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Preface

In many cases continuous dynamical processes which occur in nature and in engineering
sciences can successfully be described by mathematical models that involve differential
equations or systems of differential equations. The solution of the initial-value problem or
the boundary-value problem described by a differential equation with some limited infor-
mation about its solutions, can provide the full details and description of the dynamical
process. For example, Newton’s Second Law of Motion is in the form of a second-order
ordinary differential equation that relates the second time-derivative of the position of a
mass and the total forces that act on the mass as it moves under these forces. Solving this
second-order differential equation provides information on the velocity and the position
of the mass in terms of time. In fact, most physical theories are based on some funda-
mental differential equation and are usually named after the scientist who first derived
the equation: in quantum mechanics it is Schrödinger’s equation, in fluid dynamics it is
the Navier-Stokes equation, in electrodynamics it is Maxwell’s equations, in general rela-
tivity theory it is Einstein’s field equations, in relativistic quantum mechanics it is Dirac’s
equations, etc. The mentioned equations are all very interesting differential equations and
their solutions model many important natural processes. We should however point out
that the mentioned equations are mostly partial differential equations or systems (meaning
that their dependent variables depend on several independent variables) and are moreover
often nonlinear and, therefore, are much more advanced than the differential equations
that we study in the current set of lecture notes. In order to provide an introduction to
the general theory of differential equations, we need to start with the simplest type of
equations, which are the linear ordinary differential equations. Hereafter, referred
to simply as linear differential equations.

The lecture notes presented here are intended for engineering and science students as
a first course on differential equations. It is assumed that the students have already read
a course on linear algebra, that included a discussion of general vector spaces, as well as a
course on integral calculus for functions that depend on one variable. However, no previous
knowledge of differential equations is required to read and understand this material. Many
examples have been included in these notes and the proof of most statements are done in
full details. The aim of the notes is to provide the student with a thorough understanding
of the methods to obtain solutions of certain classes of differential equations, rather than
the qualitative understanding of solutions and their existence. With the exception of some
nonlinear first-order differential equations, we concentrate on linear differential equations
and the derivation of their solutions.
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In Chapter 1 we provide the theoretical basis of the solution structure for linear dif-
ferential equations. This is an important part of the notes, as this chapter introduces the
concept of a linearly independent set of functions (or solutions) as well as the concept
of linear superposition. The Wronskian is introduced here to establish the linear inde-
pendence. In fact, the Wronskian plays a central role in the study of linear differential
equations and it appears in many solution formulas throughout these lecture notes. The
solution methods described in Chapters 2 to 4 mostly involve Ansätze for the solutions
of the differential equations and, in some cases, we also need to introduce a change of
the variables in order to derive the solutions. In Appendix A we introduce an alternative
method to solve linear differential equations based on first-order linear operators and their
integral operators. This method is free from any Ansatz and can be viewed as an alter-
native to the solution methods proposed in Chapters 2 to 4. Appendix B sums up the
different techniques of integration, whereas Appendix C gives some references to books on
differential equations. In Appendix D we give the full solutions of a selection of exercises
and in Appendix E we list the answers of all the exercises.

The four chapters included in this material can be taught in 15 lectures, which corre-
sponds to about 50% of a quarter-semester (8 weeks) course in Engineering Mathematics.

Norbert Euler Lule̊a, June 2015
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A List of mathematical symbols:

R : The set of all real numbers.

N : The set of all natural numbers.

Z : The set of all integer numbers.

Pm(x) : A polynomial of degree m.

D ⊆ R : D is a subset of real numbers, which may be

the set of all real numbers.

Cn(D) : The vector space of all continuously

differentiable functions of order n on D.

C∞(D) : The vector space of all continuously

differentiable functions of all orders on D.

C∞(R) : The vector space of all continuously

differentiable functions of all orders on R.

W [φ1, φ2, . . . , φn](x) : The Wronskian of the set of functions

{φ1(x), φ2(x), . . . , φn(x}) for all x in

some given interval.
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Linearity and solutions

Chapter 1

Linear differential equations and
linearly independent solutions

In this chapter we define the different types of solutions that we will encounter in our
studies of differential equations. We do not describe or propose in this chapter any methods
to solve differential equations, as this is the main subject of the remaining chapters in these
notes. However, we prove here several fundamental results regarding the solution structure
of linear differential equations and we also introduce the very important Wronskian of a
set of differentiable functions, which makes it easy to establish the linear independence of
sets of solutions. This paves the way for several solution-methods for linear differential
equation, studied in detail in chapters 2 to 4.

1.1 Solutions of differential equations

An ordinary differential equation of order n, where n is a natural number, is an equation
of the general form

F
(
x, y(x), y′(x), y′′(x), y(3)(x), . . . , y(n)(x)

)
= 0, (1.1.1)

where y′ = dy/dx, y′′ = d2y/dx2, . . . , y(n) = dny/dxn and F is a given function of the
arguments as shown.

Definition 1.1.1. A solution of (1.1.1) is a function φ(x) such that y(x) = φ(x)
satisfies (1.1.1). Here φ is a function that is n times differentiable on D ⊆ R and
therefore belongs to the vector space Cn(D). That is, the solution φ(x) is such that

F
(
x, φ(x), φ′(x), φ′′(x), φ(3)(x), . . . , φ(n)(x)

)
= 0.

The interval D is known as the solution domain of φ for (1.1.1) and the domain of all
the solutions of (1.1.1) is called the solution domain of the differential equation.

In this course we will deal with different types of solutions, namely general solutions, special
solutions and singular solutions. There also exist several methods to solve differential

9
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equations numerically (or to approximate solutions numerically). This subject is, however,
outside the scope of this course and these notes.

Definition 1.1.2.

a) A general solution of (1.1.1) on some domain D ⊆ R, is a function,
φ(x; c1, c2, . . . , cn) ∈ Cn(D), which satisfies the differential equation for every
x ∈ D and which contains n arbitrary and independent constants c1, c2, . . . , cn,
called constants of integration.

b) Those solutions of (1.1.1) on the interval D which follow from a given general so-
lution φ(x; c1, c2, . . . , cn) by choosing fixed values for the constants of integration
c1, c2, . . . , cn, are called special solutions of (1.1.1).

c) Those solutions of (1.1.1) that cannot be obtained by choosing fixed val-
ues for the constants of integration c1, c2, . . . , cn in a given general solution
φ(x; c1, c2, . . . , cn), are called singular solutions of (1.1.1) with respect to
that general solution.

d) Equation (1.1.1) may admit solutions in the form Ψ(x, y(x)) = 0, where y cannot
be solved explicitly in terms of x for a given function Ψ. Such solutions are
called implicit solutions of (1.1.1). If the implicit solution contains n arbitrary
constants, then this relation gives a general implicit solution of (1.1.1).
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Graphically solutions of differential equations may be depicted as curves in the XY -
plane on some interval D ⊆ R of the X-axis. For a first-order equation, a general solution,
y(x) = φ(x; c1), contains one arbitrary constant (or parameter) c1. These solutions are
then one-parameter family of curves in the XY -plane. That is, for every fixed choice of
c1 we obtain an explicit solution curve. This family of one-parameter solution curves are
also known as level curves. For second-order differential equations a general solution,
y(x) = φ(x; c1, c2), contains two arbitrary constants, c1 and c2, so that this results in a
two-parameter family of curves in the XY -plane. The same holds for nth-order differential
equations. Special solutions of a differential equation are then the explicit solution curves
that result when choosing fixed values for the constants of integration c1, c2, . . . , cn in
the given general solution. A singular solution of a differential equation is a curve in the
XY -plane that does not belong to the family of curves as given by a general solution of
that equation. The singular solution curve may be an asymptote to the family of solution
curves given by a general solution.

Example 1.1.1.

——————————————

a) Consider the first-order differential equation

y′ = y2. (1.1.2)

It can easily be verified that a general solution of this equation is

y(x) =
1

c− x
, (1.1.3)

for all c ∈ R. However, this solution does not contain the solution y = 0, which is
clearly also a solution for (1.1.2). Thus the solution y = 0 is a singular solution for
(1.1.2).

b) As a second example of a singular solution, we consider the equation

y′ + y2 =

(
2x+

1

x

)
y − x2, x > 0. (1.1.4)

A general solution of (1.1.4) is

y(x) =
x(x2 + 2 + c)

x2 + c
(1.1.5)

for all c ∈ R. However, we can verify that y(x) = x is also a solution of (1.1.4)
and that this solution is not contained in the general solution (1.1.5). For example,
there is no value for c such that y(2) = 2. The solution y(x) = x is thus a singular
solution for (1.1.4). In fact, there exists no value for c such that y(a) = a for every
a > 0, since

y(a) =
a(a2 + 2 + c)

a2 + c
= a leads to the contradiction that 2 = 0.
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Figure 1.1: Some solution curves of (1.1.4)

Figure 1.1 depicts some solution curves of the general solution (1.1.5) for the values
c = 0.1 (blue), c = 0.2 (green), c = 0.3 (red) and c = 0 (brown). The singular
solution y = x is indicated in black.

Equation (1.1.4) is an example of the so-called Riccati equation, which we introduce
in Section 3.2, where we also show that this type of singular solutions always exist
for the Riccati equation.

d) We can verify that the second-order differential equation

y′′ + 4y = 4x cosx (1.1.6)

admits the solutions

y(x) = c1 sin(2x) + c2 cos(2x) +
8

9
sinx+

4

3
x cosx (1.1.7)

for all x ∈ R, where c1 and c2 are two arbitrary constants. Some solution curves for
the values {c1 = 1, c2 = 1} (blue), {c1 = 2, c2 = 3} (green), and {c1 = 3, c2 = 4}
(red) are shown in Figure 1.2.

c) We can verify that the first-order differential equation

y′ =
x

y
− 1 +

y

x
, x �= 0 (1.1.8)
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Figure 1.2: Some solution curves of (1.1.6)

admits the following general implicit solution

y

x
+ ln

∣∣∣1− y

x

∣∣∣ = − ln |cx|,

where c is an arbitrary constant. A singular solution is y = x.

——————————————

Consider now a special form of (1.1.1), namely the so-called linear homogeneous
ordinary differential equation of order n, which has the following general form:

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0 (1.1.9)

Here pj(x) (j = 0, 1, 2, . . . , n) are real-valued continuous functions given on some common
domain D ⊆ R, n ≥ 1 and pn(x) �= 0 for all x ∈ D.

Let

{φ1(x), φ2(x), . . . , φs(x)} (1.1.10)

be a set of solutions of (1.1.9) on D. That is

pn(x)φ
(n)
j + pn−1(x)φ

(n−1)
j + · · ·+ p1(x)φ

′
j + p0(x)φj = 0, j = 1, 2, . . . , s

(1.1.11)
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and φj ∈ Cn(D).

Proposition 1.1.1. (Linear Superposition Principle):
Any linear combination of the set of solutions (1.1.10) for (1.1.9) on D, i.e.

c1φ1(x) + c2φ2(x) + · · ·+ csφs(x), (1.1.12)

are solutions for (1.1.9) on D for any cj ∈ R (j = 1, 2, . . . , s).

Proof: We assume that the set of functions (1.1.10) are solutions of (1.1.9) and show that

y(x) = c1φ1(x) + c2φ2(x) + · · ·+ csφs(x) (1.1.13)

satisfies (1.1.9). Differentiating (1.1.13) n times, respectively, we obtain

y′(x) = c1φ
′
1 + c2φ

′
2 + · · ·+ csφ

′
s

y′′(x) = c1φ
′′
1 + c2φ

′′
2 + · · ·+ csφ

′′
s

...

y(n)(x) = c1φ
(n)
1 + c2φ

(n)
2 + · · ·+ csφ

(n)
s .

Inserting the above expressions for y, y′, . . . , y(n) into (1.1.9) we obtain

pn(x)
[
c1φ

(n)
1 + c2φ

(n)
2 + · · ·+ csφ

(n)
s

]

+pn−1(x)
[
c1φ

(n−1)
1 + c2φ

(n−1)
2 + · · ·+ csφ

(n−1)
s

]

+ · · ·

+p1(x)
[
c1φ

′
1 + c2φ

′
2 + · · ·+ csφ

′
s

]

+p0(x) [c1φ1 + c2φ2 + · · ·+ csφs]

= c1

[
pn(x)φ

(n)
1 + pn−1(x)φ

(n−1)
1 + · · ·+ p1(x)φ

′
1 + p0(x)φ1

]

+c2

[
pn(x)φ

(n)
2 + pn−1(x)φ

(n−1)
2 + · · ·+ p1(x)φ

′
2 + p0(x)φ2

]

+ . . .

+cs

[
pn(x)φ

(n)
s + pn−1(x)φ

(n−1)
s + · · ·+ p1(x)φ

′
s + p0(x)φs

]

= c1 0 + c2 0 + · · ·+ cs 0 (since φ1, φ2, . . . , φn are solutions for (1.1.9))

= 0. �

To find a general solution for the n-th order linear differential equation, (1.1.9), we have
to find a set of n linearly independent solutions for (1.1.9). The linear combination of this
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set of solutions will then describe the general solution of the equation. This is stated
in Proposition 1.1.5 below. To establish this, we start with the definition of a linearly
independent set of functions in the vector space C(D).

Definition 1.1.3. Consider the set S of n continuous functions on some domain D ⊆
R:

{φ1(x), φ2(x), . . . , φn(x)}. (1.1.14)

That is, φj(x) (j = 1, 2, . . . , n) belong to the vector space of continuous functions, C(D).
The set S is a linearly dependent set in the vector space C(D) if there exist constants
c1, c2, . . . , cn, not all zero, such that

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0 for all x ∈ D. (1.1.15)

The set (1.1.14) is linearly independent in C(D) if equation (1.1.15) can only be
satisfied on D when all constants c1, c2, . . . , cn are zero.
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Example 1.1.2.

——————————————

a) Consider the set S = {1, ex} ∈ C(R). Then it is clear that the equation

c1 1 + c2 e
x = 0

can only be satisfied for all x ∈ R, if c1 = 0 and c2 = 0. Therefore we conclude that
S is a linearly independent set.

b) Consider the set S = {cos2 x, sin2 x, 1} ∈ C(R). Then the equation

c1 cos
2 x+ c2 sin

2 x+ c3 1 = 0

is satisfied for all x ∈ R if, for example, c1 = c2 = 1 and c3 = −1. Therefore we
conclude that S is a linearly dependent set in C(R).

——————————————
To determine whether a set of functions are linearly dependent on some interval D ⊆ R

in the vector space Cn(D), it is useful to introduce the so-called Wronskian.

Historical Note: (source: Wikipedia)
Józef Maria Hoene-Wroński (1776 –1853) was a Polish Messianist philosopher who worked
in many fields of knowledge, not only as philosopher but also as mathematician. The
Wronskian was introduced by Hoene-Wronski in 1812 and was named as such by Thomas
Muir in 1882

Józef Maria Hoene-Wroński (1776 –1853)
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Definition 1.1.4. Consider the set

S = {φ1(x), φ2(x), . . . , φn(x)} in Cn(D). (1.1.16)

The determinant

W [φ1, φ2, . . . , φn](x) :=

∣∣∣∣∣∣∣∣∣

φ1 φ2 . . . φn

φ′
1 φ′

2 . . . φ′
n

...
... . . .

...

φ
(n−1)
1 φ

(n−1)
2 . . . φ

(n−1)
n

∣∣∣∣∣∣∣∣∣
(1.1.17)

is defined as the Wronskian of the set (1.1.16), where W [φ1, φ2, . . . , φn](x) is a dif-
ferentiable function on D.

Example 1.1.3.

——————————————
Consider φ1(x) = x and φ2(x) = cosx for all x ∈ R. Then

W [φ1, φ2](x) =

∣∣∣∣
x cosx
1 − sinx

∣∣∣∣ = −x sinx− cosx. (1.1.18)

——————————————

To determine whether a set of functions is linearly independent, we can use the following

Proposition 1.1.2. Let S = {φ1(x), φ2(x), . . . , φn(x)} be a set of n nonzero functions
in C(n)(D). If the set S is linearly dependent on the interval D, then the Wronskian
W [φ1, . . . , φn](x) = 0 for all x ∈ D. Therefore, if W [φ1, . . . , φn](x0) �= 0 at some point
x0 ∈ D, then S is a linearly independent set on D.

Proof: Consider the set S = {φ1(x), φ2(x), . . . , φn(x)} in C(n)(D) and the equation

λ1φ1(x) + λ2φ2(x) + · · ·+ λnφn(x) = 0, (1.1.19)

where λj , j = 1, 2, . . . , n, are unspecified constants. Differentiating relation (1.1.19)
(n− 1)-times, respectively, we obtain

λ1φ
′
1 + λ2φ

′
2 + · · ·+ λnφ

′
n = 0

λ1φ
′′
1 + λ2φ

′′
2 + · · ·+ λnφ

′′
n = 0

... (1.1.20)

λ1φ
(n−1)
1 + λ2φ

(n−1)
2 + · · ·+ λnφ

(n−1)
n = 0.
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The above n equations, (1.1.19) and (1.1.20), can be written as follows:




φ1 φ2 . . . φn

φ′
1 φ′

2 . . . φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 . . . φ

(n−1)
n







λ1

λ2
...
λn


 =




0
0
...
0


 . (1.1.21)

We denote the n × n coefficient matrix of (1.1.21) as matrix A. Now, if the set S is
linearly dependent for all x ∈ D, then there exist nonzero solutions for at least two of the
constants λj that satisfy equation (1.1.19), so that A is singular (A−1 does not exist) and
detA = 0 for all x ∈ D. On the other hand, if detA �= 0 at some point x0 ∈ D, then A
is not singular in that point, so that the only solution for any λj that satisfies equation
(1.1.19) for all x ∈ D is the trivial solution, λ1 = 0, λ2 = 0, . . . , λn = 0. We note that
detA = W [φ1, φ2, . . . , φn](x). Therefore we conclude that, if W [φ1, φ2, . . . , φn](x0) �= 0 at
some x0 ∈ D, then S is a linearly independent set on the interval D. �
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Example 1.1.4.

——————————————

a) In Example 1.2b we have shown that the set S = {φ1 = cos2 x, φ2 = sin2 x, φ3 = 1}
is linearly dependent for all x ∈ R. Then

W [φ1, φ2, φ3](x) =

∣∣∣∣∣∣
cos2 x sin2 x 1

−2 cosx sinx 2 sinx cosx 0
2 sin2 x− 2 cos2 x 2 cos2 x− 2 sin2 x 0

∣∣∣∣∣∣

= −2 cosx sinx
(
2 cos2 x− 2 sin2 x

)
− 2 sinx cosx

(
2 sin2 x− 2 cos2 x

)

= 0 for all x ∈ R

as stated by Proposition 1.1.2

b) Consider the two exponential functions, namely

φ1(x) = eα1x, φ2(x) = eα2x,

where α1 and α2 are any real numbers. To show that φ1 and φ2 are linearly inde-
pendent on R we evaluate the Wronskian of φ1 and φ2 in the point x = 0:

W [φ1, φ2](0) =

∣∣∣∣∣
eα1x eα2x

α1e
α1x α2e

α2x

∣∣∣∣∣
x=0

= α2 − α1.

Since W [φ1, φ2](x) �= 0 in the point x = 0 for α1 �= α2, it follows by Proposition
1.1.2 that φ1 and φ2 are linearly independent on R for α1 �= α2.

c) Consider the complex function

f(x) = e(α+iβ)x, α ∈ R, β ∈ R, i2 := −1.

Since

e(α+iβ)x = eαx (cosβx+ i sinβx)

we have

φ1(x) := Re [f(x)] = eαx cosβx, φ2(x) := Im [f(x)] = eαx sinβx.

Calculating W [φ1, φ2](0), we obtain

W [φ1, φ2](0) =

∣∣∣∣∣
eαx cos(βx) eαx sin(βx)

αeαx cos(βx)− βeαx sin(βx) αeαx sin(βx) + βeαx cos(βx)

∣∣∣∣∣ (0)

=

∣∣∣∣
1 0
α β

∣∣∣∣ = β

Hence, it follows by Proposition 1.1.2 that the set {φ1(x), φ2(x)} is linearly inde-
pendent on R for β �= 0.
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——————————————

Proposition 1.1.3. Let {φ1(x), φ2(x), . . . , φn(x)} be a set of n nonzero solutions of

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0

on some interval D ⊆ R. Then either

W [φ1, φ2, . . . , φn](x) = 0

for every x ∈ D, or

W [φ1, φ2, . . . , φn](x) �= 0

for every x ∈ D.

Proof: We give the proof for the case n = 2. The general case is proved in the Appendix
to Chapter 1. For n = 2, equation (1.1.9) is

p2(x)y
′′ + p1(x)y

′ + p0(x)y = 0, (1.1.22)

where p2(x) �= 0 for every x ∈ D. Let φ1(x) and φ2(x) be two solutions for (1.1.22) on the
interval D. Then

p2(x)φ
′′
1 + p1(x)φ

′
1 + p0(x)φ1 = 0 (1.1.23a)

p2(x)φ
′′
2 + p1(x)φ

′
2 + p0(x)φ2 = 0. (1.1.23b)

Multiplying (1.1.23a) by −φ2 and (1.1.23b) by φ1 and then adding the resulting equations
(1.1.23a) and (1.1.23b), we obtain

p2(x)(φ1φ
′′
2 − φ2φ

′′
1) + p1(x)(φ1φ

′
2 − φ2φ

′
1) = 0. (1.1.24)

We recall that

W [φ1, φ2](x) =

∣∣∣∣∣
φ1 φ2

φ′
1 φ′

2

∣∣∣∣∣ = φ1φ
′
2 − φ2φ

′
1

and, furthermore, we note that

W ′[φ1, φ2](x) = φ1φ
′′
2 − φ2φ

′′
1 =

∣∣∣∣∣
φ1 φ2

φ′′
1 φ′′

2

∣∣∣∣∣ . (1.1.25)

Therefore equation (1.1.24) can be written in the form

p2(x)W
′ + p1(x)W = 0

or, since p2(x) �= 0 for all x ∈ D, we can write

W ′ +
p1(x)

p2(x)
W = 0. (1.1.26)
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Now, either W = 0 for all x ∈ D, or W �= 0 for all x ∈ D, as we will now show by
integrating (1.1.26): Equation (1.1.26) can be integrated:

∫
dW

W
= −

∫
p1(x)

p2(x)
dx+ ln |c|, so that a general solution is

W [φ1, φ2](x) = c exp

[
−
∫

p1(x)

p2(x)
dx

]
, (1.1.27)

where c is an arbitrary constant of integration. Since

exp

[
−
∫

p1(x)

p2(x)
dx

]
�= 0 for every x ∈ D

and c �= 0, it follows that W [φ1, φ2](x) �= 0 for every x ∈ D (except for the singular
solution W = 0). Thus the statement is established for the case n = 2. �n=2
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It is important to remark that Proposition 1.1.3 is essential in the methods to construct
solutions of linear differential equations, as we will see in the chapters that follow.

One may want to construct a differential equation from a given set of solution-functions.
This can be done by the use of the Wronskian: Let S be the given set of linearly indepen-
dent solutions for

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0,

for all x ∈ D. Then, by the linear superposition principle, any linear combination of these
solutions is also a solution of this equation, i.e.,

y(x) = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x), (1.1.28)

where c1, c2, . . . .cn are arbitrary constants. However, the set

Q = {φ1(x), φ2(x), . . . , φn(x), y},

is clearly linearly dependent in Cn(D). Differentiating now (1.1.28) n times, respectively,
we obtain

c1φ1 + c2φ2 + · · ·+ cnφn − y = 0

c1φ
′
1 + c2φ

′
2 + · · ·+ cnφ

′
n − y′ = 0

...

c1φ
(n)
1 + c2φ

(n)
2 + · · ·+ cnφ

(n)
n − y(n) = 0

or equivalently




φ1 φ2 . . . φn y
φ′
1 φ′

2 . . . φ′
n y′

...
... · · ·

...
...

φ
(n)
1 φ

(n)
2 . . . φ

(n)
n y(n)







c1
c2
...

cn
−1




=




0
0
...
0


 ∈ Rn+1.

Since the set Q is linearly dependent, the (n+ 1)× (n+ 1) matrix on the left side of the
above relation must be a singular matrix for all x ∈ D. Hence its determinant must be
zero for all x ∈ D and this determinant is the Wronskian for Q. This leads to the following
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Proposition 1.1.4. Consider a set of n linearly independent solutions, S =
{φ1(x), φ2(x), . . . , φn(x)} in Cn(D) for

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0, (1.1.29)

where D ⊆ R. Then this differential equation can equivalently be written in the form

W [φ1, φ2, . . . , φn, y](x) = 0 (1.1.30)

for all x ∈ D, where W is the Wronskian of the set of functions {φ1, φ2, . . . , φn, y},
namely

W [φ1, φ2, . . . , φn, y](x) :=

∣∣∣∣∣∣∣∣∣

φ1 φ2 . . . φn y
φ′
1 φ′

2 . . . φ′
n y′

...
... · · ·

...
...

φ
(n)
1 φ

(n)
2 . . . φ

(n)
n y(n)

∣∣∣∣∣∣∣∣∣
. (1.1.31)

Proof: Consider n = 1 with p1(x) �= 0. Then the general linear first-order homogeneous
equation is

p1(x)y
′ + p0(x)y = 0. (1.1.32)

Assume now that φ(x) ∈ C1(D) is a solution of (1.1.32), i.e.

p1(x)φ
′ + p0(x)φ = 0 or φ′ = −

(
p0(x)

p1(x)

)
φ. (1.1.33)

We show that W [φ, y](x) = 0 is equivalent to (1.1.32). Now

W [φ, y](x) =

∣∣∣∣
φ y
φ′ y′

∣∣∣∣ = φy′ − φ′y = 0. (1.1.34)

Inserting φ′ from (1.1.33) into (1.1.34), we obtain

φy′ −
[
−
(
p0
p1

)
φ

]
y = 0 or p1(x)y

′ + p0(x)y = 0.

Consider now n = 2. Then the general linear second-order homogeneous equation is

p2(x)y
′′ + p1(x)y

′ + p0(x)y = 0. (1.1.35)

Assume now that φ1(x) ∈ C1(D) and φ2(x) ∈ C1(D) are two linearly independent solutions
of (1.1.35), i.e.

p2(x)φ
′′
j + p1(x)φ

′
j + p0(x)φj = 0, j = 1, 2. (1.1.36)

The equation W [φ1, φ2, y](x) = 0 gives

φ1φ
′
2y

′′ + φ2φ
′′
1y

′ + φ′
1φ

′′
2y − φ′

2φ
′′
1y − φ1φ

′′
2y

′ − φ2φ
′
1y

′′ = 0. (1.1.37)
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Substituting φ′′
1 and φ′′

2 from (1.1.36) into (1.1.37), we obtain

p2(x)
(
φ1φ

′
2 − φ2φ

′
1

)
y′′ + p1(x)

(
φ1φ

′
2 − φ2φ

′
1

)
y′

+p0(x)
(
φ1φ

′
2 − φ2φ

′
1

)
y = 0. (1.1.38)

Since the set {φ1(x), φ2(x)} is a linearly independent set of solutions for (1.1.35), we have
that W [φ1, φ2](x) �= 0 for all x ∈ D. Hence (1.1.38) reduces to (1.1.36).
The same method of proof can be used for all natural numbers n (see Exercises 1.1.1).
�

Example 1.1.5.

——————————————
Consider the set of functions S = {φ1(x), φ2(x)}, where

φ1(x) = ex
2
, φ2(x) = e−x2

,

so that

W [φ1, φ2](x) = −4x.

Applying Proposition 1.1.4 we can construct a second-order linear homogeneous differential
equation with solutions S for all x ∈ R\{0}. It follows that

W [φ1, φ2, y](x) = −4xy′′ + 4y′ + 16x3y.

Hence the differential equation with the given solution set S has the form

xy′′ − y′ − 4x3y = 0.

——————————————

Finally we have

Proposition 1.1.5. Let S = {φ1(x), φ2(x), . . . , φn(x)} ∈ C(n)(D) be a linearly inde-
pendent set of n solutions for equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0,

where pj(x) are continuous functions on the interval D. Then the linear combination

y(x) = c1φ1(x) + c2φ2(x) + . . .+ cnφn(x),

is the general solution of this equation on D, where c1, . . . , cn are n arbitrary real
constants.
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In order to give a rigorous proof of Proposition 1.1.5 we need the following theorem
on the existence and uniqueness of the solutions of (1.1.9) (the subject of existence and
uniqueness is outside the scope of these lecture notes and we will therefore not provide
the proof)

Proposition 1.1.6. (Existence and uniqueness theorem)

Consider the nth order homogeneous equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0,

where pj(x) are continuous and bounded on an interval D. For a given x0 ∈ D and
given numbers b1, b2, . . . , bn, there exists a unique solution y(x) on D such that

y(x0) = b1, y′(x0) = b2, . . . , y(n−1)(x0) = bn. (1.1.39)

Note that Proposition (1.1.6) is also true for linear equations of the form

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f(x),

where pj(x) and f(x) are continuous and bounded on D.
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Example 1.1.6.

——————————————

One may verify that

φ1(x) = x−2 cos(3 lnx) and φ2(x) = x−2 sin(3 lnx)

are solutions of

x2y′′ + 5xy′ + 13y = 0 (1.1.40)

on the interval D = {x ∈ R : x > 0}. Now

W [φ1, φ2](x)

=

∣∣∣∣∣∣
x−2 cos(3 lnx) x−2 sin(3 lnx)

−x−3 [3 sin(3 lnx) + 2 cos(3 lnx)] x−3 [3 cos(3 lnx)− 2 sin(3 lnx)]

∣∣∣∣∣∣

A convenient point in D to evaluate the above Wronskian is at x = 1. Thus

W [φ1, φ2](1) =

∣∣∣∣
1 0

−2 3

∣∣∣∣ = 3.

Since W [φ1, φ2](1) �= 0, it follows by Proposition 1.1.2 that φ1 and φ2 are linearly inde-
pendent on D. The general solution of (1.1.40) is then given by

y(x) = c1x
−2 cos(3 lnx) + c2x

−2 sin(3 lnx)

for all x ∈ D, where c1 and c2 are arbitrary constants.

——————————————

1.1.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Determine whether the following sets of functions, {f1, f2, f3 . . .}, are linearly
dependent or linearly independent on the interval D:

a) f1(x) = ex, f2(x) = e2x, f3(x) = e3x, D := R

b)* f1(x) = ln(x), f2(x) = ln(x2), f3(x) = e3x, D := (0,∞)

c) f1(x) = cosx, f2(x) = sinx, f3(x) = x cosx, f4(x) = x sinx, D := R

d)* f1(x) = ex, f2(x) = e−x, f3(x) = xex, f4(x) = xe−x, D := R
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e) f1(x) = ex cosx, f2(x) = ex sinx, D := R

f) f1(x) = esinx, f2(x) = ex, f3(x) = sinx, D := R

g) f1(x) = sec2 x, f2(x) = tan2 x, f3(x) = −5, D := R

h) f1(x) = cosec2x, f2(x) = cot2 x, f3(x) = π, D := R

i) f1(x) = cos(2x), f2(x) = 2 cos2 x, f3(x) = 3 sin2 x, D := R

j) f1(x) = sin(2x), f2(x) = 2 cosx sinx, f3(x) = 1, f4(x) = ex, D := R

2. * Consider the following two functions

f1(x) = x2, f2(x) = x|x|

on R. Show that the Wronskian W [f1, f2](x) is identically zero for all x ∈ R and
show furthermore that the set S = {f1(x), f2(x)} is in fact linearly independent on
R. This shows that we cannot conclude linear dependence on an interval for a set of
functions if the Wronskian is zero on that interval.

3. Show that

a) ex + e−y(x) = c is a general solution of the first-order differential equation y′ = ex+y,
where c is an arbitrary constant.

b)* y(x) = c1 cos(2x) + c2 sin(2x)
is the general solution of the second-order linear differential equation y′′ + 4y = 0,
where c1 and c2 are arbitrary constants.

c) y(x) = c1e
x + c2 sinx+ c3 cosx is the general solution of the third-order differ-

ential equation y(3) − y′′ + y′ − y = 0, where c1, c2 and c3 are arbitrary con-
stants.

d) y2(x) + 2y(x) = x2 + 2x+ c is a general solution of the first-order differential

equation y′ =
x+ 1

y + 1
, where c is an arbitrary constant.

e) (2c− x)y2 = x3 is a general solution of the first-order differential equation
2x3y′ − 3x2y − y3 = 0, where c is an arbitrary constant.

f) ex
2
+ ln[y(x) +

√
1 + y2] = c is a general solution of the first-order differential

equation e−x2
y′ + 2x

√
1 + y2 = 0, where c is an arbitrary constant.

g) y(x) = c1e
x + c2 sinx+ c3 cosx+ ex

(
1

4
x2 − 1

2
x

)
is the general solution of the

third-order differential equation y(3) − y′′ + y′ − y = x ex, where c1, c2 and c3
are arbitrary constants.
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h) y(x) =

n∑
j=1

cjx
j−1 is the general solution of the n-th order differential equation

y(n) = 0, where c1, c2, . . . , cn are arbitrary constants.

4. Use the following set of functions,

f1(x) = e−x, f2(x) = e3x, f3(x) = e4x, f4(x) = ex

to construct a general solution for the equation

y′′′ − 6y′′ + 5y′ + 12y = 0.
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5. Consider the following sets of functions and construct in each case, if possible, the
linear homogeneous differential equation for which a linear combination of the given
set of functions gives the general solution of the differential equation and establish
the solution domain of the so constructed differential equation.
Hint: Make use of Proposition 1.1.4.

a) S = {e
√
x, e−

√
x}, x > 0

b) S = {x ea/x, x e−a/x}, where x �= 0 and a ∈ R\{0}.

c)* S = {x cos(1/x), x sin(1/x)}, x �= 0.

d) S = {1
x
ex,

1

x
e−x}, x �= 0.

e) S = { 1√
x
,

1√
x
e−x2/2}, x > 0.

f) S = {x, x2, x lnx}, x > 0.

g) S = {x3, cos(lnx), sin(lnx)}, x > 0.

6. Prove (1.3.1), namely

W ′[φ1, φ2, . . . , φn](x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
... · · ·

...

φ
(n−2)
1 φ

(n−2)
2 · · · φ

(n−2)
n

φ
(n)
1 φ

(n)
2 · · · φ

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where {φ1, φ2, . . . , φn} are functions in Cn(D) and W ′ denotes the x-derivative of
the Wronskian W .

Remark: In the theory of determinants, the following result is established: If the
elements aij(x) of the determinant of an n×n matrix A are differentiable functions
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of the variable x, then

d

dx
(detA) =

d

dx

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a′11 a′12 · · · a′1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a′21 a′22 · · · a′2n

...
... · · ·

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

a′n1 a′n2 · · · a′nn

∣∣∣∣∣∣∣∣∣∣∣∣∣

7. Prove Proposition 1.1.4 for n = 3 and consequently for all natural numbers n.

1.2 The solution space of linear homogeneous differential
equations

We consider the linear homogeneous differential equation (1.1.9)

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0, (1.2.1)

where pj(x) (j = 0, 1, 2, . . . , n) are given continuous functions on some common domain
D ⊆ R and pn(x) �= 0 for all x ∈ D. For convenience we write (1.2.1) in the following
form:

Ly(x) = 0 (1.2.2)

Here L denotes the following linear differential operator of order n:

L := pn(x)
dn

dxn
+ pn−1(x)

dn−1

dxn−1
+ · · ·+ p1(x)

d

dx
+ p0(x). (1.2.3)

Acting L on y(x) ∈ Cn(D), we have

Ly(x) = pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y. (1.2.4)
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Consider now the transformation T , such that

T : Cn(D) → C(D), (1.2.5)

where D ⊆ R. Recall that Cn(D) is the vector space of n-times differentiable functions
on the interval D and C is the vector space of continuous functions on the interval D. In
particular, we define T as follows:

T : y(x) �→ Ly(x). (1.2.6)

We now prove

Proposition 1.2.1. The transformation T , namely T : y(x) �→ Ly(x) with L defined
by (1.2.3), is a linear transformation.

Proof: Let y1(x) and y2(x) be any two functions in Cn(D). Then

T (y1(x) + y2(x)) = L (y1(x) + y2(x))

=

(
pn(x)

dn

dxn
+ pn−1(x)

dn−1

dxn−1
+ · · ·+ p1(x)

d

dx
+ p0(x)

)
(y1(x) + y2(x))

= pn(x)y
(n)
1 + pn(x)y

(n)
2 + pn−1(x)y

(n−1)
1 + pn−1(x)y

(n−1)
2 + · · ·+ p0(x)y1(x) + p0(x)y2(x)

= Ly1(x) + Ly2(x) = T (y1(x)) + T (y2(x)).

Moreover, for any real constant c we have

T (cy1(x)) = L (cy1(x))

=

(
pn(x)

dn

dxn
+ pn−1(x)

dn−1

dxn−1
+ · · ·+ p1(x)

d

dx
+ p0(x)

)
(cy1(x))

= cpn(x)y
(n)
1 + cpn−1(x)y

(n−1)
1 + · · ·+ cp0(x)y1(x)

= cL y1(x) = cT (y1(x)).

We conclude that T is a linear transformation. �

We recall that the kernel of T consists of all those functions y(x) for which

T : y(x) �→ 0. (1.2.7)

That is, for the linear transformation (1.2.6), the kernel of T contains all solutions of the
equation Ly(x) = 0. See Figure 1.3.
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Figure 1.3: The solution space of Ly(x) = 0

Proposition 1.2.2. Let T : y(x) �→ Ly(x) with L defined by (1.2.3). Then the kernel
of T is an n-dimensional subspace of Cn(D) with basis

B = {φ1(x), φ2(x), . . . , φn(x)}, (1.2.8)

where φ1(x), φ2(x), . . . , φn(x) are linearly independent solutions of Ly(x) = 0.

