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Preface

In many cases continuous dynamical processes which occur in nature and in engineering
sciences can successfully be described by mathematical models that involve differential
equations or systems of differential equations. The solution of the initial-value problem or
the boundary-value problem described by a differential equation with some limited infor-
mation about its solutions, can provide the full details and description of the dynamical
process. For example, Newton’s Second Law of Motion is in the form of a second-order
ordinary differential equation that relates the second time-derivative of the position of a
mass and the total forces that act on the mass as it moves under these forces. Solving this
second-order differential equation provides information on the velocity and the position
of the mass in terms of time. In fact, most physical theories are based on some funda-
mental differential equation and are usually named after the scientist who first derived
the equation: in quantum mechanics it is Schridinger’s equation, in fluid dynamics it is
the Navier-Stokes equation, in electrodynamics it is Mazwell’s equations, in general rela-
tivity theory it is Finstein’s field equations, in relativistic quantum mechanics it is Dirac’s
equations, etc. The mentioned equations are all very interesting differential equations and
their solutions model many important natural processes. We should however point out
that the mentioned equations are mostly partial differential equations or systems (meaning
that their dependent variables depend on several independent variables) and are moreover
often nonlinear and, therefore, are much more advanced than the differential equations
that we study in the current set of lecture notes. In order to provide an introduction to
the general theory of differential equations, we need to start with the simplest type of
equations, which are the linear ordinary differential equations. Hereafter, referred
to simply as linear differential equations.

The lecture notes presented here are intended for engineering and science students as
a first course on differential equations. It is assumed that the students have already read
a course on linear algebra, that included a discussion of general vector spaces, as well as a
course on integral calculus for functions that depend on one variable. However, no previous
knowledge of differential equations is required to read and understand this material. Many
examples have been included in these notes and the proof of most statements are done in
full details. The aim of the notes is to provide the student with a thorough understanding
of the methods to obtain solutions of certain classes of differential equations, rather than
the qualitative understanding of solutions and their existence. With the exception of some
nonlinear first-order differential equations, we concentrate on linear differential equations
and the derivation of their solutions.
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In Chapter 1 we provide the theoretical basis of the solution structure for linear dif-
ferential equations. This is an important part of the notes, as this chapter introduces the
concept of a linearly independent set of functions (or solutions) as well as the concept
of linear superposition. The Wronskian is introduced here to establish the linear inde-
pendence. In fact, the Wronskian plays a central role in the study of linear differential
equations and it appears in many solution formulas throughout these lecture notes. The
solution methods described in Chapters 2 to 4 mostly involve Ansétze for the solutions
of the differential equations and, in some cases, we also need to introduce a change of
the variables in order to derive the solutions. In Appendix A we introduce an alternative
method to solve linear differential equations based on first-order linear operators and their
integral operators. This method is free from any Ansatz and can be viewed as an alter-
native to the solution methods proposed in Chapters 2 to 4. Appendix B sums up the
different techniques of integration, whereas Appendix C gives some references to books on
differential equations. In Appendix D we give the full solutions of a selection of exercises
and in Appendix E we list the answers of all the exercises.

The four chapters included in this material can be taught in 15 lectures, which corre-
sponds to about 50% of a quarter-semester (8 weeks) course in Engineering Mathematics.

Norbert Euler Lulea, June 2015
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Wig1, ¢2, ...

A List of mathematical symbols:

R:
N :

c"(D) :

C®(D) :

C®(R) :

» On(2) :

The set of all real numbers.
The set of all natural numbers.
The set of all integer numbers.
A polynomial of degree m.

D is a subset of real numbers, which may be

the set of all real numbers.

The vector space of all continuously

differentiable functions of order n on D.

The vector space of all continuously

differentiable functions of all orders on D.

The vector space of all continuously

differentiable functions of all orders on R.

The Wronskian of the set of functions

{b1(x), d2(x), ..., dp(x}) for all z in

some given interval.
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Chapter 1

Linear differential equations and
linearly independent solutions

In this chapter we define the different types of solutions that we will encounter in our
studies of differential equations. We do not describe or propose in this chapter any methods
to solve differential equations, as this is the main subject of the remaining chapters in these
notes. However, we prove here several fundamental results regarding the solution structure
of linear differential equations and we also introduce the very important Wronskian of a
set of differentiable functions, which makes it easy to establish the linear independence of
sets of solutions. This paves the way for several solution-methods for linear differential
equation, studied in detail in chapters 2 to 4.

1.1 Solutions of differential equations

An ordinary differential equation of order n, where n is a natural number, is an equation
of the general form

F (2,y(2),9/ (@), 5" @),y (@), ...,y (@) =0, (1.1.1)

where v = dy/dz, y" = d?y/dz?,...,y"™) = d"y/dz" and F is a given function of the
arguments as shown.

Definition 1.1.1. A solution of (1.1.1) is a function ¢(z) such that y(x) = ¢(zx)
satisfies (1.1.1). Here ¢ is a function that is n times differentiable on D C R and
therefore belongs to the vector space C™(D). That is, the solution ¢(x) is such that

F (2,6(x),¢'(@),¢"(2), 69(@),...., ")) = 0.

The interval D is known as the solution domain of ¢ for (1.1.1) and the domain of all
the solutions of (1.1.1) is called the solution domain of the differential equation.

In this course we will deal with different types of solutions, namely general solutions, special
solutions and singular solutions. There also exist several methods to solve differential
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equations numerically (or to approximate solutions numerically). This subject is, however,
outside the scope of this course and these notes.

Definition 1.1.2.

a) A general solution of (1.1.1) on some domain D C R, is a function,
o(x; c1, cay ..., cn) € C"(D), which satisfies the differential equation for every
x € D and which contains n arbitrary and independent constants cy, ca, .
called constants of integration.

-+ Cn,y

b) Those solutions of (1.1.1) on the interval D which follow from a given general so-
lution ¢(x; c1, cay ..., cn) by choosing fized values for the constants of integration
€1, €2, ..., Cn, are called special solutions of (1.1.1).

¢) Those solutions of (1.1.1) that cannot be obtained by choosing fized wval-
ues for the constants of integration ci, co, ..., ¢, in a given general solution

o(z; c1, ca, ..., ), are called singular solutions of (1.1.1) with respect to
that general solution.

d) Equation (1.1.1) may admit solutions in the form ¥(z, y(x)) = 0, where y cannot
be solved explicitly in terms of x for a given function V. Such solutions are
called implicit solutions of (1.1.1). If the implicit solution contains n arbitrary
constants, then this relation gives a general implicit solution of (1.1.1).

v
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Graphically solutions of differential equations may be depicted as curves in the XY-
plane on some interval D C R of the X-axis. For a first-order equation, a general solution,
y(x) = ¢(x; ¢1), contains one arbitrary constant (or parameter) c¢;. These solutions are
then one-parameter family of curves in the XY -plane. That is, for every fixed choice of
c1 we obtain an explicit solution curve. This family of one-parameter solution curves are
also known as level curves. For second-order differential equations a general solution,
y(x) = ¢(z; 1, c2), contains two arbitrary constants, ¢; and cg, so that this results in a
two-parameter family of curves in the XY -plane. The same holds for nth-order differential
equations. Special solutions of a differential equation are then the explicit solution curves
that result when choosing fixed values for the constants of integration c¢i, co,..., ¢, in
the given general solution. A singular solution of a differential equation is a curve in the
XY-plane that does not belong to the family of curves as given by a general solution of
that equation. The singular solution curve may be an asymptote to the family of solution
curves given by a general solution.

Example 1.1.1.

a) Consider the first-order differential equation

y =yt (1.1.2)
It can easily be verified that a general solution of this equation is
(r) = — (113)
x) = 1.
(Y ez

for all ¢ € R. However, this solution does not contain the solution y = 0, which is
clearly also a solution for (1.1.2). Thus the solution y = 0 is a singular solution for
(1.1.2).

b) As a second example of a singular solution, we consider the equation
/ 2 1 2
y+y =204+ —-|y—a°, x> 0. (1.1.4)
x

A general solution of (1.1.4) is

_z(z?+2+0¢)

y(z) = o (1.1.5)

for all ¢ € R. However, we can verify that y(x) = z is also a solution of (1.1.4)
and that this solution is not contained in the general solution (1.1.5). For example,
there is no value for ¢ such that y(2) = 2. The solution y(x) = z is thus a singular
solution for (1.1.4). In fact, there exists no value for ¢ such that y(a) = a for every
a > 0, since

a(a® +2+c)

5 = a leads to the contradiction that 2 = 0.
a® +c

y(a) =
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Figure 1.1: Some solution curves of (1.1.4)

Figure 1.1 depicts some solution curves of the general solution (1.1.5) for the values
¢ = 0.1 (blue), ¢ = 0.2 (green), ¢ = 0.3 (red) and ¢ = 0 (brown). The singular
solution y = x is indicated in black.

Equation (1.1.4) is an example of the so-called Riccati equation, which we introduce
in Section 3.2, where we also show that this type of singular solutions always exist
for the Riccati equation.

d) We can verify that the second-order differential equation
Y’ + 4y = 4z cosx (1.1.6)
admits the solutions
. 8 . 4
y(x) = 1 8in(2x) + o cos(2x) + gSinz + gTcosz (1.1.7)

for all x € R, where ¢ and ¢y are two arbitrary constants. Some solution curves for
the values {¢; = 1, ¢ = 1} (blue), {¢1 = 2, co = 3} (green), and {¢; = 3, c3 = 4}
(red) are shown in Figure 1.2.

c) We can verify that the first-order differential equation

y/:§—1+%, x#0 (1.1.8)
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Figure 1.2: Some solution curves of (1.1.6)

admits the following general implicit solution
Yy —i—ln’l - g} = —In|cz|,
x x

where c is an arbitrary constant. A singular solution is y = x.

Consider now a special form of (1.1.1), namely the so-called linear homogeneous
ordinary differential equation of order n, which has the following general form:

@)y + paci @)y D + -+ pi(2)y + pole)y = 0 (1.1.9)
Here pj(x) ( = 0,1,2,...,n) are real-valued continuous functions given on some common
domain D C R, n > 1 and p,(x) # 0 for all z € D.
Let
{p1(x), P2(x),...,0s(x)} (1.1.10)

be a set of solutions of (1.1.9) on D. That is

Pa(@)d" 4 pu1(@)8" T+ pr(@)d + pol(a); =0, j=1,2,...8

15
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and ¢; € C™(D).

Proposition 1.1.1. (Linear Superposition Principle):
Any linear combination of the set of solutions (1.1.10) for (1.1.9) on D, i.e.

c191(z) + caga(x) + - - - + €s95(T), (1.1.12)

are solutions for (1.1.9) on D for anyc; €R (j=1,2,...,5).

Proof: We assume that the set of functions (1.1.10) are solutions of (1.1.9) and show that

y(x) = c1¢1(x) + caa(x) + - + csds(x) (1.1.13)

satisfies (1.1.9). Differentiating (1.1.13) n times, respectively, we obtain

Y'(z) = 1) + cady + - - + c5 ¢
y'(z) = 1 + cody + -+ + sl

y™ (z) = clqbgn) + chSg") s,

Inserting the above expressions for y, 1/, . .. .y into (1.1.9) we obtain
pula) [e160" + 26l + -+ oo
+pn-1(z) [lebgnfl) +eapy D 4t csgbg”*l)]

+p1(2) [e1¢) + caghy + -+ + cs]

+po() [c101 + caa + - - + o]

= 1 [pa(@8” + pa1 @)V + -+ p1(2)6) + po(a)e
ez |pa(@)8” + pa-1 (205" + -+ pi()6) + po(a) g
+...

s [Pa(@)80 4+ puoa(@)0 ) + - 4 pr (@)l + po(@)6s

=c10+c20+4---+¢;0 (since ¢y, ¢2,..., ¢, are solutions for (1.1.9))

=0. O

To find a general solution for the n-th order linear differential equation, (1.1.9), we have
to find a set of n linearly independent solutions for (1.1.9). The linear combination of this
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set of solutions will then describe the general solution of the equation. This is stated
in Proposition 1.1.5 below. To establish this, we start with the definition of a linearly
independent set of functions in the vector space C(D).

Definition 1.1.3. Consider the set S of n continuous functions on some domain D C
R:

{o1(x), da(@), ..., dn(x)}. (1.1.14)

That is, ¢j(x) (j =1,2,...,n) belong to the vector space of continuous functions, C(D).
The set S is a linearly dependent set in the vector space C(D) if there exist constants
C1, C2,..., Cpn, not all zero, such that

ao1(x) + cap2(x) + - + cppn(x) =0 for all x € D. (1.1.15)
The set (1.1.14) is linearly independent in C(D) if equation (1.1.15) can only be
satisfied on D when all constants c1, ca,..., ¢y are zero.
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Example 1.1.2.

a) Consider the set S = {1, e¢*} € C(R). Then it is clear that the equation
c1l4+ce® =0

can only be satisfied for all x € R, if ¢; = 0 and ¢c; = 0. Therefore we conclude that
S is a linearly independent set.

b) Consider the set S = {cos?z, sin?z, 1} € C(R). Then the equation
010052$+0251n2x+031 =0

is satisfied for all x € R if, for example, ¢; = ¢co = 1 and ¢3 = —1. Therefore we
conclude that S is a linearly dependent set in C(R).

To determine whether a set of functions are linearly dependent on some interval D C R
in the vector space C™(D), it is useful to introduce the so-called Wronskian.

Historical Note: (source: Wikipedia)

Jozef Maria Hoene-Wroriski (1776 —1853) was a Polish Messianist philosopher who worked
m many fields of knowledge, not only as philosopher but also as mathematician. The
Wronskian was introduced by Hoene-Wronski in 1812 and was named as such by Thomas
Muir in 1882

Jozef Maria Hoene-Wroriski (1776 —1853)

18
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Definition 1.1.4. Consider the set

S =A{é1(x), Pa(x),...,on(x)} in C"(D). (1.1.16)
The determinant
¢1 P2 ce On
ol ¢ T
W[¢1,¢2,...,¢n](az) = : . . (1.1.17)
(bgn—l) ¢§n—1) o ¢$Ln_1)

is defined as the Wronskian of the set (1.1.16), where W o1, ¢2, ..., on)(z) is a dif-

ferentiable function on D.

Example 1.1.3.

Consider ¢;(x) = z and ¢a(z) = cosz for all x € R. Then

T COSX
1 —sinx

W1, ¢2)(x) =

= —zsinz — cos . (1.1.18)

To determine whether a set of functions is linearly independent, we can use the following

Proposition 1.1.2. Let S = {¢1(x), ¢p2(x),...,¢n(x)} be a set of n nonzero functions
in C(™) (D). If the set S is linearly dependent on the interval D, then the Wronskian
W1, ...,¢n](x) =0 for all z € D. Therefore, if W|p1, ..., ¢n](x0) # 0 at some point
xg € D, then S is a linearly independent set on D.

Proof: Consider the set S = {¢1(x), ¢o(x),...,dn(x)} in C" (D) and the equation
M1 (z) + Aodpa(x) + - + Ann () = 0, (1.1.19)

where \j, j =1,2,...,n, are unspecified constants. Differentiating relation (1.1.19)
(n — 1)-times, respectively, we obtain

M@+ Ay + -+ + An), =0
MBY + Aoy + -+ Ay, =0
(1.1.20)

A" 4+ A0l o A =0,
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The above n equations, (1.1.19) and (1.1.20), can be written as follows:

P1 2 .. A1 0
o P Py Ao 0

: o =1 | (1.1.21)
d)gn—l) (z)gn—l) o ¢£Ln—1) A\, 0

We denote the n x n coefficient matrix of (1.1.21) as matrix A. Now, if the set S is
linearly dependent for all x € D, then there exist nonzero solutions for at least two of the
constants \; that satisfy equation (1.1.19), so that A is singular (A~! does not exist) and
det A = 0 for all x € D. On the other hand, if det A # 0 at some point x¢y € D, then A
is not singular in that point, so that the only solution for any \; that satisfies equation
(1.1.19) for all € D is the trivial solution, Ay = 0, Ao = 0,...,A, = 0. We note that
det A = W1, d2, ..., ¢n](x). Therefore we conclude that, if W1, do, ..., dn|(xo) # 0 at
some g € D, then S is a linearly independent set on the interval D. O
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Example 1.1.4.

a) In Example 1.2b we have shown that the set S = {¢1 = cos?z, ¢o =sin’z, ¢3 = 1}
is linearly dependent for all z € R. Then

2

cos? x sin® x 1
Wlp1, p2, ¢3](z) = —2coszsinx 2sinx cos T 0
2sin?x — 2cos?2z 2cosz — 2sin?x 0

= —2coszsinz (2 cos® x — 2sin? :c) — 2sinx cosx (2sin2x — 2cos? a:)
=0forallz e R

as stated by Proposition 1.1.2

b) Consider the two exponential functions, namely
P1(z) = ™", go(x) = e™7,

where a7 and ag are any real numbers. To show that ¢; and ¢9 are linearly inde-
pendent on R we evaluate the Wronskian of ¢; and ¢2 in the point x = 0:

a1z aox

(& e

Wlg1, $2](0) =

= 9 — (1.

a1 aT
a1€ Qo€ =0

Since W1, ¢2](x) # 0 in the point z = 0 for ay # ag, it follows by Proposition
1.1.2 that ¢; and ¢9 are linearly independent on R for a; # ao.

c¢) Consider the complex function
flx) = elatib)z, a€eR, BeR, i?:=—1.
Since
elotiB)e — 0% (cos B + i sin Bz
we have
b1(z) == Re[f(z)] = e cosfz, () =T [f(x)] = ¢ sin B
Calculating W1, ¢2](0), we obtain
e cos(fSx) e“" sin(fx)

Wlo1, ¢2](0) =

ae®® cos(fx) — fe* sin(fx) ae*®sin(fx) + fe™* cos(fx)

1 0

aﬂzﬁ

Hence, it follows by Proposition 1.1.2 that the set {¢1(z), ¢2(x)} is linearly inde-
pendent on R for g # 0.
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Proposition 1.1.3. Let {¢1(x), p2(x),...,dn(x)} be a set of n nonzero solutions of
Pa(@)y™ + ppa(2)y™ " + - + pr(@)y + po(x)y = 0

on some interval D C R. Then either

W[¢17¢27 s 7¢n]($) =0

for every x € D, or

W[¢17¢27 OO0 7¢7‘L](x) 7& 0

for every x € D.

Proof: We give the proof for the case n = 2. The general case is proved in the Appendix
to Chapter 1. For n = 2, equation (1.1.9) is

p2(2)y” + pi(x)y + po(x)y = 0, (1.1.22)

where pa(z) # 0 for every x € D. Let ¢1(z) and ¢2(x) be two solutions for (1.1.22) on the
interval D. Then

pa(x)d + p1(x)d7 + po(x)p1 =0 (1.1.23a)

p2(2) ¢ + p1() s + po(2)d2 = 0. (1.1.23b)

Multiplying (1.1.23a) by —¢2 and (1.1.23b) by ¢; and then adding the resulting equations
(1.1.23a) and (1.1.23b), we obtain

p2(x)(p105 — $267) + p1(x) (P15 — p267) = 0. (1.1.24)
We recall that

o1 P2 , ,
Wior, ¢ol(z) = | = | =d1dy — ¢2¢)
P P2
and, furthermore, we note that
! /! /! d)l ¢2
Wor, do](x) = 1y — d2db] = (1.1.25)
¢ o
Therefore equation (1.1.24) can be written in the form
pa(x)W' + pi(x)W =0
or, since pa(x) # 0 for all z € D, we can write
w4 @y, g, (1.1.26)

pa(z)
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Now, either W = 0 for all x € D, or W # 0 for all x € D, as we will now show by
integrating (1.1.26): Equation (1.1.26) can be integrated:

aw = — / pi(@) dr +1n|c|, so that a general solution is
w p2(x)
W1, ¢2](x) = cexp [—/pl(x) dx] , (1.1.27)
pa()

where c¢ is an arbitrary constant of integration. Since

exp [— / pi() daz] #0 for every x € D

p2()

and ¢ # 0, it follows that W{p1, ¢o(x) # 0 for every x € D (except for the singular
solution W = 0). Thus the statement is established for the case n = 2. 0,9
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It is important to remark that Proposition 1.1.3 is essential in the methods to construct
solutions of linear differential equations, as we will see in the chapters that follow.

One may want to construct a differential equation from a given set of solution-functions.
This can be done by the use of the Wronskian: Let S be the given set of linearly indepen-
dent solutions for

Pu(@)y™ + pu_1(2)y™ Y 4 4 pi(2)y + po(x)y = 0,

for all x € D. Then, by the linear superposition principle, any linear combination of these
solutions is also a solution of this equation, i.e.,

y(x) = c191(x) + caga(x) + -+ - + cndn(2), (1.1.28)
where c1, ca, . . ..c, are arbitrary constants. However, the set

Q= {d)l(x)? ¢2($)7 SRR ¢n($)> y}a

is clearly linearly dependent in C™(D). Differentiating now (1.1.28) n times, respectively,
we obtain

cipr+capa+ -+ —y=0
)+ cady+ -+ ey, —y =0

Cl¢§n) + Cg¢gn) NI Cn¢$1n) _ y(n) =0

or equivalently

$1 P2 .. Dn Y o 0

/ / / /

dod k] e
:n :n :n : . :

o o ey )\ 0

Since the set @ is linearly dependent, the (n + 1) x (n + 1) matrix on the left side of the
above relation must be a singular matrix for all x € D. Hence its determinant must be
zero for all x € D and this determinant is the Wronskian for (). This leads to the following
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Proposition 1.1.4. Consider a set of n linearly independent solutions, S =

{¢1(2), ¢2(2), ..., dn(x)} in C*(D) for
Pr(@)y™ + o1 (@)y™ D + - + pi(@)y + po(x)y = 0, (1.1.29)
where D C R. Then this differential equation can equivalently be written in the form
W1, d2,. .., ¢n,yl(z) =0 (1.1.30)

for all x € D, where W is the Wronskian of the set of functions {¢1, ¢2, ..., ¢n, y},
namely

¢ P2 . Pn oy
T S

W[¢1a ¢27 ey ¢n7 y](m) = : . o . (1131)
FOTITE

Proof: Consider n = 1 with pi(z) # 0. Then the general linear first-order homogeneous
equation is

pi(2)y" + po(z)y = 0. (1.1.32)

Assume now that ¢(x) € C}(D) is a solution of (1.1.32), i.e.

p1(x)d +po(x)p =0 or ¢ =— <i2§g> . (1.1.33)
We show that W(¢,y](z) = 0 is equivalent to (1.1.32). Now
Wig, yl(z) = ‘ z, z;/ = ¢y — ¢y =0. (1.1.34)

Inserting ¢’ from (1.1.33) into (1.1.34), we obtain

Po
o = |- (M) o|y=0 o m@y' + mlaly =
Consider now n = 2. Then the general linear second-order homogeneous equation is

p2(x)y" + p1(2)y’ + po(z)y = 0. (1.1.35)

Assume now that ¢;(z) € C1(D) and ¢o(x) € C1(D) are two linearly independent solutions
of (1.1.35), i.e.

p2(2)¢] + p1(2)¢; +po(); =0, j=1,2. (1.1.36)
The equation W g1, ¢2, y](z) = 0 gives
105y + G2y + P15y — drdy — d1dhy — dadry” = 0. (1.1.37)
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Substituting ¢} and ¢4 from (1.1.36) into (1.1.37), we obtain
p2(z) (105 — d201) ¥ + p1(z) (105 — d20)) ¥/

+po(x) (d195 — p201) y = 0. (1.1.38)

Since the set {¢1(z), p2(x)} is a linearly independent set of solutions for (1.1.35), we have
that W1, ¢2](z) # 0 for all x € D. Hence (1.1.38) reduces to (1.1.36).

The same method of proof can be used for all natural numbers n (see Exercises 1.1.1).
O

Example 1.1.5.

Consider the set of functions S = {¢1(z), p2(x)}, where

2 2

p1(z) =€, da(x) =",
so that

Wig1, go](z) = —4x.

Applying Proposition 1.1.4 we can construct a second-order linear homogeneous differential
equation with solutions S for all z € R\{0}. It follows that

W1, d2, yl(z) = —dzy” + 4y + 162>y.
Hence the differential equation with the given solution set S has the form

xy” —y —4xdy = 0.

Finally we have
Proposition 1.1.5. Let S = {¢1(z), ¢2(x),...,dn(x)} € C(D) be a linearly inde-
pendent set of n solutions for equation
pr(@)y™ + pa_1 @)y 4 -+ pr(@)y’ + po(a)y =0,
where pj(x) are continuous functions on the interval D. Then the linear combination

y(x) = c191(x) + cada () + ... + cndn(x),

is the general solution of this equation on D, where ci,...,c, are n arbitrary real
constants.
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In order to give a rigorous proof of Proposition 1.1.5 we need the following theorem
on the existence and uniqueness of the solutions of (1.1.9) (the subject of existence and

uniqueness is outside the scope of these lecture notes and we will therefore not provide
the proof)

Proposition 1.1.6. (Ezistence and uniqueness theorem)
Consider the nth order homogeneous equation
Pr(@)y™ + por @)y + -+ pr(@)y + po(a)y =0,

where pj(x) are continuous and bounded on an interval D. For a given xo € D and
given numbers by, ba, ..., by, there exists a unique solution y(x) on D such that

y(zo) = b1, y'(xo) =ba, ..., y™ Y(xg)=by,. (1.1.39)
Note that Proposition (1.1.6) is also true for linear equations of the form
pa(@)y"™ + pu1(@)y "V -+ pi(@)y + po(a)y = f(2),

where p;(z) and f(x) are continuous and bounded on D.
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Example 1.1.6.

One may verify that
¢1(x) = 272 cos(31Inx) and $2(z) =z ?sin(31Inx)
are solutions of
2,1 /
Yy +bxy +13y =0 (1.1.40)
on the interval D = {z € R: z > 0}. Now
W1, ¢2](x)

r72cos(3Inz) r~2sin(31n )

—273[3sin(3Inx) + 2cos(3In )] 273 [3cos(3Inz) — 2sin(31n )]

A convenient point in D to evaluate the above Wronskian is at x = 1. Thus
10

Since W¢1, ¢2](1) # 0, it follows by Proposition 1.1.2 that ¢; and ¢y are linearly inde-
pendent on D. The general solution of (1.1.40) is then given by

y(x) = iz 2 cos(31Inx) + cox 2 sin(31nx)

for all x € D, where ¢; and co are arbitrary constants.

1.1.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Determine whether the following sets of functions, {f1, f2, f3 ...}, are linearly
dependent or linearly independent on the interval D:

a) fi(z) =€, fo(z) =¥, f3(z)=¢€>, D:=R
b)* fi(z) =In(x), fao(x) = ln(xQ), fa(x) = e D= (0, 00)
c) fi(x) =cosz, fo(x) =sinz, f3(x) =xzcosz, fi(x) =xzsinz, D:=R

d)* fi(z) =€, fa(z) =€7", f3(x) =xe®, fa(x)=2e ", D:=R
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e) filz) =e"cosz, fo(z) =e®sinz, D:=R

£) fi(z) = e fo(z) = €%, f3(x) =sinz, D:=R

g) filz) =sec’z, fo(r) =tan’z, f3(z)= -5 D:=R

h) fi(x) = cosec’z, fo(x) =cot’z, f3(z) ==, D:=R

i) fi(x) = cos(2z), fo(zx) = 2cos*z, f3(x) =3sin’z, D:=R

i) fi(z) =sin(2z), fo(x) =2coszsinz, fz(z) =1, fi(z) =€, D:=R

2. * Consider the following two functions

file) =2, falz) = alz|

on R. Show that the Wronskian W{fi, fa](z) is identically zero for all z € R and
show furthermore that the set S = {f1(z), f2(z)} is in fact linearly independent on
R. This shows that we cannot conclude linear dependence on an interval for a set of
functions if the Wronskian is zero on that interval.

3. Show that

a) e¥ + eV = cisa general solution of the first-order differential equation 3/ = e**¥,

where c is an arbitrary constant.

b)* y(x) = ¢ cos(2x) + o sin(2x)
is the general solution of the second-order linear differential equation y” + 4y = 0,
where ¢; and co are arbitrary constants.

c) y(z) = c1e” + casinx + cg cos x is the general solution of the third-order differ-
ential equation y(3) —y" +4y —y =0, where c1, ¢ and c3 are arbitrary con-
stants.

d) y*(z) + 2y(x) = 2> + 2z + c is a general solution of the first-order differential

. r+1 . .
equation ' = ?, where c¢ is an arbitrary constant.
Y

e) (2¢—z)y? = 2% is a general solution of the first-order differential equation
223y — 322y — y> = 0, where ¢ is an arbitrary constant.

f) e + In[y(z) + v/1+ y?] = ¢ is a general solution of the first-order differential
equation efxzy/ +2x+/1 4+ y2 = 0, where c is an arbitrary constant.

1 1
g) y(z) = c1e” + cosinx + cgcosx + € <x2 — x> is the general solution of the

4 2
third-order differential equation y(3) —y" 4+ 4y —y=xe”, where ¢, ¢y and c3
are arbitrary constants.
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n
h) y(x) = Z c;jz? ™1 is the general solution of the n-th order differential equation
j=1
y(”) = 0, where ¢y, co, ..., ¢, are arbitrary constants.

4. Use the following set of functions,
fila) =" fole) =€, fy(z) =€ falx)=e”
to construct a general solution for the equation

y/l/ _ 6y/l + 5y/ + 12y — 0
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5. Consider the following sets of functions and construct in each case, if possible, the
linear homogeneous differential equation for which a linear combination of the given
set of functions gives the general solution of the differential equation and establish
the solution domain of the so constructed differential equation.

Hint: Make use of Proposition 1.1.4.

a) S ={eV® eV >0

b) S = {ze¥*, ze %"}, where 2 # 0 and a € R\{0}.
c)* S ={x cos(l/z), xsin(l/z)}, = # 0.

d) S = {éex, %e_‘”}, —_

e) S={—, —e '}, 2>0.

f) S ={x, 2°, zlnz}, z > 0.

g) S ={z? cos(lnz), sin(lnz)}, z > 0.

6. Prove (1.3.1), namely

¢1 ¢2 . ¢n
6 G
[¢17 ®2, ;¢ ]((L‘) (n—2) (n-2) ¢(n—2)
1 2 "
e e

where {¢1, ¢2,...,¢,} are functions in C"(D) and W’ denotes the z-derivative of
the Wronskian W.

Remark: In the theory of determinants, the following result is established: If the
elements a;j(x) of the determinant of an n x n matriz A are differentiable functions
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of the variable x, then

ail  ai2 e A1n
a a/ DY a
d d 21 22 2n
L (det 4) = -
T dx
anl Aap2 -+  Qpp
, / . e / P
ajp Qa9 a1, ail  ai2 Q1n
/ / !/
as] @99 e aop a21 a22 e a2n
= + +
apl ap2 -+ App an1 Aap2 - dpn
ail  ai2 e A1n
a1 G2 - G2,
+
/ / /
Ap1 Ap2 "0 Gpp

7. Prove Proposition 1.1.4 for n = 3 and consequently for all natural numbers n.

1.2 The solution space of linear homogeneous differential
equations

We consider the linear homogeneous differential equation (1.1.9)
(@Y™ + pua @)y + -+ pr(2)y + po(z)y =0, (1.2.1)

where pj(z) (j = 0,1,2,...,n) are given continuous functions on some common domain
D C R and p,(x) # 0 for all z € D. For convenience we write (1.2.1) in the following
form:

Ly(z)=0 (1.2.2)

Here L denotes the following linear differential operator of order n:

n dn—l d
L:= Pn(w)w +Pn—1(x)m + - +p1($)% + po(x). (1.2.3)
Acting L on y(x) € C™"(D), we have
Ly(x) = pa(@)y™ + poc1(@)y" ™D + -+ pi(2)y + polx)y. (1.2.4)
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Consider now the transformation 7', such that

T: C"(D) — C(D), (1.2.5)
where D C R. Recall that C™(D) is the vector space of n-times differentiable functions
on the interval D and C is the vector space of continuous functions on the interval D. In
particular, we define T as follows:

T: y(x) — Ly(x). (1.2.6)

We now prove

Proposition 1.2.1. The transformation T, namely T : y(x) — Ly(x) with L defined
by (1.2.3), is a linear transformation.

Proof: Let y;(z) and y2(z) be any two functions in C"(D). Then

T(y1(x) +ya(x)) = L (y1(x) + ya(2))

m m—1
= (o) g P 4+ )+ 0®) ) (1(0) + )
= (@)™ + pn (@) + P @ 4 P (@) + -+ po(@)y (@) + pol@)ya()

= Lyi(z) + Lya(x) = T(y1(2)) + T(ya(2)).

