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Preface

This volume emerged from Ordered Data Analysis, Models and Health Research
Methods: An International Conference in Honor of H.N. Nagaraja for His 60th
Birthday that was held from March 7 to 9, 2014 at the University of Texas at Dallas.
Over 200 participants from 14 countries attended the conference which broadly
focused on the areas in which Prof. H.N. Nagaraja has made significant contribu-
tions. The papers in this book are arranged in accordance with the conference
themes, starting with order statistics, followed by stochastic modeling and esti-
mation, and concluding with developments in statistical methods for health
research.

Biography

Haikady Navada Nagaraja was born in 1954 in a small village in Karnataka, India.
He received his Bachelor’s degree in Mathematics and Statistics in 1972, and his
Master’s degree in Statistics in 1974, both from the University of Mysore. After
teaching at the university as a lecturer for 3 years, he began his doctoral studies at
Iowa State University in 1977, where he received his Ph.D. in Statistics in 1980.
His dissertation, entitled Contributions to the Theory of the Selection Differential
and Order Statistics, was completed under the supervision of Prof. H.A. David. He
joined the Department of Statistics at The Ohio State University after graduation,
where he remained ever since. H.N. Nagaraja became a biostatistician for the
General Clinical Research Center at The Ohio State University College of Medicine
in 1993, resulting in a joint appointment with the College of Medicine. In 2010, he
moved from the Department of Statistics to the Division of Biostatistics, College of
Public Health, as the Chair of the division. After 35 years at Ohio State, he retired in
2015 and is now Professor Emeritus of Biostatistics. He remains a prolific
researcher (and dedicated teacher) with over 180 research publications, split among
theoretical, methodological, and applied topics.
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He started his career by studying order statistics and related subjects, including
record values, concomitants of order statistics, stochastic modeling, and charac-
terizations of distributions. For example, Nagaraja [1], the first paper drawn from
his doctoral thesis, focuses on asymptotics for order statistics. Nagaraja [2] is one of
his fundamental contributions to order statistics for discrete populations. Bunge and
Nagaraja [3], one of his first papers with a doctoral student, is on record values.
Nagaraja and David [4] is on distributions of the maximum of concomitants.
Abo-Eleneen and Nagaraja [5] provides an important contribution to Fisher
Information for censored samples. Even after his move to the College of Public
Health, he has been able to find time for theoretical work such as his recent paper on
spacings of neighboring order statistics, Nagaraja, Bharath, and Zhang [6].

H.N. Nagaraja is among the few statisticians who can work with equal mastery
on problems involving statistical theory and methodology as well as on applica-
tions. His collaborative work at The Ohio State University College of Medicine,
and later at the College of Public Health, generated new types of statistical prob-
lems to solve for a variety of applications such as cognition and nephrology. For
example, Choudhary and Nagaraja [7] provides a methodology for agreement
studies, motivated by a question about comparing devices for measuring daily
caloric expenditure in exercise physiology. Berntson et al. [8] develops a frame-
work to standardize methods on how to study heart rate variability. One of the most
cited papers in genetics, Yang et al. [9] is an important contribution to the study of
lupus. Zhang et al. [10] develops an equation to predict kidney injury. Most
recently, Scharre et al. [11] validates a self-administered cognitive test called
SAGE.

H.N. Nagaraja has coauthored three books and coedited two volumes. Arnold,
Balakrishnan, and Nagaraja [12] and David and Nagaraja [13] are both on order
statistics while Arnold, Balakrishnan, and Nagaraja [14] focuses on record values.
In 1996, he edited a book with Profs. P.K. Sen and D.F. Morrison [15], a com-
pilation in honor of his doctoral advisor, Prof. H.A. David. In addition, he edited a
second compilation volume honoring Prof. S. Panchapakesan with Profs.
N. Balakrishnan and N. Kannan, published in 2005 [16].

In recognition of his influential work in statistics, H.N. Nagaraja was selected to
be a Fellow of both the American Statistical Association (2000) and the American
Association for the Advancement of Science (2012). He is also an elected member
of the International Statistical Institute (1993). H.N. Nagaraja has contributed
substantially to the service of the statistical profession, including as President of the
International Indian Statistical Association (2010–2011).

In addition to being a distinguished researcher, H.N. Nagaraja is an outstanding
teacher and mentor, winning the Powers Award for Excellence in the Teaching of
Statistics at Ohio State in 1993. He often tells students, “Statistics is never a ‘Love
at first sight’ subject. If you only take one statistics class, you most likely would
have hated it. Take another one, and you will sign up for many more.” His intellect,
humility, integrity, and humor, along with his caring nature, inspire his students,
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bringing out their best. While at Ohio State, H.N. Nagaraja has supervised 18 Ph.D.
students and co-supervised two others. He has also developed many courses,
especially for non-statisticians, to improve statistical literacy and statistical practice.
For the past 3 years, he has taken undergraduate students from Ohio State to
Karnataka, India, to teach them about public health issues in developing countries.

At home in Columbus, he lives with Jyothi, his wife of 34 years, and has two
daughters, Chaitra and Smitha. He enjoys traveling, reading about history, and
cheering on the Ohio State Buckeyes.

Outline of This Volume

This volume brings together 15 invited research papers written by authors drawn
from the conference participants. These papers are categorized as follows: Ordered
Data Analysis (Part I), Stochastic Modeling and Estimation (Part II), and Statistical
Methods for Health Research (Part III). All papers underwent a rigorous
peer-review process.

Part I of this book contains six papers on both theoretical and applied topics in
ordered data analysis. Arnold and Villaseñor investigate the direction of bias of the
estimated sample Lorenz curve. Balakrishnan, Davies, Keating, and Mason discuss
the Pitman closest estimators based on convex linear combinations of two con-
tiguous order statistics. Hosking studies different methods of constructing joint
confidence regions for L-skewness and L-kurtosis. The last three papers in this part
discuss some recent results on progressively censored order statistics. Ng, Duan,
and Chan provide simple computational methods of the conditional single and
product moments of progressively censored order statistics under a time constraint.
Cramer and Iliopoulos generalize adaptive progressive censoring to a scheme that
allows for arbitrary inspection times and possible removals of units. Finally,
Abo-Eleneen and Almohaimeed discuss computational approaches of the Renyi
entropy in sets of consecutive progressively Type-II censored order statistics.

The theme for Part II is stochastic models and estimation methods, and the
papers are inspired by a range of applications from contagion in financial networks
to estimating the number of species in a population. We start with Burkschat,
Kamps, and Kateri, who develop three approaches for estimating hazard rates of
sequential order statistics within the context of connected systems. Next, Barlevy
and Nagaraja examine a framework to study banking networks using a discrete
spacings model. Bunge then develops a framework to improve estimates of the
number of classes in a population using distributions based on generalized hyper-
geometric functions. The next contribution is by Serhiyenko, Ravishanker, and
Venkatesan, who model multivariate counts data over time using a level correlated,
zero-inflated Poisson model. They apply their method to prescription drug sales
data. This part concludes with a paper by Sengupta, Choudhary, and Cassey, who
propose a larger class of models that enables one to model skewed and heavy-tailed
data. They illustrate their robust mixed model on crab claw measurements.
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Part III is composed of four papers focusing on health research methods.
Rettiganti and Nagaraja study a model for analyzing brain lesion counts in multiple
sclerosis patients. Mukhopadhyay and Banerjee focus on constructing confidence
intervals for the probability of success in a Bernoulli trial using a sequential
approach. Papachristou follows by developing a method to detect a subset of single
nucleotide polymorphisms on a genetic map that may be associated with a quan-
titative phenotype. Finally, Park and Lin propose a model to reconstruct the
underlying three-dimensional spatial structure of a species’ genome.

July 2015 Pankaj K. Choudhary
Chaitra H. Nagaraja

Hon Keung Tony Ng
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Bias of the Sample Lorenz Curve

Barry C. Arnold and Jose A. Villaseñor

Abstract Inequality is often underestimated using sample data. For several parent
distributions it is possible to prove that the sample Lorenz curve is a positively biased
estimate of the population Lorenz curve. In this paper, several sufficient conditions
for such positive bias are investigated. An example shows that negative bias is not
impossible, though apparently not common.

Keywords Inequality ·Majorization ·Exponential distribution ·Gini index · Pietra
index · Amato index

1 Introduction

The Lorenz curve is defined for each member of the class of all non-negative random
variables with positive finite expectations. It has been noted that the sample Lorenz
curve often exhibits less inequality than does the population Lorenz curve. This
suggests that the sample curve is a positively biased estimate of the population curve.
The possibility of such positive bias is investigated in this paper. Some sufficient
conditions for positive bias are presented. A simple example is presented to confirm
that negative bias is actually possible, though it is not expected to be encountered
frequently in practice.

B.C. Arnold (B)
Department of Statistics, University of California, Riverside, USA
e-mail: barry.arnold@ucr.edu

J.A. Villaseñor
Department of Statistics, Colegio de Postgraduados, Montecillo, Mexico
e-mail: jvillasr@colpos.mx

© Springer International Publishing Switzerland 2015
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Research Methods, Springer Proceedings in Mathematics & Statistics 149,
DOI 10.1007/978-3-319-25433-3_1
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4 B.C. Arnold and J.A. Villaseñor

2 The Lorenz Curve and the Sample Lorenz Curve

Further discussion of the topics in this section may be found in Chap.17 of Marshall
et al. [6].

Gastwirth [3] proposed the following definition of the Lorenz curve defined on
the classL+ of non-negative random variables with positive finite expectations.

Definition 1 The Lorenz curve L X of a random variable X ∈ L+ is defined as

L X (u) =
∫ u
0 F−1

X (y)dy
∫ 1
0 F−1

X (y)dy
=

∫ u
0 F−1

X (y)dy

E(X)
, 0 ≤ u ≤ 1, (1)

where

F−1
X (y) = sup{x : FX (x) ≤ y}, 0 ≤ y < 1,

= sup{x : FX (x) < 1}, y = 1,

is the right continuous inverse distribution function of the random variable X .

Observe that if X is the random variable associated with the vector x defined by
P(X = xi ) = 1/n, i = 1, 2, . . . , n, then the corresponding Gastwirth Lorenz curve
L X (u) and the curve suggested by Lorenz [5], Lx (u), are identical. The Lorenz order
can then be extended to allow comparison of random variables as follows.

Definition 2 For X, Y ∈ L+, with corresponding Lorenz curves L X and LY , X
is less than Y in the Lorenz order, written as X ≤L Y , if L X (u) ≥ LY (u) for all
u ∈ [0, 1].

It is possible to prove a natural extension of a theorem due to Hardy, Littlewood
and Polya [4], which makes use of the Lorenz order rather than being restricted to
majorization. Thus:

Theorem 1 For X, Y ∈ L+, X ≤L Y if and only if E(g(X/E(X)))≤ E(g(Y/E(Y )))

for every continuous convex function g such that the expectations exist.

Another relevant result (due to Strassen [8]), restated in terms of the Lorenz order,
is as follows.

Theorem 2 For non-negative random variables with E(X) = E(Y ) we have Y ≤L

X if and only if there exist jointly distributed random variables X ′, Z ′ such that

X
d= X ′ and Y

d= E(X ′|Z ′). (The notation X
d= X ′ is to be read “X and X ′ are iden-

tically distributed.”)

If we have a sample X1, X2, . . . , Xn of size n from a distribution FX (x),
the corresponding sample Lorenz curve is defined to be a linear interpolation of
the points (0, 0) and ( j/n,

∑ j
i=1 Xi :n/

∑n
i=1 Xi :n), j = 1, 2, . . . , n. Denote the

sample Lorenz curve by Ln(u). This notation parallels the popular notation for a
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sample distribution function. As the sample size n increases, it is well known that
the sequence of sample Lorenz curves Ln(u) converges almost surely uniformly to
the population Lorenz curve L X (u). In this paper interest is focused on the possible
bias of Ln(u) as an estimate of L X (u) for a fixed value of n.

The function L∗(u) = E(Ln(u)) is a valid Lorenz curve corresponding to a dis-
crete random variable X̃ defined by P(X̃ = E(X j :n/

∑n
i=1 Xi :n)) = 1/n. Note that

the function L∗(u) is a linear interpolation of the points (0, 0) and
( j/n, E(

∑ j
i=1 Xi :n/

∑n
i=1 Xi :n)), j = 1, 2, . . . , n. Consequently if we wish to

show that X̃ ≤L X , it will be sufficient to verify that L∗( j/n) ≥ L X ( j/n), j =
1, 2, . . . , n. This follows since L X (u) is a convex function and L∗(u) is piecewise
linear.

In general, it is quite difficult to obtain an analytic expression for

L∗( j/n) = E(

j∑

i=1

Xi :n/
n∑

i=1

Xi :n).

One casewhere the computation is straightforward is that inwhich FX corresponds to
an exponential distribution. In this case, not only canwe obtain an analytic expression
for L∗( j/n) but also we can verify that it is a biased estimate of L X ( j/n). This result,
to be confirmed in the next section, suggested that such bias might be commonly
encountered for a variety of possible distributions FX . Note that the statement that
the sample Lorenz curve, L∗(u), is a positively biased estimate of the population
Lorenz curve, L X (u), is equivalent to the statement X̃ ≤L X.

3 The Exponential Case

Suppose that we have a sample X1, X2, . . . , Xn of i.i.d. random variables with a com-
mon Exponential(λ) distribution.As usual denote the corresponding order statistics
by X1:n < X2:n < · · · < Xn:n . If we denote the common distribution function of the
X ’s by FX , it may be verified that the corresponding Lorenz curve is of the form

L X (u) =
∫ u
0 F−1

X (v)dv
∫ 1
0 F−1

X (v)dv
=

∫ u
0

−1
λ
log (1 − v)dv

∫ 1
0

−1
λ
log (1 − v)dv

= u + (1 − u) log (1 − u). (2)

To verify that, in this case, the sample Lorenz curve is positively biased, we need to
show that for any j ∈ {1, 2, . . . , n − 1} it is the case that

L∗( j/n) = E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

)

>
j

n
+ n − j

n
log

(
n − j

n

)

= L X ( j/n).
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We thus need to evaluate E(
∑ j

i=1 Xi :n/
∑n

i=1 Xi :n). Two key observations are

• The completeminimal sufficient statistic for λ is
∑n

i=1 Xi = ∑n
i=1 Xi :n . ByBasu’s

[1] Lemma, any function of the Xi ’s whose distribution does not depend on
λ is independent of this minimal sufficient statistic. In particular, the statistic
(
∑ j

i=1 Xi :n/
∑n

i=1 Xi :n) is independent of
∑n

i=1 Xi :n . Consequently

E(

j∑

i=1

Xi :n) = E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

×
n∑

i=1

Xi :n

)

= E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

)

E(

n∑

i=1

Xi :n)

so that

E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

)

= E(
∑ j

i=1 Xi :n)
E(

∑n
i=1 Xi :n)

.

Alternatively, it may be argued that the independence of (
∑ j

i=1 Xi :n/
∑n

i=1 Xi :n)
and

∑n
i=1 Xi :n = ∑n

i=1 Xi , in this case, follows from an earlier result of Pitman
[7]. Pitman proved that if X1, X2, . . . , Xn are independent gamma variables with
the same scale parameter (which includes the case of an i.i.d. exponential sample),
then any scale invariant function of the Xi ’s is independent of the sum of the Xi ’s.

• For each i , Xi :n can be written as a sum of independent exponentially distributed
spacings. Thus Xi :n = ∑i

k=1

( Yk
n−k+1

)
, where the Yk’s are i.i.d. Exponential(λ)

random variables.

Using these observations we have, for each j ∈ {1, 2, . . . , n − 1},

L∗( j/n) = E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

)

= E(
∑ j

i=1 Xi :n)
E(

∑n
i=1 Xi :n)

=
E

(∑ j
i=1

∑i
k=1

Yk
n−k+1

)

E
(∑n

i=1 Xi
)

= 1

n/λ

(
j∑

i=1

i∑

k=1

1

λ(n − k + 1)

)

= 1

n

(
j∑

k=1

j∑

i=k

1

n − k + 1

)

= 1

n

j∑

k=1

(
j − k + 1

n − k + 1

)

= 1

n

j∑

k=1

(
n − k + 1 + j − n

n − k + 1

)

= j

n
+ n − j

n

[

−
j∑

k=1

1

n − k + 1

]

>
j

n
+ n − j

n

[

−
∫ n

n− j

dx

x

]

= j

n
+ n − j

n

[

ln

(
n − j

n

)]

= L X ( j/n),

confirming the positive bias of the sample Lorenz curve in the exponential case.
Note 1. Numerical computations indicate that, for a fixed value of n, the bias

L∗( j/n) − L X ( j/n) is maximized when j = n − 1. In addition, for each j , the bias
appears to decrease monotonically as n increases.
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Note 2.Gail andGastwirth [2] proposed a test of goodness-of-fit to the exponential
distribution based on the sample Lorenz curve. They provided a large sample normal
approximation to the distribution of L∗(u) for a particular value of u ∈ (0, 1). Small
sample behavior of the test was evaluated via simulation. They do not focus attention
on the bias of the sample Lorenz curve, since it is asymptotically negligible as
sample size increases. However, if the asymptotic normal approximation is used for
intermediate values of n, say between 20 and 50, the bias of the sample Lorenz curve
may be expected to degrade the performance of the test.

4 A Simple Counterexample

Numerical investigation using simulated samples from a variety of distributions sug-
gested that sample Lorenz curves might always be positively biased. A proof of this
conjecture seemed to be elusive. It was elusive, with good reason, since the general
result is not true as is confirmed by consideration of the following simple example.

Consider a random variable X with two possible values such that

X = 1 w.p. p

= c w.p. (1 − p),

where p ∈ (0, 0.5) and c > 1. The corresponding quantile function is of the form

F−1
X (u) = 1, 0 ≤ u ≤ p,

= c, p ≤ u ≤ 1.

Now consider a sample of size 2 from this distribution and focus on the values
taken on by the Lorenz curve and the expected value of the sample Lorenz curve at
the point u = 1/2. Elementary computations yield

L X (1/2) = p + c(0.5 − p)

p + c(1 − p)

and

L∗
2(1/2) = E

(
X1:2

X1:2 + X2:2

)

= 1

c + 1
2p(1 − p) + 1

2
[p2 + (1 − p)2].

It may then be verified that, for a variety of choices of values for c and p, it is
the case that L X (1/2) > L∗

2(1/2). For example, if c = 3 and p = 0.1, L X (1/2) −
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L∗
2(1/2) = 0.09, showing that in this case the sample Lorenz curve is negatively

biased rather than positively biased.

5 Sufficient Conditions for a Positive Bias

If we look back at the analysis in the exponential case it would appear that a key
property of the Exponential distribution was that, for it, it is the case that

E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

)

= E(
∑ j

i=1 Xi :n)
E(

∑n
i=1 Xi :n)

(3)

=
∑ j

i=1 μi :n∑n
i=1 μi :n

,

where the notation μi :n = E(Xi :n) has been introduced.
The property (3) holds for many distributions in addition to the exponential distri-

bution. For example, if the X ’s have a common density in a one parameter exponential
family of the form

f (x; σ) = r(x)β(σ )e−x/σ ,

where σ ∈ (0,∞), then Basu’s Lemma can be invoked to conclude that property (3)
holds in this case also.

In addition, it would appear that replacement of the equality sign in (3) by a greater
than or equal signmight still be sufficient to ensure positive bias of the sample Lorenz
curve. Such is the case, but a proof of this claim cannot involve analytic computation
of the μi :n’s since this is usually not possible. Instead one can make use of Strassen’s
theorem, Theorem 2.

Theorem 3 Suppose that X1, X2, . . . , Xn are i.i.d. random variables with a common
distribution FX with the property that

E

(∑ j
i=1 Xi :n∑n
i=1 Xi :n

)

≥
∑ j

i=1 μi :n∑n
i=1 μi :n

, j = 1, 2, . . . , n. (4)

Then the corresponding sample Lorenz curve is a positively biased estimate of the
population Lorenz curve, i.e., L∗(u) = E(Ln(u)) ≥ L X (u) for all u ∈ (0, 1).
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Proof Without loss of generality, since Lorenz curves are scale invariant, we may
assume that E(X) = 1 so that

∑n
i=1 μi :n = n. There will be three Lorenz curves

involved in the following discussion. The first is L∗(u), the expected sample Lorenz
curve. It corresponds to a discrete random variable X∗ with n equally likely possible
values E[Xi :n/(

∑n
i=1 Xi :n)], i = 1, 2, . . . , n. The second Lorenz curve is L̃(u),

which corresponds to a discrete random variable X̃ with n equally likely possible
valuesμi :n, i = 1, 2, . . . , n. The third Lorenz curve is L X (u), which corresponds to
the random variable X . Since the Lorenz order is defined in terms of nested Lorenz
curves, our goal is to prove that X∗ ≤L X .

In fact, we will verify that this is true since X∗ ≤L X̃ ≤L X . Property (4) assures
us that X∗ ≤L X̃ , so that it remains only to prove that X̃ ≤L X .

By Strassen’s theorem, it will suffice to show that there exist random variables X ′
and Z ′ such that

X ′ d= X

and
X̃

d= E(X ′|Z ′).

Note that Z ′ must take on only n values in such a representation.
Consider X ′ = X1 and a random variable Z ′ defined by

Z ′ = i if X1 = Xi :n, i = 1, 2, . . . , n.

Note that P(Z ′ = i) = 1/n, i = 1, 2, . . . , n. We then have for a fixed value of i ,

E(X1|Z = i) = E(X1|X1 = Xi :n)

=
∫ ∞

0
P(X1 > x |X1 = Xi :n) dx

=
∫ ∞

0

P(X1 > x, X1 = Xi :n)
P(X1 = Xi :n)

dx

=
∫ ∞

0
n P(Xi :n > x, X1 = Xi :n) dx

=
∫ ∞

0
n
1

n

n∑

j=1

P(Xi :n > x, X j = Xi :n) dx

=
∫ ∞

0
P(Xi :n > x) dx = μi :n.

Thus X̃
d= E(X ′|Z ′) and consequently X̃ ≤L X .
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6 Thoughts on the Sufficient Condition (4)

The sufficient condition (4) can be reinterpreted as a majorization result. Define two
vectors δ = (δ1, δ2, . . . , δn) and τ = (τ1, τ2, . . . , τn) by

δi = E

(
Xi :n∑n

i=1 Xi :n

)

, i = 1, 2, . . . , n

and
τi = μi :n∑n

i=1 μi :n
, i = 1, 2, . . . , n.

Note that
∑n

i=1 δi = ∑n
i=1 τi = 1. With this notation condition (4) can be rewritten

as simply a majorization, thus
δ ≺ τ . (5)

There aremany equivalent definitions ofmajorization but it does not seempossible
to use them to enhance our understanding of the importance of condition (4).

There is a possibility that a simpler sufficient condition than (4) can be identified.
For example, one that is easily described, but not easily checked, is a consequence
of the following lemma.

Lemma 1 If X and Y are absolutely continuous and negative dependent such that
P(0 < X < Y ) = 1 then

E

(
X

Y

)

≥ E(X)

E(Y )
.

Proof E
(

X
Y

) = E
(
E

(
X
Y |X)) = E

(
X E

(
1
Y |X))

.

By Jensen’s inequality, E
(
1
Y |X) ≥ 1

E(Y |X)
. Define for x > 0, g(x) = E(Y |X =

x), hence

E

(
X

Y

)

≥ E

(
X

g(X)

)

. (6)

X and Y are negative dependent if and only if fX,Y (x, y) ≤ fX (x) fY (y). Then for
x > 0, fY |X (y|x) ≤ fY (y).

On the other hand, P(0 < X < Y ) = 1 implies for x > 0, h(x) = ∫ ∞
x y fY (y)

dy ≥ g(x). Hence, by (6)

E

(
X

Y

)

≥ E

(
X

h(X)

)

. (7)

Now notice that by the Fundamental Theorem of Calculus h′(x) = −x fY (x) < 0 for
all x > 0. That is, h(x) is non-increasing, which implies Cov(X, 1/h(X)) ≥ 0. It

follows that E
(

X
h(X)

)
≥ E(X)E

(
1

h(X)

)
. Also, by Jensen’s inequality

E

(
1

h(X)

)

≥ 1

E(h(X))
.
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Therefore,

E

(
X

h(X)

)

≥ E(X)

E(h(X))
≥ E(X)

E(Y )
(8)

since h(x) ≤ h(0) = E(Y ).
Thus, by (7) and (8), the lemma follows.

Using this result we conclude that a sufficient condition for (4) is that
∑ j

i=1 Xi :n
and

∑n
i=1 Xi :n are negative dependent variables for each j . However, it is not easy

to find such an example.
An alternative approach is described in the following lemma.

Lemma 2 Let X and Y have finite means and be such that P(0 < X < Y ) = 1.
Define a real valued function g(x) = E(Y |X = x). Consider the following two con-
ditions:

(i) g(x) is non-decreasing and is such that x/g(x) is non-increasing.
(ii) g(x) is non-increasing.

If either (i) or (ii) holds then

E

(
X

Y

)

≥ E(X)

E(Y )
. (9)

Proof First note that E
(

X
Y

) = E
(
E

(
X
Y |X)) = E

(
X E

(
1
Y |X))

.
By Jensen’s inequality, E

(
1
Y |X) ≥ 1

E(Y |X)
. Define for x > 0, g(x) = E(Y |X =

x). With this notation we have

E

(
X

Y

)

≥ E

(
X

g(X)

)

. (10)

Assume (i) holds. Then

0 ≥ cov(g(X), X/g(X)) = E(X) − E(g(X))E(X/g(X)).

Hence
E(X/g(X)) ≥ E(X)/E(g(X)) = E(X)/E(Y ). (11)

Therefore, by Eq. (10), expression (9) follows.
Assume (ii) holds. Then by Jensen’s inequality we have

0 ≤ cov(X, 1/g(X)) = E(X/g(X)) − E(X)E(1/g(X))

≤ E(X/g(X)) − E(X)/E(g(X)).

Hence, inequality (11) holds and by (10), (9) holds.
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Corollary 1 Let X and Y have finite means and be such that P(0 < X < Y ) = 1.
If for any y > x, fY |X (y|x) is a non-increasing function in x, then

E

(
X

Y

)

≥ E(X)

E(Y )
. (12)

Proof Let g(x) = E(Y |X = x). Suppose 0 < x1 < x2. Since fY |X (y|x) is non-
increasing in x , we have

g(x1) =
∫ ∞

x1

y fY |X (y|x1)dy ≥
∫ ∞

x2

y fY |X (y|x1)dy

≥
∫ ∞

x2

y fY |X (y|x2)dy = g(x2).

That is, g(x) is a non-increasing function. Therefore, by condition (ii) of Lemma 2,
the result follows.

In order to use Lemma 2 to verify the bias of a Lorenz curve we will need to
identify a parent distribution for the Xi ’s forwhich condition (i) or condition (ii) of the
lemma is satisfied for X = ∑ j

i=1 Xi :n and Y = ∑n
i=1 Xi :n for j = 1, 2, . . . , n − 1.

An example in the case in which n = 2 may be developed as follows.

Example 1 Let F(x) be a cdf with support on (0,∞) with density f (x) such that
μF = ∫ ∞

0 u f (u)du < ∞. Let 0 < Y1 < Y2 be the corresponding order statistics of
a random sample of size two from F(x). Notice that

E(Y2|Y1 = y) = y +
∫ ∞

y F̄(u)du

F̄(y)
, y > 0. (13)

Hence, E(Y1 + Y2|Y1 = y) = 2y + B(y), where B(y) =
∫ ∞

y F̄(u)du

F̄(y)
.

Therefore, using notation of Lemma 2 and letting X = Y1 and Y = Y1 + Y2,
g(x) = 2x + B(x).

Define F̄(x) = (
exp{−√

log x}) /x , x ≥ 1. Then

∫ ∞

x
F̄(y)dy =

∫ ∞

x

√
log y

exp{−√
log y}

y
√
log y

dy. (14)

Using integration by parts, with u = √
log y and dv = exp{−√

log y}
y
√
log y

, the right-hand
side of (14) equals

2
(√

log x + 1
)
exp{−√

log x}.

Therefore,
B(x) = 2x

(√
log x + 1

)
. (15)
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It follows that B(x) is non-decreasing, besides B(x)/x = 2
(√

log x + 1
)
is also

non-decreasing.
Then g(x)/x = 2 + B(x)/x is non-decreasing. That is, x/g(x) is non-increasing

and g(x) is non-decreasing. Therefore, by (i) of Lemma 2, we have

E {Y1/ (Y1 + Y2)} ≥ E {Y1} /E {(Y1 + Y2)} .

7 Related Inequality Indices

There are several popular inequality indices that are intimately related to the Lorenz
curve. Three examples are:

• The Gini index, G, which is defined to be twice the area between the Lorenz curve
and the egalitarian line, L∗(u) = u.

• The Pietra index, P , which is the maximum vertical distance between the Lorenz
curve and the egalitarian line.

• The Amato index, A, which is the length of the Lorenz curve.

Since sample Lorenz curves are typically positively biased, it is natural to expect that
sample versions, Gn , Pn and An , of these inequality indices will be negatively biased.
In this paper we will focus attention on the Gini index. A more detailed study of the
bias of various sample inequality indices (including the Gini index) will appear in a
separate report.

In the case of the Gini index, the issue is complicated by the fact that there are
two distinct frequently used versions of the sample Gini index:

Gn =
∑n

i=1(2i − n − 1)Xi :n∑n
i=1(n − 1)Xi :n

and

G ′
n =

∑n
i=1(2i − n − 1)Xi :n∑n

i=1 nXi :n
= n − 1

n
Gn.

The second version G ′
n actually corresponds to the Gini index of the sample Lorenz

curve. We would consequently expect that the sample Gini index, G ′
n , will be nega-

tively biased. Thus we would expect to have

E(G ′
n) ≤ G = E(X2:2) − E(X1:2)

E(X2:2) + E(X1:2)
,

i.e., that

E

(∑n
i=1(2i − n − 1)Xi :n∑n

i=1 nXi :n

)

≤ E(X2:2) − E(X1:2)
E(X2:2) + E(X1:2)

.
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In the exponential (1) case we have, using Basu’s lemma,

E(G ′
n) =

∑n
i=1(2i − n − 1)E(Xi :n)

n2

and

G = E(X2:2) − E(X1:2)
E(X2:2) + E(X1:2)

= 1

2
.

Substituting the well-known expressions for the expectations of exponential order
statistics and simplifying, it may be verified that

E(G ′
n) =

(
n − 1

n

)
1

2
,

which indeed is less than 1/2.
Note that in this exponential case we have:

E(Gn) = n

n − 1
E(G ′

n) = n

n − 1

(
n − 1

n

)
1

2
= 1

2
,

i.e., Gn is unbiased. Note that, since Gn is not the Gini index of the sample Lorenz
curve, we did not have strong justification for expecting it to be negatively biased in
most cases.

In contrast, we do have reason to expect that G ′
n will often be negatively biased.

Just as was the case for the bias of the sample Lorenz curve, consideration of samples
of size 2 from a two point distribution will be instructive.

Suppose that X1 and X2 are i.i.d. with P(Xi = 1) = p and P(Xi = c) = 1 − p,
where c > 1. We have in this case the sample Gini index, G ′

2, given by

G ′
2 = 1

2

X2:2 − X1:2
X2:2 + X1:2

and the population Gini index given by

G = E (X2:2) − E (X1:2)
E (X2:2) + E (X1:2)

.

For this sample we have:

Probability\Variable X1:2 X2:2 G2 G ′
2

p2 1 1 0 0

2p(1 − p) 1 c c−1
c+1

c−1
2(c+1)

(1 − p)2 c c 0 0
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Consequently

G − E(G2) = (c − 1)2p(1 − p)

2[p + c(1 − p)] − 2p(1 − p)
c − 1

c + 1
= p(1 − p)(c − 1)2

[p + c(1 − p)] (c + 1)
[2p − 1] .

The sign of the difference G − E(G2) thus is determined by the value of p. It is
positive if p > 0.5, negative if p < 0.5 and equal to 0 if p = 0.5. However, if we
consider the bias of G ′

2, we have

G − E(G ′
2) = (c − 1)2p(1 − p)

2[p + c(1 − p)] − p(1 − p)
c − 1

c + 1

= p(1 − p)(c − 1)

[p + c(1 − p)] (c + 1)
[1 + (c − 1)p]

> 0

for every p ∈ (0, 1). Thus the expected negative bias is present, for values of p
for which the corresponding sample Lorenz curve is positively biased, and even for
values of p for which the curve is negatively biased.
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1 Introduction

The comparison of estimators under the Pitman closeness criterion has a long his-
tory since it was introduced by Pitman [17] and further discussed by Rao [18]. For
estimation based on order statistics, Nagaraja [15] considered Pitman closeness of
estimators and predictors for the two-parameter exponential distribution. In a similar
light, Balakrishnan et al. [6] and Balakrishnan and Davies [2] considered Pitman
comparison of estimators for the one-parameter exponential distribution based on
Type-I and II censored samples, respectively. Recently, Balakrishnan et al. [3] car-
ried out Pitman closeness comparisons between pairs of order statistics arising from
a random sample of size n with regard to the estimation of population quantiles ξp.
Specifically, with X1, . . . , Xn denoting a random sample taken from a continuous
population with probability density function (pdf) f (x) and cumulative distribution
function (cdf) F(x), and X1:n, . . . , Xn:n denoting the corresponding order statistics,
Balakrishnan et al. [3] derived formulas for the comparison of any two contiguous
order statistics as estimators of population quantiles.

It is well known that (see David and Nagaraja [9] and Arnold et al. [1])

F (Xi :n) = Ui :n ∼ B (i, n − i + 1) , (1)

whereB (α, β) denotes a beta random variable with shape parameters α and β; here,
Ui :n denotes the i th order statistic from a sample of size n from the Uniform(0, 1)
distribution. Mean ranks in quantile-quantile plots are based on the relation

E [F (Xi :n)] = i

n + 1
= ei :n .

Similarly, if mi :n denotes the median of the beta random variable in (1), it is referred
to as the median rank.

Definition 1 An estimator θ̂ will be said to overestimate a parameter θ if

Pr
(
θ̂ > θ

)
>

1

2
.

This definition of overestimation is in the sense that the estimator θ̂ more frequently
overestimates θ than it underestimates θ , or equivalently, the median of the distrib-
ution of θ̂ is less than θ .

In this paper, we discuss the Pitman closest estimation based on a convex linear
combination of two contiguous order statistics. We then demonstrate the established
results with uniform, exponential, power function and Pareto distributions.
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2 Narrowing Down the Choices Among Order Statistics

In some cases, one may want to improve on the choice of order statistics given by
Balakrishnan et al. [3], which provides the probability that a given order statistic is
Pitman-closer to a specific population quantile ξp than any other order statistic from
the same sample. The natural question that arises in this regard is whether one can
improve on the estimation of ξp by using a linear combination of two contiguous order
statistics. In some cases, no improvement can be made (e.g., the sample median in
odd sample sizes as an estimator of the populationmedian of a symmetric distribution
is the Pitman-closest linear equivariant estimator of ξ0.50), as shown in Balakrishnan
et al. [4]. If we restrict our attention to convex linear combinations of two order
statistics, then we can reduce the number of pairs to be considered to produce a
Pitman-closer estimator and the following two lemmas facilitate this. For this specific
purpose, we therefore want to bracket ξp so that we find the largest order statistic
that underestimates ξp and the smallest order statistic that overestimates ξp, in the
sense of Definition 1.

Lemma 1 Let X1, . . . , Xn be a random sample from a continuous population and
X1:n, . . . , Xn:n be the corresponding order statistics. For p ≥ 1 − 2−1/n, let m j :n be
the largest median rank less than p. Then, the largest order statistic that does not
overestimate ξp is X j :n.

Proof If p < 1 − 2−1/n = m1:n , then

Pr
(
X1:n < ξp

) = Pr
[
F (X1:n) < F

(
ξp

)] = Pr (U1:n < p) < Pr (U1:n < m1:n) = 1

2
.

Thus all order statistics overestimate ξp whenever p < 1 − 2−1/n . Next, let us con-
sider the case when p ∈ [m1:n, 1). Since

m1:n < m2:n < · · · < mn:n < mn+1:n = 1,

the spacings between the median ranks form a partition of the interval which imme-
diately implies that there exists a j such that

m j :n ≤ p < m j+1:n .

Thus, U j :n is the largest order statistic that underestimates p and consequently X j :n
is the largest order statistic that underestimates ξp.

Note that j in the previous lemma does not depend on the underlying continuous
distribution function F(x), but only on the medians of order statistics from the
Uniform(0,1) distribution, which can be determined numerically.

Lemma 2 Let X1, . . . , Xn be a random sample from a continuous population and
X1:n, . . . , Xn:n be the corresponding order statistics. For p ≤ 2−1/n, let m�:n be the
largest median rank less than p. Then, the smallest order statistic that overestimates
ξp is X�:n.
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Notice that all order statistics underestimate ξp whenever p > 2−1/n = mn:n . The
proof of this lemma proceeds in a similar way to that of Lemma 1. Determination of
X j :n or X j+1:n does not require knowledge of the underlying distribution F(x), but
only needs the solution for j as a function of n and p through the medians of the
beta distributions. We can combine Lemmas 1 and 2 to form the following theorem.

Theorem 1 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
Then, there exists a largest order statistic X j :n that does not overestimate ξp and a
smallest order statistic X j+1:n that overestimates ξp (in the sense of Definition 1) for
m1:n ≤ p < mn:n.

3 Pitman Closeness Criterion

We now introduce the comparison criterion known as Pitman closeness or Pitman
nearness.

Definition 2 Let θ̂1 and θ̂2 be univariate estimators of a real-valued parameter θ

based on a sample of size n. Then, Pitman Closeness (PC) is defined as

P
(
θ̂1, θ̂2|θ, n

)
= Pr

(
|θ̂1 − θ | < |θ̂2 − θ |

)
.

Interested readers may refer to the monograph by Keating et al. [12] for pertinent
details. The measure in Definition 2 quantifies the frequency with which one esti-
mator is closer to the value of the parameter θ than a competing estimator; see, for
example, [6, 10, 14, 16–18].

Definition 3 Let θ̂1 and θ̂2 be univariate estimators of a real-valued parameter θ

based on a sample of size n. Then, θ̂1 is said to be Pitman-closer to θ , for a given
value of θ , than θ̂2 provided

P
(
θ̂1, θ̂2|θ, n

)
≥ P

(
θ̂2, θ̂1|θ, n

)
.

Definition 4 The estimator θ̂1 is said to be uniformly Pitman-closer than θ̂2 if
P(θ̂1, θ̂2|θ, n) ≥ P(θ̂2, θ̂1|θ, n) for all θ in the parameter space Θ , with strict in-
equality holding for at least one θ ∈ Θ . The estimator θ̂1 is uniformly Pitman-closest
among the estimators in a class C provided

P(θ̂1, θ̂ j |θ, n) ≥ P(θ̂ j , θ̂1|θ, n)

for all θ̂ j inC and for all θ ∈ Θ , with strict inequality holding for at least one θ ∈ Θ .

Lemma 3 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
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If m1:n < p, then if j is such that X j :n is the largest order statistic that does not
overestimate ξp, X j :n is Pitman-closer to ξp than any of X1:n, . . . , X j−1:n.

Proof We have

P
(
X j :n, X�:n|ξp

) = Pr
[|X j :n − ξp| < |X�:n − ξp|

]

= Pr
[(

X j :n − ξp
)2

<
(
X�:n − ξp

)2]

= Pr
[
X2

j :n − X2
�:n < 2ξp

(
X j :n − X�:n

)]

= Pr
[(

X j :n − X�:n
) (

X j :n + X�:n
)

< 2ξp
(
X j :n − X�:n

)]

= Pr
[
X j :n + X�:n < 2ξp

]

< Pr
[
X�:n < ξp

]
< 1/2.

Thus, it follows that X j :n is Pitman-closer to ξp than X�:n for all � = 1, . . . , j − 1.
In an analogous manner, we can establish the following lemma.

Lemma 4 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
If p < mn:n, then if j is such that X j :n is the largest order statistic that does not
overestimate ξp, X j+1:n is Pitman-closer to ξp than any of X j+2:n, . . . , Xn:n.

Now, let p ∈ (m1:n, mn:n). Then, due to Lemmas 3 and 4, it is evident that there
exists a largest integer j such that Pr

(
X j :n < ξp

) ≤ 1/2 andPr
(
X j+1:n < ξp

)
> 1/2,

which is formally stated in the following theorem.

Theorem 2 Let X1, . . . , Xn be a random sample from a continuous population with
pdf f (x) and cdf F(x), and X1:n, . . . , Xn:n be the corresponding order statistics.
Then, there exists a largest order statistic X j :n such that X j :n is Pitman-closer to
ξp than X�:n for � = 1, . . . , j − 1, and X j+1:n is Pitman-closer to ξp than X�:n for
� = j + 2, . . . , n, when m1:n ≤ p < mn:n.

Consequently, in terms of comparisons of individual order statistics, the Pitman-
closest one to ξp, for a given p, will depend on the comparison of X j :n and X j+1:n .
The better of these two in the sense of Pitman closenesswill depend on the underlying
distribution F(x). For this reason, it will be reasonable to compare the largest order
statistic that underestimates ξp with the smallest order statistic that overestimates ξp.

In fact, one can generalize the use of contiguous order statistics, X j :n and X j+1:n ,
to any pair Xi :n and Xk:n , where 1 ≤ i ≤ j and j + 1 ≤ k ≤ n. These results imply
that if we are to find a Pitman-closer estimator than any individual order statistic
from a convex class based on two order statistics, then one order statistic must
underestimate ξp and the othermust overestimate ξp . Of course, a single order statistic
may outperform any convex linear combination of all other order statistics.
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4 Use of a Convex Class

Based on Theorem 2, we may consider some linear combination of these contiguous
order statistics. The use of a convex linear combination, i.e.,

ξ̂p = wX j :n + (1 − w)X j+1:n, w ∈ [0, 1],

produces a class of ordered estimators in the closed bounded interval
[
X j :n, X j+1:n

]
.

Furthermore, in location-scale families, the individual order statistics are location
invariant estimators of the location parameter and so convex linear combinations of
order statistics are location invariant estimators as well. So, we wish to find a median
unbiased estimator of ξp within the convex class given above. While the value of w,
for which the convex linear combination has a median of ξp, may not be independent
of the unknown parameters in the distributions of X j :n and X j+1;n , certain special
and important cases do exist in which the choice only depends on n and p. However,
it should be kept in mind there is no certainty that this median unbiased convex linear
combination of X j :n and X j+1:n will be the Pitman-closest median unbiased convex
linear combination of any pair of order statistics Xi :n and Xk:n , where 1 ≤ i ≤ j and
j + 1 ≤ k ≤ n.

In order to assess the median unbiased estimator within the class of convex linear
combinations of two contiguous order statistics, we need the joint density of X j :n
and X j+1:n given by (see Arnold et al. [1] and David and Nagaraja [9])

f (u, v) = n!
( j − 1)!(n − j − 1)! [F(u)] j−1[1 − F(v)]n− j−1 f (u) f (v), if u < v,

(2)
for j = 1, . . . , n − 1. Since we have reduced our consideration to just contiguous
order statistics mentioned in the sense of overestimating and underestimating, we
can now consider a new class of estimators based on them.

Definition 5 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X . Let ξp be the pth quantile of
the distribution. Let j be the largest integer for which m j :n ≤ p. Define the classQ
as the collection of all convex linear combinations of X j :n and X j+1:n , i.e.,

Q =
{
ξ̂p(w)|ξ̂p(w) = wX j :n + (1 − w)X j+1:n, w ∈ [0, 1]

}
. (3)

In general, determining the Pitman-closest estimator in the class Q can be difficult,
and also can produce a random variable that depends on the unknown parameters of
the distribution and consequently not an estimator. But, the determination of a best
choice within the class is guaranteed for a location-scale family as shown below.
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4.1 Location-Scale Family

Let us consider the location-scale family of distributions with the density function
of X given by

f (x | μ, σ) = (1/σ)g [(x − μ)/σ ] , (4)

where g(z) is a continuous parameter-free density. The parameter space for these
families is the upper half-plane Ω = {−∞ < μ < ∞, σ > 0}.

The cdf of X is

F(x | μ, σ) = G [(x − μ)/σ ] , where G(t) =
∫ t

−∞
g(u)du.

The 100p percentage point (or percentile) of the random variable X , denoted by ξp,
is defined as ξp = inf{x ∈ R : F(x) ≥ p}. The distribution function G(t) is usually
taken to be a parameter-free cdf. If the essential range, R, of X is an open connected
subset of R, then ξp is unique for each p ∈ (0, 1) with

ξp = μ + G−1(p)σ, (5)

where G−1(·) is the inverse function of G(·). One can see from (5) that within this
family, percentiles are linear combinations of the parameters μ and σ . This family
includes manywell-known distributions such as normal, extreme-value, exponential,
Laplace, Cauchy, uniform and logistic as members, but also includes several other
distributions such as lognormal, log-uniform, inverse Gaussian, Pareto and Weibull
through suitable transformations.

Let X1:n, . . . , Xn:n be the order statistics from a random sample of size n from a
location-scale parameter density f (x) in (4). The estimation of location and scale
parameters aswell as percentiles havebeendiscussedquite extensively basedonorder
statistics; see, for example, Balakrishnan and Cohen [8]. First define Z1:n, . . . , Zn:n
as

Zi :n = Xi :n − μ

σ
, for i = 1, . . . , n. (6)

Theorem 3 Let X1:n, . . . , Xn:n be the order statistics from a random sample from a
continuous location-scale parameter density f (x) in (4). Let Z1:n, . . . , Zn:n be the
corresponding order statistics as defined in (6). Then, we have

P
(
X j :n, X�:n|ξp

) = P
(
Z j :n, Z�:n|G−1(p)

)
.

Thus, within the class of location-scale families of distributions, the Pitman closeness
of any two order statistics in the estimation of ξp is independent of the unknown
parameters.

Theorem 4 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p ∈ (m1:n, mn:n). With
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w ∈ [0, 1], let us consider the classQ in (3) of estimators ξp. Then, Pr
(
ξ̂p (w) < ξp

)

is a continuous non-increasing function of w.

Proof For w ∈ [0, 1], let us define

Qn,p(w) = Pr
(
ξ̂p(w) < ξp

)
.

Then, by Definition 5,

Qn,p(1) = Pr
(
X j :n < ξp

)
>

1

2
, Qn,p(0) = Pr

(
X j+1:n < ξp

)
<

1

2
.

Since F(x) is continuous, Qn,p(w) is continuous and so there exists a value 0 ≤
w0 ≤ 1 such that Qn,p (w0) = 1/2. For 0 ≤ w1 < w2 ≤ 1, we have

w1X j :n + (1 − w1) X j+1:n < w2X j :n + (1 − w2) X j+1:n,
Pr

{
w1X j :n + (1 − w1) X j+1:n < x

}
> Pr

{
w2X j :n + (1 − w2) X j+1:n < x

}
,

Qn,p (w1) > Qn,p (w2) .

Therefore, Qn,p(w) is a continuous non-increasing function of w.

Corollary 1 Under the conditions of Theorem 4, a median unbiased estimator of
ξp exists within the considered convex class. If F(x) is strictly increasing over its
support, the median unbiased estimator is unique within this class.

Proof Since Qn,p(1) > 1
2 and Qn,p(0) ≤ 1

2 , by the continuity of Qn,p(w), there
exists a value 0 ≤ w0 ≤ 1 such that Qn,p (w0) = 1/2. Further, if F(x) is strictly
increasing over its support, Qn,p(w) will be strictly decreasing on [0,1) and so the
solution w0 will be unique.

Corollary 2 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotonically increasing on the support of X. Let F(x) be a
member of the location-scale family of distributions, and Z1:n, . . . , Zn:n be as defined
in (6). Let p ∈ (m1:n, mn:n). With w ∈ [0, 1), let us consider the class Q in (3) for the
estimation of ξp. Then, there exists a unique Pitman-closest estimator of ξp within
Q.

Proof The proof follows directly from Corollary 1. Within an ordered class of es-
timators of some parameter, say θ , the median unbiased estimator within the class
will be the Pitman-closest estimator of θ . We are guaranteed that the class Q, by
its very construction, produces some estimators that overestimate ξp and some that
underestimate ξp such that

Qn,p(w) = Pr
(
ξ̂p(w) < ξp

)

= Pr
(
wX j :n + (1 − w)X j+1:n < ξp

)

= Pr
(
wZ j :n + (1 − w)Z j+1:n < G−1(p)

)
.
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The value of w such that Qn,p(w) = 1/2 is unique does not involve the unknown
parameters, and is only a function of n, p and the corresponding value of j . This
choice of w produces an estimator that is median unbiased and is therefore Pitman-
closer than all other estimators within Q since the class is completely ordered, and
is therefore the Pitman-closest estimator of ξp inQ. While this result guarantees the
existence and uniqueness of a median unbiased estimator inQ, it would be good to
have a Rao-Blackwell type result that would provide a method for its construction.

4.2 Transformation

In this case, consider the following transformation R = X j :n and T = X j+1:n − X j :n ,
for 1 ≤ j ≤ n − 1. It follows that

• R is a location invariant statistic and as noted before Z j :n = (X j :n − μ)/σ has a
parameter-free distribution;

• T = X j+1:n − X j :n is a scale invariant statistic and T/σ is a pivotal quantity for σ ;
• Z j :n/T is a pivotal quantity for μ;
• (

R − ξp
)
/T is a pivotal quantity for ξp with a distribution that depends on G−1(p)

and the sample size n.

Under this transformation, one can rewrite any convex class for which X j :n and
X j+1:n , respectively, underestimate and overestimate ξp, in the following way:

Q =
{
ξ̂p(w)|ξ̂p(w) = X j+1:n − w

(
X j+1:n − X j :n

)
, w ∈ (0, 1]

}

=
{
ξ̂p(c)|ξ̂p(c) = X j :n + c

(
X j+1:n − X j :n

)
, c = 1 − w ∈ (0, 1]

}
.

One can now derive the median unbiased estimator within Q according to the fol-
lowing theorem.

Theorem 5 In the context of Lemma 3, consider two order statistics X j :n and X j+1:n
in a location-scale family where X j :n underestimates ξp and X j+1:n overestimates ξp

(in the sense of Definition 1). Then, a median unbiased estimator within Q is given
by

x̂ p = X j :n + M(0,1)

(
G−1(p) − R

T

)

T, (7)

where T = X j+1:n − X j :n and M(0,1) (U ) denotes the median of the random variable
U when μ = 0 and σ = 1.

Proof We have
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Pr
{
ξ̂p(c) < ξp

}
= Pr

{
X j :n + c

(
X j+1:n − X j :n

)
< ξp

}

= Pr
{

c <
ξp−X j :n

X j+1:n−X j :n

}

= Pr
{

c <
G−1(p)−Z j :n
Z j+1:n−Z j :n

}
.

If the estimator is median unbiased, then the probability content of the interval is
1/2, and so

c = M(0,1)

(
G−1(p) − R

T

)

.

It follows that themedian unbiased estimator withinQ is the estimator in (7). Solving
for c will require numerical methods and the fact that c must be in the interval (0, 1]
would facilitate the use of the secant method. Incidentally, a naive and nonparametric
estimate of c can be obtained as

ĉ = p − m j :n
m j+1:n − m j :n

.

4.3 Examples

Uniform distribution
In the case of the Uniform(0,1) distribution, consider Pr

[
R + cT < ξp

]
, i.e.,

Pr [R + cT < p], which we need to set to 1/2. First, we note that we can express

R + cT = X j :n + c(X j+1:n − X j :n) = X j+1:n
(

X j :n
X j+1:n

+ c

(

1 − X j :n
X j+1:n

))

= V W,

where U = X j :n
X j+1:n , V = X j+1:n and W = U + c(1 − U ). It is known that U ∼

Beta( j, 1) and V ∼ Beta( j + 1, n − j) and that the two random variables are in-
dependent; see Arnold et al. [1]. Using the distribution of U , it can be shown that the
pdf of W is given by

fW (w) = j

(1 − c) j
(w − c) j−1 if w ∈ (c, 1).

We then have

Pr [R + cT < p] = Pr(V W < p) = Pr
(

V <
p

W

)
=

∫ 1

c
Pr

(
V <

p

w

)
fW (w)dw,

where

Pr
(

V <
p

w

)
=

{
I p

w
( j + 1, n − j) if p

w < 1
1 if p

w ≥ 1,
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and Iq(a, b) is the incomplete beta ratio defined by Iq(a, b) = 1
B(a,b)

∫ q
0 ta−1(1 −

t)b−1dt and B(a, b) is the complete beta function defined by B(a, b) = 
(a)
(b)


(a+b)
.

Thus, we get

Pr(V W < p) =
{∫ 1

c I p
w
( j + 1, n − j) fW (w)dw if p

c < 1
∫ 1

p I p
w
( j + 1, n − j) fW (w)dw + ( p−c

1−c

) j
if p

c ≥ 1.
(8)

Equation (8) can be solved for various p to find c when p is away from the bounds
0 and 1. For p close to 0, c is found such that Pr(cX1:n ≤ ξp) = 1/2, and similarly, for
p close to 1, c is found such that Pr(cXn:n ≤ ξp) = 1/2. However, in order to use cXn:n ,
we need to need to check the validity of the determined c since it is possible that the
estimator may exist outside the support. Since we choose c such that Pr(Xn:n ≤ ξp

c )

= 1/2, i.e., Pr(Xn:n ≤ p
c ) = 1/2, the desired c turns out to be c = 21/n p. Now, let

W = 21/n pXn:n . In this case, we find

Pr(W ≤ 1) = Pr(21/n pXn:n ≤ 1) = Pr

(

Xn:n ≤ 1

21/n p

)

=
(
1

2

) (
1

p

)n

.

This is a valid probability if and only if
(

1
p

)n ≤ 2, i.e., −log(p) ≤ 1
n log(2). So, the

corresponding entries in Table1 have been checked accordingly.

Exponential distribution
We again consider Pr(R + cT < ξp), which we can rewrite as

Pr(R + cT < ξp) = Pr[X j :n + c(X j+1:n − X j :n) < ξp].
We then have this probability as

Pr(R + cT < ξp) = Pr
(
(n − j)(X j+1:n − X j :n) < (n − j)

(
ξp−X j :n

c

))

= ∫ ∞
0 Pr

(
S j+1 < (n − j)

(
ξp−x j

c

))
fX j :n (x j )dx j

= ∫ ξp
0

(

1 − e− (n− j)(ξp−x j )
c

)
n!

( j−1)!(n− j)! (1 − e−x j ) j−1(e−x j )n− j

× e−x j dx j

= Ip( j, n − j + 1) − e− (n− j)ξp
c

∫ ξp
0 e

(n− j)x j
c 1

B( j,n− j+1) (1 − e−x j ) j−1

× (e−x j )n− j e−x j dx j

= Ip( j, n − j + 1) − e− (n− j)ξp
c

B( j,n− j+1)

∑ j−1
k=0(−1)k

( j−1
k

) ∫ 1
1−p uk+n− j− n− j

c du,

where Sj+1 is the normalized spacing defined as Sj+1 = (n − j)(X j+1:n − X j :n) ∼
Exp(1), and since it is known to be independent of X j :n (see Arnold et al. [1]), we
have

Pr(Sj+1 < s) =
{

0 if s ≤ 0,
1 − e−s if s > 0.
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Table 1 Values of j and c for the uniform distribution when n = 10 for various choices of p

p j c p j c p j c

0.01 1 0.1493 0.34 3 0.8336 0.67 7 0.2728

0.02 1 0.2987 0.35 3 0.9430 0.68 7 0.3763

0.03 1 0.4480 0.36 4 0.0528 0.69 7 0.4774

0.04 1 0.5973 0.37 4 0.1583 0.70 7 0.5770

0.05 1 0.7466 0.38 4 0.2612 0.71 7 0.6762

0.06 1 0.8960 0.39 4 0.3622 0.72 7 0.7765

0.07 1 0.0320 0.40 4 0.4621 0.73 7 0.8790

0.08 1 0.1312 0.41 4 0.5622 0.74 7 0.9847

0.09 1 0.2238 0.42 4 0.6635 0.75 8 0.0982

0.10 1 0.3169 0.43 4 0.7668 0.76 8 0.2094

0.11 1 0.4142 0.44 4 0.8726 0.77 8 0.3170

0.12 1 0.5163 0.45 4 0.9813 0.78 8 0.4211

0.13 1 0.6234 0.46 5 0.0899 0.79 8 0.5221

0.14 1 0.7354 0.47 5 0.1954 0.80 8 0.6206

0.15 1 0.8517 0.48 5 0.2986 0.81 8 0.7180

0.16 1 0.9722 0.49 5 0.3998 0.82 8 0.8166

0.17 2 0.0817 0.50 5 0.0000 0.83 8 0.9183

0.18 2 0.1834 0.51 5 0.6002 0.84 9 0.0278

0.19 2 0.2820 0.52 5 0.7014 0.85 9 0.1483

0.20 2 0.3794 0.53 5 0.8046 0.86 9 0.2646

0.21 2 0.4779 0.54 5 0.9101 0.87 9 0.3766

0.22 2 0.5789 0.55 6 0.0187 0.88 9 0.4837

0.23 2 0.6830 0.56 6 0.1274 0.89 9 0.5858

0.24 2 0.7906 0.57 6 0.2332 0.90 9 0.6831

0.25 2 0.9018 0.58 6 0.3365 0.91 9 0.7762

0.26 3 0.0153 0.59 6 0.4378 0.92 9 0.8688

0.27 3 0.1210 0.60 6 0.5379 0.93 9 0.9680

0.28 3 0.2235 0.61 6 0.6378 0.94 10 1.0075

0.29 3 0.3238 0.62 6 0.7388 0.95 10 1.0182

0.30 3 0.4230 0.63 6 0.8417 0.96 10 1.0289

0.31 3 0.5226 0.64 6 0.9472 0.97 10 1.0396

0.32 3 0.6237 0.65 7 0.0570 0.98 10 1.0503

0.33 3 0.7272 0.66 7 0.1664 0.99 10 1.0611

Furthermore, we have

∫ 1
1−p uk+n− j− n− j

c du
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=
{

1
k+n− j+1− n− j

c

(
1 − (1 − p)k+n+ j+1− n− j

c

)
if n− j

c − (k + n − j) �= 1

−log(1 − p) if n− j
c − (k + n − j) = 1.

Values of c and j for various choices of p were numerically determined in this
case and are presented in Table2.

Pareto and power function distributions
Let X ∼ Power Function(θ), i.e.,

fX (x) = θxθ−1if 0 < x < 1 (9)

for θ > 0. In this case, by proceeding as in the uniform case, it can be shown that

Pr(V W < ξp) = Pr

(

V <
ξp

W

)

=
∫

w
Pr

(

V <
ξp

w

)

fW (w)dw, (10)

where FV (v) = Pr(V ≤ v) = Ivθ ( j + 1, n − j) and

fW (w) = θ j
(w − c)θ j−1

(1 − c)θ j
if c < w < 1. (11)

Next, let us consider X ∼ Pareto(θ), i.e.,

fX (x) = νx−ν−1if x ≥ 1

for ν > 0. Then, the joint density of X j :n and X j+1:n is obtained from (2) as

f (x j , x j+1) = n!
( j − 1)!(n − j − 1)! (1 − x−ν

j ) j−1(x−ν
j+1)

n− j−1νx−ν−1
j νx−ν−1

j+1 ,

if 1 < x j < x j+1 < ∞.

