted by m.

Original θ = 1.5 θ = 2 θ = 3
parameters ρ = 0 ρ = 0 ρ = 0
Estimator ρ̂ ρ̂ ρ̂

Bias (RMSE) Bias (RMSE) Bias (RMSE)

m = 500 0.02 (61.6) −2.6 (58.2) 2.1 (56.5)
m = 1000 −0.32 (44.9) 1.0 (42.1) 0.6 (39.5)
m = 2000 0.72 (32.1) −1.2 (29.3) −1.8 (27.2)

Finally, Figures 3.4 and 3.5 illustrate the (non-)parametric estimation results
of the upper TDC estimator λ̂

(i)
U , i = 1, 2, 3. Presented are 3 × 1000 TDC

estimations with sample lengths m = 500, 1000 and 2000. The plots visualize
the decreasing empirical bias and variance for increasing sample length.
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Figure 3.4: Nonparametric upper TDC estimates λ̂
(1)
U (left panel) and λ̂

(2)
U

(right panel) for 3 × 1000 i.i.d. samples of size m = 500, 1000, 2000
from a bivariate t-distribution with parameters θ = 2, ρ = 0, and
λ

(1)
U = λ

(2)
U = 0.1817.

STFtail04.xpl

The empirical study shows that the TDC estimator λ̂
(3)
U outperforms the other

two estimators. For m = 2000, the bias (RMSE) of λ̂
(1)
U is three (two and

a half) times larger than the bias (RMSE) of λ̂
(3)
U , whereas the bias (RMSE)

of λ̂
(2)
U is two (ten percent) times larger than the bias (RMSE) of λ̂

(1)
U . More

empirical and statistical results regarding the estimators λ̂
(1)
U and λ̂

(2)
U are given

in Schmidt and Stadtmüller (2003). However, note that the estimator λ̂
(3)
U was

especially developed for bivariate elliptically-contoured distributions. Thus,
the estimator λ̂

(1)
U is recommended for TDC estimations of non-elliptical or

unknown bivariate distributions.

3.6 Tail Dependence of Asset and FX Returns

Tail dependence is indeed often found in financial data series. Consider two
scatter plots of daily negative log-returns of a tuple of financial securities and
the corresponding upper TDC estimate λ̂

(1)
U for various k (for notational con-

venience we drop the index m).
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Figure 3.5: Nonparametric upper TDC estimates λ̂
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The first data set (D1) contains negative daily stock log-returns of BMW and
Deutsche Bank for the time period 1992–2001. The second data set (D2) con-
sists of negative daily exchange rate log-returns of DEM/USD and JPY/USD
(so-called FX returns) for the time period 1989–2001. For modelling reasons
we assume that the daily log-returns are i.i.d. observations. Figures 3.6 and
3.7 show the presence of tail dependence and the order of magnitude of the
tail-dependence coefficient. Tail dependence is present if the plot of TDC esti-
mates λ̂

(1)
U against the thresholds k shows a characteristic plateau for small k.

The existence of this plateau for tail-dependent distributions is justified by a
regular variation property of the tail distribution; we refer the reader to Peng
(1998) or Schmidt and Stadtmüller (2003) for more details. By contrast, the
characteristic plateau is not observable if the distribution is tail independent.
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Figure 3.6: Scatter plot of BMW versus Deutsche Bank negative daily stock
log-returns (2347 data points) and the corresponding TDC estimate
λ̂

(1)
U for various thresholds k.
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The typical variance-bias problem for various thresholds k can be also observed
in Figures 3.6 and 3.7. In particular, a small k comes along with a large variance
of the TDC estimator, whereas increasing k results in a strong bias. In the
presence of tail dependence, k is chosen such that the TDC estimate λ̂

(1)
U lies

on the plateau between the decreasing variance and the increasing bias. Thus
for the data set D1 we take k between 80 and 110 which provides a TDC
estimate of λ̂

(1)
U,D1

= 0.31, whereas for D2 we choose k between 40 and 90 which

yields λ̂
(1)
U,D2

= 0.17.

The importance of the detection and the estimation of tail dependence becomes
clear in the next section. In particular, we show that the Value at Risk estima-
tion of a portfolio is closely related to the concept of tail dependence. A proper
analysis of tail dependence results in an adequate choice of the portfolio’s loss
distribution and leads to a more precise assessment of the Value at Risk.
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Figure 3.7: Scatter plot of DEM/USD versus JPY/USD negative daily ex-
change rate log-returns (3126 data points) and the corresponding
TDC estimate λ̂

(1)
U for various thresholds k.
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3.7 Value at Risk – a Simulation Study

Value at Risk (VaR) estimations refer to the estimation of high target quantiles
of single asset or portfolio loss distributions. Thus, VaR estimations are very
sensitive towards the tail behavior of the underlying distribution model.

On the one hand, the VaR of a portfolio is affected by the tail distribution of
each single asset. On the other hand, the general dependence structure and
especially the tail-dependence structure among all assets have a strong impact
on the portfolio’s VaR, too. With the concept of tail dependence, we supply a
methodology for measuring and modelling one particular type of dependence
of extreme events.

What follows, provides empirical justification that the portfolio’s VaR estima-
tion depends heavily on a proper specification of the (tail-)dependence structure
of the underlying asset-return vector. To illustrate our assertion we consider
three financial data sets: The first two data sets D1 and D2 refer again to the
daily stock log-returns of BMW and Deutsche Bank for the time period 1992–
2001 and the daily exchange rate log-returns of DEM/USD and JPY/USD
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Figure 3.8: Scatter plot of foreign exchange data (left panel) and simulated
normal pseudo-random variables (right panel) of FFR/USD ver-
sus DEM/USD negative daily exchange rate log-returns (5189 data
points).
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for the time period 1989–2001, respectively. The third data set (D3) contains
exchange rate log-returns of FFR/USD and DEM/USD for the time period
1984–2002.

Typically, in practice, either a multivariate normal distribution or multivariate
t-distribution is fitted to the data in order to describe the random behavior
(market riskiness) of asset returns. Especially multivariate t-distributions have
recently gained the attraction of practitioners due to their ability to model
heavy tails while still having the advantage of being in the class of elliptically-
contoured distributions. Recall that the multivariate normal distribution has
thin tailed marginals which exhibit no tail-dependence, and the t-distribution
possesses heavy tailed marginals which are tail dependent (see Section 3.3.2).
Due to the different tail behavior, one might pick one of the latter two dis-
tribution classes if the data are elliptically contoured. However, elliptically-
contoured distributions require a very strong symmetry of the data and might
not be appropriate in many circumstances.

For example, the scatter plot of the data set D3 in Figure 3.8 reveals that
its distributional structure does not seem to be elliptically contoured at all.
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To circumvent this problem, one could fit a distribution from a broader dis-
tribution class, such as a generalized hyperbolic distribution (Eberlein and
Keller, 1995; Bingham and Kiesel, 2002). Alternatively, a split of the de-
pendence structure and the marginal distribution functions via the theory of
copulae (as described in Section 3.2) seems to be also attractive. This split
exploits the fact that statistical (calibration) methods are well established for
one-dimensional distribution functions.

For the data sets D1, D2, and D3, one-dimensional t-distributions are utilized to
model the marginal distributions. The choice of an appropriate copula function
turns out to be delicate. Two structural features are important in the context of
VaR estimations regarding the choice of the copula. First, the general structure
(symmetry) of the chosen copula should coincide with the dependence structure
of the real data. We visualize the dependence structure of the sample data via
the respective empirical copula (Figure 3.9), i.e. the marginal distributions are
standardized by the corresponding empirical distribution functions. Second, if
the data show tail dependence than one must utilize a copula which comprises
tail dependence. Especially VaR estimations at a small confidence level are
very sensitive towards tail dependence. Figure 3.9 indicates that the FX data
set D3 has significantly more dependence in the lower tail than the simulated
data from a fitted bivariate normal copula. The data clustering in the lower
left corner of the scatter plot of the empirical copula is a strong indication for
tail dependence.

Based on the latter findings, we use a t-copula (which allows for tail depen-
dence, see Section 3.3.2) and t-distributed marginals (which are heavy tailed).
Note, the resulting common distribution is only elliptically contoured if the
degrees of freedom of the t-copula and the t-margins coincide, since in this case
the common distribution corresponds to a multivariate t-distribution. The
parameters of the marginals and the copula are separately estimated in two
consecutive steps via maximum likelihood. For statistical properties of the lat-
ter procedure, which is called Inference Functions for Margins method (IFM),
we refer to Joe and Xu (1996).

Tables 3.11, 3.12, and 3.13 compare the historical VaR estimates of the data
sets D1, D2, and D3 with the average of 100 VaR estimates which are simu-
lated from different distributions. The fitted distribution is either a bivariate
normal, a bivariate t-distribution or a bivariate distribution with t-copula and
t-marginals. The respective standard deviation of the VaR estimations are pro-
vided in parenthesis. For a better exposition, we have multiplied all numbers
by 105.
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Figure 3.9: Lower left corner of the empirical copula density plots of real data
(left panel) and simulated normal pseudo-random variables (right
panel) of FFR/USD versus DEM/USD negative daily exchange rate
log-returns (5189 data points).
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Table 3.11: Mean and standard deviation of 100 VaR estimations (multiplied
by 105) from simulated data following different distributions which
are fitted to the data set D1.

Quantile Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 489.93 397.66 (13.68) 464.66 (39.91) 515.98 (36.54)
0.025 347.42 335.28 (9.67) 326.04 (18.27) 357.40 (18.67)
0.05 270.41 280.69 (7.20) 242.57 (10.35) 260.27 (11.47)

The results of the latter tables clearly show that the fitted bivariate normal-
distribution does not yield an overall satisfying estimation of the VaR for all
data sets D1, D2, and D3. The poor estimation results for the 0.01− and
0.025−quantile VaR (i.e. the mean of the VaR estimates deviate strongly from
the historical VaR estimate) are mainly caused by the thin tails of the normal
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Table 3.12: Mean and standard deviation of 100 VaR estimations (multiplied
by 105) from simulated data following different distributions which
are fitted to the data set D2.

Quantile Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 155.15 138.22 (4.47) 155.01 (8.64) 158.25 (8.24)
0.025 126.63 116.30 (2.88) 118.28 (4.83) 120.08 (4.87)
0.05 98.27 97.56 (2.26) 92.35 (2.83) 94.14 (3.12)

Table 3.13: Mean and standard deviation of 100 VaR estimations (multiplied
by 105) from simulated data following different distributions which
are fitted to the data set D3.

Quantile Historical Normal t-distribution t-copula &
VaR distribution t-marginals

Mean (Std) Mean (Std) Mean (Std)

0.01 183.95 156.62 (3.65) 179.18 (9.75) 179.41 (6.17)
0.025 141.22 131.54 (2.41) 124.49 (4.43) 135.21 (3.69)
0.05 109.94 110.08 (2.05) 91.74 (2.55) 105.67 (2.59)

distribution. By contrast, the bivariate t-distribution provides good estimations
of the historical VaR for the data sets D1 and D2 over all quantiles. However,
both data sets are approximately elliptically-contoured distributed since the
estimated parameters of the copula and the marginals are almost equal. For
example for the data set D1, the estimated degree of freedom of the t-copula
is 3.05 whereas the estimated degrees of freedom of the t-marginals are 2.99
and 3.03, respectively. We have already discussed that the distribution of the
data set D3 is not elliptically contoured. Indeed, the VaR estimation improves
with a splitting of the copula and the marginals. The corresponding estimated
degree of freedom of the t-copula is 1.11 whereas the estimated degrees of
freedom of the t-marginals are 4.63 and 5.15. Finally, note that the empirical
standard deviations do significantly differ between the VaR estimation based
on the multivariate t-distribution and the t-copula, respectively.
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Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal
Events, Springer Verlag, Berlin.

Embrechts, P., Lindskog, F. and McNeil, A. (2001). Modelling Dependence
with Copulas and Applications to Risk Management, in S. Rachev (Ed.)
Handbook of Heavy Tailed Distributions in Finance, Elsevier: 329–384.

Embrechts, P., McNeil, A. and Straumann, D. (1999). Correlation and Depen-
dency in Risk Management: Properties and Pitfalls, in M.A.H. Dempster
(Ed.) Risk Management: Value at Risk and Beyond, Cambridge University
Press, Cambridge: 176–223.

Fang, K., Kotz, S. and Ng, K. (1990). Symmetric Multivariate and Related
Distributions, Chapman and Hall, London.

Frahm, G., Junker, M. and Schmidt, R. (2002). Estimating the Tail
Dependence Coefficient, CAESAR Center Bonn, Technical Report 38
http://stats.lse.ac.uk/schmidt.



90 Bibliography
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Hauksson, H., Dacorogna, M., Domenig, T., Mueller, U. and Samorodnitsky, G.
(2001). Multivariate Extremes, Aggregation and Risk Estimation, Quan-
titative Finance 1: 79–95.

Huang, X., (1992). Statistics of Bivariate Extreme Values. Thesis Publishers
and Tinbergen Institute.

Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman and
Hall, London.

Joe, H. and Xu, J. J. (1996). The Estimation Method of Inference Function for
Margins for Multivariate Models, British Columbia, Dept. of Statistics,
Technical Report 166.

Junker, M. and May, A. (2002). Measurement of aggregate risk with copulas,
Research Center CAESAR Bonn, Dept. of Quantitative Finance, Technical
Report 2.

Kiesel, R. and Kleinow, T. (2002). Sensitivity analysis of credit portfolio mod-
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4 Pricing of Catastrophe Bonds

Krzysztof Burnecki, Grzegorz Kukla, and David Taylor

4.1 Introduction

Catastrophe (CAT) bonds are one of the more recent financial derivatives to
be traded on the world markets. In the mid-1990s a market in catastrophe
insurance risk emerged in order to facilitate the direct transfer of reinsurance
risk associated with natural catastrophes from corporations, insurers and re-
insurers to capital market investors. The primary instrument developed for
this purpose was the CAT bond.

CAT bonds are more specifically referred to as insurance-linked securities (ILS)
The distinguishing feature of these bonds is that the ultimate repayment of
principal depends on the outcome of an insured event. The basic CAT bond
structure can be summarized as follows (Lane, 2004):

1. The sponsor establishes a special purpose vehicle (SPV) as an issuer of
bonds and as a source of reinsurance protection.

2. The issuer sells bonds to investors. The proceeds from the sale are in-
vested in a collateral account.

3. The sponsor pays a premium to the issuer; this and the investment of
bond proceeds are a source of interest paid to investors.

4. If the specified catastrophic risk is triggered, the funds are withdrawn
from the collateral account and paid to the sponsor; at maturity, the
remaining principal – or if there is no event, 100% of principal – is paid
to investors.
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There are three types of ILS triggers: indemnity, index and parametric. An
indemnity trigger involves the actual losses of the bond-issuing insurer. For
example the event may be the insurer’s losses from an earthquake in a certain
area of a given country over the period of the bond. An industry index trigger
involves, in the US for example, an index created from property claim service
(PCS) loss estimates. A parametric trigger is based on, for example, the Richter
scale readings of the magnitude of an earthquake at specified data stations. In
this chapter we address the issue of pricing CAT bonds with indemnity and
index triggers.

4.1.1 The Emergence of CAT Bonds

Until fairly recently, property reinsurance was a relatively well understood mar-
ket with efficient pricing. However, naturally occurring catastrophes, such as
earthquakes and hurricanes, are beginning to have a dominating impact on the
industry. In part, this is due to the rapidly changing, heterogeneous distribu-
tion of high-value property in vulnerable areas. A consequence of this has been
an increased need for a primary and secondary market in catastrophe related
insurance derivatives. The creation of CAT bonds, along with allied financial
products such as catastrophe insurance options, was motivated in part by the
need to cover the massive property insurance industry payouts of the early-
to mid-1990s. They also represent a “new asset class” in that they provide
a mechanism for hedging against natural disasters, a risk which is essentially
uncorrelated with the capital market indices (Doherty, 1997). Subsequent to
the development of the CAT bond, the class of disaster referenced has grown
considerably. As yet, there is almost no secondary market for CAT bonds which
hampers using arbitrage-free pricing models for the derivative.

Property insurance claims of approximately USD 60 billion between 1990 and
1996 (Canter, Cole, and Sandor, 1996) caused great concern to the insurance
industry and resulted in the insolvency of a number of firms. These bankrupt-
cies were brought on in the wake of hurricanes Andrew (Florida and Louisiana
affected, 1992), Opal (Florida and Alabama, 1995) and Fran (North Carolina,
1996), which caused combined damage totalling USD 19.7 billion (Canter, Cole,
and Sandor, 1996). These, along with the Northridge earthquake (1994) and
similar disasters (for the illustration of the US natural catastrophe data see
Figure 4.1), led to an interest in alternative means for underwriting insurance.
In 1995, when the CAT bond market was born, the primary and secondary (or
reinsurance) industries had access to approximately USD 240 billion in capi-
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tal (Canter, Cole, and Sandor, 1996; Cummins and Danzon, 1997). Given the
capital level constraints necessary for the reinsuring of property losses and the
potential for single-event losses in excess of USD 100 billion, this was clearly
insufficient. The international capital markets provided a potential source of
security for the (re-)insurance market. An estimated capitalisation of the in-
ternational financial markets, at that time, of about USD 19 trillion underwent
an average daily fluctuation of approximately 70 basis points or USD 133 bil-
lion (Sigma, 1996). The undercapitalisation of the reinsurance industry (and
their consequential default risk) meant that there was a tendency for CAT
reinsurance prices to be highly volatile. This was reflected in the traditional
insurance market, with rates on line being significantly higher in the years
following catastrophes and dropping off in the intervening years (Froot and
O’Connell, 1997; Sigma, 1997). This heterogeneity in pricing has a very strong
damping effect, forcing many re-insurers to leave the market, which in turn has
adverse consequences for the primary insurers. A number of reasons for this
volatility have been advanced (Winter, 1994; Cummins and Danzon, 1997).

CAT bonds and allied catastrophe related derivatives are an attempt to ad-
dress these problems by providing effective hedging instruments which reflect
long-term views and can be priced according to the statistical characteristics
of the dominant underlying process(es). Their impact, since a period of stan-
dardisation between 1997 and 2003, has been substantial. As a consequence
the rise in prices associated with the uppermost segments of the CAT reinsur-
ance programs has been dampened. The primary market has developed and
both issuers and investors are now well-educated and technically adept. In the
years 2000 to 2003, the average total issue exceeded USD 1 billion per annum
(McGhee, 2004). The catastrophe bond market witnessed yet another record
year in 2003, with total issuance of USD 1.73 billion, an impressive 42 percent
year-on-year increase from 2002s record of USD 1.22 billion. During the year,
a total of eight transactions were completed, with three originating from first-
time issuers. The year also featured the first European corporate-sponsored
transaction (and only the third by any non-insurance company). Electricité
de France, the largest electric utility in Europe, sponsored a transaction to
address a portion of the risks facing its properties from French windstorms.
Since 1997, when the market began in earnest, 54 catastrophe bond issues have
been completed with total risk limits of almost USD 8 billion. It is interesting
to note that very few of the issued bonds receive better than “non-investment
grade” BB ratings and that almost no CAT bonds have been triggered, despite
an increased reliance on parametric or index based payout triggers.
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Figure 4.1: Graph of the PCS catastrophe loss data, 1990–1999.
STFcat01.xpl

4.1.2 Insurance Securitization

Capitalisation of insurance and consequential risk spreading through share is-
sue, is well established and the majority of primary and secondary insurers are
public companies. Investors in these companies are thus de facto bearers of
risk for the industry. This however relies on the idea of risk pooling through
the law of large numbers, where the loss borne by each investor becomes highly
predictable. In the case of catastrophic natural disasters, this may not be pos-
sible as the losses incurred by different insurers tend to be correlated. In this
situation a different approach for hedging the risk is necessary. A number of
such products which realize innovative methods of risk spreading already exist
and are traded (Litzenberger, Beaglehole, and Reynolds, 1996; Cummins and
Danzon, 1997; Aase, 1999; Sigma, 2003). They are roughly divided into rein-
surance share related derivatives, including Post-loss Equity Issues and Catas-
trophe Equity Puts, and asset–liability hedges such as Catastrophe Futures,
Options and CAT Bonds.
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In 1992, the Chicago Board of Trade (CBOT) introduced the CAT futures. In
1995, the CAT future was replaced by the PCS option. This option was based
on a loss index provided by PCS. The underlying index represented the devel-
opment of specified catastrophe damages, was published daily and eliminated
the problems of the earlier ISO index. The options traded better, especially the
call option spreads where insurers would appear on both side of the transaction,
i.e. as buyer and seller. However, they also ceased trading in 2000. Much work
in the reinsurance industry concentrated on pricing these futures and options
and on modelling the process driving their underlying indices (Canter, Cole,
and Sandor, 1996; Embrechts and Meister, 1997; Aase, 1999). CAT bonds are
allied but separate instruments which seek to ensure capital requirements are
met in the specific instance of a catastrophic event.

4.1.3 CAT Bond Pricing Methodology

In this chapter we investigate the pricing of CAT Bonds. The methodology de-
veloped here can be extended to most other catastrophe related instruments.
However, we are concerned here only with CAT specific instruments, e.g. Cal-
ifornia Earthquake Bonds (Sigma, 1996; Sigma, 1997; Sigma, 2003; McGhee,
2004), and not reinsurance shares or their related derivatives.

In the early market for CAT bonds, the pricing of the bonds was in the hands of
the issuer and was affected by the equilibrium between supply and demand only.
Consequently there was a tendency for the market to resemble the traditional
reinsurance market. However, as CAT bonds become more popular, it is rea-
sonable to expect that their price will begin to reflect the fair or arbitrage-free
price of the bond, although recent discussions of alternative pricing method-
ologies have contradicted this expectation (Lane, 2003). Our pricing approach
assumes that this market already exists.

Some of the traditional assumptions of derivative security pricing are not cor-
rect when applied to these instruments due to the properties of the underlying
contingent stochastic processes. There is evidence that certain catastrophic
natural events have (partial) power-law distributions associated with their loss
statistics (Barton and Nishenko, 1994). This overturns the traditional log-
normal assumption of derivative pricing models. There are also well-known
statistical difficulties associated with the moments of power-law distributions,
thus rendering it impossible to employ traditional pooling methods and conse-
quently the central limit theorem. Given that heavy-tailed or large deviation
results assume, in general, that at least the first moment of the distribution
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exists, there will be difficulties with applying extreme value theory to this
problem (Embrechts, Resnick, and Samorodnitsky, 1999). It would seem that
these characteristics may render traditional actuarial or derivatives pricing ap-
proaches ineffective.

There are additional features to modelling the CAT bond price which are not
to be found in models of ordinary corporate or government issue (although
there is some similarity with pricing defaultable bonds). In particular, the
trigger event underlying CAT bond pricing is dependent on both the frequency
and severity of natural disasters. In the model described here, we attempt
to reduce to a minimum any assumptions about the underlying distribution
functions. This is in the interests of generality of application. The numerical
examples will have to make some distributional assumptions and will reference
some real data. We will also assume that loss levels are instantaneously mea-
surable and updatable. It is straightforward to adjust the underlying process
to accommodate a development period.

There is a natural similarity between the pricing of catastrophe bonds and
the pricing of defaultable bonds. Defaultable bonds, by definition, must con-
tain within their pricing model a mechanism that accounts for the potential
(partial or complete) loss of their principal value. Defaultable bonds yield
higher returns, in part, because of this potential defaultability. Similarly,
CAT bonds are offered at high yields because of the unpredictable nature
of the catastrophe process. With this characteristic in mind, a number of
pricing models for defaultable bonds have been advanced (Jarrow and Turn-
bull, 1995; Zhou, 1997; Duffie and Singleton, 1999). The trigger event for
the default process has similar statistical characteristics to that of the equiv-
alent catastrophic event pertaining to CAT bonds. In an allied application
to mortgage insurance, the similarity between catastrophe and default in the
log-normal context has been commented on (Kau and Keenan, 1996).

With this in mind, we have modelled the catastrophe process as a compound
doubly stochastic Poisson process. The underlying assumption is that there
is a Poisson point process (of some intensity, in general varying over time) of
potentially catastrophic events. However, these events may or may not result
in economic losses. We assume the economic losses associated with each of the
potentially catastrophic events to be independent and to have a certain common
probability distribution. This is justifiable for the Property Claim Loss indices
used as the triggers for the CAT bonds. Within this model, the threshold time
can be seen as a point of a Poisson point process with a stochastic intensity
depending on the instantaneous index position. We make this model precise
later in the chapter.
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In the article of Baryshnikov, Mayo, and Taylor (1998) the authors presented an
arbitrage-free solution to the pricing of CAT bonds under conditions of contin-
uous trading. They modelled the stochastic process underlying the CAT bond
as a compound doubly stochastic Poisson process. Burnecki and Kukla (2003)
applied their results in order to determine no-arbitrage prices of a zero-coupon
and coupon bearing CAT bond. In Section 4.2 we present the doubly stochastic
Poisson pricing model. In Section 4.3 we study 10-year catastrophe loss data
provided by Property Claim Services. We find a distribution function which
fits the observed claims in a satisfactory manner and estimate the intensity of
the non-homogeneous Poisson process governing the flow of the natural events.
In Section 4.4 we illustrate the values of different CAT bonds associated with
this loss data with respect to the threshold level and maturity time. To this
end we apply Monte Carlo simulations.

4.2 Compound Doubly Stochastic Poisson Pricing
Model

The CAT bond we are interested in is described by specifying the region, type
of events, type of insured properties, etc. More abstractly, it is described by
the aggregate loss process Ls and by the threshold loss D. Set a probability
space (Ω,F ,F t, ν) and an increasing filtration F t⊂F , t∈ [0, T ]. This leads to
the following assumptions:

• There exists a doubly stochastic Poisson process (Bremaud, 1981) Ms

describing the flow of (potentially catastrophic) natural events of a given
type in the region specified in the bond contract. The intensity of this
Poisson point process is assumed to be a predictable bounded process
ms. This process describes the estimates based on statistical analysis
and scientific knowledge about the nature of the catastrophe causes. We
will denote the instants of these potentially catastrophic natural events
as 0 ≤ t1 ≤ . . . ≤ ti ≤ . . . ≤ T .

• The losses incurred by each event in the flow {ti} are assumed to be in-
dependent, identically distributed random values {Xi} with distribution
function F (x) = P(Xi < x).

• A progressive process of discounting rates r. Following the traditional
practice, we assume the process is continuous almost everywhere. This



100 4 Pricing of Catastrophe Bonds

process describes the value at time s of USD 1 paid at time t > s by

exp{−R(s, t)} = exp

⎧⎨⎩−
t∫

s

r(ξ) dξ

⎫⎬⎭ .

Therefore, one has

Lt =
∑
ti<t

Xi =
Mt∑
i=1

Xi.

The definition of the process implies that L is left-continuous and predictable.
We assume that the threshold event is the time when the accumulated losses
exceed the threshold level D, that is τ = inf{t : Lt ≥ D}. Now define a new
process Nt = I(Lt ≥ D). Baryshnikov et al. (1998) show that this is also a
doubly stochastic Poisson process with the intensity

λs = ms {1 − F (D − Ls)} I(Ls < D). (4.1)

In Figure 4.2 we see a sample trajectory of the aggregate loss process Lt (0 ≤
t ≤ T = 10 years) generated under the assumption of log-normal loss amounts
with µ = 18.3806 and σ = 1.1052 and a non-homogeneous Poisson process Mt

with the intensity function m1
s = 35.32 + 2.32 · 2π sin {2π(s − 0.20)}, a real-life

catastrophe loss trajectory (which will be analysed in detail in Section 4.3),
the mean function of the process Lt and two sample 0.05- and 0.95-quantile
lines based on 5000 trajectories of the aggregated loss process, see Chapter 14
and Burnecki, Härdle, and Weron (2004). It is evident that in the studied log-
normal case, the historical trajectory falls outside even the 0.05-quantile line.
This may suggest that “more heavy-tailed” distributions such as the Pareto
or Burr distributions would be better for modelling the“real” aggregate loss
process. In Figure 4.2 the black horizontal line represents a threshold level of
D = 60 billion USD.

4.3 Calibration of the Pricing Model

We conducted empirical studies for the PCS data obtained from Property Claim
Services. ISO’s Property Claim Services unit is the internationally recognized
authority on insured property losses from catastrophes in the United States,
Puerto Rico and the U.S. Virgin Islands. PCS investigates reported disasters
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Figure 4.2: A sample trajectory of the aggregate loss process Lt (thin blue solid
line), a real-life catastrophe loss trajectory (thick green solid line),
the analytical mean of the process Lt (red dashed line) and two
sample 0.05- and 0.95-quantile lines (brown dotted line). The black
horizontal line represents the threshold level D = 60 billion USD.
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and determines the extent and type of damage, dates of occurrence and ge-
ographic areas affected (Burnecki, Kukla, and Weron, 2000). The data, see
Figure 4.1, concerns the US market’s loss amounts in USD, which occurred
between 1990 and 1999 and adjusted for inflation using the Consumer Price
Index provided by the U.S. Department of Labor. Only natural perils like hur-
ricane, tropical storm, wind, flooding, hail, tornado, snow, freezing, fire, ice
and earthquake were taken into consideration. We note that peaks in Figure
4.1 mark the occurrence of Hurricane Andrew (the 24th August 1992) and the
Northridge Earthquake (the 17th January 1994).
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In order to calibrate the pricing model we have to fit both the distribution
function of the incurred losses F and the process Mt governing the flow of
natural events.

The claim size distributions, especially describing property losses, are usually
heavy-tailed. In the actuarial literature for describing such claims, continuous
distributions are often proposed (with the domain R+), see Chapter 13. The
choice of the distribution is very important because it influences the bond price.
In Chapter 14 the claim amount distributions were fitted to the PCS data de-
picted in Figure 4.1. The log-normal, exponential, gamma, Weibull, mixture of
two exponentials, Pareto and Burr distributions were analysed. The parameters
were estimated via the Anderson-Darling statistical minimisation procedure.
The goodness-of-fit was checked with the help of Kolmogorov-Smirnov, Kuiper,
Cramér-von Mises and Anderson-Darling non-parametric tests. The test statis-
tics were compared with the critical values obtained through Monte Carlo sim-
ulations. The Burr distribution with parameters α = 0.4801, λ = 3.9495 · 1016

and τ = 2.1524 passed all tests. The log-normal distribution with parameters
µ = 18.3806 and σ = 1.1052 was the next best fit.

A doubly stochastic Poisson process governing the occurrence times of the losses
was fitted by Burnecki and Kukla (2003). The simplest case with the intensity
ms equal to a nonnegative constant m was considered. Studies of the quarterly
number of losses and the inter-occurence times of the catastrophes led to the
conclusion that the flow of the events may be described by a Poisson process
with an annual intensity of m = 34.2.

The claim arrival process is also analysed in Chapter 14. The statistical tests
applied to the annual waiting times led to a renewal process. Finally, the rate
function m1

s = 35.32+2.32·2π sin {2π(s − 0.20)} was fitted and the claim arrival
process was treated as a non-homogeneous Poisson process. Such a choice of
the intensity function allows modelling of an annual seasonality present in the
natural catastrophe data.

Baryshnikov, Mayo, and Taylor (1998) proposed an intensity function of the
form m2

s = a + b sin2 {2π(s + S)}. Using the least squares procedure (Ross,
2001), we fitted the cumulative intensity function (mean value function) given
by E(Ms) =

∫ s

0
mzdz to the accumulated quarterly number of PCS losses. We

concluded that a = 35.22, b = 0.224, and S = −0.16. This choice of the rate
function allows the incorporation of both an annual cyclic component and a
trend which is sometimes observed in natural catastrophe data.
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Figure 4.3: The aggregate quarterly number of PCS losses (blue solid line) to-
gether with the mean value functions E(Mt) corresponding to the
HP (red dotted line), NHP1 (black dashed line) and NHP2 (green
dashed-dotted line) cases.
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It appears that both the mean squared error (MSE) and the mean absolute
error (MAE) favour the rate function m1

s. In this case MSE = 13.68 and
MAE = 2.89, whereas m2

s yields MSE = 15.12 and MAE = 3.22. Finally the
homogeneous Poisson process with the constant intensity gives MSE = 55.86
and MAE = 6.1. All three choices of the intensity function ms are illustrated
in Figure 4.3, where the accumulated quarterly number of PCS losses and the
mean value functions on the interval [4, 6] years are depicted. This interval
was chosen to best illustrate the differences.
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4.4 Dynamics of the CAT Bond Price

In this section, we present prices for different CAT bonds. We illustrate them
while focusing on the influence of the choice of the loss amount distribution and
the claim arrival process on the bond price. We analyse cases using the Burr
distribution with parameters α = 0.4801, λ = 3.9495 · 1016 and τ = 2.1524,
and the log-normal distribution with parameters µ = 18.3806 and σ = 1.1052.
We also analyse the homogeneous Poisson process with an annual intensity
m = 34.2 (HP) and the non-homogeneous Poisson processes with the rate
functions m1

s = 35.32 + 2.32 · 2π sin {2π(s − 0.20)} (NHP1) and m2
s = 35.22 +

0.224 sin2 {2π(s − 0.16)} (NHP2).

Consider a zero-coupon CAT bond defined by the payment of an amount Z
at maturity T , contingent on a threshold time τ > T . Define the process
Zs = E(Z|Fs). We require that Zs is a predictable process. This can be
interpreted as the independence of payment at maturity from the occurrence
and timing of the threshold. The amount Z can be the principal plus interest,
usually defined as a fixed percentage over the London Inter-Bank Offer Rate
(LIBOR).

The no-arbitrage price of the zero-coupon CAT bond associated with a thresh-
old D, catastrophic flow Ms, a distribution function of incurred losses F , and
paying Z at maturity is given by Burnecki and Kukla (2003):

V 1
t = E [Z exp {−R(t, T )} (1 − NT )|F t]

= E

[
Z exp {−R(t, T )}

·
⎧⎨⎩1 −

T∫
t

ms {1 − F (D − Ls)} I(Ls < D)ds

⎫⎬⎭ |F t

]
. (4.2)

We evaluate this CAT bond price at t = 0, and apply appropriate Monte
Carlo simulations. We assume for the purposes of illustration that the annual
continuously-compounded discount rate r = ln(1.025) is constant and corre-
sponds to LIBOR, T ∈ [1/4, 2] years, D ∈ [2.54, 30] billion USD (quarterly –
3*annual average loss).

Furthermore, in the case of the zero-coupon CAT bond we assume that Z =
1.06 USD. Hence, the bond is priced at 3.5% over LIBOR when T = 1 year.
Figure 4.4 illustrates the zero-coupon CAT bond values (4.2) with respect
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Figure 4.4: The zero-coupon CAT bond price with respect to the threshold level
(left axis) and time to expiry (right axis) in the Burr and NHP1
case.
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to the threshold level and time to expiry in the Burr and NHP1 case. We
can see that as the time to expiry increases, the price of the CAT bond de-
creases. Increasing the threshold level leads to higher bond prices. When T is
a quarter and D = 30 billion USD the CAT bond price approaches the value
1.06 exp {− ln(1.025)/4} ≈ 1.05 USD. This is equivalent to the situation when
the threshold time exceeds the maturity (τ � T ) with probability one.

Consider now a CAT bond which has only coupon payments Ct, which ter-
minate at the threshold time τ . The no-arbitrage price of the CAT bond
associated with a threshold D, catastrophic flow Ms, a distribution function
of incurred losses F , with coupon payments Cs which terminate at time τ is
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given by Burnecki and Kukla (2003):

V 2
t = E

[∫ T

t

exp {−R(t, s)}Cs(1 − Ns)ds|F t

]

= E

[∫ T

t

exp {−R(t, s)}Cs

·
{

1 −
s∫

t

mξ {1 − F (D − Lξ)} I(Lξ < D)dξ

}
ds|F t

]
. (4.3)

We evaluate this CAT bond price at t = 0 and assume that Ct ≡ 0.06. The
value of V 2

0 as a function of time to maturity (expiry) and threshold level in
the Burr and NHP1 case is illustrated by Figure 4.5. We clearly see that the
situation is different to that of the zero-coupon case. The price increases with
both time to expiry and threshold level. When D = 30 USD billion and T = 2
years the CAT bond price approaches the value 0.06

∫ 2

0
exp {− ln(1.025)t} dt ≈

0.12 USD. This is equivalent to the situation when the threshold time exceeds
the maturity (τ � T ) with probability one.

Finally, we consider the case of the coupon-bearing CAT bond. Fashioned
as floating rate notes, such bonds pay a fixed spread over LIBOR. Loosely
speaking, the fixed spread may be analogous to the premium paid for the
underlying insured event, and the floating rate, LIBOR, is the payment for
having invested cash in the bond to provide payment against the insured event,
should a payment to the insured be necessary. We combine (4.2) with Z equal
to par value (PV) and (4.3) to obtain the price for the coupon-bearing CAT
bond.

The no-arbitrage price of the CAT bond associated with a threshold D, catas-
trophic flow Ms, a distribution function of incurred losses F , paying PV at
maturity, and coupon payments Cs which cease at the threshold time τ is
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given by Burnecki and Kukla (2003):

V 3
t = E

[
PV exp {−R(t, T )} (1 − NT )

+
∫ T

t

exp {−R(t, s)}Cs(1 − Ns)ds|F t

]

= E

[
PV exp{−R(t, T )}

+

T∫
t

exp{−R(t, s)}
{

Cs

(
1 −

s∫
t

mξ {1 − F (D − Lξ)} I(Lξ < D)dξ

)

− PV exp {−R(s, T )}ms {1 − F (D − Ls)} I(Ls < D)

}
ds|F t

]
. (4.4)
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Figure 4.6: The coupon-bearing CAT bond price with respect to the threshold
level (left axis) and time to expiry (right axis) in the Burr and
NHP1 case.
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We evaluate this CAT bond price at t = 0 and assume that PV = 1 USD, and
again Ct ≡ 0.06. Figure 4.6 illustrates this CAT bond price in the Burr and
NHP1 case. The influence of the threshold level D on the bond value is clear
but the effect of increasing the time to expiry is not immediately clear. As T
increases, the possibility of receiving more coupons increases but so does the
possibility of losing the principal of the bond. In this example (see Figure 4.6)
the price decreases with respect to the time to expiry but this is not always
true. We also notice that the bond prices in Figure 4.6 are lower than the
corresponding ones in Figure 4.4. However, we recall that in the former case
PV = 1.06 USD and here PV = 1 USD.

The choice of the fitted loss distribution affects the price of the bond. Figure 4.7
illustrates the difference between the zero-coupon CAT bond prices calculated
under the two assumptions of Burr and log-normal loss sizes in the NHP1 case.
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It is clear that taking into account heavier tails (the Burr distribution), which
can be more appropriate when considering catastrophic losses, leads to higher
prices (the maximum difference in this example reaches 50% of the principal).

Figures 4.8 and 4.9 show how the choice of the fitted Poisson point process
influences the CAT bond value. Figure 4.8 illustrates the difference between
the zero-coupon CAT bond prices calculated in the NHP1 and HP cases under
the assumption of the Burr loss distribution. We see that the differences vary
from −14% to 3% of the principal. Finally, Figure 4.9 illustrates the difference
between the zero-coupon CAT bond prices calculated in the NHP1 and NHP2
cases under the assumption of the Burr loss distribution. The difference is
always below 12%.
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In our examples, equations (4.2) and (4.4), we have assumed that in the case
of a trigger event the bond principal is completely lost. However, if we would
like to incorporate a partial loss in the contract it is sufficient to multiply PV
by the appropriate constant.
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5 Common Functional Implied
Volatility Analysis

Michal Benko and Wolfgang Härdle

5.1 Introduction

Trading, hedging and risk analysis of complex option portfolios depend on
accurate pricing models. The modelling of implied volatilities (IV) plays an
important role, since volatility is the crucial parameter in the Black-Scholes
(BS) pricing formula. It is well known from empirical studies that the volatil-
ities implied by observed market prices exhibit patterns known as volatility
smiles or smirks that contradict the assumption of constant volatility in the BS
pricing model. On the other hand, the IV is a function of two parameters: the
strike price and the time to maturity and it is desirable in practice to reduce
the dimension of this object and characterize the IV surface through a small
number of factors. Clearly, a dimension reduced pricing-model that should re-
flect the dynamics of the IV surface needs to contain factors and factor loadings
that characterize the IV surface itself and their movements across time.

A popular dimension reduction technique is the principal components analysis
(PCA), employed for example by Fengler, Härdle, and Schmidt (2002) in the
IV surface analysis. The discretization of the strike dimension and application
of PCA yield suitable factors (weight vectors) in the multivariate framework.
Noting that the IVs of fixed maturity could also be viewed as random functions,
we propose to use the functional analogue of PCA. We utilize the truncated
functional basis expansion described in Ramsay and Silverman (1997) to the
IVs of the European options on the German stock index (DAX). The standard
functional PCA, however, yields weight functions that are too rough, hence a
smoothed version of functional PCA is proposed here.
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Like Fengler, Härdle, and Villa (2003) we discover similarities of the result-
ing weight functions across maturity groups. Thus we propose an estimation
procedure based on the Flury-Gautschi algorithm, Flury (1988), for the simul-
taneous estimation of the weight functions for two different maturities. This
procedure yields common weight functions with the level, slope, and curvature
interpretation known from the financial literature. The resulting common fac-
tors of the IV surface are the basic elements to be used in applications, such
as simulation based pricing, and deliver a substantial dimension reduction.

The chapter is organized as follows. In Section 5.2 the basic financial framework
is presented, while in Section 5.3 we introduce the notation of the functional
data analysis. In the following three sections we analyze the IV functions using
functional principal components, smoothed functional principal components
and common estimation of principal components, respectively.

5.2 Implied Volatility Surface

Implied volatilities are derived from the BS pricing formula for European op-
tions. Recall that European call and put options are derivatives written on
an underlying asset S driven by the price process St, which yield the pay-off
max(ST −K, 0) and max(K −ST , 0) respectively, at a given expiry time T and
for a prespecified strike price K. The difference τ = T − t between the day of
trade and day of expiration (maturity) is called time to maturity. The pricing
formula for call options, Black and Scholes (1973), is:

Ct(St,K, τ, r, σ) = StΦ(d1) − Ke−rτ Φ(d2)
(5.1)

d1 =
ln(St/K) + (r + 1/2σ2)τ

σ
√

τ
, d2 = d1 − σ

√
τ ,

where Φ(·) is the cumulative distribution function of the standard normal dis-
tribution, r is the riskless interest rate, and σ is the (unknown and constant)
volatility parameter. The put option price Pt can be obtained from the put-call
parity Pt = Ct − St + e−τrK.

For a European option the implied volatility σ̂ is defined as the volatility – σ,
which yields the BS price Ct equal to the price C̃t observed on the market. For
a single asset, we obtain at each time point t a two-dimensional function – the
IV surface σ̂t(K, τ). In order to standardize the volatility functions in time, one
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Figure 5.1: Implied volatility surface of ODAX on May 24, 2001.
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may rescale the strike dimension by dividing K by the future price Ft(τ) of the
underlying asset with the same maturity. This yields the so-called moneyness
κ = K/Ft(τ). Note that some authors define moneyness simply as κ = K/St.
In contrast to the BS assumptions, empirical studies show that IV surfaces are
significantly curved, especially across the strikes. This phenomenon is called
a volatility smirk or smile. Smiles stand for U-shaped volatility functions and
smirks for decreasing volatility functions.

We focus on the European options on the German stock index (ODAX). Figure
5.1 displays the ODAX implied volatilities computed from the BS formula (red
points) and the IV surface on May 24, 2001 estimated using a local polynomial
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estimator for τ ∈ [0, 0.6] and κ ∈ [0.8, 1.2]. We can clearly observe the “strings”
of the original data on maturity grid τ ∈ {0.06111, 0.23611, 0.33333, 0.58611},
which corresponds to 22, 85, 120, and 211 days to maturity. This maturity
grid is structured by market conventions and changes over time. The fact that
the number of transactions with short maturity is much higher than those with
longer maturity is also typical for the IVs observed on the market.

The IV surface is a high-dimensional object – for every time point t we have
to analyze a two-dimensional function. Our goal is to reduce the dimension
of this problem and to characterize the IV surface through a small number of
factors. These factors can be used in practice for risk management, e.g. with
vega-strategies.

The analyzed data, taken from MD*Base, contains EUREX intra-day transac-
tion data for DAX options and DAX futures (FDAX) from January 2 to June
29, 2001. The IVs are calculated by the Newton-Raphson iterative method.
The correction of Hafner and Wallmeier (2001) is applied to avoid influence
of the tax-scheme in the DAX. For robustness, we exclude the contracts with
time to maturity of less than 7 days and maturity strings with less than 100
observations. The approximation of the “riskless” interest rate with a given
maturity is obtained on a daily basis from the linear interpolation of the 1, 3,
6, and 12 month EURIBOR interest rates (obtained from Datastream).

The resulting data set is analyzed using the functional data analysis framework.
One advantage of this approach, as we will see later in this chapter, is the
possibility of introducing smoothness in the functional sense and using it for
regularization. The notation of the functional data analysis is rather complex,
therefor the theoretical motivation and the basic notation will be introduced
in the next section.

5.3 Functional Data Analysis

In the functional data framework, the objects are usually modelled as realiza-
tions of a stochastic process X(t), t ∈ J , where J is a bounded interval in R.
Thus, the set of functions

xi(t), i = 1, 2, . . . n, t ∈ J,

represents the data set. We assume the existence of the mean, variance, and
covariance functions of the process X(t) and denote these by EX(t), Var(t)
and Cov(s, t) respectively.
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For the functional sample we can define the sample-counterparts of EX(t),
Var(t) and Cov(s, t) in a straightforward way:

X̄(t) = 1
n

n∑
i=1

xi(t),

V̂ar(t) = 1
n−1

n∑
i=1

{
xi(t) − X̄(t)

}2
,

Ĉov(s, t) = 1
n−1

n∑
i=1

{
xi(s) − X̄(s)

}{
xi(t) − X̄(t)

}
.

In practice, we observe the function values X def= {xi(ti1), xi(ti2), . . . , xi(tipi
);

i = 1, . . . , n} only on a discrete grid {ti1, ti2, . . . , tipi
} ∈ J , where pi is the

number of grid points for the ith observation. One may estimate the functions
x1, . . . , xn via standard nonparametric regression methods, Härdle (1990). An-
other popular way is to use a truncated functional basis expansion. More pre-
cisely, let us denote a functional basis on the interval J by {Θ1, Θ2, . . . , } and
assume that the functions xi are approximated by the first L basis functions
Θl, l = 1, 2, . . . , L :

xi(t) =
L∑

l=1

cilΘl(t) = c�i Θ(t), (5.2)

where Θ = (Θ1, . . . , ΘL)� and ci = (ci1, . . . , ciL)�. The number of basis
functions L determines the tradeoff between data fidelity and smoothness. The
analysis of the functional objects will be implemented through the coefficient
matrix

C = {cil, i = 1, . . . , n, l = 1, . . . , L}.
The mean, variance, and covariance functions are calculated by:

X̄(t) = c̄�Θ(t),

V̂ar(t) = Θ(t)�Cov(C)Θ(t),

Ĉov(s, t) = Θ(s)�Cov(C)Θ(t),

where c̄l
def= 1

n

n∑
i=1

cil, l = 1, . . . , L and Cov(C) def= 1
n−1

n∑
i=1

(ci − c̄)(ci − c̄)�.

The scalar product in the functional space is defined by:

〈xi, xj〉 def=
∫
J

xi(t)xj(t)dt = c�i Wcj ,
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where
W def=

∫
J

Θ(t)Θ(t)�dt. (5.3)

In practice, the coefficient matrix C needs to be estimated from the data set X .

An example for a functional basis is the Fourier basis defined on J by:

Θl(t) =

⎧⎨⎩ 1, l = 0,
sin(rωt), l = 2r − 1,
cos(rωt), l = 2r,

where the frequency ω determines the period and the length of the interval
|J | = 2π/ω. The Fourier basis defined above can be easily transformed to
the orthonormal basis, hence the scalar-product matrix in (5.3) is simply the
identity matrix.

Our aim is to estimate the IV-functions for fixed τ = 1 month (1M) and
2 months (2M) from the daily-specific grid of the maturities. We estimate
the Fourier coefficients on the moneyness-range κ ∈ [0.9, 1.1] for maturities
observed on particular day i. For τ∗ = 1M, 2M we calculate σ̂i(κ, τ∗) by linear
interpolation of the closest observable IV string with τ ≤ τ∗, σ̂i(κ, τ∗

i−) and
τ ≥ τ∗, σ̂i(κ, τ∗

i+):

σ̂i(κ, τ∗) = σ̂i(κ, τ∗
i−)

(
1 − τ∗ − τ∗

i−
τ∗
i+ − τ∗

i−

)
+ σ̂i(κ, τ∗

i+)
(

τ∗ − τ∗
i−

τ∗
i+ − τ∗

i−

)
,

for i where τ∗
i− and τ∗

i− exist. In Figure 5.2 we show the situation for τ∗ =1M on
May 30, 2001. The blue points and the blue finely dashed curve correspond to
the transactions with τ∗

− =16 days and the green points and the green dashed
curve to the transactions with τ∗

+ = 51 days. The solid black line is the linear
interpolation at τ∗ = 30 days.

The choice of L = 9 delivers a good tradeoff between flexibility and smooth-
ness of the strings. At this moment we exclude from our analysis those days,
where this procedure cannot be performed due to the complete absence of
the needed maturities, and strings with poor performance of estimated coeffi-
cients, due to the small number of contracts in a particular string or presence
of strong outliers. Using this procedure we obtain 77 “functional” observations
x1M

i1
(κ) def= σ̂i1(κ, 1M), i1 = 1, . . . , 77, for the 1M-maturity and 66 observa-

tions x2M
i2

(κ) def= σ̂i2(κ, 2M), i2 = 1, . . . , 66, for the 2M-maturity, as displayed
in Figure 5.3.
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Figure 5.2: Linear interpolation of IV strings on May 30, 2001 with L = 9.
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5.4 Functional Principal Components

Principal Components Analysis yields dimension reduction in the multivariate
framework. The idea is to find normalized weight vectors γm ∈ Rp, for which
the linear transformations of a p-dimensional random vector x, with E[x] = 0:

fm = γ�
mx = 〈γm,x〉, m = 1, . . . , p, (5.4)

have maximal variance subject to:

γ�
l γm = 〈γl, γm〉 = I(l = m) for l ≤ m.

Where I denotes the identificator function. The solution is the Jordan spectral
decomposition of the covariance matrix, Härdle and Simar (2003).
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Figure 5.3: Functional observations estimated using Fourier basis with L =
9, σ̂i1(κ, 1M), i1 = 1, . . . , 77, in the left panel, σ̂i2(κ, 2M) i2 =
1, . . . , 66 in the right panel.
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In the Functional Principal Components Analysis (FPCA) the dimension re-
duction can be achieved via the same route, i.e. by finding orthonormal weight
functions γ1, γ2, . . ., such that the variance of the linear transformation is max-
imal. In order to keep notation simple we assume EX(t) = 0. The weight
functions satisfy:

||γm||2 =
∫

γm(t)2dt = 1,

〈γl, γm〉 =
∫

γl(t)γm(t)dt = 0, l �= m.

The linear transformation is:

fm = 〈γm, X〉 =
∫

γm(t)X(t)dt,

and the desired weight functions solve:

arg max
〈γl,γm〉=I(l=m),l≤m

Var〈γm, X〉, (5.5)
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or equivalently:

arg max
〈γl,γm〉=I(l=m),l≤m

∫ ∫
γm(s)Cov(s, t)γm(t)dsdt.

The solution is obtained by solving the Fredholm functional eigenequation∫
Cov(s, t)γ(t)dt = λγ(s). (5.6)

The eigenfunctions γ1, γ2, . . . sorted with respect to the corresponding eigenval-
ues λ1 ≥ λ2 ≥ . . . solve the FPCA problem (5.5). The following link between
eigenvalues and eigenfunctions holds:

λm = Var(fm) = Var
[∫

γm(t)X(t)dt

]
=
∫ ∫

γm(s)Cov(s, t)γm(t)dsdt.

In the sampling problem, the unknown covariance function Cov(s, t) needs to
be replaced by the sample covariance function Ĉov(s, t). Dauxois, Pousse, and
Romain (1982) show that the eigenfunctions and eigenvalues are consistent esti-
mators for λm and γm and derive some asymptotic results for these estimators.

5.4.1 Basis Expansion

Suppose that the weight function γ has expansion

γ =
L∑

l=1

blΘl(t) = Θ�b.

Using this notation we can rewrite the left hand side of eigenequation (5.6):∫
Cov(s, t)γ(t)dt =

∫
Θ(s)�Cov(C)Θ(t)Θ(t)�bdt

= Θ�Cov(C)Wb,

so that:
Cov(C)Wb = λb.

The functional scalar product 〈γl, γk〉 corresponds to b�
l Wbk in the truncated

basis framework, in the sense that if two functions γl and γk are orthogonal,
the corresponding coefficient vectors bl,bk satisfy b�

l Wbk = 0. Matrix W is
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Figure 5.4: Weight functions for 1M and 2M maturity groups. Blue solid lines,
γ̂1M
1 and γ̂2M

1 , are the first eigenfunctions, green finely dashed lines,
γ̂1M
2 and γ̂2M

2 , are the second eigenfunctions, and cyan dashed lines,
γ̂1M
3 and γ̂2M

3 , are the third eigenfunctions.
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symmetric by definition. Thus, defining u = W1/2b, one needs to solve finally
a symmetric eigenvalue problem:

W1/2Cov(C)W1/2u = λu,

and to compute the inverse transformation b = W−1/2u. For the orthonormal
functional basis (i.e. also for the Fourier basis) W = I, i.e. the problem of
FPCA is reduced to the multivariate PCA performed on the matrix C.

Using the FPCA method on the IV-strings for 1M and 2M maturities we obtain
the eigenfunctions plotted in Figure 5.4. It can be seen, that the eigenfunctions
are too rough. Intuitively, this roughness is caused by the flexibility of the
functional basis. In the next section we present a way of incorporating the
smoothing directly into the PCA problem.
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5.5 Smoothed Principal Components Analysis

As we can see in Figure 5.4, the resulting eigenfunctions are often very rough.
Smoothing them could result in a more natural interpretation of the obtained
weight functions. Here we apply a popular approach known as roughness
penalty. The downside of this technique is that we loose orthogonality in the
L2 sense.

Assume that the underlying eigenfunctions of the covariance operator have a
continuous and square-integrable second derivative. Let Dγ = γ′(t) be the first
derivative operator and define the roughness penalty by Ψ(γ) = ||D2γ||2. More-
over, suppose that γm has square-integrable derivatives up to degree four and
that the second and the third derivatives satisfy one of the following conditions:

1. D2γ, D3γ are zero at the ends of the interval J ,

2. the periodicity boundary conditions of γ,Dγ, D2γ, and D3γ on J .

Then we can rewrite the roughness penalty in the following way:

||D2γ||2 =
∫

D2γ(s)D2γ(s)ds

= Dγ(u)D2γ(u) −Dγ(d)D2γ(d) −
∫

Dγ(s)D3γ(s)ds (5.7)

= γ(u)D3γ(u) − γ(d)D3γ(d) −
∫

γ(s)D4γ(s)ds (5.8)

= 〈γ,D4γ〉, (5.9)

where d and u are the boundaries of the interval J and the first two elements
in (5.7) and (5.8) are both zero under any of the conditions mentioned above.

Given a eigenfunction γ with norm ||γ||2 = 1, we can penalize the sample
variance of the principal component by dividing it by 1 + α〈γ,D4γ〉:

PCAPV
def=

∫ ∫
γ(s)Ĉov(s, t)γ(t)dsdt∫
γ(t)(I + αD4)γ(t)dt

, (5.10)

where I denotes the identity operator. The maximum of the penalized sample
variance (PCAPV) is an eigenfunction γ corresponding to the largest eigenvalue
of the generalized eigenequation:∫

Ĉov(s, t)γ(t)dt = λ(I + αD4)γ(s). (5.11)
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As already mentioned above, the resulting weight functions (eigenfunctions)
are no longer orthonormal in the L2 sense. Since the weight functions are used
as smoothed estimators of principal components functions, we need to rescale
them to satisfy ||γl||2 = 1. The weight functions γl can be also interpreted as
orthogonal in the modified scalar product of the Sobolev type

(f, g) def= 〈f, g〉 + α〈D2f,D2g〉.
A more extended theoretical discussion can be found in Silverman (1991).

5.5.1 Basis Expansion

Define K to be a matrix whose elements are 〈D2Θj ,D2Θk〉. Then the general-
ized eigenequation (5.11) can be transformed to:

W Cov(C)Wu = λ(W + αK)u. (5.12)

Using Cholesky factorization LL� = W + αK and defining S = L−1 we can
rewrite (5.12) as:

{SW Cov(C)WS�}(L�u) = λL�u.

Applying Smoothed Functional PCA (SPCA) to the IV-strings, we get the
smooth-eigenfunctions plotted in Figure 5.5. We use α = 10−7, the aim is
to use a rather small degree of smoothing, in order to replace the high fre-
quency fluctuations only. Some popular methods, like cross-validation, could
be employed as well, Ramsay and Silverman (1997).

The interpretation of the weight functions displayed in Figure 5.5 is as follows:
The first weight function (solid blue) represents clearly the level of the volatil-
ity – weights are almost constant and positive. The second weight function
(finely dashed green) changes sign near the at-the-money point, i.e. can be in-
terpreted as the in-the-money/out-of-the-money identification factor or slope.
The third (dashed cyan) weight function may play the part of the measure
for a deep in-the-money or out-of-the-money factor or curvature. It can be
seen that the weight functions for the 1M (γ̃1M

1 , γ̃1M
2 , γ̃1M

3 ) and 2M maturities
(γ̃2M

1 , γ̃2M
2 , γ̃2M

3 ) have a similar structure. From a practical point of view it
can be interesting to try to get common estimated eigenfunctions (factors in
the further analysis) for both groups. In the next section, we introduce the
estimation motivated by the Common Principal Component Model.
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Figure 5.5: Smoothed weight functions with α = 10−7. Blue solid lines, γ̂1M
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5.6 Common Principal Components Model

The Common Principal Components model (CPC) in the multivariate setting
can be motivated as the model for similarity of the covariance matrices in the k-
sample problem, Flury (1988). Having k random vectors, x(1),x(2), . . . ,x(k) ∈
Rp the CPC-Model can be written as:

Ψj
def= Cov(x(j)) = ΓΛjΓ�,

where Γ is an orthogonal matrix and Λj = diag(λi1, . . . , λip). This means that
eigenvectors are the same across samples and just the eigenvalues – variances
of the principal component scores (5.4) differ.

Using the normality assumption, the sample covariance matrices Sj , j = 1, . . . , k,
are Wishart-distributed:

Sj ∼ Wp(nj ,Ψj/nj),
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and the CPC model can be estimated using maximum likelihood estimation
with likelihood-function:

L(Ψ1,Ψ2, . . . ,Ψk) = C
k∏

j=1

exp
{

tr
(
−nj

2
Ψ−1

j Sj

)}
(detΨj)−nj/2.

Here C is a factor that does not depend on the parameters and nj is the number
of observations in group j. The maximization of this likelihood function is
equivalent to:

k∏
j=1

{
det diag(Γ�SjΓ)

det(Γ�SjΓ)

}nj

, (5.13)

and the maximization of this criterion is performed by the so-called Flury-
Gautschi(FG)-algorithm, Flury (1988).

As shown in Section 5.4, using the functional basis expansion, the FPCA
and SPCA are basically implemented via the spectral decomposition of the
“weighted” covariance matrix of the coefficients. In view of the minimization
property of the FG algorithm, the diagonalization procedure optimizing the
criterion (5.13) can be employed. However, the obtained estimates may not be
maximum likelihood estimates.

Using this procedure for the IV-strings of 1M and 2M maturity we get “com-
mon” smoothed eigenfunctions. The first three common eigenfunctions (γ̃c

1, γ̃
c
2,

γ̃c
3) are displayed in Figures 5.6–5.8. The solid blue curve represents the es-

timated eigenfunction for the 1M maturity, the finely dashed green curve for
the 2M maturity and the dashed black curve is the common eigenfunction
estimated by the FG-algorithm.

Assuming that σ̂i(κ, τ) are centered for τ = 1M and 2M (we subtract the
sample mean of corresponding group from the estimated functions), we may
use the obtained weight functions in the factor model of the IV dynamics of
the form:

σ̃i(κ, τ) =
R∑

j=1

γ̃c
j (κ)〈γ̃c

j (κ), σ̂i(κ, τ)〉, (5.14)

where τ ∈ {1M, 2M} and R is the number of factors. Thus σ̃i is an alternative
estimation of σi. This factor model can be used for simulation applications
like Monte Carlo VaR. Especially the usage of Common Principal Components
γ̃c

j (κ) reduces the high-dimensional IV-surface problem to a small number of
functional factors.
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Figure 5.6: First weight functions, α = 10−7, solid blue line is the weight func-
tion of the 1M maturity group (γ̂1M

1 ), finely dashed green line of
the 2M maturity group (γ̂2M

1 ), and dashed black line is the common
eigenfunction (γ̃c

1), estimated from both groups.

In addition, an econometric approach, successfully employed by Fengler, Härdle,
and Mammen (2004) can be employed. It consists of fitting an appropri-
ate model to the time series of the estimated principal component scores,
f̃c

ij(τ) = 〈γ̃c
j (κ), σ̂i(κ, τ)〉, as displayed in Figure 5.9. Note that σ̂i(κ, τ) are

centered again (sample means are zero). The fitted time series model can be
used for forecasting future IV functions.

There are still some open questions related to this topic. First of all, the prac-
titioner would be interested in a good automated choice of the parameters of
our method (dimension of the truncated functional basis L and smoothing pa-
rameter α). The application of the Fourier coefficients in this framework seems
to be reasonable for the volatility smiles (U-shaped strings), however for the
volatility smirks (typically monotonically decreasing strings) the performance
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2. weight functions-1M,2M,Common
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Figure 5.7: Second eigenfunctions, α = 10−7 , solid blue line is the weight
function of the 1M maturity group (γ̂1M

2 ), finely dashed green line of
the 2M maturity group (γ̂2M

2 ), and dashed black line is the common
eigenfunction (γ̃c

2), estimated from both groups.

is rather bad. In particular, the variance of our functional objects and the
shape of our weight functions at the boundaries is affected. The application
of regression splines in this setting seems to be promising, but it increases the
number of smoothing parameters by the number and the choice of the knots –
problems which are not generally easy to deal with. The next natural question,
which is still open concerns the statistical properties of the technique and the
testing procedure for the Functional Common PCA model. Finally, using the
data for a longer time period one may also analyze the longer maturities like 3
months or 6 months.
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3. weight functions-1M,2M,Common
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Figure 5.8: Third eigenfunctions, α = 10−7, solid blue line is the weight func-
tion of the 1M maturity group (γ̂1M

3 ), finely dashed green line of
the 2M maturity group (γ̂2M

3 ), and dashed black line is the common
eigenfunction (γ̃c

3), estimated from both groups.
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Figure 5.9: Estimated principal component scores, f̃c
i1(1M), f̃c

i2(1M), and
f̃c

i3(1M) for 1M maturity – first row, and f̃c
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i2(2M), and
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i3(2M) for 2M maturity – second row; α = 10−7.
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6 Implied Trinomial Trees

Pavel Č́ıžek and Karel Komorád

Options are financial derivatives that, conditional on the price of an underlying
asset, constitute a right to transfer the ownership of this underlying. More
specifically, a European call and put options give their owner the right to buy
and sell, respectively, at a fixed strike price at a given date. Options are
important financial instruments used for hedging since they can be included
into a portfolio to reduce risk. Corporate securities (e.g., bonds or stocks)
may include option features as well. Last, but not least, some new financing
techniques, such as contingent value rights, are straightforward applications
of options. Thus, option pricing has become one of the basic techniques in
finance.

The boom in research on the use of options started after Black and Scholes
(1973) published an option-pricing formula based on geometric Brownian mo-
tion. Option prices computed by the Black-Scholes formula and the market
prices of options exhibit a discrepancy though. Whereas the volatility of mar-
ket option prices varies with the price (or moneyness) – the dependency referred
to as the volatility smile, the Black-Scholes model is based on the assumption
of a constant volatility. Therefore, to model option prices consistent with the
market many new approaches were proposed. Probably the most commonly
used and rather intuitive procedure for option pricing is based on binomial trees,
which represent a discrete form of the Black-Scholes model. To fit the market
data, Derman and Kani (1994) proposed an extension of binomial trees: the
so-called implied binomial trees, which are able to model the market volatility
smile.

Implied trinomial trees (ITTs) present an analogous extension of trinomial
trees proposed by Derman, Kani, and Chriss (1996). Like their binomial coun-
terparts, they can fit the market volatility smile and actually converge to the
same continuous limit as binomial trees. In addition, they allow for a free
choice of the underlying prices at each node of a tree, the so-called state space.
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Figure 6.1: Implied volatilities of DAX put options on January 29, 1999.

This feature of ITTs allows to improve the fit of the volatility smile under
some circumstances such as inconsistent, arbitrage-violating, or other market
prices leading to implausible or degenerated probability distributions in bino-
mial trees. We introduce ITTs in several steps. We first review main concepts
regarding option pricing (Section 6.1) and implied models (Section 6.2). Later,
we discuss the construction of ITTs (Section 6.3) and provide some illustrative
examples (Section 6.4).

6.1 Option Pricing

The option-pricing model by Black and Scholes (1973) is based on the assump-
tions that the underlying asset follows a geometric Brownian motion with a
constant volatility σ:

dSt

St
= µdt + σdWt, (6.1)

where St denotes the underlying-price process, µ is the expected return, and Wt

stands for the standard Wiener process. As a consequence, the distribution of
St is lognormal. More importantly, the volatility σ is the only parameter of the
Black-Scholes formula which is not explicitly observable on the market. Thus,
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Figure 6.2: Two levels of a CRR binomial tree.

we infer on σ by matching the observed option prices. A solution σI , “implied”
by options prices, is called the implied volatility (or Black-Scholes equivalent).
In general, implied volatilities vary both with respect to the exercise price (the
skew structure) and expiration time (the term structure). Both dependencies
are illustrated in Figure 6.1, with the first one representing the volatility smile.
Let us add that the implied volatility of an option is the market’s estimate of
the average future underlying volatility during the life of that option. We refer
to the market’s estimate of an underlying volatility at a particular time and
price point as the local volatility.

Binomial trees, as a discretization of the Black-Scholes model, can be con-
structed in several alternative ways. Here we recall the classic Cox, Ross, and
Rubinstein’s (1979) scheme (CRR), which has a constant logarithmic spac-
ing between nodes on the same level (this spacing represents the future price
volatility). A standard CRR tree is depicted in Figure 6.2. Starting at a node
S, the price of an underlying asset can either increase to Su with probability p
or decrease to Sd with probability 1 − p:

Su = Seσ
√

∆t, (6.2)

Sd = Se−σ
√

∆t, (6.3)

p =
F − Sd

Su − Sd
, (6.4)
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where ∆t refers to the time step and σ is the (constant) volatility. The forward
price F = er∆tS in the node S is determined by the the continuous interest
rate r (for the sake of simplicity, we assume that the dividend yield equals zero;
see Cox, Ross, and Rubinstein, 1979, for treatment of dividends).

A binomial tree corresponding to the risk-neutral underlying evaluation pro-
cess is the same for all options on this asset, no matter what the strike price or
time to expiration is. There are many extensions of the original Black-Scholes
approach that try to capture the volatility variation and to price options consis-
tently with the market prices (that is, to account for the volatility smile). Some
extensions incorporate a stochastic volatility factor or discontinuous jumps in
the underlying price; see for instance Franke, Härdle, and Hafner (2004) and
Chapters 5 and 7. In the next section, we discuss an extension of the Black-
Scholes model developed by Derman and Kani (1994) – the implied trees.

6.2 Trees and Implied Trees

While the Black-Scholes model assumes that an underlying asset follows a geo-
metric Brownian motion (6.1) with a constant volatility, more complex models
assume that the underlying follows a process with a price- and time-varying
volatility σ(S, t). See Dupire (1994) and Fengler, Härdle, and Villa (2003) for
details and related evidence. Such a process can be expressed by the following
stochastic differential equation:

dSt

St
= µdt + σ(S, t)dWt. (6.5)

This approach ensures that the valuation of an option remains preference-free,
that is, all uncertainty is in the spot price, and thus, we can hedge options
using the underlying.

