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Preface

This volume contains the revised versions of selected papers presented during
the 36th Annual Conference (GfKl 2012) of the German Classification Society
(Gesellschaft für Classification-GfKl). The conference was hosted by the University
of Hildesheim, Germany, together with the Otto-von-Guericke-University of
Magdeburg, Germany, in August 2012. The GfKl 2012 focused on advances in data
analysis, statistics, knowledge discovery and machine learning. Problems from data
analysis in marketing, finance, biostatistics, bioinformatics and interdisciplinary
domains were considered. Besides 9 plenaryand semi-plenary talks, more than 130
talks took place in 3 days. With participants from 20 countries this GfKl conference
provided once again an international forum for discussions and mutual exchange of
knowledge with colleagues from different fields of interest.

In recent years, we saw the core topics of the conference crystallize themselves
into thematic areas. In 2012, for the first time, these areas were made explicit and
their coordination was undertaken by dedicated Area Chairs:

• Statistics and Data Analysis (SDA), organized by Hans-Hermann Bock, Christian
Hennig and Claus Weihs

• Machine Learning and Knowledge Discovery (MLKD), organized by Lars
Schmidt-Thieme and Myra Spiliopoulou

• Data Analysis and Classification in Marketing (DACMar), organized by Daniel
Baier and Reinhold Decker

• Data Analysis in Finance (DAFin), organized by Michael Hanke and Krzysztof
Jajuga

• Biostatistics and Bio-informatics, organized by Anne-Laure Boulesteix and Hans
Kestler

• Interdisciplinary Domains (InterDom), organized by Andreas Hadjar, Sabine
Krolak-Schwerdt and Claus Weihs

• Workshop Library and Information Science (LIS2012), organized by Frank
Scholze

v



vi Preface

As expected, the lion’s share among the contributions to these areas came from
Germany, followed by Poland, but we had contributions from all over the world,
stretching from Portugal to Ukraine, from Canada and the USA to Japan and
Thailand.

For every GfKl conference a best paper award is granted to two excellent papers
of the postconference proceedings. We are proud to announce the best paper awards
of GfKl 2012:

• Nguyen Hoang Huy, Stefan Frenzel and Christoph Bandt (University of
Greifswald) with Two-Step Linear Discriminant Analysis for Classification of
EEG Data (page 51); and

• Tobias Voigt, Roland Fried, Michael Backes and Wolfgang Rhode (Univer-
sity of Dortmund) with Gamma-Hadron-Separation in the MAGIC Experiment
(page 115).

We would like to congratulate the prize winners and would like to thank the best
paper awards jury members for their excellent work.

Organizing such a conference with its parallel, interleaved events is not an easy
task. It requires coordination of many individuals and on many issues, and lives from
the tremendous effort of engaged scientists and of the dedicated teams in Hildesheim
and Magdeburg. We would like to thank the Area Chairs for their hard work in
conference advertisement, author recruitment and submissions evaluation. We are
particularly indebted to the Polish Classification Society for its involvement and
presence in the GfKl 2012. We would like to thank the EasyChair GfKl 2012
administrator, Miriam Tödten, for her assistance during submissions, evaluation
and camera-ready preparation and contribution to the abstracts volume, and Silke
Reifgerste, the financial administrator of the KMD research lab at the Otto-von-
Guericke University Magdeburg for her fast and competent treatment of all financial
matters concerning the Magdeburg team. Further we would like to thank Kerstin
Hinze–Melching (University of Hildesheim) for her help with the local organization,
Jörg Striewski and Uwe Oppermann, our technicians in Hildesheim, for technical
assistance, Selma Batur for help with the abstract proceedings and preparation of
the conference and our assistants in Hildesheim for the conference Fabian Brandes,
Christian Brauch, Lenja Busch, Sarina Flemnitz, Stephan Reller, Nicole Reuss and
Kai Wedig.

This proceedings volume of the GfKl conference in 2012 with 49 contributions
is the result of postconference paper submission and a two-round reviewing phase.
We would like to thank all reviewers for their rigorous and timely work. We would
like to thank all Area Chairs and the LIS Workshop Chair for the organization of the
areas during the conference, for the coordination of the reviewing phase and for the
paper shepherding towards final acceptance. Furthermore, we would like to thank
Martina Bihn and Ruth Milewski of Springer-Verlag, Heidelberg, for their support
and dedication to the production of this volume. We also would like to thank Patrick
Jähne for assistance with editing tasks to create this volume.
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Last but not least, we would like to thank all participants of the GfKl 2012
conference for their interest and activities which made the 36th Annual Conference
and this volume an interdisciplinary possibility for scientific discussion.

Magdeburg, Germany Myra Spiliopoulou
Hildesheim, Germany Lars Schmidt-Thieme and Ruth Janning
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On Limiting Donor Usage for Imputation
of Missing Data via Hot Deck Methods

Udo Bankhofer and Dieter William Joenssen

Abstract Hot deck methods impute missing values within a data matrix by using
available values from the same matrix. The object from which these available
values are taken for imputation is called the donor. Selection of a suitable donor
for the receiving object can be done within imputation classes. The risk inherent
to this strategy is that any donor might be selected for multiple value recipients.
In extreme cases one donor can be selected for too many or even all values. To
mitigate this donor over usage risk, some hot deck procedures limit the amount of
times one donor may be selected for value donation. This study answers if limiting
donor usage is a superior strategy when considering imputation variance and bias in
parameter estimates.

1 Introduction

Missing data is a problem prevalent in many real empirical investigations. With
observations missing, conventional statistical methods cannot simply be applied to
the data without proxy. Explicit provisions must be made within the analysis.

Three principle strategies exist to deal with missing data: elimination, imputa-
tion, and direct analysis of the observed data. While direct analysis utilizes special
methods to, for example, estimate parameters, elimination and imputation methods
create a complete data matrix that may be analyzed using standard statistical
procedures. Elimination methods remove objects or attributes missing data from
analysis. Imputation methods replace the missing values with estimates (Allison
2001).
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This paper deals with imputation. These methods use available information to
estimate imputation values. The simplest techniques replace missing values with
eligible location parameters. Beyond that, multivariate methods, such as regression,
may be used to identify imputation values. Another category of imputation methods
use imputation classes. An advantage of imputing missing values from a pool of
similar objects, is that less restrictive assumptions about the missingness mechanism
can be made. While imputation methods usually require either the MCAR (missing
completely at random) mechanism or under special circumstances allow for the
presence of the MAR (missing at random) mechanism, imputation methods utilizing
imputation classes can lead to valid results under the NMAR (not missing at
random) mechanism (Andridge and Little 2010; Bankhofer 1995).

Methods using imputation classes are categorized as either cold deck or hot deck
methods. While cold deck methods impute values by obtaining these from external
sources (e.g. similar studies, expert opinions), hot deck methods replace missing
data with values that are available within the current matrix (Sande 1983). The
object from which these available values are taken is called the donor. Selection
of a suitable donor for the receiving object, called the recipient, may be done within
the prior constructed classes. The replication of values leads to the problem that a
single donor might be selected to accommodate multiple recipients. This poses the
inherent risk that too many or even all missing values are imputed utilizing only
a single donor. Due to this, some hot deck variants limit the amount of times any
donor may be selected to donate its values (donor limit). This inevitably leads to
the question under which conditions a donor limit is sensible and whether or not an
appropriate value for a limit exists. This study aims to answer these questions.

2 Review of Literature

The theoretical effects of a donor limit were first investigated by Kalton and Kish
(1981). Based on combinatorics, they come to the conclusion that selecting a donor
from the donor pool without replacement leads to a reduction in the imputation
variance, the precision with which any parameter is estimated from the post-
imputation data matrix. A possible effect on an imputation introduced bias was
not discussed. Two more arguments in favor of a donor limit are made. First, the
risk of exclusively using one donor for all imputations is removed (Sande 1983).
Second, the probability of using one donor with an extreme value or values too
often is reduced (Bankhofer 1995; Strike et al. 2001). Based on these arguments
and sources, recommendations are made by Kalton and Kasprzyk (1986), Nordholt
(1998), Strike et al. (2001), and Durrant (2009).

In contrast, Andridge and Little (2010) reason that imposing a donor limit inher-
ently reduces the ability to choose the most similar, and therefore most appropriate,
donor for imputation. Not limiting the times a donor can be chosen may thus
increase data quality. Generally speaking, a donor limit makes results dependent
on the order of object imputation. Usually, the imputation order will correspond to
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the sequence of the objects in the data set. This property is undesirable, especially in
deterministic hot decks, as object sorting or random reordering may lead to different
results. Thus, from a theoretical point of view, it is not clear whether or not a donor
limit has a positive or negative impact on the data quality.

Literature on this subject provides only studies that compare hot decks with other
imputation methods. These studies include either only drawing the donor from the
donor pool with replacement (Barzi and Woodward 2004; Roth and Switzer III
1995; Yenduri and Iyengar 2007) or without replacement (Kaiser 1983). Based on
this review of literature it becomes apparent, that the consequences of imposing a
donor limit have not been sufficiently examined.

3 Study Design

Hence, considering possible advantages that a donor limit has, and possible effects
that have not been investigated to date, the following questions will be answered by
this study. First, can post-imputation parameter estimates be influenced by a donor
limit? Second, what factors influence if a hot deck with donor limit leads to better
results?

By considering papers where authors chose similar approaches (Roth and Switzer
III 1995; Strike et al. 2001) and further deliberations, a series of factors are identified
that might influence whether or not a donor limit affects parameter estimates.
Factors varied are:

• Imputation class count: Imputation classes are assumed to be given prior to
imputation and data is generated as determined by the class structure. Factor
levels are two and seven imputation classes.

• Object count per imputation class: The amount of objects characterizing each
imputation class is varied between 50 and 250 objects per class.

• Class structure: To differentiate between well- and ill-chosen imputation classes,
data is generated with a relatively strong and relatively weak class structure.
Strong class structure is achieved by having classes overlap by 5 % and inner-
class correlation of 0.5. Weak class structure is achieved by an intra-class overlap
of 30 % and no inner-class correlation.

• Data matrices: Data matrices of nine multivariate normal variables are generated
dependent on the given class structure. Three of these variables are then
transformed to a discrete uniform distribution with either five or seven possible
values, simulating an ordinal scale. The next three variables are converted to a
nominal scale so that 60 % of all objects are expected to take the value one,
with the remaining values being set to zero. General details on the NORTA type
transformation are described by Cario and Nelson (1997).

• Portion of missing data: Factor levels include 5, 10, and 20 % missing data points
and every object is assured to have at least one data point available (no subject
non-response).
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• Missingness mechanism: Missingness mechanisms of the type MCAR, MAR,
and NMAR are generated as follows: Under MCAR a set amount of values are
chosen as missing. Under MAR missing data is generated as under MCAR but
using two different rates based on the value of one binary variable, which is not
subject to missingness. The different rates of missingness are either 10 % higher
or lower than the rates under MCAR. NMAR modifies the MAR mechanism
to also allow missingness of the binary variable. To forgo possible problems
with the simultaneous imputation methods and the donor limitation of once, at
least 50 % of all objects within one class are guaranteed to be complete in all
attributes.

• Hot deck methods: The six hot deck methods considered are named “SeqR,”
“SeqDW,” “SeqDM,” “SimR,” “SimDW,” and “SimDM” according to the three
attributes that define each procedure. The prefixes denote whether attributes
are imputed sequentially or simultaneously. Sequential imputation of attributes
selects a donor for every attribute exhibiting missing values anew, while simul-
taneous imputation selects one donor that will accommodate all of the recipients
missing values. The postfixes indicate a random (R) or minimum distance
function (D) donor selection. The type of adjustment made to compensate
for missingness when computing distances is indicated by the last part of the
suffix. “W” indicates that each pairwise distance is reweighted by the amount of
variables relative to the amount of variables available in both donor and recipient.
“M” denotes that location parameter imputation is performed before calculation
of pairwise distances. The former method assumes that the missing part of the
pairwise distance would contribute averagely to the total distance, while the
latter method assumes that missing value is close to the average for this attribute.
To account for variability and importance, prior to aggregating the Manhattan
distances, variables are weighted with the inverse of their range.

