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Preface

Practitioners and statisticians are often faced with incomplete or censored data.
In life testing, censored samples are present whenever the experimenter does not
observe the failure times of all units placed on the life test. This may happen
intentionally and unintentionally and may be caused, e.g., by time constraints
on the test duration like in Type-I censoring, by requirements on the minimum
number of observed failures, or by the structure of a technical system. Naturally,
the probabilistic structure of the resulting incomplete data depends heavily on the
censoring mechanism and so suitable inferential procedures become necessary.

Progressive censoring can be described as a censoring method where units
under test are removed from the life test at some prefixed or random inspection
times. It allows for both failure and time censoring. Many modifications of the
standard model have been developed, but the basic idea can be easily described
by progressive Type-II censoring which can also be considered as the most
popular model. Under this scheme of censoring, from a total of n units placed
simultaneously on a life test, only m are completely observed until failure. Then,
given a censoring plan R D .R1; : : : ; Rm/:
• At the time x1WmWn of the first failure,R1 of the n�1 surviving units are randomly

withdrawn (or censored) from the life-testing experiment.
• At the time x2WmWn of the next failure, R2 of the n � 2 � R1 surviving units are

censored, and so on.
• Finally, at the time xmWmWn of the mth failure, all the remaining Rm D n � m �
R1 � � � � � Rm�1 surviving units are censored.

Note that censoring takes place here progressively in m stages. This scenario
is illustrated in Fig. 1 which may be one of the most reproduced figures in the
literature on progressive censoring. Clearly, this scheme includes as special cases
the complete sample situation and the conventional Type-II right censoring scenario.
The ordered failure times XR

1WmWn � � � � � XR
mWmWn arising from such a progressively

vii
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Figure 1 Illustration of progressive Type-II censoring.
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Figure 2 More than 50 years of progressive censoring: Histogram of quick search for publications
(zbMATH) from 1961–2013.

Type-II right censored sample are called progressively Type-II censored order
statistics. These are natural generalizations of the usual order statistics that have
been studied quite extensively during the past century.

Progressive censoring has been termed a relatively unexplored idea in the
monograph of Balakrishnan and Aggarwala [86] that appeared in 2000. Based
on the outcome of a quick search in the zbMATH1 database using the keyword
progressive* censor*, we constructed a histogram on the number of published
papers presented in Fig. 2.

It readily reveals that this statement was indeed true in the year 2000. But, the
histogram also shows that the number of publications since this time has grown
very fast and that it is still growing with about 200 papers in the last five years.

1http://zbmath.org.

http://zbmath.org.


Preface ix

Moreover, the topics addressed have by now become quite diverse. They range
from distribution theory and various approaches in inference to modifications of the
model, etc. All these new developments pertaining to progressive censoring, since
the publication of the previous book by Balakrishnan and Aggarwala [86], have
been carefully and systematically analyzed in the present book. Thus, it provides an
up-to-date account on the state of the art on progressive censoring!

As mentioned above, the research on progressive censoring has grown fast
in the recent past and great progress has been made with regard to distribution
theory as well as in developing inferential procedures. In this book, we review the
relevant literature and present a comprehensive, detailed, and unified account of
the material. Due to the burgeoning literature on progressive censoring and many
different developments that have taken place, we have presented here a detailed
coverage of the following key topics which also reflect the structure of the book:

• Distribution Theory and Models
After introducing the basic notion and models of progressive censoring, we
present a comprehensive treatment of distributional properties of progressively
censored order statistics. Even though the major part is devoted to progressive
Type-II censoring, we give details on various other models like progressive
Type-I censoring, progressive hybrid censoring, adaptive progressive censoring,
and progressive censoring for nonidentical distributions and dependent variates.
The material not only includes general results on joint, marginal, and conditional
distributions and the dependence structure of the failure times, but also focuses
on life distributions that are most important in applications (e.g., exponential
and Weibull distributions). Further topics are moments, recurrence relations,
characterizations, stochastic ordering, extreme value theory, simulation, and
information measures like Fisher information and Shannon entropy.

• Inference
The inferential topics cover linear, likelihood, and Bayesian inference in various
models of progressive censoring. We discuss point and interval estimation
for many life distributions as well as prediction problems. The discussion is
completed by nonparametric inferential approaches and statistical tests including
goodness-of-fit and precedence-type tests.

• Applications in Survival Analysis and Reliability
Finally, applications in survival analysis and reliability are provided. The pre-
sentation ranges from acceptance sampling, accelerated life testing including
step-stress testing, stress-strength models, and competing risks to optimal exper-
imental design. These ideas also provide testimony to the usefulness and
efficiency of progressive Type-II censoring as compared to conventional Type-
II censoring.

The book provides an elaborate discussion on progressive censoring, with a
special emphasis on Type-II right censoring. Even though we provide proofs of
the results in most cases, it was not possible to include each detail especially
when the derivations become quite technical. Further, we illustrate the methods and
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procedures by several plots and diagrams just to reveal the censoring mechanism
and the differences between the models. All the inferential results are illustrated
with several numerical examples and many tables are also provided. In this regard, it
needs to be mentioned here that many of the tables of best linear unbiased estimators
and optimal progressive censoring schemes that are in the book of Balakrishnan
and Aggarwala [86] will still continue to be useful for practitioners. For illustrative
purposes and the support of future research, we have included a great number of
progressively censored data sets which have been analyzed in the literature and used
to illustrate the inferential methods. Many generalizations to some other related
censoring schemes like generalized order statistics and sequential order statistics
and their applications are also highlighted. An extensive up-to-date bibliography
on progressive censoring has also been included which reflects the current state
of research. All these aspects of this book will make it a valuable resource for
researchers and graduate students interested in the area of life testing and reliability
and also serve as an important reference guide for reliability practitioners.

We have written this book with the sincere hope that more practitioners will
recognize the versatility of progressive censoring and be tempted to employ in their
work this type of censoring/sampling scheme and the methodologies based on it.
We also hope that the mathematical ideas and results presented in this book will
motivate the aspiring researchers (among the statistical and the engineering com-
munities) to explore further into the theoretical aspects of progressive censoring.

The book has been written in a self-contained manner and, therefore, will be
quite suitable either as a text for a graduate topic course, a text for a directed-reading
course, or as a handbook on progressive censoring. Though a one-year mathematical
statistics course at the undergraduate level will provide an adequate background to
go over the introductory chapters of this book, a basic exposition to order statistics
(such as the one based on the book

A First Course in Order Statistics

by Arnold, Balakrishnan, and Nagaraja [58]) will make the journey through this
book a lot more pleasant! In order to show different roadmaps through the book, we
have added two flow charts in Figs. 3 and 4. They illustrate several possibilities to
go through the material. However, you may leave the path at any crossing, just to
explore! Some advanced topics included in the book require a deeper knowledge
of mathematics and statistics and may be mainly of interest to researchers and
advanced practitioners. In this direction, the book serves as a comprehensive
compendium on progressive censoring providing the background for research and
applications of progressive censoring.

We express our sincere thanks to Allen Mann, Mitch Moulton, and Kristin Purdy
(all of Birkhäuser, Boston) for their enthusiasm and keen interest in this project from
the very beginning. Our thanks also go to Dharmaraj Raja (Project Manager at SPi
Technologies India Pvt. Ltd) for helping us with the final production of the volume.
Our final appreciation goes to the Natural Sciences and Engineering Research
Council of Canada for providing research grants which certainly facilitated our
many meetings during the course of this project, thus enabling the work to progress
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Figure 3 Journey through the book: the probability and model path.
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smoothly. This book has been a true labor of love for us and it is our sincere hope and
wish that it will serve as a valuable guide for researchers in the years to come and
stimulate much more research activity in this interesting and useful area of research!

Section and Equation Numbering and Referencing

Throughout this book, chapters, sections, and subsections are labeled consecutively
by Arabic numbers. Theorems, definitions, remarks, examples, etc., are jointly
labeled as chapter no.section no.X, where X is restarted by a new section (for
instance, Theorem 1.2.3). Equations are referenced by (chapter no. X) where the
counter X is restarted by a new chapter (for example, (3.5) refers to the fifth
numbered equation in Chap. 3).

Further, theorems, definitions, remarks, examples, etc., are set in sans serif font.
The end of a proof is marked by �.

References are organized in the bibliography in alphabetical order by the first
author and consecutively numbered. They are referred to in an author–number style
like Cramer and Balakrishnan [292]. For three and more authors, the reference has
the form Balakrishnan et al. [129].

Hamilton, ON, Canada N. Balakrishnan
Aachen, Germany Erhard Cramer
February 2014
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Distribution Theory and Models



Chapter 1
Progressive Censoring: Data and Models

Given numbers .R1; : : : ; Rr/ (the censoring scheme or censoring plan) and n units
put simultaneously on a life test, the general idea of progressive censoring is to
withdraw some units from the test within the test duration. As depicted in Fig. 1.1,
units on test are removed from the experiment at times �1 < � � � < �r provided that
enough units are available at each particular time point �j .

Although various models of progressively censored data have been discussed in
the literature,1 most of these models can be traced back to either

(1) progressive Type-II censoring, or
(2) progressive Type-I censoring,

with possibly some variations on them. In progressive Type-II censoring, the
intervention times �j correspond to observed failure times in the sense that
�j is the next failure time after withdrawing some units from the experiment.
Due to the design of the experiment, the intervention times �1 < � � � < �r
are random, but both the number of observations and the number of removals
at �j are fixed. This mechanism is a generalization of Type-II right censoring
(cf. Arnold et al. [58], David and Nagaraja [327]). The procedure is introduced in
detail in Sect. 1.1.1.

Progressive Type-I right censoring is based on prefixed time points �1 < � � � < �r .
Failure times are successively observed until the final time point �r at which the
experiment is terminated. Therefore, the intervention times �1 < � � � < �r are
all fixed, but the sample size as well as the effectively employed censoring plan
is random (and may differ from the originally planned censoring scheme due to
the unavailability of enough surviving units to carry out the required censoring at
some stage). Furthermore, the test duration is bounded by �r , while it is random

1As pointed out in Balakrishnan and Aggarwala [86, p. 2], the term progressive censoring has also been
used as an alternate term for sequential testing (see, e.g., Chatterjee and Sen [246], Majumdar and
Sen [631], and Sinha and Sen [805, 806]). Furthermore, the term multi-censored sample is used (see,
e.g., Herd [440]).

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 1,
© Springer Science+Business Media New York 2014
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�
�1

withdrawn

R1

�
�2

withdrawn

R2

�
�3

withdrawn

R3

�
�r

withdrawn

Rr

Fig. 1.1 Progressive censoring of a life test with intervention times �1 < � � � < �r and censoring
scheme .R1; : : : ; Rr/

in the case of progressive Type-II censoring. It can be seen as a generalization of
Type-I right censoring used quite commonly, e.g., in survival analysis (cf. Klein and
Moeschberger [536]). The construction process of progressive Type-I censoring is
presented in Sect. 1.1.2.

In this chapter, we introduce the basic ideas of the censoring procedures sketched
above and illustrate the generation processes. Furthermore, we provide some sample
data which are used throughout this book for illustrative purposes. As an example
of a variation of these models, we present two kinds of

(3) progressive hybrid censoring

in Sect. 1.1.3. Further variations of progressively censored data are introduced in the
following chapters.

1.1 Progressively Censored Data

The following notations are used throughout this book.

Notation 1.1.1. In progressive censoring, the following notations are used:

(1) n;m, R1;R2; : : : 2 N0 are all integers;
(2) m is the sample size (which may be random in some models);
(3) n is the total number of units in the experiment;
(4) Rj is the number of (effectively employed) removals at the j th censoring

time;
(5) R D .R1; : : : ; Rr/ denotes the censoring scheme, where r denotes the

number of censoring times.

It is worth mentioning that the following procedures are based on the random
variables (or their realizations) only. Distributional assumptions are not involved in
the construction process of progressively censored order statistics. Therefore, we
introduce the basic models from a data perspective. The procedures are illustrated
by the following data set often used in the progressive censoring framework.
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Data 1.1.2 (Nelson [676], p. 105). The following 19 measurements are failure
times (in minutes) for an insulating fluid between two electrodes subject to a
voltage of 34 kV:

0:19 0:78 0:96 1:31 2:78 3:16 4:15 4:67 4:85 6:50

7:35 8:01 8:27 12:06 31:75 32:52 33:91 36:71 72:89

1.1.1 Progressive Type-II Censoring

In the progressive Type-II censoring approach, the removals are carried out at
observed failure times. The prefixed number of units is immediately withdrawn from
the surviving units upon observing a failure. Therefore, the number of observations
is fixed in advance, while the duration of the experiment is random. The generation
of progressively Type-II censored order statistics can be carried out according to the
following procedure.

Procedure 1.1.3 (Generation of progressively Type-II censored order
statistics). Let .˝;A; P / be a probability space and X1; : : : ; Xn be random
variables on .˝;A; P /. Let R D .R1; : : : ; Rm/ be a censoring scheme.

For ! 2 ˝, the progressively Type-II censored sample

XR
1WmWn.!/; : : : ; XR

mWmWn.!/;

based on X1.!/; : : : ; Xn.!/, is generated as follows:

� Calculate the order statistics X1Wn.!/ � � � � � XnWn.!/;
� Let N1 D f1; : : : ; ng, i D 1;

� Let ki D minNi and put XR
i WmWn.!/ D Xki Wn.!/;

� Choose randomly a without-replacement sample Ri � Ni n fki g with jRi j D
Ri ;

� If i < m, set NiC1 D Ni n .fki g [Ri / and go to �, or else stop.

Thus,

XR
1WmWn.!/; : : : ; XR

mWmWn.!/ D .Xk1Wn.!/; : : : ; XkmWn.!//:

Figure 1.2 depicts the generation procedure of progressively Type-II censored
order statistics.

Given n;m and a censoring scheme R, we define the set of admissible (Type-II)
censoring schemes as

Cm
m;n D

n
.r1; : : : ; rm/ 2 N

m
0 W

mX
iD1

ri D n �m
o
: (1.1)
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Fig. 1.2 Generation process of progressively Type-II censored order statistics
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Fig. 1.3 Set C 3
3;13 of admissible censoring schemes and its convex hull

The set C 3
3;13 is displayed in Fig. 1.3. The admissible censoring schemes are

represented by a dot. They are located in the shaded area which is the convex hull
of C 3

3;13.
For convenience, we introduce the notation 0�k for k successive zeros. Thus, the

scheme .0; 0; 3; 0; 3; 0; 0; 5/ is written in short as .0�2; 3; 0; 3; 0�2; 5/, or generally

.a1; 0
�n1; a2; a3; 0�n2 ; a4; 0�n3/ D .a1; 0; : : : ; 0„ ƒ‚ …

n1 times

; a2; a3; 0; : : : ; 0„ ƒ‚ …
n2 times

; a4; 0; : : : ; 0„ ƒ‚ …
n3 times

/:

On this note, .1�m/ means the censoring scheme .1; : : : ; 1/ 2 Cm
m;n etc. Table 1.1

presents some particular schemes which will be important in the subsequent
analysis.
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Scheme R D .R1; : : : ; Rm/ Meaning

Om D .0�m�1; n�m/ Right censoring, i.e., first m order statistics in a sample of
size n

.0�m/ Complete (ordered) sample of size m D n

O1 D .n�m; 0�m�1/ First-step censoring plan (FSP), i.e., removal takes place
just after the first failure

Ok D .0�k�1; n�m; 0�m�k/ One-step censoring plan (OSP), i.e., removal takes place
just after the kth failure, 2 � k � m� 1

Table 1.1 Particular censoring schemes

For one-step censoring plans, progressive censoring is carried out only at one
failure time so that the censoring procedure is rather simple in this case. For
instance, the kth one-step censoring plan is defined as

Ri D
(
n �m; i D k;
0; otherwise.

It is denoted by Ok D .0�k�1; n � m; 0�m�k/, k D 1; : : : ; m. These particular
schemes will especially be of interest in the area of experimental design (see
Chap. 26). Up to this point, we note only that these censoring schemes are the
vertices of the convex hull of admissible schemes Cm

m;n which forms a simplex.
Of course, the vertices are also admissible schemes. Moreover, these particular
censoring plans yield both simple distributions and a quite simple probabilistic
structure in the IID case which will be very useful later on.

For progressive Type-II censoring, we introduce the numbers

�k D
mX
jDk

.Rj C 1/; (1.2)

which represent the number of surviving objects before the kth failure, k D
1; : : : ; m. These numbers will be very useful in this area because there is a one-
to-one (linear) relationship to the censoring scheme R: Rj D �j � �jC1 � 1,
j D 1; : : : ; m � 1, and Rm D �m � 1. In order to emphasize this connection,
we use the notation �j .R/ if the dependence on the censoring plan is important.

In particular, it is easy to see that, for R 2 Cm
m;n,

n D �1 > �2 > � � � > �m � 1: (1.3)

This illustrates that we havem� 1 free parameters. Moreover, the set of admissible
.�2; : : : ; �m/ is given by

Gm;n D f.�2; : : : ; �m/ 2 N
m�1 W n � 1 � �2 > � � � > �m � 1g: (1.4)

The set G3;13 is illustrated in Fig. 1.4.
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Fig. 1.4 Set G3;13 of admissible .�2; �3/ and its convex hull .�1 D 13/

R 2 Cm
m;n �1; : : : ; �m

.0; : : : ; 0/ D .0�m/ �j D m� j C 1

.R; : : : ; R/D .R�m/; R 2 N0 �j D .m� j C 1/.RC 1/
Om D .0�m�1; n�m/ �j D n� j C 1
Ok (OSP) �j D

(
n� j C 1; 1 � j � k
m� j C 1; k C 1 � j � m

Table 1.2 Censoring schemes and corresponding �j ’s

The one-to-one relationship between Cm
m;n and Gm;n shows that the number of

admissible Type-II progressive censoring schemes is given by

jCm
m;nj D jGm;nj D

 
n � 1
m � 1

!
: (1.5)

Some censoring schemes and the corresponding �j ’s are given in Table 1.2.

Example 1.1.4. Using the Data 1.1.2, we illustrate the generation of progres-
sively Type-II censored order statistics by the example given in Viveros and
Balakrishnan [875] (see also Balakrishnan and Aggarwala [86, p. 95]). We
consider the censoring scheme R D .0�2; 3; 0; 3; 0�2; 5/. The observed failure
times are given by

0:19 0:78 0:96 1:31 2:78 4:85 6:50 7:35
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Fig. 1.5 Generation process of a progressively Type-II censored data set from Data 1.1.2 (filled
circle denotes an observed failure time, open crossed circle denotes a censored value)

The items belonging to the following lifetimes are progressively censored:

Censoring time Censored data

x3W8W19 3:16 8:01 36:71

x5W8W19 4:15 4:67 31:75

x8W8W19 8:27 12:06 32:52 33:91 72:89

Figure 1.5 depicts the generation procedure of progressively Type-II censored
order statistics in this particular setting for Data 1.1.2. As a result, we get
Data 1.1.5.

Data 1.1.5 (Nelson’s progressively Type-II censored data). Progressively
Type-II censored Data 1.1.2 with censoring scheme R D .0�2; 3; 0; 3; 0�2; 5/ are
as follows:

i 1 2 3 4 5 6 7 8

xi W8W19 0:19 0:78 0:96 1:31 2:78 4:85 6:50 7:35

Ri 0 0 3 0 3 0 0 5
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Remark 1.1.6. From the construction process of progressively Type-II censored
order statistics, it is clear that the first r progressively Type-II censored order
statistics XR

1WmWn; : : : ; XR
r WmWn (and thus their joint distribution) depend only on

the censoring numbers R1; : : : ; Rr�1 and the sample size �1 D n. Therefore, we
can alternatively use the right truncated censoring scheme

RBr�1 D .R1; : : : ; Rr�1/ (1.6)

and the notation XRBr�1

1WmWn ; : : : ; X
RBr�1
r WmWn for the Type-II right censored sample.

General Progressive Type-II Censoring

The notion of general progressively Type-II censored order statistics was introduced
in Balakrishnan and Sandhu [123] (see also Balakrishnan and Aggarwala [86]).
In addition to progressive Type-II censoring, left censoring of the data is also
introduced in this case. In particular, it is assumed that the first r failure times are not
observed. Then, starting with the .rC1/th failure, the progressive Type-II censoring
procedure described above is applied. Introducing the censoring scheme

R D .0�r ; RrC1; : : : ; Rm/ 2 C m
m;n; (1.7)

general progressively Type-II censored order statistics can be seen as a left censored
sample of the progressively Type-II censored order statistics. Namely, we have the
m � r observations

XR
rC1WmWn; : : : ; XR

mWmWn;

from the complete progressively Type-II censored sample XR
1WmWn; : : : ; XR

mWmWn.
In the sense of general progressive Type-II censoring, these random variables are
denoted by

X
RCr

rC1WmWn; : : : ; X
RCr
mWmWn

with the left truncated censoring scheme RCr D .RrC1; : : : ; Rm/ 2 Cm�r
m�r;n�r .

1.1.2 Progressive Type-I Censoring

In the progressive Type-I censoring approach, the removals are carried out at
prefixed censoring times

T1 < � � � < Tk;
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where the largest value Tk denotes the maximum experimental time. Therefore,
the lifetime experiment is terminated at Tk provided that some units have survived
until this time. Notice that the number of observationsm is random with a value in
f0; : : : ; ng. Moreover, it is worth mentioning that a progressive censoring scheme is
only prefixed for time Tj , 1 � j � k�1, because the experiment is terminated at Tk .
Thus, all remaining objects are removed at this time. In the literature, the censoring
scheme is also prefixed for the final censoring time Tk . However, this is only to
have censoring plans with dimension k. Since the experiment is terminated at Tk ,
all surviving units are removed from the life test. Therefore, the censoring number
Rk depends always on the history of the experiment and is of random nature, and
so the initially planned censoring scheme will be of dimension k � 1 in progressive
Type-I censoring. It is denoted by R0 D .R01; : : : ; R0k�1/. The corresponding set of
admissible censoring schemes is denoted by

C k�1
`;n D

n
.r1; : : : ; rk�1/ 2 N

k�1
0 W

k�1X
iD1

ri � n � `
o
;

where ` 2 f0; : : : ; ng may be a prefixed integer. For ` D n, the model corresponds
to common Type-I censoring. The parameter ` denotes the number of units that
are not progressively censored (but possibly Type-I censored at Tk). Notice that the
effectively applied censoring scheme is included in C k

k;n as defined in (1.1).

Procedure 1.1.7 (Generation of progressively Type-I censored order statis-
tics). Let .˝;A; P / be a probability space and X1; : : : ; Xn be random variables
on .˝;A; P /. Let R0 D .R01; : : : ; R0k�1/ be the initially planned censoring scheme
and let T1 < � � � < Tk be ordered real numbers with T0 D �1; TkC1 D 1.

For ! 2 ˝, the progressively Type-I censored sample

X
R;T
1WmWn.!/; : : : ; X

R;T
mWmWn.!/;

based on X1.!/; : : : ; Xn.!/, is generated as follows:

� Calculate the order statistics X1Wn.!/ � � � � � XnWn.!/;
� Define Pj D f˛ 2 f1; : : : ; ng W Tj�1 � X˛Wn.!/ < Tj g, 1 � j � k C 1;

� Let N1 D f1; : : : ; ng; ` D 0;

� Increase ` by 1 and let Q` D P`\N` D f�`;1; : : : ; �`;s`g with �`;1 < � � � < �`;s` ;
� If jN` \SkC1

˛D`C1 P˛j > R0`, then

choose randomly a without-replacement sample R` � N` \SkC1
˛D`C1 P˛ with

jR`j D R0` ;

else

let R` D jN`\SkC1
˛D`C1 P˛j, R˛ D 0, ˛ D `C1; : : : ; k, setQ˛ D ;, ˛ D `; : : : ; k,

and go to �;

� Set N`C1 D N` n .R` [ P`/ and go to �;
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Fig. 1.6 Generation process of progressively Type-I censored order statistics

�M DSk
`D1Q`; If m DM.!/ D jMj > 0, then

.X
R;T
j WmWn.!//jD1;:::;m D .Xj Wn.!//j2M:

.XR;T
j WM Wn/jD1;:::;M denotes the sample of progressively Type-I censored order

statistics. Notice that M D Sk
`D1Q` represents the observed order statistics

which may be an empty set. In this case, all random variables have been censored
during the experiment. The random variable M D jMj denotes the number of
observations, whereas the effectively applied censoring scheme is given by R D
.R1; : : : ; Rk/. By definition, Rj � R0j , j D 1; : : : ; k � 1. Notice that

Pk�1
jD1 Rj <Pk�1

jD1 R0j is possible which means that the total number of withdrawn units may
be smaller than the initially planned number of removals. For convenience, we
denote the number of observations in the intervals .�1; T1/ and ŒTj�1; Tj /, j 2
f2; : : : ; kg, by the random variables D1 and Dj , j 2 f2; : : : ; kg. Notice that
M DPk

jD1 Dj .
Figure 1.6 depicts the generation procedure of progressively Type-I censored

order statistics from an ordered sample x1Wn; : : : ; xnWn.

Example 1.1.8. Using Nelson’s data 1.1.2, we illustrate the generation of
progressively Type-I censored order statistics. First, let m D 3, T1 D 3, T2 D 9,
T3 D 18, and R0 D .2�2/. The observed failure times are given by

0:19 0:78 0:96 1:31 2:78 3:16 4:15 4:67 4:85 6:50

7:35 8:27 12:06

The items belonging to the following lifetimes are progressively censored:

Censoring time Censored data

T1 D 3 8:01 72:89

T2 D 9 31:75 36:71

T3 D 18 32:52 33:91
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Fig. 1.7 Generation process of a progressively Type-I censored data set from Data 1.1.2 (filled
circle denotes an observed failure time, open crossed circle denotes a censored value)

Thus, two units are left at the final censoring time T3 so that the total number
of progressively censored units is 6. The effectively applied censoring plan is
R D .2�3/. Figure 1.7 depicts the generation procedure of progressively Type-I
censored order statistics in this particular setting for Data 1.1.2. As a result, we
get Data 1.1.9.

Data 1.1.9 (Nelson’s progressively Type-I censored data). Progressively
Type-I censored Data 1.1.2 with initial censoring scheme R0 D .2�2/:

0:19 0:78 0:96 1:31 2:78 ?3 ?3 3:16 4:15 4:67

4:85 6:50 7:35 8:27 ?9 ?9 12:06 ?18 ?18

? indicates (progressive) Type-I censoring

Remark 1.1.10. Progressive Type-I censoring ensures that the maximum exper-
imental time is bounded by Tk . However, the number of observations is random
and may be zero. This scheme generalizes the usual Type-I censoring in the sense
that, for k D 1, both procedures coincide.
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Fig. 1.8 Generation process of progressively Type-I interval censored data

Progressive Type-I Interval Censoring

Figure 1.8 depicts the generation procedure of progressively Type-I interval cen-
sored data for an ordered sample x1Wn; : : : ; xnWn with censoring times T1 < � � � < Tk
(T0 D �1). In comparison to progressive Type-I censoring, only the number of
observationsDi in an interval .Ti�1; Ti � is given, i.e.,

Di D
nX

jD1
1.Ti�1;Ti �.Xj Wn/; 1 � i � k: (1.8)

The observed values of the progressively Type-I censored order statistics are not
available.

Aggarwala [11] pointed out that the censoring numbers R1; : : : ; Rk can also
result from a sample-dependent approach. Given percentages �1; : : : ; �k with
�k D 1, the effectively applied censoring plan is defined relative to the number
of surviving units. In particular, the censoring numbers are iteratively specified via

Ri D
j�
n�

iX
jD1

Dj �
i�1X
jD1

Rj

�
�i

k
D
j�
n�D�i �R�i�1

�
�i

k
; 1 � i � k: (1.9)

1.1.3 Progressive Hybrid Censoring

Childs et al. [260] and Kundu and Joarder [561] proposed two progressive hybrid
censoring procedures by introducing a stopping time T � to a progressively Type-II
censored experiment with progressively Type-II censored order statistics X1WmWn �
� � � � XmWmWn. The termination times are defined by a given (fixed) threshold time T
and the following definitions:

(i) T �1 D minfXmWmWn; T g. This procedure is called Type-I progressive hybrid
censoring scheme;

(ii) T �2 D maxfXmWmWn; T g. This procedure is called Type-II progressive hybrid
censoring scheme.
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Fig. 1.9 Generation process of Type-I progressive hybrid censored order statistics.

For Type-II censored data, the first stopping time has been proposed by Epstein
[352] and the second one by Childs et al. [259]. According to the above construction,
the number of observations is random. In particular, it is possible to have less than
m observations in Type-I progressive hybrid censoring, while in Type-II progressive
hybrid censoring, we will have at least m observations.

Type-I Progressive Hybrid Censoring

In this setup, the life-testing experiment is stopped when either m failures have
been observed or the threshold time T has been exceeded. Figure 1.9 depicts
the generation procedure of Type-I progressive hybrid censored order statistics. The
random variable K is defined by the property XKWmWn < T �1 � XKC1WmWn, where
X0WmWn D �1. The random variable � describes the removals at the termination
time. It is given by

� D
(
�m � 1 D Rm; XmWmWn � T;
�K; XmWmWn > T:

It has to be mentioned that the number of observations may be zero, i.e., for the case
when X1WmWn > T . We illustrate this procedure with Data 1.1.5.

Example 1.1.11. For the Data 1.1.5, we introduce a maximum experimental
time T D 7. Then, T �1 D minfx8W8W19; 7g D 7 is the termination time of the
life-testing experiment. Therefore, the resulting sample is given by

0:19 0:78 0:96 1:31 2:78 4:85 6:50

The units belonging to the following lifetimes are progressively censored:
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Fig. 1.10 Generation process of a Type-I progressively hybrid censored data set from Data 1.1.2
(filled circle denotes an observed failure time, open crossed circle denotes a censored value)

Censoring time Censored data

x3W8W19 3:16 8:01 36:71

x5W8W19 4:15 4:67 31:75

T D 7 7:35 8:27 12:06 32:52 33:91 72:89

Figure 1.10 depicts the generation procedure of Type-I hybrid progressively
censored order statistics in this particular setting for Data 1.1.2.

Data 1.1.12 (Nelson’s Type-I progressively hybrid censored data). Pro-
gressively Type-II censored Data 1.1.2 with initial censoring scheme R D
.0�2; 3; 0; 3; 0�2; 5/ and threshold T D 7:

i 1 2 3 4 5 6 7 8

xi 0:19 0:78 0:96 1:31 2:78 4:85 6:50 ?7

Ri 0 0 3 0 3 0 0 6

? indicates Type-I censoring



1.1 Progressively Censored Data 17

�
x1Wm�Wn

withdrawn

R1

�
x2Wm�Wn

withdrawn

R2

�
xm�1Wm�Wn

withdrawn

Rm�1

�
xmWm�Wn

�
xKWm�Wn

�

T �2

withdrawn

�

Fig. 1.11 Generation process of Type-II progressive hybrid censored order statistics.

Type-II Progressive Hybrid Censoring

As mentioned before, the number of observations is at leastm, i.e., the progressively
Type-II censored order statistics X1WmWn; : : : ; XmWmWn form the first m observations
in the sample. To be more precise, the number of observations is between m and
Rm C m. The idea of this hybrid procedure is to guarantee a minimum number
of m observations as well as to come as close as possible to a “minimum” test
duration specified by T . IfXmWmWn � T , the experiment terminates at themth failure
so that the progressive censoring procedure is carried out as initially planned. For
XmWmWn < T , we want to come as close as possible from below to the threshold T .
This means that after the mth failure all occurring failures are observed until the
threshold T is exceeded. Therefore, the censoring scheme is modified as follows:

R� D .R1; : : : ; Rm�1; 0�RmC1/ 2 C RmCm
RmCm;n:

The resulting sample is given by a right censored sample

XR�

1WRmCmWn; : : : ; X
R�

KWRmCmWn;

where K is defined by the inequality XR�

KWRmCmWn � T < XR�

KC1WRmCmWn
(XR�

RmCmC1WRmCmWn D 1). Figure 1.11 depicts the generation procedure of Type-II
progressive hybrid censored order statistics, where m� D Rm Cm. � is defined as
n �K �Pm�1

jD1 Rj .

Example 1.1.13. For the Data 1.1.5, we introduce a “minimum” experimental
time T D 18. Then, T �2 D maxfx8W8W19; 18g D 18 is the termination time of the
life-testing experiment. Therefore, the observed failure times are given by

0:19 0:78 0:96 1:31 2:78 4:85 6:50 7:35 8:27 12:06
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Fig. 1.12 Generation process of a Type-II progressively hybrid censored data set from Data 1.1.2
(filled circle denotes an observed failure time, open crossed circle denotes a censored value)

The units belonging to the following lifetimes are (progressively) censored:

Censoring time Censored data

x3W8W19 3:16 8:01 36:71

x5W8W19 4:15 4:67 31:75

T D 18 32:52 33:91 72:89

Figure 1.12 depicts the generation procedure of Type-II progressively hybrid
censored order statistics in this particular setting for Data 1.1.2.

Data 1.1.14 (Nelson’s Type-II progressively hybrid censored data). Type-
II progressively hybrid censored Data 1.1.2 with initial censoring scheme R D
.0�2; 3; 0; 3; 0�2; 5/ and threshold T D 18:

i 1 2 3 4 5 6 7 8 9 10 11

xi 0:19 0:78 0:96 1:31 2:78 4:85 6:50 7:35 8:27 12:06 18

Ri 0 0 3 0 3 0 0 0 0 0 ?3

? indicates Type-I censoring
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1.2 Probabilistic Models in Progressive Censoring

The progressively censored order statistics introduced in the preceding section are
directly constructed from a sample X1; : : : ; Xn of random variables. The generation
procedures are based only on the random variables or their realizations. Distribu-
tional properties of X1; : : : ; Xn are not involved in this process. In the following
chapters, we will consider several distributional assumptions for the underlying
joint cumulative distribution function FX1;:::;Xn . For brevity, we introduce the most
important cases here.

Most papers on progressive censoring deal with the IID model.

Model 1.2.1 (IID model). Let F be a cumulative distribution function.
In the IID model, progressively censored samples are based on the following

distributional assumption:

X1; : : : ; Xn are IID random variables with common cumulative distribution
function F .

Progressively censored experiments have been considered for a wide range
of lifetime distributions such as normal, exponential, gamma, Rayleigh, Weibull,
extreme value, log-normal, inverse Gaussian, logistic, Laplace, and Pareto distribu-
tions, and properties of these distributions are used many times in the derivations.
For details and results, we refer to, e.g., Johnson et al. [483, 484] and Marshall and
Olkin [640].

The assumption of identical distribution is dropped in the INID model.

Model 1.2.2 (INID model). Let F1; : : : ; Fn be cumulative distribution func-
tions.

In the INID model, progressively censored samples are based on the following
distributional assumption:

X1; : : : ; Xn are independent random variables with Xi � Fi , 1 � i � n.

Model 1.2.3 (Single outlier model). Let F and G be cumulative distribution
functions.

In the single outlier model, progressively censored samples are based on the
following distributional assumption:

X1; : : : ; Xn are independent random variables with Xi � F , 1 � i � n� 1,
and Xn � G.

Model 1.2.4 (p-outlier model). Let F and G be cumulative distribution
functions.

In the p-outlier model, progressively censored samples are based on the
following distributional assumption:

X1; : : : ; Xn are independent random variables with Xi � F , 1 � i � n�p,
and Xi � G, n � p C 1 � i � n.
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In the preceding models, independence or distributional assumptions are made.
In the general model, we do not impose any restriction.

Model 1.2.5 (General model). In the general model, progressively censored
samples are based on the following distributional assumption:

X1; : : : ; Xn are random variables with joint cumulative distribution function
F X1;:::;Xn .

Cramer and Lenz [303] have formulated the probabilistic assumptions in the
generation process of progressively Type-II censored order statistics in detail.
These postulates reflect the conditions for random removals commonly accepted
in progressive Type-II censoring. The notations are taken from Procedure 1.1.3.
Moreover, define the random variables K1; : : : ; Km via the relation Kj .!/ D kj ,
! 2 ˝ , 1 � j � m. Hence, XK1Wn; : : : ; XKmWn represent the order statistics
in the sample X1; : : : ; Xn which form the progressively Type-II censored sample
X1WmWn; : : : ; XmWmWn.

Assumption 1.2.6. Let i 2 f2; : : : ; mg. Then,

(i) given ki and the set Ni n fkig, the random set Ri;ki � Ni n fki g with
jRi;ki j D Ri is independent of

.K1;R1;K1 ; : : : ; Ki�1;Ri�1;Ki�1 /I

(ii) given Ni n fkig, the without-replacement sample Ri;ki of size Ri is drawn
from Ni n fkig according to a uniform distribution;

(iii) the lifetimes X1; : : : ; Xn and the progressive censoring assignment
.K1;R1;K1 ; : : : ; Km;Rm;Km/ are independent.



Chapter 2
Progressive Type-II Censoring: Distribution
Theory

2.1 Joint Distribution

The general quantile representation for progressively Type-II censored order statis-
tics due to Balakrishnan and Dembińska [96] (see also Balakrishnan and Dembińska
[97] and Cramer and Kamps [301]) provides a powerful tool in the derivation of
distributional results. Many identities can be obtained first for uniform distributions
and then transferred to any particular distribution of interest.

Theorem 2.1.1. Suppose X1WmWn; : : : ; XmWmWn and U1WmWn; : : : ; UmWmWn are progres-
sively Type-II censored order statistics based on a cumulative distribution function
F and a uniform distribution, respectively. Then,

.Xj WmWn/1�j�m
dD �F .Uj WmWn/

�
1�j�m :

Proof. Let X1; : : : ; Xn and U1; : : : ; Un be IID samples from F and a uniform
distribution on a probability space .˝;A; P /, respectively. Then,

.X1; : : : ; Xn/
dD .F .U1/; : : : ; F .Un//

and we conclude that the vector .X1WmWn; : : : ; XmWmWn/ has the same distribution
as progressively Type-II censored order statistics based on the sample
F .U1/; : : : ; F .Un/. Therefore, it is sufficient to prove that these progressively
Type-II censored order statistics have the same values as the random variables�
F .Uj WmWn/

�
1�j�m for any fixed ! 2 ˝ in the underlying probability space. For

brevity, let uj D Uj .!/, 1 � j � n, and u�i D Ui WmWn.!/, 1 � i � m. Notice that
F is an increasing function and that for given numbers x1; : : : ; xr ,

min
1�k�r F

 .xk/ D F 
�

min
1�k�r xk

�
: (2.1)

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 2,
© Springer Science+Business Media New York 2014
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From the generation process 1.1.3, we find that u�j is defined by the minimum of a
selection Mj of numbers. Thus,

u�j D min
i2Mj

ui ; 1 � j � m;

and we obtain from (2.1) that

F .u�j / D min
i2Mj

F .ui /; 1 � j � m:

This yields the desired quantile representation. ut
The result can alternatively be proved by using the mixture representation in

Theorem 10.1.1 due to Fischer et al. [371]. It is worth mentioning that the quantile
representation in Theorem 2.1.1 shows that

F XR D F UR ı .F �m/: (2.2)

In particular, any marginal cumulative distribution function can be written in this
way. For instance,F XrWmWn D FUrWmWn ıF , FXrWmWn;XsWmWn D F UrWmWn;UsWmWn ı.F; F /, etc.

An important tool in the analysis of progressively Type-II censored order
statistics is the joint density function of uniform progressively Type-II censored
order statistics which is given in the following theorem. A formal proof is provided
in Sect. 10.2 for the more general INID situation.

Theorem 2.1.2. The joint density function of uniform progressively Type-II
censored order statistics U1WmWn; : : : ; UmWmWn is given by

f U1WmWn;:::;UmWmWn .um/ D
mY
jD1

�
�j .1 � uj /

Rj
�
; 0 � u1 � � � � � um � 1: (2.3)

If F is absolutely continuous, the joint density function of progressively
Type-II censored order statistics is given in the following corollary (cf. Cohen
[267], Herd [440], and Balakrishnan and Aggarwala [86]). It follows directly from
Theorems 2.1.1 and 2.1.2 [see also (2.2)].

Corollary 2.1.3. The joint density function of progressively Type-II censored
order statistics X1WmWn; : : : ; XmWmWn based on a cumulative distribution function F
with density function f is given by

f XR

.xm/ D
mY
jD1

�
�j f .xj /.1 � F.xj //Rj

�
; x1 � � � � � xm: (2.4)
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Example 2.1.4.

(i) For order statistics, i.e., m D n, R D .0�m/ and �j D n�j C1, 1 � j � n,
the joint density function is given by

f X1Wn;:::;XnWn.xn/ D nŠ
nY

jD1
f .xj /; x1 � � � � � xn (2.5)

(cf. Arnold et al. [58] and David and Nagaraja [327]).
(ii) The censoring plan R D .R�m/ with equal removal number R 2 N0 is

called equi-balanced censoring scheme. Progressively Type-II censored order
statistics with such a censoring scheme possess the joint density function

f X1WmWn;:::;XmWmWn.xm/ D
mY
jD1

�
�j f .xj /.1 � F.xj //R

�

D mŠ
mY
jD1

�
.RC 1/f .xj /.1 � F.xj //R

�
; x1 � � � � � xm: (2.6)

Notice that �j D .m � j C 1/.R C 1/, 1 � j � m (see also Table 1.2).
Defining g by g.t/ D .R C 1/f .t/.1 � F.t//R, we find that the density
function in (2.6) equals the joint density function of order statistics from a
sample of size m and with density function g. Hence, this particular scheme
does not lead to a new model. It can be seen simply as an order statistic
model from a different distribution. Notice that this distribution is the same
as that of the minimum ofRC1 IID random variables from f . This comment
applies also to the models with non-absolutely continuous distribution.

(iii) In the OSP-case with censoring scheme Ok , k 2 f1; : : : ; mg, the joint density
function is given by

f XOk
.xm/ D

h mY
jD1

�
�j f .xj /

� i
.1 � F.xk//n�m

D nŠ.m � k/Š
.n � k/Š

h mY
jD1

f .xj /
i
.1 � F.xk//n�m; x1 � � � � � xm:
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2.2 On the Connection to Generalized Order Statistics
and Sequential Order Statistics

It is obvious from the joint density function of uniform progressively Type-II
censored order statistics presented in Theorem 2.1.2 that uniform progressively
Type-II censored order statistics can be seen as particular uniform generalized order
statistics introduced by Kamps [498, 499] (see also Cramer [285, 288], Cramer and
Kamps [300, 301], and Kamps [502]). Commonly, generalized order statistics are
parametrized by one of the following sets of parameters which are very similar to
those for progressively Type-II censored order statistics given on page 7:

(i) k;m1; : : : ; mn�1,
(ii) �1; : : : ; �n > 0.

The density function of uniform generalized order statistics is usually given as
(see Kamps [498, p. 49])

f U.1;n;m;k/;:::;U.n;n;m;k/.un/ D k
� n�1Y
jD1

�j

�h n�1Y
jD1

.1 � uj /
mj
i
.1 � un/

k�1;

0 � u1 � � � � � un � 1; (2.7)

where m D .m1; : : : ; mn�1/. Generalized order statistics X.1; n;m; k/; : : : ,
X.n; n;m; k/ based on an arbitrary cumulative distribution function F are defined
via the quantile transformation

X.j; n;m; k/ D F .U.j; n;m; k//; 1 � j � n;

so that the same comment applies to progressively Type-II censored order statistics
from an arbitrary cumulative distribution function using the representation in terms
of the quantile function (see, e.g., the density function given in Corollary 2.1.3).

Hence, the joint density function has a similar form as (2.7) (see (2.4) for
progressively Type-II censored order statistics). Sometimes, the parameters are
suppressed in the notation and (uniform) generalized order statistics are also denoted
byU�;1; : : : ; U�;n. Notice thatm and n are differently used in both models. However,
we have the correspondencesRj D mj and k equals the last �j . To be more specific,
we consider uniform progressively Type-II censored order statistics with censoring
scheme R. Then, they can be seen as uniform generalized order statistics

U.1;m;RBm�1; Rm C 1/; : : : ; U.m;m;RBm�1; Rm C 1/;

where RBm�1 D .R1; : : : ; Rm�1/ denotes a right truncated censoring scheme
[see (1.6)]. Thus, progressively Type-II censored order statistics are generalized
order statistics in distribution wherein some restrictions have to be imposed on the
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parameters �1; : : : ; �m > 0 of generalized order statistics as introduced in Cramer
and Kamps [301] [see also (1.3)]:

(i) �j 2 N, j D 1; : : : ; m,
(ii) n D �1 > � � � > �m � 1.

Therefore, in the model of progressively Type-II censored order statistics, the
parameters �1; : : : ; �m are strictly decreasingly ordered positive integers. Although
this difference seems to be minor, the picture becomes simpler for progressively
Type-II censored order statistics in many cases. In particular, calculations become
easier and representations get simpler. An example may be the representation of
the marginal density functions (see (2.28) for progressively Type-II censored order
statistics and Cramer and Kamps [301] for the density functions of generalized order
statistics in terms of Meijer’s G-functions). Moreover, it turns out that many results
obtained for generalized order statistics are valid for progressively Type-II censored
order statistics without imposing further restrictions on the parameters.

Notice that the connection is only of distributional nature, but it can be used
in many areas. For instance, results for moments can be directly applied to
progressively Type-II censored order statistics. Similar comments apply to char-
acterizations, stochastic orders, reliability properties, inferential results, etc., which
are available for generalized order statistics with arbitrary parameters. Therefore,
many results can be directly taken from properties of generalized order statistics.
We utilize this connection in the following by reformulating the results in terms
of progressively Type-II censored order statistics. On the other hand, extensions to
generalized order statistics are also possible in many settings.

However, one has to be careful using this connection because many results for
generalized order statistics are often obtained only for the so-called m-generalized
order statistics. In this case, the parameters satisfy the conditionm1 D � � � D mn�1.
For progressively Type-II censored order statistics, this corresponds to the case of
an equi-balanced censoring scheme R D .R1; : : : ; Rm/ D .R�m/ with R 2 N0.

Moreover, it has to be mentioned that some results are also available in terms of
sequential order statistics from some cumulative distribution functions F1; : : : ; Fm.
This model has been introduced in Kamps [498] in order to extend the model
of k-out-of-m systems (see also Burkschat [230], Cramer [288], and Cramer
and Kamps [300]). According to Cramer and Kamps [301], the distribution of
sequential order statistics X.1/� ; : : : ; X.m/� (based on F1; : : : ; Fn) can be represented
via quantile-type transformations

X
.r/� D F r .X.r// with X.r/ D 1 � VrF r.X

.r�1/� /; 1 � r � m;

where X
.0/� D �1, F1; : : : ; Fm are cumulative distribution functions with

F 1 .1/ � � � � � F m .1/, and V1; : : : ; Vm are independent random variables with
Vr � Beta.m � r C 1; 1/, 1 � r � m.

As pointed out in Cramer and Kamps [300], sequential order statistics can be seen
as generalized order statistics based on F if the cumulative distribution functions
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F1; : : : ; Fm satisfy the proportional hazards relation F j D F
˛j , 1 � j � m, for

some continuous cumulative distribution function F and ˛1; : : : ; ˛m > 0. Using this
connection, results for sequential order statistics can also be applied to progressively
Type-II censored order statistics.

Finally, the distribution of exponential progressively Type-II censored order
statistics is connected to the distribution of order statistics from a Weinman
multivariate exponential distribution which is an extension of Freund’s bivariate
exponential distribution (see Block [206], Freund [383], and Weinman [896]).
As pointed out by Cramer and Kamps [297] and Cramer and Kamps [300], this
connection can also be utilized in the framework of progressively Type-II censored
order statistics.

2.3 Results for Particular Population Distributions

2.3.1 Exponential Distributions

In this section, progressively Type-II censored order statistics are based on a two-
parameter exponential distribution Exp.�; #/, � 2 R; # > 0. From Corollary 2.1.3,
we find directly the respective representation of the joint density function in the
exponential case.

Corollary 2.3.1. The joint density function of exponential progressively Type-
II censored order statistics Z1WmWn; : : : ; ZmWmWn from an Exp.�; #/-distribution is
given by

f ZR

.xm/ D
� mY
jD1

�j

�
exp

n
� 1

#

mX
jD1

.Rj C 1/.xj � �/
o
; � � x1 � � � � � xm:

(2.8)

The joint density function given in (2.8) yields directly the fundamental result
that the normalized spacings of exponential progressively Type-II censored order
statistics are IID exponential random variables. This observation is due to Thomas
and Wilson [843] (see also Viveros and Balakrishnan [875]). Let

SR
r D �r.ZR

r WmWn �ZR
r�1WmWn/; r D 1; : : : ; m; (2.9)

be the (normalized) spacings of ZR
1WmWn; : : : ; ZR

mWmWn, where ZR
0WmWn D �. Moreover,

let SR D .SR
1 ; : : : ; S

R
m /
0 and ZR D .ZR

1WmWn; : : : ; ZR
mWmWn/0. Then,

SR D T .ZR � �1/ (2.10)
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with

T D

0
BBBBBB@

�1 0 � � � � � � 0

��2 �2 0 � � � 0

0 ��3 �3
:::

:::
: : :

: : : 0

0 � � � 0 ��m �m

1
CCCCCCA
:

Theorem 2.3.2. The spacings SR
1 ; : : : ; S

R
m are independently and identically

distributed with SR
r � Exp.#/, r D 1; : : : ; m.

Proof. Since �j > 0, 1 � j � m, T is a regular matrix with

T �1 D

0
BBBBBB@

1=�1 0 � � � � � � 0

1=�1 1=�2 0 � � � 0
:::

:::
: : :

:::
:::

:::
: : :

:::

1=�1 1=�2 � � � � � � 1=�m

1
CCCCCCA

and detT D
mY
jD1

�j :

Now, the density transformation theorem yields the density function

f SR

.t/ D 1

j detT j � f
ZR

.T �1tC �1/; t D .t1; : : : ; tm/: (2.11)

Noticing that �j � �jC1 D Rj C 1, 1 � j � m � 1, and �m D Rm C 1, we find

mX
jD1

.Rj C 1/Œ.T �1tC �1/j � �� D .�1 � �2; : : : ; �m�1 � �m; �m/„ ƒ‚ …
D10T

T �1t

D 10t D
mX
jD1

tj :

Thus, (2.11) in combination with (2.8) yields the density function f SR
.t/ D exp

˚�
1
#

Pm
jD1 tj

�
, t1; : : : ; tm � 0. This proves the desired result. ut

Theorem 2.3.2 yields the following well-known result for spacings of order
statistics due to Sukhatme [826]. It follows from Theorem 2.3.2 by choosing the
censoring scheme R D .0�m/.
Corollary 2.3.3 (Sukhatme [826]). The spacings S1;n; : : : ; Sn;n of exponential
order statistics Z1Wn; : : : ; ZnWn from an Exp.�; #/-distribution are independently
and identically distributed with Sr;n � Exp.#/, r D 1; : : : ; n.
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The preceding result can be extended easily to one-parameter exponential
families.

Remark 2.3.4. Suppose the cumulative distribution function F	 of a one-
parameter exponential family is given by

F	.x/ D 1 � e�
.	/d.x/; x 2 .˛; !/; (2.12)

with �1 � ˛ < ! � 1, d.˛C/ D limx!˛C d.x/ D 0, d.!�/ D
limx!!� d.x/ D1, where d is nondecreasing and differentiable and 
 is positive
and twice differentiable. Then, the random variables �j .d.Xj WmWn/�d.Xj�1WmWn//,
1 � j � m, are IID exponential random variables with mean 1=
.	/ (see, for
example, Cramer and Kamps [300]). This family is also discussed in the context
of Fisher information in Sect. 9.1.3.

The exponential family defined via (2.12) can be characterized by the property
of hazard rate factorization, i.e., by �	.x/ D 
.	/d 0.x/. It includes, for instance,
the exponential distribution (scale parameter), the extreme value distribution
(location parameter), the Weibull distribution (scale parameter), and the Pareto
distribution (shape parameter). Characterizations of distribution in terms of the
Fisher information are given by, e.g., Hofmann et al. [445], Zheng [941], and
Gertsbakh and Kagan [396].

Remark 2.3.5. Bairamov and Eryılmaz [78] discussed minimal and maximal
(non-normalized) spacings for exponential progressively Type-II censored order
statistics, i.e.,

S?R1 D 1

�1
SR
1 D ZR

1WmWn;

S?Rj D 1

�j
SR
j D ZR

j WmWn �ZR
j�1WmWn; j D 2; : : : ; m:

In particular, they were interested in the random indicators 
 and � with

S?R� D min
1�j�mS

?R
j ; S?R
 D max

1�j�mS
?R
j :

Clearly, Theorem 2.3.2 implies S?Rj � Exp.#=�j /, 1 � j � m. Bairamov and
Eryılmaz [78] obtained expressions for the joint probability mass function as well
as for the marginal probability mass functions of � and 
. For instance, for
k D 1; : : : ; m and an underlying Exp.#/-distribution, S?Rj , 1 � j � m, are
independent random variables. This directly leads to the expressions

P.� D k/ D �kPm
jD1 �j

;

P.
 D k/ D �k
Z 1
0

mY
jD1;j¤k

�
1 � e��j t

�
e��k tdt;



2.3 Results for Particular Population Distributions 29

which are independent of the scale parameter # . Moreover, the joint and marginal
cumulative distribution functions of the maximal spacing can be obtained. For
0 < x < y, we get

P.S?R� � x; S?R
 � y/ D
mY
jD1

�
1 � e��j y=#

� �
mY
jD1

�
e��j x=# � e��j y=#

�
;

P.S?R� � x/ D 1 � exp
n
�
� mX
jD1

�j

�
x=#

o
;

P.S?R
 � y/ D
mY
jD1

�
1 � e��j y=#

�
:

From (2.10), we find the following representation of exponential progressively
Type-II censored order statistics in terms of the spacings:

ZR D T �1SR C �1 or ZR
r WmWn D �C

rX
jD1

1

�j
SR
j ; 1 � r � m: (2.13)

Thus, we can write exponential progressively Type-II censored order statistics as a
weighted sum of independent exponential random variables. This expression will be
very useful in deriving marginal distributions, moments, recurrence relations, etc.

Moreover, (2.13) yields an interesting representation of progressively Type-
II censored order statistics. In particular, we have from Theorem 2.1.1 in the
exponential case

Zr WmWn
dD � � # log.1� Ur WmWn/; 1 � r � m;

or, equivalently, with Fexp.t/ D 1 � e�.t��/=# , t � �,

Fexp.Zr WmWn/
dD Ur WmWn; 1 � r � m:

From (2.13), we note that

Fexp.Zr WmWn/ D 1 �
rY

jD1

�
e�S

R
j =#

�1=�j

with SR
j =# � Exp.1/. Thus,Uj D e�S

R
j =# , 1 � j � m, are independent uniformly

distributed random variables. This yields the representation
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Ur WmWn
dD 1 �

rY
jD1

U
1=�j
j ; 1 � r � m;

of Ur WmWn as a product of independent random variables. Combining this expression
with the quantile representation from Theorem 2.1.1, we arrive at the following
theorem (see also Cramer and Kamps [301]).

Theorem 2.3.6. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order

statistics from an arbitrary cumulative distribution function F and U1; : : : Um
iid�

U.0; 1/. Then,

Xr WmWn
dD F 

	
1 �

rY
jD1

U
1=�j
j



; 1 � r � m: (2.14)

Sometimes, the following representation in terms of exponential progressively
Type-II censored order statistics is useful which is immediate from Theorem 2.1.1
and the above theorem.

Corollary 2.3.7. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from an arbitrary cumulative distribution function F and Z1WmWn; : : :,
ZmWmWn be progressively Type-II censored order statistics with the same censoring

scheme. Moreover, let Z1; : : : ; Zm
iid� Exp.1/ and �.x/ D F .1 � e�x/, x � 0.

Then,

Xr WmWn
dD F �1� e�ZrWmWn

� dD �
� rX
jD1

1

�j
Zj

�
; 1 � r � m:

The above representation can be simplified for order statistics. In this particular
setup, we find the following result which shows that uniform order statistics are beta
distributed. Therefore, order statistics have been called transformed beta variables
(see, e.g., Blom [208]).

Corollary 2.3.8. For uniform order statistics U1Wn; : : : ; UnWn, we have Ur Wn �
Beta.r; n � r C 1/, 1 � r � n.

Proof. By definition, we have �j D n � j C 1, 1 � j � n. Thus, we obtain for
uniform order statistics

1 � Ur Wn dD
rY

jD1
U
1=�j
j ; U

1=�j
j � Beta.n � j C 1; 1/:

Using a result of Rao [738] (see also Jambunathan [477], Kotlarski [545], Fan [359],
and Johnson et al. [484, p. 257]) we get
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rY
jD1

U
1=�j
j � Beta.n � r C 1; r/:

Hence, Ur Wn has a Beta.r; n � r C 1/-distribution. ut
A simple representation also holds for one-step censoring plans.

Corollary 2.3.9. Let Ok , 1 � k � m, be a one-step censoring plan. Then,

Ur WmWn
dD Ur Wn; 1 � r � k;

Ur WmWn
dD 1 � .1 � UkWn/ � .1� eU r�kWm�k/; k C 1 � r � m;

where eU r�kWm�k denotes the .r � k/th order statistic in a sample eU 1; : : : ; eUm�k
from a uniform distribution and independent of U1; : : : ; Un. Thus, the distribution
of 1�Ur WmWn is given by the distribution of a product of independent beta random
variables with parameters .n � k C 1; k/ and .m � r C 1; r � k/, respectively.

Proof. From Table 1.2, we have �j D n� j C 1, 1 � j � k, and �j D m� j C 1,
k C 1 � j � m. Thus, for 1 � r � k, we obtain from Corollary 2.3.8 that

Ur WmWn
dD Ur Wn � Beta.r; n � r C 1/. Let r > k. Then, the product

Qr
jD1 U

1=�j
j

equals

kY
jD1

U
1=.n�jC1/
j

rY
jDkC1

U
1=.m�jC1/
j D

kY
jD1

U
1=.n�jC1/
j

r�kY
jD1

U
1=.m�k�jC1/
j :

The first product has a Beta.n � k C 1; k/ distribution, while the second one has a
Beta.m � r C 1; r � k/ distribution. By the independence of the factors, we obtain
the desired result. ut

Since 1 � Uj W� dD U��jC1W� , the result of Corollary 2.3.9 can be expressed as

Ur WmWn
dD Ur Wn; 1 � r � k;

Ur WmWn
dD 1 � Un�kC1Wk � eUm�rC1Wm�k; k C 1 � r � m:

(2.15)

This representation can be used for simulation purposes (see Algorithm 8.1.8).

2.3.2 Reflected Power Distribution and Uniform Distribution

Theorem 2.3.6 has some interesting implications to generalized Pareto distributions
(see Definition A.1.11). In particular, we find for reflected power distributions with
F .t/ D 1 � .1 � t/1=ˇ , t 2 .0; 1/, the following identity.



32 2 Progressive Type-II Censoring: Distribution Theory

Corollary 2.3.10. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a reflected power function distribution RPower.ˇ/, ˇ > 0. Then,

Xr WmWn
dD 1 �

rY
jD1

U
1=.ˇ�j /

j ; 1 � r � m:

For ˇ D 1, this yields the representation for the uniform distribution, i.e.,

Ur WmWn
dD 1 �

rY
jD1

U
1=�j
j ; 1 � r � m: (2.16)

Using this representation, we can easily derive the following result. For ˇ D 1,
it can be found in Balakrishnan and Aggarwala [86].

Corollary 2.3.11. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a reflected power function distribution RPower.ˇ/. Then, with
X0WmWn D 0,

Vj D
	
1 �Xj WmWn
1 � Xj�1WmWn


ˇ
; 1 � j � m;

are independent random variables with Vj
dD U 1=�j

j � Beta.�j ; 1/, 1 � j � m.
For ˇ D 1, we have, with U0WmWn D 0,

Vj D 1 � Uj WmWn
1 � Uj�1WmWn ; 1 � j � m;

to be independent random variables with Vj
dD U 1=�j

j � Beta.�j ; 1/, 1 � j � m.

In the uniform case, this yields the following well-known result of Malmquist
[633].

Corollary 2.3.12. Let U1Wn; : : : ; UnWn be order statistics from a uniform distribu-
tion. Then, with U0Wn D 0,

Vj D 1 � Uj Wn
1 � Uj�1Wn ; 1 � j � n;

are independent random variables with Vj � Beta.n � j C 1; 1/, 1 � j � n.
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2.3.3 Pareto Distributions

For Pareto distributions Pareto.˛/, we find with F .t/ D .1 � t/�1=˛ , t 2 .0; 1/,
the following result.

Corollary 2.3.13. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a Pareto distribution Pareto.˛/, ˛ > 0. Then,

Xr WmWn
dD

rY
jD1

U
�1=.˛�j /
j ; 1 � r � m:

Using this representation we can easily derive the following result (see also Bala-
krishnan and Aggarwala [86, p. 24]).

Corollary 2.3.14. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a Pareto distribution Pareto.˛/. Then, with X0WmWn D 1,

Wj D
X˛
j WmWn

X˛
j�1WmWn

; 1 � j � m;

are independent random variables with Wj
dD U�1=�jj � Pareto.�j /, 1 � j � m.

In the case of order statistics, this yields a well-known result for Pareto
distributions which was first mentioned by Malik [632]. Further references are
Huang [458], Arnold [49], and Johnson et al. [483].

2.3.4 Progressive Withdrawal and Dual Generalized Order
Statistics

It is a well-known property of order statistics, Xj Wn, 1 � j � n, from a symmetric
distribution (symmetric about 0), that

Xj Wn
dD �Xn�jC1Wn; 1 � j � n; (2.17)

or that, jointly,

.X1Wn; : : : ; XnWn/
dD .�XnWn; : : : ;�X1Wn/I (2.18)

see, for example, David and Nagaraja [327] and Arnold et al. [58]. Thus, the
negatives of the order statistics are once again distributed as order statistics from
the same symmetric distribution. It will therefore be natural to see whether a
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similar connection holds for progressively Type-II censored order statistics from a
symmetric distribution as it will facilitate the handling of these random variables
(see, e.g., Sect. 7.4). In the case of order statistics, the result in (2.18) is easily
observed by considering the joint density function of order statistics given in
Example 2.1.4. Using the representation in (2.5) and the fact that f .x/ D f .�x/,
x 2 R, the joint density function can be rewritten in the desired form. A similar
argument for the identity (2.17) using the marginal density function has been
employed in Balakrishnan and Aggarwala [86]. Alternatively, we may use the
quantile representation of order statistics given in Theorem 2.1.1. Using the identity
F.x/ D 1 � F.�x/, x 2 R, for the cumulative distribution function for symmetric
distributions, we get F .t/ D �F .1� t/, t 2 .0; 1/. This implies for 1 � r � n

�Xr Wn dD �F .Ur Wn/ D F .1 � Ur Wn/ dD F .Un�rC1Wn/ dD Xn�rC1Wn;

where we have used Corollary 2.3.8 and that 1 � X � Beta.ˇ; ˛/ holds for a
Beta.˛; ˇ/-distributed random variable X .

However, in working with the progressively Type-II censored order statistics,
we begin with the joint distribution of all m progressively Type-II censored order
statistics. As before, letXR

1WmWn; : : : ; XR
mWmWn denote the sample of progressively Type-

II censored order statistics of size m obtained from a random sample of size n with
censoring scheme R D .R1; : : : ; Rm/ from a symmetric distribution. Multiplying
each random variable by �1 we get the decreasingly ordered sample

Y1 D �XR
mWmWn; : : : ; Ym D �XR

1WmWn:

It follows from the quantile representation in Theorem 2.3.6 and the quantile
function

F �X.t/ D �F .1 � t/; t 2 .0; 1/;

that

Yr
dD �F 

�
1 �

m�rC1Y
jD1

U
1=�j
j

�
D F �X

�m�rC1Y
jD1

U
1=�j
j

�
; 1 � r � m:

This representation tells us that Y1; : : : ; Ym are connected to the so-called dual
generalized order statistics introduced by Burkschat et al. [234]. Moreover, we get
the following expression for the joint density function:

f Y1;:::;Ym .tm/ D
mY
jD1

�
�j f .tj /F

Rj .tj /
�
; t1 � � � � � tm:
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As a result, the negatives of the progressively Type-II censored order statistics are
generally not jointly distributed as progressively Type-II censored order statistics.
Further results and applications can be found in Balakrishnan and Aggarwala [86,
p. 71–81] and Burkschat et al. [234].

2.4 Marginal Distributions

Using the results of the preceding sections, explicit representations for the marginal
distributions of progressively Type-II censored order statistics can be established.
First, we notice that a right censored progressively Type-II censored sample can be
seen as progressively Type-II censored order statistics from the same distribution
with a modified censoring scheme. Thus, right censored progressively censored
samples can always be seen as a complete progressively censored sample with a
modified censoring scheme. In particular, we have the following result (see Bala-
krishnan and Aggarwala [86]).

Theorem 2.4.1. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a cumulative distribution function F with censoring scheme R D
.R1; : : : ; Rm/.

Then, for 1 � r � m, the right censored sample XR
1WmWn; : : : ; XR

r WmWn can be
seen as a complete sample of progressively Type-II censored order statistics
X

Rr

1Wr Wn; : : : ; X
Rr
r Wr Wn from the same population with censoring scheme Rr D

.R1; : : : ; Rr�1; �r � 1/.
Proof. The iterative construction of progressively Type-II censored order statistics
presented in Procedure 1.1.3 yields directly the above property. The only property
that has to be shown is the particular structure of the censoring scheme. But,
according to the construction process 1.1.3, �r denotes the number of items in the
experiment before the r th failure. Thus, stopping the experiment after the r th failure
is equivalent to removing the remaining �r � 1 units.

Alternatively, the iterative construction in Theorem 2.3.6 can be used for this
purpose. ut

Thus, right censoring of progressively Type-II censored samples results in the
same model with a reduced number of observations and a modified censoring
scheme. In particular, we can apply the preceding results and obtain, for example,
the joint marginal density function of X1WmWn; : : : ; Xr WmWn as

f X1WmWn;:::;XrWmWn .xr / D
r�1Y
jD1

�
�j f .xj /.1 � F.xj //Rj

�
�rf .xr /.1 � F.xr//�r�1;

x1 � � � � � xr :
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In particular, Theorem 2.4.1 illustrates that any progressively Type-II censored order
statistic can be seen as a maximal progressively Type-II censored order statistic with
an appropriately chosen censoring scheme.

In order to calculate the marginal distributions, we consider the exponential case
first. The presentation of the following results uses the notation proposed in Kamps
and Cramer [503]. An alternative but equivalent representation has been established
in Balakrishnan et al. [132] using the integral identity (2.31) (see also Balakrishnan
[84] and Nagaraja [667]). This representation has also been exploited in many
papers.

2.4.1 Exponential Distribution

The marginal distributions of exponential progressively Type-II censored order
statistics can be derived using the sum representation (2.13). This expression shows
that we are interested in finding distributions of sums of independent but not
necessarily identically distributed exponential random variables. An important point
in the following derivations is that the � ’s cannot be equal. Such problems have
been considered earlier by, e.g., Likeš [597] and Kamps [497] (see also Johnson
et al. [483, p. 552]). This type of distribution is called hyperexponential distribution
or generalized Erlang distribution (see Johnson and Kotz [482, p. 222]). A review
on this topic including various applications of hyperexponential distributions is
provided by Botta et al. [217]. This yields directly the following result.

Theorem 2.4.2 (Kamps and Cramer [503]). Let Z1WmWn; : : : ; ZmWmWn be
standard exponential progressively Type-II censored order statistics. Then,

FZrWmWn .t/ D 1 �
� rY
iD1

�i

� rX
jD1

1

�j
aj;re

��j t ; t > 0; (2.19)

where aj;r D Qr
iD1
i 6Dj

1
�i��j , 1 � j � r � n. The density function of Zr WmWn is

given by

f ZrWmWn .t/ D
� rY
jD1

�j

� rX
jD1

aj;re
��j t ; t > 0: (2.20)

Schenk [782] considered multiply censored samples of progressively Type-II
censored order statistics (see also Cramer [287]). He derived expressions for the
corresponding density functions. His derivations are based on the Markov property
of the thinned sample Zk1WmWn; : : : ; Zk`WmWn with 1 � k1 < k2 < � � � < k` � m (see
Sect. 2.5.1). Using the sum representation (2.13), we find



2.4 Marginal Distributions 37

Zk2WmWn D
k2X
jD1

1

�j
SR
j D Zk1WmWn C

k2X
jDk1C1

1

�j
SR
j :

Thus, the cumulative distribution function of Zj2WmWn, given Zj1WmWn D s, is given
by P

�Pk2
jDk1C1

1
�j
SR
j � t � s�, t � s. Hence, the density function follows

from (2.20) as

f Zk2WmWnjZk1WmWn.t js/ D
� k2Y
jDk1C1

�j

� k2X
jDk1C1

a
.k1/

j;k2
e��j .t�s/; t > s > 0;

where a.k1/j;k2
D Qk2

�Dk1C1
� 6Dj

1
����j . Combining these expressions, we arrive at the joint

density function of two exponential progressively Type-II censored order statistics
given in Kamps and Cramer [503] .t > s > 0/:

f Zk1WmWn;Zk2WmWn.s; t/ D f Zk1WmWn .s/f Zk2WmWnjZk1WmWn.t js/

D
� k2Y
jD1

�j

� k1X
iD1

k2X
jDk1C1

ai;k1a
.k1/

j;k2
e��j .t�s/e��i s:

A repeated application of the preceding result yields the joint density function of
the multiply censored sample:

f Zk1WmWn;:::;Zk` WmWn.xk1 ; : : : ; xk`/

D
Ỳ
iD1

h� kiY
jDki�1C1

�j

� kiX
jDki�1C1

a
.ki�1/

j;ki
e��j .xki�xki�1 /

i
; (2.21)

where k0 D 0, 0 D x0 � xk1 � � � � � xk` , and

a
.ki�1/

j;ki
D

kiY
�Dki�1C1

� 6Dj

1

�� � �j ; ki�1 C 1 � j � ki ; 1 � i � `: (2.22)

This result can be directly applied to a general progressively Type-II censored
sample XRCr

rC1WmWn; : : : ; X
RCr
mWmWn with the left truncated censoring scheme RCr D

.RrC1; : : : ; Rm/ 2 Cm�r
m�r;n�r . The corresponding density function is given by
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f ZrC1WmWn;:::;ZmWmWn.xrC1; : : : ; xm/

D
 
n

r

!� mY
jDrC1

�j

�
.1 � e�xrC1 /r exp

n
�

mX
jDrC1

.Rj C 1/xj
o
;

0 � xrC1 � � � � � xm: (2.23)

2.4.2 Uniform Distribution

Due to its importance, it is useful to present the representations of the marginal
density functions and cumulative distribution functions for uniform progressively
Type-II censored order statistics. They can be taken directly from Theorem 2.4.2
using a quantile transformation.

Corollary 2.4.3. Let U1WmWn; : : : ; UmWmWn be uniform progressively Type-II cen-
sored order statistics. Then, for 1 � r � m,

F UrWmWn .t/ D 1 �
� rY
iD1

�i

� rX
jD1

1

�j
aj;r .1 � t/�j ; t 2 Œ0; 1�:

The density function of Ur WmWn is given by

f UrWmWn .t/ D
� rY
jD1

�j

� rX
jD1

aj;r .1 � t/�j�1; t 2 Œ0; 1�: (2.24)

2.4.3 General Distributions

Using the quantile transformation result 2.1.1, the preceding results can be directly
applied to arbitrary distributions. For brevity, we present only the expressions in the
univariate and bivariate case. From Theorem 2.4.2, we obtain the following result.

Corollary 2.4.4. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a cumulative distribution function F . Then, for 1 � r � m,

F XrWmWn .t/ D 1 �
� rY
iD1

�i

� rX
jD1

1

�j
aj;r .1 � F.t//�j ; t 2 R: (2.25)
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From (2.25), we find with t ! �1 the identity

1 D
� rY
iD1

�i

� rX
jD1

1

�j
aj;r : (2.26)

Applying this identity and writing F1W�j D 1 � .1 � F /�j , we get a representation
of the cumulative distribution function in terms of distributions of minima as

F XrWmWn .t/ D
� rY
iD1

�i

� rX
jD1

1

�j
aj;rF1W�j .t/: (2.27)

Noticing that for order statistics the identity

� rY
iD1

�i

� 1
�j
aj;r D .�1/r�j

 
n

j � 1

! 
n � j
r � j

!

holds, we find

Fr Wn.t/ D
nX

jDn�rC1
.�1/j�nCr�1

 
j � 1
n� r

! 
n

j

!
F1Wj .t/:

This identity is given, for instance, in David and Nagaraja [327, p. 46] and Arnold
et al. [58, p. 113] in terms of moments. For moments of order statistics, this result
is due to Srikantan [822].

For absolutely continuous distributions, we have the following representation of
the density function.

Corollary 2.4.5. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from an absolutely continuous cumulative distribution function F with
density function f . Then, for 1 � r � m,

f XrWmWn .t/ D f .t/
� rY
iD1

�i

� rX
jD1

aj;r .1 � F.t//�j�1; t 2 R: (2.28)

For 1 � k1 < k2 � m and t > s, the bivariate density function is given by

f Xk1WmWn;Xk2WmWn.s; t/

D f .s/f .t/
� k2Y
jD1

�j

� k1X
iD1

k2X
jDk1C1

ai;k1a
.k1/

j;k2

�
1 � F.t/
1 � F.s/

��j�1
.1 � F.s//�i�2:

(2.29)
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Remark 2.4.6. For order statistics, the representations given above simplify to
the well-known expressions

Fr Wn.t/ D
nX

jDr

 
n

j

!
F j .t/.1 � F.t//n�j ; t 2 R;

fr Wn.t/ D r
 
n

r

!
F r�1.t/.1 � F.t//n�rf .t/; t 2 R

(2.30)

(see, e.g., Arnold et al. [58], David and Nagaraja [327]).

For the cumulative distribution function and x1 � x2, the expression (2.29) yields
by integration the following representation which holds for any baseline cumulative
distribution function F :

FXk1WmWn;Xk2WmWn .x1; x2/ D FXk1WmWn .x1/

�
� k2Y
jD1

�j

� k1X
iD1

k2X
jDk1C1

ai;k1a
.k1/

j;k2

�j .�i � �j /F
�j
.x2/

h
1 � F �i��j .x1/

i
:

The result can be established by using the relation

FXk1WmWn;Xk2WmWn.x1; x2/ D FXk1WmWn .x1/ � P.Xk1WmWn � x1;Xk2WmWn > x2/:

Assuming uniform progressively Type-II censored order statistics and using (2.29),
the probability on the right-hand side reads

ck2�1
k1X
iD1

k2X
jDk1C1

ai;k1a
.k1/

j;k2

Z x1

0

Z 1

x2

.1 � t/�i��j�1.1 � s/�j�1ds dt

D ck2�1
k1X
iD1

k2X
jDk1C1

ai;k1a
.k1/

j;k2

�j .�i � �j / .1 � x2/
�j
h
1 � .1 � x1/�i��j

i
:

Using the quantile transformation and (2.2), we arrive at the desired representation.
Notice that, for x2 < x1, one has FXk1WmWn;Xk2WmWn.x1; x2/ D FXk2WmWn.x2/.

Multiply Censored Progressively Type-II Censored Order Statistics

Similar results can be established for multiply censored samples (see (2.21) and,
for generalized order statistics, Cramer [287]). The joint density function of
progressively Type-II censored order statistics Xk1WmWn; : : : ; Xk`WmWn is given by
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f Xk1WmWn;:::;Xk`WmWn.xk1 ; : : : ; xk` /

D
Ỳ
iD1

h f .xki /

1 � F.xki /
� kiY
jDki�1C1

�j

� kiX
jDki�1C1

a
.ki�1/

j;ki

� 1 � F.xki /
1 � F.xki�1 /

��j i
;

where k0 D 0, x0 D �1, xk1 � � � � � xk` . For order statistics, the expression
simplifies to that given in Kong [543].

In the special case of a general progressively Type-II censored sample
X

RCr

rC1WmWn; : : : ; X
RCr
mWmWn with the left truncated censoring scheme RCr D

.RrC1; : : : ; Rm/ 2 Cm�r
m�r;n�r , the corresponding joint density function is given

by ([see 86, p. 10] and (2.21) for the exponential distribution)

f .xrC1; : : : ; xm/ D
 
n

r

!
F r.xrC1/

	 mY
jDrC1

�j f .xj /.1 � F.xj //Rj


;

xrC1 � � � � � xm:

An Important Recurrence Relation

The preceding results yield the following connection between cumulative distribu-
tion functions and density functions.

Corollary 2.4.7. For r 2 f1; : : : ; m � 1g,

F XrWmWn.t/ � FXrC1WmWn .t/ D 1

�rC1
.1 � F.t//f UrC1WmWn .F.t//; t 2 R:

Proof. From (2.25), we obtain

F XrWmWn.t/ D 1 �
� rY
iD1

�i

� rX
jD1

1

�j
aj;r .1 � F.t//�j :

Since .�rC1 � �j /aj;rC1 D aj;r , 1 � j � r , we get

F XrWmWn.t/ � FXrC1WmWn .t/

D
� rY
iD1

�i

�	
arC1;rC1.1 � F.t//�rC1 C

rX
jD1

aj;rC1.1 � F.t//�j



D 1

�rC1
.1 � F.t//f UrC1WmWn .F.t//; t 2 R;

which yields the desired result. ut
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For order statistics, the above relation simplifies to

F XrWn .t/ D F XrC1Wn.t/C 1

n � r C 1.1 � F.t//f
UrC1Wn .F.t//

D F XrC1Wn.t/C
 
n

r

!
F r.t/.1 � F.t//n�r ;

which can be found in David and Shu [328].

An Alternative Approach to Derive the Marginals

Balakrishnan et al. [132] presented an alternative approach to derive the marginals of
progressively Type-II censored order statistics. They tackled the problem through an
explicit evaluation of the resulting integrals as shown in Lemma 1 in Balakrishnan
et al. [132]. Using the notation introduced in (2.22), a version of this lemma adapted
to the present setting is as follows.

Lemma 2.4.8. Let R D .R1; : : : ; RrC1/ be a censoring scheme, r � k C 1 � 1.
Then, for a cumulative distribution function F with density function f and t � y,
the following identity holds:

Z y

t

Z xr

t

: : :

Z xkC2

t

rY
iDkC1

h
f .xi /F

Ri
.xi /

i
dxkC1 : : : dxr

D
rC1X

jDkC1
a
.k/
j;rC1F .t/

�kC1��j F .y/�j��rC1 : (2.31)

For y !1, we get

Z 1
t

Z xr

t

: : :

Z xkC2

t

rY
iDkC1

h
f .xi /F

Ri
.xi /

i
dxkC1 : : : dxr

D a.k/rC1;rC1F .t/�kC1��rC1 :

This integral representation will be helpful in many settings. For instance, it will
be used later to derive the power function of precedence-type tests under Lehmann
alternative [see (21.9)].
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Connection of Marginals to Interpolation Polynomials

Cramer [289] established a connection of one-dimensional marginal density func-
tions and cumulative distribution functions to divided differences and Lagrangian
interpolation polynomials (see, e.g., Neumaier [679]). For t � 0, let

ht W Œ0;1/ �! Œ0;1/ be defined by ht .x/ D tx ; x � 0: (2.32)

Then, the divided differences ht Œxj ; : : : ; x� � of order � � j at x1 > � � � > xm are
defined by

ht Œxj � Dht .xj /;

ht Œxj ; : : : ; x�� Dht ŒxjC1; : : : ; x� � � ht Œxj ; : : : ; x��1�
x� � xj ;

for 1 � j < � � m. Then,

f UrWmWn .t/ D .�1/r�1h1�t Œ�1 � 1; : : : ; �r � 1�; t 2 Œ0; 1�:

Cramer [289] showed that the survival function ofXr WmWn can be written as a specific
Lagrangian interpolation polynomial PF.t/

r evaluated at the point zero

PF.t/
r .0/ D1 � FXrWmWn .t/ D

rX
jD1

rQ
�D1;� 6Dj

.0 � ��/
rQ

�D1;� 6Dj
.�j � ��/

F
�j
.t/

D
rX

jD1

rQ
�D1;� 6Dj

.0 � ��/
rQ

�D1;� 6Dj
.�j � ��/

h1�F.t/.�j /:

Thus, PF.t/
r interpolates the function h1�F.t/ given in (2.32) at the points �1; : : : ; �r .

Precisely, the evaluation of the polynomial at zero is an extrapolation since zero
does not belong to the range of the �j ’s. In particular, this shows that the cumulative
distribution function of a progressively Type-II censored order statistic can be
understood as a Lagrangian interpolation polynomial.
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2.5 Conditional Distributions

2.5.1 Markov Property

From the joint density function of progressively Type-II censored order statistics
given in (2.4), the Markov property can be easily derived for an absolutely
continuous cumulative distribution function F . However, this property holds even
for continuous cumulative distribution function.

Theorem 2.5.1. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a continuous cumulative distribution function F .

Then, X1WmWn; : : : ; XmWmWn form a Markov chain with transition probabilities
(2 � r � m)

P.Xr WmWn � t jXr�1WmWn D s/ D 1 �
	
1 � F.t/
1 � F.s/


�r
; s � t with F.s/ < 1:

Proof. First, we consider the uniform distribution. According to representa-
tion (2.16), we find

Ur WmWn D 1 � U 1=�r
r .1 � Ur�1WmWn/; 2 � r � m: (2.33)

Using the independence of Uj , 1 � j � m, the progressively Type-II censored
order statistics U1WmWn; : : : ; Ur WmWn form a Markov chain with .s � t < 1/

P.Ur WmWn � t jUr�1WmWn D s/ D P
�
U 1=�r
r � 1 � t

1 � s
�
D 1 �

	
1 � t
1 � s


�r
:

Using the properties of the quantile function in Lemma A.2.2 and Theorem 2.3.6,
we obtain from the continuity of F and (2.33) that

Xr WmWn D F .Ur WmWn/ D F .1 � U 1=�r
r Œ1 � Ur�1WmWn�/

D F .1 � U 1=�r
r Œ1 � F.F .Ur�1WmWn//�/

D F .1 � U 1=�r
r Œ1 � F.Xr�1WmWn/�/: (2.34)

Therefore, the independence of Ur and X1WmWn; : : : ; Xr�1WmWn yields for s1 � � � � �
sr�1 � t with F.sr�1/ < 1, the conditional cumulative distribution function

P.Xr WmWn � t jXj WmWn D sj ; j D 1; : : : ; r � 1/

D P.F .1 � U 1=�r
r Œ1 � F.sr�1/�/ � t/ D P

�
U 1=�r
r � 1 � F.t/

1 � F.sr�1/
�
:

This proves the desired result. ut
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As proved by Balakrishnan and Dembińska [96], the above result does not hold
for noncontinuous distributions (see also Tran [854]). More details on the noncon-
tinuous case are provided in Sect. 2.8. For order statistics, the Markov property
is a well-known property (see Arnold et al. [58] and David and Nagaraja [327]).
Obviously, Theorem 2.5.1 can be extended to the following result (see Balakrishnan
and Aggarwala [86, p. 15]).

Theorem 2.5.2. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a continuous cumulative distribution function F . Then, conditional
on Xr�1WmWn D xr�1, the random variables Xr WmWn; : : : ; XmWmWn are progressively
Type-II censored order statistics from a left truncated cumulative distribution
function

Gxr�1 .y/ D
F.y/ � F.xr /
1 � F.xr�1/ ; xr�1 � y; F.xr�1/ < 1; (2.35)

and left (truncated) censoring scheme RCr�1 D .Rr ; : : : ; Rm/.
Proof. Applying (2.34) to the random variablesXr WmWn; : : : ; XmWmWn, we find

Xr WmWn DF .1 � U 1=�r
r Œ1 � F.Xr�1WmWn/�/;

:::

XmWmWn DF 
�
1 �

mY
jDr

U
1=�j
j Œ1 � F.Xr�1WmWn/�

�
:

Since the quantile function of the truncated cumulative distribution function
in (2.35) is given by

G xr�1 .t/ D F .1 � .1 � t/.1 � F.xr�1///; t 2 .0; 1/;

we find for ` D r; : : : ; m,

X`WmWn D F 
�
1 �

Ỳ
jDr

U
1=�j
j Œ1 � F.Xr�1WmWn/�

�
D G Xr�1WmWn

�
1 �

Ỳ
jDr

U
1=�j
j

�
:

Therefore, conditional on Xr�1WmWn D xr�1, Theorem 2.3.6 yields the assertion.
Notice that the parameters �r ; : : : ; �m yield the left truncated censoring scheme
RCr�1 D .Rr ; : : : ; Rm/. ut

For order statistics, the corresponding result is due to Scheffé and Tukey [781]
(see also Arnold et al. [58, p. 25–26] and David and Nagaraja [327]). Horn and
Schlipf [450] utilized this representation to develop an efficient algorithm for the
generation of Type-II doubly censored data.
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The Markov property yields the following factorization of the density function
of XR. For 2 � r � m, the conditional density function fr jr�1WmWn.�js/ of Xr WmWn,
given Xr�1WmWn D s, is defined by

fr jr�1WmWn.t js/ D
8
<
:
�r

f .t/

1�F.s/ �
�
1�F.t/
1�F.s/

��r�1
; s � t with F.s/ < 1;

fr WmWn.t/; otherwise.

Of course, f1j0WmWn D f1WmWn is the marginal density function of X1WmWn.

Corollary 2.5.3. The density function of a progressively Type-II censored sample
XR factorizes as follows:

f XR

.xm/ D
mY
rD1

fr jr�1WmWn.xr jxr�1/; x1 � � � � � xm: (2.36)

According to Cramer [287], a conditional PF -density function exists provided
that the population cumulative distribution function F is continuous. It is given by

fr jr�1WmWn.t js/ D �r

1 � F.s/ �
	
1 � F.t/
1 � F.s/


�r�1
P F a.e. (2.37)

2.5.2 Distributions of Generalized Spacings

The preceding results can be used to calculate the density functions of generalized
spacings (so-called subranges or contrasts), i.e., of the .r; s/-spacing

S?Rr;s D Xr WmWn � XsWmWn; 1 � s < r � m: (2.38)

From Lemma 3 of Kamps and Cramer [503], we get the following expressions:

f S?R
r;s .w/ D

sY
jD1

�j

Z

R

� sX
iDrC1

a
.r/
i;s

�1 � F.vC w/

1 � F.v/
��i�

�
� rX
iD1

ai;r
�
1 � F.v/��i

� f .v/

1 � F.v/
f .vC w/

1 � F.vC w/
dv ;

F S?R
r;s .w/ D1 �

Z

R

Hr;s

�1 � F.vC w/

1 � F.v/
�
dFXrWmWn .v/; (2.39)

where the function H is defined by Hr;s.z/ D
�Qs

jDrC1 �j
�Ps

iDrC1 a
.r/
i;s

1
�i

z�i , z 2
Œ0; 1� [see also (2.29)].
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2.5.3 Block Independence of Progressively Type-II Censored
Order Statistics

In this section, we study the distribution of a progressively Type-II censored sample
randomly divided into two blocks by a threshold T 2 R.

Lemma 2.5.4. For a fixed time T , let D denote the number of progressively
Type-II censored order statistics that do not exceed T , i.e.,

D D
mX
jD1

1.�1;T �.Xj WmWn/: (2.40)

Then,

P.D D 0/ D .1� F.T //n;

P.D D d/ D
� dY
iD1

�i

� dC1X
jD1

aj;dC1.1 � F.T //�j ; d D 1; : : : ; m � 1;

P.D D m/ D FXmWmWn.T / D 1 �
� mY
iD1

�i

� mX
jD1

1

�j
aj;m.1 � F.T //�j :

(2.41)

Proof. For d D 0, we have P.D D 0/ D P.X1WmWn > T / D .1 � F.T //n.
Let d 2 f1; : : : ; m � 1g. From the definition of D, we have

P.D D d/ DP.Xd WmWn � T < XdC1WmWn/
DP.Xd WmWn � T / � P.XdC1WmWn � T / D FXdWmWn .T / � F XdC1WmWn.T /:

From Corollary 2.4.7, we conclude for d 2 f1; : : : ; m � 1g,

FXdWmWn .T / � FXdC1WmWn .T / D 1

�dC1
.1 � F.T //f UdC1WmWnF .T //: (2.42)

An application of (2.24), i.e.,

f UdC1WmWn .t/ D
� dC1Y
iD1

�i

� dC1X
jD1

aj;dC1.1 � t/�j�1 t 2 .0; 1/;

proves the desired result. The case d D m follows from P.D D m/ D P.XmWmWn �
T / D F XmWmWn.T / and (2.25). ut

In the case of order statistics, the distribution of D simplifies considerably. In
particular, we have (see Iliopoulos and Balakrishnan [469]) that D has a binomial
distribution with parameters n and F.T /, i.e.,
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P.D D d/ D
 
n

d

!
F d.T /.1 � F.T //n�d ; d D 0; : : : ; n:

This follows directly from (2.42) in the above proof.
The following conditional independence result for progressively Type-II cen-

sored order statistics is due to Iliopoulos and Balakrishnan [469].

Theorem 2.5.5. Let d 2 f1; : : : ; m � 1g, F be a cumulative distribution
function, R D .R1; : : : ; Rm/ be a censoring scheme, and Kd D .K1; : : : ; Kd /

be a discrete random vector on the Cartesian product �djD1f0; : : : ; Rj g with
probability mass function

pKd .kd / D 1

P.D D d/F

1.d/.T /.1 � F.T //n�
1.d/

dY
iD1

�i


i .d /

 
Ri

ki

!
;

where 
i .d/ DPd
jDi .kj C 1/, 1 � i � d .

Conditional on D D d , the two random vectors .XR
1WmWn; : : : ; XR

d WmWn/ and
.XR

dC1WmWn; : : : ; XR
mWmWn/ are independent with

.XR
1WmWn; : : : ; XR

d WmWn/
dD �VK

1Wd Wd ; : : : ; V
K
d Wd Wd

�

.XR
dC1WmWn; : : : ; XR

mWmWn/
dD �W1Wm�d W�d ; : : : ;Wm�d Wm�d W�d

�

where K D Kd , d DPd
jD1.1CKj /, and

(i) V1; : : : ; Vn are IID random variables with the right truncated cumulative
distribution function FT given by

FT .t/ D F.t/

F.T /
; t � T;

(ii) W1; : : : ;W�d are IID random variables with left truncated cumulative
distribution function GT

GT .t/ D 1 � 1 � F.t/
1 � F.T / ; t � T:

Remark 2.5.6. Notice that the sample size d for the progressively Type-II
censored order statistics VK

1Wd Wd ; : : : ; V
K
d Wd Wd is a random variable. This repre-

sentation means that the distribution of .XR
1WmWn; : : : ; XR

d WmWn/, given D D d , is
a mixture of distributions of progressively Type-II censored order statistics with
mixing distribution pK . It is well known that the right truncation of progressively
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Type-II censored order statistics does not result in progressively Type-II censored
order statistics from the corresponding right truncated distribution (see, for
example, Balakrishnan and Aggarwala [86]). This is due to the fact that those
observations (progressively) censored before T could have values larger than T .

Proof of Theorem 2.5.5. First, notice that we can restrict ourselves to the uniform
distribution replacing T by F.T /. Then, notice that the conditional density function
of UR D .U1WmWn; : : : ; UmWmWn/, givenD D d , is given by

f URjDDd .xm/ D 1

P.D D d/f
UR

.xm/1Œxd ;xdC1/.F .T //:

Decomposing the joint density function of U1WmWn; : : : ; UmWmWn, we obtain

f UR

.xm/ D
mY
iD1

�i

mY
jD1

.1 � xi /Ri

D
"

dY
iD1

�i

dY
iD1
.1 � xi /Ri

#
�
"

mY
iDdC1

�i

mY
iDdC1

.1 � xi /Ri
#

D
	 dY
iD1

�i



h1.xd / � h2.xdC1; : : : ; xm/:

Now, we consider h1. Let fkd denote the joint density function of progressively
Type-II censored order statistics X1WmWn; : : : ; Xd WmWn from a right truncated uniform
distribution (at F.T /) and censoring scheme kd D .k1; : : : ; kd /. Then, by using the
binomial theorem, we find for 0 < x1 < � � � < xd � F.T /,

h1.xd / D
dY
iD1
.1 � xi /Ri D

dY
iD1
.1 � F.T /C F.T / � xi /Ri

D
dY
iD1

8
<
:

RiX
kiD0

 
Ri

ki

!
.F.T / � xi /ki .1 � F.T //Ri�ki

9
=
;

D
dY
iD1

8
<
:

RiX
kiD0

 
Ri

ki

!
F kiC1.T /.1 � F.T //Ri�ki 1

F.T /

	
1 � xi

F.T /


ki
9
=
;

D
R1X
k1D0
� � �

RdX
kdD0

fkd .xd /F

1.d/.T /.1�F.T //n��dC1�
1.d/

(
dY
iD1

1


i .d/

 
Ri

ki

!)
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D P.D D d/
.1 � F.T //�dC1 Qd

iD1 �i

R1X
k1D0
� � �

RdX
kdD0

fkd .xd /p
Kd .kd /:

On the other hand, from �dC1 DPm
jDdC1.Ri C 1/, we obtain for F.T / < xdC1 <

� � � < xm,

h2.xdC1; : : : ; xm/ D .1 � F.T //�dC1
mY

iDdC1
�i

mY
iDdC1

1

1 � F.T /
	

1 � xi
1 � F.T /


Ri

D .1 � F.T //�dC1gRdC1 ;:::;Rm.xdC1; : : : ; xm/;

where gRdC1 ;:::;Rm denotes the joint density function of progressively Type-II
censored order statistics from the left truncated uniform distribution (at 1 � F.T /)
with left truncated censoring scheme RCd D .RdC1; : : : ; Rm/. Combining all the
results, we find

f U1WmWn;:::;UmWmWnjDDd .xm/

D
8
<
:

R1X
k1D0
� � �

RdX
kdD0

fkd .xd /p
Kd .kd /

9
=
; gRdC1;:::;Rm.xdC1; : : : ; xm/:

The factorization of the density function yields the independence result. Finally, the
joint density functions fkd and gRdC1 ;:::;Rm yield the claimed distributions. ut

In the case of order statistics, the above theorem simplifies. In particular, we find
from R1 D � � � D Rd D 0 that pKd is a one-point distribution in .0�d /. Thus,
the corresponding result due to Iliopoulos and Balakrishnan [469] is given in the
following corollary.

Corollary 2.5.7. Let d 2 f1; : : : ; n � 1g and F be a cumulative distribution
function. Conditional on D D d , the random vectors .X1Wn; : : : ; Xd Wn/ and
.XdC1Wn; : : : ; XnWn/ are mutually independent with

.X1Wn; : : : ; Xd Wn/
dD .V1Wd ; : : : ; Vd Wd / ;

.XdC1Wn; : : : ; XnWn/
dD .W1Wn�d ; : : : ; Vn�d Wn�d / :

The distributions of V1; : : : ; Vd and W1; : : : ;Wn�d are as given in Theorem 2.5.5.

Finally, it has to be mentioned that the result of Theorem 2.5.5 can be extended
to multiple cut-points �1 	 T0 < T1 < � � � < Tk . Instead of D, the random
vector .D1; : : : ;Dk/ is considered, where Dj counts the number of progressively
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Type-II censored order statistics in the interval .Tj�1; Tj �. Further details are given
in Iliopoulos and Balakrishnan [469].

2.5.4 Dependence Structure of Progressively Type-II Censored
Order Statistics

In this section, we focus on the notion of multivariate total positivity. This property
of a density function is important in many areas including reliability theory, since
it implies association of the components of the corresponding random vector. This
notion of dependence was introduced by Esary et al. [354].

Definition 2.5.8. An n-dimensional real valued random vector X is associated if

Cov.g.X/; h.X// � 0

for every pair of increasing functions g; h W Rn �! R.

This definition has some interesting implications (cf. Szekli [829, Chap. 3]). An
important feature due to Esary et al. [354] is that any subset of associated random
variables is associated as well. For instance, this implies that two associated random
variables are positively correlated. Furthermore, association of a random vector
.X1; : : : ; Xn/

0 implies the inequality

P.X1 > x1; : : : ; Xn > xn/ �
nY
iD1

P.Xi > xi /; x1; : : : ; xn 2 R: (2.43)

Although association is a desirable feature of random variables, it is often difficult
to verify. A more restrictive property which implies association, but is often easy to
verify, is multidimensional total positivity.

Definition 2.5.9 (Karlin and Rinott [510]). A density function f W Rn �! R

is MTP2 (multidimensional totally positive) if

f .x/f .y/ � f .x ^ y/f .x _ y/; x; y 2 R
n:

A random vector X is said to be MTP2 if its density function is MTP2.

The basic properties of multidimensional total positivity are derived in Karlin
and Rinott [510]. In our setup, it is important that the indicator function 1R

n
�
.�/ is

MTP2 and that a product of the form

 
nY
iD1

fi .xi /

!
g.xn/
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has this property provided that fi are nonnegative and that g is MTP2. Since the
joint density function of progressively Type-II censored order statistics has this
structure, it immediately yields the following result well known for order statistics
from absolutely continuous distributions (cf. Karlin and Rinott [510]). The MTP2
property for discrete order statistics was established by Rüschendorf [761].

Theorem 2.5.10 (Cramer [287]). Let F be a continuous cumulative distri-
bution function. Then, progressively Type-II censored order statistics XR

1WmWn; : : : ,
XR
mWmWn based on F with censoring scheme R are MTP2. In particular, covariances

are nonnegative, i.e., Cov.XR
j WmWn; XR

r WmWn/ � 0 for all 1 � j; r � n.

Obviously, the MTP2 property implies nonnegative covariances. For order
statistics, nonnegative correlation was first claimed by Bickel [201]. Further, it
should be noted that the MTP2 property implies association of the progressively
Type-II censored order statistics (see, e.g., Cohen and Sackrowitz [275]). However,
as pointed out in Cramer and Lenz [303], the MTP2 property does not hold in
general if the assumption of identical distribution is dropped for the dataX1; : : : ; Xn.
Nevertheless, association still holds (see Sect. 10.3).

From Theorem 2.5.10, if follows for progressively Type-II censored order
statistics that any marginal distribution of at least two (different) progressively
Type-II censored order statistics has the MTP2 property (cf. Karlin and Rinott
[510, Proposition 3.2 for the general result on associated random variables]).
This feature of progressively Type-II censored order statistics has many interesting
implications concerning the dependence structure of progressively Type-II censored
order statistics. As mentioned above, it implies association of progressively Type-II
censored order statistics which means that all the covariances are nonnegative. It
implies inequality (2.43) giving a lower bound for the multivariate survival function
in terms of the univariate survival functions.

Burkschat [229] has studied the dependence structure of spacings of generalized
order statistics. His results can be directly applied to spacings of progressively Type-
II censored order statistics [cf. (2.9)]

S?Rj D XR
j WmWn �XR

j�1WmWn; j D 2; : : : ; m; S?R1 D XR
1WmWn: (2.44)

First, the notion of conditionally increasing in sequence is discussed which is
defined as follows.

Definition 2.5.11. A random vector X D .X1; : : : ; Xm/ is said to be condition-
ally increasing/decreasing in sequence (CIS/DIS) if

P.Xj > tj jXj�1 D xj�1/

are increasing/decreasing in xj�1 D .x1; : : : ; xj�1/ for any j 2 f2; : : : ; mg.
Burkschat [229] proved the following result.
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Theorem 2.5.12. Let F be IFR (DFR). Then, the vector of spacings S?R is
DIS (CIS).

Furthermore, he showed that spacings of progressively Type-II censored order
statistics have the MTP2 property when the baseline distribution satisfies some addi-
tional conditions. A similar result is available for the MMR2 property (see Burkschat
[229, Theorem 2.9]).

Theorem 2.5.13. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from an absolutely continuous cumulative distribution function F with
censoring scheme R and hazard rate �F . Moreover, let the density function f
be positive on the support .˛;1/ of F . Then, provided that

(i) f is log-convex on .˛;1/ or
(ii) F is DFR and �F is log-convex on .˛;1/,
the vector of spacings S?R is MTP2.

2.6 Basic Recurrence Relations

The expression for the marginal cumulative distribution function given in (2.25) can
be used to establish a generalization of the triangle rule for cumulative distribution
functions of order statistics due to Cole [278] in the continuous case (see also David
and Joshi [325] and David and Nagaraja [327, p. 44]):

Fr Wn�1 D r

n
FrC1Wn C

�
1 � r

n

�
Fr Wn; 1 � r � n � 1: (2.45)

In order to prove the required result, we use the following lemma.

Lemma 2.6.1. Let Z1; : : : ; ZrC1 be IID exponential random variables and �1 >
� � � > �rC1 > 0. Then, for t 2 R,

P
� rC1X
jD2

1

�j
Zj � t

�
D
�
1� �rC1

�1

�
P
� rC1X
jD1

1

�j
Zj � t

�
C �rC1

�1
P
� rX
jD1

1

�j
Zj � t

�
:

Proof. To prove the above recurrence relation, we make use of the Laplace
transform of the exponential random variablesZj =�j :

LZj =�j .t/ D E.e�tZj =�j / D
�j

t C �j ; t > ��j ; 1 � j � r C 1:
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Noticing that

�1 � �rC1
.�1 C t/.�rC1 C t/ D

1

�rC1 C t �
1

�1 C t ;

we find for the Laplace transform LrC1 of
PrC1

jD1
1
�j
Zj , for t > ��rC1,

.�1 � �rC1/LrC1.t/ D .�1 � �rC1/
rC1Y
jD1

�j

t C �j

D �1
rC1Y
jD2

�j

t C �j � �rC1
rY

jD1

�j

t C �j
D �1 QLr .t/ � �rC1Lr .t/;

where Lr and QLr are the Laplace transforms of
Pr

jD1 1
�j
Zj and

PrC1
jD2 1

�j
Zj ,

respectively. A simple rearrangement yields the identity

QLr D
�
1 � �rC1

�1

�
LrC1 C �rC1

�1
Lr ;

which proves the result. ut
Theorem 2.6.2. Marginal cumulative distribution functions of progressively
Type-II censored order statistics from an arbitrary cumulative distribution
function F and with censoring scheme R satisfy the recurrence relation

F
.R2;:::;Rm/
r Wm�1Wn�R1�1 D

�
1 � �rC1

n

�
FR
rC1WmWn C

�rC1
n
FR
r WmWn; 1 � r � m � 1: (2.46)

Proof. From the representation in Corollary 2.3.7, we conclude that it is sufficient
to consider exponential progressively Type-II censored order statistics. But, the cor-
responding identity for exponential progressively Type-II censored order statistics
follows directly from Lemma 2.6.1 and (2.13) (see also Corollary 2.3.7). ut
Remark 2.6.3.

(i) Relation (2.46) was first established by Kamps and Cramer [503] using
density representations;

(ii) .R2; : : : ; Rm/ D RC1 is a left truncated censoring scheme. For order
statistics, this yields directly the classical triangle rule (2.45);

(iii) It is easy to see that the right-hand side of (2.46) is a convex combination of
cumulative distribution functions with probabilities 1� �rC1

n
and

�rC1
n

. Notice
that

�rC1
n

is the probability that a particular choice of random variables
remains in the experiment after the rth censoring step;
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(iv) The above identities hold for density functions and moments as well
(provided they exist):

(v) Obviously, the representation in Lemma 2.6.1 holds also for other choices
of �1 and �rC1. Thus, we can obtain other identities by selecting other � ’s.

A similar relation has been established by Balakrishnan et al. [137] for bivariate
marginals. For 1 � r < s < m � 1, they obtained

F
RC1

r;sWm�1Wn�R1�1

D
�
1 � �rC1

n

�
FR
rC1;sC1WmWn C

�rC1 � �sC1
n

FR
r;sC1WmWn C

�sC1
n
FR
r;sWmWn: (2.47)

This shows that the bivariate cumulative distribution functionFRC1

r;sWm�1Wn�R1�1 can be
written as a convex combination of three bivariate cumulative distribution functions
from a progressively censored sample with censoring plan R. This quadruple rule
extends a result for order statistics due to Srikantan [822] (see also David and Joshi
[325]):

Fr;sWn�1 D r

n
FrC1;sC1Wn C s � r

n
Fr;sC1Wn C

�
1 � s

n

�
Fr;sWn:

Related results are given by Govindarajulu [409] and Balasubramanian and Beg
[164].

2.7 Shape of Density Functions

We now present unimodality properties of progressively Type-II censored order
statistics established in Cramer [286]. A cumulative distribution function F is said
to be unimodal with a mode 
 if F is convex on .�1; 
/ and concave on .
;1/. In
particular, we consider the stronger concept of log-concavity. This approach extends
well-known results for order statistics which are summarized in Dharmadhikari
and Joag-dev [339]. For instance, it is proved that progressively Type-II censored
order statistics based on a strongly unimodal cumulative distribution function F are
strongly unimodal (cf. Barlow and Proschan [167], Huang and Ghosh [460]).
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2.7.1 Log-Concavity of Uniform Progressively Type-II
Censored Order Statistics

Cramer et al. [313] proved by an induction argument similar to that given in
Balakrishnan et al. [129, Lemma 2.7] that uniform generalized order statistics
are unimodal. Since uniform progressively Type-II censored order statistics are
a particular model of generalized order statistics, this implies the desired result.
Considering the notion of strong unimodality, the respective result is strengthened
and the proof is simplified.

A cumulative distribution function F is said to be strongly unimodal if the
convolution of F with any unimodal cumulative distribution functionG is unimodal
(cf. Ibragimov [468] and Hájek and Šidák [429]). It can be seen (cf. Dharmadhikari
and Joag-dev [339]) that the set of strongly unimodal cumulative distribution
functions is closed under convolutions and weak limits and that any degener-
ate cumulative distribution function is strongly unimodal. A fundamental result
of Ibragimov [468] says that nondegenerate strongly unimodal distributions are
absolutely continuous with a log-concave density function (cf. Dharmadhikari and
Joag-dev [339, Theorem 1.9, Lemma 1.4]).

Definition 2.7.1. Let m 2 N. A nonnegative function g W Rm �! R is said
to be log-concave if logg is concave, i.e., logg.�t C .1 � �/z/ � � logg.t/ C
.1 � �/ logg.z/ for all t; z 2 R

m and � 2 Œ0; 1�.
The result of Ibragimov [468] links this property of the density function

with strong unimodality of the corresponding cumulative distribution function
(cf. Dharmadhikari and Joag-dev [339, Theorem 1.10]). If F is a nondegenerate
cumulative distribution function, then F is strongly unimodal iff F is absolutely
continuous and its density function f is log-concave. At this point, it has to be
mentioned that log-concavity of the density f is equivalent to the property that f is
a Pólya frequency function of order 2 (for brevity, we write f PF2). Pólya frequency
functions of order 2 are functions such that K.x; y/ D f .x � y/ is totally positive
of order 2 (cf. Karlin [509]). Barlow and Proschan [168, p. 76] proved that the PF2
property of a cumulative distribution function F is equivalent to its IFR property.
In Lemma 5.8, they established that a strongly unimodal cumulative distribution
function has the IFR property.

In order to prove that the cumulative distribution function of a uniform progres-
sively Type-II censored order statistic is unimodal, it is shown that the associated
density function is log-concave. The following theorem shows that the joint density
of uniform progressively Type-II censored order statistics is log-concave.

Theorem 2.7.2. The joint density function f UR
of uniform progressively Type-

II censored order statistics is log-concave.

Proof. The joint density function of U1WmWn; : : : ; UmWmWn can be expressed as
f UR

.um/ D c
Qm
jD1 gj .uj /, 0 � u1 � � � � � um < 1, where gj .t/ D .1 � t/Rj ,
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t 2 Œ0; 1�, are log-concave functions, 1 � j � m. Since a product of log-concave
functions is log-concave, f UR

is log-concave. ut
The preceding theorem is now applied to the marginal distributions of uniform

progressively Type-II censored order statistics. We make use of the following lemma
which was established independently by Prékopa [729] and Brascamp and Lieb
[219] (see also Eaton [345]).

Lemma 2.7.3. Let m; n 2 N and f W RmCn �! R be a log-concave density
function. Let g W Rm �! R be defined by g.x/ D R

Rn
f .x; y/ dy, x 2 R

m. Then,
g is log-concave on R

m.

Corollary 2.7.4. Suppose U1WmWn; : : : ; UmWmWn are uniform progressively Type-II
censored order statistics. Then, any marginal density is log-concave. In particular,
FUrWmWn is strongly unimodal and, thus, unimodal, 1 � r � m.

2.7.2 The Shape of Densities of Uniform Progressively Type-II
Censored Order Statistics

In addition to the unimodality and log-concavity properties, the shape of the
density functions of uniform progressively Type-II censored order statistics can be
classified. The following result is taken from Bieniek [203] who established it in
the more general case of generalized order statistics.

Theorem 2.7.5. The density functions of uniform progressively Type-II censored
order statistics have the following shapes:

(i) f U1WmWn is constant for n D 1, linear decreasing for n D 2, and convex
decreasing for n � 3;

(ii) Let m � 2. f U2WmWn is

(a) linear increasing for �2 D 1 and �1 D n D 2;
(b) concave increasing for �2 D 1 and �1 D n � 3;
(c) concave increasing–decreasing for �2 D 2;
(d) concave increasing, concave decreasing, and convex decreasing for

�2 � 3;

(iii) For m � r � 3, f UrWmWn is

(a) convex increasing for �r D 1 and �r�1 D 2;
(b) convex–concave increasing for �r D 1 and �r�1 � 3;
(c) convex increasing, concave increasing, and concave decreasing for �r D 2;
(d) convex increasing, concave increasing, concave decreasing, and convex

decreasing for �r � 3.
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Fig. 2.1 Plots of f U1WmWn for n D 1 (solid line), n D 2 (dashed line), and n D 3 (dotted line)

Fig. 2.2 Plots of f U2WmWn for �2 D 1; n D 2 (solid line) �2 D 1; nD 3 (dashed line), �2 D 2; n D
3 (dotted line), and �2 D 3; n D 4 (dashed–dotted line)

Figures 2.1, 2.2, and 2.3 illustrate the shapes of density functions of uniform
progressively Type-II censored order statistics given in (2.24).

In order to prove these shapes, Bieniek [203] established a variation diminishing
property of density functions of uniform progressively Type-II censored order
statistics. This property is well known for density functions of uniform order
statistics, i.e., Bernstein polynomials (see Schoenberg [786]). In particular, let
a D .a1; : : : ; am/ 2 R

m n f0g. Then, he proved that the number of zeros of any
linear combination

Ha D
mX
jD1

aj f
Uj WmWn (2.48)
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Fig. 2.3 Plots of f U3WmWn for �3 D 1; �2 D 2; n D 5 (solid line) �3 D 1; �2 D 4; n D 5 (dashed
line), �3 D 2; �2 D 4; n D 5 (dotted line), and �3 D 3; �2 D 4; n D 5 (dashed–dotted line)

in the unit interval .0; 1/ does not exceed the number of sign changes S�.a/ in the
sequence .a1; : : : ; ar / (after deleting the zeroes in a). Denoting byZ.f / the number
of zeroes in .0; 1/, the result is given as follows.

Theorem 2.7.6. For any censoring scheme R and aD .a1; : : : ; am/2Rmnf0g,

Z.Ha/ � S�.a/ � m � 1:

Moreover, Bieniek [203] obtained for progressively Type-II censored order
statistics that the sign of Ha close to zero (1) is determined by the sign of the first
(last) nonzero element of a. The result for order statistics has been established by
Gajek and Rychlik [386].

2.7.3 Unimodality and Log-Concavity of Progressively Type-II
Censored Order Statistics Based on F

For exponential distribution, strong unimodality is obvious.

Theorem 2.7.7. Any marginal density function of progressively Type-II censored
order statistics based on an exponential distribution is log-concave. Moreover, the
one-dimensional cumulative distribution functions are strongly unimodal.

Huang and Ghosh [460] presented a proof that the cumulative distribution
function of an order statistic is strongly unimodal provided that the underlying
cumulative distribution function F is strongly unimodal. The same property was
obtained earlier by Barlow and Proschan [167, Theorem 7.2] in terms of PF2
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functions (which is an equivalent formulation of log-concavity of the density
function). This result has been extended to progressively Type-II censored order
statistics by Cramer [286]. Chen et al. [254, Theorem 2.1] present a more general
result in terms of generalized order statistics that covers the log-concavity property
as a special case. For a vector � D .�1; : : : ; �m�1/ with 0 � �j � j , let

V.�/ D .X1WmWn; X2WmWn � X�1WmWn; : : : ; XmWmWn � X�m�1WmWn/;

where X0WmWn D 0.

Theorem 2.7.8 (Chen et al. [254]). Let X1WmWn; : : : ; XmWmWn be progressively
Type-II censored order statistics based on a cumulative distribution function F
with log-concave density function f . Then, V.�/, and, thus, each subvector of
V.�/, has a log-concave density function.

Choosing � D .0�m�1/, the following result due to Cramer [286] is included as
a special case.

Corollary 2.7.9. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics based on a strongly unimodal cumulative distribution function F . Then,
any marginal density function is log-concave and FXrWmWn is strongly unimodal,
1 � r � m.

Remark 2.7.10. As a consequence of Corollary 2.7.9, progressively Type-II
censored order statistics based on strongly unimodal cumulative distribution
functions are strongly unimodal and, therefore, unimodal. Examples for strongly
unimodal cumulative distribution functions include the following distributions:
exponential, normal, truncated normal, Laplace, and particular Weibull and
gamma distributions. Further examples are presented in Hájek and Šidák [429,
Table 1, p. 16] and Barlow and Proschan [168, p. 79].

Theorem 2.7.8 includes also results for generalized p-spacings of progressively
Type-II censored order statistics XpCj WmWn � Xj WmWn. For instance, it extends a
result of Misra and van der Meulen [651] for p-spacings of order statistics. For
completeness, we present the result for spacings.

Corollary 2.7.11. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics based on a strongly unimodal cumulative distribution function F . Then,
the vector S?R of spacings has a log-concave density function.

Alam [31] proves that order statistics based on an absolutely continuous cumula-
tive distribution function F with density function f are unimodal if the reciprocal
function 1=f is convex. Note that concavity of logf implies convexity of 1=f .
As pointed out by Huang and Ghosh [460], the Cauchy distribution has the above
property, but it is not strongly unimodal. In the next theorem, Alam’s [31] result
is extended to progressively Type-II censored order statistics. A generalization to
generalized order statistics is available in Cramer [285] and Alimohammadi and
Alamatsaz [39].
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Theorem 2.7.12 (Cramer [286]). Let X1WmWn; : : : ; XmWmWn be progressively
Type-II censored order statistics based on an absolutely continuous cumulative
distribution function F with density function f .

Then, convexity of 1=f implies unimodality of F XrWmWn , 1 � r � m.

Remark 2.7.13. Theorem 2.7.12 provides an alternative proof for the uni-
modality of the cumulative distribution function of a uniform progressively
Type-II censored order statistic. Since the density of the standard uniform
distribution is constant on .0; 1/ and, therefore, its reciprocal is trivially convex,
the theorem leads directly to the unimodality of the respective cumulative
distribution function. Further examples are normal, exponential, gamma, and
Cauchy distributions.

2.8 Discrete Progressively Type-II Censored Order Statistics

Progressively Type-II censored order statistics from noncontinuous distributions
have been studied in Balakrishnan and Dembińska [95,96,97]. The results are based
on the quantile representation of progressively Type-II censored order statistics
which has been established in Theorem 2.1.1 (see Balakrishnan and Dembińska
[96, 97]). For discrete distribution, the quantile representation yields directly the
following probability mass function. An extensive discussion of discrete order
statistics can be found in Arnold et al. [58, Chap. 3].

Theorem 2.8.1. The joint probability mass function of discrete progressively
Type-II censored order statistics XR

1WmWn; : : : ; XR
mWmWn from a discrete cumulative

distribution function F with support D is given by

P.XR
j WmWn D xj ; 1 � j � m/ D

Z

A
f UR

.um/dum; xm 2 D
m; (2.49)

where

A D fum j u1 � � � � � um; F.xj�/ < uj � F.xj /; j D 1; : : : ; mg:

For discrete order statistics, the corresponding integral representation of the joint
probability mass function can be found in Arnold et al. [58, p. 46]. Obviously, a
similar representation holds for marginal probability mass functions by replacing
f UR

by the corresponding marginal density function of uniform progressively
Type-II censored order statistics. In particular, it follows that the one-dimensional
marginal cumulative distribution functions given in (2.25) hold also for discrete
parents.

Balakrishnan and Dembińska [96] pointed out that discrete progressively Type-
II censored order statistics do not form a Markov chain when the support contains
at least three points. The same results has been established independently in the
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more general setting of generalized order statistics in Tran [854] (see also Cramer
and Tran [307]). This work contains also expressions of density function w.r.t.
the product measure

Nm
iD1 P F for arbitrary discontinuous cumulative distribution

functions F .
As in Gan and Bain [391], the concept of tie-runs is applied to obtain a simple

expression for the joint probability mass function in the discrete case.

Definition 2.8.2. Let x1; : : : ; xr 2 R with x1 � � � � � xr . Then, x1; : : : ; xr is
said to have k tie-runs with lengths �1; : : : ; �k if

x1 D � � � D x�1 < x�1C1 D � � � D x�1C�2 < � � �
� � � < x�1C���C�k�1C1 D � � � D x�1C���C�k

with
Pk

jD1 �j D r .

Furthermore, we introduce the lexicographic distribution function to F as given in
Arnold et al. [57] and Reiss [750, p. 34].

Definition 2.8.3. Let F W R �! Œ0; 1� be a cumulative distribution function.
The function

LF W

R � Œ0; 1� �! Œ0; 1�

.x; u/ 7�! F.x�/C uŒF .x/ � F.x�/�

is said to be lexicographic distribution function of F .

This yields an alternative representation of the density function of progressively
Type-II censored order statistics.

Theorem 2.8.4 (Tran [854], Cramer and Tran [307]). Let X1WmWn; : : : ; XmWmWn
be progressively Type-II censored order statistics from an arbitrary cumulative
distribution function F , and let AF denote the set of points of discontinuity of
F , i.e.,

AF D fx 2 R W F.x/ � F.x�/ > 0g:

For x1 � � � � � xr , let �1; : : : ; �k 2 N denote the lengths of tie-runs in this
sequence.

Then, the
Nr

jD1 P F -joint density function of the first r progressively Type-II
censored order statistics is given by

f XR
r .xr / D

rY
jD1

�j

Z

Œ0;1�r

1Œ0;1�r
�
.LF .x1; u1/; : : : ; LF .xr ; ur //

�
h rY
jD1

.1 � LF .xj ; uj //Rj
i
d�r.ur / (2.50)
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D
rY

jD1
�j1R

r
�
.xr /

h Y
j2I ck

.1 � F.xlj //�lj�1C1��ljC1��j
�j Š

i

�
h Y
j2Ik

.F.xlj / � F.xlj�//��j

�
Z

Bj .xlj /

ljY
lDlj�1C1

.1 � zl /
Rl d zlj�1C1 � � �d zlj

i
;

where lj D Pj
iD1 �i , j D 1; : : : ; k, l0 D 0, �rC1 D 0, and Ik D fj 2

f1; : : : ; kg j xlj 2 AF g, I ck D f1; : : : ; kg n Ik , and, for t 2 R,

Bj .t/ D fv�j W F.t�/ � v1 � � � � � v�j � F.t/g � Œ0; 1��j� ; j 2 Ik:

For order statistics, (2.50) yields a representation due to Arnold et al. [57,
Lemma 2.1], i.e.,

f X1Wn;:::;XrWn .xr /

D nŠ

.n � r/Š
Z

Œ0;1�r

1Œ0;1�r
�
.LF .x1; u1/; : : : ; LF .xr ; ur //L

n�r
F .xr ; ur /d�

r.ur /:

Remark 2.8.5. The representations in Theorem 2.8.4 simplify when the values
x1; : : : ; xr are restricted to either continuity or discontinuity points.

For xj 62 AF , j D 1; : : : ; r , and x1 < � � � < xr , then Ik D ; and I ck Df1; : : : ; kg. Then, a representation of the
Nr

jD1 P F -density function results which
is similar to that known in the continuous case [see (2.4)]:

f X1WmWn;:::;XrWmWn .xr / D
r�1Y
jD1

�
�j .1 � F.xj //Rj

�
�r.1 � F.xr//�r�1:

For xj 2 AF , j D 1; : : : ; r , and x1 < � � � < xr , then

f X1WmWn;:::;XrWmWn .xr / D
� rY
jD1

�
F.xj /� F.xj�/

��1� Z

Br

f UR
r .ur /d�r.ur /;

where Br D �rjD1ŒF .xj�/; F .xj /�. This expression is seen to coincide

with (2.49) for r D m noticing that f X1WmWn;:::;XrWmWn is given w.r.t. the product
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measure
Nr

jD1 P F . Multiplying f X1WmWn;:::;XrWmWn with
Qr
jD1 P.Xj D xj / DQr

jD1
�
F.xj / � F.xj�/

�
leads to (2.49). Since Br is a Cartesian product, one

gets

f X1WmWn;:::;XrWmWn .xr / D
rY

jD1

�
�j

F.xj /� F.xj�/
Z F.xj /

F .xj�/
.1 � uj /

Rj duj /

�

D
2
4
r�1Y
jD1

�j ŒF
RjC1

.xj�/ � F RjC1
.xj /�

.Rj C 1/ŒF .xj�/ � F .xj /�

3
5 F

�r
.xr�/ � F �r

.xr /

F .xr�/ � F .xr/
: (2.51)

Example 2.8.6. Suppose F is the cumulative distribution function of a geomet-
ric distribution with parameter p 2 .0; 1/ and support N. Then, F .t/ D .1�p/t ,
t 2 N0, and (2.51) simplifies to

f X1WmWn;:::;XrWmWn .xr / D
� r�1Y
jD1

�j

Rj C 1.1 � p/
Rj .xj�1/

�
.1 � p/.�r�1/.xr�1/h.p/

D
� r�1Y
jD1

�j

Rj C 1
�
.1 � p/

Pr�1
jD1 Rj .xj�1/C.�r�1/.xr�1/h.p/;

where h.p/ D p�r�Qr�1
jD1Œ1 � .1 � p/RjC1�

�
Œ1 � .1 � p/�r �.

Finally, we present a result on the Markovian structure due to Tran [854]
(see also Cramer and Tran [307]). It extends a result of Rüschendorf [761]
for order statistics from arbitrary cumulative distribution function F . It shows
that progressively Type-II censored order statistics from discontinuous cumulative
distribution function form a Markov chain if the ties are taken into account.

Theorem 2.8.7. Let XR be the random vector of progressively Type-II censored
order statistics. For 1 � r � m and xr D .x1; : : : ; xr / 2 R

r�, let �1; : : : ; �k 2 N

denote the lengths of the occurring ties in xr . Moreover, let Q�r W R
r� �!

f1; : : : ; rg be a map defined by

Q�r D Q�r .xr / D
rX

jD1
1fxrg.xj /; xr 2 R

r�;

and let Tr D Q�r
�
X1WmWn; : : : ; Xr WmWn

�
. Then,

(i) the joint
rN

jD1
.P F ˝

rP
lD1

"l /-density of progressively Type-II censored order

statistics X1WmWn; : : : ; Xr WmWn and T1; : : : ; Tr is given by
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h.x1; t1; : : : ; xr ; tr / D 1f.Q�1.xr /;:::;Q�r .xr //g.tr /f X1WmWn;:::;XrWmWn .xr /;

t1; : : : ; tr ;2 N; x1; : : : ; xr 2 R;

where "l denotes the probability measure associated with the degenerate
distribution in l , l D 1; : : : ; r ;

(ii) .Xj WmWn; Tj /1�j�m forms a Markov chain.

Remark 2.8.8.

(i) If F is continuous, then .Tj /1�j�n equals .1; : : : ; 1/ P F a.e. This yields the
Markovian property of .Xj WmWn/1�j�m as given in Theorem 2.5.1.

(ii) Tran [854] and Balakrishnan and Dembińska [96] showed that progressively
Type-II censored order statistics (or, more generally, generalized order
statistics) do not form a Markov chain when the support of F has at least
three points (see also Balakrishnan and Dembińska [95]). For order statistics,
this result is due to Nagaraja [661] (see also Arnold et al. [58]). For further
details on the dependence structure of order statistics, we refer to Arnold
et al. [57] and Nagaraja [662, 665].

2.9 Exceedances

Bairamov and Eryılmaz [78] addressed the problem of exceedance statistics.
Consider progressively Type-II censored order statistics X1WmWn; : : : ; XmWmWn from a
continuous cumulative distribution function F and an IID sample Y1; : : : ; Yk from
a continuous cumulative distribution function G. Then, for 1 � r < s � m, the
statistics V .k/

r WmWn and W .k/
r;sWmWn are defined as

V
.k/
r WmWn D

kX
iD1

1.�1;XrWmWn/.Yi /; W
.k/
r;sWmWn D

kX
iD1

1.XrWmWn;XsWmWn/.Yi /;

i.e., the number of Y ’s not exceeding Xr WmWn and included in the interval
.Xr WmWn; XsWmWn/, respectively. Notice that W .k/

r;sWmWn D V .k/
sWmWn � V .k/

r WmWn. Clearly,

EV
.k/
r WmWn D P.Y1 � Xr WmWn/ D

Z
Œ1 � Fr WmWn.t/�dG.t/ D pR

r ; say:

Using arguments as in Bairamov [75] and Bairamov and Eryılmaz [77], Bairamov
and Eryılmaz [78] showed that

lim
k!1

1

k
V
.k/
r WmWn

d�! PG.XrWmWn/; lim
k!1

1

k
W

.k/
r WmWn

d�! PG.XsWmWn/�G.XrWmWn/:
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For F D G, the probability pR
r can be written as

pR
r D

Z 1

0

Œ1 � FUrWmWn .t/�dt D EUr WmWn D 1 �
rY

jD1

�j

�j C 1

(see Theorem 7.2.3). Since
Pk

iD1 1.�1;u/.F .Yi// is bin.k; u/-distributed, the exact

distribution of V .k/
r WmWn under the hypothesis F D G is given by

P.V
.k/
r WmWn D j / D

 
k

j

!� rY
iD1

�i

� rX
iD1

ai;rB.j C 1; �i C k � j /; j 2 f0; : : : ; kg:



Chapter 3
Further Distributional Results on Progressive
Type-II Censoring

3.1 Characterizations by Progressively Type-II Censored
Order Statistics

Characterizations of distributions by properties of order statistics have received
great attention in the literature. Many different results have been obtained, and the
situation is rather confusing due to the various assumptions, conditions, and distribu-
tions. For reviews on developments, one may refer to Galambos [390], Reiss [750],
Arnold et al. [58], Balakrishnan and Basu [88], Gather et al. [393], Kamps [500],
David and Nagaraja [327], and Ahsanullah and Hamedani [24]. In the following, we
present only some major results which were established for progressively Type-II
censored order statistics. Some of the results may also be valid in the more general
setting of generalized order statistics (where possibly some additional assumptions
may have to be imposed on the parameters). Thus, the results may be slightly more
general than presented here.

3.1.1 Characterizations by Independence Properties

Characterizations of generalized Pareto distributions by independence of certain
random variables are discussed in many settings. For instance, independence
of spacings of order statistics characterizes an exponential distribution. In the
following, we summarize some characterizations based on independence properties
of progressively Type-II censored order statistics.

To begin with, we present a characterization established by Marohn [638]. It
shows that, for instance, the independence of spacings in the exponential case
is a characterizing property of the exponential distribution. The result reverses
Theorem 2.3.2 (exponential distribution), Corollary 2.3.11 (reflected power distri-
bution), and Corollary 2.3.14 (Pareto distribution).

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 3,
© Springer Science+Business Media New York 2014
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Theorem 3.1.1. (i) X1WmWn; : : : ; XmWmWn are progressively Type-II censored
order statistics from a two-parameter exponential distribution Exp.�; #/ iff,
with X0WmWn D �,

SR
j D �j .Xj WmWn �Xj�1WmWn/; 1 � j � m; (3.1)

are independent random variables with SR
j � Exp.#/, 1 � j � m;

(ii) X1WmWn; : : : ; XmWmWn are progressively Type-II censored order statistics from a
reflected power function distribution RPower.ˇ/ iff, with X0WmWn D 0,

Vj D
	
1 �Xj WmWn
1 � Xj�1WmWn


ˇ
; 1 � j � m;

are independent random variables with Vj � Beta.�j ; 1/, 1 � j � m;
(iii) X1WmWn; : : : ; XmWmWn are progressively Type-II censored order statistics from a

Pareto distribution Pareto.˛/ iff, with X0WmWn D 1,

Wj D
X˛
j WmWn

X˛
j�1WmWn

; 1 � j � m;

are independent random variables with Wj � Pareto.�j /, 1 � j � m.

Kamps and Keseling [504] established the following extension of a theorem due
to Rogers [756] for the usual order statistics.

Proposition 3.1.2. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored
order statistics from a continuous cumulative distribution function F , 1 � r <
s � m, and let h W Rm�sC1 �! R be a measurable function. Then, if Xr WmWn and
h.XsWmWn; : : : ; XmWmWn/ are independent, Xj WmWn and h.XsWmWn; : : : ; XmWmWn/ are also
independent for every j with r C 1 � j � s.

This result is used to prove an extension of Rossberg’s theorem for the usual order
statistics (see Rossberg [760]). It was extended to progressively Type-II censored
order statistics by Balakrishnan and Malov [112] and Kamps and Keseling [504]
with the latter discussing generalized order statistics.

Theorem 3.1.3. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a continuous cumulative distribution function F , 1 � p � r <
s � m, and cj 2 R, r � j � s with

Ps
jDr cj D 0, cr ; cs ¤ 0. Then, XpWmWn and

the contrast Lrs D Ps
jDr cjXj WmWn are independent iff the baseline distribution

is an Exp.�; #/-distribution with � 2 R and # > 0.

The preceding result is very general and includes many interesting characteriza-
tions as special cases. For illustration, we give the following examples.

Corollary 3.1.4. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a continuous cumulative distribution function F , 1 � p � r <
s � m.
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Then, each of the following properties provides a characterization of an
Exp.�; #/-distribution with � 2 R and # > 0:

(i) XpWmWn and XsWmWn �Xr WmWn are independent,
(ii) Xm�1WmWn and XmWmWn � Xm�1WmWn are independent,
(iii) X1WmWn and

Pm
jD2.Xj WmWn � X1WmWn/ are independent.

Kamps and Keseling [504] pointed out that characterizations of other distribu-
tions result via monotone transformations. For details, one may refer to their article.

Hashemi and Asadi [433] used a result of Oakes and Dasu [693] to establish
characterizations of generalized Pareto distribution in terms of the mean residual
life function defined as

m.t/ D E.X � t jX > t/;

where X � F . They proved, among other results, the following theorem.

Theorem 3.1.5. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from an absolutely continuous cumulative distribution function F

with F.0/ D 0 and 1 � r < s � m. Let 	.x/ D m.x/=m.0/, x � 0,
where m.�/ denotes the mean residual life function of F . Then, Xr WmWn and
.XsWmWn � Xr WmWn/=	.Xr WmWn/ are independent iff the baseline distribution is a
generalized Pareto distribution.

3.1.2 Characterizations by Distributional Properties

Characterizations of the exponential distribution by distributional properties have
been widely discussed. Cramer et al. [311] obtained the following characterization
extending a result of Ahsanullah [21] for the usual order statistics.

Theorem 3.1.6. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a cumulative distribution function F with F .0C/ D 0 and
F.x/ < 1, x > 0. Moreover, suppose that F is increasing failure rate (IFR) or
DFR. Denote by SR

j , 1 � j � m, the normalized spacings as in (3.1). Then, if

ESR
r D ESR

rC1 for some r 2 f1; : : : ; m � 1g, the population distribution is an
Exp.#/-distribution for some # > 0.

A similar characterization result refers to the new better than used (NBU) or
NWU property. For order statistics, either the identity of the distribution of the
subrange XsWn � Xr Wn, r < s, and of the order statistic Xs�r Wn�r or the identity
EXsWn�EXr Wn D EXs�r Wn�r is a characteristic property of exponential distributions
(see Ahsanullah [22], Gajek and Gather [385], Iwińska [472], Gather et al. [393,
p. 266/267], and Kamps [501]). An extension to progressively Type-II censored
order statistics has been provided by Kamps and Cramer [503].

Theorem 3.1.7. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order
statistics from an absolutely continuous, strictly increasing cumulative distri-
bution function F on .0;1/ with F.0/ D 0 and with censoring scheme R.
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Suppose that F is NBU or NWU. Then, the population distribution is an Exp.#/-
distribution for some # > 0 iff integers r; s, and m, 1 � r < s � m, exist such
that

(i) XR
sWmWn � XR

r WmWn
dD XRCr

s�r Wm�r W�rC1 ; or

(ii) EXR
sWmWn � EXR

r WmWn D EXRCr
s�r Wm�r W�rC1 ; assuming that all the expected values

exist.

A similar characterization in terms of mean residual lifetime has been established
by Tavangar and Hashemi [840].

3.1.3 Characterizations via Regression

In this section, we present characterizations of continuous cumulative distribution
functions via regression -type relations

E.h.XrClWmWn/jXr WmWn D x/ D g.x/ (3.2)

for given continuous functions h and g and fixed r and l , 1 � r � m � 1,
1 � l � m � r . h is supposed to be strictly monotone. The problem is to determine
all (continuous) distributions PF satisfying the regression relation in (3.2). We
formulate the following results in terms of progressively Type-II censored order
statistics being aware that most of them also hold more generally for generalized
order statistics. We follow the presentation in Cramer et al. [312].

The problem has been addressed for various forms of ordered data. In particular,
the case l D 1 has received great attention. For order statistics, Ferguson [362]
apparently studied it first when h.t/ D t . Early references for record values are
Nagaraja [660, 663]. Keseling [516, 517] considered regressions of generalized
order statistics subject to some restrictions on the parameters which includes m-
generalized order statistics and progressively Type-II censored order statistics. The
reversed regression E.Xr WmWnjXrClWmWn D x/ is investigated in the literature for
order statistics and record values as well (see, e.g., Ferguson [362], Nagaraja [663],
and Franco and Ruiz [377, 378]). Keseling [516] established respective results for
m-generalized order statistics. Bieniek [202] considered the reversed regression
problem for adjacent generalized order statistics. The case l D 2 is considered
in Pudeg [732] (order statistics) and Keseling [517] (m-generalized order statistics).

The problem in (3.2) has been considered for adjacent random variables, i.e.,
l D 1, in a more general framework. Namely, letH W R2 �! R be a given bivariate
function and g W R �! R be a known univariate function. Then, (3.2) can be written
in the form

E.H.Xr WmWn; XrC1WmWn/jXr WmWn D x/ D g.x/ for all x
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for some fixed r 2 f1; : : : ; n � 1g. Since a general solution is not possible, special
choices ofH and g will lead to the desired results (see Keseling [516, p. 32]).

Franco and Ruiz [377] considered order statistics when H.s; t/ D h.t/ and h
is continuous and strictly increasing. They characterized the continuous baseline
cumulative distribution function F completely given h and g. Similar results were
derived in Franco and Ruiz [378] for record values and continuous F . For a
discrete cumulative distribution function, the characterization problem was solved
by Nagaraja [664] for h.x/ D x. This work was extended by Franco and Ruiz
[379] to a continuous and strictly increasing h. Further results with different kinds
of assumptions are provided by Rogers [757], Ferguson [362], Nagaraja [663],
Khan and Abu-Salih [526], and Ouyang [696, 697]. Finally, Franco and Ruiz [380]
presented a unifying approach to the described situation for arbitrary cumulative
distribution function F .

For order statistics, Rao and Shanbhag [740] considered H.s; t/ D �.t � s/
and a constant conditional expectation c > 0 and characterized the exponential
distribution among the continuous distributions. A similar result for record values
was obtained by Rao and Shanbhag [739].

Conditional Expectations and Characterization Problems

Cramer et al. [312] and Keseling [516] presented conditions such that the condi-
tional expectation E.h.XR

rClWmWn/jXR
r WmWn D �/ with a continuous strictly increasing

function h specifies the distribution uniquely. Clearly, one has to consider only
h.x/ D x because for continuous strictly increasing h

E.h.XR
rClWmWn/jXR

r WmWn D �/ D g PXR
rWmWn a.e.

is equivalent to

E.YR
rC1WmWnjYR

r WmWn D �/ D g ı h�1 P YR
rWmWn a.e.;

where YR
1WmWn; : : : ; YR

mWmWn denote progressively Type-II censored order statistics from
the cumulative distribution function

F Y .y/ D

8̂
<̂
ˆ̂:

0; y < h.˛.F //

F.h�1.y//; h.˛.F // � y < h.!.F //
1; h.!.F // � y

and with the same censoring scheme R (for order statistics, see Pudeg [732, p. 92]).
Cramer et al. [312] showed that the cumulative distribution function cannot be

specified uniquely by an arbitrary version of the conditional expectation. A similar
example for reversed regression of order statistics is given in Keseling [516].
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However, a one-to-one correspondence between the conditional expectation �

and the cumulative distribution function F holds if the conditional expectation
� is supposed to be an increasing and continuous version of the conditional
expectation. Lemma 3.1.8 states that such a version always exists (cf. Keseling [516,
Lemma 2.2]) and is unique under weak conditions.

Lemma 3.1.8. Let 1 � r � m�1 and l 2 f1; : : : ; m�rg. Let X1WmWn; : : : ; XmWmWn
be progressively Type-II censored order statistics from a continuous distribution
function F with censoring scheme R. For x 2 .˛.F /; !.F //, let Zx be a random
variable such that Zx � PXrClWmWn jXrWmWnDx. Moreover, let g W R! R be a (finite)
version of the conditional expectation E.XrClWmWnjXr WmWn D �/. Then,

(i) EZx is an increasing and continuous version of the conditional expectation.
Moreover, EXr WmWn � EZx <1 for all x 2 .˛.F /; !.F //;

(ii) If g is increasing and continuous, then the equation g.x/ D Zx holds for
all x 2 .˛.F /; !.F //. Hence, EZ.�/ is the unique increasing and continuous
version of the conditional expectation E.XrClWmWnjXr WmWn D �/ on the support
of F .

Remark 3.1.9. From the preceding results, it follows that there is a unique
continuous and increasing version of the conditional expectation. This version
is calculated as the expectation of the regular version of the conditional
probability PXrClWmWn jXrWmWnDx . Using these properties, the underlying distribution is
characterized. However, in general a unique characterization is not possible since
the support of the distribution is generally not determined by the conditional
expectation. A specification of the conditional expectation of progressively Type-
II censored order statistics by an increasing and continuous function g does not
lead to a unique specification of the support (see Cramer et al. [312]). To avoid
this ambiguity, the support can be prescribed explicitly such that a unique solution
results. Otherwise, the form of the support has to be discussed separately using
properties of the regression function.

Adjacent Progressively Type-II Censored Order Statistics

The characterization result for the conditional expectation of adjacent progressively
Type-II censored order statistics, i.e., E.XrC1WmWnjXr WmWn D �/, is based on the
approach of Franco and Ruiz [377] for order statistics. It is due to Keseling [516]
who established it for generalized order statistics. First, an explicit formula for
the cumulative distribution function F is given subject to a prescribed proper
conditional expectation �. The second result answers the question which functions
can be seen as conditional expectations of a progressively Type-II censored order
statistic.

Let 1 � r � m � 1, h W R �! R be a continuous monotone function, and
frC1jr WmWn.�jx/ be the PF -density of PXrC1WmWn jXrWmWnDx given in (2.37). Then, the
order mean function �F�rC1 W .�1; !.F // �! R is defined by



3.1 Characterizations by Progressively Type-II Censored Order Statistics 73

�F�rC1 .x/ D
Z

Œx;1/
h.t/frC1jr WmWn.t jx/ dPF .t/; x < !.F /;

for F 2 F
�rC1
h , where

F
�rC1
h D


F jF is a continuous cumulative distribution function such that

Z

Œx;1/
jh.t/j.1 � F.t//�rC1�1 dPF .t/ <1 for all x 2 R

�

(see Franco and Ruiz [377]). Notice that, according to Lemma 3.1.8, �F�rC1
is the continuous increasing continuation of the conditional expectation
E.XrC1WmWnjXr WmWn D �/ on the interval .�1; !.F //. If .�1; ˛.F /� 6D ;, then the
function �F�rC1 .x/ D �rC1

R
h.t/.1 � F.t//�rC1�1 dPF .t/ is defined to be constant

for all x 2 .�1; ˛.F /�. The set of admissible functions �F�rC1 is denoted by

M
�rC1
h D

n
�j There exists F 2 F

�rC1
h such that � D �F�rC1

o
:

Properties of � 2M
�rC1
h are given in Lemma 3.1.10 which is due to Keseling [516].

In particular, it shows the connection to the setting of order statistics discussed in
Franco and Ruiz [377].

Lemma 3.1.10. Let 1 � r � m � 1, D � R, � W D �! R, h be a continuous
and monotone function and h.ˇ/ D limx!ˇ� h.x/.

Then,

� 2M
�rC1
h iff � 2M n�r

h :

In this case, � has the following properties:

(i) D D .�1; ˇ/ for some ˇ 2 .�1;1�;
(ii) � is continuous on D;
(iii) if h is increasing, then h.ˇ/ > �.x/ > h.x/ for all x 2 D;

if h is decreasing, then h.ˇ/ < �.x/ < h.x/ for all x 2 D;
(iv) � is increasing (decreasing) if h is increasing (decreasing);
(v) the Riemann–Stieltjes integral

Z x

�1
1

�.t/ � h.t/ d�.t/

converges for any x 2 D. It converges to infinity for x ! ˇ;
(vi) if D D R, then

lim
x!1 �.x/ exp

Z x

�1
1

�.t/ � h.t/ d�.t
�
D 0:
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The following theorem establishes the desired inversion result which relates a
function � 2 M

�rC1
h uniquely to a cumulative distribution function F . For kth

record values, the corresponding result is given in Grudzień and Szynal [415]. For
order statistics, Khan and Abu-Salih [526] established an inversion formula subject
to some restrictive smoothness assumptions. For a proof, one may refer to Cramer
et al. [312].

Theorem 3.1.11. Let 1 � r � m � 1, D � R, � W D �! R with � 2 M
�rC1
h

for �rC1 > 0, h be a continuous and monotone function and F 2 F
�rC1
h with

� D �F�rC1 . Then,

(i) D D .�1; !.F //;
(ii) F.x/ D 1 � exp


� 1

�rC1

Z x

�1
1

�.t/ � h.t/ d�.t/
�

, x 2 D.

Now, we apply Theorem 3.1.11 to the linear regression problem. Suppose now
that h.x/ D x, x 2 R, and

�.x/ D
(
a˛ C b; x < ˛

ax C b; ˛ � x < ˇ ; ˇ 2 .�1;1�:

where ˛ < ˇ and a; b are given real numbers:

E.XrClWmWnjXr WmWn D �/ D � PXrWmWn a.e.

It should be mentioned that � is defined for x < ˛ as a constant in order to meet
the conditions given in Lemma 3.1.10. Since h is an increasing function, � must be
increasing according to Part (iv) of Lemma 3.1.10. Thus, a > 0. This proves that the
generalized Pareto distributions are characterized by the linear regression property
of progressively Type-II censored order statistics.

Corollary 3.1.12. (i) Let a D 1. Then, � 2M
�rC1
h iff b > 0 and ˇ D 1.

The cumulative distribution function is that of a two-parameter exponential
distribution, i.e.,

F.x/ D 1 � exp


�x � ˛
�rC1b

�
; x � ˛I

(ii) Let 0 < a < 1. Then, � 2M
�rC1
h iff ˛.F / D ˛ < b

1�a D ˇ D !.F / <1.
The cumulative distribution function is that of a reflected two-parameter

power function distribution, i.e.,

F.x/ D 1 �
	
ˇ � x
ˇ � ˛


	
; ˛ � x � ˇ;

where 	 D a
�rC1.1�a/ ;
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h D � 1
�

log.1�G/ .˛; ˇ/ G.x/; x 2 .˛; ˇ/ References

� 1
�

log
�
1� � x

	

���
.0; 	/

�
x
	

��
(power-function)

log
�
x
	

�
.	;1/ 1� � 	

x

��
Ouyang [697]

(Pareto)
x	 .0;1/ 1� exp.��x	/ Mohie El-Din et al. [653]

(Weibull)
1
�

log .1C exp.�x// R .1C exp.��x//�1 Khan and Abu-Salih [526],
(logistic) Ouyang [697]

log.1C x	/ .0;1/ 1� .1C x	/�� Ouyang [697]
(Burr XII)

Table 3.1 Characterizations for order statistics related to the characterization of the
exponential distribution given in Corollary 3.1.12 (	 > 0)

(iii) Let 1 < a. Then, � 2M
�rC1
h iff ˛.a � 1/ > �b and ˇ D1.

The cumulative distribution function is that of a Pareto distribution, i.e.,

F.x/ D 1 �
 
˛ C b

a�1
x C b

a�1

!	
; ˛ � x <1;

where 	 D a
�rC1.a�1/ .

Remark 3.1.13. It should be noted that the type of characterized distributions
does not depend on the parameters of the underling progressively Type-II
censored order statistics except for �rC1. This is due to the Markov property
(see Theorem 2.5.1).

For order statistics and record values, the results of Corollary 3.1.12 were
established by Nagaraja [660, 663], wherein �rC1 is given by n � r and 1,
respectively. The parameters of the power function and Pareto distribution read
	 D a

.n�r/ja�1j and 	 D a
ja�1j for order statistics and record values, respectively.

Many characterizations using the regression approach can be found in the
literature. For illustration, Table 3.1 taken from Cramer et al. [312] subsumes
some results (cf. Keseling [516, p. 45]). It shows characterization results based on
the preceding characterization of the exponential distribution via the regression

E.h.XrC1WmWn/jXr WmWn D x/ D h.x/C 1

�rC1�
PG a.e.;

where h W .˛; ˇ/ �! .0;1/, �1 � ˛ < ˇ � 1, is a strictly increasing and
continuous function with limx!˛ h.x/ D 0 and limx!ˇ h.x/ D 1 (�rC1; � > 0).
The references are related to the corresponding results for order statistics.

Finally, it should be mentioned that many results known in the literature are
monotone transformations of the characterizations given in Corollary 3.1.12 which
for order statistics are due to Ferguson [362]. Results of that type are given in Dallas
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[321], Khan and Khan [527, 528], Khan and Abu-Salih [525, 526], Mohie El-Din
et al. [653], and Ouyang [697]. For further results on characterizations, one may
refer to Keseling [516].