Derman and Kani (1994) show that it is possible to determine σ(S, t) directly
from the market prices of liquidly traded options. Further, they use this volatil-
ity σ(S, t) to construct an implied binomial tree (IBT), which is a natural
discrete representation of a non-lognormal evolution process of the underlying
prices. In general, we can use – instead of an IBT – any (higher-order) multi-
nomial tree for the discretization of process (6.5). Nevertheless, as the time
step tends towards zero, all of them converge to the same continuous process
(Hull and White, 1990). Thus, IBTs are among all implied multinomial trees
minimal in the sense that they have only one degree of freedom – the arbitrary
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A

Figure 6.3: Computing the Arrow-Debreu price in a binomial tree. The bold
lines with arrows depict all (three) possible path from the root of
the tree to point A.

choice of the central node at each level of the tree. Although one may feel
now that binomial trees are sufficient, some higher-order trees could be more
useful because they allow for a more flexible discretization in the sense that
transition probabilities and probability distributions can vary as smoothly as
possible across a tree. This is especially important when the market option
prices are inaccurate because of inefficiency, market frictions, and so on.

At the end of this section, let us to recall the concept of Arrow-Debreu prices,
which is closely related to multinomial trees and becomes very useful in sub-
sequent derivations (Section 6.3). Let (n, i) denote the ith (highest) node in
the nth time level of a tree. The Arrow-Debreu price λn,i at node (n, i) of a
tree is computed as the sum of the product of the risklessly discounted tran-
sition probabilities over all paths starting in the root of the tree and leading
to node (n, i). Hence, the Arrow-Debreu price of the root is equal to one and
the Arrow-Debreu prices at the final level of a (multinomial) tree form a dis-
crete approximation of the state price density. Notice that these prices are
discounted, and thus, the risk-neutral probability corresponding to each node
(at the final level) should be calculated as the product of the Arrow-Debreu
price and the capitalizing factor erT .
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6.3 Implied Trinomial Trees

6.3.1 Basic Insight

A trinomial tree with N levels is a set of nodes sn,i (representing the underlying
price), where n = 1, . . . , N is the level number and i = 1, . . . , 2n − 1 indexes
nodes within a level. Being at a node sn,i, one can move to one of three nodes
(see Figure 6.4a): (i) to the upper node with value sn+1,i with probability pi;
(ii) to the lower node with value sn+1,i+2 with probability qi; and (iii) to the
middle node with value sn+1,i+1 with probability 1 − pi − qi. For the sake
of brevity, we omit the level index n from transition probabilities unless they
refer to a specific level; that is, we write pi and qi instead of pn,i and qn,i unless
the level has to be specified. Similarly, let us denote the nodes in the new
level with capital letters: Si(=sn+1,i), Si+1(=sn+1,i+1) and Si+2(=sn+1,i+2),
respectively (see Figure 6.4b).

Starting from a node sn,i at time tn, there are five unknown parameters: two
transition probabilities pi and qi and three prices Si, Si+1, and Si+2 at new
nodes. To determine them, we need to introduce the notation and main re-
quirements a tree should satisfy. First, let Fi denote the known forward price
of the spot price sn,i and λn,i the known Arrow-Debreu price at node (n, i).
The Arrow-Debreu prices for a trinomial tree can be obtained by the following
iterative formulas:

λ1,1 = 1, (6.6)
λn+1,1 = e−r∆tλn,1p1, (6.7)
λn+1,2 = e−r∆t{λn,1(1 − p1 − q1) + λn,2p2}, (6.8)

λn+1,i+1 = e−r∆t{λn,i−1qi−1+ λn,i(1 − pi − qi) + λn,i+1pi+1}, (6.9)
λn+1,2n = e−r∆t{λn,2n−1(1 − p2n−1− q2n−1)+λn,2n−2q2n−2}, (6.10)

λn+1,2n+1 = e−r∆tλn,2n−1q2n−1. (6.11)

An implied tree provides a discrete representation of the evolution process of
underlying prices. To capture and model the underlying price correctly, we
desire that an implied tree:

1. reproduces correctly the volatility smile,

2. is risk-neutral,

3. uses transition probabilities from interval (0, 1).
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Figure 6.4: Nodes in a trinomial tree. Left panel: a single node with its
branches. Right panel: the nodes of two consecutive levels n − 1
and n.

To fulfill the risk-neutrality condition, the expected value of the underlying
price sn+1,i in the following time period tn+1 has to equal its known forward
price:

Esn+1,i = piSi + (1 − pi − qi)Si+1 + qiSi+2 = Fi = er∆tsn,i, (6.12)

where r denotes the continuous interest rate and ∆t is the time step from tn
to tn+1. Additionally, one can specify such a condition also for the second
moments of sn,i and Fi. Hence, one obtains a second constraint on the node
prices and transition probabilities:

pi(Si−Fi)2+(1−pi−qi)(Si+1−Fi)2+qi(Si+2−Fi)2 = F 2
i σ2

i ∆t+O(∆t), (6.13)

where σi is the stock or index price volatility during the time period.
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Consequently, we have two constraints (6.12) and (6.13) for five unknown pa-
rameters, and therefore, there is no unique implied trinomial tree. On the other
hand, all trees satisfying these constraints are equivalent in the sense that as
the time spacing ∆t tends to zero, all these trees converge to the same con-
tinous process. A common method for constructing an ITT is to choose first
freely the underlying prices and then to solve equations (6.12) and (6.13) for
the transition probabilities pi and qi. Afterwards one only has to ensure that
these probabilities do not violate the above mentioned Condition 3. Appar-
ently, using an ITT instead of an IBT gives us additional degrees of freedom.
This allows us to better fit the volatility smile, especially when inconsistent
or arbitrage-violating market option prices make a consistent tree impossible.
Note, however, that even though the constructed tree is consistent, other dif-
ficulties can arise when its local volatility and probability distributions are
jagged and “implausible.”

6.3.2 State Space

There are several methods we can use to construct an initial state space. Let us
first discuss a construction of a constant-volatility trinomial tree, which forms
a base for an implied trinomial tree. As already mentioned, binomial and
trinomial discretization of the constant-volatility Black-Scholes model have the
same continous limit, and therefore, are equivalent. Hence, we can start from
a constant-volatility CRR binomial tree and then combine two steps of this
tree into a single step of a new trinomial tree. This is illustrated in Figure 6.5,
where thin lines correspond to the original binomial tree and the thick lines to
the constructed trinomial tree.

Consequently, using formulas (6.2) and (6.3), we can derive the following ex-
pressions for the nodes of the constructed trinomial tree:

Si = sn+1,i = sn,i eσ
√

2∆t, (6.14)
Si+1 = sn+1,i+1 = sn,i, (6.15)

Si+2 = sn+1,i+2 = sn,i e−σ
√

2∆t, (6.16)

where σ is a constant volatility (e.g., an estimate of the at-the-money volatility
at maturity T ). Next, summing the transition probabilities in the binomial tree
given in (6.4), we can also derive the up and down transition probabilities in
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Figure 6.5: Constructing a constant-volatility trinomial tree (thick lines) by
combining two steps of a CRR binomial tree (thin lines).

the trinomial tree (the “middle” transition probability is equal to 1 − pi − qi):

pi =

(
er∆t/2 − e−σ

√
∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

,

qi =

(
eσ
√

∆t/2 − er∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

.

Note that there are more methods for building a constant-volatility trinomial
tree such as combining two steps of a Jarrow and Rudd’s (1983) binomial tree;
see Derman, Kani, and Chriss (1996) for more details.

When the implied volatility varies only slowly with strike and expiration, the
regular state space with a uniform mesh size, as described above, is adequate
for constructing ITT models. On the other hand, if the volatility varies signifi-
cantly with strike or time to maturity, we should choose a state space reflecting
these properties. Assuming that the volatility is separable in time and stock
price, σ(S, t) = σ(S)σ(t), an ITT state space with a proper skew and term
structure can be constructed in four steps.
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First, we build a regular trinomial lattice with a constant time spacing ∆t and
a constant price spacing ∆S as described above. Additionally, we assume that
all interest rates and dividends are equal to zero.

Second, we modify ∆t at different time points. Let us denote the original
equally spaced time points t0 = 0, t1, . . . , tn = T . We can then find the unknown
scaled times t̃0 = 0, t̃1, . . . , t̃n = T by solving the following set of non-linear
equations:

t̃k

n−1∑
i=1

1
σ2(t̃i)

+ t̃k
1

σ2(T )
= T

k∑
i=1

1
σ2(t̃i)

, k = 1, . . . , n − 1. (6.17)

Next, we change ∆S at different levels. Denoting by S1, . . . , S2n+1 the original
(known) underlying prices, we solve for rescaled underlying prices S̃1, . . . , S̃2n+1

using

S̃k

S̃k−1

= exp
{

c

σ(Sk)
ln

Sk

Sk−1

}
, k = 2, . . . , 2n + 1, (6.18)

where c is a constant. It is recommended to set c to an estimate of the local
volatility. Since there are 2n equations for 2n + 1 unknown parameters, an
additional equation is needed. Here we always suppose that the new central
node equals the original central node: S̃n+1 = Sn+1. See Derman, Kani, and
Chriss (1996) for a more elaborate explanation of the theory behind equations
(6.17) and (6.18).

Finally, one can increase all node prices by a sufficiently large growth factor,
which removes forward prices violations, see Section 6.3.4. Multiplying all
zero-rate node prices at time t̃i by ert̃i should be always sufficient.

6.3.3 Transition Probabilities

Once the state space of an ITT is fixed, we can compute the transition proba-
bilities for all nodes (n, i) at each tree level n. Let C(K, tn+1) and P (K, tn+1)
denote today’s price of a standard European call and put option, respectively,
struck at K and expiring at tn+1. These values can be obtained by inter-
polating the smile surface at various strike and time points. The values of
these options given by the trinomial tree are the discounted expectations of
the pay-off functions: max(Sj − K, 0) = (Sj − K)+ for the call option and
max(K − Sj , 0) for the put option at the node (n + 1, j). The expectation
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is taken with respect to the probabilities of reaching each node, that is, with
respect to transition probabilities:

C (K, tn+1) = e−r∆t
∑

j

{pjλn,j + (1 − pj−1 − qj−1)λn,j−1 (6.19)

+qj−2λn,j−2} (Sj − K)+,

P (K, tn+1) = e−r∆t
∑

j

{pjλn,j + (1 − pj−1 − qj−1)λn,j−1 (6.20)

+qj−2λn,j−2} (K − Sj)+.

If we set the strike price K to Si+1 (the stock price at node (n + 1, i + 1)),
rearrange the terms in the sum, and use equation (6.12), we can express the
transition probabilities pi and qi for all nodes above the central node from
formula (6.19):

pi =
er∆tC(Si+1, tn+1) −∑i−1

j=1 λn+1,j(Fj − Si+1)
λn+1,i(Si − Si+1)

, (6.21)

qi =
Fi − pi(Si − Si+1) − Si+1

Si+2 − Si+1
. (6.22)

Similarly, we compute from formula (6.20) the transition probabilities for all
nodes below (and including) the center node (n + 1, n) at time tn:

qi =
er∆tP (Si+1, tn+1) −∑2n−1

j=i+1 λn+1,j(Si+1 − Fj)
λn+1,i(Si+1 − Si+2)

, (6.23)

pi =
Fi − qi(Si+2 − Si+1) − Si+1

Si − Si+1
. (6.24)

A detailed derivation of these formulas can be found in Komorád (2002). Fi-
nally, the implied local volatilities are approximated from equation (6.13):

σ2
i ≈ pi(Si − Fi)2 + (1 − pi − qi)(Si+1 − Fi)2 + qi(Si+2 − Fi)2

F 2
i ∆t

. (6.25)

6.3.4 Possible Pitfalls

Formulas (6.21)–(6.24) can unfortunately result in transition probabilities which
are negative or greater than one. This is inconsistent with rational option prices
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Figure 6.6: Two kinds of the forward price violation. Left panel: forward price
outside the range of its daughter nodes. Right panel: sharp increase
in option prices leading to an extreme local volatility.

and allows arbitrage. We actually have to face two forms of this problem, see
Figure 6.6 for examples of such trees. First, we have to check that no forward
price Fn,i at node (n, i) falls outside the range of its daughter nodes at the level
n + 1: Fn,i ∈ (sn+1,i+2, sn+1,i). This inconsistency is not difficult to overcome
since we are free to choose the state space. Thus, we can overwrite the nodes
causing this problem.

Second, extremely small or large values of option prices, which would imply
an extreme value of local volatility, can also result in probabilities that are
negative or larger than one. In such a case, we have to overwrite the option
prices which led to the unacceptable probabilities. Fortunately, the transition
probabilities can be always corrected providing that the corresponding state
space does not violate the forward price condition Fn,i ∈ (sn+1,i+2, sn+1,i).
Derman, Kani, and Chriss (1996) proposed to reduce the troublesome nodes to
binomial ones or to set

pi =
1
2

(
Fi − Si+1

Si − Si+1
+

Fi − Si+2

Si − Si+2

)
, qi =

1
2

(
Si − Fi

Si − Si+2

)
, (6.26)
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for Fi ∈ (Si+1, Si) and

pi =
1
2

(
Fi − Si+2

Si − Si+2

)
, qi =

1
2

(
Si+1 − Fi

Si+1 − Si+2
+

Si − Fi

Si − Si+2

)
, (6.27)

for Fi ∈ (Si+2, Si+1). In both cases, the “middle” transition probability is
equal to 1 − pi − qi.

6.4 Examples

To illustrate the construction of an implied trinomial tree and its use, we con-
sider here ITTs for two artificial implied-volatility functions and an implied-
volatility function constructed from real data.

6.4.1 Pre-specified Implied Volatility

Let us consider a case where the volatility varies only slowly with respect to
the strike price and time to expiration (maturity). Assume that the current
index level is 100 points, the annual riskless interest rate is r = 12%, and the
dividend yield equals δ = 4%. The annualized Black-Scholes implied volatility
is assumed to be σ = 11%, and additionally, it increases (decreases) linearly
by 10 basis points (i.e., 0.1%) with every 10 unit drop (rise) in the strike price
K; that is, σI = 0.11 − ∆K ∗ 0.001. To keep the example simple, we consider
three one-year steps.

First, we construct the state space: a constant-volatility trinomial tree as de-
scribed in Section 6.3.2. The first node at time t0 = 0, labeled A in Figure 6.7,
has the value of sA = 100, today’s spot price. The next three nodes at time
t1, are computed from equations (6.14)–(6.16) and take values S1 = 116.83,
S2 = 100.00, and S3 = 85.59, respectively. In order to determine the transition
probabilities, we need to know the price P (S2, t1) of a put option struck at
S2 = 100 and expiring one year from now. Since the implied volatility of this
option is 11%, we calculate its price using a constant-volatility trinomial tree
with the same state space and find it to be 0.987 index points. Further, the
forward price corresponding to node A is FA = Se(r∗−δ∗)∆t = 107.69, where
r∗ = log(1+r) denotes the continuous interest rate and δ∗ = log(1+δ) the con-
tinuous dividend rate. Hence, the transition probability of a down movement
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Figure 6.7: The state space of a trinomial tree with constant volatility σ =
11%. Nodes A and B are reference points for which we demonstrate
constructing of an ITT and estimating of the implied local volatility.
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computed from equation (6.23) is

qA =
elog(1+0.12)·10.987 − Σ

1 · (100.00 − 85.59)
= 0.077,

where the summation term Σ in the numerator is zero because there are no
nodes with price lower than S3 at time t1. Similarly, the transition probability
of an upward movement pA computed from equation (6.24) is

pA =
107.69 + 0.077 · (100.00 − 85.59) − 100

116.83 − 100.00
= 0.523.
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Figure 6.8: Transition probabilities for σI = 0.11 − ∆K · 0.001.
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Finally, the middle transition probability equals 1 − pA − qA = 0.4. As one
can see from equations (6.6)–(6.11), the Arrow-Debreu prices turn out to be
just discounted transition probabilities: λ1,1 = e− log(1+0.12)·1 · 0.523 = 0.467,
λ1,2 = 0.358, and λ1,3 = 0.069. Finally, we can estimate the value of the
implied local volatility at node A from equation (6.25), obtaining σA = 9.5%.

Let us demonstrate the computation of one further node. Starting from node
B in year t2 = 2 of Figure 6.7, the index level at this node is sB = 116.83 and
its forward price one year later is FB = e(r∗−δ∗)·1 · 116.83 = 125.82. From this
node, the underlying can move to one of three future nodes at time t3 = 3,
with prices s3,2 = 136.50, s3,3 = 116.83, and s3,4 = 100.00. The value of a
call option struck at 116.83 and expiring at time t3 = 3 is C(s3,3, t3) = 8.87,
corresponding to the implied volatility of 10.83% interpolated from the smile.
The Arrow-Debreu price computed from equation (6.8) is

λ2,2 = e− log(1+0.12)·1{0.467 · (1 − 0.517 − 0.070) + 0.358 · 0.523} = 0.339.

The numerical values used here are already known from the previous level at
time t1. Now, using equations (6.21) and (6.22) we can find the transition
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probabilities:

p2,2 =
elog(1+0.12)·1 · 8.87 − Σ

0.339 · (136.50 − 116.83)
= 0.515,

q2,2 =
125.82 − 0.515 · (136.50 − 116.83) − 116.83

100 − 116.83
= 0.068,

where Σ contributes only one term 0.215 · (147 − 116.83), that is, there is one
single node above SB whose forward price is equal to 147. Finally, employing
(6.25) again, we find that the implied local volatility at this node is σB = 9.3%.

The complete trees of transition probabilities, Arrow-Debreu prices, and local
volatilities for this example are shown in Figures 6.8–6.10.

As already mentioned in Section 6.3.4, the transition probabilities may fall out
of the interval (0, 1). For example, let us slightly modify our previous example
and assume that the Black-Scholes volatility increases (decreases) linearly 0.5
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percentage points with every 10 unit drop (rise) in the strike price K; that is,
σI = 0.11 − ∆K · 0.005. In other words, the volatility smile is now five times
steeper than before. Using the same state space as in the previous example, we
find inadmissable transition probabilities at nodes C and D, see Figures 6.11–
6.13. To overwrite them with plausible values, we used the strategy described
by (6.26) and (6.27) and obtained reasonable results in the sense of the three
conditions stated on page 140.

6.4.2 German Stock Index

Following the artificial examples, let us now demonstrate the ITT modeling for
a real data set, which consists of strike prices for DAX options with maturities
from two weeks to two months on January 4, 1999. Given such data, we can
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firstly compute from the Black-Scholes equation (6.1) the implied volatilities
at various combinations of prices and maturities, that is, we can construct
the volatility smile. Next, we build and calibrate an ITT so that it fits this
smile. The procedure is analogous to the examples described above – the
only difference lies in replacing an artificial function σI(K, t) by an estimate of
implied volatility σI at each point (K, t).

For the purpose of demonstration, we build a three-level ITT with time step
∆t of two weeks. First, we construct the state space (Section 6.3.2) starting at
time t0 = 0 with the spot price S = 5290 and riskless interest rate r = 4%, see
Figure 6.14. Further, we have to compute the transition probabilities. Because
option contracts are not available for each combination of price and maturity,
we use a nonparametric smoothing procedure to model the whole volatility
surface σI(K, t) as employed by Aït-Sahalia, Wang, and Yared (2001) and Fen-
gler, Härdle, and Villa (2003), for instance. Given the data, some transition
probabilities fall outside interval (0, 1); they are depicted by dashed lines in Fig-
ure 6.14. Such probabilities have to be corrected as described in Section 6.3.4
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(there are no forward price violations). The resulting local volatilities, which
reflect the volatility skew, are on Figure 6.15.

Probably the main result of this ITT model can be summarized by the state
price density (the left panel of Figure 6.16). This density describes the price
distribution given by the constructed ITT and smoothed by the Nadaraya-
Watson estimator. Apparently, the estimated density is rather rough because
we used just three steps in our tree. To get a smoother state-price density
estimate, we doubled the number of steps; that is, we used six one-week steps
instead of three two-week steps (see the right panel of Figure 6.16).
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Finally, it possible to use the constructed ITT to evaluate various DAX options.
For example, a European knock-out option gives the owner the same rights as
a standard European option as long as the index price S does not exceed or
fall below some barrier B for the entire life of the knock-out option; see Härdle,
Kleinow, and Stahl (2002) for details. So, let us compute the price of the
knock-out-call DAX option at maturity T = 6 weeks, strike price K = 5200,
and barrier B = 4800. The option price at time tj (t0 = 0, t1 = 2, t2 = 4, and
t3 = 6 weeks) and stock price sj,i will be denoted Vj,i.

At the maturity t = T = 6, the price is known: V3,i = max{0, sj,i − K}, i =
1, . . . , 7. Thus, V3,1 = max{0, 4001.01−5200} = 0 and V3,5 = max{0, 5806.07−
5200} = 606.07, for instance. To compute the option price at tj < T , one just
has to discount the conditional expectation of the option price at time tj+1

Vj,i = e−r∗∆t{pj,iVj+1,i+2 + (1 − pj,i − qj,i)Vj+1,i+1 + qj,iVj+1,i} (6.28)
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Figure 6.16: State price density estimated from an ITT for DAX on January
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provided that sj,i ≥ B, otherwise Vj,i = 0. Hence at time t2 = 4, one obtains
V2,1 = 0 because s2,1 = 4391.40 < 4800 = B and

V2,3 = e− log(1+0.04)·2/52(0.22 · 606.07 + 0.55 · 90 + 0.23 · 0) = 184.33

(see Figure 6.17). We can continue further and compute the option price at
times t1 = 2 and t0 = 0 just using the standard formula (6.28) since prices no
longer lie below the barrier B (see Figure 6.14). Thus, one computes V1,1 =
79.7, V1,2 = 251.7, V1,3 = 639.8, and finally, the option price at time t0 = 0
and stock price S = 5290 equals

V0,1 = e− log(1+0.04)·2/52(0.25 · 639.8 + 0.50 · 251.7 + 0.25 · 79.7) = 303.28.
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Härdle, W., Kleinow, T., and Stahl, G. (2002). Applied Quantitative Finance.
Springer-Verlag, Berlin.

Hull, J. (1989). Options, Futures and Other Derivatives. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Hull, J. and White, A. (1990). Valuing derivative securities using the explicit
finite difference method.The Journal of Finance and Quantitative Analysis
25: 87–100.

Jarrow, R. and Rudd A. (1983). Option Pricing, Dow Jones-Irwin Publishing,
Homewood, Illinois.

Komorád, K. (2002). Implied Trinomial Trees and Their Im-
plementation with XploRe. Bachelor Thesis, HU Berlin;
http://appel.rz.hu-berlin.de/Zope/ise stat/wiwi/ise/stat/
forschung/dmbarbeiten/.



Bibliography 159

Ross, S., Westerfield, R., and Jaffe, J. (2002). Corporate Finance. Mc Graw-
Hill.



7 Heston’s Model and the Smile

Rafa�l Weron and Uwe Wystup

7.1 Introduction

The Black-Scholes formula, based on the assumption of log-normal stock diffu-
sion with constant volatility, is the universal benchmark for option pricing. But
as all market participants are keenly aware of, it is flawed. The model-implied
volatilities for different strikes and maturities of options are not constant and
tend to be smile shaped. Over the last two decades researchers have tried to
find extensions of the model in order to explain this empirical fact.

A very natural approach, suggested already by Merton (1973), allows the
volatilities to be a deterministic function of time. While it explains the dif-
ferent implied volatility levels for different times of maturity, it still does not
explain the smile shape for different strikes. Dupire (1994), Derman and Kani
(1994), and Rubinstein (1994) came up with the idea of allowing not only time,
but also state dependence of the volatility coefficient, see Fengler (2005) and
Chapter 6. This local (deterministic) volatility approach yields a complete
market model. Moreover, it lets the local volatility surface to be fitted, but it
cannot explain the persistent smile shape which does not vanish as time passes.

The next step beyond the local volatility approach was to allow the volatility
coefficient in the Black-Scholes diffusion equation to be random. The pioneering
work of Hull and White (1987), Stein and Stein (1991), and Heston (1993) led to
the development of stochastic volatility models. These are two-factor models
with one of the factors being responsible for the dynamics of the volatility
coefficient. Different driving mechanisms for the volatility process have been
proposed, including geometric Brownian motion and mean-reverting Ornstein-
Uhlenbeck type processes.
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Heston’s model stands out from this class mainly for two reasons: (i) the pro-
cess for the volatility is non-negative and mean-reverting, which is what we
observe in the markets, and (ii) there exists a closed-form solution for vanilla
options. It was also one of the first models that was able to explain the smile
and simultaneously allow a front-office implementation and a market consistent
valuation of many exotics. Hence, we concentrate in this chapter on Heston’s
model. First, in Section 7.2 we discuss the properties of the model, including
marginal distributions and tail behavior. In Section 7.3 we adapt the original
work of Heston (1993) to a foreign exchange (FX) setting. We do this because
the model is particularly useful in explaining the volatility smile found in FX
markets. In equity markets the typical volatility structure is an asymmetric
skew (also called a smirk or grimace). Calibrating Heston’s model to such a
structure leads to very high, unrealistic values of the correlation coefficient. Fi-
nally, in Section 7.4 we show that the smile of vanilla options can be reproduced
by suitably calibrating the model parameters.

However, we do have to say that Heston’s model is not a panacea. The criti-
cism that we might want to put forward is that the market consistency could
potentially be based on a large number of market participants using it! Fur-
thermore, while trying to calibrate short term smiles, the volatility of volatility
often seems to explode along with the speed of mean reversion. This is a strong
indication that the process “wants” to jump, which of course it is not allowed
to do. This observation, together with market crashes, has lead researchers to
consider models with jumps. Interestingly, jump-diffusion models have been in-
vestigated already in the mid-seventies (Merton, 1976), long before the advent
of stochastic volatility. Jump-diffusion models are, in general, more challeng-
ing to handle numerically than stochastic volatility models. Like the latter,
they result in an incomplete market. But, whereas stochastic volatility models
can be made complete by the introduction of one (or a few) traded options, a
jump-diffusion model typically requires the existence of a continuum of options
for the market to be complete.

Recent research by Bates (1996) and Bakshi, Cao, and Chen (1997) suggests
using a combination of jumps and stochastic volatility. This approach allows
for even a better fit to market data, but has so many parameters, that it is hard
to believe that there is enough information in the market to calibrate them.
Andersen and Andreasen (2000) let the stock dynamics be described by a jump-
diffusion process with local volatility. This method combines ease of modeling
steep short-term volatility skews (jumps) and accurate fitting to quoted op-
tion prices (deterministic volatility function). Other alternative approaches uti-
lize Lévy processes (Barndorff-Nielsen, Mikosch, and Resnick, 2001; Eberlein,
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Kallsen, and Kristen, 2003) or mixing unconditional disturbances (Tompkins
and D’Ecclesia, 2004), but it is still an open question how to price and hedge
exotics using such models.

7.2 Heston’s Model

Heston (1993) assumed that the spot price follows the diffusion:

dSt = St

(
µdt +

√
vtdW

(1)
t

)
, (7.1)

i.e. a process resembling geometric Brownian motion (GBM) with a non-constant
instantaneous variance vt. Furthermore, he proposed that the variance be
driven by a mean reverting stochastic process of the form:

dvt = κ(θ − vt) dt + σ
√

vtdW
(2)
t , (7.2)

and allowed the two Wiener processes to be correlated with each other:

dW
(1)
t dW

(2)
t = ρ dt.

The variance process (7.2) was originally used by Cox, Ingersoll, and Ross
(1985) for modeling the short term interest rate. It is defined by three pa-
rameters: θ, κ, and σ. In the context of stochastic volatility models they can
be interpreted as the long term variance, the rate of mean reversion to the
long term variance, and the volatility of variance (often called the vol of vol),
respectively.

Surprisingly, the introduction of stochastic volatility does not change the prop-
erties of the spot price process in a way that could be noticed just by a visual
inspection of its realizations. In Figure 7.1 we plot sample paths of a geometric
Brownian motion and the spot process (7.1) in Heston’s model. To make the
comparison more objective both trajectories were obtained with the same set
of random numbers. Clearly, they are indistinguishable by mere eye. In both
cases the initial spot rate S0 = 0.84 and the domestic and foreign interest rates
are 5% and 3%, respectively, yielding a drift of µ = 2%. The volatility in the
GBM is constant

√
vt =

√
4% = 20%, while in Heston’s model it is driven by

the mean reverting process (7.2) with the initial variance v0 = 4%, the long
term variance θ = 4%, the speed of mean reversion κ = 2, and the vol of vol
σ = 30%. The correlation is set to ρ = −0.05.
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Figure 7.1: Sample paths of a geometric Brownian motion (dotted red line) and
the spot process (7.1) in Heston’s model (solid blue line) obtained
with the same set of random numbers (left panel). Despite the fact
that the volatility in the GBM is constant, while in Heston’s model
it is driven by a mean reverting process (right panel) the sample
paths are indistinguishable by mere eye.
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A closer inspection of Heston’s model does, however, reveal some important dif-
ferences with respect to GBM. For example, the probability density functions of
(log-)returns have heavier tails – exponential compared to Gaussian, see Figure
7.2. In this respect they are similar to hyperbolic distributions (Weron, 2004),
i.e. in the log-linear scale they resemble hyperbolas (rather than parabolas).

Equations (7.1) and (7.2) define a two-dimensional stochastic process for the
variables St and vt. By setting xt = log(St/S0)−µt, we can express it in terms
of the centered (log-)return xt and vt. The process is then characterized by
the transition probability Pt(x, v | v0) to have (log-)return x and variance v at
time t given the initial return x = 0 and variance v0 at time t = 0. The time
evolution of Pt(x, v | v0) is governed by the following Fokker-Planck (or forward
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Figure 7.2: The marginal probability density function in Heston’s model (solid
blue line) and the Gaussian PDF (dotted red line) for the same set
of parameters as in Figure 7.1 (left panel). The tails of Heston’s
marginals are exponential which is clearly visible in the right panel
where the corresponding log-densities are plotted.
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Kolmogorov) equation:

∂

∂t
P = κ

∂

∂v
{(v − θ)P} +

1
2

∂

∂x
(vP ) +

+ ρσ
∂2

∂x ∂v
(vP ) +

1
2

∂2

∂x2
(vP ) +

σ2

2
∂2

∂v2
(vP ). (7.3)

Solving this equation yields the following analytical formula for the density of
centered returns x, given a time lag t of the price changes (Dragulescu and
Yakovenko, 2002):

Pt(x) =
1

2π

∫ +∞

−∞
eiξx+Ft(ξ)dξ, (7.4)

with

Ft(ξ) = κθ
σ2 γt − 2κθ

σ2 log
(

cosh Ωt
2 + Ω2−γ2+2κγ

2κΩ sinh Ωt
2

)
,

γ = κ + iρσξ, and Ω =
√

γ2 + σ2(ξ2 − iξ).
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A sample marginal probability density function in Heston’s model is illustrated
in Figure 7.2. The parameters are the same as in Figure 7.1, i.e. θ = 4%, κ = 2,
σ = 30%, and ρ = −0.05. The time lag is set to t = 1.

7.3 Option Pricing

Consider the value function of a general contingent claim U(t, v, S) paying
g(S) = U(T, v, S) at time T . We want to replicate it with a self-financing
portfolio. Due to the fact that in Heston’s model we have two sources of un-
certainty (the Wiener processes W (1) and W (2)) the portfolio must include the
possibility to trade in the money market, the underlying and another derivative
security with value function V (t, v, S).

We start with an initial wealth X0 which evolves according to:

dX = ∆ dS + Γ dV + rd(X − ΓV ) dt − (rd − rf )∆S dt, (7.5)

where ∆ is the number of units of the underlying held at time t and Γ is the
number of derivative securities V held at time t. Since we are operating in a
foreign exchange setup, we let rd and rf denote the domestic and foreign inter-
est rates, respectively. The goal is to find ∆ and Γ such that Xt = U(t, vt, St)
for all t ∈ [0, T ]. The standard approach to achieve this is to compare the
differentials of U and X obtained via Itô’s formula. After some algebra we
arrive at the partial differential equation which U must satisfy:

1
2
vS2 ∂2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1
2
σ2v

∂2U

∂v2
+ (rd − rf )S

∂U

∂S
+

+
{

κ(θ − v) − λ(t, v, S)
}∂U

∂v
− rdU +

∂U

∂t
= 0. (7.6)

For details on the derivation in the foreign exchange setting see Hakala and
Wystup (2002). The term λ(t, v, S) is called the market price of volatility risk.
Without loss of generality its functional form can be reduced to λ(t, v, S) =
λv, Heston (1993). We obtain a solution to (7.6) by specifying appropriate
boundary conditions. For a European vanilla option these are:

U(T, v, S) = max{φ(S − K), 0}, (7.7)

U(t, v, 0) =
1 − φ

2
Ke−rdτ , (7.8)

∂U

∂S
(t, v,∞) =

1 + φ

2
e−rf τ , (7.9)
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(rd − rf )S
∂U

∂S
(t, 0, S) +

+ κθ
∂U

∂v
(t, 0, S) +

∂U

∂t
(t, 0, S) = rdU(t, 0, S), (7.10)

U(t,∞, S) =

{
Se−rf τ , for φ = +1,

Ke−rdτ , for φ = −1,
(7.11)

where φ is a binary variable taking value +1 for call options and −1 for put
options, K is the strike in units of the domestic currency, τ = T − t, T is
the expiration time in years, and t is the current time. In this case, PDE
(7.6) can be solved analytically using the method of characteristic functions
(Heston, 1993). The price of a European vanilla option is hence given by:

h(t) = HestonVanilla(κ, θ, σ, ρ, λ, rd, rf , v0, S0,K, τ, φ)
= φ

{
e−rf τStP+(φ) − Ke−rdτP−(φ)

}
, (7.12)

where a = κθ, u1 = 1
2 , u2 = − 1

2 , b1 = κ + λ − σρ, b2 = κ + λ, x = log St,
dj =

√
(ρσϕi − bj)2 − σ2(2ujϕi − ϕ2), gj = (bj − ρσϕi + dj)/(bj − ρσϕi− dj),

and

Dj(τ, ϕ) =
bj − ρσϕi + dj

σ2

(
1 − edjτ

1 − gjedjτ

)
, (7.13)

Cj(τ, ϕ) = (rd − rf )ϕiτ + (7.14)

+
a

σ2

{
(bj − ρσϕi + d)τ − 2 log

(
1 − gje

djτ

1 − edjτ

)}
,

fj(x, v, t, ϕ) = exp{Cj(τ, ϕ) + Dj(τ, ϕ)v + iϕx}, (7.15)

Pj(x, v, τ, y) =
1
2

+
1
π

∫ ∞

0

�
{

e−iϕyfj(x, v, τ, ϕ)
iϕ

}
dϕ, (7.16)

pj(x, v, τ, y) =
1
π

∫ ∞

0

�{
e−iϕyfj(x, v, τ, ϕ)

}
dϕ. (7.17)

The functions Pj are the cumulative distribution functions (in the variable y)
of the log-spot price after time τ = T − t starting at x for some drift µ. The
functions pj are the respective densities. The integration in (7.17) can be done
with the Gauss-Legendre algorithm using 100 for ∞ and 100 abscissas. The
best is to let the Gauss-Legendre algorithm compute the abscissas and weights
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once and reuse them as constants for all integrations. Finally:

P+(φ) =
1 − φ

2
+ φP1(log St, vt, τ, log K), (7.18)

P−(φ) =
1 − φ

2
+ φP2(log St, vt, τ, log K). (7.19)

Apart from the above closed-form solution for vanilla options, alternative ap-
proaches can be utilized. These include finite difference and finite element
methods. The former must be used with care since high precision is required
to invert scarce matrices. The Crank-Nicholson, ADI (Alternate Direction Im-
plicit), and Hopscotch schemes can be used, however, ADI is not suitable to
handle nonzero correlation. Boundary conditions must be also set appropri-
ately. For details see Kluge (2002). Finite element methods can be applied to
price both the vanillas and exotics, as explained for example in Apel, Winkler,
and Wystup (2002).

7.3.1 Greeks

The Greeks can be evaluated by taking the appropriate derivatives or by ex-
ploiting homogeneity properties of financial markets (Reiss and Wystup, 2001).
In Heston’s model the spot delta and the so-called dual delta are given by:

∆ =
∂h(t)
∂St

= φe−rf τP+(φ) and
∂h(t)
∂K

= −φe−rdτP−(φ), (7.20)

respectively. Gamma, which measures the sensitivity of delta to the underlying
has the form:

Γ =
∂∆
∂St

=
e−rf τ

St
p1(log St, vt, τ, log K). (7.21)

Theta = ∂h(t)/∂t can be computed from (7.6). The formulas for rho are the
following:

∂h(t)
∂rd

= φKe−rdττP−(φ), (7.22)

∂h(t)
∂rf

= −φSte
−rf ττP+(φ). (7.23)

Note that in a foreign exchange setting there are two rho’s – one is a derivative
of the option price with respect to the domestic interest rate and the other is
a derivative with respect to the foreign interest rate.
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The notions of vega and volga usually refer to the first and second derivative
with respect to volatility. In Heston’s model we use them for the first and
second derivative with respect to the initial variance:

∂h(t)
∂vt

= e−rf τSt
∂

∂vt
P1(log St, vt, τ, log K) −

−Ke−rdτ ∂

∂vt
P2(log St, vt, τ, log K), (7.24)

∂2h(t)
∂v2

t

= e−rf τSt
∂2

∂v2
t

P1(log St, vt, τ, log K) −

−Ke−rdτ ∂2

∂v2
t

P2(log St, vt, τ, log K), (7.25)

where

∂

∂vt
Pj(x, vt, τ, y) =

1
π

∫ ∞

0

�
[
D(τ, ϕ)e−iϕyfj(x, vt, τ, ϕ)

iϕ

]
dϕ, (7.26)

∂2

∂v2
t

Pj(x, vt, τ, y) =
1
π

∫ ∞

0

�
[
D2(τ, ϕ)e−iϕyfj(x, vt, τ, ϕ)

iϕ

]
dϕ.(7.27)

7.4 Calibration

Calibration of stochastic volatility models can be done in two conceptually
different ways. One way is to look at a time series of historical data. Estimation
methods such as Generalized, Simulated, and Efficient Methods of Moments
(respectively GMM, SMM, and EMM), as well as Bayesian MCMC have been
extensively applied, for a review see Chernov and Ghysels (2000). In the Heston
model we could also try to fit empirical distributions of returns to the marginal
distributions specified in (7.4) via a minimization scheme. Unfortunately, all
historical approaches have one common flaw – they do not allow for estimation
of the market price of volatility risk λ(t, v, S). However, multiple studies find
evidence of a nonzero volatility risk premium, see e.g. Bates (1996). This
implies in turn that one needs some extra input to make the transition from
the physical to the risk neutral world. Observing only the underlying spot
price and estimating stochastic volatility models with this information will not
deliver correct derivative security prices. This leads us to the second estimation
approach. Instead of using the spot data we calibrate the model to derivative
prices.
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We follow the latter approach and take the smile of the current vanilla op-
tions market as a given starting point. As a preliminary step, we have to
retrieve the strikes since the smile in foreign exchange markets is specified as
a function of the deltas. Comparing the Black-Scholes type formulas (in the
foreign exchange market setting we have to use the Garman and Kohlhagen
(1983) specification) for delta and the option premium yields the relation for
the strikes Ki. From a computational point of view this stage requires only an
inversion of the cumulative normal distribution.

Next, we fit the five parameters: initial variance v0, volatility of variance σ,
long-run variance θ, mean reversion κ, and correlation ρ for a fixed time to
maturity and a given vector of market Black-Scholes implied volatilities {σ̂i}n

i=1

for a given set of delta pillars {∆i}n
i=1. Since we are calibrating the model to

derivative prices we do not need to worry about estimating the market price of
volatility risk as it is already embedded in the market smile. Furthermore, it
can easily be verified that the value function (7.12) satisfies:

HestonVanilla(κ, θ, σ, ρ, λ, rd, rf , v0, S0,K, τ, φ) =

= HestonVanilla
(

κ + λ,
κ

κ + λ
θ, σ, ρ, 0, rd, rf , v0, S0,K, τ, φ

)
, (7.28)

which means that we can set λ = 0 by default and just determine the remaining
five parameters.

After fitting the parameters we compute the option prices in Heston’s model
using (7.12) and retrieve the corresponding Black-Scholes model implied volatil-
ities {σi}n

i=1 via a standard bisection method (a Newton-Raphson method could
be used as well). The next step is to define an objective function, which we
choose to be the Sum of Squared Errors (SSE):

SSE(κ, θ, σ, ρ, v0) =
n∑

i=1

{σ̂i − σi(κ, θ, σ, ρ, v0)}2. (7.29)

We compare volatilities (rather than prices), because they are all of comparable
magnitude. In addition, one could introduce weights for all the summands
to favor at-the-money (ATM) or out-of-the-money (OTM) fits. Finally we
minimize over this objective function using a simplex search routine to find the
optimal set of parameters.
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Figure 7.3: Left panel : Effect of changing the volatility of variance (vol of vol)
on the shape of the smile. For the red dashed “smile” with triangles
σ = 0.01, and for the blue dotted smile with squares σ = 0.6. Right
panel : Effect of changing the initial variance on the shape of the
smile. For the red dashed smile with triangles v0 = 0.008 and for
the blue dotted smile with squares v0 = 0.012.
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7.4.1 Qualitative Effects of Changing Parameters

Before calibrating the model to market data we will show how changing the
input parameters affects the shape of the fitted smile curve. This analysis
will help in reducing the dimensionality of the problem. In all plots of this
subsection the solid black curve with circles is the smile obtained for v0 = 0.01,
σ = 0.25, κ = 1.5, θ = 0.015, and ρ = 0.05.

First, to take a look at the volatility of variance (vol of vol), see the left panel of
Figure 7.3. Clearly, setting σ equal to zero produces a deterministic process
for the variance and hence volatility which does not admit any smile. The
resulting fit is a constant curve. On the other hand, increasing the volatility of
variance increases the convexity of the fit. The initial variance has a different
impact on the smile. Changing v0 allows adjustments in the height of the smile
curve rather than the shape. This is illustrated in the right panel of Figure 7.3.
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Long-run variance and the smile
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Mean reversion and the smile
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Figure 7.4: Left panel : Effect of changing the long-run variance on the shape
of the smile. For the red dashed smile with triangles θ = 0.01, and
for the blue dotted smile with squares θ = 0.02. Right panel : Effect
of changing the mean reversion on the shape of the smile. For the
red dashed smile with triangles κ = 0.01, and for the blue dotted
smile with squares κ = 3.
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Effects of changing the long-run variance θ are similar to those observed by
changing the initial variance, see the left panel of Figure 7.4. This requires
some attention in the calibration process. It seems promising to choose the
initial variance a priori and only let the long-run variance vary. In particular,
a different initial variance for different maturities would be inconsistent.

Changing the mean reversion κ affects the ATM part more than the extreme
wings of the smile curve. The low deltas remain almost unchanged whereas
increasing the mean reversion lifts the center. This is illustrated in the right
panel of Figure 7.4. Moreover, the influence of mean reversion is often com-
pensated by a stronger volatility of variance. This suggests fixing the mean
reversion parameter and only calibrating the remaining parameters.

Finally, let us look at the influence of correlation. The uncorrelated case pro-
duces a fit that looks like a symmetric smile curve centered at-the-money. How-
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Correlation and the smile
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Correlation and the skew
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Figure 7.5: Left panel : Effect of changing the correlation on the shape of the
smile. For the red dashed smile with triangles ρ = 0, for the blue
dashed smile with squares ρ = −0.15, and for the green dotted
smile with rhombs ρ = 0.15. Right panel : In order for the model
to yield a volatility skew, a typically observed volatility structure
in equity markets, the correlation must be set to an unrealistically
high value (with respect to the absolute value; here ρ = −0.5).
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ever, it is not exactly symmetric. Changing ρ changes the degree of symmetry.
In particular, positive correlation makes calls more expensive, negative corre-
lation makes puts more expensive. This is illustrated in Figure 7.5. Note that
for the model to yield a volatility skew, a typically observed volatility structure
in equity markets, the correlation must be set to an unrealistically high value.

7.4.2 Calibration Results

We are now ready to calibrate Heston’s model to market data. We take the
EUR/USD volatility surface on July 1, 2004 and fit the parameters in Heston’s
model according to the calibration scheme discussed earlier. The results are
shown in Figures 7.6–7.8. Note that the fit is very good for maturities between
three and eighteen months. Unfortunately, Heston’s model does not perform
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1W market and Heston volatilities
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1M market and Heston volatilities

20 40 60 80

Delta [%]

10
10

.2
10

.4
10

.6

Im
pl

ie
d 

vo
la

til
ity

 [
%

]

2M market and Heston volatilities
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3M market and Heston volatilities
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Figure 7.6: The market smile (solid black line with circles) on July 1, 2004 and
the fit obtained with Heston’s model (dotted red line with squares)
for τ = 1 week (top left), 1 month (top right), 2 months (bottom
left), and 3 months (bottom right).
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satisfactorily for short maturities and extremely long maturities. For the former
we recommend using a jump-diffusion model (Cont and Tankov, 2003; Martinez
and Senge, 2002), for the latter a suitable long term FX model (Andreasen,
1997).
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6M market and Heston volatilities
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1Y market and Heston volatilities
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18M market and Heston volatilities
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2Y market and Heston volatilities
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Figure 7.7: The market smile (solid black line with circles) on July 1, 2004 and
the fit obtained with Heston’s model (dotted red line with squares)
for τ = 6 months (top left), 1 year (top right), 18 months (bottom
left), and 2 years (bottom right).
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Vol of vol term structure
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Figure 7.8: Term structure of the vol of vol (left panel) and correlation (right
panel) in the Heston model calibrated to the EUR/USD surface as
observed on July 1, 2004.
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Performing calibrations for different time slices of the volatility matrix pro-
duces different values of the parameters. This suggests a term structure of
some parameters in Heston’s model. Therefore, we need to generalize the Cox-
Ingersoll-Ross process to the case of time-dependent parameters, i.e. we con-
sider the process:

dvt = κ(t){θ(t) − vt} dt + σ(t)
√

vt dWt (7.30)

for some nonnegative deterministic parameter functions σ(t), κ(t), and θ(t).
The formula for the mean turns out to be:

E(vt) = g(t) = v0e
−K(t) +

∫ t

0

κ(s)θ(s)eK(s)−K(t) ds, (7.31)

with K(t) =
∫ t

0
κ(s) ds. The result for the second moment is:

E(v2
t ) = v2

0e−2K(t) +
∫ t

0

{2κ(s)θ(s) + σ2(s)}g(s)e2K(s)−2K(t) ds, (7.32)
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and hence for the variance (after some algebra):

Var(vt) =
∫ t

0

σ2(s)g(s)e2K(s)−2K(t) ds. (7.33)

The formula for the variance allows us to compute forward volatilities of vari-
ance explicitly. Assuming known values σT1 and σT2 for some times 0 < T1 <
T2, we want to determine the forward volatility of variance σT1,T2 which matches
the corresponding variances, i.e.∫ T2

0

σ2
T2

g(s)e2κ(s−T2) ds = (7.34)

=
∫ T1

0

σ2
T1

g(s)e2κ(s−T2) ds +
∫ T2

T1

σ2
T1,T2

g(s)e2κ(s−T2) ds.

The resulting forward volatility of variance is thus:

σ2
T1,T2

=
σ2

T2
H(T2) − σ2

T1
H(T1)

H(T2) − H(T1)
, (7.35)

where

H(t) =
∫ t

0

g(s)e2κs ds =
θ

2κ
e2κt +

1
κ

(v0 − θ)eκt +
1
κ

(
θ

2
− v0

)
. (7.36)

Assuming known values ρT1 and ρT2 for some times 0 < T1 < T2, we want
to determine the forward correlation coefficient ρT1,T2 to be active between
times T1 and T2 such that the covariance between the Brownian motions of the
variance process and the exchange rate process agrees with the given values
ρT1 and ρT2 . This problem has a simple answer, namely:

ρT1,T2 = ρT2 , T1 ≤ t ≤ T2. (7.37)

This can be seen by writing the Heston model in the form:

dSt = St

(
µdt +

√
vt dW

(1)
t

)
(7.38)

dvt = κ(θ − vt) dt + ρσ
√

vt dW
(1)
t +

√
1 − ρ2σ

√
vt dW

(2)
t (7.39)

for a pair of independent Brownian motions W (1) and W (2). Observe that
choosing the forward correlation coefficient as stated does not conflict with the
computed forward volatility.
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As we have seen, Heston’s model can be successfully applied to modeling the
volatility smile of vanilla currency options. There are essentially three parame-
ters to fit, namely the long-run variance, which corresponds to the at-the-money
level of the market smile, the vol of vol, which corresponds to the convexity
of the smile (in the market often quoted as butterflies), and the correlation,
which corresponds to the skew of the smile (in the market often quoted as risk
reversals). It is this direct link of the model parameters to the market that
makes the Heston model so attractive to front office users.

The key application of the model is to calibrate it to vanilla options and af-
terward employ it for pricing exotics, like one-touch options, in either a finite
difference grid or a Monte Carlo simulation (Hakala and Wystup, 2002; Wystup,
2003). Surprisingly, the results often coincide with the traders’ rule of thumb
pricing method. This might also simply mean that a lot of traders are using the
same model. After all, it is a matter of belief which model reflects the reality
most suitably.
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Bates, D. (1996). Jumps and Stochastic Volatility: Exchange Rate Processes
Implicit in Deutsche Mark Options, Review of Financial Studies 9: 69–
107.

Chernov, M. and Ghysels, E. (2000). Estimation of the Stochastic Volatility
Models for the Purpose of Options Valuation, in Y. S. Abu-Mostafa, B.
LeBaron, A. W. Lo, and A. S. Weigend (eds.) Computational Finance -
Proceedings of the Sixth International Conference, MIT Press, Cambridge.

Cont, R., and Tankov, P. (2003). Financial Modelling with Jump Processes,
Chapman & Hall/CRC.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A Theory of the Term
Structure of Interest Rates, Econometrica 53: 385–407.

Derman, E. and Kani, I. (1994). Riding on a Smile, RISK 7(2): 32–39.

Dragulescu, A. A. and Yakovenko, V. M. (2002). Probability distribution of re-
turns in the Heston model with stochastic volatility, Quantitative Finance
2: 443–453.

Dupire, B. (1994). Pricing with a Smile, RISK 7(1): 18–20.

Eberlein, E., Kallsen, J., and Kristen, J. (2003). Risk Management Based on
Stochastic Volatility, Journal of Risk 5(2): 19–44.



180 Bibliography

Fengler, M. (2005). Semiparametric Modelling of Implied Volatility, Springer.

Garman, M. B. and Kohlhagen, S. W. (1983). Foreign currency option values,
Journal of International Monet & Finance 2: 231–237.

Hakala, J. and Wystup, U. (2002). Heston’s Stochastic Volatility Model Ap-
plied to Foreign Exchange Options, in J. Hakala, U. Wystup (eds.) Foreign
Exchange Risk, Risk Books, London.

Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatil-
ity with Applications to Bond and Currency Options, Review of Financial
Studies 6: 327–343.

Hull, J. and White, A. (1987). The Pricing of Options with Stochastic Volatil-
ities, Journal of Finance 42: 281–300.

Kluge, T. (2002). Pricing derivatives in stochastic volatility models using the
finite difference method, Diploma thesis, Chemnitz Technical University.

Martinez, M. and Senge, T. (2002). A Jump-Diffusion Model Applied to Foreign
Exchange Markets, in J. Hakala, U. Wystup (eds.) Foreign Exchange Risk,
Risk Books, London.

Merton, R. (1973). The Theory of Rational Option Pricing, Bell Journal of
Economics and Management Science 4: 141–183.

Merton, R. (1976). Option Pricing when Underlying Stock Returns are Dis-
continuous, Journal of Financial Economics 3: 125–144.

Reiss, O. and Wystup, U. (2001). Computing Option Price Sensitivities Using
Homogeneity, Journal of Derivatives 9(2): 41–53.

Rubinstein, M. (1994). Implied Binomial Trees, Journal of Finance 49: 771–
818.

Stein, E. and Stein, J. (1991). Stock Price Distributions with Stochastic Volatil-
ity: An Analytic Approach, Review of Financial Studies 4(4): 727–752.

Tompkins, R. G. and D’Ecclesia, R. L. (2004). Unconditional Return Distur-
bances: A Non-Parametric Simulation Approach, Journal of Banking and
Finance, to appear.

Weron, R. (2004). Computationally intensive Value at Risk calculations, in J.E.
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8 FFT-based Option Pricing

Szymon Borak, Kai Detlefsen, and Wolfgang Härdle

8.1 Introduction

The Black-Scholes formula, one of the major breakthroughs of modern finance,
allows for an easy and fast computation of option prices. But some of its
assumptions, like constant volatility or log-normal distribution of asset prices,
do not find justification in the markets. More complex models, which take into
account the empirical facts, often lead to more computations and this time
burden can become a severe problem when computation of many option prices
is required, e.g. in calibration of the implied volatility surface. To overcome
this problem Carr and Madan (1999) developed a fast method to compute
option prices for a whole range of strikes. This method and its application are
the theme of this chapter.

In Section 8.2, we briefly discuss the Merton, Heston, and Bates models con-
centrating on aspects relevant for the option pricing method. In the following
section, we present the method of Carr and Madan which is based on the fast
Fourier transform (FFT) and can be applied to a variety of models. We also
consider briefly some further developments and give a short introduction to the
FFT algorithm. In the last section, we apply the method to the three analyzed
models, check the results by Monte Carlo simulations and comment on some
numerical issues.

8.2 Modern Pricing Models

The geometric Brownian motion (GBM) is the building block of modern fi-
nance. In particular, in the Black-Scholes model the underlying stock price is
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assumed to follow the GBM dynamics:

dSt = rStdt + σStdWt, (8.1)

which, applying Itô’s lemma, can be written as:

St = S0 exp
{(

r − σ2

2

)
t + σWt

}
. (8.2)

The empirical facts, however, do not confirm model assumptions. Financial
returns exhibit much fatter tails than the Black-Scholes model postulates, see
Chapter 1. The common big returns that are larger than six-standard de-
viations should appear less than once in a million years if the Black-Scholes
framework were accurate. Squared returns, as a measure of volatility, dis-
play positive autocorrelation over several days, which contradicts the constant
volatility assumption. Non-constant volatility can be observed as well in the
option markets where “smiles” and “skews” in implied volatility occur. These
properties of financial time series lead to more refined models. We introduce
three such models in the following paragraphs.

8.2.1 Merton Model

If an important piece of information about the company becomes public it may
cause a sudden change in the company’s stock price. The information usually
comes at a random time and the size of its impact on the stock price may be
treated as a random variable. To cope with these observations Merton (1976)
proposed a model that allows discontinuous trajectories of asset prices. The
model extends (8.1) by adding jumps to the stock price dynamics:

dSt

St
= rdt + σdWt + dZt, (8.3)

where Zt is a compound Poisson process with a log-normal distribution of jump
sizes. The jumps follow a (homogeneous) Poisson process Nt with intensity λ
(see Chapter 14), which is independent of Wt. The log-jump sizes Yi ∼ N(µ, δ2)
are i.i.d random variables with mean µ and variance δ2, which are independent
of both Nt and Wt.
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The model becomes incomplete which means that there are many possible
ways to choose a risk-neutral measure such that the discounted price process
is a martingale. Merton proposed to change the drift of the Wiener process
and to leave the other ingredients unchanged. The asset price dynamics is then
given by:

St = S0 exp

(
µM t + σWt +

Nt∑
i=1

Yi

)
,

where µM = r − σ2 − λ{exp(µ + δ2

2 ) − 1}. Jump components add mass to the
tails of the returns distribution. Increasing δ adds mass to both tails, while a
negative/positive µ implies relatively more mass in the left/right tail.

For the purpose of Section 8.4 it is necessary to introduce the characteristic
function (cf) of Xt = ln St

S0
:

φXt(z) = exp
[
t

{
−σ2z2

2
+ iµMz + λ

(
e−δ2z2/2+iµz−1

)}]
, (8.4)

where Xt = µM t + σWt +
∑Nt

i=1 Yi.

8.2.2 Heston Model

Another possible modification of (8.1) is to substitute the constant volatility
parameter σ with a stochastic process. This leads to the so-called “stochastic
volatility” models, where the price dynamics is driven by:

dSt

St
= rdt +

√
vtdWt,

where vt is another unobservable stochastic process. There are many possible
ways of choosing the variance process vt. Hull and White (1987) proposed to
use geometric Brownian motion:

dvt

vt
= c1dt + c2dWt. (8.5)

However, geometric Brownian motion tends to increase exponentially which
is an undesirable property for volatility. Volatility exhibits rather a mean
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reverting behavior. Therefore a model based on an Ornstein-Uhlenbeck-type
process:

dvt = κ(θ − vt)dt + βdWt, (8.6)

was suggested by Stein and Stein (1991). This process, however, admits nega-
tive values of the variance vt.

These deficiencies were eliminated in a stochastic volatility model introduced
by Heston (1993):

dSt

St
= rdt +

√
vtdW

(1)
t ,

dvt = κ(θ − vt)dt + σ
√

vtdW
(2)
t , (8.7)

where the two Brownian components W
(1)
t and W

(2)
t are correlated with rate ρ:

Cov
(
dW

(1)
t , dW

(2)
t

)
= ρdt, (8.8)

for details see Chapter 7. The term
√

vt in equation (8.7) simply ensures
positive volatility. When the process touches the zero bound the stochastic
part becomes zero and the non-stochastic part will push it up.

Parameter κ measures the speed of mean reversion, θ is the average level of
volatility, and σ is the volatility of volatility. In (8.8) the correlation ρ is
typically negative, which is consistent with empirical observations (Cont, 2001).
This negative dependence between returns and volatility is known in the market
as the “leverage effect.”

The risk neutral dynamics is given in a similar way as in the Black-Scholes
model. For the logarithm of the asset price process Xt = ln St

S0
one obtains the

equation:

dXt =
(

r − 1
2
vt

)
dt +

√
vtdW

(1)
t .

The cf is given by:
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φXt
(z) =

exp{κθt(κ−iρσz)
σ2 + iztr + izx0}

(cosh γt
2 + κ−iρσz

γ sinh γt
2 )

2κθ
σ2

· exp

{
− (z2 + iz)v0

γ coth γt
2 + κ − iρσz

}
, (8.9)

where γ =
√

σ2(z2 + iz) + (κ − iρσz)2, and x0 and v0 are the initial values for
the log-price process and the volatility process, respectively.

8.2.3 Bates Model

The Merton and Heston approaches were combined by Bates (1996), who pro-
posed a model with stochastic volatility and jumps:

dSt

St
= rdt +

√
vtdW

(1)
t + dZt, (8.10)

dvt = κ(θ − vt)dt + σ
√

vtdW
(2)
t ,

Cov(dW
(1)
t , dW

(2)
t ) = ρ dt.

As in (8.3) Zt is a compound Poisson process with intensity λ and log-normal
distribution of jump sizes independent of W

(1)
t (and W

(2)
t ). If J denotes the

jump size then ln(1 + J) ∼ N(ln(1 + k) − 1
2δ2, δ2) for some k̄. Under the

risk neutral probability one obtains the equation for the logarithm of the asset
price:

dXt = (r − λk − 1
2
vt)dt +

√
vtdW

(1)
t + Z̃t,

where Z̃t is a compound Poisson process with normal distribution of jump
magnitudes.

Since the jumps are independent of the diffusion part in (8.10), the character-
istic function for the log-price process can be obtained as:

φXt
(z) = φD

Xt
(z)φJ

Xt
(z),

where:
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φD
Xt

(z) =
exp

{
κθt(κ−iρσz)

σ2 + izt(r − λk) + izx0

}
(

cosh γt
2 + κ−iρσz

γ sinh γt
2

) 2κθ
σ2

· exp

{
− (z2 + iz)v0

γ coth γt
2 + κ − iρσz

}
(8.11)

is the diffusion part cf and

φJ
Xt

(z) = exp{tλ(e−δ2z2/2+i(ln(1+k)− 1
2 δ2)z − 1)}, (8.12)

is the jump part cf. Note that (8.9) and (8.11) are very similar. The difference
lies in the shift λk (risk neutral correction). Formula (8.12) has a similar
structure as the jump part in (8.4), however, µ is substituted with ln(1 + k) −
1
2δ2.

8.3 Option Pricing with FFT

In the last section, three asset price models and their characteristic functions
were presented. In this section, we describe a numerical approach for pricing
options which utilizes the characteristic function of the underlying instrument’s
price process. The approach has been introduced by Carr and Madan (1999)
and is based on the FFT. The use of the FFT is motivated by two reasons.
On the one hand, the algorithm offers a speed advantage. This effect is even
boosted by the possibility of the pricing algorithm to calculate prices for a
whole range of strikes. On the other hand, the cf of the log price is known and
has a simple form for many models considered in literature, while the density
is often not known in closed form.

The approach assumes that the cf of the log-price is given analytically. The
basic idea of the method is to develop an analytic expression for the Fourier
transform of the option price and to get the price by Fourier inversion. As
the Fourier transform and its inversion work for square-integrable functions
(see Plancherel’s theorem, e.g. in Rudin, 1991) we do not consider directly the
option price but a modification of it.
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Let CT (k) denote the price of a European call option with maturity T and
strike K = exp(k):

CT (k) =
∫ ∞

k

e−rT (es − ek)qT (s)ds,

where qT is the risk-neutral density of sT = log ST . The function CT is not
square-integrable because CT (k) converges to S0 for k → −∞. Hence, we
consider a modified function:

cT (k) = exp(αk)CT (k), (8.13)

which is square-integrable for a suitable α > 0. The choice of α may depend
on the model for St. The Fourier transform of cT is defined by:

ψT (v) =
∫ ∞

−∞
eivkcT (k)dk.

The expression for ψT can be computed directly after an interchange of inte-
grals:

ψT (v) =
∫ ∞

−∞
eivk

∫ ∞

k

eαke−rT (es − ek)qT (s)dsdk

=
∫ ∞

−∞
e−rT qT (s)

∫ s

−∞
(eαk+s − e(α+1)k)eivkdkds

=
∫ ∞

−∞
e−rT qT (s)(

e(α+1+iv)s

α + iv
− e(α+1+iv)s

α + 1 + iv
)ds

=
e−rT φT (v − (α + 1)i)

α2 + α − v2 + i(2α + 1)v
,

where φT is the Fourier transform of qT . A sufficient condition for cT to be
square-integrable is given by ψT (0) being finite. This is equivalent to

E(Sα+1
T ) < ∞.

A value α = 0.75 fulfills this condition for the models of Section 8.2. With
this choice, we follow Schoutens et al. (2003) who found in an empirical study
that this value leads to stable algorithms, i.e. the prices are well replicated for
many model parameters.

Now, we get the desired option price in terms of ψT using Fourier inversion

CT (k) =
exp(−αk)

π

∫ ∞

0

e−ivkψ(v)dv.
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This integral can be computed numerically as:

CT (k) ≈ exp(−αk)
π

N−1∑
j=0

e−ivjkψ(vj)η, (8.14)

where vj = ηj, j = 0, . . . , N − 1, and η > 0 is the distance between the points
of the integration grid.

Lee (2004) has developed bounds for the sampling and truncation errors of this
approximation. Formula (8.14) suggests to calculate the prices using the FFT,
which is an efficient algorithm for computing the sums

wu =
N−1∑
j=0

e−i 2π
N juxj , for u = 0, . . . , N − 1. (8.15)

To see why this is the case see Example 1 below, which illustrates the basic
idea of the FFT. In general, the strikes near the spot price are of interest be-
cause such options are traded most frequently. We consider thus an equidistant
spacing of the log-strikes around the log spot price s0:

ku = −1
2
Nζ + ζu + s0, for u = 0, . . . , N − 1, (8.16)

where ζ > 0 denotes the distance between the log strikes. Substituting these
log-strikes yields for u = 0, . . . , N − 1:

CT (ku) ≈ exp(−αk)
π

N−1∑
j=0

e−iζηjuei{( 1
2 Nζ−s0)vj}ψ(vj)η.

Now, the FFT can be applied to

xj = ei{( 1
2 Nζ−s0)vj}ψ(vj), for j = 0, . . . , N − 1,

provided that

ζη =
2π

N
. (8.17)

This constraint leads, however, to the following trade-off: the parameter N
controls the computation time and thus is often determined by the computa-
tional setup. Hence the right hand side may be regarded as given or fixed.
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One would like to choose a small ζ in order to get many prices for strikes near
the spot price. But the constraint implies then a big η giving a coarse grid
for integration. So we face a trade-off between accuracy and the number of
interesting strikes.

Example 1

The FFT is an algorithm for computing (8.15). Its popularity stems from its
remarkable speed: while a naive computation needs N2 operations the FFT
requires only N log(N) steps. The algorithm was first published by Cooley and
Tukey (1965) and since then has been continuously refined. We illustrate the
original FFT algorithm for N = 4. Writing u and j as binary numbers:

u = 2u1 + u0, j = 2j1 + j0,

with u1, u0, j1, j0 ∈ {0, 1} u = (u1, u0), j = (j1, j0) the formula (8.15) is given
as:

w(u1,u0) =
1∑

j0=0

1∑
j1=0

x(j1,j0)W
(2u1+u0)(2j1+j0),

where W = e−2πi/N . Because of

W (2u1+u0)(2j1+j0) = W 2u0j1W (2u1+u0)j0 ,

we get

w(u1,u0) =
1∑

j0=0

(
1∑

j1=0

x(j1,j0),W
2u0j1)W (2u1+u0)j0 .

Now, the FFT can be described by the following three steps

w1
(u0,j0)

=
1∑

j1=0

x(j1,j0)W
2u0j1 ,

w2
(u0,u1)

=
1∑

j0=0

w1
(u0,j0)

W (2u1+u0)j0 ,

w(u1,u0) = w2
(u0,u1)

.

While a naive computation of (8.15) requires 42 = 16 complex multiplications
the FFT needs only 4 log(4) = 8 complex multiplications. This explains the
speed of the FFT because complex multiplications are the most time consuming
operations in this context.
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Figure 8.1: Implied volatility surface of DAX options on January 4, 1999.
STFfft01.xpl

8.4 Applications

In this section, we apply the FFT option pricing algorithm of Section 8.3 to
the models described in Section 8.2. Our aim is to demonstrate the remark-
able speed of the FFT algorithm by comparing it to Monte Carlo simulations.
Moreover, we present an application of the fast option pricing algorithm to the
calibration of implied volatility (IV) surfaces. In Figure 8.1 we present the IV
surface of DAX options on January 4, 1999 where the red points are the ob-
served implied volatilities and the surface is fitted with the Nadaraya-Watson
kernel estimator. For analysis of IV surfaces consult Fengler et al. (2002) and
Chapter 5.

In order to apply the FFT-based algorithm we need to know the characteristic
function of the risk neutral density which has been described in Section 8.2
for the Merton, Heston, and Bates models. Moreover, we have to decide on
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the parameters α, N , and η of the algorithm. Schoutens et al. (2003) used
α = 0.75 in a calibration procedure for the Eurostoxx 50 index data. We
follow their approach and set α to this value. The computation time depends
on the parameter N which we set to 512. As the number of grid points of the
numerical integration is also given by N , this parameter in addition determines
the accuracy of the prices. For parameter η, which determines the distance of
the points of the integration grid, we use 0.25. A limited simulation study
showed that the FFT algorithm is not sensitive to the choice of η, i.e. small
changes in η gave similar results. In Section 8.3, we have already discussed the
relation between these parameters.

For comparison, we computed the option prices also by Monte Carlo simulations
with 500 time steps and 5000 repetitions. Such simulations are a convenient way
to check the results of the FFT-based algorithm. The calculations are based on
the following parameters: the price of the underlying asset is S0 = 100, time to
maturity T = 1, and the interest rate r = 0.02. For demonstration we choose
the Heston model with parameters: κ = 10, θ = 0.2, σ = 0.7, ρ = −0.5, and
v0 = 0.2. To make our comparison more sound we also calculate prices with
the analytic formula given in Chapter 7. In the left panel of Figure 8.2 we
show the prices of European call options as a function of the strike price K. As
the prices obtained with the analytical formula are close to the prices obtained
with the FFT-based method and the Monte Carlo prices oscillate around them,
this figure confirms that the pricing algorithm works correctly. The different
values of the Monte Carlo prices are mainly due to the random nature of this
technique. One needs to use even more time steps and repetitions to get better
results. The minor differences between the analytical and FFT-based prices
come form the fact that the latter method gives the exact values only on the
grid (8.16) and between the grid points one has to use some interpolation
method to approximate the price of the option. This problem can be more
clearly observed in the right panel of Figure 8.2, where percentage differences
between the analytical and FFT prices are presented. In order to preserve
the great speed of the algorithm we simply use linear interpolation between
the grid points. This approach, however, slightly overestimates the true prices
since the call option price is a convex function of the strike. It can be clearly
seen that near the grid points the prices obtained by both methods coincide,
while between the grid points the FFT-based algorithm generates higher prices
than the analytical solution.

Although these methods yield similar results they need different computation
time. In Table 8.1 we compare the speed of C++ implementations of the Monte
Carlo and FFT methods. We calculate Monte Carlo prices for 20 different
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Figure 8.2: Left panel: European call option prices obtained by Monte Carlo
simulations (filled circles), analytical formula (crosses) and the FFT
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Table 8.1: The computation times in seconds for the FFT method and the
Monte Carlo method for three different models. Monte Carlo prices
were calculated for 20 different strikes, with 500 time steps and 5000
repetitions.