Next to the previously mentioned factors, two static and two dynamic donor
limits are evaluated. The two static donor limits allow either a donor to be chosen
once or an unlimited number of times. For the dynamic cases, the limit is set to
either 25 or 50 % of the recipient count.

To evaluate imputation quality, a set of location and/or variability measures is
considered (c.p. Nordholt 1998). For the quantitative variables mean and variance,
for the ordinal variables median and quartile distance, and for the binary variables
the relative frequency of the value one are computed.

Using a framework implemented in R version 2.13.1, 100 data matrices are
simulated for every factor level combination of “imputation class count”, “object
count per imputation class”, “class structure”, and “ordinal variables scale.” For
every complete data matrix, the set of true parameters are computed. Each of these
1,600 data matrices is then subjugated to each of the three missingness mechanisms.
All of the matrices with missing data are then imputed by all six hot decks using all
four donor limits. Repeating this process ten times creates 3.456 million imputed
data matrices, for which each parameter set is recalculated.
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Considering every parameter in the set, the relative deviation �p between the
true parameter value pT and the estimated parameter value pI , based on the imputed
data matrix, is calculated as follows:

�p D pI � pT

pT
(1)

To analyze the impact of different donor limits on the quality of imputation, the
differences in the absolute values of �p, that can be attributed to the change in
donor limitation, are considered. Due to the large data amounts that are generated in
this simulation, statistical significance tests on these absolute relative deviations are
not appropriate. Cohen’s d measure of effect (Cohen 1992; Bortz and Döring 2009)
is chosen as an alternative. The calculation of d, for this case, is as follows:

d D j� Np1j � j� Np2jq
s21Cs22
2

(2)

� Np1 and � Np2 are the means of all relative deviations calculated via (1) for two
different donor limits. s21 and s22 are the corresponding variances in the relative
deviations. Using absolute values for � Np1 and � Np2 allows interpreting the sign
of d. A positive sign means that the second case of donor limitation performed
better than the first, while a negative sign means the converse. Cohen (1992) does
not offer a threshold value above which an effect is nontrivial. He does, however,
consider effects around 0.2 as small. Fröhlich and Pieter (2009) consider 0.1,
the smallest value for which Cohen presents tables, as threshold for meaningful
differences.

4 Results

Based on the simulations results, the formulated research questions are now
answered. Section 4.1 answers the question of whether post-imputation parameter
estimates are affected by a donor limit. The next Sect. 4.2 answers what factors
influence whether a donor limit is advantageous.

4.1 Analysis of Donor Limitation Advantages

If a donor limit does not influence the hot deck method’s effectiveness, any of
the four donor limits investigated would be equally capable of delivering optimal
imputation results. To this end, the relative frequency, with which a particular donor
limit leads to the smallest imputation bias, is tabulated. The results are given in
Table 1.
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Table 1 Frequency distribution of minimum imputation bias

Donor limit

Evaluated parameter Once 25 % 50 % Unlimited

Quantitative Mean 42.71 % 20.22 % 18.48 % 18.60 %
variables Variance 54.05 % 17.79 % 13.04 % 15.12 %
Ordinal Median 46.41 % 21.53 % 14.47 % 17.59 %
variables Quartile distance 56.83 % 16.24 % 12.94 % 13.99 %
Binary variables Relative frequency 49.42 % 18.94 % 15.07 % 16.57 %

The table shows that in most cases donor selection without replacement leads to
the best parameter estimation. Measures of variability are more strongly affected
than location parameters. The table also indicates that for all parameters the
frequency first decreases with a more lenient donor limit and then increases
again with unlimited donor usage. This reveals the situation dependent nature of
advantages offered by donor limitation. Apparently, given a set of situation defining
factors, an optimal donor limit exists.

4.2 Analysis of Main Effects

Table 2 shows the cross classification of effects, between the two static donor
limits, for all factor levels against the set of evaluated parameters. Effect sizes with
an absolute value larger than 0.1 are in bold, with negative values indicating an
advantage for the most stringent donor limit.

Upon analysis of the results, the first conclusion that can be reached is that,
independent of any chosen factors, there are no meaningful differences between
using a donor limit and using no donor limit in mean and median estimation.
In contrast to this, parameters measuring variability are more heavily influenced
through the variation of the chosen factors. Especially data matrices with a high
proportion of missing data, as well as those imputed with SimDM will profit from
a donor limitation. Also a high amount of imputation classes speaks for a limit on
donor usage.

The effects that dimensions of the data matrix and the object amount per
imputation class have are ambiguous. Class structure and usage any of the random
hot deck or SeqDW have no influence on whether a donor limit is advantageous.
Fairly conspicuous is the fact that SimDW leads to partially positive effect sizes
meaning that leaving donor usage unlimited is advantageous. This might lead to
interesting higher order effects, the investigation of which are beyond the scope of
this paper.
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Table 2 Effect sizes for each factor

Ordinal
variables

Binary
variables

Quantitative variables Quartile
distance

Relative
frequencyMean Variance Median

Imputation 2 0.000 �0.068 �0.001 �0.029 �0.072
class count 7 0.000 �0.147 �0.003 �0.115 �0.090
Object count per 50 0.000 �0.112 �0.001 �0.073 �0.028
imputation class 250 0.000 �0.090 �0.005 �0.041 �0.141
Class Strong 0.000 �0.092 �0.001 �0.072 �0.072
structure Weak 0.000 �0.094 �0.001 �0.045 �0.080

.100 � 9/ 0.000 �0.082 �0.001 �0.030 �0.034
Data matrix .350 � 9/ 0.000 �0.177 �0.005 �0.152 �0.022
dimension .500 � 9/ 0.000 �0.064 �0.004 �0.030 �0.130

.1750 � 9/ 0.001 �0.146 �0.006 �0.065 �0.162

Portion of 5 % 0.000 �0.025 0.000 �0.013 �0.011
missing data 10 % 0.000 �0.071 0.000 �0.037 �0.051

20 % 0.000 �0.148 0.000 �0.100 �0.129

Missingness MCAR 0.001 �0.088 �0.001 �0.053 �0.065
mechanism MAR 0.000 �0.100 0.000 �0.066 �0.086

NMAR 0.001 �0.091 0.000 �0.058 �0.077
SimDW �0.001 0.153 �0.002 0.025 0.075
SimDM �0.004 �0.339 0.005 �0.214 �0.338

Hot Deck SeqDW 0.001 �0.007 �0.003 0.000 �0.005
method SeqDM 0.000 �0.088 0.010 �0.133 �0.041

SimR 0.000 �0.001 �0.001 �0.004 0.000
SeqR 0.000 �0.001 0.000 �0.001 �0.003

5 Conclusions

The simulation conducted shows distinct differences between hot deck imputation
procedures that make use of donor limits. Limiting donor usage is not advantages
under all circumstances, as allowing for unlimited donor usage leads to best
parameter estimates under some circumstances.

In some situations, a stringent donor limit leads to better parameter estimates.
Splitting the data into a higher amount of imputation classes leads to a better
estimation of variance and quartile distance for quantitative and ordinal variables,
respectively. For few objects per imputation class, the variance of quantitative
variables is better estimated with a donor limit, while binary variables with more
objects per imputation class profit from a donor limit. This is also the case for
data matrices with high amounts of missingness. With MAR present, donor limited
imputation offers a slight advantage for the estimation of quantitative variables’
variance. Estimation of location, such as mean and median, are not influenced by a
donor limit.
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Next to the data’s properties, the hot deck variant used to impute missing data
plays an important role. Dependent on the method chosen, a donor limit is either
advantageous, disadvantageous or without effect on parameter estimation. SimDM
and SeqDM both perform better with, while SimDW performs better without a
donor limit. Both random hot decks and SeqDW are unaffected by limiting donor
usage.

The results are expected to generalize well for a wide range of situations, with
an especially valuable conclusion being that different donor limits can lead to very
different results. Nonetheless, the study does have some important limitations. First,
while the simulated missingness mechanisms, where two groups have different
response propensities, cover a broad range of situations, many more MAR and
NMAR mechanism types are conceivable. Second, the amount of imputation classes
do not represent the extreme cases of what is to be expected. In practice, especially
when data matrices are larger, the amount of imputation classes can be larger. Third,
good imputation results are undoubtedly dependent on the definition of similarity.
This covers not only the distance function, but also the definition of imputation
classes. The effect of either being ill defined can be expected to outweigh the effect
of choosing the proper donor limit. However, the investigation of these factors is
well beyond the scope afforded by this paper.

Careful selection of a donor limit will, in certain situations, improve parameter
estimation. Since for some cases neither donor selection with or without replace-
ment will lead to best imputation results, there must be an optimal, situation
dependent donor limit. Thus, the development of further recommendations, based
on a more detailed investigation of the underlying interactions between the factors,
which may culminate in a data driven donor limit selection procedure, is an
interesting point for further research.
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The Most Dangerous Districts of Dortmund

Tim Beige, Thomas Terhorst, Claus Weihs, and Holger Wormer

Abstract In this paper the districts of Dortmund, a big German city, are
ranked concerning their level of risk to be involved in an offence. In order
to measure this risk the offences reported by police press reports in the
year 2011 (Presseportal, http://www.presseportal.de/polizeipresse/pm/4971/polizei-
dortmund?start=0, 2011) were analyzed and weighted by their maximum penalty
corresponding to the German criminal code. The resulting danger index was
used to rank the districts. Moreover, the socio-demographic influences on the
different offences are studied. The most probable influences appear to be traffic
density (Sierau, Dortmunderinnen und Dortmunder unterwegs—Ergebnisse einer
Befragung von Dortmunder Haushalten zu Mobilität und Mobilitätsverhalten,
Ergebnisbericht, Dortmund-Agentur/Graphischer Betrieb Dortmund 09/2006,
2006) and the share of older people. Also, the inner city parts appear to be much
more dangerous than the outskirts of the city of Dortmund. However, can these
results be trusted? Following the press office of Dortmund’s police, offences might
not be uniformly reported by the districts to the office and small offences like pick-
pocketing are never reported in police press reports. Therefore, this case could also
be an example how an unsystematic press policy may cause an unintended bias in
the public perception and media awareness.
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1 Introduction

The paper is the result of a project together with data journalists, who were
particularly interested in the prejudice of some citizens of Dortmund that the district
Innenstadt Nord is especially dangerous. To find an answer to this question some
methodological problems have to be overcome such as how danger can actually be
measured. Section 2 gives information about the used response variables. In Sect. 3
different influential factors on danger in a district are discussed as well as outcomes
of regression models. Finally, the development and analysis of a danger index is
presented in Sect. 4.

2 Responses

How can danger be measured? This project deals with different types of offences.
It is based on a data set which is created by the Dortmund police press releases of
the year 2011 (see www.presseportal.de). In our case, incidents or non-crime reports
such as demonstrations, announcements, public relations and similar press reports
are not considered. Overall, 1,053 press releases are cataloged. Each data row or
rather each offence contains several variables. The variable offence specifies the type
of offence. This nominally scaled variable includes the considered characteristic
attributes of this project, which are recorded in Table 3 among other aspects.
Figure 1 shows a descriptive analysis of the frequency of offences which are used
as response variables y later in Sect. 3.3, see also Table 3. Furthermore, there is a
nominally scaled variable specifying the district in which the offence took place.
These are the districts of Dortmund as defined by official statistics. In addition to
these variables, the street is given for a more accurate description of the crime scene.
If a street is located in several districts it has been allocated to that district in which
the longer part of the street is situated.

There are deficits in the response data set. Some of the variables have missing
values, others are inaccurate. Only the complete 825 press releases are used for
counting the offences in the 12 districts of the city of Dortmund.

3 Modeling the Offences

This section describes the statistical modeling of offences.