Progressively Type-II Censored Order Statistics Based on Higher-Order
Gap

Up to now, conditional expectations E.XrClWmWnjXr WmWn D �/ with adjacent progres-
sively Type-II censored order statistics have been considered. Now , we address a
regression based on higher-order gap, i.e., we assume that the distance l between the
considered progressively Type-II censored order statistics may be larger than one,
i.e., 1 < l � m � r .

The characterization result given in Theorem 3.1.14 is derived along the lines of
the respective result in Dembińska and Wesołowski [333] using integrated Cauchy
functional equations (cf. Rao and Shanbhag [740, Theorem 2.2.2]). For restricted
generalized order statistics, this result can be found in Bieniek and Szynal [204]
and, in the most general setting, in Cramer et al. [312]. Detailed proofs can be found
in these references.

Theorem 3.1.14. Let 1 � r � m � 1, 1 � l � m � r , and X1WmWn; : : : XmWmWn
be progressively Type-II censored order statistics from a continuous cumulative
distribution function F with censoring scheme R.

If constants a > 0 and b 2 R exist such that

E.XrClWmWnjXr WmWn D x/ D ax C b PF a.e.;

then F is the cumulative distribution function of a generalized Pareto distribution.
Thus, up to an affine transformation of the argument, it is given by one of the
following cumulative distribution functions:

(i) For a D 1, F.x/ D 1 � exp.�x/, x � 0;
(ii) For 0 < a < 1, F.x/ D 1 � .�x/	 , x 2 Œ�1; 0�;
(iii) For 1 < a, F.x/ D 1 � x	 , x 2 Œ1;1/.
The parameter 	 is given by 	 D � 1



, where 
 is the unique solution in 
 of the

polynomial equation

rClY
jDrC1

.�j � 
/ D 1

a

rClY
jDrC1

�j ; 
 2 .�1; �rCl / :

Remark 3.1.15. For order statistics, the result in Theorem 3.1.14 was derived
by Dembińska and Weso�lowski [333]. Pudeg [732] considered the case l D 2.
López Blázquez and Moreno Rebollo [617] provided a different proof of the
characterization assuming that the baseline cumulative distribution functions are
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l-times differentiable. The Cauchy functional equation approach is in favor of
this one because the regression problem is solved for any continuous cumulative
distribution function (see Cramer et al. [312]). Dembińska and Weso�lowski [334]
successfully applied the preceding approach to record values as well.

The characterization of the exponential distribution given in Theorem 3.1.14 can
be rewritten in the form .a D 1)

E.XrClWmWn � Xr WmWnjXr WmWn D x/ D b PF a.e.

with some constant b > 0. This observation leads to a different characterization of
the exponential distribution via the regression

E.XrClC�WmWn � XrC�WmWnjX�WmWn D x/ D b PF a.e.

for some r; l; �. A proof can be found in Cramer and Kamps [302].

Theorem 3.1.16. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from an absolutely continuous cumulative distribution function F with
density function f and with censoring scheme R. Suppose for r; l; � 2 N with
r C l C � � n the expectation EjXrClC�WmWnj is finite.

If a constant b > 0 exists such that

E.XrClC�WmWn �XrC�WmWnjX�WmWn D �/ D b PF a.e.;

then

(i) for any j 2 f1; : : : ; rg
E.XrClC�WmWn � XrC�WmWnjX�Cj WmWn D �/ D b PF a.e.I

(ii) F is the cumulative distribution function of a two-parameter exponential
distribution.

Reversed Regression of Adjacent Progressively Type-II Censored Order
Statistics

For 1 � r � m � 1, Bieniek [202] has considered the reversed regression problem

E.h.Xr WmWn/jXrC1WmWn D x/ D g.x/

for generalized order statistics. He provided a characterization in terms of the strictly
increasing function

hrC1.x/ D .1 � x/1��rC1f UrC1WmWn .x/; x 2 .0; 1/:
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From the representation of f UrC1WmWn in (2.24) it follows that

hrC1.1/ D lim
x!1�hrC1.x/ D �rC1

rY
jD1

�j

�j � �rC1

(see also Cramer et al. [313, Eq. (2.6)]). The corresponding cumulative distribution
function is given by

F.x/ D h�1rC1
	
hrC1.1/ exp

n
�
Z ˇ

x

dg.y/

h.y/ � g.y/
o

; x � ˇ;

where ˇ D !.F / denotes the right endpoint of support of F . For linear regression,
i.e., g.x/ D ax C b, Bieniek [202] proved the following theorem.

Theorem 3.1.17. Let 1 � r � m � 1, and X1WmWn; : : : ; XmWmWn be progressively
Type-II censored order statistics from a continuous cumulative distribution
function F with censoring scheme R. .˛; ˇ/ denotes the support of F .

If constants a > 0 and b 2 R exist such that

E.Xr WmWnjXrC1WmWn D x/ D ax C b PF a.e.;

then F is one of the following cumulative distribution functions:

(i) For a D 1, ˛ D �1 and F.x/ D h�1rC1
�
hrC1.1/ exp.�.x � ˇ/=b/�, x < ˇ,

ˇ 2 R;

(ii) For 0 < a < 1, ˛ D b=.1�c/ and F.x/ D h�1rC1
�
hrC1.1/

�
x�˛
ˇ�˛

�	�
, x 2 Œ˛; ˇ�,

ˇ > ˛, 	 D a=.1 � a/;
(iii) For 1 < a, ˛ D �1 and F.x/ D h�1rC1

�
A

.ˇ�x/	
�

, x < ˇ, ˇ D b=.1 � a/,
	 D a=.a � 1/, A > 0.

Notice that, for order statistics, hrC1.u/ D .r C 1/� n
rC1
�
ur . Then, the result of

Theorem 3.1.17 corresponds to those given in Ferguson [362] and Franco and Ruiz
[377, Remark 5.8].

3.1.4 Characterizations for Discrete Parents

Characterizations of distributions by means of progressively Type-II censored order
statistics from discrete parents have been discussed in Tran [854] and Balakrishnan
et al. [149] with the former dealing with generalized order statistics. Tran’s results
can be applied to discrete progressively Type-II censored order statistics using the
quantile representation of progressively Type-II censored order statistics due to
Balakrishnan and Dembińska [96, 97] (see also Sect. 2.8).
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As for a continuous cumulative distribution function F , we organize the char-
acterizations by their type, i.e., characterizations via regression, independence, and
distribution properties. Without going into details, we mention that a basic tool in
deriving them is Shanbhag’s Lemma. Each section states first a result due to Tran
[854] followed by results given in Balakrishnan et al. [149].

Theorem 3.1.18 (Rao and Shanbhag [740]). Let f.vn;wn/ W n 2 N0/g be a
sequence of vectors with nonnegative real components such that vn ¤ 0 at least
for one n 2 N and w1 ¤ 0: Then,

vn D
1X
mD0

wmvmCn; n 2 N0;

iff
P1

mD0 wmbm D 1 and vn D v0bn; n 2 N, for some b > 0.

Characterization by Regression

For continuous cumulative distribution function, a constant regression characterizes
the exponential distribution (see Theorem 3.1.14). For discrete distributions, we get
a corresponding result leading to geometric-type distributions.

Theorem 3.1.19 (Tran [854]). Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II
censored order statistics from a discrete cumulative distribution function F with
support N0. Then:

E
�
XR
iC1WmWn �XR

i WmWnjXR
i WmWn; XR

iC1WmWn > XR
i WmWn

� D c a.e. (3.3)

for some c 2 R and 1 � i < m iff F is a modified geometric distribution with
cumulative distribution function F.0/ D 	 and F.j / D 1 � .1 � 	/.1 � p/j ,
j 2 N, for some 	 2 .0; 1/ and p 2 .0; 1/.

A generalization of the characterizing identity (3.3) is due to Balakrishnan
et al. [149]. The conditioning event

˚
XR
iC1WmWn > XR

i WmWn
�

in (3.3) is replaced by˚
XR
i WmWn > XR

i WmWn C l
�

with some fixed l 2 N0. Furthermore,˚
�
XR
iC1WmWn �XR

i WmWn
�

replacesXR
iC1WmWn �XR

i WmWn, where .˚.k//k is a suitably chosen sequence. For order
statistics, the result has been proved by Rao and Shanbhag [741] for l D 0 and by
Nagaraja [664] for ˚.j / � j 	 0.

Theorem 3.1.20. Let XR
1WmWn; : : : XR

mWmWn be progressively Type-II censored
order statistics from cumulative distribution function F with support N0.
Fix l 2 N0 and suppose .˚.k//k�l is a nondecreasing sequence such
that ˚.l C 2/ > ˚.l C 1/.

Then,

E
�
˚
�
XR
iC1WmWn � XR

i WmWn
� j XR

i WmWn; XR
iC1WmWn � XR

i WmWn > l
� D c a.e. (3.4)
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for some c 2 R and 1 � i < m iff F is a modified geometric distribution with
F.l C j / D 1 � .1 � 	/qj , j 2 N0, for some 	 2 .0; 1/ and q 2 .0; 1/.

For l < 0, the condition in (3.4) reads E
�
˚
�
XR
iC1WmWn � XR

i WmWn
� j XR

i WmWn
� D c

a.e. for some c 2 R. As pointed out by Nagaraja [664], the geometric distribution
has the property

E.XiC1Wn �Xi WnjXi Wn/ D c a.e. for some c 2 R (3.5)

iff i D 1. This observation has been utilized by López-Blázquez and Miño
[616]. They showed that if (3.5) holds with i D 1 and the underlying cumulative
distribution function has support on N0, then F is geometric.

Theorem 3.1.21. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order
statistics from cumulative distribution function F with support f0; 1; : : : ; N g for
some 1 � N � 1. Then,

E
�
XR
2WmWn �XR

1WmWnjXR
1WmWn

� D c a.e. for some c 2 R

iff F is geometric, that is, F.j / D 1 � qjC1, j 2 N0, for some q 2 .0; 1/.

Characterization by Distribution Properties

The first characterization utilizes a condition on the hazard rate of discrete distribu-
tion defined by

�F .t/ D P.X D t/
P.X � t/ D

F.t/ � F.t�/
1 � F.t�/ ; t 2 N0:

Notice that �F .t/ D P.X D 0/, t 2 N0, is constant for a geometric distribution
(see Gupta et al. [425]).

Theorem 3.1.22 (Tran [854]). Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II
censored order statistics from a discrete cumulative distribution function F with
support N0, and let RCi D .RiC1; : : : ; Rm/ denote a left truncated censoring
scheme.

If �F .0/ � .�/�F .t/ for all x 2 N0, then for some 1 � i < j � m, the
conditional distribution of the spacing XR

j WmWn�XR
i WmWn, given the event fXR

iC1WmWn�
XR
i WmWn > 0g, is the same as the unconditional distribution of XRCi

j�i Wm�i W�iC1C 1 iff
F is a geometric cumulative distribution function.

The next characterization provides an extension of results for order statistics to
progressively Type-II censored order statistics (see Puri and Rubin [734] and Zijlstra
[948]). It has been established by Balakrishnan et al. [149].



3.1 Characterizations by Progressively Type-II Censored Order Statistics 81

Theorem 3.1.23. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order
statistics from cumulative distribution function F with support being a subset of
N0. Assume P.X D 1/ > 0 and P.X > 1/ > 0. Then, for some 1 � i < m,

XR
iC1WmWn �XR

i WmWn
dD XRCi

1Wm�i W�iC1

iff F is a modified geometric distribution with cumulative distribution function
F.j / D 1 � .1 � p0/qj , j � 0, where p0 2 .0; 1/ and q 2 .0; 1/ are such that

1 D
0
@

iY
jD1

�j

1
A

iX
sD1

�
as;i

�s � �iC1
	
1 � .1� p0/�s��iC1 1 � q

�iC1

1 � q�s

�
:

Characterization by (Conditional) Independence

The following characterizations are based on independence properties. For order
statistics, the first result was established by Nagaraja and Srivastava [669].

Theorem 3.1.24 (Tran [854]). Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II
censored order statistics from a discrete cumulative distribution function F with
support D. Then, if jDj � 3 and for some 2 � i < j � m, the random variable
XR
i WmWn and the event fXR

j WmWn D XR
i WmWng are conditionally independent, given the

event fXR
i WmWn > XR

i�1WmWng, F is a modified geometric distribution with D D fai 2
Rji 2 N0 and ai < aj for i < j g, F.a0/ D 	 and F.aj / D 1 � .1 � 	/.1 � p/j ,
j 2 N, for some 	 2 .0; 1/ and p 2 .0; 1/.

The next characterization is a generalization of a result due to Govindarajulu
[412].

Theorem 3.1.25. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order
statistics from cumulative distribution function F with support N0. Then, for
a fixed k � 2 and 1 < i � m, the random variable XR

1WmWn and the event
fXR

i WmWn �XR
1WmWn � kg are independent and

F .j / D qjC1; 0 � j < k;

iff F is a geometric distribution.

Theorem 3.1.26 extends Theorem 3.1 of El-Neweihi and Govindarajulu [350]
(for order statistics with s D n, see Galambos [388]). An extension to generalized
order statistics has been established by Tran [854] under a stronger assumption.

Theorem 3.1.26. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order
statistics from cumulative distribution function F with support fa0; a1; : : : g,
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where .ak/k�0 is an increasing sequence of real numbers. Then, the random
variable XR

1WmWn and the event fXR
i WmWn D XR

1WmWng are independent for some
1 < i � m iff F is a geometric-type distribution, i.e., F .aj / D qjC1, j 2 N0,
with q 2 .0; 1/.

3.2 Stochastic Ordering of Progressively Type-II Censored
Order Statistics

An important notion in reliability theory is stochastic ordering, which has received
great attention in comparing ordered random variables. In particular, many results
have been established for generalized order statistics and progressively Type-II
censored order statistics extending properties for order statistics. In this section,
we are going to review results obtained for progressively Type-II censored order
statistics. For surveys on stochastic ordering of order statistics and record values, we
refer to the monographs of Shaked and Shanthikumar [799] and Müller and Stoyan
[659] and, in particular, to the articles of Arnold and Villaseñor [56] and Boland
et al. [212] in the Handbook of Statistics Vol. 16 and Vol. 17 by Balakrishnan and
Rao [116, 117] devoted to order statistics, as well as to the references cited in these
works.

Details on stochastic ordering, failure rate ordering, likelihood ratio ordering,
and dispersive ordering can be found in many references including Shaked and
Shanthikumar [799], Ross [759, Chap. 9], and Müller and Stoyan [659]. The
definitions of these orders are given in the Appendix A.2.2.

In the following, let X and Y be random variables with continuous cumulative
distribution functions F and G, respectively, satisfying

F�1.0C/; G�1.0C/ � 0;
i.e., their supports are contained in the positive real line. Sometimes, the cumulative
distribution functions are supposed to be absolutely continuous with density
functions f and g.

3.2.1 Univariate Stochastic Orders and Its Applications
to Progressively Type-II Censored Order Statistics

Stochastic Order

The following result has been established by Khaledi [518] in terms of generalized
order statistics. In terms of the parametrization of progressively Type-II censored
order statistics, he assumed that, for censoring schemes R;S and j � i , the
condition
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.�1.S /; : : : ; �j .S // 4p .�`1.R/; : : : ; �`j .R//

for some set f`1; : : : ; `j g � f1; : : : ; ig; (3.6)

holds. However, since in progressive censoring the parameters are ordered,
e.g.,�1.R/ � � � � � �m1.R/, (3.6) is, for j � i , equivalent to

.�1.S /; : : : ; �j .S // 4p .�i�jC1.R/; : : : ; �i .R//: (3.7)

In the following, we use the notation n1 D �1.R/; n2 D �2.S /.

Theorem 3.2.1. Let F;G be continuous cumulative distribution functions with
F �st G and X � F; Y � G. Moreover, let R 2 Cm1

m1;n1
;S 2 C m2

m2;n2
with

m1;m2 2 N be censoring schemes. Then,

(i) XR
i Wm1Wn1 �st Y

R
i Wm1Wn1 , 1 � i � m1;

(ii) if j � i and (3.7) holds, then XS
j Wm2Wn2 �st Y

R
i Wm1Wn1 .

Proof. We first prove (i). For brevity, we suppress the indices and write n and m
instead of n1 and m1, respectively. Denote by ZR

i WmWn an exponential progressively
Type-II censored order statistic with censoring scheme R. Then, the cumulative
distribution function ofXR

i WmWn and Y R
i WmWn are given by FXR

iWmWn D HZR
iWmWn ı .� logF /

and F YR
iWmWn D HZR

iWmWn ı .� logG/, respectively.
Since F �st G, we have F .t/ � G.t/ so that � logF .t/ � � logG.t/, t 2 R.

Thus, for t 2 R,

F
XR
iWmWn.t/ D FZR

iWmWn.� logF .t// � FZR
iWmWn.� logG.t// D F YR

iWmWn.t/;

because F
ZR
iWmWn is a nonincreasing function.

The proof of (ii) is as follows. From Corollary 3.2.4, we obtain XS
j Wm2Wn2 �hr

XR
i Wm1Wn1 which implies XS

j Wm2Wn2 �st X
R
i Wm1Wn1 (see Fig. A.1). Using the transitivity of

the stochastic order and (i), we obtain directly the desired result. ut
Property (i) can also be deduced from Theorem 3.2.21 by marginalization.

Corollary 3.2.2. Under the conditions of Theorem 3.2.1, the following result
holds:

If .�1.S /; : : : ; �j .S // 4p .�1.R/; : : : ; �j .R//, then XS
j Wm2Wn2 �st Y

R
j Wm1Wn1 .

Since �k.S / � �k.R/, k D 1; : : : ; j , implies p-majorization of the respective
vectors, the preceding corollary implies Theorem 5.4.2 of Burkschat [226].
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Hazard Rate Order

Theorem 3.2.3. Let F;G be continuous cumulative distribution functions with
F �hr G and X � F; Y � G. Moreover, let R 2 Cm1

m1;n1
;S 2 Cm2

m2;n2
with

m1;m2 2 N be censoring schemes. Then,

(i) XR
i Wm1Wn1 �hr Y

R
i Wm1Wn1 , 1 � i � m1;

(ii) if j � i and condition (3.7) holds, then XS
j Wm2Wn2 �hr Y

R
i Wm1Wn1 .

Proof. By analogy with the proof of Theorem 3.2.1, we make use of the represen-
tations Fi;� D FXR

iWmWn D FZR
iWmWn .� logF / and Gi;� D F YR

iWmWn D FZR
iWmWn .� logG/

(indices are suppressed for brevity). From Theorem 2.7.7, we know that the density
function of a progressively Type-II censored order statistic from an exponential

distribution is log-concave. Thus,Hi;� D FZR
iWmWn is a differentiable and log-concave

function. Then, we find for x < y,

G�;i .x/
F �;i .x/

D H�;i .� logG.x//

H�;i .� logF .x//
D H�;i .� logG.x//

H�;i
�
� logG.x/C log G.x/

F .x/

�

� H �;i .� logG.y//

H�;i
�
� logG.y/C log G.x/

F .x/

�

� H�;i .� logG.y//

H�;i
�
� logG.y/C log G.y/

F .y/

� D H�;i .� logG.y//

H�;i .� logF .y//
D G�;i .y/
F �;i .y/

:

The first inequality can be seen as follows: F �hr G implies F �st G such that
F .t/

G.t/
� 1. Thus, a D log G.t/

F .t/
� 0. Since H�;i is a differentiable and log-concave

function, v D logH�;i is differentiable and concave such that v0 is decreasing.
In particular, v0.t/ � v0.t C a/ for a � 0. Hence, w.t/ D v.t/ � v.t C a/ has (for
fixed a � 0) a nonnegative derivative

w0.t/ D v0.t/ � v0.t C a/ � 0:

Thus, w is nondecreasing in t which yields the first inequality. In the last inequality,

we use the fact that F �hr G, i.e., G.t/

F .t/
is nondecreasing in t , and that H �;i is

decreasing.
In order to prove (ii), we consider first exponential progressively Type-II

censored order statistics. According to the proof of Theorem 3.2.11, condition (3.7)
yields ZS

j Wm2Wn2 �disp Z
R
i Wm1Wn1 . Then, using a theorem due to Bagai and Kochar [66]

(see also Shaked and Shanthikumar [799, Theorem 3.B.20 (b)]), i.e., X �hr Y if
X �disp Y and either the cumulative distribution function of X or Y is IFR, we
obtainZS

j Wm2Wn2 �hr Z
R
i Wm1Wn1 . Notice that the convolution of exponentials has an IFR

distribution (cf. Theorem 3.3.2).
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Finally, we apply the fact that the hazard rate order is preserved under increasing
transformations (cf. Shaked and Shanthikumar [799, Theorem 1.B.2]). Therefore,
XS
j Wm2Wn2 �hr X

R
i Wm1Wn1 so that (i) and the transitivity of the hazard rate order yields

the desired result. ut
The first result (i) is due to Hu and Zhuang [457] in terms of generalized order

statistics (for absolutely continuous cumulative distribution functions, see Belzunce
et al. [188] and Khaledi [518]). A version of the second result can be found in
Khaledi [518].

Theorem 3.2.3 yields directly the following result upon choosing F D G.

Corollary 3.2.4. Let R 2 Cm1
m1;n1

;S 2 Cm2
m2;n2

with m1;m2 2 N be censoring

schemes and XS
j Wm2Wn2 ; X

R
i Wm1Wn1 be progressively Type-II censored order statistics

from the same continuous cumulative distribution function F . If j � i and
condition (3.7) holds, then XS

j Wm2Wn2 �hr X
R
i Wm1Wn1 .

The preceding result implies the following corollary since the condition �k.R/ �
�k.S /, k D 1; : : : ; j , implies (3.7). For some particular cases in the model of
generalized order statistics, we refer to Hu and Zhuang [457, Theorem 3.2] (see
also Cramer and Kamps [301]).

Corollary 3.2.5. Let the assumptions of Corollary 3.2.4 be satisfied. If j � i

and �k.R/ � �k.S /, k D 1; : : : ; j , then XS
j Wm2Wn2 �hr X

R
i Wm1Wn1 .

Likelihood Ratio Order

The following result can be found in Korwar [544] and Hu and Zhuang [457] (for
generalized order statistics). The particular case i D j C 1 and R D S was
considered in Cramer et al. [311].

Theorem 3.2.6. Let R 2 Cm1
m1;n1

;S 2 Cm2
m2;n2

with m1;m2 2 N be censoring

schemes and XS
j Wm2Wn2 ; X

R
i Wm1Wn1 be progressively Type-II censored order statistics

from the same absolutely continuous cumulative distribution function F . If j � i
and �k.R/ � �k.S /, k D 1; : : : ; j , then XS

j Wm2Wn2 �lr X
R
i Wm1Wn1 .

Proof. The proof is based on the following result which can be found in Shaked and
Shanthikumar [799, p. 46] (see also Keilson and Sumita [513]):

Let X1; : : : ; Xj and Y1; : : : ; Yi be two sets of independent random variables with j � i and
Xr �lr Yr , r D 1; : : : ; j . If all random variables have a log-concave density function, then

jX
rD1

Xr �lr

iX
rD1

Yr :

Let ZS
r � Exp.�r.S //, r D 1; : : : ; j , and ZR

r � Exp.�r .R//, r D 1; : : : ; i , be
independent exponential random variables. Then, we obtain from �r.R/ � �r.S /

the result ZS
r �lr Z

R
r , r D 1; : : : ; j . Since progressively Type-II censored order

statistics based on an exponential distribution can be written as
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ZS
j Wm2Wn2 D

jX
rD1

ZS
r and ZR

i Wm1Wn1 D
iX

rD1
ZR
r ;

the assumption �r.R/ � �r.S /, r D 1; : : : ; j , leads to

ZS
j Wm2Wn2 D

jX
rD1

ZS
r �lr

jX
rD1

ZR
r C

iX
rDjC1

ZR
r D ZR

i Wm1Wn1

(cf. Shaked and Shanthikumar [799, p. 46/47]). Since the functionH D F .1�
exp.�// is nondecreasing and H .ZS

j Wm2Wn2/
dD XS

j Wm2Wn2 , the result follows from
Theorem 1.C.8 in Shaked and Shanthikumar [799]. ut

In Hu and Zhuang [457, Theorem 3.1], the preceding result can be found for
generalized order statistics with parameters

(i) i D j C 1, �r.R/ D �r.S /, r D 1; : : : ; j ;
(ii) i D j , �r.R/ D �r.S /C c, r D 1; : : : ; j , with c D mn � 0;

(iii) i D j C 1, �rC1.R/ D �r.S /� cr , with cr D RrC1 � 0, r D 1; : : : ; j .

For order statistics, Theorem 3.2.6 reads as follows:

(i) Let �r.S / D m� r C 1, r D 1; : : : ; j , and �r.R/ D n� r C 1, r D 1; : : : ; i ,
then Xj Wm �lr Xi Wn for j � i andm � n (cf. Chan et al. [242] for m D n);

(ii) Let �r.S / D m� j C r , r D 1; : : : ; j , and �r.R/ D n� i C r , r D 1; : : : ; i ,
then Xj Wm �lr Xi Wn for j � i and i � j � n � m (cf. Raqab and Amin
[743]; see also Khaledi and Kochar [519], Lillo et al. [598], and Shaked and
Shanthikumar [799], Theorem 1.C.37);

(iii) Let �r.S / D n�rC2, r D 1; : : : ; nC1, and �r.R/ D n�rC1, r D 1; : : : ; n.
Then, �1.S / D n C 1 � n D �1.R/ so that X1WnC1 �lr X1Wn. Moreover,
�rC1.S / D �r.R/ D n� r C 1 such that XnWn �lr XnC1WnC1 (cf. Boland et al.
[212, Theorem 3.4]).

Remark 3.2.7. As is obvious from the proof of Theorem 3.2.6, the condition in
this theorem can be weakened to

.�i�jC1.R/; : : : ; �i .R// � .�1.S /; : : : ; �j .S //:

From the monotonicity of the � ’s, this is equivalent to the condition

.�`1.R/; : : : ; �`j .R// � .�1.S /; : : : ; �j .S //

for some set f`1; : : : ; `j g � f1; : : : ; ig;

imposed by Izadi and Khaledi [473] to prove a generalization of Theorem 3.2.6
[see also condition (3.6)].
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The likelihood ratio order of progressively Type-II censored order statistics can
be discussed in the two-sample case as well. The following comparison result has
been obtained by Hu and Zhuang [457] for generalized order statistics.

Theorem 3.2.8. Let F;G be absolutely continuous cumulative distribution
functions with density functions f and g, respectively, and X � F; Y � G.
Moreover, let R be a censoring scheme. If the hazard rates �F D f

F
and �G D g

G

have an increasing ratio �G
�F

, then

F �hr G H) XR
i WmWn �lr Y

R
i WmWn:

Proof. Denote by h�;i , f�;i , and g�;i the density functions of the i th progressively
Type-II censored order statistic from a standard exponential distribution, F and G,
respectively. Then, h�;i is log-concave and

g�;i .x/
f�;i .x/

D h�;i .� logG.x//

h�;i .� logF .x//
� �G.x/
�F .x/

:

Since F �hr G, the same argument as in the proof of Theorem 3.2.3 applied to

the ratio h�;i .� logG.x//
h�;i .� logF .x//

proves that this ratio increases. Here, it has to be noticed that

h�;i is a decreasing function. This is due to the fact that H�;i is a DFR cumulative
distribution function and thus the hazard rate �H�;i is decreasing. Hence, h�;i D
�H�;iH�;i is decreasing. Since �G

�F
is increasing by assumption and all functions are

nonnegative, this yields the desired result. ut
Given F �hr G and the assumption “�G=�F is increasing,” Lemma 3.5 in

Belzunce et al. [186] yields that F �lr G. The following theorem is due to Belzunce
et al. [188] who established it for generalized order statistics.

Theorem 3.2.9. Let XR
i WmWn; YR

i WmWn, 1 � i � m, be progressively Type-II censored
order statistics from absolutely continuous cumulative distribution functions F
and G, respectively, with F �lr G and censoring scheme R. Then, XR

i WmWn �lr

YR
i WmWn, 1 � i � m.

Remark 3.2.10. It is not sufficient to assume F �lr G in order to obtain
likelihood ratio ordering of generalized order statistics. Belzunce et al. [188]
established the result for generalized order statistics provided that one of the
following assumptions hold:

(i) mr D �r � �rC1 � 1 � 0 for r D 1; : : : ; i � 1 and F �lr G, or
(ii) mr D �r � �rC1 � 1 � �1 for r D 1; : : : ; i � 1 and F �hr G and �G

�F
is

increasing.

Part (i) is an extension of Franco et al. [381, Theorem 3.4], while Part (ii)
is strengthened by a corresponding version of Theorem 3.2.8 since the condition
mk � �1 can be dropped (cf. Hu and Zhuang [457]).
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Dispersive Order

The following dispersive ordering result has been proved for generalized order
statistics by Khaledi [518].

Theorem 3.2.11. Let ZR
i Wm1Wn1 and ZS

j Wm2Wn2 be progressively Type-II censored
order statistics from a standard exponential distribution with censoring schemes
R 2 Cm1

m1;n1
;S 2 Cm2

m2;n2
, m1;m2 2 N, respectively. Moreover, let F be a

continuous DFR cumulative distribution function and XR
i Wm1Wn1 and XS

j Wm2Wn2 be
progressively Type-II censored order statistics from F . If j � i and condition
(3.7) holds, then

ZS
j Wm2Wn2 �disp Z

R
i Wm1Wn1;

XS
j Wm2Wn2 �disp X

R
i Wm1Wn1 : (3.8)

Proof. Let Z1; : : : ; Zj ;Z�1 ; : : : ; Z�i
iid� Exp.1/. Then, according to (2.13),

ZS
j Wm2Wn2

dD
jX
`D1

1

�`.S /
Z`;

ZR
i Wm1Wn1

dD
jX
`D1

1

�i�jC`.R/
Z�̀ C

iX
`DjC1

1

�i�`C1.R/
Z�̀:

In the next step, we use the fact that a random variableX satisfiesX �disp XCY for
any random variable Y independent of X iff X has a log-concave density function
(cf. Saunders [780]):

Pj

`D1
1

�i�jC`.R/
Z�̀ is independent of

Pi
`DjC1 1

�i�`C1.R/
Z�̀

and has a log-concave density function since a convolution of independent expo-
nentially distributed random variables has a log-concave density function. Hence,

jX
`D1

1

�i�jC`.R/
Z�̀ �disp Z

R
i Wm1Wn1:

According to Khaledi and Kochar [521, Theorem 2.1], condition (3.7) implies

jX
`D1

1

�`.S /
Z` �disp

jX
`D1

1

�i�jC`.R/
Z�̀

so that the transitivity of the dispersive order provesZS
j Wm2Wn2 �disp Z

R
i Wm1Wn1 .

Moreover, since ZS
j Wm2Wn2 �st Z

R
i Wm1Wn1 and

SF D F 
�
1 � exp.�/� (3.9)
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is an increasing convex transformation, Theorem 2.2 (ii) of Rojo and He [758] yields
the desired result in (3.8) (see also Hu and Zhuang [457, Lemmas 2.1 and 2.3]). ut

In terms of order statistics, the preceding result shows that Xj Wn �disp Xi Wn if
j � i and F is DFR. This result was obtained by Kochar [538].

Since dispersive order X �disp Y of random variables X and Y implies an
ordering of the variances, i.e., VarX � VarY , the preceding result proves that

VarXS
j Wm2Wn2 � VarXR

i Wm1Wn1

given j � i and condition (3.7). This extends a result of David and Groeneveld
[323] for order statistics.

The following stochastic comparison can be found in Belzunce et al. [188,
Theorem 3.12] and Khaledi [518, Theorem 3.9].

Proposition 3.2.12. Let F;G be continuous cumulative distribution functions
with F �disp G and X � F; Y � G. Moreover, let R be a censoring scheme.
Then, XR

i WmWn �disp Y
R
i WmWn, 1 � i � m.

Proof. As in the proof of Theorem 3.2.3, we have the representations Fi;� D
FXR

iWmWn D FZR
iWmWn.� logF / and Gi;� D F YR

iWmWn D FZR
iWmWn.� logG/. Then,

F �;i ıG�;i D F  ı
�
FZR

iWmWn

� ı FZR
iWmWn ıG D F ıG:

An application of (A.1) yields the claimed result. ut
As pointed out by Belzunce et al. [188], the method used in the proof of

Proposition 3.2.12 can be applied to several other stochastic orders, e.g., convex
�c , star-shaped ��, and superadditive order �su , respectively (see Cramer [286];
for order statistics, see Barlow and Proschan [168, p. 107/108] and Dharmadhikari
and Joag-dev [339]). This yields the following results.

Theorem 3.2.13. Let F;G be continuous cumulative distribution functions and
X � F; Y � G. Moreover, let R be a censoring scheme. If F �c Œ�� ; �su � G,
then XR

r WmWn �c Œ�� ; �su � Y
R
r WmWn, 1 � r � m.

A combination of Theorem 3.2.11 and Proposition 3.2.12 leads directly to the
following result.

Theorem 3.2.14. Let F;G be continuous cumulative distribution functions
with F �disp G where either F or G is DFR. Moreover, let XS

j Wm2Wn2 and YR
i Wm1Wn1

be progressively Type-II censored order statistics from F and G with censoring
schemes R 2 Cm1

m1;n1
;S 2 Cm2

m2;n2
, m1;m2 2 N, respectively. Then, if j � i and

condition (3.7) holds, then

XS
j Wm2Wn2 �disp Y

R
i Wm1Wn1:
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Minimal Bounds w.r.t. Stochastic, Hazard, and Likelihood Ratio Order

Applying the results of Bon and Păltănea [213], we can identify minimal generalized
order statistics w.r.t. stochastic, hazard, and likelihood ratio order, respectively.
It turns out that these generalized order statistics are kth record values with
appropriately chosen value for k. In particular, we have the following stochastic
bounds.

Theorem 3.2.15. Let XmWmWn be a progressively Type-II censored order statistic
from a (absolutely) continuous cumulative distribution function F with censoring

scheme R. Moreover, let X
.k/
m be an mth k-record value drawn from F .

Then:

(i) X
.k/
m �st XmWmWn with k D m

qQm
jD1 �j ;

(ii) X
.k/
m �hr XmWmWn with k D m

qQm
jD1 �j ;

(iii) X
.k/
m �lr XmWmWn with k D 1

m

Pm
jD1 �j .

Lorenz Order and Convex Orders

In the area of order statistics and record values, some results on Lorenz ordering are
known (cf. Arnold and Nagaraja [52], Arnold and Villaseñor [55,56], Kochar [539]).
We present some extensions to progressively Type-II censored order statistics.

It is known that star ordering implies Lorenz ordering (cf. Arnold and Villaseñor
[56, p. 80]). A direct application of Theorem 3.2.13 shows that

F �� G H) XR
r WmWn �L Y

R
r WmWn; 1 � r � m:

Hence, progressively Type-II censored order statistics are Lorenz ordered if their
parent distributions are star ordered. Another general result is the following.

Theorem 3.2.16. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order

statistics from F with censoring scheme R such that g.z;x/
x

is increasing for

every z 2 .0; 1/, where g.z; x/ D F .1 � zF .x//. Moreover, suppose that
the moments of the progressively Type-II censored order statistics exist. Then,
XR
r WmWn �L X

R
rC1WmWn, 1 � r � m � 1.

Proof. First, we have from Theorem 2.3.6 the connection

XR
rC1WmWn

dD F �1� U 1=�rC1
rC1 F .XR

r WmWn/
� D g.U 1=�rC1

rC1 ; XR
r WmWn/;

where U
1=�rC1
rC1 and XR

r WmWn are independent random variables. By assumption, g.z;x/
x

is increasing in x so that Theorem 2.7 in Arnold and Villaseñor [56] yields
XR
r WmWn �L X

R
rC1WmWn for 1 � r � m � 1. ut
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Example 3.2.17. The preceding theorem holds, e.g., for a Pareto.˛/-
distribution with parameter ˛ > 1. We have g.z; x/ D z�1=˛x so that the
ratio g.z;x/

x
is constant w.r.t. x. Hence, progressively Type-II censored order

statistics based on a Pareto distribution are Lorenz ordered if ˛ > 1. Notice
that the condition ˛ > 1 guarantees the existence of the moments. For order
statistics, this yields Xr Wn �L XrC1Wn, 1 � r � n � 1, which is given in Arnold
and Villaseñor [56, Theorem 4.1]. Alternatively, the Lorenz ordering of Pareto
progressively Type-II censored order statistics may be obtained from Strassen’s
theorem (see Arnold and Villaseñor [55, 56]) using the product representation in
Corollary 2.3.13.

Since stochastic order�st implies increasing convex order �icx , we obtain from
Theorem 3.2.1 the following result.

Corollary 3.2.18. Let F;G be continuous cumulative distribution functions
with F �st G. Moreover, let XS

j Wm2Wn2 and YR
i Wm1Wn1 be progressively Type-II

censored order statistics from cumulative distribution functions G and F with
censoring schemes R 2 Cm1

m1;n1
;S 2 Cm2

m2;n2
, m1;m2 2 N, respectively. If j � i

and if (3.7) holds, then XS
j Wm2Wn2 �icx Y

R
i Wm1Wn1 .

For the next result, we need the following auxiliary results which can be found
in Shaked and Shanthikumar [799, Theorem 3.A.35].

Theorem 3.2.19. Let k � m and .��11 ; : : : ; ��1m / 4m .

�1
1 ; : : : ; 


�1
k ; 0

�m�k/ and
X1; : : : ; Xm be independent and identically distributed random variables with
finite expectation. Then,

kX
jD1

1


j
Xj �cx

mX
jD1

1

�j
Xj and

kX
jD1

1


j
Xj �L

mX
jD1

1

�j
Xj :

From this result and the sum representation in (2.13) of exponential progressively
Type-II censored order statistics, we obtain the following ordering result.

Corollary 3.2.20. Let k � m and XS
mWmWn and YR

kWkWs be progressively Type-
II censored order statistics based on a standard exponential distribution with
censoring schemes S and R such that

.�1.R/
�1; : : : ; �m.R/�1/ 4m .�1.S /�1; : : : ; �k.S /�1; 0�m�k/:

Then,

XS
mWmWn �cx Y

R
kWkWs and XS

mWmWn �L Y
R
kWkWs:

Results for comparisons in the increasing convex directional order have been
established by Balakrishnan et al. [153]. Dependence orderings are addressed in
Khaledi and Kochar [522]. In particular, they showed that, under certain conditions
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on the parameters, some measures of concordance are monotone. These measures
include Spearman’s �, Kendall’s � , and Gini’s coefficient of association (see Khaledi
and Kochar [522, Corollary 3.1]).

3.2.2 Multivariate Stochastic Orderings and Its Applications
to Progressively Type-II Censored Order Statistics

In this section, we consider applications of multivariate stochastic orders to
progressively Type-II censored order statistics, i.e., stochastic and likelihood ratio
order. Applications of multivariate versions of the hazard order and dispersive order
can be found in Belzunce et al. [188].

Stochastic Order

Theorem 3.2.21 (Belzunce et al. [188]). Let XR and YR be vectors of
progressively Type-II censored order statistics from continuous cumulative dis-
tribution functions F and G with censoring scheme R, respectively. Then, if
F �st G, then XR �st YR.

Proof. The proof is based on Theorem 6.B.1 in Shaked and Shanthikumar [799]:

Two random vectors X, Y satisfy X �st Y if random vectors QX, QY, defined on the same

probability space, exist such that X
dD QX, Y

dD QY and P. QX � QY/ D 1.

Let QX D �F .UR
r WmWn/

�
1�r�m, QY D �G .UR

r WmWn/
�
1�r�m, where UR

1WmWn; : : : , UR
mWmWn

denote uniform progressively Type-II censored order statistics with censoring

scheme R. Then, QX dD XR and QY dD YR .
The assumption F �st G leads directly to the identity

P. QX � QY/ D P
	 m\
rD1

˚
F .UR

r WmWn/ � G .UR
r WmWn/

�
 D 1

which proves the result. ut
Since the multivariate stochastic order is preserved under marginalization, this

yields directly Part (i) of Theorem 3.2.1.

Likelihood Ratio Order

The following result is taken from a more general result established by Belzunce
et al. [188] for generalized order statistics.
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Theorem 3.2.22. Let XR and YR be vectors of progressively Type-II censored
order statistics from absolutely continuous cumulative distribution functions F
and G with censoring scheme R, respectively. Then, each of the conditions

(i) F �lr G,
(ii) F �hr G and �G

�F
is increasing

implies XR �lr YR.

Proof. The joint density of uniform progressively Type-II censored order statistics
is given by [cf. (2.3)]

f UR

.um/ D
� mY
jD1

�j

� mY
jD1

.1 � uj /
Rj ;

where 0 < u1 < � � � < um < 1. Moreover,

f XR

.xm/ D f UR

.F.x1/; : : : ; F .xm// �
mY
jD1

f .xj /;

f YR

.ym/ D f UR

.G.y1/; : : : ; G.ym// �
mY
jD1

g.yj /:

According to the definition of multivariate likelihood ratio order, (A.2) has to be
checked. As can be seen from the product structure of the joint density function, it
is sufficient to consider the inequalities

F
Rj
.xj /f .xj /G

Rj
.yj /g.yj / � F Rj

.xj ^yj /f .xj ^yj /GRj
.xj _yj /g.xj _yj /;

(3.10)

j D 0; : : : ; m, separately. For xj � yj , both sides of (3.10) are identical and
so nothing remains to be shown. Suppose xj � yj . Then, we have to verify the
inequality

F
Rj
.xj /f .xj /G

Rj
.yj /g.yj / � FRj

.yj /f .yj /G
Rj
.xj /g.xj / (3.11)

”
 
F .xj /

G.xj /

!Rj
� f .xj /
g.xj /

�
 
F .yj /

G.yj /

!Rj
� f .yj /
g.yj /

:

Hence, it remains to be shown that
�
F

G

�Rj � f
g

is a nonincreasing function. By

assumption,Rj is nonnegative. Moreover, the assumption F �lr G implies that f
g

is

nonincreasing and that F �hr G. Therefore, F
G

is nonincreasing. Since all functions
are nonnegative, this yields the result provided that condition (i) is satisfied.
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Notice that
�
F

G

�Rj � f
g
D
�
F

G

�RjC1 � �F
�G

so that (3.11) and, thus, the result follows

from condition (ii), too. ut
Remark 3.2.23. For generalized order statistics, the following assumptions have
been imposed on the model parameters by Belzunce et al. [188] to prove the
above theorem:

(i) mr D �r � �rC1 � 1 � 0 for r D 1; : : : ; m � 1, �m � 1, and F �lr G, or
(ii) mr D �r � �rC1 � 1 � �1 for r D 1; : : : ; m � 1 and F �hr G and �G

�F
is

increasing.

Balakrishnan et al. [148] applied these results in combination with Theorem
3.11.4 in Müller and Stoyan [659] to establish the following conditional ordering
result.

Theorem 3.2.24. Let L � R
n be a sublattice, i.e., x; y 2 L implies x _ y 2 L

and x ^ y 2 L. Then, under the conditions of Theorem 3.2.22, for 1 � s � m,

ŒXsWmWnjXR 2 L� �lr ŒYsWmWnjYR 2 L�:

The result implies likelihood ratio ordering of residual lifetimes. For r � s, and
given the conditions of Theorem 3.2.22,

ŒXsWmWn � t jXr WmWn > t� �lr ŒYsWmWn � t jYr WmWn > t�:

Here, the sublattice L is defined by fxmjxr Wm > tg � R
m�. In this context, Hashemi

et al. [434] studied also the residual life. They obtained stochastic orderings for the
quantity ŒXsWmWn � t jXr WmWn � t < XrC1WmWn�, 0 � r < s � m.

Since the multivariate likelihood ratio order is preserved under marginalization,
Theorem 3.2.22 leads directly to results for marginal distributions. In fact, this
provides an alternative proof of Theorem 3.2.9.

The same approach can be utilized to prove a result for different sets of
parameters but the same underlying distribution. First, uniform generalized order
statistics are considered.

Proposition 3.2.1 (Belzunce et al. [188]). Let UR and US be vectors of uniform
progressively Type-II censored order statistics with censoring schemes R and S ,
respectively. Then,

UR �lr US ” Rj � Sj ; j D 1; : : : ; m:

Proof. As in the proof of Theorem 3.2.22, we obtain for all 1 > xj � yj > 0,
j D 1; : : : ; m,

.1 � xj /Rj .1 � yj /Sj � .1 � yj /Rj .1 � xj /Sj ; j D 1; : : : ; m:
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This leads to the inequalities

	
1 � xj
1 � yj


Rj�Sj
� 1 j D 1; : : : ; m:

Since 1�xj
1�yj � 1, this holds iff Rj � Sj , j D 1; : : : ; m. ut

Since the multivariate likelihood ratio order is preserved under strictly
increasing transformations of each component (cf. Shaked and Shanthikumar
[799, Theorem 6.E.3]), this result leads directly to a theorem for underlying
continuous cumulative distribution functions.

Theorem 3.2.25 (Belzunce et al. [188]). Let XR and XS be vectors of
progressively Type-II censored order statistics from an absolutely continuous and
strictly increasing cumulative distribution function F with censoring schemes R
and S , respectively. Then, Rj � Sj , j D 1; : : : ; m, implies XR �lr XS .

Theorems 3.2.25 and 3.2.22 can be combined to compare vectors of progressively
Type-II censored order statistics (generalized order statistics) with different cumu-
lative distribution functions and different censoring schemes (cf. Belzunce et al.
[188, Theorem 3.10]). Further multivariate orders are also discussed in the literature.
Multivariate hazard rate ordering is considered in Belzunce et al. [188]. Results in
terms of the multivariate dispersive order are discussed in Belzunce et al. [189],
Chen and Hu [250], and Xie and Hu [925]. Multivariate dispersive ordering for
spacings of progressively Type-II censored order statistics is discussed in Zhuang
and Hu [946].

3.2.3 Applications to Spacings of Progressively Type-II
Censored Order Statistics

In this section, we consider stochastic orders of (p-)spacings. For progressively
Type-II censored order statistics X1WmWn; : : : ; XmWmWn, the associated spacings S?R D
.S?R1 ; : : : ; S?Rm / are as defined in (2.44). A p-spacing is given by a contrast
S?RrCp�1;r�1 D XrCp�1WmWn � Xr�1WmWn, where p 2 f1; : : : ; m � r C 1g [see
(2.38)]. Further, we write S?RX (S?RY ) if the baseline distribution is specified by the
cumulative distribution function of the random variable X (Y ).

The first result on stochastic ordering of spacings of progressively Type-II
censored order statistics is motivated by Kamps [498, Theorem V.2.7, p. 183].
Although this result was formulated in terms of m-generalized order statistics,
the proof holds for arbitrary generalized order statistics. Moreover, Kamps [498]
assumed that F;G are tail ordered. Since tail order and dispersive order are
equivalent under the conditions considered here, we can note the theorem in terms
of dispersive ordering.
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Theorem 3.2.26. Let X1WmWn; : : : ; XmWmWn and Y1WmWn; : : : ; YmWmWn be progressively
Type-II censored order statistics based on F and G, respectively, and with
censoring scheme R. Then: If F �disp G, then

S?RrCp�1;r�1IX �st S
?R
rCp�1;r�1IY ; 1 � p � m � r C 1:

Proof. Since F �disp G, it follows from Yr WmWn � YrCp�1WmWn that

F .G.YrCp�1WmWn//� YrCp�1WmWn � F .G.Yr WmWn//� Yr WmWn
” F .G.YrCp�1WmWn//� F .G.Yr WmWn// � YrCp�1WmWn � Yr WmWn:

Since G is continuous, we have Xi WmWn
dD F .G.Yi WmWn//, i D 1; : : : ; m.

Combining these, we obtain for arbitrary t 2 R

P.S?RrCp�1;r�1IX > t/ D P.F .G.YrCp�1WmWn// � F .G.Yr WmWn// > t/
� P.YrCp�1WmWn � Yr WmWn > t/ D P.S?RrCp�1;r�1IY > t/:

Thus, S?RrCp�1;r�1IX �st S
?R
rCp�1;r�1IY . ut

As a particular case, the result of Bartoszewicz [173] for the usual order statistics
is included.

Results on multivariate stochastic ordering of spacings are provided by Belzunce
et al. [186] in terms of sequential order statistics. They considered interepoch
times of nonhomogeneous pure birth processes which can be seen as spacings of
sequential order statistics (see also Pellerey et al. [715]). The particular results in
terms of generalized order statistics are presented in Belzunce et al. [188] which,
due to the simpler structure, lead to more general results in the model of generalized
order statistics. Since the proofs of these results are quite technical, we only state
the results and refer for the details to the original literature. For p D 1, the result of
Kamps [498] is a particular case of Theorem 3.2.27. The result is presented in terms
of progressively Type-II censored order statistics.

Theorem 3.2.27. Let X1WmWn; : : : ; XmWmWn and Y1WmWn; : : : ; YmWmWn be progressively
Type-II censored order statistics based on F and G, respectively, and with
censoring scheme R. Then: If F �disp G, then S?RX �st S?RY .

Finally, we note a result for the multivariate likelihood ratio order of spacings of
progressively Type-II censored order statistics taken from Belzunce et al. [188] who
established the result for generalized order statistics. Notice that, for generalized
order statistics, additional assumptions may be necessary.

Theorem 3.2.28. Let XR and YR be vectors of progressively Type-II censored
order statistics from absolutely continuous cumulative distribution function F
and G with censoring schemes R, respectively. The density function are denoted
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by f and g and the hazard rates by �F and �G . If f or g or both are log-convex
and either

(i) F �lr G, or
(ii) F �hr G and �G

�F
is increasing,

then S?RX �lr S?RY .

Contributions to ordering of spacings of order statistics have been made by Hu
and Wei [455], Hu and Zhuang [456], and Misra and van der Meulen [651]. Xie and
Zhuang [926] discussed the mean residual life order and the excess wealth order for
spacings of generalized order statistics.

The following results for normalized spacings [cf. (2.9)]

SR
1 D �1.R/XR

1WmWn; SR
r D �r.R/.XR

r WmWn � XR
r�1WmWn/; r D 2; : : : ; m;

from the same population cumulative distribution function but with different
censoring schemes are due to Burkschat [228, see Theorem 4.5].

Theorem 3.2.29. Let F be a cumulative distribution function and R;S 2 Cm
m;n

such that

.�1.R/; : : : ; �m.R// � .�1.S /; : : : ; �m.S //:

Then, SR �st SS if F is IFR, and SR �st SS if F is DFR.

For the non-normalized spacings the following result holds.

Corollary 3.2.30. Let F be a DFR-cumulative distribution function and R;S 2
Cm
m;n such that

.�1.R/; : : : ; �m.R// � .�1.S /; : : : ; �m.S //:

Then, S?R �st S?S .

3.3 Aging Properties

Aging properties are closely connected to stochastic ordering. Theorem 3.2.13 has
been used by Cramer [286] to establish aging properties of progressively Type-II
censored order statistics. Subsequently, we discuss the following aging notions.

Definition 3.3.1. Let F be a continuous cumulative distribution function with
support Œ0;1/. Then, F (or a random variable X � F ) is said to have

(i) an IFR iff the hazard function � logF is convex on Œ0;1/;
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(ii) an increasing failure rate on the average (IFRA) iff the hazard function
� logF is star shaped on Œ0;1/;

(iii) the NBU property iff the hazard function � logF is superadditive on Œ0;1/,
i.e., F .x C y/ � F .x/F .y/ for x; y � 0.

Denoting byG the cumulative distribution function of a standard exponential dis-
tribution, then F �c Œ�� ; �su � G is equivalent to the IFR [IFRA, NBU] property
of F (see Shaked and Shanthikumar [799, Theorem 4.B.11]). Then, Theorem 3.2.13
yields the following result. For order statistics, parts of Theorem 3.3.2 can be
found in Barlow and Proschan [168] and Takahasi [835] (see also Shaked and
Shanthikumar [799, Theorem 4.B.15]).

Theorem 3.3.2. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a continuous cumulative distribution function F with support
Œ0;1/. Then, F is IFR [IFRA, NBU] implies that FXrWmWn is IFR [IFRA, NBU],
1 � r � m.

Tavangar and Asadi [839] have established characterizations of aging properties.
In particular, they proved the following result.

Theorem 3.3.3. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a continuous cumulative distribution function F and censoring
scheme R and 1 � r � s � m. Then:

(i) If F is IFR, then ŒXsWmWn� t jXr WmWn � t � is stochastically decreasing in t � 0;
(ii) If F is NBU, then ŒXsWmWn � t jXr WmWn � t � �st XsWmWn, t � 0;

(iii) If F is NWU, then XRCr�1

s�rC1Wm�rC1W�r �st ŒXsWmWn � t jXr WmWn � t �, t � 0.

Belzunce et al. [187] studied multivariate aging properties in terms of non-
homogeneous birth processes. They applied their results to generalized order
statistics. A restriction to progressive censoring shows that progressively Type-
II censored order statistics XR is MIFR if F is an IFR-cumulative distribution
function. Moreover, XR is multivariate Polya frequency of order 2 (MPF2) if the
density function of F is log-concave. Further notions of multivariate IFR and its
applications to generalized order statistics are discussed in Arias-Nicolás et al. [47].
Some additional results in terms of sequential order statistics are established in
Burkschat and Navarro [233] and Torrado et al. [853].

3.4 Asymptotic and Extreme Value Results

3.4.1 Extreme Value Analysis for Order Statistics

Extreme value theory of order statistics deals with limiting distributions of
the appropriately normalized maximum XnWn of an IID sample X1; : : : ; Xn,
X1 � F . Supposing that a limiting distribution exists, the problem is to find those
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nondegenerate distributions L which are limiting laws of the linearly normalized
maximum .XnWn � bn/=an, i.e.,

F n.anx C bn/ n!1����! L.x/; x 2 R;

where an > 0 and bn 2 R are normalizing constants. The results for order statistics
are due to Fisher and Tippett [375] and Gnedenko [404] who showed that the so-
called extreme value distributions

H1;�.x/ D
(
0; x � 0
exp.�x��/; x > 0

; � > 0; (Frechét)

H2;�.x/ D
(

exp.�jxj�/; x < 0

1; x � 0 ; � > 0; (Weibull)

H3;0.x/ D exp.� exp.�x//; x 2 R: (Gumbel)

are the only possible limiting distributions. Subsequently, many results on extreme
value theory for order statistics have been established. Improvements have been
made in several aspects. In particular, it has been shown that the notion of regularly
varying functions is important in characterizing distributions converging to a par-
ticular type of distribution (see, e.g., Resnick [751]). Moreover, convergence results
have been established w.r.t. other norms, e.g., the variational distance (see Reiss
[750]). A comprehensive presentation of this topic and many further results can be
found in the monographs by Galambos [389, 390], Leadbetter et al. [576], Pfeifer
[718], Resnick [751], Reiss [750], and De Haan and Ferreira [331].

3.4.2 Extreme Value Analysis for Progressively Type-II
Censored Order Statistics

Extreme value analysis for progressively Type-II censored order statistics has been
developed by Cramer [290] by utilizing results for generalized order statistics
obtained in Cramer [285]. According to Theorem 2.3.6, the distribution of the
mth progressively Type-II censored order statistic XmWmWn can be written as a
quantile transformation of a product of IID transformed uniform random variables
U1; : : : ; Um

XmWmWn
dD F 

�
1 �

mY
jD1

U
1=�j
j

�
:
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Therefore, the cumulative distribution function FXmWmWn has the representation

F XmWmWn.x/ D P
� mX
jD1

Zj � � logF .x/
�
; x 2 R;

where Z1; : : : ; Zm are independent random variables with Zj D � 1
�j

logUj �
Exp.�j /, 1 � j � m.

In the following, the parameters �j may depend on m, which we emphasize by
the notation �j;m. Therefore, Cramer [290] considered a triangular scheme (3.12) of
independent random variables Zj;m � Exp.�j;m/, where �j;m D Pm

iDj .Ri;m C 1/,
1 � j � m, and Rm D .R1;m; : : : ; Rm;m/ denote the corresponding censoring plan,
m 2 N.

Exponential random variables Censoring plans

Z1;1
Z1;2 Z2;2
Z1;3 Z2;3 Z3;3

Z1;4 Z2;4 Z3;4 Z4;4
Z1;5 Z2;5 Z3;5 Z4;5 Z5;5
:::

:::
:::

:::
:::
: : :

R1;1
R1;2 R2;2
R1;3 R2;3 R3;3

R1;4 R2;4 R3;4 R4;4
R1;5 R2;5 R3;5 R4;5 R5;5
:::

:::
:::

:::
:::
: : :

(3.12)

The problem is to identify the nondegenerate limits L of

F XmWmWn.amx C bm/ D P
� mX
jD1

Zj;m � � logF .amx C bm/
�

m!1����! L.x/

for all continuity points x of some nondegenerate cumulative distribution function
L. In order to find these distributions, Cramer [290] considered the limiting behavior
of the sum

Pm
jD1 Zj;m and of � logF .amx C bm/ separately. Notice that the latter

illustrates the relation to the extreme value theory of order statistics.
Introducing the notation t .k/m DPm

jD1 1

�kj;m
, k 2 N, we get

t .1/m D E
mX
jD1

Zj;m; t .2/m D Var

	 mX
jD1

Zj;m



:

Cramer [290] showed that two settings have to be handled separately:

lim
m!1 t

.1/
m <1; (C1)

lim
m!1 t

.1/
m D 1; lim

m!1 t
.2/
m <1: (C2)
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Remark 3.4.1. In the model of progressive censoring, only the cases (C1) and
(C2) are possible. This can be seen from the relation �j;m D m � j C 1 CPm

iDj Ri � m�jC1 or, equivalently, 1
�j;m
� 1

m�jC1 with equality if the censoring

scheme is given by Rm D .0�m/. In this sense, progressively Type-II censored order

statistics can be seen as dominated by order statistics since t
.k/
m DPm

jD1 ��kj;m �Pm
jD1 1

j k
, k 2 N. Moreover, it is clear that the limits t

.k/1 , k � 2, are finite

provided they exist.
In Cramer [290], it is shown that both scenarios are possible. As an example,

the following one-step plans are considered.

(i) For (C1), the following cases are distinguished:

(1) t .1/1 > 0; t.2/1 > 0; (2) t .1/1 > 0; t.2/1 D 0; (3) t .1/1 D 0; t .2/1 D 0:

These cases are generated by the following one-step censoring schemes:

(1) Rm D .0�m�2;m; 0/, m � 3;
(2) Rm D .0�m�1;m/, m � 2;
(3) Rm D .0�m�1;m2/, m � 3.

(ii) For progressively Type-II censored order statistics with equi-balanced cen-

soring plan Rm D .R�m/, limm!1 t .1/m D 1. For s � 2, we have

t .s/1 D
1

.RC 1/s �.s/ <1;

where � denotes the Riemann-zeta function. For s D 2, one gets t
.2/1 D

�2

6.RC1/2 .

(iii) As pointed out in (i), t
.2/1 D 0 is possible. However, the censoring schemes

Rm D .0�m�1; bpmc/, m � 2, show that this holds also when t
.1/1 D1.

Remark 3.4.2. Cramer [285] pointed out that a third scenario is possible for
generalized order statistics

lim
m!1 t

.1/
m D 1; lim

m!1 t
.2/
m D1: (C3)

Comparing these settings, it turns out that (C2) is similar to the setup of order

statistics provided limm!1 t .2/m > 0, whereas (C3) resembles the case of record
values (see Arnold et al. [59], Nevzorov [680], Resnick [751]).

The scenarios (C1) and (C2) lead to a different limiting behavior: For (C1), a
limiting distribution depending on the underlying cumulative distribution function
F results if limm!1 t .2/m > 0. If limm!1 t .2/m D 0, i.e., the variance of

Pm
jD1 Zj;m

converges to zero, the behavior is connected to central and intermediate order
statistics.
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In what follows, we establish the limiting results and the associated normalizing
sequences .am/m2N and .bm/m2N. For (C1) and (C2), we calculate the characteristic
function of the limiting distribution. Given the assumption limm!1 t .2/m D 0, we
present a Lyapunov-type condition to guarantee asymptotic normality. Applying the
ı-method, this approach yields generalizations of limiting results for central and
intermediate order statistics (see, e.g., Reiss [750]).

3.4.3 Extreme Value Analysis for Exponential Progressively
Type-II Censored Order Statistics

The extreme value analysis for progressively Type-II censored order statistics is
developed in two steps. First, an exponential population distribution is considered.
Let the normalized exponential progressively Type-II censored order statisticZmWmWn
be given by the linear transformation

Mm D ZmWmWn � t .1/mq
t
.2/
m

D
Pm

jD1 Zj;m � t .1/mq
t
.2/
m

; m 2 N;

with .Zj;m/j;m as in (3.12). Then, due to the independence assumption, the
characteristic function 'm of Mm is given by

'm.s/ D EeisMm D exp

0
B@�is t

.1/
mq
t
.2/
m

1
CA

mY
jD1

�j;m

q
t
.2/
m

�j;m

q
t
.2/
m � is

; s 2 R:

Let log denote the principal branch of the logarithm in the complex plane. Then,
Cramer [290] established the following representation of the characteristic function
of the limiting cumulative distribution function L.

Theorem 3.4.3. Let t
.2/1 > 0 be finite. Then, for jsj < 1,

(i) the limit limm!1 Œ� log'm.s/� exists. It is given by

lim
m!1 Œ� log'm.s/� D s2

2
�
1X
�D3

1

�
.is/�

t
.�/1

.t
.2/1 /�=2

D .s/; say;

given that t
.2/1 is positive and finite. Otherwise, the limit of the ratio

t
.�/
m =.t

.2/
m /�=2 has to be considered as a whole in order to find the limiting

function;
(ii) the limit limm!1 'm.s/ exists. It is given by
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lim
m!1'm.s/ D expf�.s/g D '.s/; jsj < 1: (3.13)

The function ' is uniquely determined on the real line by (3.13) and defines a
characteristic function. Moreover, EM�

m ! EM� for all � 2 N, where M � L.

In particular, FMm
d�! L, where the characteristic function of L is given by '.

3.4.4 Extreme Value Analysis for Progressively Type-II
Censored Order Statistics from a Cumulative Distribution
Function F

Positive Asymptotic Variance

Let 0 < t.2/1 <1, .um/m2N � R , and �m D F .um/, m 2 N. Then,

F XmWmWn.um/ D P
� mX
jD1

Cj;m � � log �m
�
D FMm

�� log �m � t .1/mq
t
.2/
m

�

From Theorem 3.4.3, it follows that the cumulative distribution functions FMm

converge weakly to a nondegenerate cumulative distribution function L. Let x 2 R,
.am/m2N � .0;1/, .bm/m2N � R, and um D um.x/ D amx C bm, m 2 N, so that

zm.x/ D � log �m � t .1/mq
t
.2/
m

D � logF .amx C bm/ � t .1/mq
t
.2/
m

:

If normalizing sequences .am/m2N � .0;1/, .bm/m2N � R can be chosen with
limm!1 zm.x/ D z.x/, then Slutsky’s lemma (cf. Serfling [793, p. 19]) yields that
FMm.zm.x// �! L.z.x// for all continuity points z.x/ of L.

Theorem 3.4.4. Let t
.1/1 D 1 and 0 < t

.2/1 < 1. Then, P .XmWmWn�am/=bm
converges to a nondegenerate limiting distribution iff F is in the domain of
attraction of an extreme value distribution H .

In that case, up to an affine transformation, the limiting distribution has the

representation L
�� log.� logH/=

q
t
.2/1
�

, where L is the limiting distribution of

Mm. Appropriate normalizing constants are defined by (3.14).

Proof. First, let t .1/1 <1. Then, am D 1, bm D 0, m 2 N, and we get

zm.x/ D � logF .x/ � t .1/mq
t
.2/
m

�! � logF .x/ � t .1/1q
t
.2/1

D z.x/; x 2 R;
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so that the limiting distribution depends on the population cumulative distribution
function F .

For t .1/1 D 1, we get zm.x/ D � log
�
F .amx C bm/ exp.t .1/m /

�
=

q
t
.2/
m .

Supposing that F is in the domain of attraction of an extreme value distribution
H , normalizing sequences .˛m/m2N � .0;1/, .ˇm/m2N � R exists with

mF .˛mx C ˇm/ �! � logH.x/; x 2 R

(cf. De Haan and Ferreira [331, p. 4]). Then, limm!1 t .1/m D 1 implies
limm!1 exp.t .1/m / D1. Choosing normalizing constants as

am D ˛bexp.t
.1/
m /c; bm D ˇbexp.t

.1/
m /c; m 2 N; (3.14)

the limit limm!1 zm.x/ D � log.� logH.x//=
q
t
.2/1 holds. Hence,

FXmWmWn.zm.x// �! L
�
� log.� logH.x//=

q
t
.2/1
�

for all continuity points y D � log.� logH.x//=
q
t
.2/1 of L. ut

Theorem 3.4.4 illustrates that the possible limiting distributions of progressively
Type-II censored order statistics are directly connected to those of order statistics.
The problem of deriving the limiting distribution can be divided into two tasks.
First, it has to be ensured that the random variableMm converges to the cumulative
distribution function L. In the second step, the underlying cumulative distribution
function F has to be analyzed w.r.t. the domain of attraction of an extreme value
distribution H . If so, the normalizing sequences given in Theorem 3.4.4 can be
used to ensure convergence to a nondegenerate distribution.

Zero Asymptotic Variance

Let t .2/1 D 0. Then, t .�/1 D 0 for all � � 2. Now, the Lyapunov condition for
the central limiting theorem leads to a sufficient condition for convergence. With
Zj;m � ��1j;m, 1 � j � m, the Lyapunov condition reads

1

.t
.2/
m /3=2

nX
jD1

E
ˇ̌
Zj;m � ��1j;m

ˇ̌3 n!1����! 0:

Since Zj D �j;mZj;m, 1 � j � m, are IID Exp.1/-random variables, this
simplifies to
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mX
jD1

E
ˇ̌
Zj;m � ��1j;m

ˇ̌3 D EjZ1 � 1j3
mX
jD1

1

�3j;m
D EjZ1 � 1j3t .3/m :

Hence, the Lyapunov condition is equivalent to assuming that

t
.3/
m

.t
.2/
m /3=2

n!1����! 0: (3.15)

This condition implies convergence to a normal distribution as well as

t
.�/
m

.t
.2/
m /�=2

n!1����! 0 for all � � 3: (3.16)

Remark 3.4.5. The ratios in (3.16) are bounded from below by zero and from
above by one. In particular, one can show (if all limits exist) that

t .3/m =.t .2/m /3=2
n!1����! c3 > 0

implies t
.�/
m =.t

.2/
m /�=2

n!1����! c� > 0 for all � � 3. Notice that c�0 D 0 for some �0 �
3 implies the validity of the Lyapunov condition. Hence, the limiting distribution
is either normal or all cumulants for � � 2 of the limiting distribution are positive.

Theorem 3.4.3 yields the following asymptotic result.

Theorem 3.4.6. Suppose condition (3.15) holds. Then,

Mm

d�! N.0; 1/: (3.17)

If (3.16) holds with limits c� > 0, � � 2, then the characteristic function of the
limiting law is given by (3.13).

Writing G D � logF , Corollary 2.3.7 yields the identity XmWmWn
dD

G 
�Pm

jD1 Cj;m
�
. The ı-method (see, e.g., Sen and Singer [791, p. 131]),

Theorem 3.4.6 and Slutsky’s lemma imply the following result.

Theorem 3.4.7. Let F be an absolutely continuous and continuously differen-
tiable cumulative distribution function with density function f . Suppose that
(3.15) holds and that � > 0 exists with

� � t .1/mq
t
.2/
m

m!1����! 0; (3.18)



106 3 Further Distributional Results on Progressive Type-II Censoring

and f .G .�// > 0. Then, the mth progressively Type-II censored order statistic
from F is asymptotically normal, i.e.,

XmWmWn �G .�/q
t
.2/
m

d�! N
�
0; e�2�f �2.G .�//

�
:

Appropriate normalizing constants are given by am D
q
t
.2/
m and bm D G .�/,

m 2 N.

Condition (3.18) implies that t .1/1 D � > 0 since t .2/1 D 0. For t .1/1 2 f0;1g,
the situation is different. As an example, consider t .1/m ! 1, G .t .1/m / tends to
G .1/ D F .1/ D !.F /. Then, for !.F / < 1, a convergence result can be
obtained (for order statistics, cf. Reiss [750, p. 109], Smirnov [808], and Falk [358]).
A similar result can be established for t .1/1 D 0 and ˛.F / > �1.

Theorem 3.4.8. Suppose F is absolutely continuous with density function f
and that F has a finite right endpoint !.F / of its support. Let F be differentiable
as well as f be uniformly continuous on .!.F / � "; !.F // for some " > 0.
Moreover, let f .t/ > ı for t 2 .!.F /� "; !.F // and some ı > 0. Then, if (3.17)

holds with t
.1/1 D 1, then XmWmWn

d�! N.0; 1/. Appropriate normalizing constants
are given by

am D
q
t
.2/
m

.G /0.t .1/m /
; bm D G .t .1/m /; m 2 N:

The conditions of Theorem 3.4.8 are satisfied by the uniform distribution. The

normalizing constants am;uni D
q
t
.2/
m exp.�t .1/m / and bm;uni D 1 � exp.�t .1/m /,

m 2 N, ensure asymptotic normality.

3.4.5 Applications to Upper, Lower, Central, and Intermediate
Progressively Type-II Censored Order Statistics

Cramer [290] has shown that the preceding results can be applied not only to upper
extreme progressively Type-II censored order statistics but also to upper, lower,
central, and intermediate progressively Type-II censored order statistics.
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Upper Progressively Type-II Censored Order Statistics

The results for the maximal progressively Type-II censored order statistic XmWmWn
can be directly applied to an upper progressively Type-II censored order statistic
Xm�rC1WmWn with r 2 N; r � m fixed. As mentioned in Nasri-Roudsari and
Cramer [671] for m-generalized order statistics, this corresponds to a sample of
progressively Type-II censored order statistics with �1;m; : : : ; �m�rC1;m or censoring
scheme R�m D .R1;m; : : : ; Rm�r;m; �m�rC1;m/ (see Theorem 2.4.1). Therefore, the
preceding theory can directly be applied by defining the sums

t
.�/
m�rC1 D

m�rC1X
jD1

1

��j;m
; � 2 N:

In the case of equi-balanced censoring plans, i.e., �j;m D .m � j C 1/.R C 1/,
1 � j � m, the result for the convergence of the exponential sum is given by

L.z/ D 1

� .r/
�
�
r; zRC1

�
; z 2 R;

which is the cumulative distribution function of a generalized three-parameter
gamma distribution introduced by Stacy [823] (cf. Nasri-Roudsari [670], Nasri-
Roudsari and Cramer [671]). For order statistics, this yields the result of Smirnov
[807].

Lower Progressively Type-II Censored Order Statistics

As above, we have to restrict the censoring scheme to the particular scenario. For
1 � r � m fixed, it is clear that the progressively Type-II censored order statistic
X

Rm
r WmWn is only affected by the parameters �1;m; : : : ; �r;m. Now, the sums t .�/r have

only a finite number of terms so that convergence of the parameters �1;m; : : : ; �r;m
has to be considered. Cramer [290] has shown that for .ım/m2N with limm!1 ım D
1 and limm!1 �j;m=ım D 
j 2 N, 1 � j � r ,

Z�m D ımZRm
r WmWn D ım

rX
jD1

1

�j;m
Zj

d�!
rX

jD1

1


j
Zj ;

where Z1; : : : ; Zr are IID standard exponential random variables. Since the limit
on the right can be interpreted as exponential generalized order statistics with
parameters 
1; : : : ; 
r , it follows that exponential generalized order statistics can
always be seen as a limit of exponential progressively Type-II censored order
statistics. Since
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FXrWmWn .amt C bm/ D P
�
Z�m � � logF

ım
.amt C bm/

�

and ım ! 1, it follows that a nondegenerate limiting law results iff F is in the
domain of attraction of a minimum-stable distribution. If limm!1 ım <1, then the
limiting distribution is either degenerate or it depends on the baseline distribution F .

The preceding conditions are satisfied for equi-balanced censoring schemes with
ım D m.R C 1/, m 2 N (for m-generalized order statistics, see Houben [452]).
Provided that F is in the domain of attraction of a minimum-stable cumulative dis-
tribution functionH , the limiting distribution is a transformed gamma distribution

L.x/ D 1

� .r/
� .r � 1;� log.1 �H.x/// :

Central and Intermediate Progressively Type-II Censored Order Statistics

Here, r D rm is increasing w.r.t. m so that limm!1 rm D 1 and limm!1.m �
rm/ D 1. As above, the sums

t
.�/
m�rmC1 D

m�rmC1X
jD1

1

��j;m
D

mX
jDrm

1

��m�jC1;m
; � 2 N;

have to be studied. As for order statistics, the resulting progressively Type-II
censored order statistics are called central progressively Type-II censored order
statistics if limm!1 rm

m
D � 2 .0; 1/ and intermediate progressively Type-II

censored order statistics if limm!1 rm
m
D � 2 f0; 1g.

For equi-balanced censoring schemes, Cramer [290] showed that

t
.�/
m�rmC1

.t
.2/
m�rmC1/�=2


 1

r
�=2�1
m

1 � � rm
m

���1
�
1 � rm

m

��=2 ! 0 for � � 3; rm
m
! � 2 Œ0; 1/;

which illustrates that normal laws are involved in the limiting distribution.
Let rm=m! � 2 .0; 1/. If condition (3.18) holds, Theorem 3.4.7 can be applied

showing that

p
n.Xm�rmC1WmWn � F .1 � �RC1//

d��! N

	
0;
��2Rf �2.F .1� �RC1//

.RC 1/2�.1 � �/


:

Since the expectation of the non-normalized progressively Type-II censored order
statistic is approximately F .1 � �RC1/, this result illustrates that, under certain
regularity conditions, a central progressively Type-II censored order statistic can be
used to approximate a quantile of the baseline cumulative distribution function F .
For order statistics, the preceding result was obtained by Smirnov [807].
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Suppose now rm
m
! 0. For intermediate progressively Type-II censored order

statistics, the following corollary is deduced from Theorem 3.4.8.

Corollary 3.4.9. Suppose F is absolutely continuous with density function f
and that F has a finite right endpoint !.F / of its support. Let F be differentiable
as well as f be uniformly continuous on .!.F / � "; !.F // for some " > 0.
Moreover, let f .t/ > ı for t 2 .!.F / � "; !.F // and for some ı > 0. Then,
XrmWmWn�am

bm
is asymptotically normal. Appropriate normalizing constants are given

by

am D
�rm
m

� 1
RC1

r
m � rm
mrm

1

.RC 1/f .F .1 � .rm=m/1=.RC1/// ;

bm D F 
	
1 �

� rm
m

� 1
RC1



; m 2 N:

The assumptions of Corollary 3.4.9 are fulfilled for the uniform distribution
so that intermediate uniform progressively Type-II censored order statistics are
asymptotically normal for equi-balanced censoring schemes. In this case, the
normalizing constants are given by

am;uni D 1

.RC 1/
�rm
m

� 1
RC1

r
m� rm
mrm

; bm;uni D 1 �
�rm
m

� 1
RC1

:

Remark 3.4.10. Intermediate order statistics have been investigated by many
authors including Čibisov [265], Wu [903], and Smirnov [808]. Falk [358] has
given a very general result involving von Mises-type conditions, which leads to
simple representations of the normalizing constants as well. Moreover, this paper
provides a good survey of the literature on this topic.

3.4.6 Limits for Central Progressively Type-II Censored Order
Statistics with Blocked Observations

Hofmann et al. [444] proposed a progressive censoring model with blocked
observations represented by the numbers R1; : : : ; Rm. This model corresponds to
progressive Type-II censoring with censoring scheme

Rm D .0�R1�1; R1; 0�R2�1; R2; : : : ; 0�Rm�1; Rm/:

The initial sample size may be reduced by withdrawing R0 items before the
experiment starts. Hence, �1 D n� D n � R0. The observed sample size is
given by m� D R�m D Pm

jD1 Rj . The number of censored items is given by

R�m D Pm
jD1 Rj . Hence, n D R0 CPm

jD1.Rj C Rj / is the original sample size.
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The standard model is included by choosing Rj D 1, j D 1; : : : ; m. The resulting
sample will be denoted by the random variablesX1Wm�Wn� ; : : : ; Xm�Wm�Wn� .

The asymptotic scenario is now designed as follows. Let n!1 and the number
of blocks m be fixed. Then, the limiting proportional block sizes and the limiting
proportional censoring sizes are defined by

�i D lim
n!1

Ri

n
; i D 1; : : : ; m; �i D lim

n!1
Ri

n
; i D 0; : : : ; m;

respectively.
In order to get nondegenerate limits, suppose �i 2 Œ0; 1/ and �i 2 .0; 1/ for 1 �

i � m and the last included observation is a central progressively Type-II censored
order statistic leading to the assumption �m > 0. Then, �0 CPm

iD1.�i C �i / D 1.
Further, let

Si D
mX
jDi
.Rj CRj /; R�i D

iX
jD1

Rj ; ıi D
mX
jDi
.�j C �j /; i D 1; : : : ; mI

pi D 1 � �i
ıi
; i D 1; : : : ; mI (3.19)

t0 D 1 � �0; ti D 1 � �i

ıi � �i
; i D 1; : : : ; m � 1:

Therefore, pi 2 .0; 1/, ti 2 .0; 1� for all i , without additional restrictions. The
proportion of remaining units still in the experiment before the i th block of failures
is represented by ıi . The proportion of the i th block of failures when compared
to all remaining observations at this point is denoted by pi : Similarly, ti stands
for the proportion of remaining items being censored after the i th block. It should
be mentioned that if no progressive censoring and no reduction of the sample size
takes place, Ri D �i D 0 for i D 0; : : : ; m � 1. This corresponds to the setting
t0 D � � � D tm�1 D 1.

Let Yi WmWn be the last failure time observed in the i th block, i.e., Yi WmWn D
XR�i Wm�Wn� , i D 1; : : : ; m. Hence, the data are given by the progressive block Type-II
censored sample

YR� D .Y1WmWn; : : : ; YmWmWn/ D .XR�i Wm�Wn� ; : : : ; XR�mWm�Wn�/:

It is important for the statistical analysis that only the largest observed failure time
within each block and not all the failures in each block are available.

It is clear that the above sample is a marginal sample. Assuming that the
population cumulative distribution function F is absolutely continuous with density
function f , the density function of YR� is given by
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f YR
� .ym/ D c

mY
iD1
.F.yi /� F.yi�1//Ri�1.1 � F.yi //Ri f .yi /; y1 � � � � � ym;

where F.y0/ D 0, c DQm
iD1

Si Š

.Ri�1/Š.Si�Ri /Š :
If the population distribution is exponential, Hofmann et al. [444] showed that

the density function of the spacings V1 D Z1Wm�Wn� , Vj D Zj Wm�Wn� � Zj�1Wm�Wn� ,
j D 2; : : : ; m, is given by

f V1;:::;Vm.vm/ D
mY
iD1

	
Si Š

.Ri � 1/Š.Si �Ri/Š
.1 � e�vi /Ri�1e�vi .Si�Ri /



;

where v1; : : : ; vm � 0. Therefore, the resulting distribution corresponds to the
joint distribution of m exponential order statistics ZR1WS1 ; : : : ; ZRmWSm from m

independent samples [see (2.30)].
Since Ri 
 n�i and Si 
 nıi , we obtain

lim
n!1EVi D � log

 
1 � �i

ıi

!
D � logpi ;

lim
n!1nVar.Vi / D 1

ıi � �i
� 1

ıi
D �i :

The asymptotic joint distribution of the appropriately normalized progressive block
Type-II censored order statistics YR� is obtained by applying the central limit
theorem and the ı-method. Let ˙ D diag.v1; : : : ; vm/, Im D diag.1; : : : ; 1/, and
D D .dij /i;j be a lower triangular matrix such that dij D 1, 1 � i � j � m, and
dij D 0 otherwise.

Theorem 3.4.11. Let YR� be a progressive block Type-II censored sample drawn
from an absolutely continuous differentiable distribution function F with density
function f . Moreover, let ui D F .1 �Qi

jD1 pj / and � D diag.�1; : : : ; �m/

with ��1i D f .ui /=
Qi
jD1 pj , 1 � i � m. Suppose f .ui / 6D 0, 1 � i � m, and

the following condition holds:

p
n
�
� logpi �

RiX
jD1

1

Si � j C 1
�
n!1�! 0; 1 � i � m: (3.20)

Then,

p
n.YR� � u/

d�! Nm.0; �D˙D0�/;

where Nm.�;A/ denotes a multivariate normal distribution with expectation �
and variance–covariance matrix A.
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Remark 3.4.12. Hofmann et al. [444] pointed out the following properties:

(i) Condition (3.20) can be replaced by

p
n
�
log.1 � Ri=Si/ � logpi

� n!1�! 0; 1 � i � m:

Assuming that Ri D bn�icC1, Ri D bn�icC1, 1 � i � m, for given values
of �i and �i , respectively, this assertion holds;

(ii) If �1 D � � � D �m�1 D 0, i.e., no progressive censoring takes place, it is easy
to show that

Qi
jD1 pj D

Pm
jDiC1 �jC�m D ıi D 1�qi , say, 1 � i � m�1,

and ım D �m > 0, qm D 1 � �m. Thus, the above expressions simplify to

ui D F 
�
1 �

iY
jD1

pj

�
D F .qi / and �i D 1 � qi

f .F .qi //
;

�i D 1

1� qi �
1

1 � qi�1 ; 1 � i � m; q0 D 0:

This yields the results of Mosteller [658].

3.5 Near Minimum Progressively Type-II Censored
Order Statistics

Generalizing the notion of near order statistics (see Pakes and Steutel [699] and
Pakes and Li [698], and [124], Balakrishnan and Stepanov [125] introduced the
quantity

�m;n.w/ D #fXj WmWn jX1WmWn < Xj WmWn < X1WmWn C w; 2 � j � mg

for some w > 0. It describes the number of progressively Type-II censored
order statistics which have a distance of at most w from the minimum of the
data. Balakrishnan and Stepanov [125] motivated their analysis of �m;n.w/ by
interpreting it as a measure for the number of “poor-quality items”. It seems
reasonable that early failures correspond to units with poor quality. Hence, those
items which fail close to the minimum can be classified as such items, and �m;n.w/
seems to be a reasonable quality measure.

Denoting by S?Rk;i D XkWmWn � Xi WmWn the .i; k/-spacing of the progressively
Type-II censored order statistics, it follows that

P.�m;n.x/ � k/ D P.S?RkC1;1 � x/; x > 0:

An explicit expression for this probability can be derived directly from (2.39) with
r D 1 and s D k C 1, i.e., from the representation
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F S?R
kC1;1 .w/ D 1 �

Z

R

HkC1
�1 � F.vC w/

1 � F.v/
�
�1F

�1�1
.v/dF.v/ ;

with HkC1.z/ D
�QkC1

jD2 �j
�PkC1

iD2 a
.1/

i;kC1
1
�i

z�i , z 2 .0; 1/. Hence,

P.�m;n.w/ < k/ D
� kC1Y
jD1

�j

� kC1X
iD2

a
.1/

i;kC1
1

�i

Z

R

F
�i
.vC w/F

�1��i�1
.v/dF.v/ :

Balakrishnan and Stepanov [125] studied asymptotic properties of this distribution
provided that the sample size n tends to infinity. In particular, they assumed a
scheme similar to the triangle scheme of censoring plans given in (3.12), i.e.,
Rmj D .R1;mj ; : : : ; Rmj ;mj / and �k;mj D

Pmj
iDk.Ri;mj C 1/, 1 � k � mj , j 2 N.

Assuming that the left endpoint ˛.F / of the baseline distribution is finite, they
proved the following result.

Theorem 3.5.1. Let w > 0 be fixed, nj D �1;mj , and limj!1 nj D 1,
limj!1mj D 1. Moreover, suppose limj!1max1�k�mj Rk;mj =nj D 0. Then,
�mj ;nj .w/ converges to zero in probability as j !1.

For ˛.F / D �1, they showed that �mj ;nj .w/
j!1����! 0 almost surely provided

that
Z

R

F.x C w/� F.x/
F 2.x/

dF.x/ <1:

In this area, this type of condition has first been established in Li [585] who
investigated almost sure convergence of number of records near the maxima
(convergence in probability has been established in Pakes and Steutel [699]).
Further, given the condition

lim
x!�1

F.x/

F.x C w/
D ˇ (3.21)

with ˇ D 1, they found convergence in probability. Finally, they considered the
situation that the sequences of censoring numbers .Rk;mj /k are bounded for any k,
i.e., given a sequence .Bk/k2N of bounds, they assumed that supj2NRk;mj � Bk <
1, k 2 N.

Theorem 3.5.2. Let w > 0 be fixed and limj!1mj D 1. Suppose that a
sequence .Bk/k2N of bounds exists such that supj2NRk;mj � Bk < 1, k 2 N.
Moreover, assume that the limit in (3.21) exists with ˇ 2 .0; 1/. Then, �mj ;nj .w/
converges in distribution to a random variable Y as j ! 1, where Y is
geometrically distributed with probability ˇ.



Chapter 4
Progressive Type-I Censoring: Basic Properties

Progressive Type-I censoring, as introduced in Sect. 1.1.2, generalizes Type-I right
censoring by introducing additional inspection times T1 < � � � < Tk�1 where some
units in the life test are removed from the experiment according to a prespecified
censoring scheme R0 D .R01; : : : ; R

0
k�1/. The threshold Tk defines the termination

time of the life test so that all observed failures do not exceed Tk . The generation
process is depicted in Fig. 1.6.

As mentioned above, the model reduces to Type-I right censoring for k D 1. In
this case, given n lifetimes X1; : : : ; Xn, the sample size is random and defined by
the random variable M D Pn

iD1 1.�1;T1�.Xi Wn/. Assuming that M � 1, the data
is given by the sample X1Wn; : : : ; XM Wn of order statistics with random sample size
M . This kind of data is extensively studied in survival analysis (see, e.g., Klein and
Moeschberger [536]).

The generalization to progressive Type-I censored data has been first proposed in
Cohen [267] and further discussed in a series of papers in the late 1960s and early
1970s. Most results are related to likelihood inference as detailed in Chap. 13. In the
following, we present a detailed account of the distribution theory of progressively
Type-I censored order statistics. We assume throughout that the original lifetimes
X1; : : : ; Xn are IID random variables with cumulative distribution function F . For
some purposes, we make additional assumptions like absolute continuity on F with
density function f .

4.1 Distribution and Block Independence

As for Type-I right censoring, it may happen that all random variables are
(progressively) censored during the experiment and no failure is observed. This
happens if all items which fail until Tk are progressively censored at one of the
censoring times T1; : : : ; Tk�1 before they fail. This event occurs with a positive
probability PO . At this point, it is worth mentioning that the originally planned

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 4,
© Springer Science+Business Media New York 2014
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censoring scheme R0 D .R01; : : : ; R0k�1/ and the effectively applied censoring plan
R D .R1; : : : ; Rk/ do not coincide. In particular, the dimension is different. This
is the result of the construction process since the number of surviving units at Tk
is random and, thus, cannot be specified in advance. However, in a particular life
test, Rk is a random variable with (random) support f0; : : : ; n � R�k�1g, where
R�j DPj

iD1 Ri , j D 0; : : : ; k � 1. Further, let Rk D n �R�k�1.
In order to calculate PO , suppose for the moment XR0

�j�1C1; : : : ; XR0�j are

progressively censored at time Tj , 1 � j � k. Then, the event no observation
is given by the conditions

min.XR0
�j�1C1; : : : ; XR0�j / � Tj ; j D 1; : : : ; k;

so that the corresponding probability is given by
Qk
iD1Œ1�F.Ti /�R

0
i . Notice that this

value does not depend on the indicesR0�j�1C 1; : : : ; R0�j of the particular observed
lifetimes XR0

�j�1C1; : : : ; XR0�j . Now, a random permutation � of f1; : : : ; ng yields

the respective result in general so that

PO D P.no observation/ D 1

nŠ

X
�2Sn

kY
iD1
Œ1 � F.Ti/�R0i D

kY
iD1

F
R0i .Ti /: (4.1)

Denoting by D1; : : : ;Dk the (random) number of observations in the intervals
.�1; T1/; ŒT1; T2/; : : : ; ŒTk�1; Tk� (see Sect. 1.1.2), PO can be written as PO D
P.Dj D 0; 1 � j � k/. Now, we study the joint distribution of the progressively
Type-I censored order statistics XR;T

1WM Wn; : : : ; X
R;T
M WM Wn and D1; : : : ;Dk provided that

d�k � 1 (xi 2 R, i D 1; : : : ; d�k)

P.XR;T
i Wd�k Wn � xi ; 1 � i � d�k;Dj D dj ; 1 � j � k/:

Notice that with Dj D dj , j D 1; : : : ; k, the sample is given by X
R;T
i Wd�k Wn,

1 � i � d�k and M D D�k . Thus, specifying the outcomes of D1; : : : ;Dk , the
random variable M is fixed. Denoting by UR;F .T /

j WM Wn the corresponding progressively
Type-I censored order statistic from a uniform distribution with censoring times
F.T1/; : : : ; F .Tk/, we arrive at

P.XR;T
i Wd�k Wn � xi ; 1 � i � d�k;Dj D dj ; 1 � j � k/

D P.UR;F .T /

i Wd�k Wn � F.xi /; 1 � i � d�k;Dj D dj ; 1 � j � k/

provided that dk 2 D with d�k � 1 where

D D fak 2 N
k
0 W 0 � ai � Œn � a�i�1 �R0�i�1�C; i D 1; : : : ; kg: (4.2)
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Fig. 4.1 Generation process of progressively Type-I censored order statistics with numbers of
observed failures

A formal proof of this identity can be carried out along the lines of the corresponding
result for progressive Type-II censoring established in Balakrishnan and Dembińska
[96, 97] (see also the proof of Theorem 2.1.1). This tells us that it is sufficient
to study uniform distribution. We get the following result which is similar to
Theorem 2.1.1 for the Type-II censoring setup.

Theorem 4.1.1. Denote by F the quantile function of the baseline cumulative
distribution function F . Then,

�
XR;T
1WM Wn; : : : ; X

R;T
M WM Wn

� dD �F .UR;F .T /
1WM Wn /; : : : ; F .UR;F .T /

M WM Wn /
�
:

The subsequent discussion makes use of the ideas of Iliopoulos and Balakrishnan
[469] who established conditional independence of the blocks of random variables,
given .D1; : : : ;Dk/ D dk 2 D, where D is defined in (4.2). We adapt their
arguments to establish the joint distribution of progressively Type-I censored order
statistics.

For dk 2 D, denote by Tk� the censoring time point specified by the index

k� D k�.dk/ D maxf1 � ` � kjn � d�`�1 � R0�`�1 > 0g:

By definition it follows that either Tk� is the final censoring time or the last failure
time has been observed in .Tk��1; Tk� �. Notice that this time is fixed given dk and
that the definition of k� implies dj D 0 for k� < j � k and dk 2 D. Based on
Figs. 1.6 and 1.8, the situation is depicted in Fig. 4.1.

Before presenting a representation for the preceding probability, we establish the
following theorem.

Theorem 4.1.2. Let dk 2 D with d�k � 1, and U1; : : : ; Un be IID U(0,1)-
random variables, and 0 D T0 < T1 < � � � < Tk � 1.

Given .D1; : : : ;Dk/ D dk , we have M D d�k and the progressively Type-
I censored order statistics UR;T

1WM Wn; : : : ; U
R;T
M WM Wn to be block independent, i.e.,

U
R;T
d�j�1C1Wd�k Wn, : : : ; UR;T

d�j Wd�k Wn, 1 � j � k�, are mutually independent with, for

dj � 1,
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.U
R;T
d�j�1C1Wd�k Wn; : : : ; U

R;T
d�j Wd�k Wn/

dD .U .j /

1Wdj ; : : : ; U
.j /

dj Wdj /;

where U
.j /

1Wdj ; : : : ; U
.j /

dj Wdj are order statistics from a uniform U.Tj�1; Tj /-
distribution, 1 � j � k�.

Proof. For brevity, let d�k D m. In order to prove the result, we consider the
probability

q D P.UR;T
`WmWn � u`; 1 � ` � m;Dj D dj ; 1 � j � k/ (4.3)

for 0 � u1 � � � � � um � 1, where dk 2 D with m D d�k � 1. First, notice that we
can replace k by k� without loss of generality so that n` D n� d�`�1 �R0�`�1 > 0,
` D 1; : : : ; k�. From the definition of D1; : : : ;Dk� , it follows that

(1) exactly dj ordered observations are located in the interval ŒTj�1; Tj /, 1 � j �
k�;

(2) Rj objects are progressively censored at time Tj , 1 � j � k�, whereRj D R0j ,
1 � j � k� � 1 and Rk� D n � d�k� �R0�k��1.

First, we assign a particular outcome of the progressively Type-I censored
experiment to the progressively Type-I censored order statistics. Suppose, for 1 �
j � k�,
(1) Ud�j�1C1 � � � � � Ud�j are observed in ŒTj�1; Tj / and
(2) UmCR�j�1C1; : : : ; UmCR�j are progressively censored at Tj .

This corresponds to the events

(1) Tj�1 � Ud�j�1C1 � � � � � Ud�j < Tj and
(2) minfUmCR�j�1C1; : : : ; UmCR�j g � Tj , 1 � j � k�.

Additionally, we have to take into account the events fU` � u`g, 1 � ` � m.
Using the independence of U1; : : : ; Un, the corresponding probability is given by

pid D P.U` � u`; 1 � ` � m;Tj�1 � Ud�j�1C1 � � � � � Ud�j < Tj ;
minfUmCR�j�1C1; : : : ; UmCR�j g � Tj ; 1 � j � k�/

D
k�Y
jD1

P
�
U` � u`; 1 � ` � m;Tj�1 � Ud�j�1C1 � � � � � Ud�j < Tj

�

�
k�Y
jD1

.1 � Tj /Rj :

Assuming a particular outcome represented by a permutation � of the indices
f1; : : : ; ng, we have p� D pid for any � 2 Sn. Denoting by the event A� the
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assignment of the permutation � to the unit indices, the probability in (4.3) can be
written as

q D
X
�2Sn

P.U
R;T
`WmWn � u`; 1 � ` � m;Dj D dj ; 1 � j � k�jA�/P.A�/

D
X
�2Sn

h k�Y
jD1

P
�
U�.`/ � u`; 1 � ` � m;

Tj�1 � U�.d�j�1C1/ � � � � � U�.d�j / < Tj
�i� k�Y

jD1
.1� Tj /Rj

�
P.A�/

D
X
�2Sn

h k�Y
jD1

P
�
Tj�1 � U`Wdj � min.ud�j�1C`; Tj /; 1 � ` � dj

�
.1 � Tj /Rj

i

� P.A�/:

The probability to choose a specific permutation � leading to the previous outcome
is then given by

P.A�/ D 1

nŠ

k�Y
jD1

 
n � d�j�1 �R�j�1

dj

!
; � 2 Sn;

which is also independent of � . Therefore,

q D
k�Y
jD1

� 
n � d�j�1 � R�j�1

dj

!
.1 � Tj /Rj

� P.Tj�1 � U`Wdj � min.ud�j�1C`; Tj /; 1 � ` � dj /
�
; (4.4)

where U`Wdj , 1 � ` � dj , are uniform order statistics.
The probability P.Tj�1 � U`Wdj � min.ud�j�1C`; Tj /; 1 � ` � dj / depends

only on ud�j�1C` iff Tj�1 � ud�j�1C` � Tj for 1 � ` � dj ; 1 � j � k�.
Differentiating (4.4) w.r.t. u1; : : : ; um yields the density function

fR.um/ D
k�Y
jD1

 
n � d�j�1 � R�j�1

dj

!
.1 � Tj /Rj dj Š; um 2 T;

where T D fumjTj�1 � ud�j�1C1 � � � � � ud�j � Tj ; 1 � j � k�g. Therefore,
we get
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q D
� k�Y
jD1

 
n � d�j�1 �R�j�1

dj

!
.1 � Tj /Rj dj Š

� Z

T

dum:

In order to establish the conditional distribution PU
R;T
`WmWn;1�`�mj.D1;:::;Dk/Ddk , we need

the joint probability mass function of D1; : : : ;Dk . Choosing u1 D � � � D um D 1

in (4.4), we have to calculate the probability P.Tj�1 � U`Wdj � Tj ; 1 � ` � dj /
which can be rewritten as

P.Tj�1 � U` � Tj ; 1 � ` � dj / D .Tj � Tj�1/dj :

Therefore, the probability mass function is given by

P.D1 D d1; : : : ;Dk D dk/

D
k�Y
jD1

 
n � d�j�1 � R�j�1

dj

!
.Tj � Tj�1/dj .1 � Tj /Rj ;dk 2 D: (4.5)

From (4.3)–(4.5), we obtain for .d1; : : : ; dk/ 2 D with d�k � 1

P.U
R;T
`WmWn � u`; 1 � ` � mjDj D dj ; 1 � j � k/

D
k�Y
jD1

P.Tj�1 � U`Wdj � min.ud�j�1C`; Tj /; 1 � ` � dj /
.Tj � Tj�1/dj

D
k�Y
jD1

P.Tj�1 � U .j /

`Wdj � min.ud�j�1C`; Tj /; 1 � ` � dj /;

where U .j /

1Wdj ; : : : ; U
.j /

dj Wdj are order statistics from a U.Tj�1; Tj /-distribution, 1 �
j � k�. This proves the theorem. ut

Combining the preceding result with Theorem 4.1.1, we get directly the follow-
ing theorem due to Iliopoulos and Balakrishnan [469].

Theorem 4.1.3. Let dk 2 D with d�k � 1 and let X1; : : : ; Xn be IID random
variables with cumulative distribution function F . Let �1 D T0 < T1 < � � � <
Tk < 1. Given .D1; : : : ;Dk/ D dk , we have M D d�k and the progressively
Type-I censored order statistics XR;T

1WM Wn; : : : ; X
R;T
M WM Wn to be block independent,

i.e., XR;T
d�j�1C1Wd�k Wn, : : : ; XR;T

d�j Wd�k Wn, 1 � j � k�, are mutually independent with,

for dj � 1,

.X
R;T
d�j�1C1Wd�k Wn; : : : ; X

R;T
d�j Wd�k Wn/

dD .X.j /

1Wdj ; : : : ; X
.j /

dj Wdj /;



4.1 Distribution and Block Independence 121

where X
.j /

1Wdj ; : : : ; X
.j /

dj Wdj are order statistics from the doubly truncated cumulative

distribution function F with left and right truncation point Tj�1 and Tj ,
respectively, 1 � j � k�.
Remark 4.1.4. Without loss of generality, we can assume that 0 < F.T1/ <

� � � < F.Tk/ � 1. If this assumption is violated, we can reduce the number
of censoring times by combining those T` with equal value F.T`/. From a
probabilistic point of view, failures in the interval ŒT`�1; T`� with F.T`�1/ D F.T`/
occur only with zero probability.

From (4.4), we obtain the following representation for the joint density function
provided that F has a density function f .

Theorem 4.1.5. Let the effectively applied censoring numbers be defined by

Rj D min.R0j ; Œn � d�j � R�j�1�C/; 1 � j � k: (4.6)

Then, the joint density function of XR;T
1WM Wn; : : : ; X

R;T
M WM Wn;D1; : : : ;Dk is given by

fI;R.xm;dk/ D
kY
iD1

 
Œn � d�i�1 � R�i�1�C

di

!
di ŠŒ1 � F.Ti/�Ri

�
n diY
jD1

f .xd�i�1Cj /1.Ti�1;Ti �.xd�i�1Cj /
o
; (4.7)

for dk 2 D with m D d�k � 1 and x1 � � � � � xm.

Remark 4.1.6. The case of common Type-I censoring is included in the above
setting by choosing the censoring plan R0 D .0�k�1/. Then, (4.7) simplifies to

fI .xm;dk/ D nŠ

.n�m/Š Œ1 � F.Tk/�
n�m

mY
iD1

f .xi /1.�1;Tk �.xi /

(see, e.g., Wang and He [887]).

Suppressing the dependence on dk D .d1; : : : ; dk/, the density function given in
(4.7) can be written as

fI;R.xm/ D CI
h mY
iD1

f .xi /
ih kY

jD1
Œ1 � F.Tj /�Rj

i
; (4.8)
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where R1; : : : ; Rk denote the effectively applied censoring numbers. This formula
is usually used in the literature and can be found, e.g., in Cohen [267]. Since the
censoring times T1; : : : ; Tk are fixed times, the progressively Type-I censored order
statisticsXR;T

1WM Wn; : : : ; X
R;T
M WM Wn determine the random variablesD1; : : : ;Dk uniquely.

This justifies (4.8) although it is not the density function of XR;T
1WM Wn; : : : ; X

R;T
M WM Wn

from a formal point of view. In particular, (4.8) is used to define the likelihood
function in statistical inference based on a progressively Type-I censored sample.

Remark 4.1.7. It is interesting that expression (4.8) is quite similar to the den-
sity function of progressively Type-II censored order statistics XR

1WmWn; : : : ; XR
mWmWn

given in (2.4), where k has to be replaced by m and T` by x`, 1 � ` � m,
respectively. Moreover, the normalizing constant has to be chosen suitably.
Subsequently, we denote by Ri the effectively applied censoring numbers.

4.2 Number of Observations

The random variables D1; : : : ;Dk play a crucial role in the derivation of the dis-
tribution of a progressively Type-I censored sample. Moreover, in many inferential
issues, it is important to have at least one observation. In this section, we investigate
distributional properties of D1; : : : ;Dk . We get the following result which provides
the joint distribution of .D1; : : : ;Dk/.

Corollary 4.2.1. Let XR;T
1WM Wn; : : : ; X

R;T
M WM Wn be progressively Type-I censored order

statistics based on F and censoring scheme R. Then, .D1; : : : ;Dk/ has the joint
probability mass function

P.D1 D d1; : : : ;Dk D dk/

D
k�Y
iD1

 
n � d�i�1 �R�i�1

di

!
ŒF .Ti /� F.Ti�1/�di Œ1 � F.Ti /�Ri ;

where Ri D R0i , 1 � i � k� � 1, and Rk� D n� d�k� �R�k��1.
Using the effectively applied censoring numbers as defined in (4.6), we get

the following alternative representation which can be found in Iliopoulos and
Balakrishnan [469]:

P.D1 D d1; : : : ;Dk D dk/

D
kY
iD1

 
Œn � d�i�1 �R�i�1�C

di

!
ŒF .Ti / � F.Ti�1/�di Œ1 � F.Ti /�Ri :
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Here, we use the convention
�
0
j

� D 1 when j D 0, and 0 otherwise. Notice that
D given in (4.2) is the support of .D1; : : : ;Dk/. In particular, we have P.D1 D
d1; : : : ;Dk D dk/ D 0 when dj > 0 for some k� < j � k. Let j � k�. Then, the
marginal distribution of .D1; : : : ;Dj / is given by

P.D1 D d1; : : : ;Dj D dj /

D
jY
iD1

 
n� d�i�1 � R�i�1

di

!
ŒF .Ti / � F.Ti�1/�di Œ1 � F.Ti/�R�i;j ;

where R�i;j D R0i , 1 � i � j � 1 and R�j;j D n � d�j � R0�j�1. Therefore, the
conditional distribution of Dj , given .D1; : : : ;Dj�1/ D dj�1, 1 � j � k�, is
given by

P.Dj D d jD1 D d1; : : : ;Dj�1 D dj�1/

D
 
nj

d

!hF.Tj / � F.Tj�1/
1 � F.Tj�1/

idh 1� F.Tj /
1 � F.Tj�1/

inj�d
; d 2 f0; : : : ; nj g; (4.9)

where nj D n � d�j�1 � R0�j�1. The expression in (4.9) is readily seen to
be the probability mass function of a binomial distribution with probability of
success F.Tj /�F.Tj�1/

1�F.Tj�1/ . Obviously this conditional probability depends only on d and

d�j�1. This motivates the following theorem which follows directly from (4.9). The
particular case of an exponential distribution is studied in Balakrishnan et al. [150].

Theorem 4.2.2. Let D�0 D 0 and pj D F.Tj /�F.Tj�1/
1�F.Tj�1/ . 1 � j � k. Then,

.D�j /0�j�k forms a Markov chain with transition probabilities

P.D�j D sjD�j�1 D t/ D
 
n � t � R�j�1

s � t

!
ps�tj .1� pj /n�s�R�j�1

with s D t; : : : ; n �R�j�1 if n � t �R�j�1 � 0, and

P.D�j D t jD�j�1 D t/ D 1 if n� t �R�j�1 < 0.

For inferential issues, it is important to have information about the total number
of observations. From (4.1), we know that, for given R0 and censoring times T1 <
� � � < Tk, the probability PO of no observation is given by

PO D P.D�k D 0/ D Œ1 � F.Tk/�n�R0�k�1
k�1Y
iD1
Œ1 � F.Ti /�R0i
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(see also Corollary 4.2.1). Hence, we get for a fixed censoring plan and increasing
sample size

lim
n!1P.D�k D 0/ D 0 or lim

n!1P.D�k � 1/ D lim
n!1.1 � P.D�k D 0// D 1

provided that F.Tk/ > 0. This is a natural assumption which should hold. This
shows that, in large samples, we can expect to observe failures with high probability.
But, in the small sample case, the problem of no observation is still present unless
the test duration is chosen extremely large:

lim
Tk!1

P.D�k � 1/ D lim
Tk!1

.1 � P.D�k D 0// D 1:

Normally, this is definitely not desirable from a practical viewpoint, and conse-
quently inference has to be developed conditionally on the event D�k � 1 or,
equivalently, on .D1; : : : ;Dk/ 6D .0�k/.



Chapter 5
Progressive Hybrid Censoring: Distributions
and Properties

The models of progressive hybrid censoring have been introduced in Sect. 1.1.3. In
the following, we will present some details on the distributions as well as related
properties. A short review on this topic has been provided recently by Balakrishnan
and Kundu [108, Sect. 7].

5.1 Type-I Progressive Hybrid Censoring

In Type-I progressive hybrid censoring, the lifetime experiment is stopped when
either m complete failures have been observed or when the threshold time T
has been reached. Let D D Pm

iD1 1.�1;T �.Xi WmWn/ denote the total number of
observed failures. As in Cramer and Balakrishnan [292], we perceive the data with
possibly less than m observed failure times as a sample of size m by adding the
censoring time in the required number. For a progressively Type-II censored sample
X1WmWn; : : : ; XmWmWn with censoring scheme R, Type-I progressively hybrid censored
order statistics X (I)

1 ; : : : ; X
(I)
m are defined via

X
(I)
j D min.Xj WmWn; T /; 1 � j � m: (5.1)

From this construction, it is evident that the sample may include both observed
failure times and censoring times. Conditionally on D D d , d 2 f0; : : : ; mg, we
have

X
(I)
1 ; : : : ; X

(I)
m j.D D d/ dD X1WmWn; : : : ; Xd WmWn; T �m�d :

For d D 0, the experiment has been terminated before observing the first failure,
and the sample is given by T �m.

The probability mass function of D is important in the following analysis. It
has been presented in Lemma 2.5.4. Cramer and Balakrishnan [292] calculated the
probabilities P.X (I)

j � tj ; 1 � j � m;D D d/. First,

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 5,
© Springer Science+Business Media New York 2014
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P.X
(I)
j � tj ; 1 � j � m;D D 0/ D .1 � F.T //n1ŒT;1/.t1/;

P.X
(I)
j � tj ; 1 � j � m;D D m/ D F1;:::;mWmWn.tm�1; tm ^ T /:

For d 2 f1; : : : ; m � 1g, they found

P.X
(I)
j � tj ; 1 � j � m;D D d/
D 1ŒT;1/. min

dC1�j�m tj /Cd .1 � F.T //
�dC1F

RBd

1;:::;d Wd Wn��dC1 .td�1; td ^ T /;

where RBd D .R1; : : : ; Rd / is a right truncated censoring scheme and Cd is given
after (5.2). Introducing the notation F1;:::;0W0W0 	 1, this expression is valid for d D 0
and for d D m with �mC1 D 0 and minmC1�j�m tj D 1 as well. This yields the
result

P.X
(I)
j � tj ; 1 � j � m/ D

mX
dD0

P.X
(I)
j � tj ; 1 � j � m;D D d/

D
mX
dD0

1ŒT;1/. min
dC1�j�m tj /Cd .1 � F.T //

�dC1F
RBd

1;:::;d Wd Wn��dC1 .td�1; td ^ T /; (5.2)

where Cd D Qd
jD1 �j =.�j � �dC1/, 1 � d � m, C0 D 1.

This joint cumulative distribution function is not absolutely continuous w.r.t. the
Lebesgue measure. As for progressively Type-I/II censored order statistics, Cramer
and Balakrishnan [292] established a quantile representation similar to those in
Theorems 4.1.1 and 2.1.1.

Theorem 5.1.1. Let X
(I)
j , 1 � j � m, be Type-I progressively hybrid censored

order statistics from a continuous cumulative distribution function F with time
threshold T . Then,

X
(I)
j ; 1 � j � m dD F 

�
U

(I)
j

�
; 1 � j � m;

where U
(I)
j , 1 � j � m, are Type-I progressively hybrid censored order statistics

from a uniform distribution with time threshold F.T /.

Given an absolutely continuous cumulative distribution function F , the condi-

tional cumulative distribution functionF X
(I)
j ;1�j�mjDDd has a density function w.r.t.

the product measure �d˝Nm�d
jD1 "T , where �d denotes the d -dimensional Lebesgue

measure and "T is a one-point distribution in T . The corresponding conditional
density function is given by

f X
(I)
j ;1�j�mjDDd .td ; T �.m�d /

D Cd

P.D D d/.1 � F.T //
�dC1f

Rd

1;:::;d Wd Wn��dC1 .td /; t1 � � � � � td � T
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(see Childs et al. [260]). From (2.41), Cramer and Balakrishnan [292] derived for
t1 � � � � � td � T and 1 � d � m � 1, the identity

FX
(I)
j ;1�j�mjDDd .td ; T �.m�d / D FR

1;:::;d WmWn.td jXdC1WmWn D T /;
t1 � � � � � td � T:

Interpreting FR
1;:::;mWmWn.�jXmC1WmWn D T / as the truncated cumulative distribution

function FR
1;:::;mWmWn=FmWmWn.T /, this relation is also true for D D m. Hence, (5.2)

reads alternatively as

P.X
(I)
j � tj ; 1 � j � m/

D
mX
dD0

P.D D d/1ŒT;1/. min
dC1�j�m tj /F

R
1;:::;d WmWn.td jXdC1WmWn D T /:

Conditional onD D d , this yields the density functions

f X
(I)
j ;1�j�d jDDd D f R

1;:::;d WmWn.�jXdC1WmWn D T /; 1 � d � m � 1; (5.3)

f X
(I)
j ;1�j�mjDDm D f R

1;:::;d WmWn
FmWmWn.T /

:

Therefore, the conditional density function of Type-I progressively hybrid censored
order statistics, givenD D d , can be interpreted as the conditional density function
of the first d progressively Type-II censored order statistics, given XdC1WmWn D T .
These expressions will be used to derive the conditional density function of spacings
for an exponential distribution.

The one-dimensional marginal cumulative distribution functions can be obtained
directly from (5.1), i.e., from the relation X (I)

j D Xj WmWn ^ T :

FX
(I)
j .t/ D 1ŒT;1/.t/.1 � F Xj WmWn.T //C FXj WmWn.t ^ T /; t 2 R:

Obviously, the cumulative distribution function has a jump of height 1�F Xj WmWn.T /

at t D T .

5.1.1 Spacings for Exponential Distribution

Spacings play an important role in the analysis of exponential progressively Type-
II censored order statistics. Surprisingly, they have not been studied for Type-I
progressively hybrid censored exponential data until Cramer and Balakrishnan [292]
came up with the following results based on (5.3). Let Z(I)

1 ; : : : ; Z
(I)
m be a Type-I

progressively hybrid censored sample from an Exp.�; #/ distribution, and suppose
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0 < d < m. The normalized spacings of the first d random variables Z(I)
1 ; : : : ; Z

(I)
d

are defined as

W
(I)
j D �j .Z(I)

j �Z(I)
j�1/; 1 � j � d;

where Z(I)
0 D �. Obviously, conditional on D D d , Z.I/

j D Zj WmWn and W (I)
j ,

1 � j � d , denote the normalized spacings of exponential progressively Type-II
censored order statistics. Then, using the identity

dX
jD1

.Rj C 1/.zj ��/C �dC1.T ��/ D
dX
jD1

�j .zj � zj�1/C �dC1.T � zd / (5.4)

and the representation of the conditional density function

f Z
(I)
j ;1�j�d jDDd .zd /

D
QdC1
jD1 �j

#dC1fdC1WmWn.T /
exp

n
� 1

#

h dX
jD1

�j .zj � zj�1/C �dC1.T � zd /
io
;

� � z1 � � � � � zd � T;

the density transformation formula, and the identity Z(I)
d D � CPd

jD1 W
(I)
j =�j ,

Cramer and Balakrishnan [292] established the (conditional) joint density function
of the spacings as

f W
(I)
j ;1�j�d jDDd .wd /

D �dC1e��dC1.T��/=#

#fdC1WmWn.T /

h dY
jD1

1

#
exp

n
�
�
1 � �dC1

�j

�wj
#

oi
; wd 2Wd .T /; (5.5)

with support

Wd .T / D
n
wd jwj � 0; 1 � j � d;

dX
jD1

wj
�j
� T � �

o
:

Although the density function in (5.5) has a product form similar to that in case of
the progressive Type-II censoring in Theorem 2.3.2, the spacingsW (I)

1 ; : : : ;W
(I)
j are

not (conditionally) independent. This is due to the fact that, for a finite T , the support
of the density function is restricted to a simplex by the condition

Pd
jD1

wj
�j
� T ��.

In particular, this result yields the identity

Z

Wd .T /

dY
jD1

1

#
exp

n
�
�
1 � �dC1

�j

�wj
#

o
dwd D #

�dC1
fdC1WmWn.T /e�dC1.T��/=# :



5.1 Type-I Progressive Hybrid Censoring 129

For D D m, analogous results hold. From the joint density function of
Z

(I)
1 ; : : : ; Z

(I)
m , givenD D m,

f Z
(I)
j ;1�j�mjDDm.zm/ D

Qm
jD1 �j

#mFmWmWn.T /
exp

n
� 1

#

mX
jD1

�j .zj � zj�1/
o
;

� � z1 � � � � � zm � T;
we get, as before, by the density transformation formula, the conditional density
function as

f W
(I)
j ;1�j�mjDDm.wm/ D 1

FmWmWn.T /

h mY
jD1

1

#
exp

n
� wj
#

oi
; wm 2Wm.T /:

Finally, these results can be used to establish representations for the marginal density

function f W
(I)
j jDDd and the corresponding cumulative distribution function of the

spacings. A proof is given in Cramer and Balakrishnan [292].

Theorem 5.1.2. For 1 � k � d � m, let f
.k/

d WmWn denote the marginal density

function and F
.k/

d WmWn denote the marginal cumulative distribution function of the
d th exponential progressively Type-II censored order statistic with censoring
scheme .R1; : : : ; Rk�2; Rk�1 C Rk C 1;RkC1; : : : ; Rm/ (or, equivalently, with
parameters �1; : : : ; �k�1; �kC1; : : : ; �m). Then, for 1 � d � k < m, the spacing

W
(I)
k has a conditional density function given by

f W
(I)
k jDDd .w/ D f

.k/

d WmWn.T � w=�k/e�w=#

#fdC1WmWn.T /
; 0 � w � �k.T � �/:

The corresponding cumulative distribution function is given by

FW
(I)
k jDDd .t/ D 1 � fdC1WmWn.T � t=�k/e

�t=#

fdC1WmWn.T /
; 0 � t � �k.T � �/:

For D D m, the spacing W
(I)
k has a conditional density function

f W
(I)
k jDDm.w/ D F

.k/
m�1Wm�1Wn.T � w=�k/e�w=#

#FmWmWn.T /
; 0 � w � �k.T � �/; (5.6)

and the corresponding distribution function is

FW
(I)
k jDDm.t/ D 1 � FmWmWn.T � t=�k/e

�t=#

FmWmWn.T /
; 0 � t � �k.T � �/:

Remark 5.1.3. As pointed out by Cramer and Balakrishnan [292], the structure
does not simplify for usual order statistics. However, the density functions given



130 5 Progressive Hybrid Censoring: Distributions and Properties

in Theorem 5.1.2 can be interpreted as density functions of progressively Type-II
censored order statistics with a one-step censoring scheme with the progressive
censoring taking place at the .k�1/th censoring step. For cumulative distribution
functions, they obtained, for 1 � d � n � 1,

FW
(I)
k jDDd .t/ D 1 � fdC1Wn.T � t=.n � k C 1//e

�t=#

fdC1Wn.T /
;

0 � t � .n � k C 1/.T � �/; 1 � k � d � 1;

and, for d D n,

FW
(I)
k jDDn.t/ D 1 � FnWn.T � t=.n � k C 1//e

�t=#

FnWn.T /

D 1 �
�1 � e�.T���t=.n�kC1//=#

1 � e�.T��/=#
�n

e�t=# ;

0 � t � .n � k C 1/.T � �/:

5.1.2 Distributions of Total Time on Test and Related Statistics

The distribution of the spacings can be used to determine the distributions of the
total time on test statistic and a modified total time on test statistic. First, consider
an Exp.#/-distribution and define Z(I)

0 D 0. Given D D d , the total time on test
statistic is

Sd D
dX
jD1

.Rj C 1/Z(I)
j C �dC1T D

dX
jD1

�
1� �dC1

�j

�
W

(I)
j C �dC1T; 1 � d � m;

(5.7)

with support Œ�dC1T; nT �. As before, the cases 1 � d � m � 1 and d D m have to
be handled separately. Cramer and Balakrishnan [292] found for 1 � d � m � 1

f W
(I)
j ;1�j�d�1;Sd jDDd .wd�1; s/ D �dC1�d

.�d � �dC1/#dC1fdC1WmWn.T / exp
n
� s

#

o
;

(5.8)
and for d D m,

f W
(I)
j ;1�j�m�1;SmjDDm.wm�1; s/ D 1

#mFmWmWn.T /
exp

n
� s

#

o
: (5.9)

Let d 2 f2; : : : ; mg. The support M.s/

d�1 of the density functions in (5.8) and (5.9)
can be written as

M.s/

d�1 D Sd�1.˛1=s�; : : : ; ˛d�1=s�/\H.s/

d�1
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with the simplex Sd�1.˛1=s�; : : : ; ˛d�1=s�/ and the half-space

H.s/

d�1 D
n
wd�1js � �dT �

d�1X
jD1

ˇjwj
o
:

Using results of Gerber [395] and Cho and Cho [263], an explicit formula for
the volume can be established. As shown by Cramer and Balakrishnan [292], the
volume of M.s/

d�1 can be written as the univariate B-spline Bd�1 of degree d � 1
with knots �dC1T < � � � < �1T defined as

Bd�1.sj�dC1T; : : : ; �1T / D .�1/d
T d

d �
dC1X
iD1

ai;dC1Œ�iT � s�d�1C ;

s 2 Œ�dC1T; �1T �: (5.10)

Further details on B-splines can be found in, e.g., de Boor [330]. Their connection
to statistics and order statistics is extensively discussed in Dahmen and Micchelli
[319]. Now, the preceding relations yield the identity

Volume.M.s/

d�1/ D
�T d .�d � �dC1/

d Š

d�1Y
jD1

�j

�
Bd�1.sj�dC1T; : : : ; �1T /;

s 2 Œ�dC1T; �1T �:
Notice that the support of the B-spline is given by Œ�dC1T; �1T � because
Bd�1.sj�dC1T; : : : ; �1T / D 0 for s 62 Œ�dC1T; �1T �. Finally, this yields the
following representations of the density functions.

Theorem 5.1.4. Let 1 � d � m� 1. The density function f Sd jDDd is given by

f Sd jDDd .s/ D T d
QdC1
jD1 �j

d Š#dC1fdC1WmWn.T /
Bd�1.sj�dC1T; : : : ; �1T /e�s=# ;

0 � s � nT: (5.11)

For d D m, the density function f SmjDDm is given by

f SmjDDm.s/ D T m
Qm
jD1 �j

mŠ#mFmWmWn.T /
Bm�1.sj�mC1T; : : : ; �1T /e�s=# ; 0 � s � nT:

Similarly, Cramer and Balakrishnan [292] derived the density function of a
modified total time on test statistic defined by



132 5 Progressive Hybrid Censoring: Distributions and Properties

Vd D
dX
jD2

�
1 � �dC1

�j

�
W

(I)
j C �dC1

�
T � � � W

(I)
1

n

�
; (5.12)

where d 2 f1; : : : ; mg. For 1 < d < m, the joint density function of W (I)
1 and Vd ,

conditionally on D D d , is given by

f W
(I)
j ;1�j�d�1;Vd jDDd .wd�1; v/

D �dC1�d
.�d � �dC1/#dC1fdC1WmWn.T / exp

n
� w1 C v

#

o
: (5.13)

Integrating out the variables w2; : : : ;wd�1 in (5.13) results in the conditional

bivariate density f W
(I)
1 ;Vd jDDd as

f W
(I)
1 ;Vd jDDd .w; v/ D .T � �� w

n
/d�1

QdC1
jD2 �j

.d � 1/Š#dC1fdC1WmWn.T / (5.14)

�Bd�2
�

vj�dC1
�
T � � � w

n

�
; : : : ; �2

�
T � � � w

n

��
exp

n
� wC v

#

o
;

0 � w � n.T � �/; 0 � v � �2.T � �/:

The marginal density function f W
(I)
1 jDDd is given in (5.6). The density function

f Vd jDDd results by integrating out w. This integration can be carried out explicitly.
It reduces to the calculation of the integrals

Z n.T��/

0

h
�i

�
T � � � w

n

�
� v

id�2
C exp

n
� w

#

o
dw; i D 2; : : : ; d C 1:

Notice that (5.14) has the same structure as the expression (5.11) obtained in the
scale setting.

5.1.3 Moment Generating Function

The conditional moment generating function has been utilized in the derivation of
the distribution of estimators such as the maximum likelihood estimators by various
authors. In particular, it leads directly to expressions for moments of the estimators.
For these purposes, we establish an expression for the moment generating function
of Sd given in (5.7). First, consider the case when 1 � d � m � 1. Then, for
appropriately chosen w 2 R such that the expectation exists,
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E.ewSd jD D d/ D
�Qd

jD1 �j
�
F .T /�dC1

P.D D d/

�
Z T

0

Z xd�1

0

: : :

Z x2

0

exp
n
w

dX
jD1

.Rj C 1/xj C w�dC1T
o dY
jD1

f .xj /F
Rj
.xj /dxd :

Introducing the notation 1=#� D 1=# � w and denoting by F� the cumulative
distribution function of an Exp.#�/-distribution, we can rewrite this expression as

Qd
jD1 �jF .T /�dC1ew�dC1T=#

P.D D d/
�#�
#

�d Z T

0

Z xd�1

0

: : :

Z x2

0

dY
jD1

f�.xj /F
Rj
� .xj /dxd :

By Lemma 2.4.8, this yields

E.ewSd jD D d/ D
Qd
jD1 �j F .T /�dC1ew�dC1T=#

P.D D d/.1 � w#/d

dC1X
jD1

a
.k/

j;dC1F �.T /
�j��dC1

D
Qd
jD1 �j

P.D D d/.1 � w#/d

dC1X
jD1

a
.k/

j;dC1F �.T /
�j

D Fd WmWn..1 � w#/T / � FdC1WmWn..1 � w#/T /

P.D D d/.1� w#/d
:

An analogous result shows that

E.ewSm jD D m/ D FmWmWn..1 � w#/T /

P.D D m/.1 � w#/m
:

Remark 5.1.5. Introducing a random variable Dw defined as

Dw D
mX
iD1

1.�1;.1�w#/T �.Xi WmWn/; w <
1

#
;

the conditional moment generating function can be written as

E.ewSd jD D d/ D P.Dw D d/
P.D0 D d/ �

1

.1 � w#/d
; d D 1; : : : ; m:

Moreover, this expression shows that w < 1
#

must hold in order to ensure
existence of the moment generating function. In particular, for any # > 0, the
moment generating function is defined on an interval .�1; "/ with " > 0.
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Differentiating the conditional moment generating function w.r.t. w yields, for
1 � d � m � 1, the terms

@

@w
E.ewSd jD D d/

D d# Fd WmWn..1 � w#/T / � FdC1WmWn..1 � w#/T /

P.D D d/.1 � w#/dC1

� #T fd WmWn..1 � w#/T / � fdC1WmWn..1 � w#/T /

P.D D d/.1� w#/d

D d#E.ewSd jD D d/
.1 � w#/

� #T fd WmWn..1 � w#/T /� fdC1WmWn..1 � w#/T /

P.D D d/.1� w#/d

and

@

@w
E.ewSm jD D m/ D m#E.ewSm jD D m/

.1 � w#/
� #T fmWmWn..1 � w#/T /

P.D D m/.1 � w#/m
:

Similarly,

@2

@w2
E.ewSd jD D d/

D d.d C 1/#2E.ewSd jD D d/
.1 � w#/2

� 2d#2T fd WmWn..1 � w#/T / � fdC1WmWn..1 � w#/T /

P.D D d/.1 � w#/dC1

C #2T 2 f
0
d WmWn..1 � w#/T / � f 0dC1WmWn..1 � w#/T /

P.D D d/.1� w#/d

and

@2

@w2
E.ewSm jD D m/ D m.mC 1/#2E.ewSm jD D m/

.1� w#/2

� 2#2T fmWmWn..1 � w#/T /

P.D D m/.1� w#/mC1
C #2T 2 f 0mWmWn..1 � w#/T /

P.D D m/.1� w#/m
:

Evaluating these expressions at w D 0 and using the fact that E.S0jD D 0/ D nT ,
we get the mean total time on test as



5.1 Type-I Progressive Hybrid Censoring 135

ESD D
mX
dD0

E.Sd jD D d/P.D D d/ D #ED:

Hence, we have proven a Wald-type equation for SD.

Remark 5.1.6. Notice that

ED D
mX
dD1

Fd WmWn.T /:

Moreover, for S2D , we get

ES2D D #2E.D.D C 1//� 2#2T
mX
dD1

fd WmWn.T /:

Notice that for Type-I hybrid censoring,D � bin.n; F.T //. Hence, in this case, we
arrive at

ESD D #n.1 � e�T=# /

showing that 1
n
SD is an unbiased estimator of #.1 � e�T=# /.

Similarly, we can obtain an expression for the expectation of 1
D
SD , conditional

on D � 1. In this case, the result is

E#

� 1
D
SD

ˇ̌
ˇD � 1

�
D 1

P.D � 1/
mX
dD1

1

d
E#.Sd jD D d/P.D D d/

D # � #T

P.D � 1/
�m�1X
dD1

fd WmWn.T / � fdC1WmWn.T /
d

C fmWmWn.T /
m

�

D # � #T

P.D � 1/
�
f1WmWn.T /C

mX
dD2

h 1
d
� 1

d � 1
i
fd WmWn.T /

�

D # � nT e�nT=#

.1 � e�T=# /n
C #T

.1 � e�T=# /n
mX
dD2

1

d.d � 1/fd WmWn.T /: (5.15)

The mean squared error of 1
D
SD , conditional on D � 1, is given by

MSE#
� 1
D
SD

ˇ̌
ˇD � 1

�
D #2E#

� 1
D

ˇ̌
ˇD � 1

�

C nT 2e�nT=#

.1 � e�T=# /n
� #2T 2

.1 � e�T=# /n
mX
dD2

2d � 1
d2.d � 1/2 f

0
d WmWn.T /: (5.16)
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5.2 Type-II Progressive Hybrid Censoring

Childs et al. [260] (see also Kundu and Joarder [561]) proposed an alternative
hybrid censoring procedure called Type-II progressive hybrid censoring. Given a
(fixed) threshold time T , the life test terminates at T �2 D maxfXmWmWn; T g. This
approach guarantees that the life test yields at least the observation of m failure
times. Given the progressively Type-II censored sample X1WmWn; : : : ; XmWmWn with an
initially planned censoring scheme R D .R1; : : : ; Rm/, the right censoring at time
XmWmWn is not carried out. We just continue to observe the failure times after XmWmWn
until we either arrive at T or the maximum in the progressively Type-II censored
sample

X1WmCRmWn; : : : ; XmWmCRmWn; XmC1WmCRmWn; : : : ; XmCRmWmCRmWn (5.17)

is observed. Notice that this sample can be viewed as progressively Type-II censored
order statistics with censoring scheme R� D .R1; : : : ; Rm�1; 0RmC1/. In this sense,
we define �j D Pm

iDj .Ri C 1/, j D 1; : : : ; m � 1, �j D m C Rm � j C 1,
j D m; : : : ;m C Rm. As in the case of Type-I progressive hybrid censoring, we
introduce the random counterD as

D D
mCRmX
iD1

1.�1;T �.Xi WmCRmWn/; (5.18)

having support f0; : : : ; mCRmg. In particular, the distribution of D is given by

P.D < m/ D P.XmWmCRmWn > T / D FmWmCRmWn.T / D FmWmWn.T /;

P.D D d/ D 1 � F.T /
�dC1f .T /

fdC1WmCRmWn.T /; m � d � mCRm � 1;

P.D D mCRm/ D P.XmCRmWmCRmWn � T / D FmCRmWmCRmWn.T /:

This yields the Type-II progressively hybrid censored sample

X
(II)
j D Xj WmCRmWn; 1 � j � D�;

with random sample size D� D maxfm;Dg. Conditional on D� D d with d 2
fm; : : : ;mCRmg, we have

X
(II)
1 ; : : : ; X

(II)
D j.D� D d/ dD X1WmCRmWn; : : : ; Xd WmCRmWn:

Then, as pointed out in Cramer et al. [315], we get for tm 2 R
m and d 2

fm; : : : ;mCRmg
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P.X
(II)
j � tj ; 1 � j � d;D D d/

D F1;:::;d WmWn.td�1; td ^ T / � F1;:::;dC1WmWn.td�1; td ^ T; T /

and

P.X
(II)
j � tj ; 1 � j � m;D < m/

D F1;:::;mWmWn.tm/ � F1;:::;mWmWn.tm�1; tm ^ T /:

This yields the conditional density functions

f X
(II)
j ;1�j�d jDDd .td / D f R�

1;:::;d WmCRmWn.td jXR�

dC1WmCRmWn D T /;
d D m; : : : ;mCRm � 1;

f X
(II)
j ;1�j�mCRmjDDmCRm.tmCRm/

D f R�

1;:::;mCRmWmCRmWn.tmCRm/1.�1;T �.tmCRm/
FmCRmWmCRmWn.T /

:

For D < m, the density function

f X
(II)
j ;1�j�mjD<m.tm/ D

f R
1;:::;mWmWn.tm/1ŒT;1/.tm/

1 � FmWmWn.T /
results, which belongs to a left truncated distribution.

5.2.1 Exponential Distributions

As in the case of Type-I progressive hybrid censoring, Cramer et al. [315] estab-
lished the distributions of the spacings for a Type-II progressively hybrid censored
sample Z(II)

1 ; : : : ; Z
(II)
d from an Exp.�; #/-distribution with m � d � mCRm. Let

W
(II)
j D �j .Z(II)

j �Z(II)
j�1/; 1 � j � d;

be the normalized spacings of the first d random variables Z(II)
1 ; : : : ; Z

(II)
d , where

Z
(II)
0 D �.
Then, proceeding as in Cramer and Balakrishnan [292], Cramer et al. [315] got

form � d � mCRm�1 and �mCRmC1 	 0 the (conditional) joint density function
of the spacings as



138 5 Progressive Hybrid Censoring: Distributions and Properties

f W
(II)
j ;1�j�d jDDd .wd /

D �dC1e��dC1.T��/=#

#fdC1WmWn.T /

h dY
jD1

1

#
exp

n
�
�
1 � �dC1

�j

�wj
#

oi
; wd 2W�d .T /;

with support

W�d .T / D
n
wd jwj � 0; 1 � j � d;

dX
jD1

wj
�j
� T � �

o
:

For D D mCRm, they found

f W
(II)
j ;1�j�mCRmjDDmCRm.wmCRm/

D 1

FmCRmWmCRmWn.T /

h mCRmY
jD1

1

#
exp

n
� wj
#

oi
; wmCRm 2W�mCRm.T /:

For D < m, the representation

f W
(II)
j ;1�j�mjD<m.wm/ D 1

1 � FmWmWn.T /
h mY
jD1

1

#
exp

n
� wj
#

oi
;

wm 2W>
m.T /;

holds, where

W>
m.T / D

n
wmjwj � 0; 1 � j � m;

mX
jD1

wj
�j

> T � �
o
:

From these expressions, the marginal cumulative distribution functions of the
spacings result readily. They are given in the following theorem due to Cramer et al.
[315].

Theorem 5.2.1. For t � 0,

FW
(II)
k jD<m.t/ D 1 � .1 � FmWmWn.T � t=�k//e

�t=#

1 � FmWmWn.T / ; 1 � k � m;
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and, for 0 � t � �k.T � �/,

FW
(II)
k jDDd .t/ D 1 � fdC1WmCRmWn.T � t=�k/e

�t=#

fdC1WmCRmWn.T /
; 1 � k � d;

m � d < mCRm;

FW
(II)
k jDDmCRm.t/ D 1 � FmCRmWmCRmWn.T � t=�k/e

�t=#

FmCRmWmCRmWn.T /
;

1 � k � mCRm:

It is interesting to note that the spacings have a bounded support except for the
case D < m. In order to derive the distribution of the total time on test, givenD D
d 2 fm; : : : ;m C Rmg, the expressions established in Cramer and Balakrishnan
[292] can be directly used (see Theorem 5.1.4). Form � d � mCRm, the random
variable

Sd D
dX
jD1

.Rj C 1/Z(II)
j C �dC1T D

dX
jD1

�
1 � �dC1

�j

�
W

(II)
j C �dC1T

has support Œ�dC1T; nT �. Given D < m,

Sm D
mX
jD1

.Rj C 1/Z(II)
j D

mX
jD1

W
(II)
j :

Proceeding as in Cramer and Balakrishnan [292] and using the density transforma-
tion formula, Cramer et al. [315] obtained the joint density function

f W
(II)
j ;1�j�m�1;SmjD<m.wm�1; s/ D 1

#m.1 � FmWmWn.T // exp
n
� s

#

o
:

Then, the conditional density functions of the total time on test have the following
expression.

Theorem 5.2.2. Let m � d � mC Rm � 1. The density function f Sd jDDd is
given by

f Sd jDDd .s/ D T d
QdC1
jD1 �j

d Š#dC1fdC1WmCRmWn.T /
Bd�1.sj�dC1T; : : : ; �1T /e�s=# ;

0 � s � nT:
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For d D mCRm, we have

f SmCRm jDDmCRm.s/

D T mCRm
Qm
jD1 �j

.mCRm/Š#mCRmFmCRmWmCRmWn.T /
� BmCRm�1.sj0; �mCRmT; : : : ; �1T /e�s=# ; 0 � s � nT:

Furthermore,

f SmjD<m.s/ D sm�1e�s=#

.m � 1/Š#m.1 � FmWmWn.T //

� T m
Qm
jD1 �j

mŠ#m.1� FmWmWn.T //Bm�1.sj0; �mT; : : : ; �1T /e
�s=# ; s � 0:

This results in the following expressions for f SD .

Theorem 5.2.3. The density function of SD is given by

f SD.s/ D sm�1e�s=#

.m � 1/Š#m �
T m

Qm
jD1 �j

mŠ#m
Bm�1.sj0; �mT; : : : ; �1T /e�s=#

C
mCRmX
dDm

T d
Qd
jD1 �j

d Š#d
Bd�1.sj�dC1T; : : : ; �1T /e�s=# ; s � 0:

Results for the distribution of the modified total time on test VD defined in (5.12)
for Type-II hybrid censored data have also been derived by Cramer et al. [315].

5.3 Generalized Progressive Hybrid Censoring

Both Type-I and Type-II hybrid censoring have some drawbacks as pointed out in
Chandrasekar et al. [245]. For instance, Type-I hybrid censoring may result in few
failures before the termination time T whereas Type-II hybrid censoring may take
a long time to observe the minimum number m of failures. In order to overcome
these weaknesses, Chandrasekar et al. [245] proposed two versions of generalized
hybrid censoring. Their approach has been adopted by Górny and Cramer [406]
to progressively censored data. For brevity, we present only the data situation. For
details on distributions and inferential results, we refer to Górny and Cramer [406].
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XkWmWn > T X1WmWn; : : : ; XkWmWn

XmWmWn � T X1WmWn; : : : ; XmWmWn

X1WmWn; : : : ; XDWmWn
D 2 fk; : : : ; m� 1g

Yes

No

Yes

No

Fig. 5.1 Resulting samples in generalized progressive Type-I hybrid censoring with 1 � k < m

Generalized Progressive Type-I Hybrid Censoring

Let T 2 .0;1/ and k 2 f1; : : : ; m � 1g. The generalized progressive Type-I
hybrid censoring scheme aims to stop the life test at XkWmWn provided that the kth
failure XkWmWn occurs after time T . If the kth failure is observed before reaching
the threshold time T , the experiment will be terminated at minfT;XmWmWng. The
corresponding stopping time can be expressed as

T �I D min
˚

maxfT;XkWmWng; XkWmWn
�
; k < m and T 2 .0;1/:

IntroducingD D Pm
jD1 1.�1;T �.Xj WmWn/, the possibly occurring sample situations

are depicted in Fig. 5.1. Notice that this procedure ensures at least k observations
but the experiment may also exceed the desired maximum experimental time T in
case XkWmWn exceeds T . The experimental time is bounded as

XkWmWn � T �I � maxfT;XkWmWng:

Generalized Progressive Type-II Hybrid Censoring

Using the progressively censored data given in (5.17) (see also Cramer et al. [315]),
a generalization of Type-II progressive hybrid censoring is introduced as follows.
Let m 2 f1; : : : ; ng be fixed and T1; T2 2 .0;1/ with T1 < T2. Then, the following
situations are considered:

(1) Assuming that themth failure has been observed before T1, the experiment will
be stopped at T1;

(2) If the mth failure is between the threshold times T1 and T2, the experiment is
terminated at the mth failure time XmWmWn;
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D1 ∈ {m, . . . , n}

D1 ∈ {0, . . . , m − 1}, D2 = m

Yes

No

Yes

No

Xm:m:n < T1

T1 < Xm:m:n ≤ T2
X1:m:n, . . . , Xm:m:n

X1:m+R
m
:n, . . . , XD1:m+R

m
:n

X1:m:n, . . . , XD2:m:n

D2∈ {0, . . . , m − 1}

Fig. 5.2 Resulting samples in generalized progressive Type-II hybrid censoring with T1 < T2

(3) If XmWmWn exceeds T2, then the experiment is terminated at T2. This guarantees
that the experiment will not last longer than T2.

This censoring model will be called generalized progressive Type-II hybrid
censoring.

Notice that in scenario (1), more than m failures may be observed. On the other
hand, it may happen that no failure is observed when scenario (3) is present. The
stopping time T �II is defined by

T �II D max
˚

minfXmWmCRmWn; T2g; T1
�
; with T1; T2 2 .0;1/ and T1 < T2:

Introducing discrete random variables D1 and D2 as

D1 D
mCRmX
jD1

1.�1;T1�.Xj WmCRmWn/ and D2 D
mCRmX
jD1

1.�1;T2�.Xj WmCRmWn/;

the possible sampling situations are as in Fig. 5.2. This shows that the experimental
time is bounded as

T1 � T �II � T2:

Finally, it has to be mentioned that the probability of observing no failure before T2,
i.e., P.XmWmWn > T2/ D FmWmWn.T2/, may be positive.



Chapter 6
Adaptive Progressive Type-II Censoring
and Related Models

A crucial assumption in the design of the progressively censored experiment is
that the censoring scheme R D .R1; : : : ; Rm/ is prefixed. However, although this
assumption is assumed in the standard model, it may not be satisfied in real-life
experiments since the experimenter may change the censoring numbers during the
experiment (for whatever reasons). Therefore, it is desirable to have a model that
takes into account such an adaptive process. Such a model has been proposed by
Ng et al. [690] who introduced a (prefixed) threshold parameter T > 0 as a control
parameter in their life-testing experiment. Given some prefixed censoring scheme
S D .S1; : : : ; Sm/, this scheme is adapted after step j � D maxfj W Xj WmWn < T g
such that no further censoring is carried out until the mth failure time has been
observed. Hence, the censoring scheme is changed at the progressive censoring
step j � C 1, i.e., at the first observed failure time exceeding the threshold T . The
effectively applied censoring scheme is

S � D .S1; : : : ; Sj� ; 0�m�j��1; n �m �
j�X
iD1

Si /: (6.1)

Therefore, as long as the failures occur before time T , the initially planned
progressive censoring scheme is employed. After passing time T , no items are
withdrawn at all except for the last failure time when all remaining surviving units
are removed.

This approach illustrates how an experimenter can control the experiment. If the
interest is in getting observations early, then the experimenter will remove less units
(or even none). If larger observed failure times are preferred, then the experimenter
will remove more units at the beginning of the experiment. Therefore, a more
flexible handling of the selection of the censoring scheme is preferable. Cramer and
Iliopoulos [294] introduced a very general and flexible model where the next applied
censoring number Rj may depend on both the previous numbers R1; : : : ; Rj�1
and the observed failure times x1WmWn; : : : ; xj WmWn. They proposed a construction of

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 6,
© Springer Science+Business Media New York 2014
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the adaptive model using a stochastic kernel approach. For prefixed progressive
censoring schemes, Beutner [192] has worked out this procedure.

6.1 General Model of Adaptive Progressive Type-II
Censoring

The adaptive construction process is based on a life-testing experiment with n
identical units having lifetimes X1; : : : ; Xn. As before, it is desired to observe
exactly m failures. The crucial change in the progressive censoring procedure is
given by the fact that the future censoring numbers may depend on both past
censoring numbers and observed failure times. Before introducing the construction
process, we recall a property of progressively Type-II censored order statistics which
will become important in the following definition. From the generation process of
progressively Type-II censored order statistics given in Procedure 1.1.3, it follows
that the j th progressively Type-II censored order statistic depends only on the first
part of the (prefixed) censoring scheme R D .R1; : : : ; Rm/. In particular, we have

XR
1WmWn D X1Wn; XR

j WmWn D X.R1;:::;Rj�1/

j WmWn ; j D 2; : : : ; m: (6.2)

This property is also evident from the representation of the joint density function

f XR
1WmWn;:::;X

R
j WmWn given in Corollary 2.1.3. Since the adaption process works sequen-

tially, we will use the representation in (6.2) with the incomplete censoring scheme
to define adaptive progressively Type-II censored order statistics.

The generation process of adaptive progressively Type-II censored order statis-
tics Y.1/; Y.2/; : : : ; Y.m/ can be described as follows:

� The first failure time is the minimum of the random variables: Y.1/ D X1Wn D
X1WmWn;

� At time Y.1/, a random number R?1 of surviving units is removed from the
experiment, where R?1 has a distribution depending in some way on Y.1/ D y1.
Its support is given by f0; 1; : : : ; n �mg;

� The minimum lifetime of the remaining n�R?1�1 units is observed and denoted

by Y.2/ D X.R?1 /

2WmWn;
� Then, a random number of R?2 surviving items is withdrawn from the exper-

iment. R?2 is assumed to have a distribution depending in some way on
.Y.1/; Y.2// D .y1; y2/ andR?1 D R1. Its support is given by the set f0; 1; : : : ; n�
m �R1g;

� Continuing this process, we observe the vector of failure times

.Y.1/; Y.2/; : : : ; Y.m// D .X1WmWn; X.R?1 /

2WmWn; : : : ; X
.R?1 ;:::;R

?
m�1/

mWmWn /:
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Notice that the conditional distribution of the number of removed items
R?j at censoring step j depends on .Y.1/; : : : ; Y.j // D .y1; : : : ; yj / and

.R?1 ; : : : ; R
?
j�1/ D .R1; : : : ; Rj�1/ with support f0; : : : ; n �m �Pj�1

iD1 Ri g;
� At the time of the mth failure Y.m/, all remaining surviving units are removed.

For k D 1; : : : ; m � 1, we define the sets of possible censoring sequences up to
the censoring step k by

C k
m;n D

n
.R1; : : : ; Rk/ 2 N

k
0

ˇ̌
ˇ

kX
iD1

Ri � n �m
o
:

By analogy with the nonrandom censoring procedure, we define the (random)
numbers�1; : : : ; �m of units remaining in the experiment before a censoring step by

�1 D n; �j D n � j C 1 �
j�1X
iD1

R?i ; j D 2; : : : ; m:

The adaptive progressively censored data is given by the random vectors Y.m/

and R?
m. If no confusion is possible, we will use for brevity the notation Y.1/; : : : ; Y.k/

for adaptive progressively Type-II censored order statistics throughout this chapter.
If necessary, a notation as in (6.2) will be used to emphasize the dependence on a
particular censoring scheme:

Y.1/ D X1WmWn; Y.k/ D XR?k�1
kWmWn; k D 2; : : : ; m:

This illustrates that the distribution of Y.k/ depends only on the first k � 1

components of the random censoring scheme R?
m.

Distributional Assumptions

In order to propose a probabilistic model for adaptive progressive Type-II censoring,
Cramer and Iliopoulos [294] imposed the following assumptions on the considered
distributions:

(i) The lifetimes X1; : : : ; Xn are supposed to be independent and have an abso-
lutely continuous cumulative distribution function F with density function f ;

(ii) The conditional distribution of Y.j /, given Y.j�1/ D yj�1 and R?
j�1 D Rj�1,

depends only on yj�1 and Rj�1 and is the same as the distribution of the
minimum in a sample of size �j D n � j C 1 � Pj�1

iD1 Rj from the left

truncated cumulative distribution function Gyj�1 D F.�/�F.yj�1/
1�F.yj�1/ . Thus, for

j D 2; : : : ; m,



146 6 Adaptive Progressive Type-II Censoring and Related Models

Y.j /jfY.j�1/ D yj�1;R?
j�1 D Rj�1g dD Y.j /jfY.j�1/ D yj�1;R?

j�1 D Rj�1g:

Therefore, for yj�1 � yj with F.yj�1/ < 1, this conditional distribution has
density function (cf. (2.35) and Theorem 2.5.2)

fj .yj jyj�1;Rj�1/ D �j f .yj /

1 � F.yj�1/

1 � F.yj /
1 � F.yj�1/

� �j�1
I

(iii) Finally, the conditional probability mass function of R?1 , given Y.1/ D y1, is
denoted by g1.�jy1/. gj .�jyj ;Rj�1/ denotes the probability mass function of
R?j , given Y.j / D yj and R?

j�1 D Rj�1, j D 2; : : : ; m � 1. According to the
construction process, the probability mass function of R?m, given Y.m/ D ym
and R?

m�1 D Rm�1, is a one-point distribution, namely,

gm.Rmjym;Rm�1/ D 1Cm
m;n
.Rm/:

This condition ensures that the censoring scheme is admissible.