Let U = X j+1:n
X j :n and V = X j :n . In this case, it is known that U and V are independent

with U ∼ Pareto((n − j)ν) and the pdf of V is

fV (v) = n!
( j − 1)!(n − j)! (1 − v−ν) j−1(v−ν)n− jνv−ν−1if v ≥ 1; (12)
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Table 2 Values of j and c for the exponential distribution when n = 10 for various choices of p

p j c p j c p j c

0.01 1 0.1450 0.34 3 0.8183 0.67 7 0.2167

0.02 1 0.2915 0.35 3 0.9373 0.68 7 0.3079

0.03 1 0.4394 0.36 4 0.0455 0.69 7 0.4035

0.04 1 0.5889 0.37 4 0.1382 0.70 7 0.5047

0.05 1 0.7400 0.38 4 0.2314 0.71 7 0.6123

0.06 1 0.8927 0.39 4 0.3264 0.72 7 0.7270

0.07 1 0.0288 0.40 4 0.4243 0.73 7 0.8495

0.08 1 0.1185 0.41 4 0.5258 0.74 7 0.9806

0.09 1 0.2057 0.42 4 0.6316 0.75 8 0.0669

0.10 1 0.2967 0.43 4 0.7422 0.76 8 0.1471

0.11 1 0.3935 0.44 4 0.8579 0.77 8 0.2308

0.12 1 0.4967 0.45 4 0.9789 0.78 8 0.3196

0.13 1 0.6062 0.46 5 0.0757 0.79 8 0.4149

0.14 1 0.7219 0.47 5 0.1673 0.80 8 0.5181

0.15 1 0.8434 0.48 5 0.2603 0.81 8 0.6304

0.16 1 0.9705 0.49 5 0.3557 0.82 8 0.7530

0.17 2 0.0730 0.50 5 0.4545 0.83 8 0.8873

0.18 2 0.1655 0.51 5 0.5575 0.84 9 0.0140

0.19 2 0.2580 0.52 5 0.6653 0.85 9 0.0775

0.20 2 0.3528 0.53 5 0.7784 0.86 9 0.1451

0.21 2 0.4513 0.54 5 0.8970 0.87 9 0.2188

0.22 2 0.5543 0.55 6 0.0150 0.88 9 0.3011

0.23 2 0.6624 0.56 6 0.1039 0.89 9 0.3944

0.24 2 0.7757 0.57 6 0.1940 0.90 9 0.5013

0.25 2 0.8942 0.58 6 0.2864 0.91 9 0.6252

0.26 3 0.0134 0.59 6 0.3820 0.92 9 0.7701

0.27 3 0.1070 0.60 6 0.4819 0.93 9 0.9416

0.28 3 0.2002 0.61 6 0.5867 0.94 10 1.0406

0.29 3 0.2944 0.62 6 0.6972 0.95 10 1.1081

0.30 3 0.3911 0.63 6 0.8138 0.96 10 1.1906

0.31 3 0.4912 0.64 6 0.9371 0.97 10 1.2970

0.32 3 0.5955 0.65 7 0.0432 0.98 10 1.4470

0.33 3 0.7044 0.66 7 0.1289 0.99 10 1.7034

see Arnold et al. [1]. So, the probability of interest is

Pr[(1 − c)X j :n + cX j+1:n ≤ ξp] = Pr
[

X j :n
{
(1 − c) + c

(
X j+1:n
X j :n

)}
≤ ξp

]

= Pr
[
V {(1 − c) + cU } ≤ ξp

]
.
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The pdf of W = (1 − c) + cU is

fW (w) = (n − j)ν
(w − (1 − c))−ν(n− j)−1

c−ν(n− j)
if 1 < w < ∞. (13)

Consequently, the probability becomes

Pr(V W < ξp) = Pr

(

V <
ξp

W

)

=
∫

w
Pr

(

V <
ξp

w

)

fW (w)dw,

where FV (v) = Pr(V ≤ v) = I1−v−ν ( j, n − j + 1) from (12) and fW (w) is as given
in (13).

5 Some Heuristic Attempts

One may be tempted to estimate the value of j in the preceding discussions without
inspecting of the underlying median ranks. It certainly seems plausible to attempt to
estimate j by the largest integer less than or equal to (n + 1)p. Such approximations
can lead to order statistics that are upper and lower bounds, just as X j :n and X j+1:n
were in the preceding discussion. However, the order statistics are no longer con-
tiguous. All the methodology developed in the preceding sections can be reapplied
here except that the order statistics, used to form the convex class, are no longer
contiguous.

Lemma 5 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p be a real-number in the
interval (0, 1) such that p ∈ (

1
n+1 ,

n
n+1

)
, and ξp be the pth quantile of F(x). Then,

there exists a j ∈ {1, . . . , n} such thatPr
(
X j :n < ξp

)
> 1

2 andPr
(
Xn− j+1:n < ξp

)
<

1
2 .

Proof Define j as j = [| (n + 1)p |], where [| x |] denotes the largest integer less than
or equal to x . Observe that

Pr
(
X j :n < ξp

) = Pr
[
F

(
X j :n

)
< F

(
ξp

)] = Pr
(
U j :n < p

)
,

where U j :n is the j th order statistic from a random sample of size n from the
Uniform(0,1) distribution. As mentioned in Sect. 1, U j :n ∼ B ( j, n − j + 1), where
B (α, β) denotes a beta distribution with shape parameters α and β. Without loss
of generality, we assume that p ≤ 1

2 and so j ≤ n+1
2 . If j < n+1

2 , then U j :n is uni-
modal and positively skewed and therefore satisfies the mode-median-mean inequal-
ity. Hence, it follows that

Pr
(
U j :n < p

) ≥ Pr

(

U j :n <
j

n + 1

)

≥ 1

2
.
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This means that the order statistic X j :n underestimates ξp. Notice that this result is
nonparametric in the sense that it does not depend on the form of the distribution
function F(x), only that it be strictly monotone on its support.

Using symmetry arguments, we can then prove that

Pr
(
Xn− j+1:n > ξp

) ≥ 1

2
,

which means that Xn− j+1:n overestimates ξp. Hence, the required result.

Lemma 6 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p ∈ (

1
n+1 ,

n
n+1

)
. With

w ∈ (0, 1), let us consider a class of estimators ξ̂p (w) = wX j :n + (1 − w)Xn− j+1:n
for the pth quantile ξp, where j = [(n + 1)p] and j < n − j + 1. Then,

Pr
(
ξ̂p (w) < ξp

)
is a continuous increasing function of w.

Proof With j = [(n + 1)p], let us define

Qn,p(w) = Pr
(
ξ̂p (w) < ξp

)
. (14)

By Lemma 5, we have Qn,p(1)=Pr
(
X j :n < ξp

)
> 1

2 and Qn,p(0)=Pr(Xn− j+1:n <

ξp) < 1
2 . Since F(x) is continuous, Qn,p(w) is continuous. Hence, for 0 < w1 <

w2 < 1, we have

w1X j :n + (1 − w1) Xn− j+1:n < w2X j :n + (1 − w2) Xn− j+1:n,
Pr

{
w1X j :n + (1 − w1) Xn− j+1:n < x

}
< Pr

{
w2X j :n + (1 − w2) Xn− j+1:n < x

}
,

Qn,p (w1) < Qn,p (w2) .

Thus Qn,p(w) is a continuous increasing function, as desired.

Theorem 6 Let X1:n, . . . , Xn:n be the order statistics from a random sample from
F(x), which is strictly monotone on the support of X. Let p ∈ (

1
n+1 ,

n
n+1

)
. With

w ∈ (0, 1), let us consider a class of estimators ξ̂p (w) = wX j :n + (1 − w)Xn− j+1:n
for the pth quantile ξp, where j = [(n + 1)p]. Then, there exists a unique value w0

(0 < w0 < 1) such that Pr
(
ξ̂p (w0) < ξp

)
= 1

2 .

6 Applications

In this section, we illustrate the results of the last section for the special cases of
uniform and exponential distributions.
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6.1 Uniform Distribution

Use of |(n + 1)p| for j
In order to evaluate Qn,p(w), wemust develop an expression for the cdf of the convex
linear combination of X j :n and Xn− j+1:n . Of special interest is the Uniform(0,1)
distribution since in this case the subsequent estimator will be an L-estimator of ξp.

Suppose U1:n, . . . , Un:n are the order statistics from the uniform Uniform(0,1)
distribution. Then, the joint density function of U j :n and Un− j+1:n is given by

f (u, v) = n!
[( j − 1)!]2(n − 2 j)!u j−1 (v − u)n−2 j (1 − v) j−1 if 0 < u < v < 1.

Performing the transformation w̄ = 1 − w and q = wu + (1 − w)v, we arrive at

f (u, q; w) = n!
[( j − 1)!]2(n − 2 j)!w̄n− j

u j−1(q − u)n−2 j (w̄ + wu − q) j−1,

if 0 < u < q < wu + w̄ < 1. By noting the ranges of integration as 0 < u < q for
0 ≤ q ≤ 1 − w and q−w̄

w < u < q for 1 − w ≤ q ≤ 1 and once again making use of
binomial expansions, we find the density of q to be:

f (q; w) =
⎧
⎨

⎩

∑ j−1
r=0(−1)r

(n−2 j+r
r

)
wr

w̄n−2 j+r+1
qn− j+r (1−q) j−1−r

B(n− j+r+1, j−r)
if 0 ≤ q ≤ 1 − w,

∑ j−1
r=0

(2 j−r−2
j−r−1

)
w̄ j−r−1

wn− j
(q−w̄)r (1−q)n−r−1

B(r+1,n−r)
if 1 − w < q ≤ 1.

Therefore, the distribution function of q is

F (q; w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ j−1
r=0

{

(−1)r (n−2 j+r
r

) wr

w̄n−2 j+r+1

×Iq (n − j + r + 1, j − r)

}

if 0 ≤ q ≤ 1 − w,

∑ j−1
r=0 (−1)r (n−2 j+r

r
) wr

w̄n−2 j+r+1 Iw̄(n − j + r + 1, j − r)

+∑ j−1
r=0

(2 j−r−2
j−r−1

)
w j w̄ j−1−r I q−w̄

w
(r + 1, n − r) if 1 − w < q ≤ 1,

respectively, where, as defined earlier, Iq(a, b) is the incomplete beta ratio and
B(a, b) is the complete beta function. For fixed n and p, there exists a unique value
of w for which

F (p; w) = Qn,p(w) = 1

2
, (15)

where Qn,p(w) is as given in (14). Thus, we can regard the corresponding Qn,p(w)

as a nonparametric competitor to the Harrell-Davis [11] estimator, which is a robust
L1-estimator. Of course, for this purpose, we need to solve (15) for w, for given
values of n and p.
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Table 3 Values of w satisfying (15), for different choices of n and p

p

n j j
2 j+1

j+ 1
4

2 j+1
j+ 1

2
2 j+1

j+ 3
4

2 j+1
j+1
2 j+1

4 2 0.9313 0.7056 0.5000 0.2944 0.0687

6 3 0.9509 0.7178 0.5000 0.2822 0.0491

8 4 0.9619 0.7248 0.5000 0.2752 0.0381

10 5 0.9689 0.7293 0.5000 0.2707 0.0311

12 6 0.9738 0.7325 0.5000 0.2675 0.0262

Special Case
If n = 2m and p ∈ (

m
2m+1 ,

m+1
2m+1

)
, then j = [(n + 1)p] = [(2m + 1)/2] =

[
m + 1

2

] = m. In this case, by solving (15) for varying n, we found the values of w
for different choices of p, and these are presented in Table3.

Use of the largest order statistic that underestimates p
SupposeU1:n, . . . , Un:n are the order statistics from the uniformU (0, 1) distribution.
Earlier, we considered i = |(n + 1)p|, but it is possible thatUi :n mayunderestimate p
with a probability of at least 1/2.Yet, that does not guarantee thatUi+1:n overestimates
p with probability of at least 1/2. However, such an i does exist, but it just may not
correspond to |(n + 1)p|.

Consider the joint density of Ui :n and Ui+1:n given by

f (u, v) = n!
(i − 1)!)(n − i − 1)!ui−1(1 − v)n−i−1, 0 < u < v < 1.

Letting U = u and Q = wU + (1 − w)V , then the joint density becomes

f (u, q; w) = n!
(i − 1)!(n − i − 1)!w̄ ui−1 (w̄ − q + wu)n−i−1 if 0 < u < q < wu + w̄ < 1

where again w̄ = 1 − w. As in the previous case, noting the ranges of integration
as 0 < u < q for 0 ≤ q ≤ 1 − w and q−w̄

w < u < q for 1 − w < q ≤ 1, we find the
corresponding density and distribution functions of q to be:

f (q; w) =
⎧
⎨

⎩

∑n−i−1
r=0 (−1)r wr

w̄r+1
qr+i (1−q)n−i−1−r

B(r+i+1,n−i−r ) if 0 ≤ q ≤ 1 − w,

n!
(i−1)!(n−i−1)!

∑i−1
r=0

(i−1
r

)
w̄i−1−r

wi
(q−w̄)r (1−q)n−r−1

n−r−1 if 1 − w < q ≤ 1,
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and so

F (q; w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−i−1
r=0 (−1)r wr

w̄r+1 Iq(r + i + 1, n − i − r) if 0 ≤ q ≤ 1 − w,
∑n−i−1

r=0
wr

w̄r+1 I1−w(r + i + 1, n − i − r)

+∑i−1
r=0

∑n−r−1
s=0

{

(−1)s
(n

s

)(n−r−2
i−1−r

)
w̄i−1−r+s

wi

×Iq−w̄(r + 1, n − r − s)

}

if 1 − w < q ≤ 1.

We can now solve for w, using successive order statistics, instead of the earlier
approach when the two order statistics are determined by the mean rank approach.

6.2 Exponential Distribution

Use of |(n + 1)p| for j
In the case of exponential distribution, by proceeding in a manner analogous to the
uniform case, we can show that the cdf of q is

F (q) = n!
[( j−1)!]2(n−2 j)!w̄

∑ j−1
r=0

∑n−2 j
s=0

(−1)r−s( j−1
r )(n−2 j

s )
r+n−2 j−s− w

w̄(s+ j−1

×
[

w̄
s+ j−1

(

1 − e
−

(
s+ j−1

w̄

)
q
)

− 1
r+n− j−1

(
1 − e−(r+n− j−1)q

)
]

,

0 < q < ∞.

Use of the largest order statistic that underestimates p
Here again, for the case of exponential distribution, by proceeding in a manner
analogous to the uniform case, we can show that the cdf of q is

F (q) = n!
(n − j)!w̄



(

(n− j)w
w̄ + 1

)


( j + (n− j)w
w̄ + 1)

{

1 − Ie−q

(

j,
(n − j)w

w̄
+ 1

)}

e− (n− j)
w̄ q ,

if 0 < q < ∞, (16)

where Iq(a, b) is the incomplete beta ratio defined earlier. We may use (16) to de-
termine w such that

F(p; w) = 1

2
and j is the greatest integer such that m j :n ≤ p.
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7 Concluding Remarks

Pitman closeness of order statistics to population parameters such as quantiles have
been discussed in the literature. Here, we have discussed Pitman closest estimation
based on convex linear combinations of two contiguous order statistics. We have
then illustrated the developed results for the uniform, exponential, power function
and Pareto distributions. As done in the case of quantile estimation, one may also
propose convex linear combinations of two contiguous order statistics as Pitman
closest predictors of a future failure time. This work is currently under progress and
we hope to report these findings in a future paper.
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Nonparametric Confidence Regions
for L-Moments

J.R.M. Hosking

Abstract Methods for constructing joint confidence regions for L-skewness and
L-kurtosis are compared by Monte Carlo simulation. Exact computations can be
based on variance estimators given by Elamir and Seheult (2003, Journal of Statis-
tical Planning and Inference) and by Wang and Hutson (2013, Journal of Applied
Statistics). Confidence regions can also be constructed using the bootstrap; sev-
eral variants are considered. The principal conclusions are that all methods perform
poorly for heavy-tailed distributions, and that even for light-tailed distributions a
sample size of 200 may be required in order to achieve good agreement between
nominal and actual coverage probabilities. A bootstrap method based on estimation
of the covariance matrix of the sample L-moment ratios is overall the best simple
choice. Among the practical results is an L-moment ratio diagram on which confi-
dence regions for sample L-moment statistics are plotted. This gives an immediate
visual indication of whether different samples can be regarded as having been drawn
from the same distribution, and of which distributions are appropriate for fitting to a
given data sample.

Keywords Bootstrap · Kurtosis · Maximum entropy · Order statistics · Skewness

1 Order Statistics and L-Moments

The order statistic X j :n is a random variable distributed as the j th smallest element of
a random sample of size n drawn from the distribution of some random variable X .
The theory of order statistics has provided many insights into the properties of,
and relations between, probability distributions, and has generated many effective
methods for inference from a data sample about the probability distribution from
which the sample was drawn. Many key results are in the authoritative book of
David and Nagaraja [3].
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A practically useful offshoot of the theory of order statistics concerns measures
of location, scale, and shape of distributions based on expectations of linear combi-
nations of order statistics. These measures, called L-moments [9], are defined by

λr = r−1
r−1∑

j=0

(−1) j

(
r − 1

j

)

E Xr− j : r . (1)

L-moments can be used as summary statistics for data samples, and to iden-
tify probability distributions and fit them to data. L-moments have been used in
many areas of application: recent examples include the environmental sciences [2],
finance [14], and reliability [17, Chap. 6]. Recent theoretical developments include
extension of L-moments to multivariate distributions [21], bias-reduced estimates of
L-moments [23], and derivations of L-moments for power-transformed normal and
logistic distributions [8] and for the symmetric triangular distribution [18].

L-moments can be estimated from a sample of data by a linear combination of the
ordered data. An unbiased estimator of λr is conveniently computed as the weighted
sum �r = ∑n

i=1 w(r)
k:n Xk:n . The weights can be computed by the recursion

w(1)
k:n = 1 , w(2)

k:n = (2k − n − 1)/(n − 1), (2)

and, for r ≥ 2,

r(n − r)w(r+1)
k:n = (2r − 1)(2k − n − 1)w(r)

k:n − (r − 1)(n + r − 1)w(r−1)
k:n (3)

[11, Eqs. (14)–(15)].
For inference about the shape of a probability distribution, independently of its

scale, the dimensionless quantities called L-moment ratios are useful measures. They
are defined by τr = λr/λ2, r=3, 4, . . .. Particularly useful L-moment ratios are τ3

and τ4, which respectively measure the skewness and kurtosis of a distribution. The
analogous sample estimators are the sample L-moment ratios tr = �r/�2, r=3, 4, . . ..

2 L-Moment Ratio Diagram

A convenient tool for use with L-moments is the L-moment ratio diagram, which
shows the L-skewness and L-kurtosis of probability distributions and data samples,
and enables judgment of which distributions may give a good fit to a given data
sample. For an example we use 8 sets of annual maximum streamflow data for
sites in Texas. The data are given in [1], data sets USGSsta01515000peaks etc.
Table 1 shows the sample size and L-moments of each data set. Figure 1 shows the
sample L-skewness and L-kurtosis of the 8 data sets on an L-moment ratio diagram.

Closeness of a point on an L-moment ratio diagram to a distribution curve suggests
that the distribution may give a good fit to the data. For example, in Fig. 1 the point
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Table 1 L-moments of stream gaging sites in Texas

Site n �1 �2 t3 t4

01515000 71 69406 13384 0.1889 0.0993

02366500 76 39697 13062 0.4149 0.3603

05405000 73 3135 894 0.1786 0.0989

08151500 67 51156 28880 0.3925 0.1701

08167000 69 27586 17395 0.4914 0.2596

08190000 84 33406 23443 0.5669 0.3209

09442000 85 8875 4305 0.4970 0.3423

14321000 100 101866 26787 0.1798 0.1621
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Fig. 1 L-moment ratio diagram. The graph shows sample L-skewness and L-kurtosis for 8 data
sets of annual maximum streamflows for sites in Texas, and the relations between L-skewness
and L-kurtosis for several families of distributions. Curves represent distribution families: gener-
alized logistic (GLO), generalized extreme-value (GEV), generalized Pareto (GPA), generalized
normal (GNO), and Pearson type III (PE3). Labelled square dots represent individual distributions:
exponential (E), Gumbel (G), logistic (N), normal (N), and uniform (U)

for Site 14321000 lies very close to the Gumbel distribution. But some further natural
questions do not have obvious answers:

• How accurate are the points on the L-moment ratio diagram?
• How can we assess the statistical significance of distances between points?
• How can we assess which values of (τ3, τ4) are plausible candidates for the dis-

tribution from which the data were drawn?

These questions can be addressed by constructing a confidence region for sample
L-skewness and L-kurtosis. This provides an immediate indication of which values
of population L-skewness and L-kurtosis are consistent with the data. In particular



42 J.R.M. Hosking

the absence of overlap between a distribution curve and the confidence region is a
strong indicator that the data were not drawn from that family of distributions.

3 Confidence Regions for L-Moment Ratios

Construction of confidence regions for L-moment ratios requires estimation of the
variability of the sample L-moment ratios from a given data sample x1 ≤ x2 ≤ · · · ≤
xn . First we state some key theoretical results concerning the variability of sample
L-moment ratios. If the random variable X has finite variance then the following
results hold.

Result 1 (adapted from [7]). If r + s ≤ n then

cov(�r , �s) = Λ
(n)
rs =

∑ ∑

1≤i< j≤r+s

ci j E(X j :r+s − Xi :r+s)
2 =

∑ ∑

1≤i< j≤n

c∗
i j E(X j :n − Xi :n)2.

(4)

Result 2 [9, Theorem 3(a)]. Asymptotically as n → ∞, for any integer R > 0 the
quantities n1/2(�r − λr ), r = 1, . . . , R, are jointly normally distributed with

n cov(�r , �s) ∼ Λrs =
∫ ∫

x<y

{P∗
r−1(F(x)) P∗

r−1(F(y)) + P∗
s−1(F(x)) P∗

r−1(F(y))} F(x) {1 − F(y)} dx dy, (5)

where P∗
m denotes the mth shifted Legendre polynomial, defined by

P∗
m(u) =

m∑

k=0

(−1)m−k

(
m

k

)2

uk(1 − u)m−k . (6)

Result 3 [9, Theorem 3(b)]. Asymptotically as n → ∞, for any integer R > 0 the
quantities n1/2(tr − τr ), r = 3, . . . , R, are jointly normally distributed with

n cov(tr , ts) ∼ Trs = (Λrs − τrΛ2s − τsΛ2r + τrτsΛ22)/λ
2
2. (7)

Result 1 immediately provides an estimator of Λ(n)
rs : substitute x j for E X j :n in (4).

This estimator is distribution-free, i.e., it is unbiased for all distributions (with finite
variance) from which the sample may have been drawn. Substituting these estimators
of Λ(n)

rs for Λrs in (7), we obtain estimators of Trs , the asymptotic covariances of
the L-moment ratios. Assuming joint normality of the L-moment ratios (a valid
approximation for large n, by Result 3), we can construct a confidence region for
(τ3, τ4) by computing probabilities for the bivariate normal distribution. We call this
distribution-free procedure for construction of confidence regions Method DF.

Other approaches for constructing confidence regions involve estimating the vari-
ability of sample L-moment ratios for samples from a particular distribution. A nat-
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ural choice is the empirical distribution, i.e., the distribution that assigns probability
mass 1/n to each of the points x1, x2, . . . , xn .

We consider four possibilities.

• The covarianceΛ(n)
rs in (4) can be computed exactly for the empirical distribution, in

effect as a weighted sum of squared differences of the sample data points. This is the
“exact bootstrap” of Wang and Hutson [22]. Substituting these estimators of Λ(n)

rs
for Λrs in (7) and using Result 3 as in Method DF, we can construct a confidence
region based on bivariate normal probabilities. We call this Method EB.

• The covariance Λrs in (5) can also be computed exactly for the empirical distrib-
ution. Straightforward algebra shows that the result is

Λ̃rs =
∑ ∑

1 ≤ i < j ≤ n−1

{P∗
r−1(i/n) P∗

r−1( j/n) + P∗
s−1(i/n) P∗

r−1( j/n)}

×(i/n) (1 − j/n) (xi+1 − xi ) (x j+1 − x j ) . (8)

Again substituting Λ̃rs for Λrs in (7) and using Result 3 as in Method DF, we can
construct a confidence region based on bivariate normal probabilities. We call this
Method AB (for “asymptotic bootstrap”).

• The bootstrap [4, 5] is a familiar method for assessing the variability of sample
statistics by simulation from the empirical distribution. It is straightforward to use
it for L-moment ratios.

1. Generate B samples of size n from the empirical distribution.
2. Compute (t3, t4) from each bootstrap sample.
3. Compute the sample covariance matrix T ∗ of the (t3, t4) values.

Again assuming a joint normal distribution of the L-moment ratios, a confidence
region for (t3, t4) can be computed from bivariate normal probabilities. We call
this Method BEN (Bootstrap the Empirical distribution, then assume a Normal
distribution).

• After steps 1 and 2 of the bootstrap we can construct a confidence region by
peeling the convex hull of the (t3, t4) points. The peeling procedure is described
in [24] and illustrated in Fig. 2. This approach does not assume a joint normal
distribution of the L-moment ratios. We call this Method BEP (Bootstrap the
Empirical distribution, then Peel the convex hull).

Bootstrap approaches typically sample from the empirical distribution, using it
as a proxy for the true distribution from which the data were sampled. In this role
the empirical distribution has some disadvantages. It is discrete and bounded, even
when the true distribution is not, and samples from it tend to have less dispersion than
those from the true distribution. Several authors have remarked on this phenomenon.
For example, Kysely [15] found that “the nonparametric bootstrap [i.e., a bootstrap
of the empirical distribution] should be interpreted with caution because it leads
to confidence intervals that are too narrow and underestimate the real uncertainties
involved in the frequency models”.
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Highlighted contours
α = 0.0500
α = 0.1070
α = 0.1945

Fig. 2 Illustration of peeling a convex hull. Dots indicate (t3, t4) points from bootstrap samples.
Successive convex hulls (gray polygons) are removed (“peeled”) from the set of points. When some
specified proportion α of the original points has been removed, the convex hull of the remaining
points encloses proportion 1 − α of the original points and constitutes a 100(1 − α) % confidence
region for the population L-moment ratios (τ3, τ4)

Table 2 Recommended relation between sample size n and the number, m, of L-moments used in
maximum-entropy estimation

n 25 50 100 200 500 1000

m 6 8 10 12 16 20

An alternative is to generate bootstrap samples from some other “parent” distrib-
ution than the empirical distribution. Some possibilities include the smoothed kernel
quantile estimator [20] and the empirical distribution extended with exponentially
decreasing tails [13]. Here we propose the distribution that has maximum entropy
subject to having the same first m L-moments as the data. This gives a flexible form
for the parent distribution; it is unbounded, so is less likely than the empirical dis-
tribution to generate underdispersed samples; it can closely approximate, for large
enough m, essentially any distribution with finite mean; it avoids the need to spec-
ify a fixed parametric form for the parent distribution; and its close connection to
L-moments makes it a natural choice for the present application.

Using the maximum-entropy distribution requires a choice of m. The optimal
choice is unclear; we use m = �2n1/3	, where �x	 denotes the smallest integer that is
not less than x , which appears to work reasonably well in practice. Some examples
of (n, m) pairs are given in Table 2. Fitting the L-moment maximum-entropy distri-
bution to data requires, in general, solution of a convex optimization problem [10,
Remark 2.3]. This optimization can be achieved by standard numerical procedures. In
this application we used Newton-Raphson iteration; in all the computations described
in Sect. 4 the iterations never failed to converge.

A bootstrap based on the L-moment maximum-entropy distribution proceeds as
follows.
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1. Set m = �2n1/3	.
2. Fit the maximum-entropy distribution to the first m L-moments of the data.
3. Generate B samples of size n from the maximum-entropy distribution.
4. Compute (t3, t4) from each bootstrap sample.

At this point there is the same choice as before for constructing confidence regions:
assume a joint normal distribution for the L-moment ratios (Method BMN) or peel
the convex hull of the (t3, t4) values (Method BMP).

We have defined seven methods of confidence region construction for L-moment
ratios. We note some other possibilities. Wang and Hutson [22, Sect. 3.2] defined a
method based on characteristic functions. This uses an Edgeworth-type correction
to the characteristic function of a joint normal distribution of sample L-moment
ratios, and involves sums of third and fourth powers of the sample data values. This
seems likely to be unstable for samples from distributions for which these higher
moments may not exist. Peng [19] defined a confidence interval for λ2 using empirical
likelihood. This is a promising approach, but extending it to L-moment ratios τ3 and
τ4 seems to involve complex algebra and challenging numerical optimizations.

4 Evaluation of Methods of Confidence Region
Construction

4.1 Distributions

The seven methods of confidence region construction were tested on samples from
16 probability distributions, chosen to cover a range of population L-skewness and
L-kurtosis often encountered in practice. The distributions are as follows. Here and
in Figs. 4, 5 and 6 they are listed in increasing order of tail weight, defined as the ratio
of the distance between the 0.0001 and 0.9999 quantiles to the distance between the
0.001 and 0.999 quantiles.

• Uniform
• N-mix: location mixture of normal distributions—N(0, 1) with probability 0.75,

N(5, 1) with probability 0.25.
• Normal.
• Gumbel (extreme-value type I).
• Logistic.
• Exponential.
• Gamma(0.5): gamma distribution with shape parameter 0.5.
• Weibull(0.75): Weibull distribution [12, Appendix A.6] with shape parameter δ =

0.75.
• Gamma(0.25): gamma distribution with shape parameter 0.25.
• Weibull(0.5): Weibull distribution with shape parameter 0.5.
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Fig. 3 L-moment ratio diagram showing the 16 distributions used in the simulations in Sect. 4

• SU(−0.75, 1): Johnson SU distribution with parameters γ = −0.75, δ = 1, i.e.,
cumulative distribution function F(x) = sinh(0.75 + Φ(x)) where Φ is the stan-
dard normal cumulative distribution function.

• t(3): Student t distribution, 3 degrees of freedom.
• GEV(−0.4): generalized extreme-value distribution [12, Appendix A.6] with

shape parameter k = −0.4.
• t(2): Student t distribution, 2 degrees of freedom.
• GEV(−0.5): generalized extreme-value distribution, shape parameter −0.5.
• GLO(−0.6): generalized logistic distribution [12, Appendix A.7] with shape para-

meter k = −0.6.

The distributions and their L-moment ratios are shown on an L-moment ratio diagram
in Fig. 3.

4.2 Computational Cost

The methods described in Sect. 3 have very different computational costs. Methods
DF and AB involve sums across all pairs of data points, and have complexity O(n2).
Method EB, as described in [22], has complexity O(n5) (in [22, Eq. (15)], quantities
wi j (rs) must be computed for each (i, j, r, s) combination with 1 ≤ i < j ≤ n and
1 ≤ r < s ≤ n, and each is a sum of s − r terms). Bootstrap methods have complex-
ity O(nB) once the data have been sorted; the number of bootstrap samples B can be
set independently of the sample size n. A common choice of B for variance estimation
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Table 3 Proportion of invalid results obtained with method DF

Sample size Sample size

25 50 100 200 25 50 100 200

N-mix 0.70 0.16 0.00 0 GEV(−0.5) 0.30 0.05 0.00 0

Gamma(0.25) 0.54 0.14 0.00 0 GEV(−0.4) 0.28 0.04 0.00 0

Weibull(0.5) 0.44 0.12 0.00 0 SU(−0.75,1) 0.23 0.02 0.00 0

Gamma(0.5) 0.38 0.04 0.00 0 Gumbel 0.22 0.00 0.00 0

Uniform 0.36 0.01 0.00 0 t(3) 0.20 0.00 0.00 0

Weibull(0.75) 0.35 0.03 0.00 0 t(2) 0.20 0.01 0.00 0

Exponential 0.33 0.02 0.00 0 Normal 0.19 0.00 0.00 0

GLO(−0.6) 0.31 0.07 0.01 0 Logistic 0.19 0.00 0.00 0

is in the range 100–1000. In the simulations in Sect. 4.4 we used B = 1000. However,
Methods BMN and BMP can be several times slower than Methods BEN and BEP,
owing to the need to fit the maximum-entropy distribution to the data and to generate
random samples from the maximum-entropy distribution.

In practice, for sample sizes greater than 100 Method EB becomes very slow
(taking more than 1 s in our R implementation) and results for it for larger samples
are not included in Sect. 4.4. The other methods remain feasible (typically taking
0.1 s or less) for sample sizes up to at least 1000.

4.3 Invalid Results

Method DF has the disadvantage that it can sometimes produce invalid results. This
occurs when the computed covariance matrix of the L-moments (�2, �3, �4) is not
positive definite; in some cases the estimated variance of an L-moment is negative.
As shown in Table 3, invalid results occur quite frequently for samples of size 25 and
occasionally for samples of size 50.

4.4 Coverage

The effectiveness of a method of confidence region construction depends on how
closely the generated regions achieve their nominal coverage level. This issue was
addressed by Monte Carlo simulation. From each of the 16 parent distributions
defined in Sect. 4.1, and for each of six sample sizes between 25 and 1000, 1000
samples were generated. For each of the 1000 samples confidence regions were
generated for confidence levels 80, 90, and 95 %, using each of the seven methods
described in Sect. 3. For each method and confidence level, the empirical coverage
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Fig. 4 Empirical coverage probability (vertical axis) versus sample size (horizontal axis) for nom-
inal coverage probability 80 %. Each panel shows the results for one of the distributions defined in
Sect. 4.1. Gray horizontal lines indicate (solid line) the nominal coverage level and (dotted lines)
non-coverage levels ±50 % different from the nominal level (i.e., 30 and 13.33 %)

level is the proportion of the 1000 confidence regions that contained the (τ3, τ4)

values of the parent distribution. The results are shown in Figs. 4, 5 and 6.
The results overall are mixed. In the majority of cases the empirical coverage

probability is less than the nominal coverage level, meaning that the confidence
regions are anticonservative, or “overconfident”. Methods DF and AB in particular
are very anticonservative for sample sizes n ≤ 100. For the lighter-tailed distributions
(the first two rows of panels in Figs. 4, 5 and 6), reasonable coverage—noncoverage
within 50 %, sometimes much less, of the nominal value—is attained for sample
sizes n ≥ 100 at coverage level 80 % and for n ≥ 200 at coverage level 90 %. For
distributions with the heaviest tails the coverage is typically overestimated. This is
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Fig. 5 Empirical coverage probability (vertical axis) versus sample size (horizontal axis) for nom-
inal coverage probability 90 %. Each panel shows the results for one of the distributions defined in
Sect. 4.1. Gray horizontal lines indicate (solid line) the nominal coverage level and (dotted lines)
non-coverage levels ±50 % different from the nominal level (i.e., 15 and 6.67 %)

particularly true for the t(2), GEV(−0.5) and GLO(−0.6) distributions, which have
infinite variance. For these distributions, Results 1–3 cannot be assumed to hold and
only the bootstrap regions with convex hull peeling can be expected to perform well,
but even these seem to require sample sizes in excess of 1000 if they are to achieve
accurate coverage.

Comparing the different methods, bootstrap methods give the best overall perfor-
mance. For light-tailed distributions they often achieve close to the nominal coverage
even for n = 25. Methods BMN and BMP, which generate bootstrap samples from
the maximum-entropy distribution, generally have higher coverage than Methods
BEN and BEP, which use the empirical distribution. This means that Methods BMN
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Fig. 6 Empirical coverage probability (vertical axis) versus sample size (horizontal axis) for nom-
inal coverage probability 95 %. Each panel shows the results for one of the distributions defined in
Sect. 4.1. Gray horizontal lines indicate (solid line) the nominal coverage level and (dotted lines)
non-coverage levels ±50 % different from the nominal level (i.e., 7.5 and 3.33 %)

and BMP are generally closer to the nominal coverage level, though for heavy-tailed
distributions this merely means that their undercoverage is less severe than that of the
other methods. There is no clear advantage for the “peeling” methods BEP and BMP
over the normality-based methods BEN and BMN: peeling gives generally more
accurate coverage at nominal coverage 95 % but normality-based methods appear
more accurate at coverage level 80 %.
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4.5 Summary

The main conclusions of the comparison of the methods of confidence region con-
struction are as follows.

• The distribution-free “unbiased” estimator fails often for n < 50.
• The exact bootstrap is computationally taxing for n > 100.
• Confidence regions are generally anticonservative (or “overconfident”).
• All methods give poor results for heavy-tailed (power-law) distributions, even

those with finite variance.
• For light-tailed distributions, almost all methods give respectable results for n ≥

200 at coverage levels 0.8 and 0.9, but need n ≥ 500 at coverage level 0.95.
• The best methods use bootstrapping and estimate var(tr ) (or a confidence region

for (τ3, τ4)) directly rather than estimating var(�r ).
• Bootstrapping with the maximum-entropy distribution appears preferable to the

empirical distribution, except perhaps for distributions with very light tails.
• There is some evidence that bootstrap-and-peel is preferable to bootstrapping the

covariance matrix of (t3, t4), particularly at coverage level 95 %. But at coverage
level 80 % use of the covariance matrix seems to give more accurate coverage.

5 Texas Streamflow Data Revisited

We can now return to the L-moment ratio diagram in Fig. 1 and add confidence
regions around the (t3, t4) points plotted there. We use Method BMN, which we
judge to give the best overall results. The result is shown in Fig. 7.

Fig. 7 L-moment ratio
diagram for Texas
streamflow data, with 90 %
confidence regions
constructed by Method BMN
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The graph confirms the similarity of the low-skewness data sets, from sites
01515000, 054054000, and 14321000. These are all consistent with one another,
and with having been drawn from a Gumbel distribution. These sites are distinct
from the other sites, which, though well separated, have considerable overlap in
their confidence regions. Even the seemingly distant points for sites 08151500 and
08190000 have some overlap in their confidence regions, suggesting that they could
have been sampled from the same distribution. The large confidence region associ-
ated with the high-L-kurtosis site 02366500 is particularly striking, and emphasizes
the high uncertainty associated with large L-moment ratios computed from samples
of small or moderate size.

6 Conclusions

We have compared seven methods for constructing confidence regions for the
L-moment ratios (τ3, τ4) from a sample of data. These initial investigations suggest
that, at least for light-tailed distributions, regions with reasonably accurate cover-
age can be obtained for sample sizes of 200 or more at coverage levels up to 90 %.
Bootstrap methods gave the best results, and generating bootstrap samples from
the L-moment maximum-entropy distribution gives better coverage accuracy than
using the empirical distribution. Overall, though, coverage accuracy for heavy-tailed
distributions is disappointing for the sample sizes considered here.

Further research may enable improvements to the methods described here. Refine-
ment of bootstrap confidence regions using iterated bootstrap methods [16] is wor-
thy of investigation. Sample L-moment ratios can have significant bias for heavy-
tailed distributions, and this will affect the coverage accuracy of confidence regions.
Possible solutions include the use of distribution-free bias corrections for sample
L-moments [23] and the use of bias-corrected and accelerated (BCa) bootstrap meth-
ods [6] for confidence region construction.
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On Conditional Moments of Progressively
Censored Order Statistics with a Time
Constraint

Hon Keung Tony Ng, Fang Duan and Ping Shing Chan

Abstract Different hybrid progressive censoring schemes, which are mixtures of
Type-I censoring and Type-II progressively censoring schemes, have been proposed
in the literature. These censoring schemes impose a time constraint on the life-testing
experiment and the number of progressively censored order statistics observed before
this time constraint is recorded. Conditional on the number of progressively censored
order statistics being observed before the time constraint, a computational method
for the conditional moments of progressively censored order statistics is discussed.
Simple computational formulae are presented and these formulae are illustrated with
examples when the underlying distributions are uniform and exponential. These
results will be useful for the development of estimation methods such as the least
squares estimation, best linear unbiased estimation and approximate maximum like-
lihood estimation methods and for deriving asymptotic distributions of the estimates
of model parameters for Type-I hybrid progressively censored data.

Keywords Approximate maximum likelihood estimation · Best linear unbiased
estimation · Hybrid censoring · Type-I censoring · Type-II censoring

1 Introduction

There are many situations in life-testing experiments where only partial informa-
tion on the failure times of the experimental units is available. Conventional Type-I
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and Type-II censoring schemes are designed to save total time on the test, to save
experimental units for future use, and to save on the corresponding cost of the exper-
iment. However, these censoring schemes do not have the flexibility of allowing
the removal of experimental units before the termination of the experiment. Thus,
progressive Type-II censoring was introduced as a more general censoring scheme.
The progressive Type-II censoring can be described as follows: suppose that n units
are placed on a life test, at the time of the first failure, R1 units from the remain-
ing (n − 1) surviving units are randomly selected and removed from the experiment
immediately. Then, the life test continues and at the time of the second failure,
R2 units from the remaining (n − 2 − R1) surviving units are randomly selected
and removed from the test, and so on. The life test continues until m failures are
observed, and all the remaining Rm = n − m −∑m−1

i=1 Ri units are removed. The
removal pattern (also called censoring scheme) R = (R1, R2, . . . , Rm) is pre-fixed
prior to the experiment. Extensive reviews of the literature on progressive censoring
are provided by Balakrishnan and Aggarwala [4], Balakrishnan [3], Balakrishnan
and Cramer [5].

To further control the total time of the experiment, different kinds of hybrid
censoring schemes are proposed by imposing a time constraint T such that the
experiment is terminated immediately after a random time min {Xm:m:n, T }, where
T ∈ (0,∞) and the values of n and m, 1 ≤ m ≤ n, are fixed prior to the experiment.
Here, X1:m:n ≤ X2:m:n ≤ · · · ≤ Xm:m:n are the ordered failure times resulting from the
experiment. This censoring scheme is called the Type-I progressive hybrid censoring
scheme which was first proposed by Kundu and Joarder [10]. This scheme ensures
that the experiment time will not exceed time T . If the mth progressively censored
ordered failure occurs before time T , the experiment will end at Xm:m:n . Otherwise,
the experiment will stop at time T with X J :m:n ≤ T < X J+1:m:n , where J is the

number of observed failures up to time T . All the remaining
(

n − J −∑J
i=1 Ri

)

surviving items are censored at time T . The drawback of this Type-I hybrid pro-
gressive censoring scheme is that it is possible to observe no failure before time
T or the observed number of failures is not large enough to make an efficient sta-
tistical inference. Therefore, another hybrid censoring scheme called the adaptive
progressive censoring scheme was proposed to address this issue [12]. For adaptive
progressive censoring, the experiment continues until the mth failure is observed,
but the censoring scheme is changed after time T to make the mth failure occur
as soon as possible. Specifically, suppose there are J progressively censored order
statistics observed before time T , then after the experiment passes time T , we set

RJ+1 = · · · = Rm−1 = 0 and Rm =
(

n − m −
J∑

i=1
Ri

)

. This formulation leads us to

terminate the experiment as soon as possible if the (J + 1)th failure time is greater
than T for (J + 1) < m. It is hoped that by using this hybrid censoring scheme,
the total experiment time will be greatly reduced while the effective sample size is
always m. For more recent developments and statistical inference based on different
adaptive progressive censoring schemes, one can refer to Bairamov and Parsi [2],
Cramer and Iliopoulos [8], Lin et al. [11], Park et al. [13], and Ye et al. [14].
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For the aforementioned hybrid progressive censoring schemes, the computation
of the moments of the progressively censored order statistics with the time constraint
have not been discussed. Thesemomentswill be useful for the development of estima-
tionmethods such as the least squares estimation, best linear unbiased estimation and
approximate maximum likelihood estimation methods and for deriving asymptotic
distributions of the estimators of model parameters; see, for example, Balakrishnan
and Aggarwala [4], Balakrishnan et al. [6, 7], Lin et al. [11]. For instance, the devel-
opment of conditional least squares estimators or regression-type estimators, given
the number of observed failures before time constraint T , will require the expected
values of the progressively censored order statistics.

This paper aims to provide simple computational methods for the conditional
single and product moments of the progressively censored order statistics, given the
number of progressively censored order statistics being observed before the time con-
straint. This paper is organized as follows. In Sect. 2, we provide the computational
method for the conditional moments of progressively censored order statistics. Then,
in Sect. 3, we illustrate these computational formulae for uniform and exponential
distributions and present some numerical results. In Sect. 4, an application of these
computational formulae in least squares estimation is discussed and a numerical
example is used to illustrate the methodology.

2 Computation of Conditional Moments

In this section, we will develop a computational method for the conditional moments
of the progressively censored order statistics with a time constraint. The experi-
ment considered here can be described as follows: suppose that n items are placed
on a life test and let X1, X2, . . . , Xn be the corresponding lifetimes. We assume
that Xi , i = 1, 2, . . . , n, are independently and identically distributed (i.i.d.) with
probability density function (PDF) f (x; θ) and cumulative distribution function
(CDF) F(x; θ), where θ denotes the vector of parameters and x ∈ [0,∞). For nota-
tional convenience, the parameter θ in f (x; θ) and F(x; θ) is suppressed in this
section. Prior to the experiment, the number of observed failures m < n is deter-
mined and the progressive Type-II censoring scheme (R1, R2, . . . , Rm) with Ri ≥ 0
and

∑m
i=1 Ri + m = n is also specified. Suppose that there is a time constraint T ,

then the number of progressively censored order statistics being observed before
time T is a discrete random variable, denoted as J , with support {0, 1, . . . , m}.

Let us denote the i th progressively censored order statistic by Xi :m:n and the
ai th order statistic by Xai :n , i = 1, 2, . . . , m [1]. Then, the observed progressively
censored order statistics (X1:m:n, X2:m:n, . . . , Xm:m:n) can be represented by the usual
order statistics as

(
Xa1:n, Xa2:n, . . . , Xam :n

)
, where a = (a1, a2, . . . , am) is the index

vector that indicates the i th progressively censored order statistic corresponds to the
ai th order statistic in the random sample X1, X2, . . . , Xn . For example, consider a
progressively censored experiment with non-random removal whereas the itemswith
the smallest lifetimes are being censored at each stage, then we have
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X1:m:n = X1:n, X2:m:n = X(R1+2):n, . . . , Xi :m:n = X
(
∑i−1

�=1 R�+i):n, . . . , Xm:m:n = Xn:n,

i.e., ai =∑i−1
�=1 R� + i , for i = 1, 2, . . . , m. Here,we are interested in the conditional

moments of Xi :m:n given J = j , i = 1, 2, . . . , m, j = 0, 1, 2, . . . , m.
Conditional on J = j , the (η, δ)th conditional product moment of Xi :m:n and

Xl:m:n , i < l, can be expressed as:

E
(

Xη

i :m:n X δ
l:m:n

∣
∣ J = j

)

=
∑

a

E
(

Xη
ai :n X δ

al :n
∣
∣ a, J = j

)
Pr (a = (a1, a2, . . . , am)| J = j) . (1)

This expression involves two parts: Pr (a = (a1, a2, . . . , am)|J = j) which depends
on the progressive censoring scheme (R1, R2, . . . , Rm) and F(T ; θ) and
E
(

Xη
ai :n X δ

al :n
∣
∣ a, J = j

)
which depends on the underlying parametric distribution

F(x; θ) only. We will derive the computational formulae of
Pr (a = (a1, a2, . . . , am)|J = j) and E

(
Xη

ai :n X δ
al :n
∣
∣ a, J = j

)
separately in the fol-

lowing sections.

2.1 Computation of Pr (a = (a1, a2, . . . , am)|J = j)

First, we compute the conditional probability of the observed progressively censored
order statistics (X1:m:n, X2:m:n, . . . , Xm:m:n) correspond to the (a1, a2, . . . , am) order
statistics, given J = j . This conditional probability can be expressed as Pr(a =
(a1, a2, . . . , am)|J = j). We observe the following relationship in Result 1.

Result 1. Given that the i th progressively censored order statistics (Xi :m:n) corre-
sponds to the ai th order statistic of the random sample X1, X2, . . . , Xn , the proba-
bility that the (i + 1)th progressively censored order statistic, Xi+1:m:n corresponds
to the ai+1th order statistic is

q(R1,R2,...,Rm )
i,ai ,ai+1

= Pr
(
Xi+1:m:n = Xai+1:n|Xi :m:n = Xai :n

)

=

(
n − ai+1∑i

k=1 Rk − ai+1 + i + 1

)

(
n − ai∑i

k=1 Rk − ai + i

) .

If we consider the situation in which the first order statistic must be observed,
then a1 = 1, ai+1 = ai + 1, . . . ,min

(
ai +∑i

k=1 Rk + 1, n
)

, i = 1, . . . , m − 1.

Since the selection of the items being censored at the time of each failure is
random, Result 1 can be obtained from combinatorial arguments. From Result 1,
given the progressive censoring scheme,we can compute the probability of observing(
Xa1:n, Xa2:n, . . . , Xam :n

)
as the actual observations (denoted as Pa), i.e.,
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Pa = Pr
(
Xi :m:n = Xai :n, i = 1, . . . , m

) =
m−1∏

i=1

q(R1,...,Rm )
i,ai ,ai−1

.

For given values of n, m and (R1, R2, . . . , Rm), we can compute the probability of
J = j , j = 0, 1, . . . , m. For J = 0, all lifetimes X1, X2, . . . , Xn are larger than T ,
then Pr (J = j) = [1 − F (T )]n . For J = 1, 2, . . . , m,

Pr (J = j) =
∑

a

Pr (a = (1, a2, . . . , am) , J = j)

=
∑

a

Pr
(
a = (1, a2, . . . , am) , Xa j :n < T < Xa j+1:n

)

=
∑

a

Pr
(
Xa j :n < T < Xa j+1:n|a = (1, a2, . . . , am)

)
Pa

=
∑

a

⎧
⎨

⎩
Pa

a j+1−1∑

l=a j

(
n
l

)

[F (T )]l [1 − F (T )]n−l

⎫
⎬

⎭
,

where am+1 ≡ n + 1. Thus, we have

Pr (a = (1, a2, . . . , am) |J = j) = Pr (a = (1, a2, . . . , am) , J = j)

Pr (J = j)

=
Pa

a j+1−1∑

l=a j

(
n
l

)

[F (T )]l [1 − F (T )]n−l

Pr (J = j)
. (2)

2.2 Single Moments: Computation of E
[
Xη

ai :n|a, J = j
]

for
i ≤ j

We can write the conditional expectation as

E
[
Xη

ai :n|a, J = j
] =

a j+1−1∑

k=a j

E
(
Xη

ai :n|exactly k X ’s less than T, J = j
)

×Pr (exactly k X ’s less than T |a, J = j) . (3)

The following result in order statistics will provide a simple way to compute the
required probabilities and expected values.
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Result 2. Let X1, X2, . . . , Xn be a random sample from an absolutely continuous
population with CDF F(x) and PDF f (x), and let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote
the order statistics obtained from this sample. Then, the conditional distribution of
Xi :n , given that Xk:n ≤ T < Xk+1:n (i.e., exactly k order statistics are smaller than
T ) for i ≤ k, is the same as the distribution of the i th order statistics in a sample of
size k from a population whose distribution is simply F(x) truncated on the right
at T .

Note that Result 2 can be obtained directly from Theorem 1 of Iliopoulos and
Balakrishnan [9] on the conditional independence of blocked ordered data. Hence,
we can express the conditional distribution of Xi :n , given that Xk:n ≤ T < Xk+1:n
(i.e., exactly k order statistics are smaller than T ) for i ≤ k as

fi :n(x |Xk:n ≤ T < Xk+1:n)

= k!
(i − 1)!(k − i)!

[
F(xi )

F(T )

]i−1 [

1 − F(xi )

F(T )

]k−i [ f (xi )

F(T )

]

,

−∞ < xi < T < ∞.

The ηth conditional moment of the ai th order statistic, given that exactly k of the
lifetimes are smaller than T , ai < k, can be expressed as

E
[

Xη
ai :n
∣
∣ exactly k X ’s less than T, a, J = j

]

= k!
(ai − 1)! (k − ai )!

∫ T

0
xη f (x)

F (T )

[
F (x)

F (T )

]ai −1 [

1 − F (x)

F (T )

]k−ai

dx

= k!
(ai − 1)! (k − ai )!

1

[F(T )]k
∫ T

0
xη f (x) [F(x)]ai −1 [F(T ) − F(x)]k−ai dx . (4)

The probability that exactly k of the X ’s are smaller than T is

Pr (exactly k X ’s less than T |a, J = j) =

(
n
k

)

[F (T )]k [1 − F (T )]n−k

a j+1−1∑

l=a j

(
n
l

)

[F (T )]l [1 − F (T )]n−l

.

Then, from Eq. (3), we can obtain

E
[

Xη
ai :n
∣
∣ a, J = j

]

=
a j+1−1∑

k=a j

[
k!

(ai − 1)! (k − ai )!
1

[F(T )]k

×
∫ T

0
xη f (x) [F (x)]ai −1 [F(T ) − F(x)]k−ai dx

]
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×

⎡

⎢
⎢
⎣

(
n
k

)

[F(T )]k [1 − F (T )]n−k

∑a j+1−1
l=a j

(
n
l

)

[F (T )]l [1 − F (T )]n−l

⎤

⎥
⎥
⎦ . (5)

2.3 Product Moments: Computation
of E

[
Xη

ai :n Xδ
al :n|a, J = j

]
for i < l ≤ j

Following the idea used in Eq. (3), the product moments of the ai th and the al th order
statistics can be expressed as

E
[
Xη

ai :n X δ
al :n|a = (a1, a2, . . . , am), J = j

]

=
a j+1−1∑

k=a j

E
(
Xη

ai :n X δ
al :n|exactly k X ’s less than T, J = j

)

×Pr (exactly k X ’s less than T |a, J = j) . (6)

For a fixed value of k, where k is the number of X ’s less than T with ai < al ≤ k,
we have the conditional product moment of the ai th and the al th order statistic, given
that exactly k of the lifetimes are smaller than T ,

E
(

Xη
ai :n X δ

al :n
∣
∣ exactly k X ’s less than T, a, J = j

)

= k!
(ai − 1)! (ai − al − 1)! (k − al)!

1

[F(T )]k

×
{∫ T

0

∫ xl

0
xη

i xδ
l f (xi ) f (xl) [F (xi )]

ai −1

× [F(xl) − F(xi )]
al−ai −1 [F(T ) − F(xl)]

k−al dxi dxl

}

.

Therefore, for ai < al ≤ k,

E
[

Xη
ai :n X δ

al :n
∣
∣ a = (a1, a2, . . . , am), J = j

]

=
a j+1−1∑

k=a j

k!
(ai − 1)! (ai − al − 1)! (k − al)!

1

[F(T )]k

×
{∫ T

0

∫ xl

0
xη

i xδ
l f (xi ) f (xl) [F (xi )]

ai −1
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× [F(xl) − F(xi )]
al−ai −1 [F(T ) − F(xl)]

k−al dxi dxl

}

×

⎡

⎢
⎢
⎣

(
n
k

)

[F(T )]k [1 − F (T )]n−k

∑a j+1−1
l=a j

(
n
l

)

[F (T )]l [1 − F (T )]n−l

⎤

⎥
⎥
⎦ . (7)

For a fixed value of k and ai ≤ k < al , it can be shown that Xai :n and Xal :n are
independent [9] and hence the covariance of Xai :n and Xal :n is equal to 0. Then, the
product moment of the ai th and the al th order statistics can be written as the product
of two single moments for a fixed value of k where ai ≤ k < al , i.e.,

E
[

Xη
ai :n X δ

al :n
∣
∣ exactly k X ’s less than T, a, J = j

]

= E
[

Xη
ai :n
∣
∣ exactly k X ’s less than T, a, J = j

]

× E
[

X δ
al :n
∣
∣ exactly k X ’s less than T, a, J = j

]
. (8)

Therefore, the product moments of an order statistic observed before time T and an
order statistic observed after time T can be obtained from Eq. (5).

2.4 Main Results

Substituting Eqs. (2), (5) and (7) into Eq. (1), given J = j , the conditional single and
product moments of progressively censored order statistics with a time constraint for
i < l ≤ j , j = 1, 2, . . . , m, are

E
(
Xη

i :m:n|J = j
)

=
∑

a

Pr (a = (a1, a2, . . . , am) |J = j) E
[
Xη

ai :n|a, J = j
]

= 1

Pr (J = j)

∑

a

Pa

{a j+1−1∑

k=a j

k!
(ai − 1)! (k − ai )!

1

[F(T )]k

×
∫ T

0
xη f (x) [F (x)]ai −1 [F (T ) − F (x)]k−ai dx

×
(

n
k

)

[F(T )]k [1 − F (T )]n−k

}

and

E
(
Xη

i :m:n X δ
l:m:n|J = j

)
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=
∑

a

Pr (a = (a1, a2, . . . , am) |J = j) E
[
Xη

ai :n Xη
al :n|a, J = j

]

= 1

Pr (J = j)

∑

a

Pa

{a j+1−1∑

k=a j

k!
(ai − 1)! (ai − al − 1)! (k − al)!

1

[F(T )]k

×
[∫ T

0

∫ xl

0
xη

i xδ
l f (xi ) f (xl) [F (xi )]

ai −1

× [F(xl) − F(xi )]
al−ai −1 [F(T ) − F(xl)]

k−al dxi dxl

]

×
(

n
k

)

[F(T )]k [1 − F (T )]n−k

}

, i < l ≤ j,

respectively. For i > j , the conditional single and product moments of the pro-
gressively censored order statistics can be obtained from the results for progressive
censored order statistics (see, e.g., Balakrishnan andAggarwala [4]) with the fact that
the distribution of Xi :m:n (i > j) is the same as the distribution of the (i − j)th pro-
gressively censored order statistic with sample size n∗ = n − j −∑ j

l=1 Rl , effective
sample size m∗ = m − j and progressive censoring scheme (R j+1, R j+2, . . . , Rm)

from a left-truncated distribution at T .

3 Illustrations

We now illustrate the calculation of the conditional moments when the underlying
distribution of X1, X2, . . . , Xn is the uniform or exponential distribution.

3.1 Uniform Distribution

Suppose that the underlying distribution of the i.i.d. variables X1, X2, . . . , Xn is the
uniform(0, 1) distribution (denotedU (0, 1)) with PDF f (x) = 1 and CDF F(x) = x
for 0 < x < 1. Xai :n will follow a beta distribution with parameter ai and n − ai + 1.
With the time constraint T , Eq. (4) can be simplified as:

E
(
Xη

ai :n|exactly k X ′s < T, a, J = j
) =

⎡

⎢
⎢
⎢
⎣

η−1∏

ν=0
(ai + ν)

η−1∏

ν=0
(k + 1 + ν)

⎤

⎥
⎥
⎥
⎦

T η.

Hence, the conditional ηth moment of the i th progressively censored order statistic,
given J = j (i ≤ j), is
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E
(
Xη

i :m:n|J = j
)

= 1

Pr (J = j)

×
∑

a

Pa

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

a j+1−1∑

k=a j

⎛

⎜
⎜
⎜
⎝

η−1∏

ν=0
(ai + ν)

η−1∏

ν=0
(k + 1 + ν)

⎞

⎟
⎟
⎟
⎠

(
n
k

)

T k+η (1 − T )n−k

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (9)

For ai < al ≤ k, we have

E
(
Xη

ai :n X δ
al :n|exactly k X ′s < T, a, J = j

)

=

⎡

⎢
⎢
⎢
⎣

η−1∏

ν=0
(ai + ν)

δ−1∏

ν=0
(al + η + ν)

η+δ−1∏

ν=0
(k + 1 + ν)

⎤

⎥
⎥
⎥
⎦

T η+δ.

Hence, the conditional (η, δ)th moment of the i th and lth progressively censored
order statistics, given J = j , is

E
(
Xη

i :m:n X δ
l:m:n|J = j

)

= 1

Pr (J = j)

∑

a

Pa

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a j+1−1∑

k=a j

⎛

⎜
⎜
⎜
⎝

η−1∏

ν=0
(ai + ν)

δ−1∏

ν=0
(al + η + ν)

η+δ−1∏

ν=0
(k + 1 + ν)

⎞

⎟
⎟
⎟
⎠

(
n
k

)

T k+η+δ (1 − T )n−k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

for i < l ≤ j .

3.2 Exponential Distribution

Consider the exponential distribution with PDF f (x; θ) = θ−1e−x/θ and CDF
F(x; θ) = 1 − e−x/θ for 0 < x < ∞, θ > 0. With the time constraint T and given
J = j , the conditional ηth moment of the i th progressively censored order statistic
when the underlying distribution is exponential with mean θ can be written as
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E
(
Xη

i :m:n|J = j
)

= 1

Pr (J = j)

∑

a

{
k!

(ai − 1)!(k − ai )!
∫ 1

0
{−θ ln [1 − F(T ; θ)u]}η uai −1(1 − u)k−ai du

×
(

n
k

)

[F(T ; θ)]k+η [1 − F(T ; θ)]n−k Pa

}

, (10)

for i ≤ j . Similarly, Eq. (1) can be expressed as

E
(
Xη

i :m:n X δ
l:m:n|J = j

)

= 1

Pr (J = j)

∑

a

⎧
⎨

⎩
Pa

⎡

⎣
a j+1−1∑

k=a j

k!
(ai − 1)! (ai − al − 1)! (k − al)!

×
∫ 1

0

∫ 1

0
{−θ ln [1 − F(T ; θ)uw]}η {−θ ln [1 − F(T ; θ)u]}δ

× uai −1(1 − u)al−ai −1wal−1(1 − w)k−al dudw

×
(

n
k

)

[F(T ; θ)]k [1 − F (T ; θ)]n−k

]}

, (11)

for i < l ≤ j . Note that the integrals involved in Eqs. (10) and (11) depend on the
parameter θ . Since these integrals are finitewith range in between 0 and 1, for specific
values of θ , these integrals can be accurately approximated by using numerical algo-
rithms which are available in commonly used statistical or mathematical software
such as R, SAS and Matlab.