3.1 Factors of Influence

Let us first discuss different factors xi of influence. First, socio-demographic
factors are considered such as population density given in inhabitants per hectare,

www.presseportal.de
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Fig. 1 Types of offences used in the study and their occurrence in the districts

the registered number of inhabitants in the district, the number of recorded
unemployed people in the district, the unemployment rate, i.e. the unemployed
people as a share of labor force (15–65 years old people), as well as the number
of social security recipients (persons getting SGB-II). Furthermore, the share of
migrants in the population is considered as a characteristic of the social structure of
a district.

In addition, as a geographic factor the area size given in hectare is available in
the data set. The demographic factors examined in the project are all ratios to labor
force, including the youth rate for under 15 year old people, the old rate for over 65
year old people, as well as the very old rate for over 80 year old people. Moreover,
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Table 1 Number of ways between starting point and destination

some political factors of influence are examined, too, namely the shares of extreme
right-wing and left-wing voters in the local elections of 2009 . Here, extreme left
means voters of the party “Die Linke”, while extreme right means voters of the
party DVU.

Finally, there is an indicator for traffic density based on a representative survey
study in 2005 (Sierau 2006). Table 1 contains the number of ways passed inside
Dortmund on the representative day of the survey. It includes ways inside a district
and ways from one district to another. For a district, not only the number of ways
inside a district is counted, but also all outgoing and incoming ways to the district,
as well as all intersecting ways going through the district when starting point and
destination are not in adjacent districts. These intersecting ways are determined by
using the main streets of Dortmund, precisely the A40, A45, B1, B54, B236 and
the Malinckrodtstraße are chosen as main traffic routes. After all ways had been
considered, an index is obtained which can be used as a measure of traffic density.

3.2 Quality of Influence Data

The factors of influence in the data set are not of identical quality. All variables
except of the traffic density and the election results are taken from the annual
statistical report of Dortmund from 2011. Similarly accurate are the election results
which have been determined by the city of Dortmund. They are based solely on
elections in 2009. The traffic density relies on a study in 2005 (see Sierau 2006,
p. 32) and is estimated using the method described in Sect. 3.1. This variable may
not be that accurate, particularly since the estimates are based solely on the motion
profile of Dortmund citizens. Any commuters or tourists are not considered.
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Table 2 Correlations between possible factors of influence

Ways UR Pop d Migr. Yr Or Right Left

Traffic density 1.00
Unemployment rate �0.07 1.00
Population density 0.77 0.31 1.00
Share of migrants �0.05 0.95 0.33 1.00
Youth rate �0.80 0.52 �0.48 0.54 1.00
Old rate �0.23 �0.85 �0.50 �0.82 �0.20 1.00
Extreme right-wing voters �0.47 0.28 �0.32 0.19 0.43 �0.35 1.00
Extreme left-wing voters 0.10 0.95 0.44 0.95 0.40 �0.86 0.14 1.00

3.3 Regression Results for the Factors of Influence

For statistical modeling we use a linear model of the form y D ˇ0 C ˇ1x1 C
� � � C ˇkxk C "; where the response y and the influential factors xi are observed
for the 12 districts of the city of Dortmund, and " is normally distributed with zero
mean and variance �2. Model fitting is based on the AIC criterion with backward
selection. For ease of interpretation, it is helpful that the variables included in the
model are (at least nearly) uncorrelated. Therefore, the Bravais–Pearson correlations
of the influential factors are examined first. The variable social security recipients
is particularly highly correlated with unemployed people and unemployment rate,
and also population density with area as well as the very old rate with the old rate.
It is obvious that one of these variables may (at least nearly) sufficiently explain
the corresponding other variables. Therefore it is merely sufficient to put just one
of these variables in the model. Also the variable population is not included in
the model, but only the corresponding rate “population density” in order to avoid
size effects in model building. Based on this, we decided to only consider eight
rates in the model, namely traffic density, unemployment rate, population density,
share of migrants, youth rate, old rate, and the shares of the right-wing and left-
wing voters. Please note, however, that due to an outlier there are still some high
correlations between some influential factors (see Table 2).

Using these eight factors in the linear model let us first check, whether the
normality assumption of the linear model is fulfilled. Figure 2 shows a QQ-plot
illustrating that the model residuals are quite normal, e.g., for the response variable
criminal damage. Also for the other offences, the assumption is reasonably fulfilled.

As examples, let us roughly discuss the greatest influences on traffic accidents
and robberies in the models. A more detailed model discussion will be given for the
danger index in Sect. 4. Not surprisingly, for traffic accidents this is traffic density
(p-value in t-test equal to 0.0068). Higher traffic density leads to more accidents. But
also a higher old rate increases the risk of accidents. Even on robberies the indicator
for traffic appears to be significantly positive. That can be explained by the fact that
when there are more people the probability of an attack is higher. On the contrary,
a high old rate reduces risk of robberies. In general, the traffic density is usually
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Fig. 2 QQ-plot for the model
with the response variable
criminal damage with an
estimated confidence interval
at the 95 % level for each data
point

positively significant because it is an indicator for the number of people which spend
time in the district. The goodness of fit of the models was always high. Having
realized one outlier in the influential factors, L1-methods could be an alternative for
model building. Fortunately, elimination of the outlier did not change the regression
coefficients too much. For model building the software R was used (R Development
Core Team 2011).

4 Danger Index

Finally, a danger index is created whose value indicates the overall danger for each
district. In order to weight the different types of crime, the German criminal code
is used. Each offence obtains the maximal penalty as a weight (see Table 3). After
that, the weighted offences are summed up as an index for each district. Table 4
shows the values of the calculated danger index for the districts of Dortmund while
Fig. 3 illustrates the results using a grey-shaded city map. According to this index,
Innenstadt Nord has the highest danger potential while Huckarde would be the safest
district in Dortmund. Let us examine which influential factors affect the overall
danger. The variables selected by backward selection with AIC are shown in Table 5
together with their estimated coefficients Ǒ and p-values. Moreover, we report
the corresponding values Ǒ

s for the model without the insignificant factors. This
elimination only leads to a small decrease ofR2 from 0.952 to 0.944. Our modeling
shows that a high share of extreme right-wing voters as well as a high old rate
is associated with lower danger in a district. Contrary to this, the traffic density
significantly increases the risk of becoming a victim of crime or accidents.



The Most Dangerous Districts of Dortmund 19

Table 3 Offences with their maximum penalty in years

Offence Max penalty Offence Max penalty

Traffic accident with hit-and-run 3 Bodily harm 5
Dangerous disruption of air traffic 10 Attempted bodily harm 5
Traffic accident 0 (0.1)a Criminal damage 2
Wrong way driver 5 Suicide 0
Robbery 5 Attempted suicide 0
Aggravated robbery 10 Murder 1 (25)b

Attempted robbery 5 Attempted murder 1 (25)b

Burglary 10 (5)c Missing 0
Theft 5 Breach of public peace 3
Attempted theft 5 Drug possession 5
Hit-and-run 3 Animal murder 3
Receiving stolen goods 5
a In the German criminal code (StGB) no imprisonment for traffic accidents is provided. To add
this delict nevertheless, it is evaluated with the weak factor of 0.1
b In accordance to sec. 211 §(1) murder is in Germany liable by life imprisonment. This penalty
means to be liable for an indefinite period, but at least 15 years. In addition to this, there are 5 years
probation because of sec. 56a §(1), plus 2 years suspension period of eligibility of the convict in
according to sec. 57a §(4). Therefore, the total penalty for murder is 22 years. Afterwards the
convict can put into an application for releasing from custody. Currently, these applications are
usually accepted after the second or third application, therefore after 2 or 4 years. For calculating
the danger index, murder is thus indicated by 22C3D25
c According to StGB sec. 243 §(1) No. 1 burglary can be penalized with up to 10 years in prison.
This occurs only in exceptional cases. In general, burglary is a case of section 243 §(1) No. 2 and
is listed with 5 years imprisonment as maximum penalty

Table 4 Danger index for 2011

District Danger index District Danger index

Innenstadt Nord 666.50 Lütgendortmund 134.70
Innenstadt West 635.80 Hörde 133.90
Innenstadt Ost 318.50 Scharnhorst 126.80
Hombruch 160.20 Brackel 123.10
Eving 156.20 Mengede 112.70
Aplerbeck 136.00 Huckarde 89.10

5 Problems with the Data Base

The Dortmund police press office who was finally confronted with the results of
our estimation warns about over-interpreting the study. They stress that one should
have in mind that the published press releases are chosen solely for media. This
means it is decided how interesting the publications of the incidents are, e.g.,
for the newspapers in Dortmund. Smaller offences like pick-pocketing are barely
mentioned. Therefore, the evaluation of the releases could draw a wrong picture of
the offence distribution. Also, according to the press office some colleagues on the
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Fig. 3 Danger index in the city of Dortmund

Table 5 Regression results for the danger index after backward selection

Factor of influence Ǒ jt j p-value Ǒ
s jtsj p-values

Intercept 1,000.867 2.676 0.0440 1,241.062 8.932 < 0:0001

Population density �2.382 �0.997 0.3646
Traffic density 0.085 2.844 0.0361 0.051 2.784 0.0238
Unemployment rate �11.001 �1.042 0.3452
Share of migrants 7.160 1.878 0.1192
Old rate �25.585 �3.647 0.0148 �30.062 �10.230 < 0:0001

Share of right-wing �72.994 �3.207 0.0238 �87.738 �4.465 0.0021

various police stations have to be encouraged to submit their press releases while
others lavish with releases on the press office. This effect may be reflected in the
ranking.

6 Summary and Outlook

This study examined the danger in the districts of Dortmund in the year 2011.
Offences are weighted by means of the corresponding maximum penalty in the Ger-
man criminal code. Different regression models estimate whether some influential
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factors increase or decrease the risk of an offence. The general conclusion might
be that more crimes occur where lots of people meet together, so when the traffic
density is high. In contrast to this, districts with higher old rates reduce the risk of
robberies, thefts and bodily harm, but increase the risk of accidents significantly.

A major problem within this project is the small sample size. Although sufficient
offences (1,053) are identified, which are spread on just 12 districts. Because of this,
it is difficult to analyze the factors of influence properly. In particular, the sensitivity
with respect to outliers is large. It would be advisable to extend the study to North-
Rhine-Westphalia or to use the statistical sub-districts of Dortmund to enlarge the
sample size. In the latter case it would be necessary to observe the offences for
a longer time period to obtain a sufficient number of observations. Perhaps this
also could decrease the correlation problem. Furthermore, other influential variables
could be examined, e.g. social welfare data or an indicator which classifies a
shopping district. This could clarify the results overall.

References

R Development Core Team. (2011). A language and environment for statistical computing. Wien,
Österreich: R Foundation for Statistical Computing. URL http://www.R-project.org/. ISBN
3-900051-07-0.

Sierau, U. (2006). Dortmunderinnen und Dortmunder unterwegs - Ergebnisse einer Befragung
von Dortmunder Haushalten zu Mobilität und Mobilitätsverhalten, Ergebnisbericht. Dortmund-
Agentur/Graphischer Betrieb Dortmund 09/2006.

http://www.R-project.org/


Benchmarking Classification Algorithms
on High-Performance Computing Clusters

Bernd Bischl, Julia Schiffner, and Claus Weihs

Abstract Comparing and benchmarking classification algorithms is an important
topic in applied data analysis. Extensive and thorough studies of such a kind will
produce a considerable computational burden and are therefore best delegated
to high-performance computing clusters. We build upon our recently developed
R packages BatchJobs (Map, Reduce and Filter operations from functional
programming for clusters) and BatchExperiments (Parallelization and man-
agement of statistical experiments). Using these two packages, such experiments
can now effectively and reproducibly be performed with minimal effort for the
researcher. We present benchmarking results for standard classification algorithms
and study the influence of pre-processing steps on their performance.