Since the first observation is the minimum of the lifetimes, the density function
of Y.1/ is given by

f1.y1/ D nf .y1/f1 � F.y1/gn�1; y1 2 R:

Then, by the assumptions given above, the joint density function f Y.k/;R?k of Y.k/,
R?
k can be expressed as

f Y.k/;R?k .yk;Rk/ D f �k .ykjRk�1/ � g�k .Rkjyk/; k D 1; : : : ; m; (6.3)

where

f �k .ykjRk�1/ D
� k�1Y
jD1

�
�j f .yj /f1 � F.yj /gRj

� �

� �kf .yk/f1 � F.yk/g�k�11R
k
�

.yk/;

g�k .Rkjyk/ D
kY

jD1
gj .Rj jyj ;Rj�1/1C k

m;n
.Rk/:

(6.4)

f �1 .�jR0/ is defined as f1. Cramer and Iliopoulos [294] observed that

Z

R
k
�

f �k .ykjRk�1/dyk D 1
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for all Rk�1 2 C k�1
m;n although f �k .�jRk�1/ is in general not the conditional

distribution of Y.k/, given R?
k�1 D Rk�1. Thus, for any Rk�1 2 C k�1

m;n , f �k .�jRk�1/
is a proper density function on R

k . In particular, f �k .�jRk�1/ is exactly the marginal
density function of the first k progressively Type-II censored order statistics
XR
1WmWn; : : : ; XR

kWmWn from the population distribution function F with censoring
scheme R D .Rk�1; Rk; : : : ; Rm/ 2 C m

m;n. Similarly,

X
Rk

g�k .Rkjyk/ D 1

for all yk 2 R
k� although g�k .�jyk/ is not the conditional distribution of R?

k , given
Y.k/ D yk. Hence, g�k .�jyk/ is a probability mass function on the set C k

m;n for any
yk 2 R

k�.
These results lead directly to the following properties established by Cramer and

Iliopoulos [294] which we state without proofs:

(i) For any k D 1; : : : ; m � 1, the marginal distribution of .Y.k/;R?
k�1/ has the

density function f Y.k/;R?k�1 given in (6.3);
(ii) The conditional distribution of .Y.kC1/; : : : ; Y.m/; R?kC1; : : : ; R?m/, given

.Y.k/;R?
k/ D .yk;Rk/, is the same as that of .Y.m�k/;R?

m�k/ but with

cumulative distribution functionF left truncated at yk , �kC1 D n�k�Pk
iD1 Ri

in the place of n, and with probability mass function gj ’s depending also on
yk;Rk ;

(iii) Let U1; : : : ; Um be independent uniform random variables and let R?1 ; : : :,
R?m be nonnegative integer valued random variables with conditional joint
probability mass function

f R?mjUm.Rmjum/ D g�0 .Rmjum/ D
mY
jD1

g0;j .Rj juj ;Rj�1/1Cm
m;n
.Rm/;

for some (conditional) probability mass functions g0;1; : : : ; g0;m. Then, the
following stochastic representation of adaptive progressively Type-II censored
order statistics holds.
LetF be a strictly increasing and absolutely continuous cumulative distribution
function. For j D 1; : : : ; m, define the random variable Y.j / by

Y.j / D F 
�
1 �Qj

iD1U
1=�i
i

�
:

For Rm 2 Cm
m;n and u1; : : : ; um 2 Œ0; 1�, let yj D F 

�
1 �Qj

iD1u
1=�i
i

�
, 1 �

j � m, and

gj .Rj jyj ;Rj�1/ D g0;j
�
Rj
ˇ̌
uj ;Rj�1

�
; j D 1; : : : ; m;
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where �j D n�j C1�Pj�1
iD1 Ri , 1 � j � m. Then, the joint density function

of Y.m/ and R?
m is given by (6.3);

(iv) Suppose there is some k � 0 such that for any j D 1; 2; : : :, the condi-
tional distribution of �jC1, given � j D �j ;Y.j / D yj , depends only on
yj ; : : : ; yj�k , �j ; : : : ; �j�k .
Then, the sequence of random vectors .�j�k; : : : ; �j ; Y.j�k/; : : : ; Y.j //, j D
k C 1; k C 2; : : :, forms a Markov chain.

An important property is summarized in the following theorem. It provides a
simple tool to calculate the distribution of certain statistics.

Theorem 6.1.1 (Cramer and Iliopoulos [294]). Let T W .0;1/m �
Œ0;1/m �! R

m be a measurable function satisfying the following conditions:

(i) The mapping V W .0;1/m � Œ0;1/m �! R
m � Œ0;1/m defined by

.ym;Rm/ 7! .tm;Rm/ D .T .ym;Rm/;Rm/

is bijective and differentiable such that its Jacobian matrix is regular;
(ii) Given a fixed progressive censoring scheme Rm D R 2 C m

m;n, the distribution

of T .XR;R/ does not depend on R, where XR is the vector of the
corresponding progressively Type-II censored order statistics with population
distribution function F ;

(iii) For any Rm 2 Cm
m;n and j D 1; : : : ; m � 1, the first j components of the

inverse transform

ym D
�
V�1.tm;Rm/

�
1

do not depend on Rj�1; : : : ; Rm.

Then, T .Y.m/;R?
m/ has the same distribution as T .XR;R/ for any fixed

censoring scheme Rm D R.

The preceding theorem leads directly to the following property of spacings
which is an extension of Theorem 2.3.2 to the adaptive model. In order to get the
independence of the spacings in the adaptive censoring model, the normalization is
important because �j and Y.j / are not independent in general.

Theorem 6.1.2 (Cramer and Iliopoulos [294]). Let Y.1/; : : : ; Y.m/ be adap-
tively progressively Type-II censored order statistics generated from a two-
parameter exponential distribution Exp.�; #/. Then, the normalized spacings

Dj D �j .Y.j / � Y.j�1//; j D 1; : : : ; m; (6.5)

where Y.0/ D �, are independent Exp.#/ distributed random variables. Moreover,
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S D
mX
iD1
.1CR?i /Y.i/ � Γ.#;m/:

Proof. Suppose Zi � Exp.�; #/ are IID random variables with � 2 R; # > 0,
1 � i � n. Then, according to Theorem 2.3.2, for any (fixed) censoring scheme
Rm D .R1; : : : ; Rm/, the normalized spacings Dj D �j .Zj WmWn � Zj�1WmWn/, j D
1; : : : ; m, where Z0WmWn D �, are independent Exp.#/ distributed random variables.
Their sum

mX
iD1

Di D
mX
iD1
.1CRi/Xi WmWn

has a gamma distribution Γ.#;m/. Since the joint distribution of the normalized
spacings is independent of the censoring scheme Rm, Theorem 6.1.1 shows that the
spacings in (6.5) defined via the adaptively progressively Type-II censored order
statistics are independent Exp.#/ distributed random variables. This also yields the
distribution of S to be a Γ.#;m/ distribution and thus invariant w.r.t. the adaptive
censoring procedure. ut

In particular, Theorem 6.1.2 shows that Y.1/ and Y.2/; : : : ; Y.m/ are independent.
This result is also true in the nonadaptive case. It is important for properties of the
maximum likelihood estimators in the two-parameter exponential case. Moreover,
Theorem 6.1.2 yields the representation

Y.j / D �C #
jX
iD1

1

�j
Z�j ; j D 1; : : : ; m;

where Z�1 ; : : : ; Z�m are IID standard exponential random variables [cf. (2.13)].
Notice that �j and Z�j are generally not independent.

A similar result can be established for normalized ratios of adaptively progres-
sively Type-II censored order statistics from generalized Pareto distributions.

Example 6.1.3. For Xj � Pareto.˛/, 1 � j � n, the random variables

Y
�1˛
.1/ and

	
Y.j /

Y.j�1/


�j ˛
; j D 2; : : : ; m;

are independent with Pareto.1/ distributions (cf. Corollary 2.3.14). For reflected
power function distributions RPower.ˇ/, we have

.1 � Y.1//�1ˇ and

	
1 � Y.j /
1 � Y.j�1/


�j ˇ
; j D 2; : : : ; m;
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to be independent uniform random variables (cf. Corollary 2.3.11). For ˇ D 1, it
includes the uniform distribution as population distribution.

6.2 Particular Models

The general approach of adaptive progressive Type-II censoring covers some
particular models that have been discussed in the literature. Subsequently, we
illustrate this connection by presenting the corresponding density functions and
probability mass functions as given above.

6.2.1 Nonadaptive Type-II Progressive Censoring

It is clear from the construction of the adaptive censoring model that nonadaptive
Type-II progressive censoring can be embedded into this more general approach by
choosing one-point distributions for the censoring scheme which are independent
of the observed failure times. In particular, let S D .S1; : : : ; Sm/ 2 Cm

m;n be
a censoring scheme and let gj be the probability mass function of a one-point
distribution in Sj , i.e.,

gj .�jyj ;Rj�1/ D 1fSj g.�/; 1 � j � m:

Then, g�m.�jym/ D 1fS g.�/ is the probability mass function of a one-point
distribution in the censoring scheme S . Thus, the joint density function in (6.3)
becomes

f Y.m/;R?m.ym;Rm/ D
mY
jD1

�

j f .yj /f1� F.yj /gSj

�
IRm
�
.ym/1fS g.Rm/

with 
j DPm
iDj .Si C 1/, 1 � j � m. Hence, f Y.m/ D f XS

.

6.2.2 Ng–Kundu–Chan Model

The Ng–Kundu–Chan model introduced in Ng et al. [690] has been explained at
the beginning of this chapter. For a (prefixed) threshold parameter T > 0 and a
prefixed censoring scheme S D .S1; : : : ; Sm/, the original scheme S is changed
when the first observed failure time exceeds the threshold T . With j � D maxfj W
XS
j WmWn < T g, the adaptive censoring scheme is given in (6.1). The resulting adaptive

censoring scheme is given by the censoring plan
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�
y1

withdrawn

S1

�
y2

withdrawn

S2

�
yj�

withdrawn

Sj�

�
yj�C1

�
ym�1

�
ym

withdrawn

Rm

T

Fig. 6.1 Generation process of adaptive progressively Type-II censored order statistics in the Ng–
Kundu–Chan model when XmWmWn > T

.S1; : : : ; Sj�; 0�m�j
��1; n �m �

j�X
iD1

Si / providedXS
j�WmWn < T � XS

j�C1WmWn:

Hence, as long as the failures occur before time T , the initially planned censoring
scheme is employed. However, a change of the censoring plan is made only if
j � � m � 2. Otherwise, the originally planned censoring scheme is employed.
Furthermore, the first j �C1 observations are identical in both progressive censoring
models for j � � m � 2 so that

.XS
1WmWn; : : : ; XS

j�C1WmWn/ D .Y.1/; : : : ; Y.j�C1//:

Figure 6.1 depicts the generation procedure of adaptive progressively Type-II
censored order statistics in the Ng–Kundu–Chan model. After exceeding T , the
censoring numbers except for Rm are defined to be zero. This means that, after T ,
the next successivem� j � � 1 failures are observed. The experiment is terminated
whenm failures have been observed. If T > Xm�1WmWn, no adaption is carried out.

Choosing the probability mass functions as (1 � j � m � 1)

gj .Rj jyj ;Rj�1/ D gj .Rj jyj /
D 1fSj g.Rj /1.�1;T /.yj /C 1f0g.Rj /1ŒT;1/.yj /;

the model can be seen as a particular case of adaptive progressive Type-II censoring.
It turns out that the adaptive process takes only into account the observed failure
times.

6.2.3 Flexible Progressive Censoring

Bairamov and Parsi [80] proposed a modification of progressive censoring method
called flexible progressive censoring for IID lifetimes X1; : : : ; Xn. We present
the method in a slightly more general way w.r.t. the restrictions imposed on the
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censoring numbers. Given thresholds T1 � � � � � Tm and censoring numbers
S1; : : : ; Sm�1, S�1 ; : : : ; S�m�1 with n�Pm�1

jD1 maxfSj ; S�j g � m, the procedure works
as follows:

� The first observation is given by Y.1/ D X1WmWn. Then,

R?1 D S�1 C .S1 � S�1 /1.�1;T1�.X1WmWn/

units are removed from the experiment;

� For j 2 f2; : : : ; m � 1g, Y.j / D X
R?j�1
j WmWn denotes the next failure time after

removingR?j�1 units in the .j � 1/th censoring step. Then,

R?j D S�j C .Sj � S�j /1.�1;Tj �.X
R?j�1
j WmWn/

units are randomly withdrawn from the life-testing experiment;

� After observing the mth failure time, the remaining n �Pm�1
jD1.R?j C 1/ � 1

items are censored.

Choosing the probability mass functions as (1 � j � m � 1)

gj .Rj jyj ;Rj�1/ D gj .Rj jyj /
D 1fSj g.Rj /1.�1;Tj �.yj /C 1fS�j g.Rj /1.Tj ;1/.yj /;

the model can be seen as a particular case of adaptive progressive Type-II censoring.
On the other hand, it may be viewed as a generalization of the Ng–Kundu–Chan
model (here Tj D T and S�j D 0, j D 1; : : : ; m). A generalization of this model
has been proposed by Kinaci [532].

6.2.4 Progressive Censoring with Random Removals

Progressive censoring with random removals has been introduced by Yuen and
Tse [936]. Here, the censoring numbers are chosen according to some probability
distribution on the set of possible censoring numbers. The support of the distri-
butions is chosen so that a total of m observations is guaranteed. Moreover, the
selection of the censoring scheme is assumed to be independent of the lifetimes
X1; : : : ; Xn. Therefore, this sampling scheme can be seen as a two-step procedure:

� A random censoring scheme R?
m is chosen according to some given discrete

distribution on the set C n
m;n of admissible censoring schemes;

� The progressive censoring procedure is carried out with the resulting censoring
scheme of this random experiment.

This approach can be embedded into the model by Cramer and Iliopoulos [294]
by choosing the conditional probability mass functions gj to be independent of ym:
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g�m.Rmjym/ 	 g�m.Rm/ D
mY
jD1

gj .Rj jRj�1/1Cm
m;n
.Rm/:

Therefore, g�m depends only on the censoring scheme but not on the failure times.
Obviously, g�m is the marginal probability mass function of R?

m. Moreover, it
follows directly from (6.4) that the distribution of Y.m/ is a mixture, with mixing
probabilities g�.Rm/, given by

f Y.m/ .ym/ D
X

Rm2Cm
m;n

f �m .ymjRm�1/ � g�.Rm/: (6.6)



Chapter 7
Moments of Progressively Type-II Censored
Order Statistics

7.1 General Distributions

7.1.1 Representations for Moments

Moments of progressively Type-II censored order statistics can be calculated by
standard approaches. If the population distribution has a density function f , then,
for k 2 N0,

EXk
r WmWn D

Z 1
�1

tkf XrWmWn .t/dt;

where f XrWmWn is as in (2.28). From the quantile representation Theorem 2.1.1,
we obtain the following important, general integral representation of moments. It
relates the moments of a progressively Type-II censored order statistic to the density
function of a uniform progressively Type-II censored order statistic. The expression
is very useful in the derivation of bounds (see Sect. 7.5).

Theorem 7.1.1. Let Xr WmWn be a progressively Type-II censored order statistic
from a cumulative distribution function F , 1 � r � m, and k � 0. Then,

EXk
r WmWn D

Z 1

0

.F .t//k f UrWmWn .t/ dt

provided the moment exists.

Using the above relation for a progressively Type-II censored order statistic
Xr WmWn, we can apply (2.28) to obtain

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 7,
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EXk
r WmWn D

� rY
iD1

�i

� rX
jD1

1

�j
aj;r

Z 1
0

.F .t//k�j .1 � t/�j�1dt

D
� rY
iD1

�i

� rX
jD1

1

�j
aj;rEX

k
1W�j ; (7.1)

provided the involved moments exist. This representation proves that the expectation
of a progressively Type-II censored order statistic can be expressed in terms of
expectations of minima. The existence problem is discussed in Sect. 7.1.2.

Alternatively, the expectation of a random variable X � F can be calculated
from the general formula (see David and Nagaraja [327, p. 38])

EX D
Z 1
0

Œ1 � F.t/�dt �
Z 0

�1
F.t/dt:

It should be noted that a similar expression for product moments can be obtained.
In particular, using (2.29), we obtain for k1 � k2 the expression

EXk1WmWnXk2WmWn

D
� k2Y
jD1

�j

� k1X
iD1

ai;k1

k2X
jDk1C1

a
.k1/

j;k2

1

�j .�i � �j /EŒX1W�j X1W�i��j �:

This shows that it is sufficient to compute the product moments of two minima
from the same sample in order to compute the product moment of two progressively
Type-II censored order statistics.

7.1.2 Existence of Moments

The existence of some positive moment of a generalized order statistic can be
ensured by the existence of a higher moment for the underlying distribution. The
following results are taken from Cramer et al. [310].

Theorem 7.1.2. Let X be a random variable with distribution function F , and
let Xr WmWn be a progressively Type-II censored order statistic from F . If EjX jˇ <
1 for some ˇ > 0, then EjXr WmWnj˛ <1 for all 0 < ˛ � ˇ.

Even for order statistics, the above conditions are unsatisfactory, since in the
case of an underlying Cauchy distribution, the expectation EX does not exist,
whereas the expected values of the corresponding order statistics are finite except
for the first and the last one. Sen [789] presented a well-known theorem on



7.1 General Distributions 157

this topic, which has been extended to m-generalized order statistics in Kamps
[498, Theorem II.1.2.2]. Cramer et al. [310] established an extended version of
Sen’s theorem without requiring any restriction on the model parameters. For
progressively Type-II censored order statistics, their result reads as follows.

Theorem 7.1.3. Let X have a continuous distribution function F , and let the
progressively Type-II censored order statisticXr WmWn be based on F . If EjX jˇ <1
for some ˇ > 0, then EjXr WmWnj˛ <1 for all ˛ > ˇ, which satisfy the condition

˛

ˇ
� r � �r C r � ˛

ˇ
or, equivalently, ˛ � ˇ �min

˚
r; �r

�
: (7.2)

Choosing m D n and R D .0�m/, the following result due to Sen [789] is
contained as a special case.

Corollary 7.1.4 (Sen [789]). Let X have a continuous distribution function F ,
and let the order statistic Xr Wn, 1 � r � n, be based on F . If EjX jˇ < 1 for
some ˇ > 0, then EjXr Wnj˛ <1 for all ˛ > ˇ, which satisfy the condition

˛

ˇ
� r � nC 1 � ˛

ˇ
or, equivalently, ˛ � ˇ �min fr; n � r C 1g :

Example 7.1.5. For a standard Cauchy.0; 1/-distributed random variable X ,
EjX jˇ < 1 for 0 < ˇ < 1. Choosing ˇ D 1

2
, ˛ D 1, we find from (7.2) that

the first moment of a progressively Type-II censored order statistic Xr WmWn exists
if 2 � min

˚
r; �r

�
. This implies that the first moment exists for 2 � r � m � 1.

The first moment of XmWmWn does exist if Rm � 1. Similar considerations with
˛ D 2 lead to conditions for second moments.

Subsequently, we derive bounds for expectations of functions of progressively
Type-II censored order statistics. These are based on inequalities for the joint density
function f XR

given in (2.4). Further results on bounds for progressively Type-II
censored order statistics are presented in Sect. 7.5.

First, we establish an upper bound for moments on progressively Type-II
censored order statistics in terms of moments of order statistics. The results are
based on (7.3) with x1 � � � � � xm:

f XR
1WmWn;:::;X

R
mWmWn.xm/ D c.R/

mY
jD1

f .xj /F .xj /
Rj

� c.R/

mŠ
f X1Wm;:::;XmWm.xm/ a.s. (7.3)

for an arbitrary censoring scheme R. This fundamental inequality applies to every
selection of (progressively Type-II censored) order statistics as well. Given a
selection 1 � r1 < � � � < rs � n, s 2 N, integration of (7.3) yields
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f XR
r1WmWn

;:::;XR
rs WmWn � c.R/

mŠ
f Xr1Wm;:::;Xrs Wm a.s.

Hence, the preceding result leads directly to a simple criterion for the existence
of moments of progressively Type-II censored order statistics. The result can be
extended to arbitrary product moments of progressively Type-II censored order
statistics.

Theorem 7.1.6. Let g be a nonnegative function. Then

Eg.XR
r WmWn/ �

c.R/

mŠ
Eg.Xr Wm/; 1 � r � m:

In particular, this yields EjXR
r WmWnjk � c.R/

mŠ
EjXr Wmjk so that the existence of the

kth moment of the rth order statistic implies the existence of the respective
moment of XR

r WmWn.

Utilizing this conclusion, Sen’s [789] result given in Corollary 7.1.4 can be
directly applied to progressively Type-II censored order statistics. However, it
should be noted that Theorem 7.1.3 is weaker since the upper bound in (7.2) is
mC1CPm

jDr Rj and, thus, usually is larger. The difference is given by
Pm

jDr Rj .

Corollary 7.1.7. Let EjX jˇ exist for some ˇ > 0. Then, E.XR
r WmWn/k exists for

all r satisfying b k
ˇ
c � r � mC 1 � b k

ˇ
c.

It has to be noted that the existence of the kth moment of the r th progressively
Type-II censored order statistic does not generally imply the existence of the kth
moment of the r th order statistic.

Example 7.1.8. Consider a Pareto.q/-distribution with q > 0. Since the kth
moment of the rth progressively Type-II censored order statistic from a Pareto
distribution is given by E.XR

r WmWn/k D
Qr
jD1

�j
�j�k=q (see Theorem 7.2.5 and

Cramer and Kamps [300, p. 334 in terms of generalized order statistics]), we
obtain the existence condition

�r D
mX
iDr
.Ri C 1/ > k=q: (7.4)

Since order statistics correspond to the censoring scheme .0�m/, the existence
condition in this case is m C r � 1 > k=q where the left-hand side is strictly
smaller than that of (7.4) provided that Ri � 1 for some i 2 f1; : : : ; mg.

A slight generalization of the above inequalities can be obtained by the following
idea. Let R D .R1; : : : ; Rm/ be a given censoring scheme andRmin D min

1�i�nRi and

Rmax D max
1�i�nRi be the minimum and maximum censoring numbers, respectively.

This yields the bounds
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c.R/

mŠ
f Y1Wm;:::;YmWm � f XR

1WmWn;:::;X
R
mWmWn � c.R/

mŠ
f V1Wm;:::;VmWm a.s.;

where Yj Wm and Vj Wm, 1 � j � m, denote order statistics based on the cumulative

distribution functions 1�FRmax and 1�F Rmin , respectively. Hence, the correspond-
ing bounds for the expectation of g.XR

r WmWn/, where g is a nonnegative function,
become

c.R/

mŠ
Eg.Yr Wm/ � Eg.XR

r WmWn/ �
c.R/

mŠ
Eg.Vr Wm/; 1 � r � m:

Now, we consider the existence of moments of progressively Type-II censored
order statistics w.r.t. some partial ordering 4 of the censoring schemes.

Definition 7.1.9. Let R;S 2 N
m
0 be two censoring schemes with

Pm
iD1 Ri DPm

iD1 Si . Then

S 4 R ”
kX
iD1

Si �
kX
iD1

Ri ; k D 1; : : : ; m � 1:

It is easy to see that 4 defines a partial ordering on the set of all admissible
censoring schemes C m

m;n given in (1.1) with a fixed censoring number m 2 N0. Its
application leads to the following inequality.

Proposition 7.1.1 (Cramer [284]). Let R;S 2 Cm
m;n be two censoring schemes

with S 4 R. Then,

f XS
1WmWn;:::;X

S
mWmWn � c.S /

c.R/
f XR

1WmWn;:::;X
R
mWmWn : (7.5)

From the preceding result, we can deduce the following corollary.

Corollary 7.1.10. Let R;S 2 Cm
m;n be two censoring schemes with S 4 R

and g be a nonnegative function. Then,

Eg.XS
mWmWn/ �

c.S /

c.R/
Eg.XR

mWmWn/:

In particular, this yields EjXS
mWmWnjk � c.S /

c.R/
EjXR

mWmWnjk so that the existence of the

kth moment of XR
mWmWn implies the existence of the respective moment of XS

mWmWn.

It turns out that C m
m;n has a minimal and a maximal element w.r.t. 4. Corol-

lary 7.1.10 in connection with Lemma 7.1.11 leads to the upper and lower bounds
given in Corollary 7.1.12.

Lemma 7.1.11. Let R 2 Cm
m;n be an arbitrary censoring scheme. Then, O1 D

.n�m; 0�m�1/ is a maximal element of Cm
m;n, i.e., R 4 O1, and Om D .0�m�1; n�

m/ is a minimal element of C m
m;n, i.e., Om 4 R.
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Corollary 7.1.12. Let R 2 C m
m;n be a censoring scheme and g be a nonnegative

function. Then,

.n �m/Šc.R/
nŠ

Eg.XOm
mWmWn/ � Eg.XR

mWmWn/ �
c.R/

n.m � 1/ŠEg.X
O1
mWmWn/:

In particular, this yields

.n �m/Šc.R/
nŠ

EjXOm
mWmWnjk � EjXR

mWmWnjk �
c.R/

n.m � 1/ŠEjX
O1
mWmWnjk:

It is directly seen from the joint density function (2.4) that the progressively
Type-II censored order statistics XOm

1WmWn; : : : ; X
Om
mWmWn have the same distribution as

the first m order statistics in a sample of n, i.e., X1Wn; : : : ; XmWn. In view of this
result, Corollary 7.1.13 leads (in some sense) to a converse result to Theorem 7.1.6.

Corollary 7.1.13. Let R 2 C m
m;n be a censoring scheme and g be a nonnegative

function. Then,

Eg.XmWn/ � nŠ

.n �m/Šc.R/Eg.X
R
mWmWn/:

In particular, this yields EjXmWnjk � nŠ
.n�m/Šc.R/

EjXR
mWmWnjk which means that the

existence of the kth moment of XR
mWmWn yields the existence of the kth moment

of the order statistic XmWn.

Remark 7.1.14. Using the same technique as above, similar bounds can be
established for progressively Type-II censored order statistics XR

r WmWn with 1 �
r � m. Since Theorem 2.4.1 yields for r 2 f1; : : : ; mg

�
XR
1WmWn; : : : ; XR

r WmWn
�

dD �XRr

1Wr Wn; : : : ; X
Rr
r Wr Wn

�

and �j .R/ D �j .Rr /, 1 � j � r , we have a similar bound as in (7.5). In
particular,

f XS
1WmWn;:::;X

S
rWmWn �

� rY
jD1

�j .S /

�j .R/

�
f XR

1WmWn;:::;X
R
rWmWn ; 1 � r � m:

For instance, the corresponding bounds in Corollary 7.1.10 become

Eg.XS
r WmWn/ �

� rY
jD1

�j .S /

�j .R/

�
Eg.XR

r WmWn/; 1 � r � m:
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In Corollary 7.1.13, the bounds are given by

Eg.Xr Wn/ � nŠ

.n � r/ŠQr
jD1 �j .R/

Eg.XR
r WmWn/; 1 � r � m:

7.2 Moments for Particular Distributions

For some particular distributions, explicit expressions for (product) moments are
available. In this section, we present such expressions for selected distributions.
They are used, for instance, in developing optimal linear estimation (see Chap. 11).

7.2.1 Exponential Distribution

The following expressions for expectations, variances, and covariances result
directly from (2.13).

Theorem 7.2.1. Let Z1WmWn; : : : ; ZmWmWn be progressively Type-II censored order
statistics based on an exponential distribution Exp.�; #/. Then:

(i) EZr WmWn D �CPr
jD1 1

�j
, 1 � r � m;

(ii) Var.Zr WmWn/ DPr
jD1 1

�2j
, 1 � r � m;

(iii) Cov.Zr WmWn; ZsWmWn/ D Var.Zr WmWn/ DPr
jD1 1

�2j
, 1 � r � s � m.

Introducing the notation ar D 1
�2r

, a�r D Pr
jD1 aj D

Pr
jD1

1

�2j
, 1 � r � m,

Theorem 7.2.1 yields the covariance matrix

Cov.ZR/ D ˙R
Z D

0
BBBBB@

a�1 a�1 a�1 � � � a�1
a�1 a�2 a�2 � � � a�2
a�1 a�2 a�2 � � � a�3
:::

:::
: : :

a�1 a�2 a�3 � � � a�m

1
CCCCCA
: (7.6)

The special structure of this matrix will be of interest in the derivation of best linear
estimators since the inverse of this matrix can be calculated explicitly. The inverse
of the matrix in (7.6) is given by (see Graybill [413, p. 187])
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˙�1ZR D

0
BBBBBBBB@

�21 C �22 ��22 0 � � � � � � 0

��22 �22 C �23 ��23 0 � � � 0

0 ��23 �23 C �24 ��24 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � � � � ��2m�1 �2m�1 C �2m ��2m
0 � � � � � � 0 ��2m �2m

1
CCCCCCCCA
: (7.7)

7.2.2 Weibull Distributions

Expressions for moments of Weibull progressively Type-II censored order statis-
tics can be directly taken from Kamps and Cramer [503] who have considered
sequential order statistics based on two-parameter Weibull.#; ˇ/-distributions. The
kth moment, k 2 N0, is given by

EXk
i WmWn D #k=ˇci�1� .k=p C 1/

iX
jD1

aj;i �
�.k=ˇC1/
j :

Product moments can be derived from Cramer and Kamps [298]. In particular, we
get for 1 � i < j � m

EXi WmWnXj WmWn D cj�1ˇ2#2
jX

`DiC1
a
.i/

`;j

iX
�D1

a�;i�ˇ.�`; ��/; (7.8)

where

�ˇ.s; t/ D
Z 1
0

Z y

0

.xy/ˇ expf�syˇ � .t � s/xˇg dxdy; s; t > 0: (7.9)

For t > s > 0, Lieblein [594] obtained a simple representation of � in terms of the
incomplete beta function by means of a differential equation approach, i.e.,

�ˇ.s; t/ D ˇ�2.s.t � s//�.1C1=ˇ/� .2C 2=ˇ/B1�s=t .1C 1=ˇ; 1C 1=ˇ/;

where Bx.u; v/ D
R x
0

zu�1.1 � z/v�1d z denotes the incomplete beta function; see
Balakrishnan and Cohen [92] for details. Notice that �` < �� for 1 � � � i; iC1 �
` � m because �1 > � � � > �m and i < j . Therefore, �` < �� holds in (7.8), and we
can apply (7.9) to find an explicit representation of the product moment in (7.8).
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7.2.3 Reflected Power Distribution

The following expressions for expectations, variances, and covariances result
directly from the representations in Corollary 2.3.10.

Theorem 7.2.2. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics based on an RPower.q/-distribution. Then:

(i) EXr WmWn D 1 �Qr
jD1

q�j
1Cq�j , 1 � r � m;

(ii) E.X2
r WmWn/ D 1 � 2

Qr
jD1

q�j
1Cq�j C

Qr
jD1

q�j
2Cq�j , 1 � r � m;

(iii) E.Xk
r WmWn/ D

Pk
�D0.�1/�

�
k
�

�Qr
jD1

q�j
�Cq�j , 1 � r � m;

(iv) Var.Xr WmWn/ DQr
jD1

q�j
2Cq�j �

Qr
jD1

q2�2j

.1Cq�j /2 , 1 � r � m;

(v) Cov.Xr WmWn; XsWmWn/ D
�Qs

jDrC1
q�j

1Cq�j
�

Var.Xr WmWn/, 1 � r � s � m.

Proof. The representation for E.Xk
r WmWn/ follows from Corollary 2.3.10 using the

binomial theorem and taking expectations of every summand. The covariance
follows from the identity

Cov.Xr WmWn; XsWmWn/ D Cov
� rY
jD1

U
1=.q�j /

j ;

sY
jD1

U
1=.q�j /

j

�

D E
� rY
jD1

U
2=.q�j /

j

sY
jDrC1

U
1=.q�j /

j

�
� E

� rY
jD1

U
1=.q�j /

j

�
�E
� sY
jD1

U
1=.q�j /

j

�

D E
� sY
jDrC1

U
1=.q�j /

j

�
2
4E

� rY
jD1

U
2=.q�j /

j

�
�E2

� rY
jD1

U
1=.q�j /

j

�
3
5 (7.10)

D
� sY
jDrC1

q�j

1C q�j
�

Var.Xr WmWn/: (7.11)

In particular, the second factor in (7.10) yields the expression for the variance
of Xr WmWn. ut

From Burkschat et al. [236] (see also Balakrishnan and Aggarwala [86]), we find
with the notation ˛v D 1 � b�; a� D d�

e�
; b� D c�

d�
and

c� D
�Y

jD1
�j ; d� D

�Y
jD1

.�j C 1=q/; e� D
�Y

jD1
.�j C 2=q/; 1 � � � m; (7.12)

the representations

EXr WmWn D ˛r ; Cov.Xr WmWn; XsWmWn/ D .ar � br/bs:
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From Theorem 7.2.1, we get the following covariance matrix

Cov.XR/ D ˙XR

D

0
BBBBB@

.a1 � b1/b1 .a1 � b1/b2 .a1 � b1/b3 � � � .a1 � b1/bm

.a1 � b1/b2 .a2 � b2/b2 .a2 � b2/b3 � � � .a2 � b2/bm

.a1 � b1/b3 .a2 � b2/b3 .a3 � b3/b3 � � � .a3 � b3/bm
:::

:::
:::

: : :
:::

.a1 � b1/bm .a2 � b2/bm .a3 � b3/bm � � � .am � bm/bm

1
CCCCCA
: (7.13)

The special structure of this matrix will be of interest in the derivation of best linear
estimators. The inverse is a symmetric tridiagonal matrix (cf. Graybill [413, p. 198]
or Arnold et al. [58, pp. 174–175]) with

.˙�1XR/i i D .�iq C 1/2 ei
ci
C �iC1q2 eiC1

ci
; 1 � i � m � 1;

.˙�1XR/mm D .�mq C 1/2 em
cm
;

.˙�1XR/i;iC1 D �.�iC1q C 1/eiC1
ci
; 1 � i � m � 1:

(7.14)

7.2.4 Uniform Distribution

Since the uniform distribution is of particular interest in many problems, we
present the moments of uniform progressively Type-II censored order statistics
subsequently even though they can be seen as particular case of progressively Type-
II censored order statistics from a reflected power function distribution (q D 1).

Theorem 7.2.3. Let U1WmWn; : : : ; UmWmWn be progressively Type-II censored order
statistics based on a U.0; 1/-distribution. Then:

(i) EUr WmWn D 1 �Qr
jD1

�j
1C�j , 1 � r � m;

(ii) E.U 2
r WmWn/ D 1 � 2

Qr
jD1

�j
1C�j C

Qr
jD1

�j
2C�j , 1 � r � m;

(iii) E.U k
r WmWn/ D

Pk
�D0

�
k

�

�
.�1/�Qr

jD1
�j

�C�j , 1 � r � m;

(iv) Var.Ur WmWn/ DQr
jD1

�j
2C�j �

Qr
jD1

�2j

.1C�j /2 , 1 � r � m;

(v) Cov.Ur WmWn; UsWmWn/ D
�Qs

jDrC1
�j

1C�j
�

Var.Ur WmWn/, 1 � r � s � m.
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The inverse˙�1UR of the covariance matrix [see (7.13)] is a symmetric tridiagonal
matrix given by

.˙�1UR/i i D .�i C 1/2 ei
ci
C �iC1 eiC1

ci
; 1 � i � m � 1

.˙�1UR/mm D .�m C 1/2 em
cm

.˙�1UR/i;iC1 D �.�iC1 C 1/eiC1
ci
; 1 � i � m � 1;

(7.15)

where

c� D
�Y

jD1
�j ; e� D

�Y
jD1

.�j C 2/; 1 � � � m:

Remark 7.2.4. For order statistics, i.e., m D n and R D .0�m/, the
above expressions reduce to EUj Wn D j

nC1 , Var.Uj Wn/ D j.n�jC1/
.nC1/2.nC2/ , and

Cov.Ui Wn; Uj Wn/ D i.n�jC1/
.nC1/2.nC1/ , 1 � i � j � n, which are well known for

order statistics from a standard uniform distribution (see, for example, David
and Johnson [324], David and Nagaraja [327, pp. 35/36], and Arnold et al.
[58]).

7.2.5 Pareto Distribution

The following expressions for expectations, variances, and covariances result
directly from the representations in Corollary 2.3.13. In order to ensure the existence
of the momentEXk

r WmWn, we have to place some conditions on r; k and the parameter
of the underlying Pareto distribution.

Theorem 7.2.5. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics based on a Pareto.˛/-distribution. Then:

(i) EXr WmWn DQr
jD1

˛�j
˛�j�1 , provided ˛�r > 1, 1 � r � m;

(ii) E.Xk
r WmWn/ D

Qr
jD1

˛�j
˛�j�k , provided ˛�r > k, 1 � r � m;

(iii) Var.Xr WmWn/ D Qr
jD1

˛�j
2C˛�j �

Qr
jD1

˛2�2j

.1C˛�j /2 , provided ˛�r > 2, 1 � r � m;

(iv) Cov.Xr WmWn; XsWmWn/ D
�Qs

jDrC1
˛�j
˛�j�1

�
Var.Xr WmWn/, provided ˛�s > 2, 1 �

r � s � m.

Proof. First, we notice that the parameters �j are decreasingly ordered:
�1 > : : : > �m. Then, the representation for E.Xk

r WmWn/ follows directly from
Corollary 2.3.13 replacing ˇ by �˛. As in the case of the reflected power
distribution [see (7.10) and (7.11)], the covariance is given by
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Cov.Xr WmWn; XsWmWn/

D E
� sY
jDrC1

U
�1=.˛�j /
j

�
2
4E

� rY
jD1

U
�2=.˛�j /
j

�
�E2

� rY
jD1

U
�1=.˛�j /
j

�
3
5

D
� sY
jDrC1

˛�j

˛�j � 1
�

Var.Xr WmWn/:

This proves the result. ut
Using the definitions in (7.12) with ˇ replaced by �˛, we obtain from Burkschat

et al. [236] the same structure of both the covariance matrix in (7.13) and its inverse
in (7.14).

7.2.6 Lomax Distribution

Using the results for the Pareto distribution, we find the following representation
for the moments of a Lomax distribution with parameter ˛ > 0. The results can
be proved using the quantile function F .t/ D .1 � t/�1=˛ � 1, t 2 .0; 1/, and
Theorem 7.2.5.

Corollary 7.2.6. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics based on a Lomax.˛/-distribution. Then:

(i) EXr WmWn DQr
jD1

˛�j
˛�j�1 � 1, provided ˛�r > 1, 1 � r � m;

(ii) Var.Xr WmWn/ D Qr
jD1

˛�j
2C˛�j �

Qr
jD1

˛2�2j

.1C˛�j /2 , provided ˛�r > 2, 1 � r � m;

(iii) Cov.Xr WmWn; XsWmWn/ D
�Qs

jDrC1
˛�j
˛�j�1

�
Var.Xr WmWn/, provided ˛�s > 2, 1 �

r � s � m.

7.2.7 Extreme Value Distribution

In order to compute the Fisher information, Dahmen et al. [320] have calculated the
first and second moments of progressively Type-II censored order statistics from a
standard extreme value distribution. Denoting by � Euler’s constant, they obtained
the following results (1 � s � m):

EYsWmWn D �cs�1
sX
iD1

ai;s

�i
.� C log �i/;

EY 2sWmWn D
1

6
�2 C cs�1

sX
iD1

ai;s

�i

�
� C log �i

�2
:

(7.16)
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Using (2.26), the mean simplifies to

EYsWmWn D �� � cs�1
sX
iD1

ai;s

�i
log �i :

The second-order moment can be simplified in a similar manner. An expression for
higher-order moments involving integrals is available in Mann [636].

7.3 Recurrence Relations for Moments

In this section, we assume that the moments always exist. Subsequently, we use
the notation �R

j WmWn D EXR
j WmWn and �R

i;j WmWn D E.XR
i WmWnXR

j WmWn/. For higher-order

moments, we write �˝kRj WmWn D E.XR
j WmWn/k , k 2 N0. The censoring scheme R is

suppressed if it is obvious.

7.3.1 General Results

From the basic relations (2.46) and (2.47) in Sect. 2.6, we find directly the following
relations for single and product moments.

Corollary 7.3.1. For 1 � r < m � 1, we have

�R
rC1WmWn D

�rC1
�1 � �rC1�

R
r WmWn �

�1

�1 � �rC1�
.R2;:::;Rm/
r Wm�1Wn�R1�1:

For 1 � r < s < m � 1, we have

�R
rC1;sC1WmWn D

�rC1 � �sC1
�1 � �rC1 �

R
r;sC1WmWn C

�sC1
�1 � �rC1 �

R
r;sWmWn �

�1

�1 � �rC1�
.R2;:::;Rm/
r;sWm�1Wn�R1�1:

7.3.2 Results for Particular Distributions

Recurrence relations for many distributions have been established in the literature
(see, e.g., Balakrishnan and Aggarwala [86]). Here, we present only a selection of
them. For order statistics, a huge number of results is available. For further reading,
one may refer to the reviews by Arnold and Balakrishnan [51] and Balakrishnan and
Sultan [126] as well as further articles in Balakrishnan and Rao [116, 117].
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Exponential Distribution

The simplest available relations for moments of exponential progressively Type-II
censored order statistics are established in Balakrishnan et al. [130]. In particular,
we have the following results for the kth moment �˝kRj WmWn D E.ZR

j WmWn/k of a
progressively Type-II censored order statistic ZR

j WmWn.

Theorem 7.3.2. Let k 2 N0. Then, the following relations hold for the kth
moments of exponential progressively Type-II censored order statistics:

(i) For 1 � m � n,

�˝kC1R
1WmWn D �˝kC1.�1�1/1W1Wn D k C 1

n
�˝k.n�1/
1W1Wn D .k C 1/Š

nkC1
I

(ii) For 2 � j � m,

�˝kC1
j WmWn D �˝kC1j WmWn D

k C 1
�j

�˝k
j WmWnC�˝kC1j�1WmWn : (7.17)

Proof. The first part is a direct consequence of the relation ZR
1WmWn � Exp.�1/. The

recurrence relation for j > 1 follows from the following identity with IID standard
exponential random variablesZ1; : : : ; Zj :

�˝kC1
j WmWn D E

� jX
�D1

1

��
Z�

�kC1 D E
�
Zj�1WmWn C 1

�j
Zj

�kC1

D
kC1X
�D0

 
k C 1
�

!
1

��j
EZ�

jEZ
kC1��
j�1WmWn

D EZkC1
j�1WmWn C

kC1X
�D1

 
k C 1
�

!
�Š

��j
EZkC1��

j�1WmWn

D �˝kC1j�1WmWnC
k C 1
�j

kC1X
�D1

 
k

� � 1

!
.� � 1/Š
���1j

EZkC1��
j�1WmWn

D �˝kC1j�1WmWnC
k C 1
�j

kX
�D0

 
k

�

!
�Š

��j
EZk��

j�1WmWn

D �˝kC1j�1WmWnC
k C 1
�j

�˝k
j WmWn

This proves the relation. ut
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Remark 7.3.3. The proof can also be carried out using integral expressions
given in Aggarwala and Balakrishnan [12] (see also Balakrishnan and Aggarwala
[86, Theorem 4.2]). This approach results in the relation

�˝kC1R
j WmWn

D 1

Rj C 1
h
.k C 1/�˝kRj WmWn��jC1 �˝kC1.R1;:::;Rj�1;RjCRjC1C1;RjC2;:::;Rm/j Wm�1Wn

� �j �˝kC1.R1;:::;Rj�2;Rj�1CRjC1;RjC1;:::;Rm/j�1Wm�1Wn
i
: (7.18)

Applying the identity (see Theorem 2.4.1)

�˝kR
j WmWn D �˝k.R1;:::;Rj�1;�j�1/j Wj Wn ;

(7.18) can be rewritten as relation (7.17) (see also Balakrishnan et al. [130]).
The proof of Aggarwala and Balakrishnan [12] proceeds by means of the

differential equation

.f .t/ D/ F 0.t/ D 1 � F.t/; t > 0; (7.19)

valid for the cumulative distribution function of the standard exponential
distribution. Since the method is of general interest and can be applied to other
distributions as well (by utilizing the corresponding differential equation), we
present the derivation of (7.17) using this method. Let xj D .x1; : : : ; xj / with
x1 � � � � � xj , 1 � j � m. First, notice that, from (2.4), we can write the joint
density function of Z1WmWn; : : : ; Zj WmWn as

f .xj / D gR.xj�1/�j f .xj /.1� F.xj //�j�11.xj�1;1/.xj /; (7.20)

where gR.xj�1/ DQj�1
iD1 Œ�if .xi /.1�F.xi //Ri �, x1 � � � � � xj�1. We then obtain

�˝kC1
j WmWn D

Z Z 1
xj�1

�j x
kC1
j f .xj /.1 � F.xj //�j�1dxj gR.xj�1/dxj�1:

Integrating the inner integral by parts and using (7.19), we have

D
Z
xkC1j�1 .1 � F.xj�1//�j gR.xj�1/dxj�1

C .k C 1/
Z Z 1

xj�1

xkj .1 � F.xj //�j dxj gR.xj�1/dxj�1



170 7 Moments of Progressively Type-II Censored Order Statistics

D
Z
xkC1j�1 f

Z1WmWn;:::;Zj�1WmWn.xj�1/dxj�1

C k C 1
�j

Z Z 1
xj�1

xkj �j f .xj /.1 � F.xj //�j�1dxj gR.xj�1/dxj�1

D �˝kC1j�1WmWnC
k C 1
�j

�˝k
j WmWn :

The corresponding result for product moments is given in Theorem 7.3.4

Theorem 7.3.4. Let 1 � i < j � m, m � n. Then,

�i;j WmWn D �i;j�1WmWn C 1

�j
�i WmWn:

Proof. From the sum expression for exponential progressively Type-II censored
order statistics, we conclude

�i;j WmWn D E
�
Zi WmWnZj WmWn

� D E�Zi WmWnZj�1WmWn C 1

�j
Zi WmWnZj

�

D E�Zi WmWnZj�1WmWn
�C 1

�j
EZi WmWn D �i;j�1WmWn C 1

�j
�i WmWn:

Hence, we arrive at the relation for product moments of exponential progressively
Type-II censored order statistics. ut
Remark 7.3.5. For order statistics, i.e., Ri D 0, 1 � i � m, the preceding
recurrence relations lead to the formulas derived by Joshi [486, 488] in the case
of single and product moments, respectively.

Truncated Exponential Distribution

Results for truncated exponential distributions can be found, e.g., in Aggarwala and
Balakrishnan [12], Balakrishnan and Aggarwala [86], and Balakrishnan et al. [130].
The density function of a doubly truncated exponential distribution is given by

f .t/ D e�t

P �Q; Q1 � t � P1;

whereQ D 1 � e�Q1 > 0, P D 1 � e�P1 > 0. It satisfies the differential equation

f .t/ D F 0.t/ D 1 � P
P �Q C 1 � F.t/ D ı C 1 � F.t/; Q1 < t < P1; (7.21)
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where ı D 1�P
P�Q . From (7.20), we obtain by integration by parts

�˝kC1
j WmWn D

Z Z P1

xj�1

�j x
kC1
j f .xj /.1 � F.xj //�j�1dxj gR.xj�1/dxj�1

D
Z
xkC1j�1 .1 � F.xj�1//�j gR.xj�1/dxj�1

C .k C 1/
Z Z P1

xj�1

xkj .1 � F.xj //�j dxj gR.xj�1/dxj�1

D �˝kC1j�1WmWnC.k C 1/IR
j;k;n; say. (7.22)

Notice that this identity holds for any distribution. We will use (7.22) subsequently
in all the examples.

Using the differential equation (7.21), IR
j;k;n can be rewritten as

IR
j;k;n D

1

�j

Z Z P1

xj�1

xkj �j f .xj /.1 � F.xj //�j�1dxj gR.xj�1/dxj�1

� ı
Z Z P1

xj�1

xkj .1 � F.xj //�j�1dxj gR.xj�1/dxj�1

D 1

�j
�˝k
j WmWn

� ı
j�1Y
iD1

�i

�i � 1
Z Z P1

xj�1

xkj .1 � F.xj //�j�1dxj gR�.xj�1/dxj�1

D 1

�j
�˝k
j WmWn�ı

j�1Y
iD1

�i

�i � 1I
R�

j;k;n�1;

where R� 2 Cm
m;n�1 denotes a censoring scheme such that the first j�1 components

are the same as those of R. From the preceding calculation, we conclude for any
k 2 N, R, and n 2 N that

.k C 1/IR
j;k;n D �˝kC1Rj WmWn ��˝kC1Rj�1WmWn;

so that

.k C 1/IR�

j;k;n�1 D �˝kC1R
�

j WmWn�1 ��˝kC1R
�

j�1WmWn�1 :
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Therefore, we find

�˝kC1
j WmWn D �˝kC1j�1WmWnC

k C 1
�j

�˝k
j WmWn

� 1 � P
P �Q

	 j�1Y
iD1

�i

�i � 1


.�˝kC1R�j WmWn�1 ��˝kC1R

�

j�1WmWn�1/:

Notice that, for �j D 1 (which can only happen for j D m), we get

IR
j;k;n D

1

�j
�˝k
j WmWn�ı

	 j�1Y
iD1

�i

�i � 1

Z

1

k C 1
h
PkC1
1 � xkC1j�1

i
gR�.xj�1/dxj�1

D 1

�j
�˝k
j WmWn�

ı

k C 1
	 j�1Y
iD1

�i

�i � 1

h
PkC1
1 � �˝kC1R�j�1WmWn�1

i
(7.23)

so that

�˝kC1
j WmWn D �˝kC1j�1WmWnC

k C 1
�j

�˝k
j WmWn�

1 � P
P �Q

	 j�1Y
iD1

�i

�i � 1


.P kC1

1 � �˝kC1R�j�1WmWn�1/:

Finally, we state that for k 2 N0,

(i) �˝kC1.0/1W1W1 D .k C 1/�˝k.0/1W1W1 � 1�P
P�QP

kC1
1 C 1�Q

P�QQ
kC1
1 ;

(ii) For n � 2,

�˝kC1R
1WmWn D �˝kC1.n�1/1W1Wn D .kC1/

n
�˝k.n�1/
1W1Wn � 1�P

P�Q �
˝kC1.n�2/
1W1Wn�1 C 1�Q

P�QQ
kC1
1 :

Obviously, for P ! 1 and Q ! 0, the results converge to the relations for the
exponential distribution given in Theorem 7.3.2.

The above expressions generalize relations obtained for moments of order
statistics by Joshi [486, 487, 488] and Balakrishnan and Joshi [103].

Truncated Pareto Distributions

The density function of a doubly truncated Pareto distribution is given by

f .t/ D qt�q�1

P �Q; 1 � Q1 � t � P1; q > 0;
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where P D 1 � P�q1 > 0, Q D 1 � Q�q1 > 0, and 1 � Q < P . Obviously, the
quantile function is given by

F .t/ D Q1F
 
P1=Q1

.t/; t 2 .0; 1/;

where FP1=Q1 denotes the cumulative distribution function of a right truncated
Pareto distribution with support Œ1; P1=Q1�. Thus,

EXk
j WmWn D Qk

1EY
k
j WmWn;

where Y kj WmWn is a progressively Type-II censored order statistic from a FP1=Q1-
population. This shows that it is sufficient to consider right truncated Pareto
distributions. However, the following approach addresses both cases simultaneously.
A cumulative distribution function of a doubly truncated Pareto distribution satisfies
the differential equation

f .t/ D F 0.t/ D 1� P
P �Q

q

t
C Œ1 � F.t/�q

t
D ıq

t
C Œ1 � F.t/�q

t
; Q1 < t < P1;

where ı D 1�P
P�Q , or, equivalently,

t

q
f .t/ � ı D 1 � F.t/; Q1 < t < P1: (7.24)

As in the exponential case, we obtain from (7.22)

�˝k
j WmWn D �˝kj�1WmWnCkIR

j;k�1;n: (7.25)

Now, we apply the differential equation (7.24) to obtain

IR
j;k�1;n D

1

q�j

Z Z P1

xj�1

xkj �j f .xj /.1 � F.xj //�j�1dxj gR.xj�1/dxj�1

� ı
Z Z P1

xj�1

xk�1j .1 � F.xj //�j�1dxj gR.xj�1/dxj�1

D 1

q�j
�˝k
j WmWn�ı

	 j�1Y
iD1

�i

�i � 1


IR�

j;k�1;n�1:

For �j D 1 (which is possible only for j D m), this equals [see (7.23)]

IR
j;k�1;n D

1

q�j
�˝k
j WmWn�ı

	 j�1Y
iD1

�i

�i � 1

h
Pk
1 � �˝kR

�

j�1WmWn�1
i
:
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From (7.25), we find

kIR�

j;k�1;n�1 D �˝kR
�

j WmWn�1��˝kR
�

j�1WmWn�1;

so that

�˝k
j WmWn D �˝kj�1WmWnC

k

q�j
�˝k
j WmWn�ı

	 j�1Y
iD1

�i

�i � 1


.�˝kR�j WmWn�1��˝kR

�

j�1WmWn�1/:

Subtracting k
q�j

�˝k
j WmWn and multiplying by q�j

q�j�k (for q�j ¤ k) lead to

�˝k
j WmWn D

q�j

q�j � k

(
�˝k
j�1WmWn�

1 � P
P �Q

	 j�1Y
iD1

�i

�i � 1


.�˝kR�j WmWn�1��˝kR

�

j�1WmWn�1/
)
:

In this relation, kth moments of the truncated Pareto distributions are only involved.
From the recurrence relation, we observe that �˝kj WmWn cancels out for q�j D k so

that the relation cannot be used for the computation of �˝kj WmWn.
Finally, we find for k 2 N0 and n � 2 (see Balakrishnan and Aggarwala [86,

p. 57/58]),

�˝k.0/
1W1W1 D

8
<̂
:̂

q

.k � q/.P �Q/.P
k�q
1 �Qk�q

1 /; k ¤ q
q

P �Q.log.P1/� log.Q1//; k D q ;

�˝k.n�1/
1W1Wn D nq

k � nq

1 � P
P �Q �˝k.n�2/

1W1Wn � 1 �Q
P �QQ

k
1

�
:

From Example 7.1.8, we know that the kth moment of Xj WmWn from an untruncated
Pareto distribution exists if �j > k

q
or, equivalently, q�j > k. Taking the limit

P ! 1, we find the recurrence relation

�˝k
j WmWn D

q�j

q�j � k
�˝k
j�1WmWn;

which is obvious from Theorem 7.2.5.

Truncated Power Distributions

The density function of a doubly truncated power distribution is given by

f .t/ D qtq�1

P �Q; 0 � Q1 � t � P1 � 1; q > 0;
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where P D P
q
1 > 0, Q D Q

q
1 > 0, and Q < P . Its cumulative distribution

function is given by

F.t/ D tq �Q
P �Q; t 2 .Q1; P1/:

It satisfies the differential equation

f .t/ D F 0.t/ D P

P �Q
q

t
C Œ1 � F.t/�q

t
D ıq

t
C Œ1 � F.t/�q

t
; Q1 < t < P1;

where ı D P
P�Q , or, equivalently,

ı � t

q
f .t/ D 1 � F.t/; Q1 < t < P1:

This differential equation is quite similar to the differential equation in the Pareto
case [see (7.24)]. We get

IR
j;k�1;n D ı

j�1Y
iD1

�i

�i � 1I
R�

j;k�1;n�1 �
1

q�j
�˝kC1
j WmWn :

Therefore, we obtain

�˝k
j WmWn D

q�j

q�j C k

(
�˝k
j�1WmWnC

P

P �Q
	 j�1Y
iD1

�i

�i � 1


.�˝kR�j WmWn�1��˝kR

�

j�1WmWn�1/
)
:

Finally, we have for k 2 N0,

�˝k.0/
1W1W1 D

q

.k C q/.P �Q/.P
kCq
1 �QkCq

1 /:

Truncated Reflected Power Distributions

The density function of a doubly truncated reflected power distribution is given by

f .t/ D q.1 � t/q�1
P �Q ; 0 � Q1 � t � P1 � 1; q > 0;
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where P D 1� .1�P1/q > 0,Q D 1� .1�Q1/
q > 0, andQ < P . Its cumulative

distribution function is given by

F.t/ D 1 �Q � .1� t/q
P �Q ; t 2 .Q1; P1/:

It satisfies the differential equation

1 � t
q

f .t/ D 1 � P
P �Q C 1 � F.t/ D ı C 1 � F.t/; Q1 < t < P1; (7.26)

where ı D 1�P
P�Q . As above, we obtain from (7.22)

�˝k
j WmWn D �˝kj�1WmWnCkIR

j;k�1;n:

Now, we apply the differential equation (7.26) to obtain

IR
j;k�1;n D

1

q�j

Z Z P1

xj�1

.xk�1j � xkj /�j f .xj /.1 � F.xj //�j�1dxj gR.xj�1/dxj�1

� ı
Z Z P1

xj�1

xk�1j .1 � F.xj //�j�1dxj gR.xj�1/dxj�1

D 1

q�j
.�˝k�1j WmWn ��˝kj WmWn/� ı

j�1Y
iD1

�i

�i � 1I
R�

j;k�1;n�1;

As in the Pareto case, we find

�˝k
j WmWn D �˝kj�1WmWnC

k

q�j
.�˝k�1j WmWn ��˝kj WmWn/

� ı
j�1Y
iD1

�i

�i � 1.
�˝kR�
j WmWn�1��˝kR

�

j�1WmWn�1/;

or, equivalently,

�˝k
j WmWn D

q�j

k C q�j

�˝k
j�1WmWnC

k

q�j
�˝k�1
j WmWn

� 1 � P
P �Q

j�1Y
iD1

�i

�i � 1.
�˝kR�
j WmWn�1��˝kR

�

j�1WmWn�1/
�
:
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For P ! 1, this tends to the relation for the (untruncated) reflected power function
distribution with support Œ0; 1�, i.e.,

�˝k
j WmWn D

q�j

k C q�j

�˝k
j�1WmWnC

k

q�j
�˝k�1
j WmWn

�

D q�j

k C q�j
�˝k
j�1WmWnC

k

k C q�j
�˝k�1
j WmWn :

This shows that �˝kj WmWn is a convex combination of �˝kj�1WmWn and �˝k�1j WmWn . Finally, we
have for k 2 N0 and n 2 N,

�˝k.0/
1W1W1 D

1

P �Q
kX
�D0
.�1/�

 
k

�

!h
.1 �Q1/

qCk�� � .1 � P1/qCk��
i
;

�˝0.n�1/
1W1W1 D 1;

�˝k.n�1/
1W1W1 D qn

k C qn

k

qn
�˝k�1.n�1/
1W1W1 � 1 � P

P �Q �˝k.n�2/
1W1W1 C 1 �Q

P �QQ
k
1

�
:

Logistic and Related Distributions

Balakrishnan et al. [151] established recurrence relations for the logistic distribution
with cumulative distribution function F.t/ D 1=.1Ce�t /, t 2 R. First, a recurrence
relation for the first progressively Type-II censored order statistic, the minimum, is
given by

�˝kC1R�
1WmWnC1 D �˝kC1R1WmWn �k C 1

n
�˝kR
1WmWn;

where R� is a censoring scheme with sample size n C 1 (see Shah [795, 796]
and Balakrishnan and Sultan [126]). Notice that the minimum is independent of
the progressive censoring procedure. Denoting the censoring scheme by R D
.R1; : : : ; Rm/, Balakrishnan et al. [151] presented the following relations for
progressively Type-II censored order statistics. Let �j .n/ D n �Pj�1

kD1.Rk C 1/,
1 � j � m, and A.n;m � 1/ DQm

iD1 �i .n/.
According to Remark 1.1.6, a progressively Type-II censored order statistic

XR
j WmWn (and thus its distribution) depends only on the first j � 1 censoring numbers

R1; : : : ; Rj�1. Therefore, the sample size and the first j � 1 censoring numbers
determine the distribution and, thus, the moments of the distribution completely.
Suppose we are interested in the moment �˝kC1Rj WmWn . Then, we have the identity
�˝kC1R
j WmWn D �˝kC1R�

j WmWn where R� 2 C m
m;n is an arbitrary censoring plan with

R�Bj�1 D .R1; : : : ; Rj�1/ [cf. (1.6)] and sample size n. For �˝kC1R�j WmWnC1 , the cen-
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soring scheme R� 2 Cm
m;nC1 has sample size nC 1, but R�Bj�1 D .R1; : : : ; Rj�1/

still holds. Then, we can write the recurrence relation presented in Balakrishnan
et al. [151, Theorem 2.2] as follows:

�˝kC1R�
j WmWnC1 D

A.nC 1; j � 1/
.Rj C 2/A.n; j � 1/

h
.Rj C 1/�˝kC1R�j WmWn �.k C 1/�˝kR�j WmWn

C �j .n/ �˝kC1R�j WmWn � A.n; j � 1/
A.nC 1; j � 1/ �

˝kC1R�
j WmWnC1

� �j�1.n/ �˝kC1R�j�1WmWn C
A.n; j � 1/

A.nC 1; j � 2/ �
˝kC1R�
j�1WmWnC1

i
:

Noticing that �˝kC1R�j WmWnC1 is present on both sides of the equation, we can rearrange
the equation and find the result

�˝kC1R�
j WmWnC1 D

A.nC 1; j � 1/
.Rj C 1/A.n; j � 1/

h
.Rj C 1/�˝kC1R�j WmWn �.k C 1/�˝kR�j WmWn

C �j .n/ �˝kC1R�j WmWn ��j�1.n/ �˝kC1R�j�1WmWn C
A.n; j � 1/

A.nC 1; j � 2/ �
˝kC1R�
j�1WmWnC1

i
:

Relations for product moments are also presented in Balakrishnan et al. [151].

Remark 7.3.6. Similar results for half-logistic distribution have been established
by Balakrishnan and Saleh [119] and Saran and Pande [770]. Log-logistic and
generalized half-logistic distributions are discussed in Balakrishnan and Saleh
[120] and Balakrishnan and Saleh [121], respectively.

Doubly Truncated Burr Distributions

Doubly truncated Burr distributions with cumulative distribution function

F.t/ D 1 �Q
P �Q �

1

P �QŒ1C 	 t
p���;

where �; p; 	 > 0 andQ < P determine the proportion of truncation on the left and
right, are considered in Saran and Pushkarna [771]. Relations for kth moments as
well as for product moments are presented. Moreover, it is remarked that the results
are valid for many particular cases including, e.g., Lomax, log-logistic, exponential,
Rayleigh, and generalized Pareto distributions. Generalized Pareto distributions
have also been considered by Mahmoud et al. [629].
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7.4 Moments for Symmetric Distributions

In the literature on usual order statistics, many results are available when the
baseline distribution is symmetric (see, for example, Arnold et al. [58] and
Balakrishnan and Sultan [126]). In this section, we present results which enable
us to compute the moments of progressively Type-II censored order statistics from
an arbitrary symmetric distribution when the moments of progressively Type-II
censored order statistics from the corresponding folded distribution are available.
Balakrishnan and Aggarwala [86] introduced the idea of progressive Type-II left
withdrawal scheme in order to arrive at this result (see p. 33). Here, we use another
approach which leads to simpler formulas.

For convenience, we assume that the underlying distribution is symmetric
about 0. Throughout this section, let f be the density function and F be the cumu-
lative distribution function of the population distribution. Then, the corresponding
folded distribution has density function g and cumulative distribution function G
defined by

g.t/ D 2f .t/; G.t/ D 2F.t/ � 1; t > 0: (7.27)

Our results are based on the following result of Govindarajulu [410] established for
usual order statistics.

Theorem 7.4.1 (Govindarajulu [410]). Let X1Wn; : : : ; XnWn be order statistics
from a population with cumulative distribution function F symmetric about 0
and Y1Wn; : : : ; YnWn be order statistics from the corresponding folded cumulative
distribution function G as given in (7.27). Then, with �˝kr Wn D EXk

r Wn and �˝kr Wn D
EY kr Wn, r 2 f1; : : : ; ng and k 2 N,

2n �˝kr Wn D
r�1X
`D0

 
n

`

!
�˝k
r�`Wn�`C.�1/k

nX
`Dr

 
n

`

!
�˝k
`�rC1W` : (7.28)

From (7.1), we know that moments of progressively Type-II censored order
statistics can be expressed in terms of moments of minima. Hence, we get the
identity

�˝k
r WmWn D

� rY
iD1

�i

� rX
jD1

aj;r

�j
EXk

1W�j :

Applying (7.28) to the kth moment of the minimum X1W�j , we arrive at

�˝k
r WmWn D

� rY
iD1

�i

� rX
jD1

aj;r

�j 2
�j

�
�˝k1W�j C.�1/k

�jX
`D1

 
�j

`

!
�˝k
`W`
�
: (7.29)
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This expression shows that we need the kth moments of both minima and maxima
of the folded distribution only.

A similar relation holds for product moments. Govindarajulu [410] established
the following relation for product moments of order statistics (1 � i < j � n):

2n�i;j Wn D
i�1X
`D0

 
n

`

!
�i�`;j�`Wn�`

�
j�1X
`Di

 
n

`

!
�`�iC1W`�j�`Wn�` C

nX
`Dj

 
n

`

!
�`�jC1;`�iC1W`: (7.30)

Exploiting (2.29) for the uniform distribution, we get for 1 � i < j � m and
0 < s < t < 1,

f UiWmWn;Uj WmWn.s; t/ D
� jY
pD1

�p

� iX
pD1

jX
kDiC1

ap;i a
.i/

k;j .1 � t/�k�1.1 � s/�p��k�1:

Notice that �p � �k C 1 for p < k. Then, expanding .1 � s/�p��k�1 DP�p��k�1
�D0 .�1/���p��k�1

�

�
s� and defining �pk D

�Qj
qD1 �q

�
ap;i a

.i/

k;j , we get the

identity

f UiWmWn;Uj WmWn.s; t/ D
iX

pD1

jX
kDiC1

�p��k�1X
�D0

�pk.�1/�
 
�p � �k � 1

�

!
s�.1� t/�k�1

D
iX

pD1

jX
kDiC1

�p��k�1X
�D0

.�1/� �pk

�k.�k C 1/

�
�p��k�1

�

�
�
�kC�C1

�

� f U�C1W�kC�C1;U�C2W�kC�C1 .s; t/

D
iX

pD1

jX
kDiC1

�p��kX
�D1

.�1/��1 �pk

�k.�k C 1/

�
�p��k�1
��1

�
�
�kC�
��1

� f U�W�kC�;U�C1W�kC� .s; t/:

Hence, we get the following relation for product moments of progressively Type-II
censored order statistics in terms of order statistics from the same distribution

�i;j WmWn D
iX

pD1

jX
kDiC1

�p��kX
�D1

.�1/��1 �pk

�k.�k C 1/

�
�p��k�1
��1

�
�
�kC�
��1

� E
�
X�W�kC�X�C1W�kC�

�
: (7.31)
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Applying the relation (7.30) to E
�
X�W�kC�X�C1W�kC�

�
, we arrive at the desired

representation. It should be noted that (7.30) simplifies because i D � D j � 1.
In this case, we have with n replaced by �k C �

2�kC���;�C1W�kC� D
��1X
`D0

 
�k C �
`

!
���`;�C1�`W�kC��` �

 
�k C �
�

!
�1W��1W�k

C
�kC�X
`D�C1

 
�k C �
`

!
�`��;`��C1W`: (7.32)

The relations (7.29) and (7.31) can be directly applied to calculate moments of
the standard Laplace distribution (for order statistics, see Govindarajulu [411] and
Kotz et al. [546, pp. 61–62]). Here, the folded distribution is a standard exponential
distribution. The identity (7.29) reads in this setting as, for k D 1,

�˝1
r WmWn D

� rY
iD1

�i

� rX
jD1

aj;r

�j 2
�j

� 1
�j
�

�jX
`D1

 
�j

`

!X̀
pD1

1

p

�
;

and for k D 2,

�˝2
r WmWn D

� rY
iD1

�i

� rX
jD1

aj;r

�j 2
�j

� 1
�2j
C

�jX
`D1

 
�j

`

!hX̀
pD1

1

p2
C
n X̀
pD1

1

p

o2i�
:

Hence, we have explicit formulas to calculate the means and variances of Laplace
progressively Type-II censored order statistics. Since the (product) moments of
exponential progressively Type-II censored order statistics are explicitly available
(see Theorem 7.2.1), we can simplify (7.32) and arrive at

2�kC���;�C1W�kC� D
��1X
`D0

 
�k C �
`

!h
�˝2
��`W�kC��`C

1

�k
�˝1
��`W�kC��`

i

�
 
�k C �
�

!
1

��k
C

�kC�X
`D�C1

 
�k C �
`

!h
�˝2
`��W`C

1

�
�˝1
`��W`

i
:

This enables us to calculate the covariances of Laplace progressively Type-II
censored order statistics. These formulas will be utilized later on (see Sect. 11.2.4)
in the derivation of best linear unbiased estimators.

Example 7.4.2. Assuming the censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/,
i.e., m D 10 and n D 20, the mean and the variance–covariance matrix of
progressively Type-II censored order statistics from a Laplace.0; 1/-distribution
are computed using the preceding formulas as (up to three decimals)
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EXR D .�2:905;�1:850;�1:332;�0:990;�0:703;
�0:478;�0:291;�0:126; 0:075; 0:290/0;

Cov.XR/ D

0
BBBBBBBBBBB@

1:596 0:569 0:322 0:215 0:150 0:111 0:085 0:069 0:057 0:052

0:569 0:595 0:339 0:226 0:158 0:117 0:090 0:073 0:061 0:055

0:322 0:339 0:344 0:230 0:161 0:119 0:092 0:074 0:062 0:056

0:215 0:226 0:230 0:232 0:162 0:120 0:093 0:075 0:062 0:056

0:150 0:158 0:161 0:162 0:169 0:125 0:097 0:079 0:066 0:059

0:111 0:117 0:119 0:120 0:125 0:130 0:101 0:082 0:068 0:062

0:085 0:090 0:092 0:093 0:097 0:101 0:105 0:085 0:072 0:065

0:069 0:073 0:074 0:075 0:079 0:082 0:085 0:092 0:077 0:071

0:057 0:061 0:062 0:062 0:066 0:068 0:072 0:077 0:100 0:092

0:052 0:055 0:056 0:056 0:059 0:062 0:065 0:071 0:092 0:128

1
CCCCCCCCCCCA

:

7.5 Bounds for Moments

7.5.1 Bounds Based on the Cauchy–Schwarz Inequality

Classical distribution-free upper bounds for means of order statistics have been
derived by Hartley and David [432], Gumbel [421], and Ludwig [620] by means
of the Cauchy–Schwarz inequality. Reviews and more details on this topic are given
in Arnold et al. [58, Sect. 5.4], Arnold and Balakrishnan [51, Chap. 3], and Rychlik
[764]. The upper bound (7.33) due to Balakrishnan et al. [129] extends these results
to means of progressively Type-II censored order statistics.

Theorem 7.5.1. Let Xr WmWn be a progressively Type-II censored order statistic
from a distribution function F with EX D 0, Var.X/ D 1 for X Ï F . Then,

EXr WmWn �
(

rY
iD1

�2i

rX
iD1

ai;rQr
jD1.�j C �i � 1/

� 1
) 1=2

D BCS: (7.33)

Proof. First, notice that
R 1
0 F
 .t/dt D EX D 0 by assumption. Then, by

introducing a constant c 2 R and by Theorem 7.1.1, the Cauchy–Schwarz inequality
yields the upper bound

EXr WmWn D
Z 1

0

F .u/
�
f UrWmWn .u/� c

�
du

�
Z 1

0

�
f UrWmWn .u/

�2
du� 2c C c2

� 1=2
:
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Obviously, the right-hand side attains its minimum for c D 1. Moreover, using
(2.28) and the Lagrangian interpolation formula for f 	 1, we find

Z 1

0

�
f UrWmWn .u/

�2
du D

rY
iD1

�2i

rX
iD1

rX
jD1

ai;r aj;r

Z 1

0

.1 � u/�iC�j�2du

D
rY
iD1

�2i

rX
iD1

ai;r

rX
jD1

aj;r

�i C �j � 1 D
rY
iD1

�2i

rX
iD1

ai;rQr
jD1.�i C �j � 1/

:

This proves the desired bound. ut
In the particular case R1 D : : : D Rr�1 D R, the upper bound for EXr WmWn

simplifies to (cf. Kamps [498, p. 184])

( Qr
iD1 �2iQ2r�2

iD0
�
2�r � 1C i.RC 1/

�
 
2.r � 1/
r � 1

!
� 1

) 1=2
:

In view of the bound (7.33), it is interesting to ask whether it can be attained.
Equality in (7.33) holds if and only if jF .u/j D d � jf UrWmWn .u/ � 1j, 0 < u < 1,
where d is specified by the equation

1 D
Z 1

0

�
F .u/

�2
du D d2

Z 1

0

�
f UrWmWn .u/� 1

�2
du D d2 � B2

CS:

Hence, jF .u/j D B�1CS � jf UrWmWn .u/� 1j. Noticing that

f UrWmWn .0/ D
(
0; r � 2
�1; r D 1 and that

f UrWmWn .1/ D

8
<̂
:̂
0; r � m � 1 or r D m; �m > 1
n�1Q
jD1

�j
�j�1 ; r D m; �m D 1 ;

we deduce from the monotonicity of F that the bound is attainable iff either r D 1
or r D m, �m D 1 (see also Theorem 2.7.5). If r D 1, then the density function
of U1WmWn is given by f U1WmWn .t/ D n.1 � t/n�1, which is a decreasing function.
Hence, the distribution function attaining the upper boundBCS D .n�1/=

p
2n � 1

is given by

F.x/ D 1 �
	
1

n
.1 � n � 1p

2n � 1x/

 1

n�1

; x 2
 
�p2n� 1;

p
2n� 1
n � 1

!
:
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For order statistics, this result was given by Hartley and David [432]. For r D m

and �m D 1, we find from Lemma 7.5.3 that ˚m.t/ D FUmWmWn.t/ � t is a convex
function. Hence, .f UmWmWn/0.t/ � 0 such that f UmWmWn is an increasing function on
.0; 1/. This proves that the upper bound is attained. The support of the respective

distribution function F is given by the interval

"
�BCS; BCS

 
m�1Q
jD1

�j
�j�1 � 1

!#
. For

r D m D n � 2 and order statistics, the explicit representation

F.x/ D � 1
n

�
1C n � 1p

2n � 1 x
�� 1

n�1 ; x 2
�
�
p
2n � 1
n� 1 ;

p
2n � 1

�

results (cf. Arnold et al. [58, p. 121]).
In the proof of Theorem 7.5.1, an expression for the integrated square of

the density function of some progressively Type-II censored order statistic was
found. This representation is a special case of formula (7.34). Let UR1

r1Wm1Wn1 and
U

R2
r2Wm2Wn2 be progressively Type-II censored order statistics based on the standard

uniform distribution, and let �i.Rj / and a
Rj

i;rj
, j D 1; 2, denote the corresponding

parameters. Then,

Z 1

0

f U
R1
r1Wm1Wn1 .u/f U

R2
r2Wm2Wn2 .u/du

D
r1Y
iD1

�i .R1/

r2Y
iD1

�i .R2/

r1X
iD1

a
R1
i;r1

� r2Y
jD1

�
�j .R2/C �i.R1/� 1

���1
: (7.34)

7.5.2 Bound Based on the Method of Greatest Convex
Minorant

Another concept to derive upper bounds, called the method of the greatest convex
minorant, is due to Moriguti [657]. We apply this procedure subsequently in order
to obtain bounds for means of order statistics. For related results for usual order
statistics, we refer to David and Nagaraja [327, pp. 65–68], Balakrishnan [82],
and Huang [459]. A comprehensive treatment of the method as well as many
applications can be found in the book by Rychlik [764].

Let F be the underlying cumulative distribution function, � its expectation, �2

its variance,

'r.z/ D f UrWmWn .z/ � 1; and ˚r.z/ D
Z z

0

'r .t/ dt D FUrWmWn .z/ � z; z 2 Œ0; 1�:
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Hence, EXr WmWn � � D
R 1
0
x'r.F.x// dF.x/ and ˚r fulfills the assumptions of

Theorem 2 of Moriguti [657]. This yields the upper bound

EXr WmWn � �
�

�
Z 1

0

'
r
.t/2 dt

� 1=2
; (7.35)

where '
r

is the right-hand derivative of the greatest convex minorant ˚r of ˚r on
the interval .0; 1/. Subsequently, we present some preliminary results that are used
to compute ˚r . First, we prove the following lemma.

Lemma 7.5.2 (Balakrishnan et al. [129]). Let r � 2. The polynomial hr
defined by

hr.t/ D �
rX
iD1

ai;r
�i � 1
�i

.1 � t/�i D
	 rY
jD1

1

�j


h
F
UrWmWn

.t/ � .1 � t/f UrWmWn .t/
i

has a unique root in the interval .0; 1/ if either r � m�1 or (r D m and �m > 1).
For �m D 1, hm.t/ is positive for every t 2 .0; 1/.
Proof. Since �1 > � � � > �m � 1, �r D 1 is possible only for r D m. For �m D 1,
the function hm simplifies for t 2 .0; 1/ to

hm.t/ D �
m�1X
iD1

ai;m�1
�i � 1

.�m � �i/�i .1� t/
�i C am;m �m � 1

�m
.1 � t/�m

D
m�1X
iD1

ai;m�1
�i

.1 � t/�i D
m�2Y
jD1

��1j .1 � F Um�1WmWn.t//:

Since FUm�1WmWn is strictly increasing on .0; 1/ with F Um�1WmWn.0/ D 0 and
FUm�1WmWn .1/ D 1, the function hm is positive for t 2 .0; 1/ and obviously
decreasing.

Suppose now that either r < m or r D m; �m > 1. Let gr.t/ D .1 � t/��r hr .t/,
t 2 .0; 1/. Then, gr.0/ D �Pr

iD1 ai;r
�i�1
�i
DPr

iD1
ai;r
�i
�Pr

iD1 ai;r D
Qr
jD1 ��1j >

0 and gr.1/ D �ar;r �r�1�r
< 0. Hence, gr has at least one root t0 in .0; 1/.

Now, it is proved by induction on r that gr has only one root in .0; 1/. For r D 2,
the assertion is obvious since

g2.t/ D �a1;2 �1 � 1
�1

.1 � t/�1��2 � a2;2 �2 � 1
�2

;

t0 D 1 �
	
�1.�2 � 1/
�2.�1 � 1/


1=.�1��2/
:

(7.36)
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Let m � r � 3 and suppose that gr�1 has only one root in .0; 1/. Since g0r .t/ D
�.1 � t/Rr�1gr�1.t/, we conclude that gr has at most one local extreme in .0; 1/.
Since gr has at least one root in .0; 1/ and gr.0/ > 0 > gr .1/, it has at most one
root. This proves the assertion. ut

Before focusing on the greatest convex minorant, we prove another auxil-
iary result. Both lemmas enable us to calculate the greatest convex minorant
(cf. Theorem 7.5.5).

Lemma 7.5.3. Let 2 � r � m.

(i) If r D m and �m D 1, then ˚m is convex on Œ0; 1�;
(ii) Let r < m or �m > 1, then there exists a number 
r such that ˚r is convex

on the interval Œ0; 
r � and concave on the interval Œ
r ; 1�.

Proof. Suppose r D m and that �m D 1. Then, it is easy to show that ˚ 00m.t/ D
.1 � t/�1f Um�1WmWn .t/ � 0. This proves the convexity of ˚m on the interval Œ0; 1�.

According to Corollary 2.7.4, FUrWmWn is unimodal (see also Theorem 2.7.5). This
yields the desired result. ut
Remark 7.5.4. The identity

Pr
iD1 ai;r �i D 0 utilized in the preceding proof

can be generalized by applying the same argument to v.x/ D xp, x 2 Œ0; 1�,
1 � p � r � 1. This yields

rX
iD1

ai;r�
p�1
i D 0; 1 � p � r � 1:

Theorem 7.5.5 (Balakrishnan et al. [129]). If �m D 1, then ˚m D ˚m.
Otherwise, the greatest convex minorant ˚r of ˚r .r � 2/ on the interval .0; 1/
is given by

˚r.z/ D
(
˚r.z/; z 2 Œ0; ��;
˚r.�/

1�z
1�� ; z 2 Œ�; 1�; (7.37)

where � is the unique solution of the polynomial equation

hr.t/ D �
rX
iD1

ai;r
�i � 1
�i

.1 � t/�i D 0; t 2 .0; 1/: (7.38)
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The preceding results yield the upper bound

EXr WmWn �

B2

CS

C
rY

jD1
�2j

rX
iD1

rX
jD1

ai;raj;r

	
.�i � 1/.�j � 1/
�i�j .�i C �j � 1/



.1 � �/�iC�j�1

� 1=2
; (7.39)

where BCS is the upper bound in (7.33).

Proof. The first assertion follows from Lemma 7.5.3, since ˚m is convex on the
interval .0; 1/. Suppose r � m � 1 or that r D m and �m > 1. Lemma 7.5.3 yields
that˚r is convex on an interval Œ0; 
r � and concave on Œ
r ; 1�, 2 � r � m. Following
the ideas of Moriguti [657] (see also David and Nagaraja [327, p. 65/68]), we know
that the greatest convex minorant˚r is initially equal to ˚r up to a point � and then
continues as a linear function. Hence, ˚r has the representation (7.37). The point �
is the solution of the equation ˚ 0r .�/ D �˚r.�/.1 � �/ or, equivalently, hr.�/ D 0.
Lemma 7.5.2 reveals that hr has a unique root in .0; 1/. This proves the second
assertion.

The bound results from the right-hand derivative of the greatest convex minorant
˚r of ˚r on the interval .0; 1/, i.e.,

'
r
.z/ D

(
'r.z/; z 2 Œ0; ��;
�˚r .�/

1�� ; z 2 Œ�; 1�;
the bound given in (7.35) and some lengthy calculations (see Balakrishnan et al.
[129]). ut
Remark 7.5.6.

(i) For r D 1, ˚1 is a concave function (see Theorem 2.7.5). Thus, Moriguti’s
method does not lead to an improved bound;

(ii) For order statistics, (7.38) simplifies to equation (10) of Balakrishnan [82];
(iii) For r > 2, the solution � of (7.38) has to be computed numerically. For

r D 2, the equation can be solved explicitly as given in (7.36).

7.5.3 Further Bounds

Further bounds can be established using different distance measures. For instance,
Raqab [742] considered the so-called p-norm bounds (see also Cramer et al. [309]).
Choosing

�p D .EjX � �jp/1=p D
	Z 1

0

jF .x/ � �jpdx

1=p

; 1 � p <1;
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bounds similar to (7.39) can be obtained in this scale unit using the method of
greatest convex minorant. Results for order statistics are provided by Arnold [50]
and Rychlik [763].

Many bounds for moments have been established in terms of generalized order
statistics. However, most of them are only valid for m-generalized order statistics
and, thus, not applicable to progressively Type-II censored order statistics with
arbitrary censoring scheme R. Kałuszka and Okolewski [492] obtained upper
bounds in terms of Tsallis’ entropy defined as

Tp.X/ D E
�Xp �X
p � 1

�
;

where p > 0, p ¤ 1 is denoted as entropy index (see Tsallis [856]). They found the
following bounds.

Theorem 7.5.7. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a cumulative distribution function F with F.0/ D 0 and mean
� 2 R. Moreover, suppose EXp_1 <1 and let c > 0. Then, for 1 � r � m:

(i) For p > 1,

EXr WmWn � 1

p

	
cp�1Tp.X/C cp�1 � p

p � 1 �C 1

c

r.p/



;

where 
r.p/ D
R 1
0 Œ1 C .p � 1/'

r
.t/�p=.p�1/dt and '

r
is the right-hand

derivative of the greatest convex minorant ˚r of the cumulative distribution
function ˚r D FUrWmWn on the interval .0; 1/. The bound is attained iff

F .t/ D 1

c
Œ1C .p � 1/'

r
.t/�1=.p�1/; t 2 .0; 1/I

(ii) For 0 < p < 1,

EXr WmWn � � 1
p

	
cp�1Tp.X/C cp�1 � p

p � 1 �C 1

c
r .p/



;

where r.p/ D �
R 1
0
Œ1 � .p � 1/'r.t/�p=.p�1/dt and 'r is the right-hand

derivative of the smallest concave majorant ˚r of the cumulative distribution
function ˚r D FUrWmWn on the interval .0; 1/.The bound is attained iff

F .t/ D 1

c
Œ1 � .p � 1/'r.t/�1=.p�1/; t 2 .0; 1/:

Rychlik [765] has discussed bounds on moments of generalized L-statistics of
generalized order statistics with a special focus on L-statistics of progressively
Type-II censored order statistics, i.e.,
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L.a/ D
mX
jD1

ajXj WmWn:

He assumed that the cumulative distribution functionF has a bounded support Œ˛; ˇ�
and obtained the following result.

Theorem 7.5.8. Let X1WmWn; : : : ; XmWmWn be progressively Type-II censored order
statistics from a cumulative distribution function F with bounded support Œ˛; ˇ�
and mean � 2 Œ˛; ˇ�. Then,

E

mX
jD1

aj
Xj WmWn � �
ˇ � ˛ �

mX
jD1

aj
ˇ � �
ˇ � ˛ � F a

�ˇ � �
ˇ � ˛

�
;

where F a denotes the greatest convex minorant of Fa DPm
jD1 aj F Xj WmWn .

Conditions for a discrete distribution with at most three supporting points
attaining the bound can be found in Rychlik [765]. Moreover, he showed that the
upper bound can be written as

˛�
mX
jD1

aj � F a.˛
�/;

where 0 � ˛� � 1 satisfies the equation f
a
.˛/ D Pm

jD1 aj and f
a

is the right-
hand derivative of F a.

Finally, Rychlik [765] pointed out that the results simplify for single progres-
sively Type-II censored order statistics as well as for differences of progressively
Type-II censored order statistics. For instance, he showed that, for r � 2 and �r > 1,
the upper bound on the expectation of Xr WmWn can be written as

E
Xr WmWn � �
ˇ � ˛ �

(
��˛
ˇ�˛ Œfr WmWn.	/ � 1�; ˛ � � � ˇ � 	.ˇ � ˛/
ˇ��
ˇ�˛ Fr WmWn

�
ˇ��
ˇ�˛

�
; ˇ � 	.ˇ � ˛/ � � � ˇ ;

where 0 � 	 � 1 is the unique solution of the equation .1 � t/fr WmWn.t/ D 1 �
Fr WmWn.t/. The results for differences are based on the shapes of density functions of
uniform progressively Type-II censored order statistics (see Theorem 2.7.5).

Further approaches in the derivation of bounds deal with restricted families
of distributions. Cramer et al. [313] considered nonnegative distributions and
established the bounds

� � EXr WmWn �
	 r�1Y
jD1

�j

�j � 1


�
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provided �r D 1. For �r > 1, the bound is given by

0 � EXr WmWn � f UrWmWn .�/�;

where � is the solution of (7.38). The bounds are sharp in the sense that they
are attained in the limit by an appropriately chosen sequence of distributions
(see Cramer et al. [313]). The respective results for order statistics are given in
Papadatos [702].

Marohn [639] obtained an upper bound for the survival function of a progres-
sively Type-II censored order statistic. In particular, for 1 � r � m � 1 and
t � F .r=n/, he got the expression

P.Xr WmWn � t/ �

8̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂:

exp
n
� n�rC1

4.n��rC1/ Œ� logF .t/C log.1 � r=n/�2
o
;

0 � � logF .t/C log.1 � r=n/ � n��rC1
n�rC1�r

exp
n
� �r

4
Œ� logF .t/C log.1 � r=n/�

o
;

� logF .t/C log.1 � r=n/ � n��rC1
n�rC1�r

:

7.6 First-Order Approximations to Moments

Explicit expressions for moments can only be established for some distributions
(see Sect. 7.2). For the remaining ones, numerical computations or approximations
have to be used. Subsequently, we illustrate an approximation by a first-order Taylor
series approximation which can also be found in Balakrishnan and Aggarwala [86].
Further details on this approach are provided by David and Nagaraja [327, Sect. 4.6].
Consider uniform progressively Type-II censored order statistics U1WmWn; : : : ; UmWmWn.
Then, we know from representation (2.16) that

Ur WmWn
dD 1 �

rY
jD1

U
1=�j
j ; 1 � r � m;

whereU1; : : : ; Um are IID standard uniform random variables. From Theorem 7.2.3,
we find .1 � r � s � m)

EUr WmWn D ˘r D 1 �
rY

jD1

�j

1C �j D 1 � br ;

Var.Ur WmWn/ D
rY

jD1

�j

2C �j �
rY

jD1

�2j

.1C �j /2 D .ar � br/br ;
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Cov.Ur WmWn; UsWmWn/ D
� sY
jDrC1

�j

1C �j
�

Var.Xr WmWn/ D .ar � br/bs;

where a� D d�
e�
; b� D c�

d�
and

c� D
�Y

jD1
�j ; d� D

�Y
jD1

.�j C 1/; e� D
�Y

jD1
.�j C 2/; 1 � � � m

[cf. (7.12)]. Suppose X1WmWn; : : :, XmWmWn are progressively Type-II censored order
statistics from an arbitrary cumulative distribution function F , where F is strictly
increasing, absolutely continuous, and differentiable and its density function f is
positive on the support of F . Moreover, we assume that the quantile function F is
twice differentiable and that it can be expanded in a Taylor series of the second-order
at the point˘r D EUr WmWn, i.e.,

F .t/ D F .˘r/C .F /0.˘r/.t �˘r/C 1

2
.F /0.�/.t �˘r/

2

with � 2 .0; 1/. Considering the quantile representation given in Theorem 2.3.6

Xr WmWn
dD F .Ur WmWn/ ; 1 � r � m;

and ignoring the remainder in the Taylor expansion, we find the approximations

EXr WmWn 
 F .˘r/;

Var.Xr WmWn/ 
 1

f 2.F .˘r//
.ar � br/br ;

Cov.Xr WmWn; XsWmWn/ 
 1

f .F .˘r//f .F .˘s//
.ar � br/bs;

where we have used the fact that .F /0.t/ D 1
f .F .t//

. This yields an approxima-
tion of the covariance matrix

˙XR 
 �˙UR�;

with a diagonal matrix ��1 D diag.f .F .˘1//; : : : ; f .F
 .˘m///.

For order statistics, this kind of expansion was given by David and Johnson [324].
They also showed that the Taylor series terms beyond the first order are of order 1

n
.

A detailed account on approximating moments of progressively Type-II censored
order statistics has been provided by Balasooriya and Saw [162].



Chapter 8
Simulation of Progressively Censored
Order Statistics

Simulation of order statistics has been addressed by many authors (see, for instance,
Schucany [787], Lurie and Hartley [621], Lurie and Mason [622], Ramberg and
Tadikamalla [737], Horn and Schlipf [450], and Devroye [337]), who discussed the
efficient generation of partial or complete sets of order statistics. Reviews on that
topic are provided by Devroye [337, Chap. V], Arnold et al. [58], and Tadikamalla
and Balakrishnan [831]. One general problem in generating order statistics from
a cumulative distribution function F is the sorting process which may be time
consuming. Thus, several approaches using quantile functions and generation of
uniform or exponential order statistics have been employed, and various efficient
algorithms were developed to enable fast generation of order statistics from a given
distribution.

In this regard, we present here some algorithms to generate progressively
censored order statistics. These procedures are used to evaluate the performance
of many statistical procedures presented in Parts II and III of this book.

8.1 Generation of Progressively Type-II Censored Order
Statistics

The first paper dealing with the generation of progressively Type-II censored
order statistics is the one by Balakrishnan and Sandhu [122] who introduced
Algorithm 8.1.3 (see also Balakrishnan and Aggarwala [86, Chap. 3]). Maybe,
they proposed the most popular method to generate progressively Type-II censored
order statistics from an IID sequence of random variables. However, the obvious
approach to generate progressively Type-II censored order statistics is to mimic the
Generation Procedure 1.1.3. Starting point of the procedure is a sample of random
variables X1; : : : ; Xn. Notice that Algorithm 8.1.1 works for any distributional

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
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194 8 Simulation of Progressively Censored Order Statistics

assumption imposed on the sample X1; : : : ; Xn. In particular, the approach works
for nonidentically distributed random variables as well as for dependent random
variables.

Let R 2 Cm
m;n be a censoring scheme and X1; : : : ; Xn be a sample of random

variables.

Algorithm 8.1.1.

� Compute the order statistics X1Wn; : : : ; XnWn for the sample X1; : : : ; Xn;

� Let N1 D f1; : : : ; ng;
� For i from 1 to m do

� Let ki D minNi and put XR
i WmWn D Xki Wn;

� Choose randomly a without-replacement sample Ri � Ni n fki g with
jRi j D Ri ;

� If i < m, put NiC1 D Ni n .fkig [Ri / and go to �, or else stop.

The preceding simulation algorithm starts with the generation of order statistics
in step �. This, for instance, may be handled by an efficient algorithm first (see
the references at the beginning of this chapter). In any case, it is important that
the complete sample of order statistics X1Wn; : : : ; XnWn must be available. Since n in
comparison to m is usually large, this method generally will not be very efficient
timewise. Alternatively, one may use the quantile representation in Theorem 2.1.1
provided that the generation of uniform order statistics with the same dependence
structure is simple. This approach will be especially of interest when the calculation
of the quantile function F is very time consuming or if n is small.

For an IID sample, the situation becomes simpler. Then, progressively Type-II
censored order statistics can be generated directly from uniform random variables
without employing order statistics and sorting algorithms. The method works by
using the quantile representation (2.14) in Theorem 2.3.6, i.e.,

Xj WmWn
dD F 

�
1 �

jY
kD1

U
1=�k
k

�
dD F .Uj WmWn/;

where U1; : : : ; Um are IID standard uniform random variables. Thus, the resulting
method is as follows: first generate uniform random variables, multiply them
according to (2.14), and, finally, apply the quantile function F . This yields
Algorithm 8.1.2.

Algorithm 8.1.2.

� Generate m IID uniform random variables U1; : : : ; Um;

� Compute Bk D U 1=�k , k D 1; : : : ; m;

� Let V0 D 1; calculate Vk D BkVk�1, k D 1; : : : ; m;

� Let Ur WmWn D 1 � Vr , r D 1; : : : ; m;

� Let Xr WmWn D F .Ur WmWn/, r D 1; : : : ; m.
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0.0452946913 0.1333139682 0.3164322400 0.3265153709 0.3725533981
0.3822451715 0.4346257333 0.4348511608 0.5176778031 0.5515798663

Table 8.1 Simulation of m D 10 uniform progressively Type-II censored order statistics with
censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/

0.0463525634 0.1430784995 0.3804294909 0.3952901058 0.4660967082
0.4816636179 0.5702673482 0.5706661503 0.7291429300 0.8020246876

Table 8.2 Simulation of m D 10 standard exponential progressively Type-II censored order
statistics with censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/

This approach relies on a simple computation of the quantile function F . It is
especially useful when F has an explicit representation. Further, it is clear that it
is sufficient to generate r uniform random variables only when only r progressively
Type-II censored order statistics are required.

Algorithm 8.1.2 has been introduced by Balakrishnan and Sandhu [122] in a
slightly different way. They used the fact that, for a uniform random variable U , the
random variable U 1=t , t > 0, has a Beta.t; 1/-distribution. Their algorithm is given
in Algorithm 8.1.3.

Algorithm 8.1.3.

� Generate m independent beta-distributed random variables B1; : : : ; Bm with
Bj � Beta.�j ; 1/;

� Let V0 D 1; calculate Vk D BkVk�1, k D 1; : : : ; m;

� Let Ur WmWn D 1 � Vr , r D 1; : : : ; m;

� Let Xr WmWn D F .Ur WmWn/, r D 1; : : : ; m.

Example 8.1.4 (Simulated uniform progressively Type-II censored order
statistics). Using Algorithm 8.1.2, we have generated a sample of m D 10

uniform progressively Type-II censored order statistics with censoring scheme
R D .2; 0�2; 2; 0�3; 2; 0; 4/ from a sample of size n D 20 (see Table 8.1).
This particular censoring scheme was applied in the simulation of progressively
Type-II censored order statistics from a Laplace distribution in Balakrishnan and
Aggarwala [86, p. 133].

Using Step � of Algorithm 8.1.2, we apply the quantile transformation to
generate a random sample of progressively Type-II censored order statistics from
several other distributions.

Example 8.1.5 (Simulated nonuniform progressively Type-II censored
order statistics). Using the simulated uniform progressively Type-II censored
order statistics in Example 8.1.4, we apply the quantile transform to get the
following simulated data:

(i) Standard exponential data: F .t/ D � log.1�t/, t 2 .0; 1/ (see Table 8.2).
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�2.401418263 �1.321901089 �0.4574989714 �0.4261310730
�0.2942277203 �0.2685458855 �0.1401228209 �0.1396042850

0.03599574918 0.1088775075

Table 8.3 Simulation ofm D 10 standard Laplace progressively Type-II censored order statistics
with censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/

12.99290868 18.39049456 22.71250514 22.86934464 23.52886140
23.65727057 24.29938590 24.30197858 25.17997875 25.54438754

Table 8.4 Simulation of m D 10 Laplace progressively Type-II censored order statistics with
� D 25 and # D 5 and with censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/

(ii) Standard Laplace data: F .t/ D
(
� log.2t/; 0 < t < 1=2

� log.2.1� t//; 1=2 � t < 1 (see

Table 8.3).
(iii) Laplace data with � D 25 and # D 5 (see Table 8.4).

Alternatively, one can simulate progressively Type-II censored data by using
independent standard exponential random variablesZ1; : : : ; Zm.

Algorithm 8.1.6.

� Generate m independent standard exponential random variables Z1; : : : ; Zm;

� Calculate Yk D 1
�k
Zk , k D 1; : : : ; m;

� Let Y0 WD 0; calculate ZkWmWn D Yk CZk�1WmWn, k D 1; : : : ; m;

� Let Xr WmWn D F .1 � expf�Zr WmWng/, r D 1; : : : ; m.

A disadvantage of Algorithms 8.1.2, 8.1.3, and 8.1.6 is that in order to simulate
a single uniform/exponential progressively Type-II censored order statistic one has
to compute all forerunners. In some exceptional cases, this can be simplified by
simulating beta variates (as is possible for order statistics). This comment applies to
progressively Type-II censored order statistics with equi-balanced censoring scheme
R D .R�m/. Moreover, it is possible for the first r progressively Type-II censored
order statistics if the corresponding censoring numbers coincide (in fact, this means
that the right truncated censoring scheme is equi-balanced). In this case, one has to
generate a beta variable which can be done efficiently using well-known procedures
(see Devroye [337, Chap. IX.4]).

8.1.1 Generation of General Progressively Type-II Censored
Order Statistics

General uniform progressively Type-II censored order statistics U
RCr

rC1WmWn; : : : ,
U

RCr
mWmWn can be interpreted as a left censored sample of uniform progressively

Type-II censored order statistics UR
rC1WmWn; : : : , UR

mWmWn with censoring scheme
R D .0�r ; RrC1; : : : ; Rm/ 2 Cm

m;n [see (1.7)]. Hence, the first general uniform
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progressively Type-II censored order statistic satisfies the distributional identity

U
RCr

rC1WmWn
dD UrC1Wn, where UrC1Wn � Beta.r C 1; n � r/. This yields the following

method to simulate a sample of general progressively Type-II censored order
statistics.

Algorithm 8.1.7.

� Generate a Beta.n�r; rC1/-distributed random variable BrC1 and m � r � 1
independent standard uniform random variables UrC2; : : : ; Um;

� Compute Bk D U 1=�k , k D r C 2; : : : ; m;

� Let VrC1 D BrC1; calculate Vk D BkVk�1, k D r C 2; : : : ; m;

� Let URCr

j WmWn D 1 � Vj , j D r C 1; : : : ; m;

� Let XRCr

j WmWn D F .URCr

j WmWn/, j D r C 1; : : : ; m.

8.1.2 Generation of Progressively Type-II Censored Order
Statistics from a One-Step Censoring Plan

Simulation of progressively Type-II censored order statistics from a one-step-
censoring plan can be carried out along the following lines by using (2.15).

Algorithm 8.1.8. Suppose that the one-step censoring plan Ok is given, 1 �
k � m.

� Generate uniform order statistics U1Wn; : : : ; UkWn;

� Generate independent uniform order statistics eU 1Wm�k; : : : ;eUm�kWm�k;

� Define Ur WmWn D Ur Wn, r D 1; : : : ; k;

� Define Ur WmWn D 1 � .1 � UkWn/ � eUm�rC1Wm�k, r D k C 1; : : : ; m;

� Define Xr WmWn D F .Ur WmWn/, r D 1; : : : ; m.

Algorithm 8.1.8 shows that progressively Type-II censored order statistics from
a one-step censoring plan Ok can be generated from two independent samples of
order statistics drawn from a uniform population. In particular, this shows that, in
this scenario, single progressively Type-II censored order statistics can be simulated
from at most two independent beta variables.

8.1.3 Simulation of Progressively Hybrid Censored Data

Using the simulation procedures for progressively Type-II censored samples pre-
sented above, progressively hybrid censored data may be simulated. For instance,
Type-I progressive hybrid censored data with threshold T may be obtained by
simulating progressively Type-II censored order statistics and using the relation
X

(I)
j D min.Xj WmWn; T /, 1 � j � m [see (5.1)].
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For Type-II progressive hybrid censored data, the sample

X1WmCRmWn; : : : ; XmWmCRmWn; XmC1WmCRmWn; : : : ; XmCRmWmCRmWn

[see (5.17)] is important. However, one generates first a progressively Type-II
censored sample X1WmWn; : : : ; XmWmWn. If XmWmWn exceeds the threshold T , then we
are done and X1WmWn; : : : ; XmWmWn yields the desired sample. If T > XmWmWn, the
order statistics of the remaining Rm observations X�j WRm D XmCj WmCRmWn, 1 �
j � m, are added to the sample subject to the constraint XmCj WmCRmWn � T ,
1 � j � Rm. Notice that this approach assumes that the random lifetimes exceeding
XmWmWn are available. Therefore, this simulation can be done using Algorithm 8.1.1.
Alternatively, one can also use a modified version of Algorithm 8.1.2.

Algorithm 8.1.9.

� Generate m independent standard uniform random variables U1; : : : ; Um;

� Compute Bk D U 1=�k , k D 1; : : : ; m;

� Let V0 D 1; calculate Vk D BkVk�1, k D 1; : : : ; m;

� Let Ur WmWn D 1 � Vr , r D 1; : : : ; m;

� If UmWmWn > F.T /, then X
(II)
r D F .Ur WmWn/, r D 1; : : : ; m, and stop the

algorithm;
else ` D mC 1 and go to �;

� While V`�1 > 1 � F.T / and ` � Rm Cm do

� generate a uniform random variable U`,

� define V` D V`�1U 1=.Rm�`CmC1/
` ,

� ` WD `C 1;

� Let X
(II)
j D F .1 � Vj /, j D 1; : : : ; `.

8.2 Progressively Type-I Censored Data

Progressively Type-I censored order statistics can be simulated following the
construction presented in Procedure 1.1.7. Suppose the initially planned censoring
scheme is given by R0 D .R01; : : : ; R

0
k�1/, and let T1 < � � � < Tk be ordered real

numbers, T0 D �1; TkC1 D 1.

Algorithm 8.2.1 (Simulation of progressively Type-I censored order
statistics).

� Simulate a sample X1; : : : ; Xn;

� Calculate the order statistics X1Wn � � � � � XnWn;

� Define Pj D f˛jTj�1 � X˛Wn.!/ < Tj g, 1 � j � k C 1;

� Let N1 D f1; : : : ; ng; ` D 0;
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� Increase ` by 1, and let Q` D P` \N` D f�`;1; : : : ; �`;s`g with �`;1 < � � � <
�`;s` ;

� If jN` \SkC1
˛D`C1 P˛j > R0` , then

choose randomly a without-replacement sample R` � N` \SkC1
˛D`C1 P˛ with

jR`j D R0` .

else

let R` D jN` \ SkC1
˛D`C1 P˛ j, R˛ D 0, ˛ D ` C 1; : : : ; k, put Q˛ D ;, ˛ D

`; : : : ; k, and go to �;

� Put N`C1 D N` n .R` [ P`/ and go to �;

�M DSk
`D1Q`; If m D jMj > 0, then

.X
R;T
j WmWn/jD1;:::;m D .Xj Wn/j2M:

Notice that, as in the case of Algorithm 8.1.1 for progressively Type-II censored
order statistics, the original sample X1; : : : ; Xn may exhibit any distributional
assumption as well as any dependence structure. In the IID case, one can alterna-
tively start with uniform random variables and use a quantile transformation at the
end of the simulation. In this case, the threshold Tj has to be replaced by F.Tj /,
j D 1; : : : ; k.

8.3 Progressively Type-I Interval Censored Data

Extending an algorithm of Kemp and Kemp [514], Aggarwala [11] proposed a
simulation algorithm for progressively Type-I interval censored data D1; : : : ;Dk .
Using the notation given in Fig. 1.8, Algorithm 8.3.1 can be used to generate these
data. The construction is based on the following distributional results (see the
conditional probability mass function in (4.9) and the derivations in Sect. 4.2):

D1 � bin.n; F.T1//;

and, for 2 � j � k,

Dj jDj�1; : : : ;D1;Rj�1; : : : ; R1 � bin
�
n �

j�1X
iD1
.Dj CRj /; pj

�
;

where pj D F.Tj /�F.Tj�1/
1�F.Tj�1/ .
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Algorithm 8.3.1. Let R0 D .R01; : : : ; R
0
k�1/ be the initially planned censoring

scheme.

� Let j D 0, x D 0, r D 0;

� next j ;

� Generate a binomial random variable Dj � bin.n � x � r; pj /;
� Determine the censoring number Rj D minfR0j ; n � x � r �Dj g;
� Let x D x CDj , r D r CRj ;

� Go to �.



Chapter 9
Information Measures

9.1 Fisher Information in Progressively Type-II
Censored Samples

Fisher information in order statistics and, more generally, in ordered data has been
considered by many authors (see, e.g., Park [704, 705], Zheng and Gastwirth [942],
Nagaraja and Abo-Eleneen [668], Park and Zheng [709], Wang and He [887],
Zheng and Park [944], and Burkschat and Cramer [232]). A review has recently
been provided by Zheng et al. [945]. Results on progressively Type-II censored
samples will be presented in the following sections. From the definition of Fisher
information and the joint density function of a progressively Type-II censored
sample XR � F XR

	 , the Fisher information about the parameter 	 can be written as

I .XRI 	/ D
mX
iD1

E

�
� @

2

@	2
logf	.Xi WmWn/ �Ri @

2

@	2
log.1 � F	.Xi WmWn//

�

provided that all derivatives as well as the expected values exist. This formula
may be used for the computation of Fisher information, but it turns out to be not
so efficient in general. Therefore, we present some alternative, more convenient
representations.

9.1.1 Hazard Rate Representation of Fisher Information

Under some regularity conditions, the Fisher information about a single parameter
	 in a progressively Type-II censored sample XR is given by

I .XRI 	/ D E
�
� @2

@	2
logf R

	 .X
R/

�
;
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where f R
	 denotes the density function of XR (see, for example, Lehmann and

Casella [582]). The expected Fisher information in a progressively Type-II censored
data has been considered in Zheng and Park [943] who obtained an expression of
the Fisher information in terms of the hazard rate function which is similar to a
representation for uncensored data established by Efron and Johnstone [348]. More
information as well as details on this representation and regularity conditions are
provided by Burkschat and Cramer [232]. Throughout this chapter, let fj WmWnI	 ,
1 � j � m, denote the marginal densities of progressively Type-II censored order
statistics based on f	 (in the multiparameter case, we shall write � D .	1; : : : ; 	p/

instead of 	).

Theorem 9.1.1 (Zheng and Park [943]). Under some regularity conditions,
the Fisher information about a single parameter 	 in XR is given by

I .XRI 	/ D
Z 1
�1


@

@	
log�	.x/

� 2 mX
jD1

fj WmWnI	.x/ dx; (9.1)

where �	 D f	=.1 � F	/ denotes the hazard rate of the sample cumulative
distribution function F	 .

Proof. The proof is based on the Markov property of progressively Type-II censored
order statistics (see Sect. 2.5.1). In particular, the factorization of the density
function in (2.36) yields the decomposition

I .XRI 	/ D
mX
rD1

I .Xr WmWnjXr�1WmWnI 	/;

where I .Xr WmWnjXr�1WmWnI 	/ is the expected Fisher information about 	 in Xr WmWn,
given Xr�1WmWn, 2 � r � m, and I .X1WmWnjX0WmWnI 	/ D I .X1WmWnI 	/. Park [705]
has established the identity

I .X1WmWnI 	/ D
Z 1
�1


@

@	
log�	.x/

� 2
f1WmWnI	 .x/ dx:

The distribution ofXr WmWn, givenXr�1WmWn D s, is that of a minimum from a random
sample of size �r with truncated density function f	=.1 � F	.s//. Moreover, the
corresponding hazard rate is given by �	 . Hence, we get by a second application of
Park’s [705] result, for 2 � r � m, the identity

I .Xr WmWnjXr�1WmWnI 	/

D
Z

R

Z 1
s


@

@	
log�	.t/

� 2
fr jr�1WmWnI	 .t js/dtfr�1WmWnI	 .s/ds
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and by Fubini’s theorem

D
Z

R


@

@	
log�	.t/

� 2 Z t

�1
fr jr�1WmWnI	 .t js/fr�1WmWnI	 .s/ds dt

D
Z

R


@

@	
log�	.t/

� 2
fr WmWnI	 .t/ dt:

This proves the desired representation. ut

Fisher Information in Location or Scale Family

SupposeF	 , 	 2 �, forms either a location or a scale family [see also (11.1)]. More-
over, we assume that the standard member F is absolutely continuous with density
function function f and satisfies Regularity Conditions 9.1.2 (see, e.g., Escobar and
Meeker [356], Balakrishnan et al. [140], and Burkschat and Cramer [232]).

Regularity Condition 9.1.2. Let F	 , 	 2 �, be either a location or a scale
family of cumulative distribution functions with density functions f	 . The density
function of the standard member is denoted by f . It satisfies the conditions:

(i) f .x/ > 0 for all x 2 R;
(ii) lim

x!˙1x
2f 0.x/ D 0, where f 0 is the derivative of f ;

(iii) The second derivative f 00 is continuous;

(iv) The expectation I .	/ D � R @2 log.f	 .x//
@	2

f	 .x/ dx is finite, where f	 denotes
the density function from the location or scale family.

Then, the Fisher information I .XRI 	/ can be written as in (9.1). Notice that
the Fisher information in a right censored sample of progressively Type-II censored
order statistics can be obtained in the same way by replacingm by r � m. Therefore,

I .XR
1WmWn; : : : ; XR

r WmWnI 	/ D
Z 1
�1


@

@	
log�	.x/

� 2 rX
jD1

fj WmWnI	 .x/ dx:

In a location or scale family, the Fisher information about the parameter 	 simplifies
considerably in the sense that it could be directly computed from the Fisher
information of the standard member F . The proof is straightforward from (9.1).
A similar result is presented in Lehmann and Casella [582, p. 118/119].

Theorem 9.1.3. Let Regularity Condition 9.1.2 be satisfied. Then:

(i) If F	 , 	 2 R, forms a location family, then I .XRI 	/ D I .XRI 0/. In
particular, the Fisher information in 	 does not depend on the location
parameter;
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(ii) If F	 , 	 > 0, forms a scale family, then I .XRI 	/ D 	�2I .XRI 1/. Thus,
the Fisher information in 	 is proportional to 	�2.

The result will be quite useful in deriving the Fisher information for particular
distributions. For location or scale families with standard member F and corre-
sponding hazard rate �, expression (9.1) also has a simpler form. For a location
family, we obtain

I .XRI 0/ D
Z 1
�1


�0.x/
�.x/

� 2 mX
jD1

fj WmWnI0.x/ dx D
mX
iD1

E

	
�0.Yi WmWn/
�.Yi WmWn/


2
; (9.2)

where Y1WmWn; : : : ; YmWmWn are progressively Type-II censored order statistics from F .
For a scale family, the corresponding formula reads

I .XRI 1/ D
Z 1
�1


1C x �

0.x/
�.x/

� 2 mX
jD1

fj WmWnI1.x/ dx (9.3)

D
mX
iD1

E

	
1C Yi WmWn �

0.Yi WmWn/
�.Yi WmWn/


2
:

Fisher Information in the Multiparameter Case

In the following, we assume that F� , � 2 � � R
p , is a family of cumulative distri-

bution functions having a multiple parameter � D .	1; : : : ; 	p/. Fisher information
in a multiparameter setting with progressively Type-II censored order statistics
has been addressed first by Ng et al. [689] who consider Weibull and log-normal
distributions, or, by applying log-transformations, location–scale models of both
extreme value and normal distributions, respectively. Beside computing it directly
from the definition of the Fisher information matrix, they employed the missing
information principle to calculate the Fisher information in a progressively Type-II
censored sample (see Sect. 9.1.2). Abo-Eleneen [6] obtained some computational
results for both two-parameter extreme value and normal distributions using an
expression of the Fisher information as a weighted sum of Fisher information in
minima (see also Abo-Eleneen [7]).

Dahmen et al. [320] established a multiparameter version of the hazard rate repre-
sentation of Fisher information matrix. It is assumed that Regularity Condition 9.1.4
imposed on the joint density function f R

� of XR holds. Conditions in terms of the
baseline distribution F� are presented in Burkschat and Cramer [232].

Regularity Condition 9.1.4.

(i) The parameter space � � R
p is open;

(ii) The support eA D fx 2 R W f� .x/ > 0g of F� does not depend on �;
(iii) For x1; : : : ; xm 2 QA with x1 � : : : � xm, � 2 �, and 1 � i � p, the

derivative @
@	i
f R

� .xm/ exists and is finite;
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(iv) The partial derivatives @2

@	i @	j
f R

� .xm/; 1 � i; j � p, exist and satisfy the

condition
Z

@2

@	i @	j
f R

� .xm/ dxm D 0:

Let ��� be defined by the matrix �a� D a � a0, a 2 R
p , where a0 denotes the

transposed vector of a. Moreover, let @
@�

log�� D . @
@	i

log�� /1�i�p and � D
.	1; : : : ; 	p/, where �� D f�=.1� F� / denotes the hazard rate of F� .

Theorem 9.1.5. Let Regularity Condition 9.1.4 be satisfied. Then, the Fisher
information matrix of XR can be expressed in terms of the hazard rate �� of
F� , i.e.,

I .XRI�/ D
Z 1
�1

�
@

@�
log��.x/

� mX
sD1

fsWmWnI�.x/ dx;

i.e., for 1 � i; j � p and � 2 �, the components are given by

�
I .XRI�/

�
ij
D Iij .XRI�/

D
Z 1
�1


@

@	i
log�� .x/

� 
@

@	j
log��.x/

� mX
sD1

fsWmWnI�.x/ dx:

The proof can be found in Dahmen et al. [320]. Here, it should be mentioned
that a representation in terms of Fisher information in minima as in (9.16) and
Remark 9.1.10 also holds in the multiparameter case. In particular, we get an
analogous expression in terms of the Fisher information matrices I .X1W�j I�/ of
minima.

In location–scale families, the necessary regularity conditions ensuring the
hazard rate representation of the Fisher information matrix can be formulated
by analogy with Regularity Condition 9.1.2. Notice that assumptions (i)–(iii) of
Regularity Conditions 9.1.2 and 9.1.6 are identical.

Regularity Condition 9.1.6. Let F�;# , .�; #/ 2 �, be a location–scale family
of cumulative distribution functions with density functions f�;# . The density
function of the standard member is denoted by f . f satisfies the following
conditions:

(i) f .x/ > 0 for all x 2 R;
(ii) lim

x!˙1x
2f 0.x/ D 0, where f 0 is the derivative of f ;

(iii) The second derivative f 00 is continuous;

(iv) The expectations Iij .�; #/ D �
R1
�1

�
@2

@	i @	j
logf�;# .x/

�
f�;# .x/ dx exist

and are finite, i; j 2 f1; 2g, where 	1 D �, 	2 D # and f�;# D F 0�;# .
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Given the preceding assumptions, Dahmen et al. [320] established an expression
for the Fisher information matrix in location–scale families. Let fsWmWnI0;1 be the
density function of a progressively Type-II censored order statistic XsWmWn from the
standard member F . Then, the following representations holds. It follows directly
from the identity fsWmWnI�;#.x/ D 1

#
� fsWmWnI0;1

�
.x � �/=#�, x 2 R, 1 � s � m, and

Theorem 9.1.5 [see also (9.2) and (9.3)].

Theorem 9.1.7. Let Regularity Condition 9.1.6 be satisfied, gDPm
sD1 fsWmWnI0;1,

and � D f=.1� F / denote the hazard rate of F . Then,

I11.XRI�; #/ D #2 �I11.XRI 0; 1/ D #2
Z 1
�1


�0.x/
�.x/

� 2
g.x/ dx;

I22.XRI�; #/ D 1

#2
�I22.XRI 0; 1/ D 1

#2

Z 1
�1


1C x �

0.x/
�.x/

� 2
g.x/ dx; (9.4)

I12.XRI�; #/ D I12.XRI 0; 1/ D �
Z 1
�1

�0.x/
�.x/


1C x �

0.x/
�.x/

�
g.x/ dx:

The expressions presented in Theorem 9.1.7 can also be directly applied in both
location and scale models [see (9.2) and (9.3)] since I .XRI�/ D I11.XRI�; 1/
and I .XRI#/ D I22.XRI 0; #/, respectively.

9.1.2 Fisher Information via Missing Information Principle

As an alternative to the above approaches, Ng et al. [688] calculated the expected
Fisher information via missing information principle (see Louis [618], Tanner
[838]), i.e., they used the relation

Observed informationD Complete information �Missing information.

They interpreted the observed progressively Type-II censored order statistics
XR D .X1WmWn; : : : ; XmWmWn/ as observed information. The random vector W D
.W1; : : : ;Wm/ is defined as the vector of progressively censored random variables,
where Wj D .Wj1; : : : ;WjRj / denotes those random variables corresponding to
units withdrawn in the j th step of the progressive censoring procedure. It can be
thought of as missing data. Merging XR and W yields the complete data set X. Ng
et al. [688] established the conditional density function of Wj , given XR.

Theorem 9.1.8. Given XR
j D xj D .x1; : : : ; xj /, the conditional density

function of Wjk , k 2 f1; : : : ; Rj g, is given by

f Wjk jXR
j .wjxj / D f Wjk jXj WmWn.wjxj / D f .w/

1 � F.xj / ; w > xj ; (9.5)

and Wjk and Wj`, k ¤ `, are conditionally independent given Xj WmWn D xj .
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Proof. In order to calculate the desired density function, we apply an expression
similar to (10.6) obtained in the derivation of the joint density function of progres-
sively Type-II censored order statistics. Suppose the first m random variables in the
original sample X1; : : : ; Xm correspond to the progressively Type-II censored order
statistics. The remaining ones are partitioned as described above. Let wj 2 R

Rj

with min wj > xj . Evaluating the probability

P
�
Xr � min fXrC1; : : : ; Xm;Wr ; : : : ;Wmg ; Xr � xr ;Wr � wr ; 1 � r � m

�
;

we get, by arguments similar to those in the derivation of (10.6), the expression

Z x1

�1

Z x2

t1

: : :

Z xm

tm�1

P .tr � min fWr ; : : : ;Wmg ;Wr � wr ; 1 � r � m/

�
mY
jD1

f .tj / dtm : : : dt1: (9.6)

The integrand in this integral can be written as

P .tr � min fWr ; : : : ;Wmg ;Wr � wr ; 1 � r � m/

D
mY
rD1

P .tr � minfWrg;Wr � wr /

D
mY
rD1

RjY
kD1

P .tr � Wrk � wrk/

D
mY
rD1

RjY
kD1
ŒF .wrk/ � F.tr /�; t1 � � � � � tm:

Differentiating (9.6) w.r.t. x1; : : : ; xm and wrk , 1 � r � m, 1 � k � Rr , and taking
into account that X1; : : : ; Xm are a particular assignment of the progressively Type-
II censored order statistics XR, we arrive at the joint density function of XR and
W as

f XR;W.x;w/ D
mY
rD1

"
�rf .xr /

RrY
kD1

f .wrk/

#
; min wr > xr ; 1 � r � m:

From Corollary 2.1.3, we have the density function of XR as

f XR

.x/ D
mY
rD1

�
�rf .xr /.1 � F.xr //Rr

i
:
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Therefore, for x1 < � � � < xr , the conditional density function of W, given XR, is
given by

f WjXR

.wjx/ D
mY
rD1

RrY
kD1

f .wrk/

1 � F.xr/ D
mY
rD1

RrY
kD1

f Wrk jXrWmWn .wrkjxr/;

min wr > xr ; 1 � r � m: (9.7)

Notice that the �r ’s cancel out. Hence, we deduce from the factorization theorem
that, given XR D x, Wrk, 1 � k � Rr , 1 � r � m, are conditionally independent
with density function as in (9.5). ut

Representing the observed information, complete information, and missing
information by I .XRI 	/, I ..XR;W/I 	/, and I .WjXRI 	/, respectively, we
relate these quantities to each other via the missing information principle. The
complete information is given by

I ..XR;W/I 	/ D �E
h @2
@	2

logf XR;W.XR;W/
i
D I .XI 	/ D nI .X1I 	/:

Defining the Fisher information about 	 in a random variable W progressively
censored at the time of the j th failure, given Xj WmWn, by

I .j /.W jXj WmWnI 	/ D �E
h @2
@	2

logf
W jXj WmWn
	 .W jXj WmWn/

i
; (9.8)

we get the expected Fisher information of W, given XR, as

I .WjXRI 	/ D
mX
jD1

RjI
.j /.Wj jXj WmWnI 	/:

Hence, the expected Fisher information can be written as

I .XRI 	/ D I .XI 	/�
mX
jD1

RjI
.j /.Wj jXj WmWnI 	/: (9.9)

This relation will be used while computing maximum likelihood estimates of the
parameters via the EM-algorithm.
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9.1.3 Fisher Information for Particular Distributions

Invariance of Fisher Information Under Progressive Censoring

Suppose F	 is a cumulative distribution function from a one-parameter exponential
family as given in (2.12). Then,

� @
2

@
2
log.1� F
.x// D 0; � @

2

@
2
logf
.x/ D 
�2:

Reparametrization transforms the Fisher information to

I .XRI 	/ D I .XRI 
/Œ
0.	/�2 (9.10)

(see Lehmann and Casella [582, p. 115]), so that

I .XRI 	/ D m


2.	/
Œ
0.	/�2: (9.11)

Hence, for all F	 of the form (2.12), the Fisher information in the progressively
censored sample does not depend on the censoring scheme R.

Remark 9.1.9. The result (9.11) can also be deduced using the following
argument. Let F be a cumulative distribution function as in (2.12) with

.	/ D 1=	 . Then, the joint density function is

f R
	 .x/ D cm�1	�m exp

n
�m

b	
	

o

with b	 D 1
m

Pm
jD1 �j .d.Xj WmWn/ � d.Xj�1WmWn//, d.X0WmWn/ D 0. Obviously, b	

forms a sufficient statistic with Eb	 D 	 and 2mb	=	 � �2.2m/ (see Remark 2.3.4
and Theorem 12.1.1). Then, I .XRI 	/ D 1

Var	 .b	/ D
m
	2

(cf. Lehmann and Casella

[582, p. 116, Theorem 5.4]), which is independent of the censoring scheme.

Weibull Distribution (Shape) and Extreme Value Distribution (Scale)

Using the transformation property of Fisher information in (9.10), it becomes clear
that the Fisher information in the shape parameter of a Weibull distribution and that
in the scale parameter of an extreme value distribution are related. Suppose XR

forms a progressively Type-II censored sample from a Weibull.1; ˇ/-distribution.
Then, Yj WmWn D logXj WmWn, 1 � j � m, is a progressively Type-II censored sample
from an extreme value distribution with scale parameter ˇ. Then, I .XRIˇ/ D
I .YRI 1=ˇ/. Using (9.10) and ˇ D 1=# , we find



210 9 Information Measures

I .XRIˇ/ D I .YRI 1=ˇ/ D I .YRI#/ 1
ˇ4
:

Notice that we have used the parametrization F#.t/ D 1 � e�et=# , t 2 R, of the
extreme value distribution which is different than that used in Balakrishnan et al.
[140] and Dahmen et al. [320]. Therefore, it is sufficient to calculate the Fisher
information for the extreme value distribution. Using (9.4) and �.x/ D ex , we get
from (9.3)

I .XRI#/ D #2
mX
rD1

E.1C Yr WmWn/2:

This expression shows that, for fixed sample size n, the Fisher information is
increasing w.r.t. the number of observed failures. Moreover, the expectation can
be directly evaluated. As given in Dahmen et al. [320], we get the expression

I .XRI#/ D m�2#2

6
C #2

mX
sD1

cs�1
sX
iD1

ai;s

�i
.� � 1C log �i /

2 (9.12)

(see also Cramer and Ensenbach [293]). Different expressions are given in Bala-
krishnan et al. [140] and Ng et al. [689] (see also Burkschat and Cramer [232,
in terms of generalized order statistics]). Expression (9.12) is useful to establish
a representation for the Fisher information included in the first k order statistics
X1Wn; : : : ; XkWn. After some rearrangements, we obtain the expression (1 � k �
n � 1)

I .X1Wn; : : : ; XkWnI#/

D k�2#2

6
C n#2

kX
iD1

 
kX
sDi
.�1/i�s

 
n � 1
s � 1

! 
s � 1
i � 1

!!
.� � 1C log �i /2

�i

D k�2#2

6
C nk

 
n � 1
k

!
#2

kX
iD1
.�1/kCi

 
k � 1
i � 1

!
.� � 1C log �i /2

.n� i/�i :

Since I .XRI�/ D I11.XRI�; #/ D m#�2, I .XRI#/ D I22.XRI�; #/, and

I12.XRI�; #/ D I12.XRI 0; 1/ D �
mX
sD1
f1C EZsWmWng

D �mC
mX
sD1

cs�1
sX
iD1

ai;s

�i
.� C log�i /

(2.26)D .� � 1/mC
mX
sD1

cs�1
sX
iD1

ai;s

�i
log �i ;



9.1 Fisher Information in Progressively Type-II Censored Samples 211

we also get the Fisher information matrix in the location–scale model. Escobar
and Meeker [355] suggested an algorithm to compute the Fisher information in the
Weibull case which can also be applied in the progressive censoring setting.

Laplace Distribution (Location)

Since the scale Laplace distribution forms an exponential family, the Fisher infor-
mation is constant. For the location setting, the situation is different. In particular,
the location Laplace distribution provides an example where the standard regularity
conditions for Fisher information are not satisfied (see Burkschat and Cramer
[232]). However, one can overcome these technical difficulties and obtain a closed
form expression even in this case. Burkschat and Cramer [232] established the
following result which also holds in the more general framework of generalized
order statistics:

I .XRI 0/ D
mX
rD1

cr�1
rX

jD1
aj;r .�j � 2/;

where

.d/ D
Z 1

1=2

xd�1 dx D
8
<
:
1
d

�
1� � 1

2

�d�
; d 6D 0;

log.2/; d D 0:

Logistic Distribution

In this section, we consider a location family of logistic distributions with location
parameter � 2 R given by

f�.x/ D e�.x��/

.1C e�.x��//2
; x 2 R:

Since the Fisher information does not depend on the location parameter, it is
sufficient to calculate it when � D 0. Burkschat and Cramer [232] established the
following explicit representation in this case:

I .XRI 0/ D
nX
rD1

rY
jD1

�j

�j C 2 : (9.13)
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Normal Distribution

For normal distribution, explicit formulas are not available. Computational results
for selected censoring schemes are provided by Balakrishnan et al. [140] and Abo-
Eleneen [6, 7]. For regularity conditions, we refer to Burkschat and Cramer [232].

Lomax Distribution

Dahmen et al. [320] have established explicit expressions for the Fisher information
in a two-parameter family of Lomax distributions with cumulative distribution
function

Fq;# .x/ D 1 � .1C #x/�q; x > 0; (9.14)

with parameters q; # > 0. Notice that this family does not form a location–scale
family of distributions. In this case, they found that

I11.XRI q; #/ D m

q2
;

I22.XRI q; #/ D 1

#2

mX
sD1

sY
jD1

	
1 � 2

q�j C 2


;

I12.XRI q; #/ D 1

q#

mX
sD1

sY
jD1

	
1 � 1

q�j C 1


:

(9.15)

Notice that, for q D 1, I22.XRI 1; #/ equals the expression of the Fisher informa-
tion for the logistic distribution as given in (9.13). This is due to a transformation
result as mentioned in Sect. 9.1.3.

9.1.4 Recurrence Relations for Fisher Information

Using the hazard representation of Fisher information in progressively Type-II
censored order statistics, Abo-Eleneen [6] established a representation of Fisher
information in terms of Fisher information of minima. In particular, using the
density function of the cumulative distribution function given in (2.27), we arrive at

I .XRI 	/ D
mX
rD1

cr�1
rX

jD1

1

�j
aj;rI .X1W�j I 	/: (9.16)
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This representation is quite useful for computational purposes, particularly, when
numerical integration is necessary like in the case of the normal distribution. In
order to compute the Fisher information in a sample XR, we have to compute only
the Fisher information I .X1W�j I 	/ in the minima X1W�j , 1 � j � m. Therefore, if
you aim at computing it for any censoring scheme, we wish to compute the Fisher
information I .X1Wk I 	/, 1 � k � n, and use (9.16). For the location parameter of a
normal distribution, we have to evaluate the integral

I .X1Wk I�/ D 1C k2.k � 1/
2

Z 1
�1

'3.x/.1 � ˚.x//k�3dx;

where ' and ˚ denote the density function and cumulative distribution function
of the standard normal distribution, respectively (see Park [704] and Nagaraja and
Abo-Eleneen [668]).

Remark 9.1.10. Exchanging summation in (9.16), an alternative formula can
be obtained as follows. We get

I .XRI�/ D
mX
jD1

I .X1W�j I�/
mX
rDj

cr�1
�j

aj;r

D
mX
jD1

I .X1W�j I�/
mX
rDj

rY
iD1;i¤j

�i

�i � �j :

Recurrence relations for the Fisher information of order statistics have been
established by Park [704]. An extension to progressively Type-II censored order
statistics has been tried by Abo-Eleneen [7], but the results seem to be in error since
they are based on a wrong version of (2.46). However, using representation (9.16)
or its matrix version, a simple recurrence relation can be established. For instance,
we get for 1 � r � m,

I .X1WmWn; : : : ; Xr WmWnI�/ D
rX

kD1
ck�1

kX
jD1

1

�j
aj;kI .X1W�j I�/

D I .X1WmWn; : : : ; Xr�1WmWnI�/C cr�1
rX

jD1

1

�j
aj;rI .X1W�j I�/

D Ir�1.�1; : : : ; �r�1/C sr .�1; : : : ; �r/; (9.17)

where I0.�1/ D I0.n/ D I .X1Wn/. Since Im�1 depends only on the first m � 1
�j ’s, this relation provides a recurrence relation in terms of �1; : : : ; �m which can
be easily implemented. It can also be used to compute the Fisher information for
different censoring schemes. Letm and n be fixed. Then, Im�1 is a function of n;m,
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and the right truncated censoring scheme .R1; : : : ; Rm�2/. Hence, we can compute
the Fisher information for any censoring scheme

.R1; : : : ; Rm�2; t; �m�1 � t � 1/; t D 0; : : : ; �m�1 � 1;

by evaluating sm.�1; : : : ; �m�1; �m�1�tC1/ in (9.17). This observation suggests the
following way to compute the Fisher information (matrix) for any censoring scheme
.R1; : : : ; Rm/.

Algorithm 9.1.11. Let m; n 2 N be given with 2 � m � n. Suppose the
Fisher information I .X1WmWn; : : : ; Xr WmWnI�/ has been computed for any censoring
scheme of dimension 1 � r < m. Then, the Fisher information of progressively
Type-II censored order statistics X1WmWn; : : : ; XrC1WmWn about the parameter � for
any censoring scheme can be obtained as follows:

� for any �2 > � � � > �r � m � r C 1, compute srC1.�1; : : : ; �r ; `/, ` D
m � r; : : : ; �r � 1;

� use (9.17) to compute I .X1WmWn; : : : ; XrC1WmWnI�/.
Remark 9.1.12. Since I .X1Wr Wn; : : : ; Xr Wr WnI�/ D I .X1WmWn; : : : ; Xr WmWnI�/ with
an appropriately truncated censoring scheme, Algorithm 9.1.11 can be iteratively
applied to compute the desired Fisher informations for the next dimension.

9.2 Fisher Information in Progressive Hybrid Censoring

Results on the Fisher information Im^T WmWn.	/ about a single parameter 	 in
progressive hybrid censoring have been established in Park et al. [711] when the
population cumulative distribution function F	 , 	 2 � � R, has a continuous
density function with support contained in the positive real line. For Type-I
progressively hybrid censored data, they noticed that

Im^T WmWn.	/ D
mX
iD1

I .minfY1W�i ; T gI 	/

using the structure of the joint density function. This leads to the following result
[cf. (9.1)] which extends expressions of Wang and He [887] and Park et al. [710] for
Type-I hybrid censored data.

Theorem 9.2.1. The Fisher information about 	 in a Type-I progressively hybrid
censored sample is given by

Im^T WmWn.	/ D
Z T

0


@

@	
log�	.x/

� 2 mX
iD1

fi WmWnI	 .x/ dx:
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Notice that this expression is very similar to the Fisher information in a
progressively Type-II censored sample as given in (9.1). In fact, the integration area
is restricted to the interval Œ0; T �.

For an Exp.#/-distribution, this expression simplifies to

Im^T WmWn.#/ D 1

#2

mX
iD1

Fi WmWn
�T
#

�
; (9.18)

where Fi WmWn denotes the cumulative distribution function of the i th exponential
progressively Type-II censored order statistic.

For Type-II progressively hybrid censored data, Park et al. [711] established the
following result for the Fisher information Im_T WmWn.	/ in the Type-II progressively
hybrid censored data:

Im_T WmWn.	/ D I .XRI 	/CI .T I 	/�I.n�Rm/^T Wn.	/;

where I .T I 	/ and I.n�Rm/^T Wn.	/ denote the Fisher information in Type-I cen-
sored data and Type-I hybrid censored data, respectively. Using that I .XRI 	/ D
m=#2 (see Sect. 9.1.3), I .T I 	/ D nF.T=#/=#2 (see Park et al. [710]), and
carrying out some simple rearrangements, this expression is similar to (9.18) for
an Exp.#/-distribution, i.e.,

Im_T WmWn.#/ D 1

#2

2
4mC

nX
iDn�RmC1

Fi Wn
�T
#

�
3
5 : (9.19)

In fact, this expression shows that the gain of information using the Type-II hybrid

censoring procedure is given by 1
#2

Pn
iDn�RmC1 Fi Wn

�
T
#

�
which is increasing in T

and bounded by the maximum gain Rm=#2.

9.3 Tukey’s Linear Sensitivity Measure

Fisher information is a widely used concept in statistics, but it cannot be applied
in any situations. Therefore, alternative measures like Tukey’s linear sensitivity
measure have been proposed (see Nagaraja [666], Tukey [863]). A multiparameter
situation has been discussed in Chandrasekar and Balakrishnan [243]. Let Y D
.Y1; : : : ; Yr/

0 be a random vector with cumulative distribution function F� , where
� D .	1; : : : ; 	k/

0 denotes the vector of parameters. Its mean is given by ˛ D
.˛1; : : : ; ˛r /

0 D EY and its variance–covariance matrix by ˙ D Cov.Y/. The
matrixD D .dij /i;j of partial derivatives of the mean is defined by

dij D @˛i

@	j
; i D 1; : : : ; r; j D 1; : : : ; k:



216 9 Information Measures

Then, Chandrasekar and Balakrishnan [243] defined a multiparameter version of
Tukey’s linear sensitivity measure by

IS .YI�/ D sup
A2A

D0A0.A˙A0/�1AD;

where A denotes the set of matrices such that A˙A0 is non-singular. They
established some properties of this measure. For instance, it is additive provided that
the random vectors are uncorrelated and it exhibits some monotonicity properties.
In location–scale models, it is the inverse of the variance–covariance matrix of the
BLUE of � D .�; #/.

For progressively Type-II censored order statistics XR from a two-parameter
exponential distribution, this leads to the expression [see (11.7)]

IS .XRI�; #/ D
�

#2

n2.m � 1/
	
m �n
�n n2


��1
D 1

#2

	
n2 n

n m



:

For generalized Pareto distributions, we deduce from (11.12) the expression

IS.XRI�; #/ D
"
#2

q2

�e1n � e21

 
� � sgn.q/.� C e1

q
/

� sgn.q/.� C e1
q
/ � C e21

q2

!#�1

D 1

#2

 
� C e21

q2
sgn.q/.� C e1

q
/

sgn.q/.� C e1
q
/ �

!
:

9.4 Entropy

The joint differential entropy (Shannon entropy) of P XR
is defined via the

expectation

H R
1;:::;mWmWn D �E logf XR

.XR/ (9.20)

(see Cover and Thomas [282], Park [706]). This quantity will also be discussed in
the area of goodness-of-fit tests (see Sect. 19.2). The joint differential entropy (9.20)
can be seen as a measure of uncertainty in the progressively Type-II censored sample
XR which measures uniformity of the density f XR

. On the other hand, the negative
entropy can be interpreted as a measure of concentration and, thus, measures
the information in XR (see Soofi [820]). A connection to Fisher information is
the isoperimetric inequality for entropies (see Dembo and Cover [335]): The Fisher
information I .XRI 	/ can be bounded from below by

I .XRI 	/ � 2�em exp
n
� 2

m
H R
1;:::;mWmWn

o
:
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This bound may be useful if the Fisher information is hard to compute.
Further information on entropy and information measures can be found in,
e.g., Kullback [554] and Cover and Thomas [282]. Other entropy measures for
progressively Type-II censored order statistics have been discussed recently by Haj
Ahmad and Awad [427, 428].

Balakrishnan et al. [138] established the following representation of the entropy
of a progressively censored sample. Notice that the Fisher information can also be
expressed in terms of the hazard rate function [see (9.1)].

Theorem 9.4.1. Let F be an absolutely continuous cumulative distribution
function with density function f . Then, the entropy in a progressively Type-II
censored sample XR is given by

H R
1;:::;mWmWn D � log c.R/Cm �

mX
jD1

E log�.Xj WmWn/; (9.21)

where � D f=.1�F / and c.R/ denote the population hazard rate function and
the normalizing constant of the density function, respectively.

Proof. From the representation (2.4) of the joint density function, we get

H R
1;:::;mWmWn D � log c.R/�

mX
jD1

E log
�
f .Xj WmWn/Œ1 � F.Xj WmWn/�Rj

�

D � log c.R/�
mX
jD1

E log�.Xj WmWn/ �
mX
jD1

.Rj C 1/E logŒ1 � F.Xj WmWn/�:

From Corollary 2.3.7, we get by the continuity of F

�E logŒ1 � F.Xj WmWn/� D E
	 jX
iD1

1

�i
Zi



D

jX
iD1

1

�i
;

where Z1; : : : ; Zj are independent Exp.1/-distributed random variables. Further-
more, by interchanging the summation and using the fact that �i DPm

jDi .Rj C 1/,
we get

Pm
jD1.Rj C 1/

Pj
iD1

1
�i
D m. This proves the desired expression. ut

Expression (9.21) can be used to calculate the entropy in particular distributions.
In particular, it yields directly for standard exponential distribution

H R
1;:::;mWmWn D � log c.R/Cm:

For a Pareto.˛/-distribution with parameter ˛ > 0, the following expression holds
(see Cramer and Bagh [291]):

H R
1;:::;mWmWn D � log c.R/Cm �m log˛ C 1

˛

mX
jD1

m � j C 1
�j

: (9.22)



218 9 Information Measures

For a reflected power distribution RPower.˛/, the expression is almost the same as
that in (9.22) except for a minus sign in front of the sum:

H R
1;:::;mWmWn D � log c.R/Cm �m log˛ � 1

˛

mX
jD1

m � j C 1
�j

: (9.23)

For ˛ D 1, the entropy in the uniform distribution results.
For a Weibull.#; ˇ/-distribution, the hazard rate function �.x/ D ˇ

#
xˇ�1, x > 0,

yields the expression

H R
1;:::;mWmWn D � log c.R/Cm �m log.ˇ=#/� ˇ � 1

ˇ

mX
jD1

E logXˇ
j WmWn:

As shown in Cramer and Bagh [291], this expression can be written as

H R
1;:::;mWmWn D � log c.R/Cm.1C �/ �m logˇ � m.� log# C �/

ˇ

� ˇ � 1
ˇ

mX
jD1

cj�1
jX
iD1

ai;j
log �i
�i

;

where � denotes Euler’s constant.
Finally, we state an integral representation of the entropy H R

1;:::;mWmWn in terms of
the quantile function F . A similar version has been established by Balakrishnan
et al. [138] (see also Ahmadi [16]). Similar representations for the entropy in a
single observation and in a Type-II censored sample can be found in Vasicek [872]
and Park [706].

Lemma 9.4.2. Let XR be a progressively Type-II censored sample with popula-
tion cumulative distribution function F and differentiable quantile function F .
Moreover, let �m > 1. Then,

H R
1;:::;mWmWn D � log c.R/CmC nE

	Z T

0

log
� d
dp
F .p/

�
dp




�
mX
jD1

m � j C 1
�j

; (9.24)

where T is a random variable with density function

f T .t/ D 1

n

mX
rD1

cr�1
rX
iD1

ai;r .�i � 1/.1� t/�i�2; t 2 .0; 1/; (9.25)

and ET D m
n

.
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Proof. From (9.21), we can write

E log�.Xj WmWn/ D E logf .Xj WmWn/ �E log.1 � F.Xj WmWn//
D E logf .Xj WmWn/ �E log.1 � Uj WmWn/;

where Uj WmWn denotes a uniform progressively Type-II censored order statistic.
Then, noticing that � log.1 � Uj WmWn// can be interpreted as a progressively Type-
II censored order statistic from a standard exponential distribution, we get from
Theorem 7.2.1 the identity

�E log.1 � Uj WmWn// D
jX
iD1

1

�i
:

The first expectation can be written as

�E logf .Xj WmWn/ D E log
1

f .F .Uj WmWn//
D E log

� d
dp
F .p/

�ˇ̌
ˇ
pDUj WmWn

:

Then, writing .1 � p/�i�1 D .�i � 1/
R 1
p .1 � u/�i�2du, p 2 .0; 1/, and v.p/ D

log
�
d
dp
F .p/

�
and using (2.24), we arrive at

�E logf .Xj WmWn/ D Ev.Uj WmWn/

D cj�1
jX
iD1

ai;j .�i � 1/
Z 1

0

Z 1

p

.1 � u/�i�2du v.p/dp

D cj�1
jX
iD1

ai;j .�i � 1/
Z 1

0

.1 � u/�i�2
Z u

0

v.p/dp du:

Combining these results and using (9.21) and (9.25), we arrive at the desired
expression. ut
Remark 9.4.3.

(i) Balakrishnan et al. [138] obtained the result in Lemma 9.4.2 without
imposing the condition �m � 2. But, this assumption must not be dropped
as illustrated in Remark 9.4.4. Further, they claimed that f T is a density
function and that ET D m

n
. However, although it has been proved thatR

f T .t/dt D 1, it has not been shown that f T .t/ � 0, t 2 .0; 1/.
(ii) Using Corollary 2.4.7, it can be shown that the cumulative distribution

function of T with density function (9.25) is given by
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F T .t/ D 1 � 1
n

mX
jD1

f Uj WmWn .t/

D 1 � 1

1 � t
mX
jD1

Rj C 1
n

F
Uj WmWn

.t/; t 2 R; (9.26)

where F
Uj WmWn

denotes the survival function of Uj WmWn, 1 � j � m.

Remark 9.4.4. If the condition �m � 2 in Lemma 9.4.2 does not hold, the
representation (9.24) with the density function f T in (9.25) is not true. First,
notice that �i > 1 for i < m since �1 > � � � > �m � 1. Given �m D 1, we can
proceed as in the proof of Lemma 9.4.2 except for the term with j D m. In this
case, we get

�E logf .XmWmWn/ D Ev.UmWmWn/

D cm�1
m�1X
iD1

ai;m.�i � 1/
Z 1

0

Z 1

p

.1 � u/�i�2du v.p/dp

C cm�1am;m
Z 1

0

v.p/dp:

With cm�1am;m D Qm�1
iD1

�i
�i�1 D ı and f T as in (9.25), we get

�
mX
jD1

E log�.Xj WmWn/ D .n�ı/E
	Z T �

0

log
� d
dp
F .p/

�
dp



�

mX
jD1

m � j C 1
�j

C ı
Z p

0

log
� d
dp
F .p/

�
dp;

where T � is a random variable with density function f T � D n
n�ı f

T . Notice

that H1W1W1 D
R p
0

log
�
d
dp
F .p/

�
dp as shown in Vasicek [872] and Park [706].

Therefore, we can write (9.24) as

H R
1;:::;mWmWn D � log c.R/CmC .n � ı/E

	Z T �

0

log
� d
dp
F .p/

�
dp




�
mX
jD1

m � j C 1
�j

C ıH1W1W1.X/:

Remark 9.4.5. The entropy in a progressively Type-II censored sample has
also been discussed in Abo-Eleneen [8]. He addressed recurrence relations
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and presented results for selected censoring schemes for normal and logistic
distributions. Ahmadi [16] discussed characterizations of distributions via the
Müntz-Szász theorem (see also Kamps [498, p. 103]) and stochastic ordering
w.r.t. the entropy order. In particular, he extended a result of Ebrahimi et al.
[347] for order statistics to the case of progressive censoring.