Model FFT MC
Merton 0.01 31.25
Heston 0.01 34.41
Bates 0.01 37.53

strikes for each of the three models. The speed superiority of the FFT-based
method is clearly visible. It is more than 3000 times faster than the Monte
Carlo approach.
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As an application of the fast pricing algorithm we consider the problem of
model calibration. Given option prices observed in the market we look for
model parameters that can reproduce the data well. Normally, the market
prices are given by an implied volatility surface which represents the implied
volatility of option prices for different strikes and maturities. The calibration
can then be done for the implied volatilities or for the option prices. This
decision depends on the problem considered. As a measure of fit one can use
the Mean Squared Error (MSE):

MSE =
1

number of options

∑
options

(market price - model price)2

market price2 , (8.18)

but other choices like the Mean Absolute Percentage Error (MAPE) or Mean
Absolute Error (MAE) are also possible:

MAPE =
1

number of options

∑
options

| market price - model price |
market price

,

MAE =
1

number of options

∑
options

| market price - model price | .

Moreover, the error function can be modified by weights if some regions of the
implied volatility surface are more important or some observations should be
ignored completely.

The calibration results in a minimization problem of the error function MSE.
This optimization can be carried out by different algorithms like simulated
annealing, the Broyden-Fletcher-Goldfarb-Shanno-algorithm, the Nelder-Mead
simplex algorithm or Monte Carlo Markov Chain methods. An overview of
optimization methods can be found in Č́ıžková (2003). As minimization algo-
rithms normally have to compute the function to be minimized many times an
efficient algorithm for the option prices is essential. The FFT-based algorithm
is fairly efficient as is shown in Table 8.1. Moreover, it returns prices for a whole
range of strikes at one maturity. This is an additional advantage because for
the calibration of an implied volatility surface one needs to calculate prices for
many different strikes and maturities.

As an example we present the results for the Bates model calibrated to the IV
surface of DAX options on January 4, 1999. The data set, which can be found
in MD*Base, contains 236 option prices for 7 maturities (for each maturity
there is a different number of strikes). We minimize (8.18) with respect to 8
parameters of the Bates model: λ, δ, k, κ, θ, σ, ρ, v0. Since the function (8.18)
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Figure 8.3: The observed implied volatilities of DAX options on January 4,
1999 (circles) and fitted Bates model (line) for 4 different maturity
strings.
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has many local minima, we use the simulated annealing minimization method,
which offers the advantage to search for a global minimum, combined with the
Nelder-Mead simplex algorithm. As a result we obtaine the following estimates
for the model parameters: λ̂ = 0.13, δ̂ = 0.0004, k̂ = −0.03, κ̂ = 4.23, θ̂ =
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0.17, σ̂ = 1.39, ρ̂ = −0.55, v̂0 = 0.10, and the value of MSE is 0.00381.
In Figure 8.3 we show the resulting fits of the Bates model to the data for
4 different maturities. The red circles are implied volatilities observed in the
market on the time to maturities T = 0.21, 0.46, 0.71, 0.96 and the blue lines
are implied volatilities calculated from the Bates model with the calibrated
parameters. In the calibration we used all data points. As the FFT-based
algorithm computes prices for the whole range of strikes the biggest impact
on the speed of calibration has the number of used maturities, while the total
number of observations has only minor influence on the speed.

On the one hand, the Carr-Madan algorithm offers a great speed advantage
but on the other hand its applications are restricted to European options. The
Monte Carlo approach instead works for a wider class of derivatives including
path dependent options.

Thus, this approach has been modified in different ways. The accuracy can be
improved by using better integration rules. Carr and Madan (1999) considered
also the Simpson rule which leads – taking (8.17) into account – to the following
formula for the option prices:

CT (ku) ≈ exp(−αk)
π

N−1∑
j=0

e−iζηjuei{( 1
2 Nζ−s0)vj}ψ(vj)

η

3
{3 + (−1)j − I(−j = 0)}.

This representation again allows a direct application of the FFT to compute
the sum.

An alternative to the original Carr-Madan approach is to consider instead of
(8.13) other modifications of the call prices. For example, Cont and Tankov
(2004) used the (modified) time value of the options:

c̃T (k) = CT (k) − max(1 − ek−rT , 0).

Although this method also requires the existence of α satisfying E(Sα+1
T ) < ∞

the parameter does not enter into the final pricing formula. Thus, it is not
necessary to choose any value for α. This freedom of choice of α makes the
approach easier to implement. On the other hand, option price surfaces that
are obtained with this method often have a peak for small maturities and
strikes near the spot. This special form differs from the surfaces typically
observed in the market. The peak results from the non-differentiability of the
intrinsic value at the spot. Hence, other modifications of the option prices have
been considered that make the modified option prices differentiable (Cont and
Tankov, 2004).



198 8 FFT-based Option Pricing

The calculation of option prices by the FFT-based algorithm leads to different
errors. The truncation error results from substituting the infinite upper inte-
gration limit by a finite number. The sampling error comes from evaluating
the integrand only at grid points. Lee (2004) gives bounds for these errors and
discusses error minimization strategies. Moreover, he presents and unifies ex-
tensions of the original Carr-Madan approach to other payoff classes. Besides
the truncation and the sampling error, the implementation of the algorithm
often leads to severe roundoff errors because of the complex form of the char-
acteristic function for some models. To avoid this problem, which often occurs
for long maturities, it is necessary to transform the characteristic function.

Concluding, we can say that the FFT-based option pricing method is a tech-
nique that can be used whenever time constraints are important. However,
in order to avoid severe pricing errors its application requires careful decisions
regarding the choice of the parameters and the particular algorithm steps used.
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9 Valuation of Mortgage Backed
Securities: from Optimality to
Reality

Nicolas Gaussel and Julien Tamine

9.1 Introduction

Mortgage backed securities (MBS) are financial assets backed by a pool of mort-
gages. Investors buy a part of the pool’s principal and receive the corresponding
mortgages cash flows. The pooled mortgages generally offer the borrower the
opportunity to prepay part or all of the remaining principal before maturity.
This prepayment policy is the key point for pricing and hedging MBS.

In the existing literature, two broad directions have been explored. On the one
hand, the mainstream approach relies on statistical inference. The observed
prepayment policy is statistically explained by the level of interest rates and
some parameters of the underlying mortgage portfolio, see Schwartz and Torous
(1989), Boudhouk et al. (1997). Dedicated to pricing and hedging, these ap-
proaches do not address the rationality behind the observed prepayment policy.

On the other hand, authors like Nielsen and Poulsen (2002) directly address
the problem of optimal prepayment within consumption based models. This
normative approach gives insights into the determinants of prepayments and
relies on macro-economic variables. However, this approach appears to be of
poor practical use due to the numerous economic variables involved.

In this chapter, we propose a third way. The optimality problem is addressed
from an unconstrained, financial point of view. Using arguments similar to
those of early exercise of American derivatives, we identify the optimal interest
rate level for prepayment. Building on this frontier, we construct a family of
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prepayment policies based on the spread between interest rates and the optimal
prepayment level. The MBS are then priced as the expected value of their
forthcoming discounted cash flows, which is in line with classical methodology
for flow product valuation.

Mortgages specific characteristics

Mortgage cash flows differ from those of a classical bond since their coupon is
partly made of interest and partly of principal refunding. Despite this difference
in cash flow structure, the prepayment option enclosed in the mortgage is very
similar to the callability feature of a bond. Under classical assumptions on the
bond market, an optimal time of early exercise can be exhibited, depending on
the term structure and on the volatility of interest rates. Such models predict a
rise in exercise probability during low interest rate periods, increasing the value
of the callability option attached to the bond. These conclusions are supported
by empirical evidence. Historical values of the market price of a non-callable
and a callable General Electric bond with the same maturity and coupon are
displayed on Figure 9.1.

The 10-year US government rate is displayed on the secondary axis. During
this period of a sharp decrease of interest rates, the value of the non-callable
bond rose much more than the value of the callable one. It may be tempting to
adapt callable bonds pricing framework to mortgages. Nevertheless, statistical
results prevent such a direct extrapolation. Though most mortgagors prepay
for low interest rate levels, a significant percentage chooses to go on refunding
their loan, no matter how interesting the refinancing conditions are. This
phenomenon is often called burnout, Schwartz and Torous (1989). Conversely,
some mortgagors choose to exercise their prepayment right at high interest
rate levels. Such observations reveal that mortgagors are individuals whose
behavior is in part determined by exogenous factors.

Economic studies suggest that major motivations for early prepayment can be
classified within three broad categories, Hayre (1999):

• structural motivations accounting for occurrence of prepayment during
high interest rate periods: unexpected heritage; professional move in-
volving house sale (if residential mortgages are considered); insurance
prepayment after mortgagor death;
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Figure 9.1: Historical prices of the 10-year US goverment bond (solid line,
right axis) and a non-callable (dotted line, left axis) and a callable
(dashed line, left axis) General Electric bonds.

STFmbs01.xpl

• specific characteristics explaining burnout: lack of access to interest rate
information;

• refunding motivations in accordance with classical financial theory.

Based on these considerations, the subsequent analysis is divided into three
parts. Section 2 is concerned with the determination of the optimal time for
prepaying a mortgage in an ideal market where interest rates would be the
only variable of decision. This section sheds light on the influence of interest
rates on refinancing incentive. In Section 3, the MBS price is expressed as
the expected value of its future cash-flows, under some prepayment policy.
A numerical procedure based on the resolution of a two-dimensional partial
differential equation is put forward. The insights provided by our approach are
illustrated through numerical examples.
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9.2 Optimally Prepaid Mortgage

9.2.1 Financial Characteristics and Cash Flow Analysis

For the sake of simplicity, all cash flows are assumed to be paid continuously in
time. Given a maturity T, the mortgage is defined by a fixed actuarial coupon
rate c and a principal N . If the mortgagor chooses not to prepay, he refunds a
continuous flow φdt, related to the maturity T and the coupon rate c through
the initial parity condition

N =
∫ T

0

φ exp (−cs) ds, (9.1)

where
φ = N

c

1 − exp (−cT )
.

As opposed to in fine bonds where intermediary cashflows are only made of
interest and the principal is fully redeemed at maturity, this flow includes
payments of both interest and principal. At time t ∈ [0, T ] the remaining
principal Kt is contractually defined as the forthcoming cash flows discounted
at the initial actuarial coupon rate

Kt
def=

∫ T

t

φ exp {−c (s − t)} ds

=
φ

c
[1 − exp {−c (T − t)}]

= N
1 − exp {−c (T − t)}

1 − exp (−cT )

Early prepayment at date t means paying Kt to the bank. In financial terms,
the mortgagor owns an American prepayment option with strike Kt. The
varying proportion between interest and capital in the flow φ is displayed in
Figure 9.2.

9.2.2 Optimal Behavior and Price

The financial model

Given its callability feature, the mortgage is a fixed income derivative prod-
uct. Its valuation must therefore be grounded on the definition of a particular
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Figure 9.2: The proportion between interest and principal varying in time.

interest rate model. Since many models can be seen as good candidates, we
need to specify some additional features. First, this model should be arbitrage
free and consistent with the observed forward term structure. This amounts
to selecting a standard Heath-Jarrow-Morton (HJM) type approach. Second,
we specify an additional Markovian structure for tractability purposes. While
our theoretical analysis is valid for any Markovian HJM model, all (numerical)
results will be presented, for simplicity, using a one factor enhanced Vasicek
model (Priaulet, 2000); see Martellini and Priaulet (2000) for practical uses or
Björk (1998) for more details on theoretical grounds. Let us quickly recap its
characteristics.

Assumption A The short rate process rt is defined via an Ornstein-Uhlenbeck
process:

drt = λ {θ (t) − rt} dt + σdWt, (9.2)

with

θ (t) =
∂

∂t
f (0, t) + f (0, t) + σ2 1 − exp (−2λt)

2λ
,

and f (0, t) being the initial instantaneous forward term curve. The parameters
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σ and λ control the volatility σ (τ) of forward rates of maturity τ

σ (τ) =
σ

λ
{1 − exp (−λτ)} ,

and allow for a rough calibration to derivative prices. Note that in this en-
hanced Vasicek framework, all bond prices can be written in closed form,
Martellini and Priaulet (2000).

The optimal stopping problem

The theory of optimal stopping is well known, Pham (2003). It is widely
used in mathematical finance for the valuation of American contracts, Musiela
and Rutkowski (1997). In the sequel, the optimally prepaid mortgage price is
explicitly calculated as a solution of an optimal stopping problem.

Let τ ∈ [t, T ] be the stopping time at which mortgagors choose to prepay. Cash
flows are of two kinds. If τ < T, mortgagors keep on paying continuously φdt
at any time, with discounted (random) value equal to∫ min(τ,T )

t

φ exp
(
−
∫ s

t

rudu

)
ds.

At date τ, if τ < T, the remaining capital Kt must be paid, implying a dis-
counted cash flow equal to

I (τ < T ) exp
(
−
∫ τ

t

rudu

)
Kτ ,

The mortgagor will choose his prepayment time τ in order to minimize the risk
neutral expected value of these future discounted cashflows. The value of the
optimally prepaid mortgage is then obtained as

Vt = inf
t<τ<T

E

[{∫ min(τ,T )

t

φ exp
(
−
∫ s

t

rudu

)
ds (9.3)

+I(τ < T ) exp
(
−
∫ τ

t

rudu

)
Kτ

}∣∣∣∣∣Ft

]
,

where Ft is the relevant filtration. Since rt is Markovian, Vt can be expressed as
a function of the current level of the state variables and reduces to V (t, rt) . The
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problem in (9.3) is therefore a standard Markovian optimal stopping problem
(Pham, 2003).

At time t, the mortgagor’s decision whether to prepay or not is made on the
following arbitrage: the cost of prepaying immediately (τ = t) is equal to the
current value of the remaining mortgage principal Kt. This cost has to be
compared to the expected cost V (t, rt) of going on refunding the continuous
flow φdt and keeping the option to prepay until later. Obviously, the optimal
mortgagor should opt for prepayment if

V (t, rt) � Kt. (9.4)

Conversely, within the non-prepayment region, the mortgage can be sold or
bought: its price must be the solution of the standard Black-Scholes partial
differential equation. The following proposition sums up these intuitions. Its
proof uses the link between conditional expectation and partial differential
equations called the “Feynman-Kac analysis.”

PROPOSITION 9.1 Under Assumption A, V (t, rt) is solution of the partial
differential equation :

max

⎧⎨⎩
∂V (t, r)

∂t
+ µ (t, r)

∂V (t, r)
∂r

+
1
2
σ2 ∂2V (t, r)

∂r2
− rV (t, r) + φ,

V (t, r) − Kt

⎫⎬⎭ = 0

(9.5)

V (T, r) = 0 (9.6)

where µ (t, r) def= λ (θ (t) − r) and σ are fixed by Assumption A.

Proof: We only give a sketch for constructing a solution. The optimal stopping
time problem at time t is given by

Vt =

{
inf
τ<T

E
∫ min(τ,T )

t

φ exp
(
−
∫ s

t

rudu

)
ds (9.7)

+I(τ < T ) exp

(
−
∫ min(τ,T )

t

rudu

)
Kτ

}∣∣∣∣∣Ft (9.8)

The Markovian property allows to change the conditioning by Ft by a condi-
tioning by rt. Thus, Vt is a function of (t, rt). If the mortgagor does not prepay
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during the time interval [t, t + h] , h > 0, the discounted cashflows refunded in
the interval [t, t + h] equal to

T∫
t

exp
(
−
∫ s

t

rudu

)
φds

The value at time t+h of the remaining cash flows to be paid by the mortgagor
is equal to V (t + h, rt+h) . Its discounted value, at time t is:

exp

(
−
∫ t+h

t

rudu

)
V (t + h, rt+h) .

Finally, the expected value of the cash flows to be paid for a mortgage not
prepaid on the interval [t, t + h] equals to

E

⎧⎨⎩
T∫

t

exp
(
−
∫ s

t

rudu

)
φds + exp

(
−
∫ t+h

t

rudu

)
V (t + h, rt+h)

}
.

Not prepaying on the time interval [t, t + h] may not be optimal so that

V (t, rt) ≤ E

⎧⎨⎩
T∫

t

exp
(
−
∫ s

t

rudu

)
φds + exp

(
−
∫ t+h

t

rudu

)
V (t + h, rt+h)

}
.

Assuming regularity conditions on V , classical Taylor expansion yields

0 ≤ ∂V (t, rt)
∂t

+ µ (t, r)
∂V (t, rt)

∂r
+

1
2
σ2 ∂2V (t, rt)

∂r2
− rV (t, rt) + φ. (9.9)

Furthermore, using the definition (9.7), the inequality

V (t, rt) ≤ Kt

is satisfied. Assuming this inequality to be strictly satisfied, the stopping time
τ is defined by

τ = inf {s ≥ t : V (s, rs) = Ks} .

On the time interval [t, min{t + h, τ}] , the non-prepayment strategy is optimal
since V (s, rs) < Ks. As a consequence:

V (t, rt) = E

⎧⎨⎩
T∫

t

exp
(
−
∫ s

t

rudu

)
φds + exp

(
−
∫ t+h

t

rudu

)
V (t + h, rt+h)

}
.
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Figure 9.3: The sensitivity of the optimal prepayment-frontier to forward-rates
slope: steeper forward-rate curve leads to the dotted frontier, less
steep forward-rate curve to solid frontier.

Letting h → 0 and applying Itô’s lemma, as previously yields

0 =
∂V (t, rt)

∂t
+µ (t, r)

∂V (t, rt)
∂r

+
1
2
σ2 (t, r)

∂2V (t, rt)
∂r2

−rV (t, rt)+φ (9.10)

as long as V (t, rt) < Kt.

Formula (9.9) combined with (9.10) implies

max
{

∂Vt

∂t
+ µ (t, r)

∂Vt

∂r
+

1
2
σ2 ∂2Vt

∂r2
− rVt + φ, Vt − Kt

}
= 0.

�
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Figure 9.4: The sensitivity of the optimal prepayment frontier to interest-rates
volatility: volatilities of the 1-year and 10-year bonds are 90 bps and
37 bps (solid line) and 135 bps and 55 bps (dotted line), respectively.

Discussion and visualization

In this one-dimensional framework, the prepayment condition (9.4) defines a
two-dimensional no prepayment region

D = {(t, r) : Vt < Kt} .

In particular, it includes the set

{(t, r) : rt ≥ c} .

The optimal stopping theory provides characterization of D, Pham (2003). In
fact, there exists an optimal, time-dependent, stopping frontier ropt

t such that

D =
{

(t, r) : rt > ropt
t

}
.

The price Vt and the optimal frontier ropt
t are jointly determined: this is a

so-called free boundary problem. It can only be calculated via a standard
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Figure 9.5: The sensitivity of the time value of the embbeded option to interest-
rate volatility: volatilities of the 1-year and 10-year bonds are 90
bps and 37 bps (solid line) and 135 bps and 55 bps (dotted line),
respectively.

finite difference approach, Wilmott (2000). An example is displayed in Figure
9.3. Interestingly enough, the optimal frontier heavily depends on the time to
maturity and it may be far away from the mortgage coupon c. Both its shape
and its level ropt

t strongly depend on market conditions.

Figure 9.3 illustrates the positive impact of the slope of the curve on to the
slope of the optimal frontier. The influence of implicit market volatility on
the optimal prepayment frontier is displayed in Figure 9.4. As expected, the
more randomness σ around future rates moves, the stronger the incentive for
mortgagors to delay their prepayment in time. In the language of derivatives,
the time value of the embedded option increases, see Figure 9.5. All these
effects are summed up in one key indicator: the duration of the optimally
prepaid mortgage. Defined as the sensitivity to the variation of interest rates,
this indicator has two interesting interpretations. From an actuarial point of
view, it represents the average expected maturity of the future discounted cash
flows. From a hedging point of view, duration may be interpreted as the “delta”
of the mortgage with respect to interest rates.
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Figure 9.6: The sensitivity of the duration to interest-rate volatility: volatilities
of the 1-year and 10-year bonds are 90 bps and 37 bps (solid line)
and 135 bps and 55 bps (dotted line), respectively.

If interest rate is deep inside the continuing region, the expected time before
prepayment is large and the duration increases. As displayed in Figure 9.6,
the higher the volatility, the higher the duration. The preceeding discussion
indicates that the optimally prepaid mortgage can be understood as a standard
interest rate derivative, allowing one to get asymmetric exposure to future
interest rates shifts.

9.3 Valuation of Mortgage Backed Securities

As confirmed by empirical evidence, mortgagors do not prepay optimally, Hayre
(1999). Nielsen and Poulsen (2002) provide important insights on the con-
straints and information asymmetries faced by mortgagors. Although being
bound by these constraints, individuals aim at minimizing their expected fu-
ture cash flows. Thus, it is natural to root their prepayment policy into the
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optimal one. Let dt
def= ropt

t − rt be the distance between the interest rate and
the optimal prepayment frontier. The optimal policy leads to a 100% prepay-
ment of the mortgage if dt > 0 and a 0% prepayment if not: it can thus be
seen as a Heaviside function of dt.

When determinants of mortgagors’ behavior cannot be observed, this behavior
can be modelled as a noisy version of the optimal one. It is thus natural
to look for the effective prepayment policy under the form of a characteristic
distribution function of dt, which introduces dispersion around the optimal
frontier.

9.3.1 Generic Framework

A pool of mortgages with similar financial characteristics is now considered.
This homogeneity assumption of the pool is in accordance with market practice.
For the ease of monitoring and investors’ analysis, mortgages with the same
coupon rate and the same maturity are chosen for pooling. Without loss of
generality, the MBS can be assimilated into a single loan with coupon c and
maturity T, issued with principal N normalized at 1.

Let Ft be the proportion of unprepaid shares at date t. In the optimal approach,
the prepayment policy follows an “all or nothing” type strategy, with Ft being
worth 0 or 1. When practical policies are involved, Ft is a positive process
decreasing in time from 1 to 0. One can look for

Ft
def= exp (−Πt)

F0 = 1,

where, in probabilistic terms, Πt is the hazard process associated with the
refunding dynamics. The size of the underlying mortgage gives incentives to
model Πt as an absolutely continuous process. In mathematical terms, this
amounts to assuming the existence of an intensity process πt such that

dΠt = πtdt,

or equivalently

Ft = exp
(
−
∫ t

0

πudu

)
. (9.11)

In this framework, the main point lies in the functional form of the refunding
intensity πt. As it will be precised in the next subsection, πt must be seen as
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a function of dt instead of directly rt. The valuation consists in discounting a
continuous sequence of cash flows. Given the prepayment policy πt, the MBS
cashflows during [t, T ] can be divided in two parts. Firstly,

T∫
t

exp
(
−
∫ s

t

rudu

)
Fsφds

is the discounted value of the continuous flows φ refunded on the outstanding
MBS principal Fs. Secondly,

T∫
t

exp
(
−
∫ s

t

rudu

)
πsK (s) dFs

is the discounted value of the principal prepaid at time s. The MBS value equals
the risk neutral expectation of these cash flows

P (t, rt, Ft) = E

⎡⎣ T∫
t

exp
(
−
∫ s

t

rudu

)
· {Fsφ + πsFsK (s)} ds

⎤⎦ . (9.12)

Because πt is chosen as a function of dt, the explicit computation of P involves
the knowledge of ropt

t . As opposed to the classical approach, a simple Monte
Carlo technique cannot do the job. P can be characterized as a solution of a
standard two dimensional partial differential equation. In our one dimensional
framework, this means that:

PROPOSITION 9.2 Under Assumption A, the MBS price P (t, rt, Ft) solves
the partial differential equation

∂P (t, r, F )
∂t

+ µ (t, r)
∂P (t, r, F )

∂r
− π (t, r) F

∂P (t, r, F )
∂F

+
1
2
σ2 ∂2P (t, r, F )

∂r2
+ F (φ + π (t, r) K (t)) − rP (t, r, F ) = 0. (9.13)

P (T, r, F ) = 0

where µ (t, r) def= λ {θ (t) − r} and σ are fixed by assumption A and πt has to
be properly determined.
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9.3.2 A Parametric Specification of the Prepayment Rate

We now come to a particular specification of πt. For simplicity, we choose an
ad hoc parametric form for π in order to analyze its main sensitivities. In
accordance with stylized facts on prepayment, the prepayment rate πt is split
in two distinct components

πt = πS
t + πR

t ,

where πS
t represents the structural component of prepayment and πR

t , as a
function of dt, accounts for both the refunding decision and burnout.

Structural prepayment

Structural prepayment can involve many different reasons for prepaying, in-
cluding:

• professional changes,

• natural disasters followed by insurance prepayment,

• death or default of the mortgagor also followed by insurance prepayment.

Such prepayment characteristics appear to be stationary in time, Hayre (1999).
Their average effect can be captured reasonably well through a deterministic
model.

The Public Securities Association (PSA) recommends the use of a piecewise
linear structural prepayment rate:

πS
t = k (atI(0 ≤ t ≤ 30 months) + bI(30 months ≤ t)) . (9.14)

This piecewise linear specification takes into account the influence of the age
of the mortgage on prepayment.

According to the PSA, the mean annualized values for a and b are 2% and 6%,
respectively. This implies that the prepayment starts from 0% at the issuance
date of the mortgage, growing by 0.2% per month during the first 30 months,
and being equal to 6% afterwards. This curve is accepted by the market practice
as the benchmark structural prepayment rate, see Figure 9.7. It is known as
the 100% PSA curve. The parameter k sets the desired translation level of
this benchmark curve. The PSA regularly publishes statistics on the level of k
according to the geographical region, in the US, of mortgage issuance.
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Figure 9.7: The 100% PSA curve.

Refinancing prepayment

The refinancing prepayment rate has to account for both the effect of interest
rates and individual characteristics such as burnout. Refinancing incentives
linked to interest rate level can be captured through the optimal prepayment
framework of Section 2. This framework implies a 1 to 0 rule for MBS principal
evolution, depending on the optimal short term interest rate level for prepaying,
ropt
t . As soon as

dt > 0,

if the mortgagors were optimal, the whole MBS principal would be prepaid.
In order to reflect the effect of individual characteristics on prepayment rate
causing dispersion around the optimal level dt = 0, we introduce the standard
Weibull cumulative distribution function

πR
t = π ·

[
1 − exp

{
−
(

dt

d

)α}]
. (9.15)

We do not claim that this parametric form is better than other found in the lit-
erature. Its main advantage comes from the easy determination of parameters
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Figure 9.8: Prepayment policy.

thanks to an analytic inversion of its quantile function. In fact, as suggested
by Figure 9.8, the determination of quantile ensures that this parametric spec-
ification can easily be interpreted.

Parameter d is a scale parameter. In this form, being far into the prepayment
zone means that dt/d � 0 so that πR

t ∼ π. Parameter π directly accounts
for the magnitude of the burnout effect since it represents the instantaneous
fraction of mortgagors who chose not to prepay even for very low values of rt.
More precisely, if rt was to stay very low during a time period [0, h] and if the
refinancing prepayment was the only prepayment component to be considered,
using expression (9.11), the proportion of unprepaid shares at date h would be
equal to

Fh = exp (−π̄h) .

This proportion is the burnout rate during the time horizon h. Parameter α
controls the speed at which prepayment is made, linking the PSA regime to
the burnout regime.
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Figure 9.9: The relation between MBS and prepayment policy: MBS without
prepayment (solid line), mortgage with prepayment (dashed line),
and MBS (dotted line).

9.3.3 Sensitivity Analysis

In order to analyze the main effects of our model, we choose the 100% PSA
curve for the structural prepayment rate; the burnout is set equal to 20%. This
means that, whatever the market conditions are, 20% of the mortgagors will
never repay their loan. The time horizon h for this burnout effect is fixed equal
to 2 years. Parameters d and α are calibrated in such a way that when dt = 0,
ten percent of mortgagors prepay their loan after horizon h, and half of the
mortgage is prepaid if half the distance to optimal prepayment rate is reached.

Market conditions are set as of December 2003 in the EUR zone. The short rate
equals to 2.3% and the long term rate is 5%. The volatility of the short rate σ
is taken equal to 0.8% and λ is such that the volatility of the 10 year forward
rate equals to 0.5%. The facial coupon of the pool of mortgage is c = 5%, its
remaining maturity is set to T = 15 years and no prepayment has been made
(F0 = 1).
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Figure 9.10: Embedded option price in MBS for a steeper forward-rate curve
(dotted line) and a less steep forward-rate curve (solid line).

With such parameters, the price of the MBS is displayed in Figure 9.9 as a
function of interest rates, together with the optimally prepaid mortgage (OPM)
and the mortgage without callability feature (NPM). When interest rates go
down, the behavior of the MBS is intermediate between the OPM and the
NPM. The value at rt = 0 is controlled by the burnout level. The transition
part is controlled by parameters d and α. When interest rates increase, the MBS
price is higher than the NPM’s due to the PSA effect. In fact, by prepaying
in the optimal region, mortgagors offer the holder of MBS a positive NPV.
This appears clearly when displaying the value of the option embedded in
MBS. Recall that in the case of the optimally prepaid mortgage, this value was
always positive (Figure 9.5). This is no longer the case for MBS as indicated in
Figure 9.10. As a consequence, the sensitivity of MBS to interest rates moves
is reduced. Duration is computed in Figure 9.11. It is always less than the
underlying pool duration. Its behavior resembles a smoothed version of the
optimally prepaid one.
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Figure 9.11: Duration of the MBS: MBS without prepayment (solid line), mort-
gage with prepayment (dashed line), and MBS (dotted line).

Let us now increase the implied volatility of the underlying derivatives market.
The embedded option value increases, translating the negative sensitivity of the
MBS price to market volatilities, see Figure 9.12. In hedging terms, MBS are
“vega negative”. A long position in MBS is “short volatility”. This is also well
indicated in the variation of duration. Figure 9.13 shows how higher volatility
increases the duration when the MBS is “in the money” (low interest rates)
and decreases for “out of the money” MBS. This is not surprising when one
thinks of the duration as the “delta” of the MBS with respect to interest rates.
The effect of volatility on the delta for a standard vanilla put option is known
to be opposite, depending on the moneyness of the option.
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Figure 9.12: The sensitivity of the MBS price to interest-rates volatility:
volatilities of the 1-year and 10-year bonds are 90 bps and 37
bps (solid line) and 135 bps and 55 bps (dotted line), respectively.
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Figure 9.13: The sensitivity of the MBS duration to interest-rates volatility:
volatilities of the 1-year and 10-year bonds are 90 bps and 37 bps
(solid line) and 135 bps and 55 bps (dotted line), respectively.
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10 Predicting Bankruptcy with
Support Vector Machines

Wolfgang Härdle, Rouslan Moro, and Dorothea Schäfer

The purpose of this work is to introduce one of the most promising among re-
cently developed statistical techniques – the support vector machine (SVM) –
to corporate bankruptcy analysis. An SVM is implemented for analysing such
predictors as financial ratios. A method of adapting it to default probability
estimation is proposed. A survey of practically applied methods is given. This
work shows that support vector machines are capable of extracting useful infor-
mation from financial data, although extensive data sets are required in order
to fully utilize their classification power.

The support vector machine is a classification method that is based on sta-
tistical learning theory. It has already been successfully applied to optical
character recognition, early medical diagnostics, and text classification. One
application where SVMs outperformed other methods is electric load prediction
(EUNITE, 2001), another one is optical character recognition (Vapnik, 1995).
SVMs produce better classification results than parametric methods and such
a popular and widely used nonparametric technique as neural networks, which
is deemed to be one of the most accurate. In contrast to the latter they have
very attractive properties. They give a single solution characterized by the
global minimum of the optimized functional and not multiple solutions associ-
ated with the local minima as in the case of neural networks. Moreover, SVMs
do not rely so heavily on heuristics, i.e. an arbitrary choice of the model and
have a more flexible structure.
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10.1 Bankruptcy Analysis Methodology

Although the early works in bankruptcy analysis were published already in the
19th century (Dev, 1974), statistical techniques were not introduced to it until
the publications of Beaver (1966) and Altman (1968). Demand from finan-
cial institutions for investment risk estimation stimulated subsequent research.
However, despite substantial interest, the accuracy of corporate default predic-
tions was much lower than in the private loan sector, largely due to a small
number of corporate bankruptcies.

Meanwhile, the situation in bankruptcy analysis has changed dramatically.
Larger data sets with the median number of failing companies exceeding 1000
have become available. 20 years ago the median was around 40 companies
and statistically significant inferences could not often be reached. The spread
of computer technologies and advances in statistical learning techniques have
allowed the identification of more complex data structures. Basic methods are
no longer adequate for analysing expanded data sets. A demand for advanced
methods of controlling and measuring default risks has rapidly increased in
anticipation of the New Basel Capital Accord adoption (BCBS, 2003). The
Accord emphasises the importance of risk management and encourages im-
provements in financial institutions’ risk assessment capabilities.

In order to estimate investment risks one needs to evaluate the default prob-
ability (PD) for a company. Each company is described by a set of variables
(predictors) x, such as financial ratios, and its class y that can be either y = −1
(‘successful’) or y = 1 (‘bankrupt’). Initially, an unknown classifier function
f : x → y is estimated on a training set of companies (xi, yi), i = 1, ..., n. The
training set represents the data for companies which are known to have sur-
vived or gone bankrupt. Finally, f is applied to computing default probabilities
(PD) that can be uniquely translated into a company rating.

The importance of financial ratios for company analysis has been known for
more than a century. Among the first researchers applying financial ratios for
bankruptcy prediction were Ramser (1931), Fitzpatrick (1932) and Winakor
and Smith (1935). However, it was not until the publications of Beaver (1966)
and Altman (1968) and the introduction of univariate and multivariate discrim-
inant analysis that the systematic application of statistics to bankruptcy anal-
ysis began. Altman’s linear Z-score model became the standard for a decade to
come and is still widely used today due to its simplicity. However, its assump-
tion of equal normal distributions for both failing and successful companies
with the same covariance matrix has been justly criticized. This approach was
further developed by Deakin (1972) and Altman et al. (1977).
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Later on, the center of research shifted towards the logit and probit models. The
original works of Martin (1977) and Ohlson (1980) were followed by (Wiginton,
1980), (Zavgren, 1983) and (Zmijewski, 1984). Among other statistical methods
applied to bankruptcy analysis there are the gambler’s ruin model (Wilcox,
1971), option pricing theory (Merton, 1974), recursive partitioning (Frydman
et al., 1985), neural networks (Tam and Kiang, 1992) and rough sets (Dimitras
et al., 1999) to name a few.

There are three main types of models used in bankruptcy analysis. The first
one is structural or parametric models, e.g. the option pricing model, logit and
probit regressions, discriminant analysis. They assume that the relationship
between the input and output parameters can be described a priori. Besides
their fixed structure these models are fully determined by a set of parameters.
The solution requires the estimation of these parameters on a training set.

Although structural models provide a very clear interpretation of modelled
processes, they have a rigid structure and are not flexible enough to capture
information from the data. The non-structural or nonparametric models (e.g.
neural networks or genetic algorithms) are more flexible in describing data.
They do not impose very strict limitations on the classifier function but usually
do not provide a clear interpretation either.

Between the structural and non-structural models lies the class of semipara-
metric models. These models, like the RiskCalc private company rating model
developed by Moody’s, are based on an underlying structural model but all or
some predictors enter this structural model after a nonparametric transforma-
tion. In recent years the area of research has shifted towards non-structural
and semi-parametric models since they are more flexible and better suited for
practical purposes than purely structural ones.

Statistical models for corporate default prediction are of practical importance.
For example, corporate bond ratings published regularly by rating agencies
such as Moody’s or S&P strictly correspond to company default probabilities
estimated to a great extent statistically. Moody’s RiskCalc model is basically a
probit regression estimation of the cumulative default probability over a number
of years using a linear combination of non-parametrically transformed predic-
tors (Falkenstein, 2000). These non-linear transformations f1, f2, ..., fd are
estimated on univariate models. As a result, the original probit model:

E[yi,t|xi,t] = Φ (β1xi1,t + β2xi2,t + ... + βdxid,t) , (10.1)
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is converted into:

E[yi,t|xi,t] = Φ{β1f1(xi1,t) + β2f2(xi2,t) + ... + βdfd(xid,t)}, (10.2)

where yi,t is the cumulative default probability within the prediction horizon for
company i at time t. Although modifications of traditional methods like probit
analysis extend their applicability, it is more desirable to base our methodology
on general ideas of statistical learning theory without making many restrictive
assumptions.

The ideal classification machine applying a classifying function f from the
available set of functions F is based on the so called expected risk minimization
principle. The expected risk

R (f) =
∫

1
2
|f(x) − y|dP (x, y), (10.3)

is estimated under the distribution P (x, y), which is assumed to be known. This
is, however, never true in practical applications and the distribution should also
be estimated from the training set (xi, yi), i = 1, 2, ..., n, leading to an ill-posed
problem (Tikhonov and Arsenin, 1977).

In most methods applied today in statistical packages this problem is solved
by implementing another principle, namely the principle of the empirical risk
minimization, i.e. risk minimization over the training set of companies, even
when the training set is not representative. The empirical risk defined as:

R̂ (f) =
1
n

n∑
i=1

1
2
|f(xi) − yi| , (10.4)

is nothing else but an average value of loss over the training set, while the
expected risk is the expected value of loss under the true probability measure.
The loss for i.i.d. observations is given by:

1
2
|f(x) − y| =

{
0, if classification is correct,
1, if classification is wrong.

The solutions to the problems of expected and empirical risk minimization:

fopt = arg min
f∈F

R (f) , (10.5)

f̂n = arg min
f∈F

R̂ (f) , (10.6)
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Function class

Risk

f fopt

R

R (f)

fn̂

R (f)ˆ

R̂

Figure 10.1: The minima fopt and f̂n of the expected (R) and empirical (R̂)
risk functions generally do not coincide.

generally do not coincide (Figure 10.1), although they converge to each other
as n → ∞ if F is not too large.

We cannot minimize expected risk directly since the distribution P (x, y) is
unknown. However, according to statistical learning theory (Vapnik, 1995), it
is possible to estimate the Vapnik-Chervonenkis (VC) bound that holds with
a certain probability 1 − η:

R (f) ≤ R̂ (f) + φ

(
h

n
,

ln(η)
n

)
. (10.7)

For a linear indicator function g(x) = sign(x�w + b):

φ

(
h

n
,

ln(η)
n

)
=

√
h
(
ln 2n

h

)− ln η
4

n
, (10.8)

where h is the VC dimension.

The VC dimension of the function set F in a d-dimensional space is h if some
function f ∈ F can shatter h objects

{
xi ∈ Rd, i = 1, ..., h

}
, in all 2h possible

configurations and no set
{
xj ∈ Rd, j = 1, ..., q

}
, exists where q > h that satis-

fies this property. For example, three points on a plane (d = 2) can be shattered
by linear indicator functions in 2h = 23 = 8 ways, whereas 4 points cannot be
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Figure 10.2: Eight possible ways of shattering 3 points on the plane with a
linear indicator function.

shattered in 2q = 24 = 16 ways. Thus, the VC dimension of the set of linear
indicator functions in a two-dimensional space is three, see Figure 10.2.

The expression for the VC bound (10.7) is a regularized functional where the VC
dimension h is a parameter controlling complexity of the classifier function. The
term φ

(
h
n , ln(η)

n

)
introduces a penalty for the excessive complexity of a classifier

function. There is a trade-off between the number of classification errors on
the training set and the complexity of the classifier function. If the complexity
were not controlled, it would be possible to find such a classifier function that
would make no classification errors on the training set notwithstanding how
low its generalization ability would be.

10.2 Importance of Risk Classification in Practice

In most countries only a small percentage of firms has been rated to date. The
lack of rated firms is mainly due to two factors. Firstly, an external rating
is an extremely costly procedure. Secondly, until the recent past most banks
decided on their loans to small and medium sized firms (SME) without asking
for the client’s rating figure or applying an own rating procedure to estimate
the client’s default risk. At best, banks based their decision on rough scoring
models. At worst, the credit decision was completely left to the loan officer.



10.2 Importance of Risk Classification in Practice 231

Table 10.1: Rating grades and risk premia. Source: (Damodaran, 2002) and
(Füser, 2002)

Rating Class (S&P) One year PD (%) Risk Premia (%)
AAA 0.01 0.75
AA 0.02 – 0.04 1.00
A+ 0.05 1.50
A 0.08 1.80
A- 0.11 2.00

BBB 0.15 – 0.40 2.25
BB 0.65 – 1.95 3.50
B+ 3.20 4.75
B 7.00 6.50
B- 13.00 8.00

CCC > 13 10.00
CC 11.50
C 12.70
D 14.00

Since learning to know its own risk is costly and, until recently, the lending
procedure of banks failed to set the right incentives, small and medium sized
firms shied away from rating. However, the regulations are about to change the
environment for borrowing and lending decisions. With the implementation of
the New Basel Capital Accord (Basel II) scheduled for the end of 2006 not
only firms that issue debt securities on the market are in need of rating but
also any ordinary firm that applies for a bank loan. If no external rating is
available, banks have to employ an internal rating system and deduce each
client’s specific risk class. Moreover, Basel II puts pressure on firms and banks
from two sides.

First, banks have to demand risk premia in accordance to the specific borrower’s
default probability. Table 10.1 presents an example of how individual risk
classes map into risk premiums (Damodaran, 2002) and (Füser, 2002). For
small US-firms a one-year default probability of 0.11% results in a spread of
2%. Of course, the mapping used by lenders will be different if the firm type or
the country in which the bank is located changes. However, in any case future
loan pricing has to follow the basic rule. The higher the firm’s default risk is
the more risk premium the bank has to charge.
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Table 10.2: Rating grades and capital requirements. Source: (Damodaran,
2002) and (Füser, 2002). The figures in the last column were es-
timated by the authors for a loan to an SME with a turnover of
5 million euros with a maturity of 2.5 years using the data from
column 2 and the recommendations of the Basel Committee on
Banking Supervision (BCBS, 2003).

Rating Class One-year Capital Capital
(S&P) PD (%) Requirements Requirements

(%) (Basel I) (%) (Basel II)
AAA 0.01 8.00 0.63
AA 0.02 – 0.04 8.00 0.93 – 1.40
A+ 0.05 8.00 1.60
A 0.08 8.00 2.12
A- 0.11 8.00 2.55

BBB 0.15 – 0.40 8.00 3.05 – 5.17
BB 0.65 – 1.95 8.00 6.50 – 9.97
B+ 3.20 8.00 11.90
B 7.00 8.00 16.70
B- 13.00 8.00 22.89

CCC > 13 8.00 > 22.89
CC 8.00
C 8.00
D 8.00

Second, Basel II requires banks to hold client-specific equity buffers. The mag-
nitudes of these buffers are determined by a risk weight function defined by
the Basel Committee and a solvability coefficient (8%). The function maps
default probabilities into risk weights. Table 10.2 illustrates the change in the
capital requirements per unit of a loan induced by switching from Basel I to
Basel II. Apart from basic risk determinants such as default probability (PD),
maturity and loss given default (LGD) the risk weights depend also on the
type of the loan (retail loan, loan to an SME, mortgages, etc.) and the annual
turnover. Table 10.2 refers to an SME loan and assumes that the borrower’s
annual turnover is 5 million EUR (BCBS, 2003). Since the lock-in of the bank’s
equity affects the provision costs of the loan, it is likely that these costs will be
handed over directly to an individual borrower.
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Basel II will affect any firm that is in need for external finance. As both
the risk premium and the credit costs are determined by the default risk, the
firms’ rating will have a deeper economic impact on banks as well as on firms
themselves than ever before. Thus in the wake of Basel II the choice of the right
rating method is of crucial importance. To avoid friction of a large magnitude
the employed method must meet certain conditions. On the one hand, the
rating procedure must keep the amount of misclassifications as low as possible.
On the other, it must be as simple as possible and, if employed by the borrower,
also provide some guidance to him on how to improve his own rating.

SVMs have the potential to satisfy both demands. First, the procedure is
easy to implement so that any firm could generate its own rating information.
Second, the method is suitable for estimating a unique default probability for
each firm. Third, the rating estimation done by an SVM is transparent and
does not depend on heuristics or expert judgements. This property implies
objectivity and a high degree of robustness against user changes. Moreover, an
appropriately trained SVM enables the firm to detect the specific impact of all
rating determinants on the overall classification. This property would enable
the firm to find out prior to negotiations what drawbacks it has and how to
overcome its problems. Overall, SVMs employed in the internal rating systems
of banks will improve the transparency and accuracy of the system. Both
improvements may help firms and banks to adapt to the Basel II framework
more easily.

10.3 Lagrangian Formulation of the SVM

Having introduced some elements of statistical learning and demonstrated the
potential of SVMs for company rating we can now give a Lagrangian formula-
tion of an SVM for the linear classification problem and generalize this approach
to a nonlinear case.

In the linear case the following inequalities hold for all n points of the training
set:

x�
i w + b ≥ 1 − ξi for yi = 1,

x�
i w + b ≤ −1 + ξi for yi = −1,

ξi ≥ 0,
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Figure 10.3: The separating hyperplane x�w + b = 0 and the margin in a
non-separable case.

which can be combined into two constraints:

yi(x�
i w + b) ≥ 1 − ξi (10.9)

ξi ≥ 0. (10.10)

The basic idea of the SVM classification is to find such a separating hyperplane
that corresponds to the largest possible margin between the points of differ-
ent classes, see Figure 10.3. Some penalty for misclassification must also be
introduced. The classification error ξi is related to the distance from a mis-
classified point xi to the canonical hyperplane bounding its class. If ξi > 0, an
error in separating the two sets occurs. The objective function corresponding
to penalized margin maximization is formulated as:

1
2
‖w‖2 + C

(
n∑

i=1

ξi

)υ

, (10.11)



10.3 Lagrangian Formulation of the SVM 235

where the parameter C characterizes the generalization ability of the machine
and υ ≥ 1 is a positive integer controlling the sensitivity of the machine to out-
liers. The conditional minimization of the objective function with constraint
(10.9) and (10.10) provides the highest possible margin in the case when classi-
fication errors are inevitable due to the linearity of the separating hyperplane.
Under such a formulation the problem is convex. One can show that margin
maximization reduces the VC dimension.

The Lagrange functional for the primal problem for υ = 1 is:

LP =
1
2
‖w‖2 + C

n∑
i=1

ξi −
n∑

i=1

αi{yi

(
x�

i w + b
)− 1 + ξi} −

n∑
i=1

µiξi, (10.12)

where αi ≥ 0 and µi ≥ 0 are Lagrange multipliers. The primal problem is
formulated as:

min
wk,b,ξi

max
αi

LP .

After substituting the Karush-Kuhn-Tucker conditions (Gale et al., 1951) into
the primal Lagrangian, we derive the dual Lagrangian as:

LD =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
�
i xj , (10.13)

and the dual problem is posed as:

max
αi

LD,

subject to:

0 ≤ αi ≤ C,
n∑

i=1

αiyi = 0.

Those points i for which the equation yi(x�
i w + b) ≤ 1 holds are called support

vectors. After training the support vector machine and deriving Lagrange
multipliers (they are equal to 0 for non-support vectors) one can classify a
company described by the vector of parameters x using the classification rule:

g(x) = sign
(
x�w + b

)
, (10.14)
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where w =
∑n

i=1 αiyixi and b = 1
2 (x+1 + x−1) w. x+1 and x−1 are two support

vectors belonging to different classes for which y(x�w + b) = 1. The value of
the classification function (the score of a company) can be computed as

f(x) = x�w + b. (10.15)

Each value of f(x) uniquely corresponds to a default probability (PD).

The SVMs can also be easily generalized to the nonlinear case. It is worth
noting that all the training vectors appear in the dual Lagrangian formulation
only as scalar products. This means that we can apply kernels to transform all
the data into a high dimensional Hilbert feature space and use linear algorithms
there:

Ψ : Rd �→ H. (10.16)

If a kernel function K exists such that K(xi, xj) = Ψ(xi)�Ψ(xj), then it can
be used without knowing the transformation Ψ explicitly. A necessary and
sufficient condition for a symmetric function K(xi, xj) to be a kernel is given
by Mercer’s (1909) theorem. It requires positive definiteness, i.e. for any data
set x1, ..., xn and any real numbers λ1, ..., λn the function K must satisfy

n∑
i=1

n∑
j=1

λiλjK(xi, xj) ≥ 0. (10.17)

Some examples of kernel functions are:

• K(xi, xj) = e−‖xi−xj‖/2σ2
– the isotropic Gaussian kernel;

• K(xi, xj) = e−(xi−xj)
�r−2Σ−1(xi−xj)/2 – the stationary Gaussian kernel

with an anisotropic radial basis; we will apply this kernel in our study
taking Σ equal to the variance matrix of the training set; r is a constant;

• K(xi, xj) = (x�
i xj + 1)P – the polynomial kernel;

• K(xi, xj) = tanh(kx�
i xj − δ) – the hyperbolic tangent kernel.

10.4 Description of Data

For our study we selected the largest bankrupt companies with the capitaliza-
tion of no less than $1 billion that filed for protection against creditors under
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Chapter 11 of the US Bankruptcy Code in 2001–2002 after the stock marked
crash of 2000. We excluded a few companies due to incomplete data, leaving
us with 42 companies. They were matched with 42 surviving companies with
the closest capitalizations and the same US industry classification codes avail-
able through the Division of Corporate Finance of the Securities and Exchange
Commission (SEC, 2004).

From the selected 84 companies 28 belonged to various manufacturing indus-
tries, 20 to telecom and IT industries, 8 to energy industries, 4 to retail indus-
tries, 6 to air transportation industries, 6 to miscellaneous service industries,
6 to food production and processing industries and 6 to construction and con-
struction material industries. For each company the following information was
collected from the annual reports for 1998–1999, i.e. 3 years prior to defaults of
bankrupt companies (SEC, 2004): (i) S – sales; (ii) COGS – cost of goods sold;
(iii) EBIT – earnings before interest and taxes, in most cases equal to the oper-
ating income; (iv) Int – interest payments; (v) NI – net income (loss); (vi) Cash
– cash and cash equivalents; (vii) Inv – inventories; (viii) CA – current assets;
(ix) TA – total assets; (x) CL – current liabilities; (xi) STD – current maturities
of the long-term debt; (xii) TD – total debt; (xiii) TL – total liabilities; (xiv)
Bankr – bankruptcy (1 if a company went bankrupt, −1 otherwise).

The information about the industry was summarized in the following dummy
variables: (i) Indprod – manufacturing industries; (ii) Indtelc – telecom and
IT industries; (iii) Indenerg – energy industries; (iv) Indret – retail industries;
(v) Indair – air transportation industries; (vi) Indserv – miscellaneous service
industries; (vii) Indfood – food production and processing industries; (viii)
Indconst – construction and construction material industries.

Based on these financial indicators the following four groups of financial ratios
were constructed and used in our study: (i) profit measures: EBIT/TA, NI/TA,
EBIT/S; (ii) leverage ratios: EBIT/Int, TD/TA, TL/TA; (iii) liquidity ratios:
QA/CL, Cash/TA, WC/TA, CA/CL and STD/TD, where QA is quick assets
and WC is working capital; (iv) activity or turnover ratios: S/TA, Inv/COGS.

10.5 Computational Results

The most significant predictors suggested by the discriminant analysis belong
to profit and leverage ratios. To demonstrate the ability of an SVM to extract
information from the data, we will chose two ratios from these groups: NI/TA
from the profitability ratios and TL/TA from the leverage ratios. The SVMs,
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Table 10.3: Descriptive statistics for the companies. All data except SIZE =
log (TA) and ratios are given in billions of dollars.

Variable Min Max Mean Std. Dev.
TA 0.367 91.072 8.122 13.602
CA 0.051 10.324 1.657 1.887
CL 0.000 17.209 1.599 2.562
TL 0.115 36.437 4.880 6.537

CASH 0.000 1.714 0.192 0.333
INVENT 0.000 7.101 0.533 1.114

LTD 0.000 13.128 1.826 2.516
STD 0.000 5.015 0.198 0.641

SALES 0.036 37.120 5.016 7.141
COGS 0.028 26.381 3.486 4.771
EBIT -2.214 29.128 0.822 3.346
INT -0.137 0.966 0.144 0.185
NI -2.022 4.013 0.161 0.628

EBIT/TA -0.493 1.157 0.072 0.002
NI/TA -0.599 0.186 -0.003 0.110
EBIT/S -2.464 36.186 0.435 3.978

EBIT/INT -16.897 486.945 15.094 68.968
TD/TA 0.000 1.123 0.338 0.236
TL/TA 0.270 1.463 0.706 0.214
SIZE 12.813 18.327 15.070 1.257

QA/CL -4.003 259.814 4.209 28.433
CASH/TA 0.000 0.203 0.034 0.041
WC/TA -0.258 0.540 0.093 0.132
CA/CL 0.041 2001.963 25.729 219.568

STD/TD 0.000 0.874 0.082 0.129
S/TA 0.002 5.559 1.008 0.914

INV/COGS 0.000 252.687 3.253 27.555

besides their Lagrangian formulation, can differ in two aspects: (i) their capac-
ity that is controlled by the coefficient C in (10.12) and (ii) the complexity of
classifier functions controlled in our case by the anisotropic radial basis in the
Gaussian kernel transformation.
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Triangles and squares in Figures 10.4–10.7 represent successful and failing com-
panies from the training set, respectively. The intensity of the gray background
corresponds to different score values f . The darker the area, the higher the
score and the greater is the probability of default. Most successful companies
lying in the bright area have positive profitability and a reasonable leverage
TL/TA of around 0.4, which makes economic sense.

Figure 10.4 presents the classification results for an SVM using locally near
linear classifier functions (the anisotropic radial basis is 100Σ1/2) with the ca-
pacity fixed at C = 1. The discriminating rule in this case can be approximated
by a linear combination of predictors and is similar to that suggested by dis-
criminant analysis, although the coefficients of the predictors may be different.

If the complexity of classifying functions increases (the radial basis goes down
to 2Σ1/2) as illustrated in Figure 10.5, we get a more detailed picture. Now the
areas of successful and failing companies become localized. If the radial basis
is decreased further down to 0.5Σ1/2 (Figure 10.6), the SVM will try to track
each observation. The complexity in this case is too high for the given data
set.

Figure 10.7 demonstrates the effects of high capacities (C = 300) on the classi-
fication results. As capacity is growing, the SVM localizes only one cluster of
successful companies. The area outside this cluster is associated with approxi-
mately equally high score values.

Thus, besides estimating the scores for companies the SVM also managed to
learn that there always exists a cluster of successful companies, while the cluster
for bankrupt companies vanishes when the capacity is high, i.e. a company must
possess certain characteristics in order to be successful and failing companies
can be located elsewhere. This result was obtained without using any additional
knowledge besides that contained in the training set.

The calibration of the model or estimation of the mapping f → PD can be
illustrated by the following example (the SVM with the radial basis 2Σ1/2

and capacity C = 1 will be applied). We can set three rating grades: safe,
neutral and risky which correspond to the values of the score f < −0.0115,
−0.0115 < f < 0.0115 and f > 0.0115, respectively, and calculate the to-
tal number of companies and the number of failing companies in each of the
three groups. If the training set were representative of the whole population
of companies, the ratio of failing to all companies in a group would give the
estimated probability of default. Figure 10.8 shows the power (Lorenz) curve
(Lorenz, 1905) – the cumulative default rate as a function of the percentile
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Figure 10.4: Ratings of companies in two dimensions. The case of a low com-
plexity of classifier functions, the radial basis is 100Σ1/2, the ca-
pacity is fixed at C = 1.

STFsvm01.xpl

of companies sorted according to their score – for the training set of compa-
nies. For the abovementioned three rating grades we derive PDsafe = 0.24,
PDneutral = 0.50 and PDrisky = 0.76.

If a sufficient number of observations is available, the model can also be cali-
brated for finer rating grades such as AAA or BB by adjusting the score values
separating the groups of companies so that the estimated default probabilities
within each group equal to those of the corresponding rating grades. Note,
that we are calibrating the model on the grid determined by grad(f) = 0 or
grad ˆ(PD) = 0 and not on the orthogonal grid as in the Moody’s RiskCalc
model. In other words, we do not make a restrictive assumption of an indepen-
dent influence of predictors as in the latter model. This can be important since,
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Figure 10.5: Ratings of companies in two dimensions; the case of an average
complexity of classifier functions, the radial basis is 2Σ1/2, the
capacity is fixed at C = 1.

STFsvm02.xpl

for example, the same decrease in profitability will have different consequences
for high and low leveraged firms.

For multidimensional classification the results cannot be easily visualized. In
this case we will use the cross-validation technique to compute the percentage
of correct classifications and compare it with that for the discriminant analysis
(DA). Note that both most widely used methods – the discriminant analysis
and logit regression – choose only one significant at the 5% level predictor
(NI/TA) when forward selection is used. Cross-validation has the following
stages. One company is taken out of the sample and the SVM is trained on
the remaining companies. Then the class of the out-of-the-sample company is
evaluated by the SVM. This procedure is repeated for all the companies and
the percentage of correct classifications is calculated.
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Figure 10.6: Ratings of companies in two dimensions; the case of an excessively
high complexity of classifier functions, the radial basis is 0.5Σ1/2,
the capacity is fixed at C = 1.

STFsvm03.xpl

The best percentage of correctly cross-validated companies (all available ratios
were used as predictors) is higher for the SVM than for the discriminant analysis
(62% vs. 60%). However, the difference is not significant at the 5% level. This
indicates that the linear function might be considered as an optimal classifier
for the number of observations in the data set we have. As for the direction
vector of the separating hyperplane, it can be estimated differently by the SVM
and DA without affecting much the accuracy since the correlation of underlying
predictors is high.

Cluster center locations, as they were estimated using cluster analysis, are
presented in Table 10.4. The results of the cluster analysis indicate that two
clusters are likely to correspond to successful and failing companies. Note the
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Figure 10.7: Ratings of companies in two dimensions; the case of a high ca-
pacity (C = 300). The radial basis is fixed at 2Σ1/2.
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substantial differences in the interest coverage ratios, NI/TA, EBIT/TA and
TL/TA between the clusters.

10.6 Conclusions

As we have shown, SVMs are capable of extracting information from real life
economic data. Moreover, they give an opportunity to obtain the results not
very obvious at first glance. They are easily adjusted with only few parame-
ters. This makes them particularly well suited as an underlying technique for
company rating and investment risk assessment methods applied by financial
institutions.
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Figure 10.8: Power (Lorenz) curve (Lorenz, 1905) – the cumulative default rate
as a function of the percentile of companies sorted according to
their score – for the training set of companies. An SVM is applied
with the radial basis 2Σ1/2 and capacity C = 1.
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SVMs are also based on very few restrictive assumptions and can reveal effects
overlooked by many other methods. They have been able to produce accurate
classification results in other areas and can become an option of choice for
company rating. However, in order to create a practically valuable methodology
one needs to combine an SVM with an extensive data set of companies and
turn to alternative formulations of SVMs better suited for processing large
data sets. Overall, we have a valuable tool for company rating that can answer
the requirements of the new capital regulations.
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Table 10.4: Cluster centre locations. There are 19 members in class {-1} –
successful companies, and 65 members in class {1} – failing com-
panies.

Cluster {-1} {1}
EBIT/TA 0.263 0.015

NI/TA 0.078 -0.027
EBIT/S 0.313 -0.040

EBIT/INT 13.223 1.012
TD/TA 0.200 0.379
TL/TA 0.549 0.752
SIZE 15.104 15.059

QA/CL 1.108 1.361
CASH/TA 0.047 0.030
WC/TA 0.126 0.083
CA/CL 1.879 1.813

STD/TD 0.144 0.061
S/TA 1.178 0.959

INV/COGS 0.173 0.155
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11 Econometric and Fuzzy
Modelling of Indonesian Money
Demand

Noer Azam Achsani, Oliver Holtemöller, and Hizir Sofyan

Money demand is an important element of monetary policy analysis. Inflation
is supposed to be a monetary phenomenon in the long run, and the empirical

relation between money and prices is usually discussed in a money demand
framework. The main purpose of money demand studies is to analyze if a
stable money demand function exists in a specific country, especially when a
major structural change has taken place. Examples for such structural changes
are the monetary union of West Germany and the former German Democratic
Republic in 1990 and the introduction of the Euro in 1999. There is broad
evidence that money demand has been quite stable both in Germany and in
the Euro area, see for example Wolters, Teräsvirta and Lütkepohl (1998) and
Holtemöller (2004a).

In this chapter, we explore the M2 money demand function for Indonesia in
the period 1990:1–2002:3. This period is dominated by the Asian crises, which
started in 1997. In the aftermath of the crisis, a number of immense financial
and economic problems have emerged in Indonesia. The price level increased
by about 16 percent in 1997 compared to the previous year. In the same period,
the call money rate increased temporarily from 12.85 percent to 57.10 percent
and the money stock increased by about 54 percent. Additionally, Indonesia
has faced a sharp decrease in real economic activity: GNP decreased by about
11 percent. Given these extraordinary economic developments, it may not be
expected that a stable money demand function existed during that period.

The main contribution of this chapter is twofold. Firstly, we provide a careful
analysis of Indonesian money demand, an emerging market economy for which
only very few money demand studies exist. Secondly, we do not only apply
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the standard econometric methods but also the fuzzy Takagi-Sugeno model
which allows for locally different functional relationships, for example during
the Asian crisis. This is interesting and important because the assessment of
monetary policy stance as well as monetary policy decisions depend on the re-
lationship between money and other macroeconomic variables. Hence, a stable
money demand function should be supported by various empirical methodolo-
gies.

In Section 11.1 we discuss money demand specification generally and in Sec-
tion 11.2 we estimate a money demand function and the corresponding error-
correction model for Indonesia using standard regression techniques. In Sec-
tion 11.3, we exploit the fuzzy approach and its application to money demand.
Section 11.4 presents conclusions and a comparison of the two approaches.

11.1 Specification of Money Demand Functions

Major central banks stress the importance of money growth analysis and of a
stable money demand function for monetary policy purposes. The Deutsche
Bundesbank, for example, has followed an explicit monetary targeting strat-
egy from 1975 to 1998, and the analysis of monetary aggregates is one of the
two pillars of the European Central Bank’s (ECB) monetary policy strategy.
Details about these central banks’ monetary policy strategies, a comparison
and further references can be found in Holtemöller (2002). The research on
the existence and stability of a money demand function is motivated inter alia
by the following two observations: (i) Money growth is highly correlated with
inflation, see McCandless and Weber (1995) for international empirical evi-
dence. Therefore, monetary policy makers use money growth as one indicator
for future risks to price stability. The information content of monetary aggre-
gates for future inflation assessment is based on a stable relationship between
money, prices and other observable macroeconomic variables. This relationship
is usually analyzed in a money demand framework. (ii) The monetary policy
transmission process is still a “black box”, see Mishkin (1995) and Bernanke
and Gertler (1995). If we are able to specify a stable money demand function,
an important element of the monetary transmission mechanism is revealed,
which may help to learn more about monetary policy transmission.

There is a huge amount of literature about money demand. The majority of the
studies is concerned with industrial countries. Examples are Hafer and Jansen
(1991), Miller (1991), McNown and Wallace (1992) and Mehra (1993) for the
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USA; Lütkepohl and Wolters (1999), Coenen and Vega (1999), Brand and Cas-
sola (2000) and Holtemöller (2004b) for the Euro area; Arize and Shwiff (1993),
Miyao (1996) and Bahmani-Oskooee (2001) for Japan; Drake and Chrystal
(1994) for the UK; Haug and Lucas (1996) for Canada; Lim (1993) for Aus-
tralia and Orden and Fisher (1993) for New Zealand.

There is also a growing number of studies analyzing money demand in develop-
ing and emerging countries, primarily triggered by the concern among central
bankers and researchers around the world about the impact of moving toward
flexible exchange rate regimes, globalization of capital markets, ongoing finan-
cial liberalization, innovation in domestic markets, and the country-specific
events on the demand for money (Sriram, 1999). Examples are Hafer and Ku-
tan (1994) and Tseng (1994) for China; Moosa (1992) for India; Arize (1994)
for Singapore and Deckle and Pradhan (1997) for ASEAN countries.

For Indonesia, a couple of studies have applied the cointegration and error-
correction framework to money demand. Price and Insukindro (1994) use quar-
terly data from the period 1969:1 to 1987:4. Their results are based on different
methods of testing for cointegration. The two-step Engle and Granger (1987)
procedure delivers weak evidence for one cointegration relationship, while the
Johansen likelihood ratio statistic supports up to two cointegrating vectors. In
contrast, Deckle and Pradhan (1997), who use annual data, do not find any
cointegrating relationship that can be interpreted as a money demand function.

The starting point of empirical money demand analysis is the choice of variables
to be included in the money demand function. It is common practice to assume
that the desired level of nominal money demand depends on the price level,
a transaction (or scaling) variable, and a vector of opportunity costs (e.g.,
Goldfeld and Sichel, 1990; Ericsson, 1999):

(M∗/P ) = f(Y, R1, R2, ...), (11.1)

where M∗ is nominal money demand, P is the price level, Y is real income (the
transaction variable), and Ri are the elements of the vector of opportunity costs
which possibly also includes the inflation rate. A money demand function of
this type is not only the result of traditional money demand theories but also of
modern micro-founded dynamic stochastic general equilibrium models (Walsh,
1998). An empirical standard specification of the money demand function is
the partial adjustment model (PAM). Goldfeld and Sichel (1990) show that a
desired level of real money holdings MR∗

t = M∗
t /Pt:

ln MR∗
t = φ0 + φ1 ln Yt + φ2Rt + φ3πt, (11.2)
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where Rt represents one or more interest rates and πt = ln(Pt/Pt−1) is the
inflation rate, and an adjustment cost function:

C = α1 (ln M∗
t − ln Mt)

2 + α2 {(ln Mt − ln Mt−1) + δ (ln Pt − ln Pt−1)}2

(11.3)
yield the following reduced form:

ln MRt = µφ0 + µφ1 ln Yt + µφ2Rt + (1 − µ) ln MRt−1 + γπt, (11.4)

where:

µ = α1/(α1 + α2) and γ = µφ3 + (1 − µ)(δ − 1). (11.5)

The parameter δ controls whether nominal money (δ = 0) or real money (δ =
−1) adjusts. Intermediate cases are also possible. Notice that the coefficient
to the inflation rate depends on the value of φ3 and on the parameters of
the adjustment cost function. The imposition of price-homogeneity, that is
the price level coefficient in a nominal money demand function is restricted to
one, is rationalized by economic theory and Goldfeld and Sichel (1990) propose
that empirical rejection of the unity of the price level coefficient should be
interpreted as an indicator for misspecification. The reduced form can also be
augmented by lagged independent and further lagged dependent variables in
order to allow for a more general adjustment process.

Rearranging (11.4) yields:

∆ ln MRt = µφ0 + µφ1∆ ln Yt + µφ1 ln Yt−1 + µφ2∆Rt

+µφ2Rt−1 − µ ln MRt−1 + γ∆πt + γπt−1

= µφ0 − µ

(
ln MRt−1 − φ1 ln Yt−1 − φ2Rt−1 − γ

µ
πt−1

)
+µφ1∆ ln Yt + µφ2∆Rt + γ∆πt. (11.6)

Accordingly, the PAM can also be represented by an error-correction model
like (11.6).

11.2 The Econometric Approach to Money Demand

11.2.1 Econometric Estimation of Money Demand Functions

Since the seminal works of Nelson and Plosser (1982), who have shown that
relevant macroeconomic variables exhibit stochastic trends and are only sta-
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tionary after differencing, and Engle and Granger (1987), who introduced the
concept of cointegration, the (vector) error correction model, (V)ECM, is the
dominant econometric framework for money demand analysis. If a certain set
of conditions about the number of cointegration relations and exogeneity prop-
erties is met, the following single equation error correction model (SE-ECM)
can be used to estimate money demand functions:

∆ ln MRt = ct + α (ln MRt−1 − β2 ln Yt−1 − β3Rt−1 − β4πt−1)︸ ︷︷ ︸
error correction term

+
k∑

i=1

γ1i∆ ln MRt−i +
k∑

i=0

γ2i∆ ln Yt−i (11.7)

+
k∑

i=0

γ3i∆Rt−i +
k∑

i=0

γ4i∆πt−i.

It can immediately be seen that (11.6) is a special case of the error correction
model (11.7). In other words, the PAM corresponds to a SE-ECM with certain
parameter restrictions. The SE-ECM can be interpreted as a partial adjustment
model with β2 as long-run income elasticity of money demand, β3 as long-run
semi-interest rate elasticity of money demand, and less restrictive short-run
dynamics. The coefficient β4, however, cannot be interpreted directly.