1 Introduction

Assessing the performance of (supervised) classification methods by means
of benchmark experiments is common practice. For example, a well-known
study of such a kind was conducted in the StatLog project (King et al. 1995).
Benchmark studies often require large computational resources and are therefore
best executed on high-performance computing clusters. Bischl et al. (2012) have
recently developed two R packages BatchJobs and BatchExperiments
that allow to comfortably control a batch cluster within R. An interesting
problem that can be investigated by means of a benchmark study is the impact
of data pre-processing operations on the performance of classification methods.
Questions of interest are for example: “How often does pre-processing lead to
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a considerably increased/decreased performance?” or “Are there pre-processing
steps that work well with certain classification methods?”. There are many case
studies available which report that certain pre-processing options work well for
the classification problem at hand. We have found also some studies that compare
several pre-processing options (e.g. Pechenizkiy et al. 2004), but many of them
consider only very few classifiers and/or classification problems. To our knowledge
there are no larger studies that systematically investigate the usefulness of several
pre-processing options and their combinations for several classification methods
and a larger number of data sets (cp. e.g. Crone et al. 2006).

We investigate the effect of three common steps, outlier removal, principal com-
ponent analysis and variable selection and their combinations on the performance
of eight standard classification methods based on 36 benchmark data sets. Data
pre-processing is discussed in Sect. 2. In Sect. 3 the design of the benchmark study
is described. Section 4 addresses some technical details concerning the execution of
the study by means of the R packages BatchJobs and BatchExperiments.
The results are given in Sect. 5. Section 6 summarizes our findings and provides an
outlook to future research.

2 Data Pre-processing

In supervised classification we are given a training data set f.xi ; yi /; i D 1; : : : ; ng,
where xi 2 R

p, i D 1; : : : ; n, are realizations of p random variables. We suppose
that there are pnum numerical and pcat categorical variables (pnum C pcat D p), and
write xi D .xi;num;xi;cat/. Each observation has a class label yi D k 2 f1; : : : ; Kg.
The number of training observations from class k is denoted by nk .

In the following we describe the three pre-processing steps, outlier removal,
principal component analysis and variable selection, investigated in our study.

It is well known that if classical classification methods are applied to data
containing outliers their performance can be negatively affected. A universal way
to deal with this problem is to remove the outliers in an initial pre-processing step.
In our study the identification of outliers is based on the numerical variables only
and every class is considered separately. We use a common approach based on a
robust version of the Mahalanobis distance. For each class k we calculate

RMk
i D

q
.xi;num � O�k;MCD/

0 Ȯ �1
k;MCD.xi;num � O�k;MCD/ (1)

for all i with yi D k. O�k;MCD 2 R
pnum and Ȯ

k;MCD 2 R
pnum�pnum are the class-

specific minimum covariance determinant (MCD) estimates of location and scatter
of the numerical variables computed by the Fast MCD algorithm (Rousseeuw
and van Driessen 1999). The i -th observation is regarded as outlier and .xi ; yi /
is removed from the training set if RMk

i > �2pnum;0:975
(the 0.975-quantile of

the �2-distribution with pnum degrees of freedom). For MCD estimation only the
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Table 1 Misclassification rates of CART on the threenorm problem obtained by using the p
original variables and all p principal components

p 2 4 6 8 10 12 14 16 18 20

Original variables 0.04 0.07 0.11 0.12 0.16 0.14 0.19 0.20 0.22 0.21
Principal components 0.03 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01

hk < nk observations whose covariance matrix has the lowest determinant are used.
hk is calculated by

hk D
(
mk if ˛ D 0:5

b2mk � nk C 2.nk �mk/˛c if 0:5 < ˛ < 1
(2)

with mk D b.nkCpnumC1/=2c (Rousseeuw et al. 2012). In our study, for each class the
same ˛-value is used and ˛ is tuned as described in Sect. 3.

Principal Component Analysis (PCA) converts a set of variables via an orthog-
onal transformation into a set of uncorrelated variables that are called principal
components. In our study a PCA is conducted for the numerical variables, which
are scaled to zero mean and unit variance first, based on all training observations.
The original observations xi;num can be replaced by the PCA scores zi 2 R

pnum

resulting in a training set with elements ..zi ;xcat
i /; yi /. Usually, PCA is used for

dimension reduction and just the first few principal components that explain a fixed
large percentage of the total variance are selected. Alternatively, the most important
principal components can be chosen via some variable selection method. But even
if no dimension reduction is done, the rotation of the original data may have a
positive effect on the classification performance. As an illustration we consider the
threenorm problem of Breiman (1996), an artificial binary classification problem.
The data for the first class are drawn with equal probability from two p-dimensional
standard normal distributions with mean .a; a; : : : ; a/0 2 R

p and .�a;�a; : : : ;�a/0
respectively. The second class is drawn from a multivariate normal with mean
.a;�a; a;�a; : : :/0 where a D 2=p

p. The dimension p was varied from 2 to 20 and
for each p we generated a training and a test data set of size 1,000. A classification
tree (CART) was fitted to the training data and predicted on the test data. As
Table 1 shows, the misclassification rate of CART obtained on the original variables
increases with the dimension p. Moreover, a PCA was conducted on the training
data and all p principal components were used in place of the original variables.
In this case the error rate of CART is nearly zero, even for large values of p.
However, since PCA does not take class labels into account, it is not guaranteed
that the principal components are helpful for discriminating the classes. Moreover,
PCA captures only linear relationships in the data. For this reason kernel PCA or
(kernel) Fisher Discriminant Analysis are also in use. But since we found that PCA
is regularly applied and that, to our knowledge, there are only few studies that assess
the impact of PCA pre-processing in classification (e.g. Pechenizkiy et al. 2004),
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Fig. 1 Pre-processing steps done before training and predicting a classifier

PCA is investigated in our study. As described above we conduct a PCA for the
numerical variables based on all training observations. We either use all components
in place of the original variables or choose only some of them by applying a variable
selection method in the next step.

For variable selection we consider a filter approach. Filter methods rank the
variables according to some importance measure. In order to reduce the number
of variables based on this ranking, it is common to select either all variables with
an importance value larger than a fixed threshold or a certain percentage of highest
ranked variables (cp. Guyon and Elisseeff 2003). We employ the latter approach
and use the mean decrease in accuracy in random forests as importance criterion.
In contrast to the first two pre-processing steps, numerical as well as categorical
variables are taken into account. The percentage of selected variables is tuned as
described in Sect. 3.

Figure 1 summarizes the pre-processing steps conducted every time when
training a classifier (left-hand side) and when making predictions (right-hand side).
The three pre-processing operations are applied in the displayed order from top to
bottom. Outlier removal, PCA and variable selection are conducted solely on the
data used for training. The scaling parameters and the rotation matrix determined
by PCA, as well as the names of the selected variables, are stored and the test data
are transformed accordingly when making predictions. The switch symbols between
the individual pre-processing steps in Fig. 1 indicate that every single step can be
activated or deactivated. Thus, there exist 23 D 8 possible pre-processing variants
(including the case where no pre-processing is done at all).
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Table 2 Classification methods and pre-processing steps under consideration

Hyper- Box
Method parameters constraints R package

ro Outlier removal ˛ Œ0:5; 1� robustbase
pca PCA – – stats
fil Filter Percentage Œ0:7; 1� FSelector
lda Linear discriminant analysis – – MASS
multinom Multinomial regression – – nnet
qda Quadratic discriminant analysis – – MASS
naiveBayes Naive Bayes – –
rbfsvm Support vector machine C Œ2�10; 210� kernlab

with RBF kernel sigma Œ2�10; 210�

nnet Neural networks decay Œ0:001; 0:1� nnet
rpart CART decision tree cp Œ0:001; 0:1� rpart

minsplit f5; : : : ; 50g
randomForest Random forest ntree f100; : : : ; 2000g randomForest

3 Study Design

In order to assess the impact of the pre-processing operations described
in Sect. 2 on the performance of classification methods we have used the
following experimental setup: For every classifier we considered all eight
possible pre-processing variants. Prediction performance was evaluated by
using nested resampling and measuring the misclassification error rate. In the
outer loop, the complete data set was subsampled 30 times, producing 30
(outer) training data sets of size 80 % and 30 (outer) test sets of size 20 %.
If a classifier (with pre-processing) had q >0 associated hyperparameters,
these were tuned on the training data set by measuring the misclassification
rate via threefold cross-validation. Tuning was performed by choosing an
effective sequential model-based optimization approach, in which the true
relation between the parameters and the performance is approximated by a
kriging regression model in each iteration (Jones et al. 1998; Koch et al.
2012). In every iteration the so called expected improvement was maximized
to generate a new promising design point to visit subsequently. The budget
for the optimization process was 10q evaluations for an initial latin hypercube
design and 40q evaluations for sequential improvements. After tuning, the best
parameter combination was selected, the model was trained on the complete (if
necessary pre-processed) outer training data set and the (pre-processed) outer
test set was predicted. Table 2 shows the pre-processing steps and classification
methods under consideration and displays the box constraints for the optimized
hyperparameters.

We used 36 data sets from the UCI Machine Learning Repository. Table 3
provides a survey of basic properties of the data sets.
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Table 3 Data sets taken from the UCI repository. Displayed are the number of observations and
the number of numerical and categorical variables

Data obs num cat Data obs num cat

BalanceScale 625 4 0 LiverDisorders 345 6 0
BloodTransfusion 748 4 0 MolecularBiologyPromoters 106 0 57
BreastCancer 699 0 9 Monks3 122 6 0
BreastCancerUCI 286 0 9 Parkinsons 195 22 0
BreastTissue 106 9 0 Phoneme 4,509 256 0
Cmc 1,473 2 7 PimaIndiansDiabetes 768 8 0
CoronaryHeartSurgery 1,163 2 20 SAheart 462 8 1
Crabs 200 5 1 Segment 2,310 19 0
Dermatology 366 1 33 Shuttle 256 0 6
Glass2 163 9 0 Sonar 208 60 0
GermanCredit 1,000 7 13 Spambase 4,601 57 0
Haberman 306 2 1 Spect 80 0 22
HayesRoth 132 4 0 Spectf 80 44 0
HeartCleveland 303 6 7 Splice 3,190 0 60
HeartStatlog 270 13 0 TicTacToe 958 0 9
Ionosphere 351 32 1 Vehicle 846 18 0
Iris 150 4 0 VertebralColumn 310 6 0
KingRook_vs_KingPawn 3,196 0 36 Waveform5000 5,000 40 0

4 BatchExperiments and Parallelization Scheme

Bischl et al. (2012) have recently published two R packages BatchJobs and
BatchExperiments for parallelizing arbitrary R code on high-performance
batch computing clusters. The former enables the basic parallelization of Map
and Reduce operations from functional programming on batch systems. In this
study we have used BatchExperiments, as it is especially constructed for
evaluating arbitrary algorithms on arbitrary problem instances. A problem instance
in our case is a classification data set, while an algorithm application is one run of
tuning, model-fitting and test set prediction for one classifier with pre-processing
operations. This leads to 36 datasets � 30 iterations of outer subsampling � 8
classifiers � 8 preprocessing variants = 69,120 jobs. It should be noted that one
computational job is already quite complicated as it contains up to 200 iterations of
tuning via sequential model-based optimization. Due to space limitations we cannot
go into more technical details how the code is structured, but refer the reader to
Bischl et al. (2012), who demonstrate the parallelization of a simple classification
experiment for the well-known iris data set. Job runtimes were quite diverse and
ranged from a few seconds to more than 18 h, depending on the classifier and data
set, summing up to more than 750 days of sequential computation time.
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5 Results

In order to analyze the results we have used the non-parametric Friedman test as
a means of comparing the locations of the 30 misclassification rates per classifier
(0.05 level of significance). Significant differences were detected by post-hoc
analysis on all pairs of considered classifiers. We controlled the family-wise error
rate through the usual procedure for multiple comparisons for this test as outlined in
Hollander and Wolfe (1999). We have performed comparisons in two different ways:
First, we compared in the group of basic classifiers without any pre-processing (to
figure out which classifiers worked best in their basic form), then we compared
in 8 groups of the 8 pre-processing variants of each classifier (to figure out which
pre-processing operations worked best for which classifiers). In Table 4 the main
aggregated results of this study are presented: The first row displays how often each
basic classifier was among the best basic methods for each of the 36 considered
data sets. “Among the best” here means that it was not significantly outperformed
by another basic method. The rows labeled “ro” (outlier removal), “pca” (PCA)
and “fil” (variable selection) count how often a classifier was significantly improved
by adding only the respective pre-processing operation. The number in parentheses
indicates how often the classifier was significantly worsened by doing this. The last
line counts how often a classifier was significantly improved by comparing it to the
best of the seven pre-processing variants of itself.