Proof: Let y1(x) and y2(x) be any two functions in the kernel of T . Since T is a linear
transformation, it follows that

T (y1(x) + y2(x)) = T (y1(x)) + T (y2(x)) = 0 and

T (cy1(x)) = c T (y1(x)) = c 0 = 0 for all c ∈ R

so that the kernel of T is a subspace of Cn(D). By Proposition 1.1.5 a general solution of
(1.2.2) is of the form

y(x) = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) for all cj ∈ R (j = 1, 2, . . . , n), (1.2.9)

where every φj(x) is a solution of (1.2.2) and the set {φ1(x), φ2(x), · · · , φn(x)} is linearly
independent in Cn(D). Since (1.2.2) includes all the solutions of (1.2.2), the set

{φ1(x), φ2(x), · · · , φn(x)} (1.2.10)

spans the kernel of T and the finite set (1.2.10) is thus a basis for this n-dimensional
subspace of Cn(D). �

This leads to

Definition 1.2.1. The kernel of T , where T : y(x) �→ Ly(x) with L defined by (1.2.3),
is called the solution space of the homogeneous linear differential equation Ly(x) =
0.
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Remark: If the linear homogeneous differential equation (1.2.2) contains only constant
coefficients pj (rather than functions pj(x)) in the differential operator L, then the solu-
tions φj(x) of the equation are all (depending on the values of the constant coefficients) of
the form

xserx or xserx cos(qx) or xserx sin(qx),

where s is a natural number, whereas q and r are real numbers. These solutions are
functions that can be differentiated indefinitely many times for all values of x ∈ R, so that
the n-dimensional solution space of (1.2.2) is in fact a subspace of C∞(R), rather than
just Cn(D).
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1.2.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Consider the equation

y′′ − 4y′ + 13y = 0 (1.2.11)

and the functions

φ1(x) = e2x cos(3x), φ2(x) = e2x sin(3x).

a) Show that φ1 and φ2 are solutions of (1.2.11).

b) Show that the set S = {φ1(x), φ2(x)} is a linearly independent set in the space
C2(R) and give the general solution of (1.2.11).

c) Give the linear transformation T : C2(R) → C(R) for which the kernel of T
defines the solution space of (1.2.11).

d) Give a basis for the solution space of (1.2.11).

e) Find that function in the solution space of (1.2.11) for which y(0) = 4 and
y′(0) = −1.

f) Find that function in the solution space of (1.2.11) for which y(0) = 1 and
y(π/6) = 2.

2. * Show that

φ1(x) = 3 e−x cosx, φ2(x) = π e−x sinx

are functions that belong to the solution space of the differential equation

y′′ + 2y′ + 2y = 0

and give the general solution of this differential equation as well as a basis and the
dimension of the solution space.

3. Show that

φ1(x) = ex, φ2(x) = e−2x, φ3(x) = 2ex, φ4(x) = −3e−2x,

are functions that belong to the solution space of the differential equation

y′′ + y′ − 2y = 0

and give the general solution of this differential equation, as well as a basis and the
dimension of the solution space.
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4. In the exercises below, let S = {φ1(x), φ2(x), . . .} be a basis for the solution space
of a second-order homogeneous differential equation with constant coefficients. Find
the corresponding differential equation, if it exists, and give the general solution of
this equation, as well as the dimension of the solution space.

a) φ1(x) = cosx, φ2(x) = sinx

b) φ1(x) = e−x cos(2x), φ2(x) = e−x sin(2x)

c) φ1(x) = 1, φ2(x) = e−2x

d) φ1(x) = ex, φ2(x) = sinx, φ3(x) = cosx

e) φ1(x) = 1, φ2(x) = e−x, φ3(x) = sin(2x), φ4(x) = cos(2x)

5. Show that there exists no differential equation of the form

y′′ + ay′ + by = 0

for which the solution space has a basis S = {φ1(x), φ2(x)}, where

φ1(x) = ex, φ2(x) = ex cosx.
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1.3 Appendix to Chapter 1

We prove Proposition 1.1.3 for all natural numbers n:

Proposition 1.1.3 Let {φ1(x), φ2(x), . . . , φn(x)} be a set of n nonzero solutions of

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0

in some interval D ⊆ R. Then either

W [φ1, φ2, . . . , φn](x) = 0

for every x ∈ D, or

W [φ1, φ2, . . . , φn](x) �= 0

for every x ∈ D.

Proof for all natural numbers n: (the proof of the case n = 2 is given in section 1.1)

In order to prove the statement for all n, we take a second look at the derivation of
equation (1.1.26) as given in the proof in section 1.1: Consider (1.1.25), i.e.

W ′[φ1, φ2](x) =

∣∣∣∣∣
φ1 φ2

φ′′
1 φ′′

2

∣∣∣∣∣ .

Replace now φ′′
1 and φ′′

2 from equations (1.1.23a) – (1.1.23b), in the second row by

φ′′
1 = −p1

p2
φ′
1 −

p0
p2

φ1, φ′′
2 = −p1

p2
φ′
2 −

p0
p2

φ2,

respectively, to obtain

W ′[φ1, φ2](x) =

∣∣∣∣∣∣∣

φ1 φ2

−p1
p2

φ′
1 −

p0
p2

φ1 −p1
p2

φ′
2 −

p0
p2

φ2

∣∣∣∣∣∣∣
.

Multiplying the first row in the above determinant by
p0
p2

and adding this to the second

row (which does not change the value of the determinant), we obtain

W ′[φ1, φ2](x) =

∣∣∣∣∣∣∣

φ1 φ2

−p1
p2

φ′
1 −p1

p2
φ′
2

∣∣∣∣∣∣∣
.

Factoring out −p1
p2

from the second row in the above determinant, we obtain

W ′[φ1, φ2](x) = −p1(x)

p2(x)

∣∣∣∣∣
φ1 φ2

φ′
1 φ′

2

∣∣∣∣∣ = −p1(x)

p2(x)
W [φ1, φ2](x).
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To prove the statement for the nth-order equation (1.1.9) we use the same strategy. We
need W ′[φ1, φ2, . . . , φn](x), which is of the form (the proof is left as an exercise: see
Exercise 1.1.1 nr. 6)

W ′[φ1, φ2, . . . , φn](x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
... · · ·

...

φ
(n−2)
1 φ

(n−2)
2 · · · φ

(n−2)
n

φ
(n)
1 φ

(n)
2 · · · φ

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1.3.1)

We consider n solutions, φ1(x), φ2(x), . . . , φn(x) for the nth-order equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0,

so that

φ
(n)
1 = −pn−1(x)

pn(x)
φ
(n−1)
1 (x)− pn−2(x)

pn(x)
φ
(n−2)
1 (x)− · · · − p1(x)

pn(x)
φ′
1(x)−

p0(x)

pn(x)
φ1

= −
n∑

k=1

pn−k(x)

pn(x)
φ
(n−k)
1 .

Also

φ
(n)
2 = −

n∑
k=1

pn−k(x)

pn(x)
φ
(n−k)
2 , . . . , φ(n)

n = −
n∑

k=1

pn−k(x)

pn(x)
φ(n−k)
n .

Substituting now the above values of φ
(n)
1 , φ

(n)
2 , . . . , φ

(n)
n into the last row of the determi-

nant of W ′[φ1, φ2, . . . , φn](x) in (1.3.1), we obtain

W ′[φ1, φ2, . . . , φn](x)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
... · · ·

...

φ
(n−2)
1 φ

(n−2)
2 · · · φ

(n−2)
n

−
n∑

k=1

pn−k(x)

pn(x)
φ
(n−k)
1 −

n∑
k=1

pn−k(x)

pn(x)
φ
(n−k)
2 · · · −

n∑
k=1

pn−k(x)

pn(x)
φ(n−k)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(1.3.2)
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If we now multiply the first row, the second row,. . . , the (n − 1) row of the determinant
(1.3), respectively, by

p0(x)

pn(x)
,
p1(x)

pn(x)
, . . . ,

pn−2(x)

pn(x)
,

and then add this result to the last row, we obtain

W ′[φ1, φ2, . . . , φn](x)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
... · · ·

...

φ
(n−2)
1 φ

(n−2)
2 · · · φ

(n−2)
n

−pn−1(x)

pn(x)
φ
(n−1)
1 −pn−1(x)

pn(x)
φ
(n−1)
2 · · · −pn−1(x)

pn(x)
φ(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(1.3.3)

Factoring out −pn−1(x)

pn(x)
from the last row of the above determinant (1.3), we obtain

W ′[φ1, φ2, . . . , φn](x) = −pn−1(x)

pn(x)
W [φ1, φ2, . . . , φn](x). (1.3.4)

The solution of (1.3.4) is either W = 0 for all x ∈ D, or we have the general solution

W [φ1, φ2, . . . , φn](x) = c exp

[
−
∫

pn−1(x)

pn(x)
dx

]
, (1.3.5)

where c is an arbitrary nonzero constant of integration. Since

exp

[
−
∫

pn−1(x)

pn(x)
dx

]
�= 0 for every x ∈ D

and c �= 0, it follows that either W �= 0 for all x ∈ D or W = 0 for all x ∈ D (which
corresponds to the singular solution of (1.3.4). Thus the statement is established for
arbitrary n. �
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Chapter 2

First-order differential equations

2.1 Introduction: the initial-value problem

A first-order differential equation is of the following general form:

F (x, y(x), y′(x)) = 0. (2.1.1)

In this section we introduce the so-called initial-value problem for first-order equations and
then consider two types of first-order differential equations, namely the so-called separable
first-order equations and the linear first-order equation. We also include some cases of
first-order differential equations which can be written in the form of a separable differen-
tial equation or a first-order linear differential equation by introducing a new dependent
variable.

39
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The initial-value problem for first-order differential equations:

Let

y = φ(x; c) (2.1.2)

be a general solution of (2.1.1) on some interval D ⊆ R, where φ contains an arbitrary
real constant c. The initial-value problem states the problem to find the solution curve of
(2.1.1) which contains the point

y(x0) = b, (2.1.3)

where x0 is a given point in the solution domain of the differential equation and b is a given
real number. The relation (2.1.3) is known as the initial data and x0 is the initial value
for the solutions of the differential equation. If the point x0 is in the solution domain of
the given general solution φ(x; c) and the general solution satisfies the initial data, then
the solution of the initial-value problem is obtained by solving the constant c from the
algebraic relation

φ(x0, c) = b. (2.1.4)

The solution of this initial-value problem is then given by the general solution of (2.1.1)
where c is the explicit (unique) number that has been solved from the relation (2.1.4). If
the given initial data cannot be satisfied by the given general solution y = φ(x; c1), that
is, if

φ(x0, c) �= b for all c ∈ R, (2.1.5)

then the initial data may be in the domain of a singular solution for (2.1.1), say

y(x) = ψ(x), (2.1.6)

for which ψ(x0) = b. In this case the solution to the initial-value problem is given by
the singular solution y(x) = ψ(x). If neither the general solution, nor any of the singular
solutions for (2.1.1), satisfy the initial data y(x0) = b, then we say that this initial data
is inconsistent with the differential equation, which means that the differential equation
does not contain the point y(x0) = b for any of its solutions.

Several examples to illustrate the initial-value problem for first-order differential equa-
tions are given in the sections that follow.

2.2 Separable first-order differential equations

A separable first-order differential equation is of the form

dy

dx
= g(x)h(y) (2.2.1)

where g(x) and h(y) are given continuous functions of their arguments.
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The method to integrate (2.2.1) is as follows:

Divide (2.2.1) by h(y), i.e.
1

h(y)

dy

dx
= g(x) and integrate then with respect to x:

∫ (
1

h(y)

dy

dx

)
dx =

∫
g(x) dx+ c, (2.2.2)

where c is a constant of integration. We let y(x) = p(x), so that
dy

dx
= p′(x) (or dy = p′(x)dx,

i.e.
dy

dx
dx = dy) and (2.2.2) takes the form

∫
1

h(y)
dy =

∫
g(x) dx+ c . (2.2.3)

Relation (2.2.3) is an integral-solution formula for (2.2.1). Since this formula contains
one arbitrary constant it represents a general solution of (2.2.1).

Example 2.2.1.

——————————————

Solve the initial-value problem for the equation

(1 + ex)y′ = exey, (2.2.4)

with initial data y(0) = 1. Using the integral-solution formula (2.2.3) we have

∫
ey dy =

∫
ex

1 + ex
dx+ c

and a general solution becomes

y(x) = ln [ln(1 + ex) + c] for all c ∈ R. (2.2.5)

Use now the given initial data to solve c:

y(0) = ln
[
ln(1 + e0) + c

]
= 1 (2.2.6)

so that c = e− ln(2) and the solution of the initial-value problem is

y(x) = ln

[
ln

(
1 + ex

2

)
+ e

]
. (2.2.7)

——————————————

In some cases we can write a given first-order differential equation in the form of a
separable first-order differential equation by introducing a new dependent variable.
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Proposition 2.2.1. The first-order equation

y′ = f
(y
x

)
, x ∈ R\{0} (2.2.8)

where f is a continuous function of the argument y/x, reduces to the separable equation

v′ =
1

x
(f(v)− v) (2.2.9)

by the substitution

y(x) = x v(x) (2.2.10)

Proof: Differentiating (2.2.10) with respect to x we have

y′(x) = v(x) + xv′(x)

so that (2.2.8) becomes v(x) + xv′(x) = f(v(x)), i.e., the equation in v is of the form
(2.2.9) and is therefore separable in the variables x and v(x). �
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Example 2.2.2.

——————————————
We find a general solution of

xy y′ = x2 − xy + y2

for all x ∈ R\{0} and then solve the initial-value problem y(1/2) = 0.

The equation can equivalently be written in the form

y′ =
x

y
− 1 +

y

x
.

By the substitution (2.2.10), i.e. y = xv(x), this equation reduces to

v′ =
1

x

(
1− v

v

)

which is a separable first-order equation in the variables x and v �= 1. Thus
∫

v

1− v
dv =

∫
1

x
dx+ ln |c| or v + ln |1− v| = − ln |cx|.

A general solution of the given equation is now in the following implicit form:

y

x
+ ln

∣∣∣1− y

x

∣∣∣ = − ln |cx|,

where c is the constant of integration. Applying the initial data y(1/2) = 0, we have

0 + ln(1) = − ln
∣∣∣ c
2

∣∣∣

so that c = 2. The solution of the initial-value problem is thus

y

x
+ ln

∣∣∣1− y

x

∣∣∣ = − ln |2x|.

For the case v = 1, we obtain the singular solution y = x.
——————————————

2.2.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following differential equations:

a) y′ = ex+y

b) x+
1 + x2

1 + 2y
y′ = 0
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c) xy2 + x+ (y − x2y)y′ = 0

d) xy = (3− x)y′, x �= 3.

e)* y′ +
1− y2

1− x2
= 0, x > 1

f) y′ +
1− y2

1 + x2
= 0

g) y′ +
(y − 1)x2

(x− 1)2
= 0, x �= 1

h) x
√
a2 − y2 − (x4 + 1)(1 + y) y′ = 0, a �= 0

i) x2 + y3 ex+y y′ = 0

2. Solve the following initial-value problems:

a) y′ − 1 + y

1− x2
= 0, y(0) = 1

b) y′ − 1 + y2

1 + x2
= 0, y(0) = 1

c) eyy′ = x, y(0) = 0

d) ey(y′ + 1) = 1, y(0) = 0

e) x sin y = y′(1 + x2) cos y, y(1) =
π

4

3. Use the substitution y(x) = xv(x) to find a general solution of the following differ-
ential equations:

a) y + xe(y/x) − xy′ = 0

b)* y2 − x2 + xyy′ = 0

c) x− 2y + yy′ = 0

4. Solve the following initial-value problems using the substitution y(x) = xv(x):

a) y′ =
y2 + xy

x2
, y(1) = 1

b) y′ =
4y2 + 3xy

x2
, y(2) = 1
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2.3 Linear first-order differential equations

The linear first-order differential equation is of the form

y′ + g(x)y = h(x) (2.3.1)

where g and h are continuous functions on an interval D ⊆ R. A general solution can then
be given in terms of an integral-solution formula:

Proposition 2.3.1. A general solution of (2.3.1), i.e. equation

y′ + g(x)y = h(x),

is

y(x) = e−G(x)

[∫
h(x)eG(x)dx+ c

]
, (2.3.2)

where c is an arbitrary constant and G(x) is an anti-derivative of g(x), i.e.

G(x) =

∫
g(x)dx. (2.3.3)

Proof: We now prove this proposition in two ways, which provides two methods to solve
the linear equation (2.3.1).

The method of integrating factors:

Multiplying

y′ + g(x)y = h(x)

by the expression eG(x), where G(x) =
∫
g(x) dx, we obtain

y′eG(x) + g(x)yeG(x) = h(x)eG(x) or equivalently

d

dx

(
yeG(x)

)
= h(x)eG(x).

The factor eG(x) is known as an integrating factor (see Definition 2.3.1 below). Integrating
the previous relation over x, we obtain

yeG(x) =

∫
h(x)eG(x) dx+ c,

where c is a constant of integration. Since eG(x) �= 0 for any x ∈ R, we can divide by this
term to obtain the integral formula (2.3.2). �1
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The method of variation of constants:

To find a general solution for

y′ + g(x)y = h(x)

we first consider the homogeneous equation

y′ + g(x)y = 0, (2.3.4)

which is a separable first-order equation. We can now integrate (2.3.4) for y �= 0, to obtain

∫
dy

y
= −

∫
g(x) dx+ ln |k| so that

y(x) = k e−
∫
g(x) dx, (2.3.5)

where k is an arbitrary nonzero constant. Consider now the variation of the constant k,
namely we consider k as a function of x, i.e.

k = k(x).

We then insert

y(x) = k(x) e−
∫
g(x) dx (2.3.6)

and its derivative,

y′(x) = k′(x) e−
∫
g(x) dx − k(x)g(x) e−

∫
g(x) dx,

in the full first-order linear equation

y′ + g(x)y = h(x)

and obtain

k′(x) e−
∫
g(x) dx = h(x).

Integrating the above expression over x, we get

k(x) =

∫
e
∫
g(x) dxh(x) dx+ c, (2.3.7)

where c is a constant of integration. Inserting k(x) given by (2.3.7) into (2.3.6), we obtain
the integral formula (2.3.2), namely

y(x) = e−G(x)

[∫
h(x)eG(x)dx+ c

]
,

where G(x) =
∫
g(x) dx. �2
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Definition 2.3.1. The factor eG(x), where

G(x) =

∫
g(x)dx,

which results in the integration of the linear equation (2.3.1), is known as the inte-
grating factor of the linear equation (2.3.1).

Remark: A remark regarding Integrating Factors is in order: By the general theory of
ordinary differential equations it is known that for any differential equation that can be
integrated in closed form at least once (i.e. a differential equation of order n for which the
order can be reduced by integration), there exists some integrating factor that brings the
equation to such an integrable form. To find an integrating factor for a given differential
equation is in general a difficult problem (depending strongly on the type of differential
equation). In the case of first-order linear differential equations, the integrating factor,
exp[

∫
g(x) dx], reduces the first-order equation to a zero-order differential equation, i.e.

we obtain a relation between y(x) and x and an arbitrary constant c from the integration;
hence we obtain a general solution of the first-order differential equation. It is a difficult
problem to find integrating factors for nonlinear first-order differential equations, since the
problem is in general under-determined (in this sense first-order differential equations are
more complex than higher-order differential equations, which is due to the geometry or
symmetry properties of these differential equations).

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


A First Course in Ordinary  
Differential Equations

50 

First-order dierential equations
48 CHAPTER 2. FIRST-ORDER DIFFERENTIAL EQUATIONS

Example 2.3.1.

——————————————

Consider the linear first-order equation

xy′ = −(2x+ 1)y + xe−2x, x > 0.

We find a general solution and solve the initial-value problem y(1) = 2.

Dividing the given equation by x, it takes the following form:

y′ +

(
2x+ 1

x

)
y = e−2x. (2.3.8)

The integrating factor for (2.3.8) is eG(x), where

G(x) =

∫
2x+ 1

x
dx = 2x+ lnx.

Thus

eG(x) = xe2x

and upon multiplying (2.3.8) with this integrating factor we have

xe2xy′ + e2x(2x+ 1)y = x or
d

dx

(
xe2xy

)
= x.

Integrating the last expression we obtain

xe2xy =
1

2
x2 + c,

where c is the constant of integration. Thus the general solution is

y(x) = x−1e−2x

(
x2

2
+ c

)
. (2.3.9)

We can now solve c for the given initial data y(1) = 2 to obtain

y(1) = e−2

(
1

2
+ c

)
= 2, so that c = 2e2 − 1

2
.

The solution of the initial-value problem is therefore

y(x) = x−1e−2x

(
x2

2
+ 2e2 − 1

2

)
for all x > 0.

——————————————
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2.3.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following differential equations.

a) y′ − y = 2x− x2

b) y′ + y − sinx = 0

c) y′ + x2y + x2 = 0

d)* y′ + y + sinx+ x3 = 0

e) y′ + 3y = x2 + 1

f) y′ + y cosx = e− sinx

g) y′ − xy

x2 + 1
=

(
x2 − x+ 1

x2 + 1

)
ex

2. Solve the following initial-value problems.

a) y′ − y = x− 1, y(0) = 1

b) y′ + xy = x3, y(0) = −2

c)* xy′ + y = x cosx, y(π/2) = 1

d) x lnx y′ + y = 2 lnx, y(e) = 0

3. Assume that y1(x) and y2(x) are two solutions for

y′ + g(x)y = h(x)

on some interval D ⊆ R, where y1(x) �= y2(x). Find a formula for a general solution
using these two solutions, without performing any integration.
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2.4 Some linearizable first-order equations

2.4.1 A rather general case

Consider the following

Proposition 2.4.1. The first-order nonlinear equation

df(y)

dy

dy

dx
+ f(y)P (x) = Q(x) (2.4.1)

where f(y) is any differentiable function of y and P and Q are continuous functions of
x on some domain D ⊆ R, can be linearized in

dv

dx
+ P (x)v = Q(x). (2.4.2)

by the following substitution:

v(x) = f(y(x)) (2.4.3)

Proof: The first derivative of v(x), given by the substitution (2.4.3), is

dv

dx
=

df

dy

dy

dx
, (2.4.4)

so that (2.4.1) takes the form (2.4.2) in terms of the new dependent variable v(x). A
general (possibly implicit) solution of (2.4.2) then leads to a general solution for (2.4.1)
by the relation (2.4.3). �

Example 2.4.1.

——————————————
We linearize the equation

dy

dx
+ 1 = 4e−y sinx. (2.4.5)

An equivalent form of (2.4.5) is

ey
dy

dx
+ ey = 4 sinx

so that, following Proposition 2.4.1, a suitable new dependent variable is

v(x) = ey, with
dv

dx
= ey

dy

dx
.

Equation (2.4.5) then takes the linear form

dv

dx
+ v = 4 sinx. (2.4.6)
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A general solution of (2.4.6) is

v(x) = 2 (sinx− cosx) + ce−x.

Thus a general solution for (2.4.5) is then

y(x) = ln v = ln
(
2 (sinx− cosx) + ce−x

)
.

——————————————

2.4.2 The Bernoulli equation

The Bernoulli equation is an important special case of (2.4.1), namely

dy

dx
= f(x)y + g(x)yn, n ∈ R\{0, 1} (2.4.7)

Here f(x) and g(x) are any given continuous functions on some domain D.

Remark: Note that y = 0 is always a solution of (2.4.7). Moreover, if y(x) = φ(x) is
a solution of (2.4.7), then y(x) = −φ(x) is also a solution of (2.4.7) if and only if the
equation admits the discrete symmetry y �→ −y, x �→ x for all x ∈ D (see Example 2.4.2
below).
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Proposition 2.4.2. The Bernoulli equation (2.4.7) can be linearized for all n ∈
R\{0, 1} in terms of a new dependent variable v(x), by the substitution

v(x) = y1−n(x). (2.4.8)

Proof: Assume that y �= 0. Multiplying equation (2.4.7) by y−n. Then the equation takes
the form

y−n dy

dx
− f(x)y1−n = g(x). (2.4.9)

By comparing (2.4.9) with (2.4.1) we note that (2.4.7) is linearizable in terms of the new
dependent variable v(x), where

v(x) = y1−n(x) so that
dv

dx
= (1− n)y−n dy

dx
. (2.4.10)

In terms of the dependent variable v(x), (2.4.7) then takes the linear form

dv

dx
− (1− n)f(x)v = (1− n)g(x) (2.4.11)

�

Historical Note: (source: Wikipedia)
The Bernoulli equation is named after Jacob Bernoulli (1654 – 1705), who described this
equation in 1695. Jacob Bernoulli, born in Basel, Switzerland, was one of the prominent
mathematicians in the Bernoulli family. He is known for his numerous contributions to
calculus and along with his brother Johann, was one of the founders of the calculus of
variations.

Jacob Bernoulli (1654 – 1705)
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Example 2.4.2.

——————————————
We find a general solution for the following first-order equation:

y′ + y = xy3. (2.4.12)

We recognize that (2.4.12) is a Bernoulli equation of the form (2.4.7) with n = 3, f(x) = −1
and g(x) = x. We therefore introduce a new dependent variable v(x) as v(x) = y−2(x).
Now

v′ = −2y−3y′

and the equation in v(x) takes the linear form

v′ − 2v = −2x.

Solving this linear equation we obtain

v(x) = x+
1

2
+ ce2x,

where c is an arbitrary constant and, since y(x) = v−1/2(x), a general solution of (2.4.12)
is

y(x) =

(
x+

1

2
+ ce2x

)−1/2

.

As pointed out in the above Remark, y = 0 is also a solution and, since (2.4.12) admits
the symmetry y �→ −y, x �→ x for all x ∈ R, another nontrivial solution of (2.4.12) is

y(x) = −
(
x+

1

2
+ ce2x

)−1/2

.

——————————————

2.4.3 The Riccati equation

The Riccati equation is of the form

dy

dx
= f(x)y2 + g(x)y + h(x) (2.4.13)

where f, g and h are any given continuous functions on some domain D ⊆ R. One of the
remarkable properties of the Riccati equation is that it can be linearized in a first-order
differential equation if any solution of (2.4.13) is known. In particular, we assume that
φ(x) is a solution of (2.4.13) and introduce a new dependent variable z(x) as follows:

y(x) = φ(x) + z(x) with
dy

dx
=

dφ

dx
+

dz

dx
(2.4.14)
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Since φ(x) is assumed to be a solution of (2.4.13), i.e.

dφ

dx
= f(x)φ2 + g(x)φ+ h(x), (2.4.15)

we obtain, with (2.4.14), the following equation in the dependent variable z:

dz

dx
= [2φf(x) + g(x)] z + f(x)z2. (2.4.16)

We recognize (2.4.16) as a special Bernoulli equation, (2.4.7), which can be linearized by
introducing a new dependent variable v(x) as follows:

z(x) =
1

v(x)
with

dz

dx
= − 1

v(x)2
dv

dx
. (2.4.17)

Inserting (2.4.17) in (2.4.16) we obtain the linear equation

dv

dx
+ [2φ(x)f(x) + g(x)] v = −f(x). (2.4.18)
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This leads to

Proposition 2.4.3. The Riccati equation

dy

dx
= f(x)y2 + g(x)y + h(x)

can be linearized in the first-order linear equation

dv

dx
+ [2φ(x)f(x) + g(x)] v = −f(x) (2.4.19)

by the following change of dependent variable

y(x) = φ(x) +
1

v(x)

where φ is any solution of the Riccati equation and v satisfies the linear equation
(2.4.19).

Regarding singular solutions of the Riccati equation, we have the following

Proposition 2.4.4. Consider the Riccati equation (2.4.13), i.e.

dy

dx
= f(x)y2 + g(x)y + h(x)

with general solution of the form

y(x; c) = φ(x) +
1

v(x; c)
,

where v(x; c) is a general solution of the linear equation

dv

dx
+ [2φ(x)f(x) + g(x)] v = −f(x)

and φ(x) is a special solution of the Riccati equation. Then the special solution

y(x) = φ(x)

is a singular solution with respect to the initial data y(x0) = φ(x0) for every x0 in the
solution domain of the Riccati equation. The solution of this initial-value problem is
then given by the singular solution, y(x) = φ(x).

Historical Note: (source: Wikipedia)
The Riccati equation is named after the Italian mathematician Jacopo Francesco Riccati
(1676–1754), who was born in Venice. Riccati received various academic offers, amongst
those was an invitation by Peter the Great of Russia for president of the St. Petersburg
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Academy of Sciences as well as some professorships, but he declined all offers in order to
devote his full attention to the study of mathematical analysis.

Jacopo Francesco Riccati (1676–1754)

Example 2.4.3.

——————————————
We find a general solution of the Riccati equation

y′ + y2 =

(
2x+

1

x

)
y − x2, (2.4.20)

where φ(x) = x is a special solution for this equation. We then solve two initial-value
problems: i) we use the initial data y(1) = 2 and ii) the initial data y(1) = 1.

As stated in Proposition 2.4.3, we make a change of the dependent variable

y(x) = x+
1

v(x)
. (2.4.21)

That is y′ = 1− v−2v′, so that (2.4.20) takes the linear form

v′ +
v

x
= 1,

which admits the general solution

v(x) =
1

2
x+

c

x
,

where c is a constant of integration. Inserting the obtained expression for v(x) into the
relation (2.4.21) we obtain a general solution for (2.4.20) in the form

y(x) =
x(x2 + 2c+ 2)

x2 + 2c
for all x ∈ R\{0}. (2.4.22)
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i) Using the initial data y(1) = 2 we obtain, from the above general solution,

y(1) =
1(12 + 2c+ 2)

12 + 2c
= 2 or c =

1

2
.

The solution for this initial-value problem is therefore

y(x) =
x(x2 + 3)

x2 + 1
.

ii) It is clear that the singular solution y(x) = x passes through the point of the initial
data, y(1) = 1. Therefore, y(x) = x is the solution for this initial-value problem in this
case. Note that, if we use the general solution (2.4.22) for this initial data we obtain a
contradiction:

y(1) =
3 + 2c

1 + 2c
= 1 or 3 = 1

as stated in Proposition 2.4.4.
——————————————
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2.4.4 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find a general solution of the following nonlinear differential equation by a suitable
linearization:

sin y
dy

dx
= cosx

(
2 cos y − sin2 x

)
.

Hint:
a) See Proposition 2.4.1.

b) For the integral

∫
cosx sin2 x e2 sinx dx use the substitution t = sinx.

2. Find general solutions of the following Bernoulli equations:

a) y′ − y = x2 y3

b) y′ +
2

x
y = ex

√
y

c)* xy′ + y = y2 ln(x), x > 0

d) 2xyy′ + x = y2

e) y′ + y + y2 sinx = 0

f) y′ − y

2x
+

y3

2
√
1− x2

= 0, −1 < x < 1, x �= 0

g)* y′ +
xy

1− x2
= x

√
y, x > 1

3. Solve the following initial-value problems:

a) y′ + 2xy = 2xy2. Consider two cases:

i) y(0) = 2

ii) y(0) = 1

b) y′ +

(
3

x

)
y = xy1/3, y(1) = 3

4. Linearize the following Riccati equations and find their general solutions:

a) y′ = −y2

4
− 1

x2
. A special solution is φ(x) =

2

x
.

b) y′ = y2 − (2x+ 1) y + x2 + x+ 1. A special solution is φ(x) = x.

5. Solve the initial-value problem of the following Riccati equations:
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a) y′ = y2 − 2xy + x2 + 1, y(0) =
1

2
. A special solution is φ(x) = x.

b) y′ = y2 −
(
1

x

)
y − 1

x2
, y(1) = 2. A special solution is φ(x) =

1

x
.

c) y′ = y2 −
(
1

x

)
y − 1

x2
, y(1) = 1. A special solution is φ(x) =

1

x
.

6. * Consider the Riccati equation

(x− x4)y′ − x2 − y + 2xy2 = 0, x ∈ R\[0, 1]. (2.4.23)

Find a value of the constant k, such that φ(x) = kx2 is a special solution of this
equation. Solve then the initial-value problem, where y(2) = 1.

7. Consider the Riccati equation

x2y′ − x2y2 + 5xy − 3 = 0.

Find a value of the constant k, such that φ(x) = xk is a special solution of this
equation. Solve then the initial-value problem for two initial data. i) y(1) = 2 and
ii) y(2) = 1/2.

8. Consider the Riccati equation

x2y′ − x2y2 = xy + 1.

Find a value of the constant k, such that φ(x) =
k

x
is a special solution for this

equation and find then a general solution of this equation.

9. Show that the general Riccati equation (2.4.13) linearizes to a second-order linear
equation in terms of the dependent variable w(x) given by the following relation:

y(x) = −w′(x)

w(x)

1

f(x)
. (2.4.24)

10. It can be shown that any Riccati equation (2.4.13) admits the following nonlinear
superposition formula:

y(x) =
c[y1(x)− y2(x)]y3(x)− [y1(x)− y3(x)]y2(x)

c[y1(x)− y2(x)]− [y1(x)− y3(x)]
, (2.4.25)

where y1(x), y2(x) and y3(x) are any distinct solutions of the Riccati equation
(2.4.13) and c is an arbitrary constant. Since c is an arbitrary constant in (2.4.25),
this superposition formula (2.4.25) provides a general solution to the Riccati equation
for three given distinct solutions.

Using this superposition formula, find a general solution of

y′ = −y2 +

(
2x+

1

x

)
y − x2,

which admits the following three solutions:

y1(x) = x, y2(x) =
x3

x2 − 2
, y3(x) =

x3 + x

x2 − 1
.
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Chapter 3

Second-order linear differential
equations

3.1 Introduction: the initial- and boundary-value problem

A second-order differential equation is of the general form

F (x, y(x), y′(x), y′′(x)) = 0 (3.1.1)

and its general solution is a function φ ∈ C2(D) which contains two arbitrary constants,
c1 and c2, and satisfies the differential equation. We write

y(x) = φ(x; c1, c2). (3.1.2)

The initial value problem requires the following initial data in a point x0 in the solution
domain of the equation:

y(x0) = b0, y′(x0) = b1, (3.1.3)

where b0 and b1 are given real numbers. This data is then used to fix the constants c1 and
c2 in the general solution (if the initial data is within the domain of the general solution
and this data can be satisfied by the general solution) by solving the (nonlinear) algebraic
system of equations

y(x0) = φ(x0; c1, c2) = b0, y′(x0) =
dφ(x; c1, c2)

dx

∣∣∣∣
x=x0

= b1. (3.1.4)

If the differential equation (3.1.1) is linear, then the algebraic system (3.1.4) is a system
of two linear algebraic equations in c1 and c2. This is clear since the constants c1 and c2
appear as weights in the linear combination of linearly independent solutions.

For the so-called boundary-value problem we require boundary data in two points,
x1 and x2, in the equations’ solution domain, namely

y(x1) = b1, y(x2) = b2,

63
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where b1 and b2 are given real numbers. If this boundary data lies within the domain of
the general solution and can be satisfied by the general solution, then the constants c1
and c2 can be fixed by solving the (nonlinear) algebraic system

y(x1) = φ(x1; c1, c2) = b1, y(x2) = φ(x2; c1, c2) = b2. (3.1.5)

If the differential equation is linear, then the algebraic system (3.1.5) is also a linear system
in c1 and c2.

Example of initial-value problems and boundary-value problems are given int the sec-
tions that follow.

3.2 Second-order linear homogeneous equations with con-
stant coefficients

Consider the equation

y′′ + py′ + qy = 0 (3.2.1)

where p and q are real constants. To find the general solution of (3.2.1) we make use of
the Ansatz

y(x) = eλx (3.2.2)

where λ is in general a complex number that needs to be determined such that (3.2.2)
satisfies equation (3.2.1). Inserting the Ansatz (3.2.2) and its derivatives

y′ = λeλx, y′′ = λ2eλx

in (3.2.1), we obtain

(
λ2 + pλ+ q

)
eλx = 0.

Since eλx �= 0 for all complex λ and all real x, we remain with the condition

λ2 + pλ+ q = 0 (3.2.3)

which is called the characteristic equation (or auxiliary equation) of (3.2.1). The form
of the solution of (3.2.1) depends on the algebraic solution of (3.2.3) and hence on the
values of p and q. The cases are given in the following
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Proposition 3.2.1. Consider equation (3.2.1), i.e.

y′′ + py′ + qy = 0,

where p and q are real constants. Let λ1 and λ2 denote the roots of the characteristic
equation (3.2.3), i.e. λ2 + pλ+ q = 0.

a) If λ1 and λ2 are real and distinct roots of (3.2.3), which is the case when p2 > 4q ,

then the general solution of (3.2.1) is given by

y(x) = c1e
λ1x + c2e

λ2x for all x ∈ R (3.2.4)

where c1 and c2 are arbitrary constants and

λ1 =
1

2

(
−p+

√
p2 − 4q

)
∈ R, λ2 =

1

2

(
−p−

√
p2 − 4q

)
∈ R.

b) If λ1 and λ2 are real and equal roots of (3.2.3), which is the case when p2 = 4q ,

then the general solution of (3.2.1) is given by

y(x) = (c1 + c2x) e
λ1x for all x ∈ R (3.2.5)

where c1 and c2 are arbitrary constants and λ1 = λ2 = −p

2
∈ R.

c) If λ1 and λ2 are complex roots of (3.2.3), which is the case when p2 < 4q , then

the general solution of (3.2.1) is given by

y(x) = c1e
αx cos(βx) + c2e

αx sin(βx) ≡ c1Re
{
eλ1x

}
+ c2 Im

{
eλ1x

}

(3.2.6)

for all x ∈ R, where c1 and c2 are arbitrary constants and

α = −p

2
∈ R, β =

1

2

√
4q − p2 ∈ R.

Here the complex roots of (3.2.3) are λ1 = α+ iβ, λ2 = α− iβ.

Proof: We consider the three different cases, which is a result of the three different types
of solutions of the characteristic equation (3.2.3), i.e., λ2 + pλ+ q = 0.