9.5 Kullback–Leibler Information

The Kullback–Leibler information serves as a measure to compare two distributions.
For two progressively Type-II censored samples XR and YR with the same
censoring scheme, but possibly different population density functions f and g, it
is defined as (see Kullback [554])

IR.f kg/ D I .f XRkgYR

/ D
Z

S

f XR

.x/ log
f XR

.x/

gYR
.x/

dx; (9.27)

where f XR
and gYR

denote the joint density functions of the progressively Type-
II censored samples. Balakrishnan et al. [138] and Rad et al. [736] have used
Kullback–Leibler information to construct goodness-of-fit tests (see Sect. 19.2).
Using properties of the logarithm, it follows that

IR.f kg/ D �H R
1;:::;mWmWn �

Z

S

f XR

.x/ loggYR

.x/dx; (9.28)

where H R
1;:::;mWmWn is the entropy of P XR

as in (9.20).
The Kullback–Leibler information in favor of an IID sample Y1; : : : ; Ym from

a population with population density function f against a progressively Type-II
censored sample X1WmWn; : : : ; XmWmWn from the same population has been discussed
in Cramer and Bagh [291]. Here, a slightly more general distance is considered for
two samples of progressively Type-II censored order statistics with the same sample
sizem but possibly different censoring schemes R and S and original sample sizes
�1.R/ and �1.S /. According to (9.27), the Kullback–Leibler distance of P XR

and
P XS

is defined by

I0.RkS / D I0.f
XRkf XS

/ D
Z

S

f XR

.x/ log
f XR

.x/

f XS
.x/
dx; (9.29)

where S denotes the support of f XR
and f XS

. The Kullback–Leibler information
given in (9.29) has the following representations.
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Theorem 9.5.1. Let XR and XS be progressively Type-II censored order
statistics with population density function f and censoring schemes R and S ,
respectively. Then, the Kullback–Leibler information is given by

I0.RkS / D log c.R/ � log c.S /�mC
mX
jD1

�j .S /

�j .R/
:

Proof. Using the quantile representation given in (2.14), this yields

I0.RkS / D log c.R/� log c.S /C
mX
iD1
.Ri � Si/E log Œ1 � F.Xi WmWn/�

D log c.R/� log c.S /C
mX
iD1
.Ri � Si/

iX
jD1

1

�j .R/
E logUj :

Since � logUj has a standard exponential distribution and, thus, E logUj D �1,
we get

I0.RkS / D log c.R/ � log c.S /�
mX
iD1
.Ri � Si /

iX
jD1

1

�j .R/

D log c.R/ � log c.S /�mC
mX
jD1

1

�j .R/

mX
iDj
.Si C 1/

D log c.R/ � log c.S /�mC
mX
jD1

�j .S /

�j .R/
:

This yields the desired expression. ut
Given the censoring scheme R, it is immediate from the properties of the

Kullback–Leibler information that the closest distribution P XS
is specified by the

censoring scheme R D S . On the other hand, one might ask which distribution is
most dissimilar to P XS

. From Theorem 9.5.1, we can write

I0.RkS / D
mX
jD1

h
� log

�j .S /

�j .R/
� 1C �j .S /

�j .R/

i
D

mX
jD1

h
��j .S /

�j .R/

�

with h.x/ D x � logx � 1 � 0, x > 0. Since h is a strictly convex function, the
maximum is attained at the boundary. Notice that the original sample size �1.R/
of the progressively censored sample XR has to be bounded because otherwise a
maximum does not exist. Moreover, this shows that right censoring will be most
dissimilar when �1.R/ exceeds a certain level. Therefore, it makes sense to bound
the sample size.

Suppose that �1.R/ D �1.S /. Then, taking the ordering 1 � �m.R/ < � � � <
�1.R/ into account, we get, e.g., that O1 and Om are most dissimilar.
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Denoting by H RIuniform
1;:::;mWmWn the entropy of uniform progressively Type-II censored

order statistics with censoring scheme R and let S D .0�m/, we get from (9.23)

I0.RkS / D �H RIuniform
1;:::;mWmWn

as given in (9.23) with ˛ D 1.

Remark 9.5.2. The Kullback–Leibler information between two progressively
Type-II censored samples with identical censoring scheme but different population
distributions has been discussed in Park [707]. Here,

I0.g
XRkf XR

/ D
Z

S

gXR

.x/ log
gXR

.x/

f XR
.x/
dx: (9.30)

Park [707] showed that the Kullback–Leibler information in (9.30) can be
expressed in terms of the hazard rates �F and �G , i.e., as

I0.g
XRkf XR

/ D
Z 1
�1

h
��F .x/
�G.x/

� mX
jD1

gR
j WmWn.x/ dx;

where h.t/ D t � log t � 1, t > 0. A similar representation holds for the marginal
distributions of the first r progressively Type-II censored order statistics. Notice
that this result parallels expression (9.1) obtained for the Fisher information.

The I˛-information is defined by

I˛.RkS / D 1

˛.1 � ˛/
	
1 �

Z

S

h
f XR

.x/
i˛h

f XS

.x/
i1�˛

dx


;

where 0 < ˛ < 1 is a given parameter and S denotes the support of f XR
. Properties

as well as generalizations of I˛.RkS / can be found in Vajda [864].

Theorem 9.5.3. For R;S 2 Cm
m;n, I˛.RkS / is given by the expression

I˛.RkS / D 1

˛.1 � ˛/
	
1 � c.R/

˛c.S /1�˛

d˛.R/




with d˛.R/ D Qm
jD1Œ.1 � ˛/�j .S /C ˛�j .R/�.

Proof. From (2.4), we find for x1 < � � � < xm
�
f XR

.x/
�˛�

f XS

.x/
�1�˛

D c.R/˛c.S /1�˛
� mY
iD1

f .xi /
�˛� mY

iD1
Œ1 � F.xi /�Ri

�˛

�
� mY
iD1

f .xi /
�1�˛� mY

iD1
Œ1 � F.xi /�Si

�1�˛
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D c.R/˛c.S /1�˛
mY
iD1

h
f .xi /.1 � F.xi //˛RiC.1�˛/Si

i

D c.R/˛c.S /1�˛

d˛.R/
� d˛.R/

mY
iD1

h
f .xi /.1 � F.xi //˛RiC.1�˛/Si

i
:

The term d˛.R/
Qm
iD1

h
f .xi /.1 � F.xi //˛RiC.1�˛/Si

i
is the joint density function

of generalized order statistics based on parameters .1 � ˛/�j .S /C ˛�j .R/, j D
1; : : : ; m, and the cumulative distribution function F (see Kamps [498, 499], and
Cramer and Kamps [301]). This proves the result. ut

9.6 Pitman Closeness

Pitman closeness is a measure to compare the closeness of two estimators to the
estimated parameter which was introduced in 1937 by Pitman [722]. A detailed
discussion has been provided in the monograph by Keating et al. [512]. The notion
of Pitman closeness has been introduced by Balakrishnan et al. [142] to determine
the closest order statistic in a sample of size n to a given population quantile (for
the median, we refer to Balakrishnan et al. [143]). Given a quantile �p of the baseline
distribution, they were interested in identifying an order statistic X`Wn such that

P.jX`Wn � �pj < jXi Wn � �pj/ � 1

2
for all i 2 f1; : : : ; ng n f`g:

Volterman et al. [880] adapted this idea to two independent progressively Type-II
censored samples XR

1WmWn; : : : ; XR
mWmWn and YS

1WsWk; : : : ; YS
sWsWk from the same cumula-

tive distribution function F . For a quantile �p , they introduced the Pitman closeness
probabilities

�R;S
i;j .�p/ D P.jXR

i WmWn � �pj < jYS
j WsWk � �p j/; 1 � i � m; 1 � j � s:

They found that

�
R;S
i;j .�p/ D FUR

iWmWn .F.2�p � �0//�
iY

`D1
�`.R/

jY
`D1

�`.S /

iX
`1D1

jX
`2D1

aR
`1;i
aS
`2;j

�`2.S /

�

1 � 2.1� p/�`1 .R/C�`2 .S /

�`1.R/C �`2.S /
�
Z p

F.2�p��1/
w.u/duC

Z F.2�p��0/

p

w.u/du

�
;

(9.31)
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where w.u/ D .1 � u/�`1 .R/�1�1 � F.2�p � �u/
��`2 .S /

. In the case of a symmetric
population distribution, the above expression simplifies considerably for the popu-
lation median �0:5 and can be written in terms of incomplete beta functions as

�R;S
i;j .�0:5/ D 1 �

iY
`D1

�`.R/

jY
`D1

�`.S /

iX
`1D1

jX
`2D1

aR
`1;i
aS
`2;j

�`2.S /

�

1 � 21��`1 .R/��`2 .S /

�`1.R/C �`2.S /
C B1.�`2.S /C 1; �`1.R//

� 2B1=2.�`2.S /C 1; �`1.R//
�
;

where Bt .�; �/ denotes the incomplete beta functions with t 2 Œ0; 1�.
Remark 9.6.1. As a corollary, Volterman et al. [880] obtained an expression for
exceedance probabilities

P.XR
i WmWn < YS

j WsWk/ D
iY

`D1
�`.R/

jY
`D1

�`.S /

�
iX

`1D1

jX
`2D1

aR
`1;i
aS
`2;j

�`2.S /Œ�`1.R/C �`2.S /�
: (9.32)

Example 9.6.2. Volterman et al. [880] have evaluated the expression in (9.31)
for exponential and uniform distributions. For a standard exponential distribution,
they obtained the expression

�
R;S
i;j .�p/ D FUR

iWmWn .2p � p2/�
iY

`D1
�`.R/

jY
`D1

�`.S /

iX
`1D1

jX
`2D1

aR
`1;i
aS
`2;j

�`2.S /

�

1 � 2.1� p/�`1 .R/C�`2 .S /

�`1.R/C �`2.S /
� .pI �`1.R/; �`2.S //

�
;

where .pI �`1.R/; �`2.S // D

8̂
<
:̂

0; �`1.R/ D �`2.S /�
.1�p/�`1 .R/�.1�p/�`2 .S /

�2
�`1 .R/��`2 .S /

; �`1.R/ ¤ �`2.S /
.

For a standard uniform distribution, the probability is given by

�R;S
i;j .�p/ D F UR

iWmWn.minf1; 2pg/�
iY

`D1
�`.R/

jY
`D1

�`.S /

iX
`1D1

jX
`2D1

aR
`1;i
aS
`2;j

�`2.S /

�

1 � 2.1� p/�`1 .R/C�`2 .S /

�`1.R/C �`2.S /
C p?�`1 .R/C�`2 .S /
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�
h
BŒ1�1=p?�C.�`2.S /C 1; �`1.R//C B1�Œ1�1=p?�C.�`2.S /C 1; �`1.R//

� 2B1=2.�`2.S /C 1; �`1.R//
i�
;

where p? D 2.1� p/.
The above idea has been further discussed by Balakrishnan et al. [146]. They

introduced the notion of simultaneous-closeness probability following a proposal of
Blyth [209]. Replacing the order statistics by progressively Type-II censored order
statistics, the same idea has been introduced into the framework of progressively
Type-II censored order statistics by Volterman et al. [879].

Definition 9.6.3. The simultaneous-closeness probability (SCP) of Xi WmWn, i 2
f1; : : : ; mg, among the order statistics X1WmWn; : : : ; XmWmWn in the estimation of a
population parameter 	 is defined as

�i WmWn.	/ D P
�
jXi WmWn � 	 j < min

j¤i
jXj WmWn � 	 j

�
:

They showed that this probability can we written using the pairwise Voronoi
region associated with Xi WmWn defined by

Ai WmWn D fXi�1WmWn CXi WmWn � 2	g; i 2 f2; : : : ; mg;
and the simultaneous Voronoi region associated with Xi WmWn defined by

Bi WmWn D fjXi WmWn � 	 j � min
j¤i
jXj WmWn � 	 jg; i 2 f1; : : : ; mg:

Then,

�i WmWn.	/ D P.Bi WmWn/ D P.Ai WmWn/ � P.AiC1WmWn/; i 2 f1; : : : ; mg;
where AmC1WmWn D ;. Using this connection, Volterman et al. [879] established the
following expression for the SCP.

Theorem 9.6.4. Suppose the population cumulative distribution function F has
a bounded support .˛; !/. Then, for any i 2 f2; : : : ; m� 1g and any quantile �p ,
p 2 .0; 1/, the SCP of Xi WmWn to �p is given by

�i WmWn.�p/ D Fi�1WmWn.�p/� Fi WmWn.�p/

C
iY

jD1
�j

iX
jD1

aj;i

Z p

0

.1 � u/�j��iC1�1
�
1 � F �minf!; 2�p � F .u/g

���iC1du

�
i�1Y
jD1

�j

i�1X
jD1

aj;i�1
Z p

0

.1 � u/�j��i�1
�
1 � F �minf!; 2�p � F .u/g

���i
du:

Furthermore, �1WmWn.�p/ D 1 � P.A2WmWn/ and �mWmWn.�p/ D P.AmWmWn/.
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If the distribution has an infinite right endpoint of support, i.e., ! D1, then the
minimum in the argument of the cumulative distribution function can be replaced
by 2�p � F .u/. Volterman et al. [879] discussed also some particular baseline
distributions like exponential, uniform, and normal distributions. For exponential
distribution, they found the explicit expression

P.AiC1WmWn/ D Fi WmWn.�p/ �
� iY
jD1

�j

�
.1 � p/2�iC1

�
iX

jD1
aj;i

(
1

�j�2�iC1
�
1 � .1 � p/�j�2�iC1�; �j ¤ 2�iC1

� log.1 � p/; �j D 2�iC1
:

For the uniform distribution, a simple expression is available in terms of the
incomplete beta function Bt .˛; ˇ/, i.e.,

P.AiC1WmWn/ D Fi WmWn.p/ �
iY

jD1
�j

iX
jD1

aj;i Œ2.1 � p/��j

�
�

B1=2.�iC1 C 1; �j � �iC1/ � BŒ1�1=.2.1�p//�C .�iC1 C 1; �j � �iC1/
�
:

Volterman et al. [879] provided extensive computations for selected censoring
schemes, i.e., for

R1 D .20; 0�9/; R2 D .0�9; 20/; R3 D .2�10/;
R4 D .5�2; 0�6; 5�2/; R5 D .0�4; 20; 0�5/; R6 D .0�4; 10�2; 0�4/:

They found that all probabilities are quite close. For late progressive censoring (like
for R2 and R4), the largest progressively Type-II censored order statistic XmWmWn is
Pitman closest to the upper quantiles. However, ifRm > 0 and, thus, right censoring
is present in the data, XmWmWn may not be very close to the desired quantile. In order
to overcome this difficulty, one may extend the life test by observing more items
(like in adaptive censoring or in Type-II progressive hybrid censoring).

The notion of simultaneous Pitman closeness has been applied by Volterman
et al. [880] to measure the distance of predictors of a future sample of progressively
Type-II censored order statistics.

Definition 9.6.5. Given a progressively Type-II censored sample Y S
1WsWk; : : : ;

YS
sWsWk , the simultaneous-closeness probability of YS

j WsWk, j 2 f1; : : : ; sg, to a

progressively Type-II censored order statistic XR
i WmWn, i 2 f1; : : : ; mg from a future

sample is defined as

�S
j .i;R/ D P

�
jY S
j WsWk �XR

i WmWnj < min
`¤j
jYS
`WsWk �XR

i WmWnj
�
:

They found the following expression for this SCP.
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Theorem 9.6.6. Given a progressively Type-II censored sample YS
1WsWk; : : : ; YS

sWsWk ,
the simultaneous-closeness probability of YS

j WsWk, j 2 f1; : : : ; sg, to a progressively

Type-II censored order statistic XR
i WmWn, i 2 f1; : : : ; mg from a future sample is

given by

�S
j .i;R/ D

8
ˆ̂<
ˆ̂:

1 � �S
1;2.i;R/; j D 1

�S
j;j�1.i;R/� �S

jC1;j .i;R/; j 2 f2; : : : ; s � 1g
�S
s;s�1.i;R/; j D s

;

where, for j D 1; : : : ; s � 1,

�S
jC1;j .i;R/ D P.YS

j WsWk < XR
i WmWn/�

iY
`D1

�`.R/

jY
`D1

�`.S /

iX
`1D1

jX
`2D1

aR
`1;i
aS
`2;j

�`2.S /

�
 Z 1

0

Z v

0

.1 � u/�`2 .S /��jC1.S /�1.1 � v/�`1 .R/�1

� F �jC1.S /�
minf�1; 2�v � �ug

�
du dv

�
;

and the exceedance probability is given as in (9.32).



Chapter 10
Progressive Type-II Censoring
Under Nonstandard Conditions

Order statistics under nonstandard conditions have been studied under various
assumptions. Surveys on these results can be found in Arnold and Balakrishnan
[51], Rychlik [764], David and Nagaraja [327, Chap. 5], and Balakrishnan [83].
For progressively Type-II censored order statistics, first results in this regard were
established in Balakrishnan and Cramer [93] and Cramer et al. [314] for independent
but not necessarily identically distributed (INID) random variablesX1; : : : ; Xn from
absolutely continuous cumulative distribution functions F1; : : : ; Fn with density
functions f1; : : : ; fn. Fischer et al. [371] obtained a general mixture representation
of the distributions which generalizes the results of Thomas and Wilson [843] for
IID random variables (see also Guilbaud [418,419]). Results for dependent samples
are due to Rezapour et al. [752, 753].

10.1 Mixture Representation for Progressively Type-II
Censored Order Statistics with Arbitrary Distribution

The following theorem presents a mixture representation for the joint distribution
of the progressively Type-II censored order statistics in the general setup. It relates
the cumulative distribution function of a progressively Type-II censored sample to
the cumulative distribution functions ofm-dimensional marginals of order statistics
X1Wn; : : : ; XnWn from the original sample X1; : : : ; Xn.

Theorem 10.1.1. (Fischer et al. [371]) Let x1; x2; : : : ; xm 2 R. Then, we have
in Model 1.2.5,

P.XR � xm/

D 1Qm
iD1

�
�i�1
Ri

�
X
ZR

P.Xk1Wn � x1;Xk2Wn � x2; : : : ; XkmWn � xm/; (10.1)

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 10,
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where the summation is over all elements
�
k1;R1; : : : ; km;Rm

�
of the set

ZR D
(
�
l1;S1; l2;S2; : : : ; lm;Sm

� W l1 D 1;S1 � f2; : : : ; ng; jS1j D R1;

li D min

	
f1; : : : ; ng n

� i�1[
jD1

.Sj [ flj g/
�

;

Si � f1; : : : ; ng n
� i�1[

jD1
Sj [

i[
jD1
flj g

�
; jSi j D Ri 8 i D 2; : : : ; m

)
: (10.2)

Proof. Let Z be a random variable with values in ZR that models the choice of
the sets R1; : : : ;Rm in Construction 1.1.3. Notice that this determines the indices
k1; : : : ; km of the failure times Xki Wn which we include in the notation. According
to our assumptions, Z is a random variable with values in ZR, which has a
discrete uniform distribution and is independent of the original sample X1; : : : ; Xn.
Consequently, we may assume without loss of any generality that Z is defined on
the same probability space as X1;X2; : : : ; Xn, for otherwise we can consider an
appropriate product space. Since �i denotes the number of units in the experiment
before the i th failure, i.e., �i is the cardinality of the set Ni in the algorithm before
the i th run, a simple combinatorial argument readily yields

jZRj D
mY
iD1

 
�i � 1
Ri

!

(see also Stigler [825]). Hence, it follows that

P.XR � xm/

D
X
ZR

P
�

XR � xm
ˇ̌
ˇZ D �k1;R1; : : : ; km;Rm

��

� P
�
Z D �k1;R1; : : : ; km;Rm

��

D
X
ZR

"
mY
iD1

 
�i � 1
Ri

!#�1
P
�

XR � xm
ˇ̌
ˇZ D �k1;R1; : : : ; km;Rm

��

D 1Qm
iD1

�
�i�1
Ri

�
X
ZR

P.Xk1Wn � x1;Xk2Wn � x2; : : : ; XkmWn � xm/;

where the summation is over ZR defined in (10.2). ut
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It is worth mentioning that Theorem 10.1.1 does not impose any assumptions
on the distribution of the original sample X1; : : : ; Xn. Thus, these assumptions
are implicitly included in the distribution of the marginal order statistics
.Xk1Wn; : : : ; XkmWn/, fk1; : : : ; kmg � f1; : : : ; ng.

In the IID case, the mixture representation simplifies since the probabilities in
(10.1) depend only on .k1; : : : ; km/ but not on

�
R1; : : : ;Rm

�
. Using the probability

mass function of .K1; : : : ; Km/ given in (10.9), we find the mixture representation
(see Thomas and Wilson [843], Guilbaud [419], and Cramer and Lenz [303])

P.XR � xm/ D
X

1Dk1<k2<���<km�n�Rm
!.k2; : : : ; km/P.Xk1Wn � x1; : : : ; XkmWn � xm/;

where !.k2; : : : ; km/ D Qm
jD2

. n�kj
n��jC1�kj

/

. n�kj�1
n��j�kj�1

/
and X1Wn; Xk2Wn; : : : ; XkmWn, 1 < k2 <

� � � < km � n � Rm, are order statistics from an IID sample X1; : : : ; Xn. Guil-
baud [418, 419] proposed algorithms to compute the marginal distributions which
are applied in the construction of nonparametric confidence intervals, prediction
intervals, and tolerance intervals (see Sects. 17.1.5, 17.4.1, and 17.5).

10.2 Joint Density Function of Progressively Type-II
Censored Order Statistics

In Model 1.2.2, let F1; : : : ; Fn be absolutely continuous cumulative distribution
functions with density functions f1; : : : ; fn, respectively. Then, P XR

has a density
function f XR

as given in the following theorem.

Theorem 10.2.1 (Balakrishnan and Cramer [93]). For n 2 N, let Sn be
the set of all permutations � of .1; : : : ; n/. For brevity, let R�r D Pr

jD1 Rj ,
1 � r � m, with R�0 D 0 and R�m D n�m. Then, the joint density function of
X1WmWn; : : : ; XmWmWn is given by

f XR

.tm/ D 1

.n � 1/Š

0
@

mY
jD2

�j

1
A X
�2Sn

mY
jD1

f�.j /.tj /

�
8
<
:

mCR�jY
rDmCR�j�1C1

F �.r/.tj /

9
=
; ; t1 � � � � � tm; (10.3)

where �.i/ is the ith component of the permutation vector � 2 Sn, 1 � i � n.
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X1

Xm+1, . . . , Xm+R•1

R1

X2

Xm+R•1+1, . . . , Xm+R•2

Xm

Xm+R•m−1+1, . . . , Xm+R•m

RmR2

Fig. 10.1 Generation process of progressively Type-II censored order statistics with certain
outcome and corresponding lifetimes

Proof. To prove this result, we consider the joint cumulative distribution function

P
�
XR
1WmWn � x1; : : : ; XR

mWmWn � xm
�
: (10.4)

Without loss of generality, we assume that x1 � � � � � xm holds in (10.4).
First, taking into account the construction process 1.1.3 of progressively Type-II

censored order statistics, we assume a certain outcome of this procedure. Namely,
we assign the failures to the lifetimes X1; : : : ; Xm, i.e., XR

1WmWn D X1; : : : ; XR
mWmWn D

Xm, and the lifetimes of the progressively censored units as in Fig. 10.1. This means
that, before the r th failure, the units with indices r; : : : ; m andmCR�r�1C1; : : : ; n
are still in the experiment. Moreover, the previous setup fixes that the r th failure is
assigned to the unit number r , 1 � r � m. In order to simplify the notation, we
introduce the random vectors Wr D .XmCR�r�1C1; : : : ; XmCR�r /, 1 � r � m. The
components of Wr represent the lifetimes of those units which are progressively
censored immediately after the r th failure. Using this notation, we can write

min fXrC1; : : : ; Xm;XmCR�r�1C1; : : : ; Xng
D min fXrC1; : : : ; Xm;Wr ; : : : ;Wmg :

Then,

P .Xr � min fXrC1; : : : ; Xm;Wr ; : : : ;Wmg ; Xr � xr ; 1 � r � m/ (10.5)

denotes the probability that the random variables Xr represent the failure times
(which are supposed to be less than xr ) and that the units corresponding to the
components of Wr are progressively censored (after the r th failure), 1 � r � m.

The probability in (10.5) can be calculated as follows:

P .Xr � min fXrC1; : : : ; Xm;Wr ; : : : ;Wmg ; Xr � xr ; 1 � r � m/

D
Z x1

�1
: : :

Z xm

�1
P .tr � min ftrC1; : : : ; tm;Wr ; : : : ;Wmg ; 1 � r � m/

�
mY
jD1

fj .tj / dtm : : : dt1
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D
Z x1

�1

Z x2

t1

: : :

Z xm

tm�1

P .tr � min fWr ; : : : ;Wmg ; 1 � r � m/

�
mY
jD1

fj .tj / dtm : : : dt1: (10.6)

Now, let us consider the probability term in the integrand in (10.6). Using the
definition of the minimum and taking into account the ordering t1 � � � � � tm,
we obtain the expression

P .tr � min fWr ; : : : ;Wmg ; 1 � r � m/
D P �tr � minfWrg; 1 � r � m

�

D P .t1 � minfW1g/ P .t2 � minfW2g/ � � �P .tm � minfWmg/

D
mY
jD1

mCR�jY
rDmCR�j�1C1

F r.tj /:

Hence, we obtain

P .Xr � min fXrC1; : : : ; Xm;Wr ; : : : ;Wmg ; Xr � xr ; 1 � r � m/

D
Z x1

�1

Z x2

t1

: : :

Z xm

tm�1

mY
jD1

fj .tj /

8
<
:

mCR�jY
rDmCR�j�1C1

F r.tj /

9
=
;dtm : : : dt1:

Differentiation of (10.6) w.r.t. x1; : : : ; xm yields the function

hI .xm/ D
mY
jD1

fj .xj /

8
<
:

mCR�jY
rDmCR�j�1C1

F r.xj /

9
=
; ; x1 � � � � � xm;

where I D .1; : : : ; n/. Choosing a permutation �.I / D .�.1/; : : : ; �.n// of
.1; : : : ; n/, this leads to the expression

h�.I /.xm/ D
mY
jD1

f�.j /.xj /

8<
:

mCR�jY
rDmCR�j�1C1

F �.r/.xj /

9=
; ; x1 � � � � � xm:

In the next step, we have to take into account that those units that are censored at
the r th failure are censored at random. The procedure works as follows. First, we
specify a number i1 out of n D �1 units and assign this number to the first failure.
Then, from the remaining numbers, we choose randomly R1 values i2; : : : ; iR1C1
out of �1 � 1 (with ordering!) and remove the associated units from the experiment.
The corresponding probability is .�1�R1�1/Š

.�1�1/Š D �2Š

.�1�1/Š . Then, we choose a new
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failure time XiR1C2 out of �2 possible random variables and so on. Continuing this
process, we obtain a permutation .i1; : : : ; in/ of .1; : : : ; n/, i.e, .i1; : : : ; in/ D �.I /.

The probability to choose a specific permutation � leading to the previous
outcome is then given by

K D 1

.n � 1/Š
mY
jD2

�j :

Denoting by the event A� the assignment of the permutation � to the unit indices,
we obtain

P
�
XR � xm

� D
X
�2Sn

P
�
XR � xm j A�

�
P.A�/

D K
X
�2Sn

P
�
X�.r/ � min

˚
X�.rC1/; : : : ; X�.m/;W�

r ; : : : ;W
�
m

�
;

X�.r/ � xr ; 1 � r � m
�
;

where W�
j D

�
X�.mCR�j�1C1/; : : : ; X�.mCR�j /

�
, 1 � j � m. By construction (see

Assumption 1.2.6), the eventA� is independent of the random variablesX1; : : : ; Xn
so that the condition can be omitted after specifying the associated outcome of
the progressive censoring procedure. Any term in the above sum is of the form in
(10.5). In order to apply the preceding results, the specific permutation of the indices
only needs to be taken into account. Therefore, differentiation of the preceding
expression yields

1

.n � 1/Š
mY
jD2

�j
X
�2Sn

h�.I /.xm/;

which is the joint density function of X1WmWn; : : : ; XmWmWn presented in Eq. (10.3).
ut

Assuming F1 D � � � D Fn, (10.3) yield directly the joint density function of
progressively Type-II censored order statistics in the IID case, i.e., f XR

has the
representation (2.4). Hence, the proof of Theorem 10.2.1 also provides an alternate
proof for the joint density function in the IID case.

Modeling of Outliers

The case when F1 D � � � D Fn�1 D F and Fn D G is of special interest in
the modeling of a single outlier (see Barnett and Lewis [171]). With f and g
as the corresponding densities, the joint density function of X1WmWn; : : : ; XmWmWn in
(10.3) simplifies considerably. For t1 � � � � � tm, Balakrishnan and Cramer [93]
showed that
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f XR

.tm/ D
0
@

mY
jD2

�j

1
A

mX
�D1

˚
g.t�/F .t�/CR�f .t�/G.t�/

� ˚
F .t�/

�R��1

�
mY
jD1
j¤�

f .tj /
˚
F .tj /

�Rj
: (10.7)

For m D n and R D .0�n/, Eq. (10.7) reduces to the well-known formula for den-
sity functions of order statistics from a single-outlier model presented, for example,
in Kale and Sinha [491] and Joshi [485] (see also Arnold and Balakrishnan [51]).

Connection to Permanents

Vaughan and Venables [874] established a connection of distributions of order
statistics from INID random variables to permanents. They pointed out that the
joint density function of order statisticsX1Wn; : : : ; XnWn from a sampleX1; : : : ; Xn of
independent random variables with cumulative distribution functionsFi and density
functions fi , i D 1; : : : ; n, can be written as the permanent of the matrix

0
BBB@

f1.t1/ � � � fn.t1/
f1.t2/ � � � fn.t2/
:::

: : :
:::

f1.tn/ � � � fn.tn/

1
CCCA ; t1 � � � � � tn:

Similar expressions hold for all marginal density and cumulative distribution func-
tions. In particular, the one-dimensional marginal cumulative distribution function
of the r th order statistic can be expressed as a weighted sum of permanents of
matrices

Bi D
	
.F1.t/; : : : ; Fn.t//˝ 1i

.F 1.t/; : : : ; F n.t//˝ 1n�i



; t 2 R;

where the notation ˝ denotes the Kronecker product of matrices/vectors. Notice
that the permanent per.A/ of a square matrix A D .aij /i;j 2 R

n	n is defined by

per.A/ D
X
�2Sn

nY
iD1

ai�.i/:

As pointed out by Balakrishnan and Cramer [93], Theorem 10.2.1 yields a
representation of the joint density function in terms of a permanent
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f XR

.tm/ D 1

.n � 1/Š
mY
jD2

�j per

0
BBBBB@

.f1.t1/; : : : ; fn.t1//˝ 11

.F 1.t1/; : : : ; F n.t1//˝ 1R1
:::

.f1.tm/; : : : ; fn.tm//˝ 11

.F 1.tm/; : : : ; F n.tm//˝ 1Rm

1
CCCCCA
:

Cramer et al. [314] obtained an alternative expression to (10.3) based on an
expansion of permanents due to Ryser [766, p. 27] (see also Bebiano [183] and Minc
[650, p. 124]). Notice that Ryser’s method is known to be the most efficient way of
computing a permanent. The procedure gets by with .n� 1/.2n� 1/multiplications
which is the best known value for the evaluation of permanents (see, e.g., Minc [650,
p. 126], Kräuter [549], Liang et al. [590]).

Theorem 10.2.2. Let FS D 1
jS j
P

˛2S F˛. The joint density function of
progressively Type-II censored order statistics X1WmWn; : : : ; XmWmWn, with censoring
scheme R D .R1; : : : ; Rm/ from n INID random variables X1; : : : ; Xn, is given by

f XR

.tm/

D 1

nŠ

n�1X
kD0

.�1/k.n � k/n
X
jS jDn�k

� mY
jD1

�j

� mY
iD1

fS.ti /.1 � FS.ti //Ri
!
;

where t1 � � � � � tm.

Thus, the result of Guilbaud [417] extends to the case of progressive censoring
from INID variables, viz., that the progressively Type-II censored order statistics
from INID variables can be seen as a generalized mixture of progressively Type-II
censored order statistics from a population with cumulative distribution function FS
and censoring scheme R. In particular, this representation illustrates that an explicit
expression for the joint cumulative distribution function can be easily obtained via
integration. In fact, the “mixture” probabilities correspond to those for INID order
statistics. The representation presented in Theorem 10.2.2 has also been noted by
Guilbaud [420] in his discussion of the paper by Balakrishnan [84].

Applications to Stochastic Orderings

Let X1; : : : ; Xn and Y1; : : : ; Yn be two samples of INID random variables with
cumulative distribution functions F1; : : : ; Fn and G1; : : : ; Gn, respectively. Then,
Fischer et al. [371] found the following basic result which follows from a direct
application of the mixture representation.
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Theorem 10.2.3. Let X1;nWn D .X1Wn; : : : ; XnWn/0 and Y1;nWn D .Y1Wn; : : : ; YnWn/0.
Then, for any censoring scheme R, stochastic ordering of the samples of order
statistics implies stochastic ordering of the two samples of progressively Type-II
censored order statistics, i.e.,

X1;nWn �st Y1;nWn H) XR �st YR:

A direct application of this result yields an extension of a result for order statistics
shown by Hu [453, 454]. They considered cumulative distribution functions of the
type

F i .t/ D e�H.�i t/; Gi .t/ D e�H.�i t/; t � 0; 1 � i � n;

where �1; : : : ; �n; �1; : : : ; �n > 0 and H is a function defined by

H.t/ D
Z t

0

h.s/ds; t � 0;

with a nonnegative integrable function h such that limt!1H.t/ D 1. Moreover,
suppose h is decreasing as well as that the function h� defined by h�.x/ D xh.x/ is
increasing. Then, �n <w �n implies XR �st YR. The result can be directly applied
to Weibull and gamma families as shown in Fischer et al. [371]. For order statistics,
we refer to Hu [453, 454], Khaledi and Kochar [523], and Lihong and Xinsheng
[596]). Moreover, an application to proportional hazards distributions is possible.
It extends results of Proschan and Sethuraman [731] (for the univariate stochastic
order, see also Boland et al. [212] and Pledger and Proschan [723]).

A family of cumulative distribution functions fF1; : : : ; Fng is said to have
proportional hazard functions if for all t 2 R,

F i .t/ D e��iH.t/; i D 1; 2; : : : ; n;

where �1; : : : ; �n > 0 and H W R �! R is a nondecreasing function with H.t/ D
0 for all t < 0 and limt!1H.t/ D 1. The parameters �1; : : : ; �n are called
constants of proportionality for the common hazard functionH .

Theorem 10.2.4. Suppose XR and YR are INID progressively Type-II censored
order statistics based on F1; : : : ; Fn and G1; : : : ; Gn, respectively, where

(1) F1; : : : ; Fn have proportional hazard functions with constants of proportion-
ality �1; : : : ; �n > 0 for the common hazard function H ,

(2) G1; : : : ; Gn have proportional hazard functions with constants of proportion-
ality �1; : : : ; �n > 0 for the common hazard function H , and

(3) �n <w �n.

Then, XR �st YR.
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The preceding result can be directly applied to extend a result of Kochar
and Korwar [540] on stochastic comparisons of generalized spacings from INID
exponential distributions (see also Kochar and Rojo [541]). Using the notation
introduced in Sect. 2.5.2, we get for the vector of .r; 1/-spacings S?Rr;1 D XR

r WmWn �
XR
1WmWn, r D 2; : : : ; m, (cf. (2.38)) the following result.

Corollary 10.2.5. Let X1; : : : ; Xn; Y1; : : : ; Yn be independent exponential ran-
dom variables such that Xi has hazard rate �i and Yi has hazard rate �i ,
i D 1; : : : ; n. Then, �n <w �n implies

.S?RX Ir;1/rD2;:::;m �st .S
?R
Y Ir;1/rD2;:::;m:

If Y1; : : : ; Yn is an IID sample with hazard rate � D 1
n

Pn
jD1 �j , the preceding

results show that XR �st YR since �n <w �1n. Moreover, Fischer et al. [371]
pointed out that � can be replaced by any value � 2 Œ�;1/. For order statistics,
such comparisons have been addressed by Ball [165], Barbour et al. [166], Li and
Shaked [586], and Ma [624]. Under the assumption that Y1; : : : ; Yn is an IID sample,
Ma [624] showed that the stochastic order of the order statistics is determined
by the stochastic ordering of the minimum and maximum of the samples. Thus,
Theorem 10.2.3 can be written as

X1Wn �st Y1Wn H) XR �st YR; XnWn �st YnWn H) XR �st YR:

Mao and Hu [637] discussed likelihood ratio ordering of INID progressively
Type-II censored order statistics and obtained the following result.

Theorem 10.2.6. Let XR
1WmWn; : : : ; XR

mWmWn be progressively Type-II censored order
statistics from an INID sample X1; : : : ; Xn and R D .R1; : : : ; Rm/ be a censoring
scheme with decreasing censoring numbers R1 � R2 � � � � � Rm. Then, if a
permutation � 2 Sn exists with X�.1/ �lr : : : �lr X�.n/, the progressively Type-II
censored order statistics are likelihood ratio ordered, i.e.,

Xi WmWn �lr Xj WmWn; 1 � i < j � m:

Finally, Fischer et al. [371] established an extension of a result of Sen [790]
which we present for completion.

Theorem 10.2.7. Let XR
1WmWn; : : : ; XR

mWmWn be INID progressively Type-II censored
order statistics based on F1; : : : ; Fn and a censoring scheme R 2 Cm

m;n and

YR
1WmWn; : : : ; YR

mWmWn be progressively Type-II censored order statistics from the
cumulative distribution function

F � D 1

n

nX
kD1

Fk:
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Further, let

˛i D i � 1; ˇi D n � �i C 1 D i C
i�1X
jD1

Rj ; i 2 f2; : : : ; mg;

and �p D inffu 2 R W F �.u/ � pg be the pth quantile of F �, p 2 .0; 1/. Then,
for i 2 f2; : : : ; m � 1g and x � � ˛i

n
< �ˇi

n

� y,

P
�
x < XR

i WmWn � y
� � P

�
x < YR

i WmWn � y
�
;

where equality holds if Fk.x/ D F �.x/ and Fk.y/ D F �.y/ for all k 2 f1; : : : ; ng.
If Rm > 0, then

P
�
x < XR

mWmWn � y
� � P

�
x < YR

mWmWn � y
� 8 x � � ˛m

n
< �ˇm

n
� y;

with equality holding if Fk.x/ D F �.x/ and Fk.y/ D F �.y/ for all k 2
f1; : : : ; ng.

Furthermore, for x 2 R,

P
�
XR
1WmWn � x

� � P
�
Y R
1WmWn � x

�

with equality holding if Fk.x/ D F �.x/ for all k 2 f1; : : : ; ng.

10.3 Dependence Structure of INID Progressively Type-II
Censored Order Statistics

The dependence structure of INID progressively Type-II censored order statistics
has been studied in Cramer and Lenz [303] by considering the generation process
of progressively Type-II censored order statistics presented in Fischer et al. [371]
(see Sect. 1.1.1). Using the notation introduced in Assumption 1.2.6, Cramer and
Lenz [303] obtained the following results. The probabilities in (10.8) can also be
found in Thomas and Wilson [843].

Proposition 10.3.1. (i) .Kj ;
Sj
iD1Ri;Ki /1�j�m is a Markov chain with tran-

sition probabilities

P.KjC1 D kjC1;
jC1[
iD1

Ri;Ki D
jC1[
iD1

Si
ˇ̌
ˇ Kl D kl ;

l[
iD1

Ri;Ki D
l[

iD1
Si ; 1 � l � j /
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D
8
<
:
P.RjC1;kjC1 D SjC1/ D 1

.
�jC1�1

RjC1
/

if G.kj ;
Sj
iD1 Si / D kjC1

0 if G.kj ;
Sj
iD1 Si / ¤ kjC1

;

where

G.kj ;

j[
iD1

Si / D min

	
fkj C 1; : : : ; ng n

j[
iD1

Si


I

(ii) .Kj /1�j�m forms a Markov chain with transition probabilities

P.Kj D kjKj�1 D �/ D
�

n�k
n��jC1�k

�
�

n��
n��j��

� ; 2 � j � m; (10.8)

and P.K1 D 1/ D 1;
(iii) In general, .Kj ;Rj;Kj /1�j�m is not a Markov chain.

In particular, the joint probability mass function ofK1; : : : ; Km can be taken from
(10.8) as

P.Kj D kj ; j D 1; : : : ; m/ D
mY
jD2

� n�kj
n��jC1�kj

�
� n�kj�1
n��j�kj�1

� ;

1 D k1 < � � � < km D n � Rm: (10.9)

Dependence properties of (usual) INID order statistics X1Wn; : : : ; XnWn have been
discussed extensively in the literature. The following selection can be found in
Boland et al. [211].

Theorem 10.3.2. Let X1Wn; : : : ; XnWn be order statistics from INID random
variables X1; : : : ; Xn. Then:

(i) .X1Wn; : : : ; XnWn/ is associated;
(ii) For i; j 2 f1; : : : ; ng with i < j , .Xi Wn; Xj Wn/ are right tail increasing in

sequence;
(iii) Let X1; : : : ; Xn have differentiable density functions (w.r.t. the Lebesgue

measure) and proportional hazard functions on an interval Œa; b� such that
Œa; b� is the support of Xj for each j 2 f1; : : : ; ng. Then, .Xi Wn; Xj Wn/ is
conditionally increasing in sequence for all j 2 f2; : : : ; ng;

(iv) In general, .X1Wn; : : : ; XnWn/ does not have the right corner set increasing
property and, consequently, does not have the MTP2 property (even if
X1; : : : ; Xn have differentiable (Lebesgue) densities with a common interval
support).
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The last statement implies directly that XR does not have the MTP2 property
in general as is true in the IID model (see Theorem 2.5.10). In order to prove
association of INID progressively Type-II censored order statistics, Cramer and Lenz
[303] proved the following ordering result which implies association of the random
indices .K1; : : : ; Km/.

Proposition 10.3.3. .K1; : : : ; Km/ is conditionally increasing in sequence (CIS),
i.e., for j 2 N with j < m, .k1; : : : ; kj /; .k

�
1 ; : : : ; k

�
j / 2 f1; : : : ; ngj with kj � k�j

and P.K1 D k1; : : : ; Kj D kj / > 0, P.K1 D k�1 ; : : : ; Kj D k�j / > 0,

ŒKjC1 j K1 D k1; : : : ; Kj D kj � �st ŒKjC1 j K1 D k�1 ; : : : ; Kj D k�j �:

Moreover, .K1; : : : ; Km/ is associated.

Using that subsamples of associated samples are associated (cf. Müller and
Stoyan [659]) and a result on mixtures and association of random variables due
to Jogdeo [480], the following result holds.

Theorem 10.3.4. Let .X1; : : : ; Xn/ be associated. Then,

.XR
1WmWn; : : : ; XR

mWmWn;K1; : : : ; Km/

is associated, too. In particular, this yields association of XR.

Notice that independence of .X1; : : : ; Xn/ is not necessary to establish asso-
ciation of XR. Therefore, the above result holds for samples exhibiting some
dependence between the random variables.

Finally, Cramer and Lenz [303] showed that Xj WmWn is right tail increasing
in X1WmWn, i.e., P.XR

j WmWn > t jX1WmWn > s/ is increasing in s for any t . This
notion is denoted by RTI.Xj WmWnjX1WmWn/. Further results in this direction have been
established in Mao and Hu [637]. In particular, they extended the above results and
proved RTI.Xj WmWnjXi WmWn/ for 1 � i < j � m. A similar result for the left tail
decreasing property has also been shown. These findings extended results of Boland
et al. [211] for INID order statistics to progressive censoring.

10.4 Dependence and Copulas

Whilst the preceding approaches relax the assumption of identical distribution,
further efforts have been made to introduce dependence in progressive Type-II cen-
soring (see Theorem 10.3.4). Rezapour et al. [752, 753] assumed an Archimedean
copula C to model the dependence in the sample X1; : : : ; Xn, i.e.,

C .u1; : : : ; un/ D  
 

nX
iD1

 �1.uj /
!
; (10.10)
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where  W Œ0;1/ �! Œ0; 1� is a completely monotone generator function such
that  .0/ D 1 and limx!1  .x/ D 0 (see McNeil and Nešlehová [643]). With
G.t/ D expf� �1.t/g, t 2 Œ0; 1�, and M be a cumulative distribution function
with Laplace transform  , (10.10) can be written as

C .u1; : : : ; un/ D
Z 1
0

nY
iD1

G˛.ui / dM .˛/:

Using this expression, the sample is supposed to have the survival function

P.X > x/ D
Z 1
0

nY
iD1

G˛.F i.xi // dM .˛/; x D .x1; : : : ; xn/:

Let Fi have a density function fi , i D 1; : : : ; n, and g be the first derivative ofG.
Then, Rezapour et al. [753] showed that the density function f XR

can be expressed
as a mixture of INID progressively Type-II censored order statistics

f XR

.tm/ D
Z 1
0

f XR
˛ .tm/dM .˛/; tm 2 R

m; (10.11)

where f XR
˛ is the joint density function of INID progressively Type-II censored

order statistics XR
˛ D .X1WmWnI˛; : : : ; XmWmWnI˛/ with baseline distributions Gi.�; ˛/,

defined by

Gi.t; ˛/ D 1 �G˛.F i .t// D exp.�˛ �1.F i .t///; i D 1; : : : ; n; ˛ � 0
(see (10.3)). Hence, the density function f XR

in (10.11) can be seen as a M -
mixture of the distributions of INID progressively Type-II censored order statistics.
Moreover, the joint cumulative distribution function has the representation

P.XR � xm/ D
Z 1
0

P.XR
˛ � xm/dM .˛/; xm 2 R

m: (10.12)

Moreover, it follows from (10.12) that any marginal distribution is also a mixture of
the corresponding INID progressively Type-II censored order statistics. As pointed
out by Rezapour et al. [753], the integral in (10.11) can be explicitly calculated as
given below.

Corollary 10.4.1. Let K D 1
.n�1/Š

Qm
jD2 �j . Then,

f XR

.tm/ D K
X
�2Sn

mY
jD1

h�.j /.tj /

�  .m/
� mX
jD1

�
 �1.F �.j /.tj //C

mCR�jX
rDmCR�j�1C1

 �1.F �.r/.tj //
��
;
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where t1 � � � � � tm,  .m/ denotes the mth derivative of  , and hi .t/ D
fi .t/

 0. �1ıF i .t// .

In the case of identically distributed random variables X1; : : : ; Xn, the density
function in (10.11) simplifies to

f XR

.tm/ D
Z 1
0

� mY
jD1

�j

� mY
jD1

g.tj ; ˛/G
Rj
.tj ; ˛/dM .˛/ ;

where G.t; ˛/ D exp

	
� ˛ �1

�
F .t/

�

and g.t; ˛/ D @

@t
G.t; ˛/. Thus, for

Archimedean copulas, the distribution of progressively Type-II censored order
statistics is a mixture of IID progressively Type-II censored order statistics with
population distributions G.�; ˛/, ˛ � 0. As before, we can get rid of the integral
(see Rezapour et al. [753]). Furthermore, it is interesting to see that the marginal
distributions have simple expressions in this setting. For instance, the density
function and cumulative distribution function are given by (cf. (2.25))

f XrWmWn.t/ D cr�1
rX
iD1

ai;r

 0
	
�i 

�1� NF .t/�



 0
	
 �1

� NF .t/
�
 f .t/; t 2 R;

F XrWmWn.t/ D 1 � cr�1
rX
iD1

ai;r

�i
 

	
�i 

�1� NF .t/
�

; t 2 R:

Similar representations can be established for bivariate marginals (see Rezapour
et al. [753]).

Moreover, it is worth mentioning that the triangle and quadruple rules given in
(2.46) and (2.47) for the IID case also hold in this model. Additionally, the quantile
representation given in Theorem 2.1.1 is also true in the present situation.

Remark 10.4.2. If we choose  .u/ D e�u, u � 0, the inverse function is given
by  �1.t/ D � log t , t 2 .0; 1�. Then, the copula in (10.10) is the independence
copula yielding the IID case. Hence, G.t/ D t , t 2 .0; 1�, and M is the
cumulative distribution function of a one-point distribution in ˛ D 1. In this
situation, (10.11) reduces to (10.3).

10.5 Progressive Type-II Censoring for Multivariate
Observations

Considering p-dimensional random vectors X and Y and a continuous function˘ W
R
p �! R such that
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�p
�fx j˘.x/ D zg� D 0 for all z 2 R; (10.13)

conditionally ordered multivariate variables can be defined by

X 4˘ Y ” ˘.X/ � ˘.Y/

(see, e.g., [60, 76, 79], [750, p. 66], for further details and interpretations). In
particular, the function ˘ induces a partition of R

p. Assuming an IID sample
Xi � f X, 1 � i � n, this concept has been applied to define conditionally
˘ -ordered statistics X˘ I1Wn 4˘ � � � 4˘ X˘ InWn by Bairamov [76] using the
order statistics˘1Wn.X/; : : : ;˘nWn.X/ of the sample˘.X1/; : : : ;˘.Xn/. Notice that
condition (10.13) implies that the distribution of ˘.X/ is (absolutely) continuous.

Since ˘.X1/; : : : ;˘.Xn/ are IID random variables with cumulative distribution
function F˘.t/ D P.˘.X/ � t/, the density function of X˘ Ij Wn is given by

f X˘Ij Wn .x/ D n
 
n� 1
j � 1

!
F
j�1
˘ .˘.x//

�
1 � F˘.˘.x//

�n�j
f X.x/; x 2 R

p

(see [60, 76]), where F˘.˘.x//, x 2 R
p , is called the structural function. Arnold

et al. [60] pointed out that the ordering can be viewed as a concomitant based
ordering.

In a similar manner, Bairamov [76] defined progressively censored ˘ -ordered
statistics X˘ I1WmWn 4˘ � � � 4˘ X˘ ImWmWn by applying the progressive censoring
procedure to the sample ˘.X1/; : : : ;˘.Xn/. This results in progressively Type-
II censored order statistics ˘1WmWn.X/; : : : ;˘mWmWn.X/ and induces the desired
progressively censored multivariate sample. As a result, similar expressions can be
established for density functions, moments, etc. as in the univariate case.
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Inference



Chapter 11
Linear Estimation in Progressive Type-II
Censoring

Linear inference for parametric distributions with ordered data attracted great
attention since the class ofL-statistics

Pm
iD1 ciXi has many applications. Moreover,

L-statistics have a simple and nice structure. In particular, least-squares estimation
has been widely discussed (see, for instance, Arnold et al. [58, 59] and David and
Nagaraja [327, Sect. 8.4]) since it leads to explicit expressions of the estimators
provided that the single and product moments can be computed easily (see Chap. 7).
For progressive Type-II censoring, an extensive treatment of this topic is presented
in Balakrishnan and Aggarwala [86, Chap. 6] reflecting the state of research in
2000. Since the publication of this monograph, many results have been established
in this direction. In the following, we summarize these results and present some
applications of L-statistics in progressive Type-II censoring.

11.1 Preliminaries

In this chapter, we consider linear estimation of parameters. In particular, we assume
that the progressively Type-II censored order statistics are based on location–scale
families of distributions

Fl D fF.� � �/j� 2 Rg; (11.1a)

Fs D fF.�=#/j# > 0g; (11.1b)

Fls D
n
F
� � � �
#

�ˇ̌
ˇ� 2 R; # > 0

o
; (11.1c)

respectively, where F is a given continuous distribution. In these cases, the random
variables form a linear model. We illustrate this approach for the location–scale
model Fls as the corresponding results for Fl and Fs are quite similar. Let XR D
.X1WmWn; : : : ; XmWmWn/0 be the random vector of progressively Type-II censored order

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 11,
© Springer Science+Business Media New York 2014
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statistics based on F 2 Fls with location parameter� and scale parameter # . Then,
we define YR D .Y1WmWn; : : : ; YmWmWn/0 by

Yj WmWn D Xj WmWn � �
#

; j D 1; : : : ; m:

Introducing WR D #.YR � EYR/ and b D EYR, we arrive at the linear model

XR D � � 1C #YR D � � 1C #EYR CWR D Œ1;b�
 
�

#

!
CWR D B� CWR;

where EWR D 0, Cov.WR/ D #2˙ , ˙ D Cov.YR/, B D Œ1;b� is the known
design matrix, and � D .�; #/0 is the (unknown) parameter vector. Notice that the
distribution of YR is parameter-free, and it depends only on the standard memberF .

Remark 11.1.1. The above representations are based on the assumption that
the complete progressively Type-II censored sample X1WmWn; : : : ; XmWmWn has been
observed. However, by deleting the respective lines (and rows) in both the
mean vector EYR and the covariance matrix ˙ , the subsequent results
can be applied also to a multiply censored sample Xj1WmWn; : : : ; Xjr WmWn with
1 � j1 < � � � < jr � m.

This observation is of particular interest in the context of general progressive
censoring which can be seen as a left censored progressively censored sample (see
p. 10). In this case, we have to delete the first r lines and rows, respectively.

11.1.1 Least-Squares Estimation

Least-squares estimators for � in the linear model XR D B� CWR are obtained
by minimizing the squared (Mahalanobis) distance

Q.�/ D .XR � B�/0˙�1.XR � B�/ D ��XR � B�
��2
˙

w.r.t. the parameter � for a given sample XR, where˙ is assumed to be regular. It is
well known (see, e.g., Christensen [264]) that the resulting least-squares estimator
of � is given by

b� D .B 0˙�1B/�1B 0˙�1XR: (11.2)

Moreover, the variance–covariance matrix ofb� is given by

Cov.b�/ D #2.B 0˙�1B/�1:

This shows that the least-squares estimator can be derived when the covariance
matrix ˙ D Cov.YR/ can be calculated. Explicit representations result if the
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inverse matrix of ˙ has a nice structure. It has to be mentioned that absolute
continuity of the distribution P YR

(or of the cumulative distribution function F )
ensures a non-singular covariance matrix ˙ .

Given representation (11.2), the Gauß–Markov theorem yields the best linear
unbiased estimators (BLUE)b� andb# .

Similar representations result in location or scale families where we assume
# D 1 and � D 0, respectively. In particular, we have the linear models

XR � b D � � 1CWR;

XR D #EYR CWR;

where b D EYR. The representations of the least-squares estimators follow from
(11.2) with B D 1 and B D EYR D b, respectively. In particular, we find the
following expressions for the best linear unbiased estimators.

Location model Fl

The BLUE of � is given by

b�LU D 1

10˙�11
10˙�1.XR � b/

with variance Var.b�LU/ D #2

10˙�11
.

Scale model Fs

The BLUE of # is given by

b#LU D 1

b0˙�1b
b0˙�1XR

with variance Var.b#LU/ D #2

b0˙�1b .

Location–scale model Fls

Suppose m � 2. Using the fact that n DPm
jD1.Rj C 1/, the BLUEs b�LU and b#LU

are given by

b�LU D 1

�

�
.b0˙�1b/.10˙�1XR/ � .10˙�1b/.b0˙�1XR/

�
; (11.3a)

b#LU D 1

�

�
.10˙�11/.b0˙�1XR/� .10˙�1b/.10˙�1XR/

�
; (11.3b)
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where � D 10˙�11b0˙�1b � .10˙�1b/2. The variances and covariance of these
estimators are given by

Var.b�LU/ D b0˙�1b
�

#2; Var.b#LU/ D 10˙�11
�

#2;

Cov.b�LU;b#LU/ D �b0˙�11
�

#2:

Remark 11.1.2. (i) It has to be noted that

10˙�11b0˙�1b � .10˙�1b/2 > 0

provided that m � 2. This can be seen from the Cauchy–Schwarz inequality
which proves that equality holds if b D a1 for some a 2 R. However, this
implies EX1WmWn D � � � D EXmWmWn. Since, by definition, X1WmWn � � � � �
XmWmWn, this readily yields X1WmWn D � � � D XmWmWn almost everywhere. This
contradicts the assumption that ˙ is non-singular.

(ii) In the location–scale model, the scale estimator b#LU can be written as

b#LU D 1

�

�
10˙�11b0˙�1 � 10˙�1b10˙�1

�
.XR � X1WmWn1/

D 1

�
10˙�1

�
1b0 � b10

�
˙�1.XR �X1WmWn1/:

11.1.2 Linear Equivariant Estimation

Balakrishnan et al. [139] have presented general results on the relation between best
linear unbiased estimation and best linear equivariant estimation. Subsequently, rep-
resentations of the best (affine) linear equivariant estimators (BLEEs) of the location
and scale parameters are given in three different setups, i.e., we present the linear
equivariant estimator that minimizes the respective standardized mean squared
error in the progressive censoring context. For generalized Pareto distributions,
BLEEs and BLUEs are given in Burkschat [231]. Notice that the risk of equivariant
estimators (and predictors) is independent of the parameters. The term invariance,
which is often used instead of equivariance in the literature (see, for example, Nelson
[676] or Takada [833]), refers to this fact. In particular, the BLEEs coincide with
the best linear (risk-)invariant estimators (BLIEs) obtained by Mann [635], since
every linear risk-invariant estimator is also equivariant (see Bondesson [214]). The
following results are taken from Balakrishnan et al. [139].
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Location model Fl

The BLEE and BLUE for the location parameter � coincide, i.e.,

b�LE D b�LU D
�
10˙�11

��1 �
10˙�1XR � 10˙�1b

�
:

Scale model Fs

The BLEE of # is given by

b#LE D b0.˙ C bb0/�1XR D .1C b0˙�1b/�1b0˙�1XR:

Its expectation and mean squared error are given by Eb#LE D b0˙�1b
1Cb0˙�1b# and

MSE.b#LE/ D #2

1Cb0˙�1b , respectively.

Location–scale model Fls

The BLEEs of the location and scale parameters are given by

b�LE D 1

�1

��
b0˙�1bC 1� �10˙�1XR

� � �10˙�1b� �b0˙�1XR
��
;

b#LE D 1

�1

��
10˙�11

� �
b0˙�1XR

� � �10˙�1b� �10˙�1XR
��
;

with

E.b�LE/ D �C 10˙�1b
�1

#; E.b#LE/ D �

�1

#;

MSE.b�LE/ D b0˙�1bC 1
�1

#2; MSE.b#LE/ D 10˙�11
�1

#2;

E..b�LE � �/.b#LE � #// D �1
0˙�1b
�1

#2;

where�1 D �C 10˙�11.

11.1.3 First-Order Approximations to BLUEs and BLEEs

In principle, the computation of the linear estimators given above is possible when
the second-order moments exist. However, in many cases, the computation of the
moments is difficult. Moreover, for large m, the computation of the inverse matrix
˙�1 may also cause some difficulties. In such cases, we can use the approximations
to the moments given in Sect. 7.6. In order to illustrate this approach, let the
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cumulative distribution function F and its density function f be as in Sect. 7.6.
Then, we have the approximation of the covariance matrix

˙ 
 �˙UR�;

with a diagonal matrix ��1 D diag.f .F .˘1//; : : : ; f .F
 .˘m///, ˘j D

EUj WmWn, 1 � j � m, and ˙UR D Cov.UR/. Then, the mean vector b is replaced
by .F .˘1/; : : : ; F

 .˘m//
0 and the covariance matrix˙ is replaced by�˙UR�.

Notice that � is a diagonal matrix and that the inverse of ˙UR is a tridiagonal
matrix (see (7.15)). This method provides approximations to the BLUEs and BLEEs
given above. The results have been worked out by Balakrishnan and Rao [115].
Expressions can be obtained from the results presented in Sect. 11.1.1.

This approach has been applied to various distributions whose variance–
covariance matrix contains analytically intractable expressions. For instance,
approximate BLUEs (ABLUES) for the extreme value distribution are presented
in Thomas and Wilson [843] and Balakrishnan and Aggarwala [86]. Log-normal
distributions have been discussed by Balasooriya and Balakrishnan [158].

11.2 Linear Estimation for Particular Distributions

11.2.1 Exponential Distributions

Suppose that the location–scale family (11.1c) is based on a standard exponential
distribution Exp.1/. In order to derive the representations of the BLUEs and BLEEs
in the above setups, we need the inverse of the covariance matrix for progressively
Type-II censored order statistics Z1WmWn; : : : ; ZmWmWn from an Exp.1/-population.
From (7.7), we get

˙�1 D ˙�1ZR D

0
BBBBBBBB@

�21 C �22 ��22 0 � � � � � � 0

��22 �22 C �23 ��23 0 � � � 0

0 ��23 �23 C �24 ��24 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � � � � ��2m�1 �2m�1 C �2m ��2m
0 � � � � � � 0 ��2m �2m

1
CCCCCCCCA
:

Subsequently, we need the following identities, which can be easily checked. Notice
that b D .b1; : : : ; bm/

0 with br D EZr WmWn D Pr
jD1 1

�j
, 1 � r � m, and e1 D

.1; 0�m�1/0 denotes the first vector of the canonical standard basis of Rm. Then,

˙�11 D n2e1
˙�1b D .�1 � �2; �2 � �3; : : : ; �m�1 � �m; �m/0 D R C 1

b0˙�1b D m
b0˙�11 D n:
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Linear Estimates

Location model Fl

The BLUE (and the BLEE) of � (with # D 1) is given by

b�LU D b�LE D Z1WmWn � 1
n
: (11.4)

For # > 0, we haveb�LU D b�LE D Z1WmWn � #
n

.

Scale model Fs

For � D 0, the BLUE of # is given by

b#LU D 1

m

mX
jD1

.Rj C 1/Zj WmWn:

For � 2 R, we haveb#LU D 1
m

Pm
jD1.Rj C1/.Zj WmWn��/. The BLEE of # is given

by the expression

b#LE D 1

mC 1
mX
jD1

.Rj C 1/.Zj WmWn � �/: (11.5)

Remark 11.2.1. The case of general progressive censoring is discussed in
Balakrishnan and Sandhu [123] and Balakrishnan and Aggarwala [86, p. 86].

Location–scale model Fls

Let m � 2. First, we notice that � D n2.m � 1/ > 0. Therefore, the BLUEs b�LU

andb#LU are given by

b�LU D 1

n2.m � 1/.mn
2Z1WmWn � n

mX
jD1

.Rj C 1/Zj WmWn/ (11.6a)

D Z1WmWn � 1

n.m � 1/
mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/ D Z1WmWn �
b#LU

n
;

b#LU D 1

m � 1
mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/: (11.6b)
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The covariance matrix ofb�LU andb#LU is given by

#2

n2.m � 1/
	
m �n
�n n2



: (11.7)

Noticing that �1 D n2m, the BLEEsb�LE andb#LE are given by

b�LE D Z1WmWn � 1

nm

mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/ D Z1WmWn �
b#LE

n
;

b#LE D 1

m

mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/:

Remark 11.2.2. Explicit expressions of BLUEs are also available for a general
progressive censored sample ZrC1WmWn; : : : ; ZmWmWn (see Balakrishnan and Aggar-
wala [86, Sects. 6.1.2, 6.2.2]), i.e.,

b#LU D 1

m � r � 1
mX

jDrC2
.Rj C 1/.Zj WmWn �ZrC1WmWn/;

b�LU D ZrC1WmWn �
� rC1X
jD1

1

n � j C 1
�b#LU:

(11.8)

The multi-sample case has been addressed in Balakrishnan et al. [130] and
Burkschat et al. [236]. They considered s independent progressively Type-II

censored samples Z
.i/
1Wmi Wni ; : : : ; Z

.i/
mi Wmi Wni , 1 � i � s, with possibly different

censoring schemes and sample sizes. For brevity, we present their result only
for s samples with identical censoring scheme R. In this case, the BLUEs are
given by

b#LU D 1

m � 1
mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/;

b�LU D 1

.m � 1/n
mX
jD1

.Rj C 1/.mZ1WmWn �Zj WmWn/;

where Zj WmWn D 1
s

Ps
iD1 Z

.i/
j WmWn denotes the average of the j th progressively

Type-II censored order statistic in each sample, 1 � j � m. Expressions for the
BLEEs are derived in Burkschat [231]. Results for general progressive censoring
may be obtained in a similar fashion. For m-generalized order statistics, the
problem has been addressed by Ahsanullah [23].
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BLUE BLEE
Model Location Scale Location Scale

Scale (� D 0) – 9.08625 – 8.07667
Location–scale �0.32950 9.86857 �0.26447 8.63500

Table 11.1 BLUEs and BLEEs for Nelson’s insulating fluid data under exponential assumption

Example 11.2.3. We apply the linear estimators presented above to the
progressively censored version of Nelson’s insulating data 1.1.5 which has been
analyzed under the assumption of exponential distributions in Viveros and
Balakrishnan [875]. The results are presented in Table 11.1. Given the same
assumptions, the data has also been discussed for general progressive Type-II
censoring when the minimum of the sample is censored in Balakrishnan and
Aggarwala [86, p. 98].

11.2.2 Generalized Pareto Distributions

Expressions for BLUEs of the parameters of a location–scale family of particular
generalized Pareto distributions have been derived by many authors. In the follow-
ing, we state the BLUEs as presented in Burkschat et al. [236] (see also Burkschat
et al. [235] and Burkschat [231]), their variances, and covariance. In order to avoid
trivialities, it is supposed throughout that n � 2. The family of distributions is
based on a generalized Pareto distribution as in Definition A.1.11 with cumulative
distribution function F , q ¤ 0, given by

F.t/ D 1 � .� � pt/1=q; t � 0; � � pt > 0;
where � 2 R and p � q > 0. For � D 1, the distribution function F corresponds
to the generalized Pareto distribution given in Pickands [720]. The choice � D 0

corresponds to the distribution class defined in Reiss [750, p. 42]. For p; q > 0, the
support is given by the interval Œ.��1/p�1; �p�1� including the uniform distribution
as a particular case. For � D 1 and p D q > 0, the exponential distribution results
as a limit if p ! 0. In the case p; q < 0, the distribution is supported on the interval
Œ.� � 1/p�1;1/ which includes Pareto distributions of the first and second kind
(cf. Johnson et al. [483, p. 574–575]).

In the location–scale case, we present a simplified version of the estimators than
those presented in Burkschat et al. [236]. This is due to Burkschat [231]. Moreover,
we consider only the one-sample case. For details on the multi-sample situation,
we refer to Burkschat et al. [236] and Burkschat [231]. In order to simplify the
notation, let

ej D
jY
kD1
.�k C 2q/; dj D

jY
kD1
.�k C q/; cj D

jY
kD1

�k; 1 � j � m: (11.9)
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Then, we conclude from Theorems 7.2.2 and 7.2.5 that

EYj WmWn D p�1
�
� � cj

dj

�
; 1 � j � m:

Introducing the notation a D .a1; : : : ; am/0 with aj D cj =dj , 1 � j � m, we get

EYR D b D 1

p
.�1 � a/: (11.10)

To present explicit representations of the BLUEs, we define the weights

w1 D .˙�11/1 D p2e1

qc1
.R1 C 1 � q/C p2e1d1

q2
;

wj D .˙�11/j D p2ej

qcj
.Rj C 1 � q/; 2 � j � m � 1;

wm D .˙�11/m D p2em

qcm
.Rm C 1C q/;

v1 D .˙�1b/1 D �

p
w1 � p

q2
d1e1;

vj D .˙�1b/j D �

p
wj ; 2 � j � m;

(11.11)

and


11 D 10˙�11 D p2
�
e21
q2
C �

�
; 
12 D 10˙�1b D �

p

11 � p

q2
d1e1;


22 D b0˙�1b D
	
�

p


2

11 C n � 2�d1

q2
e1;

where � DPm
jD1

ej
cj
DPm

jD1
Qj

kD1
�
1C 2q

�k

�
. Finally, we define

� D 
11
22 � 
212:

Theorem 11.2.4. Suppose �m C 2q > 0.

(i) If # is known, then the BLUE of � is given by

b�LU D 1


11

mX
jD1

wj

�
Xj WmWn � #

p

�
� � cj

dj

��
;

and its variance is Var.b�LU/ D #2=
22.
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(ii) If � is known, then the BLUE of # is given by

b#LU D 1


22

mX
jD1

vj .Xj WmWn � �/;

and its variance is Var.b#LU/ D #2=
11.
(iii) Let m � 2. If � and # are to be estimated simultaneously, then the BLUEs

are given by

b�LU D X1WmWn � �.nC q/� n
p.nC q/

b#LU;

b#LU D nC q
p.n� � n � 2q/

mX
jD2

wj .Xj WmWn �X1WmWn/;

where wj , 1 � j � m, are given in (11.11). The covariance matrix of the
BLUEs is given by

Cov

 
b�LU

b#LU

!
D #2 1

�

	

22 �
12
�
12 
11



: (11.12)

Proof. In the location and scale setup, the results follow directly from the general
representations of the BLUEs and (11.11).

In the location–scale situation, the derivation of the above expressions requires
more effort. First, we use (11.10) to write the determinant� in terms of a:

� D 1

p2

�
10˙�11a0˙�1a � .10˙�1a/2

�
D �a

p2
; say:

According to Burkschat et al. [236],

a0˙�1z D p2e1d1

q2
z1 D z1a0˙�11; z D .z1; : : : ; zm/0 2 R

m; (11.13)

where a is given as in (11.10). Furthermore, for b D EYR, we get

b10 � 1b0 D � 1
p

�
a10 � 1a0

�
:

Combining these results, we get from (11.3) and (11.13), after some rearrangements,
for the BLUE of #
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b#LU D 1

�

�
.10˙�11/.b0˙�1XR/� .10˙�1b/.10˙�1XR/

�

D � 1

p�
10˙�1.1a0 � a10/˙�1XR

D p a0˙�11
�a

10˙�1.XR �X1WmWn1/: (11.14)

Noticing that

�a D 10˙�1a
�
a11
0˙�11 � 10˙�1a

�

D 10˙�1a
�
a1p

2
�
� C e21

q2

�
� p2 e1d1

q2

�

D 10˙�1a
p2

d1

�
c1� C c1e

2
1

q2
� e1d

2
1

q2

�

D 10˙�1a
p2

d1

�
c1� � e1

�
;

we get

b#LU D d1

p.n� � e1/
mX
jD2

wj .Xj WmWn �X1WmWn/:

Recalling that d1 D nCq and e1 D nC2q (see (11.9)), this yields the representation
ofb#LU.

The BLUE of � has the representation

b�LU D 1

�

�
.b0˙�1b/.10˙�1XR/� .10˙�1b/.b0˙�1XR/

�

D 1

�
b0˙�1

�
b10 � 1b0

�
˙�1XR

D 1

p2�
.�1 � a/0˙�1

�
1a0 � a10

�
˙�1XR

D � �
p

�
� 1

p�
10˙�1

�
1a0 � a10

�
˙�1XR

�

� 1

p2�
a0˙�1

�
1a0 � a10

�
˙�1XR

(11.14)D � �
p
b#LU � 1

p2�
a0˙�1

�
1a0 � a10

�
˙�1XR: (11.15)
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The last term can be rewritten using the following two representations:

a0˙�1
�
1a0 � a10

�
˙�1.XR � X1WmWn1/

D a0˙�11a0˙�1XR � a0˙�1a10˙�1XR

� a0˙�11a0˙�1X1WmWn1C a0˙�1a10˙�1X1WmWn1

D a0˙�1a10˙�1X1WmWn1 � a0˙�1a10˙�1XR

D �a1a0˙�1110˙�1.XR � X1WmWn1/
(11.14)D �a1p� �b#LU;

a0˙�1
�
1a0 � a10

�
˙�1X1WmWn1 D ��a �X1WmWn:

Hence, (11.15) has the representation

b�LU D X1WmWn � � � a1
p

b#LU:

This proves the desired representation of b�LU noticing that �1 D n and that a1 D
c1=d1 D n=.nC q/ (see (11.9)). ut

The multi-sample case has been considered in Burkschat et al. [236] and
Burkschat [231]. Expressions for general progressive censoring are presented in
Balakrishnan and Aggarwala [86] for uniform and Pareto distributions.

For illustration, we present BLUEs and BLEEs for some important particular
distributions.

Uniform Distribution

An important special case of generalized Pareto distributions is the uniform
distribution which corresponds to � D p D q D 1. In this case, we get the following
simplified expressions. Notice that the condition �m C 2 > 0 is always satisfied so
that it can be dropped.

Corollary 11.2.5. Let � D Pm
jD1

ej
cj
D Pn

jD1
Qj

kD1
�
1C 2

�k

�
, where ej DQj

kD1.�k C 2/, cj D
Qj

kD1 �k, 1 � j � m.

(i) If # is known, then the BLUE of � is given by

b�LU D 1

� C .nC 2/2
mX
jD1

wj
h
Xj WmWn � #

�
1 � cj

dj

�i
;

where w1 D nC2
n
R1 C .n C 2/.n C 1/, wj D ej

cj
Rj , 2 � j � m � 1,

wm D em
cm
.Rm C 2/. Its variance is Var.b�LU/ D #2

�
� C .nC 2/2��1.
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(ii) If � is known, then the BLUE of # is given by

b#LU D 1

�

mX
jD1

wj .Xj WmWn � �/;

where wj D ej
cj
Rj , 1 � j � m � 1, wm D em

cm
.Rm C 2/. Its variance is

Var.b#LU/ D #2��1.
(iii) If � and # are to be estimated simultaneously, then the BLUEs are given by

b�LU D X1WmWn � 1

nC 1
b#LU

b#LU D nC 1
�n� n � 2

mX
jD2

wj .Xj WmWn � X1WmWn/;

which have the covariance matrix

Cov

 
b�LU

b#LU

!
D #2

.nC 2/.�n� n � 2/
	

� �.� C nC 2/
�.� C nC 2/ � C .nC 2/2



:

Related problems for order statistics are discussed in Sarhan [773] and Sarhan
and Greenberg [775] (see also Arnold et al. [58, p. 175, 199]).

Pareto Distribution

For the Pareto.˛/-distribution, we have � D 0, p D �1, and q D �1=˛ > 0. We
present only the location–scale result.

Corollary 11.2.6. Suppose �m � 2=˛ > 0 and that m � 2. Then, the BLUEs of
� and # are given by

b�LU D X1WmWn C n˛

n˛ � 1
b#LU;

b#LU D � .n˛ � 2/.n˛ � 1/
�

mX
jD2

wj .Xj WmWn �X1WmWn/;

where w1 D n˛�1
n
.R1 C 1 � 1=˛/C .n˛ � 2/.n˛ � 1/, wj D ej

cj
..Rj C 1/˛ � 1/,

2 � j � m � 1, wm D em
cm
..Rm C 1/˛ C 1/.

The covariance matrix is

Cov

 
b�LU

b#LU

!
D #2

�n˛ C n˛ � 2
	

n˛ �.n˛ � 1/
�.n˛ � 1/ �

n˛�2 C n˛ � 2


: (11.16)
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Example 11.2.7. Balakrishnan and Aggarwala [86] simulated the progressively
Type-II censored data

5:11073; 5:34932; 5:36434; 5:70137; 5:90067

from a Pareto(3)-distribution with location parameter � D 0, scale parameter
# D 5, and censoring plan R D .5; 0; 2; 0; 3/. So, n D 15 andm D 5 observations
result. The linear estimates for the parameters � and # are computed from the
BLUEs (note that these estimators exist since �5 D 4 > 2=3) as b�LU D 1:87675
and b#LU D 3:16211. Their standard errors are given by

SE.b�LU/ D 1:83039;SE.b#LU/ D 1:79116;Cov.b�LU;b#LU/ D �3:27588:

These estimates are based on the assumption of a known shape parameter.
Since the estimators can be seen as a function of the shape parameter ˛,
Balakrishnan and Aggarwala [86] have conducted a sensitivity analysis w.r.t.
the shape parameter ˛. But, due to the construction of the estimators, explicit
representations as a function of the shape parameter are available. In particular,
we get for the present data

b#LU.˛/ D 7:20.15˛ � 1/.1:76˛4 � 1:45˛3 C 0:69˛2 � 0:16˛C 0:01/
˛.160˛3 � 82˛2 C 21˛ � 2/ :

Expanding this expression in a Taylor series of order two around ˛ D 3, we obtain
the approximation

e#.˛/ D 3:16211C 1:17089.˛ � 3/C 0:00557.˛ � 3/2:

Similarly, we get

e�.˛/ D 1:87675� 1:17300.˛ � 3/� 0:00498.˛ � 3/2:

These expressions provide accurate approximations of the values given in
Balakrishnan and Aggarwala [86] for ˛ 2 f2:6; 2:8; 3:0; 3:2; 3:4g. The Taylor
expansions tell us that the estimators are almost a linear function of the shape
parameter (in a neighborhood of the true value). Further, it can be shown that,
for large ˛, the estimators are almost linear in the shape parameter. In particular,

b#LU.˛/ 
 1:18746˛ � 0:44933; b�LU.˛/ 
 5:48090� 1:18746˛:
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0 0.70 1.22 1.72 3.12 3.21 4.13 4.94 5.54 6.61

Table 11.2 Progressively Type-II censored data given in Raqab et al. [746]. The applied censoring
scheme was R D .3; 0; 1; 2; 0�2; 3; 0; 1; 3/

Lomax Distribution

In order to obtain the BLUEs in the location–scale model based on a Lomax
distribution, we have to choose the parameters � D 1, p D �1, and q D �1=˛
with ˛ > 0. Notice that the different parametrization is important in order to use the
correct moments in the weights of the linear estimates.

Corollary 11.2.8. Suppose �m � 2=˛ > 0 and m � 2. Then, the BLUEs of �
and # are given by

b�LU D X1WmWn � 1

n˛ � 1
b#LU;

b#LU D n˛ � 1
n˛.1 � �/� 2

mX
jD2

wj .Xj WmWn �X1WmWn/;

where wj are as given in Corollary 11.2.6. The covariance matrix equals that for
the Pareto distribution given in (11.16).

For Type-II right censored samples, this problem has been solved by Vännman
[867] (see also Kulldorff and Vännman [556]).

Example 11.2.9. Raqab et al. [746] generated a progressively Type-II censored
data from rainfall data recorded at Los Angeles Civic Center (see Table 11.2)
in order to predict progressively censored failure times. The resulting predicted
values are summarized in Table 16.5. Following Madi and Raqab [626], Raqab
et al. [746] assumed a Lomax distribution with shape parameter ˛ D 1=2. Notice
that this choice is critical since the condition �10�2=˛ > 0 is violated (here �10 D
4; see Corollary 11.2.8). The resulting estimates are given by b�LU D �0:30484
and b#LU D 3:20077. These values differ from those presented in Raqab et al.
[746]. This may be due to a wrong use of formulas for the BLUEs presented in
Balakrishnan and Aggarwala [86, p. 106]. These results have been established
for a different parametrization of Pareto distributions.

11.2.3 Weibull and Extreme Value Distributions

Linear estimation of the model parameters has been studied for Weibull distributions
in Mann [636] using a log-transformation of the failure times. Hence, a location–
scale model of extreme value distributions as in (11.1c) results. The derivation of
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linear estimates requires calculation of single and product moments. For the single
moments, we refer to (7.16). However, the product moments have to be computed
numerically as illustrated in Mann [636] using the results of Lieblein [593]. The
computation of moments for progressively Type-II censored order statistics from
Weibull distribution has been addressed in Cramer and Kamps [298] for sequential
order statistics (see Sect. 7.2.2). They used results of Lieblein [594] to obtain
expressions for the product moments which are utilized to derive BLUEs for the
distribution parameters. Using the mixture representation in terms of order statistics
(see Sect. 10.1), Thomas and Wilson [843] presented also expressions for the
BLUEs.

Since the explicit derivations are feasible in these scenarios, approximate BLUEs
have been proposed as given in Sect. 11.1.3. Balakrishnan and Aggarwala [86]
applied the method to the log-failure times of Nelson’s insulating fluid data as
given in Table 17.5. Assuming an extreme value distribution, they found the BLUEs
b�LU D 2:456 and b#LU D 1:31377 which compare well to the MLEs as given in
Viveros and Balakrishnan [875] (b�MLE D 2:222 andb#MLE D 1:026).

11.2.4 Laplace Distribution

Best linear estimation for the Laplace.�; #/-distribution has been discussed in, e.g.,
Sarhan [772,773], Govindarajulu [411], and Balakrishnan et al. [128] (see also Kotz
et al. [546, Sect. 2.6.1.5]). As pointed out in Balakrishnan and Aggarwala [86,
p. 106], the results presented in Sect. 7.4 for the single and product moments of
progressively Type-II censored order statistics from arbitrary continuous symmetric
distributions may be utilized to compute the BLUEs for the parameters of scale
and location–scale shifted symmetric distributions provided the single and product
moments of progressively Type-II right censored and progressively Type-II left
withdrawn order statistics from the corresponding folded distribution are known.
This applies to the Laplace.�; #/ distribution with cumulative distribution function

F.t/ D
(
1
2
e.t��/=# ; t � �
1 � 1

2
e�.t��/=# ; t > �

; (11.17)

since the folded distribution is an exponential one. Notice that this distribution has
been used to model certain real life-test data (see Bain and Engelhardt [74]) and has
many applications in engineering and life sciences (see Kotz et al. [546]).

Explicit expressions for the BLUEs of � and # or the inverse of the variance–
covariance matrix are not available. However, the general formula (11.2) may be
used to obtain the required BLUEs as well as their variances and covariance. The
moments of Laplace progressively Type-II censored order statistics can be computed
easily through the results of Sects. 7.3 and 7.4. Using the results for moments of
exponential progressively Type-II censored order statistics given in Theorem 7.2.1
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as well as the results presented in Sect. 7.4, single and product moments of
Laplace progressively Type-II censored order statistics can be calculated for a given
censoring scheme R. The following example is along the lines of Example 6.5 of
Balakrishnan and Aggarwala [86].

Example 11.2.10. In the situation of Example 7.4.2, i.e., for the censoring
plan R D .2; 0�2; 2; 0�3; 2; 0; 4/ with m D 10, and n D 20, a progressively
Type-II right censored sample from the Laplace.25; 5/-distribution in (11.17) has
been simulated using Algorithm 8.1.2. The procedure yields the following random
numbers:

9:61484196 13:59012714 21:09368461 23:48334002 24:00495686

24:56994841 24:74930175 24:89373289 26:37125510 26:53605049:

Using the results presented in Sect. 7.4, we are now able to compute the BLUEs
for � and # . For instance, the coefficients ai W10W10, 1 � i � 10, for the BLUE of
�, to three decimal places, are given by

�0:008 �0:010 �0:010 0:032

0:003 0:038 0:116 0:385

0:235 0:217

and the coefficients bi W10W20, 1 � i � 10, for the BLUE of # are given by

�0:105 �0:099 �0:098 �0:102
�0:098 �0:098 �0:083 0:106

0:073 0:505

Furthermore, the variance of b�LU is 0:084#2, the variance of b#LU is 0:098#2, and
the covariance of the BLUEs is 0:011#2.

Thus, based on the progressively Type-II right censored sample given above,
the BLUEs of � and # and their standard errors are computed as

b�LU D 25:786; cSE.b�LU/ D 1:250;
b#LU D 4:315; cSE.b#LU/ D 1:350:

Remark 11.2.11. Obviously, the variance–covariance matrix of the BLUEs can
be computed for any censoring scheme with m D 10 and n D 20 from a Laplace
distribution. For Type-II right censoring O10 D .0�9; 10/ and for some selected
censoring plans, the variances of the BLUEs and the corresponding covariances
are given in Table 11.3. These variances are only slightly more favorable than
the variances given above for the censoring pattern R D .2; 0�2; 2; 0�3; 2; 0; 4/.
However, for this censoring scheme R, items censored early on may be of use to
the experimenter. The question of an optimal censoring pattern in terms of the
variances of BLUEs will be addressed further in Chap. 26.
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R Var.b�LU/=#
2 Var.b#LU/=#

2 Cov.b�LU;b#LU/=#
2

.2; 0�2; 2; 0�3; 2; 0; 4/ 0.084 0.098 0.011
O10 0.070 0.109 0.013
O1 0.140 0.086 0.012
.5; 0�8; 5/ 0.088 0.095 0.006
.2; 0�8; 8/ 0.074 0.103 0.008
.0�4; 5�2; 0�4/ 0.117 0.098 0.032

Table 11.3 Variances and covariances of the BLUEs for location and scale of a Laplace
distribution with progressively Type-II censored order statistics from censoring scheme R

11.2.5 Logistic Distributions

Best linear unbiased estimation for logistic distributions has been addressed by
Balakrishnan and Kannan [104] and, in more detail, by Balakrishnan et al. [151].
They discussed a location–scale family Fls from a standard logistic distribution
with cumulative distribution function F.t/ D .1C e�t /�1, t 2 R. Two-parameter
half-logistic distribution is considered in Balakrishnan and Saleh [119], whereas
BLUEs for log-logistic distributions are presented in Balakrishnan and Saleh [120]
(scale and location–scale families). Furthermore, BLUEs for generalized half-
logistic distributions are computed in Balakrishnan and Saleh [121].

11.3 Asymptotic Best Linear Unbiased Estimators
for Blocked Progressively Type-II Censored Order
Statistics

Hofmann et al. [444] applied the asymptotic result in Theorem 3.4.11 to construct
asymptotic BLUEs in a location–scale model as given in (11.1). Proceeding as in
Sect. 11.1.1, the asymptotic best linear unbiased estimator (ABLUE) is given by

 
b�
b#

!
D .B 0W �1B/�1B 0W �1YR� ;

with covariance matrix #2

n
.B 0W �1B/�1, B D .1;u/. The components of B 0W �1B

are given by

K1 D 10W �11 D
mX
jD1

v�1j .��1j ���1j�1/2;

K2 D u0W �1u D
mX
jD1

v�1j .uj��1j � uj�1��1j�1/2; (11.18)
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K3 D 10W �1u D
mX
jD1

v�1j .��1j ���1j�1/.uj��1j � uj�1��1j�1/:

The generalized variance of the ABLUEs is given by

det Cov

 
b�
b#

!
D #2

n

�
K1K2 �K2

3

��1
: (11.19)

For order statistics, similar quantitiesKj arise which were first presented in Ogawa
[694] (see also Ali and Umbach [33, p. 188], David and Nagaraja [327, Sect. 10.4],
and Balakrishnan and Cohen [92]).



Chapter 12
Maximum Likelihood Estimation in Progressive
Type-II Censoring

In this section, we assume that the sample X1WmWn; : : : ; XmWmWn of progressively
Type-II censored order statistics is available from a population with an absolutely
continuous cumulative distribution function F� and density function f� with � D
.	1; : : : ; 	p/

0 2 � � R
p . Moreover, we assume that the progressively censored

sample is complete. Then, from (2.4), the likelihood function is given by

L.�I xm/ D
mY
jD1

�
�j f�.xj /.1 � F� .xj //

Rj
� mY
jD2

1Œxj�1;1/.xj /: (12.1)

Given that x1 < � � � < xm, the log-likelihood function is

`.�I xm/ D log L.�I xm/

D
mX
jD1

log �j C
mX
jD1

logf�.xj /C
mX
jD1

Rj log.1 � F� .xj //: (12.2)

Maximum likelihood estimates may also be computed when some of the progres-
sively Type-II censored order statistics are not observed. In these situations, the
estimates have to be obtained numerically in most cases. However, for general pro-
gressive censoring, some MLEs are explicitly available. In this case, the likelihood
function is given by (see Balakrishnan and Aggarwala [86, pp. 118])

L.�I xrC1; : : : ; xm/

D
 
n

r

!
.F� .xrC1//r

mY
jDrC1

�
�j f� .xj /.1� F� .xj //

Rj
� mY
jDrC2

1Œxj�1;1/.xj /:

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 12,
© Springer Science+Business Media New York 2014
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12.1 Exponential Distribution

According to (12.1), the likelihood function for a progressively censored sample
Z1WmWn; : : : ; ZmWmWn from an Exp.�; #/-population is given by

L.�; # I zm/ D
mY
jD1

h�j
#

e�.RjC1/
zj��
#

i mY
jD2

1Œzj�1;1/.zj /1Œ�;1/.z1/:

Assuming z1 < � � � < zm, this expression simplifies to

L.�; # I zm/ D cm�1
#m

exp
n
� 1

#

mX
jD2

.Rj C 1/.zj � z1/� nz1 � �
#

o
1Œ�;1/.z1/

D cm�1
#m

exp
n
� m
#
e#
o
� exp

n
� nz1 � �

#

o
1Œ�;1/.z1/; (12.3)

wheree# D 1
m

Pm
jD2.Rj C 1/.zj � z1/.

Scale Parameter Unknown

Now, we consider the models given in (11.1). First, let us assume that � is known.
Then, given the assumption � < z1, we get withe� D z1 the log-likelihood

`.# I zm/ D log.cm�1/�m log.#/ � 1

#

�
me# C n.e� � �/

�
:

Obviously, the log-likelihood function `.�I zm/ is strictly concave in 1=# (for any
� < z1) with lim#!0 `.# I zm/ D lim#!1 `.# I zm/ D �1 so that the global
maximum is an inner point of .0;1/. Differentiating w.r.t. # results in the likelihood
equation

�m
#
C 1

#2

�
me# C n.e� � �/

�
D 0

which has the unique solution #� D 1
m

Pm
jD1.Rj C 1/.zj � �/. This proves that

b#�MLE D
1

m

mX
jD1

.Rj C 1/.Zj WmWn � �/ (12.4)

is the maximum likelihood estimator for # if � is assumed known. Properties of
this estimator are presented in Theorem 12.1.1. Since the proof is similar to that of
Theorem 12.1.4, it is omitted.
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Theorem 12.1.1. The MLE b#�MLE is a complete sufficient statistic. It has a
� .#=m;m/-distribution so that its expectation and variance are given by

Eb#�MLE D #; Var.b#�MLE/ D
#2

m
:

Sometimes, it is more suitable to consider the distribution of a scaled MLE, i.e.,

2m
b#�MLE

#
� �2.2m/:

Further, it can be shown that the MLE b#�MLE attains the Cramér–Rao lower bound

(see Cramer and Kamps [299]). Sinceb#�MLE is unbiased and linear, it coincides with
both the uniformly minimum variance unbiased estimator (UMVUE) and the BLUE
of # (see Sect. 11.2.1).

Remark 12.1.2. For general progressive censoring, an explicit expression of the
maximum likelihood estimator is not available unless r D 1. It is the solution of
the equation

.m � r/# C rxrC1
exrC1=# � 1 D w (12.5)

with w D Pm
jDrC1.Rj C 1/xj , where xrC1; : : : ; xm is the observed sample.

It has been shown by Balakrishnan et al. [130] that the solution of the
likelihood equation is unique (even in the multi-sample case). Hence, the
solution can be computed easily by a Newton–Raphson procedure. Fernández
[364] has established simple bounds on the MLE of # in the scale model
with general progressive censoring using Cardano’s formula. Using the notation
� D 6w � .m � 3r/xrC1, u D ab=6 � c=2 � .a=3/3, v D b=3 � .a=3/2 and
a D Œ3.m�r/xrC1�6w�=6m, b D Œ.m�r/x2rC1�3wxrC1�=6m, c D �wx2rC1=6m,
he got the bounds

b#` � b#MLE � b#u;

where

b#` D
�

uC
p

u2 C v3
�1=3 C

�
u �

p
u2 C v3

�1=3 � a
3
;

b#u D min

	
w

m � r ;
�Cp�2 C 24mwxrC1

12m



:

Remark 12.1.3. Chandrasekar et al. [244] addressed minimum risk equivariant
estimation for progressively Type-II censored exponential lifetimes. They showed
that the estimator
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b#` D � .mC `/
� .mC 2`/

� mX
iD1
.Ri C 1/Zi WmWn

�` D m � .mC `/
� .mC 2`/

�b#MLE

�`

is a minimum risk equivariant (MRE) estimator for #`. In particular, for ` D 1,
b#MRE D m

mC1b#MLE D 1
mC1

Pm
iD1.Ri C 1/Zi WmWn is a MRE of # . Notice that it

equals the BLEE b#LE given in (11.5).

Location Parameter Unknown

Now, suppose # is known. Then, from (12.3), the likelihood function is
proportional to

exp
n
� nz1 � �

#

o
1Œ�;1/.z1/:

For arbitrary # , this expression is zero on .�1; z1/ and positive and decreasing
on Œz1;1/. Thus, it is maximized by � D z1, and we have thus proved that

b�MLE D Z1WmWn
is the maximum likelihood estimator of �. Properties of b�MLE are presented in
Theorem 12.1.4. As in the scale model, an MRE for the location parameter �
can be calculated. According to Chandrasekar et al. [244], it is given by b�MRE D
b�MLE � 1

n
D Z1WmWn � 1

n
which equals also the BLUE (and BLEE) b�LU of � [see

(11.4)].

Location and Scale Parameters Unknown

Let m � 2 throughout this section. Now, we combine the above derivations to
establish the MLEs in the location–scale model. First, we notice that, for any given
value of # , as in the location case, the likelihood in (12.3) is bounded by

L.�; # I zm/ � cm�1
#m

exp
n
� m
#
e#
o

with equality iff � D z1. From the calculations in the scale case, we know that this
bound is maximized by # D e# . Hence, we have proved that

b�MLE D Z1WmWn and b#MLE D 1

m

mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/ (12.6)
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are the MLEs of � and # in the location–scale model. These estimators have the
following properties, which will be useful in the construction of confidence inter-
vals. The results of Theorem 12.1.4 can be found in Viveros and Balakrishnan [875]
or, in a more general framework, in Cramer and Kamps [299] and Balakrishnan
et al. [130].

Theorem 12.1.4. Let m � 2. The MLEs b�MLE and b#MLE are independent with
distributions

b�MLE � Exp.�; #=n/; b#MLE � Γ.#=m;m� 1/:

Their expectations and variances are given by

(i) Eb�MLE D �C #
n

, Var.b�MLE/ D #2

n
,

(ii) Eb#MLE D m�1
m
# , Var.b#MLE/ D m�1

m2
#2.

Moreover, .b�MLE;b#MLE/ is a complete sufficient statistic for .�; #/.

Proof. b#MLE can be written as

b#MLE D 1

m

mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/

D 1

m

mX
jD2

.�j � �jC1/.Zj WmWn �Z1WmWn/

D 1

m

mX
jD2

�j .Zj WmWn �Zj�1WmWn/:

Hence,b#MLE is a function of the normalized spacings SR
j D �j .Zj WmWn�Zj�1WmWn/,

2 � j � m [see (2.9)]. Since these spacings are independent and Exp.#/-distributed
(see Theorem 2.3.2), we find that b#MLE has a gamma distribution. Moreover, this
yields the independence ofb#MLE andb�MLE D SR

1 =nC�. This also impliesb�MLE �
Exp.�; #=n/. The expressions for mean and variance are immediate consequences
of the distributional results. Finally, we mention that the likelihood function (12.3)
can be written as

L.�; # I zm/ D cm�1
#m

exp
n
� m
#
b#MLE � nb�MLE � �

#

o
1Œ�;1/.b�MLE/:

Applying the Neyman criterion for sufficiency of statistics (see, e.g., Lehmann
and Casella [582]), .b�MLE;b#MLE/ is a sufficient statistic for .�; #/. Finally, the
completeness as in Chiou and Cohen [262] (see also Cramer et al. [308]). ut
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Theorem 12.1.4 yields directly the UMVUEs of � and # as

b�UMVUE D Z1WmWn �
b#UMVUE

n
;

b#UMVUE D 1

m � 1
mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/:
(12.7)

They coincide with the BLUEs given in (11.6).

Remark 12.1.5. The distribution of the MLEs as given in Theorem 12.1.4 yields
the distributions

n
m � 1
m

b�MLE � �
b#MLE

� F.2; 2m � 2/; 2m
b#MLE

#
� �2.2m� 2/:

As pointed out by Viveros and Balakrishnan [875], the independence can
alternatively be shown by an application of Basu’s theorem (see Hogg and Craig
[446, pp. 390]).

Example 12.1.6. To illustrate the above results, we assume that Nelson’s
progressively Type-II censored insulating fluid data 1.1.4 is from an exponential
distribution. The following example is presented in Viveros and Balakrishnan
[875] for the scale case (see also Example 11.2.3).

For the scale model, the maximum likelihood estimate of the lifetime is given

by b#�MLE D 9:086. The MLE of the reliability R.t0/ D e�t0=# at a given mission

time t0 > 0 is given by bR.t0/ D e�t0=b#�MLE . For t0 D 2, we get bR.2/ D 0:8024.
In the location–scale model, we get the estimates b�MLE D 0:19 and

b#MLE D 9:8686. The corresponding MLE of the reliability at t0 is given by
bR.t0/ D e�.t0�b�MLE/=b#MLE provided that t0 > b�MLE. This leads to the estimate
bR.2/ D 0:8324.

Remark 12.1.7. Balakrishnan et al. [133] compared the MLEs of location and
scale parameters in a two-sample setting with identical censoring scheme R.
Given that �1 � �2 and #1 � #2 are the parameters in the samples, they found
that the MLEs are stochastically ordered, i.e.,

b�1IMLE �st b�2IMLE; b#1IMLE �st
b#2IMLE:

Remark 12.1.8. Large sample results like, e.g., asymptotic normality and
consistency, for s independent samples are established in Balakrishnan et al.
[130]. Moreover, explicit expressions for the MLEs and UMVUEs are available.
For instance, the MLEs in the location–scale model are given by
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b�MLE D minfZ1;1Wm1Wn1 ; : : : ; Zs;1Wms Wnsg;

b#MLE D 1

m�

sX
iD1

miX
jD1

.Rij C 1/.Zi;j Wmi Wni �b�MLE/;
(12.8)

where m� DPs
iD1 mi . It has to be noted that, for s � 2, both estimators do no

longer coincide with the BLUEs. In fact, the location estimator is the minimum
of all observed values. Nevertheless, the independence of the MLEs is retained
(see Cramer and Kamps [299]). Moreover, the MLEs are complete sufficient
statistics.

Remark 12.1.9. For general progressive censoring, explicit expressions for the
MLEs are available only in the one sample case (see Balakrishnan and Aggarwala
[86]). In particular, for r C 2 � m, Balakrishnan and Sandhu [123] established
the following expressions in the location–scale model:

b�MLE D ZrC1WmWn Cb#MLE log
�
1 � r

n

�
;

b#MLE D 1

m � r
mX

jDrC2
.Rj C 1/.Zj WmWn �ZrC1WmWn/:

(12.9)

In the multi-sample case, explicit expressions are not available. But, the estimates
can be computed as (unique) solutions of the likelihood equations taking some
constraints into account. For details, we refer to Balakrishnan et al. [130].

For a doubly Type-II censored sample XrC1Wn; : : : ; Xn�sWn, the expressions in
(12.9) reduce to those established by Kambo [493]. Obviously, the MLEs are linear
estimators. In fact, the BLUEs are bias-corrected versions of these expressions.
This observation leads to expressions for means and variances of the MLEs. In
particular, we have for doubly Type-II censored samples

Var.b�MLE/ D
 rC1X
jD1

1

.n � j C 1/2 C .m � r � 1/
�

log.1 � r
m
/

m� r
�2�

#2;

Var.b#MLE/ D m � r � 1
.m � r/2 #

2:

Remark 12.1.10. Simultaneous MREs of location and scale are given by

b�MRE D Z1WmWn � 1
n
b#MRE and

b#MRE D b#MLE D 1

m

mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/;

as shown by Chandrasekar et al. [244].
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Remark 12.1.11. Let a location–scale family of distributions be defined by

F.t/ D 1 � exp


�d.t/ � �

#

�
; t � d�1.�/; � 2 R; # > 0; (12.10)

where d is supposed to be strictly increasing and differentiable on .d�1.�/;1/
[see (2.12)]. Some important members of this family are exponential, Weibull,
Pareto, and Lomax distributions. More details are provided in Cramer and Kamps
[300]. Then, the maximum likelihood estimators are obtained directly from the
results obtained for the exponential distributions. For instance, the simultaneous
MLEs of � and # are given by

b� D d.X1WmWn/; b# D 1

m

mX
jD2

�j
�
d.Xj WmWn/� d.Xj�1WmWn/

�
: (12.11)

For � D 0, (12.10) defines a one-parameter exponential family with scale
parameter 1=# [see (2.12)]. It includes, e.g., the Weibull distribution with known
shape parameter by choosing d.t/ D tˇ, t > 0. The MLE of # is given by

b# D 1

m

mX
jD1

�j
�
d.Xj WmWn/ � d.Xj�1WmWn/

�

with d.X0WmWn/ D 0. Notice that the distributional results for the exponential
distributions established in Theorems 12.1.1 and 12.1.4 also hold for this
family of distributions since the progressively Type-II censored order statistics
d.X1WmWn/; : : : , d.XmWmWn/ can be seen as exponential progressively Type-II
censored order statistics.

12.2 Weibull Distribution

As mentioned in Remark 12.1.11, the MLE of the scale parameter of a
Weibull.#; ˇ/-distribution with known shape ˇ > 0 parameter is given by

b# D 1

m

mX
jD1

�j

h
X
ˇ
j WmWn � Xˇ

j�1WmWn
i
D 1

m

mX
jD1

.Rj C 1/Xˇ
j WmWn: (12.12)

The two-parameter setting is discussed in the following theorem.

Theorem 12.2.1. Let m � 2. Then, for a two-parameter Weibull distribution

Weibull.#; ˇ/, the maximum likelihood estimator .b#; b̌/ of .#; ˇ/ uniquely exists.



12.2 Weibull Distribution 275

The estimators are given by b# D 1
m

Pm
jD1.Rj C1/Xb̌j WmWn where, for Xj WmWn D xj ,

1 � j � m, b̌ is the unique solution of the equation

m

ˇ
C

mX
jD1

logxj �
Pm

jD1.Rj C 1/ log.xj /x
ˇ
jPm

jD1.Rj C 1/xˇj
D 0: (12.13)

Proof. Without loss of generality, we can assume 0 < x1 < � � � < xm. For a two-
parameter Weibull.#; ˇ/-distribution, the log-likelihood function is given by

`.#; ˇ/ D
mX
jD1

log �j Cm logˇ�m log#C .ˇ�1/
mX
jD1

logxj � 1
#

mX
jD1

.Rj C1/xˇj :
(12.14)

Introducing the quantity h.ˇ/ D 1
m

Pm
jD1.Rj C 1/xˇj , we get with the inequality

log t � 1 � 1
t
, t > 0,

`.#; ˇ/ D constCm logˇ � logh.ˇ/C .ˇ � 1/
mX
jD1

logxj

�m log
#

h.ˇ/
�mh.ˇ/

#

� constCm logˇ �m logh.ˇ/C .ˇ � 1/
mX
jD1

logxj

with equality iff # D h.ˇ/. In order to find the MLE of .#; ˇ/, we have to maximize
the function

H.ˇ/ D m logˇ �m logh.ˇ/C .ˇ � 1/
mX
jD1

logxj

w.r.t. ˇ > 0. First, notice thatH is a continuous function with limˇ!0 H.ˇ/ D �1
and that

lim
ˇ!1

h0.ˇ/
h.ˇ/

D lim
ˇ!1

Pm
jD1.Rj C 1/ log.xj /x

ˇ
jPm

jD1.Rj C 1/xˇj
D log.xm/: (12.15)
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Then, using l’Hospital’s rule and (12.15), we get

lim
ˇ!1

H.ˇ/

ˇ
D �m lim

ˇ!1
logh.ˇ/

ˇ
C

mX
jD1

logxj

D �m log.xm/C
mX
jD1

logxj D
m�1X
jD1

log
xj

xm
< 0:

Hence, limˇ!1H.ˇ/ D �1. This proves that the maximum of the likelihood
function is attained for some ˇ� 2 .0;1/. Differentiating H w.r.t. ˇ yields the
Eq. (12.13). According to Balakrishnan and Kateri [105], this kind of equation has
exactly one solution ˇ� (for a similar argument, see also Cramer and Kamps [295]).
This proves the assertion. ut
Remark 12.2.2. Wang et al. [890] proposed the so-called inverse estimators
(IE) as an alternative to MLEs. The quantity

�.XR; ˇ/ D 2
m�1X
jD1

log

 Pm
iD1.Ri C 1/Xˇ

i WmWnPj�1
iD1 .Ri C 1/Xˇ

i WmWnC �jXˇ
j WmWn

!

is �2-distributed with 2.m � 1/ degrees of freedom (see pp. 385). Moreover,
�.XR; ˇ/=.2m � 4/ converges in probability to 1. Then, the inverse estimator
is defined as the unique solution of the equation �.XR; ˇ/ D 2m � 4 so that
b̌
IE D ��1.XR; 2m � 4/. The estimator for the scale parameter # is given by

b# IE D 1

m � 1
mX
iD1
.Ri C 1/Xb̌IE

i WmWn:

Wang et al. [890] claimed that these estimators are consistently superior to the
MLEs.

Example 12.2.3. For Nelson’s progressively Type-II censored data 1.1.4, Viveros

and Balakrishnan [875] computed the MLEs as b̌ D 0:975 and b# D 9:225 (see
also Balakrishnan and Kateri [105]). The corresponding inverse estimates are
b̌
IE D 0:7628 and b# IE D 7:1320.

Ng et al. [691] discussed a three-parameter Weibull distribution introducing
an additional location parameter. Beside maximum likelihood estimation, they
addressed censored estimation (see Harter and Moore [431] and Smith [809]),
corrected and weighted maximum likelihood estimation, least-squares estimation,
and other inferential methods for point estimation.
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12.3 Reflected Power Distribution

We consider a location–scale family of RPower.ˇ/-distributions with shape param-
eter ˇ > 0 and location and scale parameters � and # , respectively. Hence, the
density function and cumulative distribution function are given by

f .t/ D ˇ

#

�
1 � t � �

#

�ˇ�1
; F .t/ D 1 �

�
1 � t � �

#

�ˇ
; t 2 Œ�; �C #�;

where � 2 R; #; ˇ > 0. For ˇ D 1, it reduces to the uniform distribution. The
likelihood function is given by (provided x1 < � � � < xm)

L.�; #; ˇI xm/

D cm�1 ˇ
m

#m

mY
jD1

�
1 � xj � �

#

�.RjC1/ˇ�1
1Œ�;�C#�.x1/1Œ�;�C#�.xm/:

In order to get a positive likelihood, the restrictions

� � x1 < xm � �C #

must hold. This will be assumed subsequently.

Shape Parameter Known

If the parameter � is known (without loss of generality, let � D 0), we get the
log-likelihood (under the conditions 0 < x1 and xm � #)

`.#/ D
mX
jD1

log �j Cm logˇ �m log# C
mX
jD1

�
.Rj C 1/ˇ � 1

�
log

�
1 � xj

#

�

D
mX
jD1

log �j Cm logˇ C
mX
jD1

�
.Rj C 1/ˇ � 1

�
log.# � xj / � nˇ log.#/:

In order to find the maximum likelihood estimators, we have to consider several
parameter setups separately. First, notice that lim#!1 `.#/ D �1. For Rm <
1
ˇ
� 1, the likelihood function is unbounded because lim#!xm `.#/ D 1. Hence,

a maximum likelihood estimator of # does not exist in this situation. For Rm D
1
ˇ
� 1 and max1�j�m�1 Rj � 1

ˇ
� 1, the log-likelihood function is decreasing in # .
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Therefore, the MLE is given by b#MLE D XmWmWn. These results are summarized in
the following theorem.

Theorem 12.3.1. Given a reflected power distribution with ˇ D 1
RmC1 and

max1�j�m�1 Rj � Rm, the MLE of # is given by b#MLE D XmWmWn.
For a reflected power distribution with ˇ > 1

RmC1 , the MLE of # does not
exist.

Henceforth, we can assume that max1�j�m�1 Rj > 1
ˇ
�1. First, letRm > 1

ˇ
�1.

Then, we have lim#!xm `.#/ D �1 so that the maximum of the log-likelihood
function is attained at an inner point. This value has to solve the likelihood equation
given by

mX
jD1

�
.Rj C 1/ˇ � 1

� #

# � xj D nˇ; xm < #: (12.16)

Now, for # !1, the left-hand side of this equation converges to nˇ�m < nˇ. For
Rj � 1

ˇ
� 1, 1 � j � m � 1, and Rm > 1

ˇ
� 1, this equation has a unique solution

in .xm;1/ because lim#!xm `.#/ D 1 and the function on the right-hand side is
strictly decreasing in # . In the other cases, the monotonicity properties may be very
complicated. We do only mention that, multiplying Eq. (12.16) by

Q
j2J .# � xj /

with J D fi j.Ri C 1/ˇ ¤ 1g, the resulting equation is a polynomial equation
of degree jJ j which has at most jJ j real roots. Therefore, we have at most jJ j
candidates for a maximum likelihood estimator.

For Rm D 1
ˇ
� 1, Eq. (12.16) reads

m�1X
jD1

�
.Rj C 1/ˇ � 1

� #

# � xj D nˇ; xm � #:

Here, it may happen that the equation has no solution which implies that XmWmWn is
the MLE of # . Notice that in this case the log-likelihood function is bounded from
above.

For the location–scale model, we have the restrictions � � x1 < xm � �C # .
The log-likelihood is given by

`.�; #/ D m logˇC
mX
jD1

log �j �nˇ log#C
mX
jD1

�
.Rj C1/ˇ�1

�
log.#C��xj /:

(12.17)
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This leads to the likelihood equations

mX
jD1

�
.Rj C 1/ˇ � 1

� #

# C � � xj D nˇ;

mX
jD1

�
.Rj C 1/ˇ � 1

� 1

# C � � xj D 0:
(12.18)

Multiplying the second equation by # , we find that these equations contradict.
Hence, (12.18) does not have a solution. This shows that the maximum is attained at
the border of the feasible points, i.e., for � D x1 or � D xm�# . In order to find the
corresponding solutions, many situations depending on the censoring plan R have
to be discussed separately.

Shape Parameter Unknown

If ˇ is assumed unknown, we get for the log-likelihood

`.#; �; ˇ/

D
mX
jD1

log �j Cm.logˇ � log#/C
mX
jD1

�
.Rj C 1/ˇ � 1

�
log

�
1 � xj � �

#

�
:

Writing ˇ� D ˇ�.�; #/ D �
h
1
m

Pm
jD1.Rj C 1/ log

�
1 � xj��

#

�i�1
> 0 and using

the inequality logx � x � 1, x > 0, we get the upper bound

`.#; �; ˇ/ D
mX
jD1

log�j Cm logˇ �m log# �m ˇ

ˇ�
�

mX
jD1

log
�
1 � xj � �

#

�

�
mX
jD1

log �j �m �m log# �
mX
jD1

log
�
1 � xj � �

#

�

�m log
h
� 1

m

mX
jD1

.Rj C 1/ log
�
1 � xj � �

#

�i

D `.#; �; ˇ�/

with equality iff ˇ D ˇ�. This proves that ˇ� is the maximum likelihood estimator
of ˇ given � and # . In particular, this applies to the situation of known location
and scale parameter. If one of these parameters is assumed unknown, the respective
log-likelihood `.#; �; ˇ�.�; #// has to be maximized.



280 12 Maximum Likelihood Estimation in Progressive Type-II Censoring

12.4 Uniform Distribution

The uniform distribution is included in the reflected power distributions choosing
ˇ D 1. Hence, the likelihood function reduces to

L.�; # I xm/ D cm�1 1
#m

mY
jD1

�
1 � xj � �

#

�Rj
1Œ�;�C#�.x1/1Œ�;�C#�.xm/:

First, we consider the maximum likelihood estimation of �, the left endpoint of the
support. Obviously, the likelihood function is increasing in � so that the MLE is
given byb�MLE D X1WmWn no matter whether # is known or not.

Location Parameter � Known

Suppose the location parameter is known. Without loss of generality, let � D 0.
Then, the likelihood function is given by

`.#/ D
mX
jD1

log �j C
mX
jD1

Rj log.# � xj /�m log.#/:

The likelihood equation is directly obtained from (12.16) by noticing that #
#�xj D

1C xj
#�xj and that

Pm
jD1 Rj D n �m:

mX
jD1

Rj xj

# � xj D m; xm < #: (12.19)

By analogy with the reflected power distribution, we have to take into account
several possibilities depending on the censoring plan R. First, let Rm > 0. Then,
the left-hand side of the equation is a strictly decreasing function in # with limits1
for # ! xm and 0 for # !1, respectively. Therefore, we get a unique solution of
the likelihood equation. This yields a maximum of the likelihood function since the
second derivative of the log-likelihood function is obviously positive for # > xm. If
Rm D 0, we have to check whether R D 0 or not. For R D 0, the log-likelihood
function is decreasing and bounded from above. Hence, the MLE is given byXmWmWn.
Notice that this setup corresponds to the situation of a complete sample with sample
size n D m. For R ¤ 0 and Rm D 0, the left-hand side of (12.19) is decreasing in
# so that the equation has at most one solution. If

Pm�1
jD1

Rj xj
xm�xj < m, the MLE is

given by XmWmWn.
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This result can be extended to general progressive censoring (see, e.g., Aggar-
wala and Balakrishnan [13]).

Location Parameter � Unknown

For unknown location parameter, the log-likelihood (12.17) reads with ˇ D 1

`.�; #/ D
mX
jD1

log �j � n log# C
mX
jD1

Rj log.# C � � xj /:

For any # � xm��, this is an increasing function in � so thatb�MLE D X1WmWn is the
maximum likelihood estimator of �. Therefore, we have to maximize the function
`.x1; #/ w.r.t. # > xm � x1. Since this corresponds to the problem of a known
location parameter with �-value x1, we get the following result which summarizes
the above findings.

Theorem 12.4.1. The MLE of � is given by b�MLE D X1WmWn. For a given sample
x1; : : : ; xm, the MLE of # is computed as the unique solution of the equation

mX
jD1

Rj .xj � �/
# C � � xj D m; xm � � < #; where � D

(
�; � known

x1; � unknown
:

If � is assumed unknown, the observed sample must have m � 2 observations.

Notice that for an unknown location the likelihood equation simplifies to

mX
jD2

Rj .xj � x1/
# C x1 � xj D m:

12.5 Pareto Distributions

In this section, we consider Pareto distributions (Lomax distributions) with density
function and cumulative distribution function given by

f .t/ D ˛

#

�
1C t � �

#

��˛�1
; F .t/ D 1 �

�
1C t � �

#

��˛
; t 2 Œ�;1/;

where � 2 R; #; ˛ > 0. The likelihood function is given by (provided x1 < : : :

< xm)
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L.�; #; ˛I xm/ D cm�1 ˛
m

#m

mY
jD1

�
1C xj � �

#

��.RjC1/˛�1
1.�1;x1�.�/:

Since this function is increasing in � 2 .�1; x1� for any # > 0 and ˛ > 0, the
MLE of � is given by b�MLE D X1WmWn.

Shape Parameter Unknown, Scale Parameter Known

For convenience, we put # D 1. Then, the log-likelihood function is given by

`.˛/ D constCm log˛�˛
mX
jD1

.RjC1/ log
�
1Cxj ��

�
�

mX
jD1

log
�
1Cxj ��

�
;

� � x1: (12.20)

From this expression, it is immediate that b̨ D mPm
jD1.RjC1/ log

�
1CXj WmWn��

� is the

MLE of ˛. Combining the above results, we have proved the following theorem.

Theorem 12.5.1. For a given scale parameter, the MLE of � is given byb�MLE D
X1WmWn. The MLE of ˛ is given by

(i) b̨D mPm
jD1.RjC1/ log

�
1CXj WmWn��

� if � is known,

(ii) b̨D mPm
jD2.RjC1/ log

�
1CXj WmWn�X1WmWn

� if � is unknown.

Remark 12.5.2. For � D 1, the result of Part (i) of Theorem 12.5.1 reads

b̨D mPm
jD1.Rj C 1/ log

�
Xj WmWn

� :

Noticing that Rj C 1 D �j � �jC1, 1 � j � m � 1 and that Rm C 1 D �m, we
obtain the representation

b
 D
mX
jD1

.Rj C 1/ log
�
Xj WmWn

� D
mX
jD1

log
�� Xj WmWn

Xj�1WmWn

��j �
;

where X0WmWn D 1. From Corollary 2.3.14, we conclude that the terms
in the sum are IID Exp.˛/-distributed random variables so that b
=.2˛/
has a �2.2m/-distribution. Therefore, 2m˛=b̨ follows a �2.2m/-distribution
(cf. Theorems 12.1.1 and 12.1.4 for the exponential distribution).
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Shape Parameter Known, Scale Parameter Unknown

We can assume � to be known in order to find the MLE of # . For a given � and
� < x1 < � � � < xm, the log-likelihood function is given by

`.#/ D m log˛ C
mX
jD1

log �j �m log# �
mX
jD1

�
.Rj C 1/˛C 1

�
log

�
1C xj � �

#

�
:

Differentiating ` w.r.t. # results in the likelihood equation

�mC
mX
jD1

�
.Rj C 1/˛C 1

� xj � �
# C xj � � D 0

which is equivalent to

n˛ �
mX
jD1

�
.Rj C 1/˛ C 1

� #

# C xj � � D 0: (12.21)

Since the left-hand side is strictly decreasing in # , (12.21) has at most one solution.
Moreover, the limits for # ! 0 and # ! 1 are n˛ > 0 and �m < 0, so that
(12.21) has a unique solution (for any �). Noticing that lim#!1 `.#/ D �1 and
that, by l’Hospital’s rule,

lim
#!0

`.#/

log#
D n˛ > 0;

we get lim#!0 `.#/ D �1, so that the MLE of # is the unique solution of (12.21).
Combining the above arguments, we have proved the following theorem.

Theorem 12.5.3. Let either � or # be known. Then, for a Pareto distribution
with ˛ > 0, the MLE of the other parameter always exists. The MLE of � is

given by b�MLE D X1WmWn. The MLE b# of the scale parameter is defined as the
unique solution of Eq. (12.21).

For unknown �, we have to replace � by x1. Hence, (12.21) reads

�2˛ � 1 �
mX
jD2

�
.Rj C 1/˛ C 1

� #

# C xj � x1 D 0: (12.22)

Using the same arguments as above, we get that the left-hand side is decreasing in
# and that the limit for # !1 is given by �m. But, for # ! 0, we obtain the limit
�2˛�1 which is positive iff �2 > 1

˛
. Hence, a sufficient and necessary condition for

the MLE of # to exist is �2 > 1
˛

.
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Theorem 12.5.4. Let � and # be unknown. Then, for a Pareto distribution

with ˛ > 0, the MLE of � exists, and it is given by b�MLE D X1WmWn. The MLE b#
of the scale parameter exists iff m � 2 and �2 >

1
˛

. In this case, it is defined as
the unique solution of Eq. (12.22).

Example 12.5.5. For the rainfall data previously analyzed by linear inference
in Example 11.2.9, we get the maximum likelihood estimates b� D x1 D 0 and
b# D 2:56068 provided that ˛ D 1=2. These values fit quite well to the results

obtained for the best linear estimators: b�LU D �0:30484 and b#LU D 3:20077.

Remark 12.5.6. For m D 2, Eq. (12.22) can be solved explicitly. Noticing that
n D R1 CR2 C 2, we get

.R2 C 1/˛ � 1C
�
.R2 C 1/˛ C 1

� 1

1C .x2 � x1/=# D 0:

Provided that �2 D R2 C 1 > 1
˛

, this yields

b#MLE D .R2 C 1/˛ � 1
2

.X2WmWn �X1WmWn/:

Notice that the condition R2 C 1 > 1=˛ ensures that b#MLE is nonnegative.

Shape and Scale Parameter Unknown

Similar to (12.20), we get for � � x1 the log-likelihood

`.˛; �; #/ D constCm log˛ �m log# �
mX
jD1

Œ˛.Rj C 1/C 1� log
�
1C xj � �

#

�
;

which is increasing in �. Thus, `.˛; �; #/ � `.˛; x1; #/. Furthermore, for any # ,
this term is bounded from above by

`.˛�; x1; #/ D const�m log
h mX
jD1

.Rj C 1/ log
�
1C xj � x1

#

�i

�
mX
jD1

log
�
# C xj � x1

�
; (12.23)

where ˛� D ˛�.#/ D � 1
m

Pm
jD1.Rj C1/ log

�
1C xj�x1

#

���1
. From (12.23), we find

that lim#!0 `.˛�; x1; #/ D �1. Moreover, applying l’Hospital’s rule to the ratio
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q.#/ D
m log

hPm
jD1.Rj C 1/ log

�
1C xj�x1

#

�i
Pm

jD1 log
�
# C xj � x1

� ;

we get lim#!1 q.#/ D 0 so that lim#!1 `.˛�; x1; #/ D �1, too. This proves
that the MLE is given by a solution of the likelihood equation.

Remark 12.5.7. Lomax distributions with known location parameter � D 0 and
the cumulative distribution function F.t/ D 1 � .1 C ˇt/�	 , t > 0, have been
discussed in Helu et al. [438] when ˇ; 	 > 0 are supposed to be unknown. As
above, it is shown that the solution 	 of the likelihood equations can be expressed
in terms of ˇ, i.e.,

	.ˇ/ D
h 1
m

mX
jD1

.Rj C 1/ log
�
1C ˇxj

�i�1
:

Instead of using a Newton–Raphson procedure, Helu et al. [438] proposed an
EM-algorithm-based procedure to compute the MLEs.

Remark 12.5.8. Soliman [813] considered estimation for the Lomax distribution
based on general progressively Type-II censored samples.

Shape and Scale Parameter Unknown with Equal Location
Scale

Considering the model with unknown shape and scale parameters and assuming
additionally � D # , we arrive at the Pareto distribution

f .t/ D ˛

#

� t
#

��˛�1
; F .t/ D 1 �

� t
#

��˛
; t 2 Œ#;1/:

For # � x1, the log-likelihood function is given by

`.˛; #/ D constCm log˛ �m log# �
mX
jD1

Œ˛.Rj C 1/C 1� log
�xj
#

�

D constCm log˛ � ˛
mX
jD1

.Rj C 1/ logxj C ˛
mX
jD1

.Rj C 1/ log#:

Obviously, this expression is increasing in # so that the maximum likelihood estima-
tor is given byb#MLE D X1WmWn. Using the same arguments as above, an upper bound

of the log-likelihood function is given by `.˛�; x1/ with ˛� D 1
m

hPm
jD2.Rj C
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1/ log
�
xj
x1

�i�1
. Then, following the same arguments as in Remark 12.5.2, we

conclude that 2m˛=b̨ follows a �2.2.m � 1//-distribution. Moreover, b̨ and b#MLE

are independent estimators (see also Balakrishnan and Aggarwala [86, pp. 129–
130]).

This model has been considered in Ali Mousa [34] with a slightly different
parametrization of the cumulative distribution function of the Pareto distribution:

F.t/ D 1 � .�t/�# ; t > 1=�; � > 0; # > 0: (12.24)

As above, the MLE of the scale parameter � is given byb� D X�11WmWn, whereas the
MLE of the shape parameter is given by

b# D
2
4 1
m

mX
jD1

.Rj C 1/ log
Xj WmWn
X1WmWn

3
5
�1

:

Ali Mousa [34] additionally presented the MLE bR.t/ of the reliabilityR.t/ D F .t/
which is obtained directly from (12.24) by replacing the parameters by its maximum
likelihood estimators.

12.6 Laplace Distribution

For a Laplace.�; #/-distribution with density function

f .t/ D 1

2#
e�jt��j=# ; t 2 R; (12.25)

and cumulative distribution function as in (11.17), maximum likelihood estimation
based on complete samples has been discussed by a number of authors (see, for
example, Johnson et al. [484], Kotz et al. [546]). Balakrishnan and Cutler [94] have
discussed maximum likelihood estimation of parameters of the Laplace distribution
based on conventionally Type-II censored samples. They considered both symmetric
and one-sided (right) censoring. Childs and Balakrishnan [256] utilized these results
to develop conditional inference procedures based on conventionally Type-II right
censored samples. Proceeding similarly, Childs and Balakrishnan [257] have also
derived the MLEs of the parameters� and # based on general conventionally Type-
II censored samples. Recently, Iliopoulos and Balakrishnan [470] presented exact
distributional results for the MLEs under Type-II censoring.

In this section, we discuss the MLEs of the location and scale parameters
of a Laplace distribution based on progressively Type-II right censored samples
as established in Aggarwala and Balakrishnan [14] (see also Balakrishnan and
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Aggarwala [86, Sect. 7.3.6]). The results obtained are generalizations of those given
in Balakrishnan and Cutler [94], wherein it is shown that for conventionally Type-II
right censored samples X1Wn; : : : ; XmWn, the MLE of � is simply the usual sample
median based on the full sample, providedm � n

2
. For m < n

2
, the MLE of � turns

out to be a linear function of the observed order statistics. In both cases, the MLE
of � is a linear function of the observed order statistics. The results presented in
this section for the maximum likelihood estimation based on progressively Type-II
right censored samples from the Laplace distribution reduce to those presented by
Balakrishnan and Cutler [94] for the special case when R D Om.

For a Laplace.�; #/-distribution and a progressively Type-II right censored
sample, (12.1) yields the likelihood function

L.�; #/ D Li .�; #/; xi � � � xiC1; i D 0; : : : ; m;

where x0 D �1, xmC1 D1 and

Li .�; #/ D cm�1
2n#m

exp
n 1
#

� iX
jD1

.xj � �/ �
mX

jDiC1
.Rj C 1/.xj � �/

�o

�
iY

jD1

�
2 � exp

nxj � �
#

o�Rj
:

Denoting by g the function defined by g.t/ D log.2 � et /, t < 0, we get the
piecewise defined log-likelihood function ` as

`i .�; #/ D const�m log#C
iX

jD1

xj��
#
�

mX
jDiC1

.Rj C1/xj��# C
iX

jD1
Rjg

� xj��
#

�
;

xi � � � xiC1; i D 0; : : : ; m: (12.26)

Notice that g is a concave, decreasing, and nonnegative function on .�1; 0�. In
order to find the MLEs, we distinguish three different situations.

Location Parameter � 2 R Known and Scale Parameter # > 0

Unknown

Since � is supposed to be known, we can find an interval Œxi ; xiC1� such that � 2
Œxi ; xiC1�. Therefore, we have to maximize the log-likelihood function `i . It follows
from (12.26) that `i is a strictly concave function in 
 D 1

#
so that we have a unique

maximum of `i in Œxi ; xiC1�. Based on the identified interval Œxi ; xiC1�, we can
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provide some additional information on the MLE of # . We consider the following
situations:

(i) i D 0, i.e., � < x1. Now, the log-likelihood function is given by

`0.�; #/ D const�m log# �
mX

jDiC1
.Rj C 1/xj��# :

Obviously, it is maximized by

b# D 1

m

mX
iD1

.Ri C 1/ .xi � �/ > 0

which proves thatb# is the MLE of # provided that � < x1.
(ii) Suppose xi � � � xiC1 for some i 2 f1; : : : ; m � 1g. Then, `i is given by

(12.26). Since the log-likelihood function is concave w.r.t. 1=# , we find that
the likelihood equation

�m# �
iX

jD1
.xj � �/C

iX
jD1

Rj
xj � �

2e�
xj��

# � 1
C

mX
jDiC1

.Rj C 1/.xj � �/ D 0

has at most one solution. Noticing that

`i .�; #/
#!0� � 1

#

� iX
jD1
jxj � �j C

mX
jDiC1

.Rj C 1/jxj � �j
�
;

we obtain lim#!1 `i .�; #/ D �1 and lim#!0 `i .�; #/ D �1 so that we
have exactly one solution of the likelihood equation. Using the inequality

0 <
1

2e�
xj��

# � 1
� 1; xj � �; 1 � j � i;

we conclude that the solution # satisfies the inequalities

# � 1

m

� iX
jD1
jxj � �j C

mX
jDiC1

.Rj C 1/jxj � �j
�
;

# � 1

m

� iX
jD1

.1 � Rj /jxj � �j C
mX

jDiC1
.Rj C 1/jxj � �j

�
:

(12.27)



12.6 Laplace Distribution 289

(iii) For � > xm, the maximization problem is given by max#>0 `m.�; #/ with

`m.�; #/ D const�m log# C
mX
jD1

xj � �
#

C
mX
jD1

Rj log
h
2 � e

xj��

#

i
:

By analogy with the previous case, this is a concave function in 1=# with
lim#!1 `m.�; #/ D �1 and lim#!0 `m.�; #/ D �1. Moreover, we get by
similar arguments the following bounds for the MLE of # :

1

m

mX
jD1

.1 �Rj /jxj � �j � b# � 1

m

mX
jD1
jxj � �j:

Remark 12.6.1. In the special case R D Om, i.e., Type-II right censoring, the
above results simplify considerably. For � � xm, the lower and upper bounds in
(12.27) coincide so that the MLE is given by

b#MLE D 1

m

�m�1X
jD1
jXj Wn � �j C .n �mC 1/jXmWn � �j

�
:

Location Parameter � 2 R Unknown and Scale Parameter
# > 0 Known

First, we prove that the log-likelihood function (12.26) is concave in �. We make
use of the following theorem which is given in Hiriart-Urruty and Lemaréchal [441,
pp. 35] for convex functions.

Theorem 12.6.2. Let f be a continuous function on an open interval .a; b/
with a; b 2 R, a D �1, or b D 1. Moreover, let a D x0 < x1 < � � � <
xm < xmC1 D b such that f is twice differentiable and concave on .xi ; xiC1/,
i D 0; : : : ; m. Moreover, let

D�f .xi / � DCf .xi /; 1 � i � m; (12.28)

where D�f and DCf denote the left and right derivative of f . Then, f is
concave on .a; b/.

In order to establish the concavity of the log-likelihood function in the location
parameter �, we have to verify the assumptions of the preceding theorem. It is easy
to see that the log-likelihood function is continuous as well as twice differentiable
and concave on .xi ; xiC1/, 0 � i � m. Thus, it remains to show that the left
and right derivatives w.r.t. � satisfy the relation (12.28). Let i 2 f1; : : : mg. From
(12.26), we have that
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D�`i�1.xi ; #/ D 1

#

h
�i � i C 1 �

i�1X
jD1

Rjg
0
�xj � xi

#

�i
;

DC`i .xi ; #/ D 1

#

h
�iC1 � i �

i�1X
jD1

Rjg
0�xj � xi

#

�
� Rig0.0/

i
:

Since g0.0/ D �1 and �i � �iC1 � Ri D 1, we get

#
�
D�`i�1.xi ; #/ �DC`i .xi ; #/

�
D 2 � 0;

so that we arrive at the desired representation. In particular, we conclude from this
result that the log-likelihood function is not differentiable in xi , i 2 f1; : : : ; mg.
This yields the following theorem.

Theorem 12.6.3. The log-likelihood function is a strictly concave function in
�. Given data x1 < � � � < xm, the MLE of � can be obtained as follows: For
j 2 f1; : : : ; mg, let aj D DC`j .xj ; #/.
(i) If a1 < 0, then b�MLE D x1;
(ii) If a1 � � � � � ai�1 > 0 � ai with 2 � i � m, then the MLE of � is located

in the interval Œxi�1; xi �. For, D�`i�1.xi ; #/ � 0, xi denotes the MLE of �.
Otherwise, it is given by a solution of the likelihood equation

�i � i C 1 D
i�1X
jD1

Rj g
0
�xj � �

#

�
: (12.29)

If Rj > 0 for some j 2 f1; : : : ; i � 1g, the solution is unique;
(iii) If am > 0, then the MLE of � is located in the interval Œxm;1/. It is the

unique solution of the likelihood equation

�m D
mX
jD1

Rjg
0
�xj � �

#

�
: (12.30)

Proof. First, notice that `0.�; #/ is a linear increasing function for any # . For a1 < 0,
li .�; #/, 2 � i � m is decreasing so that x1 yields the MLE of �.

Let ai�1 > 0 > ai with 2 � i � m. Then, forD�`i�1.xi ; #/ � 0, xi defines the
MLE of�. IfD�`i�1.xi / < 0, the MLE is an inner point of the interval .xi�1; xi /. It
is given by the solution of the likelihood equation @`i�1

@�
.�; #/ D 0, which simplifies

to (12.29). Notice that g is a strictly concave function so that g0 is strictly decreasing
on Œxi�1; xi �. Hence, for

Pi�1
jD1 Rj > 0, the solution is unique.
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For am > 0, we conclude that `m.�; #/must be increasing–decreasing on Œxm;1/
because lim�!1 `m.�; #/ D �1 for any # > 0. Notice that limt!�1 g.t/ D
log.2/. Hence, the maximum is attained at an inner point which is specified by the
likelihood Eq. (12.30). ut
Remark 12.6.4. Equation (12.29) can be seen as a condition that the MLE is
located in the ith interval Œxi�1; xi �. Applying some inequalities, we can provide
some simple conditions which exclude some intervals. It is important that the
log-likelihood function is increasing–decreasing for every # > 0 and its derivative
is first positive and then negative.

(i) The interval .�1; xi �, i 2 f1; : : : ; mg, cannot contain the MLE if the
derivative D�`.�; #/ is positive at the right endpoint xi . Hence, we get
the condition

DC`.xi ; #/ D @

@�
`i .�; #/

ˇ̌
ˇ
�Dxi

D 1

#

h
�iC1 � i �

iX
jD1

Rj g
0�xj � xi

#

�i
> 0:

Since g0
�
xj��
#

�
� 0, 1 � j � i , and g0.0/ D �1, this expression can be

bounded from below by

DC`.xi ; #/ � 1

#
.�iC1 � i � 1/:

If �iC1 � i � 1 > 0, then the maximum cannot be attained in the interval
.�1; xi �. Accordingly, a necessary condition for .�1; xi � to contain the
MLE of � is given by �iC1 � i C 1.

(ii) On the other hand, the interval .xi ;1/, i 2 f1; : : : ; mg, cannot contain
the MLE if the derivative DC`.�; #/ is negative at the left endpoint xi . As
above and using that g0.0/ D �1, we get

DC`.xi ; #/ D @

@�
`i.�; #/

ˇ̌
ˇ
�Dxi

D 1

#

h
�i � i � 1 �

i�1X
jD1

Rjg
0�xj � xi

#

�i
:

From g0.t/ � �1, t � 0, we find the upper bound

DC`.xi ; #/ � 1

#

h
�i � .i C 1/C

i�1X
jD1

Rj

i
D n � 2i:

This expression is negative for n
2
< i . Hence, for n

2
< i , the MLE cannot be

included in the interval .xi ;1/.
Hence, we get the following conditions for the index i 2 f1; : : : ; mg of the interval
containing the MLE of �:
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�iC1 � 1 � i < n

2
: (12.31)

Notice that the upper bound is only useful for n
2
� m.

This result is also helpful when the scale parameter is unknown. Since the
bounds in (12.31) are independent of the particular value of the scale parameter
# , this reduces the number of maximization problems to be considered in the
case when both parameters are unknown as well.

Summarizing the above findings, we get the following results for the MLE of
�. The value k is chosen as the minimum value of i 2 f0; : : : ; m � 1g satisfying
Eq. (12.31). Notice that this value always exists because n D �1 > �2 > � � � >
�m � 1:

b�MLE 2

8̂
<̂
ˆ̂:

ŒXkC1WmWn;1/ ; m < n
2

ŒXkC1WmWn; XmWmWn� ; m D n
2�

XkC1WmWn; Xbn=2cC1WmWn
�
; m > n

2

: (12.32)

In particular, this result shows that b�MLE � X1WmWn.

Remark 12.6.5. It is obvious from (12.29) that the likelihood equation has a
solution for R1 D � � � D Ri�1 D 0 iff �i D i C 1. Now, given this condition
n D �i C i � 1 we get the equation n D 2i proving that this is only possible
for an even sample size. In fact, we conclude that in this setting each value in
Œxi�1; xi � yields the MLE of �.

This result is known in the setting of order statistics (see Balakrishnan
and Cutler [94]). In this situation, the log-likelihood function is a piecewise
linear function of �. Given a realization x1; : : : ; xn�m of the order statistics
X1Wn; : : : ; Xn�mWn, one has

aj D DC`j .xj ; #/ D �jC1 � j
#

D n � 2j
#

; j 2 f1; : : : ; m � 1g:

Thus, aj > 0 ” n
2
> j . We distinguish the cases of n as odd or even.

Suppose n is odd. Then, aj > 0, j 2 f1; : : : ;min. n�1
2
;m � 1/g. For n�1

2
�

m� 1, the MLE is given by XmWn. Otherwise, we have aj < 0, j 2 f nC1
2
; : : : ; mg,

and the MLE is given by X.nC1/=2Wn.
Suppose n is even. For n

2
� m�1, the MLE is given by XmWn. In the other case,

we have the log-likelihood function to be constant in the interval Œxn=2; xn=2C1�.
Thus, we conclude from the concavity property that any value in this interval
yields an MLE of �. Summing up, we get the following result of Balakrishnan
and Cutler [94] that the MLE of � is given by
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b�MLE D

8
ˆ̂<
ˆ̂:

XmWn; bn=2c � m � 1
X.nC1/=2Wn; bn=2c < m � 1; n odd

˛Xn=2Wn C .1 � ˛/Xn=2C1Wn; bn=2c < m � 1; n even; ˛ 2 Œ0; 1�
:

Childs and Balakrishnan [257] established a generalization to general Type-II
censored samples.

Location Parameter � 2 R and Scale Parameter # > 0

Unknown

The preceding results can now be combined to derive the maximum likelihood
estimators of location and scale parameters when both are unknown. We present
a slight modification of an algorithm due to Aggarwala and Balakrishnan [14]. The
procedure is based on the bounds for the MLE of � given in (12.32).

Procedure 12.6.6 (Computation of MLEs for Laplace parameters). Let
k 2 f0; : : : ; m � 1g be as defined in (12.32).

(i) Form < n
2

, the MLEs are given by the solutions of the maximization problem

max
kC1�j�m

max
xj���xjC1;#>0

`j .�; #/I

(ii) Form > n
2

, the MLEs are given by the solutions of the maximization problem

max
kC1�j�n=2

max
xj���xjC1;#>0

`j .�; #/; if n is even

max
kC1�j�.n�1/=2 max

xj���xjC1;#>0
`j .�; #/; if n is odd

;

(iii) Form D n
2

, the MLEs are given by the solutions of the maximization problem

max
kC1�j�n=2�1 max

xj���xjC1;#>0
`j .�; #/:

Remark 12.6.7. (i) In case (ii) of Procedure 12.6.6, we may have k D n�1
2

.
This simply means that the log-likelihood function is increasing for � <

x.nC1/=2 and decreasing for � > x.nC1/=2. Thus, the MLE of � is X.nC1/=2WmWn,
which we can use to solve for the MLE of # . The resulting likelihood equation
to be solved for # is given by
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i 1 2 3 4 5 6 7 8 9 10

Ri 2 0 0 2 0 0 0 2 0 4
�i 20 17 16 15 12 11 10 9 6 5

Table 12.1 Censoring scheme R and related �’s for the situation of Example 11.2.10

�m# �
.nC1/=2�1X

jD1
.xj � x.nC1/=2/C

.nC1/=2�1X
jD1

Rj
xj � x.nC1/=2

2e�
xj�x.nC1/=2

# � 1

C
mX

jD.nC1/=2C1
.Rj C 1/.xj � x.nC1/=2/ D 0:

(ii) In case (iii) of Procedure 12.6.6, notice that here k D n
2
� 1 D m � 1

is possible. This means that for � < XmWmWn, the log-likelihood function is
increasing and for � > XmWmWn, the log-likelihood function is decreasing.
Therefore, the MLE of � is XmWmWn. This can be used to solve for the MLE
of # . The resulting likelihood equation to be solved w.r.t. # is given by

�m# �
m�1X
jD1

.xj � xm/C
m�1X
jD1

Rj
xj � xm

2e�
xj�xm

# � 1
D 0:

Example 12.6.8. Let us consider the data in Example 11.2.10. In this case,
we have a progressively Type-II right censored sample of size m D 10 from
a sample of size n D 20 from the Laplace distribution with � D 25 and
# D 5, with censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/, and the progressively
Type-II right censored sample observed is as follows:

12:99290868 18:39049456 22:71250514 22:86934464 23:52886140

23:65727057 24:29938590 24:30197858 25:17997875 25:54438754

Now, we calculate the value of k given in Procedure 12.6.6. From Table 12.1,
we conclude that k D 7. Thus, we have to solve two maximization problems:

max
x8���x9;#>0

`8.�; #/; max
x9���x10;#>0

`9.�; #/:

Using Maple 16, the maximum value of the log-likelihood function is obtained
when we maximize `8.�; #/ over the region specified above. The corresponding

MLEs are b�MLE D 24:89573 and b#MLE D 2:76910. Recall that in Exam-
ple 11.2.10, we determined the best linear unbiased estimates of � and # and
their standard errors as
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623 709 732 773 785 824 893 932 934 938
985 995 998 1002 1029 1079 1080 1096 1118 1122

1137 1162 1197 1225 1255 1292 1385 1385 1430 1485

Table 12.2 Random sample of size n D 30 from the incandescent lamps data by Davis [329]

623 709 732 773 785 893 932
934 938 985 995 998 1029 1079

1096 1122 1137 1162 1255 1385 1385

Table 12.3 Progressively Type-II censored sample of size m D 21 from the incandescent lamps
data of Davis [329] generated by Childs and Balakrishnan [258]

b�LU D 24:86538065; cSE.b�LU/ D 0:7100109565;
b#LU D 2:910007086; cSE.b#LU/ D 0:8284699580:

These values agree well with the MLEs we have just obtained.

Example 12.6.9. Childs and Balakrishnan [258] also considered a progressively
Type-II censored data generated from lifetimes of 417 incandescent lamps
presented in Davis [329]. According to the analysis of the data by Davis [329], the
Laplace distribution might be appropriate for this data. Childs and Balakrishnan
[258] found that it may be used in favor of a normal distribution. In order
to illustrate the above approach, Childs and Balakrishnan [258] generated the
random sample of size n D 30 given in Table 12.2 from these observations.
Employing the censoring plan R D .1; 0�2; 2; 0; 1; 0�2; 1; 0�3; 1; 0�3; 2; 0�3; 1/ to
this sample, m D 21 failure times given in Table 12.3 result. According to the
above procedure, the MLEs of � and # are given by b� D 1033:81667 and
b# D 182:86675. Since F .t/ D � � # log.2 � 2t/, t 2 .0; 1/, this yields the

maximum likelihood estimate ofb�0:9 D 1328:13 for the 90th quantile.

Remark 12.6.10. Similar results have been developed for record values by
Cramer and Naehrig [304]. In this setting, an explicit representation for the MLEs
of the parameters is available in the location–scale case.

12.7 Some Other Location–Scale Families

Suppose the progressively Type-II censored sample X1WmWn; : : : ; XmWmWn is based on
a general location–scale family of distributions Fls as defined in (11.1). F denotes
the absolutely continuous standard member of Fls with density function f . We
consider the location–scale case only. Similar results can be established in the
location or scale cases as well. Given observations x1; : : : ; xm, the log-likelihood
function `.�; #/ D `.�; # I xm/ [see (12.2)] has derivatives
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@`

@�
.�; #/ D � 1

#

mX
iD1

f 0..xi � �/=#/
f ..xi � �/=#/ C

1

#

mX
iD1

Ri
f ..xi � �/=#/

1 � F..xi � �/=#/ ;
(12.33a)

@`

@#
.�; #/ D �m

#
� 1

#2

mX
iD1

xi
f 0..xi � �/=#/
f ..xi � �/=#/

C 1

#2

mX
iD1

Rixi
f ..xi � �/=#/

1 � F..xi � �/=#/ : (12.33b)

The resulting likelihood equations cannot be generally solved explicitly (some
examples have been presented in the previous sections). In the following, we show
results for some of the most important distributions.

12.7.1 Weibull Distributions

Cohen [270] has considered maximum likelihood estimation in the three-parameter
Weibull distribution (related results are presented in Wingo [898] and Lemon [583]).
For a sample x1 � � � � � xm, the likelihood function [see (12.1)] reads

L.�; #; ˇ/ D
mY
jD1

�
�jˇ

#

�xj � �
#

�ˇ�1�
exp

n
�

mX
jD1

Rj

�xj � �
#

�ˇo
1Œ�;1/.x1/:

(12.34)

For ˇ < 1 and any value of # , the likelihood function is unbounded and tends
to infinity when � ! x1. Thus, formally, an MLE of � does not exist. But, it is
reasonable to choose the estimate b� D X1WmWn. In fact, Cohen [270] proposed the
estimate b� D X1WmWn � 


2
, where 
 denotes the unit of precision of measurements

made. This ensures a finite likelihood. After plugging in this estimate, the problem
reduces to the scale or scale-shape problem which has been addressed in Sect. 12.2.

For ˇ > 1, the likelihood function is bounded. Thus, three likelihood equations
have to be solved. Here again, the problem can be reduced to a system of two
equations by eliminating the scale parameter # . Rayleigh distributions (i.e., ˇ D 2)
are discussed in Ali Mousa and Al-Sagheer [36].

For the scale-shape model, a log-transformation of the sample yields progres-
sively Type-II censored order statistics from a location–scale family of extreme
value distributions (Type I). Here, Ng et al. [688] have proposed an EM-algorithm
to compute the MLEs (see Sect. 12.7.4). This setting has also been discussed by Wu
[904].

Kim and Han [529] considered maximum likelihood estimation for the scale
parameter of a Rayleigh distribution based on a general progressively Type-II cen-
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xiW35W50 0.1 0.2 1 1 1 1 1 2 3 6 7 11 18 18 18 18 21 32
Ri 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 3

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
xiW35W50 36 45 47 50 55 60 63 63 67 67 75 79 82 84 84 85 86
Ri 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0

Table 12.4 Generated progressively Type-II censored data withm D 35 and n D 50 from failure
time data presented in Aarset [1]

sored sample. Ng [681] proposed a modified Weibull distribution with cumulative
distribution function

F.t/ D 1 � e�˛tˇe�t ; t � 0; ˛; ˇ; � > 0: (12.35)

In order to illustrate his results, he generated progressively Type-II censored failure
time data from a sample reported by Aarset [1]. The data and the censoring scheme
R are presented in Table 12.4. It is used to illustrate bathtub-shaped distributions.
Further inferential results on this distribution with progressively Type-II censored
data are presented in Soliman et al. [818].