For illustrative purposes, we present the conditional means, variances and covari-
ances of the progressively censored order statistics from U (0, 1) given J = j ,
j = 0, 1, . . . , 5 with n = 10, m = 5, T = 0.6 and censoring scheme (R1, R2, R3,

R4, R5) = (1, 1, 1, 1, 1) inTable1. For the conditionalmeans andvariances of Xi :m:n ,
i > j , and the covariances of Xi :m:n and Xl:m:n , j < i < l, the values can be com-
puted based on the formulae in Balakrishnan and Aggarwala ([4], Sect. 2.3.3). Note
that from Eq. (8), the covariance of Xi :m:n and Xl:m:n (i ≤ j < l) is 0. For the sake
of comparison, the unconditional means, variances and covariances, as well as the
probability of J = j ( j = 0, 1, . . . , 5), are also presented in Table1. From Table1,
we can observe that the conditional and unconditional means, variances and covari-
ances can be very different. Specifically, with the condition that J = j progressively
censored order statistics are observed before time T = 0.6, the conditional means of
Xi :m:n must be smaller than T = 0.6 for i < j and the conditional means of Xi :m:n
must be greater than T = 0.6 for i > j . Moreover, the conditional variances of the
progressively censored order statistics are smaller than those unconditional variances,
as expected.
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4 Applications

4.1 Least Squares Estimation

Based on the model described in Sect. 2, if X1:m:n < X2:n:m < · · · < Xm:m:n and J =
j are the progressively censored order statistics observed and the number of observed
failures before time constraint T , respectively, then

E[F(Xi :m:n; θ)|J = j] = E(Ui :m:n|J = j)

and

V ar [F(Xi :m:n; θ)|J = j] = E(U 2
i :m:n|J = j) − [E(Ui :m:n|J = j)]2,

for i = 1, 2, . . . , m, where Ui :m:n is the i th progressively censored order statistic
from U (0, 1). These values can be obtained from Eqs. (9) and (10) with the time
constraint in the (0, 1) scale as T ∗ = F(T ; θ). Therefore, these expected values and
variances depend on the parameter θ via T ∗. The least squares estimator of θ can
then be obtained by minimizing

GL S(θ) =
m∑

i=1

[F(Xi :m:n; θ) − E(Ui :m:n|J = j)]2 (12)

with respect to θ . The weighted least squares estimator of θ can be obtained in a
similar manner by using the weight function wi = 1/V ar [F(Xi :m:n; θ)|J = j] for
i = 1, 2, . . . , m, i.e., minimizing

GW L S(θ) =
m∑

i=1

wi [F(Xi :m:n; θ) − E(Ui :m:n|J = j)]2 (13)

with respect to θ . Since an analytical solution cannot be obtained, a numericalmethod
such as theNelder-Mead algorithm is required to compute the least squares estimates.

Here, a numerical example is used to illustrate the least squares estimationmethod.
Adaptive progressive censored order statistics with n = 10, m = 5 and censoring
scheme (1, 1, 1, 1, 1) from the exponential distribution with mean θ = 2 and time
constraint T = 1.8 are generated. The simulated data is (X1:5:10, X2:5:10, . . . , X5:5:10)
= (0.3411787, 0.5997713, 0.7748804, 0.8471616, 1.9351048) with J = 4. Condi-
tional on J = 4, by using the least squares estimation method, the least squares
estimate obtained by minimizing Eq. (12) is 2.02614 and the weighted least squares
estimate obtained by minimizing Eq. (13) is 2.24817.
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4.2 Approximate Best Linear Unbiased Estimation

Suppose the distribution of the random variable X belongs to the location-scale
family of distributions with PDF

f (x;μ, σ) = 1

σ
f ∗
(

x − μ

σ

)

, − ∞ < μ < ∞, σ > 0,

and CDF

F(x;μ, σ) = F∗
(

x − μ

σ

)

, − ∞ < μ < ∞, σ > 0,

where μ is the location parameter, σ is the scale parameter, and f ∗(·) and F∗(·)
are respectively the PDF and CDF of the standard (μ = 0, and σ = 1) distri-
bution in the location-scale family. Based on a progressively censored sample
X = (X1:m:n, X2:m:n, . . . , Xm:m:n) without time constraint, the best linear unbiased
estimators (BLUEs) of μ and σ can be obtained by minimizing the generalized
variance (see, for example, Balakrishnan and Aggarwala [4], Sect. 6.2),

Q(μ, σ ) = (X − μ1 − σγ )′Γ −1(X − μ1 − σγ ), (14)

with respect to μ and σ , where 1 is an m × 1 vector with components all 1’s, γ is
the mean vector of X, and Γ is the variance-covariance matrix of X. The resulting
BLUEs are

(
μ̃

σ̃

)

= (Y′Γ −1Y)−1(Y′Γ −1X), (15)

where Y = [1, γ ]. The variance-covariance matrix of μ̃ and σ̃ can be approximated
as

(
V ar(μ̃) Cov(μ̃, σ̃ )

Cov(μ̃, σ̃ ) V ar(σ̃ )

)

≈ σ̃ 2(Y′Γ −1Y)−1.

Here, we aim to develop the first-order approximation of the conditional BLUEs of
μ and σ based on a progressively censored sample with time constraint. Consider
the progressively censored order statistics X1:m:n < X2:n:m < · · · < Xm:m:n with cen-
soring scheme (R1, R2, . . . , Rm) and J = j observed progressively censored order
statistics before time T (i.e., X j :m:n ≤ T < X j+1:n:m). Let F∗−1(·) be the inverse
CDF of the standard location-scale distribution. Then, we have

Xi :m:n = μ + σ F∗−1 (Ui :m:n) , i = 1, 2, . . . , m,
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where U1:m:n < U2:n:m < · · · < Um:m:n are the progressively censored order statis-
tics from U (0, 1) with the censoring scheme (R1, R2, . . . , Rm) and U j :m:n ≤ T ∗ <

U j+1:m:n with T ∗ = F∗
(

T −μ

σ

)
∈ (0, 1). Let W = F∗−1(U ), where U ∼ U (0, 1).

Given J = j , we can express the conditional expectations and conditional covari-
ances of X1:m:n, X2:n:m, . . . , Xm:m:n as

E(Xi :m:n |J = j) = μ + σ E(Wi :m:n |J = j), i = 1, 2, . . . , m,

Cov(Xi :m:n, Xl:m:n |J = j) = σ 2Cov(Wi :m:n, Wl:m:n |J = j), i = 1, 2, . . . , m, l = 1, 2, . . . , m.

Using the first-order Taylor series expansion, given J = j , we can approximate
Wi :m:n as

Wi :m:n ≈ F∗−1[E(Ui :m:n|J = j)]

+ [Ui :m:n − E(Ui :m:n|J = j)]
[

dWi :m:n
dUi :m:n

∣
∣
∣
∣
Ui :m:n=E(Ui :m:n |J= j)

]

,

i = 1, 2, . . . , m. Then, the conditional expectations and conditional variances and
covariances of X1:m:n, X2:n:m, . . . , Xm:m:n can be approximated by

E(Wi :m:n |J = j) ≈ F∗−1[E(Ui :m:n |J = j)] � αi , (16)

V ar(Wi :m:n |J = j) ≈ V ar(Ui :m:n |J = j)

[
dWi :m:n
dUi :m:n

∣
∣
∣
∣
Ui :m:n=E(Ui :m:n |J= j)

]2

� sii , (17)

Cov(Wi :m:n , Wl:m:n |J = j) ≈ Cov(Ui :m:n , Ul:m:n |J = j)

[
dWi :m:n
dUi :m:n

∣
∣
∣
∣
Ui :m:n=E(Ui :m:n |J= j)

]

×
[

dWl:m:n
dUl:m:n

∣
∣
∣
∣
Ul:m:n=E(Ul:m:n |J= j)

]

� sil , (18)

for i = 1, 2, . . . , m and l = 1, 2, . . . , m. The parameters μ and σ can be estimated
by the values that minimize the conditional generalized variance

Q∗(μ, σ |J = j) = (X − μ1 − σα)′Σ−1(X − μ1 − σα),

where

α = (α1, α2, . . . , αm)′and Σ =

⎛

⎜
⎜
⎜
⎝

s11 s12 . . . s1m

s21 s22 . . . s2m
...

...
...

sm1 sm2 . . . smm

⎞

⎟
⎟
⎟
⎠

.
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Because the conditional expectations, conditional variances and covariances in Eqs.

(16)–(18), respectively, depend on the parametersμ and σ through T ∗ = F∗
(

T −μ

σ

)
,

the conditional first-order approximateBLUEs ofμ andσ cannot be directly obtained
from Eq. (15). Therefore, we propose the use of an iterative procedure to obtain the
conditional first-order approximateBLUEs, given J = j . Given the current estimates
ofμ and σ asμ(h) and σ (h), respectively, the (h + 1)th iteration of the procedure can
be described as

1. Compute T ∗(h) = F∗
(

T −μ(h)

σ (h)

)
.

2. Compute the conditional expectations and covariances of Ui :m:n, i = 1, 2, . . . ,
m, by fixing T ∗ = T ∗(h) and then obtain α and � from Eqs. (16)–(18).

3. The updated estimates of μ and σ can be obtained from Eq. (15) by replacing γ

and Γ with α and �, respectively:

(
μ̃(h+1)

σ̃ (h+1)

)

= (Y′�−1Y)−1(Y′�−1X), (19)

where Y = [1,α].
4. Repeat steps 1–3 until convergence occurs.

Here, a numerical example is used to illustrate the computation of the conditional
approximate BLUEs. A progressively censored sample with n = 10, m = 5, cen-
soring scheme (1, 0, 2, 1, 1) from the normal distribution with mean μ = 0 and
standard deviation σ = 1, and time constraint T = 0.3 is generated. The simulated
data is (X1:5:10, X2:5:10, . . . , X5:5:10) = (-0.55, -0.86, -0.03, 0.51, 0.54) with J = 3.
The iterative procedure is said to have converged when

max(|μ̃(h+1) − μ̃(h)|, |σ̃ (h+1) − σ̃ (h)|) < 5 × 10−7.

With the initial values μ(0) = 0 and σ (0) = 1, the proposed iterative procedure
takes 29 iterations to converge to the final conditional approximate BLUEs μ̃(29) =
0.2190709 and σ̃ (29) = 0.7035756 with the variance-covariance matrix

[
V ar(μ̃) Cov(μ̃(29), σ̃ (29))

Cov(μ̃(29), σ̃ (29)) V ar(σ̃ (29))

]

≈
[
0.014 −0.005

−0.005 0.043

]

5 Summary

In this paper, simple computational formulae for the conditional single and prod-
uct moments of the progressively censored order statistics with time constraint are
presented. These results can be applied in conditional inference of the lifetime data
obtained fromdifferent hybrid progressive censoring schemes. The conditional statis-
tical estimationmethods illustrated in Sect. 4 provide alternatives to the unconditional
inference by taking the number of observed progressively censored order statistics
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being observed before the time constraint into account. Comparison of the perfor-
mances of conditional and unconditional inference will be a interesting research
topic. Further research on conditional inference based on hybrid progressive censor-
ing schemes and evaluations of their performances is currently in progress and we
hope to report these findings in future papers.
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Adaptive Progressive Censoring

Erhard Cramer and George Iliopoulos

Abstract The notion of adaptive progressive Type-II censoring has been introduced
in Cramer and Iliopoulos (2010) to analyse data from a progressively Type-II cen-
sored life test with observation dependent removals of units. Such a scheme gives
more flexibility to the experimenter since it allows him/her to choose the number of
units to be removed at each failure time during the life test. In this paper, the idea
is generalised to a more general setting of progressive censoring. Our generalised
model allows for arbitrary inspection times and possible removals of units during the
experiment. The inspection times and removals depend on what has been observed
so far. In particular, this approach includes adaptive progressive Type-I and Type-II
censoring with random or fixed inspection timepoints.

Keywords Adaptive process · Progressive censoring · Type-I censoring · Type-II
censoring · Likelihood inference

1 Introduction

Many variations of the basic idea of progressive censoring have been discussed,
dating back to Herd [11] and Cohen [8] (see also [3–5]). In progressively censored
life tests, some units are removed during the conduction of the experiment, which
means that we do not observe the failure time of any unit. We only know that it
has survived up to some censoring time. The censoring procedure is prescribed by
the so-called censoring plan (R1, . . . , Rk) and the censoring times T1 < · · · < Tk ,
meaning that R j units are withdrawn from the life test at time Tj (if possible). The
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Fig. 2 Generation process of progressively Type-I censored order statistics

standard models of progressive censoring are progressive Type-I and progressive
Type-II censoring as first presented in [8]. In these models, the censoring plan is
fixed in advance but the censoring times are

• the observed failure times X1 ≤ · · · ≤ Xm in the reduced sample in the case of
Type-II censoring (see Fig. 1) and

• prefixed timepoints T1 < · · · < Tk in the case of Type-I censoring (see Fig. 2).

Further modifications include hybrid censoring procedures, as introduced in [7]
and [13], as well as progressive interval censoring (see [1]). For a review on these
models, we refer to the recent monograph [5]. All these approaches have in common
that the censoring scheme is fixed in advance. Some attempts have been made to get
rid of this restriction. As a first step, progressive censoring with random removals
allows some random choice of the scheme by introducing a probability distribution
on the set of admissible censoring schemes (see [17]). In the Ng-Kundu-Chan model
[16], a threshold parameter T is used to switch from the initially planned scheme
to a modified scheme (for details, see Example1). This idea has been taken up in
[2, 12], where some extensions of this basic idea are presented. The general theory
of adaptive progressive Type-II censoring is developed in [9].

Roughly speaking, an adaptive progressive censoring scheme is a progressive
censoring procedurewhere the number ofwithdrawals and/or the time points atwhich
these withdrawals occur can be modified during the experiment depending on what
has been observed so far. According to this definition, standard progressive Type-I
and Type-II censoring are self-adaptive by their very nature. In progressive Type-II
censoring the times of withdrawals are random (see Fig. 1) while in progressive
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Type-I censoring the number of withdrawals depends on what has been observed so
far (see Fig. 2). For instance, it is possible that all items are either censored from the
experiment or failed before some time Tj < Tk .

In this paper, we discuss progressive Type-I and Type-II censoring schemes for
which the withdrawals and the times they occur depend on the observations. More-
over, we present a very general approach to adaptive progressive censoring called
fully adaptive progressive censoring. This new scheme allows us to choose both the
censoring times and the censoring plan. In particular, it comprises both standard pro-
gressive censoringprocedures. Furthermore, it turns out that this approachgivesmuch
flexibility to the experimenter in conducting progressively censored experiments. For
instance, as mentioned above, one may face the problem that a progressively Type-I
censored experiment terminates without observing a failure time. In this regard, fully
adaptive progressive censoring allows us to observe a desired minimum sample size.
For illustration, we present two strategies for such life testing procedures which
ensure a minimum sample size of the data set. In this regard, fully adaptive progres-
sive censoring contributes to the experimental design of progressively censored life
tests.

Finally, it should be mentioned that likelihood and Bayesian inference in all these
models is the same as in the case of prefixed censoring times and censoring plans. In
particular, this yields explicit representations of the maximum likelihood estimators
for exponential lifetimes. But, except for some special cases, the distribution of the
estimators will be different and, in most cases, more complicated.

In what follows, we avoid the standard notation xi :m:n for progressively censored
order statistics, which will be denoted simply by xi . The x’s (and the corresponding
random variable X ’s) correspond to observations ordered according to their indices:

x1 < x2 < · · · .

2 Adaptive Progressive Type-II Censoring

The general setup of adaptive progressive Type-II censoring as proposed by [9]
considers n items on test. By construction, m failure times will be observed and
the censoring scheme is adaptively chosen by the experimenter depending on the
history of the experiment. In fact, the censoring number R j is chosen as a ran-
dom number depending on the previous failure times x1, . . . , x j and the previ-
ous censoring numbers r1, . . . , r j−1. This process is modelled by probability mass
functions (PMF) g j (r j |r1, . . . , r j−1, x1, . . . , x j ). The resulting sample is given by
(X1, R1, . . . , Xm, Rm). In detail, this procedure works as follows:

• Observe X1 = x1 and remove R1 items where R1 ∼ g1(r1|x1).
• Observe X2 = x2 and remove R2 items where R2 ∼ g2(r2|r1, x1, x2).

...
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• Observe X j = x j and remove R j items where R j ∼ g j (r j |r1, . . . , r j−1, x1, . . . ,
x j ).

...

• Observe Xm = xm and remove all remaining Rm = n − m − ∑m−1
j=1 R j items.

The supports of distributions g1, . . . , gm−1 are such that
∑�

i=1 Ri ≤ n − m for all �.
Assume now that the n items’ lifetimes are iid with probability density function

(PDF) fθ and cumulative distribution function (CDF) Fθ and let x j = (x1, . . . , x j ),
r j = (r1, . . . , r j ) for j = 1, . . . , m (and r0 ≡ ∅). Then, the joint PDF of the data
(both X ’s and R’s) can be shown to be

{ m∏

j=1

g j (r j |r j−1, x j )

}{

C(rm)

m∏

j=1

fθ (x j ){1 − Fθ (x j )}r j

}

,

where C(rm) is an appropriately chosen normalizing constant (see [9]). Hence, the
likelihood of θ is the same as in the case when the observed progressive censoring
scheme (r1, . . . , rm−1, rm) had been fixed in advance (see [5], p. 146/7). The same
fact is true for the observed Fisher information matrix,

Iobs(θ) = −∇2
m∑

j=1

[
log fθ (x j ) + r j log{1 − Fθ (x j )}

]
.

This implies that the MLE of θ is obtained as usual. However, its distribution is, in
general, difficult to obtain. In cases where this distribution does not depend on the
observed censoring plan r , it can be explicitly determined (see [9]). For instance,
it is shown in [9] for a two-parameter exponential distribution E (μ, σ ) with PDF
fθ (x) = σ−1e−(x−μ)/σ , x > μ, θ = (μ, σ ) ∈ R × (0,∞), that

μ̂ = X1 ∼ E (μ, σ/n),
mσ̂

σ
= 1

σ

m∑

i=1

(Ri + 1)(Xi − X1) ∼ χ2
2(m−1)

as for progressive Type-II censoring (see [9], [5], p. 146/7). Moreover, the estimators
μ̂, σ̂ are independent.

As mentioned above, some particular models of adaptive progressive Type-II cen-
soring have been discussed in the literature. For illustration, we briefly describe the
censoring strategies in the following examples and explain how they fit into the
above approach. At this point, we would like to mention that the model of progres-
sive Type-II censoring with random removals also fits into the previous approach.
However, since it does not include the observed failures in the decision rule, we do
not really consider it as adaptive. In these procedures, the number of removals R j in
step j is randomly chosen according to a PMF (e.g., a discrete uniform or binomial
PMF) whose support is given by {0, . . . , n − ∑ j−1

i=1 (Ri + 1) − m}. Further details
on these censoring procedures can be found in [5], Sect. 6.2.

http://dx.doi.org/10.1007/978-3-319-25433-3_6
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Example 1 Ng et al. [16] proposed the first adaptive progressive Type-II censoring
scheme called the Ng-Kundu-Chan model. Their procedure starts with a (fixed)
progressive censoring scheme

r◦
m−1 = (r◦

1 , . . . , r◦
m−1)

and a (fixed) timepoint T > 0. The experiment is conducted as described in the
general setup with the one-point PMF

g j (r j |r j−1, x j ) =
{

I (r j = r◦
j ), if x j < T ,

0, if x j � T ,
j = 1, . . . , m − 1

(and rm = n − m − ∑m−1
i=1 ri ), where I (·) denotes the indicator function.

Example 2 BairamovandParsi [2] generalized the experiment of [16] by considering
two (fixed) progressive censoring schemes

r(1)
m−1 = (r (1)

1 , . . . , r (1)
m−1) and r(2)

m−1 = (r (2)
1 , . . . , r (2)

m−1)

with r (2)
j ≤ r (1)

j and (fixed) timepoints 0 < T1 ≤ · · · ≤ Tm−1. Then, they used the
one-point PMFs

g j (r j |r j−1, x j ) =
{

I (r j = r (1)
j ), if x j < Tj ,

I (r j = r (2)
j ), if x j � Tj ,

j = 1, . . . , m − 1

(and rm = n − m − ∑m−1
i=1 ri ). Clearly, for r(1)

m−1 = r◦
m−1, r(2)

m−1 = (0, . . . , 0), and
T1 = · · · = Tm−1 ≡ T , this reduces to the adaptive scheme of [16]. Kinaci [12]
extended the model of [2] by considering k + 1 (fixed) progressive censoring
schemes,

r(i)
m−1 = (r (i)

1 , . . . , r (i)
m−1), i = 1, . . . , k + 1,

as well as a set of (fixed) timepoints Ti j , i = 0, 1, . . . , k, k + 1, j = 1, . . . , m − 1,
0 ≡ T0 j < T1 j < · · · < Tk j < Tk+1, j ≡ ∞. Then, for j = 1, . . . , m − 1,

g j (r j |r j−1, x j ) = I (r j = r (i)
j ), if Ti−1, j < x j ≤ Ti j , i = 1, . . . , k + 1

(and rm = n − m − ∑m−1
i=1 ri ).
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3 Adaptive Progressive Type-I Censoring

Nothing has been published so far discussing explicitly adaptive versions of progres-
sive Type-I censoring. This is probably due to the fact that even standard progressive
Type-I censoring is in general unattractive since the related distribution theory is
intractable in most cases. Recall that in a progressive Type-I censoring scheme, a
vector of timepoints 0 < T1 < · · · < Tk is fixed in advance along with the number of
items R◦

1, . . . , R◦
k−1, R◦

k to be withdrawn at these particular timepoints (see Fig. 2).
Notice that R◦

k is always random since it depends on the number of observed failures.
Let D1, . . . , Dk be the number of observed failures within the k time intervals

(Ti−1, Ti ], i = 1, . . . , k, where T0 ≡ 0. Notice that D1, . . . , Dk are random counters
whichmay be zero. Since there is a chance of having toomany early observations it is
clear that it is possible not to end up with the pre-planned censoring scheme. In fact,
the number of items which are withdrawn from the experiment at time j equals R j =
min

{
R◦

j , n − ∑ j
i=1 Di − ∑ j−1

i=1 Ri
}
, j = 1, . . . , k. The vector (R1, . . . , Rk−1, Rk) is

called the effectively applied progressive censoring scheme.
A general simple adaptive progressive Type-I censoring procedure may be

described as follows. Fix k timepoints T1 < · · · < Tk and put n items on test.

• Set D1 = #{X ′s ≤ T1} and X1 = (X1, . . . , X D1) (≡ ∅ if D1 = 0). At T1, remove
R1 items, where R1 ∼ g1(r1|x1).

• Set D2 = #{X ′s : T1 < X ≤ T2} and X2 = X1 ∪ (X D1+1, . . . , X D1+D2) (≡ X1 if
D2 = 0). At T2 remove R2 items, where R2 ∼ g2(r2|r1, x2). Here, a ∪ b denotes
the concatenation of two vectors a and b.

...

• Set Dk = #{X ′s : Tk−1 < X ≤ Tk} and Xk the vector of all X ′s (≡ ∅ if
D1 = · · · = Dk = 0). At Tk , remove all Rk remaining items.

Notice that a formal definition is quite complicated (see [5], pp. 11–12, for standard
progressive Type-I censoring). Therefore, we present a demonstrative description of
the process only as illustrated in Fig. 2. A rigorous formulation can be given as in
Procedure 1.1.7 of [5] by choosing the number of random removals in each step
according to the given PMFs.

Let D = ∑k
i=1 Di be the number of observed failure times. Then, the joint distri-

bution of the data (X ′s and R′s) is given by

{ k−1∏

i=1

gi (ri |r i−1, xi )

}{

C(rm, dm)

[ d∏

j=1

fθ (x j )

][ k∏

i=1

{1 − Fθ (Ti )}ri

]}

,

for x1 < · · · < xd and rk = n − ∑k
i=1 di − ∑k−1

i=1 ri . Since the likelihood of θ is
proportional to the likelihood when the progressive censoring scheme has been fixed
in advance, i.e.,

[ d∏

j=1

fθ (x j )

][ k∏

i=1

{1 − Fθ (Ti )}ri

]

(1)
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(see [5], p. 313), the MLE of the parameter is obtained as usual. However, its distrib-
ution cannot be easily determined. Notice that the fixed timepoints T1, . . . , Tk cause
problems even in the non-adaptive case, as can be seen in [5], p. 215, and [6].

Example 3 For an underlying one-parameter exponential distribution E (θ), i.e.,
fθ (x) = θ−1e−x/θ , x > 0, the MLE is given by

θ̂ = D−1

( D∑

j=1

X j +
k∑

i=1

Ri Ti

)

,

provided D � 1. Its exact distribution in the non-adaptive case is given in [6] and is
a mixture of truncated gamma distributions. Since this distribution depends on the
censoring scheme R, the distribution is difficult to obtainwhen the censoring numbers
R1, R2, . . . are random except for progressive censoring with random removals, i.e.,
when g(ri |r i−1, xi ) = g(ri |r i−1) for all i . In this case, the probability distribution
can also be expressed as a mixture of truncated gamma distributions.

Example 4 For the two-parameter exponential distribution E (μ, σ ), we get, pro-
vided D � 1,

μ̂ = X1, σ̂ = D−1

{ D∑

j=1

(X j − X1) +
k∑

i=1

Ri (Ti − X1)+
}

,

where (x)+ = max(x, 0). Notice that the result is the same as in standard progres-
sive Type-I censoring (see [10]). However, here, the joint distribution of μ̂ and σ̂

depends on R in a nonstandard way unless g(ri |r i−1, xi ) = g(ri |r i−1) for all i (see
Example 3).

Notice that, although the joint CDF of (μ̂, σ̂ ) can be expressed in closed form in
the non-adaptive case, exact inference does not work as usual since the distribution
of σ̂ is not stochastically monotone in σ in general. This was noticed in [15] in a
different context involving E (μ, σ ), but it is true here, too.

4 Fully Adaptive Progressive Censoring

In a standard progressive Type-I censoring, we fix k timepoints

T1 < · · · < Tk
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and the numbers of items to be removed

R◦
1, . . . , R◦

k−1.

In fact, the T ’s are “checkpoints” at which the experimenter plans to remove some
(or none) still surviving items. In simple adaptive progressive Type-I censoring, the
censoring numbers Ri depend on what has been observed so far, i.e., on Ri−1 and on
X i . Thus, the experimenter can decide during the experiment what to remove. Fully
adaptive progressive Type-I censoring goes one step further and allows us to choose
the checkpoints depending on the previous observations.

4.1 Description of Fully Adaptive Progressive Censoring

Begin by determining some (possibly random) candidate checkpoint T̃10 > 0. If there
are no failures in the interval (0, T̃10] set T1 = T̃10 and D1 = 0 else at the time of

each failure update sequentially T̃10 to T̃11, T̃12, . . ., based on some rule. That is, as
soon as you observe x j set

T̃1 j ∼ h1 j (T̃1 j |x1, . . . , x j , T̃10, T̃11, . . . , T̃1, j−1), T̃1 j > x j , (2)

where h1 j (·|x1, . . . , x j , T̃10, T̃11, . . . , T̃1, j−1) denotes a (known) PDF. Notice that T̃1 j

need not be larger nor smaller than T̃1, j−1. Let now

D1 = argmin
j

{
T̃1 j : there are no failures in the time interval (x j , T̃1 j ]

}

and T1 = T̃1d1 , x1 = (x1, . . . , xd1). After having observed T1, remove R1 itemswhere

R1 ∼ g1(r1|T1, x1).

Notice that the contribution to the joint density of what has been observed so far
will be

h10(T̃10|T0 ≡ 0)×
{ d1∏

j=1

h1 j (T̃1 j |T̃10, . . . , T̃1, j−1, x1, . . . , x j )

}

I (T1 = T̃1d1)

× g1(r1|T1, x1) × n!
(n − d1)!

{ d1∏

j=1

fθ (x j )

}

{1 − Fθ (T1)}r1 .

Determine now some new candidate checkpoint T̃20 > T1. If there are no failures in
(T1, T̃20] set T2 = T̃20 and D2 = 0 else at the time of each failure “update” sequen-
tially T̃20 to T̃21, T̃22, . . .. That is, as soon as you observe xd1+ j , j � d1 + 1, set
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T̃2 j ∼ h2 j (T̃2 j |x1, xd1+1 . . . , xd1+ j , T1, T̃20, T̃21, . . . , T̃2, j−1), T̃2 j > xd1+ j

by similarity with (2). Let

D2 = argmin
j

{
T̃2 j : there are no failures in the time interval (xd1+ j , T̃2 j ]

}

and T2 = T̃2d2 , x2 = x1 ∪ (xd1+1, . . . , xd1+d2). After having determined T2, remove
R2 items where

R2 ∼ g2(r2|T1, T2, x2, r1).

Proceed similarly in order to obtain

(T3, D3, X3, R3), . . . , (Tk, Dk, Xk, Rk).

Notice that k can be either fixed in advance or random as well. For instance, it can
be the first checkpoint Ti that reaches or exceeds some predetermined timepoint T .
The procedure terminates with probability one if it is reasonably planned. The joint
density of the data has the form

k∏

i=1

[{ di∏

j=0

hi j (T̃i j |everything observed so far)

}

I (Ti = T̃idi )

]

×
{ k∏

j=1

g j (r j |T1, . . . , Tj , x j , r j−1)

}

×
{

C(rk , dk)

[ d∏

j=1

fθ (x j )

][ k∏

i=1

{1 − Fθ (Ti )}ri

]}

,

for d = ∑k
i=1 di , x1 < · · · < xd , 0 = T0 < T1 < · · · < Tk , 0 ≤ r� ≤ n − ∑�

i=1 di −
∑�−1

i=1 ri and rk = n − ∑k
i=1 di − ∑k−1

i=1 ri . Notice that, once more, the likelihood of
θ is proportional to the likelihood when both the censoring times (T1, . . . , Tk) and
the censoring numbers (R1, . . . , Rk−1) had been fixed in advance (see Eq. (1)).

Example 5 In order to illustrate the fully adaptive procedure, we present an artificial
example. An illustration of the adaption process is depicted in Fig. 3.

Suppose that we put n = 15 items on test and we choose T̃10 = 0.5 as a first
inspection time.

• Let the first failure time be x1 = 0.40. Then, for whatever reason, we ‘shift’ the
originally planned inspection time T̃10 = 0.5 to T̃11 = 0.75 and proceed with the
monitoring of the life test.

• The next failure is observed at x2 = 0.60. Then, we shift the checkpoint again but
to the left: T̃12 = 0.65.

• Since that time no further failures occur. Thus, we set T1 = 0.65 to be the first
censoring time. Using the inputs d1 = 2, x1 = (0.40, 0.60), a random generation
of the censoring number R1 is conducted according to the assumed PMF g(·|x1).
Suppose that its outcome is given by r1 = 5 so that r1 = 5 surviving items are
removed at T1 = 0.65. Then, the next inspection time is defined as T̃20 = 0.90.
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Fig. 3 A fully adaptive progressive censoring procedure as described in Example5. The red dotted
lines represent the shifts of the inspection times. They illustrate how the experimenter may change
the inspection times depending on the observed failures (represented by •)

• In the interval (0.65, 0.90] no failures occur. Thus, we set T2 = 0.90.With d2 = 0,
x2 = (0.40, 0.60), the randomprocedure to generate R2 is started again. Let r2 = 3
and remove another r2 = 3 surviving items. As above, we fix the next checkpoint
T̃30 = 1.50 and continue.
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• At time x3 = 1.10, another failure occurs and we ‘move’ the next checkpoint
to T̃31 = 1.40. After observing the fourth failure time x4 = 1.30, we ‘move’ the
checkpoint again to T̃32 = 1.50. Then, we observe x5 = 1.45 and we ‘move’ the
inspection time to T̃33 = 1.60. Since no further failures occur until 1.60, we set
T3 = 1.60. Then, with d3 = 3, x3 = (0.40, 0.60, 1.10, 1.30, 1.45), we again toss
the dice. This yields r3 = 2 so that all remaining surviving items are withdrawn
and the experiment terminates.

Based on the observed data, the likelihood becomes proportional to

fθ (0.40) fθ (0.60) fθ (1.10) fθ (1.30) fθ (1.45)

× {1 − Fθ (0.65)}5{1 − Fθ (0.90)}3{1 − Fθ (1.60)}2.

Remark 1 The above construction gives rise to the following remarks:

1. In the above procedure, it is possible to choose the inspection times as failure
times, i.e., T̃i j = x� for some i, j, �. This will lead us to a combination of pro-
gressive Type-I and Type-II censoring.

2. In particular, if Ti = Xi , i = 1, . . . , m, is fixed in advance, then we get a progres-
sively Type-II censored sample. Thus, progressive Type-II censoring is a special
case of fully adaptive progressive Type-I censoring.

3. If we introduce some threshold T > 0 and put T̃i0 = min{xi , T } for all i , then we
have an adaptive hybrid progressive censoring scheme.

4. Based on the above remarks, the fully adaptive progressive censoring scheme
described earlier is very general since it has as special cases conventional and
progressiveType-I andType-II censoring schemes aswell as their hybrid versions.

5. In the construction process of fully adaptive progressive censoring, it is assumed
that the probability mass functions g j (r j |T1, . . . , Tj , x j , r j−1) as well as the
densities hi j (T̃i j |everything observed so far) do not depend on the parameter θ .
They depend only on the past in the sense that they include information about
the inspection times T1, . . . , Tj , the observed failure time x j , and the employed
previous censoring numbers r j−1. For instance, since the parameter θ is unknown
and g governs the generation of the current censoring numbers, g must not depend
on θ . Otherwise, it will not be possible to select a censoring scheme. Of course,
technically, we can allow g to depend on θ in which case the likelihood would be
more complicated.
However, one may think of sequential procedures which measure the information
in the observations to define a stopping rule. For instance, we may consider
estimates of the information about θ included in T1, . . . , Tj , x j , r j−1 or perform
statistical tests as in sequential analysis (see, e.g., [14]).Dependingon theoutcome
of this procedure, wemay stop or continue the experiment. However, this will lead
to the same approach where, for example, g is replaced by a different probability
mass function g̃.

6. Since, under fully adaptive progressive censoring, the likelihood of θ is the same
as in the case of standard Type-I progressive censoring, Bayesian inference would
work as usual, too. For instance, if π(θ) is some prior distribution for θ , then the
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corresponding posterior distribution will be

π(θ |data) ∝ π(θ)
[ d∏

j=1

fθ (x j )
][ k∏

i=1

{1 − Fθ (Ti )}ri

]
,

i.e., it will coincide with the posterior density we would have obtained based on
a fixed Type-I progressive censoring scheme.

To get an impression of the flexibility of fully adaptive progressive censoring, we
present two further examples not covered by the standard models.

Example 6 First, we introduce a progressively censored experiment with a random
number of removals at random timepoints. Suppose that n items are put on a life
test and that, as the experiment evolves, we have to withdraw some items at cer-
tain (but not predetermined) timepoints due to customers’ demands. The demands
R1, R2, . . . arrive at random times T1, T2, . . .. The experiment terminates either at
the last observed failure or at some timepoint Tk due to a demand of all remaining
items. In this case the joint density of the X ’s, T ’s, R’s can be expressed as

ω(T1, . . . , Tk, r1, . . . , rk−1)

{

C(rk, dk)

[ d∏

j=1

fθ (x j )

][ k∏

i=1

{1 − Fθ (Ti )}ri

]}

,

where ω is a product of the conditional PDFs of the T ’s given R’s and R’s given T ’s.

Example 7 The following scenario discusses an approach to determine the check-
points based on observed failures. An obvious issue in progressive Type-I censoring
is the choice of the times T1 < · · · < Tk of withdrawals. Of course, these times may
be imposed by rules unrelated to the experiment. However, when the experimenter
is allowed to choose the timepoints T1, T2, . . ., he/she wants them to be meaningful.
Moreover, in most cases, in order for the inferential procedures to be valid, a mini-
mum number of observations, m say, must be obtained. Thus, a possible plan might
be the following:

Run the experiment until a desired minimum of m failure times X1, . . . , Xm has
been observed. At Xm , remove R1 items (so that T1 = Xm) and determine the next
checkpoint based on what has been observed so far. Such a construction ensures
that enough data will be available for an intended statistical analysis. For instance,
such an experimental designmay help to avoid conditional inference or the undesired
situations where all observations have been censored from the life test. In this regard,
progressive Type-I censoring may be modified as follows:

Suppose a progressive Type-I censoring procedure with censoring times T1 <

· · · < Tk and censoring plan (R◦
1, . . . , R◦

k−1) is to be conducted. Then, in order to
ensure at least m observations, the experimenter may apply the following decision
rules:

1. Before starting the progressive Type-I procedure, the experimenter waits for the
firstm failure times X1:n, . . . , Xm:n . Then, the experiment is continued as planned
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T1

withdrawn

0

T2

withdrawn

R1 + R2

T3

withdrawn

R3

Tk

withdrawn

Rk

X1 X2 X3 X4 Xs

D
1
=

1

D
2
=

2

D
3
=

0

Fig. 4 Generation process of modified progressively Type-I censored order statistics when D1 =
1 < m = 2. The process ensures that a minimum number of m = 2 observations will be available
for the inferential procedures. Thus, the sample size s satisfies s ≥ m, as desired

for the checkpoints exceeding Xm:n . If Tj is the first checkpoint exceeding Xm:n ,
the units notwithdrawn at the previous timepoints T1, . . . , Tj−1 maybewithdrawn
at Tj (see Fig. 4 with m = 2, D1 = 1).
Alternatively, the experimenter may decide to keep them in the experiment and
to remove them at the termination time Tk (if they have not failed before).

2. The progressive Type-I procedure is carried out as planned but the experimenter
ensures that m observations will be available by stopping the removal process
immediately when the number of observations falls below a prefixed sample
size m.
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Renyi Entropy of Progressively Censored
Data

Z.A. Abo-Eleneen and B. Almohaimeed

Abstract In this paper, we discuss the calculation of Renyi entropy in a set of
consecutive order statistics (OS) and a set of progressively Type-II censored OS.
We propose a useful, but indirect, computational approach for computing the Renyi
entropy of consecutive order statistics that simplifies the calculations. Some recur-
rence relations for the Renyi entropy of a set of consecutive order statistics are also
derived to facilitate the Renyi entropy computation using the proposed decomposi-
tion. Moreover, an extension of the calculation of Renyi entropy for a set of pro-
gressively Type-II censored OS is established. Efficient methods are derived which
simplify the computation of the Renyi entropy in both settings.

Keywords Renyi entropy · Progressive censoring · Order statistics · Recurrence
relations · Markov chain

1 Introduction

The field of information theory has increased rapidly due to its applications in many
areas, including statistical inference [21], signal processing, pattern recognition [17],
biomedical engineering [14], statisticalmechanics [16] and stochastic processes [13].

Renyi entropy of individual order statistics has been studied in [1], and residual
Renyi entropy of order statistics and record values has been studied in [23]. The
entropy of both single and consecutive order statistics have been studied in [12, 17,
18, 22]. The entropy of the progressively Type-II censored OS has been studied in
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[3] and [5]. Recently Jomhoori and Yousefzadeh [15] discussed the estimation of
residual Renyi entropy under progressive censoring.

Park [17] reported that order statistics can be applied to signal processing as order
statistic filters, which include the median filter as a special case. For choosing an
appropriate length of an order statistic filter, it will be useful to consider some mea-
sures of information in consecutive order statistics. In this paper, we provide the
methods for calculating the Renyi entropy in consecutive order statistics. Calcula-
tions of the Renyi entropy of a set of consecutive order statistics is relatively more
complicated than that of the Renyi entropy of the individual order statistics, which
has been studied by Abbasnejad and Arghami [1], because the joint Renyi entropy
of consecutive order statistics is an n-dimensional integral.

Let X be an absolutely continuous random variable with a cumulative distribution
function (CDF) F(x) and probability density function (PDF) f (x). Shannon entropy,
which is a key measure of information, is defined as:

H(X) = −
∫ ∞

−∞
f (x) log f (x)dx . (1)

A flexible extension of Shannon entropy was introduced by Renyi [19]. The Renyi
entropy of order α, Hα(X), of the random variable X is defined by Cover and
Thomas [9] as:

Hα(X) = − 1

α − 1
log

∫ ∞

−∞
f α(x)dx, (2)

where limα→1 Hα(X) = H(X) is the Shannon entropy. Suppose that we have an
independent and identically distributed (i.i.d.) random sample of size n and arrange
the sample in ascending order such that

X1:n < X2:n < · · · < Xn:n,

where Xr :n is the r th order statistic.
Progressive censoring has received considerable attention in recent decades, par-

ticularly in reliability analysis. It is a more general censoringmechanism than the tra-
ditional Type-I and Type-II censoring. Following Balakrishnan and Aggarwala [6],
a sample of progressively Type-II censored OS can be described as follows. Let
n units be placed in test at time zero. Immediately following the first failure, R1

surviving units are removed from the test at random. Then, immediately follow-
ing the second failure, R2 surviving units are removed from the test at random.
This process continues until, at the time of the mth observed failure, the remain-
ing Rm = n − R1 − R2 − · · · − Rm−1 − m, have all been removed from the
experiment, so the life testing stops at the mth failure. The observed failure times
X = (X1:m:n, . . . , Xm:m:n) constitute progressive Type II censored OS. The joint
Renyi entropy contained in (X1:m:n, . . . , Xi :m:n), i.e., the collection of the first i pro-
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gressively Type II censored OS, is defined as

Hα
1...i :m:n(X)

= −1

α − 1
log

∫ ∞

−∞
· · ·

∫ x2:m:n

−∞
f α
1:m:n,...,i :m:n(x1:m:n, . . . xi :m:n)dx1:m:n . . . dxi :m:n,

(3)

where f1:m:n,...,i :m:n(x1:m:n, . . . , xi :m:n) is the density function of (X1:m:n, . . . ,
Xi :m:n). To our knowledge, the exact values of the joint Renyi entropy Hα

1...i :m:n
have not been previously obtained. In the case of Hα

1...i :m:n , a difficulty arises due to
the involvement of an integral over i random variables. We provide a method that
simplifies the calculation of Hα

1...i :m:n .
In this paper, we focus on the calculation of the joint Renyi entropy, both in a

set of order statistics and in a consecutive set of progressively Type-II censored OS.
In Sect. 2, we consider the decomposition of the Renyi entropy of order statistics.
In Sect. 3, we derive some recurrence relations for the first r order statistics and
consider a dual principle for the Renyi entropy of order statistics. In Sect. 4, we
extend the decomposition of the Renyi entropy of order statistics to Renyi entropy
in progressively Type-II censored OS and derive a recurrence relation. In Sect. 5, we
provide an efficient computational method that avoids the integrals in the calculation
of the Renyi entropy in progressively Type-II censored OS. A conclusion is provided
in Sect. 6.

2 Decomposition of the Joint Renyi Entropy

Since the Renyi entropy is a measure of uncertainty, it is natural that the total amount
of Renyi entropy is decreased if the i.i.d. observations are ordered. The following
identity shows the magnitude of this reduction:

Lemma 1

Hα
1...:n:n = nHα

1:1 − log (n!)α
α − 1

. (4)

Proof The proof can be obtained directly by using the Renyi entropy definition in
(2) and the joint PDF of the ordered sample. �

As order statistics form a Markov chain [11], we have the following results for
the conditional Renyi entropy and the mutual information.

Lemma 2
Hα

r+1...:n|i ...r :n = Hα
r+1...n|r :n, i = 1, . . . , r, (5)

Hα
r+1...i :n − Hα

r+1...i :n|r :n = Hα
r+1:n − Hα

r+1:n|r :n, i = r + 1, . . . , n. (6)
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Proof From the Markov chain property of order statistics, (5) follows directly. Fur-
thermore, (6) can be obtained by using (5) and the symmetry of the mutual informa-
tion [10],

Hα
r+1...i :n − Hα

r+1...i :n|r :n = Hα
r+1:m:n − Hα

r+1:n|r :n
= Hα

r :n − Hα
r :n|r+1:n .

�

Next, we show the decomposition of the Renyi entropy of an ordered sample.

Lemma 3
Hα

1...n:n = Hα
1...r :n + Hα

r+1...n:n|r :n. (7)

Proof The proof follows by the additive property of the Renyi entropy measure and
Lemma 1. �

The following lemma shows that Hα
i ...s:n can be obtained jointly from Hα

1...s:n and
Hα

1...n:n .

Lemma 4
Hα

i ...r :n = Hα
1...r :n + Hα

i ...n:n − Hα
1...n:n. (8)

Proof Since Hα
r+1...n:n|r :n = Hα

r+1...n:n|r ...n:n we have in view of (7):

Hα
1...n:n = Hα

1...r :n + Hα
r+1...n:n|r :n.

Hence,
Hα

1...n:n = Hα
1...r :n + Hα

i ...n:n − Hα
i ...r :n.

�

We see from (4) and (7) that the Renyi entropy of r ordered data points Hα
1...r :n

can be obtained from Hα
r+1...n:n|r :n . So we consider Hα

r+1...n|r :n to study Hα
1...r :n .

Let (X1:n, . . . , Xn:n) be an ordered sample. The Renyi entropy in the first i order
statistics (X1:n, . . . , Xi :n) can be written as

Hα
1...i :n = − 1

α − 1
log

∫ ∞

−∞
· · ·

∫ x2:n

−∞
f α
1..i :n(x1:n, . . . , xi :n)dx1:n . . . dxi :n, (9)

where f1...i :n(x1:n, . . . , xi :n) is the joint PDF of the first i order statistics.
Using the Markov chain property of order statistics, we can obtain the following

decomposition for the score function:

log f1...n:n = log f1...i :n + log fi+1...n:n|i :n,
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where fi+1...n:n|i :n is the PDF of (Xi+1...n:n, . . . , Xn:n) given Xi :n = xi . The following
decomposition follows from the strong additivity of the Renyi entropy,

Hα
1...n:n = Hα

1...i :n + Hα
i+1...n:n|i :n

where Hα
i+1...n:n|i :n is the average of the conditional information in (Xi+1:n , . . . , Xn:n)

given Xi :n = xi .
On the other hand, in view of the result of David and Nagaraja [11], fi+1...:n|i :n is

the joint density of the OS sample of size (n − i), drawn from the parent distribution
f (x) and truncated from the left at xi , with density f (x)

1−F(xi )
, x > xi . Therefore,

Hα
i+1...n:n|i :n can be written as the double integral

Hα
i+1...:n|i :n = (n − i)

∫ ∞

−∞
g(w) fi :n(w)dw − log((n − i)!)α

α − 1
, (10)

where

g(w) = − 1

α − 1
log

∫ ∞

w
{ f (x)

1 − F(w)
}αdx

and fi :n(x) is defined by

fi :n(x) = n!
(r − 1)!(n − i)! F(x)i−1 [1 − F(x)]n−i+1 f (x),

− ∞ < x < ∞, 1 ≤ i ≤ n.

3 Recurrence Relations

We have shown that the Renyi entropy of any consecutive order statistics can be
obtained from the entropies of the right- and left-censored data. In this section, we
consider Hα

1...i :n , while Hα
r ...n:n will be considered in the next one. Since the Renyi

entropy of the complete sample Hα
1...n:n is available, the Renyi entropy Hα

1...i :n can be
derived from (7) and (10) and Hα

r ...n:n can be derived from the duality of the Renyi
entropy of order statistics.

Proposition 1

Hα
i+1...n−1|i :n−1 = (n − i − 1)

n
Hα

i+1...n|i :m:n + i

n
Hα

i+2...n|i+1:n + C1(n, i, α), (11)

where
C1(n, i, α) = α

n(α − 1)
{(n − i) log(n − i) − log(n − i)!}. (12)

Proof From (10) we have
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Hα
i+1...n:n−1|i :n−1 = (n − i − 1)

∫ ∞

−∞
g(w) fi :n−1(w)dw − log((n − i − 1)!)α

α − 1
, (13)

on the other hand fi :n−1(w) can be written as Cole [8]

fi :n−1(w) = n − i

n
fi :n(w) + i

n
fi+1:n(w). (14)

Combining (13) and (14) proves this result. �

The following proposition shows that the Renyi entropy of the first i OS of sample
size n − 1 can be expressed as a linear combination of the first i and i + 1 OS of
sample size n.

Proposition 2

Hα
1...i :n−1 = (n − i − 1)

n
Hα

1...i :n + i

n
Hα

1...i+1:n + C2(n, i, α), (15)

where

C2(n, i, α) = α

n(α − 1)

{

(n−1) log n−(n−i) log(n−i)−log (n − 1)!+log(n−i)!
}

.

Proof For a sample of size n − 1, the general decomposition of the Renyi entropy
of OS takes the form

Hα
1...n−1:n−1 = Hα

1...i :n−1 + Hα
i+1...n−1:n−1|i :n−1. (16)

By applying Proposition 1 to (16), we get

Hα
1...n−1:n−1 = Hα

1...i :n−1 + (n − i − 1)

n
Hα

i+1...n:n|i :n

+ i

n
Hα

i+2...n:n|i+1:n + C1(n, i, α), (17)

whereC1 is definedby (12).Byusing (4) and (7), the expression (17) canbewritten as:

(n − 1)Hα
1:1 − α log(n − 1)!

α − 1
= Hα

1...i :m:n−1 + n − i − 1

n

{

nHα
1:1 − α log(n)!

α − 1
− Hα

1...i :n
}

+ i

n

{

nHα
1:1 − α log(n)!

α − 1
− Hα

1...i+1:n
}

+ C1(n, R1 . . . , Ri ).

After some simplifications Proposition 2 follows. �

Suppose that we have obtained the sequences Hα
1:i for i = 1, . . . , n, then we can

use the following recurrence relation to obtain Hα
1...i :n, for 2 ≤ i ≤ n.
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Proposition 3

Hα
1...i :n =

n∑

r=n−i+1

Cr−2
n−r−1C

n
r (−1)r−n+i−1Hα

1:r + C3(n, i, α), (18)

where Cn
r = n!

r !(n−r)! and

C3(n, i, α) = α

α − 1

{

log (n − r)! − log(n)! +
n∑

r=n−i+1

Cr−2
n−r−1Cn

r (−1)r−n+i−1 log i

}

.

Proof If we use Renyi entropy decomposition in (10), Hα
i+1...n:n|i :n can be written as

Hα
i+1...:n|i :n = (n − i)

∫ ∞

−∞
g(w) fi :n(w)dw − α log(n − i)!

α − 1
.

Using the recurrence relation between the densities of order statistics established by
Srikantan [20],

fi :n =
n∑

r=n−i+1

Cr−2
n−r−1C

n
r (−1)r−n+i−1 f1:r . (19)

Then, Hα
i+1...n:n|i :n can be written as

Hα
i+1...:n|i :n = (n − i)

n∑

r=n−i+1

Cr−2
n−r−1C

n
r (−1)r−n+i−1

∫ ∞

−∞
g(w) f1:r (w)dw

−α log(n − i)!
α − 1

= (n − i)
n∑

r=n−i+1

Cr−2
n−r−1C

n
r (−1)r−n+i−1 α log(i − 1)!

α − 1
+ Hα

2...:i |1:i

−α log(n − i)!
α − 1

.

Proposition 3 follows by using (4) and (7) and noting that

n∑

r=n−i+1

Cr−2
n−r−1C

n
r (−1)r−n+i−1r = n.

�
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3.1 The Dual Principle

Balasubramanian andBalakrishnan [7] established the dual principle for themoments
and distributions of order statistics. Park [17], in Lemma 4.1, derived the duality for
the entropy of order statistics by considering the mirror image of f (x) about x = 0.
It is easy to see that Park [17], Lemma 4.1, also satisfies the duality of the Reyni
entropy of order statistics. Hence, we can obtain a dual relation to Proposition 2 as

Hα
r ...n−1:n−1 = (n − r)

(n)
Hα

r ...n:n + r − 1

(n)
Hα

r+1...n:n + C2(n, i, α) (20)

and a dual relation to Proposition 3 as

Hα
r ...n:n =

n∑

i=r

Ci−2
r−2Cn

i (−1)i−r Hα
i :i + C3(n, i, α). (21)

Thus Proposition 3 and (21) along with (8) show that the Renyi entropy of any set
of order statistics can be expressed as a weighted sum of Hα

1:r , r = i − s + 1, . . . , n
and Hα

r :r , r = i, . . . , n.

Remark 1 For the case when α → 1, the results in Sects. 2 and 3 simplify to corre-
sponding results in Park [17] for the Shannon entropy of consecutive OS.

3.2 Examples

In order to calculate Hα
1...i :n and Hα

j ...n:n , it is enough to calculate Hα
1:n and Hα

n:n . Note
that Hα

1:n may be written in terms of the hazard rate:

Hα
1:n = − log n + 1

α − 1
log

∫ ∞

−∞
f1:n(x)hα−1(x)(1 − F(x))n(α−1)dx . (22)

Furthermore, Abbasnejad and Arghami [1] used the probability integral transforma-
tion to find a representation for Hα

i :n in a single order statistic Xi :n . Below, we provide
expressions for the exponential and Pareto distributions.

Example 1 For the exponential distribution f (x) = θ exp (−θx), x > 0, θ > 0

Hα
1:n = − log nθ + logα

α − 1
,

Hα
n:n = − α

α − 1
log θ − 1

α − 1
logβ(α, α(n − 1) + 1).
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Example 2 For the Pareto distribution f (x) = θβθ

xθ , x ≥ β > 0, θ > 0,

Hα
1:n = − α

α − 1
log nθ + 1

α − 1
logβ(α(nθ + 1) − 1), α((n − 1) + 1).

4 Progressively Type-II Censored Order Statistics

The joint Renyi entropy contained in a sample of progressively Type-II censored
order statistics, (X1:m:n, . . . , Xm:m:n), is defined as

Hα
1...m:m:n(X)

= −1

α − 1
log

∫ ∞

−∞
. . .

∫ ∞

−∞
f α
1:m:n,...,m:m:n(x1:m:n, . . . , xm:m:n)dx1:m:n . . . dxm:m:n,

where the joint density function f1:m:n,..., m:m:n(x1:m:n, . . . , xi :m:n) can be written
as in [6],

f1:m:n,...,m:m:n(x1:m:n, . . . , xm:m:n) = c
m∏

i=1

f (xi :m:n; θ)[1 − F(xi :m:n; θ)]Ri ,

where c = n(n− R1−1)(n− R1− R2−2) · · · (n− R1− R2− R3 . . .− Rm−1−m+1).
In Lemma 1, we have shown how much the Renyi entropy of an i.i.d. random

sample of size n is reduced if it is ordered (see (4)). In view of (4) and noting that a
progressive Type II censored OS sample can be seen as an ordered sample,

(X1:m:n, . . . , Xm:m:n),

with the removals (R1, R2, . . . , Rm), we have the following result for the Renyi
entropy of the progressive Type II censored OS.

Lemma 5

Hα
1...m:m:n = nH1:1:1 − α log c

(α − 1)
, (23)

where Hα
1:1:1 = Hα

1:1 = −1
α−1 log

∫ ∞
−∞ f α(x)dx.

We can obtain the following result by taking steps similar to those outlined in
Sect. 2.

Lemma 6
Hα

r+1...m:m:n|i ...r :m:n = Hα
r+1...m:m:n|r :m:n, i = 1, . . . , r (24)

Hα
r+1...i :m:n − Hα

r+1...i :m:n|r :m:n = Hα
r+1:m:n − Hα

r+1:m:n|r :m:n, i = r + 1, . . . m. (25)
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Next, we have the following decomposition of the Renyi entropy of progressively
Type-II censored OS:

Hα
1...m:m:n = Hα

1...r :m:n + Hα
r+1...m:m:n|r :m:n. (26)

From (26) and (23), theRenyi entropy of thefirst i progressivelyType-II censoredOS,
Hα

1...i :m:n , can be obtained from Hα
i+1...m:m:n|i :m:n . We consider using Hα

i+1...m:m:n|i :m:n
to obtain Hα

1...i :m:n , where Hα
1...i :m:n is defined by (3).We can obtain Hi+1...m:m:n|i :m:n as

a double integral calculating Hi+1...n:n|i :n using a method similar to the one described
in Sect. 2:

Hα
i+1...m:m:n|i :m:n = (n −

i∑

j=1

R j − i)
∫ ∞

−∞
g(w) fi :m:n(w)dw

−
log

(
(n − ∑i

j=1 R j − i)!
)α

1 − α
, (27)

where

g(w) = − 1

α − 1
log

∫ ∞

w

{
f (x)

1 − F(w)

}α

dx

and fi :m:n(x) is defined by

fi :m:n(x) = ci−1

i∑

j=1

a j (i)(1 − F(x))γ j −1 f (x), − ∞ < x < ∞, 1 ≤ i ≤ m (28)

with

γi = n − i + 1 +
m∑

j=i

Ri , ci−1 =
i∏

j=1

γ j 1 ≤ i ≤ m

and

a j (i) =
i∏

r=1,r �= j

1

γr − γ j
, 1 ≤ j ≤ i ≤ m.

Since we have the Renyi entropy Hα
1...m:m:n of the complete sample, then the Renyi

entropy Hα
1...i :m:n can be now easily derived from (26) and (27).
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4.1 Recurrence Relations

Recurrence relations between the CDF (PDF) of progressively Type-II censored OS
have been studied by many authors to simplify the calculation of moments of pro-
gressively Type-II censored OS. Abo-Eleneen [2] obtained the following recurrence
relation between the PDFs of the progressively Type-II censored OS:

(m +
m∑

j=1

R j ) fi :m:n−1 = (m − i +
m∑

j=r+1

R j ) fi :m:n + (i +
i∑

j=1

R j ) fi+1:m:n. (29)

Using (29) and the decomposition of the Renyi entropy in (27), we have the following
results for the Renyi entropy in the progressive Type II censoring scheme.

Proposition 4

Hα
i+1...m:m:n−1|i :m:n−1 = (n − ∑i

j=1 R j − i)

(m + ∑m
j=1 R j )

Hα
i+1...m:m:n|i :m:n

+ (
∑i

j=1 R j + i)

(m + ∑m
j=1 R j )

Hα
i+2...m:m:n|i+1:m:n

+d1(n, m, R1, . . . , Ri , α),

where d1(n, m, R1, . . . , Ri , α) =

α

n(α − 1)
{(n −

i∑

j=1

R j − i) log(n −
i∑

j=1

R j − i) − log(n −
i∑

j=1

R j − i)!},

and n = ∑m
j=1 R j + m.

Proof The result can be obtained by taking similar steps as in Proposition 1 and
using the Renyi entropy decomposition in (27). �

The next proposition shows that the Renyi entropy of the first r progressively
Type-II censored OS of sample size n − 1 can be obtained as a linear combination
of the first r and r + 1 of the progressively Type II censored OS of sample size n.

Proposition 5

Hα
1...i :m:n−1 = (n − ∑i

j=1 R j − i − 1)

(m + ∑m
j=1 R j )

Hα
1...i :m:n

+ (
∑i

j=1 R j + i)

(m + ∑m
j=1 R j )

Hα
1...i+1:m:n + d2(n, m, R1, . . . , Ri , α),
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where

d2(n, m, R1, . . . , Ri , α) = α

n(α − 1)
{(n − 1) log n + log(n −

i∑

j=1

R j − i)!

− log(n − 1)! − (n −
i∑

j=1

R j − i) log(n −
i∑

j=1

R j − i)}.

Proof This result can be obtained by taking similar steps as in Proposition 2. �

Remark 2 For R1 = R2 = · · · = Rm = 0 all results of Sect. 4 simplify to corre-
sponding results for the Renyi entropy for consecutive OS.

5 Computational Method for Calculating Hα
1...i:m:n

In this section, we provide another approach to simplifying the calculation of the
Renyi entropy in a collection of progressively Type-II censored OS. We avoid the
integrals in the calculation of Hα

1...r :m:n in which the computation of the Renyi entropy
in a sample of progressively Type-II censored OS simplifies to a summation of
Renyi entropy of the smallest OS of varying sample size, Hα

1:n . Using (22), we have
the following representation of Renyi entropy in the smallest progressive Type-II
censored OS, X1:m:n:

Hα
1:m:n = − log n + 1

α − 1
log

∫ ∞

−∞
f1:m:n(x)hα−1(x)(1 − F(x))n(α−1)dx . (30)

Theorem 1 Let (X1:m:n, . . . , Xm:m:n) be a sample of progressively Type-II censored
OS with censoring scheme (R1, R2, . . . , Rm). The Renyi entropy in the first i pro-
gressively Type-II censored OS (X1:m:n, . . . , Xr :m:n) can be written as

Hα
1...r :m:n = − log c′(r) + 1

1 − α

×
r∑

s=1

log c′(s)
s−1∑

i=1

ci,s−1(R1 + 1, . . . , Rs−1 + 1)

R′
i

exp (1 − α)(log R′
i + Hα

1:R′
i
),

where, R′
i = (R∗

s + 1) + ∑s−1
j=s−i (R j + 1), R∗

s = (n − s − R1 − · · · − Rs−1 + 1),
c′(t) = n(n − R1 − 1) · · · (n − R1 − · · · − Rt−1 − t + 1) and

ci,s(R1, . . . , Rs) = (−1)i

{∏i
j=1

∑s−i+ j
k=s−i+1 Rk}{∏s−i

j=1

∑s−i
k= j Rk}
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in which empty products are defined as 1.