Case a: Let p2 > 4q. Then the characteristic equation (3.2.3) has two distinct real roots,
namely

λ1 =
1

2

(
−p+

√
p2 − 4q

)
∈ R, λ2 =

1

2

(
−p−

√
p2 − 4q

)
∈ R.
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Thus, by the Ansatz y(x) = eλx, the two solutions for (3.2.1) are

φ1(x) = eλ1x, φ2(x) = eλ2x.

The Wronskian for these two solutions in the point x = 0 is W [φ1, φ2](0) = λ2 − λ1 �= 0,
so that {φ1(x), φ2(x)} is a linearly independent set in the vector space C∞(R). Thus the
general solution of (3.2.1) is a linear combination of these two solutions:

y(x) = c1 e
λ1x + c2e

λ2x for all x ∈ R. (3.2.7)
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Case b: Let p2 = 4q. Then the characteristic equation (3.2.3) has one real solution (or
twice the same real solution), namely

λ1 = λ2 = −p

2
.

This leads to only one real solution for (3.2.1)

φ(x) = e−(p/2)x.

We now find the general solution for (3.2.1) by the Ansatz

y(x) = w(x)e−(p/2)x, (3.2.8)

where w(x) is a twice differentiable function that needs to be determined such that the
Ansatz satisfies (3.2.1). Differentiating the Ansatz (3.2.8) twice, we obtain

y′(x) = e−(p/2)x
[
w′ −

(p
2

)
w
]

(3.2.9a)

y′′(x) = e−(p/2)x

[
w′′ − pw′ +

(
p2

4

)
w

]
. (3.2.9b)

Inserting (3.2.8), (3.2.9a) and (3.2.9b) in the differential equation (3.2.1), we obtain

e−(p/2)x

{
w′′ − pw′ +

(
p2

4

)
w + p

[
w′ −

(p
2

)
w
]
+ qw

}
= 0.

Since e−(p/2)x �= 0 for all x ∈ R and p2 = 4q, the previous expression reduces to

w′′(x) = 0. (3.2.10)

Integrating (3.2.10) twice over x, we obtain

w(x) = c1x+ c2, (3.2.11)

where c1 and c2 are constants of integration. Thus the Ansatz (3.2.8) leads to the following
solution for (3.2.1):

y(x) = (c1x+ c2)e
−(p/2)x. (3.2.12)

The set {ψ1(x) = x e−(p/2)x, ψ2(x) = e−(p/2)x} is linearly independent on D, since
W [ψ1(x), ψ2(x)](0) = −1 in C∞(R). Therefore (3.2.12) is the general solution of (3.2.1).

Case c: Let p2 < 4q. Then the characteristic equation (3.2.3) has two distinct complex
solutions, namely

λ1 =
1

2

(
−p+

√
p2 − 4q

)
=

1

2

(
−p+ i

√
4q − p2

)

λ2 =
1

2

(
−p−

√
p2 − 4q

)
=

1

2

(
−p− i

√
4q − p2

)
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We set

α = −p

2
, β =

1

2

√
4q − p2,

so that the two solutions λ1 and λ2 take the form

λ1 = α+ iβ, λ2 = α− iβ. (3.2.13)

Using λ1 we obtain the complex solution φc(x) for (3.2.3), namely

φc(x) = e(α+iβ)x = eαxeiβx = eαx [cos(βx) + i sin(βx)] . (3.2.14)

We note that the solution φc(x) is a linear combination of two functions,

ψ1(x) = eαx cos(βx) and ψ2(x) = eαx sin(βx).

By the linear superposition principle, it follows that ψ1(x) and ψ2(x) must also be solutions
of (3.2.3). This can also be verified directly for the equation (3.2.3) by showing that ψ1(x)
and ψ(x) satisfy (3.2.3). Moreover,

W [ψ1, ψ2](0) =

∣∣∣∣
ψ1 ψ2

ψ′
1 ψ′

2

∣∣∣∣ (0) =
∣∣∣∣
1 0
α β

∣∣∣∣ = β �= 0.

Hence {ψ(x), ψ2(x)} is a linearly independent set in C∞(R) and therefore the general
solution of (3.2.1) is

y(x) = c1e
αx cos(βx) + c2e

αx sin(βx) ≡ c1Re
{
eλ1x

}
+ c2 Im

{
eλ1x

}
. �

Example 3.2.1.

——————————————

a) We find the general solution for

y′′ − 4y′ + 13y = 0 (3.2.15)

for all x ∈ R, and then solve the initial-value problem with the initial data

y(0) = 4, y′(0) = −1 (3.2.16)

as well as the boundary-value problem with boundary data

y(0) = 1, y(π/6) = 2. (3.2.17)

With the Ansatz y(x) = eλx, the characteristic equation becomes

λ2 − 4λ+ 13 = 0,
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which admits two complex roots

λ1 = 2 + 3i, λ2 = 2− 3i.

By (3.2.6) the general solution of (3.2.15) is then

y(x) = e2x (c1 cos(3x) + c2 sin(3x)) (3.2.18)

To solve the stated initial-valued problem we differentiate (3.2.18) and utilize the
given initial data (3.2.16): We have

4 = y(0) = e2x (c1 cos(3x) + c2 sin(3x))

∣∣∣∣
x=0

= c1

−1 = y′(0) = e2x [(2c1 + 3c2) cos(3x) + (2c2 − 3c1) sin(3x)]

∣∣∣∣
x=0

= 2c1 + 3c2

so that

c1 = 4, c2 = −3

and the solution of the initial-value problem (3.2.15) – (3.2.16) is

y(x) = e2x (4 cos(3x)− 3 sin(3x)) .

For the boundary data (3.2.17) we obtain

1 = y(0) = e2x (c1 cos(3x) + c2 sin(3x))

∣∣∣∣
x=0

= c1

2 = y(π/6) = e2x (c1 cos(3x) + c2 sin(3x))

∣∣∣∣
x=π/6

= eπ/3c2,

so that c1 = 1 and c2 = 2e−π/3 and the solution of the boundary-value problem is

y(x) = e2x
(
cos(3x) + 2e−π/3 sin(3x)

)
.

b) We find the general solution for

y′′ + 2y′ + y = 0. (3.2.19)

With the Ansatz y(x) = eλx, the characteristic equation becomes

λ2 + 2λ+ 1 = 0,

which admits the same root, λ = −1 twice. By (3.2.12) the general solution of
(3.2.19) is then

y(x) = c1e
−x + c2x e

−x.
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c) We find the general solution for

y′′ − y′ = 0. (3.2.20)

With the Ansatz y(x) = eλx, the characteristic equation becomes

λ2 − λ = 0,

which admits the two real roots, λ1 = 0 and λ2 = 1. By (3.2.7) the general solution
of (3.2.20) is then

y(x) = c1 + c2 e
x.

——————————————
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3.2.1 Exercises

1. Find the general solutions of the following equations:

a) y′′ + 4y′ + 13y = 0

b) y′′ − 4y′ + 4y = 0

c) 3y′′ + 5y′ + 2y = 0

d) y′′ + 3y = 0

e) y′′ + 3y′ = 0

f) y′′ − ay′ + y = 0 for i) a2 > 4 and ii) a2 < 4.

2. Solve the following initial-value problems:

a) y′′ + 2y′ + 3y = 0, y(0) = 0, y′(0) =
√
2

b) y′′ + 6y′ + 9y = 0, y(0) = 1, y′(0) = −1

c) y′′ − 2y = 0, y(0) = 0, y′(0) = 2

d) y′′ − 2y′ = 0, y(3) = 1, y′(3) = 1

e) y′′ + 9y = 0, y(π/3) = 1, y′(π/3) = 5

3. Solve the following boundary-value problems:

a) y′′ − y = 0, y(0) = 1, y(1) = 5

b) y′′ − 4y′ = 0, y(1) = 2, y(2) = 3

c) y′′ = 0, y(3) = 1, y(−1) = 3

4. Show that the only solution of the differential equation

y′′ + py′ + qy = 0

with the initial conditions y(x0) = 0 and y′(x0) = 0, is

y(x) = 0

for all p, q ∈ R and all x0 ∈ R.

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

72 

Second-order linear dierential equations
70 CHAPTER 3. SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

3.3 Particular solutions of nonhomogeneous linear second-
order differential equations

We consider the linear second-order equation

y′′ + g(x)y′ + h(x)y = f(x) (3.3.1)

where g(x), h(x) and f(x) are given continuous functions on some interval D ⊆ R. When
f(x) is not the zero function, then equation (3.3.1) is known as a nonhomogeneous
second-order linear differential equation and a homogeneous second-order linear
differential equation when f(x) is the zero function.

Definition 3.3.1. Any function yp(x) which satisfies the nonhomogeneous equation
(3.3.1) on an interval D and which does not contain two arbitrary constants, is known
as a particular solution for (3.3.1) on D.

The following proposition follows directly from the linear superposition principle:

Proposition 3.3.1.

a) A general solution of (3.3.1), i.e. equation

y′′ + g(x)y′ + h(x)y = f(x),

is of the form

y(x; c1, c2) = φH(x; c1, c2) + yp(x), (3.3.2)

where φH is the general solution of the associated homogeneous equation y′′ +
g(x)y′+h(x)y = 0 and yp is a particular solution of the nonhomogeneous equation
(3.3.1).

b) A particular solution yp(x) for the nonhomogeneous equation

y′′ + g(x)y′ + h(x)y = f1(x) + f2(x), (3.3.3)

where g(x), h(x), f1(x) and f2(x) are given continuous functions on D, is given
by the sum

yp(x) = y1(x) + y2(x), (3.3.4)

where y1(x) is a particular solution for y′′ + g(x)y′ + h(x)y = f1(x) and y2(x) is
a particular solution for y′′ + g(x)y′ + h(x)y = f2(x).

The proof is left as an exercise (see Exercises 3.3.2).
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There exist several methods for finding particular solutions of (3.3.1) and we study
here two of those methods, namely the method of variation of parameters as well as the
method of undetermined coefficients. The former method can be applied for any continuous
functions g(x), h(x) and f(x), whereas the latter method is useful only if the coefficient
functions g(x) and h(x) are constants and the function f(x) is of special type. The
advantage for the method of undetermined coefficients is that it does not involve any
integration as all steps are purely algebraic.

3.3.1 Particular solutions: the method of variation of parameters

In this section we present a general method to find particular solutions and derive an
integral-solution formula for particular solutions for the linear equation

y′′ + g(x)y′ + h(x)y = f(x), (3.3.5)

where g, h and f are continuous functions on some domain D ⊆ R.

The following method to construct particular solutions, as described in the proof of Propo-
sition 3.3.2 below, is known as the method of variation of parameters.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Free eBook on  
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free


A First Course in Ordinary  
Differential Equations

74 

Second-order linear dierential equations
72 CHAPTER 3. SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Proposition 3.3.2. Assume that two linearly independent solutions of the homoge-
neous equation

y′′ + g(x)y′ + h(x)y = 0 (3.3.6)

are given by φ1(x) and φ2(x) on the interval D ⊆ R. Then a particular solution yp(x)
of

y′′ + g(x)y′ + h(x)y = f(x)

is

yp(x) = w1(x)φ1(x) + w2(x)φ2(x), (3.3.7)

where w1(x) and w2(x) have the following form:

w1(x) = −
∫

f(x)φ2(x)

W [φ1, φ2](x)
dx, w2(x) =

∫
f(x)φ1(x)

W [φ1, φ2](x)
dx.

Here W [φ1, φ2](x) is the Wronskian.

Proof: Consider two linearly independent solutions, φ1(x) and φ2(x), of the homogeneous
equation (3.3.6) and use the Ansatz

yp(x) = w1(x)φ1(x) + w2(x)φ2(x), (3.3.8)

to seek for a particular solution of the nonhomogeneous equation (3.3.5). Differentiating
(3.3.8), we obtain

y′p = w′
1φ1 + w1φ

′
1 + w′

2φ2 + w2φ
′
2.

Let now

w′
1φ1 + w′

2φ2 = 0, (3.3.9)

so that y′p takes the form

y′p = w1φ
′
1 + w2φ

′
2. (3.3.10)

Differentiating y′p one more time, we obtain

y′′p = w′
1φ

′
1 + w1φ

′′
1 + w′

2φ
′
2 + w2φ

′′
2. (3.3.11)

Inserting (3.3.8) for yp, (3.3.10) for y
′
p, and (3.3.11) for y′′p into (3.3.5), we obtain

w1

[
φ′′
1 + g(x)φ′

1 + h(x)φ1

]
+ w2

[
φ′′
2 + g(x)φ′

2 + h(x)φ2

]
+ w′

1φ
′
1 + w′

2φ
′
2 = f(x).

(3.3.12)

Since φ1 and φ2 satisfies the homogeneous equation (3.3.6), the above expression reduces
to

w′
1φ

′
1 + w′

2φ
′
2 = f(x). (3.3.13)
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We conclude that the Ansatz (3.3.8) is a particular solution for the nonhomogeneous
equation (3.3.6) if and only if the two conditions on w1 and w2, namely (3.3.9) and (3.3.13)
are satisfied, i.e.

{
w′
1φ1 + w′

2φ2 = 0

w′
1φ

′
1 + w′

2φ
′
2 = f(x)

This system of equations can be written in the form
(

φ1 φ2

φ′
1 φ′

2

)(
w′
1

w′
2

)
=

(
0

f(x)

)
. (3.3.14)

We note that the determinant of the coefficient matrix of the above system is the Wronskian
of the functions φ1 and φ2, namely

W [φ1, φ2](x) =

∣∣∣∣
φ1 φ2

φ′
1 φ′

2

∣∣∣∣ = φ1φ
′
2 − φ2φ

′
1.

By Proposition 1.1.3 we know that W [φ1, φ2](x) �= 0 for all x ∈ D, as φ1 and φ2 are
solutions and are linearly independent functions on D by assumption. Therefore the
coefficient matrix of (3.3.14) is nonzero and Cramer’s rule for the unique algebraic
solution of w′

1 and w′
2 from system (3.3.14) applies. We obtain

w′
1(x) =

1

W [φ1, φ2](x)

∣∣∣∣
0 φ2

f(x) φ′
2

∣∣∣∣ = − f(x)φ2(x)

W [φ1, φ2](x)

w′
2(x) =

1

W [φ1, φ2](x)

∣∣∣∣
φ1 0
φ′
1 f(x)

∣∣∣∣ =
f(x)φ1(x)

W [φ1, φ2](x)
.

Integrating the previous expressions over x we obtain

w1(x) = −
∫

f(x)φ2(x)

W [φ1, φ2](x)
dx, w2(x) =

∫
f(x)φ1(x)

W [φ1, φ2](x)
dx. �

Historical Note: (source: Wikipedia)
Gabriel Cramer (1704 – 1752) was a Swiss mathematician, born in Geneva. Cramer
showed promise in mathematics from an early age. At 18 he received his doctorate and
at 20 he was co-chair of mathematics. Cramer’s Rule for linear algebraic systems is
named after Gabriel Cramer, as he published the rule for an arbitrary number of unknowns
in 1750, although Colin Maclaurin also published special cases of the rule in 1748 (and
possibly knew of it as early as 1729). Cramer published his best-known work in his forties
in his treatise on algebraic curves (1750).

Example 3.3.1.

——————————————
We find a particular solution yp(x) for

y′′ − 2y′ + y = x−1ex on x ∈ R\{0}.
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Gabriel Cramer (1704 – 1752)

Following Proposition 3.3.2 we use the Ansatz

yp(x) = w1(x)φ1(x) + w2(x)φ2(x),

where the two linearly independent solutions for the associated homogeneous equation are

φ1(x) = ex, φ2(x) = xex.

The Wronskian for φ1 and φ2 is

W [φ1, φ2](x) =

∣∣∣∣
ex xe
ex ex + xex

∣∣∣∣ = e2x.

Thus, by the integral formulas given in Proposition 3.3.2, we obtain

w1(x) = −
∫

(xex)(x−1ex)

e2x
dx = −

∫
dx = −x

w2(x) =

∫
(ex)(x−1ex)

e2x
dx = ln |x|.

A particular solution is thus

yp(x) = −x ex + x ln |x| ex.

——————————————

The following proposition gives a method to find a general solution of a linear second-
order nonhomogeneous differential equation when three particular solutions for the equa-
tion are known:
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Proposition 3.3.3. Assume that three distinct particular solutions, namely
y1(x), y2(x) and y2(x), are given for the nonhomogeneous equation

y′′ + g(x)y′ + h(x)y = f(x)

on the interval D ⊆ R. Consider

φ1(x) = y2(x)− y1(x) and φ2(x) = y2(x)− y3(x). (3.3.15)

If W [φ1, φ2](x0) �= 0 in any point x0 ∈ D, then φ1(x) and φ2(x) are two linearly
independent solutions of the associated homogeneous equation

y′′ + g(x)y′ + h(x)y = 0 (3.3.16)

on D. A general solution for

y′′ + g(x)y′ + h(x)y = f(x)

is then

y(x) = c1φ1(x) + c2φ2(x) + yj(x)

for all x ∈ D, where yj is any particular solution of this equation for all x ∈ D and c1
and c2 are two arbitrary constant.
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Proof: Consider φ1(x) = y2(x) − y1(x), and assume that y1(x) and y2(x) are particular
solutions on an interval D for the nonhomogeneous equation

y′′ + g(x)y′ + h(x)y = f(x).

Then φ′
1 = y′2 − y′1 and φ′′

1 = y′′2 − y′′1 , and we have

φ′′
1 + g(x)φ′

1 + h(x)φ1 = y′′2 − y′′1 + g(x)[y′2 − y′1] + h(x)[y2 − y1]

= y′′2 + g(x)y′2 + h(x)y2 −
[
y′′1 + g(x)y′1 + h(x)y1

]

= f(x)− f(x) = 0,

so that we can conclude that φ1(x) is a solution of the homogeneous equation

y′′ + g(x)y′ + h(x)y = 0.

The same is true for φ2(x) = y2(x)− y3(x), where y3(x) is also a particular solution of the
nonhomogeneous equation. If W [φ2, φ2[(x0) �= 0 for some x0 ∈ D, then {φ1(x), φ2(x)} is
a linearly independent set. The general solution φH(x; c1, c2) of the homogeneous equation

y′′ + g(x)y′ + h(x)y = 0

is φH(x; c2, c2) = c1φ1(x)+ c2φ2(x) for all x ∈ D and the general solution of the nonhomo-
geneous equation is φH(x; c1, c2)) + yj for any particular solution of the nonhomogeneous
equation. �

Remark: From Proposition 3.3.3 we can conclude that a second-order nonhomogeneous
differential equation on the domain D that admits three distinct particular solutions,
{y1(x), y2(x), y3(x)} for all x ∈ D, can identically be constructed for all x ∈ D under the
conditions sated in Proposition 3.3.3

Example 3.3.2.

——————————————
Consider the nonhomogeneous equation

y′′ − 4y′ + 4y = x ex. (3.3.17)

It is easy to verify that the equation admits the following three particular solutions:

y1(x) = ex(x+ 2), y2(x) = e2x + ex(x+ 2), y3(x) = x e2x + ex(x+ 2)

for all x ∈ R. Let now

φ1(x) = y2(x)− y1(x) = e2x, φ2(x) = y2(x)− y3(x) = e2x(x+ 2).

Calculating the Wronskian in the point x = 0, we obtain

W [φ1, φ2](0) = −1,

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

79 

Second-order linear dierential equations
3.3. PARTICULAR SOLUTIONS 77

so that the set {φ1(x), φ2(x)} is linearly independent in C∞(R). The general solution
φH(x) of the homogeneous equation

y′′ − 4y′ + 4y = 0

is therefore

φH(x) = a1e
2x + a2e

2x(1− x) = (a1 + a2)e
2x − a2xe

2x,

or we can rename the constant a1, a2 as follows: c1 = a1 + a2, c2 = −a2, to obtain the
general solution in the form

φH(x) = c1e
2x + c2xe

2x.

To get a general solution for the given nonhomogeneous equation (3.3.17) we can add any
particular solution, say y1, so that the general solution is y(x) = φH(x) + y1(x). If we use
any other particular solution, yj(x), in the sum φH(x) + yj(x), then the general solution
will remain the same (up to a change of the constants), since the constants c1 and c2 are
arbitrary and can always be re-defined in terms of some other arbitrary constants.
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——————————————

3.3.2 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following equations:

a) y′′ + 4y′ + 4y =
√
xe−2x, x > 0

b) y′′ − 2y′ + y =
√
x− 1 ex, x > 1

c) y′′ + 2y′ + y = e−x ln(x), x > 0

d) y′′ + 2y′ + y = x−2e−x, x > 0

e) y′′ − 9y = ex + 1

f) y′′ + 4y = tanx for all those x ∈ R such that cosx �= 0.

g) y′′ + y =
1

cosx
for all those x ∈ R such that cosx �= 0.

h)* y′′ + 4y = 9 cos2 x for all x ∈ R.

2. Solve the initial-value problem for

y′′ − y = (ex + 1)−2e2x,

where y(0) = ln(2) and y′(0) =
7

2
− ln(2).

3. Solve the initial-value problem

y′′ − 3y′ + 2y = (e2x + 1)−1 e3x

where y(0) =
π

4
and y′(0) =

π

2
.

4. Find a general solution for

xy′′ − (2x+ 1)y′ + (x+ 1)y = 2x2ex ln(x), x > 0

where φ1(x) = x2ex and φ2(x) = ex are solutions of the associated homogeneous
equation.

5. Find a general solution on the interval |x| > 1 for

(x2 + 1)y′′ − 2xy′ + 2y = (x2 + 1)2,

where φ1(x) = x2 − 1 and φ2(x) = x are solutions of the associated homogeneous
equation.
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6. Find a general solution for

(1− x)y′′ + xy′ − y = 2(x− 1)2e−x,

where φ1(x) = ex and φ2(x) = x are solutions of the associated homogeneous equa-
tion.

7. In the following exercises, the nonhomogeneous equations and three particular solu-
tions are given. Find in each case a general solution of the given equations.

a) y′′ + 4y = cosx with particular solutions

y1(x) =
1

3
cosx, y2(x) = 2 cos(2x) +

1

3
cosx, y3(x) = −3 sin(2x) +

1

3
cosx.

b) y′′ − 6y′ + 9y =
9x2 + 6x+ 2

x3
with particular solutions

y1(x) = e3x +
1

x
, y2(x) = 2xe3x +

1

x
, y3(x) =

1

x
.

c) x4y′′ + 2x3y′ − 4y =
1

x
with particular solutions

y1(x) = e2/x − 1

4x
, y2(x) = 2e−2/x − 1

4x
, y3(x) = − 1

4x
.

8. Find nonhomogeneous second-order differential equations for which the following
particular solutions are known:

a) y1(x) = x cosx+ x2 sinx, y2(x) = 3 cosx+ x cosx+ x2 sinx,

y3(x) = sinx+ x cosx+ x2 sinx.

b) y1(x) = x+
3

4
x3, y2(x) = x lnx+

3

4
x3, y3(x) =

3

4
x3, x > 0.

c) y1(x) = x2 lnx+
x4

2
, y2(x) = 4x2 + x2 lnx+

x4

2
,

y3(x) = x3 + x2 lnx+
x4

2
, x > 0.

3.3.3 Particular solutions: the method of undetermined coefficients

We now consider a method to construct particular solutions for the equation

y′′ + py′ + qy = f(x) (3.3.18)

where p and q are given real numbers and f(x) is one of the following three special
functions:
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Case I: f(x) = Pm(x), where Pm is an m-th degree polynomial;

Case II: f(x) = eα1x cos(α2x)Pm(x) or f(x) = eα1x sin(α2x)Pm(x), where α1 ∈ R,
α2 ∈ R and Pm is an m-th degree polynomial;

Case III: f(x) = eαxPm(x), where α ∈ R. and Pm(x) is an m-th degree polynomial.

Let us now study the above three cases in detail.

Case I: f(x) = Pm(x):

Consider

y′′ + py′ + qy = Pm(x) (3.3.19)

where Pm is an mth-degree polynomial, i.e.,

Pm(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0. (3.3.20)

Here aj , (j = 0, 1, . . . ,m) are given real coefficients and m is a given natural number.
We now make Ansätze to find particular solutions for (3.3.19). We need to distinguish
between three different subcases:
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Case Ia: Let q �= 0 . The Ansatz for a particular solution of (3.3.19) is then

yp(x) = Amxm +Am−1x
m−1 + · · ·+A1x+A0 := Qm(x), (3.3.21)

where the real constants, Aj , (j = 0, 1, . . . ,m), are to be determined such that the Ansatz
(3.3.21) satisfies (3.3.19).

Case Ib: Let q = 0 and p �= 0 . The Ansatz for a particular solution of (3.3.19) is then

yp(x) = xQm(x), (3.3.22)

where Qm(x) is given by (3.3.21).

Case Ic: Let q = 0 and p = 0 . The Ansatz for a particular solution of (3.3.19) is then

yp(x) = x2Qm(x), (3.3.23)

where Qm(x) is given by (3.3.21).

Example 3.3.3.

——————————————

We find a general solution for

y′′ + 4y = 8x2. (3.3.24)

First we find the general solution φH of the associated homogeneous equation

y′′ + 4y = 0. (3.3.25)

Using the Ansatz y(x) = eλx, we obtain

φH(x) = c1 cos(2x) + c2 sin(2x). (3.3.26)

For a particular solution we need to use the Ansatz proposed in Case I a) due to the
presence of the term 4y. The Ansatz is thus

yp(x) = A2x
2 +A1x+A0, (3.3.27)

so that

y′p(x) = 2A2x+A1, y′′p(x) = 2A2.

Inserting the above into (3.3.24), we obtain

2A2 + 4
(
A2x

2 +A1x+A0

)
= 8x2. (3.3.28)
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Equating coefficients of x2, x and 1 in the above relation leads to the following set of
linear algebraic equations for A2, A1 and A0:

x2 : 4A2 = 8

x1 : 4A1 = 0

1 : 2A2 + 4A0 = 0.

Solving this algebraic system, we obtain A0 = −1, A1 = 0, A2 = 2. Hence, a particular
solution for (3.3.24) is

yp(x) = 2x2 − 1. (3.3.29)

A general solution of (3.3.24) is therefore

y(x) = c1 cos(2x) + c2 sin(2x) + 2x2 − 1. (3.3.30)

——————————————

Case II: f(x) = eα1x cos(α2x)Pm(x) or f(x) = eα1x sin(α2x)Pm(x), α1, α2 ∈ R

We consider the following linear complex differential equation with dependent complex
variable yc(x):

y′′c + py′c + qyc = eαxPm(x), α := α1 + iα2, α1 ∈ R, α2 ∈ R (3.3.31)

where Pm is an mth-degree polynomial, i.e.,

Pm(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0 (3.3.32)

with aj , (j = 0, 1, . . . ,m) real coefficients. Here α is a complex number, such that

α = α1 + iα2, with α1, α2 real.

Every differentiable complex function yc(x) can be written in the form

yc(x) = u(x) + iv(x), (3.3.33)

where u and v are real differentiable functions on some domain D ⊆ R and

y′c(x) = u′(x) + iv′(x)

y′′c (x) = u′′(x) + iv′′(x).

Using the Ansatz (3.3.33) and and its derivatives for reduces (3.3.31) to the form

u′′ + iv′′ + p(u′ + iv′) + q(u+ iv)

= eα1x cos(α2x)Pm(x) + ieα1x sin(α2x)Pm(x), (3.3.34)
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where we have used the relation

e(α1+iα2)x = eα1x (cos(α2x) + i sin(α2x)) . (3.3.35)

Comparing the real parts and the imaginary parts of (3.3.34), we obtain the following two
real nonhomogeneous differential equations in u and v:

u′′ + pu′ + qu = eα1x cos(α2x)Pm(x) (3.3.36)

and

v′′ + pv′ + qv = eα1x sin(α2x)Pm(x) (3.3.37)

To find particular solutions for (3.3.36) and (3.3.37), the proposition that follows is useful:
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Proposition 3.3.4. A convenient Ansatz for a complex particular solution ycp(x) of

y′′c + py′c + qyc = eαxPm(x), α := α1 + iα2, α1 ∈ R, α2 ∈ R

is

ycp(x) = eαxwc(x), (3.3.38)

where wc(x) is any complex solution of the equation

w′′
c + (2α+ p)w′

c + (α2 + αp+ q)wc = Pm(x). (3.3.39)

A real particular solution up(x) of

u′′ + pu′ + qu = eα1x cos(α2x)Pm(x)

is then given by the real part of ycp, i.e.

up(x) = Re [ycp], (3.3.40)

whereas a real particular solution vp(x) of

v′′ + pv′ + qv = eα1x sin(α2x)Pm(x)

is give by the imaginary part of ycp(x), i.e.

vp(x) = Im [ycp]. (3.3.41)

Proof: Differentiating the Ansatz (3.3.38) we obtain

y′cp(x) = αeαxwc(x) + eαxw′
c(x)

y′′cp(x) = α2eαxwc(x) + 2αeαxw′
c(x) + eαxw′′

c (x).

Inserting (3.3.38) and the above derivatives, y′cp and y′′cp, in

y′′c + py′c + qyc = eαxPm(x), α := α1 + iα2, α1 ∈ R, α2 ∈ R

leads to condition (3.3.39). �

To find a solution wc(x) of (3.3.39), i.e. equation

w′′
c + (2α+ p)w′

c + (α2 + αp+ q)wc = Pm(x),

we use the same Ansätze as listed in Case I since the nonhomogeneous part of (3.3.39)
is a polynomial, albeit we now need to evaluate complex coefficients in the polynomial
Ansatz Qm(x). The following three cases may appear:
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Case IIa: Let α2 + αp+ q �= 0 . An Ansatz for a solution wc of (3.3.39) is then

wc(x) = Bmxm +Bm−1x
m−1 + · · ·+B1x+B0 := Sm(x), (3.3.42)

where Bj (j = 0, 1, . . . ,m) are complex constants which need to be determined for the
Ansatz.

Case IIb: Let α2 + αp+ q = 0 and 2α+ p �= 0 . An Ansatz for a solution wc of (3.3.39)
is then

wc(x) = xSm(x), (3.3.43)

where Sm(x) is given by (3.3.42).

Case IIc: Let α2 + αp+ q = 0 and 2α+ p = 0 . An Ansatz for a solution, wc, of (3.3.39)
is then

wc(x) = x2Sm(x), (3.3.44)

where Sm(x) is given by (3.3.42).

Example 3.3.4.

——————————————

We find a particular solution for the differential equation

y′′ − y = sinx. (3.3.45)

Since Im
[
eix

]
= sinx, we need to consider the complex differential equation

y′′c − yc = e−ix, (3.3.46)

where the complex function yc(x) is

yc(x) = u(x) + iy(x) and Im[yc(x)] = y(x).

We now seek a particular solution ycp(x) for the complex equation (3.3.46) by the Ansatz

ycp(x) = eixwc(x). (3.3.47)

A particular solution yp(x) for the real equation (3.3.45) is then

yp(x) = Im [ycp(x)] .

Differentiating the Ansatz (3.3.47) twice, we obtain

y′cp = eix
(
iwc + w′

c

)
, y′′cp = eix

(
−wc + 2iw′

c + w′′
c

)
. (3.3.48)
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Inserting the Ansatz (3.3.47) and (3.3.48) in the complex equation (3.3.46), we obtain

eix
(
w′′
c + 2iw′

c − 2wc

)
= eix

or, since eix �= 0 for all x ∈ R, we have

w′′
c + 2iw′

c − 2wc = 1. (3.3.49)

An Ansatz for wc of (3.3.49) is given by Case II a, namely

wc(x) = B0 (3.3.50)

where B0 is a constant (in general B0 is complex, but in this case it is clearly real).

Inserting the Ansatz (3.3.50) into (3.3.49) we obtain −2B0 = 1 so that wc(x) = −1

2
. Thus

we have obtained a complex particular solution for (3.3.46), namely

ycp(x) = −1

2
eix

so that a real particular solution yp(x) for the real equation (3.3.45) is

yp(x) = Im

[
−1

2
eix

]
= Im

[
−1

2
(cosx+ i sinx)

]
= −1

2
sinx.

——————————————
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For a second example of Case II, we consider a slightly more complicated equation:

Example 3.3.5.

——————————————
We find a particular solution for the differential equation

y′′ + 4y = (10x− 1)ex cosx. (3.3.51)

Since

Re
[
(10x− 1)e(1+i)x

]
= (10x− 1)ex cosx (3.3.52)

we need to consider the complex equation

y′′c + 4yc = (10x− 1)e(1+i)x (3.3.53)

and construct a complex particular solution ycp(x) by the Anstaz

ycp = e(1+i)xwc(x). (3.3.54)

A real particular solution yp(x) of (3.3.51) then follows by

yp(x) = Re [ycp]. (3.3.55)

Differentiating the Ansatz (3.3.55) we obtain

y′cp = (1 + i)e(1+i)xwc + e(1+i)xw′
c

y′′cp = (1 + i)2e(1+i)xwc + 2(1 + i)e(1+i)xw′
c + e(1+i)xw′′

c

and the condition on wc becomes

w′′
c + 2(1 + i)w′

c + (4 + 2i)wc = 10x− 1. (3.3.56)

An appropriate Ansatz for (3.3.56) is provided by Case IIa, i.e.

wc(x) = B1x+B0, B0 ∈ C, B1 ∈ C. (3.3.57)

Equation (3.3.56) then takes the form

2(1 + i)B1 + (4 + 2i)(B1x+B0) = 10x− 1 (3.3.58)

and equating coefficients of x and 1 leads to

(4 + 2i)B1 = 10, 2(1 + i)B1 + (4 + 2i)B0 = −1.

We find

B0 = −8

5
+

3

10
i, B1 = 2− i.
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Thus a complex solution for (3.3.56) is

wc(x) = (2− i)x− 8

5
+

3

10
i (3.3.59)

and a complex particular solution of (3.3.53) is

ycp(x) = e(1+i)x

[
(2− i)x− 8

5
+

3

10
i

]

= ex
[(

2x− 8

5

)
cosx+

(
x− 3

10

)
sinx

]

+iex
[(

−x+
3

10

)
cosx+

(
2x− 8

5

)
sinx

]
(3.3.60)

A real particular solution yp(x) of (3.3.51) is then

yp(x) = Re [ycp] =

(
2x− 8

5

)
ex cosx+

(
x− 3

10

)
ex sinx. (3.3.61)

——————————————
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Case III f(x) = eαxPm(x), α ∈ R

We consider the equation

y′′ + py′ + qy = eαxPm(x), α ∈ R (3.3.62)

where Pm is an m-th-degree polynomial with real coefficients. We note that this is in fact
a special case of (3.3.31), with α ∈ R. Here y(x) is a real function and the same Ansatz,
(3.3.38), for a particular solution yp(x) of (3.3.62) is valid, namely

yp(x) = eαxw(x) (3.3.63)

with the same condition on w as given by (3.3.39), namely

w′′ + (2α+ p)w′ + (α2 + αp+ q)w = Pm(x) (3.3.64)

To find a solution w(x) of (3.3.64) we distinguish between three cases:

Case IIIa: Let α2 + αp+ q �= 0 . An Ansatz for a solution w(x) of (3.3.64) is then

w(x) = Amxm +Am−1x
m−1 + · · ·+A1x+A0 := Qm(x), (3.3.65)

where Aj (j = 0, 1, . . . , n) are real constants which need to be determined for the Ansatz.

Case IIIb: Let α2 + αp+ q = 0 and 2α+ p �= 0 . An Ansatz for a solution w(x) of

(3.3.64) is then

w(x) = xQm(x), (3.3.66)

where Qm(x) is given by (3.3.65).

Case IIIc: Let α2 + αp+ q = 0 and 2α+ p = 0 . An Ansatz for a solution w(x) of

(3.3.64) is then

w(x) = x2Qm(x), (3.3.67)

where Qm(x) is given by (3.3.65).

Example 3.3.6.

——————————————
We find a particular solution for

y′′ − 9y = 8x3ex. (3.3.68)

The Ansatz (3.3.63) for yp(x) is

yp(x) = exw(x)
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and the derivatives are

y′p = ex
(
w + w′) , y′′p = ex

(
w + 2w′ + w′′)

Inserting this Ansatz into the given equation, we obtain

ex
(
w′′ + 2w′ + w − 9w

)
= 8x3ex.

Since ex �= 0 for all R, we have

w′′ + 2w′ − 8w = 8x3. (3.3.69)

An Ansatz for w(x) is given by Case IIIa, namely

w(x) = A0 +A1x+A2x
2 +A3x

3

with

w′ = 3A− 3x2 + 2A− 2x+A1, w′′ = 6A3x+ 2A2.

Inserting the above Ansatz into (3.3.69), we obtain

6A3x+ 2A2 + 2
(
3A3x

2 + 2A2x+A1

)
− 8

(
A3x

3 +A2x
2 +A1x+A0

)
= 8x3.

Equating the coefficients x3, x2, x and x0 we obtain

x3 : −8A3 = 8

x2 : 6A3 − 8A2 = 0

x : 6A3 + 4A2 − 8A1 = 0

x0 : 2A2 + 2A1 − 8A0 = 0.

This algebraic system has the unique solution

A0 = −15

32
, A1 = −9

8
, A2 = −3

4
, A3 = −1.

Thus the particular solution for (3.3.68) takes the form

yp(x) = −ex
(
x3 +

3

4
x2 +

9

8
x+

15

32

)
.