In practice, the number of cointegration relations and the exogeneity of certain
variables cannot be considered as known. Therefore, the VECM is often ap-
plied. In this framework, all variables are assumed to be endogenous a priori,
and the imposition of a certain cointegration rank can be justified by statisti-
cal tests. The standard VECM is obtained from a vector autoregressive (VAR)
model:

xt = µt +
k∑

i=1

Aixt−i + ut, (11.8)

where xt is a (n × 1)-dimensional vector of endogenous variables, µt contains
deterministic terms like constant and time trend, Ai are (n × n)-dimensional
coefficient matrices and ut ∼ N(0, Σu) is a serially uncorrelated error term.
Subtracting xt−1 and rearranging terms yields the VECM:

∆xt−1 = µt + Πxt−1 +
k−1∑
i=1

Γi∆xt−i + ut, (11.9)

where Π and Γi are functions of the Ai. The matrix Π can be decomposed
into two (n × r)-dimensional matrices α and β: Π = αβ� where α is called an
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adjustment matrix, β comprises the cointegration vectors, and r is the number
of linearly independent cointegration vectors (cointegration rank). Following
Engle and Granger (1987), a variable is integrated of order d, or I(d), if it has to
be differenced d-times to become stationary. A vector xt is integrated of order
d if the maximum order of integration of the variables in xt is d. A vector xt

is cointegrated, or CI(d, b), if there exists a linear combination β�xt that is
integrated of a lower order (d − b) than xt.

The cointegration framework is only appropriate if the relevant variables are
actually integrated. This can be tested using unit root tests. When no unit
roots are found, traditional econometric methods can by applied.

11.2.2 Modelling Indonesian Money Demand with
Econometric Techniques

We use quarterly data from 1990:1 until 2002:3 for our empirical analysis.
The data is not seasonally adjusted and taken from Datastream (gross na-
tional product at 1993 prices Y and long-term interest rate R) and from Bank
Indonesia (money stock M2 M and consumer price index P ). In the follow-
ing, logarithms of the respective variables are indicated by small letters, and
mr = ln M − ln P denotes logarithmic real balances. The data is depicted in
Figure 11.1.

In the first step, we analyze the stochastic properties of the variables. Table
11.1 presents the results of unit root tests for logarithmic real balances mr,
logarithmic real GNP y, logarithmic price level p, and logarithmic long-term
interest rate r. Note that the log interest rate is used here while in the previous
section the level of the interest rate has been used. Whether interest rates
should be included in logarithms or in levels is mainly an empirical question.

Because the time series graphs show that there seem to be structural breaks in
real money, GNP and price level, we allow for the possibility of a mean shift
and a change in the slope of a linear trend in the augmented Dickey-Fuller test
regression. This corresponds to model (c) in Perron (1989), where the critical
values for this type of test are tabulated. In the unit root test for the interest
rate, only a constant is considered. According to the test results, real money,
real GNP and price level are trend-stationary, that is they do not exhibit a
unit root, and the interest rate is also stationary. These results are quite stable
with respect to the lag length specification. The result of trend-stationarity
is also supported by visual inspection of a fitted trend and the corresponding
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Figure 11.1: Time series plots of logarithms of real balance, GNP, interest rate,
and CPI.
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trend deviations, see Figure 11.2. In the case of real money, the change in the
slope of the linear trend is not significant.

Now, let us denote centered seasonal dummies sit, a step dummy switching
from zero to one in the respective quarter ds, and an impulse dummy having
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Table 11.1: Unit Root Tests

Variable Deterministic terms Lags Test stat. 1/5/10% CV
mr c, t, s, P89c (98:3) 2 −4.55∗∗ –4.75 / –4.44 / –4.18
y c, t, s, P89c (98:1) 0 −9.40∗∗∗ –4.75 / –4.44 / –4.18
p c, t, s, P89c (98:1) 2 −9.46∗∗∗ –4.75 / –4.44 / –4.18
r c, s 2 −4.72∗∗∗ –3.57 / –2.92 / –2.60

Note: Unit root test results for the variables indicated in the first column. The
second column describes deterministic terms included in the test regression:
constant c, seasonal dummies s, linear trend t, and shift and impulse dummies
P89c according to the model (c) in Perron (1989) allowing for a change in the
mean and slope of a linear trend. Break points are given in parentheses. Lags
denotes the number of lags included in the test regression. Column CV contains
critical values. Three (two) asterisks denote significance at the 1% (5%) level.

value one only in the respective quarter di. Indonesian money demand is then
estimated by OLS using the reduced form equation (11.4) (t- and p-values are
in round and square parantheses, respectively):

mrt = 0.531
(6.79)

mrt−1 + 0.470
(4.87)

yt − 0.127
(−6.15)

rt

− 0.438
(−0.84)

− 0.029
(−2.11)

s1t − 0.034
(−2.57)

s2t − 0.036
(−2.77)

s3t

+ 0.174
(3.54)

di9802t + 0.217
(5.98)

di9801t + 0.112
(5.02)

ds9803t + ut

T = 50 (1990 : 2 − 2002 : 3)
R2 = 0.987

RESET (1) = 0.006 [0.941]
LM(4) = 0.479 [0.751]

JB = 0.196 [0.906]
ARCH(4) = 0.970 [0.434]

Here JB refers to the Jarque-Bera test for nonnormality, RESET is the usual
test for general nonlinearity and misspecification, LM(4) denotes a Lagrange-
Multiplier test for autocorrelation up to order 4, ARCH(4) is a Lagrange-
Multiplier test for autoregressive conditional heteroskedasticity up to order
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Figure 11.2: Fitted trends for real money and real GNP.
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4. Given these diagnostic statistics, the regression seems to be well specified.
There is a mean shift in 1998:3 and the impulse dummies capture the fact,
that the structural change in GNP occurs two months before the change in real
money. The inflation rate is not significant and is therefore not included in the
equation.
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The implied income elasticity of money demand is 0.47/(1–0.53) = 1 and the
interest rate elasticity is –0.13/(1–0.53) = –0.28. These are quite reasonable
magnitudes. Equation (11.10) can be transformed into the following error
correction representation:

∆mrt = −0.47 · (mrt−1 − yt−1 + 0.28rt−1)

+ 0.47∆yt − 0.13∆rt + deterministic terms + ut. (11.10)

Stability tests for the real money demand equation (11.10) are depicted in
Figure 11.3. The CUSUM of squares test indicates some instability at the
time of the Asian crises, and the coefficients of lagged real money and GNP
seem to change slightly after the crisis. A possibility to allow for a change
in these coefficients from 1998 on is to introduce two additional right-hand-
side variables: lagged real money multiplied by the step dummy ds9803 and
GNP multiplied by ds9803. Initially, we have also included a corresponding
term for the interest rate. The coefficient is negative (-0.04) but not significant
(p-value: 0.29), such that we excluded the term from the regression equation.
The respective coefficients for the period 1998:3-2002:3 can be obtained by
summing the coefficients of lagged real money and lagged real money times step
dummy and of GNP and GNP times step dummy, respectively. This reveals
that the income elasticity stays approximately constant (0.28/(1–0.70)=0.93)
until 1998:02 and ((0.28+0.29)/(1-0.70+0.32)=0.92) from 1998:3 to 2002:3 and
that the interest rate elasticity declines in the second half of the sample from
–0.13/(1–0.70)=–0.43 to –0.13/(1-0.79+0.32)=–0.21:

mrt = 0.697
(7.09)

mrt−1 + 0.281
(2.39)

yt − 0.133
(−6.81)

rt

− 0.322
(−2.54)

mrt−1 · ds9803t + 0.288
(2.63)

yt · ds9803t

+ 0.133
(0.25)

− 0.032
(−2.49)

s1t − 0.041
(−3.18)

s2t − 0.034
(−2.76)

s3t

+ 0.110
(2.04)

di9802t + 0.194
(5.50)

di9801t + ut.
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Figure 11.3: Stability test for the real money demand equation (11.10).
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T = 50 (1990 : 2 − 2002 : 3)
R2 = 0.989

RESET (1) = 4.108 [0.050]
LM(4) = 0.619 [0.652]

JB = 0.428 [0.807]
ARCH(4) = 0.408 [0.802]
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Accordingly, the absolute adjustment coefficient µ in the error correction rep-
resentation increases from 0.30 to 0.62.

It can be concluded that Indonesian money demand has been surprisingly sta-
ble throughout and after the Asian crisis given that the Cusum of squares
test indicates only minor stability problems. A shift in the constant term and
two impulse dummies that correct for the different break points in real money
and real output are sufficient to yield a relatively stable money demand func-
tion with an income elasticity of one and an interest rate elasticity of –0.28.
However, a more flexible specification shows that the adjustment coefficient µ
increases and that the interest rate elasticity decreases after the Asian crisis. In
the next section, we analyze if these results are supported by a fuzzy clustering
technique.

11.3 The Fuzzy Approach to Money Demand

11.3.1 Fuzzy Clustering

Ruspini (1969) introduced fuzzy partition to describe the cluster structure of
a data set and suggested an algorithm to compute the optimum fuzzy parti-
tion. Dunn (1973) generalized the minimum-variance clustering procedure to a
Fuzzy ISODATA clustering technique. Bezdek (1981) used Dunn’s (1973) ap-
proach to obtain an infinite family of algorithms known as the Fuzzy C-Means
(FCM) algorithm. He generalized the fuzzy objective function by introducing
the weighting exponent m, 1 ≤ m < ∞:

Jm(U, V ) =
n∑

k=1

c∑
i=1

(uik)md2(xk, vi), (11.11)

where X = {x1, x2, . . . , xn} ⊂ Rp is a subset of the real p-dimensional vector
space Rp consisting of n observations, U is a random fuzzy partition matrix of
X into c parts, vi’s are the cluster centers in Rp, and d(xk, vi) = ‖xk − vi‖ =√

(xk − vi)�(xk − vi) is an inner product induced norm on Rp. Finally, uik

refers to the degree of membership of point xk to the ith cluster. This degree
of membership, which can be seen as a probability of xk belonging to cluster
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i, satisfies the following constraints:

0 ≤ uik ≤ 1, for 1 ≤ i ≤ c, 1 ≤ k ≤ n, (11.12)

0 <

n∑
k=1

uik < n, for 1 ≤ i ≤ c, (11.13)

c∑
i=1

uik = 1, for 1 ≤ k ≤ n. (11.14)

The FCM uses an iterative optimization of the objective function, based on the
weighted similarity measure between xk and the cluster center vi. More details
on the FCM algorithm can be found in Mucha and Sofyan (2000).

In practical applications, a validation method to measure the quality of a clus-
tering result is needed. Its quality depends on many factors, such as the method
of initialization, the choice of the number of clusters c, and the clustering
method. The initialization requires a good estimate of the clusters and the
cluster validity problem can be reduced to the choice of an optimal number of
clusters c. Several cluster validity measures have been developed in the past
by Bezdek and Pal (1992).

11.3.2 The Takagi-Sugeno Approach

Takagi and Sugeno (1985) proposed a fuzzy clustering approach using the mem-
bership function µA(x) : X → [0, 1], which defines a degree of membership of
x ∈ X in a fuzzy set A. In this context, all the fuzzy sets are associated with
piecewise linear membership functions.

Based on the fuzzy-set concept, the affine Takagi-Sugeno (TS) fuzzy model
consists of a set of rules Ri, i = 1, . . . , r, which have the following structure:

IF x is Ai, THEN yi = a�
i x + bi.

This structure consists of two parts, namely the antecedent part “x is Ai”
and the consequent part “yi = a�

i x + bi,” where x ∈ X ⊂ Rp is a crisp input
vector, Ai is a (multidimensional) fuzzy set defined by the membership function
µAi(x) : X → [0, 1], and yi ∈ R is an output of the i-th rule depending on a
parameter vector ai ∈ Rp and a scalar bi.
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Given a set of r rules and their outputs (consequents) yi, the global output y
of the Takagi-Sugeno model is defined by the fuzzy mean formula:

y =
∑r

i=1 µAi(x)yi∑r
i=1 µAi(x)

. (11.15)

It is usually difficult to implement multidimensional fuzzy sets. Therefore, the
antecedent part is commonly represented as a combination of equations for the
elements of x = (x1, . . . , xp)�, each having a corresponding one-dimensional
fuzzy set Aij , j = 1, . . . , p. Using the conjunctive form, the rules can be formu-
lated as:

IF x1 is Ai,1 AND · · · AND xp is Ai,p, THEN yi = a�
i x + bi,

with the degree of membership µAi(x) = µAi,1(x1)·µAi,2(x2) · · ·µAi,p(xp). This
elementwise clustering approach is also referred to as product space clustering.
Note that after normalizing this degree of membership (of the antecedent part)
is:

φi(x) =
µAi(x)∑r

j=1 µAj (x)
. (11.16)

We can also interpret the affine Takagi-Sugeno model as a quasilinear model
with a dependent input parameter (Wolkenhauer, 2001):

y =

(
r∑

i=1

φi(x)a�
i

)
x +

r∑
i=1

φi(x)bi = a�(x) + b(x). (11.17)

11.3.3 Model Identification

The basic principle of model identification by product space clustering is to
approximate a nonlinear regression problem by decomposing it to several local
linear sub-problems described by IF-THEN rules. A comprehensive discussion
can be found in Giles and Draeseke (2001).

Let us now discuss identification and estimation of the fuzzy model in case of
multivariate data. Suppose

y = f(x1, x2, ..., xp) + ε (11.18)

where the error term ε is assumed to be independent, identically and normally
distributed around zero. The fuzzy function f represents the conditional mean
of the output variable y. In the rest of the chapter, we use a linear form of f
and the least squares criterion for its estimation. The algorithm is as follows.
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Step 1 For each pair xr and y, separately partition n observations of the sam-
ple into cr fuzzy clusters by using fuzzy clustering (where r = 1, ..., p).

Step 2 Consider all possible combinations of c fuzzy clusters given the number
of input variables p, where c =

∏p
r=1 cr.

Step 3 Form a model by using data taken from each fuzzy cluster:

yij = βi0 + βi1x1ij + βi2x2ij + ... + βipxpij + εij (11.19)

where observation index j = 1, . . . , n and cluster index i = 1, . . . , c.

Step 4 Predict the conditional mean of x by using:

ŷk =
∑c

i=1(bi0 + bi1x1k + ... + bipxpk)wik∑c
i=1 wik

, k = 1, . . . , n, (11.20)

where wik =
∏p

r=1 δijµrj(xk), i = 1, . . . , c, and δij is an indicator equal
to one if the jth cluster is associated with the ith observation.

The fuzzy predictor of the conditional mean y is a weighted average of linear
predictors based on the fuzzy partitions of explanatory variables, with a mem-
bership value varying continuously through the sample observations. The effect
of this condition is that the non-linear system can be effectively modelled.

The modelling technique based on fuzzy sets can be understood as a local
method: it uses partitions of a domain process into a number of fuzzy regions.
In each region of the input space, a rule is defined which transforms input
variables into output. The rules can be interpreted as local sub-models of the
system. This approach is very similar to the inclusion of dummy variables
in an econometric variable. By allowing interaction of dummy-variables and
independent variables, we also specify local sub-models. While the number
and location of the sub-periods is determined endogenously by the data in the
fuzzy approach, they have been imposed exogenously after visual data inspec-
tion in our econometric model. However, this is not a fundamental difference
because the number and location of the sub-periods could also be determined
automatically by using econometric techniques.

11.3.4 Modelling Indonesian Money Demand with Fuzzy
Techniques

In this section, we model the M2 money demand in Indonesia using the ap-
proach of fuzzy model identification and the same data as in Section 11.2. Like
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Table 11.2: Four clusters of Indonesian money demand data

Cluster Observations β0 β1 (yt) β2 (rt)
(t-value) (t-value) (t-value)

1 1-15 3.9452 0.5479 -0.2047
(3.402) (5.441) (-4.195)

2 16-31 1.2913 0.7123 0.1493
(0.328) (1.846) (0.638)

3 34-39 28.7063 -1.5480 -0.3177
(1.757) (-1.085) (-2.377)

4 40-51 -0.2389 0.8678 0.1357
(-0.053) (2.183) (0.901)

in the econometric approach logarithmic real money demand (mrt) depends on
logarithmic GNP (yt) and the logarithmic long-term interest-rate (rt):

mrt = β0 + β1 ln Yt + β2rt. (11.21)

The results of the fuzzy clustering algorithm are far from being unambiguous.
Fuzzy clustering with real money and output yields three clusters. However,
real money and output clusters overlap, such that it is difficult to identify
three common clusters. Hence, we arrange them as four clusters. On the other
hand, clustering with real money and the interest rate leads to two clusters.
The intersection of both clustering results gives 4 different clusters. The four
local models are presented in Table 11.2. In the first cluster that covers the
period 1990:1–1993:3 GNP has a positive effect on money demand, and the
interest rate effect is negative. The output elasticity is substantially below
one, but increases in the second cluster (1993:4–1997:3). The interest rate has
no significant impact on real money in the second period. The third cluster
from 1997:4 to 1998:4 covers the Asean crisis. In this period, the relationship
between real money and output breaks down while the interest rate effect is
stronger than before. The last cluster covers the period 1999:4–2002:3, in which
the situation in Indonesia was slowly brought under control as a result of having
a new government elected in October 1999. The elasticity of GNP turned back
approximately to the level before the crisis. However, the effect of the interest
rate is not significant.
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The fit of the local sub-models is not as good as the fit of the econometric
model (Figure 11.4). The main reasons for this result are that autocorrelation
and seasonality of the data have not been considered in the fuzzy approach,
mainly for computational reasons. Additionally, the determination of the num-
ber of different clusters turned out to be rather difficult. Therefore, the fuzzy
model for Indonesian money demand described here should be interpreted as an
illustrative example for the robustness analysis of econometric models. More
research is necessary to find a fuzzy specification that describes the data as
well as the econometric model.
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11.4 Conclusions

In this chapter, we have analyzed money demand in Indonesia in a period in
which major instabilities in basic economic relations due to the Asian crises
may be expected. In addition to an econometric approach we have applied
fuzzy clustering in order to analyze the robustness of the econometric results.
Both the econometric and the fuzzy clustering approach divide the period from
1990 to 2002 into separate sub-periods. In the econometric approach this is
accomplished by inclusion of dummy variables in the regression model, and
in the fuzzy clustering approach different clusters are identified in which local
regression models are valid.

Both approaches reveal that there have been structural changes in Indone-
sian money demand during the late 1990s. A common result is that the income
elasticity of money demand is quite stable before and after the crisis, the econo-
metric estimation of the income elasticity after the crisis is about 0.93 and the
fuzzy estimate is 0.87. The interest rate elasticity differs in both approaches:
the econometric model indicates a absolutely smaller but still significant neg-
ative interest rate elasticity after the crisis, while the fuzzy approach yields
an insignificant interest rate elasticity after the crises. A further difference is
that the fuzzy approach suggests a higher number of sub-periods, namely four
clusters, while the econometric model is based on only two sub-periods. How-
ever, it might well be that the results of the two approaches become even more
similar when the fit of the fuzzy model is improved.

Our main conclusions are: Firstly, Indonesian money demand has been sur-
prisingly stable in a troubled and difficult time. Secondly, the fuzzy clustering
approach provides a framework for the robustness analysis of economic rela-
tionships. This framework can especially be useful if the number and location
of sub-periods exhibiting structural differences in the economic relationships
is not known ex-ante. Thirdly, our analysis does also reveal why the previous
studies of Indonesian money demand delivered unstable results. Theses studies
applied cointegration techniques. However, we show that the relevant Indone-
sian time series are trend-stationary such that the cointegration framework is
not appropriate.
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12 Nonparametric Productivity
Analysis

Wolfgang Härdle and Seok-Oh Jeong

How can we measure and compare the relative performance of production units?
If input and output variables are one dimensional, then the simplest way is to
compute efficiency by calculating and comparing the ratio of output and input
for each production unit. This idea is inappropriate though, when multiple
inputs or multiple outputs are observed. Consider a bank, for example, with
three branches A, B, and C. The branches take the number of staff as the
input, and measures outputs such as the number of transactions on personal
and business accounts. Assume that the following statistics are observed:

• Branch A: 60000 personal transactions, 50000 business transactions, 25
people on staff,

• Branch B: 50000 personal transactions, 25000 business transactions, 15
people on staff,

• Branch C: 45000 personal transactions, 15000 business transactions, 10
people on staff.

We observe that Branch C performed best in terms of personal transactions
per staff, whereas Branch A has the highest ratio of business transactions per
staff. By contrast Branch B performed better than Branch A in terms of
personal transactions per staff, and better than Branch C in terms of business
transactions per staff. How can we compare these business units in a fair way?
Moreover, can we possibly create a virtual branch that reflects the input/output
mechanism and thus creates a scale for the real branches?

Productivity analysis provides a systematic approach to these problems. We
review the basic concepts of productivity analysis and two popular methods
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DEA and FDH, which are given in Sections 12.1 and 12.2, respectively. Sections
12.3 and 12.4 contain illustrative examples with real data.

12.1 The Basic Concepts

The activity of production units such as banks, universities, governments, ad-
ministrations, and hospitals may be described and formalized by the production
set:

Ψ = {(x, y) ∈ R
p
+ × R

q
+ | x can produce y}.

where x is a vector of inputs and y is a vector of outputs. This set is usually
assumed to be free disposable, i.e. if for given (x, y) ∈ Ψ all (x′, y′) with
x′ ≥ x and y′ ≤ y belong to Ψ, where the inequalities between vectors are
understood componentwise. When y is one-dimensional, Ψ can be characterized
by a function g called the frontier function or the production function:

Ψ = {(x, y) ∈ R
p
+ × R+ | y ≤ g(x)}.

Under free disposability condition the frontier function g is monotone nonde-
creasing in x. See Figure 12.1 for an illustration of the production set and the
frontier function in the case of p = q = 1. The black curve represents the fron-
tier function, and the production set is the region below the curve. Suppose
the point A represent the input and output pair of a production unit. The
performance of the unit can be evaluated by referring to the points B and C
on the frontier. One sees that with less input x one could have produced the
same output y (point B). One also sees that with the input of A one could
have produced C. In the following we describe a systematic way to measure
the efficiency of any production unit compared to the peers of the production
set in a multi-dimensional setup.

The production set Ψ can be described by its sections. The input (requirement)
set X(y) is defined by:

X(y) = {x ∈ R
p
+ | (x, y) ∈ Ψ},

which is the set of all input vectors x ∈ R
p
+ that yield at least the output vector

y. See Figure 12.2 for a graphical illustration for the case of p = 2. The region
over the smooth curve represents X(y) for a given level y. On the other hand,
the output (correspondence) set Y (x) is defined by:

Y (x) = {y ∈ R
q
+ | (x, y) ∈ Ψ},
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Figure 12.1: The production set and the frontier function, p = q = 1.

the set of all output vectors y ∈ R
q
+ that is obtainable from the input vector x.

Figure 12.3 illustrates Y (x) for the case of q = 2. The region below the smooth
curve is Y (x) for a given input level x.

In productivity analysis one is interested in the input and output isoquants or
efficient boundaries, denoted by ∂X(y) and ∂Y (x) respectively. They consist
of the attainable boundary in a radial sense:

∂X(y) =
{ {x | x ∈ X(y), θx /∈ X(y), 0 < θ < 1} if y �= 0

{0} if y = 0

and

∂Y (x) =
{ {y | y ∈ Y (x), λy /∈ X(y), λ > 1} if Y (x) �= {0}

{0} if y = 0.

Given a production set Ψ with the scalar output y, the production function g
can also be defined for x ∈ R

p
+:

g(x) = sup{y | (x, y) ∈ Ψ}.



274 12 Nonparametric Productivity Analysis

0 0.5 1
x1

0
0.

5
1

x2 A

B

O

Figure 12.2: Input requirement set, p = 2.

It may be defined via the input set and the output set as well:

g(x) = sup{y | x ∈ X(y)} = sup{y | y ∈ Y (x)}.

For a given input-output point (x0, y0), its input efficiency is defined as

θIN(x0, y0) = inf{θ | θx0 ∈ X(y0)}.
The efficient level of input corresponding to the output level y0 is then given
by

x∂(y0) = θIN(x0, y0)x0. (12.1)

Note that x∂(y0) is the intersection of ∂X(y0) and the ray θx0, θ > 0, see
Figure 12.2. Suppose that the point A in Figure 12.2 represent the input used
by a production unit. The point B is its efficient input level and the input
efficient score of the unit is given by OB/OA. The output efficiency score
θOUT(x0, y0) can be defined similarly:

θOUT(x0, y0) = sup{θ | θy0 ∈ Y (x0)}. (12.2)
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Figure 12.3: Output corresponding set, q = 2.

The efficient level of output corresponding to the input level x0 is given by

y∂(x0) = θOUT(x0, y0)y0.

In Figure 12.3, let the point A be the output produced by a unit. Then the
point B is the efficient output level and the output efficient score of the unit is
given by OB/OA. Note that, by definition,

θIN(x0, y0) = inf{θ | (θx0, y0) ∈ Ψ}, (12.3)
θOUT(x0, y0) = sup{θ | (x0, θy0) ∈ Ψ}.

Returns to scale is a characteristic of the surface of the production set. The
production set exhibits constant returns to scale (CRS) if, for α ≥ 0 and P ∈ Ψ,
αP ∈ Ψ; it exhibits non-increasing returns to scale (NIRS) if, for 0 ≤ α ≤ 1
and P ∈ Ψ, αP ∈ Ψ; it exhibits non-decreasing returns to scale (NDRS) if, for
α ≥ 1 and P ∈ Ψ, αP ∈ Ψ. In particular, a convex production set exhibits
non-increasing returns to scale. Note, however, that the converse is not true.
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For more details on the theory and method for productivity analysis, see Shep-
hard (1970), Färe, Grosskopf, and Lovell (1985), and Färe, Grosskopf, and
Lovell (1994).

12.2 Nonparametric Hull Methods

The production set Ψ and the production function g is usually unknown, but
a sample of production units or decision making units (DMU’s) is available
instead:

X = {(xi, yi), i = 1, . . . , n}.
The aim of productivity analysis is to estimate Ψ or g from the data X . Here we
consider only the deterministic frontier model, i.e. no noise in the observations
and hence X ⊂ Ψ with probability 1. For example, when q = 1 the structure
of X can be expressed as:

yi = g(xi) − ui, i = 1, . . . , n

or
yi = g(xi)vi, i = 1, . . . , n

where g is the frontier function, and ui ≥ 0 and vi ≤ 1 are the random terms
for inefficiency of the observed pair (xi, yi) for i = 1, . . . , n.

The most popular nonparametric method is Data Envelopment Analysis (DEA),
which assumes that the production set is convex and free disposable. This

model is an extension of Farrel (1957)’s idea and was popularized by Charnes,
Cooper, and Rhodes (1978). Deprins, Simar, and Tulkens (1984), assuming
only free disposability on the production set, proposed a more flexible model,
say, Free Disposal Hull (FDH) model. Statistical properties of these hull
methods have been studied in the literature. Park (2001), Simar and Wilson
(2000) provide reviews on the statistical inference of existing nonparametric
frontier models. For the nonparametric frontier models in the presence of
noise, so called nonparametric stochastic frontier models, we refer to Simar
(2003), Kumbhakar, Park, Simar and Tsionas (2004) and references therein.
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12.2.1 Data Envelopment Analysis

The Data Envelopment Analysis (DEA) of the observed sample X is defined
as the smallest free disposable and convex set containing X :

Ψ̂DEA = {(x, y) ∈ R
p
+ × R

q
+ |x ≥

n∑
i=1

γixi, y ≤
n∑

i=1

γiyi,

for some (γ1, . . . , γn) such that
n∑

i=1

γi = 1, γi ≥ 0 ∀i = 1, . . . , n}.

The DEA efficiency scores for a given input-output level (x0, y0) are obtained
via (12.3):

θ̂IN(x0, y0) = min{θ > 0 | (θx0, y0) ∈ Ψ̂DEA},
θ̂OUT(x0, y0) = max{θ > 0 | (x0, θy0) ∈ Ψ̂DEA}.

The DEA efficient levels for a given level (x0, y0) are given by (12.1) and (12.2)
as:

x̂∂(y0) = θ̂IN(x0, y0)x0; ŷ∂(x0) = θ̂OUT(x0, y0)y0.

Figure 12.4 depicts 50 simulated production units and the frontier built by
DEA efficient input levels. The simulated model is as follows:

xi ∼ Uniform[0, 1], yi = g(xi)e−zi , g(x) = 1 +
√

x, zi ∼ Exp(3),

for i = 1, . . . , 50, where Exp(ν) denotes the exponential distribution with mean
1/ν. Note that E[−zi] = 0.75. The scenario with an exponential distribution
for the logarithm of inefficiency term and 0.75 as an average of inefficiency are
reasonable in the productivity analysis literature (Gijbels, Mammen, Park, and
Simar, 1999).

The DEA estimate is always downward biased in the sense that Ψ̂DEA ⊂ Ψ.
So the asymptotic analysis quantifying the discrepancy between the true fron-
tier and the DEA estimate would be appreciated. The consistency and the
convergence rate of DEA efficiency scores with multidimensional inputs and
outputs were established analytically by Kneip, Park, and Simar (1998). For
p = 1 and q = 1, Gijbels, Mammen, Park, and Simar (1999) obtained its
limit distribution depending on the curvature of the frontier and the density
at the boundary. Jeong and Park (2004) and Kneip, Simar, and Wilson (2003)
extended this result to higher dimensions.
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Figure 12.4: 50 simulated production units (circles), the frontier of the DEA
estimate (solid line), and the true frontier function g(x) = 1 +

√
x

(dotted line).
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12.2.2 Free Disposal Hull

The Free Disposal Hull (FDH) of the observed sample X is defined as the
smallest free disposable set containing X :

Ψ̂FDH = {(x, y) ∈ R
p
+ × R

q
+ |x ≥ xi, y ≤ yi, i = 1, . . . , n}.

We can obtain the FDH estimates of efficiency scores for a given input-output
level (x0, y0) by substituting Ψ̂DEA with Ψ̂FDH in the definition of DEA ef-
ficiency scores. Note that, unlike DEA estimates, their closed forms can be
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derived by a straightforward calculation:

θ̂IN(x0, y0) = min
i|y≤yi

max
1≤j≤p

xj
i

/
xj

0,

θ̂OUT(x0, y0) = max
i|x≥xi

min
1≤k≤q

yk
i

/
yk
0 ,

where vj is the jth component of a vector v. The efficient levels for a given
level (x0, y0) are obtained by the same way as those for DEA. See Figure 12.5
for an illustration by a simulated example:

xi ∼ Uniform[1, 2], yi = g(xi)e−zi , g(x) = 3(x−1.5)3+0.25x+1.125, zi ∼ Exp(3),

for i = 1, . . . , 50. Park, Simar, and Weiner (1999) showed that the limit distri-
bution of the FDH estimator in a multivariate setup is a Weibull distribution
depending on the slope of the frontier and the density at the boundary.

12.3 DEA in Practice: Insurance Agencies

In order to illustrate a practical application of DEA we consider an example
from the empirical study of Scheel (1999). This concrete data analysis is about
the efficiency of 63 agencies of a German insurance company, see Table 12.1.
The input X ∈ R4

+ and output Y ∈ R2
+ variables were as follows:

X1 : Number of clients of Type A,

X2 : Number of clients of Type B,

X3 : Number of clients of Type C,

X4 : Potential new premiums in EURO,

Y1 : Number of new contracts,

Y2 : Sum of new premiums in EURO.

Clients of an insurance company are those who are currently served by the
agencies of the company. They are classified into several types which reflect,
for example, the insurance coverage. Agencies should sell to the clients as many
contracts with as many premiums as possible. Hence the number of clients (X1,
X2, X3) are included as input variables, and the number of new contracts (Y1)
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Figure 12.5: 50 simulated production units (circles) the frontier of the FDH
estimate (solid line), and the true frontier function g(x) = 3(x −
1.5)3 + 0.25x + 1.125 (dotted line).
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and the sum of new premiums (Y2) are included as output variables. The
potential new premiums (X4) is included as input variables, since it depends
on the clients’ current coverage.

Summary statistics for this data are given in Table 12.2. The DEA efficiency
scores and the DEA efficient levels of inputs for the agencies are given in Tables
12.3 and 12.4, respectively. The input efficient score for each agency provides
a gauge for evaluating its activity, and the efficient level of inputs can be
interpreted as a ’goal’ input. For example, agency 1 should have been able
to yield its activity outputs (Y1 = 7, Y2 = 1754) with only 38% of its inputs,
i.e., X1 = 53, X2 = 93, X3 = 4, and X4 = 108960. By contrast, agency 63,
whose efficiency score is equal to 1, turned out to have used its resources 100%
efficiently.
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Table 12.1: Activities of 63 agencies of a German insurance company

inputs outputs
Agency X1 X2 X3 X4 Y1 Y2

1 138 242 10 283816.7 7 1754
2 166 124 5 156727.5 8 2413
3 152 84 3 111128.9 15 2531
. . . . . . .
. . . . . . .
. . . . . . .

62 83 109 2 139831.4 11 4439
63 108 257 0 299905.3 45 30545

Table 12.2: Summary statistics for 63 agencies of a German insurance company

Minimum Maximum Mean Median Std.Error
X1 42 572 225.54 197 131.73
X2 55 481 184.44 141 110.28
X3 0 140 19.762 10 26.012
X4 73756 693820 258670 206170 160150
Y1 2 70 22.762 16 16.608
Y2 696 33075 7886.7 6038 7208

12.4 FDH in Practice: Manufacturing Industry

In order to illustrate how FDH works, the Manufacturing Industry Produc-
tivity Database from the National Bureau of Economic Research (NBER),
USA is considered. This database is downloadable from the website of NBER
[http://www.nber.org]. It contains annual industry-level data on output, em-
ployment, payroll, and other input costs, investment, capital stocks, and various
industry-specific price indices from 1958 on hundreds of manufacturing indus-
tries (indexed by 4 digits numbers) in the United States. We selected data
from the year 1996 (458 industries) with the following 4 input variables, p = 4,
and 1 output variable, q = 1 (summary statistics are given in Table 12.5):
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Table 12.3: DEA efficiency score of the 63 agencies

Agency Efficiency score
1 0.38392
2 0.49063
3 0.86449
. .
. .
. .

62 0.79892
63 1

STFnpa03.xpl

Table 12.4: DEA efficiency level of the 63 agencies

Efficient level of inputs
Agency X1 X2 X3 X4

1 52.981 92.909 3.8392 108960
2 81.444 60.838 2.4531 76895
3 131.4 72.617 2.5935 96070
. . . . .
. . . . .
. . . . .

62 66.311 87.083 1.5978 111710
63 108 257 0 299910

STFnpa03.xpl

X1 : Total employment,

X2 : Total cost of material,

X3 : Cost of electricity and fuel,

X4 : Total real capital stock,

Y : Total value added.
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Table 12.5: Summary statistics for Manufacturing Industry Productivity
Database (NBER, USA)

Minimum Maximum Mean Median Std.Error
X1 0.8 500.5 37.833 21 54.929
X2 18.5 145130 4313 1957.2 10771
X3 0.5 3807.8 139.96 49.7 362
X4 15.8 64590 2962.8 1234.7 6271.1
Y 34.1 56311 3820.2 1858.5 6392

Table 12.6 summarizes the result of the analysis of US manufacturing indus-
tries in 1996. The industry indexed by 2015 was efficient in both input and
output orientation. This means that it is one of the vertices of the free disposal
hull generated by the 458 observations. On the other hand, the industry 2298
performed fairly well in terms of input efficiency (0.96) but somewhat badly
(0.47) in terms of output efficiency. We can obtain the efficient level of inputs
(or outputs) by multiplying (or dividing) the efficiency score to each corre-
sponding observation. For example, consider the industry 2013, which used
inputs X1 = 88.1, X2 = 14925, X3 = 250, and X4 = 4365.1 to yield the output
Y = 5954.2. Since its FDH input efficiency score was 0.64, this industry should
have used the inputs X1 = 56.667, X2 = 9600, X3 = 160.8, and X4 = 2807.7
to produce the observed output Y = 5954.2. On the other hand, taking into
account that the FDH output efficiency score was 0.70, this industry should
have increased its output upto Y = 4183.1 with the observed level of inputs.
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Table 12.6: FDH efficiency scores of 458 US industries in 1996

Efficiency scores
Industry input output

1 2011 0.88724 0.94203
2 2013 0.79505 0.80701
3 2015 0.66933 0.62707
4 2021 1 1
. . . .
. . . .
. . . .

75 2298 0.80078 0.7439
. . . .
. . . .
. . . .

458 3999 0.50809 0.47585

STFnpa04.xpl
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Insurance



13 Loss Distributions

Krzysztof Burnecki, Adam Misiorek, and Rafa�l Weron

13.1 Introduction

The derivation of loss distributions from insurance data is not an easy task.
Insurers normally keep data files containing detailed information about policies
and claims, which are used for accounting and rate-making purposes. However,
claim size distributions and other data needed for risk-theoretical analyzes can
be obtained usually only after tedious data preprocessing. Moreover, the claim
statistics are often limited. Data files containing detailed information about
some policies and claims may be missing or corrupted. There may also be
situations where prior data or experience are not available at all, e.g. when
a new type of insurance is introduced or when very large special risks are
insured. Then the distribution has to be based on knowledge of similar risks
or on extrapolation of lesser risks.

There are three basic approaches to deriving the loss distribution: empirical,
analytical, and moment based. The empirical method, presented in Section
13.2, can be used only when large data sets are available. In such cases a
sufficiently smooth and accurate estimate of the cumulative distribution func-
tion (cdf) is obtained. Sometimes the application of curve fitting techniques –
used to smooth the empirical distribution function – can be beneficial. If the
curve can be described by a function with a tractable analytical form, then this
approach becomes computationally efficient and similar to the second method.

The analytical approach is probably the most often used in practice and cer-
tainly the most frequently adopted in the actuarial literature. It reduces to
finding a suitable analytical expression which fits the observed data well and
which is easy to handle. Basic characteristics and estimation issues for the most
popular and useful loss distributions are discussed in Section 13.3. Note, that
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sometimes it may be helpful to subdivide the range of the claim size distribu-
tion into intervals for which different methods are employed. For example, the
small and medium size claims could be described by the empirical claim size
distribution, while the large claims – for which the scarcity of data eliminates
the use of the empirical approach – by an analytical loss distribution.

In some applications the exact shape of the loss distribution is not required.
We may then use the moment based approach, which consists of estimating
only the lowest characteristics (moments) of the distribution, like the mean
and variance. However, it should be kept in mind that even the lowest three
or four moments do not fully define the shape of a distribution, and therefore
the fit to the observed data may be poor. Further details on the moment based
approach can be found e.g. in Daykin, Pentikainen, and Pesonen (1994).

Having a large collection of distributions to choose from, we need to narrow
our selection to a single model and a unique parameter estimate. The type of
the objective loss distribution can be easily selected by comparing the shapes
of the empirical and theoretical mean excess functions. Goodness-of-fit can be
verified by plotting the corresponding limited expected value functions. Finally,
the hypothesis that the modeled random event is governed by a certain loss
distribution can be statistically tested. In Section 13.4 these statistical issues
are thoroughly discussed.

In Section 13.5 we apply the presented tools to modeling real-world insurance
data. The analysis is conducted for two datasets: (i) the PCS (Property Claim
Services) dataset covering losses resulting from catastrophic events in USA
that occurred between 1990 and 1999 and (ii) the Danish fire losses dataset,
which concerns major fire losses that occurred between 1980 and 1990 and were
recorded by Copenhagen Re.

13.2 Empirical Distribution Function

A natural estimate for the loss distribution is the observed (empirical) claim size
distribution. However, if there have been changes in monetary values during
the observation period, inflation corrected data should be used. For a sample
of observations {x1, . . . , xn} the empirical distribution function (edf) is defined
as:

Fn(x) =
1
n

#{i : xi ≤ x}, (13.1)
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Figure 13.1: Left panel : Empirical distribution function (edf) of a 10-element
log-normally distributed sample with parameters µ = 0.5 and σ =
0.5, see Section 13.3.1. Right panel : Approximation of the edf by
a continuous, piecewise linear function (black solid line) and the
theoretical distribution function (red dotted line).
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i.e. it is a piecewise constant function with jumps of size 1/n at points xi. Very
often, especially if the sample is large, the edf is approximated by a continuous,
piecewise linear function with the “jump points” connected by linear functions,
see Figure 13.1.

The empirical distribution function approach is appropriate only when there is
a sufficiently large volume of claim data. This is rarely the case for the tail of
the distribution, especially in situations where exceptionally large claims are
possible. It is often advisable to divide the range of relevant values of claims
into two parts, treating the claim sizes up to some limit on a discrete basis,
while the tail is replaced by an analytical cdf.
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13.3 Analytical Methods

It is often desirable to find an explicit analytical expression for a loss distribu-
tion. This is particularly the case if the claim statistics are too sparse to use
the empirical approach. It should be stressed, however, that many standard
models in statistics – like the Gaussian distribution – are unsuitable for fitting
the claim size distribution. The main reason for this is the strongly skewed na-
ture of loss distributions. The log-normal, Pareto, Burr, Weibull, and gamma
distributions are typical candidates for claim size distributions to be considered
in applications.

13.3.1 Log-normal Distribution

Consider a random variable X which has the normal distribution with density

fN (x) =
1√
2πσ

exp
{
−1

2
(x − µ)2

σ2

}
, −∞ < x < ∞. (13.2)

Let Y = eX so that X = log Y . Then the probability density function of Y is
given by:

f(y) = fN (log y)
1
y

=
1√

2πσy
exp

{
−1

2
(log y − µ)2

σ2

}
, y > 0, (13.3)

where σ > 0 is the scale and −∞ < µ < ∞ is the location parameter. The
distribution of Y is termed log-normal, however, sometimes it is called the
Cobb-Douglas law, especially when applied to econometric data. The log-
normal cdf is given by:

F (y) = Φ
(

log y − µ

σ

)
, y > 0, (13.4)

where Φ(·) is the standard normal (with mean 0 and variance l) distribution
function. The k-th raw moment mk of the log-normal variate can be easily
derived using results for normal random variables:

mk = E
(
Y k

)
= E

(
ekX

)
= MX(k) = exp

(
µk +

σ2k2

2

)
, (13.5)
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where MX(z) is the moment generating function of the normal distribution. In
particular, the mean and variance are

E(X) = exp
(

µ +
σ2

2

)
, (13.6)

Var(X) =
{

exp
(
σ2
)− 1

}
exp

(
2µ + σ2

)
, (13.7)

respectively. For both standard parameter estimation techniques the estimators
are known in closed form. The method of moments estimators are given by:

µ̂ = 2 log

(
1
n

n∑
i=1

xi

)
− 1

2
log

(
1
n

n∑
i=1

x2
i

)
, (13.8)

σ̂2 = log

(
1
n

n∑
i=1

x2
i

)
− 2 log

(
1
n

n∑
i=1

xi

)
, (13.9)

while the maximum likelihood estimators by:

µ̂ =
1
n

n∑
i=1

log(xi), (13.10)

σ̂2 =
1
n

n∑
i=1

{log(xi) − µ̂}2
. (13.11)

Finally, the generation of a log-normal variate is straightforward. We simply
have to take the exponent of a normal variate.

The log-normal distribution is very useful in modeling of claim sizes. It is
right-skewed, has a thick tail and fits many situations well. For small σ it
resembles a normal distribution (see the left panel in Figure 13.2) although
this is not always desirable. It is infinitely divisible and closed under scale and
power transformations. However, it also suffers from some drawbacks. Most
notably, the Laplace transform does not have a closed form representation and
the moment generating function does not exist.

13.3.2 Exponential Distribution

Consider the random variable with the following density and distribution func-
tions, respectively:

f(x) = βe−βx, x > 0, (13.12)
F (x) = 1 − e−βx, x > 0. (13.13)
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Figure 13.2: Left panel: Log-normal probability density functions (pdfs) with
parameters µ = 2 and σ = 1 (black solid line), µ = 2 and σ = 0.1
(red dotted line), and µ = 0.5 and σ = 2 (blue dashed line). Right
panel: Exponential pdfs with parameter β = 0.5 (black solid line),
β = 1 (red dotted line), and β = 5 (blue dashed line).
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This distribution is termed an exponential distribution with parameter (or
intensity) β > 0. The Laplace transform of (13.12) is

L(t) def=
∫ ∞

0

e−txf(x)dx =
β

β + t
, t > −β, (13.14)

yielding the general formula for the k-th raw moment

mk
def= (−1)k ∂kL(t)

∂tk

∣∣∣
t=0

=
k!
βk

. (13.15)

The mean and variance are thus β−1 and β−2, respectively. The maximum
likelihood estimator (equal to the method of moments estimator) for β is given
by:

β̂ =
1

m̂1
, (13.16)
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where

m̂k =
1
n

n∑
i=1

xk
i , (13.17)

is the sample k-th raw moment.

To generate an exponential random variable X with intensity β we can use the
inverse transform method (L’Ecuyer, 2004; Ross, 2002). The method consists
of taking a random number U distributed uniformly on the interval (0, 1) and
setting X = F−1(U), where F−1(x) = − 1

β log(1 − x) is the inverse of the
exponential cdf (13.13). In fact we can set X = − 1

β log U since 1 − U has the
same distribution as U .

The exponential distribution has many interesting features. For example, it has
the memoryless property, i.e. P(X > x + y|X > y) = P(X > x). It also arises
as the inter-occurrence times of the events in a Poisson process, see Chapter
14. The n-th root of the Laplace transform (13.14) is

L(t) =
(

β

β + t

) 1
n

, (13.18)

which is the Laplace transform of a gamma variate (see Section 13.3.6). Thus
the exponential distribution is infinitely divisible.

The exponential distribution is often used in developing models of insurance
risks. This usefulness stems in a large part from its many and varied tractable
mathematical properties. However, a disadvantage of the exponential distribu-
tion is that its density is monotone decreasing (see the right panel in Figure
13.2), a situation which may not be appropriate in some practical situations.

13.3.3 Pareto Distribution

Suppose that a variate X has (conditional on β) an exponential distribution
with mean β−1. Further, suppose that β itself has a gamma distribution (see
Section 13.3.6). The unconditional distribution of X is a mixture and is called
the Pareto distribution. Moreover, it can be shown that if X is an exponential
random variable and Y is a gamma random variable, then X/Y is a Pareto
random variable.
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The density and distribution functions of a Pareto variate are given by:

f(x) =
αλα

(λ + x)α+1
, x > 0, (13.19)

F (x) = 1 −
(

λ

λ + x

)α

, x > 0, (13.20)

respectively. Clearly, the shape parameter α and the scale parameter λ are
both positive. The k-th raw moment:

mk = λkk!
Γ(α − k)

Γ(α)
, (13.21)

exists only for k < α. In the above formula

Γ(a) def=
∫ ∞

0

ya−1e−ydy, (13.22)

is the standard gamma function. The mean and variance are thus:

E(X) =
λ

α − 1
, (13.23)

Var(X) =
αλ2

(α − 1)2(α − 2)
, (13.24)

respectively. Note, that the mean exists only for α > 1 and the variance only
for α > 2. Hence, the Pareto distribution has very thick (or heavy) tails, see
Figure 13.3. The method of moments estimators are given by:

α̂ = 2
m̂2 − m̂2

1

m̂2 − 2m̂2
1

, (13.25)

λ̂ =
m̂1m̂2

m̂2 − 2m̂2
1

, (13.26)

where, as before, m̂k is the sample k-th raw moment (13.17). Note, that the
estimators are well defined only when m̂2 − 2m̂2

1 > 0. Unfortunately, there are
no closed form expressions for the maximum likelihood estimators and they
can only be evaluated numerically.

Like for many other distributions the simulation of a Pareto variate X can be
conducted via the inverse transform method. The inverse of the cdf (13.20)
has a simple analytical form F−1(x) = λ

{
(1 − x)−1/α − 1

}
. Hence, we can
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Figure 13.3: Left panel: Pareto pdfs with parameters α = 0.5 and λ = 2 (black
solid line), α = 2 and λ = 0.5 (red dotted line), and α = 2 and
λ = 1 (blue dashed line). Right panel: The same Pareto densities
on a double logarithmic plot. The thick power-law tails of the
Pareto distribution are clearly visible.

STFloss03.xpl

set X = λ
(
U−1/α − 1

)
, where U is distributed uniformly on the unit interval.

We have to be cautious, however, when α is larger but very close to one. The
theoretical mean exists, but the right tail is very heavy. The sample mean will,
in general, be significantly lower than E(X).

The Pareto law is very useful in modeling claim sizes in insurance, due in large
part to its extremely thick tail. Its main drawback lies in its lack of mathe-
matical tractability in some situations. Like for the log-normal distribution,
the Laplace transform does not have a closed form representation and the mo-
ment generating function does not exist. Moreover, like the exponential pdf
the Pareto density (13.19) is monotone decreasing, which may not be adequate
in some practical situations.
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13.3.4 Burr Distribution

Experience has shown that the Pareto formula is often an appropriate model for
the claim size distribution, particularly where exceptionally large claims may
occur. However, there is sometimes a need to find heavy tailed distributions
which offer greater flexibility than the Pareto law, including a non-monotone
pdf. Such flexibility is provided by the Burr distribution and its additional
shape parameter τ > 0. If Y has the Pareto distribution, then the distribution
of X = Y 1/τ is known as the Burr distribution, see the left panel in Figure
13.4. Its density and distribution functions are given by:

f(x) = ταλα xτ−1

(λ + xτ )α+1
, x > 0, (13.27)

F (x) = 1 −
(

λ

λ + xτ

)α

, x > 0, (13.28)

respectively. The k-th raw moment

mk =
1

Γ(α)
λk/τ Γ

(
1 +

k

τ

)
Γ
(

α − k

τ

)
, (13.29)

exists only for k < τα. Naturally, the Laplace transform does not exist in a
closed form and the distribution has no moment generating function as it was
the case with the Pareto distribution.

The maximum likelihood and method of moments estimators for the Burr dis-
tribution can only be evaluated numerically. A Burr variate X can be generated
using the inverse transform method. The inverse of the cdf (13.28) has a sim-
ple analytical form F−1(x) =

[
λ
{

(1 − x)−1/α − 1
}]1/τ

. Hence, we can set

X =
{
λ
(
U−1/α − 1

)}1/τ
, where U is distributed uniformly on the unit inter-

val. Like in the Pareto case, we have to be cautious when τα is larger but very
close to one. The theoretical mean exists, but the right tail is very heavy. The
sample mean will, in general, be significantly lower than E(X).

13.3.5 Weibull Distribution

If V is an exponential variate, then the distribution of X = V 1/τ , τ > 0,
is called the Weibull (or Frechet) distribution. Its density and distribution
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Figure 13.4: Left panel: Burr pdfs with parameters α = 0.5, λ = 2 and τ = 1.5
(black solid line), α = 0.5, λ = 0.5 and τ = 5 (red dotted line),
and α = 2, λ = 1 and τ = 0.5 (blue dashed line). Right panel:
Weibull pdfs with parameters β = 1 and τ = 0.5 (black solid line),
β = 1 and τ = 2 (red dotted line), and β = 0.01 and τ = 6 (blue
dashed line).
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functions are given by:

f(x) = τβxτ−1e−βxτ

, x > 0, (13.30)
F (x) = 1 − e−βxτ

, x > 0, (13.31)

respectively. The Weibull distribution is roughly symmetrical for the shape
parameter τ ≈ 3.6. When τ is smaller the distribution is right-skewed, when
τ is larger it is left-skewed, see the right panel in Figure 13.4. The k-th raw
moment can be shown to be

mk = β−k/τ Γ
(

1 +
k

τ

)
. (13.32)

Like for the Burr distribution, the maximum likelihood and method of moments
estimators can only be evaluated numerically. Similarly, Weibull variates can
be generated using the inverse transform method.
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13.3.6 Gamma Distribution

The probability law with density and distribution functions given by:

f(x) = β(βx)α−1 e−βx

Γ(α)
, x > 0, (13.33)

F (x) =
∫ x

0

β(βs)α−1 e−βs

Γ(α)
ds, x > 0, (13.34)

where α and β are non-negative, is known as a gamma (or a Pearson’s Type
III) distribution, see the left panel in Figure 13.5. Moreover, for β = 1 the
integral in (13.34):

Γ(α, x) def=
1

Γ(α)

∫ x

0

sα−1e−sds, (13.35)

is called the incomplete gamma function. If the shape parameter α = 1, the
exponential distribution results. If α is a positive integer, the distribution is
termed an Erlang law. If β = 1

2 and α = ν
2 then it is termed a chi-squared (χ2)

distribution with ν degrees of freedom. Moreover, a mixed Poisson distribution
with gamma mixing distribution is negative binomial, see Chapter 18.

The Laplace transform of the gamma distribution is given by:

L(t) =
(

β

β + t

)α

, t > −β. (13.36)

The k-th raw moment can be easily derived from the Laplace transform:

mk =
Γ(α + k)
Γ(α)βk

. (13.37)

Hence, the mean and variance are

E(X) =
α

β
, (13.38)

Var(X) =
α

β2
. (13.39)

Finally, the method of moments estimators for the gamma distribution param-
eters have closed form expressions:

α̂ =
m̂2

1

m̂2 − m̂2
1

, (13.40)

β̂ =
m̂1

m̂2 − m̂2
1

, (13.41)
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Figure 13.5: Left panel: Gamma pdfs with parameters α = 1 and β = 2 (black
solid line), α = 2 and β = 1 (red dotted line), and α = 3 and
β = 0.5 (blue dashed line). Right panel: Densities of two expo-
nential distributions with parameters β1 = 0.5 (red dotted line)
and β2 = 0.1 (blue dashed line) and of their mixture with the
mixing parameter a = 0.5 (black solid line).
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but maximum likelihood estimators can only be evaluated numerically. Sim-
ulation of gamma variates is not as straightforward as for the distributions
presented above. For α < 1 a simple but slow algorithm due to Jöhnk (1964)
can be used, while for α > 1 the rejection method is more optimal (Bratley,
Fox, and Schrage, 1987; Devroye, 1986).

The gamma distribution is closed under convolution, i.e. a sum of indepen-
dent gamma variates with the same parameter β is again gamma distributed
with this β. Hence, it is infinitely divisible. Moreover, it is right-skewed and
approaches a normal distribution in the limit as α goes to infinity.

The gamma law is one of the most important distributions for modeling because
it has very tractable mathematical properties. As we have seen above it is also
very useful in creating other distributions, but by itself is rarely a reasonable
model for insurance claim sizes.
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13.3.7 Mixture of Exponential Distributions

Let a1, a2, . . . , an denote a series of non-negative weights satisfying
∑n

i=1 ai = 1.
Let F1(x), F2(x), . . . , Fn(x) denote an arbitrary sequence of exponential distri-
bution functions given by the parameters β1, β2, . . . , βn, respectively. Then,
the distribution function:

F (x) =
n∑

i=1

aiFi(x) =
n∑

i=1

ai {1 − exp(−βix)} , (13.42)

is called a mixture of n exponential distributions (exponentials). The density
function of the constructed distribution is

f(x) =
n∑

i=1

aifi(x) =
n∑

i=1

aiβi exp(−βix), (13.43)

where f1(x), f2(x), . . . , fn(x) denote the density functions of the input exponen-
tial distributions. Note, that the mixing procedure can be applied to arbitrary
distributions. Using the technique of mixing, one can construct a wide class
of distributions. The most commonly used in the applications is a mixture of
two exponentials, see Chapter 15. In the right panel of Figure 13.5 a pdf of
a mixture of two exponentials is plotted together with the pdfs of the mixing
laws.

The Laplace transform of (13.43) is

L(t) =
n∑

i=1

ai
βi

βi + t
, t > − min

i=1...n
{βi}, (13.44)

yielding the general formula for the k-th raw moment

mk =
n∑

i=1

ai
k!
βk

i

. (13.45)

The mean is thus
∑n

i=1 aiβ
−1
i . The maximum likelihood and method of mo-

ments estimators for the mixture of n (n ≥ 2) exponential distributions can
only be evaluated numerically.

Simulation of variates defined by (13.42) can be performed using the composi-
tion approach (Ross, 2002). First generate a random variable I, equal to i with
probability ai, i = 1, ..., n. Then simulate an exponential variate with intensity
βI . Note, that the method is general in the sense that it can be used for any
set of distributions Fi’s.
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13.4 Statistical Validation Techniques

Having a large collection of distributions to choose from we need to narrow our
selection to a single model and a unique parameter estimate. The type of the
objective loss distribution can be easily selected by comparing the shapes of the
empirical and theoretical mean excess functions. The mean excess function,
presented in Section 13.4.1, is based on the idea of conditioning a random
variable given that it exceeds a certain level.

Once the distribution class is selected and the parameters are estimated using
one of the available methods the goodness-of-fit has to be tested. Probably the
most natural approach consists of measuring the distance between the empirical
and the fitted analytical distribution function. A group of statistics and tests
based on this idea is discussed in Section 13.4.2. However, when using these
tests we face the problem of comparing a discontinuous step function with a
continuous non-decreasing curve. The two functions will always differ from
each other in the vicinity of a step by at least half the size of the step. This
problem can be overcome by integrating both distributions once, which leads
to the so-called limited expected value function introduced in Section 13.4.3.

13.4.1 Mean Excess Function

For a claim amount random variable X, the mean excess function or mean
residual life function is the expected payment per claim on a policy with a
fixed amount deductible of x, where claims with amounts less than or equal to
x are completely ignored:

e(x) = E(X − x|X > x) =

∫∞
x

{1 − F (u)} du

1 − F (x)
. (13.46)

In practice, the mean excess function e is estimated by ên based on a represen-
tative sample x1, . . . , xn:

ên(x) =

∑
xi>x xi

#{i : xi > x} − x. (13.47)

Note, that in a financial risk management context, switching from the right tail
to the left tail, e(x) is referred to as the expected shortfall (Weron, 2004).

When considering the shapes of mean excess functions, the exponential dis-
tribution plays a central role. It has the memoryless property, meaning that



304 13 Loss Distributions

whether the information X > x is given or not, the expected value of X − x
is the same as if one started at x = 0 and calculated E(X). The mean ex-
cess function for the exponential distribution is therefore constant. One in fact
easily calculates that for this case e(x) = 1/β for all x > 0.

If the distribution of X is heavier-tailed than the exponential distribution we
find that the mean excess function ultimately increases, when it is lighter-
tailed e(x) ultimately decreases. Hence, the shape of e(x) provides important
information on the sub-exponential or super-exponential nature of the tail of
the distribution at hand.

Mean excess functions and first order approximations to the tail for the distri-
butions discussed in Section 13.3 are given by the following formulas:

• log-normal distribution:

e(x) =
exp

(
µ + σ2

2

){
1 − Φ

(
ln x−µ−σ2

σ

)}
{

1 − Φ
(

ln x−µ
σ

)} − x

=
σ2x

ln x − µ
{1 + o(1)} ,

where o(1) stands for a term which tends to zero as x → ∞;

• exponential distribution:

e(x) =
1
β

;

• Pareto distribution:

e(x) =
λ + x

α − 1
, α > 1;

• Burr distribution:

e(x) =
λ1/τ Γ

(
α − 1

τ

)
Γ
(
1 + 1

τ

)
Γ(α)

·
(

λ

λ + xτ

)−α

·

·
{

1 − B
(

1 +
1
τ

, α − 1
τ

,
xτ

λ + xτ

)}
− x

=
x

ατ − 1
{1 + o(1)} , ατ > 1,
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where Γ(·) is the standard gamma function (13.22) and

B(a, b, x) def=
Γ(a + b)
Γ(a)Γ(b)

∫ x

0

ya−1(1 − y)b−1dy, (13.48)

is the beta function;

• Weibull distribution:

e(x) =
Γ (1 + 1/τ)

β1/τ

{
1 − Γ

(
1 +

1
τ

, βxτ

)}
exp (βxτ ) − x

=
x1−τ

βτ
{1 + o(1)} ,

where Γ(·, ·) is the incomplete gamma function (13.35);

• gamma distribution:

e(x) =
α

β
· 1 − F (x, α + 1, β)

1 − F (x, α, β)
− x = β−1 {1 + o(1)} ,

where F (x, α, β) is the gamma distribution function (13.34);

• mixture of two exponential distributions:

• distribution!mixture of exponentials

e(x) =
x
β1

exp (−β1c) + 1−x
β2

exp (−β2c)

x exp (−β1c) + (1 − x) exp (−β2c)
− x.

Selected shapes are also sketched in Figure 13.6.

13.4.2 Tests Based on the Empirical Distribution Function

A statistics measuring the difference between the empirical Fn(x) and the fit-
ted F (x) distribution function, called an edf statistic, is based on the vertical
difference between the distributions. This distance is usually measured either
by a supremum or a quadratic norm (D’Agostino and Stephens, 1986).
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Figure 13.6: Left panel: Shapes of the mean excess function e(x) for the log-
normal (green dashed line), gamma with α < 1 (red dotted line),
gamma with α > 1 (black solid line) and a mixture of two expo-
nential distributions (blue long-dashed line). Right panel: Shapes
of the mean excess function e(x) for the Pareto (green dashed line),
Burr (blue long-dashed line), Weibull with τ < 1 (black solid line)
and Weibull with τ > 1 (red dotted line) distributions.
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The most well-known supremum statistic:

D = sup
x

|Fn(x) − F (x)| , (13.49)

is known as the Kolmogorov or Kolmogorov-Smirnov statistic. It can also be
written in terms of two supremum statistics:

D+ = sup
x

{Fn(x) − F (x)} and D− = sup
x

{F (x) − Fn(x)} ,

where the former is the largest vertical difference when Fn(x) is larger than
F (x) and the latter is the largest vertical difference when it is smaller. The
Kolmogorov statistic is then given by D = max(D+, D−). A closely related
statistic proposed by Kuiper is simply a sum of the two differences, i.e. V =
D+ + D−.
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The second class of measures of discrepancy is given by the Cramér-von Mises
family

Q = n

∞∫
−∞

{Fn(x) − F (x)}2
ψ(x)dF (x), (13.50)

where ψ(x) is a suitable function which gives weights to the squared difference
{Fn(x) − F (x)}2. When ψ(x) = 1 we obtain the W 2 statistic of Cramér-von
Mises. When ψ(x) = [F (x) {1 − F (x)}]−1 formula (13.50) yields the A2 statis-
tic of Anderson and Darling. From the definitions of the statistics given above,
suitable computing formulas must be found. This can be done by utilizing the
transformation Z = F (X). When F (x) is the true distribution function of X,
the random variable Z is uniformly distributed on the unit interval.

Suppose that a sample x1, . . . , xn gives values zi = F (xi), i = 1, . . . , n. It can
be easily shown that, for values z and x related by z = F (x), the corresponding
vertical differences in the edf diagrams for X and for Z are equal. Consequently,
edf statistics calculated from the empirical distribution function of the zi’s
compared with the uniform distribution will take the same values as if they
were calculated from the empirical distribution function of the xi’s, compared
with F (x). This leads to the following formulas given in terms of the order
statistics z(1) < z(2) < · · · < z(n):

D+ = max
1≤i≤n

{
i

n
− z(i)

}
, (13.51)

D− = max
1≤i≤n

{
z(i) − (i − 1)

n

}
, (13.52)

D = max(D+, D−), (13.53)
V = D+ + D−, (13.54)

W 2 =
n∑

i=1

{
z(i) − (2i − 1)

2n

}2

+
1

12n
, (13.55)

A2 = −n − 1
n

n∑
i=1

{
log z(i) + log(1 − z(n+1−i))

}
(13.56)

= −n − 1
n

n∑
i=1

{
(2i − 1) log z(i)+

+(2n + 1 − 2i) log(1 − z(i))
}

. (13.57)
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The general test of fit is structured as follows. The null hypothesis is that a
specific distribution is acceptable, whereas the alternative is that it is not:

H0 : Fn(x) = F (x; θ),
H1 : Fn(x) �= F (x; θ),

where θ is a vector of known parameters. Small values of the test statistic T
are evidence in favor of the null hypothesis, large ones indicate its falsity. To
see how unlikely such a large outcome would be if the null hypothesis was true,
we calculate the p-value by:

p-value = P (T ≥ t), (13.58)

where t is the test value for a given sample. It is typical to reject the null
hypothesis when a small p-value is obtained.

However, we are in a situation where we want to test the hypothesis that the
sample has a common distribution function F (x; θ) with unknown θ. To employ
any of the edf tests we first need to estimate the parameters. It is important
to recognize, however, that when the parameters are estimated from the data,
the critical values for the tests of the uniform distribution (or equivalently of
a fully specified distribution) must be reduced. In other words, if the value
of the test statistics T is d, then the p-value is overestimated by PU (T ≥ d).
Here PU indicates that the probability is computed under the assumption of a
uniformly distributed sample. Hence, if PU (T ≥ d) is small, then the p-value
will be even smaller and the hypothesis will be rejected. However, if it is large
then we have to obtain a more accurate estimate of the p-value.

Ross (2002) advocates the use of Monte Carlo simulations in this context.
First the parameter vector is estimated for a given sample of size n, yielding θ̂,
and the edf test statistics is calculated assuming that the sample is distributed
according to F (x; θ̂), returning a value of d. Next, a sample of size n of F (x; θ̂)-
distributed variates is generated. The parameter vector is estimated for this
simulated sample, yielding θ̂1, and the edf test statistics is calculated assuming
that the sample is distributed according to F (x; θ̂1). The simulation is repeated
as many times as required to achieve a certain level of accuracy. The estimate
of the p-value is obtained as the proportion of times that the test quantity is
at least as large as d.

An alternative solution to the problem of unknown parameters was proposed by
Stephens (1978). The half-sample approach consists of using only half the data
to estimate the parameters, but then using the entire data set to conduct the
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test. In this case, the critical values for the uniform distribution can be applied,
at least asymptotically. The quadratic edf tests seem to converge fairly rapidly
to their asymptotic distributions (D’Agostino and Stephens, 1986). Although,
the method is much faster than the Monte Carlo approach it is not invariant –
depending on the choice of the half-samples different test values will be obtained
and there is no way of increasing the accuracy.

As a side product, the edf tests supply us with a natural technique of esti-
mating the parameter vector θ. We can simply find such θ̂∗ that minimizes
a selected edf statistic. Out of the four presented statistics A2 is the most
powerful when the fitted distribution departs from the true distribution in the
tails (D’Agostino and Stephens, 1986). Since the fit in the tails is of crucial
importance in most actuarial applications A2 is the recommended statistic for
the estimation scheme.

13.4.3 Limited Expected Value Function

The limited expected value function L of a claim size variable X, or of the
corresponding cdf F (x), is defined by

L(x) = E{min(X, x)} =
∫ x

0

ydF (y) + x {1 − F (x)} , x > 0. (13.59)

The value of the function L at point x is equal to the expectation of the cdf
F (x) truncated at this point. In other words, it represents the expected amount
per claim retained by the insured on a policy with a fixed amount deductible
of x. The empirical estimate is defined as follows:

L̂n(x) =
1
n

⎛⎝∑
xj<x

xj +
∑
xj≥x

x

⎞⎠ . (13.60)

In order to fit the limited expected value function L of an analytical distribution
to the observed data, the estimate L̂n is first constructed. Thereafter one tries
to find a suitable analytical cdf F , such that the corresponding limited expected
value function L is as close to the observed L̂n as possible.

The limited expected value function has the following important properties:

1. the graph of L is concave, continuous and increasing;
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2. L(x) → E(X), as x → ∞;

3. F (x) = 1 − L′(x), where L′(x) is the derivative of the function L at
point x; if F is discontinuous at x, then the equality holds true for the
right-hand derivative L′(x+).

A reason why the limited expected value function is a particularly suitable tool
for our purposes is that it represents the claim size distribution in the monetary
dimension. For example, we have L(∞) = E(X) if it exists. The cdf F , on
the other hand, operates on the probability scale, i.e. takes values between
0 and 1. Therefore, it is usually difficult to see, by looking only at F (x),
how sensitive the price for the insurance – the premium – is to changes in the
values of F , while the limited expected value function shows immediately how
different parts of the claim size cdf contribute to the premium (see Chapter 19
for information on various premium calculation principles). Apart from curve-
fitting purposes, the function L will turn out to be a very useful concept in
dealing with deductibles in Chapter 19. It is also worth mentioning, that there
exists a connection between the limited expected value function and the mean
excess function:

E(X) = L(x) + P(X > x)e(x). (13.61)

The limited expected value functions for all distributions considered in this
chapter are given by:

• log-normal distribution:

L(x) = exp
(

µ +
σ2

2

)
Φ
(

ln x − µ − σ2

σ

)
+ x

{
1 − Φ

(
ln x − µ

σ

)}
;

• exponential distribution:

L(x) =
1
β
{1 − exp(−βx)} ;

• Pareto distribution:

L(x) =
λ − λα(λ + x)1−α

α − 1
;
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• Burr distribution:

L(x) =
λ1/τ Γ

(
α − 1

τ

)
Γ
(
1 + 1

τ

)
Γ(α)

B
(

1 +
1
τ

, α − 1
τ

;
xτ

λ + xτ

)
+ x

(
λ

λ + xτ

)α

;

• Weibull distribution:

L(x) =
Γ (1 + 1/τ)

β1/τ
Γ
(

1 +
1
τ

, βxα

)
+ xe−βxα

;

• gamma distribution:

L(x) =
α

β
F (x, α + 1, β) + x {1 − F (x, α, β)} ;

• mixture of two exponential distributions:

L(x) =
a

β1
{1 − exp (−β1x)} +

1 − a

β2
{1 − exp (−β2x)} .

