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Preface

This book is a description of research and data analysis carried out by the authors
with substantial funding from the National Center for Education Statistics (NCES)
and the Institute of Education Sciences (IES), divisions of the U.S. Department of
Education, in partnership with the American Institutes for Research (AIR). The pur-
pose of this work was to evaluate a new approach to the analysis and reporting of the
large-scale surveys for the National Assessment of Educational Progress (NAEP)
carried out for the NCES.

The new approach was based on a full statistical and psychometric model for
students’ responses to the test items, taking into account the design of the survey,
the backgrounds of the students, and the classes, schools and communities in which
the students were located.

The need for a new approach was driven by two unrelated issues: the demands
for secondary analysis of the survey data by educational and other researchers who
needed analyses more detailed than those published by NCES, and the need to ac-
celerate the processing and publication of results from the surveys.

The modeling approach is complex and computationally intensive, but less so
than the existing methods used for these surveys, and it has the twin advantages of
efficiency in the statistical sense – making full use of the information in the data –
and optimality : given the validity of the statistical model, this form of analysis is
superior to any other non-Bayesian analysis in terms of precision of the estimates of
group differences and regression coefficients of important variables.

The use of a full statistical model avoids the ad hoc methods that are otherwise
necessary for the analysis of the data. It is dependent, for successful adoption, on
efficient computational implementations in generally available software. Develop-
ments in this area have been rapid in the last ten years: we began our analyses in
2003 using Gllamm in Stata (Rabe-Hesketh and Skrondal 2005); see the Website.

http://www.gllamm.org

By 2008 we were able to use the very fast Latent Gold program which makes large-
scale model fitting straightforward for NAEP data sets; see the Website.
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http://www.statisticalinnovations.com/products
/latentgold_v4.html

The following chapters, apart from the first, are set out in a sequence representing
the main aspects of the NAEP surveys and the development of methods for fitting
the increasingly complex models resulting from the incorporation of these aspects.
The content of the book is drawn mostly from our NCES research reports, which
are described briefly in Chapter 4. We generally do not give references to specific
reports in the text, as the chapters draw from many of the reports. The full reports
themselves are available on our Website, as described in Chapter 4.

The models and analysis approach are illustrated with detailed results from two
NAEP surveys. The first is from the 1986 national NAEP mathematics test and in-
cludes results on the set of 30 items from the Numbers and Operations: Knowl-
edge and Skills subscale, for age 9/grade 3 children. The “explanatory” regression
model fitted is quite small and was chosen to nearly replicate the tables of “reporting
group” variables published by NCES for this survey. We extended this analysis to
all 79 test items on three scales.

The second survey is from the 2005 national NAEP mathematics test and in-
cludes results on the set of 70 items from the Numbers and Operations scale for
age 10/grade 4 children. We fitted a much larger regression model with variables
from the student, teacher and school questionnaires. We analysed the California and
Texas state subsamples with more complex item response models.

Chapter 1 is an introduction to the current theories of data analysis used for
large-scale surveys. It may surprise non-statistician readers to find that there are
major disputes within the statistics profession about the role of statistical models in
official (national government) survey analysis. We describe the critical theoretical
issues that divide the several theories, and give an indication of the extent to which
each theory is used in current official practice.

Chapter 2 describes the current method of analysis of NAEP surveys. This has
changed several times; we give the analysis that was used for the 1986 survey, which
we use as an illustration in later chapters, and note the changes that have occurred
since then. The design and analysis of the 1986 survey were very complicated, and
we have omitted aspects of the design that are not critical to the analysis. Some
complex sections (for example, jackknifing) have been described at length because
these are critical for the comparison with our approach.

Chapter 3 sets out the psychometric models used in the NAEP analysis, gives
some extensions of them using mixture distributions for student ability, discusses
the survey designs used in the surveys, and gives the multilevel model representation
of the designs.

Chapter 4 summarises the main conclusions from our extensive simulation stud-
ies, which showed the improvement in precision and the reduction in bias resulting
from the fully model-based analysis of small-scale models compared with the cur-
rent approach. References to the full reports on this work are given there.

Chapter 5 sets out the series of analyses we used with the range of models from
Chapter 3 for the 30-item scale from the 1986 math test for age 9/grade 3 children.
Chapter 6 extends these analyses to the full set of 79 items on the test. Chapter 7
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applies more complex analyses to the 2005 national NAEP subsample for Texas for
age 10/grade 4 children. Chapter 8 applies the same analyses to the 2005 subsample
for California for age 10/grade 4 children.

Chapter 9 discusses the results of the analyses and draws conclusions about the
benefits and limitations of fully model-based large-scale survey analysis.
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Chapter 1
Theories of Data Analysis and Statistical
Inference

1.1 Introduction

Every survey, in any field, begins conceptually with a population list, a sampling
plan or sample design by which an appropriate sample is to be drawn from the pop-
ulation, a measurement instrument specifying the information – response variables
and covariates or explanatory variables – to be obtained from the sampled popu-
lation members, and an analysis plan by which the response variables, and their
relation to the covariates or explanatory variables, are to be analysed.

In the NAEP surveys that we describe and analyse, the population list is of school
students of several ages and grades, the sampling plan is a complex clustered and
stratified design, and the measurement instrument is a set of test items measuring
achievement in mathematics or another subject (the response variables in many anal-
yses, including ours) and a set of questionnaire items describing students, their home
background, and teacher and school characteristics that we use as covariates for
achievement, though many may be response variables in other analyses.

We use from now on the term covariates, rather than explanatory variables, as the
NAEP surveys we discuss are observational studies in which the issue of causality
– of whether variation in the covariates causes or explains variations in the out-
come variables – cannot be assessed from the surveys, as these are not experimental
studies involving randomisation of students to classes or to educational and family
contexts.

The analysis plan is the subject of this book, which discusses in this chapter the
different philosophies in the statistics profession about how data from such studies
should be analysed. Our view of analysis is model-based: defined by a full statistical
model – in contrast to the current analysis of these surveys, which is a mixture of
model-based and design-based: defined by hypothetical replications of the survey
design.

In describing and discussing the important differences in these approaches, we
adapt the discussion in Chapter 1 of Aitkin (2010) and use several very simple ex-
amples that, however, make clear the importance of the philosophical differences.

1M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
Statistics for Social and Behavioral Sciences,
DOI 10.1007/978-1-4419-9937-5_1, © Murray Aitkin and Irit Aitkin 2011
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1.2 Example

We have a simple random sample of size 40 from a finite population of 648 families
and for each family record the family income for the previous tax year. From this
sample, we wish to draw an inference about the population mean family income for
that tax year. How is this to be done? The sample of incomes, reported to the nearest
thousand dollars, is given below.

Family income, in units of 1000 dollars
--------------------------------------------------
26 35 38 39 42 46 47 47 47 52 53 55 55 56 58 60 60
60 60 60 65 65 67 67 69 70 71 72 75 77 80 81 85 93
96 104 104 107 119 120
--------------------------------------------------

Theories of data analysis and inference can be divided into two classes: those
that use the likelihood function (defined below) as an important, or the sole, basis
for the theory and those that do not give the likelihood any special status.

Within the first class, there is a division between theories that regard the likeli-
hood as the sole function of the data that provides evidence about the model param-
eters and those that interpret the likelihood using other factors.

Within the second class, there is a division between theories that take some ac-
count of a statistical model for the data and those based exclusively on the properties
of estimates of the parameters of interest in repeated sampling of the population.
Comprehensive discussions of the main theories can be found in Welsh (1996) and
Lindsey (1996), to which we refer frequently. We illustrate these theories with ref-
erence to the income problem above.

1.3 Statistical models

Theories that use the likelihood require a statistical model for the population from
which the sample is taken, or more generally for the process that generates the data.
Inspection of the sample income values shows that (in terms of the measurement unit
of $1000) they are integers, as are the other unsampled values in the population. So
the population of size N can be expressed in terms of the population counts NJ at
the possible distinct integer values of income YJ or, equivalently by the population
proportions pJ = NJ/N at these values.

A (simplifying) statistical model is an approximate representation of the pro-
portions pJ by a smooth probability distribution depending on a small number of
model parameters. The form of the probability function is chosen (in this case of a
large number of distinct values of Y ) by matching the cumulative distribution func-
tion (cdf) of the probability distribution to the empirical cdf of the observed values.
Figure 1.1 shows the empirical cdf of the sample values. A detailed discussion of
this process is given in Aitkin et al. (2005) and Aitkin et al. (2009). We do not give
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details here, but the matching process leads to the choice of an approximating con-
tinuous cdf model F(y |λ ) and corresponding density function f (y |λ ) = F ′(y |λ );
the probability pJ of YJ is approximated by F(YJ +δ/2 |λ )−F(YJ −δ/2 |λ ), where
δ is the measurement precision (which equals 1 in the units of measurement). When
the variable Y is inherently discrete on a small number of values, as with count data,
the values pJ are approximated directly by a discrete probability distribution model.

Figure 1.2 shows the cdf of a normal distribution with the same mean (67.1) and
standard deviation (22.4) as the sample income data, superimposed on the empirical
cdf. Figure 1.3 shows the same cdfs, but on the vertical probit scale of Φ−1(p).
On this scale it is clearer that the income sample has some degree of skew, with a
longer right-hand tail of large values, so an approximating model with right skew
might be appropriate. The gamma, lognormal, and Weibull distributions are possible
choices. However, to establish which of several possible models is most appropriate
for sample data requires advanced model comparison methods, which we discuss in
later chapters.

Here we will assume that the normal distribution with parameters μ (the mean)
and σ (the standard deviation) is a reasonable model, where μ is the parameter of
interest and σ is a nuisance parameter – we want to draw conclusions about the
parameter of interest, μ , but the model depends as well on the nuisance parameter
σ :

f (y |μ ,σ) =
1√

2πσ
exp

{
− 1

2σ2 (y− μ)2
}
.
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1.4 The likelihood function

Given a simple random sample y = (y1, . . . ,yn) of size n, drawn from the population
(assumed for the moment to be large compared with the sample) and an approximat-
ing statistical model F(y |λ ), the likelihood function L(λ |y) (of the model parame-
ters λ ) is the probability of the observed data as a function of these parameters1,

L(λ |y) = Pr[y1, . . . ,yn |λ ]
=

n

∏
i=1

[F(yi + δ/2 |λ )−F(yi − δ/2 |λ )]

.
=

[
n

∏
i=1

f (yi |λ )
]
·δ n,

if the measurement precision is high relative to the variability in the data. In general,
the parameter vector λ can be partitioned into a subvector θ of parameters of interest
and a subvector φ of nuisance parameters.

Then, for high measurement precision δ in the normal model above, the normal
likelihood function, given the sample data y, can be written as

L(μ ,σ | y) =
n

∏
i=1

[
1√

2πσ
exp

{
− 1

2σ2 (yi − μ)2
}

δ
]

=
1

(
√

2πσ)n
exp

{
− 1

2σ2
[
n(ȳ− μ)2 +RSS

]} ·δ n,

where ȳ = ∑i yi/n, RSS = ∑i(yi− ȳ)2. An important theoretical point is that the like-
lihood function here depends on the data through only the two data functions ȳ and
RSS (and the sample size n, assumed fixed). These sufficient statistics are all that is
needed to compute the likelihood function – we do not need the data values them-
selves.

We will generally drop the y from the notation for the likelihood function, but it is
always implicit in its definition that the data have been observed. We now describe
briefly the theories and how they deal with inference about the population mean
income.
1 The likelihood is frequently defined to be any constant multiple of the probability of the observed
data, but in our approach likelihoods are probabilities.
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1.5 Theories

1.5.1 Likelihood-based repeated sampling theory

This theory was dominant from the 1930s to the 1990s and is still prominent. The
theory uses the likelihood function L(λ | y) to provide both maximum likelihood
estimates (MLEs) λ̂ of the parameters and likelihood-based confidence intervals or
regions. These are obtained in general from the first and second derivatives of the
log-likelihood function with respect to the parameters λ .

The estimates and confidence intervals or regions are interpreted through their
behavior in (hypothetical) repeated sampling from the same population (whence
comes the Bayesian term frequentist to describe the theory). In large samples, MLEs
have optimality properties as point estimates, though they may be biased in small
samples.

For the income example, the MLEs of μ and σ are

μ̂ = ȳ,

σ̂2 = RSS/n.

The sampling distribution of ȳ is N(μ ,σ2/n), so E[μ̂] = μ – the MLE of μ is un-
biased. The sampling distribution of RSS (independent of that of μ̂) is σ2χ2

n−1, so
E[RSS] = (n−1)σ2, and E[σ̂2] = (n− 1)σ2/n – the MLE of σ2 is slightly biased.

To make an inferential statement about μ that does not depend on σ , we need the
t-distribution

t =

√
n(ȳ− μ)

s
∼ tn−1,

the Student’s t-distribution with n−1 degrees of freedom, where s=
√

RSS/(n−1).
A (central) 95% confidence interval for μ is then ȳ± t0.975

n−1 s/
√

n. For our income
example, ȳ = 67.1, s2 = 500.87, and the 95% confidence interval for μ from the
t-distribution is [59.9,74.3].

1.5.2 Bayes theory

Bayes theory was dominant (indeed, it was the only theory) from the 1800s to the
1920s and began a major resurgence in the 1990s. It is fully conditional on the
observed data, and conclusions about the population from which it was drawn are
based on the likelihood function L(λ | y) (representing the data information) and the
prior (probability) distribution π(λ ) of the model parameters, representing the in-
formation we have about these parameters external to, and in advance of, the sample
data.

Inference is expressed through the posterior distribution π(λ |y) of the model
parameters, updated from the prior by the likelihood through Bayes’s Theorem:
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π(λ |y) = L(λ )π(λ )∫
L(λ )π(λ )dλ

.

If λ can take just one of the two values λ1 and λ2, with prior probabilities π1 and
π2, the ratio of posterior probabilities (the posterior odds for λ1 to λ2) is

π(λ1 |y)
π(λ2 |y) =

L(λ1)π1
L(λ2)π2

=
L(λ1)

L(λ2)
· π1

π2
,

so that the posterior odds is equal to the likelihood ratio multiplied by the prior
odds. So the likelihood ratio provides the data evidence for one parameter value
over another, but this is complemented in Bayes theory by the prior information
about these values – their prior probabilities.

The theory requires that we express prior information as a probability distri-
bution. In many cases we may not have well-developed information or views that
are easily expressed as a probability distribution, and much use is made, by many
Bayesians, of weak or noninformative priors, which are “uniformative” relative to
the information in the data: the data were presumably collected to obtain informa-
tion about parameters for which we had little prior information, and so the prior
should reflect this lack of information. A non-informative prior for the case above
of two parameter values would be one with equal prior probabilities, leading to the
posterior odds being equal to the likelihood ratio.

A subdivision of Bayes theorists regard noninformative priors as at best undesir-
able (especially when they are improper) and at worst denying the whole point and
advantage of the Bayesian approach, which is to accommodate both sample data and
external information in the same unified probabilistic framework. It argues that all
prior distributions should reflect the actual information available to the analyst; this
may mean that different analysts using different prior distributions come to different
conclusions. Analysts who have difficulty formulating priors need to be trained in
prior elicitation (Garthwaite et al. 2005).

To draw conclusions about the parameters of interest θ , we need to eliminate the
nuisance parameters φ in some way. This is achieved in Bayes theory by a standard
probability procedure: we integrate the joint posterior distribution π(θ ,φ |y) over
φ to give the marginal posterior distribution π(θ |y):

π(θ |y) =
∫

π(θ ,φ |y)dφ .

For the income example, we need to specify the prior distribution for (μ ,σ). A
simple approach is to specify independent flat priors π(μ) = c for μ and for log(σ);
the latter is equivalent to the prior on σ of π(σ) = 1/σ . For this choice of prior, the
joint posterior distribution of μ and σ2 can be expressed as

π(μ ,σ | y) = c ·L(μ ,σ | y)π(μ ,σ)
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= c · 1
σn+1 exp

{
− 1

2σ2

[
n(ȳ− μ)2 +RSS

]}
= c′ ·

√
n√

2πσ
exp

{
−n(ȳ− μ)2

2σ2

}
· 1

2ν/2Γ (ν/2)
exp

{
−RSS

2σ2

}(
RSS
σ2

)ν/2−1
,

where ν = n−1 and c and c′ are integrating constants, not dependent on μ or σ .
So, given σ , μ has a (conditional) posterior N(ȳ, σ2/n) distribution, while

RSS/σ2 has a marginal χ2
ν posterior distribution. Integrating out σ , we obtain the

standard result that t =
√

n(ȳ− μ)/s has a marginal posterior t-distribution with ν
degrees of freedom or, equivalently, the mean μ has a shifted and scaled ȳ+ tνs/

√
n

marginal posterior distribution. So the posterior mean (and median) of μ is ȳ= 67.1,
and a central 95% credible interval for μ is identical to the central 95% confi-
dence interval: [ȳ± 2.045s/

√
n]. For the income sample, the 95% credible interval

is [59.9,74.3].
The interpretation of the likelihood function for the income example is reversed

compared with the frequentist interpretation: ȳ and RSS are now fixed constants
given the data, while the parameters μ and σ have noninformative prior distributions
and consequent posterior distributions. The Bayesian posterior distributions depend
on the particular diffuse priors for μ and logσ : if conjugate informative priors are
used, the posterior distributions are more informative than the frequentist results.

Our work on the NAEP surveys does not use Bayesian methods, though we raise,
in the final discussion section of the book, serious difficulties with frequentist meth-
ods for these surveys, which require fully Bayesian methods for satisfactory analy-
ses.

1.5.3 “Model assisted” survey sampling theory

The term model assisted (as used in Särndal et al. 1992) is relatively new in survey
sampling theory, which was extensively developed in the 1950s. It refers to the
usefulness of model-based estimators of model parameters, but without reliance
on the correctness of the model. Without a formal model, inference is based on
the repeated sampling distribution of the sample selection indicators, not of the
population values themselves. The survey design determines the inference, hence
the term design-based (as opposed to model-based) inference. The design-based
approach, and several aspects of the model-based approach, are clearly set out in
the book by Lohr (1999), which we follow in our discussion below.

The income mean example gives a simple example of the approach. We introduce
notation for the finite population. Y is the variable of interest, in the finite population
of size N. The population values of Y are Y1,Y2, ...,YN . The population mean μ is
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μ =
N

∑
I=1

YI/N

and the population variance is

σ2 =
N

∑
I=1

(YI − μ)2/N;

both the mean and variance must be finite if the values YI are finite. (In the survey
literature, the variance denominator is usually N −1.)

We draw a simple random sample without replacement of fixed predetermined
size n and obtain observed values y1, ...,yn with sample mean ȳ and sample variance

s2 = ∑
i

(yi − ȳ)2/ν.

Define indicator variables Z1,Z2, ...,ZI , ...,ZN . Let

ZI = 1 if population member I is selected
= 0 if population member I is not selected.

Then

ȳ =
n

∑
i=1

yi/n

=
N

∑
I=1

ZIYI/
N

∑
I=1

ZI

=
N

∑
I=1

ZIYI/n.

Inference about μ is based on the repeated sampling properties of the random vari-
able ȳ as an estimator of μ . The fundamental inferential principles are that the YI

are fixed constants and the ZI are Bernoulli random variables with

Pr[ZI = 1] =
no. of samples containing unitI

no. of samples of size n

=

(N−1
n−1

)(N
n

) =
n
N

= π ,

the sampling fraction. The properties of ȳ are easily established.

E[ZI] = E[Z2
I ] = π ,Var[ZI ] = π(1−π) =

n
N

(
1− n

N

)
.

Hence
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E[ȳ] =
1
n

N

∑
I=1

E[ZI]YI

=
1
N

N

∑
I=1

YI

= μ .

So, as a random variable, ȳ is unbiased for μ . For the variance of ȳ, we need the
joint distribution of pairs of the ZI . These are not independent,

Pr[ZI = 1,ZJ = 1] = Pr[ZI = 1]Pr[ZJ = 1 | ZI = 1]

=
n
N
· n− 1

N − 1
,

and so

Cov[ZI ,ZJ] =
n(n− 1)
N(N − 1)

−
( n

N

)2

= − 1
N − 1

n
N

(
1− n

N

)
= −π(1−π)/(N− 1),

Var[ȳ] = ∑
I

Y 2
I Var[ZI ]/n2 +∑

I
∑
�=J

YIYJCov[ZI ,ZJ]/n2

=
1− n/N

nN(N − 1)

[
(N − 1)∑

I
Y 2

I −∑
I

∑
�=J

YIYJ

]

=
1− n/N
n(N − 1) ∑

I

(YI − μ)2

= (1− n/N)σ2/n

= (1−π)σ2/n,

if the population variance is defined by the N − 1 denominator.
The first term, (1−n/N) = (1−π), is a finite population correction (FPC): for a

small sample fraction, Var[ȳ]�σ2/n, but as π → 1, n→N, and Var[ȳ]→ 0, since the
sample exhausts the population. For our income example, the FPC is (1−40/648)=
0.938 – the variance of the sample mean is reduced by 6.2% relative to the usual
frequentist variance.

For the sample variance,

E[s2] = E

[
∑

i

y2
i − nȳ2

]
/(n− 1)

= E

[
∑

I

ZIY
2
I − nȳ2

]
/(n− 1)
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=

{
n∑

I

Y 2
I /N − n(Var[ȳ]+Eȳ]2)

}
/(n−1)

=

{
n∑

I
Y 2

I /N − n([1− 1/N]σ2/n+ μ2)

}
/(n−1)

= (1− 1/N)σ2.

So s2 is an almost unbiased estimator of σ2, regardless of any distribution model
for Y , and under the Bernoulli model ȳ is the minimum variance linear unbiased
estimator of μ .

For confidence interval statements about μ , the theory uses the Central Limit
Theorem in its general form. The sample mean has expectation μ and variance
(1−1/N)σ2 in repeated samping, and since it is a (weighted) linear combination of
(correlated) random variables ZI , as n → ∞ (and N → ∞), the sampling distributions
of

z =

√
n(ȳ− μ)

σ
and t =

√
n(ȳ− μ)

s
→ N(0,1),

giving the usual large-sample confidence interval

ȳ− z1−α/2s/
√

n < μ < ȳ+ z1−α/2s/
√

n.

The accuracy of the confidence interval coverage depends on the sample size n – it
may be quite inaccurate for small n – and may depend on other properties of the Y
population. Without other information about this population, we cannot say more.

For the example, we have ȳ = 67.1, s = 22.4, and the (approximate) 95% confi-
dence interval for the population mean is [60.2, 74.0]. Remarkably, we seem to be
able to make (asymptotically) the same inferential statement about μ without any
model for the population values Y , or invoking the Central Limit Theorem for the
sampling distribution of ȳ as a function of (y1, . . . ,yn)!

From the viewpoint of model-based likelihood theory, however, this approach is
unsatisfactory. The argument is clear if we construct the likelihood as the probability
of all observed data. The data are both the sample selection indicators ZI and the
observed response variables yi for the selected population members, so we need a
population model for the YI as well.

The fundamental probability relation we use is

Pr[YI ,ZI ] = Pr[ZI | YI]Pr[YI]

= Pr[YI | ZI]Pr[ZI].

where Pr[ZI | YI] is the sample selection model for Z – it specifies how the selection
probability of population member I depends on the value of the response YI for that
member – and Pr[YI] is the population model for Y . For simple random sampling,

Pr[ZI | YI ] = Pr[ZI ] = πZI (1−π)1−ZI ,
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the Bernoulli model above. Correspondingly,

Pr[YI | ZI ] = Pr[YI ]

– the model for the selected population values is the same as that for the unselected
values. So

Pr[YI,ZI ] = Pr[YI]Pr[ZI ],

and the likelihood is

L = Pr[y1, . . . ,yn] ·Pr[Z1, ...,ZN ]

= Pr[y1, . . . ,yn] · 1(N
n

)
= Pr[y1, . . . ,yn] · n

N
n− 1
N − 1

. . .
1

N −n+1
.

The last term in the selection probabilities is completely known from the design –
it is just a constant. For inferential statements about the parameters based on like-
lihoods and their ratios, as with known constants in any probability function for
the YI , these constant terms are irrelevant (they cancel in likelihood ratios). Thus,
regardless of the kind of model we might have for the YI , any inference through like-
lihood ratios does not depend on the sample design if this is noninformative in the
sense described above – that Pr[ZI |YI ] = Pr[ZI ] – membership of the I-th population
member in the sample does not depend on the value of the response YI .

In survey sampling theory, this difficulty is countered by the difficulty of the
dependence of model-based inference on the correctness of the model – if this is
incorrect, the conclusions from the analysis could be wrong. Since every model is
by definition wrong (as it is a simplification), the risk of wrong conclusions from
the model-based approach is inherent in the approach. Also, if the sample design
is informative, likelihood-based inference becomes much more difficult because the
form of dependence in Pr[ZI |YI ] needs to be specified and included in the likelihood.

In Aitkin (2008) and Chapter 4 of Aitkin (2010), this argument is addressed by
using a general multinomial model for the population values YI . This allows full
likelihood and Bayes analyses but makes no restrictive smooth assumptions – the
“model” is always correct!

In the NAEP analyses following this chapter, our response variables are binary
test items with a correct answer probability that is modeled using a logistic regres-
sion function. So there is no formal “model” assumption (like a normal distribution)
for the test item responses – it is only the form of the “link” function, relating the
probability to covariates, which might be questioned as appropriate. We discuss this
further in the following chapters.
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1.6 Weighting

The importance of the difference in model-based and design-based philosophies is
greatly increased in dealing with weighting. The use of sample weighting in strat-
ified designs has a long tradition in survey sampling, dating at least from Klein
and Morgan (1951). DuMouchel and Duncan (1983) gave a summary of textbook
recommendations for weighting and asked (p. 535):

Which estimator should be used? Controversy has raged since Klein and Morgan (1951).

Recent formalisations of weighting through weighted likelihoods clarify this is-
sue. We first discuss stratified sampling.

1.6.1 Stratified random sampling

Stratified sampling is used extensively in NAEP survey designs. It is designed to re-
duce variability in estimation due to known population heterogeneity – the popula-
tion is made up of homogeneous subpopulations with substantial differences among
them. A simple random sample may miss the small subpopulations completely or
give only small subsamples from them.

So the population is stratified into H subpopulations or strata with subpopulation
sizes Nh, h = 1, ...,H, and random samples of sizes nh are drawn separately from
each stratum. Extending the earlier notation, we write the responses of the popula-
tion members in stratum h as YIh, I = 1, ...,Nh, and those of the sample members
in stratum h as yih, i = 1, ...,nh. The rare strata are usually oversampled to obtain
reliable sample sizes. In estimating the full population mean, this oversampling has
to be taken into account. We call πh = nh/Nh the sampling fraction in stratum h and
ph =Nh/N the population proportion in stratum h. The stratum means and variances
are defined correspondingly:

μh =
Nh

∑
I=1

YIh/Nh,

σ2
h =

Nh

∑
I=1

(YIh − μh)
2/Nh,

ȳh =
nh

∑
i=1

yih/nh,

s2
h =

nh

∑
i=1

(yih − ȳh)
2/(nh −1).

These are summarised in Table 1 below.
The full population mean is



14 1 Theories of Data Analysis and Statistical Inference

μ =
H

∑
h=1

Nh

∑
I=1

YIh/N =
H

∑
h=1

Nhμh/N =
H

∑
h=1

phμh,

and the full population variance is

σ2 =
H

∑
h=1

Nh

∑
I=1

(YIh − μ)2/N

=
H

∑
h=1

[
Nh

∑
I=1

(YIh − μh)
2 +Nh(μh − μ)2

]
/N

=
H

∑
h=1

Nh[σ2
h +(μh − μ)2]/N

=
H

∑
h=1

ph[σ2
h +(μh − μ)2].

The overall sample mean is

ȳ =
H

∑
h=1

nh

∑
i=1

yih/n =
H

∑
h=1

nhȳh/n,

and the overall sample variance is

s2 =
H

∑
h=1

nh

∑
i=1

(yih − ȳ)2/(n− 1)

=
H

∑
h=1

[(nh − 1)s2
h + nh(ȳh − ȳ)2]/(n−1).

1.6.2 Design-based analysis

From §1.5.3, each ȳh is an unbiased estimator of μh with variance σ2
h /nh (omitting

the FPC), so an unbiased estimator of μ is μ̃ = ∑h phȳh, with variance (ignoring the
FPC) estimated by

Ṽ (μ̃) = ∑
h

p2
hs2

h/nh.

Suppose we used the “simple-minded” estimator ȳ to estimate μ . Then

Table 1.1 Stratified sampling
Stratum Proportion Fraction Mean Variance

Population h ph = Nh/N μh σ 2
h

Sample nh/n πh = nh/Nh ȳh s2
h
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E[ȳ] = ∑
h

nhμh/n,

and this is not equivalent to μ unless nh/n = ph = Nh/N, which is equivalent to
nh/Nh = πh = n/N, that is, the stratum sampling fraction is constant, as in probabil-
ity proportional to size (PPS) sampling. Since a constant sampling fraction would
give small sample sizes for small strata, it would not generally be used for strat-
ified sampling, so ȳ is generally biased. However, if μh ≡ μ , then ȳ is unbiased,
regardless of the sampling fractions – we are back to a homogeneous (in the means)
population.

1.6.3 Model-based analysis

The advantage of the fully model-based approach is that it requires us to specify and
include in the model all relevant features of the data process. What “simple-minded”
model would lead to the unreasonable analysis above? For the homogeneous popu-
lation and simple random sampling, the model Yi ∼ N(μ ,σ2) would lead to μ̂ = ȳ.
But we are given a heterogeneous population with different strata means μh, so
this cannot be the correct model. We need the one-way classification model (with
stratum-specific variances)

Yih ∼ N(μh,σ2
h ), i = 1, ...,nh, h = 1, ...,H,

for which
μ̂h = ȳh, σ̂2

h =
nh − 1

nh
s2

h.

To make a model-based inference about the linear function μ = ∑h phμh, we use
linear random variable theory:

μ̂ = ∑
h

phȳh ∼ N

(
∑
h

phμh,∑
h

p2
hσ2

h /nh

)
.

So, by including the strata as a factor in the model – modeling the stratifying
factor – we obtain the same model-based estimate and sampling variance as those
from the design-based estimate: since the stratified design is used because of the
population heterogeneity, we use the stratifying factor in any model and estimate
the heterogeneous population mean from the appropriate weighting of the strata
means.

This approach resolves a standard criticism of model-based analysis from the
design-based viewpoint: that it ignores, for estimation of the population mean in
stratified sampling, the need to weight the strata sample means. Instead of weighting
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the observations, we model the strata and then simply weight the strata means for
inference about the population mean.2

The criticism above may have had some validity in the 1970s, before the develop-
ment of multilevel modeling in the early 1980s (Aitkin, Anderson, and Hinde 1981;
Aitkin, Bennett, and Hesketh 1981), but the fully model-based analysis incorporat-
ing both stratification and clustering has been available, and has been widely used,
since the 1990s.

1.6.4 Weighted likelihoods

In the design-based framework, the use of weights in analysis is generally recom-
mended far beyond simple population mean estimation, extending to multiple re-
gression and other model-based procedures. The extension is motivated by its ex-
pression in a model-assisted analysis through a weighted likelihood (Skinner 1989,
pp. 80–84). The idea is that, since each sampled individual i in stratum h “repre-
sents” wh individuals in that population stratum, the contribution of individual i to
the analysis should be represented through a formal weight attached to the individ-
ual i’s response yih. This is formalised in a weighted likelihood: the weighted or
pseudo-likelihood is defined by

L∗(θ ) = PSL(θ ) = ∏
h

∏
i

f wh(yih | θ ),

where θ are the model parameters. Any model-based analysis could then maximise
the log-pseudo-likelihood

�∗ = logL∗(θ ) = ∑
h

∑
i

wh log f (yih | θ ),

in which wh appears as an explicit weight for observations in stratum h in the like-
lihood equations for the maximum likelihood estimates. So, for example, for the
simple one-population mean model Yih ∼ N(μ ,σ2) but under stratified sampling,
the weighted log-likelihood (omitting constants) would be

log�∗ = ∑
h

∑
i

wh

[
− logσ − 1

2σ2 (yih − μ)2)

]
.

If we treat this as a regular log-likelihood, the first and second derivatives would give
the maximum pseudo-likelihood (PML) estimate μ̃ and its large-sample variance as

μ̃ = ∑
h

phȳh,

2 Our NAEP analysis is focused on regression parameters; the overall population achievement
mean on the NAEP scale is not directly identifiable but is set by a scaling procedure – see Chapter
2, §5.6.
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Var[μ̃] = σ2/N.

So the PML estimate of μ from the one-population mean likelihood is correct. How-
ever, the sampling variance expression for μ̃ from weighting does not correspond
to the survey sampling (and the weighted one-way classification model-based) vari-
ance estimate ∑h p2

hs2
h/nh – it is generally much smaller. This disconcerting result

follows from the obvious fact that each stratum sample mean is being treated as
though it were based on a very much larger sample size, the stratum population
size, instead of the sample size, summing to the full population size. It is clear that
this approach does not provide correct standard errors, even if it provides an un-
biased estimate of the population mean. Weighting the likelihood for the one-way
classification model has the same effect; we omit the details.

In more complex regression models in which continuous covariates are used,
with common slopes across strata for each variable, both the standard errors of the
estimated regression coefficients and the estimates themselves are biased away from
those of the correct likelihood. For example, for a single continuous variable in the
stratified design, with the common-slope model

Yih | xih ∼ N(β0h +β1xih,σ2),

the MLE of β1 is

β̂1 =
∑h ∑i(yih − ȳh)(xih − x̄h)

∑h ∑i(xih − x̄h)2 ,

which has sampling variance σ2/∑h ∑i(xih − x̄h)
2, while the PML estimate

β̃1 =
∑h ∑i wih(yih − ȳh)(xih − x̄h)

∑h ∑i wih(xih − x̄h)2

has sampling variance σ2/∑h ∑i wih(xih− x̄h)
2. While the PML estimate is unbiased,

the contributions to its numerator and denominator will be more strongly determined
by the undersampled strata and less strongly by the oversampled strata than those
for the MLE. This can lead to substantial differences from the MLE. The variances
will be affected in the same way and will be far too small if the sampling weights
are used directly as observation weights.

Weighted likelihoods were extended to two-level models in Pfefferman et al.
(1998) in a complex analysis. Sampling rates varied at both levels of the two-level
model, requiring double weighting of each observation, though the weights advo-
cated had to be estimated in a complex process and were not simply the product of
the weights at the two levels.

It is sometimes proposed that the survey weights be scaled to give “pseudo sam-
ple sizes” (our term) summing to the overall sample size, that is, the weights would
be defined by w∗

h = whnh/∑h whnh = Nh/N, with pseudo sample sizes n∗h = n ·w∗
h.

This would reduce the incorrect scaling of variances, but would still lead to incor-
rect and unreasonable variances of model parameters in a pseudo-likelihood anal-
ysis. The scaled weighted analysis corresponds to the sample sizes that we would
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have obtained (in expectation) had the sample been a PPS sample with a common
sampling rate across strata. But we do not have this sample design, and the pseudo-
likelihood is not the likelihood of the observed data – it refers to a design that was
not used, and is irrelevant to the analysis of the design that was used.

In his discussion of Pfefferman et al., Chambers (1998) raised the same question
that also determines our approach to stratification and weighting – his comments
apply equally well to single-level survey designs. If weighting is only needed for
informative designs (which are rare), and results in a loss of efficiency in any case
relative to an unweighted model-based analysis that includes the stratification factor
in the model, why is weighting recommended for all designs?

Sample survey textbooks emphasise that weights should be used only for point
estimation of parameters and must not be used to compute standard errors. Other
non-model-based methods have to be used for this (see, for example, Lohr 1999,
pp. 104, 226, 234, 367). So the pseudo-likelihood approach, which appears to be
model-based, cannot use the usual model-based variance estimation procedure but
has to rely on non-model-based methods for variances. It is therefore difficult to
understand why the method of pseudo- or weighted likelihoods is recommended so
frequently, or at all.

1.7 Missing data and non-response

The discussion in this section is based on the authoritative books by Rubin (1987)
and Little and Rubin (1987). Suppose that after we draw the sample of size n we
do not get a response – the family income in our first example – from m sampled
individuals. Define another response indicator Ri = 1 if selected person i responds
and Ri = 0 if there is no response, for i = 1, ...,n. This indicator is defined only for
the sampled population members.

Consider the joint distribution

Pr[Yi,Ri] = Pr[Ri | Yi]Pr[Yi].

This is needed to construct the full likelihood of all random quantities, as in the
sample selection process. Here Pr[Ri | Yi] is the response model and Pr[Yi] is, as
before, the population model.

If Pr[Ri = 1 | Yi] = Pr[Ri = 1] = pi independently of Yi and its model parameters,
we have (response) missingness at random (MAR). The missingness probability pi

may vary across individuals i, but it is uninformative about the response. If pi = p∀ i,
a constant, then we have missingness completely at random (MCAR).

The observed data are then

(y1,r1), ...,(ym,rm),rm+1, ...,rn,

with
r1 = ...= rm = 1, rm+1 = ...= rn = 0,
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and likelihood

L(θ ) = Pr[y1 | θ ]...Pr[ym | θ ] · p1...pm(1− pm+1)...(1− pn).

It is immediately clear again that for inference based on the likelihood and likelihood
ratios, the missingness response model is irrelevant since it is independent of the
responses yi that might have been observed and the response model parameters θ .
Then the observed data y1, ...,ym are a random subsample of y1, ...,yn (but are not a
simple random sample unless pi = p∀ i) and can be analysed as a complete sample
for inference about θ .

However, if Pr[Ri = 1 | Yi] depends on Yi, we have a biased sampling mechanism
– the missing data are missing nonrandomly (MNR). For example, the probability
of response might decrease with increasing income. Then high incomes would be
under-represented in the sample and the sample mean would be biased downward.
If the biased sampling mechanism (that is, the probability model for missingness) is
known, then it can be included in the full likelihood and allowance made for it. In
general, however, we cannot estimate such a nonresponse model from the observed
data – we lack just the data that would establish it! Sensitivity analysis is the only
way of assessing the possible effect of nonrandom missingness on the inferential
conclusions.

1.7.1 Weighting adjustments for nonresponse

It is common practice in survey sampling analysis to make weighting adjustments to
population or other estimates to “correct” for nonresponse. Suppose, in our income
example, that a random sample of 45 families was originally drawn but the incomes
for five families were not recorded. If this was an administrative error, not related to
the family incomes, then for these five families income is MCAR. If missingness is
related to the father’s age, but not income, then income is MAR. What effect does
this have on the analysis?

In the model-based framework, with either MAR or MCAR, the achieved sample
of 40 families is treated as if it had been the target sample. The MAR or MCAR
missingness for the five families simply reduces the sample size.

In the survey sampling framework, a second set of “response” weights is usually
defined, the inverse of the probabilities of response, and the overall weight attached
to an individual is the product of the selection weight and the response weight. As
described above, one should not use these as formal weights in any regression but
use the stratification variable as a model factor. No such factor needs to be defined
for MAR or MCAR nonresponse.
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1.7.2 Incomplete data in regression

A common feature of large-scale data is incompleteness – missing values scattered
across the data matrix of yi and xi values. For regression modeling, missing response
values yi cause no difficulty – the corresponding cases do not contribute to the like-
lihood and so can be omitted from analysis, as in the single-sample case above.
Missing values in some covariates xi, however, do not render the corresponding
cases valueless, so long as they are MAR or MCAR – they still provide information
about the response, though it is more difficult to extract it.

An important point in this case is that we do not need a model for the missing-
ness process – even if this is MAR, with missingness dependent on other observed
variables, the missingness model cancels in any likelihood ratios and so does not
need to be explicitly fitted (though it may be of interest to describe the missingness
process).

The simplest example is of a single-variable normal regression model in which
the cases i = 1, ...,m are complete and the cases i = m+1, ...,n have missing xi but
observed yi. The usual model for y | x is

Yi | xi ∼ N(β0 +β1xi,σ2).

However, we are not given xi for the incomplete cases, only yi. For these cases to
contribute to the likelihood, we have to use the marginal distribution of yi, inte-
grating out xi. For this we need the marginal distribution of x, f (x) – an additional
model assumption.

The usual assumption (for a continuous x variable) is that X is normal, with mean
μX and variance σ2

X , which are estimated from the observed x sample. The marginal
distribution of Y is then N(β0 + β1μX ,σ2 + β 2

1 σ2
X ). Full maximum likelihood is

achieved using an EM algorithm, which requires the conditional distribution of the
missing X values given the observed Y ; this is tractable only for the case of normal
or categorical X .

For the general case of mixed continuous and categorical variables in x, an EM al-
gorithm approach was developed by Little and Schluchter (1985) when the continu-
ous variables were multivariate normal; these could have a multivariate linear model
regression on the categorical variables, which themselves had a log-linear model.
Experience with the EM algorithm for the categorical or mixed x case showed that
convergence was generally very slow.