Moreover, for any real constant ¢ we have

T(eyi(z)) = L (eyr())

n m—1
= (pa0) o+ Poa@) g - rla) 3+ ) ) (o)

= (@)™ + epp_1 (@) + -+ epo(a)u (x)

= cLyi(x) = T (y1(x)).
We conclude that T is a linear transformation. O
We recall that the kernel of T consists of all those functions y(x) for which
T: y(z)— 0. (1.2.7)

That is, for the linear transformation (1.2.6), the kernel of T' contains all solutions of the
equation Ly(x) = 0. See Figure 1.3.
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c"(D)
T (D)

Kernel of T

Figure 1.3: The solution space of Ly(z) =0

Proposition 1.2.2. Let T': y(x) — Ly(z) with L defined by (1.2.3). Then the kernel
of T is an n-dimensional subspace of C"(D) with basis

B = {le(x)? ¢2($), 200 ¢n(x)}7 (1'2'8)

where ¢1(x), ¢p2(x), ..., dn(z) are linearly independent solutions of Ly(z) = 0.

Proof: Let yi(x) and y2(z) be any two functions in the kernel of T'. Since T is a linear
transformation, it follows that

T(y1(z) +y2(2)) = T(y(2)) + T(y2(x)) =0 and
T(cyi(z)) =cT(yi(z)) =c0=0 for all ce R

so that the kernel of T is a subspace of C"(D). By Proposition 1.1.5 a general solution of
(1.2.2) is of the form

y(x) = c1¢1(z) + cago(x) + -+ cndp(x) forallc; €R (j=1,2,...,n), (1.2.9)

where every ¢;(z) is a solution of (1.2.2) and the set {¢1(z), ¢p2(z), -+, ¢n(x)} is linearly
independent in C™(D). Since (1.2.2) includes all the solutions of (1.2.2), the set
{01(2), d2(x), -+, dn(2)} (1.2.10)

spans the kernel of 7' and the finite set (1.2.10) is thus a basis for this n-dimensional
subspace of C™(D). O

This leads to

Definition 1.2.1. The kernel of T', where T : y(x) — L y(z) with L defined by (1.2.3),
is called the solution space of the homogeneous linear differential equation Ly(x) =
0.
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Remark: If the linear homogeneous differential equation (1.2.2) contains only constant
coefficients p; (rather than functions p;(x)) in the differential operator L, then the solu-
tions ¢j(x) of the equation are all (depending on the values of the constant coefficients) of
the form

x’e"™  or x°e¢"cos(qr) or x°e"sin(qz),
where s is a natural number, whereas q and r are real numbers. These solutions are
functions that can be differentiated indefinitely many times for all values of x € R, so that
the n-dimensional solution space of (1.2.2) is in fact a subspace of C*°(R), rather than
just C™(D).
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1.2.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Consider the equation

Y — 4y +13y =0 (1.2.11)

and the functions
$1(x) = €*® cos(3x), p2(z) = e** sin(3z).
a) Show that ¢; and ¢9 are solutions of (1.2.11).

b) Show that the set S = {¢1(z), p2(z)} is a linearly independent set in the
C?(R) and give the general solution of (1.2.11).

space

c¢) Give the linear transformation T': C?(R) — C(R) for which the kernel of T

defines the solution space of (1.2.11).
d) Give a basis for the solution space of (1.2.11).

e) Find that function in the solution space of (1.2.11) for which y(0) =
y'(0) = —1.

f) Find that function in the solution space of (1.2.11) for which y(0) =
y(m/6) = 2.

2. * Show that
¢1(x) =3e “cosuw, po(x) =me Tsinx
are functions that belong to the solution space of the differential equation

y'+2y +2y=0

4 and

1 and

and give the general solution of this differential equation as well as a basis and the

dimension of the solution space.

3. Show that

pi(z) =€, da(w)=e P, d3(x) =267, Pulz) = =3¢,
are functions that belong to the solution space of the differential equation

y'+y —2y=0

and give the general solution of this differential equation, as well as a basis and the

dimension of the solution space.
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4. In the exercises below, let S = {¢1(x), ¢2(x), ...} be a basis for the solution space
of a second-order homogeneous differential equation with constant coefficients. Find
the corresponding differential equation, if it exists, and give the general solution of
this equation, as well as the dimension of the solution space.

a) ¢1(x) =cosz, ¢a(x) =sinz
b) ¢1(x) = e cos(2x), ¢o(x) = e *sin(2x)
¢) ¢1(x) =1, dax) = e

d) ¢1(x) = %, da(x) = sinz, ds(x) = cos
e) ¢1(x) =1, pa(x) = e %, ¢3(x) =sin(2x), d4(x) = cos(2z)

5. Show that there exists no differential equation of the form
y' +ay +by=0
for which the solution space has a basis S = {¢1(z), ¢2(x)}, where

p1(x) = €, ¢o2(x) = e” cos z.
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1.3 Appendix to Chapter 1

We prove Proposition 1.1.3 for all natural numbers n:

Proposition 1.1.3 Let {¢1(z), p2(x),...,dn(x)} be a set of n nonzero solutions of
Pa(@)y™ + pur @)y - pr(@)y’ + po(a)y =0
in some interval D C R. Then either

W[(bh ¢27 ] ¢n](w) =0

for every x € D, or

Wig1, d2,...,0n)(x) #0

for every x € D.
Proof for all natural numbers n: (the proof of the case n = 2 is given in section 1.1)

In order to prove the statement for all n, we take a second look at the derivation of
equation (1.1.26) as given in the proof in section 1.1: Consider (1.1.25), i.e.

o1 P2
i o

Replace now ¢} and ¢4 from equations (1.1.23a) — (1.1.23b), in the second row by

W[p1, pal(x) = ‘

p1 Po P1 Po
Pl ==y — =1, ¢h=——¢)— o,
p2 P2 p2 P2
respectively, to obtain

¢1 b2

W6, =
oel@=l my wg oy
D2 p2 p2 p2

Multiplying the first row in the above determinant by PO and adding this to the second

b2
row (which does not change the value of the determinant), we obtain
P1 b2
W/[¢1a ¢2](x) = b1 b1
——¢1 ——¢5
b2 b2
Factoring out _PL from the second row in the above determinant, we obtain
b2
¢1 P2
p1{x p1{x
W[o,00) @) =~ )
n@ | g | p@
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To prove the statement for the nth-order equation (1.1.9) we use the same strategy. We
need W'[p1, o9,...,dn](z), which is of the form (the proof is left as an exercise: see
Exercise 1.1.1 nr. 6)

¢1 b2  On
¢ 2 SR
W1, ¢2,...,¢n)(x) = | : c : (1.3.1)

n—2 n—2 n—2

N
(n) (n) A ()
1 2 n

We consider n solutions, ¢1(z), ¢2(z), ..., ¢n(z) for the nth-order equation

P (@)y™ + o1 (2)y Y 4 4 pi(2)y + po(x)y = 0,

so that
() _ Pn1(®)  (n-1) Pn—2(z)  (n-2) pi(x) po(w)
. Pn—p\T n—
= £(@) j(n-t)
k=1 Pn(7)
Also
(n) _ _ . pn—k(x) ¢(n—k) ¢(n) _ _ . pn—k(x) ¢(n—k)
2 ; pn(x) 2 ) » Pn ; pn(a?) n
Substituting now the above values of ¢§n), gn), e 2") into the last row of the determi-
nant of W[¢1, ¢2,..., ép](x) in (1.3.1), we obtain
W/[¢1a ¢27 et ¢n](x)
¢1 P2 ¢n
¢ ¢ b,
¢gn—2) ¢gn—2) o qu(ln_z)
"~ k() (n— "~ k() (- "~ k() (0
Ry l(ci))qsg k) _Zp i(c:i))gbg W NP I(c:i))qb% k)
=1 Pn i—1 Pn i—1 Pn
(1.3.2)
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If we now multiply the first row, the second row,. .., the (n — 1) row of the determinant
(1.3), respectively, by
po(z) pi1(7) Pr—2(x)

pa(2)” pu(z)” 7 palz)

9

and then add this result to the last row, we obtain

W,[¢1, ¢27 B ,¢n]($)

¢1 ¢2 Pn
¢ 2 b
¢§n—2) ¢én—2) o gln—2)
_pn—l(x) (n—1) _pn—l(x) ¢(n—1) o _pn—l(x) ¢(n_1)
pa(z) pa(z) 2 pn(z) "
(1.3.3)
Factoring out _pn—z(f;) from the last row of the above determinant (1.3), we obtain
Pn T
n—1(x
Wb, da. ... oulle) = 2D o 6, 6@, (134)

pn(T)

The solution of (1.3.4) is either W = 0 for all z € D, or we have the general solution

Wibr, d2, ..., dul(x) = c exp [—/p;;(lg) dx} , (1.3.5)

where ¢ is an arbitrary nonzero constant of integration. Since

exp [— / Pn-1(2) dx] #0 for every x € D
pn(z)

and ¢ # 0, it follows that either W # 0 for all z € D or W = 0 for all x € D (which
corresponds to the singular solution of (1.3.4). Thus the statement is established for
arbitrary n. O
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Chapter 2

First-order differential equations

2.1 Introduction: the initial-value problem

A first-order differential equation is of the following general form:

F(z,y(z),y'(z)) = 0. (2.1.1)

In this section we introduce the so-called initial-value problem for first-order equations and
then consider two types of first-order differential equations, namely the so-called separable
first-order equations and the linear first-order equation. We also include some cases of
first-order differential equations which can be written in the form of a separable differen-
tial equation or a first-order linear differential equation by introducing a new dependent
variable.

/
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The initial-value problem for first-order differential equations:

Let

y = ¢(z; c) (2.1.2)

be a general solution of (2.1.1) on some interval D C R, where ¢ contains an arbitrary
real constant c. The initial-value problem states the problem to find the solution curve of
(2.1.1) which contains the point

y(zp) = b, (2.1.3)

where xg is a given point in the solution domain of the differential equation and b is a given
real number. The relation (2.1.3) is known as the initial data and zy is the initial value
for the solutions of the differential equation. If the point x( is in the solution domain of
the given general solution ¢(x; ¢) and the general solution satisfies the initial data, then
the solution of the initial-value problem is obtained by solving the constant ¢ from the
algebraic relation

¢(zo, ¢) = b. (2.1.4)

The solution of this initial-value problem is then given by the general solution of (2.1.1)
where c is the explicit (unique) number that has been solved from the relation (2.1.4). If
the given initial data cannot be satisfied by the given general solution y = ¢(z; c1), that
is, if

¢(zg, ¢) b for all c € R, (2.1.5)

then the initial data may be in the domain of a singular solution for (2.1.1), say

y(x) = ¢(x), (2.1.6)

for which ¢ (xo9) = b. In this case the solution to the initial-value problem is given by
the singular solution y(z) = ¢(z). If neither the general solution, nor any of the singular
solutions for (2.1.1), satisfy the initial data y(z¢) = b, then we say that this initial data
is inconsistent with the differential equation, which means that the differential equation
does not contain the point y(xg) = b for any of its solutions.

Several examples to illustrate the initial-value problem for first-order differential equa-
tions are given in the sections that follow.

2.2 Separable first-order differential equations

A separable first-order differential equation is of the form

W~ ga)hy) (2.2.1)

where g(z) and h(y) are given continuous functions of their arguments.

Download free eBooks at bookboon.com



The method to integrate (2.2.1) is as follows:

1 d
Divide (2.2.1) by h(y), i.e. @ﬁ = g(z) and integrate then with respect to x:

[ (i) o= [ aterdoe 299,

d
where ¢ is a constant of integration. We let y(x) = p(x), so that d—y =p'(z) (or dy = p/(x)dx,
T

ie. Z—y dr = dy) and (2.2.2) takes the form
x

/h(ly) dy = /g(x) dx +c|. (2.2.3)

Relation (2.2.3) is an integral-solution formula for (2.2.1). Since this formula contains
one arbitrary constant it represents a general solution of (2.2.1).

Example 2.2.1.

Solve the initial-value problem for the equation
(1+e%)y =ee, (2.2.4)

with initial data y(0) = 1. Using the integral-solution formula (2.2.3) we have

ex
/eydy:/1+exd:c+c

and a general solution becomes

y(z) =In[ln(14+¢€*)+ ¢ for all c € R. (2.2.5)
Use now the given initial data to solve c:
y(0) =In[In(1+e°) +c] =1 (2.2.6)

so that ¢ = e — In(2) and the solution of the initial-value problem is

y(@) = In [m <1 J;‘jx) + e} . (2.2.7)

In some cases we can write a given first-order differential equation in the form of a
separable first-order differential equation by introducing a new dependent variable.
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Proposition 2.2.1. The first-order equation

/=1(2)

z € R\{0}

First-order dierential equations

(2.2.8)

where f is a continuous function of the argument y/x, reduces to the separable equation

v == (f(v) —v)

x

by the substitution

y(x) = zv(z)

(2.2.9)

(2.2.10)

Proof: Differentiating (2.2.10) with respect to x we have

Y (x) = v(@) + 2 (2)

so that (2.2.8) becomes v(z) + zv'(z) = f(v(z)), i.e., the equation in v is of the form
(2.2.9) and is therefore separable in the variables z and v(x). O
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Example 2.2.2.

We find a general solution of

2

ryy =2 —ay+y?

for all x € R\{0} and then solve the initial-value problem y(1/2) = 0.

The equation can equivalently be written in the form

x
y’:f—l—l—g.
Yy x

By the substitution (2.2.10), i.e. y = zv(z), this equation reduces to

, 1(1—1})
v ==
r\ v

which is a separable first-order equation in the variables z and v # 1. Thus

1
/ v dv:/dx+ln\c| or v+In|l—v|=—Inlecx|
1-w T

A general solution of the given equation is now in the following implicit form:
4 —Hn‘l - Q’ = —In|cx|,
T T

where ¢ is the constant of integration. Applying the initial data y(1/2) = 0, we have

C

0+In(l)=—1In 5

so that ¢ = 2. The solution of the initial-value problem is thus
y —1—111‘1 - Q} = —In|2x|.
x x

For the case v = 1, we obtain the singular solution y = .

2.2.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following differential equations:

a) y = ety

1+ 22
b =
Ay
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o) wy? +x+ (y—2%y)y =0

d) zy = (3 —2)y, x # 3.

1—y2
1— 22
1—y2
14 22
(y —1)a?
(- 12

h) av/a? =2 — (2 1)L +y)y =0, a0

e)* y + =0, z>1

f) v + =0

g) v+ =0, z#1

i) 22+ 92e"y =0

2. Solve the following initial-value problems:

1+y
a) y,_l_:EQ:O? y(O):l
1+ y?

c) eVy =z, y(0)=0
d) V(v +1) =1, y(0)=0

e) wsiny = y'(1+ %) cosy, y(l)=

I

3. Use the substitution y(z) = zv(z) to find a general solution of the following differ-
ential equations:

a) y+zeW® — gy’ =0
b)* y* — 2% +ayy =0

c) x—2y+yy =0

4. Solve the following initial-value problems using the substitution y(x) = zv(x):

2
Y-ty

a) y="—5— yl)=1
4y* + 3zy

b) Z/ZT’ y(2) =1
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2.3 Linear first-order differential equations

The linear first-order differential equation is of the form

Y +g(2)y = h(z)| (2.3.1)

where g and h are continuous functions on an interval D C R. A general solution can then
be given in terms of an integral-solution formula:

Proposition 2.3.1. A general solution of (2.5.1), i.e. equation
Y +g(x)y = h(z),
18
y(z) = e ¢@ {/ h(z)eC @ dx + c} , (2.3.2)

where ¢ is an arbitrary constant and G(x) is an anti-derivative of g(x), i.e.
G(z) = /g(a:)dx. (2.3.3)

Proof: We now prove this proposition in two ways, which provides two methods to solve
the linear equation (2.3.1).

The method of integrating factors:
Multiplying
Y +g(x)y = h(z)
by the expression e, where G(z) = [ g(z) dz, we obtain

y/eG(:r) + g(x)yea(x) = h(;c)eG(m) or equivalently

% (yeG(x)) = h(x)eC@).

The factor e“®) is known as an integrating factor (see Definition 2.3.1 below). Integrating
the previous relation over x, we obtain

yeC®) = /h(z)eG(x) dzr +c,

where ¢ is a constant of integration. Since e&®) £ 0 for any z € R, we can divide by this
term to obtain the integral formula (2.3.2). Oy
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The method of variation of constants:

To find a general solution for
Y +g(x)y = h(z)
we first consider the homogeneous equation
v +g(x)y =0, (2.3.4)

which is a separable first-order equation. We can now integrate (2.3.4) for y # 0, to obtain

@ — —/g(:c) dxr +1In|k| so that
Yy

y(z) = ke St (2.3.5)

where k is an arbitrary nonzero constant. Consider now the variation of the constant k,
namely we consider k£ as a function of z, i.e.

k= k(x).
We then insert
y(x) = k(x) e J9@)dz (2.3.6)
and its derivative,
(@) = K (2) e L9 — (a)g(a) e o),
in the full first-order linear equation
Y +g(x)y = h(z)
and obtain
K (z) e J 9@ dr — p(g).

Integrating the above expression over x, we get
k(x) = / e 9@ () da + (2.3.7)

where c is a constant of integration. Inserting k(z) given by (2.3.7) into (2.3.6), we obtain
the integral formula (2.3.2), namely

y(z) = €@ [ / h(2)e®) da + c] ,

where G(z) = [ g(z) d. Ogy
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Definition 2.3.1. The factor @ where

G(@) = | gl

which results in the integration of the linear equation (2.3.1), is known as the inte-
grating factor of the linear equation (2.5.1).

Remark: A remark regarding Integrating Factors is in order: By the general theory of
ordinary differential equations it is known that for any differential equation that can be
integrated in closed form at least once (i.e. a differential equation of order n for which the
order can be reduced by integration), there exists some integrating factor that brings the
equation to such an integrable form. To find an integrating factor for a given differential
equation is in general a difficult problem (depending strongly on the type of differential
equation). In the case of first-order linear differential equations, the integrating factor,
exp|[ g(z) dz], reduces the first-order equation to a zero-order differential equation, i.e.
we obtain a relation between y(x) and x and an arbitrary constant ¢ from the integration;
hence we obtain a general solution of the first-order differential equation. It is a difficult
problem to find integrating factors for nonlinear first-order differential equations, since the
problem is in general under-determined (in this sense first-order differential equations are
more complex than higher-order differential equations, which is due to the geometry or
symmetry properties of these differential equations).
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Example 2.3.1.

Consider the linear first-order equation
vy = —(2z + 1)y + ze” >, x> 0.
We find a general solution and solve the initial-value problem y(1) = 2.

Dividing the given equation by z, it takes the following form:

2% + 1
Y + ( x;r > y=e 22, (2.3.8)

The integrating factor for (2.3.8) is ¢“(®)| where

G(x):/2x+1da::2x+lnx.
x

G(x) 2z

e = xe

and upon multiplying (2.3.8) with this integrating factor we have

d
re®®y' + ¥ (2 +1)y=2x or . (me%y) =x.
x

Integrating the last expression we obtain

1
ety = §x2 + ¢,

where c is the constant of integration. Thus the general solution is

y(x) = te <x; + c> . (2.3.9)

We can now solve ¢ for the given initial data y(1) = 2 to obtain

1 1
y(1) = e 2 <2 —i—c) =2, sothat c¢=2¢*— 3

The solution of the initial-value problem is therefore

2 1
y(z) =a e <m2 + 262 — 2> for all z > 0.
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2.3.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following differential equations.

a) Yy —y=2z—2°

b) Y +y-—sinz=0

o) Yy +2y+22=0
d)* Y +y+sinz+23=0
e) Y +3y=a2+1

—sinz

f) Y +ycosz=ce¢

2
, xy  (rt—x+1
&) y_;r2+1_< 241 )ez

2. Solve the following initial-value problems.
a) Y -—y=z-1, y0)=1
b)Y 4ay=2 y0)=-2
o)* xy+y=uwzcosz, yln/2)=1
d) zhhry +y=2mnxz, yl)=0
3. Assume that y;(x) and ya(z) are two solutions for
y' +g(x)y = h(z)

on some interval D C R, where y;(z) # y2(z). Find a formula for a general solution
using these two solutions, without performing any integration.
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2.4 Some linearizable first-order equations

2.4.1 A rather general case

Consider the following

Proposition 2.4.1. The first-order nonlinear equation

df(y) dy

o+ f)P() = Q) (24.1)

where f(y) is any differentiable function of y and P and Q are continuous functions of
x on some domain D C R, can be linearized in

Z—Z + P(x)v = Q(x). (2.4.2)

by the following substitution:
v(z) = f(y(z)) (2.4.3)

Proof: The first derivative of v(x), given by the substitution (2.4.3), is

dv df dy
— = —— 2.4.4
dr  dydz’ ( )

so that (2.4.1) takes the form (2.4.2) in terms of the new dependent variable v(x). A
general (possibly implicit) solution of (2.4.2) then leads to a general solution for (2.4.1)
by the relation (2.4.3). 0

Example 2.4.1.

We linearize the equation

d
ﬁ +1=4e Ysinz. (2.4.5)

An equivalent form of (2.4.5) is

d

Y eV = dsing

dx
so that, following Proposition 2.4.1, a suitable new dependent variable is
dv y Yy
— =Y.
dx dx
Equation (2.4.5) then takes the linear form

v(x) =€, with

d
é +v =4sinzx. (2.4.6)
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A general solution of (2.4.6) is
v(xz) =2 (sinx — cosx) + ce™".

Thus a general solution for (2.4.5) is then

y(z) =Inv =1In(2(sinz — cosz) + ce ).

2.4.2 The Bernoulli equation

The Bernoulli equation is an important special case of (2.4.1), namely

% — F@y+ 9@y, neR\{0,1) (2.4.7)

Here f(z) and g(z) are any given continuous functions on some domain D.

Remark: Note that y = 0 is always a solution of (2.4.7). Moreover, if y(z) = ¢(z) is
a solution of (2.4.7), then y(x) = —¢(x) is also a solution of (2.4.7) if and only if the

equation admits the discrete symmetry y — —y, x +— x for all x € D (see Example 2.4.2
below).
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Proposition 2.4.2. The Bernoulli equation (2.4.7) can be linearized for all n €
R\{0, 1} in terms of a new dependent variable v(x), by the substitution

v(z) =y (). (2.4.8)

Proof: Assume that y # 0. Multiplying equation (2.4.7) by y~". Then the equation takes
the form

Ly

o~ f@)y " = g(a). (2.4.9)

By comparing (2.4.9) with (2.4.1) we note that (2.4.7) is linearizable in terms of the new
dependent variable v(x), where

_ dv _.dy
1-n n
= h — = (1- —. 2.4.1
o@) =y a)  sothat W= (1 oy D (2.4.10)
In terms of the dependent variable v(z), (2.4.7) then takes the linear form

dv

i (I —=n)f(x)v=(1—-n)g(x) (2.4.11)

g

Historical Note: (source: Wikipedia)

The Bernoulli equation is named after Jacob Bernoulli (1654 — 1705), who described this
equation in 1695. Jacob Bernoulli, born in Basel, Switzerland, was one of the prominent
mathematicians in the Bernoulli family. He is known for his numerous contributions to
calculus and along with his brother Johann, was one of the founders of the calculus of
variations.

Jacob Bernoulli (1654 — 1705)
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Example 2.4.2.

We find a general solution for the following first-order equation:
Y +y=ay’. (2.4.12)

We recognize that (2.4.12) is a Bernoulli equation of the form (2.4.7) withn = 3, f(z) = —1
and g(z) = x. We therefore introduce a new dependent variable v(z) as v(z) = y~2(z).
Now

U/ — _2y—3y/
and the equation in v(x) takes the linear form
v —2v = —2x.

Solving this linear equation we obtain

1
v(r) =x+ B + ce??,

where ¢ is an arbitrary constant and, since y(z) = v~/2(z), a general solution of (2.4.12)

is
1 ~1/2
y(z) = (x + 3 + 062$> .

As pointed out in the above Remark, y = 0 is also a solution and, since (2.4.12) admits
the symmetry y — —y, x — « for all x € R, another nontrivial solution of (2.4.12) is

1 ~1/2
y(z) = — <x + 3 + cezx> .

2.4.3 The Riccati equation

The Riccati equation is of the form

dy _

I f(@)y? + g(x)y + h(z) (2.4.13)

where f, g and h are any given continuous functions on some domain D C R. One of the
remarkable properties of the Riccati equation is that it can be linearized in a first-order
differential equation if any solution of (2.4.13) is known. In particular, we assume that
¢(z) is a solution of (2.4.13) and introduce a new dependent variable z(z) as follows:

dy d¢ dz

y(x) = ¢(x) + 2(z) with e~ do + 10 (2.4.14)
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Since ¢(z) is assumed to be a solution of (2.4.13), i.e

do

2 = @) + g(2)o + h(), (2.4.15)

we obtain, with (2.4.14), the following equation in the dependent variable z:

dz

o = [20f(2) + g(@)] 2 + f(x)2. (2.4.16)

We recognize (2.4.16) as a special Bernoulli equation, (2.4.7), which can be linearized by
introducing a new dependent variable v(x) as follows:

) dz 1 dv
z(x) = ( ] with P Tv@)ide (2.4.17)

Inserting (2.4.17) in (2.4.16) we obtain the linear equation

26000 (0) + g(@)] 0 = 1 (2), (24.18)
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This leads to

Proposition 2.4.3. The Riccati equation

dy _

= @)y + g(z)y + h(z)

can be linearized in the first-order linear equation

dv

2+ 20(2) (@) + g(a)] v = — () (2.4.19)

by the following change of dependent variable

where ¢ is any solution of the Riccati equation and v satisfies the linear equation

(2.4.19).

Regarding singular solutions of the Riccati equation, we have the following

Proposition 2.4.4. Consider the Riccati equation (2.4.13), i.e.

Y — Fa + gla)y + hia)

with general solution of the form

1

y(z; ) = d(z) + m7

where v(x; ¢) is a general solution of the linear equation

D ¥ 26(@)f (@) + 9@)] v =~ (z)

and ¢(x) is a special solution of the Riccati equation. Then the special solution

is a singular solution with respect to the initial data y(xo) = ¢(xo) for every xo in the
solution domain of the Riccati equation. The solution of this initial-value problem is
then given by the singular solution, y(x) = ¢(x).

Historical Note: (source: Wikipedia)

The Riccati equation is named after the Italian mathematician Jacopo Francesco Riccati
(1676-1754), who was born in Venice. Riccati received various academic offers, amongst
those was an invitation by Peter the Great of Russia for president of the St. Petersburg
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Academy of Sciences as well as some professorships, but he declined all offers in order to
devote his full attention to the study of mathematical analysis.

Jacopo Francesco Riccati (1676-1754)

Example 2.4.3.

We find a general solution of the Riccati equation
1
Y 4y = <2:L' + > y — x?, (2.4.20)
x

where ¢(x) = x is a special solution for this equation. We then solve two initial-value
problems: i) we use the initial data y(1) = 2 and ii) the initial data y(1) = 1.

As stated in Proposition 2.4.3, we make a change of the dependent variable
ylz) =o+ ——. (2.4.21)

That is 4/ = 1 — v 2/, so that (2.4.20) takes the linear form
v+ - 1,
x

which admits the general solution

1 c
v(az):§$+5,

where ¢ is a constant of integration. Inserting the obtained expression for v(x) into the
relation (2.4.21) we obtain a general solution for (2.4.20) in the form

z(z? +2c+ 2)

y(x) = o for all z € R\{0}. (2.4.22)
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i) Using the initial data y(1) = 2 we obtain, from the above general solution,

1(12 +2c+2)
y(l):—12+2c =2 orc=

1
2
The solution for this initial-value problem is therefore

ii) It is clear that the singular solution y(z) = z passes through the point of the initial
data, y(1) = 1. Therefore, y(z) = z is the solution for this initial-value problem in this

case. Note that, if we use the general solution (2.4.22) for this initial data we obtain a
contradiction:

y(1)

~3+2¢
C142¢

1 or3=1

as stated in Proposition 2.4.4.

rant to do?

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT

Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

59 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/volvo

2.4.4 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find a general solution of the following nonlinear differential equation by a suitable
linearization:

d
sinyd—y =Ccosz (2 cosy — sin? ) .
x

Hint:
a) See Proposition 2.4.1.

b) For the integral / cos z sin? z €25 dz use the substitution ¢ = sin x.
2. Find general solutions of the following Bernoulli equations:
a) ¥ —y=a"y’
/ 2 T
b) y + ZYy=¢ VY
c)* zy +y=1y?In(z), >0
d) 2zyy’ +x =y°

e) ¥y +y+y’sine =0

3

Y Y
Yy - =—+—0==0, -1<2<1, 2#0
A e i #
’ ry
g)*y—i_l_xg_x\/gv z>1

3. Solve the following initial-value problems:

a) y +2xy = 233y2. Consider two cases:

i) y(0)
i) y(0) =

3
b) ¥ + (::;) y=axy'? y(1) =3

2
1

4. Linearize the following Riccati equations and find their general solutions:

oy 1 2
a) y = T A special solution is ¢(x) = e

b) o =y% — 2z +1)y+ 22 4+ 2 + 1. A special solution is o(z) = x.

5. Solve the initial-value problem of the following Riccati equations:
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1
a) y =9® —2zy+ 22 +1, y(0) = 7 A special solution is ¢(x) = z.
L, (1 1 . o 1
b) v =y"— (- )y— —, y(1)=2. A special solution is ¢(z) = —.
x x x
;. (1 1 . . 1
o)y =y"—(=-)y— 5, y(1)=1. A special solution is ¢(x) = —.
x x x
* Consider the Riccati equation
(x — 2ty —2? —y+ 212 =0, zcR\[0, 1]. (2.4.23)

Find a value of the constant k, such that ¢(z) = kz? is a special solution of this
equation. Solve then the initial-value problem, where y(2) = 1.

Consider the Riccati equation
2%y — 2?y? + bxy —3=0.

Find a value of the constant k, such that ¢(z) = z* is a special solution of this
equation. Solve then the initial-value problem for two initial data. i) y(1) = 2 and

i) y(2) = 1/2.

. Consider the Riccati equation

/

22y — 2%y =2y + 1.
k
Find a value of the constant k, such that ¢(z) = — is a special solution for this

equation and find then a general solution of this equation.

Show that the general Riccati equation (2.4.13) linearizes to a second-order linear
equation in terms of the dependent variable w(x) given by the following relation:

y(x) = _vie) 1 (2.4.24)

w(z) f(z)
It can be shown that any Riccati equation (2.4.13) admits the following nonlinear
superposition formula:

($) _ c[yl(x) - y2<1’)]y3<1’) - [yl(x) - yg(x)]yg(a:)7 (2425)
clyr(@) —ya(@)] = [y1(z) — ys(@)]
where yi(x), y2(z) and ys(x) are any distinct solutions of the Riccati equation
(2.4.13) and c is an arbitrary constant. Since c is an arbitrary constant in (2.4.25),
this superposition formula (2.4.25) provides a general solution to the Riccati equation
for three given distinct solutions.

Using this superposition formula, find a general solution of
1
Y =y + (2x+x>y—x2,

which admits the following three solutions:

a3 zS—{—x

n(@) =z, y(z)= 2 ys(z) = 21
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Chapter 3

Second-order linear differential
equations

3.1 Introduction: the initial- and boundary-value problem

A second-order differential equation is of the general form

F(a,y(x),y'(x),y"(x)) =0 (3.1.1)

and its general solution is a function ¢ € C?(D) which contains two arbitrary constants,
c1 and ¢, and satisfies the differential equation. We write

y(x) = o(x; c1, c2). (3.1.2)

The initial value problem requires the following initial data in a point zq in the solution
domain of the equation:

y(wo) = bo, Y (w0) = b, (3.1.3)

where by and b; are given real numbers. This data is then used to fix the constants ¢; and
¢ in the general solution (if the initial data is within the domain of the general solution
and this data can be satisfied by the general solution) by solving the (nonlinear) algebraic
system of equations

(@) = blaos er, ) = b, y/(ag) = ATy, (3.1.4)

If the differential equation (3.1.1) is linear, then the algebraic system (3.1.4) is a system
of two linear algebraic equations in ¢; and c¢o. This is clear since the constants ¢; and cs

appear as weights in the linear combination of linearly independent solutions.