From the curve-fitting point of view the use of the limited expected value
function has the advantage, compared with the use of the cdfs, that both the
analytical and the corresponding observed function L̂n, based on the observed
discrete cdf, are continuous and concave, whereas the observed claim size cdf
Fn is a discontinuous step function. Property (3) implies that the limited
expected value function determines the corresponding cdf uniquely. When the
limited expected value functions of two distributions are close to each other,
not only are the mean values of the distributions close to each other, but the
whole distributions as well.

13.5 Applications

In this section we illustrate some of the methods described earlier in the
chapter. We conduct the analysis for two datasets. The first is the PCS
(Property Claim Services, see Insurance Services Office Inc. (ISO) web site:
www.iso.com/products/2800/prod2801.html) dataset covering losses resulting
from natural catastrophic events in USA that occurred between 1990 and 1999.
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The second is the Danish fire losses dataset, which concerns major fire losses in
Danish Krone (DKK) that occurred between 1980 and 1990 and were recorded
by Copenhagen Re. Here we consider only losses in profits. The overall fire
losses were analyzed by Embrechts, Klüppelberg, and Mikosch (1997).

The Danish fire losses dataset has been already adjusted for inflation. However,
the PCS dataset consists of raw data. Since the data have been collected over a
considerable period of time, it is important to bring the values onto a common
basis by means of a suitably chosen index. The choice of the index depends on
the line of insurance. For example, an index of the cost of construction prices
may be suitable for fire and other property insurance, an earnings index for life
and accident insurance, and a general price index may be appropriate when
a single index is required for several lines or for the whole portfolio. Here we
adjust the PCS dataset using the Consumer Price Index provided by the U.S.
Department of Labor. Note, that the same raw catastrophe data, however,
adjusted using the discount window borrowing rate that refers to the simple
interest rate at which depository institutions borrow from the Federal Reserve
Bank of New York was analyzed by Burnecki, Härdle, and Weron (2004). A
related dataset containing the national and regional PCS indices for losses
resulting from catastrophic events in USA was studied by Burnecki, Kukla,
and Weron (2000).

As suggested in the proceeding section we first look for the appropriate shape
of the distribution. To this end we plot the empirical mean excess functions
for the analyzed data sets, see Figure 13.7. Both in the case of PCS natural
catastrophe losses and Danish fire losses the data show a super-exponential
pattern suggesting a log-normal, Pareto or Burr distribution as most adequate
for modeling. Hence, in the sequel we calibrate these three distributions.

We apply two estimation schemes: maximum likelihood and A2 statistic mini-
mization. Out of the three fitted distributions only the log-normal has closed
form expressions for the maximum likelihood estimators. Parameter calibra-
tion for the remaining distributions and the A2 minimization scheme is carried
out via a simplex numerical optimization routine. A limited simulation study
suggests that the A2 minimization scheme tends to return lower values of all
edf test statistics than maximum likelihood estimation. Hence, it is exclusively
used for further analysis.

The results of parameter estimation and hypothesis testing for the PCS loss
amounts are presented in Table 13.1. The Burr distribution with parameters
α = 0.4801, λ = 3.9495 · 1016, and τ = 2.1524 yields the best results and
passes all tests at the 2.5% level. The log-normal distribution with parameters
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Figure 13.7: The empirical mean excess function ên(x) for the PCS catastrophe
data (left panel) and the Danish fire data (right panel).
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µ = 18.3806 and σ = 1.1052 comes in second, however, with an unacceptable
fit as tested by the Anderson-Darling statistic. As expected, the remaining
distributions presented in Section 13.3 return even worse fits. Thus we suggest
to choose the Burr distribution as a model for the PCS loss amounts. In the left
panel of Figure 13.8 we present the empirical and analytical limited expected
value functions for the three fitted distributions. The plot justifies the choice
of the Burr distribution.

The results of parameter estimation and hypothesis testing for the Danish fire
loss amounts are presented in Table 13.2. The log-normal distribution with
parameters µ = 12.6645 and σ = 1.3981 returns the best results. It is the only
distribution that passes any of the four applied tests (D, V , W 2, and A2) at a
reasonable level. The Burr and Pareto laws yield worse fits as the tails of the
edf are lighter than power-law tails. As expected, the remaining distributions
presented in Section 13.3 return even worse fits. In the right panel of Figure
13.8 we depict the empirical and analytical limited expected value functions
for the three fitted distributions. Unfortunately, no definitive conclusions can
be drawn regarding the choice of the distribution. Hence, we suggest to use
the log-normal distribution as a model for the Danish fire loss amounts.
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Figure 13.8: The empirical (black solid line) and analytical limited expected
value functions (LEVFs) for the log-normal (green dashed line),
Pareto (blue dotted line), and Burr (red long-dashed line) distri-
butions for the PCS catastrophe data (left panel) and the Danish
fire data (right panel).
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Table 13.1: Parameter estimates obtained via the A2 minimization scheme and
test statistics for the catastrophe loss amounts. The corresponding
p-values based on 1000 simulated samples are given in parentheses.

Distributions: log-normal Pareto Burr
Parameters: µ=18.3806 α=3.4081 α=0.4801

σ=1.1052 λ=4.4767 · 108 λ=3.9495 · 1016

τ=2.1524
Tests: D 0.0440 0.1049 0.0366

(0.033) (<0.005) (0.077)

V 0.0786 0.1692 0.0703
(0.022) (<0.005) (0.038)

W 2 0.1353 0.7042 0.0626
(0.006) (<0.005) (0.059)

A2 1.8606 6.1160 0.5097
(<0.005) (<0.005) (0.027)

STFloss09.xpl
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Table 13.2: Parameter estimates obtained via the A2 minimization scheme and
test statistics for the fire loss amounts. The corresponding p-values
based on 1000 simulated samples are given in parentheses.

Distributions: log-normal Pareto Burr
Parameters: µ=12.6645 α=1.7439 α=0.8804

σ=1.3981 λ=6.7522 · 105 λ=8.4202 · 106

τ=1.2749
Tests: D 0.0381 0.0471 0.0387

(0.008) (<0.005) (<0.005)

V 0.0676 0.0779 0.0724
(0.005) (<0.005) (<0.005)

W 2 0.0921 0.2119 0.1117
(0.049) (<0.005) (0.007)

A2 0.7567 1.9097 0.6999
(0.024) (<0.005) (0.005)

STFloss10.xpl
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14 Modeling of the Risk Process

Krzysztof Burnecki and Rafa�l Weron

14.1 Introduction

An actuarial risk model is a mathematical description of the behavior of a
collection of risks generated by an insurance portfolio. It is not intended to
replace sound actuarial judgment. In fact, a well formulated model is consistent
with and adds to intuition, but cannot and should not replace experience and
insight (Willmot, 2001). Even though we cannot hope to identify all influential
factors relevant to future claims, we can try to specify the most important.

A typical model for insurance risk, the so-called collective risk model, has two
main components: one characterizing the frequency (or incidence) of events and
another describing the severity (or size or amount) of gain or loss resulting from
the occurrence of an event, see also Chapter 18. The collective risk model is
often used in health insurance and in general insurance, whenever the main risk
components are the number of insurance claims and the amount of the claims.
It can also be used for modeling other non-insurance product risks, such as
credit and operational risk (Embrechts, Kaufmann, and Samorodnitsky, 2004).
In the former, for example, the main risk components are the number of credit
events (either defaults or downgrades), and the amount lost as a result of the
credit event.

The stochastic nature of both the incidence and severity of claims are fun-
damental components of a realistic model. Hence, in its classical form the
model for insurance risk is defined as follows (Embrechts, Klüppelberg, and
Mikosch, 1997; Grandell, 1991). If (Ω,F , P) is a probability space carrying (i)
a point process {Nt}t≥0, i.e. an integer valued stochastic process with N0 = 0
a.s., Nt < ∞ for each t < ∞ and nondecreasing realizations, and (ii) an inde-
pendent sequence {Xk}∞k=1 of positive independent and identically distributed
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(i.i.d.) random variables, then the risk process {Rt}t≥0 is given by

Rt = u + c(t) −
Nt∑
i=1

Xi. (14.1)

The non-negative constant u stands for the initial capital of the insurance com-
pany. The company sells insurance policies and receives a premium according
to c(t). In the classical model c is constant, but in a more general setup it
can be a deterministic or even a stochastic function of time. Claims form the
aggregate claim loss {∑Nt

i=1 Xi}. The claim severities are described by the ran-
dom sequence {Xk} and the number of claims in the interval (0, t] is modeled
by the point process Nt, often called the claim arrival process.

The modeling of the aggregate loss process consists of modeling the point pro-
cess {Nt} and the claim size sequence {Xk}. Both processes are usually as-
sumed to be independent, hence can be treated independently of each other.
The modeling of claim severities was covered in detail in Chapter 13. The focus
of this chapter is therefore on modeling the claim arrival point process {Nt}.

The simplicity of the risk process (14.1) is only illusionary. In most cases no
analytical conclusions regarding the time evolution of the process can be drawn.
However, it is this evolution that is important for practitioners, who have to
calculate functionals of the risk process like the expected time to ruin and the
ruin probability, see Chapter 15. All this calls for numerical simulation schemes
(Burnecki, Härdle, and Weron, 2004).

In Section 14.2 we present efficient algorithms for five classes of the claim arrival
point processes. Next, in Section 14.3 we apply some of them to modeling real-
world risk processes. The analysis is conducted for the same two datasets as
in Chapter 13: (i) the PCS (Property Claim Services) dataset covering losses
resulting from catastrophic events in USA that occurred between 1990 and 1999
and (ii) the Danish fire losses dataset, which concerns major fire losses of profits
that occurred between 1980 and 1990 and were recorded by Copenhagen Re.
It is important to note that the choice of the model has influence on both the
ruin probability (see Chapter 15) and the reinsurance strategy of the company
(see Chapter 20), hence the selection has to be made with great care.
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14.2 Claim Arrival Processes

In this section we focus on efficient simulation of the claim arrival point process
{Nt}. This process can be simulated either via the arrival times {Ti}, i.e. mo-
ments when the ith claim occurs, or the inter-arrival times (or waiting times)
Wi = Ti − Ti−1, i.e. the time periods between successive claims. Note that in
terms of Wi’s the claim arrival point process is given by Nt =

∑∞
n=1 I(Tn ≤ t).

In what follows we discuss five prominent examples of {Nt}, namely the clas-
sical (homogeneous) Poisson process, the non-homogeneous Poisson process,
the mixed Poisson process, the Cox process (also called the doubly stochastic
Poisson process) and the renewal process.

14.2.1 Homogeneous Poisson Process

The most common and best known claim arrival point process is the homo-
geneous Poisson process (HPP) with stationary and independent increments
and the number of claims in a given time interval governed by the Poisson law.
While this process is normally appropriate in connection with life insurance
modeling, it often suffers from the disadvantage of providing an inadequate fit
to insurance data in other coverages. In particular, it tends to understate the
true variability inherent in these situations.

Formally, a continuous-time stochastic process {Nt : t ≥ 0} is a (homogeneous)
Poisson process with intensity (or rate) λ > 0 if (i) {Nt} is a point process,
and (ii) the waiting times Wi are independent and identically distributed and
follow an exponential law with intensity λ, i.e. with mean 1/λ (see Chapter 13,
where the properties and simulation scheme for the exponential distribution
were discussed). This definition naturally leads to a simulation scheme for the
successive arrival times T1, T2, . . . , Tn of the Poisson process:

Algorithm HPP1

Step 1: set T0 = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate an exponential random variable E with intensity λ

Step 2b: set Ti = Ti−1 + E
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Alternatively, the homogeneous Poisson process can be simulated by applying
the following property (Rolski et al., 1999). Given that Nt = n, the n occur-
rence times T1, T2, . . . , Tn have the same distributions as the order statistics
corresponding to n i.i.d. random variables uniformly distributed on the inter-
val (0, t]. Hence, the arrival times of the HPP on the interval (0, t] can be
generated as follows:

Algorithm HPP2

Step 1: generate a Poisson random variable N with intensity λ

Step 2: generate N random variables Ui distributed uniformly on (0, 1), i.e.
Ui ∼ U(0, 1), i = 1, 2, . . . , N

Step 3: set (T1, T2, . . . , TN ) = t · sort{U1, U2, . . . , UN}

In general, this algorithm will run faster than the previous one as it does not
involve a loop. The only two inherent numerical difficulties involve generating a
Poisson random variable and sorting a vector of occurrence times. Whereas the
latter problem can be solved via the standard quicksort algorithm, the former
requires more attention. A simple algorithm would take N = min{n : U1 · . . . ·
Un < exp(−λ)} − 1, which is a consequence of the properties of the Poisson
process (for a derivation see Ross, 2002). However, for large λ, this method can
become slow. Faster, but more complicated methods have been proposed in
the literature. Ahrens and Dieter (1982) suggested a generator which utilizes
acceptance-complement with truncated normal variates whenever λ > 10 and
reverts to table-aided inversion otherwise. Stadlober (1989) adapted the ratio
of uniforms method for λ > 5 and classical inversion for small λ’s. Hörmann
(1993) advocated the transformed rejection method, which is a combination of
the inversion and rejection algorithms.

Sample trajectories of homogeneous and non-homogeneous Poisson processes
are plotted in Figure 14.1. The dotted green line is a HPP with intensity λ = 1
(left panel) and λ = 10 (right panel). Clearly the latter jumps more often.
Since for the HPP the expected value E(Nt) = λt, it is natural to define the
premium function in this case as c(t) = ct, where c = (1+θ)µλ, µ = E(Xk) and
θ > 0 is the relative safety loading which “guarantees” survival of the insurance
company. With such a choice of the premium function we obtain the classical
form of the risk process.
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Figure 14.1: Left panel : Sample trajectories of a NHPP with linear intensity
λ(t) = a+b ·t for a = 1 and b = 1 (solid blue line), b = 0.1 (dashed
red line), and b = 0 (dotted green line). Note that the latter is
in fact a HPP. Right panel : Sample trajectories of a NHPP with
periodic intensity λ(t) = a + b · cos(2πt) for a = 10 and b = 10
(solid blue line), b = 1 (dashed red line), and b = 0 (dotted green
line). Again, the latter is a HPP.
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14.2.2 Non-homogeneous Poisson Process

The choice of a homogeneous Poisson process implies that the size of the port-
folio cannot increase or decrease. In addition, it cannot describe situations,
like in motor insurance, where claim occurrence epochs are likely to depend
on the time of the year or of the week. For modeling such phenomena the
non-homogeneous Poisson process (NHPP) suits much better than the homo-
geneous one. The NHPP can be thought of as a Poisson process with a variable
intensity defined by the deterministic intensity (rate) function λ(t). Note that
the increments of a NHPP do not have to be stationary. In the special case
when λ(t) takes the constant value λ, the NHPP reduces to the homogeneous
Poisson process with intensity λ.
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The simulation of the process in the non-homogeneous case is slightly more
complicated than in the homogeneous one. The first approach, known as the
thinning or rejection method, is based on the following fact (Bratley, Fox,
and Schrage, 1987; Ross, 2002). Suppose that there exists a constant λ such
that λ(t) ≤ λ for all t. Let T ∗

1 , T ∗
2 , T ∗

3 , . . . be the successive arrival times of
a homogeneous Poisson process with intensity λ. If we accept the ith arrival
time T ∗

i with probability λ(T ∗
i )/λ, independently of all other arrivals, then the

sequence T1, T2, . . . of the accepted arrival times (in ascending order) forms a
sequence of the arrival times of a non-homogeneous Poisson process with the
rate function λ(t). The resulting algorithm reads as follows:

Algorithm NHPP1 (Thinning)

Step 1: set T0 = 0 and T ∗ = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate an exponential random variable E with intensity λ

Step 2b: set T ∗ = T ∗ + E

Step 2c: generate a random variable U distributed uniformly on (0, 1)

Step 2d: if U > λ(T ∗)/λ then return to step 2a (→ reject the arrival
time) else set Ti = T ∗ (→ accept the arrival time)

As mentioned in the previous section, the inter-arrival times of a homogeneous
Poisson process have an exponential distribution. Therefore steps 2a–2b gen-
erate the next arrival time of a homogeneous Poisson process with intensity λ.
Steps 2c–2d amount to rejecting (hence the name of the method) or accepting
a particular arrival as part of the thinned process (hence the alternative name).

Note that in the above algorithm we generate a HPP with intensity λ employing
the HPP1 algorithm. We can also generate it using the HPP2 algorithm, which
is in general much faster.

The second approach is based on the observation (Grandell, 1991) that for a
NHPP with rate function λ(t) the increment Nt−Ns, 0 < s < t, is distributed as
a Poisson random variable with intensity λ̃ =

∫ t

s
λ(u)du. Hence, the cumulative

distribution function Fs of the waiting time Ws is given by

Fs(t) = P(Ws ≤ t) = 1 − P(Ws > t) = 1 − P(Ns+t − Ns = 0) =

= 1 − exp
{
−
∫ s+t

s

λ(u)du

}
= 1 − exp

{
−
∫ t

0

λ(s + v)dv

}
.
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If the function λ(t) is such that we can find a formula for the inverse F−1
s

for each s, we can generate a random quantity X with the distribution Fs by
using the inverse transform method. The algorithm, often called the integration
method, can be summarized as follows:

Algorithm NHPP2 (Integration)

Step 1: set T0 = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate a random variable U distributed uniformly on (0, 1)

Step 2b: set Ti = Ti−1 + F−1
s (U)

The third approach utilizes a generalization of the property used in the HPP2
algorithm. Given that Nt = n, the n occurrence times T1, T2, . . . , Tn of the
non-homogeneous Poisson process have the same distributions as the order
statistics corresponding to n independent random variables distributed on the
interval (0, t], each with the common density function f(v) = λ(v)/

∫ t

0
λ(u)du,

where v ∈ (0, t]. Hence, the arrival times of the NHPP on the interval (0, t] can
be generated as follows:

Algorithm NHPP3

Step 1: generate a Poisson random variable N with intensity
∫ t

0
λ(u)du

Step 2: generate N random variables Vi, i = 1, 2, . . . N with density f(v) =
λ(v)/

∫ t

0
λ(u)du.

Step 3: set (T1, T2, . . . , TN ) = sort{V1, V2, . . . , VN}.

The performance of the algorithm is highly dependent on the efficiency of the
computer generator of random variables with density f(v). Moreover, like in
the homogeneous case, this algorithm has the advantage of not invoking a
loop. Hence, it performs faster than the former two methods if λ(u) is a nicely
integrable function.

Sample trajectories of non-homogeneous Poisson processes are plotted in Figure
14.1. In the left panel realizations of a NHPP with linear intensity λ(t) = a+b·t
are presented for the same value of parameter a. Note, that the higher the
value of parameter b, the more pronounced is the increase in the intensity of
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the process. In the right panel realizations of a NHPP with periodic intensity
λ(t) = a + b · cos(2πt) are illustrated, again for the same value of parameter a.
This time, for high values of parameter b the events exhibit a seasonal behavior.
The process has periods of high activity (grouped around natural values of t)
and periods of low activity, where almost no jumps take place. Finally, we note
that since in the non-homogeneous case the expected value E(Nt) =

∫ t

0
λ(s)ds,

it is natural to define the premium function as c(t) = (1 + θ)µ
∫ t

0
λ(s)ds.

14.2.3 Mixed Poisson Process

In many situations the portfolio of an insurance company is diversified in the
sense that the risks associated with different groups of policy holders are sig-
nificantly different. For example, in motor insurance we might want to make a
difference between male and female drivers or between drivers of different age.
We would then assume that the claims come from a heterogeneous group of
clients, each one of them generating claims according to a Poisson distribution
with the intensity varying from one group to another.

Another practical reason for considering yet another generalization of the clas-
sical Poisson process is the following. If we measure the volatility of risk pro-
cesses, expressed in terms of the index of dispersion Var(Nt)/ E(Nt), then very
often we obtain estimates in excess of one – a value obtained for the homoge-
neous and the non-homogeneous cases. These empirical observations led to the
introduction of the mixed Poisson process (Ammeter, 1948).

In the mixed Poisson process the distribution of {Nt} is given by a mixture
of Poisson processes (Rolski et al., 1999). This means that, conditioning on
an extrinsic random variable Λ (called a structure variable), the process {Nt}
behaves like a homogeneous Poisson process. Since for each t the claim numbers
{Nt} up to time t are Poisson variates with intensity Λt, it is now reasonable
to consider the premium function of the form c(t) = (1 + θ)µΛt.

The process can be generated in the following way: first a realization of a non-
negative random variable Λ is generated and, conditioned upon its realization,
{Nt} as a homogeneous Poisson process with that realization as its intensity is
constructed. Both the HPP1 and the HPP2 algorithm can be utilized. Making
use of the former we can write:

Algorithm MPP1

Step 1: generate a realization λ of the random intensity Λ
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Step 2: set T0 = 0

Step 3: for i = 1, 2, . . . , n do

Step 3a: generate an exponential random variable E with intensity λ

Step 3b: set Ti = Ti−1 + E

14.2.4 Cox Process

The Cox process, or doubly stochastic Poisson process, provides flexibility by
letting the intensity not only depend on time but also by allowing it to be a
stochastic process. Therefore, the doubly stochastic Poisson process can be
viewed as a two-step randomization procedure. An intensity process {Λ(t)} is
used to generate another process {Nt} by acting as its intensity. That is, {Nt}
is a Poisson process conditional on {Λ(t)} which itself is a stochastic process.
If {Λ(t)} is deterministic, then {Nt} is a non-homogeneous Poisson process. If
Λ(t) = Λ for some positive random variable Λ, then {Nt} is a mixed Poisson
process. In the doubly stochastic case the premium function is a generalization
of the former functions, in line with the generalization of the claim arrival
process. Hence, it takes the form c(t) = (1 + θ)µ

∫ t

0
Λ(s)ds.

The definition of the Cox process suggests that it can be generated in the
following way: first a realization of a non-negative stochastic process {Λ(t)} is
generated and, conditioned upon its realization, {Nt} as a non-homogeneous
Poisson process with that realization as its intensity is constructed. Out of the
three methods of generating a non-homogeneous Poisson process the NHPP1
algorithm is the most general and, hence, the most suitable for adaptation. We
can write:

Algorithm CP1

Step 1: generate a realization λ(t) of the intensity process {Λ(t)} for a suffi-
ciently large time period

Step 2: set λ = max {λ(t)}
Step 3: set T0 = 0 and T ∗ = 0

Step 4: for i = 1, 2, . . . , n do

Step 4a: generate an exponential random variable E with intensity λ
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Step 4b: set T ∗ = T ∗ + E

Step 4c: generate a random variable U distributed uniformly on (0, 1)

Step 4d: if U > λ(T ∗)/λ then return to step 4a (→ reject the arrival
time) else set Ti = T ∗ (→ accept the arrival time)

14.2.5 Renewal Process

Generalizing the homogeneous Poisson process we come to the point where
instead of making λ non-constant, we can make a variety of different distri-
butional assumptions on the sequence of waiting times {W1,W2, . . .} of the
claim arrival point process {Nt}. In some particular cases it might be useful
to assume that the sequence is generated by a renewal process, i.e. the ran-
dom variables Wi are i.i.d. and positive. Note that the homogeneous Poisson
process is a renewal process with exponentially distributed inter-arrival times.
This observation lets us write the following algorithm for the generation of the
arrival times of a renewal process:

Algorithm RP1

Step 1: set T0 = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate a random variable X with an assumed distribution
function F

Step 2b: set Ti = Ti−1 + X

An important point in the previous generalizations of the Poisson process was
the possibility to compensate risk and size fluctuations by the premiums. Thus,
the premium rate had to be constantly adapted to the development of the
claims. For renewal claim arrival processes, a constant premium rate allows
for a constant safety loading (Embrechts and Klüppelberg, 1993). Let {Nt}
be a renewal process and assume that W1 has finite mean 1/λ. Then the
premium function is defined in a natural way as c(t) = (1 + θ)µλt, like for the
homogeneous Poisson process.
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Figure 14.2: Left panel : The empirical mean excess function ên(x) for the PCS
waiting times. Right panel : Shapes of the mean excess function
e(x) for the log-normal (solid green line), Burr (dashed blue line),
and exponential (dotted red line) distributions.
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14.3 Simulation of Risk Processes

14.3.1 Catastrophic Losses

In this section we apply some of the models described earlier to the PCS dataset.
The Property Claim Services dataset covers losses resulting from natural catas-
trophic events in USA that occurred between 1990 and 1999. It is adjusted for
inflation using the Consumer Price Index provided by the U.S. Department of
Labor. See Chapters 4 and 13 where this dataset was analyzed in the context
of CAT bonds and loss distributions, respectively. Note, that the same raw
catastrophe data, however, adjusted using the discount window borrowing rate
that refers to the simple interest rate at which depository institutions borrow
from the Federal Reserve Bank of New York was analyzed by Burnecki, Härdle,
and Weron (2004).
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Table 14.1: Parameter estimates obtained via the A2 minimization scheme and
test statistics for the PCS waiting times. The corresponding p-
values based on 1000 simulated samples are given in parentheses.

Distributions: log-normal Burr exponential
Parameters: µ=−3.91 α=1.3051 β=33.187

σ=0.9051 λ=1.6 · 10−3

τ=1.7448
Tests:

D 0.0589 0.0492 0.1193
(<0.005) (<0.005) (<0.005)

V 0.0973 0.0938 0.1969
(<0.005) (<0.005) (<0.005)

W 2 0.1281 0.1120 0.9130
(0.013) (<0.005) (<0.005)

A2 1.3681 0.8690 5.8998
(<0.005) (<0.005) (<0.005)

STFrisk03.xpl

Now, we study the claim arrival process and the distribution of waiting times.
As suggested in Chapter 13 we first look for the appropriate shape of the
approximating distribution. To this end we plot the empirical mean excess
function for the waiting time data (given in years), see Figure 14.2. The initially
decreasing, later increasing pattern suggests the log-normal or Burr distribution
as most adequate for modeling. The empirical distribution seems, however,
to have lighter tails than the two: e(x) does not increase for very large x.
The overall impression might be of a highly volatile but constant function,
like that for the exponential distribution. Hence, we fit the log-normal, Burr,
and exponential distributions using the A2 minimization scheme and check the
goodness-of-fit with test statistics. In terms of the values of the test statistics
the Burr distribution seems to give the best fit. However, it does not pass
any of the tests even at the very low level of 0.5% (see Chapter 13 for test
definitions). The only distribution that passes any of the four applied tests,
although at a very low level, is the log-normal law with parameters µ = −3.91
and σ = 0.9051, see Table 14.1. Thus, if we wanted to model the claim arrival
process by a renewal process then the log-normal distribution would be the
best to describe the waiting times.
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Figure 14.3: Left panel : The quarterly number of losses for the PCS data.
Right panel : Periodogram of the PCS quarterly number of losses.
A distinct peak is visible at frequency ω = 0.25 implying a period
of 1/ω = 4 quarters, i.e. one year.
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If, on the other hand, we wanted to model the claim arrival process by a HPP
then the studies of the quarterly numbers of losses would lead us to the conclu-
sion that the best HPP is given by the annual intensity λ1 = 34.2. This value is
obtained by taking the mean of the quarterly numbers of losses and multiplying
it by four. Note, that the value of the intensity is significantly different from
the parameter β = 32.427 of the calibrated exponential distribution, see Table
14.1. This, together with a very bad fit of the exponential law to the waiting
times, indicates that the HPP is not a good model for the claim arrival process.

Further analysis of the data reveals its periodicity. The time series of the
quarterly number of losses does not exhibit any trends but an annual season-
ality can be very well observed using the periodogram, see Figure 14.3. This
suggests that calibrating a NHPP with a sinusoidal rate function would give
a good model. We estimate the parameters by fitting the cumulative inten-
sity function, i.e. the mean value function E(Nt), to the accumulated num-
ber of PCS losses. The least squares algorithm yields the formula λ2(t) =
35.32 + 2.32 · 2π · sin{2π(t− 0.20)}. This choice of λ(t) gives a reasonably good
fit, see also Chapter 4.
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Figure 14.4: The PCS data simulation results for a NHPP with Burr claim sizes
(left panel), a NHPP with log-normal claim sizes (right panel), and
a NHPP with claims generated from the edf (bottom panel). The
dotted lines are the sample 0.001, 0.01, 0.05, 0.25, 0.50, 0.75, 0.95,
0.99, 0.999-quantile lines based on 3000 trajectories of the risk
process.
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To study the evolution of the risk process we simulate sample trajectories. We
consider a hypothetical scenario where the insurance company insures losses
resulting from catastrophic events in the United States. The company’s initial
capital is assumed to be u = 100 billion USD and the relative safety loading
used is θ = 0.5. We choose different models of the risk process whose application
is most justified by the statistical results described above. The results are
presented in Figure 14.4. In all subplots the thick solid blue line is the “real”
risk process, i.e. a trajectory constructed from the historical arrival times and
values of the losses. The different shapes of the “real” risk process in the
subplots are due to the different forms of the premium function c(t). Recall,
that the function has to be chosen accordingly to the type of the claim arrival
process. The dashed red line is a sample trajectory. The dotted lines are the
sample 0.001, 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based
on 3000 trajectories of the risk process. The function x̂p(t) is called a sample
p-quantile line if for each t ∈ [t0, T ], x̂p(t) is the sample p-quantile, i.e. if it
satisfies Fn(xp−) ≤ p ≤ Fn(xp), where Fn is the edf. Quantile lines are a
very helpful tool in the analysis of stochastic processes. For example, they can
provide a simple justification of the stationarity (or the lack of it) of a process,
see Janicki and Weron (1994). In Figure 14.4 they visualize the evolution of
the density of the risk process. The periodic pattern is due to the sinusoidal
intensity function λ2(t). We also note that we assumed in the simulations that
if the capital of the insurance company drops bellow zero, the company goes
bankrupt, so the capital is set to zero and remains at this level hereafter. This
is in agreement with Chapter 15.

The claim severity distribution of the PCS dataset was studied in Chapter 13.
The Burr distribution with parameters α = 0.4801, λ = 3.9495 · 1016, and
τ = 2.1524 yielded the best fit. Unfortunately, such a choice of the parameters
leads to an undesired feature of the claim size distribution – very heavy tails
of order x−ατ ≈ x−1.03. Although the expected value exists, the sample mean
is, in general, significantly below the theoretical value. As a consequence, the
premium function c(t) cannot include the factor µ = E(Xk) or the risk process
trajectories will exhibit a highly positive drift. To cope with this problem, in
the simulations we substitute the original factor µ with µ̃ equal to the empir-
ical mean of the simulated claims for all trajectories. Despite this change the
trajectories possess a positive drift due to the large value of the relative safety
loading θ. They are also highly volatile leading to a large number of ruins – the
0.05-quantile line drops to zero after five years, see the left panel in Figure 14.4.
It seems that the Burr distribution overestimates the PCS losses.
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In our second attempt we simulate the NHPP with log-normal claims with
µ = 18.3806 and σ = 1.1052, as the log-normal law was found in Chapter 13 to
yield a relatively good fit to the data. The results, shown in the right panel of
Figure 14.4, are not satisfactory. This time the analytical distribution largely
underestimates the loss data. The “real” risk process is well outside the 0.001-
quantile line. This leads us to the conclusion that none of the analytical loss
distributions describes the data well enough. We either overestimate risk using
the Burr distribution or underestimate it with the log-normal law. Hence, in
our next attempt we simulate the NHPP with claims generated from the edf,
see the bottom panel in Figure 14.4. The factor µ in the premium function c(t)
is set to the empirical mean. This time the “real” risk process lies close to the
median and does not cross the lower and upper quantile lines. This approach
seems to give the best results. However, we do have to remember that it has its
shortcomings. For example, the model is tailor-made for the dataset at hand
but is not universal. As the dataset will be expanded by including new losses
the model may change substantially. An analytic model would, in general, be
less susceptible to such modifications. Hence, it might be more optimal to use
the Burr distribution after all.

14.3.2 Danish Fire Losses

We conduct empirical studies for Danish fire losses recorded by Copenhagen
Re. The data concerns major Danish fire losses in Danish Krone (DKK),
occurred between 1980 and 1990 and adjusted for inflation. Only losses of
profits connected with the fires are taken into consideration, see Chapter 13
and Burnecki and Weron (2004), where this dataset was also analyzed.

We start the analysis with a HPP with a constant intensity λ3. Studies of the
quarterly numbers of losses and the inter-occurrence times of the fires lead us
to the conclusion that the HPP with the annual intensity λ3 = 57.72 gives the
best fit. However, as we can see in the right panel of Figure 14.5, the fit is not
very good suggesting that the HPP is too simplistic and forcing us to consider
the NHPP. In fact, a renewal process would also give unsatisfactory results as
the data reveals a clear increasing trend in the number of quarterly losses, see
the left panel in Figure 14.5. We tested different exponential and polynomial
functional forms, but a simple linear intensity function λ4(s) = c+ds gives the
best fit. Applying the least squares procedure we arrive at the following values
of the parameters: c = 13.97 and d = 7.57. Processes with both choices of
the intensity function, λ3 and λ4(s), are illustrated in the right panel of Figure
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Figure 14.5: Left panel : The quarterly number of losses for the Danish fire
data. Right panel : The aggregate quarterly number of losses of
the Danish fire data (dashed blue line) together with the mean
value function E(Nt) of the calibrated HPP (solid black line) and
the NHPP (dotted red line). Clearly the latter model gives a better
fit to the empirical data.
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14.5, where the accumulated number of fire losses and mean value functions for
all 11 years of data are depicted.

After describing the claim arrival process we have to find an appropriate model
for the loss amounts. In Chapter 13 a number of distributions were fitted
to loss sizes. The log-normal distribution with parameters µ = 12.6645 and
σ = 1.3981 produced the best results. The Burr distribution with α = 0.8804,
λ = 8.4202 · 106, and τ = 1.2749 overestimated the tails of the empirical
distribution, nevertheless it gave the next best fit.

The simulation results are presented in Figure 14.6. We consider a hypothetical
scenario where the insurance company insures losses resulting from fire damage.
The company’s initial capital is assumed to be u = 400 million DKK and the
relative safety loading used is θ = 0.5. We choose two models of the risk process
whose application is most justified by the statistical results described above:
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Figure 14.6: The Danish fire data simulation results for a NHPP with log-
normal claim sizes (left panel), a NHPP with Burr claim sizes
(right panel), and a NHPP with claims generated from the edf
(bottom panel). The dotted lines are the sample 0.001, 0.01, 0.05,
0.25, 0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based on 3000 tra-
jectories of the risk process.
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a NHPP with log-normal claim sizes and a NHPP with Burr claim sizes. For
comparison we also present the results of a model incorporating the empirical
distribution function. Recall, that in this model the factor µ in the premium
function c(t) is set to the empirical mean.

In all panels of Figure 14.6 the thick solid blue line is the “real” risk process,
i.e. a trajectory constructed from the historical arrival times and values of the
losses. The different shapes of the “real” risk process in the subplots are due
to the different forms of the premium function c(t) which has to be chosen
accordingly to the type of the claim arrival process. The dashed red line is
a sample trajectory. The dotted lines are the sample 0.001, 0.01, 0.05, 0.25,
0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based on 3000 trajectories of the
risk process. Similarly as in PCS data case, we assume that if the capital of
the insurance company drops bellow zero, the company goes bankrupt, so the
capital is set to zero and remains at this level hereafter.

Clearly, if claim severities are Burr distributed then extreme events are more
probable to happen than in the log-normal case, for which the historical trajec-
tory falls outside the 0.001-quantile line. The overall picture is, in fact, similar
to the one obtained for the PCS data. We either overestimate risk using the
Burr distribution or underestimate it with the log-normal law. The empirical
approach yields the “real” risk process which lies close to the median and does
not cross the very low or very high quantile lines. However, as stated previ-
ously, the empirical approach has its shortcomings. Since this time we only
slightly undervalue risk with the log-normal law it might be advisable to use it
for further modeling.
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15 Ruin Probabilities in Finite and
Infinite Time

Krzysztof Burnecki, Pawe�l Místa, and Aleksander Weron

15.1 Introduction

In examining the nature of the risk associated with a portfolio of business, it is
often of interest to assess how the portfolio may be expected to perform over
an extended period of time. One approach concerns the use of ruin theory
(Panjer and Willmot, 1992). Ruin theory is concerned with the excess of the
income (with respect to a portfolio of business) over the outgo, or claims paid.
This quantity, referred to as insurer’s surplus, varies in time. Specifically, ruin
is said to occur if the insurer’s surplus reaches a specified lower bound, e.g.
minus the initial capital. One measure of risk is the probability of such an
event, clearly reflecting the volatility inherent in the business. In addition, it
can serve as a useful tool in long range planning for the use of insurer’s funds.

We recall now a definition of the standard mathematical model for the insurance
risk, see Grandell (1991) and Chapter 14. The initial capital of the insurance
company is denoted by u, the Poisson process Nt with intensity (rate) λ de-
scribes the number of claims in (0, t] interval and claim severities are random,
given by i.i.d. non-negative sequence {Xk}∞k=1 with mean value µ and variance
σ2, independent of Nt. The insurance company receives a premium at a con-
stant rate c per unit time, where c = (1 + θ)λµ and θ > 0 is called the relative
safety loading. The classical risk process {Rt}t≥0 is given by

Rt = u + ct −
Nt∑
i=1

Xi.
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We define a claim surplus process {St}t≥0 as

St = u − Rt =
Nt∑
i=1

Xi − ct.

The time to ruin is defined as τ(u) = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u}.
Let L = sup0≤t<∞{St} and LT = sup0≤t<T {St}. The ruin probability in
infinite time, i.e. the probability that the capital of an insurance company ever
drops below zero can be then written as

ψ(u) = P(τ(u) < ∞) = P(L > u). (15.1)

We note that the above definition implies that the relative safety loading θ has
to be positive, otherwise c would be less than λµ and thus with probability 1
the risk business would become negative in infinite time. The ruin probability
in finite time T is given by

ψ(u, T ) = P(τ(u) ≤ T ) = P(LT > u). (15.2)

We also note that obviously ψ(u, T ) < ψ(u). However, the infinite time ruin
probability may be sometimes also relevant for the finite time case.

From a practical point of view, ψ(u, T ), where T is related to the planning
horizon of the company, may perhaps sometimes be regarded as more interest-
ing than ψ(u). Most insurance managers will closely follow the development of
the risk business and increase the premium if the risk business behaves badly.
The planning horizon may be thought of as the sum of the following: the time
until the risk business is found to behave “badly”, the time until the manage-
ment reacts and the time until a decision of a premium increase takes effect.
Therefore, in non-life insurance, it may be natural to regard T equal to four or
five years as reasonable (Grandell, 1991).

We also note that the situation in infinite time is markedly different from the
finite horizon case as the ruin probability in finite time can always be computed
directly using Monte Carlo simulations. We also remark that generalizations of
the classical risk process, which are studied in Chapter 14, where the occurrence
of the claims is described by point processes other than the Poisson process (i.e.,
non-homogeneous, mixed Poisson and Cox processes) do not alter the ruin
probability in infinite time. This stems from the following fact. Consider a risk
process R̃t driven by a Cox process Ñt with the intensity process λ̃(t), namely
R̃t = u + (1 + θ)µ

∫ t

0
λ̃(s)ds −∑Ñt

i=1 Xi. Define now Λt =
∫ t

0
λ̃(s)ds and Rt =
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R̃(Λ−1
t ). Then the point process Nt = Ñ(Λ−1

t ) is a standard Poisson process
with intensity 1, and therefore, ψ̃(u) = P(inft≥0{R̃t} < 0) = P(inft≥0{Rt} <
0) = ψ(u). The time scale defined by Λ−1

t is called the operational time scale.
It naturally affects the time to ruin, hence the finite time ruin probability, but
not the ultimate ruin probability.

The ruin probabilities in infinite and finite time can only be calculated for a
few special cases of the claim amount distribution. Thus, finding a reliable
approximation, especially in the ultimate case, when the Monte Carlo method
can not be utilized, is really important from a practical point of view.

In Section 15.2 we present a general formula, called Pollaczek-Khinchin formula,
on the ruin probability in infinite time, which leads to exact ruin probabilities
in special cases of the claim size distribution. Section 15.3 is devoted to various
approximations of the infinite time ruin probability. In Section 15.4 we compare
the 12 different well-known and not so well-known approximations. The finite-
time case is studied in Sections 15.5, 15.6, and 15.7. The exact ruin probabilities
in finite time are discussed in Section 15.5. The most important approximations
of the finite time ruin probability are presented in Section 15.6. They are
illustrated in Section 15.7.

To illustrate and compare approximations we use the PCS (Property Claim
Services) catastrophe data example introduced in Chapter 13. The data de-
scribes losses resulting from natural catastrophic events in USA that occurred
between 1990 and 1999. This data set was used to obtain the parameters of
the discussed distributions.

We note that ruin theory has been also recently employed as an interesting
tool in operational risk. In the view of the data already available on oper-
ational risk, ruin type estimates may become useful (Embrechts, Kaufmann,
and Samorodnitsky, 2004). We finally note that all presented explicit solutions
and approximations are implemented in the Insurance library of XploRe. All
figures and tables were created with the help of this library.

15.1.1 Light- and Heavy-tailed Distributions

We distinguish here between light- and heavy-tailed distributions. A distri-
bution FX(x) is said to be light-tailed, if there exist constants a > 0, b > 0
such that F̄X(x) = 1 − FX(x) ≤ ae−bx or, equivalently, if there exist z > 0,
such that MX(z) < ∞, where MX(z) is the moment generating function, see
Chapter 13. Distribution FX(x) is said to be heavy-tailed, if for all a > 0,
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Table 15.1: Typical claim size distributions. In all cases x ≥ 0.
Light-tailed distributions

Name Parameters pdf
Exponential β > 0 fX(x) = β exp(−βx)
Gamma α > 0, β > 0 fX(x) = βα

Γ(α)x
α−1 exp(−βx)

Weibull β > 0, τ ≥ 1 fX(x) = βτxτ−1 exp(−βxτ )

Mixed exp’s βi > 0,
n∑

i=1

ai = 1 fX(x) =
n∑

i=1

{aiβi exp(−βix)}
Heavy-tailed distributions

Name Parameters pdf
Weibull β > 0, 0 < τ < 1 fX(x) = βτxτ−1 exp(−βxτ )
Log-normal µ ∈ R, σ > 0 fX(x) = 1√

2πσx
exp

{
− (ln x−µ)2

2σ2

}
Pareto α > 0, λ > 0 fX(x) = α

λ+x

(
λ

λ+x

)α

Burr α > 0, λ > 0, τ > 0 fX(x) = ατλαxτ−1

(λ+xτ )α+1

b > 0: F̄X(x) > ae−bx, or, equivalently, if ∀z > 0 MX(z) = ∞. We study here
claim size distributions as in Table 15.1.

In the case of light-tailed claims the adjustment coefficient (called also the
Lundberg exponent) plays a key role in calculating the ruin probability. Let
γ = supz {MX(z)} < ∞ and let R be a positive solution of the equation:

1 + (1 + θ)µR = MX(R), R < γ. (15.3)

If there exists a non-zero solution R to the above equation, we call it an adjust-
ment coefficient. Clearly, R = 0 satisfies the equation (15.3), but there may
exist a positive solution as well (this requires that X has a moment generating
function, thus excluding distributions such as Pareto and the log-normal). To
see the plausibility of this result, note that MX(0) = 1, M ′

X(z) < 0, M
′′
X(z) > 0

and M
′
X(0) = −µ. Hence, the curves y = MX(z) and y = 1 + (1 + θ)µz may

intersect, as shown in Figure 15.1.

An analytical solution to equation (15.3) exists only for few claim distributions.
However, it is quite easy to obtain a numerical solution. The coefficient R
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Figure 15.1: Illustration of the existence of the adjustment coefficient. The
solid blue line represents the curve y = 1 + (1 + θ)µz and the
dotted red one y = MX(z).

STFruin01.xpl

satisfies the inequality:

R <
2θµ

µ(2)
, (15.4)

where µ(2) = E(X2
i ), see Asmussen (2000). Let D(z) = 1 + (1 + θ)µz−MX(z).

Thus, the adjustment coefficient R > 0 satisfies the equation D(R) = 0. In
order to get the solution one may use the Newton-Raphson formula

Rj+1 = Rj − D(Rj)
D′(Rj)

, (15.5)

with the initial condition R0 = 2θµ/µ(2), where D′(z) = (1 + θ)µ − M ′
X(z).
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Moreover, if it is possible to calculate the third raw moment µ(3), we can obtain
a sharper bound than (15.4), Panjer and Willmot (1992):

R <
12µθ

3µ(2) +
√

9(µ(2))2 + 24µµ(3)θ
,

and use it as the initial condition in (15.5).

15.2 Exact Ruin Probabilities in Infinite Time

In order to present a ruin probability formula we first use the relation (15.1)
and express L as a sum of so-called ladder heights. Let L1 be the value that
the process {St} reaches for the first time above the zero level. Next, let L2 be
the value which is obtained for the first time above the level L1; L3, L4, . . . are
defined in the same way. The values Lk are called ladder heights. Since the
process {St} has stationary and independent increments, {Lk}∞k=1 is a sequence
of independent and identically distributed variables with the density

fL1(x) = F̄X(x)/µ. (15.6)

One may also show that the number of ladder heights K is given by the geomet-
ric distribution with the parameter q = θ/(1 + θ). Thus, the random variable
L may be expressed as

L =
K∑

i=1

Li (15.7)

and it has a compound geometric distribution. The above fact leads to the
Pollaczek-Khinchin formula for the ruin probability:

ψ(u) = 1 − P(L ≤ u) = 1 − θ

1 + θ

∞∑
n=0

(
1

1 + θ

)n

F ∗n
L1

(u), (15.8)

where F ∗n
L1

(u) denotes the nth convolution of the distribution function FL1 .

One can use it to derive explicit solutions for a variety of claim amount dis-
tributions, particularly those whose Laplace transform is a rational function.
These cases will be discussed in this section. Unfortunately, heavy-tailed distri-
butions like e.g. the log-normal or Pareto one are not included. In such a case
various approximations can be applied or one can calculate the ruin probabil-
ity directly via the Pollaczek-Khinchin formula using Monte Carlo simulations.
This will be studied in Section 15.3.
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We shall now, in Sections 15.2.1–15.2.4, briefly present a collection of basic
exact results on the ruin probability in infinite time. The ruin probability ψ(u)
is always considered as a function of the initial capital u.

15.2.1 No Initial Capital

When u = 0 it is easy to obtain the exact formula:

ψ(u) =
1

1 + θ
.

Notice that the formula depends only on θ, regardless of the claim frequency
rate λ and claim size distribution. The ruin probability is clearly inversely
proportional to the relative safety loading.

15.2.2 Exponential Claim Amounts

One of the historically first results on the ruin probability is the explicit formula
for exponential claims with the parameter β, namely

ψ(u) =
1

1 + θ
exp

(
− θβu

1 + θ

)
. (15.9)

In Table 15.2 we present the ruin probability values for exponential claims with
β = 6.3789 · 10−9 (see Chapter 13) and the relative safety loading θ = 30%
with respect to the initial capital u. We can observe that the ruin probability
decreases as the capital grows. When u = 1 billion USD the ruin probability
amounts to 18%, whereas u = 5 billion USD reduces the probability to almost
zero.

15.2.3 Gamma Claim Amounts

Grandell and Segerdahl (1971) showed that for the gamma claim amount dis-
tribution with mean 1 and α ≤ 1 the exact value of the ruin probability can be



348 15 Ruin Probabilities in Finite and Infinite Time

Table 15.2: The ruin probability for exponential claims with β = 6.3789 · 10−9

and θ = 0.3 (u in USD billion).

u 0 1 2 3 4 5
ψ(u) 0.769231 0.176503 0.040499 0.009293 0.002132 0.000489

STFruin02.xpl

computed via the formula:

ψ(u) =
θ(1 − R/α) exp(−Ru)

1 + (1 + θ)R − (1 + θ)(1 − R/α)
+

αθ sin(απ)
π

· I, (15.10)

where

I =
∫ ∞

0

xα exp {−(x + 1)αu}
[xα {1 + α(1 + θ)(x + 1)} − cos(απ)]2 + sin2(απ)

dx. (15.11)

The integral I has to be calculated numerically. We also notice that the as-
sumption on the mean is not restrictive since for claims X with arbitrary mean
µ we have that ψX(u) = ψX/µ(u/µ). As the gamma distribution is closed
under scale changes we obtain that ψG(α,β)(u) = ψG(α,α)(βu/α). This cor-
respondence enables us to calculate the exact ruin probability via equation
(15.10) for gamma claims with arbitrary mean.

Table 15.3 shows the ruin probability values for gamma claims with with α =
0.9185, β = 6.1662 · 10−9 (see Chapter 13) and the relative safety loading
θ = 30% with respect to the initial capital u. Naturally, the ruin probability
decreases as the capital grows. Moreover, the probability takes similar values
as in the exponential case but a closer look reveals that the values in the
exponential case are always slightly larger. When u = 1 billion USD the
difference is about 1%. It suggests that a choice of the fitted distribution
function may have a an impact on actuarial decisions.
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Table 15.3: The ruin probability for gamma claims with α = 0.9185, β =
6.1662 · 10−9 and θ = 0.3 (u in USD billion).

u 0 1 2 3 4 5
ψ(u) 0.769229 0.174729 0.039857 0.009092 0.002074 0.000473

STFruin03.xpl

15.2.4 Mixture of Two Exponentials Claim Amounts

For the claim size distribution being a mixture of two exponentials with the
parameters β1, β2 and weights a, 1− a, one may obtain an explicit formula by
using the Laplace transform inversion (Panjer and Willmot, 1992):

ψ(u) =
1

(1 + θ)(r2 − r1)
{(ρ − r1) exp(−r1u) + (r2 − ρ) exp(−r2u)} , (15.12)

where

r1 =
ρ + θ(β1 + β2) −

[
{ρ + θ(β1 + β2)}2 − 4β1β2θ(1 + θ)

]1/2

2(1 + θ)
,

r2 =
ρ + θ(β1 + β2) +

[
{ρ + θ(β1 + β2)}2 − 4β1β2θ(1 + θ)

]1/2

2(1 + θ)
,

and

p =
aβ−1

1

aβ−1
1 + (1 − a)β−1

2

, ρ = β1(1 − p) + β2p.

Table 15.4 shows the ruin probability values for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584 (see Chapter
13) and the relative safety loading θ = 30% with respect to the initial capital
u. As before, the ruin probability decreases as the capital grows. Moreover,
the increase in the ruin probability values with respect to previous cases is
dramatic. When u = 1 billion USD the difference between the mixture of
two exponentials and exponential cases reaches 240%! As the same underlying
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Table 15.4: The ruin probability for mixture of two exponentials claims with
β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584 and θ = 0.3 (u
in USD billion).

u 0 1 5 10 20 50
ψ(u) 0.769231 0.587919 0.359660 0.194858 0.057197 0.001447

STFruin04.xpl

data set was used in all cases to estimate the parameters of the distributions, it
supports the thesis that a choice of the fitted distribution function and checking
the goodness of fit is of paramount importance.

Finally, note that it is possible to derive explicit formulae for mixture of n
(n ≥ 3) exponentials (Wikstad, 1971; Panjer and Willmot, 1992). They are
not presented here since the complexity of formulae grows as n increases and
such mixtures are rather of little practical importance due to increasing number
of parameters.

15.3 Approximations of the Ruin Probability in
Infinite Time

When the claim size distribution is exponential (or closely related to it), simple
analytic results for the ruin probability in infinite time exist, see Section 15.2.
For more general claim amount distributions, e.g. heavy-tailed, the Laplace
transform technique does not work and one needs some estimates. In this sec-
tion, we present 12 different well-known and not so well-known approximations.
We illustrate them on a common claim size distribution example, namely the
mixture of two exponentials claims with β1 = 3.5900 ·10−10, β2 = 7.5088 ·10−9

and a = 0.0584 (see Chapter 13). Numerical comparison of the approximations
is given in Section 15.4.
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Table 15.5: The Cramér–Lundberg approximation for mixture of two exponen-
tials claims with β1 = 3.5900 ·10−10, β2 = 7.5088 ·10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψCL(u) 0.663843 0.587260 0.359660 0.194858 0.057197 0.001447

STFruin05.xpl

15.3.1 Cramér–Lundberg Approximation

Cramér–Lundberg’s asymptotic ruin formula for ψ(u) for large u is given by

ψCL(u) = Ce−Ru, (15.13)

where C = θµ/ {M ′
X(R) − µ(1 + θ)} . For the proof we refer to Grandell (1991).

The classical Cramér–Lundberg approximation yields quite accurate results,
however we must remember that it requires the adjustment coefficient to exist,
therefore merely the light-tailed distributions can be taken into consideration.
For exponentially distributed claims, the formula (15.13) yields the exact result.

In Table 15.5 the Cramér–Lundberg approximation for mixture of two expo-
nentials claims with β1, β2, a and the relative safety loading θ = 30% with
respect to the initial capital u is given. We see that the Cramér–Lundberg
approximation underestimates the ruin probability. Nevertheless, the results
coincide quite closely with the exact values shown by Table 15.4. When the
initial capital is zero, the relative error is the biggest and exceeds 13%.
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Table 15.6: The exponential approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψE(u) 0.747418 0.656048 0.389424 0.202900 0.055081 0.001102

STFruin06.xpl

15.3.2 Exponential Approximation

This approximation was proposed and derived by De Vylder (1996). It requires
the first three moments to be finite.

ψE(u) = exp

{
−1 − 2µθu − µ(2)√

(µ(2))2 + (4/3)θµµ(3)

}
. (15.14)

Table 15.6 shows the results of the exponential approximation for mixture of
two exponentials claims with β1, β2, a and the relative safety loading θ = 30%
with respect to the initial capital u. Comparing them with the exact values
presented in Table 15.4 we see that the exponential approximation works not
bad in the studied case. When the initial capital is USD 50 billion, the relative
error is the biggest and reaches 24%.

15.3.3 Lundberg Approximation

The following formula, called the Lundberg approximation, comes from Grandell
(2000). It requires the first three moments to be finite.

ψL(u) =
{

1 +
(

θu − µ(2)

2µ

)
4θµ2µ(3)

3(µ(2))3

}
exp

(−2µθu

µ(2)

)
. (15.15)

In Table 15.7 the Lundberg approximation for mixture of two exponentials
claims with β1, β2, a and the relative safety loading θ = 30% with respect to
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Table 15.7: The Lundberg approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψL(u) 0.504967 0.495882 0.382790 0.224942 0.058739 0.000513

STFruin07.xpl

the initial capital u is given. We see that the Lundberg approximation works
worse than the exponential one. When the initial capital is USD 50 billion, the
relative error exceeds 60%.

15.3.4 Beekman–Bowers Approximation

The Beekman–Bowers approximation uses the following representation of the
ruin probability:

ψ(u) = P(L > u) = P(L > 0)P(L > u|L > 0). (15.16)

The idea of the approximation is to replace the conditional probability 1 −
P(L > u|L > 0) with a gamma distribution function G(u) by fitting first two
moments (Grandell, 2000). This leads to:

ψBB(u) =
1

1 + θ
{1 − G(u)} , (15.17)

where the parameters α, β of G are given by

α =
{

1 +
(

4µµ(3)

3(µ(2))2
− 1

)
θ

}
/(1 + θ), β = 2µθ/

{
µ(2) +

(
4µµ(3)

3µ(2)
− µ(2)

)
θ

}
.

The Beekman–Bowers approximation gives rather accurate results, see Bur-
necki, Místa, and Weron (2004). In the exponential case it becomes the exact
formula. It can be used only for distributions with finite first three moments.



354 15 Ruin Probabilities in Finite and Infinite Time

Table 15.8: The Beekman–Bowers approximation for mixture of two exponen-
tials claims with β1 = 3.5900 ·10−10, β2 = 7.5088 ·10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψBB(u) 0.769231 0.624902 0.352177 0.186582 0.056260 0.001810

STFruin08.xpl

Table 15.8 shows the results of the Beekman–Bowers approximation for mixture
of two exponentials claims with β1, β2, a and the relative safety loading θ =
30% with respect to the initial capital u. The results justify the thesis the
approximation yields quite accurate results but when the initial capital is USD
50 billion, the relative error is unacceptable, reaching 25%, cf. the exact values
in Table 15.4.

15.3.5 Renyi Approximation

The Renyi approximation (Grandell, 2000), may be derived from (20.5.4) when
we replace the gamma distribution function G with an exponential one, match-
ing only the first moment. Hence, it can be regarded as a simplified version of
the Beekman–Bowers approximation. It requires the first two moments to be
finite.

ψR(u) =
1

1 + θ
exp

{
− 2µθu

µ(2)(1 + θ)

}
. (15.18)

In Table 15.9 the Renyi approximation for mixture of two exponentials claims
with β1, β2, a and the relative safety loading θ = 30% with respect to the initial
capital u is given. We see that the results compared with the exact values
presented in Table 15.4 are quite accurate. The accuracy ot the approximation
is similar to the Beekman–Bowers approximation but when the initial capital
is USD 50 billion, the relative error exceeds 50%.
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Table 15.9: The Renyi approximation for mixture of two exponentials claims
with β1 = 3.5900 ·10−10, β2 = 7.5088 ·10−9, a = 0.0584 and θ = 0.3
(u in USD billion).

u 0 1 5 10 20 50
ψR(u) 0.769231 0.667738 0.379145 0.186876 0.045400 0.000651

STFruin09.xpl

15.3.6 De Vylder Approximation

The idea of this approximation is to replace the claim surplus process St with
the claim surplus process S̄t with exponentially distributed claims such that the
three moments of the processes coincide, namely E(Sk

t ) = E(S̄k
t ) for k = 1, 2, 3,

see De Vylder (1978). The process S̄t is determined by the three parameters
(λ̄, θ̄, β̄). Thus the parameters must satisfy:

λ̄ =
9λµ(2)3

2µ(3)2
, θ̄ =

2µµ(3)

3µ(2)2
θ, and β̄ =

3µ(2)

µ(3)
.

Then De Vylder’s approximation is given by:

ψDV (u) =
1

1 + θ̄
exp

(
− θ̄β̄u

1 + θ̄

)
. (15.19)

Obviously, in the exponential case the method gives the exact result. For other
claim amount distributions, in order to apply the approximation, the first three
moments have to exist.

Table 15.10 shows the results of the De Vylder approximation for mixture of
two exponentials claims with β1, β2, a and the relative safety loading θ = 30%
with respect to the initial capital u. The approximation gives surprisingly good
results. In the considered case the relative error is the biggest when the initial
capital is zero and amounts to about 13%, cf. Table 15.4.
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Table 15.10: The De Vylder approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψDV (u) 0.668881 0.591446 0.361560 0.195439 0.057105 0.001424

STFruin10.xpl

15.3.7 4-moment Gamma De Vylder Approximation

The 4-moment gamma De Vylder approximation, proposed by Burnecki, Místa,
and Weron (2003), is based on De Vylder’s idea to replace the claim surplus
process St with another one S̄t for which the expression for ψ(u) is explicit. This
time we calculate the parameters of the new process with gamma distributed
claims and apply the exact formula (15.10) for the ruin probability. Let us note
that the claim surplus process S̄t with gamma claims is determined by the four
parameters (λ̄, θ̄, µ̄, µ̄(2)), so we have to match the four moments of St and S̄t.
We also need to assume that µ(2)µ(4) < 3

2 (µ(3))2 to ensure that µ̄, µ̄(2) > 0 and
µ̄(2) > µ̄2, which is true for the gamma distribution. Then

λ̄ = λ(µ(3))2(µ(2))3

{µ(2)µ(4)−2(µ(3))2}{2µ(2)µ(4)−3(µ(3))2} ,

θ̄ =
θµ{2(µ(3))2−µ(2)µ(4)}

(µ(2))2µ(3) ,

µ̄ = 3(µ(3))2−2µ(2)µ(4)

µ(2)µ(3) ,

µ̄(2) = {µ(2)µ(4)−2(µ(3))2}{2µ(2)µ(4)−3(µ(3))2}
(µ(2)µ(3))2

.

When this assumption can not be fulfilled, the simpler case leads to

λ̄ =
2λ(µ(2))2

µ(µ(3) + µ(2)µ)
, θ̄ =

θµ(µ(3) + µ(2)µ)
2(µ(2))2

, µ̄ = µ, µ̄(2) =
µ(µ(3) + µ(2)µ)

2µ(2)
.
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Table 15.11: The 4-moment gamma De Vylder approximation for mixture of
two exponentials claims with β1 = 3.5900 · 10−10, β2 = 7.5088 ·
10−9, a = 0.0584 and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50

ψ4MGDV (u) 0.683946 0.595457 0.359879 0.194589 0.057150 0.001450

STFruin11.xpl

All in all, the 4-moment gamma De Vylder approximation is given by

ψ4MGDV (u) =
θ̄(1 − R

ᾱ ) exp(− β̄R
ᾱ u)

1 + (1 + θ̄)R − (1 + θ̄)(1 − R
ᾱ )

+
ᾱθ̄ sin(ᾱπ)

π
· I, (15.20)

where

I =
∫ ∞

0

xᾱ exp{−(x + 1)β̄u} dx[
xᾱ

{
1 + ᾱ(1 + θ̄)(x + 1)

}− cos(ᾱπ)
]2 + sin2(ᾱπ)

,

and ᾱ = µ̄2/
(
µ̄(2) − µ̄2

)
, β̄ = µ̄/

(
µ̄(2) − µ̄2

)
.

In the exponential and gamma case this method gives the exact result. For
other claim distributions in order to apply the approximation, the first four (or
three in the simpler case) moments have to exist. Burnecki, Místa, and Weron
(2003) showed numerically that the method gives a slight correction to the De
Vylder approximation, which is often regarded as the best among “simple”
approximations.

In Table 15.11 the 4-moment gamma De Vylder approximation for mixture of
two exponentials claims with β1 = 3.5900·10−10, β2 = 7.5088·10−9, a = 0.0584
(see Chapter 13) and the relative safety loading θ = 30% with respect to the
initial capital u is given. The most striking impression of Table 15.11 is cer-
tainly the extremely good accuracy of the simple 4-moment gamma De Vylder
approximation for reasonable choices of the initial capital u. The relative error
with respect to the exact values presented in Table 15.4 is the biggest for u = 0
and equals 11%.
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Table 15.12: The heavy traffic approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψHT (u) 1.000000 0.831983 0.398633 0.158908 0.025252 0.000101

STFruin12.xpl

15.3.8 Heavy Traffic Approximation

The term “heavy traffic” comes from queuing theory. In risk theory it means
that, on the average, the premiums exceed only slightly the expected claims.
It implies that the relative safety loading θ is positive and small. Asmussen
(2000) suggests the following approximation.

ψHT (u) = exp
(
−2θµu

µ(2)

)
. (15.21)

This method requires the existence of the first two moments of the claim size
distribution. Numerical evidence shows that the approximation is reasonable
for the relative safety loading being 10 − 20% and u being small or moderate,
while the approximation may be far off for large u. We also note that the
approximation given by (15.21) is also known as the diffusion approximation
and is further analysed and generalised to the stable case in Chapter 16, see
also Furrer, Michna, and Weron (1997).

Table 15.12 shows the results of the heavy traffic approximation for mixture
of two exponentials claims with β1, β2, a and the relative safety loading θ =
30% with respect to the initial capital u. It is clear that the accuracy of
the approximation in the considered case is extremely poor. When the initial
capital is USD 50 billion, the relative error reaches 93%, cf. Table 15.4.
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Table 15.13: The light traffic approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψLT (u) 0.769231 0.303545 0.072163 0.011988 0.000331 0.000000

STFruin13.xpl

15.3.9 Light Traffic Approximation

As for heavy traffic, the term “light traffic” comes from queuing theory, but
has an obvious interpretation also in risk theory, namely, on the average, the
premiums are much larger than the expected claims, or in other words, claims
appear less frequently than expected. It implies that the relative safety loading
θ is positive and large. We may obtain the following asymptotic formula.

ψLT (u) =
1

(1 + θ)µ

∫ ∞

u

F̄X(x)dx. (15.22)

In risk theory heavy traffic is most often argued to be the typical case rather
than light traffic. However, light traffic is of some interest as a complement to
heavy traffic, as well as it is needed for the interpolation approximation to be
studied in the next point. It is worth noticing that this method gives accurate
results merely for huge values of the relative safety loading, see Asmussen
(2000).

In Table 15.13 the light traffic approximation for mixture of two exponentials
claims with β1, β2, a and the relative safety loading θ = 30% with respect to
the initial capital u is given. The results are even worse than in the heavy case,
only for moderate u the situation is better. The relative error dramatically
increases with the initial capital.
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Table 15.14: The heavy-light traffic approximation for mixture of two exponen-
tials claims with β1 = 3.5900·10−10, β2 = 7.5088·10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψHLT (u) 0.769231 0.598231 0.302136 0.137806 0.034061 0.001652

STFruin14.xpl

15.3.10 Heavy-light Traffic Approximation

The crude idea of this approximation is to combine the heavy and light ap-
proximations (Asmussen, 2000):

ψHLT (u) =
θ

1 + θ
ψLT

(
θu

1 + θ

)
+

1
(1 + θ)2

ψHT (u). (15.23)

The particular features of this approximation is that it is exact for the expo-
nential distribution and asymptotically correct both in light and heavy traffic.

Table 15.14 shows the results of the heavy-light traffic approximation for mix-
ture of two exponentials claims with β1, β2, a and the relative safety loading
θ = 30% with respect to the initial capital u. Comparing the results with Table
15.12 (heavy traffic), Table 15.13 (light traffic) and the exact values given in
Table 15.4 we see that the interpolation is promising. In the considered case
the relative error is the biggest when the initial capital is USD 20 billion and
is over 40%, but usually the error is acceptable.

15.3.11 Subexponential Approximation

First, let us introduce the class of subexponential distributions S (Embrechts,
Klüppelberg, and Mikosch, 1997), namely

S =

{
F : lim

x→∞
F ∗2(x)
F̄ (x)

= 2

}
. (15.24)
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Here F ∗2(x) is the convolution square. In terms of random variables (15.24)
means P(X1 +X2 > x) ∼ 2P (X1 > x), x → ∞, where X1, X2 are independent
random variables with distribution F .

The class contains log-normal and Weibull (for τ < 1) distributions. Moreover,
all distributions with a regularly varying tail (e.g. Pareto and Burr distribu-
tions) are subexponential. For subexponential distributions we can formulate
the following approximation of the ruin probability. If F ∈ S, then the asymp-
totic formula for large u is given by

ψS(u) =
1
θµ

(
µ −

∫ u

0

F̄ (x)dx

)
, (15.25)

see Asmussen (2000).

The approximation is considered to be inaccurate. The problem is a very slow
rate of convergence as u → ∞. Even though the approximation is asymp-
totically correct in the tail, one may have to go out to values of ψ(u) which
are unrealistically small before the fit is reasonable. However, we will show in
Section 15.4 that it is not always the case.

As the mixture of exponentials does not belong to the subexponential class we
do not present a numerical example like in all previously discussed approxima-
tions.

15.3.12 Computer Approximation via the Pollaczek-Khinchin
Formula

One can use the Pollaczek-Khinchin formula (15.8) to derive explicit closed
form solutions for claim amount distributions presented in Section 15.2, see
Panjer and Willmot (1992). For other distributions studied here, in order to
calculate the ruin probability, the Monte Carlo method can be applied to (15.1)
and (15.7). The main problem is to simulate random variables from the density
fL1(x). Only four of the considered distributions lead to a known density: (i)
for exponential claims, fL1(x) is the density of the same exponential distri-
bution, (ii) for a mixture of exponentials claims, fL1(x) is the density of the
mixture of exponential distribution with the weights

(
a1
β1

/
{∑n

i=1

(
ai

βi

)}
, · · · ,

an

βn
/
{∑n

i=1

(
ai

βi

)})
, (iii) for Pareto claims, fL1(x) is the density of the Pareto

distribution with the parameters α − 1 and λ, (iv) for Burr claims, fL1(x) is
the density of the transformed beta distribution.
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Table 15.15: The Pollaczek-Khinchin approximation for mixture of two expo-
nentials claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9,
a = 0.0584 and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψPK(u) 0.769209 0.587917 0.359705 0.194822 0.057173 0.001445

STFruin15.xpl

For other distributions studied here we use formula (15.6) and controlled nu-
merical integration to generate random variables Lk (except for the Weibull
distribution, fL1(x) does not even have a closed form). We note that the
methodology based on the Pollaczek-Khinchin formula works for all considered
claim distributions.

The computer approximation via the Pollaczek-Khinchin formula will be called
in short the Pollaczek-Khinchin approximation. Burnecki, Místa, and Weron
(2004) showed that the approximation can be chosen as the reference method
for calculating the ruin probability in infinite time, see also Table 15.15 where
the results of the Pollaczek-Khinchin approximation are presented for mixture
of two exponentials claims with β1, β2, a and the relative safety loading θ = 30%
with respect to the initial capital u. For the Monte Carlo method purposes we
generated 100 blocks of 500000 simulations.