1.7.3 Multiple imputation

These methods are not currently used in many practical data analyses. Instead, im-
putation methods are used, more or less widely. Multiple imputation (MI) methods
are based on the data augmentation algorithm, a Bayesian stochastic version of the
EM algorithm in which Markov chain Monte Carlo methods are used to obtain con-
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vergence of both the parameters to their full posterior distribution and the missing
data to their full conditional distribution given the observed data.

The MI approach, when first proposed, used a small number M of random draws
from the converged posterior distribution of the missing data. These draws are used
to produce M “completed” imputed data sets, which are then analysed in the stan-
dard maximum likelihood framework, and the M sets of estimates and standard
errors are combined into a single set of estimates and standard errors by standard
methods. These estimates should correspond closely to those obtained from the fully
Bayesian analysis (which generated them!), in terms of agreement between posterior
means and averaged maximum likelihood estimates, and corresponding variability
estimates.

In early uses of MI, M was sometimes as small as 5. This was partly due to
the computer limitations at the time, and partly due to the high efficiency of quite
small values of M relative to M = ∞. Current computational power allows much
larger values of M, and it should be noted that for M = 10000 the parameter draws
effectively define the full posterior distribution of the model parameters so that no
ML analyses are needed – the (Bayesian posterior) results are already available.

In practical uses of the MI approach, the response and covariates are consid-
ered as a joint multivariate set, with missing values across the set, and considerable
emphasis is placed on developing a rich imputation model – that is, one with all
possibly relevant variables included in the model for the conditional distribution of
any variables with missing values, given the other variables. The joint multivariate
distribution is often treated as a multivariate normal (Schafer 1997) – this greatly
accelerates convergence and seems to provide good estimates of parameters and
standard errors.

In theory, the methods above can be extended to missing data in more complex
survey designs. Clustering is an important extension in nearly all surveys, but the
great complexity of the covariance structure, for incomplete data with missingness
at all levels of the design, makes this extension very difficult. This leads to difficul-
ties with incomplete questionnaire data in NAEP surveys, as will be seen in later
chapters.



Chapter 2
The Current Design and Analysis

2.1 NCES and NAEP

As we stated in the Preface, the work described in this book was supported by
NCES, though they are not responsible for the views and opinions expressed in the
book, which should not be interpreted as a statement of Department of Education
policy. For those readers not familiar with the role of NCES in the design and anal-
ysis of the National Assessment of Educational Progress (NAEP), we quote below
at considerable length from several NCES publications describing aspects of NCES
and the NAEP surveys that were important in our work. From the NCES Website,

The National Center for Education Statistics (NCES) is the primary federal entity for col-
lecting and analyzing data related to education in the U.S. and other nations. NCES is
located within the U.S. Department of Education and the Institute of Education Sciences.
...The National Assessment of Educational Progress (NAEP) is the only nationally represen-
tative and continuing assessment of what America’s students know and can do in various
subject areas. Assessments are conducted periodically in mathematics, reading, science,
writing, the arts, civics, economics, geography, and U.S. history.
...NAEP provides results on subject-matter achievement, instructional experiences, and
school environment for populations of students (e.g., all fourth-graders) and groups within
those populations (e.g., female students, Hispanic students). NAEP does not provide scores
for individual students or schools, although state NAEP can report results by selected large
urban districts. NAEP results are based on representative samples of students at grades 4,
8, and 12 for the main assessments, or samples of students at ages 9, 13, or 17 years for the
long-term trend assessments. These grades and ages were chosen because they represent
critical junctures in academic achievement.

The design and analysis of NAEP surveys are described concisely but compre-
hensively in Chapter 20 of the NCES Handbook of Survey Methods Technical Re-
port (U.S. Department of Education, Institute of Education Sciences, NCES 2003-
603), which we refer to in the text as “Handbook”. We quote from it extensively.
The design varied over time, and we add to or amend (in square brackets [ ]) the
2003 report where necessary for the 1986 survey.

Much greater detail is given in the NAEP Technical Report series; we quote when
needed from the Johnson and Zwick (1988) report, referred to in the text as “1988

23M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
Statistics for Social and Behavioral Sciences,
DOI 10.1007/978-1-4419-9937-5_2, © Murray Aitkin and Irit Aitkin 2011
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Technical Report”, and from the Beaton et al. (1986) report, referred to in the text
as “1986 Technical Report”. These reports are necessarily technical; a less technical
but clear exposition of the design issues in the NAEP and their current analysis can
be found in Chapter 7 of Longford (1995).

The publication of NAEP Technical Reports ended with the 1998 report; the
NCES Handbook of Survey Methods Technical Report 2003 mentioned above is
less detailed and does not give any survey results, but covers all the NCES surveys,
not just the NAEP. A Website is now provided for very detailed technical documen-
tation:

http://nces.ed.gov/nationsreportcard/tdw/

Publication of sample sizes of schools and students is restricted, for the surveys
using restricted data, by rounding them to the nearest 10. This affects some basic
survey details in Chapters 7 and 8. Footnotes are given for these roundings; the rel-
evant policy may be found in the Statistical Standards Program on the IES Website:

http://nces.ed.gov/statprog/instruct_respdata.asp?
resptype=sub

Rounding has also been applied to the sample sizes in Chapters 5 and 6, though
these chapters report unrestricted public-access data (1986 was the last survey year
of the unrestricted provision of NAEP data).

2.2 Design

The NAEP surveys use a multistage clustered and stratified design.

2.2.1 PSUs

In the first stage of sampling, the United States (the 50 states and the District of Columbia)
is divided into [94] geographic (PSUs) [primary sampling units]. The PSUs are classified
into four regions (Northeast, Southeast, Central and West) each containing about one-fourth
of the US population. In each region, PSUs are additionally classified as metropolitan or
non-metropolitan, resulting in [12] subuniverses of PSUs.
For the [1986] assessment, ... [34] of these PSUs were designated as certainty units because
of their size. Within each major stratum (subuniverse), further stratification was achieved
by ordering the noncertainty PSUs according to several additional socioeconomic charac-
teristics. ... One PSU was selected from each of the ... noncertainty strata, with probability
proportional to size. ... To enlarge the samples of Black and Hispanic students, thereby en-
hancing the reliability of estimates for these groups, PSUs from the high-minority strata
were sampled at twice the rate of PSUs from the other strata. (Handbook, p. 192)
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2.2.2 Schools

In the second stage of sampling, public schools (including Bureau of Indian Affairs ... and
Department of Defense ... schools) and nonpublic schools (including Catholic schools),
within each of the [94] PSUs are listed. ...
... [T]he schools within each PSU are assigned a probability of selection that is proportional
to the number of students per grade in each school. ... Nonpublic schools and schools with
high minority enrolment are oversampled. (p. 192)

We do not discuss here the further stage of random sampling for each school “ses-
sion” (Handbook, p. 192); pilot testing sessions included trial items on the test, and
the students in these sessions are not assessed. They are missing by design from the
overall analysis. This reduces the effective sample size but has no other effect.

2.2.3 Students

To facilitate the sampling of students, a consolidated list is prepared for each school of all
grade-eligible and age-eligible students. ... A systematic selection of eligible students is
made from this list – unless all students are to be assessed – to provide the target sample
size. ... (Handbook, p. 193).

It is assumed in the NCES analyses that the systematic selection provides a random
sample of eligible students.

In addition to the test item responses from each student, information was col-
lected for each student on demographics and family background from schools and
principals and from the teachers of a sample of students. The teacher and school
data were not used in our analyses of the 1986 data, only a small subset of the de-
mographic and family background variables and the test items presented to each
student.

2.2.4 Test items

The test items were assigned to test booklets using a balanced incomplete block
(BIB) spiraling process since the number of test items needed for a comprehen-
sive test greatly exceeded the school testing time available. This BIB design of test
booklets, and the assignment process of booklets to schools, effectively gave to each
student a random sample of the test items. The allowance in the analysis for this fur-
ther sampling of test items is discussed in the Analysis section.
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2.2.5 Important design issues

Several aspects of the design complicate the analysis.

• stratification and oversampling of high-minority PSUs and schools;
• multistage sampling of students within schools within PSUs.

These design processes have to be allowed for in the analysis. An important point
in the model-based analysis is that it is able to allow fully for the multistage cluster
design, which the current analysis could not. This issue is discussed in detail in later
sections in this chapter and in Chapter 5.

2.3 NAEP state sample design 2002+

The design was changed for the state NAEP assessments in 2002 and later surveys.
The previous national NAEP design gave small samples in the small states, and
states wishing to have state-wide information on their students’ progress needed to
have larger state samples. This resulted in the states becoming the primary sampling
units, and the design within the state became a two-stage sample of schools and
students within schools. The national NAEP sample became a subset of the state
NAEP samples (except for those states not participating in the state surveys). This
reduces the complexity of the analysis and also allows for cross-state comparisons
of model structures. In our analysis of the 2005 national NAEP math survey, the
California and Texas samples are analysed separately.

We comment in Chapter 9 on the possibility of linking the state analyses.

2.4 Weighting

The weighting ... reflects the probability of selection for each student in the sample, ad-
justed for school and student non-response. The weight assigned to a student’s responses
is the inverse of the probability that the student would be selected for the sample. Through
poststratification, the weighting ensures that the representation of certain sub-populations
corresponds to figures from the U.S. Census and the Current Population Survey (CPS).
(Handbook, p. 197)

Student base weights.

The base weight assigned to a student is the reciprocal of the probability that the student
was selected for a particular assessment. This probability is the product of the following
four factors:

• the probability that the PSU was selected;
• the conditional probability that the school was selected, given the PSU;
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• the conditional probability, given the selected schools in the PSU, that the school was
allocated the ... assessment [rather than a trial item session]; and

• the conditional probability, given the school, that the student was selected for the assess-
ment. (Handbook, p. 197)

Nonresponse adjustments of base weights.

The base weight for a selected student is adjusted by two nonresponse factors. The first fac-
tor adjusts for sessions that were not conducted. This factor is computed separately within
classes formed by the first three digits of the PSU strata. ... The second factor adjusts for
students who failed to appear in the scheduled session or makeup session. ... [T]he adjust-
ment classes are based on subuniverse, modal grade status and race class. In some cases,
nonresponse classes are collapsed into one to improve the stability of the adjustment factors.
(Handbook, pp. 197–198)

2.4.1 Design effect corrections

Because NAEP uses complex sampling procedures, a jackknife replication procedure is
used to estimate standard errors. (Handbook, p. 200)

NAEP’s jackknife variance estimator is designed for the situation where the first-stage units,
or appropriate aggregates of them, are paired within strata. It estimates the sampling vari-
ability of any statistic as the sum of components of variability that may be attributed to each
of the jackknife pairs. The variance attributed to a particular jackknife pair is measured by
estimating how much the value of the statistic would change if the information embodied
in the jackknife pair were to be changed. This is done by the computation of a quantity ti
called a pseudoreplicate, which is associated with the ith jackknife pair, and which is an
estimate of the statistic of interest t based on an altered sample. Specifically, the ith pseu-
doreplicate of the statistic t is created by randomly designating the half-sample members
of the pair as first and second, eliminating the data from the first half-sample of the pair,
replacing the lost information with that from the second half-sample of the pair (so that the
second half-sample is included twice), repoststratifying the weights, and then reestimating
the statistic for the pseudoreplicates based on this altered set of data.
The component of the sampling variability attributable to a jackknife pair is estimated as
the squared difference between the value of the statistic for the complete sample and the
pseudoreplicate associated with the pair. The estimated sample variance of the statistic t is
the sum of M squared differences (where H is the number of jackknife pairs defined):

̂Var(t) =
M

∑
i=1

(ti − t)2.

The statistic for the pseudoreplicate associated with a given jackknife pair is the original
statistic for the pseudoreplicate recomputed using an altered set of weights, referred to as
the student replicate weights. The student replicate weight, SRW Ti, for the ith pair of first-
stage units is computed as follows:

1. Let WB be the nonresponse adjusted base weight of a student, where W B accounts for
the probabilities of selection and nonresponse but does not include poststratification
adjustments.
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2. Let WBi be the nonresponse adjusted replicate base weight formed by replacing the sec-
ond member of the jackknife pair by the first, specifically:
• WBi = 0 if the student is in the first set of first-stage units in jackknife pair i

• WBi = JF ∗WB if the student is in the second set of first-stage units in jackknife pair
i

• WBi =WB if the student is in neither of the first-stage units in jackknife pair i

where JF is a constant multiplier (usually equal to 2) designed to maintain certain pop-
ulation totals.

3. Then the student replicate weight for the jackknife pair i is obtained by applying the
poststratification adjustments to the weights WBi in the associated pseudoreplicate.

The poststratification adjustments are recomputed for each jackknife replicate to reflect
more completely the total effect of replacing one member of a jackknife pair with the other.
(Nonresponse adjustments are not recomputed since these are generally performed within
the PSU level and therefore their effect is appropriately reflected in the variance estimate.)
This estimation technique was used by NAEP to estimate all sampling errors [variances]
presented in the various reports. (Technical Report 1988, pp. 208–211)

Details of how the PSUs were assigned into pairs are given on p. 208 of Technical
Report 1988. We discuss this approach to variance estimation and the cluster sam-
pling design effects in Chapter 3. We note here that it is the PSUs for which the
design effect is assessed, not the schools.

2.5 Analysis

2.5.1 Item models

We need to make a distinction between student achievement on the test, which is
measured by the student item responses, and student ability, an unobservable or
latent characteristic of the student that underlies achievement; the nature of this
underlying relation is expressed through a (statistical) psychometric model.

The test items analysed in the 1986 and 2005 surveys were all multiple choice
items, scored with a binary response y for incorrect (y = 0) or correct (y = 1) an-
swers. They are viewed as imperfect indicators of the student’s true ability, and the
object of analysis is to make statements about student ability, including how this
varies, using important reporting group variables. (For each student, omitted items
beyond the last item attempted in the booklet are treated as “not reached” and are
ignored; they define the effective sample size of items for, and hence information
about, the student. Items omitted within the range of attempted items are included
and can be scored as incorrect, or as “fractionally correct” with y-value 1/R, where
R is the number of response categories for the item. This is equivalent to assuming
a random guess for omitted items.)

Student ability on the items comprising the test is treated as a latent variable,
denoted by θi for student i. Ability is allowed to depend, in the model, on student,
class, teacher, and school variables, which for the moment are denoted by xi for



2.5 Analysis 29

student i, through a multiple regression function β ′xi (this is discussed at length in
Chapter 3). A popular model relates the achievement of the student on the test items
to the student ability through a logistic linear regression model, which we call the
MIMIC model (for Multiple Indicators, MultIple Causes), though it is usually called
the 2PL model in psychometric theory. (In Chapter 3, we give a detailed discussion
of this and other models.)

The probability of a correct answer to item j by student i with ability θi is written
pi j for i = 1, ...,n, j = 1, ...,J. The MIMIC model is

pi j | θi = exp[a j(θi − b j)]/{1+ exp[a j(θi −b j)]},
θi ∼ N(β ′xi,1),

which is equivalent to

logit pi j = log[pi j/(1− pi j)] | θi = a j(θi −b j),

θi ∼ N(β ′xi,1).

The item parameters a j and b j are called the discrimination and difficulty param-
eters, respectively. The regression model can be reparametrised to the more con-
ventional statistical form α j + β jθi by setting a j = β j and −a jb j = α j , that is,
b j =−α j/β j.

An essential feature of this model is the probability distribution for ability θ
across the population of students. If instead the abilities θi are regarded as fixed
effects – fixed unrelated parameters – the estimation of these parameters may be
inconsistent. If the sample size of students tested increases but the number of items
answered remains fixed, the estimates of student ability from the fixed-effect model
do not become more precise – they do not converge towards the true ability val-
ues. This is because the information about each student’s ability remains fixed by
the number of items the student attempts – there are more values θi, but no more
information about any θi.

If, on the other hand, the number of students is fixed but the number of items
answered increases, then the ability estimates do converge towards their true values.
Any real test has a finite number of items, which is usually fixed by the testing time
available. The NAEP tests use a large number of items over the tested populations,
but each student can answer only a small number of items in the test booklet, which
are randomly chosen from the large number of test items available. It cannot be
assumed therefore that this number is large enough to provide a consistent estimate
of the student’s ability. Student abilities have to be linked through a probability
distribution across students to use the information from other students.

A second essential feature of the model is the conditional independence of the
item responses yi j for each student given the student’s ability, that is, the correlation
between the binary responses is completely explained by the ability used to answer
the items. This is a standard assumption in many kinds of multilevel or hierarchical
models, where responses at a “lower level” are assumed to be independent given a
common random effect shared by the responses at a “higher” level.
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The assumption of a normal distribution for the student abilities θi may appear
very strong. It is discussed in Chapter 4 and found to be surprisingly weak. The set-
ting of the variance to 1 is necessary to identify the item discrimination parameters;
this is discussed in Chapter 3.

The MIMIC model is not used in offical NAEP analysis because it does not allow
for guessing – the possibility of a correct answer by a random process independent
of the student’s ability level. The model can be extended to the three-parameter
MIMIC model (usually called the 3PL model) by incorporating a third guessing
parameter c j for each item. The model is

pi j | θi = c j +(1− c j)exp[a j(θi − b j)]/{1+ exp[a j(θi −b j)]},
θi ∼ N(β ′xi,1).

This is the model used in the official NAEP analyses of the two surveys we reanalyse
in this book.

The 3PL model can be expressed in a logistic form as

log{[pi j − c j]/[1− c j]} | θi = a j(θi −b j),

θi ∼ N(β ′xi,1).

A feature of this model is that the probability of a correct response cannot fall below
the guessing parameter even for those not guessing. This is discussed further in
Chapter 3.

2.5.2 Multidimensional ability

The models above assume that all items depend on, or reflect, a single latent di-
mension of ability. However, the items in recent math tests cover five scales (four
main scales in the 1986 third grade test). These scale dimensions of ability, as deter-
mined by the items designed to assess them, are assumed to be correlated within a
student, though the item responses are still assumed to be independent, both within
and across scales, given the set of abilities on the scales.

The multidimensional item response models are analogous to the single-
dimension models above. We denote the multidimensional case by a vector abil-
ity variable θi for student i. The multidimensional MIMIC model is then

logit pi j | θi = a′j(θi −b j),

θi ∼ N(Γ ′xi, Σ),

where a j and b j are vectors of discrimination and difficulty parameters for the mul-
tiple dimensions, Γ is the matrix made up of sets of regression coefficients of the
covariates on each ability dimension, and Σ is the correlation matrix of the ability
dimension variables (the variance of each ability variable is 1).



2.5 Analysis 31

The multidimensional three-parameter guessing generalisation adds the same
guessing parameter as for the single-dimensional ability:

pi j | θi = c j +(1− c j)exp[a′j(θi −b j)]/{1+ exp[a′j(θi −b j)]},
θi ∼ N(Γ ′xi, Σ).

The current analysis uses this model in a simpler form but does not report (except
in technical manuals) the separate dimensions, only a composite single dimension in
which the separate dimensions are weighted by the number of items assessing that
dimension:

Using a unidimensional IRT model when the true model is multidimensional captures these
overall patterns [different ability levels by subgroup] even though it over- or under-estimates
the covariances among responses to items in pairs. (Technical Report 1988, p.234)

So if w is a vector of relative weights attached to each dimension, for the weighted
composite θci = w′θi the mean will be E(θci) = w′Γ ′xi and the variance will be
Var(θci) = w′Σw. Reporting group differences on each dimension will be averaged.

In the 1986 test, there were four main scales,

• Numbers and Operations (56 items),
• Measurement (27),
• Fundamental Methods (17),
• Data Organization and Interpretation (16),

with a total of 116 items. The large Numbers and Operations scale was itself split
into two subscales:

• Knowledge and Skills (30 items),
• Higher-Level Applications (26).

These two subscales and the Measurement scale were also reported on, though in
less detail than the composite dimension. (There were also smaller scales: Relations,
Functions, and Algebraic Expressions (8), Geometry (6), and Discrete Mathematics
(3). These, and the Fundamental Methods and Data Organization and Interpretation
scales, had so few items for the age 9/grade 3 students that they were not reported
on separately.) The composite dimension is determined as a weighted sum of the
reported scales, weighted by the number of items on each scale.

An important point in the analysis is that there were many more items – a total of
798 – used in the full NAEP survey across the three age groups, shown below from
Technical Report 1986, p. 218, Table 10.1.1

1 There is some ambiguity in this number as elsewhere in this report – p. 216 – the total number of
items is given as 537.
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Average
Number Number booklets

Number of items with
Total of per number of items

Area Items Booklets Booklet 1-2 3-5 >5
-----------------------------------------------------
Fundamental 102 25 4.1 9 8 8
Methods

Discrete 18 11 1.6 10 1 0
Mathematics

Data 96 19 5.1 3 10 6
Organization
and
Interpretation

Measurement 162 28 5.8 9 6 13

Geometry 36 11 3.3 5 5 1

Relations, 48 25 1.9 20 5 0
Functions,
and Algebraic
Expressions

Numbers and 156 28 5.6 9 6 13
Operations:
Higher-Level
Applications

Numbers and 180 25 7.2 9 0 16
Operations:
Knowledge and
Skills
-----------------------------------------------------

The average number of items per booklet is 34.6. Many items were eliminated be-
cause of differential item functioning or because there were too many “not reached”
responses: the test was too long for students to reach these items when they were
placed at the end of the booklet sequence.

In the model-based analysis of the multidimensional ability item response model,
a heavy computational load is imposed by the estimation of the correlations of the
scales. While the item parameters for an individual item are estimated from all those
students who actually attempted the item, the correlations between the scales rep-
resented by the items are determined by those students attempting pairs of items
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from different scales – pairs of items from the same scale do not contribute to the
interscale correlations.

Given the balanced incomplete block spiraling of the items into the test booklets
and the sparsity of items from all scales that are seen by any individual student,
the estimation of these correlations has relatively little data to support it. This is
accentuated by the reduction in the number of items included in the third grade test
and the corresponding reduction in sample size for the estimation of cross-scale item
covariances.

This implies that the precision of estimation of the interitem correlations is much
poorer than that of the item parameters themselves, and that therefore a wide range
of correlation structures will be consistent with the observed item responses. This
issue is somewhat obscured in the official NAEP analysis since the interscale cor-
relations are estimated by direct correlation of the plausible values for each student
on the separate scales.

Technical Report 1986 gives (Table 10.9, p. 231) the estimated interscale cor-
relations of the three scales (without standard errors), based on the first plausible
value.

Estimated Correlations between Subscales
(Based on the First Plausible Value)

Grade 3/Age 9
----------------------------------------------------

Measurement N & 0 N & 0
(H-L) (K-S)

Measurement 1.00 .63 .60

Numbers and Operations: .63 1.00 .60
Higher-Level Applications

Numbers and Operations: .60 .60 1.00
Knowledge and Skills
----------------------------------------------------

The correlations are almost uniform, pointing strongly to a single second-level factor
that is simply the sum of the three ability dimensions. It explains 75% of the variance
of the three dimensions.

The full multidimensional model is not used in our analyses in Chapter 5, which
are restricted to a single-dimension ability scale and the items assessing it. We report
some limited analyses with the full set of items for the 1986 survey in Chapter 6 and
comment in some detail on the complexity of this model.



34 2 The Current Design and Analysis

2.5.3 Inference and the likelihood function

To draw conclusions about group differences, it is necessary to estimate the param-
eters in both the psychometric model – the item parameters a j,b j, and c j – and the
regression model relating ability to achievement, the regression parameters γ . (We
will call this regression model the ability regression model to distinguish it from a
second logistic regression model, to be discussed below.) This can be achieved by
maximum likelihood, given originally for the closely related two-parameter probit
(2PP) model by Bock and Aitkin (1981).

For the n students tested on the J test items, write zi j for the indicator variable,
taking the value 1 if student i attempts item j and zero if not. (This requires a cod-
ing decision on how omitted items within the range of answered items are to be
treated, as discussed above.) Then the likelihood can be expressed in terms of all
the parameters λ by

L(λ ) =
n

∏
i=1

∫ [
J

∏
j=1

p
zi jyi j
i j (1− pi j)

zi j(1−yi j)

]
f (θi)dθi.

Thus all items answered by each student are treated in the same way and can
contribute to estimation of both item parameters and ability regression model pa-
rameters.

The integration over the ability distribution is needed, as the probability of the
item responses for student i is conditional on the value of ability for this student, but
this ability is unobserved and so has to be integrated out of the likelihood contibution
for this student. The integration has to be done numerically, and this is the major
computational load in the analysis: the integral is replaced by a finite sum over a set
of Q = 41 discrete ability locations (“quadrature points”) θ ∗

q , from −5 to 5 in steps
of 0.25, with probabilities fq given by the normal density N(0,1) at θ ∗

q , scaled to
sum to 1. Reparametrising the MIMIC model by θ ∗

i = θi −β ′xi, the likelihood can
be written as

L(λ ) .
=

n

∏
i=1

Q

∑
q=1

[
J

∏
j=1

p
zi jyi j
qi j (1− pqi j)

zi j(1−yi j)

]
fq,

pqi j = exp[a j(θ ∗
q +β ′xi − b j)]/{1+ exp[a j(θ ∗

q +β ′xi −b j)]},

fq =
exp[− 1

2 θ ∗2
q ]

∑Q
q=1 exp[− 1

2 θ ∗2
q ]

.

The MLEs are found by solving the equations given by setting the first derivatives of
this log-likelihood function with respect to the parameters to zero, and the standard
errors (SEs) of the MLEs are obtained from the inverse of the information matrix –
the matrix of negative second derivatives of the log-likelihood function.
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2.5.4 The ability regression model

The current NAEP analysis uses a very large “conditioning” regression model β ′x,
in which the vector x includes all the main effects and two-way interactions of the
variables on which the NCES has to report achievement levels, the reporting group
variables, and a large number of other variables, including dummy variables for
each school. This total number of variables is so large, and the correlations between
them so high, that the total set of (up to 1200) variables is not used directly but
is first reduced to a set of uncorrelated principal components, and a subset z (of
around 300) of these principal variables is used instead in a regression γ ′z, giving an
estimated γ̂ with estimated covariance matrix Λ̂ . In large samples, it may reasonably
be assumed that γ̂ ∼ N(γ,Λ̂ ).

The purpose of fitting such a large model is not to interpret or report the param-
eters γ̂ of this model; these are uninformative about β . The aim of the conditioning
model fitting is to ensure, as far as possible, that all possible relevant variables are
included in a predictive model, which is then used to multiply impute ability for each
student:

NAEP conducts a special form of imputation during the third stage of its analysis proce-
dures. The first stage requires estimating item response theory parameters for each cognitive
question. The second stage results in MML [marginal maximum likelihood] estimation of
a set of regression coefficients that capture the relationship between group score distribu-
tions and nearly all the information from the variables in the teacher, school, or SD/LEP
questionnaires, as well as geographical, sample frame, and school record information. The
third stage involves calculating imputations designed to reproduce the group-level results
that could be obtained during the second stage. (emphasis added)

(Handbook, p. 199)
For the convenience of the reader, we summarise this concisely before consider-

ing each stage in detail:

• Fit a null IRT model with items only – no reporting group variables.
• Hold the item parameters fixed at their estimates.
• Fit a large-scale “conditioning” (regression) model with ∼ 300 principal compo-

nents of many (∼ 1200) covariates.
• From the posterior distributions of student ability, given the normal ability distri-

bution and the covariates, generate five multiple imputations (“plausible values”)
of ability for each student.

• Tabulate, or regress, the ability imputations by reporting group variables to give
estimates and combine them using the Rubin rules.

• Allow for the design effect of PSU sampling in standard error calculations by
jackknifing the PSUs – no allowance is made for the school design effect.
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2.5.5 Current model parameter estimation

The item parameters and the conditioning regression model parameters are currently
estimated in several steps:

• The item parameters are estimated by maximum likelihood first, with a null or
empty regression model γ ′z = 0.

• The item parameters are then fixed at these estimates, and the conditioning re-
gression model parameters γ are estimated by (constrained) maximum likeli-
hood.

This process does not result in the same estimates as obtained by simultaneously
maximising the likelihood in all the parameters. (Results would be identical if this
two-step process were iterated – repeated in alternate steps until the results sta-
bilised.) There are two reasons for this approach.

First, the development of maximum likelihood analysis for the 2PP model by
Bock and Aitkin (1981) (extended by others to the logit and other psychometric
models) dealt only with the null regression model – it was purely for item parameter
estimation. Extensions of the approach to a multiple group ability regression struc-
ture took some time, and the computational power of computers in the 1980s limited
the number of test items that could be analysed, let alone an additional regression
structure with a large number of covariates at student and school levels.

Second, the conditioning regression model that is fitted in the current approach
is very large by conventional regression standards, even after the replacement of the
1200 covariates by several hundred principal variables. The size of this model made
it impractical to maximise simultaneously over both the item and the conditioning
model parameters.

2.5.6 Plausible value imputation

The fitted conditioning model γ̂ ′z is used to impute M = 5 “plausible values” of
ability for each student from the posterior distribution of ability given the student’s
item responses. This is done in four stages:

1. The posterior distribution of the conditioning model regression parameter vector
is assumed to be normal, with mean the estimated parameter vector and covari-
ance matrix the estimated covariance matrix of the estimated parameter vector:

γ ∼ N(γ̂ ,Λ̂).

This follows from a diffuse prior distribution on γ and large degrees of free-
dom for Λ̂ from the large sample size. A random draw γ [m] of the conditioning
regression vector γ is then made from this normal posterior distribution and com-
bined with the principal variable value zi for individual i to give a random draw
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γ [m]′zi from the posterior distribution of the conditioning model predicted value
(of mean ability) for this individual.

2. The posterior distribution of ability π(θq | yi j) for individual i is then constructed
on the discrete grid θq by evaluating the likelihood for individual i from the item
responses yi j, multiplying this by the discrete normal prior distribution ordinates
from N(γ [m]′zi,1) on these quadrature points, and scaling the sum to 1.0:

π(θq | yi j) =
Pr[{yi j} | θq] ·π(θq)

∑K
�=1 Pr[{yi j} | θ�] ·π(θ�)

.

3. A random draw of individual i’s ability is then made from this posterior distri-
bution by first drawing at random a quadrature point with probability equal to
the quadrature mass and then drawing uniformly a plausible (an imputed) abil-
ity value between the upper and lower end points of the interval at which the
quadrature point was centred.

4. The three steps above are repeated M = 5 times to give M plausible values of
ability for each individual. These are rescaled to a common NAEP reporting scale
that has standard deviation 35 and mean given by a scaling procedure.

The M plausible values are then used in M analyses, which involve (one-way or
two-way) tabulations of the ability values for each of the reporting group variables,
to give reporting group means and standard errors.

Finally, the M sets of group estimates and standard errors are combined using the
Rubin rules for multiple imputation to give a single set of reporting group estimates
and standard errors.

For example, the report for the 1986 survey gave the following Table 1 (from the
Data Appendix, p. 138 of Dossey et al. 1988), summarising trends across the last
three surveys. The asterisks indicate significantly different means (at the 5% level)
in the earlier surveys relative to the 1986 survey. Additional information is provided
in the Report Card for the individual scales, though this is in the form of graphs with
confidence intervals rather than tables as above.

A curious feature is visible in this table. Nationally, the mean scaled score in-
creased significantly from 1977–78 to 1985–86 by 4.1 NAEP scale points. How-
ever, for the subpopulations defined by level of parental education, only the group
with less than a high school education improved, and only by 0.3 points! The col-
lege graduate group was unchanged, and the two other groups decreased, though
not significantly. In 1981–82, all the group means decreased relative to 1977–78,
but the overall population mean increased !

These apparent paradoxes are examples of Simpson’s paradox and are due to
changes in the proportions in the parental education categories over the different
survey periods. They show the importance of disaggregated analysis, in which the
differences among ability levels for one reporting group variable may be examined
while keeping other reporting group variables constant – for example, in two-way
classifications rather than in separate one-way classifications.

It may seem surprising that such a complex analysis is needed for such relatively
simple tabulations. The aim of the imputation of ability for individual students was



38 2 The Current Design and Analysis

Table 2.1 Age 9

WEIGHTED MATHEMATICS PROFICIENCY MEANS
AND JACKKNIFED STANDARD ERRORS

1977–78 1981–82 1985–86

– TOTAL – 218.6(0.8)∗ 219.0(1.1) 221.7(1.0)

SEX
MALE 217.4(0.7)∗ 217.1(1.2)∗ 221.7(1.1)
FEMALE 219.9(1.0) 220.8(1.2) 221.7(1.2)

ETHNICITY/RACE
WHITE 224.1(0.9) 224.0(1.1) 226.9(1.1)
BLACK 192.4(1.1)∗ 194.9(1.6)∗ 201.6(1.6)
HISPANIC 202.9(2.3) 204.0(1.3) 205.4(2.1)

REGION
NORTHEAST 226.9(1.9) 225.7(1.7) 226.0(2.7)
SOUTHEAST 208.9(1.2)∗ 210.4(2.9) 217.8(2.5)
CENTRAL 224.0(1.5) 221.1(2.4) 226.0(2.3)
WEST 213.5(1.4) 219.3(1.7) 217.2(2.4)

PARENTAL EDUCATION
LESS THAN H.S. 200.3(1.5) 199.0(1.7) 200.6(2.5)
GRADUATED H.S. 219.2(1.1) 218.3(1.1) 218.4(1.6)
SOME EDUCATION AFTER H.S. 230.1(1.7) 225.2(2.1) 228.6(2.1)
GRADUATED COLLEGE 231.3(1.1) 228.8(1.5) 231.3(1.1)

to allow for secondary data analysis with much more complex regression models,
without the need for specialised software to perform the numerical integration and
likelihood maximisations needed and allowing for the uncertainty in the imputed
ability.

By providing the plausible values in the data file, analysts could bypass the test
item responses that provided the achievement information, and carry out their own
analyses directly on the plausible values (repeating and combining them according
to the Rubin rules), with confidence that all relevant relationships of ability to pos-
sible covariates had been built into the plausible values and so could be recovered
by quite simple analyses.

This concludes the overview of NAEP design and analysis. Chapter 3 examines
in more detail the psychometric models used in NAEP, extends them using an alter-
native treatment of guessing, and discusses the survey design and its representation
by a multilevel model.



Chapter 3
Psychometric and Survey Models

Item response models are a special class of generalised linear models. A detailed
discussion of these models, including some of those we use in the NAEP analy-
ses, can be found in De Boeck and Wilson (2004) and Skrondal and Rabe-Hesketh
(2004). We give details for only those models we used for the NAEP analyses. We
extend them to include the survey structure at the end of the chapter.

3.1 The Rasch model

The Rasch model is not used in NAEP, but it is the simplest item response model,
of which all other models are extensions.

For student i with latent ability θi (assumed one-dimensional) on the items of
the test scale, and covariates (reporting group variables) xi, attempting item j and
giving the binary responses yi j with probabilities pi j for a correct answer, the Rasch
model (Rasch 1960, Andersen 1972) is

logit pi j | θi = θi − b j,

θi ∼ N(β ′xi,σ2).

Here the b parameter, b j, is the item difficulty: as b j increases, the probability of
answering correctly decreases.

In the formulation of the Rasch model above, the latent ability is regressed on
the covariates (that is, ability varies with reporting group), and given the student’s
ability θi, the item responses yi j are independent of the covariates xi. We call this
version of the Rasch model the ability regression model.

However, we can transfer the regression model to the logit scale by defining

θ ′
i = θi −β ′xi,

θi = θ ′
i +β ′xi,

39M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
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and then dropping the prime from θ ′
i to obtain the Rasch model in the form

logit pi j | θi = θi − b j +β ′xi,

θi ∼ N(0,σ2).

Now ability does not vary with reporting group (it has a homogeneous distribution),
and the covariates, through the regression model, directly affect the probability of
answering the items correctly; that is, the covariates directly affect achievement. In
this formulation, we call the regression model the achievement regression model.
For the Rasch model, this is a distinction without a difference, since these two
formulations are equivalent and indistinguishable. We will see, however, that for
the two-parameter models in more complex multilevel structures, there is a much
greater distinction between the two formulations.

It is also clear from this formulation that the intercept term in the reporting group
regression is not identifiable: it is aliased (confounded) with one of the item diffi-
culty terms b j. So the regression model is usually fitted without an intercept.

3.2 The 2PL and MIMIC models

The literature on the two-parameter logistic latent class models comes from two
traditions: psychometric and econometric. The model called the “2PL” by psycho-
metricians is called the “MIMIC” model by econometricians and structural equation
modelers.

We adopt in this book the econometric “MIMIC” notation and use the term “2PL”
to refer to a different model, which we describe below. The distinction between
the models, as described in the previous section, comes from the placement of the
regression function β ′x in the model. For a null regression function, the models are
the same.

The null 2PL model was developed by Lord (1952) and Birnbaum (1968), but
the same model with covariates in a regression function was given the name MIMIC
(Multiple Indicators, MultIple Causes), in its factor analysis form, by Jöreskog and
Goldberger (1975). The 2PL model has the form

logit pi j | θi = a j(θi − b j)+β ′xi,

θi ∼ N(0,1),

and the MIMIC model has the form

logit pi j | θi = a j(θi −b j,)

θi ∼ N(β ′xi,1).

Unlike the Rasch model, these models cannot identify the form with a variance
parameter σ2 in the ability distribution. In the apparently more general MIMIC
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model, we have

θi ∼ N(β ′xi,σ2),

θ ∗
i = θi/σ
∼ N(β ′xi/σ ,1),

logit pi j | θ ∗
i = a j(σθ ∗

i −b j)

= a∗j(θ
∗
i −b∗j),

where a∗j = σa j, b∗j = b j/σ . So, for the model with scaled abilities θ ∗
i with variance

1, the ability regression coefficients and the item difficulties for the “general” model
are divided by σ , while the item discrimination parameters are multiplied by σ . The
maximised likelihoods are identical for the “general” model and the model with
variance 1; the “general” model is strictly unidentifiable without a constraint on one
of the discrimination parameters or setting the variance to a known constant. In the
2PL model, only the item discrimination parameters are affected, in the same way.
In the analyses in this book, we follow the convention of setting the ability variance
to 1 rather then setting one discrimination parameter to 1 to “identify” the variance.

The MIMIC model has the ability regression model with the reporting group vari-
ables “inside” the student ability distribution; the 2PL model has the achievement
regression model “outside”, in the logit model for the item responses. The MIMIC
model has the strong property that, given ability, the item response probabilities do
not depend on the covariates – only the student ability matters (though this may vary
by the covariates). This has been an important issue in the design and checking of
items: if an item has different success probabilities for students with the same abil-
ity but from different ethnic or gender groups, this is regarded as an item bias with
respect to the ethnic or gender grouping – differential item functioning, or DIFF.

However, by transferring the MIMIC reporting group regression model to the
logit scale, as for the Rasch model, we have the equivalent 2PL model:

logit pi j | θi = a j(θi − b j)+a j ·β ′xi,

θi ∼ N(0,1).

Now we have a homogeneous ability distribution with an interaction achievement
model on the logit scale; the success probabilities on an item for students with the
same ability now depend on the reporting group variables as well as the student’s
ability.

So the issue of apparent bias in an item is affected by the way in which we
express the MIMIC or the Rasch model: if the ability distribution contains the re-
porting group regression variables, then items should not show group differences
for students of the same ability. If the reporting group regression is transferred to
the 2PL logit scale in these models, items will show group differences for students
of the same ability.

Since the two forms of the reporting group regression in these models are in-
terchangeable, this makes clear that the usual definition of item bias – that, given
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the same ability, the item response probabilities are different for different reporting
groups – is not a satisfactory definition.

In the 2PL model, the effects of the reporting group variables and individual
items are additive on the logit scale, whereas in the MIMIC model item slopes in-
teract with the reporting group variables on the logit scale, so that the effects of the
reporting group variables on the item response probabilities are scaled by the item
discriminations and so are different for each item. Thus, in the MIMIC model, for
highly discriminating items, the differences on the logit scale for students of the
same ability but from different reporting groups will be larger than the differences
for poorly discriminating items. It would be unfortunate if highly discriminating
items were dropped from a test because of observed reporting group differences for
students of the same ability, when this is to be expected under any of these models.

The two models have the same number of parameters but can be discriminated
with sufficient data through their maximised likelihoods.

3.3 Three-parameter models

The Rasch, 2PL, and MIMIC models do not allow for the possibility that students
may guess at an item. The models above can all be extended by an additional pa-
rameter, giving a form of mixture model to allow for this. The extended models all
have the form, for the probability pi j of a correct response by student i on item j,

pi j = c j +(1− c j)qi j,

where the model for qi j is a Rasch, 2PL, or MIMIC model, with the appropriate
marginal distribution for ability as given in the previous section. These models have
the property that, for students of very low ability, the probability of answering item
j correctly is c j, the guessing or c parameter of the item. This value is the minimum
probability of a correct response under the model.