For the so-called boundary-value problem we require boundary data in two points,
x1 and x3, in the equations’ solution domain, namely

y(x1) = b1, y(x2) = ba,

Download free eBooks at bookboon.com



where b; and by are given real numbers. If this boundary data lies within the domain of
the general solution and can be satisfied by the general solution, then the constants c;
and ¢y can be fixed by solving the (nonlinear) algebraic system

y(z1) = (x1; 1, c2) = b1, y(z2) = d(x2; c1, 2) = ba. (3.1.5)

If the differential equation is linear, then the algebraic system (3.1.5) is also a linear system
in ¢; and cs.

Example of initial-value problems and boundary-value problems are given int the sec-
tions that follow.

3.2 Second-order linear homogeneous equations with con-
stant coefficients

Consider the equation

Y +py +ay =0 (3.2.1)

where p and ¢ are real constants. To find the general solution of (3.2.1) we make use of
the Ansatz

y(z) = e (3.2.2)

where A is in general a complex number that needs to be determined such that (3.2.2)
satisfies equation (3.2.1). Inserting the Ansatz (3.2.2) and its derivatives

y/ — )\e)\z’ y// — )\26)\93
in (3.2.1), we obtain
(A2 +pA+q) e =0.

Since e’ # 0 for all complex A and all real z, we remain with the condition

NEpr4+qg=0 (3.2.3)

which is called the characteristic equation (or auxiliary equation) of (3.2.1). The form
of the solution of (3.2.1) depends on the algebraic solution of (3.2.3) and hence on the
values of p and ¢. The cases are given in the following
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Proposition 3.2.1. Consider equation (3.2.1), i.e.

Y +py' +qy =0,

where p and q are real constants. Let A1 and o denote the roots of the characteristic
equation (8.2.3), i.e. A2+ pA+q = 0.

a) If \; and Xy are real and distinct roots of (3.2.3), which is the case when|p? > 4q/|,
then the general solution of (3.2.1) is given by

y(z) = c1eM? + e for all z € R (3.2.4)

where c1 and co are arbitrary constants and

1 1
Alzi(—p+\/p2—4q)6R, >\2=§<—p— p2—4q)6R-

b) If \; and \y are real and equal roots of (3.2.3), which is the case when |p* = 4q|,
then the general solution of (3.2.1) is given by

y(z) = (c1 + caz) eM®  for all z € R (3.2.5)

where c1 and co are arbitrary constants and A\ = Ao = —g € R.

¢) If \1 and Ay are complex roots of (3.2.3), which is the case when , then

the general solution of (3.2.1) is given by

y(x) = c1€%% cos(fBx) + c2e™* sin(fx) = ¢1 Re {e’\l’”} + c2 Im {e)‘lw}

(3.2.6)

for all x € R, where ¢1 and co are arbitrary constants and

1
oz:—gER, 625\/4(]—}726[&.

Here the complex roots of (3.2.3) are \y = a+ i3, Aa = o — if.

Proof: We consider the three different cases, which is a result of the three different types
of solutions of the characteristic equation (3.2.3), i.e., A2 + pA + ¢ = 0.

Case a: Let p? > 4¢. Then the characteristic equation (3.2.3) has two distinct real roots,
namely

1
<—p+\/p2—4q>€R, /\2=§<—p— p2—4q>€R-

AL =

N | =
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Thus, by the Ansatz y(z) = e**, the two solutions for (3.2.1) are
¢1(x) = N7, o(x) = 7.

The Wronskian for these two solutions in the point = 0 is W(g1, ¢2](0) = A2 — A1 # 0,

so that {¢1(z), ¢2(x)} is a linearly independent set in the vector space C>°(R). Thus the
general solution of (3.2.1) is a linear combination of these two solutions:

y(x) = 1 M 4 2% for all z € R. (3.2.7)
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Case b: Let p?> = 4¢q. Then the characteristic equation (3.2.3) has one real solution (or
twice the same real solution), namely

This leads to only one real solution for (3.2.1)
We now find the general solution for (3.2.1) by the Ansatz
y(z) = w(x)e” @27, (3.2.8)

where w(x) is a twice differentiable function that needs to be determined such that the
Ansatz satisfies (3.2.1). Differentiating the Ansatz (3.2.8) twice, we obtain

Y (2) = e /2 [w/ _ (g) w} (3.2.9a)
Y () = e~ #/De [wu — o + (212) w} ‘ (3.2.9b)

Inserting (3.2.8), (3.2.9a) and (3.2.9b) in the differential equation (3.2.1), we obtain
2
ot (5 e o= (5) ] e o
Since e~ (/)7 £ 0 for all € R and p? = 4¢q, the previous expression reduces to
w’(z) = 0. (3.2.10)
Integrating (3.2.10) twice over x, we obtain
w(z) = 1z + ca, (3.2.11)

where ¢; and ¢y are constants of integration. Thus the Ansatz (3.2.8) leads to the following
solution for (3.2.1):

y(z) = (cr1z + cp)e” P27, (3.2.12)

The set {¢1(x) = xe P/2D* yy(z) = e P/2)?} is linearly independent on D, since
Wi1(x), ¥2(x)](0) = —1 in C*°(R). Therefore (3.2.12) is the general solution of (3.2.1).

Case c: Let p? < 4q. Then the characteristic equation (3.2.3) has two distinct complex
solutions, namely

M= (p 4 ViE—dg) =5 (-p+ivig— )
,\2:%(_19_ p2—4q) =%<—p—iw)
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We set
P 1

a = —57 B = 5\/@,
so that the two solutions A\; and Ay take the form

M=a+iB, A =a—iB. (3.2.13)
Using A1 we obtain the complex solution ¢.(x) for (3.2.3), namely

pe(x) = TP — o2 BT — (0T [0og(Br) + i sin(Bx)] . (3.2.14)
We note that the solution ¢.(z) is a linear combination of two functions,

P1(x) = e** cos(fz) and Ya(x) = e** sin(fx).

By the linear superposition principle, it follows that ¢ (x) and 12 (z) must also be solutions
of (3.2.3). This can also be verified directly for the equation (3.2.3) by showing that 1 (z)
and ¢(x) satisfy (3.2.3). Moreover,

10
a p

Wi, 12)(0) = ;@1 jf; (0) = — B #0.

Hence {¢(x), v2(x)} is a linearly independent set in C*°(R) and therefore the general
solution of (3.2.1) is

y(x) = 1% cos(fz) + c2e™ sin(fx) = ¢1 Re {e)‘lx} + co Im {e)‘lx} . O

Example 3.2.1.

a) We find the general solution for
y' — 4y +13y =0 (3.2.15)
for all x € R, and then solve the initial-value problem with the initial data
y(0) =4, y'(0) = —1 (3.2.16)
as well as the boundary-value problem with boundary data
y(0) =1, y(m/6) = 2. (3.2.17)
With the Ansatz y(x) = e, the characteristic equation becomes

AN 4N +13=0,
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which admits two complex roots
A =2+ 3i, Ao =2 — 3i.
By (3.2.6) the general solution of (3.2.15) is then
y(z) = e** (c; cos(3x) + ¢z sin(3x)) (3.2.18)

To solve the stated initial-valued problem we differentiate (3.2.18) and utilize the
given initial data (3.2.16): We have

4=y(0) = *" (c1 cos(3z) + c28in(3z))|  =¢
=0
—1=4/(0) = €* [(2c1 + 3c2) cos(3z) + (2c2 — 3e1) sin(3z)]| = 2c1 + 3cy
=0
so that
c1 =4, co = —3

and the solution of the initial-value problem (3.2.15) — (3.2.16) is
y(x) = > (4cos(3x) — 3sin(3z)).

For the boundary data (3.2.17) we obtain

1 =y(0) = € (c1 cos(3z) + cosin(3z))

= e3¢y,
z=m/6

2 = y(7/6) = €** (¢1 cos(3z) + co sin(3z))

so that ¢; =1 and ¢y = 2¢~/3 and the solution of the boundary-value problem is

y(z) = e (cos(3x) + 2¢77/3 sin(3x)> .

We find the general solution for

y' +2y +y=0. (3.2.19)
With the Ansatz y(z) = e*®, the characteristic equation becomes

M 42oa+1=0,

which admits the same root, A = —1 twice. By (3.2.12) the general solution of
(3.2.19) is then

y(x) =cre”® + core ",
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c) We find the general solution for
y' —y =0. (3.2.20)
With the Ansatz y(z) = e**, the characteristic equation becomes
AN —\=0,

which admits the two real roots, \; = 0 and Ay = 1. By (3.2.7) the general solution
of (3.2.20) is then

y(z) = c1 + ca€”.

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

70 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/Setasign

3.2.1 Exercises

1. Find the general solutions of the following equations:
a) o +4y +13y=0
b) ¥ —4y +4y=0
c) 3y'+5)+2y=0
d) ¢¥"+3y=0
e) ¥ +3y =0

f) ' —ay +y=0fori)a® >4 andii) a® < 4.

2. Solve the following initial-value problems:
a) ¥ +2/+3y=0, y(0)=0, y/(0) =2
b) Yy’ +6y' +9y =0, y(0)=1 y'(0)=-1

o) y'—2y=0, y(0)=0,y'(0)=2
d) ¢y —-2/=0, yB)=1,y3)=1
e) y'+9y=0, yx/3)=1, y'(r/3)=5

3. Solve the following boundary-value problems:

4. Show that the only solution of the differential equation
y' +py +qy=0
with the initial conditions y(z¢) = 0 and y'(x¢) = 0, is
y(x) =0

for all p, ¢ € R and all 2y € R.
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3.3 Particular solutions of nonhomogeneous linear second-
order differential equations

We consider the linear second-order equation

Y+ g(x)y' + h(x)y = f(x) (3.3.1)

where g(x), h(z) and f(x) are given continuous functions on some interval D C R. When
f(z) is not the zero function, then equation (3.3.1) is known as a nonhomogeneous
second-order linear differential equation and a homogeneous second-order linear
differential equation when f(x) is the zero function.

Definition 3.3.1. Any function y,(z) which satisfies the nonhomogeneous equation
(3.3.1) on an interval D and which does not contain two arbitrary constants, is known
as a particular solution for (3.3.1) on D.

The following proposition follows directly from the linear superposition principle:

Proposition 3.3.1.
a) A general solution of (3.5.1), i.e. equation
v' 9@y + h(z)y = f(x),
s of the form
y(z; c1, c2) = ou(z;c1, c2) + yp(x), (3.3.2)

where ¢g is the general solution of the associated homogeneous equation y" +
g(z)y' +h(z)y = 0 and y, is a particular solution of the nonhomogeneous equation
(3.3.1).

b) A particular solution y,(x) for the nonhomogeneous equation

y" +g(2)y + h(z)y = fi(z) + fa(z), (3.3.3)
where g(x), h(zx), fi(x) and fo(x) are given continuous functions on D, is given
by the sum

yp(z) = y1(x) + y2(2), (3.3.4)

where y1(x) is a particular solution for y" + g(x)y + h(x)y = fi(z) and y2(x) is
a particular solution for y" + g(x)y' + h(z)y = fa(z).

The proof is left as an exercise (see Exercises 3.3.2).
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There exist several methods for finding particular solutions of (3.3.1) and we study
here two of those methods, namely the method of variation of parameters as well as the
method of undetermined coefficients. The former method can be applied for any continuous
functions g(x), h(x) and f(z), whereas the latter method is useful only if the coefficient
functions g(x) and h(x) are constants and the function f(z) is of special type. The
advantage for the method of undetermined coefficients is that it does not involve any
integration as all steps are purely algebraic.

3.3.1 Particular solutions: the method of variation of parameters

In this section we present a general method to find particular solutions and derive an
integral-solution formula for particular solutions for the linear equation

Y +g(x)y" + h(x)y = f(x), (3.3.5)

where g, h and f are continuous functions on some domain D C R.

The following method to construct particular solutions, as described in the proof of Propo-
sition 3.3.2 below, is known as the method of variation of parameters.
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Proposition 3.3.2. Assume that two linearly independent solutions of the homoge-
neous equation

v+ g(z)y + h(z)y =0 (3.3.6)

are given by ¢1(x) and ¢2(z) on the interval D C R. Then a particular solution y,(x)

of
y' +9(@)y’ + h(z)y = f(z)
yp(2) = wi(z)d1(z) + wa(z)d2(z), (3.3.7)

where wi(z) and wa(x) have the following form:

__ (@@ e [ T@aE)
wi(@) = / [¢1,¢2](96)d ’ 2(2) /W[d’bd’?](x)d .

Here W1, 2] (x) is the Wronskian.

Proof: Consider two linearly independent solutions, ¢1(z) and ¢2(x), of the homogeneous
equation (3.3.6) and use the Ansatz

Yp(x) = wi(z)d1(x) + wa(w) 2 (), (3.3.8)

to seek for a particular solution of the nonhomogeneous equation (3.3.5). Differentiating
(3.3.8), we obtain

Yy, = wi1 + widy + whon + wadh.
Let now

wyp1 + whos = 0, (3.3.9)
so that y;, takes the form

Yp = w141 + wady. (3.3.10)
Differentiating y;, one more time, we obtain

Yp = Wiy + w1y + wygh + wadh. (3.3.11)
Inserting (3.3.8) for y,, (3.3.10) for y;,, and (3.3.11) for y; into (3.3.5), we obtain

1m[Y+9@Mﬁ+h@Wﬂ+wu[Z+9@W&+M@@ﬂ+wﬁﬁ+wﬁé=f%) |
3.3.12

Since ¢; and ¢9 satisfies the homogeneous equation (3.3.6), the above expression reduces
to

wy ¢y + whehy = f(x). (3.3.13)
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We conclude that the Ansatz (3.3.8) is a particular solution for the nonhomogeneous
equation (3.3.6) if and only if the two conditions on w; and wo, namely (3.3.9) and (3.3.13)
are satisfied, i.e.

{ w/1¢1 + wéqbg =0
wi¢h + whdy = f(x)

This system of equations can be written in the form

< i’i ﬁi > ( ZZ > - ( f?x) ) (3.3.14)

We note that the determinant of the coefficient matrix of the above system is the Wronskian
of the functions ¢ and ¢2, namely

¢1 P2
¢ P
By Proposition 1.1.3 we know that Wp1, ¢2](x) # 0 for all z € D, as ¢1 and ¢y are
solutions and are linearly independent functions on D by assumption. Therefore the

coefficient matrix of (3.3.14) is nonzero and Cramer’s rule for the unique algebraic
solution of w] and w} from system (3.3.14) applies. We obtain

0 ¢o|_ _ [fl2)¢a(z)
fz) ¢ W1, ¢2)(x)

Wp1, p2)(x) = = P10 — Pa].

, _ 1
) = s @)

wy() =

I 0 ‘: f(@)ér ()
Wionoal@) | 64 f@) |~ Wion, oal (@)’

Integrating the previous expressions over x we obtain

f@)gi(z)
dzx, d
/chl,cbz W<z>1,<z>2 i -

Historical Note: (source: Wikipedia)

Gabriel Cramer (1704 — 1752) was a Swiss mathematician, born in Geneva. Cramer
showed promise in mathematics from an early age. At 18 he received his doctorate and
at 20 he was co-chair of mathematics. Cramer’s Rule for linear algebraic systems is
named after Gabriel Cramer, as he published the rule for an arbitrary number of unknowns
in 1750, although Colin Maclaurin also published special cases of the rule in 1748 (and
possibly knew of it as early as 1729). Cramer published his best-known work in his forties
in his treatise on algebraic curves (1750).

Example 3.3.1.

We find a particular solution y,(z) for

y' =2y +y=a"1e* onzeR\{0}.
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Gabriel Cramer (1704 — 1752)

Following Proposition 3.3.2 we use the Ansatz

Yp(x) = w1 (@)1 () + wa(x)Pa(x),
where the two linearly independent solutions for the associated homogeneous equation are
¢1(x) = €”, ¢o(x) = €.

The Wronskian for ¢ and ¢9 is

o Te

_ 2z
et et + xe®

Wlo1, po](z) =

Thus, by the integral formulas given in Proposition 3.3.2, we obtain

wl(x)z—/%d:cz—/dxz—x
wg(m)z/(ez)g#daczln]x\.

A particular solution is thus

yp(z) = —ze’ + xln|z|e”.

The following proposition gives a method to find a general solution of a linear second-
order nonhomogeneous differential equation when three particular solutions for the equa-
tion are known:
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Proposition 3.3.3. Assume that three distinct particular solutions, mnamely
y1(z), y2(x) and y2(x), are given for the nonhomogeneous equation

Y+ g9(x)y + h(z)y = f(z)

on the interval D C R. Consider

¢1(x) = y2(2) —v1(z) and d2(x) = ya(z) — y3(x). (3.3.15)

If W1, ¢2](xo) # 0 in any point xy € D, then ¢1(x) and ¢a(x) are two linearly
independent solutions of the associated homogeneous equation

y" +g(@)y + h(z)y =0 (3.3.16)
on D. A general solution for

Y+ g(x)y + h(z)y = f(z)
1s then

y(z) = c1¢1(x) + cada(w) + y;(7)

for all x € D, where y; is any particular solution of this equation for all x € D and c;
and ca are two arbitrary constant.
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Proof: Consider ¢1(x) = y2(z) — y1(x), and assume that y;(x) and y2(x) are particular
solutions on an interval D for the nonhomogeneous equation

y' +g(@)y + h(x)y = f(z).
Then ¢) = v — vy} and ¢} = y§ — y{, and we have
1+ 9(@)dh + h(@)dr =g — i’ + 9(@) [y — vil + h(x)ly2 — 1]
= y5 +g(@)ys + h(@)y2 — [y] + g()yy + h(x)y1]
= f(x) ~ f(z) =0,
so that we can conclude that ¢;(x) is a solution of the homogeneous equation
'+ g(x)y + h(z)y = 0.

The same is true for ¢o(z) = yo(x) — y3(x), where y3(z) is also a particular solution of the
nonhomogeneous equation. If Wga, ¢2[(z¢) # 0 for some z¢ € D, then {¢1(z), ¢a2(z)} is
a linearly independent set. The general solution ¢ (x; c1, c2) of the homogeneous equation

y' 4+ g(x)y + h(z)y =0

is ¢ (x5 co,c2) = c101(x) + caga(x) for all x € D and the general solution of the nonhomo-
geneous equation is ¢ (z;c1, c2)) + y; for any particular solution of the nonhomogeneous
equation. O

Remark: From Proposition 3.3.3 we can conclude that a second-order nonhomogeneous
differential equation on the domain D that admits three distinct particular solutions,
{y1(x), ya(z), y3(z)} for all x € D, can identically be constructed for all x € D under the
conditions sated in Proposition 3.3.3

Example 3.3.2.

Consider the nonhomogeneous equation
y' — 4y + 4y = ze”. (3.3.17)
It is easy to verify that the equation admits the following three particular solutions:
y(z) =e“(z+2), pz)=e®+e%(x+2), ys(x)=xe*+e%(x+2)
for all x € R. Let now
¢1(x) = ya(z) —y1(x) = €, da(z) = ya(x) — ys(x) = ¥ (z + 2).
Calculating the Wronskian in the point x = 0, we obtain

W[(Zsly ¢2](0) =-1,
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so that the set {¢1(x), ¢a(x)} is linearly independent in C*°(R). The general solution
om(z) of the homogeneous equation

y' =4y +4y =0
is therefore
om(x) = aje®® + a2€2:c(1 —z) = (a1 + ag)eh — asze®®,

or we can rename the constant ai, as as follows: ¢; = a1 + a2, c3 = —as9, to obtain the
general solution in the form

b (x) = c1e*® + crze®.

To get a general solution for the given nonhomogeneous equation (3.3.17) we can add any
particular solution, say y1, so that the general solution is y(x) = ¢ () + y1(x). If we use
any other particular solution, y;(x), in the sum ¢g(x) + y;(x), then the general solution
will remain the same (up to a change of the constants), since the constants ¢; and ¢y are
arbitrary and can always be re-defined in terms of some other arbitrary constants.
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3.3.2 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].
1. Find general solutions of the following equations:
a) Y+ 4y + 4y = Vze 2, x>0
b) Y -2 +y=Var—1¢, x>1
c) yY'+2y +y=e"In(x), x>0
d) Y+ ry=a2", x>0
e) ' —-9y=e"+1
f) " +4y = tanz for all those x € R such that cosz # 0.

for all those z € R such that cosz # 0.

g yY'+y=
COS T

h)* 3" 4 4y = 9cos? z for all z € R.

2. Solve the initial-value problem for
Y-y = (" + 1)
where y(0) = In(2) and ¢/'(0) = = — In(2).
3. Solve the initial-value problem
y' =3y +2y= (¥ + 1) ¥

where y(0) = % and 3/ (0) =

NN

4. Find a general solution for
zy’ — 2z + 1)y + (z + 1)y = 222" In(x), x>0

where ¢1(z) = 2%e® and ¢y(z) = €* are solutions of the associated homogeneous
equation.

5. Find a general solution on the interval |z| > 1 for
(@ + 1)y" — 22y + 2y = (2® +1)%,

where ¢1(z) = 22 — 1 and ¢9(2) = = are solutions of the associated homogeneous
equation.
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6. Find a general solution for
(1—a2)y +ay —y=2(x—1)%",

where ¢1(z) = e” and ¢2(x) = x are solutions of the associated homogeneous equa-
tion.

7. In the following exercises, the nonhomogeneous equations and three particular solu-
tions are given. Find in each case a general solution of the given equations.

a) y” + 4y = cos z with particular solutions

1 1 1
yi(x) = 3 Co8 T, y2(x) = 2cos(2z) + 3 o087, ys(x) = —3sin(2x) + 3 cosT.

922 + 6z + 2

3 with particular solutions
T

b) " — 6y + 9y =

1

1 1

3x 3z
= + = =9 + - .
yi(r) =e z Yya(7) xre z y3(v) T

1
c) $4y” + 29333/ — 4y = p with particular solutions

1 1 1
yi(z) =e s y2(z) € iz y3(x) A
8. Find nonhomogeneous second-order differential equations for which the following

particular solutions are known:

a) y1(x) = xcosz +a’sinz, ya(xr) = 3cosx + xcosx + x?sinx,
y3(z) = sinz + xcosz + z?sin z.

3 3 3
b) yi(z) =x+ Zx3, yo(z) =xlnzx + ng, ys(z) = ng’ x> 0.

4 4

¢) yi(z) =2 lnz + %, yo(z) = 42? + 2% Inx + %,

4

y3(x) :x?’—l—xglnw—i—%, x> 0.

3.3.3 Particular solutions: the method of undetermined coefficients

We now consider a method to construct particular solutions for the equation

y' +py +qy = f(x) (3.3.18)

where p and ¢ are given real numbers and f(z) is one of the following three special
functions:
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Case I: f(z) = P,,(z), where P, is an m-th degree polynomial;

Case II: f(z) = e™¥ cos(aax) Py (x) or f(z) = e sin(agx) Py (x), where o € R,
ag € R and P, is an m-th degree polynomial;

Case III: f(x) = e** Py, (), where a € R. and P,,(z) is an m-th degree polynomial.

Let us now study the above three cases in detail.

Case I: f(x) = Pp(x):

Consider

Y +py' +qy = Pn(z) (3.3.19)

where P, is an mth-degree polynomial, i.e.,
Po() = ama™ + am12™ 4 -+ a1 + ag. (3.3.20)

Here aj, (j = 0,1,...,m) are given real coefficients and m is a given natural number.
We now make Ansétze to find particular solutions for (3.3.19). We need to distinguish
between three different subcases:
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3.3. PARTICULAR SOLUTIONS 81

Case Ia: Let . The Ansatz for a particular solution of (3.3.19) is then

Yp(z) = Apa™ 4+ Ap12™ " 4+ Ay 4 Ag i= Qu(x), (3.3.21)

where the real constants, A;, (j =0,1,...,m), are to be determined such that the Ansatz
(3.3.21) satisfies (3.3.19).

Case Ib: Let ’q =0and p#0 ‘ The Ansatz for a particular solution of (3.3.19) is then

Yp(z) = 2 Qm(), (3.3.22)

where @, () is given by (3.3.21).

Case Ic: Let ‘q =0andp=0 ‘ The Ansatz for a particular solution of (3.3.19) is then

yp(2) = *Qm(), (3.3.23)

where Q. (z) is given by (3.3.21).

Example 3.3.3.

We find a general solution for

Y+ 4y = 8a”. (3.3.24)
First we find the general solution ¢ of the associated homogeneous equation

y' +4y =0. (3.3.25)

AT we obtain

Using the Ansatz y(z) = e
¢ (x) = c1 cos(2x) + cosin(2x). (3.3.26)

For a particular solution we need to use the Ansatz proposed in Case I a) due to the
presence of the term 4y. The Ansatz is thus

yp(a) = Agz® + Az + Ay, (3.3.27)
so that

yp(x) = 24z + A1, y,(x) = 24,.
Inserting the above into (3.3.24), we obtain

245 + 4 (Aga® + A1z + Ag) = 827 (3.3.28)

Download free eBooks at bookboon.com



Equating coefficients of 2%, = and 1 in the above relation leads to the following set of
linear algebraic equations for A, A; and Ag:

x2 : 4A2 =8
.%'1 : 4A1 =0
1 - 2A9 +4A9 = 0.
Solving this algebraic system, we obtain Ag = —1, A; =0, Ay = 2. Hence, a particular

solution for (3.3.24) is
yp(w) = 22 — 1. (3.3.29)
A general solution of (3.3.24) is therefore

y(z) = 1 cos(2z) 4 cosin(2z) + 222 — 1. (3.3.30)

Case II: f(z) = e cos(agx) Py () or f(z) = e sin(aex) Pp(x), a1, a2 € R

We consider the following linear complex differential equation with dependent complex
variable y.(x):

yr + pyl + qye = € Py (), a:=a1+ias, a1 €R, as eR (3.3.31)

where P, is an mth-degree polynomial, i.e.,

P (z) = amz™ + A1V + o arx + ag (3.3.32)
with aj, (j =0,1,...,m) real coefficients. Here « is a complex number, such that

a = a1 +iag, with a1, as real.
Every differentiable complex function y.(x) can be written in the form

ye(z) = u(z) + iv(x), (3.3.33)
where u and v are real differentiable functions on some domain D C R and

ye(z) = v/ (z) + ' (z)

yl(@) = (@) + i (2).
Using the Ansatz (3.3.33) and and its derivatives for reduces (3.3.31) to the form

" 4" + p(u + i) + q(u+ i)

= eM% cos(anx) Pp(x) + 1“1 sin(aox) Py (), (3.3.34)

Download free eBooks at bookboon.com



A First Course in Ordinary
Differential Equations

Second-order linear dierential equations
where we have used the relation

e(al +iag)x

= e (cos(agr) + isin(asx)) . (3.3.35)

Comparing the real parts and the imaginary parts of (3.3.34), we obtain the following two
real nonhomogeneous differential equations in v and v:

"+ pu' + qu = e™'* cos(aar) P () (3.3.36)
and
V" 4+ pv' + qu = e sin(agx) Py (1) (3.3.37)

To find particular solutions for (3.3.36) and (3.3.37), the proposition that follows is useful:

Find out more and apply

redefining / standards
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Proposition 3.3.4. A convenient Ansatz for a complex particular solution ye,(x) of
Yl + pyl + qye = e Py (z), a:=a;+ins, a1 €R, apeR
18
Yep(x) = €™ we(z), (3.3.38)
where w.(x) is any complex solution of the equation
wy + (20 + p)w; + (@2 + ap + Qwe = P (). (3.3.39)
A real particular solution u,(x) of
u” + pu’ + qu = e cos(agw) Pr(x)
is then given by the real part of yep, i.e.
up(z) = Re[yep), (3.3.40)
whereas a real particular solution v,(x) of
V" + pv' + qu = e*7 sin(agx) P (z)
is give by the imaginary part of yep(x), i.e.

vp(z) = Im [yep). (3.3.41)

Proof: Differentiating the Ansatz (3.3.38) we obtain

Yop(#) = e we(x) + e w) ()

Yoo () = &’ we(x) + 20wl (z) + e w! (z).
Inserting (3.3.38) and the above derivatives, y., and y,, in

yé’ +py£ + qye = e P (x), =1 +iag, a1 €R, ag €R
leads to condition (3.3.39). O

To find a solution w.(z) of (3.3.39), i.e. equation
w! + (2a + p)wl + (o + ap + Q)w. = P (z),

we use the same Ansétze as listed in Case I since the nonhomogeneous part of (3.3.39)
is a polynomial, albeit we now need to evaluate complex coefficients in the polynomial
Ansatz Q,,(x). The following three cases may appear:
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Case IIa: Let ’aQ +ap+q#0 ‘ An Ansatz for a solution w. of (3.3.39) is then

We(x) = Bpa™ + By_12™ 1 + -+ + Bz + By := Sp(2), (3.3.42)
where B; (j =0,1,...,m) are complex constants which need to be determined for the
Ansatz.

Case IIb: Let [a® + ap+ ¢ =0 and 2a +p # 0| An Ansatz for a solution w, of (3.3.39)
is then

we(x) = xSm (), (3.3.43)

where S, () is given by (3.3.42).

Case Ilc: Let ’ a?+ap+q=0and 2a+p= 0| An Ansatz for a solution, w,, of (3.3.39)
is then

we(z) = 22 S (), (3.3.44)

where S,,(x) is given by (3.3.42).

Example 3.3.4.

We find a particular solution for the differential equation
y' —y=sinx. (3.3.45)
Since Im [e”] = sinx, we need to consider the complex differential equation
e —ye =€, (3.3.46)
where the complex function y.(z) is
ye(r) = u(x) +iy(z) and  Imfyc(z)] = y(z).
We now seek a particular solution y.,(x) for the complex equation (3.3.46) by the Ansatz
Yep(2) = € we(z). (3.3.47)
A particular solution y,(x) for the real equation (3.3.45) is then
p(2) = T [y ()]
Differentiating the Ansatz (3.3.47) twice, we obtain

Yep = €7 (Iwe +wp) g = €7 (—we + 2iwy, + ). (3.3.48)
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Inserting the Ansatz (3.3.47) and (3.3.48) in the complex equation (3.3.46), we obtain
e (wy + 2iw), — 2w.) = e
or, since €™ # 0 for all z € R, we have
wl! + 2w, — 2w, = 1. (3.3.49)
An Ansatz for w. of (3.3.49) is given by Case II a, namely
we(x) = By (3.3.50)

where By is a constant (in general By is complex, but in this case it is clearly real).

1
Inserting the Ansatz (3.3.50) into (3.3.49) we obtain —2By = 1 so that w.(z) = —3 Thus

we have obtained a complex particular solution for (3.3.46), namely

1

Yep(T) = -3 e

T

so that a real particular solution y,(z) for the real equation (3.3.45) is

1 . 1 1
yp(z) =Im |—= €| =Im |—= (cosz + isinz)| = —-sinx.
2 2 2
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For a second example of Case II, we consider a slightly more complicated equation:

Example 3.3.5.

We find a particular solution for the differential equation

y" + 4y = (10x — 1)e” cos .

Since

Re [(103} — 1) 7| = (102 — 1)e” cos z

we need to consider the complex equation

y:;/ + 4y =

and construct a complex particular solution y.,(z) by the Anstaz

Yep = G(I—H)wwc(iﬂ).

(102 — 1)+

A real particular solution y,(x) of (3.3.51) then follows by

yp(x) = Re [ycp]~

Differentiating the Ansatz (3.3.55) we obtain

Yop = (L 0)eTD7, 4 007y

Yo = (1 + $)2eH0 . 4 2(1 +4)e(H DTy 4 0Dz

and the condition on w, becomes

wl! 4+ 2(1 + i)wl. + (4 + 2i)w, = 10z — 1.

An appropriate Ansatz for (3.3.56) is provided by Case Ila, i.e.

we(z) = Bix + By,

ByeC, By €C.

Equation (3.3.56) then takes the form

2(1 + i)Bl + (4 + Qi)(Bll‘ + Bo) =10z -1

and equating coefficients of z and 1 leads to

(4 + 2i)B; = 10,

We find

2(1+14)B1 + (44 2i)By = —1.