15.3.13 Summary of the Approximations

Table 15.16 shows which approximation can be used for a particular choice of
a claim size distribution. Moreover, the necessary assumptions on the distri-
bution parameters are presented.
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Table 15.16: Survey of approximations with an indication when they can be
applied

Distrib. Exp. Gamma Wei- Mix. Log- Pareto Burr
Method bull Exp. normal
Cramér-Lundberg + + – + – – –
Exponential + + + + + α > 3 ατ > 3
Lundberg + + + + + α > 3 ατ > 3
Beekman- + + + + + α > 3 ατ > 3

-Bowers
Renyi + + + + + α > 2 ατ > 2
De Vylder + + + + + α > 3 ατ > 3
4M Gamma + + + + + α > 3 ατ > 3

De Vylder
Heavy Traffic + + + + + α > 2 ατ > 2
Light Traffic + + + + + + +
Heavy-Light + + + + + α > 2 ατ > 2

Traffic
Subexponential – – 0<τ<1 – + + +
Pollaczek- + + + + + + +

-Khinchin

15.4 Numerical Comparison of the Infinite Time
Approximations

In this section we will illustrate all 12 approximations presented in Section 15.3.
To this end we consider three claim amount distributions which were fitted to
the PCS catastrophe data in Chapter 13, namely the mixture of two exponential
(a running example in Section 15.3) with β1 = 3.5900 ·10−10, β2 = 7.5088 ·10−9

and a = 0.0584, log-normal with µ = 18.3806 and σ = 1.1052, and Pareto with
α = 3.4081 and λ = 4.4767 · 108 distributions.

The logarithm of the ruin probability as a function of the initial capital u
ranging from USD 0 to 50 billion for the three distributions is depicted in
Figure 15.2. In the case of log-normal and Pareto distributions the reference
Pollaczek-Khinchin approximation is used. We see that the ruin probability
values for the mixture of exponential distributions are much higher than for the
log-normal and Pareto distributions. It stems from the fact that the estimated
parameters of the mixture result in the mean equal to 2.88 · 108, whereas the
mean of the fitted log-normal distribution amounts to 1.77 · 108 and of Pareto
distribution to 1.86 · 108.
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Figure 15.2: The logarithm of the exact value of the ruin probability. The
mixture of two exponentials (dashed blue line), log-normal (dotted
red line), and Pareto (solid black line) clam size distribution.

STFruin16.xpl

Figures 15.3–15.5 describe the relative error of the 11 approximations from Sec-
tions 15.3.1–15.3.11 with respect to exact ruin probability values in the mixture
of two exponentials case and obtained via the Pollaczek-Khinchin approxima-
tion in the log-normal and Pareto cases. The relative safety loading is set to
30%. We note that for the Monte Carlo method purposes in the Pollaczek-
Khinchin approximation we generate 500 blocks of 100000 simulations. First,
we consider the mixture of two exponentials case already analysed in Section
15.3. Only the subexponential approximation can not be used for such a claim
amount distribution, see Table 15.16. As we can clearly see in Figure 15.3 the
Cramér–Lundberg, De Vylder and 4-moment gamma De Vylder approxima-
tions work extremely well. Furthermore, the heavy traffic, light traffic, Renyi,
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Figure 15.3: The relative error of the approximations. More effective meth-
ods (left panel): the Cramér–Lundberg (solid blue line), exponen-
tial (short-dashed brown line), Beekman–Bowers (dotted red line),
De Vylder (medium-dashed black line) and 4-moment gamma De
Vylder (long-dashed green line) approximations. Less effective
methods (right panel): Lundberg (short-dashed red line), Renyi
(dotted blue line), heavy traffic (solid magenta line), light traffic
(long-dashed green line) and heavy-light traffic (medium-dashed
brown line) approximations. The mixture of two exponentials
case.

STFruin17.xpl

and Lundberg approximations show a total lack of accuracy and the rest of the
methods are only acceptable.

In the case of log-normally distributed claims, the situation is different, see
Figure 15.4. Only results obtained via Beekman–Bowers, De Vylder and 4-
moment gamma De Vylder approximations are acceptable. The rest of the
approximations are well off target. We also note that all 11 approximations
can be employed in the log-normal case except the Cramér–Lundberg one.
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Figure 15.4: The relative error of the approximations. More effective methods
(left panel): the exponential (dotted blue line), Beekman–Bowers
(short-dashed brown line), heavy-light traffic (solid red line), De
Vylder (medium-dashed black line) and 4-moment gamma De
Vylder (long-dashed green line) approximations. Less effective
methods (right panel): Lundberg (short-dashed red line), heavy
traffic (solid magenta line), light traffic (long-dashed green line),
Renyi (medium-dashed brown line) and subexponential (dotted
blue line) approximations. The log-normal case.

STFruin18.xpl

Finally, we take into consideration the Pareto claim size distribution. Fig-
ure 15.5 depicts the relative error for 9 approximations. Only the Cramér–
Lundberg and 4-moment gamma De Vylder approximations have to excluded
as the moment generating function does not exist and the fourth moment is in-
finite for the Pareto distribution with α = 3.4081. As we see in Figure 15.5 the
relative errors for all approximations can not be neglected. There is no unani-
mous winner among the approximations but we may claim that the exponential
approximation gives most accurate results.
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Figure 15.5: The relative error of the approximations. More effective methods
(left panel): the exponential (dotted blue line), Beekman–Bowers
(short-dashed brown line), heavy-light traffic (solid red line) and
De Vylder (medium-dashed black line) approximations. Less ef-
fective methods (right panel): Lundberg (short-dashed red line),
heavy traffic (solid magenta line), light traffic (long-dashed green
line), Renyi (medium-dashed brown line) and subexponential (dot-
ted blue line) approximations. The Pareto case.

STFruin19.xpl

15.5 Exact Ruin Probabilities in Finite Time

We are now interested in the probability that the insurer’s capital as defined
by (15.1) remains non-negative for a finite period T rather than permanently.
We assume that the number of claims process Nt is a Poisson process with
rate λ, and consequently, the aggregate loss process is a compound Poisson
process. Premiums are payable at rate c per unit time. We recall that the
intensity of the process Nt is irrelevant in the infinite time case provided that
it is compensated by the premium, see discussion at the end of Section 15.1.

In contrast to the infinite time case there is no general formula for the ruin
probability like the Pollaczek-Khinchin one given by (15.8). In the literature
one can only find a partial integro-differential equation which satisfies the prob-
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ability of non-ruin, see Panjer and Willmot (1992). An explicit result is merely
known for the exponential claims, and even in this case a numerical integration
is needed (Asmussen, 2000).

15.5.1 Exponential Claim Amounts

First, in order to simplify the formulae, let us assume that claims have the
exponential distribution with β = 1 and the amount of premium is c = 1.
Then

ψ(u, T ) = λ exp {−(1 − λ)u} − 1
π

∫ π

0

f1(x)f2(x)
f3(x)

dx, (15.26)

where f1(x) = λ exp
{

2
√

λT cos x − (1 + λ)T + u
(√

λ cos x − 1
)}

, f2(x) =

cos
(
u
√

λ sin x
)
− cos

(
u
√

λ sin x + 2x
)

, and f3(x) = 1 + λ − 2
√

λ cos x.

Now, notice that the case β �= 1 is easily reduced to β = 1, using the formula:

ψλ,β(u, T ) = ψλ
β ,1(βu, βT ). (15.27)

Moreover, the assumption c = 1 is not restrictive since we have

ψλ,c(u, T ) = ψλ/c,1(u, cT ). (15.28)

Table 15.17 shows the exact values of the ruin probability for exponential claims
with β = 6.3789 · 10−9 (see Chapter 13) with respect to the initial capital u
and the time horizon T . The relative safety loading θ equals 30%. We see that
the values converge to those calculated in infinite case as T is getting larger, cf.
Table 15.2. The speed of convergence decreases as the initial capital u grows.

15.6 Approximations of the Ruin Probability in
Finite Time

In this section, we present 5 different approximations. We illustrate them on a
common claim size distribution example, namely the mixture of two exponen-
tials claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9 and a = 0.0584 (see
Chapter 13). Their numerical comparison is given in Section 15.7.
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Table 15.17: The ruin probability for exponential claims with β = 6.3789 ·10−9

and θ = 0.3 (u in USD billion).

u 0 1 2 3 4 5
ψ(u, 1) 0.757164 0.147954 0.025005 0.003605 0.000443 0.000047
ψ(u, 2) 0.766264 0.168728 0.035478 0.007012 0.001288 0.000218
ψ(u, 5) 0.769098 0.176127 0.040220 0.009138 0.002060 0.000459
ψ(u, 10) 0.769229 0.176497 0.040495 0.009290 0.002131 0.000489
ψ(u, 20) 0.769231 0.176503 0.040499 0.009293 0.002132 0.000489

STFruin20.xpl

15.6.1 Monte Carlo Method

The ruin probability in finite time can always be approximated by means of
Monte Carlo simulations. Table 15.18 shows the output for mixture of two
exponentials claims with β1, β2, a with respect to the initial capital u and the
time horizon T . The relative safety loading θ is set to 30%. For the Monte
Carlo method purposes we generated 50 x 10000 simulations. We see that the
values approach those calculated in infinite case as T increases, cf. Table 15.4.
We note that the Monte Carlo method will be used as a reference method when
comparing different finite time approximations in Section 15.7.

15.6.2 Segerdahl Normal Approximation

The following result due to Segerdahl (1955) is said to be a time-dependent
version of the Cramér–Lundberg approximation given by (15.13). Under the
assumption that c = 1, cf. relation (15.28), we have

ψS(u, T ) = C exp(−Ru)Φ
(

T − umL

ωL
√

u

)
, (15.29)

where C = θµ/ {M ′
X(R) − µ(1 + θ)}, mL = 1 {λM ′

X(R) − 1}−1 and ω2
L =

λM ′′
X(R)m3

L.
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Table 15.18: Monte Carlo results (50 x 10000 simulations) for mixture of two
exponentials claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9,
a = 0.0584 and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψ(u, 1) 0.672550 0.428150 0.188930 0.063938 0.006164 0.000002
ψ(u, 2) 0.718254 0.501066 0.256266 0.105022 0.015388 0.000030
ψ(u, 5) 0.753696 0.560426 0.323848 0.159034 0.035828 0.000230
ψ(u, 10) 0.765412 0.580786 0.350084 0.184438 0.049828 0.000726
ψ(u, 20) 0.769364 0.587826 0.359778 0.194262 0.056466 0.001244

STFruin21.xpl

Table 15.19: The Segerdahl approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψ(u, 1) 0.663843 0.444333 0.172753 0.070517 0.013833 0.000141
ψ(u, 2) 0.663843 0.554585 0.229282 0.092009 0.017651 0.000175
ψ(u, 5) 0.663843 0.587255 0.338098 0.152503 0.030919 0.000311
ψ(u, 10) 0.663843 0.587260 0.359593 0.192144 0.049495 0.000634
ψ(u, 20) 0.663843 0.587260 0.359660 0.194858 0.057143 0.001254

STFruin22.xpl

This method requires existence of the adjustment coefficient. This implies that
only light-tailed distributions can be used. Numerical evidence shows that the
Segerdahl approximation gives the best results for huge values of the initial
capital u, see Asmussen (2000).

In Table 15.19, the results of the Segerdahl approximation for mixture of two
exponentials claims with β1, β2, a with respect to the initial capital u and the
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Table 15.20: The diffusion approximation for mixture of two exponentials
claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψ(u, 1) 1.000000 0.770917 0.223423 0.028147 0.000059 0.000000
ψ(u, 2) 1.000000 0.801611 0.304099 0.072061 0.001610 0.000000
ψ(u, 5) 1.000000 0.823343 0.370177 0.128106 0.011629 0.000000
ψ(u, 10) 1.000000 0.829877 0.391556 0.150708 0.020604 0.000017
ψ(u, 20) 1.000000 0.831744 0.397816 0.157924 0.024603 0.000073

STFruin23.xpl

time horizon T are presented. The relative safety loading θ = 30%. We see
that the approximation in the considered case yields quite accurate results for
moderate u, cf. Table 15.18.

15.6.3 Diffusion Approximation

The idea of the diffusion approximation is first to approximate the claim sur-
plus process St by a Brownian motion with drift (arithmetic Brownian motion)
by matching the first two moments, and next, to note that such an approxi-
mation implies that the first passage probabilities are close. The first passage
probability serves as the ruin probability.

The diffusion approximation is given by:

ψD(u, T ) = IG

(
Tµ2

c

σ2
c

;−1;
u|µc|
σ2

c

)
, (15.30)

where µc = −λθµ, σ2
c = λµ(2), and IG(·; ζ; u) denotes the distribution function

of the passage time of the Brownian motion with unit variance and drift ζ
from the level 0 to the level u > 0 (often referred to as the inverse Gaussian
distribution function), namely IG(x; ζ; u) = 1 − Φ (u/

√
x − ζ

√
x) + exp (2ζu)

·Φ (−u/
√

x − ζ
√

x), see Asmussen (2000).
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Table 15.21: The corrected diffusion approximation for mixture of two exponen-
tials claims with β1 = 3.5900·10−10, β2 = 7.5088·10−9, a = 0.0584
and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψ(u, 1) 0.521465 0.426840 0.187718 0.065264 0.007525 0.000010
ψ(u, 2) 0.587784 0.499238 0.254253 0.104967 0.016173 0.000039
ψ(u, 5) 0.638306 0.557463 0.321230 0.157827 0.035499 0.000251
ψ(u, 10) 0.655251 0.577547 0.347505 0.182727 0.049056 0.000724
ψ(u, 20) 0.660958 0.584386 0.356922 0.192446 0.055610 0.001243

STFruin24.xpl

We also note that in order to apply this approximation we need the existence
of the second moment of the claim size distribution.

Table 15.20 shows the results of the diffusion approximation for mixture of two
exponentials claims with β1, β2, a with respect to the initial capital u and the
time horizon T . The relative safety loading θ equals 30%. The results lead to
the conclusion that the approximation does not produce accurate results for
such a choice of the claim size distribution. Only when u = 5 billion USD the
results are acceptable, cf. the reference values in Table 15.18.

15.6.4 Corrected Diffusion Approximation

The idea presented above of the diffusion approximation ignores the presence of
jumps in the risk process (the Brownian motion with drift is skip-free) and the
value Sτ(u) − u in the moment of ruin. The corrected diffusion approximation
takes this and other deficits into consideration (Asmussen, 2000). Under the
assumption that c = 1, cf. relation (15.28), we have

ψCD(u, t) = IG

(
Tδ1

u2
+

δ2

u
;−Ru

2
; 1 +

δ2

u

)
, (15.31)

where R is the adjustment coefficient, δ1 = λM ′′
X(γ0), δ2 = M ′′′

X (γ0)/ {3M ′′
X(γ0)},

and γ0 satisfies the equation: κ′(γ0) = 0, where κ(s) = λ {MX(s) − 1} − s.
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Table 15.22: The finite time De Vylder approximation for mixture of two ex-
ponentials claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9,
a = 0.0584 and θ = 0.3 (u in USD billion).

u 0 1 5 10 20 50
ψ(u, 1) 0.528431 0.433119 0.189379 0.063412 0.006114 0.000003
ψ(u, 2) 0.594915 0.505300 0.256745 0.104811 0.015180 0.000021
ψ(u, 5) 0.645282 0.563302 0.323909 0.158525 0.035142 0.000215
ψ(u, 10) 0.662159 0.583353 0.350278 0.183669 0.048960 0.000690
ψ(u, 20) 0.667863 0.590214 0.359799 0.193528 0.055637 0.001218
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Similarly as in the Segerdahl approximation, the method requires existence of
the moment generating function, so we can use it only for light-tailed distribu-
tions.

In Table 15.21 the results of the corrected diffusion approximation for mixture
of two exponentials claims with β1, β2, a with respect to the initial capital u
and the time horizon T are given. The relative safety loading θ is set to 30%. It
turns out that corrected diffusion method gives surprisingly good results and is
vastly superior to the ordinary diffusion approximation, cf. the reference values
in Table 15.18.

15.6.5 Finite Time De Vylder Approximation

Let us recall the idea of the De Vylder approximation in infinite time: we re-
place the claim surplus process with the one with θ = θ̄, λ = λ̄ and exponential
claims with parameter β̄, fitting first three moments, see Section 15.3.6. Here,
the idea is the same. First, we compute

β̄ =
3µ(2)

µ(3)
, λ̄ =

9λµ(2)3

2µ(3)2
, and θ̄ =

2µµ(3)

3µ(2)2
θ.

Next, we employ relations (15.27) and (15.28) and finally use the exact, expo-
nential case formula presented in Section 15.5.1.
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Obviously, the method gives the exact result in the exponential case. For other
claim distributions, the first three moments have to exist in order to apply the
approximation.

Table 15.22 shows the results of the finite time De Vylder approximation for
mixture of two exponentials claims with β1, β2, a with respect to the initial
capital u and the time horizon T . The relative safety loading θ = 30%. We see
that the approximation gives even better results than the corrected diffusion
one, cf. the reference values presented in Table 15.18.

15.6.6 Summary of the Approximations

Table 15.23 shows which approximation can be used for each claim size distri-
bution. Moreover, the necessary assumptions on the distribution parameters
are presented.

Table 15.23: Survey of approximations with an indication when they can be
applied

Distrib. Exp. Gamma Wei- Mix. Log- Pareto Burr
Method bull Exp. normal
Monte Carlo + + + + + + +
Segerdahl + + – + – – –
Diffusion + + + + + α > 2 ατ > 2
Corr. diff. + + – + – – –
Fin. De Vylder + + + + + α > 3 ατ > 3

15.7 Numerical Comparison of the Finite Time
Approximations

Now, we illustrate all 5 approximations presented in Section 15.6. As in the
infinite time case we consider three claim amount distributions which were
best fitted to the catastrophe data in Chapter 13, namely the mixture of two
exponentials (a running example in Sections 15.3 and 15.6), log-normal and
Pareto distributions. The parameters of the distributions are: β1 = 3.5900 ·
10−10, β2 = 7.5088 · 10−9, a = 0.0584 (mixture), µ = 18.3806, σ = 1.1052
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Figure 15.6: The exact ruin probability obtained via Monte Carlo simulations
(left panel), the relative error of the approximations (right panel).
The Segerdahl (short-dashed blue line), diffusion (dotted red line),
corrected diffusion (solid black line) and finite time De Vylder
(long-dashed green line) approximations. The mixture of two ex-
ponentials case with T fixed and u varying.
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(log-normal), and α = 3.4081, λ = 4.4767 · 108 (Pareto). The ruin probability
will be depicted as a function of u, ranging from USD 0 to 30 billion, with
fixed T = 10 or with fixed value of u = 20 billion USD and varying T from 0
to 20 years. The relative safety loading is set to 30%. Figures has the same
form of output. In the left panel, the exact ruin probability values obtained via
Monte Carlo simulations are presented. The right panel describes the relative
error with respect to the exact values. We also note that for the Monte Carlo
method purposes we generated 50 x 10000 simulations.

First, we consider the mixture of two exponentials case. As we can see in Fig-
ures 15.6 and 15.7 the diffusion approximation almost for all values of u and
T gives highly incorrect results. Segerdahl and corrected diffusion approxima-
tions yield similar error, which visibly decreases when the time horizon gets
bigger. The finite time De Vylder method is a unanimous winner and always
gives the error below 10%.
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Figure 15.7: The exact ruin probability obtained via Monte Carlo simulations
(left panel), the relative error of the approximations (right panel).
The Segerdahl (short-dashed blue line), diffusion (dotted red line),
corrected diffusion (solid black line) and finite time De Vylder
(long-dashed green line) approximations. The mixture of two ex-
ponentials case with u fixed and T varying.
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In the case of log-normally distributed claims, we can only apply two approx-
imations: diffusion and finite time De Vylder ones, cf. Table 15.23. Figures
15.8 and 15.9 depict the exact ruin probability values obtained via Monte Carlo
simulations and the relative error with respect to the exact values. Again, the
finite time De Vylder approximation works much better than the diffusion one.

Finally, we take into consideration the Pareto claim size distribution. Figures
15.10 and 15.11 depict the exact ruin probability values and the relative error
with respect to the exact values for the diffusion and finite time De Vylder
approximations. We see that now we cannot claim which approximation is
better. The error strongly depends on the values of u and T . We may only
suspect that a combination of the two methods could give interesting results.
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Figure 15.8: The exact ruin probability obtained via Monte Carlo simulations
(left panel), the relative error of the approximations (right panel).
Diffusion (dotted red line) and finite time De Vylder (long-dashed
green line) approximations. The log-normal case with T fixed and
u varying.
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Figure 15.9: The exact ruin probability obtained via Monte Carlo simulations
(left panel), the relative error of the approximations (right panel).
Diffusion (dotted red line) and finite time De Vylder (long-dashed
green line) approximations. The log-normal case with u fixed and
T varying.
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Figure 15.10: The exact ruin probability obtained via Monte Carlo simulations
(left panel), the relative error of the approximations (right panel).
Diffusion (dotted red line) and finite time De Vylder (long-dashed
green line) approximations. The Pareto case with T fixed and u
varying.
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Figure 15.11: The exact ruin probability obtained via Monte Carlo simulations
(left panel), the relative error of the approximations (right panel).
Diffusion (dotted red line) and finite time De Vylder (long-dashed
green line) approximations. The Pareto case with u fixed and T
varying.
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16 Stable Diffusion Approximation
of the Risk Process

Hansjörg Furrer, Zbigniew Michna, and Aleksander Weron

16.1 Introduction

Collective risk theory is concerned with random fluctuations of the total net
assets – the capital of an insurance company. Consider a company which only
writes ordinary insurance policies such as accident, disability, health and whole
life. The policyholders pay premiums regularly and at certain random times
make claims to the company. A policyholder’s premium, the gross risk pre-
mium, is a positive amount composed of two components. The net risk pre-
mium is the component calculated to cover the payments of claims on the
average, while the security risk premium, or safety loading, is the component
which protects the company from large deviations of claims from the aver-
age and also allows an accumulation of capital. So the risk process has the
Cramér-Lundberg form:

R(t) = u + ct −
N(t)∑
k=1

Yk,

where u > 0 is the initial capital (in some cases interpreted as the initial risk
reserve) of the company and the policyholders pay a gross risk premium of c > 0
per unit time, see also Chapter 14. The successive claims {Yk} are assumed
to form a sequence of i.i.d. random variables with mean EYk = µ and claims
occur at jumps of a point process N(t), t ≥ 0.

The ruin time T is defined as the first time the company has a negative capital,
see Chapter 15. One of the key problems of collective risk theory concerns
calculating the ultimate ruin probability Ψ = P(T < ∞|R(0) = u), i.e. the
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probability that the risk process ever becomes negative. On the other hand, an
insurance company will typically be interested in the probability that ruin oc-
curs before time t, i.e. Ψ(t) = P(T < t|R(0) = u). However, many of the results
available in the literature are in the form of complicated analytic expressions
(for a comprehensive treatment of the theory see e.g. Asmussen, 2000; Em-
brechts, Klüppelberg, and Mikosch, 1997; Rolski et al., 1999). Hence, some
authors have proposed to approximate the risk process by Brownian diffusion,
see Iglehart (1969) and Schmidli (1994). The idea is to let the number of claims
grow in a unit time interval and to make the claim sizes smaller in such a way
that the risk process converges weakly to the diffusion.

In this chapter we present weak convergence theory applied to approximate the
risk process by Brownian motion and α-stable Lévy motion. We investigate two
different approximations. The first one assumes that the distribution of claim
sizes belongs to the domain of attraction of the normal law, i.e. claims are
small. In the second model we consider claim sizes belonging to the domain
of attraction of the α-stable law (1 < α < 2), i.e. large claims. The latter ap-
proximation is particularly relevant whenever the claim experience allows for
heavy-tailed distributions. As the empirical results presented in Chapter 13
show, at least for the catastrophic losses the assumption of heavy-tailed sever-
ities is statistically justified. While the classical theory of Brownian diffusion
approximation requires short-tailed claims, this assumption can be dropped in
our approach, hence allowing for extremal events. Furthermore, employing ap-
proximations of risk processes by Brownian motion and α-stable Lévy motion
we obtain formulas for ruin probabilities in finite and infinite time horizons.

16.2 Brownian Motion and the Risk Model for
Small Claims

This section will be devoted to the Brownian motion approximation in risk
theory and will be based on the work of Iglehart (1969). We assume that the
distribution of the claim sizes belongs to the domain of attraction of the normal
law. Thus, such claims attain big values with small probabilities. This assump-
tion will cover many practical situations in which the claim size distribution
possesses a finite second moment and claims constitute an i.i.d. sequence. The
claims counting process does not have to be independent of the sequence of
claim sizes as it is assumed in many risk models and, in general, can be a re-
newal process constructed from random variables having a finite first moment.
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16.2.1 Weak Convergence of Risk Processes to Brownian
Motion

Let us consider a sequence of risk processes Rn(t) defined in the following way:

Rn(t) = un + cnt −
N(nt)∑
k=1

Y
(n)
k , (16.1)

where un is the initial, cn is the premium payed by policyholders, and the
sequence {Y (n)

k : k ∈ N } describes the consecutive claim sizes. Assume also
that EY

(n)
k = µn and VarY (n)

k = σ2
n. The point process N = {N(t) : t ≥ 0}

counts claims appearing up to time t that is:

N(t) = max

{
k :

k∑
i=1

Ti ≤ t

}
, (16.2)

where {Tk : k ∈ N } is an i.i.d. sequence of nonnegative random variables
describing the times between arriving claims with ETk = 1/λ > 0. Recall
that if Tk are exponentially distributed then N(t) is a Poisson process with
intensity λ.

To approximate the risk process by Brownian motion, we assume n−1/2un → u,

n−1/2cn → c, n1/2µn → µ, σ2
n → σ2, and E

(
Y

(n)
k

)2+ε

≤ M for some ε > 0
where M is independent of n. Then:

1
n1/2

Rn(t) L→ u + (c − µλ)t + σλ1/2B(t) (16.3)

weakly in topology U (uniform convergence on compact sets). Let us denote
by RB(t) the limit process from the above approximation, i.e.:

RB(t) = u + (c − µλ)t + σλ1/2B(t). (16.4)

Property (16.3) let us approximate the risk process by RB(t) for which it is
possible to derive exact formulas for ruin probabilities in finite and infinite time
horizons.

16.2.2 Ruin Probability for the Limit Process

Weak convergence of stochastic processes does not imply the convergence of
ruin probabilities in general. Thus, to take the advantage of the Brownian
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motion approximations it is necessary to show that the ruin probability in finite
and infinite time horizons of risk processes converges to the ruin probabilities
of Brownian motion. Let us define the ruin time:

T (R) = inf{t > 0 : R(t) < 0}, (16.5)

if the set is non-empty and T = ∞ in other cases. Then T (Rn) → T (RB)
almost surely if Rn → RB almost surely as n → ∞ and P{T (Rn) < ∞} →
P{T (RB) < ∞} . Thus we need to find formulas for the ruin probabilities of
the process RB . Let RB be the Brownian motion with the linear drift defined
in (16.4). Then

P{T (RB) < ∞} = exp
{
−2

u(c − λµ)
σ2λ

}
(16.6)

and

P{T (RB) ≤ t} = 1 − Φ
{

u + (c − λµ)t
σ(λt)1/2

}
(16.7)

+ exp
{−2u(c − λµ)

σ2λ

}[
1 − Φ

{
u − (c − λµ)t

σ(λt)1/2

}]
.

It is also possible to determine the density distribution of the ruin time. Let
T (RB) be the ruin time of the process (16.4). Then the density fT of the
random variable T (RB) has the following form

fT (t) =
β−1eαβ

(2π)2/3
t−3/2 exp

[
−1

2
{β2t−1 + (αβ)2t}

]
, t > 0,

where α = (c − λµ)/σλ1/2 and β = u/σλ1/2.

The Brownian model is an approximation of the risk process in the case when
the distribution of claim sizes belongs to the domain of attraction of the normal
law and the assumptions imposed on the risk process indicate that from the
point of view of an insurance company the number of claims is large and the
sizes of claims are small.

16.2.3 Examples

Let us consider a risk model where the distribution of claim sizes belongs to the
domain of attraction of the normal law and the process counting the number of
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Table 16.1: Ruin probabilities for the Brownian motion approximation. Pa-
rameters µ = 20, σ = 10, and t = 10 are fixed.

u c λ Ψ(t) Ψ
25 50 2 8.0842e-02 8.2085e-02
25 60 2 6.7379e-03 6.7379e-03
30 60 2 2.4787e-03 2.4787e-03
35 60 2 9.1185e-04 9.1188e-04
40 60 2 3.3544e-04 3.3546e-04
40 70 3 6.5282e-02 6.9483e-02

STFdiff01.xpl

claims is a renewal counting process constructed from i.i.d. random variables
with a finite first moment. Let R(t) be the following risk process

R(t) = u + ct −
N(t)∑
n=1

Yk , (16.8)

where u is the initial capital, c is the premium income in the unit time interval
and {Yk : k ∈ N } are i.i.d. random variables belonging to the domain of
attraction of the normal law. Moreover, EYk = µ, VarYk = σ2 and the intensity
of arriving claims is λ (reciprocal of the expectation of claims inter-arrivals).
Thus, we obtain:

P{T (R) ≤ t} ≈ P{T (RB) ≤ t} (16.9)

and
P{T (R) < ∞} ≈ P{T (RB) < ∞} , (16.10)

where
RB(t) = u + (c − µλ)t + σλ1/2B(t),

and B(t) is the standard Brownian motion. Using the formulas for ruin proba-
bilities in finite and infinite time horizons given in (16.6) and (16.7) we compute
approximate values of ruin probabilities for different levels of initial capital, pre-
mium, intensity of claims, expectation of claims and their variance, see Table
16.1. A sample path of the process RB(t) is depicted in Figure 16.1.
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Figure 16.1: A sample path of the process RB for u = 40, c = 100, µ = 20,
σ = 10, and λ = 3.
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16.3 Stable Lévy Motion and the Risk Model for
Large Claims

In this section we present approximations of the risk process by α-stable Lévy
motion. We assume that claims are large, i.e. that the distribution of their sizes
is heavy-tailed. More precisely, we let the claim sizes distribution belong to
the domain of attraction of the α-stable law with 1 < α < 2, see Weron (2001)
and Chapter 1. This is an extension of the Brownian motion approximation
approach. Note, however, that the methods and theory presented here are
quite different from those used in the previous section (Weron, 1984).

We assume that claim sizes constitute an i.i.d. sequence and that the claim
counting process does not have to be independent of the sequence of the claim



16.3 Stable Lévy Motion and the Risk Model for Large Claims 387

sizes and, in general, can be a counting renewal process constructed from the
random variables having a finite second moment. This model can be applied
when claims are caused by earthquakes, floods, tornadoes, and other natural
disasters. In fact, the catastrophic losses dataset studied in Chapter 13 reveals a
very heavy-tailed nature of the severity distribution. The best fit was obtained
for a Burr law with α = 0.4801 and τ = 2.1524, which indicates a power-law
decay of order ατ = 1.0334 of the claim sizes distribution. Naturally, such
a distribution belongs to the domain of attraction of the α-stable law with
1 < α < 2.

16.3.1 Weak Convergence of Risk Processes to α-stable
Lévy Motion

We construct a sequence of risk processes converging weakly to the α-stable
Lévy motion. Let Rn(t) be a sequence of risk processes defined as follows:

Rn(t) = un + cnt −
N(n)(t)∑

k=1

Y
(n)
k , (16.11)

where un is the initial capital, cn is the premium rate, {Y (n)
k : k ∈ N } is a

sequence describing the sizes of the consecutive claims, and N (n)(t), for every
n ∈ N, is a point process counting the number of claims. Moreover, we assume
that the random variables representing the claim sizes are of the following form

Y
(n)
k =

1
ϕ(n)

Yk , (16.12)

where {Yk : k ∈ N } is a sequence of i.i.d. random variables with distribution F
and expectation EYk = µ. The normalizing function ϕ(n) = n1/αL(n), where L
is a slowly varying function at infinity. As before it is not necessary to assume
that the random variables Yk are non-negative, however, this time we assume
that they belong to the domain of attraction of an α-stable law, that is:

1
ϕ(n)

n∑
k=1

(Yk − µ) L→ Zα,β(1) , (16.13)

where Zα,β(t) is the α-stable Lévy motion with scale parameter σ′, skewness
parameter β, and 1 < α < 2. For details see Janicki and Weron (1994) and
Samorodnitsky and Taqqu (1994).
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Let Rα(t) be the α-stable Lévy motion with a linear drift

Rα(t) = u + ct − λ1/αZα,β(t), (16.14)

where u, c, and λ are positive constants. Let {Yk} be the sequence of the ran-
dom variable defined above, {N (n)} be a sequence of point processes satisfying

N (n)(t) − λnt

ϕ(n)
L→ 0, (16.15)

where L→ denotes weak convergence in the Skorokhod topology, and λ is a
positive constant. Moreover, we assume

lim
n→∞

(
c(n) − λn

µ

ϕ(n)

)
= c (16.16)

and
lim

n→∞u(n) = u . (16.17)

Then

Rn(t) = un + cnt − 1
ϕ(n)

N(n)(t)∑
k=1

Yk
L→ Rα(t) = u + ct − λ1/α Zα,β(t), (16.18)

when n → ∞, for details see Furrer, Michna, and Weron (1997).

Assumption (16.15) is satisfied for a wide class of point processes. For exam-
ple, if the times between consecutive claims constitute i.i.d. sequence with the
distribution possessing a finite second moment. We should also notice that the
skewness parameter β equals 1 for the process Rα(t) if the random variables
{Yk} are non-negative.

16.3.2 Ruin Probability in the Limit Risk Model for Large
Claims

As in the Brownian motion approximation it can be shown that the finite and
infinite time ruin probabilities converge to the ruin probabilities of the limit
process. Thus it remains to derive ruin probabilities for the process Rα(t)
defined in (16.18). We present asymptotic behavior for ruin probabilities in
finite and infinite time horizons and an exact formula for infinite time ruin
probability. An upper bound for finite time ruin probability will be shown.
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First, we derive the asymptotic ruin probability for the finite time horizon.
Let T be the ruin time (17.11) and Zα,β(t) be the α-stable Lévy motion with
0 < α < 2, −1 < β ≤ 1, and scale parameter σ′. Then:

lim
u→∞

P{T (u + cs − λ1/αZα,β(s)) ≤ t}
P{λ1/αZα,β(t) > u + ct} = 1 , (16.19)

see Furrer, Michna, and Weron (1997) and Willekens (1987).

Using the asymptotic behavior of probability P{λ1/αZα,β(t) > u + ct} when
u → ∞ for 1 < α < 2, we get ( Samorodnitsky and Taqqu, 1994, Prop. 1.2.15)
that

P{T (u + cs − λ1/αZα,β(s)) ≤ t} ≈ Cα
1 + β

2
λ(σ′)αt(u + ct)−α , (16.20)

where
Cα =

1 − α

Γ(2 − α) cos(πα/2)
. (16.21)

The asymptotic ruin probability in the finite time horizon is a lower bound for
the finite time ruin probability. Let Zα,β(t) be the α-stable Lévy motion with
α �= 1 and |β| ≤ 1 or α = 1 and β = 0. Then for positive u, c, and λ:

P{T (u + cs − λ1/αZα,β(s)) ≤ t} ≤ P{λ1/αZα,β(t) > u + ct}
P{λ1/αZα,β(t) > ct} . (16.22)

Now, we consider infinite time ruin probability for the α-stable Lévy motion.
It turns out that for β = 1 it is possible to give an exact formula for the ruin
probability in the infinite time horizon. If Zα,β(t) is the α-stable Lévy motion
with 1 < α < 2, β = 1, and scale parameter σ′ then for positive u, c, and λ,
Furrer (1998) showed that

P{T (u + cs − λ1/αZα,β(s)) < ∞} =
∞∑

n=0

(−a)n

Γ{1 + (α − 1)n} u(α−1)n , (16.23)

where a = cλ−1(σ′)−α cos{π(α − 2)/2}.

In general, for an arbitrary β we can obtain asymptotic behavior for infinite
time ruin probabilities when the initial capital tends to infinity. Now, let
Zα,β(t) be the α-stable Lévy motion with 1 < α < 2, −1 < β ≤ 1, and scale
parameter σ′. Then for positive u, c, and λ we have (Port, 1989, Theorem 9):

P{T (u+ cs−λ1/αZα,β(s)) < ∞} =
A(α, β)λ(σ′)α

α(α − 1)c
u−α+1 +O(u−α+1) (16.24)
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when u → ∞, where

A(α, β) =
Γ(1 + α)

π

√
1 + β2 tan2

(πα

2

)
sin

[πα

2
+ arctan{β tan

(πα

2

)
}
]
.

For completeness it remains to consider the case β = −1, which is quite different
because the right tail of the distribution of the α-stable law with β = −1 does
not behave like a power function but like an exponential function (i.e. it is
not a heavy tail). Let Zα,β(t) be the α-stable Lévy motion with 1 < α < 2,
β = −1, and scale parameter σ′. Then for positive u, c, and λ:

P{T (u + cs − λ1/αZα,β(s)) < ∞} = exp{−a1/(α−1)u} , (16.25)

where a is as above.

16.3.3 Examples

Let us assume that the sequence of claims is i.i.d. and their distribution belongs
to the domain of attraction of the α-stable law with 1 < α < 2. Let R(t) be
the following risk process

R(t) = u + ct −
N(t)∑
n=1

Yk , (16.26)

where u is the initial capital, c is a premium rate payed by the policyholders,
and {Yk : k ∈ N} is an i.i.d. sequence with the distribution belonging to the
domain of attraction of the α-stable law with 1 < α < 2, that is fulfilling
(16.13). Moreover, let EYk = µ and the claim intensity be λ. Similarly as in
the Brownian motion approximation we obtain:

P{T (R) ≤ t} ≈ P{T (Rα) ≤ t}, (16.27)

and
P{T (R) < ∞} ≈ P{T (Rα) < ∞} , (16.28)

where
Rα(t) = u + (c − λµ)t − λ1/αZα(t),

and Zα(t) is the α-stable Lévy motion with β = 1 and scale parameter σ′. The
scale parameter can be calibrated using the asymptotic results of Mijnheer
(1975), see also Samorodnitsky and Taqqu (1994, p. 50).
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Table 16.2: Ruin probabilities for α = 1.0334 and fixed µ = 20, σ = 10, and
t = 10.

u c λ Ψ(t) Ψ
25 50 2 0.45896 0.94780
25 60 2 0.25002 0.90076
30 60 2 0.24440 0.90022
35 60 2 0.23903 0.89976
40 60 2 0.23389 0.89935
40 70 3 0.61235 0.96404

STFdiff03.xpl

Table 16.3: Ruin probabilities for α = 1.5 and fixed µ = 20, σ = 10, and t = 10.
u c λ Ψ(t) Ψ
25 50 2 9.0273e-02 0.39735
25 60 2 3.7381e-02 0.23231
30 60 2 3.6168e-02 0.21461
35 60 2 3.5020e-02 0.20046
40 60 2 3.3932e-02 0.18880
40 70 3 1.1424e-01 0.44372

STFdiff04.xpl

For α = 2, the standard deviation σ =
√

2σ′. Hence, it is reasonable to put
σ′ = 2−1/ασ in the general case. In this way we can compare the results for
the two approximations. Using (16.20) and (16.23) we compute the finite and
infinite time ruin probabilities for different levels of initial capital, premium,
intensity of claims, expectation of claims and their scale parameter, see Tables
16.2 and 16.3. A sample path of the process Rα is depicted in Figure 16.2.

The results in the tables show the effects of the heaviness of the claim size
distribution tails on the crucial parameter for insurance companies – the ruin
probability. It is clearly visible that a decrease of α increases the ruin probabil-
ity. The tables also illustrate the relationship between the ruin probability and
the initial capital u, premium c, intensity of claims λ, expectation of claims µ
and their scale parameter σ′. For the heavy-tailed claim distributions the ruin
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Figure 16.2: A sample path of the process Rα for α = 1.5, u = 40, c = 100,
µ = 20, σ = 10, and λ = 3.
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probability is considerably higher than for the light-tailed claim distributions.
Thus the estimation of the stability parameter α from real data is crucial for
the choice of the premium c.
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17 Risk Model of Good and Bad
Periods

Zbigniew Michna

17.1 Introduction

Classical insurance risk models rely on independent increments of the corre-
sponding risk process. However, this assumption can be very restrictive in
modeling natural events. For example, Müller and Pflug (2001) found a signifi-
cant correlation of claims related to tornados in the USA. To cope with these ob-
servations we present here a risk model producing positively correlated claims.
In the recent years such models have been extensively investigated by Gerber
(1981; 1982), Promislov (1991), Michna (1998), Nyrhinen (1998; 1999a; 1999b),
Asmussen (1999), and Müller and Pflug (2001).

We consider a model where the time of the year influences claims. For example,
seasonal weather fluctuations affect the size and quantity of damages in car ac-
cidents, intensive rains can cause abnormal damage to households. We assume
the existence of good and bad periods for the insurance company in the sense
of different expected values for claim sizes. This structure of good and bad
periods produces a dependence of claims such that the resulting risk process
can be approximated by the fractional Brownian motion with a linear drift.
Explicit asymptotic formulas and numerical results can be derived for different
levels of the dependence structure. As we will see the dependence of claims
affects a crucial parameter for the risk exposure of the insurance company –
the ruin probability.

Recall that the ruin time T is defined as the first time the company has a
negative capital. One of the key problems of collective risk theory concerns
calculating the ultimate ruin probability Ψ = P(T < ∞), i.e. the probability
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that the risk process ever becomes negative. On the other hand, the insurance
company will typically be interested in the probability that ruin occurs before
time t, that is Ψ(t) = P(T ≤ t). In the next section we present basic defi-
nitions and assumptions imposed on the model, and results which permit to
approximate the risk process by fractional Brownian motion. Section 17.3 deals
with bounds and asymptotic formulas for ruin probabilities. The last section
is devoted to numerical results.

17.2 Fractional Brownian Motion and the Risk
Model of Good and Bad Periods

In this section we describe fractional Brownian motion approximation in risk
theory. We show that under suitable assumptions the risk process constructed
from claims appearing in good and bad periods can be approximated by the
fractional Brownian motion with a linear drift. Hence, we first introduce the
definition of fractional Brownian motion and then construct the model.

A process BH is called fractional Brownian motion if for some 0 < H ≤ 1:

1. BH(0) = 0 almost surely.

2. BH has strictly stationary increments, that is the random function Mh(t) =
BH(t + h) − BH(t), h ≥ 0, is strictly stationary.

3. BH is self-similar of order H denoted H − ss, that is L{BH(ct)} =
L{cHBH(t)} in the sense of finite-dimensional distributions.

4. Finite dimensional distributions of BH are Gaussian with EBH(t) = 0

5. BH is almost surely continuous.

If not stated otherwise explicitly, we let the parameter of self-similarity satisfy
1
2 < H < 1. The concept of semi-stability was introduced by Lamperti (1962)
and recently discussed in Embrechts and Maejima (2002). Mandelbrot and Van
Ness (1968) call it self-similarity when appearing in conjunction with stationary
increments, as it does here.

When we observe arriving claims we assume that we have good and bad periods
(e.g. periods of good weather and periods of bad weather). These two periods
alternate. Let {TG

n , n ∈ N} be i.i.d. non-negative random variables representing
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good periods; similarly, let {SB , SB
n , n ∈ N} be i.i.d. non-negative random

variables representing bad periods. The T ’s are assumed independent of the
S’s, the common distribution of good periods is FG, and the distribution of
bad periods is FB . We assume that both FG and FB have finite means νG

and νB , respectively, and we set ν = νG + νB .

Consider the pure renewal sequence initiated by a good period {0,
∑n

i=1(TG
i +

SB
i ), n ∈ N}. The inter-arrival distribution is FG ∗ FB and the mean inter-

arrival time is ν. This pure renewal process has a stationary version {D,D +∑n
i=1(TG

i +SB
i ), n ∈ N}, where D is a delay random variable (Asmussen, 1987).

However, by defining the initial delay interval of length D this way, the interval
does not decompose into a good and a bad period the way subsequent inter-
arrival intervals do. Consequently, we turn to an alternative construction of
the stationary renewal process to decompose the delay random variable D into
a good and bad period. Define three independent random variables B, TG

0 , and
SB

0 , which are independent of (SB , TG
n , SB

n , n ∈ N), as follows: B is a Bernoulli
random variable with values in {0, 1} and mass function

P(B = 1) =
νG

ν
= 1 − P(B = 0)

and

P(TG
0 > x) =

∫ ∞

x

1 − FG(s)
νG

ds
def= 1 − FG

0 (x),

P(SB
0 > x) =

∫ ∞

x

1 − FB(s)
νB

ds
def= 1 − FB

0 (x),

for x > 0. Define a delay random variable D0 by

D0 = (TG
0 + SB)B + (1 − B)SB

0

and a delayed renewal sequence by

{Sn, n ≥ 0} def=

{
D0, D0 +

n∑
i=1

(TG
i + SB

i ), n ≥ 0

}
.

One can verify that this delayed renewal sequence is stationary (Heath, Resnick,
and Samorodnitsky, 1998).

We now define L(t) to be 1 if t falls in a good period, and L(t) = 0 if t is in
a bad period. More precisely, the process {L(t), t ≥ 0} is defined in terms of
{Sn, n ≥ 0} as follows

L(t) = BI(0 ≤ t < TG
0 ) +

∞∑
n=0

I(Sn ≤ t < Sn + TG
n+1). (17.1)
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The process {L(t), t ≥ 0} is strictly stationary and

P{L(t) = 1} = EL(t) =
νG

ν
.

Let {Y G
n , n ≥ 0} be i.i.d. random variables representing claims appearing in

good periods (e.g. Y G
n describes a claim which may appear at the n-th moment

in a good period). Similarly, let {Y B
n , n ≥ 0} be i.i.d. random variables repre-

senting claims appearing in bad periods (e.g. Y B
n describes a claim which may

appear at the n-th moment in a bad period). We assume that {Y G
n , n ≥ 0},

{Y B
n , n ≥ 0} and {L(t), t ≥ 0} are independent, E(Y G

0 ) = g < E(Y B
0 ) = b, and

the second moments of Y G
0 and Y B

0 exist. Then the claim Yn appearing at the
n-th moment is

Yn = L(n)Y G
n + {1 − L(n)}Y B

n , n ≥ 0. (17.2)

Furthermore, the sequence {Yn, n ≥ 0} is stationary.

Assume that
1 − FG(t) = t−(C+1)K(t), (17.3)

for t → ∞, 0 < C < 1, where K is slowly varying at infinity. Moreover, assume
that

1 − FB(t) = O{1 − FG(t)}, (17.4)

as t → ∞ and there exists an n ≥ 1 such that (FG ∗FB)∗n is nonsingular. Then

Cov(Y0, Yn) ∼ ν2
B(b − g)2

Cν3
n−CK(n) (17.5)

when n → ∞ (Heath, Resnick, and Samorodnitsky, 1998).

We assumed that the good period dominates the bad period but one can ap-
proach the problem reversely (i.e. the bad period can dominate the good pe-
riod) because of the symmetry of the good and bad period characteristics in
the covariance function.

Assume that EYn = µ and ϕ(n) = nHK(n), where K is a slowly varying
function at infinity. Let the sequence {Yk : k ∈ N} be as above and let {N (n) :
n ∈ N} be a sequence of point processes such that

N (n)(t) − λnt

ϕ(n)
L→ 0 (17.6)
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weakly in the Skorokhod topology (Jacod and Shiryaev, 1987) for some positive
constant λ. Assume also that

lim
n→∞

{
c(n) − λn

µ

ϕ(n)

}
= c (17.7)

and
lim

n→∞u(n) = u. (17.8)

Then

u(n) + c(n)t − 1
ϕ(n)

N(n)(t)∑
k=1

Yk
L→ u + ct − λH BH(t) (17.9)

in the Skorokhod topology as n → ∞. Condition (17.6) is satisfied for a wide
class of point processes. For example, if the times between consecutive claims
constitute an i.i.d. sequence with the distribution possessing a finite second
moment.

17.3 Ruin Probability in the Limit Risk Model of
Good and Bad Periods

Let us define
RH(t) = u + ct − λHBH(t), (17.10)

where u, c, and λ are positive constants and the ruin time:

T (RH) = inf{t > 0 : RH(t) < 0}, (17.11)

if the set is non-empty and T (RH) = ∞ otherwise.

The ruin probability of the process of (17.10) is given by (Michna, 1998):

P{T (RH) ≤ t} ≤ 1 − Φ
{

u + ct

σ(λt)H

}
+ exp

{ −2uct

σ2(λt)2H

}[
1 − Φ

{
u − ct

σ(λt)H

}]
,

(17.12)
where the functional T is given in (17.11) and σ2 = E{B2

H(1)}.

The next result enables us to approximate the ruin probability of the process
RH(t) for a sufficiently large initial capital. For every t > 0:

lim
u→∞

P{T (RH) ≤ t}
P{λHBH(t) > u + ct} = 1, (17.13)
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where the functional T is given in (17.11).

Now, let us consider the infinite time ruin probability. The lower and upper
bounds for the ruin probability are given by:

P{T (RH) < ∞} ≥ 1 − Φ
{

u1−HcH

σ(λH)H(1 − H)1−H

}
, (17.14)

and

P{T (RH) < ∞} ≤ 2c√
8π(1 − H)

∫ ∞

0

exp
{
−1

2
λ−2Hσ−2(ux− H

1−H + cx)2
}

dx .

(17.15)
See Norros (1994) for the lower bound and Dȩbicki, Michna, and Rolski (1998)
for the upper bound analysis.

The next property will show the asymptotic behavior of the infinite time ruin
probability. Let the Hurst parameter satisfy 0 < H < 1. Then (Hüsler and
Piterbarg, 1999):

P{T (RH) < ∞} =
PH

√
πc1−HHH− 3

2 u(1−H)( 1
H −1)

2
1

2H − 1
2 (1 − H)H+ 1

H − 3
2 λ1−Hσ

1
H −1

·

·
[

1 − Φ

{(
1 − H

H

)H
u1−HcH

(1 − H)λHσ

}]
{1 + o(1)}, (17.16)

as u → ∞ where PH is the Pickands constant, Piterbarg (1996). The value of
the Pickands constant is known only for H = 0.5 and H = 1. Some approxi-
mations of its value can be found in Burnecki and Michna (2002) and Dȩbicki,
Michna, and Rolski (2003). The above result permits to approximate the infi-
nite time ruin probability in the model of good and bad periods for large values
of the initial capital.

For an arbitrary value of the initial capital there exists a simulation method
of the infinite time ruin probability based on the Girsanov-type theorem. To
present this method we introduce the stopping time

τa(u) = inf{t > 0 : BH(t) + at > u} , (17.17)

where a ≥ 0 and the function

w(t, s) =
{

c1s
1
2−H(t − s)

1
2−H

s ∈ (0, t)
0, s �∈ (0, t),

(17.18)
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where 1
2 < H < 1,

c1 =
{

H(2H − 1)B
(

3
2
− H,H − 1

2

)}−1

, (17.19)

and B denotes the beta function. Note that τa < ∞ almost surely for a ≥
0. According to Norros, Valkeila, and Virtamo (1999) the following centered
Gaussian process

M(t) =
∫ t

0

w(t, s) dBH(s), (17.20)

possesses independent increments and its variance is

EM2(t) = c2
2t

2−2H , (17.21)

where

c2 =
{

H(2H − 1)(2 − 2H)B
(

H − 1
2
, 2 − 2H

)}− 1
2

.

In particular M(t) is a martingale. For all a > 0 we have

P{T (RH) < ∞} =

E exp
{
−c + a

λHσ

∫ τa

0

w(τa, s) dBH(s) − 1
2λ2Hσ2

c2
2(c + a)2τa

2−2H

}
.

The above formula enables us to simulate the infinite time ruin probability
for an arbitrary value of the initial capital. Using the structure of the com-
mon distribution of (M(t), BH(t)) we get the following estimator of the ruin
probability valid for 0 < H < 1:

P{T (RH) < ∞} = E exp
{
− (c + a)

λ2Hσ2
τ1−2H
a u +

(a2 − c2)
2λ2Hσ2

τa
2−2H

}
. (17.22)

Let us note that putting a = c in (17.22) we obtain a simple formula

P{T (RH) < ∞} = E exp
{
−2cτ1−2H

c u

λ2Hσ2

}
. (17.23)

For similar methods of simulation based on the change of measure technique
applied to fluid models see Dȩbicki, Michna, and Rolski (2003).
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Table 17.1: Ruin probabilities for H = 0.7 and fixed µ = 20, σ = 10, and
t = 10.

u c λ Ψ(t) Ψ
25 50 2 8.1257e-2 0.28307
25 60 2 1.3516e-2 0.03932
30 60 2 6.6638e-3 0.02685
35 60 2 3.6826e-3 0.01889
40 60 2 2.2994e-3 0.01363
40 70 3 1.0363e-1 0.38016

STFgood01.xpl

Table 17.2: Ruin probabilities for H = 0.8 and fixed µ = 20, σ = 10, and
t = 10.

u c λ Ψ(t) Ψ
25 50 2 0.22240 0.40728
25 60 2 0.09890 0.08029
30 60 2 0.06570 0.06583
35 60 2 0.04496 0.05471
40 60 2 0.03183 0.04646
40 70 3 0.23622 0.55505

STFgood02.xpl

17.4 Examples

Let us assume that claims appear in good and bad periods. According to (17.9)
we are able to approximate the risk process by:

RH(t) = u + (c − λµ)t + λHBH(t),

where BH(t) is a fractional Brownian motion, c is the premium rate, µ is the
expected value of claims, σ2 = EB2(1) is their variance, λ is the claim intensity,
and u is the initial capital.

We can compute finite and infinite time ruin probabilities for different levels
of the initial capital, premium, intensity of claims, expectation of claims and



17.4 Examples 403

0 0.5 1

X

40
50

60
70

Y

Figure 17.1: Sample paths of the process RH for H = 0.7, u = 40, c = 100,
µ = 20, σ = 10, and λ = 3.
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their variance (see Tables 17.1 and 17.2). We approximate the finite time ruin
probabilities by formula (17.12) and the infinite time ruin probabilities using
the estimator given in (17.23). Sample paths of the process RH are depicted
in Figure 17.1.

The results in the tables show the effects of dependence structures between
claims on the crucial parameter for insurance companies – the ruin probabil-
ity. Numerical simulations are performed for different values of the parameter
of self-similarity H which defines the level of the dependence between claims.
It is clearly visible that an increase of H increases the ruin probability. The
tables also illustrate the relationship between the ruin probability and the ini-
tial capital u, premium c, intensity of claims λ, expectation of claims µ and
their variance σ. It is shown that for dependent damage occurrences the ruin
probability is considerably higher than for independent events. Thus ignoring
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possible dependence (existence of good and bad periods) and its level might
lead to wrong choices of the premium c.
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18 Premiums in the Individual and
Collective Risk Models

Jan Iwanik and Joanna Nowicka-Zagrajek

The premium is the price for the good “insurance” sold by an insurance com-
pany. The right pricing is vital since too low a price level results in a loss, while
with too high prices a company can price itself out of the market. It is the
actuary’s task to find methods of premium calculation (also called premium
calculation principles), i.e. rules saying what premium should be assigned to a
given risk.

We present the most important types of premiums in Section 18.1; for more
premium calculation principles, that are not considered here, see Straub (1988)
and Young (2004). We focus on the monetary payout made by the insurer in
connection with insurable losses and we ignore premium loading for expenses
and profit.

The goal of insurance modeling is to develop a probability distribution for the
total amount paid in benefits. This allows the insurance company to manage
its capital account and honor its commitments. Therefore, we describe two
standard models: the individual risk model in Section 18.2 and the collective
risk model in Section 18.3. In both cases, we determine the expectation and
variance of the portfolio, consider the approximation of the distribution of
the aggregate claims, and present formulae for the considered premiums. It
is worth mentioning here that the collective risk model can also be applied
to quantifying regulatory capital for operational risk, for example to model a
yearly operational risk variable (Embrechts, Furrer, and Kaufmann, 2003).
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18.1 Premium Calculation Principles

Let X denote a non-negative random variable describing the size of claim (risk,
loss) with the distribution function FX(t). Moreover, we assume that the ex-
pected value E(X), the variance Var(X) and the moment generating function
MX(z) = E(ezX) exist.

The simplest premium (calculation principle) is called pure risk premium and
it is equal to the expectation of claim size variable:

P = E(X). (18.1)

This premium is often applied in life and some mass lines of business in non-life
insurance. As it is known from the ruin theory, the pure risk premium without
any kind of loading is insufficient since, in the long run, the ruin is inevitable
even in the case of substantial (though finite) initial reserves. Nevertheless,
the pure risk premium can be – and still is – of practical use because, for one
thing, in practice the planning horizon is always limited, and for another, there
are indirect ways of loading a premium, e.g. by neglecting interest earnings
(Straub, 1988).

The future claims cost X may be different from its expected value E(X) and
the estimator Ê(X) drawn from past may be different from the true E(X).
To reflect this fact, the insurer can impose the risk loading on the pure risk
premium.

The pure risk premium with safety (security) loading given by

PSL(θ) = (1 + θ) E(X), θ ≥ 0, (18.2)

where θ and θ E(X) are the relative and total safety loadings, respectively, is
very popular in practical applications. This premium is an increasing linear
function of θ and it is equal to the pure risk premium for θ = 0 .

The pure risk premium and the premium with safety loading are sometimes
criticised because they do not depend on the degree of fluctuation of X. Thus,
two other rules have been proposed. The first one, denoted here by PV (a) and
given by

PV (a) = E(X) + a Var(X), a ≥ 0, (18.3)

is called the σ2-loading principle or the variance principle. In this case the
premium depends not only on the expectation but also on the variance of the
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loss. The premium given by (18.3) is an increasing linear function of a and it
is obvious that for a = 0 it is equal to the pure risk premium.

The other one, denoted here by PSD(b) and given by

PSD(b) = E(X) + b
√

Var(X), b ≥ 0, (18.4)

is called the σ-loading principle or the standard deviation principle. In this case
the premium depends on the expectation and also on the standard deviation
of the loss. The premium given by (18.4) is an increasing linear function of b
and clearly for b = 0 it reduces to the pure risk premium. Both the σ2- and
σ-loading principles are widely used in practice, but there is a discussion which
one is better. If we consider two risks X1 and X2, the σ-loading is additive
and the σ2-loading not in case X1 and X2 are totally dependent, whereas the
contrary is true for independent risks X1 and X2. Although in many cases the
additivity is required from premium calculation principles, there are also strong
arguments against additivity based on the idea that the price of insurance ought
to be the lower the larger number of the risk carriers are sharing the risk.

The rules described so far are sometimes called “empirical” or “pragmatic”.
Another approach employs the notion of utility (Straub, 1988). The so-called
zero utility principle states that the premium PU for a risk X should be cal-
culated such that the expected utility is (at least) equal to the zero utility.
This principle yields a technical minimum premium in the sense that the risk
X should not be accepted at a premium below PU . In the trivial case zero
utility premium equals the pure risk premium. A more interesting case is the
exponential utility which leads to a premium, denoted here by PE(c) and called
the exponential premium, given by

PE(c) =
ln MX(c)

c
=

ln E(ecX)
c

, c > 0. (18.5)

This premium is an increasing function of the parameter c that measures the
risk aversion and limc→0 PE(c) = E(X). It is worth noticing that the zero
utility principle yields additive premiums only in the trivial and the exponential
utility cases (Gerber, 1980). As the trivial utility is just a special case of
exponential utility corresponding to the limit c → 0, additivity characterizes
the exponential utility.

Another interesting approach to the problem of premium calculations is the
quantile premium, denoted here by PQ(ε), is given by

PQ(ε) = F−1
X (1 − ε), (18.6)
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where ε ∈ (0, 1) is small enough. As it can be easily seen, it is just the quantile
of order (1 − ε) of the loss distribution and this means that the insurer wants
to get the premium that covers (1− ε) ·100% of the possible loss. A reasonable
range of the parameter ε is usually from 1% to 5%.

18.2 Individual Risk Model

We consider here a certain portfolio of insurance policies and the total amount
of claims arising from it during a given period (usually a year). Our aim is
to determine the joint premium for the whole portfolio that will cover the
accumulated risk connected with all policies.

In the individual risk model, which is widely used in applications, especially in
life and health insurance, we assume that the portfolio consists of n insurance
policies and the claim made in respect of the policy k is denoted by Xk. Then
the total, or aggregate, amount of claims is

S = X1 + X2 + . . . + Xn, (18.7)

where Xk is the loss on insured unit k and n is the number of risk units
insured (known and fixed at the beginning of the period). The Xk’s are usually
postulated to be independent random variables (but not necessarily identically
distributed), so we will make such assumption in this section. Moreover, the
individual risk model discussed here will not recognize the time value of money
because we will consider only models for short periods.

The claim amount variable Xk for each policy is usually presented as

Xk = IkBk, (18.8)

where random variables I1, . . . , In, B1, . . . , Bn are independent. The random
variable Ik indicates whether or not the kth policy produced a payment. If the
claim has occurred, then Ik = 1; if there has not been any claim, Ik = 0. We
denote qk = P(Ik = 1) and 1 − qk = P(Ik = 0). The random variable Bk can
have an arbitrary distribution and represents the amount of the payment in
respect of the kth policy given that the payment was made.

In Section 18.2.1 we present general formulae for the premiums introduced in
Section 18.1. In Section 18.2.2 we apply the normal approximation to obtain
closed-form formulae for both the exponential and quantile premiums. Finally
in Section 18.2.3, we illustrate the behavior of these premiums on a real-life
data describing losses resulting from catastrophic events in the USA.
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18.2.1 General Premium Formulae

In order to find formulae for the “pragmatic” premiums, let us assume that
the expectations and variances of Bk’s exist and denote µk = E(Bk) and σ2

k =
Var(Bk), k = 1, 2, . . . , n. Then

E(Xk) = µkqk, (18.9)

and the mean of the total loss in the individual risk model is given by

E(S) =
n∑

k=1

µkqk. (18.10)

The variance of Xk can be calculated as follows:

Var(Xk) = Var{E(Xk|Ik)} + E{Var(Xk|Ik)} (18.11)
= Var{Ik E(Bk)} + E{Ik Var(Bk)}
= {E(Bk)}2 Var(Ik) + Var(Bk) E(Ik)
= µ2

kqk(1 − qk) + σ2
kqk.

Applying the assumption of independent Xk’s, the variance of S is of the form:

Var(S) =
n∑

k=1

{
µ2

kqk(1 − qk) + σ2
kqk

}
. (18.12)

Now we can easily obtain the following formulae for the individual risk model:

• pure risk premium

P =
n∑

k=1

µkqk, (18.13)

• premium with safety loading

PSL(θ) = (1 + θ)
n∑

k=1

µkqk, θ ≥ 0, (18.14)

• premium with variance loading

PV (a) =
n∑

k=1

µkqk + a
n∑

k=1

{
µ2

kqk(1 − qk) + σ2
kqk

}
, a ≥ 0, (18.15)
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• premium with standard deviation loading

PSD(b) =
n∑

k=1

µkqk + b

√√√√ n∑
k=1

{µ2
kqk(1 − qk) + σ2

kqk}, b ≥ 0. (18.16)

If we assume that for each k = 1, 2, . . . , n the moment generating function
MBk

(t) exists, then

MXk
(t) = 1 − qk + qkMBk

(t), (18.17)

and hence

MS(t) =
n∏

k=1

{1 − qk + qkMBk
(t)} . (18.18)

This leads to the following formula for the exponential premium:

PE(c) =
1
c

n∑
k=1

ln {1 − qk + qkMBk
(c)} , c > 0. (18.19)

In the individual risk model, claims of an insurance company are modeled as a
sum of the claims of many insured individuals. Therefore, in order to find the
quantile premium given by

PQ(ε) = F−1
S (1 − ε), ε ∈ (0, 1), (18.20)

the distribution of the sum of independent random variables has to be deter-
mined. There are methods to solve this problem, see Bowers et al. (1997) and
Panjer and Willmot (1992). For example, one can use the convolution of the
probability distributions of X1, X2, . . . , Xn. However in practice it can be a
very complex task that involves numerous calculations. In many cases the re-
sult cannot be represented by a simple formula. Therefore, approximations for
the distribution of the sum are often used.

18.2.2 Premiums in the Case of the Normal Approximation

The distribution of the total claim in the individual risk model can be approxi-
mated by means of the central limit theorem (Bowers et al., 1997). In such case
it is sufficient to evaluate means and variances of the individual loss random
variables, sum them to obtain the mean and variance of the aggregate loss of
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the insurer and apply the normal approximation. However, it is important to
remember that the quality of this approximation depends not only on the size
of the portfolio, but also on its homogeneity.

The approximation of the distribution of the total loss S in the individual risk
model can be applied to find a simple expression for the quantile premium. If
the distribution of S is approximated by a normal distribution with mean E(S)
and variance Var(S), the quantile premium can be written as

PQ(ε) =
n∑

k=1

µkqk + Φ−1(1 − ε)

√√√√ n∑
k=1

{µ2
kqk(1 − qk) + σ2

kqk}, (18.21)

where ε ∈ (0, 1) and Φ(·) denotes the standard normal distribution function.
It is the same premium as the premium with standard deviation loading with
b = Φ−1(1 − ε).

Moreover, in the case of this approximation, it is possible to express the expo-
nential premium as

PE(c) =
n∑

k=1

µkqk +
c

2

n∑
k=1

{
µ2

kqk(1 − qk) + σ2
kqk

}
, c > 0, (18.22)

and it is easy to notice, that this premium is equal to the premium with variance
loading with a = c/2.

Since the distribution of S is approximated by the normal distribution with
the same mean value and variance, premiums defined in terms of the expected
value of the aggregate claims are given by the same formulae as in Section
18.2.1.

18.2.3 Examples

Quantile premium for the individual risk model with Bk’s log-normally dis-
tributed. The insurance company holds n = 500 policies Xk. The claims
arising from policies can be represented as independent identically distributed
random variables. The actuary estimates that each policy generates a claim
with probability qk = 0.05 and the claim size, given that the claim happens, is
log-normally distributed. The parameters of the log-normal distribution corre-
spond to the real-life data describing losses resulting from catastrophic events
in the USA, i.e. µk = 18.3806 and σk = 1.1052 (see Chapter 13).
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As the company wants to assure that the probability of losing any money
is less than a specific value ε, the actuary is asked to calculate the quantile
premium. The actuary wants to compare the quantile premium given by the
general formula (18.20) with the one (18.21) obtained from the approximation
of the aggregate claims.

The distribution of the total claim in this model can be approximated by the
normal distribution with mean 4.4236 · 109 and variance 2.6160 · 1018.

Figure 18.1 shows the quantile premium in the individual risk model framework
for ε ∈ (0.01, 0.1). The exact premium is drawn with the solid blue line whereas
the premium calculated on the base of the normal approximation is marked
with the dashed red line. Because of the complexity of analytical formulae,
the exact quantile premium for the total claim amount was obtained using
numerical simulations. The simulation-based approach is the reason for the
line being jagged. A better smoothness can be achieved by performing a larger
number of Monte Carlo simulations (here we performed 10000 simulations).

We can observe now that the approximation seems to fit well for larger ε and
worse for small ε. This is specific for the quantile premium. The effect is caused
by the fact that even if two distribution functions F1(x), F2(x) are very close
to each other, their inverse functions F−1

1 (y), F−1
2 (y) may differ significantly

for y close to 1.

Exponential premium for the individual risk model with Bk’s gamma dis-
tributed. Because the company has a specific risk strategy described by the
exponential utility function, the actuary is asked to determine the premium for
the same portfolio of 500 independent policies once again but now with respect
to the risk aversion parameter c. The actuary is also asked to use a method
of calculation that provides direct results and does not require Monte Carlo
simulations.

This time the actuary has decided to describe the claim size, given that the
claim happens, by the gamma distribution with α = 0.9185 and β = 5.6870 ·
10−9, see Chapter 13. The choice of the gamma distribution guarantees a
simple analytical form of the premium, namely

PE(c) =
1
c

n∑
k=1

ln
{

1 − qk + qk

(
β

β − c

)α}
, c > 0. (18.23)
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Figure 18.1: Quantile premium for the individual risk model with Bk’s log-
normally distributed. The exact premium (solid blue line) and the
premium resulting for the normal approximation of the aggregate
claims (dashed red line).
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On the other hand, the actuary can use formula (18.22) applying the normal
approximation of the aggregate claims with mean 4.0377 · 109 and variance
1.3295 · 1018.