So, for example, the three-parameter version of the 2PL model for the probability
pi j of examinee i with ability θi correctly answering item j is given by

pi j = c j +(1− c j)qi j,

logitqi j | θi = a j(θi − b j)+β ′xi,

θi ∼ N(0,1),

while the three-parameter version of the MIMIC model is

pi j = c j +(1− c j)qi j,

logitqi j | θi = a j(θi − b j),

θi ∼ N(β ′xi,1).
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In our experience with the two NAEP surveys reported in the following chapters,
we were unable to fit the MIMIC version of the model: despite starting from many
different sets of starting values, the successive parameter estimates did not converge
to a maximum of the likelihood. However, the 2PL version of the three-parameter
model converged without difficulty in all our analyses.

This corresponded with the ETS experience with the three-parameter MIMIC
model, that very tight priors on the guessing parameters are needed to identify them
and it. This means in effect that the guessing parameters have to be known with this
model – the full three-parameter MIMIC model itself is unidentifiable, an obvious
disadvantage. The results we present in later chapters are all based on the well-
identified 2PL version of the three-parameter model.

There are several descriptions of the basis for the three-parameter model for a
multiple-choice item (Birnbaum 1968; Hutchinson 1991; San Martin, del Pino, and
De Boeck 2006). Birnbaum described this (pp. 404–5 in Lord and Novick 1968; we
replace Birnbaum’s probit by the logit) as

... a highly schematized psychological hypothesis. ... [I]f an examinee has [ability] θ , then
the probability that he will know the correct answer is given by [the logit function]

G[a j(θ −b j)] = eaj (θ−b j )/[1+ eaj(θ−b j )]

... [I]f he does not know it he will guess, and with probability c j will guess correctly. It
follows from these assumptions that the probability of an incorrect response is

{1−G[a j(θ −b j)]}(1− c j),

and that the probability of a correct response is the item characteristic curve

Pj(θ ) = c j +(1− c j)G[a j(θ −b j)].

Whatever the strength of this justification, or others,1 the introduction of the guess-
ing parameter greatly weakens the information about examinee ability since correct
answers may be due to guessing, in which case they give no information about ex-
aminee ability except that it may be low. The two-component mixture form of these
models is more difficult to estimate by maximum likelihood as it has two kinds of
latent structure. An aspect of this model that is not immediately obvious is that, if
many of the test items have nonzero guessing parameters, the estimates of achieve-
ment or ability parameters β̂ will tend to increase relative to the corresponding es-
timates for the two-parameter model. This is because the restriction of range of the
probability scale will require larger effects to maintain the group differences in suc-
cess probabilities found on the full [0,1] scale for the two-parameter models.

For the Rasch model, the guessing extension gives a two-parameter model. This
has been discussed at length in von Davier and Carstensen (2007). We investigated

1 We can rewrite the model in the alternative form

Pj(θ ) = c j{1−G[a j(θ −b j)]}+G[a j(θ −b j)],

which has a different interpretation.
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this model but found that it gave fits similar to the MIMIC and 2PL models –
the guessing parameter compensated for the discrimination parameters in the other
models.

The Rasch guessing model is rarely used in practice because it violates a strong
measurement assumption of the Rasch model, that the items are equivalent except
in difficulty, which leads to the total score on the items as a sufficient statistic for
a person’s ability. Guessing on some items would imply a failure in the writing of
these items (too difficult for the tested population), which would lead, when identi-
fied, to the omission of these items from the test. The remaining items would then
follow the Rasch model, so no guessing extension would be needed.

Second, the general mixture of Rasch models, where the test-taking population
is heterogeneous in their responses to the items, is quite widely used with different
sets of Rasch item difficulty parameters in different subpopulations taking the test.
This family of mixture models is discussed below.

3.4 Partial credit model

NAEP analyses may also use partial credit models (Masters 1982), in which the
choice of an incorrect response may be given partial credit or the incomplete task
requires a sequence of steps for some of which partial credit may be given. These
models were not used in our NAEP 1986 or 2005 data analyses, for which only the
correct or incorrect response was used.

3.5 The HYBRID model

This model, proposed by Yamamoto (1987) and used in several research applica-
tions (Yamamoto 1989, 1995, Yamamoto and Everson 1997, Boughton and Ya-
mamoto 2007), is described in detail in von Davier and Carstensen (2007, §6.3 and
Chapter 9). The nature of guessing is different from that in the 3PL model: guessing
is assumed to occur only towards the end of the test, when the student realises that he
or she cannot finish the test using cognitive ability in the remaining time available.
Up to this point, the student answers according to a Rasch model, but beyond this
point the student switches to random guessing, independent of ability. The correct
response probabilities by guessing are assumed to vary by item but not by person,
as in the 3PL model.

An additional complication in this model is the need to identify the (different)
item at which each student changes strategy; these points are an additional set of
nuisance parameters in the model. The likelihood for this model also requires the
sequence of items attempted for each student, which may not be clear from the paper
responses.



3.6 Extensions of the guessing model 45

The model has not been extended beyond the Rasch model to the two-parameter
IRT models. We have not used it in this work.

3.6 Extensions of the guessing model

3.6.1 A four-parameter guessing model

The 3PL model treats the guessing and nonguessing asymmetrically. A student
might follow a different strategy, deciding first whether he or she has enough con-
fidence to try to solve the problem. If so, the probability of a correct answer is qi j.
If not, the student guesses and answers correctly with probability d j. The decision
varies with the item: with probability c j the student decides to guess, and with prob-
ability 1− c j decides not to guess but to try to solve the problem. This formulation
of a strategy leads to an explicit two-component mixture model that has two forms,
like the three-parameter model. The four-parameter version of the 2PL model is

pi j = c j ·d j +(1− c j) ·qi j,

logitqi j | θi = a j(θi − b j)+β ′xi,

θi ∼ N(0,1),

while the four-parameter version of the MIMIC model is

pi j = c j ·d j +(1− c j) ·qi j,

logitqi j | θi = a j(θi − b j),

θi ∼ N(β ′xi,1).

Interpretation of the 3PL as a formal mixture model and comparison with the four-
parameter model shows that the 3PL’s single c j parameter is split into two: the new
c j is now the proportion of guessers on item j, and d j is the probability of a correct
guess on item j. It follows immediately that the 3PL model is the special case of
the four-parameter model with d j = 1 for all j, that is, all those guessing on item
j guess correctly ! This is an unexpected and unreasonable feature of the Birnbaum
interpretation of the 3PL model.

The model above has a second, slightly different interpretation. The mixture form
of the model is consistent with a heterogeneous population in which there are two
types of students: one type answers the items according to ability, the other answers
items randomly and is not engaged in the task. This model is plausible because the
NAEP is not a test within the school curriculum and does not count towards the
students’ grades, though it may well count for state assessment of the school.

However, since the subpopulation structure is unobserved, it has to be inferred
from the item responses. It does not follow from the model that any student actually
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guesses on all the items or that any student does not guess on any item. The model
is not a classification of the students into types. What it does is to ensure that items
on which a student guesses do not contribute to the estimation of his or her ability,
and hence of reporting group differences, since by definition ability is not engaged
on items that are guessed. This is ensured by the appearance of the reporting group
regression in only the nonguessing component.

In initial analyses with this model, we found it very difficult to identify the d j

parameters separately from the c j parameters; the d j parameters had to be fixed to
identify the model. This consideration led us to different extended models, in which
we generalise the form of heterogeneity in the ability population.

3.6.2 The “2-guess” model

We specialise the four-parameter model above by setting the c j parameters to a
constant c: the probability of guessing does not vary by item. The 2-guess version
of the 2PL model is

pi j = c ·d j +(1− c) ·qi j,

logitqi j | θi = a j(θi − b j)+β ′xi,

θi ∼ N(0,1),

while the 2-guess version of the MIMIC model is

pi j = c ·d j +(1− c) ·qi j,

logitqi j | θi = a j(θi − b j),

θi ∼ N(β ′xi,1).

The probability of a correct response on item j, for those who are guessing, is d j.
This model we found to be readily identifiable in all the data sets we examined. It
appears somewhat unreasonable, however, that the probability of guessing does not
vary by item, and we generalise this model further below.

3.6.3 The “2-mix” model – a five-parameter general mixture of
logits model

In this two-component mixture model, which we call the “2-mix” model, there is
no systematic guessing, but different strategies may be followed in the two compo-
nents, reflecting ability, demographic, or educational level differences in the two
subpopulations. (There could be more than two component subpopulations, but
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identifiability difficulties occur with large numbers of parameters in multiple com-
ponents and the sparse item data resulting from the design.)

In the first component that contains a proportion c of the population, the prob-
ability of a correct answer on item j is given by the two-parameter model 1 with
parameters a1 j and b1 j, while in the second component, containing the proportion
(1− c) of the population, the probability of a correct answer on item j is given by
the two-parameter model 2 with parameters a2 j and b2 j. The probability of a correct
answer on item j is then

pi j = c · p1i j +(1− c) · p2i j,

where

logit p1i j = a1 j(θi − b1 j),

logit p2i j = a2 j(θi − b2 j),

and the parameters in the two components are in general unrelated.
Here the reporting group regression and the parameters of the ability distribu-

tions in the components are not yet specified. Since in each component students
are not systematically guessing but are answering according to their abilities, both
components contribute to the estimation of reporting group differences.

We assume that the reporting group regressions are the same in the two compo-
nents. This obviously aids in interpreting the common regression. The most general
possibility is that the reporting group regression coefficients are different in the two
components; we call this model the “2-mix-regressions” model. We were able to
identify this model in the 1986 survey but not in the smaller 2005 surveys.

Since the component ability variance and discrimination parameters are con-
founded (not separately identifiable), the variances in both components need to be
specified as 1. It may seem that they should be set to different values, but as we
showed in §2 this only changes the scaling of the discrimination parameters and
does not give greater generality. For the same reason, the regression model inter-
cept terms are set to zero in both components. It may be possible (we give several
examples in later chapters) to identify and estimate a location shift in the ability
between the components. This requires the “anchoring” of one item’s discrimina-
tion parameters by equating them in the two components. If this is not done, ability
differences in the two components are reflected in differences in the difficulty and
discrimination parameters in the two components.

It remains to specify the placement of the reporting group regression relative to
the ability distribution. In the “2-mix 2PL” model, the common regression appears
on the two logit scales,

logit p1i j = a1 j(θi − b1 j)+β ′xi,

logit p2i j = a2 j(θi − b2 j)+β ′xi,

θi ∼ N(0,1),



48 3 Psychometric and Survey Models

while in the “2-mix MIMIC” model, the regression appears in the ability distribu-
tion:

logit p1i j = a1 j(θi − b1 j),

logit p2i j = a2 j(θi − b2 j),

θi ∼ N(β ′xi,1).

The mixture of Rasch models is a special case of this model with a1 j = a2 j = 1.
Multivariate and mixture Rasch models have been discusssed in detail by von Davier
and Carstensen (2007) and their contributors. We investigated these models for the
2005 data but found them substantially inferior in fit to the mixture of 2PL and
MIMIC models for the NAEP test items, so we do not report on them here.

3.7 Modeling the component membership probability

A final extension of the two-component models above incorporates explanatory
variables at the student level affecting the probability of membership in the com-
ponents as well as the probability of correct responses on the items. We model the
membership probability by a logistic regression on the explanatory variables, and
so the c parameter is replaced by

ci = exp(γ ′xi)/[1+ exp(γ ′xi)].

To distinguish the regressions, we call the regression γ ′x the membership regression.
The guessing models with this extension we call the “2-guess-prob 2PL” model
and the “2-guess-prob MIMIC” model. The general two-component mixture mod-
els with this extension we call the “2-mix-prob 2PL” model and the “2-mix-prob
MIMIC” model. We report the results from some of these models (where they are
identified) in Chapters 5, 6, 7, and 8.

3.8 Multidimensional ability

In Chapter 2, §5.2, we described the current analysis of the multiple scales in the
1986 test. For the three scales for which analyses were reported, we noted that the
correlations among the scales were high – around 0.6 – and almost uniform, pointing
strongly to a single second-level factor that is simply the sum of the three ability
dimensions. It explained 75% of the variance of the three dimensions.

This raises the question of why it is necessary to estimate these correlations at
all. We first note that there are three possible simple alternatives:

• assume the dimensions (scales) are independent;
• assume the entire test is unidimensional;
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• ignore the scale assignments of items, and fit a multidimensional model with
independent dimensions.

If the scales are of substantive interest and are to be reported separately as in the
1986 report, then nothing is lost by the first approach, that of estimating the item
parameters for each scale separately, since the marginal distribution of each scale
is correctly specified. (This approach using separate analyses for each scale was
followed in the official analysis – see Technical Report 1986, p. 221.)

For the second approach, an assumed unidimensional ability will be automati-
cally weighted across the scales by the number of items for each scale, so the corre-
lations among the scales are irrelevant.

By combining these two approaches, both the composite scale and the individual
scales can be analysed in the same model analysis, with no need to estimate inter-
scale correlations.

The third approach appears to lose precision – we have lost the scale membership
of each item. However, the rotational invariance of the multidimensional model
helps us.

For simplicity, consider the case of two scales. Write the 2PL two-dimensional
model in the form

logit pi j = β ′xi +λ0 j +λ1 jθ1i +λ2 jθ2i,

θi ∼ N(0,D),

where θ1 and θ2 are the two correlated abilities with correlation ρ , D is the matrix
with diagonal elements 1 and off-diagonals ρ , λ0 j are the item intercepts, and λ1 j

and λ2 j are the loadings of the items on the two abilities. The orthogonal rotation

φ1 = (θ1 +θ2)/
√

2, φ2 = (θ1 −θ2)/
√

2,

gives independent rotated abilities φ1 and φ2, with

θ1 = (φ1 +φ2)/
√

2, θ2 = (φ1 −φ2)/
√

2,

and the two-dimensional model becomes

logit pi j = β ′xi +λ0 j +λ1 j(φ1i +φ2i)/
√

2+λ2(φ1 −φ2)/
√

2

= β ′xi +λ0 j +(λ1 j +λ2 j)φ1i/
√

2+(λ1 j −λ2 j)φ2i/
√

2
= β ′xi +λ0 j +η1 jφ1i +η2 jφ2i,

φ1i ∼ N(0,2(1+ρ)),
φ2i ∼ N(0,2(1−ρ)).

If λ1 and λ2 have complementary blocks of zeros (items load on only one ability
dimension), η1 and η2 will have no zeros, so this transformation will completely
lose the “scale purity” of the items on the new independent ability dimensions – all
items load on both dimensions. The reporting group parameters can be estimated
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unbiasedly, though not fully efficiently, using a general two-dimensional analysis of
all the items. This analysis has the additional benefit of guarding against failure of
the assumed scale purity of the items and the assumption that they load on only one
ability dimension. Thus items can be included in the test even if they load on more
than one ability dimension or if their loading pattern is uncertain.

For the two-dimensional MIMIC model, this approach fails because the rotation
to uncorrelated abilities also transforms the ability regression model:

θi ∼ N(Γ ′xi,D),

φ1i ∼ N((γ1 + γ2)xi/
√

2,2(1+ρ)),
φ2i ∼ N((γ1 − γ2)xi/

√
2,2(1−ρ)),

although the original Γ is recoverable from the separate ability dimension analyses.
We illustrate the 2PL approach with the analysis in Chapter 5 of the subset of

students who answered any of the 30 items from the Knowledge and Skills scale
and a comparison with the NAEP report on this scale, followed by the analysis in
Chapter 6 of the full set of 79 items from the three reported scales and a comparison
with the corresponding NAEP report.

3.9 Clustering and variance component models

It is well established in educational surveys that the clustering of students in the
same classes or same schools leads to greater homogeneity of their test results and
other standard measures than for students in different classes or different schools.
This homogeneity is represented by multilevel (variance component) models in
which every student response contains an unobserved shared random effect for the
class or school in which the student is located. This approach was developed in the
school context by Aitkin, Anderson, and Hinde (1981), and the principles of edu-
cational survey design and analysis were set out in detail in Aitkin and Longford
(1986). Book-length treatments of this approach can be found in Longford (1993),
Goldstein (2003), and Raudenbush and Bryk (2002).

All the psychometric models discussed in this chapter are special cases of this
approach in which the item responses depend on a student ability random effect
shared by the items and are conditionally independent given this random effect,
on which the item responses have a logistic regression. This connection between
variance component models and psychometric models was not formally recognised
until Adams, Wilson, and Wu (1997).

The variance component model formulation allows the two stages of the 1986
NAEP survey design to be built into a single model with binary item responses. No
external design effect correction using jackknifing PSUs (or schools) is necessary.
We demonstrate this in two stages.



3.9 Clustering and variance component models 51

3.9.1 Three-level models

The three-level models represent the clustering of students in schools; these are
needed for the 2005 surveys. They include an additional random effect ηk, normally
distributed with mean 0 and variance σ2

sch (which is identifiable), for the effect of
school k from which student i was sampled; we extend the notation so that the
student index i runs over the range 1, ...,nk for the nk students sampled from school
k.

We also need to change the notation for ability in the MIMIC model since mean
ability varies by school in this model; we write θik for the ability of student i in
school k.

A further notational change is made for the covariates. As we noted in Chapter 2,
these include variables that are recorded on the school and so should be denoted by
a k subscript. We adopt the notation xik for the covariates in the three-level models
whether the variables are in fact at the student or school level.

We give the MIMIC and 2PL model formulations: the Rasch version follows
from the MIMIC by setting a j = 1, and the 3PL and mixture versions use the same
formulation. For the 2PL model, the full model and likelihood become

logit pi jk | θi,ηk = a j(θi − b j)+β ′xik +ηk,

θi ∼ N(0,1),
ηk ∼ N(0,σ2

sch),

L(λ ) =
K

∏
k=1

{∫ nk

∏
i=1

∫ [
k

∏
j=1

p
zi jyi j
i jk (1− pi jk)

zi j(1−yi j)

]
f (θi)dθi

}
f (ηk)dηk,

while for the MIMIC model

logit pi jk | θik = a j(θik − b j),

θik | ηk ∼ N(β ′xik +ηk,1),
ηk ∼ N(0,σ2

sch),

L(λ ) =
K

∏
k=1

{∫ nk

∏
i=1

∫ [
k

∏
j=1

p
zi jyi j
i jk (1− pi jk)

zi j(1−yi j)

]
f (θik)dθik

}
f (ηk)dηk.

The school random effect has different roles in the 2PL and MIMIC models. In
the MIMIC model, the latent abilities of students in the same school are correlated.
In the 2PL model, the latent abilities of students in the same school are independent:
it is the propensity to answer the items correctly that is correlated for students in the
same school. A simple interpretation of the MIMIC model is that it represents school
selection of children with similar abilities, as would be natural in a fully streamed
(primary) school selection system. The 2PL interpretation is more complicated: the
school random effect represents the extent of school training of students to answer
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the test items. The two models give different maximised likelihoods and so can be
discriminated.

However, the MIMIC model can be re-expressed as an interaction 2PL model, as
we showed above. Write θ ∗

ik = θik −β ′xik −ηk; then

logit pi jk | θ ∗
ik = a j(θ ∗

ik +β ′xik +ηk −b j),

θ ∗
ik | ηk ∼ N(0,1),

ηk ∼ N(0,σ2
sch),

where now a j scales the school random effect standard deviation as well as the
effects of the covariates. This version of the MIMIC model has a different and more
complicated interpretation: that latent abilities are independent and propensities to
answer correctly are correlated, as in the 2PL model, but further, the effects of the
covariates on outcomes and the among schools variance component vary by item.

The three-level model automatically adjusts the standard errors of all parameter
estimates for the clustered school design. No separate estimation of design effects
– allowing for the intraclass correlations of students’ ability in the same schools
– is necessary. (The inclusion of the school identifiers as fixed effects in the large
conditioning model does not correct for the school design effect – the schools need
to be represented by random effects rather than fixed effects.)

3.9.2 Four-level models

The four-level model needed for the 1986 survey adds a PSU-level random effect
ε�, normally distributed with mean 0 and variance σ2

PSU (which is identifiable), for
the effect of PSU �; the notation for the school effect changes to ηkl for the effect of
school k in PSU �, and the “among schools” variance component for schools in the
three-level model is decomposed into the “among PSUs” component σ2

PSU and the
“among schools within PSUs” component σ2

sch. We extend the explanatory variable
notation further, to xik�, as there is at least one variable recorded at the PSU level
(geographical region). It would be possible also to have covariates at the item level,
requiring an additional j subscript on x (for example, scale membership), but we
do not use any such variables in the analysis. The ability latent variable θ is also
indexed for � in the MIMIC model but not in the 2PL model, which has the same
homogeneous distribution across the clustered population.

For the 2PL model, the four-level model and likelihood are

logit pi jk� | θi,ηk� = a j(θi − b j)+β ′xik�+ηk�,

θi ∼ N(0,1),
ηk� | ε� ∼ N(ε�,σ2

sch),

ε� ∼ N(0,σ2
PSU ),
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L(λ ) =
L

∏
�=1

{∫ K

∏
k=1

{∫ nk

∏
i=1

∫ [
k

∏
j=1

p
zi jyi j
i jk (1− pi jk)

zi j(1−yi j)

]
f (θi)dθi

}
f (ηk)dηk

}
f (ε�)dε�,

while, for the MIMIC model,

logit pi jk� | θik� = a j(θik�−b j),

θik� | ηk� ∼ N(β ′xik�+ηk�,1),
ηk� | ε� ∼ N(ε�,σ2

sch),

ε� ∼ N(0,σ2
PSU ),

with a similar likelihood expression.
It is of particular importance that the four-level model automatically adjusts the

standard errors of all parameter estimates for the two-stage cluster design with
both PSU and school sampling. As with the three-level model for the 2005 surveys,
no separate estimation of design effects – allowing for the intraclass correlations
of students’ ability in the same schools or PSUs – is necessary. This is important
because the NAEP design effect correction for clustering by jackknifing PSUs only
adjusts for the PSU clustering – it does not adjust for the clustering of students
in schools. As we will see in Chapter 5, the school clustering is the major design
effect in the 1986 NAEP survey, and the failure to allow for it biases downward the
standard errors of some of the reporting group differences.

3.10 Summary of the full model for NAEP analysis

We summarise the fully model-based approach to our NAEP analyses below. We
give a single analysis for each of the psychometric models discussed; the model
incorporates

• provision for guessing, either by item or by personal characteristics, or a more
general heterogeneity in the item parameters;

• an achievement (2PL) or ability (MIMIC) regression on the chosen covariates at
student, family, and school levels;

• random effects for school and (in 1986) PSU to account for the cluster survey
design;

• stratification and oversampling of minority strata accounted for by fitting ethnic-
ity as a model factor;

• a membership regression for the guessing or general heterogeneity model;
• maximum likelihood estimates and correct standard errors from the standard

package output.
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Before our reports of the analyses in Chapter 5 and later chapters, we give a
summary in Chapter 4 of the simulation studies that support our proposal for the
general use of this model approach.



Chapter 4
Technical Reports – Data Analyses and
Simulation Studies

The arguments that support the model-based analysis we describe in Chapter 3, and
carry out in the following chapters on the 1986 and 2005 NAEP surveys, are based
partly on the statistical theory set out in the previous chapters but also, and impor-
tantly, on small- and large-scale simulation studies we carried out over the period
2003–2009. In this chapter, we summarise the conclusions from these studies; the
full details are in the NCES Technical Reports. These can be downloaded from the
Web; the file name is given for each report. The following chapters incorporate the
relevant details from the reports; Chapters 7 and 8 reproduce almost completely the
content of the technical reports on the Texas and California 2005 surveys, so these
reports are not provided.

4.1 Research reports

The 12 reports below cover the work done for NCES and IES over this period.
Since many of the methods were new to NAEP, the value of these methods has been
investigated by simulation studies with smaller versions of NAEP-type structures as
well as by application to real NAEP data sets.

Comparison of direct estimation with the conditioning model and plausible value
imputation

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_condition.pdf

This project began the NAEP series. It established that in simulations direct maxi-
mum likelihood estimation of both item parameters and reporting group parameters
was uniformly superior to the current method of estimating item parameters first,
generating five plausible values of ability from the item model, fitting a regression
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of each plausible value on the reporting group variables, and finally combining the
five sets of reporting group parameter estimates.

The importance of this project was that it established the efficiency of direct max-
imum likelihood estimation of regression model parameters in IRT models relative
to the current indirect methods of analysis.

Percentile estimation for the ability distribution in item response models

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_percentiles.pdf

This project examined a range of probability models for the ability distribution. It
established that, for reliable inference about percentiles of this distribution, explicit
and detailed parametric modeling of it was essential: reliance on the normal distri-
bution was unsound, and nonparametric estimation of the ability distribution was
ineffective.

The importance of this project was that NAEP reports percentiles of the ability
distribution by major reporting group variables assuming a normal ability distribu-
tion. The reported percentiles depend strongly on the distributional assumption for
ability, so this needs to be checked.

Multilevel model analysis of the Knowledge and Skills scale of the NAEP 1986 math
data

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_4level.pdf

This project set out the generalised linear model framework for IRT models and its
extension to multilevel models for clustered survey designs. It established that the
four-level maximum likelihood analysis of a 30-item scale of the 1986 NAEP math
data using the 2PL model for all items was computationally feasible, and that this
analysis properly allowed for the survey design (requiring two extra model levels),
giving correct and efficient standard errors. The Gllamm program in Stata was used;
it was effective but very slow.

The importance of this project was that it established, for the first time, that full
multilevel model-based maximum likelihood analysis was possible for NAEP-scale
data.

Comparison of joint and separate estimation analyses of the Knowledge and Skills
scale of the NAEP 1986 math data

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_joint_separate.pdf



4.1 Research reports 57

This project compared the full multilevel approach to the analysis of NAEP data,
used in the previous project, with the “separate estimation” approach of first fitting
the null item model and then holding the item parameters fixed and estimating the
reporting group regression model. The reporting group estimates from the separate
estimation approach were good approximations to the full ML estimates, provided
that the full four-level survey design was used in the null item model estimation,
but their standard errors were seriously underestimated. Separate estimation gave a
negligible saving in computation time.

The importance of this project was that it showed that it is essential to allow for
the survey design in any analysis of NAEP data and that the separate estimation
approach seriously underestimated the standard errors of the regression parameter
estimates.

Identification of ability distributions in IRT models for NAEP items

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_ability1.pdf

This project examined the identifiability of the ability distribution underlying the
item responses and assessed the extent to which the current analysis could be made
more effective and/or simplified as a result of this examination.

The importance of this project was that it showed that the estimates of upper-
(individual) level parameters by Gaussian quadrature, used currently in the NAEP
analysis for 3PL and other models, were very robust to various degrees of non-
normality of the ability distribution, and that more complex semi-parametric and
fully nonparametric forms of estimation did not improve the upper-level parameter
estimates and were much more computer-intensive.

Investigation of the ability distribution in the NAEP 1986 math survey

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_ability2.pdf

This project examined the effect of varying the distributional model for student abil-
ity on the reporting group parameter estimates and standard errors for the 1986
NAEP math scale. Several parametric distributions (including some extreme exam-
ples) and the nonparametric maximum likelihood estimate (for the two-level model)
were used instead of the normal distribution; these resulted in only small changes
in parameter estimates and very small changes in standard errors. We concluded
that the normal distribution and Gaussian quadrature provide a robust analysis for
the estimation of reporting group parameters that is almost unaffected by the actual
form of the ability distribution.

The importance of this project was that it established the robustness of the ML
estimation approach to regression coefficient estimation in real NAEP data against
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variation in the form of the ability distribution. (This robustness did not, however,
extend to percentiles of the ability distribution, as reported above.)

Investigation of the identifiability of the 3PL model in the NAEP 1986 Math survey

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_3PL.pdf

This project found that the 3PL (three-parameter logit) model could be successfully
fitted and identified with dense item data – five 2PL items and five 3PL items on
1000 subjects. Fitting the 2PL model to all ten items in the simulations gave biased
estimates of reporting group parameters; smaller but still serious biases resulted
from fitting 3PL models with incorrectly specified guessing parameters.

The importance of this project was that it raised a serious problem, that not fit-
ting the 3PL model when it was known to be necessary could lead to serious bias in
regression model parameter estimates, but the 3PL model might itself be unidentifi-
able.

Efficient maximum likelihood estimation in large-scale multilevel models

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_computation.pdf

This project examined the facilities of current packages and algorithms for NAEP-
scale maximum likelihood multilevel modeling to see if they could be extended or
adapted for fitting psychometric models with a multilevel structure. The report gave
a list of features that are needed to achieve this in a suitable package and a sequential
list of developments that need to be carried out to achieve a suitable analysis system.

The importance of this project was that it defined the necessary features for effi-
cient multilevel IRT ML data analysis.

Development of tools for the analysis of NAEP data

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_Analysis_Tools.pdf

This project aimed to define the properties of a general NAEP data analysis system,
assess current packages for this purpose, and evaluate the efficient computational
methods needed.

The project began by evaluating Gllamm, the Stata program for fitting very gen-
eral latent class and latent variable extensions of generalised linear mixed models.
The program is remarkably flexible and general, and has been widely used in many
contexts, particularly for fitting longitudinal random effect models. It demonstrated
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(for the first time, as far as we know) the feasibility of running four-level hierarchi-
cal models with simultaneous estimation of 2PL item parameters, reporting group
regression model parameters and variance components at each level. Its disadvan-
tages were its slow runnng and the need for profile likelihood computations for the
3PL model.

We then evaluated Latent Gold 4 and 4.5. The developers have implemented a
recursive multilevel version of the Bock-Aitkin EM algorithm for binary and cate-
gorical items that accommodates the four-level structure of the 1986 NAEP survey
(and the three-level structure of current state NAEP surveys). This program is very
fast, can fit very large models that include mixtures, and has flexible model specifi-
cation facilities.

Multidimensional ability

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_multidimensional.pdf

This project aimed to examine differences in reporting group estimates resulting
from full multidimensional ability estimation, separate estimation of each scale and
the combination of estimates, and the estimation of a single overall ability scale for
the 70 items in three scales in the 1986 NAEP math data.

This report examined models with two and three latent ability dimensions. The
simulation studies showed that:

• The critical issue was that the multifactor structure was recognised: fitting a
single-dimension ability model did not give acceptable reporting group parame-
ter estimates except for highly correlated abilities.

• Fitting a model with uncorrelated abilities, with or without the correct loading
restrictions, gave very good estimates, closely equivalent in bias and precision
to those for the correct model: the failure to account for the interability corre-
lation in the two-ability models did not perceptibly affect the properties of the
parameter estimates for these models.

• Fitting independent ability dimensions was fast, simple, and effective compared
with the difficult estimation of the interability correlation.

With the NAEP math data with three subscales, the maximised log-likelihood in-
creased dramatically from one to three dimensions, but the changes in the reporting
group parameter estimates were relatively small and the changes in standard errors
were very small.

The importance of this project is that it showed that it was necessary to fit the
multidimensional model: fitting a single-dimension ability model could give biased
estimates of the reporting group parameters. However, estimation of the interabil-
ity correlations in a joint estimation of all dimensions was not necessary to obtain
good reporting group parameter estimates and standard errors. The actual bias in
the NAEP reporting group estimates from the one-dimension model was, however,
quite small.
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Investigation of alternative models for guessing

http://www.ms.unimelb.edu.au/˜maitkin/TechReports
/NAEP_guessing.pdf

This project examined methods for identifying the 3PL guessing model in sparse
NAEP data and investigated alternative ability-based models for guesssing which
are more easily identified in NAEP data.

We made four major contributions in this project:

• We extended the 2PL model to polynomial models and fitted the three-parameter
(quadratic “3QL” model) and four-parameter (cubic) models to both simulated
data and the 1986 NAEP math data. The quadratic model can serve as a model
diagnostic for failure of the 2PL model and is very easily fitted. It gave a sub-
stantial improvement in fit over the 2PL model for the (3-level) 30-item NAEP
1986 math data.

• We were able to identify the 3PL model for the (three-level) 1986 NAEP math
data. This gave an even larger improvement over the 2PL model than the 3QL
model.

• We were able to identify on the NAEP data an even larger four-parameter model
with both guessing and quadratic terms – we called this the 3PQL model. It gave
a further substantial deviance reduction over the (three-level) 3PL model.

• We were able to fit a two-component mixture ability model – a mixture of two
normal distributions – to the 1986 NAEP math data and later to state samples
from the 2005 NAEP math data.

We examined two-component mixtures with several forms:

• One component was for guessing, in which the discrimination parameters for all
items were zero.

• The second model, a generalisation of the first model, allowed the (logistic) mod-
eling of the probability of being in the guessing component.

Both these models give very substantial improvements over the 3PL model, sug-
gesting that guessing is not an item process independent for each item but a more
systematic process that is individual-specific.

• The third model, a further generalisation of the first model, allowed for different
but nonzero discrimination parameters in each component.

• The fourth model, a generalisation of the third model, allowed the (logistic) mod-
eling of the probability of being in each component.

These models gave further substantial improvements.
These analyses were extended to the entire math test set of 70 items, with addi-

tional results:

• A three-component mixture could be identified in which one component allowed
for guessing and the two others had different nonzero discrimination parameters.
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• In one of these two components, the items were found to be much harder than in
the other component.

– Membership in the guessing component was strongly related to girls.
– Membership in the “harder” component was strongly related to Black and

Hispanic ethnicity and to attendance at low-status metropolitan schools.
– Membership in the “easier” component was strongly related to White ethnic-

ity, to attendance at high-status metropolitan schools, and to parents who had
some college education or were college graduates.

Analyses of the 2005 NAEP math data for Texas

New item models for engagement: simultaneous identification of engagement and
adjustment of reporting group differences for non-engagement

We developed complex multilevel models for math achievement on the 2005 NAEP
math data. Main-effect analyses were carried out on the California and Texas state
samples with a selection of school and teacher variables available in this survey as
well as the available reporting group variables. We fitted all the models described in
the NAEP Guessing project to the data for these two states for the age 4/grade 10
survey.

We were able to estimate achievement differences using absence from school,
teacher qualifications and experience, and school location, as well as the major gen-
der and ethnic reporting groups. With the mixture models, we were able to establish
the important variables for identifying membership in the guessing or second com-
ponent and to assess also the effect on reporting group differences of adjusting these
effects for component membership.



Chapter 5
Model-Based Analysis of the 1986 NAEP Math
Survey

We describe first the analysis of the 30-item Numbers and Operations – Knowledge
and Skills subscale. The item questions are given in Appendix A, Table 1. (This
subscale is a small version of the test subscale that had 180 items across the three
age groups: most of these items were not used for age 9/grade 3.)

5.1 Data and model specification – subscale

There were 21,2901 grade 3/age 9 students in the survey, but only about half of
these had responses on any of the items on the Knowledge and Skills subscale, so
the “full” data set for this subscale had 10,4601 students clustered in 4401 schools,
which were themselves clustered in 94 PSUs. High-minority-proportion PSUs, and
hence high-minority schools and minority students, were oversampled to ensure
adequate minority student samples. This oversampling does not require weighting
in the analysis as the PSU, the school identifier, and the student ethnicity are retained
in all model analyses except those using the two-level model, in which the school is
not identified, and the three-level model, in which the PSU is not identified.

The number of students per school varied from 5 to 45, with an average of 24,
and an average of seven items per student – the data set is very sparse. The item
responses were coded 0 or 1 according to the manual, with items skipped coded
zero and items not reached omitted from the data set, as in the original analysis.

We used a set of important reporting variables: sex, race (six levels), geographical
region (four levels), size and type of community (stoc, seven levels) and parents’
education (pared, six levels), to establish the feasibility of the modeling approach
and to give a comparison with the published NCES results. We used a main-effect
ability or achievement model with these categorical variables – 20 dummy variables.

1 This number has been rounded to the nearest 10 in accordance with IES’s Statistical Standards
Program.
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For reference, we give here the stoc categories; other variables are defined in the
tables.

1 Extreme Rural
2 Low Metropolitan
3 High Metropolitan
4 Main City
5 Urban Fringe
6 Medium City
7 Small Place

In analysing the test data, we evaluated all the item response models discussed in
Chapter 3: the Rasch, 2PL, MIMIC, 3PL, and two-component mixture models, and
a two-dimensional 2PL model. The Rasch model is not generally used for NCES
test items but is of historical interest and provides a base for assessing the value of
the discrimination parameters in the two-parameter models. The 2PL and MIMIC
models have different forms for the regression, and although they have the same
number of parameters, they can be distinguished with sufficient data. Since they do
not allow for guessing, they are also not generally used for NCES test items, but
they are included in this chapter to show the improvement in data fit of the three-
and four-parameter models. The 3PL and three- and four-parameter mixture models
compete for the explanation of guessing or engagement and provide more general
forms of response heterogeneity. In subsequent chapters, we present detailed results
for only the 3PL model and the mixture models.

We ran all three- and four-level Rasch, MIMIC, and 2PL models in Gllamm.
The three- and four-level 3PL and mixture models were fitted at a later stage of the
project in Latent Gold. Null models (items but no reporting group variables) were
also fitted for all models to establish the size of the variance components and the
importance of the regression.

Tables of parameter estimates, standard errors, and maximised log-likelihoods
are given in Appendix A, Tables A3, A4, and A7, for the two-, three-, and four-level
models, respectively. We give the estimates in some detail, comparing them across
the psychometric models at each level of the multilevel model. Variance components
are reported on the original normal (0,1) scale.

The parameter estimates and SEs have been rescaled from the N(0,1) scale to
the NAEP reporting scale with standard deviation 35. There is no intercept estimate
given since it is confounded with one of the item difficulty parameters. The “refer-
ence” level is therefore arbitrary; this is set by NCES for the definition of the NAEP
scale as a population mean of 250 and standard deviation of 35 across the three age
groups comprising the population answering items on this scale.

The estimates and SDs we report represent differences from the reference (first)
category of each variable (male, White, Northeast, extreme rural school, parents did
not finish high school) on the NAEP scale. Population estimates aggregated across
schools and ethnic groups require weighting, but we do not report weighted esti-
mates because the appropriate weights are difficult to determine from the complex-
ity of their construction in the survey report.
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We present first the maximised log-likelihoods and other aspects of the models
and follow this with a detailed discussion of the reporting group differences.

5.2 Model aspects

5.2.1 Maximised log-likelihoods

The maximised log-likelihoods for all models reported are given in Table 1 below
with the number of parameters.

Table 5.1 Maximised log-likelihoods and number of parameters
Model two-level three-level four-level
Rasch −40475.22 −40349.04 −40342.85

51 52 53
MIMIC −40080.32 −39961.68 −39954.46

80 81 82
2PL −40077.26 −39930.05 −39924.60

80 81 82
3PL −39848.49

111
2-guess −39777.88

112
2-guess-prob −39711.77

132
2-D 2PL −39685.69

111
2-mix −39649.40

142
2-mix-regressions −39623.38

162
2-mix-prob −39547.41

162

5.2.2 Two- and three-level models

The log-likelihood improvement for the three-level model over the two-level model
was large in every case – 126 for the Rasch, 118 for the MIMIC, and 147 for the
2PL. The two-level model does not provide a correct representation of the clustered
survey design. (A formal asymptotic test treats the deviance difference – twice the
log-likelihood difference – as a mixture distribution: 0.5χ2

0 + 0.5χ2
1 . The deviance

difference vastly exceeds the critical value – for a 1% level test, the 2% point of χ2
1

is 5.4.)
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The intraclass (school) correlations are 0.117 for the Rasch model, 0.113 for
the MIMIC, and 0.076 for the 2PL. These are not large values, but they affect the
standard errors quite substantially. These are increased by 50% for variables at the
school level (such as region and size and type of community). The standard errors
for parents’ education are also increased by the same proportion, although this is
apparently a student-level variable. This probably reflects the homogeneity of edu-
cational level amongst parents of children in the same school.

The two-level 2PL model fitted the test data somewhat better than the two-level
MIMIC model – a log-likelihood difference of 3.06. For the three-level model, the
difference is much greater: 31.63 in favour of the 2PL. There is no current valid test
for comparing the MIMIC and 2PL models.

5.2.3 Four-level models

The log-likelihood improvement for the four-level model over the three-level model
is much smaller in every case: 6.19 for the Rasch, 7.22 for the MIMIC, and 5.45
for the 2PL. The difference is statistically significant at the 0.1% level for all three.
The effect of the fourth-level estimation on the model parameter estimates and SEs
was small – the SEs of the region estimates increased by about 20%, while those of
the parents’ education estimates decreased by about 5%, because the school vari-
ance component was reduced by the fourth-level modeling. The parents’ education
estimates all increased consistently (relative to the reference category), by 0.5 for
the Rasch model, 0.4 for the MIMIC, and 0.2 for the 2PL. These changes represent
25% of a standard error for the Rasch model, 20% for the MIMIC, and 10% for the
2PL.

The gender and ethnic origin parameters and standard errors were very stable
from three to four levels. The other parameters were little affected – the largest
change was in the size and type of community variable, with a change of 33% of
a standard error in one parameter. The three-level model provided a substantially
correct representation of the clustered survey design.

The 2PL model fitted much better than the MIMIC – a log-likelihood improve-
ment of 29.86 for the same number of parameters.