By =2—1.
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Thus a complex solution for (3.3.56) is

we(z) = (2 — i)z — § + 1%1 (3.3.50)

and a complex particular solution of (3.3.53) is

Yep() = 1T [(2 — i)z — 5 + iz]

5 10
8 3
=e’ [(Qx - 5) cosx + (x - 1—0) sinx]
+ie® || —x + 3 cosx + | 2z — 8 sin x (3.3.60)
10 ) o
A real particular solution y,(x) of (3.3.51) is then
8\ . 3\ . .
yp(z) = Re [yep] = | 22 — w | efcosz + |z — 15 ) € sine (3.3.61)
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Case III f(z) = e™Py,(z), a€elR

We consider the equation

y' +py +qy=ePp(z), acR (3.3.62)

where P, is an m-th-degree polynomial with real coefficients. We note that this is in fact
a special case of (3.3.31), with a@ € R. Here y(z) is a real function and the same Ansatz,
(3.3.38), for a particular solution y,(x) of (3.3.62) is valid, namely

yp(x) = ™ w(x) (3.3.63)

with the same condition on w as given by (3.3.39), namely

w” + (2a+ p)w’ + (a? + ap + q)w = Py (7) (3.3.64)

To find a solution w(x) of (3.3.64) we distinguish between three cases:

Case IlIa: Let |a? + ap +q # 0| An Ansatz for a solution w(x) of (3.3.64) is then

w(@) = Apa™ + Apz™ 4+ Az + Ag 1= Qu(), (3.3.65)

where A; (j =0,1,...,n) are real constants which need to be determined for the Ansatz.

Case IIIb: Let ’a2 +ap+g=0and 2a+p#0 ‘ An Ansatz for a solution w(z) of
(3.3.64) is then

w(z) = 2Qm (), (3.3.66)

where @, () is given by (3.3.65).

Case Illc: Let ’aQ +ap+qg=0and 2a+p=0| An Ansatz for a solution w(x) of
(3.3.64) is then

w(z) = 2°Qum (), (3.3.67)

where Qp, () is given by (3.3.65).

Example 3.3.6.

We find a particular solution for
y// — 9y = 83;36"”. (3.3.68)

The Ansatz (3.3.63) for y,(x) is
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and the derivatives are
y;:ex (w—}—w'), yg:ez (w+2w'+w")
Inserting this Ansatz into the given equation, we obtain
e’ (w" + 20" + w — Jw) = 8z3e”.
Since e* # 0 for all R, we have
w” + 2w’ — 8w = 823, (3.3.69)
An Ansatz for w(x) is given by Case I11a, namely
w(z) = Ag + A1z + Aoz? + Asz®
with
w =3A4—-322+24 -2z + A1, w' =643z + 2A,.
Inserting the above Ansatz into (3.3.69), we obtain
6A3x + 245 + 2 (3A3x2 + 2A0x + Al) -8 (A3x3 + Agz? + Ajx + Ao) = 823,

2

Equating the coefficients 23, x2, z and 2" we obtain

3 —8A43 =18

z? 6A3 — 845 =0

T 6As + 445 — 841 =0
20 245 +2A; — 849 = 0.

This algebraic system has the unique solution

15 9 3
-, Ai=- Ay =——, A3=-1
327 1 2 ) 3

Ap = — b
0 8’ 4

Thus the particular solution for (3.3.68) takes the form

(
3 9 15
_ 3 2,2 e -
yp(z) = —e <3: +4:J: +8:1:—|—32>.

3.3.4 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find general solutions of the following differential equations:
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a) ¥y +y=2(1—-x).

b) " =Ty = (z— 1)

c) v — 4y + 4y = xe”,

d) y" +y = xe®®.

e) ¥’ — 3y — 4y = bel.

f) v + 2y +y = we® cosz.

g) 3’ + 4y = sin 2z.

h) y" — 6y’ + 9y = (327 — 5a*) **.

i)y —y=¢e"—3.

i)y 3y 2y =Te* +e 7.

k) 3" + 4y = 9cos’ z.

1) 4" — 9y = 5sin’ .
m) y’ + k*y = k for all real constant k.

n) 3" + k?y = ksin(kz + «) for all real constants k and a.
o) 4y — 3y = ze®/7,
p) v + 25y = cos(5x).
q) y" + 6y + 13y = e 37 cos(2z).
)y — 2y — 3y =224 e " -2,

s) Yy —2y +y=2+e"sinx.
t)* 3" — 9y = 402¢>” cos(2x).

2. Solve the following initial-value problems:

a) ' — 4y +4y =2% y(0)=0, y(0)=0.
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e) v/ +y=4xcosx y(0)=0, y(0)=1.
£) 5" — 6y +9y =16e "+ 92 -6, y(0)=1, y/(0) = 1.

§) ¥~ 2+ 2y =4 cosz, y(m) =1, y/(m) = L

h) ¢ —y = —be ™ (sinz + cosz), y(0)=—4, y'(0) =5.
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3. Find the linear nonhomogeneous second-order differential equations with constant
coefficients which admit the following general solutions (¢; and co are arbitrary
constants):

a) y(z) = cre® +coe ™ + a°

b) y(z) = ¢1cosz + cgsinx + xe”

¢) y(z) = c1€3® cos(2x) + 23 sin(2x) + 22"

d) y(z) = c1€3® + cgre®® + xsing — 7

e) y(x) = ¢ sin(2x) + ¢z cos(2z) + 3sin® x

f) y(z) = cre " cos(3z) + coe T sin(3x) + (522 + 6)e ™ + 23
g) y(z) =c1 4 coe ™ +sinz + el + ze¥ 4

h) y(z) = c1e”sin(2x) 4 coe” cos(2x) + 3e3% sin’® x — 2¢37 cos® x

4. Prove Proposition 3.3.1.

3.4 The second-order Cauchy-Euler equation

The general Cauchy-Euler equation of second order is of the form

2y + pry' +qy = f(x) (3.4.1)

where p and ¢ are given real numbers and f(x) is a given continuous function on some in-
terval D C R. To solve this equation we can introduce a new independent variable, z,
and transform the Cauchy-Fuler equation into a linear second-order nonhomogeneous dif-
ferential equation with constant coefficients in terms of this new independent variable.
We have
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Proposition 3.4.1.

a) For x > 0, the Cauchy-Euler equation

d?y dy
27 B et
o' og T pr o+ ay(e) = f(@)

can be written in the form

d 2
i+ -1 +ay(z) = f(€),

where the new independent variable z is given by the relation
{ r =¢€* <z =In(z)

y(x) = y(2).
b) For x <0, the Cauchy-Euler equation

d?y dy
27 _— e
o +qy(z) = f(=)

can be written in the form

dy?

VA U-D L 4 ay(z) = (=)

dz

where the new independent variable z is given by the relation
{ z=—e* & z=In(-x)
y(z) = y(2).
d?y

Proof: Consider x > 0. Find now d—y and —= for
dx dx?

{ x=¢€" & z=In(x)

y(x) = y(2).
By the chain rule we have

dyx) _ dy(z) d= _ dy(2)
dx dz dx dz

1
T
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and

Py(x)  d (dy(z) 1)

dz?2 dz \ dz =z

(@y2) N1 dyx) (1
- dz? dx) zx dz 2
) 1) 1

dz? x2 dz x2’

(3.4.7)

Insert now (3.4.3), (3.4.6) and (3.4.7) in the Cauchy-Euler equation (3.4.1). This leads to

dy 1 dy 1 dy 1
2 _ . — f(o?
v (dz2 x?  dz :EQ) T (dz w) +ay(z) = J(&7)

and, upon simplification, we obtain the constant-coefficient equation (3.4.2). The proof of
(3.4.4) is similar. O

Historical Note: (source: Wikipedia)

Baron Augustin-Louis Cauchy (1789 — 1857) was a French mathematician who was an
early pioneer of analysis. He started the project of formulating and proving the theorems
of infinitesimal calculus in a rigorous manner. He defined continuity in terms of infinites-
imals and gave several important theorems in complex analysis and initiated the study of

permutation groups in abstract algebra. He wrote approximately eight hundred research
articles

Augustin-Louis Cauchy (1789 — 1857)
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Example 3.4.1.

We find a general solution for the following Cauchy-Euler equation:

22y + oy —y=In(z), z>0.

Using Proposition 3.4.1, we obtain 3.4.2) with p = 1, ¢ = —1 and f(e®) = In(e®) = z by
the change of independent variable (3.4.3). That is the constant-coefficients equation

2 z
ddy—z(z) —y(z) =z,

which admits the general solution
y(z) = c1€® + e ? — 2.
Replacing now z = In(z) we obtain the general solution

y(z) =1z + 1—2 — In(x),

of the given Cauchy-Euler equation.
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Historical Note: (source: Wikipedia)

Leonhard Euler (1707-1783) was a pioneering Swiss mathematician and physicist. He
made important discoveries in fields as diverse as infinitesimal calculus and graph theory.
He also introduced much of the modern mathematical terminology and notation, partic-
ularly for mathematical analysis such as the notion of a mathematical function. He is
also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Fuler
is considered to be the pre-eminent mathematician of the 18th century and one of the
greatest mathematicians ever. He is also one of the most prolific mathematicians; his
collected works fill 80 volumes. He spent most of his adult life in St. Petersburg, Russia,
and in Berlin, Prussia. A statement attributed to Pierre-Simon Laplace expresses FEuler’s
influence on mathematics: ”Read Fuler, read Fuler, he is the master of us all.”

Leonhard Euler (1707-1783)

3.4.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].
1. Find general solutions of the following Cauchy-Euler equations for x > 0:
a) 2%y —xy —3y =0
b) 2%y 4 2xy — 6y =0
¢) z%y" + 3xy + 2y = 23
d) 2% — dzy + 6y = 12 — 2

/"

4
e) z*y" + 7wy + 9y = —
T

29
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f) 22y" — day + 6y = 2* — 2?

g)* 2%y —3zy — 5y = 2% Inz

h) 2%y" — 2zy + 2y =2’ Inz

2. Solve the initial-value problem

2%y 4 2y +y = cos(Inz),

where y(1) =2 and y/(1) =3

3. Find the second-order Cauchy-Euler equation which admits the following general
solution:

3
y(r) = 1z + coxInx + Z:c?).

4. a) Consider the differential equation
a(a+ Bz)*y" +b(a+ Br)y + cy = f(x), (3.4.8)
where a, b, ¢, «, [ are constants and a # 0, 8 # 0. Show that

a
a+fr=¢€, x>-——

B (3.4.9)

reduces (3.4.8) into the following equation:

a52d2y+(bﬂ—aﬁ2>j§+cy:f<ez_“). (3.4.10)

dz? G
b) Find now a general solution of

2
(2 +32)%" —3(2+3z)y’ + 9y = 8lz, x> -3
3.5 On second-order linear homogeneous equations with non-
constant coefficients
We consider the equation
y" +g(@)y + h(z)y =0

where g and h are given continuous functions on some domain D C R.
We show that this equation can be reduced to a first-order linear differential equation
for all g(z) and h(z) if one solution is known.
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Proposition 3.5.1.
Suppose that ¢1(x) is a nonconstant special solution of

v + g(x)y’ + h(z)y =0, (3.5.1)
for every x on some interval D C R. Then the following statements hold:
a) The Ansatz y(x) = ¢o(x), where
p2(z) = v(z)91(), (3.5.2)

and v is nonconstant function on D, reduces (3.5.1) on D to a first-order homo-
geneous linear equation in w(x), namely

p1w’ +w(24) + g(z)¢1) =0, (3.5.3)

where w(z) = v'(x).

b) A second solution ¢2(z) of (3.5.1) on D is given by

42(2) = 1) [ 67%(z) ) do, (3.5.4)

where £(z) = — [ g(z) d.
c¢) The solutions ¢1(z) and ¢2(z) given by (3.5.4) are linearly independent on D.

d) A general solution y(z) of (3.5.1) is given by the linear combination of the given
solution ¢;(z) and the derived solution (3.5.4), i.e.

y(x) = c11(x) + caga(x) (3.5.5)

for all x € D.

Proof: Insert the Ansatz (3.5.2) for a second solution ¢2(x) into (3.5.1). This leads to
o10" + /(2] + g61) = 0. (3.5.6)

With the substitution v'(z) = w(x) we obtain (3.5.3). Equation (3.5.3) is a separable
equation and, since w(x) # 0, we can integrate this equation as follows:

dw

o) )
= — 2= +4+g¢ | dx,
w / ( 01 g
so that

w(zx) = exp [—/ (251/1 +g> dx] .

Since

[Py T —
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we obtain
w(z) = ¢ exp {— /g(m)dm} . (3.5.7)

Recall that v'(z) = w(z). Integrating (3.5.7) one more time over z, we obtain

v(x) = /¢1—265(w)d$7 where &(x) = —/g(az)dm

and the second solution, (3.5.4), then follows from the (3.5.2). To prove the linear inde-
pendence we evaluate the Wronskian

_| 7 v
) V1 + v

Thus W1, ve1](x) # 0, since v(x) is not constant and ¢ # 0. Hence ¢1(z) and ¢a(z) =
v(x)¢1(x) given by (3.5.4) are linearly independent on D. The general solution of (3.5.1
then follows from the superposition principle. O

W g1, ven](x) (z) = v(x) ¢ (2).
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Example 3.5.1.

Consider the equation
2y — e+ 1)y +(x+1)y=0

on the interval x > 0. One solution, ¢, is given by
o1(x) = €”.

We find a second solution, ¢2, by the formula (3.5.4). Dividing the given equation by x
we identify

2r+1
g((lf):— )

T

so that
&(z) =2z + In ||

and

1
p2(z) = €” [/ e_2x62x+lnxdx] = er/acdx = 51:2 e’.

3.5.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. In the following differential equations, assume that the coefficient of y” is positive
and find then a general solutions of the given equations:

a) 2z —z2)y" + (2* —2)y' +2(1 — 2)y =0, where one solution is ¢ (z) = x>

b) xy” 42y + 2y =0, where one solution is ¢;(z) = S

x

¢) x*y" —2x(x+1)y +2(1 +x)y =0, where one solution is ¢ (z) = ze?
d) (2z+1)y" + (42 — 2)y' — 8y =0, where one solution is ¢ (z) = e 2*
e)x x?y" — 2xy + (42° 4+ 2)y = 0, where one solution is ¢y (x) = x cos(2z)

f) 2y —(2x+ 1)y’ + (z+1)y =0, where one solution is ¢;(z) = €”
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2.

3.

4.

Let ¢1(x) and ¢a(z) be two linearly independent solutions on an interval D C R for
the differential equation

y" + g(@)y + h(z)y =0, (3.5.8)
where g and h are any given continuous functions on D.

a) Show that the Wronskian, Wp1, ¢o](x), satisfies the first-order differential
equation

gy =o. (3.5.9)

b) Integrate (3.5.9) to derive the formula (3.5.4), namely

—0i(e) [ 672 @ W dn, glo) = - [ gloydo

given in Proposition 3.5.1, for the second solution ¢o(x) in terms of ¢;(x).

Hint: ot () = 6165~ o0
Show that

&2 d

d—gj n g(:z:)ﬁ + h(z)y = 0,

can be transformed to
d?y dy
@—I—a%—kbu—o a, b € R, b7é0,

by the change of the independent variable, z, as

z= b_l/z/hl/z(m) dx,

where h(z) is a positively defined function that satisfies the following Bernoulli
equation:

dh
oy +2g(x)h = b~ 2a h3/?,

Integrate this Bernoulli equation to find the explicit form of h(z) in terms of g(z).
a) Show that

d?y dy
Y @)L 4 ha)y =0

can be transformed to
d?v

d2+H() =0,
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b)

by the following change of the dependent variable:

infy(o)] = lnfo@)] - 5 [ o) do

where

Using the result of a), find a general solution of the following equations:

i) xy’ — 2z + 1)y + (z+ 1)y =0, x>0
. . ! 2 /
i7) y+<x)y+y=0, x > 0.

Consider the second-order linear equation

ao(2)y” + a1()y’ + az(z)y =0 (3.5.10)

and the linear first-order equation

M(z)y' + N(z)y =c, (3.5.11)

where ¢ is an arbitrary constant and ag, a1, as are differentiable functions.
Find the condition on ag, a1, az such that (3.5.10) can be integrated once to
obtain (3.5.11) and express N and M explicitly in terms of ag, ai, as. The
expression I = M (x)y' + N(z)y is known as a first integral of the equation

(3.5.10).

Find a first integral and a general solution of the following equation:

(2 +22)y" +4(z+ 1)y +2y = 0.
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Chapter 4

Higher-order linear differential
equations

4.1 Introduction: the initial-value problem

In this chapter we consider the nth order (n > 2) linear homogeneous ordinary dif-
ferential equation

Pa(@)y™ + pu1(@)y™ ) + -+ pi(2)y + po(z)y = 0 (4.1.1)

and the linear nonhomogeneous ordinary differential equation

(@) y™ + pp_1(2)y™ D + - py(2)y + po(2)y = f(2) (4.1.2)

Here pj(x) (j =0,1,2,...,n) and f(z) are real-valued continuous functions given on some
common domain D C R, n > 1 and p,(x) # 0 for all x € D.

We know from Proposition 1.1.5 in Chapter 1, that the general solution of the ho-
mogeneous equation (4.1.1) is given by the linear combination of n linearly independent
solutions

S ={o1(x), p2(x),...,on(x)} (4.1.3)

in C"(D). That is, the general solution of (4.1.1) is

y(x) = c101(x) + c202(x) + ... + cudn(T), (4.1.4)

where ¢y, ..., c, are n arbitrary real constants. Moreover, we know from Proposition 3.3.1
in Chapter 3, that the general solution of the second-order nonhomogeneous equation of
the form (4.1.2) (with n = 2) is given by the general solution of its homogeneous part plus
any particular solution y,(x) of the nonhomogeneous differential equations. This is also
true for the n-th order nonhomogeneous equation (4.1.2), so that the general solution of
(4.1.2) is of the form

y(x) = c191(x) + cad2(z) + ... + cndpn(x) + yp(x) (4.1.5)
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where all functions are in C™(D) (see Section 4.3 below).

In our study of equations (4.1.1) and (4.1.2), we shall mainly restrict ourselves to equa-
tions with constant coefficients and concentrate on generalizing the methods described for
linear second-order equations in Chapter 3 to n-th order linear equations. In a sense this
generalization is straight forward, although there are of course complications. For exam-
ple, for n-th order linear homogeneous differential equations the characteristic equation
resulting from the Ansatz y(x) = ¢, becomes an n-th degree polynomial, and to find
all roots of such a polynomial is in general not possible even though we know that those
exist.

The initial-value problem for (4.1.2) requires the following initial data at a point
xg in the solution domain of the equation:

y(zo) = b1, y'(z0) = ba, ¥ (x0) = b3, ..., ¥ (z0) = by, (4.1.6)
where by, bo,..., b, are given real numbers. This data is then used to fix the constants
of integration ¢y, cg, ..., ¢y in the general solution (4.1.5) by solving the linear algebraic

system of equations

y(zo) = c101(z0) + co2(z0) + ... + cadn(wo) + yp(w0) = b1

d
Y (x0) = e {01% (@) + c2d2(x) + ... + cndn(®) + yp(x):| = by
r=xg
n—1
Yy (zg) = T [clgbl () + coppa () + ... + cron(x) + yp(:zj)] = by.
T=XT(Q
This algebraic system can be written in the form
Ac=b -y, (4.1.7)
where
$1(z0) $2(z0) - On(wo) c1
¢ (wo) ¢ (o) o Plxo) ¢
A= . c= (4.1.8a)
o' V(o) 05 (wo) . o' (ao) n
by Yp(wo)
b Yp(To)
bn y' " (o)
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We note that det A = Wig1, d2, ..., ¢n|(z0), where W is the Wronskian of the set S given
by (4.1.3). Since S is by assumption a linearly independent set for all x in (4.1.2) solution
domain D, we have that

W1, ¢2y ..., ¢nl(x) #0 for all x € D.

Hence A is an invertible matrix in D so that the algebraic system (4.1.7) has a unique
solution. We recall, Proposition 1.1.6, given in Chapter 1, for the existence and uniqueness
of the solutions of linear differential equations.

In the sections that follow we give several examples of initial-value problems, although
we mainly consider linear constant coefficient equations.

109

Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/GTca

4.2

Linear homogeneous constant coefficients equations

In this section we discuss the problem to find the general solution for the n-th order linear
homogeneous ordinary differential equation with constant coefficients, that is

where

To

pj (j =0,1,...,n) are given real constants and p,, # 0.

find the general solution of (4.2.1) we make use of the following

Proposition 4.2.1.

The Ansatz
y(x) = e, reC (4.2.2)
is a (possibly complex) solution of
prty™ + pn1y™ ™V 4+ pry’ +poy =0
for all x € R, for every (possibly complez) solution A of the algebraic equation
Pu(N) == pn A" + 1N+ prd+po = 0. (4.2.3)

Equation (4.2.83) is known as the characteristic equation of the differential
equation (4.2.1) regarding the Ansatz (4.2.2). The n-th degree polynomial Py, (\)
is known as the characteristic polynomial and the solutions of (4.2.3) are the
roots of P,()).

If \ is a complex solution of the characteristic equation (4.2.3), i.e,
A=a+if (a eR, B €R)

then the associated complex solution
Pe(@) = Y1(x) + itpa(x)

of (4.2.1) results in two real solution for (4.2.1), namely

P1(z) = Re[ge(z)] = €% cos(Bz),  tha(x) = Im[¢c(z)] = €** sin(Ba).

Proof:

a) Differentiating the Ansatz

y(z) = M, (AeC)
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n times, we obtain

y'(z) =X, () = N2, L,y (@) = A, (4.2.4)
so that (4.2.1) leads to

e [PpA" + P X"+ pid 4 o) = 0.

Since e # (0 for all z € R, we conclude that A must be a root of the n-th degree
characteristic polynomial P,()\) (4.2.3) in order for y(z) = e to satisfy the n-th
order differential equation (4.2.1).

b) Assume that ¢.(z) = ¢1(x) + itp2(x) is a solution for (4.2.1). Then
P + pn16 + -+ prgl + poge = 0
and

pan” +pn—1¢£n_1) + - p1)] + potr

+i [pnwé’"‘) oY +pow2} =0+i0.

Since two complex functions are equal if and only if their real- and imaginary parts
are equal, we have that

pni/fgn) +pn—1¢§n_1) + - +p17/111 +p0¢1 =0

a0y + o1 0§ - prh + pothe = 0,

from which we conclude that v (z) and ¥9(x) must be solutions of (4.2.1). Let now
pe(x) = N = @B — 0% [cog(Bz) + i sin(Bx)]

where A is a root of P,()). It follows that
$1(x) = Relge(@)] = @ cos(Bz), () = Im[ge()] = €2 sin(Ba),

as stated. O

Example 4.2.1.

Consider the third-order equation
yB) — oy 4y —y=0. (4.2.5)

We first find the general solution and then solve the initial-value problem for the initial
data
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Applying the Ansatz (4.2.2), we obtain the characteristic equation
Ps(A) =X - 24 X-1=0

which obviously admits the root A = 1. Dividing P3()\) by A — 1, we obtain A% + 1. Hence
P5(\) factorizes in the form

PsN)=A—1)(A24+1)=0
and the three roots (one real- and two complex roots) are

A =1, Xa=i, A3=—i= N\ (bar denotes the complex conjugate).
This leads to three solutions for (4.2.5), namely

b1(z) = €%, ger(x) =€, Pe(x) = .

Since e = cosz + i sin z, the two complex solutions take the form
¢e2(x) =cosx +isinz, ¢e3(x) =cosz —isinz,

The real- and imaginary parts of both ¢9. and ¢s. are solutions of (4.2.5), i.e. we obtain
four real solutions for (4.2.5) from ¢9. and ¢s., but obviously only two of those are linearly
independent, namely

p2(x) = cosw = Re[pa] = Re[gae], ¢3(x) = sinw = Im|[pa.] = Im[—¢3]

We now have a set of three real solutions, S = {¢1(x) = €*, ¢a(z) = cosz, Pa(z) =
sinz}, for (4.2.5). It is easy to check that S is a linearly independent set in C*°(R), e.g.
Wip1, ¢2, ¢3](0) =2. Thus the general solution of (4.2.5) is

y(z) = c1€* + cacos T + c3sinx

for all x € R with ¢1, co, c3 arbitrary constants. We now solve the initial-value problem
for the given initial data. Differentiating the general solution twice, we obtain

y'(x) = c1e” — cysinz + czcosw
y"(x) = c1e” — cycosx — czsin.
For the given initial data we now have the following linear algebraic system:
y0)=c1+ec=1
y'(0) =c1+c3 =2
y"(0) =c1 —c2 =3,
which has the unique solution

Cc1 = 2, Cy = —1, C3 = 0.
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Hence the solution of the initial-value problem is
y(z) = 2e* — cosx

for all z € R.

We note that the root A3 = —i was not needed for the general solution, since this is the
complex conjugate of the root Ay and it gives the same (up to sign) real solutions for its
real- and imaginary parts. This is a general property:

If A\ is a complex root of the characteristic equation, then the compler conjugate of this
root is also a root of the characteristic polynomial (see Proposition 4.2.2), but this com-

plex conjugate root does not lead to new linearly independent solutions for the differential
equation.

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers
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One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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What are the difficulties?

One should point out that the difficulty of the task to find the general solution of an n-th
order homogeneous equation with constant coefficients is due to the following questions:

1. How can we find all the roots of the n-th degree characteristic polynomial equation

Po(X) == pn A" +pn—1>\n_1 4+ -+ P A+ pg=07?

Although we know that n roots always exists, it is in general not possible to find
them. However, there are some properties of n-degree polynomials that can be useful
to find the roots (see Proposition 4.2.2 below).

2. How can we select n linearly independent solutions from the list of all solutions
obtained by the Ansatz

y(z) = e,

for the roots \; of the corresponding characteristic equation?

This is in fact not a difficult problem and the answer is provided by Propositions
4.2.3.

3. How should we construct a sufficient number of linearly independent solutions for the
case when the characteristic polynomial P,(\) admits roots with multiplicity k > 1,
i.e. when the same root appears k times (k € N)?

We provide a statement for this construction in Proposition 4.2.4.

We now address the above questions and provide general statements that will help
overcome the mentioned difficulties.
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Proposition 4.2.2. Properties of n-degree polynomials with real coefficients:

A polynomial of degree n,
Pu(A) = pp A + o A" 4 pr X po. (4.2.6)
where p; are all real numbers, has the following properties:

a) P,(\) has exactly n roots (including multiplicity, i.e., roots with the same values),
A1, A2, ..., A\n (real and/or complex) and the resulting factorization

Pn(>‘) = pn()‘ - )\1)()‘ - )‘2) to ()‘ - )‘n)

b) If A is a complex root of Py (N), then the complex conjugate of Ax, denoted by
Ak, is also a root of Pp(\).

¢) Pn(\) can be factorized in terms of first-degree polynomial factors that have only
real coefficients and/or second-degree polynomial factors that have only real coef-
ficients.

d) The n-th degree polynomial P, (\) = A" —ag admits the following n distinct roots:

M = laolV [cos <9+27rk‘> +isin (9+27rk)] 7
n n

where k=0, 1, 2, ..., n—1and § =x for ag <0 or 0 =0 for ag > 0.

e) Viéta’s Theorem: P, (\) admits the following relationship between its roots
AL, A2, ..., Ap and its coefficients py, Pp—1, --., Do:

Mt dpt ot Ay = Ay =~
i=1 n

b
AMA2 + A A3+ A1 Ay = Z Aidj = P2
i<j, {i, j}=1 =
MAAs H AN+t dnada A= DD Ay = -

i<j<k, {i, j,k}=1 Pn

Az .. g = (=122
Pn

Remark: Properties a) and e) listed in Proposition 4.2.2, also hold for P, (\) with complex
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coefficients p; € C, whereas properties b) and c) only hold when all coefficients p; of Py ()
are real. Property d) holds also for ag complex, but then 0 is the argument of the complex
number ag.

A well known application of the last relation in Viéta’s Theorem, namely the statement
Az A = (—1)"22 s the following.

n

Viéta’s statement for integer roots: Consider P,(\) which contain only real coeffi-
cients. Assume that all roots \; of P,,(\) belong to the set of integers Z. If ¢ = £ €7,

then )\i € Z for every root of Pp,(\).
J

This means that in the case where ¢ = PO ¢ 7 for a given P, (), we can search for roots
Dn

a; by checking all the divisors a; € Z of g, i.e. all a; such that o%- €.

/
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Example 4.2.2.

Consider the 4th degree polynomial
Py(A) = M — 6X3 4 3)\% 426\ — 24.

In this case ¢ = PO _ oy, Hence ¢ is divisible by the following set of numbers:

Pa
S ={£1, £2, £3, +4, £6, £8, £12, +24}.
Inserting each number in the above set S into P;(A) we find four roots, since
Py(1) =0, Py(—2) =0, Py(3) =0, P4(4) =0.
Hence, the four roots of Py(\) are

M=1 do=-2 X\3=3, A\ =4

Historical Note: (source: Wikipedia)

Francois Viéte (1540 — 1603) was a French mathematician whose work on new algebra
was an important step towards modern algebra, due to its innovative use of letters as
parameters in equations. Viéta’s formulas are formulas that relate the coefficients of a
polynomial to sums and products of its roots.

We now address the problem to select the set of linearly independent real solutions for
(n) (n—1) / _
Py + Pn-1y +--+p1y +poy=0 (4.2.7)

(where p; are real constants) provided by the Ansétze

y(z) = e and y(z) = w(z)e (4.2.8)

for every root of the characteristic equation A of P, ().

The following proposition states the linear independence of several sets of functions in
C*®(R). These include all the functions that may appear as solution of (4.2.7) from the
Ansétze (4.2.8). To prove this we can use the Wronskian and show that the Wronskian is
non-zero in any point xg € R, say the point o = 0. The proof is left as an exercise.
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Francois Viéte (1540 — 1603)

Proposition 4.2.3. Let A\i, Ao,..., M\ be distinct real numbers (k € N). Then the
following sets are linearly independent in the vector space C*°(R):

1. 5= {e/\lx, Mt e)"“”}
2. 8 = {eAjz, xeti® 2T L g™ e)‘jx} for every fixed \j and m € N.
3. S3 = {6’\””, T e g eMT gt e

T eM® gmerT xme)"“x}, m € N.

Clearly S1 and Sy are subsets of Ss.

Let aj be distinct nonzero real numbers for j =1, 2, ... and let 8; be distinct nonzero

real numbers for j = 1,2, .... Then the following sets are linearly independent in the
vector space C*°(R):

4. Q= {cos(ﬁjx), sin(B;x), x cos(Bjx), x sin(f;z), z? cos(fjx), z? sin(p;x),
z™ cos(Bjx), «™ sin(Bjx), e cos(Bjx), €M sin(Bjx), x e cos(Bjx),
x e sin(f;x), z2 e%i® cos(fBjx), z? e%i® sin(f;x), ..., x"e” cos(Bjx),
2" €% sin(8;2)},
foralljeN, m=0,1, 2, ... andn=0, 1, 2,

The set {Q, Ss} is also linearly independent, as is any subset of this.
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See Exercises 4.2.1 for some special cases of the sets S3 and Q.

Example 4.2.3.

The following sets are linearly independent on R:
{ 2x . .

e**, cosz, sinx, x cosx, = sinz}
{1, e®, 2% cosx, e “sinz, x cosx, xesinx}

{1’ 621’ $262x’ 63:0}

In the next example we make use of Propositions 4.2.2 and 4.2.3 to find the general solution

of a 6-th order homogeneous equation.
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Example 4.2.4.

We find the general solution for the 6-th order equation

y© +y=o.

AT {s now

The characteristic equation for the Ansatz y(z) =e
Ps(\) =X +1=0.

Following statement d) of Proposition 4.2.2, we have

A = | —1]1/6 [cos <7T+627Tk> +isin <7r+627rk‘>}

k=0,1, ..., 5,
so that
T .7 V3 1
k=0: )\o—cosg+181ng—7+z§
7T 7T .. T T .
k=1: A1=C08<6+§>+151n<6+§):z

k=2: )\g—cos<ﬂ+27r>+isin<7r+27r>——\ég—l—

6 3 6 3

(4.2.9)

Following statement b) of Proposition 4.2.2, we know that Pg(\) admits the complex
conjugate roots \g, A1, and Ag. These follow also from the above formula, as A3, A4 and
A5, respectively. However, complex conjugate roots lead to the same real solutions (up
to sign) as for Ao, A1, and Ao and do therefore not make a contribution to the linearly
independent set of solutions for (4.2.9). Using now the three complex roots, Ao, A; and

A2, we have the following complex solutions for (4.2.9):

P1e(w) = 6<§+i%>m =e 5

P2c(x) = e = cosx +isinz

¢3c() = e<
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The real solutions for equation (4.2.9) are then

P1(x) = Rep1c] = 27 cos <g>

Yo(r) = Im[¢y ] = 2% sin (g)
Y3(r) = Relgac] = cosx

Pa(x) = Im[po.] = sinx

=3

¥5(x) = Re[psc] = e 2 “ cos (g)

V|
Ye(x) = Im[ps.] = e 73 Tsin (g) .
By Proposition 4.2.3, the set

S = {w1($)7 wQ(x)v ¢3($)» W(l’), %(l’), wﬁ(m)}

is linearly independent in the vector space C*°(R). Thus the general solution of (4.2.9) is

y(x) = 11 (x) + catha(z) + c3p3(z) + carba(x) + 595 () + o9 ()

for all x € R with six arbitrary constants ci, co,..., cg.