Figure 18.2 shows the exponential premiums resulting from both approaches
with respect to the risk aversion parameter c. A simple pattern can be observed
– the more risk averse the customer is, the more he or she is willing to pay for
the risk protection. Moreover, the normal approximation gives better results
for smaller values of c.
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Figure 18.2: Exponential premium for the individual risk model with Bk’s gene-
rated from the gamma distribution. The exact premium (solid blue
line) and the premium resulting for the normal approximation of
the aggregate claims (dashed red line).
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18.3 Collective Risk Model

We consider now an alternative model describing the total claim amount in a
fixed period in a portfolio of insurance contracts.

Let N denote the number of claims arising from policies in a given time period.
Let X1 denote the amount of the first claim, X2 the amount of the second
claim and so on. In the collective risk model, the random sum

S = X1 + X2 + . . . + XN (18.24)

represents the aggregate claims generated by the portfolio for the period under
study. The number of claims N is a random variable and is associated with the
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frequency of claim. The individual claims X1, X2, . . . are also random variables
and are said to measure the severity of claims. There are two fundamental
assumptions that we will make in this section: X1, X2, . . . are identically dis-
tributed random variables and the random variables N,X1, X2, . . . are mutually
independent.

In Section 18.3.1 we present formulae for the considered premiums in the collec-
tive risk model. In Section 18.3.2 we apply the normal and translated gamma
approximations to obtain closed formulae for premiums. Since for the number
of claims N , a Poisson or a negative binomial distribution is often selected, we
discuss these cases in detail in Section 18.3.3 and 18.3.4, respectively. Finally,
we illustrate the behavior of the premiums on examples in Section 18.3.5.

18.3.1 General Premium Formulae

In order to find formulae for premiums based on the expected value of the
total claim, let us assume that E(X), E(N), Var(X) and Var(N) exist. For the
collective risk model, the expected value of aggregate claims is the product of
the expected individual claim amount and the expected number of claims,

E(S) = E(N) E(X), (18.25)

while the variance of aggregate claims is the sum of two components where the
first is attributed to the variability of individual claim amounts and the other
to the variability of the number of claims:

Var(S) = E(N) Var(X) + {E(X)}2 Var(N). (18.26)

Thus it is easy to obtain the following premium formulae in the collective risk
model:

• pure risk premium

P = E(N) E(X), (18.27)

• premium with safety loading

PSL(θ) = (1 + θ) E(N) E(X), θ ≥ 0, (18.28)

• premium with variance loading

PV (a) = E(N) E(X) (18.29)
+ a[E(N) Var(X) + {E(X)}2 Var(N)], a ≥ 0,
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• premium with standard deviation loading

PSD(b) = E(N) E(X) (18.30)

+ b
√

E(N) Var(X) + {E(X)}2 Var(N), b ≥ 0.

If we assume that MN (t) and MX(t) exist, the moment generating function of
S can be derived as

MS(t) = MN{ln MX(t)}, (18.31)

and thus the exponential premium is of the form

PE(c) =
ln[MN{ln MX(c)}]

c
, c > 0. (18.32)

It is often difficult to determine the distribution of the aggregate claims and
this fact causes problems with calculating the quantile premium given by

PQ(ε) = F−1
S (1 − ε), ε ∈ (0, 1). (18.33)

Although the distribution function of S can be expressed by means of the
distribution of N and the convolution of the claim amount distribution, this
is too complicated in practical applications, see e.g. Klugman, Panjer, and
Willmot (1998). Therefore, approximations for the distribution of the aggregate
claims are usually considered.

18.3.2 Premiums in the Case of the Normal and Translated
Gamma Approximations

In Section 18.2.2 the normal approximation was employed as an approxima-
tion for the distribution of aggregate claims in the individual risk model. This
approach can also be used in the case of the collective model when the ex-
pected number of claims is large (Bowers et al., 1997; Daykin, Pentikainen,
and Pesonen, 1994).

The normal approximation simplifies the calculations. If the distribution of S
can be approximated by a normal distribution with mean E(S) and variance
Var(S), the quantile premium is given by the formula

PQ(ε) = E(N) E(X) + Φ−1(1 − ε)
√

E(N) Var(X) + {E(X)}2 Var(N), (18.34)
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where ε ∈ (0, 1) and Φ(·) denotes the standard normal distribution function. It
is easy to notice, that this premium is equal to the standard deviation-loaded
premium with b = Φ−1(1 − ε).

Moreover, in the case of the normal approximation, it is possible to express the
exponential premium as

PE(c) = E(N) E(X) +
c

2
[
E(N) Var(X) + {E(X)}2 Var(N)

]
, c > 0, (18.35)

which is the same premium as resulting from the variance principle with a =
c/2.

Let us also mention that since the mean and variance in the case of the normal
approximation are the same as for the distribution of S, the premiums based
on the expected value are given by the general formulae presented in Section
18.3.1.

Unfortunately, the normal approximation is not usually sufficiently accurate.
The disadvantage of this approximation lies in the fact that the skewness of the
normal distribution is always zero, as it has a symmetric probability density
function. Since the distribution of aggregate claims is often skewed, another
approximation of the distribution of aggregate claims that accommodates skew-
ness is required. In this section we describe the translated gamma approxima-
tion. For more approaches and discussion of their applicability see, for example,
Daykin, Pentikainen, and Pesonen (1994).

The distribution function of the translated (shifted) gamma distribution is
given by

Gtr(x; α, β, x0) = F (x − x0; α, β), x, α, β > 0, (18.36)

where F (x; α, β) denotes the distribution function of the gamma distribution
(described in Chapter 13) with parameters α and β:

F (x; α, β) =
∫ x

0

βα

Γ(α)
tα−1e−βtdt, x, α, β > 0. (18.37)

To apply the approximation, the parameters α, β, and x0 have to be selected
so that the first, second, and third central moments of S equal the correspond-
ing items for the translated gamma distribution. This procedure leads to the
following result:

α = 4
{Var(S)}3

(E[{S − E(S)}3])2
, (18.38)
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β = 2
Var(S)

E[{S − E(S)}3]
, (18.39)

x0 = E(S) − 2
{Var(S)}2

E[{S − E(S)}3]
. (18.40)

In the case of the translated gamma distribution, it is impossible to give a
simple analytical formula for the quantile premium. Therefore, in order to find
this premium a numerical approximation must be used. However, it is worth
noticing that the exponential premium can be presented as

PE(c) = x0 +
α

c
ln
(

β

β − c

)
, c > 0, (18.41)

while the premiums given in terms of the expected value of the aggregate
claims are the same as given in Section 18.3.1 (since the distribution of S is
approximated by the translated gamma distribution with the same mean value
and variance).

18.3.3 Compound Poisson Distribution

In many applications, the number of claims N is assumed to be described by
the Poisson distribution with the probability function given by

P(N = n) =
λne−λ

n!
, n = 0, 1, 2, . . . , (18.42)

where λ > 0. With this choice of the distribution of N , the distribution of S is
called a compound Poisson distribution.

The compound Poisson distribution has a number of useful properties. For-
mulae for the exponential premium and for the premiums based on the ex-
pectation of the aggregate claims simplify because E(N) = Var(N) = λ and
MN (t) = exp {λ(et − 1)}.

Moreover, for large λ, the distribution of the compound Poisson can be approx-
imated by a normal distribution with mean λ E(X) and variance λ E(X2), and
the quantile premium is given by

PQ(ε) = λ E(X) + Φ−1(1 − ε)
√

λ E(X2), ε ∈ (0, 1), (18.43)
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and the exponential premium is of the form

PE(c) = λ E(X) +
c

2
λ E(X2), c > 0. (18.44)

If the first three central moments of the individual claim distribution exist, the
compound Poisson distribution can be approximated by the translated gamma
distribution with the following parameters

α = 4λ
{E(X2)}3

{(E(X3)}2
, (18.45)

β = 2
E(X2)
E(X3)

, (18.46)

x0 = λ E(X) − 2λ
{E(X2)}2

E(X3)
. (18.47)

Substituting these parameters in (18.41) one can obtain the formula for the
exponential premium.

It is worth mentioning that the compound Poisson distribution has many at-
tractive features (Bowers et al., 1997; Panjer and Willmot, 1992), for example,
the combination of a number of portfolios, each of which has a compound Pois-
son distribution of aggregate claims, also has a compound Poisson distribution
of aggregate claims. Moreover, this distribution can be used to approximate
the distribution of total claims in the individual model. Although the com-
pound Poisson distribution is normally appropriate in life insurance modeling,
it sometimes does not provide an adequate fit to insurance data in other cov-
erages (Willmot, 2001).

18.3.4 Compound Negative Binomial Distribution

When the variance of the number of claims exceeds its mean, the Poisson dis-
tribution is not appropriate – in this situation the use of the negative binomial
distribution with the probability function given by

P(N = n) =
(

r + n − 1
n

)
prqn, n = 0, 1, 2, . . . , (18.48)

where r > 0, 0 < p < 1, and q = 1 − p, is suggested. In many cases it
provides a significantly improved fit to that of the Poisson distribution. When
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a negative binomial distribution is selected for N , the distribution of S is called
a compound negative binomial distribution.

Since for the negative binomial distribution we have

E(N) =
rq

p
, Var(N) =

rq

p2
, (18.49)

and

MN (t) =
(

p

1 − qet

)r

, (18.50)

the formulae for the exponential premium and for the premiums based on the
expectation of the aggregate claims simplify.

For large r, the distribution of the compound negative binomial can be ap-
proximated by a normal distribution with the mean rq

p E(X) and variance
rq
p Var(X) + rq

p2 {E(X)}2. In this case the quantile premium is given by

PQ(ε) =
rq

p
E(X) + Φ−1(1 − ε)

√
rq

p
Var(X) +

rq

p2
{E(X)}2, ε ∈ (0, 1), (18.51)

and the exponential premium is of the form

PE(c) =
rq

p
E(X) +

c

2

[
rq

p
Var(X) +

rq

p2
{E(X)}2

]
, c > 0. (18.52)

It is worth mentioning that the negative binomial distribution arises as a mixed
Poisson variate. More precisely, various distributions for the number of claims
can be generated by assuming that the Poisson parameter Λ is a random vari-
able with probability distribution function u(λ), λ > 0, and that the condi-
tional distribution of N , given Λ = λ, is Poisson with parameter λ. In such
case the distribution of S is called a compound mixed Poisson distribution, see
also Chapter 14. This choice might be useful for example when we consider a
population of insureds where various classes of insureds within the population
generate numbers of claims according to the Poisson distribution, but the Pois-
son parameters may be different for the various classes. The negative binomial
distribution can be derived in this fashion when u(λ) is the gamma probability
density function.
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18.3.5 Examples

Quantile premium for the collective risk model with log-normal claim dis-
tribution. As the number of policies sold by the insurance company grows,
the actuary has decided to try to fit a collective risk model to the portfolio.
The log-normal distribution with the parameters µ = 18.3806 and σ = 1.1052
(these parameters are again estimated on the base of the real-life data describ-
ing losses resulting from catastrophic events in the USA, see Chapter 13) is
chosen to describe the amount of claims. The number of claims is assumed to
be Poisson distributed with parameter λ = 34.2. Moreover, the claim amounts
and the number of claims are believed to be independent. The actuary wants
to compare the behavior of the quantile premium for the whole portfolio of
policies given by the general formula (18.34) and in the case of the translated
gamma approximation.

Figure 18.3 illustrates how the premium based on the translated gamma ap-
proximation (dashed red line) fits the premium determined by the exact com-
pound Poisson distribution (solid blue line). The premium for the original
compound distribution has to be determined on the base of numerical simu-
lations. This is the reason why the line is jagged. Better smoothness can be
achieved by performing a larger number of Monte Carlo simulations (here we
again performed 10000 simulations).

The actuary notices that the approximation fits better for the larger values of
ε and worse for its smaller values. In fact the compound distribution functions
of the original distribution and its transformed gamma approximation lay close
to each other, but both are increasing and tend to one in infinity. This explains
why the quantile premiums – understood as inverse functions of the distribution
functions – differ so much for ε close to zero.

Exponential premium for the collective risk model with gamma claim distri-
bution. The actuary considers again the collective risk model where the num-
ber of claims is described by the Poisson distribution with parameter λ = 34.2,
i.e. the compound Poisson model. But this time the claims are described by
the gamma distribution with the parameters α = 0.9185 and β = 5.6870 · 10−9

(parameters are based on the same catastrophic data as in the previous exam-
ple).

Now the actuary considers the exponential premium for the aggregate claims
in this model. The exponential premium in the case of the translated gamma
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Figure 18.3: Quantile premium for the log-normal claim distribution and its
translated gamma approximation in the collective risk model. The
exact premium (solid blue line) and the premium in the case of
the approximation (dashed red line) are plotted.
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approximation (dashed red line) and the exact premium (solid blue line) are
plotted in Figure 18.4. Both premiums – for the original and the approximating
distribution – are calculated analytically while it is easy to perform the calcu-
lations in this case. Both presented functions increase with the risk aversion
parameter. We see that the translated gamma approximation can be a useful
and precise tool for calculating the premiums in the collective risk model.
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Figure 18.4: Exponential premium for the gamma claim distribution in the col-
lective risk model. The exact premium (solid blue line) and the
translated gamma approximation premium (dashed red line) are
plotted. STFprem04.xpl
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19 Pure Risk Premiums under
Deductibles

Krzysztof Burnecki, Joanna Nowicka-Zagrajek, and Agnieszka Wy�lomańska

19.1 Introduction

It is a common practice in most insurance lines for the coverage to be restricted
by a deductible. For example, it is often incorporated in motor, health, dis-
ability, life, and business insurance. The main idea of a deductible is, firstly,
to reduce claim handling costs by excluding coverage for the often numerous
small claims and, secondly, to provide some motivation to the insured to pre-
vent claims through a limited degree of participation in claim costs (Daykin,
Pentikainen, and Pesonen, 1994; Sundt, 1994; Klugman, Panjer, and Will-
mot, 1998). We mention the following properties of a deductible:

(i) loss prevention – as the compensation is reduced by a deductible the re-
tention of the insured is positive; This makes out a good case for avoiding
the loss;

(ii) loss reduction – the fact a deductible puts the policyholder at risk of
obtaining only partial compensation provides an economic incentive to
reduce the extend of the damage;

(iii) avoidance of small claims where administration costs are dominant – for
small losses, the administration costs will often exceed the loss itself,
and hence the insurance company would want the policyholder to pay it
himself;

(iv) premium reduction – premium reduction can be an important aspect for
the policyholders, they may prefer to take a higher deductible to get a
lower premium.
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There are two types of deductibles: an annual deductible and a per occurrence
deductible, the latter being more common. We quote now an example from
the American market. Blue Shield of California, an independent member of
the Blue Shield Association, is California’s second largest not-for-profit health
care company, with 2 million members and USD 3 billion annual revenue. Blue
Shield of California offers 4 Preferred Provider Organization (PPO) Plans,
each offering similar levels of benefits with a different deductible option: USD
500, 750, 1500, and 2000, respectively. For example, the Blue Shield USD
500 Deductible PPO Plan has a USD 500 annual deductible for most covered
expenses. This is just the case of the fixed amount deductible, which is exploited
in Section 19.2.2. The annual deductible does not apply to office visits or
prescription medications. Office visits and most lab and x-ray services are
provided at a USD 30 copayment. This is also the case of the fixed amount
deductible. For other covered services, after the annual deductible has been
met, you pay 25% up to an annual maximum of USD 3500. This is a case of
the limited proportional deductible, which is examined in Section 19.2.4.

In Section 19.2 we present formulae for pure risk premiums under franchise,
fixed amount, proportional, limited proportional, and disappearing deductibles
in terms of the limited expected value function (levf), which was introduced
and exploited in Chapter 13. Using the specific form of levf for different loss
distributions, we present in Section 19.3 formulae for pure risk premiums un-
der the deductibles for the log-normal, Pareto, Burr, Weibull, gamma, and
mixture of two exponential distributions. The formulae can be used to obtain
annual pure risk premiums under the deductibles in the individual and collec-
tive risk model framework analysed in Chapter 18. We illustrate graphically
the influence of the parameters of the discussed deductibles on the premiums
considering the Danish fire loss example, which was studied in Chapter 13. It
gives an insight into an important issue of choosing an optimal deductible and
its level for a potential insured and a proper pricing of the accepted risk for an
insurer.

19.2 General Formulae for Premiums Under
Deductibles

Let X denote a non-negative continuous random variable describing the size
of claim (risk, loss), F (t) and f(t) its distribution and probability density
functions, respectively, and h(x) the payment function corresponding to a de-
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ductible. We consider here the simplest premium which is called the pure risk
premium, see Chapter 18. The pure risk premium P (as we consider only
pure risk premium we will henceforth use the term premium meaning pure risk
premium) is equal to the expectation, i.e.

P = E(X), (19.1)

and we assume that the expected value E(X) exists.

In the case of no deductible the payment function is obviously of the form
h(x) = x. This means that if the loss is equal to x, the insurer pays the whole
claim amount and P = E(X).

We express formulae for premiums under deductibles in terms of the so-called
limited expected value function (levf), namely

L(x) = E{min(X, x)} =
∫ x

0

yf(y)dy + x {1 − F (x)} , x > 0. (19.2)

The value of this function at a point x is equal to the expected value of the
random variable X truncated at the point x. The function is a very useful tool
for testing the goodness of fit an analytic distribution function to the observed
claim size distribution function and was already discussed in Chapter 13.

In the following sections we illustrate premium formulae for the most important
types of deductibles. All examples were created with the insurance library of
XploRe.

19.2.1 Franchise Deductible

One of the deductibles that can be incorporated in the contract is the so-called
franchise deductible. In this case the insurer pays the whole claim, if the agreed
deductible amount is exceeded. More precisely, under the franchise deductible
of a, if the loss is less than a the insurer pays nothing, but if the loss equals or
exceeds a claim is paid in full. This means that the payment function can be
described as (Figure 19.1)

hFD(a)(x) =
{

0, x < a,
x, otherwise. (19.3)

It is worth noticing that the franchise deductible satisfies properties (i), (iii)
and (iv), but not property (ii). This deductible can even work against property
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a

Figure 19.1: The payment function under the franchise deductible (solid blue
line) and no deductible (dashed red line).

STFded01.xpl

(ii). Since if a loss occurs, the policyholder would prefer it to be greater than
or equal to the deductible.

The pure risk premium under the franchise deductible can be expressed in terms
of the premium in the case of no deductible and the corresponding limited
expected value function:

PFD(a) = P − L(a) + a {1 − F (a)} . (19.4)

It can be easily noticed that this premium is a decreasing function of a. When
a = 0 the premium is equal to the no deductible case and if a tends to infinity
the premium tends to zero.
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b

Figure 19.2: The payment function under the fix amount deductible (solid blue
line) and no deductible (dashed red line).
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19.2.2 Fixed Amount Deductible

An agreement between the insured and the insurer incorporating a deductible b
means that the insurer pays only the part of the claim which exceeds amount b.
If the size of the claim falls below this amount, the claim is not covered by the
contract and the insured receives no indemnification. The payment function is
thus given by

hFAD(b)(x) = max(0, x − b), (19.5)

see Figure 19.2. The fixed amount deductible satisfies all the properties (i)-(iv).
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The premium in the case of the fixed amount deductible has the following form
in terms of the premium under the franchise deductible.

PFAD(b) = P − L(b) = PFD(b) − b {1 − F (b)} . (19.6)

As previously, this premium is a decreasing function of b, for b = 0 it gives the
premium in the case of no deductible and if b tends to infinity, it tends to zero.

19.2.3 Proportional Deductible

In the case of the proportional deductible with c ∈ (0, 1), each payment is
reduced by c · 100% (the insurer pays 100%(1− c) of the claim). Consequently,
the payment function is given by (Figure 19.3)

hPD(c)(x) = (1 − c)x. (19.7)

The proportional deductible satisfies properties (i), (ii), and (iv), but not prop-
erty (iii), as it implies some compensation for even very small claims.

The relation between the premium under the proportional deductible and the
premium in the case of no deductible has the following form.

PPD(c) = (1 − c) E(X) = (1 − c)P. (19.8)

Clearly, the premium is a decreasing function of c, PPD(0) = P and PPD(1) = 0.

19.2.4 Limited Proportional Deductible

The proportional deductible is usually combined with a minimum amount de-
ductible so the insurer does not need to handle small claims and with a maxi-
mum amount deductible to limit the retention of the insured. For the limited
proportional deductible of c with a minimum amount m1 and maximum amount
m2 (0 ≤ m1 < m2) the payment function is given by

hLPD(c,m1,m2)(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x ≤ m1,
x − m1, m1 < x ≤ m1/c,
(1 − c)x, m1/c < x ≤ m2/c,
x − m2, otherwise,

(19.9)

see Figure 19.4. The limited proportional deductible satisfies all the properties.
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Figure 19.3: The payment function under the proportional deductible (solid
blue line) and no deductible (dashed red line).
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The following formula expresses the premium under the limited proportional
deductible in terms of the premium in the case of no deductible and the corre-
sponding limited expected value function.

PLPD(c,m1,m2) = P − L(m1) + c
{

L
(m1

c

)
− L

(m2

c

)}
. (19.10)

Sometimes only one limitation is incorporated in the contract, i.e. m1 = 0 or
m2 = ∞. It is easy to check that the limited proportional deductible with
m1 = 0 and m2 = ∞ reduces to the proportional deductible.
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m1 m1/c m2/c

Figure 19.4: The payment function under the limited proportional deductible
(solid blue line) and no deductible (dashed red line).
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19.2.5 Disappearing Deductible

There is another type of deductible that is a compromise between the fran-
chise and fixed amount deductible. In the case of disappearing deductible the
payment depends on the loss in the following way: if the loss is less than an
amount of d1 > 0, the insurer pays nothing; if the loss exceeds d2 (d2 > d1)
amount, the insurer pays the loss in full; if the loss is between d1 and d2, then
the deductible is reduced linearly between d1 and d2. Therefore, the larger the
claim, the less of the deductible becomes the responsibility of the policyholder.
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d1 d2

Figure 19.5: The payment function under the disappearing deductible (solid
blue line) and no deductible (dashed red line).
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The payment function is given by (Figure 19.5)

hDD(d1,d2)(x) =

⎧⎨⎩
0, x ≤ d1,
d2(x−d1)

d2−d1
, d1 < x ≤ d2,

x, otherwise.
(19.11)

This kind of deductible satisfies properties (i), (iii), and (iv), but similarly to
the franchise deductible it works against (ii).

The following formula shows the premium under the disappearing deductible
in terms of the premium in the case of no deductible and the corresponding



436 19 Pure Risk Premiums under Deductibles

limited expected value function

PDD(d1,d2) = P +
d1

d2 − d1
L(d2) − d2

d2 − d1
L(d1). (19.12)

If d1 = 0, the premium does not depend on d2 and it becomes the premium
in the case of no deductible. If d2 tends to infinity, then the disappearing
deductible reduces to the fix amount deductible of d1.

19.3 Premiums Under Deductibles for Given Loss
Distributions

In the preceding section we showed a relation between the pure risk premium
under several deductibles and a limited expected value function. Now, we
use the relation to present formulae for premiums in the case of deductibles
for a number of loss distributions often used in non-life actuarial practice, see
Burnecki, Nowicka-Zagrajek, and Weron (2004). To this end we apply the for-
mulae for levf for different distributions given in Chapter 13. The log-normal,
Pareto, Burr, Weibull, gamma, and mixture of two exponential distributions
are typical candidates when looking for a suitable analytic distribution, which
fits the observed data well, see Aebi, Embrechts, and Mikosch (1992), Bur-
necki, Kukla, and Weron (2000), Embrechts, Klüppelberg, and Mikosch (1997),
Mikosch (1997), Panjer and Willmot (1992), and Chapter 13. In the log-normal
and Burr case the premium formulae will be illustrated on a real-life example,
namely on the fire loss data, already analysed in Chapter 13. For illustrative
purposes, we assume that the total amount of risk X simply follows one of
the fitted distributions, whereas in practice, in the individual and collective
risk model framework (see Chapter 18), in order to obtain an annual premium
under a per occurrence deductible we would have to multiply the premium by
a number of policies and mean number of losses per year, respectively, since in
the individual risk model

E

{
n∑

k=1

h (Xk)

}
= n E {h (Xk)} ,

provided that the claim amount variables are identically distributed, and in
the collective risk model

E

{
N∑

k=1

h (Xk)

}
= E(N) E{h (Xk)}.
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19.3.1 Log-normal Loss Distribution

Consider a random variable Z which has the normal distribution. Let X = eZ .
The distribution of X is called the log-normal distribution and its distribution
function is given by

F (t) = Φ
(

ln t − µ

σ

)
=
∫ t

0

1√
2πσy

exp

{
−1

2

(
ln y − µ

σ

)2
}

dy,

where t, σ > 0, µ ∈ R and Φ(.) is the standard normal distribution function,
see Chapter 13. For the log-normal distribution the following formulae hold:

(a) franchise deductible premium

PFD(a) = exp
(

µ +
σ2

2

){
1 − Φ

(
ln a − µ − σ2

σ

)}
,

(b) fixed amount deductible premium

PFAD(b) = exp
(

µ +
σ2

2

)
·

·
{

1 − Φ
(

ln b − µ − σ2

σ

)}
− b

{
1 − Φ

(
ln b − µ

σ

)}
,

(c) proportional deductible premium

PPD(c) = (1 − c) exp
(

µ +
σ2

2

)
,

(d) limited proportional deductible premium

PLPD(c,m1,m2) = exp
(

µ +
σ2

2

){
1 − Φ

(
ln m1 − µ − σ2

σ

)}

+ m1

{
Φ
(

ln m1 − µ

σ

)
− Φ

(
ln(m1/c) − µ

σ

)}

+
{

Φ
(

ln(m1/c) − µ − σ2

σ

)
− Φ

(
ln(m2/c) − µ − σ2

σ

)}
·

· c exp
(

µ +
σ2

2

)
+ m2

{
Φ
(

ln(m2/c) − µ

σ

)
− 1

}
,
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(e) disappearing deductible premium

PDD(d1,d2) =
exp

(
µ + σ2/2

)
d2 − d1

·

·
{

d2 − d1 + d1Φ
(

ln d2 − µ − σ2

σ

)
− d2Φ

(
ln d1 − µ − σ2

σ

)}

+
d1d2

d2 − d1

{
Φ
(

ln d1 − µ

σ

)
− Φ

(
ln d2 − µ

σ

)}
.

We now illustrate the above formulae using the Danish fire loss data. We study
the log-normal loss distribution with parameters µ = 12.6645 and σ = 1.3981,
which best fitted the data. Figure 19.6 depicts the premium under franchise
and fixed amount deductibles in the log-normal case.

Figure 19.7 shows the effect of parameters c, m1, and m2 of the limited pro-
portional deductible. Clearly, PLPD(c,m1,m2) is a decreasing function of these
parameters.

Finally, Figure 19.8 depicts the influence of parameters d1 and d2 of the dis-
appearing deductible. Markedly, PDD(d1,d2) is a decreasing function of the
parameters and we can observe that the effect of increasing d2 is rather minor.

19.3.2 Pareto Loss Distribution

The Pareto distribution function is defined by

F (t) = 1 −
(

λ

λ + t

)α

,

where t, α, λ > 0, see Chapter 13. The expectation of the Pareto distribution
exists only for α > 1. For the Pareto distribution with α > 1 the following
formulae hold:

(a) franchise deductible premium

PFD(a) =
1

α − 1
(aα + λ)

(
λ

a + λ

)α

,
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Figure 19.6: The premium under the franchise deductible (thick blue line) and
fixed amount deductible (thin red line). The log-normal case.
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(b) fixed amount deductible premium

PFAD(b) =
1

α − 1
(b + λ)

(
λ

b + λ

)α

,

(c) proportional deductible premium

PPD(c) = (1 − c)
λ

α − 1
,
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Figure 19.7: The premium under the limited proportional deductible with re-
spect to the parameter m2. The thick blue solid line represents
the premium for c = 0.2 and m1 = 100 000 DKK, the thin blue
solid line for c = 0.4 and m1 = 100 000 DKK, the dashed red line
for c = 0.2 and m1 = 1 million DKK, and the dotted red line for
c = 0.4 and m1 = 1 million DKK. The log-normal case.
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(d) limited proportional deductible premium

PLPD(c,m1,m2) =
1

α − 1
(m1 + λ)

(
λ

m1 + λ

)α

+
c

α − 1

{(m2

c
+ λ

)( λ

m2/c + λ

)α

−
(m1

c
+ λ

)( λ

m1/c + λ

)α
}

,
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Figure 19.8: The premium under the disappearing deductible with respect to
the parameter d2. The thick blue line represents the premium
for d1 = 100 000 DKK and the thin red line the premium for
d1 = 500 000 DKK. The log-normal case. STFded08.xpl

(e) disappearing deductible premium

PDD(d1,d2) =
1

(α − 1)(d2 − d1)
·

·
{

d2(d1 + λ)
(

λ

d1 + λ

)α

− d1(d2 + λ)
(

λ

d2 + λ

)α}
.

19.3.3 Burr Loss Distribution

Experience has shown that the Pareto formula is often an appropriate model for
the claim size distribution, particularly where exceptionally large claims may
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occur. However, there is sometimes a need to find heavy tailed distributions
which offer greater flexibility than the Pareto law. Such flexibility is provided
by the Burr distribution which distribution function is given by

F (t) = 1 −
(

λ

λ + tτ

)α

,

where t, α, λ, τ > 0, see Chapter 13. Its mean exists only for ατ > 1. For the
Burr distribution with ατ > 1 the following formulae hold:

(a) franchise deductible premium

PFD(a) =
λ1/τ Γ (α − 1/τ) Γ (1 + 1/τ)

Γ(α)

{
1 − B

(
1 +

1
τ

, α − 1
τ

,
aτ

λ + aτ

)}
,

(b) fixed amount deductible premium

PFAD(b) =
λ1/τ Γ (α − 1/τ) Γ (1 + 1/τ)

Γ(α)
·

·
{

1 − B
(

1 +
1
τ

, α − 1
τ

,
bτ

λ + bτ

)}
− b

(
λ

λ + bτ

)α

,

(c) proportional deductible premium

PPD(c) = (1 − c)
λ1/τ Γ(α − 1/τ)Γ(1 + 1/τ)

Γ(α)
,
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(d) limited proportional deductible premium

PLPD(c,m1,m2) =
λ1/τ Γ (α − 1/τ) Γ (1 + 1/τ)

Γ(α)
·

·
{

1 − B
(

1 +
1
τ

, α − 1
τ

,
mτ

1

λ + mτ
1

)

+cB
(

1 +
1
τ

, α − 1
τ

,
(m1/c)τ

λ + (m1/c)τ

)

−cB
(

1 +
1
τ

, α − 1
τ

,
(m2/c)τ

λ + (m2/c)τ

)}

− m1

(
λ

λ + mτ
1

)α

+ m1

(
λ

λ + (m1/c)τ

)α

− m2

(
λ

λ + (m2/c)τ

)α

,

(e) disappearing deductible premium

PDD(d1,d2) =
λ1/τ Γ (α − 1/τ) Γ (1 + 1/τ)

Γ(α)
·

·
[

d2 − d1 + d1B
{

1 + 1/τ, α − 1/τ, dτ
2/(λ + dτ

2)
}

d2 − d1

−
d2B

{
1 + 1/τ, α − 1/τ, dτ

1/(λ + dτ
1)
}

d2 − d1

]

+
d2d1

d2 − d1

{(
λ

λ + dτ
2

)α

−
(

λ

λ + dτ
1

)α}
,

where the functions Γ(·) and B(·, ·, ·) are defined as: Γ(a) =
∫∞
0

ya−1e−ydy and
B(a, b, x) = Γ(a+b)

Γ(a)Γ(b)

∫ x

0
ya−1(1 − y)b−1dy.

In order to illustrate the preceding formulae we consider the fire loss data.
analysed in Chapter 13. The analysis showed that the losses can be well mod-
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Figure 19.9: The premium under the franchise deductible (thick blue line) and
fixed amount deductible (thin red line). The Burr case.

STFded09.xpl

elled by the Burr distribution with parameters α = 0.8804, λ = 8.4202 · 106

and τ = 1.2749. Figure 19.9 depicts the premium under franchise and fixed
amount deductibles for the Burr loss distribution.

In Figure 19.10 the influence of the parameters c, m1, and m2 of the limited
proportional deductible is illustrated. Figure 19.11 shows the effect of the
parameters d1 and d2 of the disappearing deductible.
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Figure 19.10: The premium under the limited proportional deductible with re-
spect to the parameter m2. The thick solid blue line represents
the premium for c = 0.2 and m1 = 100 000 DKK, the thin solid
blue line for c = 0.4 and m1 = 100 000 DKK, the dashed red line
for c = 0.2 and m1 = 1 million DKK, and the dotted red line for
c = 0.4 and m1 = 1 million DKK. The Burr case.

STFded10.xpl

19.3.4 Weibull Loss Distribution

Another frequently used analytic claim size distribution is the Weibull distri-
bution which is defined by

F (t) = 1 − exp (−βtτ ) ,

where t, τ, β > 0, see Chapter 13.
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Figure 19.11: The premium under the disappearing deductible with respect to
the parameter d2. The thick blue line represents the premium
for d1 = 100 000 DKK and the thin red line the premium for
d1 = 500 000 DKK. The Burr case. STFded11.xpl

For the Weibull distribution the following formulae hold:

(a) franchise deductible premium

PFD(a) =
Γ (1 + 1/τ)

β1/τ

{
1 − Γ

(
1 +

1
τ

, βaτ

)}
,

(b) fixed amount deductible premium

PFAD(b) =
Γ (1 + 1/τ)

β1/τ

{
1 − Γ

(
1 +

1
τ

, βbτ

)}
− b exp (−βbτ ) ,
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(c) proportional deductible premium

PPD(c) =
(1 − c)
β1/τ

Γ
(

1 +
1
τ

)
,

(d) limited proportional deductible premium

PLPD(c,m1,m2) =
Γ (1 + 1/τ)

β1/τ

{
1 − Γ

(
1 +

1
τ

, βmτ
1

)}

+
cΓ (1 + 1/τ)

β1/τ
Γ
{

1 +
1
τ

, β
(m1

c

)τ
}

− cΓ (1 + 1/τ)
β1/τ

Γ
{

1 +
1
τ

, β
(m2

c

)τ
}

− m1 exp (−βmτ
1) + m1 exp

{
−β

(m1

c

)τ}
− m2 exp

{
−β

(m2

c

)τ}
,

(e) disappearing deductible premium

PDD(d1,d2) =
Γ (1 + 1/τ)

β1/τ (d2 − d1)

{
d2 − d1 + d1Γ

(
1 +

1
τ

, βdτ
2

)

−d2Γ
(

1 +
1
τ

, βd1
τ

)}

+
d1d2

d2 − d1
{exp (−βdτ

2) − exp (−βdτ
1)} ,

where the incomplete gamma function Γ(·, ·) is defined as

Γ(a, x) =
1

Γ(a)

∫ x

0

ya−1e−ydy.

19.3.5 Gamma Loss Distribution

All four presented above distributions suffer from some mathematical draw-
backs such as lack of a closed form representation for the Laplace transform
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and nonexistence of the moment generating function. The gamma distribution
given by

F (t) = F (t, α, β) =
∫ t

0

βα

Γ(α)
yα−1e−βydy,

for t, α, β > 0 does not have these drawbacks, see Chapter 13. For the gamma
distribution the following formulae hold:

(a) franchise deductible premium

PFD(a) =
α

β
{1 − F (a, α + 1, β)} ,

(b) fixed amount deductible premium

PFAD(b) =
α

β
{1 − F (b, α + 1, β)} − b {1 − F (b, α, β)} ,

(c) proportional deductible premium

PPD(c) =
(1 − c)α

β
,

(d) limited proportional deductible premium

PLPD(c,m1,m2) =
α

β
{1 − F (m1, α + 1, β)}

+
cα

β

{
F
(m1

c
, α + 1, β

)
− F

(m2

c
, α + 1, β

)}
+ m1

{
F (m1, α, β) − F

(m1

c
, α, β

)}
− m2

{
1 − F

(m2

c
, α, β

)}
,

(e) disappearing deductible premium

PDD(d1,d2) =
α

β(d2 − d1)

[
d2 {1 − F (d1, α + 1, β)}

−d1 {1 − F (d2, α + 1, β)}
]

+
d1d2

d2 − d1
{F (d1, α, β) − F (d2, α, β)} .
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19.3.6 Mixture of Two Exponentials Loss Distribution

The mixture of two exponentials distribution function is defined by

F (t) = 1 − a exp (−β1t) − (1 − a) exp (−β2t) ,

where 0 ≤ a ≤ 1 and β1, β2 > 0, see Chapter 13. For the mixture of exponen-
tials distribution the following formulae hold:

(a) franchise deductible premium

PFD(c) =
a

β1
exp (−β1c) +

1 − a

β2
exp (−β2c)

+ c {a exp (−β1c) + (1 − a) exp (−β2c)} ,

(b) fixed amount deductible premium

PFAD(b) =
a

β1
exp (−β1b) +

1 − a

β2
exp (−β2b) ,

(c) proportional deductible premium

PPD(c) = (1 − c)
(

a

β1
+

1 − a

β2

)
,

(d) limited proportional deductible premium

PLPD(c,m1,m2) =
a

β1
exp (−β1m1) +

1 − a

β2
exp (−β2m1)

+
ca

β1

{
exp

(
−β1

m2

c

)
− exp

(
−β1

m1

c

)}
+

c(1 − a)
β2

{
exp

(
−β2

m2

c

)
− exp

(
−β2

m1

c

)}
,

(e) disappearing deductible premium

PDD(d1,d2) =
a

β1

{
d2

d2 − d1
exp (−β1d1) − d1

d2 − d1
exp (−β1d2)

}

+
1 − a

β2

{
d2

d2 − d1
exp (−β2d1) − d1

d2 − d1
exp (−β2d2)

}
.
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19.4 Final Remarks

Let us first concentrate on the franchise and fixed amount deductibles. Figures
19.6 and 19.9 depict the comparison of the two corresponding premiums and
the effect of increasing the parameters a and b. Evidently P � PFD � PFAD.
Moreover, we can see that the deducible of about DKK 2 million in the log-
normal case and DKK 40 million in the Burr case reduces PFAD by half. Figures
corresponding to the two loss distributions are similar, however we note that
the differences do not lie in shifting or scaling. The same is true for the rest of
considered deductibles. We also note that the premiums under no deductible for
log-normal and Burr loss distributions do not tally because the parameters were
estimated via the Anderson-Darling statistic minimization procedure which in
general does not yield the same moments, cf. Chapter 13. For the considered
distributions the mean, and consequently the pure risk premium, is even 3
times bigger in the Burr case.

The proportional deductible influences the premium in an obvious manner, that
is pro rata (e.g. c = 0.25 results in cutting the premium by a quarter). Figures
19.7 and 19.10 show the effect of parameters c, m1 and m2 of the limited
proportional deductible. It is easy to see that PLPD(c,m1,m2) is a decreasing
function of these parameters. Figures 19.8 and 19.11 depict the influence of
parameters d1 and d2 of the disappearing deductible. Clearly, PDD(d1,d2) is a
decreasing function of the parameters and we can observe that the effect of
increasing d2 is rather minor.

It is clear that the choice of a distribution and a deductible has a great impact
on the pure risk premium. For an insurer the choice can be crucial in reasonable
quoting of a given risk. A potential insured should take into account insurance
options arising from appropriate types and levels of self-insurance (deductibles).
Insurance premiums decrease with increasing levels of deductibles. With ade-
quate loss protection, a property owner can take some risk and accept a large
deductible which might reduce the total cost of insurance.

We presented here a general approach to calculating pure risk premiums under
deductibles. In Section 19.2 we presented a link between the pure risk premium
under several deductibles and a limited expected value function. We used
this link in Section 19.3 to calculate the pure risk premium in the case of the
deductibles for different claim amount distributions. The results can be applied
to derive annual premiums in the individual and collective risk model on a per
occurrence deductible basis.
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The approach can be easily extended to other distributions. One has only to
calculate levf for a particular distribution. This also includes the case of right-
truncated distributions which would reflect the maximum limit of liability set in
a contract. Moreover, the idea can be extended to other deductibles. Once we
express the pure risk premium in terms of the limited expected value function,
it is enough to apply a form of levf for a specific distribution. Finally, one
can also use the formulae to obtain the premium with safety loading which is
discussed in Chapter 18.
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20 Premiums, Investments, and
Reinsurance

Pawe�l Místa and Wojciech Otto

20.1 Introduction

In this chapter, setting the appropriate level of insurance premium is considered
in a broader context of business decisions, concerning also risk transfer through
reinsurance, and the rate of return on capital required to ensure solvability.
Furthermore, the long term dividend policy, i.e. the rule of subdividing the
financial result between the company and shareholders, is analyzed.

The problem considered throughout this chapter can be illustrated by a simple
example.

Example 1

Let us consider the following model of a risk process describing a capital of an
insurer:

Rt = u + (c − du)t − St, t ≥ 0,

where Rt denotes the current capital at time t, u = R0 stands for initial capital,
c is the intensity of premium inflow, and St is the aggregate loss process –
amount of claim’s outlays over the period (0, t]. The term du represents the
intensity of outflow of dividends paid to shareholders with d being the dividend
rate. Let us assume that increments of the amount of claims process St+h −St

are for any t, h > 0 normally distributed N(µh, σ2h) and mutually independent.
Below we consider premium calculation under two cases.

First case: d = 0. In this case the probability of ruin is an exponential
function of the initial capital:

ψ(u) = exp(−Ru), u ≥ 0,
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where the adjustment coefficient R exists for c > µ, and equals then 2(c−µ)σ−2.
The above formula can be easily inverted to render the intensity of premium c
for a given capital u and predetermined level ψ of ruin probability:

c = µ +
− log(ψ)

2u
σ2.

Given the safety standard ψ, the larger the initial capital u of the company is,
the more competitive it is (since it can offer the insurance cover at a lower price
c). However, a more realistic result is considered when we assume positive cost
of capital.

Second case: d > 0. Now the problem of competitiveness is reduced to the
problem of minimizing the premium by choosing the optimal level of capital
backing insurance risk:

c = µ +
− log(ψ)

2u
σ2 + du.

The solution reads:

uopt = σ

√
− log(ψ)

2d
,

copt = µ + σ
√

−2d log ψ,

where exactly one half of the loading (copt −µ) serves to finance dividends and
the other half serves as a safety loading (retained in the company).

Having already calculated the total premium, we face the problem of decom-
posing it into premiums for individual risks. In order to do that we should
first identify the random variable W = St+1 − St as a sum of independent
risks X1, . . . , Xn, and the intensity of premium c as a whole-portfolio premium
Π(W ), which has to be decomposed into individual premiums Π(Xi). The de-
composition is straightforward when the total premium is calculated as in the
first case above:

Π(Xi) = E(Xi) +
− log(ψ)

2u
σ2(Xi),

which is due to additivity of variance for independent risks. The premium
formula in the second case contains the safety loading proportional to the
standard deviation and thus is no more additive. This does not mean that
reasonable decomposition rules do not exist – rather that their derivation is
not so straightforward.
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In this chapter, various generalizations of the basic problem presented in the
Example 1 are considered. These generalizations make the basic problem more
complex on the one hand, but closer to real-life situations on the other. Addi-
tionally, these generalizations do not yield analytical results and, therefore, we
demonstrate in several examples how to obtain numerical solutions.

First of all, Example 1 assumes that the safety standard is expressed in terms
of an acceptable level of ruin probability. On the contrary, Sections 2, 3, and
4 are devoted to the approach based on the distribution of the single-year loss
function. Section 2 presents the basic problem of joint decisions on premium
and capital needed to ensure safety in terms of shareholder’s choice of the level
of expected rate of return and risk. Section 3 presents in more details the
problem of decomposition of the whole-portfolio premium into individual risks
premiums. Section 4 presents the problem extended by allowing for reinsurance,
where competitiveness is a result of simultaneous choice of the amount of capital
and retention level. This problem has not been illustrated in Example 1, as
in the case of the normal distribution of the aggregate loss and usual market
conditions there is no room to improve competitiveness through reinsurance.

Sections 5, 6, and 7 are devoted again to the approach based on ruin probabil-
ity. However, Section 5 departs from the simplistic assumptions of Example 1
concerning the risk process. It is shown there how to invert various approxi-
mate formulas for the ruin probability in order to calculate premium for the
whole portfolio as well as to decompose it into individual risks. Section 6 ex-
ploits results of Section 5 in the context of positive cost of capital. In that
section a kind of flexible dividend policy is also considered, and the possibility
to improve competitiveness this way is studied. Finally, Section 7 presents an
extension of the decision problem by allowing for reinsurance cession.

Throughout this chapter we assume that we typically have at our disposal
incomplete information on the distribution of the aggregate loss, and this in-
complete information set consists of cumulants of order 1, 2, 3, and possibly 4.
The rationale is that sensible empirical investigation of frequency and severity
distributions could be done only separately for sub-portfolios of homogeneous
risks. Cumulants for the whole portfolio are then obtained just by summing
up figures over the collection of sub-portfolios, provided that sub-portfolios are
mutually independent. The existence of cumulants of higher orders is assured
by the common practice of issuing policies with limited cover exclusively (which
in many countries is even enforced by law). Consequences of the assumption
are that both the quantile of the current year loss and the probability of ruin
in the long run will be approximated by formulas based on cumulants of the
one-year aggregate loss W .
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The chapter is based on Otto (2004), a book on non-life insurance mathemat-
ics. However, general ideas are heavily borrowed from the seminal paper of
Bühlmann (1985).

20.2 Single-period Criterion and the Rate of
Return on Capital

In this section the problem of joint decisions on premium and required capital
is considered in terms of shareholder’s choice of the level of expected rate of
return and risk. It is assumed that typically the single-year loss (when it hap-
pens) is covered by the insurance company through reduction of its own assets.
This assumption can be justified by the fact that in most developed countries
state supervision agencies efficiently prevent companies to undertake too risky
insurance business without own assets being large enough. As shareholders are
unable to externalize the loss, they are enforced to balance the required ex-
pected rate of return with the possible size of the loss. The risk based capital
concept (RBC) formalizes the assumption that premium loading results from
the required expected rate of return on capital invested by shareholders and
the admitted level of risk.

20.2.1 Risk Based Capital Concept

Let us denote by RBC the amount of capital backing risk borne by the insur-
ance portfolio. It is assumed that the capital has a form of assets invested in
securities. Shareholders will accept risk borne by the insurance portfolio pro-
vided it yields expected rate of return larger than the rate of return on riskless
investments offered by the financial market. Let us denote by r the required
expected rate of return, and by rf the riskless rate. The following equality
holds:

Π (W ) − E(W ) = (r − rf ) · RBC. (20.1)

For simplicity it is assumed that all assets are invested in riskless securities.
This means that we neglect shareholder’s capital locked-up in fixed assets nec-
essary to run the insurance operations of the company, and we also assume
prudent investment policy, at least with respect to those assets, which are de-
voted for backing the insurance risk. It is also assumed that all amounts are
expressed in terms of their value at the end of year (accumulated when spent
or received earlier, discounted when spent or received after the year end).
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Let us also assume that company management is convinced that the rate of
return r is large enough to admit the risk of technical loss in amount, let us
say, ηRBC, η ∈ (0, 1) with a presumed small probability ε. The total loss of
capital amounts then to (η − rf ) RBC. The assumption could be expressed in
the following form:

F−1
W (1 − ε) = Π (W ) + ηRBC, (20.2)

where FW denotes the cdf of random variable W .

Combining equations (20.1) and (20.2), one obtains the desired amount of
capital backing risk of the insurance portfolio:

RBC =
F−1

W (1 − ε) − E(W )
r − rf + η

, (20.3)

and the corresponding premium:

ΠRBC (W ) = E(W ) +
r − rf

r − rf + η

{
F−1

W (1 − ε) − E(W )
}

. (20.4)

In both formulas, only the difference r − rf is relevant. We denote it by r∗.
The obtained premium formula is just a simple generalization of the well-known
quantile formula based on the one-year loss criterion. This standard formula is
obtained by replacing the coefficient r∗ (r∗ + η)−1 by one. Now it is clear that
the standard formula could be interpreted as a result of the assumption η = 0,
so that shareholders are not ready to suffer a technical loss at all (at least with
probability higher than ε).

20.2.2 How to Choose Parameter Values?

Parameters r∗, η, and ε of the formula are subject to managerial decision.
However, an actuary could help reducing the number of redundant decision
parameters. This is because parameters reflect not only subjective factors
(shareholder’s attitude to risk), but also objective factors (rate of substitution
between expected return and risk offered by the capital market). The latter
could be deduced from capital market quotations. In terms of the Capital
Asset Pricing Model (CAPM), the relationship between expectation E(∆R)
and standard deviation σ (∆R) of the excess ∆R of the rate of return over the
riskless rate is reflected by the so-called capital market line (CML). The slope
coefficient E(∆Rt)σ−1 (∆R) of the CML represents just a risk premium (in
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terms of an increase in expectation) per unit increase of standard deviation.
Let us denote the reciprocal of the slope coefficient by s

def= {E(∆R)}−1
σ (∆R).

We will now consider shareholder’s choice between two alternatives: investment
of the amount RBC in a well diversified portfolio of equities and bonds versus
investment in the insurance company’s capital. In the second case the total loss
W − Π (W ) − rfRBC exceeds the amount (η − rf ) RBC with probability ε.
The equally probable loss in the first case equals:

{uεσ (∆R) − E(∆R) − rf}RBC,

where uε denotes the quantile of order (1 − ε) of the standard normal variable.
This is justified by the fact that the CAPM is based on assumption of normal-
ity of fluctuations of rates of return. The shareholder is indifferent when the
following equation holds:

η − rf = uεσ (∆R) − E(∆R) − rf ,

provided that expected rates of return in both cases are the same: r = rf +
E(∆R). Making use of our knowledge of the substitution rate s and putting
the above results together we obtain: η = r∗ (uεs − 1).

In the real world the required rate of return could depart (ceteris paribus) from
the above equation. On the one hand, required expected rate of return could
be larger, because direct investments in strategic portions of the insurance
company capital are not as liquid as investments in securities traded on the
stock exchange. On the other hand, there is empirical evidence that fluctuations
in profits in the insurance industry are uncorrelated with the business cycle.
This means that having a portion of insurance company shares in the portfolio
improves diversification of risk to which a portfolio investor is exposed. Hence,
there are reasons to require smaller risk premium.

The reasonable range of the parameter ε is from 1% to 5%. The rate of return
depends on shareholder’s attitude to risk and market conditions, but it is cus-
tomary to assume that the range of the risk premium r∗ is from 5% to 15%. A
reference point for setting the parameter η could also be deduced from regu-
latory requirements, as the situation when the capital falls below the solvency
margin needs undertaking troublesome actions enforced by supervision author-
ity that could be harmful for company managers. A good summary of the
CAPM and related models is given in Panjer et al. (1998), Chapters 4 and 8.
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20.3 The Top-down Approach to Individual Risks
Pricing

As it has been pointed out in the introduction, some premium calculation
formulas are additive for independent risks, and then the decomposition of
the whole-portfolio premium into individual risks premiums is straightforward.
However, sometimes a non-additive formula for pricing the whole portfolio is
well justified, and then the decomposition is no more trivial. This is exactly the
case of the RBC formula (and also other quantile-based formulas) derived in the
previous section. This section is devoted to showing the range, interpretation
and applications of some solutions to this problem.

20.3.1 Approximations of Quantiles

In the case of the RBC formula decomposition means answering the question
what is the share of a particular risk in the demand for capital backing the
portfolio risk that in turn entails the premium. In order to solve the prob-
lem one can make use of approximations of the quantile by the normal power
expansions. The most general version used in practice of the normal power
formula for the quantile wε of order (1 − ε) of the variable W reads:

wε ≈ µW + σW

(
uε +

u2
ε − 1
6

γW +
u3

ε − 3uε

24
γ2,W − 2u3

ε − 5uε

36
γ2

W

)
,

where µW , σW , γW , γ2,W denotes expectation, standard deviation, skewness,
and kurtosis of the variable W and uε is the quantile of order (1−ε) of a N(0, 1)
variable. Now the premium can be expressed by:

ΠRBC (W ) = µW + σW

(
a0 + a1γW + a2γ2,W − a3γ

2
W

)
, (20.5)

where coefficients a0, a1, a2, a3 are simple functions of parameters ε, η, r∗, and
the quantile uε of the standard normal variable. The above formula was pro-
posed by Fisher and Cornish, see Hill and Davis (1968), so it will be referred
to as FC20.5. The formula reduced by neglecting the last two components (by
taking a2 = a3 = 0) will be referred to as FC20.6:

ΠRBC (W ) = µW + σW (a0 + a1γW ) , (20.6)

and the formula neglecting also the skewness component as normal approxima-
tion:

ΠRBC (W ) = µW + a0σW . (20.7)
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More details on normal power approximation can be found in Kendall and
Stuart (1977).

20.3.2 Marginal Cost Basis for Individual Risk Pricing

Premium for the individual risk X could be set on the basis of marginal cost.
This means that we look for such a price at which the insurer is indifferent
whether to accept the risk or not. Calculation of the marginal cost can be
based on standards of differential calculus. In order to do that, we should first
write the formula explicitly in terms of a function of cumulants of first four
orders:

Π
(
µ, σ2, µ3, c4

)
= µ + a0σ + a1

µ3

σ2
+ a2

c4

σ3
− a3

µ2
3

σ5
.

This allows expressing the increment ∆Π (W ) def= Π (W + X) − Π (W ) due
to extend of the basic portfolio W by additional risk X in terms of linear
approximation:

∆Π (W ) ≈ ∂Π
∂µ

(W ) ∆µW +
∂Π
∂σ2

(W ) ∆σ2
W +

∂Π
∂µ3

(W ) ∆µ3,W +
∂Π
∂c4

(W ) ∆c4,W ,

where ∂Π
∂µ (W ), ∂Π

∂σ2 (W ), ∂Π
∂µ3

(W ), ∂Π
∂c4

(W ) denote partial derivatives of the
function Π

(
µ, σ2, µ3, c4

)
calculated at the point

(
µW , σ2

W , µ3,W , c4,W

)
. By

virtue of additivity of cumulants for independent random variables we replace
increments

(
∆µW , ∆σ2

W , ∆µ3,W , ∆c4,W

)
by cumulants of the additional risk(

µX , σ2
X , µ3,X , c4,X

)
. As a result the following formula is obtained:

ΠM (X) =
∂Π
∂µ

(W ) µX +
∂Π
∂σ2

(W ) σ2
X +

∂Π
∂µ3

(W ) µ3,X +
∂Π
∂c4

(W ) c4,X .

Respective calculations lead to the marginal premium formula:

ΠM (X) = µX + a0
σ2

X

2σW
+ σW a1γW

(
µ3,X

µ3,W
− σ2

X

σ2
W

)
+

+σW

{
a2γ2,W

(
c4,X

c4,W
− 3σ2

X

2σ2
W

)
− a3γ

2
W

(
2

µ3,X

µ3,W
− 5σ2

X

2σ2
W

)}
.

First two components coincide with the result obtained when the whole pre-
mium is based on the normal approximation. Setting additionally a1 �= 0 we ob-
tain the premium for the case when skewness of the portfolio in non-neglectible
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(making use of FC20.6 approximation), including last two components means
we regard also portfolio kurtosis (approximation based on formula FC20.5).

20.3.3 Balancing Problem

For each component the problem of balancing the premium on the whole portfo-
lio level arises. Should all risks composing the portfolio W = X1 +X2 + ...+Xn

be charged their marginal premiums, the portfolio premium amounts to:
n∑

i=1

ΠM (Xi) = µW + σW

(
1
2
a0 − 1

2
a2γ2,W +

1
2
a3γ

2
W

)
,

that is evidently underestimated by:

Π (W ) −
n∑

i=1

ΠM (Xi) = σW

(
1
2
a0 + a1γW +

3
2
a2γ2,W − 3

2
a3γ

2
W

)
.

The last figure represents a diversification effect obtained by composing the
portfolio of a large number of individual risks, which could be also treated as
an example of “positive returns to scale”.

Balancing correction made so as to preserve sensitivity of premium on cumu-
lants of order 1, 3, and 4 leads to the formula for the basic premium:

ΠB (X) = µX + σW a0
σ2

X

σ2
W

+

+σW

{
a1γW

µ3,X

µ3,W
+ a2γ2,W

c4,X

c4,W
− a3γ

2
W

(
2 µ3,X

µ3,W
− σ2

X

σ2
W

)}
.

Obviously, several alternative correction rules exist. For example, in the case
of the kurtosis component any expression of the form:

a2σW γ2,W

{
c4,X

c4,W
+ δ

(
c4,X

c4,W
− σ2

X

σ2
W

)}
satisfies the requirement of balancing the whole portfolio premium for arbitrary
number δ. In fact, any particular choice is more or less arbitrary. Some common
sense can be expressed by the requirement that a basic premium formula should
not produce smaller figures than marginal formula for any risk in the portfolio.
Of course this requirement is insufficient to point out a unique solution. Here,
the balancing problem results from the lack of additivity of the RBC formula,
as it is a nonlinear function of cumulants.
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20.3.4 A Solution for the Balancing Problem

It seems that only in the case of the variance component a0σ
2
X/2σW some

more or less heuristic argument for the correction can be found. The essence
of the basic premium for individual risks is that it is a basis of an open market
offer. Once the cover is offered to the public, clients decide whether to buy the
cover or not. Thus the price should not depend on how many risks out of the
portfolio W have been insured before, and how many after the risk in question.
Let us imagine a particular ordering of the basic set of n risks amended by the
additional risk X in a form of a sequence {X1, ..., Xj , X,Xj+1, ...Xn}. Given
this ordering, the respective component of the marginal cost of risk X takes
the form:

a0

(√∑j

k=1
σ2 (Xk) + σ2

X −
√∑j

k=1
σ2 (Xk)

)
.

We can now consider the expected value of this component, provided that each
of (n + 1)! orderings is equally probable (as it was proposed Shapley (1953)).
However, calculations are much simpler if we assume that the share U of the
aggregated variance of all risks preceeding the risk X in the total aggregate
variance σ2

W is a random variable uniformly distributed over the interval (0, 1).
The error of the simplification is neglectible as the share of each individual risk
in the total variance is small. The result:

a0 E
(√

Uσ2
W + σ2

X −
√

Uσ2
W

)
= a0

1∫
0

(√
uσ2

W + σ2
X −

√
uσ2

W

)
du

≈ a0σW 2

⎛⎝√
1 +

σ2
X

σW
− 1

⎞⎠ ≈ a0
σ2

X

σW

is exactly what we need to balance the premium on the portfolio level. The
reader easily verifies that the analogous argumentation does not work any more
in the case of components of higher orders of the premium formula.

20.3.5 Applications

Results presented in this section have three possible fields of application. The
first is just passive premium calculation for the whole portfolio. In this respect
several more accurate formulas exist, especially when our information on the
distribution of the variable W extends its first four cumulants.
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The second application concerns pricing individual risks. In this respect it is
hard to find a better approach (apart from that based on long-run solvability
criteria, which is a matter of consideration in next sections), which consistently
links the risk relevant to the company (on the whole portfolio level) with risk
borne by an individual policy. Of course open market offer should be based on
basic valuation ΠB (·), whereas the marginal cost valuation ΠM (·) could serve
as a lower bound for contracts negotiated individually.

The third field of applications opens when a portfolio, characterized by sub-
stantial skewness and kurtosis, is inspected in order to localize these risks (or
groups of risks), that distort the distribution of the whole portfolio. Too high
(noncompetitive) general premium level could be caused though by few influ-
ential risks. Such localization could help in decisions concerning underwriting
limits and reinsurance program. Applying these measures could help “normal-
ize” the distribution of the variable W . Thus in the preliminary stage, when
the basis for underwriting policy and reinsurance is considered, extended pric-
ing formulas (involving higher order cumulants) should be used. Paradoxically,
once the prudent underwriting and ceding policy has been elaborated, sim-
ple normal approximation suffices to price as well the portfolio as individual
risks. Clearly, such prices concern only retained portions of risk, and should
be complemented by reinsurance costs.

20.4 Rate of Return and Reinsurance Under the
Short Term Criterion

This section is devoted to extending the decision problem considered in previous
sections by allowing for reinsurance. Then the pricing obey the form:

Π (W ) = ΠI (WI) + ΠR (WR) ,

where the whole aggregate loss W is subdivided into the share of the insurer
WI and that of reinsurer WR. ΠI (·) denotes the premium formula applied
by the insurer to price his share, set in accordance with RBC concept. ΠR (·)
symbolizes the pricing formula used by the reinsurer. Provided formula ΠR (·) is
accurate enough to reflect the existing offer of the reinsurance market, we could
compare various variants of subdivision of the variable W into components WI

and WR, looking for such subdivision which optimizes some objective function.



464 20 Premiums, Investments, and Reinsurance

20.4.1 General Considerations

No matter which particular objective function is chosen, the space of possible
subdivisions of the variable W has to be reduced somehow. One of the most
important cases is when the variable W has a compound Poisson distribution,
and the excess of loss reinsurance is chosen. Denoting by N the number of
claims, we could define for each claim amount Yi, i = 1, 2, ...N its subdivision
into the truncated loss Y M,i

def= min {Yi,M} and the excess of loss Y M,1
def=

max {Yi − M, 0} and then define variables representing subdivision of the whole
portfolio:

WI = Y M,1 + ... + Y M,N ,

WR = Y M,1 + ... + Y M,N ,

both having compound Poisson distributions too, with characteristics being
functions of the subdivision parameter M .

Assuming that capital of the insurer is not flexible, and that the current
amount u of capital is smaller than the amount RBC (W ) necessary to ac-
cept solely the whole portfolio, we could simply find such value of M , for which
RBC (WI) = u. In the case when the current amount of capital is in excess, it
is still relevant to assess such portion of the capital, which should serve as a pro-
tection for insurance operations. The excess of capital over this amount can
be treated separately, as being free of prudence requirements when investment
decisions are undertaken.

It is more interesting to assume that the amount of capital is flexible, and
to choose the retention limit M to minimize the total premium Π (W ) given
parameters r∗, s, and ε. The objective function reflects the aim of maximizing
competitiveness of the company. If the resulting premium (after being charged
by respective cost loadings) is lower than that acceptable by the market, we
can revise assumptions. Revised problem could consist in maximizing expected
rate of return given the premium level and parameters η and ε. This would
mean getting higher risk premium than that offered by the capital market.
Reasonable solutions could be expected in the case when reinsurance premium
formula ΠR (·) contains loadings proportional primarily to the expected value,
and its sensitivity to the variance (more so as to skewness and kurtosis) is small.
This could be expected as a result of transaction costs on the one hand, and
larger capital assets of reinsurers on the other. Also the possibility to diversify
risk on the world-wide scale work in the same direction, increasing transaction
costs and at the same time reducing the reinsurer’s exposure to risk.
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20.4.2 Illustrative Example

Example 2

Aggregate loss W has a compound Poisson distribution with truncated-Pareto
severity distribution, with cdf given for y � 0 by the formula:

FY (y) =
{

1 − (
1 + y

λ

)−α when y < M0

1 when y � M0

Variable W is subdivided into retained part WM and ceded part WM , that
given the subdivision parameter M ∈ (0,M0] have a form:

WM = Y M,1 + ... + Y M,N ,

WM = Y M,1 + ... + Y M,N .

We assume that reinsurance pricing rule can be reflected by the formula:

ΠR

(
WM

)
= (1 + re0) E

(
WM

)
+ re1Var

(
WM

)
,

and that insurer’s own pricing formula is:

ΠI (WM ) = E (WM ) +
r∗

r∗ + η

{
F−1

W M
(1 − ε) − E (WM )

}
,

with a respective approximation of the quantile of the variable WM .

For expository purposes we take the following values of parameters:

(i) Parameters of the Pareto distribution (α, λ) =
(

5
2 , 3

2

)
, with truncation

point M0 = 500;

(ii) Expected value of the number of claims E(N) = λP = 1000;

(iii) Substitution rate s = 2;

(iv) Remaining parameters (in the basic variant of the problem) ε = 2%,
r∗ = 10%, re0 = 100%, re1 = 0.5%.

Problem consists in choosing the retention limit M ∈ (0,M0] that minimize
the total premium Π (W ) = ΠI (WM ) + ΠR

(
WM

)
.
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Solution.

First step is to express moments of first four orders of variables Y M and Y M as
functions of parameters (α, λ,M0) and the real variable M . Expected value of
the truncated-Pareto variable with parameters (α, λ, M) equals by definition:

M∫
0

y
αλα

(λ + y)α+1 dy+M {1 − F (M)} =

1+ M
λ∫

1

(x − 1)
αλ

xα+1
dx+M

(
1 +

M

λ

)−α

=

= αλ

1+ M
λ∫

1

(
x−α − x−α−1

)
dx+M

(
1 +

M

λ

)−α

that, after integration and reordering of components produces the following
formula:

m1 =
λ

α − 1

{
1 −

(
1 +

M

λ

)1−α
}

.

Similar calculations made for moments of higher order yield the recursive equa-
tion:

mk,α =
λ

α − 1

{
αmk−1,α−1 − (α − 1) mk−1,α − Mk−1

(
1 +

M

λ

)1−α
}

,

k = 2, 3, ...

where the symbol mK,A means for A > 0 just the moment of order K of the
truncated-Pareto variable with parameters (A, λ, M). No matter whether A is
positive or not, in order to start the recursion we take:

m1,A =

{
λ

A−1

{
1 − (

1 + M
λ

)1−A
}

when A �= 1
λ ln

(
1 + M

λ

)
when A = 1

The above formulas could serve to calculate raw moments as well of the variable
Y M as the variable Y , provided we replace M by M0. Having calculated
moments for both variables Y M and Y already, we make use of the relation:

E(Y k) =
k∑

j=0

(
k
j

)
E
(
Y k−j

M Y
j

M

)
, (20.8)
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to calculate moments of the variable Y M . In the above formula we read Y 0
M

and Y
0

M as equal one with probability one. Mixed moments appearing on the
RHS of formula (20.8) can be calculated easily as positive values of the variable
Y M happen only when Y M = M . So mixed moments equal simply:

E
(
Y m

MY
n

M

)
= MmE

(
Y

n

M

)
for arbitrary m,n > 0.

The second step is to express cumulants of both variables WM and WM as
a product of the parameter λP and respective raw moments of variables Y M and
Y M . Finally, both components ΠI (WM ) and ΠR

(
WM

)
of the total premium

are expressed as a function of parameters (λP , α, λ, M0, ε, r
∗, s, re0, re1) and

the decision parameter M ∈ (0,M0]. Now the search of such a value of M that
minimizes the total premium Π (W ) is a quite feasible numerical task. Optimal
retention level and related minimal premium entail optimal amount of capital
uopt = (r∗)−1 {Π (WI) − E(WI)}.

20.4.3 Interpretation of Numerical Calculations in Example 2

The problem described in Example 2 has been solved in several different vari-
ants of assumptions on parameters. Variants 1–5 consist in minimization
of the total premium, in variant 1 the parameters are (s, ε, r∗, re0, re1) =
(2, 2%, 10%, 100%, 0.5%). In variants 2, 3, 4 and 5 value of one of parameters
(ε, r∗, re0, re1) is modified and in variant 6 there is no reinsurance, (s, ε, r∗) are
as in variant 1. Variant 7 consists in maximization of r∗ where (ε, η, re0, re1)
are as in variant 1, and premium loading equals 4.47%. Results are presented
in Table 20.1.

Reinsurance reduces the required level of RBC, which coincides either with
premium reduction (compare variant 1 and 6) or with increase of the expected
rate of return (compare variant 7 and 6). Reinsurance also reduces difference
between results obtained on the basis of two different approximation methods
(FC20.6 and FC20.5). In variant 6 (no reinsurance) the difference is quite large,
which is caused by the fairly long right tail of the distribution of the variable Y .

Comparison of variants 2 and 1 confirms that the choice of a smaller expected
rate of return (given substitution rate) automatically raises the need for capital,
leaving the premium level unchanged (and therefore also the optimal retention
level).
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Table 20.1: Optimal choice of retention limit M . Basic characteristics of
the variable W : E(W ) = 999.8, σ (W ) = 74.2, γ (W ) = 0.779,
γ2 (W ) = 2.654

Optimization variants Quantile approx.
method for W M

Retention
Limit M

RBC Loading(
Π(W )
E(W )

− 1
)

V.1: (basic)
FC20.6 114.5 386.6 4.11%
FC20.5 106.5 385.2 4.13%

V.2: r∗ = 8%
FC20.6 114.5 483.3 4.11%
FC20.5 106.5 481.5 4.13%

V.3: ε = 4%
FC20.6 129.7 382.3 4.03%
FC20.5 134.7 382.1 4.01%

V.4: re0 = 50%
FC20.6 79.8 373.3 4.03%
FC20.5 76.3 372.1 4.03%

V.5: re1 = 0.25%
FC20.6 95.5 380.0 4.05%
FC20.5 90.9 379.0 4.06%

V.6: (no reinsurance)
FC20.6 500.0 446.6 4.47%
FC20.5 500.0 475.1 4.75%

V.7:
r∗ = 11.27% FC20.6 106.0 372.3 4.47%
r∗ = 11.22% FC20.5 99.6 371.5 4.47%

STFrein01.xpl

Comparison of variants 3 and 1 shows that admission of greater loss probabil-
ity ε causes reduction of premium, which coincides with substantial reduction
of the need for reinsurance cover, and slight reduction in the need for capital.
It is worthwhile to notice that replacement of ε = 2% by ε = 4% entails revers-
ing the relation of results obtained by two approximation methods. Formula
FC20.5 leads to smaller retention limits when safety standard is high (small ε),
and to larger retention limits when safety standard is relaxed (large ε).

