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Preface

Mathematical epidemiology of infectious diseases usually involves describing the
flow of individuals between mutually exclusive infection states. One of the key
parameters describing the transition from the susceptible to the infected class is the
hazard of infection, often referred to as the force of infection. The force of infection
reflects the degree of contact with potential for transmission between infected and
susceptible individuals. The mathematical relation between the force of infection
and effective contact patterns is generally assumed to be subjected to the mass action
principle, which yields the necessary information to estimate the basic reproduction
number, another key parameter in infectious disease epidemiology.

It is within this context that the Center for Statistics (CenStat, Interuniversity
Institute for Biostatistics and statistical Bioinformatics, Hasselt University) and
the Centre for the Evaluation of Vaccination and the Centre for Health Economic
Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and In-
fectious Disease Institute, University of Antwerp) have collaborated over the past
15 years. This book demonstrates the past and current research activities of these
institutes and can be considered to be a milestone in this collaboration.

This book is focused on the application of modern statistical methods and models
to estimate infectious disease parameters. We want to provide the readers with
software guidance, such as R packages, and with data, as far as they can be made
publicly available. Please visit www.simid.be for data and code pertaining to this
book.

Many persons have contributed either directly or indirectly to this book for which
we are very grateful: @ Hasselt University: Steven Abrams, Girma Minalu Ayele,
Kaatje Bollaerts, Emanuele Del Fava, Nele Goeyvaerts, Geert Molenberghs, Harriet
Namata, and Kim Van Kerckhove, @ University of Antwerp: Mathieu Andraud,
Joke Bilcke, Olivier Lejeune, Elke Leuridan, Benson Ogunjimi, and Heidi Theeten,
and elsewhere: Kari Auranen, Benoit Dervaux, John Edmunds, Paddy Farrington,
Nigel Gay, Janneke Heijne, Daniel Hlubinka, Mark Jit, Peter Kung’U Kimani,
Mira Kojouhorova, Andrea Kvitkovicova, Marco Massari, Rafael Mikolajczyk, Joël
Mossong, Magdalena Rosinka, Malgorzata Sadkowska-Todys, Stefania Salmaso,
Gianpaolo Scalia Tomba, Thierry Van Effelterre, Jacco Wallinga, Andreas Wienke,

vii
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and James Wood. We also wish to thank the editorial team at Springer, more
particularly John Kimmel, Marc Strauss, and Hannah Bracken for their guidance
throughout the writing process and the reviewers Piero Manfredi, James Wood,
Jacco Wallinga, and Gianpaolo Scalia Tomba whose identity was revealed to us
and whose suggestions improved the book considerably.

The authors would appreciate being informed of errors and may be contacted by
electronic mail: niel.hens@uhasselt.be.

Hasselt and Antwerp Niel Hens
Ziv Shkedy
Marc Aerts

Christel Faes
Pierre Van Damme

Philippe Beutels
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Part I
Introducing the Concept of the Book



Chapter 1
Why This Book? An Introduction

1.1 Terms for Germs

For the sake of simplicity, let us start by naming an infectious agent a “germ.”
There are countless germs that can infect human, animal, and plant hosts. Germs
can be transmitted directly between hosts via respiratory air droplets or bodily
fluids (e.g., saliva, blood, or secretions from sexual organs). Germs can also be
transmitted indirectly through an intermediary source, for instance via mosquitoes,
ticks, rodents, environmental particles (e.g., contaminated water and food) or
contaminated blood products. Germs evolve and transform while new germs emerge
regularly, implying their supply can be considered infinite. A broad distinction is
often made between microscopically small germs with relatively short life spans,
which replicate within their hosts (often called microparasites such as viruses,
bacteria, and fungi), and much larger germs with relatively longer life spans (often
called macroparasites such as parasitic worms). Many germs live inside or on the
surface of their hosts’ bodies without causing illness or even discomfort. In fact,
hosts even depend for their survival on germs (e.g., bacteria in the human gut).
However, when germs cause disease in their hosts they are often referred to as
pathogens. So when we talk about infectious diseases we imply that these are caused
by pathogens, which are transmissible between hosts, either directly or indirectly.
Infectious diseases have been an important cause of sickness and death throughout
the history of mankind. With the agricultural revolution, the world population grew
and concentrated in clusters. The density of human hosts thus reached levels that
allowed continued local (endemic) transmission of a number of lethal pathogens.
It seems therefore that diseases like plague, smallpox, measles, and cholera slowed
population growth after the initial high growth rates between 10,000 and 5,000 years
ago. Most pathogens in humans emerged and spread out from a local community,
as they travelled along with their hosts. Nowadays, they quickly establish anywhere
environmental conditions allow them to.

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 1,
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1.2 Models of Infectious Diseases

Mathematical models can take many forms, but essentially they describe a system
through mathematical equations. They allow studying how a system changes from
one state to the next, as well as the relation between variables used in the equations
that define the system. There is a difference with statistical models, which are used
to study relations between different variables based on data and to make inferences
based on these relations.

The field of infectious disease modeling has been the focus of ever increasing
research activity over the last 30 odd years. Figure 1.1 illustrates this by showing
the evolution over time of retrieved publications using the search string “model*
AND (mathematic* OR statistic* OR simulat*) AND (infect* OR communicable
OR epidemic* OR vaccin* OR immuni* OR virus OR viral)” in topics of the
Scientific Citation Index (SCI expanded, in ISI Web of Science).

It can be seen that the quantity of publications jumped up in the early 1990s, an
observation which holds for many fields of science, likely because in this period
access to personal computers and the use of the internet became widely established.

The continuing rising interest in the specific field of infectious disease modeling
since the 1990s was likely fueled by various evolutions and events, amongst which
we single out the following:

1. Increasing research and computing capacity in multidisciplinary fields, such as
mathematical epidemiology and biology, biostatistics, and health economics.

Fig. 1.1 Evolution of publications on models of infectious diseases (on a log-10 scale)
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2. Expanded use of mathematical models as part of new standard procedures for
evidence-based health policy, often as an implicit part of economic evaluation of
pharmaceutical products.

3. New or expanding public health emergencies of international concern (e.g.,
HIV/AIDS since the 1980s, SARS in 2003, and pandemic influenza A (H1N1)v
in 2009).

4. Increasing knowledge base for measuring and categorizing relevant information
at both the pathogen and the host level (e.g., genomics, testing of cellular
immunity, social contact patterns).

These observations are by no means to imply that infectious disease modeling
hardly existed prior to the 1990s. In fact, the central concepts and the foundations for
the main techniques used in this field were developed over a century ago and can be
traced back to seminal work by d’Alembert (1761), Bernoulli (1766), Ross (1916),
McKendrick (1926), Kermack and McKendrick (1927, 1932, 1933), and Muench
(1934). Yet the application of these techniques remained much more rare and less
internationally dispersed than we can observe today.

While many of the publications in this field are about improving model method-
ology, by far most of the publications apply a certain modeling approach to a specific
problem.

In the application of models of infectious diseases, we distinguish two general
aims of such models: forecasting and understanding. By forecasting we mean that
projections are made of infections and their consequences under various scenarios
of interest (e.g., the time evolution of the number and age distribution of people
infected with measles using various scenarios for vaccination schedules and vaccine
uptake rates). In relation to forecasting, models are increasingly applied in the
slipstream of evolutions 1, 2, and 3 described above. By understanding we mean that
models are used that mimic a particular process for infectious disease development
or transmission with the aim to improve our knowledge of the process itself, rather
than produce estimates of outcomes of this process. In such models the qualitative
form and order of magnitude of the results are more important than the exact
quantity they represent. Evolutions 1 and 4 above would have been strong drivers for
more research on models in relation to understanding the underlying mechanisms
of infectious disease transmission, evolution, and development.

1.3 Where Does This Book Fit in the Field?

There have already been many textbooks on infectious disease modeling. Probably
the best known and most influential the book written by Anderson and May (1991),
who, like Kermack and McKendrick (1927, 1932, 1933), approached the subject
from an epidemiologist’s angle, using intuitively appealing and elegant mathemat-
ical derivation. Their text book has had a major influence on the application of
deterministic transmission models, to a wide range of infections. Other textbooks
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that followed in the same tradition have extended the mathematics and the range
of models considered. Examples here include Farrington (2008) and Keeling and
Rohani (2008). The recent book by Vynnycky and White (2010) also fits within
that tradition. Their book is elaborate in scope, covering many modeling techniques
on a very diverse range of infections and populations. They also provided program
code so that the avid reader could apply the techniques and models they discussed.
Other types of textbooks in this category are provided by Isham and Medley (1996)
and Krämer et al. (2010), who edited and bundled contributed papers covering a
variety of specific topics in infectious disease modeling by many different authors.

Notwithstanding that many authors of the above textbooks are mathematicians
or statisticians to begin with, other textbooks have approached the subject of
modeling infectious diseases or epidemics more from a mathematical rather than
an epidemiological viewpoint. The pioneering text book that we consider to fit this
bill was produced in 1975 by Bailey (1975). More recent examples are provided
by Becker (1989), Daley and Gani (1999), Diekmann and Heesterbeek (2000),
and Capasso (2008).

Additionally, there have been textbooks focusing on much more specific subjects
and their associated specific challenges. For instance, Andersson and Britton (2000)
focused on stochastic models of epidemic data, whereas Halloran et al. (2010)
covered the design and analysis of observational vaccine studies.

The book you are reading now aims at filling a gap in the latter tradition of
textbooks by zooming in on a specific subject. Our book presents a range of
modern statistical and mathematical techniques to estimate parameters that are of
pivotal importance in infectious disease modeling. The applications we show in
this book are on microparasitic pathogens (with a strong focus on viruses), causing
infectious disease in humans. We provide model syntax, as well as R code, with
which the statistical and modeling analyses can be applied. We also provide datasets
to enable exploration of the techniques. Although it is generally recognized that
parameters like the force of infection and the transmission rates between infected
and susceptible persons are of very high influence, especially in applications of
forecasting, relatively little attention has been given to estimating these parameters
to the best of our ability. In view of intensified research in this specific area over the
past decade, we considered it the right moment to summarize these developments in
this book. We strive not only to explain what to do, given the nature of the data, but
we also show how to do it. In that sense this text book is hands-on.

1.4 A Road Map for This Book

The book starts well and truly in Part II, by introducing pivotal epidemiological
parameters, describing their properties as well as those of different prevailing
mathematical models that mimic the spread of microparasitic pathogens between
human hosts. Readers already familiar with these rather basic concepts can press on
to Part III.
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Part III describes the various datasets used throughout the book. This should give
the reader clear insights into the kind of data that are used. The most commonly used
data throughout the book are age-specific seroprevalence data and social contact
frequencies (to which we also refer as social mixing patterns). Some techniques are
also illustrated on incidence data. In Part IV, a wide range of statistical methods
is explained and illustrated to derive the force of infection from seroprevalence
and incidence data. We describe and illustrate parametric, semiparametric, and
nonparametric techniques that use serological test results in their traditional sense
(as categorical variables), as well as in their crude form (as antibody levels). Part V
shows how to estimate a matrix of transmission probabilities from serology or social
mixing pattern data alone or by using the combination of these data. Furthermore,
methods to estimate the basic reproduction number are also shown. Here too, various
methods are proposed and illustrated. The final part, Part IV, integrates the statistical
estimation methods for the pivotal infectious disease parameters (as described in
Parts IV and V) in the mathematical model framework described in Part II. Thus at
the end, we’ve come full circle: the modern methods for statistical derivation and
inference are integrated in and applied to the mathematical model frameworks we
introduced at the very beginning of the book.

We endeavored to demonstrate the methods on a good mix of different
applications. These include airborne close contact infections (such as mumps,
parvovirus B19, rubella, tuberculosis, and varicella), feco-oral infections (such as
hepatitis A), and sexually transmitted and/or blood borne infections such as
hepatitis B, hepatitis C, and HIV/AIDS.

We included a short appendix in which we introduce the software package R and
several statistical concepts such as maximum likelihood, bootstrap-methods, etc.

We hope you will find this book a useful source of information and inspiration
and—perhaps less desirable—transpiration.



Part II
Mathematical Models for Infectious

Diseases: An Introduction

In this part we introduce several basic concepts. We introduce the Theory of
Happenings by Sir Ronald Ross in Chap. 2. In Chap. 3 the SIR model is introduced
and several of its aspects discussed including the dynamic properties, the impact of
vaccination programs, the time homogeneous SIR model and the SIR model in a
population constructed from different subpopulations according to age.



Chapter 2
A Priori and A Posteriori Models
for Infectious Diseases

2.1 The Theory of Happenings

Sir Ronald Ross (1916) suggested the name The Theory of Happenings for the
solution of the following problem. Suppose that a population P is divided into
two groups. One part of the population (Z) is affected by something and the other
part (A) is not affected. In the context of infectious diseases the population is
affected by an infection and therefore Z is the part of the population of infected
individuals (the infected class) while A is the susceptible part of the population
(the susceptible class). Note that each individual in the population belongs only
to one part of the population. At each time unit dt a proportion h×dt in the
susceptible class becomes infected and a proportion r×dt of the infected individuals
recovers and becomes susceptible again. Ronald Ross (1916) assumed that there
are three different processes that act simultaneously on the population. The first is
the variation process which corresponds to demographic changes in the population
such as births, deaths, immigration, and emigration. The variation process acts on
both A and Z and consequently on P. The second process is the reversion process,
i.e., the rate at which individuals move from the infected class of the population to
the susceptible class. The third process is the happening process and it represents
the rate at which individuals become infected and move from the susceptible class
to the infected class. The main question is to determine the number of infected
individuals, number of new cases, and the population size at each time unit. The flow
of individuals in the population was formulated by Ross as a set of three differential
equations, given below, which represent the population dynamics, the change in the
susceptible class, and the change in the infected class. Note that the first equation
in (2.1) is the sum of the two last equations:

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 2,
© Springer Science+Business Media New York 2012
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A
n+i

h

m+e

Z

N+r
M+E

I

Fig. 2.1 A flow diagram illustrating the model of Ross (1916). Note that in Ross’ model
immigration and emigration are possible from both A and Z

⎧
⎪⎪⎨

⎪⎪⎩

dP(t)
dt = (n−m+ i− e)A(t)+ (N−M+ I−E)Z(t),

dA(t)
dt = (n−m+ i− e− h)A(t)+(N+ r)Z(t),

dZ(t)
dt = hA(t)− (M+E + r− I)Z(t).

(2.1)

The rates n, m, i, e, N, M, I, and E are the variation rates representing births,
deaths, immigration, and emigration acting on the susceptible and infected class,
respectively. The reversion rate (or the recovery rate) is r while h is (in Ross’
own words) the most important rate, the happening element. Note that the term NZ
should appear in the third equation. Ross (1916) assumed that this part will generally
be born not affected and therefore included this term in the second equation. An
illustrative flow diagram of Ross’ model is shown in Fig. 2.1.

The number of individuals in each compartment of the model can be calculated
by solving the set of differential equations (2.1). The main problem is that some of
the parameters are unknown. The solution proposed by Ross was to iterate between
two modeling frameworks:

“The whole subject is capable of study by two distinct methods which are used in
other branches of science, which are complementary of each other, and which would
converge towards the same results—the a posteriori and the a priori methods. In the
former we commence with observed statistics, endeavor to fit analytical laws to
them and so work backwards to the underlying cause (as done in much statistical
work of the day); and in the latter we assume a knowledge of causes, construct our
differential equations on that supposition, follow up the logical consequences, and
finally test the calculated results by comparing them with the observed statistics.”

Today we often use the terminology of mathematical and statistical models for
infectious diseases for the a priori and a posteriori methods, respectively. Although
the modeling framework of Ross was established in 1916, it still remains the central
framework for dynamic models of infectious disease transmission.

In this part of the book we introduce the main concepts about transmission
models for infectious diseases and their corresponding application to infectious
disease data. We do not aim to discuss all the mathematical details behind the models
and throughout this part we introduce modeling concepts in an intuitive way rather
than in a formal way. For readers who wish to have an additional insight about the
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models and the mathematical derivation of some of the results we refer to the books
of Anderson and May (1991); Keeling and Rohani (2008), and Vynnycky and White
(2010). For readers more familiar with mathematics we refer to the books of Daley
and Gani (1999); Diekmann and Heesterbeek (2000), and Capasso (2008).

2.2 An Example: A Basic Model for HIV/AIDS

In what follows we illustrate the modeling framework of Ross using a mathematical
and statistical model for HIV/AIDS.

2.2.1 A Mathematical Model for HIV/AIDS

We closely follow Anderson and May (1991), Chap. 11, page 263–269, who used—
in hindsight—a too simplistic model to describe the transmission of HIV among
homosexuals. Anderson (1988); Isham (1988), and Capasso (2008) discussed
similar versions of this model. The flow diagram for the model is shown in Fig. 2.2.
It should be clear that this simplistic model is merely used for illustrative purposes
here and that it doesn’t reflect the current knowledge about the HIV/AIDS epidemic.

The model distinguishes between two groups of infected individuals, those who
developed clinical AIDS and those who are HIV infected but do not develop clinical
AIDS. For the model discussed below we use the notation of Capasso (2008). Let
S be the number of susceptibles in an open homosexual population at time t. The
element of happening, i.e., the force of infection, λ , is the rate at which susceptible
individuals are infected. We assume that one part of the population, p, will develop
clinical AIDS, i.e., this part will become HIV infected (I) and will then transfer
to the AIDS class (A) at rate v1. The other part of the population, (1− p), will
get infected (Y) but will not develop the disease; this part is assumed to move
into a noninfectious class (Z) at rate v2. A deterministic approximation for such

S

(1− p)λ

pλ
I

Y

v1

v2

A

Z

Clinical AIDS

Fig. 2.2 Flow diagram for a
very crude transmission
model of HIV/AIDS. Note
that, for the sake of
simplicity, the demographic
parameters and
disease-related mortality have
been dropped from this
diagram
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a transmission model is given by the following set of differential equations that
describes the transmission process

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = B− (λ + μ)S(t),

dI(t)
dt = pλ S(t)− (μ + v1)I(t),

dY (t)
dt = (1− p)λ S(t)− (μ+ v2)Y (t),

dA(t)
dt = v1I(t)− (μ +α)A(t),

dZ(t)
dt = v2Y (t)− μZ(t).

(2.2)

Note that B is the recruitment rate into the population under consideration, i.e.,
homosexuals, and μ is the natural rate of death. The AIDS related mortality rate
(α) is an additional death rate which exists only in the compartment of individuals
who develop clinical AIDS (A). Anderson (1988), Anderson and May (1991),
and Capasso (2008) assume that the force of infection λ is a function of the number
of sexual partners c, the probability (or the risk) of infection per (sexual) partnership
β , and the population of infective individuals in the population. More specifically,
the force of infection is given by

λ =
cβ
N

(I +Y).

Here, N = S+ I +Y + A+ Z is the total population. The factor (I +Y )/N is the
probability that a given contact for a susceptible individual will be with an infectious
person assuming contacts take place in a random fashion. It is important to realize
that a contact as described here refers to having sexual intercourse resulting in
the transmission of HIV given the contact occurs between an infectious and a
susceptible individual.

Figure 2.3 shows numerical solutions of differential equation system (2.2) for
a hypothetical population of size N(0) = 10,000 from which five were infected
at t = 0, i.e., I(0) = 5. We assume p = 20% of the population develops AIDS.
The life expectancy of individuals who developed AIDS is assumed to be 1 year
(α−1 = 1 year). We assume that on average an individual in the population has ten
sexual partners per year (c = 10) and the probability of transmission is β = 0.1,
such that cβ = 1 per year. The life expectancy in the general population is 75 years
(μ−1), the recruitment rate is assumed to be equal to B = N(0)μ , and the incubation
period (v−1

1 and v−1
2 ) is set to 8 years (Anderson 1988; Anderson and May 1991). We

emphasize again that given current knowledge about the HIV-epidemic, the model,
its assumptions, and the parameters used in this example are not realistic and merely
used to illustrate the framework of Ross.

As graphically displayed in Fig. 2.3, the number of seropositive individuals
decreases after the peak at around 12 years due to the high mortality rate for
individuals who developed clinical AIDS. We will now show how to obtain these
results using the program R.
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Fig. 2.3 Solution of the AIDS model obtained by numerical integration of (2.2) in R. The full,
dashed, and dotted lines correspond to, respectively, the predicted number of seropositives, clinical
AIDS cases, and nonclinical AIDS cases

Implementation in R

Throughout the book, we use free software such as R and Winbugs to fit models.
Winbugs is free software for hierarchical Bayesian modeling using Markov Chain
Monte Carlo (MCMC) methods that can be downloaded from http://www.mrc-bsu.
cam.ac.uk/bugs/ (Lunn et al. 2000). R is an open environment for data manipulation,
graphical display, and interactive data analysis. We refer to Appendix A for more
information about how to use R.

The R package deSolve (see e.g., Soetaert et al. 2010) is a package developed
for solving initial value differential equations in R which is called within R using
library(deSolve). The R function that integrates systems of ordinary differential
equations is ode and has a general call of the form:

ode(y=vector containing state variables,
times=vector containing the time units for integration,
func=function containing the model equations,
parms=vector containing the model parameters)

The transmission model (2.2) can be implemented in R in the following way. In
our example S=9995, I=5, Y=0, A=0, and Z=0 correspond to the initial conditions
while the time units for integration (times) and the model parameters (parameters)
for the AIDS model can be defined as follows:

state = c(S=9995,I=5,Y=0,A=0,Z=0)
times = seq(0,25,by=0.01)
parameters = c(N0=10000,mu=1/75,nu1=1/8,nu2=1/8,p=0.2,alpha=1)

http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
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Next, the user-defined function AIDS is used to define the differential equations
of the model in (2.2).

AIDS=function(t,state,parameters)
{
with(as.list(c(state, parameters)),
{
B = N0*mu
lambda = (I+Y)/N0
dS = B-(mu+lambda)*S
dI = p*lambda*S-(mu+nu1)*I
dY = (1-p)*lambda*S-(mu+nu2)*Y
dA = nu1*I-(mu+alpha)*A
dZ = nu2*Y-mu*Z
list(c(dS,dI,dY,dA,dZ))
})
}
# Note that we use the total population N0 in the definition
# of lambda, and that it can be replaced by S+I+Y+A+Z,
# i.e. the population still alive.

The R function AIDS receives as an input the three vectors (time, state variables,
and the parameters of the model) specified above. We can integrate the model using
the function ode and in order to process the output we create an R object (the data
frame out) which contains the results.

require(deSolve)
out=as.data.frame(
ode(y=state,times=times,func=AIDS,parms=parameters)
)

The data frame out contains six numerical vectors: the time and the number of
individuals in each of the five compartments. For example, the vector S defined in
the AIDS function by dS = B-(mu+lambda)*S contains the number of individuals in
the susceptible class. The first six lines of the output are shown below.

> head(out)
time S I Y A Z

1 0.00 9995.000 5.000000 0.00000000 0.000000000 0.000000e+00
2 0.01 9994.950 5.003119 0.04012504 0.006220433 2.507653e-05
3 0.02 9994.901 5.006321 0.08054144 0.012382080 1.004847e-04
4 0.03 9994.850 5.009606 0.12125181 0.018485638 2.265837e-04

(continued)
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(continued)
5 0.04 9994.799 5.012974 0.16225841 0.024531710 4.036902e-04
6 0.05 9994.748 5.016427 0.20356433 0.030521095 6.322298e-04

Note that we can change the integration step by changing the grid of the
timescale. A timescale that is too large will produce nonsensible results. It is
therefore advised to explore different timescales and assess the impact on the results
(see e.g., Chap. 3 in Vynnycky and White 2010).

Figure 2.3 shows the solution of the model for the infected, clinical AIDS (A),
and infected but non-clinical AIDS (Z) compartments for an increment in time of
0.01 years. The R-code used to obtain Fig. 2.3 is given by

plot(times,out$I+out$Y+out$A+out$Z,type="l",main=" ",
xlab="time", ylab="predicted number",lwd=2)

lines(times,out$A,lty=2,lwd=2)
lines(times,out$Z,lty=4,lwd=2)

2.2.2 A Statistical Model for the Initial HIV/AIDS Outbreak

In the previous section we used a (simple) deterministic model to describe the
transmission of HIV/AIDS in a specific population. The model predicts a rapid
increase in the number of AIDS cases (A(t)) followed by a decline after a peak
at 10–12 years.

In this section we focus on the initial stage of the epidemic and use three datasets
containing information on the number of reported AIDS cases (shown in Fig. 2.4)
to model the initial outbreak of AIDS. The data considered are quarterly data on
the newly reported number of cases in the USA (1982–1990, reported by Lindsey
1997), monthly data of newly reported AIDS cases from the UK (1982–1986,
reported by Healy and Tillett 1988), and quarterly data of new AIDS diagnoses from
Australia (1982–1990, reported by Daley and Gani 1999). All these data consist of
individuals in the A compartment in (2.2).

Let A(t) be the number of AIDS cases at time t. We assume that

A(t)∼ Poisson(δ (t)). (2.3)

Here, δ (t) = E(A(t)) is the mean number of cases per time unit. At the beginning
of the epidemic A(0) ≈ 0 and S(0) ≈ N. We assume that in the initial stage of the
epidemic, the number of new cases follows an exponential growth model of the form

δ (t) = A(0)eθt .
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Fig. 2.4 AIDS in the USA, the UK, and Australia. Recorded number of cases (dots) and predicted
number of cases based on the initial stage of the epidemic (line). Top left panel: quarterly number
of reported cases in the USA (Lindsey 1997). Top right panel: monthly number of reported
cases in the UK (Healy and Tillett 1988). Lower panel: quarterly number of reported cases in
Australia (Daley and Gani 1999)

.

Note that for t > 0, the initial number of cases A(0) is a constant and is used as a
parameter in the model. The parameter θ represents the growth rate of the epidemic.
The model for the number of cases in (2.3) can be formulated as a generalized linear
model (GLM, see, e.g., McCullagh and Nelder 1989) with Poisson distribution for
the response and log link function

log(δ (t)) = log(A(0))+θ t.

This model can be fitted as a GLM with Poisson distribution and log link function
using the function glm() in R.

fit.aidsUS=glm(cases˜t.quarter,family=poisson(link="log"))

Data and fitted models are shown in Fig. 2.4. Below, the R output from the
analysis for the AIDS data from the USA is presented. Both Healy and Tillett
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(1988) and Lindsey (1997) discussed the problem of reporting delays, the difference
between the date of report and date of diagnosis, for these types of data. Follow-
ing Lindsey (1997), in order to avoid the problem of reporting delays in the data, we
use the data until middle 1986.

> summary(fit.aidsUS)

Call:
glm(formula = cases ˜ t.quarter, family = poisson(link

= "log"))

Deviance Residuals:
Min 1Q Median 3Q Max

-4.6738 -2.8327 -0.9165 2.8039 6.9488

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.208901 0.020799 250.4 <2e-16 ***
t.quarter 0.181999 0.001454 125.1 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 19960.03 on 17 degrees of freedom
Residual deviance: 231.21 on 16 degrees of freedom
AIC: 393.00

The estimated number of initial cases Â(0) = exp(5.2089) = 182.89 (95%
C.I.175.58− 190.50). The growth rate is θ̂ = 0.1820 (0.1791− 0.1848) slightly
higher than the quarterly growth rate in Australia θ̂ = 0.1394 (0.1292− 0.1496).
Notice that for all datasets, the predicted number of cases based on the initial out-
break reveals similar patterns because of the assumed exponential model (Fig. 2.4.)

Indeed, the underlying assumption behind the exponential model is that in the
initial stage of the epidemic the number of infected individuals appears at an
exponential rate.

Alternatively, other growth models, such as Weibull, Gompertz and logistic
models, can be fitted to the data as well. For these models the mean structure is
given by

δ (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(0)eθt exponential linear growth,

A(0)eθ1t+θ2t2
exponential quadratic growth,

A(0)tθ Weibull model,
A(0) [1− exp(−α exp(β t)] Gompertz growth,
A(0) [α exp(β t)]/ [1+α exp(β t)] logistic growth.
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Fig. 2.5 AIDS in Australia. Predicted number of AIDS cases for 40 quarters based on exponential
linear growth (solid line), exponential quadratic growth (short-dashed line), Weibull model (dotted
line), Gompertz model (dot-dashed line), and logistic growth model (long-dashed line). Left:
prediction within the range of the data. Right: long-term prediction for a period of 40 quarters

Figure 2.5 shows the AIDS data in Australia with the predicted means obtained from
different models. We notice that long-term prediction based on data from the initial
stage of the epidemic is problematic and should be interpreted with caution. The
fact that a certain model has a good fit within the range of the data does not itself
justify the use of this model for long-term prediction.

The Poisson distribution we have used in the GLM has the property that the mean
equals the variance. This property is often not fulfilled. In that case distributions
such as the negative binomial distribution allowing for overdispersion can be
used (Agresti 2002).

2.3 The Mechanism that Generates the Data

The transmission model discussed in the previous section can be interpreted as the
mechanism that generates the observed data. Thus, if our assumptions about the
transmission model are correct, the observed data should reflect the underlying
mechanism. Furthermore, when modeling the data we should take into account the
mechanism in the background and, as Ross (1916) argued, we should compare the
results obtained from the assumed mathematical model to those which are obtained
from the data modeling approach. The two modeling frameworks (mathematical
and statistical models for infectious diseases) are complementary and model
building within both modeling frameworks can be improved if information from the
complementary framework is used. Indeed, almost 100 years after Ross’ paper the
idea of interaction between mathematical and statistical models, the idea to evaluate
the assumptions behind the transmission model using a statistical model, remains
central in current day modeling of infectious diseases.
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2.4 The Basic Epidemiological Parameters

Before we continue, we need to introduce some of the basic epidemiological
parameters often used in infectious disease epidemiology. We will mainly fol-
low Diekmann and Heesterbeek (2000) and Vynnycky and White (2010). Denote S
and I the number of susceptible and infectious individuals. Define N the population
size and let us assume we have a closed population (no births, no deaths, no
migration).

The Mass Action Principle and the Force of Infection

In its simplest form, the mass-action principle states that the number of new cases
in generation g+ 1 is proportional to all possible contacts between infectious and
susceptible people in generation g. Mathematically this can be expressed as

Ig+1 = bIgSg, (2.4)

where b is a proportionality coefficient often referred to as contact rate or trans-
mission parameter whereas it actually represents the probability per susceptible
person of having a contact which leads to a transmission event and therefore the
term effective contact rate is often preferred. In general, the Greek letter beta, β , is
used when referring to the effective contact rate per unit of time. The mass-action
principle can then be written as β I(t)S(t) which provides the rate at which newly
infected individuals emerge.

The force of infection λ (t) is defined as β I(t). It expresses the rate at which
susceptible individuals become infected and depends on the effective contact rate
and the number of infectious individual at time t.

The Basic Reproduction Number

Diekmann and Heesterbeek (2000) defined the basic reproduction ratio R0 as the
expected number of secondary cases per primary case in a “virgin” population.
Nowadays, people tend to prefer the use of the term number instead of ratio and so
will we throughout the text. In general, R0 can take any value on the positive real
line.

When considering the epidemic on a generation basis, the basic reproduction
number R0 can be related to the mass-action principle (2.4) as follows (Vynnycky
and White 2010). Consider a totally susceptible population in generation g = 0.
This means that S0 = N, i.e., the number of susceptible individuals in generation 0
equals the population size. If one infectious person enters the population, I0 = 1,
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i.e., there is only one infectious individual in generation g = 0, the mass-action
principle implies that the number of newly infected cases in the next generation
(g = 1) is given by bN. In continuous time, the number of newly infected cases is
given by β ND, where D denotes the mean duration of infectiousness. Indeed, in
continuous time β is a rate and expresses the effective contact rate per unit of time.
Consequently, the generation time during which the introductory case is infectious,
i.e., the duration of infectiousness, needs to be taken into account.

If R0 is larger than 1, the expected number of newly infected individuals is larger
than 1 and the infection will spread in the population. Whenever R0 is smaller than
1, and thus the expected number of newly infected individuals is smaller than 1, the
infection will die out. Therefore the threshold of interest for R0 is 1. The estimation
of R0 will be discussed in part V of the book.

Herd Immunity Threshold and the Critical
Vaccination Coverage

Let us consider a continuous time setting. If we assume that after infection people
recover and gain lifelong immunity, the number of susceptibles decreases during the
course of an epidemic. The expected number of newly infected individuals produced
by a primary case is then given by β s(t)ND, where s(t) is the proportion susceptible
at time t. In other words, the effective reproduction number R(t) at time t is given
by s(t)R0. Again if R(t)> 1 the infection will continue to spread in the population
whereas if R(t) < 1 the infection will die out. The threshold value R(t) = 1 yields
that s(t) = 1/R0. In other words, if the proportion susceptible in the population
is smaller than 1/R0 or if a proportion 1− 1/R0 is immune or immunized either
by natural infection or by vaccination, the incidence of infection should decrease.
This threshold criterion is known as the herd immunity threshold. The concept of
herd immunity refers to the fact that a fraction of the population escapes infection
since in the limit not everyone is infected. Given the herd immunity threshold it
suffices to immunize a proportion 1− 1/R0 of the population to stop the infection
from spreading in the entire population. We will give a mathematical derivation for
this result in Sect. 3.1.2 within the context of the basic SIR model. The proportion
1− 1/R0 is referred to as the critical vaccination coverage.

The Average Age at Infection

A final concept which we need to introduce is the average age of infection which
is defined as the average age at infection among individuals who ever experience
infection in their lifetime.
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2.5 Discussion

In this chapter, the basic concept of a priori and a posteriori models as described
by Ross (1916) has been introduced and exemplified using a simple mathematical
and statistical model for HIV/AIDS and some basic epidemiological parameters
have been defined. In the following chapter we will revisit discussing these basic
epidemiological parameters in the context of an SIR model. Furthermore we will
show how serological data provide a valuable source of information to estimate
some of these parameters in several settings. Readers familiar with the SIR model
and its dynamics can skip the following chapter and proceed with Chap. 4 in which
the data used throughout this book are introduced.



Chapter 3
The SIR Model

3.1 Introduction

In this chapter, we introduce the basic SIR model and its properties. In this first
section, we introduce the SIR model and review its dynamic properties assuming ho-
mogeneous mixing. In Sect. 3.2 the SIR model in endemic equilibrium is discussed
whereas the link to serological data is made in Sect. 3.3. A short description of
additional compartments often added to the SIR model is given in Sect. 3.4. The ex-
tension of the SIR model for populations consisting of subpopulations (for instance
by age) is discussed in Sect. 3.5. We end this chapter with a discussion in Sect. 3.6.

3.1.1 The SIR Model

Let us consider a transmission model consisting of three compartments: susceptible
(S), infected (I), and immune or recovered (R). An underlying assumption of
this SIR model is that individuals are born into the susceptible class. Hence the
exposure time is the age of the individual. After infection, the individuals transfer to
the infected class and after clearing the infection individuals are transferred to the
immune/recovered class. It is assumed that, after recovery, individuals gain lifelong
immunity and therefore do not take part in the transmission process other than that
they represent the complement of those that do (i.e., the more immune people, the
fewer there can be infectious and susceptible people in the population). The SIR
model is one of the basic compartmental models in infectious disease epidemiology,
which is widely used and well suited to model many viral infections in childhood.
Given its structure, the SIR model is likely too simplistic for a number of infections,
e.g., it is unsuited to model the transmission of infectious agents against which the

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 3,
© Springer Science+Business Media New York 2012
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Fig. 3.1 Flow diagram for the SIR model. The individuals enter the susceptible class, then move
to the infected class (at rate λ ), and after recovering they move into the immune class (at rate v)

host does not acquire permanent immunity after infection (a state which is explicitly
represented by the R compartment).

Although the exposure time in the SIR model is age, individuals who were born
in different calendar years may participate in the transmission process with different
parameters, at least if the transmission parameters depend on the calendar time.
Therefore the SIR model can be described using a system of three partial differential
equations in age and time given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S(a, t)
∂a

+
∂S(a, t)

∂ t
=−(λ (a, t)+ μ(a, t))S(a, t),

∂ I(a, t)
∂a

+
∂ I(a, t)

∂ t
= λ (a, t)S(a, t)− (ν(a, t)+α(a, t)+ μ(a, t))I(a, t),

∂R(a, t)
∂a

+
∂R(a, t)

∂ t
= ν(a, t)I(a, t)− μ(a, t)R(a, t),

(3.1)

where S(a, t), I(a, t), and R(a, t) are the age- and time-specific number of suscepti-
bles, infected, and recovered, respectively; and with boundary conditions given by
S(0, t) = B(t), the number of births in the population at time t, I(0, t) = R(0, t) = 0,
meaning that we rule out vertical transmission of infection. The initial conditions
are given by S(a,0) = S̃(a), I(a,0) = Ĩ(a) and R(a,0) = R̃(a) where S̃(a), Ĩ(a), R̃(a)
are prescribed functions of age such that S̃(a)+ Ĩ(a)+ R̃(a) = N(a,0) with N(a,0)
the age-specific population size at time 0. In these equations, μ(a, t) and α(a, t)
denote the natural and disease-related death rate, respectively. It is often assumed
that both μ(a, t) and α(a, t) possibly depend on age but not on time: μ(a, t) = μ(a)
and α(a, t) =α(a). The force of infection λ (a, t) is the rate at which individuals are
infected and it is assumed to be both age- and time-dependent whereas ν(a, t) is the
recovery rate which is often assumed to be constant: ν(a, t) = ν . Figure 3.1 shows
the flow diagram for such a model.

We will now focus on the SIR dynamics. To simplify the presentation, we will
do so by assuming homogeneity with respect to age meaning that the parameters
in (3.1) are assumed constant with respect to age. Throughout the text we will refer
to the age-homogeneous model as the basic SIR model.
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3.1.2 The Basic Model Dynamics

Assuming age homogeneity and the aforementioned assumptions, model (3.1)
simplifies to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= B(t)−λ (t)S(t)− μS(t),

dI(t)
dt

= λ (t)S(t)−νI(t)− μI(t),

dR(t)
dt

= νI(t)− μR(t),

(3.2)

where λ (t) = β I(t) as given by the mass-action principle discussed in Sect. 2.4.
Further, we assume B(t) = μN(t) and no disease-related mortality α = 0 which
results in B = μN. Indeed (3.2) and B(t) = μN(t) yields a constant population
N(t) = N because of equal birth and death rates:

dS(t)
dt

+
dI(t)

dt
+

dR(t)
dt

= μ [N(t)− S(t)− I(t)−R(t)]= 0.

Note that (3.2) can be derived by integrating (3.1) over age.
Let s(t) = S(t)/N(t), i(t) = I(t)/N(t), and r(t) = R(t)/N(t) denote the fraction

susceptible, infected, and recovered, respectively. The differential equation system
(3.2) can be rewritten in terms of these proportions as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt

= μ − β̃ i(t)s(t)− μs(t),

di(t)
dt

= β̃ i(t)s(t)−νi(t)− μ i(t),

dr(t)
dt

= νi(t)− μr(t),

(3.3)

where β̃ = β N. Note that the population size in a deterministic model is no more
than a scaling factor but that the interpretation of β and β̃ is different. Whereas
β refers to the density dependent or “pseudo” mass-action principle as first used
by Hamer (1906) and doesn’t depend on the population size, β̃ refers to the
frequency dependent or “true” mass-action principle (de Jong et al. 1995). For a
more elaborate discussion on the difference between these two versions of the mass-
action principle we refer to Keeling and Rohani (2008) and Vynnycky and White
(2010). We note that since we assume no disease-related mortality and a constant
population both versions equivalent here.

The transmission model defined by the differential equation system (3.3) implies
that the disease can spread as long as di(t)/dt > 0 (or equivalently because of a
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constant population, dI(t)/dt > 0). This allows us to derive the threshold condition
by equating the differential equation in the infected compartment to zero:

β̃ i(t)s(t)−νi(t)− μ i(t) = 0 → i(t)(β̃ s(t)−ν − μ) = 0

and therefore:

s(t) =
ν + μ

β̃
,

or equivalently the disease can spread as long as

s(t)>
ν + μ

β̃
. (3.4)

The quantity β̃/(ν + μ) is the basic reproduction number R0 and it represents the
number of new infections introduced by one infectious individual in a completely
susceptible population (see Sect. 2.4 and, e.g., Dietz 1993; Diekmann and Heester-
beek 2000 (Chapter 3)). Equation (3.4) implies that the disease can spread as long
as R0 > 1 while for R0 < 1 the infection will die out.

Indeed, in Sect. 2.4 we have shown that the basic reproduction number
R0 = β ND in a closed population and that the threshold of interest is 1. Assuming
μ = 0, R0 = β̃/(ν + μ) = β N/ν, where 1/ν = D is the mean infectious period,
yields the same result. The inclusion of nonzero mortality (μ > 0) lowers the mean
infectious period yielding a lower R0-value. Note that (3.4) implies that the disease
can spread as long as the proportion susceptible is larger than 1/R0 or equivalently
for the reproduction number R(t) = s(t)R0 > 1 (see Sect. 2.4).

A disease is said to be in equilibrium whenever ds(t)/dt = di(t)/dt =
dr(t)/dt = 0. Equating the differential equation for infectives to zero results in

di(t)
dt

= 0 → i(t)(β̃ s(t)− (ν + μ)) = 0 → i(∞) = 0 or s(∞) =
ν + μ

β̃
.

Here i(∞) = 0 implies what is called a disease free equilibrium in which the
equilibrium values (s(∞), i(∞),r(∞)) are equal to (1,0,0) while s(∞) = (ν + μ)/
β̃ = 1/R0 implies what is referred to as the endemic equilibrium. In order to
derive the endemic equilibrium value for i(∞), we substitute s(∞) in the differential
equation for the fraction susceptibles and get

ds(t)
dt

= 0 → μ − β̃ i(t)
1

R0
− μ

1
R0

= 0 → i(∞) =
μ
β̃
(R0 − 1).

Thus, the endemic equilibrium values are given by

s(∞) =
1

R0
, i(∞) =

μ
β̃
(R0 − 1), r(∞) = 1− s(∞)− i(∞). (3.5)
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3.1.3 The Basic Model in R

Let us consider a population of size N = 5,000 with S(0) = 4,999, I(0) = 1, and
R(0) = 0. We assume ν−1 = 1 year, a life expectancy μ−1 of 75 years, μ = 1/75,
and β = 0.0005. With this parameter setting R0 = 2.4671 and according to (3.5):
(s(∞), i(∞)) = (0.4053,0.0078) or (S(∞), I(∞)) = (2,026.67,39.12). A possible R
program for system (3.2) consists of a function SIR in which we define the set of
differential equations. The model as implemented here allows for a disease-related
death rate, α .

parameters = c(mu=1/75,beta=0.0005,nu=1,N=5000,alpha=0)
state = c(S=4999,I=1,R=0)

SIR=function(t,state,parameters)
{
with(as.list(c(state, parameters)),
{
dS = N*mu-beta*I*S - mu*S
dI = beta*I*S - (nu+alpha+mu)*I
dR = nu*I - mu*R
list(c(dS, dI, dR))
})
}

Note that, although the R model is formulated in terms of numbers, its transfor-
mation to fractions is straightforward. In the R program we specified α = 0 and
thus consider the model without disease-related mortality. We define an R object,
res.scen1, which contains the solution of the integration over a period of 1000 years
by 10,000 time units (0.10 years each).

times=seq(0,1000,by=0.1)
require(deSolve)
res.scen1=as.data.frame(ode(y=state,times=times,func=SIR,

parms=parameters))

Figure 3.2 (upper row) shows the fractions of susceptible and infected individuals
at each time point, and how the numbers of susceptible and infected individuals
in the population reach their equilibrium values for the first 250 years. Notice that
indeed the equilibrium values for S and I are 2,026.67 and 39.12, respectively
(according to (3.5)). The damping effects in s(t) and i(t) over time have a
slightly different pattern: s(t) oscillates around the equilibrium value (symmetric
oscillations) and as time passes the magnitude of the oscillations decreases up to the
point at which s(t) reaches the endemic equilibrium fraction. For i(t) the oscillations



30 3 The SIR Model

0 50 150 250

0.2

0.4

0.6

0.8

1.0

time

pr
op

or
tio

n 
su

sc
ep

tib
le

0 50 150 250

0.00

0.05

0.10

0.15

0.20

time

pr
op

or
tio

n 
in

fe
ct

ed

1000 3000 5000

0

200

400

600

800

1000

1200

number susceptible

nu
m

be
r 

in
fe

ct
ed

0 50 150 250 0 50 150 250

0.70

0.75

0.80

0.85

0.90

0.95

1.00

time

pr
op

or
tio

n 
su

sc
ep

tib
le

0.000

0.005

0.010

0.015

0.020

time

pr
op

or
tio

n 
in

fe
ct

ed

3500 4000 4500 5000

0

20

40

60

80

100

number susceptible

nu
m

be
r 

in
fe

ct
ed

Fig. 3.2 Dynamics in the SIR model. Left column: proportion susceptible s(t); middle column:
proportion infected i(t); right column S(t) versus I(t). Parameter setting N = 5,000, I(0) = 1,
μ = 1/75, and ν = 1. Upper row: β = 0.0005 and thus R0 = 2.47; lower row: β = 0.00025 and
thus R0 = 1.23

exhibit a different pattern with recurrent epidemics for which the peaks decrease
over time (damping oscillations). Note that the (time-dependent) force of infection
is proportional to I(t) since λ (t) = β I(t).

Figure 3.2 (second row) shows the solution for a second scenario in which
β = 0.00025 and R0 = 1.2336 (1/R0 = 0.8107). We notice that in addition to
the new equilibrium values, S(∞) = 4053.33 and I(∞) = 12.46, the time at which
the susceptible class builds up is longer and as a result the interepidemic period,
i.e. the time interval between two successive peaks, is longer.

Next, we investigate the influence of the recovery rate ν on the transmission
process. We start from the first scenario as defined above and change the value of ν
to 2 (reflecting a mean time to recovery of approximately 6 months) by changing the
value of the third element of the vector parameters. Figure 3.3 shows the number of
susceptibles for the two scenarios and shows that S(∞) is higher for the second
scenario with ν = 2 while the interepidemic period is longer compared to the
scenario where ν = 1. This is due to the fact that in the second scenario individuals
on average spend less time in the infected class and therefore less contacts are



3.1 Introduction 31

1000 3000 5000

0

200

400

600

800

1000

1200

number susceptible

nu
m

be
r 

in
fe

ct
ed

3500 4500
0

20

40

60

80

100

number susceptible

nu
m

be
r 

in
fe

ct
ed

0 200 600 1000

0.2

0.4

0.6

0.8

1.0

time

pr
op

or
tio

n 
su

sc
ep

tib
le

Fig. 3.3 SIR-dynamics in continuous time. Parameter setting: S(0) = 4,999, I(0) = 1, R(0) = 0,
μ = 1/75, β = 0.0005, and ν = 1 (left panel) or ν = 2 (middle panel). Right panel: s(t) for the
two scenarios: solid line ν = 1 and dashed line ν = 2

made between susceptible and infectious individuals. As a result, at equilibrium
Sν=2(∞) > Sν=1(∞) and Iν=2(∞)< Iν=1(∞) as can be seen from both the R output
presented in the panel below and Fig. 3.3.

# Output
# nu=1
> res.scen1[10001,]

time S I R
10001 1000 2026.667 39.12279 2934.211
# nu=2
> res.scen2[10001,]

time S I R
10001 1000 4026.688 6.456782 966.8547

Figure 3.4 shows the influence of ν on R0 for a wider range of ν-values. The
threshold value of R0 = 1 corresponds to the point (S(∞),R(∞)) = (N,0) in Fig. 3.4.

3.1.4 Vaccination in the Basic Model

Let us now discuss the basic reproduction number and the impact of vaccination
programs on the infectious disease epidemiology. In this section, focus is on the
dynamic changes and we introduce the critical vaccination proportion needed to
eradicate the disease.

There are different ways to incorporate a vaccination program in a deterministic
model (Halloran et al. 2010). Here we incorporated a vaccination program in the
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basic SIR model by adding a transition from the susceptible compartment to the
immune compartment by assuming that a proportion p of newborns is effectively
vaccinated at birth. (i.e., p can be thought of as the product of vaccine uptake,
the proportion of vaccine recipients, and vaccine efficacy, the probability that the
vaccine is efficacious in a vaccine recipient). We will ignore the issue of efficacy
throughout the remainder of the book and refer the interested reader to Halloran
et al. (2010). The basic SIR model (3.2) can be rewritten to include vaccination as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Nμ(1− p)− (λ (t)+ μ)S(t),

dI(t)
dt

= λ (t)S(t)− (ν + μ)I(t),

dR(t)
dt

= Nμ p+νI(t)− μR(t).

(3.6)

The SIR model (3.6) implies that a proportion p of newborns enters directly
in the immune class. Figure 3.5 shows the prevaccination setting while Figs. 3.6
and 3.7 show the model in which 40% and 80% are vaccinated at birth. Two
main patterns can be observed. First, the interepidemic period is longer when the
proportion of vaccinated individuals increases. This implies that the average age at
infection (which is equivalent to the average duration in the susceptible class) is 10
years and 5 years, respectively. This implies that individuals spend, on average,
more time in the susceptible class and as a result the average age at infection
increases (Sect. 2.4). Second, in the long run, after vaccination, a new endemic
equilibrium will be reached.

Notice that although the prevaccination force of infection λ (0) = λ0 is equal
under all scenarios, in the new equilibrium the force of infection decreases as
the proportion of vaccinated individuals increases. Indeed, since S(t) decreases
as p increases so does β S(t)I(t) and thus the rate at which individuals leave
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Fig. 3.6 Dynamic aspects of vaccination in the SIR model. Numerical solution for the basic SIR
model (3.6) with the parameter setting λ0 = 0.2, 1

μ = 70, R0 = 15 and 1
v = 25 and 40% vaccination

the susceptible class and become infected decreases. Consequently, λ (t) = β I(t)
decreases. As a result, as shown in Figs. 3.5–3.7 the interepidemic period is longer
as p increases. This implies that a vaccination program has two effects on the
population. The direct effect is the transfer of a proportion p from the susceptible
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class directly to the immune class while the indirect effect is related to the decline
of the force of infection and its effect on unvaccinated individuals. The latter effect
is the herd immunity effect introduced in Sect. 2.4.

3.1.5 The Basic SIR Model with Vaccination in R

In order to include vaccination in the model we need to change the first and the third
differential equation in the function SIR discussed in Sect. 3.1.3. In the function
below p is the proportion vaccinated at birth as in (3.6).

SIR=function(t,state,parameters)
{
with(as.list(c(state, parameters)),
{
dS = N*mu*(1-p)-beta*S*I - mu*S
dI = beta*S*I - nu*I - mu*I
dR = nu*I -mu*R+N*mu*p
list(c(dS, dI, dR))
})
}
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Fig. 3.8 Vaccination in the SIR model. Left panel: number of susceptibles for different proportions
vaccinated. Right panel: S(t) versus R(t) for p = 0,0.2,0.4 (solid, dashed, and dotted line,
respectively)

Note that the parameter vector and the state variables remain the same as before
but we need to specify the proportion vaccinated. For a population of size 5,000,
β = 0.0005, ν = 1 year−1, life expectancy of 75 years, and vaccination coverage of
40% of newborns we use

parameters = c(mu=1/75,beta=0.0005,nu=1)
state = c(S=4999,I=1,R=0)
times=seq(0,1600,by=0.01)
p=0.4
N=5000

Figure 3.8 shows the number of susceptibles over time for three scenarios with
p = 0, 0.2, and 0.4, respectively. Figure 3.8 and the R output below show that
in equilibrium the number of susceptibles for p = 0 and p = 0.4 will be the
same (2,026.67). However, the number of infectious individuals for the case where
p = 0.4 (12.81) will be smaller than the number of infectious individuals for p = 0
(39.12).

>#number of individuals in equilibrium
>#p=0
> outp0[160001,]

time S I R
160001 1600 2026.667 39.12281 2934.211
>#p=0.2
> outp02[nnn,]

time S I R
(continued)
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Fig. 3.9 Number of reported cases for measles and vaccination coverage rate at Brazil and
Guatemala. Source: World Health Organization: immunization surveillance, assessment, and
monitoring. Top two panels: Brazil. Lower two panels: Guatemala

(continued)
160001 1600 2026.667 25.96491 2947.368
>#p=0.4
> outp04[nnn,]

time S I R
160001 1600 2026.667 12.80705 2960.526

An Example: Measles Incidence Data from Brazil and Guatemala

We illustrate the impact of vaccination programs using measles incidence data from
Brazil and Guatemala. Figure 3.9 presents the number of reported cases of measles
and the coverage rate of vaccination against measles in Brazil and Guatemala
(1980–2008). In both countries the yearly incidence decreases as the vaccination
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coverage increases. Figure 3.9 reveals a second pattern of a possible threshold effect
of the proportion of vaccinated individuals on the number of cases (Sect. 2.4).

Note that in Guatemala the number of reported cases from 1999 to 2008 equals
zero while the coverage rate increases from 83% in 1999 to 96% in 2008. Similarly,
in Brazil, the number of reported cases from 2000 to 2008 equals zero while the
coverage rate increases from 87% to 100%.

3.1.6 The Critical Vaccination Coverage

The direct effect of the vaccination program as previously introduced implies that
at birth a proportion p of newborns is transferred directly to the immune class. This
means that in the new equilibrium after vaccination the proportion of the population
in the susceptible class is at most 1− p. Recall that in Sect. 3.1.2 we showed that the
basic reproduction number at equilibrium is given by R0 = 1/s(∞).

Hence, at equilibrium in a vaccinated population R0s(∞) = R0(1 − p). For
R0(1− p)< 1 the infection will not be able to maintain itself. Therefore, the critical
proportion of individuals that has to be vaccinated in order to eliminate the disease,
pc, is the one satisfying R0(1− pc) = 1 or

pc = 1− 1
R0

. (3.7)

Anderson and May (1991) showed that for such a vaccination program (p vac-
cinated at birth) the postvaccination force of infection at the new equilibrium
decreases linearly with p and is given by

λ ′ = μR0(pc − p),

and the postvaccination reproduction number is equal to

R =
λ ′+ μ
(1− p)μ

.

As p → pc it follows that λ ′ → 0 and the disease will be eliminated.
Let us now turn back to the SIR model as first introduced in Sect. 3.1.1 and

discuss how prevaccination serological data can be used to estimate parameters such
as the force of infection and the basic reproduction number. To do so we rely on the
assumption of endemic equilibrium.

3.2 The SIR Model in Endemic Equilibrium

The starting point in this section is model (3.1) where we assume no disease-
related mortality (α = 0) and a constant age distribution N(a) which in turn implies
constant births as: B(t) =

∫ +∞
0 μ(a)N(a, t)da. Note that the preceding formula is a



38 3 The SIR Model

ak

...
a2

a1

0

C1 C2 C3 . . . CK

age

timet

Fig. 3.10 Illustrative figure
of a cross-sectional sample
taken at time t�

necessary condition to obtain stationarity and does not imply that the age-specific
fertility is the same as the age-specific mortality rate as is evident from, e.g.,
empirical data. Doing so we turn to an age-heterogeneous setting in contrast to the
one of Sects. 3.1.2 and 3.1.4 and further we assume the system to be in endemic
equilibrium. Under endemic equilibrium, also referred to as the steady state of the
model (see e.g. Anderson and May 1991, Chapter 4), there is no time dependence
in the variables resulting in the following set of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(a)
da

= −(λ (a)+ μ(a))S(a),

dI(a)
da

= λ (a)S(a)− (ν + μ(a))I(a),

dR(a)
da

= νI(a)− μ(a)R(a),

(3.8)

and B(t) = B =
∫+∞

0 μ(a)N(a)da is constant. The system of ordinary differential
equations (3.8) is called the time homogeneous model or the static model (Anderson
and May 1991). It assumes that a cohort of individuals is born to a nonvaccinated
population and that the disease is in an endemic equilibrium.

Suppose that the cohort size is N(0) and that at birth all the individuals in
the cohort are susceptible, i.e., (S(0), I(0),R(0)) = (N(0),0,0). The time homo-
geneous model (3.8) describes how the cohort changes disease stages with age.
Figure 3.10 illustrates this for a population in which cohorts of individuals, marked
by C1, . . . ,CK , are born at different time points into the population. Note that since
each cohort moves along the 45◦ line in the age-time plane, age and calendar time
are equivalent given that we take the time of birth as origin.

The calendar time is not of primary interest since the disease is in an endemic
equilibrium and all the derivatives with respect to time are equal to zero. Knowledge
about λ (a) and ν can give us an indication of how fast individuals in the cohort pass
from the susceptible to the infected class and from the infected class to the immune
class, respectively.
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In theory, we could estimate the unknown parameters using a follow-up study
in which we follow a cohort from birth to death. In Fig. 3.10, a follow-up study
means that we follow a cohort along a single arrow (e.g., C1) from birth to death and
identify the time of infection for the disease of interest. However, conducting such
a follow-up study is often not feasible due to the long timescale.

Since the disease is in an endemic equilibrium, the parameters λ (a) and ν are
equal for any two cohorts. The property that λ (a) and ν are fixed given endemic
equilibrium implies that taking a random sample from the population at any point
in time t� is sufficient to estimate the parameters from that sample.

Suppose that we take a cross-sectional random sample from the population at
time t�, measuring the proportion susceptibles can then be done using markers
of past infection. Serological tests use the antibodies as markers of past infection
and thus, given that the disease induces lifelong immunity, individuals can be
classified according to their status of being immune (seropositive, antibody levels
above a predefined cutoff level) or susceptible (seronegative, antibody levels below
a predefined cutoff level). We expect the proportion immune to increase with age
because of an increase in exposure time with age.

Figure 3.11 shows an age-stratified cross-sectional serological sample of hepati-
tis A from Bulgaria anno 1964 for which the time-equilibrium assumption is tenable.
This figure illustrates the increase of the proportion immune, i.e., the seroprevalence
with age (Keiding 1991).

The connection between the time homogeneous representation of the SIR model,
serological data, and the estimation of the force of infection is made in Sect. 3.3.
A discussion on how one can use antibody levels directly to estimate the force of
infection can be found in Chap. 11. In the following section we first elaborate on the
time homogeneous model.
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3.2.1 Compartments in the Time Homogeneous SIR Model

Before turning to the compartments in the time homogeneous SIR model, we
introduce two assumptions often made when including natural mortality in a model.
Let N(0) denote the cohort size at birth and �(a) the survival function. The number
of individuals in the cohort who are still alive at age a is given by

N(a) = N(0)P(survival until age a at age a) = N(0)�(a).