Roots with multiplicity of degree k > 1:

The characteristic polynomial P, (\) may admit roots, say Ao, with multiplicity of degree
k € N, where & < n. This means that P,(\) admits the same root k times and that P, (\)
factorizes in the form

Pa(N) = (A = 20)"Qn-r(N),

Aox

where @,,_ is a polynomial of degree n — k. If A\g € R, then the Ansatz y(x) = e
provides only one distinct real solution for the equation

Pey™ + pnay™ Y+ py ooy =0, p;€R

and, if A\g € C it provides two real linearly independent solutions. More solutions can then
be obtained for the differential equation by the Ansatz

y(z) = eMw(z),

where w(z) is a function in C*°(R) that needs to be determined for this Ansatz. This
results in the following
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Proposition 4.2.4.
a) Suppose that the characteristic equation P,(\) = 0 of the homogeneous equation
pay™ + o1y ™V 4 1y +poy =0,  p;ER (4.2.10)

admits the real root X = Ag € R with multiplicity of degree k € N, with k < n.
Then the Ansatz

y(z) = %w(z),  w(z) € CP(R),

leads to the following set of linearly independent solutions for (4.2.10):

{erx’ xe/\0$7 x2€)\0$7 o $k*16A0x} . (4211)

b) Suppose that the characteristic equation P,(\) = 0 of the homogeneous equation
(4.2.10) admits the complex root \g = a+ i (a« € R, B € R) with multiplicity of
degree k € N, with k < n. Then the Ansatz

y(z) = w(z),  w(z) € CP(R),
leads to the following set of linearly independent solutions for (4.2.10):

{eo‘x cos(fx), e*sin(fx), xe** cos(fx), x e sin(fz), (4.2.12)

2% e2® cos(Bz), e sin(fz), ... T e cos(fz), g sin(ﬁx)} .

The proof is left as an exercise. See Exercises 4.2.1 numbers 4 and 5 for two special cases
of the general third- and fourth-order equations.

Example 4.2.5.

a) We find the general solution of the third-order equation
y3) — 6y" + 12y — 8y = 0. (4.2.13)
For the Ansatz y(z) = e’ the characteristic equation takes the form
Py(\) = A3 —6A2 + 120 =8 = (A — 2)° = 0.

Hence this third degree characteristic polynomial P3(\) admits only one root, namely
the real root A = 2 and this root has multiplicity of degree 3. By Proposition 4.2.4
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the root A = 2 leads to a set of three linearly independent solutions for the equation
(4.2.13), namely

{62957 ze?” x262z}’
so that the general solution of (4.2.13) is of the form
y(x) = c16®® + cowe®® + czz’e®®
for all z € R.
b) We find the general solution of the fifth-order equation
y® — 2y 4293 _ 4y 4o — 2y = 0. (4.2.14)
For the Ansatz y(x) = e, the characteristic equation takes the form
Ps(A) =N =201 4203 — 4?2 A —2=(A-2)(\* +1)* =0.
Hence P5(A) admits the following roots:
M =2 A=1i, A3=1i, Mg =—1, A\s = —i.

Note that the complex root ¢ has a multiplicity of degree two and so does the complex
root —i. These roots give the following solutions of (4.2.14):

M=2: () =e¥
Ao =1 : complex solution: ¢.(z) = €®; real solutions: 1 (x) = cosz, o(x) = sinz
Ag=1: real solutions due to 2nd-degree multiplicity: ¢3(x) = x cosx, P4(z) = zsinz.

The five solutions {¢1(x), ¥1(x), Ya(z), ¥3(x), ¥a(x)} form a linearly independent
set in C*°(R), so that the general solution of (4.2.14) is

y(z) = c1€%% + 9 oS T + c3sin T + ¢4 oS T + cpr sin x
for all x € R.
c) We find the general solution of the fourth-order equation
y® 4 4y®) 4 8y + 8y + 4y = 0. (4.2.15)
For the Ansatz y(x) = e®, the characteristic equation takes the form
Pi(A) = A +4X3 1802 480 +4 = (\? +2)\ +2)?
=(A+1+i)*’A+1-4)>=0.
Hence P;(A) admits the following roots:

M=—1—14, o==1—14, \g=—=1+1, \q=-1+1.
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The root —1 — ¢ gives the complex solution
¢1c(r) = e *(cosz —isinz) and hence two real solutions
P1(x) =e Pcosx, Po(x) =€ “sinz.

Since the root —1 — ¢ has the multiplicity of degree two, two more real solutions are
Y3(x) = xe “cosx, Y4(r) =ze Tsinzx.

The root A3 = A4 is the complex conjugates of the root \; = A2 so that it does
not contribute to more linearly independent solutions for (4.2.15). The set S =
{1(x), a(x), ¥3(x), a(x)} is linearly independent, so that the general solution
of (4.2.15) is

y(z) = cre” T cosx + cae” “sinx + cgxe” Y cosx + cqre” Tsinx

for all z € R.
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4.2.1 Exercises

1. Find the general solutions, or solve the initial-value problems in case initial data is

given, for the following third-order equations:
a) y(?’) +2y" — 5y — 6y =0
b) y® +3y" — 4y — 12y =0, y(0)=1, y(0)=2, y"(0)=3
¢) y® —5y" +3y + 9y =0
d) y®) 4" + 9y +9y =0, y(m) =5, y'(m) =1, y'(r) =1
¢) ¥ +6y" +12¢y' +8y =0, y(1)=3, y'(1) =0, y"(1) =2
f) y® — 2" =0
g) y3 y 21y =0

h) ¥ — 4y =0

2. Find the general solutions, or solve the initial-value problems in case initial data is

given, for the following fourth-order equations:
a) y —13y" + 36y =0, y(0) =1, y(0) =2, y(0) =3, y¥(0) =4
b) y@ —3y® =0, (1) =4, Y1) =0, y"(1) =2, y¥(1) =1
c) yW + 8y + 24y + 32/ + 16y = 0
d) v —4y® 6y — 4y +y =0
e) y™® —2y® — 3y + 4y + 4y =0
f) yW +9y” =0, y(0)=2, y(0)=1, y"(0)=2, y¥(0) =1
g) y® — 344 =0

h) y@ — 4y 44y =0

3. Find the general solutions, or solve the initial-value problems in case initial data is

given, for the following fifth- or sixth-order equations:
a) y® — 16y =0

b) y® —3y™ 243 =0
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y(0) =1, ¥(0) =2, ¥(0) = 3, y¥(0) = 4, y*(0) = 5, y(0) =6
4. Consider the general 3-rd order linear homogeneous differential equation with con-
stant coefficients,
3y + poy” + 1y’ + poy = 0

and assume that the characteristic polynomial P3() of this equation for the Ansatz
y(z) = e’ admits a real root Ao of multiplicity with degree three. Use the Ansatz

y(z) = w(x)e”

to find the general solution for this differential equation.

Note: This is a special case of Proposition 4.2.4a) and your result would there-
fore verify Proposition 4.2.4a) for third-order equations, where the characteristic
polynomial admits roots with multiplicity of degree three.

5. Consider the general 4-th order linear homogeneous differential equation with con-
stant coefficients,
(4) (3) " / _
pay™ +p3y +p2y +p1y +poy =0

and assume that the characteristic polynomial Py(\) of this equation for the Ansatz
y(z) = e’ admits a complex root g of multiplicity with degree two. Use the Ansatz

y(x) = w(x)e”

to find the general solution for this differential equation.
Note: This is a special case of Proposition 4.2.4b) and your result would there-

fore verify Proposition 4.2.4b) for fourth-order equations, where the characteristic
polynomial admits complex roots with multiplicity of degree two.

6. Show that the following two sets, which are special cases of the set given in Propo-
sition 4.2.3, are linearly independent:

a) {eA”, e p M g et g2 eMT g2 e)‘”}, AM#E X MER, My eR.

This is a special case of the set S3 in Proposition 4.2.3, with £k = 2 and m = 2.

b) {cos(fix), sin(fix), xcos(frz), xsin(fix), e* ¥ cos(fix), e sin(fix)},
ar € R\{0}, A1 € R\{0}.

This is a special case of the set @ in Proposition 4.2.3, with j = 1, m = 1 and
n =0.
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4.3 Higher-order linear nonhomogeneous equations

We consider the linear n-th order equation

Pr(@)y™ + ppo1 )y + -+ pr(2)y + polx)y = f(2) (4.3.1)

Here p;(z) (j =0,1,2,...,n) and f(z) are real-valued continuous functions given on some
common domain D C R, n > 1 and p,(x) # 0 for all z € D.

Definition 4.3.1. Any function y,(x) which satisfies the nonhomogeneous equation
(4.3.1) on an interval D, is known as a particular solution for (4.3.1) on D.

[ ]
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The statement below follows directly from the linear superposition principle:

Proposition 4.3.1.
a) The general solution of (4.3.1), i.e.
(@)™ + pa1 @)y + -+ p1(@)y + po()y = f(x)
1s of the form
y(x) = ¢u(z;cr,c2,...,¢n) + yp(x), (4.3.2)
where ¢ is the general solution of the associated homogeneous equation,
Pu(@)y™ + po1(@)y " + -+ pi(2)y + po(x)y = 0
and y, is a particular solution of the nonhomogeneous equation (4.3.1).
b) A particular solution yy(z) for the nonhomogeneous equation
pu(@)y™ + po1 @)y + -+ pr(@)y + po()y = fi(x) + fa(x), (4.3.3)

where pj(x), fi(x) and fo(x) are given continuous functions on D, is given by the
sum of a particular solution for fi(x) and a particular solution for fo(x), i.e.

yp(z) = y1(z) + y2(z), (4.3.4)
where y1(x) is a particular solution for

pr(@)y™ + pa-i(@)y™ " + -+ pr(@)y + po(x)y = fi(x)
and ya(x) is a particular solution for

Pa(@)y™ + pu1(@)y ™D + -+ p1(2)y + pol(@)y = fo().
The proof is left as an exercise (see Exercises 4.3.2).

We’ll now describe two methods to construct particular solutions for nonhomogeneous
equations, namely the method of undetermined coefficients and the method of
variation of parameters. These methods have already been described in detail for
second-order equations, so here we’ll just need to generalize these methods to higher-order
equations.

4.3.1 Particular solutions: the method of undetermined coefficients

Consider the n-th order linear nonhomogeneous equation with constant coefficients

puy™ + Py - o1y + poy = f(=) (4.3.5)
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where p; € R, p, # 0 and f(x) is a continuous function on some domain D C R. As in the
case of second-order equations, we consider special forms of the function f(x) and propose
Ansétze for particular solutions y,(x) in each case.

Case I: f(x) = Py(x):

Consider

pay™ + pacry" Y -+ p1y + poy = Pu(x) (4.3.6)

where P, is an mth-degree polynomial, i.e.,
Pon(2) = ama™ + am12™ L 4 -+ a1 + ag. (4.3.7)

Here a; (j =0,1,...,m) are given real coefficients. We can now propose Ansétze to find
particular solutions of (4.3.6) and we need to distinguish between n + 1 different subcases:

Case I (1): Let . The Ansatz for a particular solution of (4.3.6) is then
yp(z) = Apz™ + Ap1z™ Voo Ajz+ Ay = Qm(x), (4.3.8)

where the real constants, A;, j =0,1,...,m, are to be determined for the Ansatz (4.3.8).

Case I (2): Let ’po =0and p; #0 ‘ The Ansatz for a particular solution of (4.3.6) is
then

Yp(z) = 2Qm(2), (4.3.9)

where @, () is given by (4.3.8).

Case I (3): Let ’po =0and p; =0 and p #0 ‘ The Ansatz for a particular solution of
(4.3.6) is then

yp(x) = 2°Qun (), (4.3.10)

where @y, () is given by (4.3.8).

Case I (n+1): Let ’pn #0and pp =0for k=0,1,2...,n— 1| The Ansatz for a par-
ticular solution of (4.3.6) is then

Yp(z) = 2" Qm(2), (4.3.11)

where @, () is given by (4.3.8).
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Case II: f(z) = e** cos(agx) Pp(z) or f(x) = e**sin(agx) Pp (), a1, a9 € R

We consider the following linear complex differential equation with dependent complex
variable y.(x):

(n)

Py + pn_1y£"*1) + o Pyl + poye = € P (1), ai=ag +ias (4.3.12)

where a; € R, as € R and P, is an mth-degree polynomial, i.e.,
Pon(2) = amx™ + apm12™ 1+ -+ arz + ag (4.3.13)
with aj, j = 0,1,...,m real coefficients. Here « is a complex number, such that o =

a1 + iag, with a1, s real. Every differentiable complex function y.(z) can be written in
the form

ye(x) = u(z) +iv(x), (4.3.14)
where © and v are real differentiable functions on some domain D C R and
y B (z) = u® (2) + ™ (z), k=1,2,...,n. (4.3.15)

Using (4.3.14) and (4.3.15), equation (4.3.12) takes the form

. (um) i iv(”)> T (um—l) n w(n—l)) F o polu + i)
= " cos(aax) Py (x) + i€ sin(agz) Py (), (4.3.16)

where we have used the relation

at1tiag)z _

el e™¥ (cos(aax) + isin(agz)) . (4.3.17)
Comparing the real- and imaginary parts of (4.3.1), respectively, we obtain the following

two real nonhomogeneous differential equations in « and v:

pnu(") + pn_lu(nfl) + -+ pru’ + pou = ¥ cos(aax) Py () (4.3.18)
and
pnv(n) +p’n—lv(n_l) + “ e + pl'U/ +p0v e ealx Sin(a2x> Pm(x) (4319)

This leads to
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Proposition 4.3.2. A convenient Ansatz for a complex particular solution yep(z) of
(4.3.12), namely

Pyl + pre1y8 Y - iyl 4 poye = €27 Py ()
18
Yep(T) = e we(w), (4.3.20)

where we(x) is a complex function that needs to be determined such that the Ansatz
satisfies (4.3.12). The condition on w.(z) is a linear nonhomogeneous equation with
nonhomogeneous part Pp,(z), so that a solution for w.(x) can be constructed by the
Ansitze listed in Case 1, albeit with complex coefficients for Q,, in (4.3.8), i.e.

Qm = Bmz™ + Bp_12™ ' + .- + Biz + By

with Bj € C (j=0, 1, 2, ..., m).
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Example 4.3.1.

We find the general solution of the third-order equation
y®) 4+ y = e sin(3x). (4.3.21)
Using the Ansatz y(z) = e for the homogeneous equation, the characteristic equation is
Mi1=0

1 _
and the three roots are Ay = —1, Ay = 3 + z\ég and A3 = Ao. This leads to the following

general solution ¢ (x; ¢y, c2, c3) of the homogeneous equation:
b (x;c1,ca,c3) = cre™™ + cpe™? cos(V3x/2) + cze™/? sin(V/3x/2).
To find a particular solution for (4.3.21) we consider the complex differential equation
) +ye = eI, (4.3.22)
where
Ye(r) = u(x) + iy(x),

so that the imaginary part of the complex equation (4.3.22) is the given real equation
(4.3.22). Therefore, an Ansatz for the complex particular solution y.,(z) of (4.3.22) is
given by Proposition 4.3.2, i.e.

Yep() = ZH30%0p, (). (4.3.23)
A real particular solution y,(x) for (4.3.22) is then
Yp(x) = Tm [yep(z)] -

Inserting Ansatz (4.3.23) into the complex equation (4.3.22) we obtain the following con-
dition on we(x):

w® +3(2+ 30)w! +3(2 + 30) 2w, + ((2+ 30)° + 1) w, = 1. (4.3.24)

Following Case I we should make an Ansatz for w.(x) of a zero-degree polynomial with
a complex coefficient, i.e.

we() = Bo, (4.3.25)

where By is a complex constant that needs to be determined such that (4.3.25) satisfies
(4.3.24). Inserting this Ansatz into (4.3.24), we obtain

) 1
N3 _ -2 =)=
(2+3i)°+1)By=1 or By = 531 (234> we(z).
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Thus the complex particular solution for (4.3.22) is

; 5) i . 5 1

Yep() = F30)2 <—234 - 234) = —e?* (cos(3x) + isin(3z)) <—234 - 234>
so that the real particular solution y,(x) for (4.3.21) becomes

() = T [yep ()] = — €2 cos(3z) — ——€2" sin(3x).

i v 234 234
The general solution of (4.3.21) is thus

y(z) = cre™® 4 coe™/? cos(V/31/2) + c3¢®/? sin(V/3z/2)

1 )
—ﬂem cos(3z) — ﬂem sin(3z).
Case III f(x) =e*Py(z), a€R
We consider the equation
pay"™ + pacry" Y - £ o1y poy = ¢ (), a€R, (4.3.26)

where P, is an m-th-degree polynomial with real coefficients. We note that this is in fact
a special case of (4.3.12), with y.(x) a real function y(z) and o € R. The same Ansatz
(4.3.20) is valid, albeit for a real particular solution y,(x) of (4.3.26), namely

w(z) (4.3.27)

where the condition on w is a linear nonhomogeneous equation with nonhomogeneous part
P, (z). To find a solution w(z) of this equation we use the same Ansétze as those listed
in Case 1.

Example 4.3.2.

We find the general solution of the third-order equation

yB) o 4y —y =z (4.3.28)
First we use the Ansatz y(z) = e to find the general solution of the homogeneous
equation

v -y +y —y =0
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The characteristic equation is
Mo A—1=0 or A—1)(\2+1)=0.

The root A\; = 1 gives the real solution e”, whereas the complex root Ao = 7 gives two real
solutions {cosz, sinx}, so that the general homogeneous solution ¢g(x; c1,co,c3) is

om(x; c1,c2,03) = c1e” + cacosx + cgsinx
for all z € R and arbitrary constants ¢1, ¢ and c3. For a particular solution of (4.3.28) we
make use of the Ansatz proposed in Case III above, namely y,(x) = e”w(z). This leads
to the condition

w® + 20" 4+ 20 =z

and by Case I we use the Ansatz w(x) = x (Ajz + Ag). This results in the condition

1 1
4A7 +4A12 + 2A9 = x, so that 44; = 1 and 441 +2A9 = 0. Hence A1 = 1 and Ag = —5

1 1 1
so that w(z) = -2 — 2% and finally y,(z) = €® <—x - —:c) . The general solution of

4 4 2
(4.3.28) is thus

1 1
y(x) = c1€” + cacosx + c3sinx + €* (sz — 533) ]
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4.3.2 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].
1. Find the general solutions of the following equations:
a) y® +y =2
b) 4y +y =3
)y -y =4
d) y@ +4y® 44y =1
e) y¥ —2y" +y =2
f) yW +y" =2? + 2
g) ¥+ 2% 4y =t
h) y @ 42y 4y = e
i) y®) —y =sinz
i)y = 3y" + 3y — y = e” cos(22)
k) y® —2y" +y = cosx
1) y®) 4+ 4y =1 —sin(2z) + e cos(2x)
m) yW —16y" = zsinx
n) y® — y@ = ze* — 1
0) y® +yB® =gz 4 2e7
p)* y W+ 2@ ¢ = (z+1)

a)* y® +3y" +3y +y=(z+1)e®

2. Solve the following initial-value problems:
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d) y3) +2y" + 5y = 20 cos(2z), y(0)=1, y'(0) =2, y"(0) = 3.
e) yW +5y" + 4y = 40cos(3x), y(n/2) =2, y'(7/2) =2, y"(x/2) =1,
y 3 (r/2) = 4.
3. Prove Proposition 4.3.1.

4. Consider Proposition 4.3.2 and give the explicit condition on w.(x) for the case
n = 3. Then classify the different Ansétze that apply to obtain solutions for w.(z)
for your obtained condition.

4.3.3 Particular solutions: the method of variation of parameters

We now describe the method of variation of parameters by generalizing Proposition
3.3.2 of Chapter 3, where we have studied this method for second-order equations. We
should recall that the method of variation of parameters is more general than the method
of undetermined coefficients, as it is applicable to equations which have continuous func-
tions as coefficients and it does not require a special form of the functions f(x) of the
nonhomogeneous part of the equation, neither does it require lots of different Anséatze.
However, the derivation of particular solutions with this method does require the calcula-
tion of integrals, which can be difficult and tedious at times.

In order to state the next proposition it is convenient to introduce a new notation: Consider

a linearly independent set of functions S = {¢1(x), ¢2(z), ..., ¢n(x)} in C*(D) and a
continuous function f(x) on the interval D. We now define
Wilo1, ... 0j-1,(f); @j+1,- - Onl() (4.3.29)
0 N ) | 0  ¢jr1 ...  In
o T 0 e Oy
— , i=12,...,n
P e N e
oYt ey e
For example,
b1 0 Pn
¢ 0 ¢,
Walgr, (), dul(2) = | S SN
(=)o e
oY fa) e
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Proposition 4.3.3. Consider the n-th order nonhomogeneous linear differential equa-
tion

Pr(@)y™ + puo1 @)y + -+ pr(@)y + po(z)y = f(2), (4.3.30)

where pj(z) (7 =0,1,2,...,n) and f(z) are continuous functions given on some com-
mon domain D C R, n > 1 and py(x) # 0 for all x € D. Assume that n linearly
independent solutions of the homogeneous equation

pn(x)y(”) —i—pn_l(x)y("_l) + -+ p1(2)y + po(z)y =0 (4.3.31)

are given by the set of C"(D) functions S = {¢1(x), ¢a2(x), ..., ¢n(x)} on the interval
D C R. Then a particular solution y,(x) of (4.3.30) is

Yp(x) = wi(x)p1(x) + wa(x)p2(x) + - - + wy(x)Pn (), (4.3.32)

where wi(z) (j =1,2,...,n) have the following form:

Wl ¢27¢37"'7¢n](x)
/ Wlp1, b2, ..., ¢n](2) o
W2 ¢17 ¢)3’7¢n](£) dx

Wip1, d2, ..., ¢nl(x)

T

/W (1, P2, .-, D1, (f)](x) d
W1, ¢2,. .., ¢nl(z)

Here W{é1, d2,...,¢n](x) is the Wronskian of the set S and the notation
Wilo1, ..., 0i—1,(f), @jt1, ..., 0nl(z) is defined by (4.3.29).

Proof: We consider first the case n = 3, that is the nonhomogeneous equation

p3(@)y® + pa(@)y” + pr(a)y + po(z)y = f(2). (4.3.33)

Assume that three linearly independent solutions, namely

{#1(), d2(z), ¢3(x)},

are given for the homogeneous equation

p3(@)y® + pa(2)y” + pi()y’ + po(a)y = 0. (4.3.34)
We now use the following Ansatz for a particular solution of (4.3.33):
Yp(z) = wig1(x) + wa(x)da(z) + ws(z)ps3(z). (4.3.35)

The first derivative y,(x) is

Yp(r) = wigr + w1} + wyga + wagh + wyes + w3z (4.3.36)
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Let now

w1 + whes + wygs = 0, (4.3.37)
so that (4.3.36) reduces to

Yp(x) = w1 + wadly + w3y, (4.3.38)

Differentiating (4.3.38) one more time, we obtain

Yp(2) = widy + w1} + wyeh + wagh + wigs + wsdy. (4.3.39)
Let now
!/ !l !
w1 ¢ + wygh + w3z =0, (4.3.40)

so that (4.3.39) reduces to
Yy (x) = w197 + wady + w3es. (4.3.41)
Differentiating (4.3.41) one more time, we obtain
3 3 3
ys) (@) = wh o] +wigy? +whe + wady + widh + wsef’. (4.3.42)

Inserting the Ansatz (4.3.35) and its derivatives, (4.3.38), (4.3.41), and (4.3.42) into the
third-order equation (4.3.33), we obtain

wy {pa(x)%g) + pa(2)d] + p1 ()¢} +po(€v)<f>1}
s [ps(@)0” + pa(w)0 + p1(2)0) + poa) 2]

s [po(@)¢5” + pa(@)6§ + pi()65 + po(a)¢s]
+widh + wydh + wyds = f(@).

Since ¢1(x), ¢2(x) and ¢3(z) are solutions of the homogeneous equation (4.3.34), the
previous expression reduces to

widh + whds + wiey = f(x). (4.3.43)

We thus remain with three conditions on wi(z), we(x) and ws(x), namely the relations
(4.3.37), (4.3.40) and (4.3.43), which can conveniently be expressed in matrix form

o1 P2 93 w] 0
o Py ¢ wy |=] 0o |. (4.3.44)
o oy B w)

w
=
8
~—

Download free eBooks at bookboon.com



A First Course in Ordinary
Differential Equations Higher-order linear dierential equations

Note that the determinant of the coefficient matrix on the left side is the Wronskian
W1, ¢2, ¢3](x), which is nonzero by the assumption that the set {¢1(x), ¢2(z), ¢3(z)}
is linearly independent. Thus the algebraic system (4.3.44) has a unique solution for
w}, wh and wj and this unique solution can be obtained from Cramer’s rule as follows:

0 @2 o3
/ _ 1 / 1| = Wl[(f),¢2,¢3](37)
) = g ml@ | 0 % % T Wion, e, 0el(0)
flz) ¢y &f
o1 0 @3
/ o 1 / / _ W2[¢17(f)7¢3](m)
) = g @ | 0 % T Wb, 6n el @)
1 flz) &3
¢1 92 0
/ _ 1 / / — W1, ga, (f)I(2)
) = s Gdl@ | % T Wbk dadele)
o1 @5 f(x)

Integrating the above expressions with respect to = establishes the Proposition for the
case n = 3. In the same way we can show that the formulas hold for n > 4, but this is
straightforward so we leave it as an exercise (See Exercises 4.3.4). a.

EXPERIENCE THE POV
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RUN EASIER...
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Example 4.3.3.

We find the general solution for the equation
YB3 —3y" + 3y —y=3ze" (4.3.45)
For the homogeneous equation
y@ =3y’ +3y —y =0,
we use the Ansatz y(x) = e’ to obtain the characteristic equation
A—-1)2%=0.
The three linearly independent solutions are then
{d1(2) = €7, da(a) = ze®, ¢3(x) = 2"}
so that the general solution ¢y of the homogeneous equation becomes
o (z; 1, e, c3) = c1€” + coxe” + caxe”.

For a particular solution y,(z) we apply the method of variation of parameters. Following
Proposition 4.3.3 we use the Ansatz

yp(2) = wi(x)e® + wo(x)ze® + w3 (r)r’e” (4.3.46)
where
Wl (z) = Wi[(BVze®), ¢, ¢3l(z)
! W(é1, ¢2, d3)()
() = Walg1, Bvze®), ¢s](x)
? W1, ¢2, ¢3)(x)
roon . Walg1, ¢a, (3vTe")](2)
wy(z) = .

Wip1, o2, ¢3)(x)
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Calculating the Wronskian W as well as Wi, Wy and W3, we obtain

T 2

z T4e

e ze
W1, ¢2, ¢p3)(x) = | e* €* + ze” 276t + p2e — 9e3
et 2eT 4+ ze®  2eT + dxe® + p2e”

0 ze® x2e

WiBVz ), ¢, dsl(z) = 0 e’ + xe” 2ze” + 2 — 345/2 32
3VTe® 2e% +we® 2e® + dwe® + x2e”

e* 0 2

Walgr, (3Vae®), ¢3(z) = | e 0 2xe® + x2e® = 6323

e® 3yxet 2e% + dxe® + xe”

ze” 0

Wilér, ¢s, BVze)|(@)=| @ e aer 0 | =3yz

et 2e® + zxe® 3\/5635

Thus we have

wilw) =2 / /2 da = 317

wa () = 3/x3/2 dr = f§x5/2

w3 (z) = 2/331/2 dz = /2.

Inserting this back into the Ansatz (4.3.46) we obtain the following particular solution for
(4.3.45)

8
hple) = goaT2et

and hence the general solution of (4.3.45) is

8
z) = c1€® + cowe® + c3x’e® + —z7/%e”
Y 35

for all z > 0.
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4.3.4 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Find the general solutions of the following equations:

r—1

(3) " _
a) Y +y =

b) y® +3y" +3y +y=e"In(z), x>0
63$

o)* Y@ — 6y + 11y — 6y =

2. Consider the following equation:
€T
y® — 4y® 4 6y" —dy +y = Z—n >0, neR.
Find particular solutions for all n € R. Note that there exist five essentially different
cases!
3. Solve the following initial-value problems:

) 2x
a) y® =8y 42y =z 8+ S y(0) =1, ¥(0) = -1 y(0) =2
b) y W —y=8e", y(0)=0, ¥'(0) =2, y"(0) =4, y¥(0) = 6.

288
)y =" 2>0,y(1) =7y (1) =2 y"(1) =0, sV (1) =0, yW(1) =0.

4. Prove Proposition 4.3.3 for all n > 3.
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4.4 The higher-order Cauchy-Euler equation

The n-th order linear equation

Paa™y"™ 4 pp_12" YD p b pay’ 4 poy = f(x)

where pg, p1,...

interval D C R, is called the Cauchy-Euler equation of order n.

(4.4.1)

, Pn, are constants, p, # 0, and the function f(x) is continuous on some

Similar to the second-order Cauchy-Euler equation discussed in Chapter 3, equation
(4.4.1) also can be transformed into a linear nonhomogeneous equation with constant

coefficients of its homogeneous part. For x > 0 the change of variables is

x=¢€* & z=In(x)

y(z) = y(2).

{

Differentiating y with respect to x we can identify a formula for the n-th derivative under

this change of variables:

dy(a) _dydz _dy1_dy
de  dzdr dzzxz dz

e’ a4
dz y

d?y(x) _d (dy -

dx? dr \ dz

z

>:d,22d:r6

d (d
_ =2z = [ = 1
© @ (dz ) Y
Py(@) d [ . (dy dy s (dy Py dy
= — z - — = — z < __3_ < 27
da? dz [6 (dw2 dz)] c <dz3 3d22 + dz)
d (d d
— 32 . _ - _
B dz <dz 1> (dz 2) Y
dy(e) 4. d (d d d
e (L) (&) (& -
dx* dz <dz > (dz ) <dz 3> Y
dy(z)  _,..d (d d d
dzn © dz (dz 1) <dz 2> <dz n+1> Y

This leads to the following
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Proposition 4.4.1. The transformation

x=¢€* &z =1n(x), x>0
(4.4.2)
y(@) = y(2).
reduces the Cauchy-FEuler equation
™y ™ + pp_12" YD 4y + poy = f(a), x>0 (4.4.3)
to an equation with constant coefficients of the form
dny dnfly dy
bn—— +bn—1 =g + o b+ boy(2) = f(€), (4.4.4)
where by, b1, ..., b, are constants which are related to the constants py, p1. ..., Dn-
Moreover, the transformation
x=—e*<z=In(—x), x <0
(4.4.5)
y(z) = y(2).
reduces the Cauchy-Fuler equation
o™y ™ + pr_12" ) 4 piay + poy = f(=), x <0 (4.4.6)
to an equation with constant coefficients of the form
dn nfly dy
Gy + 1oy o e+ eoy(z) = (=€), (4.4.7)
where cg, ¢1, ..., Cn are constants which are related to the constants py, p1. ..., Dn-

For both transformations (4.4.2) and (4.4.5) the k-th derivative of y with respect to x
is transformed by the following formula:

d';?;(:) _ e_kzd% <jz _ 1) (jz _ 2) (CZ — k4 1) y(z). (4.4.8)

For the special cases n = 3 and n = 4 we have included exercises to derive the explicit
3-rd- and 4-th order constant coefficient equations (see Exercises 4.4.1).

Example 4.4.1.

We find the general solution for the 3-rd order Cauchy-Euler equation

22y®) — 62%y" + 18zy — 24y = 4a*, x> 0. (4.4.9)
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Applying Proposition 4.4.1, namely the transformation (4.4.2) and the formula (4.4.8), we
have

Y(z)=e* <jz> y(z) = e %.

Equation (4.4.9) then transforms into

&y Py o dy 4

— —9—= 4+ 26— —24 = 4e**. 4.4.10

dz? dz? + dz y(z) ¢ ( )
For the homogeneous part of this equation, i.e.

By dy dy

—— —9—= 1262 —24 =

dz3 gdz2 + 6dz y(z) =0
we make the Ansatz

y(z) = e

and obtain the characteristic equation

AP —0N% +26) —24=0
with the roots Ay = 2, Ay = 3, A3 = 4. Hence the general homogeneous solution
om(z; c1, c2, c3) is

br(z; 1, ¢2, c3) = c1€%* + coe® + c3e.