5.2.4 The 3PL model

This model is the main model used by NCES for NAEP binary response data. We fit-
ted it to all 30 items; a (boundary) zero estimate for the guessing parameter reduces
the model to the 2PL or MIMIC model for these items. The notorious identification
difficulties of this model led us to expect unidentifiability. This occurred in the three-
level analysis for the MIMIC version of the three-parameter model, which failed to
achieve convergence despite detailed searching over 50 random starting points.
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However, we were able to identify the 2PL form of the three-parameter model
with no difficulty; it gave a maximised log-likelihood of −39848.49, an improve-
ment of 81.56 (an equivalent χ2 of 163.12) for the additional 30 parameters. Al-
though there is no formal test for this special two-component mixture model against
the single-component 2PL model, there seems little question of the inadequacy of
the two-parameter 2PL model.2

The guessing parameters are shown in Table A5 together with those from Tech-
nical Report 1988 (Table E6, p. 576). In our analysis, the guessing parameters are
estimated, with standard errors, on the logit scale. We have converted them to the
probability scale; we do not give standard errors on this scale for estimates close to
zero. The estimated item parameters are not directly comparable with those given in
the Technical Report for any of the item response models because the latter were ob-
tained from a null achievement model across a different population – the combined
age group populations taking these items (Technical Report 1988, p. 221). Our (si-
multaneous) analysis also controls for a regression model for ability or achievement.

The results gave 13 unidentifiable (“infinite”) parameters on the logit scale; we
interpreted these as guessing parameters that were approaching zero. We refitted the
model with these c j parameters fixed at 0, together with two other items with large
logit values (≥ 5 in magnitude); values less than 5 were retained. The maximised
log-likelihood for this model was unchanged to 3 dp by the 15 constrained guessing
parameters and converged much faster.

It is of interest that the original NAEP analysis identified 12 items with nonzero
guessing parameters, 4, 6, 9, 10, 15, 19, 20, 24, 27, 28, 29, and 30, whereas the
3PL analysis here identified 15 items with nonzero guessing parameters, ten of the
original 12 plus five others: items 1, 2, 3, 7, and 11. Items 4 and 19 have zero
guessing parameters in our analysis.

For the reporting group estimates, those from the 3PL model are almost all larger
than those from the 2PL model, as are their standard errors and variance compo-
nents. The reason is clear: the compressed logit scale for the 3PL model, and the
large number of items with nonzero guessing parameters, mean that effects on the
3PL model logit scale must be larger than on the 2PL model logit scale to repro-
duce the data fit. The two sets of parameter estimates are not directly proportional,
but they are very similar in their relations within each set. The improved fit of the
3PL model does not appear to change much the relative differences in the reporting
group categories.

5.3 Reporting group differences

We first note that the parameter estimates for the MIMIC and 2PL models are not di-
rectly comparable since they refer to two different relations of the covariates: ability

2 For the 3PL and mixture models, we did not use the four-level analysis, as the three-level analysis
provided essentially the same results for all the parameters except for small changes in the region
differences.
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(MIMIC) or achievement (2PL). Nevertheless, they are closely related in magnitude
since, as noted in §3.2, the MIMIC ability regression model can be re-expressed in
2PL form as an interaction achievement regression model on the logit scale:

logit pi j | θi = a j(θi −b j),

θi ∼ N(β ′xi,1),

is equivalent to

logit pi j | θi = a j(θi − b j)+a j ·β ′xi,

θi ∼ N(0,1).

If the discriminations do not vary substantially, the effects of the explanatory vari-
ables will be very similar across items, and the two sets of regression model pa-
rameter estimates will be very similar, though there may be a proportionality factor
between them.

A second important point, from comparing the two- and three-level models, is the
large increase in standard errors for all the variables above the student level – the
region, school location, and parents’ education standard errors increase by around
50%. The school variance component is about 12% of the total variance (more for
the 3PL model), and so allowing for the school clustering of students greatly reduces
the apparent precision of these estimates from that of the two-level model. This is
a major advantage of the multilevel model approach – it automatically corrects for
the clustering, without any need to tailor the design of the survey to the estimation
of the design effect. In the four-level model, the PSU variance component is much
smaller – around 2% of the total variance – and so the effect on the standard errors
of the region estimates is much smaller, though appreciable. Below we interpret
the estimates from the three-level analysis (this also corresponds to the three-level
design in the 2005 survey analyses in Chapters 7 and 8).

Thus the complexity of the survey design, and the considerable effort required
in the jackknifing of PSUs to allow for the PSU part of the design in the original
analysis, were largely wasted, since the clustering at this level is small. No allowance
for the school clustering was made in the original analysis, and this implies that
reported estimates from the conditioning model and plausible value generation are
overprecise. This is borne out by the few comparisons possible with this subscale,
given below.

From Table A4 of Appendix A, it is clear that the four models give very similar
reporting group estimates and standard errors, with the 3PL being most different
from the others because of the scale restriction imposed by guessing. A notable
exception is the sex difference (in favour of girls), which is around 4 NAEP scale
points, and very significant, for the Rasch and MIMIC models, but less than 1 point,
and nonsignificant, for the 2PL and 3PL models. The better fit of the 2PL and 3PL
models to the test data implies that the sex difference appearing in the other models
should be discounted. This emphasises the importance of goodness of fit compar-
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isons using the maximised likelihood for these models, though there is no general
theory for comparing non-nested models (the MIMIC with the 2PL, for example).

Following this principle, we interpret the estimates for the three-parameter
model. Following common frequentist practice, we use the term significant (strictly,
significant at the asymptotic 5% level) to refer to an estimate that is about twice its
standard error or greater (in magnitude). This corresponds to rejection of the null
hypothesis of a zero regression coefficient for the corresponding covariate using an
asymptotic 5% level test in the frequentist framework. Estimates that are less than
twice their standard errors in magnitude are called nonsignificant, and may not be
mentioned in all summary lists to save space. To summarise the three-parameter
model estimates:

• The sex difference was small and nonsignificant.
• The Black mean was 29 points below, and the Hispanic and American Indian

means were 21 points below, the White mean. The Asian/Pacific Islander mean
was nonsignificantly below the White mean.

• Students in the Central and Western regions were significantly below (7.5 points)
those in the Northeast region, and those in the Southeast were nonsignificantly
below those in the Northeast.

• Students in low metropolitan schools were significantly below (12 points) those
in extreme rural schools, who were not significantly different from those in
main city, medium city, urban fringe, and small place schools; students in high
metropolitan schools were 14 or more points above the last group, 20 points
above those in extreme rural schools, and 32 points above those in low metropoli-
tan schools.

• Students whose parents had at least some college education had a mean 18 points
above those whose parents had not finished high school; this difference was
nearly significant at the 5% level.

5.3.1 Comparison with NAEP subscale estimates

The NAEP results for the Numbers and Operations – Knowledge and Skills subscale
were unpublished but were kindly provided by ETS. The NAEP tables relevant to
our results are one-way tabulations of plausible values by Gender, Race/Ethnicity,
School Type, Parental Education, and Region.

Our model used Size and Type of Community (stoc), and not School Type. The
one-way tabulations will in general give results different from the main-effect model
estimates since any correlation between the reporting group variables will affect
the marginal mean differences. (This is the reason for fitting all reporting groups
together in a main-effect regression model.)

Furthermore, the oversampling of high-minority PSUs and schools means that
only the ethnic group one-variable model will give results comparable with the
NAEP tabulations – the other one-way models will implicitly collapse over the eth-
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nic origin variable and so our model results would need to be weighted for the
differential sampling rates. This requires knowledge of the PSUs and schools that
are high-minority, but these PSUs and schools are not identified in the data file,
so we are unable to correct for the oversampling. For the one-way MIMIC ethnic
group model, the maximised log-likelihood is −40082.02, while for the one-way
2PL model it is −40040.14. As for the full model, the 2PL model fits the 30-item
scale better than the MIMIC model.

To compare the results, we present the NAEP tables in the same form as the
model parameters, with the reference category mean subtracted and standard er-
rors calculated from the variances of the difference between the means. We omit
the “other” category for ethnicity, and the “no-response” category for parents’ ed-
ucation, which had very few members. We present the 2PL parameters from the
three-level one-way model (those from the MIMIC model were very closely simi-
lar) and give the 3PL estimates from the full three-level model. None of the model
estimates corresponds exactly to those from the NAEP tables since these used the
3PL MIMIC conditioning model (apart from the other differences with plausible
values).

NAEP table 3PL estimates 2PL 1-way
---------------------------------------

Variable MLE SE MLE SE MLE SE
------------------------------------------------
male 0 0
female 2.2 (1.5) 0.8 (1.2)

white 0 0 0
black -31.1 (2.1) -29.3 (2.1) -32.5 (2.2)
hisp -22.4 (2.4) -21.3 (1.9) -24.0 (2.2)
asia/pac - 3.5 (5.9) - 7.8 (4.9) -10.4 (6.0)
amerind -13.0 (3.4) -21.1 (4.2) -23.1 (4.7)

NE 0 0
SE - 2.4 (2.1) - 2.6 (3.9)
Cent - 1.3 (2.3) - 7.4 (3.2)
West - 4.6 (2.5) - 7.6 (3.0)

notfinhs 0 0
finhs 7.8 (4.0) 2.0 (9.3)
somcoll 22.8 (4.3) 17.1 (9.3)
collgrad 24.9 (3.8) 18.3 (9.6)
DK 13.1 (3.7) 2.0 (9.3)
-------------------------------------------------

There are notable differences among the various sets of estimates and standard
errors. First, the standard errors from the one-way 2PL model are uniformly slightly
larger than those from the 3PL model (and from the full 2PL model). This is a
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consequence of the poorer fit of the one-way models, as shown by their maximised
likelihoods – the other variables are very important and reduce the random variation
that otherwise inflates the standard errors.3 Second, the ethnic group differences
relative to White are uniformly overstated by the one-way model – when the other
variables are taken into account, the ethnic group differences are reduced.

Third, the standard errors of the model-based estimates are substantially larger
for the variables above the student level than those for the NAEP table estimates
– nearly double for the regional differences and more than double for parents’ ed-
ucation. For the student-level sex and ethnic group comparisons, the model-based
standard errors are slightly smaller than those for the NAEP table estimates. This
pattern is very similar to that for the standard errors from the two-level model com-
pared with the three-level model, for the same reason: the school clustering of stu-
dents is not accounted for in the NAEP table analysis.

It might be thought that the standard errors of estimates in the full model should
be larger than those in the one-way model because of the correlations of the addi-
tional covariates with ethnic group and with each other. However this is not the case:
the correlations of the parameter estimates are given for the three-level Rasch model
in Appendix A (those for the 2PL model were very similar). The correlations of the
reporting group parameter estimates are generally very low, apart from the positive
intercorrelations for the parameters for each category of a single variable.4 So the
fitting of the full reporting group model does not induce larger standard errors for
this model.

We draw several important conclusions from these comparisons:

• The parameter standard errors for upper-level variables are considerably under-
stated in the NAEP table analysis because they are not adjusted for the large
school design effect.

• One-way summaries of reporting group differences, whether from plausible val-
ues or from direct model fitting, are averages across other important variables and
may be different from the results from the simultaneous fitting of all the reporting
group variables of interest.

• The simultaneous fitting of the important variables gives a fairer picture of their
importance than separate one-way tabulations.

5.4 Mixture models

In the 30-item subscale analysis, we fitted five mixture models using the 2PL form
of the two-parameter model, as this was uniformly superior in maximised likelihood

3 The full model controls each main effect for the others; the one-way models aggregate over the
other main effects.
4 An exception is the positive correlation, around 0.2, of all the stoc category estimates above
category 1 with the Central (region 3) estimate. This may reflect a higher proportion of extreme-
rural communities in this region than in the other regions.
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to the MIMIC form of the model. We fitted the 2-guess, 2-guess-prob, 2-mix, 2-mix-
regressions, and 2-mix-prob models, described in §3.5.

5.4.1 2-guess model

This model had a maximised log-likelihood of −39777.88 with 110 parameters, an
improvement of 70.61 over the 3PL model, for one extra mixing parameter. The
proportion in the guessing component is estimated to be 0.219, with a 95% con-
fidence interval (0.184, 0.259). Reporting group parameter estimates are given in
Table A8 (the model headings are abbreviated to 2-g and 2-g-p). The standard er-
rors are uniformly smaller than those for the 3PL model – the large improvement
in log-likelihood reduces the random variation and consequent standard errors. The
parameter estimates are similar to those of the 2PL model and are mostly smaller
than the 3PL estimates, as the 2-guess model uses the full 0–1 scale for the response
probability in the engaged group (as we noted in §3.3). A notable change is in the
sex effect, which is now 2.8 units in favour of girls and significant.

The estimated guessing parameters, on the probability scale, are given in Table
A9 with those for the 3PL and their standard errors from Table A5. For fair com-
parison with those for the 3PL model, we need to multiply the estimated d j for the
mixture guessing model by the estimated c of 0.219, the (constant) proportion in the
guessing component. We do not report standard errors of the d j or the product c ·d j.

The estimates are bounded by the estimated c parameter. There is no clear rela-
tion between the two sets of guessing parameters; the (ML) estimates of the proba-
bility of a correct answer by guessing for the 2-guess model are considerably more
variable than for the 3PL model.

5.4.2 2-guess-prob model

This model further improves over the 2-guess model, with an increase in maximised
log-likelihood of 66.11 for the 20 additional parameters in the engagement regres-
sion model. The parameter estimates are similar to those for the 2-guess model,
though generally slightly smaller. An exception is the sex effect, which changes
back to a nonsignificant 0.8 units in favour of girls.

Significant effects associated with engagement from the engagement logistic re-
gression model were Black and Hispanic ethnicity and Southeast region (all nega-
tive) and high metropolitan and urban fringe schools (positive). Engagement did not
vary by sex and parents’ education.

The estimated probabilities of belonging to the engaged component for each cat-
egory of student can be evaluated by summing the logit estimates for the relevant
categories and transforming to the probability scale. For the “most engaged” cat-
egory (girl, White, Northeast region, high metropolitan school, some college), the
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logits are

−1.087+0.086(girl)+0(White)+0(NE)+0.811(himet)+0.497(smcoll),

totaling 0.307. The corresponding probability of being engaged is

e0.307/(1+ e0.307) = 0.576.

For the “least engaged” category (boy, Black, Southeast region, low metropolitan
school, not finished high school), the logit total is

−1.087+0(boy)− 0.856(Black)− 0.349(SE)−0.542(lomet)+0(nfhs),

totalling −2.834, with corresponding engagement probability 0.056.
These estimates have corresponding variability bounds (standard errors), which

we do not give here, though they can be calculated from the program output; the
main issue is that engagement has a rather low probability even for the most engaged
category. (The estimated logits given above include some for categories that do not
show significant variation – sex and parents’ education. If the reference category
value of zero is used instead for these variables, both the estimates and their standard
errors will be less extreme.)

The estimated d j parameters on the probability scale are also given in the last
column of Table A9. The estimated d j are generally larger than those for the 2-
guess model. We do not give the guessing parameters ci ·d j, as these depend on the
individual student variables xi.

5.4.3 Two-dimensional model

We fitted a two-dimensional 2PL model to investigate the “subscale purity” of the
items on the Numbers and Operations – Knowledge and Skills subscale. We did not
expect to find a significant second dimension, given the relatively small number of
items and their assignment to the subscale in terms of their content.

It was therefore surprising to find a really large improvement in maximised log-
likelihood, to−39685.69 with 111 parameters. This represents an increase of 244.36
over the 2PL model for 30 extra parameters and an increase of 92.19 over the 2-
guess model with one less parameter. Compared with the 2-guess-prob model, the
improvement is smaller, 26.08, but the number of parameters is 21 less. Compared
with the 3PL model, the improvement is very large: 163 with the same number of
parameters!

In fitting this model, as discussed in Chapter 3, we made no assumption about
the assignment of items to dimensions – the two-dimensional model was completely
general. Since this model is rotationally invariant, like a two-factor normal response
model, we are not able to identify or assign items to the two dimensions. The
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achievement regression parameter estimates and standard errors (given in Table A8)
are quite similar to those for the 2-guess model.

5.4.4 2-mix model

This model improved substantially over the 2-guess model, with a maximised log-
likelihood of −39649.40, an increase of 128.48 for 30 extra parameters. It also
improved by 36.29 over the two-dimensional 2PL model for 31 extra parameters.
Estimates and standard errors are given in Table A10. The first component contains
an estimated 46% of the tested population and the second contains the other 54%.
The achievement regression parameter estimates are quite close to the 2-guess es-
timates, apart from the sex difference, which is nonsignificant. The standard errors
are slightly larger.

The item parameters in the two components of the mixture are given in Table
A11 with standard errors. Inspection of the estimates shows that the large majority
of items were found easier by those in component 2 than by those in component
1. So component 2 was a subpopulation of more able students. Very few of the
items had nonsignificant discrimination parameters: items 27 and 28 in component
1 and items 1, 2, and 12 in component 2. Items 27 and 28 were difficult in both
components, items 1, 21, and 22 were very easy in both components, and items 2
and 12 were easy in component 2.

Neither component can be interpreted as a guessing component, as is also in-
dicated by the large change in maximised log-likelihood between the 2-guess and
2-mix models.

5.4.5 2-mix-regressions model

This model improved marginally over the 2-mix model, with a change of 26.02 in
maximised log-likelihood for 20 extra parameters. We do not give estimates or in-
terpretation for this model, as it was substantially inferior to the 2-mix-prob model,
discussed below. We do not consider it further.

5.4.6 2-mix-prob model

This model improved further over the 2-mix model, with a change of 101.99 in
maximised log-likelihood for 20 extra parameters. Estimates and standard errors are
given in Table A10. The achievement regression parameters showed some notable
changes relative to the 2-mix estimates. The Black, Hispanic, and American Indian
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differences from White were all reduced, and neither the school location nor parents’
education differences were significant.

Significant effects associated with membership in the “easy items” component
from the logistic regression model were Black, Hispanic, and American Indian eth-
nicity, Southeast and West regions, and low metropolitan schools (all negative) and
high metropolitan and urban fringe schools (both positive). Component membership
did not vary by sex and parents’ education.

The estimated probabilities of belonging to the easy items component for each
category of student can be evaluated by summing the logit estimates for the relevant
categories and transforming to the probability scale. For the “most easy” category
(girl, White, Northeast region, high metropolitan school, some college), the logit
total is 0.674, with a corresponding probability of being in the easy items category
of 0.842.

For the “least easy” category (boy, Black, Southeast region, low metropolitan
school, not finished high school), the logit total is −1.823,with corresponding prob-
ability 0.140.

5.4.7 Conclusions from the 30-item analysis

The conclusions from this array of model analyses may appear somewhat confusing.
There are several logical sequences of nested models of increasing complexity:
• Rasch −> 2PL −> 3PL
• 2PL −> 2-guess −> 2-mix
• 2PL −> 2-guess −> 2-guess-prob
• 2PL −> 2-mix −> 2-mix-prob
• 2-guess-prob −> 2-mix-prob
• 2PL −> two-dimensional 2PL
Other comparisons are not nested:
• 2PL <−> MIMIC
• 3PL <−> 2-guess
In large samples with small models, where large-sample (asymptotic) theory can be
assumed to apply, the nested comparisons can be tested using the likelihood ratio
test, which we have quoted frequently above.

For models that are not nested, we lack a general repeated-sampling theory for
such comparisons. But even for the nested comparisons, we have the opposite situa-
tion: though the sample size is apparently large, the information per student is very
limited – an average of seven items – and the larger models are heavily parametrised.
There is strong reason therefore to doubt the validity of the direct application of the
likelihood ratio test to these comparisons.

This presents a dilemma – if we cannot decide which model is best supported by
the data, how can we draw conclusions about group differences? Fortunately there
are some external factors, which we have already mentioned:
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• The 2-guess model, which has only one more parameter than the 3PL model, is
much better supported – by 70.61 for one extra parameter.

• The two-dimensional model is much better supported than the 3PL model with
the same number of parameters, and better supported than the 2-guess model
with one less parameter.

It is therefore clear, if we can rely on these measures of support, that the 3PL is not
the most appropriate model. Amongst those considered, one of the 2-guess-prob,
2-mix, 2-mix-prob, or two-dimensional models, is most appropriate. To be more
definite, we need theoretical developments in model comparisons.

In the next chapter, we extend this analysis to all 79 items on the test, from three
scales.



Chapter 6
Analysis of All 1986 Math Iems

6.1 The full math test

As we noted in Chapter 2, in the 1986 test for age 9/grade 3 students there were four
main scales,

• Numbers and Operations (56 items),
• Measurement (27),
• Fundamental Methods (17),
• Data Organization and Interpretation (16),
with a total of 116 items. The large Numbers and Operations scale was itself split
into two subscales:
• Knowledge and Skills (30 items),
• Higher-Level Applications (26).

These two subscales, and the Measurement scale, were also reported on, though
in less detail than the composite dimension, which was based on the Numbers and
Operations and Measurement scales. In Chapter 5, we found, surprisingly, that the
30-item Numbers and Operations – Knowledge and Skills subscale appeared to be
at least two-dimensional.

In this chapter, we report the analysis of the 1986 age 9/grade 3 math survey,
with the full set of 79 items from the Measurement scale and the two Numbers
and Operations subscales that were reported for the NCES analysis. We used three
models of different dimensions for the analysis: a single dimension for all items, a
two-dimensional model, and a full three-dimensional model. For the two- and three-
dimensional models, the scales of the items were not distinguished. This allows for
“nonpurity” of the items. We give parameter estimates for only the 1-D and 3-D
models; the three models were very similar.

The multidimensional model was fitted only as a 2PL model; for the MIMIC
model we would have had to specify the ability regressions on each dimension.1

1 For the 2PL model, the achievement regression is on the logit scale of item response and is
unaffected by the number of dimensions.
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We also extended the two-component mixture models to three components for both
guessing (with one guessing component) and general mixture models.

We fitted the four-level two-parameter model; as with the 30-item scale in Chap-
ter 5, the PSU-level variance component was very small (0.013), and the school
variance component was 0.054, considerably smaller than for the 30-item scale. The
maximised log-likelihood improved by only 6.37 for the one extra parameter. Both
PSUs and schools were more homogeneous with the full set of items. Parameter
estimates for the four-level model are given in Table B0, together with those for the
three-level two-parameter model. Agreement in both estimates and standard errors
is very close, and the other psychometric models were fitted as three-level models,
ignoring the PSU sampling level.

The one-dimensional (3PL) and three-dimensional (2PL) analyses correspond to
the official analysis of the full survey, apart from a slight difference in the weighting
of the three scales in producing a single composite scale: our analysis using a single
dimension is automatically weighted by the number of items used on the scales.

The models and approach used are the same as for the analysis of the single 30-
item Numbers and Operations – Knowledge and Skills subscale, but the data set
used is larger: at least one of the 79 items was answered by 12,1802 students; the
number of schools increased by 02 to 4402. Most importantly, the average number of
items answered per student across the three scales more than doubled, to 15.4. This
greatly improves the precision of the information about student ability/achievement,
and therefore the precision of parameter estimates in all the regression models, and
it allows the identification of some three-component mixture models.

We consider first the 2PL models.

6.2 2PL models

The maximised log-likelihoods for all three-level 2PL models reported are given in
Table 1 below; the first line gives the four-level two-parameter model.

Reporting group parameter estimates and SEs are given in Appendix B, Tables
B1 and B2; for those models that model the component membership, the logistic
model parameters are given in Table B2. A notable feature of all the models is the
reduction in the school variance component from the 30-item subscale (14%) to the
full test (6%). This suggests that the variation among schools in the items on the
other scales in the full test is much less than that on the items in the Numbers and
Operations – Knowledge and Skills subscale. This may mean that the teaching of
the topics assessed by the Measurement and the Higher-Level Applications items
was more consistent across schools than that of the topics assessed by the Numbers
and Operations – Knowledge and Skills items.

A statistical concern is the very large number of parameters needed for the 3-
component mixture models.
2 This number has been rounded to the nearest 10 in accordance with IES’s Statistical Standards
Program.
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Table 6.1 Three-level 2PL model maximised log-likelihoods and number of parameters
Model log L # params.

2-param(4-level) −103007.14 180
2-param −103013.51 179
3-param −102404.15 258
2-guess −102682.84 259

2-guess-prob −102513.79 279
2-mix −102186.27 337

2-mix-prob −102186.27 337
3-guess −102380.03 418

3-guess-prob −101482.05 458
3-mix −101817.46 497

3-mix-prob −101320.81 537
2-D −102219.51 257
3-D −102014.57 336

6.3 Results

Tables B1 and B2 show a surprising similarity of reporting group parameter esti-
mates and standard errors across the 2PL, 3PL, 2-guess, 2-mix, 3-guess, 3-mix, and
3-D 2PL models, which is surprising considering the large changes in maximised
log-likelihood (discussed below). Following Chapter 5, we give the summary results
for the 3PL model, with those from the 30-item scale from Chapter 5, where they
are different, in square brackets [ ].

• The sex difference was small and nonsignificant.
• The Black mean was 17 [29] points below, and the Hispanic and American Indian

means were 14 [21] points below, the White mean. The Asian/Pacific Islander
mean was 6 points [nonsignificantly] below the White mean.

• Students in the [Central and] Western regions were significantly below (5.4 [7.5]
points) those in the Northeast region, and those in the Southeast were nonsignif-
icantly below those in the Northeast.

• Students in low metropolitan schools were significantly below (8 [12] points)
those in extreme rural schools, who were not significantly different from those in
main city[, medium city, urban fringe] and small place schools.

• Students in high metropolitan schools were 7–9 [14–16] points above those in
main city, urban fringe, or medium city schools, 11 [20] points above those
in extreme rural or small place schools, and 19 [32] points above those in low
metropolitan schools.

• Students in urban fringe and medium city schools were 3–4 points above those in
extreme rural schools and 11–12 points above those in low metropolitan schools.

• Students whose parents had at least some college education had a mean 13–14
[18] points above those whose parents had not finished high school [this dif-
ference was nearly significant at the 5% level] and 9 points above those whose
parents had finished high school.
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The important point here, apart from the expected similarity in conclusions, is
that the group differences found on the 30-item subscale in Chapter 5 are all larger
than those on the full set of items here. It follows that the group differences on the
items in the two additional scales in the full test must be much smaller than those
on the Numbers and Operations – Knowledge and Skills scale items.

6.3.1 Mixed 2PL models

As we noted above, the 2-guess, 2-mix, 3 guess, and 3-mix 2PL models gave report-
ing group estimates and standard errors very similar to the 3PL model. Estimated
proportions of students in the guessing component, or the “hard items” component
(with 95% confidence intervals where available), were

• 2-guess: 0.177 (0.159, 0.197),
• 2-guess-prob: 0.325 (from the sum of the estimated probabilities across all stu-

dents),
• 2-mix: 0.416 (0.391, 0.442),
• 2-mix-prob: 0.476 (from the sum of the estimated probabilities across all stu-

dents),
• 3-guess: 0.186 (guessing), 0.426 (hard), 0.388 (easier),
• 3-mix: 0.327 (hardest), 0.363 (easier), 0.310 (easiest).

However, the two models with a two-component mixture that included modeling
of the component membership probability gave results quite different from those
above though quite similar to each other. In these two models:

• Ethnic group differences from White were halved relative to the other models.
• Students in high metropolitan schools were only 4 points above those in main

city or urban fringe schools, 6 points above those in extreme rural schools, and
13 points above those in low metropolitan schools.

• Differences in the effects of parents’ education (relative to not finished high
school) were roughly halved relative to the other models.

• All other ethnic groups had higher probabilities than Whites of being in the guess-
ing or the lower-ability component.

• Students in low metropolitan schools had higher probabilities of being in the
guessing or lower-ability component, and those in high metropolitan schools had
higher probabilities of being in the engaged or higher-ability component than
students in extreme rural schools.

As in Chapter 5, the estimated probabilities of belonging to the engaged or the
“easy items” component for each category of student can be evaluated by summing
the logit estimates for the relevant categories and transforming to the probability
scale. For the “most engaged” category (White, high metropolitan school, some
college), the logit total is 0.933, with the corresponding probability 0.718 of being



6.3 Results 81

engaged. For the “least engaged” category (Black, low metropolitan school, not fin-
ished high school), the logit total is −3.238, with corresponding probability 0.038.

Results for the “easy items” membership were very similar: for the “most easy”
category (White, Northeast region, high metropolitan school, college graduate), the
logit total is 2.148, with the corresponding probability 0.895. For the “least easy”
category (Black, West region, low metropolitan school, not finished high school),
the logit total is −2.413, with corresponding probability 0.082.

The substantial changes in reporting group differences can be interpreted infor-
mally and formally. Informally, the interpretation is clearest for the guessing model.
If we exclude students who are guessing from the computation of group differences,
and if these guessing students are disproportionately from the non-White ethnic
groups, whose mean achievements are below those of Whites, the exclusion process
will reduce these group differences.

Formally, we can express the results in terms of direct and indirect effects in
the structural equation modeling sense. The achievement regression gives the direct
effects of the reporting group variables on achievement. But there are also indirect
effects resulting from the disproportionate membership of the other ethnic groups
in the guessing component from the membership regression. These indirect effects,
when combined with the direct effects in the achievement model, give the previous
results for the 2-guess and 2-mix models. In these models, membership in the guess-
ing or lower-ability component has the same probability for every student, so these
models cannot represent the full effect of guessing.

6.3.2 Three-component membership models

For the full 1986 survey item set, we were able to fit and identify 2PL three-
component mixture models with modeling of the component probabilities. The 3-
guess models had one guessing component and two engaged components, and the
3-mix models had three engaged components.

The 3-guess-prob model improved by 897 in log-likelihood over the 2-guess-
prob model for 179 extra parameters and improved by 597 over the 3-guess model
for 40 extra parameters.

The achievement and engagement model parameter estimates are given in Table
B3, and the item parameter estimates are given in Table B4. There is a striking re-
duction in nearly all the achievement model estimates across the five variables. The
Black and Hispanic differences from White are reduced to 4 and 3 NAEP scale units,
respectively, and the difference between White and American Indian is reduced to
7 units. There are no significant school location differences from the reference ex-
treme rural category (though the overall χ2

6 test for homogeneity is significant at the
1.1% level), and the parents’ education differences from the not finished high school
category are reduced to 5 points for the two college education categories.

These are quite dramatic changes. They are produced by the large parameter
estimates in the two membership models. The first component is the guessing com-
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ponent, and it is clear from the item parameter estimates in Table B4 (given as logit
intercepts and slopes) that students in the second component found the items very
difficult, while those in the third component found them much easier. The estimated
proportions in the three components (the sums of the estimated probabilities of com-
ponent membership across all students) were 0.214 (1), 0.327 (2), and 0.459 (3).

What defines the component membership? This can be understood from Table
B3 by three patterns of signs in the component membership columns: −−, +−, and
−+. We see that:

• The guessing component (−−) is strongly identified with girls.
• The “difficult items” component (+−) is strongly identified with Black, His-

panic, and American Indian students and less strongly identified with Southeast
and Western region students and students in low metropolitan schools.

• The “easier items” component (−+) is strongly identified with students in high
metropolitan schools and students whose parents had at least some college edu-
cation.

For the 3-mix-prob model, the maximised log-likelihood increased over the 3-
guess-prob model by 161 for 79 extra parameters. The achievement estimates (in
Table B3) were similar to those for the 3-guess-prob model but generally larger.
The item parameters (not given) in components 2 and 3 were similar to those for the
3-guess-prob model, but those for the first component all had large negative slope
parameters, and many items also had negative intercept parameters. Apart from be-
ing inconsistent with item behaviour, these parameters showed that the estimated
model was close to reproducing the guessing model parameters with zero slope.
We therefore concluded that, whatever the significance of the (relatively small) im-
provement in maximised log-likelihood, this model was not well supported. We did
not interpret it further.

6.3.3 Multidimensional ability model

The 3-D model gave a vast improvement (1000) in maximised log-likelihood over
the 1-D 2PL model for its extra 158 parameters. Despite this improvement, its re-
porting group parameter estimates and standard errors were very close to those of
the 1-D model (and those of the mixed models in Table B1). The 3-D model im-
proved by 172 over the 2-mix model, which has one more parameter. The 2-mix-
prob model was better by 221 for 21 extra parameters. The 3-mix model improved
by 197 in maximised log-likelihood over the 3-D 2PL for its 161 extra parameters.
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6.4 MIMIC models

The maximised log-likelihoods for all MIMIC models reported are given in Table 2
below.

Table 6.2 MIMIC model maximised log-likelihoods and number of parameters
Model log L # params.

2-param −102567.07 179
3-param - -
2-guess −102322.81 259

2-guess-prob −102211.16 279
2-mix −101686.16 337

2-mix-prob −101607.02 337
3-guess −101548.04 418

3-guess-prob −101393.33 458
3-mix - -

3-mix-prob - -
2-D - -
3-D - -

The MIMIC model improves over the 2PL for all the comparisons available by
from 89 to 832 units of maximised log-likelihood. This improvement for the full set
of items compared with the improvement of the 2PL over the MIMIC for the 30-
item subscale suggests that the items on the other scales have properties different
from those on the Knowledge and Skills subscale. We have not investigated this
issue.

Reporting group parameter estimates and SEs are given in Appendix B, Tables
B3 to B5. Since (as we noted previously) there is no “standard” three-parameter
MIMIC model to use as a reference, we give the changes in the two-parameter
MIMIC model from the 30-item subscale (in square brackets [ ]) to the full item
set first and then give the changes with increasing MIMIC model complexity.

6.5 Results

6.5.1 Two-parameter MIMIC model

• The sex difference was small and nonsignificant [girls were 4 points above boys].
• The Black mean was 25 [22] points below, the Hispanic and American Indian

means were 19–20 [16] points below, and the Asian/Pacific Islander mean was
12 points [nonsignificantly] below the White mean.

• Students in the Western region [and Central region] were 7 points below those in
the Northeast region.
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• Students in low metropolitan schools were 9 [11] points below those in extreme
rural schools, who were not significantly different from those in main city[, urban
fringe, medium city] and small place schools.

• Students in high metropolitan schools were 13 [10-12] points above those in
main city, urban fringe, or medium city schools, 18 [15] points above those in ex-
treme rural or small place schools, and 27 points above those in low metropolitan
schools.

• Students in [main city,] urban fringe and medium city schools were 6 points
above [not significantly different from] those in extreme rural schools and 16
[15] points above those in low metropolitan schools.

• Students whose parents had at least some college education had a mean 20 [19]
points above those whose parents had not finished high school and 13 [12] points
above those whose parents had finished high school; students whose parents had
finished high school were 7 points [not significantly] above those whose parents
had not finished high school.

The MIMIC family reporting group estimates varied more across models than
the 2PL family estimates and were larger, though they are not directly comparable.

6.5.2 Mixed MIMIC models

The MIMIC 2-guess model improved over the MIMIC model by 183 in maximised
log-likelihood for the 80 extra parameters. The MIMIC 2-mix model gave a further
large improvement of 636 for its extra 79 parameters. Modeling the component
membership in the 2-guess-prob model improved over the 2-guess model by 111 for
the 20 extra parameters. The 2-mix-prob model increased this by a further 604 for
the 79 extra parameters. It is clear that the big improvements come from modeling
the component probabilities.

For the three-component models, the 3-guess model improved over the 2-guess
model by 774 for the extra 159 parameters, and the 3-guess-prob model improved
by a further 103 for the 44 extra parameters. The full 3-mix MIMIC models could
not be reliably identified.

Parameter estimates for the two three-component models are given in Table B7.
Those for the 3-guess-prob model compared with the 3-guess model behave quite
differently from those for the corresponding 2PL models. Modeling the compo-
nent membership reduced the regional and parents education differences slightly,
reduced the ethnic group ability differences to a greater extent, and reduced the
school location differences substantially, but gave a large (11 point) negative sex
difference.

Component membership was more complicated than for the corresponding 2PL
model. Membership in the guessing component (−−) was strongly related to Black,
Hispanic, and Asian/Pacific ethnicity and low metropolitan schools and less strongly
to the Central region. Membership in the “easier items” component (+−) was
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strongly related to girls, high metropolitan schools, and parents with at least some
college education. Membership in the “difficult items” component was not well
identified by any variable.

6.6 Comparison with published NAEP results

Results for the full 1986 age 9/grade 3 test can be found in various NCES publica-
tions. Table 124 from the 2001 Digest of Education Statistics (National Center for
Education Statistics) gives the average mathematics proficiency, by age and selected
characteristics of students, for the 1973–1999 surveys. For the 1986 survey, the ta-
ble gives, for 9-year-olds, the following means and standard errors (in parentheses),
which we have extended by giving the mean differences from the reference category
with their standard errors:

Male 221.7 (1.1)
Female 221.7 (1.2) 0.0 (1.6)

White 226.9 (1.1)
Black 201.6 (1.6) -25.3 (1.9)
Hispanic 205.4 (2.1) -21.5 (2.2)

Not high school 200.6 (2.5)
graduate
Graduated high 218.4 (1.6) 17.8 (3.0)
school
Some education 228.6 (2.1) 28.0 (3.3)
after high school
Graduated college 231.3 (1.1) 30.7 (2.7)

Northeast 226.0 (2.7)
Southeast 217.8 (2.5) - 8.2 (3.7)
Central 226.0 (2.3) 0.0 (3.5)
West 217.2 (2.4) - 8.8 (3.6)

As discussed in Chapter 4, because of the weighting used when averaging over
the ethnic categories that were differentially sampled, only the estimated ethnic
group differences are consistent between the NAEP report and our analysis. These
differences and their standard errors are quite close to those from the two-parameter
MIMIC model in Table B5. For the other variables, the standard errors are notice-
ably larger in the NAEP report than those found from the MIMIC model, and some
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of the estimates are quite different, though this may be due to the effect of aggrega-
tion over the ethnic group categories.3

6.7 Discussion

The comparison of the multilevel modeling results with the published tables is not
very informative because of the aggregation needed in the presentation of one-way
group differences. In the modeling approach, the group differences are adjusted for
the other variables in the model – for example, the parents’ education differences are
differences within the categories defined by the combinations of the other variables.
This reduces the large differences in the one-way tabulation (of 18, 28, and 30 NAEP
units) to smaller within-group differences (of 7, 20, and 21 units) from the MIMIC
model.

The five-variable model we have used can be interpreted as a five-way tabulation
of mean achievement by the variables, but with a main-effect structure. The possi-
bility of interactions between the variables has not been investigated, partly because
of the slow computational speed of the analysis in its early stages and later because
the mixture models were already heavily parametrised in the item parameters.

With the larger sample and the full set of NAEP items, the issue of whether
there really are, on this test, mixtures with two or even three components – sub-
populations defined by item parameter heterogeneity – becomes even more press-
ing. It affects the conclusions we would like to draw about how best to express the
group differences in achievement or ability. Unfortunately, we are at the edge of
current statistical theory in dealing with this issue. Progress on it depends on the
development and application of a statistically sound and general model comparison
procedure, discussed in Chapter 9. This is also true for the comparison of 2PL, 3PL,
MIMIC, mixture, and multidimensional models.

The 1986 survey is restricted in its model analysis and is of limited relevance
educationally after 25 years. In the following chapters, we apply the same methods
to more comprehensive models for a recent survey of Texas and California grade
4/age 10 children in the 2005 math survey. We chose these states as they had the
largest state NAEP samples, though the samples are substantially smaller than the
1986 national NAEP sample. This leads to identification difficulties for some of
the models used in this chapter for the larger NAEP sample; other states with even
smaller state samples will give even less precise results, and additional models may
not be identifiable. We suggest how to deal with this problem in Chapter 9.

3 The NAEP report did not publish size and type of community differences, given in our analysis,
only the public/private school variable. As we have seen, the community location of the school is
an important variable in both the achievement/ability and membership regression models.



Chapter 7
Analysis of the 2005 NAEP Math Survey – Texas

7.1 Population, sample, and test

The data analysed were from the Texas subsample of the 2005 national NAEP math
survey for the age 10/grade 4 cohort, using the 70-item Numbers and Operations
scale. As we noted in Chapter 1, the survey design was changed after 2001 to use
states as the primary sampling units, and schools were sampled within the state with
probability proportional to size, with oversampling of high-minority schools and
minority students within schools. It is not clear from the NAEP technical manuals
how the school design effect is allowed for in the current analysis. For the multilevel
model analysis, the separate state analyses mean that there is no PSU sampling level,
so only the three-level model is needed.

For the 2005 analyses, we used a selection of covariates at the teacher and school
levels from the teacher questionnaire, in addition to the student and family demo-
graphic variables and a few school and teacher variables on the student question-
naire. After discussion with NCES staff, these covariates were chosen as relevant
variables for achievement from the perspective of educational theory. However, a
number of schools did not complete the teacher questionnaire, and so the complete-
case analysis we used required the omission of the schools with incomplete teacher
questionnaires.