The two mortality functions often used in the literature are usually referred to as
Type I mortality resulting in a population with rectangular age distribution and Type
II mortality resulting in a population with exponential age distribution (see, e.g.,
Anderson and May 1991). For Type I mortality, the survival function is assumed
constant up to age L (the life expectancy) after which all individuals promptly die.
Hence, for Type I mortality we have

N(a) =

{
N(0) a ≤ L,
0 a > L.

For Type II mortality, the probability to survive up to age a is assumed age-
dependent, �(a) = e−μa, where μ is a constant mortality rate. For Type II mortality,
the life expectancy equals L = 1/μ and the number of individuals in the cohort still
alive at age a is given by N(a) = N(0)e−μa.

Note that the age distribution in the population is given by L−1�(a) which for
Type I mortality equals L−1 for a ≤ L and 0 otherwise (rectangular distribution);
and for Type II mortality equals L−1e−μa = μe−μa (exponential distribution).

The Type I mortality assumption is sometimes used to approximate the mortality
function for developed countries whereas the Type II mortality function is used for
most developing countries (Anderson and May 1991). Note that almost any real
population has an age-structure in between these two extremes. Assuming Type I or
Type II mortality is used because of modeling simplicity and computational ease but
not strictly necessary. The impact of the assumptions on models could be substantial
when focus is, e.g., on estimating zoster (Brisson et al. 2000) incidence.

We will now discuss each of the compartments in the time homogeneous SIR
model. For ease of demonstration we will use a constant force of infection λ in this
discussion.

Susceptible Class

Taking into account the survival function �(a), the number of individuals in the
cohort in the susceptible class at age a, S(a), is given by

S(a) = N(0)�(a)e−λ a.
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Hence, for Type I and Type II mortality we obtain

S(a) =

{
N(0)e−λ a a ≤ L,
0 a > L.

and S(a) = N(0)e−(λ+μ)a,

respectively. It follows that the derivatives of S(a) with respect to age for Type I and
Type II mortality are

dS(a)
da

=−λ N(0)e−λ a =−λ S(a) if a ≤ L and
dS(a)

da
=−(λ + μ)S(a),

respectively. For both mortality types, the differential equation describes the change
in the susceptible class with respect to age and it is the first differential equation of
the static model (3.8) without and with demographic processes, respectively.

Instead of the total number of susceptibles we can define the proportion (or the
fraction) of susceptible individuals at age a:

s(a) =
S(a)
N(a)

=
N(0)�(a)e−λ a

N(0)�(a)
= e−λ a. (3.9)

Note that when λ depends on age, (3.9) becomes

s(a) = e−
∫ a

0 λ (u)du. (3.10)

Equation (3.10) illustrates the link to survival analysis where the time to
event is the age at infection, s(a) is the survival function (with respect to acquiring
infection), λ (a) is the age-specific hazard of infection, and

∫ a
0 λ (u)du is the

cumulative hazard of infection (see e.g. Therneau and Grambsch 2000).

Infected and Immune Classes

The corresponding differential equation, assuming a constant λ , for the change in
the infected class is given by

dI(a)
da

= λ S(a)− (v+ μ)I(a).

By integrating with respect to age we obtain the total number of infective individu-
als I(a):

I(a) =
λ

λ − v
N(0)�(a)

[
e−va − e−λ a

]
,

from which the fraction of individuals in the infected class follows as

i(a) =
I(a)
N(a)

=
λ

λ − v

[
e−va − e−λ a

]
.
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Due to the fact that N(a) = S(a)+ I(a)+R(a) the fraction immune is

r(a) =
R(a)
N(a)

= 1− S(a)
N(a)

− I(a)
N(a)

= 1− s(a)− i(a).

We will now show how the time homogeneous SIR model with constant force of
infection is implemented in R.

3.2.2 The SIR Model with Constant Force of Infection
at Endemic State in R

We consider two examples in which the force of infection equals 0.1 and 0.2
year−1, respectively. This implies that the average age at infection (which is
equivalent to the average time spent in the susceptible class) is 10 years and 5 years,
respectively. We assume that the duration in the infected class is 10 days, which
means that ν = 1/10 days−1 or 1/(10/365)= 36.5 years−1. We further assume that
(s(0), i(0),r(0)) = (0.999,0.001,0).

For a model with λ = 0.1 and ν = 36.5 year−1, the parameter vector, the state
variables, and the age for integration are given by

parameters=c(lambda = 0.1, nu=1/(10/365))
state=c(s=0.999,i=0.001,r=0)
ages=seq(0,90,by=0.01)

The time homogenous SIR model (3.8) can be implemented in R in the following
way:

SIR=function(a,state,parameters)
{
with(as.list(c(state, parameters)),
{
ds=-lambda*s
di=lambda*s - nu*i
dr=nu*i
list(c(ds, di, dr))
})
}

Figure 3.12 shows the numerical solutions for the two examples. The upper
panels show the results of the model with λ = 0.1 whereas the lower panels show
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Fig. 3.12 Numerical solution for the static SIR model (3.8). We assume a recovery rate of
ν−1 = 10 days. Upper panels: λ = 0.1. Lower panels: λ = 0.2. Left panels: fraction of infected
individuals. Right panels: fraction of susceptible (solid line) and immune individuals (dashed line)

the results of the model with λ = 0.2. We notice that for both examples, the fraction
infected individuals is relatively small compared to the fraction susceptible and
immune. This is due to the differences in average time spent in each compartment.
The average duration in the susceptible class is 5 and 10 years for λ = 0.2 and
λ = 0.1, respectively, and after recovery individuals gain lifelong immunity against
reinfection. Compared to an average duration of 10 days in the infected class, we do
not expect to observe a high proportion of infected individuals at any age and in fact

R(a)
N(a)

≈ 1− S(a)
N(a)

or r(a)≈ 1− s(a). (3.11)

Note that equation (3.11) holds regardless of the assumed age-specific mortality
rate as long as there is no disease-related mortality.
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Fig. 3.13 Impact of vaccination programs on the endemic equilibrium after vaccination. Left
panel: proportion susceptibles by age for different proportions of vaccination with R0 = 9.33
(pc = 0.89). Right panel: the average age at infection by proportion vaccinated for different values
of R0. L = 75 years

3.2.3 The Critical Proportion of Vaccination in the Time
Homogeneous SIR Model

Let us revisit vaccination in the time homogeneous SIR model following Sect. 3.1.4.
The proportion susceptible is given by (see Chap. 5, Anderson and May 1991)

s(a)→ (1− p)e−(λ ′a).

As p → pc it follows that λ ′ → 0 and the disease will be eliminated and thus s(a) =
1− pc.

Let us consider the new equilibrium after vaccination. Figure 3.13 shows the
proportion of individuals in the susceptible class at each age value for an infection
with R0 = 9.33 (pc = 0.89). Note that for p = 0.89 the proportion susceptible in the
population is constant and equal to 0.11. For a constant force of infection and Type
II mortality with L = 1/μ (see Sect. 3.2.1), Dietz (1993) showed that at equilibrium
R0 = L/A = λ/μ , which means that, for a given value of L, as the average age of
infection A increases, R0 decreases. As A → L, R0 → 1 and for A > L, R0 is below
1.

Intuitively, we can interpret this as follows: If the average age at infection is
higher than the life expectancy, individuals will die before getting infected and
therefore the disease cannot spread. At the steady state, after vaccination, the
average age at infection of the new equilibrium will be higher than the average
age at infection of the steady state before the vaccination program was imple-
mented. Anderson and May (1991) showed that the new average age at infection
is A′ = A/(1− p). Figure 3.13 shows the average age at infection, for several values
of R0, as a function of p. Note that as p → pc the average age at infection converges
to the life expectancy and therefore the disease approaches elimination.
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3.3 The Time Homogeneous SIR Model and Serological Data

We now discuss the connection between cross-sectional serological samples and
the static model. Let us assume that a cross-sectional sample was taken from the
population when the disease is in endemic equilibrium without vaccination. Let
Yi, i = 1, . . . ,N, be an indicator variable representing the disease status for the ith
individual in the sample

Yi =

{
1 when seropositive (previously infected),
0 when seronegative (susceptible to infection).

Let P(Yi = 1|ai) = π(ai) = E(Yi|ai) be the probability to be infected before age ai.
It follows that

Yi ∼ Bernoulli(π(ai)).

Note that π(ai) = 1− s(ai) and using (3.9), which relies on the validity of the SIR
assumption for the specific infection under consideration, we obtain

π(ai) = 1− e−λ ai.

Hence, in order to estimate the unknown parameter λ , we can define a GLM for the
binary response with complementary log–log link function

g(π(ai)) = log(− log(1−π(ai))) = α + log(ai),

where α = log(λ ). The model can be implemented in most of the standard software
which allows to fit GLMs. For example, a possible implementation using the R
procedure function glm is given by

glmfit=glm(cbind(Pos,Tot-Pos)˜1,offset=lAge,
family=binomial(link=cloglog))

summary(glmfit)

Note that Pos and Tot are the number of seropositives and the sample size at each
age value, respectively, and lAge is the logarithm of age. Since the linear predictor
is α + log(ai) we need to use the option offset = lAge to ensure that the coefficient
of log(age) is 1.

For the Bulgarian hepatitis A data, the estimated force of infection equals
exp(−2.986) = 0.0505 with 95% C.I. given by (0.0459− 0.0556). The solid line
in Fig. 3.14 shows the estimated model for the GLM discussed above, together
with the data. The dashed line shows a solution for s(a) obtained from the static
SIR model (3.8) with λ = 0.0505 and average duration of 2 weeks in the infected
class. Clearly, the dashed line lies almost right on top of the solid line, thus the two
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Fig. 3.14 Serological data
and the static SIR model (3.8)
for hepatitis A in Bulgaria:
data, predicted prevalence
(solid line) and numerical
solution for the SIR model
with λ = 0.0505 and ν−1

equal to 2 weeks (dashed line)

models predict the same pattern for the prevalence. However, there is a fundamental
difference between the two models. The solid line in Fig. 3.14 presents an estimated
model in which the parameters were estimated from the data while the dashed lined
presents a solution of an SIR model in which the parameters were assumed known.

The last point is illustrated graphically in Fig. 3.15. The upper panels show an
example of simulated data generated using the model π(a) = 1− exp(−0.0493a).
We can clearly see that as the sample size at each age value increases, the variability
of the observed prevalence decreases. The lower panels present the solution of
two SIR models in which the force of infection is assumed to follow a normal
distribution with mean E(λ ) = 0.05 and variance σ2

λ = 0.02 and σ2
λ = 0.01,

respectively.
The variability in the lower panels is associated with the variance of λ . Note that

as the sample size approaches infinity and σ2
λ −→ 0 both the statistical model and

the mathematical model will predict the same prevalence.

Call:
glm(formula = cbind(Pos, Tot - Pos) ˜ 1, family =

binomial(link = cloglog), offset = lAge)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.98577 0.04866 -61.36 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Fig. 3.15 Variability in serological samples (upper panels) and in deterministic models (lower
panels). The upper panels present the observed prevalence based on ten samples generated from
the true model π(a) = 1− exp(−0.0505a). Sample sizes at each age group are equal to 20 and
100, respectively. The plusses are the observed prevalence in the Bulgarian dataset. The parameter
setting for SIR model is μ = 1/75 for Type I mortality and ν−1 equals 2 weeks. Upper left panel:
n(a) = 20. Upper right panel: n(a) = 100. Lower left panel: λ ∼ N(0.0505,0.02). Lower right
panel: λ ∼ N(0.0505,0.01)

This implies that statistical models can be used to estimate the variability that
one should incorporate in the transmission model. Furthermore, as Ross (1916)
argued, the modeling framework for infectious diseases consists of the interaction
between two distinct modeling frameworks which are complementary to each other
and which should be used together in order to converge towards the same results.

Estimating the Reproduction Number from Serological Data

Recall that the model for the prevalence (or the probability to be infected before
age a) for the serological sample of the Bulgarian hepatitis A data is given by π(a)=
1− e−λ a. Assuming a constant force of infection, the average age at infection is
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equal to 1/λ and R0 = λ L (Dietz 1993). Both the average age at infection, A, and the
basic reproduction number, R0, together with their standard errors can be estimated
from serological data by applying the delta method to the glmfit-object.

> library(car)
> deltaMethod(coef(glmfit),"1/exp((Intercept))",

vcov.=vcov(glmfit))
Estimate SE

1/exp((Intercept)) 19.80182 0.963607
> deltaMethod(coef(glmfit),"75*exp((Intercept))",

vcov.=vcov(glmfit))
Estimate SE

75*exp((Intercept)) 3.78753 0.1843108

Assuming that the life expectancy is 75 years, the estimated average age at
infection is Â = 19.80 years (95% C.I:17.91–21.69 years) and R̂0 = 3.79 years
(95% C.I:3.43–4.15 years). Note that this value equals the estimated value by
Keiding (1991) who reported R̂0 = 3.8 using a nonparametric isotonic regression
to estimate the prevalence (see Chap. 9 for isotonic regression).

3.4 Models with Maternal Antibodies and Latent Periods

So far all SIR models (without vaccination) assumed that newborns enter the
population directly in the susceptible class. In this section we add two additional
compartments to the model. The first compartment allows for a maternal antibody
period in which individuals are protected and therefore are not yet susceptible.
The second compartment describes the latency period, i.e., the period in which the
individual is infected but not yet infectious (exposed individuals).

Figure 3.16 shows the observed antibody levels of varicella for individuals below
age 18 months in a serological sample taken in Belgium. The antibody level of
individuals younger than 12 months starts relatively high and shows a decrease
with age up to 1 year. For individuals older than 1 year, the antibody level depends
on the infection status and there is a clear separation between individuals who
were infected before (and have a high antibody level) and those individuals still
susceptible (and who have a low antibody level). More recently, people have used
cohort studies to better estimate the decay rate of maternal antibodies (see e.g.
Leuridan et al. 2010, 2011).

We can include both a maternal antibody period as well as a latent period in
which the individuals are infected but not yet infectious (the exposed class) in
the SIR model using the following system of ordinary differential equations while
assuming endemic equilibrium:
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Fig. 3.16 Antibody levels
(on log scale) for varicella in
Belgium for individuals
younger than 18 months

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM(a)
da

=−(γ + μ(a))M(a),

dS(a)
da

= γM(a)− (λ (a)+ μ(a))S(a),

dE(a)
da

= λ (a)S(a)− (σ + μ(a))E(a),

dI(a)
da

= σE(a)− (ν + μ(a))I(a),

dR(a)
da

= νI(a)− μ(a)R(a),

(3.12)

where M(0) = B, the number of births in the population, S, I, and R are the number
of susceptible, infectious, and immunized or recovered individuals in the population
as before, whereas additionally M and E represent the number of maternally
protected and infected but not yet infectious individuals, respectively.

Following (3.12), the fraction of individuals protected by maternal antibodies at
age a is given by

m(a) =
M(a)
N(a)

= e−γa.

Figure 3.17 shows the flow diagram for the individuals in the population.
Notice that in terms of duration within each compartment, individuals spend few
months protected by maternal antibodies and a relatively short time in exposed and
infected classes. Longer durations are expected in the susceptible and immune class
(assuming lifelong immunity against reinfection).

Figure 3.18 shows an example of an MSEIR model with the following parameter
setting: γ = 2 (average length of the maternal protection is 6 months), λ = 0.2
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Fig. 3.17 Illustration of the MSEIR model. Individuals enter the population protected by maternal
antibodies. After losing maternal immunity individuals move to the susceptible class. When
acquiring infection individuals first transfer to the latent or exposed class before becoming
infectious, eventually individuals recover and move to the immune class
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Fig. 3.18 Solution for the MSEIR model (3.12). The average duration in the maternal antibodies
class is 6 months, 5 years in the susceptible class (λ = 0.2), 14 days in the latent class, and 10 days
in the infected class

(average age at infection is 5 years), σ = 26.07 (average duration in the exposed
class is 14 days), and v = 36.5 (average recovery period is 10 days). It is assumed
that after recovery, individuals gain lifelong immunity against reinfection. Note
that due to the different timescale for each compartment the fraction of immune
individuals is approximately r(a)≈ 1−m(a)− s(a).
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3.5 Transmission Within Multiple Subpopulations

The law of mass action discussed in Sect. 2.4 states that the number of newly
infected individuals depends on the current number of infected individuals (I), the
number of susceptibles (S), and the transmission rate between these two groups
(β ). In its simplest form, the mass-action principle states: number of new cases =
β IS = λ S (see Sect. 2.4). The underlying assumption behind the latter equation is
that infected and susceptible individuals mix homogeneously and therefore β is
age- and time-independent. Note that as a consequence, in endemic equilibrium, the
force of infection is constant as we have assumed for the analysis of the Bulgarian
hepatitis A data.

The assumption about homogeneous mixing in the population usually does
not hold. Most populations do not mix in a random fashion but are made up of
subpopulations in and between which individuals mix such as, e.g., different age
groups within a school, households within a community, and sexual activity groups
within the population. In this section, we discuss transmission settings in which the
social structures in the population determine the mixing patterns in the population.
We assume that the population is constructed from multiple subpopulations which
may or may not interact with each other. As a result, the transmission process is
determined by the mixing patterns in the population.

A central characteristic of a model taking into account the mixing patterns in
the population is the mixing or “Who Acquires Infection From Whom” (WAIFW)
matrix which determines the transmission process (Anderson and Aitkin 1985). For
example, considering a population with two subpopulations A and B, the mixing
pattern between these two groups can be described by the following WAIFW matrix:

C =

(
βaa βab

βba βbb

)

. (3.13)

The mixing rate for individuals from group A with those of group B is denoted as
βab and conversely βba denotes the mixing rate for individuals from group B with
those of group A. Individuals can also mix with individuals from the same group.
βaa and βbb denote the within-group mixing rates for groups A and B, respectively.
Figure 3.19 illustrates the mixing pattern for this simple example.

We now illustrate the behavior of an infectious disease in a population consisting
of K subpopulations.

A

βaa

βab B

βbb

βba

Fig. 3.19 Mixing patterns between two subpopulations: βaa is the mixing rate within group A, βbb
is the mixing rate within group B, and βab and βba are the mixing rates between the two groups
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Fig. 3.20 Illustration of an SIR model for two subpopulations

3.5.1 An SIR Model with Interacting Subpopulations

In this section people are assumed to belong to a subpopulation for life. We consider
an SIR model in which individuals are assumed to make contact within and across
these subpopulations. For a case with K subpopulations the WAIFW or mixing
matrix is given by

C =

⎛

⎜
⎜
⎜
⎝

β11 β12 . . . β1K

β21 β22 . . . β2K
...

...
...

βK1 βK2 βKK

⎞

⎟
⎟
⎟
⎠
. (3.14)

For each subpopulation, the population size is Ni = Si + Ii + Ri, i = 1, . . . ,K.
The main difference between the current model and the SIR model discussed in
Sect. 3.1.2 is that in the current model the number of new cases in subpopulation i
depends on the mixing pattern within and across subpopulations, i.e.,

(
ΣK

j=1βi jI j
)

Si = λiSi, i = 1, . . . ,K.

The system of differential equations for the ith subpopulation is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSi(t)
dt

=−(ΣK
j=1βi jI j(t)

)
Si(t)+Niμi − μiSi(t),

dIi(t)
dt

=
(
ΣK

j=1βi jI j(t)
)

Si(t)− (μi +νi)Ii(t),

dRi(t)
dt

= νiIi(t)− μiRi(t).

(3.15)

Figure 3.20 illustrates the flow of Niμi individuals into the susceptible class for
the first two subpopulations.
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Implementation in R

Let us consider the special case of K = 2 and a symmetric mixing matrix in the
population given by

C =

(
β11 β12

β12 β22

)

. (3.16)

Since there are two populations we need to specify six differential equations in
the user-defined function SIRtwo. The R objects s1, i1, and r1 are the proportions
corresponding to S, I, and R in the first population and s2, i2, and r2 are the
proportions corresponding to S, I, and R in the second population. We use the
general notation introduced in (3.14) with K = 2 where symmetric mixing implies
β11 = β22 and β12 = β21. Since we formulated the model in R in terms of proportions
we use β̃i j instead of βi j. Note that s1+i1+r1= 1 and s2+i2+r2= 1.

SIRtwo=function(t,state,parameters)
{
with(as.list(c(state, parameters)),
{
ds1 = -(betatilde11*i1+betatilde12*i2)*s1+mu-mu*s1
di1 = (betatilde11*i1+betatilde12*i2)*s1-nu1*i1-mu*I1
dr1 = nu1*i1 - mu*r1
ds2 = -(betatilde21*i1+betatilde22*i2)*s2+mu-mu*s2
di2 = (betatilde21*i1+betatilde22*i2)*s2-nu2*i2-mu*i2
dr2 = nu2*i2-mu*r2
list(c(ds1,di1,dr1,ds2,di2,dr2))
})
}

We run the model using the set of parameters as discussed by Capasso (2008).
In the first scenario we assume that both subpopulations are not interacting, i.e.,
β̃12 = β̃21 = 0. In the second scenario, the model allows for interaction by specifying
β̃12 = β̃21 = 0.03. The input parameters for the first scenario are given by

parameters=c(betatilde11=0.05,betatilde12=0,betatilde21=0,
betatilde22=0.05,nu1=1/30,nu2=1/30,mu=0.001)

state=c(s1=0.8,i1=0.2,r1=0,s2=0.8,i2=0.2,r2=0)
times=seq(0,10000,by=0.01)

The upper row in Fig. 3.21 shows the infected fraction versus the fraction sus-
ceptible individuals in the first subpopulation under the two scenarios. Notice that
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Fig. 3.21 Fraction infected versus susceptible individuals (upper row) and the fraction infected
individuals versus time (bottom row) in an SIR model with two interacting subpopulations for two
scenarios. Left column: no interaction: β̃12 = β̃21 = 0; right column: interaction: β̃12 = β̃21 = 0.03.
Parameter setting (Capasso (2008)): ν1 = ν2 = 1/30, s1(0) = s2(0) = 0.8, i1(0) = i2(0) = 0.2, and
r1(0) = r2(0) = 0

at equilibrium the susceptible fraction is smaller in the second scenario. Although
none of the parameters change within the first subpopulation, the first peak occurs
earlier in the second scenario as can be seen in the lower row of Fig. 3.21.

In order to investigate the influence of the off diagonal parameter β12 = β21 on
the endemic equilibrium, we rerun the model for β̃12 = β̃21 = 0,0.025,0.05, and
0.075, respectively. We focus the discussion on the first population. The R output in
the panel below shows the equilibrium values for susceptible and infected compart-
ments. Figure 3.22 shows that the proportion of infected individuals increases while
the proportion of susceptible individuals decreases as a result of the increment in
the between populations contact rate even though all other parameters in the model
remain the same.
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Fig. 3.22 Fraction
susceptible and infected
individuals in the first
subpopulation in a SIR model
with two interacting
subpopulations corresponding
with β̃12 = β̃21 = 0 (solid
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line), and β̃12 = β̃21 = 0.075
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that the fraction infected
individuals is presented on a
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>#betatilde12=betatilde21=0.00
> outbeta120[1000001,1:3]

time s1 i1
1000001 10000 0.6869925 0.009141676

>#betatilde12=betatilde21=0.025
> outbeta12025[1000001,1:3]

time s1 i1
1000001 10000 0.4577859 0.01579231

>#betatilde12=betatilde21=0.05
> outbeta1205[1000001,1:3]

time s1 i1
1000001 10000 0.3433333 0.01912617

>#betatilde12=betatilde21=0.075
> outbeta12075[1000001,1:3]

time s1 i1
1000001 10000 0.2746667 0.02112621

3.5.2 Transmission Over Age and Time

Let us turn to a special case of an SIR model with interacting subpopulations:
an age-time dependent SIR model or age-structured SIR model. In such a model
the population is divided into a finite number of age groups interacting with each
other. Figure 3.23 shows the flow of individuals in an age-structured SIR model.
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Fig. 3.23 Illustration of an age-structured SIR model with two age groups

An important difference to the model discussed in the previous section is that the
flow of individuals into the susceptible class is possible only in the first age class.
A second difference is that in the current model, individuals can pass to the same
compartment in successive age classes, this means that a susceptible individual in
age group i can remain susceptible and transfer (as age passes) to the susceptible
compartment in the successive age group, i.e., this individual passes from Si to Si+1.
This model with discrete age compartments represents an alternative strategy to the
continuous age-structured model (3.1).

For a population with K age groups, the system of ordinary differential equations
for the first age group (i = 1) in an age-structured SIR model is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSi(t)
dt

=−(ΣK
j=1βi jI j(t)

)
Si(t)+Nμi− μiSi(t)−ηiSi(t),

dIi(t)
dt

=
(
ΣK

j=1βi jI j(t)
)

Si(t)−νiIi(t)− μiIi(t)−ηiIi(t),

dRi(t)
dt

= νiIi(t)− μiRi(t)−ηiRi(t).

(3.17)

Here, ηi is the rate at which individuals pass from Si, Ii,Ri to Si+1, Ii+1,Ri+1. From
the second age group onwards, the system of differential equations (3.18) is similar
to the system in (3.17) but without births into the susceptible class (i.e., without Nμi)
and with the additional flows ηi−1Si−1, ηi−1Ii−1, and ηi−1Ri−1 corresponding to
the susceptible, infected, and recovered compartment from the previous age group,
respectively:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSi(t)
dt

=−(ΣK
j=1βi jI j(t)

)
Si(t)+ηi−1Si−1(t)− μiSi(t)−ηiSi(t),

dIi(t)
dt

=
(
ΣK

j=1βi jI j(t)
)

Si(t)+ηi−1Ii−1(t)− (νi + μi)Ii(t)−ηiIi(t),

dRi(t)
dt

= νiIi(t)− μiRi(t)+ηi−1Ri−1(t)−ηiRi(t).

(3.18)
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3.5.3 Estimating the WAIFW Matrix

The age-structured SIR model introduces the challenge of estimating the mixing
matrix which, up to this point, was assumed to be known. In practice the mix-
ing matrix is unknown and should be estimated. In order to estimate the WAIFW
matrix, Anderson and Aitkin (1985) introduced a framework in which the mixing
matrix itself was assumed unknown but its structure, the mixing pattern, was
assumed to be known. Let us consider an age-structured SIR model with two age
groups, [0,a1) and [a1,L), as described above. For each age group there is an age-
specific constant force of infection, λi, i = 1,2. Using the mixing matrix (3.14) it
follows that

(
λ1

λ2

)

=

(
β11 β12

β21 β22

)(
I1

I2

)

. (3.19)

Let us assume that both λi and Ii were estimated from prevaccination cross-sectional
serological data. In that case we can plug in the estimates in (3.19) and it follows
that

λ̂1 = β11Î1 +β12Î2,

λ̂2 = β21Î1 +β22Î2.
(3.20)

There are four unknowns (the β ’s) and two equations in the system (3.20) and
therefore the unknowns cannot be determined. The framework as introduced
by Anderson and Aitkin (1985) assumed that, although the values of the βi j’s are
unknown, the mixing pattern in the population, i.e., the configuration of the WAIFW
or mixing matrix C has a specific known structure. For example, consider three
possible configurations for the mixing patterns in the population

C1 =

(
β 0
0 β

)

,C2 =

(
β α
α β

)

,C3 =

(
β α
α α

)

.

The WAIFW matrix C1 implies an assortative mixing pattern (where people mix
only with people of similar age) in which the age groups do not interact with
each other. The WAIFW matrix C2 is symmetric with a common rate parameter
on the diagonal, i.e., β is the mixing rate for within age-group contacts and α is
the mixing rate for between age-group contacts. In the third WAIFW matrix α is
the background mixing rate whereas β is a different within mixing rate for the first
age group. Note that these specific structures where the number of unknown mixing
parameters is equal to the number of age groups enable the estimation of the mixing
parameters.

In Sect. 2.4, it was shown that the basic reproduction number R0 = β ND. In
the age-heterogeneous SIR model R0 equals the dominant eigenvalue of the next
generation operator, for which the (i, j)th element of the corresponding matrix is
given by βi jNiD (here i and j are indices with respect to the age categories, see,
e.g., Diekmann et al. (1990)). Note that in an age-homogeneous setting the next
generation operator simplifies to β ND.
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For a more elaborate discussion on estimating WAIFW matrices using
prevaccination cross-sectional serological data, we refer to Chap. 14 for an
illustration of the traditional approach and Chap. 15 for the approach first introduced
by Wallinga et al. (2006) where contact data are used to augment the estimation of
the WAIFW matrix from serological data.

3.6 Discussion

In this chapter we introduced the SIR model in terms of its dynamics over time,
the impact of vaccination, the time homogenous setting, and the link to serological
data. We introduced population structures and mixing patterns in the transmission
process. We assumed that the population is constructed from subpopulations that
may or may not interact with each other. In part IV of the book we discuss again
the problem of the estimation of the basic reproduction number where mixing
patterns of individuals in the population are a central characteristic of the estimation
procedure. This allows us to obtain more realistic estimates for both R0 and the
associated variability.



Part III
Data Sources

This part introduces the datasets used throughout the manuscript. Three main data
sources are being used. The first are serological data, representing the age-specific
prevalence of past infection in a population. The second are incidence data such
as case reports from passive or active surveillance systems containing the notified
counts of disease. The third data source are contact surveys from which contact rates
can be estimated. The datasets which we could make publicly available can be found
on the web site of the book.



Chapter 4
Data Sources for Modeling Infectious Diseases

In previous chapters, focus was placed on the description of the most important
infectious disease parameters. The next chapters will make the connection between
the mathematical models and statistical models in order to estimate these parameters
from data. In this chapter, we present a range of datasets that are analyzed repeatedly
throughout the book. The datasets are used to motivate and illustrate the methods
discussed in the text. Three main data sources are being used. The first are
serological data, representing the age-specific prevalence of past infection in a
population. These are described in Sect. 4.1 including multisera data in which serum
samples are tested against multiple diseases (Sect. 4.1.9). The second data source
is incidence data such as case reports from passive or active surveillance systems
containing the notified counts of disease. Examples of incidence data are listed in
Sect. 4.2. The third data source are contact surveys from which contact rates can be
investigated, as mentioned in Sect. 4.3. All datasets are available on the web site of
this book.

4.1 Serological Data

Serological surveys are commonly used to study the epidemiology of infectious
diseases. Serological samples taken at a certain time point provide information about
whether or not the individual has been infected before that time point. In practice,
antibodies which were formed in response to an infecting organism are identified in
the serum. Typically the antibody levels from the serological data are then compared
to a predetermined cutoff level to determine whether the individual has been infected
before (see Chaps. 5 and 11 for a discussion on this matter). Serological data are
usually collected in cross-sectional surveys. Under the assumptions of lifelong
immunity and that the epidemic is in a steady state (i.e., at equilibrium), the
age-specific prevalence and force of infection can be estimated from such data
(Sect. 3.3).

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 4,
© Springer Science+Business Media New York 2012
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Table 4.1 Summary of the serological datasets used in this book

Infection

Main
transmission
route Time frame Country Age range

Multisera
companion

Hepatitis A Feco–oral 1993–1994 Belgium
(Flanders)

0–85 –

Hepatitis A Feco–oral 2002 Belgium
(Flanders)

0–65 –

Hepatitis A Feco–oral 1964 Bulgaria 1–86 –
Hepatitis B Sexual 1999 St.-Petersburg 0–80 –
Hepatitis C Blood 2006 Belgium 0–25 –
Mumps Airborne 1986–1987 UK 1–44 Rubella
Parvovirus B19 Airborne 2001–2003 Belgium 0–82 VZV
Parvovirus B19 Airborne 1996 England and

Wales
1–79 –

Parvovirus B19 Airborne 1997–1998 Finland 1–78 –
Parvovirus B19 Airborne 2003–2004 Italy 1–79 –
Parvovirus B19 Airborne 1995–2004 Poland 1–79 –
Rubella Airborne 1986–1987 UK 1–44 Mumps
Tuberculosis Airborne 1966–1973 Netherlands 6–18 –
VZV Airborne 1999–2000 Belgium

(Flanders)
1–44 –

VZV Airborne 2001–2003 Belgium 0–40 Parvovirus B19

In this section we present several serological surveys from less to more severe
viral infections like, e.g., the hepatitis A and C virus, mumps, parvovirus B19,
rubella, and varicella. For most of these viruses we can assume they govern lifelong
immunity after infection. We list these infections in alphabetical order. A summary
of the serological datasets used in this book is given in Table 4.1.

4.1.1 Hepatitis A

The hepatitis A virus (HAV) is mainly (> 95%) transmitted through the feco–
oral route (e.g., through food and water polluted by faeces containing the virus).
Transmission is facilitated by poor hygienic living and housing conditions, and is
particularly common in developing countries (Hadler 1991; Beutels et al. 1997).
In these countries HAV is mainly a childhood infection, whereas in industrial
countries HAV infection occurs during adulthood as well as childhood. In the
poorest developing countries, the pattern of high endemicity is characterized by
rapid infection at a very young age; over 90% of the children become infected by
the age of 5. In this book, the results from two surveys on HAV are used. The first
dataset comes from a survey in Flanders (Belgium), the second one from a survey
in Bulgaria.
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Fig. 4.1 Hepatitis A data. Proportion positive samples based on the cross-sectional survey in
Flanders anno 1993–1994 (upper left panel), Flanders anno 2002 (upper right panel), and Bulgaria
(lower panel)

In 1993 and early 1994, a study of the prevalence of HAV antibodies was
conducted in the Flemish Community of Belgium (Beutels et al. 1997). The purpose
of this study was to obtain data on the prevalence of hepatitis A in Flanders
and to analyze the epidemiological pattern of HAV. During the study period
serum samples were collected from hospitals (noninfectious disease wards) in the
Flemish Community. The dataset contains the serological results of 3,161 Belgian
individuals together with their age (mostly given in years), ranging from 0.5 to
85 years. The study group was similar in composition to the Flemish population
in terms of age. The seroprevalence of Hepatitis A in Belgium is shown in the left
panel of Fig. 4.1. The proportion of positive samples per age class is displayed,
with the size of the dots proportional to the total number of samples collected. This
dataset is used to illustrate parametric modeling approaches in Chap. 6.

A second serological sample of hepatitis A has been collected in 2002. This
sample is a subset of the serological dataset of Varicella-Zoster Virus (VZV) and
Parvovirus B19 in Belgium where only individuals living in Flanders were selected.
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More details about the complete serological dataset are given in Sects. 4.1.5, 4.1.8,
and 4.1.9. This dataset together with the hepatitis A data collected in 1993 and 1994
will be used in Chap. 13 to test the assumption of endemic equilibrium.

Keiding (1991) introduced the HAV dataset from Bulgaria. The data consist
of a cross-sectional survey conducted in 1964 and contain information about 850
individuals from Bulgaria with age range from 1 to 86 years. Samples were collected
from schoolchildren and blood donors. The seroprevalence of HAV in Bulgaria
based on this survey is presented in the lower panel of Fig. 4.1. An application
of this dataset was already given in Chap. 3, and it is also used in Chap. 6 to
illustrate parametric modeling approaches and in Chap. 9 to illustrate models with a
monotonicity constraint.

4.1.2 Hepatitis B

Hepatitis B is a major health problem in most parts of the world. The World Health
Organization estimates that 350 million people are carriers of the virus and that
annually 0.5–0.9 million people die from the disease. Most of the disease burden is
due to chronic infection, which can culminate in severe inflammation of the liver,
and lead to cirrhosis and hepatocellular carcinoma (HCC). Transmission can occur
via a multitude of routes: (1) perinatal transmission from an infected mother to her
child; (2) horizontal transmission (mostly from child-to-child) by transfer of blood
particles (e.g., in saliva) via small skin wounds; (3) sexual transmission with the rate
of sexual partner change and receptive anal intercourse as important risk factors; (4)
parenteral transmission by penetration of the skin with an infected object, i.e., by
needle stick, mucous membrane splash, tattooing, ear piercing, etc.

Data from a seroprevalence study conducted in St.-Petersburg (Russia) in 1999
are available (Mukomolov et al. 2000). The latter study intended to collect sera from
100 healthy persons (50 males, 50 females) in each of the following age groups:
< 1, 1–2, 3–6, 7–10, 11–14, 15–19, 20–24, 25–29, 30–39, and > 40 years of age
(total original sample: 1,003 sera). For the youngest age groups, the sample was
taken primarily among children in the kindergartens and schools and supplemented
with sera from children entering the hospitals with acute noninfectious pathologies
(e.g., trauma, emergency surgery, pneumonia). Sera from teenagers and young
adults were obtained from a variety of schools (excluding nursing schools) as well as
from hospitalized persons requiring urgent surgery. Sera from adults were obtained
from primary blood donors, pregnant women, and persons entering the hospitals
with acute noninfectious pathologies. All sera were tested for anti-HBc.

The seroprevalence of Hepatitis B in St.-Petersburg is shown in Fig. 4.2. The
proportion of positive samples per age class is displayed, with the size of the dots
proportional to the total number of samples collected. Based on these serological
data, the force of infection of Hepatitis B is estimated in Chap. 5, which is compared
with an estimate based on incidence data of Hepatitis B (introduced in Sect. 4.2).
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Fig. 4.2 Hepatitis B data.
Proportion positive samples
based on cross-sectional
survey in St.-Petersburg with
dots proportional to sample
size

4.1.3 Hepatitis C

The hepatitis C virus (HCV) is the leading cause of known liver diseases in most
industrialized countries. It is a common cause of cirrhosis and HCC as well as
the most common reason for liver transplantation. At least 170 million people
worldwide are believed to be infected with this virus. Following the identification
of hepatitis A and hepatitis B, this disorder was categorized in 1974 as “non-A,
non-B hepatitis.” In 1989, the HCV was discovered and was found to account for
the majority of those patients with non-A, non-B hepatitis (Baker 2002). HCV
is an RNA virus of the Flaviridae family. There are six HCV genotypes and
more than 50 subtypes. These genotypes differ by as much as 30–50% in their
nucleotide sequences. The virus also has a high mutation rate. The extensive genetic
heterogeneity of HCV has important diagnostic and clinical implications, causing
difficulties in vaccine development and the lack of response to therapy (Baker 2002).

HCV transmission occurs primarily through exposure to infected blood. This
exposure exists in the context of injection drug users (IDU), blood transfusion,
solid organ transplantation from infected donors, use of unsafe medical practices,
occupational exposure to infected blood, through birth to an infected mother,
multiple sexual partners, and high-risk sexual practices (Baker 2002). Historically,
in industrialized countries, blood transfusions and administration of clotting factor
concentrates were the most important mode of transmission. However, following the
introduction of current blood screening strategies in the early 1990s, HCV infection
via these routes has become a rare event in industrialized countries. Hepatitis C
seems to be acquired rapidly after initiation of drug injection and many people may
have been infected as a result of occasional experimentation with the drug.



66 4 Data Sources

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

duration of injection (years)

se
ro

pr
ev

al
en

ce

Fig. 4.3 Belgian hepatitis C
data. Proportion positive
HCV samples in injecting
drug users as function of the
duration of injecting with dots
proportional to sample size

Mathei et al. (2006) presented a study of HCV infection among injecting
drug users (N = 421). The data consist of IDUs from three areas in Belgium:
Charleroi (population: 200,000 inhabitants), Antwerp (a port town with approxi-
mately 450,000 inhabitants), and the province of Limburg (a mixed urban–rural
population where even the largest cities have no more than 80,000 inhabitants).
All injecting drug users were interviewed by means of a standardized face-to-face
interview and information on their socio-demographic status, drug use history, drug
use, and related risk behavior was recorded. Overall 325 IDUs (77.2%) were found
to be seropositive. The timescale used for the analysis is the exposure time or the
duration of injection.

The seroprevalence of hepatitis C is presented in Fig. 4.3, with the dots being
proportional to the sample size. An application of this dataset appears in Chap. 6 to
illustrate some parametric approaches for modeling the seroprevalence and force of
infection.

4.1.4 Mumps

Mumps is a childhood disease that occurs worldwide. Mumps is a viral disease
caused by a paramyxovirus. The most common symptoms of mumps are bilateral
parotid swelling, fever, headache, and orchitis. The symptoms are typically not
severe in children, but complications are more common in teenagers and adults.
Mumps is a highly contagious disease spread by airborne or droplet transmission.

Before the introduction of the measles, mumps, and rubella vaccine in England
in 1988, mumps and rubella occurred commonly in school-aged children, and over
90% of adults had antibodies to mumps and rubella. These results were obtained
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Fig. 4.4 Mumps and rubella data. Proportion of positive samples of mumps and rubella based on a
cross-sectional survey in the UK. Left panel: proportion infected individuals with mumps. Middle
panel: proportion infected individuals with rubella. Right panel: proportion infected individuals
with both mumps and rubella with dots proportional to sample size

from a large survey of prevalence of antibodies to mumps and rubella viruses in
the UK (Morgan-Capner et al. 1988). A total of 8,716 samples of serum collected
between November 1986 and December 1987 from five public health laboratories
in different parts of the UK were tested. The survey, covering subjects from 1 to
over 65 years of age, provides information on the prevalence of antibody by age. On
average 250 samples were tested for the one-year age categories: 1–14 years; the
two-year age categories: 15–34 years; the five-year age categories: 35–44; and the
ten-year age categories thereafter.

The age-specific observed prevalences are presented in Fig. 4.4 (left panel),
with the size of the dots proportional to the number of samples collected in
the corresponding age category. The data on mumps are used in this book to
illustrate parametric (Chap. 6) and nonparametric (Chap. 7) approaches to model
the prevalence and force of infection and to illustrate Bayesian models for the force
of infection (Chap. 10).

4.1.5 Parvovirus B19

Parvovirus B19 is the infectious agent of erythema infectiosum, commonly known
as slapped cheek syndrome or fifth disease (Broliden et al. 2006). The disease is
usually mild in children and teenagers, but infection during pregnancy has been
associated with miscarriage, intrauterine fetal death, fetal anemia, and nonimmune
hydrops (Tolfvenstam et al. 2001). The disease is mainly transmitted through the
respiratory route, but blood-borne and nosocomial transmissions are reported as
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Fig. 4.5 Parvovirus B19 data. Proportion positive samples in Belgium (left upper), England and
Wales (right upper), Finland (left bottom), Italy (middle bottom), and Poland (right bottom) with
dots proportional to sample size

well (Young and Brown 2004; Zaaijer et al. 2004). The secondary attack risk for
exposed household persons is about 50% and about half of that for classroom
contacts.

A seroprevalence survey testing for parvovirus B19 IgG antibody was performed
on large representative national serum banks in Belgium, England and Wales,
Finland, Italy, and Poland. The sera were collected between 1995 and 2004 and
were obtained from residual sera submitted for routine laboratory testing. Sera
covered all age groups, were approximately evenly distributed between males and
females, and were geographically representative in each country (Mossong et al.
2008b). A total of 3,080, 2,821, 1,117, 2,513, and 2,493 samples from, respectively,
Belgium, England and Wales, Finland, Italy, and Poland were tested.

The proportion of positive samples per age class is displayed in Fig. 4.5. The
size of the dots is proportional to the number of samples collected. This dataset
is analyzed with non- and semiparametric methods in Chaps. 5 and 8. It will be
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seen that these data lead to an issue of monotonicity, which is described in Chap. 9.
Finally, in Chap. 14, the effect of different mixing patterns on the estimation of the
force of infection is investigated.

4.1.6 Rubella

Rubella, as mumps, is a childhood disease that occurs worldwide. Rubella, com-
monly known as German measles, is a disease caused by the rubella virus. It is
usually a mild illness causing a rash, sore throat, and swollen glands. However, the
symptoms are more severe in adults. Moreover, if a pregnant women gets infected
with rubella virus, the virus can cause the potentially sever rubella syndrome in the
newborn. Rubella is highly contagious and spreads by airborne or droplet transmis-
sion. Before the introduction of mass vaccination, rubella was a common childhood
infection spread worldwide. However, since the start of universal vaccination, the
incidence of rubella has declined rapidly.

The prevalence of rubella in the UK was obtained from a large survey of
prevalence of antibodies to both mumps and rubella viruses (Morgan-Capner et al.
1988) and introduced in Sect. 4.1.4. The age-specific proportions of positive samples
are presented in Fig. 4.4 (middle panel) and are analyzed in Chaps. 6 (parametric
models), 8 (nonparametric models), and 10 (Bayesian models).

4.1.7 Tuberculosis

Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis.
TB can attack any organ, but most infections are restricted to the lungs. Similar to the
common cold, tuberculosis is highly infectious through air droplets via coughing,
sneezing, or talking. In many individuals, the infection is asymptomatic, and they
cannot spread TB to other people. Approximately 5–10% of the asymptomatic indi-
viduals develop active TB at some time during their life. The immunocompromised
patients (especially those with HIV infection) are much more likely to develop TB.
If left untreated, active TB can progress rapidly to death.

In 1966–1973, a study of tuberculosis was conducted in the Netherlands (Suther-
land et al. 1984; Nagelkerke et al. 1999). Schoolchildren, aged between 6 and
18 years, were tested using the tuberculin skin test (purified protein derivative, PPD).
If a person is not infected with TB, there is no reaction with the injected PPD.
If a person is infected with TB, a raised and reddened area will occur. Indurations
larger than 10 mm were considered evidence of previous infections. Since oral BCG
vaccination was given to newborns during 1950 and 1951 in the Netherlands, these
cohorts have been omitted from analysis (Nagelkerke et al. 1999). The age- and
year-specific proportions of positive samples are presented in Fig. 4.6. In Chap. 13,
the age- and time-specific prevalence and force of infection are modeled from these
data.
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Fig. 4.6 Tuberculosis data. Proportion positive samples of tuberculosis in a survey in the
Netherlands as function of age (left) and time (right) with dots proportional to sample size

4.1.8 Varicella

The VZV, also known as human herpes virus 3, is one of eight herpes viruses
known to affect humans (and other vertebrates). Primary VZV infection results in
chickenpox (varicella), which may rarely result in complications including bacterial
surinfection, encephalitis, pneumonia, and death. It has a two-week incubation
period and is highly contagious by air droplets starting two days before symptoms
appear. Infectiousness is known to last up to ten days. Therefore, chickenpox spreads
quickly through close social contacts. Even when clinical symptoms of varicella
have resolved, VZV remains dormant in the nervous system of the host in the
trigeminal and dorsal root ganglia.

In this book, we use two cross-sectional surveys which were conducted in
Belgium. In the first survey, the age-specific seroprevalence of VZV antibodies
was assessed in Flanders (Belgium) between October 1999 and April 2000. Sera
from 1,673 individuals, aged 1–44 years, were analyzed. These sera were residual
specimens submitted to laboratories for other diagnostic purposes. Sera for the age
group 1–12 years were collected from outpatients at a hospital in Antwerp, Belgium.
Sera for the age group 12–16 years were obtained from volunteers in vaccine trials
(Center for the evaluation of vaccination, Antwerp). Sera for individuals older than
16 years were provided by a medical laboratory in Antwerp. This population was
stratified by age in order to obtain approximately 100 observations per age group.
Data were reported by Thiry et al. (2002). The second survey is the same as the
one used to study the seroprevalence of parvovirus B19 in Belgium, as described in
Sect. 4.1.5. In total, 3,080 sera were tested for VZV and 2,657 sera were tested for
B19, from which 2,382 sera were tested for both VZV and Parvovirus B19.

Figure 4.7 shows the proportion of positive samples per age class based on the
survey in Flanders (left panel) and in Belgium (right panel), with the size of the dots
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Fig. 4.7 Varicella data. Proportion positive samples of varicella–zoster Virus based on cross-
sectional survey in the Flemish population of Belgium (left panel) and in the whole population
of Belgium (right panel) with dots proportional to sample size

proportional to the number of samples collected in the corresponding age category.
Based on these data, the force of infection is estimated using parametric models in
Chap. 6 and using Bayesian methods in Chap. 10.

4.1.9 Multisera Data

For feasibility and economical reasons, serum samples are often tested for more
than one antigen. In this way, the (past) disease status of individuals on multiple
diseases is known, and allows studying the association in acquisition between
several infections. This is interesting especially when both infections are transmitted
through similar routes, i.e., through close contacts. This is the topic of interest in
Chap. 12.

In this book, two surveys are being used in which multisera data are collected:
mumps and rubella in the UK and varicella VZV and Parvovirus B19 in Belgium.
Data from mumps and rubella are obtained from a large survey on the prevalence
of antibodies to these infections in the UK, as described in Sects. 4.1.4 and 4.1.6.
In this survey, in total 8,179 individuals were tested for mumps, 4,230 were tested
for rubella, and of these 4,156 individuals were tested for both mumps and rubella.
The age-specific observed prevalences for having had both diseases are presented in
Fig. 4.4 (right panel), with the size of the dots proportional to the number of samples
collected in the corresponding age category.

Data from VZV and Parvovirus B19 are collected in a survey in Belgium, as
described in Sects. 4.1.8 and 4.1.5, respectively. In total, 3,080 sera were tested for
VZV and 2,657 sera were tested for B19, from which 2,382 sera were tested for
both VZV and Parvovirus B19. Figure 4.8 shows the observed proportion of sera
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Fig. 4.8 Varicella and parvovirus B19 data. Proportion of samples that tested positive on both
varicella and parvovirus (top left panel), that tested positive on varicella only (top right panel), that
tested positive on parvovirus only (lower left panel), and that tested negative on both viruses (lower
right panel), based on a cross-sectional survey in Belgium anno 2001–2003 with dots proportional
to sample size

that tested positive for both VZV and B19 (top left panel), that tested positive on
varicella only (top right panel), that tested positive on parvovirus only (lower left
panel), and that tested negative on both viruses (lower right panel).

4.2 Hepatitis B Incidence Data

Incidence data, also often called case notifications, measure the number of people
who get a disease in a certain time period. This is different from the prevalence
measured by serological data, describing the number of people who have (had) the
disease. Incidence data are commonly obtained from governmental notifications,
disease registries or from hospital or physician diagnosis.

The incidence of Hepatitis B in St.-Petersburg (Russia) was estimated from
mandatorily reported cases (Beutels et al. 2003). By law, physicians and nurses
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Table 4.2 Summary of Hepatitis B incidence data

Average age of
symptomatic case

Year
Reported
number of cases Male Female Ratio Male/Female

Reported cases
per 100,000

1994 1,903 24.27 25.49 1.71 39.79
1995 2,167 23.33 26.24 1.77 44.94
1996 1,741 24.11 26.48 1.58 35.81
1997 1,364 25.38 26.43 1.84 27.89
1998 1,611 23.30 25.10 2.15 32.71

have to refer all acute symptomatic (jaundiced) cases to a hospital. Russian health
care officials are convinced that non-referral of symptomatic cases is virtually
nonexistent. Since 1994, referred cases are diagnosed as caused by hepatitis A, B, or
C by means of clinical diagnosis combined with highly sensitive and specific blood
tests. All Hepatitis B virus cases are mandatorily reported as regards age (in years),
gender, and date (monthly) to a central registrar. A general summary of the findings
based on reported incidence between 1994 and 1998 is given in Table 4.2. It shows
the yearly number of reported symptomatic cases of Hepatitis B, the average age at
notification of the case per gender, the ratio of male to female cases, and the number
of reported symptomatic cases per 100,000 inhabitants. Figure 4.9 shows the annual
age- and gender-specific number of reported acute symptomatic Hepatitis B cases
per 100,000 inhabitants. The full line shows the incidence of symptomatic cases for
males, the dashed lines for females. The data over the years seem to show a weak
cyclic evolution. A peak of new infections is observed for individuals aged around
20 years, with higher incidence for males as compared to females.

It is well established that acute symptomatic infections present only part of the
picture because most Hepatitis B infections evolve asymptomatically or atypically.
The probability of showing clinical symptoms upon acute infection ranges from
4% to 11% in children between 1 and 5 years old (McMahon et al. 1985; Shapiro
1993; Edmunds et al. 1993). This probability gradually increases with increasing
age at infection. In approximately 3 of 4 infected adults the illness is asymptomatic
or presents only flu-like symptoms. The age-dependent ratio of total versus symp-
tomatic infections, derived from McMahon et al. (1985); Shapiro (1993); Edmunds
et al. (1993), is presented in Fig. 4.10.

Applying this property to the reported symptomatic cases, we estimated the total
number of Hepatitis B infections by age at infection over time. The total number
of cases (i.e., symptomatic and asymptomatic infections combined) is estimated
as 10,762, 12,271, 9,818, 7,841, and 9,255 for years 1994–1998. Thus, the total
incidence is estimated fivefold greater than the reported incidence. Overall, 8,786
symptomatic cases were reported over the 5 years combined and 49,947 number of
infections were estimated. The annual age- and gender-specific number of estimated
Hepatitis B infections per 100,000 inhabitants is presented in Fig. 4.11. The same
trends as in Fig. 4.9 are observed, but the peaks are even more pronounced.
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Fig. 4.9 Hepatitis B in St.-Petersburg: yearly incidence rates of symptomatic cases. Solid line:
males; dashed line: females
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Fig. 4.10 Age-specific proportion of the total number of Hepatitis B cases versus the number of
symptomatic Hepatitis B cases
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Fig. 4.11 Hepatitis B in St.-Petersburg: yearly incidence rates of infected cases

4.3 Belgian Contact Survey

Mathematical models of infectious diseases require assumptions on the way the
disease is spread. These assumptions are typically related to the social interactions
of individuals, or how individuals mix with each other. One can impose a certain
mixing pattern or estimate the mixing pattern from a contact survey. This is
discussed in Chaps. 14 and 15.

The European commission project “POLYMOD” conducted a large multi-
country population-based survey, in order to gain insight into social mixing
behavior relevant to the spread of close contact infections (Mossong et al. 2008b).
These surveys of social contacts were held in eight European countries: Belgium,
Germany, Finland, Great Britain, Italy, Luxembourg, the Netherlands, and Poland.
Previous to this survey, only small-scale surveys had been conducted to get some
idea of the social contacts (Edmunds et al. 1997, Beutels et al. 2006, Edmunds
et al. 2006, Wallinga et al. 2006, Mikolajczyk and Kretzschmar 2008). In Belgium,
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this survey was conducted in a period from March until May 2006. A total of
750 participants, selected through random digit dialing, completed a diary-based
questionnaire about their social contacts during one randomly assigned weekday
and one randomly assigned day in the weekend (not always in that order). Survey
participants were recruited in such a way as to be broadly representative of the whole
population in terms of age, sex, and geographical spread. Children and adolescents
were deliberately oversampled, because of their important role in the spread of
infectious agents. Only one person per household was asked to participate in the
study.

The dataset consists of participant-related information such as age and gender
and details about each contact: age and gender of the contacted person, and location,
duration, and frequency of the contact. In case the exact age of the contacted person
was unknown, participants had to provide an estimated age range and the mean
value is used as a surrogate. Further, a distinction between two types of contacts
was made: non-close contacts, defined as two-way conversations of at least three
words in each others proximity, and close contacts that involve any sort of physical
skin-to-skin touching. For young children, a parent or exceptionally another adult
caregiver filled in the diary. Using census data on population sizes of different age by
household size combinations, weights are given to the participants in order to make
the data representative of the Belgian population. In total, 12,775 contacts were
recorded of which 3 are omitted from analysis due to missing age values for the
contact person. For a more in depth perspective on the Belgian contact survey and
the importance of contact rates on modeling infectious diseases, we refer to Hens
et al. (2009b) and Chap. 15.



Part IV
Estimating the Force of Infection

This part focuses on the estimation of the force of infection. The first chapter
introduces basic statistical concepts and notation related to the analysis of sero-
logical data and briefly discusses several modeling issues. In subsequent chapters
we discuss several statistical models to estimate the prevalence and the force of
infection, mainly as a function of age but also as a function of other covariates.
We will discuss their pros and cons and will look into more detail at assumptions,
complexities, and other issues. Chapter 6 reviews rather restrictive parametric
models as well as more flexible parametric models, whereas Chaps. 7 and 8 discuss
non- and semiparametric alternatives. In Chap. 9 it is shown how to deal with the
constraint of monotonicity. Bayesian models are introduced in Chap. 10. Chapter 11
introduces an alternative approach based on mixture models which allows antibody
levels to be directly modeled, without the use of any threshold(s) and corresponding
dichotomization. In Chap. 12, models are extended by considering joint estimation
of serological data of two or more diseases. In Chap. 13, modeling serial seropreva-
lence data in terms of both age and time is discussed.



Chapter 5
Estimating the Force of Infection from Incidence
and Prevalence

As discussed in Chap. 4, the use of serological surveys is one of the most
common ways to investigate the epidemiology of infectious diseases and to estimate
important parameters such as the force of infection. This chapter introduces basic
statistical concepts and notation related to the analysis of serological and incidence
data and briefly discusses several modeling issues.

5.1 Serological Data

Consider an age-specific cross-sectional sample of size N and let ai be the age and
Zi the antibody activity level (in U/ml) of the ith subject. The antibody activity
levels Zi are quantitative results calculated from the optical densities obtained from
commercial IgG enzyme immune-assays (EIAs). The left panel of Fig. 5.1 shows
a scatter plot of the logarithm of the antibody activity levels as a function of age
for data on the Parvovirus B19 infection. The data shown in Fig. 5.1 result from
testing for parvovirus B19 IgG antibodies on a large representative Belgium serum
bank and were collected between 1995 and 2004. As there is currently no vaccine
available against parvovirus B19 and because immunoglobulin G (IgG) antibodies
following infection are thought to persist for a lifetime, these antibody activity
level data can be used to derive the force of infection. The right panel of Fig. 5.1
shows a histogram of the antibody levels (on a log scale), clearly showing that the
distribution of the log(IgG) in the population can be considered as arising from a
mixture of susceptible individuals (left part) and of infected (or immune) individuals
(right part). This mixture concept will be further exploited in Chap. 11, where we
introduce an estimation method which acts directly on the antibody activity levels.

The coming chapters however take dichotomized data as the starting point for
estimating the force of infection. Corresponding to the compartmental mathematical
model in Chap. 3, each individual is compartmentalized into the susceptible or a
non-susceptible compartment (merging the I and R compartments) according to
predefined threshold values. In Fig. 5.1 such threshold values are shown for the

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 5,
© Springer Science+Business Media New York 2012
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Fig. 5.1 Belgian Parvovirus B19 data. Logarithm of antibody activity levels in U/ml. Left panel:
as function of the individual’s age, with threshold values as horizontal lines. Right panel: histogram
with threshold values as vertical lines

Belgian Parvovirus B19 data (as horizontal lines in the left panel and vertical
lines in the right panel). Samples with antibody activity levels exceeding 24 U/ml
(3.178 on log scale) were considered positive, while samples with antibody activity
levels less than 20 U/ml (on log scale 2.996) were considered negative, and samples
in between were considered equivocal. In this example the number of equivocal
results is limited and therefore excluded from further analyses. But in general
the choice of the lower and upper threshold and the treatment of the equivocal
cases as missing data are important issues in the analysis of serological data. As
compartmentalization is not needed in the direct method, this is one of the main
advantages of this approach (Chap. 11).