It is in line with theoretical considerations of the eight basic classifiers that
(a) non-robust methods like lda and naiveBayes benefit from outlier removal, (b)
a method like naiveBayes, which assumes independent variables given the class,
benefits from decorrelating the variables by PCA and (c) that the performance of
methods like naiveBayes and qda can deteriorate with an increasing number of
variables and therefore a filter method might be helpful. Table 5 displays some
additional selected results, where extremely large absolute error reductions were
observed.

Unfortunately not every (tuned) pre-processing operation will always either
improve the model or result in comparable performance. The filtering operation is
an exception here (see Table 4). This is due to the fact that setting the percentage
parameter of the filter operator to 1 results in the basic classifier with all variables,
and our tuning process is apparently able to detect this for the data sets where this
is appropriate. Actually, this should be the preferable behavior of the operator for
outlier removal as well: When it is best to remove no data point, tuning should detect
this and fall back to the basic model. The reason that this does not perfectly work in
all of our experiments, points to the fact that the quantile value of the �2- distribution
for outlier removal should have been included in tuning as well. In summary: If
one is interested in the absolute best model for a given data set, we recommend to
tune across the whole model space of all reasonable pre-processing variants. This
is time-consuming, but can again be sped up by parallelization (and the use of our
packages).
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Table 4 Main aggregated results, for details see text in this section

rbfsvm lda multinom naiveBayes nnet qda randomForest rpart

Basic 32 (–) 14 (–) 17 (–) 13 (–) 13 (–) 5 (–) 25 (–) 13 (–)
ro 0 (4) 3 (4) 2 (7) 3 (4) 0 (2) 1 (8) 0 (4) 0 (3)
pca 0 (3) 1 (2) 0 (0) 7 (7) 6 (0) 1 (0) 2 (8) 3 (8)
fil 2 (0) 1 (0) 1 (0) 5 (0) 3 (0) 5 (0) 1 (0) 0 (0)
any 2 (–) 6 (–) 4 (–) 14 (–) 9 (–) 10 (–) 5 (–) 3 (–)

Table 5 Some selected results where strong improvements
occurred

Data Learner Pre-processing Error reduction

BreastTissue nnet pca 0.226
Crabs naiveBayes pca 0.361
Crabs randomForest ro+pca+fil 0.083
Haberman qda pca+fil 0.125
HayesRoth lda ro 0.122
HayesRoth multinom ro+fil 0.086
Segment nnet pca+fil 0.221
Spectf lda ro+fil 0.121
Spectf nnet pca+fil 0.081

6 Summary and Outlook

In this article we have applied the R packages of Bischl et al. (2012) to perform a
large scale experimental analysis of classification algorithms on a high-performance
batch computing cluster. In this study, our goal was to analyze the influence of
various pre-processing operations on eight different classifiers. It appears that it
is possible to considerably improve the performance by data pre-processing in
some cases. However, for the majority of the investigated classification problems
pre-processing did not result in improvements. We can also see that for different
classifiers different pre-processing options are beneficial and that some classifiers
profit much more from the pre-processing steps in this investigation than others.
It was especially hard to improve upon the best performing basic method per data
set. Here, sometimes improvements around 1–2 % could be observed but as none of
these were significant we were reluctant to report these. We also think that it would
be useful for the community as a whole, if a digital repository would exist, where
results and descriptions of experiments, such as the ones conducted in this paper,
are stored in digital form.
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Visual Models for Categorical Data in Economic
Research

Justyna Brzezińska

Abstract This paper is concerned with the use of visualizing categorical data
in qualitative data analysis (Friendly, Visualizing categorical data, SAS Press,
2000. ISBN 1-58025-660-0; Meyer et al., J. Stat. Softw., 2006; Meyer et al., vcd:
Visualizing Categorical Data. R package version 1.0.9, 2008). Graphical methods
for qualitative data and extension using a variety of R packages will be presented.
This paper outlines a general framework for visual models for categorical data.
These ideas are illustrated with a variety of graphical methods for categorical
data for large, multi-way contingency tables. Graphical methods are available in
R software in vcd and vcdExtra library including mosaic plot, association plot,
sieve plot, double-decker plot or agreement plot. These R packages include methods
for the exploration of categorical data, such as fitting and graphing, plots and tests
for independence or visualization techniques for log-linear models. Some graphs,
e.g. mosaic display plots are well-suited for detecting patterns of association in
the process of model building, others are useful in model diagnosis and graphical
presentation and summaries. The use of log-linear analysis, as well as visualizing
categorical data in economic research, will be presented in this paper.

1 Introduction

This paper fully illustrates the use of modern graphical methods and visualiza-
tion techniques for categorical data in economic research. Categorical data are
usually presented in multi-way tables, giving the frequencies of observations cross-
classified by more that two variables (Friendly 2000; Meyer et al. 2006, 2008).
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Nowadays the dynamic development of computer software allows to analyse any
number of variables in multi-way tables. Visual representation of data depends on
an appropriate visual scheme for mapping numbers into patterns (Bertin 1983).
Discrete data often follow various theoretical probability models. Graphical displays
are used to visualize goodness-of-fit, to diagnose an appropriate model, and to
determine the impact of individual observations on estimated parameters (Friendly
2000). Many of the graphical displays for qualitative data are not readily available
in standard software and they are not widely used compared to plots for quantitative
data. Mosaic displays (two- and three-dimensional) and a doubledecker plot, will
be presented for the analysis of two- and multi-way tables. This paper describes
visual models and graphical techniques for categorical data in economic research
and presents their application with the use of R software in vcd and vcdExtra
packages.

2 Log-Linear Models for Contingency Tables

Most statistical methods are concerned with understanding the relationships among
variables. For categorical data, these relationships are usually studied from a con-
tingency table (two- or multi-way). Log-linear analysis provides a comprehensive
scheme to describe the association for categorical variables in contingency table.
Log-linear models are a standard tool to analyze structures of dependency in a
multi-way contingency tables. The criteria to be analyzed are the expected cell
frequencies as a function of all the variables. There are several types of log-
linear models depending on the number of variables and interactions included
(the saturated model, conditional independence model, homogeneous association
model, complete independence). Stepwise procedures are used for model selection.
The aim of a researcher is to find a reduced model containing only few parameters.
A reduced model is a more parsimonious model with fewer parameters and thus
fewer dependencies and effects. The hierarchy principle used in the analysis reveals
that a parameter of lower order cannot be removed when there is still a parameter of
higher order that concerns at least one of the same variable. By using this approach,
log-linear models are called hierarchical. The overall goodness-of-fit of the model
is assessed by comparing the expected frequencies to the observed cell frequencies
for each model. The goodness of fit of a log-linear model for a three-way table
H � J � K .h D 1; 2; : : : ;H; j D 1; 2; : : : ; J; k D 1; 2; : : : ; K/ can be tested
using either the Pearson chi-square test statistic or the likelihood ratio statistic:

G2 D 2

HX
hD1

JX
jD1

KX
kD1

nhjk � log. nhjk

mhjk
/; (1)

where: nhjk—observed cell frequency,mhjk—expected cell frequency.
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In order to find the best model from a set of possible models, additional
measurements should be considered. The Akaike information criterion (Akaike
1973) refers to the information contained in a statistical model according to the
equation:

AIC D G2 � 2 � df : (2)

Another information criterion is the Bayesian Information Criterion (Raftery
1986):

BIC D G2�df � log.n/: (3)

The model that minimizes AIC and BIC will be chosen.
The maximum likelihood method incorporating iterative proportional fitting is

used to estimate the parameters, and estimated parameter values may be used
in identifying which variables are of great importance in predicting the observed
values. However, estimation is not the main topic of this paper, and thus only model
selection and visual representation of log-linear models will be presented.

3 Problem of Unemployment in Poland

With the rising unemployment rate in recent years, unemployment is one of the
most important economic and social problems in Poland. According to the Central
Statistical Office of Poland the unemployment rate in October 2012 was 12,5 %.
A strong differentiation is observed in the unemployment rates for various parts of
Poland, especially for the young and university graduates, as well as for males and
females.

The data on the number of the unemployed by the level of education in
2010 in 16 voivodeships in Poland come from Demographic Yearbook of Poland
published by the Central Statistical Office of Poland. Three variables are considered:
Voivodeship (V) (lodzkie 1, mazowieckie 2, malopolskie 3, slaskie 4, lubel-
skie 5, podkarpackie 6, podlaskie 7, swietokszyskie 8, lubuskie 9, wielkopolskie
10, zachodniopomorskie 11, dolnoslaskie 12, opolskie 13, kujawsko–pomorskie 14,
pomorskie 15, warminsko–mazurskie 16), Education level (E) (higher, higher voca-
tional, high-school, lower vocational), Sex (S) (Male M, Female F). Voivodeships
(provinces) considered in the research are 16 administrative subdivisions of Poland
(from 1999). The sample size is 1,436,814.

A three-way table with Voivodeship, Education level and Sex will be analysed.
All possible log-linear models for a three-way table were built and the likelihood
ratio with degrees of freedom were computed. Two mosaic plots are presented
to display the residuals. The Goodman’s bracket notation is used to express the
model equation (Goodman 1970). For example [VE][VS] model allows association
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Table 1 Goodness of fit statistics for models with three variables

Model �2 G2 df p-value AIC BIC

[V][S][E] 77,280.71 79,283.84 108 0 79,067.84 77,752.62
[ES][V] 18,239.83 18,314.23 105 0 18104.23 16,825.55
[VE][S] 66,999.68 67,562.55 63 0 67,436.55 66,669.34
[VS][E] 75,805.59 76,031.78 93 0.014 75,845.78 74,713.23
[VS][ES] 14,948.51 15,062.17 90 0.291 14,882.17 13,786.16
[VE][ES] 6,593.30 6,592.94 60 0.014 6,472.94 5,742.26
[VE][VS] 63,838.36 64,310.49 48 0 64,214.49 63,629.95
[VE][VS][ES] 1,005.21 1,005.52 45 0 915.52 367.51
[VSE] 0 0 0 1 0.000 0.000

between Voivodeship (V) and Education level (E), as well as the interaction between
Voiodeship (V) and Sex (S), but it denies a direct link between Education level (E)
and Sex (S). All possible models for these three variables were tested.

The best fitting models, except the saturated model, are the homogeneous
association model [VE][VS][ES] and conditional independence model [VE][ES].
For the homogeneous association model [VE][VS][ES] the conditional odds ratios
for each pair of variables ([VE],[VS] and [ES]) given the third are identical at each
level of the third variable. For the homogeneous association model [VE][VS][ES]
G2D1005.52, df D45, AICD915.52, BICD367.51. The model [VE][VS][ES] allows
association between all possible two-way interaction terms: Voivodeship (V) and
Education level (E), Voivodeship (V) and Sex (S) as well as Education level (E)
and Sex (S). It means that in this model for each of the partial odds ratio for the
two variables given level of the third depends only on the corresponding two-
way interaction terms and does not depend on levels of the third variable. The
second best-fitting model is the conditional independence model [VE][ES]. For
this model the goodness-of-fit statistics are: G2D6592.94, df D60, AICD6472.94,
BICD5742.26. This model allows the association between Voivodeship (V) and
Education level (E) as well as between Education level (E) and Sex (S), but it denies
a link between Voivodeship (V) and Sex (S).