12.7.2 Normal Distributions

Balakrishnan et al. [134] discussed the maximum likelihood estimation for progres-
sively Type-II censored normal samples. In this case, the likelihood equations, taken
from (12.33), read

0 D
mX
iD1

zi C
mX
iD1

Ri � '.zi /

1 � ˚.zi / ; (12.36a)

0 D �mC
mX
iD1

z2i C
mX
iD1

Ri zi � '.zi /

1 �˚.zi / ; (12.36b)

where zi D .xi � �/=# , 1 � i � m, and ' and ˚ denote the density function
and cumulative distribution function of a standard normal distribution. Cohen [267]
has also discussed the solution of these equations in terms of progressive Type-I
censoring. The likelihood equations have the same structure with xi replaced by
the censoring time Ti in the second sum in each equation. Showing log-concavity
properties of the likelihood function, Balakrishnan and Mi [113] established the
existence and uniqueness of the MLEs. This also holds for general progressive Type-
II censoring.
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Ng et al. [688] propose the EM-algorithm to compute the MLEs. Since this
approach has been widely used for other distributions, we present the details for this
particular case. We use the notation introduced in Sect. 9.1.2. The log-likelihood
function based on the complete sample .XR;W/ can be written as

`.�; #/ D const � n log# � 1

2#2

mX
iD1
.xi � �/2 � 1

2#2

mX
jD1

RjX
kD1

.wjk � �/2:

(12.37)

To perform the EM-algorithm, W �
jk has to be replaced by E.W �

jkjWjk > xj /, � D
1; 2, in the log-likelihood function (12.37), and the expression

� n log# � 1

2#2

mX
iD1
.xi � �/2

� 1

2#2

mX
jD1

RjX
kD1

h
E.W 2

jkjWjk > xj / � 2�E.WjkjWjk > xj /C �2
i

has to be computed. Therefore, the conditional expectations E.W �
jkjWjk > xj /,

� D 1; 2, must be available. From Theorem 9.1.8, it follows that Wjk , given
Xj WmWn D xj , has a left-truncated normal distribution. Therefore,

E.WjkjWjk > xj / D �C #hj D �.1/j .�; #/; (12.38a)

E.W 2
jkjWjk > xj / D #2.1C �j hj /C 2#�hj C �2 D �.2/j .�; #/; (12.38b)

where �j D .xj � �/=# , hj D '.�j /=.1 � ˚.�j //, 1 � j � m (see Cohen [272]).
In the maximization step, the log-likelihood function (12.37) has to be maximized.
The solution is given by mean and empirical standard deviation of the data. Hence,
the (`C 1)th iteration of the EM-algorithm is given by

b�.`C1/ D 1

n

h mX
jD1

xj C
mX
jD1

Rj �
.1/
j .�.`/; #.`//

i
;

b#.`C1/ D 1p
n

h mX
jD1

x2j C
mX
jD1

Rj �
.2/
j .�.`/; #.`//�b�.`C1/

i1=2
;

where �.�/j .�.`/; #.`//, � D 1; 2 are taken from (12.38).
As mentioned by Ng et al. [688], the EM-algorithm converges often rather slowly

in comparison to the Newton–Raphson procedure (in particular, if the proportion of
missing data is large). However, it provides a measure of information in the censored
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data through the missing information principle (see Sect. 9.1.2). For the normal case,
the information matrix for the complete sample is given by

I .XI�; #/ D n

#2

	
1 0

0 2



:

From the logarithm of the truncated normal density function

logf Wjk jXj WmWn.wjxj / D const� log# � log.1� ˚.xj //� 1

2#2
.w� �/2;

we get via differentiation w.r.t. � and # :

@

@�
logf Wjk jXj WmWn.wjxj / D 1

#

�w� �
#
� hj

�
;

@

@#
logf Wjk jXj WmWn.wjxj / D 1

#

	
.w � �/2
#2

� .1C �j hj /


:

Calculating the conditional expectations E..Wjk � �/� jWjk > xj /, � D 1; 2; 3; 4,
as a function of � and # , Ng et al. [688] get components of the conditional Fisher
information matrix I .j /.WjkjXj WmWnI�; #/ given in (9.8) to be

E

�� @
@�

logf Wjk jXj WmWn.WjkjXj WmWn/
�2� D 1

#2
.1C �j hj � h2j /;

E

�� @
@#

logf Wjk jXj WmWn.WjkjXj WmWn/
�2� D 1

#2
.2C �j hj .1 � �j hj C �2j //;

E

�
@

@#
logf Wjk jXj WmWn.WjkjXj WmWn/ @

@�
logf Wjk jXj WmWn.WjkjXj WmWn/

�

D 1

#2
.hj C �j hj .�j � hj //:

Thus, the expected Fisher information can be obtained from (9.9). Inversion of the
Fisher information matrix I .XRI�; #/ yields the variance-covariance matrix of
the maximum likelihood estimator .b�MLE;b#MLE/.

12.7.3 Log-Normal Distributions

Lifetimes are often modeled by log-normal distributions because the logarithm of
the lifetime variables is normal. Moreover, a location–scale model with location
parameter � and scale parameter # results. Since the log-transformation preserves
the order of the random variables, a progressively Type-II censored sample from a
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log-normal distribution leads to progressively Type-II censored order statistics from
a normal population with mean � and variance #2. Supposing X1WmWn; : : : ; XmWmWn
are the log-lifetimes in a progressively censored experiment, the likelihood equa-
tions are given by (12.36). They can be solved only by numerical methods. Early
attempts are presented in Cohen [267] and Gajjar and Khatri [387]. Balakrishnan
et al. [134] used the IMSL nonlinear equation solver using approximate MLEs as
initial values for the iterative procedure. Ng et al. [688] applied the EM-algorithm
(see Sect. 12.7.2; see also Singh et al. [804] who used the same account for
progressively Type-II censored log-normal data). Basak et al. [179] have considered
the application of the EM-algorithm for a three-parameter log-normal distribution
based on progressively censored data.

12.7.4 Extreme Value Distribution (Type I)

Maximum likelihood estimation for progressively censored extreme value data has
been addressed by Balakrishnan et al. [136]. The likelihood equations to be solved
for � and # are

m D
mX
jD1

.Rj C 1/e�j ; m D
mX
jD1

.Rj C 1/�j e�j �
mX
jD1

�j ;

where �j D .xj � �/=# , 1 � j � m. Obviously, these equations cannot be solved
explicitly. Balakrishnan et al. [136] used the IMSL nonlinear equation solver to
compute the estimates. The method has been applied to the log-failure times of
Nelson’s insulating fluid data as given in Table 17.5. The resulting estimates are
given by b�MLE D 2:222 and b#MLE D 1:026 (see also Viveros and Balakrishnan
[875]).

Numerical approaches to obtain the MLEs have also been discussed by Wingo
[898], Lemon [583], and Cohen [270, 272] for progressive Type-I censoring. This
setting leads to similar equations. Ng et al. [688] applied the EM-algorithm to
compute the estimates. Moreover, they presented expressions for the observed
Fisher information.

12.7.5 Logistic Distribution

Balakrishnan and Kannan [104] have considered the maximum likelihood estima-
tion based on progressively Type-II censored data from location–scale families of
logistic distributions with standard cumulative distribution function
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F.t/ D 1

1C e��t=
p
3
; t 2 R: (12.39)

The standard member F of this family has mean 0 and variance 1. For more
information on logistic distributions, we refer to Balakrishnan [81]. In this case,
the likelihood equations become

m D
mX
jD1

Rj C 2
1C e���j =

p
3
; m

p
3

�
D

mX
jD1

.Rj C 2/�j
1C e���j =

p
3
�

mX
jD1

�j ;

where �j D .xj � �/=# , 1 � j � m. These equations can be solved numerically
by a Newton–Raphson procedure. Expressions for the observed and expected Fisher
information are also provided by Balakrishnan and Kannan [104]. Furthermore,
we refer to Gajjar and Khatri [387]. Asgharzadeh [61] and Balakrishnan and
Hossain [100] have addressed Type-I and Type-II generalized logistic distributions,
respectively (for the classification, see Balakrishnan and Leung [109]). A scaled
half-logistic distribution is considered in Balakrishnan and Asgharzadeh [87] (see
also Kim and Han [530]). Exponentiated half-logistic distributions are addressed in
Kang and Seo [506] and Rastogi and Tripathi [748].

12.8 Other Distributions

Maximum likelihood estimation based on progressively Type-II censored samples
has been discussed for many other distributions. For completeness, we just mention
briefly these works. Three-parameter Weibull distributions are addressed in Ng et al.
[691]. Three-parameter gamma distributions are analyzed in Cohen and Norgaard
[274] and Basak and Balakrishnan [176]. In the latter, an iterative procedure is
proposed that can be used to compute the MLEs provided that the shape parameter
exceeds 1. However, as pointed out in Laumen and Cramer [568], the likelihood
equations presented in Cohen and Norgaard [274] seem to be in error which affects
the follow-up papers, too. For further details, we refer to Laumen and Cramer [568].
Generalized gamma distributions as defined by Stacy [823] have been investigated
in Chen and Lio [251]. In Wingo [901], progressively Type-I and Type-II data
is assumed to follow a Burr-XII population distribution (see Sect. 13.5 and Lio
et al. [615]). Progressive Type-II censoring in the Burr model is also discussed
in Ali Mousa and Jaheen [38] and Soliman [811] who provided details about
uniqueness and existence of the maximum likelihood estimates. Type-II censored
data is considered in Wingo [900]. Log-gamma distributions with density function

f .t/ D 1

� .˛/
exp

˚
˛t � et

�
; t 2 R; ˛ > 0; (12.40)
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are considered in Lin et al. [603] (for known ˛, see also Lin et al. [602]). The authors
applied both a Newton–Raphson procedure and the EM-algorithm to compute the
maximum likelihood estimates. Pradhan and Kundu [727] used the same approaches
for generalized exponential distributions with cumulative distribution function

F.t/ D .1 � e��t /˛; t > 0; (12.41)

and parameters˛; � > 0. They illustrated their results by the data given in Table 12.5
which was generated from 36 failure times of appliances reported in Lawless [575].
It was shown by Pradhan and Kundu [727] that the original data fit a generalized
exponential distribution very well. Scaled generalized exponential distributions are
addressed in Asgharzadeh [62].

Inverse Weibull or Fréchet distributions with cumulative distribution function
F.t/ D e��t�˛ , t > 0, are discussed in Sultan et al. [827].

Two-parameter Gompertz distributions with cumulative distribution function

F.t/ D 1 � exp
n
� �
c
.ect � 1/

o
; t � 0; (12.42)

have been considered by Wu et al. [914] (for a generalization of Gompertz
distributions (12.42), see Wu et al. [923]). Ghitany et al. [400] established a
necessary and sufficient condition for the existence and uniqueness of the MLEs
of the shape and scale parameters using a slightly different parametrization than
that in (12.42).

A two-parameter bathtub-shaped lifetime distribution with cumulative distribu-
tion function

F.t/ D 1 � exp
n
�
�
1 � et

ˇ�o
; t > 0; (12.43)

has been considered by Wu [906] and Wu et al. [923] (see also Rastogi et al. [749],
Sarhan et al. [778], and Ahmed [20]). Rastogi et al. [749] illustrated their results by
the data given in Table 12.4.

Maxwell distributions are discussed in Krishna and Malik [552]. Results on
likelihood inference for inverse Gaussian distributions can be found in Basak and
Balakrishnan [177]. Bivariate normal distributions are addressed in Balakrishnan
and Kim [107]. Birnbaum–Saunders distributions with density function

.15; 5; 4; 0�9/ 11 35 49 329 1062 1167 1594 1990 2451 2471 2551 3059

.0�11; 24/ 11 35 49 170 329 381 708 958 1062 1167 1594 1925

.24; 0�11/ 11 35 49 329 381 958 1062 1594 1925 2223 2451 2471

Table 12.5 Progressively Type-II censored data sets generated by Pradhan and Kundu [727] (see
also Kundu and Pradhan [562])
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f .t I˛; ˇ/ D 1

2
p
2�˛ˇ

r
ˇ

t

h
1C ˇ

t

i
exp

n
� 1

2˛2

� t
ˇ
C ˇ

t

�o
; t > 0;

are addressed in Pradhan and Kundu [728]. The MLEs are computed by the EM-
algorithm using the missing information principle.

Exponentiated distributions have been discussed by Ghitany et al. [398, 399] for
a general class of exponentiated distributions having the cumulative distribution
function F with

F.t/ D
�
1 � exp

˚ � �Q.t/�
�	
; t � 0

whereQ is an increasing function withQ.0/ D 0 and limt!1Q.t/ D 1. The fam-
ily includes exponentiated (inverted) exponential, exponentiated Rayleigh distribu-
tion, and exponentiated Pareto distribution. Using the transformation Q .Zj WmWn/,
1 � j � m, where Z1WmWn; : : : ; ZmWmWn are exponential progressively Type-
II censored order statistics, the problem can be embedded into exponentiated
exponential distributions. The special case of inverted exponential distributions
is discussed in Krishna and Kumar [551]. Klakattawi et al. [534] addressed an
exponentiated version of the modified Weibull distribution given in (12.35).

Lindley distributions, i.e., a mixture of exponential and � .2; #/-distributions
with the same scale parameter # and mixture probabilities 1=.1C#/ and #=.1C#/,
are discussed in Krishna and Kumar [550].

Recently, Ahmadi et al. [19] addressed generalized half-normal distributions with
cumulative distribution function

F.t I˛; #/ D 1 � 2˚
�
�
� t
#

�˛�
; t � 0; ˛; # > 0: (12.44)

They presented the likelihood equations and proposed an EM-algorithm type
procedure to compute the maximum likelihood estimators.

Given a cumulative distribution function G.�I�/ with parameter � , Teimouri
et al. [842] discussed likelihood inference for beta-kernel distributions, i.e., pop-
ulation cumulative distribution functions

F.t I˛; ˇ;�/ D 1

B.˛; ˇ/
BG� .t/.˛; ˇ/; t 2 R; (12.45)

with kernel G� , � D .	1; : : : ; 	p/ 2 � � R
p .

12.9 Related Methods

In some cases, the likelihood equations are difficult to solve in the sense that iterative
procedures like the EM-algorithm or Newton–Raphson procedures do not converge.
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Sometimes, they do not have solutions. For these situations, alternative approaches
have been proposed. Subsequently, we illustrate some approaches by example and
mention the corresponding references where these methods have been applied.

12.9.1 Modified Maximum Likelihood Estimation

As mentioned above in the Weibull case, the likelihood function may be unbounded
so that formally maximum likelihood estimators do not exist or have regularity
problems. In such cases, Cohen [270] has applied the method of modified maximum
likelihood estimation to get estimates for the three-parameter Weibull distribution
[see (12.34)]. Cohen and Whitten [277] favored modified maximum likelihood
estimates (MMLE) over modified moment estimates for censored data.

In particular, the likelihood equation for the threshold parameter � has to be
replaced by the moment equation EX1WmWn D x1. For the three-parameter Weibull
distribution, this equation reads

�C
�#
n

�1=ˇ
�
�
1C 1

ˇ

�
D x1:

Notice that EX1WmWn equals the expectation of the minimum in an IID sample of

size n. Solving for � yields the identity � D x1 �
�
#
n

�1=ˇ
�
�
1C 1

ˇ

�
. This ensures a

finite modified likelihood function which has to be maximized w.r.t. # and ˇ. Other
possibilities to replace the mentioned likelihood equation are discussed in Cohen
and Whitten [276]. For ˇ D 1, the MMLEs for the two-parameter exponential
distribution result.

It has to be noted that several possibilities for the moment equation have been
discussed in the literature (see, e.g., Cohen and Whitten [276]). This may be of
interest if the moment ofX1WmWn, or, more generally, of the r th progressively Type-II
censored order statisticXr WmWn, is difficult to obtain. Instead of this equation, we may
impose the condition EF.Xr WmWn/ D F.xr/ for some r 2 f1; : : : ; mg, where F is

the population cumulative distribution function. Notice that F.Xr WmWn/
dD Ur WmWn so

that its value is given by (see Theorem 7.2.3)

EF.Xr WmWn/ D EUr WmWn D 1 �
rY

jD1

�j

1C �j ; 1 � r � m:

Hence, applying the quantile function of the baseline distribution, a simpler equation
may result. For the three-parameter Weibull distribution

F.t/ D 1 � exp
n
� � t��

#

�ˇ o
; t � �;
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this leads to the alternative equations

� D xr �
� � # log.1 � EUr WmWn/

�1=ˇ
; r 2 f1; : : : ; mg:

The three-parameter gamma distribution has been addressed by Cohen and
Norgaard [274]. Basak et al. [179] apply this approach for a three-parameter
log-normal distribution (see also Cohen [271]). For the three-parameter inverse
Gaussian distribution, we refer to Cohen and Whitten [277].

12.9.2 Approximate Maximum Likelihood Estimation

Approximate maximum likelihood estimators (AMLE) are calculated by expanding
parts of the likelihood equations in Taylor series so that the resulting equations are
simple functions of the unknown parameters (see Balakrishnan and Varadan [127]).
The AMLE method often yields explicit estimators which is advantageous over the
MLE method. Moreover, the AMLEs may be used as initial values for the iterative
solution of the likelihood equations to compute the MLEs.

As an example, we present the method for the two-parameter extreme value
distribution as presented in Balakrishnan et al. [136] and for the Weibull distribution
as applied in Balasooriya et al. [163]. Notice that the approaches are slightly
different.

Extreme Value Distribution

First, the partial derivatives of the log-likelihood function are given by

@`

@�
.�; #/ D �m

#
C 1

#

mX
jD1

.Rj C 1/e�j ;

@`

@#
.�; #/ D �m

#
� 1

#

mX
jD1

�j C 1

#

mX
jD1

.Rj C 1/�j e�j ;

(12.46)

where �j D .xj � �/=# , 1 � j � m. Now, we denote by �r WmWn D 1 �Qr
jD1

�j
1C�j

the mean of the r th uniform progressively Type-II censored order statistic Ur WmWn
and expand h.�j / D e�j around �j WmWn in a Taylor series of order 1 to get

h.�j /
:D h.�j WmWn/C .�j � �j WmWn/h0.�j WmWn/:
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Hence, we get

e�j
:D ˛j C ˇj �j

where ˛j D e�j WmWn.1 � �j WmWn/ and ˇj D e�j WmWn , 1 � j � m. This yields the
approximations of (12.46) as

@`

@�
.�; #/

:D �m
#
C 1

#

mX
jD1

.Rj C 1/˛j C 1

#

mX
jD1

.Rj C 1/ˇj �j D 0;

@`

@#
.�; #/

:D �m
#
� 1

#

mX
jD1

�j C 1

#

mX
jD1

.Rj C 1/˛j �j C 1

#

mX
jD1

.Rj C 1/ˇj �2j D 0;
(12.47)

which is a system of linear and quadratic equations in � and # . First, we get

� D K C L#

with K D
Pm
jD1.RjC1/ˇj xjPm
jD1.RjC1/ˇj and L D

Pm
jD1.RjC1/˛j�mPm
jD1.RjC1/ˇj . # is the unique positive

solution of the quadratic equation

m#2 �A# � B D 0

withA DPm
jD1Œ.RjC1/˛j�1�.xj�K/ andB DPm

jD1.RjC1/ˇj .xj�K/2 � 0.
Hence, we get the AMLEs as

b�AMLE D K C Lb#AMLE; b#AMLE D 1

2m

�
AC

p
A2 C 4mB

�
: (12.48)

For a Type-II censored sample, i.e., R D Om, the AMLEs derived by Balakrishnan
and Varadan [127] result.

Weibull Distribution

Balasooriya et al. [163] have established approximate MLEs for a Weibull distri-
bution parametrized as Weibull.�ˇ; ˇ/. Transforming the distribution to an extreme
value distribution, log-lifetimes are used in the analysis. Thus, the log-likelihood
function is given by (12.46) with �j D .xj ��/=# , j D 1; : : : ; m, where� D log �
and # D 1=ˇ. Denoting by �j WmWn, j D 1; : : : ; m, the moments of progressively
Type-II censored order statistics from a standard extreme value distribution given
in (7.16), Balasooriya et al. [163] expand the exponential function around �j WmWn
in a Taylor series of order 1. Since the approximation proceeds only by a different
expansion point, this yields similar approximated likelihood equations as in (12.47),
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where now ˛j D e�j WmWn.1 � �j WmWn/ and ˇj D e�j WmWn , 1 � j � m. Hence, the

estimatorsb�;b# have the same form as in (12.48). Transforming back to the Weibull

distribution, this yields the estimatorsb�AMLE D eb� and b̌AMLE D 1=b#.
Using arguments of Balakrishnan and Varadan [127], Balasooriya et al. [163]

proposed approximate bias-corrected estimators of b�;b� as

b�c D b� � ab#; b#c D
b#
b

with some constants a and b. The resulting estimators for the Weibull distribution
are given by

b��AMLE D eb�c ; b̌�
AMLE D

1

b#c
: (12.49)

Example 12.9.1. As mentioned in Example 12.2.3, Viveros and Balakrishnan

[875] computed the MLEs b̌ D 0:975 and b# D 9:226 for Nelson’s progressively
Type-II censored data 1.1.4. For the estimators given in (12.49), Balasooriya
et al. [163] obtained the scale estimate 9:107 (9:806 with bias correction) and
the shape estimate 0:973 (1:013 with bias correction).

Balasooriya et al. [163] presented also Monte Carlo experiments to study the
finite-sample properties of the AMLEs.

Other Distributions

Lin et al. [603] considered approximate maximum likelihood estimates for a three-
parameter log-gamma distribution with density function

f .t/ D ˇˇ�1=2

� .ˇ/
exp

np
ˇ
t��
#
� ˇ exp

�
t��
#
p
ˇ

�o
; t 2 R; ˇ > 0; # > 0;� 2 R;

based on a progressively Type-II censored sample. This parametrization includes the
location–scale family of the extreme value distribution for ˇ D 1. They extended
the results of Balakrishnan and Chan [90,91] for Type-II censored data. Some other
distributions that have been studied are logistic distributions (see Balakrishnan and
Kannan [104]), half-logistic distributions (see Balakrishnan and Asgharzadeh [87]
and Kim and Han [530]), Gaussian distributions (see Balakrishnan et al. [134]),
generalized half-normal distributions as in (12.44) (see Ahmadi et al. [19]), bivariate
normal distributions (see Balakrishnan and Kim [107]), and Type-II generalized
logistic distributions (see Balakrishnan and Hossain [100]).
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12.10 M -Estimation

Given progressively Type-II censored data X1WmWn; : : : ; XmWmWn with realizations
x1; : : : ; xm, Basak and Balakrishnan [174] discussed the robust estimation of a
location parameter. According to (12.2), the likelihood equation reads, with the
notation �1.�I 	/ D logf	 and �2.�I 	/ D logF 	 ,

mX
jD1

�01.xj I 	/C
mX
jD1

Rj �
0
2.xj I 	/ D 0: (12.50)

Since MLEs are sensitive to outliers in the data, the derivatives �0j , j D 1; 2, are
replaced by appropriately chosen functions  1 and  2 in robust M -estimation as
proposed by Huber [464] (see also Huber [465]). Hence, we have to solve the
equation

mX
jD1

 1.xj I 	/C
mX
jD1

Rj 2.xj I 	/ D 0 (12.51)

instead of (12.50). Noticing that �02.xI 	/ D E.�01.X I 	/jX > x/, Basak and
Balakrishnan [174] considered a class of robustM -estimators obtained from (12.51)
with  2 given by  2.xI 	/ D E. 1.X I 	/jX > x/. The resulting estimators are
called James-typeM -estimators (see James [478]).

In order to establish an expression for the influence function, Basak and
Balakrishnan [174] considered a block censoring model as described by Hofmann
et al. [444] with R0 D 0 and censoring scheme

Rm D .0�R1; R1; 0�R2; R2; : : : ; 0�Rm;Rm/

(see also Sect. 3.4.6). By similarity with (3.19), we use the following notation of
Basak and Balakrishnan [174]:

(i) p�i D limn!1 Ri
n

, qi D limn!1 Ri
n

, i D 1; : : : ; m,
(ii) pi denotes the (asymptotic) proportion of uncensored observations up to step

i , i D 1; : : : ; m,
(iii) �p D F .p/ denotes the pth quantile of F , p 2 .0; 1/.

Then, Basak and Balakrishnan [174] found the following representation of the
influence function IF.�IT; F / of T .F / which denotes the functional form of the
M -estimator

IF.xIT; F / D � N.xIT; F /
D1.xIT; F / ;
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where

N.xIT; F / D  1.xIT .F //
�
1.�1;�p1 /.x/C

m�1X
iD1

1 � p��i � q�i
1 � pi 1.�pi ;�piC1 /.x/

�

C
mX
iD1

qi 2.�pi IT .F //;

D1.xIT; F / D
Z �p1

�1
 01.y; T .F //dF.y/

C
m�1X
iD1

1 � p��i � q�i
1 � pi

Z �piC1

�pi

 01.y; T .F //dF.y/

C
mX
iD1

qi 
0
2.�pi IT .F //:

If the estimator is Fisher consistent for F D F	 , the influence function reads

IF.xIT; F	 / D � N.xIT; F	 /
D2.xIT; F	 /

with N.xIT; F	 / as above (replace T .F / by 	) and

D2.xIT; F	 / D
Z �p1

�1
 01.y; 	/�	.y/dF	.y/

C
m�1X
iD1

1 � p��i � q�i
1 � pi

Z �piC1

�pi

 01.y; 	/dF	.y/

C
mX
iD1

qi 
0
2.�pi I 	/;

where�	.y/ D @
@	

logf	.y/ D f 0	 .y/

f	 .y/
.

Applying Theorem 2.6 of Huber [465, pp. 54], Basak and Balakrishnan [174]
obtained results for the breakdown point of T .F; 1;  2/ in the location case.
Supposing that  i is increasing and takes values of both signs, the breakdown point
is given by

min
n � 1.�1/
 1.1/�  1.�1/ ;

 1.1/p�m C  2.1/.1 � p�m/
 1.1/�  1.�1/

o
:
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For James-typeM -estimators of location, the breakdown point simplifies to

minf� 1.�1/;  1.1/g
 1.1/�  1.�1/ :

The gross-error sensitivity �F D supx jIF.xIT; F /j serves as a measure of
robustness. The most robust estimator minimizes �F . For a location parameter, this
leads to the median,b	 D med.F /. For Type-II right censored data, Akritas et al.
[25] proved that the most robust estimator results from the choice  �1 .x/ D sgn.x/
and  �2 .x/ D 1. If the proportion of uncensored observations exceeds 0:5, the
most robust estimator is the median, too. For progressive censoring, Basak and
Balakrishnan [174] stated that, given p�1 D � � � D p�m, the most robust estimator
is obtained from the choice  �1 .x/ D sgn.x/ and  �2 .x/ D 0. For some i with

�pi � 	 < �piC1 , the most robust estimator is given byb	 D F .pi /.
Assuming a parametric family .F	 /	2� with some regularity conditions imposed

on f	 and�, Basak and Balakrishnan [174] discussed optimal robust estimation for
two choices of  -functions. They obtained results for the optimal choice of these
functions which lead to optimal robust estimators solving (12.51). The results were
illustrated by modifying Nelson’s insulating fluid data 1.1.4.

12.11 Order Restricted Inference

Bhattacharya [198] and Beutner and Kamps [195] have considered order restricted
inference in the k-sample case with censored data. Bhattacharya [198] discussed
general progressive censoring from two-parameter exponential distributions,
whereas Beutner and Kamps [195] addressed sequential order statistics from
location–scale families with cumulative distribution function in (12.10). Notice
that d 	 id, i.e., d.t/ D t , t 2 R, leads to exponential distributions.

Suppose we have k independent samples XRi

i I1Wmi Wni ; : : : ; X
Ri

i Imi Wmi Wni of progres-
sively Type-II censored order statistics with censoring schemes Ri , baseline
cumulative distribution function as in (12.10) with parameters .�i ; #i /, 1 � i � k.
Then, from the independence assumption and (12.11), the (unrestricted) MLEs of
.�i ; #i /1�i�k are given by

b�i D d.XRi

i I1Wmi Wni /; b#i D 1

m

mX
jD2

�j .Ri /
h
d.X

Ri

i Ij Wmi Wni /� d.XRi

i Ij�1Wmi Wni /
i
;

1 � i � k: (12.52)

Then, adapting the result of Beutner and Kamps [195] to the setting of progressively
Type-II censored order statistics, we get the following result. It follows from the
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representation in (12.52) and, as pointed out by Beutner and Kamps [195], from
the MLEs under order restrictions of exponential parameters as presented in Barlow
et al. [170, pp. 45].

Theorem 12.11.1. Subject to the constraint #1 � � � � � #k , the MLEs of
.�i ; #i /1�i�k are given by

e#i D max
1���i min

i�`�k

P`
jD� mj

b#jP`
jD� mj

;

b�i D d.XRi

i I1Wmi Wni /; 1 � i � k:

For general progressive censoring with samplesXRi

i IriC2Wmi Wni ; : : : ,X
Ri
i Imi Wmi Wni , riC

2 � mi , 1 � i � k, the MLEs result from Remark 12.1.9 as

b�i D d.XRi

i IriC2Wmi Wni /Cb#i log
�
1 � ri

mi

�
;

b#i D 1

m

mX
jDriC2

�j .Ri /
h
d.X

Ri

i Ij Wmi Wni /� d.XRi

i Ij�1Wmi Wni /
i
; 1 � i � k: (12.53)

As in Theorem 12.11.1, the MLEs of .#i /1�i�k under order restriction #1 � � � � �
#k are now given by

e#i D max
1���i min

i�`�k

P`
jD�.mj � rj /b#jP`
jD�.mj � rj /

; 1 � i � k:

The MLEse�i of the location parameters �i result by replacingb#i bye#i in (12.53),
1 � i � k. Finally, Beutner and Kamps [195] stated that the MLEs are unique
because they result as a solution of a generalized isotonic regression problem
(see Robertson et al. [755]).

Furthermore, denoting by L.�k;#k/ the likelihood function, a likelihood ratio
test

T D � log
sup#1D���D#k L.�k;#k/

sup#1�����#k L.�k;#k/

has been proposed to test the hypothesis

H0 W #1 D � � � D #k
versus the alternative

H1 W #1 � � � � � #k and #i < #iC1 for some i 2 f1; : : : ; k � 1g:



312 12 Maximum Likelihood Estimation in Progressive Type-II Censoring

It turns out that, under some regularity conditions, the asymptotic distribution of T
(formi � ri !1, 1 � i � k) is a mixture of �2-distributions. For details, we refer
to Bhattacharya [198] and Beutner and Kamps [195]. Furthermore, Bhattacharya
[198] illustrated the approach by simulation results. The method is applied to
survival data of patients with squamous carcinoma of the oropharynx taken from
Kalbfleisch and Prentice [490].



Chapter 13
Point Estimation in Progressive Type-I
Censoring

Progressive Type-I censoring poses some problems in developing both exact
distribution theory and exact inferential procedures. This is mainly due to the
random nature of the failures occurring within each time interval ŒT`�1; T`�, which
allow for both a termination of the life test before the final censoring time Tk
and no observation. Nevertheless, it has been noticed by many authors that the
likelihood function deduced from the density function given in (4.7) yields explicit
representations for the maximum likelihood estimates conditionally on the event
that at least one failure has been observed. Despite this, exact inferential analysis
of the estimators is available only in the case of an exponential distribution
(see Balakrishnan et al. [150]). Thus, most of the available inferential analysis
for progressively Type-I censored data is approximation based and numerical in
nature. Inferential results for various distributions have been obtained by Cohen
[267, 269, 270, 271, 272], Ringer and Sprinkle [754], Wingo [898, 901], Cohen
and Norgaard [274], Nelson [676], Gibbons and Vance [403], Cohen and Whitten
[277], Balakrishnan and Cohen [92], and Wong [902]. We shall discuss maximum
likelihood inference for several distributions important in lifetime modeling. The
inference is carried out, given that D�k � 1, ensuring that one failure has
been observed in the progressively censored experiment. We consider a family
of absolutely continuous lifetime distributions given by a cumulative distribution
function F� with density function f� , � 2 � � R

p , for some p 2 N. From (4.7)
and (4.8), we get the likelihood function

L.�jx;d/ D CI
mY
iD1

f� .xi /

kY
iD1
Œ1 � F� .Ti /�

Ri ; (13.1)

where x D .x1; : : : ; xm/, d D .d1; : : : ; dk/ 2 D with m D d�k � 1, and R D
.R1; : : : ; Rk/ is the effectively applied censoring scheme.

Notice that the likelihood function in (13.1) has the same structure as the likeli-
hood function (12.1) in the case of progressive Type-II censoring. The expressions
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differ only by the normalizing constant (which does not depend on the parameter
and, thus, is not relevant for the maximization) and the argument of the cumulative
distribution function F� . Here, the random censoring times xi are replaced by the
prefixed censoring times Ti . Therefore, the resulting expressions for the likelihood
equations and, thus, for the MLEs are quite similar. However, the distributions of
the resulting estimators are different and much more complicated in the case of
progressive Type-I censoring.

13.1 Exponential Distribution

Maximum likelihood estimation for exponential progressively Type-I censored
order statistics is discussed in Cohen [267], Nelson [676, pp. 317], Cohen [272,
pp. 128], Balakrishnan and Aggarwala [86, pp. 122], Balakrishnan et al. [150],
and Cramer and Tamm [306]. Subsequently, we present results for both scale and
location–scale models. Throughout, we assume that T1 < � � � < Tk and that
the initially planned censoring scheme is given by R0 D .R01; : : : ; R

0
k�1/ with

n > R0�k�1. The notation is as introduced in Chap. 4.

13.1.1 One-Parameter Exponential Distribution

Suppose the underlying random variables are distributed according to an Exp.#/-
distribution, # > 0. Then, the likelihood function reads

L.#jx;d/ D CI

#m
exp

n
� 1

#

kX
jD1

h d�jX
iDd�j�1C1

xi CRjTj
io
; (13.2)

where d�0 D 0. The log-likelihood function is given by

`.#jx;d/ D const�m log# � 1

#

kX
jD1

h d�jX
iDd�j�1C1

xi CRjTj
i

(13.3)

showing that the MLE of # does not exist for m D d�k D 0. In this case, ` is
a strictly increasing function. For m � 1, a maximization w.r.t. # > 0 yields the
maximum likelihood estimator

b#MLE D 1

m

kX
jD1

h d�jX
iDd�j�1C1

xi CRjTj
i
D 1

m

kX
jD1

Uj ; (13.4)

whereUj DPd�j
iDd�j�1C1.xi�Tj�1/C.n�d�j�R�j�1/�j ,�j D Tj�Tj�1, is the

total time on test in the j th interval, 1 � j � k, T0 D 0. Notice that the effectively
applied censoring plan R D .R1; : : : ; Rk/, and not the initially planned censoring
scheme R0, is used in the estimate. The particular case of Type-I censoring .k D 1/
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has been considered by Epstein [353]. Cohen [267] established an estimate for the
asymptotic variance of the MLE via the observed Fisher information:

bVar.b#MLE/ D
 
�@

2`.#/

@#2

ˇ̌
ˇ̌
#Db#MLE

!�1
:

A simple calculation shows that bVar.b#MLE/ D b#2MLE=m.

Example 13.1.1. Based on the failure data of diesel engine fans given in
Data B.2.1, the question of an 8; 000-hour warranty is addressed (see also Cohen
[272]). We are interested in the estimation of the mean time to failure. The data
possess m D 12 observed failure times and 58 units censored at k D 27 censoring
times. Assuming an Exp.#/-distribution, the MLE of # has the value

b#MLE D 344 440

12
D 28 703:3 hours:

Then, the maximum likelihood estimate of the cumulative distribution function
at x D 8 000 is given by

bPb#MLE
.X � 8 000/ D 0:2787;

showing that we can expect about 27.9 % of the fans to fail within the warranty
period.

Using the decomposition (13.4), Balakrishnan et al. [150] established the
conditional density function ofb#MLE, givenD�k � 1.

Theorem 13.1.2. The conditional density function of b#MLE, given D�k � 1, is
given by

fb#MLEjD�k�1.x/ D
nX

mD1

X
d2Dm

d1X
�1D0
� � �

dkX
�kD0

C
Œ#�
d;� � �

�
x � �d;�Im; m

#

�
; x 2 R;

where

�d;� D 1

m

kX
iD1

.n � d�i �R�i�1 C �i /�i ;

C
Œ#�
d;� D

.�1/
Pk
iD1 �i

1 � exp
�
�
Pk
iD1 Ri Ti
#

�

�
(

kY
iD1

 
n � d�i�1 �R�i�1

di

! 
di

�i

!)
exp

n
�m
#
�d;�

o
;

Dm D fd 2 D W d�k D mg;
and �.�I˛; �/ denotes the density function of a gamma distribution � .˛; �/ (see
(A.1.7)).
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Theorem 13.1.2 reveals that the conditional distribution ofb#MLE, givenD�k � 1,
is a generalized mixture of gamma distributions. This allows for explicit expressions
for conditional moments.

Corollary 13.1.3. The conditional expectation and conditional variance ofb#MLE

are given by

E.b#MLEjD�k � 1/ D # C b.b#MLE/

and

Var.b#MLEjD�k � 1/ D MSE.b#MLE/ � b2.b#MLE/;

where

b.b#MLE/ D
nX

mD1

X
d2Dm

d1X
�1D0
� � �

dkX
�kD0

C
Œ#�
d;��d;� ;

MSE.b#MLE/ D
nX

mD1

X
d2Dm

d1X
�1D0
� � �

dkX
�kD0

C
Œ#�
d;�

	
#2

m
C �2d;�




are bias and mean squared error.

From the generalized mixture representation, an expression for the conditional
survival function P#.b#MLE > xjD�k � 1/ can be directly obtained as

P#.b#MLE > xjD�k � 1/

D
nX

mD1

X
d2Dm

d1X
�1D0
� � �

dkX
�kD0

(
C
Œ#�
d;� � e�

m
ˇ .x��d;�/ �

mX
iD1

�
m
#
.x � �d;�/

�i�1
.i � 1/Š

)

for x > �d;� . Notice that the occurring gamma distributions are Erlang distributions
and, thus, their survival function has an explicit sum representation. It will be used
to construct conditional confidence intervals. The method is applied to Data B.2.2
(see Balakrishnan et al. [150, pp. 349]).

Example 13.1.4. For the data given in Table B.2, the MLE of # is given by
b#MLE D 10:861. Using this result, the estimated values of the bias, standard
error, and mean squared error of # are obtained as

bb.b#MLE/ D 0:946;bVar.b#MLE/ D 24:108; and bMSE.b#MLE/ D 25:004;
respectively. The estimated asymptotic variance is given by 14:746. For the data

given in Table B.3, we get the estimates b#MLE D 11:497,

bb.b#MLE/ D 0:633;bVar.b#MLE/ D 20:027; and bMSE.b#MLE/ D 19:626:
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The estimated asymptotic variance is given by 14:686. Notice that the estimated
asymptotic variance is considerably smaller in both cases so that it underestimates
the variation.

13.1.2 Two-Parameter Exponential Distribution

Now, we turn to the two-parameter case Exp.�; #/ which is considered, e.g., in
Cohen [272, pp. 128] and Cohen and Whitten [277, pp. 110]. It has to be noted
that the maximum likelihood estimator of # presented in Cramer and Tamm [306]
differs from their expression in some cases. It was overlooked in the earlier papers
that the first failure may occur after the first censoring time T1. Therefore, the
first observation may be larger than T1 which leads to a change in the likelihood
function. We assume that � and # are unknown and have to be estimated. In the
two-parameter exponential distribution, the location parameter causes the support
to depend on � (see Definition A.1.5) so that the corresponding survival function is
given by

1 � F�;# .Ti / D
8
<
:

exp
�
�Ti��

#

�
; � � Ti

1; � > Ti
D exp

	
� ŒTi � ��C

#



:

Hence, the likelihood function is given by

L.�; #/ D CI

#m
exp

 
�

mX
iD1

xi � �
#
�

kX
iD1

Ri ŒTi � ��C
#

!
1.�1;x1�.�/:

Conditional on m � 1, the maximum likelihood estimates need not exist in any
case. For instance, given m D 1, it is possible that either the likelihood function is
unbounded or unique maximum likelihood estimators for � and # exist. For details,
we refer to Cramer and Tamm [306]. Assumingm � 2 and that x2 > x1, both MLEs
exist. Then, for any # > 0, the term

mX
iD1

xi � �
#
C

kX
iD1

Ri ŒTi � ��C
#

is increasing in � � x1. Therefore, the upper bound

L.#/ D CI

#m
exp

 
� 1
#

n mX
iD2
.xi � x1/C

kX
iD1

Ri ŒTi � x1�C
o!



318 13 Point Estimation in Progressive Type-I Censoring

of L.�; #/ results which is attained for � D x1 only. Hence, the MLEs of � and #
are given by

b�MLE D XR;T
1WM Wn;

b#MLE D 1

M

MX
iD2
.XR;T

i WM Wn � XR;T
1WM Wn/C

1

M

kX
iD1

Ri ŒTi � XR;T
1WM Wn�C:

The MLE for # differs from that presented by Cohen [272] and Cohen and Whitten
[277]

b#� D 1

M

MX
iD2
.XR;T

i WM Wn � XR;T
1WM Wn/C

1

M

kX
iD1

Ri .Ti �XR;T
1WM Wn/

when the first observation exceeds the first censoring time T1. Cramer and Tamm
[306] illustrated this effect by a data set presented in Wingo [901], where the first
censoring time precedes the first observation (see Data B.2.4).

Example 13.1.5. Using Data B.2.4, we get the location estimate b�MLE D
0:529. The corresponding estimates for the scale parameter are b#MLE D 0:333

and b#� D 0:262. The latter estimate leads to a smaller value since it incorporates
the censoring times T1 and T2. The estimated pain relief times are 0:862 and
0:791, respectively. Notice that Wingo [901] fitted a Burr-XII model to this data.
He obtained an estimated mean pain relief time of 0:836 which is quite close
to the maximum likelihood estimate based on the two-parameter exponential
distribution.

Remark 13.1.6. The MLE b#MLE includes only these censoring times which
exceed the first observed failure time. This is quite natural in the sense that
the left endpoint of the support is estimated by XR;T

1WM Wn and, thus, values less

than XR;T
1WM Wn do not contain valuable information.

Similar problems arise for other distributions having a finite left endpoint of
support. This includes, e.g., three-parameter Weibull distributions (see Cohen
[270]), three-parameter log-normal distributions (see Cohen [271]), and three-
parameter gamma distributions (see Cohen and Norgaard [274]). In these studies,
the problem has not been taken into account, too.

Cramer and Tamm [306] mentioned that the MLEs of both the location and scale
parameter are biased which has also been frequently observed in similar settings
(see Cohen [273]). They illustrated this observation by a simulation study and
proposed the bias-adjusted MLEs

b#adj D 1

M � 1
MX
iD2
.XR;T

i WM Wn �XR;T
1WM Wn/C

1

M

kX
jD1

Rj ŒTj �XR;T
1WM Wn�C;

b�adj D XR;T
1WM Wn �

1

n
b#adj;
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which seem to provide better estimates especially in small samples. More details as
well as details on density estimates can be found in Cramer and Tamm [306].

13.1.3 Modified Moment Estimation

Cohen [272, pp. 130] proposed modified maximum likelihood estimators for the
Exp.�; #/-model. He introduced an additional equation

E.X1Wn/ D x1 or, equivalently, � D x1 � #
n

which obviously makes sense only when the minimum of the data is included in the
progressively Type-I censored sample. Therefore, we assume for this section that
the first observation is given by the minimum and that x1 < T1. Replacing � by
x1 � #

n
in the likelihood equation @

@#
`.�; #/ D 0 leads to the estimators

b�MMLE D XR;T
1WM Wn �

b#MMLE

n
;

b#MMLE D 1

M � 1
MX
iD1
.X

R;T
i WM Wn � XR;T

1WM Wn/C
1

M � 1
kX
iD1

Ri .Ti � XR;T
1WM Wn/:

Remark 13.1.7. Notice that P.X1Wn > T1/ D exp
˚ � nŒT1���C

#

�
> 0 for any

� 2 R and # > 0. In particular, this probability is one for � > T1. Moreover, the
minimum of the sample may be progressively censored with positive probability
so that it is not observed. Suppose that X1Wn > T1 and R01 > 0. Then, the

probability of censoring X1Wn at T1 is given by
R01
n

. Therefore, we find that the
probability not to observe X1Wn is positive:

P.X1Wn not observed/ D P.X1Wn censoredjX1Wn > T1/P.X1Wn > T1/

� R01
n

exp
n
� nŒT1 � ��C

#

o
> 0:

On the other hand, assuming that T1 > �, we get limn!1 P.X1Wn > T1/ D 0. For
large samples and an appropriately chosen first censoring time T1, we can proceed
on the assumption that the minimum is observed before the first censoring time.
However, for small samples which are commonly encountered in reliability, the
problem is still present and must not be neglected.

Example 13.1.8. Data B.2.1 is considered with an Exp.�; #/-model (see also
Example 13.1.1). Cohen [272, pp. 136] applied the modified maximum likelihood
estimates to obtain

b�MMLE D 43:6 and b#MMLE D 28 449:
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Now, we get an estimate for a failure within the 8,000-hour warranty period of
bPMMLE D 0:244. Using the MLEs, we get

b�MLE D 450; b#MLE D 26 078; and bPMLE D 0:251:

13.2 Weibull Distributions

Maximum likelihood estimation for two-parameter Weibull distributions with pro-
gressively Type-I censored data has been considered in Cohen [268, 269], Gibbons
and Vance [403], Cohen [272, pp. 88], and Balakrishnan and Aggarwala [86,
pp. 125]. Explicit expressions for the MLEs are not available and the estimates
have to be computed by numerical procedures. Balakrishnan and Kateri [105] have
established the existence and uniqueness of the MLEs. Three-parameter Weibull
distributions are considered in Cohen [270], Wingo [898], and Lemon [583].

We consider the Weibull.#; ˇ/-distribution as defined in Definition A.1.6. For
a progressively Type-I censored sample XR;T

1WM Wn; : : : ; X
R;T
M WM Wn with observations

x1; : : : ; xm, the log-likelihood function is given by

`.#; ˇ/ D logCICm logˇ�m log#C.ˇ�1/
mX
iD1

logxi� 1
#

mX
iD1

x
ˇ
i �

1

#

kX
iD1

RiT
ˇ
i :

Differentiating ` w.r.t. # and ˇ results in the likelihood equations

@

@̌
`.#; ˇ/ D m

ˇ
C

mX
iD1

logxi � 1

#

mX
iD1

x
ˇ
i logxi � 1

#

kX
iD1

RiT
ˇ
i logTi D 0;

(13.5a)

@

@#
`.#; ˇ/ D �m

#
C 1

#2

mX
iD1

x
ˇ
i C

1

#2

kX
iD1

RiT
ˇ
i D 0: (13.5b)

A rearrangement of (13.5b) leads to the expression

b# D 1

m

� mX
iD1

x
ˇ
i C

kX
iD1

RiT
ˇ
i

�
:

Then, equation (13.5a) can be rewritten as

1

m

mX
iD1

logxi D
Pm

iD1 x
ˇ
i logxi CPk

iD1 RiT
ˇ
i logTiPm

iD1 x
ˇ
i C

Pk
iD1 RiT

ˇ
i

� 1

ˇ
: (13.6)

Equation (13.6) has to be solved numerically. Therefore, it is important to know
whether it has a (unique) solution. This result was established by Balakrishnan and
Kateri [105]. This shows that (13.6) can be solved by some numerical procedure
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leading to the desired MLEs. As mentioned before, equation (13.6) is very similar
to the corresponding equation for progressive Type-II censoring given in (12.13).

The asymptotic variance–covariance matrix can be estimated by the inverse of
the observed Fisher information matrix as

 
bVar.b̌/ bCov.b̌;b#/

bCov.b#; b̌/ bVar.b#/

!
D

0
BBB@
�@

2`.#; ˇ/

@̌ 2

ˇ̌
ˇ̌
b̌;b#
�@

2`.#; ˇ/

@̌ @#

ˇ̌
ˇ̌
b̌;b#

�@
2`.#; ˇ/

@#@̌

ˇ̌
ˇ̌
b̌;b#
�@

2`.#; ˇ/

@#2

ˇ̌
ˇ̌
b̌;b#

1
CCCA

�1

: (13.7)

The required second partial derivatives are given by

@2

@̌ 2
`.#; ˇ/ D �m

ˇ2
� 1

#

 
mX
iD1

x
ˇ
i .logxi /2 C

kX
iD1

RiT
ˇ
i .logTi /2

!
;

@2

@̌ @#
`.#; ˇ/ D 1

#2

 
mX
iD1

x
ˇ
i logxi C

kX
iD1

RiT
ˇ
i logTi

!
;

@2

@#2
`.#; ˇ/ D m

#2
� 2

#3

 
mX
iD1

x
ˇ
i C

kX
iD1

RiT
ˇ
i

!
:

Remark 13.2.1. Gibbons and Vance [403] have conducted a simulation study
which compares the MLEs with estimators resulting from a graphical procedure
(the so-called least-squares median rank estimators (LSMRE)) described in
Johnson [481]. The mean squared errors were computed for both procedures
and for several sample sizes and proportions of censored units.

Example 13.2.2. We illustrate the approach by Montanari and Cacciari’s [655]
XLPE-isolated cable data (see Data B.2.5) who assumed Weibull lifetimes to
analyze the data. Notice that the data have been discussed in Montanari and
Cacciari [655] for a different parametrization of the Weibull distribution. Solving
the likelihood equations yields the estimates

b̌
MLE D 3:077; b#MLE D 1:802697652 � 109:

The ˛-quantile of the two-parameter Weibull distribution is given by �˛ D
Œ�# log.1 � ˛/�1=ˇ , so that the estimated quantile is given by b�0:5 D 903. This
means that we have to expect 50 % of the failures within the first 903 h of
operation.

Remark 13.2.3. Cohen [270], Wingo [898], and Lemon [583] considered three-
parameter Weibull distributions with a left endpoint of support �. As mentioned
above for the two-parameter exponential distribution with location parameter �,
the authors have not taken into account that the minimum may not be observed.
Therefore, their formulas also need to be corrected in this case.
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13.3 Extreme Value Distributions

Cohen [272, pp. 144] considered progressively Type-I censored order statistics
from an extreme value distribution with location and scale parameters � and # ,
respectively. Since these data can be transformed by an exponential function, i.e.,
YR;T
j WM Wn D exp.XR;T

j WM Wn/ , to get progressively Type-I censored order statistics from
a Weibull distribution, the results for the Weibull case can be directly applied. The
MLEs are given by the solutions of the equations

� D # log

"
1

m

 
mX
iD1

exi =# C
kX
iD1

Rie
Ti =#

!#
;

1

m

mX
iD1

xi D
Pm

iD1 exi =#xi CPk
iD1 RieTi =#TiPm

iD1 exi =# CPk
iD1 RieTi =#

� #:

Notice that the first equation is explicit in � and the second equation has a unique
solution in # .

Example 13.3.1. The logarithmic failure times of Nelson’s progressively Type-I
censored insulating fluid data 1.1.9 are used to illustrate the preceding approach
(see Table 13.1). The effectively applied censoring scheme is given by R D .2�3/.
The transformed censoring times are T1 D 1:09861, T2 D 2:19722, and T3 D
2:89037. The resulting estimates are given by b� D 2:20241;b# D 1:07550. The

estimated mean lifetime is given by eb� � � .1Cb#/ D 9:35717.

13.4 Normal Distribution

For a location–scale model from a normal distribution, Cohen [267] derived maxi-
mum likelihood estimators (see also Cohen [272], Nelson [676], and Balakrishnan
and Aggarwala [86]). Denoting by ' and ˚ the density function and the cumulative
distribution function of the standard normal distribution, respectively, the resulting
partial derivatives of the log-likelihood function are

�1:66073 �0:24846 �0:04082 0:27003 1:02245 1:15057 1:42311

1:54116 1:57898 1:87180 1:99470 2:11263 2:48989

Table 13.1 Logarithmic values of Nelson’s progressively Type-I censored insulating fluid
data 1.1.9
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@

@�
`.�; #/ D m

#

 
x � �
#
C

kX
iD1

Ri

m
hi

!
;

@

@#
`.�; #/ D m

#

 
s2 C .x � �/2

#2
� 1C

kX
iD1

�iRi

m
hi

!
;

where �i D Ti��
#

and hi D h.�i / D '.�i /

1�˚.�i / , 1 � i � k. The corresponding
likelihood equations are given by

x D � � #
kX
iD1

Ri

m
hi ; (13.8a)

s2 D #2
�
1 � 1

m

kX
iD1

�iRihi �
� kX
iD1

Ri

m
hi

�2�
; (13.8b)

where x D 1
m

Pm
iD1 xi and s2 D 1

m

Pm
iD1.xi � x/2 denote the sample mean and

sample variance, respectively. Equations (13.8a) and (13.8b) can only be solved
numerically (e.g., by a Newton–Raphson procedure; see Cohen [267]). Notice that
the likelihood equations for progressive Type-II censored data are similar. The
censoring times Ti have to be replaced by the corresponding failure times xi at
which progressive censoring takes place.

The asymptotic variance–covariance matrix can be estimated by the inverse
observed Fisher information matrix [see (13.7)]. The required partial derivatives
of the log-likelihood function are given by

@2

@�2
`.�; #/ D � m

#2

h
1� 1

m

kX
iD1

Rii

i
;

@2

@�@#
`.�; #/ D � m

#2

"
2.x � �/

#
� 1

m

kX
iD1

Ri .�i i � hi /
#
;

@2

@#2
`.�; #/ D � m

#2

"
3
s2 C .x � �/2

#2
� 1C 1

m

kX
iD1

Ri
�
2hi�i � �2i i

�
#
;

where i D hi .�i � hi /, 1 � i � k.
Log-normal distributions are investigated in Gajjar and Khatri [387].
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13.5 Burr-XII Distribution

Burr-XII distributions are sometimes proposed as an alternative to normal, log-
normal, gamma, logistic, and exponential distributions since the shapes of these
densities are qualitatively depicted by those of Burr-XII density functions. For
˛; ˇ > 0, these are given by

f˛;ˇ.t/ D ˛

ˇ

t˛�1

.t˛ C 1/1=ˇC1 ; t > 0: (13.9)

The corresponding cumulative distribution function is given by F˛;ˇ.t/ D 1 �
.t˛ C 1/�1=ˇ1.0;1/.t/, t 2 R. Details on Burr-XII distributions are presented in
Tadikamalla [830]. Further comments can be found in, e.g., Wingo [899], Gupta
et al. [424], and Jalali and Watkins [476].

Progressively Type-I censored data from Burr-XII distributions has been
addressed by Wingo [901]. The resulting log-likelihood function is given by

`.˛; ˇ/ D logCI Cm log˛ �m logˇ C .˛ � 1/
mX
iD1

logxi

�
mX
iD1

log.x˛i C 1/�
ı.˛/

ˇ
; (13.10)

where ı.˛/ DPm
iD1 log.x˛i C 1/C

Pk
iD1 Ri log.T ˛i C 1/.

For given ˛, the MLE of ˇ is given by b̌D 1
m
ı.˛/. Using the inequality log t �

t � 1, t > 0, this can be easily seen from the bound

`.˛; ˇ/ � logCI �mCm log ˛�m logb̌C .˛�1/
mX
iD1

logxi �
mX
iD1

log.x˛i C1/

D `.˛/; (13.11)

which is valid for any ˇ > 0. Equality holds iff ˇ D b̌.
Supposing that ˇ is known, the log-likelihood function given in (13.10) has

to be maximized w.r.t. ˛. Noticing that log.x˛ C 1/ is strictly concave in ˛, we
conclude that ı.˛/ and `.˛; ˇ/ are strictly concave functions in ˛. This proves that
the log-likelihood function has at most one global maximum. Now, it is sufficient to
prove that the log-likelihood is bounded from above and the maximum is attained.
Obviously, lim˛!0 `.˛; ˇ/ D �1. Consider the sets

X> D fi jxi > 1; i 2 f1; : : : ; mgg; X< D fi jxi < 1; i 2 f1; : : : ; mgg;
T> D fi jTi > 1;Ri > 0; i 2 f1; : : : ; kgg;
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and suppose that X> [ X< [ T> ¤ ;. Now, we prove that the log-likelihood
function is strictly decreasing for sufficiently large ˛. With gt .˛/ D t˛ log t

t˛C1 , the
partial derivative is given by

@

@˛
`.˛; ˇ/ D m

˛
C

mX
iD1

logxi �
�
1 C 1

ˇ

� mX
iD1

gxi .˛/ �
mX
iD1

RigTi .˛/:

Since lim˛!1 gt .˛/ D 1.1;1/.t/, we arrive at

lim
˛!1 `.˛; ˇ/ D

X
i2X<

logxi � 1

ˇ

X
i2X>

logxi �
X
i2T>

Ri logTi :

From the assumption X> [ X< [ T> ¤ ;, we conclude that this limit is negative.
Notice that P.X>[X< D ;/ D P.XR;T

i WM Wn D 1 for any i/ D 0 because the Burr-XII
distribution is continuous.

In the case of unknown parameters ˛ and ˇ, Wingo [901] has shown that ` in
(13.11) has a unique global maximum for ˛ 2 .0;1/ provided that X< ¤ ;.
The solution b̨ can be derived by solving the equation @

@˛
`.˛/ D 0, ˛ > 0. The

estimate for ˇ is given by b̌ D ı.b̨/. Details on the proof can also be found in
Gupta et al. [424] and Jalali and Watkins [476]. Wang and Cheng [886] proposed
an EM-algorithm to compute the estimates. Moreover, they conducted a simulation
study comparing the performance of the Newton–Raphson procedure and the EM-
algorithm. They recommended to use the EM-algorithm to compute the MLEs since
it is better than the Newton–Raphson method in terms of bias and root mean squared
error.

Example 13.5.1. For Wingo’s pain relief data B.2.4, we get the estimates

b̨D 6:560 and b̌D 2:597. Using that the expectation of a Burr-XII distribution
is given by � .ˇ�1=˛/� .1C1=˛/

� .ˇ/
, an estimate of the mean pain relief time is obtained

as 0:836.

13.6 Logistic Distributions

Logistic distributions from a location–scale family with standard member F.t/ D
.1 C e�t /�1, t 2 R, are investigated in Gajjar and Khatri [387]. The resulting
likelihood equations are closely connected to those in Type-II progressive censoring
as presented in Sect. 12.7.5.



Chapter 14
Progressive Hybrid and Adaptive Censoring
and Related Inference

Type-I hybrid censoring was originally proposed by Epstein [352], while that of
Type-II hybrid censoring was introduced by Childs et al. [259]. Barlow et al. [169]
called this sampling procedure truncated sampling. According to the constructions
illustrated in detail in Sect. 1.1.3, the number of observations is random. In
particular, it is possible to have fewer than m observations in case of Type-I hybrid
censoring, whereas in the case of Type-II hybrid censoring, we will have at least m
observations. Thus, in Type-I hybrid censoring, we are faced with the problem of
no observations so that results are normally formulated conditionally on the number
D of observed failures.

Type-I hybrid censoring has been used in designing reliability acceptance tests
(see MIL-STD-781-C [648]). Many attempts have been made to find the exact
distribution of the MLEs in the case of exponential populations. Here, we only
sketch the developments in this regard. For a detailed review, we refer to the recent
survey paper by Balakrishnan and Kundu [108]. For Type-I hybrid censoring, Chen
and Bhattacharyya [249] employed the method of conditional moment generating
function to derive the density function of the MLE of # in the scale model. The
same approach has been utilized to simplify this expression of the density function
by Childs et al. [259]. Childs et al. [260] as well as Kundu and Joarder [561] have
utilized the same method for Type-I progressive hybrid censoring (for the two-
parameter exponential, see Childs et al. [261]). Cramer and Balakrishnan [292]
have used a spacings approach leading to more compact forms of the density
functions. Similar results for Type-II (progressive) hybrid censored data have been
established in Childs et al. [259], Childs et al. [260], Ganguly et al. [392], and
Cramer et al. [315].

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 14,
© Springer Science+Business Media New York 2014
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14.1 Likelihood Inference for Type-I Progressive Hybrid
Censored Data

Given X (I)
1 ; : : : ; X

(I)
m with m � 2 and D as in (2.40), the data .xd ; T �.m�d// has

been observed, where x1 � � � � � xd < T and D D d . Then, with (5.2), it follows
that the joint distribution of X (I)

1 ; : : : ; X
(I)
m and D has a density function f .d/

� w.r.t.
the measure �d ˝Nm�d

jD1 "T . This is given by

f
.d/

� .xd / D Cd.1 � F� .T //
�dC1f

Rd

1;:::;d Wd Wn��dC1I�.xd /; x1 � � � � � xd < T:
(14.1)

14.1.1 Likelihood Inference for Two-Parameter Exponential
Distributions

For an Exp.�; #/-distribution and a random sampleZ(I)
1 ; : : : ; Z

(I)
m ,D, the likelihood

function (14.1) can be written as

L.�; # I zd / D
Qd
jD1 �j
#d

exp
n
� 1

#

h dX
jD1

.Rj C 1/.zj � �/C �dC1.T � �/
io
;

� � z1 � � � � � zd � T: (14.2)

Location Parameter Known

For brevity, let � D 0. Then, as shown in Childs et al. [260], the MLE of # exists
providedD > 0 and is given by

b# D 1

D

h DX
jD1

�j .Z
(I)
j �Z(I)

j�1/C �dC1T
i
D 1

D
SD;

where SD is the total time on test statistic. Then, by following the lines of
Theorem 5.1.4, we readily obtain the following distributional result for b# in this
case:

fb#jD�1.t/ D 1

P.D � 1/
mX
dD1

fb#jDDd .t/P.D D d/

D 1

1 � e�nT=#
mX
dD1

h dY
jD1

�j

i T d

.d � 1/Š#d Bd�1.dt j�dC1T; : : : ; �1T /e
�dt=# ;

t � 0: (14.3)
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Notice that, by definition, �mC1 	 0. Due to the properties of the B-splines, the

support of Pb#jD�1 is given by the union

m[
dD1

h�dC1T
d

;
�1T

d

i
� Œ0; nT �; (14.4)

which may have gaps depending on �1; : : : ; �m.
For order statistics, we observeZ(I)

1Wn; : : : , Z
(I)
mWn so that (14.3) reads as

fb#jD�1.t/ D n

1 � e�nT=#
�m�1X
dD1

 
n � 1
d � 1

!
T d

#d
Bd�1.dt j.n� d/T; : : : ; nT /e�dt=#

C
 
n � 1
m � 1

!
T m

#m
Bm�1.mt j0; .n �mC 1/T; : : : ; nT /e�mt=#

�
; t � 0:

For n D m, this expression simplifies to

fb#jD�1.t/ D n

1 � e�nT=#
nX

dD1

 
n � 1
d � 1

!
T d

#d
Bd�1.dt j.n � d/T; : : : ; nT /e�dt=# ;

t � 0;

which is the density function of b# , given D � 1, in the case of Type-I censored
data.

Figure 14.1 gives plots of fb# jD�1 for T D 1, � D 0, and # D 1 and m D n 2
f2; 3; : : : ; 9g. It illustrates that the density function fb#jD�1 is multimodal and that
its support has gaps (see (14.4)). This can also be seen from the fact that Sd has
support Œ n

d
� 1; n

d
� in this setting, 1 � d � n. Hence, the supports of S1 and Sd ,

d � 2, do not overlap for n � 3.
From (5.15), the following expression for the (conditional) mean of the MLE

results:

E.b#jD � 1/ D # � nT e�nT=#

.1 � e�T=# /n
C #T

.1 � e�T=# /n
mX
dD2

1

d.d � 1/f
XdWmWn
# .T /:

(14.5)

Confidence Intervals

Many authors have proposed approaches to construct confidence intervals for # .
A standard method to construct exact confidence interval for a parameter # is based
on the property that an estimatorb# is stochastically increasing in # , i.e.,

P#.b# > t/ is increasing in #:
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n = 3n = 2

n = 4 n = 5

n = 8 n = 9

n = 6 n = 7

Fig. 14.1 Plots of fb#jD�1 (solid line) for T D 1, � D 0, and # D 1 and m D n 2 f2; 3; : : : ; 9g.
The dashed line represents the density function ofb# in the uncensored case
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Then, given ˛1; ˛2 � 0 with ˛1 C ˛2 D ˛ 2 .0; 1/, this result can be used to
construct exact confidence intervals with level ˛ as follows:

� Solve the equations

P#.b# > #obs/ D ˛i ; i D 1; 2; (14.6)

for # where #obs is the observed value ofb# ;
� Denote the solutions by #L.#obs/ and #U .#obs/;
� Œ#L.#obs/; #U .#obs/� is the realization of a 100.1 � ˛/% confidence interval

for # .

The method is described in detail in Casella and Berger [239] and may have been
proposed first by Barlow et al. [169] to construct confidence intervals for Type-I
censored data (see also Chen and Bhattacharyya [249]).

However, as pointed out in Balakrishnan et al. [156], the procedure may fail
for Type-I (progressive hybrid) censored data. In such a setting, the equations
(14.6) may have no solution for given values of ˛i . Therefore, the exact confidence
interval does not exist. Balakrishnan et al. [156] presented an extension to overcome
this drawback. But, as a consequence, the resulting confidence intervals may have
infinite width.

Balakrishnan and Iliopoulos [101] have established the stochastic monotonicity
property for the MLE b# in the setting of hybrid Type-I censored data. Assuming
that the survival function ofb# has the form

P#.b# > t/ D
X
d2D

P#.D D d/P#.b# > t jD D d/

with a finite set D, they proved the following result called Three Monotonicities
Lemma .

Lemma 14.1.1 (Balakrishnan and Iliopoulos [101]). Suppose the following
three properties are satisfied:

(M1) For all d 2 D, the conditional distribution of b# , given D D d , is

stochastically increasing in # , i.e., the function P#.b# > t jD D d/ is
increasing in # for all t and d 2 D;

(M2) For all t and # > 0, the conditional distribution of b# , given D D d ,

is stochastically decreasing in d , i.e., the function P#.b# > t jD D d/ is
decreasing in d 2 D;

(M3) D is stochastically decreasing in # .

Then, b# is stochastically increasing in # .

However, the monotonicity result for Type-I progressive hybrid censored data
remains an open problem.

Open problem 14.1.2. For Type-I progressive hybrid censoring, the conditional

survival function P#.b# > t jD � 1/ is increasing in # > 0.
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Fig. 14.2 Plots of estimated density functions f
m;b# for the data of Barlow with m D 4 (solid red

line), m D 6 (dashed blue line), m D 8 (dotted green line), and m D 10 (dashed-dotted brown
line)

Under the assumption that Open Problem 14.1.2 is true, Childs et al. [260] used
the above method to construct one- and two-sided confidence intervals.

Example 14.1.3. For illustration, Cramer and Balakrishnan [292] considered
data from Barlow et al. [169] (see also Chen and Bhattacharyya [249] and Childs
et al. [259,261]). The data consist of the first six ordered values 4; 9; 11; 18; 27; 38
of a Type-I censored sample with termination time T D 50. Let m 2 f4; 6; 8; 10g.
Then, the estimates of # are given by

m 4 6 8 10
b# 37:50 43:17 51:17 68:33

The density estimates are given in Fig. 14.2.

Location Parameter Unknown

First, it can be seen that the MLEs of � and # do not exist when d D 0 (the
likelihood function is a decreasing function in #). But, when d > 0 or equivalently
z1 < T , the MLEs of � and # exist. Writing z0 D � and using the identity in (5.4),
(14.2) can be rewritten as
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L.�; # I zd / D
Qd
jD1 �j
#d

exp
n
� 1

#

h dX
jD1

�j .zj � zj�1/C �dC1.T � zd /
io
;

� � z1 � � � � � zd � T: (14.7)

The likelihood function in (14.7) is an increasing function in � for any # > 0.
Therefore,b� D z1 is the MLE of �, and we get the upper bound

L.b�; # I zd / D
Qd
jD1 �j
#d

exp
n
� 1

#

h dX
jD2

�j .zj � zj�1/C �dC1.T � zd /
io
:

Using standard arguments, the MLE of # is given by

b# D 1

d

h dX
jD2

�j .Z
(I)
j �Z(I)

j�1/C �dC1.T �Z(I)
d /
i
:

Notice thatb# is bounded and thatb# D 1
d
Vd , with Vd as in (5.12). Thus, we get from

Z
(I)
j � T , 1 � j � d , and (5.4) with � replaced by Z(I)

1 the upper bounds

� � b� � T; 0 � b# � T � �
d

� dX
jD2

.Rj C 1/C �dC1
�
D �2.T � �/; d � 1;

which establishes that both b� and b# have finite supports provided D � 1. These
results enable us to derive the distribution function ofb�, givenD � 1.

Theorem 14.1.4. The conditional distribution of b�, given D � 1, is a right
truncated Exp.�; #=n/ distribution with truncation point T � �. Specifically,

P
�b� > t ˇ̌D � 1� D e�n.t��/=# � e�n.T��/=#

1 � e�n.T��/=#
; � � t � T: (14.8)

Proof. The result follows directly from the observation that the event fD � 1g is
equivalent to fZ1WmWn < T g D fZ1Wn < T g. Then,

P
�b� > t ˇ̌D � 1� D P �b� > t ˇ̌Z1WmWn < T

�

D P �Z1WmWn > t
ˇ̌
Z1WmWn < T

�

D F1Wn.T / � F1Wn.t/
F1Wn.T /

D e�n.t��/=# � e�n.T��/=#

1 � e�n.T��/=#
:

Remark 14.1.5. Notice that, for t � �, the conditional cumulative distribution
function in Theorem 14.1.4 converges to e�n.t��/=# when T !1, which is the
survival function of the minimum in an IID sample of size n from an Exp.�; #/-
distribution.



334 14 Progressive Hybrid and Adaptive Censoring and Related Inference

Moreover, it should be noted that, given D � 1, the distribution of b� is
absolutely continuous w.r.t. the Lebesgue measure. Since b� D T for D D 0, the
unconditional distribution function is given by

P
�b�� �

#
� t

�
D .1 � e�nt /1Œ0;.T��/=#/.t/C 1Œ.T��/=#;1/.t/; t 2 R;

which has a jump of height e�n.T��/=# at .T � �/=# .

The expression in (14.8) is very useful in proving the following monotonicity
result.

Corollary 14.1.6. P�
�b� > t ˇ̌D � 1� is a monotone increasing function of �.

Proof. Let � � t � T . From (14.8), we have

P�
�b� > t ˇ̌D � 1� D P�

�b� � �
#

>
t � �
#

ˇ̌
D � 1

�
D e�nt=# � e�nT=#

e�n�=# � e�nT=#
;

which is an increasing function of �. ut
Given D � 1, the MLE of # is given by

b# D 1

D

h DX
jD2

�j .Z
(I)
j �Z(I)

j�1/C �DC1.T �Z(I)
d /
i
D 1

D
VD;

where the sum is defined to be zero whenD D 1. The conditional bivariate density
function ofb� andb# can be taken from (5.14) and is given by

fb�;b# jDDd .z; t/ D nd.T � z/d�1
QdC1
jD2 �j

.d � 1/Š#dC1fdC1WmWn.T /

� Bd�2
�
dt j�dC1

�
T � z

�
; : : : ; �2

�
T � z

��
exp

n
� n.z � �/C dt

#

o
;

� � z � T; 0 � t � �2

d
.T � �/:

Expressions for fb#jD�1 can be obtained from this expression by integrating w.r.t.
z and the following procedure as the one used in the case of a known location
parameter.

14.1.2 Other Distributions

Inference for distributions other than exponential has also been addressed in the
literature. For instance, Lin et al. [607] and Mokhtari et al. [654] considered Weibull
lifetimes. They discussed maximum likelihood estimation as well as approximate



14.2 Likelihood Inference for Type-II Progressive Hybrid Censored Data 335

maximum likelihood estimation (see Balakrishnan and Varadan [127]). Mokhtari
et al. [654] addressed additionally Bayesian inference. For Maxwell distributions,
we refer to Tomer and Panwar [848].

14.2 Likelihood Inference for Type-II Progressive Hybrid
Censored Data

GivenX (II)
1 ; : : : ; X

(II)
D andD as in (5.18) and (2.40) with realizations x1; : : : ; xd and

d , the likelihood function is given by

L.�I xd ; d / D

8
ˆ̂<
ˆ̂:

f R
1;:::;d Wd WnI�.xd /; d � mCRm
f R
1;:::;dC1WdC1WnI�.xd ; T /; m � d < mCRm
f R
1;:::;mWmWnI�.xm/; d < m

:

14.2.1 Exponential Distribution

Assuming an Exp.#/-distribution, Childs et al. [260] obtained the MLE

b# D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1

m

mX
jD1

.Rj C 1/Xj WmWn; D < m;

1

D

	 mX
jD1

.Rj C 1/Xj WmWnC
DX

jDmC1
Xj WmCRmWn C �DC1T



; D � m:

Notice that �mCRmC1 D 0.
Then, as pointed out in Cramer et al. [315], the density function of the MLE can

be obtained directly from Theorem 5.2.3 and is given in the following theorem. An
alternative representation has been established by Childs et al. [260] using a moment
generating function approach.

Theorem 14.2.1. The density function of the maximum likelihood estimator
b# D 1

D
SD is given by

fb#.s/ D mmsm�1e�ms=#

.m � 1/Š#m � T
m
Qm
jD1 �j

.m � 1/Š#m Bm�1.msj0; �mT; : : : ; �1T /e
�ms=#

C
mCRmX
dDm

T d
Qd
jD1 �j

.d � 1/Š#d Bd�1.dsj�dC1T; : : : ; �1T /e
�ds=# ; s � 0:
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Expressions for the cumulative distribution function and the moments of b# are
presented in Cramer et al. [315]. Furthermore, the joint density function of the MLEs
b� and b# is presented in the location–scale setting. Using the moment generating
function approach, Ganguly et al. [392] have established alternative expressions for
Type-II hybrid censored data.

Remark 14.2.2. Bayesian inference for one-parameter exponential distribution
has been studied in Kundu and Joarder [561]. The two-parameter exponential
distribution has been considered by Kundu et al. [565]. A competing risk model
with progressive hybrid censored data has been investigated by Kundu and
Joarder [560].

14.2.2 Other Distributions

Statistical inference for hybrid censored data has also been addressed for dis-
tributions other than exponential. Type-II progressively hybrid censored Weibull
lifetimes have been investigated by Lin et al. [607] and Mokhtari et al. [654].
They obtained (approximate) maximum likelihood estimators for scale and shape
parameters. (Approximate) maximum likelihood estimators for a location–scale
family of extreme value distributions are discussed in Joarder et al. [479]. Log-
normal distributions under Type-II progressive hybrid censoring are discussed by
Hemmati and Khorram [439].

14.3 Inferential Results for Adaptive Progressive Type-II
Censoring

Let F� , � 2 � � R
q , be an absolutely continuous cumulative distribution function

with density function f� . The data are given by the sample ym;Rm. Then, from
(6.3), the likelihood function is given by

L.�jym;Rm/ D f Y.m/;R?m
� .ym;Rm/

D f �� .ymjRm�1/g�.Rmjym/ / f �� .ymjRm�1/: (14.9)

This illustrates that the maximum likelihood estimators in both the adaptive and
nonadaptive cases are identical. This yields directly the following theorem.

Theorem 14.3.1 (Cramer and Iliopoulos [294]). Let b� D b�.Y.m/;Rm/ be
the maximum likelihood estimator of � when Rm is a prefixed censoring scheme.
Then, b�� D b��.Y.m/;R?

m/ is the maximum likelihood estimator of � when R?
m is

an adaptive censoring scheme.
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Theorem 14.3.1 shows that, for the maximum likelihood estimator, it does not
matter whether the censoring scheme has been prefixed in advance or adaptively
adjusted in the censoring process. Therefore, the same estimators result as in the
nonadaptive model. However, the distribution of the estimators may be different due
to the adaptive process. An exception is given by those cases, where Theorem 6.1.1
can be applied.

Example 14.3.2. Suppose Xj � Exp.�; #/, 1 � j � n. Then, for � D 0, the
maximum likelihood estimator of # is given by

b# D 1

m

mX
jD1

.1CR?j /Y.j /:

Then, Theorem 6.1.2 yields 2mb#=# � �2.2m/ so that Eb# D # and Varb# D
#2=m. As in the nonadaptive case, b# is an unbiased estimator of # . It can

be shown that it is consistent and that
p
m.b# � #/=# and

p
m.b# � #/=b# are

asymptotically normal. A two-sided confidence interval for # is given by

h 2mb#
�21�˛=2.2m/

;
2mb#

�2˛=2.2m/

i
:

For an unknown location parameter, the maximum likelihood estimators are
given by

b� D Y.1/ and b# D 1

m

mX
jD2

�j .Y.j / � Y.j�1//

which, by Theorem 6.1.2, are independent with distributions Exp.�; #=n/ and
Γ.#=m;m� 1/, respectively. Hence, confidence intervals and statistical tests can
be constructed as in the nonadaptive model (see, e.g., Corollary 17.1.1).

Remark 14.3.3. Bobotas and Kourouklis [210] addressed a two-sample model
that covers adaptive progressive Type-II censoring in the exponential case.
They considered estimation of the scale parameters and the hazard rate of
the population distribution as well as estimation of the ratio of scales. They
established improved estimators for these quantities which are of Stein-type,
Brewster and Zidek-type, and Strawderman-type, respectively.

Remark 14.3.4. Adapting the idea of Ng et al. [690], Lin and Huang [600]
proposed an adaptive censoring scheme for Type-I censoring called adaptive Type-
I progressive hybrid censoring scheme. This procedure works as follows. Given
progressively Type-II censored order statistics X1WmWn; : : : ; XmWmWn and a threshold
T , the experiment terminates always at time T . But, the number of observed
failure times depends on XmWmWn:

(i) if XmWmWn > T , the data are given by X1WmWn; : : : ; XDWmWn, or
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(ii) if XmWmWn � T , the remaining Rm units are not withdrawn from the
experiment and all failures are observed until termination time T . This
procedure follows the idea of Type-II progressive hybrid censoring.

Lin and Huang [600] presented exact conditional distributions for the MLE of
the scale parameter when the population distribution is exponential. They also
provided confidence intervals and results on Bayesian inference.

Weibull distributions are discussed in Lin et al. [607] (MLEs and AMLEs) and
Lin et al. [610] (likelihood and Bayesian inference). Log-normal distributions are
investigated by Hemmati and Khorram [439].

14.3.1 Ng–Kundu–Chan Model

The Ng–Kundu–Chan model, introduced in Ng et al. [690], has been discussed
in Sect. 6.2.2. Defining by Rm the effectively applied censoring scheme in the
Ng–Kundu–Chan model given in (6.1), Ng et al. [690] calculated the maximum
likelihood estimator of � provided that the baseline distribution is an Exp.1=�/
distribution. It is given by

b� D mPJ
jD1.Sj C 1/Y.j / C

Pm�1
jDJC1 Y.j / C

�
n �m �PJ

jD1 Sj
�
Y.m/

D mPm
jD1.Rj C 1/Y.j /

;

where the random variable J denotes the change point in the censoring procedure
and Rm is the censoring scheme given in (6.1). Clearly, this result can be directly
taken from Theorem 14.3.1 (see also Example 14.3.2). Moreover, Ng et al. [690]
sketched several approaches to construct confidence intervals for � including
conditional inference, normal approximations, likelihood-ratio-based inference,
bootstrapping, and Bayesian inference. They also presented a formula for the
probability mass function of J . From the construction process, it follows that

P.J D j / D P.Xj WmWn < T � XjC1WmWn/; j D 0; : : : ; m;
where X0WmWn D 0 and XmC1WmWn D C1. Hence, we find

P.J D 0/ D 1 � FX1WmWn.T / D e�n�T ;

P.J D j / D F Xj WmWn.T /� FXjC1WmWn.T /; j D 1; : : : ; m � 1;
P.J D m/ D F XmWmWn.T /:

Simple explicit expressions can be taken from Theorem 2.4.2 and Corollary 2.4.7
(see also Kamps and Cramer [503]). Moreover, an expression for the conditional dis-
tribution ofb�, given J D j , j D 1; : : : ; m, is obtained via the conditional moment
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generating function. However, noticing the results presented in Example 14.3.2,
there is no need to consider conditional inference since the maximum likelihood
estimator and its distribution can be obtained from Theorems 6.1.2 and 14.3.1.

Lin et al. [607] considered the Ng–Kundu–Chan model with Weibull lifetimes.
Using a log-transformation of the data, they got an extreme value distribution as
population distribution for which they derived the maximum likelihood estimates
of the transformed parameters. However, writing the problem in terms of the
effectively applied censoring scheme Rm given in (6.1), it follows that the likelihood
function equals that given in Balakrishnan et al. [136]. Therefore, the maximum
likelihood estimates can directly be taken from Balakrishnan et al. [136] which is
also clear from Theorem 14.3.1. By analogy with the nonadaptive case, expressions
for the approximate maximum likelihood estimates can be obtained because they
are deduced from the likelihood equations which are the same in the adaptive and
nonadaptive settings (see also Sect. 12.9.2).

14.3.2 Progressive Censoring with Random Removals

The notion of progressive censoring with random removals has been presented
in Sect. 6.2.4. Inferential issues for this model have been addressed in numerous
papers considering different lifetime distributions as well as various probability
mass functions g�. For further reading, we refer to, e.g., Yuen and Tse [936], Tse
and Yuen [859], Tse et al. [860], Tse and Xiang [857], Tse and Yang [858], Wu
[905], Wu et al. [916], Wu et al. [919], and Amin [45]. It should be noted that
in some of these models (like binomial removals), the probability mass function
g� may depend on parameters which have to be estimated from the data. The same
models are also denoted by progressive Type-II censoring with random scheme (see,
e.g., Sarhan and Al-Ruzaizaa [774]).

In order to illustrate the close connection of inference in the standard model and
in the model with random removals, we consider the following standard approach.
Suppose the lifetime cumulative distribution function F� depends on a parameter
� 2 � � R

q and that the probability mass function of R?m depends on a
parameter p. Given the data ym;Rm, the likelihood function is given by (see (14.9))

L.�; pjym;Rm/ D f �� .ymjRm�1/g�p.Rmjym/: (14.10)

Hence, the likelihood function factorizes into two likelihood functions

L1.�jym;Rm/ D f �� .ymjRm�1/ and L2.pjym;Rm/ D g�p.Rm/;

respectively, where we have also used the fact that the distribution of R?m does not
depend on the failure times ym (see (6.6)). Thus, the maximization w.r.t. � and
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p can be handled separately. In particular, the MLE for the parameter � is the
same as in the standard model (which follows already from (14.9)). The MLE for
p depends on the particular assumption on the distributions guiding the random
removal of items. However, it is independent of the lifetime cumulative distribution
function F� . Similar comments apply to Bayesian inference in this framework.

In order to present an example for the likelihood inference w.r.t. the parameter p,
we present the estimation of p for binomial removals as can be found in, e.g.,
Tse et al. [860] or Wu and Chang [910]. Then, the (conditional) probability mass
functions are given by

P.R?1 D R1/ D
 
n �m
R1

!
pR1.1 � p/n�m�R1;

P.R?j D Rj jR?
j�1 D Rj�1/ D

 
n �m � R�j�1

Rj

!
pRj .1 � p/n�m�R�j

D
 
n �m � R�j�1

Rj

!
pRj .1 � p/�j�mCj�1�Rj ;

2 � j � m � 1, so that the part of the likelihood involving p is

L2.pjym;Rm/ D
 

n �m
R1; : : : ; Rm

!
pR�m�1 .1 � p/.m�1/.n�m/�

Pm�1
jD1.m�j /Rj :

Obviously, this expression is proportional to the likelihood function for a binomial
distribution bin

�
.m � 1/.n � m/ � Pm�2

jD1 R�j ; p
�

with R�m�1 successes, which
results in the MLE

bp D R�m�1
.m� 1/.n�m/�Pm�1

jD1.m � j � 1/Rj

D R�m�1Pm�1
jD1.�j � .m � j C 1//

D R�m�1Pm�1
jD1

Pm
iDj Ri

:



Chapter 15
Bayesian Inference for Progressively Type-II
Censored Data

Bayesian inference with progressively Type-II censored data has been studied
extensively by many authors in the last decade. Assuming a particular lifetime
distribution and a suitable prior distribution for the parameters, Bayesian estimates
for the parameters have been obtained w.r.t. several loss functions like squared-
error loss or LINEX loss. We use the following notation in this chapter. Let
x D .x1; : : : ; xm/ be the observed progressively Type-II censored sample, L.�I x/
be the likelihood function, and � 2 � � R

k be the parameter (vector) with k � 1.
The prior distribution is defined by the density function�a.�/ with hyperparameters
a 2 A. Then, the posterior distribution exhibits the density function

��a .�jx/ D
�a.�/L.�I x/R
L.	I x/�a.	/d	

: (15.1)

Several loss functions have been applied in Bayesian estimation with progressively
Type-II censored data. For convenience, we provide the definitions of the subse-
quently used loss functions:

(i) The squared-error loss (SEL) function is defined by L1.�;b�/ D k� � b�k22,
where k � k2 denotes the Euclidean norm. For a one-dimensional parameter, it
is given by L1.	;b	/ D .	 �b	/2;

(ii) The linear loss function is defined by L2.�;b�/ D k� � b�k1, where k � k1 is
defined by kxk1 DPk

jD1 jxj j, x 2 R
k;

(iii) The linear exponential (LINEX) loss function for a one-dimensional parameter
is defined by

L3.	;b	/ D b
�
ea� � a� � 1�; a ¤ 0; b > 0;

where � D 	 �b	 . A k-parameter extension is defined by �j D 	j �b	j ,
j D 1; : : : ; k, and
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L3.	;b	/ D
kX

jD1
bj
�
eaj �j � aj�j � 1

�
; bj > 0; j D 1; : : : ; k:

This loss function was introduced by Varian [870] (see also Varian [871,
Chap. 9]) as a measure of asymmetric loss. It was introduced in Bayesian
inference by Zellner [938].

The risk function is defined as the expected loss, i.e.,

R.�a/ D
Z
E�.L.� ;b�//�a.�/d�:

Bayes estimators are defined as estimators leading to minimum risks. For the
quadratic loss function, the posterior mean is a Bayes estimator, whereas for the
linear loss function, the posterior median provides a solution. Another concept
is highest posterior density estimation which leads to the posterior mode as an
estimator.

15.1 Exponential and Weibull Distributions

Due to their importance in lifetime analysis, exponential and Weibull distri-
butions have received great attention in Bayesian inference for progressively
Type-II censored data. The exponential distribution has been addressed as par-
ticular case of the Weibull.˛; ˇ/-distribution with known shape parameter ˇD 1.
Schenk [782] and Schenk et al. [783] have considered s independent possibly mul-
tiply censored samples of sequential order statistics which includes progressively
Type-II censored order statistics as a particular case. It should also be mentioned
that the scale parametrization differs in the sense that some works use # or 1=# as a
scale parameter. This affects the choice of the prior distribution which is commonly
chosen as a gamma or inverse gamma distribution, respectively.

In order to present the results, we assume first the shape parameter ˇ > 0 to
be known which includes the one-parameter exponential distribution with ˇ D 1.
Then, a conjugate prior is given by the gamma density function

�a;b.˛/ D ba

� .a/
˛a�1e�b˛; ˛ > 0; (15.2)

with hyperparameters a; b > 0. Given observations x1; : : : ; xm, this gamma prior
yields a � .1=ŒbCPm

jD1.Rj C 1/xˇj �; aCm/-distribution as posterior distribution.
Under squared-error loss function, the Bayes estimate of the scale parameter ˛ is
given by the posterior mean

b̨B D aCm
b CPm

jD1.Rj C 1/Xˇ
j WmWn
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(see Kundu [557]). For ˇ D 1, the respective estimate for the exponential
distribution results. For ˇ D 2, we get the Rayleigh distribution which has been
considered, for instance, in Ali Mousa and Al-Sagheer [36], Wu et al. [915], and
Kim and Han [529]. These authors use a different parametrization of the Rayleigh
distribution (details are provided Sect. 15.2).

Remark 15.1.1. Schenk et al. [783] considered Exp.#/-distribution which can
be seen as Weibull.1=#; 1/-distribution. They assumed an inverse gamma prior
with a similar parametrization of the gamma distribution given in (15.2)

�a;b.#/ D ba

� .a/
#�.aC1/ exp

n
� b
#

o
; # > 0; (15.3)

with hyperparameters a; b > 0. The corresponding Bayes estimator of # has the
representation

b#B D 1

aCm � 1
� mX
jD1

.Rj C 1/Xj WmWnC b
�

D 1

aCm � 1
� mX
jD1

�j .Xj WmWn �Xj�1WmWn/C b
�
; (15.4)

where X0WmWn D 0.

In addition to the case of a known shape parameter, Kundu [557] also addressed
the problem of two unknown parameters ˛; ˇ > 0. Since a continuous bivariate
conjugate prior does not exist in this case, the preferable prior distribution is not
clear. Soland [810] has shown that a continuous–discrete conjugate prior exists,
where the shape parameter may only take on values in a finite set fˇ1; : : : ; ˇkg.
Denoting by pj D P.ˇ D ˇj /, j 2 f1; : : : ; kg, the probability mass function of ˇ,
the joint prior of ˛ and ˇ is assumed to be

�aj ;bj .˛; ˇ/ D pj
b
aj
j

� .aj /
˛aj�1e�bj ˛; ˛ > 0; (15.5)

where aj ; bj > 0. Notice that the conditional prior of ˛ given ˇ D ˇj is a gamma
distribution with hyperparameters aj and bj (see (15.2)). Proceeding as above, the
posterior distribution is specified by

��aj ;bj .˛; ˇj / D
pj b

aj
j ˇ

m
j

hQm
iD1 xi

iˇj�1

� .aj /c.x/
˛mCaj�1e�˛wj ;
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where c.x/ D Pk
�D1 p�ba�� ˇm�

hQm
iD1 xi

iˇ��1 � .mCa�/
� .a�/

w�.mCa�/� and wj D bj C
Pm

iD1.Ri C 1/xˇji . As in the one-parameter scale model, the posterior distribution
is of the same type as the prior distribution. Hence, statistical inference can be
carried out as above. Although this approach is quite tempting for computational
reasons, it has been criticized in the literature. Kaminskiy and Krivtsov [494]
pointed out that the discrete part of the prior exhibits some difficulties in practice.
They criticized the problem of evaluating the prior information. To overcome
this, Kundu [557] adapted an approach proposed by Berger and Sun [191] (see
also Kundu and Gupta [559]). The random parameters ˛ and ˇ are supposed to
be independent. The marginal priors are gamma distributions �a and �c as in (15.2).
Using Lindley’s approximation (see Lindley [612]) under squared-error loss, Kundu
[557] established the following estimates (b̨ and b̌ denote the MLEs of ˛ and ˇ,
respectively):

b̨B D b̨C 1

2

�	
2m

b̌3 � b̨
mX
iD1
.Ri C 1/xb̌i .logxi /3



�11�12

C 2m

b̨3 �
2
22 � .�12�22 C 2�212/

mX
iD1
.Ri C 1/xb̌i .logxi /2

�

C �21
�c � 1
b̌ � d

�
C �22

�a � 1
b̨ � b

�
;

b̌
B D b̌C 1

2

�	
2m

b̌3 � b̨
mX
iD1
.Ri C 1/xb̌i .logxi /3



�211

C 2m

b̨3 �21�22 � 3�11�12
mX
iD1
.Ri C 1/xb̌i .logxi /

2

�

C �11
�c � 1
b̌ � d

�
C �12

�a � 1
b̨ � b

�
;

where a D .a; b/ and c D .c; d / are the hyperparameters, and

U D m

b̌2 C b̨
mX
iD1
.Ri C 1/xb̌i .logxi /

2; V D
mX
iD1
.Ri C 1/xb̌i logxi ;W D m

b̨2 ;

�11 D W

UW � V 2
; �22 D U

UW � V 2
; �12 D �21 D � V

UW � V 2
:

Although Lindley’s approach yields explicit estimates of the distribution param-
eters, it does not provide credible estimates. Therefore, Kundu [557] proposed
MCMC technique to compute the Bayesian estimates and to construct credible
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11 35 49 170 329

958 1925 2223 2400 2568

Table 15.1 Progressively Type-II censored data from the electrical alliance test data of Lawless
[575] as given in Kundu [557]

intervals (see Sect. 17.6). Alternatively, Kundu [557] utilized a Gibbs sampling
procedure and an idea of Geman and Geman [394]. A detailed description of the
simulational algorithm as well as an extensive simulation comparing the estimates
can be found in Kundu [557].

Example 15.1.2. From failure data for electrical alliance test reported in Law-
less [575, p. 8], Kundu [557] generated a progressively Type-II censored sample
with censoring plan R D .2�9; 8/ (n D 36;m D 10). It is given in Table 15.1.
The applied censoring scheme is given by R D .0�2; 3; 0�2; 2; 0�2; 2; 0; 2; 1; 0/.
The maximum likelihood estimates were computed as b̨ D 0:0627 and b̌ D
0:6298. Assuming noninformative gamma priors for both parameters, Lindley’s
approximation yields the estimates 0:0699 and 0:6283, respectively. Using the
MCMC technique, Kundu [557] reported the estimates 0:0679 and 0:6223. Notice
that these results were obtained for the above data divided by 100.

Remark 15.1.3. Bayesian inference for Weibull distributions has also been
considered by Li et al. [588]. Exponentiated Weibull distributions with cumulative
distribution function

F.t/ D
h
1 � e�tˇ

i˛
; t � 0;

have been investigated by Kim et al. [531]. Estimates were obtained by Lindley’s
approximation method. Exponentiated exponential distributions

F.t/ D
h
1 � e�˛t

iˇ
; t � 0;

are considered in Madi and Raqab [627] and Kundu and Pradhan [562] for a
quadratic loss function (the latter is along the lines of Kundu [557]). Progressively
Type-II censored samples generated from data given in Lieblein and Zelen [595]
are applied to illustrate the method in both papers. The paper of Elkahlout [349]
deals with the same topic. In addition, LINEX loss functions are considered.

Remark 15.1.4. Fernández [364] established results for general progressively
Type-II censored data from exponential distributions using an inverse gamma
prior (15.3). According to Sect. 1.1.1, general progressive Type-censored data can
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be seen as a left censored sample XrC1WmWn; : : : ; XmWmWn with censoring scheme
R D .0�r ; RrC1; : : : ; Rm/, where 1 � r < m. Introducing the quantities
(p; q > 0)

CrŒp; q� D pq
rX

jD0

.�1/j �r
j

�

.p C jxrC1/q ;

Dr Œp; qI#� D pq
rX

jD0

.�1/j �r
j

�

.p C jxrC1/q IG..p C jxrC1/=#; q/;

the posterior density function is given by

��a;b.#jx/ D
.b C w/aCm�r

�
1 � expf�xrC1=#g

�r
expf�.b C w/=#g

� .aCm � r/Cr Œb C w; aCm � r�#aCm�rC1 ; # > 0:

Here, w DPm
jDrC1.Rj C1/xj , where xrC1; : : : ; xm denote the observations. For

squared-error loss, Fernández [364] calculated the Bayes estimate as

b#B D CrŒb CW; aCm � r � 1�
CrŒb CW; aCm � r� �

b CW
aCm � r � 1:

For a complete sample of progressively Type-II censored order statistics, i.e.,
r D 1, this yields the Bayes estimator

b#B D b C Tm
aCm � 1; (15.6)

where Tm DPm
jD1 �j .Xj WmWn � Xj�1WmWn/, X0WmWn D 0, as given in (15.4).

Fernández [364] also discussed HPD estimation. He showed that the HPD
estimator of # is the solution of the equation

.aCm � r C 1/# C rxrC1
expfxrC1=#g � 1 D b C w;

which is quite similar to the likelihood equation (12.5) to be solved for the MLE
of # (choose a D �1 and b D 0). HPD estimators of the reliability R.t/ as well
as of the reciprocal #�1 are also established. Finally, the results are applied to
Nelson’s insulating fluid data 1.1.5, where the first failure time is additionally
censored.

Remark 15.1.5. Multiply Type-II censored samples from an exponential-type
family of distributions were addressed by Abdel-Aty et al. [2]. They assumed a
family of distributions defined by the cumulative distribution function

F	.t/ D 1 � e��	 .t/; t � 0; (15.7)
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where �	 is a nonnegative continuous differentiable function with limits
limt!0C �	.t/ D 0 and limt!1 �	.t/ D 1. 	 is supposed to be the parameter
with 	 2 � � R

k , where k � 1. Priors are chosen as in AL-Hussaini and Ahmad
[28] who considered Bayesian inference in the framework of m-generalized order
statistics.

Remark 15.1.6. Two-parameter exponential distributions Exp.�; #/ have been
addressed in a multi-sample setting of sequential order statistics with multiply
censoring by Schenk [782] and Schenk et al. [783] (see also Shafay et al. [794]).
They used a bivariate prior �.#; �/ previously discussed in Evans and Nigm [357]
and Varde [869]:

�.#; �/ / #�.aC1/ exp
n
� b � c�

#

o
1ŒN;M�.�/; # > 0;� 2 R;

with b > cM , a > 1, c > 0, and M > N with N;M 2 R.
Let mC a � 2 > 0, c > �n, N < x1, and H.y/ D Pm

jD1.Rj C 1/Xj WmWn C
b � y.c C n/. In the case of one sample of progressively Type-II right censored
order statistics, the corresponding Bayes estimators of � and # are given by

b#B D 1

mC a � 2
H�.mCa�2/.M0/�H�.mCa�2/.N /
H�.mCa�1/.M0/�H�.mCa�1/.N / ;

b�B D M0H
�.mCa�1/.M0/ �NH�.mCa�1/.N /

H�.mCa�1/.X1WmWn/ �H�.mCa�1/.N / �
b#B.c C n/�1;

where M0 D minfX1WmWn;M g. Further details like posterior density function and
posterior survival function can be found in Schenk et al. [783].

15.2 Rayleigh Distribution

As mentioned above, different parametrizations of the Rayleigh distribution are
used in Bayesian inference. Moreover, in addition to the scale model, location–
scale families of Rayleigh distributions have been considered. In the following,
we present the results of Ali Mousa and Al-Sagheer [36] and Wu et al. [915]
who use different parametrizations. Wu et al. [915] presumed a scale model with
F#.t/ D 1 � expf�t2=.2#2/g. As a prior, they used a square-root inverted gamma
distribution defined by the density function

�a;b.#/ D ba

� .a/2a�1
#�.2aC1/ exp

n
� b

2#2

o
; # > 0; (15.8)

with hyperparameters a; b > 0. Notice that this is the natural conjugate prior in this
setting (see Fernández [363]). This yields a posterior distribution of the same kind
so that, for squared-error loss, the expression
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17:88 28:92 33:00 42:12 45:60 48:48 51:84

51:96 67:80 68:64 84:12 93:12 127:92

Table 15.2 Progressively Type-II censored data from Lieblein’s groove ball bearings data as given
in Wu et al. [915]

b#B D
r
1

2
.b CW / � � .aCm � 1=2/

� .aCm/ (15.9)

of the Bayes estimator of # results, where W D Pm
jD1.Rj C 1/X2

j WmWn. The
corresponding Bayes estimate of the reliability R#.t/, t > 0, is given by

bRB.t/ D
�

W C b
W C b C t2

�mCaC1
:

Wu et al. [915] also considered highest posterior (HPD) estimation which means
that the mode of the posterior density function is used as an estimate. The HPD
estimator of # and the reliability R#.t/ are given by

b#�B D
s

b CW
2.aCm/C 1 ;

bR�B.t/ D exp


� .aCm � 1/t

2

W C b � t2
�
;

respectively.

Example 15.2.1. Wu et al. [915] generated a progressively Type-II censored
sample from data reported originally by Lieblein and Zelen [595]. The data are
measurements for the fatigue life of groove ball bearings. The measurements are
the number of million revolutions to failure for each of n D 23 ball bearings
in a fatigue test. Probability plots suggest a good fit by Weibull and log-
normal distributions. Raqab and Madi [744] suggested a one-parameter Rayleigh
distribution to analyze the complete sample. Following the Bayesian analysis of
Raqab and Madi [744], Wu et al. [915] applied a square-root inverted gamma
prior with a D b D 2 as above to illustrate their results. The progressively Type-II
censored data with m D 13 observations are given in Table 15.2. The applied
censoring scheme is given by R D .0�2; 3; 0�2; 2; 0�2; 2; 0; 2; 1; 0/. The resulting

Bayes estimates of # and R.1/ are given by b#B D 0:6052 and bRB.1/ D 0:2554,
respectively. Notice that these results were obtained for the above data divided
by 100.

Ali Mousa and Al-Sagheer [36] assumed a location–scale model with cumulative
distribution function

F#.t/ D 1 � expf�.t � �/2=.2#/g; t � 0; � 2 R; # < 0:
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Choosing an inverse gamma distribution as a prior in the scale case (i.e., � D 0; see
(15.3)) and squared-error loss, Ali Mousa and Al-Sagheer [36] obtained the Bayes
estimator

b#B D b CW=2
aCm � 1

of ˛. The corresponding Bayes estimate of the reliability is given by

bRB.t/ D
�

W C 2b
W C 2b C t2

�mCaC1
:

Notice that the expression in Ali Mousa and Al-Sagheer [36] is in error.
In the location–scale model, Ali Mousa and Al-Sagheer [36] proposed the joint

prior

�a;b;s .#; �/ D ba

s� .a/
#�.aC1/ exp

n
� b
#

o
; � 2 Œ0; s�; # > 0;

with hyperparameters a; b; s > 0. Notice that the parameters � and # are supposed
to be independent. � has a uniform distribution, whereas # is supposed to have an
inverse gamma distribution. For a quadratic loss function, the resulting estimators
are only available as integral expressions which have to be evaluated by numerical
integration. Further details as well as some simulation results can be found in Ali
Mousa and Al-Sagheer [36].

Remark 15.2.2. Bayesian inference for Rayleigh distributions with general
progressively Type-II censored data has been considered in Kim and Han [529].
Bayesian inference for finite mixtures of Rayleigh distributions has been addressed
by Soliman [812].

15.3 Pareto Distribution

Ali Mousa [34] considered progressively Type-II censored data from two-parameter
Pareto distribution with cumulative distribution function as in (12.24). He distin-
guished three cases: � known, ˛ known, and both parameters unknown. For a known
scale parameter �, he assumed a gamma prior as given in (15.2). The corresponding
posterior distribution is a Γ.1=ŒˇCPm

jD1.Rj C 1/ log.�xj /�;mC a/-distribution.
For squared-error loss function, this yields the Bayes estimator

b̨B D
2
4 1

mC a
�
b C

mX
jD1

.Rj C 1/ log.�Xj WmWn/
�
3
5
�1

:
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The Bayes estimator of the reliability is given by

bRB.t/ D

2
66641C

log.�t/

b C
mP
jD1

.Rj C 1/ log.�Xj WmWn/

3
7775

�.mCa/

:

When the shape parameter is supposed to be known, a Pareto prior with density
function

�c;d .�/ D cd.d�/�.cC1/; d� > 1;

is known to be conjugate to the Pareto distribution (12.24) with scale parameter �.
The posterior distribution is a Pareto distribution with density function

��c;d .�/ D
n˛ C c
bın˛Cc

��.n˛CcC1/; bı� > 1;

where bı D min.d; x1/. This defines a two-parameter Pareto distribution as in
(12.24) with scale parameter n˛Cc andbı. For squared-error loss, the corresponding
Bayes estimators are the posterior means given by

b�B D 1

bı
�
1C 1

n˛ C c � 1
�

and bRB.t/ D n˛ C c
.nC 1/˛ C c

	
t

bı


�˛
:

In the two-parameter setup, Ali Mousa [34] assumed a prior with density function

�a;b;c;d .�; ˛/ D cdba

� .a/
˛a.d�/�.c˛C1/e�b˛; ˛ > 0; d� > 1:

This prior was proposed first by Lwin [623] (see also Arnold and Press [53, 54]).
The posterior density function is given by

��a;b;c;d .�; ˛/ D C˛mCa��..cCn/˛C1/e�˛T ; ˛ > 0;bı� > 1;

wherebı D min.d; x1/ and

T D bCc logd C
mX
jD1

.Rj C1/ logxj ; C D .nC c/.mC a/
� .mC a/ ŒT � .nCc/ logbı�:

Explicit expressions for the resulting Bayes estimators are generally not available.
Therefore, Ali Mousa [34] used the approximation method of Tierney and Kadane
[845] to establish expressions for approximate Bayesian estimates.
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i 1 2 3 4 5 6 7 8 9 10 11

xiW11W17 23 27 39 127 136 280 624 730 836 1; 024 1; 349

Table 15.3 Progressively Type-II censored sample as reported in Soliman [813] with censoring
scheme R D .1; 0�3; 1; 0�2; 2; 0; 2; 0/

Soliman [813] studied Bayesian estimation for Lomax distributions from general
progressively Type-II censored samples under squared-error loss and LINEX loss.
He used the parametrization

F.t/ D 1 �
	
1C t

#


�˛
; t � 0; ˛; # > 0:

As a joint prior, he assumed a discrete–continuous prior similar to that proposed
by Soland [810] for the Weibull distribution (see (15.5)). The author established
explicit expressions for the Bayes estimators of the distribution parameters as well
as the reliability. Further results in this direction can be found in Fu et al. [384] (see
also Amin [45]). They analyzed progressively Type-II censored sample generated
from data reported by Crowley and Hu [317]. The data set is given in Table 15.3.

15.4 Burr Distributions

For the two-parameter Burr-XII distribution with cumulative distribution function

F.t/ D 1 � .1C tˇ/�˛; t � 0; ˛; ˇ > 0;

Ali Mousa and Jaheen [38] considered Bayesian inference in one- and two-
parameter settings. Supposing ˇ to be known, they suggested a gamma prior as
in (15.2) resulting in a Γ.1=Œb C T �;m C a/-posterior distribution with T DPm

jD1.Rj C 1/ log.1 C x
ˇ
i /. For squared-error loss, the Bayesian estimates are

given by

b̨B D b C T
mC a and bRB.t/ D

�
1C log.1C tˇ/

b C T
��.mCa/

:

Asgharzadeh and Valiollahi [63] used an exponential prior Exp.1=b/, b > 0, for ˛.
Assuming a linear loss function, they calculated the median of the gamma posterior
distribution as

b̨B D
�21=2.2mC 2/
2.b C T / :
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They also applied a logarithmic loss function introduced by Brown [221] resulting
in the estimate b̨B D e�.mC1/=.bCT /, where � denotes the Digamma function. Li
et al. [587] studied the same problem under LINEX loss. Furthermore, Asgharzadeh
and Valiollahi [63] and Li et al. [587] considered empirical Bayesian estimation.

In the two-parameter model, they assumed a joint prior suggested by
AL-Hussaini and Jaheen [29]:

�a;b;c;d .˛; ˇ/ D 1

� .d/� .a/cd ba
ˇaCd ˛a exp

n
� ˇŒ1=c C ˛=b�

o
; ˛; ˇ > 0:

Using the approximation of Tierney and Kadane [845], they obtained approximate
Bayesian estimates following the lines of AL-Hussaini and Jaheen [30] who
considered Type-II right censored data. The same prior has been suggested by
Jaheen [475] for m-generalized order statistics who used the approach of Lind-
ley [612] to compute approximate Bayesian estimates. Soliman [811] utilized a
discrete–continuous prior similar to that proposed by Soland [810] for the Weibull
distribution (see (15.5)). Results for squared-error loss, LINEX loss, and general
entropy loss were obtained. Due to the structure of the prior distribution, explicit
representations of the Bayes estimates result. The results are used to analyze
Nelson’s insulation fluid data 1.1.5.

15.5 Other Distributions

Bayesian inference for linear hazard rate distributions with

F.t/ D 1 � e�.�tC�t2=2/; t � 0; � � 0; � > 0; (15.10)

has been investigated by Lin et al. [604] for a general progressively Type-II
censored sample XrC1WmWn; : : : ; XmWmWn. The applied censoring scheme is given by
R D .0�r ; RrC1; : : : ; Rm/, where 1 � r < m. As Ashour et al. [65], they suggested
a bivariate gamma prior with independent marginals

�a1;b1;a2;b2 .�; �/ / �a1�1�a2�1e�.b1�Cb2�/; �; � > 0:

The corresponding posterior distribution has a density function

��a1;b1;a2;b2 .�; �/ / �a1�1�a2�1
n
1 � e�.�xrC1C�x

2
rC1=2/

or
e�.�T1C�T2/

�
m�rY
jD1

.�C �xrCj / �; � > 0;

where T1 DPm�r
jD1.RrCj C 1/xrCj C b1 and T2 D 1

2

Pm�r
jD1.RrCj C 1/x2rCj C b2.

Explicit expressions for the Bayes estimators of � and � have been established
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1:96 1:96 3:60 3:80 4:79 5:66 5:78 6:27 6:30 6:76 7:65 7:99

8:51 9:18 10:13 10:24 10:25 10:43 11:45 11:75 11:81 12:34 12:78

Table 15.4 Progressively Type-II censored data set generated from 33 observations of the floods
of the Fox River data by Lin et al. [604]. The applied censoring scheme was given by R D
.0�5; 1; 0�4; 1; 0�2; 1; 0�4; 2; 0�3; 5/. m D 23 observations are available; ten observations have
been progressively censored

for squared-error loss. Additionally, an efficient MCMC method to generate the
posterior distributions of interest has been implemented. Moreover, the estimators
are applied to a progressively Type-II censored data set generated from the floods
of the Fox River data earlier analyzed by Gumbel and Mustafi [422] and Bain and
Engelhardt [73]. The progressively Type-II censored sample is given in Table 15.4.

Example 15.5.1. Lin et al. [604] applied their results to the data given in

Table 15.4. Using the MCMC approach, the estimates b� D 0:000086 and
b� D 0:016201 result. Details on the prediction results can be found in Table 3 of
Lin et al. [604].

Remark 15.5.2. Bayesian inference for linear hazard rate distributions has also
recently been discussed by Sen et al. [792] using a unified treatment of both
progressive Type-I and Type-II censoring. Using gamma priors as above, mixtures
of gamma distributions result as posterior distributions.

A location–scale family of extreme value distributions with standard member
F.t/ D 1� e�et , t 2 R, has been considered by Al-Aboud [26] under squared-error
loss, LINEX loss, and general entropy loss as proposed by Calabria and Pulcini
[238]. The prior distribution is suggested as

�a;b.�; #/ / ba

� .a/
#�.aC2/e�b=# ; # > 0;� 2 R:

Notice that Jeffrey’s noninformative prior on R is used for the location parameter�.
The results are applied to log-times of Nelson’s insulating fluid data given in
Table 17.5. Exponentiated modified Weibull distributions with cumulative distribu-
tion function as in (12.35) are studied by Klakattawi et al. [534] using independent
gamma priors. Prediction problems are considered in Klakattawi et al. [535].

Rastogi et al. [749] and Sarhan et al. [778] discussed Bayesian inference for
the bathtub-shaped distribution given in (12.43). They considered squared-error,
LINEX, and entropy loss functions with gamma priors. The results are illustrated
by the data given in Table 12.4. Bayesian inference for logistic-type distributions
has been addressed by some authors. Half-logistic distributions are considered
by Kim and Han [530]. Rastogi et al. [749] discussed exponentiated half-logistic
distributions under progressive Type-II censoring. Results for generalized half-
normal distributions with cumulative distribution function in (12.44) have been
established in Ahmadi et al. [19] assuming independent gamma priors.



Chapter 16
Point Prediction from Progressively Type-II
Censored Samples

Prediction problems are discussed extensively in lifetime analysis. Based on a
sample X1; : : : ; Xm, we wish to predict the outcome of a random variable Y or
random vector Y. This random variable may be a (censored) observation from
the same experiment (one-sample prediction) or may be part of an independent
future sample (two-sample prediction). In the first setup, Y and theX sample will be
correlated. In the following, we consider two setups. Given a progressively Type-
II censored sample X1WmWn; : : : ; XmWmWn, we want to predict the lifetime of an item
censored in the progressive censoring procedure. Moreover, we address the problem
of predicting random variables in a future sample Y1; : : : ; Yr . Here, it is important
which distributional assumption is put on that sample. Point and interval predictions
are both discussed.

16.1 Prediction Concepts

Before turning to specific prediction problems, some general concepts of point pre-
diction are briefly introduced. We assume an informative sample Y D .Y1; : : : ; Ym/
used to predict a single observation Y . The best unbiased predictor (BUP) b�BU.Y/
is given by the conditional expectation b�BU.Y/ D E�.Y jY/. If � is known,
the expectation can be calculated directly from the conditional distribution of Y ,
given Y. Unknown parameters can be replaced by appropriate estimates. If � is
unknown, we can apply a result due to Ishii [471] which is reported in Takada [832]:
b�BU.Y/ is BUP iff

E�

�
ŒY �b�BU.Y/� � "0.Y/

� D 0 for all � (16.1)

for any squared integrable estimator "0.Y/ which is an unbiased estimator of zero.
This characterization result is similar to that for unbiased estimators.

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 16,
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An important concept in point prediction is linear prediction. A linear predictor
is a linear function of the observations Y1; : : : ; Ym: b�L.Y/ DPm

jD1 cj Yj . It is said
to be unbiased if its expectation equals EY for every choice of the parameter. Best
linear unbiased prediction is widely used since it can be applied in various contexts.
A best linear unbiased predictor (BLUP) is defined as the linear unbiased predictor
of Y which minimizes (standardized) mean squared error. The mathematical
treatment is presented in, e.g., Goldberger [405] or Christensen [264]. In location–
scale families [see (11.1)] with unknown parameter � D .�; #/0, the BLUP is
given by

b�LU.Y/ D b�LU C ˛Yb#LU C$ 0V �1.Y �b�LU1 �b#LU˛/; (16.2)

where ˛Y D EY , ˛ D EY, V D Cov.Y/, $ D Cov.Y;Y/, and b�LU and
b#LU are the BLUEs of � and # , respectively. The corresponding best linear
equivariant predictor (BLEP) has a similar representation, in which the BLUEs of
the parameters are replaced by the BLEEs (see Balakrishnan et al. [139]):

b�LE.Y/ D b�LE C ˛Yb#LE C$ 0V �1.Y �b�LE1 �b#LE˛/:

An alternative concept proposed by Kaminsky and Rhodin [496] is maximum
likelihood prediction. Given the informative sample y, the so-called predictive
likelihood function (PLF) L.�; yI y/ is considered and maximized simultaneously
with regard to the observation and the parameter � . A solution b�ML.y/ of the
maximization problem

sup
.y;�/

L.	; yI y/

defines the maximum likelihood predictor (MLP) b�ML.Y/. The solution for � is
called the predictive maximum likelihood estimator of � . Kaminsky and Rhodin
[496] applied this approach to predict an order statistic XsWn given a sample
X1Wn; : : : ; Xr Wn with 1 � r < s � n. Since explicit expressions of the MLP b�ML.y/
will only be available in exceptional cases, Basak and Balakrishnan [175] used a
Taylor approximation of order one to linearize the likelihood equations generated by
the PLF. The resulting solution b�AM.y/ is called approximate maximum likelihood
predictor (AMLP).

The median unbiased predictor (MUP) b�MU.Y/ is defined via the generalized
median condition

P� .b�MU.Y/ � Y / D P� .b�MU.Y/ � Y /: (16.3)

This idea was employed by Takada [834] for Type-II censored samples. He
showed that the MUP leads to a smaller value of Pitman’s measure of closeness
than the BLUP. The median b�CM.Y/ of the conditional distribution f Y jY is called
conditional median predictor (CMP). Since it obviously satisfies (16.3), it is also
a MUP.
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16.2 Prediction of Failure Times of Censored Units

Balakrishnan and Rao [115] considered the problem of predicting the lifetime of
an item censored in the last step of the progressive censoring procedure. Here, it
has to be assumed that, at the termination time XmWmWn of the experiment, Rm � 1
observations are left (see also Balakrishnan and Aggarwala [86, Chap. 8]). This
approach has been extended by Basak et al. [178] to predict lifetimes of items
progressively censored in the lifetime experiment at some stage of the censoring
procedure. This approach is based on a distributional result previously presented in
Sect. 9.1.2. Interpreting the observed progressively Type-II censored order statistics
XR D .X1WmWn; : : : ; XmWmWn/ as observed information and the random vector W D
.W1; : : : ;Wm/, where Wj D .Wj1; : : : ;WjRj / denotes those random variables
corresponding to items withdrawn in the j th step of the progressive censoring
procedure, as missing data, we get the following representation of the conditional
density function [see (9.7)]:

f WjXR

.wjx/ D
mY
rD1

RrY
kD1

f .wrk/

1 � F.xr/ D
mY
rD1

RrY
kD1

f Wrk jXrWmWn .wrkjxr/;

min wr > xr ; 1 � r � m: (16.4)

This shows that Wj , 1 � j � m, are conditionally independent, given XR. If we are
interested in predicting the ordered lifetimes of the items censored in the j th step of
the progressive censoring procedure, the order statistics Wj;1WRj ; : : : ;Wj;Rj WRj have
to be predicted. Integrating (16.4), we get

f Wj jXR

.wj jx/ D
RjY
kD1

f Wjk jXj WmWn.wjkjxj /;

showing that the distribution of Wj , given XR, depends only on the progressively
Type-II censored order statistic Xj WmWn. Thus, this applies also to the distribution of
the order statistics W�j D .Wj;1WRj ; : : : ;Wj;Rj WRj / yielding the joint density function

f W�j jXR

.wj jx/ D Rj Š
RjY
kD1

f Wjk jXj WmWn.wjkjxj /; wj1 � � � � � wjRj :

If we are interested in the r th order statistic of the lifetimes withdrawn in the j th
censoring step only, the respective density function is

f
Wj;rWRj jXR

.wjx/ D f Wj;rWRj jXj WmWn.wjxj /

D Rj Š

.r � 1/Š.Rj � r/Š
ŒF .w/ � F.xj /�r�1Œ1 � F.w/�Rj�r

Œ1 � F.xj /�Rj f .w/; (16.5)

where w > xr .
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For maximum likelihood prediction, we need the PLF L.�;wI x/, where w is the
(future) realization of Wj;r WRj . From (16.5), we get

L.�;wI x/ D f Wj;rWRj jXj WmWn
� .wjxj / � f XR

� .x/

D Rj Š

.r � 1/Š.Rj � r/Š
ŒF� .w/� F� .xj /�

r�1Œ1 � F� .w/�Rj�r

Œ1 � F� .xj /�
Rj

f�.w/

�
mY
iD1

�i Šf� .xi /.1 � F� .xi //
Ri : (16.6)

Assuming that � is known, Basak et al. [178] have established weak conditions
guaranteeing the existence of a unique predictor by studying the corresponding
likelihood equation. But, in this case, (16.6) can be seen as

L.�;wI x/ / Rj Š

.r � 1/Š.Rj � r/Š
ŒF� .w/ � F� .xj /�

r�1Œ1 � F� .w/�Rj�r

Œ1 � F� .xj /�
Rj

f� .w/;

which is the density function of the r th order statistic in a sample of size Rj .
Therefore, uniqueness of the predictor is directly connected to unimodality of F�

(see Sect. 2.7). Applying results of Alam [31] (see also Barlow and Proschan [167],
Huang and Ghosh [460, 461], Dharmadhikari and Joag-dev [339], and Cramer
[286]), we get simple conditions ensuring unimodality of F� . Namely, convexity of
1=f� yields the desired result. Moreover, it follows that log-concavity of the density
function is sufficient, too. This includes, e.g., uniform, exponential, normal, Weibull,
gamma, and Cauchy distributions.

Throughout, we assume a location or a scale model as introduced in (11.1a)
and (11.1b). The location–scale model (11.1c) can be treated similarly with some
additional mathematical difficulties. Most of the results are taken from Basak et al.
[178] and Basak and Balakrishnan [175].

16.2.1 Exponential Distribution

In this section, a scale family of exponential distributions Exp.#/ is considered for
a sample ZR D .Z1WmWn; : : : ; ZmWmWn/. We present the predictors for a censored
observation Wj;r WRj provided that Rj > 0. A crucial tool in the derivations is the
conditional density function given in (16.5). It is given by

f
Wj;rWRj jZj WmWn .wjzj /

D Rj Š

.r � 1/Š.Rj � r/Š Œ1 � e�.w�zj /=# �r�1e�.Rj�rC1//.w�zj /=# :
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Then, Wj;r WRj �Zj WmWn has the distribution of #Z�r WRj , where Z�r WRj denotes the r th
order statistic in a sample of size Rj from a standard exponential distribution. This
shows that the distribution ofWj;r WRj �Zj WmWn is independent of Zj WmWn.

Scale Parameter # > 0 Known

First, we assume that the scale parameter is known. The BUP ofWj;r WRj is given by

b�BU.ZR/ D E#.Wj;r WRj jZj WmWn/ D Zj WmWn C E#.Wj;r WRj �Zj WmWnjZj WmWn/

D Zj WmWn C #EZ�r WRj D Zj WmWn C #
rX

kD1

1

Rj � k C 1 : (16.7)

Since this predictor is linear, it equals the BLUP of Wj;r WRj . The mean squared
predictive error (MSPE) is directly calculated from the above property as

MSPE#.b�BU.ZR// D E#
�
Wj;r WRj �b�BU.ZR/

�2

D E#
�
Wj;r WRj �Zj WmWn � #

rX
kD1

1

Rj � k C 1
�2

D Var#
�
Wj;r WRj �Zj WmWn

� D #2 Var.Z�r WRj /

D #2
rX

kD1

1

.Rj � k C 1/2 :

For maximum likelihood prediction, we consider the PLF given in (16.6). For a one-
parameter exponential distribution, this objective can be interpreted as a likelihood
function from two-parameter exponential distribution with known scale parameter
# and unknown location parameter w. The sample is given by a single order statistic.
The resulting maximum results as in Kambo [493] and the corresponding MLP are
given by

b�ML.Y/ D Zj WmWn C # log
� Rj

Rj � r C 1
�
: (16.8)

Notice that the PLF is decreasing for r D 1 leading to the predictor b�ML.Y/ D
Zj WmWn of the first failure time of the removed items. This predictor is obviously
biased with bias

E#.b�ML.Y/�Wj;r WRj / D #
h

log
� Rj

Rj � r C 1
�
�

rX
kD1

1

Rj � k C 1
i
:
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The MSPE is given by

MSPE#.b�ML.ZR// D #2
h rX
kD1

1

.Rj � k C 1/2

C
�

log
� Rj

Rj � r C 1
�
�

rX
kD1

1

Rj � k C 1
�2i

:

Basak et al. [178] showed that the bias is negative and that, for Rj � r ! 1, the
MLP is an asymptotically unbiased and consistent predictor.

Using the results of Takada [834], Basak et al. [178] obtained that the CMP
b�CM.ZR/ and the MUPb�MU.ZR/ are identical in the exponential case with known
scale parameter. They are given by

b�CM.ZR/ D Zj WmWn C # med
�
F
Z�rWRj

�
;

where Z�r WRj denotes the r th order statistic in a sample of size Rj from the standard
exponential distribution.

Scale Parameter # > 0 Unknown

For an unknown scale parameter, we consider first best unbiased prediction.
Replacing # in (16.7) by its maximum likelihood estimator b#�MLE [see (12.4)], we
get the predictor

b�BU.ZR/ D Zj WmWn Cb#�MLE

rX
kD1

1

Rj � k C 1 : (16.9)

We show that b�BU.ZR/ satisfies condition (16.1) for every unbiased estimator
".ZR/ of zero and, thus, is the BUP of Wj;r WRj . Writing c DPr

kD1 1
Rj�kC1 , we get

E#
�
ŒWj;r WRj �b�BU.ZR/�".ZR/

�

D E#
�
ŒWj;r WRj �Zj WmWn � cb#�MLE�".Z

R/
�

D E#
�
ŒWj;r WRj �Zj WmWn�".ZR/

� � cE#
�b#�MLE".Z

R/
�

D E#
�
ŒWj;r WRj �Zj WmWn � #c�".ZR/

�C c#E#".ZR/� cE#
�b#�MLE".Z

R/
�

D �cE#
�b#�MLE".Z

R/
�
:

Here, we have used the fact that, from (16.1), E#
�
ŒWj;r WRj �Zj WmWn�#c�".ZR/

� D
0 because EZj WmWn C #c is the BUP of Wj;r WRj for a known scale parameter # .



16.2 Prediction of Failure Times of Censored Units 361

From Theorem 12.1.1, we know that the MLE b#�MLE forms a complete sufficient
statistic and that it is the UMVUE of # (see also Cramer and Kamps [299]). Hence,
we conclude from Zacks [937, Theorem 3.3.1] that

E#
�b#�MLE".Z

R/
� D 0 for every unbiased estimator ".ZR/ of zero. (16.10)

This proves the desired result. Notice that b�BU.ZR/ is a linear predictor so that it
equals the BLUP, too. Sinceb#�MLE is also the BLUE of # , the result for best unbiased
linear prediction can be obtained also using the general result from Doganaksoy and
Balakrishnan [342]: The BLUP can be constructed by replacing the parameter by
its BLUE. The MSPE is given by (c DPr

kD1 1
Rj�kC1 )

MSPE#.b�BU.ZR// D E#
�
Wj;r WRj �b�BU.ZR/

�2

D E#
�
Wj;r WRj �Zj WmWn � cb#�MLE

�2

D Var#
�
Wj;r WRj �Zj WmWn

�C c2 Var#.#
�
MLE/

C 2cE#
�
.Wj;r WRj �Zj WmWn � c#/.b#�MLE � #/

�

D #2 Var.Z�r WRj /C c2 Var#.b#�MLE/

D #2
h rX
kD1

1

.Rj � k C 1/2 C
1

m

� rX
kD1

1

Rj � k C 1
�2i

:

We have used the fact that (16.10) implies

E#

�
.Wj;r WRj �Zj WmWn � c#/.b#�MLE � #/

�
D 0

and that Var#.b#�MLE/ D #2=m (see Theorem 12.1.1).
Following Takada [832, Theorem 3], the best equivariant predictor of # has a

similar form as in (16.9):

b�BE.ZR/ D Zj WmWn C cb#�MLE

with an appropriately chosen constant c. Obviously, this predictor is linear so that
it must equal the BLEP. Therefore, we find the representation of the BEP from a
general result of Balakrishnan et al. [139] which parallels that of Doganaksoy and
Balakrishnan [342] for unbiased estimation. We can replace the unknown parameter
by its BLEE. Since the BLEE of # is given by

b#LE D 1

mC 1
mX
jD1

.Rj C 1/Zj WmWn D
�
1 � 1

mC 1
�b#�MLE
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[see (11.5)], the BLEP and BEP of Wj;r WRj have the representation

b�BE.ZR/ D Zj WmWn C
�
1 � 1

mC 1
�b#�MLE

rX
kD1

1

Rj � k C 1:

The MLP is derived by considering the logarithm of the PLF. Up to an additive term,
it is given by

�.mC 1/ log# � T .w/
#
C .r � 1/ log

�
1 � e�.w�zj /=#

�
; w � xj ;

where T .w/ DPm
iD1.Ri C 1/zi C .Rj � r C 1/.w� zj /. Solving the maximization

problem yields the predictor

b�ML.ZR/ D Zj WmWn Cb#�� log
� Rj

Rj � r C 1
�

which is (16.8), where the parameter # is replaced by the biased estimator b#�� D
1

mC1
Pm

iD1.Ri C 1/Zi WmWn. The MSPE is given by

MSPE#.b�ML.ZR//

D #2
h rX
kD1

1

.Rj � k C 1/2 C
n

log
� Rj

Rj � r C 1
�
�

rX
kD1

1

Rj � k C 1
o2

log
� Rj
Rj�rC1

�

mC 1
n
2

rX
kD1

1

Rj � k C 1 � log
� Rj

Rj � r C 1
�oi

:

For median unbiased prediction, Basak et al. [178] obtained the predictor

b�MU.ZR/ D Zj WmWn Cb#�MLE med
�
F
TrWRj

�
;

where b#�MLE denotes the MLE (and UMVUE) of # and Tr WRj D .Wj;r WRj �
Zj WmWn/=b#MLE. Following arguments as in Lawless [569], Basak et al. [178] found
the survival function

P.Tr WRj � t/

D 1

B.r; Rj � r C 1/
r�1X
kD0

.�1/k�r�1
k

�

Rj � r C k C 1
h
1C .Rj � r C k C 1/t

m

i�m
:

The CMP has the representation

b�CM.ZR/ D Zj WmWn Cb#�MLE med
�
F
Z�rWRj

�
:

Hence, it is the CMP for a known scale parameter with # replaced by the
MLEb#�MLE.
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BUP/BLUP BLEP MLP MUP CMP

W3;1W3 3:98875 3:65222 0:96000 3:15300 3:05937

W3;2W3 8:53187 7:69056 4:23481 7:53806 7:25811

W3;3W3 17:61813 15:7672 9:83313 15:98540 15:30198

W5;1W3 5:80875 5:47222 2:78000 4:97300 4:87937

W5;2W3 10:35188 9:51056 6:05481 9:35806 9:07811

W5;3W3 19:43813 17:5872 11:65313 17:80540 17:12198

W8;1W5 9:16725 8:96533 7:35000 8:66580 8:60962

W8;2W5 11:43881 10:98450 9:15226 10:92206 10:77189

W8;3W5 14:46756 13:67672 11:47577 13:92729 13:64811

W8;4W5 19:01069 17:71506 14:75057 18:36360 17:88066

W8;5W5 28:09694 25:79172 20:34889 26:86161 25:92652

Table 16.1 Predicted values for censored observations Wj;rWRj in Data 1.1.5 taken partly from
Basak et al. [178]

Example 16.2.1. Basak et al. [178] applied the results for the exponential
distribution to Nelson’s insulating fluid Data 1.1.5. The results for this approach
are summarized in Table 16.1. The results for the BLUP are also included in
Balakrishnan and Aggarwala [86, pp. 160–162]. Notice that the censoring scheme
is given by R D .0�2; 3; 0; 3; 0�2; 5/ so that progressive censoring takes place only
at the third step (3 items), fifth step (3 items), and at the last step (5 items).

Remark 16.2.2. Prediction of progressively censored failure times with expo-
nentiated exponential distributions has been considered by Madi and Raqab
[627]. They illustrated their results by the insulating fluid Data 1.1.4. They also
analyzed progressively Type-II censored data discussed by Pradhan and Kundu
[727] which is given in Table 12.5. Using the data belonging to the censoring
scheme R D .15; 5; 4; 0�9/, Madi and Raqab [627] obtained Bayesian predictive
values as well as predictive intervals for the censored failure times.

16.2.2 Extreme Value Distribution

For the extreme value distribution with density function

f#.t/ D 1

#
et=#e�et=# ; t 2 R; # > 0;

Basak et al. [178] discussed the preceding prediction problem. As for the expo-
nential distribution, the cases of a known and unknown scale parameter have
to be treated separately. X1WmWn; : : : ; XmWmWn denotes the informative sample of
progressively Type-II censored order statistics from this extreme value distribution.
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Scale Parameter # > 0 Known

The BUP is calculated as expectation of the conditional density function (16.5) and
has the representation

b�BU.XR/ D Xj WmWn C #E
h

log
�
1C e�Xj WmWn=#Z�r WRj

�ˇ̌
ˇXj WmWn

i
;

where Z�r WRj denotes the r th order statistic in a sample of size Rj from the Exp.1/-
distribution. The BLUP has the representation

b�LU.XR/ D ˛W # C$˙�1.XR � #˛/; (16.11)

where

˛W D EWj;r WRj ;˛ D EXR; ˙ D Cov.XR/; and $ D Cov.Wj;r WRj ;XR/:

(16.12)

The moments have to be calculated numerically. A discussion using representa-
tion (2.25), due to Kamps and Cramer [503], is included in Basak et al. [178,
Appendix A].

The MLP also has an explicit representation. Maximization of the PLF yields the
predictor

b�ML.XR/ D # log
h
eXj WmWn=# C log

� Rj

Rj � r C 1
�i
: (16.13)

The CMP is given by

b�CM.XR/ D # log
h
eXj WmWn=# Cmed

�
F
Z�rWRj

�i
: (16.14)

Scale Parameter # > 0 Unknown

Using the result from Doganaksoy and Balakrishnan [342], the BLUP can be
directly obtained from (16.11) by replacing the parameter # by its BLUE as

b#LU D ˛0˙�1

˛0˙�1˛
XR;

where ˛ and ˙ are given in (16.12). The MSPE can be directly computed from
the variance of the BLUE, i.e., from #2=.˛0˙�1˛/. The MLP can be deduced from
(16.13) by replacing the parameter # by the predictive MLEb#�� obtained from the
equation

b#�� D 1

mC 1
mX
kD1
.Rk C 1/XkWmWneXkWmWn=b#�� :
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BLUP MMLP CMP

W3;1W3 3:56217 0:96000 3:31520

W3;2W3 8:68718 5:18736 8:76462

W3;3W3 20:13858 15:27098 20:57151

W5;1W3 7:88749 2:78000 5:36904

W5;2W3 13:43723 7:73934 11:06764

W5;3W3 25:46373 18:56257 23:13913

W8;1W5 8:91500 7:35000 9:06435

W8;2W5 9:70274 10:52387 12:11114

W8;3W5 13:63622 15:01828 16:33133

W8;4W5 19:94702 21:99980 22:81920

W8;5W5 33:13133 35:37716 35:84896

Table 16.2 Predicted values for censored observations Wj;rWRj in Data 1.1.5 taken from Basak
et al. [178]

Basak et al. [178] pointed out that this may cause some computational difficulties.
Alternatively, they proposed the linearized predictive MLE as discussed by Thomas
and Wilson [843]:

e# D 1

mC 1
mX
kD1
.Rk C 1/kXkWmWn;

where k D Pk
iD1 1

�i
, 1 � k � m. The resulting modified MLP of Wj;r WRj is

given by

b�MM.XR/ D e# log
h
eXj WmWn=e# C log

� Rj

Rj � r C 1
�i
:

Notice that, for r D 1, this predictor simplifies to b�MM.XR/ D Xj WmWn.
Since the CMP is also difficult to obtain in this setting, Basak et al. [178]

proposed a modified CMP using (16.14) and replacing the parameter # by the
corresponding BLUEb#LU. The resulting predictor is given by

b�MC.XR/ D b#LU log
h
eXj WmWn=b#LU Cmed

�
F
Z�rWRj

�i
;

where Z�r WRj denotes the r th order statistic in a sample of size Rj from the standard
exponential distribution.

Example 16.2.3. The preceding predictors are applied by Basak et al. [178]
to the log-times of Nelson’s insulating fluid Data 17.5. The resulting predicted
values are transformed back to the original time scale. The results from this
approach are given in Table 16.2 (see also Table 16.1).
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16.2.3 Normal Distribution

The present prediction problem has been discussed by Basak and Balakrishnan
[175] for a normal distribution N.�; 1/ with location parameter � 2 R. As above,
the cases of a known and unknown location parameter have to be handled separately.

Location Parameter � Known

Given the sample X1WmWn; : : : ; XmWmWn, the BUP is calculated from the expectation of
the conditional density function in (16.5) and has the integral representation

b�BU.XR/ D Xj WmWnC Rj Š

.r � 1/Š.Rj � r/Š
1

.1 � ˚.Yj WmWn//

�
Z 1
0

t'.tCYj WmWn/
h
˚.tCYj WmWn/�˚.Yj WmWn/

ir�1h
1�˚.tCYj WmWn/

iRj�r
dt;

where Yj WmWn D Xj WmWn � �, 1 � j � m, and ' and ˚ denote the density function
and cumulative distribution function of a standard normal distribution, respectively.
The integral has been evaluated numerically but, obviously, is not linear. The BLUP
is given by the expression

b�LU.XR/ D �C ˛W C$ 0˙�1.XR � �1 � ˛/; (16.15)

where ˛W ;˛;$ , and ˙ are given in (16.12). The moments can be computed using
(2.25). A detailed discussion is provided by Basak and Balakrishnan [175] who
showed that this works quite efficiently. They have pointed out that only single
and product moments of order statistics from a standard normal distribution are
necessary to compute the above quantities. These moments can be taken from
Tietjen et al. [846] up to sample size 50.

The MLP can be obtained by maximizing the PLF w.r.t. the variable w. In this
case, the PLF is proportional to the density function (16.5), or to

h.w/ D '.w/.˚.w/ �˚.yj //r�1Œ1 �˚.w/�Rj�r ; w � yj :

Notice that, according to Basak et al. [178], a unique MLP exists.

Location Parameter � Unknown

For an unknown location parameter, the BLUP can be directly obtained from (16.15)
by replacing � by its BLUE b�LU D 10˙�1.XR � ˛/=.10˙�11/.
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Maximum likelihood prediction has also been discussed in Basak and Balakrish-
nan [175]. They proposed two predictors referred to as one- and two-stage MLPs.
The one-stage MLP is obtained as solution of the predictive likelihood equations
resulting from the derivatives of the log-PLF:

mX
kD1

yk C
mX

kD1;k¤j
Rkh.yk/C .r � 1/h�.yj ;w � �/ D 0;

�wC �C .r � 1/Œ1 � h�.yj ;w � �/� � .Rj � r/h.w � �/ D 0;
(16.16)

where h.t/ D ˚.t/=Œ1�˚.t/�, h�.s; t/ D ˚.s/=Œ˚.t/�˚.s/�, t > s, yk D xk��,
1 � k � m. The corresponding predictor of Wj;r WRj is defined as b�ML1.X

R/ D
maxfXj WmWn; MX1g, where MX1 is defined via the solution of (16.16) in w.

For the two-stage approach, Basak and Balakrishnan [175] used the fact that the
PLF can be written as a product of the functions (up to multiplicative constants)

L1.�I y/ D
mY
kD1
f�.yk/.1 �˚.yk/gRk ;

L2.wI�; y/ D �.w/ .˚.w/ �˚.yj //
r�1

Œ1 � ˚.yj /�Rj Œ1 � ˚.w/�Rj�r ;w � yj :

Notice that these correspond to the joint density function of YR and the conditional
density function ofWj;r WRj , given YR D y [see (16.5) and (16.6)]. Here, L1 depends
only on �, whereas L2 depends on both parameters. Using this decomposition,
Basak and Balakrishnan [175] defined a two-stage MLP based on the solution of
the equations resulting from differentiating the logarithm of L1 w.r.t. � and the
logarithm of L2 w.r.t. w:

mX
kD1

yk C
mX
kD1

Rkh.yk/ D 0;

�wC �C .r � 1/Œ1 � h�.yj ;w � �/� � .Rj � r/h.w � �/ D 0:
(16.17)

The corresponding predictor of Wj;r WRj is defined as

b�ML2.X
R/ D maxfXj WmWn; MX2g;

where MX2 is defined via the solution of (16.17) in w.
Since explicit solutions of (16.16) generally do not exist, Basak and Balakrishnan

[175] proposed a modified MLP which is defined via the solutions of (16.16)
and (16.17), where the quantities h.XkWmWn � �/; h.Wj;r WRj � �/, and h�.Xj WmWn �
�;Wj;r WRj ��/ are replaced by its expected values. Since the population distribution
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is a N.�; 1/-distribution, it follows that YkWmWn D XkWmWn�� andWj;r WRj �� can be
seen as the corresponding random variables based on standard normal distribution.
Therefore, the expectations are free of the location parameter �. Consequently, the
preceding equations are linear in � and w and so can be easily solved provided
that these expected values are available. Basak and Balakrishnan [175] established
explicit but rather complicated expressions of these expected values in terms of
moments of order statistics from a standard normal distribution. For instance, the
expectation of h.YkWmWn/ is given by

Eh.YkWmWn/ D
kY
iD1

�i

kX
iD1

ai;k

.�i � 1/�i EY1W�i ; 1 � k � m;

provided that �m > 1 which means that at least one unit is Type-II censored in the
experiment. If �m D 1, the last term in the representation of Eh.YmWmWn/ has to be
replaced by

�m�1Y
iD1

�i

�
am;m

Z 1
�1

'2.t/

1 �˚.t/ dt D 0:9031972856 �
m�1Y
iD1

�i

�i � 1:

Expressions for Eh.Wj;r WRj � �/ and Eh�.Xj WmWn � �;Wj;r WRj � �/ are presented
in Basak and Balakrishnan [175].

Introducing the notation ek D Eh.XkWmWn � �/; aj D Eh.Wj;r WRj � �/, and
bj D Eh�.Xj WmWn��;Wj;r WRj ��/, the solutions of the modified equations (16.16)
are given by

b�1 D 1

m

� mX
kD1

xk C
mX

kD1;k¤j
Rkek C .r � 1/bj

�
;

bw1 D b�1 C .r � 1/Œ1 � b1� � .Rj � r/aj :
For the modified equations (16.17), the resulting solutions are

b�2 D 1

m

� mX
kD1

xk C
mX
kD1

Rkek

�
;

bw2 D b�2 C .r � 1/Œ1 � b1� � .Rj � r/aj :
The corresponding predictors ofWj;r WRj are defined as the predictorsb�MMi

.XR/ D
maxfXj WmWn; MXig, where MXi is defined viabwi , i D 1; 2.

Finally, Basak and Balakrishnan [175] discussed approximate maximum likeli-
hood prediction. Here, the functions h.XkWmWn��/; h.Wj;r WRj ��/, and h�.Xj WmWn�
�;Wj;r WRj � �/ are replaced by a Taylor series expansion of order 1 in (16.16)
and (16.17), respectively. For details, we refer to Basak and Balakrishnan [175].
Further, these authors also addressed conditional mean predictors which need to be
computed numerically.
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5:4258 5:4324 5:4410 5:4510 5:4515 5:4634

5:4984 5:5045 5:5146 5:5338 5:5502 5:5771

Table 16.3 Progressively Type-II censored data generated by Basak and Balakrishnan [175]
from data simulated from a normal distribution. The censoring scheme is given by R D
.0�3; 2; 0�2; 2; 0�4; 4/, m D 12; n D 20

BLUP MLP1 MLP2 MMLP1 MMLP2 CMP

W4;1W2 5:4992 5:4510 5:4510 5:4510 5:4510 5:4802

W4;2W2 5:6230 5:4921 5:6121 5:4992 5:6513 5:5784

W7;1W2 5:5107 5:4984 5:4984 5:4984 5:4984 5:1023

W7;2W2 7:1781 5:5423 6:9256 5:5621 7:0156 6:2384

W12;1W4 6:2814 5:5771 5:5771 5:5771 5:5771 5:9123

W12;2W4 7:8310 5:5771 7:0562 5:7108 7:1121 6:0256

W12;3W4 9:1251 7:2341 9:2681 7:2108 9:3785 9:0587

W12;4W4 11:2542 9:1081 12:0581 9:0256 11:3515 11:0568

Table 16.4 Predicted values for censored observations Wj;rWRj for the data given in Table 16.3
taken from Basak and Balakrishnan [175]

Example 16.2.4. Basak and Balakrishnan [175] generated a progressively Type-
II data set (see Table 16.3) from simulated log-normal data presented in Cohen
and Whitten [277] (see also Cohen [266]). The data were selected from normal
random samples given in Mahalanobis et al. [628]. The resulting predicted values
are given in Table 16.4.

16.2.4 Pareto Distributions

In this section, a location–scale family of Pareto distributions with cumulative
distribution function

F.t/ D 1 �
�
1C x � �

#

��˛
; x � �;

is considered. The shape parameter ˛ is supposed to be known. The standard
member of this family is a Lomax.˛/-distribution. The conditional density function
f
Wj;rWRj jXR

can be taken from (16.5). It can be written as

f
Wj;rWRj jXj WmWn.wjxj /

D Rj Š

.r � 1/Š.Rj � r/ŠH
r�1.wjxj /.1 �H.wjxj //Rj�rh.wjxj /; w � xj ;
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where

H.wjxj / D 1 �
h
1C w � xj

# C xj � �
i�˛

and

h.wjxj / D ˛

# C xj � �
h
1C w � xj

# C xj � �
i�.˛C1/

:

Therefore, we can interpretWj;r WRj jXj WmWn D xj as the r th order statistic in a sample
of size Rj with population cumulative distribution function H.�jxj /. Notice that
this is the cumulative distribution function of a Pareto distribution with location
parameter xj and scale parameter # C xj � �.

Suppose Vr WRj denotes the r th order statistic from a Lomax distribution
in a sample of size Rj . Then, according to Corollary 7.2.6, EVr WRj DQr
iD1

˛.Rj�iC1/
˛.Rj�iC1/�1 � 1 provided that ˛.Rj � r C 1/ > 1. Given that � and #

are known, the BUP of Wj;r WRj is given by

b�BU.XR/ D E.Wj;r WRj jXj WmWn/ D Xj WmWn C .# CXj WmWn � �/EVr WRj

D � � # C .# CXj WmWn � �/
rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1 : (16.18)

Since this predictor is linear, it is also the BLUP for Wj;r WRj provided that � and
# are known. Representation (16.18) shows that b�BU.XR/ � Xj WmWn almost surely
and that b�BU.XR/ is increasing in r 2 f1; : : : ; Rj g.

Raqab et al. [746] considered best linear unbiased and (approximate) maximum
likelihood prediction for a location–scale family of Pareto distributions with known
shape parameter ˛ > 0 and standard member Lomax.˛/. They obtained explicit
expressions for the BLUPs using the representations of the moments given in
Theorem 7.2.5. They can also be obtained from the BLUEs given in Theorem 11.2.4
and using the result of Doganaksoy and Balakrishnan [342] [see (16.2)]:

b�LU.XR/ D b�LU C ˛Wb#LU C$ 0V �1.XR �b�LU1 �b#LU˛/;

where the expected values ˛W D EWj;r WRj ;˛ D EXR; V D Cov.XR/, and
$ D Cov.Wj;r WRj ;XR/ are calculated for the standard member of the location–
scale family, i.e., the Lomax.˛/-distribution. The representation of the BUP in
(16.18) can be used to derive expressions for ˛W and $ . Suppose � D 0 and
# D 1. Then, we get using (16.5)

˛W D EWj;r WRj D E
h
E
�
Wj;r WRj

ˇ̌
Xj WmWn

�i

D �1CE.Xj WmWn C 1/ �
rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1

D
jY
kD1

˛�k

˛�k � 1
rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1 � 1;
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ˇrk D EŒXkWmWnWj;r WRj � D E
h
XkWmWnE

�
Wj;r WRj

ˇ̌
XR

�i

D E
h
XkWmWnE

�
Wj;r WRj

ˇ̌
Xj WmWn

�i

D E�XkWmWnXj WmWn
� rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1

C EXkWmWn
h rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1 � 1

i
; 1 � k � m;

$k D Cov.Xj WmWn; XkWmWn/
rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1:

Then, we find by the definition of V that .$ 0V �1/k DQr
iD1

˛.Rj�iC1/
˛.Rj�iC1/�1 for k D j

and zero otherwise. This leads to the following representation of the BLUP:

b�LU.XR/ D Xj WmWn C
h rY
iD1

˛.Rj � i C 1/
˛.Rj � i C 1/� 1 � 1

i
.b#LU CXj WmWn �b�LU/:

Notice that this is the BLUP for known� and # with the parameters replaced by the
corresponding BLUEs [see (16.18)].