Define the dichotomized version of Zi as the binary variable Yi:

Yi =

{
1 if Zi > τu,

0 if Zi < τ�,
(5.1)

and missing if τ� < Zi < τu where τ� and τu are the lower and upper threshold values
(20 respectively 24 U/ml for Parvovirus B19). So, for each individual i we observe
whether (s)he has experienced infection before age ai. We do not observe the age
at infection, but rather a censored value: right censored if Yi = 0 and left censored
if Yi = 1. This censored data point of view and this link to survival analysis will
regularly show up. The left panel of Fig. 5.2 shows the values of Yi as a function of
age ai as dichotomized version of Zi in Fig. 5.1.

Denote π(ai) the probability to be infected before age ai. This probability will
be referred to as the so-called seroprevalence. It is important to note that, due to
misclassification, the seroprevalence is not exactly equal to the disease prevalence.
This brings us to concepts of sensitivity and specificity of diagnostic tests, an
important issue which is addressed further in Chap. 11.

In coming chapters different ways to model π(ai) are introduced and discussed,
from fully parametric to fully nonparametric models. They are all based on
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Fig. 5.2 Belgian Parvovirus B19 data. Dichotomized antibody activity levels. Left panel: (jittered)
individual data as function of age. Right panel: proportion positive, as function of the correspond-
ing one-year age categories with dots proportional to sample size

maximizing the loglikelihood as a function of the model parameters (Appendix B.1),
based on the data {(ai,Yi)}N

i=1, where N denotes the sample size (excluding the
equivocal cases). The loglikelihood is given by

�=
N

∑
i=1

Yi log{π(ai)}+(1−Yi) log{1−π(ai)} . (5.2)

For notational simplicity, the dependence on the model parameters is suppressed
here, but will be made explicit in coming chapters. In the terminology of generalized
linear models (GLM, see, e.g., McCullagh and Nelder (1989) and Appendix B.2),
the age-dependent probability π(a) is modeled as

g(P(Y = 1|a)) = g(π(a)) = η(a), (5.3)

where η(a) is the so-called linear predictor and g is the so-called link function.
For binary responses, g is often taken to be a logit link function, log(π/(1−π)), but
other link functions such as the complementary log–log link, log(− log(1−π)), and
log link, − log(1− π), can be used as well. In the next section the age-dependent
force of infection (FOI), λ (a) is derived from the seroprevalence π(a), for different
link functions g. Strictly spoken, we should use terminology as “sero-FOI,” as it is
derived from the seroprevalence.

5.2 Age-Dependent Force of Infection

As discussed in Chap. 3 the force of infection can be easily derived from the sero-
prevalence under assumptions including time homogeneity and lifelong immunity.
In terminology of survival analysis, the FOI is nothing else than the hazard function.
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Table 5.1 General expressions for the force of infection according to different link
functions in a GLM framework

Link function π(a) δ (η(a)) λ (a)
log 1− e−η(a) 1 η ′(a)

complementary log–log 1− e−eη(a)
eη(a) η ′(a)eη(a)

logit
eη(a)

1+ eη(a)
eη(a)

1+ eη(a) η ′(a)
eη(a)

1+ eη(a)

probit Φ(η(a))
φ (η(a))

1−Φ(η(a))
η ′(a)

φ (η(a))
1−Φ(η(a))

Φ denotes the cumulative distribution function and φ the density function of the
standard normal distribution

Using a so-called catalytic model with log link (i.e., π(a) = 1− e−η(a)) leads to a
simple interpretation of the first derivative of the linear predictor. Indeed, η(a) is
the cumulative hazard and hence the force of infection is simply the first derivative
of the linear predictor:

λ (a) =
π ′(a)

1−π(a)
=

η ′(a)e−η(a)

e−η(a) = η ′(a). (5.4)

In general, when the link function is not restricted to be the log link, the force of
infection can still be derived analogously. Basic calculus shows that for a GLM
based on (5.2) and (5.3), the force of infection can be expressed as a product of two
functions:

λ (a) = η ′(a)δ (η(a)). (5.5)

Here, δ (·) is a known function for which the form is determined by the link
function g. Table 5.1 shows the aforementioned four link functions with their
corresponding structure for the force of infection.

In the coming chapters we will introduce and discuss several ways to model the
predictor η(a) in combination with a particular link function g. This will lead to
estimates π̂(a) = g−1(η̂(a)) and, according to Table 5.1, to estimates λ̂ (a) for the
force of infection. In the next section we look into important complexities and issues
when modeling the FOI.

5.3 Modeling Issues

Figure 5.3 shows the right panel of Fig. 5.2 again, but extended with the proportion
positives of the age category from 0 to 6 months (excluded previously) and overlaid
with the fits for the seroprevalence and the FOI, based on a local quadratic fit
with a (too) small smoothing parameter. Note that the local polynomial estimator
will be discussed in more detail in Chap. 7. Here its application with a nonoptimal
smoothing parameter will just serve illustrative purposes.
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Fig. 5.3 Belgian Parvovirus
B19 data. Proportion positive,
as function of the
corresponding one-year age
categories, extended with the
proportion positives for the
age group from 0 to 6 months
(indicated with open circle),
together with a local
polynomial fit for
seroprevalence (upper curve)
and for the force of infection
(lower curve), using a (too)
small smoothing parameter
with dots proportional
to sample size

A first issue is the definition of antibody activity levels as they truly reflect
natural infection, rather than maternal antibodies (inherited immunity) or vaccine
induced activity (vaccine immunity). Since there is currently no vaccine available
against Parvovirus B19, the latter possibility can be discarded. For the age group
from 0 to 12 months the distinction between maternal antibodies and those reflecting
natural infection is less clear. It is generally accepted that maternal antibodies fade
away during the first 6 months, whereafter naturally acquired antibodies take over
(Sect. 3.4). But within the first 12 months the data cover a mixture of two types of
antibodies, which is especially difficult to categorize at the (unknown) change point
around 6 months. Figure 5.3 includes the proportion positives 0.17 in the age group
of 0–6 months. An ad hoc approach commonly applied is to delete the observations
which are believed to refer (at least partly) to maternal antibodies (in this case
corresponding to the first 6 months).

A second issue is the decay of the antibody activity some (longer) time after
infection, and related to that, the assumption of lifelong immunity. Of course this
depends highly on the infectious disease under consideration. For Parvovirus B19 it
is assumed that immunity is lifelong and that antibody levels persist after infection
and remain for a long time at a higher level, certainly above the threshold(s). The left
panel of Fig. 5.1 does not seem to contradict this assumption. We refer to Goeyvaerts
et al. (2011) for a more in depth discussion about this issue for Parvovirus B19.

A third issue concerns the already mentioned possibility of misclassifying
an individual as susceptible or being infected (using the threshold(s) approach),
together with the deletion of the equivocal cases. It is not always clear what
consequences are implied by this problem, such as bias in the estimation of the force
of infection and consequently in the estimation of the basic reproduction number.
Methods to correct for misclassification, based on estimates for the sensitivity and
the specificity, can be used, as well as direct estimation avoiding this problem. These
methods are discussed in Chap. 11. Depending on the type of infection, this issue
is ignored or taken care of. Here, in most chapters, we assume it is reasonable to
ignore this issue.



84 5 Estimating the Force of Infection from Incidence and Prevalence

As antibody activity reflects past infection, the seroprevalence π(a) should be
nondecreasing as function of age a. This fourth issue seems an obvious point: the
higher the age a of an individual at the time of the (serological) test, the higher
the probability that (s)he has been infected in the past. The local quadratic fit in
Fig. 5.3 shows some non-monotone behavior, not only partly as a consequence
of a too small smoothing parameter, but also through the presence of maternal
antibodies (as indicated in the decrease at the very low ages) and by a striking
jump downward at about the age of 25 years. Is it an artifact, a confounding factor
or a true process related to the disease and contradicting the time homogeneity
assumption? Did a new more highly virulent strain of the same disease take over
at some point in time in past? Note that a decreasing behavior of the seroprevalence
fit is translated into a negative FOI, as shown by the lower curve in Fig. 5.3. We
again refer to Goeyvaerts et al. (2011) for a more in depth discussion about this
peculiar profile for Parvovirus B19.

The fourth issue brings us in a seamless way to the fifth issue: the choice of a
model for the predictor function η(a). Choosing a too restrictive parametric model
might not reveal complications in the data, such as an apparent non-monotonicity.
Moreover, a too restricted model might not be able to indicate multiple peaks in the
force of infection. It is clear that the fit in Fig. 5.3 is too closely following the data,
not only indicating unnecessary areas with a negative force of infection, but also
indicating too many local peaks. The optimal selection of the smoothing parameters,
as well as the type of smoothing, are intrinsic parts of finding an appropriate flexible
model. In the next chapters we will illustrate several approaches, starting with a
historical overview on basic parametric models, gradually moving to more flexible
parametric, nonlinear, nonparametric, and semiparametric models.

A final sixth issue concerns the paradigm for inference. Where most of the
methods in this book are formulated in the likelihood framework, we will also look
at Bayesian approaches in Chap. 10 (see Appendix B.5). A related point is whether
inference is based on a single final model or whether one should opt for multi-model
inference (model-averaging).

We conclude this chapter with a brief note on how incidence data can be used to
estimate the force of infection.

5.4 Incidence Data

Let Xi j be the number of infections in age group i (i= 1, . . . , I) at time j ( j = 1, . . . ,J)
and Ni j the corresponding population sizes. Based on age-specific incidence data
(Xi j,Ni j), it is straightforward to calculate the age-specific incidence rate, or attack
rate, defined as the number of new cases per time unit in a given age class divided
by the total number of individuals in that age class in the population

Xi j/Ni j.



5.4 Incidence Data 85

0

10

20

30

Time (in months from January 1994)

In
ci

de
nc

e
Age: 1−6

500 10 20 30 40 60

500 10 20 30 40 60

500 10 20 30 40 60 500 10 20 30 40 60

500 10 20 30 40 60

500 10 20 30 40 60

500 10 20 30 40 60

500 10 20 30 40 60

0

5

10

15

Time (in months from January 1994)

In
ci

de
nc

e

Age: 7−14

40
60
80

100
120
140
160

Time (in months from January 1994)

In
ci

de
nc

e

Age: 15−19

30
40
50
60
70

Time (in months from January 1994)
In

ci
de

nc
e

Age: 20−29

5
10
15
20

Time (in months from January 1994)

In
ci

de
nc

e

Age: 30−39

2
4
6
8

10

Time (in months from January 1994)

In
ci

de
nc

e

Age: 40−49

0
2
4
6
8

Time (in months from January 1994)

In
ci

de
nc

e

Age: 50−59

0

1

2

3

Time (in months from January 1994)

In
ci

de
nc

e

Age: 60+

Fig. 5.4 Hepatitis B in St.-Petersburg: age-specific incidence of all infections (symptomatic and
asymptomatic) in time, per age group

Figure 5.4 shows incidence estimates of all hepatitis B infections (i.e., symptomatic
and asymptomatic infections combined) per 100,000 inhabitants in St.-Petersburg
from January 1994 to December 1998. For each age group, a cubic regression
spline (see Chap. 8) is used to estimate the trend in time. Figure 5.4 shows a
slightly increasing incidence in the 1-6-year old and quasi-status quo for age groups
above 40 years. It seems noteworthy that the group aged 50–59 years was born
just before or during the second world war. These birth cohorts were very small
compared to other cohorts. Furthermore, as a result of the specific circumstances
during or in the aftermath of the war, these people may have been exposed to the
virus and co-mortality relatively more and earlier in life compared with other age
groups (Beutels et al. 2003). In all the intermittent age groups the incidence of
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infection shows a decreasing effect until the year 1997. Between 1997 and 1998 the
incidence increased markedly among the age groups of 15–19- and 20–29-year old.

The attack rate however does not account for the number of individuals that are
still at risk for the infection. A decrease in the attack rate with time can be due either
to a decrease in the rate at which individuals acquire the infection or to a decrease of
the number of susceptible individuals in the population. As a result, the attack rate
should be interpreted with care (Grenfell and Anderson 1985).

Assuming time homogeneity (as commonly assumed for serological data), the
force of infection λ (a) is given by

λ (a) = Xa/Sa, (5.6)

with Sa and Xa the number of cases of age a. Muench (1934) was the first to
use a model to estimate the rate at which susceptibles acquire infection, or the
force of infection, from summation data. He suggested using a catalytic model to
do so. The case notifications can be accumulated to obtain a measure of the rate
at which a susceptible acquires infection (and not necessarily disease). Griffiths
(1974) and Grenfell and Anderson (1985) extended this approach to encompass a
more flexible description of changes in the FOI with age. A common assumption
made is that all members of the population are susceptible at birth, a necessary
assumption because of the lack of information on the susceptible population in a
case notification system. Another option is to start from an assumed percentage of
susceptibility for newborns (S0 = psN0) in order to estimate the force of infection, as
proposed by Hens et al. (2008a). Note that assuming a fully susceptible birth cohort
corresponds to the absence of vertical transmission. Given S0 = psN0, the number
of susceptibles for any other age group a can then be calculated recursively as

Sa =
Sa−1 −Xa−1

Na−1
Na, (5.7)

with X0 ≡ 0. Varying the percentage of susceptibility ps then results in a sensitivity
analysis on the estimated force of infection.

Figure 5.5 shows the estimated force of infection based on the incidence data of
Hepatitis B in St.-Petersburg. Similar to modeling the incidence rates using cubic
regression splines, we model the susceptibility rates calculated from the crude data
using (5.6) and (5.7), conditional on the assumed proportion of susceptibility ps.
We let the proportion of susceptibility at birth ps vary over the interval 0.8 to 1.0 in
steps of 0.05 and look at the effect on the estimated force of infection. The full line
in Fig. 5.5 shows the estimated year-specific force of infection profile, conditional
on ps = 1. When decreasing the susceptibility proportion ps, the magnitude of the
force of infection increases while the shape remains about the same. For most years,
the age-specific force of infection profiles give three local maxima which are located
around the age of 21, 45, and 78, respectively. The age at the second local maxima
varies with the susceptibility rate, when the susceptibility proportion decreases from
100% to 80%, the peak moves from age 45 to age 51. The third peak gets weaker
when the susceptibility rate decreases. Note that we assume time homogeneity,
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Fig. 5.5 Hepatitis B in St.-Petersburg: force of infection calculated from case notification data,
assuming a susceptibility proportion varying from 100% to 80% (in steps of 5%) at birth More
specifically: ps = 0.8 (long dashed), 0.85 (dotted-dashed), 0.9 (dotted), 0.95 (dashed), and 1.00
(solid), respectively

i.e., we assume a cohort passes through different age classes ignoring the effect
of changes within age classes over time. One could state this to be a too strong
assumption.

The estimates based on reported cases were validated by comparing them with
data from a seroprevalence study conducted in St.-Petersburg in 1999, as introduced
in Sect. 4.1.2. Similar to the methods as applied above, the force of infection
was estimated from this seroprevalence survey using cubic regression splines (see
Chap. 8). The force of infection rises steadily from birth, peaks at age 21, stays flat
until the age 51, and declines thereafter (Fig. 5.6). This shape seems to be a mixture
of the two peaks as seen in the estimated force of infection based on incidence
data. Based on the seroprevalence data we can get an estimate of the susceptibility
proportion at birth ps. In the sample, there are 99 samples from children <1 year of
age, of which nine were Hepatitis B positive samples. As a result, we estimated
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Fig. 5.6 Hepatitis B in
St.-Petersburg:
seroprevalence data,
seroprevalence (solid line),
and force of infection (dashed
line) from seroprevalence
data with dots proportional
to sample size

the susceptibility proportion at birth as 91%. This is close to the susceptibility
proportion of 90% as used in Fig. 5.5 (dotted line). Note that these prevalence
data are based on a different year, and thus the comparison between prevalence
and incidence data is only valid given time homogeneity. Nonetheless the results
obtained from the prevalence study seem to confirm the general trends observed
with the incidence data.



Chapter 6
Parametric Approaches to Model the Prevalence
and Force of Infection

This chapter discusses several parametric models for the seroprevalence and the
force of infection. In the first section we give a brief historical overview of the
first parametric models used to model the force of infection, including polynomial
and nonlinear models. In the second section we introduce the family of fractional
polynomials as a natural extension of polynomial models, circumventing some of
the limitations inherent to classical polynomials. These models can be easily fitted
to seroprevalence data with R or, e.g., SAS. As usual, we focus on the use of R, with
the functions glm and mle. SAS offers similar functionality with the GENMOD and
NLMIXED procedure.

6.1 Modeling the Force of Infection: A Historical Perspective

In this section we briefly discuss the first (age-dependent) models for the force of
infection as they appeared in literature from about 75 years ago, starting from basic
parametric models to nonlinear models. We also refer to Hens et al. (2010a) for an
overview of 75 years of estimating the force of infection from current status data.

6.1.1 Polynomial Models

The first references on the estimation of the force of infection go back to the early
work of Muench, followed by Griffiths.

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 6,
© Springer Science+Business Media New York 2012
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Muench (1934) and Griffiths (1974)

Muench (1934, 1959) suggested to model the infection process with a so-called
“catalytic model,” in which the distribution of the time spent in the susceptible
class in the SIR model is exponential with rate β . More precisely, Muench (1934)
proposed to model the prevalence by π(a) = k{1− exp(−β a)} where 1− k is the
proportion of the population staying uninfected for lifetime. Under this catalytic
model and assuming that k = 1, it follows from identity (5.4) that λ (a) = β . So in
this case the force of infection is age-independent. This model fits into the GLM
overview of Table 5.1 with log link and linear predictor η(a) = β a.

Using the R-function glm (Appendix B.2), Muench’s model can be specified
through the use of a log link function for binary data and the model specification
-1+Age in order to specify a model without intercept, i.e., η(a) = β a. The model
should be fitted to the number of seronegatives (Tot-Pos) in order to fit 1− π(a)
as exp(β a). Equivalently, Muench’s model can also be estimated using the comple-
mentary log-log link function with linear predictor equal to η(a) = log(β )+ log(a).
In this case the logarithm of the age (variable log(Age)) has to be specified as an
offset variable using the option offset = log(Age).

# R-code to fit Muench’s model
model1=glm(cbind(Tot-Pos,Pos)˜-1+Age,

family=binomial(link="log"))
summary(model1)

# Alternative R-code to fit Muench’s model
model2=glm(cbind(Pos,Tot-Pos)˜1,offset=log(Age),

family=binomial(link="cloglog"))
summary(model2)
exp(coef(model2))

Griffiths (1974) proposed a model for measles in which the force of infection
increases linearly in the age range (τ,10), τ ≥ 0:

λ (a) =
{

β1(a+β0) a > τ,
0 a ≤ τ.

He focused on the interval (τ,10) as the interval (0,τ) represents the period of
inherited immunity and since more than 95% of the measles cases occur before
the age of 10 years. Note that since Griffiths (1974) specified τ as a parameter
in the model, Griffiths’ model should be interpreted as a changepoint model.
Interestingly, Griffiths (1974) justified his choice of a linear force of infection by
using a basic nonparametric estimate for the force of infection, λ (a) = Δπ/(1−
π(a)), which he plotted against age and showed the linear trend of the force of
infection. In coming chapters, we will discuss more advanced nonparametric models
for the force of infection. Griffiths (1974) himself mentioned that his model for
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the prevalence corresponds to a model in which the linear predictor is a quadratic
function of age.

Griffiths’ model with linear force of infection λ (a) = β1+2β2a can be estimated
using a GLM for which the linear predictor is a quadratic function of the age, i.e.,
η(a) = β1a+β2a2. In the code below, the variables Age and Age2 correspond to a
and a2, respectively.

# R-code to fit Griffiths’ model
model3=glm(cbind(Tot-Pos,Pos)˜-1+Age+I(Ageˆ2),

family=binomial(link="log"))
summary(model3)

Grenfell and Anderson (1985)

Grenfell and Anderson (1985) extended the models of Muench and Griffiths further
and used polynomial functions to model the force of infection. The advantage of
higher-order polynomials is that they allow flexible curve shapes. Grenfell and
Anderson (1985) did not restrict a priori the force of infection to be constant or
linear but let the data determine the order of the polynomial. Their model assumes
that π(a) = 1− e−Σiβiai

which implies that, again using a GLM with log link (as in
Table 5.1), the force of infection equals λ (a) = ∑βiiai−1. For example, R-code
for a possible model with quadratic force of infection such as λ (a) = η ′(a) =
β1 + 2β2a+ 3β3a2 is given by

# R-code to fit Grenfell and Anderson’s quadratic model
model4=glm(cbind(Tot-Pos,Pos)˜-1+Age+I(Ageˆ2)+I(Ageˆ3),

family=binomial(link="log"))
summary(model4)

Application to Bulgarian Hepatitis A data

Here we illustrate and discuss selected R-output from running the above code for
Muench’s and Griffiths’ model, to estimate the FOI of hepatitis A, based on the
Bulgarian data (Chap. 4).

# R-output: parameter estimates of Muench’s model

> summary(model1)
(continued)
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(continued)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Age -0.050500 0.002457 -20.55 <2e-16 ***

AIC: 219.19

# R-output of alternative version of
# of Muench’s model

> summary(model2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.98577 0.04866 -61.36 <2e-16 ***

AIC: 219.19

> exp(coef(model2))
(Intercept)

0.0505004

# R-output: parameter estimates of Griffiths’ model

> summary(model3)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Age -0.0442616 0.0053697 -8.243 <2e-16 ***
I(Ageˆ2) -0.0001889 0.0001491 -1.266 0.205

AIC: 219.36

# R-output: parameter estimates Grenfell and
# Anderson’s model

> summary(model4)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Age -5.326e-02 1.032e-02 -5.159 2.49e-07 ***
I(Ageˆ2) 5.065e-04 6.508e-04 0.778 0.436
I(Ageˆ3) -1.019e-05 9.149e-06 -1.114 0.265

AIC: 219.72

The first fit of Muench’s model produces an estimated force of infection equal
to 0.0505. Using the alternative code, Intercept is the parameter estimate for log(β )
and consequently the parameter estimate for the force of infection is again equal
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Fig. 6.1 Estimated
prevalence and force of
infection for the Bulgarian
Hepatitis A serological data.
Solid lines: Muench’s model
with constant force of
infection. Long dashed lines:
Griffiths’ model with linear
force of infection. Dotted
lines: Grenfell and
Anderson’s model with
quadratic force of infection

to exp(−2.9858) = 0.0505. The R-code for Griffiths’ model produces an estimate
for a linear force of infection −((−0.0443)+ 2 × (−0.0002)a). And finally the
age-dependent force of infection estimated by Grenfell and Anderson’s model
equals −((−0.0533)+ 2× 0.0005a+ 3 × (−0.00001)a2). The AIC values of all
three models are very close with the one of Muench’s model slightly smaller.
Figure 6.1 shows the estimated prevalence and force of infection curves. Note that
the prevalence curves are very close, whereas the FOI curves deviate more with
increasing age.

Although polynomial models are quite flexible, they have some disadvantages:
limited flexibility of polynomial type, unbounded and uncontrolled behavior at
±infinity and intrinsic non-monotonicity. This is the motivation to turn to the more
flexible family of fractional polynomials on the one hand and nonlinear models on
the other hand. In the next section we discuss nonlinear models, some of which can
be reformulated to fit within the framework of GLMs.

6.1.2 Nonlinear Models

One problem that arises when a higher-order polynomial model is fitted to the data
is that the estimate for the force of infection can get negative. In fact, a force of
infection estimate turns negative whenever the estimated probability to be infected
before age a (i.e. the seroprevalence π(a)) is a non-monotone (increasing) function.
In Chap. 9 we discuss this issue in more depth, for different types of models,
including nonparametric models.

A possible solution to this problem is to define a nonnegative force of infection,
λ (a) ≥ 0 for all a, and to estimate π(a) under these constraints. Farrington
(1990), Edmunds et al. (2000a), and Farrington et al. (2001) applied this method
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for measles, mumps, and rubella, using a nonlinear model for π(a). However,
Farrington’s method requires prior knowledge about the dependence of the force of
infection on age. In particular, Farrington’s model assumes that the force of infection
increases to a peak in a linear fashion followed by an exponential decrease:

λ (a) = (αa− γ)e−β a+ γ. (6.1)

In order to ensure that the force of infection satisfies λ (a) ≥ 0, Farrington (1990)
constrained the parameter space to be nonnegative. The parameter γ is called the
long-term residual value of the force of infection, as a → ∞, λ (a) → γ . If γ = 0,
then the force of infection decreases to 0 as a tends to infinity. Integrating λ (a)
results in a nonlinear model:

π(a) = 1− e−
∫ a
0 λ (s)ds = 1− exp

{
α
β

ae−β a+
1
β

(
α
β
− γ

)(
e−β a − 1

)
− γa

}

.

(6.2)

The nonlinear model of Farrington (1990) can be fitted using the R-function mle
(available in the stats4 package), for instance for the rubella data, introduced in
Chap. 4:

#R-code to fit Farrington’s model
farrington=function(alpha,beta,gamma)
{
p=1-exp((alpha/beta)*Age*exp(-beta*Age)

+(1/beta)*((alpha/beta)-gamma)*(exp(-beta*Age)-1)-gamma*Age)
ll=Pos*log(p)+(Tot-Pos)*log(1-p)
#alternative definition of the log-likelihood
#ll=sum(log(dbinom(Pos,Tot,prob=p)))
return(-sum(ll))
}

# R-package needed for mle function
library(stats4)
model5=mle(farrington,start=list(alpha=0.07,beta=0.1,gamma=0.03))
summary(model5)
AIC(model5)

The R-function glm cannot be used as it is limited to generalized linear models.
Farrington’s model is an example of a generalized nonlinear model. The above
R-code is more generic as it allows to maximize a user-defined loglikelihood.
The user-defined function farrington defines the (negative) loglikelihood (up to a
constant) in our case, given the data. The user-defined function ll can be defined
explicitly or alternatively using the R-function dbinom (binomial probabilities). The
R-function mle computes the maximum likelihood estimates by minimizing minus
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Fig. 6.2 Estimated
prevalence and force of
infection for the rubella data
from the UK, using
Farrington’s model with three
(solid curves) and two
parameters (dashed curves),
respectively

the loglikelihood. All previous models in this chapter could be modeled as well in
this manner, essentially by modifying the definition of the age-dependent prevalence
(the object p).

Parameter estimates are given in the output panel below.

Maximum likelihood estimation

Call:
mle(minuslogl = farrington, start = list(alpha = 0.07, beta

= 0.1,
gamma = 0.03))

Coefficients:
Estimate Std. Error

alpha 0.07034904 0.005429317
beta 0.20243950 0.026093340
gamma 0.03665599 0.014751768

-2 log L: 3893.879

> AIC(model5)
[1] 3899.879

The estimated prevalence and force of infection of Farrington’s model are shown
in Fig. 6.2. The parameter estimate for the long-term residual value of the force
of infection (γ̂) is equal to 0.036 (95% C.I: 0.0077–0.0656). Note that a two-
parameter model which assumes that γ = 0, with force of infection given by
λ (a) = αaexp(−β a) (decreasing to zero as age increases), can be fitted by the
following mle-call (fixing γ = 0).
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model6=mle(farrington,fixed=list(gamma=0),
start=list(alpha=0.07,beta=0.1))

summary(model6)
AIC(model6)

As can be seen in the output panel below, the AIC value of the two-parameter
model (3902.393) is larger than the AIC of the three-parameter model (3899.879),
indicating that the assumption that the force of infection decreases to zero as age
increases is not reasonable for the rubella dataset. This is also confirmed by the
fitted prevalence curve for the two-parameter model in Fig. 6.2, showing a severe
negative bias in the prevalence curve.

> summary(model6)
Maximum likelihood estimation

Call:
mle(minuslogl = farrington, start = list(alpha = 0.07, beta = 0.1),

fixed = list(gamma = 0))

Coefficients:
Estimate Std. Error

alpha 0.06744689 0.004074743
beta 0.15858061 0.007358578

-2 log L: 3898.393

> AIC(model6)
[1] 3902.393

Other parametric models fitted within the GLM-framework with binomial error
were discussed by Becker (1989), Diamond and McDonald (1992), and Keiding
et al. (1996), who used models with complementary log–log link function in order
to parametrize the prevalence and the force of infection as a Weibull model. For the
hepatitis C data from Belgium, introduced in Chap. 4, the time unit is the exposure
time or duration d, which is defined as the difference between the age at first
injection and the age at test. For a Weibull model, the prevalence is given by

π(d) = 1− e−β0dβ1 .

This at first sight nonlinear model can be reformulated as a GLM model with
complementary log–log link and with linear predictor (using log(d)) given by

η(d) = log(β0)+β1 log(d).
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The Weibull model implies that the force of infection is a monotone function of the
exposure time:

λ (d) = β0β1dβ1−1.

In case that β1 > 1, the force of infection is monotone increasing, while β1 < 1
implies that the force of infection decreases with the exposure time. For the hepatitis
C data, the Weibull model can be fitted by using the R-function glm, specifying the
binomial distribution and complementary log–log link function.

log.d=log(d)
hcvfit=(glm(infected˜log.d, family=binomial(link="cloglog")))
summary(hcvfit)

Parameter estimates for both prevalence and force of infection obtained from the
Weibull model are shown in the output below. Note that β̂1 = 0.3807< 1, and hence
the FOI decreases as a function of exposure time. The Residual deviance equals
419.38 on 419 degrees of freedom, indicating that the Weibull model fit the data
well.

> summary(hcvfit)

Call:
glm(formula=infected˜log.d, family=binomial(link="cloglog"))

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2378 0.4222 0.5527 0.7523 1.2040

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.27596 0.14603 -1.890 0.0588 .
log.d 0.38074 0.07113 5.353 8.65e-08 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 452.06 on 420 degrees of freedom
Residual deviance: 419.38 on 419 degrees of freedom
AIC: 423.38

The intercept estimate is the estimate for log(β0). Hence, β̂0 = exp(−0.2760) =
0.758. The estimated prevalence is given by π̂(d) = 1−e−0.758d0.3807

, while the force
of infection is estimated as λ̂(d) = 0.758× 0.3807d−0.6193. Estimated prevalence
and FOI as a function of exposure time are shown in Fig. 6.3.
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Fig. 6.3 Estimated prevalence and force of infection for the hepatitis C data from Belgium, using
a Weibull model

Becker (1989) suggested to model a piecewise constant force of infection by
fitting a model with log link. For the case that other covariates, in addition to age,
are included in the model, Jewell and Van Der Laan (1995) proposed, in the context
of current status data, a proportional hazards model with constant force of infection,
which can be fitted as a GLM with complementary log–log link. Grummer-Strawn
(1993) discussed two parametric models, the first being a Weibull proportional
hazards model with complementary log–log link and the second being a log-logistic
model with logit link function. For the latter, the proportionality in the model is
interpreted as proportional odds.

6.1.3 Discussion

The estimation of the force of infection from a single cross-sectional serological
sample is based on a series of landmark papers which established the modeling
framework as we know it today. From the first paper of Muench (1934) who
introduced the two scales of interest, the prevalence and the derivative, via the
paper of Griffiths (1974), who introduced the GLM as the modeling framework
and nonparametric methods as an exploratory tool, to the paper of Grenfell and
Anderson (1985). Keiding (1991) presented in his paper the first appropriate
nonparametric method, while Farrington (1990) introduced nonlinear models and
addressed the issue of monotonicity of the prevalence. These five landmark papers
established the framework which is still used today for the estimation of the force of
infection. In recent years, using more up-to-date statistical models, the estimation
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procedures for the force of infection became much more advanced and consequently
more computer intensive, as we will discuss in the remainder of this part of the
book. But the basic ideas and issues, flexibility and monotonicity, remain crucial in
the estimation process of the force of infection.

6.2 Fractional Polynomial Models

In this section we introduce fractional polynomials as a natural extension of
polynomial models and their application to the estimation of the prevalence and
the force of infection.

6.2.1 Motivating Example

For the Hepatitis A data from Belgium anno 1993–1994 (see Chap. 4), we consider
two generalized linear models with logit and complementary log–log link functions.
For the logit model the linear predictor is η(a) = β0 +β1a+β2a3. This model has
a deviance of 82.74 on with 83 degrees of freedom. For the complementary log–log
model η(a) = log(β0)+β1a2+β2a3, the deviance is 81.41, also on with 83 degrees
of freedom. The force of infection of these models can be derived from Table 5.1.
Although both models fit the data well, Fig. 6.4 shows that both models predict
negative forces of infection at the higher age groups. The motivation to model the
force of infection with fractional polynomials is to extend the family of polynomial
models, allowing for (1) more flexibility in combination with (2) improved behavior
at the extremes of the observed age range. Low-order conventional polynomials
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Fig. 6.4 Estimated
prevalence and force of
infection for the Belgian
Hepatitis A data. Solid line:
model with logit link
function. Dashed line: model
with complementary log–log
link function



100 6 Parametric Approaches

Table 6.1 Parametric models for the prevalence from literature, represented as fractional polyno-
mials, and their corresponding force of infection

Publication Fractional polynomial Link function Force of infection

Muench (1959), Farrington et al. (2001), η(m = 1, p = 0,β1 = 1) cloglog Constant
Jewell and Van Der Laan (1995)

Griffiths (1974) η(m = 1, p = 0,β1 = 2) cloglog Linear
Grenfell and Anderson (1985) η(m = k, pi = i) log Polynomial
Keiding et al. (1996), Becker (1989), η(m = 1, p = 0,β1 
= 0) cloglog Monotone
Diamond and McDonald (1992),

Grummer-Strawn (1993)

Grummer-Strawn (1993) η(m = 1, p = 0,β1 
= 0) logit Flexible

have limited flexibility, do not have asymptotes, and tend to fit the data poorly
whenever asymptotic behavior of the infection process is expected. Royston and
Altman (1994) introduced the family of fractional polynomials as a generalization
of the conventional polynomial class of functions. In the context of binary responses,
a fractional polynomial (FP) of degree m for the linear predictor is defined as

ηm(a, β , p1, p2 . . . pm) =
m

∑
i=0

βiHi(a), (6.3)

where m is an integer, p1 ≤ p2 ≤ ·· · ≤ pm is a sequence of powers, and Hi(a) is a
transformation given by

Hi(a) =

{
api if pi 
= pi−1,

Hi−1(a)× log(a) if pi = pi−1,
(6.4)

with p0 = 0 and H0 ≡ 1, and api = log(a) if pi = 0. Royston and Altman (1994)
argued that, in practice, fractional polynomials of degree higher than 2 are
rarely needed and suggested to choose the value of the powers from the set
{−2,−1,−0.5,0,0.5,1,2,max(3,m)}. Note that the model with log link and
with predictor function η1(a,β , p = 1) coincides with Muench’s model, η2(a,β ,
p1 = 1, p2 = 2) corresponds to the model proposed by Griffiths (1974), and the
models considered by Grenfell and Anderson (1985) have the general form of
ηm(a,β , p1, p2 . . . , pm) with pi = i for i = 1,2, . . . ,m.

Table 6.1 shows a selection of parametric models discussed in the literature and
their representation as fractional polynomials. For example, the model proposed
by Keiding et al. (1996) is a first degree fractional polynomial with p = 0.
The model with linear force of infection can be parameterized as a first degree
fractional polynomial with complementary log–log link for which p = 0 with
the constraint that β1 = 2. In this case λ (a) = 2β0a which implies that the
force of infection is zero at birth and increases linearly thereafter. The models
presented by Grummer-Strawn (1993) and Jewell and Van Der Laan (1995) include
other covariates in addition to age. For these models η(m, p,β ) is the fractional
polynomial used to model the dependency of prevalence on age. For the models
discussed in Grummer-Strawn (1993), we do not include the adjusted parameter in
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our analysis since it is assumed that susceptibility is 100% at birth. The models
discussed by Grummer-Strawn (1993) and Jewell and Van Der Laan (1995) were
used in the context of current status data. When these models are implemented for
infectious disease data, they result in constant, monotone, or/and flexible force of
infection models.

6.2.2 Model Selection

Within the fractional polynomials framework the deviance of the model with
η1(a,β ,1) is taken to be the baseline deviance and improvement or gain by other
models is measured by

G(m, p) = D(1,1)−D(m, p), (6.5)

where D(m, p) is the deviance of the model with fractional polynomial of degree
m and sequence of powers p = (p1, p2, . . . pm). Note that a large value of G
indicates a better fit. Fitting models within the framework of fractional polynomials
requires to start the modeling procedure from first degree fractional polynomials.
To decide whether a model of first degree is adequate or a second degree model
is needed, Royston and Altman (1994) recommend to use the criterion D(1, p̃)−
D(2, p̃) > χ2

2,0.9 where p̃ is the power sequence for the model that has the best
goodness of fit among models of the same degree.

6.2.3 Constrained Fractional Polynomials

Although fractional polynomials provide a wide range of flexible curve shapes,
there is no guarantee that π(a) will be a monotone function of age and therefore
fractional polynomials can still result in a negative estimate for the force of infection
at some range of age values. It is clear from Table 5.1 that the estimate for the
force of infection is negative whenever η ′

m(a, β̂ , p) < 0 (since δ (ηm(a, β̂ , p)) is
strictly positive). Therefore, one should fit model (6.3) subject to the constraint
that η ′

m(a, β̂ , p) ≥ 0, for all ages a in the predefined range. In the framework of
fractional polynomials this cannot be done analytically. But in practice, one can fit
a large number of fractional polynomials, over a grid of powers, and check for each
fitted model whether η ′

m(a, β̂ , p) ≥ 0, for all ages a. In case that a given sequence
of powers leads to a negative derivative of the linear predictor, the model is not
considered as an appropriate model. This means that we choose the model with the
best goodness of fit among all fractional polynomials for which η ′

m(a, β̂ , p)≥ 0.
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6.2.4 Selection of Powers and Back to Nonlinear Models

Although Royston and Altman (1994) suggested to choose the value of the powers
from the set {−2,−1,−0.5,0,0.5,1,2,max(3,m)}, one can extend the family of
candidate models by refining the grid of possible powers, such as for instance an
equidistant grid on the interval [−2,max(3,m)] with stepsize 0.1 or even 0.01.
Selection of the best fractional polynomial can proceed in the same way. When
refining the grid, one expects that the best fractional polynomial gets close to the
genuinely nonlinear model (for the degree m = 2):

ηm(a, β ) = β0 +β1aβ̃1 +β2aβ̃2 , (6.6)

where now β = (β0,β1, β̃1,β2, β̃2). Whereas the estimation of fractional polyno-
mials is a two-step procedure, with in a first step the selection of the best powers
and in a second step the estimation of intercept and slopes, both sets of unknown
parameters are estimated in the nonlinear model in one step. Whereas inference
based on the final fractional polynomials ignores that powers were also selected
using the data, the nonlinear model fully recognizes the sample variability in the
estimation of both sets of parameters. Another approach to account for the power-
selection step is to compute the model averaged estimate and to apply multi-model
inference (Burnham and Anderson 2002). This latter approach has been applied in,
e.g., Faes et al. (2003) and will be explained in more detail when applied to the
estimation of mixing patterns in Chap. 15.

6.2.5 Application to the Data

In this section, we apply our method to some datasets mentioned in Chap. 4. For
each dataset, first and second degree fractional polynomials were fitted and the
criterion proposed by Royston and Altman (1994) was used to decide whether the
second degree model is needed or not. The optimal second degree FP is first selected
without monotonicity constraint, and next the best monotone fractional polynomial
is selected by excluding all non-monotone fits. The R-function and R-package mpf
can be applied, but it does not examine the monotonicity constraint and it does not
allow to change the grid of powers. Using own code (available on the web site)
with the finer grid (stepsize 0.01 for first degree and 0.1 for second degree, in both
dimensions) mentioned in Sect. 6.2.4, Table 6.2 presents the deviance for the best
first and second degree fractional polynomials. For the second degree polynomials,
the optimal powers are shown with and without monotonicity constraint. Clearly,
for all datasets except the Bulgarian dataset, first degree fractional polynomials are
not adequate and second degree fractional polynomials are required. For the first
degree models, the gain values in Table 6.2 also indicate that, for all datasets except
the Bulgarian dataset, the first degree fractional polynomials with p = 1 are not
adequate and other powers are needed.
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Table 6.2 Deviance and gain values for first and second degree fractional polynomials with logit
link function

First degree (m = 1) Second degree (m = 2)

Dataset Deviance p G(1, p) Monotone Deviance p1, p2

Hepatitis A (BE93) 114.25 0.42 35.31 No 79.58 +1.9,+2.0
Yes 93.45 +1.0,+1.6

Hepatitis A (BG) 79.51 1 0 No 77.75 +1.9,+2.0
Yes 77.89 +1.6,+2.1

Varicella 82.33 0.1 75.36 No 47.69 −1.2,−1.1
Yes 71.81 −0.6,−0.2

Rubella 56.19 0.05 165.23 No 37.58 −0.9,−0.9
Yes 42.34 −0.9,−0.4

Mumps 82.05 −0.17 75.36 No 44.60 −2.0,−0.8
Yes 49.18 −1.0,−1.0
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Fig. 6.5 Estimated prevalence and force of infection for Hepatitis A in Belgium (left panel) and
in Bulgaria (right panel). Solid lines: first degree FP-model, dashed lines: unconstrained second
degree FP-model, dotted lines: constrained second degree FP-model. Models were fitted with logit
link function

Hepatitis A

The left panel in Fig. 6.5 shows the estimated models for the prevalence and the
force of infection for hepatitis A in Belgium. The best unconstrained model with
powers (1.9, 2.0) has deviance 79.58 with 83 degrees of freedom, whereas the
deviance of the best constrained model with powers (1.0, 1.6) has a deviance value
93.45. The estimated force of infection of the constrained second degree fractional
polynomial reaches a peak at age 41 (λ̂ (41) = 0.046) and drops down thereafter.
Figure 6.6 shows the deviance surface for second degree fractional polynomials, as
a function of both powers p1 and p2 (symmetrized for p2 < p1). The gray and black
surface together correspond to all possible powers, regardless of any monotonicity
constraint, whereas the black surface corresponds to only those powers for which
the corresponding prevalence is monotone as a function of age. The optimal powers
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Fig. 6.6 Deviance surface for second degree fractional polynomials, as a function of both powers
p1 and p2 (symmetrized for p2 < p1), for hepatitis A in Belgium. The gray and black surface
together correspond to all possible powers, regardless of any monotonicity constraint; the black
surface corresponds to those powers for which the corresponding prevalence is monotone as a
function of age. Indicated are the optimal powers: in black for the overall, unconstrained gray
surface: (1.9, 2) with deviance value 79.58; in gray for the constrained black surface: (1.0, 1.6)
with deviance value 93.45

(1.9, 2) are indicated in black for the overall unconstrained gray surface with
deviance value 79.58 and (1.0, 1.6) in gray for the constrained black surface with
deviance value 93.45.

For the Bulgarian dataset, the second degree unconstrained fractional polynomial
with powers (1.9, 2.0) has a deviance of 77.75 on with 80 degrees of freedom,
whereas the constrained version with powers (1.6, 2.1) has a deviance of 77.89. This
model suggests that the force of infection is maximal at age 37 (λ̂ (37) = 0.076).
However, using statistical measures, the first degree fractional polynomial is to
be preferred since D(1,1)−D(2,(1.6,2.1)) = 1.63 < χ2

2,0.9 = 4.605. Using AIC,
lower is better (see Appendix B.1), also leads to the simpler one degree polynomial,
although borderline (AIC = 203.4 for the first degree polynomial, against AIC =
203.8 for the second degree polynomial). Interestingly, the first degree fractional
polynomial with optimal power p1 = 1 and logit link is just a simple linear logistic
regression model. For this model λ (a) = β1π(a) such that it predicts an upward
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Fig. 6.7 Estimated
prevalence and force of
infection for varicella. Solid
lines: first degree FP-model,
dashed lines: unconstrained
second degree FP-model,
dotted lines: constrained
second degree FP-model.
Models were fitted with logit
link function

trend for the force of infection. This illustrates that estimated age-dependent force
of infection curves can exhibit quite different qualitative characteristics, even if
the estimated age-dependent prevalence curves are very similar (see right panel of
Fig. 6.5).

Varicella, Rubella and Mumps

Figure 6.7 shows the estimated fractional polynomials for both prevalence and force
of infection for the varicella data. Although observations for ages below 6 months
were excluded, the unconstrained FP of degree 2 decreases up to about the age of
1.5 year and then increases rapidly, leading to a negative estimate for the force of
infection. This example clearly shows the flexibility of FPs which is almost of a
nonparametric nature. The constrained FP of degree 2 results in an estimated curve
for the FOI that reaches a maximum at age 3.5 with value λ̂ (3.5) = 0.27 and drops
down thereafter. At age 40 years the force of infection is estimated to be 0.045.

For rubella and mumps, we observe the same phenomenon at the lowest ages,
but less pronounced. Although the selected powers for the unconstrained and
constrained FP are quite different, the fitted curves are very close. Figure 6.8
(left panel) shows that for rubella the force of infection rises to a peak at age 6.3
with (λ̂(6.3) = 0.14). For mumps, the force of infection reaches a maximum value
at age 4.6 with λ̂ (4.6) = 0.32.

6.2.6 Influence of the Link Function

In the previous section, all models were fitted with the logit link function. In
this section, we illustrate the influence of using other link functions. In particular,
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Fig. 6.8 Estimated prevalence and force of infection for rubella (left panel) and mumps (right
pane). Solid lines: first degree FP-model, dashed lines: unconstrained second degree FP-model,
dotted lines: constrained second degree FP-model. Models were fitted with logit link function

we focus on the use of the complementary log–log link function. More precisely, for
the first degree fractional polynomials we specify the model for the prevalence as

π(a) =

{
1− exp

(
−β0eβ1H(a)

)
p 
= 0,

1− exp
(−β0aβ1

)
p = 0.

(6.7)

For the second degree fractional polynomials, we consider the following
specification:

π(a) = 1− exp
(
−β0eβ1H1(a)+β2H2(a)

)
, (6.8)

with corresponding linear predictor

⎧
⎨

⎩

η2(a,β , p1, p2) = log(β0)+β1ap1 +β2ap2 if p1 
= p2,

η2(a,β , p1, p2) = log(β0)+β1ap1 +β2ap1 log(a) if p1 = p2,

ap1 = log(a) if p1 = 0.
(6.9)

Note that indeed the models specified in (6.7) and (6.8) are GLM with a com-
plementary log–log link function. The first degree model specified in (6.7) with
p = 0 implies a Weibull distribution for the time spent in the susceptible class.
Such a Weibull model was used by Keiding et al. (1996) to model the force of
infection for rubella from an Austrian seroprevalence sample. A model with a
constant force of infection is a special case of a first degree fractional polynomial
with complementary log–log link function with β1 fixed at value 1; in that case
η(a,β ) = log(β0)+ log(a). Such a model was used by Farrington et al. (2001) to
model the force of infection for hepatitis A in Bulgaria. Furthermore, a model with
linear force of infection is a first degree fractional polynomial with p= 0 and β1 = 2.
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Table 6.3 Selected powers and deviance summaries of the fitted FP-models for
the Belgian hepatitis A dataset

Model (link) Monotone Deviance p AIC

First degree (logit) Yes 114.25 0.42 391.8
Second degree (logit) No 79.58 1.9,2.0 359.2
Second degree (logit) Yes 93.45 1.0,1.6 373.0

First degree (cloglog) Yes 135.73 −0.04 413.3
First degree (cloglog) Yes 136.00 0 (β1 
= 1) 413.5
First degree (cloglog) Yes 290.80 0 (β1 = 1) 566.4
Second degree (cloglog) No 81.60 1.5,1.6 361.2
Second degree (cloglog) Yes 106.00 0.5,1.1 385.5
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Fig. 6.9 Estimated prevalence and force of infection for the Belgian Hepatitis A data, based on
models with logit and complementary log–log link function. Left panel: fits from first degree
fractional polynomials with logit (solid curves) and complementary log–log link function (dashed
curves); right panel: fits from second degree fractional polynomials with logit (solid curves)
and complementary log–log link function (dashed curves), for unconstrained (non-monotone
prevalence and negative FOI) and constrained models

Table 6.3 summarizes the characteristics of all fits to the Belgian hepatitis A data.
One can observe that the logit models fit the data better, as compared to the cloglog
counterparts. The Weibull model (FP of degree 1 with p = 0) does not fit well. The
influence of the link function reduces as the model gets more flexible, going for FPs
from degree one to degree two. This is confirmed in Fig. 6.9. For the first degree
models, the fitted FOI curve based on the cloglog link deviates from the logit-based
fit for ages above 60 years, as it does not reach a maximum. The unconstrained
and constrained second degree FP fits though are remarkably close, even though
the selected powers are quite different. This is in line with what is known also for
nonparametric models: the more flexible the predictor models, the less the influence
of the link function. Comparing all models, the best unconstrained model is the
second degree logit-based FP model with powers 1.9 and 2.0 (deviance 79.58, AIC
359.2), closely followed by its cloglog-based counterpart with powers 1.5 and 1.6
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Table 6.4 Belgian Hepatitis A data: estimates and standard errors for FPs of first and
second degree, together with those of the equivalent nonlinear models

Model β0 β1 β̃1 β2 β̃2

FP1 −6.51(0.26) 1.44(0.06) 0.42(fixed) – –
NL1 −6.57(1.39) 1.47(0.81) 0.42(0.09) – –

FP2 −3.27(0.16) 0.03(0.002) 1.90(fixed) −0.02(0.001) 2.00(fixed)
NL2 −3.30(0.24) 0.04(0.011) 1.88(0.11) −0.02(0.008) 1.98(0.09)

(deviance 81.60, AIC 361.2). The best model that leads to a monotone prevalence
and positive FOI fit is the second degree logit-based model with powers 1.0 and 1.6
(deviance 93.45, AIC 373.0), followed by again its cloglog counterpart with powers
0.5 and 1.1 (deviance 106.00, AIC 385.5).

6.2.7 From Fractional Polynomials Back to Nonlinear Models

The main advantage of an FP is its flexibility while remaining a parametric GLM
and consequently fitting such a model is straightforward. As indicated in Sect. 6.2.4,
a fractional polynomial with powers selected from a fine grid of powers gets close to
the genuinely nonlinear model, but inference ignores that powers were also selected
using the data. On the other hand treating the powers as parameters, we get nonlinear
models with similar flexibility and correct inference, but convergence of nonlinear
models may become problematic (no convergence, convergence to a local optimum,
etc.). To get proper inference and to solve the computational difficulties of the
nonlinear model, one could first select the FP over a fine grid of powers and use
the resulting estimates and selected powers as starting values for the equivalent
nonlinear model. The nonlinear equivalent of a fractional polynomial model of
degree one is given by

ηm(a, β) = β0 +β1aβ̃1 , (6.10)

where now β = (β0,β1, β̃1), and for a second degree FP by

ηm(a, β ) = β0 +β1aβ̃1 +β2aβ̃2 , (6.11)

with β = (β0,β1, β̃1,β2, β̃2).
Table 6.4 shows estimates and standard errors for FPs of first and second degree

(rows FP1 and FP2), together with those of the equivalent nonlinear models (rows
NL1 and NL2) as applied to the Belgian Hepatitis A data. The power of the FP
of degree 1 was selected based on a grid with stepsize 0.01; the powers of the
FP of degree 2 were selected based on a two-dimensional grid with stepsize 0.1
in each dimension. As expected the estimates (or selected powers) do not change
much, but the standard errors are much larger for the nonlinear model. How does
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Table 6.5 Belgian
Hepatitis A data: estimates,
standard errors, and 95%
confidence intervals for the
prevalence and force of
infection at age 40 years, for
FPs of first and second degree
and the equivalent nonlinear
models

Model Parameter Estimate(se) 95% CI

FP1 π(40) 0.57(0.011) (0.548, 0.591)
NL1 π(40) 0.57(0.012) (0.546, 0.594)
FP2 π(40) 0.59(0.013) (0.564, 0.615)
NL2 π(40) 0.59(0.013) (0.563, 0.616)

FP1 λ (40) 0.04(0.002) (0.037, 0.044)
NL1 λ (40) 0.04(0.002) (0.037, 0.044)
FP2 λ (40) 0.05(0.002) (0.049, 0.058)
NL2 λ (40) 0.05(0.003) (0.048, 0.059)

this affect the estimates for the prevalence and the force of infection? Table 6.5
shows the estimated prevalence and force of infection with standard errors and
confidence intervals at the age 40 (age at which the FOI is close to its maximal
value). With the increased standard errors of Table 6.4 in mind, it might be surprising
to observe that standard errors and confidence intervals are very close. The reason
is that in nonlinear models the estimated coefficients and corresponding estimated
powers are highly correlated. For the first degree fractional polynomial the estimated

correlation between β̂1 and ̂̃β 1 equals −0.9975; for the second degree polynomial

the estimated correlation between β̂1 and ̂̃β 1 is equal to −0.5076, between β̂2 and ̂̃β 2

0.3379 (which seems rather moderate) but the correlation between β̂1 and β̂2 equals

−0.8752 and that of ̂̃β 1 and ̂̃β 2 is equal to 0.9501. So, the main conclusion is that
inference based on fractional polynomials seems acceptable, even when ignoring the
sample variability in the power-selection step. The nonlinear models in this section
were fitted using PROC NLMIXED in SAS.

6.3 Discussion

We have shown that modeling the prevalence and the force of infection with
fractional polynomials is a very flexible method, allowing a variety of different types
of relationships between the force of infection and age. The method can compete
with nonparametric smoothers while keeping the attractive features of parametric
models. Furthermore, we have shown that well-known parametric models can be
expressed as special cases of fractional polynomials. Thus, by fitting a large number
of fractional polynomials with logit and complementary log–log link function we
account for the possibility of constant, linear, monotone, or flexible curve shapes
for the force of infection. However, we do not require the force of infection to have
a specific curve shape in advance, the choice is data-driven.

In case that other covariates, in addition to age, are included, the following semi-
parametric additive model parameterizes the prevalence as

link(π(a)) = φ(a)+Zα, (6.12)
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where Z represents the additional categorical covariate(s). The nonparametric
component of the model, φ(a), is used to model the dependency of π(a) on age
while Zα , the parametric component of the model, is used to model the covariate
effects. This modeling approach is further discussed in Chap. 8. In order to ensure a
nonnegative estimate for the force of infection, one needs to estimate π(a) with a
nondecreasing function. This can be done by applying the pool adjacent violators
algorithm to the data (Barlow et al. 1972; Robertson et al. 1988). This approach
has been followed by Grummer-Strawn (1993) and Shiboski (1998). Within the
framework of fractional polynomials, we can replace the nonparametric component
of the model with a fractional polynomial

link(π(a)) = ηm(a, p,β )+Zα,

where ηm(a, p,β ) is the fractional polynomial modeling the dependence on age.
Similar to the semiparametric model in (6.12), depending on the link function,
this model implies proportionality. For example, suppose that Z is a binary
variable, then for models with complementary log–log link we get λ (a|Z = 1)
= exp(α)λ (a|Z = 0) and for models with logit link we obtain λ (a|Z = 1) =
(π(a|Z = 1)/π(a|Z = 0))λ (a|Z = 0).

The problem of estimating a negative force of infection was addressed by fitting
constrained fractional polynomials, excluding models that lead to negative force of
infection as appropriate models. In our opinion, blind use of conventional linear
predictors to model the force of infection can yield misleading results. Flexible
models should be considered and the family of fractional polynomials offers an
interesting choice. They can also be used as an exploratory tool or to perform a
sensitivity analysis of a particular parametric model that, for instance, reflects prior
information about the force of infection.

All models discussed in this chapter are generalized linear or nonlinear paramet-
ric models, which can be fit easily with standard software, such as the functions
glm() or mle() in R, or PROC GENMOD or PROC NLMIXED in SAS.



Chapter 7
Nonparametric Approaches to Model
the Prevalence and Force of Infection

7.1 Nonparametric Approaches

In the previous chapter, parametric models, including the flexible family of frac-
tional polynomials, were fitted in the framework of generalized linear models.
Such models, although quite flexible, are of a predetermined shape through their
specific analytical form. They might not be able to capture unusual and unexpected
features of the data. Nonparametric regression methods allow to accommodate
flexible, highly nonlinear relationships for the age-dependent seroprevalence and
consequently for the force of infection. Unlike parametric models, the shape of
the functional relationship of the disease prevalence or the force of infection as
a function of age is not predetermined. There are many nonparametric so-called
“smoothing” methods, and there is a vast literature available (see e.g. Fan and
Gijbels 1996; Efromovich 1999; Simonoff 1996; Ruppert et al. 2003; Bowman and
Azzalini 1997).

Nonparametric methods are originating from different approximating principles,
but roughly speaking one could classify them in “series” and “non-series” methods.
Series methods (polynomial series, trigonometric series, wavelets, . . . ) originate
from the mathematics of series approximation (Fourier series), whereas non-series
methods are motivated through local approximations (kernel and local polynomial
estimators, nearest neighbor methodology), interpolating theory (splines), models
for the human brain (neural networks), separating hyperplanes (support vector
machine), etc. The line between parametric and nonparametric models can be very
thin, leading to “semiparametric” models. Penalized regression splines fitted as a
mixed model is such an example. These types of models will be discussed and
illustrated in the next chapter.

The focus in this chapter is on the local polynomial estimator. One reason for
this choice is that we believe it is an appropriate smoothing approach for typical
seroprevalence data. Another more technical argument is that this method allows
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simultaneous estimation of a parameter, its derivatives, and functions thereof, such
as the force of infection. But we start with a short historical tour on the first
nonparametric approaches in the field of statistical models for infectious diseases.

7.1.1 The First Nonparametric Approaches

As mentioned in Chap. 6, Griffiths (1974) presented the first attempt to estimate
the force of infection nonparametrically. The importance of Griffiths’ method is the
idea behind it. He justified his choice for a parametric model with linear force of
infection using a nonparametric estimate for the same parameter. Farrington (1990)
used a smoothed version of Griffiths’ estimator. However, both can lead to a negative
estimate for the force of infection. Although the discussion on the issue of con-
strained estimation of prevalence and FOI is postponed to Chap. 9, it is interesting
to introduce Keiding’s two-step approach (Keiding (1991)) already in this section.
In the first step the prevalence is estimated by isotonic regression (Barlow et al.
1972; Robertson et al. 1988), and in the second step a kernel smoother is used in
order to estimate the force of infection.