To ensure that the student sample was used effectively in the analysis, we there-
fore made two analyses in Texas and California: one with the “full” school sample
but only minimal teacher information obtained from the student questionnaire, and
one with comprehensive teacher information but for the “reduced” subset of schools
for which this information was available. This was not an optimal solution but one
imposed by the difficulty of handling the extensive missingness of the teacher infor-
mation. The consequences of this compromise are discussed in the final section of
this chapter, and suggestions for dealing with it are given in Chapter 9.

87M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
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Without teacher information except for years of experience, the two-stage design
of students sampled in Texas schools gave 3601 schools with 74601 children (an
average of 21 students per school) who attempted at least one item from the Num-
bers and Operations scale. The average number of scale items per student was 12.5,
giving a moderately dense data set (compared with the 1986 survey). The average
number of students attempting each item was 13301.

When teacher information in addition to years of experience was included, the
number of schools and students with complete teacher data decreased dramatically
(24% of the schools but almost 50% of students were lost) because of extensive
incompleteness in the teacher questionnaire. Only 2601 schools with 38601 students
(an average of 14.7 students per school) had complete teacher data: large schools
are under-represented in this analysis. The average number of items per student
was, however, the same (12.6). The average number of students per item was only
6901, so item parameters are probably less well estimated in the reduced data set.

Despite this, the standard errors of the estimated regression parameters were not
uniformly larger than in the first data set and were smaller for some of the school-
level variables, and this analysis could (potentially) identify the important teacher
variables.

7.2 Variable names and codes

The variables used in the models are listed in Tables 1 and 2 below by their NAEP
code, number of levels, definition, and name used in this report. Detailed descrip-
tions of the multi-category variables are given in Appendix C (the “count” variables
given there are the sample sizes for the full national survey).

7.3 Models fitted

We used the same models examined for the full 1986 math survey, but we report
results here for only the five models that can allow for guessing or engagement: the
2PL form of the three-parameter model (the MIMIC version of this is not identifi-
able) and the four two-component mixture models (2-guess, 2-guess-prob, 2-mix,
and 2-mix prob). Three-component mixture models could not be identified with the
smaller sample and much larger regression models.

A general feature of the Texas analysis is that, for any of the models we examined
except the 3PL (discussed in the next paragraph), the MIMIC model version fitted
very much better than the 2PL model version, by several hundred units in maximised
log-likelihood for the same number of parameters. This was consistent with the
analysis using the 79 test items for the three main scales of the 1986 math survey.
1 This number has been rounded to the nearest 10 in accordance with IES’s Statistical Standards
Program.
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Table 7.1 Student and school variables
Code Levels Definition Name
IEP 2 Disability Disable
SEX 2 Sex
TOL9 8 School location Locate
ACCOM2 2 Accommodation Accom
SDRACEM 5 Race/ethnicity Race
SENROL4 4 School enrollment Enrol
LEP 2 Limited English proficiency ELL
B017101 2 Computer at home Comp
B018101 5 Days absent from

school last month Absence
B018201 4 Language other than

English spoken in home Lang
M814701 2 Use computer to play math games Games
SLUNCH 4 Natl School Lunch Prog eligibility Lunch
YRSEXP 4 Years taught elementary or secondary Exp

Table 7.2 Teacher variables
Code Levels Definition Name
T056301 6 Highest academic degree Degree
T077309 3 Undergrad major/minor mathematics education Mathed
T077310 3 Undergrad major/minor mathematics Math
T087601 4 Mathematics education courses Mathc
T088901 2 Technical support available at school Tech
T089001 2 Software for math instruction available at school Soft
T089101 2 Training for computers available at school Train
T092401 5 Number of students in this class Studnum
T092301 4 Instructional materials, resources Resourc

As a consequence, we do not report results and interpretations for the 2PL models;
in Appendix C we give a summary table (separately for the data sets with minimal
and extensive teacher data) of the maximised log-likelihoods for all the models we
examined.

As noted above, the three-parameter MIMIC model proved unidentifiable for the
2005 Texas sample, as for the 1986 sample, while the three-parameter form of the
2PL model was readily identified. Our estimates of the guessing parameters for this
may therefore be different from those given in the NCES analysis for the three-
parameter MIMIC model2; some differences would be expected in any case from
the separate estimation of these parameters from the null regression model rather
than our joint estimation.

2 Which are not estimates but are fixed by tight priors.
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7.4 Results – limited teacher data

Parameter estimates and standard errors are given in Table C1 of Appendix C. As
in previous chapters, the estimates and SEs are given on the NAEP reporting scale,
apart from the variance components, which are given on the original N(0,1) scale
for ease of assessment of the variance component among schools. Reading across
the columns makes it easy to compare the effect sizes in different models and their
importance for NAEP reporting.

The three-parameter MIMIC model is again unidentifiable, so we interpret the
three-parameter 2PL model. All differences are relative to the first category in NAEP
units.

7.4.1 Three-parameter interpretation

Student characteristics

• a disability difference of −29.1 (2.8);
• a limited English proficiency difference of −20.1 (2.3);
• an accommodated difference of −13.1 (2.9);
• a sex difference in favour of boys of 7.0 (1.3);
• a White–Black difference of 39.7 (2.5);
• a White–Hispanic difference of 20.0 (2.2);
• a home computer difference of 6.4 (1.7);
• absence from school in the month effects of

– 1–2 days: −10.1 (1.5);
– 3–4 days: −10.7 (2.2);
– 5–10 days: −15.6 (3.5);
– > 10 days: −30.1 (3.9).

• other language at home effects (relative to never) of

– once in a while: +3.5 (1.7);
– half the time: +4.7 (2.3);
– all or most of the time: +5.0 (2.0).

School characteristics

• school lunch program

– reduced price lunch: −14.3 (2.7);
– free lunch: −22.3 (1.8).
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Teacher characteristics

years of teaching experience (relative to 0-4)

• 5–9 years: +5.2 (1.9);
• 10–19 years: +6.1 (1.9);
• ≥ 20 years: +6.5 (2.1).

Variables not reported here (school location, school enrolment, playing math games
on the computer) were found to be nonsignificant.

7.4.2 Mixture models

The mixture models proved increasingly difficult to fit with increasing dimension.
Multiple maxima are a common feature of mixture likelihoods, and we used many
sets of starting values for the model parameters, continuing the analysis with those
best in log-likelihood.

For the 2-guess model, which fitted the data very slightly better than the 3PL
model, the estimated proportion in the guessing component was 0.082, with 95%
confidence interval [0.060, 0.112]. It gave very similar reporting group estimates
and slightly smaller standard errors. The only major difference was in significant
school location differences of −9.4 (3.7) for schools on the fringe of mid-size cities
and −11.2 (4.1) for rural (non-Metropolitan Statistical Area) schools. There was a
significant positive difference of 10.7 (3.9) for Asians/Pacific Islanders relative to
Whites; for the 3PL model, this was 7.9 (4.1).

The 2-mix model fitted better than the 2-guess model by 156 units in maximised
log-likelihood for the 70 extra parameters. The estimated proportion in the “hard
items” component was 0.362, with 95% confidence interval (0.225, 0.525). It gave
generally similar reporting group estimates also, with standard errors very similar
to those for the 3PL model.

The 2-guess-prob model improved over the 2-guess model by 112 units in max-
imised log-likelihood for the 33 extra parameters. The estimated proportion in the
guessing component (summing over the probabilities for all students) was 0.113.
It gave two boundary estimates (discussed in the next section) in the membership
model where cell sample sizes were small. Standard errors increased over those for
the 2-guess model.

Group differences in the ability regression were reduced relative to the 3PL
model, and the teacher experience differences were not significant. Membership in
the guessing component was significantly associated with

• girls;
• Black and Hispanic ethnicity;
• Asian/Pacific Islander ethnicity (negatively);
• schools on the fringes of large cities and in small towns and rural areas, both

MSA and non-MSA;
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• teachers with ten or more years of experience (negatively);
• no computer at home;
• absent 5–10 days in the last month;
• language other than English spoken at home once in a while (negatively);
• schools with free lunches.

We do not list here (as we did in Chapters 5 and 6) the membership probabilities
for the extreme categories, though these can be calculated from the tables of param-
eter estimates. The range of the logit scale covered is much larger because of the
larger number of model variables, and the membership probabilities cover the full
range from 0 to 1 (though with wide confidence intervals).

However, as with the 1986 full item set, the modeling of membership in the
guessing component illuminates the direct and indirect effects of the covariates. In
the 2-guess model, students with teachers who had five or more years of experi-
ence scored 4–6 NAEP units above students with teachers with less than five years
of experience. In the 2-guess-prob model, these score differences were reduced to
nonsignificance because they are now assessed on students who were not in the
guessing component. These students are more likely to be taught by teachers with
five or more years of experience and have other advantages that produce the im-
provement of students taught by these teachers when we eliminate the membership
explanation in the 2-guess model.

The 2-mix-prob model fitted better than the 2-mix model by 84 units of max-
imised log-likelihood for the 33 extra parameters. The estimated proportion in the
“hard items” component (summing over the probabilities for all students) was 0.485.
It gave one boundary estimate in the membership model where cell sample sizes
were small. Standard errors increased further over those for the 2-mix model. Some
reporting group estimates were substantially different from those in the 2-guess-
prob model in both the ability and membership regressions. In the ability regression,

• girls were 21.2 (5.3) NAEP units below boys;
• students in schools on the fringe of mid-size cities were 17.5 (3.8) units below

and those in rural non-MSA schools were 12.7 (3.1) units below those in extreme
rural schools;

• students taught by teachers with 5–10 years of experience were 5.0 (2.3) units
above those taught by teachers with less than five years of experience.

Membership in the “hard items” component was significantly associated with

• students with a disability;
• boys;
• Black students;
• students with limited English proficiency;
• no home computer;
• absence from school for 1–2 days or more than 10 days;
• a language other than English spoken at home at least half of the time (nega-

tively);
• schools with free lunches.
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Some of these effects are puzzling – the very large sex effect in the ability model
and the reversal of the sex difference in membership, for example. We did not feel
that interpretation of this model was reliable and so do not comment further here.

7.5 Boundary values in logistic regression

In both the 2-guess-prob and 2-mix-prob models, the modeling of the component
membership probability sometimes led to a boundary value on the logit scale (equiv-
alent to ±∞) for one or more of the component membership model parameters. The
boundary value resulted from the sparsity of data in the large models, analogous to
a binary response logistic model with a cell with only zero outcomes in a cross-
classification model.

The estimate is “infinite”, but so is its formal standard error from the information
matrix. This makes it difficult to assess the actual importance of this variable cate-
gory in the logistic regression even if one knows the cell sample size on which it is
based.

While this is not formally a model identification difficulty (it is a failure of the
usual standard error calculation from the information matrix), it appears to lead to
the formal absolute classification of students in these categories as in the appropriate
component with probability 1.0. This conclusion is unsound, and without an effec-
tive standard error or other means of estimating the variability of the estimate we
adopt a conservative approach by omitting these students from the prediction of the
membership model. The membership model prediction is used only for students not
in the category (or categories) with the infinite estimate(s).

For the larger data set with minimal teacher information, the same school lunch
category gave a boundary estimate in both the 2-mix-prob and the 2-guess-prob
models, and the school location category 5 (large town) gave a boundary estimate for
the 2-guess-prob model. Standard errors were not grossly inflated in either model,
and we regard these models as interpretable, excluding the students in the nonpar-
ticipating school lunch category (3.9% of students) or in large towns (1.7% of stu-
dents).

7.6 Results – extensive teacher data

We consider again the three main models above: the 3PL, 2-guess, and 2-mix mod-
els. With the smaller sample size but larger model for the extensive teacher data,
the 2-mix-prob model became uninterpretable, with very large standard errors in-
dicating near-collinearity of the variables in the information matrix and boundary
values in the membership regression model. We therefore do not give estimates for
or discuss this model. The estimates and standard errors for the three other models
are given in Table C2 of Appendix C.
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Parameter estimate differences among these three models were again fairly small,
with the standard errors of the 3PL estimates substantially larger than those of the
two others. A notable feature of all the models was the large standard errors for the
teacher degree, math education, and math variables, suggesting that these are highly
intercorrelated. However, omitting any of these variables did not reduce the large
standard errors.

The standard errors for the 2-mix model fluctuated wildly, with some much larger
than those of the other models and some much smaller. It appeared that this model
was near the limit of identifiability, and the standard error calculation was breaking
down, giving unreliable standard errors.

As in previous chapters, we report the results for the 3PL model.
Student characteristics

• a disability difference of −22.5 (4.1);
• a limited English proficiency difference of −15.3 (3.0);
• an accommodated difference of −22.5 (4.2);
• a sex difference in favour of boys of 6.4 (1.9);
• a White-Black difference of 45.6 (3.5);
• a White-Hispanic difference of 25.6 (3.0);
• a home computer difference of 6.8 (2.4);
• absence from school in the month effects of

– 1–2 days: −14.8 (2.1);
– 3–4 days: −14.8 (3.3);
– 5–10 days: −14.9 (5.0);
– > 10 days: −27.0 (6.4).

• other language at home effects (relative to never) of

– once in a while: +5.3 (2.5);
– half the time: +6.6 (3.2);
– all or most of time: +5.3.

School characteristics

• school lunch program

– reduced price lunch: −14.3 (3.8);
– free lunch: −20.9 (2.6);
– not participating: −61.5 (30.3);

• technical support: 9.0 (4.0) (negative).

Teacher characteristics

• years of teaching experience (relative to 0–4)

– 10–19 years: +5.9 (2.8).
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Variables not reported here were found to be nonsignificant.
Several points are striking in this analysis of the extensive teacher data set relative

to the limited data set:

• Almost no teacher variables from the extensive set were apparently important.
• Standard errors for effects were nearly doubled for many variables relative to the

full NAEP sample because of the almost halved student sample size.
• The White–Black and White–Hispanic differences were increased considerably,

which probably reflects the nonrandom subsample of schools, in which large
schools are under-represented.

• The disability and limited English proficiency differences decreased, but the ac-
commodated difference increased.

• The sex and home computer differences were little changed.

7.6.1 Mixture models

The 2-guess model fitted better than the 3PL by 41 maximised log-likelihood units
for one extra parameter. The estimated proportion in the guessing component was
0.069, with 95% confidence interval [0.048, 0.090]. Parameter estimates were gen-
erally very similar to those for the 3PL model, but standard errors were generally
smaller. One notable difference from the 3PL model was in the class size (number
of students in the class): there was a significant negative difference of 8.1 (SE 3.7)
for class size 16–18 relative to class size 15 or fewer.

The 2-guess-prob model gave an improvement of 79 in maximised log-likelihood
over the 2-guess model for the 56 additional parameters in the membership model.
It gave similar ability regression effects, though most were reduced. (The class size
difference in the 2-guess model was reduced to 7.3 (3.9).) Additional significant
ability effects were:

• Large town schools were 19.9 (9.7) units above extreme rural schools.
• Schools with most resources were 6.6 (2.8) units above those with all resources.

Membership in the guessing component was positively associated with

• girls;
• Black or Hispanic ethnicity;
• large city fringe and rural non-MSA schools;
• teachers with 0–4 years of experience;
• no computer at home;
• absent from school 1–2 days in the last month;
• schools with free lunches;
• no school software for math instruction;
• schools with some or most resources (but not all).
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For the 2-guess-prob model, several boundary values occurred in the member-
ship model for categories of school location and teacher degree as well as school
lunch program participation. Some standard errors were large, but many effects
were important in the membership model, and we regard the 2-guess-prob model
as interpretable.

These results were similar to those for the analysis with limited teacher data
for the variables common to both data sets. Thus the school-level variables were
more importantly associated with membership in the guessing component than with
achievement for those not in the guessing component.

The 2-mix model fitted better than the 2-guess model by 156 units of maximised
log-likelihood for its 70 extra parameters. The proportion in the “harder items” com-
ponent was 0.321, with 95% confidence interval [0.253, 0.389]. This was close to
the estimate for the limited teacher data. Parameter estimates and standard errors
were very similar to those for the 2-guess model, apart from language effect esti-
mates, which were larger.

Table C2 in Appendix C does not give the estimates for the 2-mix-prob model for
the reduced data set with extensive teacher data. This model gave very large standard
errors for almost all the parameters in both the achievement and the membership
models. The very large standard errors showed that the variables in the two models
gave very high intercorrelations for the corresponding parameters in the information
matrix. This model was overly complex for the available data and was unreasonable
as a representation of the test results, so we do not give an interpretation of this
model.

7.7 Comparison with official NCES analysis

Reporting group results for the Numbers and Operations scale are not published
formally. However, they can be computed for this scale (and other scales, as well as
the composite score) as one-way tabulations using the NAEP explorer tool on the
NCES Website. We give below the tabulations of some of these variables using this
tool and the equivalent group differences relative to the first category, which can be
compared with the results from the two analyses above for the (MIMIC) 3PL model
in Tables C1 and C2. (Note that the NAEP tool gives mean scores only to integer
precision.)

As discussed in Chapter 5 (§3.1), only the ethnic group differences are unaffected
by the oversampling of high-ethnic-minority schools and minority students. The
large models fitted in the multilevel analysis inevitably increase standard errors over
those from one-way tabulations. However, the sex of the student tested is unlikely
to be related to any of the other variables, so the sex difference in the modeling
analysis should not be inflated by the larger models. For the “full” limited teacher
data set, the standard error of the sex difference is 20% larger than in the NCES tool
tabulation, and the standard errors for the ethnic group differences are 50% larger.
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Comparison of NCES and modeling results - Texas
-----------------------------------------------------

NCES Explorer Limited Extensive
tool data data

-----------------------------------------------------
Male 243 (0.8)
Female 238 (0.7) -5 (1.1) -7.0 (1.3) -6.4 (1.9)

White 252 (1.0)
Black 227 (1.3) -25 (1.6) -39.7 (2.5) -45.6 (3.5)
Hispanic 234 (0.7) -18 (1.2) -20.0 (2.2) -25.6 (3.0)
As/Pac 264 (2.5) 12 (2.7) 7.9 (4.1) 3.5 (6.0)

Limited English prof.
Yes 224 (1.1)
No 243 (0.7) 19 (1.3) 20.1 (2.3) 15.3 (3.0)

Teacher experience
0-4 237 (1.1)
5-9 240 (1.5) 3 (1.9) 5.2 (1.9) 3.3 (2.7)
10-19 245 (1.2) 8 (1.6) 6.1 (1.9) 5.9 (2.8)
20+ 241 (1.4) 4 (1.8) 6.5 (2.1) 3.9 (3.0)

Math education level
Major 230 (6.7)
Minor/ 238 (3.6) 8 (7.6) -10.4(10.4)
specialism
Neither 241 (0.8) 11 (6.7) -7.4 (9.9)

Math level
Major 233 (6.3)
Minor 238 (5.0) 5 (8.0) -1.1(10.2)
Neither 241 (0.8) 8 (6.4) -0.3(10.1)
Highest degree
Bachelor 240 (0.7)
Master 243 (1.6) 3 (1.7) 1.7 (-)
Education 249 (5.8) 9 (5.8) -1.3 (-)
specialist
Training in computers
Yes 242 (1.0)
No 239 (1.2) -3 (1.6) 0.9 (2.4)
------------------------------------------------------

As with the 1986 survey, there appears to be no design effect correction for the
school clustering of students, so the standard errors of the community and school
level variables are probably understated as well in the NCES tool tabulations.
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There is one peculiarity in the comparison. For the math education level of the
teacher, the tool analysis shows an increase in mean score with decreasing level of
math education, while the modeling analysis shows a decrease with decreasing math
education, though neither of these trends is statistically significant. This may be
simply an effect of aggregation in the tool analysis, but it highlights the importance
of disaggregate analysis.

7.8 Conclusion

The analysis of the Texas NAEP sample shows the possibilities, and also the diffi-
culties, of detailed analysis with models that attempt to represent the richness of the
information available in the NAEP survey databases.

As with the larger sample in the 1986 survey, with its much smaller set of co-
variates, we were able to show that for the full data set with only limited teacher in-
formation, the 2-guess-prob engagement model gives a richer, and better-supported,
interpretation of the test results than the 3PL model. The direct and indirect effects
of the covariates on achievement, which are separated in this model, clearly show
the importance of the model and the educational importance of dealing appropriately
with guessing in formal NAEP analyses.

The more complex 2-mix-prob model could not be reliably interpreted in either
Texas sample. The extensive information about teachers and schools was frustrat-
ingly missing for 25% of the schools but almost 50% of the students for a complete-
case analysis. The importance of the extensive teacher covariates is affected to an
unknown extent by the under-representation of large schools in the reduced sample.

This emphasises the importance of obtaining the information about the student
and family variables in the incomplete data that is ignored in the complete-case
analysis. We discuss this point at length in the final chapter.



Chapter 8
Analysis of the 2005 NAEP Math Survey –
California

8.1 Population, sample, and test

The data for this analysis are from the same NAEP survey as for the Texas sam-
ple, so we do not repeat the description of variables, though a few changes occur
in the variable levels. For example, all teachers in California must have a Bache-
lor’s degree, so the reference category is 3 for this analysis. The full descriptions of
variables are given in Appendix C.

We again needed to use two complete-case analyses, depending on whether de-
tailed teacher information was included or not. With only limited teacher data (years
of experience), the two-stage design of students sampled in schools gave 4101

schools with 92601 children (an average of 22.4 students per school) who attempted
at least one item from the Numbers and Operations scale. The average number of
scale items per student was 13.0, giving a moderately dense data set. The average
number of students taking each item was 17201, so item parameters are better esti-
mated than for the Texas data.

When extensive teacher data in addition to years of experience were included,
the number of schools and students again decreased (6.8% of the schools but 21.5%
of students were lost) because of incompleteness in the teacher questionnaire.

There were 3901 schools with 72701 students (an average of 18.8 students per
school) with complete data; large schools are slightly under-represented in this data
set. The average number of items per student was, however, the same (13.0). The
average number of students per item was 13501, so item parameters are less well
estimated in the extensive teacher data set.
1 This number has been rounded to the nearest 10 in accordance with IES’s Statistical Standards
Program.

99M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
Statistics for Social and Behavioral Sciences,
DOI 10.1007/978-1-4419-9937-5_8, © Murray Aitkin and Irit Aitkin 2011



100 8 2005 NAEP Math Survey – California

8.2 Models

We report here in detail on only the four models that can represent guessing or
engagement, though the other models (Rasch, 2PL, MIMIC) were also fitted. Max-
imised log-likelihoods for all models are given in Table 8.1 below.

Table 8.1 Maximised log-likelihoods – MIMIC and 2PL models
Model Limited teacher Extensive teacher

data (n = 92601) data (n = 72701)
Rasch −64329.76 −50510.92
# params 108 128
2-param (2PL) −64058.94 −50240.10
# params 177 197
2-param (MIMIC) −63494.47 −49844.81
# params 177 197
3-param (2PL) −63399.96 −49732.73
#params 247 267
MIMIC 2-guess −63385.73 −49743.69
# params 248 268
MIMIC 2-guess-prob −63216.12 −49610.72
# params 285 324
MIMIC 2-mix −63148.74 −49569.81
# params 318 338
MIMIC 2-mix-prob −63047.61 −49443.73
# params 354 398

As in the Texas sample, the MIMIC versions of the models were very much
superior to the 2PL versions, and so we report only the results from the former
family (except for the three-parameter model, for which the MIMIC version could
not be identified).

8.3 Results

Results are tabulated in Appendix D.

8.3.1 Limited teacher data

Parameter estimates and standard errors for the MIMIC and the four models for
guessing, together with the maximised log-likelihoods, are shown in Table D1. We
follow the Texas analysis and give the interpretation of the California 3PL estimates,
with the Texas results in square brackets [ ].
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8.3.2 3PL interpretation

Student characteristics

• a disability difference of −26.9 (2.7) [−29.1 (2.8)];
• a limited English proficiency difference of −29.5 (1.6) [−20.1 (2.3)];
• an accommodated difference of −32.4 (3.4) [−13.1 (2.9)];
• a sex difference in favour of boys of 8.4 (1.2) [7.0 (1.3)];
• a White–Black difference of 32.7 (2.5) [39.7 (2.5)];
• a White–Hispanic difference of 17.9 (1.9) [20.0 (2.2)];
• a White–American Indian difference of 24.3 (5.9) [18.7 (11.1)];
• a negative White–Asian/Pacific Islander difference of 5.1 (2.1) [7.9 (4.1)];
• a home computer difference of 6.8 (1.6) [6.4 (1.7)];
• absence from school in the month effects of

– 1–2 days: −9.0 (1.3) [−10.1 (1.5)];
– 3–4 days: −14.2 (1.9) [−10.7 (2.2)];
– 5–10 days: −12.0 (2.7) [−15.6 (3.5)];
– > 10 days: −33.6 (3.3) [−30.1 (3.9)].

• other language at home effects (relative to never) of

– once in a while: 0.5 (1.6) [3.5 (1.7)];
– half the time: 9.1 (2.2) [4.7 (2.3)];
– all or most of the time: 9.4 (1.7) [5.0 (2.0)];

• did not use computer to play games: 6.9 (1.3) [not significant].

School characteristics

• school location (relative to large city)

– fringe of mid-sized city: −7.8 (3.6) [not significant]

• school enrollment (relative to 1–299)

– size 700+: −11.6 (5.7) [not significant]

• school lunch program

– reduced price lunch: −9.1 (2.3) [−14.3 (2.7)];
– free lunch: −18.9 (1.6) [−22.3 (1.8)].

Teacher characteristics

years of teaching experience (relative to 0–4)

• 5–9 years: 3.0 (1.7) [5.2 (1.9)];
• 10–19 years: 5.8 (1.8) [6.1 (1.9)];
• ≥ 20 years: 7.4 (2.1) [6.5 (2.1)].

The group differences for California relative to those for Texas are mixed (some
larger, some smaller), but the general structure is very similar.
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8.4 Mixture models

The 2-guess model improved in maximised log-likelihood by 14 over the 3PL
for one extra parameter. The estimated proportion in the guessing component was
0.095, with 95% CI [0.074, 0.119]. Parameter estimates were very similar to those
for the 3PL model, and the standard errors were smaller. The only notable difference
was in the accommodation effect, which was smaller in the 2-guess model.

We report in Table D3 the item parameter estimates in the guessing and engaged
components, and compare them in terms of a “cut” value. We expect that the proba-
bility of a correct answer on an item for a student in the guessing component should
be surpassed by the probability of a correct answer for a student in the engaged
component, for a sufficiently high ability of the engaged student.

This is easily determined from an inequality on their logit functions: if φ1 =α1 is
the logit function for the non-engaged student, and φ2 = α2+β2θ is the function for
the engaged student, then φ2 > φ1 when the ability of the engaged student exceeds
the cut value θC = (α1 −α2)/β2, where θ = 0 is the average ability.

In Table D3, nine items have positive cut values (the largest is 0.9), indicating
that above-average ability is required to score “better than chance” on these items.
However the great majority of items have quite large negative values, showing that
for most items even low ability students scored better than chance on most items by
engaging in the item task.

The 2-guess-prob model improved by 170 in maximised log-likelihood over the
2-guess model for the 36 additional parameters in the engagement model. The esti-
mated proportion in the guessing component was 0.169, summing over the individ-
ual student membership probabilities. There was one boundary estimate for the large
town category in the membership model where cell sample sizes were small. Stan-
dard errors of the ability regression estimates increased over those for the 2-guess
model.

Group differences in the ability regression were similar to those of the 2-guess
model, except for a large reduction in the disability effect. Membership in the guess-
ing component was significantly associated with

• students with a disability or an accommodation;
• girls;
• Black or Hispanic ethnicity;
• no computer at home;
• absent 1–2 or 5 or more days in the last month;
• language other than English spoken at home all or most of the time (negatively);
• using the computer to play games;
• teachers with 20 or more years of experience (negatively);
• schools with free lunches.

All of these variables appeared in the corresponding Texas analysis except for
the disability and accommodation variables.

The 2-mix model improved further over the 2-guess model by 237 for 70 extra
parameters. The estimated proportion in the “hard items” component was 0.362,
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with 95% confidence interval [0.255, 0.526]. The estimates and standard errors for
the 2-mix model were very similar to those of the 3PL model, including the accom-
modation estimate.

The 2-mix-prob model improved in maximised log-likelihood over the 2-mix
model by 101 for the 36 extra parameters. The estimated proportion in the “hard
items” component (by averaging the estimated membership probabilities over all
students) was 0.493. There was one boundary estimate in the membership model
for the same large town category. Standard errors of the ability regression estimates
generally increased over those for the 2-mix model. For this model, we could esti-
mate a location shift in the ability distribution between the two components of 85.8
(SE 42.3) NAEP units – more than two NAEP scale standard errors.

Substantial changes in the ability group regression occurred:

• The disability difference decreased to 12.4 (2.7).
• The sex difference increased to 20.1 (1.9).
• The differences between large city schools and schools on the fringe of large

cities, −4.5 (2.1), or mid-size cities, −11.8 (3.6), became significant.
• The White–Asian/Pacific Islander difference decreased to 0 (2.5).

(Other smaller decreases occurred as well.) Membership in the “hard items” com-
ponent was significantly associated with

• disability or limited English proficiency;
• girls;
• Blacks or Hispanics;
• Asian/Pacific Islanders (negatively);
• no computer at home;
• absence from school 3 or more days in the month;
• language other than English spoken at home all or most of the time (negatively);
• teachers with 5–20 years of experience (negatively);
• schools with free or reduced-price lunches.

The very large change in the sex effect, which also appeared in the Texas sample,
is hard to believe. As for the Texas sample, we do not feel that the interpretation of
this model is reliable and do not comment further.

8.5 Extensive teacher data

Parameter estimates and standard errors for the MIMIC and the four models for
guessing, together with the maximised log-likelihoods, are shown in Table D4. We
follow the reporting framework for the limited data analysis and give the interpreta-
tion of the significant California 3PL estimates, with the corresponding Texas results
in square brackets [ ].
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8.5.1 3PL interpretation

Student characteristics

• a disability difference of −22.8 (3.0) [−22.5 (4.1)];
• a limited English proficiency difference of −28.0 (1.8) [−20.1 (2.3)];
• an accommodated difference of −35.4 (4.1) [−22.5 (4.2)];
• a sex difference in favour of boys of 7.8 (1.3) [6.4 (1.9)];
• a White–Black difference of 33.2 (2.8) [45.6 (3.5)];
• a White–Hispanic difference of 17.9 (2.0) [25.6 (3.0)];
• a White–American Indian difference of 19.8 (7.5) [12.5 (11.7)];
• a home computer difference of 6.5 (1.8) [6.8 (2.4)];
• absence from school in the month effects of

– 1–2 days: −8.0 (1.5) [−14.8 (2.1)];
– 3–4 days: −13.4 (2.1) [−14.8 (3.3)];
– 5–10 days: −10.0 (2.6) [−14.9 (5.0)];
– > 10 days: −29.0 (3.0) [−27.0 (6.4)].

• other language at home effects (relative to never) of

– once in a while: 2.2 (1.8) [5.3 (2.5)];
– half the time: 9.8 (2.4) [6.6 (3.2)];
– all or most of the time: 7.9 (1.4) [5.3 (2.7)].

• did not use computer to play games: 7.0 (1.5) [not significant].

School characteristics

• school enrollment (relative to 1–299)

– size 700+: −16.1 (5.5) [not significant]

• school lunch program

– reduced price lunch: −8.6 (2.6) [−14.3 (3.8)];
– free lunch: −18.1 (1.8) [−20.9 (2.6)].

• technical support available: 5.6 (2.2) [9.0 (4.0)] negative;
• student numbers in this class (relative to ≤ 15)

– 16–18: 28.7 (10.5) [not significant];
– 26 or more: 12.9 (6.3) [not significant].

Teacher characteristics

• years of teaching experience (relative to 0–4)

– 10–19 years: 5.0 (2.1) [5.9 (2.9)];
– ≥ 20 years: 5.2 (2.6) [not significant].

• teacher degree (relative to Bachelor’s)
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– Master’s: 8.7 (1.7) [not significant]

A comparison of Tables D1 and D4 shows that there is close agreement between
the 3PL estimates and standard errors for the common variables in the limited and
extensive teacher data analyses. Agreement between the estimates for California and
Texas is less close than for the limited teacher data, but the structure is again similar.

A notable exception is class size, which gives a 28-point higher mean for students
in class sizes 16–18 and a 13-point higher mean for students in classes of 26 or more
relative to students in class sizes 15 or less. In the Texas analysis, these differences
are smaller and nonsignificant. The class size differences were quite puzzling, as
the Texas study showed the opposite effect (in the 2-guess and 2-mix models), of
negative (and nonsignificant) differences relative to the smallest class size.

8.6 Mixture models

The 2-guess model improved in maximised log-likelihood by 26 over the 3PL
for one extra parameter. The estimated proportion in the guessing component was
0.100, with 95% confidence interval [0.075, 0.131]. The reporting group estimates
and standard errors for the 2-guess model were again very similar to those of the
3PL model.

We report in Table D6 the item parameter estimates in the guessing and engaged
components, and compare them in terms of a “cut” value, as in Table D3 for the
limited teacher data set. In Table D6, only three items have positive cut values (the
largest is 1.9), while the great majority of items have even larger negative values
than those in Table D3. The differences for individual items are probably a con-
sequence of the different student sample in the restricted data set, in which large
schools are under-represented.

The 2-guess-prob model improved by 133 in maximised log-likelihood over the
2-guess model for the 59 additional parameters in the engagement model. It gave one
boundary estimate for the PhD teacher degree category in the membership model
where cell sample sizes were small. Standard errors of the ability regression esti-
mates increased over those for the 2-guess model.

Group differences in the ability regression were generally reduced relative to
the 3PL model; the reduction was large for American Indian students, the largest-
enrolment schools, no home computer, and schools with free lunches. A dramatic
difference occurred with the class size effect. This reversed relative to the 2-guess
model, with significant negative differences for class sizes 21–25, 22.0 (7.6), and 26
or more, 15.5 (7.0).

Membership in the guessing component was significantly associated with

• students with a disability or an accommodation, or with limited English profi-
ciency;

• Blacks, Hispanics, and American Indians;
• no computer at home;
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• absent 1–2 or 5 or more days in the last month;
• language other than English spoken at home all or most of the time (negatively);
• using the computer to play games;
• students in all class sizes larger than 15;
• teachers with a Master’s degree (negatively);
• teachers with 20 or more years of experience (negatively);
• schools with free lunches.

The class size reversal in the ability regression is a consequence of the higher
probability of membership in the guessing component of students in all classes
larger than 15. When these students are taken out of the assessment of ability differ-
ences, the class size differences in ability reverse to what one might expect a priori:
that students in smaller classes achieve more than students of the same ability in
larger classes.

The 2-mix model improved further over the 2-guess model by 173 for 70 ex-
tra parameters. The estimated proportion in the “hard items” component was 0.482,
with 95% confidence interval [0.451, 0.513]. Despite this improvement in fit, the es-
timates and standard errors for the 2-mix model were again very similar to those for
the 3PL model. In particular, the class size effect for the 16–18 class size remained
a significant 20 points above the smallest class size.

The 2-mix-prob model improved in maximised log-likelihood over the 2-mix
model by 126 for the 59 extra parameters. The estimated proportion in the “hard
items” component (by averaging the estimated membership probabilities over all
students) was 0.453.

Standard errors of the ability regression estimates generally increased over those
for the 2-mix model. For this model we could (poorly) estimate a location shift
in the ability distribution between the two components of 11.7 (14.9) NAEP units.
Substantial changes in the ability group regression occurred:

• the accommodation difference decreased to 18.2 (4.2);
• the sex difference was reversed, to 6.4 (2.1) in favour of girls;
• the differences between large city schools and schools in mid-size cities,−8.2(3.6),

on the fringe of large cities, −7.0 (3.5), on the fringe of mid-size cities, −12.0
(5.0), and in rural (MSA) areas, −31.3 (11.5), became significant;

• the White–Black difference decreased to 21.4 (3.8);
• the White–Hispanic difference decreased to 10.1 (3.1);
• the White–American Indian difference became nonsignificant;
• school lunch differences were greatly decreased;
• math education differences became very large and significant.

Other smaller changes occurred as well. The class size difference in the 2-mix model
for size 16–18 increased to 26.2 (11.5).

Membership in the “hard items” component was significantly associated with

• limited English proficiency and accommodated students;
• girls;
• Blacks, Hispanics and American Indians;
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• absence from school 3–4 days in the month;
• rural schools of both types (negatively);
• schools with free or reduced-price lunches.

These results are rather puzzling:

• The counter-intuitive class size difference for class size 16-18 persists.
• The reversed sex effect combined with the strong membership of girls in the hard

item component produces a Simpson’s paradox for girls: in both components,
girls were superior to boys by 6.4, but the much smaller proportion in the easy
items component gave a marginal sex difference of 8.2 in favour of boys in the
2-guess model.

The conclusions from the 2-mix-prob model are difficult to accept.
We review these results, and the implications for NAEP analysis present and

future, in the final chapter.

8.7 Comparison with official NCES analysis

Reporting group results for the Numbers and Operations scale are not published
formally. However, they can be computed for this scale (and other scales, as well as
the composite score) as one-way tabulations using the NAEP explorer tool on the
NCES Website.

Below we give the tabulations of some of these variables using this tool and the
equivalent group differences relative to the first category, which can be compared
with the results for the 3PL model from the two analyses above in Tables D1 and
D2. (The NAEP tool gives mean scores only to integer precision.) As discussed in
Chapter 6, only the ethnic group differences are unaffected by the oversampling of
high-ethnic-minority schools and minority students.

Comparisons are generally similar to those in the Texas analysis. For the “full”
limited teacher data set, the standard error of the White–Black and White–Hispanic
differences from the modeling analysis are 50% larger than those from the tool
analysis. As with the 1986 survey, there appears to be no design effect correction
for the school clustering of students, so the standard errors of the community and
school-level variables are probably understated as well in the NCES tool tabulations.

The curious math education reversal found in the Texas comparison is also
present here. For the math education level of the teacher, the tool analysis shows an
increase in mean score with decreasing level of math education, while the modeling
analysis shows a decrease with decreasing math education, though neither analysis
gives a statistically significant group difference at the 5% level. As we commented in
the Texas analysis, this may be simply an effect of aggregation in the tool analysis,
but it highlights the importance of disaggregate analysis.
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Comparison of NCES and modeling results - California

NCES Explorer Limited Extensive
tool data data

-------------------------------------------------------
Male 231 (0.8)
Female 228 (0.7) -3 (1.1) -8.4 (1.2) -7.8 (1.3)
Ethnicity
White 245 (0.9)
Black 214 (1.5) -31 (1.7) -32.7 (2.5) -33.2 (2.8)
Hispanic 218 (0.8) -27 (1.2) -17.9 (1.9) -17.9 (2.0)
Asian/ 250 (1.6) 5 (1.8) 5.1 (2.1) 3.8 (2.5)
Pacific Islander
American 228 (4.6) -17 (4.7) -24.3 (5.9) -27.3 (6.8)
Indian
Limited English proficiency
Yes 212 (1.0)
No 238 (0.7) 26 (1.2) 29.5 (1.6) 28.0 (1.8)
Teacher years of experience
0-4 227 (1.4)
5-9 227 (1.0) 0 (1.7) 3.0 (1.7) 3.2 (2.0)
10-19 234 (1.3) 7 (1.9) 5.8 (1.8) 5.0 (2.1)
20+ 235 (1.7) 8 (2.2) 7.4 (2.1) 5.2 (2.6)
Math education level
Major 218 (6.2)
Minor/ 228 (2.9) 10 (6.8) -27.2(14.0)
specialism
Neither 230 (0.8) 12 (6.3) -20.1(13.8)
Math level
Major -
Minor 227 (3.9)
Neither 230 (0.7) 3 (4.0) 0.8 (-)
Highest degree
Bachelor 229 (0.8)
Master 232 (1.3) 3 (1.5) 8.7 (1.7)
Educ. 237 (3.3) 8 (3.4) 6.9 (3.6)
specialist
Prof- 235 (9.5) 6 (9.5) -7.2 (6.9)
essional
Training in computers
Yes 231 (1.2)
No 230 (0.8) -1 (1.4) -4.2 (1.7)
-------------------------------------------------------
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8.8 Conclusion

The analysis of the California sample shows the same possibilities and difficulties as
the Texas sample: detailed analysis with complex models on relatively small sam-
ples runs into identifiability difficulties and may give results that seem paradoxical
and of doubtful validity.

With the larger California sample, we were able to show that for both the re-
stricted data set with only limited teacher information and the school subsample
with extensive teacher information, the 2-guess-prob engagement model gives a
richer, and better supported, interpretation of the test results than the 3PL model.
The direct and indirect effects of the covariates on achievement, which are sepa-
rated in this model, clearly show the importance of the model and the educational
importance of dealing appropriately with guessing in formal NAEP analyses.

As with the Texas sample, the interpretation of the importance of the exten-
sive teacher covariates is affected to an unknown extent by the (slight) under-
representation of large schools in the reduced sample.