The BLEPs can be obtained in a similar fashion using the expressions for the
BLEEs given in Burkschat [231] and the devolution result due to Balakrishnan et al.
[139]. Notice that moments of progressively Type-II censored order statistics from
a Lomax.˛/-distribution exist only under certain conditions on the parameters and
on ˛ (see Theorem 7.2.5). This has to be taken into account. Raqab et al. [746] also
established the MLP

b�ML.XR/ D b�Cb#
�� Rj C 1=˛
Rj � r C 1C 1=˛

�1=˛�
1C Xj WmWn �b�

b#
�
� 1

�
(16.19)

of Wj;r WRj , where b� D X1WmWn and b# are the predictive MLEs. b# is obtained as the
solution of the equation

˛�2 � 1 D
mX
iD2
Œ˛.Ri C 1/C 1� #

# C xi � x1 C
#

# C xj � x1 :

This equation is quite similar to the corresponding likelihood equation given
in (12.22).

Since the right-hand side of this equation is strictly increasing in # , the equation
has at most one solution. Since the limit for # ! 0 is given by 0 and for # !1 is
given by ˛�2Cm > 0, the equation has a unique solution iff �2 > 1=˛ (andm � 2)
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BLUP MLP1 AMLP

W1;1W3 0:0280 0:0141 0:0141

W1;2W3 0:0651 0:0872 0:0869

W1;3W3 0:2113 0:3552 0:3918

W3;1W1 1:9146 1:2200 1:2200

W4;1W2 3:1855 2:7200 2:7200

W4;2W2 4:6215 4:7770 4:5104

Table 16.5 Predicted values for the observationsWj;rWRj censored in the first three censoring steps
for the data given in Table 11.2 taken from Raqab et al. [746]

[see also the comments following (12.22)]. Notice that this means that X2WmWn has
a finite first moment (see Theorem 7.2.5). In order to get an explicit expression for
the estimate of # , Raqab et al. [746] used a linearization of the above equation and
proposed an approximate MLP similar to (16.19), where the predictive MLE b# is
replaced by the predictive AMLE.

Example 16.2.5. Raqab et al. [746] presented the predicted values for the
censored data as given in Table 16.5

16.3 Prediction of Future Observations

Suppose we observe progressively Type-II censored order statistics X1WmWn � � � � �
Xr WmWn with r < m and censoring scheme R. We are interested in predicting the
future observationsXrC1WmWn � � � � � XmWmWn.

16.3.1 Linear Prediction

Burkschat [231] derived BLUPs and BLEPs in the setting of generalized order
statistics for generalized Pareto distributions as given in Definition A.1.11. The
results are established in a multi-sample scenario. For brevity, we consider only the
one-sample setting as introduced above. Let ` 2 fr C 1; : : : ; mg. Then, Burkschat
[231] obtained the following result.

Theorem 16.3.1. Let cj ; dj be as defined in (11.9) and F 2 G PD with q ¤ 0.
Suppose that, for the sample XR

1WmWn; : : : ; XR
r WmWn, the censoring scheme R satisfies

�r C 2q > 0. Then, the BLUP of X`WmWn is given by

b�LU.X`WmWn/ D c`dr

crd`
Xr WmWn C

�
1 � c`dr

crd`

��
b�LU C 1

q
b#LU

�
;
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where the BLUEs b�LU;b#LU are given in Theorem 11.2.4. In the exponential case,
the BLUP is given by

b�LU.X`WmWn/ D Xr WmWn Cb#LU

X̀
jDrC1

1

�j
:

As pointed out in Burkschat [231], the BLEPs are obtained from Theorem 16.3.1
by replacing the BLUEs with the BLEEs given in Burkschat [231]. Furthermore,
MSPEs are provided. Burkschat [231] observed that, for reflected power distribu-
tions, the BLUP is a convex combination of the largest observation Xr WmWn and the
BLUE of the right endpoint of the support given byb�LUC 1

q
b#LU. A similar property

has been reported by Kaminsky and Nelson [495] for order statistics.

16.3.2 Bayesian Prediction

Suppose the population cumulative distribution function is given by F� with density
function f� and that the prior distribution is defined by the prior density function
�a. ��a .�jx/ denotes the posterior density function, given XR D x [see (15.1)]. In
this framework, two different setups are considered:

• One-sample setup
Given a sample X1WmWn; : : : ; Xj WmWn of progressively Type-II censored order
statistics, we are interested in predicting a future outcome XkWmWn, k > j , from
the same sample. The procedure is based on the predictive distribution of XkWmWn,
given the observations XR

j D .X1WmWn; : : : ; Xj WmWn/. Then, the density function of
XkWmWn, given XR

j D xj , is given by

f
XkWmWnjXR

j Dxj
� .xk/ D f XkWmWn jXj WmWnDxj

� .xk/; x1; : : : ; xj ; xk 2 R:

Due to the Markov property of progressively Type-II censored order statistics,
this conditional density function depends only on the largest observation xj . The
predictive density function of XkWmWn, given XR

j D xj , is defined via

fk.t jxj / D
Z
f
XkWmWn jXj WmWnDxj

� .t/��a .�jxj /d�; xj 2 R
j ; t 2 R;

where ��a .�jxj / denotes the posterior density function. In fact, from Theorem

2.5.2, the conditional density function f
XkWmWnjXj WmWnDxj

� can be written as

f
XkWmWn jXj WmWnDxj

� .t/ D
� kY
iDjC1

�i

� kX
iDjC1

a
.j /

i;k .1 �G� ;xj .t//
�i�1g� ;xj .t/;
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where a.j /i;k D
Qk
�DjC1
� 6Di

1
����i , G� ;xj .t/ D 1 � Œ1 � F� .t/�=Œ1 � F�.xj /� is a

left-truncated cumulative distribution function, and g� ;xj denotes the correspond-
ing density function.

• Two-sample setup
Given a sample X1WmWn; : : : ; XmWmWn of progressively Type-II censored order
statistics (the so-called informative sample), the goal of this method is to predict
outcomes of an independent future sample Y1WN � � � � � YN WN from the same
population. The procedure is based on the predictive distribution of YkWN , given
the informative sample XR . Then, the density function of YkWN is given by

f
YkWN

� .y/ D k
 
N

k

!
f� .y/.1 � F� .y//

k�1F N�k
� .y/; y 2 R:

For a posterior density function ��a .�jx/, the predictive density function of
YkWN given XR D x is defined via

fk.yjx/ D
Z
f
YkWN

� .y/��a .�/d�; y 2 R:

Under squared-error loss, the Bayes predictive estimator of XkWmWn (or YkWN ) is
defined as the expected value of the predictive distribution, i.e.,

b�BA.XR/ D
Z
yfk.yjXR/dy:

Under absolute error loss, the median b�BAM.XR/ of the predictive distribution is
the Bayes predictor of XkWmWn and YkWN , respectively.

Bayesian Prediction: One-Sample Case

Schenk et al. [783] have considered a multiply censored sample from an exponential
population in terms of sequential order statistics with different model parameters.
For illustration, we present here only the case of a progressively Type-II right
censored sample. In the one-parameter setting, i.e., an exponential distribution
Exp.#/ and an inverse gamma prior �a;b.#/ as in (15.3) is assumed, they found
the posterior density function

��a;b.#jx/ D
.tj C b/jCa
� .j C a/ #

�.jCaC1/e�.tjCb/=#; # > 0; (16.20)

where tj D Pj

`D1 �`.x` � x`�1/, x0 D 0. Then, the predictive density function
results as

fk.t jxj / D
� kY
iDjC1

�i

� kX
iDjC1

a
.j /

i;k

.j C a/.tj C b/jCa
.tj C b C �i.tj � xj //jCaC1 :
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Suppose j Ca�1 > 0. Then, for squared-error loss, integration w.r.t. t � xj yields
the Bayes predictor

b�BA.XR/ D Xj WmWn C Tj C b
j C a � 1

kX
iDjC1

1

�i
D Xj WmWn Cb#B

kX
iDjC1

1

�i
;

whereb#B denotes the Bayes estimator of # in this setting [see (15.4)]. For j C a �
2 > 0, the posterior variance is given by

Var.XkWmWnjXR
j D xj / D b#2B

h 1

j C a � 2
� kX
iDjC1

1

�i

�2 C
kX

iDjC1

1

�2i

i

(see Schenk et al. [783]). The predictive survival function is given by

F k.t jxj / D
� kY
iDjC1

�i

� kX
iDjC1

a
.j /

i;k

�i

.Tj C b/jCa
.Tj C b C �i.t � xj //jCa :

It can be used to compute a .1 � ˛/-HPD prediction interval Œb̀k;buk� for XkWmWn
solving the equations

F k.b̀kjxj /� F k.bukjxj / D 1 � ˛; fk.b̀kjxj / D fk.bukjxj /:

The corresponding formulas for conventionally Type-II censored data have been
established by Fernández [365].

A similar approach can be applied in the setting of a Weibull model with known
shape parameter ˇ. In this setting, we have to replace the observations xj by the

transformed observations xˇj resulting in quite similar expressions. This comment
applies to, e.g., Rayleigh distributions, where ˇ D 2. Prediction intervals for a
general class of distributions as given in (15.7), including exponential, Weibull, and
Pareto distributions, are presented in Abdel-Aty et al. [2]. Their results are based
on priors previously used by AL-Hussaini and Ahmad [28]. The scenario is further
discussed in Mohie El-Din and Shafay [652].

Bayesian Prediction: Two-Sample Case

Given the informative sample X1WmWn; : : : ; XmWmWn of progressively Type-II censored
order statistics, the goal of this method is to predict outcomes of an independent
future sample Y1WN � � � � � YN WN from the same population. The procedure is based
on the predictive distribution of YkWN , given the informative sample XR . Suppose the
population cumulative distribution function is given by F� with density function f� .
Then, the density function of YkWN is given by
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f
YkWN

� .y/ D NŠ

.k � 1/Š.N � k/Šf�.y/F
k�1
� .y/.1 � F�.y//

N�k; y 2 R:

Given a prior density function �a, the predictive density function of YkWN , given
XR D x, is defined via

fk.yjx/ D
Z
f
YkWN

� .y/��a .�/d�; y 2 R;

where ��a denotes the posterior density function.
Apparently, Bayesian prediction of future order statistics from an exponential

distribution has not been considered. For completeness, we present the results which
are easy to derive. Using the gamma prior given in (15.3), the posterior density
function (16.20) with j D m results as in the one-sample prediction problem with
tm DPm

iD1 �i .xi � xi�1/, x0 D 0. Then, the density function of YkWN is given by

f
YkWN
# .y/ D k

 
N

k

!
1

#
e�.N�kC1/y=#

�
1 � e�y=#

�k�1
; y > 0;

leading to the predictive density function

fk.yjx/ D k
 
N

k

!
k�1X
jD0

.�1/j
 
k � 1
j

!
.mC a/.tm C b/mCa

.tm C b C .N � k C j C 1/y/mCaC1 :

SupposingmC a > 1, we get for squared-error loss the Bayes predictor of YkWN as

b�BA.XR/ D
h
k

 
N

k

!
k�1X
jD0

.�1/j
 
k � 1
j

!
.N � k C j C 1/�2

ib#B;

whereb#B is the Bayes estimator of # [see (15.6)]. Prediction of k-records based on
a progressively Type-II censored sample has been discussed by Ahmadi et al. [17].

Bayesian prediction issues of future order statistics for Rayleigh distributions
have been addressed by Ali Mousa and Al-Sagheer [35], Wu et al. [915], and
Kim and Han [529]. Assuming the prior in (15.8) (see Sect. 15.2), Wu et al. [915]
obtained the Bayesian point predictor of YkWN as

b�BA.XR/ D
h
k

 
N

k

!r
�

2

k�1X
jD0

.�1/j
 
k�1
j

!
.N�kCjC1/�3=2

ib#B; (16.21)

where b#B D TmCb
mCa�1 denotes the Bayes estimator of # given in (15.9). The

derivations are similar to those for the exponential distribution and therefore
omitted. Kim and Han [529] obtained the same expression of the Bayes predictor
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as in (16.21) when the sample is generally progressively Type-II censored. But,
the Bayes estimator b#B exhibits a much more complicated representation. Ali
Mousa and Al-Sagheer [35] considered Bayesian interval prediction for a future
progressively Type-II censored order statistic using a different prior. Fernández
[367] discussed Bayes prediction based on a multiply censored sample of order
statistics.

Remark 16.3.2. Bayesian prediction issues have also been addressed for other
distributions. Ali Mousa [34] and Ali Mousa and Jaheen [37] discussed prediction
intervals for Pareto distributions and Burr distributions, respectively [see also
Mohie El-Din and Shafay [652] in terms of the family (15.7)].



Chapter 17
Statistical Intervals for Progressively Type-II
Censored Data

Though considerable attention is usually paid to point estimation, in many practical
situations an experimenter may also require uncertainty information such as those
conveyed by confidence intervals, tolerance intervals, or prediction intervals for
the life characteristics of interest. The primary motivation in constructing confidence
intervals is that they provide a range of plausible values for the life parameter of
interest based on the observed progressively censored data at a required level of
confidence. The practical relevance of confidence intervals and their construction
has been well demonstrated by Hahn and Meeker [426].

In Sects. 17.1 and 17.2, we discuss the derivation of exact (conditional) con-
fidence intervals for distribution parameters, quantiles, and reliability. We present
parametric and nonparametric approaches. Additionally, asymptotic confidence
intervals are sketched in Sect. 17.3. Finally, this section is supplemented by results
on prediction intervals (Sect. 17.4) and tolerance intervals (Sect. 17.5).

17.1 Exact Confidence Intervals

In this section, we present exact confidence intervals for various parametric families
of distributions as well as a nonparametric approach. The results include confidence
intervals for distribution parameters, quantiles, and other quantities like reliability.

17.1.1 Exponential Distribution

Suppose the progressively Type-II censored order statistics are based on one- or
two-parameter exponential distribution. The construction of confidence intervals for
the distribution parameters is based on the results presented in Theorems 12.1.1
and 12.1.4.

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 17,
© Springer Science+Business Media New York 2014

379
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Corollary 17.1.1. Let ˛ 2 .0; 1/ and let �2ˇ.k/ and Fˇ.2; k/ denote the ˇ-

quantiles of a �2- and F-distribution with the corresponding degrees of freedom,

respectively. Moreover, let b#�LU D 1
m

Pm
jD1.Rj C 1/.Zj WmWn��/ be the BLUE of

# in the scale model and

b�LU D Z1WmWn; b#LU D 1

m � 1
mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/

be the BLUEs of � and # in the location–scale model.
Then, two-sided .1 � ˛/ confidence intervals for # are given by

(i)

�
2mb#�LU

�21�˛=2.2m/
;
2mb#�LU
�2˛=2.2m/

�
,

(ii)

�
.2m�2/b#LU

�21�˛=2.2m�2/
;
.2m�2/b#LU

�2˛=2.2m�2/

�
.

A two-sided .1 � ˛/ confidence interval for � is given by

(iii)
h
b�LU � 2F1�˛.2; 2m � 2/b#LU

n
;b�LU

i
.

One-sided confidence intervals may be constructed similarly.

Proof. (i) The result follows directly from Theorem 12.1.1 because 2m
#
b#�LU �

�2.2m/.
(ii) For a � .#;m � 1/-distributed random variable U , 2U

#
� �2.2.m� 1//. Thus,

2.m�1/b#LU

#
� �2.2.m� 1//. Hence, we find for # > 0,

P#

 
# 2

"
2.m� 1/b#LU

�21�˛=2.2.m� 1//
;
2.m� 1/b#LU

�2˛=2.2.m� 1//

#!

D P#
 
�2˛=2.2.m� 1// �

2.m� 1/b#LU

#
� �21�˛=2.2.m� 1//

!
D 1 � ˛:

(iii) From b�LU��
#=n

� Exp.1/ D �2.2/, we obtain for

U D b�LU � �
#=n

and V D 2.m� 1/b#LU

#

that U � �2.2/, V � �2.2.m � 1//, and U; V are independent by
Theorem 12.1.4. Therefore,

n.b�LU � �/
2b#LU

D
1
2
U
1

2.m�1/V
� F.2; 2.m� 1//:
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This implies, for � 2 R, that

P�

 
� 2

"
b�LU � 2F1�˛.2; 2.m� 1//

b#LU

n
;b�LU

#!

D P�
 
0 � n.b�LU � �/

2b#LU

� F1�˛.2; 2.m� 1//
!
D 1 � ˛;

which proves the assertion (see also Remark 12.1.5). ut

Remark 17.1.2. Under general progressive censoring, Balakrishnan and Lin
[110] utilized an algorithm of Huffer and Lin [466] to compute exact confidence
intervals for the scale parameter # . The approach is based on the representation
of the BLUEs as a linear function of the spacings. From (11.8) and (2.13), it is
obvious that the BLUEs can be written in such a way.

Simultaneous confidence regions for � and # in the location–scale model have
been obtained by Wu [909] following the ideas of Wu [904]. Wu [909] proposed
two approaches to construct joint confidence regions. The constructions are based
on the independence of the quantities

2n
b�LU � �

#
� �2.2/; 2.m� 1/

#
b#LU � �2.2.m� 1//;

and

n
b�LU � �
b#LU

� F.2; 2m � 2/; 2

#

�
mb#�LU � n�

�
� �2.2m/:

Theorem 17.1.3 (Wu [909]). Let ˛ 2 .0; 1/ and �2ˇ.k/ and Fˇ.2; 2k/ denote

the ˇ-quantiles of a �2- and F-distribution with the corresponding degrees of
freedom, respectively. Then, the following statistical intervals are joint confidence
regions for � and # . Moreover, let ˛� D .1 � p1 � ˛/=2 and ˛C D .1 Cp
1 � ˛/=2:

(i) K1 D
n
.�; #/

ˇ̌
ˇb�LU � �2˛

C
.2/

2n
# < � < b�LU � �2˛� .2/

2n
#;

2.m�1/
�2˛
C
.2m�2/b#LU < # <

2.m�1/
�2˛� .2m�2/

b#LU

o
,

(ii) K2 D
n
.�; #/

ˇ̌
ˇb�LU � F˛

C
.2;2m�2/
n

b#LU < � < b�LU � F˛� .2;2m�2/
n

b#LU;

2
mb#�LU�n�
�2˛
C
.2m/

< # < 2
mb#�LU�n�
�2˛� .2m/

o
,

where b#�LU D 1
m

Pm
jD1.Rj C 1/Zj WmWn.
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0

1

0 1 2 3 #

� K1

0

1

0 1 2 3 #

� K2

Fig. 17.1 Joint confidence regions K1 and K2 from Example 17.1.4

1:013 1:034 1:109 1:266 1:509 1:533 1:563

1:929 1:965 2:061 2:344 2:546 2:626

Table 17.1 Progressively Type-II censored data generated by Wu [909] from a sample of duration
of remission of n D 20 leukemia patients

Example 17.1.4. Wu [909] applied the above joint confidence regions to data
taken from Lawless [574]. The data set of duration of remission of n D 20

leukemia patients treated by one drug has been progressively Type-II censored
by the censoring scheme R D .1; 1; 0�10; 5/ leading to the censored data
(measurements are in years) given in Table 17.1 of m D 13 observations.

The BLUEs in the two-parameter exponential model are given byb�LU D 1:013
and b#LU D 1:45125. Using the above methods, Wu [909] computed the following
simultaneous 95 % confidence regions:

(i) K1 D
n
.�; #/

ˇ̌
ˇ 1:013� 0:2185# � � � 1:013� 0:0006#; 0:8278 � # � 3:1038

o
,

(ii) K2 D
n
.�; #/

ˇ̌
ˇ 0:6305 � � � 1:0121; 1:5946 � 0:8946� � # � 5:6638� 3:1776�

o
.

Both confidence regions are depicted in Fig. 17.1. The regions K1 and K2 have
an area of 0:9746 and 0:9254, respectively. Wu [909] conducted a simulation
study revealing that the second confidence region covers a smaller area than the
first one.

Remark 17.1.5. The multi-sample case has been discussed in Balakrishnan
et al. [130] [see also (12.8)]. In this case, similar confidence intervals have
been established using the fact that the MLEs of � and # are independent
(see Cramer and Kamps [299]). Moreover, the estimates have an exponential
and �2-distribution, respectively. Details can be found in Balakrishnan et al.
[130].

From the above results, we can construct confidence intervals for quantiles of
the exponential distribution. The quantile function of a two-parameter exponential
distribution is given by F .t/ D � � # log.1 � t/, t 2 .0; 1/. Hence, we can
estimate the quantile �p , p 2 .0; 1/, by the estimates

b��p D �b#�LU log.1 � p/; b�p D b�LU �b#LU log.1 � p/
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if either � D 0 or � is unknown, respectively.
From Theorem 12.1.1, we know that the BLUE b#�LU has a Γ.#=m;m/-

distribution. Therefore, b��p is also gamma distributed but with parameters
�# log.1 � p/=m and m. From Corollary 17.1.1, we get the .1 � ˛/ confidence

interval

�
2mb��p

�21�˛=2.2m/
;

2mb��p
�2˛=2.2m/

�
for �p . In the location–scale model, a two-sided

confidence interval can be obtained via the construction
h
b�LU � c�b#LU log.1 � p/ � �p � b�LU � cCb#LU log.1 � p/

i
: (17.1)

Straightforward calculations lead to the equivalent relation

n

2
cC �

1
2
U C n

2
log.1 � p/
1

2m�2V
� n

2
c�;

where U D n.b�LU � �/=# � Exp.1/ D �2.2/ and V D 2.m � 1/b#LU=# �
�2.2m � 2/ are independent random variables. To compute the bounds, we have to
calculate the distribution of this ratio.

Remark 17.1.6. The calculation of the distribution of the ratio Q D
1
2 UC n

2 log.1�p/
1

2m�2 V
is closely related to calculating the OC curve given in (22.3)

(see also Remark 22.5.2). This can be seen from its survival function which can
be written as

P.Q > k/ D P
�
U � k

m � 1V > �n log.1 � p/
�
:

In the same spirit, we can calculate exact confidence intervals for the reliability
at a mission time t0. In the scale model, it is easy to see from Corollary 17.1.1 that

c D exp


� t0�

2
1�˛.2m/
2mb#�LU

�
(17.2)

is a lower confidence limit for R.t0/ at a confidence level 1 � ˛. In the location–
scale case, the situation is more involved. The MLE for the reliability R.t0/ D
exp

˚�.t0��/=#
�

is given bybR.t0/ D exp
˚�.t0�b�/=b#

�
provided that t0 � b�. This

problem can be traced back to confidence intervals for a certain quantile. Suppose
we are interested in an upper confidence interval for R.t0/. Then, for a statistic
� D �.XR/,

R.t0/ � � ” � � # log.�/ � t0 ” �1�� � t0:
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Recalling the construction in (17.1), this tells us that Œ�; 1� is an upper confidence
interval for R.t0/ if t0 is a lower confidence limit for �1�� . Hence, � is determined
as the solution of the equationb�1��.x/ D t0 for a given sample x.

Example 17.1.7. Using the results given in Example 12.1.6, the estimate of the
reliability at t0 D 2 is given by bR.2/ D 0:8024 in the scale model. Then, (17.2)
provides an upper 95 % confidence interval for R.2/, i.e., Œ0:6965; 1�.

17.1.2 Weibull Distribution

Wu [904] has obtained confidence intervals for the scale and shape parameters
of a Weibull.#; ˇ/-distribution based on progressively Type-II censored data. The
construction is based on the idea that progressively Type-II censored order statistics
X1WmWn; : : : ; XmWmWn from such a Weibull distribution can be expressed in terms
of exponential progressively Type-II censored order statistics Z1WmWn; : : : ; ZmWmWn.
Namely, we have

.Xj WmWn/1�j�m
dD
�
Z
1=ˇ
j WmWn

�
1�j�m: (17.3)

From the independence of spacings in the exponential case [see (2.9)], we conclude
that

Z1 D n

#
X
ˇ
1WmWn; Zj D �j

#
.X

ˇ
j WmWn � Xˇ

j�1WmWn/; 2 � j � m; (17.4)

are IID standard exponential random variables. Moreover, this shows that V D
2 n
#
X
ˇ
1WmWn � �2.2/ and

U D 2
mX
jD2

Zj D 2

#

mX
jD2

.Rj C 1/.Xˇ
j WmWn � Xˇ

1WmWn/ � �2.2.m� 1// (17.5)

are independent random variables. Hence, T1 D U=Œ.m � 1/V � � F.2.m � 1/; 2/.
Wu [904] established the confidence interval for ˇ using that, for 1 < t2 � � � � � tm,
the function

 W .0;1/ �! .0;1/; ˇ 7!  .ˇ/ D 1

n.m � 1/
mX
jD2

.Rj C 1/.tˇi � 1/

is strictly increasing with limˇ!0  .ˇ/ D 0 and limˇ!1  .ˇ/ D 1. This shows
that the equation  .ˇ/ D x has a unique solution in ˇ for any x > 0.

Theorem 17.1.8 (Wu [904]). Let ˛ 2 .0; 1/ and XR D .X1WmWn; : : : ; XmWmWn/
be a sample of progressively Type-II censored order statistics from a two-
parameter Weibull distribution Weibull.#; ˇ/. Then, a .1�˛/ confidence interval
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for ˇ is given by

K D
h
 �.XR;F˛=2.2.m� 1/; 2//;  �.XR;F1�˛=2.2.m� 1/; 2//

i
;

where  �.XR; !/ is the unique solution for ˇ of the equation

mX
jD2

.Rj C 1/
�Xj WmWn
X1WmWn

�ˇ D �2 C n.m � 1/!: (17.6)

Proof. First, notice that (17.6) is equivalent to the equation  .ˇ/ D ! with tj
replaced by Xj WmWn=X1WmWn. Hence, we have a unique solution in ˇ for any ! > 0.
Therefore, the condition ˇ 2 K is equivalent to

F1�˛=2.2.m� 1/; 2/ �  .ˇ/ � F˛=2.2.m� 1/; 2/:
Since  .ˇ/ D T1 � F.2.m� 1/; 2/, the assertion is proved. ut

Recently, Wang et al. [890] have established a confidence interval for ˇ via a
different approach. Using (17.4), they considered the partial sums Si D Pi

jD1 Zj ,
1 � i � m, and the ratios Si=Sm, 1 � i � m � 1. These ratios are distributed as
uniform order statistics from a sample of size m � 1 so that the pivotal quantity

�.XR; ˇ/ D �2
m�1X
jD1

log.Sj =Sm/

D 2
m�1X
jD1

log

 Pm
iD1.Ri C 1/Xˇ

i WmWnPj�1
iD1 .Ri C 1/Xˇ

i WmWnC �jXˇ
j WmWn

!

has a �2-distribution with 2.m � 1/ degrees of freedom. Moreover, it is free of the
scale parameter # . Wang et al. [890] showed that �.x; ˇ/ is strictly increasing in ˇ
for any x > 0. Additionally, limˇ!0 �.XR; ˇ/ D 0 and limˇ!1 �.XR; ˇ/ D 1 for
0 < x1 < � � � < xm. Hence, the equation �.x; ˇ/ D t has a unique solution for any
t > 0. This yields the following result.

Theorem 17.1.9 (Wang et al. [890]). Let ˛ 2 .0; 1/ and XR D .X1WmWn; : : : ,
XmWmWn/ be a sample of progressively Type-II censored order statistics from a two-
parameter Weibull.#; ˇ/-distribution. Then, a .1 � ˛/ confidence interval for ˇ
is given by

K D
h
��1.XR; �2˛=2.2.m� 1///; ��1.XR; �21�˛=2.2.m� 1///

i
;

where ��1.XR; !/ is the unique solution for ˇ of the equation �.XR; ˇ/ D !

with ! > 0.
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Example 17.1.10. The above confidence intervals are computed for Nelson’s
progressively Type-II censored data 1.1.5. Using the approach of Wu [904], the
95 % confidence interval .0:3242; 1:7692/ for ˇ results. Wang et al. [890] obtained
the 95 % confidence interval .0:3909; 1:4872/. Notice that it is included in the
interval of Wu [904] so that it provides a shorter interval in the given situation.

Remark 17.1.11. In general, the confidence intervals proposed by Wu [904] and
Wang et al. [890] need not be subsets. For instance, replacing the largest observa-
tion 7:35 in Nelson’s progressively Type-II censored data used in Example 17.1.10
by 73:5, the estimates Œ0:2364; 1:1304� (Wu) and Œ0:2025; 0:6844� (Wang et al.)
result.

Using the substitution method of Weerahandi [894, 895], Wang et al. [890]
proposed generalized confidence intervals for, e.g., the scale parameter # and
quantiles �p . Writing T .ˇ/ D Pm

jD1.Rj C 1/Xˇ
i WmWn, it follows that V D 2Sm D

2
#
T .ˇ/ has a �2.2m/-distribution. On the other hand, # D 2T .ˇ/=V . Following

the construction of generalized confidence intervals, Wang et al. [890] make use of
the generalized pivotal quantity

Yt D 2Sm

2
Pm

jD1.Rj C 1/x�
�1.x;t /
j

;

where x D .x1; : : : ; xm/ is the given data and t 2 .0; 1/. ��1.x; t/ is the solution
of the equation �.x; ˇ/ D t for the observed data. Conditionally on XR D x, the
distribution of Yt � # and the distribution of Yt are free of any unknown parameter.
For ˛ 2 .0; 1/, the bounds Y˛ and Y1�˛ form a generalized confidence interval.
These bounds can be determined by Monte Carlo simulations. A similar approach
can be used to estimate the mean, a quantile �p , and the reliability function at a given
point.

The following theorem provides a simultaneous confidence region for the
distribution parameters.

Theorem 17.1.12 (Wu [904]). Let ˛ 2 .0; 1/ and �2ˇ.k/ and Fˇ.k; 2/ denote

the ˇ-quantiles of a �2- and F-distribution with the corresponding degrees of
freedom, respectively. Then, the following statistical interval is a joint confidence
region for ˇ and # . Moreover, let ˛� D .1 � p1 � ˛/=2 and ˛C D .1 Cp
1 � ˛/=2:

K D
n
.ˇ; #/

ˇ̌
ˇ �.XR;F˛�.2.m� 1/; 2// � ˇ �  �.XR;F˛C.2.m� 1/; 2//;

2
Pm

jD1.Rj C 1/Xˇ
j WmWn

�2˛C.2m/
� # � 2

Pm
jD1.Rj C 1/Xˇ

j WmWn
�2˛� .2m/

o
; (17.7)

where  �.XR; !/ is the unique solution for ˇ of the Eq. (17.6).
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Proof. From the representation in (17.5), we get that T2 D UCV D 2
#

Pm
jD1.RjC

1/X
ˇ
j WmWn has a �2-distribution with 2m degrees of freedom. Moreover, from Johnson

et al. [483, pp. 350], we conclude that T2 is independent of the ratio T1 D U
.m�1/V �

F.2.m� 1/; 2/. This implies that

P
�

F˛�.2.m� 1/; 2// � T1 � F˛C.2.m� 1/; 2/
�
D p1 � ˛;

P
�
�2˛�.2m/ � T2 � �2˛C.2m/

�
D p1 � ˛:

Using the independence of T1 and T2, we can multiply these probabilities to arrive at

1 � ˛ D P
�

F˛�.2.m� 1/; 2// � T1 � F˛C.2.m� 1/; 2/;

�2˛�.2m/ � T2 � �2˛C.2m/
�

D P
	
 �.XR;F˛�.2.m � 1/; 2// � ˇ �  �.XR;F˛C.2.m� 1/; 2//;

2
Pm

jD1.Rj C 1/Xˇ
j WmWn

�2˛C.2m/
� # � 2

Pm
jD1.Rj C 1/Xˇ

j WmWn
�2˛�.2m/



:

This completes the proof. ut
Example 17.1.13. For Nelson’s progressively Type-II censored data 1.1.5, we
get the joint confidence region

K D
n
.ˇ; #/

ˇ̌
ˇ 0:2807 � ˇ � 1:9648;

2
Pm

jD1.Rj C 1/xˇj
31:2070

< # <
2
Pm

jD1.Rj C 1/xˇj
6:0684

o
:

The resulting set is depicted in Fig. 17.2. Notice that the shape of the area is
different from that given in Wu [904]. This is due to a different parametrization
of the Weibull distribution. Wu [904] has used the parametrization #ˇ. This leads
to very huge bounds for #ˇ when ˇ is small. In order to represent the region in
graphic form, Wu [904] suggested a logarithmic scaling of the #-axis. This is not
necessary in our setting.

Remark 17.1.14. Mann [634] has addressed exact interval estimation for a
distribution quantile tR, where R denotes a specified survival proportion. In
particular, she was interested in determining a lower confidence bound for the
reliability R.t0/ for a given time t0. Assuming a Weibull.#1=ˇ; 1=ˇ/-distribution,
she proposed a lower bound which depends on three progressively Type-II
censored order statistics Y�WmWn D logX�WmWn, YpWmWn D logXpWmWn; YqWmWn D
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Fig. 17.2 Joint confidence region K for .ˇ; #/ from Example 17.1.13.

logXqWmWn, 1 � � � m, 1 � p < q � m. The result is based on the derivation of
the exact distribution of the ratio

V�;p;q D log.� logR/� Y ��WmWn
Y �qWmWn � Y �pWmWn

;

where Y �kWmWn D .YkWmWn � log#/=ˇ.

17.1.3 Pareto Distribution

Exact joint confidence intervals for the parameters of two-parameter Pareto distri-
butions with cumulative distribution function

F.t I�; ˇ/ D 1 �
�ˇ
t

�1=#
; t � ˇ; (17.8)

are discussed in Kuş and Kaya [566], Parsi et al. [712], Wu [908], and Fernández
[368]. Let T D 1

n

Pm
jD1.Rj C 1/ log.Xj WmWn=X1WmWn/. Using arguments similar to

the Weibull case [see (17.3)], i.e., that

Zj WmWn D 1

#
log.Xj WmWn=ˇ/; 1 � j � m;

are exponential progressively Type-II censored order statistics, Kuş and Kaya [566]
obtained the joint .1 � ˛/ confidence set for ˇ and # as

K D
n
.ˇ; #/

ˇ̌
ˇ

X1WmWn exp


� T

.m � 1/Fp1�˛.2.m� 1/; 2/
�
� ˇ � X1WmWn;
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2n
T � log.ˇ=X1WmWn/

�2˛C.2m/
� # � 2nT � log.ˇ=X1WmWn/

�2˛�.2m/

o
;

where ˛� D .1 � p1 � ˛/=2 and ˛C D .1 C p1 � ˛/=2. Parsi et al. [712]
established a similar confidence region where the ˇ-part is identical, but the #-part
is not constructed symmetrically. They used levels ˛�1 and ˛�2 with

˛�1 C ˛�2 D 1 �
p
1 � ˛ (17.9)

such that �2
1�˛�1 .2m/ � �

2
˛�2
.2m/ has minimum width. They found a confidence

region for .ˇ; 1=#/ that always covers a smaller area than that proposed by Kuş and
Kaya [566]. Here, for fixed ˇ, the width of the confidence region in direction of #
are proportional to the difference

`ˇ D 2n
�

1

�2
˛�
.2m/

� 1

�2
˛�Cp1�˛.2m/

��
T � log.ˇ=X1WmWn/

�
;

where ˛� D 1�˛�1 and ˛�2 D ˛�C
p
1 � ˛ from (17.9). The same comment applies

to the coverage area which can be written in our parametrization as

A D 2n
�

1

�2˛� .2m/
� 1

�2
˛�Cp1�˛.2m/

� Z x1

x1e�q
ŒT � log.ˇ=x1/�dˇ

D 2n
�

1

�2˛� .2m/
� 1

�2
˛�Cp1�˛.2m/

�
x1

h
T � .T C q/e�q

i
;

where q D T=Œ.m � 1/Fp1�˛.2.m � 1/; 2/� and ˛� 2 Œ0; 1 �p1 � ˛�. Therefore,
we look for ˛� such that

�.˛�Im;˛/ D 1

�2˛� .2m/
� 1

�2
˛�Cp1�˛.2m/

(17.10)

is minimal for ˛� 2 Œ0; 1�p1 � ˛�. A plot of�.�I 5; 0:05/ is depicted in Fig. 17.3.
The minimum is attained for ˛� D 0:02445 leading to 1 � ˛�1 D 0:0245 and ˛�2 D
0:9991 and �.˛�I 5; 0:05/ D 0:2764. Using ˛C and ˛�, the corresponding values
are ˛� D 0:0127 and ˛C D 0:9873 and �.˛�I 5; 0:05/ D 0:3238. Therefore, the
minimal choice of the ˛� yields a 15 % smaller coverage area than the proposal by
Kuş and Kaya [566]. A similar argument applies to the confidence region (17.7)
obtained for the Weibull distribution.

The cumulative distribution function (17.8) is covered by the approach of Wang
et al. [890] [see (17.11)] with h.t Iˇ/ D log.t=ˇ/. Therefore, a .1 � ˛/ confidence
interval for ˇ can be directly obtained as in Theorem 17.1.9 using (17.12) with
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Fig. 17.3 Plot of �.�I 5; 0:05/ as in (17.10) in the interval Œ0; 1�p0:95� D Œ0; 0:0253�

�.XR; ˇ/ D 2
m�1X
jD1

log

 Pm
iD1.Ri C 1/ log.Xi WmWn=ˇ/Pj�1

iD1 .Ri C 1/ log.Xi WmWn=ˇ/C �j log.Xj WmWn=ˇ/

!
:

Notice that the ratio log.a=ˇ/= log.b=ˇ/, a > b, is decreasing in ˇ so that
the bounds of the confidence interval have to be reversed [see Sect. 17.1.4 and
comments after (17.12)].

Remark 17.1.15 (Doubly). Type-II right censored samples have been discussed
in Chen [247], Wu [907], and, more recently, Zhang [939] who has provided
simplified versions of the confidence intervals.

Recently, Fernández [368] established a generalization of those confidence
regions proposed by Chen [247] using Pareto order statistics. He showed that the
versions of Kuş and Kaya [566] and Parsi et al. [712] for progressively censored data
are contained as special cases in his construction. A similar generalization has been
obtained for the confidence region obtained in Wu [908]. Furthermore, smallest area
confidence regions for Pareto parameters are presented in Fernández [368]. Using
the fiducial argument due to Fisher [372, 374], the optimal joint confidence region
w.r.t. smallest area has been derived and a simple regula falsi procedure is used
to compute the optimal confidence region. The results have been illustrated by a
progressively Type-II censored sample given in Table 17.2 which were generated
from data reported in Wu et al. [918]. Fernández [368] pointed out that the covered
area is reduced significantly by using the smallest area confidence regions.
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i 1 2 3 4 5 6 7 8

xiW8W20 0:0098 0:0376 0:0661 0:0849 0:1112 0:1447 0:1904 0:2463

Table 17.2 Progressively Type-II censored sample as reported in Fernández [368] with censoring
scheme R D .1; 0; 2; 0; 3; 2; 0; 4/

17.1.4 Other Parametric Distributions

Wang et al. [890] obtained confidence intervals for a distribution parameter by
a method similar to that used in the Weibull case (see Theorem 17.1.9). They
considered exponentiated distributions with cumulative distribution function

F.t I�; ˇ/ D 1 � .1 �G.t I�//ˇ; t 2 R; (17.11)

where G.�I�/ has only the parameter �. For instance, assuming that G.�I�/ can be
written as

G.t I�/ D 1 � e�h.t I�/; t 2 R;

with an increasing function h.�I�/, confidence intervals can be established provided
that h.bI�/=h.aI�/, b > a, is either strictly increasing or decreasing in �. Exam-
ples of such distributions discussed in Wang et al. [890] are Gompertz distribution,
i.e., h.t I�/ D e�t � 1, or Lomax distribution, i.e., h.t I�/ D � log.1C�t/. In these
cases, we get the same result as in Theorem 17.1.9, where

�.XR; �/ D 2
m�1X
jD1

log

 Pm
iD1.Ri C 1/h.Xi WmWnI�/Pj�1

iD1 .Ri C 1/h.Xi WmWnI�/C �j h.Xj WmWnI�/

!
: (17.12)

Notice that the bounds have to be reversed when the ratio h.bI�/=h.aI�/, b > a,
is decreasing. This happens for the Lomax distribution. The case of Gompertz
distribution [see (12.42)] has also been addressed in Wu et al. [914]. A bathtub-
shaped lifetime distribution belonging to this family with cumulative distribution
function F in (12.43) has recently been discussed by Wu [906] and Wu et al.
[923]. In the latter, several proposals for the confidence regions are compared in
a simulation study w.r.t. the criteria of highest power, minimum confidence width,
and the minimum confidence region. Similar results for Burr XII are provided in
Wu et al. [922].

Wang [883] considered a scale family of scaled half-logistic distributions. He
established an exact confidence interval

h
��1

�
�21�˛=2.2m/

�
; ��1

�
�2˛=2.2m/

�i
;

where ��1.!/ is the unique solution of the equation �.XR; t/ D !, t > 0. �.XR; �/
is defined by
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�.XR; t/ D 2
mX
jD1

.Rj C 1/ log
�
1C eXj WmWn=t

� � 2n log.2/; t > 0:

This approach has been applied to a scale family of distributions including Weibull,
log-logistic, and gamma distributions by Wang [885] for general progressively
censored data. Nigm and Abo-Eleneen [692] established an exact confidence
interval for the shape parameter of an inverse Weibull distribution by adapting the
approach of Wu [904].

17.1.5 Nonparametric Confidence Intervals for Quantiles

Exact confidence intervals for parametric models are widely used. They are
preferable when a parametric model is appropriate. If such model assumptions
are questionable, a nonparametric approach can be considered. We now present
nonparametric confidence intervals for quantiles based on a progressively Type-II
censored sample X1WmWn; : : : ; XmWmWn. This issue was first addressed by Guilbaud
[418] who transfers an idea well known in nonparametric inference for population
quantiles to progressive censoring. This approach is explained in detail in Arnold
et al. [58, pp. 183–184] and David and Nagaraja [327, Sect. 7.1]. The crucial idea
is to use the quantile representation of the order statistics in terms of uniform
order statistics. In fact, for a sample X1Wn; : : : ; XnWn, the coverage probability of a
confidence interval ŒXkWn; X`Wn�, with 1 � k < ` � n for �p , p 2 .0; 1/, is given by

P.XkWn � �p � X`Wn/ D P.F .UkWn/ � F .p/ � F .U`Wn//

D P.UkWn � p � U`Wn/ D
`�1X
iDk

 
n

i

!
pi .1 � p/n�i :

This observation dates back to Thompson [844]. For a progressively Type-II
censored sample, an analogous construction can be made as it was observed first
by Guilbaud [418]. To compute the coverage probability P.XkWmWn � �p � X`WmWn/,
he made use of the mixture representation of progressively Type-II censored order
statistics in terms of order statistics (see Sect. 10.1 as well as Thomas and Wilson
[843] and Fischer et al. [371]). However, as pointed out in Balakrishnan et al. [144],
this approach is not recommended for computational purposes. Moreover, using
the quantile representation of progressively Type-II censored order statistics given
in Theorem 2.1.1, the necessary coverage probabilities can be easily calculated.
Given a progressively Type-II censored sample X1WmWn; : : : ; XmWmWn, the coverage
probability of a one-sided confidence interval .�1; X`WmWn� considered in Guilbaud
[418] can be directly calculated using the explicit expression for the cumulative
distribution function of X`WmWn as established by Kamps and Cramer [503] [see also
(2.25)]:

P.�p < X`WmWn/ D P.p < U`WmWn/ D 1 � FU`WmWn .p/ (17.13)



17.1 Exact Confidence Intervals 393

`

p 1 2 3 4 5 6 7 8

0:1 0:1351 0:4203 0:7054 0:9006 0:9746 0:9962 0:9996 1:0000

0:2 0:0144 0:0829 0:2369 0:5003 0:7377 0:9114 0:9775 0:9957

0:3 0:0011 0:0104 0:0462 0:1663 0:3641 0:6492 0:8514 0:9523

0:4 0:0001 0:0008 0:0055 0:0343 0:1139 0:3280 0:5881 0:8028

0:5 0:0000 0:0000 0:0004 0:0042 0:0218 0:1120 0:2960 0:5399

0:6 0:0000 0:0000 0:0000 0:0003 0:0023 0:0241 0:0998 0:2618

0:7 0:0000 0:0000 0:0000 0:0000 0:0001 0:0028 0:0194 0:0792

0:8 0:0000 0:0000 0:0000 0:0000 0:0000 0:0001 0:0015 0:0109

0:9 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0003

Table 17.3 Coverage probabilities of one-sided confidence intervals .�1; X`WmWn� for �p
computed from (17.13) with censoring scheme R D .0�2; 3; 0; 3; 0�2; 5/. Values for p 2
f0:1; 0:2; 0:3; 0:4; 0:5g can also be found in Guilbaud [418, Table 1]

D
� Ỳ
iD1

�i

�X̀
jD1

1

�j
aj;`.1 � p/�j ; p 2 .0; 1/:

This formula yields quite an efficient method to compute coverage probabilities for
several confidence intervals.

Example 17.1.16. We apply the method to Nelson’s insulating fluid data 1.1.4
considered in Guilbaud [418]. A selection of coverage probabilities for the
particular censoring scheme R D .0�2; 3; 0; 3; 0�2; 5/ is presented in Table 17.3.
The values show that the maximum coverage probability of a lower nonparametric
confidence interval .�1; X`WmWn� is given by 0:5399. The corresponding interval
is .�1; X8W8W19�.

As mentioned above, the coverage probabilities may not yield a desired confi-
dence level. In order to overcome this problem, Balakrishnan et al. [144] studied
the problem of adding a second independent sample to increase the coverage
probabilities. Suppose X1Wr Wn; : : : ; Xr Wr Wn and Y1WsWm; : : : ; YsWsWm are two independent
progressively Type-II censored samples from a population cumulative distribution
function F with censoring schemes R D .R1; : : : ; Rr/ and S D .S1; : : : ; Ss/,
respectively. Without loss of any generality, let r � s. Then, the two samples are
pooled and ordered leading to the ordered pooled sample

W �.1/ � � � � � W �.rCs/: (17.14)

Since the quantile functionF preserves ordering, it is clear that the ordered pooled
sample exhibits the property

.W �.1/; : : : ;W �.rCs//
dD �F .W.1//; : : : ; F

 .W.rCs//
�
;
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where W.1/; : : : ;W.rCs/ is constructed by analogy but based on two samples from
the uniform distributions. Hence, it follows that, for the calculation of the coverage
probabilities, we can restrict ourselves to a uniform distribution.

Naturally, confidence intervals for a quantile �p of the population cumulative
distribution function F are constructed by, e.g., .�1;W �.`/�, where the coverage
probability is given by

P.�p � W �.`// D P.p � W.`//:

Therefore, an expression for the latter quantity has to be established. As presented
in Theorem 2.4.1, the i th progressively Type-II censored order statistic Xi Wr Wn
depends only on the right truncated censoring scheme RBi�1 D .R1; : : : ; Ri�1/
and the sample size n. Denoting by GRBi�1

i Wn the cumulative distribution function of
the i th uniform progressively Type-II censored order statistic, Balakrishnan et al.
[144] established the following expressions for the marginal cumulative distribution
function of W.`/. To condense the notation, we introduce in addition to the notation
used in Theorem 2.4.2 the quantities


j D
sX

iDj
.Si C 1/; 1 � j � s; dj�1 D

jY
iD1


i ; 1 � j � s;

bj;s D
rY
iD1
i 6Dj

1


i � 
j :

Then, the following expressions for the coverage probabilities result.

Theorem 17.1.17. (i) For i D 1; : : : ; s and 0 � p � 1, FW.i/ .p/ equals

iY
`D1

�`

.�` C 
1/G
RBi�1

i WnC
1 .p/C
iY

`D1


`

.
` C �1/G
SBi�1

i WmC�1 .p/

C
i�1X
kD1

di�k�1ck�1

"
i�kC1X
`D1

b`;i�kC1Qk
�D1.�� C 
`/

G
RBk�1

kWnC
` .p/
#

C
i�1X
kD1

ci�k�1dk�1

"
i�kC1X
`D1

a`;i�kC1Qk
�D1.
� C �`/

G
SBk�1

kWmC�` .p/
#
I

(ii) For i D s C 1; : : : ; r and 0 � p � 1, FW.i/ .p/ equals

G
RBi�s�1

i�sWn .p/� ds�1
sX

jD1

bj;s


j
Qi�s
�D1.�� C 
j /

G
RBi�s�1

i�sWnC
j .p/

C
iY

`D1

�`

.�` C 
1/G
RBi�1

i WnC
1 .p/
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C
i�1X

kDi�sC1
di�k�1ck�1

"
i�kC1X
`D1

b`;i�kC1Qk
�D1.�� C 
`/

G
RBk�1

kWnC
` .p/
#

C
sX

kD1
ci�k�1dk�1

"
i�kC1X
`D1

a`;i�kC1Qk
�D1.
� C �`/

G
SBk�1

kWmC�` .p/
#
I

(iii) For i D r C 1; : : : ; r C s and 0 � p � 1, FW.i/ .p/ equals

G
RBi�s�1

i�sWn .p/ � dm�1
sX

jD1

bj;s


j
Qi�s
�D1.�� C 
j /

G
RBi�s�1

i�sWnC
j .p/

C
rX

kDi�sC1
di�k�1ck�1

"
i�kC1X
`D1

b`;i�kC1Qk
�D1.�� C 
`/

G
RBk�1

kWnC
` .p/
#

CGSBi�r�1

i�r Wm .p/ � cn�1
rX

jD1

aj;r

�j
Qi�r
�D1.
� C �j /

G
SBi�r�1

i�r WmC�j .p/

C
sX

kDi�rC1
ci�k�1dk�1

"
i�kC1X
`D1

a`;i�kC1Qk
�D1.
� C �`/

G
SBk�1

kWmC�` .p/
#
:

Remark 17.1.18. The joint distribution of W �.1/; : : : ;W �.rCs/ in (17.14) has been

established in Balakrishnan et al. [154] as a mixture of distributions of certain
progressively Type-II censored order statistics (see also Theorem 17.1.23). In
particular, they found that

.W �.1/; : : : ;W �.rCs//
dD

X
T 2C .R;S /

�T P
.XT

1WrCsWnCm
;:::;XT

rCsWrCsWnCm
/;

where C .R;S / is a set of censoring schemes generated by merging the censoring
schemes R D .R1; : : : ; Rr/ and S D .S1; : : : ; Ss/ such that the order of the
censoring numbers in each scheme is preserved in T . The mixing probability �T

is defined as

�T D
Qr
iD1 �i .R/

Qs
iD1 �i .S /QrCs

iD1 �i .T /
#.T /;

where #.T / is the number of all permutations of R1; : : : ; Rr ; S1; : : : ; Ss leading
to T subject to respecting the order within the censoring plans R and S .

The coverage probabilities of the ordered pooled sample exceed the coverage
probabilities of the one-sample confidence intervals. The exact gain is given in the
following lemma.
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Lemma 17.1.19. Let Fj Wr Wn denote the cumulative distribution function of a
uniform progressively Type-II censored order statistic Uj Wr Wn. Then, the maximum
gains in the coverage probabilities are given by

(i) �u D .1 � p/maxfn;mg.1 � .1 � p/minfn;mg/ > 0,
(ii) �` D minfFr Wr Wn.p/; FsWsWm.p/g.1�maxfFr Wr Wn.p/; FsWsWm.p/g/ > 0,

(iii) �2 D minfFr Wr Wn.p/C .1�p/n; FsWsWm.p/C .1�p/mg�Fr Wr Wn.p/FsWsWm.p/�
.1� p/mCn � �` C�u > 0.

Proof. By construction of the pooled sample, we have the identity W.1/ D
minfX1Wr Wn; Y1WsWmg D minfX1Wn; Y1Wmg. Hence,

P.W.1/ � �p/ D P.minfX1Wn; Y1Wmg � �p/ D 1 � .1 � p/nCm:

On the other hand,W.rCs/ D maxfXr Wr Wn; YsWsWmg so that

P.W.rCs/ � �p/ D P.maxfXr Wr Wn; YsWsWmg � �p/ D Fr Wr Wn.p/FsWsWm.p/:

This yields the second assertion. Combining the previous results, we obtain for the
two-sided interval

�2 D P.W.1/ � �p � W.rCs//

�maxfP.X1Wr Wn � p � Xr Wr Wn/; P.Y1WsWm � p � YsWsWm/g
D 1 � .1 � p/nCm � Fr Wr Wn.p/FsWsWm.p/
�maxf1 � .1 � p/n � Fr Wr Wn.p/; 1 � .1 � p/m � FsWsWm.p/g

D minfFr Wr Wn.p/C .1� p/n; FsWsWm.p/C .1� p/mg
� Fr Wr Wn.p/FsWsWm.p/ � .1 � p/mCn

� minfFr Wr Wn.p/; FsWsWm.p/g Cminf.1� p/n; .1 � p/mg
� Fr Wr Wn.p/FsWsWm.p/ � .1 � p/mCn

D minfFr Wr Wn.p/; FsWsWm.p/g.1 �maxfFr Wr Wn.p/; FsWsWm.p/g/
C .1 � p/maxfm;ng.1� .1 � p/minfm;ng/

D �` C�u > 0:

This proves the assertion. ut
Notice that the gains are directly connected to the maximum coverage probabili-

ties of a two-sample confidence interval which are calculated in the previous proof.
In particular, these quantities are given by

(i) CPu D 1 � .1 � p/nCm,
(ii) CP` D Fr Wr Wn.p/FsWsWm.p/,

(iii) CP2 D 1 � .1 � p/nCm � Fr Wr Wn.p/FsWsWm.p/.
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Additional progressively censored data sample
s D 4;m D 9 s D 5;m D 12 s D 7;m D 15

.S1; : : : ; S4/ .S1; : : : ; S5/ .S1; : : : ; S7/

.0�3; 5/ .0�4; 7/ .0�6; 8/

0:6567 0:6291 0:6796

.3; 0; 1�2/ .2; 0; 2�2; 1/ .0�2; 4; 0�2; 2�2/

0:8609 0:8525 0:8742

.1; 2�2; 0/ .2; 3; 0; 2; 0/ .0; 3; 0; 2�2; 0; 1/

0:9055 0:9361 0:9429

.1; 4; 0�
2
/ .2; 5; 0�3/ .0; 3�2; 0�2; 2; 0/

0:9377 0:9695 0:9705

.5; 0�3/ .7; 0�4/ .8; 0�6/

0:9589 0:9791 0:9950

Table 17.4 Maximum one-sided coverage probabilities for the population median obtained by
adding an independent sample YS

1WsWm; : : : ; Y
S
sWsWm to Nelson’s insulating fluid data 1.1.4. The table

is based on Table 4 in Balakrishnan et al. [144]

It is clear from these calculations that the coverage probability can be increased by
adding more samples. In particular, the coverage probability of a lower confidence
interval in the k-sample situation is given by

CP` D
kY
iD1

Fri Wri Wn.p/:

Since Fri Wri Wn.p/ 2 .0; 1/ for p 2 .0; 1/, any desired confidence level 1 � ˛ can
be ensured by adding more samples. An analogous argument holds for the other
confidence intervals.

Example 17.1.20. Nonparametric confidence intervals for a quantile are con-
structed based on Nelson’s progressively censored insulating fluid data 1.1.5 (see
also Guilbaud [418]). The maximum one-sided confidence interval Œ0; X8W8W19� for
the population median has only a coverage probability of 0:5399 (see Table 17.3).
In Table 17.4, some values of the maximum one-sided coverage probabilities
for the median are presented when Nelson’s data is combined with another
independent progressively Type-II censored sample with censoring scheme S .
It turns out that the censoring plan has a great impact on the total coverage
probability and so it has to be planned carefully when the procedure is carried
out by design.

Another possibility to improve the coverage probability with one sample has
been discussed by Balakrishnan and Han [98]. Noticing that the censoring
plan influences the coverage probability, they have addressed the problem
of determining an optimal censoring design leading to a maximum coverage
probability. Given that m D 8 and n D 19, they found that the censoring
scheme R0:99 D .0; 11; 0�6/ is optimal ensuring a confidence level of 99 % for
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the interval ŒXR0:99

2W8W19; X
R0:99

8W8W19� and an expected minimal width in the uniform case.

For a confidence level of 95 %, they obtained the interval ŒXR0:95

4W8W19; X
R0:95

8W8W19� with
R0:95 D .0�4; 11; 0�3/. Details are provided in Sect. 26.5.2.

Remark 17.1.21. As seen in the preceding example, the coverage probabili-
ties typically differ from prefixed confidence levels. For this reason, different
approaches have been proposed to construct exact or nearly exact confidence
intervals (up to the maximum confidence level in the sample) (see Zieliński
and Zieliński [947] and Hutson [467]). Obviously, these approaches can be
applied to the two-sample case to construct confidence intervals using the sample
W.1/; : : : ;W.rCs/.

An extension to the multi-sample case is presented in Volterman et al. [878].

17.1.6 An Excursus: Two-Sample Nonparametric Confidence
Intervals from Type-II Censored Data

In this section, we address a particular case of the above problem discussed by
Balakrishnan et al. [144] in detail. An extension to the multiple sample case is
presented in Volterman and Balakrishnan [876]. Namely, let X1Wn; : : : ; Xr Wn and
Y1Wm; : : : ; YsWm be independent right censored samples from a uniform distribution
with sample sizes n and m, respectively. Without loss of any generality, let r � s.
As above, denote the ordered pooled sample by

W.1/ � � � � � W.rCs/:

According to Balakrishnan et al. [144], the following probabilities result.

Lemma 17.1.22. (i) �0 D P.YsWm < X1Wn/ D .nCm�sn /
.nCmn /

;

(ii) For i D 1; : : : ; r � 1, we have �i D P.Xi Wn < YsWm < XiC1Wn/ D
.sCi�1s�1 /.

nCm�s�i
n�i /

.nCmn /
;

(iii) ��0 D P.Xr Wn < Y1Wm/ D .nCm�rm /
.nCmm /

;

(iv) For i D 1; : : : ; s � 1, we have ��i D P.Yi Wm < Xr Wn < YiC1Wm/ D
.rCi�1r�1 /.

nCm�r�i
m�i /

.nCmm /
.

Up to some sets of measure zero, these events form a decomposition of the
probability space so that

Pr�1
iD0 �i C

Ps�1
iD0 ��i D 1.

From Theorem 17.1.17, it is clear that the marginal cumulative distribution
functions in the ordered pooled sample can be represented as a mixture of
cumulative distribution functions of usual order statistics using Theorem 10.1.1.
But, it turns out that the connection is much deeper. Namely, the distribution of
the ordered pooled sample is a mixture of progressively Type-II censored order
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statistics. Before presenting this result due to Balakrishnan et al. [144], we introduce

random variables T
Rj

i WrCsWnCm, 1 � i � rCs, 0 � j � r�1, as uniform progressively
Type-II censored order statistics based on the one-step censoring scheme

Rj D .0�sCj�1;m � s; 0�r�j�1; n � r/;

and T
R�j
i WrCsWnCm.1 � i � r C s, 0 � j � s � 1/ as uniform progressively Type-II

censored order statistics based on the censoring scheme

R�j D .0�rCj�1; n � r; 0�s�j�1;m � s/:
Now, Theorem 17.1.23 shows that the distribution of the ordered pooled sample
W.1/; : : : ;W.rCs/ is indeed a mixture of uniform progressively Type-II censored
order statistics with weights given in Lemma 17.1.22. The corresponding censoring
schemes are one-step censoring schemes (with additional right censoring). The
generalization to progressively Type-II censored data due to Balakrishnan et al.
[154] is mentioned in Remark 17.1.18.

Theorem 17.1.23 (Balakrishnan et al. [144]). The joint distribution of the
ordered pooled sample W.1/; : : : ;W.rCs/ is a mixture of uniform progressively
Type-II censored order statistics given by

.W.1/; : : : ;W.rCs//
dD
r�1X
jD0

�jP
.T

Rj

1WrCsWnCm;:::;T
Rj

rCsWrCsWnCm/

C
s�1X
jD0

��j P
.T

R�j

1WrCsWnCm
;:::;T

R�j

rCsWrCsWnCm
/;

where �j and ��j are as given in Lemma 17.1.22.

Proof. Let xk D .x1; : : : ; xk/ 2 R
k . First, the � ’s corresponding to the censoring

schemes Rj and R�j are given by

�`.Rj / D
(
nCm � `C 1; ` D 1; : : : ; s C j
nC s � `C 1; ` D s C j C 1; : : : ; r C s ; j D 0; : : : ; r � 1;

�`.R
�
j / D

(
nCm � `C 1; ` D 1; : : : ; r C j
mC r � `C 1; ` D r C j C 1; : : : ; r C s ; j D 0; : : : ; s � 1:

(17.15)

This yields, for instance, the normalizing constant

rCsY
`D1

�`.Rj / D .nCm/Š.n � j /Š
.nCm � s � j /Š.n � r/Š ; j D 0; : : : ; r � 1:
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It is sufficient to consider the sets fYsWm < X1Wng and fXi Wn < YsWm < XiC1Wng (for
1 � i � r � 1) only, since the remaining cases follow by symmetry arguments. Let
t1 � � � � � trCs , A D f.ys; xr /jy1 � � � � � ys < x1 � � � � � xrg, and

g.ys; xr / D cr�1cs�1
sY

kD1
f .yk/F

m�s
.ys/

rY
`D1

f .x`/F
n�r
.xr /1A.ys; xr /

be the joint density function of the two (independent) samples, given ys < x1. Then,
with B D �rCskD1.�1; tk�, we have

P.W.j / � tj ; 1 � j � r C s; YsWm < X1Wn/ D
Z

B

g.ys; xr /dxrdys

D cs�1cr�1
c.R0/

P.T
R0

j WrCsWnCm � tj ; 1 � j � r C s/

D
�
nCm�s

n

�
�
nCm
n

� P.T
R0

j WrCsWnCm � tj ; 1 � j � r C s/;

where c.R0/ is the normalizing constant corresponding to the joint density function
of progressively Type-II censored order statistics with censoring scheme R0 [see
(17.15)].

Let 1 � i � r � 1, SsCi�1 be the set of permutations of f1; : : : ; s C i � 1g and
S�sCi�1 � SsCi�1 be the set of permutations � with �.1/ < � � � < �.s � 1/
and �.s/ < � � � < �.s C i � 1/. Moreover, let Vk D YkWm (1 � k � s � 1)
and VsCk�1 D XkWn (1 � k � i ). For fXi Wn < YsWm < XiC1Wng, we obtain with
Ai D f.vsCi�1; ys; xiC1; : : : ; xr /jv1 � � � � � vsCi�1 < ys < xiC1 � � � � � xr g

P.W.j / � tj ; 1 � j � r C s; Xi Wn < YsWm < XiC1Wn/
D

X
�2SsCi�1

P.W.j / � tj ; 1 � j � r C s;

V�.1/ < � � � < V�.sCi�1/; Xi Wn < YsWm < XiC1Wn/
D

X

�2S�sCi�1
P.W.j / � tj ; 1 � j � r C s;

V�.1/ < � � � < V�.sCi�1/; Xi Wn < YsWm < XiC1Wn/ (17.16)

D
X

�2S�sCi�1

Z

B

gi .v�.1/; : : : ; v�.sCi�1/; ys; xiC1; : : : ; xr /dxr : : : dxiC1dysdvsCi�1;
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where

gi .vsCi�1; ys; xiC1; : : : ; xr / D cs�1cr�1
sCi�1Y
kD1

f .vk/f .ys/F
m�s

.ys/

�
rY

`DiC1
f .x`/F

n�r
.xr /1Ai .vsCi�1; ys; xiC1; : : : ; xr /:

The probabilities in (17.16) are zero if � … S�sCi�1. Since gi is invariant with respect
to � and jS�sCi�1j D

�
sCi�1
s�1

�
, we find using (17.15) that

P.W.j / � tj ; 1 � j � r C s; Xi Wn < YsWm < XiC1Wn/

D
 
s C i � 1
s � 1

!Z

B

g.vsCi�1; ys; xiC1; : : : ; xr /dxr : : : dxiC1dysdvsCi�1

D
�
sCi�1
s�1

��
nCm�s�i

n�i
�

�
nCm
n

� P.T
Ri

j WrCsWnCm � tj ; 1 � j � r C s/;

as required. ut
Intuitively, the mixture result can be explained as follows. Conditional on the

event fYsWm < X1Wng, the ordered sample .W.1/; : : : ;W.rCs// is given by

.Y1Wm; : : : ; YsWm;X1Wn; : : : ; Xr Wn/:

Taking into account an IID sample of size nCm from F , this particular sample can
be seen as follows. First, the s smallest observations are noted. Then, m � s larger
variables of the original sample are randomly withdrawn. Afterwards, the next r
observations are considered, which means that the largest n�r variates are censored.
This progressive censoring procedure is associated with the censoring scheme R0.

Similarly, conditional on the event fXi Wn < YsWm < XiC1Wng, the ordered sample
.W.1/; : : : ;W.rCs// is given by

.V1; : : : ; VsCi�1; YsWm;XiC1Wn; : : : ; Xr Wn/;

where V1; : : : ; VsCi�1 is an arrangement of the random variablesX1Wn; : : : ; Xi Wn and
Y1Wm; : : : ; Ys�1Wm. Hence, V1; : : : ; VsCi�1; YsWm equal the first s C i order statistics
in a sample of size n C m. Then, m � s larger variables are withdrawn from the
sample, and the remaining ordered observations follow. This sample corresponds to
a progressively Type-II censored sample associated with the censoring scheme Ri .

Remark 17.1.24. As mentioned before, Guilbaud [418, 419] has expressed the
distribution of progressively Type-II censored order statistics as a mixture of
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distributions of order statistics. Hence, the distribution of .W.1/; : : : ;W.rCs// is a
mixture of mixtures of the usual order statistics from a sample of size nCm.

Computational aspects of the above procedure have been discussed in
Balakrishnan et al. [155]. They proposed a branch and bound procedure for
efficient computation of the confidence intervals. An extension to the multi-
sample case has been obtained by Volterman et al. [878]. The approach has also
been utilized by Beutner and Cramer [194] in the models of minimal repair and
record values.

17.2 Conditional Statistical Intervals

So far, all the inferential methods we have discussed are unconditional in nature.
In this section, we will demonstrate how exact confidence intervals or prediction
intervals may be obtained using the conditional method. Conditional inference, first
proposed by Fisher [373], has been successfully applied by Lawless [570, 571, 572,
574, 575] to develop inference based on complete as well as conventionally Type-II
right censored samples. As a matter of fact, Lawless [574, pp. 199] indicated the
use of conditional inference based on progressively Type-II right censored data, but
a full length account of this topic has been provided by Viveros and Balakrishnan
[875] which naturally forms a basis for much of the discussion in this section.

17.2.1 Inference in a General Location–Scale Family

Let XR D .X1WmWn; : : : ; XmWmWn/ be a sample of progressively Type-II censored order
statistics from a location–scale family of distributions as in (11.1), i.e.,

Fls D
n
F
� � � �
#

�ˇ̌
ˇ� 2 R; # > 0

o
: (17.17)

Suppose b� and b# denote the MLEs of � and # . Then, b� and b# are equivariant
estimators, i.e., they satisfy the identities

b�.dXR C c1/ D db�.XR/C c and b#.dXR C c1/ D db#.XR/

for any constants c 2 R and d > 0. This can be directly seen from the likelihood
function

L.�; # I x/ D
mY
jD1

�
�j

#
f
�xj � �

#

�h
1 � F

�xj � �
#

�iRj � mY
jD2

1Œxj�1;1/.xj /
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following the arguments as in Lawless [575, pp. 562]. Since equivariance is the
crucial property of estimators in conditional inference, the MLEs may be replaced
by any equivariant estimatorse� ande# of � and # .

Now, the estimators

T1 D b� � �
b#

and T2 D
b#
#

(17.18)

are pivotal quantities. Their joint distribution is free of the distribution parameters
� and # . Moreover,

AR D .A1WmWn; : : : ; AmWmWn/ D
	
X1WmWn �b�

b#
; : : : ;

XmWmWn �b�
b#




forms a set of ancillary statistics where only m � 2 are functionally independent
(cf. Lawless [575, pp. 562]). Hence, inference for .�; #/ may be established on the
distribution of .T1; T2/, conditional on an observation a of AR. Writing

xi � �
#

D .xi �b�/C .b� � �/
b#

�
b#
#
D ai t2 C t1t2;

the density function of .T1; T2/, given AR D am D .a1; : : : ; am/, is given by

f T1;T2jAR

.t1; t2jam/

D k.am/tm�12

mY
iD1

f .ai t2 C t1t2/Œ1 � F.ai t2 C t1t2/�Ri ; t1 2 R; t2 > 0; (17.19)

where k.am/ depends on am,m, R, and n only. k.am/ can be obtained by integrating
the conditional density function w.r.t. t1 and t2. By integrating out the other variable,
one gets the conditional marginal density functions f T1jAR

.�jam/ and f T2jAR
.�jam/.

They can be used for conditional inference for the parameters � and # . In general,
these integrals may only be computed by numerical methods. However, for the
exponential distribution, explicit expressions result.

Conditional Confidence Intervals for Location and Scale Parameters

Conditional confidence intervals may be constructed via the marginal conditional
density functions. For instance, confidence intervals for the location parameter may
be obtained by the condition

P.`1 � T1 � `2/ D
Z `2

`1

f T1jAR

.t jam/dt D 1 � ˛;
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where ˛ 2 .0; 1/. `1 and `2 depend on am but not on � and # . They may be chosen
as quantiles of the conditional cumulative distribution function F T1jAR

.�jam/.
Although these intervals are obtained by conditioning, the resulting intervals are
common confidence intervals (see Lawless [575, pp. 564]).

Further inferential issues involve inference for quantiles, reliability, and predic-
tion intervals (see also Lawless [572], Fraser [382]). By analogy with the above
approach, conditional confidence intervals for quantiles and reliability as well as
conditional prediction intervals for the lifetimes of future objects can be constructed.

Conditional Confidence Intervals for Quantiles

Given a quantile �p , p 2 .0; 1/, of the baseline cumulative distribution function
F..� � �/=#/, we have p D F..�p � �/=#/. Obviously,

�p D �C #F .p/;

which can be estimated by

b�p D b�Cb#F .p/:

Conditional inference can be developed based on

Tp D �p �b�
b#

which is a pivotal quantity. It can be written as Tp D F .p/

T2
� T1 with T1 and T2 as

in (17.18). Using the density transformation formula, we get the conditional density
function of .Tp; T2/, given AR D am, as

f Tp;T2jAR

.tp; t2jam/

D kp.am/t2m�1
mY
iD1

f .ai t2 � tpt2 C F .p//Œ1 � F.ai t2 � tpt2 C F .p//�Ri ;

tp 2 R; t2 > 0:

Integrating w.r.t. t2 yields the marginal conditional density function of Tp, given
AR D am, which can be utilized to establish conditional confidence intervals for
the quantile �p as described above for the distribution parameters.
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Conditional Confidence Intervals for Reliability

Suppose we are interested in the reliability at a given mission time t0. Then,

R.t0/ D 1 � F
� t0 � �

#

�

denotes the reliability at t0. In order to construct a lower confidence limit for R.t0/,
we consider a lower confidence bound `p.XR/ for the quantile �1�p , p 2 .0; 1/, at
level ˛ 2 .0; 1/. Then, by construction,

P.`p.XR/ � �1�p/ D 1 � ˛:

Choosing p as a solution of the equation `p.XR/ D t0 yields the desired confidence
limit. Denoting by p0 D p0.XR/ that solution, we get

P.R.t0/ � p0.XR// D P.`p.XR/ � �1�p/ D 1 � ˛
(see also Remark 17.1.6 and comments following this remark).

Conditional Prediction Intervals for Future Failure Times

A prediction problem considered often in the literature is that of predicting the
minimal and maximal lifetimes in a future sample Y1; : : : ; Yr from the same
population cumulative distribution function F.�I�; #/. This sample is supposed to
be independent of the present data sample XR. The density function of the minimum
Y1Wr is given by

f1Wr .t/ D r

#


1 � F

� t � �
#

�� r�1
f
� t � �

#

�
: (17.20)

By assumption, it is independent of .T1; T2/, given AR D am. Therefore, the joint

conditional density function of .T1; T2; T3/, with T3 D Y1Wr�b�
b# , is given by

f T1;T2;T3jAR

.t1; t2; t3jam/

D k�.am/rtm�12

mY
iD1

f .ai t2 � tpt2 C F .p//Œ1 � F.ai t2 � tpt2 C F .p//�Ri

� f ..t1 C t3/t2/Œ1 � F..t1 C t3/t2/�r�1; t1; t3 2 R; t2 > 0:

Integrating out t1 and t2, we arrive at the marginal conditional density function of
T3, given AR D am. This density function can be used to construct conditional
prediction intervals for Y1Wr by analogy with the construction of conditional
confidence intervals using f T3jAR

.�jam/.
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A conditional prediction for Yr Wr can be obtained by replacing (17.20) by

fr Wr .t/ D r

#


F
� t � �

#

�� r�1
f
� t � �

#

�

and proceeding as above. With T4 D YrWr�b�
b# , the resulting conditional density

function is given by

f T1;T2;T4jAR

.t1; t2; t4jam/

D k��.am/rtm�12

mY
iD1

f .ai t2 � tpt2 C F .p//Œ1 � F.ai t2 � tpt2 C F .p//�Ri

� f ..t1 C t4/t2/ŒF ..t1 C t4/t2/�r�1; t1; t4 2 R; t2 > 0:

17.2.2 Exponential Distribution

Suppose the baseline distribution is an Exp.�; #/-distribution. Then, in the
location–scale family (17.17), we have the cumulative distribution function
F.x/ D 1 � e�x , x � 0, and density function f .x/ D e�x , x � 0, respectively.
In this case, .b�;b#/ forms a complete sufficient statistic for .�; #/. Therefore,
the pivotal quantities T1; T2; Tp; T3, and T4 are all statistically independent of the
ancillary statistic AR according to Basu’s theorem (see Basu [181], Boos and
Hughes-Oliver [215], and Lehmann and Casella [582]). From Theorem 12.1.4, we
have

b�MLE D Z1WmWn and b#MLE D 1

m

mX
jD2

.Rj C 1/.Zj WmWn �Z1WmWn/

to be independent, n.m�1/
m

T1 � F2;2m�2, and 2mT2 � �2.2m � 2/. Using this
result, we arrive at the same confidence intervals given in Corollary 17.1.1. Thus,
the conditional inference approach leads to the same exact confidence intervals as
the direct approach. The same comment applies to confidence intervals for both
quantile �p and the reliability R.t0/ at a given mission time t0.

17.2.3 Extreme Value Distribution

Viveros and Balakrishnan [875] considered the location–scale family of extreme
value distributions which forms an important example in the area of lifetime
modeling. For instance, log-times of a two-parameter Weibull distribution belong
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to such a family. This means that, given data from a two-parameter Weibull
distribution, a log-transform leads to the above location–scale family with

f .t/ D et�et ; t 2 R:

Substituting the cumulative distribution function and density function in (17.19)
yields the joint conditional density function of T1 and T2, given AR D am, as

f T1;T2jAR

.t1; t2jam/

D k.am/tm�12 emt1t2Ca�mt2 exp
n mX
iD1
.Ri C 1/eai t2Ct1t2

o
; t1 2 R; t2 > 0; (17.21)

where a�m DPm
jD1 aj and k.am/ is the normalizing constant. In order to compute

the confidence intervals for �; # and a quantile �p , the marginal conditional
cumulative distribution functions have to be calculated. Viveros and Balakrishnan
[875] provided expressions for F Ti jARDam , i 2 fp; 1; 2g, p 2 .0; 1/. They have
shown that these distributions can be expressed as

F Ti jARDam.t/ D Hi.t jam/
Hi .1jam/ ;

where Hi.1jam/ D limt!1Hi.t jam/, i 2 fp; 1; 2g, p 2 .0; 1/. For the location
parameter �, this expression reads

H1.t jam/ D
Z 1
0

tm�12 ea�mt2 IG
�Pm

iD1.Ri C 1/e.aiCt /t2 Im
�

˚Pm
iD1.Ri C 1/eai t2

�m dt2:

The scale case leads to a simpler expression for the conditional cumulative distri-
bution function. Since t1 can be integrated out in (17.21), the following expression
results:

H2.t jam/ D
Z t

0

tm�12 ea�mt2˚Pm
iD1.Ri C 1/eai t2

�m dt2:

For a quantile �p , p 2 .0; 1/, the resulting functionHp.�jam/ is given by

Hp.zjam/ D
Z 1
0

1 � IG
�
�p.t2/e

�zt2 Im�

�mp .t2/
tm�12 ea�mt2dt2;

where �p.t2/ D � log.1 � p/Pm
iD1.Ri C 1/eai t2 . These quantities have to be

evaluated numerically as pointed out by Viveros and Balakrishnan [875]. They
proposed an application of Simpson’s rule to accomplish the necessary numerical
integrations. The MLEs can be computed by a Newton–Raphson procedure (see
Sect. 12.7.4).
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i 1 2 3 4 5 6 7 8

xiW8W19 �1:6608 �0:2485 �0:0409 0:2700 1:0224 1:5789 1:8718 1:9947

Table 17.5 Log-times of Nelson’s progressively Type-II censored data with censoring scheme
R D .0�2; 3; 0; 3; 0�2; 5/

Example 17.2.1. For Nelson’s progressively Type-II censored data 1.1.5, Viveros
and Balakrishnan [875] applied the above method to the log-times of the
observations (see Table 17.5) (see also Balakrishnan and Aggarwala [86,
Example 9.1]). Assuming a location–scale model of extreme value distributions,
they obtained the maximum likelihood estimates by numerical optimization:

b� D 2:222; b# D 1:026:

For a given level 1 � ˛ D 95%, they found by numerical integration that
F T1jARDa8 .�1:76/ D 0:025 and F T1jARDa8 .0:574/ D 0:975. Hence, an exact 95 %
confidence interval for the location parameter � is obtained from the equations

�1:76 � b� � �b#
� 0:574

as 1:63 � � � 4:03. Similarly, they got for the scale parameter # with
F T2jARDa8 .0:472/ D 0:5 and F T2jARDa8 .1:418/ D 0:95 the exact 90 % confidence
interval Œ0:72; 2:18�. For the 0.1th quantile �0:1, they established the maximum

likelihood estimateb�0:1 D b�CF .0:1/b# D �0:087. By numerical computations,
they obtained the quantiles of F T0:1jARDa8 from

F T0:1jARDa8 .�4:64/ D 0:025 and F T0:1jARDa8 .�1:345/ D 0:975:

This yields the 95 % confidence interval Œ�2:54; 0:84� for �0:1. Finally, they
considered the reliability R.t0/ at mission time t0 D log 2 D 0:693. The resulting
maximum likelihood estimate is bR.t0/ D 0:798. For p0 D p0.x/ D 0:637, they
found that `p0.x/ D t0. Therefore, .0:637; 1� becomes an upper 95 % confidence
interval for R.t0/.

Remark 17.2.2. As pointed out by Balakrishnan and Aggarwala [86], the exact
90 % confidence interval Œ0:72; 2:18� for the scale parameter # is quite close to
the unconditional 90 % confidence interval for # determined by Nelson [676,
pp. 230] from the complete data set.

Remark 17.2.3. The confidence intervals obtained for the location–scale family
of extreme value distributions can be transformed to confidence intervals for the
two-parameter Weibull distribution. For instance, a 90 % confidence interval for
the shape parameter ˇ D 1=# of the associated Weibull distribution is given by
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Œ0:46; 1:38�. Similar to Example 17.1.10, the approach of Wu [904] yields a 90 %
confidence interval Œ0:3798; 1:5665� for ˇ. Applying the method of Wang et al.
[890], we end up with the 90 % confidence interval Œ0:4492; 1:3677� which is quite
close to the conditional confidence interval. The confidence region computed from
Wu [904] comprises both of them and is wider.

Notice that all these intervals include the parameter ˇ D 1. This provides
some evidence that an exponential distribution might be appropriate to model
the original progressively Type-II censored data.

17.2.4 Log-Gamma Distribution

Lin et al. [602] considered conditional inference for a location–scale family of three-
parameter log-gamma distributions with known shape parameter ˛. The standard
member is given by the density function

f .t/ D ˛˛�1=2

� .˛/
exp

˚p
˛t � ˛et=

p
˛
�
; t 2 R; ˛ > 0:

This distribution is deduced from (12.40) by a linear transformation of the random
variables, i.e.,

p
˛.X � log˛/ (see, e.g., Lin et al. [603]). When ˛ D 1, the extreme

value distribution is included as a particular case.
Lin et al. [602] established conditional confidence intervals for the location and

scale parameters, quantiles, and reliability. The approach is along the lines of the
extreme value distribution, but the resulting expressions are quite complicated.
Therefore, we abstain from presenting details on the representations of the density
functions. Lin et al. [602] conducted an extensive Monte Carlo simulation to com-
pare the conditional confidence intervals with unconditional confidence intervals
obtained by simulation.

Example 17.2.4. From data reported by Lieblein and Zelen [595] (see also
Example 15.2.1), Lin et al. [602] generated several progressively Type-II censored
data sets. The log-gamma model was fitted to the logarithms of the original data
by Lawless [573] who proposed this distribution to study the effect of departures
from a Weibull or log-normal model (see also Lawless [575, pp. 249–250]). The
data are also analyzed in Balakrishnan and Chan [90, 91]. For illustration, we
consider data set H generated in Lin et al. [602]:

2.884, 3.991, 4.017, 4.217, 4.229, 4.229, 4.232, 4.432,
4.534, 4.591, 4.655, 4.662, 4.851, 4.852, 5.156.

It consists of m D 15 observations. Eight measurements were progressively Type-
II censored according to the first-step censoring plan O15 D .8; 0�14/. Choosing

˛ D 2, the MLEs b� D 4:5365 and b# D 0:4100 result. The corresponding
95 % confidence intervals for � and # are given by Œ4:3078; 4:7817� and
Œ0:3046; 0:6603�, respectively. Results for other values of ˛ and other censoring
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plans are presented by Lin et al. [602]. Moreover, a comparison with unconditional
confidence intervals is also carried out.

17.2.5 Pareto Distribution

Conditional inference for Pareto distribution has been addressed by Aggarwala and
Childs [15] (see also Balakrishnan and Aggarwala [86, Sect. 9.7]). They considered
a location–scale family of Pareto distributions with standard member

F.t/ D 1 � t�˛; t � 1;

where ˛ > 0 is a known parameter. Since the MLEs of � and # are not explicitly
available in this case (see Sect. 12.5 with a different parametrization), Aggarwala
and Childs [15] based their conditional inference on the BLUEs b�LU and b#LU

of � and # as given in Theorem 11.2.4. These are easily seen to be equivariant
[see the general representation of BLUEs in (11.3)]. Since conditional confidence
intervals are invariant w.r.t. the choice of the equivariant estimators, this yields
a reasonable choice for computational purposes. The conditional density function
given in (17.19) exhibits a quite simple form. Specifically, we have

f T1;T2jAR

.t1; t2jam/

D k.am/ tm1

t˛nC12

mY
iD1

1

.ai C t1/˛.RiC1/C1 ; t1 � �a1; .a1 C t1/t2 > 1:

The marginal conditional density function of T1, given AR D am, is obtained via
integration w.r.t. t2, i.e.,

f T1jAR

.t1jam/ D k.am/˛
m�1.a1 C t1/˛n

n

mY
iD1

1

.ai C t1/˛.RiC1/C1 ; t1 � �a1:

f T2jAR
.t2jam/ has to be evaluated numerically.

Example 17.2.5. For the simulated Pareto data given in Example 11.2.7 with

given ˛ D 3, � D 0, and # D 5, the estimates b�LU D 1:87680 and b#LU D
3:16207 result. For ˛ D 0:1, the necessary quantiles of F T1jAR

.�ja/ are given
by `1 D �0:5233 and `2 D 2:2215 so that `1 � T1 � `2 leads to the 90 %
confidence interval Œ�5:148; 3:531� for �. In case of the location parameter, the
quantiles `1 D 0:3155 and `2 D 2:049 result. The corresponding 90 % confidence
interval is given by Œ1:543; 10:021�.
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17.2.6 Laplace Distribution

Childs and Balakrishnan [258] developed conditional inference for the Laplace
distribution as given in (12.25). The resulting expressions are quite involved. For
completeness, we present only the necessary expressions, and for more details, one
may refer to Childs and Balakrishnan [258]. The case of Type-II censored data is
addressed in Childs and Balakrishnan [256]. For complete samples, Kappenman
[508] has constructed conditional confidence intervals for � and # .

The conditional density function f T1;T2jAR
.�jam/ is given by

f T1;T2jAR

.t1; t2jam/ D k.am/2m�ntm�12 e�t2
Pm
jD1 jt1Caj j

�
mX
iD0

1.�aiC1;�ai �.t1/e
�t2Pm

jDiC1 Rj .t1Caj /
iY

jD1

�
2 � et2.t1Caj /

�Rj
;

t1 2 R; t2 > 0:

The constant k.am/ can be explicitly calculated. For kj D .k1; : : : ; kj / 2 N
j ,

j � 1, we introduce the quantities

1.j;kj / D �jC1 �
jX
iD1
.ki C 1/;

2.j;kj / D
mX

iDjC1
.Ri C 1/ai �

jX
iD1
.ki C 1/ai ;

3.j;kj / D
"

jY
iD1

 
Ri

ki

!
.�1/ki
2ki

#
2�

Pm
iDjC1 Ri :

For j D 0, these expressions are given by

1.0;k0/ D n; 2.0;k0/ D
mX
iD1
.Ri C 1/ai ; 3.0;k0/ D 2m�n:

With

Mj D fkj j 1 � ki � Ri ; 1 � i � j g and M0
j D fkj 2Mj j 1.j;kj / D 0g;

the normalizing constant exhibits the explicit representation

k.am/�1 D H.� .m � 1/; � .m � 1/; � .m � 1//;
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where

H.x; y; z/ D
mX
jD0

X

kj2Mj nM0
j

3.j;kj /
1.j;kj /


x�

2.j;kj / � 1.j;kj /ajC1
�m�1

� y�
2.j;kj /� 1.j;kj /aj

�m�1
�

C z
mX
jD0

X

kj2M0
j

3.j;kj /�
2.j;kj /

�m .ajC1 � aj /: (17.22)

The conditional density function f T1jAR
.�jam/ can be written as

f T1jAR

.t1jam/ D
mX
jD1

k.am/1.�ajC1;�aj �.t1/
X

kj2Mj

� .m/3.j;kj /
Œ1.j;kj /t1 C 2.j;kj /�m

C 1.�a1;1/.t1/k.am/
� .m/2m�n

Œnt1 C 2.0;k0/�m :

Denoting by k 2 f0; : : : ; mg the unique number�akC1 < t1 � �ak , the conditional
cumulative distribution function can be expressed as

F T1jAR

.t1jam/ D Gk.t1jam/C
mX

jDkC1
Gk.�aj jam/; (17.23)

where

Gj .t jam/ D k.am/� .m/

�
X

kj2Mj nM0
j

3.j;kj /
1.j;kj /.1 �m/


1�

2.j;kj /C 1.j;kj /t
�m�1

� 1�
2.j;kj/� 1.j;kj /ajC1

�m�1
�

C k.am/� .m/
X

kj2M0
j

3.j;kj /�
2.j;kj /

�m .t C ajC1/:

The desired confidence interval for the location parameter � is given by the
equations
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F T1jAR

.L1jam/ D 1 � ˛
2

and F T1jAR

.L2jam/ D ˛

2
;

with the confidence limits L1;L2 2 R. Finally, the confidence interval

h
b� � L1b#;b� � L2b#

i

results, whereb� andb# are the MLEs of � and # .
For the scale parameter, the conditional density function

f T2jAR

.t2jam/ D k.am/
mX
jD0

X

kj2Mj nM0
j

3.j;kj /
1.j;kj /

� tm�22

n
e�t2Œ2.j;kj /�1.j;kj /ajC1� � e�t2Œ2.j;kj /�1.j;kj /aj �

o

C k.am/
mX
jD0

X

kj2M0
j

3.j;kj /.ajC1 � aj /tm�12 e�t22.j;kj /

is needed. Using the function H defined in (17.22) and the incomplete gamma
function IG.�I˛/, the corresponding conditional cumulative distribution function can
be written as

F T2jAR

.t jam/ D k.am/H
�

IG
�
Œ2.j;kj / � 1.j;kj /ajC1�t; m � 1

�
;

IG
�
Œ2.j;kj /� 1.j;kj /aj �t; m � 1

�
; IG

�
2.j;kj /t; m

��
:

Solving the equations analogous to (17.23), the desired confidence bounds can be
obtained.

Example 17.2.6. Childs and Balakrishnan [258] applied the method to sim-
ulated data taken from Balakrishnan and Aggarwala [86] (see Data B.1.3)
which have been simulated from a Laplace.25; 5/-distribution with n D 20 and
censoring scheme R D .2; 0�2; 2; 0�3; 2; 0; 4/, m D 10. The MLEs are given by

b� D 26:31069 and b# D 2:67091, respectively. For the location case, Childs and
Balakrishnan [258] obtained the bounds L1 D 0:66085 and L2 D �0:77611
which gives the 95 % confidence interval Œ24:55; 28:38�. In the scale case, the
bounds are given by L1 D 1:60544 and L2 D 0:45905 yielding the 95 %
confidence interval Œ1:66; 5:82� for # .

Example 17.2.7. For the data given in Table 12.3, Childs and Balakrishnan
[258] postulated a Laplace model and considered conditional inference for the
location and scale parameters. According to Example 12.6.9, the MLEs of �

and # are given by b� D 1033:81667 and b# D 182:86675. A 95 % confidence
interval for � results from the bounds L1 D 0:38875 and L2 D �0:61026 as
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Œ962:73; 1145:41�. From L1 D 1:42632 and L2 D 0:60950, a 95 % conditional
confidence interval for # is obtained as Œ128:21; 300:03�.

17.2.7 Other Distributions

Maswadah [641] considered conditional inference for inverse Weibull distributions
with cumulative distribution function

F.t/ D exp
n
� .˛t/�ˇ

o
; t � 0; ˛; ˇ > 0;

in terms of generalized order statistics. The resulting expressions for a progressively
Type-II censored sample involve integrals which have to be evaluated numerically.
For illustration, the author has presented a numerical study.

17.3 Asymptotic Confidence Intervals

Asymptotic statistical intervals are based on the asymptotic distribution of standard-
ized estimates. In location–scale models, one often uses the pivotal quantities

�1 D b� � �
b# � pI11

; �2 D b� � �
# � pI11

; �3 D
b# � #
b# � pI22

which, under certain regularity conditions, are considered as asymptotically
standard Gaussian distributed. Here, Ijj , j D 1; 2, are the respective components of
the asymptotic variance–covariance matrix. For instance, Balakrishnan and Kannan
[104] have considered a location–scale family of logistic distributions with standard
cumulative distribution function as in (12.39), i.e.,

F.t/ D
h
1C e��t=

p
3
i�1

; t 2 R:

They simulated the probability coverages

P.j�i j � 1:65/ and P.j�i j � 1:96/; i D 1; 2; 3;

by Monte Carlo simulations leading to approximate confidence intervals with levels
90 and 95%, respectively. Tables are provided for different censoring schemes.
Instead of the MLEs, approximate maximum likelihood estimators are also used.
Similar approaches are utilized by Balakrishnan et al. [134] for Gaussian distribu-
tions (see also Balakrishnan and Kim [107]), by Balakrishnan and Asgharzadeh [87]
for a scaled half-logistic distribution, and by Asgharzadeh [61] for a generalized
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logistic distribution. Ng [681] considered a modified Weibull distribution with
cumulative distribution function as in (12.35). He illustrated his results by the data
presented in Table 12.4.

In the one-parameter case, a general result for the asymptotic distribution of a
solution of the likelihood equation has been established by Lin and Balakrishnan
[599]. Under some regularity conditions, they showed that the asymptotic distribu-
tion of a solution of the likelihood equation is Gaussian. This extends a result of
Hoadley [442] to progressive censoring. For general progressively Type-II censored
exponential data, Fernández [364] established the asymptotic normality of both the
standardized MLE and BLUE of the scale parameter. Notice that in this case the
likelihood equation has a unique solution as worked out by Balakrishnan et al. [130].

17.4 Prediction Intervals

17.4.1 Nonparametric Prediction Intervals

Using the mixture representation of progressively Type-II censored order statis-
tics, Guilbaud [419] presented formulas for nonparametric two-sample prediction
intervals based on progressively Type-II censored samples containing at least a
specified number of observations in a future sample. This work has been followed
up by Balakrishnan et al. [144] who established corresponding intervals based on
two ordered pooled progressively Type-II censored samples. They computed exact
prediction levels by applying the mixture representation of progressively Type-
II censored order statistics. The approach has also been utilized by Beutner and
Cramer [193] in the models of minimal repair and record values.

17.4.2 Parametric and Bayesian Prediction

Interval prediction issues with parametric models have been studied extensively in
progressive Type-II censoring. Since the models and assumptions are quite different,
we provide only a survey of the existing literature. The following presentation is
organized w.r.t. the predicted object. In particular, we address the following three
different issues:

(1) Prediction intervals for censored failure times;
(2) Prediction intervals for future observations in the same sample (this is a

particular case of (1) in the sense that the lifetimes of the items removed in
the final progressive censoring step are predicted);

(3) Prediction intervals for observations of an independent future sample from the
same population.

The results are differentiated w.r.t. distributional assumptions and the method of
prediction.
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Prediction Intervals for Censored Failure Times

In Sect. 16.2, the point prediction of censored failure times is discussed extensively.
Basak et al. [178] presented prediction intervals for the censored failure time
Wj;kWRj , k D 1; : : : ; Rj , j D 1; : : : ; m, assuming exponential and extreme value
distributions, respectively. Using the mean squared predictive errors and standard
errors, they established prediction intervals based on BLUP, MLP, MUP, and CMP
(exponential distribution) and BLUP, MMLP, and CMP (extreme value distribution).
In Basak and Balakrishnan [175], prediction intervals based on various predic-
tors, including BLUP, MLP, and CMP, are discussed for the normal distribution.
For Pareto distributions, we refer to Raqab et al. [746]. Generalized exponential and
Rayleigh distributions are discussed in Madi and Raqab [627] and Raqab and Madi
[745], respectively.

Extending the work of AL-Hussaini [27], Mohie El-Din and Shafay [652]
considered Bayesian prediction intervals for the censored lifetimes assuming the
lifetime distribution in (17.24).

Prediction Intervals for Future Observations in the Same Sample

Given a progressively censored sample XR
1WmWn; : : : ; XR

mWmWn with Rm > 0, we
might be interested in a predictive interval of the first failure time of the Rm
items exceeding the final observationXR

mWmWn. For population cumulative distribution
functions as in (12.10), i.e., for F.t/ D 1 � exp f�.d.t/ � �/=#g, the following
result holds. We use the notation Wm;1WRm , introduced in Sect. 16.2, for this future
observation.

Theorem 17.4.1. Let ˛ 2 .0; 1/, XR be a progressively Type-II censored sample
based on a population cumulative distribution functions as in (12.10) with strictly
increasing d and R be a censoring scheme with Rm > 0. Then, a 100.1� ˛/%
prediction interval for Wm;1WRm is given by

K D
�
d�1

n
d.XR

mWmWn/C �.XR/F˛=2.2; 2.m� 1//
o
;

d�1
n
d.XR

mWmWn/C �.XR/F1�˛=2.2; 2.m� 1//
o�
;

where �.XR/ D 1
.m�1/Rm

Pm
iD2.Ri C 1/.d.XR

i WmWn/� d.XR
1WmWn//.

Proof. First, Wm;1WRm can be seen as a progressively Type-II censored order statistic
in a progressively Type-II censored sample with concatenated censoring scheme
.R1; : : : ; Rm�1; 0�RmC1/. In fact, the experimenter abstains from the right censoring

and observes all failures exceedingXR
mWmWn. Then, with V D d.Wm;1WRm/�d.XR

mWmWn/

�.XR/
, we

have
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P.Wm;1WRm 2 K / D P
�

F˛=2.2; 2.m� 1// � V � F1�˛=2.2; 2.m� 1//
�

D 1 � ˛;

since V has an F-distribution with degrees of freedom 2 and 2.m � 1/. This
results from the comments in Remark 12.1.11 and the independence of the spacings
d.XR

j WmWn/� d.XR
j�1WmWn/, 2 � j � m, and d.Wm;1WRm/� d.XR

mWmWn/. ut
Remark 17.4.2. The above result can be found in Wu [909] for exponential dis-
tributions who also considered prediction intervals for future spacings Wm;1WRm �
XR
mWmWn and Wm;j WRm � Wm;j�1WRm , j D 2; : : : ; Rm. For Pareto distributions,

the corresponding result is given in Wu [908]. Moreover, the results for the
ratios Wm;1WRm=XR

mWmWn and Wm;j WRm=Wm;j�1WRm , j D 2; : : : ; Rm, have also been
established in this work.

Bayesian prediction intervals have also been proposed for future failure times.
A general setting has been addressed in Abdel-Aty et al. [2]. They discussed
Bayesian prediction intervals in the model of generalized order statistics based on a
cumulative distribution function

F.t/ D 1 � e��	 .t/; t > 0; (17.24)

where �	 W R �! R denotes an appropriately chosen function. Moreover, they
allowed the sample to be multiply censored. The prior is chosen according to

�a.	/ / ca.	/ expf�da.	/g:

The results are also presented in the particular case of Pareto distributions. Results
for Weibull distributions are discussed in Huang and Wu [463]. Linear hazard
rate distributions [see (15.10)] are addressed in Lin et al. [604] for a general
progressively Type-II censored sample.

Prediction Intervals for Observations of an Independent Future Sample
from the Same Population

Prediction intervals for future observations of an independent sample from the
same population have also been studied in the literature. In particular, Bayesian
approaches have been studied extensively by choosing an appropriate prior. Since
the results follow along the same lines, we only sketch the results here. For
more details, we refer to the cited references. Ghafoori et al. [397] discussed the
family (17.24) with parameter vector � and obtained prediction bounds and Bayes
predictive estimators for the kth-future order statistic YkWN . They applied their
results to one- and two-parameter Weibull and Pareto families (see also Ali Mousa
[34]). Wu et al. [915] presented HPD prediction intervals for Rayleigh distributions.
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For Weibull distributions, we refer to Huang and Wu [463] and Soliman et al. [816].
Prediction intervals for Burr-XII distributions are given in Ali Mousa and Jaheen
[37]. One- and two-parameter Gompertz distributions are discussed in Jaheen [474].
For exponentiated modified Weibull distributions, see Klakattawi et al. [535].

Mohie El-Din and Shafay [652] presented Bayesian prediction intervals for
a future sample of progressively Type-II censored order statistics YS when the
baseline cumulative distribution function is specified by (17.24). Ali Mousa and
Al-Sagheer [35] considered the same problem for Rayleigh distributions.

17.5 Nonparametric Tolerance Intervals

Tolerance intervals are supposed to cover a certain proportion p 2 .0; 1/ of the
probability mass of the population distribution. Given a confidence level 1 � ˛, a
two-sided tolerance interval ŒXi WmWn; Xj WmWn�, i < j , is defined by the condition

P
�
F.Xj WmWn/� F.Xi WmWn/ � p/ � 1 � ˛; (17.25)

where F denotes the population cumulative distribution function. Nonparametric
tolerance intervals based on order statistics of an IID sample are well known (see,
e.g., Krishnamoorthy and Mathew [553]). For progressively Type-II censored order
statistics, it has been first addressed by Guilbaud [419] and further discussed by
Balakrishnan et al. [144]. It turns out that the right hand side of Eq. (17.25) is
given by

P
�
F.Xj WmWn/� F.Xi WmWn/ � p/ D 1 � FUj WmWn�UiWmWn.p/;

so that the cumulative distribution function of the generalized spacingUj WmWn�Ui WmWn
from uniform progressively Type-II censored order statistics is necessary to compute
the tolerance interval. The cumulative distribution function can be taken from (2.39)
(see also Lemma 3 in Kamps and Cramer [503]). Guilbaud [419] applied the mixture
representation of progressively Type-II censored order statistics to calculate these
probabilities.

Remark 17.5.1. Pradhan [726] studied the performance of an approximate
tolerance interval for the population distribution when the progressively Type-II
censored lifetime data is observed from a k-unit parallel system. Conditional toler-
ance intervals for Pareto distributions are presented in Aggarwala and Childs [15].

17.6 Highest Posterior Density Credible Intervals

Based on the posterior density function ��a .�jx/ in (15.1), highest posterior density
(HPD) credible intervals can be defined. According to Berger [190, pp. 140], a
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.1 � ˛/ credible set for 	 is defined by C˛ D ft j��a .t jx/ > c1�˛g, where c1�˛
satisfies the condition P.	 2 C˛jx/ D 1 � ˛. For unimodal posterior density
functions, a two-sided HPD credible interval Œb̀;bu� is defined by the conditions

Z bu
b̀ ��a .t jx/dt D 1 � ˛ and ��a .b̀jx/ D ��a .bujx/: (17.26)

We shall now review the available results. The results are quite sensitive regarding
both the underlying parametrization of the lifetime distributions and the prior
distribution. This leads to many different results although the approach adapted is
usually similar.

HPD credible intervals for exponential distributions and Weibull distributions
with known shape parameter, as discussed in Sect. 15.1, have been established
in Schenk et al. [783] and Kundu [557]. Assuming a gamma prior, the posterior
distribution is a particular gamma distribution and thus unimodal. Therefore, HPD
credible sets for ˛ can be easily obtained. HPD credible intervals assuming a
Rayleigh distribution have been considered in Wu et al. [915] and Kim and Han
[529] (see also Dey and Dey [338] for progressive Type-II censoring with random
removals). Wu et al. [915] presented a .1 � ˛/ HPD credible interval Œb̀;bu� which
can be directly obtained from (17.26) by solving the equations

IG.�1; aCm/� IG.�2; aCm/ D 1 � ˛;
�bu
b̀
�2.aCm/C1 D e�1��2 ;

where �1 D .2b̀2/�1.b CW / and �2 D .2bu2/�1.b CW /. A HPD credible interval
for R.t/ can be constructed analogously.

Example 17.6.1. For the data in Example 15.2.1, Wu et al. [915] reported
the 90 % HPD credible intervals as .0:4534; 0:6989/ and .0:0856; 0:3568/,
respectively.

Kundu [557] discussed Weibull distributions with unknown shape and scale
parameters (see Sect. 15.1).

Example 17.6.2. In the case of Example 15.1.2, Kundu [557] computed the
95 % HPD credible intervals .0:0165; 0:1642/ and .0:3344; 1:0043/ for the shape
and scale parameters, respectively.

Inverse Weibull distributions are discussed in Sultan et al. [827]. HPD credible
intervals for competing risks data from Weibull distributions have been addressed
in Kundu and Pradhan [563]. Mokhtari et al. [654] studied Type-I progressively
hybrid censored data. Further results on Bayesian inference are also presented in
these works. Thus, we refer to the results presented in Chap. 15.



Chapter 18
Progressive Type-I Interval Censored Data

18.1 Parametric Inference

Progressive Type-I interval censoring has been introduced in Aggarwala [11] (see
p. 14 and Fig. 1.8). She assumed a continuous lifetime distribution F� leading to the
likelihood function

L.�/ /
kY

jD1

�
F� .Tj /� F�.Tj�1/

�dj
F
Rj
� .Tj /; (18.1)

where � D .	1; : : : ; 	p/
0 2 � � R

p denotes the parameter vector and d1; : : : ; dk
are realizations of the number of observed failures D1; : : : ;Dk in the inspection
intervals (see (1.8)). T0 D �1 < T1 < � � � < Tk are the censoring times,
and R D .R1; : : : ; Rk/ is the effectively applied censoring scheme. Obviously, the
equation

kX
jD1

.dj CRj / D n

holds.
Aggarwala [11] considered likelihood inference for the scale parameter #

when the baseline distribution is exponential. In particular, assuming an Exp.#/-
distribution, the likelihood is proportional to (T0 D 0)

L.#/ /
kY

jD1

h
1 � e�.Tj�Tj�1/=#

idj
e�.dj Tj�1CRj Tj /=# :

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 18,
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This yields the log-likelihood function

`.#/ D constC
kX

jD1
dj log

h
1 � e�.Tj�Tj�1/=#

i
� 1

#

h kX
jD2

dj Tj�1 C
kX

jD1
Rj Tj

i
:

(18.2)

In general, an explicit expression for the MLE is not available. However, since

@`

@#
.#/ D 1

#2

�
�

kX
jD1

dj .Tj � Tj�1/
e.Tj�Tj�1/=# � 1 C

kX
jD2

dj Tj�1 C
kX

jD1
Rj Tj

�
;

we get lim#!0 #2 � @`@# .#/ D
Pk

jD2 dj Tj�1 C
Pk

jD1 Rj Tj > 0 as well as

lim#!1 #2 � @`@# .#/ D �1 provided that at least one failure is observed. Moreover,
it is easily seen that #2 � @`

@#
.#/ is a strictly decreasing function in # showing

that a unique solution of the likelihood equation exists. This has to be computed
numerically in general. Cheng et al. [255] proposed an algorithm to compute the
MLE which is based on “equivalent quantities” as discussed in Tan [836].

For constant inspection intervals, i.e., Ti D i � T , 0 � i � k, for some T > 0,
the log-likelihood function in (18.2) can be written as

`.#/ D constC log
h
1 � e�T=#

i
d�k � 1

#

h kX
jD2

.j � 1/djT C
kX

jD1
jRjT

i
:

Then, as shown in Aggarwala [11], an explicit solution exists. The corresponding
estimator is given by

b# D T

log
h
1C D�kPk

jD2.j�1/DjC
Pk
jD1 jRj

i :

Aggarwala [11] additionally presented a simulation algorithm to generate pro-
gressively Type-I interval censored data (see Sect. 8.3). She illustrated her results
by some simulated data for constant inspection intervals. Furthermore, interval
estimation and hypothesis testing procedures have also been discussed.

Ng and Wang [687] considered progressively Type-I interval censored data from
a Weibull population Weibull.1=#; ˇ/. In order to estimate the parameters, they
proposed several methods as follows:

(i) Mid-point approximation: It is assumed that failures observed in an interval
.Tj�1; Tj � occurred at the mid-pointmj D 1

2
.Tj�1C Tj /. Moreover, the units

withdrawn at the j th step are considered with failure time Tj . This yields
a pseudo-complete data set y1; : : : ; yn. Then, the likelihood equations for
the Weibull distribution are solved assuming the complete sample y1; : : : ; yn.
Similarly, the results for progressively Type-I censored data from the Weibull
distribution, as given in Sect. 13.2, have been applied to the data .m

�Dj
j /,

1 � j � k.
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Interval in months Number at risk Number of withdrawals

Œ0; 5:5/ 112 1
Œ5:5; 10:5/ 93 1
Œ10:5; 15:5/ 76 3
Œ15:5; 20:5/ 55 0
Œ20:5; 25:5/ 45 0
Œ25:5; 30:5/ 34 1
Œ30:5; 40:5/ 25 2
Œ40:5; 50:5/ 10 3
Œ50:5; 60:5/ 3 2
Œ60:5;1/ 0 0

Table 18.1 Survival times for patients with plasma cell myeloma. Data taken from
Ng and Wang [687]

(ii) Maximum likelihood estimation/EM-algorithm: After determining the
likelihood equations from (18.1), Ng and Wang [687] proposed an
EM-algorithm to compute the MLEs. As for the exponential case, Cheng
et al. [255] developed an alternative algorithm. They demonstrated that it is
more efficient w.r.t. convergence rate. The results for the data in Table 18.1
correspond to those of Ng and Wang [687]. Wu et al. [921] and Lin et al. [609]
considered MLEs for Weibull.#ˇ; ˇ/-lifetimes.

(iii) Method of moments: Using the fact that the �th moment of the Weibull
distribution Weibull.1=#; ˇ/ is given by

#�=ˇΓ
�
1C �

ˇ

�
;

they established an iterative procedure to compute the method of moments
estimators.

(iv) Estimation based on Weibull probability plot: Using the Kaplan-Meier-type
estimator

bF .Tj / D 1 �
jY
iD1
.1 �bpi /;

with bpi D Di
n�D�i�1�R�i�1 , i D 1; : : : ; k, estimators result by fitting the

function h.w/ D � log# C ˇw to the data .wi ; zi /, where wi D logTi and
zi D log.� log.1 � bF .Ti//, 1 � i � k.

(v) One-step approximate estimators using Newton–Raphson method: Choosing
an initial value for the parameters, one step of the Newton–Raphson procedure
is computed.

The resulting estimators were compared based on an extensive simulation study.
Moreover, the methods were illustrated by the data in Table 18.1 which originally
was reported by the National Cancer Institute. These data have also been analyzed
in Lawless [575].
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Generalized exponential distributions with cumulative distribution function as
in (12.41) have been addressed by Chen and Lio [252] (see also Peng and
Yan [716]). Adopting the results of Ng and Wang [687], they applied the mid-
point approximation. Moreover, they presented a version of the EM-algorithm
to approximate the MLEs of the parameters. Further, they used the method of
moments to compute estimators. They illustrated their results by the data set given
in Table 18.1. Similar results are presented in Lio et al. [614] for the generalized
Rayleigh distribution and in Xiuyun and Zaizai [931] for the gamma distribution.
For the Gompertz–Makeham distribution, we refer to Teimouri and Gupta [841].
Log-normal distributions are discussed in Amin [44]. Beta kernel distributions in
(12.45) are considered by Teimouri et al. [842].

A general Bayesian approach has been discussed in Lin and Lio [601] using an
MCMC-process. It is illustrated for both the two-parameter Weibull distribution and
the generalized exponential distribution.

Remark 18.1.1. The model of grouped progressively censored data with random
removals has been discussed in Xiang and Tse [924] based on Weibull lifetimes.

18.2 Optimal Inspection Times

Optimal grouping or inspection times for interval censored data have been studied
in Kulldorff [555] and Vasudeva Rao et al. [873].

Lin et al. [606] discussed progressively Type-I interval censored data from a log-
normal population. In particular, they addressed the problem of determining optimal
inspection times T1 < � � � < Tk provided that the censoring scheme is obtained
from the proportions 
 D .�1; : : : ; �m/ as in (1.9). The resulting solution is called
optimally spaced (OS) inspection times. The objective function is defined in terms
of the expected Fisher information matrix (or the asymptotic variance–covariance
matrix). Denoting by

I .D
 I�; #/ D
	
I�� I�#

I�# I##



; D
 D .D1; : : : ;Dk/; (18.3)

the expected Fisher information matrix, Lin et al. [606] computed expressions
for the components of I .D
 I�; #/. Optimal inspection times are determined by
maximizing the determinant of the Fisher information matrix, i.e., Lin et al. [606]
addressed the problem

max
T1<���<Tk

det I .D
 I�; #/ D max
T1<���<Tk

�
I��I## � I 2�#

�
;

for given values of the parameters � and # and censoring proportions 
 . Moreover,
they considered optimally equi-spaced (OES) inspection times defined by
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Ti D �� .k � 2i C 1/T
2

; i D 1; : : : ; k;

with an optimally chosen constant inspection time T . The corresponding optimiza-
tion problem becomes

max
T>0

�
I��I## � I 2�#

�
:

As an alternative criteria, Lin et al. [606] proposed maximization of the trace of
either the expected Fisher information matrix or the variance–covariance matrix of
the MLEs. A third method to determine inspection times is called equal probability
(EP) inspection scheme. Here, the inspection times are chosen such that the expected
number of failures falling in each inspected interval is the same. Results are obtained
by applying a simulated annealing procedure as described in Corana et al. [280,281].

The same approach has been employed by Lin et al. [609] to obtain optimal
inspection schemes for the two-parameter Weibull.#ˇ; ˇ/-distribution.

18.3 Optimal Progressive Interval Censoring Proportions

Utilizing the expected Fisher information matrix in (18.3), Lin et al. [606] also
considered the optimal choice of the inspection proportions 
 in the log-normal
case. They considered the optimization problem

max
�1;:::;�k

�
I��I## � I 2�#

�
;

subject to the constraint

ED1 C
kX
iD2

E.Di jD1 D 
1; R1 D �1; : : : ;Di�1 D 
i�1; Ri�1 D �i�1/ D n � h;

where


1 D ED1; �1 D E.R1jD1 D 
1/; and, for 2 � i � k;

i D E.Di jD1 D 
1; R1 D �1; : : : ;Di�1 D 
i�1; Ri�1 D �i�1/;
�i D E.Ri jD1 D 
1; R1 D �1; : : : ;Di�1 D 
i�1; Ri�1 D �i�1;Di D 
i /;

and h is a proportion of failures prefixed in advance. Numerical results are presented
for OS, OES, and EP inspection times. Moreover, the simultaneous optimization of
inspection times and censoring proportions is addressed. Similar considerations can
be found in Lin et al. [609] for Weibull.#ˇ; ˇ/-distribution.



Chapter 19
Goodness-of-Fit Tests in Progressive
Type-II Censoring

In life testing, parametric distributional assumptions have been widely used.
Therefore, it is essential to test whether the assumed distribution fits the given
data. In the following sections, we present goodness-of-fit tests to decide whether
the model assumption made is reasonable when the data are progressively Type-II
censored.

19.1 Tests on Exponentiality

The first paper on goodness-of-fit tests for progressively Type-II censored data is by
Balakrishnan et al. [131]. They considered both one- and two-parameter exponential
distributions as null hypothesis. In particular, they addressed the problem

H0 W P D Exp.#/; # > 0  ! H1 W P ¤ Exp.#/: (19.1)

Their test procedure is based on properties of the normalized spacings SR
r , r D

1; : : : ; m (cf. (2.9)). Given an exponential distribution Exp.#/, # > 0, the spacings
SR
r , r D 1; : : : ; m, are independent Exp.#/-distributed random variables (see

Theorem 2.3.2). Then, Balakrishnan et al. [131] proposed the test statistic

T D
Pm�1

iD1 .m � i/SR
i

.m � 1/Pm
iD1 SR

i

D 1

m � 1
m�1X
jD1

Pj
iD1 SR

iPm
iD1 SR

i

: (19.2)

An analogue of this quantity has been suggested by Tiku [847] for complete
and doubly Type-II censored samples. In order to use T as a test statistic, the
null distribution has to be calculated. An expression for this distribution is based
on the following result (see, e.g., Balakrishnan et al. [131] and Reiss [750,
Corollary 1.6.9]).

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 19,
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Lemma 19.1.1. The random variables

SR
1Pm

iD1 SR
i

;
SR
1 C SR

2Pm
iD1 SR

i

; : : : ;

Pm�1
iD1 SR

iPm
iD1 SR

i

are distributed as uniform order statistics U1Wm�1; : : : ; Um�1Wm�1.

Hence, .m � 1/T is distributed as the sum of m � 1 IID uniform random

variables because
Pm�1

iD1 Ui Wm�1
dD Pm�1

iD1 Ui with IID uniform random variables
U1; : : : ; Um�1. This shows thatET D 1

2
and VarT D 1

12.m�1/ . Hence,H0 is rejected
if T has either too small or too large values:

Reject H0 if T < cT˛=2 or T > cT1�˛=2;

where cTˇ denotes the ˇ-quantile of the distribution of T . The cumulative distribu-
tion function of a sum of independent uniform random variables can be found in
Feller [361, p. 27] so that .m � 1/T has the cumulative distribution function (see
also Bradley and Gupta [218])

P..m � 1/T � t/ D 1

.m � 1/Š
m�1X
jD0

.�1/j
 
m � 1
j

!
Œt � j �m�1C ; t 2 R:

Remark 19.1.2. It should be noted that the density function of the sum of
k independent uniform random variables can be written as a cardinal B-spline.
Using the convolution property of cardinal B-splines N0;r (see Schoenberg [785]),
i.e.,

N0;r D N0;r�1 �N0;1; r � 2;

where N0;1 can be seen as the density function of a uniform random variable, it
is clear that the cardinal B-spline N0;k equals the density function of the above
sum. Therefore, we can write for the cumulative distribution function of .m�1/T

P..m � 1/T � t/ D
Z t

0

N0;m�1.u/du; t � 0:

This relation may be used to compute the percentiles of the distribution of T .

Balakrishnan and Lin [111] applied an algorithm of Huffer and Lin [466] to
compute the exact distribution of T under H0. A table of quantiles for selected
values of m and level 1 � ˛ has been presented. Marohn [638] pointed out that the
distribution of T can be found in Kendall et al. [515, Example 11.9] and percentiles
are available in Buckle et al. [224] form � 30.
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Since it is difficult to obtain exact quantiles for largem, Balakrishnan et al. [131]
and Marohn [638] suggested a normal approximation to test the hypothesis using
the normalized test statistic T � D p12.m� 1/.T � 1

2
/:

Reject H0 if jT �j > z1�˛=2;

where zˇ denotes the ˇ-quantile of the standard normal distribution. Moreover, they
presented an approximation of the power function for this asymptotic test. They
conducted a simulation study for various alternatives including Weibull, Lomax,
log-normal, and gamma distributions.

Applying Basu’s theorem, Sanjel and Balakrishnan [768] showed that moments
of T can be calculated from the identity

ET k D
E
�Pm�1

iD1 .m � i/SR
i

�k

E
�
.m � 1/Pm

iD1 SR
i

�k :

Using these moments, they found that the density function of T can be expanded in
terms of Laguerre orthogonal polynomials. Critical values obtained by this approx-
imation provide quite accurate approximations to the exact percentiles given in
Balakrishnan and Lin [111], as shown in Table 1 of Sanjel and Balakrishnan [768].

Balakrishnan et al. [131] also proposed two alternative procedures to test
exponentiality. An adaption of a procedure presented in Spinelli and Stephens [821]
uses the ordered spacings SR

1Wm; : : : ; SR
mWm and their mean S D 1

m

Pm
iD1 SR

i Wm. The
corresponding test statistic A2 is defined by

A2 D � 1
m

mX
iD1
.2i � 1/ŒlogWi C log.1 �Wi/��m;

where Wi D 1 � expf�SR
i Wm=Sg, 1 � i � m. Secondly, they considered a

Shapiro–Wilk test statistic comparing the squared mean S
2

and the sum of squaresPm
iD1.SR

i Wm/2 proposed in Shapiro and Wilk [801].
Wang [882] suggested an alternative test statistic which is also based on the

spacings of the data. He used the statistic (cf. (19.2))

T? D �2 log
m�1Y
jD1

Pj
iD1 SR

iPm
iD1 SR

i

D �2
m�1X
jD1

log

Pj
iD1 SR

iPm
iD1 SR

i

: (19.3)

From Lemma 19.1.1, it follows that

T?
dD �2

m�1X
jD1

logUj Wm�1
dD 2

m�1X
jD1
� logUj

dD 2
m�1X
jD1

Zj ;
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where Z1; : : : ; Zm�1 are IID standard exponential random variables. Hence, T?
exhibits a �2-distribution with 2.m� 1/ degrees of freedom. Wang [882] conducted
a simulation study to assess the power of the corresponding test. He used Weibull,
log-normal, and gamma distributions as alternatives to the exponential distribution.
The results show that the test performs very well. The results suggest that the test
based on T? has a better performance than that with test statistic T in most cases.

For small samples, Marohn [638] suggested Fisher’s  statistic

m D m � max
1�j�m.Sj̆ � Sj̆�1/;

where S0̆ D 0; Sm̆ D 1, and Sj̆ D
Pj
iD1 S

R
iPm

iD1 S
R
i

, j D 1; : : : ; m � 1. The null

hypothesis is rejected if the maximum spacing of S1̆ ; : : : ; Sm̆ is significantly large.
The cumulative distribution function of m is given in Marohn [638] and Brockwell
and Davis [220].

Example 19.1.3. In order to illustrate the preceding tests, Nelson’s progres-
sively Type-II censored insulating fluid data 1.1.5 as presented in Viveros and
Balakrishnan [875] has been considered by the abovementioned authors.

Balakrishnan et al. [131] computed the test statistic T D 0:43251 and the
p-value of the asymptotic test as 0:53620. Therefore, the null hypothesis is not
rejected by the test. This decision is consistent with the findings presented in
Nelson [676] and Viveros and Balakrishnan [875]. According to Balakrishnan
and Lin [111], the exact p-value of the test statistic T is 0:72799 showing that
there is strong evidence that the population distribution is exponential. Notice
that, due to the moderate value of m D 8, the normal approximation does not
provide a good estimate of the p-value. Using the Laguerre orthogonal polynomial
approximation, Sanjel and Balakrishnan [768] computed the approximation
0:72968 for the p-value which provides an extremely accurate approximation
of the exact p-value.

The preceding results are also supported by the findings of Wang [882] using
the test statistics T?. He calculated the test statistic T? D 16:4308 and the p-
value 0:2878. Hence, the null hypothesis of an exponential distribution cannot
be rejected, too.

Using Fisher’s  statistic, Marohn [638] computed 8 D 1:941 and the critical
value c0:05 D 4:125 at level ˛ D 0:05. This result is in agreement with the
preceding ones.

The procedures presented above have also been adapted to the two-parameter
exponential case. In this case, the test problem reads (cf. (19.1))

H0 W P D Exp.�; #/; � 2 R; # > 0  ! H1 W P ¤ Exp.�; #/:

Given H0, the first spacing SR
1 D �1.X1WmWn � �/ depends on the unknown para-

meter �, whereas the remaining spacings SR
j D �j .Xj WmWn �Xj�1WmWn/, j D 2;

: : : ; m, do not depend on the location parameter and have the same property as in the
one-parameter exponential case. Therefore, simple modifications of the preceding
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tests can be applied. Specifically, the modified test statistic results by deleting the
first spacing. From (19.2) and (19.3), this leads to the statistics

T � D 1

m � 2
m�1X
jD2

Pj
iD2 SR

iPm
iD2 SR

i

; T �? D �2
m�1X
jD2

log

Pj
iD2 SR

iPm
iD2 SR

i

: (19.4)

Since these quantities have the same structure as T and T?, respectively, they have
similar null distributions. In particular, T � is distributed as the sum of m � 2
uniform random variables, whereas T �? has a �2-distribution with 2.m� 2/ degrees
of freedom. Moreover, the above approximations may also be used by taking this
change into account. A modified version of Fisher’s  may also be used as pointed
out by Marohn [638].

Example 19.1.4. The preceding methods are illustrated by analyzing Spinelli’s
data B.1.5. According to Balakrishnan et al. [131], T � D 0:75391 and the
corresponding p-value computed by the normal approximation is given by
0:00019026. They concluded that the data provide enough evidence to reject the
null hypothesis. Thus, it should not be assumed that the population distribution
is a two-parameter exponential distribution. This conclusion is consistent with
the results of Spinelli and Stephens [821] who used the complete sample in
their analysis. The exact p-value has been computed by Balakrishnan and Lin
[111] as 0:0000354 which supports the preceding result. The Laguerre orthogonal
polynomial approximation by Sanjel and Balakrishnan [768] yields the p-value
0:00001.

For T �? , Wang [882] found T �? D 15:0875 and the corresponding p-value
P.T �? < 15:0875/ D 0:00084 so that the null hypothesis H0 of a two-parameter
exponential distribution is rejected, too. Thus, all the above findings suggest that
the two-parameter exponential distribution does not provide a good model for
the present data.

19.2 Goodness-of-Fit Tests for Other Distributional
Assumptions

19.2.1 Methods Based on Spacings and Deviation
from the Uniform Distribution

Balakrishnan et al. [135] adopted the spacing-based tests for exponentiality to
a general location–scale family of distributions. Given a cumulative distribution
functionG with density function g, they addressed the problem

H0 W F D G�;# ; � 2 R; # > 0  ! H1 W F ¤ G�;# ; (19.5)
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whereF denotes the population cumulative distribution function andG�;# is defined
by G�;# D G..� � �/=#/.

Analogous to the above tests, they proposed an adjusted version of the test
statistic T � as given in (19.4):

T �̀ D 1

m � 2
m�1X
jD2

Pj
iD2 S

e;R
iPm

iD2 S
e;R
i

;

where the spacings SR
i are replaced by the normalized spacings S e;R

i D SR
i =ES

R
i .

Notice that T �̀ is location and scale invariant. The null hypothesis is rejected for
either small or large values of T �̀. Since the distribution of T �̀ is intractable except
for the exponential distribution, Balakrishnan et al. [135] conducted a Monte Carlo
simulation to examine the null distribution for normal and Gumbel families. They
also presented approximations of the mean and variance of T �̀ using first-order
approximations of the single and product moments as given in Balakrishnan and
Rao [115] (see also Sect. 7.6).

Example 19.2.1. Considering Nelson’s progressively Type-II censored insulating
fluid data 1.1.5 in log-time scale, Balakrishnan et al. [135] tested the data for
a Gumbel population distribution. Notice that Nelson [676] and Viveros and
Balakrishnan [875] assumed a Weibull distribution in the original time scale
which yields a Gumbel distribution in the log-time scale. They assumed a normal
approximation of the distribution of T �̀ with mean 0:5 and variance 0:013597
leading to the p-value 0:73405. This provides strong evidence that the population
distribution of the log data is indeed Gumbel.

This topic has been further examined by Pakyari and Balakrishnan [701] through
two approaches. Assuming H0 as in (19.5), they considered the progressively
Type-II censored sample U �1WmWn; : : : ; U �mWmWn where U �j WmWn D G�;#.Xj WmWn/.
Notice that, provided that the null hypothesis is true, the random variables
U �1WmWn; : : : ; U �mWmWn are distributed as uniform progressively Type-II censored order
statistics U1WmWn; : : : ; UmWmWn. The first approach is based on normalized spacings

SR
j IG D �j .U �j WmWn � U �j�1WmWn/; j D 1; : : : ; m;

where U �0WmWn D 0. An extension to k-spacings is also described. They used the
statistics

GmWn D
mX
jD1

.SR
j IG/2; QmWn D

mX
jD1

.SR
j IG/2 C

m�1X
jD1

SR
j IGSR

jC1IG

previously proposed by Greenwood [414] and Quesenberry and Miller [735] in the
setting of order statistics.
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Secondly, define the normalized random variables Yj WmWn D U �j WmWn � EUj WmWn,
j D 1; : : : ; m, where an explicit expression of EUj WmWn is given in Theorem 7.2.3.
The following tests are based on the deviation of the progressively Type-II censored
order statisticsU �1WmWn; : : : ; U �mWmWn from the expected values of uniform progressively
Type-II censored order statistics. Pakyari and Balakrishnan [701] considered the
following location–scale invariant statistics adopting methods previously used for
order statistics (see Brunk [222], Stephens [824], Durbin [344], and Hegazy and
Green [437]):

CCmWn D max
1�j�mYj WmWn; C�mWn D max

1�j�m.�Yj WmWn/;

CmWn D maxfCCmWn; C�mWng; KmWn D C�mWn C CCmWn;

T
.1/
mWn D 1

m

mX
jD1

Yj WmWn; T
.2/
mWn D 1

m

mX
jD1
jYj WmWnj:

(19.6)

If the null hypothesis is true, the distances should be rather small and so large
values of the distance would support the alternative. Critical values are determined
by Monte Carlo simulations. Pakyari and Balakrishnan [701] tested normal and
Gumbel models versus Student’s t and log-gamma models, respectively.

Example 19.2.2. Pakyari and Balakrishnan [701] generated a new progressively
Type-II censored sample with m D 10 observations from Nelson’s insulating fluid
data (see data B.1.6). They found that the goodness-of-fit tests based on the
statistics given in (19.6) support the hypothesis of a Gumbel distribution for the
log-time scale or of a Weibull distribution for the original data. This agrees with
the above findings.

For King’s wire strength connection data B.1.7, Pakyari and Balakrishnan
[701] argued that a normal model would be appropriate for the data. This result
is supported by all tests as can be seen from the computed p-values. This result
is consistent with the analysis of Nelson [676].

Remark 19.2.3. Marohn [638] mentioned that Fisher’s  may be used for all
failure time distributions that can be transformed into an exponential model,
e.g., for generalized Pareto distributions and Gumbel distribution. For a Gumbel
distribution with location parameter �, the transformation t 7! et may be used.
The transformation t 7! log t is appropriate for Pareto data with unknown shape
parameter.

An approach for testing goodness of fit for censored samples based on
transformations has also been proposed by Michael and Schucany [647]. They
applied transformations to Type-II censored data so that the transformed
censored sample behaves under the null hypothesis like a complete sample from
the uniform distribution. An appropriate transformation for progressively Type-II
censored order statistics with a one-step censoring scheme is given on p. 439/440
in Michael and Schucany [647]. A detailed discussion on transformation-based
approaches has recently been presented by Fischer and Kamps [370].
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19.2.2 Tests Based on Empirical Distribution Function

Marohn [638] proposed a Kolmogorov–Smirnov-type goodness-of-fit tests for the
exponential distribution, which can be used for large samples (m > 30). With Sj̆ DPj

iD1 S
R
iPm

iD1 S
R
i

, j D 1; : : : ; m � 1, and the corresponding empirical distribution function

bFm�1 defined by

bFm�1.t/ D 1

m � 1
m�1X
iD1

1Œ0;t �.Sĭ /; t 2 R;

he considered the Kolmogorov–Smirnov statistic

�m�1 D max
t2Œ0;1� jbFm�1.t/ � t j

to measure the deviation from the exponential distribution. H0 is rejected ifp
m � 1�m�1 > c˛ , where c˛ denotes the ˛-percentile of the limiting distribution

of
p
m � 1�m�1. The critical values c0:01 D 1:63 and c0:05 D 1:36 are given in

Marohn [638].
Pakyari and Balakrishnan [700] adopted an approach by Chen and Balakrishnan

[248] for testing the composite (parametric) null hypothesis

H0 W F 2 F	 ; 	 2 �:
This method is based on a transformation to normality and an application of tests
using goodness-of-fit tests based on empirical distribution functions. It should
be noted that this approach is not only restricted to location–scale families of
distributions. The proposed goodness-of-fit procedures are constructed via modified
versions of the Kolmogorov–Smirnov statistic, the Cramér–von Mises statistic,
and the Anderson–Darling statistic. For details on these statistics, we refer to
D’Agostino and Stephens [318]. As an analogue to the empirical distribution
function, Pakyari and Balakrishnan [700] proposed the nonparametric estimate

bFmWn.t/ D

8
ˆ̂<
ˆ̂:

0; t < X1WmWn;
˛j WmWn; Xj WmWn � t < XjC1WmWn; j D 1; : : : ; m � 1
˛mWmWn; XmWmWn � t

for the population cumulative distribution function F given a progressively Type-II
censored sample X1WmWn; : : : ; XmWmWn (an explicit expression of ˛j WmWn D EUj WmWn is
given in Theorem 7.2.3). Notice that bFmWn will be degenerated except when n D m
holds (complete sample case). Under the null hypothesis, the cumulative distribution
function F is estimated by F.�Ib	/, whereb	 denotes the maximum likelihood esti-
mator of the parameter 	 . Introducing the transformed data U �j WmWn D F.Xj WmWnIb	/,
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j D 1; : : : ; m, Pakyari and Balakrishnan [700] proposed extended versions of
quantities used for Type-II right censored data (see, e.g., Lin et al. [605]). First,
a Kolmogorov–Smirnov-type statistic is given by

DmWn D maxfDCmWn;D�mWng; (19.7)

whereDCmWn D max1�j�m.˛j WmWn�U �j WmWn/,D�mWn D max1�j�m.U �j WmWn�˛j�1WmWn/,
and EU0WmWn D 0. A modified Cramér–von Mises statistic is defined via the
quadratic deviation

W 2
mWn D n

Z U�mWmWn

0

.bFmWn.F .t Ib	// � t/2dt

which can be evaluated to

W 2
mWn D

nU �3mWmWn
3

C n
m�1X
jD0

˛j WmWn.U �jC1WmWn � U �j WmWn/.˛j WmWn � .U �jC1WmWn � U �j WmWn//; (19.8)

where U �mC1WmWn D 1. Similarly, the modified Anderson–Darling statistic reads

A2mWn D n
Z U�mWmWn

0

.bFmWn.F .t Ib	//� t/2
t.1 � t/ dt

which results in the sample version

A2mWn D n
m�1X
jD1


˛2j WmWn log

�U �jC1WmWn.1 � U �j WmWn/
U �j WmWn.1� U �jC1WmWn/

�

C 2˛j WmWn log
�1 � U �jC1WmWn
1 � U �j WmWn

��
� n˚ log.1 � U �mWmWn/C U �mWmWn

�
: (19.9)

Adopting the approach of Chen and Balakrishnan [248], Pakyari and Balakrishnan
[700] proposed a five-step procedure to test H0 (˚ denotes the cumulative distribu-
tion function of a standard normal distribution):

� Compute the maximum likelihood estimateb	 for the parameter 	 and the values
U �j WmWn D F.Xj WmWnIb	/, j D 1; : : : ; m;

� Calculate Y �j WmWn D ˚ .U �j WmWn/, j D 1; : : : ; m;

� Considering Y �1WmWn; : : : ; Y �mWmWn as progressively Type-II censored order statis-
tics from a standard normal distribution with mean � and standard deviation � ,
compute the maximum likelihood estimates b� andb� (see Sect. 12.7.2);
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� Calculate U ��j WmWn D ˚.Y �j WmWn/, j D 1; : : : ; m;

� Compute DmWn;W 2
mWn; A2mWn as given in (19.7), (19.8), and (19.9) and reject H0

at significance level ˛ 2 .0; 1/, if the corresponding test statistic exceeds the
critical value.

Critical values for the above procedures can be obtained via Monte Carlo simulation.
Pakyari and Balakrishnan [700] provided a table for ˛ D 0:1. Moreover, they
presented a power analysis for normal distributions against several Student’s t
distributions as well as for Gumbel distributions versus log-gamma distributions
and vice versa. The method is applied to Nelson’s fluid data as in Example 19.2.1
and to Spinelli and Stephens’ data as in Example 19.1.4. All the tests supported
the null hypothesis of a Gumbel distribution for Nelson’s log-scaled data (or a
Weibull distribution in the original scale). For Spinelli and Stephens’ data, Pakyari
and Balakrishnan [700] found that a Weibull model is supported by the three tests.

19.2.3 Tests Based on Kullback–Leibler Distance

Balakrishnan et al. [138] and Rad et al. [736] proposed goodness-of-fit tests based
on Kullback–Leibler distance (9.27)

IR.f kf0/ D
Z

S

f XR

.x/ log
f XR

.x/

f YR

0 .x/
dx;

where f0 D f0.�I 	/ denotes the density function under the null hypothesis.
Using (9.28) and the data x1; : : : ; xm, Balakrishnan et al. [138] presented the
approximation

I1;:::;mWmWn D �nH1;:::;mWmWn �
mX
jD1

Œlogf0.xj I 	/CRj logF 0.xj I 	/�

of IR.f kf0/, where H1;:::;mWmWn D .H R
1;:::;mWmWn.f / C log c.R//=n (see (9.24)).

Analogous to Park [706], Balakrishnan et al. [138] gave the nonparametric estimate

H.w; m; n/ D 1

n

mX
jD1

log
� XjCwWmWn �Xj�wWmWn
EUjCwWmWn �EUj�wWmWn

�

of H1;:::;mWmWn, where the window size w is a positive integer with 1 � w � m=2

and XjCwWmWn D XmWmWn, j C w � m, Xj�wWmWn D X1WmWn, j � w � 1. Then, they
proposed the test statistic
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T .w; m; n/ D �H.w; m; n/ �
mX
jD1

Œlogf0.xj Ib	/CRj logF 0.xj Ib	/�;

whereb	 is an estimator of 	 .
Clearly, the null distribution is present only in the second term of T .w; m; n/. For

an exponential distribution, Balakrishnan et al. [138] used the maximum likelihood
estimator b# D 1

m

Pm
jD1.Rj C 1/Xj WmWn as given in (12.4) to construct the test

statistic

T .w; m; n/ D �H.w; m; n/C m

n

�
logb# C 1

�
:

A power analysis for several (IFR, DFR, and non-monotone hazard rate) alternatives
has been conducted showing that first-step censoring has a higher power than
the other used censoring plans for IFR alternatives. For DFR alternatives, right
censoring has the best power. For alternatives with non-monotone hazard rate, the
best scheme varies with the particular alternative.

Applying the test to Nelson’s insulating fluid data 1.1.5, they obtained
T .3; 8; 19/ D 0:0724. For the estimate b# D 9:09 of # , they calculated the
p-value as

P
�
T .3; 8; 19/ > 0:0724

ˇ̌
H0 W F D Exp.9:09/

� D 0:9921:

This shows strong evidence for an exponential distribution in agreement with
previous findings.

The preceding approach has been applied by Rad et al. [736] to other distributions
including two-parameter Pareto distributions, log-normal distributions, and Weibull
distributions. They presented a power analysis of the constructed tests versus several
alternatives with increasing, decreasing, and non-monotone hazard rates. Once
again, these tests have been applied to Nelson’s insulating fluid data 1.1.5. It turned
out that neither the Pareto nor the log-normal model provides a good fit to the data.
In accordance with previous findings (see Example 19.2.2), the Weibull distribution
provides an excellent fit.



Chapter 20
Counting and Quantile Processes
and Progressive Censoring

20.1 Counting Process Approach

Bordes [216] has addressed nonparametric inference with progressively Type-II
censored lifetime data for the population cumulative distribution function F as
well as for the corresponding survival function R D F , the density function f ,
the hazard rate function �, and the cumulative hazard function �. Given a sample
X1WmWn; : : : ; XmWmWn with observations x1 < � � � < xm, the likelihood function is
given by (x0 D 0)

L.�jxm/ D c.R/
mY
iD1

f .xi /F
Ri
.xi /:

Therefore, the log-likelihood function can be written in terms of the hazard rate �
and the cumulative hazard function� as

`.�jxm/ D log c.R/C
mX
iD1

�
log�.xi / � .Ri C 1/�.xi/

�
:

In order to maximize this function with regard to a discrete measure b� DPm
iD1b�iıxi , where ıx denotes the Dirac measure in x 2 R, Bordes [216] obtained

that the optimal weights are given by

b�i D 1

�i
; i D 1; : : : ; m:

The corresponding nonparametric estimator b� of the cumulative hazard function�
is given by

b�.t/ Db�.Œ0; t �/ D
mX
iD1

1

�i
1ŒXiWmWn;1/.t/; t � 0:
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Applying the connection between the survival function and the cumulative hazard
function, Bordes [216] presented the product limit estimator bR of R (cf. Andersen
et al. [46]) as

bR.t/ D
mY
iD1

XiWmWn�t

�i � 1
�i

:

Notice that, for R D .0�m/, bR D 1�bF , where bF denotes the empirical cumulative
distribution function of the data X1Wn; : : : ; XnWn (m D n).

Bordes [216] introduced the associated counting process N D .N.t//t�0 by

N.t/ D
mX
iD1

1Œ0;t �.X
Rm

i WmWn/

with natural filtration FN D .FN
t /t�0 generated by N and censoring numbers

.Rj /j2N, i.e., FN
t is defined as the �-field �

�
N.s/I s � t�, Rm D .R1; : : : ; Rm/.

Then, he established the following result.

Theorem 20.1.1. The process M D .M.t//t�0 defined via

M.t/ D N.t/ �
Z t

0

Y.s/�.s/ds; (20.1)

where Y.s/ D Pm
iD1.Ri C 1/1Œs;1/.Xi WmWn/ is a martingale w.r.t. the filtration

FN .

Bordes [216] applied this connection to establish an estimator of� by neglecting
the martingale part in (20.1)

b�.t/ D
Z t

0

dN.s/

Y.s/
; t � 0: (20.2)

Remark 20.1.2. Balakrishnan and Bordes [89] presented a smoothed version of
the hazard rate estimator using a kernel function :

b��.t/ D 1

b

Z �

0


� t � s
b

�
db�.s/ D 1

b

mX
iD1

1

�i

� t � Xi WmWn

b

�
1Œ0;� �.Xi WmWn/;

where b is a bandwidth parameter, t 2 Œ0; ��, and Œ0; �� is a fixed interval with

� � 1. For the case of order statistics, the estimatorb�� reduces to the estimator

b��.t/ D 1

b

mX
iD1

1

n � i C 1
� t �Xi Wn

b

�
1Œ0;� �.Xi Wn/

proposed by Watson and Leadbetter [892, 893].
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Under some regularity conditions, it has been shown that the kernel estimator
b�� converges in probability to �. Moreover, asymptotic normality has been
established. Furthermore, Balakrishnan and Bordes [89] discussed the problem
of optimal bandwidth.

Assuming the following regularity conditions for the sequence .Rj /j�1 of
censoring numbers and for � 2 R,

Regularity Condition 20.1.3.

(1) supm�1 Rm � K < C1,

(2) 1
m

Pm
iD1 Ri

m!1����! c,
(3) � 2 R satisfies F.�/ < 1,

Bordes [216] studied the asymptotic behavior of the estimators bR and b�. Then, the
following consistency results hold.

Proposition 20.1.4. Under Regularity Condition 20.1.3, the normalized versions
N.m/ D N=m and Y .m/ D Y=m satisfy the following asymptotic results:

sup
0�t��

ˇ̌
N.m/.t/ � .1 �RcC1.t//ˇ̌ a.s.��! 0; (20.3)

sup
0�t��

ˇ̌
Y .m/.t/ � .c C 1/R.t/ˇ̌ a.s.��! 0: (20.4)

Remark 20.1.5. Under some additional conditions, Alvarez-Andrade and Bor-
des [41] showed that the counting process N can be approximated by Poisson
processes Mm with EMm.t/ D t such that

sup
0�t<1

ˇ̌
ˇN.t/� Mm.t/

Mm.m/

ˇ̌
ˇ D O

�r log2 m

m

�
:

Moreover, they established a Brownian motion approximation for concomitants
of progressively Type-II censored order statistics.

Using the asymptotic expressions given in Proposition 20.1.4, Bordes [216]
established the weak consistency of the estimators bR and b�.

Theorem 20.1.6 (Bordes [216]). Under Regularity Conditions 20.1.3,

(i) sup0�t��
ˇ̌b�.t/ ��.t/ˇ̌ P�! 0,

(ii) sup0�t��
ˇ̌bR.t/ � R.t/ˇ̌ P�! 0,

Moreover, the following weak convergence of the standardized processes is
true. Let DŒa; b� denote the space of Cadlag functions on an interval Œa; b� (see,
e.g., Pollard [724, Chap. V]).
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Theorem 20.1.7. Let B be the Brownian motion on Œ0;1/. Then, under
Regularity Conditions 20.1.3,

(i) The estimator b� converges to a Brownian motion, i.e.,

p
m
�b�.t/ ��.t/� d�! B ı v.t/ in DŒ0; ��;

where the covariance function v is defined by

Cov
�
B ı v.s/; B ı v.t/

� D v.s ^ t/ D 1 � RcC1.s ^ t/
.c C 1/2RcC1.s ^ t/ ; s; t 2 Œ0; ��:

The covariance function v may be consistently (uniformly) estimated on
the interval Œ0; �� by

bv.t/ D m
Z t

0

dN.s/

Y 2.s/
:

(ii) The estimator bR converges to a Brownian motion, i.e.,

p
m
�bR.t/ �R.t/� d�! R.t/B ı v.t/ in DŒ0; ��;

with Cov
�
R.s/B ı v.s/; R.t/B ı v.t/

� D R.s/R.t/v.s ^ t/, s; t 2 Œ0; ��.
(iii) Finally,

sup
0�t��

r
m

bv.t/

ˇ̌bR.t/� R.t/ˇ̌

bR.t/
d�! sup

t2Œ0;1�
jB.t/j:

Bordes [216] used these results to establish asymptotic confidence bounds for
� and R as well as Gill-type confidence bands (see Fleming and Harrington [376,
p. 240]). He applied the results to Nelson’s insulating fluid data 1.1.5 as presented
by Viveros and Balakrishnan [875].

The results of Bordes [216] have been utilized by Alvarez-Andrade et al. [42] to
construct homogeneity tests for several samples of progressively Type-II censored
order statistics. In particular, they compared the hazard rates of K independent
samples testing the null hypothesis

H0 W �1 D � � � D �K D �0 or, equivalently,H0 W F1 D � � � D FK D F0;
where �0 and F0 are the given hazard rate and cumulative distribution function,
respectively, under the null hypothesis.

Suppose that K samples Xj Wmi Wni Ii , 1 � j � mi , of progressively Type-
II censored order statistics are given with censoring numbers R1;i ; : : : ; Rmi ;i ,
1 � i � K and that Regularity Conditions 20.1.8 are satisfied (see Regularity
Condition 20.1.3).
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Regularity Condition 20.1.8.

(1) There exists a universal bound C with

for all m1; : : : ; mK W sup
1�i�K

sup
1�j�mi

Rj;i � C < C1I

(2) There exist 	1; : : : ; 	K such that
PK

iD1 	i D 1, and, for 1 � k � K,

mkPK
iD1 mk

�! 	k if

KX
iD1

mi �!1I

(3) For 1 � k � K,

1

mk

mkX
jD1

Rj;k �! ck; if

KX
iD1

mi �!1I

(4) � 2 R satisfies F0.�/ < 1,

Alvarez-Andrade et al. [42] considered the Nelson–Aalen-type estimator of the
cumulative hazard rate �i given by (see (20.2))

b�i.t/ D
Z t

0

dNi .s/

Yi .s/
; t � 0:

For two-sample tests, i.e., K D 2, the test statistic is based on the discrepancy
process Dm defined by

Dm.t/ D
p
m

Z t

0

Wm.s/
�
db�1.s/ � db�2.s//; t � 0;

where Wm is an appropriate nonnegative locally bounded predictable weight
process. These tests are linear in b�1 � b�2 and therefore referred to as linear tests.
Then, Alvarez-Andrade et al. [42] showed the following result.

Theorem 20.1.9. Suppose that Regularity Condition 20.1.8 is satisfied. Assume
that a deterministic function w defined on Œ0; �� exists with

sup
t2Œ0;� �

jWm.t/ � w.t/j P�! 0; m!1:

Then, under H0,

Dm

d�! G ı v in DŒ0; ��;
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where G is a centered Gaussian martingale with covariance function v defined by

v.t/ D
Z t

0

w2.s/
� 1

	1y1.s/
C 1

	2y2.s/

�
�0.s/ds

and yi .s/ D .ci C 1/.1 � Fi .s//ciC1, i D 1; 2, s 2 Œ0; t �.
Alvarez-Andrade et al. [42] pointed out that tests based on linear functionals

may lead to a poor performance depending on the choice of � . Therefore, as an
alternative to Dm, they proposed a quadratic functional based on the spacings
Dm.tk/�Dm.tk�1/, k D 1; : : : ; p, with 0 D t0 < t1 < � � � < tp D � . Since

Vm D
�
Dm.t0/;Dm.t2/�Dm.t1/; : : : ;Dm.tp/�Dm.tp�1/

�0

is asymptotically normal with covariance matrix

˙ D diag
�
v.t1/; v.t2/� v.t1/; : : : ; v.tp/� v.tp�1/

�
;

Alvarez-Andrade et al. [42] showed that under Regularity Condition 20.1.8 and the
assumption v.tk/� v.tk�1/ > 0, k D 1; : : : ; p, the result

V 0m ḃ�1Vm
d�! �2.p/; asm!1;

holds, where ḃ�1 D diag.1=bv.t1/; 1=Œbv.t2/ �bv.t1/�; : : : ; 1=Œbv.tp/ �bv.tp�1/�/ andbv
is a uniformly consistent estimator of v defined by

bv.t/ D m
Z t

0

W 2
m.s/

�J1.s/
Y1.s/

C J2.s/

Y2.s/

�d.N1.s/CN2.s//
Y1.s/C Y2.s/

with Ji .s/ D 1.0;1/.Yi .s//, i D 1; 2.