The isotonic regression estimator of the observed prevalence is the nonparametric
maximum likelihood estimator (NPMLE) for (5.2). It is a step function with respect
to age. Barlow et al. (1972) and Robertson et al. (1988) discussed the NPMLE for
the general case of the binomial likelihood and Keiding (1991), Greenhalgh and
Dietz (1994), and Keiding et al. (1996) discussed it in the context of infectious
diseases (using the form of the likelihood in (5.2)). In the second step the force of
infection, assumed to be a smooth function of age, is estimated by

λ̂ (a) =
1
h

∫ a+h

a−h
K

(
x− a

h

)
dπ̂(x)

1− π̂(x−)
, (7.1)

where K is a kernel function, h is the bandwidth, and π̂(·) is the isotonic regression
estimator of the observed prevalence. Note that π̂(x−) is the shorthand notation for
the left limit of π̂ with respect to x. As discussed in Greenhalgh and Dietz (1994),
in case that π̂ has discontinuities at the points x1,x2, . . . ,xn, then

λ̂ (a) =
1
h ∑

xi∈[a−h,a+h]

K

(
xi − a

h

)
π̂(xi)− π̂(xi−1)

1− π̂(xi−1)
. (7.2)

Keiding’s method requires the crucial choice of an optimal bandwidth h. This
issue was not addressed by Keiding, who chose the smoothing parameter by visual
inspection. Later on, Keiding et al. (1996) proposed to replace the kernel estimate
in the second step with a smoothing spline. However, This method also requires
the selection of a smoothing parameter as well. Figure 7.1 shows the hepatitis A
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Fig. 7.1 Estimated prevalence and force of infection for Hepatitis A in Belgium using Keiding’s
method: isotonic regression to estimate the prevalence and a kernel smoother for the force of
infection, based on a standard normal density K and bandwidths h = 15 (solid curve) and h = 20
(dashed curve)

data from Belgium with the prevalence estimated using isotonic regression and a
kernel smoother to estimate the force of infection (with K the standard normal
density and with two choices h = 15 and h = 20 for the bandwidth parameter).
As mentioned before, the estimation of the prevalence and the force of infection
from a serological sample is closely related to the problem of estimation from
current status data (Keiding et al. 1996). While in the literature related to the
estimation of parameters from current status data attention is placed on estimating
the prevalence, in the context of infectious diseases one focuses on the estimation
of the force of infection (as well as other disease-related parameters). In the context
of current status data, Shiboski (1998) proposed a semiparametric model, based on
generalized additive models (Hastie and Tibshirani 1990), in which the dependency
of the force of infection on age is modeled nonparametrically and the covariate
effect is the parametric component of the model. Depending on the link function, the
model proposed by Shiboski (1998) assumes proportionality; proportional hazards
(complementary log–log link) or proportional odds (logit and probit links). Other
semi–parametric models, assuming a logit link, were proposed by Rossini and
Tsiatis (1996).

The use of a kernel function to smooth out neighboring data information, as
illustrated in formulas (7.1) and (7.2), is also the key idea in local polynomial
estimation, as discussed in the next section.
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Fig. 7.2 Kernel functions:
tricube (dotted line),
Epanechnikov (dashed line),
and Gaussian (solid line)

7.1.2 Local Estimation by Polynomials

Within the local polynomial framework, the linear predictor η(a) is approximated
locally, at one particular value a0 for age, by a line (local linear, degree p = 1), or
a parabola (local quadratic, degree p = 2), etc. The appropriate degree p is a first
choice to be made. For a general degree, it holds that the (Taylor) approximation

η(ai)≈ η(a0)+η(1)(a0)(ai −a0)+
η(2)(a0)

2
(ai −a0)

2 + . . .+
η(p)(a0)

p!
(ai−a0)

p,

(7.3)
is quite accurate, under the condition that ai is close enough to a0, and that the curve
η(·) is sufficiently smooth at the age a0 (smoothness is mathematically translated
into the existence of the derivatives η(1)(a0), . . . ,η(p)(a0)). This mathematical fact
naturally inspires the idea to fit a polynomial locally, only for observations with ai

close to a0. This “closeness” is governed by the so-called kernel function Kh, assign-
ing high weights to data points with age values close to a0 and low or zero weights
to data points further or far away. The kernel function Kh is typically a density
function (such as the bell-shaped gaussian density), having mean 0 and variance h.
This variance parameter h is the so-called smoothing parameter. Figure 7.2 graphs
three popular kernels: the Gaussian kernel, the tricube kernel (70/81× (1− (|u|)3)3

(|u| ≤ 1)), and the Epanechnikov kernel (3/4× (1− u2)(|u| ≤ 1)).
This idea to use a variance parameter to control and optimize the level of

smoothness is a recurrent concept in smoothing (see the next chapter and the use
of a variance component in mixed models as a smoothing parameter). The kernel
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Kh and the value h are two other choices to be made. In general, one can say that
a degree p higher than two is seldom required, that the choice of the form of the
kernel Kh is relatively unimportant compared to the most crucial parameter in the
game, the smoothing parameter h, also called the “window width.” There are several
options to select an appropriate value for h. We will illustrate some of these criteria
in Sect. 7.2 and refer to the statistical literature for more details.

Instead of maximizing (5.2), the local polynomial approach is based on the
maximization of

N

∑
i=1

�i
{

Yi,g
−1 (β0 +β1(ai − a0)+β2(ai − a0)

2 + . . .+βp(ai − a0)
p)}Kh(ai − a0),

(7.4)
where

�i{Yi,π}= Yi log{π}+(1−Yi) log{1−π}
are the individual binomial type contributions to the likelihood (as in expres-
sion (5.2)). Identification of the polynomial expressions in (7.3) and (7.4) leads to
the following estimator for the k-th derivative of η(a0), for k = 0,1, . . . , p:

η̂(k)(a0) = k!β̂k(a0). (7.5)

The estimator for the seroprevalence at age a0 is then given by

π̂(a0) = g−1
{

β̂0(a0)
}
, (7.6)

and for the force of infection at age a0 by assuming p ≥ 1 and using identity (5.5):

λ̂ (a0) = β̂1(a0)δ{β̂0(a0)}, (7.7)

where δ{β̂0(a0)} = dg−1{β̂0(a0)}/dβ̂0(a0) (see Chap. 6). Fitting a local polyno-
mial model is straightforward and can be done by standard software for (logistic)
regression. Indeed, as likelihood expression (7.4) indicates, the local fit at a
particular value a0 is the result of a simple weighted logistic regression with weights
w(a) = Kh(a− a0). Figure 7.3 shows two such local fits at the age a0 = 5.5 and
a0 = 20.5 for the UK Mumps data (Chap. 4). It concerns a local quadratic fit with
tricube kernel.

Local polynomials are one of the most mathematically studied nonparametric
methods (see aforementioned literature). For the specific application to the force
of infection, Shkedy et al. (2003) derived some theoretical properties, such as
asymptotic normality and formulas for the optimal choice of h, based on the
asymptotic expression for the mean squared error.
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Fig. 7.3 UK Mumps data. Local quadratic fit with tricube kernel. Local quadratic polynomials
(solid curves) are shown at ages 5.5 and 20.5, as well as the tricube kernels (dotted curves) which
are used for locally weighting the observations

In R local polynomials can be fit through the locfit package as follows:

# R-code to fit a local polynomial
library(locfit)

# For binary response data y and age a
lpfit=locfit(y˜a,family="binomial")

# For binomial response data with number of positives
# and total number
lpfit=locfit(pos/tot˜a,family="binomial",alpha=0.7,deg=2,
kernel="tcub")

# local fit force of infection based on the derivative
# on the logit scale
lpfitd1=locfit(y˜a,deriv=1,family="binomial",alpha=0.7,deg=2,
kernel="tcub")
lpfoi=fitted(lpfitd1)*fitted(lpfit)

Most of this code is self-explanatory, but the last line might need some
explanation. The function fitted returns the fitted values on the probability π-scale
for the probability function, but on the predictor η-scale for the derivative function.
Since the default link is the logit link, Table 5.1 shows that the two factors in the
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rhs of λ (a) = η ′(a)π(a) are exactly the two scales provided by fitted. The option
family = “binomial” has to be specified for seroprevalence data, as the default
option is “gaussian.” The other options alpha = 0.7, deg = 2, kernel = “tcub” are
the default options. Full details on the use of locfit can be found in Loader (1999)
and in the R-help files.

In the next section some details on the use of these options of locfit are illustrated
on the UK Mumps data (see Chap. 4).

7.2 Application to UK Mumps Data

In this section we go briefly into the different locfit-options when fitting a local
polynomial: the degree of the polynomial, the kernel, and most importantly,
the smoothing parameter. The upper panel of Fig. 7.4 shows the data with size
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Fig. 7.4 UK Mumps data. Upper panels: proportion positive, as function of the corresponding
half-year age categories, overlaid with different local polynomial fits for the seroprevalence and
the force of infection; left: default options (solid lines), Epanechnikov kernel (dashed line), degree
1 (dotted line); right: default options but with local constant bandwidths 100 (solid) and 5 (dashed).
Lower panels: GCV curves for the nearest neighbor method (left) and constant bandwidth (right).
Note that the models for the prevalence are not constrained to be monotone and therefore λ (a) is
not always positive. Monotonicity constraints will be discussed in details in Chap. 9
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proportional to the number of observations in the half-year age group, overlaid with
different local polynomials. The solid curves in the upper left panel show the fitted
seroprevalence (upper curve) and the fitted force of infection (lower curve) using
the default options alpha = 0.7, deg = 2, kernel = “tcub.”

The option alpha = 0.7 refers to a local fit only incorporating 70% of the data,
namely the 70% closest neighbors, when fitting the curve at a particular age a0

(as in 7.3 and 7.4). This way of local fitting implies a varying value of h = h(a0) in
formula (7.4), as neighbors are more spread out in sparse data areas. More precisely,
specifying alpha=α , the nearest neighbor bandwidth h(a0) is computed as follows:
(1) compute all distances |a0 −ai|, i = 1, . . . ,N; (2) take h(a0) to be the kth smallest
distance, where k = �nα. In general, this is preferred above a constant bandwidth
h, which does not adapt to the data density. In locfit, a constant bandwidth of, e.g.,
h = 5 can be specified as alpha = c(0,5).

The second option deg = 2 specifies the degree of the local polynomial, in this
case a local quadratic fit (p = 2 in formula 7.4). Shkedy et al. (2003) showed that
this is the optimal degree when estimating the force of infection. Finally the last
option kernel = “tcub” specifies the use of the tricube kernel. The dashed curves
show the fitted curves with the same options using the Epanechnikov kernel. As
expected, for this application, the differences are very minor and the curves are
almost identical. The dotted curve corresponds to the fit where the only change was
the degree to be equal to one. This has a bit more impact as it changes the location
and the value of the maximal force of infection.

Of course all curves in this panel are nonoptimal since they are not based on the
optimal smoothing parameter, and the optimal value of the smoothing parameters
depends on the degree of the polynomial. The effect of the smoothing parameter
is illustrated in the right upper panel, showing the constant bandwidth fits for two
extreme cases: (1) a very high value h = 106 implying that all data are equally
weighted, leading to a parametric polynomial fit of degree 2; (2) a very low value
h = 5 leading to a too wiggly curve. Clearly both fits are bad, showing that the
smoothing parameter has to be selected with caution.

There are different criteria to select the optimal value for the smoothing param-
eter, based on the data. Plug-in estimators are based on asymptotic expressions for
bias and variance, combined into an asymptotic mean (integrated) squared error
(MSE) expression. This approach however replaces the problem to the estimation
of some unknown quantities in the asymptotic expression, which are even more
complicated to estimate (such as a higher-order derivative of the function of
interest). This approach was taken by Shkedy et al. (2003) and they used fractional
polynomials as an initial estimate for the unknown quantities in the MSE expression.
Other approaches to bandwidth selection are extensions of model selection methods
for parametric models, such as AIC, Mallows Cp, and cross-validation. In what
follows we illustrate the cross-validation and the generalized cross-validation
(GCV) method. For more information on bandwidth selection, see Ruppert et al.
(2003) and Simonoff (1996).
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The cross-validation bandwidth minimizes the cross-validation criterion

CV (h) =
N

∑
i=1

�i{Yi, π̂h
i (ai)},

where π̂h
i (ai) is defined as the local estimator at ai leaving out the ith observation

and using bandwidth h. The CV-criterion is minimized as a function of h for a
constant bandwidth or as a function of the percentage of neighbors α for a nearest
neighbor bandwidth. GCV provides an approximation to cross-validation based on
the so-called fitted or effective degrees of freedom and does not require the possibly
expensive calculation of the N leave-i-out estimates π̂h

i (ai) (see e.g. Ruppert et al.
2003). The lower panels of Fig. 7.4 show the GCV curves for the nearest neighbor
(left) and constant bandwidth (right) approaches. The R code to produce these GCV
plots is as follows.

# R-code to compute the cross-validation criterion on a grid
# "lowgp" to "uppergp" with resolution "gridres"
lowgp=0.2; uppergp=0.8; gridres=0.05

alpha=seq(lowgp,uppergp, by=gridres)
plot(gcvplot(y˜a,family="binomial",alpha=alpha,type="l"))

# plot with horizontal axis given by alpha
cvres=cbind(alpha,summary(gcvplot(y˜a,family="binomial",

alpha=alpha)))
plot(cvres[,1],cvres[,3],type="n",main="Nearest Neighbor GCV",

xlab="\% Neighbors",ylab="GCV")
lines(cvres[,1],cvres[,3])

The left GCV-curve in Fig. 7.4 shows two minimums, at percentages 30% and
50%. Since a flat curvature at the minimum is typical and since a more parsimonious
model is to be preferred, we opted for α = 0.50 as a final choice. For a constant
bandwidth, the right GCV-curve suggests an optimal bandwidth h = 14. The
seroprevalence and force of infection fit well for both optimal bandwidth choices
as shown in Fig. 7.5. Both fits are very similar, except for the fact that above the
age of 40 years, the fit based on the local constant bandwidth suffers more from
boundary effects as a result of data sparseness.

7.3 Concluding Remarks

We have shown how nonparametric models such as local polynomials can be used to
fit seroprevalence data and to estimate the force of infection. Such models can also
be extended to encompass a setting with multiple covariates. In case the additional
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Fig. 7.5 UK Mumps data. proportion positive, as function of the corresponding half-year age
categories, overlaid with two local polynomial fits for the seroprevalence and the force of infection:
with GCV optimal nearest neighbor percentage 0.5 (solid line) and with GCV optimal constant
bandwidth 14 (dashed line)

covariate is categorical (such as gender), the local nature of this nonparametric
approach boils down to separate fits for all categories. In case other covariates are
continuous, the concept of local fitting can be readily extended to higher dimen-
sional neighborhoods and windows. Of course, selecting the optimal bandwidth can
become cumbersome and the curse of dimensionality will complicate the estimation
in case of several covariates. In the latter case additive and semiparametric models
are typically better choices and will be discussed in the next chapter.



Chapter 8
Semiparametric Approaches to Model
the Prevalence and Force of Infection

8.1 Semiparametric Approaches

While Chap. 6 presented an overview of different parametric models, imposing a
specific structure on the age-specific seroprevalence and FOI, Chap. 7 showed how
nonparametric methods allow to capture unusual or unexpected features of the data.
Although, these two frameworks are often considered to be mutually exclusive,
nonparametric methods can be looked upon as an extension of parametric methods.
This combination is often referred to as semiparametric regression (Ruppert et al.
2003).

The idea of semiparametric regression is best illustrated by means of an example.
Figure 8.1 shows the proportion of B19 seropositives as a function of age for the
Belgian B19 data (Chap. 4). To capture the systematic trend in these data, one could
opt to carry out a generalized linear regression analysis with a linear, quadratic, or
higher-order polynomial in age. While such an analysis will be able to capture the
overall trend, it is not straightforward to adapt the function to capture systematic
deviations from the overall trend such as the decrease in B19 seroprevalence around
25 years of age.

In semiparametric regression, the parametric analysis is extended by including
segment-wise parametric functions that are able to follow deviations from the
overall trend in the data. One typically imposes continuity and differentiability up
to a certain order by constraining these segment-wise functions in the knots, i.e.,
the points where two adjacent segments join. This approach is known as spline
smoothing (de Boor 1978). To overcome overfitting, penalized spline smoothing
has been introduced by O’Sullivan (1986), while Eilers and Marx (1996) actually
gave it the name “P-spline smoothing.” The idea of penalized spline smoothing has
led to a series of approaches including the work of Eilers and Marx (1996), Eilers
et al. (2006), Ruppert et al. (2003), and Wood (2006).

In this chapter, an overview of different semiparametric approaches will be
presented. The primary aim is to model the seroprevalence in a flexible way,
ignoring constraints as monotonicity (steady-state assumption), distortions in the

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
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Fig. 8.1 Age-specific proportion of B19 seropositives for the Belgian B19 data

seroprofile due to, e.g., the presence of maternal antibodies, waning immunity-
and test-uncertainty. Using the general form of the hazard function in the current
status data framework, the estimate for the FOI is easily obtained from the
estimated seroprevalence using λ̂ (a) = π̂ ′(a)/(1− π̂(a)) (see (5.4)). The inclusion
of monotonicity constraints will be discussed in Chap. 9.

We start by introducing penalized splines in a more formal way in Sect. 8.2 where
we distinguish between the penalized likelihood framework and the generalized
linear mixed model alternative. In Sect. 8.3, we address taking other predictors
such as gender into account. While the methods discussed up to that moment use
a common smoothing parameter for the whole range of the predictor variable, an
extension towards adaptive smoothing methods is provided in Sect. 8.4. We end
by contrasting the aforementioned semiparametric methods to the parametric and
nonparametric methods as introduced in Chaps. 6 and 7 using a case study on rubella
in the UK (Chap. 4).

8.2 Penalized Splines

As before let yi indicate whether individual i has experienced the infection before
age ai, i = 1, . . . ,N. A general model relating the prevalence to age can be written
as a GLM:

g(P(Yi = 1|ai)) = g(π(ai)) = η(ai), (8.1)

where g is the link function and η is the linear predictor. The linear predictor η(ai)
can be estimated semiparametrically using penalized splines. A popular approach
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is the penalized spline with truncated power basis functions of degree p and fixed
knots κ1, . . . ,κK where (see e.g. Friedman and Silverman 1989; Ruppert et al. 2003):

η(ai) = β0 +β1ai + · · ·+βpap
i +

K

∑
k=1

uk(ai −κk)
p
+ , (8.2)

with

(ai −κk)
p
+ =

{
0, ai ≤ κk

(ai −κk)
p, ai > κk.

(8.3)

In matrix notation, the mean structure model for η(ai) becomes

η = Xβ +Zu, (8.4)

where η = [η(a1) · · · η(aN)]
T , β = [β0 β1 · · · βp]

T , and u = [u1 u2 · · · uK ]
T are the

regression coefficients with corresponding design matrices:

X =

⎡

⎢
⎢
⎢
⎣

1 a1 a2
1 · · · ap

1
1 a2 a2

2 · · · ap
2

...
...

... · · · ...
1 aN a2

N · · · ap
N

⎤

⎥
⎥
⎥
⎦
, Z =

⎡

⎢
⎢
⎢
⎣

(a1 −κ1)
p
+ (a1 −κ2)

p
+ · · · (a1 −κK)

p
+

(a2 −κ1)
p
+ (a2 −κ2)

p
+ · · · (a2 −κK)

p
+

...
... · · · ...

(aN −κ1)
p
+ (aN −κ2)

p
+ · · · (aN −κK)

p
+

⎤

⎥
⎥
⎥
⎦
.

Within the parametric regression framework, η can be estimated by maximizing
the likelihood. However, it is always possible to choose η sufficiently complicated
that it interpolates the data in the sense that the fitted values agree with the
observed responses. In the semiparametric framework, following Ruppert et al.
(2003), we consider a number of knots that is large enough (typically 5–20) to
ensure the desired flexibility. But, to overcome the problem of overfitting we restrict
the influence of Z by constraining the corresponding vector of coefficients. How this
is typically done is described in Sect. 8.2.1. Once (β ,u) has been estimated, the FOI
can easily be derived as

λ̂ (ai) =

[

β̂1 + 2β̂2ai + · · ·+ pβ̂pap−1
i +

K

∑
k=1

pûk(ai −κk)
p−1
+

]

δ (η̂(ai)),

where δ () is determined by the link function used in the model (See δ (·) and
Chap. 5).

Before going into the different methods to control the smoothness of the
semiparametric regression, we graphically present the semiparametric procedure as
outlined above. We use the Belgian B19 data and without loss of generality, we
restrict attention to those individuals aged 0–40 years. We use the penalized splines
with truncated power basis functions of degree 2 and use three knots for illustrative
purposes. The selected knots were located at ages 8.07, 14.04, and 19.38 years, i.e.,
the 25%, 50% and 75% percentiles of the age distribution.
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Fig. 8.2 Illustration of penalized splines with truncated polynomial basis functions of degree 2 and
three knots (triangles; upper left panel: dashed, dotted, dashed–dotted lines) with their respective
contributions (upper right panel: dashed, dotted, dashed–dotted lines) to the semiparametric part
of the linear predictor (solid line). In the lower left panel, the parametric part (dashed line) and the
semiparametric part (dotted line) add up to the linear predictor (solid line). The lower right panel
shows this addition on the scale of the prevalence

In the upper left panel of Fig. 8.2, the basis functions, i.e., the truncated poly-
nomials of degree 2, as defined by (8.3), are shown at the respective knots. Using
the estimated values for (β ,u), we show the contributions of each of those basis
functions to the semiparametric part of the linear predictor (8.2): ∑3

k=1 ûk(a−κk)
2
+,

in the upper right panel of Fig. 8.2. In the lower left panel of Fig. 8.2 (solid
line), η̂(ai) as defined by (8.2) is shown together with its decomposition into the
parametric part (β̂0 + β̂1a+ β̂2a2, dashed line) and the semiparametric part (dotted
line). In the lower right panel of Fig. 8.2 the same decomposition is shown on
the prevalence scale (logit-link). Note that the latter decomposition doesn’t add
up directly whereas the decomposition on the scale of the linear predictor does.
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While the underlying function (here: the quadratic function of age) is able to capture
the trend in the data, the three semiparametric components jointly allow for a more
local adaptation of the function to the data. Note that the ûk,k = 1,2,3 are estimated
at 5.3×10−3, 1.2×10−3, and 13.4×10−3, respectively. These values are all positive
which in general is not necessarily so.

Note that the semiparametric approaches in this book all allow for a similar
graphical representation as outlined here. We however do not pursue these and
advise the reader, when interested, to the references mentioned throughout this
chapter.

8.2.1 Penalized Likelihood Framework

A first approach to control the influence of Z is obtained by maximizing the
penalized likelihood:

φ−1[yT (Xβ +Zu)− 1T c(Xβ +Zu)
]− 1

2
λ 2
[

β
u

]T

D

[
β
u

]

, (8.5)

with D a known positive semi-definite penalty matrix (Wahba 1978; Green and Sil-
verman 1994), y the response vector, 1 the unit vector and where c(·) is determined
by the link function used in the GLM. The first term in (8.5) measures the goodness-
of-fit while the second term is the roughness penalty. λ is the smoothing parameter
for which large values produce smoother curves while smaller values produce more
wiggly curves. The parameter φ is the overdispersion parameter and equals 1 if there
is no overdispersion.

In general, the smoothness of a P-spline is determined by the choice of basis
function, selection of knots, and the way penalization is done. Next to the truncated
power basis functions, a variety of other spline basis functions are used in literature.
Most commonly used basis functions include the polynomial, truncated polynomial,
and B-spline basis function. The knot selection is mostly either equidistant over
the range of the covariate space or based on the quantiles of the covariate
distribution (Ruppert et al. 2003). However, user-defined criteria can be used too.
Finally, penalization can be done in a variety of ways such as penalizing for large
finite differences of adjacent coefficients or for large curvatures. The trade-off
between smoothness and closely matching the data is governed by the smoothing
parameter. The choice of the smoothing parameter is crucial in the practical use of
splines. Several smoothing parameter selection methods as Akaike’s information
criterion (AIC), its corrected version (AICc), the Bayesian information criterion
(BIC), unbiased risk estimation (UBRE), and generalized cross-validation (GCV)
have proven to be effective.

The degree of the basis function and continuity constraints on the function and
its derivatives in the knots, the placement of the knots, the choice of penalty, and
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smoothing parameter selection are very important for a spline. Basic references
in this field are: de Boor (1978), Eilers and Marx (1996), Ruppert et al. (2003),
and Wood (2006). In what follows, several methods for which code is readily
available will be presented.

8.2.1.1 Smoothing Splines

Smoothing splines (Hastie and Tibshirani 1990) avoid knot selection problems by
using the maximal set of knots, i.e., all unique age values. Regularization is then
done by penalizing the curvature of the function. The resulting spline is a natural
spline, i.e., a cubic spline where the function is linear beyond the endpoints of the
data (Chambers and Hastie 1992).

The implementation of smoothing splines in R is given through the gam-library
(Chambers and Hastie 1992). The following code fits a smoothing spline with logit-
and cloglog-link, respectively.

# R-code Smoothing Splines
library(gam)
gam(y˜s(a,df=dfopt1),family=binomial(link="logit"))
gam(y˜s(a,df=dfopt2),family=binomial(link="cloglog"))

The amount of smoothing is fixed by df, the effective degrees of freedom or
equivalently spar, the smoothing parameter. Given a grid of df (or spar)-values, the
optimal amount of smoothing is chosen, e.g., by minimizing the BIC criterion. Note
that different link functions could result in different optimal smoothing parameters,
here denoted by dfopt1 and dfopt2, respectively.

Applying the above procedure to the Belgian B19 data resulted in dfopt1 = 3.5
and dfopt2 = 4.5 for logit- and cloglog-link, respectively. The resulting seropreva-
lence curves and the thereof derived FOI curves are given in the left upper panel of
Fig. 8.3. There is little difference in seroprevalence and FOI when comparing logit
(solid line) and cloglog (dashed line) curves. Note that of both models the model
with logit-link is the preferred one according to the BIC criterion (Table 8.1).

8.2.1.2 B-Splines

Eilers and Marx (1996) used B-splines of which the basis functions are defined as
differences of truncated polynomials of degree p (de Boor 1978). They proposed
to use m-order difference penalties on the coefficients of adjacent B-spline basis
functions to control the smoothness of the curve and consequently used the term
“P-splines” (penalized splines). Throughout the remainder of the book we will
mostly use the term B-spline even when using its penalized version. The degree p,
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Fig. 8.3 Fitted seroprevalence and FOI curves for the Belgian B19 data using smoothing splines
(left upper panel), B-splines (right upper panel), cubic regression splines (left lower panel),
and thin plate regression splines (right lower panel) for both logit-link (solid line) and cloglog-
link (dashed line). In each graph, the lower curves represent the FOI curves derived from the
corresponding seroprevalence curves. The dots are the observed seroprevalence per integer age
value with size proportional to the number of samples taken

Table 8.1 Overview of BIC values for the different P-spline methods
in the penalized likelihood framework

Smoothing parameter
Method selection Link BIC

Smoothing splines BIC logit 3,480.80
cloglog 3,488.43

B-splines BIC logit 3,472.70
cloglog 3,481.32

Cubic regression
splines

UBRE logit 3,481.38

cloglog 3,485.31
Thin-plate regression

splines
UBRE logit 3,489.90

cloglog 3,491.57
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the order m, and the number of (equidistant) knots determine the flexibility of
the spline. The popularity of B-splines is mainly due to their stable numerical
properties (Eilers et al. 2006).

The following code uses the pspline.fit-function as made available by the authors
of Eilers and Marx (1996). It is often advised to use a large number of knots,
specified by ps.intervals, while a B-spline basis function of degree p = 3 or larger
ensures a differentiable FOI. We choose order m = 2 but higher-order difference
penalties resulting in smoother curves can be chosen too. Similar to the smoothing
splines setting, the optimal smoothness parameter lambda is selected using the BIC
criterion.

# R-code B-splines
# Function Code Eilers and Marx (see book’s website)
pspline.fit(response=y,x.var=a,ps.intervals=20,degree=3,

order=2,link="logit",family="binomial",
lambda=lambdaopt1,x.predicted=a)

pspline.fit(response=y,x.var=a,ps.intervals=20,degree=3,
order=2,link="cloglog",family="binomial",
lambda=lambdaopt2,x.predicted=a)

Applying the procedure to the Belgian B19 data with logit- and cloglog-link
resulted in optimal smoothing parameters lambdaopt1= 80 and lambdaopt2= 200.
The fitted seroprevalence and FOI curves are shown in the upper right panel of
Fig. 8.3. Note the similarity with the results of the smoothing spline, although in
terms of BIC, this method is the preferred one (Table 8.1).

8.2.1.3 Cubic Regression Splines

Cubic regression splines fall into the more general class of regression splines,
joining (cubic) polynomials at the knots of the spline to ensure continuity and
differentiability up to degree two. In contrast to smoothing splines, the number
of knots is smaller than the unique number of data points and the placement of
knots is user-defined. The cubic regression spline is available in the R-library
mgcv-package (Wood 2006), where the default knot location is governed by the
quantiles of the covariate distribution. An additional advantage of the mgcv-package
is the automated selection of the smoothness parameter by either GCV or UBRE
(Wood 2006).

The code hereunder shows the implementation of the cubic regression spline
approach using logit- and cloglog-link, respectively. The resulting seroprevalence
fits are shown in the left lower panel of Fig. 8.3. Although the BIC values are close to
those for the smoothing splines (Table 8.1), the seroprevalence fit is not so smooth.
This is also reflected by the shape of the FOI.
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# R-code Cubic Regression Spline
library(mgcv)
gam(y˜s(a,bs="cr"),family=binomial(link="logit"))
gam(y˜s(a,bs="cr"),family=binomial(link="cloglog"))

8.2.1.4 Thin Plate Regression Splines

Another regression spline, available in the mgcv-package in R, is the thin plate
regression spline. Changing the option bs in the previous code to tp allows these
thin plate regression splines to be fitted.

# R-code Thin Plate Regression Spline
library(mgcv)
gam(y˜s(a,bs="tp"),family=binomial(link="logit"))
gam(y˜s(a,bs="tp"),family=binomial(link="cloglog"))

Thin plate regression splines (Wood 2006) do not use knots, are computationally
harder but provide nested models which for model building is in line with general
linear modeling methods. Thin plate splines use less parameters and posses
optimality properties in the use of generalized additive models. The resulting
seroprevalence curves are the most non-smooth curves of all methods (Fig. 8.3).
The BIC values are the largest ones for both “cloglog” and “logit” link function
(Table 8.1).

Applying the four aforementioned methods resulted mainly in differences regard-
ing smoothness. This is not surprisingly so since the different methods use different
basis functions, different penalties, and different knot selection. In Table 8.2, an
overview of the different components for each smoothing method is shown.

Let us now turn to the generalized linear mixed model framework to facilitate an
integrated smoothing parameter selection method.

8.2.2 Generalized Linear Mixed Model Framework

Generalized linear mixed models (GLMM) are commonly used to handle cor-
relations in the data (e.g., longitudinal data, clustered data). In addition, they
are a standard tool for smoothing discrete data. Several authors have made an
explicit connection between semiparametric regression and mixed models (Speed
1991; Wang et al. 1998; Zhang et al. 1998; Verbyla et al. 1999). This connection
allows penalized splines to be fitted as a GLMM, possibly combined with complex



130 8 Semiparametric Approaches

Table 8.2 Overview of the different smoothing methods and their basis function, knot selection,
penalty and smoothing parameter selection method

Method Basis function Knots Penalty

Smoothing
parameter
selection

Smoothing splines
(gam-library)

Cubic All grid points Second order
derivative

Manual

B-splines (pspline.fit) Differences of
truncated
polynomials

User-defined
(ps.intervals)

Difference
penalty

Manual

Cubic regression
splines
(mgcv-library)

Cubic User-defined
(mgcv-default)

Second order
derivative

Automated

Thin-plate regression
splines
(mgcv-library)

Thin plate None Eigenvalue
decomposition

Automated

correlation structures in the data. Since then, using smoothing splines within the
mixed model framework has become more and more appreciated and the number of
applications in literature is growing.

Starting from the penalized likelihood framework and truncated basis functions
as in (8.5), an obvious constraint on the parameters u would be ∑k u2

k <C, for some
positive value C. This is equivalent to choosing (β ,u) to maximize the penalized
loglikelihood (8.5) with D = diag(0,1) where 0 denotes the zero vector of length
p+ 1 and 1 denotes the unit vector of length K. For a fixed value of λ , this is
equivalent to fitting the generalized linear mixed model (Ruppert et al. 2003; Wand
2003; Ngo and Wand 2004):

f (y|u) = exp
{

φ−1[yT (Xβ +Zu)− c(Xβ +Zu)
]
+ 1T c(y)

}
,

u ∼ N(0,G), (8.6)

with similar notation as before and where G = σ2
u IK×K . Thus, the nonlinear part

of the spline Z is penalized by assuming that the corresponding coefficients u are
random effects with u ∼ N(0,σ2

u I).
Given this equivalence, the penalized spline model can be fitted using standard

statistical software for GLMM where the amount of smoothing λ = 1/σu is
automatically selected via the estimation routine, being an important asset of the
GLMM framework. The smaller the variance σu of the random effects distribution,
the smoother the resulting curve. As in the penalized likelihood framework, a
generalization towards different basis functions and different choices of knots can
be used (Ruppert et al. 2003; Wood 2006). Next to the simple and often used
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truncated line basis, also penalized splines with a higher-order truncated polynomial
basis, a radial basis, and a B-spline basis have a mixed model representation with
corresponding basis (Currie and Durban 2002; Ruppert et al. 2003).

A challenge of this method is the model estimation because of the nonlinear
nature of the GLMM. Maximum likelihood estimation requires the marginal
likelihood of Y , which is obtained by integrating over the random effects. In
general, this integration cannot be solved analytically, and maximum likelihood
estimation is hindered by the presence of this integral. Several alternative methods
to estimate parameters in a random effects model are available (Molenberghs and
Verbeke 2005). A possible approach is to compute the integration numerically.
Different integral approximations are available, the principal one being (adaptive)
Gaussian quadrature (Anderson and Aitkin 1985). Alternatively, the generalized
linear random effects model can be cast into a Bayesian framework, avoiding
the need for numerical integration by taking repeated samples from the posterior
distributions using Gibbs sampling techniques (Zeger and Karim 1991) as discussed
in Chap. 10. Other methods use approximations of the likelihood to circumvent the
computational burden caused by numerical integration. A possible method involves
Laplace approximation of integrals (Breslow and Clayton 1993; Wolfinger and
O’Connell 1993), which is commonly referred to as penalized quasi-likelihood
(PQL). However, the latter approach, although the simplest method among the
presented alternatives, can be seriously biased for binary response data.

The connection between the penalized spline smoother and the optimal predictor
in a GLMM framework, assuming normality for the parameters uk, presents an
opportunity for using standard mixed model software, such as, e.g., the “nlme”
library in R or the “nlmixed” procedure in SAS. The penalized spline model, using
the PQL estimation method, is also routinely implemented in the SAS procedure
“glimmix.” Also the “mcgv”-library in R (Wood 2006) and the “SemiPar”-library
in R (Ruppert et al. 2003) contain a function to fit a penalized spline in the GLMM
framework, using PQL estimation. In “mgcv,” the code is very similar to the R-code
for a thin plate regression spline or a cubic regression spline.

# R-code to fit Penalized Spline in GLMM framework
library(mgcv)
gamm(y˜s(a,bs="tp"),family=binomial(link="logit"))
gamm(y˜s(a,bs="cr"),family=binomial(link="logit"))

The resulting seroprevalence and force of infection curves are shown in Fig. 8.4.
Note that no formal likelihood-based comparison of different basis functions

is possible because of the PQL-estimation method. As such there is no formal
way to compare the method with those proposed in Sect. 8.2.1. Based on a visual
inspection, the results of the different GLMM-based methods are similar to those of
the penalized likelihood methods.
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Fig. 8.4 Fitted seroprevalence and FOI curves for the Belgian B19 data using penalized splines
fitted in the GLMM framework, using a radial basis (solid line), a thin plate basis (dashed line),
and cubic basis (dotted line). The dots are the observed seroprevalence per integer age value with
size proportional to the number of samples taken

8.3 Covariate Effects

So far, focus was on the specification of a spline describing the prevalence and
the force of infection as a function of age. Often, it is also of interest to compare
the prevalence and force of infection curves among different populations such
as comparisons among males and females or among different countries. This is
naturally embedded in the generalized additive model framework (see e.g. Hastie
and Tibshirani 1990; Wood 2006) and its mixed model variant (Lin and Zhang
1999). For illustrative purposes, we focus on a comparison among the Belgian and
Italian B19 data.

The semiparametric model discussed in Sect. 8.2.2 implies that the overall trend
for each group can be represented by an additive model of two components, a
linear component Xβ and a smooth component Zu. Figure 8.5 illustrates, with
hypothetical examples, several possible scenarios related to the evolution of the
prevalence as a function of age in two groups.

In the top left panel, the two groups have a similar trend, the linear components
of the splines in the two groups differ only by a constant. The top right panel shows
the prevalence curves when the groups are different in the linear part (different
intercept and slope) but the smooth component of the mean is identical. The bottom
panels reveal patterns in which the prevalence for the two groups has a different
evolution over age and the groups are different in both the linear and smooth part.
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Fig. 8.5 Hypothetical examples of possible scenarios of the prevalence curves in two groups

In the left panel, both groups have the same smoothing parameter; in the right
panel, the smoothing parameter for the two groups is different. In what follows,
we formulate possible penalized splines in the generalized linear mixed model
framework, following each of the scenarios illustrated in Fig. 8.5.

First, we assume that the underlying linear trend in both groups differs by a shift
only. The model can be represented as

η(ai) = (β0 + γ0Gi)+β1ai + · · ·+βpap
i +

K

∑
k=1

uk(ai −κk)
p
+, (8.7)

where the coefficients uk are common to all groups, with Var(uk) = σ2
u and Gi is

a group indicator. Note that the same nonparametric part is fitted to both groups.
This model thus assumes that the difference amongst the groups, if present, does
not depend on age.
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Fig. 8.6 Fitted seroprevalence and FOI curves for the Belgian (solid line) and Italian (dashed line)
B19 data using penalized splines fitted in the GLMM framework using a radial basis

All models discussed in this section were fitted in SAS. We use the Belgian and
Italian B19 data for illustration. This resulted in the seroprevalence and force of
infection curves as given in the upper left panel of Fig. 8.6. There seems to be a
higher prevalence for Belgium as compared to Italy, which is slightly reflected by
an increased force of infection at 0–10 years of age for the Belgian B19 data.

Second, assume that the linear parts of the models differ while the same smooth
part is considered for both groups (model 2). In this case, the group effect is no
longer constant over age. A representation of such a model is

η(ai) = (β0+γ0Gi)+(β1+γ1Gi)ai+ · · ·+(βp+γpGi)a
p
i +

K

∑
k=1

uk(ai−κk)
p
+, (8.8)

with Var(uk) = σ2
u . The top right panel of Fig. 8.5 graphically illustrates such a

scenario. The SAS program to be used to fit this model is very similar to the one of
the previous model. The resulting seroprevalence and force of infection curves for
the Belgian and Italian B19 data are given in the upper right panel of Fig. 8.6 and
are found to be similar to the previous model.
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All models considered so far assume that the same smooth component is fitted
to both groups. It is possible to go one step further and fit a model with different
nonparametric parts for Belgium and Italy, although the same smoothing parameter
is used. The linear part of the model is assumed to be different and, although the
random effects are assumed to be independent from Belgium to Italy, a single
smoothing parameter is used for both groups (model 3). A representation of such
a model is

η(ai) = (β0 + γ0Gi)+ (β1 + γ1Gi)ai + · · ·+(βp+ γpGi)a
p
i +

K

∑
k=1

(ukg)(ai −κk)
p
+.

(8.9)
Note that the part of the design matrix corresponding to smoothing Zi is now
block-diagonal with each diagonal entry corresponding to a particular group and
the coefficients for the truncated lines basis, ukg, are now group-specific with
Var(ukg) = σ2

u . This situation is similar to the illustration in the left lower panel of
Fig. 8.5. The resulting prevalence and force of infection curves for the Belgian and
Italian B19 data are given in the lower left panel of Fig. 8.6. There is a considerable
difference in the estimated seroprevalence and force of infection when compared to
those estimated based on the previous two models.

A final extension is to relax the assumption of a constant smoothing parameter
across the groups and thereby to assume that the groups can be smoothed separately
with different smoothing parameters (model 4). Hence, both the fixed effects part
and the nonparametric part differ by group. The penalized spline representation of
this model and the Z matrix are the same as in previous model, but with the variance
components Var(ukg) = σ2

ug being group-specific. The bottom right panel of Fig. 8.6
shows the resulting prevalence and force of infection curves when applied to the
Belgian and Italian B19 data.

Again, as in Sect. 8.2.2, no formal likelihood-based comparison of the different
models can be made due to the PQL estimation procedure as used in “glimmix.”

However, when turning to the penalized likelihood framework, one can use for
instance AIC or BIC to select the most appropriate model from the candidate set
of fitted models. This is done for models 1, 2, and 4 using the gam-function in R
(library “mgcv”).

# R code to fit the interaction of a spline of age with country
# Model 1
gam(y˜country+s(a,bs="tp"),family=binomial(link="logit"))
# Model 2
gam(y˜country+country*a+s(a,bs="tp"),

family=binomial(link="logit"))
# Model 4
gam(y˜s(a,bs="tp",by=country1)+s(a,bs="tp",by=country2),

family=binomial(link="logit"))
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In the code country1 and country2 denote the dummy variables associated with
Belgium and Italy, respectively. Based on the corresponding BIC values (6,565.31,
6,573.14, 6,700.05), one can decide that there is only a shift when comparing the
B19 seroprofile for Belgium and Italy (p-value< 0.0001 when compared to identical
seroprofiles). Note that model 3, although possibly formulated in a penalized likeli-
hood framework, is not implemented as such in the using the gam-function in R.

8.4 Adaptive Spline Smoothing

In the preceding section, smoothing methods were either embedded in the penalized
likelihood framework or in the generalized linear mixed model framework. Both
approaches differ in the way the smoothing parameter is selected/estimated. Recall
the GLMM-approach (8.6):

f (y|u) = exp
{

φ−1[yT (Xβ +Zu)− c(Xβ +Zu)
]
+ 1T c(y)

}
,

u ∼ N(0,σ2
u I) ,

where 1/σu is the smoothing parameter that is determined by the behavior of the
penalized spline fit on the entire age range and as such it does not allow for locally
adaptive smoothing.

One way to allow for a locally adaptive smoothing parameter in the GLMM
framework is to, in its turn, model the variance σ2

u as a smooth function of age. This
can be done by modeling σ2

u as a penalized spline as well in a hierarchical mixed
model framework. To surpass the associated computational burden of integrating
the random effects distribution, a Laplace approximation can be used (Krivobokova
et al. 2008). The following code presents the library “AdaptFit” in R which
employs the Laplace approximation to fit an adaptive penalized spline in the GLMM
framework:

# R code for the (non-)adaptive penalized spline
library(AdaptFit)
kn.mean=knots.default(a,20)
kn.var=knots.default(a,5)
asp(y˜f(a,knots=kn.mean),adap=F,

family="binomial",spar.method="ML")
asp(y˜f(a,knots=kn.mean,var.knot=kn.var),adap=T,

family="binomial",spar.method="ML")

The asp-function allows to fit both adaptive and nonadaptive penalized spline
smoothing by changing the adap option. Because of the additional computational
burden of fitting adaptive splines rather than nonadaptive, the number of knots
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Fig. 8.7 Adaptive (solid line) and nonadaptive (dashed line) penalized spline applied to the
Belgian B19 data. The dots are the observed seroprevalence per integer age value with size
proportional to the number of samples taken

used in the mean and mixed model variance estimation was limited to 20 and 5,
respectively. The function knots.default generates knots based on the quantiles of
the covariate distribution. Figure 8.7 shows the nonadaptive and adaptive penalized
spline for the Belgian B19 data.

There is a moderate difference between both adaptive and nonadaptive penalized
spline fit. The adaptive penalized spline fit results in a less smooth curve for
lower age values and a smoother curve for higher age values, reflecting the lower
and higher uncertainty in those specific regions, respectively. Note that a formal
comparison is again not possible because of the PQL estimation procedure.

8.5 Synthesis

In summary, Table 8.3 presents the different approaches as described in this chapter.
We focused on R-code throughout this chapter whereas we did not explicitly present
SAS code. Note that other packages to model P-splines exist (e.g., “nlmixed”
in SAS, the library “SemiPar” in R), that in addition B-splines have also been
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Table 8.3 Overview of the different smoothing approaches together with the libraries in
SAS and R as presented in this chapter

Estimation
Method Framework Library method Adaptive

Smoothing splines Pen Lik R:“gam” ML No
B-splines Pen Lik R:“psplinefit” ML No
Cubic regression

splines
Pen Lik R:“mgcv” ML No

Thin plate regression
splines

Pen Lik R:“mgcv” ML No

Radial P-spline GLMM SAS:“glimmix” PQL No
Cubic regression

splines
GLMM R:“mgcv” PQL No

Thin plate regression
splines

GLMM R:“mgcv” PQL No

Adaptive splines GLMM R:“AdaptFit” PQL Yes

implemented in the GLMM framework (Currie and Durban 2002) and that code
for certain penalized splines is available in other software packages as, e.g., STATA
and Matlab too.

8.6 Non-, Semi- and Parametric Methods to Estimate
the Prevalence and Force of Infection: A Case Study

Using the UK data on rubella we present an overview of the methods as described
in Chaps. 5–8. More specifically, we compare Farrington’s model (see (6.1) with
γ = 0, i.e., yielding the best fit) with the best fractional polynomial fit, the best
local polynomial fit, and the best spline among the set of spline approaches in
the penalized likelihood framework (Sect. 8.2.1). The best second degree fractional
polynomial for the UK data on rubella was obtained for the powers (−0.9,−0.9).
Based on GCV, the best local polynomial fit was obtained when using 0.8% of its
nearest neighbors. Finally, in the penalized likelihood framework the best spline
was a B-spline with smoothing parameter chosen using BIC. Note that, whenever
choices needed to be made for other parameters like the degree of the local
polynomials or spline basis functions and number of knots, the default option was
used.

Figure 8.8 shows the fitted seroprevalence and FOI curves for the four different
models. While there is only a moderate difference in the fitted seroprevalence,
the FOI curves exhibit considerable differences for ages 4–14 years with respect
to the age of maximal FOI and its value, while the estimated FOI using the
B-spline approach yields a higher FOI at 30 years of age and older as compared
to the fractional and local polynomial as well as Farrington’s model. Since these
approaches are ML-based, the optimal model can be chosen using, e.g., BIC.
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Fig. 8.8 Fitted seroprevalence and FOI curves for rubella in the UK based on the best fractional
polynomial fit (solid line), the best local polynomial fit (dashed line), the best spline fit (dotted
line), and Farrington’s model (dashed–dotted line). The dots are the observed seroprevalence per
integer age value with size proportional to the number of samples taken

While the BIC value for Farrington’s model equals 3,915.09, the local polyno-
mial and the B-spline have BIC values of 3,917.42 and 3,911.47, respectively, the
fractional polynomial fit seems to be the most parsimonious model with a BIC value
of 3,898.31. However, one can argue that for a fractional polynomial, one needs to
penalize for the selection of the most optimal set of powers too. By doing so, the BIC
value of the FP amounts to 3,915.01, making it comparable to the local polynomial
fit in terms of BIC and favoring the B-spline to be the most appropriate model to use.

A similar exercise for the Belgian B19 data showed that the best fractional
polynomial model, having powers (−1.3, −1.3), has a BIC value of 3,480.54
(without penalization for the powers). This now turns out to be the worst fit in terms
of BIC when compared to the best local polynomial (0.3% nearest neighbors, BIC
value: 3,451.07), the best penalized spline model (B-spline, BIC value: 3,472.70),
and the nonlinear model of Farrington (γ = 0; BIC value: 3,472.26). The local
polynomial fit turns out to be the best fit in terms of BIC. This is not surprisingly
so when realizing that the B19 seroprofile shows more local changes. This is also
reflected in several local maxima for the FOI, unable to be captured by the fractional
polynomial model and the nonlinear model.



Chapter 9
The Constraint of Monotonicity

9.1 Introduction

In Chaps. 6–8, (flexible) parametric, nonlinear, nonparametric, and semi-parametric
models to estimate the force of infection from seroprevalence data have been
introduced. All these methods rely on the steady-state assumption of which the
plausibility is untestable in case of one cross-sectional sample (Keiding 1991;
Nagelkerke et al. 1999).

When the observed prevalence increases monotonically with age, the problem of
estimating the force of infection is straightforward. However, unless samples at each
age are very large and the steady-state assumption is fulfilled, a monotone increase
of the observed prevalence with age only rarely occurs. As the survival function,
one minus the prevalence, is a monotonically decreasing function, one typically
estimates the prevalence function under order restrictions.

In Sect. 6.1, we already mentioned how the problem of non-monotonicity is dealt
with using particular nonnegative functions for the force of infection (Farrington
1990; Farrington et al. 2001; Edmunds et al. 2000b). However, these methods rely
on prior knowledge about the dependence of the force of infection on age and are
as such limited in their flexibility. One way around this is to use a rich candidate
set of unconstrained flexible models and then select the best monotonic model
using model selection criteria as AIC. This is the approach used in Chap. 6 when
using fractional polynomials. A drawback of this approach is that these models are
parametric and potentially all candidate models could be non-monotone at, e.g.,
the tails of the age range. It is therefore useful to consider non- and semiparametric
models that are monotonized in some way.

In this chapter, we introduce the most commonly used methods to obtain a mono-
tone seroprevalence curve and thus a positive FOI. We first show how piecewise
constant forces of infection can be adapted to provide monotonic seroprevalence
curves by altering the age categories, a rather ad hoc way of monotonizing a
curve. We then introduce the general concept of isotonic regression and proceed by
describing the pool adjacent violator algorithm (PAVA), a simple monotonization

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 9,
© Springer Science+Business Media New York 2012
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algorithm often used in this context. We show how using the PAVA, Keiding
(1991) adapted a monotone nonparametric kernel-based estimation procedure and
illustrate the refinements proposed by Shkedy et al. (2003) with respect to the local
polynomials, described in Chap. 7, to incorporate monotonicity. We further show
how a straightforward extension of the P-spline approach introduced by Eilers and
Marx (1996) can be used to obtain monotone seroprevalence curves (Bollaerts et al.
2006). We illustrate these methods using the Bulgarian Hepatitis A data and the
Belgian Parvovirus B19 data (Chap. 4).

Note that there exist other ways to estimate monotone curves, mostly relying on
constrained optimization. We however will not cover these methods in this chapter
and advise the reader to textbooks like Silvapulle and Sen (2005) and articles such
as Leitenstorfer and Tutz (2007).

9.2 Piecewise Constant Forces of Infection

Using a piecewise constant force of infection, monotonicity is often achieved by
redefining the age categories over which a constant force of infection is assumed.
We illustrate this using the Bulgarian Hepatitis A data and the Belgian Parvovirus
B19 data. We choose two different sets of five half-closed half-open age categories
for both datasets. While one is a rather ad hoc choice, S1 = {0,10,20,40,60,100};
the second one is based on school enrollment ages, S2BE = {0,6,12,18,60,100}
and S2BG = {0,5,11,18,60,100} for Belgium and Bulgaria, respectively. Table 9.1
and Fig. 9.1 present the estimated FOI for both sets of age categories and both
infections. Depending on the choice of the set of age categories, the estimated
FOIs are all positive or not. Together with the although possibly well motivated
but rather ad hoc choice of the set of age-categories, this illustrates the need for
more objective methods to estimate the prevalence and FOI under monotonicity
constraints. Note that in this case, when comparing both piecewise constant FOIs,
the lowest deviances were observed for the non-monotone fits.

Table 9.1 Overview of estimated piecewise constant forces of
infection according to two different choices for the age categories
for both the Bulgarian Hepatitis A data (HAV) and the Belgian
Parvovirus B19 (B19) data

HAV Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 dev

S1 0.06 0.01 0.08 0.04 0.11 790.9
S2BG 0.11 −0.02 0.03 0.07 0.07 781.3
B19 Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 dev
S1 0.08 0.07 −0.02 0.04 −0.03 3485.8
S2BE 0.07 0.12 0.04 4e−3 0.06 3486.8
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Fig. 9.1 Piecewise constant forces of infection according to two different choices of age categories
(solid and dashed line) for the Bulgarian Hepatitis A data (left panel) and the Belgian B19 data
(right panel). The dots are the observed seroprevalence per integer age value with size proportional
to the number of samples taken

9.3 Isotonic Regression

Barlow et al. (1972) defines isotonic regression as the statistical theory that deals
with problems in which conditional expectations are subject to order restrictions.

Let us introduce the concept of isotonic regression in a simple linear regression
setting. Let X = {x1,x2, . . . ,xn}, where x1 ≤ x2 ≤ . . . ≤ xn denote the finite set of
n ordered observed values for the independent variable and y1,y2, . . . ,yn denote the
corresponding observed values for the dependent variable. Let μ(x) = E(Y |X = x)
denote the mean of the conditional distribution Y |X = x. Estimating μ(x) is typically
done minimizing the least-squares criterion in the class of arbitrary functions f on X .
However, it might be assumed or known that μ(x) is nondecreasing in x; i.e., isotonic
with respect to the simple order on X . In that situation isotonic regression refers to
minimizing the least-squares criterion in the class of isotonic functions f on X ,
i.e., f is isotonic, if xi ≤ x j, i 
= j implies that f (xi) ≤ f (x j), i, j = 1, . . . ,n. To this
respect Barlow et al. (1972) introduced the PAVA, where successive approximation
is used to isotonize the minimizer of the least-squares criterion. Note that Barlow
et al. (1972) showed that the PAVA is optimal for the least-squares criterion
with equal weights and that currently no such result exists in case of a binomial
likelihood.

9.3.1 The Pool Adjacent Violator Algorithm

Let us focus again on modeling seroprevalence data. Assume we have estimated the
seroprevalence function π using seroprevalence data {(ai,yi)}, i = 1, . . . ,n. Without
loss of generality we assume a1 ≤ a2 ≤ . . . ≤ an. Denote the maximum likelihood
estimate of π(ai) by π̂(ai). Suppose i∗ is the first index for which π̂(ai∗)< π̂(ai∗−1),



144 9 The Constraint of Monotonicity

i.e., the first index for which a “violation” of monotone behavior is observed. The
PAVA now states that these values need to be “pooled.” In other words π̂(ai∗) and
π̂(ai∗−1) are both replaced by

π̂(ai∗)+ π̂(ai∗−1)

2
.

The algorithm proceeds by recursively checking monotone behavior and by pooling
if necessary and finally stops if monotonicity is achieved.

The R code for the PAVA algorithm, where the number of positives pos out of a
total of tot trials ordered by increasing age are the input variables, is specified below.

# The pool adjacent violator algorithm in R
# ’pos’ represents the successes out of ’tot’ trials
# ’pos’ and ’tot’ should be ordered by age
pavit= function(pos=pos,tot=rep(1,length(pos)))
{
pai1 = pai2 = pos/tot
N = length(pai1)
ni=tot
for(i in 1:(N - 1)) {
if(pai2[i] > pai2[i + 1]) {
pool = (ni[i]*pai1[i] + ni[i+1]*pai1[i + 1])/(ni[i]+ni[i+1])
pai2[i:(i + 1)] = pool
k = i + 1
for(j in (k - 1):1) {
if(pai2[j] > pai2[k]) {

pool.2 = sum(ni[j:k]*pai1[j:k])/(sum(ni[j:k]))
pai2[j:k] = pool.2

}
}

}
}

return(list(pai1=pai1,pai2=pai2))
}

The PAVA algorithm gained popularity because it is straightforward to apply. For
an elaborate overview of different R functions for isotonic/monotonic regression we
refer to De Leeuw et al. (2009). We will show how the PAVA algorithm was used
before to estimate the FOI (Keiding 1991; Shkedy et al. 2003; Hens et al. 2008b).

Following Friedman and Tibshirani (1984) and Mammen et al. (2001), Shkedy
et al. (2003) suggested to estimate π(a) and λ (a) using local polynomials and
smoothing splines and, if necessary, a posteriori apply the PAVA to isotonize the
resulting estimate. This is in line with the finding of Mammen et al. (2001),
who showed that constrained smoothing leads to estimates of the form “smooth
then constrain.” One could also opt to estimate π(a) and λ (a) based on the idea
“constrain then smooth” as proposed by Keiding (1991).
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Fig. 9.2 The fitted seroprevalence and FOI according to Keiding (1991) for the Bulgarian
Hepatitis A data (left panel) and the Belgian B19 data (right panel). The dots are the observed
seroprevalence per integer age- value with size proportional to the number of samples taken

9.3.2 Keiding (1991)

To estimate the FOI under monotonicity constraints, Keiding (1991) first applied
the PAVA to the empirical prevalence. The monotonized prevalence was then used
to estimate the FOI using the kernel smoothing as described in Sect. 7.1.1.

The R code hereunder shows how to obtain the monotonized kernel-based
FOI-estimate according to Keiding (1991). foi.num calculates the FOI from sero-
prevalence data using formula (7.1), while ksmooth calculates the kernel-based
estimate with normal kernel (kernel=“normal”) and bandwidth chosen by visual
inspection (bandwidth= bw). The last line in the code is used to calculate the
prevalence from the estimated FOI.