This emphasises again the importance of obtaining the information about the
student and family covariates in the incomplete data that is ignored in the complete-
case analysis. We discuss this point at length in Chapter 9.



Chapter 9
Conclusions

In this chapter, we set out the conclusions from our studies

• on the nature and structure of models;
• on our results from modeling;
• on the current analysis of sparse NAEP binary item data;
• on how analyses are reported; and
• on the future analysis and use of NAEP data for both personal academic research

and official publications.

9.1 The nature and structure of models

The complexity of the NAEP survey designs and the psychometric models under-
lying the binary item responses means that no analysis of the test items is possible
without some form of model. The important issue for NCES and secondary users of
their data is to what extent models should be incorporated in the analysis and to what
extent analysis should be based on the survey design without reference to models.

We have used, and propose generally, a fully integrated single model that incor-
porates both the survey design and the psychometric model by extending the tradi-
tional form of the psychometric model to accommodate the design structure while
allowing for student, teacher, and school covariates.

Our analyses used the 2PL and MIMIC models and their mixture generalisations.
The math items in the 1986 and 2005 surveys did not require graded response or
partial credit models, which we mentioned briefly in Chapters 2 and 3. These mod-
els could be extended straightforwardly to multiple survey design levels and could
also be extended to mixture models, though with some additional complexities as
the various threshold parameters in these models may also vary across mixture com-
ponents.
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9.2 Our modeling results

9.2.1 Comparisons with published NAEP tables

A principal advantage of the fully model-based approach is that it accounts auto-
matically for the clustered structure of the survey design. The jackknifing of PSUs
in the 1986 survey did not correct for the school clustering, and it appears that the
2005 survey also did not allow for the school clustering. The failure to do so means
that standard errors for estimates at all levels have to be based on a compromise
variance instead of separate variances for the variables at each level, provided by
the variance component model.

From the limited comparisons possible of official NCES results with our mod-
eling results, it is clear that the standard errors of the reporting group parameter
estimates above the student level are understated considerably by the current anal-
ysis, while those of the reporting group parameter estimates at the student level are
overstated slightly. So one important conclusion from the comparison is the follow-
ing:

The school design effect appears not to be appropriately allowed for in the current NAEP
analysis; the multilevel model approach is a straightforward way of achieving this.

9.2.2 Main effects and interactions

For both formal NCES publications and secondary analysis, the simultaneous fit-
ting of all the reporting group variables has a major benefit – it disaggregates the
population into reporting group strata defined by the cross-classification by these
variables, within which the differences on each reporting group variable are consis-
tent across all the other reporting group variables; that is, they are adjusted for the
effects of the other variables.

These constant differences are an assumption implied by the model and are open
to investigation by fitting additional interaction terms – this is a standard and pow-
erful aspect of modeling. In our 2005 survey analyses, we have not used such in-
teraction terms, as the sample sizes in the California and Texas state samples are
not large enough to identify the many possible interactions in the already complex
models being fitted.

The search for, and interpretation of, multilevel interaction models in large-scale
surveys was discussed in detail, with examples, in Aitkin and Zuzovsky (1994).
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9.2.3 Mixtures and latent subpopulations

A major contribution of our work is the use of mixture models to represent hetero-
geneity in students’ responses to the items, especially the identification of engage-
ment. The idea of a mixture of responses to the items – expressed as different item
parameters in different sub-populations – is described in detail in von Davier and
Carstensen (2007) but runs counter to current analysis methods and the philosophy
on which they are based.

The assumption of a single population of students over which there are “true”
values of the psychometric model item parameters is central to current NAEP anal-
ysis. The analyses in this book using a mixture model for guessing, or the more
general two-component mixture with different difficulty and discrimination param-
eters in each component, contradict this assumption. The mixture structure of the
3PL model as it is currently used is different because it assumes that guessing is an
item-based property, while the guessing mixture model (especially in its component
probability modeling form) is a person-based property, which in turn allows us to
assess “engagement”.

An important limitation of these models follows from the relatively small state
sample sizes derived from the national NAEP sample. In the Texas sample with
extensive teacher data, the 2-mix-prob model was near the limit of identifiability,
and this is to be expected with large models (especially at the teacher or school level)
relative to the sample size. For a national analysis that could examine interactions
between student and school or teacher variables, state models would have to be
closely related (for example, by a state intercept term in a model otherwise invariant
over states).

Including all math items in the 1986 analysis helps greatly in increasing the sam-
ple size, increasing the information per student, and extending model identifica-
tion, though allowing for ability multidimensionality again increases the number of
model parameters.

A sceptical reader may question this approach, asking:

• Do we really need to worry about item parameter heterogeneity?
• What about differential item functioning (DIFF)?
• Could there be a quite different explanation for apparent heterogeneity, for ex-

ample the ability underlying the items being multidimensional?
• Could the very large number of parameters be reduced and simplified, for ex-

ample by a random effect model allowing for individual variations in the item
parameters?

• What evidence is there for the existence of the engaged and non-engaged sub-
populations of students, or for the more general mixture of two sub-populations
that see the items very differently?

• Does the two-component mixture really fit better than the 3PL model, and if it
does, is this sufficient reason to give up the current standard model?

We deal with these questions in turn.
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Heterogeneity and DIFF

A general aspect of our analysis is that item responses are only indicators of ability
or achievement, and their parameters in the psychometric model are not of primary
interest. What matters is the reporting group parameters, which are at a level above
the item responses.

So item issues such as DIFF and heterogeneity over subpopulations, which are
a cause for concern in current NCES analyses (and even more so in Rasch mod-
eling), are recognised as model choice issues in our approach, and are resolved or
investigated by comparing different models.

In the representation of heterogeneity, from the viewpoint of national school ed-
ucational assessment, the 2-guess model alternative to the 3PL is much easier to
accept than the general 2-mix model. The difficulties of engaging students in the
NAEP task (especially at the later ages) are well documented, with a number of ex-
perimental studies of ways to improve participation. Participation is not in itself a
guarantee of engagement, and it seems quite reasonable that national comparisons
of test scores across reporting group variables should be based on students who
were actually trying on the test rather than randomly checking boxes. Since guessed
items do not give information about a student’s ability (under either the 3PL or the
2-guess model), basing the reporting group regression on the component that is en-
gaged appears to be a very reasonable way of assessing group differences for those
who are engaged in either of these models.

Furthermore, the 2-guess model may be able to provide a valid analysis for part
of the population when this is severely heterogeneous because of language or other
difficulties of subpopulations with the items. (Of course, this is not a remedy for
such difficulties.)

In the 3PL and 2-guess models, we cannnot identify students who are guess-
ing on specific items except by examining their item responses for inconsistency –
students who have difficulty with easy items should not be able to answer difficult
items correctly. In these models, the probability of guessing is constant across in-
dividuals. In the 2-guess-prob model, this probability varies by item and individual
characteristics, and it is striking that this extension of the 2-guess model gives very
large improvements in maximised log-likelihood in all cases.

Despite these improvements, even the guessing model raises troubling difficulties
in interpretation and publication. We have found that membership in the guessing
component is strongly associated (in the 1986 and the 2005 surveys) with Black,
Hispanic, and American Indian ethnicity and with low metropolitan schools. Mem-
bership in the engaged component is strongly associated with White ethnicity and
high metropolitan schools.

If the reporting group estimates are adjusted for membership in the engaged com-
ponent, these estimates are changed, sometimes substantially. Typically, the differ-
ences from White for the other ethnic groups are substantially reduced. Should both
sets of group differences be published, and, if so, how should the difference between
them be explained? If not, what should be done with the guessing models?
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The more general two-component mixture of logits raises even more difficulties.
Maximised log-likelihoods again improve substantially over those for the 2-guess
and 2-guess-prob models. Membership in the “difficult items” component for the
2-mix-prob models has a structure very similar to that for the guessing component
membership. From the viewpoint of educational psychology and sociology, it is
certainly a very serious issue if a large part of the tested population sees the items
very differently from the other part. A large location shift in the ability distribution
between the two components in the general 2-mix models (or the equivalent large
change in item difficulties and discriminations between the components) suggests
that the test items require a level of cognitive understanding that is developed dif-
ferently in parts of the student population.

Multidimensional ability

Our simulation studies showed that, if a real multidimensional structure underlies
ability, with different subsets of items identifying these dimensions, then ignoring it
in a unidimensional analysis may lead to biases in reporting group estimates. How-
ever, it is not necessary to know which items define which dimensions: a general
multidimensional covariance structure provides effectively fully efficient estima-
tion.

The multidimensional model is easy to include in the linear predictor for the 2PL
model form but complicated in the MIMIC model form, where an ability regression
model has to be specified for each dimension; if each dimension has the same re-
gression model, then so does the sum across dimensions of the separate abilities. In
this case, a unidimensional model will give consistent, though possibly inefficient,
estimates, and one might question the existence of real multidimensionality.

A separate question, as described below, is whether it is multidimensionality or
population heterogeneity that better represents the test item responses.

Random effect models

A random effect model for item parameter heterogeneity extends the mixture con-
cept even further – each individual now has his or her own item parameters, though
these are constrained by a distribution over individuals, for example a bivariate nor-
mal. We have not used these models in our analyses, though the analyses could be
further extended to incorporate them.1

The real existence of mixtures

It is obvious that before we try to address these issues, we need to establish beyond
statistical doubt that the 3PL model, the guessing models, or the general mixture
models (or multidimensional models, or random effect models) are necessary to
represent the test item data; that is, that the apparent improvements with the mixture
or other models are real, in the sense that they can be evaluated by statistical theory.

To address these important questions, we have in statistics the major tool of
model comparisons through the observable data. If we can express the observed item

1 The mixture model can be thought of as a form of discrete nonparametric model for the item
parameters that is an alternative to a continuous bivariate model.
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responses through different statistical models, then we can express the evidence for
these models in terms of their likelihoods – the probabilities of the observed data un-
der the models. This is a standard matter when comparing nested models with large
samples, when the likelihood ratio test has its usual asymptotic χ2 distribution. The
failure of this distribution to apply, even asymptotically, to non-nested comparisons
means that current statistical theory is not adequate to answer the question, as we
have repeatedly stated.

At the end of this chapter, we give a discussion of how this difficulty can be
resolved.

9.3 Current analysis

The current analysis requires a major computational effort. We give a set of sugges-
tions for changes to the analysis that have the prospect of reducing both the cost of
the analysis and its time.

9.3.1 Dependence of design on analysis

A general difficulty with standard errors in the design-based approach is the inabil-
ity to obtain them from a model information matrix.2 Sampling variability in the
reporting group (and any other) estimates has to be obtained from complex jack-
knifing, which requires extensive calculations from the pairing of PSUs or schools.
This in turn affects the design of the survey in requiring a design in which pairs of
PSUs (or schools) can be treated as equivalent.

In the four-level structure of the 1986 survey, this could not be carried out at
both the school and PSU levels, and only the PSU design effect was allowed for.
This resulted in overstatements of precision – standard errors that were too small –
for the upper-level variables. A similar effect appears to be occurring with the 2005
surveys.

A great advantage of the model-based approach is that no such pairing or other
constraints on the sample design are necessary: the standard errors are obtained
automatically from the information matrix for the variance component model.3

2 As we noted in Chapter 1, the general recommendation to use weights – the reciprocals of the
sample inclusion probabilities – in model-based analyses with complex survey designs is both
ineffective and potentially seriously misleading.
3 As we noted in Chapter 4, the model assumption of a normal distribution for the ability or
achievement variable is a very weak one in the sense that highly skewed or discrete forms for
the true ability distribution make very little difference to the maximum likelihood estimates and
standard errors of parameters at the reporting group level.
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9.3.2 Multilevel modeling

We see a major benefit to both NCES and secondary analysts in NCES’s moving
to a fully multilevel model-based analysis of NAEP surveys. The large condition-
ing model with hundreds of principal components4 of more than 1200 covariates,
including several hundred school dummy variables, separate estimation of item pa-
rameters and regression model coefficients, and the generation of plausible values
could all be replaced by direct joint estimation of item parameters and the necessary
regression model coefficients.

For the present publications of NCES, the necessary tables could be provided
by very small regression models with post-analysis reweighting over the ethnic and
other oversampled strata if required. The comparisons across states could be han-
dled by including in the model a state factor that interacts with the reporting group
variable(s) if necessary.

For secondary analysis, NCES could provide, or refer to, the appropriate soft-
ware for full modeling (the current explorer tool could be further developed for this
purpose) and might wish to provide a suitable manual for this purpose. The cur-
rent use of plausible values can provide a reasonably fast though inefficient estimate
of group differences, but the process of generating them is very complicated and
inefficient, both statistically and computationally.

9.3.3 The limitations of NAEP data for large-scale modeling

Our experience with the Texas and California samples from the 2005 survey shows
that in separate state analyses the sparsity of the state NAEP data matrices limits the
complexity of large-scale regression models relating achievement to (the very large
number of) potential explanatory variables on the state data files.

In our analyses, there are no interactions among variables in the regression mod-
els. We could fit such terms, but the number of possible interactions would increase
dramatically as the number of variables in the main model increased. We went in a
different direction, to an implicit interaction of a latent student group variable with
the item parameters (and implicit state by variable interactions).

This also requires large numbers of parameters; for tests with large numbers
of items, it may be beneficial to relate the item parameters across items through
a higher-level model, for example a bivariate normal distribution for the two-
parameter models.

For full national NAEP analyses that incorporate state analyses and comparisons,
it is clearly necessary to use the full survey data in all participating states; that is,
to include all math items in the psychometric model. This may require multidimen-
sional models to accommodate the different math scales, or mixture models if these

4 Which do not necessarily represent the measured covariates, as only a subset is used.
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are better fitting, and a set of state fixed or random effects to allow for overall state
differences in achievement, as well as the specific reporting group variables.

Fixed state effects would add of the order on 50 parameters to the model, while
random state effects would require a four-level analysis as used for the 1986 sur-
vey. This scale of analysis is not beyond the capacity of existing statistical packages
(such as Latent Gold, for example), though changes to such packages might be re-
quired for efficiency; for example, using random effects for item slopes and inter-
cepts and starting reduced model analyses from the results of the previous model
rather than by refitting the reduced models from the beginning each time.

For assessing interactions, especially of state fixed effects with covariates, further
developing the capacity of existing programs or sparse data matrix computations
might be needed.

9.4 The reporting of NAEP data

In official NCES publications, there are few presentations of NAEP assessment out-
comes that go beyond one-way tabulations; for example, by sex and by ethnic group.
Many of these presentations would be enriched by multiway tables; for example, of
sex differences for each ethnic group. The two-way tabulation might not show the
same pattern of sex or ethnic group differences within the other variable as shown by
the marginal tabulations by sex and by ethnic group. This may at first be confusing
to the reader, but it illustrates an important point, that needs explanation. Further-
more, even a common pattern of sex differences across all ethnic groups does not
necessarily give the same marginal difference between sexes summing over ethnic
groups (the Simpson paradox illustrated in Chapter 2).

Multiway tabulations by many variables are complex to present as tables: the
regression model framework we have used in the earlier chapters provides an eco-
nomical way of presenting them that can be extended to include interactions if these
are fitted and shown to be necessary.

This illustrates the point made earlier that NCES could not only publish results,
but also inform and guide the secondary analysis of their data, by providing not
only the software to achieve this, but also a user guide for both statistical modeling
principles and the interpretation of multilevel and multiway models. This could also
deal with model validation issues for NAEP results that depend strongly on model
assumptions. An important example is the reporting of percentiles discussed in the
research report Percentile estimation for the ability distribution in item response
models listed in Chapter 4.

The percentiles of a probability distribution depend strongly on the tail behaviour
of the distribution, much more strongly than means and variances. The fact that the
ability distribution is unobserved makes inference about its percentiles much more
difficult than for an observed distribution. The assumption of a normal distribution,
which is a very weak one for estimation of reporting group parameters, is a very
strong one for estimation of percentiles, and needs to be validated by modeling the
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ability distribution using explicit parametic forms that allow for possible skewness
and heavy tails, both of which strongly affect percentiles (especially extreme ones).

9.5 The future analysis and use of NAEP data

The administration of the NAEP assessments is a huge task – the spiraling of items
into booklets, the adminstration and supervision of the tests themselves, and the
test scoring and production of the NAEP data files before their analysis are all very
major tasks, quite apart from the analysis on which we have concentrated in this
book.

The current developments in adaptive testing that are being implemented in some
state-wide assessment programs may have an impact on NAEP assessments as well:

The Secretary of Education has set aside up to $350 million of Race to the Top funds
for the potential purpose of supporting States in the development of a next generation of
assessments.

This comes from the NCES Website,

www.ed.gov/programs/racetothetop-assessment

In adaptive testing, the student uses a local (usually school) computer that is net-
worked to the server of a testing organisation that downloads test items to the stu-
dent. The items are presented sequentially to the student. If the first item is answered
correctly, the program provides successively harder items, continuing until the stu-
dent answers an item incorrectly. Then the program provides successively easier
items, continuing until the student again answers correctly. This process adapts to
the student’s ability and continues until this is sufficiently accurately defined using
a server program that performs an analysis on the set of items answered.

With a much smaller set of items than are necessary in a paper-based test, the
abilities of all students can be assessed; this happens simultaneously for all students
in the test session. The assessment session can then provide statistics for the indi-
vidual students and the tested group as a whole, often within 24 hours.

This approach completely avoids the current administrative burden of NAEP as-
sessments, though of course it has an administrative cost of its own in terms of local
and server computers for the school assessments and the adaptive testing and admin-
istrative reporting software. It would be much more complex to implement such a
process for NAEP, but the possibility of greatly simplifying the test administration,
especially through omitting completely the production of paper-based booklets and
their scoring, would certainly be worth careful investigation.

We return finally to the comparison of item response models and what to do when
we have incomplete data on the explanatory variables.
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9.6 Resolution of the model-comparison difficulties

We have noted repeatedly the lack of adequate model comparison methods based on
the (frequentist) likelihood ratio test. However, the Bayesian paradigm for statistical
inference is more flexible in providing general methods for model comparison that
do not need models to be nested or that sample sizes be large compared with the
model complexities. This approach using simple noninformative priors is developed
at book length in Aitkin (2010).

We believe that this approach will be able to provide answers to the model com-
parison questions that we have raised repeatedly, and we will report the results in
due course.

9.7 Resolution of the problems with incomplete data

The Bayesian approach also provides solutions for this problem, for example in the
Texas sample, where 25% of the teacher questionnaires were incomplete and the
complete-case analysis lost these teachers but also 50% of the students.

One solution, which is based on the data augmentation (DA) algorithm of Tanner
and Wong (1987), is to use multiple imputation (Rubin 1987) to provide multiple
completed data sets using an imputation model, which provides a number of random
draws of the missing variable values from their conditional distribution given the
other variables in the data set, and the model parameter estimates. These imputed
values of the missing variables are used to complete the incomplete data set, and the
completed data sets are then analysed in the usual frequentist way and the estimates
and their covariance matrix are combined to give a single set of estimates, standard
errors, and covariances, which reflect the variations among the sets of estimates.

A more formal Bayesian analysis fully extends the DA analysis to provide the full
posterior information about all the model parameters without requiring the multiple
analyses of the imputation approach.

Both of these approaches can provide adequate inference about the model param-
eters without the need for discarding incomplete data in the complete-case approach,
giving an important gain in precision. We will also be following this approach and
will report the results in due course.



Appendix A
1986 Survey Results, 30 Item Subscale

Table A.1 NAEP items - answers in ()

Report NAEP NAEP
item block item

1 M1 4 35 + 42 = (77)
2 M1 5 55 + 37 = (92)
3 M1 6 59 + 46 + 82 + 68 = (255)
4 M1 11 ? represents nine tens (90)
5 M1 13 Number 10 more than 95 (105)
6 M1 15 The digit in the thousands place in 45,372 (5)
7 M1 16 Product of 21 and 3 (63)
8 M1 17 Product of 314 and 12 (3768)
9 M2 3 Which is greater: 2573, 2537, or 2735 (2753)

10 M2 6 Which is correct: 7 > 5, 7 = 5, or 7 < 5
11 M2 8 7 + 24 + 9 = (40)
12 M2 9 64 − 27 = (37)
13 M2 10 604 − 207 = (397)
14 M2 11 231 − 189 = (42)
15 M2 12 Number of birds in picture [< 100, (100-1000),

> 1000, > 10,000]
16 M2 21 15 / 5 = (3)
17 M2 22 52 / 4 = (13)
18 M2 23 29 − (13) = 16
19 M3 15 One dollar and 86 cents means: [$.186, ($1.86),

$10.86, $18.60, $186.00]
20 M3 17 The digit in the tens place in 3058 (5)
21 M4 8 39 −26 (13)
22 M4 9 79 − 45 (34)
23 M4 10 65 − 7 (58)
24 M4 11 If 10 in each bag, 150 marbles in [10, (15), 25,

140, 150, 160] bags
25 M4 17 Three-fourths is (3/4)
26 M4 20 If N*13 = 13, N = (1)
27 M4 22 4.32 is [forty-three and 2/10, four hundred 32,

(four and 32/100), forty-three hundred]
28 M6 21 152 − 59 − 93 = [four possibilities]
29 M7 15 Which picture shows 3/4 shaded [four possibilities]
30 M7 23 82 − 39 is closest to [80 − 30, (80 − 40), 90 − 30,

90 − 40]
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Table A2

Rasch variance component estimates and SEs
for the null models

2-level 3-level 4-level
-------------------------------------------------
sˆ2_PSU 0 0 0.059(.016)
sˆ2_sch 0 0.325(.029) 0.257(.024)
sˆ2 1.558(.043) 1.246(.038) 1.243(.038)

log L -40977.29 -40605.49 -40601.08
-------------------------------------------------

2PL variance component estimates and SEs
for the null models

2-level 3-level 4-level
-------------------------------------------------
sˆ2_PSU 0 0 0.020(.010)
sˆ2_sch 0 0.171(.020) 0.130(.015)
sˆ2 1.0 1.0 1.0

log L -40559.10 -40183.23 -40180.08
-------------------------------------------------
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Table A3

Rasch, MIMIC, and 2PL estimates and (SE)s
for the two-level model

Rasch MIMIC 2PL
--------------------------------------------
male 0 0 0
femal 3.9 (1.1) 3.9 (1.1) 0.5 (1.0)

white 0 0 0
black -29.0 (1.6) -25.1 (2.9) -27.7 (1.4)
hispa -19.1 (1.6) -16.9 (2.2) -18.0 (1.4)
as/pa -7.5 (4.4) -6.0 (3.8) -8.4 (4.0)
amind -21.0 (4.0) -19.9 (3.9) -20.6 (3.2)
other -4.2(27.4) 7.4(21.6) -13.3(29.9)

NE 0 0 0
SE -1.2 (1.8) -1.4 (1.6) 0.1 (1.6)
Cent -8.6 (1.8) -7.4 (1.8) -7.7 (1.6)
West -7.3 (1.6) -6.8 (1.6) -6.8 (1.5)

extru 0 0 0
lomet -7.8 (2.9) -6.7 (2.7) -4.4 (2.6)
himet 17.8 (2.8) 16.2 (3.0) 16.6 (2.6)
manct 4.9 (2.8) 5.6 (2.5) 4.7 (2.5)
urbfr 4.7 (2.8) 5.6 (2.6) 6.1 (2.6)
medct 2.8 (2.6) 2.5 (2.3) 1.1 (2.3)
smplc -2.3 (2.5) -1.2 (2.3) -1.9 (2.3)

nfnhs 0 0 0
finhs 5.8 (4.9) 6.2 (4.4) 1.6 (4.8)
smcol 20.8 (5.4) 19.1 (5.1) 16.1 (5.2)
colgr 20.7 (5.0) 19.1 (4.8) 15.9 (4.8)
DK 4.2 (5.1) 4.7 (4.5) 2.1 (4.9)
nores -3.7 (5.6) -2.8 (5.0) -7.2 (5.3)

sˆ2 1.311 (.039) 1.0 1.0
log L -40475.22 -40080.32 -40077.26
#params 51 80 80
--------------------------------------------
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Table A4

Rasch, MIMIC, 2PL and 3PL estimates and (SE)s
for the three-level model

Rasch MIMIC 2PL 3PL
------------------------------------------------------------
male 0 0 0 0
femal 3.7 (1.1) 4.2 (1.1) 0.4 (1.0) 0.8 (1.2)

white 0 0 0 0
black -24.6 (1.8) -22.1 (2.8) -23.3 (1.6) -29.3 (2.1)
hispa -17.2 (1.6) -15.8 (2.2) -16.1 (1.5) -21.3 (1.9)
as/pa -6.9 (4.5) -5.7 (4.3) -7.1 (4.1) -7.8 (4.9)
amind -17.1 (3.7) -16.5 (4.0) -16.5 (3.3) -21.1 (4.2)
other -1.9(25.1) 5.7(24.3) -7.0(24.3) -1.2(28.7)

NE 0 0 0 0
SE -2.0 (2.8) -2.6 (2.7) -2.7 (2.7) -2.6 (3.3)
Cent -7.1 (2.6) -6.6 (2.4) -6.0 (2.6) -7.4 (3.2)
West -7.1 (2.6) -6.6 (2.4) -6.4 (2.4) -7.6 (3.0)

extru 0 0 0 0
lomet -10.9 (4.4) -10.8 (4.3) -7.0 (4.0) -12.2 (4.8)
himet 17.9 (4.4) 15.2 (4.5) 17.4 (4.1) 20.5 (5.1)
manct 5.0 (4.2) 4.4 (4.1) 5.3 (3.7) 5.7 (4.7)
urbfr 6.6 (4.4) 5.8 (4.2) 5.5 (3.9) 6.0 (5.3)
medct 4.0 (3.9) 3.3 (3.9) 3.2 (3.4) 4.0 (4.3)
smplc -1.3 (3.8) -1.5 (3.7) -0.7 (3.3) 1.0 (4.1)

nfnhs 0 0 0 0
finhs 7.7 (7.2) 7.1 (7.1) 0.9 (6.9) 2.0 (9.3)
smcol 20.6 (7.2) 18.8 (7.4) 13.4 (6.9) 17.1 (9.3)
colgr 21.2 (7.5) 19.3 (7.6) 13.9 (7.2) 18.3 (9.6)
DK 6.5 (7.3) 5.7 (7.2) 1.6 (7.0) 2.0 (9.3)
nores -1.2 (7.6) -0.7 (7.4) -6.3 (7.2) -6.5 (9.6)

sˆ2_sch 0.154 (.019) 0.126 (.030) 0.139 (.017) 0.233 (.028)
sˆ2 1.168 (.037) 1.0 1.0 1.0
log L -40349.04 -39961.68 -39930.05 -39848.49
#params 52 81 81 111
-------------------------------------------------------------
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Table A5

Guessing parameters for 3PL models,
NAEP and multilevel

item NAEP S.E. multilevel S.E.
---------------------------------

1 0 0 0.462 0.203
2 0 0 0.045 -
3 0 0 0.043 -
4 0.238 0.015 0 0
5 0 0 0 0
6 0.208 0.013 0.036 -
7 0 0 0.053 -
8 0 0 0 0
9 0.280 0.014 0.363 0.034

10 0.352 0.015 0.098 0.034
11 0 0 0.188 0.031
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0.225 0.013 0.185 0.030
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0.198 0.020 0 0
20 0.257 0.018 0.061 -
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0.232 0.012 0.013 -
25 0 0 0 0
26 0 0 0 0
27 0.197 0.006 0.108 0.014
28 0.164 0.006 0.127 0.018
29 0.247 0.013 0.257 0.040
30 0.243 0.013 0.266 0.032
---------------------------------
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Table A6

Parameter correlation matrix for three-level Rasch model

sex2 race2 race3 race4 race5 race6 regi2 regi3 regi4
--------------------------------------------------------------------
race2 -.010 1.0
race3 .029 .259 1.0
race4 .017 .100 .113 1.0
race5 .020 .119 .126 .042 1.0
race6 .012 .013 .012 .009 .005 1.0

regi2 -.003 -.080 -.013 -.009 -.001 -.001 1.0
regi3 -.002 .001 .014 -.000 .009 -.008 .497 1.0
regi4 .009 .023 -.069 -.026 -.032 -.007 .543 .500 1.0

stoc2 .000 -.139 -.108 -.034 -.017 -.005 .132 .219 .060
stoc3 .003 -.088 -.021 -.008 .014 -.009 .098 .243 .013
stoc4 .013 -.080 -.053 -.027 .008 -.007 .064 .175 -.007
stoc5 .011 -.040 -.008 -.006 .023 -.004 .100 .241 .009
stoc6 .005 -.072 -.038 -.002 .015 -.007 -.049 .200 .013
stoc7 -.002 -.033 -.017 -.003 .022 -.006 .018 .245 .044

pare2 -.005 .034 .004 .032 .006 .059 .003 -.039 .008
pare3 -.000 .027 -.001 .034 -.003 .058 .013 -.047 .008
pare4 .003 .025 .003 .027 -.001 .060 .009 -.042 .006
pare5 .001 .026 .005 .032 -.004 .062 .016 -.043 .011
pare6 -.008 .032 .005 .034 -.001 .061 .010 -.045 .003
---------------------------------------------------------------------------

stoc2 stoc3 stoc4 stoc5 stoc6 stoc7 pare2 pare3 pare4 pare5
---------------------------------------------------------------------------
stoc2 1.0
stoc3 .680 1.0
stoc4 .677 .665 1.0
stoc5 .646 .687 .624 1.0
stoc6 .658 .701 .650 .678 1.0
stoc7 .713 .730 .701 .707 .783 1.0

pare2 -.017 -.022 -.030 -.034 -.059 -.045 1.0
pare3 -.005 -.020 -.029 -.034 -.061 -.044 .928 1.0
pare4 -.012 -.021 -.027 -.037 -.058 -.041 .904 .935 1.0
pare5 -.010 -.038 -.038 -.045 -.070 -.050 .937 .972 .945 1.0
pare6 -.015 -.031 -.040 -.043 -.066 -.049 .941 .975 .948 .985
---------------------------------------------------------------------------
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Table A7

Rasch, MIMIC, and 2PL estimates and SEs
for the four-level model

Rasch MIMIC 2PL
-----------------------------------------------
male 0 0 0
femal 3.7 (1.1) 4.2 (1.1) 0.4 (1.0)

white 0 0 0
black -24.7 (2.0) -22.2 (2.8) -23.5 (1.6)
hispa -17.2 (1.6) -15.6 (2.2) -15.9 (1.5)
as/pa -7.0 (4.5) -6.0 (4.3) -7.2 (4.1)
amind -17.3 (3.7) -16.7 (3.9) -16.5 (3.3)
other -1.5(25.1) 6.7(24.3) -6.1(25.9)

NE 0 0 0
SE -1.8 (3.3) -2.4 (3.0) -1.3 (2.8)
Cent -7.1 (3.4) -6.1 (3.2) -6.2 (3.0)
West -6.4 (3.1) -6.2 (3.1) -6.9 (2.7)

extru 0 0 0
lomet -10.5 (4.4) -11.2 (4.1) -6.6 (4.2)
himet 16.5 (4.4) 13.8 (4.1) 16.8 (4.2)
manct 4.8 (4.3) 4.5 (3.8) 6.6 (4.2)
urbfr 6.3 (4.4) 5.6 (4.0) 6.2 (4.3)
medct 2.4 (3.6) 2.3 (3.6) 2.1 (3.8)
smplc -1.8 (3.7) -2.2 (3.4) -0.9 (3.6)

nfnhs 0 0 0
finhs 9.5 (7.1) 8.3 (6.9) 1.7 (6.7)
smcol 22.3 (7.1) 20.0 (7.1) 14.1 (6.7)
colgr 22.9 (7.4) 20.5 (7.4) 14.8 (7.0)
DK 8.2 (7.2) 6.9 (6.9) 2.3 (6.8)
nores 0.6 (7.5) 0.6 (7.1) -5.4 (7.0)

sˆ2_PSU .036 (.013) .030 (.013) .019 (.010)
sˆ2_sch .116 (.019) .100 (.030) .119 (.017)
sˆ2 1.169 (.037) 1.0 1.0
log L -40342.85 -39954.46 -39924.60
#params 53 82 82
-----------------------------------------------
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Table A8

Reporting group estimates and SEs -
3PL, 2PL, guessing, and two-dimension models

engaged
3PL 2-g 2-g-p membership 2-D 2PL

-------------------------------------------------------------------------
intercept -1.09 (.54)

male 0 0 0 0 0
femal 0.8 (1.2) 2.8 (1.0) 0.8 (1.0) 0.09 (.10) 1.2 (1.1)

white 0
black -29.3 (2.1) -23.6 (1.6) -21.6 (1.7) -0.86 (.17) -24.2 (1.7)
hispa -21.3 (1.9) -15.9 (1.5) -14.5 (1.5) -0.59 (.15) -16.5 (1.6)
as/pa -7.8 (4.9) -4.3 (4.1) -2.4 (4.2) -0.62 (.41) -6.9 (4.4)
amind -21.1 (4.2) -18.2 (3.3) -16.8 (3.3) -0.70 (.39) -17.1 (3.5)
other -1.2(28.7) -4.7(22.2) 0.5(20.9) -0.27 (2.4) -10.0(28.3)

NE 0 0 0 0 0
SE -2.6 (3.3) 1.9 (2.7) 4.1 (2.8) -0.35 (.16) -0.9 (2.7)
Cent -7.4 (3.2) -5.1 (2.9) -5.8 (2.8) 0.10 (.16) -6.7 (2.7)
West -7.6 (3.0) -3.4 (2.7) -6.3 (2.8) -0.10 (.14) -6.9 (2.5)

extru 0 0 0 0 0
lomet -12.2 (4.8) -8.1 (4.6) -6.7 (4.1) -0.54 (.30) -7.7 (4.1)
himet 20.5 (5.1) 15.0 (4.3) 13.4 (4.1) 0.81 (.25) 17.5 (4.1)
manct 5.7 (4.7) 5.4 (4.0) 5.3 (3.5) 0.11 (.25) 5.0 (3.9)
urbfr 6.0 (5.3) 5.9 (4.5) 4.7 (4.0) 0.57 (.25) 5.5 (4.0)
medct 4.0 (4.3) 2.7 (3.7) 2.6 (3.4) 0.37 (.23) 2.7 (3.6)
smplc 1.0 (4.1) -0.2 (3.7) -0.6 (3.3) 0.24 (.23) -1.2 (3.5)

nfnhs 0 0 0 0 0
finhs 2.0 (9.3) 0.7 (6.1) -0.3 (6.2) -0.07 (.51) 1.9 (6.8)
smcol 17.1 (9.3) 13.2 (6.4) 9.1 (6.4) 0.50 (.53) 14.7 (7.1)
colgr 18.3 (9.6) 13.9 (6.1) 10.4 (6.1) 0.35 (.50) 14.1 (6.8)
DK 2.0 (9.3) 2.4 (6.2) -2.6 (6.0) 0.13 (.50) 1.2 (6.7)
nores -6.5 (9.6) -6.2 (6.4) -8.2 (6.4) -0.32 (.57) -6.5 (7.1)

sˆ2_sch .233 (.028) .143 (.016) .132 (.015) .137 (.018)
sˆ2 1.0 1.0 1.0 1.0
log Lmax -39848.49 -39777.88 -39711.77 -39685.69

#params 111 112 132 111
---------------------------------------------------------------------------
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Table A9

Guessing parameters

3PL 2-g 2-g-p
item c_j SE d_j c.d_j d_j
--------------------------------------------
1 0.462 0.203 1.000 0.219 0.960
2 0.045 - 0.889 0.195 0.876
3 0.043 - 0.428 0.183 0.445
4 0 0 0.677 0.148 0.800
5 0 0 0.682 0.149 0.757
6 0.036 - 0.524 0.115 0.569
7 0.053 - 0.387 0.085 0.509
8 0 0 0.009 0.002 0.039
9 0.363 0.034 0.666 0.146 0.706

10 0.098 0.034 0.599 0.131 0.637
11 0.188 0.031 0.559 0.122 0.578
12 0 0 1.000 0.219 0.985
13 0 0 0.760 0.166 0.762
14 0 0 0.824 0.180 0.794
15 0.185 0.030 0.449 0.098 0.488
16 0 0 0.646 0.141 0.688
17 0 0 0.068 0.015 0.110
18 0 0 0.300 0.066 0.364
19 0 0 0.834 0.183 0.895
20 0.061 - 0.684 0.150 0.757
21 0 0 0.719 0.157 0.817
22 0 0 0.719 0.157 0.818
23 0 0 0.648 0.142 0.735
24 0.013 - 0.882 0.193 0.915
25 0 0 0.405 0.089 0.469
26 0 0 0.472 0.103 0.529
27 0.108 0.014 0.102 0.022 0.123
28 0.127 0.018 0.214 0.047 0.231
29 0.257 0.040 0.614 0.134 0.572
30 0.266 0.032 0.520 0.114 0.544
--------------------------------------------
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Table A10

Reporting group estimates and SEs
- mixed 2PL models

easy items
2-m 2-m-p membership

--------------------------------------------------
male 0 0 0
femal 1.2 (1.0) 0.3 (1.2) 0.17 (.09)

white 0 0 0
black -23.6 (1.7) -16.0 (2.0) -0.94 (.12)
hispa -15.8 (1.5) -11.0 (1.8) -0.61 (.12)
as/pa -5.2 (4.3) -2.6 (4.9) -0.30 (.31)
amind -16.8 (3.4) -10.7 (3.9) -0.72 (.27)
other -9.0(26.7) -6.5(32.8) -0.02 (1.8)

NE 0 0 0
SE 1.0 (2.6) 4.1 (2.8) -0.40 (.14)
Cent -6.2 (2.7) -5.8 (2.8) -0.05 (.15)
West -4.7 (2.4) -2.7 (2.6) -0.30 (.13)

extru 0 0 0
lomet -7.9 (3.9) -3.9 (4.2) -0.49 (.22)
himet 12.6 (4.3) 7.8 (4.4) 0.74 (.21)
manct 4.2 (3.7) 3.2 (4.0) 0.13 (.20)
urbfr 3.8 (3.9) -0.6 (4.2) 0.55 (.22)
medct 0.4 (3.5) -1.4 (3.8) 0.29 (.19)
smplc -2.7 (3.4) -3.5 (3.7) 0.13 (.19)

nfnhs 0 0 0
finhs -1.1 (6.4) -3.3 (7.1) 0.27 (.39)
smcol 12.1 (6.7) 5.7 (7.4) 0.76 (.41)
colgr 11.0 (6.3) 6.3 (7.0) 0.64 (.38)
DK -2.1 (6.3) -6.2 (7.0) 0.54 (.38)
nores -8.5 (6.7) -11.0 (7.5) 0.20 (.43)

sˆ2_sch .130 (.016) .121 (.015)
sˆ2 1.0 1.0
log Lmax -39649.40 -39547.41
#params 142 172
--------------------------------------------------
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Table A11

Intercept and slope parameters for the 2-mix 2PL model

comp1 comp2 comp1 comp2
item int (SE) int (SE) slope (SE) slope (SE)
-------------------------------------------------------
1 2.74 (0.30) 4.56 (0.54) 1.13 (0.21) -0.67 (0.47)
2 0.82 (0.24) 2.75 (0.26) 0.96 (0.16) 0.10 (0.20)
3 -1.61 (0.26) 0.64 (0.23) 0.82 (0.23) 0.41 (0.13)
4 -0.11 (0.23) 0.63 (0.23) 1.05 (0.17) 0.97 (0.15)
5 -0.33 (0.23) 0.44 (0.22) 1.03 (0.18) 0.66 (0.13)
6 -0.98 (0.23) 0.04 (0.23) 0.57 (0.16) 1.07 (0.16)
7 -0.82 (0.24) 0.85 (0.23) 0.59 (0.17) 0.75 (0.16)
8 -4.28 (0.52) -2.55 (0.31) 0.21 (0.60) 1.08 (0.25)
9 0.47 (0.22) 1.27 (0.22) 0.86 (0.13) 0.89 (0.13)
10 -0.19 (0.22) 0.90 (0.22) 0.86 (0.13) 0.65 (0.11)
11 -0.43 (0.22) 0.72 (0.22) 1.02 (0.15) 0.77 (0.11)
12 -1.17 (0.25) 2.71 (0.25) 0.64 (0.16) 0.63 (0.22)
13 -7.75 (2.65) 0.75 (0.22) 2.90 (1.25) 0.76 (0.14)
14 -3.19 (0.38) 1.01 (0.22) 0.83 (0.35) 0.78 (0.14)
15 -0.30 (0.22) 0.14 (0.21) 0.77 (0.12) 0.46 (0.09)
16 0.26 (0.23) 1.39 (0.24) 1.46 (0.22) 1.14 (0.16)
17 -3.49 (0.44) -1.78 (0.25) 2.10 (0.36) 1.26 (0.18)
18 -1.38 (0.24) -0.49 (0.23) 1.05 (0.17) 1.09 (0.15)
19 0.11 (0.26) 1.69 (0.25) 1.32 (0.35) 0.77 (0.23)
20 -0.32 (0.27) 1.27 (0.25) 0.90 (0.26) 0.91 (0.23)
21 2.67 (0.38) 2.45 (0.29) 3.53 (0.41) 1.92 (0.28)
22 2.93 (0.45) 2.43 (0.28) 4.40 (0.90) 1.95 (0.24)
23 -0.40 (0.24) 1.14 (0.23) 1.69 (0.33) 1.14 (0.18)
24 0.24 (0.23) 1.95 (0.28) 0.75 (0.15) 1.11 (0.21)
25 1.17 (0.27) -0.06 (0.22) 0.98 (0.26) 0.69 (0.14)
26 -1.23 (0.27) 0.16 (0.23) 1.01 (0.29) 0.84 (0.16)
27 -1.71 (0.26) -1.59 (0.24) -0.27 (0.16) 0.39 (0.16)
28 -1.16 (0.28) -0.94 (0.25) -0.12 (0.23) 0.70 (0.21)
29 0.14 (0.24) 0.82 (0.23) 0.35 (0.17) 0.56 (0.15)
30 -0.35 (0.25) 0.59 (0.24) 0.41 (0.21) 0.82 (0.19)
-------------------------------------------------------
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Table A12