Proof By the Markov property of progressively Type-II censored OS, one can write

f1:m:n,...,r :m:n(x1:m:n, . . . , xr :m:n) = f1:m:n(x1) f2|1:m:n(x2|x1). . . fr |r−1:m:n(xr |xr−1),

where fi+1|i :m:n(xi+1|xi ) is the conditional PDF of Xi+1:m:n given Xi :m:n = xi .There-
fore, we have

Hα
1:m:n,...,r :m:n = Hα

1:m:n + H2|1:m:n + · · · + Hα
r |r−1:m:n, (31)

where Hα
i+1|i :m:n is the expected Renyi entropy in Xi+1:m:n given Xi :m:n = xi , i.e.,

Hα
i+1|i :m:n = E{ 1

1 − α
log

∫ ∞

−∞
f α
i+1|i :m:n(x |xi :m:n)dx}. (32)

The conditional PDF fi+1|i :m:n(xi+1|xi ) is given in [4] as

fi+1|i :m:n(xi+1 | xi ) = (n − R1 − · · · − Ri − i)h(xi )

(
1 − F(xi )

1 − F(xi+1)

)(n−R1−···−Ri −i)

,

(33)
where h(xi ) = f (xi )

1−F(xi+1)
. We now use (30) and note that, given Xi :m:n = xi ,

Xi+1:m:n has the same PDF as the first order statistic from a random sample of size
(n − R1 − · · · − Ri − i) with PDF g(x) = f (x)

1−F(xi )
, x > xi . The expression in (32)

can then be written as

Hα
i+1|i :m:n = − log(n − R1 − · · · − Ri − i)

+ 1

1 − α
log

∫ ∞

−∞
fi+1:m:n(x)hα−1(x)(1 − F(x))n(α−1)dxi . (34)

Thus by using (31) and (34), Hα
1...r :m:n can be expressed as a summation of a single

integral as

Hα
1...r :m:n = − log c′(r) + 1

1 − α

r∑

i=1

log
∫ ∞

−∞
hα−1(x)(1 − F(x))n(α−1) fi :m:n(x)dx,

(35)
where c′(r) is defined above and fs:m:n is defined by (28). We can also express (28)
as

fs:m:n = c′(s)
s−1∑

i=1

ci,s−1(R1 + 1, . . . , Rs−1 + 1)

R′
i

f1:Ri (xs) (36)

where f1:Ri is the smallest order statistic in a sample of size R′
i . If we use (36) and

(22) in (35) the result follows. �
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Table 1 The Renyi entropy in a collection of order statistics from a sample of progressively Type-II
censored order statistics from the exponential distribution

n m Censoring
scheme

r Progressively censored OS Renyi entropy

5 3 (2,0,0) 1 (X1:3:5) –0.799

5 3 (2,0,0) 2 (X1:3:5, X2:3:5) –0.681

5 3 (2,0,0) 3 (X1:3:5, X2:3:5, X3:3:5) 0.130

5 3 (0,0,2) 1 (X1:3:5) –0.799

5 3 (0,0,2) 2 (X1:3:5, X2:3:5) –0.374

5 3 (0,0,2) 3 (X1:3:5, X2:3:5, X3:3:5) –1.662

5 3 (1,1,0) 1 (X1:3:5) –0.799

5 3 (1,1,0) 2 (X1:3:5, X2:3:5) –1.086

5 3 (1,1,0) 3 (X1:3:5, X2:3:5, X3:3:5) –0.275

5 5 (0,0,0,0,0) 1 (X1:5) –0.799

5 5 (0,0,0,0,0) 2 (X1:5, X2:5) –1.374

5 5 (0,0,0,0,0) 3 (X1:5, X2:5, X3:5) –1.662

5 5 (0,0,0,0,0) 5 (X1:5, . . . , X5:5) –0.733

10 5 (5,0,0,0,0) 1 (X1:5:10) –1.492

10 5 (5,0,0,0,0) 2 (X1:5:10, X2:5:10) –2.067

10 5 (5,0,0,0,0) 3 (X1:5:10, X2:5:10, X3:5:10) –2.355

10 5 (5,0,0,0,0) 4 (X1:5:10, . . . , X4:0:10) –0.237

10 5 (5,0,0,0,0) 5 (X1:5:10, . . . , X5:5:10) –1.426

10 5 (0,0,0,0,5) 1 (X1:5:10) –1.492

10 5 (0,0,0,0,5) 2 (X1:5:10, X2:5:10) –2.878

10 5 (0,0,0,0,5) 3 (X1:5:10, X2:5:10, X3:5:10) –4.146

10 5 (0,0,0,0,5) 4 (X1:5:10, . . . , X4:5:10) –5.281

10 5 (0,0,0,0,5) 5 (X1:5:10, . . . , X5:5:10) –6.262

10 5 (3,2,0,0,0) 1 (X1:5:10) –1.492

10 5 (3,2,0,0,0) 2 (X1:5:10, X2:5:10) –2.473

10 5 (3,2,0,0,0) 3 (X1:5:10, X2:5:10, X3:5:10) –2.760

10 5 (3,2,0,0,0) 4 (X1:5:10, . . . , X4:5:10) –2.642

10 5 (3,2,0,0,0) 5 (X1:5:10, . . . , X5:5:10) –1.831

10 10 (0,0,0,0,0) 1 (X1:10) –1.492

10 10 (0,0,0,0,0) 2 (X1:10, X2:10) –2.878

10 10 (0,0,0,0,0) 3 (X1:5:10, X2:10, X3:10) –4.146

10 10 (0,0,0,0,0) 4 (X1:10, . . . , X4:10) –5.281

10 10 (0,0,0,0,0) 5 (X1:10, . . . , X5:10) –6.262

10 10 (0,0,0,0,0) 4 (X1:10, . . . , X6:10) –7.061

10 10 (0,0,0,0,0) 4 (X1:10, . . . , X7:10) –7.636

10 10 (0,0,0,0,0) 4 (X1:10, . . . , X8:10) –7.924

10 10 (0,0,0,0,0) 10 (X1:10, . . . , X10:10) –6.995
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We have written a program in the algebraic manipulation package MATHEMAT-
ICA for applying Theorem 1. For a pre-determined progressively Type-II censoring
scheme (n, m, R1, R2, . . . Rm), the program returns the numerical values of theRenyi
entropy. The electronic version of the computer program can be obtained from the
authors.

Remark 3 For the casewhenα → 1, all the results in Sects. 4 and 5 can be simplified
to the corresponding results for the Shannon entropy in a progressively Type-II
censored OS obtained by Abo-Eleneen [3].

Example 3 For the standard exponential distribution f (x) = exp (−x), x > 0, we
have

Hα
1:n = − log n + logα

α − 1
. (37)

We can use Theorem 1 and (37) to calculate the Hα
1...r :m:n presented in Table1.

The table provides the values of the Renyi entropy, Hα
1...r :m:n, for α = 1.5, n =

5, 10 and m = 3, 5 for different censoring schemes and r = 1, . . . , m. The entries
were computed using Theorem 1 and (37) in MATHEMATICA. For r < m, Table1
gives the values of the Renyi entropy in a collection of r OS from a progressively
Type-II censored sample. For r = m, the table lists the values of Renyi entropy
in a complete sample of progressively Type-II censored OS. Furthermore, the table
includes the cases r1 = r2 = · · · = rm−1 = 0, rm = n − m, which correspond to the
Type II censored sample and r1 = r2 = · · · = rm = 0, n = m, which correspond to
the OS of a complete sample.

6 Conclusion

We have discussed some properties of the Renyi entropy of consecutive OS and pro-
gressively Type-II censored OS. First, we considered the decomposition of the Renyi
entropy in both settings to derive some useful recurrence relations and computational
methods. We showed that the Renyi entropy of both consecutive OS and progres-
sively Type-II censored OS can be simplified to a summation of Renyi entropy of the
smallest OS of varying sample size. This representation is useful for computational
purposes.
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Part II
Stochastic Modeling and Estimation



Estimation in a Model of Sequential Order
Statistics with Ordered Hazard Rates

Marco Burkschat, Udo Kamps and Maria Kateri

Abstract As a generalization of order statistics from independent and identically
distributed random variables, sequential order statistics (SOSs) may be applied as a
model for ordered data, when assuming changes of underlying distributions imme-
diately after the occurrences of ordered observations. For example, in the case of
a model for k-out-of-n-systems, where the n − k + 1 failures of components in a
system of n components occur successively, a change of the respective underlying
distribution after a failure is motivated by an increased load put on the remaining
components. The corresponding cumulative distribution functions are assumed to
have possibly different ordered hazard rates, which are further multiplied by factors,
in order to build the hazard rates of the SOSs. These factors are the parameters of
interest. Estimation of the parameters is considered bymeans ofmaximum likelihood
under order restriction, by means of link functions, and in a Bayesian set-up with an
order statistics prior.

Keywords Sequential order statistics · Increasing hazard rate · Proportional hazard
rate · Maximum likelihood estimation · Link function · Bayes estimation

1 Introduction

As an extension of common order statistics based on independent and identically
distributed (i.i.d.) random variables, sequential order statistics (SOSs) have been
introduced to model data in ascending order when the situation may change each
time immediately after an observation. Thus, different underlying distributions are
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incorporated in the model. As an application, such a model is useful to describe
k-out-of-n systems, where, after some failure, there is an increased load put on the
remaining components (cf., e.g., [1, 3, 10, 11, 15, 18]).

In terms of hazard rates λj = fj
1−Fj

with cumulative distribution functions
F1, F2, . . . , and respective probability density functions f1, f2, . . . , j = 1, 2, . . . , we
suppose n initial items in some k-out-of-n system to have lifetime distribution F1.
After the j-th observation, the hazard rate of all remaining n − j items changes from
λj to λj+1, j = 1, . . . , n − 1.

In the analysis of SOSs it is usually assumed that the hazard rates λ1, . . . , λn are
proportional, i.e.,

λj = ϑjh , j = 1, . . . , n, (1)

where h is some baseline hazard rate. Non-proportional hazard rates settings enable
higher flexibility in modeling. SOSs based on different cumulative distribution func-
tions F1, F2, . . . allow for structural changes of hazard rates, which, e.g., may all
be increasing, but of different functional form (see [9, 18]). In what follows, we
consider the situation

λj = ϑjhj , j = 1, . . . , n, (2)

where the hazard rates h1, . . . , hn may be different, but are assumed to be pre-fixed,
and the positive quantities ϑ1, . . . , ϑn are the parameters of interest.

When modelling an increasing load put on the remaining components, it is rea-
sonable to require

λj(t) ≤ λj+1(t) , t > 0, j = 1, . . . , n − 1.

As examples for ordered hazard rates in families of distributions, we consider three
choices with increasing failure rates, and with cumulative distribution functions of
the type

F(t) = 1 − exp{−ϑH(t)}, (3)

where H denotes the cumulative hazard rate and h = H ′. Hence, respective hazard
rates are given by

λ(t) = ϑh(t).

Gompertz and exponentiated power function distributions have this particular form.
Gompertz distributions with cumulative distribution function

F(t) = 1 − exp
{−ϑ(eδt − 1)

}
, t ∈ (0,∞) , δ > 0 , ϑ > 0,
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Fig. 1 Hazard rates of i Gompertz distributions with common ϑ = 2 and δ1 = 0.25, δ2 = 0.3 and
δ3 = 0.4 (solid, dashed and dotted line, respectively) and ii exponentiated power distributions with
common ϑ = 0.4 and δ1 = 1, δ2 = 1.5 and δ3 = 2.2 (solid, dashed and dotted line, respectively)

possess increasing hazard rates

λ(t) = ϑδeδt, t ∈ (0,∞),

which are monotonically increasing in δ.
Exponentiated power function distributions are given by the cumulative distribu-

tion functions

F(t) = 1 − (
1 − tδ

)ϑ
, t ∈ (0, 1) , δ > 0, ϑ > 0,

and, for δ ≥ 1, have increasing hazard rates

λ(t) = ϑ
δtδ−1

1 − tδ
, t ∈ (0, 1),

which are monotonically decreasing in δ.
In Fig. 1, hazard rates of Gompertz and exponentiated power functions are shown.
Another interesting class of distributions are the linear hazard rate distributions

given by

F(t) = 1 − exp
{−ϑ(at + bt2)

}
, t ∈ (0,∞), a, b > 0 , ϑ > 0,

with increasing hazard rates

λ(t) = ϑ(a + 2bt), t ∈ (0,∞),

which are monotonically increasing in b.
As is obvious from the hazard rate representations and from Fig. 1, the hazard

rates can become close if their respective δ-parameters are close. In any case, the
hazard rates for the linear hazard rate distributions class can become arbitrarily close.
Hence, it is of particular interest to assume and to estimate the model parameters
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ϑ1, ϑ2, . . . in increasing order, to ensure that ordered functions h1 ≤ h2 ≤ . . . will
lead to ordered hazard rates λ1 ≤ λ2 ≤ . . . .

The model of SOSs for hazard rates of the form (2) is presented in Sect. 2 and
expressed in a form that exhibits its exponential family structure. The remainder
of the paper deals with inference for the model parameters in case of s independent
samples, each consisting of the first r SOSs.Maximum likelihood estimators (MLEs)
and order restricted MLEs are considered in Sect. 3. More parsimonious models are
derived by assuming that the model parameters are specified by some link function
that simultaneously ensures their ordering as well. Inference under this set-up is dealt
with in Sect. 4. Bayesian estimation for a specific family of priors that lead to explicit
Bayes estimators for the model parameters is examined in Sect. 5 (also ordered).
Finally, Sect. 6 deals with ordered Bayes estimation for the special case of a two-
component system, for which explicit representations of the posterior distributions
are possible under weaker conditions on the underlying prior distribution considered
in Sect. 5.

2 Sequential Order Statistics

In the general version of SOSs X∗
1,n ≤ · · · ≤ X∗

n,n, they are based on absolutely con-
tinuous cumulative distribution functions F1, . . . , Fn with F−1

1 (1) ≤ · · · ≤ F−1
n (1)

and corresponding probability density functions f1, . . . , fn. For 1 ≤ r ≤ n, the joint
probability density function of X∗

1,n, . . . , X∗
r,n is given by

f X∗
1,n,...,X

∗
r,n(x1, . . . , xr) = n!

(n − r)!
r∏

j=1

(
1 − Fj(xj)

1 − Fj(xj−1)

)n−j fj(xj)

1 − Fj(xj−1)
(4)

on the region −∞ = x0 < x1 ≤ · · · ≤ xr < ∞ [18].
Whenmodeling an (n − r + 1)-out-of-n system, asmentioned in the introduction,

the r-th SOS X∗
r,n describes the life-length of the system.

It is shown in [16] that SOSs with a probability density function as in (4) can be
recursively generated via

X∗
j,n = F−1

j

(
1 − Vj

(
1 − Fj

(
X∗

j−1,n

)))
, 2 ≤ j ≤ n,

where V2, . . . , Vn are independent power distributed random variables with Vj ∼
pow(n − j + 1), 2 ≤ j ≤ n.

In terms of the setting (2) with cumulative hazard rates H2, . . . , Hn, the relation
reads

X∗
j,n = H−1

j

(
Zj + Hj

(
X∗

j−1,n

))
, 2 ≤ j ≤ n,
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where Z2, . . . , Zn are independent, exponentially distributed random variables with
EZj = (

(n − j + 1)ϑj
)−1

, 2 ≤ j ≤ n.
In most of the previous works on SOSs, the cumulative distribution functions

F1, F2, . . . are chosen according toFj(t) = 1 − (1 − F(t))ϑj , ϑj > 0, 1 ≤ j ≤ nwith
some baseline cumulative distribution function F with probability density function
f and hazard rate h(t) = f (t)

1−F(t) . Hence, the hazard rates of F1, F2, . . . are given by
(1), which is a proportional hazards setting.

Remark 1 In the particular setting Fj(t) = 1 − (1 − F(t))ϑj , ϑj > 0, 1 ≤ j ≤ r, the
joint density (4) can be rewritten as

f X∗
1,n,...,X

∗
r,n(x1, . . . , xr) = n!

(n − r)!

⎛

⎝
r∏

j=1

ϑj

⎞

⎠

⎛

⎝
r−1∏

j=1

(1 − F(xj))
γj−γj−1−1f (xj)

⎞

⎠

× (1 − F(xr))
γr−1 f (xr), x1 ≤ · · · ≤ xr, (5)

with γj = (n − j + 1)ϑj , 1 ≤ j ≤ r.
If F is chosen to be a shifted exponential distribution with probability density

function

f (x) = λe−λ(x−c), x > c, (6)

then (5) with r = n reads

n!λn

⎛

⎝
n∏

j=1

ϑj

⎞

⎠ exp

⎧
⎨

⎩
−λ

n∑

j=1

(n − j + 1)ϑj
(
xj − xj−1

)
⎫
⎬

⎭
, c = x0 < x1 ≤ · · · ≤ xn.

The particular choice ϑ1 = · · · = ϑn = ϑ > 0, say, leads to the joint density of
common order statistics in the i.i.d. setting (see [17]) based on the cumulative dis-
tribution function 1 − (1 − F(t))ϑ .

Here, we choose F1, F2, . . . to be of the form

Fj(t) = 1 − exp
{−ϑjHj(t)

}
(7)

with cumulative hazard rates H1, H2, . . . and respective derivatives h1, h2, . . . lead-
ing to a hazard rate λj of Fj given by (2), i.e.

λj(t) = ϑjhj(t), 1 ≤ j ≤ n .

In the following, it is assumed that the cumulative distribution functions F1, F2, . . .

in (7) have the same support which is given by an interval of the real line.
In an increasing failure rate (IRF) setting, it would be interesting to ensure the

IFR property of X∗
r,n by means of properties of F1, . . . , Fr (for the IFR property, see

[4]). Results in this direction are shown in [13, 20], although there is no explicit
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representation of the marginal density function of X∗
r,n. In the particular case of

common order statistics X1,n ≤ · · · ≤ Xn,n based on F, the sufficient conditions in
[13, 20] amount to assuming F to have the IFR property, which is a well known
result. In an outstanding article, Nagaraja (see [19]) states related general results: if
the rth order statistic in a sample of size n possesses the IFR (or increasing failure
rate average (IFRA), new better than used (NBU), decreasing mean residual lifetime
(DMRL)) property, so do the neighboring order statistics Xr+1,n, Xr,n−1 and Xr+1,n+1.

Choosing F1, F2, . . . as in (7), the joint probability density function (4) of SOSs
can be rewritten to obtain

f X∗
1,n,...,X

∗
r,n (x1, . . . , xr) =

⎛

⎝
r∏

j=1

ϑj

⎞

⎠ exp

⎧
⎨

⎩

r∑

j=1

ϑjTj(x)

⎫
⎬

⎭

⎛

⎝ n!
(n − r)!

r∏

j=1

hj(xj)

⎞

⎠ , (8)

where

x = (x1, . . . , xr) withF−1
1 (0) < x1 ≤ · · · ≤ xr < F−1

1 (1),

T1(x) = −nH1 (x1) ,

Tj(x) = −(n − j + 1)
(
Hj(xj) − Hj(xj−1)

)
, 2 ≤ j ≤ r.

It is seen (see [5, 6]) that the densities in (8) form an r-parametric exponential
family inT = (T1, . . . , Tr) andϑ = (ϑ1, . . . , ϑr).Moreover, the statisticsT1, . . . , Tr

are independent, −Tj is exponentially distributed with mean 1/ϑj, 1 ≤ j ≤ r, and T
is minimal sufficient and complete (see also [9]).

The notation X = (X∗
1,n, . . . , X∗

r,n) denotes that we have a sample X(1), . . . , X(s)

of independent copies with density function (8), each. Then, the joint probability
density function of X(1), . . . , X(s) is obtained as

f (s)
ϑ (x̃(s)

) =
(

n!
(n − r)!

)s
⎛

⎝
r∏

j=1

ϑ s
j

⎞

⎠ exp
{
ϑ ′T(s)

(
x̃(s)
)} s∏

i=1

r∏

j=1

hj(xij), (9)

where the vector T(s) = (T (s)
1 , . . . , T (s)

r )′ of statistics is given by

T (s)
j

(
x̃(s)
)

=
s∑

i=1

Tj
(
x(i)
)
, (10)

x̃(s) = (x(1), . . . , x(s)) and x(i) = (xi1, . . . , xir) with F−1
1 (0) < xi1 ≤ · · · ≤ xir <

F−1
1 (1) the realization of X(i), 1 ≤ i ≤ s.
Hence, the densities in (9) form an r-parametric multivariate exponential fam-

ily in T(s) and ϑ , and T(s) turns out to be minimal sufficient and complete. It is
seen that −T (s)

j ∼ Γ (s, 1/ϑj), where the probability density function of this gamma
distribution is
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ϑ s
j

(s − 1)! ts−1 e−ϑj t, t > 0.

The structure of an exponential family directly leads to various results in statistical
inference with SOSs as well as to structural findings (cf. [5–7, 9, 21]).

3 Maximum Likelihood Estimation

In the model of SOSs specified in Sect. 2 with s independent samples, consisting of
the first r SOSs, each, [8] considers maximum likelihood estimators (MLEs) for the
model parameters ϑ1, . . . , ϑr . We summarize some findings for both the unrestricted
situation and estimation under the simple order restriction.

Theorem 1 In the set-up of Sect.2 we obtain:

(i) The unique MLE ϑ̂
(s) =

(
ϑ̂

(s)
1 , . . . , ϑ̂ (s)

r

)
of ϑ = (ϑ1, . . . , ϑr) is determined by

ϑ̂
(s)
j = −s/T (s)

j , 1 ≤ j ≤ r. These quantities are jointly independent and inverse
gamma distributed.

(ii) For s > 2, the uniformly minimum variance unbiased estimator of ϑj is s−1
s ϑ̂j ,

1 ≤ j ≤ r.

(iii) The sequence
(√

s
(
ϑ̂

(s) − ϑ
))

s∈N
converges in distribution to a multivari-

ate normal distribution with zero mean and diagonal covariance matrix diag
(ϑ2

1 , . . . , ϑ
2
r ).

As described in Sect. 1, under the assumption of ordered hazard rates λ1(t) ≤
λ2(t) ≤ . . . for all t, it is reasonable to estimate the model parameters in ascending
order.

Theorem 2 In the set-up of Sect.2 we find:

The unique MLE ϑ̃
(s) =

(
ϑ̃

(s)
1 , . . . , ϑ̃ (s)

r

)
of ϑ = (ϑ1, . . . , ϑr) under the restric-

tion ϑ1 ≤ · · · ≤ ϑr is determined by

ϑ̃
(s)
j = min

1≤q≤r
max
1≤p≤j

q − p + 1
q∑

k=p
1/ϑ̂(s)

k

, 1 ≤ j ≤ r .

For further details such as strong consistency of the MLEs, we refer to [8].

4 Estimation by Means of Link Functions

Instead of considering r arbitrary positive (maybe increasingly ordered) parameters
ϑ1, . . . , ϑr as in the previous sections, the number of unknown parameters in the
model could be reduced by assuming a functional relationship for these parameters.
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Recently, two kinds of link functions have been considered in the setting of SOSs in
more detail, namely proportional and linear link functions (see [2]). In the first case,
a relation

ϑj = τgj, j = 1, . . . , r,

with known values gj > 0 and an unknown proportionality factor τ > 0 is assumed.
By arguing analogously to [2], for example, the following results can be obtained
for the model under consideration.

Theorem 3 (i) The unique MLE of τ is given by

τ̂ (s) = −rs

⎛

⎝
r∑

j=1

gjT
(s)
j

⎞

⎠

−1

,

with T (s)
j as defined in (10). This estimator follows an inverse gamma distribu-

tion.
(ii) For rs > 2, the uniformly minimum variance unbiased estimator of τ is rs−1

rs τ̂ (s).
(iii) The sequence

(√
rs
(
τ̂ (s) − τ

))
s∈N converges in distribution to a normal distri-

bution with zero mean and variance τ 2.

In the case of a linear link function, we assume the relation

ϑj = τ1 + τ2gj, j = 1, . . . , r,

with known values gj ∈ R and unknown parameters τ1, τ2 ∈ R such that ϑj > 0 for
every j = 1, . . . , r. In [8] (see also [2]), the following results formaximum likelihood
estimation can be found.

Theorem 4 Let r ≥ 2 and g1, . . . , gr be not all equal.

(i) The unique MLE τ̂
(s) =

(
τ̂

(s)
1 , τ̂

(s)
2

)
of (τ1, τ2) is given as the only solution of

the equations

τ1 = − τ2T̃ (s)
2 + rs

T̃ (s)
1

,

r∑

j=1

s
(
T̃ (s)
2 − gjT̃

(s)
1

)
τ2 + rs

= 1

for τ1, τ2 ∈ R such that τ1 + τ2gj > 0 for every j = 1, . . . , r, where

T̃ (s)
1 (x̃(s)

) =
r∑

j=1

T (s)
j (x̃(s)

), T̃ (s)
2 (x̃(s)

) =
r∑

j=1

gj T (s)
j (x̃(s)

).
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(ii) The sequence
(√

s
(
τ̂

(s) − τ
))

s∈N
converges in distribution to a bivariate nor-

mal distribution with zero mean and covariance matrix given by the inverse of
the matrix

⎛

⎜
⎜
⎝

r∑

j=1

1
(τ1+τ2gj)2

r∑

j=1

gj

(τ1+τ2gj)2

r∑

j=1

gj

(τ1+τ2gj)2

r∑

j=1

g2j
(τ1+τ2gj)2

⎞

⎟
⎟
⎠ .

Asan alternative to the precedingMLEs, particular plug-in estimatorswith explicit
representations are proposed in [2], in a different set-up. For instance, if r, s ≥ 2 and
g1, ..., gr are pairwise different, then

τ̃1 = s − 1

rs

r∑

j=1

ϑ̂
(s)
j − τ̃2

r

r∑

j=1

gj, τ̃2 = s − 1

s(r − 1)

r−1∑

j=1

ϑ̂
(s)
j+1 − ϑ̂

(s)
j

gj+1 − gj

are plug-in estimators of τ1 and τ2 in our model (9), respectively. Note that both
estimators are unbiased. Moreover, we obtain by construction

1

r

r∑

j=1

(τ̃1 + τ̃2gj) = τ̃1 + τ̃2

r

r∑

j=1

gj = s − 1

rs

r∑

j=1

ϑ̂
(s)
j > 0

almost surely. However, because the supports of the estimators ϑ̂
(s)
1 , . . . , ϑ̂ (s)

r are
given by the non-negative half axis of the real line (see Sect. 3, Theorem 3), τ̃1 +
τ̃2gj ≥ 0 does not necessarily hold almost surely for j = 1, . . . , r, in contrast to the
MLEs. For instance, if gj = j, j = 1, . . . , r, then

τ̃1 + τ̃2g1 = s − 1

s

⎡

⎣1

r

r∑

j=1

ϑ̂
(s)
j − 1

2
(ϑ̂ (s)

r − ϑ̂
(s)
1 )

⎤

⎦

is negative with positive probability for r ≥ 3.
Under additional assumptions on the linear link function, modified versions τ̃1,sor

and τ̃2,sor of the preceding plug-in estimators can be constructed along the lines in [2]
by using the MLEs ϑ̃

(s)
1 , . . . , ϑ̃ (s)

r under the simple order restriction ϑ1 ≤ · · · ≤ ϑr

(cf. Theorem 4). These estimators satisfy τ̃1,sor + τ̃2,sorgj ≥ 0 almost surely for every
j = 1, . . . , r.
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5 Bayes Estimation

Let B1, . . . , Br denote the parameter variables with outcomes ϑ1, . . . , ϑr . Then, (9)
is the joint conditional density of X(1), . . . , X(s) given B1 = ϑ1, . . . , Br = ϑr .

In the Bayesian framework, in order to obtain explicit posterior distributions
and closed-form expressions for the Bayes estimators, we consider conjugate priors
for the model parameters. Thus, ϑj are realizations of Bj (j = 1, . . . , r), which are
assumed to follow a gamma distribution or an extended truncated Erlang distribution
(ETED) as introduced in [11].

5.1 Gamma Prior

Let Bj be gamma distributed, i.e., Bj ∼ Γ (a, b), a, b > 0, with probability density
function

f Bj (t) ∝ ta−1e−bt, t > 0.

Then, by (9), the posterior density of Bj given the data X(1) = x(1), . . . , X(s) = x(s)

is given by

f Bj |X(1)=x(1),...,X(s)=x(s) (
ϑj
) ∝ exp

{
ϑj

(
T (s)

j (x) − b
)}

ϑ s+a−1
j , ϑj > 0,

which is a Γ (s + a, b − T (s)
j (x))-density.

The posterior mean is thus

E
(
Bj|X(1) = x(1), . . . , X(s) = x(s)

) = s + a

b − T (s)
j (x)

= s + a

b + s/ϑ̂(s)
j

=
(

s

s + a

1

ϑ̂
(s)
j

+ a

s + a

1

a/b

)

,

which is represented as a weighted harmonic mean of the MLE ϑ̂
(s)
j of ϑj and the

expected value EBj of the prior distribution. The improper prior distribution with
a = b = 0 leads to equality of MLE and posterior mean. It is worth mentioning
that the above posterior distribution is always gamma whatever initial distribution
functions F1, F2, . . . are chosen.

The resulting structure for Bayes estimation coincides with that of Bayes estima-
tion of proportionality factors (i.e., model parameters) in the common SOSs set-up
(cf. [11]). It is easily seen that simultaneous Bayes estimation of ϑ1, . . . ϑr under
independent gamma priors leads to independent gamma posteriors.
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5.2 ETED Prior

Explicit posterior densities may also be obtained by choosing ETED (c, a, b) priors
[11], where the densities are given by

gc,a,b(t) ∝ ta−1 e−bt , t > c > 0,

with parameters a ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . . } and b > 0.
For positive integers a, these are truncated Erlang (gamma) densities. In the case

a ∈ {0,−1,−2, . . . }, the normalizing constant is given by ψ−1
a,b(c) with

ψa,b(c) = b−a

(−a)!Ei(−bc) + e−bc
−a∑

k=1

(−1)k−a bk−1

c1−a−k(−a) · · · · · (1 − a − k)

where Ei denotes the exponential integral defined by

Ei(−bt) = −ψ0,b(t) = −
∞∫

t

e−bx

x
dx , t > 0.

Some calculation shows (cf. [11]) that the Bayes estimator for ϑj, under the squared
error loss, is given by

E
(

Bj|X(1) = x(1), . . . , X(s) = x(s)
)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎣1 + ((b−T (s)
j (x̃(s)))c)s+a

(s+a)!

(
s+a−1∑

l=0

((b−T (s)
j (x̃(s)))c)l

l!

)−1
⎤

⎦ s+a
b−T (s)

j (x̃(s))
, s + a ≥ 1

((
T (s)

j (x̃(s)) − b
)

Ei
(
(T (s)

j (x̃(s)) − b)c
))−1

exp
(

T (s)
j (x̃(s)) − b

)
, s + a = 0 .

ψ
s+a+1,b−T (s)

j (x̃(s))
(c)/ψ

s+a,b−T (s)
j (x̃(s))

(c), s + a ≤ −1

As in the gamma-case, it is obvious that simultaneous Bayes estimation of
ϑ1, . . . , ϑr under independent ETED priors results in independent ETED posteri-
ors.

5.3 Ordered Bayes Estimators

As for maximum likelihood estimation, we are also interested in obtaining ordered
Bayes estimators.
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Following the idea in [11], the prior distribution of (ϑ1, . . . , ϑr) is chosen to be
the joint distribution of common order statistics based on an ETED distribution. Of
course, any underlying distribution of the order statistics could be considered as a
prior. The ETED approach is exposed here, because, in a particular case, it leads to
an explicit posterior density function.

Let B1, . . . , Br be i.i.d. random variables according to ETED (c, a, b) for some
a ≤ 0 and b > 0, and letB1,r ≤ · · · ≤ Br,r denote their respective order statistics. For
a specific choice of the parameter a, namely for a = 1 − s, where s is the number of
independent samples of SOSs, we obtain the following result.

Theorem 5 Given the sampling situation of Sect. 2, and letting ETED (c, a, b) with
a = 1 − s be the underlying distribution of B1,r ≤ · · · ≤ Br,r , then their posterior
distribution coincides with the distribution of r SOSs with model parameters μj =
b − 1

r−j+1

r∑

l=j
T (s)

j

(
x̃(s)
)

, 1 ≤ j ≤ r, from a shifted exponential distribution with

parameters λ = 1 and c (see (6) in Remark 1).

Proof Since, for the prior density, we have

f B1,r ,...,Br,r (b1, . . . , br) ∝
r∏

j=1

ba−1
j e−bbj ,

where c = b0 < b1 ≤ · · · ≤ br , the posterior density of B1,r, . . . , Br,r given X(1) =
x(1), . . . , X(s) = x(s) is determined by

f B1,r ,...,Br,r |X(1)=x(1),...,X(s)=x(s)
(b1, . . . , br)

∝
⎛

⎝
r∏

j=1

bs
j

⎞

⎠ exp

⎧
⎨

⎩

r∑

j=1

bj T (s)
j (x̃(s)

)

⎫
⎬

⎭

r∏

j=1

ba−1
j e−bbj

=
r∏

j=1

exp
{

bj

(
T (s)

j

(
x̃(s)
)

− b
)}

∝
r∏

j=1

exp
{(

bj − c
) (

T (s)
j

(
x̃(s)
)

− b
)}

=
r∏

j=1

exp

⎧
⎨

⎩

(
bj − bj−1

) r∑

l=j

(
T (s)

j

(
x̃(s)
)

− b
)
⎫
⎬

⎭

since
r∑

j=1

(
bj − c

)
tj =

r∑

j=1

(
j∑

l=1

(bl − bl−1)

)

tj =
r∑

l=1

(bl − bl−1)

r∑

j=l

tj.
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From Remark 1 it is seen that this posterior density coincides with the density of r

SOSs from a sample of size r with model parameters μj = b − 1
r−j+1

r∑

l=j
T (s)

j

(
x̃(s)
)
.

The posterior distribution ofB1,r, . . . , Br,r coincides with the distribution of SOSs
from a shifted exponential distribution whatever distributions F1, . . . , Fr are chosen.

From [15], the posteriormarginalmeans, and thus theBayes estimators ofϑj under
the squared error loss and for the particular setting of Theorem 5, can be derived as

E
(
Bj,r |X(1) = x(1), . . . , X(s) = x(s)

) = c +
j∑

l=1

1

(r − l + 1)μl

= c −
j∑

l=1

⎛

⎝
r∑

j=l

(
T (s)

j

(
x̃(s)
)

− b
)
⎞

⎠

−1

.

The ordering of these estimates is guaranteed by construction.
Furthermore, the joint posterior density in Theorem 5 is multivariate log-concave

(cf. [14]) and all univariate marginal distributions are unimodal. These properties are
useful for obtaining Bayesian credible sets.

Note that the choice a = 1 − s is not data-dependent and does not lead to empirical
Bayes inference, since s is fixed by the experimental design and preknown. However,
for an alternative choice of a or, furthermore, for alternative prior distributions not
in the ETED family, more flexible prior assumptions can be considered with the cost
of non-closed form expressions for the estimators.

6 Ordered Bayes Estimators for Systems with Two
Components

In the setting of the preceding section, explicit representations of the posterior distrib-
utions can be obtained underweaker conditions on the underlying ETEDdistribution,
if the case of systems with two components, i.e., r = 2, is considered. In [12] a two-
sample SOSs model with arbitrary numbers of ordered quantities within the samples
is examined.

LetB1,2 ≤ B2,2 be the order statistics from i.i.d. random variablesB1 andB2 which
are distributed according to ETED (c, a, b) with c > 0, a ∈ Z, b > 0 (see Sect. 5.2).
Moreover, if a < 0, then assume s + a > 0. Introducing the notations

g(ϑ1, ϑ2) = (ϑ1ϑ2)
s+a−1 e−γ1ϑ1−γ2ϑ2 ,

with γj = b − T (s)
j

(
x̃(s)
)

, j = 1, 2, and
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Gk,d(c) = 1 − e−dc
k−1∑

i=0

(dc)i

i! , k ∈ N, d > 0,

where Gk,d is the distribution function of Γ (k, d), the density of the posterior distri-
bution of B1,2, B2,2 can be expressed as

f B1,2,B2,2|X(1)=x(1),...,X(s)=x(s)
(ϑ1, ϑ2) = g(ϑ1, ϑ2)

K̃(x̃(s)
)

, c < ϑ1 < ϑ2,

with

K̃(x̃(s)
) = (s+a−1)!

γ s+a
1

[(
1 − Gs+a,γ1(c)

)
(s+a−1)!

γ s+a
2

(
1 − Gs+a,γ2(c)

)

−
s+a−1∑

i=0

γ i
1

i!
(s+a+i−1)!
(γ1+γ2)s+a+i

(
1 − Gs+a+i,γ1+γ2(c)

)]

.

The corresponding marginal densities are then given by

f B1,2|X(1)=x(1),...,X(s)=x(s)
(ϑ1)

= 1

K̃(x̃(s)
)

(s + a − 1)!
γ s+a
2

ϑ s+a−1
1 e−(γ1+γ2)ϑ1 ×

s+a−1∑

i=0

(γ2ϑ1)
i

i! ,

f B2,2|X(1)=x(1),...,X(s)=x(s)
(ϑ2)

= 1

K̃(x̃(s)
)

(s + a − 1)!
γ s+a
1

ϑ s+a−1
2 e−γ2ϑ2 × (

Gs+a,γ1(ϑ2) − Gs+a,γ1(c)
)

for ϑ1, ϑ2 > c. The Bayes posterior means can be also explicitly stated:

E(B1,2|X(1) = x(1), . . . , X(s) = x(s)) = 1

K̃(x̃(s)
)

(s + a − 1)!
γ s+a
2 (γ1 + γ2)s+a+1

×
s+a−1∑

i=0

(s + a + i)!
i!

(
γ2

γ1 + γ2

)i (
1 − Gs+a+i+1,γ1+γ2(c)

)

and

E(B2,2|X(1) = x(1), . . . , X(s) = x(s))

= 1

K̃(x̃(s)
)

(s + a − 1)!
γ s+a
1

[
(s + a)!
γ s+a+1
2

(
1 − Gs+a,γ1(c)

)(
1 − Gs+a+1,γ2(c)

)

− 1

(γ1 + γ2)s+a+1

s+a−1∑

i=0

(s + a + i)!
i!

( γ1

γ1 + γ2

)i(
1 − Gs+a+i+1,γ1+γ2(c)

)
]

.
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If a > 0, then the preceding results can be extended to c = 0. In this case the prior is
given by the distribution of two order statistics based on a common gamma distribu-
tion. The resulting expressions for densities and means can be obtained by replacing
values of the form Gk,d(c) by zero in the above representations.
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Properties of the Vacancy Statistic
in the Discrete Circle Covering Problem

Gadi Barlevy and H.N. Nagaraja

Abstract Holst [10] introduced a discrete spacingsmodel that is related to the Bose-
Einstein distribution and obtained the distribution of the number of vacant positions
in an associated circle covering problem.We correct his expression for its probability
mass function, obtain the first two moments, and describe their limiting properties.
We then examine the properties of the vacancy statistic when the number of covering
arcs in the associated circle covering problem is random.We also discuss applications
of our results to a study of contagion in networks.

Keywords Occupancy problems ·Spacings ·Bose-Einstein distribution ·Sampling
without replacement · Sampling with replacement

1 Introduction

This paper examines the discrete version of the circle covering problem first intro-
duced by Stevens [15] in which m arcs of length a(< 1) are randomly placed on a
circle with unit circumference, and the question of interest is the fraction of the cir-
cle left uncovered by any arc. The discrete version of this problem can be described
as follows. Consider r (≥ 2) boxes arranged in a ring numbered 0, 1, . . . , r − 1.
Draw m − 1 boxes by simple random sampling without replacement from the boxes
numbered 1, 2, . . . , r − 1, where 2 ≤ m ≤ r . Let 1 ≤ R1 < · · · < Rm−1 ≤ r − 1 be
the drawn numbers, and set R0 = 0 and Rm = r . Define

Sk = Rk − Rk−1,
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for k = 1, 2, . . . , m, i.e., Sk are spacings. Next, for an integer b where 1 ≤ b ≤ r ,
define

V =
m∑

k=1

(Sk − b)+ , (1)

where (x)+ = max {x, 0}. This setup can be interpreted as follows. We can think of
{R0, . . . , Rm−1} as m distinct starting points whose location among the r boxes is
chosen at random. From each starting point, we designate the next b boxes including
the starting point as covered. Any remaining uncovered boxes are designated as
vacant. The random variable (rv) V represents the total number of vacant boxes. For
reference, it will be convenient to also define

N =
m∑

k=1

I (Sk > b) , (2)

where I (C) = 1 if condition C is true and 0 otherwise. Thus, N represents the
number of distinct blocks of vacant boxes.

We are interested in characteristics of V , specifically its distribution, some of its
moments, and its behavior when m is random. Holst [10] derived the marginal and
joint distributions of {Sk}m

k=1 and showed they are exchangeable. He also explored the
connection between these random variables (rv’s) and the Bose-Einstein distribution.
Feller [7, Sect. II.5(a)] provides a nice introduction to the Bose-Einstein urn model.

As anticipated by our comments above, in the limit as r → ∞ while b/r → a
for some constant a < 1 this problem converges to the circle covering problem in
which m points are chosen uniformly from the circumference of a circle, and each of
the m points forms the end point of an arc of length a. The latter problem has been
extensively analyzed; see for example, Siegel [13]. The limit of V/r in our discrete
setup corresponds to the fraction of the circumference that is uncovered. However,
the finite version of the problem has been less studied, even though, as we discuss
later, this version arises in certain applications.

We derive in Sect. 2 an explicit expression for the probability mass function (pmf)
of V including an exploration of the range of its values; in this process we correct
an error in the expression for the pmf given in Holst [10]. We derive the first two
moments of V in Sect. 3 using several properties of the joint distribution of Sk derived
by Holst [10].We discuss an extension of the model in Sect. 4 in which the number of
starting points m is random, allowing us among other things to discuss an alternative
version of our model in which the boxes are chosen with replacement. This section
is motivated by a query by the referee regarding the distribution of V when we
sample with replacement. We establish limiting properties of V in Sect. 5 and link
our results to those of Siegel [13]. In Sect. 6, we discuss an application concerning
financial contagion that coincides with the discrete circle covering problem under
certain conditions. This application suggests generalizations of the circle covering
problem that have not been explored in previous work.
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2 Exact Distribution of V

2.1 The Range

The value of V must be non-negative, and the lowest value it can assume is r − mb.
Further, the largest possible value of V occurs when the chosen boxes are consecutive
(implying N ≤ 1) and V takes on the value r − m − b + 1. Thus, the support of V is
the set {(r − mb)+, . . . , (r − m − b + 1)+}, and so V is degenerate at 0 whenever
r < m + b. Further, when r − mb ≥ 0, the total number of points in the support of
V is (m − 1)(b − 1) + 1 independently of r . Hence when b = 1, we have a single
support point at r − m > 0. We now examine the form of the pmf P (V = x) for
various x values when r ≥ m + b and b > 1.

2.2 Probability Mass Function of V

Holst [10, Theorem 2.2] argues that P (V = x) is given by

m∑

y=1

(
m

y

) m−y∑

t=0

(−1)t

(
m − y

t

)(
x − 1

y − 1

)(
r − (y + t) b − x − 1

m − y − 1

)/(
r − 1

m − 1

)

. (3)

Note that expression (3) may include improper binomial coefficients
(n

k

)
where

either n < 0 or k /∈ {0, . . . , n}. Such terms are traditionally set to 0. We now argue
that this convention may yield an incorrect expression for P (V = x) for x = 0 and
for x = r − mb, and offer correct expressions for P(V = x) for these cases.

Observe first that for x = 0, the right-hand side of (3) would, under the usual
convention, equal 0 due to the presence of the

(x−1
y−1

)
term. But this is at odds with the

fact that P (V = 0) = 1 whenever r < m + b.
To derive P (V = 0), we use the observation noted by Holst that

P(V = 0) = P

⎛

⎝
m∑

j=1

I (Sj > b) = 0

⎞

⎠ = P(N = 0). (4)

Holst [10] derives an expression for the right-hand side of (4) in part (a) of his
Theorem 2.2. Using his result, we can deduce that for x = 0, (3) must be replaced
by

P(V = 0) =
m∑

j=0

(−1) j

(
m

j

)(
r − jb − 1

m − 1

)/(
r − 1

m − 1

)

. (5)
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We next turn to the case where r ≥ m + b and x > 0, and examine the range
of values for y and t for which the associated terms on the right-hand side of (3)
are all positive, i.e., when 0 ≤ t ≤ min{m − y, (r − m − x − (b − 1)y)/b}, and
1 ≤ y ≤ min{m −1, x, (r − m − x)/(b − 1)} for b > 1 and 1 ≤ y ≤ min{m −1, x}
for b = 1.

We shall now argue that for this range, (3) holds except when x = r − mb ≥ m.
To see this, we begin with the observation by Holst in proving his Theorem 2.2 that
if Ik = I (Sk > b), then P(V = x) must equal

m∑

y=1

(
m

y

) m−y∑

t=0

(−1)t
(

m − y

t

)

P

⎛

⎝
y∑

k=1

(Sk − b)+ = x, I1 = · · · = Iy+t = 1

⎞

⎠ . (6)

Expression (6) can in turn be rewritten as

m−1∑

y=1

(
m

y

) m−y−1∑

t=0

(−1)t
(

m − y

t

)

P

⎛

⎝
y∑

k=1

(Sk − b)+ = x, I1 = · · · = Iy+t = 1

⎞

⎠

+
m∑

y=1

(
m

y

)

(−1)m−y P

⎛

⎝
y∑

k=1

(Sk − b)+ = x, I1 = · · · = Im = 1

⎞

⎠ . (7)

Holst then computes the following probabilities based respectively on parts (E)
and (D) of his Theorem 2.1:

P
(
I1 = · · · = Iy+t = 1

) =
(r−(y+t)b−1

m−1

)

( r−1
m−1

)

and

P

(
y∑

k=1

(Sk − b)+ = x

∣
∣
∣
∣
∣

I1 = · · · = Iy+t = 1

)

=
(x−1

y−1

)(r−(y+t)b−x−1
m−y−1

)

(r−(y+t)b−1
m−1

) (8)

and thus concludes that

P

(
y∑

k=1

(Sk − b)+ = x, I1 = · · · = Iy+t = 1

)

=
(x−1

y−1

)(r−(y+t)b−x−1
m−y−1

)

( r−1
m−1

) . (9)

The expression for the conditional probability in (8) is valid and nonzero whenever
y ≤ m − 1, and y + t < m.
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Next we consider the last sum on the right in (7). Since the event {I1 = · · · = Im =
1} implies Si > b for i = 1, . . . , m, the sum

∑y
k=1 (Sk − b)+ is strictly increasing

in y for y ≤ m and
∑y

k=1 (Sk − b)+ <
∑m

k=1 (Sk − b)+ ≡ r − mb. This means

m∑

y=1

(
m

y

)

(−1)m−y P

(
y∑

k=1

(Sk − b)+ = x, I1 = · · · = Im = 1

)

is equal to 0 when x > r − mb and is equal to the last term in the sum,

P

(
m∑

k=1

(Sk − b)+ = r − mb, I1 = · · · = Im = 1

)

,

when x = r −mb. Since each term in
∑m

k=1 (Sk − b)+ is at least one, the sum should
be at least m. In other words, the only nonzero term in the last sum on the right-hand
side of (7) is

P

(
m∑

k=1

(Sk − b)+ = r − mb, I1 = · · · = Im = 1

)

= P (I1 = · · · = Im = 1) = P (S1 > b, . . . , Sm > b) = P(S1 > mb)

=
(

r − mb − 1

m − 1

)
/
(

r − 1

m − 1

)

(10)

provided r − mb ≥ m. Upon collecting all of our findings in (4), (6), (8), and (9),
we have the following modification of Theorem 2.2 of Holst [10].

Theorem 1 The support of the rv V representing the length of the vacant region is
given by {(r − mb)+, . . . , (r − m − b + 1)+}. When r < m + b, V is degenerate
at 0. When r > m and b = 1, V is degenerate at (r − m). When r ≥ m + b and
r − mb ≤ 0, P(V = 0) is given by (5). In all other cases, P (V = x) is given by

⎧
⎨

⎩

m−1∑

y=1

(
m

y

) m−y−1∑

t=0

(−1)t

(
m − y

t

)(
x − 1

y − 1

)(
r − (y + t) b − x − 1

m − y − 1

)

+ I (x = r − mb ≥ m)

(
r − mb − 1

m − 1

)} /(
r − 1

m − 1

)

. (11)

Remark 1 The actual range of values for y and t for which the associated terms are
positive is more restricted than given by the limits in the double sum in (11) in a
way that depends on x . For example, when x = r − mb, the lowest value V can
assume is positive, the terms are positive for all 1 ≤ y ≤ m − 1 and 0 ≤ t ≤
min{m − y − 1, m − y − (m − y)/b}. In contrast, when x = r − m − b + 1, the
highest value V can assume, (y, t) = (1, 0) is the only combination that produces a
positive term. In that case, (11) yields
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Table 1 The pmf P(V = x) for r = 10, m = 5 for various values of b

b x

0 1 2 3 4 5

1 0 0 0 0 0 1

2 0.008 0.159 0.476 0.317 0.040

3 0.405 0.397 0.159 0.040

4 0.802 0.159 0.040

5 0.960 0.040

6 1

P(V = r − m − b + 1) = m

/(
r − 1

m − 1

)

,

a quantity free of b.

Table1 provides the pmf of V for r = 10 and m = 5. It shows how the probability
mass shifts towards values close to 0 as b increases.

3 Moments of V

Instead of using the pmf for V to compute the first two moments of V , we take
advantage of an exchangeability argument to derive them from those of Sk . We will
use the following representations for the first two moments of nonnegative integer
valued rv’s X and Y .

E(X) =
∞∑

i=0

P(X > i); (12)

E(X2) = 2
∞∑

i=0

i P(X > i) + E(X); (13)

E(XY ) =
∞∑

i=0

∞∑

j=0

P(X > i, Y > j). (14)

The first two are well-known. Equations (12) and (13) are given in, for example,
David and Nagaraja [5, p. 43], and go back to Feller’s [7] classical work. Expression
(14) is similar to known results for the continuous case; see, for example, the formula
for the covariance in Barlow and Proschan [3, p. 31], and the idea goes back to [9];
also see Wellner [16].

Here we give a short proof of (14) when X and Y are nonnegative integer valued
rv’s.
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E(XY ) =
∞∑

i=0

∞∑

j=0

i j P(X = i, Y = j)

=
∞∑

i=0

i
∞∑

j=0

P(X = i, Y > j)

=
∞∑

i=0

∞∑

j=0

P(X > i, Y > j)

upon using the idea of the form on the right-hand side of (12) twice.
The moment expressions simplify further by the use of the following well-known

identity: For positive integers c ≤ a,

a∑

k=c

(
k − 1

c − 1

)

=
(

a

c

)

. (15)

Harris et al. [8, p.141] derive this identity using an induction argument (see their
Eq. (2.10)). We give a simple probabilistic proof.

Proof Multiply both sides by (1/2)a . Then the right-hand side,
(a

c

)
(1/2)a , represents

the probability that in a tosses of a fair coin there are exactly c heads. Now if we
have c heads, this event can be written as the union of disjoint events Ec, . . . , Ea

where Ek is the event that we have exactly c heads and the cth head appears at the
kth toss. By a negative binomial type argument we know that this probability is

(
k − 1

c − 1

)

(1/2)c(1/2)a−c =
(

k − 1

c − 1

)

(1/2)a .

Now sum this over k from c to a. �

Theorem 2 Let Wi = (Si − b)+, for i = 1, 2. The Wi are exchangeable and for
r ≥ m + b

E(W1) =
(

r − b

m

)/(
r − 1

m − 1

)

, (16)

and

E(W 2
1 ) = (2(r − b) + 1)E(W1) − 2m

(r−b+1
m+1

)

( r−1
m−1

) . (17)

For r ≥ m + 2b,

E(W1W2) =
(

r − 2b + 1

m + 1

)/(
r − 1

m − 1

)

, (18)

and E(W1W2) = 0 if r < m + 2b.
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Proof Exchangeability follows from Theorem 2.1 of Holst [10]. Now

E(W1) =
r−m−b∑

i=0

P(W1 > i) [from (12)]

=
r−m∑

j=b

P(S1 > j)

=
r−m∑

j=b

(
r − j − 1

m − 1

)/(
r − 1

m − 1

)

[from Theorem 2.1(B), Holst [10]]. (19)

From (15), the numerator on the right-hand side of (19) reduces to
(r−b

m

)
.

To establish (17), we use the expression for the second moment in (13). Consider

∞∑

i=0

i P(W1 > i) =
r−m∑

j=b

( j − b)P(S1 > j)

=
r−m∑

j=b

{r − (r − j)}P(S1 > j) − bE(W1)

= r
r−m∑

j=b

P(S1 > j) −
r−m∑

j=b

(r − j)P(S1 > j) − bE(W1)

= (r − b)E(W1) −
r−m∑

j=b

(r − j)

(
r − j − 1

m − 1

)/(
r − 1

m − 1

)

(20)

from the expression for P(S1 > i) in Theorem 2.1, Part (B) of Holst [10]. The
numerator in the second term in (20) above can be expressed as

m
r−m∑

i=b

(
r − i

m

)

= m
r−b+1∑

j=m+1

(
j − 1

m

)

= m

(
r − b + 1

m + 1

)

, (21)

where the last equality follows from (15).Upon using (13)withW1 = X and applying
(20) and (21), we obtain (17).

Using (14) with W1 = X and W2 = Y , and applying Theorem 2.1 Part (E), and
Part (B) of Holst [10] in succession, we obtain
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E(W1W2) =
∑

i≥b

∑

j≥b

P(S1 > i, S2 > j)

=
r−m−b∑

i=b

r−m−i∑

j=b

P(S1 > i, S2 > j)

=
r−m−b∑

i=b

r−m−i∑

j=b

P(S1 > i + j)

=
r−m−b∑

i=b

r−m−i∑

j=b

(
r − i − j − 1

m − 1

)/(
r − 1

m − 1

)

.

Now, with k = r − i − j ,

r−m−i∑

j=b

(
r − i − j − 1

m − 1

)

=
r−b−i∑

k=m

(
k − 1

m − 1

)

=
(

r − b − i

m

)

from (15). Hence

r−m−b∑

i=b

r−m−i∑

j=b

(
r − i − j − 1

m − 1

)

=
r−m−b∑

i=b

(
r − b − i

m

)

.

With k = r − b − i + 1, the above sum can be expressed as

r−2b+1∑

k=m+1

(
k − 1

m

)

=
(

r − 2b + 1

m + 1

)

.

Hence the claim in (18) holds. Clearly, when r < m + 2b, W1 and W2 cannot both
be positive simultaneously and hence E(W1W2) = 0. �

From (1) and the exchangeability of the Wi we see that

E(V ) = m E(W1)

Var(V ) = mVar(W1) + m(m − 1)Cov(W1, W2)

= m[E(W 2
1 ) − {E(W1)}2] + m(m − 1)[E(W1W2) − {E(W1)}2]

= m E(W 2
1 ) + m(m − 1)E(W1W2) − m2{E(W1)}2, (22)

where the expectations on the right-hand side of (22) are given by Theorem 2. Thus
we have the following result.
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Theorem 3 If r ≥ m +b, the first two moments of the rv V representing the number
of vacant boxes are given by

E(V ) = m

(r−b
m

)

( r−1
m−1

) , (23)

Var(V ) = m(2(r − b) + 1)
(r−b

m

) − 2m2
(r−b+1

m+1

) + m(m − 1)
(r−2b+1

m+1

)

( r−1
m−1

)

− m2

{ (r−b
m

)

( r−1
m−1

)

}2

, (24)

where the coefficient of m(m − 1) in (24) is taken to be 0 whenever r < m + 2b.

Notes

1. After deriving the expression for E(V ), we discovered it was previously reported
in Ivchenko [11, p. 108]. However, he does not derive a formula for the variance
of V .

2. Ivchenko [11, p. 108] also derives an expression for E(N ). Using similar
exchangeability arguments, we can derive the same expression as well as an
expression for the variance of N . In particular, from Theorem 2.1 of Holst [10],
we see that

E(I1) = E(I 21 ) = P(S1 > b) =
(

r − b − 1

m − 1

)/(
r − 1

m − 1

)

≡ p1,

and

E(I1 I2) = P(S1 > b, S2 > b) =
(

r − 2b − 1

m − 1

)/(
r − 1

m − 1

)

≡ p2.

Thus from (2) we obtain

E(N ) = m E(I1) = m

(
r − b − 1

m − 1

)/(
r − 1

m − 1

)

and

Var(N ) = mVar(I1) + m(m − 1)Cov(I1, I2)

= mp1(1 − p1) + m(m − 1)(p2 − p2
1)

= m(m − 1)p2 + mp1 − (mp1)
2, (25)

where the pi ’s are given above.
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3. For m ≤ r − b,

E (V ) = m

(
r − b

m

)/(
r − 1

m − 1

)

= r

(
r − b

m

)/(
r

m

)

(26)

= (r − b)! (r − m)!
(r − b − m)! (r − 1)! . (27)

As seen from (27), E (V ) is symmetric in b and m, even though the pmf for V
is not symmetric in these parameters. The symmetry also does not hold for the
second moment.

4. As mentioned in Theorem 1, if r < m +b, P(V = 0) = 1. Thus if b ≥ r −m +1
or m + b > r , all the Si are b or less. Thus, E(V ) = Var(V ) = 0 whenever
r < m + b. When b = 1 and r > m, V is degenerate at r − m and in that case
E(V ) = r − m and Var(V ) = 0.

4 The Case with Random m

Up to now we have assumed the number of starting points m is fixed and restricted to
values in {2, . . . , r}. We now consider an extension in which the number of starting
points is an rv M with support {0, . . . , r} and pmf P(M = m) = pM(m). We let VM

denote the number of vacant boxes in {0, . . . , r − 1} in this case to highlight that the
number of starting points is allowed to be random here.

Formally, we construct VM as follows. We first draw a value for M . If M = 0, we
designate all boxes as vacant and set VM = r . If M = m > 0, we draw m starting
points without replacement from the boxes labeled 0, . . . , r −1. Let {R0, . . . , Rm−1}
denote the identities of these starting points. For each k ∈ {0, . . . , m−1}wedesignate
the boxes

{Rk, (Rk + 1) mod r, . . . , (Rk + b − 1) mod r}

as covered. Any box that is not covered is labeled vacant. Define Ji , for each i =
0, . . . , r − 1, as equal to 1 if box i is vacant and 0 if covered. Then the number of
vacant boxes is

VM =
r−1∑

i=0

Ji . (28)

The discrete circle covering problem we started with is thus a special case of this
formulation in which M is degenerate with full mass at a single value m. We now
describe two different approaches for deriving the mean and variance of VM in the
general case where M has a nondegenerate distribution.

When 2 ≤ m ≤ r , the rv VM given M = m has the same distribution as V in the
circle covering problem with m starting points. When M = 0 and M = 1, the rv
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VM has a degenerate distribution with full mass at r and r − b, respectively. We can
therefore use a simple conditioning argument to obtain the following:

Theorem 4 The pmf, mean, and variance of VM are respectively given by

P(VM = x) =
r∑

m=0

P(Vm = x)pM(m), (29)

E(VM) =
r∑

m=0

E(Vm)pM(m)

= r
r−b∑

m=0

(r−b
m

)

( r
m

) pM(m), (30)

and

V ar(VM) = V ar(E(VM |M)) + E(V ar(VM |M)), (31)

where, for 2 ≤ m ≤ r , P(Vm = x) is given in Theorem 1 and E(Vm) and V ar(Vm)

are given in Theorem 3. Further, V0 is degenerate at r and V1 is degenerate at (r−b)+.