# Keiding 1991
xx=pavit(pos=pos,tot=tot)
foi.k=foi.num(grid,xx$pai2)$foi
age.k=foi.num(grid,xx$pai2)$grid
fit.k=ksmooth(age.k,foi.k,kernel="normal",
bandwidth=bw,n.points=length(age))
pihat=1-exp(-cumsum(c(age.k[1],diff(age.k))*fit.k$y

Figure 9.2 shows the resulting seroprevalence- and FOI curves based on Keiding
(1991)’s method. Bandwidths were chosen by visual inspection (bw= 10 for
Hepatitis A, bw= 30 for B19).
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Fig. 9.3 The fitted seroprevalence and FOI according to Shkedy et al. (2003) (solid line,
bandwidths 0.35 (left) and 0.30 (right)) and Namata et al. (2007) (dashed line) for the Bulgarian
Hepatitis A data (left panel) and the Belgian B19 data (right panel). The dots are the observed
seroprevalence per integer age value with size proportional to the number of samples taken

9.3.3 “Smooth Then Constrain”

The local polynomial approach used by Shkedy et al. (2003) to estimate the
FOI as described in Chap. 7 is easily adapted to achieve an isotonic estimate
of the prevalence by a posteriori applying the PAVA algorithm. Following this
approach, Namata et al. (2007), Mossong et al. (2008a), and Hens et al. (2008b)
have used the same idea with different smoothing techniques. In Fig. 9.3, the fitted
seroprevalence and FOI according to Shkedy et al. (2003) and Namata et al. (2007)
for the Bulgarian Hepatitis A data and the Belgian B19 data are shown. Note that
the estimated local polynomial clearly leads to undersmoothing in the case of the
Bulgarian Hepatitis A data. This is somewhat reflected in the estimated FOI for the
Belgian B19 data as well. Recall that determining the optimal smoothing parameter
is done using GCV which indeed has a tendency to undersmooth (Burnham and
Anderson 2002).

9.4 P-spline Regression with Shape Constraints

In Sect. 8.2.1, the penalized spline approach based on B-spline basis functions was
introduced (Eilers and Marx 1996). These authors used an extensive amount of B-
spline basis functions:

B1(a,q), . . . ,Br(a,q), (9.1)

where B j(a,q) denotes a B-spline of degree q with left most knot j evaluated at
age a. Typically q = 3 and although unequally spaced knots exist, Eilers and Marx
(1996) argue that using equally spaced knots from which the boundaries are located
outside the covariate range shows good performance in terms of estimation and
avoids boundary problems.
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Using the B-spline basis functions, the linear predictor η(a) is expressed as

η(a) =
r

∑
j=1

β jB j(a,q). (9.2)

To overcome overfitting, one penalizes on the coefficients of the adjacent B-splines
using second (or higher) order differences. This corresponds to maximizing

�(β ;y,a)− 1
2

αβ ′D2′D2β , (9.3)

where �(β ;y,a) denotes the binomial loglikelihood corresponding to (9.2) and D2 is
the matrix representation of the difference operator Δ 2, Δ 2β j = Δ 1(Δ 1β j) = β j −
2β j−1+β j−2. The smoothing parameter α regulates the smoothness of the predictor
function and is often chosen by minimizing an information criterion as AIC or BIC
(see Sect. 8.2.1).

Using B-splines, it is straightforward to ensure monotonicity by adding large
penalties on the negative first-order differences of the coefficients β in (9.3)
(Bollaerts et al. 2006). Equation (9.3) now becomes

�(β ;y,a)− 1
2

αβ ′D2′D2β − 1
2

κβ ′D1′VWD1β , (9.4)

where V denotes a diagonal matrix with elements vi j indicating whether (vi j = 1)
or not (vi j = 0) the constraint should hold on at least part of the support of B j,
j = 1, . . . ,r and W is the diagonal matrix with elements wi j(β i) = 0 if Δ 1(β i j) ≥ 0
and 1 otherwise. Note that V = I yields monotonicity over the entire age range. The
more general approach could prove useful when considering maternal antibodies.
We however do not consider this situation here.

While the value of κ is typically chosen to be large (since it imposes to what
extent non-monotone behavior is penalized), the choice of α concerns the usual
smoothing parameter selection.

The following code uses the mpspline.fit-function, an adjusted version of the
original pspline.fit-function introduced in Sect. 8.2.1. Similar to the non-monotone
version, the optimal smoothness parameter alpha is selected using the BIC criterion.

# R-code B-splines with monotonicity constraint
# Function Code Eilers and Marx (see book’s website)
mpspline.fit(response=y,x.var=a,ps.intervals=20,degree=3,

order=2,link="logit",family="binomial",
alpha=alphaopt)

Figure 9.4 shows the fitted seroprevalence and FOI using the P-spline with
monotonicity constraints, the PAVA applied to the unconstrained P-spline and the
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Fig. 9.4 The fitted seroprevalence and FOI using the P-spline with monotonicity constraints (solid
line), the PAVA applied to the unconstrained P-spline (dashed line), and the unconstrained P-spline
(dotted line) for the Bulgarian Hepatitis A data (left panel) and the Belgian B19 data (right panel).
The dots are the observed seroprevalence per integer age value with size proportional to the number
of samples taken

unconstrained P-spline for the Bulgarian Hepatitis A data and the Belgian B19 data.
While there is no difference between the methods for the Bulgarian Hepatitis A, the
initial unconstrained fit is monotone; there is a minor difference between the PAVA
applied to the unconstrained fit and the P-spline with monotonicity constraints for
the Belgian B19 data. Note that different smoothing parameters were found for the
unconstrained and constrained P-splines for the Belgian B19 data.

The advantage of using a method such as the P-spline approach with monotonic-
ity constraints lies in simultaneously acquiring the estimated seroprevalence and
FOI together with pointwise confidence intervals. This is not straightforward to do
in case of a posteriori applying the PAVA for which the bootstrap can serve as a
way out (Shkedy et al. 2003; Mossong et al. 2008a; Hens et al. 2008b). We refer
to Bollaerts et al. (2006) for the exact calculations for the P-splines with shape
constraints.

9.5 Concluding Remarks

Although several methods to estimate the prevalence under monotonicity constraints
have been proposed, one has to realize that monotonicity is likely to be violated due
to departures from the steady-state assumption. Unless multiple serological samples
are available there is no way to tell whether the estimated parameters are truly valid.

In this chapter, several approaches to estimate the seroprevalence (and con-
sequently the FOI) under monotonicity constraints have been introduced. In the
light of the previous comment, we strongly advise the reader to verify, to the
extent possible, whether distortions in the seroprofile can be identified. We refer
to Nagelkerke et al. (1999) and a more recent paper by Hens et al. (2010a) for a
more elaborate discussion on this matter.
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Chapter 10
Hierarchical Bayesian Models for the Force
of Infection

10.1 Introduction

So far the prevalence and the FOI were estimated within the frequentist framework.
In this chapter we estimate the prevalence and the FOI within the Bayesian
framework. We refer to Sect. B.5 of Appendix B for an introduction to Bayesian
inference.

In the frequentist framework, Farrington (1990) and Farrington et al. (2001)
proposed nonlinear models for the FOI based on prior knowledge about the
relationship between the FOI and the host age. In Farrington (1990) the FOI is
defined as

λ (a) = (α1a−α3)e
−α2a +α3. (10.1)

To ensure that the FOI is positive, λ (a) ≥ 0, Farrington (1990) constrained the
parameter space to be nonnegative (α j ≥ 0, j = 1,2,3).

In a parametric Bayesian framework the prevalence has a parametric form,
π(ai,α), where α is a parameter vector. In this case � = (π1, . . . ,πm) has a
deterministic relationship with the predictor a and one can constrain the parameter
space of the prior distribution P(α) in order to achieve the desired monotonic-
ity of the posterior distribution P(π1,π2, . . . ,πm|y,n), where y = (y1,y2, . . . ,ym),
n= (n1,n2, . . . ,nm), and yi is the number of infected individuals from the ni sampled
subjects at age ai. Hierarchical nonlinear and generalized linear models for the
prevalence and the FOI are discussed in Sect. 10.3.

In Sect. 10.4 we return to the nonparametric framework. Within the framework
of nonparametric Bayesian modeling, the problem is estimating π1,π2, . . . ,πm under
the order restriction π(1) ≤ π(2) ≤ ·· · ≤ π(m), where π(k) denotes the prevalence
with kth rank according to (the) age(-group). For ease of notation we assume
πi = π(i), i = 1, . . . ,m. The prevalence is assumed to be an isotonic nonparametric
function satisfying 0 ≤ πi ≤ 1. Likewise, in the hierarchical parametric Bayesian
models we focus on the posterior distribution of the prevalence P(�|y,n). The m
dimensional parameter vector is constrained to lie in a subset ofRm. The constrained
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set is determined by the order restrictions among the components of π . In this case it
is natural to incorporate the constraints into the specification of the prior distribution,
P(π). In the context of bioassay modeling, Gelfand and Kuo (1991) showed that
the constrained posterior distribution has the same form as the unconstrained
posterior distribution restricted to the constrained set. This implies that if P(π) is a
product-beta distribution, and the likelihood P(y|n,π) is binomial, then the posterior
distribution P(πi|y,n,�−i), �−i = (π1, . . . ,πi−1,πi+1, . . . ,πm), is a beta distribution
restricted to the interval [πi−1,πi+1]. The hierarchical nonparametric approach will
be discussed in Sect. 10.4. The methods are illustrated on the rubella and mumps
datasets (see Chap. 4) for which an exploratory data analysis is briefly presented in
Sect. 10.2.

10.2 Exploratory Data Analysis

Although local polynomial models and isotonic regression were discussed in
Chaps. 7 and 9, respectively, we briefly discuss the results for rubella and mumps
in this section as well. Figure 10.1 shows both local polynomials and isotonic
regression estimates for π(a) and λ (a). For rubella, the estimated FOI based on
the local quadratic model rises steeply to a peak at age 7–8 years, followed by a
steady decrease. The two methods result in somewhat different patterns. The FOI
estimated by the kernel estimate predicts a secondary peak at age 24 years and a
third peak at age 40 years. The same pattern is revealed for mumps. We note that
the second peak at age 10 years estimated by the local polynomial is smoothed by
the kernel smoother which also predicts peaks at 20 and 33 years of age.
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Fig. 10.1 Nonparametric estimate for the prevalence and the FOI. Solid line: isotonic regression
for the prevalence and kernel smoother for the FOI. Dashed line: local quadratic model. Left panel:
rubella in the UK. Right panel: mumps in the UK
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10.3 Hierarchical Bayesian Models for the Force of Infection

In this section, we present the hierarchical Bayesian models for the FOI. We first
discuss the nonlinear hierarchical and log-logistic model and its application in
Winbugs whereas we then discuss model selection and its application to the data.

10.3.1 Nonlinear Hierarchical Model

The model in (10.1) assumes that the FOI is zero at birth (λ (0) = 0) and then rises to
a peak in a linear fashion followed by an exponential decrease. The peak is reached
at an age corresponding to the maximum transmission rate between susceptible and
infectious individuals. The parameter α3 is called the long-term residual value of
the FOI. If α3 = 0, then the FOI decreases to 0 as a tends to infinity. Integrating
λ (a) results in the following nonlinear model:

π(a) = 1− exp

{
α1

α2
ae−α2a +

1
α2

[
α1

α2
−α3

]
[
e−α2a − 1

]−α3a

}

. (10.2)

In what follows we refer to (10.2) as the exponentially damped linear model. The
average age at infection, the mean of the distribution of the age of infection, is given
by A=

∫ L
0 (1−π(x))dx, where L is the life expectancy. Following Farrington (1990),

we assume that L = 75 years. In case that the data are observed up to a certain age
U , U ≤ L, the average age at infection is given by

A =
∫ U

0
(1−π(x))dx+ f × (L−U). (10.3)

Here, f is the fraction of individuals that remains uninfected, which can be estimated
from the data by f = 1−π(U). Farrington (1990) estimated unrestricted models for
measles, mumps, and rubella based on (10.2) and performed a sensitivity analysis
for f by estimating the model in (10.2) conditional on several values for f . In
these analyses, the parameter α1 is no longer a free parameter but can be calculated
conditional on the values of α2, α3, and f .

In the present chapter we use hierarchical nonlinear models to estimate the
parameters in the exponentially damped linear model (10.2). Independent binomial
distributions are assumed for the number of infected individuals at age ai:

yi ∼ Bin(ni,πi), for i = 1,2, . . . ,m, (10.4)

where ni is the sample size at age ai. The constraints on the parameter space can be
incorporated in the hierarchical model by assuming truncated normal distributions
for the components of ˛, ˛ = (α1,α2,α3), in πi = π(ai,˛),

α j ∼ truncated N(μ j ,τ j) j = 1,2,3.
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Here, the normal prior distributions are left truncated at 0 to ensure that λ (a) ≥ 0.
The joint posterior distribution for α can be derived by combining the likelihood
and the prior model as

P(˛|y) ∝
m

∏
i=1

Bin(yi|ni,π(ai,˛))
3

∏
i=1

− 1
τ j

exp

(
1

2τ2
j

(α j − μ j)
2

)

. (10.5)

The full conditional distribution of αi, derived from (10.5), is given by

P(αi|α j,αk,k, j 
= i) ∝ − 1
τi

exp

(
1

2τ2
i

(αi − μi)
2
) m

∏
i=1

Bin(yi|ni,π(ai,α)), (10.6)

which cannot be simplified any further. To complete the specification of the
probability model we assume flat hyperprior distributions at the third level of the
model, i.e., μ j ∼ N(0,10000) and τ−2

j ∼ Γ (100,100).

10.3.2 Fitting Farrington’s Model in Winbugs

In Winbugs 1.4, the data can be entered as a list with posi and ni the number of
infected individuals and the sample size at each age group, respectively. Nage is the
number of age groups.

list(
age=c(1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5,

14.5,15.5,16.5,17.5,18.5,19.5,20.5,21.5,22.5,23.5,24.5,
25.5,26.5,27.5,28.5,29.5,30.5,31.5,32.5,33.5,34.5,35.5,
36.5,37.5,38.5,39.5,40.5,41.5,42.5,43.5,44.5),

posi=c(31,30,34,57,95,104,90,96,134,110,111,147,138,141,53,49,
73,69,97,65,74,84,82,79,90,84,81,72,71,51,45,45,35,39,
36,37,37,37,28,26,25,21,18,18),

ni=c(206,146,168,189,219,195,164,145,180,160,148,178,177,165,
67,58,81,79,111,76,82,101,88,85,94,91,89,76,79,56,52,48,
37,41,40,38,39,41,30,27,25,22,19,18),
Nage=44)

The likelihood of the three-parameter model, in the first stage of the hierarchical
model, can be defined using the following code:

for(i in 1:Nage) {
posi[i] ˜ dbin(theta[i],ni[i])
theta[i] <- 1-exp((alpha1/alpha2)*age[i]*exp(-alpha2*age[i])

+(1/alpha2)*((alpha1/alpha2)-alpha3)*
(exp(-alpha2*age[i])-1)-alpha3*age[i])

foi[i] <- (alpha1*age[i]-alpha3)*exp(-alpha2*age[i])+alpha3
}
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where theta[i] and foi[i] denote the prevalence and the FOI, respectively. The
constraint on the parameter space of α1, α2, and α3 can be imposed using the
function I():

alpha1 ˜ dnorm(mu.alpha1,tau.alpha1)I(0.00001,)
alpha2 ˜ dnorm(mu.alpha2,tau.alpha2)I(0.00001,)
alpha3 ˜ dnorm(mu.alpha3,tau.alpha3)I(0.00001,)

Finally, we need to specify the hyperprior distributions:

tau.alpha1 ˜ dgamma(0.01,0.01)
tau.alpha2 ˜ dgamma(0.01,0.01)
tau.alpha3 ˜ dgamma(0.01,0.01)
mu.alpha1 ˜ dnorm(0,0.0001)
mu.alpha2 ˜ dnorm(0,0.0001)
mu.alpha3 ˜ dnorm(0,0.0001)

The complete code for the three-parameter model is as follows:

model
{
for(i in 1:Nage) {
posi[i] ˜ dbin(theta[i],ni[i])
theta[i] <- 1-exp((alpha1/alpha2)*age[i]*exp(-alpha2*age[i])

+(1/alpha2)*((alpha1/alpha2)-alpha3)*
(exp(-alpha2*age[i])-1)-alpha3*age[i])

foi[i] <- (alpha1*age[i]-alpha3)*exp(-alpha2*age[i])+alpha3
ai[i]<- 1-theta[i]
}
ef<- 1-theta[Nage]
avei2<-sum(ai[])+ef*(75-age[Nage])
Pi<- 1-avei2/75
alpha1 ˜dnorm(mu.alpha1,tau.alpha1)I(0.00001,)
alpha2 ˜dnorm(mu.alpha2,tau.alpha2)I(0.00001,)
alpha3 ˜dnorm(mu.alpha3,tau.alpha3)I(0.00001,)
tau.alpha1 ˜dgamma(0.01,0.01)
tau.alpha2 ˜dgamma(0.01,0.01)
tau.alpha3 ˜dgamma(0.01,0.01)
mu.alpha1 ˜dnorm(0,0.0001)
mu.alpha2 ˜dnorm(0,0.0001)
mu.alpha3 ˜dnorm(0,0.0001)
sig.alpha1<-1/tau.alpha1
sig.alpha2<-1/tau.alpha2
sig.alpha3<-1/tau.alpha3
}
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The two-parameter model can be fitted by changing the parametric structure of
the prevalence, i.e.,

for( i in 1 : Nage) {
posi[i] ˜ dbin(theta[i],ni[i])
theta[i] <- 1-exp((alpha1/alpha2)*age[i]*exp(-alpha2*age[i])

+(1/alpha2)*((alpha1/alpha2))*
(exp(-alpha2*age[i])-1))

foi[i] <- (alpha1*age[i])*exp(-alpha2*age[i])
ai[i]<- 1-theta[i]
}

10.3.3 Hierarchical Log-Logistic Model

The exploratory data analysis in Sect. 10.2 indicates that the FOI rises to a peak
and drops down thereafter. Therefore we can conclude that the time spent in the
susceptible class is not an outcome of neither an exponential nor a Weibull distri-
bution since these distributions have a constant and a monotone FOI, respectively.
In contrast, the log-logistic distribution offers a wide range of shapes for the hazard
function, which is better able to capture the common pattern revealed in Fig. 10.1
(although, similar to model (10.2), the secondary peaks will be smoothed). Under
the assumption that the time spent in the susceptible class follows a log-logistic
distribution, the probability to become infected before age a is given by

π(a) =
β aα

1+β aα , α,β > 0, (10.7)

and the FOI by

λ (a) =
αβ aα−1

1+β aα . (10.8)

The log-logistic model can be fitted as a GLM with log(a) as a predictor and a
logit link function. This leads to a Bayesian logistic regression model (Gilks et al.
1996; Gelman 1996) of y with covariate log(a). We specify the same likelihood as
in (10.4) with linear predictor given by

logit(π(a)) = α2 +α1 log(a),

where α2 = log(β ). For the prior model of α1, we specify α1 ∼ truncated N(μ1,τ1).
We constrain β to be positive by specifying α2 ∼ N(μ2,τ2). The full conditional
distribution of α1 equals

P(α1|α2) ∝ − 1
τ1

exp

(
1

2τ2
1

(α1 − μ1)
2
) m

∏
i=1

Bin(yi|ni,π(ai,α1,α2)). (10.9)
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The full conditional distribution for α2 can be derived in the same way. The
same flat hyperprior distributions as in the previous section are assumed for the
hyperparameters.

10.3.4 Fitting the Log-Logistic Model in Winbugs

The log-logistic model is a GLM and as such it can be fitted using the logit() function
in Winbugs as a link function, i.e., the parametric structure for the prevalence is
given by

logit(theta[i]) <- alpha2+alpha1*log(age[i])

The code for the log-logistic model is given below.

model
{
for( i in 1 : Nage) {
posi[i] ˜ dbin(theta[i],ni[i])
logit(theta[i]) <- alpha2+alpha1*log(age[i])
ai[i]<- 1-theta[i]
loglike[i] <- posi[i]*log(theta[i])

+(ni[i]-posi[i])*log(1-theta[i])
foi[i]<-alpha1*exp(alpha2)*pow(age[i],(alpha1-1))*(1-theta[i])
}
}

10.3.5 Model Selection

Within the Bayesian framework, the unknown parameters are estimated by means
of the posterior mean. However, since the full conditional distributions in (10.6) and
(10.9) do not have a closed analytical form, we cannot evaluate it directly. We can
approximate it using Markov Chain Monte Carlo (MCMC) methods (Gilks et al.
1996) and generate samples form the full conditional distributions using the Gibbs
sampler. The sample averages are taken as the posterior means of the parameters of
interest.

A model selection procedure is needed in order to compare the models mentioned
above and to select the best model. Goodness of fit and complexity of the
models were assessed using the deviance information criterion (DIC) as proposed
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by Spiegelhalter et al. (1998, 2002) who suggested to measure the effective number
of parameters (the complexity) in the model by the difference between the posterior
expectation of the deviance and the deviance evaluated at the posterior expectation
of π , i.e.,

PD = Eπ |y,n(D)−D(Eπ |y,n(π)) = D̄−D(π̄), (10.10)

with the deviance given by D(π) = −2log(P(y|n,π))+ 2log( f (y|n)). The second
term in the deviance is a standardizing factor which does not depend on π; we use
−2 times the loglikelihood value of the saturated model. Hence, for the models
discussed above the binomial deviance is given by

D(π) = 2
m

∑
i=1

(

yi log
yi

niπi
+(yi − ni) log

1− yi
ni

1−πi

)

. (10.11)

In practice, D(π) and π can be monitored during the MCMC run, D̄ is the sample
mean of D(π) while D(π̄) is the deviance evaluated at the posterior mean. For
model selection, Spiegelhalter et al. (1998, 2002) defined the Deviance Information
Criterion, DIC, as

DIC = D̄+PD = D(π̄)+ 2PD. (10.12)

Smaller values of DIC indicate a better fitting model.

10.3.6 Application to the Data

The panel below presents the deviance summaries obtained from Winbugs for the
three models, Fig. 10.2 shows the fitted models for both the prevalence and the FOI
and Table 10.1 presents the posterior means for the parameters.

RUBELLA

Dbar Dhat pD DIC
EXP(2) 231.190 229.229 1.961 233.151
EXP(3) 227.644 225.137 2.508 230.152
LL 225.244 223.273 1.971 227.215

MUMPS
Dbar Dhat pD DIC

EXP(2) 224.349 222.372 1.977 226.326
EXP(3) 225.912 223.791 2.121 228.033

Starting with rubella, the first model that was fitted assumes that α3 = 0 in the
exponentially damped linear model in (10.2). For this model the posterior deviance
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Fig. 10.2 Posterior means for the prevalence and the FOI for rubella (left panel) and mumps (right
panel). Solid line: exponentially damped linear model with α3 = 0; dashed line: exponentially
damped linear model with α3 > 0; dotted line: log-logistic model

Table 10.1 Posterior means for the parameters

Rubella Mumps

Exponential Exponential Log- Exponential Exponential Log-
α3 = 0 α3 > 0 logistic α3 = 0 α3 > 0 logistic

α1 0.067 0.070 1.645 0.139 0.139 2.063
α2 0.158 0.201 −2.964 0.192 0.198 −2.865
α3 0.034 0.008

f 0.07 0.044 0.036 0.023 0.021 0.007
A 11.11 10.16 9.86 5.72 5.61 5.05
Note that the α parameters of the log-logistic model and the exponentially damped linear
model are not comparable
The exponentially damped linear model with α3 = 0 is the model proposed by Farrington
(1990) with the assumption that λ (a) = α1aexp(−α2a)

is 231.19 and PD = 1.96, slightly lower than the “true” number of parameters.
For the exponentially damped linear model with α3 > 0, D̄ = 227.64 and PD =
2.5. The DIC of this model is 230.15, smaller than the DIC of the first model
(233.15) indicating that among the exponentially damped linear models the second
one is to be preferred. However, the log-logistic model with DIC = 227.21 has
the best goodness-to-fit. For mumps, the model with the lowest DIC value is
the exponentially damped linear model with α3 = 0 (226.32). Figure 10.2 shows
that there is a substantial difference between the models at the age for which the
FOI reaches its peak and in the level of the FOI at older age groups. Furthermore,
for rubella, the posterior mean of the average age at infection for the exponentially
damped linear model with α3 > 0 is 10.16 years and the posterior mean for f is
0.04. When α3 is not included in the model, the average age of infection increases
to 11.11 years and f increases to 0.07. The posterior mean of the average age at
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infection obtained from the log-logistic model is 9.86 years. For mumps, the effect
of α3 on f is less substantial, the reason for that is the small value of α3 that was
estimated in the second model (0.008). The smallest value of f is obtained for the
log-logistic model (0.007) with average age at infection equal to 5.05 years.

10.4 Hierarchical Nonparametric Model

Whereas in the previous section we considered parametric models, in this section
focus goes to a hierarchical nonparametric model in which we do not specify a
parametric mean structure but define a probabilistic model for the order restricted
prevalence.

10.4.1 Hierarchical Beta/Binomial Model

In the previous section the prevalence was assumed to have a parametric form
π(a,α), and monotonicity was achieved by constraining the parameter space of
α . In this section, we assume that π is a right-continuous nondecreasing function
defined on [0,δ ], πm ≤ δ ≤ 1, δ = 1 − f . We do not assume any deterministic
relationship between πi and ai but instead we specify a probabilistic model for
πi at each distinct level of ai. Since the data are binomial, it is natural to use the
product-beta prior (Gelfand and Kuo 1991) for π , since it is a conjugate prior for
the binomial likelihood and ensures that the posterior distribution of �|y,n is also a
beta distribution. A product-beta prior has the form

PB(�|˛,ˇ) ∝
m

∏
i=1

(πi)
αi−1(1−πi)

βi−1 (αi > 0,βi > 0), (10.13)

where ˛ = (α1,α2, . . . ,αm) and ˇ = (β1,β2, . . . ,βm). For the unconstrained case,
combining the binomial likelihood and the product-beta prior leads to the posterior
distribution:

P(�|y,α,ˇ) ∝
m

∏
i=1

πyi
i (1−πi)

ni−yi
m

∏
i=1

παi−1
i (1−πi)

βi−1

∝
m

∏
i=1

πyi+αi−1
i (1−πi)

ni−yi+βi−1, (10.14)

which is Beta(yi +αi,ni − yi + βi). The problem is to estimate π under the order
restrictions, π1 ≤ π2 ≤ ·· · ≤ πm. Thus, the m dimensional parameter vector is
constrained to lie in a subset Sm of Rm. The constrained set Sm is determined by
the order among the components of π . In this case it is natural to incorporate the
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constraints into the specification of the prior distribution. Gelfand et al. (1992)
show that the posterior distribution of π given the constraints is the unconstrained
posterior distribution normalized such that

P(π|y) ∝
P(y|π)P(π |α,β )

∫

Sm P(y|π)P(π |α,β )dπ
, π ∈ Sm. (10.15)

Let Sm
j (π j, j 
= i) be a cross section of Sm defined by the constraints for the

component πi at a specified set of π j, j 
= i. In our setting, Sm
j (π j, j 
= i) is the

interval [πi−1,πi+1]. It follows from (10.15) that the posterior distribution for πi is
given by

{
P(πi|y,α,β ,π−i) ∝ P(y|π)P(π|α,β ) πi ∈ Sm

j (π j, j 
= i),

0, πi /∈ Sm
j (π j, j 
= i).

(10.16)

Here, π−i = (π1, . . . ,πi−1,πi+1, . . . ,πm). Hence, when the likelihood and the
prior distribution are combined, the posterior conditional distribution of
πi|y,α ,β ,π−i is the standard posterior distribution restricted to Sm

j (π j, j 
= i), i.e.,
Beta(yi +αi,ni − yi +βi) restricted to the interval [πi−1,πi+1] (Gelfand and Kuo
1991). This means that during the MCMC simulation the sampling from the full
conditional distribution can be reduced to interval restricted sampling from the
standard posterior distribution (Gelfand et al. 1992).

The hierarchical model we consider is given by

yi ∼ Bin(ni,πi) likelihood,
πi ∼ Beta(αi,βi)I(πi−1,πi+1) prior,

(10.17)

where I(πi−1,πi+1) is an indicator variable which takes the value of 1 if πi−1 ≤ πi ≤
πi+1 and zero elsewhere. In order to complete the specification of the hierarchical
model in (10.17) we need to specify hyperprior distributions for α and β . Note that
the special case αi = βi = 1 for i = 1, . . . ,m implies that the prior distribution of the
prevalence in the ith age group, conditional on πi−1 and πi+1, is a uniform distribu-
tion over the interval [πi−1,πi+1], πi|πi−1,πi+1 ∼ Uniform(πi−1,πi+1). Although,
there is no reason to fix α and β to be equal to 1 albeit there is no clear way
how to choose the hyperprior distribution for the components in α and β either.
For the analysis presented below we specify noninformative distributions for the
hyperparameters by specifying a left truncated (at zero) normal distribution with
variance equal to 1,000 for each of the components in α and β at the third stage of
the hierarchical model.

Once the prevalence values are obtained, the problem of estimating the FOI
becomes straightforward. Let π(k) be the constrained value of π , obtained in the
kth iteration of the MCMC simulation. The FOI λ (k)(a) can be estimated by

λ̂ (k)(a)= π̂ ′(k)(a)/(1− π̂ (k)(a)). However, since we assume that the FOI is a smooth
function, we smooth λ (k)(a) with a twice successively third-order moving average
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(Diggle 1990), i.e., λ (k)
S (a) = Sλ (k)(a) where λS(a) is the smoothed FOI and S is

the smoothing matrix. The posterior mean of λS(a) is simply ∑K
k=1 λ (k)

S (a)/K where
K is the number of MCMC iterations.
The fraction of uninfected individuals can be used in this model to specify the
distribution of π(U). If f = 0 is our prior assumption, then π(U)∼ Beta(αm,βm)×
I(πm−1,1), where I(πm−1,1) is an indicator that takes the value of 1 if πm−1 ≤
πm ≤ 1 and 0 otherwise. In case that we use the prior knowledge that f > 0, say
f = f �, then we can truncate the distribution of π(U) at the right side with 1− f �,
π(U)∼ Beta(αm,βm)I(πU−1,1− f �).

10.4.2 Fitting the Model in Winbugs

As we mentioned above, for α = β = 1, the prior distribution of the prevalence
at the ith age group, conditional on πi−1 and πi+1, is a uniform distribution over
the interval [πi−1,πi+1] which implies that πi|πi−1,πi+1 ∼ Uniform(πi−1,πi+1). For
the first age group, π1 ∼ Uniform(0,π2) this constraint can be implemented in
Winbugs by

pi[1] ˜ dunif(0,pi[2])

The constrained priors for πi, i = 2, . . . ,n − 1 are implemented using the
following code:

for(k in 2:(Nage-1))
{
pi[k] ˜dunif(pi[k-1],pi[k+1])
}

Finally, for the last age group πm ∼ Uniform(πm−1, f ). For f = 0.98 this
constraint is implemented by

pi[Nage] ˜ dunif(pi[Nage-1],0.98)

The prevalence in the above model is a stochastic node. The FOI, on the other
hand, is a deterministic node and can be estimated at each MCMC iteration by

λ̂ (k)(a) = π̂ ′(k)(a)/(1− π̂ (k)(a)) (assuming age groups of one year). In Winbugs
we need to specify the following deterministic relationship:
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model
foi[1]<-(pi[1]/(1-pi[1]))/1.5
for(k in 2:(Nage-1))
{
foi[k]<- (pi[k]-pi[k-1])/(1-pi[k])
}
foi[Nage]<-(pi[Nage]-pi[Nage-1])/(1-pi[Nage])

Note that foi[k] is the rough FOI, and similar to the approach of Keiding (1991),
it needs to be smoothed. In our example we use a twice successively third-order

moving average (Diggle 1990), i.e., λ (k)
S (a) = Sλ (k)(a) where λS(a) is the smoothed

FOI and S is the smoothing, matrix. In the panel below fois[h] is the smoothed FOI.

fois[1] <- (foi[1]+foi[2]+foi[3])/6
fois[2] <- (foi[1]+3*foi[2]+foi[3])/5
for(h in 3:(Nage-2))
{
fois[h] <- (foi[h-2]+2*foi[h-1]+3*foi[h]+2*foi[h+1]+foi[h+2])/9
}
fois[Nage-1] <- (foi[Nage-2]+3*foi[Nage-1]+foi[Nage])/5
fois[Nage] <- (foi[Nage-2]+2*foi[Nage-1]+3*foi[Nage])/6
}

The truncated beta prior model specified in (10.17) can be implemented in
Winbugs by replacing the uniform prior with a Beta prior,

pi[1] ˜ dbeta(alpha[1],beta[1])I(,pi[2])
for(k in 2:(Nage-1))
{
pi[k] ˜dbeta(alpha[k],beta[k])I(pi[k-1],pi[k+1])
}
pi[Nage] ˜ dbeta(alpha[Nage],beta[Nage])I(pi[Nage-1],0.96)

Note that for this model we need to specify hyperprior distributions for α and β .
In our example we used independent flat hyperpriors:

for(i in 1:Nage)
{
alpha[i]˜dnorm(0,0.001)I(0,)
beta[i]˜dnorm(0,0.00001)I(0,)}
}
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Fig. 10.3 Posterior means for the prevalence and the FOI (rubella). The gray area represents
the 95% credible intervals for the FOI. Solid lines: the beta-binomial model; dashed lines: the
nonparametric local polynomials. The parametric model is the log-logistic model (dashed-dotted
lines) which, among the parametric models, has the smallest DIC value

10.4.3 Application to the Data

The posterior means for the prevalence and FOI are shown in Fig. 10.3 (rubella)
and Fig. 10.4 (mumps). For rubella, the nonparametric models indicate essentially
the same patterns, although the secondary peak at age 23 is less substantial in the
beta-binomial model. In addition, from age 30 onwards, the beta-binomial model
predicts a higher FOI. For mumps, the secondary peak at age 20 was smoothed by
the beta-binomial model. Similar to rubella, the beta-binomial model predicts higher
values for the FOI at the first peak, compared to the parametric model. This can be
seen in Fig. 10.5 which presents the density estimates for the posterior distribution
of the FOI between age 3.5 and 6.5. Note that the exponential and the beta-binomial
models for the FOI reach a peak at age 4.5 and 5.5, respectively. The beta-binomial
model predicts higher values for the FOI : 0.36 and 0.29 for the beta-binomial and
the exponentially damped linear model, respectively.

The value of f has a substantial influence on the posterior mean of the average
age at infection. We fitted the beta-binomial model with several values of f .
That is, we truncated the distribution of π(U) at the right-hand side with 1− f ,
π(U)∼ Beta(αn,βn)I(πU−1,1− f ). Table 10.2 presents the results and shows that
the posterior mean of A increases with f . This can be seen in Fig. 10.7 which shows
the 95% credible intervals for the average age at infection. This pattern was observed
by Farrington (1990) for the estimated conditional models (see Farrington 1990,
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Fig. 10.4 Posterior means for the prevalence and the FOI (mumps). The gray area represents
the 95% credible intervals for the FOI. Solid lines: the beta-binomial model; dashed lines: the
nonparametric local polynomials. The parametric model is the exponentially damped linear model
with α = 0 (dashed-dotted lines) which, among the parametric models, has the smallest DIC value

Table 3). Note that in the first column in Table 10.2, f̄ = 1− π̄(U) is the posterior
mean for f . Figure 10.6 shows the estimated forces of infection for several values
of f . Note that substantial differences are observed from age 30 and onwards. The
FOI increases with higher values of f .

10.5 Discussion

As pointed out in several places in this book, the (age-dependent) FOI is a basic
concept in any epidemiological model for an infectious disease. Furthermore, the
average age at infection and the basic reproduction number, R0, depend on the model
for the FOI (Chaps. 14 and 15). In this chapter we modeled the prevalence within
the framework of hierarchical Bayesian models in order to investigate the posterior
distribution of λ (a) and A. The parametric models are restrictive since they can
estimate only a single peak model for the FOI. However, the beta-binomial model
suggests secondary peaks which may be important from an epidemiological point
of view. Furthermore, we have shown that compared to the parametric models, the
beta-binomial models predict higher values for the FOI at its maximum.

The problem of estimation under order restrictions was addressed by choosing
constrained priors for the hierarchical models in Sect. 10.3 or a truncated



164 10 Hierarchical Bayesian Models for the Force of Infection

0

10

20

30

40

50

60

force of infection

de
ns

ity
Age = 3.5

0.25 0.30 0.35 0.40 0.45 0.25 0.30 0.35 0.40 0.45

0

10

20

30

40

50

60

70

force of infection

de
ns

ity

Age = 4.5

0.25 0.30 0.35 0.40 0.45

0

20

40

60

80

force of infection

de
ns

ity

Age = 5.5

0.25 0.30 0.35 0.40 0.45

0

20

40

60

80

force of infection

de
ns

ity
Age = 6.5

Fig. 10.5 Kernel estimates for the posterior distribution of the FOI for mumps at ages 3.5 (top
left), 4.5 (top right), 5.5 (lower left) and 6.5 (lower right). The dashed–dotted line corresponds
with the exponential model; the solid line with the nonparametric Bayesian model

Table 10.2 Posterior mean
for the average age at
infection and f obtained from
the beta-binomial models

Rubella f̄ Ā

0.007 9.27
0.016 9.58
0.025 9.85
0.033 10.24
0.043 10.63
0.053 11.08
0.063 11.55

Mumps 0.004 5.29
0.012 5.58
0.021 5.99
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Fig. 10.7 Posterior mean for the FOI for several values of f . Left Panel: rubella; right panel:
mumps. The solid line is the FOI estimated by local quadratic model. The numbers to the right are
the values of f that were used to right truncate the prior distribution of π(U)

product-Beta for the prior model in the hierarchical beta-binomial model. Both
models estimate a nondecreasing prevalence and therefore lead to a nonnegative
FOI, as required. The beta-binomial model is highly sensitive for the values of f .
It is necessary to fit the model with several values of f in order to investigate its
influence on the posterior mean of A and λ (a).



Chapter 11
Modeling the Prevalence and the Force
of Infection Directly from Antibody Levels

11.1 Serological and Current Status Data

As discussed in previous chapters and illustrated by different methods, prevalence
and force of infection (FOI) (and, as we will show in Chaps. 14 and 15, indirectly
other parameters such as the basic reproduction number) are estimated from so-
called seroprevalence data. Seroprevalence data are obtained by dichotomizing or
trichotomizing disease-specific antibody levels using one or two threshold values,
often provided by the test manufacturer. In particular, individuals are diagnosed as
infected (left-censored age at infection, its value somewhere before the age at the
time of the test) if their test result exceeds a certain threshold value τu and as being
susceptible (right-censored age at infection) if their result falls below a possibly
different threshold τ� ≤ τu. In case two different threshold values are used (τ� < τu),
individuals having test results in between are labeled inconclusive or equivocal.
Individuals labeled inconclusive are either advised to have their sample retested,
considered diseased (conservative approach) or non-diseased (liberal approach) or
discarded from analysis. Figure 5.1 in Sect. 5.1 showed Belgian Parvovirus B19
antibody activity levels together with two thresholds. This is a situation where
both groups can be nicely separated and one can expect a very limited number
of misclassified subjects. Figure 11.1 shows a similar plot for data on varicella
zoster Virus (VZV, see Chap. 4). This plot of the log((antibody level in U/ml)+ 1)
as a function of age shows more overlap between the infected and the suscep-
tible populations and consequently more inconclusive cases (105 values between
τl = log(51) and τu = log(101)).

For a serological sample, the current status of the disease depends on the antibody
level Zi of the ith subject, i = 1 . . . ,N and, say, one manufacturer cutoff point (i.e.,
the threshold value) τ . In case τ is known, the current status of the disease Yi is
determined by

Yi =

{
1 if Zi > τ ,
0 if Zi < τ .

(11.1)

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 11,
© Springer Science+Business Media New York 2012
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Fig. 11.1 Belgian VZV data.
Logarithm of antibody
activity levels in U/ml (+1) as
a function of the individual’s
age, with threshold values
represented by solid
horizontal lines. Upper
dashed horizontal line:
estimated mean for the
infected subpopulation.
Lower dashed horizontal line:
estimated mean for the
susceptible subpopulation.
Solid smooth curve:
monotone least-squares fit
using P-splines

Several authors (see e.g. Gay et al. 2003; Vyse et al. 2004; Vyse et al. 2006; Nielsen
et al. 2007; Hardelid et al. 2008) pointed out on the difficulty to interpret serological
data based on predefined manufacturer cutoff points or thresholds. In particular,
Hardelid et al. (2008) argued that due to the difficulty of applying a meaningful
cutoff point value to the continuous distribution of antibody levels, cut-off point
based methods are likely to set a high cutoff point level in order to avoid false-
negative results. Furthermore, if cutoff point τ is unknown the true current status
of the individual is unknown or subject to measurement error when one chooses
the cutoff point arbitrarily. As a consequence, the use of threshold value(s) in order
to diagnose individual subjects is virtually always prone to test misclassification,
encompassing both false-negative (infected/diseased subjects testing negative) and
false-positive results (susceptible/undiseased subjects testing positive), yielding
biased estimates when not corrected for. Furthermore, in case two thresholds are
used, discarded inconclusive classifications will add to the bias and over and above
might result in information loss.
In this chapter we investigate the effect of test misclassification on the estimation
of the prevalence and the FOI and show that the optimal threshold is different for
both parameters. This complicates the application of thresholds and to avoid its
use we discuss alternative methods using mixture models in Sects. 11.3 and 11.5.
This method combines two concepts: the fact that all information is available on
the original continuous scale of antibody activity levels, and the very natural idea
to represent the antibody levels, collapsed over age, as coming from a mixture of
two distributions (representing the infected and the susceptible subpopulations).
Figure 11.2 shows a hypothetical example of a mixture of two normal distributions
which represent the distribution of antibody levels according to the disease status.
The first component of the mixture is the distribution of the (log) antibody level of
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Fig. 11.3 Belgian VZV data,
collapsed over the age
dimension. Histogram
overlaid with the fitted
mixture of two Gaussian
distributions on the logarithm
of antibody activity levels in
U/ml. Triangles on the
horizontal axes represent the
two estimated means

the susceptible individuals and the second component is the distribution of the (log)
antibody level of the infected individuals.

Figure 11.3 shows such a mixture fitted to the VZV data. The triangles on the
horizontal axes represent the two estimated means, also shown by the two horizontal
lines in Fig. 11.1.
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11.2 The Threshold Approach

We restrict our discussion to the one-threshold case and briefly summarize the main
conclusions of the two-threshold case as studied by Bollaerts et al. (2012).

As in Sect. 11.1, consider a serological sample of N subjects, let Zi be the test
result for subject i= 1,2, . . . ,N and let τ be a single predefined threshold value. Then
Zi is dichotomized according to (11.1) and the current status of the disease for the
ith subject Yi is a binary variable for which 0 denotes test negative and 1 denotes test
positive. To quantify the performance of a test, two test characteristics are typically
used, namely the test sensitivity SEτ (the probability of a positive test result given
the individual has been infected) and the test specificity SPτ (the probability of a
negative test result given the individual is still susceptible). In case SEτ = SPτ = 1,
the test is perfect (no misclassifications). Furthermore, for a test to be valid, it is
required that SEτ > 1−SPτ (or equivalently, the probability of a test-positive result
should be larger for an infected individual).

The mean of the binary data π̂τ = (∑N
i=1 Yi)/N is an unbiased estimate of

the proportion πτ of test positives. However, π̂τ is a biased estimate of the true
prevalence πTRUE unless the test is perfect. Starting from the deterministic relation
between πτ and πTRUE:

πτ = πTRUESEτ +(1−πTRUE)(1− SPτ), (11.2)

simple calculus leads to the (asymptotic) bias expression

πτ −πTRUE = (1−πTRUE)F
+
τ −πTRUEF−

τ , (11.3)

where F+
τ = 1− SPτ is the false-positive probability and F−

τ = 1− SEτ is the false-
negative probability. The bias depends on the choice of threshold τ and on the true
prevalence πTRUE and can be positive as well as negative. Note that only for a perfect
test the bias disappears.

Using (11.2), an asymptotically unbiased estimator for πTRUE can easily be derived
(Rogan and Gladen 1978):

π̂RG =
π̂τ + ŜPτ − 1

ŜEτ + ŜPτ − 1
, (11.4)

provided that ŜEτ and ŜPτ are asymptotically unbiased estimators for SEτ and SPτ ,
respectively.

Using one of the estimators π̂τ(a) from earlier chapters, all expressions
(11.2)–(11.4) can be made age-dependent, and an age-dependent sero-FOI can
be defined as

λτ(a) =
π ′

τ(a)
1−πτ(a)

, (11.5)
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and a natural asymptotically unbiased estimator λ̂τ(a) follows from plugging in the
estimator π̂τ(a) in definition (11.5).

Bollaerts et al. (2012) show that λ̂τ(a) is a biased estimate of the true FOI,
λTRUE(a) = π ′

TRUE(a)/(1−πTRUE(a)), and that the asymptotic bias can be expressed as

λτ(a)−λTRUE(a) =−
(

F−
τ

(1−πTRUE(a))(1−F+
τ )+πTRUE(a)F−

τ

)

λTRUE(a). (11.6)

It turns out that this bias is always negative and, for a valid test, it equals zero in case
the false-negative rate F−

τ is zero (or SEτ = 1). Bollaerts et al. (2012) show that the
biases (11.3) and (11.6) are minimized for different values of the threshold τ . For
the prevalence, the optimal choice is the to be expected value discriminating both
infected and susceptible groups in a maximal way, the optimal choice for the FOI
however can be substantially smaller (leading to fewer false negatives).

Plugging an age-dependent version of the Rogan–Gladen estimator π̂RG(a) as
an estimator for πTRUE in the expression of λTRUE(a), Bollaerts et al. (2012) derive
the following estimator for λTRUE(a), corrected for misclassification (asymptotically
unbiased):

λ̂RG(a) =
π̂ ′

τ(a)

ŜEτ − π̂τ(a)
, (11.7)

provided that ŜEτ is an asymptotically unbiased estimator for SEτ . Note that only
in case ŜEτ = 1, this estimator λ̂RG(a) equals the threshold-based version λ̂τ(a).

For the two-threshold situation with equivocal/inconclusive cases discarded,
the situation gets more complicated. The expressions for the bias include the
probabilities that infected and susceptible individuals are inconclusive and hence
deleted. Again RG-types of corrected estimators can be derived, but as estimators
for the probabilities to be inconclusive are generally unavailable or hard to estimate,
these estimators have very limited practical use. Figure 11.4 shows a plot of the
estimated seroprevalence and sero-FOI (as discussed in previous chapters), using
monotone P-splines, and using the dichotomized data excluding the inconclusive
observations. As we are in a setting of two thresholds, it is not straightforward to
correct this estimator for misclassifications and deletions. For more details, we refer
to Bollaerts et al. (2012).

From this discussion it is clear that the use of threshold-based estimators is not
without problems. In the next section we therefore introduce a direct approach to
estimate πTRUE(a) and λTRUE(a) without using any thresholds.

11.3 A Direct Approach

The true prevalence, πTRUE(a), and FOI, λTRUE(a), can be derived directly by
using a two-component mixture model for the antibody activity levels. The group
of infected individuals and the group of susceptible individuals form the two
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Fig. 11.4 Belgian VZV data.
Proportion positive, as a
function of the corresponding
half-year age categories,
overlaid with the monotone
P-spline fit (using logit link
and binomial likelihood) and
the FOI: with BIC optimal
smoothing parameter

components with the true prevalence πTRUE(a) as age-dependent mixing probability.
In general, it can be (equally well) assumed that πTRUE depends on other covariate
information or that πTRUE does not depend on covariate information at all.

Formally, the two-component mixture model for non-dichotomized test results Z
with Zj ( j = {I,S}) being the latent mixing component having density f j(z j |θ j) and
with πTRUE(a) being the age-dependent mixing probability can be represented as

f (z|zI,zS,a) = (1−πTRUE(a)) fS(zS|θS)+πTRUE(a) fI(zI|θI), (11.8)

based on which it is readily seen that the mean E(Z|a) equals

μ(a) = (1−πTRUE(a))μS +πTRUE(a)μI, (11.9)

with μS and μI being the mean of fS(yS|θS) and fI(yI|θI), respectively, and with, for
reasons of identifiability, the convention made that μI > μS.

From (11.9), it is straightforward to derive the identity

πTRUE(a) =
μ(a)− μS

μI − μS

, (11.10)

which shows that πTRUE(a) is the excess of the mixture mean μ(a) to the mean of the
susceptible population μS relative to the difference in means of both subpopulations.

A natural estimator for the true prevalence is given by

π̂DIRECT(a) =
μ̂(a)− μ̂S

μ̂I − μ̂S

. (11.11)

It is standard to estimate the mixture mean μ(a) using least-squares regression
techniques, parametrically or nonparametrically depending on the application and



11.4 Application to VZV Data 173

research interests. The subpopulation means μS and μI can be estimated by density
estimation methods for two-component mixture models, using Bayesian sampling
algorithms (Gilks et al. 1996) or EM-algorithms, either parametric (e.g. Peel and
McLachlan 2000) or semiparametric (e.g. Cruz-Medina et al. 2004; Bordes et al.
2007). Alternatively, classification methods can be used as well. If μ̂S and μ̂I are
(asymptotically) unbiased estimates, so is the estimator π̂DIRECT(a).

Differentiating both sides of identity (11.9), some straightforward calculus
shows that

λTRUE(a) =
μ ′(a)

μI − μ(a)
, (11.12)

which leads to the natural estimator

λ̂DIRECT(a) =
μ̂ ′(a)

μ̂I − μ̂(a)
. (11.13)

Note that these expressions do not depend on the mean μS of the susceptible
subpopulation. Again, the estimator (11.13) is asymptotically unbiased.

Bollaerts et al. (2012) show that there is an explicit connection between the direct
and corrected threshold approach. More precisely they show mathematically that
both approaches are exactly identical using a particular transformation. This identity
however concerns the population parameters, and in a simulation study, covering a
variety of settings, they show that both methods do differ when applying them on
data. Their main conclusions can be formulated as follows. On the true prevalence
scale, the direct and corrected threshold approach behave very similar (in terms of
MSE). On the true FOI scale however the results are more mixed. There is no clear
overall winner, but for many settings the direct method performs more accurate (in
terms of MSE) and more robust or stable (less variable over different settings).

In the next section we apply the direct approach to the VZV data, illustrate R
code, and compare the results with those obtained from the dichotomized data.

11.4 Application to VZV Data

We start with illustrating how to fit a mixture model to the VZV data (collapsed over
age), next how to fit a monotone least-squares P-spline, and finally how to combine
both concepts to derive the estimates for the true prevalence and the true FOI.

11.4.1 Fitting a Mixture

There are several packages available in R to fit mixture models. The following code
illustrates the use of the mixdist R-package. The estimates for the fitted mixture and
Fig. 11.3 are produced by the following R-code:
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# R-code to fit a Gaussian mixture
library(mixdist)
zmixdat=mixgroup(z,breaks=40)
zstartpar=mixparam(pi=c(0.2,0.8),mu=c(2,6),sigma=c(0.5,1))
mixfit=mix(zmixdat,zstartpar,dist="norm")
summary(mixfit)
plot(mixfit,cex.lab=2,cex.axis=2)
coef(mixfit)

resulting in the following estimates, based on the data pooled over age (variable z in
the code above):

> coef(mixfit)
pi mu sigma

1 0.1012956 2.316357 0.6660275
2 0.8987044 6.338433 1.0318659

The fit indicates that (as suggested by Figs. 11.1 and 11.3) a large majority
(almost 90%) of the cases belongs to the infected group.

11.4.2 Fitting the Mean Antibody Levels as a Function of Age

The monotonicity of the true prevalence πTRUE(a) implies, through identity (11.9),
that also μ(a) is a nondecreasing function of age. As explained in Chap. 9, a
monotone P-spline is an interesting option and the same R-code can be used, but
now specifying the identity link and the gaussian family (resulting in a least-squares
fit). The optimal smoothness parameter was selected using the BIC criterion.

11.4.3 Combining the Mixture with the Least Squares
Regression Fit

Direct application of formula’s (11.11) and (11.13) leads to the fits as shown in
Fig. 11.5. The fits based on the direct method are shown as solid curves, those
of the threshold method by dashed curves. The solid prevalence curve seems to
fit the observed proportions not very well in the age range 5–10 as most of the
bubbles are below the estimated curve. Remember however that this estimate is
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Fig. 11.5 Belgian VZV data.
Proportion positive, as a
function of the corresponding
half-year age categories,
overlaid with the monotone
P-spline fit and the FOI:
estimated using the direct
method (solid curves) and the
threshold method (dashed
curves)

based on more data, as the 105 inconclusive cases are not excluded by the direct
method. Moreover, the dashed curve should still be corrected for misclassifications,
which might appear more frequently in this age range. As a consequence the directly
estimated FOI reaches a much higher first peak at about the age of seven. The second
peak at the age of about 30 is also much more pronounced. This is in line with the
theoretical finding that the FOI based on the threshold method has a negative bias.
Finally note that the fitted curves are less bumpy as the ones shown in Bollaerts
et al. (2012), a consequence of choosing the smoothness parameter based on the
BIC criterion rather than using (generalized) cross-validation.

11.5 Modeling the Force of Infection Directly from Antibody
Titers Using Hierarchical Mixture Models

In Sect. 11.3 the estimated means of the two mixture components and the estimated
mean antibody level were used in order to estimate πDIRECT(a) in (11.11). In this
section we take a slightly different approach. In contrast with the previous section
we do not focus on E(Z|a) but rather on the prevalence itself. We use hierarchical
mixture models and we show that the mixture probability π(a) (the probability that
a subject belongs to the infected component of the mixture) can be interpreted as the
true prevalence, π(a) = πTRUE(a). Similar to the previous section we do not assume
that the current infection status of the subject is known in advance but rather classify
the subjects in the sample as seronegative (susceptible) or seropositive (infected)
based on a hierarchical mixture model.
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11.5.1 Model Formulation

Let f (Z) be the density function of the antibody level Z. We assume that f (Z) is a
finite mixture distribution of the form

f (Z) =
k

∑
j=1

π j f (Z|θ j), (11.14)

where f (Z|θ j), j = 1, . . . ,k, are called the mixture components, π j ≥ 0 with
∑k

j=1 π j = 1 are the mixture probabilities, and θ j are the parameters to be estimated
(Gelman et al. 1995; Gilks et al. 1996; Congdon 2003). In what follows we focus
on a mixture of two normal populations with possibly different mean and variance
parameters. As discussed in Sect. 11.1 the first component of the mixture is the
distribution of (log) antibody levels of the susceptible individuals and the second
component is the distribution of the (log) antibody levels of the infected individuals
(see also Figs. 11.2 and 11.3).

Finite mixture models for estimation of the prevalence have also been discussed
by Gay et al. (2003) and Vyse et al. (2004, 2006). These authors focused on the
estimation of the prevalence and fitted the mixture model for each age group.
Hardelid et al. (2008) proposed a similar approach to model the distribution of
rubella antibody levels using the EM algorithm implemented in the R packages
flexmix and gamlss.mx. Hardelid et al. (2008) assigned each individual to one of
the mixture components based on the maximum estimated mixture probability.
Nielsen et al. (2007) proposed a two-component hierarchical mixture model for the
estimation of within-herd prevalence of bovine paratuberculosis. The components’
means and the mixture probability in Nielsen’s model were formulated as a function
of several covariates in order to model the dependence of both the means and the
mixture probabilities upon these covariates.

Following the approach of Congdon (2003) and Nielsen et al. (2007), we
formulate the mixture model in terms of a hierarchical model using a latent indicator
variable. In this model, the latent variable Yi represents the unknown true disease
status. Hence, the likelihood in the first stage of the hierarchical model is given by

Zi ∼ N(Yiμ1 +(1−Yi)μ2,Yiσ2
1 +(1−Yi)σ2

2 ). (11.15)

Here, � = (μ1,μ2), and � 2 = (σ2
1 ,σ2

2 ) are the mean and variance vectors for the
susceptible and infected components, respectively. The variable Yi can be seen as a
latent classification random variable which represents the true (but latent) current
status of the disease for which we assume a Bernoulli distribution:

Yi =

{
1 π ,
0 1−π .

(11.16)
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The mixture probability in (11.16) is the probability that an individual in the
population belongs to the infected component or that the antibody measurement
was sampled from a truly infected individual (Nielsen et al. 2007). Thus, π can be
interpreted as the prevalence in the population (Evans and Erlandson 2004). Note
that in contrast with the direct approach discussed in Sect. 11.3 we do not focus
on the mean antibody level μ(a) but we focus on the mixture probability π and
leave μ(a) unspecified. At this stage we use predefined age groups and assume that
the mixture probability π is constant across these age groups and that it follows a
uniform distribution π ∼U(0,1). Similar to Evans and Erlandson (2004) we assume
that larger values of antibody levels indicate a positive status and therefore include
order restriction μ1 ≤ μ2 in the model. This can be done by assuming a constrained
noninformative prior for μ1:

μ1 ∼ U(0,μ2),

μ2 = μ1 + δ ,

δ ∼ U(0,C).

(11.17)

Here C is a relatively high constant. The parameter δ represents the shift of the
mean antibody level between the two components of the mixture.

To complete the specification of the hierarchical model, the following (noninfor-
mative) hyperprior distributions are assumed:

σ−2
j ∼ gamma(0.0001,0.0001), j = 1,2, (11.18)

where gamma(α,β ) denotes a gamma distribution with mean equal to α/β and
variance α/β 2. Hence, by choosing α = β = 0.0001, the prior distribution for
both precision parameters is a gamma distribution with mean 1 and variance 10,000
which reflects our uncertainty about the true values of the parameters (see,e.g., Gilks
et al. 1996).

11.5.2 Age-Dependent Mixture Probability

As argued before, the mixture probability can be interpreted as the prevalence in the
population. For many infectious diseases both the prevalence and the FOI are known
to be age-dependent. In what follows we relax the assumption that π is constant
across the age groups. In particular we assume that

logit(π(a)) = γ0 + γ1 log(a) ; γ1 > 0, (11.19)

which implies that

π(a) =
δ0aγ1

1+ δ0aγ1
, (11.20)
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Fig. 11.6 The Belgian VZV dataset. Left panel: a scatterplot of the log(antibody level) and
posterior means for the two components. Right panel: a histogram of the log(antibody level), δ̄
is the posterior mean difference

with δ0 = exp(γ0). Note that the parametric structure of π(a) implies a log-logistic
distribution for the time spent in the susceptible class (Shkedy et al. 2003). The FOI,
which is the rate at which individuals move from the susceptible component to the
infected component of the mixture model, is given by

λ (a) =
γ1δ0aγ1−1

1+ δ0aγ1
. (11.21)

We assume independent noninformative priors for γ0 and γ1:

γ0 ∼ N(0,τ2
0 ),

γ1 ∼ N(0,τ2
1 )I(0,).