For a particular solution of (4.4.10) we make the Ansatz (see Case II in Section 4.3.1 of
the method of undetermined coefficients)

yp(2) = w(z)e®
which leads to

d3w d?w dw

— +3— +2— =4.
dz3+ dz2+ dz
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To find a solution for w(z) that satisfies this condition we use the Ansatz (see Case I in
Section 4.3.1 of the method of undetermined coefficients)

w(z) = zAp

(Ao is a constant) and obtain Ag = 2, so that w(z) = 2z and a particular solution for
(4.4.10) is

yp(2) = 2z
The general solution of (4.4.10) is then
y(2) = c1€%* + 237 + czet® 4 2ze*
and back-substituting z = Inx we obtain the general solution of (4.4.9), namely

y(w) = lel?2 + 021‘3 + 03334 +22% In 2.
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The Cauchy-Euler equation can be generalized to the equation

pr(a + Bx)"y™ + pp_1(a + )"ty 4 pr(a+ Ba)y + poy = f(x)
(4.4.11)

where p; € R, j=0,1,...,n) and o € R, B € R. We call this the generalized Cauchy-
Euler equation of order n. Similar to Proposition 4.4.1, the generalized Cauchy-Euler
equation can also be reduced to a linear nonhomogeneous equation of order n with constant
coefficients.

Proposition 4.4.2. The transformation

a+ﬁx:62¢>zzln(a+ﬁ$)v x> _% (4.4.12)

reduces the generalized Cauchy-Euler equation

pr(a+ Br)"y™ + pu_i(a+ Bx)" Ly 4o 4 pi(a+ By + poy = f(z)

a

> —— 4.4.13
5 ( )
to an equation with constant coefficients of the form
d” d”_ly dy e —
W e (550), e
where by, by, ..., b, are constants which are related to p;, o and 3.
The transformation
Q
a—+ fxr = —e* & 2z =In[—(a+ Bz)], < —=
= ) B (4.4.15)

reduces the generalized Cauchy-Euler equation

Pala + Bz)"y™ + pp_1(a + Bx) "ty + . 4 pi(a + )y + poy = f(2)

r< -2 (4.4.16)

g

to an equation with constant coefficients of the form

dny dnfly d e* +a
Cn g tn-1 oy +C1d +coy(z) = f | — 5 , (4.4.17)
where ¢g, c1, ..., ¢, are constants which are related to p;, o and §.

Download free eBooks at bookboon.com



For the special cases n = 3 and n = 4 we have included exercises to derive the explicit
3-rd- and 4-th order constant coefficient equations (see Exercises 4.4.1).

4.4.1 Exercises

[Solutions of those Exercises marked with a * are given in Appendix D].

1. Show that under the transformation x = e* and y(z) = y(z), z > 0, the third-order
Cauchy-Euler equation

d>y d%y dy
P3f'73d 3 T P2 $2d 2 +P19«“d + +poy = f(x) (4.4.18)

(p; €R, j=0,1,...,3) transforms into the third-order equation

d? d?

Y Y
Ps g+ (p2 = 3p3) =5 + (p1 — P2 + 2p3)

dz W 1 poy(z) = £(e). (4.4.19)

dz

2. Show that under the transformation z = e* and y(x) = y(z), = > 0, the fourth-order
Cauchy-Euler equation

2y
dx )

4 3
pax ALY +p3 Y + pox
d .4

dy
dr 3 +p1x

5 T poy = f(z) (4.4.20)

(p;j €R, j=0,1,...,4) transforms into the fourth-order equation

d4 d3 2

Yy Yy dy
- — 6ps)—= -3 1py)—2
pa g+ (P = 6pa) =5 + (p2 = 3ps + 11pa)

dy
y (p1 — pa + 2p3 — 6pg) —

dz
+poy(z) = f(e7). (4.4.21)

3. Find the general solutions of the following Cauchy-Euler equations for x > 0:

a) 23y 42y —y =0

b) x3y(3) — 322y + 6y — 6y =0

¢) zty® + 10y =0

d) 2%y® —zy — 3y = 2?

e) 2Py — 22y 4 22y — 2y = 2° + 32

£) 2%y® + 822" + 122y = Inx

g) 3y — 622" + 18y — 24y = 48 — 222 + 42*

4

2
h)* aty® +12:%® + 3822y + 320y +4y =~ +
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i) 2ty + 623y + 922" + 3z +y = 8 cos(In )

288
i) 2Py® + 1024y W + 2523y 4 152%y" + 2y = =

4. Consider the 3-rd order generalized Cauchy-Euler equation

p3(a+ B)*y® + pa(a + B)%y" + pr(a + Bx)y + poy = f(x) (4.4.22)
x> -2
B

and find the explicit 3-rd order linear constant coefficient nonhomogeneous differen-
tial equation that results when (4.4.22) is transformed under the transformation

a+ fr=¢€* <z =In(a+ px), a:>—%
y(z) = y(2).
5. Show that the 4-th order generalized Cauchy-Fuler equation

pa(e+ Ba)y® + ps(a+ B)3y® + pa(a+ Br)?y”

(6%
+pi(a+ B2)y +poy = f(z), x> 3 (4.4.23)
is transformed into
d'y d*y d*y
4 3 4 2 3 4
— —6 —= ~3 11 i 4
pafBt 7+ (3B’ = 6pa*) ——5 + (p28” — 3psfB” + 11pap*) —
d e —a
+(p1B — p2* + 2p38° — 6paf?) CTZ +poy(2) = f < ) > (4.4.24)

under the transformation

a+ fr=e* & z=In(a+ fz), z>-2

B

6. Find the general solution of

(4+z) 'y 64 +2)3y® =2, >4
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Appendix A

Integral operators: an alternative
approach for solving linear
differential equations

In this appendix we make use of linear operators to derive formulae for the general solution
of linear differential equations of order n. This provides an alternative method, to those
proposed in the previous chapter, to find the (general) solutions of these equations without
the need of any Ansétze.. The key lies in the factorization of the linear differential opera-
tors that determine the differential equation in terms of first-order differential operators.
For linear equations with nonconstant coefficients, the condition for the factorization of
the operators is in the form of Riccati equations. This method also provides an alterna-
tive method to the method of variation of parameters and the method of undetermined
coefficients for the calculation of particular solutions of linear nonhomogeneous equations,
which we studied in Chapters 3 and 4.

A.1 The definition of L

In this section we introduce linear operators and introduce an integral operator that cor-
responds to a general first-order linear differential operator. This integral operator is the
key to the integration of the linear equations.

We remind that C(D) denotes the vector space of all continuous functions on some do-
main D C R and C"(D) the subspace of C(D) consisting of all n-continuously differentiable
functions on D.

Definition A.1.1. We define the linear transformation
L:C"(D)—C(D)
for all f(z) € C"(D) on the interval D C R as

L: f(z)— Lf(x), (A.1.1)
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where L is the linear differential operator of order n
L := pp(x)D? + pr_1(2) DY 4 -+ + py (2) Dy, + po(2). (A.1.2)

Here n € N and pj(z) € C"(D) (j =0,1,...,n) with

dk
pk) . =
r dzk’

so that

Lf () = pa(2)f ™ (@) + pa1(2) F (@) + - + p1(@) f'(2) + po(@) f (=)

Example A.1.1.

Consider the second-order linear operator
L =cosxzD? + ¢*D, + 2%
As an example, let us act L on both €2* and on u(z)e™%:

Le®® = 4e*" cosz + 23 + 2%e®®  and
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where L is another linear operator given by

L:=e “coszD? + (1 —2e %cosa) Dy + e “cosz + z2e™® — 1.

Next we define the composite linear operator and the integral operator D !:

Definition A.1.2.

a) Consider two linear differential operators of the form (A.1.2), namely L; of order
m and Lg of order n, and consider a function f(z) € C™*"(D) with D C R. The
composite operator L o Ls is defined by

Ly o Ly f(z) == L1 (Laf () (A.13)

where L1 o Ly is a linear differential operator of order m + n.
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b) The integral operator, D, !, is defined by the linear mapping
D;': ¢(D) = cY(D)
for all f(z) € C(D) on the interval D C R as
D;': f(a) = Dy f(a) (A14)

where

D;lf(z) := /f(x)dw (A.1.5)

Note that, in general, Ly o Ly f(x) # Lo o Ly f(x).
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Example A.1.2.

We consider the two linear differential operators
Ly = D, + 22, Ly =xD? +1.
Then
Lyo Ly f(z) = (D2 + 1) (f + 2%f)
=af® L3+ (4a® + 1) f + (2% + 22) f = L3 f(x),
where L3 := xD3 + 23D2 + (42% + 1) D, + 2% + 2x. Furthermore
LyoLy f(x) =af® + (@ + 1) f" + [/ +2°f = Ly f(x)
where Ly := xD3 + (2® + 1)D? + D, + 22. Clearly

Lyo Ly f(z) # L1 o Ly f(x).

Let f be a differentiable function. Then, following Definition A.1.2 b), we have
D' o D, f(2) = D7 f/(x) = f(a) +c. (A.16)

where c is an arbitrary constant of integration and, furthermore,

Dyo D=\ f(z) = % </f(m) d:n—l—c) = ). (A17)

In terms of the linear operator (A.1.2), the nth-order linear nonhomogeneous differential
equation,

Pa(@)y™ + po1(2)y™ Y 4 4 pr(2)y + polx)y = f(2) (A.1.8)

takes the form

Ly(x) = f(x) (A.1.9)

where L is the linear operator (A.1.2).

In the next section we introduce a method to solve (A.1.9) by factorizing L into first-
order linear operators and then act the corresponding integral operators to eliminate all
derivatives. For this purpose the following definition plays a central role:
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Definition A.1.3. Let a and b be continuous functions on some interval D C R, such
that a(x) # 0 for all x € D. Consider the first-order linear operator

L =a(x)D, + b(x). (A.1.10)

The integral operator corresponding to L, denoted by L, is defined as follows:

. 1

[ = e €@ p-1 &(x) A1.11
where
dé(z) _ b(x)
= 7 A.1.12
dx a(x) ( )
By Definition A.1.3 follows
Proposition A.1.1. For any continuous function, f(x), we have
P f(z) = @ | [ £2) @) ALl
flx)=e [ (@) es\"'dr + ¢ ( 3)
and
LoLf(z)=f(z)+et@e¢, (A.1.14)

where L is defined by (A.1.10), L is defined by (A.1.11), and c is an arbitrary constant
of integration.

Proof: We show that relation (A.1.14) holds:
Lo L f(x)=L(a(z)f (=) + b(w)f(x))
+b( (@) @) gyt
o[ o )
</f ) dx + & @) d + c>

CL

Note that f(x) (e ) (f(z ), so that (A.1.14) follows. O

Example A.1.3.

We consider L = xD, + 22 and f(z) = e~*"/2. Then the corresponding integral operator
is
6382/2

A~ 2
L=e% /QD—l o
X T Y
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so that [ e %"/2 = ¢=¢°/2 (In|z|+¢) and Lo Le /2 = 6_9”2/2(1 +¢).

Consider now the first-order linear differential equation in the form
Y + g(z)y = h(z). (A.1.15)
In terms of a linear differential operator (A.1.2) we can write (A.1.15) in the form
Ly(x) = h(x), (A.1.16)
where L is the first-order linear operator

L =D, +g(x). (A.1.17)

Following Definition A.1.3 we now apply the corresponding integral operator L on (A.1.16)
to gain the general solution of (A.1.15). We demonstrate this explicitly in the next exam-
ple.
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Example A.1.4.

We find the general solution of (A.1.16), i.e.
Y +9(z)y = h().
Following Definition A.1.3 we apply L, given by
L=et@D710ef@  with ¢(a) = /g(x)d:n, (A.1.18)
to the left-hand side and the right-hand side of (A.1.16). For the left-hand side we obtain
Lo Ly(z) = y(z) + c1e €@, (¢1 is an arbitrary constant)

and for the right-hand side

Lh(z) = e~ ¢@) / [h(x)eg(x)dx + C2:| (¢ is an arbitrary constant).
Thus

y(z) 4 cre @) = ¢=¢@) / {h(az)eé(’”)dm’ + 02} ,
or, equivalently

y(z) = e¢@) [ / h(z)et® da + c} ,

where ¢ = ¢ — ¢ is an arbitrary constant and £(z) = [ g(z)d.

A.2 Higher-order linear constant-coefficient differential equa-
tions
In order to apply the method of linear operators and their corresponding integral operators
to solve higher-order linear differential equations, we need to factorize the higher-order
linear operators that determine the differential equations in terms of first-order operators.
This is in principle always possible, but in practise there are some obstacles.
The linear operators for the constant-coefficient homogeneous equation factorizes in

terms of first-order differential operators in the same manner as the characteristic equation
in A for the Ansatz y(z) = e does. Take, for example, the second-order equation

y'+py +qy=f(zr), PpER,q€ER, (A.2.1)
with characteristic equation

N4+pr+¢=0 (A.2.2)
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and roots

A1=%<—p+v@7jla7 A2=1<—p— p”—@)- (A.2.3)

2
Equation (A.2.1) can then be presented in the form

Ly(z) = (), (A.2.4)
where
L =D?+pD, +q. (A.2.5)
It is now easy to show that the second-order operator (A.2.5) factorizes as
L=(Dy—X)o(Dy—A2) =Ljio Lo, (A.2.6)
since
Lio Lyy(x) = (Dy — M) (y' — A2y)
=y =AM+ )y +Ary=0
and, by (A.2.3), A\ + A2 = —p and A\; Ay = ¢. Thus
Lu(x) =Ly o Lay(x)

=y" +py +aqy = f(2).
This directly extends to linear constant-coefficient equations of any order n:

Proposition A.2.1. Consider a constant coefficient nth-order nonhomogeneous dif-
ferential equation of the form

Ly(z) = f(z), (A.2.7)
where
L= anD;L—I—an_lD;l_l + -+ a1 D, + ag, a; € R, 7=0,1,...,n. (A.2.8)

The characteristic equation of (A.2.7), following the Ansatz y(x) = e *, is the nth
degree polynomial

P,(A) = ap,\" + NP aAtag=0 (A.2.9)

which admits n roots, {\1,\2,..., A\n}, (A € R or C) so that (A.2.9) can be factorized
as

A=AD)A=A2) - (A= An) =0.
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Then equation (A.2.7) factorizes in the form

LioLyo---0Lyy(x) = f(x), (A.2.10)
where

Li=D,—};, j=12..,n (A.2.11)

The general solution of (A.2.7) then follows by applying, successively, the corresponding
integral operators L1, Lo, ..., L, to (A.2.10).

Applying now Proposition A.2.1 to second-order equations leads to the following Propo-
sition:
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Proposition A.2.2. Consider the 2nd-order equation

v'+oy' +ay=f(z), p, geR (A.2.12)
with characteristic equation

PA) =X +pr\+qg=0. (A.2.13)

a) If the two roots, A\1 and Ny of (A.2.13) are real and distinct numbers, then the
general solution of (A.2.12) is

y(@) = 1M’ + e’ + g (), (A.2.14)

where yp(z) is a particular solution of (A.2.12) given by

i) = ( Ali A2> <em / F@)eMTdg — o / f(:c)e_A”da:) (A.2.15)

and c1 and co are arbitrary constants.

b) If the two roots, A1 and Ao of (A.2.13) are complex numbers, then Ay = A1 (A2 is
the complex conjugate of \1) and the general solution of (A.2.12) is

y(x) =c1 Re {e’\”} +coIm {e’\”’”} + yp(z), (A.2.16)

where yp(z) is a particular solution of (A.2.12) given by

yp(z) = ( Ali X1> (em / f(x)e M dz — eM* / f(a:)ej‘lmdx> (A.2.17)

and c1 and ca are arbitrary constants. Note that although A1 and \1 are complex
numbers, the solution y(x) is always a real-valued function.

c¢) If the two roots for (A.2.13) are equal, i.e. \y = Ay € R, then the general solution
of (A.2.12) is

y(x) = c1eM® + caw M + yp(x) (A.2.18)

where ¢1 and ¢z are arbitrary constants and a particular solution y,(x) of (A.2.12)
18

Yp(2) —6“/ (/f(w)emdx> dz. (A.2.19)

Proof: Equation (A.2.12) can be written in the form
Ll o L2 y(l‘) = f(l‘), Ll = Dz - )\1, LQ == DI - )\2, (AQQO)

where A; and A9 are the roots of the characteristic equation (A.2.13). The corresponding
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integral operators for L1 and Lo are
Ly =MD oe ™% Ly =MDt o e, (A.2.21)

respectively. Acting L1 on (A.2.20), i.e. L o Ly o Lyy(z) = Ly f(x), we obtain

Loy(z) + eM%ky = eM® / f(x)e ™M dx + kge?

or Loy(x) = e)‘lx/f(:v)e_’\lx dz + kzeM®, (A.2.22)
where k3 = ko — k1 is a constant of integration. Applying now Ly on (A.2.22) leads to

y(z) + e Pk = e/\”/ (kge()‘l_h)x + e(’\l_’\z)xF(as)) dx + kse?®

or y(z)= e’\”/ (kge()‘l_AQ)x + e(/\l_’\z)xF(x)) dx + ke 2®, (A.2.23)
where kg = ks — k4 is a constant of integration and

F(z):= /f(:n)e_’\lx dx. (A.2.24)
If A1 # Az, then (A.2.23) reduces (after integration by parts) to (A.2.14) for A\; € R and

A2 € R and to (A.2.16) for complex roots A; and Ay = Aj, or to (A.2.18) for equal roots
A =X ER. O

Example A.2.1.

We find the general solution of
y" + 4y = 8a7. (A.2.25)

The characteristic equation and its roots are A2 44 = 0 and \; = 2i, Ay = —2i so (A.2.25)
can be presented in factorized form

LioLyy(zx) = 822, where L= D, —2i, Lo= Dy+ 2i.

Following Proposition A.2.2, the general solution, ¢p(x), of the homogeneous part of
(A.2.25) is

o (x;c1,c2) = c1 cos(2x) + cosin(2z). (A.2.26)

For a particular solution y,(x) we use formula (A.2.17) and calculate the integrals:

1 . . . .
yp(x) = A (62”: / 8x2e™ 27 dy — 6_2”6/81‘262“0 dw) =227 — 1.
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The general solution of (A.2.25) is thus
y(x) = ¢ cos(2z) + casin(2z) + 22% — 1,

where ¢; and ¢y are arbitrary constants.

For an nth-order linear constant-coefficient equations we then have

Proposition A.2.3. Consider a constant coefficient nth-order nonhomogeneous dif-
ferential equation with n > 2 of the form

Ly(x) = f(x), (A.2.27)
where
L=0a,D"+a, D" '+ - -+ a1 D, + ag (A.2.28)
aj€R, j7=0,1,...,n.
Equation (A.2.27) factorizes in the form
LioLyo---oLyy(z) = f(z), (A.2.29)

where Lj = Dy —X\j (7 =1,2,...,n) and {\1, A2, ..., \n} (Aj € R or C) are the roots
of its characteristic equation. The general solution of (A.2.27) is then

y(x) = pu(z;ci,co,- -, cn) + yp(2), (A.2.30)

where ¢ (x) is the general solution of the homogeneous part of (A.2.27),

br(x; c1,¢,. .., cn) = c1e™® (/ e(Anfl‘A")””ng}(w) dx) + CQeA”’”G%Q}(x)

+03e’\”mG§273} () +--+ Cn,le)‘"IG&}_l)n(@ + cpetn® (A.2.31)

(c1, ¢c2, ..., ¢y are arbitrary constants) and yy(x) is a particular solution of (A.2.27),
namely

yp(x) = e)‘”x/ (e(’\"*r)‘”)an_l(m‘) dm) . (A.2.32)
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Here
{1} / (>\k )xg)cc d.’lf G{]}( ) . /e(/\g+j_2—)\g+j_1)a:G]£%—1}($) dx,
7= 2,...; £=23,....

/f —/\1:1: dr, FZ(ZE) o /e(kil—ki)mFi_l(x) dx

To prove Proposition A.2.3 we apply the corresponding integral operators on (A.2.29) and
identify the patterns. The details are left as an exercise.

Remark: For complex roots, {A1, A2, ..., A}, the expression for ¢pp(x; c1,ca,...,¢n),
(A.2.31), will be a complez-valued solution for (A.2.27) for which the real- and the imagi-
nary parts are real-valued solutions of (A.2.27). One therefore needs to combine the real-
and imaginary parts of ¢ such that one remains with n linear independent real-valued so-
lutions. We remark further that (A.2.32) is always a real particular solution for (A.2.27),
even for the case where {\1, Ao, ..., A\py} are complex roots of the characteristic equation.
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Example A.2.2.

We find the general solution of
y® — oy 4y —y = e**cos . (A.2.33)

The characteristic equation is A2 — A2 + X — 1 = 0, with roots A\ = 1, Ay =4, A3 = —i.
Thus (A.2.33) can be presented in the factorized form

LloLQOLgy(;{J):eszOSl’, where L1 =D,—1, Ly=D,—1i, L3=D,+i.

Following Proposition A.2.3 the general solution of the homogeneous part of (A.2.33) is
o (x; c1,c2,c3) = c1e™3” </ e(AQ*AS)mGg} da:) + CQeAS”G%} + 3637,

where

G = [ e an = [ et gy - <11¢> (1=
G%} — /e(Az—Ag)J: dr = /€2iz dr = (212> 622‘3[:'

1 1 ) )
d)H(.T, €1, C2, 03) =15 clea3 + | = CZelx + C3eizx7
2 21
where

1 1
Re{on} = 501636 + 562 sinx 4 cgcosx

1
Im{¢p} = —5C2008% — C3 sin x

are real-valued solutions of (A.2.33). Since {e”, sinz, cosz} is a linearly independent set
of functions for all z € R, the general solution of the homogeneous part of (A.2.33) is

op(xr; ar,a2,a3) = a1’ + agsinz + as cos x,

where a1, ao and ag are arbitrary constants. Following Proposition A.2.3, a particular
solution for (A.2.33) is of the form

)

where

Fy(z) = /e(l_i)xFl(x) dx, Fi(z) = /ex cosx dx.
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Calculating the integrals we obtain

1
Fi(x) = 56”” (cosz + sinz)

1 .
Fy(z) = ge@_’)“ (cosz + 2sinz + isinx)

so that the particular solution becomes
) 1 . 1
yp(x) = e " [/ gehem (cosz +2sinz +isinz) dr| = gem sin z.

The general solution of (A.2.33) is thus

2

Tsinx.

1
y(z) = a1€” 4+ agsinx + agcosx + 3¢

Find out more and apply

redefining / standards
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A.3 Higher-order linear nonconstant coefficient differential
equations

First we consider second-order linear nonhomogeneous equations of the form
y' +9(@)y + h(z)y = f(2), (A.3.1)

where f, g and h are differentiable functions on some common interval D C R. Assume
a factorization in terms of two linear first-order differential operators,

Ly =D;+q(z),  Ly=D;+q(), (A.3.2)
such that (A.3.1) is equivalent to

LyioLyy(z) = f(x). (A.3.3)
Now (A.3.3) takes the form

V' '+ (@ + @)y + (e + hy = f(@) (A.34)
and, comparing (A.3.4) to (A.3.1) leads to the condition

¢ +a=9),  ¢+aqage=h(z),
or, equivalently,
¢ =65 —g(@)ez + h(x),  ai(z) = g(z) - g2(2).
We note that the condition on ¢o(x) is a Riccati equation. To find the general solution

of (A.3.3), we apply the corresponding integral operators Ly and Lo, successively. This
leads to

Proposition A.3.1. The 2nd-order linear equation

y' +9(@)y + hx)y = f(z) (A-3.5)
can be written in the factorized form

Lyo Lyy(x) = f(z), (A.3.6)

where L1 = Dy + q1(x) and Ly = D, + q2(x), if and only if q2(x) satisfies the Riccati
equation

a5 = ¢5 — g9(x)q2 + h(z). (A3.7)
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Then ¢;(xz) = g(x) — g2(x). Applying the corresponding integral operators, Ly and Ly
successively on (A.3.6), leads to the general solution of (A.3.5), namely

y(z) = c1e782@) 4 che02(® /652($)6_€1(x)dl‘ + yp(), (A.3.8)
where y,(x) is a particular solution of (A.3.5) given by

yp(x) = e~52(@) /eg2($)e_fl($)F(x)da:. (A.3.9)
Here ¢; and ¢y are arbitrary constants and

F(x) ::/f(x)egl(””)dx, &1(x) ::/ql(az)dm, & (x) Z:/QQ(l‘)dl‘.

Example A.3.1.

We consider the second-order Cauchy-Euler equation

ax®y” + bay' +cy = f(x), x #0, (A.3.10)

where a # 0, b and c are real constants and f is a continuous function on some interval
D C R. Equation (A.3.10) can equivalently be presented in the form

(8 ) -2

Comparing (A.3.11) and (A.3.5) we identify

b c

gla) ==, hla)= -,

so that, by Proposition A.3.1, equation (A.3.10) can be factorized in the form (A.3.6) if
g2 satisfies the following Riccati equation:

b c
%:ﬁ—<w)@+m2 (A.3.12)

A solution of (A.3.12) is of the form
g(z) = az’

with 8 = —1 and « satisfying the quadratic equation

b
aﬁ+0—)a+c_g (A.3.13)
a a
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Differential Equations Appendix A: Integral operators: an alternative approach
As an explicit example we consider a = 1, b = —1 and ¢ = 1. This corresponds to the
equation
2.1 / .3
vy —xy +y=2x". (A.3.14)

A solution for (A.3.13) is then a@ = —1, so that

e@) =2, a@)=0, &@)=0, &)=

Thus the equation

1 1
(e ()
x T

factorizes in the form

(Dm> 0 (Dx - %) y(@) =

so that, by the solution formula (A.3.8), the general solution of (A.3.14) becomes

1
y(x) = c1x + cox In|z| + ng,

where ¢; and ¢y are arbitrary constants.

IjOj.ned MITAS because The Graduate Programme

for Engineers and Geoscientists

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

168 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/mitas

We give another example of a second-order nonconstant-coefficient equation:

Example A.3.2.

Consider the equation

Y+ 2zy + (22 + 1)y = e ¥ /2, (A.3.15)
Comparing (A.3.15) and (A.3.5) we identify

g(x) =2z,  h(z) =241,

so that, by Proposition A.3.1, equation (A.3.15) can be factorized in the form (A.3.6),
where g9 satisfies the following Riccati equation:

¢h =% — 2xqy + 22 + 1. (A.3.16)
A special solution for (A.3.16) is

q@2(z) =z sothat ¢ (z)==z.
Hence (A.3.15) takes the factorized form

(Dy + 2)(Dy + ) y(z) = /2.
By the solution formula (A.3.8), the general solution of (A.3.15) becomes

—z2/2 + %x26_12/2,

where ¢; and co are arbitrary constants.

—z2/2

y(x) = cre + coze

An extension to higher-order nonconstant-coefficient linear equations is possible, al-
though the general condition for the factorization into first-order linear operators becomes
rather complicated. To demonstrate this, we consider the third-order case:

v + k(@)y" + g(@)y + h(z)y = f(x), (A.3.17)
or, equivalently

Ly(x) = f(x), (A.3.18)
where L = D3 + k(x)D? + g(x)D, + h(x). Assume now a factorization in the form

(D2 + q1(2)) © (Dz + g2(2)) © (D + g3(2)) y(x) = [(2),

which leads to
v+ + @+ @)y’ + (dh+ 205 + g2 + 0203 + q1a3) Y/

+ (65 + dhas + G3q1 + 4302 + q1q243) y = f (). (A.3.19)
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Hence, we have the following relations between the coefficients in (A.3.17) and (A.3.19):

k(@) =a+a+a (A.3.20a)
9(x) = g5 + 2¢5 + q142 + 42q3 + 0193 (A.3.20b)
h(z) = g5 + 4503 + 4301 + 4302 + 419203 (A.3.20c)

We now consider the special case g3 = 1. The relations (A.3.20a) — (A.3.20c) lead to the
condition

h(z) + k(z) — g(z) —1=0.
Thus we can state that the equation

v+ k(@)y” + g(x)y + (1 + g(z) = k(x))y = f(x)
factorizes in the form

(D2 + q1(x)) © (D + g2(x)) o (Dr + 1) y(z) = f(2)
if and only if g9 satisfies the Riccati equation

0= a5+ (1= k(2))g2 + 1+ g(z) — k()

Then ¢ (z) is given by the relation

q1(x) = k(z) — g2(x) — 1.
93%
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Appendix B

Methods of integration

We sum up some of the important methods and substitutions which can be applied to
integrate certain continuous functions of one variable.

B.1 The method of substitution

Indefinite Integrals:

/f(g(z:))g'(:v)dx:/f(u)du, where u = g(z); j—z:g’(az).
Definite Integrals:

b 9(b) p

[ o) d@do= [ . where w=gla) G =g

Examples for the method of substitution:

1. We calculate /:UQ(xS +2)23dy

. d
Make the substitution u = 23 + 2. Then d—u = 322, so that du = 3z2dz. Thus, in terms

T
of u, the integral becomes

1 2/3 1 (3 53 L 3 5/3
- = — - = — 2
3/u du 3(5u +c 5(90 +2)°° + ¢,

where ¢ is an arbitrary constant (a constant of integration).

For the definite integral
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2
/112(333 +2)?/3dz we have
1

10

10
1/u2/3du:1 §u5/3 :1(105/371»
3 3\5 1 5
1
sin® z
2. We calculate / = dx
Ccos® &

-2 2

. sin“z . 1—cos“x . .

Consider = sin xdx = ——=—— sin xdx and make the substitution u = coszx.
cos® x cos® x

U
Then P sinz, so that du = —sinxzdz. Thus, in terms of u, the integral becomes
x

1—u? 1 1 1 1
—/ 5u du:/(—u_5—|—u_3) du = ZU_4_§U_2+C: “costr— —cos 2z +e,
U

where ¢ is a constant of integration.

B.2 Inverse substitution

Indefinite Integrals:

[ f@ye = [ g where =g, =g

Definite Integrals:

b g~ 1(b)
d
[t@do= [ flo)ddn  where s =g, T =), gis 11
a 97 (a)

B.2.1 Common trigonometric inverse substitutions
For va?—122, a>0 use r =asinf, —

1
For +a?2+22 or ——, a>0 use r = atanf —g<9<g (B.2.2)

a? + x2’

3
For vx?2—a2, a>0 use x = asech, 0§0<g or 7r§9<77r (B.2.3)
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An example for the method of inverse substitution:

0
We calculate / V2 —22dx
Z1
d
Let = v/2sin 6, where —7/2 <0 < 7/2. Then d_:«;: = \/5(3080, so that dz = v/2cos 6 db.
For x = —1, we have § = —7/4 and for z = 0, we have §# = 0. The integral then becomes
; O r 1 20 1 0
/ V2 — 2sin?20v2 cos 0 df = 2 / cos? 0 db =2 / —I—C%dQ = <0 + 5811120)
—7/4 —n/4 /4 —7/4
. n 1
42
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B.2.2 Substitutions by completing the square

In some cases, where the integrand, f(z), in

/f(ac) dx

contains a second-degree polynomial,
az? + bz + ¢, (a, b, ¢c: some given real constants)

we can find a suitable substitution by completing the square. That is

SRR N N S
R e A a 4da? |’

A suitable substitution could then be

An example: completing the square, substitution and inverse substitution:

! d
T
(22 + 22 + 3)3/2

We calculate /

First we complete the square for the term 22 + 2z + 3, i.e.
2?4+ 204+3=(z+1)+2.

We make the substitution w = x + 1. Then the integral becomes

1
/ 7@2 o) du.

Now we use the inverse substitution u = v/2tané, so that

du V2

dd ~ cos2f
and

. 9
9 9 sin® 6 2

2=24+2¢% 0=24+2——— = ———.
ut +2tan + cos2f  cos?0

Thus the integral becomes

/ 1 V2 d@—l/COSGdQ—;sinﬁ—i—c.

9 \3/2 cos?f 2
< cos? 0 )
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Recall that tanf = —— and u = = + 1, so that

V2
U _ z+1
ViZ+2  f(z+1)2+2

sin@ =

Hence

/ 1 o bl
T =1,
(22 + 22 + 3)3/2 2 /(x+1)2+2

where c is a constant of integration.

B.2.3 Substitutions for n root expressions

In some cases, where the integrand, f(x), in

/f(a:) dz

contains an n-root expressions, e.g.
(az + b)™™ (a, b: real constants, m # n : integers Z\{—1,0, 1},
a suitable substitution could be

ax + b=y,

An example for n root expressions of the type (az + b)™", m # n;m,n € Z\{—1,0,1}:

.732

We calculate / W dxr

We use the substitution u = (22 + 3)3/° i.e.