Intercept and slope parameters, 2-mix-prob 2PL model

comp1 comp2 comp1 comp2
item int (SE) int (SE) slope (SE) slope (SE)
-------------------------------------------------------
1 3.25 (0.35) 3.93 (0.36) 1.45 (0.24) -0.19 (0.37)
2 1.33 (0.26) 2.43 (0.26) 1.48 (0.19) 0.36 (0.20)
3 -0.96 (0.28) 0.28 (0.24) 1.66 (0.25) 0.63 (0.14)
4 -0.61 (0.24) 1.25 (0.25) 0.41 (0.12) 0.81 (0.18)
5 -0.78 (0.25) 0.92 (0.24) 0.60 (0.13) 0.38 (0.14)
6 -1.16 (0.25) 0.35 (0.24) 0.32 (0.15) 0.99 (0.17)
7 -0.19 (0.25) 0.48 (0.24) 1.23 (0.18) 1.23 (0.18)
8 -3.67 (0.44) -3.29 (0.44) 1.37 (0.34) 1.67 (0.34)
9 0.49 (0.23) 1.38 (0.24) 0.83 (0.12) 0.86 (0.13)
10 -0.11 (0.23) 1.00 (0.23) 0.81 (0.12) 0.68 (0.11)
11 -0.32 (0.23) 0.79 (0.23) 1.04 (0.15) 0.80 (0.12)
12 -0.94 (0.25) 2.88 (0.26) 0.68 (0.16) 0.51 (0.26)
13 -9.01 (7.07) 0.95 (0.24) 3.19 (2.66) 0.69 (0.15)
14 -3.17 (0.48) 1.17 (0.24) 1.06 (0.46) 0.63 (0.14)
15 -0.29 (0.23) 0.25 (0.23) 0.77 (0.12) 0.40 (0.09)
16 0.31 (0.24) 1.50 (0.25) 1.42 (0.22) 1.13 (0.17)
17 -3.11 (0.40) -1.62 (0.26) 1.67 (0.33) 1.27 (0.19)
18 -1.37 (0.25) -0.31 (0.24) 0.93 (0.17) 1.08 (0.15)
19 -0.02 (0.28) 1.92 (0.27) 1.55 (0.40) 0.61 (0.22)
20 -0.22 (0.26) 1.37 (0.27) 0.89 (0.22) 0.97 (0.24)
21 2.46 (0.33) 2.62 (0.31) 3.45 (0.38) 1.91 (0.25)
22 2.42 (0.33) 2.60 (0.31) 3.71 (0.51) 1.89 (0.23)
23 -0.36 (0.25) 1.26 (0.25) 1.79 (0.29) 1.03 (0.17)
24 0.20 (0.24) 2.28 (0.30) 0.71 (0.12) 1.05 (0.23)
25 -1.22 (0.27) 0.12 (0.24) 0.97 (0.20) 0.62 (0.12)
26 -1.20 (0.26) 0.32 (0.25) 0.94 (0.21) 0.76 (0.14)
27 -1.60 (0.26) -1.57 (0.26) -0.28 (0.14) 0.53 (0.18)
28 -1.15 (0.27) -0.81 (0.26) -0.12 (0.20) 0.68 (0.19)
29 0.28 (0.24) 0.82 (0.24) 0.28 (0.14) 0.59 (0.14)
30 -0.21 (0.25) 0.62 (0.24) 0.48 (0.17) 0.82 (0.18)
-------------------------------------------------------
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Table B0

Reporting group estimates and SEs - two-parameter
2PL models, 79 items (3- and 4-level models)

3-level 4-level
--------------------------------
male 0 0
femal -1.8 (0.7) -1.8 (0.7)

white 0 0
black -18.7 (1.1) -18.5 (1.1)
hispa -13.8 (1.0) -13.8 (1.0)
as/pa -9.4 (2.9) -9.4 (2.9)
amind -16.0 (2.2) -16.0 (2.1)
other -15.6(14.1) -14.7(13.8)

NE 0 0
SE -0.6 (1.8) -0.1 (2.1)
Cent -2.1 (1.8) -1.9 (2.2)
West -4.2 (1.6) -3.8 (2.0)

extru 0 0
lomet -4.5 (2.5) -4.9 (2.8)
himet 12.6 (3.1) 13.3 (2.9)
manct 6.0 (2.3) 4.3 (2.7)
urbfr 7.5 (2.5) 7.3 (2.7)
medct 3.9 (2.1) 2.8 (2.5)
smplc 1.5 (2.2) 0.9 (2.3)

nfnhs 0 0
finhs 4.8 (1.8) 4.7 (1.8)
smcol 14.1 (2.1) 14.2 (2.1)
colgr 15.0 (1.6) 14.9 (1.6)
DK 5.4 (1.6) 5.4 (1.6)
nores 2.1 (4.3) 0.7 (4.4)

sˆ2_PSU - .013 (.006)
sˆ2_sch .061 (.006) .054 (.007)
sˆ2 1.0 1.0
log Lmax -103013.51 -103007.14
#params 179 180
--------------------------------
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Table B1

Reporting group estimates and SEs - 2PL models, 79 items
(three-level models)

2PL 2-guess 2-mix 3-guess 3-mix 3-D
---------------------------------------------------------------------------
male 0 0 0 0 0 0
femal -1.8(0.7) -0.6(0.7) -1.5(0.6) -0.1(0.6) -1.9(0.7) -1.8(0.7)

white 0 0 0 0 0 0
black -18.7(1.1) -17.2(1.0) -16.8(1.0) -16.6(1.0) -17.3(1.0) -19.9(1.1)
hispa -13.8(1.0) -14.0(0.9) -13.6(1.0) -12.3(1.0) -13.9(1.0) -14.8(1.1)
as/pa -9.4(2.9) -8.1(2.7) -7.6(2.9) -7.7(2.9) -7.8(2.8) -9.6(3.0)
amind -16.0(2.2) -17.0(2.2) -16.5(2.2) -14.6(2.1) -16.4(2.5) -17.5(2.3)
other -15.6 (14) -17.2 (14) -19.0 (15) -25.7 (13) -23.9 (13) -25.4 (21)

NE 0 0 0 0 0 0
SE -0.6(1.8) -1.2(1.9) -0.0(1.5) -2.1(1.7) -1.0(1.5) -1.3(1.8)
Cent -2.1(1.8) -2.7(1.7) -3.2(1.5) -3.3(1.6) -3.9(1.6) -1.5(1.6)
West -4.2(1.6) -4.0(1.9) -2.4(1.5) -5.5(1.8) -5.1(1.5) -3.8(1.9)

extru 0 0 0 0 0 0
lomet -4.5(2.5) -4.0(2.3) -7.8(2.3) -5.9(2.1) -6.4(2.3) -7.1(2.6)
himet 12.6(3.1) 10.4(2.6) 10.1(2.3) 11.0(3.0) 12.9(2.4) 13.6(3.3)
manct 6.0(2.3) 4.5(2.1) 0.2(2.2) 0.9(2.3) 2.6(2.3) 3.6(2.6)
urbfr 7.5(2.5) 2.9(2.6) 3.4(2.6) 3.6(2.4) 3.0(2.8) 3.7(2.8)
medct 3.9(2.1) 3.8(2.1) -2.0(2.3) 0.5(2.7) -1.2(2.4) 2.6(2.5)
smplc 1.5(2.2) 1.7(2.1) -2.1(2.1) 1.7(1.9) 0.0(2.0) -0.2(2.4)

nfnhs 0 0 0 0 0 0
finhs 4.8(1.8) 6.8(1.7) 9.2(1.7) 6.0(1.7) 6.0(1.8) 7.2(1.9)
smcol 14.1(2.1) 14.2(1.9) 14.5(2.0) 12.3(2.0) 14.8(2.0) 15.6(2.2)
colgr 15.0(1.6) 15.7(1.6) 17.2(1.6) 13.7(1.6) 15.4(1.6) 16.4(1.8)
DK 5.4(1.6) 5.7(1.5) 7.6(1.5) 4.8(1.5) 6.9(1.6) 7.0(1.7)
nores 2.1(4.3) 0.6(3.5) 4.0(3.9) 1.2(3.6) 0.2(4.1) 5.6(4.2)

sˆ2_sch .061(.01) .059(.01) .057(.01) .061(.01) .062(.01) .057(.01)
sˆ2 1.0 1.0 1.0 1.0 1.0 1.0
logLmax -103013.5 -102682.8 -102186.3 -102380.0 -101817.5 -102014.6
#params 179 258 338 418 497 337
------------------------------------------------------------------------------
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Table B2

Reporting group estimates and SEs - 2PL and mixed models, 79 items
(three-level models)

engaged easy items
3PL 2-guess-prob membership 2-mix-prob membership

---------------------------------------------------------------------------
1 -1.12 (.23) -0.05 (.22)
male 0 0 0 0 0
femal 0.2 (0.6) -1.0 (0.7) -0.12 (.07) -1.3 (0.8) -0.09 (.077)

white 0 0 0 0 0
black -17.3 (0.9) -6.6 (1.1) -1.72 (.12) -5.4 (1.1) -1.65 (.10)
hispa -13.8 (0.9) -7.7 (1.1) -0.91 (.10) -5.7 (1.1) -1.06 (.09)
as/pa -6.0 (2.4) -1.7 (2.8) -0.56 (.25) -3.2 (3.0) -0.71 (.24)
amind -13.7 (2.0) -7.7 (2.4) -0.95 (.24) -7.5 (2.7) -0.99 (.23)
other -10.4 (9.3) -12.6(12.6) -0.24 (1.1) -23.5(13.7) 0.01 (1.3)

NE 0 0 0 0 0
SE -1.8 (1.5) -2.7 (1.5) 0.05 (.11) -0.6 (1.8) -0.16 (.11)
Cent -0.2 (1.5) -5.5 (1.5) 0.12 (.11) -4.5 (1.7) 0.05 (.11)
West -5.4 (1.4) -3.2 (1.4) -0.13 (.10) -5.4 (1.5) -0.27 (.10)

extru 0 0 0 0 0
lomet -7.9 (2.2) -7.2 (2.2) -0.41 (.18) -2.3 (2.6) -0.44 (.17)
himet 11.2 (1.8) 5.7 (2.2) 0.79 (.15) 2.3 (2.8) 1.13 (.17)
manct 2.2 (1.8) 1.9 (2.3) 0.12 (.15) 3.5 (3.2) 0.16 (.15)
urbfr 4.4 (2.1) 2.0 (2.4) 0.20 (.16) -0.5 (2.7) 0.50 (.16)
medct 3.4 (1.7) -0.5 (2.1) 0.29 (.14) -0.3 (2.5) 0.26 (.14)
smplc 0.1 (1.6) -1.0 (2.0) -0.01 (.13) 0.9 (2.4) 0.11 (.14)

nfnhs 0 0 0 0 0
finhs 4.6 (1.5) 3.7 (1.9) 0.45 (.20) 5.5 (2.0) 0.28 (.18)
smcol 13.3 (1.8) 5.3 (2.2) 1.26 (.22) 8.5 (2.3) 0.94 (.21)
colgr 14.0 (1.4) 8.1 (1.8) 1.06 (.19) 8.9 (1.9) 1.07 (.17)
DK 5.6 (1.3) 3.5 (1.7) 0.51 (.19) 4.9 (1.8) 0.41 (.16)
nores -1.7 (3.6) 0.1 (5.8) 0.71 (.38) 1.8 (3.9) 0.17 (.31)

sˆ2_sch .063 (.006) .057 (.005) .050 (.005)
sˆ2 1.0 1.0 1.0
log Lmax -102404.15 -102396.61 -101793.69
#params 258 279 358
--------------------------------------------------------------------------
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Table B3

Reporting group estimates and SEs - 2PL and mixed models, 79 items
(three-level models)

diff. items easi. items diff. items easi. items
3-g-p membership membership 3-m-p membership membership

-----------------------------------------------------------------------------
1 0.61 (.30) 0.68 (.302) -0.20 (.31) -0.17 (.30)

male 0 0 0 0 0 0
femal - 1.8 (0.8) -0.84 (.10) -0.70 (.097) 0.1 (0.8) -0.88 (.10) -0.75 (.10)

white 0 0 0 0 0 0
black -3.8 (1.2) 0.42 (.13) -1.51 (.140) -5.8 (1.2) 0.49 (.13) -1.73 (.15)
hispa -2.8 (1.1) 0.38 (.13) -0.99 (.131) -4.9 (1.1) 0.32 (.13) -1.10 (.13)
as/pa -0.1 (3.1) 0.51 (.36) -0.46 (.374) 2.6 (3.0) 0.04 (.34) -1.17 (.37)
amind -6.7 (2.4) 0.05 (.29) -1.06 (.281) -8.5 (2.4) 0.27 (.31) -0.90 (.28)
other -25.5(13.9) -0.52 (1.9) -0.58 (1.88) -22.6(14.3) 0.34 (2.4) 0.18 (2.3)

NE 0 0 0 0 0 0
SE -0.5 (1.7) 0.44 (.15) 0.15 (.149) 0.2 (1.6) 0.22 (.16) -0.03 (.14)
Cent -2.7 (1.6) 0.29 (.16) 0.24 (.150) -3.2 (1.8) 0.40 (.17) 0.26 (.15)
West -4.8 (1.4) 0.33 (.14) -0.02 (.133) -3.9 (1.7) 0.27 (.14) -0.16 (.13)

extru 0 0 0 0 0 0
lomet -2.7 (2.6) 0.52 (.23) -0.10 (.232) -4.0 (2.5) 0.55 (.24) -0.19 (.24)
himet 2.7 (2.9) -0.21 (.26) 0.92 (.235) 7.5 (2.7) -0.01 (.28) 1.16 (.22)
manct 1.4 (2.7) 0.05 (.22) 0.17 (.211) 1.5 (2.5) 0.08 (.24) 0.30 (.21)
urbfr -1.3 (2.7) -0.24 (.24) 0.36 (.222) -0.2 (3.7) 0.11 (.26) 0.66 (.22)
medct -1.6 (2.6) -0.03 (.22) 0.20 (.198) -2.4 (2.5) 0.06 (.23) 0.37 (.19)
smplc 2.5 (2.3) 0.30 (.21) 0.18 (.197) 1.1 (2.3) 0.55 (.22) 0.37 (.20)

nfnhs 0 0 0 0 0 0
finhs 3.4 (1.9) -0.14 (.22) 0.32 (.249) 2.1 (1.8) -0.04 (.22) 0.54 (.25)
smcol 5.0 (2.2) -0.21 (.29) 1.07 (.300) 6.4 (2.2) -0.47 (.29) 1.07 (.29)
colgr 5.2 (1.7) -0.41 (.21) 1.00 (.234) 5.1 (1.8) -0.40 (.21) 1.34 (.24)
DK 0.8 (1.7) -0.51 (.20) 0.26 (.224) 1.5 (1.7) -0.46 (.20) 0.48 (.24)
nores 0.7 (4.2) 0.37 (.45) 0.60 (.492) -4.2 (4.5) 0.62 (.49) 1.22 (.51)

sˆ2_sch .055 (.006) .053 (.006)
sˆ2 1.0 1.0
log Lmax -101482.05 -101320.81
#params 458 537
------------------------------------------------------------------------------
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Table B4

Item parameter estimates, 3-guess-prob 2PL model

comp 1 2 3 comp 1 2 3
item a1 a2 b2 a3 b3 item a1 a2 b2 a3 b3
---------------------------------------------------------------------
1 2.71 0.77 1.35 3.66 1.60 41 0.36 -0.30 0.82 2.30 0.65
2 -0.16 -0.91 0.94 2.18 0.75 42 0.20 -0.80 0.39 0.98 0.63
3 4.70 2.82 1.44 3.69 1.24 43 -0.40 -2.10 -0.01 0.98 0.69
4 2.51 0.53 1.11 2.05 0.54 44 -0.42 -2.30 0.38 0.39 0.64
5 0.66 -2.07 0.87 0.10 0.75 45 -0.77 -1.82 0.50 2.00 0.85
6 -0.46 -1.18 0.72 1.51 0.80 46 -0.61 -2.07 0.97 0.45 0.50
7 -0.14 -2.10 1.05 0.97 0.44 47 -2.65 -1.63 -0.05 -1.52 0.63
8 -0.32 -1.07 0.85 0.81 0.58 48 -3.84 -2.73 0.11 -1.43 0.82
9 -0.69 -1.65 0.47 0.31 0.92 49 0.27 -0.84 0.35 1.23 0.36

10 0.49 -1.11 0.71 0.48 0.89 50 -0.35 -0.86 -0.09 1.16 0.64
11 -2.42 -4.89 0.19 -2.70 1.07 51 -0.02 -1.02 0.36 1.14 0.54
12 -1.01 -1.50 0.52 1.09 0.81 52 -1.06 -1.50 -0.02 -0.44 0.24
13 -1.59 -1.42 0.41 -1.25 0.16 53 -1.82 -2.23 -0.41 -0.05 0.65
14 -1.62 -1.38 0.79 -0.99 0.75 54 -0.99 -0.91 -0.02 -0.11 0.18
15 -1.85 -1.50 0.12 -1.26 0.56 55 -1.34 -1.57 0.01 0.17 0.83
16 -2.90 -2.02 0.22 -0.47 0.93 56 -1.64 -1.78 -0.35 -0.34 1.23
17 -2.21 -2.03 0.08 -1.48 0.75 57 -0.81 -0.80 0.19 0.02 0.84
18 -1.71 -1.37 0.15 -2.15 -0.03 58 -0.96 -1.30 0.13 1.26 0.94
19 1.71 0.76 1.56 3.67 0.82 59 0.02 -1.26 0.52 1.22 0.71
20 0.05 -0.81 0.89 3.01 1.09 60 0.47 -0.47 0.41 1.14 0.60
21 0.59 -0.16 0.68 1.47 0.62 61 -0.11 -0.26 0.23 0.63 0.48
22 0.19 -0.66 0.66 1.08 0.76 62 -1.05 -0.65 0.25 0.03 0.77
23 -0.10 -1.64 1.50 1.45 0.85 63 -0.60 -0.69 0.22 -0.16 0.18
24 0.08 -1.03 0.92 0.87 0.64 64 -0.77 -0.78 0.22 0.54 0.58
25 2.80 -1.32 0.92 1.70 1.42 65 -1.09 -0.76 0.39 -0.83 0.21
26 0.37 -11.7 -4.26 0.19 1.77 66 -1.71 -1.53 -0.01 -0.63 0.91
27 0.75 -3.40 0.00 0.41 1.91 67 -1.05 -2.06 -0.85 -0.40 0.57
28 -0.52 -1.01 0.47 0.54 0.13 68 -1.24 -0.83 0.08 -0.61 0.61
29 -0.56 -1.24 0.97 1.24 0.39 69 -37.2 -1.75 -0.27 -2.80 0.65
30 0.58 -0.69 1.64 1.64 0.59 70 1.60 0.81 0.73 2.74 0.38
31 -2.16 -4.13 1.50 -1.34 0.97 71 1.43 0.73 1.10 3.09 0.43
32 -1.53 -2.20 0.72 0.08 0.73 72 -0.01 -0.57 0.38 1.34 0.66
33 -3.11 -2.03 -0.34 -1.41 0.37 73 0.32 -0.25 0.34 0.82 0.59
34 1.19 -1.14 1.53 2.04 0.73 74 -0.99 -1.87 -0.34 -0.03 0.62
35 1.01 -0.72 1.11 2.40 0.78 75 -1.21 -1.33 -0.62 -0.64 0.67
36 0.36 -0.87 0.80 1.51 1.04 76 -0.64 -0.69 -0.27 0.53 0.70
37 2.86 0.83 2.83 2.33 1.46 77 -1.28 -1.57 -0.40 0.09 0.66
38 2.54 0.84 30.2 2.50 1.62 78 -0.06 -0.76 0.26 0.66 0.80
39 0.64 -1.10 1.26 1.35 1.16 79 -1.64 -1.84 -0.94 -3.22 1.19
40 0.67 -0.35 1.00 2.37 0.60
---------------------------------------------------------------------
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Table B5

Reporting group estimates and SEs - MIMIC and mixed models,
79 items (three-level models)

engaged
MIMIC 2-g 2-m 2-g-p membership

-----------------------------------------------------------------------
1 1.46 (.25)

male 0 0 0 0 0
femal 0.3 (0.8) -2.3 (1.0) -2.2 (0.9) -5.1 (1.1) 0.43 (.08)

white 0 0 0 0 0
black -25.0 (2.0) -32.8 (1.5) -31.4 (1.5) -28.2 (1.6) -0.87 (.10)
hispa -20.4 (1.8) -24.2 (1.5) -24.3 (1.3) -23.1 (1.6) -0.71 (.10)
as/pa -11.8 (3.9) -9.2 (4.4) -16.5 (3.3) -2.5 (5.4) -1.01 (.24)
amind -18.8 (3.0) -27.4 (3.1) -24.8 (3.0) -28.7 (3.5) -0.28 (.28)
other -14.3(15.0) -24.5(20.0) -35.8(15.5) -25.3(19.9) -0.56 (1.3)

NE 0 0 0 0 0
SE -1.1 (2.2) -2.6 (2.5) -5.9 (2.2) -3.0 (2.1) -0.30 (.13)
Cent 0.8 (2.2) -0.5 (2.4) -1.5 (2.3) -0.2 (2.1) -0.27 (.13)
West -7.2 (2.2) -5.6 (2.2) -6.5 (2.2) -3.9 (1.9) -0.35 (.12)

extru 0 0 0 0 0
lomet -9.9 (3.1) -8.5 (3.2) -13.0 (4.5) -5.6 (3.6) -0.49 (.19)
himet 18.6 (2.9) 20.3 (3.1) 15.4 (4.1) 25.0 (3.6) 0.60 (.22)
manct 4.5 (2.6) 8.8 (3.3) -0.3 (4.1) 7.0 (3.2) 0.05 (.19)
urbfr 7.1 (2.8) 6.2 (3.0) 1.9 (4.5) 5.8 (3.4) 0.25 (.21)
medct 5.7 (2.4) 8.0 (2.7) 0.8 (4.0) 6.9 (3.0) 0.13 (.18)
smplc 1.1 (2.5) 3.2 (2.7) -5.1 (3.9) 2.6 (3.0) -0.22 (.17)

nfnhs 0 0 0 0 0
finhs 7.1 (2.2) 8.0 (2.6) 11.5 (2.6) 8.3 (3.2) 0.25 (.18)
smcol 20.4 (2.9) 24.5 (3.2) 25.6 (2.8) 24.3 (3.6) 0.57 (.21)
colgr 21.1 (2.4) 22.3 (2.4) 26.1 (2.4) 21.0 (2.9) 1.01 (.17)
DK 8.6 (2.0) 8.4 (2.3) 11.8 (2.3) 6.7 (2.8) 0.57 (.16)
nores -3.5 (4.3) 9.3 (6.5) -3.5 (5.1) 10.8 (5.9) -0.12 (.31)

sˆ2_sch .132 (.020) .154 (.013) .111 (.009) .054 (.005)
sˆ2 1.0 1.0 1.0 1.0
log Lmax -102562.07 -102322.81 -101686.16 -102211.16
# params 178 258 338 279
-----------------------------------------------------------------------
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Table B6
Reporting group estimates and SEs - MIMIC and mixed models,

79 items (three-level models)

easier items
MIMIC 2-m 2-m-p membership 3-g

-----------------------------------------------------------------------
1 0.04 (.22)
male 0 0 0 0 0
femal 0.3 (0.8) -2.2 (0.9) -7.7 (1.1) 0.60 (.07) -2.6 (1.0)

white 0 0 0 0
black -25.0 (2.0) -31.4 (1.5) -26.6 (1.8) -0.51 (.10) -31.7 (1.6)
hispa -20.4 (1.8) -24.3 (1.3) -23.1 (1.6) -0.32 (.10) -25.1 (1.5)
as/pa -11.8 (3.9) -16.5 (3.3) -18.7 (3.3) -0.02 (.24) -17.4 (3.6)
amind -18.8 (3.0) -24.8 (3.0) -24.7 (2.9) -0.20 (.22) -25.6 (2.9)
other -14.3(15.0) -35.8(15.5) -41.1(17.6) 0.33 (1.4) -42.5(17.5)

NE 0 0 0 0 0
SE -1.1 (2.2) -5.9 (2.2) -3.0 (2.3) -0.15 (.11) -2.0 (2.1)
Cent 0.8 (2.2) -1.5 (2.3) -0.5 (2.3) -0.24 (.11) -2.0 (2.1)
West -7.2 (2.2) -6.5 (2.2) -0.8 (2.0) -0.30 (.10) -5.0 (2.2)

extru 0 0 0 0 0
lomet -9.9 (3.1) -13.0 (4.5) -3.2 (3.2) -0.39 (.17) -5.9 (3.1)
himet 18.6 (2.9) 15.4 (4.1) 22.9 (3.3) 0.29 (.17) 24.0 (3.1)
manct 4.5 (2.6) -0.3 (4.1) 8.1 (3.3) 0.08 (.16) 9.0 (2.8)
urbfr 7.1 (2.8) 1.9 (4.5) 17.0 (3.8) 0.15 (.17) 18.4 (3.7)
medct 5.7 (2.4) 0.8 (4.0) 10.6 (3.1) 0.07 (.16) 12.2 (2.9)
smplc 1.1 (2.5) -5.1 (3.9) 8.5 (3.0) -0.21 (.15) 4.5 (2.9)

nfnhs 0 0 0 0 0
finhs 7.1 (2.2) 11.5 (2.6) 8.8 (2.8) 0.13 (.17) 10.0 (2.7)
smcol 20.4 (2.9) 25.6 (2.8) 19.5 (3.2) 0.66 (.21) 25.0 (3.0)
colgr 21.1 (2.4) 26.1 (2.4) 21.9 (2.6) 0.52 (.16) 25.0 (2.5)
DK 8.6 (2.0) 11.8 (2.3) 7.0 (2.6) 0.44 (.16) 9.9 (2.4)
nores -3.5 (4.3) -3.5 (5.1) -1.6 (6.7) 0.38 (.31) -3.9 (7.3)

sˆ2_sch .132 (.020) .111 (.009) .134 (.013) .131 (.014)
sˆ2 1.0 1.0 1.0 1.0
log Lmax -102562.0 -101686.16 -101605.83 -101548.04
# params 178 338 358 418
-----------------------------------------------------------------------
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Table B7

Reporting group estimates and SEs -
3-mixed MIMIC models, 79 items (three-level)

easi.items diff.items
3-g 3-g-p membership membership

----------------------------------------------------------
1 1.60 (.33) 1.59 (.36)

male 0 0 0 0
femal -2.6 (1.0) -11.4 (1.2) 0.79 (.11) 0.26 (.12)

white 0 0 0 0
black -31.7 (1.6) -29.0 (1.9) -1.17 (.15) -0.40 (.15)
hispa -25.1 (1.5) -19.7 (1.8) -0.97 (.14) -0.42 (.15)
as/pa -17.4 (3.6) -11.7 (5.1) -1.13 (.30) -1.31 (.38)
amind -25.6 (2.9) -25.4 (4.0) -0.36 (.39) 0.19 (.42)
other -42.5(17.5) 6.0(27.9) -1.82 (1.7) -1.02 (1.6)

NE 0 0 0 0
SE -2.0 (2.1) -1.2 (2.0) -0.36 (.18) -0.31 (.20)
Cent -2.0 (2.1) 1.5 (2.2) -0.49 (.18) -0.38 (.19)
West -5.0 (2.2) -4.1 (1.9) -0.43 (.17) -0.21 (.18)

extru 0 0 0 0
lomet -5.9 (3.1) -6.4 (3.6) -0.78 (.25) -0.42 (.27)
himet 24.0 (3.1) 19.4 (3.7) 0.91 (.30) 0.57 (.33)
manct 9.0 (2.8) 2.3 (3.6) 0.03 (.25) -0.06 (.28)
urbfr 18.4 (3.7) 5.0 (3.6) 0.37 (.28) 0.17 (.31)
medct 12.2 (2.9) 3.5 (3.4) 0.25 (.24) 0.23 (.27)
smplc 4.5 (2.9) 3.1 (3.3) -0.24 (.23) -0.07 (.26)

nfnhs 0 0 0 0
finhs 10.0 (2.7) 10.0 (3.4) 0.24 (.24) 0.02 (.25)
smcol 25.0 (3.0) 23.1 (3.9) 0.71 (.29) 0.01 (.32)
colgr 25.0 (2.5) 23.1 (3.2) 1.17 (.23) 0.68 (.25)
DK 9.9 (2.4) 8.3 (3.1) 0.62 (.22) 0.26 (.23)
nores -3.9 (7.3) 15.7 (8.5) -0.39 (.38) -0.85 (.42)

sˆ2_sch .131 (.014) .052 (.005)
sˆ2 1.0 1.0

log Lmax -101548.04 -101393.33
# params 418 459
---------------------------------------------------------



Appendix C
Model Parameter Estimates and SEs, 2005 Texas
Survey

1. Variable names and definitions, national NAEP sample

Student classified as having a disability
VALUE LABEL

1 Yes
2 No

Sex of subject
VALUE LABEL

1 Male
2 Female

School location
VALUE LABEL

1 Large city
2 Mid-size city
3 Fringe/large city
4 Fringe/mid-size city
5 Large town
6 Small town
7 Rural (MSA)
8 Rural (non-MSA)

[ 9 DoD Dependents ] (not used)

Accommodated
VALUE LABEL

1 Accommodated
2 Not accommodated

Race/ethnicity
VALUE LABEL

1 White
2 Black
3 Hispanic
4 Asian Amer/Pacif Isl
5 American Indian

[ 6 Unclassified ] (not
[ 8 Omitted ] used)

141M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
Statistics for Social and Behavioral Sciences,
DOI 10.1007/978-1-4419-9937-5, © Murray Aitkin and Irit Aitkin 2011
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School enrollment
VALUE LABEL

1 1-299
2 300-499
3 500-699
4 700+

[ 8 Omitted ] (not
[ Missing ] used)

Computer at home
VALUE LABEL

1 Yes
2 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Days absent from school last month
VALUE LABEL

1 None
2 1-2 days
3 3-4 days
4 5-10 days
5 More than 10 days

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Language other than English spoken in home
VALUE LABEL

1 Never
2 Once in a while
3 Half the time
4 All or most of time

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Use computer to play math games
VALUE LABEL

1 Yes
2 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)
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Years taught elementary or secondary
VALUE LABEL

1 0-4 years
2 5-9 years
3 10-19 years
4 20 years or more

[ 8 Omitted ] (not
[ Missing ] used)

Natl School Lunch Prog eligibility
VALUE LABEL

1 Not eligible
2 Reduced-price lunch
3 Free lunch

[ 4 Info not available ] (not
[ 5 School refused info ] used)

6 Not participating (recoded to 4)

Highest academic degree
VALUE LABEL

[ 1 High-school diploma ] (not used)
2 Assoc deg/voc cert
3 Bachelor’s degree
4 Master’s degree
5 Education specialist
6 Doctorate
7 Professional degree

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Undergrad major/minor mathematics education
VALUE LABEL

1 Major
2 Minor/spec emphasis
3 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)
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Undergrad major/minor mathematics
VALUE LABEL

1 Major
2 Minor/spec emphasis
3 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Mathematics education courses
VALUE LABEL

1 None
2 1 or 2 courses
3 3 or 4 courses
4 5 courses or more

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Technical support available at school
VALUE LABEL

1 Yes
2 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Software for math instruction available at school
VALUE LABEL

1 Yes
2 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)
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Training for computers available at school
VALUE LABEL

1 Yes
2 No

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Number of students in this class
VALUE LABEL

1 15 or fewer
2 16 - 18
3 19-20
4 21-25
5 26 or more

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)

Instructional materials, resources
VALUE LABEL

1 Get all resources
2 Get most resources
3 Get some resources
4 Don’t get resources

[ 8 Omitted ] (not
[ 0 Multiple ]
[ Missing ] used)



146 C Model Parameter Estimates and SEs, 2005 Texas Survey

C.1 Parameter estimates and SEs – limited teacher data

Table C1

Reporting group estimates and SEs, 70-item scale

3-PL 2-guess 2-mix 2-guess-prob 2-mix-prob
------------------------------------------------------------------------
Shift 24.2(94.9) 30.8(26.8)
Disable 29.1 (2.8) 26.0 (2.5) 30.8 (2.7) 24.5 (2.8) 15.5 (3.7)
Sex -7.0 (1.3) -7.6 (1.2) -7.6 (1.4) -4.1 (1.4) -21.2 (5.3)
Locate (2) 2.4 (3.1) 1.6 (2.8) 1.7 (2.8) 1.5 (3.2) -2.8 (3.2)

(3) -0.3 (2.6) -3.5 (2.5) -3.2 (2.6) 3.6 (2.7) -1.5 (2.7)
(4) -7.7 (4.7) -9.4 (3.7) -11.2 (4.6) -2.0 (4.3) -17.5 (3.8)
(5) -3.1 (8.8) 2.6 (6.4) 0.4 (7.6) 7.2 (7.1) 7.1 (7.4)
(6) -3.9 (5.1) -4.4 (3.8) -7.2 (4.7) 3.1 (4.3) -7.2 (6.2)
(7) -4.3 (6.0) -4.8 (4.9) -6.4 (4.7) 2.9 (5.5) -9.3 (4.7)
(8) -7.5 (4.1) -11.2 (4.1) -11.5 (5.6) -4.0 (4.5) -12.7 (3.1)

Accom 13.1 (2.9) 11.1 (2.6) 9.5 (2.8) 11.3 (3.0) 13.6 (4.9)
Race (2) -39.7 (2.5) -36.4 (2.2) -40.6 (2.7) -31.7 (2.5) -25.4 (3.9)

(3) -20.0 (2.2) -20.1 (2.0) -22.5 (2.4) -15.6 (2.4) -17.0 (3.5)
(4) 7.9 (4.1) 10.7 (3.9) 12.4 (4.7) 3.2 (5.6) 7.9 (6.3)
(5) -18.7(11.1) -17.6 (8.9) -24.4(10.2) -19.9(11.2) -2.7(14.7)

Enrol (2) 2.4 (4.6) 1.9 (4.0) 2.1 (4.3) 0.1 (4.3) 5.3 (3.7)
(3) 2.8 (4.6) 3.7 (3.9) 3.7 (4.4) 0.1 (4.3) 2.1 (4.1)
(4) 6.0 (4.6) 7.0 (4.0) 5.6 (4.4) 5.6 (4.3) 4.0 (4.3)

Exp (2) 5.2 (1.9) 4.2 (1.8) 3.8 (2.0) 2.7 (1.9) 0.9 (2.8)
(3) 6.1 (1.9) 5.7 (1.8) 4.6 (1.9) 2.7 (2.0) 5.0 (2.3)
(4) 6.5 (2.1) 5.8 (1.9) 5.1 (2.2) 2.1 (2.2) 4.4 (2.5)

LEP 20.1 (2.3) 17.5 (2.0) 19.6 (2.2) 15.8 (2.2) 2.3 (2.9)
Computer -6.4 (1.7) -5.5 (1.5) -5.7 (1.6) -3.8 (1.6) 1.4 (2.5)
Absence(2) -10.1 (1.5) -10.3 (1.4) -10.2 (1.5) -9.8 (1.5) -5.7 (2.1)

(3) -10.7 (2.2) -10.2 (2.0) -11.0 (2.2) -9.2 (2.2) -8.4 (2.6)
(4) -15.6 (3.5) -13.4 (3.3) -13.2 (3.4) -11.0 (3.4) -21.8 (2.9)
(5) -30.1 (3.9) -25.9 (3.9) -27.2 (4.6) -25.1 (4.3) -10.2 (6.2)

Lang (2) 3.5 (1.7) 3.4 (1.6) 3.8 (1.8) 0.4 (1.8) 2.2 (2.1)
(3) 4.7 (2.3) 4.0 (2.2) 5.6 (2.4) 4.0 (2.4) -2.1 (3.2)
(4) 5.0 (2.0) 5.4 (1.8) 6.0 (2.0) 6.0 (2.0) 0.4 (2.5)

Games 0.2 (1.5) 0.3 (1.4) 0.1 (1.5) -2.0 (1.6) 0.9 (1.9)
Lunch (2) -14.3 (2.7) -14.2 (2.6) -16.1 (2.7) -10.8 (2.9) -16.4 (3.5)

(3) -22.3 (1.8) -22.5 (1.7) -24.5 (2.0) -13.9 (1.9) -13.7 (2.5)
(4) -36.6(23.0) -26.1(23.5) -40.4(19.5) -20.3(22.4) -8.6(23.8)

sigmaˆ2_sch .142(.021) .129(.017) .129(.021) .119(.018) .147(.020)
sigmaˆ2 1.0 1.0 1.0 1.0 1.0
log L -48555.32 -48554.45 -48398.01 -48441.81 -48313.76
# params 244 245 315 278 348
------------------------------------------------------------------------
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Table C1 (continued)

Reporting group estimates and SEs, 70-item scale

easi. items engaged
term 2-mix-prob membership 2-guess-prob membership
--------------------------------------------------------------
1/shift 30.8(26.8) -1.98 (.59) -3.70 (1.7)
Disable 15.5 (3.7) 1.24 (.34) 24.5 (2.8) 0.59 (.50)
Sex -21.2 (5.3) 1.03 (.34) -4.1 (1.4) -0.60 (.14)
Locate (2) -2.8 (3.2) 0.37 (.21) 1.5 (3.2) -0.30 (.22)

(3) -1.5 (2.7) -0.19 (.19) 3.6 (2.7) -0.78 (.18)
(4) -17.5 (3.8) 0.54 (.32) -2.0 (4.3) -2.48 (1.5)
(5) 7.1 (7.4) -0.80 (.50) 7.2 (7.1) -43. **
(6) -7.2 (6.2) 0.01 (.41) 3.1 (4.3) -1.18 (.46)
(7) -9.3 (4.7) 0.05 (.39) 2.9 (5.5) -2.01 (.88)
(8) -12.7 (3.1) -0.09 (.28) -4.0 (4.5) -0.78 (.32)

Accom 13.6 (4.9) 0.02 (.38) 11.3 (3.0) 1.02 (1.1)
Race (2) -25.4 (3.9) -1.39 (.31) -31.7 (2.5) -1.38 (.29)

(3) -17.0 (3.5) -0.53 (.28) -15.6 (2.4) -0.66 (.21)
(4) 7.9 (6.3) 0.37 (.51) 3.2 (5.6) 1.34 (.44)
(5) -2.7(14.7) -1.51 (.91) -19.9(11.2) 0.05 (.82)

Enrol (2) 5.3 (3.7) -0.08 (.29) - 0.1 (4.3) 0.42 (.49)
(3) 2.1 (4.1) 0.27 (.29) 0.1 (4.3) 0.41 (.49)
(4) 4.0 (4.3) 0.21 (.31) 5.6 (4.3) 0.12 (.50)

Exp (2) 0.9 (2.8) 0.33 (.23) 2.7 (1.9) 0.39 (.21)
(3) 5.0 (2.3) 0.13 (.18) 2.7 (2.0) 0.55 (.20)
(4) 4.4 (2.5) 0.23 (.20) 2.1 (2.2) 0.69 (.20)

LEP 2.3 (2.9) 1.34 (.23) 15.8 (2.2) 1.10 (.93)
Computer 1.4 (2.5) -0.69 (.18) -3.8 (1.6) -0.81 (.30)
Absence(2) -5.7 (2.1) -0.41 (.15) -9.8 (1.5) -0.22 (.15)

(3) -8.4 (2.6) -0.22 (.22) -9.2 (2.2) -0.22 (.24)
(4) -21.8 (2.9) 0.64 (.34) -11.0 (3.4) -1.02 (.49)
(5) -10.2 (6.2) -1.76 (.52) -25.1 (4.3) -1.15 (.82)