(11.22)

Note that the prior distribution for γ1 is truncated at zero to ensure that γ1 ≥ 0. The
hyperparameters τ2

0 and τ2
1 were assumed to follow inverse gamma distributions,

τ−2
0 ∼ gamma(0.01,0.01), τ−2

1 ∼ gamma(0.01,0.01).

11.5.3 Application to the Data

An MCMC simulation was conducted using WINBUGS 1.4. We run the model for
10,000 iterations from which the first 1,000 are used as burn-in period. Data and
posterior means of the mean antibody levels are shown in Fig. 11.6 and Table 11.1.
The posterior mean for the infected component is equal to 6.32 and higher than
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Table 11.1 Posterior mean
and 95% credible intervals for
μi, σ 2

i , i = 1,2 and δ

Posterior means
Parameter (Credible interval)

μ1 2.326 (2.248,2.423)
μ2 6.322 (6.278,6.362)
σ 2

1 0.326 (0.257,0.410)
σ 2

2 1.067 (1.001,1.130)
δ 4.002 (3.912,4.081)
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Fig. 11.7 The posterior mean (solid line) for the mixture probability at each age group with
95% credible intervals (dashed lines) together with the age-dependent FOI. The dots represent
the estimated fraction seropositives in the sample

the posterior mean of the susceptible component 2.32. Posterior means for the
variance of each component are equal to 1.067 and 0.326 for the infected and
susceptible components, respectively. The posterior mean for the shift parameter δ
equals 4.002 (95% credible interval: 3.912–4.081). Figure 11.7 shows the posterior
mean for the mixture probability at each age group with 95% credible intervals
together with the age-dependent FOI. The dots in Fig. 11.7 represent the estimated
fraction seropositives in the sample which we will discuss in the following section.

11.5.4 Determining the Current Infection Status

As we mentioned in the previous section, the current infection status of each subject
in the sample is unknown. The advantage of the hierarchical mixture model is
that the current status of the individuals in the sample is not needed in order to
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Fig. 11.8 Upper left panel: distribution of log(antibody level) at age 5.5 years. Upper right panel:
log(antibody level) versus the posterior median of Yi . Lower left panel: proportion of individuals
being classified as seropositive (80.55%) and seronegative (19.45%) at age group 5.5. Lower right
panel: density estimate for the posterior distribution of π(5.5)

estimate the prevalence and the FOI. However, in many cases, diagnosis at the
individual level, i.e., the determination whether the ith individual is infected or not,
is of primary interest. Classically, this can be done using the cutoff point method
(Sect. 11.1). In this section we show that diagnosis at individual level can be based
on the hierarchical mixture model without the necessity to use predefined or model-
based cutoff points. In order to determine whether each individual in the sample
has been infected or is susceptible we need to classify the individual into the two
components of the mixture. For classification, we use the posterior median of the
latent variable Yi. If Yi = 1, subject i has been infected before, if Yi = 0, subject i is
still susceptible.

The upper left panel in Fig. 11.8 shows the histogram for the log(antibody levels)
in the age group with mid age 5.5 years. Posterior medians of Yi in this age group are
shown in the upper right panel of Fig. 11.8. Subjects for which Ȳi = 0 are classified
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as susceptible while subjects with Ȳi = 1 are classified as seropositive. Furthermore,
once the classification is done, one can calculate the proportion seropositive at each

age group by Σn(a)
i=1 Ȳi(a)/n(a).

For the age group with mid age 5.5 years the estimated proportion of seroposi-
tives in the sample equals 0.806. Note that this is not our estimate of the prevalence
at this age group in the population but our estimate of the proportion of seropositive
individuals in this age group under the assumption that the prevalence in the
population is equal to π(a). The estimated density for the posterior distribution of
the prevalence in this age group π(5.5) in the population is shown in Fig. 11.8. The
posterior mean for the prevalence in this age group is equal to 0.819. Figure 11.7
shows the posterior mean for the prevalence (solid line) and the estimate for the
proportion of seropositives in the sample (dots). We notice that the posterior mean
of the prevalence should be monotonically increasing while the estimated proportion
of seropositives can be non-monotone.

11.5.5 Implementation in Winbugs

The hierarchical mixture model discussed above was fitted in Winbugs 1.4. In the
first part of the program we specify the normal likelihood in (11.15). The variable
Nsub defined in the program is the total sample size.

for( i in 1 : Nsub )
{
Zi[i]˜dnorm(mu[i],tau[i])
T[i]˜dcat(P[agegr[i],])
Yi[i]=T[i]-1
mu[i]=mu1.y*Yi[i]+mu2.y*(1-Yi[i])
tau[i]=tau1.mu*Yi[i]+tau2.mu*(1-Yi[i])

Note that we specify the mean and the variance for the mixture model Yiμ1+(1−
Yi)μ2 and Yiσ2

1 + (1−Yi)σ2
2 by mu[i]=mu1.y*Yi[i]+mu2.y*(1-Yi[i]) and tau[i]=

tau1.mu*Yi[i]+tau2.mu*(1-Yi[i]), respectively. The variable Yi corresponds to the
latent current status of the disease given in (11.16). There are several options to
specify the binomial distribution for this latent variable. In this example we use a
discrete categorical distribution using the Winbugs function dcat(p[]). We define a
categorical variable T[i] that takes the values of 1 and 2 with probability π(ai) and
1−π(ai), respectively (π(ai) is the mixture probability of the age group to which
the ith individual belongs). The current status of the disease is Yi[i]=T[i]-1. Next we
specify prior distributions (11.17) and (11.18) for the mean and precision parameters
of the two components.
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mu2.y ˜ dunif(0,mu1.y)
mu1.y = mu2.y+delta
delta ˜ dunif(0,7)
tau1.mu ˜ dgamma(0.01, 0.01)
tau2.mu ˜ dgamma(0.01, 0.01)
sig1=1/tau1.mu
sig2=1/tau2.mu

The variables sig1 and sig2 correspond to σ2
1 and σ2

2 , respectively. In the next
stage of the program we define the age-dependent mixture probability given in
(11.19) and (11.20) by

for(i in 1:Nage)
{
theta[i]=gamma0+gamma1*log(age1[i])
p.i[i]=1-exp(theta[i])/(1+exp(theta[i]))
foi[i]=exp(gamma0)*gamma1*pow(age1[i],gamma1-1)

/(1+exp(gamma0)*pow(age1[i],gamma1))
}
gamma0 ˜ dnorm(0,tau.gamma0)
tau.gamma0 ˜ dgamma(0.01, 0.01)
gamma1 ˜ dnorm(0,tau.gamma1)I(0,)
tau.gamma1 ˜ dgamma(0.01, 0.01)

Lastly, we need to make the connection in the program between the mixture
probability and the distribution of the latent variable Yi. We define a K ×2 matrix P
(K is the number of age groups) for which [P]i1 = π(ai) and [P]i2 = 1−π(ai). Thus,
the first column in P is the mixture probability for each age group and the second
columns in the probability to be susceptible for each age group.

for(i in 1:Nage){
P[i,1]=p.i[i]
P[i,2]=1-p.i[i]

The variable agegr[i] is a categorical variable which represents the age group to
which each subject belongs. Therefore, the mixture probability for the ith subject
is given by P[agegr[i],1]. As mentioned above, we define a discrete categorical
distribution for the latent categorical variable T[i]:

T[i]˜dcat(P[agegr[i],])
Yi[i]=T[i]-1
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This implies that

T[i] =

{
1 P[agegr[i],1],
2 P[agegr[i],2],

and Yi[i] =

{
0 P[agegr[i],1],
1 P[agegr[i],2],

or Yi =

{
1 π(ai),

0 1−π(ai).

Hence, it P[agegr[i],2] represents the probability to belong to the infected compo-
nent or the prevalence.

11.6 Concluding Remarks

The question what the prevalence of a certain infectious disease is in the population
is not straightforward to answer due to the uncertainty in the determination of
a subject’s current infection status when predefined manufacturer thresholds are
used. In this chapter, we presented alternative methods to estimate the prevalence,
the FOI and the current status of the diseases. Since both methods are based on
mixture models, the current infection status is a latent variable and as a result both
methods avoid the choice and use of any thresholds. The main strength of the direct
method is based on combining a simple mean regression fit with a simple mixture
fit. The main strength of the hierarchical Bayesian mixture model is due to the
fact that the quantity of primary interest, the prevalence, is a central part of the
model. The FOI can easily be derived in the same way as in the previous chapters.
For the direct method we used monotone penalized splines to estimate μ(a). Of
course the direct method could also be combined with a parametric model for the
age-dependent mean antibody levels. For the hierarchical mixture model, we used
a log-logistic model for the mixture probability. Depending on the setting, other
parametric models can be used for the mean structure in (11.19) as well.



Chapter 12
Modeling Multivariate Serological Data

12.1 Introduction

For feasibility and economical reasons, serum samples are often tested for more
than one antigen. Studying diseases with similar transmission routes can govern new
insights for disease dynamics. In this chapter, we focus on two different methods to
study the association between several infections using multisera data. We restrict
attention to two infections but note that these methods can be extended towards
three or more infections.

The first approach uses marginal and conditional models to study the association
between past infection for both pathogens. The use of a bivariate model for this
kind of data improves not only the efficiency, but it also allows us to study the
association between infections. Next to the derivation of the age-dependent marginal
FOI, we introduce new epidemiological parameters: the age-dependent joint and
conditional FOI. These parameters allow one to study the association among the
occurrence and acquisition of both infections. Moreover, these models allow for
testing whether there exists an association and whether the infection-specific age-
dependent FOI curves are proportional, indicating whether separable mixing in the
population holds. The methodology as applied for multisera data was published by
Hens et al. (2008b). These authors showed that the difference between marginal and
conditional models diminishes when using semiparametric methods. In this chapter,
we will focus on the bivariate Dale model (BDM) and smoothing splines as flexible
modeling tools (see Sect. 8.2.1).

The second approach ascribes dependency to individual heterogeneity. The idea
originates from Coutinho et al. (1999) and was first applied in the infectious disease
setting by Farrington et al. (2001) and pursued by Farrington and Whitaker (2005);
Kanaan and Farrington (2005), and Sutton et al. (2006), who proposed the use of this
bivariate model to estimate the heterogeneity in acquisition for mumps and rubella,
and hepatitis B and C, respectively. We do not focus on the relationship between
heterogeneity in acquisition but the underlying mixing matrices here and refer to
Chaps. 14 and 15.

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 12,
© Springer Science+Business Media New York 2012
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In Sect. 12.2, we introduce the BDM as a marginal model and briefly indicate
which conditional models can be used. We show its application to multisera data
on rubella and mumps in the UK and data on the varicella zoster virus (VZV) and
parvovirus B19 in Belgium (see Chap. 4). In Sect. 12.3, we introduce and apply
a gamma frailty model to estimate the heterogeneity in acquisition for the two
infections in each example.

12.2 Marginal and Conditional Models

Given bivariate binary dependent data on two infectious diseases (y1,y2) from a
sample of individuals together with their age a, denote the joint probability π j1, j2 =
P(y1 = j1,y2 = j2), where the index jk,k = 1,2 corresponds to diseases 1 and 2,
respectively, and jk = 1 (0) indicating past or current infection (susceptibility) for
disease k = 1,2. Modeling such multivariate categorical data can be done using
conditional or marginal models (Liang et al. 1992).

A first marginal model that can be considered is the bivariate Dale model (BDM,
Dale 1986; Palmgren 1989). The BDM relates the probability of past or current
infection for both diseases to the age at infection. The BDM consists of the following
three models which are modeled simultaneously:

⎧
⎨

⎩

logit(π1+|a) = h1(a),
logit(π+1|a) = h2(a),

log(OR|a) = h3(a).
(12.1)

Here OR denotes the age-dependent odds ratio (π11π00)/(π10π01); π1+, π+1 the
marginal probabilities, and hi, i = 1,2,3 smooth differentiable functions. Using
(12.1), it is straightforward to write down the multinomial (log)likelihood in terms
of hi, i = 1,2,3 governing a maximum likelihood estimation procedure. Indeed,
expressing the multinomial probabilities in terms of (12.1) is straightforward noting
that, when OR 
= 1, π11 = 1 + (π1+ + π+1)(OR − 1)− {[1+ (π1+ + π+1)(OR −
1)]2 + 4OR(1−OR)π1+π+1}1/2/(2(OR− 1)), and when OR = 1, π11 = π1+π+1.
Modeling the odds ratio allows us to describe the association between both diseases.
An OR = 1 indicates both infectious disease processes to behave independently
whereas OR 
= 1 indicates association between both diseases.

Hens et al. (2008b) suggested to use the multivariate extension of the smoothing
spline approach, known as vector generalized additive models (Yee and Wild 1996).
This extension is provided by considering �(h1,h2,h3;y)− 1

2 ∑3
i=1 λi

∫ {h′′i (a)}2da,
where �(h1,h2,h3;y) denotes the loglikelihood of the multivariate model, λi,
i = 1,2,3 denote component-specific smoothing parameters, and

∫ {h′′i (a)}2da,
i = 1,2,3 denote component-specific penalties. Determining the optimal values
for λi, i = 1,2,3 is done by generalized cross-validation or alternatively a model
selection criterion as BIC.
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The implementation of the BDM with smoothing splines for the hi, i = 1,2,3,
in R is given through the “VGAM”-library (Yee and Wild 1996; Yee 2008). In the
following code for fit.dale1, cbind(NN, NP, PN, PP) are the quadruples of numbers
of negative–negative, negative–positive, positive–negative and positive–positive test
results per (ordered) unique age value given by the vector a; s(a,spar=sparopt)
refers to the smoothing spline with optimal smoothing parameter sparopt which
can be chosen using, e.g., the BIC criterion (see Chap. 8). Note that specifying
spar=sparopt chooses the same smoothing parameter for the three smooth com-
ponents hi, i = 1,2,3 in (12.1). Alternatively, spar=c(sparopt1,sparopt2,sparopt3)
could be specified to select different smoothing parameters for the different
components hi, i = 1,2,3. The family binom2.or(zero=NULL) specifies the use of
the Dale model (12.1). fit.dale2 adapts the fit of fit.dale1, specifying a constant
odds ratio by indicating that the smoothing spline is only used for the two first
components “s(a, spar = sparopt)”=diag(3)[,1:2] whereas an intercept is specified
for all components “(Intercept)”=diag(3). If in addition to a constant odds ratio,
“(Intercept)”=diag(3)[1:2,] is specified, the model assumes OR = 1 and thus
independence. Whether or not the smooth components hi are age-dependent can be
tested using an F-test modification of the likelihood ratio test (Yee and Wild 1996),
easily obtained in the code by requesting summary(fit.dale1).

# R-code for the Bivariate Dale Model with Smoothing Splines
library(VGAM)
fit.dale1=vgam(cbind(NN,NP,PN,PP)˜s(a,spar=sparopt),

binom2.or(zero=NULL))
fit.dale2=vgam(cbind(NN,NP,PN,PP)˜s(a,spar=sparopt),

binom2.or(zero=NULL),constraints=list(
"(Intercept)"=diag(3),
"s(a, spar = sparopt)"=diag(3)[,1:2]))

As an alternative to the BDM, one can opt to use a bivariate probit model
in which the odds ratio is replaced by the correlation coefficient and the logit
links and the log link in (12.1) are replaced by probit-links and a rhobit-link,
respectively. Both the BDM and the bivariate probit model are marginal models
since their parameters characterize the marginal probabilities and the association is
of secondary importance. Note that the marginal probabilities are reproducible using
univariate analyses at the cost of efficiency. In contrast, conditional models focus on
the association by looking at one variable conditional on the other. Examples include
the baseline category logits model where one of the joint probabilities is used
as a baseline and the other probabilities are modeled in relation to the baseline
probability using a log link function and smooth differentiable functions h̃i,
i= 1,2,3. We note that, using smoothing splines as flexible functions hi, h̃i, i= 1,2,3
of age, the difference between marginal and conditional models diminishes. We
refer to Hens et al. (2008b) for more on this matter.



188 12 Modeling Multivariate Serological Data

0.0

0.2

0.4

0.6

0.8

1.0

Age

se
ro

pr
ev

al
en

ce

0.0

0.2

0.4

0.6

0.8

1.0

Age

se
ro

pr
ev

al
en

ce

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0

5

10

15

20

Age

od
ds

 ra
tio

Fig. 12.1 The marginal prevalence curves for rubella (first panel—solid line) and mumps (second
panel—solid line) together with the odds ratio (third panel—solid line) according to the spline-
based BDM together with 95% bootstrap-based pointwise confidence intervals (dashed lines). The
horizontal line in the third panel corresponds to an OR = 1

12.2.1 The Bivariate Dale Model Applied to Airborne
Infections

We use data on rubella and mumps in the UK, previously analyzed by Farrington
et al. (2001) and data on the VZV and parvovirus B19 (B19) in Belgium, previously
analyzed by Hens et al. (2008b). We fit the BDM to both datasets and restrict
attention to age > 6 months to omit seropositive individuals due to the presence of
maternal antibodies. We monotonize the estimated age-dependent seroprevalence
by applying the pool adjacent violator algorithm (PAVA, Chap. 9) to π̂11, π̂1+ and
π̂+1 from which all other joint probabilities can be derived. Note that we use the
nonparametric bootstrap approach to obtain 95% pointwise confidence intervals
since this method allows the application of the PAVA.

In Figs. 12.1 and 12.2, the age-dependent prevalences for rubella and mumps and
VZV and B19 together with the respective odds ratios according to the monotonized
spline-based BDM are shown.

The summary of the BDM model as applied to the rubella and mumps data from
the UK is given in the following output window. According to the BIC criterion,
sparopt = 0.009 was the most optimal common smoothing parameter. Testing for a
constant odds ratio using the F-test modification of the likelihood ratio test indicated
a significant trend with age (p = 0.0011). The bootstrap-based confidence intervals
in Fig. 12.1 confirmed the latter finding. Note that the odds ratio starts of above
1, indicating dependence in the occurrence of rubella and mumps infections for
children younger than 12 years whereas from then on the 95% bootstrap-based
confidence interval for the OR contains 1. This result can be interpreted as an
indication of similarity in transmission for both infections and the very likely
occurrence of acquiring either infection before the age of 12 years (0.79 and 0.94
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Fig. 12.2 The marginal prevalence-curves for VZV (first panel—solid line) and B19 (second
panel—solid line) together with the odds ratio (third panel—solid line) according to the spline-
based BDM together with 95% bootstrap-based pointwise confidence intervals (dashed lines)
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Fig. 12.3 The joint probabilities according to the spline-based BDM for both datasets. Observed
proportions are shown from dark gray to light gray for p11, p10, p01, and p00, respectively. In the
left panel: rubella and mumps, in the right panel: VZV and B19

for rubella and mumps, respectively, see Fig. 12.1). Note that the rise in odds ratio
for adults is the result of the high prevalence for both rubella and mumps (0.92 and
0.96, respectively). Note that a deviance of 127.14 on 116.76 degrees of freedom
indicates a good fit to the data as shown in the barplot (left panel) in Fig. 12.3.

Call:
vgam(formula = cbind(NN, NP, PN, PP) ˜ s(a, spar = sparopt),

family = binom2.or(zero = NULL))

(continued)
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(continued)
Number of linear predictors: 3
Names of linear predictors: logit(mu1), logit(mu2), log(oratio)
Dispersion Parameter for binom2.or family: 1
Residual Deviance: 127.1351 on 116.764 degrees of freedom
Loglikelihood: -3195.352 on 116.764 degrees of freedom
Number of Iterations: 8

DF for Terms and Approximate Chi-squares for Nonparametric
Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept):1 1
(Intercept):2 1
(Intercept):3 1
s(a, spar = sparopt):1 1 4.1 184.36 0.00000000
s(a, spar = sparopt):2 1 3.3 333.77 0.00000000
s(a, spar = sparopt):3 1 1.8 13.00 0.00112071

The summary of the BDM for VZV and B19 is given next. Note that
sparopt=0.022 according to the BIC criterion. The deviance of 3,029.08 on 5,217.15
degrees of freedom indicates a good fit to the data. Testing for a constant odds ratio
using the BDM-models and the F-test modification of the likelihood ratio test
resulted in a constant odds ratio (p = 0.18). Bootstrap-based confidence intervals
confirmed the latter result (Fig. 12.2). Refitting the model while constraining the
odds ratio to be constant resulted in an estimated odds ratio of 2.09 with 95%
confidence interval (1.44,3.02), indicating significant dependency of VZV- and
B19-occurrence. Note that an odds ratio of 2.09 indicates that the odds of past
or current VZV(B19)-infection among the B19(VZV)-non-susceptible group is
2.09 times larger than the odds of past or current VZV(B19)-infection among the
B19(VZV)-susceptible group. Non-susceptibility is referring to past or current
infection.

Call:
vgam(formula = cbind(NN, NP, PN, PP) ˜ s(a, spar = sparopt),

family = binom2.or(zero = NULL), data = data)

Number of linear predictors: 3
Names of linear predictors: logit(mu1), logit(mu2),

log(oratio)
Dispersion Parameter for binom2.or family: 1
Residual Deviance: 3029.082 on 5217.146 degrees of freedom
Loglikelihood: -1906.319 on 5217.146 degrees of freedom
Number of Iterations: 8

DF for Terms and Approximate Chi-squares for Nonparametric
Effects

(continued)
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Fig. 12.4 Schematic
representation of the flow of
individuals among different
stages. Xi j denotes the
number of persons in class
{i, j}, i, j = 0,1 denoting
whether infected (1) or not
(0) for infection 1 (y1) and
infection 2 (y2), respectively

(continued)
Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1
(Intercept):2 1
(Intercept):3 1
s(a, spar = sparopt):1 1 1.9 87.748 0.00000
s(a, spar = sparopt):2 1 3.1 174.567 0.00000
s(a, spar = sparopt):3 1 0.9 1.626 0.17915

12.2.2 The Marginal, Conditional and Joint Force of Infection

Using the marginal prevalences derived from the spline-based BDM, the marginal
FOI is easily derived by

λ1+(a) = h
′
1(a)π1+(a) and λ+1(a) = h

′
2(a)π+1(a). (12.2)

However, using multisera data, one can analyze quantities like the prevalence
and FOI for one infection conditional on being in a specific state for the second
infection (Fig. 12.4). The potential interest in conditional prevalences and FOIs
is not only related to quantifying the association between two or more infections
(e.g., to evaluate the impact of combination vaccines) but could also be valuable
to analyze chronic co-infections such as Human Papilomavirus (HPV), Human
Immunodeficiency Virus (HIV) and hepatitis B (HBV) or C (HCV) virus where the
acquisition of a second related infection could have a dramatic impact on the course
of disease and infectiousness to others (Alberti and others (Jury Panel) 2005).

Suppose that conditional on a first infection, one is interested in the rate of
acquiring a second infection. Thus one looks at the quantities

λy1=1|y2=i =
π ′

y1=1|y2=i

1−πy1=1|y2=i
, (12.3)
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where i = 1 (i = 0) if the state for y2 is (non-)infected (Fig. 12.4) and the derivative
is taken with respect to age. Note that λy1=1|y2=1 = λy1=1|y2=0 = λy1=1 if and only
if y1 and y2 are independent and that in case of a positive dependence (OR >1),
λy2=1|y1=1 > λy2=1|y1=0. Similarly, one can be interested in looking at the rate of
acquiring y2 conditional on y1 by interchanging the indices in (12.3).

Next to the conditional FOIs, looking at the quantity

λy1=1,y2=1 = π
′
11/(1−π11), (12.4)

could be of interest. However, the interpretation of this joint FOI is tedious. The
numerator indicates the proportion that is still susceptible for at least one of the
two infections, while the denominator gives us the instantaneous rate at which
persons, at least susceptible for one of both infections, go to the state of having (had)
both infections. Since VZV and B19 have a short generation interval, simultaneous
acquisition is unlikely to occur. Moreover, due to the discrete nature of the data; i.e.
age at infection is measured in days; the contribution to this rate from individuals
moving from a fully susceptible status to a fully infected status (see dashed arrow in
Fig. 12.4) for both diseases should be interpreted as the rate of acquisition of both
infections in one day.

In Fig. 12.5, the conditional and marginal prevalences and FOI curves for rubella
and mumps and VZV and B19 are shown.

Looking at the multisera data on rubella and mumps, conditioning on occurrence
(dashed line) results in moderately higher prevalence as compared to the marginal
prevalence (solid line), whereas conditioning on non-occurrence (dotted line) results
in a lower prevalence. In other words, a person who has been infected for either
infection has a higher probability to have been infected for the other infection
compared with persons who are still susceptible. This is translated on the scale of
the FOI in that the age of maximal FOI is lower for seropositives as compared
to seronegatives. A similar observation is made for VZV and B19. Since these
infections are transmitted through similar routes, i.e., close contacts, it is more likely
that a person who has already been infected with a first infection has had more close
contacts than a person who has not been infected. Such a once infected person is also
more likely to continue having more contacts through which a second, similarly
transmitted infection, can be acquired, than a person who has not been infected
yet. Note that these findings are again in accordance to the positive odds ratio in
Sect. 12.2.1.

Figure 12.6 shows the joint probability and joint FOI for both datasets. Note that
the joint FOI for rubella and mumps closely follows the conditional FOI for rubella
given a past mumps infection, especially from 12 years onwards. Similarly the joint
FOI for VZV and B19 closely follows the conditional FOI for parvovirus B19 given
a past infection with VZV. This is not surprising given that the mumps infection
and the VZV infection are the dominant infections and their acquisition is almost
complete at 12 years of age. The contribution to the joint FOI thus merely comes
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Fig. 12.5 The conditional and marginal prevalences and FOI-curves according to the monotonized
spline-based BDM for rubella and mumps (upper row) and for the VZV and B19 (lower row). In the
upper left and right panel conditioning is done on, respectively, mumps and rubella past occurrence
(dashed line) and nonoccurrence (dotted line). In the lower left and right panel conditioning is
done on, respectively, B19 and VZV past occurrence (dashed line) and non-occurrence (dotted
line). The solid lines in all four panels correspond to the marginal prevalences and FOI curves
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Fig. 12.6 The joint prevalence (solid line) and FOI (dashed line) for rubella and mumps (left
panel) and VZV and B19 (right panel) according to the monotonized spline-based BDM
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from those individuals infected by mumps and the VZV but still susceptible for
rubella and parvovirus B19, respectively. Looking more carefully at the expressions
of both FOIs in terms of prevalences, say y1 is the dominant infection:

π
′
y1=1,y2=1/(1−πy1=1,y2=1) and π

′
y2=1|y1=1/(1−πy2=1|y1=1), (12.5)

near equality holds when πy1=1,y2=1
∼= πy2=1|y1=1 or equivalently when πy1=1

∼= 1
which is indeed the case for individuals from 12 years onwards. Moreover, this
result indicates that acquiring both diseases on the same day is very unlikely.

In summary, using the BDM, it is shown that the acquisition of, on the one hand,
rubella and mumps, and on the other hand, VZV and B19, is positively related, most
likely, due to the similarity in transmission by close contacts. This was translated as
well in the higher odds ratio for infants and preadolescents as compared to adults,
albeit nonsignificantly for VZV and B19. Therefore, it is quite natural to ascribe
dependency to heterogeneity in the acquisition of the infection.

12.3 Individual Heterogeneity

In its origin, studying individual differences was done in the context of susceptibility
to death. In epidemic theory, Coutinho et al. (1999) were the first to systematically
treat heterogeneity in the acquisition of infections. Individual heterogeneity has
been shown to be a key factor in the estimation of the basic reproduction number
R0. We refer to Chaps. 14 and 15 for a more in depth discussion on the impact of
heterogeneity on and the estimation of R0.

Individuals are dissimilar in the way they acquire infections. Some individuals
are more susceptible than others and will experience infection earlier. This can
be expressed in terms of the age-dependent FOI by λ (a,Z) where Z can be an
individual-specific covariate or, alternatively, a random variable (Vaupel et al. 1979;
Aalen 1988). Z is often referred to as the frailty and expresses to what extent
an individual has a lower or higher risk of infection. λ (a,Z) has a conditional
interpretation, i.e., it denotes the FOI at age a conditional on the frailty Z. The
corresponding conditional susceptible proportion is then given by

s(a|Z) = e−
∫ a

0 λ (t,Z)dt , (12.6)

which when combined with the proportional hazards assumption λ (a,Z) = Zλ0(a)
becomes

s(a|Z) = e−Z
∫ a

0 λ0(t)dt , (12.7)

where λ0 is the baseline FOI. The unconditional susceptible proportion can be
obtained by integrating out the random frailty Z using the Laplace transform L of Z:

s(a) = E(s(a|Z)) = L

(∫ a

0
λ0(t)dt

)

. (12.8)
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Since it is not possible to test the hypothesis that individual heterogeneity
is present by using data from one serological survey without assuming specific
functional forms for the baseline FOI, one mostly uses multisera data to estimate
the heterogeneity. Assume that we have multisera data on two infections such as the
rubella and mumps data from the UK and the VZV and B19 data from Belgium.
Moreover, assume that we have frailty distributions Zi, i =,1,2 for each infection,
we can then express the conditional and unconditional susceptible proportion (12.6)
by adding the necessary indices. We can than assume that (Z1,Z2) follows a
bivariate frailty distribution, such as, e.g., a bivariate gamma distribution, where
in addition to the baseline hazards and the heterogeneity parameters for both
infections, a correlation parameter describes the dependency between the two frailty
distributions and thus the dependency in acquisition of both infections. Assuming
conditional independence, we can formulate the conditional bivariate proportion
susceptible. Depending on the specific choice for the bivariate frailty distribution,
either an explicit expression can be given for the unconditional bivariate proportion
susceptible or numerical integration is required. In general, numerical integration
with respect to the frailty, or random-effects, distribution is not straightforward
but has become more accessible through the development of appropriate statistical
software and reformulating non-normal random effects, as done by Nelson et al.
(2006) and Liu and Yu (2007). However, here, we will focus on the gamma frailty
distribution as the most often used frailty distribution because of its explicit solution
for the unconditional bivariate proportion susceptible (see e.g. Hougaard 2000;
Duchateau and Janssen 2008), which owes to conjugacy properties.

Again as in the univariate case (12.8), explicit expressions for the baseline FOIs
are needed to be able to estimate the correlation between and heterogeneity for
both infections (Hens et al. 2009a). This is the basic reason to assume a perfect
correlation, which is tenable for similarly transmitted infections, since in that case
nonparametric estimates can be used to model the baseline FOI.

Thus, starting from (12.7), assuming a common gamma frailty distribution, and
using the Laplace transformation, the unconditional bivariate proportion susceptible
is given by

π00(a) = [s−1/θ
1 (a)+ s−1/θ

2 (a)− 1]−θ , (12.9)

where θ denotes the shape parameter of the gamma frailty distribution Z ∼
Γ (θ ,1/θ ). Since E(Z) = 1 and Var(Z) = 1/θ , θ is the parameter describing
the heterogeneity in acquisition of infection. The larger (smaller) θ , the smaller
(larger) heterogeneity and thus people being more alike (different) in the way they
acquire the infection. The joint probability of no previous infection (12.9) can be
reparameterized in terms of the marginal FOIs, Λi(a) =

∫ a
0 λi(s)ds, i = 1,2, and

the corresponding loglikelihood ∑a ∑1
i, j=0 ni ja log{πi j(a)}, with ni ja the observed

number of individuals in corresponding state πi j, i, j = 0,1 at age a and
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π00(a) =

(

e
Λ1(a)

θ + e
Λ2(a)

θ − 1

)−θ
,

π10(a) = e−Λ2(a)−π00(a),

π01(a) = e−Λ1(a)−π00(a),

π11(a) = 1−π10(a)−π01(a)−π00(a),

(12.10)

can then be maximized to estimate the different parameters (Farrington et al. 2001;
Sutton et al. 2006). The likelihood ratio test can be used to assess whether indeed
heterogeneity is present. Note that

lim
θ→∞

π00(t) = lim
θ→∞

(

e
Λ1(t)

θ + e
Λ2(t)

θ − 1

)−θ
= e−Λ1(t)−Λ2(t) = π0+(t)π+0(t),

(12.11)
indicating independence or since Var(Z) = 1/θ → 0 homogeneity in acquisition
of infection. Note that the discrepancies between the probabilities in (12.10) and
the corresponding probabilities decrease as age increases, indicating that departures
from independence are less evident in older individuals, a feature already observed
in Sect. 12.2.1.

Although we can use nonparametric methods such as smoothing splines to
model the marginal prevalences and thus the marginal FOIs, for convenience of
programming, we use the gamma function (see e.g. Farrington et al. 2001) as a
flexible parametric function for the FOI:

λ (a) = αaβ exp(−a/γ), (12.12)

where α,β , and γ are positive parameters. The following R-code shows how you can
code the multinomial loglikelihood corresponding to (12.10) while using the gamma
function with possibly different parameters for the FOI. To ensure positivity of the
different parameters, we transform each parameter using the exponential function.
The function mle is used to obtain the maximum likelihood estimates and standard
errors for the different parameters. Since the symmetry, typically assumed when
applying normal theory to the maximum likelihood estimate and standard errors
to obtain confidence intervals, for the shape parameter of the gamma frailty, is
untenable, we use the profile likelihood method (see Appendix B.3 for more details)
to obtain 95% profile likelihood confidence intervals. This is easily achieved in R
using the function confint.

# R-code for the gamma frailty model with gamma-shaped FOI
GF=function(alpha1eta=0.06,beta1eta=0.2,gamma1eta=0.005,
alpha2eta=0.06,beta2eta=0.2,gamma2eta=0.005,thetaeta=1){

(continued)
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Fig. 12.7 The marginal prevalence and FOI-curves for rubella (first panel—solid and dashed
line, respectively) and mumps (second panel—solid and dashed line, respectively) together with
the density of the gamma frailty distribution with shape parameter θ̂ML (third panel—solid line)
according to the model as proposed by Sutton et al. (2006) using a gamma function for the FOI
(Farrington et al. 2001)

(continued)
alpha1=exp(alpha1eta);beta1=exp(beta1eta);gamma1=exp(gamma1eta)
alpha2=exp(alpha2eta);beta2=exp(beta2eta);gamma2=exp(gamma2eta)
theta=exp(thetaeta)

Lambda1=alpha1*gamma1ˆ(beta1+1)

*gamma(beta1+1)*pgamma(a/gamma1,beta1+1)
Lambda2=alpha2*gamma2ˆ(beta2+1)

*gamma(beta2+1)*pgamma(a/gamma2,beta2+1)

p00=(exp(Lambda1/theta)+exp(Lambda2/theta)-1)ˆ(-theta)
p10=exp(-Lambda2)-p00
p01=exp(-Lambda1)-p00
p11=1-p00-p01-p10

return(-sum(PP*log(p11)+PN*log(p10)+NP*log(p01)+NN*log(p00)))
}

fit=mle(GF,start=list(rep(-1,7)))
summary(fit)
# The delta method to obtain ML-estimates and s.e.
cbind(exp(coef(fit)),sqrt(exp(coef(fit))ˆ2*diag(vcov(fit))))
# 95% profile likelihood confidence intervals
confint(fit)

Figure 12.7 shows the marginal prevalences and FOIs for rubella (first panel)
and mumps (second panel) in the UK. The 95% profile likelihood confidence
interval for θ equals (4.41,12.91), whereas the corresponding interval for the
variance parameter equals (0.077,0.227), indicating moderate, though significant,
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Table 12.1 Overview of
parameter estimates and 95%
confidence intervals for the
heterogeneity models applied
to rubella and mumps and
VZV and B19

Likelihood Profile likelihood

Parameter Estimate lcl ucl lcl ucl

Rubella and mumps

α1 0.12 0.11 0.14 0.11 0.14
β1 0.27 0.08 0.46 0.09 0.47
γ1 14.68 8.07 21.29 9.90 25.44
α2 0.20 0.17 0.23 0.17 0.23
β2 0.87 0.59 1.14 0.61 1.16
γ2 4.82 3.52 6.13 3.72 6.41
θ 6.75 3.35 10.14 4.41 12.91

VZV and B19

α1 0.31 0.25 0.37 0.25 0.38
β1 0.52 0.08 0.96 0.13 1.02
γ1 5.67 2.64 8.70 3.46 10.39
α2 0.04 0.02 0.07 0.03 0.07
β2 1.45 0.80 2.10 0.87 2.12
γ2 3.69 2.33 5.04 2.58 5.44
θ 7.74 1.41 14.07 4.11 31.86
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Fig. 12.8 The marginal prevalence and FOI curves for the varicella zoster virus (first panel—
solid and dashed line, respectively) and parvovirus B19 (second panel—solid and dashed line,
respectively) together with the density of the gamma frailty distribution with shape parameter θ̂ML

(third panel—solid line) according to the model as proposed by Sutton et al. (2006) using a gamma
function for the FOI (Farrington et al. 2001)

heterogeneity in the acquisition of rubella and mumps (p = 5.5× 10−6 based on
a 50:50-mixture of χ2(0) and χ2(1)). Note that the BDM gave a similar result
(see Sect. 12.2). The other parameter estimates together with their 95% confidence
intervals are listed in Table 12.1. Note that there is only a moderate difference
between the confidence intervals.

Figure 12.8 shows that the 95% profile likelihood confidence interval for θ equals
(4.11,31.86), whereas the corresponding interval for the variance parameter equals
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(0.031,0.243). Again, heterogeneity is shown to be significant (p = 0.0039),
confirming the results in Sect. 12.2. The parameter estimates together with their
95% confidence intervals are listed in Table 12.1. Here the differences between the
two likelihood methods to calculate the confidence intervals are somewhat more
outspoken than for rubella and mumps.

Note that, as before, the conditional and joint FOI can easily be derived using the
results outlined in this section.

12.4 Concluding Remarks

Whereas both the BDM and the heterogeneity model take into account the de-
pendency between observations from the same individual, the philosophy behind
these models differs. Using the odds ratio, the BDM studies the association in past
acquisition of two infections, whereas the dependency in the heterogeneity model
is ascribed to the heterogeneity in acquisition of infection which is assumed to be
identical for both infections when using the shared frailty approach. We refer to
Del Fava et al. (2012) for a more recent application of the BDM to model HCV
and HIV. The motivation for the latter originates from the underlying transmission
process. This transmission process will be the focus of Chaps. 14 and 15.



Chapter 13
Estimating Age-Time Dependent Prevalence and
Force of Infection from Serial Prevalence Data

The use of serological surveys is nowadays a common way to study the epidemiol-
ogy of many infections. In case a single cross-sectional survey is available, one
needs to assume that the disease is in steady state. While reasonable for some
infections, as illustrated in earlier chapters, this assumption might be untenable for
other situations. In this chapter we address methods to estimate age- and time-
specific prevalence and force of infection from a series of prevalence surveys.
Models such as the proportional hazards model of Nagelkerke et al. (1999) are
discussed and illustrated on hepatitis A and tuberculosis data.

13.1 Introduction

In previous chapters we mainly focused on a cross-sectional prevalence survey
while assuming time homogeneity (stationarity) and lifelong immunity, leading to a
simplified SIR model and equation

ds(a)
da

=−λ (a)s(a),

or equivalently

s(a) = exp

{

−
∫ a

0
λ (s)ds

}

. (13.1)

This stationarity assumption might be questionable or untenable. The force of
infection may change with time, may increase or decrease, as a consequence of
changes in the pathogen, in the treatment, outbreak occurrences, cohort effects,
etc. Assuming stationarity in such cases would lead to a substantial to severe age-
dependent bias in the estimation of the prevalence and the force of infection.

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 13,
© Springer Science+Business Media New York 2012
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Following Becker (1989) and Keiding (1991), the generalization of equation
(13.1) to an age- and time-specific prevalence and force of infection is given by
(for an individual of age a at time t):

s(a, t) = exp

{

−
∫ a

0
λ (s, t − a+ s)ds

}

. (13.2)

Ades and Nokes (1993); Marschner (1996), and Nagelkerke et al. (1999)
proposed several models to analyze serial prevalence data, varying from fully
parametric to semi-parametric. Ades and Nokes (1993) proposed a piecewise linear
model for the FOI as well as several parametric models, all assumed to be a product
of a time function and an age function, including exponential polynomial models
EPI/EPJ of the form

λ (a, t) = exp

(

μ0 +
I

∑
i=1

μia
i +

J

∑
j=1

θ jt
j

)

, I,J = 1,2, . . . .

Marschner (1996, 1997) subsequently proposed using a discrete time multiplicative
model and a penalized spline approach to relax assumptions typically made by using
parametric models. Nagelkerke et al. (1999) proposed a semiparametric model,
based on a proportional hazards assumption.

Using serial seroprevalence data, several authors addressed the issue of differen-
tial selection, i.e., scenarios where disease-related mortality affects the interpretation
of the observed serological profile (Ades and Medley 1994; Marschner 1997; Batter
et al. 1994).

We will focus on non-differential selection, a plausible assumption for most
childhood infections in developed countries and cast the aforementioned methods
within the generalized additive model (GAM) framework as already done by
Marschner (1997). We will illustrate these methods using hepatitis A data from
Flanders (see Sect. 4.1.1) and the tuberculosis (TB) data (as listed in Appendix II
of Nagelkerke et al. (1999) and Sect. 4.1.7).

For the TB data, on which we focus in the next sections, surveys of schoolchil-
dren were carried out in the period 1966–1973 in the Netherlands. These children
were tested by means of Tuberculin (PPD); indurations ≥ 10 mm were considered
evidence of previous infection with M. tuberculosis. For more details on these data,
we refer to Sutherland et al. (1984) and Nagelkerke et al. (1999).

Figure 13.1 shows the design of the serial survey. Note that the 1970-survey
covered the full range of ages, from 6 to 18 years of age, whereas earlier surveys
covered (part of) the older ages, and later surveys the opposite. Figure 13.2 shows
the TB data as a bubble plot (data for females in the left panel, for males in the
right panel), with age a on the horizontal axis, shifted year of birth x = b− 48 =
t − a− 48 on the vertical axis (1948 was the lowest year of birth), and with bubble
size proportional to the prevalence. The number of children in each (age × year of
birth) combination varies from 794 to 76,069, the proportion positives from 0.0009
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Fig. 13.2 The tuberculosis data: data on females in the left panel, on males in the right panel; age
and (shifted) year of birth bubble plot, with size of bubbles proportional to samples taken. Contours
represent the estimated prevalence according to model 6 (see Table 13.1)

to 0.0432. In the next sections we first introduce the proportional hazards model of
Nagelkerke et al. (1999) as a semiparametric and next as a nonparametric model.
We also consider a non-proportional hazards model and show that the proportional
hazards assumption can be rejected for the TB data. The different models are fitted to
the TB data using the gam function of the R package mgcv. The PAV algorithm was
applied to assure monotonicity in the age dimension. In Sect. 13.5 the hepatitis A
data are analyzed and the use of monotone penalized P-splines (see also Chap. 9)
within the maximization–maximization (MM) algorithm of Nagelkerke et al. (1999)
is illustrated using R code in Sect. 13.6.
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13.2 Proportional Hazards Model

Nagelkerke et al. (1999) addressed the issue of estimating age- and time-specific
FOI under the assumption that the FOI changes exponentially with time, but without
any assumption about the age dependency. They showed that these assumptions lead
to a proportional hazards semiparametric model, as introduced in the next section.

13.2.1 Semiparametric Model

Nagelkerke et al. (1999) assumed an exponential decline (or increase) in the force
of infection, represented by the following identity (for two calendar times t1 and t2):

λ (a, t2) = exp(β (t2 − t1))λ (a, t1). (13.3)

Define λb(a) as the age-specific force of infection experienced by a cohort born
at calendar time b. As a cohort born at calendar time b has age a at calendar time
a+ b, we have that

λb(a) = λ (a,a+ b).

The proportional hazards assumption (13.3) then translates into

λb(a) = exp(β (b− b0))λb0(a), (13.4)

where λb0(a) = λ (a,a+ b0) is the hazard at the baseline year of birth b0.
Using an iterative MM algorithm, Nagelkerke et al. (1999) estimate λb(a) in

a semiparametric way, with a nonparametric isotonic stepwise estimate for the
baseline hazard λb0(a) and a parametric proportionality factor exp(β (b−b0)). They
also formulate the parametric part as function of other covariates next to year of birth
such as gender. In the following section we reformulate this model as a GAM model.

13.2.2 Non-parametric Model

The semiparametric model (13.4) can be reformulated as a fully nonparametric
proportional hazards model by writing

λ (a, t2) = exp(g(t2 − t1))λ (a, t1), (13.5)

where g(t) is a smooth function with the constraint that g(0) = 0.
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Substituting (13.5) in expression (13.2) leads to

sb(a) = s(a,b+ a) = exp{exp(g(b− b0)) logsb0(a)}, (13.6)

where, with λb0(a) = λ (a,b0 + a),

sb0(a) = exp{−
∫ a

0
λb0(u)du}.

With πb(a) = 1− sb(a) the proportion subjects infected at age a or before, from
the cohort with year of birth b, (13.6) can be written as a GAM for binary data with
complementary log–log link function

log(− log(1−πb(a))) = f1(a)+ f2(b), (13.7)

where
f2(b) = g(b− b0),

and
f1(a) = log(− log(xb0(a))).

The corresponding force of infection for this cohort then equals

λb(a) =
π ′

b(a)

1−πb(a)
= exp( f2(b))λb0(a), (13.8)

with

λb0(a) =
π ′

b0
(a)

1−πb0(a)
=

d
da

exp( f1(a)). (13.9)

Equation (13.7) shows that the proportional hazards model translates into an additive
cloglog model for the seroprevalence status. This GAM approach can be generalized
to include other subject-specific characteristics, net to year of birth, such as gender.

13.2.3 Example I: Tuberculosis

The first six rows of Table 13.1 show the effective degrees of freedom (edf),
Akaike’s information criterion (AIC), and Schwarz’s Bayesian criterion (BIC) for
fully parametric (models 1–3) and semiparametric models (model 4–6). Models
1–3 correspond to Ades and Nokes’s exponential polynomial model of the type
EP1/EP1; models 4–6 are analogous to those of Nagelkerke et al. (1999) using a
spline smoother for the base hazard function λb0(a) (instead of the isotonic step
function). The PPD binary response data were fit using the cloglog link and with
thin plate regression splines as smoother (with appropriate smoothness for each
applicable model term selected by GCV/UBRE, the default of the gam function),
using R code such as
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Table 13.1 The tuberculosis data. Results for different models: parametric models (model 1–
3), semiparametric models (models 4–6), nonparametric models (models 7–9), non-proportional
hazards models (models 10–12)

Model components edf AIC rank BIC rank

Model 1: a+b 3 1,242.271 12 1,250.372 12
Model 2: a+b+g 4 1,149.267 9 1,160.069 8
Model 3: a+b+g+(b×g) 5 1,120.103 8 1,133.605 3
Model 4: s(a)+b 10.65 1,202.249 11 1,231.013 11
Model 5: s(a)+b+g 11.65 1,114.943 7 1,146.388 6
Model 6: s(a)+b+g+(b×g) 12.65 1,113.547 6 1,147.698 7

Model 7: s(a)+ s(b) 18.48 1,177.402 10 1,227.323 10
Model 8: s(a)+ s(b)+g 19.48 1,089.939 5 1,142.553 5
Model 9: s(a)+ s(b)+g+(s(b)×g) 22.20 1,075.008 3 1,134.950 4

Model 10: s(a,b) 28.20 1,089.034 4 1,165.188 9
Model 11: s(a,b)+g 29.20 1,001.643 2 1,080.475 2
Model 12: s(a,b)+g+(s(a,b)×g) 33.54 987.776 1 1,078.342 1

The complexity of the model is reflected by its effective degrees of freedom (edf)
Note that the notation s in this table refers to the specification of a smooth term in the mgcv-library
in R and that s(a) and s(b) imply two different smoothers

# R-code Ades and Nokes (1993) exponential polynomial model
# showing the edf, AIC and BIC value as depicted in the table
tbdata=read.table("tb.dat",header=T)
attach(tbdata)
a=AGE
x=BRTHYR-min(BRTHYR)
g=SEX
ts=a+BRTHYR
s=PPD
p=s/N
f=N-s
y=cbind(s,f)

# Fit of Model 2 as in table, x represents shifted year of
birth gamfit2=gam(y˜a+x+g,family=binomial(link="cloglog"))
c(sum(gamfit2$edf),AIC(gamfit2),AIC(gamfit2, k = log(nrow(y))))

# R-code Nagelkerke et al. (1999) type of model based on
splines

# Fit of Model 6 as in table, x represents shifted year of
birth

gamfit6=gam(y˜s(a)+x*g,family=binomial(link="cloglog"))
c(sum(gamfit6$edf),AIC(gamfit6),AIC(gamfit6, k = log(nrow(y))))

According to AIC, model 6 is the best choice within the family of models 1–6;
BIC however indicates model 3 to be the best choice. Figure 13.2 shows contour
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curves for model 6 (for females in the left panel and for males in the right panel).
These plots were produced by the R-code

# contour plots from model 6 for females (g=0) and males (g=1)
win.graph()
gamfit6=gam(y˜s(a)+x*g,family=binomial(link="cloglog"))
vis.gam(gamfit6,view=c("a","x"),cond=list(g=0),type="response",
plot.type="contour",color="bw",too.far=0.10,main="prevalence")
points(a[g==0],x[g==0],cex=100*p[g==0])
vis.gam(gamfit6,view=c("a","x"),cond=list(g=1),type="response",
plot.type="contour",color="bw",too.far=0.10)
points(a[g==1],x[g==1],cex=100*p[g==1])

Rows 7–9 in Table 13.1 show edf, AIC, and BIC values for fully nonparametric
GAM models based on thin plate regression splines for age a and year of birth b,
and again with cloglog link function. According to AIC, model 9 is now the overall
best choice; BIC however still indicates the simpler model 3 to be the best one.

In the next section we extend our family of candidate models with three further
models, which are no longer proportional hazards models.

13.3 Non-proportional Hazards Model

A model containing the interaction of age a with year of birth b (or gender) leads to
a non-proportional hazards model. Taking the GLM model with a two-dimensional
smoother

log(− log(1−πb(a))) = f (a,b),

some straightforward calculus shows that

λb(a)
λb0(a)

= {exp( f (a,b)− f (a,0))}
{
(∂ f (a,b)/∂a)
(∂ f (a,0)/∂a)

}

. (13.10)

The right-hand side of (13.10) is no longer independent of age a. Note that it reduces
to (13.8) in case f (a,b)≡ f1(a)+ f2(b).

Comparing a model with a (parametric or nonparametric) (age × year of birth)
interaction term with the corresponding model with main effects only allows one to
test the proportional hazards assumption. This is illustrated on the TB data in the
next section.

13.4 The Tuberculosis Data Revisited

Rows 10–12 in Table 13.1 show edf, AIC, and BIC values for GAM cloglog-models
with a two-dimensional smoother s(a,b) and extended with two models including
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Fig. 13.3 The tuberculosis data: data on females in the left panel, on males in the right panel; age
and (shifted) year of birth bubble plot, with size of bubbles proportional to samples taken. Contours
represent the estimated prevalence according to model 12 (see Table 13.1)

a gender effect g. According to both criteria, model 12 is now the best model.
Consequently the proportional hazards assumption can be rejected, as confirmed by
an analysis-of-deviance using the chi-squared test (as considered most appropriate
for binomial and Poisson models).

#contrasting best additive model with best non-additive model
#-----------------------------------------------------------#
bgamfit=gam(y˜s(a,x)+g+s(a,x,by=g),family=binomial

(link="cloglog"))
b1gamfit=gam(y˜s(a)+x*g,family=binomial(link="cloglog"))
anova(b1gamfit,bgamfit,test="Chisq")

# OUTPUT
Analysis of Deviance Table

Model 1: y ˜ s(a) + x * g
Model 2: y ˜ s(a, x) + g + s(a, x, by = g)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 97.353 312.09
2 76.463 144.54 20.890 167.55 6.801e-25

Figure 13.3 shows the contour curves from model 12, separately for females
and males. Comparing these curves with those of Fig. 13.2 indicates that model 12
mainly deviates from model 6 within the age range 6–14.

Figure 13.4 shows prevalence data and fitted prevalence curves, for each year
in the study period 1966–1973, and for both gender groups separately (solid line
for males, dashed line for females). The horizontal gray lines in corresponding line
types indicate the estimates at the age of 12 (common to all study years). The curves
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Fig. 13.4 The tuberculosis data: prevalence data on females (open circle) and males (filled circle)
as a function of age, for the different survey years 1966–1973, together with the fitted prevalence
curves from model 12 (see Table 13.1). Dashed lines: females, solid lines: males

seem to fit the prevalence data quite well. There are a few interesting observations
from these plots, as also summarized indicatively by the horizontal dashed lines:
(1) the prevalence decreases over the years from above 0.01 to below 0.01, (2) the
difference in gender (higher for females) seems to disappear over the consecutive
years.

Figures 13.5 and 13.6 show for each cohort (1948 ≤ b ≤ 1966) prevalence data,
the fitted prevalence curves and the fitted force of infection curves, (lower curve in
each panel). The PAV algorithm was applied to monotonize the prevalence curves,
as a function of age a. Again the fitted prevalence curves seem to fit the data well.
In general, the FOI curves indicate a maximum at the age of about 13 and 14, a bit
varying over the different cohorts. Of course for the oldest cohorts, as well as for
the youngest ones, there is a limited amount of direct information in the data.
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Fig. 13.5 The tuberculosis data: prevalence data on females (open circle) and males (filled circle)
as a function of age, for the different cohorts (year of birth from 1948 to 1958, except for 1950
and 1951 as no data are available for these cohorts), together with the fitted prevalence curves and
fitted force of infection curves from model 12 (see Table 13.1). Dashed lines: females, solid lines:
males

13.5 Example II: Hepatitis A

The hepatitis A dataset is an interesting borderline situation, as it contains only two
survey years 1993 and 2002 (see Sect. 4.1.1 for more details). The data for both
years are shown in Fig. 13.7 together with fitted prevalence curves. Table 13.2 gives
an overview of complexity and goodness of fit of five models: one parametric model
(model 1), two semiparametric models (models 2 and 3), and two nonparametric
models (models 4 and 5). Model 5 is a non-proportional hazards model. According
to this table, and by both criteria AIC and BIC, model 4 is selected as the best
model. Figure 13.7 shows the fitted prevalence curves of this best model as solid
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Fig. 13.6 The tuberculosis data: prevalence data on females (open circle) and males (filled circle)
as a function of age, for the different cohorts (year of birth from 1959 to 1966), together with the
fitted prevalence curves and fitted force of infection curves from model 12 (see Table 13.1). Dashed
lines: females; solid lines: males

lines, overlaid with the fits of model 2 (a too simple model, as dashed lines), and
with the fits of model 5 (a needless complicated model, as dotted lines).

# Testing for the proportional hazards assumption
#-----------------------------------------------#
anova(gamfit4,gamfit5,test="Chisq")

# OUTPUT
Analysis of Deviance Table

(continued)
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Fig. 13.7 The Belgian hepatitis A data. Bubble plot with fitted prevalence curves as a function of
age, for each survey year, according to best model 4 (solid line), the too simple model 2 (dashed
line), and the too complicated model 5 (dotted line)

Table 13.2 Models for the hepatitis A data from Flanders

Model components edf AIC rank BIC rank

Model 1: a+b 3 6,062.03 5 6,082.07 5
Model 2: s(a)+b 10.03 5,976.90 4 6,043.94 3
Model 3: a+ s(b) 10.55 5,958.68 3 6,029.17 2
Model 4: s(a)+ s(b) 13.85 5,934.30 1 6,026.83 1
Model 5: s(a,b) 19.04 5,936.16 2 6,063.34 4

Results for different models: parametric model 1, semi-parametric models 2 and 3,
nonparametric models 4 and 5

(continued)
Model 1: y ˜ s(a) + s(x)
Model 2: y ˜ s(a, x)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 5873.1493 5906.6
2 5867.9628 5898.1 5.1865 8.5 0.1
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Fig. 13.8 The hepatitis A data. Bubble plots of the data (black for 1993, gray for 2002), with fitted
cohort-specific prevalence curves as a function of age (left panel) and cohort-specific FOI curves
as a function of age, both according to the best model 4. The solid black part of each curve refers to
that region of the age range in which data are available; the dotted part of any curve is extrapolated
from the model. The gray FOI curve in the right panel shows the baseline FOI λb0(a) from (13.9)
for an assumed b0 = 1914

Contrary to the TB data, the proportional hazards assumption seems to hold,
as model 4 is selected above model 5. Also an analysis-of-deviance (p-value=0.1,
see R output) confirms that there is no convincing evidence in the data to reject
the proportional hazards assumption. One has to be cautious however with this
hypothesis test and with the model selection procedure, as these are based on only
data from two survey times, the minimum number to detect any time heterogeneity.
Especially when extrapolating and considering concepts as proportionality of the
hazards is a form of extrapolation, one has to be very careful. This latter concern is
also visualized in both panels of Fig. 13.8. It shows fitted cohort-specific prevalence
curves as a function of age (left panel) and cohort-specific FOI curves as a function
of age (right panel), both according to the best model 4. The solid black part of each
prevalence curve refers to that region of the age range in which data are available;
the dotted part of any curve is extrapolated from the model. As shown by (13.7) for
the nonparametric proportional hazards model, the cohort-specific age-dependent
prevalence curves are parallel on the complementary log–log scale. Although the
p-value of 0.1 indicates that the available data show no convincing evidence against
the proportional hazards assumption, it should be repeatedly stressed that the model
is only supported by the data on a small diagonal band in the age × cohort plane (see
Fig. 13.9). The solid part of the curves does confirm that these parts of the model are
supported by the corresponding part of the data. This discussion opens an interesting
avenue for further research, namely how to design serial prevalence studies (number
of survey times, sample size for each survey).

A similar story holds for the FOI curves in the right panel. The gray FOI curve in
the right panel shows the baseline FOI λb0(a) from (13.9) for an assumed b0 = 1914.
The black (dotted) curves result from the gray curve by the proportionality factor
exp(g(b− b0)) in (13.8).
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As a final exercise, we briefly discuss the issue of monotonicity in the next
section. Up till now the PAV algorithm was used to assure that cohort-specific
prevalence curves are monotone. An alternative and more direct way is to use the
penalized spline methodology (see Chap. 9).