——————————————

3.3.4 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following differential equations:
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a) y′′ + y = 2(1− x).

b) y′′ − 7y = (x− 1)2.

c) y′′ − 4y′ + 4y = xex.

d) y′′ + y = xe2x.

e) y′′ − 3y′ − 4y = 5e4x.

f) y′′ + 2y′ + y = xex cosx.

g) y′′ + 4y = sin 2x.

h) y′′ − 6y′ + 9y =
(
3x7 − 5x4

)
e3x.

i) y′′ − y = ex − 3.

j) y′′ + 3y′ + 2y = 7e2x + e−x.

k) y′′ + 4y = 9 cos2 x.

l) y′′ − 9y = 5 sin2 x.

m) y′′ + k2y = k for all real constant k.

n) y′′ + k2y = k sin(kx+ α) for all real constants k and α.

o) 4y′′ − 3y′ = xe(3/4)x.

p) y′′ + 25y = cos(5x).

q) y′′ + 6y′ + 13y = e−3x cos(2x).

r) y′′ − 2y′ − 3y = 2x+ e−x − 2e3x.

s) y′′ − 2y′ + y = 2 + ex sinx.

t)* y′′ − 9y = 40xe3x cos(2x).

2. Solve the following initial-value problems:

a) y′′ − 4y′ + 4y = x2, y(0) = 0, y′(0) = 0.

b) y′′ + y = 2(1− x), y(0) = 2, y′(0) = −2.

c) y′′ − 6y′ + 9y = 9x2 − 12x+ 2, y(1) = 1, y′(1) = 3.

d) y′′ − 5y′ + 6y = (12x− 7)e−x y(0) = y′(0) = 0.
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e) y′′ + y = 4x cosx y(0) = 0, y′(0) = 1.

f) y′′ − 6y′ + 9y = 16e−x + 9x− 6, y(0) = 1, y′(0) = 1.

g) y′′ − 2y′ + 2y = 4ex cosx, y(π) = 1, y′(π) = 1.

h) y′′ − y′ = −5e−x (sinx+ cosx) , y(0) = −4, y′(0) = 5.
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3. Find the linear nonhomogeneous second-order differential equations with constant
coefficients which admit the following general solutions (c1 and c2 are arbitrary
constants):

a) y(x) = c1e
x + c2e

−x + x5

b) y(x) = c1 cosx+ c2 sinx+ xex

c) y(x) = c1e
3x cos(2x) + c2e

3x sin(2x) + 2xe−4x

d) y(x) = c1e
3x + c2xe

3x + x sinx− 7

e) y(x) = c1 sin(2x) + c2 cos(2x) + 3 sin2 x

f) y(x) = c1e
−x cos(3x) + c2e

−x sin(3x) + (5x2 + 6)e−x + x3e2x

g) y(x) = c1 + c2e
−4x + sinx+ e4x + xe2x + 4

h) y(x) = c1e
x sin(2x) + c2e

x cos(2x) + 3e3x sin2 x− 2e3x cos2 x

4. Prove Proposition 3.3.1.

3.4 The second-order Cauchy-Euler equation

The general Cauchy-Euler equation of second order is of the form

x2y′′ + pxy′ + qy = f(x) (3.4.1)

where p and q are given real numbers and f(x) is a given continuous function on some in-
terval D ⊆ R. To solve this equation we can introduce a new independent variable, z,
and transform the Cauchy-Euler equation into a linear second-order nonhomogeneous dif-
ferential equation with constant coefficients in terms of this new independent variable.
We have
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Proposition 3.4.1.

a) For x > 0, the Cauchy-Euler equation

x2
d2y

dx2
+ px

dy

dx
+ qy(x) = f(x)

can be written in the form

dy2

dz2
+ (p− 1)

dy

dz
+ qy(z) = f(ez), (3.4.2)

where the new independent variable z is given by the relation

{
x = ez ⇔ z = ln(x)

y(x) = y(z).
(3.4.3)

b) For x < 0, the Cauchy-Euler equation

x2
d2y

dx2
+ px

dy

dx
+ qy(x) = f(x)

can be written in the form

dy2

dz2
+ (1− p)

dy

dz
+ qy(z) = f(−ez) (3.4.4)

where the new independent variable z is given by the relation

{
x = −ez ⇔ z = ln(−x)

y(x) = y(z).
(3.4.5)

Proof: Consider x > 0. Find now
dy

dx
and

d2y

dx2
for

{
x = ez ⇔ z = ln(x)

y(x) = y(z).

By the chain rule we have

dy(x)

dx
=

dy(z)

dz

dz

dx
=

dy(z)

dz

1

x
(3.4.6)
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and

d2y(x)

dx2
=

d

dx

(
dy(z)

dz

1

x

)

=

(
d2y(z)

dz2
dz

dx

)
1

x
+

dy(z)

dz

(
− 1

x2

)

=
d2y(z)

dz2
1

x2
− dy(z)

dz

1

x2
. (3.4.7)

Insert now (3.4.3), (3.4.6) and (3.4.7) in the Cauchy-Euler equation (3.4.1). This leads to

x2
(
d2y

dz2
1

x2
− dy

dz

1

x2

)
+ px

(
dy

dz

1

x

)
+ qy(z) = f(ez)

and, upon simplification, we obtain the constant-coefficient equation (3.4.2). The proof of
(3.4.4) is similar. �

Historical Note: (source: Wikipedia)
Baron Augustin-Louis Cauchy (1789 – 1857) was a French mathematician who was an
early pioneer of analysis. He started the project of formulating and proving the theorems
of infinitesimal calculus in a rigorous manner. He defined continuity in terms of infinites-
imals and gave several important theorems in complex analysis and initiated the study of
permutation groups in abstract algebra. He wrote approximately eight hundred research
articles

Augustin-Louis Cauchy (1789 – 1857)
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Example 3.4.1.

——————————————
We find a general solution for the following Cauchy-Euler equation:

x2y′′ + xy′ − y = ln(x), x > 0.

Using Proposition 3.4.1, we obtain 3.4.2) with p = 1, q = −1 and f(ez) = ln(ez) = z by
the change of independent variable (3.4.3). That is the constant-coefficients equation

d2y(z)

dz2
− y(z) = z,

which admits the general solution

y(z) = c1e
z + c2e

−z − z.

Replacing now z = ln(x) we obtain the general solution

y(x) = c1x+
c2
x

− ln(x),

of the given Cauchy-Euler equation.

——————————————
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Historical Note: (source: Wikipedia)
Leonhard Euler (1707–1783) was a pioneering Swiss mathematician and physicist. He
made important discoveries in fields as diverse as infinitesimal calculus and graph theory.
He also introduced much of the modern mathematical terminology and notation, partic-
ularly for mathematical analysis such as the notion of a mathematical function. He is
also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler
is considered to be the pre-eminent mathematician of the 18th century and one of the
greatest mathematicians ever. He is also one of the most prolific mathematicians; his
collected works fill 80 volumes. He spent most of his adult life in St. Petersburg, Russia,
and in Berlin, Prussia. A statement attributed to Pierre-Simon Laplace expresses Euler’s
influence on mathematics: ”Read Euler, read Euler, he is the master of us all.”

Leonhard Euler (1707–1783)

3.4.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following Cauchy-Euler equations for x > 0:

a) x2y′′ − xy′ − 3y = 0

b) x2y′′ + 2xy′ − 6y = 0

c) x2y′′ + 3xy′ + 2y = x3

d) x2y′′ − 4xy′ + 6y = 12− x2

e) x2y′′ + 7xy′ + 9y =
4

x3
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f) x2y′′ − 4xy′ + 6y = x4 − x2

g)* x2y′′ − 3xy′ − 5y = x2 lnx

h) x2y′′ − 2xy′ + 2y = x5 lnx

2. Solve the initial-value problem

x2y′′ + xy′ + y = cos(lnx),

where y(1) = 2 and y′(1) = 3

3. Find the second-order Cauchy-Euler equation which admits the following general
solution:

y(x) = c1x+ c2x lnx+
3

4
x3.

4. a) Consider the differential equation

a(α+ βx)2y′′ + b(α+ βx)y′ + cy = f(x), (3.4.8)

where a, b, c, α, β are constants and a �= 0, β �= 0. Show that




α+ βx = ez, x > −α

β

y(x) = y(z)
(3.4.9)

reduces (3.4.8) into the following equation:

aβ2d
2y

dz2
+ (bβ − aβ2)

dy

dz
+ cy = f

(
ez − α

β

)
. (3.4.10)

b) Find now a general solution of

(2 + 3x)2y′′ − 3(2 + 3x)y′ + 9y = 81x, x > −2

3

3.5 On second-order linear homogeneous equations with non-
constant coefficients

We consider the equation

y′′ + g(x)y′ + h(x)y = 0

where g and h are given continuous functions on some domain D ⊆ R.
We show that this equation can be reduced to a first-order linear differential equation

for all g(x) and h(x) if one solution is known.

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

101 

Second-order linear dierential equations3.5. LINEAR EQUATIONS WITH NONCONSTANT COEFFICIENTS 99

Proposition 3.5.1.
Suppose that φ1(x) is a nonconstant special solution of

y′′ + g(x)y′ + h(x)y = 0, (3.5.1)

for every x on some interval D ⊆ R. Then the following statements hold:

a) The Ansatz y(x) = φ2(x), where

φ2(x) = v(x)φ1(x), (3.5.2)

and v is nonconstant function on D, reduces (3.5.1) on D to a first-order homo-
geneous linear equation in w(x), namely

φ1w
′ + w(2φ′

1 + g(x)φ1) = 0, (3.5.3)

where w(x) = v′(x).

b) A second solution φ2(x) of (3.5.1) on D is given by

φ2(x) = φ1(x)

∫
φ−2
1 (x) eξ(x) dx, (3.5.4)

where ξ(x) = −
∫
g(x) dx.

c) The solutions φ1(x) and φ2(x) given by (3.5.4) are linearly independent on D.

d) A general solution y(x) of (3.5.1) is given by the linear combination of the given
solution φ1(x) and the derived solution (3.5.4), i.e.

y(x) = c1φ1(x) + c2φ2(x) (3.5.5)

for all x ∈ D.

Proof: Insert the Ansatz (3.5.2) for a second solution φ2(x) into (3.5.1). This leads to

φ1v
′′ + v′(2φ′

1 + gφ1) = 0. (3.5.6)

With the substitution v′(x) = w(x) we obtain (3.5.3). Equation (3.5.3) is a separable
equation and, since w(x) �= 0, we can integrate this equation as follows:

∫
dw

w
= −

∫ (
2
φ′
1

φ1
+ g

)
dx,

so that

w(x) = exp

[
−
∫ (

2φ′
1

φ1
+ g

)
dx

]
.

Since ∫
φ′
1

φ1
dx =

∫
d

dx
ln |φ1(x)| dx = ln |φ1(x)|,
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we obtain

w(x) = φ−2
1 exp

[
−
∫

g(x)dx

]
. (3.5.7)

Recall that v′(x) = w(x). Integrating (3.5.7) one more time over x, we obtain

v(x) =

∫
φ−2
1 eξ(x)dx, where ξ(x) = −

∫
g(x)dx

and the second solution, (3.5.4), then follows from the (3.5.2). To prove the linear inde-
pendence we evaluate the Wronskian

W [φ1, vφ1](x) =

∣∣∣∣
φ1 vφ1

φ′
1 v′φ1 + vφ′

1

∣∣∣∣ (x) = v(x)′φ2
1(x).

Thus W [φ1, vφ1](x) �= 0, since v(x) is not constant and φ1 �= 0. Hence φ1(x) and φ2(x) =
v(x)φ1(x) given by (3.5.4) are linearly independent on D. The general solution of (3.5.1)
then follows from the superposition principle. �
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Example 3.5.1.

——————————————

Consider the equation

xy′′ − (2x+ 1)y′ + (x+ 1)y = 0

on the interval x > 0. One solution, φ1, is given by

φ1(x) = ex.

We find a second solution, φ2, by the formula (3.5.4). Dividing the given equation by x
we identify

g(x) = −2x+ 1

x
,

so that

ξ(x) = 2x+ ln |x|

and

φ2(x) = ex
[∫

e−2xe2x+lnxdx

]
= ex

∫
xdx =

1

2
x2 ex.

——————————————

3.5.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. In the following differential equations, assume that the coefficient of y′′ is positive
and find then a general solutions of the given equations:

a) (2x− x2)y′′ + (x2 − 2)y′ + 2(1− x)y = 0, where one solution is φ1(x) = x2

b) xy′′ + 2y′ + xy = 0, where one solution is φ1(x) =
sinx

x

c) x2y′′ − 2x(x+ 1)y′ + 2(1 + x)y = 0, where one solution is φ1(x) = xe2x

d) (2x+ 1)y′′ + (4x− 2)y′ − 8y = 0, where one solution is φ1(x) = e−2x

e)∗ x2y′′ − 2xy′ + (4x2 + 2)y = 0, where one solution is φ1(x) = x cos(2x)

f) xy′′ − (2x+ 1)y′ + (x+ 1)y = 0, where one solution is φ1(x) = ex
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2. Let φ1(x) and φ2(x) be two linearly independent solutions on an interval D ⊆ R for
the differential equation

y′′ + g(x)y′ + h(x)y = 0, (3.5.8)

where g and h are any given continuous functions on D.

a) Show that the Wronskian, W [φ1, φ2](x), satisfies the first-order differential
equation

dW

dx
+ g(x)W = 0. (3.5.9)

b) Integrate (3.5.9) to derive the formula (3.5.4), namely

φ2(x) = φ1(x)

∫
φ−2
1 (x) eξ(x) dx, ξ(x) = −

∫
g(x) dx

given in Proposition 3.5.1, for the second solution φ2(x) in terms of φ1(x).

Hint: φ2
1

d

dx

(
φ2

φ1

)
= φ1φ

′
2 − φ2φ

′
1

3. Show that

d2y

dx2
+ g(x)

dy

dx
+ h(x)y = 0,

can be transformed to

d2y

dz2
+ a

dy

dz
+ bu = 0, a, b ∈ R, b �= 0,

by the change of the independent variable, x, as

z = b−1/2

∫
h1/2(x) dx,

where h(x) is a positively defined function that satisfies the following Bernoulli
equation:

dh

dx
+ 2g(x)h = b−1/2a h3/2.

Integrate this Bernoulli equation to find the explicit form of h(x) in terms of g(x).

4. a) Show that

d2y

dx2
+ g(x)

dy

dx
+ h(x)y = 0

can be transformed to

d2v

dx2
+H(x)v = 0,
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by the following change of the dependent variable:

ln |y(x)| = ln |v(x)| − 1

2

∫
g(x) dx,

where

H(x) = h(x)− 1

2

dg

dx
− 1

4
g2(x).

b) Using the result of a), find a general solution of the following equations:

i) xy′′ − (2x+ 1)y′ + (x+ 1)y = 0, x > 0

ii) y′′ +

(
2

x

)
y′ + y = 0, x > 0.

5. a) Consider the second-order linear equation

a0(x)y
′′ + a1(x)y

′ + a2(x)y = 0 (3.5.10)

and the linear first-order equation

M(x)y′ +N(x)y = c, (3.5.11)

where c is an arbitrary constant and a0, a1, a2 are differentiable functions.
Find the condition on a0, a1, a2 such that (3.5.10) can be integrated once to
obtain (3.5.11) and express N and M explicitly in terms of a0, a1, a2. The
expression I = M(x)y′ + N(x)y is known as a first integral of the equation
(3.5.10).

b) Find a first integral and a general solution of the following equation:

(x2 + 2x)y′′ + 4(x+ 1)y′ + 2y = 0.
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Chapter 4

Higher-order linear differential
equations

4.1 Introduction: the initial-value problem

In this chapter we consider the nth order (n ≥ 2) linear homogeneous ordinary dif-
ferential equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0 (4.1.1)

and the linear nonhomogeneous ordinary differential equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f(x) (4.1.2)

Here pj(x) (j = 0, 1, 2, . . . , n) and f(x) are real-valued continuous functions given on some
common domain D ⊆ R, n ≥ 1 and pn(x) �= 0 for all x ∈ D.

We know from Proposition 1.1.5 in Chapter 1, that the general solution of the ho-
mogeneous equation (4.1.1) is given by the linear combination of n linearly independent
solutions

S = {φ1(x), φ2(x), . . . , φn(x)} (4.1.3)

in Cn(D). That is, the general solution of (4.1.1) is

y(x) = c1φ1(x) + c2φ2(x) + . . .+ cnφn(x), (4.1.4)

where c1, . . . , cn are n arbitrary real constants. Moreover, we know from Proposition 3.3.1
in Chapter 3, that the general solution of the second-order nonhomogeneous equation of
the form (4.1.2) (with n = 2) is given by the general solution of its homogeneous part plus
any particular solution yp(x) of the nonhomogeneous differential equations. This is also
true for the n-th order nonhomogeneous equation (4.1.2), so that the general solution of
(4.1.2) is of the form

y(x) = c1φ1(x) + c2φ2(x) + . . .+ cnφn(x) + yp(x) (4.1.5)

105
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where all functions are in Cn(D) (see Section 4.3 below).

In our study of equations (4.1.1) and (4.1.2), we shall mainly restrict ourselves to equa-
tions with constant coefficients and concentrate on generalizing the methods described for
linear second-order equations in Chapter 3 to n-th order linear equations. In a sense this
generalization is straight forward, although there are of course complications. For exam-
ple, for n-th order linear homogeneous differential equations the characteristic equation
resulting from the Ansatz y(x) = eλx, becomes an n-th degree polynomial, and to find
all roots of such a polynomial is in general not possible even though we know that those
exist.

The initial-value problem for (4.1.2) requires the following initial data at a point
x0 in the solution domain of the equation:

y(x0) = b1, y′(x0) = b2, y′′(x0) = b3, . . . , y(n−1)(x0) = bn, (4.1.6)

where b1, b2, . . . , bn are given real numbers. This data is then used to fix the constants
of integration c1, c2, . . . , cn in the general solution (4.1.5) by solving the linear algebraic
system of equations

y(x0) = c1φ1(x0) + c2φ2(x0) + . . .+ cnφn(x0) + yp(x0) = b1

y′(x0) =
d

dx

[
c1φ1(x) + c2φ2(x) + . . .+ cnφn(x) + yp(x)

]∣∣∣∣
x=x0

= b2

...

y(n−1)(x0) =
dn−1

dxn−1

[
c1φ1(x) + c2φ2(x) + . . .+ cnφn(x) + yp(x)

]∣∣∣∣
x=x0

= bn.

This algebraic system can be written in the form

Ac = b− yp, (4.1.7)

where

A =




φ1(x0) φ2(x0) . . . φn(x0)

φ′
1(x0) φ′

2(x0) . . . φ′
n(x0)

...
... . . .

...

φ
(n−1)
1 (x0) φ

(n−1)
2 (x0) . . . φ

(n−1)
n (x0)




, c =




c1

c2

...

cn




(4.1.8a)

b =




b1

b2

...

bn




, yp =




yp(x0)

y′p(x0)

...

y
(n−1)
p (x0)




. (4.1.8b)
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We note that detA = W [φ1, φ2, . . . , φn](x0), where W is the Wronskian of the set S given
by (4.1.3). Since S is by assumption a linearly independent set for all x in (4.1.2) solution
domain D, we have that

W [φ1, φ2, . . . , φn](x) �= 0 for all x ∈ D.

Hence A is an invertible matrix in D so that the algebraic system (4.1.7) has a unique
solution. We recall, Proposition 1.1.6, given in Chapter 1, for the existence and uniqueness
of the solutions of linear differential equations.

In the sections that follow we give several examples of initial-value problems, although
we mainly consider linear constant coefficient equations.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca


A First Course in Ordinary  
Differential Equations

110 

Higher-order linear dierential equations
108 CHAPTER 4. HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

4.2 Linear homogeneous constant coefficients equations

In this section we discuss the problem to find the general solution for the n-th order linear
homogeneous ordinary differential equation with constant coefficients, that is

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0 (4.2.1)

where pj (j = 0, 1, . . . , n) are given real constants and pn �= 0.

To find the general solution of (4.2.1) we make use of the following

Proposition 4.2.1.

a) The Ansatz

y(x) = eλx, λ ∈ C (4.2.2)

is a (possibly complex) solution of

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0

for all x ∈ R, for every (possibly complex) solution λ of the algebraic equation

Pn(λ) := pnλ
n + pn−1λ

n−1 + · · ·+ p1λ+ p0 = 0. (4.2.3)

Equation (4.2.3) is known as the characteristic equation of the differential
equation (4.2.1) regarding the Ansatz (4.2.2). The n-th degree polynomial Pn(λ)
is known as the characteristic polynomial and the solutions of (4.2.3) are the
roots of Pn(λ).

b) If λ is a complex solution of the characteristic equation (4.2.3), i.e,

λ = α+ iβ (α ∈ R, β ∈ R)

then the associated complex solution

φc(x) = ψ1(x) + iψ2(x)

of (4.2.1) results in two real solution for (4.2.1), namely

ψ1(x) = Re[φc(x)] = eαx cos(βx), ψ2(x) = Im[φc(x)] = eαx sin(βx).

Proof:

a) Differentiating the Ansatz

y(x) = eλx, (λ ∈ C)
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n times, we obtain

y′(x) = λeλx, y′′(x) = λ2eλx, . . . , y(n)(x) = λneλx, (4.2.4)

so that (4.2.1) leads to

eλx
[
pnλ

n + pn−1λ
n−1 + · · ·+ p1λ+ p0

]
= 0.

Since eλx �= 0 for all x ∈ R, we conclude that λ must be a root of the n-th degree
characteristic polynomial Pn(λ) (4.2.3) in order for y(x) = eλx to satisfy the n-th
order differential equation (4.2.1).

b) Assume that φc(x) = ψ1(x) + iψ2(x) is a solution for (4.2.1). Then

pnφ
(n)
c + pn−1φ

(n−1)
c + · · ·+ p1φ

′
c + p0φc = 0

and

pnψ
(n)
1 + pn−1ψ

(n−1)
1 + · · · p1ψ′

1 + p0ψ1

+i
[
pnψ

(n)
2 + pn−1ψ

(n−1)
2 + · · ·+ p1ψ

′
2 + p0ψ2

]
= 0 + i 0.

Since two complex functions are equal if and only if their real- and imaginary parts
are equal, we have that

pnψ
(n)
1 + pn−1ψ

(n−1)
1 + · · ·+ p1ψ

′
1 + p0ψ1 = 0

pnψ
(n)
2 + pn−1ψ

(n−1)
2 + · · ·+ p1ψ

′
2 + p0ψ2 = 0,

from which we conclude that ψ1(x) and ψ2(x) must be solutions of (4.2.1). Let now

φc(x) = eλx = e(α+iβ)x = eαx [cos(βx) + i sin(βx)] ,

where λ is a root of Pn(λ). It follows that

ψ1(x) = Re[φc(x)] = eαx cos(βx), ψ2(x) = Im[φc(x)] = eαx sin(βx),

as stated. �

Example 4.2.1.

——————————————
Consider the third-order equation

y(3) − y′′ + y′ − y = 0. (4.2.5)

We first find the general solution and then solve the initial-value problem for the initial
data

y(0) = 1, y′(0) = 2, y′′(0) = 3.
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Applying the Ansatz (4.2.2), we obtain the characteristic equation

P3(λ) := λ3 − λ2 + λ− 1 = 0

which obviously admits the root λ = 1. Dividing P3(λ) by λ− 1, we obtain λ2 +1. Hence
P3(λ) factorizes in the form

P3(λ) = (λ− 1)(λ2 + 1) = 0

and the three roots (one real- and two complex roots) are

λ1 = 1, λ2 = i, λ3 = −i ≡ λ̄2 (bar denotes the complex conjugate).

This leads to three solutions for (4.2.5), namely

φ1(x) = ex, φc1(x) = eix, φc2(x) = e−ix.

Since e±ix = cosx± i sinx, the two complex solutions take the form

φc2(x) = cosx+ i sinx, φc3(x) = cosx− i sinx,

The real- and imaginary parts of both φ2c and φ3c are solutions of (4.2.5), i.e. we obtain
four real solutions for (4.2.5) from φ2c and φ3c, but obviously only two of those are linearly
independent, namely

φ2(x) = cosx = Re[φ2c] ≡ Re[φ3c], φ3(x) = sinx = Im[φ2c] ≡ Im[−φ3c]

We now have a set of three real solutions, S = {φ1(x) = ex, φ2(x) = cosx, φ2(x) =
sinx}, for (4.2.5). It is easy to check that S is a linearly independent set in C∞(R), e.g.
W [φ1, φ2, φ3](0) = 2. Thus the general solution of (4.2.5) is

y(x) = c1e
x + c2 cosx+ c3 sinx

for all x ∈ R with c1, c2, c3 arbitrary constants. We now solve the initial-value problem
for the given initial data. Differentiating the general solution twice, we obtain

y′(x) = c1e
x − c2 sinx+ c3 cosx

y′′(x) = c1e
x − c2 cosx− c3 sinx.

For the given initial data we now have the following linear algebraic system:

y(0) = c1 + c2 = 1

y′(0) = c1 + c3 = 2

y′′(0) = c1 − c2 = 3,

which has the unique solution

c1 = 2, c2 = −1, c3 = 0.
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Hence the solution of the initial-value problem is

y(x) = 2ex − cosx

for all x ∈ R.

——————————————

We note that the root λ3 = −i was not needed for the general solution, since this is the
complex conjugate of the root λ2 and it gives the same (up to sign) real solutions for its
real- and imaginary parts. This is a general property:

If λk is a complex root of the characteristic equation, then the complex conjugate of this
root is also a root of the characteristic polynomial (see Proposition 4.2.2), but this com-
plex conjugate root does not lead to new linearly independent solutions for the differential
equation.
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What are the difficulties?

One should point out that the difficulty of the task to find the general solution of an n-th
order homogeneous equation with constant coefficients is due to the following questions:

1. How can we find all the roots of the n-th degree characteristic polynomial equation

Pn(λ) := pnλ
n + pn−1λ

n−1 + · · ·+ p1λ+ p0 = 0?

Although we know that n roots always exists, it is in general not possible to find
them. However, there are some properties of n-degree polynomials that can be useful
to find the roots (see Proposition 4.2.2 below).

2. How can we select n linearly independent solutions from the list of all solutions
obtained by the Ansatz

y(x) = eλx,

for the roots λj of the corresponding characteristic equation?

This is in fact not a difficult problem and the answer is provided by Propositions
4.2.3.

3. How should we construct a sufficient number of linearly independent solutions for the
case when the characteristic polynomial Pn(λ) admits roots with multiplicity k > 1,
i.e. when the same root appears k times (k ∈ N)?

We provide a statement for this construction in Proposition 4.2.4.

We now address the above questions and provide general statements that will help
overcome the mentioned difficulties.
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Proposition 4.2.2. Properties of n-degree polynomials with real coefficients:

A polynomial of degree n,

Pn(λ) = pnλ
n + pn−1λ

n−1 + · · ·+ p1λ+ p0. (4.2.6)

where pj are all real numbers, has the following properties:

a) Pn(λ) has exactly n roots (including multiplicity, i.e., roots with the same values),
λ1, λ2, . . . , λn (real and/or complex) and the resulting factorization

Pn(λ) = pn(λ− λ1)(λ− λ2) · · · (λ− λn).

b) If λk is a complex root of Pn(λ), then the complex conjugate of λk, denoted by
λ̄k, is also a root of Pn(λ).

c) Pn(λ) can be factorized in terms of first-degree polynomial factors that have only
real coefficients and/or second-degree polynomial factors that have only real coef-
ficients.

d) The n-th degree polynomial Pn(λ) = λn−a0 admits the following n distinct roots:

λk = |a0|1/n
[
cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

)]
,

where k = 0, 1, 2, . . . , n− 1 and θ = π for a0 < 0 or θ = 0 for a0 > 0.

e) Viéta’s Theorem: Pn(λ) admits the following relationship between its roots
λ1, λ2, . . . , λn and its coefficients pn, pn−1, . . . , p0:

λ1 + λ2 + · · ·+ λn =

n∑
i=1

λi = −pn−1

pn

λ1λ2 + λ1λ3 + · · ·+ λn−1λn =

n∑
i<j, {i, j}=1

λiλj =
pn−2

pn

λ1λ2λ3 + λ1λ2λ4 + · · ·+ λn−2λn−1λn =
n∑

i<j<k, {i, j, k}=1

λiλjλk = −pn−3

pn

...

λ1λ2 . . . λn = (−1)n
p0
pn

.

Remark: Properties a) and e) listed in Proposition 4.2.2, also hold for Pn(λ) with complex
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coefficients pj ∈ C, whereas properties b) and c) only hold when all coefficients pj of Pn(λ)
are real. Property d) holds also for a0 complex, but then θ is the argument of the complex
number a0.

A well known application of the last relation in Viéta’s Theorem, namely the statement

λ1λ2 . . . λn = (−1)n
p0
pn

, is the following.

Viéta’s statement for integer roots: Consider Pn(λ) which contain only real coeffi-

cients. Assume that all roots λj of Pn(λ) belong to the set of integers Z. If q =
p0
pn

∈ Z,

then
q

λj
∈ Z for every root of Pn(λ).

This means that in the case where q =
p0
pn

∈ Z for a given Pn(λ), we can search for roots

αj by checking all the divisors αj ∈ Z of q, i.e. all αj such that
q

αj
∈ Z.
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Example 4.2.2.

——————————————

Consider the 4th degree polynomial

P4(λ) = λ4 − 6λ3 + 3λ2 + 26λ− 24.

In this case q =
p0
p4

= −24. Hence q is divisible by the following set of numbers:

S = {±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24}.

Inserting each number in the above set S into P4(λ) we find four roots, since

P4(1) = 0, P4(−2) = 0, P4(3) = 0, P4(4) = 0.

Hence, the four roots of P4(λ) are

λ1 = 1, λ2 = −2, λ3 = 3, λ4 = 4.

——————————————

Historical Note: (source: Wikipedia)
Francois Viéte (1540 – 1603) was a French mathematician whose work on new algebra
was an important step towards modern algebra, due to its innovative use of letters as
parameters in equations. Viéta’s formulas are formulas that relate the coefficients of a
polynomial to sums and products of its roots.

We now address the problem to select the set of linearly independent real solutions for

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0 (4.2.7)

(where pj are real constants) provided by the Ansätze

y(x) = eλx and y(x) = w(x)eλx (4.2.8)

for every root of the characteristic equation λ of Pn(λ).

The following proposition states the linear independence of several sets of functions in
C∞(R). These include all the functions that may appear as solution of (4.2.7) from the
Ansätze (4.2.8). To prove this we can use the Wronskian and show that the Wronskian is
non-zero in any point x0 ∈ R, say the point x0 = 0. The proof is left as an exercise.
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Francois Viéte (1540 – 1603)

Proposition 4.2.3. Let λ1, λ2, . . . , λk be distinct real numbers (k ∈ N). Then the
following sets are linearly independent in the vector space C∞(R):

1. S1 =
{
eλ1x, eλ2x, . . . , eλkx

}

2. S2 =
{
eλjx, x eλjx, x2 eλjx, . . . , xm eλjx

}
for every fixed λj and m ∈ N.

3. S3 =
{
eλ1x, eλ2x, . . . , eλkx, x eλ1x, x eλ2x, . . . , x eλkx, . . . ,

xm eλ1x, xm eλ2x, . . . , xm eλkx
}
, m ∈ N.

Clearly S1 and S2 are subsets of S3.

Let αj be distinct nonzero real numbers for j = 1, 2, . . . and let βj be distinct nonzero
real numbers for j = 1, 2, . . .. Then the following sets are linearly independent in the
vector space C∞(R):

4. Q =
{
cos(βjx), sin(βjx), x cos(βjx), x sin(βjx), x2 cos(βjx), x2 sin(βjx), . . . ,

xm cos(βjx), xm sin(βjx), eαjx cos(βjx), eαjx sin(βjx), x eαjx cos(βjx),

x eαjx sin(βjx), x2 eαjx cos(βjx), x2 eαjx sin(βjx), . . . , xn eαjx cos(βjx),

xn eαjx sin(βjx)},

for all j ∈ N, m = 0, 1, 2, . . . and n = 0, 1, 2, . . ..

The set {Q, S3} is also linearly independent, as is any subset of this.
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See Exercises 4.2.1 for some special cases of the sets S3 and Q.

Example 4.2.3.

——————————————
The following sets are linearly independent on R:

{e2x, cosx, sinx, x cosx, x sinx}

{1, e−x, x2 cosx, e−x sinx, x cosx, x ex sinx}

{1, e2x, x2 e2x, e3x}
——————————————

In the next example we make use of Propositions 4.2.2 and 4.2.3 to find the general solution
of a 6-th order homogeneous equation.
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Example 4.2.4.

——————————————

We find the general solution for the 6-th order equation

y(6) + y = 0. (4.2.9)

The characteristic equation for the Ansatz y(x) = eλx is now

P6(λ) = λ6 + 1 = 0.

Following statement d) of Proposition 4.2.2, we have

λk = | − 1|1/6
[
cos

(
π + 2πk

6

)
+ i sin

(
π + 2πk

6

)]

k = 0, 1, . . . , 5,

so that

k = 0 : λ0 = cos
π

6
+ i sin

π

6
=

√
3

2
+ i

1

2

k = 1 : λ1 = cos
(π
6
+

π

3

)
+ i sin

(π
6
+

π

3

)
= i

k = 2 : λ2 = cos

(
π

6
+

2π

3

)
+ i sin

(
π

6
+

2π

3

)
= −

√
3

2
+ i

1

2
.

Following statement b) of Proposition 4.2.2, we know that P6(λ) admits the complex
conjugate roots λ̄0, λ̄1, and λ̄2. These follow also from the above formula, as λ3, λ4 and
λ5, respectively. However, complex conjugate roots lead to the same real solutions (up
to sign) as for λ0, λ1, and λ2 and do therefore not make a contribution to the linearly
independent set of solutions for (4.2.9). Using now the three complex roots, λ0, λ1 and
λ2, we have the following complex solutions for (4.2.9):

φ1c(x) = e

(√
3

2
+i 1

2

)
x
= e

√
3

2
x ei

1
2
x = e

√
3

2
x
[
cos

(x
2

)
+ i sin

(x
2

)]

φ2c(x) = eix = cosx+ i sinx

φ3c(x) = e

(
−
√
3

2
+i 1

2

)
x
= e

−
√
3

2
x ei

1
2
x = e−

√
3

2
x
[
cos

(x
2

)
+ i sin

(x
2

)]
.
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The real solutions for equation (4.2.9) are then

ψ1(x) = Re[φ1c] = e
√

3
2
x cos

(x
2

)

ψ2(x) = Im[φ1c] = e
√
3
2
x sin

(x
2

)

ψ3(x) = Re[φ2c] = cosx

ψ4(x) = Im[φ2c] = sinx

ψ5(x) = Re[φ3c] = e
−
√
3

2
x cos

(x
2

)

ψ6(x) = Im[φ3c] = e
−
√
3

2
x sin

(x
2

)
.

By Proposition 4.2.3, the set

S = {ψ1(x), ψ2(x), ψ3(x), ψ4(x), ψ5(x), ψ6(x)}

is linearly independent in the vector space C∞(R). Thus the general solution of (4.2.9) is

y(x) = c1ψ1(x) + c2ψ2(x) + c3ψ3(x) + c4ψ4(x) + c5ψ5(x) + c6ψ6(x)

for all x ∈ R with six arbitrary constants c1, c2, . . . , c6.

——————————————

Roots with multiplicity of degree k > 1:

The characteristic polynomial Pn(λ) may admit roots, say λ0, with multiplicity of degree
k ∈ N, where k ≤ n. This means that Pn(λ) admits the same root k times and that Pn(λ)
factorizes in the form

Pn(λ) = (λ− λ0)
kQn−k(λ),

where Qn−k is a polynomial of degree n − k. If λ0 ∈ R, then the Ansatz y(x) = eλ0x

provides only one distinct real solution for the equation

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0, pj ∈ R

and, if λ0 ∈ C it provides two real linearly independent solutions. More solutions can then
be obtained for the differential equation by the Ansatz

y(x) = eλ0xw(x),

where w(x) is a function in C∞(R) that needs to be determined for this Ansatz. This
results in the following
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Proposition 4.2.4.

a) Suppose that the characteristic equation Pn(λ) = 0 of the homogeneous equation

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = 0, pj ∈ R (4.2.10)

admits the real root λ = λ0 ∈ R with multiplicity of degree k ∈ N, with k ≤ n.
Then the Ansatz

y(x) = eλ0xw(x), w(x) ∈ C∞(R),

leads to the following set of linearly independent solutions for (4.2.10):

{
eλ0x, xeλ0x, x2eλ0x, . . . , xk−1eλ0x

}
. (4.2.11)

b) Suppose that the characteristic equation Pn(λ) = 0 of the homogeneous equation
(4.2.10) admits the complex root λ0 = α+ iβ (α ∈ R, β ∈ R) with multiplicity of
degree k ∈ N, with k ≤ n. Then the Ansatz

y(x) = eλ0xw(x), w(x) ∈ C∞(R),

leads to the following set of linearly independent solutions for (4.2.10):

{
eαx cos(βx), eαx sin(βx), x eαx cos(βx), x eαx sin(βx), (4.2.12)

x2 eαx cos(βx), x2 eαx sin(βx), . . . , xk−1 eαx cos(βx), xk−1 eαx sin(βx)
}
.

The proof is left as an exercise. See Exercises 4.2.1 numbers 4 and 5 for two special cases
of the general third- and fourth-order equations.

Example 4.2.5.

——————————————

a) We find the general solution of the third-order equation

y(3) − 6y′′ + 12y′ − 8y = 0. (4.2.13)

For the Ansatz y(x) = eλx, the characteristic equation takes the form

P3(λ) = λ3 − 6λ2 + 12λ− 8 = (λ− 2)3 = 0.

Hence this third degree characteristic polynomial P3(λ) admits only one root, namely
the real root λ = 2 and this root has multiplicity of degree 3. By Proposition 4.2.4
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the root λ = 2 leads to a set of three linearly independent solutions for the equation
(4.2.13), namely

{
e2x, xe2x, x2e2x

}
,

so that the general solution of (4.2.13) is of the form

y(x) = c1e
2x + c2xe

2x + c3x
2e2x

for all x ∈ R.

b) We find the general solution of the fifth-order equation

y(5) − 2y(4) + 2y(3) − 4y′′ + y′ − 2y = 0. (4.2.14)

For the Ansatz y(x) = eλx, the characteristic equation takes the form

P5(λ) = λ5 − 2λ4 + 2λ3 − 4λ2 + λ− 2 = (λ− 2)(λ2 + 1)2 = 0.