Remark 20.1.10. Further proposals like Kolmogorov–Smirnov-, Cramér–
von Mises-, and Anderson–Darling-type statistics are presented by Alvarez-
Andrade et al. [42]. Details on the corresponding limit results are also provided
by these authors.

In the K-sample setting, Alvarez-Andrade et al. [42] considered a proportional
hazards model, i.e., �k D ˛k�0 with some ˛k > 0, k D 1; : : : ; K . Defining N DPK

iD1 Ni and Y D PK
iD1 Yi , they considered a weighted score statistic bU .w/ with

components

bU .w/k .�/ D
Z �

0

Wk.s/dNk.s/�
Z �

0

Wk.s/Yk.s/

Y.s/
dN.s/

with a predictable weight functionWk which simplifies underH0 to
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bU .w/k .�/ D
KX
iD1

Z �

0

Wk.s/
�
ıik � Yk.s/

Y.s/

�
dMi.s/:

ıik denotes the Kronecker symbol andMi is as defined in (20.1). Then, the following
asymptotic result is true.

Theorem 20.1.11. Assume that Regularity Condition 20.1.8 is true and that
Wk , 2 � k � K, are bounded predictable processes such that

max
2�k�K sup

s2Œ0;� �

ˇ̌
Wk.s/ � wk.t/j P�! 0; m!1;

for some deterministic functions wk , 2 � k � K.
Then, the process

p
mbU .w/ converges in distribution to a centered Gaussian

martingale G ı˙ in �KiD2 DŒ0; �� with covariance matrix ˙ D .�ij /2�i;j�K on
Œ0; �� given by

�ij D
KX
lD1

	l

Z �

0

wi .s/wj .s/
�
ıil � yi .s/

y.s/

��
ılj � yj .s/

y.s/

�
yl.s/�.s/ds;

where y.s/ DPK
lD1 	lyl .s/, s 2 Œ0; ��.

Moreover, for t 2 Œ0; ��, the covariance matrices ˙.t/ are consistently
estimated by ḃ.t/ D .b�ij .t//2�i;j�K , with

b�ij .t/ D 1

m

KX
iD1

Z t

0

Wi .s/Wj .s/
�
ıil � Yi.s/

Y.s/

��
ılj � Yj .s/

Y.s/

�
dN.s/:

This theorem implies that, for t 2 Œ0; �� such that det˙.t/ ¤ 0,

b.t/ D .bU .w/.t//0.ḃ.t//�1bU .w/.t/ d�! �2.K � 1/;m!1:
Hence, for given t 2 Œ0; ��, a homogeneity test proceeds by checking

b.t/ � �21�˛.K � 1/:
Obviously, the performance of the proposed test depends heavily on the choice

of t 2 Œ0; ��. In order to overcome this drawback, Alvarez-Andrade et al. [42]
constructed a quadratic functional that is asymptotically �2-distributed (see two-
sample problem). Introducing 0 D t0 < t1 < � � � < tp D � and defining
b� i D ḃ.ti /� ḃ.ti�1/, i D 1; : : : ; p, with ḃ.0/ D 0, a consistent estimator of � D
diag.�1; : : : ; �p/ is given by b� D diag.b� 1; : : : ; �p/. Moreover,bV D .bV 01; : : : ;bV 0p/0
with bV i D bU.ti / �bU.ti�1/ satisfies that

p
m bV is asymptotically normal. Then,
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bV 0b� �1bV D
KX
iD1

bV 0ib� �1i bV i
d�! �2.p.K � 1//;m!1:

Details on the performance of the proposed estimators as well as an extensive
simulation study are presented in Alvarez-Andrade et al. [42].

Remark 20.1.12. Nonparametric estimation of the survival function R D F

with progressive Type-I censored data (see Sect. 13) has been discussed in
Balakrishnan et al. [145] and Burke [225]. Burke [225] studied the asymptotic
behavior of product limit estimators of R for two types of progressive Type-I
censoring by means of martingales and empirical processes. As for the Type-
II censoring scenario, limiting results are established. In particular, he showed
that the presented estimators are asymptotically equivalent to those estimators
applied for Type-II right censored data. It is illustrated that results for confidence
bands and statistical tests can be directly applied to the progressive censoring
setting.

Balakrishnan et al. [145] discussed nonparametric estimation of R with
progressive Type-I interval censored data which involves only the censoring
number Ri (at time Ti ) and the number of observations Di in a time interval
.Ti�1; Ti � (see Chap. 18). They proposed Nelson–Aalen- and Kaplan–Meier-type
estimators when the population cumulative distribution functions are specified
by a parametric family .F	 /	2�, � � R. Moreover, asymptotical properties have
been established.

Balakrishnan et al. [145] pointed out that the reliability at Ti can be estimated
nonparametrically by

bF i D
iY

jD1

˛�j
˛Cj�1

D
iY

jD1

�
1 � Dj

˛Cj�1

�
;

where

˛�j D n �D�j �R�j�1; ˛Cj D n �D�j �R�j D ˛�j �Rj :

As a result, 	 can be estimated by the minimum-distance estimator

b	 D arg min
	2�

mX
iD1

�
F 	.Ti /� bF i

�
:

Balakrishnan et al. [145] established weak consistency and asymptotic normality

of b	 under some regularity conditions.
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20.1.1 Semiparametric Proportional Hazards Model

Alvarez-Andrade et al. [43] investigated a semiparametric proportional hazards
model for progressively Type-II censored data assuming the hazard rate
representation

�.t IT / D exp
˚
ˇ00Z

�
�0.t/; t � 0;

where ˇ0 2 R
p is an unknown regression parameter. �0 is an unknown hazard rate

and Z is a vector of p covariates.
For 1 � j � m, let Ij D .in��jC1; : : : ; in��jC1 /, j D 1; : : : ; m, denote

the set of indices which assigns failures and removals to component numbers in
the following way: in��jC1 denotes the number of the j th failed unit, whereas
in��jC2; : : : ; in��jC1 denote the numbers of progressively censored units in the
j th censoring step (see also the construction in the proof of Theorem 10.2.1 and
Fig. 10.1).

Assume that the index sets I1; : : : ; Im are known. Defining the filtration FN D
.FN

t /t�0 defined as the �-field �
�
.Xi WmWn; Ii /; 1 � i � mIXi WmWn � t

�
and the

counting process

N D
mX
iD1

Ni .t/; Ni .t/ D 1Œ0;t �.Xi WmWn/; t � 0;

Alvarez-Andrade et al. [43] established martingale properties, e.g., for the processes
defined by

Mi.t/ D Ni.t/ �
Z t

0

X
j2Ii

expfˇ00Zj /1.s;1/.Xi WmWn/�0.s/ds:

Zj denotes the covariate of the j th lifetime Xj , j D 1; : : : ; n.
Conditional on the covariate Z, the cumulative hazard rate �.�IZ/ is estimated

by b�.�IZ/ defined as

b�.t IZ/ D exp
˚b̌0

nZ
�b�0.t/; t � 0:

Here, the estimator b̌n of ˇ is given by b̌n D arg maxˇ2Rp Cn.ˇ/, where

Cn.ˇ/ D
mX
iD1


ˇ0Zn��iC1 � log

	 X
j2Imi

expfˇ0Zj g

�
; Imi D

m[
jDi

Ij :
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The nonparametric estimator of the cumulative hazard rate �0 is given by

b�0.t/ D
mX
iD1

XiWmWn�t

� X
j2Imi

expfˇ0nZj g
��1

:

The estimator of the survival function is defined by the product limit estimator bR
given by

bR.t IZ/ D
mY
iD1

XiWmWn�t

	
1 � expfˇ0nZgP

j2Imi expfˇ0nZj g


; t � 0:

Under some regularity conditions, Alvarez-Andrade et al. [43] obtained asymp-
totic properties:

(i) b̌n P�! ˇ0,
(ii)
p
n.b̌n � ˇ0/ converges in distribution to a centered Gaussian distribution

with covariance matrix˙�1.�/ where � > 0 satisfies
R �
0 �0.s/ds <1 and

˙.�/ D
Z �

0

v.s; ˇ0/s
.0/.s; ˇ0/�0.s/ds;

with appropriate functions v.�; ˇ0/ and s.0/.�; ˇ0/,
(iii) ˙.�/ can be consistently estimated.

Moreover, they found that
p
n.b�.�IZ/ � �.�IZ// converges weakly to a centered

Gaussian process in DŒ0; ��. The corresponding variance function v.�IZ/ has an
explicit integral representation and can be consistently estimated on Œ0; ��. More
details as well as simulation results can be found in Alvarez-Andrade et al. [43].

20.2 Quantile Process Approach

The notion of quantile processes has been introduced to progressively Type-II
censored order statistics by Alvarez-Andrade and Bordes [40]. They studied the
asymptotic behavior of the quantile process

�
Xb˛mcWmWn

�
˛2Œ0;1�

with X0WmWn 	 0 given the following assumptions.
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Regularity Condition 20.2.1.

(C1) ˛ 2 Œ0; a� for some a 2 .0; 1/,
(C2) The sequence of censoring numbers .Ri /i2N is bounded by K, i.e., Ri �

K for i 2 N,
(C3) R D 1

m

Pm
iD1 Ri D cC
m, where c � 0 and .
m/m2N � R satisfies either

(i) 
m D o.1/ or (ii) 
m D o.m�1=2/,
(C4) Let G D 1 � F cC1

. Then, " 2 Œ0; a/ exists with G .Œ"; a�/ � .c; b/ �
.0;1/ for some b > c and the hazard rate � of F is continuous with
�.t/ > 0, t 2 .c; b/.

For ˛ 2 Œ0; a�, Alvarez-Andrade and Bordes [40] defined the process�eY .m/.˛/�
˛2Œ0;a� by

eY .m/.˛/ D pm
b˛mcX
jD1

Z
.m/
j � 1
�j;m

;

where �j;m D Pm
iDj .Ri C 1/, 1 � j � m, m 2 N.

�
Z
.m/
j

�
1�j�m;m2N defines

a triangular array of IID exponential random variables. Given (C1)–(C3)(i) from
Regularity Condition 20.2.1, they showed that

�eY .m/.˛/�
˛2Œ0;a� converges to a

centered Gaussian process on Œ0; a� with variance function v defined by

v.˛/ D ˛

.c C 1/2.1 � ˛/ ;

i.e.,
�eY .m/.˛/�

˛2Œ0;a�
d�! Gv on DŒ0; a�. They used this limiting result to establish

the following result.

Theorem 20.2.2. Given (C1)–(C3)(i) from Regularity Condition 20.2.1, the
following results hold:

(i) sup˛2Œ0;a� jXb˛mcWmWn �G .˛/j
P�! 0,

(ii) Let X.m/ D �p
m.Xb˛mcWmWn � G .˛//

�
˛2Œ0;a�. If additionally (C3)(ii)

and (C4) hold, then

X.m/ d�! Gv on DŒ"; a�;

where Gv is a centered Gaussian process on Œ"; a� with variance function v
defined by

v.˛/ D ˛

.c C 1/2.1 � ˛/�2�G .˛//� ; ˛ 2 Œ"; a�:
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Alvarez-Andrade and Bordes [40] proposed the estimator

bv.˛/ D ˛

.RC 1/2.1 � ˛/b�2�Xb˛mcWmWn
� ; ˛ 2 .0; a/;

whereR D 1
m

Pm
jD1 Rj andb� is an estimator of the hazard rate �. Using the results

of Bordes [216], they introduced the kernel estimator

b�.m/ D 1

bm

Z �

0


� t � s
bm

�b�.m/.ds/;

where  is a kernel function, bm is the bandwidth, and b�.m/ is a nonparametric
estimator of the cumulative hazard function � as defined in (20.2). They showed
that under assumptions (C1)–(C4) from Regularity Condition 20.2.1 and for all
˛ 2 Œ0; a�, the estimator bv.˛/ converges in probability to the true value of the
variance function v.˛/.

Introducing the function g.m/.˛/ D 1 � .1 � ˛/RC1, they showed that, given
(C1)–(C3)(i) from Regularity Condition 20.2.1,

bq.m/˛ D Xbg.m/.˛/mcWmWn
P�! F .˛/:

Moreover, assuming additionally (C3)(ii) and (C4), they established asymptotic
normality, i.e., for ˛ 2 ."; a/,

p
m
�bq.m/˛ � F .˛/

� d�! N.0; v.g.˛///

with g.˛/ D 1 � .1 � ˛/cC1. Further results and an extensive discussion of these
results are provided by Alvarez-Andrade and Bordes [40] (see also Alvarez-Andrade
and Bordes [41]).



Chapter 21
Nonparametric Inferential Issues in Progressive
Type-II Censoring

21.1 Precedence-Type Nonparametric Tests

Precedence-type tests are based on two samples X1; : : : ; Xn1 and Y1; : : : ; Yn2 with
population cumulative distribution functions F1 and F2, respectively. They are
applied to test the null hypothesis

H0 W F1 D F2: (21.1)

In a life test, F1 represents the distribution of products generated in a standard
process, whereas F2 would represent the outcome of a new process. Both samples
are tested simultaneously and the subsequent failures are monitored. If additionally
right censoring is employed to the Y -sample, this scenario results in two Type-II
right censored samples X1Wn1 � � � � � Xr1Wn1 and Y1Wn2 ; : : : ; Yr Wn2 , where the number
of observations r1 in the X -sample is random. In fact, Xr1Wn1 is the largest order
statistic in the X -sample not exceeding Yr Wn2 . The sampling situation is depicted
in Fig. 21.1. In fact, the Y -sample is used to partition the X -sample into groups
by counting X -failures in intervals of adjoint Y -failures. Therefore, prefixing the
sample size of the Y -sample as r , the random variablesMi are defined as

M1 D
n1X
jD1

1.�1;Y1Wn2 �.Xj Wn1/;

Mi D
n1X
jD1

1.Yi�1Wn2 ;YiWn2 �.Xj Wn1/; i D 2; : : : ; r:
(21.2)

Notice that MrC1 D n2 �M�r D n2 � r1 denotes the number of specimens from
the X -sample surviving the r th failure in the Y -sample. Obviously, this number is
determined by M1; : : : ;Mr .

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 21,
© Springer Science+Business Media New York 2014
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�
x1Wn1

�
x2Wn1

�
x3Wn1

�
x4Wn1

�
x5Wn1

�
x6Wn1

�
x7Wn1

�
xr1Wn1

m1 D 1 m2 D 2 m3 D 3 m4 D � � �

�
y1Wn2

�
y2Wn2

�
y3Wn2

�
yrWn2

Fig. 21.1 Precedence life-test with Type-II censored data

Precedence-type tests will be particularly useful when the statistical analysis
should be based only on early failures. For instance, such a scenario is present
when

(i) Expensive units are put on a life test, and not all of them should be destroyed in
the experiment, or when

(ii) The experimenter wants to make a quick and reliable decision at an early stage
of the life test.

For more details on motivation as well as applications, we refer to Nelson [672,673],
Ng and Balakrishnan [685], and the monograph by Balakrishnan and Ng [114].

21.1.1 Precedence-Type Nonparametric Tests
with Progressive Censoring

Precedence-type testing with progressively Type-II censored data has been proposed
in Ng and Balakrishnan [684] (see also Balakrishnan and Ng [114, Chap. 7]).
While the X -sample remains Type-II right censored, the Y -sample is allowed to be
progressively Type-II censored according to a censoring scheme R D .R1; : : : ; Rr/
with �1.R/ D n2. Therefore, the data is given by independent samples

(i) X1Wn1 � � � � � Xr1Wn1 (lifetimes of standard product),
(ii) Y1Wr Wn2 � Y2Wr Wn2 � : : : � Yr Wr Wn2 (lifetimes of new product).

The random variablesMi , i D 1; : : : ; r , are defined as in (21.2) with Yi Wn2 replaced
by Yi Wr Wn2 . The sampling situation is illustrated in Fig. 21.2.

Remark 21.1.1. As an alternative to these hypothesis tests, Maturi et al.
[642] discussed a method called nonparametric predictive inference (NPI) in the
framework of progressive censoring. In order to compare the two groups, lower
and upper probabilities for the event that a single future Y -observation exceeds
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�
x1Wn1

�
x2Wn1

�
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�
x4Wn1

�
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�
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�
x7Wn1

�
xr1Wn1

m1 D 1 m2 D 2 m3 D 3 m4 D � � �

�
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�
y2WrWn2
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R2

�
y3WrWn2

withdrawn

R3

�
yrWrWn2

withdrawn

Rr

Fig. 21.2 Precedence life-test with progressive Type-II censoring

a future X -observation are calculated. Details on the methods as well as results
for progressively censored data can be found in Maturi et al. [642].

Extending procedures for Type-II right censored data, Ng and Balakrishnan
[684] proposed the weighted precedence test statistic P �r and the weighted maximal
precedence test statistic M �.r/ as

P �.r/ D
rX
iD1

�i .R/Mi ;

M �.r/ D max
1�i�r f�i .R/Mig :

Remark 21.1.2. As an alternative to P �r and M �.r/, one may consider Wilcoxon
rank-sum precedence statistics as introduced in the case of two Type-II right
censored data by Ng and Balakrishnan [683]. Such a maximal Wilcoxon rank-
sum statistic for progressively censored data is defined by

W �max;r D
rC1X
iD1

Mi

�
M�i�1 C n2 � �i.R/C Mi C 1

2

�
:

As pointed out in Ng and Balakrishnan [685, p. 155], the identity

W �max;r D
n1.n1 C 2n2 C 1/

2
� P �.r/

holds so that W �max;r and P �.r/ lead to equivalent tests.

In order to establish critical values for the tests, it is necessary to derive the
distribution of these test statistics under H0 as given in (21.1). In the first step,
the joint probability mass function of Mr D .M1; : : : ;Mr/ is established. Notice
that, given H0, these probabilities are distribution-free. In order to get compact
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expressions, we use the notation m�r D Pr
iD1 mi , j�r D Pr

iD1 ji and R�r DPr
iD1 Ri to denote the partial sums of the first r terms.

Theorem 21.1.3. Under the null hypothesis H0 W F1 D F2, the probability mass
function of PMr is given by

PF1DF2.Mr D mr / D C
X

.j1;:::;jr�1/2A

(
r�1Y
lD1

 
R�l � j�l

jl

!
� .ml C jlC1 C 1/

)

� � .n1 C n2 � r �m�r � j�r�1 C 1/
� .n1 C n2 C 1/ ; (21.3)

where

C D
 

n1

m1; : : : ; mr; n1 �m�r

!
rY

jD1
�j .R/;

A D
n
.i1; : : : ; ir�1/j0 � i1 � R1; 0 � il � R�l � i�l�1; l D 2; : : : ; r � 1

o
:

This result has been derived by Ng and Balakrishnan [684] as a special case by
assuming a Lehmann alternative specified by

H1 W F �
1 D F2; � > 1: (21.4)

Notice that the alternative implies a stochastic ordering of the distributions F1; F2,
i.e., F1 > F2. Then, the following theorem holds.

Theorem 21.1.4. Under the Lehmann alternativeH0 W F �
1 D F2, the probability

mass function of PMr is given by

PF�1 DF2.Mr D mr /

D C�r
X

.j1;:::;jr /2A�
.�1/j�r

rY
iD1

 
Ri

ji

!(
r�1Y
kD1

B .m�k C �j�k C k�;mkC1 C 1/
)

� B .m�r C �j�r C r�; n1 �m�r C 1/ ;
where C is as given in Theorem 21.1.3, A� D �riD1 ˚1; : : : ; Ri�, and B.�; �/
denotes the beta function.

Distribution of Test Statistics

Given n1; n2; r , the censoring scheme R, and the total number of observed
X -failures P �.r/;obs D

Pr
iD1 �i .R/mi , the p-values ˛obs of the tests can be obtained
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from the expression given in Theorem 21.1.3. For the weighted precedence statistic
P �.r/ D

Pr
iD1 �i .R/Mi , this is given by

˛obs D
n1X

.m1;:::;mr /2A˘
P�.r/;obs�P�.r/�n1n2

PF1DF2.Mr D mr /:

where A˘ D ˚
1; : : : ; n1

�r
. Therefore, given a level of significance ˛, the null

hypothesis is rejected by the test when ˛obs > ˛.
Replacing P �.r/;obs and P �.r/ by the weighted maximal precedence statistic

M �.r/;obs D max1�i�r f�i.R/mig and M �.r/ D max1�i�r f�i .R/Mig, the
corresponding p-values can be computed similarly.

Alternatively, critical lower limits s may be computed for a given level of
significance ˛. Near 5 %-critical values s are tabulated in Ng and Balakrishnan [684]
and Ng and Balakrishnan [685, Tables 7.1, 7.2].

Under the Lehmann alternative (21.4), a similar expression for the power
function has been established. In particular, for the weighted precedence statistic,
the power function is given by

˛.�; s/ D
n1X

.m1;:::;mr /2A˘
s�P�.r/�n1n2

PF �1 DF2.Mr D mr /; � � 1;

where PF�1 DF2.Mr D mr / is taken from Theorem 21.1.4. An analogous expression
is available for the weighted maximal precedence statistic. Power values under
Lehmann alternative are computed by Ng and Balakrishnan [684] and Ng and
Balakrishnan [685, Table 7.3] for various scenarios and � 2 f1; : : : ; 6g.
Remark 21.1.5. As an alternative to Lehmann alternative, Ng and Balakrishnan
[684] and Ng and Balakrishnan [685] have discussed a location-shift alternative,
i.e.,

H1 W F1 D F2.� C 	/: (21.5)

An extensive Monte Carlo simulation has been carried out for finding power
values of the weighted (maximal) precedence tests with 	 2 f0:5; 1g and various
distributions including normal, exponential, gamma, log-normal, and extreme
value distributions.

Finally, we reproduce an example presented in Ng and Balakrishnan [685,
p. 172/3].

Example 21.1.6. Ng and Balakrishnan [684] applied the weighted (maximal)
precedence tests to data generated from Nelson’s insulating fluid data (see Nelson
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Sample (no. 3) xj W10 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75
Sample (no. 6) yR

j WrW10 1.34 1.49 1.56 2.12 5.13

Table 21.1 Two subsamples of times to insulating fluid breakdown data as reported in Ng and
Balakrishnan [684]

[676, p. 462]). They chose subsamples no. 3 and no. 6 where progressive censoring
according to the censoring plan R D .3; 0�3; 2/ was employed on sample
no. 6. The resulting data are presented in Table 21.1. Applying the weighted
precedence tests to the data, they obtained P �.5/;obs D 67 and M �.5/;obs D 50 with
corresponding p-values 0:009 and 0:006. These small p-values suggest that the
null hypothesis has to be rejected in favor of the alternative. Therefore, we may
conclude that there is strong evidence that the lifetime distributions are different.

In order to compare the results with that in a parametric model, Ng and Bala-
krishnan [685] presented a corresponding analysis assuming that the X -sample
is generated from an Exp.#1/-population, whereas the baseline distribution of
the Y -sample is Exp.#2/. Using the MLEs of #j given in (12.4), the resulting

estimates areb#�1;MLE D 1:748 andb#�2;MLE D 5:184. From the independence of the
samples and the properties of the MLEs (see Theorem 12.1.1), we conclude that

the ratio n1b#�1;MLE=.r
b#�2;MLE/ has an F(20,10)-distribution under H0 W #1 D #2.

Since the corresponding p-value of the two-sided test is given by 0.0185, the null
hypothesis is rejected in this case as well.

Precedence-Type Test Based on Kaplan–Meier Estimator of Cumulative
Distribution Function

As an alternative to the preceding test statistics, Ng and Balakrishnan [686]
proposed a test statistic based on a Kaplan–Meier-type estimator of the cumulative
distribution function F2. As above, the Y -sample is given by Y1Wr Wn2 � : : : � Yr Wr Wn2 .
Then, following Kaplan and Meier [507], a nonparametric estimator of F2.Yj Wr Wn2/
is given by

bF 2.Yj Wr Wn2/ D 1 �
jY
iD1

�
1 � 1

�i.R/

�
; j D 1; : : : ; r: (21.6)

The Kaplan–Meier estimator of the cumulative distribution function F1 is given
by bF 1.Xj Wn1/ D j

n1
, j D 1; : : : ; n1. In order to construct the test statistic, we

consider Mi , i D 1; : : : ; r , as defined in (21.2). Suppose 0 � Qj � Mj counts the
number ofX -failures xlWn1 in the interval .yj�1Wr Wn2; yj Wr Wn2� satisfying the inequality
bF 1.xlWn1 / > bF 2.yj Wr Wn2/, j D 1; : : : r . Then, define
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Q.r/.Mr / D max.0;M1 � 1/C
rX

jD2

M�jX
iDM�j�1C1

1
.bF2.Yj WrWn2 /;1/

�bF 1.Xi Wn1/
�
;

whereM�j DPj

kD1 Mk . Here, the information ofX -observations exceedingYj Wr Wn2
is ignored. Another statisticQ�.r/.Mr / can be defined by assuming that all remaining
X -failures occur before the (r C 1)th unobserved Y -failure. This latent failure
YrC1WrC1Wn2 is defined in the sense that no progressive censoring is employed at
the termination time Yr Wr Wn2 and the process is monitored up to the next failure.
Therefore, it has to be assumed that at least one item is left in the experiment at
the final censoring time, i.e., Rr � 1. This corresponds to progressive censoring
according to the censoring scheme .R1; : : : ; Rr�1; 0; Rr � 1/ with Rr � 1. Then,
Q�.r/.Mr / is defined by

Q�.r/.Mr / D Q.r/.Mr /C
n1X

iDM�rC1
1
.bF2.YrC1WrC1Wn2 /;1/

�bF 1.Xi Wn1/
�
:

Ng and Balakrishnan [686] proposed to use the average of these two statistics

Q
�
.r/.Mr / D 1

2

�
Q.r/.Mr /CQ�.r/.Mr /

�

D Q.r/.Mr /C 1

2

n1X
iDM�rC1

1
.bF2.YrC1WrC1Wn2 /;1/

�bF 1.Xi Wn1/
�
;

Large values of Q
�
.r/.Mr / lead to a rejection of H0. The critical values of the

corresponding test can be obtained by using the probability mass function of PMr

as given in (21.3), i.e.,

PF1DF2.Q
�
.r/.Mr / D q/ D

X

.m1;:::;mr /2A˘
Q
�

.r/.mr /Dq

PF1DF2.Mr D mr /:

where A˘ D ˚
1; : : : ; n1

�r
. Similarly, results can be obtained for the power

function under the Lehmann alternative. Power comparisons are available in Ng and
Balakrishnan [686]. Their results show that the statistic Q

�
.r/.Mr / is more powerful

than the weighted maximal precedence statistic. It is slightly less powerful thanP
�
.r/.

Similar simulation results are available under location-shift alternative as well.
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Fig. 21.3 Precedence life-test with progressive Type-II censoring employed to both samples

Two Progressively Censored Samples

In the preceding derivations, it was assumed that only the Y -sample is progressively
censored. It is natural to consider also a progressively Type-II censored sample
for the X -sample as has been done in Balakrishnan et al. [147]. They considered
censoring schemes R and S for the X - and Y -samples, respectively, so that the
data are given by independent samples

(i) XR
1Wr1Wn1 � � � � � XR

r1Wr1Wn1 ,
(ii) YS

1Wr Wn2 � : : : � YS
r Wr Wn2 .

This scenario is depicted in Fig. 21.3. Notice that r1 is random as before. Again, the
random variablesMi , i D 1; : : : ; r , are as defined in (21.2) with obvious changes.

Balakrishnan et al. [147] proposed two statistics to construct precedence test
in this model. First, they constructed a Wilcoxon-type rank-sum test which is a
modification of the test proposed in Ng and Balakrishnan [682]. Suppose YS

i�1Wr Wn2 <
XR
j Wr1Wn1 < YS

i Wr Wn2 . Then, the Wilcoxon rank-sum statistic is computed under the
assumption that theRj units progressively censored in the j th step of theX -sample
would have been failed in the interval .XR

j Wr1Wn1; Y
S
i Wr Wn2/. Then, the rank sum of

X -failures in the pooled sample is given by

TW;r D 1

2

rX
kD1

Wk.Wk C 1/C
rC1X
kD2

WkVk�1;
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where Wl D PM�l
iDM�l�1C1.Ri C 1/, Vl D

Pl
kD1.Wk C Sk C 1/, 1 � l � r . H0 is

rejected for small values of TW;r . As above, the distribution of TW;r under the null
hypothesis can be obtained as

PF1DF2.TW;r D w/ D
X

.m1;:::;mr /2A˘
TW;rDw

PF1DF2.Mr D mr /: (21.7)

However, the probability mass function of PMr is more complicated. Under H0, it
can be calculated from the probability mass function of the placement statistics Mr

discussed in Balakrishnan et al. [141]. In the following, we derive a more compact
form of the probability mass function (see (21.11)).

Let m�0 D 0, m�rC1 D 0 Y0Wr Wn2 D �1; YrC1Wr Wn2 D1. Then,

P.Mr D mr / D P
� rC1\
jD1
fYj�1Wr Wn2 < Xm�j�1C1Wr1Wn1 < Xm�j Wr1Wn1 < Yj Wr Wn2g

�
:

Conditioning on YS and using the independence of the samples, we arrive at

Z
P
� rC1\
jD1
fyj�1 < Xm�j�1C1Wr1Wn1 < Xm�j Wr1Wn1 < yj g

�
f YS

2 .yr /dyr : (21.8)

The probabilityP.
TrC1
jD1fyj�1 < Xm�j�1C1Wr1Wn1 < Xm�j Wr1Wn1 < yj g/ can be written

as (y0 D �1; yrC1 D 1)

rC1Y
jD1

Z yj

yj�1

: : :

Z x2

yj�1

m�jY
iDm�j�1C1

h
�i .R/f1.xi /F

Ri
1 .xi /

i
dxm�j�1C1 : : : dxm�j : (21.9)

Now, with A� D f.l1; : : : ; lr /jm�i�1C1 � li � m�i ; i D 1; : : : ; rg, r1 D m�rC1,
and using the integral identity (2.31) given in Lemma 2.4.8, (21.9) can be written as

r1Y
jD1

�j .R/
X

.j1;:::;jr /2A�

� rY
iD1

a
.m�i�1/
ji ;m�iC1F 1.yi�1/�m�i�1C1��ji F 1.yi /

�ji��m�iC1
�

� a.m�r /m�rC1C1;m�rC1C1F 1.yr /
�m�rC1��m�rC1C1

D
r1Y
jD1

�j .R/
X

.j1;:::;jr /2A�
jrC1Dm�rC1C1

� rC1Y
iD1

a
.m�i�1/
ji ;m�iC1

�� rY
jD1

F 1.yi /
�ji��jiC1

�
:
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For brevity, let �i D �i.R/, i D 1; : : : ; r1, and 
i D �i.S /, i D 1; : : : ; r .
From (21.8), we find

P.Mr D mr / D
r1Y
jD1

�j

rY
jD1


j
X

.j1;:::;jr /2A�
jrC1Dm�rC1C1

� rC1Y
iD1

a
.m�i�1/
ji ;m�iC1

�

�
Z rY

iD1

h
f2.yi /F 1.yi /

�ji��jiC1 F Si
2 .yi /

i

„ ƒ‚ …
Dh.yr /

dyr : (21.10)

For F1 D F2, the integrand h is proportional to a density function of progressively
Type-II censored order statistics with censoring scheme T defined by Ti D Si C
�ji � �jiC1 , i D 1; : : : ; r . Hence, the probability mass function is given by

PF1DF2.Mr D mr /

D
r1Y
jD1

�j
X

.j1;:::;jr /2A�
jrC1Dm�rC1C1

rC1Y
iD1

a
.m�i�1/
ji ;m�iC1

rY
lD1


l


l C �jl � �jrC1
: (21.11)

A similar expression has been used by Balakrishnan et al. [147] to compute
critical values for the precedence statistics in the two-sample progressive censoring
scenario. This applies to both the Wilcoxon-type statistic (see (21.7)) and to the
Kaplan–Meier-type statistic as introduced above. Moreover, an explicit expression
can be established for the power function under Lehmann alternative (see (21.4)).
For H1 W F �

1 D F2, � > 1, h.yr / reads

h.yr / D �r
rY
iD1

h
f1.yi /F

��1
1 .yi /F 1.yi /

�ji��jiC1 .1 � F �
1 .yi //

Si
i

D �r
rY
iD1

SiX
kD1

�ji��jiC1X
lD1

.�1/kCl
 
Si

k

! 
�ji � �jiC1

l

!h
f1.yi /F

.kC1/�Cl�1
1 .yi /

i
:

Clearly, F1 can be substituted so that the power function is distribution-free.
Moreover, an explicit multiple-sum expression is directly obtained from the above
formula. The sum can be interpreted as a generalized mixture of dual generalized
order statistics (see Burkschat et al. [234]).

Additionally, Balakrishnan et al. [147] considered the Lehmann-type alternative

H�1 W F ı

1 D F 2; ı 2 .0; 1/:
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This implies F > G (see Gibbons and Chakraborti [402, Chap. 6.1]). In this setting,

the power function can also be derived in an explicit form. With F 1 D F 1=ı

2 , we get

h.yr / D
rY
iD1

h
f2.yi /F 2.yi /

SiC.�ji��jiC1 /=ı
i
:

Thus, h.yr / is proportional to the joint density function of generalized order
statistics based on F2 so that the corresponding integral in (21.10) can be evaluated
similar to (21.11). Therefore, the power function is given by

P
F
ı
1DF 2.Mr D mr / D

r1Y
jD1

�j
X

.j1;:::;jr /2A�
jrC1Dm�rC1C1

rC1Y
iD1

a
.m�i�1/
ji ;m�iC1

rY
lD1


lı


l ı C �jl � �jrC1
:

Balakrishnan et al. [147] computed critical values for the mentioned tests.
Moreover, they presented extensive power comparisons for the mentioned Lehmann
alternatives as well as for a location-shift alternative (see (21.5)). An application to
two examples has also been illustrated by these authors.

21.1.2 Tests for Hazard Rate Ordering

Suppose X1WmWn; : : : ; XmWmWn is a progressively Type-II censored sample from popu-
lation cumulative distribution function F with censoring plan R and Y1; : : : ; Yk is
an IID sample from cumulative distribution function G. The samples are assumed
to be independent. Sharafi et al. [802] considered testing the hypothesis

H0 W �F D �G
versus the alternative

H1 W �F � �G;

where �F and �G denote the hazard rates of the cumulative distribution functions.
First, Sharafi et al. [802] adapted an approach of Kochar [537] who considered

the measure

G.F;G/ D E�
.X; Y /jX � Y �; (21.12)
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Fig. 21.4 Data setting for testing hazard rate ordering when I � k

where 
.x; y/ D F .x/

G.y/
� G.x/

F .y/
, x � y � 0. This measure has the representation

G.F;G/ D 1

2
C
Z 1
0

F.x/
n1
2
C logG.x/

o
dG.x/:

Notice that G.F; F / D 0, so that G.F;G/ D 0 under the null hypothesis, whereas
it is positive under the alternative.

As for the precedence-type tests, the Y -sample is used to partition the X -sample
into groups by counting X -failures in intervals of adjoint Y -failures. Thus, as
in (21.2), random countersMi are defined as

M1 D
mX
jD1

1.�1;Y1Wk �.Xj WmWn/;

Mi D
mX
jD1

1.Yi�1Wk ;YiWk �.Xj WmWn/; i D 2; : : : ; k:

Further, MkC1 D Pm
jD1 1ŒYkWk ;1/.Xj WmWn/ D n � M�k denotes the number of

progressively Type-II censored order statistics exceeding YkWk. The random variable
I D k � MkC1 denotes the numbers of Y ’s which do not exceed XmWmWn. The
situation is depicted in Fig. 21.4.

In the present setting, Kochar’s measure (21.12) leads Sharafi et al. [802]
to the test statistics Smin.I /; Smax.I /, and SA.I /, respectively. The calculation
of Smin.I / is based on the assumption that all units progressively censored in
the `th censoring step fail before either the next progressively Type-II censored
order statistic X`C1WmWn or the next order statistic Yi Wk . Moreover, all X -failures
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occur before YkWk. In fact, these assumptions imply that the combined increasing
arrangement of the X - and Y -samples is of the form

X1Wn � � � � � XR1C1Wn � Y1Wk � Xn��2C1Wn � � � � � Xn��4Wn
� Y3Wk � Y4Wk � Xn��4C1Wn � � � � � XnWn < YIC1Wk:

Applying Kochar’s construction to this arrangement, a simplified version of the test
statistic presented in Sharafi et al. [802] is given by

Smin.I / D 1

nk

IX
jD1

�
n � �m�jC1

�
aj C 1

k

kX
jDIC1

aj D 1

k

kX
jD1

aj � 1

nk

IX
jD1

�m�jC1aj ;

where aj D 1
2
C log

�
1 � j=.k C 1/

�
, j D 1; : : : ; k. The calculation of the

statistic Smax.I / is based on the idea that the lifetimes of all progressively censored
units exceed YkWk which means that Xj WmWn D Xj Wn, j D 1; : : : ; m. Thus, the
corresponding (simplified) expression of Kochar’s statistic is given by

Smax.I / D 1

nk

IX
jD1

m�j aj C m

nk

kX
jDIC1

aj ;

Finally, SA.I / is defined as the mean of Smin.I / and Smax.I /, i.e., SA.I / D
1
2

�
Smin.I /C Smax.I /

�
.

As an alternative to these test statistics, Sharafi et al. [802] used results of
Balakrishnan and Bordes [89] and proposed test statistics based on a nonparametric
estimator of the hazard rate function as given in Remark 20.1.2 (for a complete
sample, see Watson and Leadbetter [892, 893]). Using a uniform kernel function
and bandwidth 1=2, the corresponding estimates of the hazard rate are given by

b�F .Xj WmWn/ D 1

�j
; 1 � j � m; b�G.Yj Wk/ D 1

k � j C 1; 1 � j � k:

Further, as detailed earlier (see p. 457), a latent failure time XmC1WmC1Wn is
introduced in the sense that no progressive censoring is employed at XmWmWn and
the process is monitored up to the next failure. Thus, Rm � 1 has to be assumed
leading to a modified censoring plan .R1; : : : ; Rm�1; 0; Rm � 1/. Then,

b�F .XmC1WmC1Wn/ D 1

Rm
>

1

Rm C 1 D
b�F .XmWmWn/:
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Let

N1 D
kX

jD1
1.�1;X1WmWn�.Yj Wk/;

Ni D
kX

jD1
1.Xi�1WmWn;XiWmWn�.Yj Wk/; i D 2; : : : ; m;

NmC1 D
kX

jD1
1.XmWmWn;XmC1WmC1Wn�.Yj Wk/:

This approach leads to the test statistics

Q�1 D
mX
jD1

N�jX
�DN�j�1C1

1
Œb�F .Xj WmWn/;1/.b�G.Y�Wk//;

Q�2 D Q�1 C
kX

�DN�mC1
1
Œb�F .XmC1WmC1Wn/;1/.b�G.Y�Wk//;

Q�A D Q�1 C
1

2

kX
�DN�mC1

1
Œb�F .XmC1WmC1Wn/;1/.b�G.Y�Wk//:

Sharafi et al. [802] derived the exact null distributions of all these test
statistics. They presented critical values for selected censoring schemes for
Smin.I /; Smax.I /; SA.I /, and Q�A. Moreover, an empirical power study, including
exponential, gamma, Weibull, and Makeham distributions, has been carried out by
these authors.
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and Reliability



Chapter 22
Acceptance Sampling Plans

Acceptance sampling plans are used to decide whether a lot of product is acceptable
or must be rejected. The topic has been extensively discussed in statistical quality
control where various assumptions are made w.r.t. distributions and data. For
lifetime data, related references are Hosono and Kase [451], Kocherlakota and
Balakrishnan [542], Balasooriya [157], Fertig and Mann [369], Schneider [784],
Balasooriya et al. [163], Balakrishnan and Aggarwala [86, Chap. 11], and Fernández
[366]. A detailed introduction may be found in, e.g., Montgomery [656].

Using progressively Type-II censored data XR D .X1WmWn; : : : ; XmWmWn/ for the
lifetimes of units, a lot is accepted if

(i) �.XR/ � bl , or
(ii) �.XR/ � bu, or

(iii) bl � �.XR/ � bu,

where the decision rule � and the bounds bl and bu are determined such that the
probability requirements are satisfied.

Cases (i) and (ii) lead to one-sided sampling plans, whereas (iii) yields two-
sided plans. For location-scale families as given in (11.1), the Lieberman–Resnikoff
procedure is employed to construct the decision rule � (see Lieberman and
Resnikoff [592]). For some value k, the decision rule �k is constructed via estimates
b� andb# of the location and scale parameters � and # . In particular, �k exhibits the
form

�k.XR/ D b� � kb#;

where k denotes the acceptance constant. Therefore, for a lower specification limit
bl , a lot is accepted when �k.XR/ D b� � kb# � bl . Furthermore, a quantity of
interest in our analysis is the proportion of censored items given by

Pm
jD1 Rj
n

D 1 � m
n
:
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In order to construct acceptance sampling plans for progressively Type-II censored
data, the censoring scheme R has to be incorporated in the sampling plan. Thus,
the acceptance sampling plan is given by the original sample size n, the censoring
scheme R, and the acceptance constant k and is denoted by .n;R; k/. Sometimes,
the censoring proportions qi D Ri=n, i D 1; : : : ; m, replace the censoring scheme.
With Q D .q1; : : : ; qm/, the acceptance sampling plan is defined as .n;Q; k/. For
an exponential baseline distribution, the distribution of the applied estimators is
independent of the censoring scheme R. Therefore, the censoring plan does not
affect the acceptance sampling plan. In this framework, the triple .n;m; k/ is called
an acceptance sampling plan. Notice that q D 1 � m=n denotes the fraction of
censored units.

The acceptance sampling plan is assessed by the operating characteristic (OC)
curve defined by

L.p/ 	 L.pIn;R; k/ D P.b� � kb# > �p/; p 2 .0; 1/;

where �p is the pth quantile of the baseline cumulative distribution function F .
Finally, we would like to note that acceptance sampling plans are also called

reliability sampling plans when the acceptance sampling procedure is based on
lifetime data. Since we are discussing only lifetime data, these terms will be used
synonymously throughout this chapter.

22.1 Exponential Distribution

Reliability sampling plans based on exponential progressively Type-II censored
order statistics have been considered by Balasooriya and Saw [161], Balakrishnan
and Aggarwala [86], and Fernández [366]. For a progressively censored sample
ZR D .Z1WmWn; : : : ; ZmWmWn/ from an Exp.�; #/-distribution, the MLEs of the
parameters are used to estimate the parameters and, thus, to construct the decision
rule. In this scenario, the quantile �p is given by �p D � � # log.1 � p/. Since
the distributions of the MLEs do not depend on the censoring scheme R (see
Theorems 12.1.1 and 12.1.4), the resulting sampling plans coincide with those for
Type-II right censoring.

22.1.1 Acceptance Sampling Plans Without Consumer Risk

Let ˛ 2 .0; 1/ be the producer risk. Then, given the OC curveL and the acceptance
quality level (AQL) p˛ , the sampling plan .n;m; k/ has to satisfy the inequality

L.p˛In;m; k/ � 1 � ˛:
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In order to determine the sampling plan, we have to calculate the OC curve. The
following presentation is based on Chap. 11 in Balakrishnan and Aggarwala [86]
and Kocherlakota and Balakrishnan [542].

First, we consider one-sided sampling plans.

One-Sided Sampling Plans

Depending on the model assumption, we have to consider three different cases.

� Unknown, # Known

The MLE of � is given byb� D Z1Wn. From Theorem 12.1.4, we get T D n.b���/
#
�

Exp.1/. Therefore, the OC curve is given by

Ll.p/ D P.Z1Wn � k# > �p/ D P
�
T > n.k � log.1 � p//�

D exp
n
� n.k � log.1 � p//

o
:

(22.1)

For a lower acceptance sampling plan, the lot is accepted whenb�Ck1# � bl . Now,
given AQL p˛ and producer risk ˛, the condition Ll.p˛/ D 1 � ˛ can equivalently
be written as

exp
n
n.k1�log.1�p˛//

o
D 1�˛ ” k1 D � log.1 � ˛/

n
Clog.1�p˛/: (22.2)

Therefore, given .p˛; 1 � ˛/, the acceptance sampling plan is given by .n;m; k1/
with k1 as in (22.2). The lot is accepted iff

b�C
h
� log.1 � ˛/

n
C log.1 � p˛/

i
# � bl

with a given lower limit bl .
For an upper limit, the decision rule has the formb�C k2# � bu. Hence, the OC

curve has the form

L�l .p/ D 1 �Ll.p/ D P.Z1Wn � k# � �1�p/ D 1 � exp
n
� n.k � log.p//

o
:

Proceeding as in (22.1), the acceptance constant k2 is obtained from the equation

1 � exp
n
� n.k2 � log.p˛//

o
D 1 � ˛

with .p˛; 1�˛/ as above. This yields the acceptance constant k2 D � log˛
n
C logp˛ .
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� Known, # Unknown

The scale parameter is estimated byb# D 1
m

Pm
jD1.Rj C1/.Zj WmWn��/. Using that

2mb#=# � �2.2m/, the OC curve is given by

Ls.p/ D P.� � kb# > �p/ D 1 � F�2.2m/
�2m log.1� p/

k

�
: (22.3)

Hence, for .p˛; 1 � ˛/ and a lower limit, we get the condition

k1 D 2m log.1� p˛/
�2˛.2m/

:

Proceeding as above, we find for the upper limit the acceptance constant k2 D
2m logp˛=�21�˛.2m/.

� Unknown, # Unknown

Using the MLEs from (12.6) and the results from Theorem 12.1.4, the OC curve can
be written as

Lls.p/ D P.b� � kb# > �p/ D P
�
V � n

2m
kW > �n log.1� p/

�
; (22.4)

where V � Exp.1/ and W � �2.2m � 2/ are independent random variables. For
k � 0, Fernández [366] showed that

Lls.p/ D .1 � p/n
.1C nk=m/m�1 ; p 2 .0; 1/:

For k < 0, one has to evaluate the integral

Z 1
0

f�2.2m�2/.t/P
�
V >

n

2m
kt � n log.1 � p/

�
dt

D .1 � p/n
Z 2m log.1�p/=k

0

f�2.2m�2/.t/e�nkt=.2m/dt

C
Z 1
2m log.1�p/=k

f�2.2m�2/.t/dt

D 1 � F�2.2m�2/
�
2m log.1 � p/=k�

C .1 � p/n
2m�1� .m� 1/

Z 2m log.1�p/=k

0

tm�2e�.1Cnk=m/t=2dt:
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Following Fernández [366], the OC curve can be written as

Lls.p/ D

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

.1�p/n
.1Cnk=m/m�1 ; k � 0
1 � F�2.2m�2/

� � 2n log.1 � p/�

C .1�p/nŒ�n log.1�p/�m�1
.m�1/Š ; k D �m=n

1 � F�2.2m�2/
�
2m log.1 � p/=k�

C .1�p/n
.1Cnk=m/m�1 F�2.2m�2/

�
2.m

k
C n/ log.1 � p/�; otherwise

:

(22.5)
In order to determine the acceptance constant k1 for a lower limit decision rule, one
has to solve the equation Lls.p˛/ D 1 � ˛ for given .p˛; 1 � ˛/ computationally.

Remark 22.1.1. As pointed out in Balakrishnan and Aggarwala [86], one-sided
acceptance sampling plans are closely related to one-sided tolerance limits. Such
problems have been investigated for complete samples from an exponential
population by Bain and Antle [72], Guenther et al. [416], and Engelhardt and
Bain [351]. For further details, we refer to Yeh and Balakrishnan [934].

Two-Sided Sampling Plans

For two-sided sampling plans bl � �.XR/ � bu, we can utilize the OC curves
established in the one-sided case. According to the Lieberman–Resnikoff procedure,
the decision rules have the form bl � b� � kb# � bu, where b� and b# are suitable
estimators for � and # . If a parameter is known, the corresponding estimator is
chosen to be constant. Hence, we can write the OC curve as

L.p1; p2/ D P.�p1 � b�� kb# � �p2 / D P.b� � kb# > �p1/� P.b� � kb# > �p2/;

where 0 < p1 < p2 < 1. Thus, we can use the OC curves for the one-sided plans to
find the acceptance constants.

If # is known, we get from (22.1)

Ll2.p1; p2/ D Ll.p1/ �Ll.p2/
D e�nk

n
.1 � p1/n � .1 � p2/n

o
:

Hence, solving Ll2.p1; p2/ D 1 � ˛ for k yields the solution

k1 D �1
n

log
1 � ˛

.1 � p1/n � .1� p2/n :

For � known, we arrive at the OC curve [see (22.3)]
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Ls2.p1; p2/ D F�2.2m/
�2m log.1 � p2/

k

�
� F�2.2m/

�2m log.1 � p1/
k

�
:

Solving the equation Ls2.p1; p2/ D 1 � ˛ for k can be achieved only computation-
ally. The same comment applies to the case when both parameters are unknown.
Here, one has to use the OC curve given in (22.5) instead of Ls .

22.1.2 Acceptance Sampling Plans with Consumer Risk

In practice, acceptance sampling plans are designed according to an agreement
between producer and consumer. This means that the sample size and the acceptance
constants have to be fixed such that the acceptance sampling plan accepts lots with

(i) a low proportion defective p˛ with a high probability of at least 1 � ˛,
(ii) a high proportion defective pˇ with a low probability of at most ˇ.

As mentioned above, p˛ is called AQL and pˇ is called rejectable quality level
(RQL). The probabilities ˛ and ˇ measure the producer’s and consumer’s risks.
This construction leads to the inequalities

L.p˛In;m; k/ � 1 � ˛; L.pˇIn;m; k/ � ˇ; (22.6)

which have to be satisfied by the sampling plan .n;m; k/. In general, it is not
possible that the inequalities become equations.

For illustration, we consider the case of a known scale parameter and a lower
limit. From (22.1) and (22.2), the OC curve satisfying the first restriction is given as

Ll.pˇ/ D P.Z1Wn � k# > �pˇ / D exp
n
� n.k1 � log.1� pˇ//

o

D .1 � ˛/
�1 � pˇ
1 � p˛

�n
:

Hence, the condition Ll.pˇ/ � ˇ is equivalent to n � log ˇ

1�˛ = log 1�pˇ
1�p˛ .

Therefore, the minimal sample size leading to the desired properties is given
by n� D ˙

log ˇ

1�˛ = log 1�p˛
1�pˇ

�
. So, each sampling plan .n�; m; k1/ satisfies the

inequalities (22.6). Notice that the observed sample size m can be chosen as one.
If � is known, the inequality Ls.pˇIn;m; k/ � ˇ is equivalent to

log.1 � pˇ/
log.1 � p˛/ �

�21�ˇ.2m/
�2˛.2m/

(22.7)

(see Pérez-González and Fernández [717]). Sarkar [779] has shown that the quantile
�2˛.r/ is TP2 in .r; ˛/. This implies that the ratio �21�ˇ.2m/=�2˛.2m/ is increasing in
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m provided ˛ < 1�ˇ. Hence, a minimum integerm� exists with (22.7). Therefore,
an admissible acceptance sampling plan is given by .n;m�; k1/. n can be chosen
as m. Alternatively, k may be chosen in the interval Œk˛; kˇ�, where

k˛ D 2m log.1� p˛/
�2˛.2m/

; kˇ D 2m log.1 � pˇ/
�21�ˇ.2m/

:

As an alternative, Pérez-González and Fernández [717] proposed an approximate
sampling plan using the Wilson–Hilferty approximation of the �2-cumulative
distribution function. In particular, for W � �2.n/,

3
p
n
.W=n/1=3 � 1C 2

9n

2

is approximately standard normal (see Wilson and Hilferty [897]). Therefore, for
largem, the OC curve Ls can be approximated as

L�s .p/ D 1 �˚
�
3
p
m
�flog.1 � p/=kg1=3 � 1C 1

9m

��
:

Let u D log.1�p˛/
log.1�pˇ/ , z˛ be the ˛-quantile of the standard normal distribution,

and  D .u1=3z1�ˇ � z˛/=.1 � u1=3/. Then, the optimal m is determined by
d. Cp2 C 4/2=36e. Moreover, every acceptance constant k 2 Œk˛; kˇ� with

k˛ D log.1 � p˛/
.1 � 1=.9m/C z˛=

p
9m/3

; kˇ D log.1 � pˇ/
.1 � 1=.9m/C z1�ˇ=

p
9m/3

is possible. A comparison of exact and approximate sampling plans is provided by
Pérez-González and Fernández [717].

If both parameters are assumed to be unknown, Fernández [366] has established
an algorithm to compute an optimal sampling plan. The OC curve is computed from
expression (22.5).

Algorithm 22.1.2 (Fernández [366]).

� Choose .p˛; 1 � ˛/ and .pˇ; ˇ/ and the censoring proportion q D 1 �m=n;

� Let m0 D n0.1 � q/ and

r˛ D log.1� ˛/
log.1 � p˛/ ; rˇ D log.ˇ/

log.1 � pˇ/ :

Solve the equations L.p˛In0;m0; k0/ D 1�˛ and L.pˇIn0;m0; k0/ D ˇ for
.n0;m0/.
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(1) Case rˇ D r˛: Then, k0 D 0, and n0 D r˛ D rˇ;
(2) Case rˇ < r˛: Then, k0 > 0,

n0 D log.1 � ˛/ � logˇ

log.1 � p˛/ � log.1 � pˇ/

and

k0 D k0.m0; n0/ D 1

1 � q
h� .1 � p˛/n0

1 � ˛
�1=.m0�1/ � 1

i
I

(3) Case rˇ > r˛: Then, k0 < 0. The solution .n0; k0/ has to be computed
numerically;

� n D dn0e;
� m D bm0c if .n;m/ satisfies (22.6). Otherwise, let m D dm0e;
� As acceptance constant k any value from the interval Œk˛; kˇ� with
L.p˛In;m; k˛/ D 1 � ˛ and L.pˇIn;m; kˇ/ D ˇ may be chosen.
A reasonable choice may be the center of the interval k D .k˛ C kˇ/=2.

For comments on this algorithm as well as more details, we refer to Fernández
[366]. Using weighted �2-approximations (see Patnaik [714]) and the Wilson–
Hilferty approximation, Pérez-González and Fernández [717] established approx-
imate acceptance sampling plans in the two-parameter exponential case. Moreover,
they provided an algorithm to compute the optimal sampling plan and a comparison
between exact and approximate sampling plans.

22.1.3 Bayesian Variable Sampling Plans with Progressive
Hybrid Censoring

Lin et al. [608, 611] addressed the problem of finding exact Bayesian variable
sampling plans with progressive hybrid censoring when the lifetimes are Exp.#/-
distributed. Using results of Childs et al. [260] (see Sect. 14.1.1), they obtained the
Bayes risk for Type-I and Type-II progressive hybrid censored data for a decision
function

ı.XR/ D
(
1; b# > �
0; otherwise

;

whereb# is the MLE of the scale parameter# in the present scenario. Given � D 1=#
and a gamma prior h.�I˛; ˇ/ D ˇ˛

� .˛/
�˛�1e�ˇ�, � > 0, with ˛; ˇ > 0, they

considered the cost function

`.ı.XR/; �; n/ D nCs C ı.XR/.a0 C a1�C a2�2/C .1 � ı.XR//Cr;
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where Cs represents the cost of inspecting an item and Cr and a0 C a1� C
a2�

2 > 0 measure the loss of rejecting and accepting an item, respectively. Let
D D Pm

iD1 1.�1;T �.Xi WmWn/ denote the total number of observed failures (see
Sect. 5.1). Then, Lin et al. [608] showed that, for fixed n;m;R; T; �, the Bayes risk
R.n;m;R; T; �/ has an explicit representation in both progressive hybrid censoring
settings. Using a simulated annealing algorithm developed by Corana et al. [280],
they computed the minimum Bayes risk as well as the optimal sampling plan
.n?;m?;R?; T ?; �?/ for given ˛; ˇ; a0; a1; a2; Cs; Cr . Comments on the accuracy
of the presented results can be found in Liang [589] (see also Lin et al. [611]).

22.2 Weibull Distribution

Balasooriya et al. [163] addressed reliability sampling plans for a
Weibull.#ˇ; ˇ/-distribution employing the Lieberman–Resnikoff procedure for
a lower limit. Using the AMLEs given in (12.49), they determined sample size n
and acceptance constant k using asymptotic normality ofb��kb# (see pp. 307) with
mean � � k# and variance #2

n
Œ�11.n/ � 2k�12.n/ C k2�22.n/�. The quantities �ij

are obtained from the approximate variance–covariance matrix

#2

n

	
�11.n/ �12.n/

�21.n �22.n/




of .b�;b#/. Proceeding as in Schneider [784], Balasooriya et al. [163] presented the
acceptance constant

k D yp˛ z1�ˇ � ypˇ z˛
z˛ � z1�ˇ

; (22.8)

where z˛ denotes the ˛-quantile of the standard normal distribution and y˛ D
log.� log.1 � ˛//, ˛ 2 .0; 1/. The sample size is computed from the equation

n D
h z˛ � z1�ˇ
yp˛ � ypˇ

i2
Œ�11.n/ � 2k�12.n/C k2�22.n/� (22.9)

with k taken from (22.8). Balasooriya et al. [163] also studied the accuracy of the
approximations in determining acceptance sampling plans for progressively Type-
II censored data. Moreover, they computed tables of reliability sampling plans for
1 � ˛ D 0:95, ˇ 2 f0:05; 0:10g and various choices of p˛; pˇ matching with MIL-
STD-105D, and censoring schemes.

Remark 22.2.1. Ng et al. [689] reconsidered the above problem using the MLEs
of the distribution parameters. They found that the sample sizes obtained by their
procedure tend to be slightly larger than those computed by Balasooriya et al.
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[163]. They suspected that this may be due to the fact that the approximate
MLEs tend to be less precise with increased censoring. Their claim has been
supported by simulation results.

Jun et al. [489] considered plans from a Weibull distribution with known shape
parameter. However, in this scenario, the data can be transformed to exponential
progressively Type-II censored order statistics with unknown scale parameter and
location parameter � D 0. Therefore, the results for the exponential distribution
can be applied (see pp. 472). Notice that the decision of acceptance and rejection is
based on the MLE of the scale parameter given in (12.12).

It should be noted that Fertig and Mann [369] and Schneider [784] addressed
reliability sampling plans for Type-II right censored data from Weibull distribution.
For progressively Type-II censored order statistics with binomial removals, the
problem has been considered by Tse and Yang [858].

Remark 22.2.2. Sampling plans under progressive Type-I censoring (see
Sect. 4) are discussed in Balasooriya and Low [159] (see also Balasooriya
and Low [160]) for single Weibull failure modes. After transforming the data
to the extreme value distribution, they used the corresponding estimators of
location and scale and end up with a procedure similar to the one described
above for progressively Type-II censored data. Moreover, they extended this
approach to the case of multiple failure modes when the Weibull distributions
have equal shape parameters.

22.3 Log-Normal Distribution

For a log-normal distribution, Balasooriya and Balakrishnan [158] applied the
Lieberman–Resnikoff approach using approximate BLUEs b�� andb#� for the loca-
tion and scale parameters (see Sect. 11.1.3). Proceeding as described in Sect. 22.2,
they established a reliability sampling plan with the same ingredients as in the
Weibull case. Hence, the acceptance constant is given by (22.8). The sample size is
determined according to (22.9). Balasooriya and Balakrishnan [158] have tabulated
sampling plans for some censoring schemes and with .p˛; pˇ/ matching with MIL-
STD-105D.

It is clear that this approach can be adopted to other location-scale families of
distributions as well.

22.4 Reliability Sampling Plans for Interval Censored Data

Using the results of Aggarwala [11] (see Sect. 18.1), Huang and Wu [462] discussed
reliability sampling plans .n; k; �/ when the data are progressively Type-I interval
censored with constant inspection intervals and the population distribution is
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exponential (see Fig. 1.8). Here, n denotes the total number of units involved in the
life test, k is the number of inspections, and � is the length of the inspection interval.
They applied a normal approximation to determine the sample size and the lower
specification limit. Moreover, they incorporated costs caused by the implementation
of a progressively interval censored life-test sampling plan. In particular, costs for
installation .Ca/, sampling .nCs/, inspection .kCI /, and operation .k�Co/ are taken
into account. This leads to a cost function

TC.n; k; �/ D Ca C nCs C kCI C k�Co (22.10)

which has to be minimized w.r.t. some constraints ensuring the level ˛ and the
desired power 1 � ˇ of the reliability sampling plan. The problem is also discussed
in Wu and Huang [911]. Results for two-parameter Weibull distributions in the same
direction are established in Wu et al. [921]. Using a linear cost function (22.10) as
for the exponential distribution, an algorithm is provided to determine the optimal
design.

Lin et al. [608] discussed reliability sampling plans for progressively Type-I
grouped censored data with Weibull.#ˇ; ˇ/ lifetimes. Tsai and Lin [855] presented
a general method which is based on a likelihood ratio approach. Their results are
illustrated by Weibull lifetimes with fixed shape parameter.

22.5 Capability Indices

Capability indices (also known as lifetime performance indices) are frequently used
to measure the capability of manufacturing processes (see, e.g., Montgomery [656]).
In particular, one-sided versions are widely used in industry and have received
attention in the statistical literature (see Kane [505], Vännman [868], and Albing
[32]). One-sided capability indices have been introduced by Kane [505, pp. 45]
using the upper and lower specification limits USL and LSL as

CPU D USL � �
3�

; CPL D �� LSL

3�

where � and � denote the mean and the standard deviation of the population
distribution (see also Montgomery [656, pp. 335], and Ryan [762, pp. 231]).

22.5.1 Exponential Progressively Type-II Censored Order
Statistics

Generalizing the work of Tong et al. [852] and Lee et al. [580], process capability
analysis has been addressed for progressively Type-II censored samples from an
exponential distribution Exp.1=#/ by Lee et al. [578], where CPL is defined as
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CPL D ��LSL
�

. They discussed the problem in terms of lifetime data and interpreted
CPL as a lifetime performance index. In the following, we present the corresponding
results for Exp.#/-distribution. In this setting, CPL is

CPL D 1 � LSL

#
:

A product is called a conforming product if its lifetime exceeds the lower specifi-
cation limit LSL. The probability that the lifetime X exceeds LSL is defined as the
conforming rate. For an exponential lifetime X , it is given by

pPL D P.X � LSL/ D eCPL�1:

In practice, this connection is used as follows: If a conforming rate exceeding a
given proportion p is desirable, then the condition pPL � p can be written in terms
of the capability index, i.e., CPL � 1C logp.

Lee et al. [578] discussed maximum likelihood estimation of CPL based on
exponential progressively Type-II censored order statistics Z1WmWn; : : : ; ZmWmWn.
From (12.4), it follows directly that

bC PL D 1 � LSL

b#�MLE

D 1 �m � LSL
� mX
jD1

.Rj C 1/Zj WmWn
��1

:

Since the MLE b#�MLE has a Γ.#=m;m/-distribution, the reciprocal
�b#�MLE

��1
is

inverted gamma distributed with mean m
.m�1/# . Thus, bC PL is biased. However, the

estimator

bC �PL D 1 �
.m � 1/LSL

mb#�MLE

is unbiased and, thus, by Theorem 12.1.1, bC �PL is the UMVUE of CPL. Moreover,
statistical tests with level ˛ 2 .0; 1/ for the test problem (c fixed)

H0 W CPL � c versus H1 W CPL > c (22.11)

can directly be constructed from these results since 2mb#�MLE=# � �2.2m/. Hence,
defining c˛ as critical value and using bC PL as test statistic, the power function is
given by

p.CPL/ D PCPL.
bCPL > c˛/ D 1 � F�2.2m/

�2m.1 � CPL/

1 � c˛
�
:

Then, underH0, the inequality p.CPL/ � p.c/ holds. Solving the equation p.c/ D
˛ for c˛ leads to the critical value

c˛ D 1 � 2m.1� c/
�21�˛.2m/

:
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Similarly, a one-sided confidence interval for CPL can be established as

K D
h
1 � .1 �

bCPL/�
2
1�˛.2m/

2m
;1

�
:

Example 22.5.1. Lee et al. [578] applied their results to Nelson’s progressively
Type-II censored insulating fluid data 1.1.5 (see also Example 12.1.6) with the
lower specification limit LSL D 1:04 and the level of significance 5%. Assuming
that the conforming rate exceeds 80 %, the lifetime performance index CL must
exceed c D 0:777. Hence, the test problem reads H0 W CPL � 0:777 versus
H1 W CPL > 0:777. Then, the critical value c0:05 is given by 0:876. On the other
hand, from Example 12.1.6, bC PL D 1� 1:04

9:086
D 0:886 so that the null hypothesis

is rejected. Therefore, the lifetime performance index satisfies the required level.

The results can be extended to progressively Type-II censored lifetime data from
two-parameter exponential distribution as has been done in Lee et al. [581] for Type-
II right censored data. Now, CPL can be written as

CPL D 1 � LSL � �
#

:

Then, using the UMVUEs of the parameters given in (12.7), we define the estimator

bC PL D 1 � 1
n
C m � 2
m � 1

Z1WmWn � LSL

b#UMVUE

:

Furthermore, we have EZ1WmWn D � C #=n and E.1=b#UMVUE/ D .m � 1/=
Œ.m � 2/#�. By the independence of Z1WmWn and b#UMVUE, we get EbC PL D CPL.
Then, Theorem 12.1.4 shows that bC PL is the UMVUE of CPL.

Clearly, an ˛-level test for the test problem (22.11) can also be constructed in
this setting using the UMVUE bCPL. Defining Z� D n.Z1WmWn � �/=# � Exp.1/

andW � D .m�1/b#UMVUE=# � � .1;m�1/, the ratio Z1WmWn�LSLb#UMVUE

can be written as

Z1WmWn � LSL

b#UMVUE

D m � 1
n
� Z
� � n.1 � CPL/

W �
D m � 1

n
TCPL ; say:

It can be shown that TCPL has the density function

f TCPL .t/ D e�n.1�CPL/
m � 1
.1C t/m

h
1Œ0;1/.t/

C 1.�1;0/.t/IG
�
� n.1 � CPL/.t C 1/

t
Im � 2

�i
:
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Distribution Data transformation Reference

Rayleigh x2 Lee et al. [579]
Weibull.#; ˇ/ xˇ (ˇ known) Ahmadi et al. [18] (Progressive first failure censoring)
Burr XII log.1C xc/, c known Lee et al. [577]
Pareto.#/ log.x/ Hong et al. [447, 448] (Type-II right censored data)

Table 22.1 Lifetime performance index for non-exponential distributions which can be trans-
formed to the exponential case

Remark 22.5.2. The distribution of TCPL can also be determined via the survival
function given by

P.TCPL > t/ D P
�
Z� � tW � > n.1 � CPL/

�
:

This function equals the OC curve given in (22.4). Therefore, the survival function
exhibits the expression given in (22.5).

Noticing that TCPL is stochastically increasing in CPL, we get

TCPL �st Tc for CPL � c:

Therefore, the critical value for the test in (22.11) can be obtained from the equation

P.Tc � c˛/ D ˛:

22.5.2 Other Distributions

Process capability analysis for non-exponential distributions with progressively
censored data has been considered in the literature, too. However, most of the cases
result by a transformation of the data. For the sake of completeness, we present
the addressed distributions, the transformation of the data, and, if available, the
corresponding reference in Table 22.1. The results for the Pareto distribution have
been established for Type-II right censored data but can easily be rewritten for
progressively Type-II censored samples. For progressive first failure censoring, we
refer to the comments given in Sect. 25.4.1. Further details are provided by Laumen
and Cramer [568]. Weibull.#; ˇ/-distributions with both parameters unknown are
discussed in Hong et al. [449]. Two-parameter gamma distributions have recently
been discussed in Laumen and Cramer [568].



Chapter 23
Accelerated Life Testing

Products that are tested in industrial experiments are often extremely reliable
leading to large mean times to failure under normal operating conditions. Therefore,
adequate information about the lifetime distributions and the associated parameters
may be quite difficult to obtain using conventional life-testing experiments. For
this reason, the units under test are subjected to higher operational demands than
under normal operating conditions. Such methods are widely used and are known
as accelerated life testing (ALT). Several approaches are adapted in accelerated life
testing, e.g., constant high stress level, progressive stress, or stepwise increasing
stress levels. Such a procedure will enable the reliability experimenter to assess
the effects of stress factors such as load, pressure, temperature, and voltage on
the lifetimes of experimental units. This kind of accelerated life test usually will
reduce the time to failure of specimens, thus resulting in more failures than under
normal operating conditions. Data collected from an accelerated life test then needs
to be extrapolated to estimate the parameters of the lifetime distribution under
normal operating conditions. In the literature, several models have been proposed
to connect the stress levels in the ALT environment to the parameters of the
original distribution. A popular model that will be assumed in the following is the
cumulative exposure model introduced by Sedyakin [788] and discussed further by
Bagdonavičius [67] and Nelson [675, 677]. Detailed accounts to accelerated life
testing are provided by Nelson and Meeker [678], Meeker and Hahn [646], Nelson
[677], Meeker and Escobar [645], and Bagdonavičius and Nikulin [68]. Results for
the exponential distribution are summarized in Basu [182].

23.1 Step-Stress Models

A special type of accelerated life testing is step-stress testing. In such a testing envi-
ronment, the experimenter can choose different conditions at various intermediate
stages of the life test as follows. n identical units are placed on a life test at an

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 23,
© Springer Science+Business Media New York 2014
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Fig. 23.1 Simple step-stress model with change time �

initial stress level of s1. Then, at prefixed times �1 < � � � < �k , the stress levels
are changed to s2; : : : ; skC1, respectively. The special case of two stress levels s1
and s2, wherein the stress change occurs at a pre-fixed time � , is called simple step-
stress experiment. This situation is depicted in Fig. 23.1 for observed failure times
t1Wn � � � � � tnWn. Further details can be found in Nelson [677, Chap. 10].

The simple step-stress model has been discussed extensively in the literature.
Several models have been proposed to model the change of stress imposed on the
units under test. Sedyakin [788], Bagdonavičius [67], and Nelson [675] studied the
cumulative exposure model and associated inference. Miller and Nelson [649] and
Bai et al. [71] discussed the determination of optimal time � at which to change the
stress level from s1 to s2. Bhattacharyya and Soejoeti [200] proposed the tampered
failure rate model introduced by DeGroot and Goel [329] which assumes that the
effect of change of stress is to multiply the initial failure rate function by a factor
subsequent to the stress change time. This model has been generalized by Madi
[625] to the multiple step-stress case. Xiong [928] and Xiong and Milliken [930]
discussed inference for the exponential step-stress model by assuming that the mean
lifetime of the experimental units at the i th stress level si has a log-linear form. But,
Watkins [891] argued that it would be better to work with the original parameters
of the exponential model even though a log-linear link function provides a simpler
model for inferential purposes. Gouno et al. [408] and Han et al. [430] discussed
inferential methods for step-stress models under the exponential distribution when
the available data are progressively Type-I censored. Xiong and Ji [929] discussed
the analysis of step-stress life tests based on grouped and censored data. While these
discussions all focused on inference for exponential step-stress models, Khamis and
Higgins [524] and Kateri and Balakrishnan [511] examined inferential methods for
a cumulative exposure model with Weibull distributed lifetimes.
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Comprehensive reviews of work on step-stress models have been provided by
Gouno and Balakrishnan [407], Tang [837], and more recently by Balakrishnan [85].
It is important to mention that inference for specific step-stress models has also been
discussed in the general framework of accelerated life testing (see, for example,
Shaked and Singpurwalla [800], McNichols and Padgett [644], Lu and Storer [619],
Van Dorp and Mazzuchi [866], and Bagdonavičius et al. [69]). Balakrishnan [85]
presented an extensive survey on recent work on exact inferential procedures for
exponential step-stress models for different types of censored data.

In the following, results on step-stress models are presented when the data are
progressively censored. Moreover, we assume throughout that the stress changes are
modelled by a cumulative exposure model. For details on this approach, we refer to
Balakrishnan [85, Sect. 2].

23.1.1 Inference for Simple Step-Stress Model Under
Progressive Type-II Censoring

Progressively Type-II Censored Step-Stress Data

Suppose a sample of n experimental units with lifetimes T1; : : : ; Tn are placed on
a simple step-stress test at an initial stress level s1. At a prefixed time � , the stress
level is to be increased to level s2 > s1. Moreover, progressive Type-II censoring
with censoring scheme R D .R1; : : : ; Rr/ is employed in this experimental setting
leading to the data TR D .T1Wr Wn; : : : ; Tr Wr Wn/ with

T1Wr Wn < � � � < TN1Wr Wn � � < TN1C1Wr Wn < � � � < Tr Wr Wn: (23.1)

N1 denotes the numbers of failures observed before time � , whereas N2 D r � N1
counts the failures exceeding � . The generation process is depicted in Fig. 23.2 (for
R D .0�m/, see also Fig. 23.1). Formally, the random variableN1 is defined by

N1 D
rX

jD1
1.�1;� �.Tj Wr Wn/: (23.2)

Obviously, the probability mass function of N1 with support f0; : : : ; rg can be
obtained from the relation

P.N1 D i/ D P.Ti Wr Wn � � < TiC1Wr Wn/; i D 0; : : : ; r;
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Fig. 23.2 Generation process of progressively Type-II censored stress level data with censoring
scheme R D .R1; : : : ; Rr/

where T0Wr Wn D �1 and TrC1Wr Wn D 1. Then, we get from Lemma 2.5.4
and (2.41)

(i) i D 0: P.N1 D 0/ D P.� < T1Wr Wn/ D 1 � F1Wr Wn.�/ D .1 � F.�//n;
(ii) i 2 f1; : : : ; r � 1g: Applying Corollary 2.4.7, we arrive at

P.N1 D i/ D Fi Wr Wn.�/ � FiC1Wr Wn.�/ D 1

�iC1
.1 � F.�//f UiC1WrWn .F.�//

D
� iY
jD1

�j

� iC1X
jD1

aj;iC1.1 � F.�//�j I

(iii) i D r : P.N1 D r/ D P.Tr Wr Wn � �/ D Fr Wr Wn.�/.
These expressions will be useful in the derivation of the exact (conditional)
distributions of the MLEs in the exponential case. The distribution of N2 is directly
obtained via the identity N2 D r �N1.
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1
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Fig. 23.3 Plot of G#1;#2 in a cumulative exposure model with Exp.#1/- and Exp.#2/-distributions

Likelihood Function and Maximum Likelihood Estimation

The likelihood inference for the parameters of a simple step-stress model based on a
progressively Type-II censored exponential sample has been developed by Xie et al.
[927]. They imposed a cumulative exposure model with Exp.#1/- and Exp.#2/-
distributions. Then, the cumulative distribution function is given by

G#1;#2 .t/ D
8
<
:
F#1.t/ D 1 � e�t=#1 ; 0 � t < �
F#2

�
t � �1 � #2

#1

�
�
�
D 1 � e

�t=#2C
�
1
#2
� 1
#1

�
�
; � � t

: (23.3)

A plot of G#1;#2 is depicted in Fig. 23.3. The corresponding density function is
given by

g#1;#2.t/ D
8
<
:
f#1.t/ D 1

#1
e�t=#1 ; 0 � t < �

f#2

�
t � �1 � #2

#1

�
�
�
D 1

#2
e�.t��/=#2��=#1 ; � � t :

Depending on the values of N1, the likelihood function of #1 and #2, based on
the progressively Type-II censored sample in (23.1), has different forms. Moreover,
for r D n1 C n2 .2 � r � n/, we define the quantities

D1 D
n1X
kD1

.Rk C 1/tkWr Wn C ��n1C1;

D2 D
rX

kDn1C1
.Rk C 1/.tkWr Wn � �/;

(23.4)

where we use the convention that
Pq

kDp D 0 whenever p > q. Notice that D1

and D2 decompose the total time on test D1 CD2. These random variables can be
interpreted as time on tests w.r.t. the stress levels with D1 representing the time on
test at stress level s1 and D2 corresponding to the part with level s2.
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With N1 as in (23.2), the likelihood function can be written as

L.#1; #2jtr / D cr�1
#
n1
1 #

n2
2

exp


� 1
#1
D1 � 1

#2
D2

�
: (23.5)

Depending on the value of N1, the likelihood function exhibits a simpler form.

(i) First, let N1 D r and N2 D 0, i.e., all failures occur before � so that no
information is available on the right of � . This means that no information is
available on #2. In this case, t1Wr Wn < � � � < tr Wr Wn � � and the likelihood
function reads

L.#1; #2jtr / D cr�1
#r1

exp


� 1
#1
D1

�
: (23.6)

(ii) For N1 D 0 and N2 D r , the data in (23.1) are given by � < t1Wr Wn < � � � <
tr Wr Wn <1 leading to the likelihood

L.#1; #2jtr / D cr�1
#r2

exp


� 1
#2
D2 � n�

#1

�
: (23.7)

(iii) For N1 D n1 2 f1; : : : ; r � 1g, we have observations below and exceeding �
so that 0 < t1Wr Wn < � � � < tn1Wr Wn � � < tn1C1Wr Wn < � � � < tr Wr Wn <1. Then, the
likelihood function is given by (23.5) with D1;D2 > 0.

The expressions of the likelihood function in (23.6) and (23.7) show that MLEs
of the parameters do not exist in any case. The results are summarized in the next
theorem.

Theorem 23.1.1. (i) The likelihood in (23.6) does not involve #2 so that the
MLE of #2 does not exist for N1 D r (and N2 D 0);

(ii) The likelihood in (23.7) is increasing #1, so that the MLE of #1 does not
exist for N1 D 0 (and N2 D r);

(iii) Finally, if at least one failure occurs before � and after � , the MLEs of #1
and #2 exist. They are given by

b#1 D D1

N1
; b#2 D D2

N2
: (23.8)

Notice that in the settings (23.6) and (23.7), the existing MLEs take on the
same form.

Exact Conditional Distributions of MLEs

Xie et al. [927] established the exact conditional distributions of the MLEs b#1 and
b#2 given in (23.8). In the following, we will present a different approach leading to
simpler representations of the density functions. In particular, we utilize the block
independence property and a connection to Type-I progressively hybrid censored
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data. The first part of the sample, i.e., T1Wr Wn < � � � < TN1Wr Wn � � , can be interpreted
as a Type-I progressively hybrid censored sample from an Exp.#1/-distribution.
Moreover, the MLE b#1 of #1 depends only on this subsample. It exists provided
that N1 > 0. This observation leads directly to the following result taken from
Theorem 5.1.4 and (14.3).

Theorem 23.1.2. Let 1 � n1 � r . Then, the conditional density function of
b#1, given N1 D n1 < r , is given by

fb#1jN1Dn1.t/ D �n1
Qn1C1
jD1 �j

d Š#n1C1fn1C1WmWn.�/
Bn1�1.t j�n1C1�; : : : ; �1�/e�t=# ;

0 � t � n�:

For N1 D r , the density function is given by

fb#1jN1Dr .t/ D �r
Qr
jD1 �j

rŠ#rFr Wr Wn.T /
Br�1.t j�rC1�; : : : ; �1�/e�t=# ; 0 � t � n�:

The conditional density of b#1, given 1 � N1, is

fb#1jN1�1.t/ D 1

1 � e�n�=#
rX

dD1

h dY
jD1

�j

i �d

.d � 1/Š#d

�Bd�1.dt j�dC1�; : : : ; �1�/e�dt=# ; t � 0:

Using the block independence result established in Theorem 2.5.5, we find that,
given N1 D n1 2 f1; : : : ; r � 1g, the step-stress sample from (23.1) separates into
two (conditionally) independent samples

T1Wr Wn < � � � < Tn1Wr Wn � � and � < Tn1C1Wr Wn < � � � < Tr Wr Wn:

Sinceb#1 and b#2 are only functions of the first and second subsample, respectively,
it follows directly that the estimators are conditionally independent. Moreover,
we conclude from this result that the sample Tn1C1Wr Wn; : : : ; Tr Wr Wn forms pro-
gressively Type-II censored order statistics W1Wr�n1W�n1 ; : : : , Wr�n1Wr�n1W�n1 from a
left-truncated cumulative distribution function G� I#1;#2 defined by G� I#1;#2.t/ D
1 � 1�G#1;#2 .t/

1�G#1;#2 .�/ , t � � , with G#1;#2 defined in (23.3). Simplifying this expression

shows that

G� I#1;#2 .t/ D 1 � e�.t��/=#2 ; t � �;
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saying that the sample Tn1C1Wr Wn; : : : ; Tr Wr Wn is distributed as the first r � n1
Exp.�; #2/-progressively Type-II censored order statistics from a sample of size �n1
with known location parameter � and censoring scheme .Rn1C1; : : : ; Rr/. Hence,
we can apply the results of Theorem 12.1.1 because b#2 is seen to have the same
form as the MLE in the one-sample setting considered in Sect. 12.1. Theorem 23.1.3
summarizes these findings.

Theorem 23.1.3. Let n1 2 f0; : : : ; rg. Then:

(i) Given N1 D n1 2 f1; : : : ; r � 1g, the MLEs b#1 and b#2 are conditionally
independent;

(ii) For n1 < r , 2.r � n1/b#2=#2jN1 D n1 � �2.2r � 2n1/.
In particular, E.b#2jN1 D n1/ D #2 and Var.b#2jN1 D n1/ D #22 =.r � n1/.

The MLE of #2 exists provided that N2 > 0, i.e., N1 < r . Then, we get the
following result established by Xie et al. [927]. It shows that the conditional density
function ofb#2 is a mixture of scaled �2-distributions.

Theorem 23.1.4. Let N1 � r � 1 and b#2 be the MLE of #2. Then, for t 2 R,
the conditional density of b#2, given 0 � N1 � r � 1, has the form

fb#2jN1<r .t/ D 2

#2F r Wr Wn.�/

r�1X
dD0

.r � d/P.N1 D d/f�2.2r�2d/
�2.r � d/t

#2

�
:

The conditional densities of b#1 and b#2 readily imply the following expressions
for mean and variance of b#1 and b#2. The results for b#1 can be taken from (5.15)
and (5.16). Notice that the (conditional) distributions of N1 and N2, respectively,
typically depend on the parameter #1.

Corollary 23.1.5. The (conditional) mean and variance of b#1 and b#2 are
given by

E.b#1jN1 > 0/ D #1 � n�e�n�=#1
.1� e��=#1 /n

(23.9)

C #1�

.1 � e��=#1 /n
mX
dD2

1

d.d � 1/fd WmWn.�/;

MSE.b#1jN1 > 0/ D #21E
� 1
N1

ˇ̌
ˇN1 > 0

�

C n�2e�n�=#1
.1 � e��=#1/n

� #21 �
2

.1 � e��=#1 /n
mX
dD2

2d � 1
d2.d � 1/2 f

0
d WmWn.�/;

(23.10)
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E.b#2jN1 < r/ D #2 (23.11)

and

Var.b#2jN1 < r/ D #22
r�1X
dD0

P.N1 D d jN1 < r/ 1

r � d

D #22E
� 1

r �N1
ˇ̌
ˇN1 < r

�
D #22E

� 1
N2

ˇ̌
ˇN2 > 0

�
: (23.12)

The expressions of the means in (23.9) and (23.11) show that b#1 is a biased
estimator of #1, whileb#2 is an unbiased estimator of #2. The expressions in (23.10)
and (23.12) can be readily used to compute standard errors of the MLEsb#1 andb#2.

Confidence Intervals for #1 and #2

Xie et al. [927] proposed several methods of constructing confidence intervals,
including an exact, an approximate, and a bootstrap-based approach. Under the
assumption that Open Problem 14.1.2 holds, Xie et al. [927] constructed a two-sided
exact 100.1� ˛/% confidence interval for #1 by solving the equations

P#1`.
b#1 > #1obs/ D ˛

2
; P#1u.

b#1 > #1obs/ D 1 � ˛
2

(23.13)

for #1`; #1u, where #1obs is the observed value of b#1. Notice that the method of
pivoting the cumulative distribution function as described on p. 331 is based on
the assumption that the equations in (23.13) have solutions. Therefore, the same
comments apply as presented on p. 331 (see also Balakrishnan et al. [156]).

Using the same approach, confidence intervals for #2 can be obtained given a
similar assumption on the monotonicity of the (conditional) survival function. But,
this property can be proved in the present setting as has been done in Balakrishnan
and Iliopoulos [102, Sect. 4.2] for the case of Type-II censored step-stress data.

Applying the observed Fisher information matrix as well as asymptotic proper-
ties of maximum likelihood estimators, Xie et al. [927] also proposed 100.1� ˛/%
approximate confidence intervals for #1 and #2 using a normal approximation.
Finally, they investigated three bootstrap methods: studentized t-interval, percentile
interval, and BCA interval. For a detailed discussion as well as comparisons through
Monte Carlo simulations, we refer to Xie et al. [927] and Balakrishnan [85].
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Optimal Censoring and Optimal Test Plan

For censoring schemes R D .R1; : : : ; Rr/, Xie et al. [927] discussed optimal
progressive censoring in a simple step-stress test. Given 1 � N1 � r � 1, they
considered two optimality criteria.

(1) Minimum variance:

 .R/ D Var.b#1j1 � N1 � r � 1/C Var.b#2j1 � N1 � r � 1/ �! min
R
I

(2) Minimum mean squared error:

'.R/ D MSE.b#1j1 � N1 � r � 1/C Var.b#2j1 � N1 � r � 1/ �! min
R
:

Assuming 1 � N1 � r � 1 and using the explicit expressions for the variances
and mean squared errors given in Corollary 23.1.5, Xie et al. [927, Tables 9.5, 9.6]
determined best and worse censoring schemes for the parameter choice #1 D e1:5,
#2 D e0:5 and selected values of � . Moreover, they discussed the problem of finding
an optimal time �� for changing the stress level from s1 to s2 given a specified choice
of n; r , censoring scheme R D .R1; : : : ; Rr/, and pre-fixed parameter values #1 and
#2 (see Table 9.7 in Xie et al. [927]).

Open problem 23.1.6. For Type-II censored data, Xiong [928] introduced a link
function which assumes the logarithms of the parameters to be a linear function
of the stress level

log#i D ˛ C ˇsi ; i D 1; 2; (23.14)

where ˛; ˇ are unknown parameters. An extension to progressively censored data
is not available so far.

Remark 23.1.7. Yang and Tse [933] discussed a step-stress model for pro-
gressive Type-I interval censored data with random removals and a log-linear
link function between the stress levels and the parameters. Weibull lifetimes are
investigated in Tse et al. [861] (see also Ding et al. [341] and Ding and Tse [340]).
Burr-XII distributions with progressively Type-II censored data in the presence of
random removals are discussed in Sun et al. [828].

23.1.2 Inference for a Simple Step-Stress Model with Random
Change Under Progressive Type-II Censoring

In the previous subsection, the stress has been changed at a pre-fixed time � . Now,
the stress is changed at the r1th failure time as depicted in Fig. 23.4. The experiment
terminates at the r th failure time where 1 � r1 < r . This approach has the advantage
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Fig. 23.4 Generation process of progressively Type-II censored stress level data with random
change time

that the number of observed failures at each stress level is fixed and no longer
random.

This model has been discussed in Wang and Yu [889] (for similar results
with Type-II censored data, see Kundu and Balakrishnan [558]). Introducing the
quantities (see (23.4))

D1 D
r1�1X
kD1

.Rk C 1/tkWr Wn C �r1tr1Wr Wn;

D2 D
r�1X

kDr1C1
.Rk C 1/.tkWr Wn � tr1Wr Wn/C �r.tr Wr Wn � tr1Wr Wn/;

(23.15)

Wang and Yu [889] showed that the likelihood function is proportional to

L.#1; #2/ / #�r11 #
r1�r
2 exp

n
� D1

#1
� D2

#2

o
:
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Obviously, the MLEs are given by

b#1 D D1

r1
; b#2 D D2

r � r1 : (23.16)

Connection to Sequential Order Statistics

Combining the ideas of Balakrishnan et al. [152] and Beutner [192], the Wang-
Yu step-stress model can also be motivated by an approach based on sequential
order statistics. In particular, the data can be seen as sequential order statistics or
generalized order statistics. To be more precise, we describe the model using the
notation of Cramer and Kamps [301]. Given a population cumulative distribution
function F , let the cumulative distribution functions F1; : : : ; Fr be defined as

Fj .t/ D
(
1 � F �j ..n�jC1/#1/

.t/; j D 1; : : : ; r1
1 � F �j ..n�jC1/#2/

.t/; j D r1 C 1; : : : ; r
: (23.17)

Then, the joint density function of sequential order statistics X�.1/; : : : ; X�.r/ is
given by

f
X�.1/;:::;X

�

.r/ .tr / D #�r11 #
r1�r
2

rY
jD1

�j

� r�1Y
jD1

F
mj
.tj /f .tj /

�
F
�r=#2�1

.tr /f .tr /;

(23.18)
where

mj D

8̂
<̂
ˆ̂:

�j
#1
� �jC1

#1
� 1; j D 1; : : : ; r1 � 1

�j
#1
� �jC1

#2
� 1; j D r1

�j
#2
� �jC1

#2
� 1; j D r1 C 1; : : : ; r � 1

:

Obviously, the density function (23.18) is the joint density function of generalized
order statistics with parameters m1; : : : ; mr�1 and �r from the population cumula-
tive distribution function F (see (2.7)).

For exponential lifetimes, the density function (23.18) simplifies since some parts
can be combined. In particular, we get

r�1X
jD1

.mj C 1/tj C �r

#2
tr

D 1

#1

r1�1X
jD1

.Rj C 1/tj C �r1
#1
tr1 �

�r1C1
#2

tr1 C
1

#2

r�1X
jDr1C1

.Rj C 1/tj C �r

#2
tr

D D1

#1
C D2

#2
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withD1 andD2 given in (23.15). Therefore, the joint density function (23.18) reads

f T1WrW:n ;:::;TrWrWn .tr / D
� rY
jD1

�j

�
#
�r1
1 #

r1�r
2 exp

n
� D1

#1
� D2

#2

o
:

This expression for the density function allows us to derive many properties of the
corresponding failure times T1Wr W:n; : : : ; Tr Wr Wn. In particular, we can directly apply
properties of generalized order statistics from standard exponential distribution and
parameters �1=#1; : : : ; �r1�1=#1; �r1C1=#2; : : : ; �r=#2 as given in Kamps [498,499]
and Cramer and Kamps [301]. For instance, normalized spacings of generalized
order statistics are independent exponentially random variables. Therefore, we have

��j .Tj Wr Wn � Tj�1Wr Wn/; j D 1; : : : ; r;
where T0Wr Wn D 0 and ��j D �j =#1, j D 1; : : : ; r1 � 1, and ��j D �j =#2,
j D r1; : : : ; r , as IID standard exponential random variables. Moreover, the random
variablesD1 and D2 have the representation

D1 D
r1X
jD1

�j .Tj Wr Wn � Tj�1Wr Wn/ and D2 D
rX

jDr1C1
�j .Tj Wr Wn � Tj�1Wr Wn/

in terms of the spacings. This yields the following properties which are similar to
those presented in Theorem 2 of Balakrishnan et al. [152] for Type-II censored step-
stress data.

Theorem 23.1.8. Let b#1 and b#2 be the MLEs of #1 and #2 as given in (23.16).
Then,

(i) .b#1, b#2/ is a complete and sufficient statistic for .#1; #2/;

(ii) b#1, b#2 are independent;

(iii) b#j is an unbiased estimator of #j , j D 1; 2;

(iv) b#j is the UMVUE of #j , j D 1; 2;
(v) The distributions of the MLEs are given by

2r1b#1
#1

� �2.2r1/; 2.r � r1/b#2
#2

� �2.2r � 2r1/I

(vi) The estimators are strongly consistent and asymptotically normal for r1 !
1 and r � r1 !1, respectively.

Parametrization via Log-Linear Link Function

Wang and Yu [889] introduced a log-linear link function for the parameters of the
step-stress model as given in (23.14). Then, the MLEs of ˛ and ˇ are obtained as
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b̨D s1 log.D2=.r � r1//� s2 log.D1=r1/

s1 � s2 ;

b̌D log.D1=r1/� log.D2=.r � r1//
s1 � s2 :

Moreover, given a stress level s0, the MLEs of the mean life #0 D exp.˛Cˇs0/ and
the hazard rate �0 D 1=#0 are given by

b#0 D exp.b̨C b̌s0/; b�0 D exp.�b̨� b̌s0/:
Wang and Yu [889] also considered minimum variance unbiased estimation and
showed that the UMVUE of #0 is given by

e#0 D � .r1/� .r2/

� .r1 C k0 C 1/� .r2 � k0/D
k0C1
1 D

k0
2

provided r2 > k0 D s0�s1
s1�s2 . The UMVUE of �0 is given by

e�0 D � .r1/� .r2/

� .r1 � k0 � 1/� .r2 C k0/D
�k0�1
1 D

k0
2

if r1 > k0 C 1. Expressions for the variances of the UMVUEs and MLEs are also
given in Wang and Yu [889]. Finally, it is shown that the mean squared error of an
MLE exceeds that of the corresponding UMVUE. These results are based on the
properties given in Theorem 23.1.8.

Wang [884] established confidence intervals for ˛; ˇ, and #0. Obviously, b̌ has a
transformed F-distribution since b̌ can be written as

b̌D logQ

s1 � s2 with Q D D1=r1

D2=.r � r1/ and Q � #2
#1
� F.2r1; 2.r � r1//:

Hence, the statistical interval

hb̌� log Fp=2.2r1; 2.r � r1//
s1 � s2 ; b̌� log F1�p=2.2r1; 2.r � r1//

s1 � s2
i

forms a 100.1�p/% exact confidence interval for ˇ. Notice that e.s1�s2/ˇ D #1=#2.
Expressions for confidence intervals for ˛ and #0 can be written in terms of quantiles
of the cumulative distribution functions

FW˛ .w/ D
Z 1
0

f�2.2r1/.t/F�2.2.r�r1//
�
.wtk1 /1=.k1C1/

�
dt;

FW# .w/ D
Z 1
0

f�2.2.r�r1//.t/F�2.2r1/
�
.wtk0 /1=.k0C1/

�
dt;

where k0 D s0�s1
s1�s2 , k1 D s2

s1�s2 ,W˛ D 2.r�r1/k1C1r�k11 eb̨�˛ , andW# D 2rk0C11 .r�
r1/
�k0b#0=#0.
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23.1.3 Inference for Multiple Step-Stress Model Under
Progressive Type-I Censoring

Progressively Type-I Censored Step-Stress Data

In progressive Type-I censoring, Ri surviving units are censored at pre-fixed times
0 < �1 < �2 < � � � < �k . This setting can be extended to a step-stress model by
introducing different stress levels s1 < � � � < sk . Initially, the stress level imposed
on the n units on test is at a level of s1. Then, at a pre-fixed time �1, the stress level
is changed to s2; next, at time �2, the stress level is changed to s3, etc. Hence, at
censoring time �j ,

(i) A prefixed numberRj of items is withdrawn from the experiment provided that
Rj items are still on test. Otherwise, the available items are removed and the
experiment is terminated. The effectively applied censoring scheme is denoted
by R� D .R�1 ; : : : ; R�k /;

(ii) The stress level is increased from sj to sjC1.

This scenario is depicted in Fig. 23.5.
Gouno et al. [408] and Han et al. [430] discussed this model with equi-spaced

censoring times, i.e., when �j D j� , j D 1; : : : ; k. The following notations are
used:

(1) nj denotes the number of units that failed at stress level sj , i.e., in the time
interval Œ.j � 1/�; j�/;

(2) Rj denotes the number of surviving units progressively censored at time
�j D j� ;

(3) t1;j Wn � � � � � tnj ;j Wn denote the increasingly ordered failure times observed at
stress level sj , j D 1; : : : ; k;

(4) �j D Rj =n, j D 1; : : : ; k � 1, denote the proportion of units censored at �j ;
(5) Nj D n �Pi�1

jD1 nj �
Pi�1

jD1 Rj denotes the number of units remaining in the
experiment at �j .

Likelihood Function and MLEs

Gouno et al. [408] and Han et al. [430] considered an exponential lifetime
distribution Exp.#i / at stress level si , where the mean lifetimes #i satisfy a log-
linear link function of the form (23.14), i.e., log#i D ˛ C ˇ si , i D 1; : : : ; k, and
˛ and ˇ are unknown parameters. Then, under the cumulative exposure model, the
lifetime density function g# of a unit is given by (see (23.3))



496 23 Accelerated Life Testing

time

st
re

ss

�1 �2 �3

s1

s2

s3

s4

sk

��

withdrawn

R1

��

withdrawn

R2

��

withdrawn

R3

��

�k

withdrawn

Rk

�

t1;1Wn

�

t1;2Wn

�

t2;2Wn

�

t1;4Wn

�

t1;kWn

Fig. 23.5 Generation process of progressively Type-I censored order statistics in a step-stress
scenario. The observations are denoted by t1;j Wn � � � � � tnj ;j Wn in each interval .�j�1; �j /
provided that the number of observations nj is positive

g# .t/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂̂
ˆ̂:

1
#1

exp
n
� t
#1

o
; 0 � t � �

1
#2

exp
n
� t��

#2
� �

#1

o
; � � t � 2�

1
#3

exp
n
� t�2�

#3
� �

#2
� �

#1

o
; 2� � t � 3�

:::
:::

1
#k

exp
n
� t�.k�1/�

#k
�Pk�1

jD1 �
#j

o
; .k � 1/� � t � 1

: (23.19)

Then, given the data n D .n1; : : : ; nk/ and t D .t1; : : : ; tk/ with tj D
.t1;j Wn; : : : ; tnj ;j Wn/, the likelihood function is given by

L.#1; : : : ; #k/ D
kY
iD1

Ni Š

.Ni � ni /Š
kY
iD1

#
�ni
i exp

 
�

kX
iD1

Ui

#i

!
;



23.1 Step-Stress Models 497

where

Ui D
niX
jD1

.tj;i Wn � .i � 1/�/C .Ni � ni /�; i D 1; : : : ; k:

Then, the MLEs of #i are given by b#i D Ui=ni provided that ni > 0. Using the
log-linear link function in (23.14), the corresponding log-likelihood function reads

`.˛; ˇ/ D const� ˛
kX
iD1

ni � ˇ
kX
iD1

ni si � e�˛
kX
iD1

Uie
�ˇsi :

Assuming that we observe at least one failure, i.e.,
Pk

iD1 ni � 1, `.˛; ˇ/ can be
bounded from above by

`.b̨.ˇ/; ˇ/ D const� log

 
kX
iD1

Uie
�ˇsi

!
kX
iD1

ni � ˇ
kX
iD1

ni si ;

where equality holds for ˛ D b̨.ˇ/ with

b̨.ˇ/ D log

 Pk
iD1 Uie�ˇsiPk

iD1 ni

!
:

Now, it can be shown that h.ˇ/ D � log
�Pk

iD1 Uie�ˇsi
�

is a strictly concave func-

tion. Furthermore, defining pi D Uie�ˇsi =Pk
jD1 Uj e�ˇsj , the second derivative of

h w.r.t. ˇ can be written as

@2

@̌ 2
h.ˇ/ D �

kX
iD1

pis
2
i C

 
kX
iD1

pi si

!2
D �.ES2 � E2S/ D �Var.S/ � 0;

where S denotes a random variable with values in fs1; : : : ; skg and probability mass
function p1; : : : ; pk . Therefore, a unique solution b̌ exists so that b̨ D b̨.b̌/ and b̌
are the MLEs of ˛ and ˇ. b̌ can be obtained as the solution of the nonlinear equation

"
kX
iD1

ni

#"
kX
iD1

Uisie
�b̌si

#
�

kX
iD1

ni si

kX
iD1

Uie
�b̌si D 0:

Gouno et al. [408] based further statistical inference on the assumption that
the asymptotic distribution of the MLE .b̨; b̌/0 is a bivariate normal distribution
with mean .˛; ˇ/0 and covariance matrix ŒIn.˛; ˇ/�

�1, where In.˛; ˇ/ is the
expected Fisher information matrix. A similar approach has been used in this area
by many authors, e.g., by Nelson [675]. Gouno et al. [408] established the following
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representation of the expected Fisher information matrix:

In.˛; ˇ/ D n

0
BB@

kP
iD1

Ai .�/
kP
iD1

Ai .�/si

kP
iD1

Ai.�/si
kP
iD1

Ai .�/s
2
i

1
CCA ; (23.20)

where

Ai.�/ D
2
41 �

i�1X
jD1

�j

Gj .�/

3
5Gi�1.�/Fi .�/; 1 � i � k; (23.21)

Fi .�/ D 1 � e��=#i ; 1 � i � k;

Gj .�/ D
jY
iD1
.1 � Fi .�//; 1 � j � k; G0.�/ D 1:

Optimal Step-Stress Test

The choice of the stress change point � has an impact on the bias and variance of
the estimators. Therefore, it stands to reason to choose � in an optimal way. Using
the preceding results, Gouno et al. [408] proposed the following criteria based on the
expression of the Fisher information in (23.20) or the variance–covariance matrix
of .˛; ˇ/ given by .In.˛; ˇ//

�1.

(i) Variance optimality: The first criterion is based on the idea of minimizing the
variance of the mean life estimator b#0, given a stress s0. As a measure for this
quantity, Gouno et al. [408] considered the variance of logb#0 given by

�.�/ D nVar.logb#0/ D Var.b̨C b̌s0/
D n.1; s0/I �1n .˛; ˇ/.1; s0/

0

D 2
Pk

iD1 Ai.�/.si � s0/2Pm
iD1

Pk
jD1 Ai .�/Aj .�/.si � sj /2

�! min
�
I (23.22)

(ii) D-optimality: Noticing that the volume of the asymptotic joint confidence
region of .˛; ˇ/ is proportional to the determinant of the square root of the
inverse Fisher information matrix jIn.˛; ˇ/j�1=2, Gouno et al. [408] suggested
a minimum volume approach. This yields the criterion
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g.�/ D n�2jIn.˛; ˇ/j

D
kX
iD1

Ai .�/

kX
jD1

Aj .�/s
2
j �

� kX
iD1

Ai .�/si

�2

D 1

2

kX
iD1

kX
jD1

Ai .�/Aj .�/.si � sj /2 �! min
�
: (23.23)

Gouno et al. [408] and Han et al. [430] addressed the existence and uniqueness
of optimal � for the simple step-stress model in these scenarios. Moreover, they
provided some computational results on the optimal change time � for different
settings. However, given a prefixed censoring scheme R D .R1; : : : ; Rk�1/, it
may happen that either the experiment is terminated before all censoring steps
are employed or no failures are observed before the termination time k� . These
problems are typical for Type-I censoring. In order to overcome these difficulties,
Gouno et al. [408] assumed a large sample size n, small global censoring proportions
�i D Ri=n, and a small number of stress levels k. These assumptions guided them
to restrict the search for optimal � to the region

C� D f� W Ai.�/ > 0 for i D 2; : : : ; kg;

with Ai.�/ as in (23.21). However, Han et al. [430] pointed out that this restriction
works only on an average and not for each sample. Moreover, they argued that the
assumption of large sample sizes may often be violated in practice.

A Modified Progressive Censoring Scheme and Optimal Step-Stress Test

In order to get rid of the problems described above, Balakrishnan and Han
[99] proposed a modified progressive censoring scheme. In contrast to censoring
according to a pre-fixed censoring plan R D .R1; : : : ; Rk�1/, they introduced a
relative censoring scheme which censors a fixed proportion


� D .��1 ; � � � ; ��k�1/

of the surviving units at the end of each stress level (0 � ��i < 1, i D 1; : : : ; k�1).
This yields a random number of removals at each censoring step of the experiment
because the effectively removed number of items depends on the number of
surviving specimens at the particular censoring time. Since all the remaining items
are withdrawn from the test at the end of stress level sk , ��k D 1. Therefore, the
number of censored items at the end of stress level si may be defined as

R�i D � ..Ni � ni /��i / for i D 1; : : : ; k � 1;
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where � .�/ is a discretizing function such as round.�/, floor.�/, ceiling.�/, and
trunc.�/. This censoring scheme is an adaptive procedure since it takes into account
how many failures have been observed before the censoring time. From the
condition 0 � ��i < 1, it follows that the number of effectively removed items
R�i satisfies the inequality 0 � R�i � Ni � ni , i D 1; : : : ; k � 1. If i� denotes the
minimum of such indices satisfying R�i D Ni � ni , the life test terminates at the
end of the i�th stage. Therefore, the life test is allowed to terminate before reaching
the last stress level sk .

As mentioned above, the employed censoring scheme R� D .R�1 ; : : : ; R�k�1/ is
random. Hence, the proportion of removed units 
 D R�=n D .�1; : : : ; �k�1/ is
random, too. If progressive censoring is not present in the life test, i.e., if 
� D
.0�k�1/, the employed censoring scheme is given by R� D .0�k�1/. Obviously, this
scenario corresponds to the case of a k-level step-stress testing under Type-I right
censoring. In addition, if R�k > 0 or nk > 0 (equivalently, Nk D nk C R�k > 0), it
implies that the life test has proceeded onto the last stress level sk .

Then, under such a modified progressive censoring scheme, Balakrishnan and
Han [99] derived the maximum likelihood estimators of the parameters ˛ and ˇ
as well as an explicit expression for the Fisher information matrix. The Fisher
information has the same form as (23.20) with, 1 � i � k,

Ai.�/ D Fi .�/
i�1Y
jD1

.1 � Fj .�//.1 � ��j / D Fi .�/Gi�1.�/
i�1Y
jD1

.1 � ��j /:

They used these results to design an optimal step-stress test under this setup by
considering the following optimality criteria:

(1) Variance optimality as defined in (23.22);
(2) D-optimality as defined in (23.23);
(3) A-optimality which maximizes the trace of the Fisher information matrix.

With these three criteria, Balakrishnan and Han [99] have presented several
numerical results on optimal time duration � under different settings and have also
made some comparisons and empirical observations with regard to the optimal
� under these criteria. In addition, they have also discussed the existence and
uniqueness of the optimal time duration � under all three optimality criteria.

Remark 23.1.9. Finally, we would like to mention that similar considerations
have been addressed in the model of progressive censoring with random removals.
We refer the interested reader to Ding et al. [341], Shen et al. [803], and Ding
and Tse [340].

Step-Stress Test with Link Function Based on Box–Cox Transformation

Assuming exponential lifetimes, the (constant) hazard rate function for the i th stress
level is given by �i D 1=#i , i D 1; : : : ; k. Extending the preceding approach, Fan
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et al. [360] considered a link function based on a Box–Cox transformation which
incorporates the stress in a different way. Given time points �1 < � � � < �k , the stress
imposed on the units changes at �i . The stress environment in the interval .�i�1; �i �
is represented by a vector zi D .1; zi1; : : : ; zi`/0 which is connected to the hazard
rate by

�
.�/
i D z0iˇ;

where the hazard rates satisfy a Box–Cox model of the form

�
.�/
i D

8
<
:
�
�
i�1
�

if � ¤ 0
log�i if � D 0

;

and ˇ D .ˇ0; : : : ; ˇ`/
0 and � are unknown parameters. For � D 0, ` D 1, and zi D

.1; si /, this approach reduces to the log-linear link function considered in (23.14).
Fan et al. [360] discussed likelihood as well as Bayesian inference for ˇ and �.
Moreover, they presented a comparative study.

Progressively Type-I Interval Censored Exponential Data

Wu et al. [917] considered progressively Type-I censored data when only the
number of failures is available for each stress level. Figure 23.6 illustrates the
situation based on Fig. 23.5 for arbitrary inspection times �1 < � � � < �k . Assuming
equi-spaced inspection times �j D j� , j D 0; : : : ; k, for some � > 0, a cumulative
exposure model as in (23.19) is assumed. Moreover, a log-linear link function
log#i D ˛ C ˇsi , i D 1; : : : ; k, as in (23.14) relates stress levels to the parameters
of the distribution. Then, as pointed out in Wu et al. [917], the likelihood function
is proportional to

L.#/ /
kY

jD1

�
1 � e��=#j

�Dj
e�.
j�Dj /�=#j ; (23.24)

where 
j D n �D�j�1 � R�j�1, j D 1; : : : ; k. The resulting likelihood equations
for ˛ and ˇ have to be solved numerically. Wu et al. [917] proposed to use a
normal approximation to compute approximate confidence intervals by following
the approach of Gouno et al. [408]. They established a representation of the
expected Fisher information matrix similar to (23.20). Finally, they discussed the
determination of both variance-optimal and D-optimal inspection interval length � .
They applied their results to data given in Table 23.1. For details, we refer to Wu
et al. [917].
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Fig. 23.6 Generation process of progressively interval-censored data in a step-stress scenario

Stress level sj
5 10 15 20 25

Number of failures Dj 1 1 3 1 1
Number of removals Rj 1 0 1 0 0
Table 23.1 Outcome of progressively Type-I group-censored step-stress experiment as reported in
Wu et al. [917]. The data are generated from step-stress data (lifetime of cryogenic cable insulation)
reported by Nelson [677, p. 496, Table 2.1]

An extension to arbitrary inspection times �1; : : : ; �k has been worked out by Wu
et al. [920] for exponential step-stress data. They discussed likelihood inference
for the parameter ˇ D .ˇ0; ˇ1; : : : ; ˇk/

0 assuming a log-linear link function
log#j D ˇ0s, where s D .1; s1; : : : ; sk/0 denotes the vector of stress levels. A model
involving Weibull distributions has been considered in Yue and Shi [935].
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23.1.4 Multiple Step-Stress Model with Progressive Censoring:
An Approach Based on Sequential Order Statistics

Following the ideas of Balakrishnan et al. [152], a multiple step-stress model with
additional progressive censoring can be introduced. In fact, the resulting model
corresponds to that proposed in Wang and Yu [889] and further discussed in Wang
[884]. Given that the stress changes at prefixed failures �1 < � � � < �k , we take
into account additionally a censoring scheme R. As in (23.17), the cumulative
distribution functions in the model of sequential order statistics are given by

Fj .t/ D 1 � F �j =.n�jC1/#i
.t/; j D �i�1C1; : : : ; �i ; 1 � i � k;

where �0 D 0 and �j DPm
`Dj .R` C 1/, 1 � j � m D �k . The likelihood function

is given by

L.#/ D
mY
jD1

�j

kY
iD1

#
�.�i��i�1/
i exp

n
�

kX
iD1

Di

#i

o
;

where

Di D
�iX

jD1C�i�1
�j .X.j / � X.j�1//; i D 1; : : : ; k:

As before, it follows from properties of sequential order statistics that the spacings
of the failure times X�.1/; : : : ; X�.m/ are independent exponential random variables.
Hence, the statistics D1; : : : ;Dk are independent random variables with 2Di=#i �
�2.2.�i ��i�1//, i D 1; : : : ; k (see also Wang and Yu [889, Lemma 4]). This shows
that the MLE of # is given by b#i D Di=.�i � �i�1/, i D 1; : : : ; k. Moreover,
the properties presented in Theorem 23.1.8 can be easily extended to the present
model. Wang and Yu [889] discussed likelihood inference assuming a log-linear
link function as given in (23.14). Interval estimation is addressed in Wang [884].

23.2 Progressive Stress Models

Progressive stress accelerated life tests for progressively Type-II censored data have
been studied by Abdel-Hamid and AL-Hussaini [4]. They imposed the following
conditions:

(1) The lifetimes of n units under test have Weibull.a; b/-distributions;
(2) The data are given by k independent progressively censored samples. The i th

sample is drawn from a total of ni specimens employing a censoring scheme
Ri D .R1;i ; : : : ; Rmi ;i / and, thus, forms a sample of size mi (n D n�);
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(3) The stress function in each sample is given by si .t/ D vi t , t � 0, where 0 <
v1 < � � � < vk are known stress parameters;

(4) The scale parameter of the Weibull distribution depends on the stress function,
i.e.,

a.t/ D 1

cŒs.t/�d
D 1

c.vi t /d
; t > 0I

(5) The linear cumulative exposure model is imposed to model the stress effect.

As pointed out in Abdel-Hamid and AL-Hussaini [4], the cumulative distribution
function of the unit lifetime under progressive stress is given by a time transforma-
tion, i.e.,

Gi.t/ D F.�i .t//;

where�i.t/ D cvdi t
dC1=.d C 1/, t � 0, and F denotes the cumulative distribution

function of a Weibull.1; b/-distribution. Hence, Gi is the cumulative distribution
function of a Weibull.#i ; b.d C 1//-distribution with

#i D
	
d C 1
cvdi


1=.dC1/
: (23.25)

Summing up the above assumptions, we have the following data scenario:

(i) The data consists of k independent progressively Type-II censored samples
Xi;1Wmi Wni ; : : : ; Xi;mi Wmi Wni , i D 1; : : : ; k;

(ii) The censoring scheme in the i th sample is given by Ri ;
(iii) The population distribution in the i th sample is given by a Weibull.#i ; b.d C

1//-distribution.

Hence, we can interpret the situation as a k-sample problem with independent
samples from possibly different Weibull populations. In this sense, the situation is
similar to the multi-sample settings discussed in Balakrishnan et al. [130] or Cramer
and Kamps [298] in terms of sequential order statistics.

Now, Abdel-Hamid and AL-Hussaini [4] applied a log-transform to the data
which leads to similar data from an extreme value distribution with observations
x D .x1; : : : ; xk/, xi D .x1;i ; : : : ; xmi ;i /. This leads to the log-likelihood function

`.b; c; d I x/ D constCm� logŒb.d C 1/�

C
kX
iD1

miX
jD1

�
.b.d C 1/.xj;i � log#i /� .Rj;i C 1/

�exj;i

#i

�b.dC1/�
;
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where #i is given in (23.25). This function has to be maximized w.r.t. b; c; d which
has to be done computationally. The likelihood equations can be easily derived
(see Abdel-Hamid and AL-Hussaini [4]). Simulation results as well as several
computational approaches to construct approximative confidence intervals may
also be found in Abdel-Hamid and AL-Hussaini [4]. Moreover, they discussed a
graphical procedure to check whether a Weibull model is adequate to the given data.
The method proceeds by a Kaplan–Meier-type estimator based on progressively
censored data (see (21.6)) (see also Lai et al. [567]).

Similar models have been discussed for Burr Type-XII distributions in Abdel-
Hamid [3], for Pareto distributions in Abushal and Soliman [10], and for Rayleigh
distributions in Abdel-Hamid and AL-Hussaini [5].



Chapter 24
Stress–Strength Models with Progressively
Censored Data

In a reliability context, let a random variable Y describe the strength of a unit
subjected to a certain stress represented by the random variable X . The unit fails
when the stress X exceeds the strength Y . Thus, the probability

R D P.X < Y /

may serve as a measure for the reliability of the unit (see, e.g., Tong [849,850,851],
Beg [184], Constantine et al. [279], and Kotz et al. [547]). Stress–strength models
have been widely investigated in the literature. For a detailed account on models,
inferential results, and applications, we refer to Kotz et al. [547]. In particular,
Chap. 7 of this monograph provides an extensive survey on applications and
examples of stress–strength models.

Inference for R has been based on various assumptions regarding the underlying
data. For instance, for two independent samples of X1; : : : ; Xn1 and Y1; : : : ; Yn2 ,
Birnbaum [205] showed that the Mann–Whitney statistic

U D
n1X
iD1

n2X
jD1

1.Xi ;1/.Yj /

yields an unbiased nonparametric estimator of R, i.e.,

OR D 1

n1n2
U:

Since this pioneering work, many results have been obtained for various models and
assumptions. For an extensive review, we refer to Kotz et al. [547].

In the following, we are interested in the estimation of R based on two
independent progressively Type-II censored samples XR

1Wm1Wn1 ; : : : ; X
R
m1Wm1Wn1 and

YS
1Wm2Wn2 ; : : : ; Y

S
m2Wm2Wn2 . The sample sizes as well as the censoring schemes may be

different.

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 24,
© Springer Science+Business Media New York 2014
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24.1 Exponentially Distributed Stress and Strength

In this section, we assume that the population distribution is exponential, i.e.,

X � Exp.�; #1/; Y � Exp.�; #2/

with a common location parameter � 2 R. In this case, R can be easily calculated
as the ratio

R D #2

#1 C #2 : (24.1)

In the inferential part, we distinguish the cases when � is known or unknown.

24.1.1 Exponentially Distributed Stress and Strength
with Known Location Parameter

For convenience, let � D 0. The following results are taken from Cramer and
Kamps [297] and Cramer [283] who considered the problem in the more general
scenario of order statistics from independent samples from Weinman multivariate
exponential distributions. Some of these results were rediscovered for progressively
Type-II censored order statistics by Saraçoğlu et al. [769].

From (12.4), we conclude that the MLEs of #1 and #2 are given by

b#�1;MLE D
1

m1

m1X
jD1

.Rj C 1/XR
j Wm1Wn1 ; b#�2;MLE D

1

m2

m2X
jD1

.Sj C 1/YS
j Wm2Wn2;

respectively. As in Theorem 12.1.1, we have the MLEs to be complete sufficient
statistics. Both estimators are unbiased and 2mj

b#�j;MLE=#j � �2.2mj / so that

Var.b#�j;MLE/ D
#2j
mj

, j D 1; 2 (see also Corollary 17.1.1). Now, the MLE bR�MLE

of R is obtained by plugging in the MLEs of the parameters #j so that

bR�MLE D
b#�2;MLE

b#�1;MLE Cb#�2;MLE

:

Using the properties of the MLEs, it is pointed out in Cramer [283] that bR�MLE has
a three-parameter beta distribution G3B(m1;m2; �/ with � D m2#1=.m1#2/. The
density function is given by

 m1;m2;�.t/ D
�m2

B.m1;m2/

tm2�1.1 � t/m1�1
Œ1 � .1 � �/t�m1Cm2 ; t 2 .0; 1/;
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(see also Saraçoğlu et al. [769]). Further details about this distribution can be found
in Libby and Novick [591], Chen and Novick [253], Pham-Gia and Duong [719],
and Johnson et al. [484].

Let A D .1 � R/=R and bA D .1 � bR�MLE/=
bR�MLE. Utilizing the fact that

bA
A
D
b#1;MLE=#1

b#2;MLE=#2
� F.m1;m2/;

we have
"

F˛=2.m1;m2/

F˛=2.m1;m2/CbA
;

F1�˛=2.m1;m2/

F1�˛=2.m1;m2/CbA

#

as a .1 � ˛/ confidence interval for R (see Saraçoğlu et al. [769]).
Cramer and Kamps [297] also obtained the UMVUE of R. The estimator is

piecewise defined via a hypergeometric function

bR�UMVUE D

8̂
<̂
ˆ̂:

F
�
1 �m2; 1Im1I m1b#

�

1;MLE

m2b#�2;MLE

�
; m1

b#�1;MLE � m2
b#�2;MLE

1 � F
�
1�m1; 1Im2I m2b#

�

2;MLE

m1b#�1;MLE

�
; m1

b#�1;MLE > m2
b#�2;MLE

:

The representation can be expressed as a finite sum using expansions of hypergeo-
metric functions. For instance, in the first case, we get

bR�UMVUE D
m2X
jD0

.�1/j
�
m2�1
j

�
�
m1Cj�1

j

�
	
m1
b#�1;MLE

m2
b#�2;MLE


j
:

For Type-II censored samples, this result has been obtained by Bartoszewicz [172].
Tong [849, 850, 851] discussed the case of complete samples. Saraçoğlu et al. [769]
addressed Bayesian inference for R assuming independent gamma priors. They
found a Bayesian estimate in terms of a hypergeometric function and presented an
algorithm to construct a credible interval.

24.1.2 Exponentially Distributed Stress and Strength
with Common Unknown Location Parameter

In this section, inference for R is addressed for two-parameter exponential distri-
bution with a common unknown location parameter. For complete samples, this
problem has been discussed in Bai and Hong [70] (see also Cramer and Kamps
[296]). The results for progressively Type-II censored order statistics are taken from
Cramer and Kamps [297] and Cramer [283]. Let
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W1 D
m1X
jD1

�j .R/.X
R
j Wm1Wn1 � XR

j�1Wm1Wn1/;

W2 D
m2X
jD1

�j .S /.YS
j Wm2Wn2 � YS

j�1Wm2Wn2/;

where XR
0Wm1Wn1 D YS

0Wm2Wn2 D 0. Then, it is shown in Cramer [283] that the MLEs of
�; #1; #2 are given by

b�MLE D min.XR
1Wm1Wn1 ; Y

S
1Wm2Wn2/;

b#1;MLE D 1

m1

.W1 � n1b�MLE/; b#2;MLE D 1

m2

.W2 � n2b�MLE/:

Remark 24.1.1. The MLE b#1;MLE (and, by analogy, b#2;MLE) can be written as

b#1;MLE D 1

m1

m1X
jD1

�j .R/.X
R
j Wm1Wn1 � XR

j�1Wm1Wn1/

D 1

m1

m1X
jD1

.Rj C 1/.XR
j Wm1Wn1 �b�MLE/;

where XR
0Wm1Wn1 D min.XR

1Wm1Wn1; Y
S
1Wm2Wn2/, say. Using the above expression,

Cramer [283] obtained that b�MLE and .b#1;MLE;b#2;MLE/ are independent. b�MLE

is Exp
�
�;
�
n1=#1Cn2=#2

��1�
-distributed. The distributions of 2mj

b#j;MLE, j D
1; 2, are binomial mixtures of �2-distributions. In particular, with 
 D n1#2

n2#1Cn1#2 ,
the distributions can be written as

2m1
b#1;MLE � 
�2.2m1 � 2/C .1 � 
/�2.2m1/;

2m2
b#2;MLE � .1 � 
/�2.2m2 � 2/C 
�2.2m2/:

(24.2)

Moreover, .b�MLE;W1;W2/ is a complete sufficient statistic for .�; #1; #2/.
These results can be used to establish the UMVUE of �. Introducing the
estimators

b#j;? D mj

mj � 1
b#j;MLE; j D 1; 2;

it is given by

b�UMVUE D b�MLE �
b#1;?b#2;?

n2b#1;? C n1b#2;?
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(see Cramer [283]; for complete samples, see Chiou and Cohen [262] and Ghosh
and Razmpour [401]).

Furthermore, the MLE of R is given by

bRMLE D
b#2;MLE

b#1;MLE Cb#2;MLE

:

The distribution of bRMLE is a binomial mixture of generalized beta distributions.
According to Cramer [283],

bRMLE � 
G3B.m1 � 1;m2; �/C .1 � 
/G3B.m1;m2 � 1; �/; (24.3)

where 
 D n1#2
n2#1Cn1#2 as in (24.2) and � D .m2#1/=.m1#2/. This result can be

used to obtain explicit expressions for the moments of bRMLE. Following an idea
of Bhattacharyya and Johnson [199], this connection can be used to establish an
approximate confidence interval for R. Details are presented in Cramer [283].

As in the case of known location parameter, the UMVUE of R can also be
constructed. Cramer and Kamps [297] established the following expression. For
.m1 � 1/b#1;? � .m2 � 1/b#2;?,

bRUMVUE D
n1b#2;? Cb#1;?Œn2 � n1�F

�
2�m2; 1Im1I .m1�1/b#1;?

.m2�1/b#2;?
�

n1b#2;? C n2b#1;?
;

while for .m1 � 1/b#1;? > .m2 � 1/b#2;?,

bRUMVUE D 1 �
n2b#1;? Cb#2;?Œn1 � n2�F

�
2 �m1; 1Im2I .m2�1/b#2;?

.m1�1/b#1;?
�

n2b#1;? C n1b#2;?
:

Notice that, for equal sample sizes n1 D n2, the representations simplify
considerably:

bRUMVUE D
b#2;?

b#1;? Cb#2;?
: (24.4)

In this case, Cramer [283] has shown that the distribution of bRUMVUE is a binomial
mixture similar to (24.3) as is for the MLE bRMLE. However, as pointed out by
Cramer and Kamps [297], the UMVUE in (24.4) has a special Gauß hypergeometric
distribution (see Armero and Bayarri [48]) with density function
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f R.t/ D
 
m1 Cm2 � 2
m1 � 1

!
.m2 � 1/m2
.m1 � 1/m2�1

�m2

�C 1

� .1 � t/m1�2tm2�2�
1C �m2�1

m1�1� � 1
�
t
�m1Cm2�1 ; t 2 .0; 1/;

where � D #1=#2, m1;m2 � 2.
The multi-sample case is considered in Cramer [283], i.e., s1 and s2 independent

progressively censored samples are considered. As in the two-sample case, expres-
sions for MLE and UMVUE are established. Moreover, it is shown that, under some
regularity conditions, MLE and UMVUE are asymptotically equivalent. Moreover,
they are asymptotically normal. This result may be used to construct approximate
confidence intervals for R.

24.2 Further Stress–Strength Distributions

Asgharzadeh et al. [64] have discussed stress–strength models with progressively
censored data from Weibull lifetime distributions with a common shape parameter,
i.e.,

X �Weibull.#1; a/; Y �Weibull.#2; a/; #1; #2; a > 0:

In this case, the stress–strength reliability R is independent of the shape parameter
and given by the expression (24.1), too. Thus, if a is known, the results for the
exponential model can be directly applied. If a is unknown, the MLE of R can be
obtained from the MLEs

b#1;MLE D 1

m1

m1X
jD1

.Rj C 1/.XR
j Wm1Wn1/

b̨; b#2;MLE D 1

m2

m2X
jD1

.Sj C 1/.YS
j Wm2Wn2/

b̨;

where b̨ is the solution of the equation .m1 Cm2/=g.˛/ D ˛ and

g.˛/ D m1

Pm1
jD1.Rj C 1/x˛j logxjPm1
jD1.Rj C 1/x˛j

C m2

Pm2
jD1.Sj C 1/y˛j logyjPm2
jD1.Sj C 1/y˛j

�
m1X
jD1

logxj �
m2X
jD1

logyj :

Asgharzadeh et al. [64] proposed a simple fix-point-based procedure to get an
estimate for ˛. Moreover, they adopted an approach of Kundu and Gupta [559] and
approximated the likelihood equation by transforming the data to a location–scale
model from the extreme value distribution. Using the approximated MLEs of #1
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i 1 2 3 4 5 6 7 8 9 10

xiW10W69 1.312 1.479 1.552 1.803 1.944 1.858 1.966 2.027 2.055 2.098
Ri 1 0 1 2 0 0 3 0 1 50

yiW10W63 1.901 2.132 2.257 2.361 2.396 2.445 2.373 2.525 2.532 2.575
Si 0 2 1 0 1 1 2 0 0 44
Table 24.1 Progressively censored stress–strength data taken from Asgharzadeh et al. [64,
Table 7]

and #2, this leads to a different estimator for R. Furthermore, they proposed
interval estimates by using asymptotic normality of an estimator of R as well
as by considering two bootstrap approaches. Finally, Bayesian estimation of R is
discussed using inverse gamma priors for #j and a gamma prior for ˛.

Example 24.2.1. Asgharzadeh et al. [64] applied their results to progressively
Type-II censored data generated from data presented in Kundu and Gupta [559].
The data sets are given in Table 24.1. They obtained the estimates 0:176; 0:179,
and 0:328 for the MLE, the approximate MLE, and the Bayesian estimate of R.

Remark 24.2.2. Valiollahi et al. [865] addressed a Weibull model with com-
mon scale but different shape parameters, i.e., X � Weibull.#; a1/; Y �
Weibull.#; a2/. In this case, the stress–strength probability exhibits an integral
representation

P.Y < X/ D 1 � a1
#

Z 1
0

ta1�1e�.ta1Cta2 /=#dt:

Likelihood inference, approximate estimation, and Bayesian inference are consid-
ered. The results are applied to the data given in Table 24.1.

Lio and Tsai [613] discussed estimation of R when the data are sampled from a
Burr-XII distribution with density functions

fi .t/ D ˇi˛t˛�1.1C t˛/�ˇi�1; t > 0; ˛; ˇi > 0; i D 1; 2;
in the presence of progressive first-failure censoring. Then, R is independent of
the common shape parameter ˛ and given as the ratio ˇ1=.ˇ1 C ˇ2/. They proved
that, under weak conditions, the MLEs of the distribution parameters uniquely exist.
Plugging this result into R yields the MLE of R. The authors also established
confidence intervals based on Fisher information and bootstrap procedures.

Basirat et al. [180] considered a proportional hazards model with different
proportionality parameters for the population distributions. It includes exponential,
Weibull (with known shape parameter), Pareto, and Burr-XII distributions as special
cases. The stress–strength probability has the form given in (24.1). Then, the
corresponding results are derived along the lines for the exponential distribution.



Chapter 25
Multi-sample Models

25.1 Competing Risk Models

25.1.1 Model and Notation

In competing risk modeling, it is assumed that a unit may fail due to several causes
of failure. For two competing risks, the lifetime of the i th unit is given by

Xi D min fX1i ; X2i g ; i D 1; : : : ; n;

where Xji denotes the latent failure time of the i th unit under the j th cause of
failure, j D 1; 2. We assume that the latent failure times are independent, where
Xji � Fj , j D 1; 2, i D 1; : : : ; n. This ensures that the distributions of the
latent failure times entirely determine the competing risk model (see, e.g., Crowder
[316], Tsiatis [862], and Pintilie [721]). Additionally, the sample X1; : : : ; Xn is
progressively Type-II censored and it is assumed that the cause of each failure is
known. Therefore, the available data are given by

.X1WmWn; C1/ ; .X2WmWn; C2/ ; : : : ; .XmWmWn; Cm/ ;

where Ci D 1 if the i th failure is due to first cause and Ci D 2 otherwise.
The observed data is denoted by .x1; c1/; .x2; c2/; : : : ; .xm; cm/. Further, we define
the indicators

1fj g.Ci / D
(

1 ; Ci D j
0 ; else

:

Thus, the random variablesm1 DPm
iD1 1f1g.Ci/ andm2 DPm

iD1 1f2g.Ci / describe
the number of failures due to the first and the second cause of failure, respectively.

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 25,
© Springer Science+Business Media New York 2014

515



516 25 Multi-sample Models

Observe that both m1 and m2 are binomials with sample size m and probability of
success P.X11 � X21/ and 1 � P.X11 � X21/, respectively. For a given censoring
scheme R D .R1; : : : ; Rm/, the joint density function (w.r.t. the measure �m ˝ #m)
is given by (see Kundu et al. [564])

f XR;C.xm; cm/

D
� mY
jD1

�j

� mY
iD1

h �
f1.xi /F 2.xi /

�1f1g.ci / �
f2.xi /F 1.xi /

�1f2g.ci /

� �F 1.xi /F 2.xi /
�Ri i

:

Denoting by �j the hazard rate of Fj , j D 1; 2, the density function can be
written as

f XR;C.xm; cm/ (25.1)

D
� mY
jD1

�j

� mY
iD1

Œ�1.xi /�
1f1g.ci / Œ�2.xi /�

1f2g.ci /
�
F 1.xi /F 2.xi /

�RiC1
;

for x1 < � � � < xm.

25.1.2 Exponential Distribution

Kundu et al. [564] have discussed competing risks for Exp.#j /-distributions,
j D 1; 2. In this case, the joint density function is given by

f ZR;C.zm; cm/ D
� mY
jD1

�j

�
#
�m1
1 #

�m2
2 exp

n
�
� 1
#1
C 1

#2

� mX
iD1
.RiC1/zi

o
: (25.2)

Denoting by ZR� progressively Type-II censored order statistics from an Exp
�
1
#1
C

1
#2

��1
-distribution and noticing that m2 D m � m1, the joint density function

factorizes as

f ZR;C.zm; cm/ D f ZR
� .zm/ �

� #1

#1 C #2
�m�m1�

1 � #1

#1 C #2
�m1

D f ZR
� .zm/ � P.C D c/:

This shows that ZR and C are independent random variables. Therefore, m1 and
the total time on test statistic TTT D Pm

iD1.Ri C 1/Zi WmWn are independent, too.
Additionally,
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2
�
1
#1
C 1

#2

�
TTT � �2.2m/ and m1 � bin

�
m;R

�
; (25.3)

where R D #2
#1C#2 denotes the stress–strength probability (see (24.1)). Moreover,

representation (25.2) illustrates that .m1;TTT/ is a complete sufficient statistic.
As pointed out by Kundu et al. [564], the MLEs of #1 and #2 exist if 0 < m1 < m.

In this case, the MLEs are given by

b#j D 1

mj

mX
iD1
.Ri C 1/Zi WmWn D 1

mj

TTT; j D 1; 2: (25.4)

Then, the (conditional) distribution ofb#j , givenmj > 0, has an explicit expression.
For instance, as shown by Kundu et al. [564], the cumulative distribution function
is given by

Fb#1jm1>0.t/ D 1

1 � .1 � R/m
mX
iD1

 
m

i

!
Ri.1 � R/m�iP

�
1
i
TTT � t

�
:

Using the distribution given in (25.3), the cumulative distribution function can be
written as

Fb#1jm1>0.t/ D
mX
iD1

piF�2.2m/

�
2i
�
1
#1
C 1

#2

�
t
�

with pi defined appropriately showing that the distribution is a mixture of scaled �2-
distributions. This result yields directly the first two conditional moments ofb#1 as

E.b#1jm1 > 0/ D m
�
1
#1
C 1

#2

��1 mX
iD1

pi

i
;

E.b#21jm1 > 0/ D m.mC 1/
�
1
#1
C 1

#2

��2 mX
iD1

pi

i2
:

Similar expressions hold for b#2, given that m2 > 0 (or, equivalently, m1 < m).
These results show that the MLEs are clearly biased.

In order to avoid this problem, Kundu et al. [564] considered a different
parametrization of the exponential distributions, i.e., �j D 1=#j , j D 1; 2. Then,
R D �1

�1C�2 and the MLEs are given by

b�j D mjPm
iD1.Ri C 1/Zi WmWn

D mj

TTT
; j D 1; 2:

These estimators always exist assuming that b�j D 0 is a proper value of
the parameter leading to a degenerate exponential distribution. Then, using the
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distribution properties of m1 and TTT, we see that 1=
�
2.�1 C �2/TTT

�
has an

inverse �2-distribution with 2m degrees of freedom. For m > 1 and m > 2, the
mean and variance are given by 1=.2m�2/ and 1=Œ.2m�2/2.m�2/�, respectively.
This yields

Eb�1 D mR � 2.�1 C �2/ � 1

2m� 2 D
m

m � 1�1:

Therefore,b��1 D m�1
m
b�1 is an unbiased estimator of �1. Due to the sufficiency of

.m1;TTT/, it is the UMVUE of �1. The same arguments lead to the UMVUE of �2.
According to Kundu et al. [564] the variance–covariance matrix of the UMVUEs is
given by

Cov

 b��1
b��2

!
D �1�2

m.m� 2/
	
m � 1Cm�1=�2 �1

�1 m � 1Cm�2=�1


:

Again, it is possible to calculate an explicit expression for the cumulative distribu-
tion function of the MLEs. The distributions of the MLEs are binomial mixtures of
scaled inverse �2-distributions. For instance, the cumulative distribution function of
b�1 can be written as

Fb�1.t/ D
mX
iD0

P.m1 D i/P.TTT > i=t/

D
mX
iD0

 
m

i

!
Ri.1� R/m�iF �2.2m/.2i.�1 C �2/=t/

D 1 �
mX
iD0

 
m

i

!
Ri.1 � R/m�iF�2.2m/.2i.�1 C �2/=t/: (25.5)

In order to construct a confidence interval for �j , Kundu et al. [564] assumed that,

for any �2, F
b�1 is a strictly increasing function of �1. However, this can be seen

directly from representation (25.5) using the monotonicity of F�2.2m/, and that

Ri.1 � R/m�i

is increasing in �j , j D 1; 2. Then, for fixed �2 and ˛ 2 .0; 1/, it follows
that a strictly increasing function c˛;�2 exists with Fb�1.c˛;�2 .�1// D ˛. Due
to the complex structure, the solution has to be computed numerically. Hence,
.0; c�1˛;�2 .b�1// provides a 100.1�˛/% confidence interval for �1. However, the upper
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limit involves the (unknown parameter) �2. Therefore, Kundu et al. [564] proposed
to replace �2 by its MLE or UMVUE. This yields, for example, the approximate
two-sided confidence interval

�
c
1�˛=2;b�2 .b�1/

�1/; c
˛=2;b�2.b�1/

�1
�
:

Alternatively, approximate confidence intervals can be constructed using the Fisher
information matrix. For instance,

I .ZR;CI�1; �2/ D m

�1 C �2
	
1=�1 0

0 m=�2




and by using a normal approximation. Moreover, Kundu et al. [564] demonstrated
that a bootstrap approach can also be utilized to establish confidence intervals.

Kundu et al. [564] also proposed Bayes estimates of �j under squared-error loss
assuming that �1 and �2 are independent with gamma priors. Moreover, they showed
that the resulting estimates can be used to construct credible intervals. For more
details as well as a simulation study, one may refer to their work.

Example 25.1.1. Kundu et al. [564] generated a progressively censored mortal-
ity data from a data set originally reported by Hoel [443]. The original data were
obtained from a laboratory experiment in which male mice received a radiation
dose of 300 roentgens. The cause of death for each mouse was determined by
autopsy. Restricting the analysis to two causes of death (reticulum cell sarcoma
bD cause 1; other causes bD cause 2), n D 77 observations remain in the analysis.
The censoring scheme was given by m D 25 and R D .2�24; 4/ leading to the
progressively Type-II censored competing risk sample

.40; 2/; .42; 2/; .62; 2/; .163; 2/; .179; 2/; .206; 2/; .222; 2/; .228; 2/; .252; 2/;

.259; 2/; .318; 1/; .385; 2/; .407; 2/; .420; 2/; .462; 2/; .517; 2/; .517; 2/;

.524; 2/; .525; 1/; .558; 1/; .536; 1/; .605; 1/; .612; 1/; .620; 2/; .621; 1/:

Assuming exponential lifetimes, the estimates for #1 and #2 are b#1 D 29082=7

4154:6 and b#2 D 29082=18 
 1615:7. For �1 and �2, the estimates b�1 D
0:000241 and b�2 D 0:000619 result. Notice that the values presented in Kundu
et al. [564] are in error.

Finally, the MLE of the relative risk R is given by

bR D
b�1

b�1 Cb�2
D m1

m
:
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Obviously, EbR D R so that bR is unbiased. From the sufficiency of m1 we deduce
that bR is the UMVUE of R, too.

Remark 25.1.2. Obviously, the preceding results can be directly applied to
Weibull distribution with known shape parameter. Given a Rayleigh distribution,
the MLE of �j is given by

b�j D mjPm
iD1.Ri C 1/X2

i WmWn
; j D 1; 2:

25.1.3 Weibull Distributions

Competing risks with progressively Type-II censored data from Weibull.1=�j ; ˇ/-
distributions have been addressed by Pareek et al. [703]. Considering the joint
density function in (25.1), it follows that the log-likelihood function is given by

`.�1; �2; ˇ/ D
mX
jD1

log �j Cm logˇ Cm1 log�1 Cm2 log�2

C .ˇ � 1/
mX
jD1

logxj � .�1 C �2/
mX
jD1

.Rj C 1/xˇj :

Defining b�j .ˇ/ D mj=
Pm

jD1 x
ˇ
j , j D 1; 2, and proceeding as in the proof of

Theorem 12.2.1, the log-likelihood is bounded from above by

`.b�1.ˇ/;b�2.ˇ/; ˇ/ D
mX
jD1

log �j Cm logˇ

C .ˇ � 1/
mX
jD1

logxj �m log
mX
jD1

.Rj C 1/xˇj :

This bound coincides with that one for progressively Type-II censored order
statistics from a Weibull distribution as given in the proof of Theorem 12.2.1.
Therefore, the MLE b̌ of ˇ is obtained as the unique solution of equation (12.13).
Hence,b�j .b̌/, j D 1; 2, are the MLEs of the scale parameters.

Remark 25.1.3. Notice that the density function (25.1) can be written in the
form

f XR;C.xm; cm/ D f XR
� .xm/ � P.C D c/;
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where XR� are progressively Type-II censored order statistics from a Weibull
distribution with scale parameter �1C�2. This is due to the fact that the hazard
rate of a Weibull distribution is given by �j .t/ D �jˇt

ˇ�1. Therefore, the part
dependent on the data is either included for c D 1 or c D 2. This illustrates
that the quantities m1 and m2 are independent of XR. Hence, the MLEs and
.m1;m2/ are independent. Moreover, .m1;m2;XR/ forms a sufficient statistic.

Using a log-transformation, Pareek et al. [703] transformed the model to a
location–scale model from an extreme value distribution with the location param-
eters being different but the scale parameter being the same. Then, they derived
approximate MLEs by proceeding as in Sect. 12.9.2.

Example 25.1.4. Pareek et al. [703] analyzed the data presented in Exam-
ple 25.1.1 assuming Weibull lifetimes. Using an iterative solution, they presented

the estimates b̌ D 1:9246, b�1 D 8:1102 � 10�7, and b�2 D 2:0855 � 10�6.
The AMLEs yield the estimates b̌ D 1:9338, b�1 D 7:6603 � 10�7, and
b�2 D 1:9698 � 10�6. Using the observed Fisher information, they also provided
approximate confidence intervals.

The above estimates of ˇ suggest Rayleigh lifetimes. Assuming a Rayleigh
distribution, the estimates of �j as given in Remark 25.1.2 lead to the values
b�1 D 5:07678� 10�7 and b�2 D 1:30546� 10�6.

The expected Fisher information can also be obtained in this scenario. This
proceeds analogous to the one-sample case. In particular, the log-likelihood function
can be written as

`.�1; �2; ˇ/ D constC `m.�1; ˇ/C `m.�2; ˇ/ �m1 log�2 �m2 log�1;

where `m.�; �/ denotes the log-likelihood in the two-parameter setting with sample
size m (cf. (12.14) with � D 1=#). Therefore, the Fisher information matrix in the
competing risk scenario has the following entries:

I11.XRI�1; �2; ˇ/ D m

�21
�Em1 D m

�1.�1 C �2/ ;

I22.XRI�1; �2; ˇ/ D m

�22
�Em2 D m

�2.�1 C �2/ ;

I12.XRI�1; �2; ˇ/ D I21.XRI�1; �2; ˇ/ D 0;
I33.XRI�1; �2; ˇ/ D I22.XRI�1; ˇ/CI33.XRI�2; ˇ/;
I13.XRI�1; �2; ˇ/ D I12.XRI�1; ˇ/;
I23.XRI�1; �2; ˇ/ D I12.XRI�2; ˇ/:
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The expressions for the Fisher information with two parameters are the Fisher
information in a progressively censored sample from a Weibull distribution with
these parameters and sample size m.

Remark 25.1.5. Bayesian inference for competing risks from Weibull distribu-
tions has been addressed by Kundu and Pradhan [563]. They assumed that the
shape parameter has a log-concave prior density function and that for given shape
parameter, the scale parameters have Beta–Dirichlet priors.

25.1.4 Lomax Distribution

Cramer and Schmiedt [305] discussed the competing risk model for scaled Lomax
lifetimes as an alternative to exponential and Weibull distributions (see also Bryson
[223]) with cumulative distribution functions and hazard rates

Fj .t/ D 1 � .1C #t/�1=.#ˇj / ; hj .t/ D 1

ˇj
.1C #x/�1 ; t > 0; j D 1; 2 :

For # ! 0, exponential distributions Exp.ˇj / result in the limit.
Using the independence of the latent failure timesX1i and X2i , i D 1; : : : ; n, the

stress–strength probability is given by

R D P.X1i � X2i / D ˇ2

ˇ1 C ˇ2 :

Applying the identity fj D hj � .1 � Fj / for j D 1; 2, this yields the likelihood

L .#; ˇ1; ˇ2/ D
mY
jD1

�j ˇ
�m1
1 ˇ

�m2
2

mY
iD1
.1C #xi /�Œ.RiC1/.1=ˇ1C1=ˇ2/=#C1� ;

where x1 < � � � < xm. Using the same argument as in Remark 25.1.3, .m1;m2/ and
XR are independent. Now, Cramer and Schmiedt [305] showed that for given # > 0
and for m1;m2 > 0, the MLEs of ˇ1 and ˇ2 exist and can be written as

b̌
j D b̌j .#/ D 1

mj#

mX
iD1
.Ri C 1/ log.1C # Xi WmWn/; j D 1; 2: (25.6)

For # ! 0, the expressions lead to those for the exponential distribution given
in (25.4).

If # is unknown, Cramer and Schmiedt [305] showed that the MLE of # is
obtained as the value that maximizes the profile log-likelihood
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p.#/ D m log# �m log
� mX
jD1

.Rj C 1/ log.1C # xj /
�
�

mX
jD1

log.1C # xj / :

It can be shown that p is bounded but the maximum may be attained at zero yielding
the estimateb# D 0. This is interpreted in the sense that the underlying distributions
are exponentials. This illustrates that b# can be used to construct a test for testing
exponential distribution against Lomax alternatives. For uncensored data, such an
approach has been discussed in Kozubowski et al. [548]. In this case, the MLEs of
ˇ1 and ˇ2 have the representation (25.4).

Forb# > 0, the MLE of ˇj is b̌j .b#/, j D 1; 2 (see (25.6)).

Example 25.1.6. The data from Example 25.1.1 have also been discussed in

Cramer and Schmiedt [305]. They found the estimate b# D 0 showing that
exponential models yield the best fit. Hence, the estimates of ˇ1 and ˇ2 are
taken from Example 25.1.1.