4 Visual Models for Categorical Data in R

Many statistical graphs for the exploration and modeling of continuous data have
been developed in statistics, however graphs for the interpretation and modeling of
categorical data are still rarely to be found (Anderson and Vermunt 2000; Rosmalen
et al. 1999). Several schemes for representing contingency tables graphically
are based on the fact that when the row and column variables are independent,
the expected frequencies are a product of the row and column totals (divided by the
grand total). Then, each cell can be represented by a rectangle whose area shows
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the cell frequency or deviation from the independence (Friendly 1995). Visualizing
tools for categorical data are available in R in vcd and vcdExtra packages.

Mosaic plot was first introduced by Hartigan and Kleiner (1981, 1984) and
Theus and Lauer (1999) and is one of the most popular and useful method for log-
linear modeling. Mosaic plots generalize readily to multi-way tables (Friendly 1992,
1994, 1995, 1999, 2000) extended the use of the mosaic plots for fitting log-linear
models. A mosaic represents each cell of the table by a rectangle (or tile) whose
area is proportional to the cell count. The mosaic is constructed by dividing a unit
square vertically by one variable, then horizontally by the other. Further variables
are introduced by recursively subdividing each tile by the conditional proportions
of the categories of the next variable in each cell, alternating on the vertical and
horizontal dimensions of the display (Meyer et al. 2006). This scheme allows an
arbitrary number of variables to be represented and helps in understanding the
structure of log-linear models themselves and can be used to display the residuals
from any log-linear model. For a two-way table the tiles are obtained by recursive
partitioning splits of squares, where the area is proportional to the observed cell
frequencies nhj, width is proportional to one set of margins nh:, height is the relative
proportion of other variable nhj

nh:
. In an extended mosaic plot shading is a sign and

magnitude of Pearson’s residuals: dhj D nhj�mhjp
mhj

. For a given model, the expected

frequencies are found with the use of iterative proportional fitting (Deming and
Stephen 1940). The mosaic plot display generalizes readily to multi-way table,
displays the deviations (residuals) from a given log-linear model that has been fit
to the table and provides an illustration of the relationship among variables that are
fitted by various log-linear models. In the example the fit of two models is compared.

The negative signs are red, the positive signs are blue, and the magnitude is
reflected in the intensity of shading (jdhjj > 0; 2; 4; : : :). The purpose of highlighting
the cells is to draw attention to the pattern of departures of the data from the assumed
model. Positive values indicate the cells whose observed frequency is substantially
greater than that to be found under independence; the negative values indicate the
cells that occur less often than under independence (Friendly 2000). When the cells
are empty then variables are independent. Mosaic displays can be easily extended to
multi-way tables. The relative frequencies of the third variable are used to subdivide
each two-way cell, and so on, recursively. Mosaic plots can be done in R with the
use of mosaic() function in library vcd (Fig. 1).

Positive values indicate the cells whose observed frequency is substantially
greater that to be found under independence; negative ones indicate the cells that
occur less often than under independence.

A much better fit can be seen for the model [VE][VS][ES] as most of the squares
are light red and blue which means small differences between the observed and
expected cells. For the model [VE][ES] most of the cells show very high Pearson’s
value (jdhjj > 4). Three-dimensional plots are also available in vcdExtra package
in R with the use of mosaic3d() command (Fig. 2).
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Fig. 1 Extended mosaic plots for [VE][ES] and [VE][VS][ES] models

Fig. 2 Three-dimensional mosaic plots for [VE][ES] and [VE][VS][ES] models

For those two models G2 is relatively large which indicates lack of fit. The first
mosaic plot has light residuals which means that the difference between empirical
and theoretical cell counts is smaller than for the second model. The deviations,
displayed by shading, often suggest terms to be added to an explanatory model that
achieved a better fit (Friendly 2000). In this case mosaic plots can be used for testing
goodness of fit.

A doubledecker plot is similar to the mosaic, however a doubledecker plot uses
only a single horizontal split. It can be seen that the highest level of unemployed
females in all voivodeships is observed among women with lower vocational
education level, whereas higher education level for men. This disproportion indi-
cated differences in this sector in terms of sex and the education level of the
respondents (Fig. 3). A doubledecker plot can be done in R with the use of the
doubledecker() function in vcd package.
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Fig. 3 Doubledecker plot

5 Conclusions

Graphical methods for categorical data are still poorly developed and little used
in comparison to methods for qualitative data. However, they can constitute a
powerful tool not only for seeing, but also for thinking. It can show how to
think outside the box. The categorical data analysis and log-linear analysis have
rapidly become major statistical tools for deciphering multidimensional tables
arising through Poisson distribution. The purpose of this paper was to provide an
overview of log-linear models and visualizing categorical data, and their place in
economic research. The vcd and vcdExtra packages in R provide very general
visualization methods via the strucplot framework (the mosaic and association plot,
sieve diagram, doubledecker plot) that can be applied to any contingency table.
These plots are used to display the deviations (residuals) from the various log-
linear models to enable interpretation and visualization. Mosaic graph represents
a contingency table, each cell corresponding to a piece of the plot, whose size
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is proportional to the cell entry. Extended mosaic displays show the standardized
residuals of a log-linear model of the counts by the colour and outline of the
mosaic’s tiles. The negative residuals are drawn in shades of red and with broken
outlines; the positive ones are drawn in blue with solid outlines. Thus, mosaic
plots are perfect to visualize the associations within a table and to detect cells
which create dependencies. There are other suitable tools to show the pattern of
association between variables. Both the log-linear analysis, as well as tools for
visualizing categorical data, are applicable in the analysis of the independence
between categorical data in contingency tables.
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How Many Bee Species? A Case Study
in Determining the Number of Clusters

Christian Hennig

Abstract It is argued that the determination of the best number of clusters k
is crucially dependent on the aim of clustering. Existing supposedly “objective”
methods of estimating k ignore this. k can be determined by listing a number of
requirements for a good clustering in the given application and finding a k that
fulfils them all. The approach is illustrated by application to the problem of finding
the number of species in a data set of Australasian tetragonula bees. Requirements
here include two new statistics formalising the largest within-cluster gap and cluster
separation. Due to the typical nature of expert knowledge, it is difficult to make
requirements precise, and a number of subjective decisions is involved.

1 Introduction

Determining the number of clusters is a notoriously hard key problem in cluster
analysis. There is a large body of literature about it (for some references beyond
those given below see Jain 2010).

One of the reasons why the problem is so hard is that most of the literature is
based on the implicit assumption that there is a uniquely best or “true” clustering
for given data or a given underlying statistical model assumed to be true without
defining unambiguously what is meant by this. This obscures the fact that there are
various ways of defining a “best clustering” which may lead to different solutions
for the same data set or model. Which of these definitions is appropriate depends on
the meaning of the data and the aim of analysis. Therefore there is no way to find a
uniquely best clustering considering the data (or a model assumption) alone.
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For example, the “true clusters” to be counted could correspond to, among
others,

• Gaussian mixture components,
• density modes,
• connected data subsets that are strongly separated from the rest of the data set,
• intuitively clearly distinguishable patterns,
• the smallest number of data subsets with a given maximum within-cluster

distance.

It is clear that these definitions can lead to different “true” numbers of clusters for
the same data. For example it is well known that a mixture of several Gaussians
can be unimodal or have more than two modes, two density modes are not
necessarily separated by deep gaps, connected and well separated data subsets
may include very large within-cluster distances etc. Note further that finding the
“true” number of density modes or Gaussian mixture components is an ill posed
problem, because it is impossible to distinguish models with k density modes or
Gaussian mixture components from models with arbitrarily more of them based on
finite data for which a model with k modes/mixture components fits well. A well
known implication of this (Hennig 2010) is that the BIC, a consistent method for
estimating the number of Gaussian mixture components, will estimate a k tending
to infinity for n ! 1 (n being the number of observations) because of the fact
that the Gaussian mixture model does not hold precisely for real data, and therefore
more and more mixture components will fit real data better and better if there are
only enough observations to fit a large number of parameters.

Different concepts to define the number of clusters are required for different
applications and different research aims. For example, in social stratification, the
poorest people with the lowest job status should not be in the same cluster (social
stratum) as the richest people with the highest job status, regardless of whether
there is a gap in the data separating them, or whether these groups correspond to
different modes, i.e., large within-cluster dissimilarities should not occur. On the
other hand, in pattern recognition on images one often wants to only separate subsets
with clear gaps between them regardless of whether there may be large distances or
even multiple weak modes within the clusters.

In the present paper I suggest a strategy to determine the number of clusters
depending on the research aim and the researcher’s cluster concept, which requires
input based on an expert’s subject matter knowledge. Subject matter knowledge has
already been used occasionally in the literature to determine the number of clusters,
see e.g., Chaturvedi et al. (2001), Morlini and Zani (2012), but mostly informally.

Section 2 introduces a number of methods to estimate the number of clusters. The
new approach is illustrated in Sect. 3 by applying it to the problem of determining
the number of species in a data set of tetragonula bees. Some limitations are
discussed in Sect. 4.
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2 Some Methods to Determine the Number of Clusters

Here are some standard approaches from the literature to determine the number
of clusters. Assume that the data x1; : : : ; xn in some space S are to be partitioned
into exhaustive and non-overlapping sets C1; : : : Ck , and that there is a dissimilarity
measure d defined on S2.
Calinski and Harabasz (1974) index. kCH maximises B.k/.n�k/

W.k/.k�1/ , where

W.k/ D Pk
hD1 1

jChj
P

xi ;xj2Ch d.xi ; xj /
2; and

B.k/ D 1
n

Pn
i;jD1 d.xi ; xj /2 �W.k/:

Note that kCH was originally defined for Euclidean distances and use with
k-means, but the given form applies to general distances.

Average silhouette width (Kaufman and Rousseeuw 1990). kASW maximises
1
n

Pn
iD1 s.i; k/, where

s.i; k/ D b.i;k/�a.i;k/
max.a.i;k/;b.i;k// ;

a.i; k/ D 1
jCj j�1

P
x2Cj d.xi ; x/; b.i; k/ D minxi 62Cl 1

jCl j
P

x2Cl d.xi ; x/;

Cj being the cluster to which xi belongs.
Pearson-version of Hubert’s � (Halkidi et al. 2001). kPG maximises the Pearson

correlation between a vector of all dissimilarities and the corresponding binary
vector with 0 for a pair of observations in the same cluster and 1 for a pair of
observations in different clusters.

Bootstrap stability selection (Fang and Wang 2012). This is one of a number
of stability selection methods in the literature. For each number of clusters k
of interest, B pairs of standard nonparametric bootstrap subsamples are drawn
from the data. For each pair, both subsamples are clustered, and observations not
occurring in any subsample are classified to a cluster in both clusterings in a way
adapted to the used clustering method. For example, in Sect. 3, average linkage
clustering is used and unclustered points are classified to the cluster to which they
have the smallest average dissimilarity. For each pair of clusterings the relative
frequency of point pairs in the same cluster in one of the clusterings but not in
the other is computed, these are averaged over the B bootstrap samples, and kBS
is the k that minimised the resulting instability measure.

As many methods in the literature, the former three methods all try to find a
compromise between within-cluster homogeneity (which generally improves with
increasing k) and between-cluster separation (which usually is better for smaller
k). The terms “within-cluster homogeneity” and “between-cluster separation” are
meant here in a general intuitive sense and admit various ways of measuring
them, which are employed by the various different criteria. The k optimising these
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indexes may differ. For example, experiments indicate that kASW may lump together
relatively weakly separated data subsets if their union is strongly separated from
what is left, whereas kCH may leave them separated if putting them together makes
the resulting cluster too heterogeneous. kPG tends less than the two former methods
to integrate single outliers in clusters.

A general remark on stability selection is that although good stability is a
reasonable requirement in many applications, optimal stability is more difficult to
motivate, because there is no reason why “bad” clusterings cannot be stable.