Hence P5(λ) admits the following roots:

λ1 = 2, λ2 = i, λ3 = i, λ4 = −i, λ5 = −i.

Note that the complex root i has a multiplicity of degree two and so does the complex
root −i. These roots give the following solutions of (4.2.14):

λ1 = 2 : φ1(x) = e2x

λ2 = i : complex solution: φ1c(x) = eix; real solutions: ψ1(x) = cosx, ψ2(x) = sinx

λ3 = i : real solutions due to 2nd-degree multiplicity: ψ3(x) = x cosx, ψ4(x) = x sinx.

The five solutions {φ1(x), ψ1(x), ψ2(x), ψ3(x), ψ4(x)} form a linearly independent
set in C∞(R), so that the general solution of (4.2.14) is

y(x) = c1e
2x + c2 cosx+ c3 sinx+ c4x cosx+ c5x sinx

for all x ∈ R.

c) We find the general solution of the fourth-order equation

y(4) + 4y(3) + 8y′′ + 8y′ + 4y = 0. (4.2.15)

For the Ansatz y(x) = eλx, the characteristic equation takes the form

P4(λ) = λ4 + 4λ3 + 8λ2 + 8λ+ 4 = (λ2 + 2λ+ 2)2

= (λ+ 1 + i)2(λ+ 1− i)2 = 0.

Hence P4(λ) admits the following roots:

λ1 = −1− i, λ2 = −1− i, λ3 = −1 + i, λ4 = −1 + i.
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The root −1− i gives the complex solution

φ1c(x) = e−x(cosx− i sinx) and hence two real solutions

ψ1(x) = e−x cosx, ψ2(x) = e−x sinx.

Since the root −1− i has the multiplicity of degree two, two more real solutions are

ψ3(x) = xe−x cosx, ψ4(x) = xe−x sinx.

The root λ3 = λ4 is the complex conjugates of the root λ1 = λ2 so that it does
not contribute to more linearly independent solutions for (4.2.15). The set S =
{ψ1(x), ψ2(x), ψ3(x), ψ4(x)} is linearly independent, so that the general solution
of (4.2.15) is

y(x) = c1e
−x cosx+ c2e

−x sinx+ c3xe
−x cosx+ c4xe

−x sinx

for all x ∈ R.

——————————————
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4.2.1 Exercises

1. Find the general solutions, or solve the initial-value problems in case initial data is
given, for the following third-order equations:

a) y(3) + 2y′′ − 5y′ − 6y = 0

b) y(3) + 3y′′ − 4y′ − 12y = 0, y(0) = 1, y′(0) = 2, y′′(0) = 3

c) y(3) − 5y′′ + 3y′ + 9y = 0

d) y(3) + y′′ + 9y′ + 9y = 0, y(π) = 5, y′(π) = 1, y′′(π) = 1

e) y(3) + 6y′′ + 12y′ + 8y = 0, y(1) = 3, y′(1) = 0, y′′(1) = 2

f) y(3) − 2y′′ = 0

g) y(3) + 27y = 0

h) y(3) − 4y′ = 0

2. Find the general solutions, or solve the initial-value problems in case initial data is
given, for the following fourth-order equations:

a) y(4) − 13y′′ + 36y = 0, y(0) = 1, y′(0) = 2, y′′(0) = 3, y(3)(0) = 4

b) y(4) − 3y(3) = 0, y(1) = 4, y′(1) = 0, y′′(1) = 2, y(3)(1) = 1

c) y(4) + 8y(3) + 24y′′ + 32y′ + 16y = 0

d) y(4) − 4y(3) + 6y′′ − 4y′ + y = 0

e) y(4) − 2y(3) − 3y′′ + 4y′ + 4y = 0

f) y(4) + 9y′′ = 0, y(0) = 2, y′(0) = 1, y′′(0) = 2, y(3)(0) = 1

g) y(4) − 3y(3) = 0

h) y(4) − 4y(3) + 4y′′ = 0

3. Find the general solutions, or solve the initial-value problems in case initial data is
given, for the following fifth- or sixth-order equations:

a) y(5) − 16y′ = 0

b) y(5) − 3y(4) + 2y(3) = 0
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c) y(5) − 4y(4) = 0

d) y(6) − 5y(5) + 4y(4) = 0

e) y(6) + 2y(5) = 0

f) y(6) + 3y(4) = 0,

y(0) = 1, y′(0) = 2, y′′(0) = 3, y(3)(0) = 4, y(4)(0) = 5, y(5)(0) = 6

4. Consider the general 3-rd order linear homogeneous differential equation with con-
stant coefficients,

p3y
(3) + p2y

′′ + p1y
′ + p0y = 0

and assume that the characteristic polynomial P3(λ) of this equation for the Ansatz
y(x) = eλx admits a real root λ0 of multiplicity with degree three. Use the Ansatz

y(x) = w(x)eλ0x

to find the general solution for this differential equation.

Note: This is a special case of Proposition 4.2.4a) and your result would there-
fore verify Proposition 4.2.4a) for third-order equations, where the characteristic
polynomial admits roots with multiplicity of degree three.

5. Consider the general 4-th order linear homogeneous differential equation with con-
stant coefficients,

p4y
(4) + p3y

(3) + p2y
′′ + p1y

′ + p0y = 0

and assume that the characteristic polynomial P4(λ) of this equation for the Ansatz
y(x) = eλx admits a complex root λ0 of multiplicity with degree two. Use the Ansatz

y(x) = w(x)eλ0x

to find the general solution for this differential equation.

Note: This is a special case of Proposition 4.2.4b) and your result would there-
fore verify Proposition 4.2.4b) for fourth-order equations, where the characteristic
polynomial admits complex roots with multiplicity of degree two.

6. Show that the following two sets, which are special cases of the set given in Propo-
sition 4.2.3, are linearly independent:

a)
{
eλ1x, eλ2x, x eλ1x, x eλ2x, x2 eλ1x, x2 eλ2x

}
, λ1 �= λ2, λ1 ∈ R, λ2 ∈ R.

This is a special case of the set S3 in Proposition 4.2.3, with k = 2 and m = 2.

b) {cos(β1x), sin(β1x), x cos(β1x), x sin(β1x), eα1x cos(β1x), eα1x sin(β1x)},
α1 ∈ R\{0}, β1 ∈ R\{0}.

This is a special case of the set Q in Proposition 4.2.3, with j = 1, m = 1 and
n = 0.
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4.3 Higher-order linear nonhomogeneous equations

We consider the linear n-th order equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f(x) (4.3.1)

Here pj(x) (j = 0, 1, 2, . . . , n) and f(x) are real-valued continuous functions given on some
common domain D ⊆ R, n ≥ 1 and pn(x) �= 0 for all x ∈ D.

Definition 4.3.1. Any function yp(x) which satisfies the nonhomogeneous equation
(4.3.1) on an interval D, is known as a particular solution for (4.3.1) on D.
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The statement below follows directly from the linear superposition principle:

Proposition 4.3.1.

a) The general solution of (4.3.1), i.e.

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f(x)

is of the form

y(x) = φH(x; c1, c2, . . . , cn) + yp(x), (4.3.2)

where φH is the general solution of the associated homogeneous equation,

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0

and yp is a particular solution of the nonhomogeneous equation (4.3.1).

b) A particular solution yp(x) for the nonhomogeneous equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f1(x) + f2(x), (4.3.3)

where pj(x), f1(x) and f2(x) are given continuous functions on D, is given by the
sum of a particular solution for f1(x) and a particular solution for f2(x), i.e.

yp(x) = y1(x) + y2(x), (4.3.4)

where y1(x) is a particular solution for

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f1(x)

and y2(x) is a particular solution for

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f2(x).

The proof is left as an exercise (see Exercises 4.3.2).

We’ll now describe two methods to construct particular solutions for nonhomogeneous
equations, namely the method of undetermined coefficients and the method of
variation of parameters. These methods have already been described in detail for
second-order equations, so here we’ll just need to generalize these methods to higher-order
equations.

4.3.1 Particular solutions: the method of undetermined coefficients

Consider the n-th order linear nonhomogeneous equation with constant coefficients

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = f(x) (4.3.5)
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where pj ∈ R, pn �= 0 and f(x) is a continuous function on some domain D ⊆ R. As in the
case of second-order equations, we consider special forms of the function f(x) and propose
Ansätze for particular solutions yp(x) in each case.

Case I: f(x) = Pm(x):

Consider

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = Pm(x) (4.3.6)

where Pm is an mth-degree polynomial, i.e.,

Pm(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0. (4.3.7)

Here aj (j = 0, 1, . . . ,m) are given real coefficients. We can now propose Ansätze to find
particular solutions of (4.3.6) and we need to distinguish between n+1 different subcases:

Case I (1): Let p0 �= 0 . The Ansatz for a particular solution of (4.3.6) is then

yp(x) = Amxm +Am−1x
m−1 + · · ·+A1x+A0 := Qm(x), (4.3.8)

where the real constants, Aj , j = 0, 1, . . . ,m, are to be determined for the Ansatz (4.3.8).

Case I (2): Let p0 = 0 and p1 �= 0 . The Ansatz for a particular solution of (4.3.6) is
then

yp(x) = xQm(x), (4.3.9)

where Qm(x) is given by (4.3.8).

Case I (3): Let p0 = 0 and p1 = 0 and p2 �= 0 . The Ansatz for a particular solution of

(4.3.6) is then

yp(x) = x2Qm(x), (4.3.10)

where Qm(x) is given by (4.3.8).

...

Case I (n+1): Let pn �= 0 and pk = 0 for k = 0, 1, 2 . . . , n− 1 . The Ansatz for a par-

ticular solution of (4.3.6) is then

yp(x) = xnQm(x), (4.3.11)

where Qm(x) is given by (4.3.8).
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Case II: f(x) = eα1x cos(α2x)Pm(x) or f(x) = eα1x sin(α2x)Pm(x), α1, α2 ∈ R

We consider the following linear complex differential equation with dependent complex
variable yc(x):

pny
(n)
c + pn−1y

(n−1)
c + · · ·+ p1y

′
c + p0yc = eαxPm(x), α := α1 + iα2 (4.3.12)

where α1 ∈ R, α2 ∈ R and Pm is an mth-degree polynomial, i.e.,

Pm(x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0 (4.3.13)

with aj , j = 0, 1, . . . ,m real coefficients. Here α is a complex number, such that α =
α1 + iα2, with α1, α2 real. Every differentiable complex function yc(x) can be written in
the form

yc(x) = u(x) + iv(x), (4.3.14)

where u and v are real differentiable functions on some domain D ⊆ R and

y(k)c (x) = u(k)(x) + iv(k)(x), k = 1, 2, . . . , n. (4.3.15)

Using (4.3.14) and (4.3.15), equation (4.3.12) takes the form

pn

(
u(n) + iv(n)

)
+ pn−1

(
u(n−1) + iv(n−1)

)
+ · · ·+ p0(u+ iv)

= eα1x cos(α2x)Pm(x) + ieα1x sin(α2x)Pm(x), (4.3.16)

where we have used the relation

e(α1+iα2)x = eα1x (cos(α2x) + i sin(α2x)) . (4.3.17)

Comparing the real- and imaginary parts of (4.3.1), respectively, we obtain the following
two real nonhomogeneous differential equations in u and v:

pnu
(n) + pn−1u

(n−1) + · · ·+ p1u
′ + p0u = eα1x cos(α2x)Pm(x) (4.3.18)

and

pnv
(n) + pn−1v

(n−1) + · · ·+ p1v
′ + p0v = eα1x sin(α2x)Pm(x) (4.3.19)

This leads to
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Proposition 4.3.2. A convenient Ansatz for a complex particular solution ycp(x) of
(4.3.12), namely

pny
(n)
c + pn−1y

(n−1)
c + · · ·+ p1y

′
c + p0yc = eαxPm(x)

is

ycp(x) = eαxwc(x), (4.3.20)

where wc(x) is a complex function that needs to be determined such that the Ansatz
satisfies (4.3.12). The condition on wc(x) is a linear nonhomogeneous equation with
nonhomogeneous part Pm(x), so that a solution for wc(x) can be constructed by the
Ansätze listed in Case I, albeit with complex coefficients for Qm in (4.3.8), i.e.

Qm = Bmxm +Bm−1x
m−1 + · · ·+B1x+B0

with Bj ∈ C (j = 0, 1, 2, . . . , m).
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Example 4.3.1.

——————————————
We find the general solution of the third-order equation

y(3) + y = e2x sin(3x). (4.3.21)

Using the Ansatz y(x) = eλx for the homogeneous equation, the characteristic equation is

λ3 + 1 = 0

and the three roots are λ1 = −1, λ2 =
1

2
+ i

√
3

2
and λ3 = λ̄2. This leads to the following

general solution φH(x; c1, c2, c3) of the homogeneous equation:

φH(x; c1, c2, c3) = c1e
−x + c2e

x/2 cos(
√
3x/2) + c3e

x/2 sin(
√
3x/2).

To find a particular solution for (4.3.21) we consider the complex differential equation

y(3)c + yc = e(2+3i)x, (4.3.22)

where

yc(x) = u(x) + iy(x),

so that the imaginary part of the complex equation (4.3.22) is the given real equation
(4.3.22). Therefore, an Ansatz for the complex particular solution ycp(x) of (4.3.22) is
given by Proposition 4.3.2, i.e.

ycp(x) = e(2+3i)xwc(x). (4.3.23)

A real particular solution yp(x) for (4.3.22) is then

yp(x) = Im [ycp(x)] .

Inserting Ansatz (4.3.23) into the complex equation (4.3.22) we obtain the following con-
dition on wc(x):

w(3)
c + 3(2 + 3i)w′′

c + 3(2 + 3i)2w′
c +

(
(2 + 3i)3 + 1

)
wc = 1. (4.3.24)

Following Case I we should make an Ansatz for wc(x) of a zero-degree polynomial with
a complex coefficient, i.e.

wc(x) = B0, (4.3.25)

where B0 is a complex constant that needs to be determined such that (4.3.25) satisfies
(4.3.24). Inserting this Ansatz into (4.3.24), we obtain

(
(2 + 3i)3 + 1

)
B0 = 1 or B0 = − 5

234
− i

(
1

234

)
= wc(x).
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Thus the complex particular solution for (4.3.22) is

ycp(x) = e(2+3i)x

(
− 5

234
− i

234

)
= −e2x (cos(3x) + i sin(3x))

(
− 5

234
− i

234

)

so that the real particular solution yp(x) for (4.3.21) becomes

yp(x) = Im [ycp(x)] = − 1

234
e2x cos(3x)− 5

234
e2x sin(3x).

The general solution of (4.3.21) is thus

y(x) = c1e
−x + c2e

x/2 cos(
√
3x/2) + c3e

x/2 sin(
√
3x/2)

− 1

234
e2x cos(3x)− 5

234
e2x sin(3x).

——————————————

Case III f(x) = eαxPm(x), α ∈ R

We consider the equation

pny
(n) + pn−1y

(n−1) + · · ·+ p1y
′ + p0y = eαxPm(x), α ∈ R, (4.3.26)

where Pm is an m-th-degree polynomial with real coefficients. We note that this is in fact
a special case of (4.3.12), with yc(x) a real function y(x) and α ∈ R. The same Ansatz
(4.3.20) is valid, albeit for a real particular solution yp(x) of (4.3.26), namely

yp(x) = eαxw(x) (4.3.27)

where the condition on w is a linear nonhomogeneous equation with nonhomogeneous part
Pm(x). To find a solution w(x) of this equation we use the same Ansätze as those listed
in Case I.

Example 4.3.2.

——————————————

We find the general solution of the third-order equation

y(3) − y′′ + y′ − y = xex. (4.3.28)

First we use the Ansatz y(x) = eλx to find the general solution of the homogeneous
equation

y(3) − y′′ + y′ − y = 0.
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The characteristic equation is

λ3 − λ2 + λ− 1 = 0 or (λ− 1)(λ2 + 1) = 0.

The root λ1 = 1 gives the real solution ex, whereas the complex root λ2 = i gives two real
solutions {cosx, sinx}, so that the general homogeneous solution φH(x; c1, c2, c3) is

φH(x; c1, c2, c3) = c1e
x + c2 cosx+ c3 sinx

for all x ∈ R and arbitrary constants c1, c2 and c3. For a particular solution of (4.3.28) we
make use of the Ansatz proposed in Case III above, namely yp(x) = exw(x). This leads
to the condition

w(3) + 2w′′ + 2w′ = x

and by Case I we use the Ansatz w(x) = x (A1x+A0) . This results in the condition

4A1 + 4A1x+ 2A0 = x, so that 4A1 = 1 and 4A1+2A0 = 0. Hence A1 =
1

4
and A0 = −1

2
,

so that w(x) =
1

4
x2 − 1

2
x and finally yp(x) = ex

(
1

4
x2 − 1

2
x

)
. The general solution of

(4.3.28) is thus

y(x) = c1e
x + c2 cosx+ c3 sinx+ ex

(
1

4
x2 − 1

2
x

)
.

——————————————
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4.3.2 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find the general solutions of the following equations:

a) y(3) + y′ = 2

b) y(3) + y′′ = 3

c) y(4) − y′′ = 4

d) y(4) + 4y(3) + 4y′′ = 1

e) y(3) − 2y′′ + y′ = 2x

f) y(4) + y′′ = x2 + x

g) y(4) + 2y(3) + y′′ = e4x

h) y(4) + 2y(3) + y′′ = xe−x

i) y(3) − y = sinx

j) y(3) − 3y′′ + 3y′ − y = ex cos(2x)

k) y(4) − 2y′′ + y = cosx

l) y(3) + 4y′ = 1− sin(2x) + e2x cos(2x)

m) y(4) − 16y′′ = x sinx

n) y(5) − y(4) = xex − 1

o) y(5) + y(3) = x+ 2e−x

p)* y(4) + 2y(3) + y′′ = (x+ 1)2

q)* y(3) + 3y′′ + 3y′ + y = (x+ 1)e−x

2. Solve the following initial-value problems:

a) y(3) − y′ = −2x, y(0) = 0, y′(0) = 1, y′′(0) = 2.

b) y(4) − y = 8ex, y(0) = −1, y′(0) = 0, y′′(0) = 1, y(3)(0) = 0.

c) y(3) − 2y′′ − y′ + 2y = 2x2 + 4x− 9, y(0) = 2, y′(0) = −4, y′′(0) = −1.
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d) y(3) + 2y′′ + 5y′ = 20e−x cos(2x), y(0) = 1, y′(0) = 2, y′′(0) = −3.

e) y(4) + 5y′′ + 4y = 40 cos(3x), y(π/2) = 2, y′(π/2) = 2, y′′(π/2) = 1,

y(3)(π/2) = 4.

3. Prove Proposition 4.3.1.

4. Consider Proposition 4.3.2 and give the explicit condition on wc(x) for the case
n = 3. Then classify the different Ansätze that apply to obtain solutions for wc(x)
for your obtained condition.

4.3.3 Particular solutions: the method of variation of parameters

We now describe the method of variation of parameters by generalizing Proposition
3.3.2 of Chapter 3, where we have studied this method for second-order equations. We
should recall that the method of variation of parameters is more general than the method
of undetermined coefficients, as it is applicable to equations which have continuous func-
tions as coefficients and it does not require a special form of the functions f(x) of the
nonhomogeneous part of the equation, neither does it require lots of different Ansätze.
However, the derivation of particular solutions with this method does require the calcula-
tion of integrals, which can be difficult and tedious at times.

In order to state the next proposition it is convenient to introduce a new notation: Consider
a linearly independent set of functions S = {φ1(x), φ2(x), . . . , φn(x)} in Cn(D) and a
continuous function f(x) on the interval D. We now define

Wj [φ1, . . . , φj−1, (f), φj+1, . . . , φn](x) (4.3.29)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 . . . φj−1 0 φj+1 . . . φn

φ′
1 . . . φ′

j−1 0 φ′
j+1 . . . φ′

n

...
...

...
...

... . . .
...

φ
(n−2)
1 . . . φ

(n−2)
j−1 0 φ

(n−2)
j+1 . . . φ

(n−2)
n

φ
(n−1)
1 . . . φ

(n−1)
j−1 f(x) φ

(n−1)
j+1 . . . φ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j = 1, 2, . . . , n.

For example,

W2[φ1, (f), . . . , φn](x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 0 . . . φn

φ′
1 0 . . . φ′

n

...
...

...
...

φ
(n−2)
1 0 . . . φ

(n−2)
n

φ
(n−1)
1 f(x) · · · φ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

137 

Higher-order linear dierential equations4.3. HIGHER-ORDER LINEAR NONHOMOGENEOUS EQUATIONS 137

Proposition 4.3.3. Consider the n-th order nonhomogeneous linear differential equa-
tion

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f(x), (4.3.30)

where pj(x) (j = 0, 1, 2, . . . , n) and f(x) are continuous functions given on some com-
mon domain D ⊆ R, n ≥ 1 and pn(x) �= 0 for all x ∈ D. Assume that n linearly
independent solutions of the homogeneous equation

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = 0 (4.3.31)

are given by the set of Cn(D) functions S = {φ1(x), φ2(x), . . . , φn(x)} on the interval
D ⊆ R. Then a particular solution yp(x) of (4.3.30) is

yp(x) = w1(x)φ1(x) + w2(x)φ2(x) + · · ·+ wn(x)φn(x), (4.3.32)

where wj(x) (j = 1, 2, . . . , n) have the following form:

w1(x) =

∫
W1[(f), φ2, φ3, . . . , φn](x)

W [φ1, φ2, . . . , φn](x)
dx

w2(x) =

∫
W2[φ1, (f), φ3, . . . , φn](x)

W [φ1, φ2, . . . , φn](x)
dx

...

wn(x) =

∫
Wn[φ1, φ2, . . . , φn−1, (f)](x)

W [φ1, φ2, . . . , φn](x)
dx

Here W [φ1, φ2, . . . , φn](x) is the Wronskian of the set S and the notation
Wj [φ1, . . . , φj−1, (f), φj+1, . . . , φn](x) is defined by (4.3.29).

Proof: We consider first the case n = 3, that is the nonhomogeneous equation

p3(x)y
(3) + p2(x)y

′′ + p1(x)y
′ + p0(x)y = f(x). (4.3.33)

Assume that three linearly independent solutions, namely

{φ1(x), φ2(x), φ3(x)},

are given for the homogeneous equation

p3(x)y
(3) + p2(x)y

′′ + p1(x)y
′ + p0(x)y = 0. (4.3.34)

We now use the following Ansatz for a particular solution of (4.3.33):

yp(x) = w1φ1(x) + w2(x)φ2(x) + w3(x)φ3(x). (4.3.35)

The first derivative y′p(x) is

y′p(x) = w′
1φ1 + w1φ

′
1 + w′

2φ2 + w2φ
′
2 + w′

3φ3 + w3φ
′
3. (4.3.36)
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Let now

w′
1φ1 + w′

2φ2 + w′
3φ3 = 0, (4.3.37)

so that (4.3.36) reduces to

y′p(x) = w1φ
′
1 + w2φ

′
2 + w3φ

′
3. (4.3.38)

Differentiating (4.3.38) one more time, we obtain

y′′p(x) = w′
1φ

′
1 + w1φ

′′
1 + w′

2φ
′
2 + w2φ

′′
2 + w′

3φ
′
3 + w3φ

′′
3. (4.3.39)

Let now

w′
1φ

′
1 + w′

2φ
′
2 + w′

3φ
′
3 = 0, (4.3.40)

so that (4.3.39) reduces to

y′′p(x) = w1φ
′′
1 + w2φ

′′
2 + w3φ

′′
3. (4.3.41)

Differentiating (4.3.41) one more time, we obtain

y(3)p (x) = w′
1φ

′′
1 + w1φ

(3)
1 + w′

2φ
′′
2 + w2φ

(3)
2 + w′

3φ
′′
3 + w3φ

(3)
3 . (4.3.42)

Inserting the Ansatz (4.3.35) and its derivatives, (4.3.38), (4.3.41), and (4.3.42) into the
third-order equation (4.3.33), we obtain

w1

[
p3(x)φ

(3)
1 + p2(x)φ

′′
1 + p1(x)φ

′
1 + p0(x)φ1

]

+w2

[
p3(x)φ

(3)
2 + p2(x)φ

′′
2 + p1(x)φ

′
2 + p0(x)φ2

]

+w3

[
p3(x)φ

(3)
3 + p2(x)φ

′′
3 + p1(x)φ

′
3 + p0(x)φ3

]

+w′
1φ

′′
1 + w′

2φ
′′
2 + w′

3φ
′′
3 = f(x).

Since φ1(x), φ2(x) and φ3(x) are solutions of the homogeneous equation (4.3.34), the
previous expression reduces to

w′
1φ

′′
1 + w′

2φ
′′
2 + w′

3φ
′′
3 = f(x). (4.3.43)

We thus remain with three conditions on w1(x), w2(x) and w3(x), namely the relations
(4.3.37), (4.3.40) and (4.3.43), which can conveniently be expressed in matrix form




φ1 φ2 φ3

φ′
1 φ′

2 φ′
3

φ′′
1 φ′′

2 φ′′
3







w′
1

w′
2

w′
3


 =




0

0

f(x)


 . (4.3.44)
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Note that the determinant of the coefficient matrix on the left side is the Wronskian
W [φ1, φ2, φ3](x), which is nonzero by the assumption that the set {φ1(x), φ2(x), φ3(x)}
is linearly independent. Thus the algebraic system (4.3.44) has a unique solution for
w′
1, w′

2 and w′
3 and this unique solution can be obtained from Cramer’s rule as follows:

w′
1(x) =

1

W [φ1, φ2φ3](x)

∣∣∣∣∣∣∣∣∣

0 φ2 φ3

0 φ′
2 φ′

3

f(x) φ′′
2 φ′′

3

∣∣∣∣∣∣∣∣∣
≡ W1[(f), φ2, φ3](x)

W [φ1, φ2, φ3](x)

w′
2(x) =

1

W [φ1, φ2, φ3](x)

∣∣∣∣∣∣∣∣∣

φ1 0 φ3

φ′
1 0 φ′

3

φ′′
1 f(x) φ′′

3

∣∣∣∣∣∣∣∣∣
≡ W2[φ1, (f), φ3](x)

W [φ1, φ2, φ3](x)

w′
3(x) =

1

W [φ1, φ2, φ3](x)

∣∣∣∣∣∣∣∣∣

φ1 φ2 0

φ′
1 φ′

2 0

φ′′
1 φ′′

3 f(x)

∣∣∣∣∣∣∣∣∣
≡ W3[φ1, φ2, (f)](x)

W [φ1, φ2, φ3](x)
.

Integrating the above expressions with respect to x establishes the Proposition for the
case n = 3. In the same way we can show that the formulas hold for n ≥ 4, but this is
straightforward so we leave it as an exercise (See Exercises 4.3.4). �.
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Example 4.3.3.

——————————————

We find the general solution for the equation

y(3) − 3y′′ + 3y′ − y = 3
√
x ex (4.3.45)

For the homogeneous equation

y(3) − 3y′′ + 3y′ − y = 0,

we use the Ansatz y(x) = eλx to obtain the characteristic equation

(λ− 1)3 = 0.

The three linearly independent solutions are then

{φ1(x) = ex, φ2(x) = xex, φ3(x) = x2ex}

so that the general solution φH of the homogeneous equation becomes

φH(x; c1, c2, c3) = c1e
x + c2xe

x + c3x
2ex.

For a particular solution yp(x) we apply the method of variation of parameters. Following
Proposition 4.3.3 we use the Ansatz

yp(x) = w1(x)e
x + w2(x)xe

x + w3(x)x
2ex (4.3.46)

where

w′
1(x) =

W1[(3
√
x ex), φ2, φ3](x)

W [φ1, φ2, φ3](x)

w′
2(x) =

W2[φ1, (3
√
x ex), φ3](x)

W [φ1, φ2, φ3](x)

w′
3(x) =

W3[φ1, φ2, (3
√
x ex)](x)

W [φ1, φ2, φ3](x)
.
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Calculating the Wronskian W as well as W1, W2 and W3, we obtain

W [φ1, φ2, φ3](x) =

∣∣∣∣∣∣∣∣∣

ex xex x2e

ex ex + xex 2xex + x2ex

ex 2ex + xex 2ex + 4xex + x2ex

∣∣∣∣∣∣∣∣∣
= 2e3x

W1[(3
√
x ex), φ2, φ3](x) =

∣∣∣∣∣∣∣∣∣

0 xex x2e

0 ex + xex 2xex + x2ex

3
√
x ex 2ex + xex 2ex + 4xex + x2ex

∣∣∣∣∣∣∣∣∣
= 3x5/2 e3x

W2[φ1, (3
√
x ex), φ3](x) =

∣∣∣∣∣∣∣∣∣

ex 0 x2e

ex 0 2xex + x2ex

ex 3
√
x ex 2ex + 4xex + x2ex

∣∣∣∣∣∣∣∣∣
= −6x3/2e3x

W3[φ1, φ2, (3
√
x ex)](x) =

∣∣∣∣∣∣∣∣∣

ex xex 0

ex ex + xex 0

ex 2ex + xex 3
√
x ex

∣∣∣∣∣∣∣∣∣
= 3

√
xe3x.

Thus we have

w1(x) =
3

2

∫
x5/2 dx =

3

7
x7/2

w2(x) = −3

∫
x3/2 dx = −6

5
x5/2

w3(x) =
3

2

∫
x1/2 dx = x3/2.

Inserting this back into the Ansatz (4.3.46) we obtain the following particular solution for
(4.3.45)

yp(x) =
8

35
x7/2ex

and hence the general solution of (4.3.45) is

y(x) = c1e
x + c2xe

x + c3x
2ex +

8

35
x7/2ex

for all x > 0.

——————————————
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4.3.4 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find the general solutions of the following equations:

a) y(3) + y′′ =
x− 1

x2

b) y(3) + 3y′′ + 3y′ + y = e−x ln(x), x > 0

c)* y(3) − 6y′′ + 11y′ − 6y =
e3x

e2x + 1

2. Consider the following equation:

y(4) − 4y(3) + 6y′′ − 4y′ + y =
ex

xn
, x > 0, n ∈ R.

Find particular solutions for all n ∈ R. Note that there exist five essentially different
cases!

3. Solve the following initial-value problems:

a) y(3) − 3y′′ + 2y′ = 4x− 8 +
2e2x

ex + 1
, y(0) = 1, y′(0) = −1, y′′(0) = 2.

b) y(4) − y = 8ex, y(0) = 0, y′(0) = 2, y′′(0) = 4, y(3)(0) = 6.

c) y(5) =
288

x
, x > 0, y(1) = 7, y′(1) = 2, y′′(1) = 0, y(3)(1) = 0, y(4)(1) = 0.

4. Prove Proposition 4.3.3 for all n ≥ 3.
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4.4 The higher-order Cauchy-Euler equation

The n-th order linear equation

pnx
ny(n) + pn−1x

n−1y(n−1) + · · ·+ p1xy
′ + p0y = f(x) (4.4.1)

where p0, p1, . . . , pn are constants, pn �= 0, and the function f(x) is continuous on some
interval D ⊆ R, is called the Cauchy-Euler equation of order n.

Similar to the second-order Cauchy-Euler equation discussed in Chapter 3, equation
(4.4.1) also can be transformed into a linear nonhomogeneous equation with constant
coefficients of its homogeneous part. For x > 0 the change of variables is

{
x = ez ⇔ z = ln(x)

y(x) = y(z).

Differentiating y with respect to x we can identify a formula for the n-th derivative under
this change of variables:

dy(x)

dx
=

dy

dz

dz

dx
=

dy

dz

1

x
=

dy

dz
e−z

= e−z

(
d

dz

)
y

d2y(x)

dx2
=

d

dx

(
dy

dz
e−z

)
=

d2y

dz2
dz

dx
e−z +

dy

dz

(
−e−z dz

dx

)
=

d2y

dz2
e−2z − dy

dz
e−2z

= e−2z d

dz

(
d

dz
− 1

)
y

d3y(x)

dx3
=

d

dz

[
e−2z

(
d2y

dx2
− dy

dz

)]
= e−3z

(
d3y

dz3
− 3

d2y

dz2
+ 2

dy

dz

)

= e−3z d

dz

(
d

dz
− 1

)(
d

dz
− 2

)
y

d4y(x)

dx4
= e−4z d

dz

(
d

dz
− 1

)(
d

dz
− 2

)(
d

dz
− 3

)
y

...

dny(x)

dxn
= e−nz d

dz

(
d

dz
− 1

)(
d

dz
− 2

)
· · ·

(
d

dz
− n+ 1

)
y.

This leads to the following

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

144 

Higher-order linear dierential equations142 CHAPTER 4. HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

Proposition 4.4.1. The transformation

{
x = ez ⇔ z = ln(x), x > 0

y(x) = y(z).
(4.4.2)

reduces the Cauchy-Euler equation

pnx
ny(n) + pn−1x

n−1y(n−1) + · · ·+ p1xy
′ + p0y = f(x), x > 0 (4.4.3)

to an equation with constant coefficients of the form

bn
dny

dzn
+ bn−1

dn−1y

dzn−1
+ · · ·+ b1

dy

dz
+ b0y(z) = f(ez), (4.4.4)

where b0, b1, . . . , bn are constants which are related to the constants p0, p1. . . . , pn.
Moreover, the transformation

{
x = −ez ⇔ z = ln(−x), x < 0

y(x) = y(z).
(4.4.5)

reduces the Cauchy-Euler equation

pnx
ny(n) + pn−1x

n−1y(n−1) + · · ·+ p1xy
′ + p0y = f(x), x < 0 (4.4.6)

to an equation with constant coefficients of the form

cn
dny

dzn
+ cn−1

dn−1y

dzn−1
+ · · ·+ c1

dy

dz
+ c0y(z) = f(−ez), (4.4.7)

where c0, c1, . . . , cn are constants which are related to the constants p0, p1. . . . , pn.
For both transformations (4.4.2) and (4.4.5) the k-th derivative of y with respect to x
is transformed by the following formula:

dky(x)

dxk
= e−kz d

dz

(
d

dz
− 1

)(
d

dz
− 2

)
· · ·

(
d

dz
− k + 1

)
y(z). (4.4.8)

For the special cases n = 3 and n = 4 we have included exercises to derive the explicit
3-rd- and 4-th order constant coefficient equations (see Exercises 4.4.1).

Example 4.4.1.

——————————————

We find the general solution for the 3-rd order Cauchy-Euler equation

x3y(3) − 6x2y′′ + 18xy′ − 24y = 4x4, x > 0. (4.4.9)
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Applying Proposition 4.4.1, namely the transformation (4.4.2) and the formula (4.4.8), we
have

y(3)(x) = e−3z d

dz

(
d

dz
− 1

)(
d

dz
− 2

)
y(z)

= e−3z d

dz

(
d

dz
− 1

)(
dy

dz
− 2y(z)

)

= e−3z d

dz

(
d2y

dz2
− 2

dy

dz
− dy

dz
+ 2y(z)

)

= e−3z

(
d3y

dz3
− 3

d2y

dz2
+ 2

dy

dz

)

y′′(x) = e−2z d

dz

(
d

dz
− 1

)
y(z) = e−2z

(
d2y

dz2
− dy

dz

)

y′(x) = e−z

(
d

dz

)
y(z) = e−z dy

dz
.

Equation (4.4.9) then transforms into

d3y

dz3
− 9

d2y

dz2
+ 26

dy

dz
− 24y(z) = 4e4z. (4.4.10)

For the homogeneous part of this equation, i.e.

d3y

dz3
− 9

d2y

dz2
+ 26

dy

dz
− 24y(z) = 0

we make the Ansatz

y(z) = eλz

and obtain the characteristic equation

λ3 − 9λ2 + 26λ− 24 = 0

with the roots λ1 = 2, λ2 = 3, λ3 = 4. Hence the general homogeneous solution
φH(z; c1, c2, c3) is

φH(z; c1, c2, c3) = c1e
2z + c2e

3z + c3e
4z.

For a particular solution of (4.4.10) we make the Ansatz (see Case II in Section 4.3.1 of
the method of undetermined coefficients)

yp(z) = w(z)e4z

which leads to

d3w

dz3
+ 3

d2w

dz2
+ 2

dw

dz
= 4.
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To find a solution for w(z) that satisfies this condition we use the Ansatz (see Case I in
Section 4.3.1 of the method of undetermined coefficients)

w(z) = zA0

(A0 is a constant) and obtain A0 = 2, so that w(z) = 2z and a particular solution for
(4.4.10) is

yp(z) = 2ze4z.

The general solution of (4.4.10) is then

y(z) = c1e
2z + c2e

3z + c3e
4z + 2ze4z

and back-substituting z = lnx we obtain the general solution of (4.4.9), namely

y(x) = c1x
2 + c2x

3 + c3x
4 + 2x4 lnx.

——————————————
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The Cauchy-Euler equation can be generalized to the equation

pn(α+ βx)ny(n) + pn−1(α+ βx)n−1y(n−1) + · · ·+ p1(α+ βx)y′ + p0y = f(x)

(4.4.11)

where pj ∈ R, j = 0, 1, . . . , n) and α ∈ R, β ∈ R. We call this the generalized Cauchy-
Euler equation of order n. Similar to Proposition 4.4.1, the generalized Cauchy-Euler
equation can also be reduced to a linear nonhomogeneous equation of order n with constant
coefficients.