1 3
2058

T = ,
2 2

so that
5
dr = 6u2/3 du.

The integral then becomes

(L 55 3\ (5) o3 _5/ 13 3 43,9 13
/u<2u 2> 5 m du—6 4u 2u +4u du
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B.2.4 The tan (/2) substitution

In some cases, where the integrand, f(6), in
/ f(6)de
is a rational function of cos# and sin 6, a suitable substitution could be

= tan —.
T 1[12

It follows that
dr 1 5,0 2

%zisec 5, or dOZH——xzd(L’
1— 22
[ ——
COS 1+m2
. 2z
sinf = 12
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An example for the tan (6/2) substitution:

de.

We calculate /

COSs

0
With the substitution = = tan 3 we have

1— a2 2

e P
1+ 22 1+ 220

cosf =

so that the integral becomes

/(11332) 1fx2dx:/12962da::/(1x)2(1+x)d1::/<11x+1ix> da

14 22

=—In|l—z|+In|l+zl+c

1+2x
1—2z

:ln‘ +c

NID(NID

B.3 Integration by parts

Consider two differentiable functions, f(z) and g(z), with continuous derivatives. Then

L f(@) g(a)) = F'(@)g(@) + @) (@)

Integrating the above, we obtain

f@(e) = [ F@g@)dn+ [ 1@ @ o

/ (@) (@) de = f(x)g(z) / f(@)g(x) da,

which is the integration-by-parts formula for the indefinite integral of f(x)¢'(x). The
definite integration-by-parts formula is
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An example for integration by parts:

1
We calculate /(1 + ) 2In(1 + z) da.
0

Using the integration by parts formula [ f(z)¢'(x) dz =

fl@)=In(l+z), ¢ =01+2)72

so that

We then have

1
/1+x ) 2In(1 + z) dz
0

—(1+2) ' In(l +2)

Il
o —
|
O\H

1
1
1
= —(1+2) ' In(1+2) —|—/ dx
0

= —(1+2) ' m(l42)| —Q+2)"

11
= > - ~In(2).
5~ 5 m(2)

B.4 Integration of rational functions

Integrals of rational functions

P(z)

Q) "

=/ f(2)

x) dx, we let

where P(x) is a polynomial of degree n and Q(x) is a polynomial of degree m (we write

Deg (P) = n and Deg (Q) = m), can be treated in the following manner:

Case A: Here Deg (P) > Deg (Q):
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By long division, divide @) into P. This will result in an expression of the form

P R(2)
Q(z) Q(z)’

where S and R are also polynomials, with Deg (R) < Deg (Q) and Deg (S) = Deg (P)—
Deg (@) and R being the rest of this division. We then have

/gg; dz:/S(x)d:E+/

Case B: Here Deg (P) < Deg (Q):

= S(z) +

R(x)
Q) dx.

Note: By theorem, any polynomial with real coefficients can be factored in terms of
ajr +b; and pj:c2 + g;x + s; for some real constants a;, b;, p;, q;, s;, where pjx2 +qjT+ 85
is irreducible (cannot be factored further, i.e. q]2- —4pjs; <0).

(z)
Q(x)

different cases; depending on the factorization properties of Q(z):

Given this fact, we can write as a sum of partial fractions, albeit we need to consider
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Case I: Let Q(z) be a product of k distinct linear factors. That is
Q(z) = (a1z + by)(agz + ba) - - - (axx + by).

Then @Q(x) can be written as the following sum of partial fractions:

P(LU) A1 4 A2 4 n Ak
Q(z) aix+by  agx+by arx + by

The constants, A;, must then be determined such that the above relation is satisfied.
This is done by multiplying the above expression by () and then comparing coefficients
of different powers of x. This will result in a linear system of algebraic equations which
determines Ay, As, ..., Ag.

We then have
de= [ —————d ——d ——dx.
/Q(x) v /a1:r:+b1 v asx + by S ant + by

Case II: Let Q(z) be a product of k linear factors, where some are repeated r < k times.

For example, say @ is of degree 4 which factorizes as follows:
Q(m) = (awc + b1)2(a2x -+ bg)(a3x + 63)

Then the sum of partial fractions would be of the form

P(z) A Ay As Ay
= + 5+ + :
Q(ZL‘) a1z + bl (alsc + bl) asx + b2 asx + b3

Again, the constants A; can be determined by multiplying the above expression by Q(x)
and comparing coefficients of different powers of .

Case III: Assume that Q(z) can be factored in terms of linear factors and irreducible
second-degree factors of the form

pja:2 + qjr + s, qu —4pjs; <0,
where none of the irreducible factors appear more than once in the product.
For example, say () is of degree 6 and has factors of the form

Q(x) = (a1 + b1)(azx + by)(pra” + quz + 51) (P23 + G2 + 52).

Then the sum of partial fractions would be of the form

P(.%') Ay n Ag Bz + C4 Box + Cy
Q(xr) ax+b  asxr+by praZtqr+s pal+qgr+sy
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The constants A;, Bj, C; are determined by multiplying the above expression by Q(x)
and comparing coefficients of different powers of x.

Case IV: Assume that Q(x) can be factored in terms of linear factors and irreducible
second-degree factors of the form

pjx2 + g + s, qu- —4p;s; <0,
where some of the irreducible factors appear more than once in the product.
For example, say () is of degree 6 and has factors of the form

Q(x) = (a1 + b1)(azx + be)(p12? + 1z + 51)°.

That is, the irreducible second-degree factor appears two times. Then the sum of partial
fractions would be of the form

P(.%’) B Ay " Ag Bix + C4 Box + (9
Q(xr) ax+b  ax+by pratqr+s (pa? 4 qa+s)?

The constants Aj, Bj, C; are determined by multiplying the above expression by Q(x)
and comparing coefficients of different powers of x.

In view of the above Case III and Case IV, one should point out that
/ ! Ly ‘1(x)+k (k i bit tant, a # 0) (B.4.1)
——— = — tan — is an arbitrary constant, a 4.
x24+a®> a a ’ Y ’

as well as the following two Statements:
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Statement 1:

Let ax?® + bx + ¢ be an irreducible second-degree polynomial, i.e.
b2 — 4ac < 0. Then

1 2 _ 2ax + b
———dr=—-—=—1t% = k B.4.2
/ax2+b:c+c v Viac — b? o < 4(10—52) i ( :

where k is a constant of integration.

Statement 2:

Let
I / L 4 (B.4.3)
n = —_— :(," BN
(2 + a?)"
where n =2, 3, .... Then the following reduction formula is valid:
L= - +(2n—3)1 (B.4.4)
" 2a2(n —1) (22 +a?)n! net o

Examples for integrals of rational functions:

a3+ 4x? + 172 + 21
(x +3)2(2z — 1)(z + 2)

X.

1. We calculate /

We write the given rational function as the following sum of partial fractions:

z3 + 422 + 17z + 21 Aq Ay As Ay

@+3202e—1)@+2) 2+3 (@+37% 2w—1" 242

We multiply the above relation by the denominator on the right-hand side, i.e. by (x +
3)2(2z — 1)(z + 2), to obtain the polynomial relation

2 4+ 42 + 172 + 21

= Ay(z +3)(2z — 1)(z 4+ 2) + As(2x — 1)(z + 2) + Az(z + 3)%(z + 2) + Ayg(z + 3)*(22 — 1).

2

Equating coefficients of 22, 22, ! and 2°, respectively, we obtain the following relation

for the constants A;:

2A1 + A3 +2A4 =1

9A; +2A5+8A3+ 114, =4
TAL +3A2+21A35+ 1244 = 17
—6A; — 245+ 1843 — 94, = 21.
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The solution of the above system of linear algebraic equations (using for example Gauss
elimination) gives the following unique solution for the constants A;:

Ay =—-1, Ay=-3, A3=1, As=1.
Thus

a3+ 42 + 172 + 21 1 3 1 1

(x+3)2(2z — 1)(z + 2) _:c+3_(ac+3)2+2x—1+x+2

and the integral becomes

/ 23 4+ 42? + 17z + 21 .
(x +3)2(2x — 1)(z + 2)

_/ 1 3, 11
- 2+3 (@+32 20-1 2+2) "

3 1
=—lnlz+3|+ ——=+-In2z—-1|+In|zx+2|+c
r+3 2

223 + 222 + 3z — 1
2. leulat da.
We Cacuae/(:c+1)(21:—1)(:c2+1)2 !

We write the given rational function as the following sum of partial fractions:

23 + 222 +3x— 1 Ay Ao Biz+C4 Box + Cy

(x+1)(2m—1)(x2—|—1)2_x+1+2m—1 2+1 (22 +1)2°

Multiplying this relation by the denominator on the left-hand side and equating different

powers of x, we obtain the following linear system of equations for the constants A;, B;
and Cj:

241+ A2 +2B1 =0

—A1+ A2+ By +2C, =0

4A1 +2A2+ B1 +C1 + 2By = 2
—2A1+2A+B1+ B+ C1 +Cy =2
21 +A2—B1 —By+C1 +Cy =3
-A1+A - C1 —Cy=—1,

with the unique solution

3
Ay = Ay=1, Bi=—%, Bp=0, Ci=

1
37
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The integral now becomes

/ 203 + 222 + 32— 1
(

)2 - D+ 12 @

_1/1d+8 1d3/$d+1/1d+/
"3 a1 T 21T 215 21T ) @22

1 4 3 7 1
:§1n|x+1|+1—51n|21:—1|—Eln(x2+1)+1—0tan_1x+f

1
dzx

Note that the last two terms in the above expression have been obtained by using State-

ment 2, i.e.

/ 1 PR +1t .
— 0y AL = T — tan x.
(x241)2 222+1 2

Some important trigonometric identities:

1
cos’ x = 3 (14 cos2z)
. 9 1
sin”z = 5 (1 — cos2z)

sin’ z + cos’r =1
sec’r — tan’z = 1
cosec’s — cot’r = 1

cos(z +y) = coszcosy —sinzsiny

sin(z + y) = sinx cosy + cos x cos y

tanx + tan
tan (z + y) = tanz 4 tany
1 —tanz tany
where
sinx
tanx =
CoS T
1 COS T
cotx = =

tanx sin x

cosec T = —
sinz
secx =
cos
cos(—x) = cosz, sin(—x) = —sinzx.
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Appendix C

Some references on differential
equations

Birkhoff, G. and Rota, G.-C. Ordinary Differential Fquations, 4th edition, John Wiley &
Sons, Inc, 1989

Gudemenko, F. C., Povluk, I. A. and Volkova, V. O. A Collection of Problems for Differ-
ential Equations (in Ukrainian), Veshchia Skola, 1972

Ince, 1. E. Ordinary Differential Equations, Dover, 1956

Kamke, E. Differentialgleichungen: Losungsmethoden und Lisungen, B. G. Teubner, Stuttgart,
1977

Krasnov, M. L., Kiselev, A. I. and Makarenko, G. 1. A Collection of Problems for Ordinary
Differential Equations (in Russian), Veshchia Skola, 1978

Murphy, G. M. Ordinary Differential Equations and Their Solutions, Dover Publications,
Series: Dover Books on Mathematics, 2011

Pennisi, L. L. Elements of Ordinary Differential Equations, Holt, Rinehart and Winston,
Inc., New York, 1972
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Appendix D

Solutions to some of the exercises

Exercise 1.1.1: nr. 1 b

We consider the set
S={fi(x) =lnz, fo(x)= 1nx2, f3(x) = 631}

on the interval D = (0, 0o). Since In2? = 2Inx, the set S is clearly a linearly dependent
set, as the equation

cilnz + 2cInz + 3 =0

has nontrivial solutions for ¢; and cs. For example the above relation is true if ¢y = —2,
c2 = 1 and c¢3 = 0 for all x € D. Therefore it follows by Proposition 1.1.2 that the
Wronskian is zero for all z € D. We verify this:

filx)  fa(z) fa(x) Inz 2lnz e3®
W1, fa, f3l(x) = | fi(x) fo(z) fi(x) | =] /= 2/ 3e*
fl(x) () f5(x) —1/22 —2/2% 9e%*

=0 forall z € (0, c0).

Exercise 1.1.1: nr. 1 d

‘We consider the set

S ={fi(zx) =¢€" fo(x)=€"7, fs(x)=2axe®, fi(zr)=mxze "}
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on the interval D = R. Let us calculate the Wronskian of the set S in the point x = 0:

A0) R0) 500 4O | |1 10 o
b g 10| B0 BO SO A0 | -1
1(0)  f5(0)  f5(0)  fi(0) 1 12 -2
Py 2o 20 Po] |11 s

= —16.

Since the Wronskian is nonzero in a point in the interval R (in this case we have chosen
x = 0), it follows by Proposition 1.1.2 that the set S is linearly independent.

Exercise 1.1.1: nr. 2

We consider the set

S={fi(z) = z2, , fo(z) = x|x|}

on R. For x > 0 the Wronskian for S is

2 2?

W[f17 fQ]('r) = 2 21

’:21’3—21‘3:0

for all x € (0, 00). For z < 0 the Wronskian of S is

a? 3 3
Wit fol(@) =\, 5 |=—2"+22"=0

for all z € (—oo, 0). We note that for fa(z) = z|z|, the derivative of fo(x) in the point
z=0Iis

h) — h h| — h|h
f5(0) = lim folw 4 1) = Jalx) = lim (z+ h)lz+ h| - ja] = lim M
h—0 h e h—0 h weog h—o0 h
= lim |h| = 0.
h—0

Hence the derivative of fi(z) and fo(x) exists at x = 0 and we can calculate the Wronskian
for S at x = 0:

Win, R0 = o o] =o.

From the above it follows that the Wronskian for S is zero for all x € R. However,
Proposition 1.1.2 does not make a conclusion form this fact. So to establish whether
the set S is linearly independent or linearly dependent on R, we need to consider the
equation

c1x® + cozxlr| =0

and investigate the possibilities for ¢; and ¢ to satisfy this relation. We first consider the
case x > 0. Then we have

a1z’ + cr? =0
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which leads to the condition ¢; + c2 = 0 for all z € [0, co). Consider now the case z < 0,
for which we have

clxz — czx2 =0.
This leads to the condition ¢; — ca = 0 for all z € (—oo, 0]. For the case z = 0, we have

c10 — 20 = 0.

for which there are obviously no conditions on ¢y or on cs. Now, for all x € R both
conditions, ¢; +co = 0 and ¢; — co = 0, have to be satisfied, which is possible only if ¢; =0
and co = 0. Hence by Definition 1.1.3 the set S is linearly independent on R.

189

Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/GTca

Exercise 1.1.1: nr. 3 b

We show that

y(x) = ¢1 cos(2x) + c2sin(2x), (c1, co arbitrary constants)
is the general solution for the equation

y'+4y =0

for all x € R. We apply Proposition 1.1.5. Thus we need to show that the set of
functions S = {¢1)(z) = cos(2z), ¢2(x) = sin(2x)} is a linearly independent set for all
x € R and that ¢;(z) and ¢2(x) satisfy the given differential equation. We calculate the
Wronskian in x = 0:

cos(2z)  sin(2x)

Wlor ¢(0) = —2sin(2z) 2cos(2x) -
=0

By Proposition 1.1.2 it then follows that the set S is linearly independent on R. We
now differentiate ¢1(z) and ¢2(x) twice and insert those functions and their derivatives
into the differential equation to verify that ¢;(z) and ¢o(x) are indeed solutions of the
equation. It then follows by Proposition 1.1.5 that y(z) = ¢ cos(2z) + c2 sin(2x) is the
general solution of y” + 4y = 0 for all x € R and that the solution domain is R.

Exercise 1.1.1: nr. 5 c

We construct a second-order homogeneous differential equation that admits the following
set of solutions:

S ={¢1(x) = xcos(1/z), pa(x) = xsin(1/x)}.

We apply Proposition 1.1.4. To construct the equation, we first need to show that the
set S is linearly independent. The differential equation with dependent variable y then
follows from the relation Wp1, ¢9, y](z) = 0, where W denotes the Wronskian of the set

{91(2), da(2), y(x)}-

To establish the linear independence of the set S, we apply Proposition 1.1.2 and
calculate the Wronskian in the point z = 1/7:

—1/m 0
/ = —1.
-1 s

Wig1, ¢2](1/7) = ‘

By Proposition 1.1.2 it then follows that S is linearly independent on R\{0}. Applying
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now Proposition 1.1.4, we calculate the following Wronskian:

¢1(x)  ¢o(x)  y()
W1, da, yl(x) = | ¢1(x) ¢h(x) o' (z)
¢(x) d5(x) o' (z)

xcos(1/x) xsin(1/z) y(x)
= cos(1/z) + (1/z)sin(1/z) sin(l/z) — (1/z)cos(1/z) y'(x)
—(1/2%) cos(1/2) —(/ef)sin(lfz) ()

= —y" [cos®(1/z) + sin*(1/z)] — % [cos?(1/z) +sin®*(1/z)] y

where we have used the identity
cos?(1/z) +sin?(1/z) =1 for all z € R\{0}.

By Proposition 1.1.4, the differential equation which admits the general solution given

by the linearly independent set of functions S, is then given by the relation W g1, ¢2, y](z) =
0. Hence the equation is

1

........................................................... sesssssssssssAlCcatel-Lucent @
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In the near future, people may soon think it's strange that
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Exercise 1.2.1: 2

The functions

$1(z) =e “cosz, ¢p2(x) = e Tsinx
satisfy the differential equation

y'+2) +2y=0

so that these functions belong to the solution space of this differential equation. Moreover,
these functions form a linearly independent set,

B ={e *cosx, e “sinx}.

It can easily be verified that the set B is a linearly independent set by calculating the
Wronskian in, for example, the point x = 0. This gives

W[¢17 ¢2](0) = 3,

so that, by Proposition 1.1.2, the set B is linearly independent. Furthermore, by
Proposition 1.2.2, the set B is a basis for the solution space of the differential equation
y" 4+ 2y’ + 2y = 0. Since this basis consists of two functions, which are vectors in C*°(R),
the dimension of the solution space is two. The solution space is therefore a 2-dimensional
subspace of C*°(R) given by the kernel of T, where T is the linear transformation

d? d

T : y(x) — Ly(x), L:@—FZ%—FZ

Exercise 2.2.1: 1 e

The task is to find a general solution of the following separable first-order differential
equation:
1-— y2
/
—J
v+ 1— a2

for all x > 1. First consider the case
y(z) = +1

which are obviously two solutions of the given differential equation for all x > 1. Consider
now the case y(x) # +1: We can separate the z— and y-variables and write the differential
equation in the form

dy dx

1—y?2 22-1

To find a general solution, we now have to integrate this relation:

/ dy _/ dx Le
1—y2 ) 22—1" 7"

Download free eBooks at bookboon.com



where ¢ is a constant of integration. Note that

2
)
sum of partial fractions:
1 A n B
(I-y(A+y) 1-y 14y

or
1=A1+y)+ B(1—-y),

so that A =1/2 and B = 1/2. That is

o —a ) 2 (i)

In the same way we can write

11 1 1 1
2—-1 2\z-1 2\z+1/"°

Thus the above integrals take the form
d d d
erad A b=

1—vy Il+y J xz—1
so that
—In[l-y|+nl+y=hlz—1 -Injlz+1|+a

dzx

+Cl,

can be written as the following

where c; is an arbitrary constant that plays the role of the constant of integration. This

can be simplified to

1+y z—1
In|l—=| =1
nll—y‘ n<x+1D+cl
or
I+y| o lz—1
1—y| 41|
Since x > 1, we have
z—1 z—1
= >0
z+1 z+1
so that
1+y e z—1 '
1—y rz+1
1
For tY > 0 we solve y(z) from the relation
-y
1+y:601 r—1
1—y x+1)’
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to obtain a general solution of the given differential equation in the form

etr—1)—z—1
el(x—1)+z+1

y(z) =

1
For ] +y < 0 we solve y(z) from the relation

_ 14y _ oo r—1
1—y/) r+1

to obtain a general solution of the given differential equation in the form

etr—1)+z+1
y(x) = :
etlz—1)—z—1

Note that the two solutions y(z) = 1 are singular solutions for this equation.

/
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Exercise 2.2.1: 3 b

We find a general solution for
Yy —2® +ayy =0

by making the substitution
y(z) = zo(),

where v(x) is a new dependent variable. The x-derivative is
y’ =v+av.

Substituting this into the differential equation we obtain a differential equation in the new
dependent variable v(z), namely the following first-order equation:

zov +20% —1= 0,

which is a separable equation. Separating the variables, leads to the following integrals:

v 1
/1_21)2d1):/xd$+01,

where x # 0. Evaluating these integrals, we obtain
1 2
—Zln|1 — 20| = In|z| + e,

or, by multiplying with —4 and introducing a new arbitrary constant co = —4c1, we obtain

1
In ‘1 - 2112} =In <4> + co,
x
Upon inverting In ‘1 — 2@2‘, we obtain

v? = % (1 — x*4e‘32) .

We now write the answer in terms of the original dependent variable y(x) by replacing
v(z) = y(x)/z, so that a general solution takes the form

1

2 _ 4 c
Y (:c)—2x2 (z* —e®) forallz €R.

Exercise 2.3.1: 1 d

We find the general solution of the linear first-order equation
Y +y+sinz+a2>=0 forallzeR.

The integrating factor is

eflda: — 7.
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We multiply the equation by this integrating factor:

/ .
"y + ey = —e®sinx — e%a,

which has the equivalent form

d
— (e%y) = —e®sinz — %,

dx

Integrating both sides of this equation with respect to z, we obtain
ety = —/e"”sinxdm — /exac?’dl‘ +c

1 1 )
= — (—269” cos T + ie‘” sinx) — %13 — 3¢ 2% + 61 — 6% + c1.

Thus the general solution is
1 L. 3 2 —x
y= 508z —5sinzg—z + 3z — 6x + 6+ cre for all z € R,

where ¢; is an arbitrary constant.

Exercise 2.3.1: 2 ¢

We solve the initial-value problem
zy +y=zcosz, y(m/2) = 1.
Let  # 0. Then we divide the equation by x, so it takes the form
, 1
Y +— Yy =CoszT.
T
The integrating factor is
ef(l/x)doc _ eln|:c| _ ’1“
Consider z > 0: Multiplying the equation by the integrating factor x we obtain
2y +y=2xcosx, or

T (xy) = x cos .

Integrating with respect to x, we obtain

Ty = /mcosxd:c+cl

=zxsinz + cosx + c3.

Thus the general solution is

. 1 €1
Yy =SINx + —COST + —
x T
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For = > 0 we have the integrating factor —z, so that the equation takes the form
—xy —y = —wcosuz,

which is, after multiplying by —1, the same as in the case x > 0. Thus the general solution
that we have obtained above holds for > 0 and x < 0. Using now the initial condition
y(m/2) = 1, we determine the constant that picks out the curve which contains this point
(m/2, 1) from the family of one-parameter curves given by the above general solution with

the arbitrary parameter ¢;. We have

y(m/2) = sin(mw/2) + %COS(ﬂ'/Q) + % =1,

so that ¢; = 0. Thus the solution of the initial-value problem is

1
y=sinx + —cosz for all z € R\{0}.
x
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Exercise 2.4.4: 2 ¢

We find a general solution of the Bernoulli equation
oy +y=v*Inz, x> 0.

By Proposition 2.4.2 we make use of the substitution
v(z) =y H(z)

to linearize the given equation. The derivative becomes

To do the substitution, it is easier to first divide the given equation by xy?, so the equation
takes the form
! 1 1
J + —=—-Inz.
Ty

Y2
Making now the substitution, we obtain the following linear equation:

v 1
v —=—=—"1Inz.
T T

We now solve this linear equation: An integrating factor for the linear equation is
1
ef—(l/m)dw _ 6—1nm -
x
Multiplying the equation with this integrating factor, we obtain
d (U) 1 |
— (-] =—-=Inz
dx \x x?
and, upon integrating

T

v —/xQInxdx+cl,
we have (doing integration by parts)
v 1

—=—lnx+ — +c.
r x

Substituting back, v(x) = y~!(x), a general solution for all x > 0 takes the form

y(@) = (Inz+1+cz) .

Exercise 2.4.4: 2 g

We find a general solution for the Bernoulli equation

X
Y+ _ny = 2\/Y, x> 1.

1
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By Proposition 2.4.2 we make use of the substitution v(z) = y*/?(x) to linearize the
given equation. The substitution and its derivative can also be written as

v (z) = y(x), y = 2vv
Then the linear equation takes the form
g
2(1 —22) 2
We now solve this linear equation: An integrating factor for the linear equation is

(/) fe/(—a?)de _ ~(1/Om(—?) _ 1
(1 _ 562)1/4

Multiplying the linear equation with this integrating factor, we obtain
d 1
2T - 2—1/4}:_1_2—1/4
=2t = S(1-a?)

and, upon integrating

(1—2?) " Viy = /%(1 ) A

1
we have © = —2(1 — 2?)3/* 4 ¢,. Substituting back, v(z) = y'/2(x), a general solution for
x
all x > 1 takes the form

2
y(x) = (—%(1 — ) (- x2)1/4) .
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Exercise 2.4.4: 6

We solve the initial-value problem for the following Riccati equation:
(z —zb)y —2? —y+22y> =0, =z € R\[0, 1],

where y(2) = 1. To find a special solution ¢(z), we make use of the Ansatz
o) = ka?,

where k is an unknown real number. Inserting this Ansatz into the given equation, we
obtain

(x — a2k — 2% — ka® + 2z (k:x2)2 =0

or, after some simplifications,
(k—1) (2 + 2k2°) = 0.

Thus, the Ansatz ¢(z) = kx? is a solution of the given equation for k = 1, i.e.
o(x) = 2*

satisfies the given Riccati equation. Following Proposition 2.4.3 we are now able to
linearize the given Riccati equation in terms of a new dependent variable v(z) by the
substitution

y(w) =a"+

v(x)’

The derivative of this substitution is

,U/

/
=2z — —.
Y )

Substituting this into the given Riccati equation, we obtain

' 1 1)?
(z — %) <2ac—:j2>—a:2— <x2+v>+2x<x2+v> =0

or, after some simplifications,

,  dad—1 2z
v+ v+ =0,
i —z -z

which is a linear first-order differential equation in the dependent variable v(z). An inte-
grating factor for this linear equation is

ef(4z3—1)/(m4—z) de _ eln(r4—z) — 2t

Note that #* — z > 0 in the interval R\[0, 1]. Multiplying the linear equation with this
integrating factor, we have

(' — ) + (42 —1)v = -2z or di [(z" — z)v] = —2z.
T

Download free eBooks at bookboon.com



A First Course in Ordinary
Differential Equations Appendix D: Solutions to some of the exercises

Integrating the previous relation with respect to x, we obtain
(2 —x)v = —2% + 1,

so that the general solution of the linear equation becomes
C1 — .I'2

v(x) = o p— for all z € R\[0, 1].

A general solution of the given Riccati equation is therefore

24 z(x® —1)

y(z) = p—

With the initial condition y(2) = 1, we obtain

2(23 — 2)
2)=44+ ——=1
y(2) =4+ p—
so that ¢; = —2/3. The solution of this initial-value problem is therefore

9 z(z®—1)  z(2z+3)
—(2/3) — 22 32242

for all x € R\[0, 1].

y(z) ==z

[ ]
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Exercise 3.3.2: 1 h

We find the general solution of the equation
y' +4y =9cos’x

for all x € R. To find a particular solution we will make use the method of variation
of parameters as given in Proposition 3.3.2. First we calculate the general solution of
the associated homogeneous equation

y'+4dy=0

by the Ansatz y(z) = e*, A € C. This leads to the condition A\?> + 4 = 0, which has
the two solutions A\; = 2i, Ay = —2i. The general homogeneous solution is therefore [see
Proposition 3.2.1 c)]

om(x; c1,c2) = c1 Re {ezm} + coIm {62“} = cj cos(2x) + cosin(2z) for all z € R.

To find a particular solution y,(x) by the method of variation of parameters, we make the
Ansatz

Yp(z) = wi(z)¢1(x) + w2(z)P2(z),

where ¢1(x) and ¢a(x) are the two linearly independent solutions of the above homoge-
neous equation, i.e.

¢1(x) = cos(2z), ¢o2(x) = sin(2z),
whereas w1 (z) and wa(x) are given in Proposition 3.3.2 as

(9 cos? z o (x) [ 9cos’z ¢y (x)
W1, ¢2](x) ) Wler, ¢al()
Here W1, ¢2](x) is the Wronskian

wy(z) = dz, ws(x) dx.

cos(2x)  sin(2x)

W1, ¢2](x) = ‘ _2sin(22) 2cos(2z) ‘ = 2cos?(2z) + 2sin’(2z) = 2.

Thus we have

wy(x) = —g/sin(Qa;) cos? x dx = —g/sin(Qa;) <chb(2x>> dz

-2 < / sin(2z) dx + / sin(2z) cos(2) d:c>

_ 7% <§COS(29§)> - % / %sin(élx) de

9 9
=3 cos(2x) + D) cos(4x)
Also, in a similar way, we obtain

wa(z) = gsin(%') + 3% sin(4x) + gx
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A particular solution is therefore

yp(x) = (g cos(2z) + 3% cos(43:)) cos(2x)

9 9 9
+ <§ sin(2x) + — sin(4z) + gzv) sin(2x)

32
= 3% cos(2x) + za: sin(2x) + g

so that, by Proposition 3.3.1 a), the general solution of the given nonhomogeneous
equation is

y(z) = ¢u(w; c1,c2) + yp(z)

| ©

= ¢ cos(2z) + cpsin(2z) + % cos(2z) + g%‘ sin(2zx) +

= ¢1 cos(2z) + co sin(2z) + gw sin(2x) + 2

for all z € R, where ¢; and é; are two arbitrary constants (Note: ¢; = ¢; +9/32).
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Exercise 3.3.4: 1 t

We find the general solution of the equation
y" — 9y = 40ze3 cos(2z)

for all z € R. The general homogeneous solution ¢z (x) of the corresponding homogeneous
equation

y' =9y =0
is obtained by the Ansatz y(z) = e**, so that A\2 — 9 = 0 and
3z

om(x) = c13% + coe”

To find a particular solution of the given nonhomogeneous equation we make use of the
method of undetermined coefficients and consider the equation in the complex form,
i.e.

Yy — 9y = 4032,
where y.(x) is a complex function and
y(x) = Re {yc(x)}-

An Ansatz for a complex particular solution y.,(z) of this complex equation is (see Propo-
sition 3.3.4)

(3+2i)x

ycp($) =€ wc(:r),

where w(x) is an unknown complex function. Inserting this Ansatz into the above complex
equation, we obtain

wl +2(3 + 2w, + (—4 + 12i)w, = 40z.
To find a solution for this equation we use the Ansatz
we(x) = Bix + By, B;jeC
which leads to
(3 +2i)By + (=2 + 6i)Bix + (=2 + 6i) By = 20.
Equating coefficients of x and 1, we obtain

(—2+ 6Z')Bl = 20, (3+2i)B1 4+ (—2+ 6i)By = 0,

so that
9 1
By=-1-3i, By=>-—i.
1 Z, 0= %770 v
Thus a solution for w.(z) is
9 1
we(z) = —(14 3i)x + 5 1—02
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and a complex particular solution is
9 1 )
yc(lﬁ) = <—(1 + 3i)$ + g — E ’L) e(3+20)z

A particular solution y,(z) of the given real differential equation is then the real part of
this complex particular solution yq,(x). We obtain

ple) = [(2 - 5”) cos(2z) + <3x + 110> sin(Q:L')] 3

so that the general solution takes the form

9 1
y(x) = 163 + coe ™3 + [<5 — x> cos(2x) + (3:U + 10) sin(2x)} 3"

for all x € R.

Exercise 3.4.1: 1 g

We find the general solution of the following second-order Cauchy-Euler equation
22y —3zy — 5y = 2*Inz for all z > 0.

Using Proposition 3.4.1 we introduce a new independent variable z as
v=e, () =y(2).

The given equation then becomes

2z

We now need to find the general solution y(z) of this equation. We first find the general
solution ¢ (z; c1,c2) of the associated homogeneous equation

Zig - 4% —5y(z) = 0.
With the Ansatz

y(z) = e, reC
we obtain

PN =X -4\ -5=0A+1)(A=5) =0
so \1 = —1 and Ay = 5. Thus

br(2; c1,02) = c1e* + cg e

To find a particular solution y,(z) of

-2 472 —5y(z) = ze*.
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we make use of the method of undetermined coefficients as described in paragraph
3.3.3 Case III and use the Ansatz

The derivatives are
dy dw
(2249
dz (dz + w>
d?y d*w dw
—=—-—=+4—+14
a2 (d T w)
and the equation then becomes

d?w

To find a solution for w(z) we use the Ansatz
w(z) = A1z + Ay

as suggested by the method of undetermined coefficients discussed in Case Ia in
paragraph 3.3.3. We have

—9A412 — 94 = z.
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Equating coefficients of z and 1, we get A1 = —1/9 and Ay = 0. Thus a solution for w(z)
is
1

w(z) = ~57

and a particular solution is therefore

1
y(z) = —5 2

so that he general solution of the differential equation, with z as its independent variable,
becomes

1
y(z) = cre " + cped® — 9 ze?*.