Comparison of variants 4 and 5 with variant 1 illustrates the obvious rule that
it does pay off to reduce retention limits when reinsurance is cheap, and to
increase them when reinsurance is expensive.

It could happen in practice that pricing rules applied by reinsurers differ by lines
of business. When the portfolio W = W1 + ...+Wn consists of n business lines,
for which the market offers reinsurance cover priced on the basis of different
formulas Π1,R (·), ..., Πn,R (·), the natural generalization of the problem lies in
minimization of the premium (or maximization of the rate r∗) made by choosing
n retention limits M1, ..., Mn, for each of business lines separately. Separation
of business lines makes it feasible to assume different severity distributions, too.
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20.5 Ruin Probability Criterion when the Initial
Capital is Given

Presuming long-run horizon for premium calculation we turn back to ruin the-
ory. Our aim is now to obtain such a level of premium for the portfolio yielding
each year the aggregate loss W , which results from a presumed level of ruin
probability ψ and initial capital u. This is done by inverting various approxi-
mate formulae for the probability of ruin. Information requirements of different
methods are emphasized. Special attention is paid also to the problem of de-
composition of the whole portfolio premium.

20.5.1 Approximation Based on Lundberg Inequality

This is a simplest (and crude) approximation method, simply assuming replace-
ment of the true function ψ(u) by:

ψLi (u) = e−Ru.

At first we obtain the approximation R(Li) of the desired level of the adjustment
coefficient R:

R(Li) =
− ln ψ

u
.

In the next step we make use of the definition of the adjustment coefficient for
the portfolio:

E
(
eRW

)
= eRΠ(W ),

to obtain directly the premium formula:

Π (W ) = R−1 ln
{

E
(
eRW

)}
= R−1CW (R) ,

where CW denotes the cumulant generating function. The result is well known
as the exponential premium formula. It possesses several desirable properties
– not only that it is derivable from ruin theory. First of all, by the virtue of
properties of the cumulant generating function, it is additive for independent
risks. So there is no need to distinguish between marginal and basic premiums
for individual risks. By the same reason the formula does not reflect the cross-
sectional diversification effect when the portfolio is composed of large number
of risks, each of them being small. The formula can be practically applied once
we replace the adjustment coefficient R by its approximation R(Li).
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Under certain conditions we could rely on truncating higher order terms in the
expansion of the cumulant generating function:

Π (W ) =
1
R

CW (R) = µW +
1
2!

Rσ2
W +

1
3!

R2µ3,W +
1
4!

R3c4,W + ..., (20.9)

and use for the purpose of individual risk pricing the formula (where higher
order terms are truncated as well):

Π (X) =
1
R

CX (R) = µX +
1
2!

Rσ2
X +

1
3!

R2µ3,X +
1
4!

R3c4,X + ... (20.10)

Some insight into the nature of the long-run criteria for premium calculation
could be gained by re-arrangement of the formula (20.9). At first we could
express the initial capital in units of standard deviation of the aggregate loss:
U = uσ−1

W . Now the adjustment coefficient could be expressed as:

R =
− ln ψ

UσW
,

and premium formula (20.9) as:

Π (W ) = µW + σW

{
1
2!

− ln ψ

U
+

1
3!

(− ln ψ

U

)2

γW +
1
4!

(− ln ψ

U

)3

γ2,W + ...

}
(20.11)

where in the brackets appear only unit-less figures, that form together the pric-
ing formula for the standardized risk (W − µW ) σ−1

W . Let us notice that the
contribution of higher order terms in the expansion is neglectible when initial
capital is large enough. The above phenomenon could be interpreted as a result
of risk diversification in time (as opposed to cross-sectional risk diversification).
Provided the initial capital is large, the ruin (if it happens at all) will rather
appear as a result of aggregation of poor results over many periods of time.
However, given the skewness and kurtosis of one-year increment of the risk pro-
cess, the sum of increments over n periods has skewness of order n− 1

2 , kurtosis
of order n−1 etc. Hence the larger initial capital, the smaller importance of
the difference between the distribution of the yearly increment and the nor-
mal distribution. In a way this is how the diversification of risk in time works
(as opposed to cross-sectional diversification). In the case of a cross-sectional
diversification the assumption of mutual independency of risks plays the cru-
cial role. Analogously, diversification of risk in time works effectively when
subsequent increments of the risk process are independent.
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20.5.2 “Zero” Approximation

The “zero” approximation is a kind of naive approximation, assuming replace-
ment of the function ψ(u) by:

ψ0 (u) = (1 + θ)−1 exp (−Ru) ,

where θ denotes the relative security loading, which means that (1 + θ) = Π(W )
E(W ) .

The “zero” approximation is applicable to the case of Poisson claim arrivals
(as opposed to Lundberg inequality, which is applicable under more general
assumptions). Relying on “zero” approximation leads to the system of two
equations:

Π (W ) = R−1CW (R)

R = 1
u ln E(W )

ψΠ(W ) .

The system could be solved by assuming at first:

R(0) =
− ln ψ

u
,

and next by executing iterations:

Π(n) (W ) = 1
R(n−1) CW

(
R(n−1)

)
R(n) = 1

u ln E(W )
ψΠ(n)(W )

,

that under reasonable circumstances converge quite quickly to the solution
R(0) = lim

n→∞R(n), which allows applying formula (20.9) for the whole portfolio

and formula (20.10) for individual risks, provided the coefficient R is replaced
by its approximation R(0).

20.5.3 Cramér–Lundberg Approximation

Premium calculation could also be based on the Cramér-Lundberg approxima-
tion. In this case the problem can be reduced also to the system of equations
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(three this time):

Π (W ) = R−1CW (R)

R =
1
u

{
− ln ψ + ln

µY θ

M ′
Y (R) − µY (1 + θ)

}
(1 + θ) =

Π (W )
E(W )

.

where M ′
Y (·) and µY denote respectively the first order derivative of the mo-

ment generating function and the expectation of the severity distribution. So-
lution of the system in respect of unknowns Π (W ), θ and R requires now a
bit more complex calculations. Obtained result R(CL) could be used then to
replace R in formulas (20.9) and (20.10). The method is applicable to the case
of Poisson claim arrivals. Moreover, severity distribution has to be known in
this case. It can be expected that the method will produce accurate results for
large u.

20.5.4 Beekman–Bowers Approximation

This method is often recommended as the one which produces relatively accu-
rate approximations, especially for moderate amounts of initial capital. The
problem consists in solving the system of three equations:

ψ = (1 + θ)−1 {1 − Gα,β (u)}
α

β
= (1 + θ)

m2,Y

2θm1,Y

α (α + 1)
β2

= (1 + θ)

{
m3,Y

3θm1,Y
+ 2

(
m2,Y

2θm1,Y

)2
}

,

where Gα,β denotes the cdf of the gamma distribution with parameters (α, β),
and mk,Y denotes the raw moment of order k of the severity distribution. Last
two equations arise from equating moments of the gamma distribution to con-
ditional moments of the maximal loss distribution (provided the maximal loss
is positive). Solving this system of equation is a bit cumbersome, as it involves
multiple numerical evaluations of the cdf of the gamma distribution. The ad-
missible solution exists provided m3,Y m1,Y > m2

2,Y , that is always satisfied for
arbitrary severity distribution with support on the positive part of the axis.
Denoting the solution for the unknown θ by θBB , we can write the latter as
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a function:
θBB = θBB (u, ψ, m1,Y ,m2,Y ,m2,Y ) ,

and obtain the whole portfolio premium from the equation:

ΠBB (W ) = (1 + θBB) E(W ).

Formally, application of the method requires only moments of first three orders
of the severity distribution to be finite. However, the problem arises when we
wish to price individual risks. Then we have to know the moment generating
function of the severity distribution, and it should obey conditions for adjust-
ment coefficient to exist. If this is a case, we can replace the coefficient θ of
the equation:

MY (r) = 1 + (1 + θ) m1,Y r

by its approximation θBB , and thus obtain the approximation R(BB) of the
adjustment coefficient R. It allows calculating premiums according to formulas
(20.9) and (20.10). It is easy to verify that there is no danger of contradic-
tion, as both formulas for the premium ΠBB (W ) produce the same result
(1 + θBB) E(W ) = R−1

(BB)CW (R(BB)).

20.5.5 Diffusion Approximation

This approximation method requires the scarcest information. It suffices to
know the first two moments of the increment of the risk process, to invert the
formula:

ψD(u) = exp
(−R(D)u

)
,

where:
R(D) = 2 {Π(W ) − µW }σ−2

W ,

in order to obtain the premium:

ΠD(W ) = µW +
σ2

W

2
− log ψ

u
,

that again is easily decomposable for individual risks. The formula is equivalent
to the exponential formula (20.9), where all terms except the first two are
omitted.
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20.5.6 De Vylder Approximation

The method requires information on moments of the first three orders of the
increment of the risk process. According to the method, ruin probability could
be expressed as:

ψdV (u) =
1

1 + R(D)ρ
exp

(
− R(D)u

1 + R(D)ρ

)
,

where for simplicity the abbreviated notation ρ
def= 1

3σW γW is used. Setting
ψdV (u) equal to ψ and rearranging the equation we obtain another form of it:{− log ψ − log

(
1 + R(D)ρ

)} (
1 + R(D)ρ

)
= R(D)u

that can be solved numerically in respect of R(D), to yield as a result premium
formula:

ΠdV (W ) = µW +
σ2

W

2
R(D),

which again is directly decomposable.

When the analytic solution is needed, we can make some further simplifica-
tions. Namely, the equation entangling the unknown coefficient R(D) could be
transformed to a simplified form on the basis of the following approximation:(

1 + R(D)ρ
)

log
(
1 + R(D)ρ

)
=

=
(
1 + R(D)ρ

){
R(D)ρ − 1

2
(
R(D)ρ

)2 +
1
3
(
R(D)ρ

)3 − . . .

}
≈ R(D)ρ.

Provided the error of omission of higher order terms is small, we obtain the
approximation:

R(D) ≈ − log ψ

u + ρ(log ψ + 1)
.

The error of the above solution is small, provided the initial capital u is several
times greater than the product ρ |log ψ + 1|. Under this condition we obtain
the explicit (approximated) premium formula:

ΠdV ∗(W ) = µW +
σ2

W

2

{ − log ψ

u + ρ(log ψ + 1)

}
,
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where the star symbolizes the simplification made. Applying now the method
of linear approximation of marginal cost ΠdV ∗ (W + X)−ΠdV ∗ (W ) presented
in Section 20.3 yields the result:

ΠdV ∗(X) = µX +
− log ψ {u + 2ρ(log ψ + 1)}

2 {u + ρ (log ψ + 1)}2 σ2
X +

log ψ(log ψ + 1)
6 {u + ρ (log ψ + 1)}2 µ3,X .

The reader can verify that the formula ΠdV ∗(·) is additive for independent
risks, and so it can serve for marginal as well as for basic valuation.

20.5.7 Subexponential Approximation

This method applies to the classical model (Poisson claim arrivals) with thick-
tailed severity distribution. More precisely, when the severity cdf FY possesses
the finite expectation µY , then the integrated tail distribution cdf FL1 (inter-
preted as the cdf of the variable L1, being the “ladder height” of the claim
surplus process) is defined as follows:

1 − FL1(x) =
1

µY

∫ ∞

x

{1 − FY (y)}dy.

Assuming now that the latter distribution is subexponential (see Chapter 15),
we could obtain (applying the Pollaczek-Khinchin formula) the approximation,
which should work for large values of initial capital:

ΠS(W ) = µW

[
1 +

1
ψ
{1 − FL1(u)}

]
.

The extended study of consequences of thick-tailed severity distributions can
be found in Embrechts, Klüppelberg, and Mikosch (1997).

20.5.8 Panjer Approximation

The Pollaczek-Khinchin formula could be also used in combination with the
Panjer recursion algorithm, to produce quite accurate (at the cost of time-
consuming calculations) answers in the case of the classical model (Poisson
claim arrivals). The method consists of two basic steps. In the first step the
integrated tail distribution FL1(x) is calculated and discretized. Once this step
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is executed, we have a distribution of a variable L̃1 (discretized version of the
“ladder height” L1):

fj = P
(
L̃1 = jh

)
, j = 0, 1, 2, . . .

The second step is based on the fact that the maximal loss L = L1+· · ·+LN has
a compound geometric distribution. Thus the distribution of the discretized
version L̃ of the variable L is obtained by making use of the Panjer recursion
formula:

P
(
L̃ = 0

)
= (1 − q)

∞∑
j=0

(qf0)j ,

and for k = 1, 2, . . . :

P
(
L̃ = kh

)
=

q

1 − qf0

k∑
j=1

fjP
{

L̃ = (k − j)h
}

,

where q
def= (1 + θ)−1. Iterations should be stopped when for some kψ the cu-

mulated probability FL̃(kψh) exceeds for the first time the predetermined value
1 − ψ. The approximated value of the capital u at which the ruin probability
attains the value ψ could be set then on the basis of interpolation, taking into
account that the ruin probability function is approximately exponential:

uψ
def= kψh − h

log ψ − log {1 − FL̃(kψh)}
log {1 − FL̃(kψh − h)} − log {1 − FL̃(kψh)} .

Calculations should be repeated for different values of θ in order to find such
value θPanjer(ψ, u), at which the resulting capital uψ approaches the predeter-
mined value of capital u. Then the resulting premium is given by the formula:

ΠPanjer(W ) = (1 + θPanjer)µW .

It should be noted, that it is only the second step of calculations which has
to be repeated many times under the search procedure, as the distribution of
the variable L̃1 remains the same for various values of θ being tested. The
advantage of the method is that the range of the approximation error is under
control, as it is a simple consequence of the width of the discretization interval h
and the discretization method used. The disadvantage already mentioned is
a time-consuming algorithm. Moreover, the method produces only numerical
results, and therefore, provides no rule for decomposition of the whole portfolio
premium for individual risk premiums. Nevertheless, the method could be used
to obtain quite accurate approximations, and thus, a reference point to estimate
approximation errors produced by simpler methods.
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All approximation methods presented in this section are more or less standard,
and more detailed information on them can be found in any actuarial textbook,
as for example in “Actuarial Mathematics” by Bowers et al. (1986, 1997). More
advanced analysis can be found in a book “Ruin probabilities” by Asmussen
(2000) and numerical comparison of this and other approximations are given
in Chapter 15.

20.6 Ruin Probability Criterion and the Rate of
Return

This section is devoted to considering the problem of balancing profitability
and solvency requirements. In Section 20.2 a similar problem has already been
studied. However, we have considered there return on capital on the single-
period basis. Therefore neither the allocation of returns (losses) nor the long
run consequences of decision rules applied in this respect were considered. The
problem was already illustrated in Example 1. Section 20.6.1 is devoted to
presenting the same problem under more general assumptions about the risk
process, making use of some of approximations presented in Section 20.5. Sec-
tion 20.6.2 is devoted to another generalization, where more flexible dividend
policy allows for sharing risk between the company and shareholders.

20.6.1 Fixed Dividends

First we consider a reinterpretation of the model presented in Example 1. Now
the discrete-time version of the model is assumed:

Rn = u + (c − du) n − (W1 + ... + Wn) , n = 0, 1, 2, . . .

where all events are assumed to be observed once a year, and notations are
obviously adapted. The question is the same: to choose the optimal level of
initial capital u that minimizes the premium c given the ruin probability ψ
and the dividend rate d. The solution depends on how much information we
have on the distribution of the variable W , and how precise result is required.
Provided our information is restricted to the expectation and variance of W ,
we can use the diffusion approximation. This produces exactly the same results
as in Example 1, although now we interpret them as an approximated solution.
Let us remind that the resulting premium formula reads:

Π(W ) = µW + σW

√
−2d log ψ,
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with the accompanying result for the optimal level of capital:

uopt = σ
√

− log ψ(2d)−1.

Despite the fact that the premium formula is not additive, we can follow ar-
guments presented in Section 20.3.4, to propose the individual basic premium
formula:

ΠB(X) = µX + σ2
Xσ−1

W

√
−2d log ψ,

and obviously the marginal premium containing loading twice as small as the
basic one.

The basic idea presented above can be generalized to cases when richer in-
formation on the distribution of the variable W allows for more sophisticated
methods. For illustrative purposes only the method of De Vylder (in a simpli-
fied version) is considered.

Example 3

Our information encompasses also skewness (which is positive), so premium is
calculated on the basis of the De Vylder approximation. Allowing for simplifi-
cation proposed in the previous section, we obtain the minimized function:

c = µW +
σ2

W

2

{ − ln ψ

u + ρ (ln ψ + 1)

}
+ du.

Almost as simply as in the Example 1 we get the solutions:

uopt = σW

√
− ln ψ

2d
− ρ (ln ψ + 1) ,

copt = µW + σW

{√
−2d ln ψ − 1

3d (ln ψ + 1) γW

}
,

where again the safety loading amounts to 1
2σW

√−2d ln ψ. However, in this
case the safety loading is smaller than a half of the total premium loading.
This time the capital (and so the dividend loading) is larger, because of com-
ponent proportional to σW γW . This complicates also individual risks pricing,
as (analogously to formulas considered in Section 20.3.3), the basic premium
in respect of this component has to be set arbitrarily.

Comparing problems presented above with those considered in Section 20.5 we
can conclude that premium calculation based on ruin theory are easily decom-
posable as far as the capital backing risk is considered as fixed. Once the cost of
capital is explicitly taken into account, we obtain premium calculation formu-
las much more similar to those derived on the basis of one-year considerations,
what leads to similar obstacles when the decomposition problem is considered.
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20.6.2 Flexible Dividends

So far we have assumed that shareholders are paid a fixed dividend irrespective
of the current performance of the company. It is not necessarily the case, as
shareholders would accept some share in risk provided they will get a suitable
risk premium in exchange. The more general model which encompasses the
previous examples as well as the case of risk sharing can be formulated as
follows:

Rn = u + cn − (W1 + ... + Wn) − (D1 + ... + Dn)

where Dn is a dividend due to the year n, defined as such a function of the
variable Wn that E(Dn) = du. As dividend is a function of the current year
result, it preserves independency of increments of the risk process. Of course,
only such definitions of Dn are sensible, which reduce in effect the range of
fluctuations of the risk process. The example presented below assumes one of
possible (and sensible) choices in this respect.

Example 4

Let us assume that Wn has a gamma (α, β) distribution, and the dividend is
defined as:

Dn = max {0, δ (c − Wn)} , δ ∈ (0, 1) ,

which means that shareholders’ share in profits amounts to δ100%, but they do
not participate in losses. Problem is to choose a value of the parameter δ and
amount of capital u so as to minimize premium c, under the restriction E(Dn) =
du, and given parameters (α, β, d, ψ). The problem could be reformulated so
as to solve it numerically, making use of the De Vylder approximation.

Solution.

Let us write the state of the process after n periods in the form:

Rn = u − (V1 + ... + Vn)

with the increment equal −Vn. The variable Vn could be then defined as:

Vn =
{

Wn − c when Wn > c
(1 − δ) (Wn − c) when Wn � c

According to the De Vylder method ruin probability is approximated by:

ψdV (u) =
(
1 + R(D)ρ

)−1 exp
{
−R(D)u

(
1 + R(D)ρ

)−1
}

,
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where R(D) = −2E (V ) σ−2 (V ), and ρ = 1
3µ3 (V ) σ−2 (V ); for simplicity, the

number of year n has been omitted.

In order to minimize the premium under restrictions:

ψdV (u) = ψ, E(D) = du, δ ∈ (0, 1) , u > 0,

and under predetermined values of (α, β, d, ψ) it suffices to express the expec-
tation of a variable D and cumulants of order 1, 2, and 3 of the variable V as
functions of these parameters and variables. First we derive raw moments of
order 1, 2, and 3 of the variable D. From its definition we obtain:

E(Dk) = δk

c∫
0

(c − x)k
dFW (x),

that (after some calculations) leads to the following results:

E(D) = δ
{

cFα,β (c) − α
β Fα+1,β (c)

}
,

E(D2) = δ2
{

c2Fα,β (c) − 2cα
β Fα+1,β (c) + α(α+1)

β2 Fα+2,β (c)
}

,

E(D3) = δ3
{

c3Fα,β (c) − 3c2 α
β Fα+1,β (c)

}
+

+ δ3
{

3cα(α+1)
β2 Fα+2,β (c) − α(α+1)(α+2)

β3 Fα+3,β (c)
}

,

where Fα+j,β denotes the cdf of gamma distribution with parameters (α + j, β).

In respect of the relation V − D = W − c, and taking into account that:

E [Dm (−V )n] = δm (1 − δ)n

c∫
0

(c − x)m+n
dFW (x) =

(
1 − δ

δ

)n

E(Dm+n),

we easily obtain raw moments of the variable V :

E(V ) = α
β − c + E(D),

E(V 2) = α
β2 +

(
α
β − c

)2

− (
1 + 2 1−δ

δ

)
E(D2),

E(V 3) = 2α
β3 + 3α

β2

(
α
β − c

)
+
(

α
β − c

)3

+
{

1 + 3 1−δ
δ + 3

(
1−δ

δ

)2}
E(D3),
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so as cumulants of this variable, too. Provided we are able to evaluate numer-
ically the cdf of the gamma distribution, all elements needed to construct the
numerical procedure solving the problem are completed.

In Example 4 some specific rule of sharing risk by shareholders and the company
has been applied. On the contrary, the assumption on the distribution of the
variable W is of some general advantage, as the shifted gamma distribution is
often used to approximate the distribution of the aggregate loss. We will make
use of it in Example 6 presented in the next section.

20.7 Ruin Probability, Rate of Return and
Reinsurance

In this section premium calculation is considered under predetermined ruin
probability and predetermined rate of dividend, with reinsurance included. At
first the example involving fixed dividend is presented.

20.7.1 Fixed Dividends

Example 5

We assume (as in Example 2), that the aggregate loss W has a compound Pois-
son distribution with expected number of claims λP = 1000, and with severity
distribution being truncated-Pareto distribution with parameters (α, λ, M0) =
(2.5, 1.5, 500). We assume also that the excess of each loss over the limit
M ∈ (0,M0] is ceded to the reinsurer using the same pricing formula:

ΠR

(
WM

)
= (1 + re0) E

(
WM

)
+ re1V AR

(
WM

)
.

The problem lies in choosing such a value of the retention limit M and initial
capital u, which minimize the total premium paid by policyholders, under pre-
determined values of parameters (d, ψ, re0, re1). The problem could be solved
with application of the De Vylder and Beekman–Bowers approximation meth-
ods. As allowing for reinsurance leads to numerical solutions anyway, there is
no more reason to apply the simplified version of the De Vylder method, as in
Example 3.
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Solution.

Risk process can be written now as:

Rn = u +
{
c − du − ΠR

(
WM

)}
n − (

WM,1 + ... + WM,n

)
.

The problem takes a form of minimization of the premium c under restrictions,
which in the case of De Vylder metod take a form:

ψ =
(
1 + R(D)ρ

)−1 exp
{
−R(D)u

(
1 + R(D)ρ

)−1
}

,

R(D) = 2
(
c − du − ΠR

(
WM

))
σ−2 (WM ) ,

ρ = 1
3µ3 (WM ) σ−2 (WM ) ,

and in the version based on the Beekman–Bowers approximation method take
a form:

c − du − ΠR

(
WM

)
= (1 + θ) E (WM ) ,

ψ = (1 + θ)−1 (1 − Gα,β (u)) ,

αβ−1 = (1 + θ) E
(
Y 2

M

) {2θ E (Y M )}−1
,

α (α + 1) β−2 = (1 + θ)

⎧⎨⎩ E
(
Y 3

M

)
3θ E (Y M )

+ 2

(
E
(
Y 2

M

)
2θ E (Y M )

)2
⎫⎬⎭ .

Moments of the first three orders of the variable Y M as well as cumulants of
variables WM and WM are calculated the same way as in Example 2. All
these characteristics are functions of parameters (α, λ, λP ) and the decision
variable M .

20.7.2 Interpretation of Solutions Obtained in Example 5

Results of numerical optimization are reported in Table 20.2. In the basic
variant of the problem, parameters has been set on the level (d, ψ, re0, re1) =
(5%, 5%, 100%, 0.5%). In variant 6 the value M = M0 is assumed, so as this
variant represents the lack of reinsurance. Variants 2, 3, 4 and 5 differ from the
basic wariant by the value of one of parameters (d, ψ, re0, re1). In variant 2 the
dividend rate d has been increased so as to obtain the same level of premium,
than it is obtained in variant 6. Results could be summarized as follows:
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Table 20.2: Minimization of premium c with respect to choice of capital u and
retention limit M . Basic characteristics of the variable W : µW =
999.8, σW = 74.2, γW = 0.779, γ2,W = 2.654

Variants of minimization
problems

Method of ap-
prox. of the
ruin probability

Retention
limit M

Initial cap-
ital u

Loading
c−µW

µW

V.1: (basic)
BB 184.2 416.6 4.17%
dV 185.2 416.3 4.16%

V.2: d = 5.2%
BB 179.5 408.2 4.25%
dV 180.5 407.9 4.25%

V.3: ψ = 2.5%
BB 150.1 463.3 4.65%
dV 156.3 461.7 4.63%

V.4: re0 = 50%
BB 126.1 406.2 4.13%
dV 127.1 406.0 4.13%

V.5: re1 = 0.25%
BB 139.7 409.0 4.13%
dV 140.5 408.8 4.13%

V.6: (no reinsurance)
BB 500.0 442.9 4.25%
dV 500.0 442.7 4.25%

STFrein02.xpl

(i) Reinsurance results either in premium reduction under unchanged rate
of dividend (compare variant 6 with wariant 1), or in increase of the
rate of dividend under the same premium level (compare variant 2 with
variant 1). In both cases the need for capital is also reduced. If we wish
to obtain reduction of premium as a result of reinsurance introduced,
then the reduction of capital is slightly smaller than in the case when
reinsurance serves to enlarge the rate of dividend.

(ii) Comparison of variants 3 and 1 shows that increasing safety (reduction
of parameter ψ from 5% to 2.5%) results in significant growth of the
premium. This effect is caused as well by increase of capital (which
burdens the premium through larger cost of dividends), as by increase
of costs of reinsurance, because of reduced retention limit. It is also
worthwhile to notice that predetermining ψ = 2.5% results in significant
diversification of results obtained by two methods of approximation. In
the case when ψ = 5% the difference is neglectible.

(iii) Results obtained in variants 4 and 5 show that the optimal level of rein-
surance is quite sensitive to changes of parameters reflecting costs of
reinsurance.
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20.7.3 Flexible Dividends

In the next example assumptions are almost the same as in Example 5, except
that the fixed dividend is replaced by the dividend dependent on financial result
by the same manner, as in Example 4.

Example 6

Assumptions on the aggregate loss W are the same as in Example 5: com-
pound Poisson truncated-Pareto distribution with parameters (λP , α, λ, M0).
Assumptions concerning available reinsurance (excess of loss over M ∈ (0,M0],
pricing formulas characterized by parameters re0 and re1) are also the same.
Dividend is defined as in Example 4, with a suitable correction due to reinsur-
ance allowed:

Dn = max
{

0, δ
[
c − WM,n − ΠR

(
WM

)]}
, δ ∈ (0, 1) .

Now the problem lies in choosing capital u, risk-sharing parameter δ and re-
tention limit M so as to minimize premium c under the restriction E(Dn) =
du, and predetermined values of parameters characterizing the distribution
(λP , α, λ, M0), parameters characterizing reinsurance costs (re0, re1) and pa-
rameters characterizing profitability and safety (d, ψ).

Solution.

Under the predetermined values of decision variables (u, δ,M) and remaining
parameters the risk process has a form:

Rn = u − (V1 + ... + Vn) ,

with increment −Vn, where the variable Vn is defined as:

Vn =
{

WM,n − c + ΠR

(
WM

)
when WM,n > c − ΠR

(
WM

)
(1 − δ)

(
WM,n − c + ΠR

(
WM

))
when WM,n � c − ΠR

(
WM

)
The problem differs from that presented in Example 4 by two factors: variable
WM is not gamma distributed, and the premium c is now replaced by the
constant c − ΠR

(
WM

)
. However, variable WM could be approximated by

the shifted gamma distribution with parameters (x0, α0, β0) chosen so as to
match moments of order 1, 2, and 3 of the original variable WM . Suitable
calculations lead to the definition of the variable Ṽ , that approximates the
original variable Vn:

Ṽ =
{

X − c∗ when X > c∗

(1 − δ) (X − c∗) when X � c∗
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where the variable X has a gamma (α0, β0) distribution, and the constant c∗

equals c − ΠR

(
W̄M

) − x0. Thus we could express moments of the variable Ṽ
as functions of parameters (α0, β0, c

∗, δ) exactly this way, as it is done with
respect to variable V and parameters (α, β, c, δ) in Example 4. It suffices in
turn to approximate ruin probability with the De Vylder method:

ψdV (u) =
(
1 + R(D)ρ

)−1 exp
{
−R(D)u

(
1 + R(D)ρ

)−1
}

,

where R(D) = −2E
(
Ṽ
)

σ−2
(
Ṽ
)

and ρ = 1
3µ3

(
Ṽ
)

σ−2
(
Ṽ
)

, and where the
expected value of dividend E(D) satisfies the restriction:

c − ΠR

(
WM

)− E (WM ) − E(D) = −E(Ṽ ).

Hence it is clear that the problem of minimization of premium under restrictions
ψdV (u) = ψ, E(D) = du, δ ∈ (0, 1), u > 0, M ∈ (0,M0] and predetermined
values of parameters (λP , α, λ, re0, re1, d, ψ,M0) is in essence analogous to the
problem presented in Example 4, and differs only in details. The set of decision
variables (u, δ) in Example 4 is now extended by additional variable M , and
the variable WM is only approximately gamma distributed.

20.7.4 Interpretation of Solutions Obtained in Example 6

Results are presented in Table 20.3. In all variants predetermined values of pa-
rameters (λP , α, λ, M0, re0, re1) = (1000, 2.5, 1.5, 500, 100%, 0.5%) are the
same. In variant 1 (basic) the ruin probability ψ = 5% is assumed, and reinsur-
ance is allowed. Variant 2 differs from the basic one by higher safety standard
(ψ = 2.5%), whereas variant 3 differs by lack of reinsurance. In each variant
three slightly different versions of the problem have been solved. Version A
is a simplified one, assuming fixed dividend rate d = 5%, so that Dn = du.
Consequently the minimization of the premium is conducted with respect to
(u, M) only. In fact, the results from Table 20.2 are quoted for this version.
Versions B and C assume minimization with respect to (u, M, δ). Version B
plays a role of a basic version, where premium c is minimized under the ex-
pected rate of dividend d = 5%. In version C such a rate of dividend d has
been chosen, that leads (through minimization) to the same premium level, as
obtained previously in version A. So two alternative effects of the consent of
shareholders to participate in risk could be observed. Effect in terms of reduc-
tion of premium (expected rate of dividend remaining unchanged) is observed



486 20 Premiums, Investments, and Reinsurance

Table 20.3: Minimization of premium c under three variants of assumptions
and three versions of the problem.

Variant of assump-
tions

Version of
problem

d M u c−µW
µW

δ σD
u

V.1: ψ = 5%, reins.

A 5% 185.2 416.3 4.16% - 0
B 5% 189.3 406.0 3.35% 41.7% 5.02%
C 8.54% 143.6 305.2 4.16% 48.6% 8.14%

V.2: ψ = 2.5%, reins.

A 5% 156.3 461.7 4.63% - 0
B 5% 157.0 447.5 3.67% 44.4% 4.94%
C 8.96% 122.9 329.7 4.63% 52.3% 8.29%

V.3: ψ = 5%, no reins.

A 5% 500.0 442.7 4.25% - 0
B 5% 500.0 429.8 3.45% 42.0% 4.70%
C 8.09% 500.0 340.0 4.25% 48.2% 7.15%

STFrein03.xpl

when we compare version B and A. Effect in terms of increase of the expected
rate of dividend (premium being fixed) is observed when versions C and A are
compared. Results could be summarized as follows.

In each of three variants, the consent of shareholders for risk participation
allows for substantial reduction of premium (loading reduced by about 20%).

It is interesting that shareholder’s consent to participate in risk allows for much
more radical reduction of premium than reinsurance. It results from the fact
that reinsurance costs have been explicitly involved in optimization, whereas
the “costs of the shareholder’s consent to participate in risk” have not been
accounted for.

Comparison of versions C with versions A in each variant of the problem allows
us to see the outcome (increase of expected rate of dividend) of the shareholder’s
consent to share risk. In the last column of the table the (relative) standard
deviation σD/u of dividends is reported; it could serve as a measure of “cost”
at which the outcome, in terms of the increment of the expected dividend rate,
is obtained.

Comparing versions B and C in variants 1 and 2 we could observe effects of
the increment in the expected rate of dividend. Apart from the obvious effect
on premium increase, also the reduction of capital could be observed (cost of
capital is higher), and at the same time retention limits are reduced. Also the
sharing parameter δ increases, as well as the (relative) standard deviation of
dividends σD/u.
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Comparing variants 1 and 2 (in all versions A, B, and C) we notice the substan-
tial increase of the premium as an effect of higher safety standard (smaller ψ).
Also the amount of capital needed increases and the retention limit is reduced.
At the same time a slight increase of sharing parameter δ is observed (versions
B and C).

20.8 Final Remarks

It should be noted that all presented models, including risk participation of
reinsurers and shareholders, lead only to a modification of the distribution of
the increment of the risk process. Still the mutual independence of subsequent
increments and their identical distribution is preserved. There are also models
where decisions concerning premiums, reinsurance, and dividends depend on
current size of the capital. In general, models of this type need the stochastic
control technique to be applied. Nevertheless, models presented in this chapter
preserve simplicity, and allow just to have insight on long-run consequences of
some decision rules, provided they remain unchanged for a long time. This
insight is worthwhile despite the fact that in reality decisions are undertaken
on the basis of the current situation, and no fixed strategy remains unchanged
under changing conditions of the environment. On the other hand, it is al-
ways a good idea to have some reference point, when consequences of decisions
motivated by current circumstances have to be evaluated.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal
Events for Insurance and Finance, Springer, Berlin.

Hill, G.W. and Davis, A.W. (1968). Generalized asymptotic expansions of
Cornish-Fisher type, Ann. Math. Statist. 39: 1264–1273.

Kendall, M. and Stuart, A. (1977). The Advanced Theory of Statistics, 4th ed.
MacMillan.

Otto, W. (2004). Nonlife insurance – part I – Theory of risk, series “Mathe-
matics in Insurance” WNT (in Polish).

Panjer, H.H. (ed.), Boyle, P.P., Cox, S.H., Dufresne, D., Gerber, H.U., Mueller,
H.H., Pedersen, H.W., Pliska, S.R., Sherris, M., Shiu, E.S., and Tan, K. S.
(1998). Financial Economics with Applications to Investments, Insurance
and Pensions, The Actuarial Foundation, Schaumburg, Illinois.

Shapley, L.S.(1953). A Value for n-Person Games, in Kuhn, H.W. and Tucker,
A.W. (eds.) Contributions to the Theory of Games II, Princeton University
Press, 307–317.



Part III

General



21 Working with the XQC

Szymon Borak, Wolfgang Härdle, and Heiko Lehmann

21.1 Introduction

An enormous number of statistical methods have been developed in quantitive
finance during the last decades. Nonparametric methods, bootstrapping time
series, wavelets, Markov Chain Monte Carlo are now almost standard in sta-
tistical applications. To implement these new methods the method developer
usually uses a programming environment he is familiar with. Thus, automati-
cally such methods are only available for preselected software packages, but not
for widely used standard software packages like MS Excel. To apply these new
methods to empirical data a potential user faces a number of problems or it
may even be impossible for him to use the methods without rewriting them in a
different programming language. Even if one wants to apply a newly developed
method to simulated data in order to understand the methodology one is con-
fronted with the drawbacks described above. A very similar problem occurs in
teaching statistics at undergraduate level. Since students (by definition!) have
their preferred software and often do not have access to the same statistical
software packages as their teacher, illustrating examples have to be executable
with standard tools. The delayed proliferation of new statistical technology
over heterogeneous platforms and the evident student/teacher software gap are
examples of inefficient distribution of quantitative methodology. This chapter
describes the use of a platform independent client that is the basis for e-books,
transparencies and other knowledge based systems.

In general, two statisticians are on either side of the distribution process of
newly implemented methods, the provider (inventor) of a new technique (algo-
rithm) and the user who wants to apply (understand) the new technique. The
aim of the XploRe Quantlet client/server architecture is to bring these statisti-
cians closer to each other. The XploRe Quantlet Client (XQC) represents the
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front end – the user interface (UI) of this architecture allowing to access the
XploRe server and its methods and data. The XQC is fully programmed in
Java not depending on a specific computer platform. It runs on Windows and
Mac platforms as well as on Unix and Linux machines.

The following sections contain a description of components and functionalities
the XQC offers. Section 21.2.1 gives a short overview about possible configura-
tion settings of the XQC, which allow influencing the behaviour of the client.
Section 21.2.2 explains how to connect the XQC to an XploRe Quantlet Server.
A detailed description of the XQC’s components desktop, Quantlet editor, data
editor and method tree is part of Sections 21.3 to 21.3.3. Section 21.3.4 finally
explains graphical features offered by the XploRe Quantlet Client.

21.2 The XploRe Quantlet Client

The XploRe Quantlet Client can be initiated in two different ways. The way
depends on whether the XQC is supposed to run as a standalone application
or as an applet embedded within an HTML page. The XQC comes packed
in a single Java Archive (JAR) file, which allows an easy usage. This JAR
file allows for running the XQC as an application, as well as running it as an
applet.

Running the XQC as an application does not require any programming skills.
Provided that a Java Runtime Environment is installed on the computer the
XQC is supposed to be executed on, the xqc.jar will automatically be recog-
nized as an executable jar file that opens with the program javaw. If the XQC
is embedded in a HTML page it runs as an applet and can be started right
after showing the page.

21.2.1 Configuration

Property files allow configuring the XQC to meet special needs of the user.
These files can be used to manage the appearance and behavior of the XQC.
Any text editor can be used in editing the configuration files. Generally, the use
of all information is optional. In its current version, the XQC works with three
different configuration files. The xqc.ini file contains important information
about the basic setup of the XploRe Quantlet Client, such as server and port
information the client is supposed to connect to. It also contains information
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Figure 21.1: Manual input for server and port number.

about the size of the client. This information can be maintained either relative
to the actual size of the screen by using a factor or by stating its exact width
and height. If this information is missing, the XQC begins by using its default
values.

The xqc language.ini allows for setting up the XQC’s language. This file con-
tains all texts used within the XQC. To localize the client, the texts have to be
translated. If no language file can be found, the client starts with its default
setup, showing all menus and messages in English.

The xqc methodtree.ini file finally contains information about the method tree
that can be shown as part of the METHOD/DATA window, see Section 21.3.2.
A detailed description of the set up of the method tree will be part of Section
21.3.3.

21.2.2 Getting Connected

After starting the XQC the client attempts to access and read information from
the configuration files. If no configuration file is used error messages will pop
up. If server and port information cannot be found, a pop up appears and
enables a manual input of server and port number, as displayed in Figure 21.1.

The screenshot in Figure 21.2 shows the XQC after it has been started and
connected to an XploRe server. A traffic light in the lower right corner of the
screen indicates the actual status of the server. A green light means the client
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Figure 21.2: XQC connected and ready to work.

has successfully connected to the server and the server is ready to work. If the
server is busy, computing previously received XploRe code, the traffic light will
be set to yellow. A red light indicates that the XQC is not connected to the
server.

21.3 Desktop

If no further restrictions or features are set in the configuration file (e.g. not
showing any window or starting with executing a certain XploRe Quantlet) the
XQC should look like shown in the screen shot. It opens with the two screen
components CONSOLE and OUTPUT/RESULT window. The CONSOLE
allows for the sending of single-line XploRe commands to the server to be
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executed immediately. It also offers a history of the last 20 commands sent
to the server. To repeat a command from the history, all that is required is
a mouse click on the command, and it will be copied to the command line.
Pressing the ‘Return’ key on the keyboard executes the XploRe command.

Text output coming from the XploRe server will be shown in the OUTPUT /
RESULT window. Any text that is displayed can be selected and copied for use
in other applications – e.g. for presentation of results within a scientific article.
At the top of the screen the XQC offers additional functions via a menu bar.
These functions are grouped into four categories. The XQC menu contains
the features Connect, Disconnect, Reconnect and Quit.

Depending on the actual server status not every feature is enabled – e.g. if the
client is not connected (the server status is indicated by a red traffic light) it
does not make sense to disconnect or reconnect, if the client is already connected
(server status equals a green light) the connect feature is disabled.

21.3.1 XploRe Quantlet Editor

The Program menu contains the features New Program, Open Program (lo-
cal). . . and Open Program (net). . . . New Program opens a new and empty
text editor window. This window enables the user to construct own XploRe
Quantlets.

The feature Open Program (local) offers the possibility of accessing XploRe
Quantlets stored on the local hard disk drive. It is only available if the XQC is
running as an application or a certified applet. Due the Java sandbox restric-
tions running the XQC as an unsigned applet, it is not possible to access local
programs.

If the user has access to the internet the menu item Open Program (net) can be
useful. This feature allows the opening of Quantlets stored on a remote Web
server. All it needs is the filename and the URL address at which the file is
located.

Figure 21.3 shows a screen shot of the editor window containing a simple
XploRe Quantlet. Two icons offer actions on the XploRe code:

• – Represents the probably most important feature – it sends the
XploRe Quantlet to the server for execution.
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Figure 21.3: XploRe Editor window.

• – Saves the XploRe Quantlet to your local computer (not possible if
running the XQC as an unsigned applet).

The Quantlet shown in Figure 21.3 assigns two three-dimensional standard
normal distributions to the variables x and y. The generated data are formatted
to a certain color, shape and size using the command setmaskp. The result is
finally shown in a single display.

21.3.2 Data Editor

The Data menu contains the features New Data. . . , Open Data (local). . . ,
Open Data (net). . . , Download DataSet from Server. . . and DataSets uploaded
to Server.

New Data can be used to generate a new and empty data window. Before the
data frame opens a pop-up window as shown in Figure 21.4 appears, asking for
the desired dimension – the number of rows and cols – of the new data set. The
XQC needs this information to create the spreadsheet. This definition does not
have to be the exact and final decision, it is possible to add and delete rows
and columns later on.
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Figure 21.4: Dimension of the Data Set.

The menu item Open Data (local) enables the user to open data sets stored on
the local hard disk. Again, access to local resources of the user’s computer is
only possible if the XQC is running as an application or a certified applet. The
file will be interpreted as a common text format file. Line breaks within the
file are considered as new rows for the data set. To recognize data belonging to
a certain column the single data in one line must be separated by either using
a “;” or a “tab” (separating the data by just a “space” will force the XQC to
open the complete line in just on cell).

Open Data (net) lets the user open a data set that is stored on a web server
by specifying the URL.

The menu item Download DataSet from Server offers the possibility to down-
load data from the server. The data will automatically be opened in a new
method and data window, offering all features of the method and data window
(e.g. applying methods, saving, . . . ) to them.

A helpful feature especially for research purposes is presented with the menu
item DataSets uploaded to Server. This item opens a window that contains a list
of objects uploaded to the server using the data window or the console. Changes
of these objects are documented as an object history. Due to performance
reasons only uploaded data and actions on data from the CONSOLE and the
TABLE MODEL are recorded.

The appearance of the data window depends on the settings in the configuration
file. If a method tree is defined and supposed to be shown, the window shows
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Figure 21.5: Combined Data and Method Window.

the method tree on the left part and data spreadsheet on the right part of the
frame. If no method tree has been defined, only the spreadsheet will be shown.
The method tree will be discussed in more detail in Section 21.3.3. Figure 21.5
shows a screen shot of the combined data and method frame.

Icons on the upper part of the data and method window offer additional func-
tionalities:

• – If columns or cells are selected – this specific selection, otherwise
the entire data set can be uploaded to the server with specifying a variable
name.

• – Saves the data to your local computer (not possible if running the
XQC as an unsigned applet).

• / – Copy and paste.
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• / – Switches the column or cell selection mode on and off.
Selected columns/cells can be uploaded to the server or methods can be
executed on them.

The spreadsheet of the data and method window also offers a context menu
containing the following items:

• Copy

• Paste

• No Selection Mode – Switches OFF the column or cell selection mode.

• Column Selection Mode – Switches ON the column selection mode.

• Cell Selection Mode – Switches ON the cell selection mode.

• Set Row as Header Line

• Set column Header

• Delete single Row

• Insert single Row

• Add single Row

• Delete single Column

• Add single Column

Most of the context menu items are self-explaining. However, there are two
items that are worth taking a closer look at – ‘Set Row as Header Line’ and
‘Set column Header’. The spreadsheet has the capability to specify a header for
each column. This information can be used within XploRe Quantlets to name
the axis within a plot, making it easier for the user to interpret graphics. A
more detailed description is included in Section 21.3.3. Default values for the
headers are COL1, COL2, . . . as shown in Figure 21.6. Naming a single column
can be performed using the menu item ‘Set column Header’. The name has
to be maintained within the pop up window that appears right after choosing
this menu item. It can also be used to change existing column headers. The
spreadsheet also offers the possibility to set column headers all at once. If the
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Figure 21.6: Working with the Data and Method Window.

data set already contains a row with header information – either coming from
manual input or as part of an opened data set – these row can be set as header
using the menu item ‘Set Row as Header Line’. The row with the cell that is
active at that time will be cut out of the data set and pasted into the header
line.

Setting the header is also possible while opening a data set. After choosing the
data, a pop up asks whether or not the first row of the data set to be opened
should be used as the header. Nevertheless, the context menu features just
described above are of course still available, enabling the user to set or change
headers afterwards.

Working with the XQC’s method and data window does not require any XploRe
programming knowledge. All it requires is a pointing device like the mouse.
Applying, for example, the scatter-plot-method on the two columns would only
mean to

• switch on the column selection mode

• mark both columns

• mouse click on the method “Scatter Plot”
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Result will be a plot as shown in Figure 21.6. As stated above, the selected area

can also be uploaded to the server using the icon in order to be used for
further investigation. This new variable can be used within XploRe Quantlets
written using the EDITOR window or manipulated via the CONSOLE.

21.3.3 Method Tree

The METHOD TREE represents a tool for accessing statistical methods in an
easy way. Its setup does not require any Java programming skills. All it needs
is the maintenance of two configuration files.

Settings maintained within the xqc.ini file tell to the XQC whether there will
be a method tree to be shown or not and where to get the tree information
from. The client also needs to know where the methods are stored at. The
MethodPath contains this information. Path statements can either be abso-
lute statements or relative to the directory the XQC has been started in. For
relative path information the path must start with XQCROOT. The settings in
the example below tell the client to generate a method tree by using the file
xqc methodtree.ini with the XploRe Quantlets stored in the relative subdirec-
tory xqc_quantlets/.

ShowMethodTree = yes
MethodTreeIniFile = xqc_methodtree.ini
MethodPath = XQCROOT/xqc_quantlets/

The actual method tree is set up in a separate configuration file that is given by
the property of MethodTreeIniFile. This file contains a systematic structure
of the tree – nodes and children, the method to be executed and its description
to be shown within the tree frame.

Node_1 = path name
Child_1.1 = method|description
Child_1.2 = method|description
Child_1.3 = method|description
Node_2 = path name
Node_2.1 = path name

Child_2.1.1 = method|description
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The name of the method has to be identical to the name of the XploRe program
(Quantlet). The Quantlet itself has to have a procedure with the same name
as the method. This procedure is called by the XQC on execution within the
method tree.

Example

The following example shows how to set up a simple method tree. First of all,
we choose XploRe Quantlets used within this e-book that we want to be part
of the method tree. The aim of the Quantlet should be to generate graphics
from selected data of the data spreadsheet or to just generate text output.
Before being able to use the Quantlets within the method tree, they have to be
‘wrapped’ in a procedure. The name of the procedure – in our case for example
‘STFstab08MT’ – has to equal the name of the saved XploRe file. Our example
Quantlet STFstab08MT.xpl is based on the original Quantlet STFstab08.xpl
used in Chapter 1. The procedure must further have two parameters:

• data – Used for passing the selected data to the XploRe Quantlet.

• names – Contains the names of the selected columns taken from the header
of the spreadsheet.

It might also be necessary to make some minor adjustments within the Quantlet
in order to refer to the parameter handed over by the XQC. Those changes
depend on the Quantlet itself.

library (" graphic ")
proc () = STFstab08MT(data, names)

...
endp

Figure 21.7: STFstab08MT.xpl.

The XploRe coding within the procedure statement is not subject to any further
needs or restrictions.

Once we have programmed the Quantlet it needs to be integrated into a method
tree. For this purpose we define our own configuration file - xqc methodtree STF
– with the following content shown in Figure 21.8.
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Node_1 = Stable Distribution

Node_1 .1 = Estimation
Child_1 .1.1 = stabreg.xpl|Stabreg
Child_1 .1.2 = stabcull.xpl|Stabcull
Child_1 .1.3 = stabmom.xpl|Stabmom

Node_1 .2 = Examples
Child_1 .2.1 = STFstab08.xpl|STFstab08
Child_1 .2.2 = STFstab09.xpl|STFstab09
Child_1 .2.3 = STFstab10.xpl|STFstab10

Figure 21.8: sample tree.ini

We create a node calling it ‘Estimation’. Below this first node we set up the
Quantlets stabreg.xpl, stabcull.xpl and stabmom.xpl. A second node – ‘Exam-
ples’ contains the Quantlets STFstab08.xpl, STFstab09.xpl and STFstab10.xpl.
The text stated right beside each Quantlet (separated by the ‘|’) represents the
text we would like to be shown in the method tree.

Now that we have programmed the XploRe Quantlet(s) and set up the method
tree we still need to tell the XQC to show our method tree upon opening data
sets.

...

ShowMethodTree = yes
MethodTreeIniFile = xqc_methodtree_STF.ini
MethodPath = XQCROOT/xqc_quantlets/

...

Figure 21.9: Extract of the xqc.ini.

The settings as shown in Figure 21.9 tell the XQC to show the method tree that
is set up in our xqc methodtree STF.ini file and to use our XploRe Quantlet
stored in a subdirectory of the XQC itself.

Our method tree is now ready for finally being tested. Figure 21.10 shows a
screenshot of the final result – the method tree, set up above.

21.3.4 Graphical Output

The previous sections contain some examples of graphical output shown within
a display. The XQC’s displays do not show only the graphical results received
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Figure 21.10: Final result of our tree example.

from the XploRe server. Besides the possibility to print out the graphic it
offers additional features that can be helpful for investigating data - especially
for three-dimensional plots. Those features can be accessed via the display’s
context menu. Figure 21.11 shows three-dimensional plot of the 236 implied
volatilities and fitted implied volatility surface of DAX from January 4th 1999.

The red points in the plot represent observed implied volatilities on 7 different
maturities T = 0.13, 0.21, 0.46, 0.71, 0.96, 1.47, 1.97. The plot shows that im-
plied volatilities are observed in strings and there are more observations on the
strings with small maturities than on the strings with larger maturities. The
surface is obtained with Nadaraya-Watson kernel estimator.

For a more detailed inspection three-dimensional plots can be rotated by us-
ing a pointing device such as a mouse (with the left mouse-button pressed)
or by using the keyboards arrow-keys. Figure 21.12 shows the same plot as
before – it has just been rotated by some degrees. Now, one can see implied
volatilities “smiles” and “smirks” and recognize different curvature for differ-
ent maturities. For further research it would be helpful to know which data
point belongs to which string. Here the XQC’s display offers a feature to show
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Figure 21.11: Plot of the implied volatility surface from January 4, 1999

the point’s coordinates. This feature can be accessed via the display’s context
menu. ‘Showing coordinates’ is not the only option. The user could also switch
between the three dimensions - ‘Show XỸ’, ‘Show XZ̃’ and ‘Show YZ̃’.

After the ‘Showing coordinates’ has been chosen all it needs is to point the
mouse arrow on a certain data point in order to get the information.

The possibility to configure the XploRe Quantlet Client for special purposes
as well as its platform independence are features that recommends itself for
the integration into HTML and PDF contents for visualizing statistical and
mathematical coherences as already shown in this e-book.



506 21 Working with the XQC

Figure 21.12: Rotating scatter plot showing the context menu.

Figure 21.13: Showing the coordinates of a data point.



Index
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Cox-Ross-Rubinstein scheme, 137
credit risk, 319
critical value, 309
cumulant, 455

generating function, 469

data envelopment analysis (DEA),
276, 277, 279

efficiency score, 277
efficient level, 277

dataset
Danish fire losses, 312, 334, 436
Property Claim Services (PCS),

311, 329, 343, 413
Datastream, 254
DAX index, 115, 117

options, 152
deductible, 303, 427

disappearing, 434
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premium, 438, 441, 443, 447–
449

fixed amount, 309, 431
premium, 437, 439, 442, 446,

448, 449
franchise, 429

premium, 437, 438, 442, 446,
448, 449

limited proportional, 432
premium, 437, 440, 443, 447–

449
payment function, 428
proportional, 432

premium, 437, 439, 442, 447–
449

default, 226
probability, 232
probability of, 226

derivative, 93, 166
call option, 116, 135, 144
catastrophe futures, 96
catastrophe option, 94, 96
delta, 170, 211
dual delta, 168
European option, 116, 135
Gamma, 168
Greeks, 168

rho, 168
spot delta, 168

insurance, 94
maturity,

→ maturity
prepayment option, 202

American, 204
put option, 116, 135, 144
risk reversal, 178
strike price, 115, 116, 135
vanilla option, 220

European, 167
vega, 169, 220

vol of vol, 163, 171
volga, 169

dimension reduction, 115
disappearing deductible,

→ deductible
discriminant analysis, 226, 227
distribution

α-stable, 382
θ-stable, 74
Bernoulli, 397
Burr, 100, 102, 298, 304, 311,

361, 387, 441
chi-squared (χ2), 300
claim amount, 102
Cobb-Douglas, 292
compound geometric, 346
compound mixed Poisson, 422
compound negative binomial, 422
compound Poisson, 420, 464,

465
conditional excess, 47, 52
elliptically-contoured, 70
Erlang, 300
exponential, 102, 293, 295, 298,

300, 303, 304, 310, 324, 361,
383

memoryless property, 295, 303
extreme value

multivariate, 58
finite-dimensional, 396
Fréchet, 46
gamma, 102, 295, 300, 305, 311,

353, 414, 422, 447, 472
generalized extreme value, 46
generalized Pareto, 47
geometric, 346, 476
Gumbel, 46
heavy-tailed, 164, 296, 298, 343,

382, 386
hyperbolic, 74, 164
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infinitely divisible, 293
inverse Gaussian, 371
Lévy stable, 22
light-tailed, 344

adjustment coefficient, 344
Lundberg exponent, 344

log-normal, 102, 136, 292, 304,
310, 413, 437

logistic, 74
loss,

→ loss distribution
mixture, 295
mixture of exponentials, 102,

302, 311, 361, 449
negative binomial, 300, 421
normal, 66, 74, 116, 226, 382,

455
of extremum, 46
Pareto, 46, 47, 100, 102, 295,

298, 304, 310, 361, 438
Pareto type II, 47
Pearson’s Type III, 300
Poisson, 322, 420
power-law, 97
shifted gamma, 419
stable,

→ stable distribution, 46
stable Paretian, 22
Student, 66, 74
subexponential, 360, 475

convolution square, 361
transformed beta, 361
translated gamma, 419
truncated-Pareto, 465, 466, 481
uniform, 295, 309
Weibull, 46, 102, 216, 279, 298,

305, 311, 362, 445
with regularly varying tail, 361

distribution function
empirical, 290, 305

dividend, 453
fixed, 477, 481
flexible, 479, 484

domain of attraction, 382, 384, 386,
390

doubly stochastic Poisson process,
→ process

Dow Jones Industrial Average (DJIA),
38

eigenfunction, 123
eigenvalue, 123
elliptically-contoured distributions,

72
empirical distribution function,

→ distribution function
empirical risk, 228
error correction model, 251, 253

vector, 253
estimation

A2 statistic minimization, 312,
450

maximum likelihood, 312
EUREX, 118
European Central Bank, 250
expected risk, 228, 229
expected shortfall, 52, 303
expected tail loss, 52
exponential distribution,

→ distribution
extreme event, 22
extreme value, 45

filtration, 99
finite difference approach, 211
Fisher-Tippet theorem, 46
fixed amount deductible,

→ deductible
foreign exchange, 166, 170
Fourier basis, 120, 124
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Fourier transform, 25, 188, 189
fast (FFT), 183, 188, 190, 191

option pricing, 188, 192
fractional Brownian motion,

→ Brownian motion
franchise deductible,

→ deductible
Fredholm eigenequation, 123
free boundary problem, 210
free disposal hull (FDH), 276, 278,

281
efficiency score, 278
efficient level, 279

function
basis,

→ basis function
beta,

→ beta function
characteristic,

→ characteristic function
classifier,

→ Support Vector Machine
(SVM)

distribution,
→ distribution function

frontier,
→ production

Heaviside,
→ Heaviside function

kernel,
→ Support Vector Machine
(SVM)

limited expected value,
→ limited expected value
function

mean excess,
→ mean excess function

mean residual life,
→ mean residual life func-
tion

membership,
→ clustering

moment generating,
→ moment generating func-
tion

production,
→ production

slowly varying at infinity, 387
functional data analysis, 115, 118

gamma distribution,
→ distribution

gamma function
incomplete, 300, 305
standard, 296

generalized eigenequation, 125, 126
goodness-of-fit, 38, 290, 330

half-sample approach, 308
Heath-Jarrow-Morton approach, 205
Heaviside function, 213
hedging, 94
Heston’s model, 161, 163, 185
Hill estimator, 31
homogeneous Poisson process (HPP),

→ process
hurricane, 94

implied binomial tree, 138
implied trinomial tree, 135, 140

Arrow-Debreu price, 140
state space, 142
transition probability, 140, 144

implied volatility, 115, 137, 161, 170,
184, 192, 195, 220

surface, 115, 116, 192, 504
incomplete market, 162, 185
index of dispersion, 326
individual risk model, 407, 410, 428
inflation rate, 251
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initial
capital, 320, 381
risk reserve, 381
variance, 169–171

insurance
policy, 381
portfolio, 319, 341, 410, 416,

456
risk, 319, 341
securitization, 96

insurance-linked security (ILS), 93
indemnity trigger, 94
index trigger, 94
parametric trigger, 94

intensity,
→ process

intensity function,
→ process

inter-arrival time, 321, 324, 397
inter-occurrence time, 295
interest, 204

rate, 254, 264
effect, 264
elasticity, 266
long-term, 264

inverse transform method,
→ method

investment, 453

jump-diffusion model, 162, 174

Karush-Kuhn-Tucker conditions, 235

Laplace transform, 294, 295, 346
inversion, 349

leverage effect, 186
limited expected value function, 309
limited proportional deductible,

→ deductible
linear interpolation, 120

local polynomial estimator, 118
log-normal distribution,

→ distribution
logit, 227
London Inter-Bank Offer Rate (LI-

BOR), 104
long-run variance, 163, 170, 172
Lorenz curve, 239
loss distribution, 102, 289, 341

analytical approach, 289
curve fitting, 289
empirical approach, 289, 291
moment based approach, 290

lower tail-independence, 69

martingale, 185, 401
maturity, 115, 116, 201, 204, 232

time to, 115, 116
MD*Base, 195
Mean Absolute Error (MAE), 103,

195
mean excess function, 303, 310, 330
mean residual life function, 303
mean reversion, 170, 172, 186
Mean Squared Error (MSE), 103,

195
mean value function, 102, 331
Merton’s model, 184
method

composition, 302
integration,

→ algorithm
inverse transform, 295, 296, 298,

299
least squares, 102, 331
Newton-Raphson, 118, 345
of characteristic functions, 167
rejection,

→ algorithm
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thinning,
→ algorithm

minimum-volume ellipsoid estima-
tor, 78

mixed Poisson process,
→ process

mixture of exponential distributions,
→ distribution

modeling dependence, 54
moment generating function, 293,

343, 408, 418
monetary policy, 249, 250
monetary union, 249
money demand, 249, 260

Indonesian, 249, 263
M2, 249
nominal, 251
partial adjustment model, 251

moneyness, 120
Monte Carlo

method, 38, 214, 361, 369
simulation, 99, 192, 193, 308,

342, 369, 423
mortgage, 201, 202, 204

callability, 202, 204, 219
optimally prepaid, 201, 206, 211

mortgage backed security (MBS), 201
valuation, 212

multivariate GARCH, 61
multivariate trimming, 78

natural catastrophe,
→ catastrophe

neural network, 225, 227
non-homogeneous Poisson process (NHPP),

→ process
nonparametric regression, 119
normal distribution

multivariate, 85
normal power formula, 459

operational risk, 319, 343, 407
operational time scale, 343
optimal stopping problem, 206

Panjer recursion formula, 476
Pareto distribution,

→ distribution
periodogram, 331
Pickands constant, 400
point process,

→ process
Poisson process,

→ process
policy

flexible dividend, 455
Pollaczek-Khinchin formula, 346, 361,

475
power-law tail, 23
premium, 310, 320, 322, 326, 328,

381, 407, 429, 453, 454, 457,
459, 469, 470, 473, 474, 478,
483

σ-loading principle, 409
σ2-loading principle, 408
balancing problem, 461
exponential, 409, 413, 414, 418,

419, 421–423
marginal, 460
normal approximation, 412, 418
pure risk, 408, 411, 417, 427,

429
with safety loading, 408

quantile, 409, 413, 418, 420, 422,
423, 457

standard deviation principle, 409
translated gamma approxima-

tion, 419
variance principle, 408
whole-portfolio, 454
with safety loading, 411, 417
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with standard deviation load-
ing, 412, 418

with variance loading, 411, 417
zero utility principle, 409

premium function,
→ premium

prepayment
optimal frontier, 211
parametric specification, 215
refinancing, 216
structural, 215

prepayment policy, 201, 212
early prepayment, 204
interest rate, 202
optimality, 202, 204, 212

principal, 201, 202, 204
principal components analysis (PCA),

115, 121
common, 127
functional, 115, 121, 122
smoothed, 125, 126

roughness penalty, 125
probability space, 99
probit, 227
process

aggregate loss, 99, 320, 367, 453
claim arrival, 102, 320, 321
claim surplus, 342, 355, 475
compound Poisson, 367
counting, 382
Cox, 327

intensity process, 342
doubly stochastic Poisson, 327
homogeneous Poisson, 321, 323,

324, 326
mixed Poisson, 326
non-homogeneous Poisson, 323,

327
Ornstein-Uhlenbeck, 186, 205
point, 98, 319, 320, 343, 381

Poisson, 295, 341, 342, 383
compound, 184, 187
cumulative intensity function,

102, 331
doubly stochastic, 98, 99
homogeneous, 184
intensity, 321, 341, 383
intensity function, 100, 323
linear intensity function, 334
non-homogeneous, 99, 100
periodic intensity, 326
rate, 321
rate function, 323
sinusoidal intensity function,

333
stochastic intensity, 98

predictable bounded, 99
progressive, 99
renewal, 102, 328, 382, 385, 387,

397
risk,

→ risk process, 453
self-similar, 396
stationary, 333
variance, 185
Wiener, 185

production
frontier function, 272
function, 272
input efficiency score, 274
output efficiency score, 274, 275
set, 272
unit, 274

productivity analysis, 271
data envelopment analysis,

→ data envelopment anal-
ysis (DEA)

free disposal hull,
→ free disposal hull (FDH)

input requirement set, 274
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nonparametric, 271
hull method, 276

output corresponding set, 275
Property Claim Services (PCS), 94,

100, 311
proportional deductible,

→ deductible
Public Securities Association, 215
pure risk premium,

→ premium
put option,

→ derivative

quantile, 217
sample, 333

quantile line
sample, 333

queuing theory, 358, 359

rate of mean reversion, 163
rate of return, 456, 477, 481
rating, 226, 227, 230–232
raw moment, 292, 294
reinsurance, 93, 320, 453, 463, 481,

483
excess of loss, 464

renewal process,
→ process

retention, 427, 455
limit, 464

returns to scale
constant, 275
non-decreasing, 275
non-increasing, 275

risk aversion, 415
Risk Based Capital (RBC), 456
risk classification, 230
risk model

collective,
→ collective risk model

individual,
→ individual risk model

of good and bad periods, 395
risk process, 319, 320, 341, 381

modeling, 319
simulation, 329
stable diffusion approximation,

381
weak convergence

to α-stable Lévy motion, 387
to Brownian motion, 383

risk-neutral measure, 185
RiskCalc, 227, 240
ruin probability, 320, 341, 383, 395,

481
“Zero” approximation, 471
4-moment gamma De Vylder ap-

proximation, 356, 364
adjustment coefficient, 454
Beekman–Bowers approximation,

353, 354, 472, 481
corrected diffusion approxima-

tion, 372
Cramér–Lundberg approxima-

tion, 351, 364, 369, 471
criterion, 469, 477
De Vylder approximation, 355,

364, 474, 481
diffusion approximation, 371, 473
exact

exponential claim amount, 347,
368

gamma claim amount, 347
mixture of exponentials claim

amount, 349
exponential approximation, 352,

366
finite time De Vylder approxi-

mation, 373
finite time horizon, 367, 368,
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384, 389
heavy traffic approximation, 358,

364
heavy-light traffic approxima-

tion, 360
infinite time horizon, 342, 384,

389
ladder heights, 346, 475, 476
light traffic approximation, 359,

364
Lundberg approximation, 352,

365
Lundberg inequality, 469, 471
Panjer approximation, 475
Renyi approximation, 354, 364
Segerdahl normal approximation,

369
subexponential approximation,

360, 364, 475
ultimate, 381, 395

ruin theory, 341
ruin time, 381, 384, 395

safety loading, 381, 454, 478
relative, 322, 341, 375

Securities and Exchange Commis-
sion, 237

single-period criterion, 456
Sklar theorem, 53, 58
Skorokhod topology, 388, 399
solvency, 477
special purpose vehicle (SPV), 93
stable distribution, 21

characteristic exponent, 22
density function, 26
direct integration, 26, 36
distribution function, 26
FFT-based approach, 26, 36
index of stability, 22
maximum likelihood method, 35

method of moments, 34
quantile estimation, 33
regression-type method, 34, 35
simulation, 28
skewness parameter, 22
tail exponent, 22

estimation, 31
tail index, 22

stochastic process
mean reverting, 163

stochastic volatility, 161, 185
calibration, 169

strings, 118, 120
structure variable, 326
Student t distribution

multivariate, 85
Sum of Squared Errors (SSE), 170
Support Vector Machine (SVM), 225,

233
calibration, 239

cross validation, 241, 242
classifier function, 226
kernel function, 236
Lagrangian formulation, 233
outlier, 235
separating hyperplane, 234
training set, 226, 233

tail dependence, 65, 67
asset and FX returns, 81
estimation, 75, 78

tail exponent, 22, 31
estimation, 31
log-log regression, 31

tail index, 74
Takagi-Sugeno approach, 250, 261
test statistic

Anderson-Darling, 38, 102, 307
Cramér-von Mises, 102, 307
CUSUM, 258
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Dickey-Fuller, 51
augmented, 52, 255

half-sample approach, 308
Jarque-Bera, 258
Kolmogorov, 38, 306
Kolmogorov-Smirnov, 102, 306
Kuiper, 102, 306

threshold time, 98
time to ruin, 342
top-down approach, 459
trinomial tree, 140

constant volatility, 142
implied,

→ implied trinomial tree

uniform convergence
on compact sets, 383

upper tail-dependence, 66
coefficient, 66

upper tail-independence, 66
utility

expected, 409

Value at Risk, 52, 84
conditional, 52
historical estimates, 86
portfolio, 84

Vapnik-Chervonenkis (VC)
bound, 229, 230
dimension, 229, 230

Vasicek model, 205
vector autoregressive model (VAR),

253
volatility, 116, 126, 185

constant, 135
implied,

→ implied volatility
of variance, 163, 170, 171

forward, 177
risk

market price, 166, 170
premium, 170

smile, 115, 135, 140, 161
surface, 174

waiting time, 321, 328
Weibull distribution,

→ distribution

XploRe
Quantlet, 494, 495
Quantlet Client (XQC), 491, 492

data editor, 496
method tree, 493, 501

Quantlet Editor, 495
Quantlet server (XQS), 493



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