3 Analysis of the Tetragonula Bees Data Set

Franck et al. (2004) published a data set giving genetic information about 236
Australasian tetragonula bees, in which it is of interest to determine the number of
species. The data set is incorporated in the package “fpc” of the software system R
(www.r-project.org). Bowcock et al. (1994) defined the “shared allele dissimilarity”
formalising genetic dissimilarity appropriately for species delimitation, which is
used for the present data set. It yields values in Œ0; 1�.

In order to apply the approach taken here and in fact also in order to choose
an appropriate clustering method, it is important to specify formal requirements of
species delimitation. The following list was compiled with help of the species expert
Bernhard Hausdorf, museum of zoology, University of Hamburg.

• Large within-cluster gaps should be avoided, because genetic gaps are essential
for the species concept. Some caution is needed, though, because gaps could be
caused by incomplete sampling and by regional separation within a species.

• Species need to be well separated for the same reason. Experts would normally
speak of different species even in case of rather moderate separation among
regionally close individuals, so to what extent separation is required depends
on the location of the individuals to some extent.

• In order to count as species, a group of individuals needs to have a good overall
homogeneity, which can be measured by the average within-species dissimilarity.

• Cluster stability is needed in order to have confidence that the clustering is not
a random structure, although there is no specific reason why the best clustering
needs to have maximum stability.

The third criterion motivates the average linkage hierarchical clustering, which is
applied here, see Fig. 1 (it is beyond the scope of the paper to give a more conclusive
justification). Determining the number of species amounts to finding the best height
at which the dendrogram is cut. Values of k between 2 and 15 were examined.

The criteria introduced in Sect. 2 do not yield a consistent decision about the
number of clusters, with kCH D kASW D 10; kPG D 9; kBS D 5. Note that for
k > 3 all instability values are smaller than 0.08, so all clusterings are rather stable
and fulfil the fourth requirement. kBS may generally be rather low, because splitting
up somewhat ambiguous data subsets may harm stability. Just taking the general

http://www.r-project.org
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Fig. 1 Heatplot and average linkage clustering for tetragonula bee data. Colour bars at the left side
and on top indicate the clustering with k D 10

behaviour of the criteria into account, kASW with its strong emphasis on separation
looks closest to the listed requirements.

An approach driven stronger by the aim of clustering is to find a number of
clusters that fulfils all listed requirements separately instead of using a criterion that
aggregates them without caring about specific details.

To this end, the largest within-cluster gap wg of a clustering can be defined as the
maximum over all clusters of the dissimilarity belonging to the the last connecting
edge of the minimum spanning tree within each cluster.

Cluster separation se of a clustering can be measured by computing, for all
observations, the distance to the closest cluster to which the observation does not
belong. Then the average of the minimum 10 % of these distances is taken in
order to consider only points close to the cluster borders (one should take a certain
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Fig. 2 Largest within-cluster gap for tetragonula bee data

percentage of points into account in order to not make the index too dependent on a
single observation).

Neither the average within-cluster dissimilarity ad nor the two statistics just
introduced can be optimised over k, because increasing k will normally decrease all
three of them.

Examining the statistics (see Figs. 2–4), it turns out that wg does not become
smaller than 0.5 for k � 15 and 0.5 is reached for k � 8. se falls from about 0.46
at k D 9 (which is fairly good) to below 0.4 for larger k. ad is 0.33 for k D 10,
does not improve much for larger k, and is much higher for k � 9; 0.46 for k D 9.
Overall this means that k D 9 and k D 10 can be justified, with k D 9 much better
regarding separation and k D 10 much better regarding ad , i.e., homogeneity.

Automatic aggregation of these aspects by formal criteria such as kASW or kPG
obscures the fact that in this situation the decision which of the requirements is more
important really must come from subject matter expertise and cannot be determined
from the data alone.

For the given problem, the importance of separation depends on how closely
together the sampled individuals actually were taken geographically. From existing
information on the sampling of individuals it can be seen that the two clusters
merged going from k D 10 to 9 consist of individuals that are rather close together,
in which case according to B. Hausdorf one would accept a weaker separation and
demand more homogeneity. This favours the solution with k D 10. This solution is
illustrated in Fig. 1 by the colour bars on the left side and above (for k D 9, the two
clusters in the upper right are merged).

Note that for this data set an expert decision about the existing species exists
(cf. Franck et al. 2004; we did not use this in order to define criteria make decisions
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Fig. 3 Cluster separation for tetragonula bee data
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Fig. 4 Average within-cluster dissimilarity for tetragonula bee data

here), using information beyond the analysed data. This could be taken as a “ground
truth” but one needs to keep in mind that there is no precise formal definition of a
“species”. Therefore experts will not always agree regarding species delimitation.
According to the expert assessment there are nine species in the data, but in fact the
solution with k D 10 is the best possible one (in the sense of matching the species
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decided by Franck et al.) in the average linkage tree, because it matches the expert
delimitation precisely except that one “expert species” is split up, which is in fact
split up in all average linkage clusterings with k � 6 including k D 9, which instead
merges two species that should be separated according to Franck et al. (2004).

4 Conclusion

The number of clusters for the tetragonula bees data set has been determined by
listing a number of formal requirements for clustering in species delimitation and
examining them all. This is of course strongly dependent on subjective judgements
by the experts. Note though that subjective judgement is always needed if in fact
the number of clusters depends on features such as separation and homogeneity, of
which it is necessary to decide how to balance them. Supposedly objective criteria
such as the ones discussed in Sect. 2 balance features automatically, but then the
user still needs to choose a criterion, and this is a more difficult decision, because
the meaning of the criteria in terms of the aim of the cluster analysis is more difficult
to understand than statistics that formalise the requirements directly.

Optimally the statistician would like the expert to specify precise cutoff values
for all criteria, which would mean that the best k could be found by a formal rule
(e.g., the minimum k that fulfils all requirements). Unfortunately, required cluster
concepts such as the idea of a “species” are rarely precise enough to allow such
exact formalisation.

The biggest obstacle for the presented approach is in fact that the requirements
of clustering are in most cases ambiguous and formalisations are difficult to
obtain. The fact that the subject matter experts often do not have enough training
in mathematical thinking does not improve matters. However, using supposedly
“objective” criteria in a more traditional fashion does not solve these problems but
rather hides them.

The tetragonula bees data set has also been analysed by Hausdorf and Hennig
(2010), using a method that allows for leaving some outliers out of all clusters.
Indexes formalising separation and homogeneity would need an adaptation for such
methods.

The new indexes for the largest within-cluster gap and cluster separation
introduced above will soon be available in the R-package “fpc”.
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Two-Step Linear Discriminant Analysis
for Classification of EEG Data

Nguyen Hoang Huy, Stefan Frenzel, and Christoph Bandt

Abstract We introduce a multi-step machine learning approach and use it to
classify electroencephalogram (EEG) data. This approach works very well for high-
dimensional spatio-temporal data with separable covariance matrix. At first all
features are divided into subgroups and linear discriminant analysis (LDA) is used
to obtain a score for each subgroup. Then LDA is applied to these scores, producing
the overall score used for classification. In this way we avoid estimation of the
high-dimensional covariance matrix of all spatio-temporal features. We investigate
the classification performance with special attention to the small sample size case.
We also present a theoretical error bound for the normal model with separable
covariance matrix, which results in a recommendation on how subgroups should
be formed for the data.

1 Introduction

Fisher’s classical linear discriminant analysis (LDA) is still one of the most widely
used techniques for data classification. For two normal distributions with common
covariance matrix ˙ and different means �1 and �2, LDA classifier achieves the
minimum classification error rate. The LDA score or discriminant function ı of an
observationX is given by

ı.X/ D .X � �/T˙�1˛ with ˛ D �1 � �2 and � D 1

2
.�1 C �2/ :
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In practice we do not know ˙ and �i , and have to estimate them from training
data. This worked well for low-dimensional examples, but estimation of˙ for high-
dimensional data turned out to be really difficult. When the sample size n of the
training data is smaller than the number d of features, then the empirical d � d

covariance matrix Ȯ is not invertible. The pseudoinverse can be used but this will
impair the classification. Even when n is larger, but of the same magnitude as d , the
aggregated estimation error over many entries of the sample covariance matrix will
significantly increase the error rate of LDA. For our EEG data, where 200 � n �
3500 and 160 � d � 1280, these facts will be discussed below in Sect. 5 and Fig. 3.

One possible solution of the estimation problem is regularized LDA, where a
multiple of the unity matrix I is added to the empirical covariance. Ȯ C rI is
invertible for each r > 0. The most useful regularization parameter r has to be
determined by time-consuming optimization, however.

Bickel and Levina (2004) recommended a simpler solution: to neglect all
correlations of the features and use the diagonal matrix D˙ of ˙ instead of ˙ .
This is called the independence rule. Its discriminant function ıI is defined by

ıI .X/ D .X � �/TD�1
˙ ˛:

In this paper, we present another solution, which uses some but not all correlations
of the features and which worked very well for the case of spatio-temporal data, in
the context of an experiment with a brain-computer interface.

2 Two-Step Linear Discriminant Analysis

We introduce multi-step linear discriminant analysis which applies LDA in several
steps instead of applying it to all features at one time. Here we consider the case
of two steps (two-step LDA). All d features of an observation X 2 IRd are divided
into disjoint subgroups

X D
h
XT
1 ; � � � ; XT

q

iT
;

where Xj 2 IRp; and pq D d . LDA is applied to obtain a score for each subgroup
of features. In the second step, LDA is again applied to these scores which gives
the overall score used for classification. Thus the discriminant function of two-step
LDA is

ı?.X/ D ı.ı.X1/; � � � ; ı.Xq//;

where ı denotes the LDA function. Figure 1a illustrates the two-step LDA proce-
dure. The assumption of normality which is needed for LDA will be fulfilled in
the second step. The distribution of scores can be calculated applying basic linear
algebra and the properties of the multivariate normal distribution.
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Fig. 1 (a) Schematic illustration of two-step LDA. (b) Sample covariance matrix of a single
dataset estimated from 5 time points and 32 locations

Proposition 1. Suppose X is normally distributed with known �1; �2 and ˙ .
Let �2 � �1 D .˛T1 ; : : : ; ˛

T
q /

T and ˙ij 2 IRp�p denote the submatrix of ˙
corresponding to subgroups i and j such that ˙ D .˙ij /

q
i;jD1. The scores

.ı.X1/; : : : ; ı.Xq//
T are then normally distributed with common covariance matrix

� and means ˙.1=2/m given by

�ij D ˛Ti ˙
�1
i i ˙ij˙

�1
jj ˛j ; mi D �ii ; with i; j D 1; : : : ; q:

3 Separable Models

Statistical modelling of spatio-temporal data often is based on separable models
which assume that the covariance matrix of the data is a product of spatial and tem-
poral covariance matrices. This greatly reduces the number of parameters in contrast
to unstructured models. Genton (2007) argues that separable approximations can be
useful even when dealing with non-separable covariance matrices.

A spatio-temporal random processX.�; �/ W S�T ! IR with time domain T � IR
and space domain S � IR3 is said to have a separable covariance function if, for all
s1; s2 2 S and t1; t2 2 T , it holds

Cov.X.s1; t1/; X.s2; t2// D u.t1; t2/ � v.s1; s2/; (1)

where u and v is the temporal and spatial covariance function, respectively. Suppose
that the data from X.�; �/ is only selected at a finite set of locations s1; : : : ; sp and
time points t1; : : : ; tq . An observation for classification is obtained by concatenation
of spatial data vectors at times ft1; � � � ; tqg

X D �
X.s1I t1/ � � �X.spI t1/ � � �X.s1I tq/ � � �X.spI tq/

�T
: (2)
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Equation (1) says that the covariance matrix of X can be written as Kronecker
product of the spatial covariance matrix V with entries vij 	 v.si ; sj / and the
temporal covariance matrix U with uij 	 u.ti ; tj /;

˙ D U ˝ V:

In the context of EEG, the locations s1; : : : ; sp are defined by the electrode
positions on the scalp. Huizenga et al. (2002) demonstrated that separability is a
proper assumption for this kind of data. Figure 1b visualizes the Kronecker product
structure of the covariance matrix of one of our data sets. There are p D 32

electrodes and q D 5 time points. Each of the five blocks on the diagonal represents
the covariance between the electrodes for a single time point. The other blocks
represent covariance for different time points.