In (30) we have used the second form of E(Vm) in (26) and the fact that E(V1) =
(r − b)+ = r

(r−b
1

)
/
(r
1

)
.

An alternative approach to computingmoments for VM makes use of (28). As long
as the sampling mechanism is completely symmetric with respect to the r available
boxes, the Ji ’s are identically distributed (but not exchangeable) and

E(VM) = r P(J0 = 1),

V ar(VM) = r P(J0 = 1)P(J0 = 0) + r
r−1∑

k=1

Cov(J0, Jk); (32)

and Cov(J0, Jk) = P(J0 = 1, Jk = 1) − [P(J0 = 1)]2. As we discuss below, this
approach will often be more useful for computing moments than summing condi-
tional moments.

4.1 Moments for Particular Cases

We now describe three specific examples in which m is random. The first two are
motivated by cases that have been studied in the application to financial contagion
we discuss later in Sect. 6, although the first one turns out to be of more general
interest, as we discuss below.
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Binomial M. Let M assume a Binomial (r, p) distribution, i.e., pM(m) = ( r
m

)
pm(1−

p)r−m, 0 ≤ m ≤ r . This is equivalent to assuming that each box i ∈ {0, . . . , r − 1}
is chosen as a starting point with probability p independently of whether any other
box is chosen as a starting point. The expression for the mean in (30) simplifies
substantially;

E(VM) = r
r−b∑

m=0

(
r − b

m

)

pm(1 − p)r−m = r(1 − p)b. (33)

We could in principle compute V ar(VM) using (31). However, it is easier to compute
this statistic using the indicator variables Ji .

To evaluate the moments for VM using these indicator variables, note that box 0
is vacant if and only if none of the boxes labeled 0, r − 1, . . . , r − b + 1 are starting
points, i.e. {R0, . . . , RM−1} ∩ {0, r −1, . . . , r − b +1} = ∅. Recall that when M is
binomial, each box i is chosen as a starting point with probability p independently of
whether any other box is a starting point. Hence, P(J0 = 1) = qb, where q = 1− p,
and E(VM) = rqb in line with (33).

We now use (32) to compute V ar(VM). When b = 1 the Ji are independent, and
V ar(VM) = r pq. When 2 ≤ b ≤ (r + 1)/2, we have

P(J0 = 1, Jk = 1) =

⎧
⎪⎨

⎪⎩

qb+k, if 1 ≤ k ≤ b − 1

qb+r−k, if r − b + 1 ≤ k ≤ r − 1

q2b, if b ≤ k ≤ r − b;

Cov(J0, Jk) =

⎧
⎪⎨

⎪⎩

qb+k − q2b, if 1 ≤ k ≤ b − 1

qb+r−k − q2b, if r − b + 1 ≤ k ≤ r − 1

0, if b ≤ k ≤ r − b,

and thus we obtain

r−1∑

k=1

Cov(J0, Jk) =
b−1∑

k=1

qb+k +
r−1∑

k=r−b+1

qb+r−k − 2(b − 1)q2b

= 2qb q − qb

p
− 2(b − 1)q2b. (34)

It follows that when 1 < b ≤ (r + 1)/2,

V ar(VM) = rqb

{

1 + 2q

p
− qb

(
2

p
+ 2b − 1

)}

. (35)
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This form also holds when b = 1. When (r + 1)/2 < b < r − 1, we have

P(J0 = 1, Jk = 1) =

⎧
⎪⎨

⎪⎩

qb+k, if 1 ≤ k ≤ r − b − 1

qr , if r − b ≤ k ≤ b

qb+r−k, if b + 1 ≤ k ≤ r − 1;

Cov(J0, Jk) =

⎧
⎪⎨

⎪⎩

qb+k − q2b, if 1 ≤ k ≤ r − b − 1

qr − q2b, if r − b ≤ k ≤ b

qb+r−k − q2b, if b + 1 ≤ k ≤ r − 1.

Hence

r−1∑

k=1

Cov(J0, Jk) =
r−b−1∑

k=1

qb+k +
r−1∑

k=b+1

qb+r−k + (2b − r + 1)qr − (r − 1)q2b

= 2qb q − qr−b

p
+ (2b − r + 1)qr − (r − 1)q2b. (36)

It now follows from (32) that when (r + 1)/2 < b < r − 1,

V ar(VM) = rqb

{

1 + 2q

p
− qr−b

(
2

p
+ r − 2b − 1

)

− rqb

}

. (37)

The form in (37) holds for b = r − 1 as well, in which case it reduces to

V ar(VM) = rqr−1
{
1 + q(r − 1) − rqr−1

}
.

For b ≥ r , VM has a two point distribution with support {0, r} and E(VM) = rqr ,
and V ar(VM) = r2qr (1 − qr ). Thus, for 1 ≤ b ≤ r , E(VM) has the same form for
all b, but the variance expression has three distinct forms depending on b.

Mixture of Binomials. As above let M be Binomial(r ,p) and assume p is also an rv
with support (0, 1), i.e., M is amixture of binomials. From (33), the conditionalmean
of E(VM |p) = r(1 − p)b and hence E(VM) = r E(1 − p)b. If p has a Beta(α, β)
distribution (α, β > 0), this expectation simplifies to

E(VM) = r
(α + β) · · · (α + β + b − 1)

β · · · (β + b − 1)
,

since b is a positive integer. Using the expressions for the conditional variance of VM

for a given p and the relation

V ar(VM) = V ar(E(VM |p)) + E(V ar(VM |p)),
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we can also obtain an expression for V ar(VM) if p has a Beta(α, β) distribution with
α > 1. For α ≥ 1, V ar(VM) does not exist.

Sampling With Replacement. Suppose we choose starting points by taking n (≥ 1)
draws from {0, . . . , r −1} with replacement. The resulting number of starting points
M will be random with support {1, . . . , n}, and its pmf is given by (see, e.g., Feller
[7, p. 102])

pM(m) =
(

r

m

)
1

rn

m∑

j=0

(−1) j

(
m

j

)

(m − j)n

= r(r − 1) · · · (r − m + 1)

rn
S(n, m), (38)

where the S(n, m) are Stirling numbers of the second kind (see, e.g., Johnson and
Kotz [12, pp. 110] for the Stirling number connection).

Alternatively, we can use (32) to obtain the first two moments of VM for this case.
Note that P(J0 = 1) = {(r − b)/r}n; thus

E(VM) = r

(

1 − b

r

)n

, 1 ≤ b ≤ r. (39)

Since for 2 ≤ b ≤ r/2,

P(J0 = 1, Jk = 1) =

⎧
⎪⎪⎨

⎪⎪⎩

(
r−(b+k)

r

)n
, if 1 ≤ k ≤ b − 1

(
k−b

r

)n
, if r − b + 1 ≤ k ≤ r − 1

(
r−2b

r

)n
, if b ≤ k ≤ r − b,

(40)

we obtain

Cov(J0, Jk) =

⎧
⎪⎪⎨

⎪⎪⎩

(
r−(b+k)

r

)n − (
r−b

r

)2n
, if 1 ≤ k ≤ b − 1

(
k−b

r

)n − (
r−b

r

)2n
, if r − b + 1 ≤ k ≤ r − 1

(
r−2b

r

)n − (
r−b

r

)2n
, if b ≤ k ≤ r − b.

Thus,

r−1∑

k=1

Cov(J0, Jk)

= 2
b−1∑

k=1

(
r − b − k

r

)n

+ (r − 2b + 1)

(
r − 2b

r

)n

− (r − 1)

(
r − b

r

)2n

,
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and for 2 ≤ b ≤ r/2, (32) yields the following expression for V ar(VM)/r :

(

1 − b

r

)n

+2
b−1∑

k=1

(

1 − b + k

r

)n

+(r −2b+1)

(

1 − 2b

r

)n

−r

(

1 − b

r

)2n

. (41)

When b = 1, the second term above is to be interpreted as 0. For r/2 ≤ b ≤ r − 2,

P(J0 = 1, Jk = 1) =

⎧
⎪⎪⎨

⎪⎪⎩

(
r−(b+k)

r

)n
, if 1 ≤ k ≤ r − b − 1

(
k−b

r

)n
, if b + 1 ≤ k ≤ r − 1

0, if r − b ≤ k ≤ b,

and consequently we obtain

V ar(VM)

r
=

(

1 − b

r

)n

+ 2
r−b−1∑

k=1

(

1 − b + k

r

)n

− r

(

1 − b

r

)2n

.

When b = r − 1, the summation above is to be interpreted as 0. In fact, in that case,
VM is a Bernoulli rv with success probability (1/r)n−1. For b ≥ r , VM is degenerate
at 0.

Without-Replacement Sample. In this setup, we have

P(J0 = 1) =
(

r − b

m

)/(
r

m

)

leading to the second form for E(V ) given in (26). Using a representation for P(J0 =
1, Jk = 1) that parallels (40), an expression for the variance can be written using
(32). We will not pursue it as we already have a compact expression available in (24).

5 Limiting Properties of V

5.1 Limiting Distributions

We now return to the case where the number of starting pointsm is nonrandom. Holst
[10, Theorem 3.2] argues that as r, b → ∞ with b/r → a for some 0 < a < 1,

V/r
d→ Va where Va has the same distribution as the length of non-covered segments

when m arcs of length a are dropped at random on a circle with unit circumference.
Siegel [13, Theorem 3] has shown that the distribution of Va can be expressed as the
mixture of a degenerate and a continuous rv. Specifically, he shows that P(Va(m) =
(1 − ma)+) = pa(m) where
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pa(m) =
m−1∑

i=0

(−1)i

(
m

i

)

(1 − ia)m−1
+ , ma > 1 (42)

= (1 − ma)m−1, ma ≤ 1, (43)

and with probability 1− pa(m), Va(m) behaves like a continuous rv Wa(m) having
the pdf f (w; a, m) given by

f (w; a, m)

= m

1 − pa(m)

m∑

i=1

m−1∑

j=1

(−1)i+ j
(

m − 1

i − 1

)(
m − 1

j

)(
i − 1

j − 1

)

w j−1(1 − ia − w)
m− j−1
+ ,

(1 − ma)+ < w < 1 − a, (44)

with the convention that (1− ia − w)0+ is interpreted as 1 if 1− ia − w ≥ 0, and as
0, otherwise. We now show the following.

Lemma 1 If r, b → ∞ such that b/r → a, 0 < a < 1, then

P{V = (r − mb)+} → pa(m) ≡ P{Va = (1 − ma)+},

given by (42) when ma > 1, and by (43) when ma < 1. When ma = 1, both (42)
and (43) reduce to 0.

Proof When ma > 1, r − mb is eventually negative, our interest then is in the
limiting form of P(V = 0) given in (5). Consider the j th term there, excluding the
factor (−1)m

(m
j

)
:

(r− jb−1
m−1

)

( r−1
m−1

) = (r − jb − 1) · · · (r − jb − m + 1)

(r − 1) · · · (r − m + 1)
,

if r − jb = r(1 − j (b/r)) > m − 1; and it is 0 if r(1 − j (b/r)) ≤ m − 1. So if
b/r → a with 1− ma < 0, the above ratio converges to (1− ja)m−1

+ . Thus the limit
is given by (42).

Whenever ma < 1, since r − mb = r(1 − m(b/r)), r − mb eventually exceeds
any fixed m. In that case the term (10) converges to (1 − ma)m−1. The remaining
finite number of terms in the numerator on the right in (11) are finite and each is of
o(rm−1) whereas the denominator is O(rm−1). Thus, the only nonzero term in the
limit is that of (10) and it coincides with (43).

If ma = 1, (43) is obviously 0 and now we show that (42) also converges to
0 as a → (1/m)+. For this we consider the continuous uniform spacing problem
where one chooses at random m − 1 points U1, . . . , Um−1 from the interval (0, 1).
With spacings defined as Yi = Ui :m−1 − Ui−1:m−1, i = 1, . . . , m, where U0:m−1 = 0
and Um:m−1 = 1, it is known that the distribution function of the continuous rv Y(m)
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representing the maximal spacing can be expressed as (see, e.g., David and Nagaraja
[5], p. 135)

P(Y(m) ≤ a) = 1 − P(Y(m) > a) =
m∑

i=0

(−1)i

(
m

i

)

(1 − ia)m−1
+ , (45)

for all a in (0, 1). Since by construction the maximal spacing Y(m) exceeds 1/m with
probability 1, the right-hand sum in (45) is 0 whenever a ≤ 1/m or ma ≤ 1 and
thus approaches 0 as a → (1/m)+. The difference between this sum and the sum
in (42), (−1)m(1 − am)m−1

+ , is 0 whenever a ≥ (1/m). Thus we conclude that as
a → (1/m)+ the expression in (42) converges to 0. �

Notes

5. When b = ar , withma < 1, we have seen that the expression in (10) converges to
(1−ma)m−1, while the other terms contributing to P(V = r −mb) converge to 0,
indicating the dominant nature of this term missing in Holst’s Theorem 2.2 [10].
That is, the term missing from Holst’s expression is precisely what converges to
the degenerate component of the rv in the continuous case.

6. Holst’s Theorem 3.2 gives expressions for P(Va = 0) and the pdf of the continu-
ous part. Lemma 1 reveals that his expressions are imprecise and fail to properly
account for the range of V .

7. Siegel’s [13] version of (42) [his expression (3.23)] has a summation that includes
an additional term with i = m. In view of the assumption that ma > 1, the
corresponding term is 0, and hence they coincide. Further, in view of the above
lemma, we can conclude that when ma = 1 both (42) and (43) hold.

8. Consider the case where M is random, specifically where M is generated by
taking n draws with replacement from {1, . . . , r}. As r → ∞ while n is held
fixed, the first factor in the expression for the pmf of M in (38) converges to
0 whenever m < n and to 1 when m = n. Since S(n, n) = 1, it follows that

M
P→ n, the sample size, and the limiting distribution of VM is the same as the

limiting distribution of V when m is replaced by n. More generally, given any
process M that converges in probability to a degenerate distribution as r → ∞,
the distribution for VM will converge to the same limiting distribution as V with
m corresponding to the value that M collapses to.

For m = 5 and selected r values, Figs. 1 and 2 respectively provide the normalized
conditional pmf of V given the event {V > (r − mb)+}, for a = 0.1 and 0.25.
The case of r = ∞ corresponds to the conditional pdf f (w; a, m) of the continuous
case, given in (44). Both these figures suggest that by the time r reaches 500, we are
close to the limiting result, indicating that when the sampling fraction is under 1%,
f (w; a, m) provides a close approximation to the conditional pmf of V .
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5.2 Limiting Moments

Limits for Large r and b

Since V/r is uniformly bounded, convergence in distribution implies that
E(V/r)k → E(V k

a ) when r → ∞ and b/r → a and ma 	= 1. Siegel has shown in
his Theorem 2 that,

E(V k
a ) =

(
k + m − 1

m

)−1 k∑

i=1

(
k

i

)(
m − 1

i − 1

)

(1 − ia)m+k−1
+ , k ≥ 1. (46)

Hence we can obtain approximations to any moment of V when m is small and r
and b are large using the moments of Va .

Table2 provides some key facts about the features of the distributions of V and
the limiting rv Va for m = 5, r = 20, 50 and b values up to 20 corresponding to a
good range of a values. It shows that as a increases pa(m) decreases for a ≤ 1/m, it
is 0 whenma = 1 and then pa(m) increases. Note that whenever a reaches 1/m from
below, the lower limit of the support of Va moves towards 0 and whenever ma > 1,
the lower limit remains at 0. This limiting pattern is closely followed by V when
r = 50, but not that closely when r = 20. The moments converge fairly quickly to
the limiting values. The mean is better approximated by the limit for small b (= ar )
whereas for the standard deviation, large b values tend to be slightly more efficient.

Limits for Large r and m

When b is held fixed and r, m → ∞ such that m/r → p = 1−q, 0 < p < 1, Holst
[10, Theorem 4.2] has shown that V is asymptotically normal and has given the first
two moments of the limit distribution. We now derive asymptotic approximations
for the expressions for E(V ) and V ar(V ) in (23) and (24) to study their limiting
properties. When b is held fixed, we have

C(r, m; b) ≡ (r − b)!(r − m)!
r !(r − m − b)! = (r − m)(r − m − 1) · · · (r − m − b + 1)

r(r − 1) · · · (r − b + 1)
≈ qb.

Hence

(r−b
m

)

( r−1
m−1

) = r

m
C(r, m; b) ≈ r

m
qb;

(r−b+1
m+1

)

( r−1
m−1

) = r(r − b + 1)

m(m + 1)
C(r, m; b) ≈ r(r − b + 1)

m(m + 1)
qb;
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Table 2 Properties of V and Va for m = 5, r = 20, 50, and selected b values; a = b/r

b P(V =
(r − mb)+)

pa(m) E(V ) r E(Va) SD(V ) r SD(Va)

r = 20

1 1 0.3164 15 15.48 0 0.49

2 0.008 0.0625 11.05 11.14 0.80 1.14

3 0.405 0.0040 7.98 8.87 1.42 1.71

4 0.802 0 5.63 6.55 1.84 2.11

5 0.960 0.0040 3.87 4.75 2.04 2.31

r = 50

1 1 0.6561 45 45.196 0 0.341

2 0.6407 0.4096 40.408 40.769 0.586 0.899

3 0.3882 0.2401 36.199 36.695 1.213 1.536

4 0.2189 0.1296 32.348 32.954 1.875 2.196

5 0.1121 0.0625 28.832 29.525 2.532 2.842

6 0.0502 0.0256 25.628 26.387 3.156 3.452

7 0.0183 0.0081 22.716 23.521 3.726 4.009

8 0.0047 0.0016 20.075 20.911 4.229 4.503

9 0.0006 0.0001 17.685 18.537 4.658 4.925

10 0.0000 0 15.528 16.384 5.007 5.270

11 0.0006 0.0001 13.587 14.436 5.273 5.538

12 0.0047 0.0016 11.845 12.678 5.457 5.728

13 0.0179 0.0081 10.287 11.095 5.560 5.842

14 0.0452 0.0246 8.897 9.675 5.586 5.881

15 0.0885 0.0545 7.661 8.404 5.541 5.852

16 0.1467 0.0989 6.566 7.27 5.430 5.759

17 0.2158 0.1561 5.601 6.262 5.261 5.609

18 0.2912 0.2226 4.752 5.369 5.041 5.408

19 0.3689 0.2944 4.010 4.581 4.780 5.164

20 0.4455 0.3680 3.363 3.888 4.486 4.886

(r−2b+1
m+1

)

( r−1
m−1

) = r(r − 2b + 1)

m(m + 1)
C(r, m; 2b) ≈ r(r − 2b + 1)

m(m + 1)
q2b.

Upon plugging these approximations into the expressions given in Theorem 3, we
obtain

E(V ) ≈ rqb, (47)

and V ar(V )/r is
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≈ qb

{

2(r − b) + 1 − 2
m

m + 1
(r − b + 1)

}

+ q2b

{
m − 1

m + 1
(r − 2b + 1) − r

}

= qb

m + 1
{2(r − b) + 1 − m} − q2b

m + 1
{2r + (2b − 1)(m − 1)}

≈ qb 1 + q

p
− q2b

{
2

p
+ 2b − 1

}

. (48)

We note that the approximations of the mean and variance of V above, where m
grows deterministically with r , match with the exact moments of VM in the case
where M is Binomial(r, p) with p equal to the limiting value of m/r . In particular,
(47) matches with (33) and (48) matches with (35), as we would expect given b is
fixed and r tends to ∞. The expressions we obtain for the variances differ from the
variance of the limiting normal distribution reported in Theorem 4.2 of Holst [10].
While the convergence in distribution and convergence of moments are not directly
related, it appears his expression is incorrect.

Remark 2 To appreciate why the asymptotic approximations for the mean and vari-
ance ofV coincidewith the exactmoments ofVM when M has a binomial distribution,
observe that when m/r → p, if we take any pair of boxes i and j , the probability
that each is drawn as a starting point converges to p while the probability that both
are drawn converges to p2, i.e., the two events are asymptotically independent. But
recall that this independence is what distinguishes the case where M is binomial
when r is finite. Consistent with this, Ji converges in probability to a Bernoulli rv
with success probability (1 − p)b, which is the exact distribution of Ji when M is
binomial. In other words, when the number of starting points m is deterministic but
grows proportionately with r , the number of vacant boxes in a block of boxes of
fixed size behaves asymptotically in the same way as the number of vacant boxes in
that block for the same r where M is distributed Binomial(r, p).

Sampling with Replacement: Limits for Large r and n

Finally, consider the case where M is random and generated by drawing n times
with replacement from all boxes. As we discussed above, this case converges to
the discrete circle covering problem with n boxes. Consistent with this, suppose
r, n → ∞ such that n/r → θ, 0 < θ < 1. Using (39) and (41) we obtain

E(VM) ≈ re−bθ = rqb (49)

Var(VM)

r
≈ e−bθ + 2

b−1∑

k=1

e−(b+k)θ + (r − 2b + 1)e−2bθ − re−2bθ

= qb 1 + q

p
− q2b

{
2

p
+ 2b − 1

}

(50)
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upon simplification with − log(q) = θ , and p = 1− q. This matches (33) and (35).
Under this scheme, the probability that a particular box is never among the n boxes
drawn is (1 − r−1)n , and thus the expected number of distinct boxes chosen is

E(M) = r

{

1 − (1 − 1

r
)n

}

≈ r(1 − e−θ ) = r(1 − q) = r p.

In other words E(M) ≈ r p.

6 Application to Financial Contagion

We conclude by showing how the discrete circle covering problem we analyzed
is related to the literature on financial contagion. One of the workhorse models of
financial contagion is due to Eisenberg and Noe [6]. Their model posits that banks
are connected via a directed network based on the obligations banks owe one another.
If some banks incur losses, they will be unable to meet their required payments to
other banks, inflicting losses on other banks. Thus, shocks that affect certain nodes
in a network can propagate to other nodes. Eisenberg and Noe derive the vector
of clearing payments given the network structure and the identity of the nodes that
incur direct losses. One can use this vector to deduce which banks will be adversely
affected when certain banks are hit.

Subsequent work has extended the Eisenberg and Noe model by assuming that
the number of banks that experience losses as well as their identity is random. For
tractability, this literature has focused on simple network structures. For example,
Caballero and Simsek [4], Acemoglu et al. [1] and Alvarez and Barlevy [2] all
consider contagion in circular networks in which the network of obligations across
banks is isomorphic to a circular graph.While these networks bear little resemblance
to the pattern of obligations across banks in practice, these settings still provide useful
intuition about what determines contagion and how banks might behave when they
are uncertain about the extent of contagion. We now show how contagion in circular
networks is related to the discrete circle covering problem. We further argue that the
connection between the two suggests generalizations of the circle covering problem
that to our knowledge have not been noted previously.

Suppose there are r banks, that each bank owes an amount λ to one other bank,
and that each bank is in turn owed λ by another bank. Banks can be viewed as
connected to one another via a directed network in which a bank points to another
bank if the former owes something to the latter. Formally, index banks in the network
by i ∈ {0, . . . , r − 1}. A circular network is one where bank i owes λ to bank i + 1
mod r . We henceforth drop the reference to mod r . As in Alvarez and Barlevy [2],
we impose the following assumptions: (1) Each bank owns μ worth of assets that it
can sell to repay its outstanding obligations if it needs to; (2) Among the r banks,
a random number M with pmf P(M = m) = pM(m) will be “bad”, meaning they
incur a loss of size φ that must be subtracted from their initial asset holdings μ; (3)
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Given M = m, each of the
( r

m

)
groups of sizem is equally likely to be those which are

bad; and (4) μ < φ < r
m μ. The last assumption implies bad banks incur losses that

exceed what they can afford to pay by liquidating their assets, but total losses across
all m bad banks are still less than the combined value of all assets held among all r
banks in the network. Banks are required to pay their full obligation λ if possible,
and must sell their asset holdings if they fall short. Although the distribution of the
number of bad banks M is unrestricted, Alvarez and Barlevy [2] draw particular
attention to the cases where M has a degenerate distribution (i.e., pM(m) = 1 for
some m), a binomial distribution, and a mixture of binomials as instructive special
cases.1

Let xi denote the amount bank i pays bank i + 1 and assume that the bad banks
are labeled Rk , k = 0, . . . , m − 1, and these are the ones who have incurred a direct
external loss of φ and the others have no external losses. Given that banks must pay
their obligations if they can, the payments {xi }r−1

i=0 satisfy the following system of
equations

xi =
{
min{(xi−1 + μ − φ)+, λ}, i ∈ {R0, . . . , Rm−1}
min{xi−1 + μ, λ}, i /∈ {R0, . . . , Rm−1}

with x−1 ≡ xr−1. For φ < r
m μ, there exists a unique solution {xi }r−1

i=0 to this system.
Bank i is said to be insolvent if xi < λ, i.e., if it cannot meet its obligation, and
solvent otherwise. Each of the m bad banks are insolvent, since even if they received
the full amount λ from the bank that is obligated to them, the fact that μ < φ implies
xi−1 + μ − φ < λ and so they would be unable to pay in full even after liquidating
their assets. Beyond these m bad banks, banks that do not directly suffer losses may
still end up insolvent because they are exposed to bad banks either directly—meaning
the bank that owes them λ is bad—or indirectly—meaning the bank that owes them
λ is good but is exposed to a bad bank. A central question in this framework is to
determine the number of banks that are insolvent, i.e., to gauge the extent of contagion
when only M banks suffer direct losses.

The results turn out to depend on the parameter λ. Suppose λ ≤ φ − μ, and
λ = bμ, for some integer b. Then (b + 1)μ ≤ φ, and xRk = 0, and xRk+ j = jμ,
j = 1, . . . ,min{b − 1, Sk+1 − 1}, for k = 0, . . . , m − 1. Hence, the number of
insolvent banks starting from each bad bank is a fixed number b, unless one of those
b banks is itself bad. It should be clear that the number of bad banks corresponds
to the number of starting points M , while the number of solvent banks corresponds
to the number of vacant boxes V with b equal to λ

μ
. Thus our results provide the

small as well as large sample properties of the number of solvent banks in a circular
network with a random number of bad banks M when λ ≤ φ − μ.

1These cases are of interest because the unconditional probability that a bank is bad is higher than,
equal to, and lower than the probability that a bank is bad conditional on news that another bank is
good when M is degenerate, binomial, and a mixture of binomials, respectively. These distinctions
turn out to matter when there is some possibility that news about some banks might be revealed.
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The situation where λ > φ−μ provides a new generalization of the discrete circle
covering problem. In this case, bk , the number of insolvent banks induced by the kth
bad bank, becomes a rv that depends on the location of the other bad banks. However,
unlike in Siegel andHolst [14], who discuss the continuous case of the circle covering
problem assuming the length of the arc b starting at any point is an i.i.d. rv, here the
number of insolvent banks starting at each Rk will depend on the distribution of the
spacings between the bad banks. To elaborate, xRk = (xRk−1−(φ−μ))+ is no longer
identically 0, and this will affect the number of banks immediately following bank
Rk that are insolvent. That is, the number of banks that must be covered starting from
the kth bad bank is a rv that depends on the entire collection of spacings {Sk}M

k=1.
Alvarez and Barlevy [2] show that when M has a degenerate distribution so that
pM(m) = 1 for some m, if λ > m(φ − μ) then the number of solvent banks V
(vacant boxes) is degenerate and equals r − mb where b = λ/μ. In the intermediate
case where φ − μ < λ < m(φ − μ) the distribution of V is non-degenerate. We
leave the investigation of the closed-form expression for this distribution where bk

is a function of {Sk}m
k=1 for future work. More generally, results for Bose-Einstein

statistics may prove useful for analyzing contagion in networks that are not circular
but still symmetric.
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A Note on Marginal Count Distributions
for Diversity Estimation

John Bunge

Abstract Our problem is to estimate the total number of classes in a population, both
observed and unobserved. This is often called the species problem, where the classes
are (biological) species, but the same methods apply to “single source” capture-
recapture, where only the number of captures for each individual is available (as
opposed to the complete capture history). The data is summarized by the frequency
counts, i.e., the number of classes observed exactly once, twice, three times, and so
on, in the sample. Almost every known statistical procedure uses a mixed Poisson
distribution to model the frequency counts, which assumes that the class sizes were
independently generated from some latent or underlyingmixing distribution, and that
the classes independently contributed members to the sample. To depart from these
assumptions we require different marginal distributions for the frequency counts.
Here we consider distributions having probability generating functions based on
generalized hypergeometric functions, first proposed by Kemp in 1968. We show
that many of these are not mixed Poisson, and are useful and valuable in the species
problem.

Keywords Species problem · Kemp distribution · Generalized hypergeometric
function

1 Introduction

Suppose that a population of discrete units is partitioned into C classes. The classes
may be regarded as species in a biological application, and the units are the organisms
or representatives of the species. There are many other applications: the classes may
be types of some kind in information science, such as symbols in an alphabet, and
the units may be particular instantiations of the symbols. The same scenario applies
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to “single source” capture-recapture; here the “classes” are the individuals we are
interested in counting, and the units are the multiple observations of each (observed)
individual. In this case we only have the number of observations for each individual
rather than its complete capture history as in standard capture-recapture. In these
applications the problem is to estimate the total number of classes C , including both
those observed in the sample and those that eluded the sampling mechanism.

Because the identities of the classes are not all known, the data can only be sum-
marized by frequency counts, i.e., f1 = the number of classes observed exactly once
in the sample (the singletons); f2 = the number of classes observed exactly twice,
and so on.Most methods for estimatingC proceed by first making an inference about
the distribution that (purportedly) generated these counts [1]. Since the only available
data consists of the f j ’s, the distribution in question is the marginal distribution for
the counts. Note that the number of unobserved classes is the unobservable random
variable f0. Thus the distribution that generates all counts, observed plus unobserved,
has support {0, 1, 2, . . .}, while the distribution generating the observable data has
support {1, 2, . . .}. Most methods begin with a model for f0, f1, f2, . . . and then
assume that the given distribution is zero-truncated; the latter version is then fitted
to the data f1, f2, . . . . Here we focus on models rather than statistical procedures
so we will discuss distributions on {0, 1, 2, . . .}, bearing in mind the possibility and
potential complication of subsequent zero-truncation. On the latter point, note that if
a distribution on {0, 1, 2, . . .} is given by p0, p1, p2, . . . (where

∑
j≥0 p j = 1), then

the zero-truncated version of the distribution is concentrated on {1, 2, . . .} and the
corresponding (renormalized) probabilitymasses are p1/(1 − p0), p2/(1 − p0), . . ..
The presence of the denominator 1 − p0 can cause considerable numerical difficul-
ties with estimation (based on f1, f2, . . .), especially when p0, p1, p2, . . . is neg-
ative binomial, for example. One advantage of methods based on the distributions
discussed herein is that it is possible to evade this problem altogether (e.g., see [12]).

The classical approach to estimating C , dating back to the 1943 paper of Fisher
et al. [3], is based on the mixed Poisson model. Here we assume that the species’
sampling intensities or abundances Λ1, . . . , ΛC are independent and identically dis-
tributed (i.i.d.) draws from a “stochastic abundance distribution” on (0,∞), say F .
The i th species independently contributes a Poisson-distributed number of members
to the sample, withΛi as its Poissonmean.Marginally, the counts f0, f1, f2, . . . then
summarize the values of C F-mixed Poisson random variables. Various problems
have been noted with this model in the literature, including: (i) in the parametric
setting, model selection for F and consequent multiple hypothesis testing; (ii) in the
nonparametric setting, unbounded bias in the estimate of C and nonidentifiability of
F ; and (iii) in general, data-analytic issues such as the necessity of truncating large
frequencies to obtain an acceptable fit. Thus we are motivated to look for marginal
distributions for counts that are not mixed Poisson. Such alternative distributions
may arise from a variety of mechanisms, but they necessarily admit alterations to, or
generalizations of, parts of the aforementioned mixed Poisson mechanism.

In this note we consider a class of power series distributions, first studied by
A. Kemp in 1968 [2, 4, 5], which have probability generating functions based
on generalized hypergeometric functions. We use a result of Puri and Goldie
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[8] to show that large sub-classes of these distributions are not mixed Poisson.
These “Kemp-type” distributions are important in the diversity estimation problem
for a variety of reasons, including but not limited to the following. First, they include
the negative binomial and Poisson, which are two distributions that have often been
used in the past in this problem; but the class extends far beyond these. Consequently
we have a way of embedding classical models in a larger family, which allows us
to test the adequacy of the former, usually to their disadvantage. In particular the
Kemp-type distributions admit much heavier tails than the negative binomial (or
Poisson). Second, the Kemp-type distributions are parameterized in a way that per-
mits all models based on them to be nested (see the next section), which leads to an
elegant method of numerical fitting and a systematic approach to model selection (as
discussed in [12]). Third, they typically allow use of more of the count data, requiring
less truncation of the high frequency counts than classical models. We conclude by
briefly noting certain statistical methods that will facilitate the use of Kemp-type
models in the species problem.

2 Kemp-Type Distributions

Dacey [2] describes Kemp’s [4] class of distributions via the probability generating
function (p.g.f.)

C p Fq [(a); (c);λz] (1)

where p Fq is the generalized hypergeometric function with p numeratorial and q
denominatorial parameters (p, q ≥ 0), and C−1 = p Fq [(a); (c);λ]; z is the argu-
ment of the p.g.f. The parameters of the distribution are λ > 0, (a) = (a1, . . . , ap)

and (c) = (c1, . . . , cq). Considerable effort is expended in [2, 4] to specify the rela-
tionships between the parameters required to produce a valid p.g.f., and we do not
reproduce these requirements here in detail, but we discuss some aspects below.
For information about generalized hypergeometric functions we refer to Spanier and
Oldham’s Atlas of Functions [11] and references therein.

The p.g.f.’s defined by (1) display a wide variety of behaviors depending on the
values of p, q, (a) and (c). Here we show that certain of these distributions, at least
for low values of p and q, are not mixed Poisson. For this we need the following
result of Puri and Goldie [8].

Theorem 1 A p.g.f. G is a p.g.f. corresponding to a Poisson mixture if and only if
G(·) is defined, has continuous derivatives of all orders, and satisfies

G(1) = 1, 0 ≤ G(s) ≤ 1, and 0 ≤ G(n)(s) < ∞, n = 1, 2, . . . ,

for all real s ∈ (−∞, 1).
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We proceed by showing that the p.g.f.’s in (1) assume negative values for certain
negative values of the argument. Remarkably, this is true for the functions themselves
and we will not need to consider derivatives here.

Dacey’s Table1 [2] gives information about the distributions in (1) for p + q =
0, 1, 2, 3.We first note that “terminating” distributions, i.e., having bounded support,
cannot be mixed Poisson (this is also clear from Theorem 1), so we consider only
nonterminating distributions, i.e., with unbounded support {0, 1, 2, . . .}. We look at
these in Dacey’s order, for p + q ≤ 2.

1. p = q = 0. This is the Poisson distribution.
2. p = 1, q = 0. This is the negative binomial distribution ≡ gamma-mixed

Poisson.
3. p = 0, q = 1. The p.g.f. is

C0F1[c;λz] = C
∑

j≥0

(λz) j

(c) j j ! ,

where c > 0, (c) j = Γ (c + j)/Γ ( j), and λ > 0. Such distributions do not seem
to be “named.” We have

0F1

[

1 + ν; −x2

4

]

= Γ (1 + ν)

(
2

x

)ν

Jν(x),

ν �= −1,−2,−3, . . ., where Jν is the Bessel function. Since the latter oscillates
around zero on the positive half-line, these distributions are not mixed Poisson.

4. p = q = 1. Here the p.g.f. is

C1F1[a; c;λz] = C
∑

j≥0

(a) j

(c) j

(λz) j

j ! ,

where a, c,λ > 0. Again these distributions are not named in general, although
1F1 is called the Kummer function. The latter function is equal to one when
z = 0. Furthermore Spanier and Oldham [11] give a complete list of the numbers
of zeroes of 1F1 on the negative half-line, for all values of a and c. There are no
zeroes when 0 < a < c. We also have

dn

dxn
(1F1[a; c; x]) = (a)n

(c)n
(1F1[n + a; n + c; x]) .

It follows that for 0 < a < c the function and all of its derivatives remain positive
on the negative half-line, and hence for these parameter values the distributions
are mixed Poisson. On the other hand, for 0 < c < a, there is at least one zero
on the negative half-line so the function must assume both negative and positive
values there. This can be seen because 1F1 satisfies the differential equation
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x
d2 f

dx2
+ (c − x)

d f

dx
− a f = 0,

so if both 1F1 and its first derivative are zero at some strictly negative x , its second
derivative must also be zero there. Thus for 0 < c < a the distributions are not
mixed Poisson.

5. Higher order generalized hypergeometric functions: p = 0, q = 2; or p + q ≥ 3.
For these cases analytical results on zero-crossings of the relevant functions do
not appear to be readily available. However, numerical examples can easily be
constructed (in every case we have investigated) that admit negative values on the
negative half-line, so that the corresponding distributions are not mixed Poisson.
For example: p = 1, q = 2, a1 = 3/2, c1 = 3/2, c2 = 3. But in general this is a
topic for further research.

3 Statistical Estimation of Population Diversity

We now note some aspects of the problem of estimating C . In general, one
begins by assuming a model for both the observed and unobserved frequency
counts, f0, f1, f2, . . .. Denote the assumed marginal distribution for these counts
by {p j , j = 0, 1, 2, . . .} where p j = P( j) = the probability mass assigned to j ;
our interest here is in the Kemp-type distributions. The observable data consists of
f1, f2, . . . so it is logical to model these counts using the zero-truncated distribution
{p j/(1 − p0), j = 1, 2, . . .}. The question then is how to fit the latter distribution
to the data and how to use the resulting information to estimate C . Let θ denote the
vector of parameters of {p j } or of {p j/(1 − p0)}.

There are (at least) three potential methods. Under the classical maximum like-
lihood (ML) approach we fit {p j/(1 − p0)} to { f1, f2, . . .} by ML, which yields an
MLE θ̂ of θ. The estimator of C is then either an empirical Horvitz-Thompson esti-
mator, also known as the conditional MLE, c/(1 − p̂0) = c/(1 − p0(θ̂)), where c is
the observed number of species c = f1 + f2 + · · · , or the unconditional MLEwhich
results from globally maximizing the likelihood over both θ and C . It is known that
these are asymptotically equivalent [10]. The difficulty in implementing this approach
for the Kemp-type distributions is that we do not have an explicit likelihood in most
cases, rendering ML infeasible.

The second approach was recently pioneered by Rocchetti et al. [9] and extended
by Willis and Bunge [12]. Here we model the ratios of successive frequency counts
f j+1/ f j by ratios of successive probabilities p j+1/p j . The model is fitted by nonlin-
ear regression (which is complicated by heteroscedasticity, dependence, and numeri-
cal difficulties). It is then possible to produce a prediction f̂0 of the unobserved count
f0; the resulting estimate of C is f̂0 + f1 + f2 + · · · = f̂0 + c. This method is ide-
ally suited to the Kemp-type distributions because for these the ratios of probabilities
take the convenient form of a rational function of j :
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p j+1

p j
= (a1 + j)(a2 + j) · · · (ap + j)λ

(c1 + j)(c2 + j) · · · (cq + j)( j + 1)
, (2)

j = 0, 1, . . .. Thus this approach admits estimation of C across a broad spectrum of
non-mixed Poisson distributions {p j }. It is worked out in detail in [12]. In particular,
model selection, which consists mainly of choosing the numerator and denominator
orders p and q, is dealt with in [12] via an algorithm that essentially steps through
models of increasing complexity (higher p and q). The method selects the lowest-
complexity (most parsimonious) model that (i) converges numerically; (ii) has no
singularities (zeroes of the denominator) in the relevant domain; and (iii) yields a
positive prediction of f0 (this is not guaranteed in this or in many other diversity
estimation procedures). It is found that p and q are at most 2 in all cases studied.

While the nonlinear regression method of Willis and Bunge [12] does not require
the likelihood function and provides good fits and reasonable estimates and standard
errors (and good simulation results), asymptotic mathematical analysis of the proce-
dure is rendered difficult by the fact that the procedure uses the standard Gaussian-
error nonlinear regressionmodel for the behavior of f j+1/ f j relative to p j+1/p j . This
is at best an approximation to the true error structure. It would be preferable to base a
model on the assumed operative probability distribution rather than on a continuous
approximation or analogue—but still without using the likelihood function.

Recently there have been developments in fitting distributions directly from an
empirical version of the probability generating function, e.g., [7]. Since the p.g.f. of
the zero-truncated distribution is

∑

j≥1

z j p j

1 − p0
= G(z) − p0

1 − p0
, (3)

where G is the p.g.f. of the original, untruncated distribution, it should be straightfor-
ward to adapt these methods to the zero-truncated case. In particular, the empirical
p.g.f. here is (

∑
i≥1 i fi )

−1 ∑
j≥1 f j z j , which is an estimate of (3) for z ∈ [0, 1]. If

(3) is a parametric distribution, as it is here, then the parameters can be estimated
using well-known methods as described in [6]. A hybrid method for estimating C
would then proceed by estimating the parameter (vector) θ via the empirical (zero-
truncated) p.g.f.; given the resulting estimate (say) θ̃ of θ, an estimator of C would
then be a new empirical Horvitz-Thompson estimator, c/(1 − p̃0) = c/(1 − p0(θ̃)).
Again, we can abandon the mixed-Poisson assumption if {p j } is Kemp-type (for
example). We are currently investigating this approach.
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Approximate Bayesian Estimation
for Multivariate Count Time Series Models

Volodymyr Serhiyenko, Nalini Ravishanker and Rajkumar Venkatesan

Abstract In many areas of application, there is increasing interest in modeling mul-
tivariate time series of counts on several subjects as a function of subject-specific and
time-dependent covariates. We propose a level correlated model (LCM) to account
for the association among the components of the response vector, as well as pos-
sible overdispersion. The flexible LCM framework allows us to combine different
marginal count distributions and to build a hierarchical model for the vector time
series of counts. We employ the Integrated Nested Laplace Approximation (INLA)
for fast approximate Bayesian modeling using the R package INLA (r-inla.org). We
illustrate it by modeling the monthly prescription counts by physicians of a focal
drug from a multinational pharmaceutical firm along with monthly counts of other
drugs with a sizable market share for the same therapeutic category.

Keywords Bayesian framework ·Discrete-valued time series · INLA ·Marketing ·
Multivariate Poisson · ZIP model

1 Introduction

In many applications, includingmarketing, we observe counts of some event of inter-
est at different times and for different subjects. Increasing attention is being given
to the problem of accurate modeling of such time series of univariate or multivariate
counts for N subjects over T time periods as functions of relevant subject-specific
and/or time-varying covariates, incorporating dependence over time and association
between the components of the response vector.While there is considerable literature
on count data regression [13], models for count time series are less common. Zeger
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[29] described a regression type approach using the quasi-likelihood approach. The
Generalized Linear AutoRegressive Moving Average (GLARMA) model was dis-
cussed in Davis et al. [5], while the Dynamic Generalized Linear Model (DGLM)
frameworkwas described inWest andHarrison [28], Gamerman [6], and Landim and
Gamerman [15], among others. In this article, we describe modeling of univariate
and multivariate time series of counts in the context of a marketing application that
uses data from the pharmaceutical industry. We propose dynamic models for model-
ing prescription counts. These models may be viewed as extensions of the Gaussian
Dynamic Linear Models (DLMs).

Kalman [9], andKalman andBucy [10] popularized a recursive algorithm for opti-
mal estimation (filtering, smoothing and forecasting) of the state vector, and forecast-
ing of the observation vector for Gaussian DLMs, also referred to as Gaussian State
Space Models (SSMs). Gaussian Hierarchical Dynamic Linear Models (HDLMs)
include a set of one or more dimension reducing structural equations along with the
observation equation and state (or system) equation of the DLM [7, 15]. For count
time series, DLMs have been generalized to Dynamic Generalized Linear Models
(DGLMs) or exponential family SSMs, which assume that the sampling distribution
is a member of the exponential family of distributions, such as the Poisson or nega-
tive binomial distributions [6, 28]. DGLMs may be viewed as dynamic versions of
the Generalized Linear Models (GLMs) discussed in McCullagh and Nelder [17].
For non-Gaussian or nonlinear models, Bayesian inference is usually facilitated by
sampling based approaches such as the Metropolis-Hastings algorithm combined
with the Gibbs sampler; for details, see Carlin et al. [2], Chen et al. [4].

Hu [8] described hierarchical dynamic models for univariate and multivariate
count times series, while Ravishanker et al. [21] discussed similar multivariate
dynamic models for ecological data that varies over time and by location. These
papers used a modified Gibbs sampling framework for Bayesian inference under a
multivariate Poisson or a mixture of multivariate Poisson sampling distribution as
discussed in Karlis and Meligkotsidou [11, 12]. The computational time increases
considerably with the sample size and vector dimension. Ravishanker et al. [22]
describe the use of models for count time series on several subjects in the context of
amarketing example, and include a discussion of a hierarchical dynamicmodel using
univariate Poisson and zero-inflated Poisson (ZIP) sampling distributions, and a fully
Bayesian inferential approach. The computational time is once again a consideration
in fitting these models.

In this article we discuss a level correlated ZIP model for multivariate count time
series from a marketing application and carry out the estimation using R-INLA.
For each drug in the same therapeutic category, this model enables us to estimate
both the expected number of new prescriptions for each drug as well as the proba-
bility of retention of a physician. Through approximate Bayesian inference, INLA
enables relatively fast computation. The format of the paper follows. Section2 gives
a description of the marketing application and a description of the data. Section3.1
reviews the univariate ZIP model which is estimated in a fully Bayesian framework.
Section3.2 gives details on multivariate level correlated ZIP fitting with an R-INLA
implementation. Section4 provides a discussion and summary of the results.
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2 Problem and Data Description

We describe statistical analyses pertaining to marketing data from a large multina-
tional pharmaceutical firm. Analysis of the drivers of new prescriptions written by
physicians is of interest to marketing researchers. Most existing research focuses
on physician level sales for a single drug within a therapeutic category and do not
consider the association between the sales of a drug and its competitors over time,
see Venkatesan et al. [26] for a detailed discussion. Further, there is interest in know-
ing the effect of the firm’s detailing efforts (visits by the firm’s sales representatives
to physicians) on the sales of its own drug and the sales of competitors. Mizik and
Jacobson [18] discussed existing research showing that detailing, sampling (giving
samples of drugs to physicians), and previous behavior influence new prescriptions
fromphysicians.Montoya et al. [19] state that after accounting for dynamics in physi-
cian prescription writing behavior, detailing seems to be most effective in acquiring
new physicians, whereas sampling is most effective in obtaining recurring prescrip-
tions from existing physicians. As do most other research studies in this context, we
treat physicians as customers of the pharmaceutical firm.

The behavioral data collectedmonthly by the firm over a period of 3years consists
of the number of new prescriptions from a physician (sales) and the number of sales
calls directed toward the physicians (detailing). As inVenkatesan et al. [26], our focus
is on one of the newer drugs launched by the firm in a large therapeutic drug category
(one of the ten largest therapeutic categories in the United States). The database
consists of a monthly prescription history of the drug for 45 continuous months
within the last decade from a sample of physicians from the American Medical
Association (AMA) database. The time window of our data starts after 1year since
the introduction of the focal drug. For our analysis, we have chosen three drugs in the
same therapeutic category with the highest market shares. The focal drug is a drug
made by the firm of interest with amarket share of 13%. The leader drug has amarket
share of 47%and a challenger drug has a 15%market share.We denote the focal drug
by the abbreviation “F”, the leader drug is denoted by “L” and the challenger drug by
“C”. Let Y i t = (YF,i t , YL ,i t , YC,i t )

′ be a 3-dimensional vector of count responses of
the number of new prescriptions for each drug written by the i th physician at equally
spaced times t , for i = 1, . . . , n and t = 1, . . . , T . Our analysis is based on a random
sample of n = 100 physicians, and Fig. 1 shows the time series of prescription counts
for the focal, leader, and challenger drugs for a randomly chosen physician. Due to
confidentiality concerns, we are unable to reveal any other information about the
drug category or the pharmaceutical firm. We are interested in modeling patterns in
the number of prescriptions written by the physician on the focal drug, as well as on
the leader and challenger drugs. The sales calls directed towards the customer by the
firm constitute customer relationship management (CRM) actions.

Exploratory data analysis shows that while the firm obtains on average three new
prescriptions per month from a single physician, and salespeople call on a physician
on average about twice a month, there is large variation in both the monthly level of
sales per physician and the number of sales calls directed toward the physician each
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Fig. 1 Prescription counts of three drugs for a randomly selected physician

month. The correlation matrix indicates that sales calls toward the firm correlate
positively with sales of the focal drug. The focal drug represents a significantly
different chemical formulation, and further targets a different function of the human
body to cure the disease condition than the drugs available at the time of introduction
in the therapeutic category. It is therefore reasonable to expect that physicians will
learn about the efficacy of the drug over time, resulting in a variation (either increase
or decrease) in sales over time. This expectation is supported by multiple exploratory
analyses of sales histories. We observe that the average level of sales (across all
physicians) ranges from about 1 in the first month to 4 in the last month. An ANOVA
test, reported in Venkatesan et al. [26], rejected the null hypothesis that the mean
level of sales was the same across the months.

The variation in sales over time has motivated us to develop a dynamic model
framework where the coefficients in the customer level sales response model could
vary across customers and over time. During these 45months, the pharmaceutical
firm also collected attitudinal data, viz., monthly information on customer attitudes
regarding all the drugs in the therapeutic category and their corresponding salespeo-
ple. Ravishanker et al. [22] discussed a hierarchical dynamic zero-inflated Poisson
framework for sales of the focal drug only, which combines sparse survey based
customer attitude data that is not available at regular intervals, with customer level
transaction and marketing histories that are available at regular time intervals; see
also Venkatesan et al. [26].We omit discussion of attitudes in this paper for modeling
multivariate count time series and only focus on behavioral data.

An important step of the marketing research is to jointly model the number of pre-
scriptions of different drugs written by the physicians over time, taking into account
possible associations between them.Almost all the current research focuses on physi-
cian level sales for a single drugwithin a category, and do not consider the association
between the sales over time of a drug and its competitions within the category. The
effect of a firm’s detailing on the sales of its own drug and competitors is also of
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interest. The computational requirements of the fully Bayesian approach described
in Hu [8] prompted us to explore an approximate Bayesian framework. In Sect. 3.2,
we describe a model which we call the level correlated model, which provides a
useful framework for studying the evolution of sales of a set of competing drugs
within a category. We use this model for multivariate counts in order to decompose
the association in sales among competing drugs between marketing activities of a
drug in the category and coincidence induced by general industry trends.

3 Bayesian Inference

In Sect. 3.1, we briefly review univariate hierarchical dynamic ZIP modeling for the
focal drug counts. Details may be found in Hu [8] and Ravishanker et al. [22], while
details of a staticmodel are discussed inVenkatesan et al. [26].ApproximateBayesian
inference for a model for multivariate counts using R-INLA is then discussed in
Sect. 3.2.

3.1 Univariate ZIP Models

Let Yi,t denote observed new prescription counts of the focal drug from physician i
in month t , for i = 1, . . . , N and t = 1, . . . , T . Let Di,t denote the level of detailing
(sales calls) directed at the i th physician in month t . As mentioned earlier, Hu [8],
Venkatesan et al. [27] and Ravishanker et al. [22] use behavioral and attitudinal data,
while we restrict our discussion here to just behavioral data. Suppose Yi,t follows
a zero-inflated Poisson model [14]. Under this model, it is assumed that the i th
physician at time t can belong to one of these two latent (unobserved) states: an
inactive state, or an active state. The states have the interpretation that zero new
prescriptions will be observed with high probability from physicians in the inactive
state. When the physician is in the active state, the number of new prescriptions can
assume values k = 0, 1, 2, . . .. Due to market forces, marketing actions from the
focal firm, and other influences, a physician is likely to move from the active to the
inactive state from time to time, and vice versa. We may interpret a physician in
the active state as being retained by the focal firm and a physician in the inactive
state to be dormant. We also assume that a physician never quits his/her relationship
with the focal firm, and that there is always a finite probability that he/she will
return to prescribing the drugs of the focal firm. Venkatesan et al. [26] described a
univariate ZIP model [14] for focal drug counts Yi,t as a function of detailing and
previous history of prescription counts. The regression coefficients were assumed to
be static (not time-varying) random variables, and the model was estimated in the
fully Bayesian framework using Markov chain Monte Carlo (MCMC) algorithms.

In order to extend the model to include dynamic or time-varying behavior of the
regression coefficients, a hierarchical dynamic ZIP model for the focal drug counts
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was discussed in Ravishanker et al. [22]. Let λi,t denote the mean of Yi,t , and let Πi,t

denote the probability of zero. The ZIP model for the focal drug counts is

P(Yi,t = 0|λi,t ,Πi,t ) = Πi,t + (1 − Πi,t ) exp(−λi,t )

P(Yi,t = k|λi,t ,Πi,t ) = (1 − Πi,t ) exp(−λi,t )λ
k
i,t/k!, k = 1, 2, . . . (1)

It is well known that the distribution for Yi,t can be written as a mixture distribution,
i.e., Yi,t = Vi,t (1 − Bi,t ), where Bi,t ∼ Bernoulli(Πi,t ), Vi,t ∼ Poisson(λi,t ), and
Bi,t and Vi,t are independent. In the dynamic model, both λi,t and Πi,t are latent
(unobserved) physician specific dynamic parameters.Ravishanker et al. [22]modeled
log(λi,t ) and logit(Πi,t ) as functions of log detailing log(Di,t ) and a measure of
physicians’ behavioral loyalty Ri,t , which is a weighted average of the time since
last prescription (recency), number of months with positive sales (frequency), and
cumulative level of sales (monetary value). For each physician i and time t , these
three variables were calculated as moving averages over 3months prior to time t ,
with respective weights determined empirically as 0.6, 0.3, and 0.1. A brief summary
of this model formulation is given below.

Let βλ
i,t and βΠ

i,t respectively denote the physician and time specific coefficients.
Including an intercept, a coefficient for log(Di,t ) and a coefficient for Ri,t , each of
these is a three-dimensional parameter vector for each t and each i . Then, β i,t =
(βλ′

i,t ,β
Π,′
i,t )′ is a p = 6-dimensional vector. The hierarchical or structural equation

modeled β i,t as a function of a p-dimensional dynamic state vector γ t . Physician
level variables (such as demographics or specialty, if available) may be included
with static coefficients in this equation. The errors vi,t are assumed to be Np(0, Vi )

vectors. The state equation described the dynamic evolution of the state vector γ t :

γ t = Gγ t−1 + wt , (2)

where G is an identity matrix if a random walk evolution is assumed, and wt ∼
Np(0, W). Usual conjugate prior distributions such as multivariate normal and
inverse Wishart distributions were assumed for the model parameters, and the Gibbs
sampling algorithm was employed to estimate the posterior distribution of the model
parameters.While static coefficients were routinely drawn from known distributions,
the Forward-Filtering-Backward-Sampling (FFBS) algorithm [3] enabled sampling
γ t , and the Metropolis-Hastings algorithm was used to generate samples from other
parameters. Modeling details as well as detailed results and comparisons between
several dynamic models are given in Hu [8], while details and results for the static
ZIP models are discussed in Venkatesan et al. [27]. Using posterior results and sum-
maries, physicianswere classified into quintiles based on the actual customer lifetime
value (CLV) as well as the CLV predicted from the hierarchical dynamic ZIP model,
enabling effective marketing actions by the firm. ZIP models for multivariate times
series of counts using approximate Bayesian inference using R-INLA are discussed
in Sect. 3.2, and provide a computationally feasible approach for modeling such data.
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3.2 Approximate Bayesian Inference for Level Correlated
Models

Accurate modeling of multivariate time series of counts for N subjects over T
time periods as functions of relevant subject-specific and/or time-varying covari-
ates, incorporating dependence over time and association between the components
of the response vector, is discussed in Hu [8] and Ravishanker et al. [21] using
multivariate Poisson and mixtures of multivariate Poisson distributions as sampling
distributions and employing a fully Bayesian framework. The evaluation of the cor-
responding likelihood function and the Gibbs sampling framework can be time con-
suming, especially as N , T and the vector dimension increase. As a fast alternative,
we explore approximate Bayesian inference as discussed below.

Regression models which use a multivariate extension of the Poisson lognor-
mal mixture distribution have become popular in different areas of research [1, 16,
20]. There are many situations where researchers wish to model dependence in the
response vector for data that are possibly overdispersed. A Bayesian framework
using Markov Chain Monte Carlo (MCMC) has been developed for model estima-
tion [16], although full Bayesian sampling can be computationally expensive and
time consuming, especially for big data sets. In this paper, we propose an approach
that combines different marginal count distributions in multivariate time series data
and use the Integrated Nested Laplace Approximation (INLA) method to carry out
approximate Bayesian inference. The observation equation of the Level Correlated
Model (LCM) for multivariate time series in the hierarchical dynamic form is

YF,i t |πF , λF,i t ∼ ZIP(πF , λF,i t ) (3)

YL ,i t |λL ,i t ∼ Poisson(λL ,i t ) (4)

YC,i t |πC , λC,i t ∼ ZIP(πC , λC,i t ) (5)

with the natural logarithmic link function for the parameter λ j,i t for j = F, L , C
(corresponding to the focal, leader, and challenger drugs). We based our choice of
ZIP models for j = F, C and a Poisson model for j = L on exploratory univariate
models that we fit to the data. Although we do not show the details here, it is possible
to verify these specifications as part of the model selection procedure. We model
λ j,i t as follows:

log(λ j,i t ) = ηi + γ j,t + z′
j,i tβ j + α j,i t, (6)

where i = 1, . . . , n, t = 1, . . . , T and j = F, L , C . In (6), the random effect ηi

is a physician specific effect for the number of prescriptions, γ j,t represents a drug
specific time effect, the random effect α j,i t is a drug and time specific level corre-
lated component, the vector z′

j,i t denotes a Pj -dimensional vector of covariates with
a vector of one’s as a first column, and β j is a Pj -dimensional vector of coefficients
corresponding to the predictors. In general, β j can be physician specific as well as
time-varying, and consists of intercepts for each component of the response vector
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Yi t = (YF,i t , YL ,i t , YC,i t )
′. The natural logarithm of the number of prescriptions writ-

ten during the previous time point for each component of Yi t is a predictor in the
model. For prediction of the focal drug, another predictor is the natural logarithm of
detailing, i.e., the number of the sales calls to the physician from the firm’s repre-
sentative regarding the focal drug. A small correction term is added to avoid taking
logarithms of zeros.

Let αi t = (αF,i t , αL ,i t , αC,i t )
′. In (6), the dependence between different types of

counts in (3)–(5) is introduced at the physician level through αi t ∼ Normal(0,�),
where � is a variance-covariance matrix for the level correlated random effect term.
We assume that the physician specific random effect follows a normal distribution,
i.e., ηi ∼ Normal(0, 1/τ). We also assume that the components of the drug specific
time effect vector γ t = (γF,t , γL ,t , γC,t )

′ are independent and evolve according to a
random walk process in the state equation in the HDLM. The state equation is:

γ j,t = γ j,t−1 + w j,t, (7)

where i = 1, . . . , n, t = 1, . . . , T , j = F, L , C and the error term is defined as
w j,t ∼ Normal(0, 1/Vj ).

We implement the model estimation through an approximate sampling based
Bayesian framework, assuming usual prior specifications for the parameters. We
assume a normal prior for β j ’s in (6), a Wishart prior for � in the distribution of
αi t and a log gamma prior for log(τ ) and log(Vj ) in the distribution of ηi and w j,t ,
respectively, in (2). We also assume a normal prior for logit(πF ) and logit(πC) in (3)
and (5), respectively. Let θ denotes all the hyperparameters associated with a model.
We use the recently proposed INLA approach [25] which provides a mechanism for
Bayesian inference based on accurate approximations to the posterior distributions
of the parameters. Since INLA does not rely on MCMC, the approximate approach
greatly reduces computational time. More details on the approach as well as the R-
INLA package are available on the website www.r-inla.org.We give a brief overview
of the INLA approach.

INLAperforms approximateBayesian inference for structured additive regression
models with latent Gaussian field specification (or, latent Gaussian models), such
as the Bayesian additive model with normal priors. Let ξ denote the vector of all
components of the latent Gaussian model in (3)–(7). We are interested in deriving
the marginal posterior distribution for each ξk , which denotes the kth component
of the vector ξ . The marginal posterior distribution can be written in the following
form:

π(ξi | y) =
∫

θ

π(ξi |θ, y)π(θ | y)dθ , (8)

where ξi denotes each component of the latent Gaussian field given by (3)–(7),
θ denotes all the hyperparameters associated with a model and y is the observed
data vector. Using the hierarchical structure of the joint distribution, we can rewrite
π(ξ , θ , y) = π(ξ |θ , y)π(θ | y)π( y). Then, π(θ | y) can be approximated by the

www.r-inla.org
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Laplace approximation of a marginal posterior distribution.