Lang (2) 2.2 (2.1) 0.16 (.17) 0.4 (1.8) 0.44 (.17)
(3) -2.1 (3.2) 0.52 (.26) 4.0 (2.4) 0.03 (.27)
(4) 0.4 (2.5) 0.46 (.21) 6.0 (2.0) -0.36 (.34)

Games 0.9 (1.9) -0.06 (.15) -2.0 (1.6) 0.26 (.15)
Lunch (2) -16.4 (3.5) 0.00 (.26) -10.8 (2.9) -0.50 (.27)

(3) -13.7 (2.5) -0.93 (.19) -13.9 (1.9) -1.91 (.38)
(4) -8.6(23.8) -49. ** -20.3(22.4) -46. **

sigmaˆ2_sch .147 (.020) .119 (.018)
sigmaˆ2 1.0 1.0
log L -48313.76 -48441.81
# params 348 278
--------------------------------------------------------------

** "infinite" SE
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C.2 Parameter estimates and SEs – extensive teacher data

Table C2
Reporting group estimates and SEs, 70-item scale

----------------------------------------------------------------------------
engaged

3PL 2-guess 2-mix 2-guess-prob membership
----------------------------------------------------------------------------
1/Shift -6.36 (12.7)
Disable 22.5 (4.1) 21.0 (3.5) 23.9 (3.8) 19.4 (3.7) 0.33 (0.45)
Sex -6.4 (1.9) -7.4 (1.6) -7.2 (0.9) -5.3 (2.0) -0.44 (0.21)
Locate (2) 3.3 (3.8) 6.8 (3.4) 9.1 (1.9) 7.0 (3.6) -0.42 (0.29)

(3) -5.9 (3.6) -3.8 (3.5) -4.0 (12.0) 3.3 (3.3) -1.04 (0.27)
(4) -7.2 (5.4) -5.6 (5.4) -3.2 (2.7) 2.6 (6.3) -42. **
(5) 17.4(11.0) 16.7 (7.7) 12.2 (7.0) 19.9 (9.7) -1.06 (1.91)
(6) -10.0 (7.3) -8.6 (6.6) -12.8 (5.3) 12.1 (7.7) -44. **
(7) 2.0(10.1) -8.6 (6.6) 3.9 (3.3) 0.1 (10.5) -0.67 (0.99)
(8) -4.8 (5.8) -7.4 (5.3) -7.0 (1.8) 1.2 (5.6) -1.45 (0.50)

Accom 22.5 (4.2) 16.2 (3.7) 12.7 (5.4) 17.5 (3.7) 1.52 (1.01)
Race (2) -45.6 (3.5) -40.9 (3.2) -44.2 (6.8) -35.6 (3.6) -1.55 (0.37)

(3) -25.6 (3.0) -25.1 (2.8) -30.4 (6.8) -18.9 (3.3) -0.85 (0.29)
(4) 3.5 (6.0) 6.4 (5.7) 5.5 (4.7) 2.5 (8.2) 0.80 (0.64)
(5) -12.5(11.7) -20.5(17.4) -30.0(13.2) -15.5(13.3) 0.11 (1.53)

Enrol (2) 7.3 (6.5) 4.0 (5.6) 5.5 (2.9) 1.2 (6.0) 0.44 (0.60)
(3) 7.9 (6.2) 5.4 (5.4) 4.1 (2.3) 2.7 (5.8) 0.27 (0.59)
(4) 11.0 (6.4) 6.3 (5.7) 5.9 (2.5) 5.7 (6.0) -0.01 (0.61)

Exp (2) 3.3 (2.7) 1.9 (2.3) 2.8 (1.6) -4.2 (2.7) 1.10 (0.29)
(3) 5.9 (2.8) 4.1 (2.5) 6.3 (3.6) 0.4 (2.9) 0.92 (0.28)
(4) 3.9 (3.0) 3.0 (2.7) 2.1 (1.9) -1.5 (3.1) 0.82 (0.33)

ELL 15.3 (3.0) 3.9 (2.6) 13.3 (2.2) 10.8 (2.8) 1.36 (0.84)
Computer -6.8 (2.4) -6.5 (2.1) - 6.2 (1.3) -3.4 (2.2) -1.19 (0.55)
Absence(2) -14.8 (2.1) -13.9 (1.8) -13.0 (1.2) -13.0 (2.0) -0.52 (0.21)

(3) -14.8 (3.3) -13.8 (2.9) -15.2 (2.7) -13.4 (3.1) -0.18 (0.33)
(4) -14.9 (5.0) -15.8 (4.7) -12.0 (1.9) -9.2 (5.4) -1.72 (1.29)
(5) -27.0 (6.4) -21.6 (5.2) -16.8 (9.3) -17.0 (5.7) -1.51 (1.33)

Lang (2) 5.3 (2.5) 4.3 (2.2) 7.6 (1.8) 2.2 (2.5) 0.22 (0.22)
(3) 6.6 (3.2) 6.6 (2.9) 9.3 (2.1) 6.8 (3.2) 0.00 (0.34)
(4) 5.3 (2.7) 5.6 (2.4) 9.5 (1.4) 5.3 (3.1) -0.20 (0.60)

Games -1.2 (2.1) -0.4 (1.9) 0.8 (1.1) -1.4 (2.2) 0.07 (0.26)
Lunch (2) -14.3 (3.8) -15.0 (3.5) -12.1 (2.8) -11.6 (4.4) -0.37 (0.38)

(3) -20.9 (2.6) -21.6 (2.3) -24.4 (1.6) -11.9 (2.6) -1.91 (0.34)
(4) -61.5(30.3) -47.8(22.3) -47.8(22.3) -41.3(22.6) -44. **

Degree (3) 21.4(21.1) 23.9(18.5) - 0.9(22.6) -2.1(23.5) 3.86 (5.93)
(4) 23.1(21.2) 25.1(18.7) - 1.8(21.1) 0.8(23.6) 3.62 (5.92)
(5) 20.1(22.6) 29.9(20.4) -7.4(25.3) -1.9(25.5) 4.15 (5.98)
(6) -19.3(33.0) 9.8(27.6) -15.4(24.0) -7.8(30.8) -44. **
(7) 31.7(25.4) 37.0(21.9) 2.8(25.8) 16.5(27.4) -44. **

Mathed (2) -10.4(10.4) -6.2 (9.1) -17.6(11.6) -11.9(20.1) -0.59 (3.86)
(3) -7.4 (9.9) -2.8 (8.8) -11.5(10.3) -10.6(19.9) 0.43 (3.79)

Math (2) -1.1(10.2) -8.3 (9.3) 1.6(10.1) -7.3(10.0) 0.56 (7.26)
(3) -0.3(10.1) -8.9 (9.2) 3.5(12.4) -6.2 (9.8) -0.32 (7.00)

Mathc (2) -2.3 (3.0) -1.5 (2.7) -2.4 (2.0) 1.1 (3.1) -0.56 (0.33)
(3) -1.4 (3.1) -0.3 (2.8) -2.0 (1.6) -0.6 (3.2) -0.23 (0.32)
(4) -1.6 (4.8) -0.7 (4.2) -3.6 (3.7) -4.3 (4.9) -0.03 (0.45)

Tech (2) -9.0 (4.0) -6.9 (3.6) -9.2 (1.8) -7.3 (3.7) 0.07 (0.38)
Soft (2) 1.2 (2.6) 0.8 (2.5) 2.9 (3.3) -2.9 (2.6) 0.88 (0.27)
Train (2) 0.9 (2.4) 0.8 (2.2) -0.3 (2.2) 1.6 (2.3) -0.16 (0.23)
Studnum(2) -6.4 (4.3) -8.1 (3.7) -8.1 (2.1) -7.3 (3.9) -0.53 (0.40)

(3) -1.6 (4.2) -3.0 (3.7) -4.0 (4.6) -0.1 (3.9) -0.82 (0.44)
(4) -2.2 (4.2) -4.0 (3.7) -5.1 (1.7) -2.6 (3.9) -0.64 (0.46)
(5) -12.3 (8.8) -11.3 (7.8) -12.1 (3.7) -8.8 (7.5) -2.06 (1.98)

Resourc(2) 3.0 (2.7) 3.6 (2.5) 0.5 (1.7) 6.6 (2.8) -0.71 (0.29)
(3) -1.4 (3.0) 0.2 (2.7) -2.6 (2.4) 2.0 (3.1) -1.06 (0.35)
(4) -4.6(11.7) 5.7(11.0) 6.8 (4.4) 3.5(11.6) -0.49 (1.09)

sigmaˆ2_sch .177 (.035) .123 (.024) .138 (.038) .086 (.023)
sigmaˆ2 1.0 1.0 1.0 1.0
log L -25204.70 -25163.94 -25033.31 -25084.35
# params 266 267 337 323



Appendix D
Model Parameter Estimates and SEs, 2005
California survey

D.1 Parameter estimates for MIMIC models – limited teacher
data

Table D1

Reporting group estimates and SEs, 70-item scale
engaged

MIMIC 3PL 2-guess 2-guess-prob membership
-----------------------------------------------------------------------------
1 - - - 118.5(33.1) 1.25 (0.79)
No disability 20.8 (2.1) 26.9 (2.7) 21.7 (2.3) 10.9 (3.4) 1.29 (0.18)
Girl -7.2 (0.9) -8.4 (1.2) -7.5 (1.0) -6.7 (1.3) -0.30 (0.11)
Locate (2) 0.5 (2.1) -0.6 (2.9) 0.2 (2.4) -1.9 (2.6) 0.18 (0.15)

(3) -1.8 (1.7) -1.8 (2.0) -1.8 (2.0) -6.4 (2.3) 0.23 (0.13)
(4) -8.1 (3.1) -7.8 (3.6) -8.6 (3.3) -8.6 (3.6) 0.10 (0.21)
(5) -14.1(13.1) -5.3(12.6) -16.7(14.9) -27.9(15.1) 46 ***
(6) 4.3 (7.5) 3.9 (9.9) 5.5 (7.8) 1.0 (9.4) 0.38 (0.72)
(7) -2.9 (5.8) -3.6 (6.7) -3.3 (6.1) -0.9 (8.5) -0.45 (0.58)
(8) 4.6 (4.9) 2.1 (6.9) 3.5 (5.3) -2.1 (4.7) 2.38 (1.60)

Not accom 24.2 (2.7) 32.4 (3.4) 25.0 (2.9) 21.1 (5.0) 0.95 (0.22)
Race (2) -28.9 (2.1) -32.7 (2.5) -31.1 (2.3) -28.3 (2.8) -1.19 (0.21)

(3) -15.4 (1.5) -17.9 (1.9) -16.8 (1.7) -15.1 (2.1) -0.69 (0.20)
(4) 5.1 (1.9) 5.1 (2.1) 6.7 (2.0) 4.9 (2.3) 0.27 (0.27)
(5) -21.6 (5.3) -24.3 (5.9) -23.4 (5.3) -15.9 (6.8) -0.84 (0.51)
(6) -3.5 (5.5) -2.0 (7.4) -2.4 (6.0) 1.6 (6.4) -0.83 (0.45)

Enrol (2) -3.3 (4.4) -5.0 (5.7) -5.3 (4.7) -0.0 (5.1) -0.75 (0.71)
(3) -2.3 (6.7) -3.9 (5.6) -4.0 (4.6) 2.6 (4.9) -0.98 (0.70)
(4) -8.1 (4.2) -11.6 (5.7) -10.3 (4.5) -2.1 (4.8) -1.31 (0.70)

Exp (2) 2.3 (1.4) 3.0 (1.7) 2.0 (1.5) 5.3 (1.9) -0.17 (0.13)
(3) 5.0 (1.5) 5.8 (1.8) 5.4 (1.6) 6.8 (1.9) 0.07 (0.15)
(4) 4.9 (1.8) 7.4 (2.1) 5.3 (1.9) 4.1 (2.3) 0.43 (0.21)

Not LEP 23.2 (1.3) 29.5 (1.6) 24.8 (1.4) 22.1 (1.9) 0.86 (0.14)
Computer -4.9 (1.3) -6.8 (1.6) -6.1 (1.4) -0.9 (1.9) -0.41 (0.13)
Absence(2) -8.6 (1.1) -9.0 (1.3) -9.0 (1.2) -6.8 (1.4) -0.47 (0.12)

(3) -12.1 (1.6) -14.2 (1.9) -12.3 (1.7) -14.6 (2.1) -0.30 (0.18)
(4) -11.3 (2.3) -12.0 (2.7) -13.1 (2.5) -8.1 (3.1) -0.68 (0.21)
(5) -29.5 (2.6) -33.6 (3.3) -31.0 (2.8) -20.5 (5.0) -1.46 (0.24)

Lang (2) 1.4 (1.4) 0.5 (1.6) 1.4 (1.5) 1.2 (1.8) 0.09 (0.16)
(3) 7.8 (1.8) 9.1 (2.2) 7.8 (2.0) 7.2 (2.5) 0.21 (0.21)
(4) 7.7 (1.4) 9.4 (1.7) 7.9 (1.6) 6.4 (2.2) 0.36 (0.18)

No Games 5.6 (1.1) 6.9 (1.3) 6.3 (1.2) 4.1 (1.4) 0.24 (0.12)
Lunch (2) -8.5 (1.9) -9.1 (2.3) -9.9 (2.1) -7.4 (2.4) -0.38 (0.20)

(3) -16.2 (1.4) -18.9 (1.6) -17.7 (1.5) -16.8 (1.8) -0.47 (0.15)
(4) -16.1 (5.1) -21.2 (7.0) -18.1 (5.6) -11.3(10.4) -0.61 (0.40)
(5) -26.3 (7.7) -13.9 (8.7) -8.9 (8.9) -16.8 (8.4) -0.64 (0.62)
(6) 25.7 (5.1) 27.7 (5.7) 27.1 (5.6) 26.4 (5.5) 0.68 (1.79)

sigmaˆ2_sch .113 (.011) .161 (.017) .126 (.013) .155 (.017)
sigmaˆ2 1.0 1.0 1.0 1.0
log L -63494.47 -63399.96 -63385.73 -63215.95
# params 177 247 248 284
-----------------------------------------------------------------------------
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Table D1 (continued)

Reporting group estimates and SEs, 70-item scale

easi. items
term 2-mix 2-mix-prob membership
---------------------------------------------------
1/shift 96.9(21.7) -85.8(42.3) -2.30 (0.55)
Disable 24.1 (2.7) 12.4 (2.7) 1.25 (0.26)
Sex -9.0 (1.3) -20.1 (1.9) 0.75 (0.13)
Locate (2) 0.4 (2.9) 0.9 (2.5) -0.07 (0.16)

(3) -2.8 (2.2) -4.5 (2.1) 0.03 (0.16)
(4) -7.4 (3.6) -11.8 (3.6) 0.13 (0.19)
(5) -22.9(16.6) 6.3 (1.8) -50 **
(6) -0.3 (9.5) -5.9(10.9) 0.67 (0.55)
(7) 4.2 (7.2) -3.4 (5.3) 0.30 (0.52)
(8) 1.5 (5.6) 4.1 (5.0) -0.15 (0.41)

Accom 27.9 (3.5) 24.3 (3.9) 0.41 (0.34)
Race (2) -37.2 (2.7) -30.2 (3.7) -0.48 (0.23)

(3) -19.6 (2.0) -14.8 (2.3) -0.35 (0.16)
(4) 7.8 (2.4) -0.0 (2.5) 0.57 (0.19)
(5) -18.8 (7.0) -16.6(10.3) -0.28 (0.66)
(6) 0.2 (6.1) -6.3 (7.3) 0.16 (0.47)

Enrol (2) -0.9 (5.1) 2.3 (5.5) -0.31 (0.42)
(3) -1.5 (5.1) 1.2 (5.9) -0.25 (0.43)
(4) -8.1 (5.1) -5.8 (5.6) -0.25 (0.41)

Exp (2) 1.9 (1.8) -2.0 (2.0) 0.33 (0.13)
(3) 5.3 (1.8) 1.9 (1.9) 0.30 (0.14)
(4) 5.7 (2.2) 4.1 (2.2) 0.22 (0.16)

Not LEP 29.4 (1.8) 18.7 (2.3) 0.76 (0.16)
Computer -4.7 (1.6) -0.9 (2.1) -0.43 (0.15)
Absence(2) -8.7 (1.4) -9.2 (1.5) -0.05 (0.11)

(3) -14.6 (2.0) -8.1 (2.5) -0.50 (0.19)
(4) -12.8 (2.8) -8.3 (3.4) -0.47 (0.25)
(5) -31.9 (3.5) -24.6 (3.4) -0.84 (0.27)

Lang (2) 2.3 (1.8) 1.2 (1.7) 0.10 (0.13)
(3) 9.2 (2.2) 7.0 (2.3) 0.18 (0.18)
(4) 8.6 (1.8) 1.4 (2.1) 0.58 (0.15)

Games 6.0 (1.4) 3.1 (1.8) 0.21 (0.12)
Lunch (2) -10.0 (2.4) -2.1 (2.6) -0.73 (0.19)

(3) -19.8 (1.8) -14.9 (2.2) -0.40 (0.15)
(4) -19.5 (5.4) -9.0 (8.2) -0.81 (0.59)
(5) -17.2(17.4) -17.9(14.5) 0.07 (0.77)
(6) 25.4(11.1) 10.7 (6.4) 1.63 (0.63)

sigmaˆ2_sch .145 (.019) .151 (.017)
sigmaˆ2 1.0 1.0
log L -63148.75 -63047.61
---------------------------------------------------
** - "infinite" SE
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Table D2

Guessing probabilities c_j for 3PL
and c.d_j for 2-guess models

item 3PL 2-guess item 3PL 2-guess
--------------------------------------------------
1 0.46 0.08 36 0.27 0.02
2 0 0.08 37 0.31 0.07
3 0.47 0.07 38 0 0.05
4 0.40 0.05 39 0 0.03
5 0 0 40 0 0.00
6 0.15 0.02 41 0.034 0.08
7 0.003 0 42 0.26 0.07
8 0 0 43 0.11 0.09
9 0.34 0.08 44 0.33 0.07
10 0.069 0.06 45 0 0.06
11 0 0.06 46 0 0.05
12 0.12 0.02 47 0.065 0.03
13 0.064 0.04 48 0.016 0.01
14 0 0.01 49 0.18 0.08
15 0 0.07 50 0.13 0.02
16 0.21 0.03 51 0 0.04
17 0.41 0.04 52 0.16 0.08
18 0.078 0.05 53 0.010 0
19 0 0.04 54 0 0.08
20 0.48 0.06 55 0.25 0.02
21 0.34 0.06 56 0.17 0.05
22 0.15 0.01 57 0.25 0.05
23 0.16 0.05 58 0.22 0.02
24 0.065 0.03 59 0.25 0.01
25 0.19 0.03 60 0.13 0.04
26 0 0.08 61 0.17 0.07
27 0.30 0.07 62 0.097 0.08
28 0.19 0.01 63 0.49 0.06
29 0.007 0.01 64 0.40 0.06
30 0.15 0 65 0 0.08
31 0.20 0 66 0.21 0.04
32 0 0 67 0 0.06
33 0.74 0.01 68 0.13 0
34 0.050 0.01 69 0.056 0.05
35 0.59 0 70 0 0.06
--------------------------------------------------
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Table D3

Engaged and non-engaged item parameters for 2-guess-prob model

Engaged Non-engaged Engaged Non-engaged
item a2 b2 a1 Cut item a2 b2 a1 Cut
----------------------------------------------------------------------
1 1.85 0.46 -0.03 -4.1 36 -0.49 0.62 -0.56 -0.2
2 2.41 1.12 -0.14 -2.3 37 0.57 0.87 -0.35 -1.1
3 0.98 0.37 -0.43 -3.8 38 -1.43 1.16 -51 -20
4 0.03 0.62 -0.24 -0.4 39 -2.50 1.17 -51 -20
5 -4.57 1.88 -3.32 0.7 40 -5.51 1.49 -51 -20
6 -1.44 0.73 -1.22 0.3 41 1.41 0.83 -0.69 -2.5
7 -2.74 1.55 -2.44 0.2 42 1.13 0.81 -0.33 -1.8
8 -4.44 1.05 -51 -20 43 0.70 0.65 -1.55 -3.5
9 1.46 0.62 -0.29 -2.8 44 0.40 0.45 -1.24 -3.6

10 -0.39 0.90 -1.82 -1.6 45 -0.24 1.02 -2.83 -2.5
11 -0.64 0.84 -51 -20 46 -0.27 1.17 -2.57 -2.0
12 -1.07 1.08 -1.05 0.0 47 -1.48 1.02 -1.84 -0.4
13 -0.56 0.77 -2.32 -2.3 48 -2.26 0.89 -3.96 -1.9
14 -3.55 1.12 -52 -20 49 0.87 0.71 -0.89 -2.5
15 0.26 1.20 -2.75 -2.5 50 -1.12 0.91 -1.30 -0.2
16 -0.52 0.73 -1.01 -0.7 51 -0.89 0.73 -4.56 -5.0
17 -0.17 0.45 -0.27 -0.2 52 0.55 0.76 -1.03 -2.1
18 -0.22 0.66 -2.43 -3.4 53 -2.87 1.30 -2.89 -0.0
19 -1.61 1.36 -3.04 -1.1 54 2.08 0.89 -0.46 -2.9
20 0.94 0.48 -0.15 -2.3 55 -0.24 0.89 -0.65 -0.5
21 0.94 0.77 -0.17 -1.4 56 0.27 0.94 -1.01 -1.4
22 -1.43 0.62 -1.24 0.3 57 0.31 0.91 -0.43 -0.8
23 0.42 0.78 -1.12 -2.0 58 -1.09 0.49 -1.14 -0.1
24 -0.29 1.05 -1.54 -1.2 59 -1.00 0.49 -0.84 0.3
25 -0.85 0.56 -1.56 -1.3 60 -0.38 0.96 -1.37 -1.0
26 1.09 0.64 -2.03 -4.9 61 1.55 0.83 -0.29 -2.2
27 1.04 0.77 -0.06 -1.4 62 1.93 1.00 0.10 -1.8
28 -1.13 0.46 -1.47 -0.7 63 0.47 0.47 0.03 -0.9
29 -2.32 0.91 -4.39 -2.3 64 0.74 0.85 0.14 -0.7
30 -1.81 0.48 -1.38 0.9 65 1.30 1.15 -1.05 -2.8
31 -1.39 0.48 -1.15 0.5 66 -0.66 0.78 -0.96 -0.4
32 -6.68 2.04 -52 -20 67 0.62 1.12 -1.27 -1.7
33 1.81 0.26 0.79 -3.9 68 -1.73 0.95 -1.11 0.6
34 1.00 0.91 -0.92 -2.1 69 -0.73 0.93 -2.14 -1.5
35 0.55 0.19 0.02 -4.1 70 0.00 0.68 -4.33 -6.4
----------------------------------------------------------------------
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D.2 Parameter estimates for MIMIC models – extensive teacher
data

Table D4
Reporting group estimates and SEs, 70-item scale

engaged
term MIMIC 3PL 2-guess 2-guess-prob membership
----------------------------------------------------------------------------
1 150.6(38.4) -0.67 (1.16)
No disability 18.0 (2.4) 22.8 (3.0) 18.6 (2.6) 12.2 (4.0) 1.00 (0.23)
Girl -6.6 (1.1) -7.8 (1.3) -7.1 (1.2) -7.8 (1.4) -0.17 (0.13)
Locate (2) -1.3 (2.6) -2.4 (2.8) -2.2 (2.8) -3.5 (2.9) 0.24 (0.20)

(3) -2.0 (2.1) -1.7 (2.5) -2.2 (2.5) -6.8 (2.6) 0.27 (0.15)
(4) -1.9 (3.1) -2.1 (3.3) -1.5 (3.7) -4.5 (3.9) 0.06 (0.28)
(6) 5.4 (7.6) 8.3 (8.0) 8.9 (8.4) -5.6(10.2) 1.09 (0.99)
(7) -1.3 (6.7) -0.1 (7.4) -2.9 (7.2) 1.5 (9.0) -0.93 (0.61)
(8) 6.3 (5.4) 2.2 (5.8) 6.1 (5.7) 1.4 (4.9) 2.78 (2.02)

Not accom 27.1 (3.0) 35.4 (4.1) 27.8 (3.3) 22.6 (6.0) 1.23 (0.30)
Race (2) -28.7 (2.3) -33.2 (2.8) -31.5 (2.7) -28.2 (3.0) -1.30 (0.26)

(3) -25.3 (1.8) -17.9 (2.0) -16.9 (1.9) -15.4 (2.4) -0.63 (0.25)
(4) 4.2 (2.1) 3.8 (2.5) 3.2 (2.3) 4.4 (2.7) 0.08 (0.30)
(5) -19.8 (7.5) -27.3 (6.8) -23.6 (7.1) -11.4 (8.6) -1.16 (0.58)
(6) -4.2 (7.2) -5.4 (9.7) -4.3 (8.1) 0.2 (7.8) -0.70 (0.60)

Enrol (2) -1.8 (4.4) -5.3 (5.5) -3.6 (4.7) 1.2 (5.2) -0.76 (0.83)
(3) -3.5 (4.4) -7.0 (5.5) -6.2 (4.7) 2.0 (5.1) -1.03 (0.81)
(4) -10.5 (4.4) -16.1 (5.5) -13.2 (4.7) -1.4 (5.0) -1.46 (0.82)

Exp (2) 2.6 (1.7) 3.2 (2.0) 2.9 (1.9) 3.7 (2.1) -0.14 (0.16)
(3) 4.8 (1.8) 5.0 (2.1) 5.3 (2.0) 6.4 (2.2) -0.02 (0.18)
(4) 3.0 (2.3) 5.2 (2.6) 3.4 (2.6) 3.3 (2.7) 0.27 (0.24)

Not LEP 23.0 (1.5) 28.0 (1.8) 24.5 (1.6) 21.3 (2.1) 0.96 (0.17)
No computer -4.4 (1.5) -6.5 (1.8) -5.9 (1.6) 0.5 (2.1) -0.53 (0.15)
Absence(2) -7.5 (1.2) -8.0 (1.5) -7.4 (1.3) -6.5 (1.6) -0.35 (0.13)

(3) -12.3 (1.8) -13.4 (2.1) -12.6 (2.0) -14.4 (2.4) -0.20 (0.23)
(4) -10.0 (2.6) -10.0 (3.0) -11.4 (3.0) -5.5 (3.3) -0.75 (0.24)
(5) -29.0 (3.0) -32.6 (3.6) -30.7 (3.3) -23.2 (6.0) -1.21 (0.34)

Lang (2) 3.0 (1.5) 2.2 (1.8) 3.4 (1.7) 4.0 (2.0) -0.03 (0.20)
(3) 9.2 (2.0) 9.8 (2.4) 10.3 (2.2) 10.5 (2.9) 0.06 (0.27)
(4) 8.3 (1.6) 7.9 (1.4) 8.8 (1.8) 9.7 (2.5) 0.20 (0.23)

No games 6.3 (1.2) 7.0 (1.5) 7.5 (1.4) 4.7 (1.6) 0.21 (0.14)
Lunch (2) -7.8 (2.2) -8.6 (2.6) -8.8 (2.4) -10.0 (2.7) -0.14 (0.26)

(3) -16.0 (1.6) -18.1 (1.8) -17.8 (1.8) -18.6 (2.0) -0.29 (0.18)
(4) -15.2 (6.8) -18.5 (6.4) -17.9 (7.3) -7.2 (7.6) -0.58 (0.43)
(5) -22.9 (9.5) -22.1(12.1) -21.2(10.8) -23.1(15.8) -1.34 (0.72)
(6) 29.9 (6.2) 33.6 (6.5) 32.8 (9.5) 25.8 (6.8) 0.81 (2.06)

Degree (4) 7.1 (1.4) 8.7 (1.7) 8.2 (1.6) 5.9 (1.8) 0.50 (0.15)
(5) 6.8 (3.3) 6.9 (3.6) 8.3 (3.6) 5.1 (4.0) 0.80 (0.43)
(6) 2.9 (9.7) -5.7(10.4) 3.7 (9.5) -7.1(10.2) 45 **
(7) -6.2 (6.7) -7.2 (6.9) -6.9 (7.2) 3.9 (7.9) -0.32 (0.58)

Mathed (2) -17.7(11.3) -27.2(14.0) -23.2(12.1) -9.9(16.5) 0.02 (0.98)
(3) -12.7(11.2) -20.1(13.8) -17.9(12.0) -9.4(16.4) 0.50 (1.01)

Math (2) -1.1(13.3) 1.0(17.4) -0.4(14.4) -6.9(18.0) -0.53 (0.94)
(3) 2.8(13.3) 5.9(17.5) 4.9(14.5) -13.2(18.1) 0.15 (0.98)

Mathc (2) 1.0 (2.2) 1.2 (2.6) 1.7 (2.5) 2.6 (2.7) -0.11 (0.24)
(3) 0.0 (2.3) -0.1 (2.7) 0.1 (2.5) 2.8 (2.8) -0.31 (0.25)
(4) -1.0 (2.8) -0.8 (3.3) -0.7 (3.1) -1.2 (3.5) -0.03 (0.29)

Tech (2) 4.3 (1.8) 5.6 (2.2) 4.6 (2.1) 6.0 (2.3) -0.16 (0.17)
Soft (2) 3.2 (1.4) 3.8 (1.6) 3.4 (1.5) 0.2 (1.9) 0.29 (0.15)
Train (2) -4.2 (1.4) -4.2 (1.7) -4.0 (1.6) -3.5 (1.9) 0.12 (0.14)
Studnum(2) 23.8 (9.0) 28.7(10.5) 22.8(10.0) -13.4(10.9) 2.58 (1.05)

(3) 12.4 (7.6) 14.8 (8.8) 9.1 (8.3) -12.7 (9.6) 1.59 (0.68)
(4) 2.4 (5.9) 4.8 (6.7) -0.7 (6.5) -22.0 (7.6) 1.07 (0.40)
(5) 9.2 (5.5) 12.9 (6.3) 8.1 (8.0) -15.5 (7.0) 1.28 (0.35)

Resourc(2) 0.3 (1.9) -1.1 (2.2) 0.1 (2.1) 1.3 (2.5) -0.06 (0.19)
(3) -0.0 (2.0) -2.0 (2.3) -0.4 (2.3) 0.6 (2.6) -0.02 (0.20)
(4) -0.6 (3.7) -2.5 (4.5) -1.7 (4.2) -2.2 (4.7) -0.25 (0.35)

sigmaˆ2_sch .130 (.015) .191 (.023) .152 (.020) .180 (.022)
sigmaˆ2 1.0 1.0 1.0 1.0
log L -49844.81 -49769.92 -49743.69 -49610.58
# params 199 269 270 329
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Table D4 (continued)
Reporting group estimates and SES, 70-item scale

easi. items
term 2-mix 2-mix-prob membership
--------------------------------------------------------
1 - -11.7(14.9) -1.11 (1.15)
No disability 19.8(3.1) 22.0 (3.3) -0.02 (0.25)
Girl -8.2 (1.4) 6.4 (2.1) -1.29 (0.18)
Locate (2) -3.7 (2.9) -8.2 (3.6) 0.25 (0.21)

(3) -5.2 (2.4) -7.0 (3.5) 0.12 (0.20)
(4) -6.0 (4.1) -12.0 (5.0) 0.41 (0.28)
(6) 5.6(11.0) 13.1(11.5) -1.03 (0.68)
(7) 0.3 (7.3) -31.3 (8.4) 2.64 (0.90)
(8) 1.8 (5.7) -9.8 (5.8) 1.45 (0.64)

Not accom 30.8 (3.9) 18.2 (4.2) 1.36 (0.38)
Race (2) -34.8 (2.9) -21.4 (3.8) -1.22 (0.30)

(3) -18.8 (2.1) -10.1 (3.1) -0.79 (0.22)
(4) 5.4 (2.5) 7.0 (3.4) -0.10 (0.26)
(5) -19.6 (7.4) 8.8 (9.0) -2.02 (0.64)
(6) -4.7 (6.7) -0.1 (8.1) -0.24 (0.54)

Enrol (2) -2.0 (6.6) -3.6 (6.3) 0.40 (0.45)
(3) -5.5 (6.8) 1.4 (6.0) 0.15 (0.45)
(4) -11.8 (6.7) -8.9 (6.0) -0.03 (0.46)

Exp (2) 1.8 (2.0) 5.3 (2.4) -0.27 (0.18)
(3) 4.8 (2.0) 6.0 (2.7) 0.05 (0.19)
(4) 2.2 (2.6) 4.4 (3.0) -0.10 (0.22)

Not LEP 26.8 (1.9) 18.9 (2.4) 0.84 (0.18)
No computer -4.9 (1.7) -8.1 (2.0) 0.10 (0.17)
Absence(2) -6.8 (1.4) -5.4 (1.6) -0.18 (0.15)

(3) -13.2 (2.1) -9.0 (2.6) -0.49 (0.22)
(4) -11.4 (2.9) -20.0 (4.0) 0.48 (0.30)
(5) -30.8 (3.9) -31.0 (4.7) -0.14 (0.38)

Lang (2) 4.6 (1.9) 2.0 (2.3) 0.18 (0.21)
(3) 11.4 (2.4) 5.6 (3.0) 0.38 (0.25)
(4) 10.2 (1.9) 7.9 (2.4) 0.17 (0.24)

No games 6.7 (1.4) 7.7 (1.7) -0.02 (0.14)
Lunch (2) -11.6 (2.6) -0.2 (3.3) -0.75 (0.28)

(3) -19.9 (1.9) -8.3 (2.2) -0.79 (0.16)
(4) -17.3 (6.7) -5.6 (6.1) -0.81 (0.40)
(5) -31.7(13.6) -8.1(12.1) -0.61 (0.72)
(6) 32.8(10.0) 31.2 (9.2) 0.12 (0.82)

Degree (4) 8.0 (1.7) 6.4 (2.1) 0.19 (0.15)
(5) 8.3 (4.1) 7.6 (4.2) 0.15 (0.30)
(6) 3.7(10.3) 16.9(12.3) -0.94 (0.87)
(7) -3.1 (8.0) -7.4 (9.3) 0.26 (0.63)

Mathed (2) -20.4(21.1) -42.8(16.7) 0.97 (1.25)
(3) -13.6(21.3) -36.4(17.7) 1.19 (1.32)

Math (2) -1.2(19.3) 7.7(16.8) -0.11 (1.15)
(3) 2.4(19.4) 16.8(17.8) -0.59 (1.23)

Mathc (2) 2.5 (2.7) 3.3 (3.3) -0.16 (0.26)
(3) 1.1 (2.8) 4.8 (3.3) -0.42 (0.26)
(4) -0.2 (3.2) 2.2 (4.0) -0.25 (0.32)

Tech (2) 2.3 (2.2) 5.2 (2.5) 0.08 (0.18)
Soft (2) 4.0 (1.7) 4.2 (2.1) -0.04 (0.16)
Train (2) -2.8 (1.7) -4.5 (2.1) 0.11 (0.16)
Studnum(2) 22.3(10.5) 26.2(11.5) -0.88 (1.28)

(3) 4.0 (9.0) 3.3 (9.9) 0.76 (0.67)
(4) -0.9 (6.5) 1.5 (7.2) -0.27 (0.53)
(5) 7.3 (5.9) 6.2 (6.6) 0.07 (0.46)

Resourc(2) -0.1 (2.2) 0.8 (2.7) -0.10 (0.19)
(3) -0.3 (2.3) 1.6 (3.1) -0.24 (0.21)
(4) -5.3 (4.6) -4.3 (4.9) -0.21 (0.34)

sigmaˆ2_sch .141 (.023) .173 (.021)
sigmaˆ2 1.0 1.0
log L -49569.81 -49443.71
# params 340 399
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Table D5

Guessing probabilities for 3PL and 2-guess models

item 3PL 2-guess item 3PL 2-guess
--------------------------------------------------
1 0.44 0.10 36 0.28 0.02
2 0 0.10 37 0.35 0.08
3 0.47 0.09 38 0 0.05
4 0.41 0.06 39 0 0.03
5 0 0.00 40 0 0
6 0.16 0.02 41 0 0.10
7 0 0 42 0.24 0.09
8 0 0 43 0.11 0.09
9 0.39 0.10 44 0.34 0.07
10 0.079 0.07 45 0 0.09
11 0 0.07 46 0 0.06
12 0.11 0.04 47 0.075 0.03
13 0.069 0.04 48 0.017 0.02
14 0 0.02 49 0.15 0.10
15 0 0.08 50 0.13 0.03
16 0.22 0.05 51 0 0.04
17 0.41 0.05 52 0.18 0.10
18 0.063 0.07 53 0.011 0
19 0 0.06 54 0 0.10
20 0.48 0.07 55 0.26 0.02
21 0.32 0.08 56 0.16 0.07
22 0.14 0.01 57 0.21 0.06
23 0.14 0.06 58 0.23 0.02
24 0.050 0.05 59 0.26 0.01
25 0.19 0.04 60 0.13 0.05
26 0 0.02 61 0.16 0.09
27 0.35 0.08 62 0.11 0.09
28 0.20 0.02 63 0.51 0.08
29 0.013 0.02 64 0.39 0.09
30 0.16 0.01 65 0 0.10
31 0.21 0.01 66 0.22 0.05
32 0 0.00 67 0 0.08
33 0.75 0.10 68 0.13 0
34 0.026 0.10 69 0.063 0.06
35 0.58 0.08 70 0 0.06
---------------------------------------------------
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Table D6

Engaged and non-engaged item parameters for 2-guess-prob model

Engaged Non-engaged Engaged Non-engaged
item a2 b2 a1 Cut item a2 b2 a1 Cut
----------------------------------------------------------------------
1 4.28 0.55 0.01 -7.8 36 1.45 0.68 -0.42 -2.8
2 3.10 1.10 -0.23 -3.0 37 2.14 0.80 -0.27 -3.0
3 3.76 0.44 -0.38 -9.5 38 -0.95 1.13 -51 -20
4 2.37 0.59 -0.21 -16 39 -2.46 1.24 -5.22 -2.2
5 -6.73 1.89 -3.19 1.9 40 -7.08 1.63 -51 -20
6 0.66 0.66 -1.16 -2.8 41 2.83 0.86 -0.68 -4.1
7 -3.72 1.56 -2.25 0.9 42 2.82 0.79 -0.36 -4.1
8 -3.96 1.09 -51 -20 43 2.85 0.62 -1.54 -7.1
9 3.34 0.67 -0.04 -5.0 44 3.33 0.40 -1.38 -11

10 3.89 0.83 -1.90 -7.0 45 1.12 0.88 -6.99 -9.2
11 0.57 0.90 -51 -20 46 -0.15 1.23 -2.60 -2.0
12 -0.56 1.11 -1.01 -0.4 47 -0.31 0.96 -1.87 -1.6
13 1.04 0.78 -2.31 -4.3 48 -0.97 0.90 -3.60 -2.9
14 -2.55 1.03 -52 -20 49 2.80 0.71 -1.10 -5.5
15 0.83 1.11 -3.37 -3.8 50 0.25 0.89 -1.28 -1.7
16 1.28 0.74 -0.88 -2.9 51 0.96 0.73 -4.20 -7.1
17 2.41 0.49 -0.14 -5.2 52 2.24 0.78 -0.90 -4.0
18 1.67 0.70 -2.22 -5.5 53 -3.09 1.33 -2.90 0.1
19 -2.08 1.39 -2.72 -0.5 54 2.96 0.98 -0.26 -3.3
20 3.68 0.46 -0.26 -8.6 55 1.08 0.88 -0.50 -1.8
21 2.37 0.84 -0.04 -2.9 56 1.62 0.88 -1.13 -3.1
22 0.52 0.66 -1.20 -2.6 57 1.61 0.89 -0.56 -2.4
23 2.35 0.72 -1.54 -5.4 58 1.54 0.51 -1.11 -5.2
24 1.01 0.93 -1.93 -3.2 59 1.40 0.54 -0.63 -3.8
25 1.54 0.58 -1.43 -5.1 60 0.55 0.99 -1.40 -2.0
26 2.87 0.72 -1.78 -6.4 61 2.88 0.88 -0.21 -3.5
27 2.84 0.76 0.15 -3.5 62 2.31 1.13 0.28 -1.8
28 1.53 0.48 -1.27 -5.8 63 3.17 0.47 0.17 -6.4
29 -0.56 0.82 -5.11 -5.6 64 2.43 0.78 0.07 -3.0
30 0.99 0.44 -1.21 -5.0 65 1.41 1.24 -0.76 -1.8
31 1.61 0.41 -1.27 -7.0 66 1.19 0.76 -0.91 -2.8
32 -8.98 2.00 -52 -20 67 1.02 1.16 -1.19 -1.9
33 5.38 0.22 0.76 -21 68 -0.62 0.94 -1.07 -0.5
34 2.12 0.92 -0.86 -3.2 69 0.84 0.84 -2.21 -3.6
35 4.36 0.14 0.06 -30 70 1.95 0.70 -51 -20
-----------------------------------------------------------------------
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