13.6 Monotonicity

In previous sections the PAV algorithms was applied to guarantee that cohort-
specific prevalence estimates are nondecreasing in age. A more direct way is to fit
the splines with an additional penalization against non-monotonicity. Although this
is a more direct approach, it turns out to be more computationally involving as the
fitting of both dimensions (age & birth of year) cannot be performed simultaneously
in a straightforward way. As discussed in Nagelkerke et al. (1999), a simple but
computationally expensive way is to alternate in (13.7) between (i) the estimation
of f1(a) for given b and (ii) the estimation of f2(b) for given a, and (re)iterate until
convergence has occurred (Nagelkerke et al. (1999) call this the MM algorithm in
analogy with the EM algorithm). In our approach here, and in both steps, a penalized
spline is used with penalizing for smoothness in the age direction (step (i)) or the
birth of year direction (step (ii)). A second additional penalization is applied in step
(i) in order to guarantee the cohort-specific prevalence curve to be a nondecreasing
function of age.

The application of the R function additive.mpspline.fitter in both steps of the
MM-algorithm to the hepatitis A data resulted in Fig. 13.10. The upper panels show
that the fitted prevalence curves for both survey years are fitting well to the data.
These curves are also close to the ones in Fig. 13.7. The dashed lines show pointwise
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Fig. 13.10 The hepatitis A data. Fitted prevalence curves for survey year 1993 (left upper panel)
and year 2002 (right upper panel). The proportion immunized between 1993 and 2002 is shown
by year of birth (left lower panel) or by age in 1993 (right lower panel). Dashed curves represent
pointwise 95% bootstrap confidence intervals

95% bootstrap confidence intervals. The lower panels show the proportion infected
between 1993 and 2002 by year of birth (left) or by age in 1993 (right), again
with bootstrap confidence intervals as dashed lines. Although this difference is
more closely resembling the incidence rather than the FOI, the right lower panel
qualitatively resembles the baseline FOI in the right panel of Fig. 13.8.

13.7 Concluding Remarks

In the last two chapters we discussed the modeling setting in which more than one
serological sample is available. In Chap. 12 we modeled multivariate serological
data and we focused on modeling the association between the two infections and
individual heterogeneity in the population. In this chapter we discussed the setting
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in which several serological samples, for the same infection, sampled from the same
population at different time points, are available. In this chapter we focused on
modeling age-time trends (effects) of the transmission parameters. The topic of age-
time effects on the transmission process will be discussed again in Chap. 16 in the
context of the SIR model.



Part V
Estimating Mixing Patterns and the Basic

Reproduction Number

The force of infection reflects the degree of contact with potential for transmission
between susceptible and infected individuals. The mathematical relation between
the force of infection and effective contact patterns is known as the mass action
principle which yields the necessary information to estimate transmission rates
from serological data. The traditional approach by Anderson and May (1991)
is introduced and discussed in Chap. 14 whereas a recent approach based on
social contact data is discussed in Chap. 15. We show how to estimate the basic
reproduction number based on these mixing patterns.



Chapter 14
Who Acquires Infection from Whom?
The Traditional Approach

As mentioned in Sect. 3.5.2, the transmission process of an infection is governed
by the mixing patterns in the population. In dynamic models of infectious disease
transmission, typically various mixing patterns are imposed by the configuration
of the so-called Who-Acquires-Infection-From-Whom matrix (WAIFW). In this
chapter, we briefly summarize how transmission parameters can be estimated from
serological data. We elaborate on the traditional approach as described by Anderson
and May (1991) using the techniques of Farrington and Whitaker (2005).

14.1 Who Acquires Infection from Whom?

If mean duration of infectiousness D is short compared to the timescale on which
transmission and mortality rate vary, the force of infection (FOI) λ (a) can be
approximated by (Anderson and May 1991):

λ (a) = D
∫ ∞

0
β (a,a′)λ (a′)S(a′)da′, (14.1)

where β (a,a′) denotes the transmission rate, i.e., the per capita rate at which an
individual of age a′ makes an effective contact with a person of age a per year, and
S(a′) denotes the number of susceptible persons of age a′. Formula (14.1) reflects
the so-called “mass action principle”, which implicitly assumes that infectious and
susceptible individuals mix completely with each other and move randomly within
the population. Note that (14.1) assumes that we are in endemic equilibrium.

When interest lies in the estimation of the age-dependent transmission rates, one
can use the methodology described by Anderson and May (1991). They start from
a discretization of (14.1) into J age categories yielding a system of J equations with
J × J unknowns since β (a,a′) turns into an unknown J × J matrix. These authors
propose to, based on imposing different mixing patterns on this so-called WAIFW

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 14,
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matrix hereby constraining the number of distinct elements for identifiability
reasons, estimate the parameters from serological data.

Many authors, among whom among whom Greenhalgh and Dietz (1994),
Farrington et al. (2001), and Van Effelterre et al. (2009) have elaborated on
this approach of Anderson and May (1991). However, estimates of important
epidemiological parameters such as the basic reproduction number R0 turn out to
be sensitive to the choice of the imposed mixing pattern (Greenhalgh and Dietz
1994).

An alternative method was proposed by Farrington and Whitaker (2005), where
contact rates are modeled as a continuous contact surface and estimated from
serological data. Clearly, both methods involve a somewhat ad hoc choice, namely
the structure for the WAIFW-matrix and the parametric model for the contact
surface.

14.2 Estimation from Serological Data

Setting the scene is done using a compartmental MSIR-model to describe the
transmission dynamics (see Chap. 3). By doing so, we explicitly take into account
the fact that, in a first phase, newborns are protected by maternal antibodies and do
not take part in the transmission process. Assuming a closed population of size N
and that we are in demographic and endemic equilibrium, the analytical solution
for the proportion susceptibles of the corresponding set of differential equations is
given by

s(a) =

[∫ a

0
γ(u)exp

(∫ u

0
λ (v)− γ(v)dv

)

du

]

exp

(

−
∫ a

0
λ (u)du

)

. (14.2)

Without loss of generality, we assume a prompt loss of maternal immunity at
age A:

m(a) = exp

(

−
∫ a

0
γ(u)du

)

=

{
1, if a ≤ A
0, if a > A,

(14.3)

meaning that all newborns are protected by maternal antibodies until a certain age A
after which they instantaneously move to the susceptible class. We will refer to this
assumption as the Type I maternal antibody assumption. Under this assumption, the
proportion of susceptibles becomes

s(a) = exp

(

−
∫ a

A
λ (u)du

)

, if a > A, (14.4)

where λ (a) denotes the age-specific FOI, and s(a) = 0 if a ≤ A.
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Considering a large population of fixed size N with age-specific mortality rate
μ(a) and with age density

L−1 exp

{

−
∫ a

0
μ(u)du

}

, (14.5)

where L is the life expectancy, S(a′) in (14.1) can be rewritten as S(a′) =N/L ·s(a′) ·
m(a′), where s(a′) and m(a′) = exp{−∫ a′

0 μ(t)dt} denote the proportion susceptible
and the survival function at age a′, respectively.

We illustrate how the survival function and mortality rate can be estimated from
data on mortality from Belgium anno 2006. The following R-code displays how the
survival function is obtained from data on the number of deaths ND per integer age
value AGE and the population size PS. The model fitted here is a Poisson model
with log link and offset term. To ensure flexibility we used a thin plate regression
spline available through the gam-function in the R-package mgcv (see Sect. 8.2.1).

library(mgcv)
demfit=gam(ND˜s(AGE),offset=log(PS),family="poisson",

link="log")
muy=predict(demfit,type="response")
My=exp(-cumsum(muy))
L=sum(My)

Figure 14.1 shows the survival function by age (solid line) and the mortality
rate (dashed line) together with the observed death rate for Belgium. The mean life
expectancy was estimated at 78.8 years.

Given the assumption of instantaneous loss of maternal immunity at age A, we
proceed by following Diekmann et al. (1990); Farrington et al. (2001) and rewrite
(14.1) as

λ (a) =
ND
L

∫ ∞

A
β (a,a′)λ (a′)s(a′)m(a′)da′, (14.6)

for a ≥ A. Assuming a short infectious period, the basic reproduction number R0,
i.e., the dominant eigenvalue of the next generation operator, can be related to
β (a,a′) (Farrington et al. 2001): R0�(a′) = ND/L

∫ +∞
A �(a)m(a)β (a,a′)da, where

�(a) denotes the leading left eigenfunction of ND/Lm(a)β (a,a′). Multiplying both
sides with λ (a′)s(a′)m(a′), integrating over a′, swapping the integration order, and
using (14.6) result in the following expression for R0:

R0 =

∫ ∞
A �(a)λ (a)m(a)da

∫ ∞
A �(a)λ (a)s(a)m(a)da

. (14.7)

Equation (14.7) shows that, given λ (a), R0 can only be estimated when �(a) is
identifiable. However, �(a) depends on β (a,a′) which is unknown unless further
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Fig. 14.1 The estimated
survival function (solid line)
and mortality rate (dashed
line) with observed death rate
(dots) for Belgium anno 2006

assumptions are made. The most restrictive assumption is that of homogeneous
mixing where β (a,a′) = β ∀a,a′. In that case, (14.7) simplifies to L/A∗ where L
is the life expectancy since loss of maternal immunity and A∗ is the average time
to removal by infection or death since loss of maternal immunity. When assuming
separable mixing, ∃ u,v : β (a,a′)= u(a)v(a′), the left eigenfunction l(a′) is approxi-
mately proportional to v(a′) and λ (a) is proportional to u(a). This assumption is not
sufficient for R0 to be identifiable and the assumption of proportional mixing is often
imposed: ∃ u : β (a,a′) = u(a)u(a′). Given the latter assumption (14.7) simplifies
to (Dietz and Schenzle 1985; Hethcote and Van Ark 1987):

R0 ≈
∫ ∞

A λ (a)2m(a)da
∫ ∞

A λ (a)2s(a)m(a)da
. (14.8)

In case β (a,a′) ∝ u(a) this equation simplifies by replacing λ (a)2 by λ (a).

Parvovirus B19 in Belgium

We illustrate the aforementioned methods by calculating R0 for parvovirus B19
from Belgium (see Sect. 4.1.5). When homogeneous mixing is assumed R0 = 4.31
with 95% bootstrap-based confidence interval (4.09,4.52); further assuming
proportional mixing and susceptibility-dependent mixing using a gamma-shaped
FOI (see Sect. 12.3) the resulting estimates decrease to 1.72(1.66,1.78) and
1.93(1.87,2.01), respectively. Note that the aforementioned estimates depend on
the assumed parametric shape of the FOI. Indeed when using the monotonic P-
spline estimates from Chap. 9, the resulting estimates of R0 are 1.77(1.69,2.01) and
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2.06(1.88,2.33) for proportionate and susceptible-specific mixing, respectively.
The assumption of separable and thus also proportionate mixing seems hardly
tenable for parvovirus B19 which is believed to be transmitted through similar
routes as the varicella zoster virus (Hens et al. 2008b). As a result, more general
mixing patterns should be envisaged.

14.2.1 The Discretized Mass Action Principle

As stated before, for general mixing patterns, estimating transmission rates using
seroprevalence data cannot be done analytically since the integral equation (14.1)
has no closed form solution. However, it is possible to solve this numerically
by turning to a discrete age framework, assuming a constant FOI in each age
class. Denote the first age interval (a[1],a[2]) and the jth age interval [a[ j],a[ j+1]),
j = 2, . . . ,J, where a[1] = A and a[J+1] = L. Making use of (14.4), the prevalence
of immune individuals of age a in the jth age interval is now well approximated
by (Anderson and May 1991):

π(a) = 1− exp

(

−
j−1

∑
k=1

λk(a[k+1]− a[k])−λ j(a− a[ j])

)

. (14.9)

Note that the prevalence of immune individuals is allowed to vary continuously
with age and that we do not summarize the binary seroprevalence outcomes into a
proportion per age class. Further, the FOI for age class i equals (i = 1, . . . ,J):

λi =
ND
L

J

∑
j=1

βi j
λ j

λ j + μ j

[

exp

(

−
j−1

∑
k=1

(λk + μk)(a[k+1]− a[k])

)

−exp

(

−
j

∑
k=1

(λk + μk)(a[k+1]− a[k])

)]

, (14.10)

where D denotes the mean duration of infectiousness and βi j the per capita rate at
which an individual of age class j makes an effective contact with a person of age
class i, per year. The transmission rates βi j make up a J × J matrix, the so-called
WAIFW matrix.

Given the WAIFW matrix, following Diekmann et al. (1990), the basic repro-
duction number R0 can be calculated as the dominant eigenvalue of the J × J next
generation matrix with elements (i, j = 1, . . . ,J):

D

(
∫ a[i+1]

a[i]
N(a)da

)

βi j. (14.11)

In case of Type I maternal antibodies, R0 represents the number of secondary cases
that are produced by a typical infected person during his or her entire period of
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infectiousness, when introduced into an entirely susceptible population with the
exception of newborns who are passively immune through maternal antibodies.

14.2.2 Imposing Mixing Patterns: The Traditional Approach
of Anderson and May (1991)

The traditional approach of Anderson and May (1991) imposes different mixing
patterns on the WAIFW matrix in order to make the system (14.10) of J equations
with J × J unknown parameters identifiable. Typically, J is chosen as small as 3–6
where the choice of the different age classes corresponds to mixing groups in the
population as often largely inspired by the schooling system. Specific structures,
often used in literature, are homogeneous mixing, proportional mixing, separable
mixing (see Sect. 14.2), and the assumption of symmetry (β (a,a′) = β (a′,a)). Note
that the latter two mixing assumptions require additional restrictions to be made. As
illustrated by Greenhalgh and Dietz (1994), the structure imposed on the WAIFW
matrix has a high impact on the estimate of R0.

In this section, we considered the following WAIFW structures for six age
classes. These structures are based on prior knowledge of social mixing behavior
and were used before to estimate R0 for VZV (Anderson and May 1991; Van
Effelterre et al. 2009; Ogunjimi et al. 2009; Goeyvaerts et al. 2010):

W1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 β6 β6 β6 β6 β6

β6 β2 β6 β6 β6 β6

β6 β6 β3 β6 β6 β6

β6 β6 β6 β4 β6 β6

β6 β6 β6 β6 β5 β6

β6 β6 β6 β6 β6 β6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 β1 β3 β4 β5 β6

β1 β2 β3 β4 β5 β6

β3 β3 β3 β4 β5 β6

β4 β4 β4 β4 β5 β6

β5 β5 β5 β5 β5 β6

β6 β6 β6 β6 β6 β6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

W3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 β1 β1 β4 β5 β6

β1 β2 β3 β4 β5 β6

β1 β3 β3 β4 β5 β6

β4 β4 β4 β4 β5 β6

β5 β5 β5 β5 β5 β6

β6 β6 β6 β6 β6 β6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 β1 β1 β1 β1 β1

β2 β2 β2 β2 β2 β2

β3 β3 β3 β3 β3 β3

β4 β4 β4 β4 β4 β4

β5 β5 β5 β5 β5 β5

β6 β6 β6 β6 β6 β6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14.12)

W5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 β6 β6 β6 β6 β6

β6 β2 β6 β6 β6 β6

β6 β6 β3 β6 β6 β6

β6 β6 β6 β4 β6 β6

β6 β6 β6 β6 β5 β6

β6 β6 β6 β6 β6 β5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 0 0 0 0 0
0 β2 0 0 0 0
0 0 β3 0 0 0
0 0 0 β4 0 0
0 0 0 0 β5 0
0 0 0 0 0 β6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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In order to estimate the transmission parameters β = (β1, . . . ,β6)
T from sero-

prevalence data, we follow Anderson and Aitkin (1985) and Anderson and May
(1991). Since (14.10) constitutes a system of six equations and six unknowns, there
exists a unique matrix D(λ ) such that (14.10) can be rewritten as λ = D(λ )β .
Conditional on D(λ ) being invertible, the parameter vector β can be estimated by

fitting a piecewise constant FOI to the seroprevalence data and using β̂ = D(λ̂ )
−1

λ̂ .

Whenever D(λ̂ )
−1

λ̂ ≥ 0, one says that W has a regular configuration for the data.
The deviance is identical for all such configurations. For non-regular configurations

estimation is constrained by the condition D(λ̂)
−1

λ̂ ≥ 0.
As an example, we now derive D(λ ) for W3. Denote

Ψj =
ND
L

λ j

λ j + μ j

[

exp

(

−
j−1

∑
k=1

(λk + μk)(a[k+1]− a[k])

)

−exp

(

−
j

∑
k=1

(λk + μk)(a[k+1]− a[k])

)]

, (14.13)

for j = 1, . . . ,J, then λ = D(λ )β can be rewritten as λ = WΨT . More specifically,
given W3, D(λ ) looks like

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑3
j=1Ψj 0 0 Ψ4 Ψ5 Ψ6

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Ψ1 0 Ψ2 +Ψ3 Ψ4 Ψ5 Ψ6

0 0 0 ∑4
j=1Ψj Ψ5 Ψ6

0 0 0 0 ∑5
j=1Ψj Ψ6

0 0 0 0 0 ∑6
j=1Ψj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14.14)

Similarly, D(λ ) can be derived for the other WAIFW structures.
Until now, the FOI was assumed constant in each of the J age categories.

However, a more general approach could be envisaged. Van Effelterre et al. (2009)
suggested to use fractional polynomials to model the age-dependent seropreva-
lence (see 6.2) while assuming Type I mortality. Given the linear predictor η =
ηm(a, β , p) defined in (6.3) and assuming Type I mortality, Ψj, j = 1, . . . ,J, can be
written as

Ψj =
(1+ eη(a0))(eη(a j)− eη(a j−1))

(1+ eη(a j−1))(1+ eη(a j))
. (14.15)

Note that obtaining and explicit expression is not always possible (for instance be-
cause of the untenable assumption of Type I mortality) and numerical approximation
has to be used.
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Numerical Approximation

Since the discretized mass action principle as given by (14.10) can be written down
for any number of age classes J, one could opt to use one-year age- intervals yielding
a numerical method to solve the mass action principle for all continuous functions
λ , μ , and β as long as the functional form for β ensures identifiability.

Parvovirus B19 in Belgium

We illustrate the WAIFW approach on the parvovirus B19 data from Belgium (see
Sect. 4.1.5). We use the estimated mortality function for Belgium anno 2006 and
corresponding sample size 10,511,382, the mean duration of infectiousness D =
6/365 for B19 and assume Type I maternal antibodies with age A = 0.5. Six age
classes following the schooling system in Belgium were chosen (Van Effelterre et al.
2009): (0.5,2), [2,6), [6,12), [12,19), [19,31), [31,+∞).

The R-code hereunder fits a piecewise constant FOI while ensuring a positive
FOI. The function pcwrate.fitter uses as input a vector of binary values (y.var)
denoting past infection by 1 and 0 otherwise and the corresponding vector of age
values (x.var). Alternatively, the number of individuals n.var, their age x.var, and
the number of individuals with past infection y.var can be used as input values too.
The following ML-estimate for λ was obtained:

λ̂
ML

= (0.0576 0.0878 0.1138 0.0359 0.0000 0.0137)T .

Figure 14.2 shows the fitted prevalence and FOI curves together with the observed
seroprevalence.

These ML-estimates give rise to the estimated WAIFW matrices as long as they
are regular. The assessment of regularity as well as invertibility of D(λ̂ ) based on
the ML-estimate for the FOI is done using the R-code waifw.6parms. If regular,
waifw.6parms determines the estimated WAIFW matrices and corresponding R0

estimate. Note that muhat is the piecewise constant mortality rate, Lmax is the
maximum age, N is the population size, and D is the mean infectious period.

# R-code
# Function code to fit WAIFW structures (see book’s website)
foi.fit=pcwrate.fitter(y.var=y,x.var=a,breaks=breakpoints)
foihat=foi.fit$ratevec
waifw=waifw.6parms(foihat=foihat,muhat=muhat,breaks=breakpoints,

N=N,D=D,Lmax=Lmax)
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Fig. 14.2 The piecewise constant FOI and corresponding prevalence for Parvovirus B19 in
Belgium. The dots are the observed seroprevalence per integer age value with size proportional
to the number of samples taken

From the six WAIFW matrices in Sect. 14.2.2, W4 and W5 were found to be
regular whereas W2 and W3 were irregular and therefore fitted under constrained

optimization ensuring D(λ̂ )
−1

λ̂ ≥ 0. For W1 and W6, D(λ̂ ) was not invertible and
therefore left from further consideration.

The following R-code fits the irregular WAIFW structures under constrained
optimization. The function waifw.6parms.irr requires the choice of WAIFW matrix
as input value (waifw.choice) and uses as starting values the parameters from
waifw.6parms (with negative values put to zero).

# R-code
# Function code to fit surface model (see book’s website)
waifw.6parms.irr=waifw.fitter(a=a,y=y,waifw.choice,

breaks=breakpoints,N=N,D=D,Lmax=Lmax,plots="TRUE")

Table 14.1 and Fig. 14.3 summarize the WAIFW results. The AIC value for the
regular matrices equalled 3,452.11. Note that the fit of the two regular WAIFW-
matrices is equal in terms of AIC and thus provide no basis to guide the choice
of mixing pattern whereas the estimated basic reproduction numbers differ con-
siderably. The large variation of R0 and the different mixing patterns question the
appropriateness of the assumed mixing patterns.
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Fig. 14.3 Perspective plots of the irregular WAIFW matrices W2 and W3 fitted under constrained
optimization (upper row, left and right panel, respectively) and of the regular WAIFW matrices W4
and W5 (lower row, left and right panel, respectively) for Parvovirus B19 in Belgium

Table 14.1 Overview of
WAIFW matrices, AIC values
and estimated basic
reproduction numbers for the
Belgian Parvovirus B19

WAIFW Invertible Regular R̂0 AIC

1 Not invertible – – –
2 Invertible Irregular 2.00 3,454.44
3 Invertible Irregular 1.89 3,463.53
4 Invertible Regular 2.33 3,452.11
5 Invertible Regular 14.80 3,452.11
6 Not invertible – – –

14.2.3 Exploiting an Underlying Continuous Mixing Surface

Whereas, in the previous section β (a,a′) was discretized taking J = 6 age classes
and thus constituting a matrix, it is quite natural to assume a low-dimensional
bivariate parametric model. Farrington and Whitaker (2005) proposed to use a
bivariate function that incorporates qualitative epidemiologic knowledge about
the contacts in the population. Their idea originated from Massad et al. (1994)
and Eichner et al. (1996) who used a contact surface to describe the transmission
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of rubella and measles, respectively. These authors however did not focus on
the estimation of the surface as such, whereas Farrington and Whitaker (2005)
put this in the heart of the estimation problem. Denoting u = (a + a′)/

√
2 and

v = (a− a′)/
√

2, the model for β (a,a′) can be written as

β (a,a′) = κ(γ(u)× b(v|u)+ δ ), (14.16)

where

γ(u; μ ,ν) = c−1uν−1 exp

(

− νu√
2μ

)

,

b(v|u;α,β ) =
(u+ v)α−1(u− v)β−1

uα+β−2
,

with c = {√2μ(1 − 1/ν)}ν−1e1−ν to ensure γ(u; μ ,ν) = 1 at the mode when
it exists. They suggest to constrain the model for symmetry α = β and to
reparameterize the model using γ = (α + β + 1)−1 and σ = ν−2, leaving the five
parameters κ , μ , σ , γ , and δ to estimate.

Note that the reparameterization of (a,a′) into (u,v) facilitates a geometric
interpretation. Whereas u looks in the direction of the main diagonal, v looks into
the direction of the antidiagonal (the diagonal perpendicular to the main diagonal).
γ(u; μ ,σ) is a function which specifies a distribution over the diagonal with mean μ
and shape parameter σ whereas b(v|u;γ) is a symmetric function and γ determines
the width of the assortative component; δ serves as a background transmission
parameter. Figure 14.4 shows two example surfaces indicating the unimodal but
relatively flexible shape of (14.16). The surfaces take on an assortative structure
thought to be predictive for the observed serological profiles of most common
childhood infections.

The implementation of this continuous parametric surface can be done using
the discretization as in (14.10) for one-year age intervals. Although we developed
R-code for this, we note that the numerical optimization procedure was found
sensitive towards starting values and therefore different starting values have been
used. We illustrate the code with the serological data on parvovirus B19 in Belgium.

Parvovirus B19 in Belgium

We use the following R-code to fit the low-dimensional bivariate parametric model
as proposed by Farrington and Whitaker (2005) to the Belgian parvovirus B19
data. The function surface.fitter fits the surface to the serological data. The option
plots=”TRUE” shows the fitted prevalence and FOI during iterations and the
resulting mixing surface as a perspective and contourplot.
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Fig. 14.4 Contourplot of two surface examples. For the first surface (left panel) the parameters
were chosen as (κ = 1e−6,μ = 25,σ = 1,γ = 0.1,δ = 0), whereas for the second surface (right
panel) parameters were chosen as (κ = 1e−6,μ = 25,σ = 0.5,γ = 0.2,δ = 0)

# R-code
# Function code to fit surface model (see book’s website)
surface.fitter(a=a,y=y,muy=muy,Lmax=Lmax,N=N,D=D,plots="TRUE")

Figure 14.5 shows the resulting surface and fit towards the seroprevalence data.
The corresponding AIC of 3461.00 is slightly higher as the AIC values for the
different WAIFW matrices (Sect. 14.2.2) and R0 was estimated at 1.76. The ML-
estimates for the surface parameters was κ̂ = 9.6e−5, μ̂ = 7.65, σ̂ = 0.50, γ̂ = 0.12,
and δ̂ = 0.04. The observed mixing surface shows a peak at 5 years of age indicating
that most transmission occurs in primary school as is also reflected in the FOI which
is maximal at 5 years of age.

14.3 Topics in Estimating WAIFW Matrices

We briefly mention some topics related to the estimation of WAIFW matrices as
presented in the literature.

14.3.1 Model Selection

Whereas we have used the AIC-criterion to decide on the most appropriate WAIFW-
matrix amongst the set of candidate matrices for the observed serological profile
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Fig. 14.5 Perspective plot of the fitted transmission surface (left panel) and resulting prevalence
fit and force of infection (right panel) for Parvovirus B19 in Belgium

of Parvovirus B19 (Table 14.1), Farrington et al. (2001) proposed to augment the
estimation using serological data from another infection with similar transmission
route thereby allowing to impose more complex structures for the WAIFW matrices
under the assumption of direct proportionality of the WAIFW structures for both
infections. However, since this approach relies on making the assumption of direct
proportionality, the authors suggested to use a different approach to assess goodness
of fit amongst a candidate set of WAIFW matrices by assuming WAIFW parameters
for the different infections to be “close” to each other and using Bayes factors
to favour one matrix over the other. Since their method is an alternative to using
the AIC-criterion to select the most appropriate WAIFW matrix amongst a set of
candidate WAIFW matrices, we will refrain from its discussion and implementation
and refer the reader to Farrington et al. (2001) for more details. We would like to
note that the reader should take care when using the Bayes factor approach because
of the assumed relationship between the two infections.

14.3.2 Lifelong Immunity

The aforementioned methods focus on infections that govern lifelong immunity. In
case no immunity is conferred by infection, the susceptible–infective–susceptible
(SIS) representation is often used and provided the infectious period is short on
the timescale on which the FOI and mortality vary, serological data can be used to
estimate the FOI as π(a) ≈ Dλ (a), with D the mean infectious period. Farrington
et al. (2001) showed that minimal knowledge (symmetry) of β (a,a′) is required to
estimate R0 without estimating β (a,a′) itself. Estimating β (a,a′) itself is however
possible using the mass action principle as stated in (14.1) and the relation between
the FOI and serological data.
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Using serological data for an SIR infection, R0 can be approximated without
estimating β (a,a′) provided serological data on a SIS infection with similar
infection route is available. In a similar way age-specific incidence data on a newly
emerging pathogen can provide the essential information to estimate R0 for any
SIR infection with similar transmission route without the need to estimate β (a,a′).
Indeed, starting from (14.7), assuming A = 0 and replacing l(a) by λSIS(a) (or
alternatively the age-specific relative incidence), one obtains

R0 ≈
∫ ∞

0 λSIS(a)λSIR exp{−∫ a
0 μ(u)du}da

∫ ∞
0 λSIS(a)λSIR exp{−∫ a

0 λSIR(u)+ μ(u)du}da
.

14.4 Concluding Remarks

In this chapter, we have shown how transmission parameters can be estimated from
serological data by imposing specific structures on the so-called WAIFW matrix .
We used serological data on parvovirus B19 from Belgium and employed the AIC-
criterion to quantify the appropriateness of the different WAIFW structures among
the set of candidate structures. The result is somewhat discomforting since no clear
distinction among the different WAIFW-matrices can be made. This is however
inherent to the use of serological data since these data only provide information
on immunity resulting in the necessity to impose identifiable WAIFW structures.



Chapter 15
Informing WAIFW with Data on Social Contacts

In the previous chapter we have shown how the basic reproduction number can
be estimated using serological data and an assumed social contact pattern in the
population (either discrete or continuous). Such an approach does not take into
account the underlying contact mixing pattern in the population but assumes that
the configuration of contact patterns is known and estimated the transmission
parameters under a specific configuration. In this chapter, we present an alternative
approach in which transmission parameters can be estimated from serological data
augmented with social contact data when dealing with airborne infections.

15.1 Estimation from Serological Data and Data
on Social Contacts

In general, the choice of the structures as well as the choice of the age classes and the
bivariate mixing surface are somewhat ad hoc. Since evidence for mixing patterns
is thought to be found in social contact data, i.e., governing contacts with high
transmission potential, an alternative approach to estimate transmission parameters
could be based on data of social contacts (Wallinga et al. 2006). In this section, we
use social contact data from Belgium (Mossong et al. 2008b; Hens et al. 2009b)
and contrast those to the serological data on parvovirus B19 from Belgium. We first
address the social contact hypothesis (Wallinga et al. 2006) and then present some
refinements to this hypothesis.

15.1.1 The Social Contact Hypothesis

In Wallinga et al. (2006), it was argued that β (a,a′) is proportional to c(a,a′), the
per capita rate at which an individual of age a′ makes contact with a person of age

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 15,
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a, per year:
β (a,a′) = q · c(a,a′), (15.1)

with q a constant proportionality factor.
Wallinga et al. (2006) used data on whether or not people had a conversation as

a proxy of those contacts with high transmission potential. By assuming q constant,
it is assumed that those conversational contact data are proportional to these high
transmission contacts. It is therefore referred to as the “social contact hypothesis.”

We illustrate the social contact hypothesis using serological data on parvovirus
B19 and social contact data from Belgium (Mossong et al. 2008b; Hens et al. 2009b)
(Sect. 4.3). We estimate age-specific contact rates using a smoothing approach,
which allows estimating the entire “contact surface” exploiting the continuous
nature of contact behavior at the population level (Hens et al. 2009b; Goeyvaerts
et al. 2010). We briefly explain the principle behind this estimation technique.

Estimating Contact Rates

Consider the random variable Yi j, i.e., the number of contacts in age class j during
one day as reported by a respondent in age class i (i, j = 1, . . . ,J), which has
observed values yi j,t , t = 1, . . . ,Ti, where Ti denotes the number of participants in
the contact survey belonging to age class i. Now define mi j = E(Yi j), i.e., the mean
number of contacts in age class j during one day as reported by a respondent in age
class i. The elements mi j make up a J×J matrix, which is called the “social contact
matrix.” Now, the contact rates ci j are related to the social contact matrix as follows:

ci j = 365 · m ji

wi
,

where wi denotes the population size in age class i, obtained from demographical
data. When estimating the social contact matrix, the reciprocal nature of contacts
needs to be taken into account (Wallinga et al. 2006):

mi jwi = m jiwj, (15.2)

which means that the total number of contacts from age class i to age class j must
equal the total number of contacts from age class j to age class i.

Wallinga et al. (2006) used a weighted negative binomial model with reciprocal
constraint to estimate a discrete bivariate contact function whereas Mossong et al.
(2008b); Goeyvaerts et al. (2010); Hens et al. (2009b), and Ogunjimi et al. (2009)
used a two-dimensional continuous function over age of respondent and contact,
giving rise to a “contact surface.” The basis is a tensor-product spline derived from
two smooth functions of the respondent’s and contact’s age, ensuring flexibility.
We briefly mention the results presented by Goeyvaerts et al. (2010) where both
estimation methods were compared for the Belgian contact survey (Hens et al.
2009b) conducted as part of the POLYMOD project (Mossong et al. 2008b).
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Fig. 15.1 Perspective plots of the estimated contact rates ci j obtained with maximum likelihood
estimation following Wallinga et al. (2006) (left panel) and Goeyvaerts et al. (2010) (right
panel). The X- and Y -axes represent age of the respondent and age of the contact, respectively.
Source: Goeyvaerts et al. (2010)

On the left side of Fig. 15.1, the estimated contact structure following the
methodology used by Wallinga et al. (2006) is shown. Clearly, the high rates are
observed on the diagonal indicating that people mostly mix with people of the same
age class. On the right side of Fig. 15.1, the estimated contact surface obtained with
the bivariate smoothing approach is shown. The smoothing approach seems better
able to capture important features of human contacting behavior. Three components
are apparent in the smoothed contact surface. First of all, the assortative structure
on the diagonal is again clear. Second, an off-diagonal parent–child component is
observed, reflecting a very natural form of contact between parents and children,
which might be important in modeling infections such as Parvovirus B19, likely
transmitted from child to mother (Mossong et al. 2008a). Finally, there seems to be
evidence for a grandparent–grandchild component. Except for the assortativeness,
these features are not reflected by the imposed WAIFW structures nor by the
parametric surface.

Contrasting Contact Rates to Seroprevalence Data
on Parvovirus B19

Given the estimated contact rates, under the social contact hypothesis (15.1),
we are able to estimate the transmission function β (a,a′) for parvovirus B19
using serological data. Keeping the estimated contact rates fixed, we estimate the
proportionality factor q from serological data using (14.9) and (14.10). As before
we use 1-year age intervals as a numerical approximation to solving the integral
equation explicitly. Consequently, one can estimate the transmission rates βi j and
the basic reproduction number R0.
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Table 15.1 Overview of
various types of contacts
contrasted to the Belgian
parvovirus B19 serology
using the social contact
hypothesis

Contact type q̂ R̂0 AIC

All contacts 0.0320 3.99 3,812.52
Close contacts 0.0474 3.20 3,637.01
Close contacts > 15 min 0.0536 2.84 3,581.78
Close contacts > 1 h 0.0708 2.47 3,531.63
Close contacts > 4 h 0.1030 2.19 3,489.22

The participants were also asked to register the location, duration, frequency,
and whether the contact involved skin-to-skin touching, enabling the stratification
of contacts into various types of contacts. By contrasting these various types of
contacts to serology, it is believed that insight is gained into the transmission process
of nonsexual close contact infections transmitted from person to person. We now
show how combining duration and whether or not a contact involved skin-to-skin
touching predicts the observed serological profile for parvovirus B19 in Belgium.

The following R-code fits the contact data to the serological data. The function
contact.fitter requires the specification of a matrix rij which is the smoothed contact
matrix obtainable form the book’s web site. Since contacts were only registered up
to 85 years of age, we choose Lmax = 85. The resulting fit contains deviance, aic,
bic, and R0 enabling us to compare the fitted profiles for various types of contacts.

# R-code (see book’s website)
# Function to fit the contact data using the social
# contact hypothesis
fit=contact.fitter(a=a,y=y,rij,muy=muy,N=N,D=D,

Lmax=85,plots="TRUE")

Table 15.1 shows different types of contacts thought to be predictive for those
contacts constituting transmission. From the AIC values of the different types of
contacts, it is seen that close contacts lasting 4 h or more are best capable of
describing the observed serological profile.

Figure 15.2 shows the fitted transmission surface and resulting FOI and preva-
lence. When comparing the fitted prevalence to the observed prevalence, there
is a clear indication that the social contact hypothesis is not tenable for the
types of contacts under consideration. This is also reflected in the AIC values
of the different fits being considerably higher than the AIC values obtained by
imposing mixing structures using WAIFW-matrices (3,452.11) or the mixing surface
(3,461.00). We therefore illustrate some recent refinements towards the social
contact hypothesis (Ogunjimi et al. 2009; Goeyvaerts et al. 2010).
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Fig. 15.2 Perspective plot of the transmission surface for close contacts lasting at least 4 h (left
panel) together with the fitted FOI and prevalence (right panel)

15.1.2 Refinements to the Social Contact Data Approach

Although the social contact hypothesis is intuitively appealing, several questions
remain. Is the assumed type of contact a good proxy of the contact with high
transmission potential or do different types of contacts contribute differently to the
transmission process? Is the proportionality factor not only reflecting infectivity and
susceptibility but potentially also underreporting of contacts truly age-independent?
Some of the refinements focusing on these specific questions are briefly touched
upon in this section.

15.1.2.1 The Identification of Contacts with High Transmission Potential

A first refinement to the social contact hypothesis addresses the potential of
different types of social contacts to contribute to transmission, possibly at their own
level (Ogunjimi et al. 2009). Therefore, we adapt the social contact hypothesis by
considering

β (a,a′) = ∑
l

ql · cl(a,a
′), (15.3)

where the index l refers to the different stratification levels of the contacts.
Consider location as the stratification variable with levels “home,”, “school”,

“work” and “other.” We use the function contact.fitter.location which uses the
corresponding contact rates rijk, k = 1, . . .4 as input variables.

# R-code (see book’s website)
# Function to fit the contact data using stratification

(continued)
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(continued)
fit=contact.fitter.location(a=a,y=y,rij1,rij2,rij3,rij4,

muy=muy,N=N,D=D,Lmax=85,L=L,plots="TRUE")

The ML-estimate of q = (q1 . . .q4)
T was q̂ML = (0.055 0.048 0.000 0.000)T with

standard errors (0.012 0.009 0.011 0.047)T indicating that both home and school
contacts are most predictive for the observed serological profile of parvovirus B19.
Note that we did not consider the stratification levels “leisure” and “transport”
because of their collinearity with “home” contacts.

The AIC value was 3,549.32 providing no improvement over the social contact
hypothesis and being considerably higher than the AIC values as obtained from the
methods imposing specific mixing structures.

15.1.2.2 Age-Dependent Proportionality of the Transmission Rates

Whereas in the previous section, refinement was based on stratification, we now
focus on close contacts lasting at least 15 min and argue that the proportionality
factor q might depend on several characteristics related to susceptibility and
infectiousness, which could be ethnic-, climate-, disease-, or age-specific. Examples
of age-specific characteristics related to susceptibility and infectiousness include the
mean infectious period, mucus secretion, and hygiene. In the situation of seasonal
and pandemic influenza this has been established before (see, e.g., Cauchemez et al.
(2004) and Longini et al. (2005)).

Furthermore, the conversational and physical contacts reported in the diaries are
just proxies of those events by which an airborne infection can be transmitted. For
example, sitting close to someone in a bus without actually touching each other
may also lead to transmission of infection. If these discrepancies are age-dependent,
then q can be considered as an age-specific adjustment factor which relates the
true contact rates underlying infectious disease transmission to the social contact
proxies.

In view of this, we will explore whether q varies with age, an assumption we will
refer to as “age-dependent proportionality”

β (a,a′) = q(a,a′) · c(a,a′). (15.4)

Again we use a numerical approximation by one-year age intervals to estimate
q(a,a′).

Following Goeyvaerts et al. (2010), loglinear regression models are considered
for q(a,a′), from the expectation of an exponential decline of q over a due to
hygienic habits as well as an exponential decline of q over a′ due to decreasing
mucus secretion. The following loglinear model was fitted to the data
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Fig. 15.3 Perspective plot of the transmission surface for close contacts lasting at least 4 h with
age-dependent proportionality factor (left panel) together with the fitted FOI and prevalence (right
panel)

log{q(a,a′)}= γ0 + γ1(a+ a′).

Note that we assumed a symmetric model for q(a,a′) motivated by the observation
that in practice the function relating the q-parameter to infectiousness cannot be
uniquely identified when estimated from serological data Goeyvaerts et al. (2010).
Whereas c(a,a′) is symmetric due to reciprocity of contacts, in general q(a,a′) isn’t.

# R-code (see book’s website)
# Function to fit the contact data using stratification
contact.fitter.loglinear(a=a,y=y,rij=rij,int=F,muy=muy,

N=N,D=D,Lmax=85,plots="TRUE",startpar=c(-2.3,0,0))

The resulting transmission surface and fitted prevalence and FOI are shown
in Fig. 15.3. R0 was estimated at 1.90 and the AIC value of 3,457.96 shows an
improvement over the social contact hypothesis and is comparable to the imposed
mixing structure approaches.

15.2 The Bootstrap and Multi-model Inference

In previous sections, we focused on the estimation of transmission parameters and
consequently R0. Equally important is the assessment of variability, not only with
respect to the estimated parameters but also with respect to model selection. In this
section we briefly indicate how proper inferences for the various methods in this
chapter can be achieved.
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15.2.1 The Nonparametric Bootstrap

When considering the methods that impose a specific mixing structure on β (a,a′), a
nonparametric bootstrap approach on the serological samples can be used to obtain
95% confidence intervals. The use of the nonparametric bootstrap in this setting
is beneficial since it allows the use of constraints in the optimization routines.
Moreover, a nonparametric bootstrap does not rely on any symmetry property as
normal theory does (see Sect. B.4).

Whereas the only source of variability is the serological sample for the methods
based on imposed mixing patterns, the use of social contact data introduces a second
source of variability since it is estimated from data itself. Goeyvaerts et al. (2010)
assessed the sampling variability for the social contact data and the serological data
using an extended nonparametric bootstrap approach. Furthermore, these authors
build in a randomization process to account for the uncertainty when reporting the
age of the contacted person (Mossong et al. 2008a). Concerning the age of contacts,
an upper and lower age limit is given by the respondents. Instead of using the mean
value of these age limits, a random draw is now taken from the uniform distribution
on the corresponding age interval. In summary, these authors propose to use the
following bootstrap cycle:

1. Randomize ages in the social contact data and the serological dataset.
2. Take a sample with replacement from the respondents in the social contact data.
3. Recalculate diary weights based on age and household size of the selected

respondents.
4. Estimate the social contact matrix.
5. Rake a sample with replacement from the serological data.
6. Estimate the transmission parameters and R0.

This bootstrap approach allows to calculate bootstrap confidence intervals for the
transmission parameters and for the basic reproduction number, while taking into
account all sources of variability.

15.2.2 Multi-model Inference

In this chapter, various methods to estimate transmission parameters and the basic
reproduction number have been proposed. Selecting the most appropriate model
among the candidate set of models under consideration can be done using the
AIC-criterion. Once the best model has been selected, it can be used to estimate
the parameter of interest and the above bootstrap approach governs the necessary
inferences. However, the selection of the best model form the set of candidate
models ignores the model selection uncertainty. A model producing a different fit
with similar AIC could be lost from consideration and thus too strong conclusions
can be drawn from what seems to be the best model based on AIC. Moreover,
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Table 15.2 Overview of the different fitted models to the parvovirus
B19 data from Belgium with estimated R0, AIC value, and Akaike
weight

Structure R̂0 AIC wk

WAIFW-W2 2.00 3,454.44 0.131
WAIFW-W3 1.89 3,463.53 0.001
WAIFW-W4 2.33 3,452.11 0.420
WAIFW-W5 14.80 3,452.11 0.420
Mixing surface 1.76 3,461.00 0.005
All contacts 3.99 3,812.52 0.000
Close contacts 3.20 3,637.01 0.000
Close contacts > 15 min 2.84 3,581.78 0.000
Close contacts > 1 h 2.47 3,531.63 0.000
Close contacts > 4 h 2.19 3,489.22 0.000
Stratification of contacts by location 2.68 3,549.32 0.000
Age-dependent proportionality factor 1.87 3,457.96 0.023

realizing that the best models for parvovirus B19 were the WAIFW matrices W4

and W5 resulting in the same AIC value, there is no guide to select the best model
among two or more equally well fitting models. Therefore, multi-model inference is
a valuable tool to consider (Burnham and Anderson 2002).

For each model, the AIC value, AIC difference Δk = AICk −AICmin, and the
Akaike weight

wk =
exp(− 1

2 Δk)

∑
�

exp(− 1
2 Δ�)

,

can be calculated following Burnham and Anderson (2002). Here AICmin corre-
sponds to the model with the smallest AIC value. A given Akaike weight wk

is considered as the weight of evidence in favor of a model k being the actual
Kullback–Leibler best model for the situation at hand, given the data and the
set of candidate models considered (Burnham and Anderson 2002). Table 15.2
summarizes the different models fitted to the Belgian parvovirus B19 data in this
chapter. The WAIFW structures W2, W4, and W5 have the largest Akaike weights
whereas assuming close contacts lasting at least 4 h as proxies for contacts with
high transmission potential in combination with an age-dependent proportionality
factor does give some evidence of a good fit and avoids the choice of the somewhat
ad hoc WAIFW structures.

Based on these results, one could argue that the use of social contact data to
estimate transmission parameters based on serological data for parvovirus B19
in Belgium is of limited interest. However, one has to realize that the candidate
set of models under consideration is rather limited and further research is needed
to identify those contacts with high transmission potential. Indeed, it could be a
combination of specific features of the social contact data and the age-dependent
proportionality factor that explains the observed serological profile. In their
paper, Goeyvaerts et al. (2010) studied the estimation of transmission parameters
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Fig. 15.4 Graphical representation of the estimates of R0 for the models fitted to serological data
on varicella-zoster virus in Belgium as reported by Goeyvaerts et al. (2010). Source: Goeyvaerts
et al. (2010)

based on the same social contact data and serological data on the varicella zoster
virus in Belgium. They found that a combination of close contacts that last 15 min
or more in combination with an asymmetric age-dependent proportionality factor
explained the observed serological profile much better than the WAIFW matrices.

Figure 15.4 shows the estimates of R0 for the various models considered
by Goeyvaerts et al. (2010): a contact-saturated model (SA) as proposed by Wallinga
et al. (2006) assuming constant proportionality, a contact-bivariate smoothing model
with constant proportionality with C1 and C3 considering all and close contacts
longer than 15 min, respectively; three discrete age-dependent proportionality
models M1, M2 and M3 and model averaged estimates for R0 (MA and M̃A)
together with 95% bootstrap-based percentile confidence interval limits for the
model averaged estimate (M̃AL,M̃AR). We refer to Goeyvaerts et al. (2010) for
more details underlying these estimates.

Figure 15.4 illustrates the influence of the selected model on the estimation of R0.
Multi-model inference provides a way to incorporate model selection uncertainty in
the estimation of parameters such as the basic reproduction number R0.

15.3 Concluding Remarks

In this chapter, we have shown how based on serological data—possibly aug-
mented with social contact data—transmission parameters can be estimated under
the endemic equilibrium assumption. We distinguished between two estimation
methods. The first method assumes somewhat ad hoc mixing structures for the
transmission function whereas the second method uses social contact data to inform
the structure of the transmission function. Whereas the use of social contact data
looks promising further research should aim at identifying those contacts with
high transmission potential. Since the proportionality factor reflects factors such as
infectivity, susceptibility but potentially also underreporting in the social contact
study and violations to the assumption of endemic equilibrium further research
should be aimed at disentangling these different effects.
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It is clear that the assumed model influences the estimation of the basic
reproduction number and it is therefore essential to take model selection uncertainty
into account.

Kretzschmar et al. (2010) and Goeyvaerts et al. (2011) have used a similar
approach, assuming time equilibrium while considering several other underlying
compartmental models such as SIS, SIRS, and SIRWb, where the latter model
refers to a model which includes waning and boosting. Whereas Kretzschmar et al.
(2010) focused on pertussis, Goeyvaerts et al. (2011) focused on parvovirus B19,
including the same data as used in the illustration throughout this and previous
chapter, but exploiting different compartmental models to explain the decrease in the
age-specific seroprevalence between 20 and 30 years of age (see Chap. 9 and Hens
et al. 2010b).

Note that we did not address the estimation of transmission parameters in
combination with heterogeneity as done by Farrington et al. (2001) and Farrington
and Whitaker (2005) using multisera data and predefined ad hoc mixing structures.
Further research is needed to investigate how these approaches can be augmented
with social contact data.



Part VI
Integration of Statistical Models into the

Mathematical Model Framework

The main purpose of this part is to integrate the flexible models and methods
described in the pervious parts of the book into the mathematical model framework.
This part briefly illustrates the impact of modern flexible models to estimate the age-
dependent force of infection (typically from serological data), the contact surface
(from contact surveys), etc. on the mathematical model. In this way the book closes
as it started, with mathematical models.



Chapter 16
Integrating Estimated Parameters
in a Basic SIR Model

16.1 Introduction

The dynamics, prevention, and control of infectious diseases can be simulated by
means of mathematical models. Many options have been described to formulate
such models (for an overview see e.g. Capasso 2008). In general, a set of partial
differential equations (PDEs) can be used to describe the mathematics of the model.
Consider for instance the basic SIR model (Sect. 3.1.1):

⎧
⎪⎨

⎪⎩

∂S(a,t)
∂a + ∂S(a,t)

∂ t = −(λ (a, t)+ μ(a))S(a, t),
∂ I(a,t)

∂a + ∂ I(a,t)
∂ t = λ (a, t)S(a, t)− (ν + μ(a))I(a, t),

∂R(a,t)
∂a + ∂R(a,t)

∂ t = νI(a, t)− μ(a)R(a, t),
(16.1)

with S(0, t) = B(t) the number of newborns at time t. Note that in (16.1) μ
is assumed age-dependent whereas the recovery rate ν is assumed constant. We
further assume no disease-related mortality. For the force of infection we distinguish
between three different models: (1) the static model; (2) a dynamic model using
WAIFW structures; and (3) a dynamic model using the social contact hypothesis.

1. The Static Model: In the static model, one assumes λ (a, t) ≡ λ (a) where λ (a)
is estimated from serological data under the assumption of endemic equilibrium
(see Chaps. 5–11).

2. The Dynamic WAIFW Model: In the dynamic WAIFW model, the force of
infection is given by the mass action principle: λ (a, t)=

∫+∞
0 β (a,a′, t)I(a′, t)da′,

where β (a,a′, t) ≡ β (a,a′) is a WAIFW matrix estimated from serological data
under endemic equilibrium (see Chap. 14).

3. The Dynamic Social Contact Model: In the dynamic social contact model,
again the mass action principle is used: λ (a, t) =

∫ +∞
0 β (a,a′, t)I(a′, t)da′, where

β (a,a′, t) = β (a,a′) = q(a,a′)c(a,a′) with c(a,a′) estimated from social contact
data and q(a,a′) = q following the social contact hypothesis (see Chap. 15).

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7 16,
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Solving a set of PDEs is not straightforward and depends on specific assumptions
made for the different model parameters. In practice most PDE models are
approximated using different methods in order to reduce the PDE model to a more
solvable and workable model. In Sect. 3.5.2 the set of PDEs was replaced with
a set of ordinary differential equations (ODEs) by considering K compartmental
models representing K age groups and using continuous transitions from one age
group to the next. Using this continuous age-structured model (CAS-model) has the
disadvantage of allowing people to grow old instantaneously since rates represent
exponential distributions and thus some individuals (in the tail of the distribution)
will experience a high rate and quickly move to the next age group whereas other
individuals (at the lower end of the exponential distribution) will only move to the
next age group after a considerable amount of time.

Because of these disadvantages associated with continuous aging, we illustrate
the integration of the estimated FOI, WAIFW structures, and contact mixing
matrices into an age-time SIR model using a realistic age-structured model (RAS-
model). A RAS-model allows individuals to change status from S to I and from I to
R during 1 year (assuming age groups of 1 year) after which they instantaneously
move to the next age group. It is often said that a RAS-model better reflects
infectious disease dynamics because children switch grades in school generally at
the same moment during the year and only once per year (Schenzle 1984). For a
more in depth discussion about the advantages and disadvantages of the different
methods to discretize age-structured models we refer to Capasso (2008); Keeling
and Rohani (2008), and Vynnycky and White (2010).

The RAS-Model

The RAS-model consists of the following two-step iteration: Assuming 1-year
age groups, let {Si(t), Ii(t),Ri(t)} denote the number of susceptible, infected,
and recovered individuals of age i = 0, . . . ,K − 1 at time t (in years).

Step 1: Given initial values {Si(t), Ii(t),Ri(t)} = {Si(t0), Ii(t0),Ri(t0)}, i =
0, . . . ,K − 1 we solve the following set of ODEs:

⎧
⎪⎨

⎪⎩

dSi(t)
dt = −(λi(t)+ μi)Si(t),

dIi(t)
dt = λi(t)Si(t)− (ν + μi)Ii(t),

dRi(t)
dt = νIi(t)− μiRi(t),

(16.2)

to obtain {Si(t + 1), Ii(t + 1),Ri(t + 1)}, i = 0, . . . ,K − 1 after 1 year.

Step 2: Individuals are then shifted by 1 year: {Si(t + 1), Ii(t + 1),Ri(t + 1)}→
{Si+1(t + 1), Ii+1(t + 1),Ri+1(t + 1)}, i = 0, . . . ,K − 2 and all newborns B are
assumed susceptible to infection: {S0(t + 1), I0(t + 1),R0(t + 1)}= {B,0,0}.

This process is iterated throughout the time period of interest.
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Whereas time homogenous but age-dependent mortality rates μi and a constant
number of newborns B were used in the description above, other demographic
models can be used as well. Note that with the latter assumption Ni(t) declines
with time after which the last cohort NK−1(t) promptly dies at the end of the year
and B newborns are added to the population. One commonly used age distribution
is the rectangular distribution (Type I mortality) where μi = 0 for i = 0, . . . ,K − 1
and B = NK−1(t).

For the specific application here, we refer to Ogunjimi et al. (2009) and
Brisson et al. (2010) who used RAS-models to model the transmission dynamics
of varicella-zoster virus, focusing on the clinical disease chickenpox alone, and in
combination with herpes zoster, respectively.

16.2 Application

We illustrate these approaches for varicella ignoring the herpes zoster component.
We therefore assume ν = 1/(7/365) corresponding to an infectious period of 7 days.
We use μi(t)≡ μi which we estimate from mortality data from Belgium anno 2005.

We first run the RAS-model until we reach endemic equilibrium after which we
include a simple vaccination strategy in our model (see Chap. 3) by putting S(0) =
(1− p)B and R(0) = pB for specific values of p. This corresponds to immunizing
newborns at birth with coverage probability p.

Running the mathematical model can be done using the following R-code.

# Start loop RAS-ODE version of the PDEs
for (initrun in Tinit[1]:Tinit[2])
{

# Some starting parameters
print(paste("Year=",as.character(initrun),sep=""))
states = ifelse(states < tol, 0, states)
# moving everyone, one state forward

if (initrun!=Tinit[1]){
for (j in 99:1)

{
states[j+ 1]= states[j ]

states[j+101]= states[j+100]
states[j+201]= states[j+200]
}

states[1] = (1-p)*cohort.size # completely susceptible for p=0
states[101] = 0
states[201] = p*cohort.size
}

# Time steps determined by resolution
(continued)
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(continued)
times = seq(0, 1, length=resolution)
params = matrix(c(mu = mu, betas = betas, nu=nu))

# Output of the system of ODEs
out = as.data.frame(lsoda(states, times, ODE, params))
states=as.matrix(out[resolution,])[-1]
}
# End loop

For the three different approaches, the ODE function is given by

# static RAS model
#------------------
ODE = function(t, states, params)

{
S = states[ 1:100]
I = states[101:200]
R = states[201:300]
mu = params[1:100]
betas = matrix(params[101:10100],100,100)
nu = params[10101]
dS = - (foi+mu)*S # Susceptibles
dI = +foi*S -(nu+mu)*I # Infection
dR = +nu*I-mu*R # Immune
list(c(dS,dI,dR))
}

# RAS model with WAIFW matrices
#-------------------------------
ODE = function(t, states, params)

{
S = states[ 1:100]
I = states[101:200]
R = states[201:300]
mu = params[1:100]
nu = params[10101]
dS = -(apply(W2*I,2,"sum")+mu)*S # Susceptibles
dI = +apply(W2*I,2,"sum")*S-(nu+mu)*I # Infection
dR = +nu*I-mu*R # Immune
list(c(dS,dI,dR))
}

# RAS model with contact matrices
#---------------------------------
ODE = function(t, states, params)

(continued)
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(continued)
{
S = states[ 1:100]
I = states[101:200]
R = states[201:300]
mu = params[1:100]
betas = matrix(params[101:10100],100,100)
nu = params[10101]
dS = -(apply(betas*I,2,"sum")+mu)*S # Susceptibles
dI = +apply(betas*I,2,"sum")*S-(nu+mu)*I # Infection
dR = +nu*I-mu*R # Immune
list(c(dS,dI,dR))
}

For the static model, we use the FOI estimate based on a penalized spline FOI
model (Chap. 9). For the dynamic WAIFW model, we use WAIFW matrix W2 and
for the dynamic social contact model we rely on the social contact hypothesis and
use close contacts lasting at least 15 min (Chap. 15, Goeyvaerts et al. 2010).

16.2.1 Model Comparison

First, we compare the three different approaches. Figure 16.1 shows the incidence
in three age groups (in years): “0–12,” “13–18,” and “19+” over a course of 20 years
after reaching endemic equilibrium. Both dynamic models clearly show periodicity
over the course of 3 years whereas the static model, i.e., the penalized spline model,
doesn’t show any periodicity, as expected. In epidemic years the dynamic social
contact data model reaches an incidence of about 119,130 infections per year in a
population of about ten million people.

Figure 16.2 shows the age-specific prevalence, force of infection, and incidence
using the dynamic social contact model, the dynamic WAIFW model, and static
model. We averaged curves over the 3 year period over which a periodic behavior
was observed (see Fig. 16.1).

For both dynamic models, only small differences on the scale of the prevalence
and incidence can be observed whereas on the scale of the force of infection, these
differences are more pronounced with a clear second and third peak at ages 35 and
60 for the dynamic social contact model. These three peaks originate from the social
contact hypothesis and the high contact intensity between children and adults—
presumably their parents and grandparents. The jigsaw behavior for the dynamic
social contact model is a result of the abrupt aging in the RAS-model. By using a
smaller age-grid this effect diminishes. The static model clearly shows a different
behavior on all three epidemiological parameters.
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Fig. 16.1 Number of infected individuals over 20 years for age categories 0–12 years (first panel),
13–18 years (second panel), and 19 years and above (third panel) following the dynamic social
contact data model (solid line), the dynamic WAIFW model (dashed line), and the static model
(dotted line)

16.2.2 Uncertainty

While we have previously illustrated the impact of the chosen model on the resulting
estimates, we now illustrate the impact of data uncertainty for the dynamic contact
model. We follow the approach by Goeyvaerts et al. (2010) and resampled both
contact data and serological data. Figure 16.3 shows the resulting uncertainty in the
age-specific incidence.