π̃(θ | y) ∝ π(ξ , θ , y)
π̃G(ξ |θ, y)

∣
∣
∣
∣
ξ=ξ∗(θ)

, (9)

where ξ ∗ denotes the mode of the full conditional π(ξ |θ , y). In (9), π̃G(ξ |θ , y)
denotes the Gaussian approximation to π(ξ |θ, y) [23]. To integrate out θ , we need to
find a good set of evaluation points θk for numerical integration in (8). This is done
by exploring the properties of (9), via an iterative algorithm with appropriate choice
of weights Δk , which are assigned to each θk [25].

Another part that needs to be approximated is π(ξi |θ, y). According to Rue et al.
[25] and Rue and Martino [24], there are three alternatives: a Laplace approxima-
tion, a simplified Laplace approximation, and a Gaussian approximation (the sim-
plest one). The non-normal distribution under this alternative is approximated with a
Gaussian density by matching the mode and the curvature at the mode [23]. Overall,
themethod gives reasonable results, but the approximation can be improved by apply-
ing the Laplace or simplified Laplace approximation to π(ξi |θ, y). To summarize,
an approximation of the posterior marginal density (8) can be obtained:

π̃(ξi | y) =
∑

k

π̃(ξi |θk, y)π̃(θk | y)Δk . (10)

4 Discussion of Results

We use the default hyperparameter specifications in the inla function from the R-
INLA package. Results from the model fit are given in Table1.

Table 1 Posterior estimates for the fixed effects

Parameters Model 1 Model 2 Model 3 Model 4

βF,0 −0.35(0.044) −0.23(0.046) −0.46(0.053) −0.50(0.051)

βF,1 0.73(0.19) 0.71(0.019) 0.75(0.021) 0.78(0.021)

βF,2 0.16(0.026) 0.14(0.027) 0.16(0.028) 0.16(0.029)

βL ,0 1.20(0.046) 1.22(0.044) 1.29(0.047) 1.26(0.048)

βL ,1 0.44(0.015) 0.44(0.014) 0.41(0.015) 0.42(0.015)

βC,0 −0.16(0.038) −0.05(0.040) −0.32(0.044) −0.29(0.044)

βC,1 0.77(0.017) 0.73(0.018) 0.82(0.020) 0.82(0.019)

DIC 53722 54028 53382 53461

PMAE 2.36 2.48 2.30 2.40
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For model comparison purposes, we consider four slightly different models.
Model 1 is given by Eqs. (3)–(7). Model 2 is the same as Model 1, but instead of
assuming different time effects γ j,t in (6), we assume the same time effect γt across
all components in (6). For Model 3, we assume marginal Poisson distributions for
all three components in (3)–(5), while all other equations stay the same as in Model
1. Model 4 assumes the same underlying Poisson distribution as in Model 3 with
the same time effect as in Model 2. The parameters βF,0, βL ,0 and βC,0 respectively
denote the intercepts in the models for the focal, leader and challenger drugs. The
parameters βF,1, βL ,1 and βC,1 respectively denote the coefficients corresponding to
the logarithm of the prescription counts in the previous time period in models for the
focal, leader and challenger drugs, while βF,2 is the coefficient corresponding to the
logarithm of detailing in the model for the focal drug. For each fitted model, the table
shows the posterior means with posterior standard deviations in parentheses. The last
two rows also show the DIC and the Predictive Mean Absolute Error (PMAE) for
these models and enable model comparison. To construct the PMAE, the last time
point across all physicians was used as hold-out predictive performance evaluation.
Model 3 with the lowest DIC and PMAE values slightly outperforms the other mod-
els. Note that the posterior means for the fixed effect parameters are similar across
all four models, and that the posterior mean for βF,2 is positive. This suggests that
an increase in sales calls from the firm results in an increase in the expected number
of the prescriptions for the focal drug.

The posterior mean for the zero probability parameters πF and πC are 0.03 and
0.04 in Model 1. This suggests that the overall probability of a physician going
inactive for the focal drug is lower than that for the challenger drug. The most useful
outcome from multivariate modeling is the correlation coefficient between all three
drugs, whose posterior summary is extracted from the posterior distribution of �,
corresponding to α j,i t . In all models, the posterior mean of the correlation coefficient
between the leader drug and the challenger drug ranges between −0.20 and −0.33.
The correlation coefficients between the focal drug and the leader drug and between
the focal drug and the challenger drug are very close to zero, suggesting that after
controlling for the fixed effects predictors, the physician effect, and the time effect, an
increase in the number of the prescriptions for the leader drug results in a decrease in
the number of the prescriptions for the challenger drug, while there is no significant
effect on the focal drug. The next step in the analysis is to investigate the temporal
behavior for all three drugs.

In Fig. 2, we plot the posterior mean of γ j,t from Model 3 for j = F, L , C . After
the steep decrease in the beginning, the leader drug shows an increase for the rest
of the observational period. By contrast, after an increase during the first 9months
for the challenger drug, there is a decreasing trend until the end of the observational
period. For the focal drug, the relatively stable period in the beginning is followed
by a decrease. Nevertheless, we notice that there is a flattening out for the focal drug
towards the end of the observational period.
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Fig. 2 Time effect for the focal, leader, and challenger drugs

Fig. 3 Physician effect for the focal, leader, and challenger drugs

One of the research goals is to estimate the probability that a physician goes
inactive for the focal drug. We estimate the probability using a univariate ZIP model
for the focal drug, and compare the probability to those obtained from univariate
ZIP models for the leader and challenger drugs. To construct Fig. 3, we compute
ordered posterior mean values for the physician effect for the focal drug, and plot
those together with the physician effect from the other two drugs. The plot clearly
shows that there is a group of a dozen physicians whose mean prescription level is
lower than that of the others, and perhaps future marketing efforts could be directed
at such physicians in an effort to improve sales of the focal drug.
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Comparison Data with Skewness
and Heavy Tails
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Abstract The analysis ofmethod comparison data ismainly concernedwith evaluat-
ing agreement between methods of measuring a continuous variable. The methodol-
ogy commonly assumes normally distributed data, which are usually modeled using
a standard linear mixed model that assumes normality for both random effects and
errors. In practice, however, the data often exhibit skewness and have tails heavier
than those of a normal distribution, possibly due to outlying observations.When such
data are analyzed using the standard mixed model, the non-normality may become
apparent from model diagnostics. This article develops a methodology for agree-
ment evaluation by modeling data using a recent robust mixed model that assumes a
skew-t distribution for random effects and an independent t-distribution for errors.
As the standard model is a special case of the robust model, the new methodology
offers a unified framework for analyzing data with skewness and heavy tails as well
as normally distributed data. The methodology is presented for both unreplicated
and replicated data. A real example is used for illustration.
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1 Introduction

Method comparison studies compare two ormoremethods ofmeasuring a continuous
response variable with the primary aim of evaluating agreement between them. The
comparison rests on the premise that if the methods agree well, they may be used
interchangeably or we may prefer the cheapest or the least invasive method. Such
studies are conducted in many disciplines, including metrology [43], ecology [23],
and biomedical fields such as medical imaging, biomedical engineering, physiology
and clinical chemistry [8]. Reviews of literature on this topic can be found inBarnhart
et al. [5] and in the books by Carstensen [12] and Lin et al. [34].

In method comparison studies, measurements are taken by each method on every
subject. Sometimes the measurements may be replicated. The data from the same
subject are dependent whereas those from different subjects are assumed to be inde-
pendent. The analysis of these data may be thought of as a two-step procedure. The
first step involves modeling of the data. For this, the framework of linear mixed
models [37] is an especially attractive choice because it allows capturing the within-
subject dependence through random subject effects and their interactions. Indeed,
a number of authors have used linear mixed models for method comparison data,
including [9, 11, 13, 14, 40]. The models are generally fit using likelihood-based
methods. The second step involves evaluation of agreement by performing inference
on measures of agreement derived from the model fit in the first step. Although a
number of agreement measures are available [5], the concordance correlation coef-
ficient (CCC; [31]) and the total deviation index (TDI; [16, 32]) have received the
most attention in the statistical literature. See [15] for a description of the two-step
methodology.

In its standard formulation, a linear mixed model assumes that random effects and
errors follow independent normal distributions, implying normality for the observed
data. However, method comparison data often exhibit skewness and heavy tails,
i.e., tails heavier than those of a normal distribution, possibly due to the presence
of outlying observations. When a standard mixed model is fit to such data, the non-
normalitymaymanifest itself duringmodel checking through non-normality of either
predicted random effects or residuals or both. The crab claws data in Choudhary et al.
[18] is a real example of such data; it is used for illustration later in this article. It may
be possible to transform the data for better adherence to the normality assumption.
But transformation may render the difference in measurements from two methods
difficult to interpret—an important issue in data analysis. Therefore, a transformation
other than the logarithmic is generally not recommended in method comparison
studies [8]. But the logarithmic transformation may not succeed in normalizing the
data. Besides, it is often desirable to analyze the data on the original scale. These
considerations call for approaches that deal with non-normality rather than avoid it
by employing a transformation.

One can analyze non-normal method comparison data by simply ignoring the
model violation and applying the methodology developed for normal data. But
depending upon the seriousness of the violation, the estimates of agreement mea-



Modeling and Analysis of Method … 171

sures and their standard errors may be quite inaccurate. This has been demonstrated
by Carrasco et al. [10] for estimation of CCC in the case of skewed data. Another
approach is to use a procedure that does not require the normality assumption. These
procedures include the nonparametric procedures developed by King and Chinchilli
[25, 26], King et al. [27, 28] and Choudhary [15]; and semiparametric procedures
based on generalized estimating equations proposed by Barnhart and Williamson
[4], Barnhart et al. [6, 7] and Lin et al. [33]. Yet another parametric approach—also
the focus of this article—is to employ a robust mixed model wherein the normality
of random effects and errors is replaced by more general distributions that have the
normal as a special case. Such distributions include mixture of normals, t , skew-
normal [2], and skew-t distributions [3]. The literature on this kind of robust model
is vast and is under active development. One may start with [1, 21, 29, 38, 42, 44]
for an initiation into the topic.

The robust mixed model of interest in this article is the general skew-t (GST)
mixed model developed in Choudhary et al. [18]. It assumes a skew-t distribution
for the random effects and an independent t-distribution for the errors. This way the
model not only incorporates both skewness and heavy-tailedness in the data but also
lets their distributions differ in heaviness of tails. The latter feature, not shared by
competing models, affords additional flexibility in modeling because it permits, e.g.,
the random effects to be a normal and the errors to be a t , and vice versa. This brings
us to the specific goal of this article: To extend the two-step methodology for method
comparison data analysis by modeling data using a GST mixed model instead of the
standard mixed model. Because the latter model is a special case of the former, the
proposed extension offers a unified parametric framework for analyzing data with
normal distributions as well as with skewness and heavy tails.

The rest of the article is organized as follows. Section2 presents GST mixed
models for basic method comparison data. Section3 adapts the usual agreement
evaluation methodology to work under the GST models. The methodology is illus-
trated in Sect. 4. Section5 contains some concluding remarks. The software R [39]
is used for all the analysis in this article.

2 Modeling Basic Method Comparison Data

Consider a method comparison study comparing J (≥2) measurement methods. We
focus on two scenarios. One is when the measurements are not replicated. In this
case, there is just one measurement by each method on every subject. The data are of
the form Yi j , j = 1, . . . , J , i = 1, . . . , n, where Yi j is the measurement by the j th
method on the i th subject. The other is when the measurements are replicated. In this
case, the data are of the formYi jk , k = 1, . . . , mi j , j = 1, . . . , J , i = 1, . . . , n, where
Yi jk is the kth replicate measurement from the j th method on the i th subject. It is
assumed that the replications are independently and identically distributed measure-
ments of the same underlying true value. In either case, the number of observations
on the i th subject is Mi and N = ∑n

i=1 Mi is the total number of observations in



172 D. Sengupta et al.

the data. Obviously, Mi = J for unreplicated data and Mi = ∑J
j=1 mi j for repli-

cated data. Although the unreplicated data are a special case of replicated data with
mi j = 1, we treat the two scenarios separately as they warrant somewhat different
model formulations.

The vectors andmatrices in this article are denoted by boldface letters. The vectors
are column vectors unless stated otherwise. Let IJ denote a J × J identity matrix; a′
denote the transpose of a; |Σ | denote the determinant ofΣ ;Σ1/2 denote a symmetric
square root of a symmetric, positive definite matrix Σ so that Σ1/2Σ1/2 = Σ ; and
Σ−1/2 denote the inverse of Σ1/2. We also use �(·) for the cumulative distribution
function of a univariate standard normal distribution, and f (y|θ) for the probability
density function of a random vector Y with parameter vector θ .

2.1 A General Formulation of GST Mixed Models

We first describe the GST mixed models in general terms before presenting them
for method comparison data. To lay some groundwork for this, let μ ∈ R

J be a
vector of location parameters; Σ be a J × J positive definite scale matrix; λ ∈ R

J

be a vector of skewness parameters; and ν (> 0) be degrees of freedom. We use
NJ (μ,Σ), SNJ (μ,Σ,λ), tJ (μ,Σ, ν) and ST J (μ,Σ,λ, ν) respectively to denote
J -dimensional normal, skew-normal, t and skew-t distributions. The last three dis-
tributions are defined in Appendix A.1. Azzalini and Capitanio [3] and Genton [19]
may be consulted for their additional properties. The normal is a special case of the
skew-normal and the t is a special case of the skew-t when the skewness parameter
λ = 0. Similarly, the normal becomes a special case of the t and the skew-normal
becomes a special case of the skew-t in the limit when the degrees of freedom
ν → ∞. The location vector μ and the scale matrix Σ are actually the mean vector
and the covariance matrix in case of the normal, but this may not be the case in
general for other distributions.

Let Yi denote the vector of Mi observations on subject i = 1, . . . , n. A linear
mixed model for the data Y1, . . . , Yn can be written as

Yi = Xiβ + Zi bi + ei , i = 1, . . . , n, (1)

where β is the p-vector of fixed effects and Xi is the associated Mi × p design
matrix; bi is the q-vector of random effects and Zi is the associated Mi × q design
matrix; and ei is the Mi -vector of within-subject random errors. The design matrices
are assumed to have full column ranks.

The standard version of this model makes the normality assumption,

bi ∼ independentNq(0,Ψ ), ei ∼ independentNMi (0,Σi ), (2)

and bi and ei are mutually independent. The GST mixed model in Choudhary et al.
[18] replaces the normality in (2) with more general distributions,
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bi ∼ independentSTq(0,Ψ ,λ, νb), ei ∼ independenttMi (0,Σi , νe), (3)

while bi and ei remain mutually independent. The assumptions in (3) reduce to (2) in
the limit when the skewness parameter λ = 0 and the degrees of freedom parameters
νb, νe → ∞. AppendixA.2 gives a hierarchical representation of this model that is
especially useful for studying its distributional properties. The scale matrices Ψ and
Σi in both (2) and (3) are generally parameterized in terms of a small number of
parameters that do not depend on i . To get the mean vector and covariance matrix of
Yi under the GST mixed model, (Ψ ,λ) is reparameterized as (Γ , γ ), where

δ = λ/(1 + λ′λ)1/2, γ = Ψ 1/2δ,Γ = Ψ 1/2(Iq − δδ′)Ψ 1/2 = Ψ − γ γ ′. (4)

Then, we have

E[Yi ] = Xiβ +
√

νb

π

gam((νb − 1)/2)

gam(νb/2)
Ziγ ,

var[Yi ] = νb

νb − 2
ZiΨ Z′

i + νe

νe − 2
Σi − νb

π

(
gam((νb − 1)/2)

gam(νb/2)

)2

Ziγ γ ′Z′
i , (5)

where E[Yi ] assumes νb, νe > 1, var[Yi ] assumes νb, νe > 2, and gam(·) denotes
the gamma function.

The likelihood function under the GST model is not available in a closed form. It
can, however, be computed via one-dimensional numerical integration. Choudhary
et al. [18] fit the model by a variant of the expectation-maximization (EM) algo-
rithm [35]—the expectation-conditional maximization (ECM) algorithm [36]. All
subsequent inference relies on the fact that, when the number of subjects n is large,
under certain regularity conditions, the maximum likelihood (ML) estimator θ̂ of the
model parameter vector θ approximately follows a normal distribution with mean θ

and covariance matrix I−1, where I is the observed information matrix associated
with the fitted model [30]. This matrix is obtained by numerically differentiating
the log-likelihood function which itself is computed via numerical integration. The
numDeriv package of [20] and the statmod package of [41] in R can be used for
this task.

2.2 GST Mixed Models for Method Comparison Data

First, consider the case of unreplicated data. These data can be modeled as

Yi j = β j + bi + ei j , j = 1, . . . , J, i = 1, . . . , n, (6)

where β j is the fixed intercept of the j th method, bi is the random effect of the i th
subject, and ei j is the within-subject random error. To write this model in the matrix
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notation of (1), let 1J be a J -vector of ones, take (p, q) = (J, 1), and define

Yi =
⎡

⎢
⎣

Yi1
...

Yi J

⎤

⎥
⎦, Xi = IJ , β =

⎡

⎢
⎣

β1
...

βJ

⎤

⎥
⎦, Zi = 1J , s bi = bi , ei =

⎡

⎢
⎣

ei1
...

ei J

⎤

⎥
⎦.

Here the q-dimensional random effects vector bi is actually a scalar quantity bi . We
assume that bi and ei follow (3). Thus, bi ∼ ST1(0, Ψ, λ, νb) and ei ∼ tJ (0,Σ, νe),
withΣ as a J × J diagonal matrix consisting of the diagonal elements (σ 2

1 , . . . , σ 2
J ).

It may be noted that this model is often not useful for J = 2 despite being identifiable
because the unreplicated data may not have enough information for reliable estima-
tion of all model parameters, especially the scale parameters. The same situation also
arises in the case of the standard mixed model.

Next, consider the case of replicated data. These data can be modeled as

Yi jk = β j + bi j + ei jk, k = 1, . . . , mi j , j = 1, . . . , J, i = 1, . . . , n, (7)

where β j is the fixed intercept of the j th method, bi j is the random effect of the
i th subject on the j th method, and ei jk is the within-subject random error. One can
also think of the bi j as subject×method interactions. This model can be written in
the matrix notation of (1) by letting 0J denote a J -vector of zeros, taking (p, q) =
(J, J ) and β as in unreplicated data, and defining Yi j = (Yi11, . . . , Yi1mi j )

′, ei j =
(ei11, . . . , ei1mi j )

′,

Yi =
⎡

⎢
⎣

Yi1
...

Yi J

⎤

⎥
⎦, Xi = Zi =

⎡

⎢
⎣

1mi1 . . . 0mi1

...
. . .

...

0mi J . . . 1mi J

⎤

⎥
⎦, bi =

⎡

⎢
⎣

bi1
...

bi J

⎤

⎥
⎦, ei =

⎡

⎢
⎣

ei1
...

ei J

⎤

⎥
⎦.

It is assumed that bi and ei follow (3) with Ψ as an unstructured J × J scale matrix
andΣi as an Mi × Mi diagonal matrix with diagonal elements (σ 2

1 1′
mi1

, . . . , σ 2
J 1′

mi J
).

This model can be used for J = 2 as well; the aforementioned problem that arises
with unreplicated data usually does not arise if measurements are replicated.

The models (6) and (7) are similar except that the subject random effects are
common to all methods in (6), whereas they vary with methods in (7). The mean
vector and covariance matrix of Yi for both data types are given by (5). Both (6)
and (7) are models for basic method comparison data that we commonly encounter in
applications. They have been used with the normality assumption (2) in Choudhary
andYin [17]. Themodelsmayneed to bemodified to incorporate additional structures
that may be present in the data—see, e.g., the model (13) for the crab claws data in
Sect. 4.
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3 Evaluation of Agreement Under the Basic Models

Let the vector Ỹ = (Ỹ1, . . . , ỸJ )
′ consist of one measurement from each of the J

methods under comparison on a randomly selected subject from the population. The
distribution of Ỹ induced by the assumed data model is needed to derive expressions
for agreement measures.

3.1 Distributional Properties of Ỹ

In the case of unreplicated data, the model (6) induces a companion model for Ỹ,

Ỹ j = β j + b̃ + ẽ j , j = 1, . . . , J,

where b̃ ∼ ST1(0, Ψ, λ, νb) and ẽ = (ẽ1, . . . , ẽJ )
′ ∼ tJ (0, Σ̃, νe) are identically dis-

tributed asbi and ei in (6).Here Σ̃ = diag{σ 2
1 , . . . , σ 2

J }. One can think of the observed
data Y1, . . . , Yn as independent draws from the distribution of Ỹ. To get E[Ỹ] and
var[Ỹ] for νb, νe > 2, we simply substitute (Xi , Zi ,Σi ,Ψ ,λ) = (IJ , 1J , Σ̃, Ψ, λ)

in (5). The same substitution in (A.4) but without the subscript i gives a hierarchical
representation for Ỹ which can be used to determine its distribution.

The case for replicated data is completely analogous to the unreplicated data. The
companion model for Ỹ induced by the data model (7) is

Ỹ j = β j + b̃ j + ẽ j , j = 1, . . . , J,

where b̃ = (b̃1, . . . , b̃J )
′ ∼ ST J (0,Ψ ,λ, νb) is identically distributed as bi and ẽ is

the same as before. Moreover, the moments for Ỹ and its hierarchical representation
are obtained by substituting (IJ , IJ , Σ̃) for (Xi , Zi ,Σi ) in (5) and for (X, Z,Σ) in
(A.4).

The resulting hierarchical representations of Ỹ in both cases have the same general
form,

Ỹ | U, V ∼ SNJ (β, 
̃V /U, λ̃V ), V ∼ G(νb/2, νb/2), U/V ∼ G(νe/2, νe/2),
(8)

where 
̃V and λ̃V are counterparts of 
V and λV from (A.2) which are obtained
by appropriate substitution as mentioned previously, and G(α, β) denotes a gamma
distribution with density (A.3).

Next, for j �= l = 1, . . . , J , let D̃ jl be the difference Ỹ j − Ỹl , and a jl be a J -
vector whose j th element is 1, lth element is −1 and the rest are zero. It follows
from Proposition 1 in Appendix A.3 that

D̃ jl | U, V ∼ SN1
(
β j − βl, a′

jl
̃V a jl/U, a′
jl
̃

1/2
V δ̃V /(a′

jl Γ̃V a jl)
1/2), (9)
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where δ̃V = λ̃V /(1+λ̃′
V λ̃V )1/2 and Γ̃V = 
̃V −
̃

1/2
V δ̃V δ̃′

V 
̃
1/2
V . Let Fjl be the distri-

bution function of this conditional distribution. We can now write the unconditional
distribution function of |D̃ jl | as

P(|D̃ jl | ≤ t) =
∫ ∞

0

∫ ∞

0
{Fjl(t) − Fjl(−t)} f (u, v |(νb, νe)) du dv, t > 0, (10)

where f (u, v |(νb, νe)) is the joint density of (U, V ) appearing in (8). This integral
is not available in a closed-form but can be computed numerically.

3.2 Inference on Agreement Measures

Let ϕ be a scalar measure of agreement between two methods. By definition, ϕ

associated with the method pair ( j, l), l > j = 1, . . . , J , is a function of parameters
of bivariate distribution of (Ỹ j , Ỹl), or more generally of Ỹ, whose distributional
properties were discussed previously. Since ϕ is scalar, either a large or a small value
for it indicates good agreement. Here we focus on only two agreement measures—
CCC [31] and TDI [32]. Others can be handled in a similar manner.

The CCC between methods j and l is defined as

CCC jl = 2 cov[Ỹ j , Ỹl ]/
{
(E[Ỹ j ] − E[Ỹl])2 + var[Ỹ j ] + var[Ỹl]

}
. (11)

It lies between −1 and 1 and a large positive value for it implies good agreement.
Next, for a given large probability 0 < p0 < 1, the TDI between methods j and l,
say TDI jl(p0), is defined as the p0th quantile of |D̃ jl |. It is positive and indicates
how large the differences between the methods j and l can be in 100p0 % of the
population. A small value for TDI implies good agreement. For both unreplicated and
replicated data, CCC is computed for νb, νe > 2 by substituting in (11) the moments
of (Ỹ j , Ỹl) obtained using (5). Similarly, the TDI is computed by numerically solving
P(|D̃ jl | ≤ t) = p0 for t > 0, where the probability on the left is given by (10).

When only two methods are compared, i.e., J = 2, one is mainly concerned
with measuring between the methods. For this, one typically constructs a one-sided
confidence bound for the agreement measure ϕ—a lower bound if large values for ϕ

imply good agreement (e.g., CCC) or an upper bound if small values forϕ imply good
agreement (e.g., TDI). This bound is then used to determine whether the methods
have satisfactory agreement. In the case of J > 2, one is additionally concerned
with multiple comparisons—a comparison of values of ϕ for each pair of methods
of interest—besides measuring agreement between the method pairs. For this, one
constructs simultaneous one-sided confidence bounds for the pairs of values of ϕ of
interest. These bounds are then used to determine which method pairs, if any, have
satisfactory agreement, and also to order the method pairs on the basis of their extent
of agreement.
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To treat the two cases of J together, we index the method pairs of interest as
1, . . . , K . Thus, K = 1 if J = 2. More generally, K = (J

2

)
if all pairwise com-

parisons are desired, whereas K = J − 1 if there is a reference method and only
the comparisons with the reference are desired. Next, let ϕ = (ϕ1, . . . , ϕK )′ be the
vector of values of ϕ associated with the K method pairs. Obviously, ϕ is a function
of the model parameter vector θ . Its ML estimator ϕ̂ = (ϕ̂1, . . . , ϕ̂K )′ is obtained
by plugging in θ̂ for θ in ϕ. From the large sample theory [30], ϕ̂ approximately
follows aNK (ϕ, HI−1H′) distribution when the number of subjects n is large. Here
H = ∂ϕ/∂θ is the Jacobian matrix evaluated at θ = θ̂ and I is the observed infor-
mation matrix associated with the fitted model.

Following [17], the simultaneous confidence bounds for ϕ1, . . . , ϕK can be com-
puted as

ϕ̂l − c1−α,K v1/2ll (lower bounds), ϕ̂l − dα,K v1/2ll (upper bounds), (12)

where vll is the lth diagonal element of HI−1H′, l = 1, . . . , K , and c1−α,K and
dα,K are critical points such that the limiting simultaneous coverage probability of
each set of bounds is (1 − α) as n → ∞. Essentially c1−α,K is the (1 − α)th
quantile ofmaxK

l=1 Gl and dα,K is the αth quantile of minK
l=1 Gl , where (G1, . . . , G K )

follows the same multivariate normal distribution as the limiting joint distribution
of (ϕ̂l − ϕl)/v1/2ll , l = 1, . . . , K . These critical points can be computed using the
method of [22] implemented in their R package multcomp. The critical points
are standard normal quantiles when K = 1. Also, the finite sample accuracy of
the bounds in (12) can be improved by first constructing them after applying a
normalizing transformation to the agreement measure and then applying its inverse
transformation to the results. The Fisher’s z-transformation (tanh−1) of CCC and the
log transformation of TDI are commonly used as normalizing transformations.

4 Illustration

Consider the crab claws data from [18]. These data consist of lengths (in mm) of
25 fiddler crab claws measured by three observers, each using two calipers. The
measurements are replicated three times. Thus, each claw specimen has a total of
3 × 6 = 18 observations, 2 × 3 = 6 from each observer. This results in a total
of 25 × 18 = 450 observations in the data. The primary goal of this study was to
compare the three observerswith respect to their extent of agreement between the two
calipers. Figure1 shows trellis plots of the data. Each row in a trellis plot displays all
measurements on a specimen. The clawmeasurements range between 20 and 47mm.
The 18 measurements on each subject essentially overlap, suggesting not only that
there is little variation within the replications, but also that there is little difference
between either the calipers or the observers. These differences are easier to see in
Fig. 2, which presents Bland-Altman plots of differences against averages. The three
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Fig. 1 Trellis plots of crab claws data. The circles (◦) and the plus signs (+) representmeasurements
from calipers 1 and 2, respectively. Six measurements are displayed in each row of the first three
plots. Eighteen measurements are displayed in each row of the last (bottom-right) plot

replicate measurements for each observer-caliper combination are averaged prior to
creating these graphs. We see that the average measurements of caliper 2 tend to be
slightly larger than caliper 1. Moreover, the differences in the average measurements
seem to be largest for observer 1 and smallest for observer 2. Thus, while it appears
that the agreement between the calipers is quite good for each observer, observer 2
seems to have the most agreement, followed by observers 3 and 1.
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Fig. 2 Bland-Altman plots of differences (caliper 2 − caliper 1) against averages for crab claws
data. The three replications for each observer-caliper combination are averaged prior to plotting. A
horizontal line at zero is added in each plot

The modeling of these data calls for an extension of the basic model (7) for
replicated data to incorporate effects of both observers and calipers. Choudhary et al.
[18] adopt the model:

Yi jkl = β jl + bi j + ei jkl , i = 1, . . . , 25, j = 1, 2, k = 1, 2, 3, l = 1, 2, 3, (13)

where Yi jkl is the kth repeated measurement of the length of the i th claw, taken by
the lth observer using the j th caliper; β jl is the fixed intercept associated with the
combination of caliper j and observer l; bi j is the random interaction effect of claw i
and caliper j ; and ei jkl is the random error. The repeated measurements for each
combination of observer and caliper are independently and identically distributed.
This model is written in the usual form (1) by taking

Yi = (Yi111, Yi121, Yi131, Yi112, Yi122, Yi132, . . . , Yi213, Yi223, Yi233)
′,

β = (β11, β12, . . . , β23)
′, bi = (bi1, bi2)

′,
ei = (ei111, ei121, ei131, ei112, ei122, ei132, . . . , ei213, ei223, ei233)

′,
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and conformably defining thematricesXi andZi . The vectorsYi and ei have Mi = 18
elements, β has p = 6 elements, and bi has q = 2 elements.

Initially, the model (13) is fit assuming the usual normality (2), whereΨ is a 2×2
unstructuredmatrix withψ2

1 andψ2
2 as diagonal elements andψ12 as the off-diagonal

element; and Σ is an 18 × 18 diagonal matrix

Σ = diag
{
σ 2
11, σ

2
11, σ

2
11, σ

2
12, σ

2
12, σ

2
12, . . . , σ

2
23, σ

2
23, σ

2
23

}
,

parameterized in terms of six scale parameters σ 2
jl , j = 1, 2, l = 1, 2, 3. The

assumption about the errors amounts to assuming that they are independentN1(0, σ 2
jl)

random variables. This model is fit using the nlme package of [37]. Figure3 shows
the resulting normal quantile-quantile (QQ) plots of the predicted random effects bi1

and bi2 and the standardized residuals. Also shown is a histogram of the residuals.
These graphs suggest that the normality assumption is reasonable for the random
effects, whereas a heavier tailed distribution than the normal is needed for the errors.
The normality of random effects is further corroborated by the 0.47 p-value for the

Fig. 3 Normal QQ plots of predicted claw × caliper random effects and standardized residuals,
and a histogram of standardized residuals. A line passing through the first and third quartiles is
added in each QQ plot
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Shapiro-Wilk test of multivariate normality given by the mvnormtest package of
[24] in R.

These diagnostics suggest modeling the data using a GST model where bi is
normally distributed as before, but the normality of ei is replaced by a t18(0,Σ, νe)

distribution assumption. There are a total of 16 parameters in the GST model. It is
fit using an ECM algorithm. Further details regarding estimation can be found in
Choudhary et al. [18]. Here we simply note their conclusions that the model (13)
with estimated error degrees of freedom ν̂e = 3.6 fits reasonably well and the fit is
substantially better than that of the standard mixed model. It is also preferred over
a more general model that lets the random effects have a skew-t distribution with
unknown parameters for skewness and degrees of freedom.

Our next task is to compare the extent of agreement that the three observers have
between the two calipers. For this, we first need to adapt the approach of Sect. 3
to derive expressions for agreement measures based on the fitted GST model (13).
Let Ỹ jl be the length of a randomly selected claw specimen from the population
as measured by the lth observer using the j th caliper, j = 1, 2, l = 1, 2, 3. The
companion model for these Ỹ jl induced by (13) is

Ỹ jl = β jl + b̃ j + ẽ jl , (b̃1, b̃2)
′ ∼ N2(0,Ψ ), (ẽ11, ẽ12, . . . , ẽ23)

′ ∼ t6(0, Σ̃, νe),

with Σ̃ = diag
{
σ 2
11, σ

2
12, . . . , σ

2
23

}
. Next, the difference D̃l = Ỹ1l − Ỹ2l can be

represented as

D̃l | We ∼ N1
(
E[D̃l], var[D̃l |We]

)
, We ∼ G(νe/2, νe/2),

where E[D̃l] = β1l − β2l and var[D̃l |We] = ψ2
1 + ψ2

2 − 2ψ12 + (σ 2
1l + σ 2

2l)/We.
Further, upon proceeding as in Sect. 3, we can see that for νe > 2 the CCC between
(Ỹ1l , Ỹ2l) for the lth observer is

CCCl = 2ψ12

(β1l − β2l)2 + {ψ2
1 + (νe/(νe − 2))σ 2

1l} + {ψ2
2 + (νe/(νe − 2))σ 2

2l}
.

Similarly, for a given large probability p0, the TDI between (Ỹ1l , Ỹ2l) for the lth
observer, say TDIl(p0), is the solution of the equation

p0 = P(|D̃l | ≤ t)

=
∫ ∞

0

[
�{(t − E[D̃l ])/sd[D̃l |we]} − �{(−t − E[D̃l ])/sd[D̃l |we]}

]
f (we |νe) dwe

for t > 0. One can perform simultaneous inference on these measures as in Sect. 3.
The ML estimates for z(CCCl) = tanh−1(CCCl) (the Fisher’s z-transformation

of CCCl ) and log(TDIl) (with p0 = 0.90, 0.95) for l = 1, 2, 3, their standard errors,
and 95% simultaneous confidence bounds—lower bounds for z(CCC) and upper
bounds for log(TDI)— are presented in Table1. The critical point for the CCC
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Table 1 ML estimates, standard errors and one-sided 95% simultaneous confidence bounds for
z(CCCl), l = 1, 2, 3 and log(TDIl ), l = 1, 2, 3 with p0 = 0.90, 0.95 under both GST and normal
models

Measure Estimate Standard error Confidence bound

GST model

z(CCC) (3.90, 4.57, 4.38) (0.22, 0.21, 0.17) (3.48, 4.18, 4.05)

log{TDI(0.90)} (−0.87,−1.53,−1.34) (0.12, 0.11, 0.09) (−0.61,−1.30,−1.16)

log{TDI(0.95)} (−0.61,−1.29,−1.14) (0.15, 0.13, 0.11) (−0.31,−1.02,−0.93)

Normal model

z(CCC) (3.90, 4.75, 4.34) (0.15, 0.16, 0.16) (3.60, 4.43, 4.03)

log{TDI(0.90)} (−0.77,−1.62,−1.22) (0.06, 0.08, 0.07) (−0.65,−1.46,−1.06)

log{TDI(0.95)} (−0.60,−1.45,−1.05) (0.06, 0.08, 0.07) (−0.47,−1.29,−0.91)

bounds is c0.95,3 = 1.89, and they are d0.05,3 = −2.03 and−1.98 for the TDI bounds
with p0 = 0.90 and 0.95, respectively. The critical points are computed using the
multcomp package [22] in R.

The application of inverse transformation yields the simultaneous bounds for
(CCC1,CCC2,CCC3) as (0.9981, 0.9995, 0.9994), and for (TDI1,TDI2,TDI3) as
(0.54, 0.27, 0.31) with p0 = 0.90 and as (0.73, 0.36, 0.39) with p0 = 0.95. The
CCC bounds are practically one and the TDI bounds are quite small compared to
the magnitude of measurements that range between 20 and 47mm. In particular, the
bound of 0.54 implies that 90% of differences inmeasurements from the two calipers
by observer 1 are estimated to lie within±0.54 mm. All three sets of bounds suggest
excellent agreement between the two calipers for each observer. Furthermore, the
ordering of the bounds imply that the calipers agree most in the case of observer
2, followed by observers 3 and 1. This conclusion is in line with what we expected
from the exploratory data analysis.

Our next task is to assess the statistical significance of the differences in the
extent of agreement across the observers. For this, we proceed in a manner simi-
lar to Sect. 3.2 and use the large-sample theory of ML estimators to construct 95%
simultaneous two-sided confidence intervals for pairwise differences in the observer-
specific agreement measures. The confidence intervals for z(CCC1) − z(CCC2),
z(CCC1)− z(CCC3) and z(CCC2)− z(CCC3) are (−0.90,−0.44), (−0.74,−0.20)
and (−0.04, 0.42), respectively. They indicate that the difference between observers
2 and 3 is not significant, but observer 1 differs significantlywith them.The observer 1
has lower agreement between the calipers than the other observers. The differ-
ence, however, is not practically significant. The same conclusion is reached on
the basis of confidence intervals for log(TDI1)− log(TDI2), log(TDI1)− log(TDI3)
and log(TDI2)− log(TDI3), which are (0.43, 0.88), (0.23, 0.70) and (−0.40, 0.02),
respectively, in the case of p0 = 0.90.
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To see how the results under the assumedGSTmodel comparewith those under the
standard model, we redo the analysis by replacing the t-distribution for errors with a
normal distribution. These results are also presented in Table1. There is no consistent
pattern among the ML estimates, but all the standard errors are smaller under the
normal model than the GSTmodel. The latter finding appears reasonable as the GST
model accounts for the heavy-tailedness in the errors (see Fig. 3). Interestingly, the
bounds for each measure are such that, relative to the normal model, the implied
agreement between the calipers under the GST model is less for observers 1 and 2
and more for observer 3. On the original scale, the bounds under the normal model
are (0.9985, 0.9997, 0.9994) for (CCC1,CCC2,CCC3), and (0.52, 0.23, 0.35) and
(0.62, 0.27, 0.40) for (TDI1,TDI2,TDI3) with p0 = 0.90 and 0.95, respectively.
Upon comparing with their GST counterparts, we find that the bounds for CCC are
virtually unchanged whereas those for TDI show a modest change for p0 = 0.90. A
somewhat more glaring change is evident for p0 = 0.95, but only for observers 1 and
3. This finding may also be reasonable in that the impact of heavy tails is expected
to be more stark for more extreme percentiles. On the whole, these findings for the
crab data seem to suggest the following vis-à-vis the two models: (a) the standard
errors appear better estimated under the GST model; (b) the CCC bounds under the
two models appear quite similar because the agreement is very high; and (c) the
difference between the two models becomes more evident in TDI bounds for values
of p0 that are closer to one.

5 Concluding Remarks

This article develops a methodology for analyzing method comparison data by mod-
eling them within the framework of GST mixed models. The framework is flexible
enough to incorporate data with skewness and heavy tails in addition to normally dis-
tributed data. This flexibility, however, comes at the cost of increased computational
difficulty in fitting the model and standard error estimation. While the computations
can be programmed using a statistical language such as R, it is important to do a sen-
sitivity analysis to ensure that the results are reliable. At the minimum, this involves
using different starting points for optimization algorithms and also different routines
for optimization and numerical differentiation and integration. The results that we
have presented appear to pass this sensitivity check. Comparing results with those
based on the standard mixed model is also a good idea.

Acknowledgments The authors thank Golo Maurer, Rebecca Boulton and Leanne Reaney for
assistance in collection of the crab claws data. They are also thankful to a reviewer for comments
that greatly improved this article.
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Appendix

A.1 Definitions

Let Y be a J × 1 random vector with μ as a J × 1 location parameter vector and Σ

as a J × J scale matrix. Define

Y∗ = Σ−1/2(Y − μ).

Also let φJ (·|μ,Σ) be the density function of a NJ (μ,Σ) distribution, and τ(·, ν)

be the distribution function of a univariate t-distribution with ν degrees of freedom.
The J -dimensional skew-normal, t and skew-t distributions are defined as follows.

Definition 1 Y ∼ SNJ (μ,Σ,λ) if its density function is

f (y|μ,Σ,λ) = 2φJ (y|μ,Σ)�(λ′y∗), y ∈ R
J .

Definition 2 Y ∼ tJ (μ,Σ, ν) if its density function is

f (y|μ, Σ, ν) = (νπ)−J/2 gam((ν + J )/2)

gam(ν/2)
|Σ |−1/2 (

1 + y∗′y∗/ν
)−(ν+J )/2

, y ∈ R
J ,

with gam(·) as the gamma function.

Definition 3 Y ∼ ST J (μ,Σ,λ, ν) if its density function is

f (y|μ, Σ,λ, ν) = 2 ft (y|μ, Σ, ν) τ
(
λ′y∗{(ν + J )/(ν + y∗′y∗)}1/2 | ν + J

)
, y ∈ R

J ,

where ft (y|μ,Σ, ν) is the density function of a tJ (μ,Σ, ν) distribution.

A.2 Hierarchical Representation for a GST Mixed Model

Let Y be an M-vector obtained by dropping the subscript i in Yi defined by (1).
From (3), the GST mixed model for Y can be written as

Y = Xβ + Zb + e, b ∼ STq(0,Ψ ,λ, νb), e ∼ tn(0,Σ, νe), (A.1)

where b and e are mutually independent. For a hierarchical representation of this
model, define for v > 0,


v = (ZΨ Z′ + vΣ),

λv = 

−1/2
v ZΨ 1/2λ

(
1 + λ′Ψ −1/2(Ψ −1 + Z′Σ−1Z/v)−1Ψ −1/2λ

)1/2 , (A.2)
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and let G(α, β) denote a gamma distribution with parameters α, β > 0, and density

f (y|α, β) = βα

gam(α)
yα−1 exp(−βy), y > 0. (A.3)

Now from [18], the model (A.1) can be represented as

Y|U, V ∼ SNn(Xβ,
V /U,λV ), U ∼ G(νb/2, νb/2), U/V ∼ G(νe/2, νe/2).
(A.4)

A.3 Linear Combination of Skew-Normals

Proposition 1 Let Y ∼ SNq(β,Ψ ,λ) and consider the quantities defined in (4).
Let a ∈ R

q with at least one non-zero element. Then

a′Y ∼ SN1
(
a′β, a′Ψ a, a′Ψ 1/2δ/(a′Γ a)1/2

)
.

Proof The proof relies on a stochastic representation of a skew-normal variate. Let
Y∗ ∼ SNq(0,Ψ ,λ). Then, from [1],

Y∗ d= Ψ 1/2δ|G∗
1| + Ψ 1/2(Iq − δδ′)G∗

2, (A.5)

where G∗
1 ∼ N1(0, 1), G∗

2 ∼ Nq(0, Iq) independently of G∗
1, and the notation “

d=”
means “equal in distribution.” Using (A.5), we can write

a′Y d= a′β + a′Ψ 1/2δ|G∗
1| + (a′Γ a)1/2G∗,

where G∗ ∼ N1(0, 1) independently of G∗
1. Define

λ∗ = a′Ψ 1/2δ/(a′Γ a)1/2, δ∗ = λ∗/(1 + λ∗2)1/2.

From an application of (4), we have (a′Ψ 1/2δ)2 + a′Γ a = a′Ψ a, implying

a′Ψ 1/2δ = (a′Ψ a)1/2δ∗, (a′Γ a)1/2 = (a′Ψ a)1/2(1 − δ∗2)1/2.

This allows us to write

a′Y d= a′β + (a′Ψ a)1/2δ∗|G∗
1| + (a′Ψ a)1/2(1 − δ∗2)1/2G∗.

Now the result follows from the representation (A.5) for the univariate case.
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Inference for a Poisson-Inverse Gaussian
Model with an Application to Multiple
Sclerosis Clinical Trials

Mallikarjuna Rettiganti and H.N. Nagaraja

Abstract Magnetic resonance imaging (MRI) based new brain lesion counts are
widely used to monitor disease progression in relapsing remitting multiple sclerosis
(RRMS) clinical trials. These data generally tend to be overdispersed with respect to
a Poisson distribution. It has been shown that the Poisson-Inverse Gaussian (P-IG)
distribution fits better than the negative binomial to MRI data in RRMS patients
that have been selected for lesion activity during the baseline scan. In this paper
we use the P-IG distribution to model MRI lesion count data from RRMS parallel
group trials. We propose asymptotic and simulation based exact parametric tests for
the treatment effect such as the likelihood ratio (LR), score and Wald tests. The
exact tests maintain precise Type I error levels whereas the asymptotic tests fail to
do so for small samples. The LR test remains empirically unbiased and results in
30–50% reduction in sample sizes required when compared to the Wilcoxon rank
sum (WRS) test. The Wald test has the highest power to detect a reduction in the
number of lesion counts and provides a 40–57% reduction in sample sizes when
compared to the WRS test.

Keywords Poisson inverse gaussian distribution · Parallel group trials · Multiple
sclerosis · Wald test · Sample size

1 Introduction

Multiple Sclerosis (MS) is an autoimmune disease which attacks the central nervous
systemandhas the potential to cause severe crippling disabilities. Relapsing remitting
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multiple sclerosis (RRMS) is the first stage of this disease in which the patient
experiences distinct phases of relapses and remissions. Disease progression in MS
has been generally measured by clinical end points such as the relapse rate and the
ExpandedDisability Status Scale. However, cumulativemagnetic resonance imaging
(MRI) lesion counts from gadolinium injected T1-weighted scans of the brain are
widely used as primary and secondary end points in Phase I and II MS trials and as
secondary endpoints in Phase III trials. Unlike the clinical measures, these counts
are not subjective and are highly sensitive to disease changes. The total number of
new enhancing lesions observed during successive monthly scans is often used as the
outcome variable. For the first month’s scan, the new enhancing lesions are counted
with respect to a reference scan.

Nonparametric methods have been used in the past to compare treatment groups
in MS clinical trials that use MRI count data as an end point. Nauta et al. [6] used
bootstrap resampling and nonparametric tests to estimate power and sample sizes for
various trial designs involving RRMS patients. In recent years, parametric modeling
of the count data has been pursued. Sormani et al. [13, 15] first proposed the negative
binomial (NB) distribution as a model and showed that it gave a good fit forMRI data
in untreated RRMS patients. Although these papers modeled the data and validated
the NB model, sample sizes to detect treatment effect were computed using the
nonparametric Wilcoxon rank sum (WRS) test. This approach was later improved
by [1] who proposed and compared several parametric tests for the treatment effect in
a two parallel group (PG) trial. They considered the likelihood ratio test (LRT), Rao’s
score test (RST) and the Wald test (WT) and used chi-squared approximations to the
test statistics which resulted in inflated Type I error levels for small sample sizes.
Rettiganti and Nagaraja [11] overcame this limitation by proposing exact parametric
tests for PG trials based on theNBmodel thatmaintain precise Type I error levels even
for very small sample sizes. They also proposed exact parametric tests for RRMS
baseline versus treatment trials which showed marked improvement in power when
compared to nonparametric tests.

Although the NB model has served well for many overdispersed count data prob-
lems, there are other mixed-Poisson distributions that can be more appropriate.
Sormani et al. [14] showed that the Poisson-Inverse Gaussian (P-IG) distribution
provides a better fit than the NB distribution to MRI count data from 115 RRMS
patients who had at least one lesion count observed during the reference scan. How-
ever, parametric tests for the treatment effect based on the P-IG model have not been
studied and we attempt to address that issue in this paper. In Sect. 2, we introduce
the P-IG distribution and use it to model MRI count data in RRMS PG trials. Max-
imum likelihood estimates (MLEs) of the model parameters are obtained in Sect. 3.
In Sect. 4, we propose likelihood based parametric tests for the treatment effect such
as LRT, RST and WTs. We compare the performance of these tests with a detailed
power analysis and obtain sample size estimates for RRMS PG trials in Sect. 5. In
Sect. 6, we conclude with a summary of our results and provide some discussion.

We denote a chi-squared random variable (rv) with 1 degree of freedom as χ2
1

and its upper νth percentile χ2
1 (1− ν). For simplicity, we use c0 to denote χ2

1 (0.95)
(=3.8415). A Poisson rv with mean η is denoted as Poisson(η). The likelihood
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of the observed data is denoted as L and log(L) is denoted as �. For a scalar or
vector parameter θ , Θ denotes the unrestricted parameter space while θ̂ denotes
its maximum likelihood estimate (MLE) under Θ . Similarly, Θ0 and θ̃ denote the
restricted parameter space and its associated MLE respectively. The vector of first
order partial derivatives of �, ∂�/∂θ , is called the score vector. All tests carried out in
this paper are two-sided and have 5% nominal significance level. All computations
were done using the statistical software package [8].

2 The Poisson-Inverse Gaussian (P-IG) Model

2.1 The Basic Model

Let a rv Z have Inverse Gaussian (IG) distribution with parameters μ and λ and
density

fZ (z|μ, λ) =
(

λ

2π z3

) 1
2

exp

{−λ(z − μ)2

2μ2z

}

, z > 0, μ, λ > 0. (1)

We then write Z ∼ IG(μ, λ). When Y |Z = z has Poisson(z), the marginal pmf of Y
is given by

P(Y = y) = py =
∫ ∞

0

e−z zy

y! fZ (z|μ, λ)dz

= τ y

y!
(
2ω

π

) 1
2

exp

(
λ

μ

)

Ky− 1
2
(ω), y = 0, 1, . . . , (2)

with τ = (1/μ2 + 2/λ)−1/2, ω = λ/τ . Here, ν = y − 1/2 is non-integer and Kν(·)
is the modified Bessel function of the third kind, defined as

Kν(z) = π

2
· I−ν(z) − Iν(z)

sin νπ
, (3)

where I (·) is the modified Bessel function of the first kind given by

Iν(z) =
∞∑

m=0

( z
2 )

ν+2m

m!
(m + ν + 1)
. (4)

It can be seen from (2) that

p0 = exp

(
λ

μ
− λ

τ

)

and p1 = τp0. (5)
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For y ≥ 2, the P-IG probabilities satisfy the recurrence relation

py = τ 2

{
py−2

y(y − 1)
+ 2y − 3

λy
py−1

}

. (6)

If a rv Y has the pmf given by (2) we write Y ∼ P-IG(μ, λ). Both P-IG and NB pmfs
are unimodal and right skewed but the former has a longer tail. Further, E(Y ) = μ

and V ar(Y ) = μ + μ3/λ. The MLE of μ is the sample mean [16].
To compute the P-IG probabilities using the closed form expression given in (2)

we need to evaluate the Bessel function of the third kind K (·). This can be computed
easily for small values of y, but for large values, (3) and/or (2) may return infinite
values in which case the probabilities cannot be computed directly. This problem can
be avoided by using the recursive relation in (6).

2.2 A P-IG Model for PG Trials

Suppose there are n1 subjects in the placebo group (group 1) and n2 subjects in the
treatment group (group 2). Let Yi denote the total number of new enhancing lesions
seen in a subject in the i th group and Zi denote the associated random subject effect,
i = 1, 2. We assume that Yi |Zi = z ∼ Poisson(z) and that Z1 ∼ IG(μ, λ) and
Z2 ∼ IG(γμ, λ) with common scale parameter λ. Here 1 − γ is the measure of
the treatment effect, which can be viewed as the percentage reduction in the mean
lesion counts seen in the treatment group. Then, Y1 and Y2 are independent, Y1 ∼
P-IG(μ, λ) and Y2 ∼ P-IG(γμ, λ), and from (2) we obtain

P(Y1 = y1) = τ
y1
1

y1!
(
2ω1

π

) 1
2

exp

{
λ

μ

}

Ky1− 1
2
(ω1),

P(Y2 = y2) = τ
y2
2

y2!
(
2ω2

π

) 1
2

exp

{
λ

γμ

}

Ky2− 1
2
(ω2), (7)

where

τ1 =
(

1

μ2
+ 2

λ

)− 1
2

, τ2 =
(

1

γ 2μ2
+ 2

λ

)− 1
2

, and ωi = λ

τi
, i = 1, 2.

For observed counts y1 = (y11, y12, . . . , y1n1) and y2 = (y21, y22, . . . , y2n2), it fol-
lows from (7) that the likelihood function for a parallel group P-IGmodel is given by
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L(γ, μ, λ|y1, y2) =
n1∏

i=1

P(Y1 = y1i ) ×
n2∏

j=1

P(Y2 = y2 j )

= (τ1)
n1 ȳ1

∏
y1i !

(
2λ

πτ1

) n1
2

exp

{
n1λ

μ

} n1∏

i=1

Ky1i − 1
2
(ω1)

× (τ2)
n2 ȳ2

∏
y2 j !

(
2λ

πτ2

) n2
2

exp

{
n2λ

γμ

} n2∏

j=1

Ky2 j − 1
2
(ω2). (8)

3 Parameter Estimation

The parameter of interest γ , and nuisance parametersμ and λ can be estimated using
the method of maximum likelihood. The log-likelihood function is

�(γ, μ, λ|y1, y2) = n1 ȳ1 log(τ1) + n1

2
log

(
2λ

πτ1

)

+ n1λ

μ
+

n1∑

i=1

log Ky1i − 1
2
(ω1)

+ n2 ȳ2 log(τ2) + n2

2
log

(
2λ

πτ2

)

+ n2λ

γμ
+

n2∑

j=1

log Ky2 j − 1
2
(ω2)

+
n1∑

i=1

log y1i ! +
n2∑

j=1

log y2 j !. (9)

Intermediate steps containing the first and second order partial derivatives needed to
obtain the MLEs and the Fisher information matrix (FIM) are given in Appendix 1
and 2. TheMLEs of γ, μ andλ can be obtained by equating the score vector equations
(17)–(19) to zero and solving simultaneously for the three parameters. Doing so for
the first two, we readily obtain

n1∑

i=1

Ry1i − 1
2
(ω1) = n1μ

τ1
and

n2∑

j=1

Ry2 j − 1
2
(ω2) = n2γμ

τ2
,

where Rν(z) = Kν+1(z)/Kν(z). Using these results in the third and using the fact
that (

λ − τ 2
1

τ 2
1

)

= λ + μ2

μ2
and

(
λ − τ 2

2

τ 2
2

)

= λ + γ 2μ2

γ 2μ2
,

we obtain
n1(ȳ1 − μ) + n2(ȳ2 − γμ) = 0. (10)
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One solution for Eq. (10) is μ̂ = ȳ1 and γ̂ μ̂ = ȳ2, suggesting that it may be a
local maximum. We examined the surface of the log-likelihood as a function of
γ and μ for selected λ values (figures not shown). The log-likelihood is a smooth
concave function for the values of the parameters consideredwith a uniquemaximum
attained at μ̂ = ȳ1 and γ̂ = ȳ2/ȳ1, where λ maximized the profile log-likelihood
�(ȳ2/ȳ1, ȳ1, λ). Thus the local maximum obtained as a solution to the score vector
equations (17)–(19) can be argued to be the MLEs of the parameters, which leads us
to the following conclusions.

3.1 Unrestricted MLEs

The MLEs of μ and γ are μ̂ = ȳ1 and γ̂ = ȳ2/ȳ1, and the MLE of λ, λ̂, can be
obtained as a solution to the equation

(
λ̂ − τ̂21

λτ̂1

) n1∑

i=1

Ry1i − 1
2
(ω̂1) +

(
λ̂ − τ̂22

λ̂τ̂2

) n2∑

j=1

Ry2 j − 1
2
(ω̂2) = n1 ȳ1 + n2 ȳ2

λ̂
+ n1γ̂ + n2

γ̂ μ̂
,

where ω̂i = λ̂/τ̂i , i = 1, 2 and

τ̂1 =
[
1

μ̂2
+ 2

λ̂

]− 1
2

and τ̂2 =
[

1

γ̂ 2μ̂2
+ 2

λ̂

]− 1
2

.

Alternatively λ̂ can also be obtained by numerically maximizing the profile log-
likelihood function �(γ̂ , μ̂, λ) with respect to λ.

3.2 MLEs Under the Restricted Hypothesis

When γ = γ0 is assumed known, the MLEs of μ and λ can be obtained by setting
the score equations (18) and (19) to 0 with γ = γ0 and simultaneously solving for
the two parameters. For a general γ0 the MLEs are not available in closed form and
numerical methods must be employed. However, for γ0 = 1 (the null hypothesis of
no treatment effect), we have τ1 = τ2 and ω1 = ω2, using which we can conclude
that the MLE of μ is μ̃ = (n1 ȳ1 + n2 ȳ2)/(n1 + n2), the grand mean. The MLE of
λ, λ̃ solves the equation

(
λ − τ̃21

λτ̃1

) n1∑

i=1

Ry1i + 1
2
(ω̃1) +

(
λ̃ − τ̃22

λ̃τ̃2

) n2∑

j=1

Ry2 j − 1
2
(ω̃2) = n1 ȳ1 + n2 ȳ2

λ̃
+ n1 + n2

μ̃
,

where ω̃i = λ̃/τ̃i , i = 1, 2 and
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τ̃1 =
(

1

μ̃2
+ 2

λ̃

)− 1
2

and τ̃2 =
(

1

μ̃2
+ 2

λ̃

)− 1
2

.

The MLE of λ can also be obtained by numerically maximizing the profile log-
likelihood function �(1, μ̃, λ) with respect to λ.

The asymptotic variance of γ̂ for the P-IGmodel is the first element of the inverse
of the Fisher information matrix (FIM). That is,

σ 2
γ̂ (θ) = I −1

1.2 = [I11 − I12 I −1
22 I21]−1 (11)

where the elements of the FIM are as in Appendix 2.

4 Hypothesis Testing

In this section we propose parametric tests such as the LRT, RST and WT to test
for the treatment effect for a general H0 : γ = γ0 versus H1 : γ �= γ0. For RRMS
clinical trials, a test for no treatment effect would test H0 : γ = 1 versus H1 : γ �= 1.
In the results that follow, γ̂ , μ̂, λ̂ denote the MLEs under Θ given in Sect. 3.1 and μ̃,
λ̃ denote the MLEs of the parameters under Θ0 given in Sect. 3.2. We now display
the test statistics for these tests.

4.1 Test Statistics

Likelihood Ratio Test (LRT [10]): The LRT statistic to test H0 : γ = γ0 versus
H1 : γ �= γ0 is

L RT = −2(�(γ0, μ̃, α̃) − �(γ̂ , μ̂, α̂)). (12)

Rao Score Test (RST [9, 10]): The RST statistic to test H0 : γ = γ0 versus H1 :
γ �= γ0 is

RST =
{

∂�(γ, μ, α)

∂γ

}2

θ=θ̃

× σ 2
γ̂ (θ̃)

=
⎧
⎨

⎩
λ̃τ̃2

γ 3
0 μ̃2

n2∑

j=1

Ry2 j − 1
2
(ω̃2) − n2λ̃

γ 2
0 μ̃

⎫
⎬

⎭

2

× σ 2
γ̂ (θ̃), (13)

where σ 2
γ̂
(θ̃) is the asymptotic variance of γ̂ given in (11) evaluated at the MLEs

under H0.
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Wald Test (WT [10, 17]): The WT statistic for testing H0 : γ = γ0 versus H1 : γ �=
γ0 is given by

W T (γ ) =
{

γ̂ − γ0

σγ̂

}2

, (14)

where σ 2
γ̂
(θ̂ ) is the asymptotic variance of γ̂ given in Eq. (11) evaluated at the unre-

stricted MLE θ̂ .

Estimation of σ 2
γ̂
: To compute the RST, σ 2

γ̂
needs to be evaluated at the restricted

MLEs. Since the FIM is not available in closed form, the observed information
evaluated at the MLEs under H0 is used in its place. However, this approach can
generate negative variance estimates which leads to negative score test statistics and
an inconsistent test. Thus an RST using the observed information may not produce
a valid chi-square test. Freedman [3] gives a detailed discussion of these anomalies.
Morgan et al. [5] give an example involving a zero-inflated Poisson distribution
where the score test statistic using the observed information is negative. This is
not an issue for the WT because σ 2

γ̂
is evaluated at the unrestricted MLEs and the

observed information will be positive definite, ensuring consistency of the test.
We also evaluated WTs for other differentiable functions g(γ ) such as g(γ ) =

log(γ ),
√

γ , and γ 2. The WT for log(γ ) had properties similar to the LRT, while
the WT for γ 2 had properties similar to that of the WT for γ . Those results are not
presented here.