25.2 Joint Progressive Censoring

In joint progressive censoring, the sample is based on two baseline samples
X1; : : : ; Xn1 (product/Type A) and Y1; : : : ; Yn2 (product/Type B) of independent
random variables, where

Xi � F1; Yj � F2:

The progressive censoring is applied to the pooled sample

fX1; : : : ; Xn1; Y1; : : : ; Yn2g

given a prefixed censoring scheme R 2 C m
m;n1Cn2 . Moreover, it is assumed that the

type of the failed unit and the types of withdrawn units are known. Therefore, the
sample is given by .C;WR;S /, where

C D .C1; : : : ; Cm/ 2 f0; 1gm;
WR D .W1WmWn1Cn2; : : : ;WmWmWn1Cn2/;

S D .S1; : : : ; Sm/:

The indicators Cj have the value 1 if the failed unit is of Type A, and otherwise
Cj D 0. Wj WmWn denotes the j th failure time in the progressively censored
experiment. Finally, S denotes a random censoring scheme. Sj is the number of
removed units of Type A in the j th withdrawal. Thus,Rj �Sj denotes the numbers
of withdrawn units of Type B at the j th censoring step.
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Assuming that F1 and F2 are absolutely continuous with density functions f1
and f2, respectively, the joint density function is given by

f .C;WR;S /.cm;wm; sm/

D D.cm; sm/
mY
jD1

h
f
ci
1 .wi /f

1�ci
2 .wi /F

si
1 .wi /F

Ri�si
2 .wi /

i
;

where w1 � � � � � wm and D is a normalizing constant. The normalizing constant
D.cm; sm/ is given by the product D1.cm; sm/D2.cm; sm/. Introducing the notation
�
.A/
j D n1 �Pj�1

iD1.ci C si /, �.B/j D n2 �Pj�1
iD1 .1 � ci C Ri � si /, and �.AB/j D

n1Cn2�Pj�1
iD1.RiC1/ for the number of units of Type A, B, and A/B, respectively,

remaining in the experiment before the j th failure, the factors are defined by

D1.cm; sm/ D
mY
jD1

Œcj �
.A/
j C .1 � cj /�.B/j �;

D2.cm; sm/ D
m�1Y
jD1

�
�
.A/
j �cj
sj

���.B/j �1Ccj
Rj�sj

�

��.AB/j �1
Rj

� :

Notice that �.AB/j D �.A/j C �.B/j .
Rasouli and Balakrishnan [747] considered inference for joint progressively

censored data from Exp.#1/- and Exp.#2/-distributions extending results for Type-
II right censored data established in Balakrishnan and Rasouli [118]. In this case,
the likelihood function `.#1; #2/ is proportional to

1

#
k1
1 #

m�k1
2

exp
n
� u1
#1
� u2
#2

o
;

where k1 and k2 D m� k1 denote the number of observed failures from theX - and
Y -samples, respectively, and

u1 D
mX
jD1

.cj C sj /wj ; u2 D
mX
jD1

.1 � cj CRj � sj /wj :

Clearly, the MLE of #j is given by b#j D 1
kj
Uj provided that kj > 0, j D 1; 2.

Rasouli and Balakrishnan [747] obtained explicit but complicated expressions for
the (conditional) moment generating function, the density function, and the survival
function as well as for the mean, second moment, and covariance of the MLEs b#j ,
j D 1; 2. Assuming independent gamma priors, they found Bayesian estimates for
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Plane Ordered failure times

7914 3 5 5 13 14 15 22 22 23 30 36 39 44 46 50 72 79 88 97 102
139 188 197 210

7913 1 4 11 16 18 18 18 24 31 39 46 51 54 63 68 77 80 82 97 106
111 141 142 163 191 206 216

Table 25.1 Failure times of air-conditioning systems in airplanes 7913 and 7914 taken from
Proschan [730]

w10 1 3 4 5 5 13 14 15 18 18
c10 0 1 0 1 0 1 1 1 0 0
s10 1 0 1 2 1 1 1 1 2 0
Table 25.2 Jointly progressive Type-II censored sample that resulted from the data in Table 25.1
withm D 10 and R D .2�9; 23/

#j and credible intervals. Moreover, different methods of constructing confidence
intervals are also discussed. They also analyzed data generated from Proschan’s
Boeing data as reported in Table 25.1.

Example 25.2.1. Assuming exponential lifetimes, Rasouli and Balakrishnan
[747] analyzed the joint progressively censored data in Table 25.2. They obtained

the estimates b#1 D 62:612 and b#2 D 74:23. They also computed the exact 95 %
confidence intervals .25:61; 169:43/ and .35:11; 225:23/, respectively. Alternative
confidence intervals based on other methods and for other censoring schemes are
also presented.

Parsi et al. [713] considered Weibull.#
ˇ1
1 ; ˇ1/- and Weibull.#

ˇ2
2 ; ˇ2/-distri-

butions and presented the likelihood equations and provided computational solu-
tions for the MLEs as well as an extensive simulation study.

25.3 Concomitants

For bivariate IID data .X1; Y1/; : : : ; .Xn; Yn/, David [322] introduced the notion of
concomitants of order statistics. The data are ordered w.r.t. the first component
leading to order statistics X1Wn � � � � � XnWn, while the second component is
accompanying the first one. The value of the second component associated with
Xr Wn is called the r th concomitant YŒr Wn�. Many results have been established under
various distributional assumptions. For comprehensive reviews, we refer to David
and Nagaraja [326, 327].

In a similar manner, concomitants for progressively Type-II censored order
statistics can be introduced. Suppose .Xj ; Yj /, 1 � j � n, are independent
and have a bivariate density function f . Then, the joint density function of the
concomitants YR

Œm� D .YŒ1WmWn�; : : : ; YŒmWmWn�/0 can be written as
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f
YR
Œm� .ym/ D

Z
f

YR
Œm�jXR

.ymjxm/f XR

.xm/dxm:

Following the same arguments as in Bhattacharya [197], the subsequent conditional
independence result is true (see also Bhattacharya [196] and Yang [932]).

Lemma 25.3.1. Given XR D xm, the concomitants YŒ1WmWn�; : : : ; YŒmWmWn� are
independent and identically distributed. The (conditional) joint density function
is given by

f
YR
Œm�jXR

.ymjxm/ D
mY
iD1

f .yi jxi /: (25.7)

The joint density function f XR;YR
Œm� is given by

f
XR;YR

Œm� .xm; ym/ D
h mY
jD1

�j

ih mY
iD1

f .yi jxi /f .xi /F Ri
.xi /

i
:

The marginal density function of the concomitants YR
Œm� has the representation

f
YR
Œm� .ym/ D

Z mY
iD1

f .yi jxi /f XR

.xm/dxm: (25.8)

Obviously, marginal density functions can be obtained directly from (25.8) by inte-
grating out the corresponding variables. For instance, let 1 � r1 < � � � < rk � m.
Then,

f YŒr1WmWn�;:::;YŒrk WmWn� .yk/ D
Z kY

iD1
f .yi jxi /f Xr1WmWn;:::;Xrk WmWn .xk/dxk

which is given in Izadi and Khaledi [473]. Using (2.28), Bairamov and Eryılmaz
[78] presented the marginal density functions in terms of density functions of
concomitants of minima as

f YŒrWmWn� .y/ D
Z
f XrWmWn .x/f .yjx/dx D

� rY
iD1

�i

� rX
jD1

aj;r

�j
f
YŒ1W�j � .y/:

This formula can be easily applied to compute moments. For instance, Bairamov and
Eryılmaz [78] considered the bivariate Farlie–Gumbel–Morgenstern distribution
with density function

f .x; y/ D 1C ˛.1 � 2x/.1 � 2y/; x; y 2 .0; 1/; ˛ 2 .�1; 1/:
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A direct calculation shows that

f YŒrWmWn� .y/ D 1C ˛.1 � 2y/
� rY
iD1

�i

� rX
jD1

aj;r

�j

�j � 1
�j C 1

D 1C ˛.1 � 2y/
�
1 � 2

rY
iD1

�i

�i C 1
�
; y 2 .0; 1/:

For related results in terms of generalized order statistics based on the Farlie–
Gumbel–Morgenstern distribution, we refer to Beg and Ahsanullah [185].

Izadi and Khaledi [473] studied stochastic orderings of concomitants from pro-
gressively Type-II censored order statistics. Given the assumptions of Theorem 3.2.6
and Remark 3.2.7, they found the properties w.r.t. likelihood ratio order, (reversed)
hazard rate order, stochastic order, and mean residual life order. For instance, let
n1 D �1.S /; n2 D �1.R/. Then, for j � i ,
(i) If f .x; y/ is TP2 in .x; y/, then Y S

Œj WmWn1� �lr Y
R
Œi WmWn2�;

(ii) If the conditional hazard rate �.yjx/ D f .yjx/
1�F.yjx/ is decreasing in x, then

YS
Œj WmWn1� �hr Y

R
Œi WmWn2�.

25.3.1 Missing Information Principle and EM-Algorithm

Progressively Type-II censored concomitant data from bivariate normal distributions
with parameter 	 D .�X ; �X ; �Y ; �Y ; �/ have been considered by Balakrishnan
and Kim [106]. They applied a missing information principle like the one described
in Sect. 9.1.2 to the concomitant data. Let W D .W1; : : : ;Wm/ be the vector of
progressively censored random variables, where Wj D .Wj1; : : : ;WjRj / denotes
those random variables corresponding to units withdrawn in the j th step of the
progressive censoring procedure. Moreover, let VŒ�� D .VŒ1�; : : : ;VŒm�/ be the vector
of corresponding concomitants, where VŒj � D .VŒj1�; : : : ; VŒjRj �/. Then, a result
similar to Theorem 9.1.8 has been established by Balakrishnan and Kim [106].

Theorem 25.3.2. Given .XR
j ;Y

R
Œj �/ D .xj ; yj /, the conditional density function

of .Wjk; VŒjk�/, k 2 f1; : : : ; Rj g, is given by

f
Wjk;VŒjk�jXR

j ;Y
R
Œj � .w; vjxj ; yj / D f Wjk;VŒjk�jXj WmWn.w; vjxj / D f .w; v/

1 � F.xj / ;

w > xj ; v 2 R; (25.9)

and .Wjk; VŒjk�/ and .Wj`; VŒj `�/, k ¤ `, are conditionally independent, given
Xj WmWn D xj .
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Representation (25.9) yields expressions for the (conditional) moments of the
missing concomitants. In particular, for the bivariate normal distribution, Balakrish-
nan and Kim [106] obtained

EŒVŒjk�jXj WmWn D x/ D �Y C ��Y h.z/;
EŒV 2

Œjk�jXj WmWn D x/ D �2Y .1C �2zh.z//C 2��Y �Y h.z/C �2Y ;
EŒWjkVŒjk�jXj WmWn D x/ D �Y .�X C �Xh.z//

C ��Y .�Xh.z/C �X C �X zh.z//;

where z D z.x/ D x��X
�X

and h.x/ D '.x/

1�˚.x/ denote the hazard rate of the standard
normal distribution. These expressions have been used to develop an EM-algorithm
to obtain maximum likelihood estimates of the parameters of the bivariate normal
distribution. For details, we refer to Balakrishnan and Kim [106].

25.4 Progressively Censored Systems Data

Originally, inference for progressively Type-II censored data addresses the popu-
lation cumulative distribution function F of the original sample X1; : : : , Xn, i.e.,
XR is a progressively censored sample from the cumulative distribution function
F . However, it suggests itself that the original data X1; : : : ; Xn may correspond to
observations of lifetimes of systems. In this case, the system lifetime depends in
some way on the component lifetime cumulative distribution function F .

Example 25.4.1 (First-failure progressively censored data). Wu and Kuş
[913] introduced progressive censoring in the presence of first-failure censoring.
Here, the original data can be interpreted as observations from equally structured
series systems with k components. In this case, one has observations of n series
systems with k IID components each having a lifetime distribution F . Therefore,

the system lifetime is given by Xj D Y
.j /

1Wk D minfYj1; : : : ; Yjkg, where Yj i � F
denotes the lifetime of the ith component in the j th series system. Hence,
XR
1WmWn; : : : ; XR

mWmWn is a progressively Type-II censored sample with censoring
scheme R, but with lifetime distribution Fk D 1� .1�F /k . However, inference
is carried out for F and not for Fk .

Extending Example 25.4.1, it is natural to consider lifetimes X1; : : : ; Xn of n
independent systems whose component lifetime cumulative distribution function is
given by F . As an example, we may consider .n � r C 1/-out-of-k systems so that
Xj D Y

.j /

r Wk is a sample of order statistics. In general, one may consider monotone
systems with structure function � so that the system lifetime Y is given by

Y D �.Y1; : : : Yk/

provided that the system has some (IID) component lifetimes Y1; : : : ; Yk .
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25.4.1 Progressive First-Failure Censoring: Series Systems

As mentioned in Example 25.4.1, progressively Type-II censored order statistics
generated by first-failure censoring can be interpreted as progressively Type-II
censored order statistics from a transformed cumulative distribution function. In
particular, the quantile function of Fk is given by

F k .t/ D F �1 � .1 � t/1=k�; t 2 .0; 1/:

Using the quantile representation (2.3.6), we obtain

Xr WmWn
dD F k

0
@1 �

rY
jD1

U
1=�j
j

1
A dD F 

0
@1 �

rY
jD1

U
1=.k�j /

j

1
A ; 1 � r � m:

Hence, we can interpret the data as progressively Type-II censored order statistics
from population cumulative distribution function F with parameters k�1; : : : ; k�m.
The corresponding censoring scheme is given by

S D kR C .k � 1/.1�m/; i.e., Sj D kRj C k � 1; j D 1; : : : ; m:

This connection illustrates that all results obtained for progressively Type-II cen-
sored order statistics can be easily adapted to progressive first-failure censoring.

Therefore, the results of Wu and Kuş [913] for the Weibull distribution in the
presence of first-failure censoring parallel those for the Weibull distribution for
standard progressive censoring. The same comment applies to the work on Gom-
pertz distribution by Soliman et al. [817] (see Wu et al. [914]) and to Burr Type-XII
distribution by Soliman et al. [815,819]. Further papers in this direction are Soliman
et al. [814], Hong et al. [449], Wang and Shi [888], Wu and Huang [912], Lio and
Tsai [613], Ahmadi et al. [18], and Mahmoud et al. [630].

Stress–strength estimation based on the first-failure censored data is considered
in Lio and Tsai [613].

25.4.2 Parallel Systems

For failure data on parallel systems, the structure function is given by �.xk/ D
max1�j�k xj . Hence, we consider progressively Type-II censored order statistics
with censoring scheme R and cumulative distribution function Fk D F k . Such a
situation has been considered in Pradhan [726] and Potdar and Shirke [725]. For
instance, Pradhan [726] assumed exponential lifetimes leading to the cumulative
distribution function
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Fk.t I�/ D
�
1 � e��t

�k
; t � 0;

with some � > 0 (see (12.41) but, here, k is known). He then discussed likelihood
inference for � resulting in a nonlinear likelihood equation which has to be solved
numerically. He proposed a Newton–Raphson procedure to compute the estimate.
Moreover, confidence and tolerance intervals are discussed. Potdar and Shirke [725]
generalized this setting by considering a scale family of distributions with standard
member G, i.e.,

Fk.t I�/ D Gk.t=�/; t � 0:

To obtain the MLE, they proposed a procedure based on the EM-algorithm as well
as a Newton–Raphson procedure. As an example, they discussed the half-logistic
distribution.

It is obvious from the model assumptions that the related inference can be seen
as that of progressively Type-II censored order statistics from an exponentiated
distribution, where the shape parameter k is supposed to be known. In this setting,
Asgharzadeh [62] discussed approximate MLEs for the exponentiated exponential
distribution so that his results can be applied to parallel systems.



Chapter 26
Optimal Experimental Designs

The problem of finding optimal elements of Cm
m;n has been discussed in many setups

since the problem was first addressed in Balakrishnan and Aggarwala [86] (see also
Sect. 10 in Balakrishnan [84]). Many optimality criteria have been proposed, and
many results on optimal censoring designs have been established. In particular,
given some optimality criterion, Burkschat [228] has established general results
using stochastic orders of the underlying progressively Type-II censored samples.
Balakrishnan and Aggarwala [86] and Burkschat et al. [235, 237] obtained optimal
censoring designs in terms of minimum variance of best linear unbiased estimators.
Ng et al. [689] considered minimum variance criteria for maximum likelihood
estimates for Weibull distributions. Precision of quantile estimates is considered
in Balakrishnan and Han [98], Kundu and Pradhan [562], Pradhan and Kundu
[727], and Pareek et al. [703]. Fisher information in a progressively Type-II
censored sample is addressed in Balakrishnan et al. [140], Abo-Eleneen [6], Pareek
et al. [703], and Cramer and Schmiedt [305]. Further approaches on optimal
experimental design in progressive censoring are discussed in Hofmann et al. [444]
and Burkschat [227].

Here, it is assumed that progressive Type-II censoring is carried out by design.
The experimenter may fix an appropriate censoring plan prior to the start of the
experiment. Furthermore, we assume that n � m units are available for test and that
m failure times have to be observed so that n�m DPm

iD1 Ri (surviving) units need
to be withdrawn from the experiment. The crucial question is

How should the experimenter choose the censoring numbers R1; : : : ; Rm?

A general answer to this problem cannot be expected. In particular, it turns out that
the optimal designs depend heavily on both the optimality criterion to be used and
the distributional assumption made.

Given an optimality criterion, it is clear that an optimal censoring scheme exists
in any case because the optimization is based on a finite number of schemes only.
But, since the set of admissible schemes Cm

m;n has
�
n�1
m�1

�
elements (see (1.5)), it

follows by the approximation
�
n�1
m�1

� n!1� nm�1

.m�1/Š that enumeration will not work

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7 26,
© Springer Science+Business Media New York 2014
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even for moderate values of n and m. In particular, a sample size of n D 100

and m D 20 observed failure times will lead to more than 1020 possible schemes.
This illustrates the need for some mathematical theory to tackle this optimization
problem.

Although the number of schemes grows fast, the structure of C m
m;n is quite nice.

The convex hull of Cm
m;n forms a simplex of dimensionm� 1 in R

m whose vertices
are given by the OSPs O1; : : : ;Om. This shows that the one-step censoring plans
are extremal points of the set of admissible schemes which are of particular interest
in optimization with regard to this set. In particular, this observation explains why
one-step plans turn out to be optimal in many situations. Before going into further
details, we will discuss a general approach of finding optimal censoring designs as
it can be found in Burkschat [228].

26.1 Preliminaries

First, we formulate the problem as a mathematical optimization problem.

Definition 26.1.1. A mapping  W C m
m;n �! R is said to be an optimality

criterion. A censoring scheme S is said to be  -optimal if

 .S / D min
R2Cm

m;n

 .R/: (26.1)

It is clear from the above definition that we can consider maximization instead
of minimization. This problem is included by choosing � instead of  so that
the corresponding solution of the maximization is � -optimal. Therefore, we can
restrict ourselves to the minimization problem, having in mind obvious changes.

A first, but very effective property, in determining optimal solutions results from
a partial ordering on Cm

m;n introduced in Definition 7.1.9: For R;S 2 C m
m;n,

R 4 S ”
kX
iD1

Ri �
kX
iD1

Si ; k D 1; : : : ; m � 1:

Recalling that

Om D .0�m�1; n �m/ 4 R 4 .n �m; 0�m�1/ D O1 (26.2)

(see Lemma 7.1.11), we get the following result.

Theorem 26.1.2. If  has some monotonicity properties w.r.t. 4, then O1 or
Om are  - or � -optimal.

This result illustrates that first-step- or right censoring will be optimal provided
that the objective function exhibits some monotonicity properties w.r.t. the partial
ordering 4. As can be seen subsequently, this result is a powerful tool to find  -
optimal experimental designs.



26.1 Preliminaries 533

Another important tool in tackling the optimization problem is the following
reformulation. The optimization problem may be rewritten by replacing C m

m;n by
the set (see (1.4))

Gm;n D f.�2; : : : ; �m/ 2 N
m�1 j n > �2 > � � � > �m � 1g:

Denoting the number of objects remaining in the experiment before the censoring
steps by �k.R/ DPm

jDk.Rj C 1/, k D 1; : : : ; m (see (1.2)), and the corresponding
vector by �.R/, we have a one-to-one correspondence �.R/ � R. Namely, we
have the linear transformation

�.R/ D A
�
R C 1m

�
with A D

0
BBBBB@

1 1 1 � � � 1
0 1 1 � � � 1
0 0 1 � � � 1
:::

: : :
: : :

:::

0 � � � � � � 0 1

1
CCCCCA
:

Moreover, the image of this mapping is given by

G �m;n D f.n; �2; : : : ; �m/ 2 N
m j n > �2 > � � � > �m � 1g:

Notice that the first component must equal n. Since A is a regular matrix, we define
 by the inverse relation

R D .�.R// D A�1�.R/� 1m:

Hence, the optimization problem (26.1) is equivalent to the following problem,
where  is replaced by  D  ı :

 .�.O// D min
R2Cm

m;n

 .�.R// D min
�.R/2G�m;n

 .�.R//:

Obviously, the optimization process depends only on �2; : : : ; �m. In many cases, it
is easier to solve the minimization problem

 .��/ D min
�2G �m;n

 .�/ D min
.�2;:::;�m/2Gm;n

 ..n; �2; : : : ; �m//

than (26.1). Then, the optimal plan is computed from the relation O D .��/.
Introducing the componentwise ordering

�.R/ � �.S / ” �k.R/ � �k.S /; k D 1; : : : ; m;

as a partial ordering on G �m;n, this shows

R 4 S ” �.R/ � �.S /: (26.3)
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26.2 Probabilistic Criteria

Burkschat [228] considered several criteria based on the experimental time XR
mWmWn

of a progressively Type-II censored experiment and on the total time on test statistic
TR D Pm

jD1.Rj C 1/XR
j WmWn. The results are based on stochastic orderings of the

involved random variables. The crucial result used for experimental time XR
mWmWn is

based on the following stochastic ordering result due to Burkschat [228] (see also
Balakrishnan et al. [140] and Dahmen et al. [320]).

Lemma 26.2.1. Let 1 � j � m and S 4 R. Then,

XR
j WmWn �st X

S
j WmWn: (26.4)

(26.4) implies with j D m

XR
mWmWn �st X

S
mWmWn provided that S 4 R:

Hence, we readily get the ordering (cf. Lemma 7.1.11)

XOm
mWmWn �st X

R
mWmWn �st X

O1
mWmWn (26.5)

which in turn implies the ordering of the expectations EXOm
mWmWn � EXR

mWmWn �
EX

O1
mWmWn. This yields the following theorem due to Burkschat [228].

Theorem 26.2.2. Let  .R/ D EXR
mWmWn denote the expected experimental

time. Then, the unique optimal censoring plan is given by Om, i.e., right censoring
yields the shortest expected experimental time. Moreover,  .Om/ is decreasing
in n and increasing in m.

The result tells us that if we wish to finish the experiment in shortest (expected)
time, then we have to conduct the experiment according to right censoring which is
quite intuitive. Alternatively, we may consider the probability that the experiment
will be finished with high probability before a given threshold T . In this case, we
are naturally interested in identifying the censoring plan minimizing the probability
P.XR

mWmWn > T /. As can be easily seen, everything to solve this problem is already
done. The solution is directly connected to the stochastic ordering given in (26.5),
and we get the following result. It is worth mentioning that T may also be a random
variable independent of XR

mWmWn.

Theorem 26.2.3. Let  .R/ D P.XR
mWmWn > T / with a given threshold T . Then,

the optimal censoring plan is given by Om, i.e., right censoring yields the smallest
exceedance probability. Moreover,  .Om/ is decreasing in n and increasing in m.

Burkschat [228] also considered the variance of the experimental time  .R/ D
VarXR

mWmWn as an optimality criterion. He established a result for DFR distributions
which is based on the dispersive ordering of the experimental time. In particular,
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given that the baseline distribution is DFR, the following result can be established
along the lines of Theorem 3.4 in Hu and Zhuang [457].

Lemma 26.2.4. Let F be a DFR distribution. Then, S 4 R implies

XR
mWmWn �disp X

S
mWmWn: (26.6)

Proof. Let S 4 R. Then, we get from (26.3) the ordering �.S / � �.R/ so that
�.S / 4p �.R/. From Theorem 3.2.11, we then conclude the dispersive ordering
in (26.6) ut

Since dispersive ordering implies ordering of variance (see Shaked and Shan-
thikumar [799]), we obtain the following result. For the uniqueness part, we refer to
Burkschat [228].

Theorem 26.2.5. Let F be a DFR distribution and  .R/ D VarXR
mWmWn. Then,

the unique optimal censoring plan is given by Om, i.e., right censoring yields the
smallest variance of the experimental time. Moreover,  .Om/ is decreasing in n
and increasing in m.

As noted by Burkschat [228], the entropy of XR
mWmWn, i.e., H .XR

mWmWn/ D
�E logfmWmWn

�
XR
mWmWn

�
, may also serve as a measure of uncertainty. As shown

by Oja [695, p. 160] (see also Ebrahimi et al. [346]), entropies of dispersively
ordered random variables are ordered, too. Therefore, Lemma 26.2.4 yields the
corresponding result for H .XR

mWmWn/.
Finally, Burkschat [228] has addressed the total time on test statistic

TR D
mX
jD1

.Rj C 1/XR
j WmWn

with regard to both minimal expectation and minimal variance. In Theorem 4.7 of
Burkschat [225], he presented an optimality result for the expected time on test
provided that the population distribution is either IFR or DFR. In order to establish
this result, he used the alternative expression in terms of spacings

TR D
mX
jD1

�j .R/.X
R
j WmWn �XR

j�1WmWn/;

where XR
0WmWn D 0. The proof is based on the multivariate stochastic order of nor-

malized spacings (see Theorem 3.2.29) as given in Theorem 4.5 of Burkschat [228].

Theorem 26.2.6. Let  .R/ D ETR D Pm
jD1.Rj C 1/EXR

j WmWn denote the
expected total time on test. Then, the unique optimal censoring plan is given by
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(i) Om, i.e., right censoring yields the shortest total time on test if F is
a DFR-distribution function. Moreover,  .Om/ is decreasing in n and
increasing in m;

(ii) O1, i.e., first-step censoring yields the shortest total time on test if F is an
IFR-distribution function. Moreover,  .O1/ is increasing in both n and m.

It is worth mentioning that in the case of exponential distribution—which is both
IFR and DFR—the expected total time on test does not depend on the censoring
plan. Thus, any censoring scheme yields the same expected time.

In case of the variance of the total time on test statistic, i.e.,  .R/ D Var.TR/,
Burkschat [228] also obtained an optimality result provided that F is a DFR-
distribution function and that SF as given in (3.9) exhibits a convex derivative. In
that case, right censoring Om is also optimal. Moreover, he showed that  .Om/ is
decreasing in n and increasing in m.

26.3 Precision of Estimates

Precision of estimates as an optimality criterion was suggested by Balakrishnan and
Aggarwala [86]. Suppose we are interested in a quantity 	 which could be estimated
by an estimatorb	 . Then, it is recommended to identify a censoring plan such that
the mean squared error of b	 is as small as possible. This yields the optimization
problem

 .R/ D MSE.b	/ �! min
R2Cm

m;n

:

In order to solve this problem at least numerically, the objective function must be
calculable for any censoring scheme R. A closed-form expression is, of course,
preferable. We follow the approach of Balakrishnan and Aggarwala [86] and
present results based on best linear unbiased estimates in location–scale families
of distribution. Results for location families or scale families are just mentioned.
According to (11.1), we assume a location–scale family

Fls D
n
F
� � � �
#

�ˇ̌
ˇ� 2 R; # > 0

o
;

where F is a given continuous distribution with mean zero and variance one. Thus,
the BLUEs b�LU and b#LU are used in the estimation process. The optimization
problem is based on the variance–covariance matrix of these estimators, i.e., on
the matrix

#2˙�.R/ D #2

�

	
b0˙�1b �b0˙�11
�b0˙�11 10˙�11



;
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where � D 10˙�11b0˙�1b � .10˙�1b/2, b D EYR, ˙ D Cov.YR/, and YR

forms a progressively Type-II censored sample based on the standard member F
(see Sect. 11.1.1). Notice that the variance–covariance matrix is proportional to
˙�.R/ which does not depend on the unknown parameters. It should also be men-
tioned that the same comment applies to criteria considered subsequently. Therefore,
we may take # D 1 without loss of generality. Therefore, the optimization problem
can be defined via some function � defined on the set of all admissible matrices
Sm;n D f˙�.R/jR 2 Cm

m;ng, i.e.,

 .R/ D �.˙�.R// �! min
Sm;n

:

The solution of this problem depends heavily on the choice of � and, thus, a general
solution will not be possible in most cases. However, if � exhibits some monotonic-
ity properties w.r.t. the matrices contained in Sm;n, a general result will be possible.
For nonnegative definite matrices, the so-called Löwner ordering(see Pukelsheim
[733]) can be utilized to find such a general characterization.

Definition 26.3.1. Let A;B 2 R
n	n be nonnegative definite matrices. Then,

A is called smaller than B in the Löwner ordering (A �L B) if B � A is a
nonnegative definite matrix.

Therefore, the problem can be solved in the family of objective functions � which
exhibits some monotonicity properties with respect to Löwner ordering provided
that extremal elements exist in the set Sm;n. Such a result can be obtained in the case
of generalized Pareto distributions (see Sects. 11.2.2 and 26.3.2).

We now introduce some particular functions � discussed in this section:

(i) A wide class of criteria can be defined by considering the objective function

�a.˙�.R// D a0˙�.R/a
for some given a 2 R

2 n f0g. Notice that this approach means to minimize the

variance of a0
�b�LU

b#LU

�
which is an unbiased estimator of a0

�
�
#

�
. Choosing a0 D

.1; 0/ or a0 D .0; 1/ corresponds to minimizing the variance of b�LU and b#LU,
respectively.

An important example is given by the estimation of quantiles in the
location–scale setting. Suppose we are interested in estimating the pth quan-
tile. Then, the BLUE of �p is given by

b�p D b�LU C F .p/b#LU:

Hence, a0 D .1; F .p// has to be used in the minimization process.
(ii) Another optimality criteria is given by the trace of ˙�.R/, i.e.,

�.˙�.R// D tr.˙�.R//:
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Using the terminology from experimental design in regression models, such an
optimal censoring plan is referred to as A-optimal.

(iii) In a similar fashion, we may consider the determinant of ˙�.R/, i.e.,

�.˙�.R// D det.˙�.R//:

Such an optimal censoring plan is referred to as D-optimal.

These criteria have a monotonicity property with regard to the Löwner ordering.
Namely, if a censoring scheme R� exists such that ˙�.R�/ �L ˙�.R/ for all
R 2 Cm

m;n, then R� is optimal for any of these objective functions. Further criteria
will be defined later. Notice that the results will be numerical in nature except for
generalized Pareto-distributions.

26.3.1 Exponential Distribution

For the exponential distribution, the matrix˙�.R/ is given by (see (11.7))

˙�.R/ D 1

n2.m � 1/
	
m �n
�n n2



:

Obviously, this matrix does not depend on the censoring scheme employed.
Therefore, any censoring plan yields the same value of the objective function and,
thus, is optimal in the above sense. The same comment applies to the variances of
the BLUEs in the location and scale cases, respectively.

26.3.2 Generalized Pareto Distributions

Burkschat et al. [235, 237] have addressed a location–scale family of generalized
Pareto distributions which includes exponential, Pareto, and reflected power dis-
tributions (see Definition A.1.11). Since the exponential distribution has just been
discussed, it is excluded from the following presentation of the material. Hence, we
have to deal with the location–scale family

Fq D

F
� � � �
#

� ˇ̌
ˇF .t/ D .1� sgn.q/t/1=q; t � 0; 1 > sgn.q/t; � 2 R; # > 0

�
;

where sgn.q/ denotes the sign of q ¤ 0. In this case, the matrix of interest is given
by (see Theorem 11.2.4)

˙�.R/D q2

�.nC2q/n�.nC2q/2
 

� � sgn.q/.� C nC2q
q
/

� sgn.q/.�C nC2q
q
/ �C .nC2q/2

q2

!
;
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where � D Pm
jD1

Qj

kD1
�
1C 2q

�k

�
. It is obvious that ˙�.R/ depends on R only

via the quantity� so that we can write˙�.R/ D S.�/. Now, Burkschat et al. [237]
obtained the following ordering result which relates the Löwner ordering on the set
Sm;n to the ordering of � .

Lemma 26.3.2. Let �1; �2 >
nC2q
n

be real numbers. Then,

�1 � �2 ” S.�1/ �L S.�2/:

Notice that �.R/ � �.S / implies that

(i) �.R/ � �.S /, if q > 0, and
(ii) �.R/ � �.S /, if q < 0.

In particular, we conclude that R 4 S yields �.R/ � �.S / for q > 0 and
�.R/ � �.S / for q < 0, respectively. Combining these findings, we get R 4
S which implies ˙�.R/ �L ˙�.S /, q > 0, or ˙�.S / �L ˙�.R/, q < 0.
Recalling (26.2), this yields the following result due to Burkschat et al. [237].

Theorem 26.3.3. For any objective function � increasing w.r.t. �L on Sm;n, the
following assertions hold:

(i) If q > 0, then O1 is �-optimal. This case includes the uniform distribution
for q D 1;

(ii) If q < 0, i.e., for Pareto distributions, then Om is �-optimal provided that
n �mC 1C 2q > 0.

Moreover, for q > 0, the worst scheme is given by O1, whereas Om is worst for
q < 0.

Notice that the additional condition for Pareto distributions ensures the existence
of involved moments. In particular, it guarantees the existence of the BLUEs for any
censoring scheme R 2 C m

m;n.
Burkschat et al. [237] applied the so-called 'p-criteria or matrix means

used in experimental design in regression models to the optimization problem
(cf. Pukelsheim [733, Chap. 6]). Let T�T 0 be the spectral decomposition of˙�.R/
and let ˙�.R/p D T�pT 0 with �p D diag.�

p
max; �

p

min/. �max; �min > 0 denote the
maximum and minimum eigenvalues of˙�.R/, respectively. Then, 'p is defined as

'p.˙�.R// D
	
1

2
tr.˙�.R/p/


1=p
; p 6D 0:

Taking the limits p ! 0 and p ! ˙1, we get the following supplementary
criteria:

'0.˙�.R// D lim
p!0 'p.˙�.R// D

p
det˙�.R/;
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'1.˙�.R// D lim
p!1 'p.˙�.R// D �max.˙�.R//;

'�1.˙�.R// D lim
p!�1 'p.˙�.R// D �min.˙�.R//:

Remark 26.3.4. Using the spectral decomposition, it is easy to see that 'p is a
function of the eigenvalues only. Thus, we write 'p.�max; �min/ instead and get
the identity

'p.�max; �min/ D
	
�
p
max C �pmin

2


1=p
; p ¤ 0:

For p D 0, we get

'0.�max; �min/ D
p
�max�min:

Obviously, the proposed criteria can be interpreted as means of the eigenvalues.
For p D 1, we get the arithmetic mean which corresponds to the trace of ˙�.R/.
Hence, optimization w.r.t. '1 yields A-optimal censoring schemes. For p D 0,
we have the geometric mean. This objective function leads to the same optimal
censoring plans as the determinant of ˙�.R/, and we thus arrive at D-optimal
designs. Finally, p D �1 corresponds to the harmonic mean of the eigenvalues.

Now, taking the Löwner ordering established in Theorem 26.3.3 into account
and using the fact that the 'p-criteria are isotonic w.r.t. the Löwner ordering
(see Pukelsheim [733, Sect. 5.5]), we arrive at the following result obtained by
Burkschat [228]. It should be noted that the proof in the original paper proceeds
by showing the monotonicity directly without using monotonicity properties of 'p
on Sm;n (see also Burkschat et al. [235]).

Theorem 26.3.5. Let p 2 Œ�1;1�. Then,

(i) If q > 0, then O1 is 'p-optimal. This case includes the uniform distribution
for q D 1;

(ii) If q < 0, i.e., for Pareto distributions, then Om is 'p-optimal provided that
n �mC 1C 2q > 0.

Example 26.3.6. Burkschat et al. [237] have considered the censoring plans
given in Table 26.1. They have computed the trace and determinant of the
variance–covariance matrix for uniform, reflected power (q D 2), and Pareto
distributions (q D � 1

3
). The plots given in Figs. 26.1–26.3 illustrate the

characteristic behavior of the repeated measurements for increasing sample size n.
Figures 26.1–26.3 indicate that the choice of the employed censoring plan

may highly influence the value of the objective function. The gain in efficiency of
the optimal scheme w.r.t. other schemes may be significant. Suppose a reflected
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Symbol Censoring scheme

4 O10ı . n�10
2
; 0�8; n�10

2
/

� . n�10
10

�10
/

˙ .0�4; n�10
2
; n�10

2
; 0�4/

O O1

Table 26.1 Symbols and censoring schemes used in the plots presented in Figs. 26.1–26.3 with
m D 10, n � 10
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Fig. 26.1 Trace and determinant for censoring schemes given in Table 26.1 for uniform distribu-
tion (q D 1) . (a) Trace of censoring schemes. (b) Determinant of censoring schemes
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Fig. 26.2 Trace and determinant for censoring schemes given in Table 26.1 for reflected power
distribution. (q D 2) (a) Trace of censoring schemes. (b) Determinant of censoring schemes

power distribution, i.e., q > 0, is given. Figure 26.2 shows that trace and
determinant of the optimal censoring scheme O1 are decreasing in n. However,
this is not necessarily true for other censoring plans employed. It is even worse as
shown in Fig. 26.2a: The trace may increase if an unfavorable censoring plan is
chosen. Thus, increasing the sample size n may not result in a better precision.

For Pareto distributions, the plots are decreasing in n for any considered
censoring scheme. Thus, a higher sample size n improves the precision of the
estimators. However, considering the trace as an optimality criterion, choosing
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Fig. 26.3 Trace and determinant for censoring schemes given in Table 26.1 for Pareto distribution.
(q D � 1

3
) (a) Trace of censoring schemes. (b) Determinant of censoring schemes

the optimal plan Om yields a gain in precision of more than 70 % in comparison
to the worst censoring scheme O1. Further plots with q 2 f 1

3
; 4g are presented

in Burkschat et al. [237].

Remark 26.3.7. Results similar to those presented above have been established
by Burkschat [227] using BLEEs of the unknown parameters. In Theorem 2.1, he
proved a result similar to Lemma 26.3.2 for the mean squared error matrix. With
this result, the same machinery as above can be applied. Finally, Theorems 26.3.3
and 26.3.5 hold for BLEEs, too. Additionally, uniqueness of the optimal censoring
schemes is proved. Moreover, a multi-sample situation is discussed.

Remark 26.3.8. In the one-parameter settings, the same results can be estab-
lished depending on the sign of the parameter q (see Burkschat et al. [235]).

26.3.3 Extreme Value Distribution

Optimal censoring schemes for the extreme value distribution (Type I) are reprinted
in Table 26.2. Results for the extreme value distribution (Type II) are presented
in Table 26.3. Similar tables are given in Balakrishnan and Aggarwala [86,
pp. 200–210].

26.3.4 Further Distributions

Ng et al. [689] discussed A- and D-optimal censoring schemes for the
Weibull distribution. Computational results on optimal censoring plans are
provided. Tables for normal and log-normal distributions are presented in
Balakrishnan and Aggarwala [86].
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n / m 2 3 4 5 6 Criterion

15 13,0 12,0,0 11,0,0,0 0,10,0,0,0 0,9,0,0,0,0 D (1st)
0.208880 0.070079 0.037306 0.023838 0.016252

12,1 11,1,0 10,1,0,0 10,0,0,0,0 1,8,0,0,0,0 D (2nd)
0.270716 0.076208 0.038309 0.023859 0.016300

0.061836 0.006128 0.001003 0.000021 0.000048 �

13,0 12,0,0 11,0,0,0 10,0,0,0,0 9,0,0,0,0,0 A (1st)
1.658801 0.683595 0.443825 0.338027 0.277645

12,1 11,1,0 10,1,0,0 9,1,0,0,0 8,1,0,0,0,0 A (2nd)
2.234228 0.751833 0.458666 0.341474 0.277809

0.575427 0.068237 0.014841 0.003447 0.000163 �

20 18,0 17,0,0 16,0,0,0 0,15,0,0,0 0,14,0,0,0,0 D (1st)
0.188199 0.062780 0.033494 0.021174 0.014388

17,1 16,1,0 15,1,0,0 1,14,0,0,0 1,13,0,0,0,0 D (2nd)
0.242727 0.068257 0.034400 0.021208 0.014426

0.054528 0.005477 0.000906 0.000034 0.000037 �

18,0 17,0,0 16,0,0,0 15,0,0,0,0 14,0,0,0,0,0 A (1st)
1.718838 0.688633 0.440165 0.331886 0.270708

17,1 16,1,0 15,1,0,0 14,1,0,0,0 13,1,0,0,0,0 A (2nd)
2.309064 0.760167 0.456499 0.336229 0.271469

0.590226 0.071534 0.016334 0.004343 0.000761 �

25 23,0 22,0,0 21,0,0,0 0,20,0,0,0 0,19,0,0,0,0 D (1st)
0.173793 0.057758 0.030885 0.019333 0.013115

22,1 21,1,0 20,1,0,0 1,19,0,0,0 1,18,0,0,0,0 D (2nd)
0.223363 0.062796 0.031732 0.019364 0.013145

0.049570 0.005038 0.000846 0.000030 0.000029 �

23,0 22,0,0 21,0,0,0 20,0,0,0,0 19,0,0,0,0,0 A (1st)
1.760666 0.692381 0.438124 0.328188 0.266467

22,1 21,1,0 20,1,0,0 19,1,0,0,0 18,1,0,0,0,0 A (2nd)
2.358473 0.765834 0.455397 0.333120 0.267633

0.597807 0.073454 0.017273 0.004932 0.001166 �

30 28,0 27,0,0 26,0,0,0 0,25,0,0,0 0,24,0,0,0,0 D (1st)
0.162972 0.054020 0.028950 0.017963 0.012175

27,1 26,1,0 25,1,0,0 1,24,0,0,0 1,23,0,0,0,0 D (2nd)
0.208880 0.058735 0.029754 0.017989 0.012199

0.045908 0.004715 0.000804 0.000027 0.000024 �

28,0 27,0,0 26,0,0,0 25,0,0,0,0 24,0,0,0,0,0 A (1st)
1.791522 0.695133 0.436760 0.325642 0.263531

27,1 26,1,0 25,1,0,0 24,1,0,0,0 23,1,0,0,0,0 A (2nd)
2.393159 0.769775 0.454670 0.330992 0.264993

0.601637 0.074641 0.017911 0.005350 0.001462 �

Table 26.2 A- and D-optimal censoring plans for selected values of m and n for extreme value
distribution (Type I). The values in small font denote the values of the criteria for the particular
censoring scheme. The row � contains the difference between the best and second best censoring
schemes
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n / m 2 3 4 5 6 Criterion

15 11,2 9,0,3 6,0,0,5 0,5,0,0,5 0,3,0,0,0,6 D (1st)
0.054830 0.025563 0.016220 0.011619 0.008976

12,1 8,0,4 5,1,0,5 1,4,0,0,5 0,2,1,0,0,6 D (2nd)
0.055175 0.025601 0.016228 0.011630 0.008980

0.000345 0.000037 0.000007 0.000011 0.000004 �

12,1 9,0,3 7,0,0,4 5,0,0,0,5 3,0,0,0,0,6 A (1st)
1.005610 0.511761 0.353150 0.275009 0.228228

11,2 10,0,2 8,0,0,3 6,0,0,0,4 3,0,0,0,1,5 A (2nd)
1.008464 0.512453 0.353706 0.275378 0.228463

0.002854 0.000692 0.000555 0.000369 0.000234 �

20 16,2 13,0,4 9,2,0,5 0,10,0,0,5 2,5,0,0,0,7 D (1st)
0.043318 0.020091 0.012710 0.009044 0.006974

15,3 14,0,3 10,0,0,6 0,9,0,0,6 0,2,0,5,0,7 D (2nd)
0.043747 0.020141 0.012710 0.009047 0.007012

0.000429 0.000050 0.000000 0.000003 0.000038 �

16,2 14,0,3 12,0,0,4 10,0,0,0,5 2,5,0,0,0,7 A (1st)
1.012956 0.506423 0.345463 0.266433 0.223349

17,1 15,0,2 11,0,0,5 9,0,0,0,6 5,2,0,1,4,2 A (2nd)
1.015150 0.508953 0.346811 0.266986 0.223717

0.002194 0.002530 0.001348 0.000553 0.000368 �

Table 26.3 A- and D-optimal censoring plans for selected values of m and n for extreme value
distribution (Type II). The values in small font denote the values of the criteria for the particular
censoring scheme. The row � contains the difference between the best and second best censoring
schemes

26.4 Maximum Fisher Information

Fisher information as a criterion for optimal progressive censoring has been intro-
duced in Ng et al. [689] to identify optimal censoring schemes for a two-parameter
Weibull distribution (see Sect. 26.4.2). They handled the problem computationally
by using the missing information principle (see Sect. 9.1.2). Balakrishnan et al.
[140] picked up the idea of optimal Fisher information by exploiting the hazard
rate representation of Fisher information in progressively Type-II censored samples.
This approach leads to some explicit results and also provides a computationally
more efficient approach to address the problem. First, we present results for the
single parameter case.

26.4.1 Single Parameter Case

Let F D fF	 j 	 2 � � Rg. To begin, it is worth mentioning that if F forms
an exponential family as in (2.12), i.e., F	.x/ D 1 � e�
.	/d.x/, then, according
to (9.11), the Fisher information about 	 is given by
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I .XRI 	/ D m


2.	/
Œ
0.	/�2

and is therefore independent of the censoring plan. Therefore, all censoring schemes
yield the same information about the parameter and, thus, are optimal w.r.t. Fisher
information. Examples of such distributions are, for instance, exponential distri-
bution (scale parameter), extreme value distribution (location parameter), Weibull
distribution (scale parameter), and Pareto distribution (shape parameter).

Using representation (9.1) obtained by Zheng and Park [943] and the results for
Fisher information in a location or scale family, Balakrishnan et al. [140] showed
that the optimal censoring plan can be calculated w.r.t. the standard member of the
population distribution. In particular, they found the following result. The proof
proceeds by using the partial order 4 on Cm

m;n introduced in Definition 7.1.9 and
some stochastic ordering result obtained by Burkschat [228].

Theorem 26.4.1. Let w	 be defined by

x 7!

@

@	
log�	.x/

� 2
: (26.7)

Then,

(i) Right censoring Om D .0�m�1; n � m/ has maximum Fisher information if
w	 is decreasing in 	 ;

(ii) First-step censoring O1 D .n �m; 0�m�1/ has maximum Fisher information
if w	 is increasing in 	 .

Applying this result, Balakrishnan et al. [140] established that w	 is decreasing
for location families with log-concave hazard rate function. This applies to location
families based on either a normal or a logistic distribution. Cramer and Ensenbach
[293] showed that the same argument applies to a location family of Gumbel
distributions.

For scale families, an analogous criterion can be formulated by considering the
function w defined as

w.t/ D t�0.t/=�.t/; t > 0; (26.8)

where � denotes the hazard rate of the standard member in F . In particular, a
decreasing w yields right censoring to be optimal. An example for a distribution
satisfying this condition is given by a log-concave hazard rate function � introduced
by Block and Joe [207] (see also Pellerey et al. [715]). It is defined by

�.t/ D t

1C t C log.1C t/; t � 0:
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Notice that the corresponding cumulative distribution functionF is given byF.t/ D
1 � .1C t/t , t � 0, showing that F does not form an exponential family.

For an increasing function w given in (26.8), first-step censoring is optimal.
A sufficient but not necessary condition for w to be increasing is log-convexity of
the hazard rate �. Examples for such distributions are given by a scale family of
truncated extreme value distributions with cumulative distribution function F given
by F.t/ D 1�expf1�et g, t � 0, and a family defined by the cumulative distribution
function F with F.t/ D 1 � expf�t3=6 � t2=2� tg, t � 0.

Although many distributions satisfy the above criteria, some do not. For instance,
scale families of extreme value and normal distributions (or shape families of
Weibull distributions) do not satisfy the aforementioned conditions. In these cases,
almost only computational results are available.

Balakrishnan et al. [140] found the following expression for the Fisher infor-
mation in a scale parameter of an extreme value distribution given by F	.x/ D
1 � expf�e	xg, 	 > 0. They used the expression

	2I .XRI 	/ D m�2

6
C

mX
iD1
.�i � �iC1/ci�1

iX
jD1

aj;i

�2j
.� � 1C log �j /2

to compute the Fisher information for any censoring scheme R. Alternatively, (9.12)
may be used. The computations suggest that one-step plans are optimal. Moreover,
as indicated in Table 26.4, optimality moves quite regularly from first-step censoring
O1 to right censoring Om. A similar behavior is observed for a scale family of normal
and logistic distributions, respectively (see Tables 26.5 and 26.6).

These observations lead to the so-called one-step conjecture meaning that in
many settings one-step censoring schemes are optimal plans. From a heuristic point
of view, this seems to be quite reasonable because the convex hull of C m

m;n forms a
simplex and, thus, is a convex set. Moreover, its vertices are admissible and given
by the one-step plans (see Sect. 1.1.1 and Fig. 1.3). If the objective function has
some nice properties, e.g., convexity, the maximum is attained at the border of
the convex hull so that the one-step plans are reasonable candidates for maximum
Fisher information. As far as we know, there is only a proof for the extreme value
distribution with m D 2 (see Balakrishnan et al. [140, Theorem 4.3]).

Optimal One-Step Plans

Due to the relevance of one-step plans in the above optimization problem, Balakrish-
nan et al. [140] established simple formulas to determine the Fisher information in a
progressively Type-II censored sample for such censoring schemes. Following Park
[704], the Fisher information in the complete sample X1; : : : ; Xn can be split into
the part contained in the first k order statisticsX1Wn; : : : ; XkWn and a remaining part as
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Fisher information
(in units of 1=	2)

n OSP RC

m n1; : : : ; n2 OSP n1 n2 n1 n2

2 3; : : : ; 10 O1 3:8 6:6 3:1 6:5

2 11; : : : ; 1000 O2 7:1 74:4 7:1 74:4

3 4; : : : ; 10 O1 5:7 8:1 4:5 7:0

3 11; : : : ; 19 O2 8:5 12:3 7:6 12:2

3 20; : : : ; 300 O3 12:7 63:2 12:7 63:2

4 5; : : : ; 10 O1 7:6 9:5 6:0 7:3

4 11; : : : ; 19 O2 9:9 13:7 7:9 12:9

4 20; : : : ; 28 O3 14:1 18:0 13:5 17:9

4 29; : : : ; 100 O4 18:5 43:1 18:5 43:1

5 6; : : : ; 10 O1 9:5 11:0 7:5 7:7

5 11; : : : ; 19 O2 11:4 15:1 8:2 13:2

5 20; : : : ; 28 O3 15:5 19:4 13:8 18:7

5 29; : : : ; 37 O4 19:8 23:7 19:3 23:7

5 38; : : : ; 50 O5 24:2 29:9 24:2 29:9

6 7; : : : ; 10 O1 11:3 12:4 9:1 8:5

6 11; : : : ; 19 O2 12:8 16:5 8:8 13:4

6 20; : : : ; 28 O3 16:9 20:7 14:0 19:2

6 29; : : : ; 35 O4 21:2 24:1 19:8 23:4

Table 26.4 Optimal (max. Fisher information) progressive censoring plans for certain (small) m
and n with respect to the scale parameter of an extreme value distribution (shape parameter of a
Weibull distribution). The Fisher informations are given for the optimal one-step plans (OSP) and
right censored samples (RC) (for both the minimum value n1 and the maximum value n2 of n in
each row). The values are taken from Balakrishnan et al. [140]

nI .X1I 	/ D I .X1; : : : ; XnI 	/
D I .X1Wn; : : : ; XkWnI 	/CI .XkC1Wn; : : : ; XnWnjXkWnI 	/:

For a progressively censored sample with censoring scheme Ok , this yields the
identity

I .XOk I 	/ D 1

n � k fn.m � k/I .X1I 	/C .n �m/I .X1Wn; : : : ; XkWnI 	/g :
(26.9)

Notice that I .XOk I 	/ can be written as a convex combination of the Fisher
information in the complete sample nI .X1I 	/ and the Fisher information in the
first k order statistics. Hence, we get the bounds

I .X1Wn; : : : ; XkWnI 	/ � I .XOk I 	/ � nI .X1I 	/:
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Fisher information
(in units of 1=	2)

n OSP RC

m n1; : : : ; n2 OSP n1 n2 n1 n2

2 3; : : : ; 11 O1 4:4 9:4 4:0 9:3

2 12; : : : ; 200 O2 10:1 77:3 10:1 77:3

3 4; : : : ; 11 O1 6:5 10:8 5:8 9:8

3 12; : : : ; 22 O2 11:5 18:5 10:6 18:5

3 23; : : : ; 200 O3 19:2 95:3 19:2 95:3

4 5; : : : ; 11 O1 8:5 12:2 7:6 10:3

4 12; : : : ; 22 O2 12:9 19:9 11:0 19:0

4 23; : : : ; 34 O3 20:6 28:5 19:8 28:4

4 35; : : : ; 100 O4 29:2 68:5 29:2 68:5

5 6; : : : ; 11 O1 10:6 13:6 9:5 11:0

5 12; : : : ; 22 O2 14:3 21:2 11:6 19:3

5 23; : : : ; 34 O3 21:9 29:8 20:1 29:1

5 35; : : : ; 46 O4 30:5 38:4 29:9 38:4

5 47; : : : ; 50 O5 39:2 41:4 39:2 41:4

6 7; : : : ; 11 O1 12:6 15:0 11:5 12:0

6 12; : : : ; 22 O2 15:7 22:6 12:5 19:5

6 23; : : : ; 34 O3 23:2 31:1 20:3 29:4

6 35; : : : ; 40 O4 31:8 35:5 30:3 34:4

Table 26.5 Optimal (max. Fisher information) progressive censoring plans for certain (small) m
and n with respect to the scale parameter of a normal distribution. The Fisher informations are
given for the optimal one-step plans (OSP) and right censored samples (RC) (for both the minimum
value n1 and the maximum value n2 of n in each row). The values are taken from Balakrishnan
et al. [140]

Finally, we get from (26.9)

m

n �mI .X1I 	/
	

I .XOk I 	/
mI .X1I 	/ � 1



D I .X1Wn; : : : ; XkWnI 	/ � kI .X1I 	/

n � k :

(26.10)
The right-hand side of (26.10) depends on Ok only via the number k 2 f1; : : : ; mg.
Thus, the Fisher information I .XOk I 	/ is maximized for that k that maximizes the
ratio on the right. Moreover, except for the condition 1 � k � m, the right-hand
side is independent of m. Therefore, given m0 2 N and a number kopt.m0/ < m0

such that kopt is optimal for that particularm0, then kopt is optimal for anym � m0.
In order to find this k, we have to compute the values of

%

	
k

n
; nI 	



D I .X1Wn; : : : ; XkWnI 	/

.n � k/I .X1I 	/ � k

n� k

D n

n� kVk.	/ �
k

n � k ; 1 � k � m; (26.11)
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Fisher information
(in units of 1=	2)

n OSP RC

m n1; : : : ; n2 OSP n1 n2 n1 n2

2 3; : : : ; 10 O1 3:1 5:8 3:0 5:8

2 11; : : : ; 1000 O2 6:2 74:2 6:2 74:2

3 4; : : : ; 10 O1 4:6 6:8 4:3 6:2

3 11; : : : ; 20 O2 7:3 11:3 6:7 11:3

3 21; : : : ; 300 O3 11:8 62:4 11:8 62:4

4 5; : : : ; 10 O1 6:1 7:9 5:7 6:8

4 11; : : : ; 20 O2 8:4 12:3 7:2 11:4

4 21; : : : ; 30 O3 12:8 16:9 12:3 16:9

4 31; : : : ; 100 O4 17:4 41:3 17:4 41:3

5 6; : : : ; 10 O1 7:5 9:0 7:2 7:6

5 11; : : : ; 20 O2 9:4 13:3 7:8 12:0

5 21; : : : ; 30 O3 13:8 17:9 12:6 17:4

5 31; : : : ; 40 O4 18:4 22:5 17:9 22:5

5 41; : : : ; 50 O5 23:0 27:2 23:0 27:2

6 7; : : : ; 10 O1 8:9 10:0 8:6 8:6

6 11; : : : ; 20 O2 10:5 14:3 8:8 12:3

6 21; : : : ; 30 O3 14:8 18:9 12:8 17:7

6 31; : : : ; 35 O4 19:4 21:3 18:3 20:4

Table 26.6 Optimal (max. Fisher information) progressive censoring plans for certain (small) m
and n with respect to the scale parameter of a logistic distribution. The Fisher informations are
given for the optimal one-step plans (OSP) and right censored samples (RC) (for both the minimum
value n1 and the maximum value n2 of n in each row). The values are taken from Balakrishnan
et al. [140]

where Vk.	/ D I .X1Wn;:::;XkWnI	/
nI .X1I	/ . From expression (26.11), we deduce that the

knowledge of Vk.	/ is sufficient to decide which censoring scheme is optimal.
Moreover, we need to compute only the values of Vk.	/ until Vk.	/ decreases.
Expression (26.11) shows that the objective function %

�
k
n
; nI 	� is connected to a

relative version of the Fisher information Vk.	/. Based on (26.11) and following
Park [704], Balakrishnan et al. [140] proposed information plots as well as a plot of
the critical function. For illustration, we present these plots for the scale family of an
extreme value distribution in Figs. 26.4 and 26.5. Notice that the quantities are inde-
pendent of the scale parameter by Theorem 9.1.3. Similar plots for scale families of
normal and logistic distributions can be found in Balakrishnan et al. [140].

Remark 26.4.2. The determination of optimal one-step censoring plans has
been discussed in terms of the missing information principle in Park and Ng [708].
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Fig. 26.4 Information plot (a) and plot of objective function (b) for n D 20. The optimal one-step
censoring scheme is O3 with maximum 0:23445
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Fig. 26.5 Information plot (a) and plot of objective function (b) for n D 50. The optimal one-step
censoring scheme is O6 with maximum 0:25496

State of the Art

In Table 26.7, we survey the recent results on maximum Fisher information plans
for some selected lifetime distributions. It should be noted that the results on OSPs
are conjectures. The results on optimal right censoring and invariance of the Fisher
information are proven.

Further, it needs to be mentioned that in the framework of maximum Fisher
information, other censoring scheme than those given in Table 26.7 may be
optimal. As an example, we present results for the location parameter of a Laplace
distribution with m D 10 and various values of n in Table 26.8. Notice that the
Fisher information in the sample is increasing until n D 22 and then decreasing.
A conjecture based on these values is presented in Table 26.9.
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Distribution Parameter Optimal

Exponential: F.xI 	/ D 1� e�	x , 	 > 0 Scale (	 ) ALL

Extreme value (Type I): Location (�) ALL

F.xI�; 	/D 1� exp.�e	.x��//, 	 > 0 Scale (	 ) OSP

Gumbel: Location (�) RC

F.xI�; 	/D exp.�e�	.x��//, 	 > 0 Scale (	 ) OSP

Location (�) RC
Normal/Log-normal

Scale (� ) OSP

Weibull: Scale (	 ) ALL

F.xI 	; ˇ/D 1� exp.�.	x/ˇ/, x > 0, 	; ˇ > 0 Shape (ˇ) OSP

Pareto: F.xI˛; ˇ/D 1� .˛=x/ˇ , x > ˛, ˛; ˇ > 0 Shape (ˇ) ALL

Logistic: Location (�) RC

F.xI�; 	/D 1� exp.�	.x��//
1Cexp.�	.x��// , 	 > 0 Scale (	 ) OSP

Table 26.7 Maximum Fisher information plans for selected distributions. The last column gives
the optimal censoring plan w.r.t. the Fisher information criterion (RC OD right censoring; OSP OD
one-step progressive censoring; ALL OD Fisher information invariant)

n Best scheme Fisher information Best OSP Fisher information

11 .0�9; 1/ 10:998 .0�9; 1/ 10:998

12 .0�9; 2/ 11:988 .0�9; 2/ 11:988

13 .0�9; 3/ 12:956 .0�9; 3/ 12:956

14 .0�9; 4/ 13:878 .0�9; 4/ 13:878

15 .0�9; 5/ 14:729 .0�9; 5/ 14:729

16 .0�9; 6/ 15:481 .0�9; 6/ 15:481

17 .0�9; 7/ 16:113 .0�9; 7/ 16:113

18 .0�9; 8/ 16:611 .0�9; 8/ 16:611

19 .0�9; 9/ 16:970 .0�9; 9/ 16:970

20 .0�9; 10/ 17:196 .0�9; 10/ 17:196

21 .0�9; 11/ 17:300 .0�9; 11/ 17:300

22 .0�912/ 17:300 .0�9; 12/ 17:300

23 .1; 0�8; 12/ 17:266 .0�9; 13/ 17:215

29 .7; 0�8; 12/ 17:105 .0�9; 19/ 15:885

30 .9; 0�8; 11/ 17:086 .0�9; 20/ 15:637

1; 000 .979; 0�8; 11/ 16:496 .0�9; 990/ 10:111

2; 000 .1979; 0�8; 11/ 16:486 .0; 0�9; 1990/ 10:055

3; 000 .2979; 0�8; 11/ 16:483 .0�90; 2990/ 10:037

4; 000 .3979; 0�8; 11/ 16:481 .0�9; 3990/ 10:028

Table 26.8 Maximum Fisher information plans for Laplace distributions (location) including the
value of the Fisher information
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m n Optimal scheme

10 11�22 .0�9; n� 10/
23�29 .n� 22; 0�8; 12/
� 30 .n� 21; 0�8; 11/

Table 26.9 Conjecture on maximum Fisher information plans for Laplace distributions (location)

26.4.2 Two-Parameter Case

Optimal Fisher information based censoring plans in a two-parameter setting have
been first addressed by Ng et al. [689] who considered Weibull and extreme
value distributions. As optimality criteria, they used minimum trace/determinant
of the variance–covariance matrix and maximum trace of the Fisher information
matrix. Using the terminology as in experimental design of regression models (see,
e.g., Pukelsheim [733]), A- and D-optimality of censoring schemes w.r.t. the Fisher
information matrix was introduced in Dahmen et al. [320]. The problem has also
been addressed by Abo-Eleneen [6] who provided some computational results for
small sizes of m and n.

Definition 26.4.3. Let I .XRI 	/ denote the Fisher information matrix about
	 in a progressively Type-II censored sample XR.

A censoring plan R 2 C n
m;n is said to be

(i) A-optimal (w.r.t. Fisher information matrix) if

tr
�
I .XRI 	/

�
D max

S2Cm
m;n

tr
�
I .XS I 	/

�
I

(ii) D-optimal (w.r.t. Fisher information matrix) if

det
�
I .XRI 	/

�
D max

S2Cm
m;n

det
�
I .XS I 	/

�
:

As in the one-parameter setting, Dahmen et al. [320] established a condition for
A-optimality in terms of the hazard rate.

Theorem 26.4.4. Let 	 D .	1; 	2/ and �	 D f	=.1�F	/ be the hazard rate of
F	 . If w	 , defined by

w	 W x 7�!

@

@	1
log�	.x/

� 2
C

@

@	2
log�	.x/

� 2
;

is decreasing for all 	 2 �, then right censoring is A-optimal. If w	 is increasing
for all 	 2 �, then first-step censoring is A-optimal.
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An example satisfying the above condition is provided by a two-parameter
Lomax distribution with cumulative distribution function in (9.14). From the
representation �q;#.x/ D q# � .1 C #x/�1, x > 0, it can be seen that wq;# is
decreasing in x for any q; # > 0. Hence, the trace of the Fisher information
is maximized by right censoring and Om is A-optimal. This is not true for D-
optimality. In this case, the expression for the determinant of I

�
XRI q; #� is

(see (9.15))

det.I
�
XRI q; #�/ D I11 �I22 � .I12/

2 D 1

q2#2

�
m � '2 � '21

�
; (26.12)

where

'1 D
mX
sD1

sY
jD1

	
1 � 1

q�j C 1



and '2 D
mX
sD1

sY
jD1

	
1 � 2

q�j C 2


:

Notice that '1 as well as '2 are maximal for right censoring. To be more precise, '2
is maximal for right censoring, whereas �'1 is maximized for first-step censoring.
Thus, both terms in (26.12) are competing. Moreover, both expressions depend on
the parameter q so that the optimal scheme will generally depend on q. For details,
we refer to Dahmen et al. [320].

Dahmen et al. [320] presented computational results for optimal censoring
schemes for two-parameter Lomax, extreme value, Weibull, and normal distribu-
tions. As an example, we provide some tables for the extreme value distribution
and Weibull distribution in Tables 26.10 and 26.11. Notice that the optimal plans
given in Table 26.10 coincide with those presented in Table 26.4 for a scale family
of extreme value distributions. This is not surprising because the part of the trace
caused by the location parameter, i.e., I11, is constant w.r.t. the censoring scheme.
Finally, it has to be mentioned that the two-parameter Lomax distribution provides
an example for the situation when optimal censoring plans do not move from first-
step censoring to right censoring (see Figs. 26.6 and 26.7). Details can be found in
Dahmen et al. [320].

For Lomax distributions, Dahmen et al. [320] also computed the asymptotic
Fisher information matrix for one-step plans Oj , 1 � j � m. Notice that the Fisher
information in a one-step censoring scheme is given by

I .XOj I q; #/ D
"

m
q2

1
q#
'1.j /

1
q#
'1.j /

1
#2
'2.j /

#
:
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Fisher information
(in units of 1=	2)

n OSP RC

m n1; : : : ; n2 OSP n1 n2 n1 n2

2 3; : : : ; 10 O1 5:79 8:63 5:05 8:51

11; : : : ; 1000 O2 9:05 76:42 9:05 76:42

3 4; : : : ; 10 O1 8:72 11:08 7:47 9:98

11; : : : ; 19 O2 11:50 15:28 10:59 15:21

20; : : : ; 300 O3 15:74 66:15 15:74 66:15

3 5; : : : ; 10 O1 11:60 13:53 9:98 11:28

11; : : : ; 19 O2 13:94 17:68 11:87 16:86

20; : : : ; 28 O3 18:14 21:99 17:46 21:93

29; : : : ; 200 O4 22:45 66:31 22:45 66:31

5 6; : : : ; 10 O1 14:46 15:98 12:54 12:72

11; : : : ; 19 O2 16:39 20:08 13:21 18:18

20; : : : ; 28 O3 20:53 24:37 18:82 23:72

29; : : : ; 37 O4 24:83 28:71 24:29 28:66

38; : : : ; 200 O5 29:18 75:27 29:18 75:27

:
:
:

:
:
:

6 7; : : : ; 10 O1 17:30 18:43 15:14 14:46

11; : : : ; 19 O2 18:83 22:47 14:76 19:37

20; : : : ; 28 O3 22:93 26:74 20:03 25:18

29; : : : ; 37 O4 27:21 31:08 25:79 30:53

38; : : : ; 46 O5 31:54 35:43 31:10 35:39

47; : : : ; 200 O6 35:90 83:11 35:90 83:11

10 11; : : : ; 19 O2 28:61 32:07 25:80 24:59

20; : : : ; 28 O3 32:51 36:26 25:06 29:85

29; : : : ; 37 O4 36:72 40:55 30:51 35:88

38; : : : ; 46 O5 41:01 44:88 36:55 41:79

47; : : : ; 56 O6 45:34 49:70 42:43 48:00

57; : : : ; 65 O7 50:20 54:07 48:60 53:24

66; : : : ; 74 O8 54:56 58:45 53:80 58:17

75; : : : ; 83 O9 58:94 62:83 58:70 62:81

84; : : : ; 200 O10 63:31 107:22 63:31 107:22

Table 26.10 A-Optimal (max. Fisher information) progressive censoring plans for certain (small)
m and n and an extreme value distribution (Weibull distribution). The traces of the Fisher
information matrices are given for the optimal one-step plans (OSP) and right censored samples
(RC) (for both the minimum value n1 and the maximum value n2 of n in each row). Values in
sans-serif font are computed by a genetic algorithm due to Vuong and Cramer [881]. The values
are taken from Dahmen et al. [320]
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Fisher information
(in units of 1=	2)

n OSP RC

m n1; : : : ; n2 OSP n1 n2 n1 n2

2 3; : : : ; 5000 O1 7:48 79:12 6:09 5:58

3 4; : : : ; 5000 O1 16:51 159:86 13:41 11:56

4 5; : : : ; 41 O1 28:75 65:54 23:73 19:85

42; : : : ; 5000 O2 66:13 281:42 19:84 19:54

5 6; 7 O1 44:21 47:01 37:11 35:26

8; : : : ; 5000 O2 49:61 424:20 34:16 29:54

6 7; : : : ; 884 O2 63:15 371:44 53:59 41:58

885; : : : ; 5000 O3 371:55 584:08 41:58 41:54

:
:
:

:
:
:

10 11 O2 171:62 151:08

12; : : : ; 116 O3 178:46 464:55 143:71 111:54

117; : : : ; 5000 O4 466:03 1473:28 111:54 109:56

Table 26.11 D-Optimal (max. Fisher information) progressive censoring plans for certain (small)
m and n and an extreme value distribution (Weibull distribution). The determinants of the Fisher
information matrices are given for the optimal one-step plans (OSP) and right censored samples
(RC) (for both the minimum value n1 and the maximum value n2 of n in each row). Values in
sans-serif font are computed by a genetic algorithm due to Vuong and Cramer [881]. The values
are taken from Dahmen et al. [320]
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Fig. 26.6 Comparison of one-step censoring plans O1; : : : ;O6 for m D 6, # D 1, q D 0:1, and
sample sizes n D 6; : : : ; 100 w.r.t. the determinant of the Fisher information matrix
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Then, �i .Oj / D n � i C 1, 1 � i � j , and �i .Oj / D m � j C 1, j C 1 � i � m.
Hence, for n!1, the asymptotic Fisher information reads

I1.j I q; #/ D
"

m
q2

1
q#
�1.j /

1
q#
�1.j /

1
#2
�2.j /

#
;

where

�k.j / D lim
n!1'k.j / D j C

mX
sDjC1

sY
`DjC1

	
1 � k

q.m � `C 1/C k


; k D 1; 2:

In order to find the asymptotically D-optimal plan, the optimal index j has been
identified as illustrated by the following example taken from Dahmen et al. [320].

Example 26.4.5. For q D 1, the above expression simplifies to

I1.j I 1; #/ D
�
m

mCj
2#

mCj
2#

mC2j
3#2

�
;

which shows 12#2 det.I1.j I 1; #// D 4m.mC2j /�3.mCj /2 D m2C2mj�3j 2.
Hence, the optimal j � is included in the set fbm=3c; bm=3c C 1g so that the
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optimal one-step censoring plan is Obm=3c or Obm=3cC1. This means that optimal
progressive censoring is carried out after having observed 1=3 of the data intended
to be observed. For m D 6, this yields j � D 2, so that the D-optimal one-step
censoring plan is given by O2. The corresponding determinant of the asymptotic
Fisher information matrix is given by det.I1.2I 1; 1// D 4. For comparison,
det.I1.3I 1; 1// D det.I1.1I 1; 1// D 3:75. This shows that O1 and O3 are
asymptotically equivalent.

26.4.3 Asymptotically Optimal Censoring Schemes

From the preceding considerations, it is clear that the computation of optimal
censoring plans is in most cases a very hard problem particularly for large m
and n. On the other hand, it turns out that one-step plans are optimal in many
cases as suggested by the small-sample results for Fisher information. In particular,
the optimal censoring schemes seem to follow quite a regular pattern: For fixed
m and increasing n, the optimal censoring plan moves from first-step censoring
to second-step censoring, then to third-step censoring, etc., until it reaches finally
the right censoring. This leads us to the conjecture that, for sufficiently large
n, right censoring remains optimal. In order to study this behavior, Cramer and
Ensenbach [293] introduced the idea of asymptotically optimal censoring plans (see
Definition 26.4.6). This concept can be adapted to any optimality criteria but is
illustrated here for maximum Fisher information.

Definition 26.4.6. For n 2 N, denote by I �.n/ the maximum and by I�.n/
the minimum of I .XR/ for R 2 C m

n;m.
A sequence .Rn/n2N of censoring schemes Rn 2 Cm

n;m is said to be

asymptotically optimal (w. r. t. Fisher information) if I .XRn/ � I �.n/, i. e.,
if limn!1I .XRn/=I �.n/ D 1.

Cramer and Ensenbach [293] presented a simple criterion in terms of the function
(see (26.7))

w 	 w	 W R! R; x 7! @

@

log�
.x/

ˇ̌
ˇ̌

D	

:

First, the following result holds showing that right censoring is asymptotically
optimal provided that the minimal Fisher information I�.n/ tends to1, n!1.

Theorem 26.4.7. Let w2 be decomposable into countably many monotone
pieces. Then, there exists a constant C 2 R independent of n such that

I �.n/ � I .XOm;n/C C for every n � m,

where Om;n D .0�m�1; n � m/ 2 C m
m;n denotes the one-step plan corresponding

to right censoring and original sample size n.
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Furthermore, for limn!1I�.n/ D 1, right censoring is asymptotically
optimal, i.e., limn!1I .XOm;n/=I �.n/ D 1.

Theorem 26.4.7 shows that, for certain distributions, the values of the Fisher
information for right censoring and for the optimal censoring scheme differ at
most by an additive constant independent of n. A sufficient condition ensuring
limn!1I�.n/ D 1 is given by lim infx!1 w.x/2=j logF.x/j > 0 (see Cramer
and Ensenbach [293, Theorem 2.7]). As pointed out by these authors, a simple
criterion for asymptotic optimality of right censoring is given by the unboundedness
of the sequence .I .X1Wn//n2N. Notice that .I .X1Wn//n2N determines the Fisher
information in the Type-II censored sample .X1Wn; : : : ; XmWn/, 1 � m � n,
completely (see Park [704], Park and Zheng [709], and Zheng et al. [945]). A similar
result holds for progressively Type-II censored order statistics (see (9.16) and Abo-
Eleneen [7, Theorem 4.1]).

Applying the above criteria to particular distributions, Cramer and Ensenbach
[293] established that right censoring is asymptotically optimal for Type-I and Type-
II extreme value distributions (scale), Weibull distributions (shape), logistic distri-
butions (scale), normal distributions (scale), and Laplace distributions (location).

For a scale Laplace distribution, the situation is different. In this case, Cramer
and Ensenbach [293] showed that all one-step censoring plans have the same
asymptotic Fisher information and, thus, are asymptotically equivalent. In particular,

I .XOk;n /
n!1����! m holds for any k 2 f1; : : : ; mg.

Finally, Cramer and Ensenbach [293] established the following result providing
a characterization of asymptotic optimality of one-step censoring.

Theorem 26.4.8. Suppose there exists a function g W Œ1;1/ ! .0;1/ with
g.n/ D I .X1Wn/ for all n 2 N which satisfies some regularity conditions. Then,

lim
n!1

I .XOk;n /

g.n/
D k

holds

(i) for k D 1 and k D m provided that ng.n/
n!1����!1, and

(ii) for all k 2 f1; : : : ; mg provided that g.n/
n!1����!1, respectively.

As a consequence of this result, the following corollaries hold.

Corollary 26.4.9. (i) Let g be as in Theorem 26.4.8 (i) and m > 1. Then,
.O1;n/n2N is not asymptotically optimal;

(ii) If additionally g.n/
n!1����! 1, then .Ok;n/n2N is not asymptotically optimal

for any 1 � k < m.

Corollary 26.4.10. For a scale-parameter extreme value distribution (Type I),
right censoring is the only asymptotically optimal one-step censoring plan.
Moreover,
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lim
n!1

I .XOk;n /

.logn/2
D k; 1 � k � m:

26.4.4 Maximum Fisher Information Plans in Progressive
Hybrid Censoring

For Type-I and Type-II progressive hybrid censoring, Park et al. [711] have utilized
the expressions in (9.18) and (9.19) to determine maximum Fisher information
censoring plans. Using the expression in (9.18) and the stochastic ordering XOm �st

XR for any censoring scheme R 2 Cm
m;n (see (26.5)), it follows readily that right

censoring maximizes Fisher information in Type-II progressive hybrid censoring,
too. However, the result can also be established for other distributions provided

that the function w	 given in (26.7), i.e., x 7! w	 .x/ D
˚
@
@	

log�	.x/
�2

, is
decreasing or increasing. Obviously, we can formulate the same results as given
in Theorem 26.4.1. Notice that, now, the monotonicity of w	 must only hold
on the interval Œ0; T �. Hence, for location normal and logistic distributions, right
censoring is optimal. Further examples can be taken from the discussion following
Theorem 26.4.1.

For Type-II progressive hybrid censoring, (9.19) shows that right censoring
maximizes Fisher information, too. Noticing that Rm � n�m, a simple calculation
yields the upper bound

Im_T WmWn.#/ D Im^T WmWn.#/C 1

#2

nX
iDn�RmC1

Fi Wn
�T
#

�

� Im^T Wn.#/C 1

#2

nX
iDmC1

Fi Wn
�T
#

�
;

which is attained for right censoring.

26.5 Other Optimality Criteria and Approaches

26.5.1 Maximum Entropy Plans

Using the entropy expressions given in Sect. 9.4, Cramer and Bagh [291] established
maximum/minimum entropy plans for the sample XR. In particular, it is shown that
the entropy H R

1;:::;mWmWn given in (9.20) satisfies the conditions of Theorem 26.1.2
provided F is a DFR distribution.
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Theorem 26.5.1. Let F be a DFR-cumulative distribution function. Then, O1

is a maximum entropy plan and Om is a minimum entropy plan.

Important examples for distributions included in Theorem 26.5.1 are exponential,
mixtures of exponential, and Pareto distributions. Moreover, gamma and Weibull
distributions with shape parameter less than one have the DFR-property. For IFR-
distributions, the situation is more involved. It is shown by Cramer and Bagh
[291] that for RPower.�/-distributions, the situation is reversed: Om is the unique
maximum entropy plan and O1 is the unique minimum entropy plan provided � � 1.
Notice that � D 1 corresponds to the uniform distribution. Moreover, it is shown
that for � � 1

n�1 , the result is as in Theorem 26.5.1. In the remaining cases, inner
censoring plans may be optimal. For details, we refer to Cramer and Bagh [291].
Similar results can be obtained for IFR-Weibull distributions.

Remark 26.5.2. (i) The same problem has also been addressed in Abo-
Eleneen [9] who presented some numerical results for normal and logistic
distributions;

(ii) Further optimality results in the same directions can be obtained using
Kullback–Leibler divergence and I˛-divergence as an information criteria.
For details, see Cramer and Bagh [291].

26.5.2 Optimal Estimation of Quantiles

For the extreme value distribution, Ng et al. [689] considered optimal estimation
of quantiles w.r.t. the underlying censoring scheme. The maximum likelihood
estimator of the pth quantile is given by

b�p D b�Cb#F .p/;

where F .p/ D log.� log.1 � p//, p 2 .0; 1/, and b� and b# are the maximum
likelihood estimates of the location and scale parameters. Minimizing the variance
of the quantile yields the optimization problem

Var. O�p/ D Var.b�/C �F .p/�2 Var.b#/C 2F .p/Cov.b�;b#/
�! min

R2Cm
m;n

: (26.13)

They illustrated their approach by the scenario used to generate data 1.1.5. For �0:95
and �0:05 and fixed n D 19, m D 8, they found the optimal plans O1 and O5,
respectively. They also provided the gain of efficiency using the optimal censoring
plan in favor of the effectively applied censoring scheme R D .0�2; 3; 0; 3; 0�2; 5/.
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Since the optimal plan obtained from (26.13) will depend in most cases on the
percentile p, several authors have proposed an integrated version of the criterion
(see, e.g., Kundu [557], Pradhan and Kundu [727], and Pradhan and Kundu [728]).
Inspired by Gupta and Kundu [423], they considered the MLEb�p of the quantile
�p . Given a censoring scheme R and a probability measure W on the unit interval
Œ0; 1�, an information measure is defined via

IW .R/ D
Z

Œ0;1�

Vp.R/dW.p/;

where Vp.R/ denotes the asymptotic variance of b�p. Notice that a one-point
measure Wp0 in p0 yields the criterion proposed by Ng et al. [689]. A similar idea
is present in Zhang and Meeker [940].

For generalized exponential distributions with cumulative distribution function
as in (12.41), Pradhan and Kundu [727] obtained the asymptotic variance �2pv0Vv of

the MLE for the quantile �p D � 1
�

log.1 � p1=˛/, where

v0 D
� p1=˛.� logp/

˛2Œ� log.1 � p1=˛/�.1 � p1=˛/ ;�
1

�

�

and V is the asymptotic variance–covariance matrix of the MLEs of .˛; �/. They
provided some computational results regarding optimal censoring plans. The same
approach has been used by Pradhan and Kundu [728] for Birnbaum–Saunders
distribution. Sultan et al. [827] applied the approach to the inverse Weibull or
Fréchet distributions.

Remark 26.5.3. Bayesian versions of this criterion have been utilized in Kundu
[557] (Weibull distribution) and Kundu and Pradhan [562] (generalized expo-
nential distribution). For optimal censoring plans in the framework of competing
risks from Weibull distributions, we refer to Pareek et al. [703] and Kundu and
Pradhan [563]. Linear hazard rate distributions are discussed in Sen et al. [792].

Optimal estimation of quantiles in a nonparametric setting has been discussed
in Balakrishnan and Han [98]. Given a progressively Type-II censored sample
YR
1WmWn; : : : ; YR

mWmWn and ˛; p 2 .0; 1/, denote P.Y R
r WmWn � �p/ by �r D �r .p/. Then,

Balakrishnan and Han [98] proposed to minimize the quantity

M˛.R/ D min
.r;s/2S˛

fes � erg;

where ej D EF.YR
j WmWn/ D EUR

j WmWn D 1 � Qj
iD1

�i .R/

�i .R/C1 (see Theorem 7.2.3),
1 � j � m, under the constraints

S˛ D f.k; `/ j 1 � k < ` � m; �` � �k � 1 � ˛g:
The results were illustrated by a numerical study.
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26.5.3 Optimization Based on Pitman Closeness

In case of the exponential distribution, as seen above, most of the criteria discussed
so far are invariant w.r.t. the censoring plans. Volterman et al. [877] proposed Pitman
closeness (see Sect. 9.6) as a criterion to choose a preferable censoring scheme
by comparing the BLUEs based on two censoring schemes R and S . Given a
censoring scheme R, denote the BLUE for the scale parameter # of the population
distribution Exp.#/ by b#R. Then, the Pitman closeness of the BLUEsb#R and b#S

is given by

�.R;S / D P.jb#R � #j < jb#S � #j/ D P.jb#R=# � 1j < jb#S =# � 1j/:

Notice that this probability is independent of the parameter # because the dis-
tributions of b#R=# and b#S =# are parameter-free. The calculation of �.R;S /

needs the joint distribution of the BLUEs b#R D 1
m

Pm
jD1.Rj C 1/ZR

j WmWn and
b#S D 1

m

Pm
jD1.Sj C 1/ZS

j WmWn which are dependent in the present situation. This
causes some difficulties in deriving an expression for �.R;S /. In order to find such
an expression, Volterman et al. [877] considered the region where b#R is Pitman
closer to # thanb#S , i.e., where (w.l.o.g. let # D 1)

jb#R � 1j < jb#S � 1j:

Some simple calculations show that this inequality is satisfied iff

.b#R �b#S /.b#R Cb#S � 2/ < 0:

Therefore, the BLUEb#R will be Pitman closer than the BLUEb#S if either

b#R > b#S andb#R Cb#S < 2 or (26.14)

b#R < b#S andb#R Cb#S > 2:

Assuming that the original sample is given by n IID random variablesZ1; : : : ,Zn, it
follows that the BLUEs are linear functions of the order statisticsZ1Wn; : : : ; ZnWn. As
pointed out by Volterman et al. [877], the BLUEs can be written in terms of these
order statistics with a certain probability. To illustrate this approach, the following
example is taken from Volterman et al. [877].

Example 26.5.4. Let n D 4, m D 3, and consider the one-step plans Oj ,
j D 1; 2; 3. Then,
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b#O1 D

8
ˆ̂<
ˆ̂:

2
3
Z1W4 C 1

3
Z2W4 C 1

3
Z3W4 with probability 1

3
2
3
Z1W4 C 1

3
Z2W4 C 1

3
Z4W4 with probability 1

3
2
3
Z1W4 C 1

3
Z3W4 C 1

3
Z4W4 with probability 1

3

;

b#O2 D
(
1
3
Z1W4 C 2

3
Z2W4 C 1

3
Z3W4 with probability 1

2
1
3
Z1W4 C 2

3
Z2W4 C 1

3
Z4W4 with probability 1

2

;

b#O3 D
1

3
Z1W4 C 1

3
Z2W4 C 2

3
Z3W4:

These expressions can now be rewritten in terms of the normalized spacings
S1;4; : : : ; S4;4 of the order statistics Z1W4; : : : ; Z4W4. This leads to the linear
representations

b#O1 D

8
ˆ̂<
ˆ̂:

1
3
S1;4 C 2

9
S2;4 C 1

6
S3;4 with probability 1

3
1
3
S1;4 C 2

9
S2;4 C 1

6
S3;4 C 1

3
S4;4 with probability 1

3
1
3
S1;4 C 2

9
S2;4 C 1

3
S3;4 C 1

3
S4;4 with probability 1

3

;

b#O2 D
(
1
3
S1;4 C 2

3
S2;4 C 1

6
S3;4 with probability 1

2
1
3
S1;4 C 1

3
S2;4 C 1

6
S3;4 C 1

3
S4;4 with probability 1

2

;

b#O3 D
1

3
S1;4 C 1

3
S2;4 C 1

3
S3;4:

Volterman et al. [877] obtained �.O1;O2/ D 0:5363 and �.O2;O3/ D 0:5526

showing that right censoring yields the Pitman closest BLUE.

In general, it is clear that both BLUEs are a random linear combination of
the order statistics Z1Wn; : : : ; ZnWn. Using the generation process and denoting the
random indices by K1; : : : ; Km and L1; : : : ; Lm, respectively, we get

b#R D 1

m

mX
jD1

.Rj C 1/ZKj Wn and b#S D 1

m

mX
jD1

.Sj C 1/ZLj Wn: (26.15)

Clearly, from (2.10), the estimators can always be expressed in terms of the
normalized spacings S1;n; : : : ; Sn;n which are IID standard exponential random
variables (see Theorem 2.3.2). Therefore, this leads to the expressions

b#R D
nX

jD1
wj .Km/Sj;n and b#S D

nX
jD1

ewj .Lm/Sj;n:
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By construction, Km D .Kj /j and Lm D .Lj /j are independent random variables
with probability mass function given in (10.9). In order to derive the Pitman
closeness probability �.R;S /, Volterman et al. [877] conditioned on Km and Lm
so that

�.R;S / D
X

km;lm

P.Km D km/P.Lm D lm/

P
�ˇ̌
ˇ

nX
jD1

wj .km/Sj;n � 1
ˇ̌
ˇ <

ˇ̌
ˇ

nX
jD1

ewj .lm/Sj;n � 1
ˇ̌
ˇ
�
: (26.16)

Hence, the desired Pitman closeness probability is a weighted sum of Pitman
closeness probabilities for two L-statistics.

For any given censoring schemes R and S , Volterman et al. [877] proposed
a general algorithm based on the mixture representation of progressively Type-
II censored order statistics (see Guilbaud [419]) to calculate the exact Pitman
closeness probability.

Algorithm 26.5.5. Let R;S 2 Cm
m;n be censoring schemes. Then, the following

steps lead to the Pitman closeness probability �.R;S /:

� Express the density function of the progressively Type-II censored order
statistics as a mixture of density function of order statistics

f XR

.tm/ D
X

1�k1<���<km�n
wkmf

Xk1Wn;:::;XkmWn.tm/; tm 2 R
mI

� For each .Xk1Wn; : : : ; XkmWn/, let conditionally on XR D .Xk1Wn; : : : ; XkmWn/
(see (26.15))

b#R.km/ D 1

m

mX
jD1

.Rj C 1/Zkj Wn: (26.17)

Then,

b#R D
X

1�k1<���<km�n
wkm

b#R.km/I (26.18)

� Rewrite expression (26.17) in terms of normalized spacings as

Xi Wn D
iX

`D1

1

n� `C 1S`;n;

where S1;n; : : : ; Sn;n are IID Exp.#/-distributed random variables;
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� Define the constraints given in (26.14) in terms of b#R.km/ and b#S .lm/;
� Integrate the joint density function of S1;n; : : : ; Sn;n over Œ0;1/n subject to

the constraints (26.14);
� Evaluate the weighted sum given in (26.16).

Clearly, the computational effort grows fast while m (and n) increases. For this
reason, Volterman et al. [877] proposed Monte Carlo simulation of �.R;S / for
largem.

Volterman et al. [877] provided many tables to investigate the Pitman closeness
of the BLUEs. It turned out that right censoring seems to generate the Pitman
closest BLUE among all BLUEs in the progressive censoring setting. Moreover,
they observed that the neighbor R� D .0�m�2; 1; n�m� 1/ has the highest Pitman
closeness probability among all comparisons studied in the simulation.

26.5.4 Optimal Block Censoring

Hofmann et al. [444] determined optimal censoring plans in the asymptotic block
censoring model introduced in Sect. 3.4.6. As a measure of optimality, they chose
minimal determinant of the variance–covariance matrix of the ABLUEs given
in (11.19). They showed that it is equivalent to maximizing the expression V D
K1K2 �K2

3 . From (11.18), they obtained the following expression:

V D
X

1�j<k�m
v�1j v�1k

	
.��1j ���1j�1/.uk��1k � uk�1��1k�1/

� .��1k ���1k�1/.uj��1j � uj�1��1j�1/

2
;

where��10 D 0. Rewriting ��1i D f .ui /=
Qi
jD1 pj and v�1i as

v�1i D
pi t0

1 � pi
i�1Y
jD1

.pj tj /; 1 � i � m;

this leads to the expression

V D t20
X

1�j<k�m

1

.1 � pj /pj .1 � pk/pk
j�1Y
iD1
.p�1i ti /

k�1Y
iD1
.p�1i ti /.Ujk � Ukj /2;

(26.19)

where Ujk D Œf .uj / � pj f .uj�1/�Œukf .uk/ � pkuk�1f .uk�1/�, 1 � j < k � m,
and f .u0/ D 0.
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Since there is a one-to-one correspondence between �0; : : : ; �m, �1; : : : ; �m
(�0 CPm

iD1.�i C �i / D 1) and p1; : : : ; pm, t0; : : : ; tm�1 (see (3.19)), i.e.,

�i D t0.1 � pi /
i�1Y
jD1

.pj tj /; �i D t0.1 � ti /pi
i�1Y
jD1

.pj tj /; 1 � i � m; (26.20)

the optimization can be carried out w.r.t. p1; : : : ; pm 2 .0; 1/ and t0; : : : ; tm�1 2
.0; 1�. Hofmann et al. [444] pointed out that V is positive on the considered region of
the parameters (see (26.19) and notice that V is the determinant of a positive definite
matrix). However, from Example 26.5.7, it follows that V may be unbounded which
also has been reported for the setting of order statistics (cf. Sarhan et al. [777], Saleh
and Ali [767], and Ali and Umbach [33]). Theorem 26.5.6 provides conditions on
the population cumulative distribution function F for V to be bounded.

Theorem 26.5.6 (Hofmann et al. [444]). Let p1; : : : ; pm 2 .0; 1/ and F

be an absolutely continuous cumulative distribution function with support
.˛.F /; !.F //, �1 � ˛.F / < !.F / � 1, and continuous density function
f on this support. For t 2 .0; 1�, let

gt .x/ D f .F  .1�tx//; ht .x/ D F  .1�tx/f .F  .1�tx//; x 2 .0; 1/:

Suppose g1 and h1 are differentiable on .0; 1/. Further, consider the following
conditions:

!.F / <1 and lim
x!0

g1.x/p
x
2 R; (D1)

!.F / D 1 and lim
x!0

h1.x/p
x
2 R; (D2)

˛.F / > �1 and lim
x!1

g1.x/p
1 � x 2 R; (D3)

˛.F / D �1 and lim
x!1

h1.x/p
1 � x 2 R; (D4)

!.F / <1 and lim sup
x!0

jpxg01.x/j <1; (D5)

!.F / D 1 and lim sup
x!0

jpxh01.x/j <1: (D6)

If F satisfies either (D1) or (D2), and either (D3) or (D4), and either (D5) or (D6),
then V is bounded. If neither (D3) nor (D4) hold, then V is unbounded.

Example 26.5.7. The following results are established by Hofmann et al.
[444]:
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(i) For exponential, uniform, and Pareto.˛/-distributions, condition (D3) is
violated so that V is unbounded;

(ii) For Weibull.1; ˇ/-distributions, V is bounded iff ˇ � 2;
(iii) V is bounded for the extreme value distribution with density function f .x/ D

exp.x � exp.x//, x 2 R, and for the normal distribution.

If V is unbounded, the optimal censoring plan must include the minimum (or
maximum) of the sample. But, since the minimum and maximum do not have an
asymptotic normal distribution, these cases cannot be handled in the present setup
and have to be excluded.

Hofmann et al. [444] pointed out that V given in (26.19) is an increasing function
of t0; : : : ; tm�1, so that, for any p1; : : : ; pm, the optimal solution is given by ti D 1,
0 � i � m � 1. This implies �i D 0, 0 � i � m � 1. Thus, only �m is
positive which corresponds to the usual Type-II right censoring. This means that
the optimal solution of the asymptotic progressive block Type-II censoring scheme
is equivalent to the corresponding asymptotic order statistics problem as discussed
in Chan and Mead [241] (extreme value), Chan and Chan [240] (normal), and
Hassanein [436] (Weibull). Hassanein [435] considered the trace of the covariance
matrix (the total variance) for an underlying extreme value distribution. Here, we
have to determine the quantiles 0 < �1 < �1 C �2 < � � � < Pm

iD1 �i < 1 such
that the BLUE based on the order statistics XR1Wn; XR1CR2Wn; : : : ; XPm

iD1 Ri Wn has
minimum variance (here, minimum generalized variance). Further examples are
provided by Ali and Umbach [33].

Since cost savings are often presented as a motivation for progressive Type-II
censoring, Hofmann et al. [444] introduced a restriction to the progressive block
Type-II censoring scheme by imposing an upper bound on the total proportion of
observed blocks of failures:

mX
iD1

�i � � (26.21)

for some prefixed � 2 .0; 1�. Notice that � D 1 corresponds to the unrestricted case.
Then, rewriting (26.21) in terms of pi and tj , it follows from (26.20) that (26.21) is
equivalent to the constraint

t0

mX
iD1
.1 � pi/

i�1Y
jD1

pj tj � �: (26.22)

Now, Hofmann et al. [444] established the following result concerning the restricted
optimization problem. It tells us that for an optimal solution, either all ti ’s equal 1
such that right censoring is optimal or the constraint in (26.22) is sharp (i.e., equality
holds).
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Theorem 26.5.8. Let .p1; : : : ; pm; t0; : : : ; tm�1/ 2 .0; 1/m�.0; 1�m be an optimal
solution to the problem of maximizing V in (26.19) under condition (26.22). Then,
either t0 D � � � D tm�1 D 1 or equality holds in (26.22).

Computational Results

Hofmann et al. [444] provided some computational results for the maximization
of V under restriction (26.22) for the extreme value distribution, the Weibull.1; 3/-
distribution, and the normal distribution.

First, let �c D Pm
iD1 �i D 1 � Qm

iD1 pi , where the �i ’s (pi ’s) correspond
to the optimal solution in the unrestricted case, i.e., for � D 1: Obviously, the
solution will not change as long as � 2 Œ�c ; 1�: For � < �c , Hofmann et al. [444]
reported the following behavior. If � falls slightly below �c , the optimal solution for
p1; : : : ; pm changes. However, the solution for t0; : : : ; tm�1 remains unchanged so
that �1 D � � � D �m�1 D 0, i.e., progressive censoring is not applied. Moreover, it
turns out that a critical value �t < �c exists, such that the optimal solution is given
by �1 D � � � D �m�1 D 0 for � 2 .�t ; 1�, but not for � < �t . Some (numerically
calculated) critical �-values are presented in Tables 26.12–26.14 for different values
of m, which are taken from Hofmann et al. [444].

m 2 3 4 5 10 15 20

�c 0.9262 0.9671 0.9789 0.9878 0.9978 0.9993 0.9997
�t 0.8867 0.9054 0.9595 0.9741 0.9960 0.9988 0.9995

Table 26.12 Critical � for the extreme value distribution (see Hofmann et al. [444])

m 2 3 4 5 10

�c 0.8602 0.8745 0.9482 0.9565 0.9903
�t 0.7202 0.7163 0.7212 0.8357 0.9485

Table 26.13 Critical � for the Weibull.1; 3/-distribution (see Hofmann et al. [444])

m 2 3 4 5 10 15 20

�c 0.8666 0.9167 0.9551 0.9701 0.9941 0.9979 0.9990
�t 0.7370 0.7414 0.8055 0.8669 0.9658 0.9873 0.9940

Table 26.14 Critical � for the normal distribution (see Hofmann et al. [444])

For � < �t , the optimal solutions suggested that one-step censoring plans are
optimal. For illustration, we present a table for the extreme value distribution in
Table 26.15 from Hofmann et al. [444]. There, results for the Weibull.1; 3/ and the
normal distribution can also be found.
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m � 0.01 0.05 0.1 0.15 0.2 0.5 1

2 �1 0.3998E�2 0.1831E�1 0.3462E�1 0.4988E�1 0.6435E�1 0.1398E+0 0.2390E+0

�2 0.6002E�2 0.3169E�1 0.6538E�1 0.1001E+0 0.1356E+0 0.3602E+0 0.6872E+0

�1 0.9881E+0 0.9422E+0 0.8855E+0 0.8291E+0 0.7728E+0 0.4360E+0

�2 0.1869E�2 0.7838E�2 0.1454E�1 0.2094E�1 0.2718E�1 0.6404E�1 0.7378E�1

�Var 90.8 % 82.9 % 76.4 % 70.8 % 65.6 % 35.7 %

3 �1 0.3960E�2 0.1789E�1 0.3339E�1 0.4751E�1 0.6050E�1 0.1164E+0 0.1902E+0

�2 0.4455E�2 0.2411E�1 0.5009E�1 0.7679E�1 0.1038E+0 0.2547E+0 0.5627E+0

�3 0.1586E�2 0.7994E�2 0.1651E�1 0.2570E�1 0.3566E�1 0.1289E+0 0.2142E+0

�1 0.9893E+0 0.9472E+0 0.8947E+0 0.8421E+0 0.7895E+0 0.4683E+0

�3 0.6662E�3 0.2818E�2 0.5336E�2 0.7860E�2 0.1046E�1 0.3166E�1 0.3292E�1

�Var 89.7 % 81.3 % 74.5% 68.8 % 63.6 % 34.4%

4 �1 0.3923E�2 0.1738E�1 0.3094E�1 0.4241E�1 0.5269E�1 0.9189E�1 0.9918E�1

�2 0.3668E�2 0.1863E�1 0.3012E�1 0.3959E�1 0.5205E�1 0.1383E+0 0.3017E+0

�3 0.1653E�2 0.9927E�2 0.2844E�1 0.5039E�1 0.7107E�1 0.2041E+0 0.4581E+0

�4 0.7547E�3 0.4069E�2 0.1051E�1 0.1761E�1 0.2419E�1 0.6570E�1 0.1199E+0

�1 0.9897E+0 0.9485E+0 0.8964E+0 0.8442E+0 0.7923E+0 0.4811E+0

�4 0.3263E�3 0.1501E�2 0.3607E�2 0.5798E�2 0.7723E�2 0.1890E�1 0.2106E�1

�Var 89.3 % 81.0 % 74.4 % 69.0 % 64.1 % 37.8 %

5 �1 0.3884E�2 0.3820E�2 0.7234E�2 0.1033E�1 0.1328E�1 0.2992E�1 0.7433E�1

�2 0.2947E�2 0.1461E�1 0.2721E�1 0.3831E�1 0.4867E�1 0.1033E+0 0.2314E+0

�3 0.1795E�2 0.1845E�1 0.3480E�1 0.4673E�1 0.5905E�1 0.1539E+0 0.4011E+0

�4 0.9299E�3 0.9268E�2 0.2217E�1 0.4000E�1 0.5838E�1 0.1601E+0 0.2169E+0

�5 0.4448E�3 0.3852E�2 0.8595E�2 0.1463E�1 0.2062E�1 0.5277E�1 0.6418E�1

�1 0.9898E+0

�2 0.9486E+0 0.8970E+0 0.8451E+0 0.7933E+0 0.4845E+0

�5 0.1934E�3 0.1441E�2 0.2995E�2 0.4892E�2 0.6695E�2 0.1555E�1 0.1216E�1

�Var 89.3 % 81.2 % 74.9 % 69.8 % 65.2 % 40.9 %

10 �2 0.9900E+0

�3 0.9497E+0 0.8995E+0 .8493E+0 0.7991E+0 0.4980E+0

�10 0.4686E�4 0.2730E�3 0.5036E�3 0.7196E�3 0.9256E�3 0.2047E�2 0.2195E�2

�Var 89.5 % 82.1% 76.5% 72.0% 67.9% 46.4%

15 �4 0.9900E+0 0.9499E+0 0.8998E+0 0.8498E+0 0.7997E+0 0.4994E+0

�15 0.2075E�4 0.8390E�4 0.1513E�3 0.2132E�3 0.2717E�3 0.5872E�3 0.7139E�3

�Var 89.7 % 82.4 % 77.0 % 72.6 % 68.7 % 47.8 %

20 �5 0.9900E+0 0.9500E+0 0.8999E+0 0.8499E+0

�6 0.7999E+0 0.4997E+0

�20 0.8748E�5 0.3496E�4 0.6264E�4 0.8784E�4 0.1359E�3 0.2889E�3 0.3133E�3

�Var 89.7 % 82.6 % 77.2 % 72.8 % 69.0 % 48.5 %

Table 26.15 Optimal block sizes for the extreme value distribution and percentage reduction
(�Var) of the generalized variance compared to right censoring (�1 D � � � D �m�1 D 0)
(see Hofmann et al. [444]). The notation cE�k means c � 10�k
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Table 26.15 shows the optimal censoring plans for selected values of � 2
f:01; :05; :1; :15; :2; :5; 1g. For m D 2; 3; 4; 5, all sizes �i of the observed blocks
and all nonzero censoring block sizes �i are given. For m D 10; 15; 20, only
the nonzero �i ’s are provided. The �Var-rows give the percentage reduction in
generalized variance of the optimal censoring scheme compared to Type-II right
censoring (�1 D � � � D �m�1 D 0). Therefore,

�Var D 1 �

ˇ̌
ˇ̌Var

�b�opt

b#opt

�ˇ̌ˇ̌
ˇ̌
ˇ̌Var

�b�right

b# right

�ˇ̌ˇ̌
;

where
�b�opt

b#opt

�
,
�b�right

b# right

�
are the ABLUEs of the overall optimal censoring scheme and the

optimal right censoring scheme, respectively. Notice that for fixed � , the percentage
reduction of the generalized variance by the use of optimal progressive censoring
is quite stable over m: For small � (heavy censoring), the reduction is as high as
75–90 %, 30–50 %, and 50–70 % for the extreme value distribution, the Weibull
distribution, and the normal distribution, respectively. In the extreme value case,
the reduction remains substantial even for � as large as 0.5 (35–50 %), whereas for
Weibull and normal, it becomes quite small as � increases.

Remark 26.5.9. For � D 1, the problem reduces to the case of order statistics
investigated in Ogawa [694] (see also Ali and Umbach [33]). Ogawa [694]
discussed the extreme value distribution and calculated optimal solutions for
small m (m D 2; 3; 4) which agree with our results. For the Weibull.1; 3/-
distribution, Hofmann et al. [444] pointed out that the tables in Hassanein [436]
seem to be in error. This may have been due to some computational difficulties
because the formulas presented in Hassanein [436] yield the same results as
obtained in Hofmann et al. [444].

26.5.5 Other Criteria for Optimal Censoring Plans

Optimal progressive censoring has also been discussed in special scenarios with
progressively censored data. For instance, optimal Type-I interval censoring has
been discussed already in Sect. 18.3. Under step-stress testing, optimal censoring
results can be found in Sect. 23.1.1.
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Distributions

A.1 Definitions of Distributions

Definition A.1.1 (Uniform distribution). The uniform distribution U.a; b/,
with parameters a; b 2 R, a < b, is defined by the density function

f .t/ D 1

b � a ; a < t < b:

For a D 0 and b D 1, it defines the standard uniform distribution U.0; 1/.

Definition A.1.2 (Beta distribution). The beta distribution Beta.˛; ˇ/, with
parameters ˛; ˇ > 0, is defined by the density function

f .t/ D 1

B.˛; ˇ/
t˛�1.1 � t/ˇ�1; 0 < t < 1;

where B.˛; ˇ/ D � .˛Cˇ/
� .˛/� .ˇ/

denotes the complete beta function and � .�/ denotes
the gamma function.

Definition A.1.3 (Power distribution). The power distribution Power.˛/, with
parameter ˛ > 0, is a particular beta distribution Beta.˛; 1/.

Definition A.1.4 (Reflected power distribution). The reflected power dis-
tribution RPower.ˇ/, with parameter ˇ > 0, is a particular beta distribution
Beta.1; ˇ/.

Definition A.1.5 (Exponential distribution). The two-parameter exponential
distribution Exp.�; #/, with parameters � 2 R and # > 0, is defined by the
density function

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7,
© Springer Science+Business Media New York 2014
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f .t/ D 1

#
e�

t��
# ; t > �:

For � D 0, it defines the exponential distribution Exp.#/.

Definition A.1.6 (Weibull distribution). The three-parameter Weibull distri-
bution Weibull.�; #; ˇ/, with parameters � 2 R and #; ˇ > 0, is defined by the
density function

f .t/ D ˇ

#
.t � �/ˇ�1e� .t��/

ˇ

# ; t > �:

For � D 0, it defines the two-parameter Weibull distribution Weibull.#; ˇ/.

Definition A.1.7 (Gamma distribution). The gamma distribution Γ.#; ˇ/,
with parameters #; ˇ > 0, is defined by the density function

f .t/ D 1

� .ˇ/#ˇ
tˇ�1e�

t
# ; t > 0;

where � .�/ denotes the gamma function.

Definition A.1.8 (�2-distribution). The �2-distribution �2.n/, with degrees of
freedom n 2 N, is a particular gamma distribution � .2; n

2
/.

Definition A.1.9 (F-distribution). The F-distribution F.n;m/, with parame-
ters n;m 2 N, is defined by the density function

f .t/ D �
�
nCm
2

�

�
�
n
2

�
�
�
m
2

�
� n
m

� n
2 t

n
2�1

.1C n
m
t/

nCm
2

; t > 0;

where � .�/ denotes the gamma function.

Definition A.1.10 (Pareto distribution). The Pareto distribution Pareto.˛/,
with parameter ˛ > 0, is defined by the density function

f .t/ D ˛

t˛C1
; t � 1:

Definition A.1.11 (Generalized Pareto distributions). The family of gener-
alized Pareto distribution (GP-distributions) is defined by

G PD D

Fq
ˇ̌
Fq.t/ D

(
1 � .1 � sgn.q/t/1=q; q ¤ 0
1 � e�t ; q D 0 ; t � 0; 1� sgn.q/t > 0

�
;

where sgn.q/ denotes the sign of q, i.e.,

sgn.q/ D

8
ˆ̂<
ˆ̂:

1; q > 0

0; q D 0
�1; q < 0

:
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Remark A.1.12. The GP-family covers the

(i) Exponential distribution .q D 0/,
(ii) Pareto distribution .q < 0/,

(iii) Reflected power distribution .q > 0/.

Definition A.1.13 (Lomax distribution). The Lomax distribution Lomax.˛/,
with parameter ˛ > 0, is defined by the density function

f .t/ D ˛

.t C 1/˛C1 ; t � 0:

Definition A.1.14 (Extreme value distribution (Type I)). The extreme
value distribution (Type I) is defined by the density function

f .t/ D et�et ; t 2 R:

Definition A.1.15 (Extreme value distribution (Type II)/Gumbel distribu-
tion). The extreme value distribution (Type II) or Gumbel distribution is defined
by the density function

f .t/ D e�t�e�t ; t 2 R:

Definition A.1.16 (Cauchy distribution). The Cauchy distribution Cauchy
.�; ˛/, with parameters ˛ > 0;� 2 R, is defined by the density function

f .t/ D ˛

�.1C ˛2.t � �/2/ ; t 2 R:

For � D 0 and ˛ D 1, it defines the standard Cauchy distribution Cauchy.0; 1/.

Definition A.1.17 (Laplace distribution). The Laplace distribution Laplace
.�; #/, with parameters # > 0;� 2 R, is defined by the density function

f .t/ D 1

#
e�
jt��j
# ; t 2 R:

For � D 0 and # D 1, it defines the standard Laplace distribution Laplace.0; 1/.

Definition A.1.18 (Logistic distribution (Type I)). The logistic distribution
is defined by the density function

f .t/ D et

.1C et /2
; t 2 R:
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Definition A.1.19 (Normal distribution). The normal distribution N.�; �2/,
with parameters �2 > 0;� 2 R, is defined by the density function

f .t/ D 1p
2��2

e�
.t��/2

2�2 ; t 2 R:

For � D 0 and �2 D 1, it defines the standard normal distribution N.0; 1/.

Definition A.1.20 (Log-normal distribution). The log-normal distribution
log-N.�; �2/, with parameters �2 > 0;� 2 R, is defined by the density function

f .t/ D 1p
2��2 t

e�
.log t��/2

2�2 ; t > 0:

Definition A.1.21 (Binomial distribution). The binomial distribution
bin.n; p/, with parameters n 2 N; p 2 Œ0; 1�, is defined by the probability
mass function

f .k/ D
 
n

k

!
pk.1 � p/n�k; k 2 f0; : : : ; ng:

A.2 Definitions and Preliminaries

A.2.1 Quantile Function

Definition A.2.1. Let F be a cumulative distribution function. Then, the
quantile function F W Œ0; 1�! R is defined by

F .t/ D inffx 2 R W F.x/ � tg; 0 < t < 1:

The values at zero and one are defined by the respective one-sided limits
F .0/ D F .0C/ and F .1/ D F .1�/, respectively.

Lemma A.2.2. Let F be a cumulative distribution function and let F be the
associated quantile function. Then, F is a left-continuous and nondecreasing
function. Moreover, for all y 2 .0; 1/ and x 2 R, the following assertions hold:

(i) F.x/ � y ” x � F .y/,
(ii) F.x�/ � y ” x � F .yC/,

(iii) F.F .y/�/ � y � F.F .y//,
(iv) F .F.x// � x � F .F.x/C/,
(v) If F is continuous, then F.F .y// D y.
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A.2.2 Stochastic Orders

Univariate Stochastic Orders

The univariate stochastic orderings are defined for lifetime distributions with
support included in the positive real line. However, they may also be defined on
R.

Definition A.2.3 (Stochastic order). Let X � F , Y � G be random
variables.
X is said to be stochastically smaller than Y , i.e., X �st Y or F �st G, iff

F .x/ � G.x/ for all x � 0:

An important characterization of the stochastic order in terms of nondecreasing
functions � W R �! R is that

X �st Y ” E�.X/ � E�.Y / for all nondecreasing functions
� W R �! R

provided the expectations exist. This property is useful in the definition of the
multivariate version of the stochastic order (see p. 577).

Definition A.2.4 (Failure rate/hazard rate order). Let X � F , Y � G be
random variables. Then, X is said to be smaller than Y in the hazard rate order,
i.e., X �hr Y or F �hr G, iff

F .x/G.y/ � F .y/G.x/ for all 0 � y � x:

The preceding condition means that the ratio F .x/

G.x/
is nonincreasing in x � 0,

where a
0

is defined to be 1. If F and G are absolutely continuous cumulative
distribution functions with density functions f and g, respectively, then hazard rate
ordering is equivalent to increasing hazard rates

�F .x/ D f .x/

1 � F.x/ �
g.x/

1 �G.x/ D �G.x/ for all x � 0:

Definition A.2.5 (Reversed hazard rate order). Let X � F , Y � G be
random variables. Then, X is said to be smaller than Y in the reversed hazard
rate order, i.e., X �rh Y or F �rh G, iff

F.x/G.y/ � F.y/G.x/ for all 0 � y � x:

The preceding condition means that the ratio F.x/

G.x/
is nonincreasing in x � 0, where

a
0

is defined to be1.
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X �lr Y

�� ���
��
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��

��
��
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��

��
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��
�

�� X �hr Y

��
X �rh Y �� X �st Y

Fig. A.1 Relations between stochastic orders.

Definition A.2.6 (Likelihood ratio order). Let X � F , Y � G be random
variables with absolutely continuous cumulative distribution functions and density
functions f and g, respectively. Then, X is said to be smaller than Y in the
likelihood ratio order, i.e., X �lr Y or F �lr G, iff

f .x/g.y/ � f .y/g.x/ for all 0 � y � x:

The preceding condition means that the ratio f .x/

g.x/
is nonincreasing in x � 0.

These orders are related as depicted in Fig. A.1 (cf. Shaked and Shanthikumar
[799] and Müller and Stoyan [659]).

An intuitive approach to some partial orders is to compare quantile differences
(cf. Lewis and Thompson [584], Shaked [797, 798]) as below.

Definition A.2.7 (Dispersive order). Let X � F , Y � G be random variables.
Then, X is said to be smaller than Y in the dispersive order, i.e., X �disp Y or
F �disp G, iff

F .x/ � F .y/ � G .x/ �G .y/ for all 0 < y < x < 1:

If G is continuous, then the preceding condition can be written as

F .G.x// � F .G.y// � x � y for all 0 � y < x: (A.1)

This means that F .G.x// � x is a nonincreasing function in x � 0. In fact,
this property defines the so-called tail ordering introduced by Doksum [343]. It
was shown by Deshpande and Kochar [336] that the tail order and dispersive order
coincide under weak conditions (cf. Kamps [498, p. 181]).

Lorenz ordering of distributions is defined via the Lorenz curve LX W Œ0; 1� �!
Œ0; 1� of a random variable X � F given by

LX.u/ D
R u
0
F .t/ dtR 1

0
F .t/ dt

; u 2 Œ0; 1�:
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Definition A.2.8 ((Increasing) convex order, Lorenz order). Let X and
Y be nonnegative random variables with finite expectations and cumulative
distribution functions F and G, respectively. Then,

(i) X is smaller than Y in convex order, i.e., X �cx Y or F �cx G, if
Ef .X/ � Ef .Y / for all convex functions such that the expectations exist;

(ii) X is smaller than Y in increasing convex order, i.e., X �icx Y or F �icx

G, if Ef .X/ � Ef .Y / for all increasing convex functions such that the
expectations exist;

(iii) X and Y are ordered w.r.t. the Lorenz order, i.e., X �L Y or F �L G, iff

LX.u/ � LY .u/ for all u � 0.

The Lorenz order �L is related to the convex order �cx of random variables as
follows:

X �L Y ” X

EX
�cx

Y

EY

indicating that convex ordering supposes equal expectations of the considered
random variables (cf. Shaked and Shanthikumar [799, p. 116]).

A.2.2.1 Multivariate Stochastic Orderings

Definition A.2.9 (Multivariate stochastic order). Let X D .X1; : : : ; Xn/
0,

Y D .Y1; : : : ; Yn/0 be random vectors. Then, X is said to be stochastically smaller
than Y, i.e., X �st Y or FX �st FY, iff

E�.X/ � E�.Y/ for all nondecreasing functions � W Rn �! R

provided the expectations exist.

Definition A.2.10 (Multivariate likelihood ratio order). Let X D
.X1; : : : ; Xn/

0, Y D .Y1; : : : ; Yn/
0 be random vectors with density functions

fX and fY. Then, X is said to be smaller than Y in the multivariate likelihood
ratio order, i.e., X �lr Y or FX �lr FY, iff

f X.xn/f Y.yn/ � f X.xn ^ yn/f Y.xn _ yn/ (A.2)

for all x D .x1; : : : ; xn/0; y D .y1; : : : ; yn/0 2 R
n.
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Orderings of Real Vectors

The following partial orders for real vectors in the n-dimensional Euclidean space
R
n are used in the book.

Definition A.2.11 (Majorization). Let x D .x1; : : : ; xm/
0; y D .y1; : : : ; ym/

0 2
R
m be vectors. Then, x is said to majorize y, i.e., y 4m x, iff

jX
iD1

xi Wm �
jX
iD1

yi Wm for j D 1; : : : ; m � 1 and
mX
iD1

xi Wm D
mX
iD1

yi WmI

x is said to weakly majorize y, i.e. y 4w x, iff

jX
iD1

xi Wm �
jX
iD1

yi Wm for j D 1; : : : ; m:

A different ordering concept was introduced by Bon and Păltănea [213] (see
also Khaledi and Kochar [520]).

Definition A.2.12 (p-larger order). Let x D .x1; : : : ; xm/0, y D .y1; : : : ; ym/0 2
Œ0;1/m be nonnegative vectors. Then, x is said to p-majorize y, i.e., y 4p x, iff

jY
iD1

xi Wm �
jY
iD1

yi Wm for j D 1; : : : ; m.

As indicated by Bon and Păltănea [213], majorization implies p-majorization.



Appendix B
Additional Demonstrative Data Sets

Many data sets have been used throughout for illustrating various inferential
procedures. In the following, we introduce some further data that are available in
the literature.

B.1 Progressively Type-II Censored Data

Herd [440] presented the following progressively Type-II censored data set which
has also been revisited by Sarhan and Greenberg [776, p. 355] (see also Cohen [273,
Sect. 4.5]).

Data B.1.1 (Herd’s gyroscope data). Eleven gyroscopes are put on a pro-
gressively censored life test with censoring scheme R D .3; 2�2; 0/. Therefore,
four failures are observed and seven units are progressively censored. The data
set is given by

i 1 2 3 4

xi W4W11 34 133 169 237

Ri 3 2 2 0

The following data is taken from Cohen [270]. The original sample com-
prises 100 simulated data points from a three-parameter Weibull distribution
Weibull.100; 100; 2/.

Data B.1.2 (Cohen’s simulated Weibull data). The original sample
comprises 100 simulated data points from a three-parameter Weibull
distribution Weibull.100; 100; 2/. It includes 68 life-span observations, 32
values are progressively Type-II censored according to the censoring scheme
R D .0�5; 10; 0�33; 15; 0�27; 7/. The experiment is terminated at the failure time
X68W68W100 D 249:35 with seven survivors.

N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Statistics
for Industry and Technology, DOI 10.1007/978-0-8176-4807-7,
© Springer Science+Business Media New York 2014
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109:12 130:53 144:09 158:31 177:19 198:11 222:11

113:37 131:98 148:83 158:92 180:57 199:23 224:83

117:73 133:14 150:23 160:13 181:99 203:27 227:27

119:56 134:52 150:79 161:31 184:02 206:55 230:88

119:82 135:73 151:88 162:09 185:43 208:76 235:14
�124:63 136:71 153:07 165:45 187:21 210:69 237:43

125:21 137:88 154:18 166:62 189:77 213:32 246:08

126:93 138:63 154:97 168:23 191:63 215:08 �249:35
128:25 141:11 155:26 169:98 194:88 218:43

129:41 142:33 156:82 �174:22 196:91 219:37

� indicates failure times with progressively censored items

The following simulated progressive Type-II censored data sets are given in
Balakrishnan and Aggarwala [86].

Data B.1.3 (Laplace data from Balakrishnan and Aggarwala [86], p. 33).
The following progressively Type-II censored sample has been simulated from a
Laplace.25; 5/-distribution with n D 20, m D 10, and censoring scheme R D
.2; 0�2; 2; 0�3; 2; 0; 4/:

19:2117 21:9736 23:4178 23:6625 23:8022

24:2302 25:6207 25:8699 26:4800 27:5534

Data B.1.4 (Exponential data from Balakrishnan and Aggarwala [86],
p. 40). The following general progressively Type-II censored sample has been
simulated from an exponential distribution Exp.25; 10/ with n D 50 and censoring
scheme RG5 D .2; 1; 0; 2; 1; 3; 2; 3; 4; 3; 0; 2; 1; 2; 4/ .r D 5;m D 15/:

25:99609 26:17323 26:55884 26:65558 27:32842

27:52826 28:58114 28:58350 28:68850 29:09515

29:17521 29:47387 29:61337 33:44267 35:74206

Data B.1.5 (Progressively Type-II censored data from Spinelli and
Stephens [821]). The following progressively Type-II censored sample has been
generated by Balakrishnan et al. [131] from data reported in Spinelli and Stephens
[821] using the censoring scheme R D .0; 2; 0�2; 2; 0�5; 2�2; 0�4; 1�2; 0; 2/
(n D 32;m D 20). The original data consist of 32 observations on measurements
of modulus of repute of wood beams. The quantity of interest measures the
breaking strength of lumber.
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43:19 49:44 51:55 56:63 67:27

78:47 86:59 90:63 94:38 98:21

98:39 99:74 100:22 103:48 105:54

107:13 108:14 108:94 110:81 116:39

Data B.1.6 (Nelson’s progressively Type-II censored data as given in
Pakyari and Balakrishnan [701]). Pakyari and Balakrishnan [701] generated
a second progressively Type-II censored sample from Data 1.1.2 with censoring
scheme R D .0; 1; 0; 1; 0; 1; 0; 1; 0; 1/. The values are given as log-times.

i 1 2 3 4 5

xi �1:3093 �0:9163 �0:3711 �0:2357 1:0116

Ri 0 1 0 1 0

i 6 7 8 9 10

xi 1:3635 2:7682 3:3250 3:9748 5:3711

Ri 1 0 1 0 1

Data B.1.7 (King’s progressively Type-II censored wire strength connec-
tion data). Pakyari and Balakrishnan [701] generated a progressively Type-II
censored sample from wire strength connection data reported by King [533]
(see also Nelson [676], Table 5.1, p. 111). They applied the censoring scheme
R D .0; 2; 1; 0; 3; 0�2; 2; 0; 2/ to generate m D 10 observations from a total of
n D 20 available data points. The original data with sample size n D 23 were
adjusted by eliminating three observations due to validity suspicion (see Nelson
[676]).

i 1 2 3 4 5

xi 550 750 950 1150 1150

Ri 0 2 1 0 3

i 6 7 8 9 10

xi 1150 1350 1450 1550 1850

Ri 0 0 2 0 2

B.2 Progressively Type-I Censored Data

Nelson [674] introduced the following progressively Type-I censored data (see
also Nelson [676, p. 318]).

Data B.2.1 (Nelson’s fan data). Seventy generator fans were placed on a life
test. The failure and censoring times as well as the censoring numbers are given
in Table B.1.
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Failure Censoring Rj Failure Censoring Rj
time xj time Tj time xj time Tj
4,500 46,000

4,600 1 48,500 4
11,500 50,000 3
11,500 61,000

15,600 1 61,000 3
16,000 63,000 1

16,600 1 64,500 2
18,500 5 67,000 1
20,300 3 74,500 1

20,700 78,000 2
20,700 81,000 2
20,800 82,000 1

22,000 1 85,000 3
30,000 4 87,500

31,000 87,500 2
32,000 1 94,000 1

34,500 99,000 1
37,500 2 101,000 3
41,500 4 115,000 1
43,000 4

Table B.1 Nelson’s [674] fan data (times are measured in hours)

Data B.2.2 (Nelson’s progressively Type-I censored insulating fluid data).
The measurements result from n D 19 breakdown times (in minutes) of an
insulating fluid at 36 kV. The failure and censoring times as well as the censoring
numbers are given in Tables B.2 and B.3. In Table B.2, the effectively applied
censoring plan is R D .3; 0; 3; 5/ and the censoring times are Tj D 2j , j D
1; : : : ; 5. The sample size and the number of observations are given by n D 19

and m D d�4 D 8.

Failure Censoring �j Failure Censoring �j
time xj time Tj time xj time Tj

0.19 4 0
0.78 4.67
0.96 4.85
1.31 6 3

2 3 7.35
2.78 8 5

Table B.2 Nelson’s [677] insulating fluid data progressively Type-I censored as in Balakrishnan
et al. [150] (times are measured in minutes)
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In Table B.3, the initially planned censoring plan is R0 D .3; 4/ to be carried
out at censoring times T1 D 1, T2 D 5. The termination of the experiment is
scheduled for T3 D 15. The effectively applied censoring plan is R D .3; 4; 3/.
The sample size and the number of observations are given by n D 19 and
m D d�4 D 9.

Failure Censoring �j Failure Censoring �j
time xj time Tj time xj time Tj

0.19 4.67
0.78 4.85
0.96 5 4

1 3 6.50
1.31 12.06
4.15 15 3

Table B.3 Nelson’s [677] insulating fluid data progressively Type-I censored at T1 D 1, T2 D 5,
and T3 D 15 (times are measured in minutes)

Data B.2.3 (Wingo’s life test data). The data resulted from a life test of
n D 50 specimens. m D 33 failure times were observed (see Table B.4), whereas
17 items were progressively censored during the experiment. The censoring times
are given by T1 D 70, T2 D 80, T3 D 99, T4 D 121, and T5 D 150. The effectively
applied censoring plan was R D .4; 5; 4; 3; 1/.

37 55 64 72 74 87 88 89 91 92 94
95 97 98 100 101 102 102 105 105 107 113

117 120 120 120 122 124 126 130 135 138 182

Table B.4 Wingo’s [898] life-test data (times are measured in hours)

Data B.2.4 (Wingo’s pain relief data). The data were taken from a clinical
trial that was conducted to assess the effectiveness of an anesthetic antibiotic
ointment in relieving pain caused by superficial skin wounds. n D 30 patients
were included in the study where measurements of m D 20 patients are available
and given in Table B.5. Some patients dropped out of the study at censoring
times T1 D 0:25, T2 D 0:50, and T3 D 0:75. A final termination was not fixed so
that we assume T4 to be very large ensuring that no observation is right censored.
The effectively applied censoring plan was R D .5; 1; 4; 0/.

0.828 0.881 1.138 0.879 0.554 0.653 0.698 0.566 0.665 0.917
0.529 0.786 1.110 0.866 1.037 0.788 1.050 0.899 0.683 0.829

Table B.5 Wingo’s [901] pain relief data (times are measured in hours)
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Data B.2.5 (Montanari and Cacciari’s XLPE-isolated cable data). Monta-
nari and Cacciari [655] considered testing of XLPE-insulated cable models which
were subjected to electrical and combined thermal–electrical stresses. One of the
aims of the study was the analysis of aging mechanisms. The data are given in
Table B.6.

Failure times xi 445 479 489 607 692 969
Censoring times Ti 445 453 479 489 588 607 766 780 969 1,121
Censoring numbers Ri 1 1 1 2 1 1 2 1 1 1

Table B.6 Montanari and Cacciari’s [655] XLPE-isolated cable data (times are measured in
hours)

These data suggest that the censoring procedure might be a mixture of Type-I
and Type-II progressive censoring since at the time of the first, second, third, and
sixth failures, units have been removed from the life test. However, the data will
be handled as Type-I censored data.



Notation

The following notation are used throughout the book. In selected cases, a page
number is provided in order to refer to the definition.

Notation Explanation Page

Progressively censored order statistics
XR
iWmWn; XiWmWn i th progressively Type-II censored order statistic based on

censoring scheme R

UR
iWmWn; UiWmWn i th uniform progressively Type-II censored order statistic based on

censoring scheme R

ZR
iWmWn; ZiWmWn i th exponential progressively Type-II censored order statistic

based on censoring scheme R

XR;UR;ZR Vector of progressively Type-II censored order statistics
SR
i i th normalized spacing of progressively Type-II censored order

statistic based on censoring scheme R
26

S?Ri i th spacing of progressively Type-II censored order statistic based
on censoring scheme R

28

S?Ri;j Generalized spacing of progressively Type-II censored order
statistic based on censoring scheme R

46

R;S Censoring scheme R D .R1; : : : ; Rm/, etc.
Ok One-step censoring scheme alternatively represented as

.0�k�1; n�m; 0�m�k/
7

RBr Right truncated censoring scheme .R1; : : : ; Rr�1/ 10
RCr Left truncated censoring scheme .RrC1; : : : ; Rm/ 10
Cm
m;n Set of admissible censoring schemes in progressive Type-II

censoring
5

�i ; �i .R/ �i DPm
jDi .Rj C 1/, 1 � i � m, for a censoring scheme

R D .R1; : : : ; Rm/

cr�1
Qr
jD1 �j

c.R/
Qm
jD1 �j .R/
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(continued)

Notation Explanation Page

aj;r
Qr

iD1
i 6Dj

1
�i��j

, 1 � j � r
a
.k1/

j;k2

Qk2
�Dk1C1
� 6Dj

1
����j

, k1 C 1 � j � k2
XiWn i th order statistic in a sample of size n
UiWn i th uniform order statistic in a sample of size n
ZiWn i th exponential order statistic in a sample of size n
SiWn i th spacing in a sample of size n
X

R;T
iWmWn i th progressively Type-I censored order statistic with censoring

scheme R and threshold T

X
(I)
i ; Z

(I)
i i th (exponential) Type-I progressively hybrid censored order

statistic

W
(I)
i i th normalized spacing of exponential Type-I progressively

hybrid censored order statistic

X
(II)
i ; Z

(II)
i i th (exponential) Type-II progressively hybrid censored order

statistic

W
(II)
i i th normalized spacing of exponential Type-II progressively

hybrid censored order statistic
X;Xn Vector of random variables X1; : : : ; Xn
f X ; F X Density function/cumulative distribution function of a random

variable X
Fexp Cumulative distribution function of an exponential distribution
f�2.d/; F�2.d/ Density function/cumulative distribution function of a

�2-distribution with d degrees of freedom
fj WmWn; f

R
j WmWn Density function of XR

j WmWn

Fj WmWn; F
R
j WmWn Cumulative distribution function of XR

j WmWn

fj Wn; Fj Wn Density function/cumulative distribution function of Xj Wn
f1;:::;mWmWn; F1;:::;mWmWn Joint density function/cumulative distribution function of

XR
1WmWn; : : : ; X

R
mWmWn

I .XRI 	/;I .XRI�/ Fisher information 201
H R
1;:::;mWmWn Joint entropy of XR

1WmWn; : : : ; X
R
mWmWn 216

IR.f kg/ Kullback–Leibler information 221

Distributions
U.a; b/ Uniform distribution 571
Beta.˛; ˇ/ Beta distribution 571
Power.˛/ Power distribution 571
RPower.ˇ/ Reflected power distribution 571
Exp.�; #/ Exponential distribution 572
Γ.#; ˇ/ Gamma distribution 572
N.�; �2/ Normal distribution 574
�2.n/ �2-distribution 572

(continued)
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(continued)

Notation Explanation Page

F.n;m/ F-distribution 572
Pareto.˛/ Pareto distribution 572
Cauchy.�; ˛/ Cauchy distribution 573
Laplace.�; #/ Laplace distribution 573
bin.n; p/ Binomial distribution 574

Special functions
exp.t /; et Exponential function
log.t / Natural logarithm
� .˛/ Gamma function
IG.t I˛/ Incomplete gamma function ratio defined as

IG.t I˛/ D 1
� .˛/

R t
0 z˛�1e�zdz, t � 0

B.˛; ˇ/ Beta function
Bt .˛; ˇ/ Incomplete beta function defined as

Bt .˛; ˇ/D R t
0 x

˛�1.1� x/ˇ�1dx, 0 < t < 1
nŠ n factorial defined by

Qn
jD1 j , n 2 N0, where

Q0
jD1 j D 1�

n
k

�
Binomial coefficient nŠ

kŠ.n�k/Š
, k; n 2 N0, k � n�

n
k1;:::;kr

�
Multinomial coefficient nŠ

k1Š���kr Š
, ki ; n 2 N0,

Pr
iD1 ki D n

F.a; bI cI t / Hypergeometric function defined by

F.a; bI cI t / D 1P
jD0

.a/j .b/j

.c/j

xj

j Š
, where Pochhammer’s

symbol .�/j is defined by .x/j DQj
iD1.x C i � 1/, j 2 N,

x 2 R; .x/0 D 1

Bk.sjak; : : : ; a1/ Univariate B-Spline Bk of degree k with knots ak < � � � < a1 131
1A Indicator function on the set A
Œx�C D max.x; 0/ Positive part of x
Œx�� D min.x; 0/ Negative part of x
bxc Denotes the largest integer k satisfying k � x
sgn.x/ Sign of x
hŒxj ; : : : ; x�� Divided differences of order � � j at x1 > � � � > xm for function h 43

Sets
N Integers f1; 2; 3; : : :g
N0 N[ f0g D f0; 1; 2; 3; : : :g
R Real numbers
R
n n-fold Cartesian product of R

R
n
�

f.x1; : : : ; xn/ 2 R
njx1 � � � � � xng

Sn Set of all permutations of .1; : : : ; n/
.˝;A/ Measurable space with � -algebra A

.˝;A; P / Probability space with � -algebra A and probability measure P
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Notation Explanation Page

Symbols
X 
 F X is distributed according to a cumulative distribution function F
iid
 Independent and identically distributed
d�! Convergence in distribution
P�! Convergence in probability

a.e.�! Convergence almost everywhere
F Quantile function of F
F Survival/reliability function F D 1� F
˛.F / Left endpoint of the support of F
!.F / Right endpoint of the support of F
�p D F .p/,
p 2 .0; 1/,

pth quantile of F

�r r-dimensional Lebesgue measure
# Counting measure
"T One-point distribution/Dirac measure in T
tr.A/ Trace of a matrix A
det.A/ Determinant of a matrix A
med.F / Median of cumulative distribution function F
ak .a1; : : : ; ak/ 2 R

k

.a�k/ .a; : : : ; a/ 2 R
k

1 1 D .1; : : : ; 1/

g.t�/ limx%t g.x/

g.tC/ limx&t g.x/

const Represents all additive terms of a function which do not contain
the variable of the function

Orderings
dD Identical distribution
�st Stochastic order
�hr Hazard rate order
�rh Reversed hazard rate order
�lr Likelihood ratio order
�disp Dispersive order
�cx Convex order
�icx Increasing convex order
�L Lorenz order
4m Majorization order
4w Weak majorization order
4p p-larger order
Operations
x ^ y, x; y 2 R minfx; yg
x _ y, x; y 2 R maxfx; yg
x^ y, x; y 2 R

n .x1 ^ y1; : : : ; xn ^ yn/0
x_ y, x; y 2 R

n .x1 _ y1; : : : ; xn _ yn/0
a�r

Pr
jD1 aj for ar 2 R

r

A˝B Kronecker product of matrices A and B
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Notation Explanation Page

Abbreviations
IID Independent and identically distributed
INID Independent but not necessarily identically distributed
a.s. Almost surely
a.e. Almost everywhere
e.g. For example/exempli gratia
i.e. id est
w.r.t. With respect to
IFR/DFR Increasing/decreasing failure rate
IFRA/DFRA Increasing/decreasing failure rate on average
NBU/NWU New better/worse than used
BLUE Best linear unbiased estimator
ABLUE Asymptotic best linear unbiased estimator
BLIE Best linear invariant estimator
BLEE Best linear equivariant estimator
MLE Maximum likelihood estimator
AMLE Approximate maximum likelihood estimator
MMLE Modified maximum likelihood estimator
UMVUE Uniform minimum unbiased estimator
MRE Minimum risk equivariant estimator
IE Inverse estimator
BUP Best unbiased predictor
MLP Maximum likelihood predictor
MMLP Modified maximum likelihood predictor
AMLP Approximate maximum likelihood predictor
MUP Median unbiased predictor
CMP Conditional median predictor
BLUP Best linear unbiased predictor
BLEP Best linear equivariant predictor
PLF Predictive likelihood function
HPD Highest probability density
MSE Mean squared error
MSPE Mean squared predictive error
OSP One-step censoring plan
FSP First-step censoring plan
AQL Acceptance quality level
RQL Rejectable quality level
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Scheffé, H. 45
Schenk, N. 36, 168–170, 254, 269, 271–273,

342, 343, 347, 374, 375, 382, 415, 419,
504

Scheuer, E. M. 327, 331, 332
Schlipf, J. S. 45, 193
Schmiedt, A. B. 522, 523, 531
Schneider, H. 467, 475, 476
Schoenberg, I. J. 58, 428
Schucany, W. R. 193, 433
Schweitzer, N. 67, 69
Sedyakin, N. M. 481, 482
Sen, A. 353, 482, 495, 497–499, 501, 561
Sen, P. K. 3, 105, 156–158, 224, 238
Seo, J.-I. 301
Serfling, R. J. 103
Sethuraman, J. 86, 237
Shafay, A. R. 347, 375, 377, 416, 418
Shah, B. K. 177
Shaked, M. 82, 84–87, 91, 92, 95, 96, 98, 237,

238, 483, 535, 545, 576, 577
Shanbhag, D. N. 71, 76, 79
Shanthikumar, J. G. 82, 84–86, 91, 92, 95, 98,

237, 535, 576, 577
Shapiro, S. S. 429
Sharafi, M. 461–464
Shen, K.-F. 500
Shen, Y.-J. 500
Shi, Y. 345, 352, 490, 529
Shi, Y.-M. 502
Shirke, D. T. 529, 530
Shu, V. S. 42
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I
I˛-information, 223
IFR, 52, 56, 69, 84, 97, 437, 535
IFRA, 97
influence function, 308
information measures, 201
informative sample, 355
inspection intervals, 421

constant, 422
inspection times

optimal, 424
integrated Cauchy functional equations, 76
interepoch times of nonhomogeneous pure

birth processes, 96
interval censored data, 421

samplings plans, 476

J
James-type M -estimators, 308, 310
joint progressive censoring, 523

K
Kaplan–Meier-type estimator, 456
Kaplan-Meier-type estimator, 423, 446
Kendall’s � , 92
kernel estimator, 450
kernel function, 440
Kolmogorov–Smirnov statistic, 434
Kolmogorov-Smirnov-type statistics, 444
Kronecker product, 235
Kullback-Leibler information, 221, 436, 560

L
L-statistic, 247, 564
Lagrangian interpolation polynomial, 43
Laguerre orthogonal polynomials, 429
Laplace transform, 53, 242
least-squares estimator, 248
Lehmann alternative, 454
Lehmann-type alternative, 460

lexicographic distribution function, 62
Lieberman–Resnikoff procedure, 467
lifetime performance indices, 477
likelihood function, 267
likelihood ratio test, 311
linear inference, 247
location family, 203
location-scale family, 247
location-shift alternative, 455
Löwner ordering, 537
log-concave, 87, 88
log-concavity, 56, 358
log-likelihood function, 267
loss function, 341
lower specification limit, 467

M
Mahalanobis distance, 248
majorization, 578
Mann–Whitney statistic, 507
marginal distributions, 35, 38

bivariate, 39, 55
exponential progressively Type-II censored

order statistics, 36
multiply censored sample, 40
uniform progressively Type-II censored

order statistics, 38
univariate, 38, 53

Markov chain, 239
Markov property, 36, 44, 61, 75, 123, 148, 202,

373
order statistics, 64

martingale, 440
centered Gaussian, 444, 445

matrix means, 539
maximal precedence test statistic, 453
maximum likelihood estimator, 268
mean residual life function, 69
mean squared predictive error, 359
measures of concordance, 92
Meijer’s G-function, 25
MIFR, 98
minimal repair, 402, 415
missing information principle, 206, 299, 527,

549
mixture, 242

binomial, 510
mixture representation, 229
MMR2-property, 53
moment generating function, 53, 132
moments, 155

bounds, 182
existence, 156
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exponential distribution, 161
extreme value distribution, 166
first-order approximation, 190
Laplace distribution, 181
Lomax distribution, 166
Pareto distribution, 165
particular distributions, 161
recurrence relations, 167
reflected power distribution, 163
symmetric distribution, 181
uniform distribution, 164
Weibull distribution, 162

Moriguti method, 184
MTP2 property, 240
MTP2-property, 51–53
Müntz-Szász theorem , 221
multi-censored sample, 3

N
NBU, 69, 97
near minimum progressively censored order

statistics, 112
Nelson–Aalen-type estimator, 443
Nelson-Aalen-type estimator, 446
Neyman criterion, 271
Ng–Kundu–Chan model, 150, 338
nonparametric predictive inference, 452
NWU, 69, 97

O
OC curve, 383
OC-curve, 468
one-step conjecture, 546
one-step plan

optimal, 546, 555
optimality criteria

block censoring, 565
entropy, 535, 559
experimental time, 534
Fisher information, 544, 557, 559
one-step plan, 548
'p-, 539
Pitman closeness, 562
precision of estimates, 536
probabilistic, 534
quantile, 537, 560

nonparametric, 561
total time on test, 535
variance of experimental time, 534

order mean function, 72
order restricted inference, 310

order statistics
central, 101
intermediate, 101
near, 112

outlier, 234, 308

P
p-larger order, 578
parallel system, 418, 529
partial ordering, 532
permanent, 235

Ryser’s expansion, 236
Pitman closeness, 224, 356, 562
pivotal quantity, 385, 403, 404

generalized, 386
placement statistics, 459
Poisson process approximation, 441
Pólya frequency function of order 2, 56
posterior distribution, 341
posterior mean, 342
power function, 455
precedence-type tests, 451
prediction

Bayesian, 373
concepts, 355
failure times of censored units, 357
future observations, 372
maximum likelihood, 356
one sample, 355
two sample, 355

prediction intervals
Bayesian, 417
censored failure times, 416
future failure times, 405
future observations, 416, 417
HPD, 375
nonparametric, 415
parametric, 416

predictive likelihood function, 356
predictor

approximate maximum likelihood, 356,
368

best linear unbiased, 356
best unbiased, 355
conditional median, 356
maximum likelihood, 356

one/two-stage, 367
median unbiased, 356
modified maximum likelihood, 367

prior distribution, 341
probability mass function

discrete progressively Type-II censored
order statistics, 61
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process capability analysis, 477
product limit estimator, 440
progressive hybrid censoring, 14, 125, 327, 487

adaptive Type-I, 337
Bayesian variable sampling plans, 474
generalized, 140
optimal censoring scheme, 559
Type-I, 125, 328
Type-II, 136, 335

progressive stress model, 503
progressive Type-I censoring, 10, 115

data, 581
likelihood inference, 313
nonparametric estimation of the survival

function, 446
sampling plans, 476

progressive Type-I interval censoring, 14, 421,
501

progressive Type-II censoring, 5, 21, 67
INID , 229
adaptive, 143, 150, 336
Bayesian inference, 341
data, 579
dependence structure, 239
dependent samples, 241
first-failure censoring, 528
flexible, 151
general, 10, 41, 248, 254, 259, 267, 310,

345, 381
goodness-of-fit tests, 427
joint, 523
likelihood inference, 267
linear inference, 247
marginals, 35
moments, 155
Ng-Kundu-Chan model, 150
non-standard conditions, 229
point prediction, 355
random removals, 339
simulation, 193
systems, 528
with random removals, 152

progressive Type-II left withdrawal, 179
progressive withdrawal, 33
progressively Type-II censored order statistics,

57
adaptive, 144
adjacent, 72
blocked, 109, 265, 308
central, 106, 109
exponential, 107
intermediate, 106
lower, 106

near minimum, 112
uniform, 56
upper, 106

proportional hazards, 26, 444
semiparametric, 447

Q
quadruple rule, 55
quadruple rules, 243
quantile function, 574
quantile process, 448
quantile representation, 21, 126, 155, 393, 529
quantile transformation, 117

R
random removals, 152
record values, 74, 90, 295, 402, 415
recurrence relations, 41, 53, 167, 212, 220

exponential distribution, 168
logistic distribution, 177
symmetric distribution, 179
truncated Burr distribution, 178
truncated exponential distribution, 170
truncated Pareto distribution, 172
truncated power distribution, 174
truncated reflected power distribution, 175

regression, 70
reversed, 77

regularly varying functions, 99
rejectable quality level, 472
reliability sampling plans, see acceptance

sampling plans
residual lifetimes, 94
reversed regression, 77
Riemann-zeta function, 101
right corner set increasing property, 240
right tail increasing in sequence, 240
risk function, 342
Rossberg’s theorem, 68

S
scale family, 203
sequential order statistics, 25, 96, 162, 263,

310, 342, 347, 374, 492, 503, 504
sequential testing, 3
series system, 528
set of admissible (Type-II) censoring schemes,

5
Shanbhag’s Lemma, 79
Shapiro–Wilk test statistic, 429
sign changes, 59
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simulated annealing, 425
simultaneous-closeness probability, 226
single outlier, 234
smallest concave majorant, 188
spacing, 431
spacings, 26–28, 67, 69, 80, 95, 96, 127, 137,

148, 271, 427, 444, 493, 503, 535,
563

dependence structure, 52
generalized, 46, 60, 112, 238, 418
maximal, 28
maximum, 430
minimal, 28
order statistics, 27

Spearman’s �, 92
specification limits, 477
spectral decomposition, 539
statistical intervals, 379

conditional, 402
confidence intervals, 379
prediction intervals, 415
tolerance intervals, 418

step-stress model, 481
random change time, 490
log-linear link function, 493
multiple, 495
simple, 483

step-stress test
Box-Cox transformation, 500
optimal, 498, 500

stochastic order, 82, 90, 236, 527, 534, 575
convex, 89, 90, 577
dependence, 91
dispersive, 88, 95, 96, 535, 576

multivariate, 92, 95
entropy order, 221
excess wealth, 97
failure rate, 575
hazard rate, 84, 90, 575

multivariate, 92, 95
increasing convex, 91, 577
increasing convex directional, 91
likelihood ratio, 85, 90, 238, 576

multivariate, 92, 577
Lorenz, 90, 577
mean residual life, 97
multivariate, 92, 577

spacings, 95
reversed hazard rate, 575
star, 90
star-shaped, 89
superadditive, 89
univariate, 82, 575

Strassen’s theorem, 91
stress-strength models, 507
strongly unimodal, 56
structure function, 528
subrange, 46
sufficient statistic, 271
survival analysis, 4
system

k-out-of-n, 528
monotone, 528
parallel, 529
series, 528

systems data, 528

T
tail order, 576
tests for hazard rate ordering, 461
Three Monotonicities Lemma, 331
tie-runs, 62
tolerance intervals, 418
total positivity, 51, 56
total time on test, 130, 139, 314, 328, 485, 516,

535
mean, 134

TP2 , 472, 527
triangle rule, 53, 243
truncated sampling, 327
Tukey’s linear sensitivity measure, 215

U
umulative hazard function, 439
UMVUE, 269
uniformly minimum variance unbiased

estimator, 269
unimodal, 56

strongly, 56, 59
unimodality, 358

strong, 56

V
variation diminishing property, 58
Voronoi region, 226

W
Wald-type equation, 135
weighted precedence test statistic, 453
Wilcoxon rank-sum statistic, 453, 458
Wilson–Hilferty approximation, 473
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