Proposition 4.4.2. The transformation




α+ βx = ez ⇔ z = ln(α+ βx), x > −α

β

y(x) = y(z).
(4.4.12)

reduces the generalized Cauchy-Euler equation

pn(α+ βx)ny(n) + pn−1(α+ βx)n−1y(n−1) + · · ·+ p1(α+ βx)y′ + p0y = f(x)

x > −α

β
(4.4.13)

to an equation with constant coefficients of the form

bn
dny

dzn
+ bn−1

dn−1y

dzn−1
+ · · ·+ b1

dy

dz
+ b0y(z) = f

(
ez − α

β

)
, (4.4.14)

where b0, b1, . . . , bn are constants which are related to pj , α and β.

The transformation



α+ βx = −ez ⇔ z = ln[−(α+ βx)], x < −α

β

y(x) = y(z).
(4.4.15)

reduces the generalized Cauchy-Euler equation

pn(α+ βx)ny(n) + pn−1(α+ βx)n−1y(n−1) + · · ·+ p1(α+ βx)y′ + p0y = f(x)

x < −α

β
(4.4.16)

to an equation with constant coefficients of the form

cn
dny

dzn
+ cn−1

dn−1y

dzn−1
+ · · ·+ c1

dy

dz
+ c0y(z) = f

(
−ez + α

β

)
, (4.4.17)

where c0, c1, . . . , cn are constants which are related to pj , α and β.
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For the special cases n = 3 and n = 4 we have included exercises to derive the explicit
3-rd- and 4-th order constant coefficient equations (see Exercises 4.4.1).

4.4.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Show that under the transformation x = ez and y(x) = y(z), x > 0, the third-order
Cauchy-Euler equation

p3x
3 d

3y

dx3
+ p2x

2 d
2y

dx2
+ p1x

dy

dx
++p0y = f(x) (4.4.18)

(pj ∈ R, j = 0, 1, . . . , 3) transforms into the third-order equation

p3
d3y

dz3
+ (p2 − 3p3)

d2y

dz2
+ (p1 − p2 + 2p3)

dy

dz
+ p0y(z) = f(ez). (4.4.19)

2. Show that under the transformation x = ez and y(x) = y(z), x > 0, the fourth-order
Cauchy-Euler equation

p4x
4 d

4y

dx4
+ p3x

3 d
3y

dx3
+ p2x

2 d
2y

dx2
+ p1x

dy

dx
+ p0y = f(x) (4.4.20)

(pj ∈ R, j = 0, 1, . . . , 4) transforms into the fourth-order equation

p4
d4y

dz4
+ (p3 − 6p4)

d3y

dz3
+ (p2 − 3p3 + 11p4)

d2y

dz2
+ (p1 − p2 + 2p3 − 6p4)

dy

dz

+p0y(z) = f(ez). (4.4.21)

3. Find the general solutions of the following Cauchy-Euler equations for x > 0:

a) x3y(3) + xy′ − y = 0

b) x3y(3) − 3x2y′′ + 6xy′ − 6y = 0

c) x4y(4) + 10y = 0

d) x3y(3) − xy′ − 3y = x2

e) x3y(3) − x2y′′ + 2xy′ − 2y = x3 + 3x

f) x3y(3) + 8x2y′′ + 12xy′ = lnx

g) x3y(3) − 6x2y′′ + 18xy′ − 24y = 48− 2x2 + 4x4

h)* x4y(4) + 12x3y(3) + 38x2y′′ + 32xy′ + 4y =
2

x
+

4

x2
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i) x4y(4) + 6x3y(3) + 9x2y′′ + 3xy′ + y = 8 cos(lnx)

j) x5y(5) + 10x4y(4) + 25x3y(3) + 15x2y′′ + xy′ =
288

lnx

4. Consider the 3-rd order generalized Cauchy-Euler equation

p3(α+ βx)3y(3) + p2(α+ βx)2y′′ + p1(α+ βx)y′ + p0y = f(x) (4.4.22)

x > −α

β

and find the explicit 3-rd order linear constant coefficient nonhomogeneous differen-
tial equation that results when (4.4.22) is transformed under the transformation




α+ βx = ez ⇔ z = ln(α+ βx), x > −α

β

y(x) = y(z).

5. Show that the 4-th order generalized Cauchy-Euler equation

p4(α+ βx)4y(4) + p3(α+ βx)3y(3) + p2(α+ βx)2y′′

+p1(α+ βx)y′ + p0y = f(x), x > −α

β
(4.4.23)

is transformed into

p4 β
4 d

4y

dz4
+ (p3β

3 − 6p4β
4)

d3y

dz3
+ (p2β

2 − 3p3β
3 + 11p4β

4)
d2y

dz2

+(p1β − p2β
2 + 2p3β

3 − 6p4β
4)

dy

dz
+ p0y(z) = f

(
ez − α

β

)
(4.4.24)

under the transformation



α+ βx = ez ⇔ z = ln(α+ βx), x > −α

β

y(x) = y(z).

6. Find the general solution of

(4 + x)4y(4) + 6(4 + x)3y(3) = x, x > −4
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Appendix A

Integral operators: an alternative
approach for solving linear
differential equations

In this appendix we make use of linear operators to derive formulae for the general solution
of linear differential equations of order n. This provides an alternative method, to those
proposed in the previous chapter, to find the (general) solutions of these equations without
the need of any Ansätze.. The key lies in the factorization of the linear differential opera-
tors that determine the differential equation in terms of first-order differential operators.
For linear equations with nonconstant coefficients, the condition for the factorization of
the operators is in the form of Riccati equations. This method also provides an alterna-
tive method to the method of variation of parameters and the method of undetermined
coefficients for the calculation of particular solutions of linear nonhomogeneous equations,
which we studied in Chapters 3 and 4.

A.1 The definition of L̂

In this section we introduce linear operators and introduce an integral operator that cor-
responds to a general first-order linear differential operator. This integral operator is the
key to the integration of the linear equations.

We remind that C(D) denotes the vector space of all continuous functions on some do-
main D ⊆ R and Cn(D) the subspace of C(D) consisting of all n-continuously differentiable
functions on D.

Definition A.1.1. We define the linear transformation

L : Cn(D) → C(D)

for all f(x) ∈ Cn(D) on the interval D ⊆ R as

L : f(x) �→ Lf(x), (A.1.1)

149
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where L is the linear differential operator of order n

L := pn(x)D
n
x + pn−1(x)D

(n−1)
x + · · ·+ p1(x)Dx + p0(x). (A.1.2)

Here n ∈ N and pj(x) ∈ Cn(D) (j = 0, 1, . . . , n) with

D(k)
x :=

dk

dxk
, Dx ≡ D(1)

x

so that

Lf(x) = pn(x)f
(n)(x) + pn−1(x)f

(n−1)(x) + · · ·+ p1(x)f
′(x) + p0(x)f(x).

Example A.1.1.

——————————————

Consider the second-order linear operator

L = cosxD2
x + exDx + x2.

As an example, let us act L on both e2x and on u(x) e−x:

Le2x = 4e2x cosx+ 2e3x + x2e2x and

L
(
u(x) e−x

)
=

(
e−x cosx

)
u′′ +

(
1− 2e−x cosx

)
u′ +

(
e−x cosx+ x2e−x − 1

)
u

≡ L̃ u(x),

where L̃ is another linear operator given by

L̃ := e−x cosxD2
x +

(
1− 2e−x cosx

)
Dx + e−x cosx+ x2e−x − 1.

——————————————

Next we define the composite linear operator and the integral operator D−1
x :

Definition A.1.2.

a) Consider two linear differential operators of the form (A.1.2), namely L1 of order
m and L2 of order n, and consider a function f(x) ∈ Cm+n(D) with D ⊆ R. The
composite operator L1 ◦ L2 is defined by

L1 ◦ L2 f(x) := L1 (L2f(x)) (A.1.3)

where L1 ◦ L2 is a linear differential operator of order m+ n.
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b) The integral operator, D−1
x , is defined by the linear mapping

D−1
x : C(D) → C1(D)

for all f(x) ∈ C(D) on the interval D ⊆ R as

D−1
x : f(x) �→ D−1

x f(x) (A.1.4)

where

D−1
x f(x) :=

∫
f(x)dx (A.1.5)

Note that, in general, L1 ◦ L2 f(x) �= L2 ◦ L1f(x).
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Example A.1.2.

——————————————

We consider the two linear differential operators

L1 = Dx + x2, L2 = xD2
x + 1.

Then

L2 ◦ L1 f(x) =
(
xD2

x + 1
) (

f ′ + x2f
)

= xf (3) + x3f ′′ + (4x2 + 1)f ′ + (x2 + 2x)f ≡ L3 f(x),

where L3 := xD3
x + x3D2

x + (4x2 + 1)Dx + x2 + 2x. Furthermore

L1 ◦ L2 f(x) = xf (3) + (x3 + 1)f ′′ + f ′ + x2f ≡ L4 f(x)

where L4 := xD3
x + (x3 + 1)D2

x +Dx + x2. Clearly

L2 ◦ L1 f(x) �= L1 ◦ L2 f(x).

——————————————

Let f be a differentiable function. Then, following Definition A.1.2 b), we have

D−1
x ◦Dxf(x) = D−1

x f ′(x) = f(x) + c, (A.1.6)

where c is an arbitrary constant of integration and, furthermore,

Dx ◦D−1
x f(x) =

d

dx

(∫
f(x) dx+ c

)
= f(x). (A.1.7)

In terms of the linear operator (A.1.2), the nth-order linear nonhomogeneous differential
equation,

pn(x)y
(n) + pn−1(x)y

(n−1) + · · ·+ p1(x)y
′ + p0(x)y = f(x) (A.1.8)

takes the form

Ly(x) = f(x) (A.1.9)

where L is the linear operator (A.1.2).

In the next section we introduce a method to solve (A.1.9) by factorizing L into first-
order linear operators and then act the corresponding integral operators to eliminate all
derivatives. For this purpose the following definition plays a central role:
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Definition A.1.3. Let a and b be continuous functions on some interval D ⊆ R, such
that a(x) �= 0 for all x ∈ D. Consider the first-order linear operator

L = a(x)Dx + b(x). (A.1.10)

The integral operator corresponding to L, denoted by L̂, is defined as follows:

L̂ := e−ξ(x)D−1
x ◦ 1

a(x)
eξ(x), (A.1.11)

where

dξ(x)

dx
=

b(x)

a(x)
. (A.1.12)

By Definition A.1.3 follows

Proposition A.1.1. For any continuous function, f(x), we have

L̂f(x) = e−ξ(x)

[∫
f(x)

a(x)
eξ(x) dx+ c

]
(A.1.13)

and

L̂ ◦ Lf(x) = f(x) + e−ξ(x) c, (A.1.14)

where L is defined by (A.1.10), L̂ is defined by (A.1.11), and c is an arbitrary constant
of integration.

Proof: We show that relation (A.1.14) holds:

L̂ ◦ Lf(x) = L̂
(
a(x)f ′(x) + b(x)f(x)

)

= e−ξ(x)

(∫
a(x)f ′(x) + b(x)f(x)

a(x)
eξ(x) dx+ c

)

= e−ξ(x)

(∫
f ′(x)eξ(x) dx+

∫
b(x)

a(x)
f(x) eξ(x) dx+ c

)
.

Note that f(x)′eξ(x) + f(x)
(
eξ(x)

)′
=

(
f(x)eξ(x)

)′
, so that (A.1.14) follows. �

Example A.1.3.

——————————————
We consider L = xDx + x2 and f(x) = e−x2/2. Then the corresponding integral operator
is

L̂ = e−x2/2D−1
x ◦ ex

2/2

x
,
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so that L̂ e−x2/2 = e−x2/2 (ln |x|+ c) and L̂ ◦ Le−x2/2 = e−x2/2(1 + c).
——————————————

Consider now the first-order linear differential equation in the form

y′ + g(x)y = h(x). (A.1.15)

In terms of a linear differential operator (A.1.2) we can write (A.1.15) in the form

Ly(x) = h(x), (A.1.16)

where L is the first-order linear operator

L = Dx + g(x). (A.1.17)

Following Definition A.1.3 we now apply the corresponding integral operator L̂ on (A.1.16)
to gain the general solution of (A.1.15). We demonstrate this explicitly in the next exam-
ple.
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Example A.1.4.

——————————————
We find the general solution of (A.1.16), i.e.

y′ + g(x)y = h(x).

Following Definition A.1.3 we apply L̂, given by

L̂ = e−ξ(x)D−1
x ◦ eξ(x) with ξ(x) =

∫
g(x)dx, (A.1.18)

to the left-hand side and the right-hand side of (A.1.16). For the left-hand side we obtain

L̂ ◦ Ly(x) = y(x) + c1e
−ξ(x), (c1 is an arbitrary constant)

and for the right-hand side

L̂h(x) = e−ξ(x)

∫ [
h(x)eξ(x)dx+ c2

]
(c2 is an arbitrary constant).

Thus

y(x) + c1e
−ξ(x) = e−ξ(x)

∫ [
h(x)eξ(x)dx+ c2

]
,

or, equivalently

y(x) = e−ξ(x)

[∫
h(x)eξ(x)dx+ c

]
,

where c = c2 − c1 is an arbitrary constant and ξ(x) =
∫
g(x)dx.

——————————————

A.2 Higher-order linear constant-coefficient differential equa-
tions

In order to apply the method of linear operators and their corresponding integral operators
to solve higher-order linear differential equations, we need to factorize the higher-order
linear operators that determine the differential equations in terms of first-order operators.
This is in principle always possible, but in practise there are some obstacles.

The linear operators for the constant-coefficient homogeneous equation factorizes in
terms of first-order differential operators in the same manner as the characteristic equation
in λ for the Ansatz y(x) = eλx does. Take, for example, the second-order equation

y′′ + py′ + qy = f(x), p ∈ R, q ∈ R, (A.2.1)

with characteristic equation

λ2 + pλ+ q = 0 (A.2.2)
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and roots

λ1 =
1

2

(
−p+

√
p2 − 4q

)
, λ2 =

1

2

(
−p−

√
p2 − 4q

)
. (A.2.3)

Equation (A.2.1) can then be presented in the form

Ly(x) = f(x), (A.2.4)

where

L = D2
x + pDx + q. (A.2.5)

It is now easy to show that the second-order operator (A.2.5) factorizes as

L = (Dx − λ1) ◦ (Dx − λ2) ≡ L1 ◦ L2, (A.2.6)

since

L1 ◦ L2 y(x) = (Dx − λ1)(y
′ − λ2y)

= y′′ − (λ1 + λ2)y
′ + λ1λ2y = 0

and, by (A.2.3), λ1 + λ2 = −p and λ1λ2 = q. Thus

Lu(x) = L1 ◦ L2 y(x)

= y′′ + py′ + qy = f(x).

This directly extends to linear constant-coefficient equations of any order n:

Proposition A.2.1. Consider a constant coefficient nth-order nonhomogeneous dif-
ferential equation of the form

Ly(x) = f(x), (A.2.7)

where

L = anD
n
x + an−1D

n−1
x + · · ·+ a1Dx + a0, aj ∈ R, j = 0, 1, . . . , n. (A.2.8)

The characteristic equation of (A.2.7), following the Ansatz y(x) = eλx, is the nth
degree polynomial

Pn(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0 (A.2.9)

which admits n roots, {λ1, λ2, . . . , λn}, (λ ∈ R or C) so that (A.2.9) can be factorized
as

(λ− λ1)(λ− λ2) · · · (λ− λn) = 0.
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Then equation (A.2.7) factorizes in the form

L1 ◦ L2 ◦ · · · ◦ Ln y(x) = f(x), (A.2.10)

where

Lj = Dx − λj , j = 1, 2, . . . , n. (A.2.11)

The general solution of (A.2.7) then follows by applying, successively, the corresponding
integral operators L̂1, L̂2, . . . , L̂n to (A.2.10).

Applying now Proposition A.2.1 to second-order equations leads to the following Propo-
sition:
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Proposition A.2.2. Consider the 2nd-order equation

y′′ + py′ + qy = f(x), p, q ∈ R (A.2.12)

with characteristic equation

P2(λ) = λ2 + pλ+ q = 0. (A.2.13)

a) If the two roots, λ1 and λ2 of (A.2.13) are real and distinct numbers, then the
general solution of (A.2.12) is

y(x) = c1e
λ1x + c2e

λ2x + yp(x), (A.2.14)

where yp(x) is a particular solution of (A.2.12) given by

yp(x) =

(
1

λ1 − λ2

)(
eλ1x

∫
f(x)e−λ1xdx− eλ2x

∫
f(x)e−λ2xdx

)
(A.2.15)

and c1 and c2 are arbitrary constants.

b) If the two roots, λ1 and λ2 of (A.2.13) are complex numbers, then λ2 = λ̄1 (λ2 is
the complex conjugate of λ1) and the general solution of (A.2.12) is

y(x) = c1Re
{
eλ1x

}
+ c2 Im

{
eλ1x

}
+ yp(x), (A.2.16)

where yp(x) is a particular solution of (A.2.12) given by

yp(x) =

(
1

λ1 − λ̄1

)(
eλ1x

∫
f(x)e−λ1xdx− eλ̄1x

∫
f(x)e−λ̄1xdx

)
(A.2.17)

and c1 and c2 are arbitrary constants. Note that although λ1 and λ̄1 are complex
numbers, the solution y(x) is always a real-valued function.

c) If the two roots for (A.2.13) are equal, i.e. λ1 = λ2 ∈ R, then the general solution
of (A.2.12) is

y(x) = c1e
λ1x + c2 x e

λ1x + yp(x) (A.2.18)

where c1 and c2 are arbitrary constants and a particular solution yp(x) of (A.2.12)
is

yp(x) = eλ1x

∫ (∫
f(x)e−λ1xdx

)
dx. (A.2.19)

Proof: Equation (A.2.12) can be written in the form

L1 ◦ L2 y(x) = f(x), L1 = Dx − λ1, L2 = Dx − λ2, (A.2.20)

where λ1 and λ2 are the roots of the characteristic equation (A.2.13). The corresponding
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integral operators for L1 and L2 are

L̂1 = eλ1xD−1
x ◦ e−λ1x, L̂2 = eλ2xD−1

x ◦ e−λ2x, (A.2.21)

respectively. Acting L̂1 on (A.2.20), i.e. L̂1 ◦ L1 ◦ L2 y(x) = L̂1f(x), we obtain

L2y(x) + eλ1xk1 = eλ1x

∫
f(x)e−λ1x dx+ k2e

λ1x

or L2y(x) = eλ1x

∫
f(x)e−λ1x dx+ k3e

λ1x, (A.2.22)

where k3 ≡ k2 − k1 is a constant of integration. Applying now L̂2 on (A.2.22) leads to

y(x) + eλ2xk4 = eλ2x

∫ (
k3e

(λ1−λ2)x + e(λ1−λ2)xF (x)
)
dx+ k5e

λ2x

or y(x) = eλ2x

∫ (
k3e

(λ1−λ2)x + e(λ1−λ2)xF (x)
)
dx+ k6e

λ2x, (A.2.23)

where k6 ≡ k5 − k4 is a constant of integration and

F (x) :=

∫
f(x)e−λ1x dx. (A.2.24)

If λ1 �= λ2, then (A.2.23) reduces (after integration by parts) to (A.2.14) for λ1 ∈ R and
λ2 ∈ R and to (A.2.16) for complex roots λ1 and λ2 = λ̄1, or to (A.2.18) for equal roots
λ1 = λ2 ∈ R. �

Example A.2.1.

——————————————
We find the general solution of

y′′ + 4y = 8x2. (A.2.25)

The characteristic equation and its roots are λ2+4 = 0 and λ1 = 2i, λ2 = −2i so (A.2.25)
can be presented in factorized form

L1 ◦ L2 y(x) = 8x2, where L1 = Dx − 2i, L2 = Dx + 2i.

Following Proposition A.2.2, the general solution, φH(x), of the homogeneous part of
(A.2.25) is

φH(x; c1, c2) = c1 cos(2x) + c2 sin(2x). (A.2.26)

For a particular solution yp(x) we use formula (A.2.17) and calculate the integrals:

yp(x) =
1

4i

(
e2ix

∫
8x2e−2ix dx− e−2ix

∫
8x2e2ix dx

)
= 2x2 − 1.
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The general solution of (A.2.25) is thus

y(x) = c1 cos(2x) + c2 sin(2x) + 2x2 − 1,

where c1 and c2 are arbitrary constants.

——————————————

For an nth-order linear constant-coefficient equations we then have

Proposition A.2.3. Consider a constant coefficient nth-order nonhomogeneous dif-
ferential equation with n > 2 of the form

Ly(x) = f(x), (A.2.27)

where

L = anD
n
x + an−1D

n−1
x + · · ·+ a1Dx + a0 (A.2.28)

aj ∈ R, j = 0, 1, . . . , n.

Equation (A.2.27) factorizes in the form

L1 ◦ L2 ◦ · · · ◦ Ln y(x) = f(x), (A.2.29)

where Lj = Dx−λj (j = 1, 2, . . . , n) and {λ1, λ2, . . . , λn} (λj ∈ R or C) are the roots
of its characteristic equation. The general solution of (A.2.27) is then

y(x) = φH(x; c1, c2, . . . , cn) + yp(x), (A.2.30)

where φH(x) is the general solution of the homogeneous part of (A.2.27),

φH(x; c1, c2, . . . , cn) = c1e
λnx

(∫
e(λn−1−λn)xG

{n−2}
12 (x) dx

)
+ c2e

λnxG
{n−2}
23 (x)

+c3e
λnxG

{n−3}
34 (x) + · · ·+ cn−1e

λnxG
{1}
(n−1)n(x) + cne

λnx (A.2.31)

(c1, c2, . . . , cn are arbitrary constants) and yp(x) is a particular solution of (A.2.27),
namely

yp(x) = eλnx

∫ (
e(λn−1−λn)xFn−1(x) dx

)
. (A.2.32)
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Here

G
{1}
k� (x) :=

∫
e(λk−λ�)x dx, G

{j}
k� (x) :=

∫
e(λ�+j−2−λ�+j−1)xG

{j−1}
k� (x) dx,

j = 2, 3, . . . ; k = 1, 2, . . . ; � = 2, 3, . . . .

F1(x) :=

∫
f(x)e−λ1x dx, Fi(x) :=

∫
e(λi−1−λi)xFi−1(x) dx

i = 2, 3, . . . .

To prove Proposition A.2.3 we apply the corresponding integral operators on (A.2.29) and
identify the patterns. The details are left as an exercise.

Remark: For complex roots, {λ1, λ2, . . . , λn}, the expression for φH(x; c1, c2, . . . , cn),
(A.2.31), will be a complex-valued solution for (A.2.27) for which the real- and the imagi-
nary parts are real-valued solutions of (A.2.27). One therefore needs to combine the real-
and imaginary parts of φH such that one remains with n linear independent real-valued so-
lutions. We remark further that (A.2.32) is always a real particular solution for (A.2.27),
even for the case where {λ1, λ2, . . . , λn} are complex roots of the characteristic equation.
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Example A.2.2.

——————————————
We find the general solution of

y(3) − y′′ + y′ − y = e2x cosx. (A.2.33)

The characteristic equation is λ3 − λ2 + λ − 1 = 0, with roots λ1 = 1, λ2 = i, λ3 = −i.
Thus (A.2.33) can be presented in the factorized form

L1 ◦ L2 ◦ L3 y(x) = e2x cosx, where L1 = Dx − 1, L2 = Dx − i, L3 = Dx + i.

Following Proposition A.2.3 the general solution of the homogeneous part of (A.2.33) is

φH(x; c1, c2, c3) = c1e
λ3x

(∫
e(λ2−λ3)xG

{1}
12 dx

)
+ c2e

λ3xG
{1}
23 + c3e

λ3x,

where

G
{1}
12 =

∫
e(λ1−λ2)x dx =

∫
e(1−i)x dx =

(
1

1− i

)
e(1−i)x

G
{1}
23 =

∫
e(λ2−λ3)x dx =

∫
e2ix dx =

(
1

2i

)
e2ix.

We find

φH(x; c1, c2, c3) =

(
1

2

)
c1e

x +

(
1

2i

)
c2e

ix + c3e
−ix,

where

Re {φh} =
1

2
c1e

x +
1

2
c2 sinx+ c3 cosx

Im {φh} = −1

2
c2 cosx− c3 sinx

are real-valued solutions of (A.2.33). Since {ex, sinx, cosx} is a linearly independent set
of functions for all x ∈ R, the general solution of the homogeneous part of (A.2.33) is

φH(x; a1, a2, a3) = a1e
x + a2 sinx+ a3 cosx,

where a1, a2 and a3 are arbitrary constants. Following Proposition A.2.3, a particular
solution for (A.2.33) is of the form

yp(x) = e−ix

(∫
e2ixF2(x) dx

)
,

where

F2(x) =

∫
e(1−i)xF1(x) dx, F1(x) =

∫
ex cosx dx.
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Calculating the integrals we obtain

F1(x) =
1

2
ex (cosx+ sinx)

F2(x) =
1

8
e(2−i)x (cosx+ 2 sinx+ i sinx)

so that the particular solution becomes

yp(x) = e−ix

[∫
1

8
e2xeix (cosx+ 2 sinx+ i sinx) dx

]
=

1

8
e2x sinx.

The general solution of (A.2.33) is thus

y(x) = a1e
x + a2 sinx+ a3 cosx+

1

8
e2x sinx.

——————————————
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A.3 Higher-order linear nonconstant coefficient differential
equations

First we consider second-order linear nonhomogeneous equations of the form

y′′ + g(x)y′ + h(x)y = f(x), (A.3.1)

where f, g and h are differentiable functions on some common interval D ⊆ R. Assume
a factorization in terms of two linear first-order differential operators,

L1 = Dx + q1(x), L2 = Dx + q2(x), (A.3.2)

such that (A.3.1) is equivalent to

L1 ◦ L2 y(x) = f(x). (A.3.3)

Now (A.3.3) takes the form

y′′ + (q1 + q2)y
′ + (q1q2 + q′2)y = f(x) (A.3.4)

and, comparing (A.3.4) to (A.3.1) leads to the condition

q1 + q2 = g(x), q′2 + q1q2 = h(x),

or, equivalently,

q′2 = q22 − g(x)q2 + h(x), q1(x) = g(x)− q2(x).

We note that the condition on q2(x) is a Riccati equation. To find the general solution
of (A.3.3), we apply the corresponding integral operators L̂1 and L̂2, successively. This
leads to

Proposition A.3.1. The 2nd-order linear equation

y′′ + g(x)y′ + h(x)y = f(x) (A.3.5)

can be written in the factorized form

L1 ◦ L2 y(x) = f(x), (A.3.6)

where L1 = Dx + q1(x) and L2 = Dx + q2(x), if and only if q2(x) satisfies the Riccati
equation

q′2 = q22 − g(x)q2 + h(x). (A.3.7)
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Then q1(x) = g(x)− q2(x). Applying the corresponding integral operators, L̂1 and L̂2

successively on (A.3.6), leads to the general solution of (A.3.5), namely

y(x) = c1e
−ξ2(x) + c2e

−ξ2(x)

∫
eξ2(x)e−ξ1(x)dx+ yp(x), (A.3.8)

where yp(x) is a particular solution of (A.3.5) given by

yp(x) = e−ξ2(x)

∫
eξ2(x)e−ξ1(x)F (x)dx. (A.3.9)

Here c1 and c2 are arbitrary constants and

F (x) :=

∫
f(x)eξ1(x)dx, ξ1(x) :=

∫
q1(x)dx, ξ2(x) :=

∫
q2(x)dx.

Example A.3.1.

——————————————

We consider the second-order Cauchy-Euler equation

ax2y′′ + bxy′ + cy = f(x), x �= 0, (A.3.10)

where a �= 0, b and c are real constants and f is a continuous function on some interval
D ⊆ R. Equation (A.3.10) can equivalently be presented in the form

y′′ +

(
b

ax

)
y′ +

( c

ax2

)
y =

f(x)

ax2
(A.3.11)

Comparing (A.3.11) and (A.3.5) we identify

g(x) =
b

ax
, h(x) =

c

ax2
,

so that, by Proposition A.3.1, equation (A.3.10) can be factorized in the form (A.3.6) if
q2 satisfies the following Riccati equation:

q′2 = q22 −
(

b

ax

)
q2 +

c

ax2
. (A.3.12)

A solution of (A.3.12) is of the form

q2(x) = αxβ

with β = −1 and α satisfying the quadratic equation

α2 +

(
1− b

a

)
α+

c

a
= 0. (A.3.13)
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As an explicit example we consider a = 1, b = −1 and c = 1. This corresponds to the
equation

x2y′′ − xy′ + y = x3. (A.3.14)

A solution for (A.3.13) is then α = −1, so that

q2(x) = −1

x
, q1(x) = 0, ξ1(x) = 0, ξ2(x) = − ln |x|.

Thus the equation

y′′ −
(
1

x

)
y′ +

(
1

x2

)
y = x

factorizes in the form
(
Dx

)
◦
(
Dx −

1

x

)
y(x) = x

so that, by the solution formula (A.3.8), the general solution of (A.3.14) becomes

y(x) = c1x+ c2x ln |x|+
1

4
x3,

where c1 and c2 are arbitrary constants.

——————————————
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We give another example of a second-order nonconstant-coefficient equation:

Example A.3.2.

——————————————
Consider the equation

y′′ + 2xy′ + (x2 + 1)y = e−x2/2. (A.3.15)

Comparing (A.3.15) and (A.3.5) we identify

g(x) = 2x, h(x) = x2 + 1,

so that, by Proposition A.3.1, equation (A.3.15) can be factorized in the form (A.3.6),
where q2 satisfies the following Riccati equation:

q′2 = q22 − 2xq2 + x2 + 1. (A.3.16)

A special solution for (A.3.16) is

q2(x) = x so that q1(x) = x.

Hence (A.3.15) takes the factorized form

(Dx + x)(Dx + x) y(x) = e−x2/2.

By the solution formula (A.3.8), the general solution of (A.3.15) becomes

y(x) = c1e
−x2/2 + c2xe

−x2/2 +
1

2
x2e−x2/2,

where c1 and c2 are arbitrary constants.

——————————————

An extension to higher-order nonconstant-coefficient linear equations is possible, al-
though the general condition for the factorization into first-order linear operators becomes
rather complicated. To demonstrate this, we consider the third-order case:

y(3) + k(x)y′′ + g(x)y′ + h(x)y = f(x), (A.3.17)

or, equivalently

Ly(x) = f(x), (A.3.18)

where L = D3
x + k(x)D2

x + g(x)Dx + h(x). Assume now a factorization in the form

(Dx + q1(x)) ◦ (Dx + q2(x)) ◦ (Dx + q3(x)) y(x) = f(x),

which leads to

y(3) + (q1 + q2 + q3)y
′′ +

(
q′2 + 2q′3 + q1q2 + q2q3 + q1q3

)
y′

+
(
q′′3 + q′2q3 + q′3q1 + q′3q2 + q1q2q3

)
y = f(x). (A.3.19)
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Hence, we have the following relations between the coefficients in (A.3.17) and (A.3.19):

k(x) = q1 + q2 + q3 (A.3.20a)

g(x) = q′2 + 2q′3 + q1q2 + q2q3 + q1q3 (A.3.20b)

h(x) = q′′3 + q′2q3 + q′3q1 + q′3q2 + q1q2q3 (A.3.20c)

We now consider the special case q3 = 1. The relations (A.3.20a) – (A.3.20c) lead to the
condition

h(x) + k(x)− g(x)− 1 = 0.

Thus we can state that the equation

y(3) + k(x)y′′ + g(x)y′ + (1 + g(x)− k(x))y = f(x)

factorizes in the form

(Dx + q1(x)) ◦ (Dx + q2(x)) ◦ (Dx + 1) y(x) = f(x)

if and only if q2 satisfies the Riccati equation

q′2 = q22 + (1− k(x))q2 + 1 + g(x)− k(x)

Then q1(x) is given by the relation

q1(x) = k(x)− q2(x)− 1.
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Appendix B

Methods of integration

We sum up some of the important methods and substitutions which can be applied to
integrate certain continuous functions of one variable.

B.1 The method of substitution

Indefinite Integrals:

∫
f(g(x)) g′(x)dx =

∫
f(u)du, where u = g(x);

du

dx
= g′(x).

Definite Integrals:

b∫

a

f(g(x)) g′(x)dx =

g(b)∫

g(a)

f(u)du, where u = g(x);
du

dx
= g′(x).

Examples for the method of substitution:

1. We calculate

∫
x2(x3 + 2)2/3dx

Make the substitution u = x3 + 2. Then
du

dx
= 3x2, so that du = 3x2dx. Thus, in terms

of u, the integral becomes

1

3

∫
u2/3 du =

1

3

(
3

5
u5/3

)
+ c =

1

5
(x3 + 2)5/3 + c,

where c is an arbitrary constant (a constant of integration).

For the definite integral

169
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2∫

−1

x2(x3 + 2)2/3dx we have

1

3

10∫

1

u2/3 du =
1

3

(
3

5
u5/3

)∣∣∣∣
10

1

=
1

5

(
105/3 − 1

)
.

2. We calculate

∫
sin3 x

cos5 x
dx

Consider

∫
sin2 x

cos5 x
sinxdx =

∫
1− cos2 x

cos5 x
sinxdx and make the substitution u = cosx.

Then
du

dx
= − sinx, so that du = − sinxdx. Thus, in terms of u, the integral becomes

−
∫

1− u2

u5
du =

∫ (
−u−5 + u−3

)
du =

1

4
u−4 − 1

2
u−2 + c =

1

4
cos−4 x− 1

2
cos−2 x+ c,

where c is a constant of integration.

B.2 Inverse substitution

Indefinite Integrals:

∫
f(x)dx =

∫
f(g(u)) g′(u)du, where x = g(u),

dx

du
= g′(u).

Definite Integrals:

b∫

a

f(x)dx =

g−1(b)∫

g−1(a)

f(g(u)) g′(u)du, where x = g(u),
dx

du
= g′(u), g is 1-1.

B.2.1 Common trigonometric inverse substitutions

For
√

a2 − x2, a > 0 use x = a sin θ, −π

2
≤ θ ≤ π

2
(B.2.1)

For
√

a2 + x2 or
1

a2 + x2
, a > 0 use x = a tan θ − π

2
< θ <

π

2
(B.2.2)

For
√

x2 − a2, a > 0 use x = a sec θ, 0 ≤ θ <
π

2
or π ≤ θ <

3π

2
(B.2.3)
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An example for the method of inverse substitution:

We calculate

0∫

−1

√
2− x2 dx

Let x =
√
2 sin θ, where −π/2 ≤ θ ≤ π/2. Then

dx

dθ
=

√
2 cos θ, so that dx =

√
2 cos θ dθ.

For x = −1, we have θ = −π/4 and for x = 0, we have θ = 0. The integral then becomes

0∫

−π/4

√
2− 2 sin2 θ

√
2 cos θ dθ = 2

0∫

−π/4

cos2 θ dθ = 2

0∫

−π/4

1 + cos 2θ

2
dθ =

(
θ +

1

2
sin 2θ

)∣∣∣∣
0

−π/4

=
π

4
+

1

2
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B.2.2 Substitutions by completing the square

In some cases, where the integrand, f(x), in

∫
f(x) dx

contains a second-degree polynomial,

ax2 + bx+ c, (a, b, c : some given real constants)

we can find a suitable substitution by completing the square. That is

a

(
x2 +

b

a
x+

c

a

)
= a

[(
x+

b

2a

)2

+
c

a
− b2

4a2

]
.

A suitable substitution could then be

u = x+
b

2a
.

An example: completing the square, substitution and inverse substitution:

We calculate

∫
1

(x2 + 2x+ 3)3/2
dx

First we complete the square for the term x2 + 2x+ 3, i.e.

x2 + 2x+ 3 = (x+ 1)2 + 2.

We make the substitution u = x+ 1. Then the integral becomes

∫
1

(u2 + 2)3/2
du.

Now we use the inverse substitution u =
√
2 tan θ, so that

du

dθ
=

√
2

cos2 θ

and

u2 + 2 = 2 + 2 tan2 θ = 2 + 2
sin2 θ

cos2 θ
=

2

cos2 θ
.

Thus the integral becomes

∫
1(

2

cos2 θ

)3/2

√
2

cos2 θ
dθ =

1

2

∫
cos θ dθ =

1

2
sin θ + c.
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Recall that tan θ =
u√
2
and u = x+ 1, so that

sin θ =
u√

u2 + 2
=

x+ 1√
(x+ 1)2 + 2

.

Hence∫
1

(x2 + 2x+ 3)3/2
dx =

1

2

x+ 1√
(x+ 1)2 + 2

+ c,

where c is a constant of integration.

B.2.3 Substitutions for n root expressions

In some cases, where the integrand, f(x), in
∫

f(x) dx

contains an n-root expressions, e.g.

(ax+ b)m/n , (a, b : real constants, m �= n : integers Z\{−1, 0, 1},

a suitable substitution could be

ax+ b = un/m.

An example for n root expressions of the type (ax+ b)m/n, m �= n;m,n ∈ Z\{−1, 0, 1}:

We calculate

∫
x2

(2x+ 3)3/5
dx

We use the substitution u = (2x+ 3)3/5, i.e.

x =
1

2
u5/3 − 3

2
,

so that

dx =
5

6
u2/3 du.

The integral then becomes

∫
1

u

(
1

2
u5/3 − 3

2

)2(5

6

)
u2/3 du =

5

6

∫ (
1

4
u3 − 3

2
u4/3 +

9

4
u−1/3

)
du

=
5

6

(
1

16
u4 − 9

14
u7/3 +

27

8
u2/3

)
+ c

=
5

6

(
1

16
(2x+ 3)12/5 − 9

14
(2x+ 3)7/5 +

27

8
(2x+ 3)2/5

)
+ c

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

176 

Appendix B: Methods of integration
174 APPENDIX B. METHODS OF INTEGRATION

B.2.4 The tan (θ/2) substitution

In some cases, where the integrand, f(θ), in

∫
f(θ) dθ

is a rational function of cos θ and sin θ, a suitable substitution could be

x = tan
θ

2
.