4.2 Exact Percentile

Each of the above statistics is asymptotically distributed as a χ2
1 rv under H0 and an

approximate level ν test rejects H0 if the test statistic is > χ2
1 (1 − ν)(≡ c0). The

validity of this asymptotic approximation for small sample sizes was evaluated using
simulation. For a given sample size, the exact percentile estimate for any test statistic
is computed by first simulating M = 100,000 data sets under the null hypothesis H0

(no treatment effect) and computing the 95th percentile of the resulting distribution
of test statistics. Figure1 shows the simulation based exact 95th percentile estimates
for the three asymptotic tests as a function of common sample size n = n1 = n2.
The exact percentiles for the LRT and WT converge to c0 as n increases.

We did a simulation study to evaluate further the effect of changing sample size
n, μ, and λ on the simulated levels and exact percentiles. The initial parameter
estimates used for the simulation were the ones given by [14]. They fit the P-IG
model (using an alternate parametrization, μ and β = μ2/λ) and obtained MLE
estimates μ̂ = 16.8 and β̂ = 43 for a 6month follow-up period. This translates to
μ̂ = 16.8 and λ̂ = 6.56 for the parametrization used in (2). For our simulation study,
we considered these estimates as the actual parameter values for the placebo group.
Four different sample sizes were considered: n = 10, 20, 50, 100 with μ ranging
from 1 to 20 and λ = 0.5, 1, 25, 10. The simulated exact 95th percentiles of the LRT
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Fig. 1 Simulation based 95th percentile estimate for the null distribution of LRT, RST and WT
statistics as a function of common sample size n; γ = 1, μ = 16.8, λ = 6.56. The solid horizontal
line refers to c0

and the WT statistics are presented in Figs. 2 and 3 respectively. Increasing μ has
no effect on the exact percentiles for the LRT. However, when μ increases the exact
percentiles for WT move away from c0. For both the LRT and the WT, increasing λ

brings the exact percentiles closer to c0.
The Type I error rates for the asymptotic LRT and WT are given in Figs. 4 and 5.

The error rates for the asymptotic WT seem to be higher than those for the LRT. For
the asymptotic LRT, the error rates are very close to the nominal level for per-group
sample sizes 50 and above for all values of μ and λ. For the asymptotic WT, these
rates are very high for sample sizes 20 or lower per group and for very large sample
sizes (n = 50, 100), they can be very high for small λ. Thus, we suggest the use of
the exact percentile based WT unless the sample size is 100 or above per group and
λ is 10 or higher. Further, μ does not seem to have an effect on the empirical Type I
error levels for the asymptotic LRT, but increasing μ seems to slightly increase the
levels for the asymptotic WT. Exact percentile estimates and the Type I error rates
for RST are not shown as it was an inconsistent test; (see Fig. 7) and the comments
in Sect. 5.1.
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Fig. 2 Simulation based 95th percentile value for the null distribution of LRT statistic for different
values of μ and λ and n = 10, 20, 50, 100. The solid horizontal line refers to c0

5 Power and Sample Size

We now use selected parametric tests derived in Sect. 2.2 and obtain power and
sample size estimates for RRMS PG trials. We compare these sample sizes with
the ones obtained using the WRS test. The initial parameter estimates used for the
comparative simulation study here are the same as the ones used to obtain Fig. 1.

5.1 Power Analysis

The power for a level ν test is estimated using simulation as follows. Assuming
sample sizes n1 and n2 for the two groups, exact percentiles for the corresponding
test statistic is calculated using themethod described in Sect. 4.2. Then for a particular
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Fig. 3 Simulation based 95th percentile value for the null distribution of WT statistic for different
values of μ and λ and n = 10, 20, 50, 100. The solid horizontal line refers to c0

trial, two independent sets of observations, y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2

are randomly sampled from P-IG(μ, λ) and P-IG(γμ, λ), respectively. The model
parameters are estimated under both Θ0 and Θ and the test statistic is computed as
described in Sect. 4. The null hypothesis is rejected if this test statistic is greater than
the simulated percentile. This procedure is repeated 1000 times and the power is
estimated as the proportion of trials for which the null hypothesis is rejected. (The
R programs used to estimate the power will be provided upon request.)

The power curves as a function of γ for the three asymptotic tests are shown in
Fig. 6. The LRT is empirically unbiased and also maintains Type I error rates very
well (close to the nominal level 0.05 under H0 : γ = 1) for a sample size of 50 per
group. The simulated error rate for WT is still slightly higher than the nominal 5%.
Figure7 shows the power curves for the exact tests. All the tests maintain the Type
I error rates very precisely. The exact LRT is an unbiased test and WT, though not
unbiased, has the highest power for γ < 1.
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Fig. 4 Type I error rates for LRT with critical value c0 for different values of μ and λ and n =
10, 20, 50, 100 subjects per group. The solid horizontal line refers to the nominal level ν = 0.05

In conclusion, if an unbiased test is preferred, the asymptotic LRT can be used for
larger sample sizes (>50); otherwise the exact percentile basedLRT is recommended.
If biased tests are allowed, since γ < 1 is the region of interest for RRMS clinical
trials, the exact WT is recommended. We do not recommend the asymptotic WT
even for very large sample sizes.

The RST statistic was computed using the observed information matrix evaluated
at the MLEs under the null hypothesis. This sometimes led it to not being positive
definite, resulting in a negative RST statistic and an inconsistent test. The power of
this RST may also be non-monotonic. Moving away from H0 does not necessarily
result in an increase in power (see Figs. 6 and 7). Thus, the RST is not recommended.
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Fig. 5 Type I error rates for WT(γ ) with critical value c0 for different values of μ and α and
n = 10, 20, 50, 100 subjects per group. The solid horizontal line refers to the nominal level ν = 0.05

5.2 Sample Sizes for Clinical Trials

In this section, we present sample size estimates based on the LRT and WT for PG
trials assuming the P-IG model. We present sample sizes using both the asymptotic
and the exact LRT and only for the exact WT. The exact percentile and the power
estimates are calculated using the methods described in Sect. 4. For comparison
purposes, we also present the sample sizes obtained using the nonparametric WRS
test.

Sample sizes (Table 1) for each group are given for 80 and 90% power, follow-up
period of 6months, and treatment effect 1 − γ ranging from 0.50 to 0.80. The LRT
sample sizes are approximately 30–52% smaller than the WRS sample sizes. For
example, for a 50% treatment effect and 80%power,WRS estimates a sample size of
134 per group, whereas the LRT (asymptotic or exact) estimates only 66 per group,
a reduction of 51%. The exact LRT sample sizes are higher than the asymptotic
LRT sample sizes by at most 1. This difference is seen only for higher values of
treatment effects which yield smaller sample sizes. Sample sizes using the exact WT
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Fig. 6 Power of asymptotic 5% level LRT, RST, and WT for treatment effect, assuming initial
parameter estimates μ = 16.8, λ = 6.56, sample sizes n1 = n2 = 50. The solid horizontal line
refers to the nominal level ν = 0.05

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

P
ow

er

LRT
RST
WT

Fig. 7 Power of exact 5% level LRT, RST, andWT for treatment effect, assuming initial parameter
estimates μ = 16.8, λ = 6.56, sample sizes n1 = n2 = 50. The solid horizontal line refers to the
nominal level ν = 0.05
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Table 1 Sample sizes per group to achieve 80 and 90% power for 100(1− γ )% treatment effect,
follow-up period of 6months, and initial estimates (μ, λ) = (16.8, 6.56); level ν = 0.05

80% power; 5% level

Test Critical value

LRT WT(γ ) LRT WT(γ )

1 − γ WRS Asymptotic Exact Exact Simul. Simul.

0.50 134 66 66 58 3.8402 3.9483

0.60 169 36 36 30 3.8846 4.0164

0.70 134 19 20 17 4.0961 4.3876

0.80 117 11 12 10 4.2762 4.7157

90% power; 5% level

Test Critical value

LRT WT(γ ) LRT WT(γ )

1 − γ WRS Asymptotic Exact Exact Simul. Simul.

0.50 179 87 87 78 3.9009 4.0004

0.60 188 48 49 40 3.8530 4.0088

0.70 145 26 26 24 4.0377 4.0382

0.80 123 13 13 12 4.2129 4.4614

are 7–18% smaller than the sample sizes using LRT and around 40–57% smaller
than the WRS sample sizes. Sample sizes to achieve 90% power are 20–40% higher
in general than the sample sizes required for 80% power.

6 Discussion

In this paper we propose likelihood based parametric tests such as LRT, RST, and
WT assuming the P-IG model for PG trials. We compare their performance using
the asymptotic and exact percentiles and obtain sample size estimates for selected
tests.We show the reduction in sample sizes required to detect a significant treatment
effect when parametric tests are used as opposed to a nonparametric test.

The recommendations in this paper are based on the properties of the test and
the research hypothesis in question. Though not unbiased, the exact WT has the
highest power when γ < 1 and is thus best suited for RRMS clinical trials. When an
unbiased test is desired, irrespective of whether one is interested in the region γ < 1
or γ > 1, the LRT is preferred. Asymptotic approximation for the LRT can be used
for sample sizes over 50 but for smaller sample sizes the exact test needs to be used
to ensure the Type I error levels are close to nominal values. When the P-IG model
is assumed and true, using the parametric tests proposed in this paper as opposed to
nonparametric tests provide a way of significantly reducing sample sizes (by about
30–50%) and associated costs in RRMS clinical trials. These parametric tests give



206 M. Rettiganti and H.N. Nagaraja

similar reduction in sample sizes when compared to the reduction observed by [11]
in their study of PG trials based on the NB model.

The parameter estimates used in this study are representative of patients whowere
followed for a total of six months and the sample size estimates presented here are
only representative of clinical trials where the follow-up period is six months. The
parameter estimates, especially the mean parameter μ of the P-IG distribution will
likely be different for other follow-up periods and this could impact sample sizes.
Also, we have assumed that the parameter λ of the P-IG distribution is the same in
both the treatment and control groups. It is quite difficult to evaluate this assumption
without real data on patients from the treatment group and more research is required
to study whether the methods presented in this paper are robust to violations to this
assumption.

Further, in estimating the sample size we have assumed that the nuisance para-
meters (μ, λ) are known beforehand. Quite often in practice information regarding
the nuisance parameters is limited and ignoring this uncertainty in computing sam-
ple sizes could lead to inappropriately sized clinical trials. One way around this is
to consider a blinded sample size reestimation approach to estimate the nuisance
parameters from an interim sample, and then use these estimates in simulations to
compute the sample size.

Several other areas of application of the P-IG model have been discussed in the
literature. Holla [4] first derived the P-IG distribution and discussed its applications to
accident statistics. Willmot [18] showed that the model provides an extremely good
fit to automobile claim frequency data and also showed that the P-IGmodel fits better
than the NBmodel in most cases. Ord andWhitmore [7] discuss the P-IG distribution
as a model for species abundance. Sankaran [12] illustrates the applicability of the
P-IG model to larvae counts on corn bean plants. In all these cases the methods
developed in this paper can be used.

Acknowledgments The authors would like to sincerely thank Dr. Marie Davidian and the anony-
mous referee whose comments have significantly strengthened this manuscript.

Appendix 1

The following lemma presents some useful results needed to obtain the score vector
and the matrix of the second order derivatives.

Lemma 1

∂τ1

∂γ
= 0; ∂τ1

∂μ
= τ 3

1

μ3
; ∂τ1

∂λ
= τ 3

1

λ2
;

∂τ2

∂γ
= τ 3

2

γ 3μ2
; ∂τ2

∂μ
= τ 3

2

γ 2μ3
; ∂τ2

∂λ
= τ 3

2

λ2
.
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Using the above results we obtain

∂ω1

∂γ
= 0; ∂ω1

∂μ
= −λτ1

μ3
; ∂ω1

∂λ
= λ − τ 2

1

λτ1
;

∂ω2

∂γ
= − λτ2

γ 3μ2
; ∂ω2

∂μ
= − λτ2

γ 2μ3
; ∂ω2

∂λ
= λ − τ 2

2

λτ2
.

The following lemma provides results for modified Bessel functions that simplify
the derivation of the score vector and the second order derivatives.

Lemma 2 (Modified Bessel function of the third kind (See Sect. 9.6, [2])).
The following relations hold for the modified Bessel function of the third kind

Kν(z):

K−ν(z) = Kν(z)

K− 1
2
(z) = K 1

2
(z) =

√
π

2z
e−z

Kν+1(z) = Kν−1(z) + 2ν

z
Kν(z) (15)

∂

∂z
Kν(z) = K ′

ν(z) = −Kν+1(z) + ν

z
Kν(z).

The ratio of modified Bessel functions Rν(z) = Kν+1(z)
Kν (z)

, satisfies the following rela-
tions:

R− 1
2
(z) = 1;

Rν(z) = 2ν

z
+ 1

Rν−1(z)
, ν = 1

2
,
3

2
,
5

2
, . . . ; (16)

∂

∂z
Rν(z) = R′

ν(z) = R2
ν (z) − 2(ν + 1/2)

z
Rν(z) − 1.

Appendix 2

First and Second Order Derivatives

The score vector components for the log-likelihood function given in (9) are
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∂�(γ, μ, λ)

∂γ
= λτ2

γ 3μ2

n2∑

j=1

Ry2 j − 1
2
(ω2) − n2λ

γ 2μ
, (17)

∂�(γ, μ, λ)

∂μ
= λτ1

μ3

n1∑

i=1

Ry1i − 1
2
(ω1) + λτ2

γ 2μ3

n2∑

j=1

Ry2 j − 1
2
(ω2) − λ(n1γ + n2)

γμ2
,

(18)

∂�(γ, μ, λ)

∂λ
= n1 ȳ1 + n2 ȳ2

λ
+ n1γ + n2

γμ
−

(
λ − τ 2

1

λτ1

) n1∑

i=1

Ry1i − 1
2
(ω1)

−
(

λ − τ 2
2

λτ2

) n2∑

j=1

Ry2 j − 1
2
(ω2). (19)

The second order derivatives of the log-likelihood function in (9) are

∂2�(γ, μ, λ)

∂γ 2 = − λ2τ 22

γ 6μ4

n2∑

j=1

R′
y2 j − 1

2
(ω2) + λτ2

γ 6μ4 (τ 22 − 3γ 2μ2)

n2∑

j=1

Ry2 j − 1
2
(ω2) + 2n2λ

γ 3μ
,

∂2�(γ, μ, λ)

∂γ ∂μ
= − λ2τ 22

γ 5μ5

n2∑

j=1

R′
y2 j − 1

2
(ω2) + λτ 32

γ 5μ5
(τ 22 − 2γ 2μ2)
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Ry2 j − 1
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(ω2) + n2λ

γ 2μ2 ,

∂2�(γ, μ, λ)

∂γ ∂λ
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R′
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γ 2μ
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∂2�(γ, μ, λ)
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Fisher Information Matrix

Since E(Ȳ1) = μ and E(Ȳ2) = γμ, and Y1i , i = 1, . . . , n1 and Y2 j , j = 1, . . . , n2

are respectively identically distributed, the elements
(
I (θ)

)
i, j = −E

{
∂2�(θ)

∂θ i ∂θ j

}
of the

FIM I(θ) with the parameter vector θ = (γ, μ, λ) can be expressed as follows:

I11(θ) = n2λ
2τ 22

γ 6μ4 E
{

R′
Y2− 1

2
(θ2)

}
− n2λτ2

γ 6μ4 (τ 22 − 3γ 2μ2)E
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RY2− 1
2
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γ 3μ
,
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2
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2
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}
− n2λ

γ 2μ2 ,
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(
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E
{

R′
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2
(θ2)

}
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γ 3μ2λ
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{
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2
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}
+ n2

γ 2μ
,

I22(θ) = n1λ
2τ 21
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{
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2
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}
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{
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2
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}
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2
(θ2)

}
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2
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I23(θ) = − n1
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E
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R′
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2
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− n1τ1

λμ3 (τ 21 + λ)E
{

RY1− 1
2
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− n2

(
λ − τ 22

γ 2μ3

)

E
{
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I33(θ) = n1μ + n2γμ
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+ n1
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λ − τ 21

λτ1
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E
{

R′
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2
(θ1)
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− n1τ

3
1

λ3
E

{
RY1− 1

2
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+ n2
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λ − τ 22

λτ2
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E
{

R′
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2
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3
2
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E

{
RY2− 1

2
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}
.

Further, Ii j = I ji for i �= j = 1, 2, 3. The above expressions involve evaluating the
expectation of R(.), which is a ratio of two modified Bessel functions of the third
kind, which cannot be computed in closed form. Instead, the observed information
evaluated at the MLEs are used.
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Purely Sequential and Two-Stage
Bounded-Length Confidence Intervals
for the Bernoulli Parameter with Illustrations
from Health Studies and Ecology

Nitis Mukhopadhyay and Swarnali Banerjee

Abstract Infestation affects supplies of food and nutrition as well as the environ-
ment, thus making a deep impact in the ecological balance of the health of humans,
animals, plant populations, and other natural resources. It is well known, for exam-
ple, that estimation of (i) the probability of presence of infestation, (ii) the chance of
getting a disease, and (iii) the chance of a relapse are very important in entomology
and health studies. They frequently involve binary data modelled by a Bernoulli(p)
distribution where p is an unknown parameter, 0 < p < 1. In this paper, we begin by
summarizing selected existing methodologies of confidence interval estimation and
illustrate how theymay fail to estimate p efficiently. Consequently, we introduce new
confidence interval methods for estimating p. Having fixed 0 < α < 1 and d(> 1),
we develop approximately 100(1 − α)% confidence intervals (L N , UN ) for p such
that 0 < L N < UN < 1 and UN − L N ≤ d w.p.1. Here, N is a properly designed
and determined stopping variable obtained via both two-stage and purely sequential
sampling strategies. The proposed two-stage and purely sequential bounded-length
confidence interval methodologies are shown to enjoy both asymptotic first-order
efficiency and asymptotic consistency properties. Then, we present summary perfor-
mances of the newmethodologies by analyzing data generated from simulations. We
have also implemented the proposed methodologies for three real data sets of size
small to moderate to large.
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1 Introduction

Let X1, . . . , Xn, . . . be a sequence of independent and identically distributed (i.i.d.)
Bernoulli(p) random variables, where p is an unknown parameter, 0 < p < 1. Of
interest is purely sequential or two-stage confidence interval estimation of p.

In general, for i.i.d. random variables with an unknown mean μ, −∞ < μ < ∞,

and unknown variance, Chow and Robbins [5] developed purely sequential estima-
tion methods forμ by a fixed-width confidence interval centered at the sample mean.
That methodology was distribution-free. Khan [9] developed analogous fixed-width
confidence intervals for a parameter centered at its maximum likelihood estimator
(MLE). To be specific, let Tn ≡ Tn(X1, . . . , Xn) be a point estimator of p such that

Tn
P→ p as n → ∞, that is, Tn is consistent for p.
One sets a preassigned width (= 2c) of the confidence interval with nearly 1 − α

confidence coefficient where 0 < α < 1 is also fixed in advance. Chow and Robbins
[5] began with Tn = Xn, the sample mean, and considered the associated confidence
interval Gn:

Gn = {p : |Tn − p| ≤ c},fixed c > 0. (1.1)

Khan’s [9] MLE-based fixed-width confidence interval was identical with (1.1).
Obviously p̂n,MLE, the MLE of p, is Xn .

Alternatively, Ehrenfeld and Littauer [7, p. 339], and Zacks [16] had incorporated
the proportional closeness criterion. Zacks [16] began with Tn = Xn and proposed
the associated confidence interval Hn:

Hn = {p : |Tn − p| ≤ δp},fixed 0 < δ < 1, (1.2)

where 0 < δ < 1, a measure of proportional closeness, is fixed in advance. Nadas
[12] adapted this proportional closeness criterion in the context of the population
mean estimation problem of Chow and Robbins [5]. Willson and Folks [15] also
adopted this criterion for estimating the mean in a negative binomial population with
applications in ecology.

Recently, Mukhopadhyay and Banerjee [10] introduced fixed-accuracy confi-
dence interval methodologies to estimate the mean parameter in a negative binomial
population. This methodology was later generalized for estimating an unknown pos-
itive parameter in Banerjee and Mukhopadhyay [1]. With Tn = Xn , a corresponding
fixed-accuracy confidence interval for p would look like In:

In = {p : p ∈ [d−1Tn, dTn]},fixed d > 1. (1.3)

In the context of (1.1)–(1.3), however, we suggest replacing Tn = Xn with

Tn = Xn + n−γ , γ > 1
2 , (1.4)
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since Xn can be zero with a positive probability whatever n may be. The term n−γ

with γ > 1
2 would ensure that Xn + n−γ remains consistent for p, but Xn + n−γ

will satisfy the customary central limit theorem (CLT).
For a more complete review, one may additionally refer to Robbins and Sieg-

mund [13], Cho [3, 4], Zacks andMukhopadhyay [17], and also consider the literature
cited in those references. Again, going back to (1.1)–(1.4), an associated confidence
interval for p will simplify to:

(Ln, Un)

where Ln (Un) is the lower (upper) confidence limit.
For the three types of confidence intervals summarized in (1.1)–(1.3), the cor-

responding Ln, Un and the expressions of the required but unknown optimal fixed-
sample-sizes are summarized as follows:

(a) Interval Gn : Ln = Tn − c and Un = Tn + c with an optimal fixed-sample

-size : n0
c = z2α/2 p(1 − p)/c2, fixed c > 0;

(b) Interval Hn : Ln = (1 + δ)−1Tn and Un = (1 − δ)−1Tn with an optimal

fixed-sample-size : n0
δ = z2α/2(p−1 − 1)/δ2, fixed 0 < δ < 1;

(c) Interval In : Ln = d−1Tn and Un = dTn with an optimal fixed-sample

-size : n0
d = z2α/2(p−1 − 1)/(ln d)2, fixed d > 1,

(1.5)
where zα/2 is the upper 100(α/2)% point of a standard normal distribution.

Consequently, the corresponding purely sequential stopping rules respectively
estimatingn0

c, n0
δ , n0

d from (1.5) and the confidence interval estimationmethodologies
from the existing literature look like:

(a) N ≡ Nc = inf
{

n ≥ n0 : n ≥ z2α/2

(
p̂n,MLE(1 − p̂n,MLE) + n−1

)
/c2

}
:

G Nc = {p : ∣
∣TNc − p

∣
∣ ≤ c} with L Nc = TNc − c, UNc = TNc + c;

(b) N ≡ Nδ = inf
{

n ≥ n0 : n p̂n,MLE(1 − p̂n,MLE)−1 ≥ z2α/2/δ
2
}

:
HNδ

= {p : ∣
∣TNδ

− p
∣
∣ ≤ δp} with L Nδ

= (1 + δ)−1TNδ
, UNδ

= (1 − δ)−1TNδ
;

(c) N ≡ Nd = inf
{

n ≥ n0 : n p̂n, MLE(1 − p̂n,MLE)−1 ≥ z2α/2/(ln d)2
}

:
INd = [d−1TNd , dTNd ] with L Nd = d−1TNd , UNd = dTNd .

(1.6)

The Paper’s Layout and a Recommendation
Now, we explain this paper’s layout. Section2 highlights some drawbacks of selected
existing methodologies laid down in (1.5)–(1.6) with the help of data analysis. We
have used both simulated data and a classical set of real data on potato beetle infes-
tation for this purpose.

In order to get rid of the said drawbacks, we proceed to introduce a new bounded-
length purely sequential confidence interval estimation methodology for p in Sect. 3.
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Next,we develop a bounded-length two-stage confidence interval estimationmethod-
ology in Sect. 4. In Sects. 3 and 4, we prove desirable theoretical results such as
asymptotic first-order efficiency and asymptotic consistency properties associated
with the respective methodologies.

In Sect. 5, we conduct extensive data analysis. First, we summarize findings
from simulated exercises (Sect. 5.1). Section5.2 includes three illustrations with real
data analysis. We have implemented the proposed purely sequential and two-stage
methodologies by handling three real data sets of size small to moderate to large cov-
ering interesting areas of applications: Estimating the chance of (i) relapse in bone
marrow transplant patients, (ii) presence or absence of diabetes for Pima Indians,
and (iii) presence or absence of potato beetle infestation from entomology.

2 Data Analysis to Point Out Some Drawbacks of Selected
Existing Methodologies

Here, we highlight some important drawbacks of the purely sequential confidence
interval estimation methodologies:

(Nc, G Nc), (Nδ, HNδ
) and (Nd , INd )

for p as laid out in (1.6) parts (a), (b), and (c) respectively. First, we take resort to
simulated data. Then, we validate our concerns with the help of real data from potato
beetle infestation.

2.1 Drawbacks: Validation with Simulated Data

A close look at (1.6) reveals that it is possible that L N may be negative and/or UN

may exceed 1 with positive probability. We provide simulation results to emphasize
this point. Table1 shows simulation results corresponding to the purely sequential
procedure (1.6) part (a). Data are simulated from a Bernoulli distribution with p =
0.90 and each row shown corresponds to 10000 replications.

Weconsidered c = 0.10, 0.05 in (1.5) part (a) andfixedγ = 0.7 in the definitionof
TN from (1.4). Recall that any γ value exceeding 1

2 will suffice.We found comparable
performanceswith awide variety of other choices of γ.For brevity, we include results
from data analysis when γ = 0.7.

The second column n0
c shows the optimal fixed sample size as in (1.5) part (a).

Then, we have n0 that denotes the pilot sample size. This is assumed to be fixed
and in this section we have assumed n0 = 10 for all our results. We explored other
choices of n0 but found no difference in conclusions. Column 4 shows n, the average
from 10000 runs of sequential sampling ((1.6) part (a)) with its standard error s(n).
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Table 1 Simulation results from 10000 replications for the purely sequential methodology (1.6)
part (a) in a Bernoulli(p = 0.90) population when α = 0.05 and γ = 0.7 in (1.4)

δ n0
c (1.5) part (b) n0 n(s(n)) n/n∗

d n − n∗
d w(s(w))

0.10 34.574 10 40.776
(0.334)

1.179 6.202 0.524
(0.005)

0.05 138.298 10 140.904
(0.334)

1.019 2.606 0.695
(0.005)
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Fig. 1 Plots on the left and the right correspond respectively to the rows c = 0.10 and c = 0.05
in Table1. The histograms plot values of upper confidence limit UNc using (1.6) part (a) under
simulations with 10000 replications from Bernoulli(p = 0.9) corresponding to γ = 0.7, n0 = 10
and α = 0.05

The next two columns 5–6 show the ratio and difference of the sample sizes n and
n0

c , which give an idea of the efficiency (first- and second-order, respectively) of the
sampling rule. The ratio n/n0

c is expected to be near 1 and this is a measure of the
first-order efficiency. One may refer to Theorem 3.1 part (ii).

Let w denote an indicator variable taking the value 1 (or 0) if a constructed
confidence interval (L N , UN ) obtained for a run includes (or does not include) the
true p. Then,w is the average w from 10000 replications with its standard errors s(w)

shown in column 7. This w gives us an idea about the achieved coverage probability.
Since we fixed α = 0.05, we expect w to be close to 0.95. Chow and Robbins [5]
proved that the fixed-width confidence interval for the population mean parameter μ

is asymptotically first-order efficient and asymptotically consistent.
In each of the two cases summarized in Table1, we show Fig. 1 which plots all

10000 observed values of the upper confidence limit UN . The histograms in Fig. 1
clearly show that P(UN > 1) > 0.By fixing a small value of the Bernoulli parameter
p (with a small value of c), we may similarly validate the possibility that L N may
be negative with a positive probability. We have omitted these results for brevity.

Similarly, Table2 shows simulation results for the sequential procedure (1.6) part
(b). Data are simulated from a Bernoulli distribution with p = 0.90 and each row
corresponds to 10000 replications under δ = 0.10, 0.05. The second column shows
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Table 2 Simulation results from 10000 replications for the purely sequential methodology (1.6)
part (b) in a Bernoulli(p = 0.90) population when α = 0.05 and γ = 0.7 in (1.4)

δ n0
δ (1.5) part (b) n0 n(s(n)) n/n∗

d n − n∗
d w(s(w))

0.10 42.684 10 32.964
(0.206)

0.772 −9.720 0.372
(0.005)

0.05 170.738 10 116.844
(0.818)

0.684 −53.894 0.474
(0.005)
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Fig. 2 Plots on the left and the right correspond respectively to the rows δ = 0.10 and δ = 0.05
in Table2. The histograms plot values of upper confidence limit UNδ using (1.6) part (b) under
simulations with 10000 replications from Bernoulli(p = 0.9) corresponding to γ = 0.7, n0 = 10
and α = 0.05

Table 3 Simulation results from 10000 replications for the purely sequential methodology (1.6)
part (c) in a Bernoulli(p = 0.90) population when α = 0.05 and γ = 0.7 in (1.4)

d n0
δ (1.5) part (b) n0 n(s(n)) n/n∗

d n − n∗
d w(s(w))

1:10 46:988 10 35:913
(0:228)

0:765 11:075 0:407
(0:005)

1:05 179:310 10 121:056
(0:855)

0:685 –58:254 0:485
(0:005)

n0
δ from (1.5) part (b). Figure2 plots all 10000 values of the upper confidence limit

UN . The histograms from Fig. 2 clearly show that P(UN > 1) > 0.
Table3 summarizes simulation results for the sequential procedure (1.6) part (c).

Figure3 plots all 10000 values of the upper confidence limit UN . The histograms
from Fig. 3 clearly reiterate that P(UN > 1) > 0.

Tables1, 2 and 3 and Figs. 1, 2 and 3 show that the existing purely sequential
confidence interval methods described in (1.6) do not perform satisfactorily.
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Fig. 3 Plots on the left and the right correspond respectively to the rows d = 1.10 and d = 1.05
in Table3. The histograms plot values of upper confidence limit UNd using (1.6) part (c) under
simulations with 10000 replications from Bernoulli(p = 0.9) corresponding to γ = 0.7, n0 = 10
and α = 0.05

2.2 Drawbacks: Validation with Potato Beetle Data

Potato beetles were counted in a field near Ontario Beall [2]. Data were recorded
from 16 strata each of size 144. Inside each strata, each of the 144 observations were
sampling units for which a count of potato beetles was provided. Although the data
were collected in strata, we combined all strata and treated such combined data as a
single dataset of size 2304. Next we re-coded this count data as 1 for a sample unit
if infestation was present (that is, the insect count was non-zero) and 0 otherwise.

This binary variable indicated the presence or absence of infestation. The corre-
sponding parameter p quantifies a measure of the probability of infestation. To get
an idea about p, we found p̂n,MLE = 0.918. The full binary data so coded agreed
extremely well with a Bernoulli distribution with p = 0.918. The size of the dataset,
2304, appears large and hence for the purpose of illustration, we pretend 0.918 to
be the “true” value of p. The p-value for the chi square goodness of fit test is 1 (chi
square statistic = 1.503709 × 10−11). A q-q plot shows a nearly perfect fit.

Tables4, 5 and 6 summarize the performance of the purely sequential confidence
interval procedures (Nc, G Nc), (Nδ, HNδ

) and (Nd , INd ) from (1.6). In the context
of each methodology, with a few choices of c, δ and d respectively, we ran the

Table 4 Potato beetle data illustration with MLE p̂2304,MLE = 0.918 treated as “true” p under a
single run of the purely sequential rule (1.6) part (a) for each row:α = 0.05, γ = 0.7, and (L N , UN )

from (1.5) part (a)

c n̂0
c n0 N N /̂n0

c N − n̂0
c [L N , UN ]

0.10 29.067 10 39 1.342 9.933 (0.900, 1.100)

0.05 116.269 10 126 1.084 9.731 (0.904, 1.004)

0.02 726.684 10 600 0.826 −126.68 (0.926, 0.966)
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Table 5 Potato beetle data illustration with MLE p̂2304,MLE = 0.918 treated as “true” p under a
single run of the purely sequential rule (1.6) part (b) for each row:α = 0.05, γ = 0.7, and (L N , UN )

from (1.5) part (b)

δ n̂0
δ n0 N N /̂n0

d N − n̂0
δ [L N , UN ]

0.10 29.067 10 29 0.998 −0.067 (0.932, 1.140)

0.05 116.269 10 108 0.929 −8.269 (0.926, 1.024)

0.02 726.684 10 894 1.230 167.32 (0.905, 0.942)

Table 6 Potato beetle data illustration with MLE p̂2304,MLE = 0.918 treated as “true” p under a
single run of the purely sequential rule (1.6) part (c) for each row:α = 0.05, γ = 0.7, and (L N , UN )

from (1.5) part (c)

d n̂0
d n0 N N /̂n0

d N − n̂0
d [L N , UN ]

1.10 38.009 10 31 0.816 −7.009 (0.932, 1.128)

1.05 145.043 10 102 0.703 −43.043 (0.934, 1.029)

1.02 880.471 10 726 0.824 −154.47 (0.923, 0.960)

sequential procedures (1.6) parts (a), (b), and (c) to come up with the corresponding
confidence intervals for p. The second, third and fourth columns in these tables
provide the estimated optimal sample size required (1.5), pilot sample size, and
the purely sequential sample size upon termination. The next two columns measure
asymptotic first and second-order efficiencies which are mostly unsatisfactory.

However, in the case of Tables4, 5 and 6, we note that each row corresponds
to a single run. The last row in Table4 (c = 0.02), first two rows in Table5 (δ =
0.05, 0.02), and all rows in Table6 (d = 1.10, 1.05, 1.02) fail to include the most
plausible value of p, namely 0.918. Also by looking at the final confidence intervals
in each case, it is apparent that the upper confidence limit has exceeded 1 a number
of times.

2.3 A Naive and Not-So-Promising Resolution

In the case of each interval constructed from (1.6), one may feel tempted to propose
a fine-tuning of the respective confidence interval as follows:

(
L∗

N , U ∗
N

)
, (2.1)

where L∗
N = max(0, L N ) and U ∗

N = min(1, UN ) with N (= Nc or Nδ or Nd). How-
ever, such a modified confidence interval

(
L∗

N , U ∗
N

)
may not enjoy the desirable

asymptotic consistency property.
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Indeed, one should redefine the optimal fixed-sample-size n∗ as follows:

min n(≥ 1) such that Pp
{

p ∈ (
L∗

n, U ∗
n

)} ≥ 1 − α holds approximately, (2.2)

assuming n large. Then, one may mimic such a revised expression of n∗ from (2.2)
in order to formulate an appropriate stopping time N in the context of a specific
notion of desired accuracy (for example, fixed-width or fixed proportional closeness
or fixed-accuracy). That way, one may genuinely expect to claim:

Pp
{

p ∈ (
L∗

N , U ∗
N

)} → 1 − α asymptotically, (2.3)

which will be the asymptotic consistency property. Corresponding analytical steps
and the formulation of an ensuing purely sequential methodology may become very
invasive.

2.4 A Synopsis

In summary, none of the existing purely sequential confidence interval estimation
procedures from (1.6) performed satisfactorily for the Bernoulli parameter p.A pos-
sible naive approach pointed out briefly in Sect. 2.3 does not appear very promising.
Ideally, we would like to come up with a new purely sequential confidence interval
methodology (Q, JQ), defined via (3.5) and (3.7), or a new two-stage confidence
interval methodology (R, JR), defined via (4.2)–(4.4), for estimating p directly in
such a way that JQ, JR are surely sub-intervals of (0, 1). We additionally demand
that any such newly proposed confidence interval estimation methodology (Q, JQ)

or (R, JR) should satisfy both asymptotic first-order efficiency and asymptotic con-
sistency properties.

3 First New Fix: Purely Sequential Bounded-Length
Confidence Interval Methodology

In this section, we propose a new way of estimating the Bernoulli parameter p such
that we may ensure that the confidence bounds satisfy the requirement 0 < L N <

UN < 1 w.p. 1 while preserving the first-order asymptotic efficiency and asymptotic
consistency properties.

We beginwith the odds-ratio θ ≡ θ(p) = p(1 − p)−1 which is a one-to-one func-
tion of p.Clearly, the parameter θ is unknownwith its parameter space R+ ≡ (0,∞).
Now,we revisit the fixed-accuracy confidence interval estimation problem for θ along
the lines of Banerjee and Mukhopadhyay [1].
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Based on X1, . . . , Xn , we recall the MLE, p̂n,MLE = Xn, for p. Using the invari-
ance property of MLE Zehna [18], we let:

Wn ≡ θ̂n,MLE = Xn

1 − Xn
. (3.1)

Since Pp(Xn = 0) > 0 and Pp(Xn = 1) > 0 whatever 0 < p < 1 may be, we
define:

Tn = Xn + n−γ

1 − Xn + n−γ
, (3.2)

where γ > 1
2 is a constant of our choice. Much in the spirit of (1.4), this Tn is a

consistent estimator of θ .
Next, with a preassigned level of accuracy d(> 1), Banerjee and Mukhopadhyay

[1] constructed the following fixed-accuracy confidence interval for θ :

Kn = {θ : θ ∈ [d−1Tn, dTn]}. (3.3)

Recall (1.3) which was considered in the same spirit. However, there is a significant
difference. In (1.3), the parameter space was (0, 1), but the parameter space in (3.3)
is (0,∞).

Using CLT, we obviously have

n1/2(Tn − θ)
L→ N (0, σ 2(θ)) as n → ∞,

where the variance in the asymptotic distribution is given by σ 2(θ) ≡ θ(θ + 1)2.
Thus, for Kn to include θ with an approximate preassigned probability 1 − α, 0 <

α < 1, the required optimal fixed-sample-size will reduce to:

the smallest n ≥ n∗
d ≡

( zα/2

ln d

)2
θ−1(θ + 1)2. (3.4)

But, n∗
d is a function of θ and hence remains unknown.

Now, observe that n∗
d ≥ 4

( zα/2

ln d

)2
. Thus, we may define the pilot sample size as

≈ 4
( zα/2

ln d

)2
. So, we let X1, . . . , Xn0 be our pilot data which are followed by a one

at-a-time drawing of additional observations according to the stopping time:

Q ≡ Qd = inf

{

n ≥ n0 : nWn(Wn + 1)−2 ≥
( zα/2

ln d

)2
}

, (3.5)

with n0 ≡ n0d =
⌊

4
( zα/2

ln d

)2
⌋

,
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where Wn comes from (3.1) and 
u� = the largest integer < u for u > 0. Banerjee
and Mukhopadhyay [1] arrived at the same stopping rule with n0 fixed, that is, with
n0 not involving d.

One may show that Pp{Qd < ∞} = 1 and E p[Qd ] < ∞ by appealing to Chow
and Robbins [5]. Else, Theorem 1 from Banerjee and Mukhopadhyay [1] could be
applied.

Notice that as long as Wn is observed as zero, that is as long as Xn = 0, (3.5)
will not stop sampling. On the other hand, we interpret Wn = ∞ whenever Xn =
1, but then the corresponding value of Wn(Wn + 1)−2 used in the left-hand side
of the inequality in (3.5) is interpreted as lim

ψ→∞ψ(1 + ψ)−2. However, this limit

reduces to lim
ψ→∞

1
2 (1 + ψ)−1 = 0, by L’Hôspital’s rule. Thus, as long as Xn = 1 is

observed, (3.5) will not stop sampling. This argument may sound more convincing if
we replaced the expression Wn(Wn + 1)−2 used in the left-hand side of the inequality
in (3.5) by an equivalent expression Xn(1 − Xn).

At termination, we note that 0 < WQd < ∞w.p.1. After implementing the purely
sequential procedure (3.5), the final dataset at handwill be {Qd , X1, . . . , X Qd }. Using
this final data, Banerjee and Mukhopadhyay [1] proposed the confidence interval

KQd ≡ [d−1TQd , dTQd ]

to estimate θ in the light of (3.3).
But now, let us define:

L Qd = (d + TQd )
−1TQd and UQd = (1 + dTQd )

−1dTQd . (3.6)

Then, the associated coverage probability may be expressed as follows:

Pp
{
θ(p) ∈ KQd

} = Pp
{
d−1TQd ≤ θ ≤ dTQd

} = Pp
{

L Nd ≤ p ≤ UNd

}
,

which leads us to propose the following bounded-length purely sequential confidence
interval for p:

JQd ≡ [L Qd , UQd ]. (3.7)

3.1 Properties of the Purely Sequential Confidence
Interval (3.7)

Clearly, both lower and upper confidence limits L Qd , UQd lie between 0 and 1 w.p.1.
That is, the earlier criticisms labeled against G N , HN , and IN from (1.3) no longer
hold in the case of our newly proposed JQd . Let us summarize a number of desirable
theoretical properties that are associated with the methodology (Qd , JQd ).
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Theorem 3.1 For the purely sequential estimation rule
(
Qd , JQd

)
under (3.5)–(3.7),

for each fixed 0 < p < 1 and 0 < α < 1, we have as d ↓ 1:

(i) Qd/n∗
d → 1 w.p.1;

(ii) E p
[
Qd/n∗

d

] → 1 [Asymptotic first-order efficiency]; and
(iii) Pp

{
p ∈ JQd : [L Qd , UQd ]

} → 1 − α [Asymptotic consistency],

where n∗
d comes from (3.4) and L Qd , UQd come from (3.6).

A proof of this result follows directly from the proof of Theorem 1 in Banerjee
and Mukhopadhyay [1]. We omit further details for brevity.

3.2 Bounded-Length for the Purely Sequential Confidence
Interval (3.7)

The length of the proposed confidence interval for p from (3.7) is given by:

LengthQ ≡ LengthQd
= UQd − L Qd = (d2 − 1)TQd

(1 + dTQd )(d + TQd )
. (3.8)

Theorem 3.2 The length of the confidence interval JQd from (3.7) satisfies the fol-
lowing inequality:

LengthQd
≤ d − 1

d + 1
w.p.1, (3.9)

where the expression of LengthQd comes from (3.8).

Proof We define

g(x) = (d2 − 1)x

(1 + dx)(d + x)
, 0 < x < ∞

which implies:

h(x) ≡ ln g(x) = ln(d2 − 1) + ln x − ln(1 + dx) − ln(d + x)

⇒ h
′
(x) = d(1 − x2)

x(1 + dx)(d + x)
.

Thus, we have h(x) >,=,< 0 if and only if (0 <)x <,=,> 1 so that h(x), and
hence equivalently g(x), is increasing (decreasing) from 0 < x < 1 (x > 1). Then,
clearly, g(x) has its maximum at x = 1 with g(1) = d−1

d+1 . This proves the desired
result. �
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3.3 Some Discussions

In (1.5) part (a), note that c(> 0) should ideally be chosen “small”. Suppose that in
(1.5) part (a), we pick 0 < c < 1

2 and accordingly fix:

d = 1 + 2c

1 − 2c
in (3.3) so that

d − 1

d + 1
= 2c. (3.10)

Thus, our constructed purely sequential methodology
(
Qd , JQd

)
under (3.5)–(3.7)

will produce a final confidence interval JQd ≡ [L Qd , UQd ] for p with its length
bounded from above by the number 2c. The spirit of (1.5) part (a) was different
because, there one intended to obtain a fixed-width (= 2c) 1 − α confidence interval
for p.

It is important to recall that while the confidence interval G Nc from (1.5) part (a)
had a fixed length 2c, it did not perform very well. But, per (3.10), with a choice of
d = 1+2c

1−2c when 0 < c < 1
2 , JQd produces a confidence interval for p whose width

is shorter than 2c. Hence, it is easy to grasp why n∗
d from (3.4) would exceed the

corresponding n0
c from (1.5) part (a). In this scenario, that is with d = 1+2c

1−2c when
0 < c < 1

2 , the discrepancy between n∗
d , n0

c is the largest when p is near 0 or 1,
whereas n∗

d , n0
c are close to each other when p is near 1

2 . That said, we need to
reiterate that the methodologies under discussion do not utilize any prior knowledge
about p other than the fact that p ∈ (0, 1).

4 Second New Fix: A Two-Stage Bounded-Length
Confidence Interval Methodology

Recall that θ−1(θ + 1)2 and p−1(1 − p)−1 are identical and thus the expression of
n∗

d from (3.4) is alternatively expressed as

n∗
d =

( zα/2

ln d

)2 {
p−1 + (1 − p)−1

}
. (4.1)

We again note that n∗
d ≥ 4

( zα/2

ln d

)2
and thus, we define the pilot sample size as:

n0 ≡ n0d =
⌊

4
( zα/2

ln d

)2
⌋

, (4.2)

in the spirit of (3.5). Now, having recorded the pilot data X1, . . . , Xn0 , we determine
the final sample size by the stopping rule:

R ≡ Rd = max

{

n0,

⌊( zα/2

ln d

)2 {
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ

0 )−1
}⌋

+ 1

}

,

(4.3)
where γ (> 0) plays a similar role as in (3.2).
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Once R is determined, we sample the difference in the second stage by gathering
R − n0 additional observations Xn0+1, . . . , X R in a single batch if R > n0. On the
other hand, if R ≤ n0, we do not gather additional observations in the second stage.
That is, after implementing the two-stage methodology (4.2)–(4.3), the final dataset
{Rd , X1, . . . , X Rd } would become available. Thus, along the lines of (3.6)–(3.7), we
may construct the following bounded-length confidence interval for p:

JRd ≡ [L Rd , URd ], (4.4)

with L Rd = (d + TRd )
−1TRd andURd = (1 + dTRd )

−1dTRd , with T defined earlier in
(3.2). The earlier bound (3.9) will continue to hold for the length of JRd ≡ [L Rd , URd ]
obtained by implementing the proposed two-stage methodology (4.2)–(4.4).

One may feel some resemblance with the two-stage fixed-width confidence inter-
val procedure of Zacks andMukhopadhyay [17]. Upon close inspection, onewill find
immediately that Zacks andMukhopadhyay [17] constructed a two-stage fixed-width
confidence interval procedure for estimating ln (odds-ratio) which is an unknown
parameter that belongs to the whole real line. Thus, a fixed-width confidence inter-
val will look reasonable. We continue to investigate a two-stage bounded-length
confidence interval procedure for estimating p.

Remark 4.1 Even though γ > 0 will suffice, for practical purposes, as in Sect. 3
earlier, we may choose γ to be larger than 1

2 .

Lemma 4.1 For the two-stage estimation rule
(
Rd , JRd

)
under (4.2)–(4.4), for each

fixed 0 < p < 1 and 0 < α < 1, we have:

lim
d↓1 E p

[
(Xn0 + n−γ

0 )−1
]

= p−1and lim
d↓1 E p

[
(1 − Xn0 + n−γ

0 )−1
]

= (1 − p)−1,

where n0 comes from (4.2) and γ > 0.

This lemma can be proved using techniques similar to those found in the proof
of Lemma 2 in Mukhopadhyay and Diaz [11]. Further details are omitted. Next, we
summarize another lemma and outline its proof.

Lemma 4.2 For the two-stage estimation rule
(
Rd , JRd

)
under (4.2)–(4.4), for each

fixed 0 < p < 1, and 0 < α < 1, we have:

(i) lim
d↓1 Pp (R = n0) = 0 when p �= 1

2
,

(i i) lim
d↓1 Pp (R = n0) = 1 when p = 1

2
,

where n0 comes from (4.2) and γ > 0.

Proof First, we consider 0 < p < 1, p �= 1
2 . For sufficiently small d in a right neigh-

borhood of 1, with εp = p−1(1 − p)−1 − 4(> 0), we may write:
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Pp(R = n0)

≤ Pp

{
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ
0 )−1 ≤ 4

}

= Pp

{[
(Xn0 + n−γ

0 )−1 − p−1
]

+
[
(1 − Xn0 + n−γ

0 )−1 − (1 − p)−1
]

≤ −εp

}
,

≤ Pp

{∣
∣
∣
[
(Xn0 + n−γ

0 )−1 − p−1
]

+
[
(1 − Xn0 + n−γ

0 )−1 − (1 − p)−1
]∣∣
∣ ≥ εp

}
.

But, (Xn0 + n−γ

0 )−1 P→ p−1 and (1 − Xn0 + n−γ

0 )−1 P→ (1 − p)−1 as d ↓ 1, and
hence the result follows.

The case when p = 1
2 is left out for brevity. �

Theorem 4.1 For the two-stage estimation rule
(
Rd , JRd

)
under (4.2)–(4.4), for

each fixed 0 < p < 1, and 0 < α < 1, we have as d ↓ 1:

(i) Rd/n∗
d → 1 w.p.1;

(ii) E p
[
Rd/n∗

d

] → 1 [Asymptotic first-order efficiency]; and

(iii) Pp
{

p ∈ JRd : [L Rd , URd ]
} → 1 − α [Asymptotic consistency];

where n∗
d comes from (4.4) with γ (> 0) arbitrary.

Proof First, we again consider 0 < p < 1, p �= 1
2 .

Proof of part (i) We note the basic inequality:

( zα/2

ln d

)2 {
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ

0 )−1
}

≤ Rd ≤ n0 I (R = n0)

+
( zα/2

ln d

)2 {
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ

0 )−1
}

+ 1w.p.1. (4.5)

Next, dividing throughout (4.5) by n∗
d , we get:

p(1 − p)
[
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ
0 )−1

]
≤ Rd/n∗

d ≤ n0n∗−1
d I (R = n0)

p(1 − p)
[
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ
0 )−1

]
+ n∗−1

d w.p.1. (4.6)

Recall that (Xn0 + n−γ

0 )−1 P→ p−1, (1 − Xn0 + n−γ

0 )−1 P→ (1 − p)−1, I (R =
n0)

P→ 0 (in view of Lemma 4.2), n∗−1
d → 0, and n0n∗−1

d → 4
p(1−p)

as d ↓ 1. Thus,
part (i) follows from (4.6).
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Proof of part (ii) Lemma 4.1 shows that

lim
d↓1E p

[
(Xn0 + n−γ

0 )−1 + (1 − Xn0 + n−γ
0 )−1

]
= p−1 + (1 − p)−1 = p−1(1 − p)−1.

Now, we take expectations throughout (4.6). Then, part (ii) follows by applying
Lemmas 4.1, 4.2 and taking limits as d ↓ 1.

Proof of part (iii) The proof will move along the lines developed in the case of
the sequential procedure (3.5)–(3.7). For more details one may refer to Banerjee and
Mukhopadhyay [1], Mukhopadhyay and Banerjee [10].

The case when p = 1
2 is left out for brevity. �

4.1 Purely Sequential or Two-Stage: Which One
to Implement?

An important and natural question may arise: How should one choose between the
purely sequential methodology and the two-stage methodology? In all fairness, there
is no one simple answer.

In some situations, observations may arrive naturally in a sequence. For example,
in a clinical trial, patients may arrive one by one. In a production line, manufac-
tured items may come off a conveyor belt one by one. In such situations, our newly
proposed purely sequential confidence interval estimation methodology should be
implemented.

In other situations, observations may arrive naturally in bulks or groups. Finished
boxes of batteries may come off a conveyor belt in batches. In such situations, our
newly proposed two-stage confidence interval estimation methodology should be
implemented.

In yet another kind of a situation, if it so happens that either purely sequential or
two-stage confidence interval estimation methodology can be implemented, then our
recommendation will be to use the two-stage methodology because of its operational
convenience and logistical simplicity.

5 Data Analysis

Now, we provide some interesting results from data analysis for the purely sequen-
tial methodology (3.5)–(3.7) and the two-stagemethodology (4.2)–(4.4). In Sect. 5.1,
we discuss illustrations and performances of both bounded-length confidence inter-
val methodologies for a Bernoulli parameter p using extensive sets of computer
simulations. Section5.2 shows illustrations and implementations of the proposed
methodologies (3.5)–(3.7) and (4.2)–(4.4) utilizing three kinds of real data sets.
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All results so summarized are presented when we had fixed the following values:
α = 0.05 and γ = 0.7. However, the interesting features and performances that are
highlighted here remain nearly same for many other choices of α and γ . We have
deliberately omitted those for brevity.

5.1 Data Analysis from Simulations

Tables7 and 8 summarize simulation results corresponding to the purely sequential
procedure (3.5)–(3.7) when p = 0.9 and p = 0.8, respectively. The results in each
row show averages from 10000 replications. Column 1 shows the fixed-accuracy
level d(> 1), and column 2 shows n∗

d from (3.4). We assumed the pilot sample size
n0 as in (3.5). Column 4 shows the average purely sequential sample size q and its
estimated standard error (s(q)) obtained from averaging all 10000 runs. Columns 5
and 6 respectively show the ratio and difference of q and n∗

d . The ratio gives us an
idea about first-order efficiency measure in practice. This is supposed to be near 1.
Column 6 briefly addresses second-order efficiency measure in practice.

For column 7, we defined w, an indicator variable taking the value 1(0) if a
constructed confidence interval (Lq , Uq) from (3.7) upon termination when Q = q
included (did not include) the true value of p. We show the associated w, the average
from 10000 such observed values of w, and its estimated standard error (s(w)). This
w gives an idea about the achieved coverage probability which we expect to be close
to the preset target, 0.95.

Table 7 Simulation results from 10000 replications for the purely sequential methodology (3.5)–
(3.7) in a Bernoulli(p = 0.9) population when α = 0.05 and γ = 0.7 in (3.2)

d n∗
d n0 q(s(q)) q/n∗

d q − n∗
d w(s(w))

1.12 3323.456 1196 3328.233 (1.544) 1.001 4.777 0.951 (0.003)

1.11 3919.236 1410 3922.729 (1.654) 1.001 3.493 0.949 (0.003)

1.10 4698.844 1691 4702.695 (1.832) 1.001 3.850 0.950 (0.003)

1.09 5747.512 2069 5753.848 (2.013) 1.001 6.336 0.949 (0.003)

Table 8 Simulation results from 10000 replications for the purely sequential methodology (3.5)–
(3.7) in a Bernoulli(p = 0.8) population when α = 0.05 and γ = 0.7 in (3.2)

d n∗
d n0 q(s(q)) q/n∗

d q − n∗
d w(s(w))

1.12 1869.444 1196 1871.911 (0.646) 1.001 2.467 0.948 (0.002)

1.11 2204.570 1410 2206.825 (0.710) 1.001 2.255 0.948 (0.002)

1.10 2643.109 1691 2647.002 (0.772) 1.001 3.902 0.949 (0.002)

1.09 3232.975 2069 3235.781 (0.854) 1.001 2.806 0.949 (0.002)
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Fig. 4 The plot shows 10000 observed and sorted values of the LengthQ function (3.8) associated
with the first row (d = 1.12) of Table7 obtained via simulations using a Bernoulli(p = 0.9) popu-
lation under the purely sequential methodology (3.5)–(3.7). The top horizontal line corresponds to
(d + 1)−1(d − 1) ≈ 0.05660377 when α = 0.05; γ = 0.7

Going back to Theorem 3.1 parts (ii) and (iii), as d moves closer to 1, we expect
the ratio q/n∗

d to move closer to 1 and w to move close to the target 0.95. These
features are largely validated from simulations.

In the context of the first row of Table7 (that is, when d = 1.12), we have shown a
plot of 10000 values of the function Lengthq from (3.8) to see an empirical validation
(Fig. 4) of Theorem 3.2. The upper bound for Lengthq , namely

(d + 1)−1(d − 1) = 0.056603773,

is included as the top horizontal line in Fig. 4. The Lengthq function clearly remains
under the horizontal line with

max(Lengthq) = 0.0244884 < (d + 1)−1(d − 1).

Similar features were empirically validated in all other cases, but we avoid providing
such details or commenting on them in every other situation.

Tables9 and 10 summarize simulation results corresponding to the two-stage
procedure (4.2)–(4.4) when p = 0.9 and p = 0.8 respectively. The results in each
row show averages from 10000 replications. The pilot sample size n0 was computed
according to (4.2). All other entities have the same interpretations as those in Tables7
and 8.

The two-stage methodology is operationally more convenient and less time con-
suming. By comparing Tables7 and 8 with Tables9 and 10, we notice that in all
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Table 9 Simulation results from 10000 replications for the two-stage methodology (4.2)–(4.4) in
a Bernoulli(p = 0.9) population when α = 0.05 and γ = 0.7 in (4.3)

d n∗
d n0 r(s(r)) r/n∗

d r − n∗
d w(s(w))

1.12 3323.456 1196 3145.672 (2.256) 0.946 –177.784 0.949 (0.003)

1.11 3919.236 1410 3737.626 (2.520) 0.951 –191.610 0.947 (0.003)

1.10 4698.844 1691 4495.730 (2.767) 0.957 –203.114 0.948 (0.003)

1.09 5747.512 2069 5522.576 (3.103) 0.961 –224.936 0.951 (0.003)

Table 10 Simulation results from 10000 replications for the two-stage methodology (4.2)–(4.4) in
a Bernoulli(p = 0.8) population when α = 0.05 and γ = 0.7 in (4.3)

d n∗
d n0 r(s(r)) r/n∗

d r − n∗
d w(s(w))

1.12 1869.444 1196 1820.784 (0.761) 0.974 –48.660 0.946 (0.002)

1.11 2204.570 1410 2154.071 (0.761) 0.978 –50.499 0.946 (0.002)

1.10 2643.109 1691 2588.066 (0.918) 0.979 –55.034 0.949 (0.002)

1.09 3232.975 2069 3174.276 (1.016) 0.982 –58.700 0.949 (0.002)

cases under consideration, the average two-stage sample size (r ) is smaller than the
average purely sequential sample size (q ). Again, we note that the values of r/n∗

d and
w confirm the asymptotic results of first-order efficiency and consistency properties
proved in Theorem 4.1 parts (ii) and (iii).

5.2 Three Illustrations with Real Data

In this section, we implement the proposed purely sequential and two-stage method-
ologies with the help of real data. In the following sections, we handle three real data
sets of size small to moderate to large covering interesting areas from health studies
((i) chance of relapse in bone marrow transplant patients, (ii) presence or absence of
diabetes for Pima Indians) and from entomology ((iii) presence or absence of potato
beetle infestation).

5.2.1 Illustration 1: Chance of Relapse in Bone Marrow Transplant
Patients

A standard treatment for acute leukemia is bone marrow transplant (BMT). BMT is
considered to be a failure if a patient relapses or dies during remission. Data were
collected on 137 patients treated in 4 hospitals: The Ohio State University Hospital
in Columbus (76 patients); Hahnemann University in Philadelphia (21 patients);
St. Vincent’s Hospital in Sydney, Australia (23 patients); and at Alfred Hospital in
Melbourne (17 patients). This small-size data under consideration may be found in
Klein and Moeschberger [8], Copelan et al. [6].
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Table 11 Illustration 1 using BMT data with MLE p̂137,MLE = 0.306 treated as “true” p under
a single run of the purely sequential methodology (3.5)–(3.7) when α = 0.05, γ = 0.7, and with
(L Q , UQ) from (3.7)

d n̂ ∗
d n0 Q Q/̂n ∗

d Q − n̂ ∗
d [L Q , UQ ] d−1

d+1 LengthQ

1.65 72.060 61 66 0.916 −6.060 (0.280, 0.514) 0.245 0.234

1.60 81.805 69 76 0.929 −5.805 (0.267, 0.482) 0.231 0.215

1.55 94.086 80 87 0.924 −7.086 (0.282, 0.486) 0.216 0.204

1.50 109.919 93 103 0.937 −6.919 (0.273, 0.458) 0.200 0.185

Table 12 Illustration 1 using BMT data with MLE p̂137,MLE = 0.306 treated as “true” p under a
single run of the two-stage methodology (4.2)–(4.4) when α = 0.05, γ = 0.7, and with (L R, UR)

from (4.4)

d n̂ ∗
d n0 R R/̂n ∗

d R − n̂ ∗
d [L R, UR] d−1

d+1 LengthR

1.65 72.060 61 68 0.944 −4.060 (0.196, 0.399) 0.245 0.203

1.60 81.805 69 76 0.929 −5.805 (0.208, 0.402) 0.231 0.194

1.55 94.086 80 89 0.946 −5.086 (0.215, 0.397) 0.216 0.182

1.50 109.919 93 104 0.946 −5.919 (0.225, 0.395) 0.200 0.170

Transplants were conducted between March 1, 1984 and June 30, 1989 with a
maximum follow-up time of 7 years. Among all patients, 42 relapsed. Data included
an indicator variable that took the value 1 if a patient relapsed or 0 otherwise. The
parameter p indicates the chance or probability of relapse.

We may have an idea of p from the MLE, p̂137,MLE = 0.306 obtained from the
full dataset. For the purpose of illustration, we may regard this as the “true” p even
though this make-belief “true” p has no bearing on our methodologies. We fitted a
Bernoulli distribution with p = 0.306 to this dataset. The q-q plot indicated a perfect
fit and the Chi-square goodness of fit test (Chi-square statistic = 1.195231 × 10−12)

gave a p-value of 1.
Table11 includes the analysis of this data set for the purely sequential procedure

(3.5)–(3.7). We consider 4 values of the accuracy d (> 1) as accommodated by
the data set. Here n̂ ∗

d , n0 and Q denote the estimated optimal sample size required
(3.4), pretending that “true” p is 0.306, the pilot sample size and the sequential
sample size required as in (3.5) respectively. The ratio of Q/̂n ∗

d are close to 1 as
expected fromTheorem3.1 (ii). For all choices ofd, the confidence interval (L Q , UQ)

computed as in (3.6), include the most plausible value of p, 0.306. Also, in the light
of Theorem 3.2, observe that in each case, the length of the obtained confidence
interval is bounded by the quantity (d + 1)−1(d − 1).