Whereas the yearly incidence averaged over a period of 3 years yields 119,130
cases for a population of about ten million people, the 95%-bootstrap-based con-
fidence interval ranges from 43,642 cases to 231,615 cases, showing a substantial
amount of uncertainty.
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Fig. 16.2 Prevalence, force of infection (left panel), and yearly incidence averaged over a period
of 3 years (right panel) by age following the dynamic social contact data model (solid line), the
dynamic WAIFW model (dashed line), and the static model (dotted line). The observed age-specific
prevalence for VZV is shown in the left panel with size proportional to the number of samples taken
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Fig. 16.3 Age-specific
yearly incidence averaged
over a period of 3 years (solid
black line) with bootstrap
replicates (gray solid lines)
and 95% bootstrap-based
percentile confidence
intervals (dashed lines) based
on the dynamic contact model
using close contacts longer
than 15 min

16.2.3 Vaccination

Finally, we illustrate the impact of vaccinating newborns. We first run all three
models to reach endemic equilibrium. We then assume that newborns directly
move to the immune state and are not subject to a susceptibility gap between birth
and immunization. We illustrate the behavior of the incidence over 50 years after
introducing an immunization programme with coverage 33%.

Figure 16.4 illustrates the herd-immunity effect associated with both dynamic
models most strikingly for age categories “13–18” and “19+,” in which the incidence
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Fig. 16.4 Impact of introducing an immunization programme for newborns with 33% coverage:
number of infected individuals for age categories 0–12 years (first panel), 13–18 years (second
panel), and 19 years and above (third panel) following the dynamic social contact data model
(solid line), the dynamic WAIFW model (dashed line), and the penalized spline model (dotted
line). The dynamic behavior is illustrated for the first 50 years after introducing vaccination

declines quite rapidly after the immunization programme is implemented. For the
static model, incidence decreases after following the immunized cohort.

Figure 16.5 illustrates the critical immunization coverage attained when vacci-
nating 75% of newborns for the three different models. For the dynamic WAIFW
model with R0 = 3.5, the infection is eliminated at 75% vaccine uptake because
this allows to reach the critical effective immunization coverage. Since R0 = 8.2
for the dynamic social contact data model, the infection cannot be eliminated. In
addition to declining incidence in the various age groups, and the associated increase
in the average age at infection, it is noteworthy that the interepidemic period also
increases as a consequence of vaccination (see also Fig. 16.5). This phenomenon
has previously been described (see Chapter 3 and e.g. Anderson and May 1991),
and observed in postvaccination surveillance data.
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Fig. 16.5 Impact of introducing an immunization programme for newborns with 75% coverage:
Number of infected individuals for age categories 0–12 years (first panel), 13–18 years (second
panel), and 19 years and above (third panel) following the dynamic social contact data model
(solid line), the dynamic WAIFW model (dashed line), and the penalized spline model (dotted
line). The dynamic behavior is illustrated for the first 50 years after introducing vaccination

16.3 Discussion

In this chapter, we have shown how an age-time dependent model, often described
by a system of partial differential equations, can be implemented in R using
the realistic age-structured model (RAS-model). We illustrated the difference in
applying either a static or a dynamic model. We considered two dynamic models,
one based on the “traditional” WAIFW-approach and the other on the recent social
contact data approach. The impact of using either one is clear from the resulting
time-specific incidence in different age groups not only because of the higher R0 for
the social contact data approach but also because of the underlying social contact
process. For a more elaborate discussion and illustration of how uncertainty with
respect to parameter and model choice can be dealt with, we refer to Ogunjimi et al.
(2009); Goeyvaerts et al. (2010), and Brisson et al. (2010). Note that, whereas the
static model doesn’t incorporate herd-immunity effects, both dynamic models do.



Appendix A
A Note on the R Environment

R is an open environment for data manipulation, graphical display, and interactive
data analysis. It is available as Free Software under the terms of the Free Software
Foundation’s GNU General Public License in source code form. It compiles and
runs on a wide variety of UNIX platforms and similar systems (including FreeBSD
and Linux), Windows and MacOS.

R can be downloaded from http://www.r-project.org/. R can be extended (easily)
via packages, available through the CRAN family of Internet sites covering a very
wide range of modern statistics.

A.1 Data Structures in R

R operates on so-called objects. Examples are vectors or matrices (or arrays) of
numeric values, logical values, or character strings. These are known as atomic
structures since their components are all of the same type or mode.

R also operates on objects called lists. These are ordered sequences of objects
which individually can be of any mode. Lists are known as recursive rather than
atomic structures since their components can themselves be lists in their own right.

But the most relevant type of object for statistical data analysis is the dataframe.
A dataframe is a special class of lists, but less technically, a dataframe is a type
of table where the typical use employs the rows as observations and the columns as
variables. Contrary to a matrix, the columns of a dataframe can be of different types.

In the following example two vectors are defined, one numeric with the age
values of five subjects and one logical with their infection status; next both vectors
are stored together in a dataframe.

N. Hens et al., Modeling Infectious Disease Parameters Based on Serological and Social
Contact Data, Statistics for Biology and Health 63, DOI 10.1007/978-1-4614-4072-7,
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> age=c(10, 25, 42, 16, 31)
> status=c(F, T, T, T, F)
> mydataset=data.frame(age,status)
> mydataset

age status
1 10 FALSE
2 25 TRUE
3 42 TRUE
4 16 TRUE
5 31 FALSE

A.2 Reading and Writing Data

Large data objects will usually be read from external files rather than from
the keyboard. An entire dataset can be read directly into a dataframe with the
read.table() function, e.g.:

> mydataset=read.table("c:\\directorystructure\\data.dat")

Note the double backslashes to define the directory structure. You can read
“comma separated value” files using read.csv(), “delimiter separated value” files
with read.delim() and Microsoft Excel files with read.xls() (needs pack-
age gdata). Data can also be viewed, changed, or added via the spreadsheet
interface, using edit(mydataset).

Data in R can also be exported, e.g., to a comma separated value file “tb.csv” in
the subdirectory “temp”:

> write.table(mydataset,file="C:\\temp\\tb.csv",sep=",")

A.3 Graphical Procedures

There are very versatile graphical facilities in the R environment. Basic graphics
functions include:

• plot(x), plot(x,y)
• points(x,y), lines(x,y)
• pairs(X), coplot(a b|c)
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• qqnorm(x), qqline(x), qqplot(x,y)
• hist(x), dotchart(x)
• image(x,y,z), contour(x,y,z), persp(x,y,z)

Text and legends can be added using text(x,y,labels, ...) and
legend(x,y,legend,...).

A.4 Statistical Models in R

The basic structure of most function calls to fit models to data follows the example
below (for logistic regression):

> myfit=glm(status˜age,family=binomial,data=mydataset)
> summary(myfit)
Call:
glm(formula = status ˜ age, family = binomial,

data = mydataset)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.07144 2.31866 -0.462 0.644
age 0.06161 0.09126 0.675 0.500

For more information about the specific output, one can look up the details of a
function using help.

> help(glm)

A.5 Packages

The standard (or base) packages are considered part of the R source code. They
contain the basic functions that allow R to work, as well as standard statistical
and graphical functions and some datasets. They should be automatically available
in any R installation. There are thousands of contributed packages for R. Some
of these packages implement specialized statistical methods, others give access to
data or hardware, and others are designed to complement textbooks. Most packages
are available from CRAN (http://CRAN.R-project.org/ and its mirrors). Within the
R environment, packages can be installed, updated, and loaded by clicking the
“packages” button on the top bar.

http://CRAN.R-project.org/
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A.6 References

There are many introductory and more advanced manuals and textbooks on R. Just
have a look at the documentation available on http://www.r-project.org/.

http://www.r-project.org/


Appendix B
Statistical Inference

The following sections summarize some basic concepts of statistical estimation and
inference with illustrations on the VZV data (see Chap. 4). We focus on estimation,
testing hypotheses, and the construction of confidence intervals for two types of
data, normally distributed and binary data.

B.1 Maximum Likelihood Estimation and Likelihood
Inference

We are interested in inference on the prevalence π and on the mean antibody
activity level (on log scale) μ for VZV in Belgium. Denote z1, . . . ,zn the sample of
independent and identically distributed observations of the antibody activity level
z on log scale and d1, . . . ,dn the corresponding dichotomized infection indicators
where di = 1 if zi > τu for a particular upper threshold and 0 if zi < τ� (and missing
for the equivocal area [τ�,τu]).

Next we are also interested in the dependency of the antibody level z or infection
status d on a covariate, for instance the age a; or in statistical terms we are interested
in the conditional distribution of z or d given a. In what follows we use a generic
notation (x1,y1), . . . ,(xn,yn) where y refers to our response variable (such as z
or d) and x to a covariate or explanatory variable (such as a). We are interested
in modeling the distribution of y and in modeling the conditional distribution y|x.
In such models θ refers to our parameter of interest (possibly vector valued).
Nuisance parameters are denoted as η and their notation will be suppressed when
not important or not applicable.

The likelihood function equals the joint density of y1, . . . ,yn, as a function of the
unknown parameters θ and η :

L(θ ,η) =
n

∏
i=1

f (yi;θ ,η),
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where f (yi;θ ,η) represents the density or mass function. The likelihood principle
states that, for inference about θ and η , given y1, . . . ,yn, all information is contained
in the likelihood function L(θ ,η). Note that any dependency of the density function
on covariates x has been suppressed for ease of presentation.

The maximum likelihood estimator (MLE) is defined as the value for θ ,η that
maximizes the likelihood L(θ ,η) or equivalently the loglikelihood

�(θ ,η) =
n

∑
i=1

log( f (yi;θ ,η)).

For instance, assuming the yi are normally distributed with mean μi and variance
σ2

i , the loglikelihood equals

�(μ ;σ2) =−n
2

log(2π)−
n

∑
i=1

logσi − 1
2

n

∑
i=1

(
yi − μi

σi

)2

.

In this case μi is typically the parameter of interest and σi a nuisance parameter.
Assuming homoscedasticity σi = σ , maximization of �(μ ;σ2) with respect to
μi is independent of the value of σ and reduces to minimization of the least-
squares criterion ∑n

i=1(yi − μi)
2. For μi = μ the solution equals the sample mean

ȳ = (∑n
i=1 yi)/n. When modeling the conditional distribution of y given a covariate

x, the choice μi = E(yi|xi) = β0 + β1xi for the conditional mean, expressing the
loglikelihood as a function of the regression coefficient β0 and β1, leads to classical
linear regression.

For binary data yi we get the following expression for the loglikelihood

�(π) =
n

∑
i=1

yi log(πi)+
n

∑
i=1

(1− yi) log(1−πi). (B.1)

Note that there is no nuisance parameter in this case, as variance equals πi(1−πi).
For πi = π the loglikelihood �(π) is maximized at the overall proportion. When
considering a model for the conditional distribution of y given a covariate x, the
choice

πi =
eβ0+β1xi

1+ eβ0+β1xi
, (B.2)

for the conditional probability, or equivalently

logit(πi) = log

(
πi

1−πi

)

= β0 +β1xi, (B.3)

leads to logistic regression. In this case the loglikelihood (B.1) is again reexpressed
as a function of the regression coefficients β0 and β1.

Figure B.1 visualizes the maximization of the loglikelihood curves for the
Belgian VZV data, assuming the logarithm of the antibody levels z is normally
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Fig. B.1 Belgian VZV data. Curves (solid lines) of the loglikelihood function for the mean
antibody level μ (left panel) and prevalence π (right panel). Vertical lines visualize the respective
MLEs. The dashed and dotted lines show similar loglikelihood functions for subsamples of size
1,000 and 100, respectively

distributed (left panel) and for the infection statuses d (right panel). The solid curves
are based on samples of size 2,761 for z and size 2,656 for d (as 105 observations
were classified as equivocal and omitted). The normal loglikelihood is maximized
at the sample mean z̄ = 5.933; the Bernoulli loglikelihood is maximized at the
sample proportion d̄ = 0.886. Both estimates are represented by vertical lines in
the respective panels of Fig. B.1.

Figure B.1 also shows dashed and dotted curves in both panels. These correspond
to loglikelihood functions based on a random subsample of size 1,000 (dashed
curve) and size 100 (dotted curve). Although the vertical position of the curves
cannot be directly interpreted or compared, as they are based on different samples,
the curvature of the plots has an interesting interpretation. Indeed the curvature of
the loglikelihood can be quantified through the second derivative of the loglikeli-
hood. The observed Fisher information is defined as −∂ 2�(θ )/∂θ 2 and is inversely
related to the standard error of the ML-estimate θ̂ . Figure B.1 shows the decrease
in curvature in the loglikelihood function, reflecting a decrease in information and
corresponding increase in standard errors when sample sizes reduce to 1,000 and
further to 100.

The following R-code fits the logistic regression model (B.3) for VZV infection
status d and covariate age:

# Illustration of ML for logistic regression

# Using the glm function
fit=glm(d˜age,family=binomial)
summary(fit)

(continued)
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(continued)
logLik(fit)

# Using the optimization function nlm
# Defining -(loglikelihood)
minuslogll_lr=function(beta){
n=length(d)
p=exp(beta[1]+beta[2]*age)/(1+exp(beta[1]+beta[2]*age))
-(sum(d*log(p))+sum((1-d)*log(1-p)))
}
# Calling nlm (nonlinear minimization with Newton-type

algorithm)
nlmfit=nlm(minuslogll_lr,c(mean(d),0),hessian=T)
beta_est=nlmfit$estimate
beta_se=sqrt(diag(solve(nlmfit$hessian)))
# showing estimates and corresponding se-estimates
round(cbind(beta_est,beta_se),5)

There are no longer explicit solutions for the estimates, and one has to rely on
numerical methods such as the Newton–Raphson algorithm (or alternatively Fisher
scoring or iterative reweighted least squares). For this purpose one can use the nlm
function in R. As this function is a nonlinear minimizer rather than a maximizer we
use −�(β0,β1). The hessian matrix is also part of the output. The inverse of this
matrix (using the R function solve) contains estimated variances on the diagonal.

# Using the glm function
> summary(fit)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.07016 0.11629 -0.603 0.546
age 0.18889 0.01216 15.527 <2e-16 ***
Number of Fisher Scoring iterations: 6
> logLik(fit)
’log Lik.’ -732.5021 (df=2)
# Using the optimization function nlm
> round(cbind(beta_est,beta_se),5)

beta_est beta_se
[1,] -0.07015 0.11634
[2,] 0.18888 0.01218

The function glm uses Fisher scoring whereas nlm uses a Newton-type algorithm,
resulting in estimates, which can be considered as identical for all practical
purposes. Figure B.2 shows the contours of the loglikelihood function �(β0,β1) with
a horizontal and vertical line indicating the position of the solution β̂0 = 0.0702 and
β̂0 = 0.1889.
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Fig. B.2 Belgian VZV data. Contour plot of the loglikelihood function �(β0,β1) for the logistic
regression model (B.3). The horizontal and vertical line visualize the MLEs β̂0 and β̂1

Testing hypotheses in the maximum likelihood paradigm is based on possibly
three approaches: (1) a standardized difference between the values of the loglikeli-
hood at its maximum for a full and a reduced model, defining the likelihood ratio
test (LRT); (2) the standardized value of the evaluation of the derivative of the
loglikelihood at the hypothesized value, leading to the score test; (3) the square
of a t-type of test (θ̂/ŝe(θ̂ ))2, leading to the Wald test. All three test statistics
are asymptotically equivalent under the null hypothesis yielding a χ2 distribution.
Confidence regions and intervals can be defined by inverting these test procedures,
or in the more classical way as [θ̂ − zα/2ŝe(θ̂ ), θ̂ + zα/2ŝe(θ̂ )], where zα/2 is a
critical point from the standard normal distribution. When focusing on one particular
parameter of interest (considering the others as nuisance), profile methods can be
used (see the next section). In this section we limit ourselves to an illustration of the
LRT, the Wald test, and the Wald type confidence intervals.

As an example we consider the LRT for the null hypothesis H0 : β1 = 0 in the
logistic regression model (B.3) with πi the probability P(di = 1) to be infected with
VZV and with age ai as a covariate. The LRT for this null hypothesis contrasts the
value of the maximized loglikelihood of the full model with both parameters β0,β1

with that of the reduced model or null model with only an intercept β0 and with
β1 = 0, more precisely

LRT = 2

{

max
β0,β1

�(β0,β1)−max
β0

�(β0,0)

}

.
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If the null hypothesis is true, the maximized loglikelihood of the reduced model is
expected to be close to that of the full model and the value of the LRT is expected
to be small, as described by the χ2

1 distribution. The Wald statistic is defined as

Wald =

{
β̂1

ŝe(β̂1)

}2

,

also having a χ2
1 null distribution. The R-code below illustrates the computation of

both test statistics, their p-values, and a 95% Wald type confidence interval for β1.

# Testing slope beta1=0
# LRT
lrt=2*(logLik(glm(d˜age,family=binomial))

-logLik(glm(d˜1,family=binomial)))[[1]]
c(lrt,1-pchisq(lrt,1))
# Wald
wald=(beta_est[2]/beta_se[2])ˆ2
c(wald,1-pchisq(wald,1))
# CI
c(beta_est[2]-1.96*beta_se[2],beta_est[2]+1.96*beta_se[2])

The R output below clearly shows, as expected, that the probability to be infected
by VZV depends on age (at 5% level of significance).

# LRT
[1] 424.6611 0.0000
> # Wald
[1] 240.5193 0.0000
> # CI
[1] 0.1650135 0.2127564

Hypotheses testing can also be used to select a final model from a set of candidate
models, at least if these candidate models are nested models. In general, however, we
recommend to use genuine model selection criteria such as the well-known Akaike’s
Information Criterion (AIC, Akaike 1973). Such criteria also allow to compare non-
nested models and models that differ in any ML model component.

The AIC-criterion originates from information theory and is defined as

AIC =−2�(θ̂ , η̂)+ 2K, (B.4)
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with �(θ ,η) the loglikelihood of the model and (θ̂ , η̂) the MLE of (θ ,η). Here K
stands for the total number of estimated parameters, nuisance parameters included.
From a set of candidate models, the model with the lowest AIC is selected as the
best model, as the best compromise between accuracy and complexity. The first
loglikelihood based term measures how accurate the model fits to the data and will
be smallest for the most complex model. The second term however penalizes for
complexity and will be largest for the most complex model. The model that balances
accuracy with complexity in an optimal way is chosen as best model. The AIC
was designed to be an approximately unbiased estimator of the expected Kullback-
Leibler (KL) information, which can be interpreted as the information loss as a
consequence of using a candidate model to approximate the true unknown model.
And that information loss should be minimized.

Let us reconsider the logistic regression model for VZV infection status d and
covariate age, as a first candidate model. As a second candidate model we extend
that model with an additional quadratic term age2. These two models are nested,
and the best model could be selected based on a test for the quadratic age-effect.
As a third model we reconsider the model with only a linear age-effect, but with
a probit link instead of logit link. This third model is non-nested with the two
first models. The following R-code illustrates the fits of all three candidate models
whereas the (AIC) function enables us to compute the corresponding AIC values for
these models.

> # a first candidate model: linear in dose with logit link
> logitfit1=glm(d˜age,family=binomial)
> print(c(AIC(logitfit1),-2*logLik(logitfit1)[1]+2*2))
[1] 1469.004 1469.004
>
> # a second candidate model: quadratic in dose with logit link
> logitfit2=glm(d˜age+I(ageˆ2),family=binomial)
> print(c(AIC(logitfit2),-2*logLik(logitfit2)[1]+2*3))
[1] 1420.795 1420.795
> summary(logitfit2)

Call:
glm(formula = d ˜ age + I(ageˆ2), family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.0207 0.1491 0.2346 0.4380 3.3123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6050146 0.1510592 -4.005 6.20e-05 ***
age 0.3175378 0.0273750 11.600 < 2e-16 ***
I(ageˆ2) -0.0048546 0.0008926 -5.439 5.37e-08 ***

(continued)



268 B Statistical Inference

(continued)
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1889.9 on 2656 degrees of freedom
Residual deviance: 1414.8 on 2654 degrees of freedom
AIC: 1420.8

Number of Fisher Scoring iterations: 7

>
> # a third candidate model: linear in dose with probit link
> probitfit=glm(d˜age,family=binomial(link="probit"))
> print(c(AIC(probitfit),-2*logLik(probitfit)[1]+2*2))
[1] 1508.195 1508.195

Comparing the first two logit models, both approaches indicate that the second
model is a better model. Indeed, the AIC value 1,420.795 for the second model
is smaller than the value 1,469.004 for the first model. The summary of the fit of
the second model also indicates that the quadratic age-effect is highly significant,
confirming again that the second model is better. The third probit model cannot
be compared to these first two models by a test. But the AIC value of 1,508.195
clearly shows that this third model is no improvement. Conclusion is that the best
model is the second model. A warning however is at its place here. Selecting the
best model from a set of candidate models does not guarantee that this best model is
a good model. Indeed, selecting the best model from a set of poor candidate models
will still result in a poor final model. Having selected a best model from a set of
candidate models can be followed next by a formal lack-of-fit test. If such a formal
lack-of-fit test does not show any evidence from the data against the final model,
one can decide to stop the search for a good model. For lack-of-fit tests in the ML
setting, see, e.g., Aerts et al. (1999, 2000).

B.2 Generalized Linear Models

Linear regression models and logistic regression models are special cases of GLMs.
Three components specify a GLM: the random component, the linear predictor
or the systematic component, and the link function relating the random with the
systematic component.

Let y1, . . . ,yn denote a sample of a response variable y and x1 j, . . . ,xn j the
corresponding values of p covariates x1, . . . ,x j, . . . ,xp. The random component
refers to the distribution of y|x to be selected from the exponential family. This
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Table B.1 Canonical link functions for the normal, Bernoulli, and Poisson members of the
exponential family

Natural Dispersion Link
Mean parameter θi parameter function Regression

Distribution μi θi φ g(μi) model

Normal μi μi σ 2 μi μi = ∑p
j=0 β jxi j

Bernoulli πi log( πi
1−πi

) 1 log( μi
1−μi

) log( πi
1−πi

) = ∑p
j=0 β jxi j

Poisson μi log(μi) 1 log(μi) log(μi) = ∑p
j=0 β jxi j

family includes many of the most common distributions: continuous distributions
(normal, exponential, gamma, . . . ) as well as discrete distributions (Bernoulli,
binomial, Poisson, . . . ). An exponential family distribution for yi has one natural
parameter θi and might have an additional dispersion parameter φ . Its density can
be written in the “exponential” form

f (yi,θi,φ) = exp{[yiθi − b(θi)]/a(φ)+ c(yi,φ)} .

The systematic component defines a linear combination of the p covariates

ηi =
p

∑
j=0

β jxi j,

with xi0 = 1 for all i, representing the intercept. Finally, the third component, the link
function, connects the mean μi = E(yi) to the covariate values xi j by the formula

g(μi) = ηi,

where the link function g is a monotonic and differentiable function. The link
function that transforms the mean to the natural parameter is called the canonical
link.

Table B.1 shows the canonical link functions for three popular models: the linear
regression model, the logistic regression model, and the Poisson regression model
(or the loglinear model). But other link functions can be chosen: a log link for the
normal distribution, the probit link for logistic regression, etc.

GLMs provide a unifying theory of modeling and share many convenient
properties of linear models, such as a concave optimization (loglikelihood) function
implying that there is a unique MLE. A (small) price to pay however is that the
likelihood equations for GLMs are usually nonlinear in the regression parameters
β0, . . . ,βp, and hence no explicit analytical solutions are available. Iterative nu-
merical methods are needed for solving the estimating equations and obtaining
numerical values for the estimates (Newton–Raphson, Fisher scoring, iterative
reweighted least squares). Further details can be found in several standard textbooks
on ML estimation and inference for GLM, including McCullagh and Nelder (1989);
Dobson (2002), and Agresti (2002).
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One can fit GLMs easily in R using the glm() function. All three GLM-
components have to be specified, if deviating from the default choices (normal
distribution, identity link). The following simple simulation example illustrates the
use of a Poisson regression model in R:

> # setting the 25 values of a single binary covariate x
> # (e.g. 0=low or 1=high socio-economic status)
> x=c(rep(0,20),rep(1,5))
> print(x)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

>
> # define the predictor 3-1*x
> # so the true values are beta0=3 and beta1=-1
> eta=3-1*x
> print(eta)
[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2

>
> # use the inverse link function to define the mean
> mu = exp(eta)
> print(mu)
[1] 20.085537 20.085537 20.085537 20.085537 20.085537 20.085537
[7] 20.085537 20.085537 20.085537 20.085537 20.085537 20.085537

[13] 20.085537 20.085537 20.085537 20.085537 20.085537 20.085537
[19] 20.085537 20.085537 7.389056 7.389056 7.389056 7.389056
[25] 7.389056
>
> # generate Poisson response values (e.g. number of HIV cases
> # in a particular time period within a particular population)
> y=rpois(25,mu)
> print(y)
[1] 25 20 15 12 22 20 15 30 22 21 23 17 17 13 22 22 15 19 19 27
[21] 4 10 8 8 3

>
> # using the glm function to fit the GLM to the data y and x
> myfit=glm(y˜x,family=poisson(link="log"))
>
> # compare the estimates for intercept and slope
> # with the true value 3 and -1
> summary(myfit)

Call:
glm(formula = y ˜ x, family = poisson(link = "log"))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.89246 -1.09261 0.04487 0.52721 2.12860

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(continued)
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(continued)
(Intercept) 2.98568 0.05025 59.414 < 2e-16 ***
x -1.09861 0.18119 -6.063 1.33e-09 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 76.604 on 24 degrees of freedom
Residual deviance: 26.332 on 23 degrees of freedom
AIC: 144.74

Number of Fisher Scoring iterations: 4

The R output shows that the estimates 2.98568 and −1.09861 are quite close to
the true values of the regression parameters β0 = 3 and β1 = −1. Further output
includes deviance residuals (extending the classical residuals) and goodness-of-fit
measures such as the residual deviance and AIC value. It also indicates that Fisher
scoring was used and four iterations were needed to obtain convergence.

B.3 Profile Likelihood and Other Likelihoods

The likelihood paradigm has been extended in various ways leading to: composite
likelihood, conditional likelihood, empirical likelihood, h-likelihood, marginal like-
lihood, nonparametric likelihood, partial likelihood, penalized likelihood, profile
likelihood, pseudo likelihood, quasi likelihood, . . . , Part of these extensions relax
assumptions and cover extensions to multivariate response data but are no longer
genuine likelihood methods, such as composite likelihood, pseudo likelihood,
and quasi likelihood, etc. Others are likelihood methods that eliminate nuisance
parameters: conditional likelihood, marginal likelihood, profile likelihood, and
partial likelihood.

In what follows we briefly introduce the profile likelihood approach, and the
construction of profile likelihood confidence intervals.

B.3.1 Profile Likelihood Estimation

Let �(θ ,η) denote the loglikelihood for a parameter of interest θ and a nuisance
parameter η . The profile likelihood for θ is

LP(θ ) = L(θ , η̂(θ )),

where η̂(θ ) is maximizing L(θ ,η) for a fixed θ . So, LP(θ ) = maxη L(θ ,η).
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The profile likelihood estimator θ̂P for θ maximizes the profile likelihood or
loglikelihood �p(θ ) = log(LP(θ )). Under certain conditions, the maximum profile
likelihood estimator is equal to the ML estimator.

B.3.1.1 Profile Likelihood Estimator for μ for Normally Distributed Data

For fixed μ = μ f ixed , the MLE for σ2 maximizing �(μ f ixed ,σ2) is

σ̂2(μ f ixed) =
1
n

n

∑
i=1

(yi − μ f ixed)
2.

Thus, the profile loglikelihood is given by

�P(μ) = �(μ , σ̂2(μ)) =−n
2

log(2π)− n
2

log

(
1
n

n

∑
i=1

(yi − μ)2

)

− n
2

which is maximized at μ̂P = ȳ, which is also the MLE.

B.3.1.2 Profile Likelihood Estimator for the Slope β1 for Logistic
Regression

In this situation the intercept β0 is considered as the nuisance parameter, and we use
the profile loglikelihood function

�P(β1) = max
β0

�(β0,β1).

This maximization requires us to fix β1 and to maximize the loglikelihood over β0.
This can be done in R using the optimize function, as shown in the R-code below.

# Illustration profile likelihood for binary logistic regression
# using the optimize function

# defining the full loglikelihood
flogll=function(beta0,beta1){
n=length(d)
p=exp(beta0+beta1*age)/(1+exp(beta0+beta1*age))
sum(d*log(p))+sum((1-d)*log(1-p))
}
# defining the profile -(loglikelihood) for fixed beta1f
plogll=function(beta1f){
plogllh=function(beta0) -flogll(beta0,beta1f)

(continued)
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(continued)
optimize(plogllh,beta0,lower=-10,upper=10)$objective

}

# minimizing the profile -(loglikelihood) for beta1f
optimize(plogll,beta1f,lower=-0.2,upper=0.5)

# plotting the profile likelihood curve
betagrid=seq(0.13,0.25,by=0.001)
plogllgrid=rep(NA,length(betagrid))
for (i in (1:length(betagrid)))plogllgrid[i]=-plogll(betagrid[i])
plot(betagrid,plogllgrid,xlab="beta1",

ylab="profile loglikelihood",type="n")
lines(betagrid,plogllgrid)
fit=glm(d˜age,family=binomial)
hatbeta1=fit$coef[2]
# plotting the estimate as a vertical dotted line
abline(v=hatbeta1,lty=3)

The R output shows the result of optimizing the profile loglikelihood for β1 and
Fig. B.1 shows the profile function �P(β1) for β1 ∈ [−0.14,0.24].

> optimize(p2logll,beta1f,lower=-0.2,upper=0.5)
$minimum
[1] 0.1888923
$objective
[1] 732.5021

B.3.2 Profile Likelihood Confidence Intervals

In general notation, the null hypothesis about the parameter of interest H0,θ = θ0

will not be rejected at the α level of significance if and only if

2{�(θ̂ , η̂)− �(θ0, η̂0)}= 2{�(θ̂ , η̂)− �p(θ0)}< χ2
1−α , (B.5)

where θ̂ and η̂ are the MLEs for the full model, η̂0 for the reduced model with
θ = θ0, and χ2

1−α is that critical point of the χ2
1 -distribution with an area 1−α to

the left or α to the right. Expression (B.5) can be expressed equivalently as

�p(θ0)> �(θ̂ , η̂)− (χ2
1−α)/2. (B.6)
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Fig. B.3 Belgian VZV data. Profile loglikelihood curve for the slope β1 in the logistic regression
model (B.3). The dotted vertical line represents the MLE. The horizontal line the threshold value
defining the limits for the profile likelihood CI for β1, given by the dashed vertical lines

A (1−α)100% confidence interval for θ can be defined by inverting the LRT: the CI
equals the set of values θ0 for θ that cannot be rejected as a null hypothesis H0 : θ =
θ0. So the set of values θ0 satisfying (B.6) defines the profile likelihood CI for θ .

The following R-code illustrates the computation of the profile likelihood
confidence interval using the uniroot function, as well as its computation through
the function confint. Figure B.3 shows the construction in a graphical way.

# computing the profile confidence interval for beta1f
cithreshold=logLik(fit)[1]-qchisq(0.95,1)
abline(h=cithreshold)

# profile confidence intervals using the confint function
confint.glm(fit,level=.95)
# for comparison, Wald type confidence intervals
confint.default(fit,level=.95)

profileci=function(beta1) -plogll(beta1)-cithreshold
pcil=uniroot(profileci,c(hatbeta1,hatbeta1+0.5))$root
pcir=uniroot(profileci,c(hatbeta1,hatbeta1-0.5))$root

(continued)
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(continued)
# plotting the confidence limits as dashed vertical lines
abline(v=pcil,lty=2)
abline(v=pcir,lty=2)

The corresponding R output

> confint(glm(d˜age,family=binomial),level=.95)
Waiting for profiling to be done\ldots

2.5 % 97.5 %
(Intercept) -0.2985224 0.1575799
age 0.1657261 0.2134456

B.4 The Bootstrap

Bootstrap methods are simulation based resampling techniques for assessing dis-
tributional properties of an estimator, such as bias, variability, quantiles, and
percentiles. They are particularly useful when standard maximum likelihood in-
ference is complex or unavailable, but they can also be applied to verify standard
approximations (normal, χ2, . . . ).

Consider the simple setting of a sample y1, . . . ,yn from an unknown underlying
distribution F . Interest is on estimation and inference about a parameter θ . A key
principle, the bootstrap or plug-in principle, is to replace the unknown F with its
known estimate F̂ , to imitate the original data generating mechanism (y1, . . . ,yn

from F) by generating, simulating bootstrap data, denoted as y∗1, . . . ,y
∗
n from F̂ , and

to recompute the estimate for this bootstrap sample, denoted by θ̂ ∗. As F̂ is known,
we can simulate such bootstrap data repeatedly (say B = 999 times), get B copies
θ̂ ∗

1 , . . . , θ̂
∗
B , and empirically observe distributional characteristics. It has been shown

that in many cases, this bootstrap approximation is an appropriate approximation
of the true distribution, and that it might even be superior to the typical normal
or χ2 approximation. It has also been illustrated however that there are settings in
which the standard application of the bootstrap principle fails. In the next section,
we briefly introduce and illustrate the nonparametric and parametric bootstrap in R
using the boot function.

The bootstrap can be used to simulate the null distribution of certain test statistics,
or to compute confidence intervals for a particular parameter. We will focus on the
latter. For more reading on this topic, we refer to Davison and Hinkley (1997);
Efron and Tibshirani (1993), and for a more mathematical survey to Shao and Tu
(1995). Hall (1992) describes the underlying theory.
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B.4.1 Bootstrap Confidence Intervals

The simplest type of bootstrap CI is the normal bootstrap CI, which in its
most basic form replaces the normal critical points by quantiles of the simulated
normal distribution. It might also include a bias correction and a studentization.
The (1−α)100% basic bootstrap CI uses the confidence limits

θ̂ − (θ̂ ∗
((R+1)(1−α/2)− θ̂), θ̂ − (θ̂ ∗

((R+1)α/2)− θ̂),

where θ̂ ∗
(1) < .. . < θ̂ ∗

(B) are the sorted θ̂ ∗’s. The percentile bootstrap CI is given by

θ̂ ∗
((R+1)α/2), θ̂

∗
((R+1)(1−α/2).

The percentile bootstrap CI shares, together with its improved version, the bias-
corrected adjusted bootstrap CI, the attractive property of invariance to transforma-
tions of the parameters. For more discussion on the pros and cons of the different
bootstrap CI, we refer to Davison and Hinkley (1997).

B.4.2 Nonparametric Bootstrap

In the nonparametric bootstrap, we generate bootstrap data y∗1, . . . ,y
∗
n from the

empirical distribution function (EDF) F̂EDF . This estimate F̂EDF , which puts mass
1/n on each of the observed yi, is a nonparametric estimator for the unknown
distribution function F . It is known to be a consistent estimator for F (under some
mild regularity conditions). Generating data from the EDF is nothing else than
sampling from the original data y1, . . . ,yn with replacement, so it is resampling the
original sample (a bit as recycling). In R it is easy to resample data using the sample
function, but the boot function does it all for you, including the computation of
bootstrap confidence intervals.

The following R-code provides confidence intervals for the mean antibody level,
the prevalence for VZV, as well as for the slope parameter in the logistic regression
model (B.3) with covariate age. The number of bootstrap replicates was taken as
B = 999. For the estimation of quantiles of the distribution F , B = 999 bootstrap
runs is considered to be a minimum number. For the estimation of moments such as
the variance, 500 or even 250 runs could be sufficient.

# nonparametric bootstrap
library(boot)

# for the mean antibody level
meanstat=function(data,indices){

(continued)
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(continued)
data=data[indices]
mean(data)

}
mub=boot(z,meanstat,R=999)
boot.ci(mub,type = c("norm","basic","perc"))

# for the prevalence
pib=boot(d,meanstat,R=999)
boot.ci(pib,type = c("norm","basic","perc"))

# for the effect of age
slope=function(data,indices){
data=data[indices,]
d=data[,2]
age=data[,1]
fit=glm(d˜age,family=binomial)
fit$coef[2]

}
data=data.frame(cbind(age,d))
slopeb=boot(data,slope,R=999)
boot.ci(slopeb,type = c("norm","basic","perc"))

The R output

> boot.ci(mub,type = c("norm","basic","perc"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL :
boot.ci(boot.out = mub, type = c("norm", "basic", "perc"))
Intervals :
Level Normal Basic Percentile
95% ( 5.872, 5.994 ) ( 5.869, 5.993 ) ( 5.874, 5.997 )
Calculations and Intervals on Original Scale

> boot.ci(pib,type = c("norm","basic","perc"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL :
boot.ci(boot.out = pib, type = c("norm", "basic", "perc"))
Intervals :
Level Normal Basic Percentile
95% (0.8735, 0.8977) (0.8739, 0.8980) (0.8731, 0.8972)
Calculations and Intervals on Original Scale

(continued)
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(continued)
> boot.ci(slopeb,type = c("norm","basic","perc"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL :
boot.ci(boot.out = slopeb, type = c("norm", "basic", "perc"))
Intervals :
Level Normal Basic Percentile
95% (0.1537, 0.2222) (0.1503, 0.2202) (0.1576, 0.2275)
Calculations and Intervals on Original Scale

B.4.3 Parametric Bootstrap

In contrast to the nonparametric bootstrap, one has to assume a particular parametric
distribution (with estimated parameters) F̂ to generate the bootstrap data. In the
R-code below we illustrate two parametric bootstrap applications: z∗1, . . . ,z

∗
n when

generated (1) from the N(z̄,s2
z ) distribution, and (2) from the Uniform(0, z̄) distribu-

tion. The first choice is a reasonable one, the second one clearly not. The choice of an
appropriate distribution is of course crucial, and misspecification of the generating
distribution might lead to substantial bias. The text file C:/Bayeslogistic.txt contains
the R code for the logistic regression model (in winbugs type of programming
syntax).

# parametric bootstrap for the mean antibody level

# Function to generate normal data; mle will contain
# the mean and standard deviation of the original data
z.rg1=function(data,mle){
out=data
out=rnorm(length(out),mle[[1]],mle[[2]])
out
}
mub=boot(z,meanstat,sim="parametric",ran.gen=z.rg1,

mle=list(mn=mean(z),sd=sqrt(var(z))) ,R=999)
boot.ci(mub,type = c("norm","basic","perc"))

# Function to generate uniform data, obviously a bad choice!
z.rg2=function(data,mle){
out=data
out=runif(length(out),0,mle)
out
}
mub=boot(z,meanstat,sim="parametric",ran.gen=z.rg2,

mle=mean(z),R=999)
boot.ci(mub,type = c("norm","basic","perc"))
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The R output for the normal distribution is in line with earlier results

> boot.ci(mub,type = c("norm","basic","perc"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL :
boot.ci(boot.out = mub, type = c("norm", "basic", "perc"))
Intervals :
Level Normal Basic Percentile
95% ( 5.875, 5.992 ) ( 5.876, 5.990 ) ( 5.877, 5.991 )
Calculations and Intervals on Original Scale

which is clearly not the case when assuming a totally wrong uniform distribution.

> boot.ci(mub,type = c("norm","basic","perc"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL :
boot.ci(boot.out = mub, type = c("norm", "basic", "perc"))
Intervals :
Level Normal Basic Percentile
95% ( 8.840, 8.965 ) ( 8.841, 8.968 ) ( 2.898, 3.025 )
Calculations and Intervals on Original Scale

B.4.3.1 Other Bootstraps

Next to the nonparametric and parametric bootstrap schemes, there are several other
options, including semiparametric bootstrap, wild bootstrap, residual bootstrap,
smoothed bootstrap, Bayesian bootstrap, iterated bootstrap, weighted bootstrap, etc.
Further information, details, and examples can be found in Davison and Hinkley
(1997).

B.5 Bayesian Methodology

Whereas frequentist methods assume that unknown parameters are fixed constants,
Bayesian methods offer an alternative approach by treating parameters as random
variables such that one can make probability statements about parameters. Probabil-
ities are not interpreted as limiting relative frequencies but rather as degrees of belief.
A Bayesian is a scientist who believes that a parameter θ cannot be determined
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exactly, but he can represent his prior information on the parameter by a prior
probability distribution, can update this prior information by combining it with the
data through the calculation of a posterior distribution. The key to combine prior
distribution(s) with data is Bayes’ theorem. An elaborate discussion about Bayesian
analysis and hierarchical Bayesian modeling can be found in Gelman et al. (2010)
and Gilks et al. (1996).

Consider again that you have data y = (y1, . . . ,yn) and that you are interested in
estimating a parameter θ . The essential components of a Bayesian analysis are:

The prior: specification of a prior distribution f (θ ) for θ . This prior ranges
from very informative to noninformative (also called “vague,” “diffuse,” or “flat”).
A noninformative prior assigns equal likelihood on all possible values of the
parameter, whereas an informative prior can have a substantial to major impact
on the posterior distribution. Jeffreys’ prior provides a way to define an optimal
noninformative prior for a parametric model. If informative, prior distributions
have to be selected with care, but proper use of prior information is the power
of Bayesian methods. Some of the prior distributions are conjugate, such that the
posterior distribution belongs to the same family as the prior distribution. These
types of priors are computationally convenient to obtain the posterior, but are not
central to posterior sampling.

The data: specification of a model f (y|θ ) for the data y given θ : the likelihood.

The update to the posterior: combining prior with data by Bayes’ theorem

f (θ |y) = f (y|θ ) f (θ )
∫

f (y|θ ) f (θ )dθ
,

or, posterior is proportional to likelihood × prior:

f (θ |y) ∝ L(θ )π(θ ).

All inferences follow from the posterior distribution f (θ |y) (posterior mean,
posterior mode, and credible intervals), but most analyses require Markov Chain
Monte Carlo (MCMC) for sampling from posterior distributions in order to compute
posterior quantities of interest. To minimize the effect of initial values, the practice
of burn-in discards the initial portion of the chain.

In Bayesian statistics, credible intervals play a similar role as confidence
intervals in the frequentist paradigm. A (1 − α)100% credible interval for θ is
defined as a set I such that

P(θ ∈ I|y) =
∫

I
f (θ |y)dθ = 1−α.
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It can be constructed to have equal tails through the (α/2)100% and (1−α/2)100%
quantiles of the posterior distribution f (θ |y). This approach has the nice property
to be invariant under monotone transformations. Another choice is the highest
posterior density interval which leads to the smallest intervals.

Bayesian Estimation of Binomial Parameter

Consider again the estimation of the probability π to be infected with VZV, but now
in the Bayesian way. A natural (conjugate) prior for π is the beta distribution with
parameters α,β > 0:

f (π) ∝ πα−1(1−π)β−1.

A beta distribution with parameters α and β has mean α/(α + β ), variance
αβ/[(α +β )2(α +β + 1)] and reaches a single mode at (α − 1)/(α +β − 2). The
likelihood, given the data (y1, . . . ,yn), is given by

L(y|π) ∝ π∑i yi(1−π)n−∑i yi ,

which combined with the prior leads to the posterior

f (π |y) ∝ πα−1(1−π)β−1π∑i yi(1−π)n−∑i yi ,

or
f (π |y) ∝ π∑i yi+α−1(1−π)n−∑i yi+β−1.

This is again a beta distribution with parameters ∑i yi +α and n−∑i yi + β . The
following table gives an overview of the MLE, the standard error of the MLE,
the posterior mode (also called the generalized MLE), the posterior mean, and the
standard deviation of the posterior describing the accuracy. Table B.2 shows these
estimates in general for a general beta prior and for the special case of the uniform
prior (α = β = 1). For the uniform prior, this table shows that the posterior mode
coincides with the MLE and that the posterior mean and variance are different, but
the differences are negligible for n large. When letting α → ∞, the beta prior gets
very informative with a value approaching the value of 1. In this case the prior
dominates the data, as posterior mode, posterior mean both tend to 1 (whatever the
data are), and the posterior variance tends to zero. So the posterior fully follows
the prior.

Table B.3 shows estimates for the VZV infection indicator for which ∑i di =
2,352 and n = 2,656. All results are strikingly similar, even for a very informative
prior with α = 100 en β = 1 (mean prior is 0.99 with variance 0.000096). The
reason that the prior does not dominate the data in the VZV example is the very
large sample size. So the impact of the prior not only depends on the prior itself but
also on the particular sample at hand and its size.
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Table B.2 Estimation of a binomial parameter: comparison between the
MLE and Bayesian estimates for the probability of success

Maximum likelihood estimate p = ∑i yi
n

Variance of MLE p(1−p)
n

Bayes estimates α ,β > 0 α = β = 1
Posterior mode ∑i yi+α−1

n+α+β−2 p = ∑i yi
n

Posterior mean ∑i yi+α
n+α+β

p+1/n
1+2/n

Posterior variance (∑i yi+α)(n−∑i yi+β )
(n+α+β )2(n+α+β+1)

(p+1/n)(1−p+1/n)
(n+2)2(n+3)/n

The left lower part shows Bayesian estimates for an arbitrary beta prior;
the right part for the uniform prior

Table B.3 Belgian VZV data. Estimation of the probability to
be infected by VZV: comparison between the MLE and Bayesian
estimates for the probability of success

Maximum likelihood estimate 0.8855

Variance of MLE 0.000038

Bayes estimates α = 100,β = 1 α = β = 1
Posterior mode 0.8897 0.8855

Posterior mean 0.8894 0.8853

Posterior variance 0.000036 0.000038

The left lower part shows Bayesian estimates for the highly
informative beta prior with α = 100,β = 1; the right part for the
flat uniform prior

We end this section with an illustration of the dependency of the probability
to be infected with VZV on age by means of a logistic regression model (as
before). The R-code below illustrates the use of the packages rjags and R2jags.
These packages provide an interface to the JAGS MCMC library. JAGS is Just
Another Gibbs Sampler. It is a program for analysis of Bayesian hierarchical models
using MCMC simulation similar to BUGS. In the application the priors for the
regression parameters β0 and β1 are taken as uninformative normal priors with mean
0 and very large variance 106.

library(rjags)
library(R2jags)

model.file="C:/Bayeslogistic.txt"

beta0i=mean(d)
beta1i=0
inits=function(){list(beta0=beta0i,beta1=beta1i)}

(continued)
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(continued)
N=length(d)
data=list("d","age","N")
parameters=c("beta0","beta1")
set.seed(1234)
jagsfit = jags(data=data, n.chains=2, inits=inits, parameters,

n.burnin=5000, n.iter=10000, n.thin=5, n.sims = 2000,
model.file=model.file)

traceplot(jagsfit)
jagsfit$BUGSoutput$summary

The file C:/Bayeslogistic.txt contains the logistic regression model. specification
(in winbugs type of programming language).

model {
for( i in 1 : N) {
d[i] ˜ dbern(p[i])
logit(p[i]) = beta0 + beta1 * age[i]

}
beta0 ˜ dnorm(0.0,1.0E-6)
beta1 ˜ dnorm(0.0,1.0E-6)
}

The R output shows the following estimates for the slope β1: posterior mean
0.1895 and posterior standard deviation 0.0121, which are very close to the corre-
sponding MLEs; posterior mode 0.1893 and 95% credible interval [0.1661,0.2136],
also very close to the profile likelihood CI.

> jagsfit$BUGSoutput$summary
mean sd 2.5% 25% 50%

beta0 -0.0723162 0.11494075 -0.3068040 -0.1471738 -0.07228818
beta1 0.1895055 0.01207152 0.1661102 0.1812876 0.18928988

75% 97.5% Rhat n.eff
beta0 0.007902071 0.1454689 1.001606 1400
beta1 0.197191626 0.2135639 1.000550 2000
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Fig. B.4 Belgian VZV data. Trace plots of two chains of the Bayesian application of the logistic
regression model (B.3)

Figure B.4 shows traceplots for part of the two chains as a diagnostic way to
check convergence of the MCMC algorithm. Similar analysis can be conducted
using the R package R2WinBUGS Sturtz et al. (2005).
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Daley D, Gani J (1999) Epidemic modelling: an introduction. Cambridge University Press,

Cambridge, MA
Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University

Press, Cambridge, MA
de Boor C (1978) A practical guide to splines. Springer, New York.



References 287

de Jong M, Diekmann O, Heesterbeek H (1995) Epidemic models: their structure and relation
to data. How does transmission of infection depend on population size? Press Syndicate of the
University of Cambridge, Cambridge, pp 84–94

De Leeuw J, Hornik K, Mair P (2009) Isotone Optimization in R/ Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods. J Stat Software 32(5):1–24

Del Fava E, Shkedy Z, Hens N, Aerts M, Suligoi B, Camoni L, Vallejo F, Wiessing L, and
Kretzschmar M (2011) Joint modeling of HCV and HIV co-infection among injecting drug
users in Italy and Spain using individual cross-sectional data. Statistical Communications in
Infectious Diseases 3(1):3. Doi: 10.2202/1948-4690.1010

Diamond LD, McDonald JM (1992) Demographic application of event history analysis. Analysis
of current-status data. Oxford University Press, Oxford

Diekmann O, Heesterbeek J (2000) Mathematical methodology of infectious diseases: model
building, analysis and interpretation. Wiley, West Sussex

Diekmann O, Heesterbeek J, Metz J (1990) On the definition and the computation of the basic
reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math
Biol 28:65–382. doi: 10.1007/BF00178324

Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat
Methods Med Res 2:23–41

Dietz K, Schenzle D (1985) Proportionate mixing models for age-dependent infection transmis-
sion. Math Biosci 22:117–120

Diggle P (1990) Time Series, A Biostatistical Introduction. Oxford University Press, Oxford
Dobson A (2002) An introduction to generalized linear models. Chapman and Hall, London
Duchateau L, Janssen P (2008) The frailty model. Springer, Berlin
Edmunds W, Gay N, Kretzschmar M, Pebody R, Wachmann H (2000a) The prevaccination

epidemiology of measles, mumps and rubella in Europe: implications for modeling studies.
Epidemiol infect 125:635–650

Edmunds W, Kafatos G, Wallinga J, Mossong J (2006) Mixing patterns and the spread of close-
contact infectious diseases. Emerging Themes in Epidemiology 3(10)

Edmunds WJ, Medley GF, Nokes DJ (1993) The influence of age on the development of the
hepatitis B carrier state. Proc Roy Soc Lond B Biol Sci 253:197–201

Edmunds W, O’Callaghan C, Nokes D (1997) Who mixes with whom? A method to determine the
contact patterns of adults that may lead to the spread of airborne infections. Proc Roy Soc Lond
B Biol Sci 264:949–957

Edmunds WJ, Pebody RG, Aggerback H, Baron S, Berbers G, Conyn-van Spaendonck MA,
Hallander HO, Olander R, Maple PA, Melker HE, Olin P, Fievret-Groyne F, Rota C, Salmaso S,
Tischer A, von Hunolstein C, Miller E (2000b) The sero-epidemiology of diphtheria in western
europe. ESEN project. european sero-epidemiology network. Epidemiol Infect 125(1):113–125

Efromovich S (1999) Nonparametric curve estimation: methods, theory and applications. Springer,
Berlin

Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York
Eichner M, Zehnder S, Dietz K (1996) Models for infectious human diseases: their structure and

relation to data. An age-structured model for measles vaccination, Cambridge University Press,
Cambridge, UK, pp 38–56

Eilers P, Currie I, Durban M (2006) Fast and compact smoothing on large multidimensional grids.
Comput Stat Data Anal 50:61–76

Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties (with discussion).
Stat Sci 89:89–121

Erkanli A, Soyer R, Costello E (1999) Bayesian inference for prevalence in longitudinal two-phase
studies. Biometrics 55:1145–1150

Evans R, Erlandson K (2004) Robust Bayesian prediction of subject disease status and population
prevalence using several similar diagnostic tests. Stat Med 23:2227–2236

Faes C, Geys H, Aerts M, Molenberghs G (2003) On the use of fractional polynomial predictors
for quantitative risk assessment in developmental toxicity studies. Stat Model 3:109–126



288 References

Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall,
London

Farrington C (2008) Modelling epidemics. The Open University, Milton Keynes.
Farrington C, Whitaker H (2005) Contact surface models for infectious diseases: estimation from

serologic survey data. J Am Stat Assoc 100:370–379
Farrington C, Kanaan M, Gay N (2001) Estimation of the basic reproduction number for

infectious diseases from age-stratified serological survey data. Appl Stat 50:251–292. doi:
10.1111/1467-9876.00233

Farrington CP (1990) Modeling forces of infection for measles, mumps and rubella. Stat Med
9:953–967

Friedman J, Silverman B (1989) Flexible parsimonious smoothing and additive modelling.
Technometrics 31:3–39

Friedman J, Tibshirani R (1984) The monotone smoothing of scatterplots. Technometrics 31:3–39
Gay N, Vyse A, Enquselassie F, Nigatu W, Nokes D (2003) Improving sensitivity of oral fluid

testing in igg prevalence studies: application of mixture models to a rubella antibody survey.
Epidemiol Infec 130:285–291

Gelfand A, Kuo L (1991) Nonparametric Bayesian bioassay including ordered polytomous
response. Biometrika 78:657–666

Gelfand A, Ecker M, Christiansen C, Mclaughlin T, Soumerai S (2000) Conditional categorical
response with application to treatment of acute myocardial infraction. Appl Stat 49:171–186

Gelfand A, Smith A, Lee T (1992) Bayesian analysis of constrained parameters and truncated data
problems using Gibbs sampling. J Am Stat Assoc 87:523–532

Gelman A (1996) Markov chain Monte Carlo in practice. Inference and monitoring convergence.
Chapman and Hall, London

Gelman A, Carlin J, Stern H, Rubin D (1995) Bayesian data analysis. Chapman & Hall, London
Gelman A, Carlin JB, Stern HS, Rubin D (2010) Bayesian Data Analysis (second edition),

Chapman and Hall/CRC
Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice,

Chapman and Hall/CRC
Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman

and Hall, London
Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Van Damme P, Beutels P (2010)

Estimating infectious disease parameters from data on social contacts and serological status.
J Roy Stat Soc C 59:255–277

Goeyvaerts N, Hens N, Aerts M, Beutels P (2011) Model structure analysis to estimate basic
immunological processes and maternal risk for parvovirus b19. Biostatistics 12(2):283–302.
doi: 10.1093/biostatistics/kxq059

Green P, Silverman B (1994) Nonparametric regression and generalized linear models. Chapman
and Hall, London

Greenhalgh D, Dietz K (1994) Some bounds on estimates for reproductive ratios derived from the
age-specific force of infection. Math Biosci 124:9–57

Grenfell BT, Anderson RM (1985) The estimation of age-related rates of infection from case
notifications and serological data. J Hyg 95(2):419–36

Griffiths D (1974) A catalytic model of infection for measles. Appl Stat 23:330–339
Grummer-Strawn LM (1993) Regression analysis of current status data: an application to breast

feeding. Biometrika 72:527–537
Hadler S (1991) Viral hepatitis and liver disease, Global impact of hepatitis A virus infection:

changing patterns, Williams & Wilkins, Baltimore, MD, pp 14–20
Hall P (1992) The bootstrap and edgeworth expansion. Springer, New York
Halloran E, Longini I, Struchiner C (2010) Design and analysis of vaccine studies. Springer, Berlin
Hamer W (1906) Epidemic disease in England—the evidence of variability and of persistency of

type. Lancet 1:733–739



References 289

Hardelid P, Williams D, Dezateux C, Tookey P, Peckham C, Cubitt W, Cortina-Borja M (2008)
Analysis of rubella antibody distribution from new born dried blood spots using finite mixture
models. Epidemiol Infect 136:1698–1706

Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London
Healy M, Tillett H (1988) Short-term extrapolation of the AIDS epidemic. J Roy Stat Soc A 151:

50–61
Hens N, Aerts M, Shkedy Z, Kung’U Kimani P, Kojouhorova M, Van Damme P, Beutels P (2008a)

Estimating the impact of vaccination using agetime-dependent incidence rates of hepatitis B.
Epidemiol Infect 136(3):341–351

Hens N, Aerts M, Shkedy Z, Theeten H, Van Damme P, Beutels P (2008b) Modelling multi-sera
data: the estimation of new joint and conditional epidemiological parameters. Stat Med 27:
2651–2664. doi: 10.1002/sim.3089

Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, Beutels P (2009a)
Estimating the impact of school closure on social mixing behaviour and the transmission
of close contact infections in eight European countries. BMC Infect Dis 9:187. doi:
10.1186/1471-2334-9-187

Hens N, Goeyvaerts N, Aerts M, Shkedy Z, Damme PV, Beutels P (2009b) Mining social mixing
patterns for infectious disease models based on a two-day population survey in belgium. BMC
Infect Dis 9:5. doi: 10.1186/1471-2334-9-5

Hens N, Aerts M, Faes C, Shkedy Z, Lejeune O, Damme PV, Beutels P (2010a) Seventy-five years
of estimating the force of infection from current status data. Epidemiol Infect 138(6):802–812.
doi: 10.1017/S0950268809990781

Hens N, Kvitkovicova A, Aerts M, Hlubinka D, Beutels P (2010b) Modelling distortions in
seroprevalence data using change-point fractional polynomials. Stat Model 10:159–175

Hethcote H, Van Ark J (1987) Epidemiological models for heterogeneous populations: proportion-
ate mxing, parameter estimation and immunization programs. Math Biosci 84:85–118

Hougaard P (2000) Analysis of multivariate survival data. Springer, New York
Isham V (1988) Mathematical modeling of the transmission dynamics of HIV infection and AIDS:

a review. J Roy Stat Soc A 151:50–61
Isham V, Medley G (eds) (1996) Models for infectious human diseases. Their structure and relation

to data. Publications of the Newton Institute, Cambridge
Jewell NP, Van Der Laan M (1995) Generalizations of current status data with applications.

Lifetime Data Anal 1:101–109
Kanaan M, Farrington C (2005) Matrix models for childhood infections: a Bayesian approach with

applications to rubella and mumps. Epidemiol Infect 133:1009–1021
Keeling M, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton

University Press, Princeton, NJ
Keiding N (1991) Age-specific incidence and prevalence: a statistical perspective (with discus-

sion). J Roy Stat Soc A 154:371–412
Keiding N, Begtrup K, Scheike TH, Hasibeder G (1996) Estimation from current status data in

continuous time. Lifetime Data Anal 2:119–129
Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics.

Proc Roy Soc Lond A 115:700–721
Kermack WO, McKendrick AG (1932) Contributions to the mathematical theory of epidemics ii.

The problem of endemicity. Proc Roy Soc Lond A 138:55–83
Kermack WO, McKendrick AG (1933) Contributions to the mathematical theory of epidemics. iii.

Further studies of the problem of endemicity. Proc Roy Soc Lond A 141:94–122
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