It follows that

dx

dθ
=

1

2
sec2

θ

2
, or dθ =

2

1 + x2
dx

cos θ =
1− x2

1 + x2

sin θ =
2x

1 + x2
.
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An example for the tan (θ/2) substitution:

We calculate

∫
1

cos θ
dθ.

With the substitution x = tan
θ

2
, we have

cos θ =
1− x2

1 + x2
, dθ =

2

1 + x2
dx,

so that the integral becomes

∫
1(

1− x2

1 + x2

) 2

1 + x2
dx =

∫
2

1− x2
dx =

∫
2

(1− x)(1 + x)
dx =

∫ (
1

1− x
+

1

1 + x

)
dx

= − ln |1− x|+ ln |1 + x|+ c

= ln

∣∣∣∣
1 + x

1− x

∣∣∣∣+ c

= ln

∣∣∣∣∣
1 + tan θ

2

1− tan θ
2

∣∣∣∣∣+ c.

B.3 Integration by parts

Consider two differentiable functions, f(x) and g(x), with continuous derivatives. Then

d

dx
[f(x) g(x)] = f ′(x)g(x) + f(x)g′(x).

Integrating the above, we obtain

f(x)g(x) =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx or

∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx,

which is the integration-by-parts formula for the indefinite integral of f(x)g′(x). The
definite integration-by-parts formula is

b∫

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣
b

a

−
b∫

a

f ′(x)g(x) dx,
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An example for integration by parts:

We calculate

1∫

0

(1 + x)−2 ln(1 + x) dx.

Using the integration by parts formula
∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx, we let

f(x) = ln(1 + x), g′(x) = (1 + x)−2,

so that

f ′(x) =
1

1 + x
, g(x) = −(1 + x)−1.

We then have

1∫

0

(1 + x)−2 ln(1 + x) dx

= − (1 + x)−1 ln(1 + x)

∣∣∣∣
1

0

−
1∫

0

(
1

1 + x

)(
−1

1 + x

)
dx

= − (1 + x)−1 ln(1 + x)

∣∣∣∣
1

0

+

1∫

0

1

(1 + x)2
dx

= − (1 + x)−1 ln(1 + x)

∣∣∣∣
1

0

− (1 + x)−1

∣∣∣∣
1

0

=
1

2
− 1

2
ln(2).

B.4 Integration of rational functions

Integrals of rational functions

∫
P (x)

Q(x)
dx,

where P (x) is a polynomial of degree n and Q(x) is a polynomial of degree m (we write
Deg (P ) = n and Deg (Q) = m), can be treated in the following manner:

Case A: Here Deg (P ) ≥ Deg (Q):
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By long division, divide Q into P . This will result in an expression of the form

P (x)

Q(x)
= S(x) +

R(x)

Q(x)
,

where S and R are also polynomials, with Deg (R) < Deg (Q) and Deg (S) = Deg (P )−
Deg (Q) and R being the rest of this division. We then have

∫
P (x)

Q(x)
dx =

∫
S(x) dx+

∫
R(x)

Q(x)
dx.

Case B: Here Deg (P ) < Deg (Q):

Note: By theorem, any polynomial with real coefficients can be factored in terms of
ajx+ bj and pjx

2 + qjx+ sj for some real constants aj , bj , pj , qj , sj , where pjx
2 + qjx+ sj

is irreducible (cannot be factored further, i.e. q2j − 4pjsj < 0).

Given this fact, we can write
P (x)

Q(x)
as a sum of partial fractions, albeit we need to consider

different cases; depending on the factorization properties of Q(x):
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Case I: Let Q(x) be a product of k distinct linear factors. That is

Q(x) = (a1x+ b1)(a2x+ b2) · · · (akx+ bk).

Then Q(x) can be written as the following sum of partial fractions:

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ Ak

akx+ bk
.

The constants, Aj , must then be determined such that the above relation is satisfied.
This is done by multiplying the above expression by Q and then comparing coefficients
of different powers of x. This will result in a linear system of algebraic equations which
determines A1, A2, . . . , Ak.

We then have
∫

P (x)

Q(x)
dx =

∫
A1

a1x+ b1
dx+

∫
A2

a2x+ b2
dx+ · · ·+

∫
Ak

akx+ bk
dx.

Case II: Let Q(x) be a product of k linear factors, where some are repeated r ≤ k times.

For example, say Q is of degree 4 which factorizes as follows:

Q(x) = (a1x+ b1)
2(a2x+ b2)(a3x+ c3)

Then the sum of partial fractions would be of the form

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

(a1x+ b1)2
+

A3

a2x+ b2
+

A4

a3x+ b3
.

Again, the constants Aj can be determined by multiplying the above expression by Q(x)
and comparing coefficients of different powers of x.

Case III: Assume that Q(x) can be factored in terms of linear factors and irreducible
second-degree factors of the form

pjx
2 + qjx+ sj , q2j − 4pjsj < 0,

where none of the irreducible factors appear more than once in the product.

For example, say Q is of degree 6 and has factors of the form

Q(x) = (a1x+ b1)(a2x+ b2)(p1x
2 + q1x+ s1)(p2x

2 + q2x+ s2).

Then the sum of partial fractions would be of the form

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+

B1x+ C1

p1x2 + q1x+ s1
+

B2x+ C2

p2x2 + q2x+ s2
.
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The constants Aj , Bj , Cj are determined by multiplying the above expression by Q(x)
and comparing coefficients of different powers of x.

Case IV: Assume that Q(x) can be factored in terms of linear factors and irreducible
second-degree factors of the form

pjx
2 + qjx+ sj , q2j − 4pjsj < 0,

where some of the irreducible factors appear more than once in the product.

For example, say Q is of degree 6 and has factors of the form

Q(x) = (a1x+ b1)(a2x+ b2)(p1x
2 + q1x+ s1)

2.

That is, the irreducible second-degree factor appears two times. Then the sum of partial
fractions would be of the form

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+

B1x+ C1

p1x2 + q1x+ s1
+

B2x+ C2

(p1x2 + q1x+ s1)2
.

The constants Aj , Bj , Cj are determined by multiplying the above expression by Q(x)
and comparing coefficients of different powers of x.

In view of the above Case III and Case IV, one should point out that

∫
1

x2 + a2
=

1

a
tan−1

(x
a

)
+ k, (k is an arbitrary constant, a �= 0) (B.4.1)

as well as the following two Statements:
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Statement 1:

Let ax2 + bx+ c be an irreducible second-degree polynomial, i.e.
b2 − 4ac < 0. Then

∫
1

ax2 + bx+ c
dx =

2√
4ac− b2

tan−1

(
2ax+ b√
4ac− b2

)
+ k (B.4.2)

where k is a constant of integration.

Statement 2:

Let

In =

∫
1

(x2 + a2)n
dx, (B.4.3)

where n = 2, 3, . . . . Then the following reduction formula is valid:

In =
1

2a2(n− 1)

[
x

(x2 + a2)n−1
+ (2n− 3) In−1

]
. (B.4.4)

Examples for integrals of rational functions:

1. We calculate

∫
x3 + 4x2 + 17x+ 21

(x+ 3)2(2x− 1)(x+ 2)
dx.

We write the given rational function as the following sum of partial fractions:

x3 + 4x2 + 17x+ 21

(x+ 3)2(2x− 1)(x+ 2)
=

A1

x+ 3
+

A2

(x+ 3)2
+

A3

2x− 1
+

A4

x+ 2
.

We multiply the above relation by the denominator on the right-hand side, i.e. by (x +
3)2(2x− 1)(x+ 2), to obtain the polynomial relation

x3 + 4x2 + 17x+ 21

= A1(x+ 3)(2x− 1)(x+ 2) +A2(2x− 1)(x+ 2) +A3(x+ 3)2(x+ 2) +A4(x+ 3)2(2x− 1).

Equating coefficients of x3, x2, x1 and x0, respectively, we obtain the following relation
for the constants Aj :

2A1 +A3 + 2A4 = 1

9A1 + 2A2 + 8A3 + 11A4 = 4

7A1 + 3A2 + 21A3 + 12A4 = 17

−6A1 − 2A2 + 18A3 − 9A4 = 21.
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The solution of the above system of linear algebraic equations (using for example Gauss
elimination) gives the following unique solution for the constants Aj :

A1 = −1, A2 = −3, A3 = 1, A4 = 1.

Thus

x3 + 4x2 + 17x+ 21

(x+ 3)2(2x− 1)(x+ 2)
= − 1

x+ 3
− 3

(x+ 3)2
+

1

2x− 1
+

1

x+ 2

and the integral becomes

∫
x3 + 4x2 + 17x+ 21

(x+ 3)2(2x− 1)(x+ 2)
dx

=

∫ (
− 1

x+ 3
− 3

(x+ 3)2
+

1

2x− 1
+

1

x+ 2

)
dx

= − ln |x+ 3|+ 3

x+ 3
+

1

2
ln |2x− 1|+ ln |x+ 2|+ c.

2. We calculate

∫
2x3 + 2x2 + 3x− 1

(x+ 1)(2x− 1)(x2 + 1)2
dx.

We write the given rational function as the following sum of partial fractions:

2x3 + 2x2 + 3x− 1

(x+ 1)(2x− 1)(x2 + 1)2
=

A1

x+ 1
+

A2

2x− 1
+

B1x+ C1

x2 + 1
+

B2x+ C2

(x2 + 1)2
.

Multiplying this relation by the denominator on the left-hand side and equating different
powers of x, we obtain the following linear system of equations for the constants Aj , Bj

and Cj :

2A1 +A2 + 2B1 = 0

−A1 +A2 +B1 + 2C1 = 0

4A1 + 2A2 +B1 + C1 + 2B2 = 2

−2A1 + 2A2 +B1 +B2 + C1 + C2 = 2

2A1 +A2 −B1 −B2 + C1 + C2 = 3

−A1 +A2 − C1 − C2 = −1,

with the unique solution

A1 =
1

3
, A2 =

8

15
, B1 = −3

5
, B2 = 0, C1 =

1

5
, C2 = 1
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The integral now becomes
∫

2x3 + 2x2 + 3x− 1

(x+ 1)(2x− 1)(x2 + 1)2
dx

=
1

3

∫
1

x+ 1
dx+

8

15

∫
1

2x− 1
dx− 3

5

∫
x

x2 + 1
dx+

1

5

∫
1

x2 + 1
dx+

∫
1

(x2 + 1)2
dx

=
1

3
ln |x+ 1|+ 4

15
ln |2x− 1| − 3

10
ln(x2 + 1) +

7

10
tan−1 x+

1

2

x

x2 + 1
+ c.

Note that the last two terms in the above expression have been obtained by using State-
ment 2, i.e.

∫
1

(x2 + 1)2
dx =

1

2

x

x2 + 1
+

1

2
tan−1 x.

Some important trigonometric identities:

cos2 x =
1

2
(1 + cos 2x)

sin2 x =
1

2
(1− cos 2x)

sin2 x+ cos2 x = 1

sec2x− tan2x = 1

cosec2x− cot2x = 1

cos(x+ y) = cosx cos y − sinx sin y

sin(x+ y) = sinx cos y + cosx cos y

tan (x+ y) =
tanx+ tan y

1− tanx tan y

where

tanx =
sinx

cosx

cotx =
1

tanx
=

cosx

sinx

cosecx =
1

sinx

secx =
1

cosx

cos(−x) = cosx, sin(−x) = − sinx.
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Appendix C

Some references on differential
equations

Birkhoff, G. and Rota, G.-C. Ordinary Differential Equations, 4th edition, John Wiley &
Sons, Inc, 1989

Gudemenko, F. C., Povluk, I. A. and Volkova, V. O. A Collection of Problems for Differ-
ential Equations (in Ukrainian), Veshchia Skola, 1972

Ince, I. E. Ordinary Differential Equations, Dover, 1956

Kamke, E.Differentialgleichungen: Lösungsmethoden und Lösungen, B. G. Teubner, Stuttgart,
1977

Krasnov, M. L., Kiselev, A. I. and Makarenko, G. I. A Collection of Problems for Ordinary
Differential Equations (in Russian), Veshchia Skola, 1978

Murphy, G. M. Ordinary Differential Equations and Their Solutions, Dover Publications,
Series: Dover Books on Mathematics, 2011

Pennisi, L. L. Elements of Ordinary Differential Equations, Holt, Rinehart and Winston,
Inc., New York, 1972
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Appendix D

Solutions to some of the exercises

Exercise 1.1.1: nr. 1 b

We consider the set

S = {f1(x) = lnx, f2(x) = lnx2, f3(x) = e3x}

on the interval D = (0, ∞). Since lnx2 = 2 lnx, the set S is clearly a linearly dependent
set, as the equation

c1 lnx+ 2c2 lnx+ c3e
3x = 0

has nontrivial solutions for c1 and c2. For example the above relation is true if c1 = −2,
c2 = 1 and c3 = 0 for all x ∈ D. Therefore it follows by Proposition 1.1.2 that the
Wronskian is zero for all x ∈ D. We verify this:

W [f1, f2, f3](x) :=

∣∣∣∣∣∣∣∣

f1(x) f2(x) f3(x)

f ′
1(x) f ′

2(x) f ′
3(x)

f ′′
1 (x) f ′′

2 (x) f ′′
3 (x)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

lnx 2 lnx e3x

1/x 2/x 3e3x

−1/x2 −2/x2 9e3x

∣∣∣∣∣∣∣∣

= 18

(
lnx

x

)
e3x − 6

(
lnx

x2

)
e3x −

(
2

x3

)
e3x

+

(
2

x3

)
e3x − 18

(
lnx

x

)
e3x + 6

(
lnx

x2

)
e3x

≡ 0 for all x ∈ (0, ∞).

Exercise 1.1.1: nr. 1 d

We consider the set

S = {f1(x) = ex, f2(x) = e−x, f3(x) = xex, f4(x) = xe−x}

185

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

188 

Appendix D: Solutions to some of the exercises
188 APPENDIX D. SOLUTIONS TO SOME OF THE EXERCISES

on the interval D = R. Let us calculate the Wronskian of the set S in the point x = 0:

W [f1, f2, f3, f4](0) :=

∣∣∣∣∣∣∣∣∣∣∣

f1(0) f2(0) f3(0) f4(0)

f ′
1(0) f ′

2(0) f ′
3(0) f ′

4(0)

f ′′
1 (0) f ′′

2 (0) f ′′
3 (0) f ′′

4 (0)

f
(3)
1 (0) f

(3)
2 (0) f

(3)
3 (0) f

(3)
4 (0)

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0

1 −1 1 1

1 1 2 −2

1 −1 3 3

∣∣∣∣∣∣∣∣∣∣∣
= −16.

Since the Wronskian is nonzero in a point in the interval R (in this case we have chosen
x = 0), it follows by Proposition 1.1.2 that the set S is linearly independent.

Exercise 1.1.1: nr. 2

We consider the set

S = {f1(x) = x2, , f2(x) = x|x|}

on R. For x > 0 the Wronskian for S is

W [f1, f2](x) =

∣∣∣∣
x2 x2

2x 2x

∣∣∣∣ = 2x3 − 2x3 = 0

for all x ∈ (0, ∞). For x < 0 the Wronskian of S is

W [f1, f2](x) =

∣∣∣∣
x2 −x2

2x −2x

∣∣∣∣ = −2x3 + 2x3 = 0

for all x ∈ (−∞, 0). We note that for f2(x) = x|x|, the derivative of f2(x) in the point
x = 0 is

f ′
2(0) = lim

h→0

f2(x+ h)− f2(x)

h

∣∣∣∣
x=0

= lim
h→0

(x+ h)|x+ h| − x|x|
h

∣∣∣∣
x=0

= lim
h→0

h|h|
h

= lim
h→0

|h| = 0.

Hence the derivative of f1(x) and f2(x) exists at x = 0 and we can calculate the Wronskian
for S at x = 0:

W [f1, f2](0) =

∣∣∣∣
0 0
0 0

∣∣∣∣ = 0.

From the above it follows that the Wronskian for S is zero for all x ∈ R. However,
Proposition 1.1.2 does not make a conclusion form this fact. So to establish whether
the set S is linearly independent or linearly dependent on R, we need to consider the
equation

c1x
2 + c2x|x| = 0

and investigate the possibilities for c1 and c2 to satisfy this relation. We first consider the
case x > 0. Then we have

c1x
2 + c2x

2 = 0
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which leads to the condition c1 + c2 = 0 for all x ∈ [0, ∞). Consider now the case x < 0,
for which we have

c1x
2 − c2x

2 = 0.

This leads to the condition c1 − c2 = 0 for all x ∈ (−∞, 0]. For the case x = 0, we have

c10− c20 = 0.

for which there are obviously no conditions on c1 or on c2. Now, for all x ∈ R both
conditions, c1+c2 = 0 and c1−c2 = 0, have to be satisfied, which is possible only if c1 = 0
and c2 = 0. Hence by Definition 1.1.3 the set S is linearly independent on R.
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Exercise 1.1.1: nr. 3 b

We show that

y(x) = c1 cos(2x) + c2 sin(2x), (c1, c2 arbitrary constants)

is the general solution for the equation

y′′ + 4y = 0

for all x ∈ R. We apply Proposition 1.1.5. Thus we need to show that the set of
functions S = {φ1)(x) = cos(2x), φ2(x) = sin(2x)} is a linearly independent set for all
x ∈ R and that φ1(x) and φ2(x) satisfy the given differential equation. We calculate the
Wronskian in x = 0:

W [φ1, φ2](0) =

∣∣∣∣∣
cos(2x) sin(2x)

−2 sin(2x) 2 cos(2x)

∣∣∣∣∣
x=0

= 2.

By Proposition 1.1.2 it then follows that the set S is linearly independent on R. We
now differentiate φ1(x) and φ2(x) twice and insert those functions and their derivatives
into the differential equation to verify that φ1(x) and φ2(x) are indeed solutions of the
equation. It then follows by Proposition 1.1.5 that y(x) = c1 cos(2x) + c2 sin(2x) is the
general solution of y′′ + 4y = 0 for all x ∈ R and that the solution domain is R.

Exercise 1.1.1: nr. 5 c

We construct a second-order homogeneous differential equation that admits the following
set of solutions:

S = {φ1(x) = x cos(1/x), φ2(x) = x sin(1/x)}.

We apply Proposition 1.1.4. To construct the equation, we first need to show that the
set S is linearly independent. The differential equation with dependent variable y then
follows from the relation W [φ1, φ2, y](x) = 0, where W denotes the Wronskian of the set
{φ1(x), φ2(x), y(x)}.

To establish the linear independence of the set S, we apply Proposition 1.1.2 and
calculate the Wronskian in the point x = 1/π:

W [φ1, φ2](1/π) =

∣∣∣∣∣
−1/π 0

−1 π

∣∣∣∣∣ = −1.

By Proposition 1.1.2 it then follows that S is linearly independent on R\{0}. Applying
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now Proposition 1.1.4, we calculate the following Wronskian:

W [φ1, φ2, y](x) =

∣∣∣∣∣∣∣∣

φ1(x) φ2(x) y(x)

φ′
1(x) φ′

2(x) y′(x)

φ′′
1(x) φ′′

2(x) y′′(x)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

x cos(1/x) x sin(1/x) y(x)

cos(1/x) + (1/x) sin(1/x) sin(1/x)− (1/x) cos(1/x) y′(x)

−(1/x3) cos(1/x) −(1/x3) sin(1/x) y′′(x)

∣∣∣∣∣∣∣∣

= −y′′
[
cos2(1/x) + sin2(1/x)

]
− 1

x4
[
cos2(1/x) + sin2(1/x)

]
y

= −y′′ −
(

1

x4

)
y,

where we have used the identity

cos2(1/x) + sin2(1/x) = 1 for all x ∈ R\{0}.

By Proposition 1.1.4, the differential equation which admits the general solution given
by the linearly independent set of functions S, is then given by the relationW [φ1, φ2, y](x) =
0. Hence the equation is

y′′ +

(
1

x4

)
y = 0 for all ∈ R\{0}.
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Exercise 1.2.1: 2

The functions

φ1(x) = e−x cosx, φ2(x) = e−x sinx

satisfy the differential equation

y′′ + 2y′ + 2y = 0

so that these functions belong to the solution space of this differential equation. Moreover,
these functions form a linearly independent set,

B = {e−x cosx, e−x sinx}.

It can easily be verified that the set B is a linearly independent set by calculating the
Wronskian in, for example, the point x = 0. This gives

W [φ1, φ2](0) = 3π,

so that, by Proposition 1.1.2, the set B is linearly independent. Furthermore, by
Proposition 1.2.2, the set B is a basis for the solution space of the differential equation
y′′ + 2y′ + 2y = 0. Since this basis consists of two functions, which are vectors in C∞(R),
the dimension of the solution space is two. The solution space is therefore a 2-dimensional
subspace of C∞(R) given by the kernel of T , where T is the linear transformation

T : y(x) �→ Ly(x), L =
d2

dx2
+ 2

d

dx
+ 2.

Exercise 2.2.1: 1 e

The task is to find a general solution of the following separable first-order differential
equation:

y′ +
1− y2

1− x2
= 0

for all x > 1. First consider the case

y(x) = ±1

which are obviously two solutions of the given differential equation for all x > 1. Consider
now the case y(x) �= ±1: We can separate the x− and y-variables and write the differential
equation in the form

dy

1− y2
=

dx

x2 − 1
.

To find a general solution, we now have to integrate this relation:
∫

dy

1− y2
=

∫
dx

x2 − 1
+ c1,
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where c1 is a constant of integration. Note that
1

1− y2
can be written as the following

sum of partial fractions:

1

(1− y)(1 + y)
=

A

1− y
+

B

1 + y

or

1 = A(1 + y) +B(1− y),

so that A = 1/2 and B = 1/2. That is

1

(1− y)(1 + y)
=

1

2

(
A

1− y

)
+

1

2

(
B

1 + y

)

In the same way we can write

1

x2 − 1
=

1

2

(
1

x− 1

)
− 1

2

(
1

x+ 1

)
.

Thus the above integrals take the form
∫

dy

1− y
+

∫
dy

1 + y
=

∫
dx

x− 1
− dx

x+ 1
+ c1,

so that

− ln |1− y|+ ln |1 + y| = ln |x− 1| − ln |x+ 1|+ c1

where c1 is an arbitrary constant that plays the role of the constant of integration. This
can be simplified to

ln

∣∣∣∣
1 + y

1− y

∣∣∣∣ = ln

(∣∣∣∣
x− 1

x+ 1

∣∣∣∣
)
+ c1

or
∣∣∣∣
1 + y

1− y

∣∣∣∣ = ec1
∣∣∣∣
x− 1

x+ 1

∣∣∣∣ .

Since x > 1, we have
∣∣∣∣
x− 1

x+ 1

∣∣∣∣ =
x− 1

x+ 1
> 0

so that
∣∣∣∣
1 + y

1− y

∣∣∣∣ = ec1
(
x− 1

x+ 1

)
.

For
1 + y

1− y
> 0 we solve y(x) from the relation

1 + y

1− y
= ec1

(
x− 1

x+ 1

)
,
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to obtain a general solution of the given differential equation in the form

y(x) =
ec1(x− 1)− x− 1

ec1(x− 1) + x+ 1
.

For
1 + y

1− y
< 0 we solve y(x) from the relation

−
(
1 + y

1− y

)
= ec1

(
x− 1

x+ 1

)

to obtain a general solution of the given differential equation in the form

y(x) =
ec1(x− 1) + x+ 1

ec1(x− 1)− x− 1
.

Note that the two solutions y(x) = ±1 are singular solutions for this equation.
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Exercise 2.2.1: 3 b

We find a general solution for

y2 − x2 + xyy′ = 0

by making the substitution

y(x) = xv(x),

where v(x) is a new dependent variable. The x-derivative is

y′ = v + xv′.

Substituting this into the differential equation we obtain a differential equation in the new
dependent variable v(x), namely the following first-order equation:

xvv′ + 2v2 − 1 = 0,

which is a separable equation. Separating the variables, leads to the following integrals:
∫

v

1− 2v2
dv =

∫
1

x
dx+ c1,

where x �= 0. Evaluating these integrals, we obtain

−1

4
ln

∣∣1− 2v2
∣∣ = ln |x|+ c1,

or, by multiplying with −4 and introducing a new arbitrary constant c2 = −4c1, we obtain

ln
∣∣1− 2v2

∣∣ = ln

(
1

x4

)
+ c2,

Upon inverting ln
∣∣1− 2v2

∣∣, we obtain

v2 =
1

2

(
1− x−4ec2

)
.

We now write the answer in terms of the original dependent variable y(x) by replacing
v(x) = y(x)/x, so that a general solution takes the form

y2(x) =
1

2x2
(
x4 − ec2

)
for all x ∈ R.

Exercise 2.3.1: 1 d

We find the general solution of the linear first-order equation

y′ + y + sinx+ x3 = 0 for all x ∈ R.

The integrating factor is

e
∫
1 dx = ex.
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We multiply the equation by this integrating factor:

exy′ + exy = −ex sinx− exx3,

which has the equivalent form

d

dx
(exy) = −ex sinx− exx3.

Integrating both sides of this equation with respect to x, we obtain

exy = −
∫

ex sinx dx−
∫

exx3 dx+ c1

= −
(
−1

2
ex cosx+

1

2
ex sinx

)
− exx3 − 3exx2 + 6exx− 6ex + c1.

Thus the general solution is

y =
1

2
cosx− 1

2
sinx− x3 + 3x2 − 6x+ 6 + c1e

−x for all x ∈ R,

where c1 is an arbitrary constant.

Exercise 2.3.1: 2 c

We solve the initial-value problem

xy′ + y = x cosx, y(π/2) = 1.

Let x �= 0. Then we divide the equation by x, so it takes the form

y′ +
1

x
y = cosx.

The integrating factor is

e
∫
(1/x) dx = eln |x| = |x|.

Consider x > 0: Multiplying the equation by the integrating factor x we obtain

xy′ + y = x cosx, or

d

dx
(xy) = x cosx.

Integrating with respect to x, we obtain

xy =

∫
x cosx dx+ c1

= x sinx+ cosx+ c1.

Thus the general solution is

y = sinx+
1

x
cosx+

c1
x
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For x > 0 we have the integrating factor −x, so that the equation takes the form

−xy′ − y = −x cosx,

which is, after multiplying by −1, the same as in the case x > 0. Thus the general solution
that we have obtained above holds for x > 0 and x < 0. Using now the initial condition
y(π/2) = 1, we determine the constant that picks out the curve which contains this point
(π/2, 1) from the family of one-parameter curves given by the above general solution with
the arbitrary parameter c1. We have

y(π/2) = sin(π/2) +
2

π
cos(π/2) +

2c1
π

= 1,

so that c1 = 0. Thus the solution of the initial-value problem is

y = sinx+
1

x
cosx for all x ∈ R\{0}.
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Exercise 2.4.4: 2 c

We find a general solution of the Bernoulli equation

xy′ + y = y2 lnx, x > 0.

By Proposition 2.4.2 we make use of the substitution

v(x) = y−1(x)

to linearize the given equation. The derivative becomes

v′ = − y′

y2
.

To do the substitution, it is easier to first divide the given equation by xy2, so the equation
takes the form

y′

y2
+

1

xy
=

1

x
lnx.

Making now the substitution, we obtain the following linear equation:

v′ − v

x
= −1

x
lnx.

We now solve this linear equation: An integrating factor for the linear equation is

e
∫
−(1/x)dx = e− lnx =

1

x
.

Multiplying the equation with this integrating factor, we obtain

d

dx

(v
x

)
= − 1

x2
lnx

and, upon integrating

v

x
= −

∫
x−2 lnx dx+ c1,

we have (doing integration by parts)

v

x
=

1

x
lnx+

1

x
+ c1.

Substituting back, v(x) = y−1(x), a general solution for all x > 0 takes the form

y(x) = (lnx+ 1 + c1x)
−1 .

Exercise 2.4.4: 2 g

We find a general solution for the Bernoulli equation

y′ +
xy

1− x2
= x

√
y, x > 1.
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By Proposition 2.4.2 we make use of the substitution v(x) = y1/2(x) to linearize the
given equation. The substitution and its derivative can also be written as

v2(x) = y(x), y′ = 2vv′

Then the linear equation takes the form

v′ +
xv

2(1− x2)
=

x

2

We now solve this linear equation: An integrating factor for the linear equation is

e(1/2)
∫
x/(1−x2) dx = e−(1/4) ln(1−x2) =

1

(1− x2)1/4
.

Multiplying the linear equation with this integrating factor, we obtain

d

dx

[
(1− x2)−1/4 v

]
=

1

2
(1− x2)−1/4

and, upon integrating

(1− x2)−1/4 v =

∫
1

2
(1− x2)−1/4 dx+ c1

we have
v

x
= −1

3
(1− x2)3/4 + c1. Substituting back, v(x) = y1/2(x), a general solution for

all x > 1 takes the form

y(x) =

(
−1

3
(1− x2) + c1(1− x2)1/4

)2

.
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Exercise 2.4.4: 6

We solve the initial-value problem for the following Riccati equation:

(x− x4)y′ − x2 − y + 2xy2 = 0, x ∈ R\[0, 1],

where y(2) = 1. To find a special solution φ(x), we make use of the Ansatz

φ(x) = kx2,

where k is an unknown real number. Inserting this Ansatz into the given equation, we
obtain

(x− x4)2kx− x2 − kx2 + 2x
(
kx2

)2
= 0

or, after some simplifications,

(k − 1)
(
x2 + 2kx5

)
= 0.

Thus, the Ansatz φ(x) = kx2 is a solution of the given equation for k = 1, i.e.

φ(x) = x2

satisfies the given Riccati equation. Following Proposition 2.4.3 we are now able to
linearize the given Riccati equation in terms of a new dependent variable v(x) by the
substitution

y(x) = x2 +
1

v(x)
.

The derivative of this substitution is

y′ = 2x− v′

v2
.

Substituting this into the given Riccati equation, we obtain

(x− x4)

(
2x− v′

v2

)
− x2 −

(
x2 +

1

v

)
+ 2x

(
x2 +

1

v

)2

= 0

or, after some simplifications,

v′ +
4x3 − 1

x4 − x
v +

2x

x4 − x
= 0,

which is a linear first-order differential equation in the dependent variable v(x). An inte-
grating factor for this linear equation is

e
∫
(4x3−1)/(x4−x) dx = eln(x

4−x) = x4 − x.

Note that x4 − x > 0 in the interval R\[0, 1]. Multiplying the linear equation with this
integrating factor, we have

(x4 − x)v′ + (4x3 − 1)v = −2x or
d

dx

[
(x4 − x)v

]
= −2x.
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Integrating the previous relation with respect to x, we obtain

(x4 − x)v = −x2 + c1,

so that the general solution of the linear equation becomes

v(x) =
c1 − x2

x(x3 − 1)
for all x ∈ R\[0, 1].

A general solution of the given Riccati equation is therefore

y(x) = x2 +
x(x3 − 1)

c1 − x2

With the initial condition y(2) = 1, we obtain

y(2) = 4 +
2(23 − 2)

c1 − 4
= 1

so that c1 = −2/3. The solution of this initial-value problem is therefore

y(x) = x2 +
x(x3 − 1)

−(2/3)− x2
=

x(2x+ 3)

3x2 + 2

for all x ∈ R\[0, 1].
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Exercise 3.3.2: 1 h

We find the general solution of the equation

y′′ + 4y = 9 cos2 x

for all x ∈ R. To find a particular solution we will make use the method of variation
of parameters as given in Proposition 3.3.2. First we calculate the general solution of
the associated homogeneous equation

y′′ + 4y = 0

by the Ansatz y(x) = eλx, λ ∈ C. This leads to the condition λ2 + 4 = 0, which has
the two solutions λ1 = 2i, λ2 = −2i. The general homogeneous solution is therefore [see
Proposition 3.2.1 c)]

φH(x; c1, c2) = c1Re
{
e2ix

}
+ c2 Im

{
e2ix

}
= c1 cos(2x) + c2 sin(2x) for all x ∈ R.

To find a particular solution yp(x) by the method of variation of parameters, we make the
Ansatz

yp(x) = w1(x)φ1(x) + w2(x)φ2(x),

where φ1(x) and φ2(x) are the two linearly independent solutions of the above homoge-
neous equation, i.e.

φ1(x) = cos(2x), φ2(x) = sin(2x),

whereas w1(x) and w2(x) are given in Proposition 3.3.2 as

w1(x) = −
∫

9 cos2 xφ2(x)

W [φ1, φ2](x)
dx, w2(x) =

∫
9 cos2 xφ1(x)

W [φ1, φ2](x)
dx.

Here W [φ1, φ2](x) is the Wronskian

W [φ1, φ2](x) =

∣∣∣∣
cos(2x) sin(2x)

−2 sin(2x) 2 cos(2x)

∣∣∣∣ = 2 cos2(2x) + 2 sin2(2x) = 2.

Thus we have

w1(x) = −9

2

∫
sin(2x) cos2 x dx = −9

2

∫
sin(2x)

(
1 + cos(2x)

2

)
dx

= −9

4

(∫
sin(2x) dx+

∫
sin(2x) cos(2x) dx

)

= −9

4

(
−1

2
cos(2x)

)
− 9

4

∫
1

2
sin(4x) dx

=
9

8
cos(2x) +

9

32
cos(4x)

Also, in a similar way, we obtain

w2(x) =
9

8
sin(2x) +

9

32
sin(4x) +

9

8
x.
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A particular solution is therefore

yp(x) =

(
9

8
cos(2x) +

9

32
cos(4x)

)
cos(2x)

+

(
9

8
sin(2x) +

9

32
sin(4x) +

9

8
x

)
sin(2x)

=
9

32
cos(2x) +

9

8
x sin(2x) +

9

8

so that, by Proposition 3.3.1 a), the general solution of the given nonhomogeneous
equation is

y(x) = φH(x; c1, c2) + yp(x)

= c1 cos(2x) + c2 sin(2x) +
9

32
cos(2x) +

9

8
x sin(2x) +

9

8

= c̃1 cos(2x) + c2 sin(2x) +
9

8
x sin(2x) +

9

8

for all x ∈ R, where c̃1 and c̃2 are two arbitrary constants (Note: c̃1 = c1 + 9/32).
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Exercise 3.3.4: 1 t

We find the general solution of the equation

y′′ − 9y = 40xe3x cos(2x)

for all x ∈ R. The general homogeneous solution φH(x) of the corresponding homogeneous
equation

y′′ − 9y = 0

is obtained by the Ansatz y(x) = eλx, so that λ2 − 9 = 0 and

φH(x) = c1e
3x + c2e

−3x.

To find a particular solution of the given nonhomogeneous equation we make use of the
method of undetermined coefficients and consider the equation in the complex form,
i.e.

y′′c − 9yc = 40xe(3+2i)x,

where yc(x) is a complex function and

y(x) = Re {yc(x)}.

An Ansatz for a complex particular solution ycp(x) of this complex equation is (see Propo-
sition 3.3.4)

ycp(x) = e(3+2i)xwc(x),

where wc(x) is an unknown complex function. Inserting this Ansatz into the above complex
equation, we obtain

w′′
c + 2(3 + 2i)w′

c + (−4 + 12i)wc = 40x.

To find a solution for this equation we use the Ansatz

wc(x) = B1x+B0, Bj ∈ C

which leads to

(3 + 2i)B1 + (−2 + 6i)B1x+ (−2 + 6i)B0 = 20x.

Equating coefficients of x and 1, we obtain

(−2 + 6i)B1 = 20, (3 + 2i)B1 + (−2 + 6i)B0 = 0,

so that

B1 = −1− 3i, B0 =
9

5
− 1

10
i.

Thus a solution for wc(x) is

wc(x) = −(1 + 3i)x+
9

5
− 1

10
i
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and a complex particular solution is

yc(x) =

(
−(1 + 3i)x+

9

5
− 1

10
i

)
e(3+2i)x.

A particular solution yp(x) of the given real differential equation is then the real part of
this complex particular solution ycp(x). We obtain

yp(x) =

[(
9

5
− x

)
cos(2x) +

(
3x+

1

10

)
sin(2x)

]
e3x

so that the general solution takes the form

y(x) = c1e
3x + c2e

−3x +

[(
9

5
− x

)
cos(2x) +

(
3x+

1

10

)
sin(2x)

]
e3x

for all x ∈ R.

Exercise 3.4.1: 1 g

We find the general solution of the following second-order Cauchy-Euler equation

x2y′′ − 3xy′ − 5y = x2 lnx for all x > 0.

Using Proposition 3.4.1 we introduce a new independent variable z as

x = ez, y(x) = y(z).

The given equation then becomes

d2y

dz2
− 4

dy

dz
− 5y(z) = z e2z.

We now need to find the general solution y(z) of this equation. We first find the general
solution φH(z; c1, c2) of the associated homogeneous equation

d2y

dz2
− 4

dy

dz
− 5y(z) = 0.

With the Ansatz

y(z) = eλz, λ ∈ C

we obtain

P2(λ) = λ2 − 4λ− 5 = (λ+ 1)(λ− 5) = 0

so λ1 = −1 and λ2 = 5. Thus

φH(z; c1, c2) = c1 e
−z + c2 e

5z.

To find a particular solution yp(z) of

d2y

dz2
− 4

dy

dz
− 5y(z) = z e2z.
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we make use of the method of undetermined coefficients as described in paragraph
3.3.3 Case III and use the Ansatz

yp(z) = e2zw(z).

The derivatives are

dy

dz
=

(
dw

dz
+ 2w

)
e2z

d2y

dz2
=

(
d2w

dz2
+ 4

dw

dz
+ 4w

)
e2z

and the equation then becomes

d2w

dz2
− 9w = z.

To find a solution for w(z) we use the Ansatz

w(z) = A1z +A0

as suggested by the method of undetermined coefficients discussed in Case Ia in
paragraph 3.3.3. We have

−9A1z − 9A0 = z.
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Equating coefficients of z and 1, we get A1 = −1/9 and A0 = 0. Thus a solution for w(z)
is

w(z) = −1

9
z

and a particular solution is therefore

y(z) = −1

9
ze2z

so that he general solution of the differential equation, with z as its independent variable,
becomes

y(z) = c1 e
−z + c2 e

5z − 1

9
ze2z.