In Table12 we find analysis of the two-stage procedure (4.2)–(4.4). Here, we
consider the same values of the accuracy d as in Table11. The pilot sample size n0

is computed as in (4.2). All other symbols have their usual meaning. The ratios of
the two-stage and optimal fixed sample sizes R/̂n ∗

d are close to 1 and in each case,
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the final two-stage confidence interval includes the most plausible value of p, 0.306.
Here too, we see that the length of each interval is bounded by (d + 1)−1(d − 1).

5.2.2 Illustration 2: Presence or Absence of Diabetes For Pima Indians

This medium size dataset came from the National Institute of Diabetes and Digestive
and Kidney Diseases. This data primarily comprises of 768 female patients, all of
whomwere at least 21 years old, and came from Pima Indian heritage. The data were
collected from a population living in Phoenix, Arizona, USA. Smith et al. [14] used
the data with a unique algorithm to forecast the onset of diabetes mellitus.

In this illustration, a binary variable would take the value 1 if a patient indicated
signs of diabetes according to the World Health Organization’s criteria (that is, if
the 2 h post-load plasma glucose was at least 200 mg/dl in any survey examina-
tion or during routine medical care) and the value 0 otherwise. The dataset is pub-
licly available from the following website: http://archive.ics.uci.edu/ml/machine-
learning-databases/pima-indians-diabetes/.

We may have an idea of p, the proportion of patients who show signs of diabetes,
from the MLE, p̂768,MLE = 0.349 obtained from the full dataset. For the purpose
of illustration, we may regard this as the “true” p even though this make-belief
“true” p has no bearing on our methodologies. We fitted a Bernoulli distribution
with p = 0.349 to this dataset. The q-q plot indicated a perfect fit and the Chi-square
goodness of fit test (Chi-square statistic = 3.841358 × 10−12) gave a p-value 1. We
now proceed with the illustrations.

Table13 includes the analysis under the purely sequential methodology (3.5)–
(3.7). We consider 4 choices for the accuracy d(> 1) and n̂ ∗

d , n0 and Q denote the
estimated optimal fixed-sample-size required (3.4), pretending that “true” p is 0.349,
the pilot sample size and the purely sequential sample size as in (3.5), respectively.

Table14 highlights analogous performances of the two-stage methodology pro-
cedure (4.2)–(4.4) in the light of diabetes data. We used the same set of d values as
in Table13. The pilot sample size n0 was determined using (4.2).

Table 13 Illustration 2 using diabetes data with MLE p̂768,MLE = 0.349 treated as “true” p under
a single run of the purely sequential methodology (3.5)–(3.7) when α = 0.05, γ = 0.7, and with
(L Q , UQ) from (3.7)

d n̂ ∗
d n0 Q Q/̂n ∗

d Q − n̂ ∗
d [L Q , UQ ] d−1

d+1 LengthQ

1.35 187.752 170 182 0.969 −5.752 (0.317, 0.458) 0.149 0.141

1.30 245.652 223 237 0.965 −8.652 (0.325, 0.448) 0.130 0.124

1.25 339.595 308 329 0.969 −10.595 (0.330, 0.435) 0.111 0.105

1.20 508.691 462 501 0.985 −7.691 (0.324, 0.408) 0.091 0.084

http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/
http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/
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Table 14 Illustration 2 using diabetes data with MLE p̂768,MLE = 0.349 treated as “true” p under
a single run of the two-stage methodology (4.2)–(4.4) when α = 0.05, γ = 0.7, and with (L R, UR)

from (4.4)

d n̂ ∗
d n0 R R/̂n ∗

d R − n̂ ∗
d [L R, UR] d−1

d+1 LengthR

1.35 187.752 170 202 1.076 14.248 (0.246, 0.374) 0.149 0.127

1.30 245.652 223 252 1.026 −6.348 (0.260, 0.372) 0.130 0.112

1.25 339.595 308 334 0.984 −5.595 (0.295, 0.396) 0.111 0.100

1.20 508.691 462 499 0.981 −9.691 (0.308, 0.391) 0.091 0.083

Table 15 Illustration 3 using potato beetle data with MLE p̂2304,MLE = 0.918 treated as “true” p
under a single run of the purely sequential methodology (3.5)–(3.7) when α = 0.05, γ = 0.7, and
with (L Q , UQ) from (3.7)

d n̂ ∗
d n0 Q Q/̂n ∗

d Q − n̂ ∗
d [L Q , UQ ] d−1

d+1 LengthQ

1.29 782.993 236 750 0.958 −32.993 (0.881, 0.925) 0.127 0.044

1.26 950.549 287 926 0.974 −24.549 (0.887, 0.925) 0.115 0.039

1.23 1184.727 358 1266 1.069 81.273 (0.900, 0.931) 0.103 0.032

1.20 1527.364 462 1554 1.017 26.636 (0.899, 0.927) 0.091 0.029

1.17 2059.674 623 2061 1.001 1.326 (0.900, 0.925) 0.078 0.025

5.2.3 Illustration 3: Presence or Absence of Potato Beetle Infestation

This classic dataset came from Beall [2] which we have described and used in
Sect. 2.2. In what follows, we again use this large dataset to validate performances
of the proposed purely sequential and two-stage methodologies.

Table15 includes the analysis under the purely sequential methodology (3.5)–
(3.7). We consider 4 choices for the accuracy d(> 1) and n̂ ∗

d , n0 and Q denote
the estimated optimal fixed-sample-size required (3.4), pretending that “true” p
is p̂2304,MLE = 0.918, the pilot sample size and the purely sequential sample size
required as in (3.5), respectively.

Table16 highlights analogous performances of the two-stage methodology pro-
cedure (4.2)–(4.4) in the light of potato beetle infestation data. We used the same set
of d values as in Table15. The pilot sample size n0 was determined using (4.2).

5.2.4 Brief Comments on Illustrations 1–3

We reiterate that the size of data in illustrations 1–3 may respectively be consid-
ered small, medium, and large. For the implementation of either methodology, we
treated each dataset as our universe, and drew observations from it, as dictated by the
designed stopping times.We have used simple random sampling without replacement
(SRSWOR) in order to gather observations from a universe under consideration. In
a fixed universe, the SRSWOR created Bernoulli observations with the same p. The
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Table 16 Illustration 3 using potato beetle data with MLE p̂2304,MLE = 0.918 as “true” p under a
single run of the two-stage methodology (4.2)–(4.4) when α = 0.05, γ = 0.7, and with (L R, UR)

from (4.4)

d n̂ ∗
d n0 R R/̂n ∗

d R − n̂ ∗
d [L R, UR] d−1

d+1 LengthR

1.29 782.993 236 724 0.925 −58.993 (0.894, 0.933) 0.127 0.039

1.26 950.549 287 920 0.968 −30.549 (0.892, 0.929) 0.115 0.037

1.23 1184.727 358 1171 0.988 −13.727 (0.899, 0.931) 0.103 0.032

1.20 1527.364 462 1482 0.970 −45.364 (0.900, 0.928) 0.091 0.028

1.17 2059.674 623 2038 0.989 −21.674 (0.903, 0.927) 0.078 0.024

observations became dependent, however such dependence became weaker as the
size of our universe moved from small to medium to large.

Weemphasize that our reported p̂n,MLE in a universewas exclusively used to obtain
n̂ ∗

d which provides a reasonable landmark with which we may want to compare
Q or R found in single runs as provided in Tables11, 12, 13, 14, 15 and 16. We
feel encouraged by noting that they compare remarkably well as we walk through
Tables11, 12, 13, 14, 15 and 16 and make a special note of the fact that both ratios
Q/̂n ∗

d and R/̂n ∗
d stay close to 1 across the board.

For all choices of d under consideration, both the purely sequential confidence
interval (L Q, UQ) constructed from (3.7) and the two-stage confidence (L R, UR) con-
structed from (4.4) include the plausible value of p, namely the respective p̂n,MLE. In
each situation,we also highlight that the observed length of (L Q, UQ)or (L R, UR) fell
below (d + 1)−1(d − 1), the maximum width (Theorem 3.2). It is truly encouraging
to see that our proposed methodologies deliver expected outcomes while withstand-
ing mild dependence among recorded observations under SRSWOR.
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A Population Based Confidence
Set Inference Method for SNPs
that Regulate Quantitative
Phenotypes

Charalampos Papachristou

Abstract The increased use of genome-wide association studies based on genetic
maps consisting of hundreds of thousands of SNPshas prompted the need formethods
that can be used in preliminary analyses to limit the number of SNPs investigated in
follow-up studies. I introduce a Confidence Set Inference method for independent
individuals that can be used as a first step in association studies to derive a set of SNPs
that contribute at least a specific percentage to the total variance of a quantitative
trait. The main advantage of the method is that it allows control over the confidence
level with which one can identify genes with specific effects on the genetic variance
of the trait of interest. Developed in the framework of linear models, the method can
efficiently incorporate information on pertinent covariates. I investigate the properties
of themethod through an extensive simulation study under various simple inheritance
models and compare its performance to that of a standard association approach as it
is implemented in the software package Merlin.

Keywords GWAS · Association studies · Confidence sets · Fine mapping · CSI

1 Introduction

Genome-wide association studies (GWAS) have become a standard tool in the quest
for loci that play an important role in the regulation of quantitative phenotypes or
the development of qualitative traits of humans [9, 11]. They usually involve the
scan of a large number, of the order of at least half a million, of single nucleotide
polymorphisms (SNPs) densely covering the entire human genome. As such, the
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performance of GWASs is plagued by impediments such as multiplicity adjustment
for the number of SNPs examined and computational issues due to the large volume
of data need to be handled [7, 9]. To ameliorate the effect of these two hurdles,
researchers have been employing an efficient two-stage analysis scheme comprised
of an initial screening step followed by a testing step [3, 7, 8, 11–13]. In the screening
step, stage I, all SNPs on the geneticmap are examined to identify thosewhich appear
to be associated with the trait of interest. This step can be based on all available
individuals in the sample [4, 8] or on an appropriate subgroup of the sample such as
all unrelated individuals [7]. In addition, the methods employed are usually single
marker based so as to keep the computational requirements to a minimum [9, 14].
In the second step, a subset of SNPs prioritized by the screening step is analyzed
using more elaborate and powerful methods, such as candidate genes [15], haplotype
methods [2], or Least Absolute Shrinkage and Selection Operator (Lasso) penalized
regression [4, 10]. These analyses can also include additional individuals that can be
potentially related to those used in the screening step [7]. In general, the statistical
methods used in stage two tend to be more computationally involved as they handle
multiple markers at once and may also take into account (potential) relatedness
among study participants [7, 10].

The two-stage strategy has the advantage that it reduces both the computation
complexity of the analysis and the need for multiplicity adjustment for the number
of markers tested. However, the inherent risk is that the overall power of the study to
identify trait regulating genes largely depends on the ability of the method applied in
the preliminary screening stage to correctly identify and advance such loci to stage
II. Clearly, the choice of the method implemented in stage I is very important. Hence,
methods that can guarantee a high level of power while keeping the computational
intensity to minimum are highly desirable.

Recently, Papachristou and Lin [9] described a Confidence Set Inference (CSI)
method that can be used in GWAS studies to identify, with a given predetermined
confidence, loci contributing a certain level of heritability to a quantitative pheno-
type. The method uses data from related individuals to first split the overall variance
of a quantitative trait to its genetic and environmental components. Then, using the
estimate of the additive genetic component, it scans the entire genome in search of
SNPs that contribute at least a certain percentage to the overall additive genetic vari-
ance of the trait. As the method is based on the additive genetic variance component
of the trait, it cannot be used with independent individuals as estimation of genetic
variance components is not possible with such data.

Here, I propose a modified version of the CSI method that can be used in GWAS
studies based on independent individuals to identify, with a given predetermined
confidence, loci that contribute at least a certain percentage to the overall variance
of a quantitative phenotype. It is a regression based method. As such, it allows
for the incorporation of fixed effects, such as covariates, that can potentially have
an effect on the phenotypic value. The method postulates additivity of the effects
across all qualitative loci (QTLs). Furthermore, it assumes that the particular locus
of interest contributes only additive effects to the overall variance of the trait. I
perform a simulation study to explore the properties of the method under a variety of



A Population Based Confidence Set Inference Method for SNPs … 237

conditions, some of which violate the assumptions of the method, and I demonstrate
that the method maintains a true positive rate close to the nominal one, even under
mild violation of its assumptions. A comparison between the CSI method and the
standard association method (fastAssoc) implemented in Merlin [1] reveals that the
former can be an attractive alternative to the latter.

2 Methods

2.1 The Hypothesis

For the development of the method, we will assume that we perform a GWAS based
on M binary markers (SNPs) spanning the entire genome. For each SNP m on the
map we test at level α to see if its contribution to the variance of a quantitative trait
is at least h0 × 100% of the total variance. That is, for each marker we perform the
following hypothesis test:

H0 : σ 2
m ≥ h0σ

2
T versus Ha : σ 2

m < h0σ 2
T , (1)

where σ 2
m and σ 2

T are the mth locus specific genetic variance at the trait and the total
variance of the trait, respectively, and h0(0 < h0 < 1) is a predetermined constant
corresponding to the desired heritability. We can use this hypothesis test to obtain
a 1 − α confidence set of loci that contribute to the trait at least h × 100% of the
total variance. Such a set consists of all SNPs for which the above null hypothesis
is not rejected at level α. As we will demonstrate below, the above hypothesis test
can be easily performed by constructing a test developed in the context of the linear
regression models.

2.2 Modeling of the Phenotype

Suppose that we have a sample of n unrelated individuals and let yi , i = 1, . . . , n,
be the value of a quantitative phenotype of interest of the i th person in the study. We
assume that for person i , the value of a quantitative phenotype can be (potentially)
expressed in terms of several known fixed covariates Xi (e.g., age, gender, etc.) and
a random effect ωi , as follows

yi = Xiβ + ωi , (2)

where β is a vector of unknown coefficients. We further assume that the random
effects ωi ’s are independent and identically distributed (i.i.d.) coming from a normal
distribution with mean zero and variance σ 2

T and they do not interact in any fashion
with the fixed effects. Note that the random effects ωi ’s consist of both genetic and



238 C. Papachristou

non-genetic (environmental) effects. In fact, if we assume that the individuals are
unrelated, it can be shown that σ 2

T = σ 2
g + σ 2

e , where σ 2
g is the variance due to the

genetic component of the trait and σ 2
e is the variance due to environmental factors.

Finally, in the absence of gene-gene interactions, it can be shown that the overall
genetic variance of the trait (σ 2

g ) is just the sum of the locus specific variances of

all trait contributing genes, that is, σ 2
g = ∑τ=G

τ=1 σ 2
τ , where σ 2

τ is the genetic variance
attributed to locus τ, τ = 1, . . . , G.

Effects of major genes can be incorporated in (2) by adding in the model appropri-
ate fixed factors. In particular, the effects of binary loci can be expressed in terms of
the copies of their minor allele carried by the individual. Consider a trait contributing
loci τ and let zτ i be the number of copies of the minor frequency trait allele carried
by the i th individual in the sample. Then, the phenotypic value of the person can be
expressed as

yi = Xiβ + γt zτ i + ω−τ i , (3)

where yi , Xi , β are defined as before, γτ denotes the effect of the trait locus τ , and
ω−τ i is the residual random effect due to non-genetic and genetic factors other than
locus τ [9].

2.3 Construction of the Confidence Sets

If we assume that the effect of the alleles at the trait locus τ interact additively,
we can show [9] that the coefficient in the regression model is equal to: γτ =
στ /

√
2pτ (1 − pτ ), where σ 2

τ is the genetic variance due to locus τ and pτ (< 0.5) is
the minor allele frequency (MAF) of the trait locus. Using this fact, the hypothesis
test in (1) is equivalent to testing

H0 : γm ≥
√

h0σ
2
T /2pm(1 − pm) versus Ha : γm <

√
h0σ 2

T/2pm(1 − pm),

(4)
where pm is the MAF of the marker m.

The model in (3) can be used to obtain estimates of the coefficient γm and its
standard error, denoted by γ̂m and s(γ̂m), respectively, either by maximizing the
appropriate likelihood function or by fitting the corresponding regression model.
Standard asymptotic theory can be evoked in the presence of a large sample size
to show that γ̂m asymptotically follows a normal distribution. Thus the following
statistic

Tm = 1
s(γ̂m )

[γ̂m −
√

h0σ
2
T /2pm(1 − pm)] (5)

can be used to test the hypotheses in (4). Obviously, the collection of SNPs for which
|Tm | ≥ zα , where zα is the upper α percentile of the standard normal distribution,
provides an (1 − α) × 100% confidence set of loci contributing at least h × 100%
to the total variance of the quantitative phenotype. Note, the estimate of the total



A Population Based Confidence Set Inference Method for SNPs … 239

variance of the trait, σ 2
T , can be obtained by fitting the model without any major gene

effects given in Eq. (2).

3 A Simulation Study

In this section I study the properties of the proposed method through a simulation
study. In particular, I gauge the true coverage of the resulting confidence sets and
how it relates to the nominal confidence level and whether model misspecification
bears an effect on it. I also investigate the false positive rate of the method and how
it is affected by the available sample size. Finally, I compare the performance of
the CSI method to that of a standard association method as it is implemented in the
software package Merlin [1].

For all simulations, I used the software packageSIMPED[6] to simulate genotypes
for the sample members. SIMPED allows for linkage disequilibrium (LD) among
groups (blocks) of consecutive markers. I assumed amap of three chromosomes each
carrying 10,000 SNPs. The average distance between consecutive SNPs was 0.1 cm
while the MAF ranged between 0.10 and 0.48. Finally, each marker was part of a
window of 20 SNPs in high LD with each other (D′ between 0.6 and 1).

The simulated phenotypes were modeled after the cholesterol levels of the indi-
viduals in the Framingham Heart Study [5] and were set to have a total variance of
1,309.4, 33% of which attributed to genetics, with 32 and 1% corresponding to addi-
tive and dominance genetic effects, respectively. I explored several two-locus models
with the loci assumed to segregate independently. Both QTLs were assumed to be
diallelic, in Hardy-Weinberg and linkage equilibrium with each other, and interacted
in an additive manner. I explored models where each locus contributed roughly 0.5
or 1% of the total variance of the trait. Furthermore, I considered models in which
the loci either only contributed to the additive genetic variance of the trait or both
additive and dominance genetic variance.

The results under all simulation models qualitatively exhibited similar trends,
so I present the results from the model under which each QTL contributed 1% of
the total variance of the trait. The first locus (Q1) contributed only additive genetic
variance, while the second (Q2) contributed 0.9% additive and 0.1% dominance.
The two QTLs were placed in the middle (5,010th SNP) of chromosomes 1 and 2,
respectively. Q1 had MAF of 0.10 while Q2 had MAF of 0.20. Finally, chromosome
3 housed no trait contributing loci and it was used to gauge the false positive rate
(FPR) of the methods.

For each simulating scenario, I generated genotypes and phenotypes for a total of
500 replicates. I considered three different values for the sample size: 500, 1,000, and
2,000 unrelated individuals. Every replicate was analyzed twice: once using the CSI
approach and once using the “fastAssoc” option onMerlin [1]. For the CSI approach,
95% confidence sets (CSs) were obtained for loci contributing at least 1% of the
total variance of the trait, that is, I set h0 = 0.01, which corresponds to the actual
contribution of each of the loci under the simulating model. The overall variance
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Table 1 Simulation results using as threshold of the genetic contribution h0 = 0.01, which reflects
the actual contribution of each of the trait loci to the total variance under the simulation models

N b
P Chromosome 1a Chromosome 2a

TPRc N̄ d sdN TPRc N̄ d sdN
500 0.954 5,562.5 65.8 0.938 5,565.2 62.8

1,000 0.960 1,298.9 47.9 0.930 1,300.7 51.2

2,000 0.942 49.5 8.4 0.930 50.6 9.2
aQTL Q1 located on chromosome 1 contributes 1% to the total variance, all due to additive effects,
while QTL Q2 located on chromosome 2 contributes 1% to the total variance, 0.9% of which are
due to additive genetic effects and 0.1% are due to dominance genetic effects
bNumber of unrelated individuals in the study
cPercentage of replicates, out of 500, that the 95% confidence set included the trait locus
dObserved mean (N̄ ) and standard deviation (sN ) of the number of SNPs included in the 95% CS

of the trait needed for the construction of the confidence sets for each replicate was
obtained from the data themselves as explained earlier, i.e., by fitting the model in
(2). Finally, the MAF for each marker was also estimated from the sample data.

The analysis results are displayed in Table1 and Fig. 1. Table1 summarizes the
observed coverage probabilities of the 95% confidence sets for each chromosome.
Columns N̄S and sNS report the average and the standard deviation, respectively,
of the number of SNPs included in the resulting CS from all 500 replicates. The
column labeled “TPR” represents the locus specific discovery rate, which is defined
as the proportion of the replicates, out of the 500, that the resulting CS included the
particular simulated QTL.

From the table we can see that the observed coverage probability of the 95%
confidence sets on chromosome 1, which harbored locus Q1 that contributed only
additive variance to the trait, matched very well the nominal one. Hence, it appears

Fig. 1 Observed locus specific true positive rates (TPRs) of QTLs Q1 and Q2 for the CSI and the
FA methods as functions of the corresponding observed false positive rates (FPRs)
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that estimating the total variance as well as the MAF of the SNPs from the data
themselves bears no significant effect on the coverage of the resulting sets. The
observed coverage for locus Q2, which contributed both additive and dominance
effects, tended to be slightly less than the nominal one, 95%, as it ranged between
93 and 93.8%. Thus, it seems that, even if the additivity between the marker alleles
is mildly violated, the coverage of the resulting CSs is not severely affected.

On average, regardless of the sample size, the resulting CSs included a significant
number of non-trait contributing loci. For example, even with 1,000 people in the
sample, the CSs included about 1,300 SNPs per chromosome out of the total 10,000
residing on each of them. This was expected as the threshold for inclusion of a SNP
in the CS was set very low, 1% of the total variance. As such, the method was not
powered enough by the given sample size to control false discoveries.When the sam-
ple size was increased to 2,000 individuals, though, the number of false discoveries
was significantly reduced, as the CSs included about 50 SNPs on each chromosome,
on average, underlining the ability of the method to localize trait regulating loci.

Figure1 displays the observed locus specific TPR for both theCSI and the analysis
usingMerlin, denoted as FA, as functions of the observed FPR for various thresholds
of significance. The FPR for the CSI approach was defined as the proportion of
replicates for which the resulting CS included at least one SNP on chromosome 3
that harbored no loci regulating the phenotype. For the analyses using the FA, the
locus specific TPR was computed as the proportion of replicates, out of the 500, for
which the p-value of the specific QTL was less than the predetermined threshold α.
Similarly, the FPR for the FA approach was defined as the proportion of replicates
for which the analysis resulted in at least one SNP on chromosome 3 with a p-value
less than the chosen threshold.

Clearly, both methods behave very similarly having almost identical TPRs across
all sample sizes, when they have the same FPR. However, CSI has the advantage
that it yields CSs of markers with known statistical properties. As such, when the
researcher applies the CSI method using a certain threshold h0 for the contribution
of a locus to the heritability of the trait, he/she can be sure that, if there is one, it will
be identified by the method with a predetermined confidence.

4 Discussion

Two-stage analyses in genetic studies have become increasingly common. First, a
single marker GWAS based on a dense genetic map is performed to identify a small
subgroup of SNPs whose effect is worth further investigation. A follow up analysis
is then performed on only the few selected SNPs using more elaborate, and usually
more powerful, analyses. By design, the power of the two-stage strategies rely heavily
on the ability of the first stage analysis to forward to the second stage loci that truly
play a role in the regulation of the trait. I have described a Confidence Set Inference
association approach that can be used at stage I to identify such SNPs. The method
gives the researcher the flexibility to target QTLs with specific contribution to the
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variance of the trait with a fixed predetermined coverage probability also selected a
priori by the researcher. Thus, the CSI method is an ideal tool for use at the screening
stage of two-step analysis designs, as it can significantly reduce the number of SNPs
analyzed at the second stage while at the same time it can guarantee, with high
confidence, that any QTL with certain contribution to the trait will be identified for
further investigation.

I performed a simulation study to investigate the performance of the method
under a variety of relevant factors that can have an effect on its ability to identify
true QTLs. Specifically, I studied the effects that sample size, estimation of the MAF
of the markers from the data, and estimation of the overall variance of the trait have
on the TPR and FPR of the method. The results demonstrated that estimating the
necessary quantities for the implementation of the method from the data themselves
seems to have a negligible effect on the behavior of the method, as long as the
threshold h0 used in the construction of the CS accurately reflects the contribution of
the QTL to the trait. When the value of h0 is higher than the actual contribution, the
actual coverage of the resulting confidence set is expected to be less than its nominal
one. How far off the true coverage would be from the nominal would depend on a
host of factors such as sample size and the difference between the actual and the
selected value of the threshold h0; the larger the difference between the two values,
the more severe the effect on the coverage of the resulting interval. The sample size
can ameliorate or exacerbate this effect. Generally speaking, smaller sample sizes
will allow themethod tomaintain coverage close to the nominal, while larger samples
will significantly reduce it.

Another important factor that can affect the performance of the CSI method is the
mode of interaction of the alleles at the trait locus. CSI assumes that the trait locus
only contributes to the additive component of the trait variance. The simulation results
indicate that, even if this assumption is (mildly) violated, the confidence sets still
maintain a true coverage probability very close to the nominal one. Thus, deviations
from the additivity assumption seem to bear a minimal effect on the performance of
the method.

In comparing the CSI approach to the standard association method implemented
on Merlin [1], we saw that both methods seem to perform similarly, having almost
identical powers when their FPRs were set to be the same. However, CSI emerges
as a more attractive alternative to the standard method as it has the advantage that
it produces CSs of SNPs with known statistical properties. Furthermore, it allows
the researcher to control the probability of capturing a specific locus on the GWAS
step of the analysis, thereby ensuring its advancement to the follow up analysis, and
ultimately increasing its chances of being discovered.

The FPR of the CSI method depends on the choice of the threshold h0 for the
contribution of the putative QTL on the total variance of the quantitative phenotype.
Large values of h0 will lead to a lower FPR, while smaller values to a higher FPR.
Thus, in any given situation, the optimal choice of the threshold will depend on the
available sample size. To circumvent the need to specify the value of the threshold
h0, one can follow the practical approach described by Papachristou and Lin [9]. In
short, for each SNP on the map one can use the test statistic Tm in (5) to compute an
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upper confidence bound for its contribution to the phenotypewith a given confidence,
say 95%. Then, the SNPs can be ranked based on these confidence bounds and the
top ones can be selected for additional analysis. The research, then, based on the
available resources, can determine the exact number of SNPs to be advanced to the
next stage for further exploration.

Finally, for the simulations, I considered only SNPs with relative common minor
allele. This was done to avoid potential problems with unstable estimates during the
maximization process, especially because the sample sizes were fairly small. With
larger sample sizes, one would be able to utilize markers with small MAFs. Never-
theless, the CSI principles can be readily applied to methods specifically designed
for rare variants. The only requirement is the ability to derive the distribution of the
test statistic under the non-traditional null hypothesis tested by the CSI approach,
which may not be a trivial task.

5 Software

The software package CSI-QTL for implementing the described method is
freely available at http://code.google.com/p/papachristou-free-genetics-software/
downloads/list.
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Statistical Inference on Three-Dimensional
Structure of Genome by Truncated Poisson
Architecture Model

Jincheol Park and Shili Lin

Abstract In recent years, next generation sequencing technology, coupled with an
assay that is capable of detecting genome-wide chromatin interactions, has produced
a massive amount of data and led to a greater understanding of long-range, or spatial,
gene regulation mechanisms. Hence, the traditional one-dimensional linear view of
a genome, which is especially prevalent in statistical and mathematical modeling,
is inadequate in many genomic studies. Instead, it is essential, in studying genomic
functions, to estimate the three-dimensional (3D) structure of a genome. The avail-
ability of genome-wide interaction data necessitates the development of analytical
methods to recover the underlying 3D spatial chromatin structure, but challenges
abound. One particular issue is the excess of zeros, especially with higher resolution,
or inter-chromosomal, data. This leads to questions concerning the appropriateness
of using the Poisson distribution to model such data. In this article, we introduce a
truncated Poisson Architecture Model (tPAM) to directly model sequencing counts
with many zeros. We carried out an extensive simulation study to evaluate tPAM
and to compare its performance with an existing method that uses the Poisson dis-
tribution to model the counts. We applied tPAM to reconstruct the underlying 3D
structures of two data sets, one of human and one of mouse, to demonstrate its util-
ity. The analysis of the human data set considered chromosomes 14 and 22 jointly,
thereby illustrating tPAM’s capability of analyzing inter-chromosomal data. On the
other hand, the mouse analysis was focused on a region on chromosome 2 to evalu-
ate tPAM’s performance for recovering structure with loci in different topologically
associated domains.
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1 Introduction

The spatial (three-dimensional, or 3D) organization of a genome is closely linked
to its biological function, and thus, full understanding of the genomic structure is
essential. In recent years, the ability to identify long-range chromatin interactions
genome-wide, known as looping, aided by next generation sequencing technology,
has been truly revolutionary in genomic and epigenetic research. The most well-
known assay for detecting chromatin interaction, Hi-C [14], produces a library of
products that are pairs of fragments in close proximity to each other in the cell
nucleus but may be far apart in terms of their chromosomal locations (and may
even be on different chromosomes). The library is then analyzed through massively
parallel DNA sequencing, producing a catalog of interacting fragments that can be
organized into a two-dimensional matrix (known as a contact matrix) of contact
counts. Figure1 provides an example of a contact matrix for chromosomes 14 and
22 based on data from [14], showing only some of the contact counts for illustration
purposes. In addition to Hi-C, other assays for detecting genome-wide long-range
interactions have also been developed, such as ChIA-PET [6] and TCC [12].

Despite spectacular advances in molecular technologies that allow for unprece-
dented identifications of genome-wide chromatin interactions, our understanding of
3D organization of genomes is still coarse and incomplete, especially for complex
organisms such as humans and mice. This is partly due to the massive amount of
data that prove to be extremely difficult to analyze. In addition to its size, the features
of the data also pose challenges, rendering conventional statistical methods ineffec-
tive. To tackle these issues, analytical approaches have been proposed to understand
the spatial organization of the genome based on Hi-C long-range looping data. The
approaches can be classified into optimization-based and modeling-based.

For optimization-based approaches, the idea is to first translate each pairwise con-
tact count into a distance using a biophysical property. One then obtains a consensus
3D structure by minimizing some objective function, such as the total “differences”
between the translated distances and those inferred from the hypothesized 3D archi-
tecture [1, 4, 5, 13, 17, 21]. Many of the optimization methods are based on metric
or non-metric multi-dimensional scaling [2, 4, 17]. For this type of approach, nor-
malization of the data is key [11].

Modeling-based approaches, on the other hand, are all based on probability mod-
els that describe the relationship between the contact counts with the 3D physical
distance. The contact counts are modeled either by a normal distribution to account
for variability in the estimation [16] or by a Poisson distribution [10, 18] with its
intensity parameter assumed to be related to the physical distance by an inverse
relationship. Statistical inferences on the 3D structure (together with other model
parameters) are made either by maximum likelihood [18] or through casting the
problem into a Bayesian framework [10, 16].

As discussed earlier, aHi-C experiment produces contact counts that are organized
as a 2D matrix for a given resolution. For example, the data matrix shown in Fig. 1
is based on a 1 Mb (megabases) resolution. If there is sufficient sequencing depth,
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Fig. 1 Contact matrix of
Hi-C data. The two diagonal
blocks correspond to
intra-chromosomal contacts
among loci in chromosome
14 and 22, respectively,
while the two
off-diagonal blocks
depict inter-chromosomal
contacts between loci
in chromosomes 14 and 22.
Note that the matrix is
symmetric

a higher resolution matrix can lead to a finer and more useful 3D structure, but
there tends to be more zero entries in the contact matrix, rendering the Poisson
distribution inadequate for modeling the data. To remedy the problem, in this paper,
we propose a truncated Poisson Architecture Model (tPAM) by using a truncated
Poisson distribution without the zero counts. We carried out an extensive simulation
study to evaluate tPAM and to compare its performance with an existing method
[10] that uses the Poisson distribution to model the counts. We applied tPAM to
reconstruct the underlying 3D structures of two data sets, one of human and one
of mouse, to demonstrate its utility. The analysis of the human data set considered
chromosomes 14 and 22 jointly, thereby illustrating its capability of analyzing inter-
chromosomal data. On the other hand, the mouse analysis was focused on a region
on chromosome 2 to evaluate tPAM’s performance for recovering a structure with
loci in different topologically associated domains (TADs).

2 Methods

2.1 The tPAM Model

Consider a set of n fragments (also referred to as loci), each being represented by a
point in the 3Dspace.Collectively, they are denoted byΩ ≡ {pi = (px

i , py
i , pz

i ); i =
1, . . . , n}. Let di j denote the Euclidean distance between loci i and j , that is,

di j =
√

(px
i − px

j )
2 + (py

i − py
j )

2 + (pz
i − pz

j )
2. (1)

The contact counts of these n loci are organized into a 2Dmatrix, with yi j denoting
the contact count (the (i, j) entry of the matrix), which represents the interaction
intensity between loci i and j . Based on these data (y = {yi j , 1 ≤ i < j ≤ n}; note
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that the matrix is symmetric), the goal is to make inference about the coordinates,
Ω , of the 3D structure.

We assume that the contact counts follow a truncated Poisson distribution, with
its intensity parameter linked to the 3D distance and other covariates through a log-
linear model. More specifically, the Poisson model was built under the assumption
that two loci in close proximity in 3D space are likely to interact more, which leads
to the following model for the Poisson intensity parameter λi j :

log λi j = α0 + α1 log di j + xT
i jβ, (2)

where xT
i j = (x1

i j , . . . , x K
i j ) and β = (β1, . . . , βK )T denote the vector of K covariates

and its associated vector of coefficients, respectively. Typical covariates include GC
content, fragment length, mappability score, and potentially also restriction enzyme
to take care of systematic bias and to normalize data [10, 20]. Under the assumption
that the physical 3D distance between two loci is inversely related to the contact
counts [14], the restriction of α1 < 0 is imposed in the model.

Letting θ denote the collection of all model parameters, we have the following
log-likelihood function:

log p(y|θ,Ω) ∝
∑ ∑

(i, j)∈I

{
yi j log λi j − log(eλi j − 1)

}
, (3)

whereI denotes the index set of non-zero contact counts, that is,I = {(i, j); yi j �=
0, 1 ≤ i < j ≤ n}. This model, which excludes the zero contact counts, is referred
to as the truncated Poisson Architecture Model (tPAM).

We remark that model (2) suffers from non-identifiability because the estimated
structure, Ω̂ , is not invariant to scale, rotation, reflection, and translation. To resolve
this issue, without loss of generality, we can fix α0 to be an arbitrarily predefined
quantity. Note that α0 controls the scale of the 3D structure, thus fixing α0 will
effectively lead to the structure being estimated only up to a scale. However, this is
not an issue since the relative distance does not affect the predicted structure and
its correlation with genomic functions [21]. Following [10], we further place the
following restrictions on Ω to make it estimable, as four conditions on the structure
are sufficient to uniquely determine the 3D structure:p1 = (0, 0, 0),p2 = (px

2 , 0, pz
2)

with pz
2 > 0, p3 = (px

3 , py
3 , pz

3) with py
3 > 0, and pn = (px

n , 0, 0) with px
n > 0.

2.2 MCMC Procedure for Parameter Estimation

To make inferences about the 3D coordinates, we devise a Markov chain Monte
Carlo (MCMC) sampling procedure as follows. We write the posterior distribution
of Ω (main parameters of interest), together with nuisance parameters θ , as

p(Ω, θ |y) ∝ p(y|Ω, θ)p(Ω)p(θ). (4)
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The first component of Eq. (4) corresponds to the likelihood as given in (3), that is,

p(y|Ω, θ) =
∏ ∏

(i, j)∈I
LP{λi j (Ω, θ)}, (5)

where LP(.) denotes the zero-truncated Poisson distribution and

λi j (Ω, θ) = exp
(
α0 + α1 log di j + xT

i jβ
)
. (6)

The remaining parts of (4) describe the distributions for p and θ , which are assigned
non-informative priors: p(Ω) ∝ 1, p(α1) ∝ I (α1 < 0), and p(β) ∝ 1.

To accommodate the estimable conditions imposed on Ω , we consider an iso-
metric transformation, with details provided in Appendix A. To sample from the
posterior distributions of θ , we use Metropolis-Hastings algorithms, and in partic-
ular the Gibbs sampler whenever the conditional distribution of a parameter is of
a commonly known one. In sampling the posterior of Ω , we employ Hamiltonian
MCMC to more effectively handle the high correlations among the samples [7]. In
the following, we briefly describe the updating schemes. Let ϑ denote the current
estimates of (Ω, θ) at iteration t , and ϑ−a denote ϑ without the element a.

• Updating of α1.
We base on the current αt

1 to sample a candidate α∗
1 from proposal distribution

Jα(α∗
1 |αt

1), a normal distribution with mean αt
1 and predefined proposal σ 2

α1
, and

calculate the ratio of the densities

r = p(α∗
1 |y, ϑ−α1)

p(αt
1|y, ϑ−α1)

, (7)

where p(α∗
1 |y, ϑ−α1) ∝ p(y|ϑ−α1 , α

∗
1). Accept α∗

1 as αt+1
1 with probability equal

to min(r, 1); otherwise αt+1
1 = αt

1.• Updating of βk , k = 1, . . . , K .

We base on the current β t
k to sample a candidate β∗

k from proposal distribution
Jβ(β∗

k |β t
k), a normal distribution with mean β t

k and predefined proposal σ 2
β , and

calculate the ratio of the densities

r = p(β∗
k |y, ϑ−βk )

p(β t
k |y, ϑ−βk )

, (8)

where p(β∗
k |y, ϑ−βk ) ∝ p(y|ϑ−βk , β

∗
k ). Accept β∗

k as β t+1
k with probability equal

to min(r, 1); otherwise β t+1
k = β t

k .• Updating of Ω .
Based on an analogy with physical systems, Hamiltonian Monte Carlo intro-
duces an additional parameter vector vi = (vx

i , vy
i , vz

i )
T corresponding to para-

meter pi and updates both of them together in a new Metropolis-Hastings algo-
rithm. Specifically,weuseHamiltonian functions definedby H(pi , vi ) = U (pi ) +
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K (vi ), where U (pi ), a potential energy, is assigned − log{p(pi |y, ϑ−pi )}, while
K (vi ), a kinetic energy, is defined as vi

T vi/2. Then we consider the following
joint density of (pi , vi |y, ϑ−pi ) using the Hamiltonian function H(pi , vi ):

p(pi , vi |y, ϑ−pi ) ∝ exp{−H(pi , vi )} = exp{−U (pi )} exp{−K (vi )}. (9)

HamiltonianMCMC then proceeds in three stages. First, we sample random auxil-
iary variables vx

i , vy
i , and vz

i from N (0, 1). Then we simultaneously update (pi , vi )

to obtain a proposal vector (p∗
i , v∗

i ) using a leapfrog method (see Appendix B).
In the last stage, we accept the proposed vector (p∗

i , v∗
i ) using the Metropolis-

Hastings method where the ratio is given by

r = exp{−H(p∗
i , v∗

i ) + H(pi , vi )}. (10)

Accept p∗
i as pt+1

i with probability min(r, 1); otherwise pt+1
i = pt

i .

3 Application to Two Hi-C Datasets

We demonstrate the utility of tPAM by applying it to two Hi-C datasets. The appli-
cation to the first dataset illustrates tPAM’s ability of analyzing inter-chromosomal
data with many zero contact counts. Its performance is also evaluated by compar-
ing the structure inferred to distances obtained from limited experimental validation
data. The second application aims to explore how tPAM performs with modularized
structures, the TADs, also known as topological domains [3].

3.1 Human Lymphoblastoid Cell Line Hi-C Data

We applied tPAM to the Hi-C data produced by [14]. In fact, there are two Hi-C
experiments performed on the same karyotypical normal human lymphoblastoid cell
line, which are combined into a single data set in our analysis given their high repro-
ducibility [14]. We focused on chromosome 14 and 22, as experimental validation
data based on Fluorescence In Situ Hybridization (FISH) are available for several
loci on these two chromosomes and are publicly available [14]. Specifically, [14]
discussed interesting features of spatial interactions, based on the FISH measures,
among 4 loci on chromosome 14 (L1, L2, L3, and L4, located in that linear order) and
4 loci on chromosome 22 (L5, L6, L7, and L8, in that linear order) using the FISH
experiment. In particular, the spatial 3D distance between L2 and L4 was observed by
FISH experiments to be smaller than that between L2 and L3, despite the fact that L2

is farther apart from L4 than from L3 in terms of their linear 1D distances. A similar
observation was made for (L6, L7, L8), in that the spatial 3D distance between L6
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Fig. 2 Reconstructed 3D
structure of chromosomes 14
and 22. a Joint 3D structure
of chromosomes 14 and 22,
with each loci marked by a
ball, among them positions
of L1 through L8 are labeled
and marked by black balls; b
3D structure of chromosome
14, with a different
orientation than that of the
joint structure for better
visualization; c 3D structure
of chromosome 22, with a
different orientation than that
of the joint structure for
better visualization. These
figures were drawn using the
R package ‘rgl’

and L8 is significantly smaller than that between L6 and L7. The resolution used is
1 Mb, which leads to 89 loci in chromosome 14 and 36 loci in chromosome 22.

We ran the MCMC procedure for 1.1 × 106 iterations, with the first 105 iterations
for burn-in and the remaining 106 iterations for obtaining 10,000 posterior samples
after thinning. The convergence of the posterior samples was confirmed by several
diagnostic statistics, including those developed by [8, 9, 15]. The 3D structure iden-
tified by tPAM is given in Fig. 2a. For a better visualization of the structure in each of
the chromosomes, we also provide Fig. 2b, c with different orientations. We can see
from these figures that, indeed, L2 and L4 are much closer in terms of their spatial
distance compared to L2 and L3, and L6 and L8 are closer compared to L6 and L7.
These observations are consistent with the results of [14] that the pairs of (L2, L4)

and (L6, L8) are brought to close proximity through chromatin looping.
To further evaluate the performance of tPAM,we compare its estimates of pairwise

distances to those of FISH, the gold standard measurements. To make it possible to
compare due to scale differences (recall we set α0 arbitrarily), we first calculated
a unitless distance d̃(Li , L j ) by dividing each distance d(Li , L j ) by the median
distance between L3 and L4 (the largest distance among all pairs). Note that the
median is taken over 100 measurements for FISH and 10,000 estimates for tPAM.
The results, given in Fig. 3, show that the tPAM estimates agree well with the FISH
measurements. In fact, the FISH measurements (100 measures for each pair) are
much more variable compared to the tPAM estimates, as evident from the larger
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Fig. 3 Assessment of
performance of tPAM in
comparison with FISH
measurements. For each pair
of loci for which FISH
measurements are available,
boxplots are used to
summarize the results for the
100 FISH measurements (left
box) and 10,000 tPAM
estimates (right box)

boxes, longer whiskers, and existence of outliers in the boxplots. The results also
confirm that the distance between L2 and L4 is indeed smaller than that between L2

and L3 or L3 and L4, and L6 is located closer to L8 than to L7.

3.2 Mouse Embryonic Stem Cell Hi-C Data

We applied tPAM to a mouse embroyonic stem cell line [3] generated at 40 Kb
resolution (i.e. interaction frequencies are available for regions of 40 Kb in length).
We used the bias-corrected Hi-C count data directly, as libraries of factors that are
known to cause systematic biases are not available to us. In particular, we focused
on the segment of chromosome 2 from base pair (bp) 73720001 to bp 75440000,
as this segment is believed to contain two TADs [3]. Loci within the same domain
interact with each other much more than across domains, and thus the two domains
should be well separated in 3D space. The data based on a 40 Kb resolution lead to a
contact matrix of dimensions 43 by 43. Application of tPAM yielded the estimated
3D structure depicted in Fig. 4. We can see, from the figure, that the 19 loci within
the segment from bp 73720001 to bp 74480000 are located close to one another
in 3D space (red balls), whereas the remaining 24 loci within the segment from bp
74480001 to bp 75440000 make up the other cluster (green balls) in 3D space. As
it turns out, these two clusters of loci do correspond to the two TADs discussed in
[3]. In MCMC sampling, 3 × 105 and 7 × 105 iterations were executed respectively
for burn-in and statistical inference. Thinning resulted in 10,000 posterior samples
for structure estimation. Convergence of the sample was confirmed by the diagnostic
measures described in Sect. 2.
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Fig. 4 Reconstructed 3D
structure of mouse data. Loci
within the two topological
domains are denoted by two
different colors

4 Simulation Study

As we can see from the analysis results of the human Hi-C data, the inferred 3D
structure from tPAM leads to consistent results with FISH experimental data. Never-
theless, the aptness of the 3D structure as a whole was not adequately assessed due
to the limited number of loci involved in the FISH experiment. Similarly, although
the analysis of the Hi-C mouse data yielded results that support the concept of
compartmentalization of a chromosome [3, 14], the within compartment (domain)
organization was not assessable. Therefore, to more fully evaluate the performance
of tPAM, we conducted a simulation study in this section using two underlying 3D
structures, which will serve as the “gold standard”. We further compared the perfor-
mance of tPAM with BACH, a Bayesian inference method proposed by [10] based
on the Poisson model. The simulation settings and results are presented in two sub-
sections below, but we first describe several assessment criteria for comparing the
performances between tPAM and BACH.

4.1 Performance Assessment

We consider three criteria to assess the performance of the methods. The first is the
overall goodness of fit of a model by comparing the observed with their predicted
values from the model. More specifically, our measure is the Pearson χ2 goodness
of fit statistic, which is given by

χ2 =
∑ ∑

(i, j)∈I

(yi j − λ̂i j )
2

λ̂i j

/n(I ), (11)

where I is the index set denoting all non-zero contact counts as defined in Sect. 2
and n(I ) denotes a size of the set I .
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Given that, in our simulation, the underlying structure is known, we can also
devise two other criteria that make use of the true underlying distance between a pair
of loci. Recall that the structure estimated is accurate up to a scaling factor, γ , which
is estimated by the least squares model as follows:

γ̂ = argmin
γ

⎧
⎨

⎩

∑ ∑

1≤i< j≤n

(di j − γ d̂i j )
2

⎫
⎬

⎭
. (12)

Note that, as mentioned above, the fact that tPAM or BACH can only estimate the
structure up to a scale is not an issue, because the relative distance does not affect the
predicted structure nor its correlation with genomic functions [21]. After scaling the
estimated structure Ω̂ by the factor estimate γ̂ , we can compare the true structure
with the estimated structure after appropriate isometric transformation. This leads to
the proposal of the following two measures:

Dmean = 1

n

n∑

i=1

||pi − γ̂ p̂i ||
d̄p

× 100 (13)

Dmax = max
1≤i≤n

||pi − γ̂ p̂i ||
d̄p

× 100, (14)

where d̄p is the average pairwise distance derived from the true underlying structure
Ω . Thus, these two measures compute respectively the average- and the maximum-
coordinate departure of loci (based on the estimated architecture) from the corre-
sponding true ones (based on the true architecture). As we will see below, the true
structures are being specified completely either based on the helix model or the
estimated mouse model for the purpose of the simulation study.

4.2 Helix Structure

We consider a helix model with 50 loci. We chose this model for our first simulation
as a helix structure has been used as a means of modeling chromatin in the statistical
literature [19]. We denote the helix structure by Ωh = {pi , i = 1, . . . , 50}. The 3D
location of each locus, pi = (px

i , py
i , pz

i ), is constructed as

px
i = cos(θi ), py

i = sin(θi ), pz
i = Lθi/(2π), (15)

where L = 0.2 and θi = π i/4. To mimic real data, we also include three covariates,
{xl,i , xg,i , xm,i , i = 1, . . . , 50}, to capture systematic bias, leading to the following
simulation model:

log λi j = α0 + α1 log di j + βl log(xl,i xl, j ) + βg log(xg,i xg, j ) + log(xm,i xm, j ). (16)
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We setα0 = 3.5, andα1 = −1.5,βl = βg = 0.3 and simulated xl,i ∼ Unif(0.2, 0.3),
xg,i ∼ Unif(0.4, 0.5) and xm,i ∼ Unif(0.9, 1), where Unif(.) denotes a uniform dis-
tribution. To simulate the excess of zero situation in real data, we considered the
following zero-inflated Poisson model:

P(Yi j = 0) = π + (1 − π)e−λi j ,

P(Yi j = yi j ) = (1 − π)
λ

yi j

i j e−λi j

yi j ! , yi j = 1, 2, . . . . (17)

In other words, the above represents a mixture of a point mass at 0 and a Poisson
distribution with intensity parameter λi j , with the mixing proportion being π . In our
simulation, we considered four mixing proportions: π = 0.0, 0.1, 0.2, and 0.3. Note
that the setting with π = 0.0 corresponds to the BACH model of [10] and as such,
BACH is expected to perform well.

The results are presented in Table1. In MCMC sampling, 105 ∼ 106 iterations
were run for burn-in and an additional 106 ∼ 2 × 106 iterations were executed for
posterior sampling to obtain 104 realizations for inference after thinning. The con-
vergences of the posteriors were confirmed by the diagnostics described in Sect. 2.
As we can see from the table, across all three criteria, tPAM performs significantly
better than BACH for the settings when π �= 0. More specifically, tPAM yielded
significantly smaller average and maximum relative departure from the true Ωh (all
p-values <10−3 based on paired-t tests). This is to be expected as BACH, based on
Poisson, cannot adequately accommodate the excess of zeros. We are also reassured
to see that, even when π = 0, the underlying setting of BACH, tPAM still performs
as well as BACH or may even be viewed as slightly better based on all three criteria.
We can further observe that the results of tPAM are fairly consistent for different
zero inflation proportions (i.e. similar values under the same criterion), demonstrat-
ing the robustness of tPAM to excess of zeros in the observed data, and hence data
with different resolutions. In contrast, BACH’s performance gets worse (with larger
criterion value) as the inflation proportion becomes larger.

Table 1 Performance evaluation of tPAM and BACH with the Ωh 3D structure

π Model Dmean (%) Dmax (%) χ2

0.0 BACH 26.37 (17.70) 63.99 (39.26) 1.04 (0.13)

tPAM 23.70 (11.15) 60.11 (29.99) 0.98 (0.11)

0.1 BACH 39.14 (17.79) 96.66 (35.83) 2.03 (0.24)

tPAM 23.65 (12.94) 57.12 (32.38) 0.98 (0.13)

0.2 BACH 61.07 (25.41) 140.84 (51.43) 3.94 (0.44)

tPAM 25.79 (11.74) 59.96 (28.19) 0.95 (0.19)

0.3 BACH 62.65 (20.06) 142.05 (40.83) 7.16 (0.70)

tPAM 26.49 (16.67) 65.56 (46.17) 0.88 (0.07)
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Table 2 Performance evaluation of tPAM and BACH with the Ωm 3D structure

π Model Dmean (%) Dmax (%) χ2

0.0 BACH 49.85 (5.14) 93.60 (7.43) 1.23 (0.04)

tPAM 39.57 (7.55) 74.16 (15.08) 1.80 (0.76)

0.1 BACH 65.26 (11.20) 109.40 (15.63) 1.65 (0.17)

tPAM 42.51 (9.45) 77.26 (14.93) 1.42 (0.56)

0.2 BACH 77.65 (13.52) 124.67 (19.56) 3.43 (0.36)

tPAM 43.00 (8.63) 79.56 (15.25) 1.62 (0.71)

0.3 BACH 84.41 (15.36) 139.94 (23.14) 6.90 (0.88)

tPAM 46.67 (20.76) 89.78 (45.03) 1.36 (0.52)

4.3 Mouse Model

Using the mouse structure Ω̂m and the α̂1 value estimated by tPAM in Sect. 3.2,
we let log λi j = 3 + α̂1 log di j , where di j is the pairwise distance inferred from the
estimated structure Ω̂m .We simulated datasets of {Yi j } from the zero-inflated Poisson
model (17) with π = 0.0, 0.1, 0.2, and 0.3. In MCMC sampling, 7 × 105 ∼ 106

iterations were run for burn-in, and afterward 5 × 105 ∼ 106 iterations were run to
obtain 104 realizations for inference after thinning. As with the helix simulation,
the convergences of the posteriors were confirmed by the diagnostics described in
Sect. 2. The results are given in Table2, from which, one can see that tPAM clearly
outperformsBACH forπ �= 0 (all p-values≤10−4 based on paired-t tests), consistent
with the results for the helix model. Similarly, when π = 0.0, the underlying model
for BACH, tPAM is seen to perform just as well. The robustness of tPAM to the
proportion of zero-inflation component, and the lack of such for BACH, is once
again observed.

5 Conclusion and Discussion

The spatial organization of a genome has gained a great deal of continuing attention
in recent years, as the structure is intimately linked to the biological functions of the
genome, especially on long-range gene regulation. To turn experimental data into
accurate estimates of spatial chromatin structures, a number of analytical methods
have been proposed, including those that make use of the Poisson distribution to
model the contact counts. Recognizing the sparsity of the contact matrix for inter-
chromosomal interactions and with higher resolutions, in this paper, we propose a
truncated Poisson model as a solution to accommodate this feature of data so that
it is robust to resolution specification. Applications of tPAM to two existing data
sets, one human and one mouse, illustrate its utility, as the results are consistent with
those obtained from the limited FISH validation data. For the mouse data, with a 40
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Fig. 5 Reconstructed 3D
structure of chromosome 22
with 500 Kb resolution

Kb resolution, we see two clear TADs, reflecting chromatin long-range interaction
in a “domain scale”. Within each domain, with such an intermediate resolution, we
can see looping within each domain, perhaps representing spatial interaction within
a gene structure. For the human data, the analysis was performed at a 1 Mb resolu-
tion following the original analysis [14], which appears to capture the broad looping
feature of chromatin organization, but fine scale looping within gene structures are
largely unobserved. Inspired by the mouse data results with intermediate resolution,
we carried out an additional analysis for constructing the 3D structure of chromosome
22 at a 500 Kb resolution. We observe that the result (Fig. 5) preserves the “domain
level” looping, with locus L6 still closer to L8 than to L7. Furthermore, the finer
structure now also depicts more “local level” looping. Nevertheless, a more com-
prehensive study with even higher resolution is needed to study spatial interactions
within gene structures, especially between promoters and enhancers.

Our simulation study, with two underlying structures, further substantiates the
appropriateness of tPAM for analyzing Hi-C data, and more clearly showcases its
ability to handle the sparsity of the contact matrix. The different mixing proportions
in the zero-inflated model can be viewed as representing different resolutions, thus
clearly demonstrating the robustness of tPAM to varying resolution level. This is in
contrast to an existing method based on the Poisson model, in which one can see
that the results are quite sensitive to the level of resolution: as the resolution gets
finer and finer, the deviation from the “true” gets larger and larger for each of the
evaluation criteria, compared to the stable feature of the tPAM values.

Computational feasibility is a major concern for genomic data, but the concern is
even greater for chromatin interaction data as the size of the data is O(n2)when there
are n genomic loci, an order of magnitude increase compared to analysis of linear
chromosomal data. In this regard, tPAMhas the added advantage as its computational
cost is greatly reduced by excluding the zero counts. As such, higher resolution data,
which lead to a much larger contact matrix (i.e. larger n), does not necessarily result



258 J. Park and S. Lin

in more computational cost due to the sparsity nature of the matrix. In contrast, for
methods based on the Poisson distribution, the computational cost increases with
higher resolution data.
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Appendices

A. Isometric Transformation

To make Ω uniquely estimable, instead of incorporating the restrictions on Ω into
prior, we employed a group of isometric (distance preserving) mappings. Suppose
we sample Ω t at iteration t . For simplicity, we let Ω denote the transformed one
throughout the rest of this appendix.

Step 1. p1 → (0, 0, 0).
To place pt

1 at the origin (0, 0, 0), we apply a translation operationRτ such
that

Rτ : pt
i → pt

i − pt
1. (18)

Let Ω = {p1, . . . , pn} be the translated architecture.
Step 2. pn → (px

n , 0, 0) with px
n > 0.

a. pn → (px
n , 0, pz

n).
To placepn on the xz-plane,we apply a rotation operationRz̊ with associated
matrix Rz̊ , clockwise-rotation matrix on pn about the z-axis, sending it to
the xz-plane:

Rz̊ =
⎡

⎣
cosφ1 sin φ1 0

− sin φ1 cosφ1 0
0 0 1

⎤

⎦ ,

where,

cosφ1 = px
n/

√
(px

n )2 + (py
n )2,

sin φ1 = py
n/

√
(px

n )2 + (py
n )2.
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Let Ω = {p1, . . . , pn} be the rotated architecture.
b. pn → (px

n , 0, 0).
To place pn on the x-axis, we apply a rotation operationRẙ with associated
matrix Rẙ , a clockwise-rotation matrix around the y-axis:

Rẙ =
⎡

⎣
cosφ2 0 sin φ2

0 1 0
− sin φ2 0 cosφ2

⎤

⎦ ,

where

cosφ2 = px
n/

√
(px

n )2 + (pz
n)2,

sin φ2 = pz
n/

√
(px

n )2 + (pz
n)2.

Let Ω = {p1, . . . , pn} be the rotated architecture.

Step 3. p2 → (px
2 , 0, pz

2) with pz
2 > 0.

To place p2 on the xz-plane, we apply a counter-clockwise rotation about
the x-axis Rx̊ with associated matrix Rx̊ :

Rx̊ =
⎡

⎣
1 0 0
0 cosφ3 − sin φ3

0 sin φ3 cosφ3

⎤

⎦ ,

where

cosφ3 = pz
2/

√
(py

2 )
2 + (pz

2)
2,

sin φ3 = py
2/

√
(py

2 )
2 + (pz

2)
2.

Let Ω = {p1, . . . , pn} be the rotated architecture.
Step 4. p3 → (px

3 , py
3 , pz

3) such that py
3 > 0.

To satisfy py
3 > 0, if py

3 < 0, reflect p as

Rr f l : py
i → −py

i . (19)

Let transformationI be the composite of the five isometric transformations,Rτ ,
Rz̊ , Rẙ , Rx̊ , and Rr f l in the following way: I ≡ Rr f lRx̊RẙRz̊Rτ . Then I is
an isometric (distance-preserving) transformation and the transformed coordinates
satisfy the following estimability conditions on p : p1 = (0, 0, 0), p2 = (px

2 , 0, pz
2)

with pz
2 > 0, p3 = (px

3 , py
3 , pz

3) with py
3 > 0, and pn = (px

n , 0, 0) with px
n > 0.
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B. Leapfrog Method for Hamiltonian MCMC

In the second stage of Hamiltonian MCMC, we simultaneously update (pi , vi ) to
obtain a proposal vector (p∗

i , v∗
i ) using a leapfrog method which involves a leap scale

ε and a repetition number L:

(1) For each of x, y, z, update vx
i , vy

i , vz
i as

v(.)
i ← v(.)

i + 1

2
ε

d log p(p(.)
i |y, ϑ−pi )

dp(.)
i

. (20)

(2) Repeat the following updates L − 1 times:

v(.)
i ← v(.)

i + 1

2
ε

d log p(p(.)
i |y, ϑ−pi )

dp(.)
i

, p(.)
i ← p(.)

i + εv(.)
i . (21)

(3) Update vx
i , vy

i , vz
i as

v(.)
i ← v(.)

i + 1

2
ε

d log p(p(.)
i |y, ϑ−pi )

dp(.)
i

. (22)

(4) The updated pi and vi constitute a proposal vector (p∗
i , v∗

i ).
In the leapfrog method, the essential quantities to evaluate are

d log p(px
i |y, ϑ−pi )

dpx
i

=
∑

j �=i

(

yi j − λi j
eλi j

eλi j − 1

)

α1

px
i − px

j

δ2i j

, (23)

d log p(py
i |y, ϑ−pi )

dpy
i

=
∑

j �=i

(

yi j − λi j
eλi j

eλi j − 1

)

α1

py
i − py

j

δ2i j

, (24)

d log p(pz
i |y, ϑ−pi )

dpz
i

=
∑

j �=i

(

yi j − λi j
eλi j

eλi j − 1

)

α1

pz
i − pz

j

δ2i j

. (25)
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