Substituting now z = In(z), we obtain the general solution in terms of z, namely

y(x) =cra™t + coa®

1
— §ac2 Inxz
for all z > 0.

Exercise 3.5.1: 1 e

We find the general solution of the second-order homogeneous equation
22y — 2z + (42° +2)y =0

for all € R\{0}, where one solution is given as
¢1(xz) = x cos(2x).

Using Proposition 3.5.1 we make the Ansatz y(x) = ¢a(z), with
$2(x) = v(x)d1(2) = v(z)z cos(2z)

for a second linearly independent solution of the given equation. This leads to the following
condition on v(x):

cos(2x) v" — 4sin(2z)v" = 0.

We let

so that the equation becomes a separable first-order equation, namely

sin(2x)

#(2) = 4Z($)cos(2x)

with general solution

|z(z)| = € cos™2(2x).
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Integrating this expression again, we find

| 1sin(2x)
v(z) = 2 cos(2x)

so that a second solution of the given equation takes the form
1
po(x) = i§$ sin(2z).

Since ¢1(x) and ¢a(z) are linearly independent solutions, we have obtained the general
solution of the given differential equation, namely

y(z) = c1x cos(2z) + cox sin(2x)

for all z € R\{0}.

Exercise 4.2.1: 2 f

We solve the following initial-value problem:
yW+9y" =0, y(0)=2, ¥(0) =1, y"(0) =2, yP(0) = 1.
We first calculate the general solution by the use of the Ansatz
y(x) = e, reC.
This leads to the following condition on A:
Pi(N) = A+ 902 = 22(\2 +9) =0,
which has the four roots
AM=X=0, A3=3i, N =-30.
Now A1 = 0 and Ao = 0 gives two real solutions, namely
¢1(x) =1, ¢o(xr) =z for all x € R,

whereas the complex root A3 = 3i gives two real solutions [see Proposition 4.2.1 b)],
namely

¢3(z) = Re {€¥*} = cos(3z), ¢u(z) =Im {€**} =sin(3z) for all z € R.
The general solution of the given equation for all z € R is thus
y(x) = ¢1 + cox + c3 cos(3x) + ¢4 sin(3x).
The derivatives of the general solution are as follows:
Y (x) = cg — 3ezsin(3z) + 3cq cos(3z)
y"(x) = —9c3 cos(3x) — ey sin(3x)

y3) (2) = 27¢3 sin(3z) — 27¢4 cos(3z)
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and, for the initial conditions in the point z = 0, we obtain

c1 +c3 =2, co+3cy =1

—9c3 = 2, —27cy =1
with the solution
20 10 21
01_97 02_97 €3 = 9’ C4 = 27"
The solution of the given initial-value problem is thus
2 1 2 1
y(x) = 30 + 30 T3 cos(3x) — 7 sin(3x) for all z € R.
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Exercise 4.3.2: 1 p

We find the general solution of the following fourth-order linear nonhomogeneous equation:
y @ 42y 4y = (24 1)

for all z € R. To find the general solution ¢g(x c1,co,c3,c4) of the corresponding homo-
geneous equation

y @ +2yB) o =0,

we use the Ansatz y(z) = e**, which leads to the condition
PN =242+ X2 =0 or N\+1)2=0.

The four roots of characteristic polynomial Py(\) are
AM=X=0, A3=XN\=-1

so that

op(rer,ca,cs,cq) =c1 + cow + cge” ¥ 4 cqze” "

To find a particular solution y,(x), we make use of the method of undetermined
coefficients and use the Ansatz

yp(z) = 2% (Ag2® + A1z + Ag) = Aoz + A1z® + Agz®.

as given by Case I (3) in paragraph 4.3.1., due to the fact that the degree of the
polynomial on the right side of the given equation is two and the coefficients of y and 3/
are zero. Inserting this Ansatz into the given nonhomogeneous differential equation, we
obtain

24 Ay + 2(24 A0z + 6A;) + 12427 + 6 A1z + 240 = 2% + 22 + 1.
By equating the coefficients 2, x and 1, we obtain

1245, =1
48A5 +6A1 =2
24A9 + 1241 + 245 =1

with the unique solution Ay = 1/12, A; = —1/3 and Ay = 3/2. Thus a particular solution

1S
_ 1 4 1 3 3 2
vplo) = m @ - gt g

and by Proposition 4.3.1 the general solution of the given equation takes the form
— e 1L 41 5 3 5
y(x) = c1 + cox + cse™ ¥ + cyxe +ﬁx _gm +§x

for all x € R.
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Exercise 4.3.2: 1 q

We find the general solution of the third-order equation
y® 43y + 3y +y=(x+1)e "
To find the general solution ¢ (z; ¢1, c2, c3) of the associated homogeneous equation
Y3 £ 3y + 3y +y =0
we use the Ansatz y(x) = e*®, which leads to the condition
Ps(A) =X 432430 +1=0 or (A\+1)P*=0.
The four roots of the characteristic polynomial P;(\) are
A=A =X3=-1
so that
pu(xcr, e, c5,ca) = (c1 + cox + c32?) e

To find a particular solution y,(z), we make use of the method of undetermined
coefficients and use the Ansatz

yp(2) = e "w(),

where w(x) is an unknown function. This Ansatz is given by Case III in paragraph 4.3.1.
For the derivatives, we obtain

/

Y, = (w' — w) e *

y;,/ = (w” — 2w + w) e ”

y;(;g) = (w(3) —3w” + 3w’ — w) e *.
Inserting this Ansatz into the given nonhomogeneous differential equation, we obtain
w® =z +1.

To find a solution w(zx) of this third-order nonhomogeneous equation we can make use of
the method on undetermined coefficients discussed in Case I in paragraph 4.3.1.
Since the coefficients of w”, w’ and w are zero, the Ansatz is

w(z) = 23(A1z + Ay),
with
w' = 4A;2% + 342>
w" = 124127 + 6 Agz

’LU(S) = 24A1x + 6Ay,
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so that
24A1x + 6A9 = x + 1.

Equating coefficients of x and 1, we obtain
244, =1, 6A4p=1

so that A; = 1/24 and Ay = 1/6, and a solution for w takes the form

Hence a particular solution y,(z) for the given equation is

1 1
yp(z) = (ﬂ at 4 6 x3) e * forall z e R.

The general solution is then

y(x) = du(w; c1,c2,¢3) + yp()

1 1
= (Cl +02x+03w2 + ﬁmA + 6:53) e forall z e R
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Exercise 4.3.4: 1 ¢

We find the general solution of the following third-order nonhomogeneous differential equa-
tion

e3:p

G _6y" + 11y —6y = ——
y y Ay — 6y = 5

for all z € R. First we calculate the general solution ¢y (x; c1,c2,c3) of the associated
homogeneous equation

y®3) — 6y" + 11y — 6y = 0.
Using the Ansatz y(x) = e*, X € C, we obtain the condition
PsA) =X =6 2 +11A—6=A—1)(A—2)(A—3) =0.
The three roots of the polynomial P3(\) are
AM=1 X=2 AN=3
which gives three linearly independent solutions of the homogeneous equation, namely
or(z) =€, do(x) =€™, ¢3(z) =

The general solution of the homogeneous equation becomes

3z

b (x; c1,c2,c3) = 1% + c2e®® + cze for all x € R.

To find a particular solution for the given nonhomogeneous equation, we make us of the
method of variation of parameters as described in Proposition 4.3.3. A particular
solution y,(z) is given by

yp(x) = wi(z)p1(x) + w2 () P2(2) + w3 ()3 (x),
where w;(z) (j = 1,2,3) have the following form:

/ Wi[(f), ¢2, ¢3]($)
¢1, P2, P3] (37)

Wal¢r, (f), ¢3](x)

qbla ¢2a ¢3 (l’) de
W3 ¢17 ¢27 ]( )

dz.

Wér, oo, d3l(x)

Here W1, p2, ¢3](x) is the Wronskian of the set of solutions {¢;(x), ¢2(x), ¢3(x)} and
63:13
f=aT
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The notation Wj[1,...,0j-1,(f), ®js1,-..,¢n](x) is defined in (4.3.29) (see paragraph
4.3.3.). We obtain the following

. _ 6890
Wp1, g2, d3](z) = 2e5%,  Wi[(f), b2, ¢3](z) = 211
267:5 66:v
Wale1, (f), ¢3](x) = ps T Wslo1, g2, (f)](x) = poranEE

This leads to
1 e 1 5

weo(x) = / € dr = —arctan (e")

e2x+1
1 1 11,

A particular solution is thus

1 1 1
yp(z) = 1 In (e** +1) e” — arctan (e”) e** + (237 ~1 In (e** + 1)> 3"

for all x € R. The general solution then takes the form

y(w) = o (w; c1,c2,¢3) + yp(w)

1
= 1% + c2e* + 3637 + 1 In ((321B +1) €* — arctan (&%) e

—|—<2m—4ln(e”"+1)> e’ for all z € R.

Exercise 4.4.1: 3 h

We find the general solution of the following fourth-order Cauchy-Euler equation:

2 4
oty 41223y 4 3827y + 322y +dy = = + —
T x

for all x > 0. Using Proposition 4.4.1 we introduce a new independent variable z as
z=¢,  y(z)=y(2)

This leads to the equation
dly &y APy ody

it T3 12+ dy(z) = 277 4 de™ 2.

Solving this equation we obtain the general solution
y(2) = (c1 + c22)e 2% + (e3 + caz)e ™ + 2277 + 2227
so that the general solution of the given equation becomes
y(x) = (c1 + c21ln :L’)ZL‘_Q + (c3+ ¢4 ln:L'):c_1 + m_l(ln l’)2 + 2:1:_2(1n 33)2

for all z € R.
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Appendix E

Answers to the exercises

Exercise 1.1.1

1.

2)

f)

g)

Linearly independent.
Linearly dependent.
Linearly independent.
Linearly independent.
Linearly independent.
Linearly independent.
Linearly dependent.
Linearly dependent.
Linearly dependent.

Linearly dependent.

4oy +2¢y —y=0, x>0.

oty —ad?y =0, a#0, zecR.

'y’ +y, xeR\{0}.

vy’ +2y —2y =0, x€R\{0}.

4oy + 423y’ 4+ (222 = 3)y =0, x> 0.
2By®) — 22y 42y —2y =0, z>0.

:c?’y(B) —ay —3y=0, x>0.
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Exercise 1.2.1

1. b) y(z) = c1e** cos(3z) + c2e®” sin(3x).

d? d
c) T: y(z) — Ly(x) where L = i 4% +13.

d) B = {e**cos(3z), e**sin(3z)}.
e) y(x) = 4e** cos(3z) — 3¢*” sin(3x).

£) y(z) = e* cos(3z) + 2¢7™/3* sin(3z).

2. General solution: y(z) = c1e” ¥ cosx + coe” * sin .
Basis of the solution space: B = {e “cosz, e “sinz}.
Dimension of the solution space: Two.

3. General solution: y(z) = c1€” + cye 2.

Basis of the solution space: B = {e%, e 2%},

Dimension of the solution space: Two.
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4.  a) Differential equation: y” +y = 0.
General solution: y(z) = ¢1 cosz + casinz.
Basis of the solution space: B = {cosx, sinz}.
Dimension of the solution space: Two.
b) Differential equation: y” + 2y" + 5y = 0.
General solution: y(z) = c1e™ " cos(2z) + coe™ ¥ sin(2x).
Basis of the solution space: B = {e™ ¥ cos(2z), e “sin(2x)}.
Dimension of the solution space: Two.
c) Differential equation: y” + 2y’ = 0.
General solution: y(z) = ¢; 4 coe™ 2.
Basis of the solution space: B = {1, e~ %},
Dimension of the solution space: Two.
d) Differential equation: y® — "+ —y=0.
General solution: y(x) = c1e” + casinx + ¢ cos x.
Basis of the solution space: B = {e”, sinz, cosz}.
Dimension of the solution space: Three.
e) Differential equation: y(4) + y(?’) +49" + 4y = 0.
General solution: y(z) = c1 + c2e”* + 3 cos(2z) + cq sin(2z).
Basis of the solution space: B = {1, e™ ¥, cos(2x), sin(2z)}.

Dimension of the solution space: Four.

Exercise 2.2.1

1. a) y(z)=In <c_1€w>'

¢) v} (z) =ca® —c—1.
D 3la) = g

elr—1)—z—1
¢) yle) = elr—1)+z+1 o
Singular solutions: y = £1.
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y—1 _ ‘0’62 arctan(x)
y+1

f) . Singular solution: y = —1.
g) y(z) =1+

( ¢ E p(@®—a—1)/(1-z)
z—1

1
h) —arctan (z?) + v/a? — y2 — arctan T - y = *a.
2 a? — 2

i) (22422 +2)e "4 (6 —6y+3y°> —y3)e! =c.

2(1+2)

V1—a2

b) y(z) = tan (arctan (x) + %)
22

c) y(x) =1In (2 + 1).

d) y(z) =0.

2. a)ylx)=-1+

¢) y(z) = arcsin [;(1 +a:2)1/2].

1

ylo — -
3. a)e 1) ()] c#0.
b) y2_i($4_ec)
222
c) T _m|Y= ':1n|cm|.
y—z x
x
4 a) yle) = —

Exercise 2.3.1
1. a) y(z) =22 + ce®.

1 1
b) y(z) = —3 cosz + Qsinm+ce_’”.

c) ylx) = -1+ ce /3,

1 1
d) y(x) = = cosz — 551113:—:1:3—#3:1:2 — 62+ 6+ce” .

2
_ 11 2 1 2 —3x
e) y(z) = 57 gx—i- 3% + ce 7.

f) y(x) — xe_Sinx _i_ce—sinx'
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1
c) ylx) = - (cosz + zsinx).

1
d =lhr — — 1.
) y(a) =tnz =,z #

3. y(x) = y1(x) + cya(x) — y1(2)]
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Exercise 2.4.4

1. cosy = (281n2x_2sinx+l)+Ce*2sinaz

=~ =

2. a) y(z) :4(7274m2+4m+06_21)71

b) y(z) = — (1(x—1)ef+c>2.

T2\ 2

¢) y(@) = (1 +In(z) + cx)~t.

d) v*(z) = —zIn|z| + cz.

e) y(z) = —2(cosz +sinz — ce®) L.

(1 —2)Y2(1 + z)V/?
[—1+ 22+ c(1 —2)V/2(1 + 2)1/2)2°

2
@zmwz[—ga—m%+cu_x%vﬂ.

f) y*(2) =

3. a)i y(x)=2 (2 — 612)71.

a) ii y(z) =1.
LA 2/3 _ 1\3/2
b) yla) = SO TIGT U

4. a) Linear equation: 4zv" —4v —z = 0.
. . . 1
Solution of linear equation: v(z) = x (4 In |x| + c).

2(In|z| 4+ ¢+ 2)
z(ln|z|+¢) °

Solution of Riccati equation: y(z) =

b) Linear equation: v — v + 1 = 0.

Solution of linear equation: v(z) =1+ ce”.

r+cre®+1
Soluti f Riccati tion: = 0 L
olution of Riccati equation: y(x) Tt ce®
—2x — 1+ 22
5 = —-—
) i) = 2L

b) y(z) = —% [tanh (In |z|) — arctanh (2)].

z(2z + 3)

6. k=1. Then y(z) = 322 1+ 2
x
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Injz| —c+1

8. k= —1. Then y(z) = 22— o)

9. w' — (j}((;”)) + 1) W'+ f(z)h(z)w = 0.

z(ca® + ¢ — 12
cx? —c—224+2

10. y(z) =
Exercise 3.2.1
1. a) y(z) = c1 e *sin(3z) + cg e > cos(3x).
b) y(z) = c1 ¥ epz 2.
o) y(x) =cre ™ +cpe 223,
d) y(x) = c1sin(v3z + c2 cos(V3z).

e) y(x) =c1 +cpe .

f) i y(x) =c eax/2+\/mx/2 1 e eax/2—\/m:t/2.

f) ii. y(z) = ¢ /2 cos (\/4 — a? x/2) + 9 €%®/% sin (\/4 —a? 3:/2)
2. a) y(x) =e Tsin(v2z).

b) y(z) = e 3% 4 2z 737,

V2 5. V2 s,
)y(uU)ZTe\/5 —76\/5.
1 1 5.

d) y($):§+§€2x ‘.

¢) y(z) = —g sin(3z) — cos(3z).

oe’ 5e "
3. a) y(w)i_e_l—e el—e¢
2e8 —3et et
b) y(l‘) - - 8 _ et 8 _ ot
1 5
c) y(z) = —51’—1— 7
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Exercise 3.3.2

4
1. a) y(z)=cre ® +cawe 2 + 1—5335/2 e 2,

4
b) y(z) =cie” + care” + 1_5(00 —1)%2¢".

1
c) y(x) =cre”* + coxe ¥ + é_l$2(2 In(z) —3)e ™.
d) y(x) =cre® +coxe ™ — (2ln(z) + 1) e ™.
1
3r _ - x _ —
“ 7y

e) ylx) =c1e3 4 coe” 3

1
f) y(x) = c1 cos(2x) + cosin(2x) + §(cos xsinzx — x) cos(2x)
1
—5(0082 x — In(] cos z|) sin(2x).
g) y(x) =cicosx + cosinz + xsinx + cosz In | cos z|.
. 9 9
h) y(z) = ¢1 cos(2z) + cosin(2z) + 3 cos(2x) + 3 cos(4x) | cos(2x)

+ <_§ sin(2x) — 3% sin(4x) + 19—63:) sin(2z) for all x € R.

360°
thinking.

Deloitte.
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1
2. y(z) =2€" — 5672 - 5[261 —2In(e*+1)—1] e "

1 1
3. y(z) = e*® arctan (&%) — 3 e®In(1 4 **) + 3 e’ In(2).

2
4. y(z) = 1 €% 4 cy x2e” + 9 e“z3(3lnx — 4).

1

5. y(x) = 1z + co(z? — 1) + 5

1
5

1
6. y(x) =cre’ +cor — 5(23: —1)e ™.

1
7. a) y(x) = ¢y cos(2x) + cosin(2x) + 3 cos .

1
b) y(z) = c1 3 + cor e 4 =
x

1
¢) y(x) = c1 e 27 4 cpe/T — o

8. a)y'+y=4dwcosz.
b) x%y" — xy +y = 323,

¢) 2%y — dxy + 6y = 22 (2* — 1).

Exercise 3.3.4

1. a) y(z) =cysinz + cycosx + 2 — 2.

9 2 1
Vie + sz — -z’

49 T T
) y(x) = c1e* + cor e 4 (2 + ) e”.

b) y(z) =creV "+ cpe”

1
d) y(z) =ci1cosz + cosinx + % (5z — 4) >,

e) y(x) =cre "+ coe®® xet

f) yx) =c1e ™ +coxe ™+ ToF e’ (—4cosx + 15z cosz — 22sinx + 20x sin x).

g) y(x) = c1 cos(2x) + cosin(2x) — ix cos(2x).

6
h) y(z) = c1 €3 + cpz ¥ + x—(x3 —4)e*,

24
1
i) ylx) =cre® +coe™® + ixe”” + 3.
7
i) y@) =cre "+ e +me " + Ee%.
223
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k) y(z) = ¢1 cos(2z) + cosin(2z) + ga; sin(2z) + 2
5

5
1 = —3z — 2r) — —
) y(x)=cre + g ed +26cos( x) T
1

m) For k # 0: y(x) = ¢ cos(kzx) + casin(kx) + T

For k =0: y(x) = ¢1 + coxx.
n) For k # 0: y(x) = ¢1 cos(kzx) + cosin(kx) + ﬁ [sin(kx 4+ ) — 2kx cos(kz + ).
For k =0: y(z) = c1 + cam.
0) y(x) = 1 + ca €34 4 37/ (242 4 927).
p) y(z) = ¢1 cos(bz) + cgsin(bz) + 1—10w sin(5x).
q) y(x) = c1 e 3% cos(2z) + co e 3 sin(2z) + }le_%m sin(2z).
3z

1
r) y(z) =cre * + e’ — T 9+ 362 — 64€” + 96ze” — 18 + T2xe**] e77.

s) y(z) =cre” + care® — e"sinz + 2.

t) y(z) = c1e3 + coe 3 + [(g — x) cos(2z) + <3:c + 1—10> sin(2m)] 3,
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2. a) ylx)= —g e 4+ %:1: e 4+ % + %x + 3352.
b) y(x) =2 —2z.
o) y(x) = —e373 4 g3 4 g2
d) y(z) =e** —e3* fxe ™.
e) y(x) = xcosx + 2 sin .
f) y(z) =ze’ + e + .

g) y(z) = —e""" (1 +2me™)sinx + 2e“xsinx.

h) y(x) = —2e “cosz+e “sinz 4 2e” — 4.

3. a) Yy —y=20z°— 2"

b) v +y=2e"+2z¢".

¢) ¥’ — 6y + 13y = (—28 4+ 106x) e 2.

d) v’ — 6y +9y = (8¢ — 6)sinx + (—6x + 2) cos x — 63.

e) y' +4y =6.

£) " + 2y + 10y = (452° + 64) e + 62(32% + 3z + 1) *°.

g) v +4y = (8 +12z)e*® + 32 —sinx + 4cosz.

h) v — 2y + 5y =26 (20sinz cosx — 10 cos?® z + 7).
Exercise 3.4.1

1
1. a) y(z) =ci— + cox®.
x

1
b) y(z) = c12? + 23
3

c) y(x) = e sin(Inx) 4+ c2— cos(lnx) + T

d) y(z) = c12? + o2 + 2% Inx + 2% + 2.
1 1 2
e) y(x) = €13 —i—CQﬁlnx—}— Eln2 x.

1
f) y(x) = c12® + cox® + 3 (z° +2lnz +2).

1 1
g) y(z) = c12® + 2 = §x2 Inz.
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1
_ 2 _ 5 _
h) y(x) = 1z + cox Tia” (12Inx — 7).

1
2. y(x) = 3sin(lnz) 4+ 2cos(lnz) + B sin(lnz) Inz.

3. :U2y” —zy +y= 323,

3 3 3

4. b) ylz)=¢a <x—|— 2) +co <x+ 2> In <m+ 2) + %(6+9x)1n2(2+3:c)
—%(6 +92) n2(3) — 6.

Exercise 3.5.1
1. a) y(z) =cra? + e e

1
b = —q] J— .
) y(x) Clw sin x +02$ cos T

¢) y(z) = c1z + cawe™.

d) y(z) = c1(1 +42?) + cp e 2.

e) y(z) = crzsin(2z) + cow cos(2x).

f) y(z) = c1e* + con? e”.
I a

3.\/5—2—\/5

4. bi) y(z) = c1e” + cpz? €.

eG(z)/ e~ G@) qp + ¢, where G(z) = fg(l‘) dx.

1 1
b i _ 1 1 .
i) y(x) clwsm:r—i—cchos:r

5. a) M =ag(x), N =ay(x) — aj(z) if and only if aj — a} + az = 0.

C1T + 9

(2 / — =
b) I = (z*+ 2x)y’ + (2x + 2)y = constant. Then y(x) 2@ t2)

Exercise 4.2.1

1. a) y@)=cre ™ +epe ™+ cz3e®.

1 1 19
b) y(z) = 1 e 2 — £ e37 4 2 e,
¢) y(x) = cre "+ cp 3% + 3z e
2 2 2
d) y(z) = €3 et — % sin(3z) — R cos(3z).

e) y(x) = 4e>72® — 8re? 2 4 722 272,
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f) y(z) = c1 + cow + c3e*.

g) y(@)=cre™¥ +c e3*/2 gin (%x) + e3€3/2 cos <—3\2/§x) )

h) y(z) = ¢ + ca e 2 4 ¢z,

1 13 1 7
2. _ — o3z - 2z - 2z ° 3:::‘
RS e T TR
265 16 ) 1
b _ a2 Yv,.2 - 3x=3
) y(z) T 9x+6x +27e
¢) yx)=cre 4 cpre X 4 ezx? e 4 eyt e
d) y(z) = c1 €® + caw €® + c32” e + ¢y’ €.

e) yx) =c1e® + oz e® +cze ™ +cqre ™.

20 10 1

2
f) y(x) 5 + 9% o sin(3z) — 9 cos(3z).

g) y(x) =c1 + cox + c3z? + cy €37,

h) y(z) = c1 + ez + c3 € + cyz .

( n»‘ia A)&Graduate
o {

L
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3. a) y(z) =c1+cze ¥ +c3e* + cysin(2z) + 5 cos(2z).
b) y(z) = c1 + ez + 32 + ¢4 €® + c5 2.
4x‘

c) y(x) =c1 + cox + c3x® + eyx® + cs e

d) y(x) =c1 + cox + 3% + ca® + c5 € + cg e*.

e) y(x) =c1 + cox + c3x? + caz® + esxt + cg e
4 4 7 2v/3 )
f) y(x) = 9 + 3% + §x2 + 2% + \9[ sin(v/3z) + 9 cos(V/3x).

Exercise 4.3.2
1. a) y(z) =c1+ casinz + czcosx + 2.
—x 3 2
b) y(z) = c1 + caw +eze™ + "

¢) y(x) =c1 + cow + c3€® +cge”® — 222,

1
d) y(z) =c1 + cox + c3 e*2x+04xe*2x+§m2.
e) y(z) = ¢ + e €% + czz e 4 2° + 4.
. L 1 4 2
f) y(m):cl—|—02x+03cosx+04sma:—i—8x —i—ﬁx — .

1
g) y(z) =c1 + cow + cze™F + cqzeF + @6496.

1
h) y(x) =1 + cox + cze”* + cqxe™ + 6 (24 + 18z + 622 + 933) e ”.

3 3 1
i) y(@) =c1e® 4 cae 2 cos <§x> + c3e % sin <§x> ~5 sin x

+§ COS .

1
j) y(x) = c1€” + cowe” + ez e’ — 3 e” sin(2z).

1
k) y(z) =c1e® +cae “ +czxe” +care  + 7 08T
1 3
1) y(x) = c1 + ca2 cos(2x) + czsin(2x) — 20 % cos(2x) + 0 e sin(2x)

1 1
—|—§1’ sin(2zx) + Vid

36 1
m) y(x) =c1 + cox + 3 e e et 389 cosx + 1—735* sin z.

1 1
n) y(x) = c1 + cox + c32? + cqe® — 4z e® + 5362 e’ + ﬂm‘l.
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1
0) y(z) =c1 + cox + c3x® + eqsinz + 5 cosx + ﬂx‘l —e .
—x —x 1 4 1 3 3 2
p) y(x) = c1 + cox + c3e™ " + cyze +ﬁx —593 +§x.

1 1
q) y(z) = (Cl + C2x + C3l‘2) e "+ <24 zt 4 5 333> e .

1 1
2. a) ylx)= §€I - 56* + 22
b) y(z) = —3e" +2xe” + cosz + 2sinx — e ”.
¢) yx)=—1+3x+22+e* +4e® — 2%

d) y(z) = 3 e “sin(2z) — e *cos(2z) — 2z e ¥ cos(2x) — xe “sin(2x) + 2.

e) y(x) = cos(3x) — 9cosz + 3sinx + cos(2z) + 5sin(2z).

Exercise 4.3.4

1. a)ylx)=a+crt+ce®—z+zlne.

1 11
b) y(x) =cre  +cre ™ +czxte ™ + 63:3 e “lnx — %x?’ e ™
1 1 1
¢) y(x) =c1e® + cpe® + 33 + 1 e“In(e®® +1) + 2% e 1 3 In(e*® 4+ 1)

—e*® arctan (e%).

z’ e for all n € R
2. = IS 1, 2, 3, 4}.
yp(x) (n—l)(n—Q)(n—S)(n—4) or all n \{7 y }
11 1
Forn=1:yy(z) = —%w:g e’ + 6373 e’lnzx.
1 2 x 1 2 x
Forn=2:yy(z) = -27¢" — -z e"Inz.
4 2
1
Forn:3:yp(a:)zza:ex—i-ixexlnx.
11 1
Forn:4:yp(m):—%ex—é:rexlnx.

3. a) y@) = (e + e+ 1)In2 — (e + e + 1) In(e” + 1)+ 2? + " + xe* — .
b) y(z) = 2xe".

¢) y(x) = 122" Inz — 252* + 4823 — 3622 4 18z + 2.
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Exercise 4.4.1

3. a) y(z) =cz+ crlnz + czzln® 2.

b) y(z) = c1x + c22? + c32>.

¢) y(x) = ¢y sin(lnx) 4 ¢ cos(In x) + cz2® sin(In z) + c42° cos(In z).

12
5.’E.

1
e) y(z) = 1z + 2’ + cgrlnz — Zm(—mQ +12Inz 4 61nz + 12).

d) y(z) = 123 + ey cos(Inz) + ez sin(Inz) —

1 1 1 )
f) y(z) =1 —i—cz? +03E + Eln%: — %lnx.

g) y(@) = 12 + o2 + ezt — 2 — 2?Inx + 22  Inz.

1 1 Inx Inz In®z 2In’zx
h) y(l‘)261*+02f2+6372+047 + 5
T T T T T T

i) y(x) = cicos(Inz) + czsin(lnx) + csInz cos(lnz) + ¢4 Inzsin(lnz)
—In?zcos(lnz).

i) y@)=cilnz +eyln?x +ez3lndz + esln 2 + ¢5 + 12In 2 In(In z).

6. y(z) =c1 + cox + 31 + ¢y

16
45(4 + )3

—gln(4+x)—£ln(4+x)+1+§

(44 2)°

230
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Index

Bernoulli equation, 53
Bernoulli, Jacob, 54

Cauchy, Augustin-Louis, 97
Cauchy-Euler equation, 167
Cauchy-Euler equation of order n, 143
characteristic equation, 110
characteristic polynomial, 110

complex differential equation, 130
composite operator, 152

constants of integration, 12

Cramer, Gabriel, 75

Fuler, Leonhard, 99
Existence and uniqueness theorem, 27

factorization of operators, n-th order, 164
factorization of operators, second-order, 157
first-order linear differential equation, 156

general implicit solution, 12
general solution, 12

li hy-Eul i f
genera 1z§7dlg7auc y-Euler equation o

graphical solutions, 13

higher-order linear differential equations, 157
higher-order linear nonhomogeneous differ-
ential equations, 127

implicit solutions, 12

initial data, 42, 108

initial value, 42

initial-value problem, 42, 108

integral operator, 153

integral operator corresponding to L, 155

integral-solution formula for separable equa-
tion, 43

integrating factors, 47
kernel of a linear transformation, 33

level curves, 13

linear differential operator, 32

linear differential operator of order n, 152

linear first-order differential equation, 47

linear homogeneous constant coefficients equa-
tions of order n, 110

linear homogeneous differential equation of
with constant coefficients, 32
linear homogeneous ordinary differential equa-
tion of order n, 15

linear homogeneous ordinary differential equa-

tions of order n, 107
linear nonhomogeneous ordinary differential
equations of order n, 107

linear ordinary differential equations, 8

linear superposition principle, 16

linear transformation, 33, 151

linearly dependent set, 17

linearly independent set, 17

linearly independent sets, 118

method of undetermined coefficients, 128
method of variation of parameters, 136

nonlinear differential equations, 8
nonlinear superposition formula, 61

ordinary differential equation, 11

particular solution, 123
polynomials with real coefficients, proper-
ties of, 115

integrating factor, first-order linear equations, Riccati equation, 55, 166, 170

49

Riccati equation, linearization, 57
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Riccati equation, linearization to 2nd-order
equation, 61

Riccati equation, singular solutions, 57

Riccati, Jacopo Francesco, 57

roots of a polynomial, 110

roots with multiplicity of degree k£ > 1, 121

separable first-order differential equation, 42

singular solutions, 12

solution domain of the differential equation,
11

solution space, 34

solution, definition of, 11

special solutions, 12

variation of constants, 48

Viéta’s statement for integer roots, 116
Viéta’s Theorem, 115

Viéte, Francois, 117

Wronski (or Hoene-Wroniski), Jézef Maria,
18

Wronskian, 19

Wronskian, the derivative of, 31
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