Substituting now z = ln(x), we obtain the general solution in terms of x, namely

y(x) = c1 x
−1 + c2x

5 − 1

9
x2 lnx

for all x > 0.

Exercise 3.5.1: 1 e

We find the general solution of the second-order homogeneous equation

x2y′′ − 2xy′ + (4x2 + 2)y = 0

for all x ∈ R\{0}, where one solution is given as

φ1(x) = x cos(2x).

Using Proposition 3.5.1 we make the Ansatz y(x) = φ2(x), with

φ2(x) = v(x)φ1(x) = v(x)x cos(2x)

for a second linearly independent solution of the given equation. This leads to the following
condition on v(x):

cos(2x) v′′ − 4 sin(2x) v′ = 0.

We let

v′(x) = z(x)

so that the equation becomes a separable first-order equation, namely

z′(x) = 4z(x)
sin(2x)

cos(2x)

with general solution

|z(x)| = ec1 cos−2(2x).
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Integrating this expression again, we find

v(x) = ±1

2

sin(2x)

cos(2x)

so that a second solution of the given equation takes the form

φ2(x) = ±1

2
x sin(2x).

Since φ1(x) and φ2(x) are linearly independent solutions, we have obtained the general
solution of the given differential equation, namely

y(x) = c1x cos(2x) + c2x sin(2x)

for all x ∈ R\{0}.

Exercise 4.2.1: 2 f

We solve the following initial-value problem:

y(4) + 9y′′ = 0, y(0) = 2, y′(0) = 1, y′′(0) = 2, y(3)(0) = 1.

We first calculate the general solution by the use of the Ansatz

y(x) = eλx, λ ∈ C.

This leads to the following condition on λ:

P4(λ) = λ4 + 9λ2 = λ2(λ2 + 9) = 0,

which has the four roots

λ1 = λ2 = 0, λ3 = 3i, λ4 = −3i.

Now λ1 = 0 and λ2 = 0 gives two real solutions, namely

φ1(x) = 1, φ2(x) = x for all x ∈ R,

whereas the complex root λ3 = 3i gives two real solutions [see Proposition 4.2.1 b)],
namely

φ3(x) = Re
{
e3ix

}
= cos(3x), φ4(x) = Im

{
e3ix

}
= sin(3x) for all x ∈ R.

The general solution of the given equation for all x ∈ R is thus

y(x) = c1 + c2x+ c3 cos(3x) + c4 sin(3x).

The derivatives of the general solution are as follows:

y′(x) = c2 − 3c3 sin(3x) + 3c4 cos(3x)

y′′(x) = −9c3 cos(3x)− 9c4 sin(3x)

y(3)(x) = 27c3 sin(3x)− 27c4 cos(3x)
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and, for the initial conditions in the point x = 0, we obtain

c1 + c3 = 2, c2 + 3c4 = 1

−9c3 = 2, −27c4 = 1

with the solution

c1 =
20

9
, c2 =

10

9
, c3 = −2

9
, c4 = − 1

27
.

The solution of the given initial-value problem is thus

y(x) =
20

9
+

10

9
x− 2

9
cos(3x)− 1

27
sin(3x) for all x ∈ R.
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Exercise 4.3.2: 1 p

We find the general solution of the following fourth-order linear nonhomogeneous equation:

y(4) + 2y(3) + y′′ = (x+ 1)2,

for all x ∈ R. To find the general solution φH(x c1, c2, c3, c4) of the corresponding homo-
geneous equation

y(4) + 2y(3) + y′′ = 0,

we use the Ansatz y(x) = eλx, which leads to the condition

P4(λ) = λ4 + 2λ3 + λ2 = 0 or λ2(λ+ 1)2 = 0.

The four roots of characteristic polynomial P4(λ) are

λ1 = λ2 = 0, λ3 = λ4 = −1

so that

φH(x c1, c2, c3, c4) = c1 + c2x+ c3e
−x + c4xe

−x.

To find a particular solution yp(x), we make use of the method of undetermined
coefficients and use the Ansatz

yp(x) = x2
(
A2x

2 +A1x+A0

)
= A2x

4 +A1x
3 +A0x

2.

as given by Case I (3) in paragraph 4.3.1., due to the fact that the degree of the
polynomial on the right side of the given equation is two and the coefficients of y and y′

are zero. Inserting this Ansatz into the given nonhomogeneous differential equation, we
obtain

24A2 + 2(24A2x+ 6A1) + 12Ax2 + 6A1x+ 2A0 = x2 + 2x+ 1.

By equating the coefficients x2, x and 1, we obtain

12A2 = 1

48A2 + 6A1 = 2

24A2 + 12A1 + 2A0 = 1

with the unique solution A2 = 1/12, A1 = −1/3 and A0 = 3/2. Thus a particular solution
is

yp(x) =
1

12
x4 − 1

3
x3 +

3

2
x2

and by Proposition 4.3.1 the general solution of the given equation takes the form

y(x) = c1 + c2x+ c3e
−x + c4xe

−x +
1

12
x4 − 1

3
x3 +

3

2
x2

for all x ∈ R.
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Exercise 4.3.2: 1 q

We find the general solution of the third-order equation

y(3) + 3y′′ + 3y′ + y = (x+ 1)e−x

To find the general solution φH(x; c1, c2, c3) of the associated homogeneous equation

y(3) + 3y′′ + 3y′ + y = 0

we use the Ansatz y(x) = eλx, which leads to the condition

P3(λ) = λ3 + 3λ2 + 3λ+ 1 = 0 or (λ+ 1)3 = 0.

The four roots of the characteristic polynomial P3(λ) are

λ1 = λ2 = λ3 = −1

so that

φH(x c1, c2, c3, c4) =
(
c1 + c2x+ c3x

2
)
e−x.

To find a particular solution yp(x), we make use of the method of undetermined
coefficients and use the Ansatz

yp(x) = e−xw(x),

where w(x) is an unknown function. This Ansatz is given by Case III in paragraph 4.3.1.
For the derivatives, we obtain

y′p =
(
w′ − w

)
e−x

y′′p =
(
w′′ − 2w′ + w

)
e−x

y(3)p =
(
w(3) − 3w′′ + 3w′ − w

)
e−x.

Inserting this Ansatz into the given nonhomogeneous differential equation, we obtain

w(3) = x+ 1.

To find a solution w(x) of this third-order nonhomogeneous equation we can make use of
the method on undetermined coefficients discussed in Case I in paragraph 4.3.1.
Since the coefficients of w′′, w′ and w are zero, the Ansatz is

w(x) = x3(A1x+A0),

with

w′ = 4A1x
3 + 3A0x

2

w′′ = 12A1x
2 + 6A0x

w(3) = 24A1x+ 6A0,
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so that

24A1x+ 6A0 = x+ 1.

Equating coefficients of x and 1, we obtain

24A1 = 1, 6A0 = 1

so that A1 = 1/24 and A0 = 1/6, and a solution for w takes the form

w(x) =
1

24
x4 +

1

6
x3.

Hence a particular solution yp(x) for the given equation is

yp(x) =

(
1

24
x4 +

1

6
x3

)
e−x for all x ∈ R.

The general solution is then

y(x) = φH(x; c1, c2, c3) + yp(x)

=

(
c1 + c2x+ c3x

2 +
1

24
x4 +

1

6
x3

)
e−x for all x ∈ R.
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Exercise 4.3.4: 1 c

We find the general solution of the following third-order nonhomogeneous differential equa-
tion

y(3) − 6y′′ + 11y′ − 6y =
e3x

e2x + 1

for all x ∈ R. First we calculate the general solution φH(x; c1, c2, c3) of the associated
homogeneous equation

y(3) − 6y′′ + 11y′ − 6y = 0.

Using the Ansatz y(x) = eλx, λ ∈ C, we obtain the condition

P3(λ) = λ3 − 6λ2 + 11λ− 6 = (λ− 1)(λ− 2)(λ− 3) = 0.

The three roots of the polynomial P3(λ) are

λ1 = 1, λ2 = 2, λ3 = 3

which gives three linearly independent solutions of the homogeneous equation, namely

φ1(x) = ex, φ2(x) = e2x, φ3(x) = e3x.

The general solution of the homogeneous equation becomes

φH(x; c1, c2, c3) = c1e
x + c2e

2x + c3e
3x for all x ∈ R.

To find a particular solution for the given nonhomogeneous equation, we make us of the
method of variation of parameters as described in Proposition 4.3.3. A particular
solution yp(x) is given by

yp(x) = w1(x)φ1(x) + w2(x)φ2(x) + w3(x)φ3(x),

where wj(x) (j = 1, 2, 3) have the following form:

w1(x) =

∫
W1[(f), φ2, φ3](x)

W [φ1, φ2, φ3](x)
dx

w2(x) =

∫
W2[φ1, (f), φ3](x)

W [φ1, φ2, φ3](x)
dx

w3(x) =

∫
W3[φ1, φ2, (f)](x)

W [φ1, φ2, φ3](x)
dx.

Here W [φ1, φ2, φ3](x) is the Wronskian of the set of solutions {φ1(x), φ2(x), φ3(x)} and

f =
e3x

e2x + 1
.
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The notation Wj [φ1, . . . , φj−1, (f), φj+1, . . . , φn](x) is defined in (4.3.29) (see paragraph
4.3.3.). We obtain the following

W [φ1, φ2, φ3](x) = 2e6x, W1[(f), φ2, φ3](x) =
e8x

e2x + 1

W2[φ1, (f), φ3](x) = − 2e7x

e2x + 1
, W3[φ1, φ2, (f)](x) =

e6x

e2x + 1
.

This leads to

w1(x) =
1

2

∫
e2x

e2x + 1
dx =

1

4
ln

(
e2x + 1

)

w2(x) = −
∫

ex

e2x + 1
dx = − arctan (ex)

w3(x) =
1

2

∫
1

e2x + 1
dx =

1

2
x− 1

4
ln

(
e2x + 1

)
.

A particular solution is thus

yp(x) =
1

4
ln

(
e2x + 1

)
ex − arctan (ex) e2x +

(
1

2
x− 1

4
ln

(
e2x + 1

))
e3x

for all x ∈ R. The general solution then takes the form

y(x) = φH(x; c1, c2, c3) + yp(x)

= c1e
x + c2e

2x + c3e
3x +

1

4
ln

(
e2x + 1

)
ex − arctan (ex) e2x

+

(
1

2
x− 1

4
ln

(
e2x + 1

))
e3x for all x ∈ R.

Exercise 4.4.1: 3 h

We find the general solution of the following fourth-order Cauchy-Euler equation:

x4y(4) + 12x3y(3) + 38x2y′′ + 32xy′ + 4y =
2

x
+

4

x2

for all x > 0. Using Proposition 4.4.1 we introduce a new independent variable z as

x = ez, y(x) = y(z).

This leads to the equation

d4y

dz4
+ 6

d3y

dz3
+ 13

d2y

dz2
+ 12

dy

dz
+ 4y(z) = 2e−z + 4e−2z.

Solving this equation we obtain the general solution

y(z) = (c1 + c2z)e
−2z + (c3 + c4z)e

−z + z2e−z + 2z2e−2z

so that the general solution of the given equation becomes

y(x) = (c1 + c2 lnx)x
−2 + (c3 + c4 lnx)x

−1 + x−1(lnx)2 + 2x−2(lnx)2

for all x ∈ R.
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Answers to the exercises

Exercise 1.1.1

1. a) Linearly independent.

b) Linearly dependent.

c) Linearly independent.

d) Linearly independent.

e) Linearly independent.

f) Linearly independent.

g) Linearly dependent.

h) Linearly dependent.

i) Linearly dependent.

j) Linearly dependent.

5. a) 4xy′′ + 2y′ − y = 0, x > 0.

b) x4y′′ − a2y = 0, a �= 0, x ∈ R.

c) x4y′′ + y, x ∈ R\{0}.

d) xy′′ + 2y′ − xy = 0, x ∈ R\{0}.

e) 4x2y′′ + 4x3y′ + (2x2 − 3)y = 0, x > 0.

f) x3y(3) − x2y′′ + 2xy′ − 2y = 0, x > 0.

g) x3y(3) − xy′ − 3y = 0, x > 0.

213
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Exercise 1.2.1

1. b) y(x) = c1e
2x cos(3x) + c2e

2x sin(3x).

c) T : y(x) �→ Ly(x) where L =
d2

dx2
− 4

d

dx
+ 13.

d) B = {e2x cos(3x), e2x sin(3x)}.

e) y(x) = 4e2x cos(3x)− 3e2x sin(3x).

f) y(x) = e2x cos(3x) + 2e−π/3e2x sin(3x).

2. General solution: y(x) = c1e
−x cosx+ c2e

−x sinx.

Basis of the solution space: B = {e−x cosx, e−x sinx}.

Dimension of the solution space: Two.

3. General solution: y(x) = c1e
x + c2e

−2x.

Basis of the solution space: B = {ex, e−2x}.

Dimension of the solution space: Two.
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4. a) Differential equation: y′′ + y = 0.

General solution: y(x) = c1 cosx+ c2 sinx.

Basis of the solution space: B = {cosx, sinx}.

Dimension of the solution space: Two.

b) Differential equation: y′′ + 2y′ + 5y = 0.

General solution: y(x) = c1e
−x cos(2x) + c2e

−x sin(2x).

Basis of the solution space: B = {e−x cos(2x), e−x sin(2x)}.

Dimension of the solution space: Two.

c) Differential equation: y′′ + 2y′ = 0.

General solution: y(x) = c1 + c2e
−2x.

Basis of the solution space: B = {1, e−2x}.

Dimension of the solution space: Two.

d) Differential equation: y(3) − y′′ + y′ − y = 0.

General solution: y(x) = c1e
x + c2 sinx+ c3 cosx.

Basis of the solution space: B = {ex, sinx, cosx}.

Dimension of the solution space: Three.

e) Differential equation: y(4) + y(3) + 4y′′ + 4y′ = 0.

General solution: y(x) = c1 + c2e
−x + c3 cos(2x) + c4 sin(2x).

Basis of the solution space: B = {1, e−x, cos(2x), sin(2x)}.

Dimension of the solution space: Four.

Exercise 2.2.1

1. a) y(x) = ln

(
1

c− ex

)
.

b) y(x) =
1

2

(
c− x2

1 + x2

)
.

c) y2(x) = cx2 − c− 1.

d) y(x) =
ce−x

(x− 3)3
.

e) y(x) =
ec(x− 1)− x− 1

ec(x− 1) + x+ 1
or y(x) =

ec(x− 1) + x+ 1

ec(x− 1)− x− 1
.

Singular solutions: y = ±1.
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f)

∣∣∣∣
y − 1

y + 1

∣∣∣∣ = |c|e2 arctan(x). Singular solution: y = −1.

g) y(x) = 1 +
c

(x− 1)2
e(x

2−x−1)/(1−x).

h)
1

2
arctan (x2) +

√
a2 − y2 − arctan

(
y√

a2 − y2

)
= c or y = ±a.

i) (x2 + 2x+ 2) e−x + (6− 6y + 3y2 − y3) ey = c.

2. a) y(x) = −1 +
2(1 + x)√
1− x2

.

b) y(x) = tan
(
arctan (x) +

π

4

)
.

c) y(x) = ln

(
x2

2
+ 1

)
.

d) y(x) = 0.

e) y(x) = arcsin

[
1

2
(1 + x2)1/2

]
.

3. a) ey/x =
1

ln |1/(cx)|
, c �= 0.

b) y2 =
1

2x2
(
x4 − ec

)
.

c)
x

y − x
− ln

∣∣∣∣
y − x

x

∣∣∣∣ = ln |cx|.

4. a) y(x) =
x

1− lnx
.

b) y(x) =
1

2

(
x3

8− x2

)
.

Exercise 2.3.1

1. a) y(x) = x2 + cex.

b) y(x) = −1

2
cosx+

1

2
sinx+ ce−x.

c) y(x) = −1 + ce−x3/3.

d) y(x) =
1

2
cosx− 1

2
sinx− x3 + 3x2 − 6x+ 6 + ce−x.

e) y(x) =
11

27
− 2

9
x+

1

3
x2 + ce−3x.

f) y(x) = xe− sinx + ce− sinx.

Download free eBooks at bookboon.com



A First Course in Ordinary  
Differential Equations

219 

Appendix E: Answers to the exercises
217

g) y(x) = ex + c
√
1 + x2.

2. a) y(x) = ex − x.

b) y(x) = x2 − 2.

c) y(x) =
1

x
(cosx+ x sinx).

d) y(x) = lnx− 1

lnx
, x �= 1.

3. y(x) = y1(x) + c [y2(x)− y1(x)]
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Exercise 2.4.4

1. cos y =
1

4

(
2 sin2 x− 2 sinx+ 1

)
+ c e−2 sinx

2. a) y2(x) = 4
(
−2− 4x2 + 4x+ c e−2x

)−1
.

b) y(x) =
1

x2

(
1

2
(x− 1)ex + c

)2

.

c) y(x) = (1 + ln(x) + cx)−1.

d) y2(x) = −x ln |x|+ cx.

e) y(x) = −2(cosx+ sinx− c ex)−1.

f) y2(x) =
x(1− x)1/2(1 + x)1/2

[−1 + x2 + c(1− x)1/2(1 + x)1/2]2
.

g) y(x) =

[
−1

3
(1− x2) + c(1− x2)1/4

]2
.

3. a) i y(x) = 2
(
2− ex

2
)−1

.

a) ii y(x) = 1.

b) y(x) =

√
6

36

(x4 + 6(3)2/3 − 1)3/2

x3
.

4. a) Linear equation: 4xv′ − 4v − x = 0.

Solution of linear equation: v(x) = x

(
1

4
ln |x|+ c

)
.

Solution of Riccati equation: y(x) =
2(ln |x|+ c+ 2)

x(ln |x|+ c)
.

b) Linear equation: v′ − v + 1 = 0.

Solution of linear equation: v(x) = 1 + c ex.

Solution of Riccati equation: y(x) =
x+ cx ex + 1

1 + c ex
.

5. a) y(x) =
−2x− 1 + x2

x− 2
.

b) y(x) = −1

x
[tanh (ln |x|)− arctanh (2)].

c) y(x) =
1

x
.

6. k = 1. Then y(x) =
x(2x+ 3)

3x2 + 2
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7. k = −1

i) y(x) =
3 + x2

x(x2 + 1)
.

ii) y(x) =
1

x
.

8. k = −1. Then y(x) = − ln |x| − c+ 1

x(ln |x| − c)

9. w′′ −
(
f ′(x)

f(x)
+ 1

)
w′ + f(x)h(x)w = 0.

10. y(x) =
x(cx2 + c− x)2

cx2 − c− x2 + 2
.

Exercise 3.2.1

1. a) y(x) = c1 e
−2x sin(3x) + c2 e

−2x cos(3x).

b) y(x) = c1 e
2xc2x e

2x.

c) y(x) = c1 e
−x + c2 e

−2x/3.

d) y(x) = c1 sin(
√
3x+ c2 cos(

√
3x).

e) y(x) = c1 + c2 e
−4x.

f) i. y(x) = c1 e
ax/2+

√
a2−4x/2 + c2 e

ax/2−
√
a2−4x/2.

f) ii. y(x) = c1 e
ax/2 cos

(√
4− a2 x/2

)
+ c2 e

ax/2 sin
(√

4− a2 x/2
)
.

2. a) y(x) = e−x sin(
√
2x).

b) y(x) = e−3x + 2x e−3x.

c) y(x) =

√
2

2
e
√
2x −

√
2

2
e−

√
2x.

d) y(x) =
1

2
+

1

2
e2x−6.

e) y(x) = −5

3
sin(3x)− cos(3x).

3. a) y(x) = − 5 ex

e−1 − e
+

5 e−x

e−1 − e
.

b) y(x) = −2 e8 − 3 e4

e8 − e4
+

e4x

e8 − e4
.

c) y(x) = −1

2
x+

5

2
.
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Exercise 3.3.2

1. a) y(x) = c1e
−2x + c2x e

−2x +
4

15
x5/2 e−2x.

b) y(x) = c1e
x + c2x e

x +
4

15
(x− 1)5/2 ex.

c) y(x) = c1e
−x + c2x e

−x +
1

4
x2(2 ln(x)− 3) e−x.

d) y(x) = c1e
−x + c2x e

−x − (2 ln(x) + 1) e−x.

e) y(x) = c1 e
3x + c2 e

−3x − 1

8
ex − 1

9
.

f) y(x) = c1 cos(2x) + c2 sin(2x) +
1

2
(cosx sinx− x) cos(2x)

−1

2
(cos2 x− ln(| cosx|) sin(2x).

g) y(x) = c1 cosx+ c2 sinx+ x sinx+ cosx ln | cosx|.

h) y(x) = c1 cos(2x) + c2 sin(2x) +

(
9

8
cos(2x) +

9

32
cos(4x)

)
cos(2x)

+

(
−9

8
sin(2x)− 9

32
sin(4x) +

9

16
x

)
sin(2x) for all x ∈ R.
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2. y(x) = 2 ex − 3

2
e−x − 1

2
[2 ex − 2 ln(ex + 1)− 1] e−x.

3. y(x) = e2x arctan (ex)− 1

2
ex ln(1 + e2x) +

1

2
ex ln(2).

4. y(x) = c1 e
x + c2 x

2ex +
2

9
exx3(3 lnx− 4).

5. y(x) = c1x+ c2(x
2 − 1) +

1

6
x4 +

1

2
.

6. y(x) = c1 e
x + c2x− 1

2
(2x− 1) e−x.

7. a) y(x) = c1 cos(2x) + c2 sin(2x) +
1

3
cosx.

b) y(x) = c1 e
3x + c2x e

3x +
1

x
.

c) y(x) = c1 e
−2/x + c2e

2/x − 1

4x
.

8. a) y′′ + y = 4x cosx.

b) x2y′′ − xy′ + y = 3x3.

c) x2y′′ − 4xy′ + 6y = x2(x2 − 1).

Exercise 3.3.4

1. a) y(x) = c1 sinx+ c2 cosx+ 2− 2x.

b) y(x) = c1 e
√
7x + c2 e

−
√
7x − 9

49
+

2

7
x− 1

7
x2.

c) y(x) = c1 e
2x + c2x e

2x + (2 + x) ex.

d) y(x) = c1 cosx+ c2 sinx+
1

25
(5x− 4) e2x.

e) y(x) = c1 e
−x + c2 e

4x + x e4x.

f) y(x) = c1 e
−x + c2x e

−x +
1

125
ex (−4 cosx+ 15x cosx− 22 sinx+ 20x sinx).

g) y(x) = c1 cos(2x) + c2 sin(2x)−
1

4
x cos(2x).

h) y(x) = c1 e
3x + c2x e

3x +
x6

24
(x3 − 4)e3x.

i) y(x) = c1 e
x + c2 e

−x +
1

2
xex + 3.

j) y(x) = c1 e
−x + c2 e

−2x + xe−x +
7

12
e2x.
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k) y(x) = c1 cos(2x) + c2 sin(2x) +
9

8
x sin(2x) +

9

8
.

l) y(x) = c1 e
−3x + c2 e

3x +
5

26
cos(2x)− 5

18
.

m) For k �= 0: y(x) = c1 cos(kx) + c2 sin(kx) +
1

k
.

For k = 0: y(x) = c1 + c2x.

n) For k �= 0: y(x) = c1 cos(kx) + c2 sin(kx) +
1

4k
[sin(kx+ α)− 2kx cos(kx+ α)].

For k = 0: y(x) = c1 + c2x.

o) y(x) = c1 + c2 e
3x/4 + e3x/4

(
−24x+ 9x2

)
.

p) y(x) = c1 cos(5x) + c2 sin(5x) +
1

10
x sin(5x).

q) y(x) = c1 e
−3x cos(2x) + c2 e

−3x sin(2x) +
1

4
e−3xx sin(2x).

r) y(x) = c1 e
−x + c2 e

3x − 1

144

[
9 + 36x− 64ex + 96xex − 18e4x + 72xe4x

]
e−x.

s) y(x) = c1 e
x + c2x e

x − ex sinx+ 2.

t) y(x) = c1e
3x + c2e

−3x +

[(
9

5
− x

)
cos(2x) +

(
3x+

1

10

)
sin(2x)

]
e3x.
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2. a) y(x) = −3

8
e2x +

1

4
x e2x +

3

8
+

1

2
x+

1

4
x2.

b) y(x) = 2− 2x.

c) y(x) = −e3x−3 + x e3x−3 + x2.

d) y(x) = e2x − e3x + x e−x.

e) y(x) = x cosx+ x2 sinx.

f) y(x) = x e3x + e−x + x.

g) y(x) = −ex−π (1 + 2πeπ) sinx+ 2exx sinx.

h) y(x) = −2e−x cosx+ e−x sinx+ 2 ex − 4.

3. a) y′′ − y = 20x3 − x5.

b) y′′ + y = 2 ex + 2x ex.

c) y′′ − 6y′ + 13y = (−28 + 106x) e−4x.

d) y′′ − 6y′ + 9y = (8x− 6) sinx+ (−6x+ 2) cosx− 63.

e) y′′ + 4y = 6.

f) y′′ + 2y′ + 10y = (45x2 + 64) e−x + 6x(3x2 + 3x+ 1) e2x.

g) y′′ + 4y′ = (8 + 12x) e2x + 32 e4x − sinx+ 4 cosx.

h) y′′ − 2y′ + 5y = 2 e3x
(
20 sinx cosx− 10 cos2 x+ 7

)
.

Exercise 3.4.1

1. a) y(x) = c1
1

x
+ c2x

3.

b) y(x) = c1x
2 + c2

1

x3
.

c) y(x) = c1
1

x
sin(lnx) + c2

1

x
cos(lnx) +

1

17
x3.

d) y(x) = c1x
2 + c2x

3 + x2 lnx+ x2 + 2.

e) y(x) = c1
1

x3
+ c2

1

x3
lnx+

2

x3
ln2 x.

f) y(x) = c1x
2 + c2x

3 +
1

2

(
x2 + 2 lnx+ 2

)
.

g) y(x) = c1x
5 + c2

1

x
− 1

9
x2 lnx.
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h) y(x) = c1x+ c2x
2 − 1

144
x5(12 lnx− 7).

2. y(x) = 3 sin(lnx) + 2 cos(lnx) +
1

2
sin(lnx) lnx.

3. x2y′′ − xy′ + y = 3x3.

4. b) y(x) = c1

(
x+

2

3

)
+ c2

(
x+

2

3

)
ln

(
x+

2

3

)
+

1

2
(6 + 9x) ln2(2 + 3x)

−1

2
(6 + 9x) ln2(3)− 6.

Exercise 3.5.1

1. a) y(x) = c1x
2 + c2 e

x.

b) y(x) = c1
1

x
sinx+ c2

1

x
cosx.

c) y(x) = c1x+ c2xe
2x.

d) y(x) = c1(1 + 4x2) + c2 e
−2x.

e) y(x) = c1x sin(2x) + c2x cos(2x).

f) y(x) = c1 e
x + c2x

2 ex.

3.
1√
h
= − a

2
√
b
eG(x)

∫
e−G(x) dx+ c, where G(x) =

∫
g(x) dx.

4. b i) y(x) = c1 e
x + c2x

2 ex.

b ii) y(x) = c1
1

x
sinx+ c2

1

x
cosx.

5. a) M = a0(x), N = a1(x)− a′0(x) if and only if a′′0 − a′1 + a2 = 0.

b) I = (x2 + 2x)y′ + (2x+ 2)y = constant. Then y(x) =
c1x+ c2
x(x+ 2)

.

Exercise 4.2.1

1. a) y(x) = c1 e
−3x + c2 e

−x + c3 e
2x.

b) y(x) =
1

4
e−2x − 1

5
e−3x +

19

20
e2x.

c) y(x) = c1 e
−x + c2 e

3x + c3x e
3x.

d) y(x) =
23

5
eπ−x − 28

15
sin(3x)− 2

5
cos(3x).

e) y(x) = 4 e2−2x − 8x e2−2x + 7x2 e2−2x.
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f) y(x) = c1 + c2x+ c3 e
2x.

g) y(x) = c1 e
−3x + c2 e

3x/2 sin

(
3
√
3

2
x

)
+ c3 e

3x/2 cos

(
3
√
3

2
x

)
.

h) y(x) = c1 + c2 e
−2x + c3 e

2x.

2. a) y(x) =
1

30
e−3x +

13

10
e2x − 1

10
e−2x − 7

30
e3x.

b) y(x) =
265

54
− 16

9
x+

5

6
x2 +

1

27
e3x−3.

c) y(x) = c1 e
−2x + c2x e

−2x + c3x
2 e−2x + c4x

3 e−2x.

d) y(x) = c1 e
x + c2x e

x + c3x
2 ex + c4x

3 ex.

e) y(x) = c1 e
2x + c2x e

2x + c3 e
−x + c4x e

−x.

f) y(x) =
20

9
+

10

9
x− 1

27
sin(3x)− 2

9
cos(3x).

g) y(x) = c1 + c2x+ c3x
2 + c4 e

3x.

h) y(x) = c1 + c2x+ c3 e
2x + c4x e

2x.
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3. a) y(x) = c1 + c2 e
−2x + c3 e

2x + c4 sin(2x) + c5 cos(2x).

b) y(x) = c1 + c2x+ c3x
2 + c4 e

x + c5 e
2x.

c) y(x) = c1 + c2x+ c3x
2 + c4x

3 + c5 e
4x.

d) y(x) = c1 + c2x+ c3x
2 + c4x

3 + c5 e
x + c6 e

4x.

e) y(x) = c1 + c2x+ c3x
2 + c4x

3 + c5x
4 + c6 e

−2x.

f) y(x) =
4

9
+

4

3
x+

7

3
x2 + x3 +

2
√
3

9
sin(

√
3x) +

5

9
cos(

√
3x).

Exercise 4.3.2

1. a) y(x) = c1 + c2 sinx+ c3 cosx+ 2x.

b) y(x) = c1 + c2x+ c3 e
−x +

3

2
x2.

c) y(x) = c1 + c2x+ c3 e
x + c4 e

−x − 2x2.

d) y(x) = c1 + c2x+ c3 e
−2x + c4x e

−2x +
1

8
x2.

e) y(x) = c1 + c2 e
x + c3x e

x + x2 + 4x.

f) y(x) = c1 + c2x+ c3 cosx+ c4 sinx+
1

6
x3 +

1

12
x4 − x2.

g) y(x) = c1 + c2x+ c3e
−x + c4xe

−x +
1

400
e4x.

h) y(x) = c1 + c2x+ c3e
−x + c4xe

−x +
1

6

(
24 + 18x+ 6x2 + x3

)
e−x.

i) y(x) = c1 e
x + c2 e

−x/2 cos

(√
3

2
x

)
+ c3 e

−x/2 sin

(√
3

2
x

)
− 1

2
sinx

+
1

2
cosx.

j) y(x) = c1 e
x + c2x e

x + c3x
2 ex − 1

8
ex sin(2x).

k) y(x) = c1 e
x + c2 e

−x + c3x e
x + c4x e

−x +
1

4
cosx.

l) y(x) = c1 + c2 cos(2x) + c3 sin(2x)−
1

80
e2x cos(2x) +

3

80
e2x sin(2x)

+
1

8
x sin(2x) +

1

4
x.

m) y(x) = c1 + c2x+ c3 e
−4x + c4 e

4x +
36

289
cosx+

1

17
x sinx.

n) y(x) = c1 + c2x+ c3x
2 + c4 e

x − 4x ex +
1

2
x2 ex +

1

24
x4.
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o) y(x) = c1 + c2x+ c3x
2 + c4 sinx+ c5 cosx+

1

24
x4 − e−x.

p) y(x) = c1 + c2x+ c3e
−x + c4xe

−x +
1

12
x4 − 1

3
x3 +

3

2
x2.

q) y(x) =
(
c1 + c2x+ c3x

2
)
e−x +

(
1

24
x4 +

1

6
x3

)
e−x.

2. a) y(x) =
1

2
ex − 1

2
e−x + x2.

b) y(x) = −3 ex + 2x ex + cosx+ 2 sinx− e−x.

c) y(x) = −1 + 3x+ x2 + ex + 4 e−x − 2 e2x.

d) y(x) =
3

2
e−x sin(2x)− e−x cos(2x)− 2x e−x cos(2x)− x e−x sin(2x) + 2.

e) y(x) = cos(3x)− 9 cosx+ 3 sinx+ cos(2x) + 5 sin(2x).

Exercise 4.3.4

1. a) y(x) = c1 + c2x+ c3 e
−x − x+ x lnx.

b) y(x) = c1 e
−x + c2x e

−x + c3x
2 e−x +

1

6
x3 e−x lnx− 11

36
x3 e−x.

c) y(x) = c1 e
x + c2 e

2x + c3 e
3x +

1

4
ex ln(e2x + 1) +

1

2
x e3x − 1

4
e3x ln(e2x + 1)

−e2x arctan (ex).

2. yp(x) =
x4−n ex

(n− 1)(n− 2)(n− 3)(n− 4)
for all n ∈ R\{1, 2, 3, 4}.

For n = 1 : yp(x) = −11

36
x3 ex +

1

6
x3 ex lnx.

For n = 2 : yp(x) =
1

4
x2 ex − 1

2
x2 ex lnx.

For n = 3 : yp(x) =
1

4
x ex +

1

2
x ex lnx.

For n = 4 : yp(x) = −11

36
ex − 1

6
x ex lnx.

3. a) y(x) = (e2x + ex + 1) ln 2− (e2x + ex + 1) ln(ex + 1) + x2 + ex + x e2x − x.

b) y(x) = 2x ex.

c) y(x) = 12x4 lnx− 25x4 + 48x3 − 36x2 + 18x+ 2.
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Exercise 4.4.1

3. a) y(x) = c1x+ c2x lnx+ c3x ln
2 x.

b) y(x) = c1x+ c2x
2 + c3x

3.

c) y(x) = c1 sin(lnx) + c2 cos(lnx) + c3x
3 sin(lnx) + c4x

3 cos(lnx).

d) y(x) = c1x
3 + c2 cos(lnx) + c3 sin(lnx)−

1

5
x2.

e) y(x) = c1x+ c2x
2 + c3x lnx− 1

4
x(−x2 + 12 lnx+ 6 ln2 x+ 12).

f) y(x) = c1 + c2
1

x2
+ c3

1

x3
+

1

12
ln2 x− 5

36
lnx.

g) y(x) = c1x
2 + c2x

3 + c3x
4 − 2− x2 lnx+ 2x4 lnx.

h) y(x) = c1
1

x
+ c2

1

x2
+ c3

lnx

x2
+ c4

lnx

x
+

ln2 x

x
+

2 ln2 x

x2
.

i) y(x) = c1 cos(lnx) + c2 sin(lnx) + c3 lnx cos(lnx) + c4 lnx sin(lnx)

− ln2 x cos(lnx).

j) y(x) = c1 lnx+ c2 ln
2 x+ c3 ln

3 x+ c4 ln
4 x+ c5 + 12 ln4 x ln(lnx).

6. y(x) = c1 + c2x+ c3x
2 + c4

1

(4 + x)3
− 5

3
ln(4 + x)− x

4
ln(4 + x) + 1 +

x

4

− 16

45(4 + x)3
.
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Bernoulli equation, 53 
Bernoulli, Jacob, 54

Cauchy, Augustin-Louis, 97 
Cauchy-Euler equation, 167
Cauchy-Euler equation of order n, 143 

characteristic equation, 110
characteristic polynomial, 110
complex differential equation, 130 

composite operator, 152
constants of integration, 12
Cramer, Gabriel, 75

Euler, Leonhard, 99
Existence and uniqueness theorem, 27

factorization of operators, n-th order, 164 

factorization of operators, second-order, 157 

first-order linear differential equation, 156

general implicit solution, 12
general solution, 12
generalized Cauchy-Euler equation of 
order n, 147
graphical solutions, 13

higher-order linear differential equations, 157 
higher-order linear nonhomogeneous differ-

ential equations, 127

implicit solutions, 12
initial data, 42, 108
initial value, 42
initial-value problem, 42, 108
integral operator, 153
integral operator corresponding to L, 155 
integral-solution formula for separable equa-

tion, 43
integrating factor, first-order linear equations,

49

integrating factors, 47

kernel of a linear transformation, 33

level curves, 13
linear differential operator, 32
linear differential operator of order n, 152 
linear first-order differential equation, 47 
linear homogeneous constant coefficients equa-

tions of order n, 110
linear homogeneous differential equation of

with constant coefficients, 32
linear homogeneous ordinary differential equa-

tion of order n, 15
linear homogeneous ordinary differential equa-

tions of order n, 107
linear nonhomogeneous ordinary differential

equations of order n, 107
linear ordinary differential equations, 8 
linear superposition principle, 16
linear transformation, 33, 151
linearly dependent set, 17
linearly independent set, 17
linearly independent sets, 118

method of undetermined coefficients, 128 
method of variation of parameters, 136

nonlinear differential equations, 8
nonlinear superposition formula, 61

ordinary differential equation, 11

particular solution, 123
polynomials with real coefficients, proper-

ties of, 115

Riccati equation, 55, 166, 170 
Riccati equation, linearization, 57
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Riccati equation, linearization to 2nd-order
equation, 61

Riccati equation, singular solutions, 57 
Riccati, Jacopo Francesco, 57
roots of a polynomial, 110
roots with multiplicity of degree k > 1, 121

separable first-order differential equation, 42 
singular solutions, 12
solution domain of the differential equation,

11
solution space, 34 
solution, definition of, 11 
special solutions, 12

variation of constants, 48
Viéta’s statement for integer roots, 116
Viéta’s Theorem, 115
Viéte, Francois, 117

Wroński (or Hoene-Wroński), Józef Maria,

18
Wronskian, 19
Wronskian, the derivative of, 31
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