4 An Error Bound for Two-Step LDA

In this section we derive a theoretical error estimate for two-step LDA in the case of
separable models. The following theorem, illustrated in Fig. 2a, shows that the loss
in efficiency of two-step LDA in comparison to ordinary LDA even in the worst case
is not very large when the condition number of the temporal correlation matrix is
moderate. The assumption that the means and covariance matrices are known may
seem a bit unrealistic, but it is good to have such a general theorem. The numerical
results in Sect. 5 will show that the actual performance of two-step LDA for finite
samples is much better. To compare the error rate of ı and ı?, we use the technique
of Bickel and Levina (2004) who compared independence rule and LDA in a similar
way.

Theorem 1. Suppose that mean vectors �1; �2 and common separable covariance
matrix ˙ D U ˝ V are known. Then the error rate e2 of the two-step LDA fulfils

e1 � e2 � ˚

�
2
p
	

1C 	
˚�1.e1/

�
; (3)

where e1 is the LDA error rate, 	 D 	.U0/ denotes the condition number of the
temporal correlation matrix U0 D D

�1=2
U UD

�1=2
U ; DU D diag.u11; � � � ; uqq/; and

˚ is the Gaussian cumulative distribution function.

Proof. e1 � e2 follows from the optimality of LDA. To show the other inequality,
we consider the error Ne of the two-step discriminant function Nı defined by

Nı.X/ D ıI .ı.X1/; � � � ; ı.Xq//;
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Fig. 2 (a) The error bound of two-step LDA as function of the LDA error rate. (b) Condition
numbers of U0 and V0 estimated from a single dataset for different number of time points q

where ıI is the discriminant function of the independence rule. The relation e2 � Ne
again follows from the optimality of LDA and Proposition 1. We complete the proof
by showing that Ne is bounded by the right-hand side of (3), by the technique of
Bickel and Levina (2004). We repeat their argument in our context, demonstrating
how U0 comes up in the calculation. We rewrite the two-step discriminant function
Nı applied to the spatio-temporal featuresX with ˛ D �1��2 and � D .�1C�2/=2

Nı.X/ D .X � �/T Ṅ �1˛; where Ṅ D DU ˝ V D

2
64

u11V � � � 0
:::

: : :
:::

0 � � � uqqV

3
75 :

The errors e1 of ı.x/ and Ne of Nı.x/ are known, see Bickel and Levina (2004):

e1 D ˚

��.˛T ˙�1˛/1=2

2

�
; Ne D ˚

 
�˛T Ṅ �1˛

2.˛T Ṅ �1˙ Ṅ �1˛/1=2

!
:

Writing ˛0 D Ṅ �1=2˛, we determine the ratio

r D ˚�1. Ne/
˚�1.e1/

D .˛T0 ˛0/

Œ.˛T0
Q̇ ˛0/.˛T0 Q̇ �1˛0/�1=2

; (4)

where

Q̇ D Ṅ �1=2˙ Ṅ �1=2 D .D
�1=2
U ˝ V �1=2/.U ˝ V /.D

�1=2
U ˝ V �1=2/

D .D
�1=2
U UD

�1=2
U /˝ .V �1=2V V �1=2/ D U0 ˝ I:
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Clearly Q̇ is a positive definite symmetric matrix and its condition number 	. Q̇ / is
equal to the condition number 	 D 	.U0/ of the temporal correlation matrix U0. In
the same way as Bickel and Levina we obtain from (4) by use of the Kantorovich
inequality r � 2

p
	=.1C 	/. With (4) and ˚�1.e1/ < 0 this implies

Ne � ˚

�
2
p
	

1C 	
˚�1.e1/

�
; which completes the proof:

5 Classification of EEG Data

To check the performance of two-step LDA, we use the data of a brain-computer
interface experiment by Frenzel et al. (2011). A mental typewriter was established
using 32-electrode EEG. Users sit in front of a screen which presents a matrix of
characters. They are instructed to concentrate on one target character by performing
a mental count. Then characters are highlighted many times in random order. About
300ms after highlighting the target character, a so-called event-related potential
should appear in the EEG signal. This potential should not appear for the other
characters.

The experiment intended to control the effect of eye view. Users were told to
concentrate their eyes on a specific character. When this is the target character, the
condition is described as overt attention, and the expected potential is fairly easy to
identify. However, most of the time users looked at a different character and counted
the target character in their visual periphery. This is referred to as covert attention,
see Treder and Blankertz (2010). Controlling a brain-computer interface by covert
attention is particularly difficult.

Detection of target characters from the EEG data is a binary classification
problem. Each time interval where a character was highlighted is considered as
a sample. Class labels are defined according to whether the target character is
presented or not. Our data consists of nine datasets of m D 7; 290 samples
measured with p D 32 electrodes. For each sample, data of the time interval of
about 600ms were downsampled from the acquisition rate of the hardware to a
predefined sampling frequency. For typical values of 8; 16; 32; 64Hz one obtains
q D 5; 10; 20; 40 time points and thus d D pq D 160; 320; 640; 1280 spatio-
temporal features in total.

Defining the Feature Subgroups of Two-step LDA

LDA is invariant with respect to reordering of features whereas two-step LDA is
only when reordering is performed within the subgroups. For the latter we saw that
it is preferable to define the subgroups such that the statistical dependencies between
them are smaller than within. This is reflected in the influence of condition number
of U0 in the bound of the error rate (3).
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In Sect. 3 we defined the features to be ordered according to their time index, see
(2), and Xi to contain all features at time point i . In other words, in the first step
LDA was applied to the spatial features. However, it also seems natural to order the
features according to their spatial index and to assign all features from electrode i to
Xi , thus interchanging the role of space and time. In this case the covariance matrix
becomes V ˝U ¤ U ˝ V and we have to replace 	.U0/ by 	.V0/ in (3). We argue
that the decision between both approaches should be based on a comparison of both
condition numbers using the data. This done in the following.

Our EEG data is, rather typical, normalized such that the means over all time
points and all electrodes are zero. This implies U and V both to have a single
zero eigenvalue. Maximum-likelihood estimation of both in general requires their
inverses to exist, see Mitchell et al. (2006). We bypassed this problem by using the
simple average-based estimator

OV D 1

q

qX
iD1

Ȯ
i i ;

where Ȯ
i i is the sample covariance matrix of the i -th subgroup. It can be shown that

OV is an unbiased and consistent estimator of N
V with N
 being the average eigenvalue
of U . Since the correlation matrix corresponding to N
V is V0 we estimated 	.V0/
by 	. OV0/, ignoring the single zero eigenvalue. Estimation of 	.U0/ was done in the
same way.

Figure 2b shows the condition numbers estimated from a single dataset for
different number of time points q. Except for q D 40 the condition numbers of U0
were much smaller than those of V0. This also applied for the corresponding error
bounds, see Fig. 2a. It is thus likely that the actual error rates are smaller. Indeed, we
never encountered a single case where first applying LDA to the temporal features
gave better results for our data. For q D 40 the upper bounds were too loose to draw
any conclusions. This could be observed in all nine datasets and gives rise to the
following recommendation.

Remark 1. When two-step LDA is applied to EEG data it is preferable to define the
feature subgroups such that Xi contains all features at time point i .

Learning Curves

We investigated the classification performance using p D 32 electrodes and q D 40

time points and hence d D 1280 features in total. Two-step LDA was compared to
ordinary and regularized LDA. For each dataset classifiers were trained using the
first n samples, with 200 � n � 3500. Scores of the remainingm� n samples were
calculated and classification performance was measured by the AUC value, i.e. the
relative frequency of target trials having a larger score than non-target ones.

Figure 3 shows the learning curves for all nine datasets. The prominent dip
in the learning curves of LDA around d is due to the use of the pseudoinverse
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Fig. 3 Learning curves of two-step LDA (open circle), regularized LDA .asterisk/ and LDA
.plus/ for all nine datasets

for n < d C 2. Regularized LDA for n 
 d performed much better than LDA,
supporting the findings of Blankertz et al. (2011).

Two-step LDA showed similar or slightly better performance than both regu-
larized and ordinary LDA. For large n the difference was rather small. For some
datasets, however, it showed much faster convergence, i.e. it needed less training
samples to achieve a certain classification performance. Sample size n D 3500

corresponds to a training period of approximately 20 min. Since two-step LDA
gave reasonable performance even with short training periods, it might offer an
practically relevant advantage. Although all three classifiers are computationally
cheap, it should be noted that two-step LDA does not involve the inversion of the
full sample covariance matrix.

6 Conclusion

When linear discriminant analysis is applied to high-dimensional data, it is difficult
to estimate the covariance matrix. We introduced a method which avoids this
problem by applying LDA in two steps for the case of spatio-temporal data. For
our EEG data, the two-step LDA performed better than regularized LDA.
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Predictive Validity of Tracking Decisions:
Application of a New Validation Criterion

Florian Klapproth, Sabine Krolak-Schwerdt, Thomas Hörstermann,
and Romain Martin

Abstract Although tracking decisions are primarily based on students’ achieve-
ments, distributions of academic competences in secondary school strongly overlap
between school tracks. However, the correctness of tracking decisions usually is
based on whether or not a student has kept the track she or he was initially assigned
to. To overcome the neglect of misclassified students, we propose an alternative
validation criterion for tracking decisions. We applied this criterion to a sample of
N D 2;300 Luxembourgish 9th graders in order to identify misclassifications due
to tracking decisions. In Luxembourg, students in secondary school attend either an
academic track or a vocational track. Students’ scores of academic achievement tests
were obtained at the beginning of 9th grade. The test-score distributions, separated
by tracks, overlapped to a large degree. Based on the distributions’ intersection,
we determined two competence levels. With respect to their individual scores,
we assigned each student to one of these levels. It turned out that about 21% of
the students attended a track that did not match their competence level. Whereas the
agreement between tracking decisions and actual tracks in 9th grade was fairly high
(	 D 0:93), the agreement between tracking decisions and competence levels was
only moderate (	 D 0:56).

1 Introduction

Tracking in school refers to the ability-based selection of students and their
assignment to different school tracks. In educational systems with hierarchical
tracks in secondary school (like in Germany or Luxembourg), tracking decisions are
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mainly based on students’ achievements in primary school. Outcomes of tracking
decisions determine the type of future schooling students will be permitted to attend,
and therefore the type of education they will receive. Measuring the correctness
of tracking decisions (hence, their predictive validity) usually is based on whether
or not a student has kept the track to that she or he has been initially assigned.
According to this criterion, a high amount of predictive validity will be achieved
if the quality of the tracking decision is high, that is, if teachers are able to validly
predict students’ future achievements in school. However, predictive validity will
also reach high values if the school system’s permeability is rather low. In the
latter case, changing tracks is impeded because schools try to keep their students
(regardless of their achievements). Thus, estimation of predictive validity of tracking
decisions may be biased if it is based on the frequencies of students who keep the
track after some years of schooling.

Although tracking decisions are primarily based on students’ achievements, the
distributions of their academic competences in secondary school have been shown
to strongly overlap between different school tracks (e.g., Bos and Gröhlich 2010).
That is, students with high academic competences are often assigned to lower school
tracks, whereas students with low academic competences often attend higher school
tracks. Hence, students can be regarded as being misclassified if their academic
competences do not match their actual track.

To overcome the neglect of misclassified students, we propose an alternative val-
idation criterion for tracking decisions which is based on standardized achievement
test scores rather than on keeping the track. In the present study, we applied this
validation criterion to a sample of N D 2;300 Luxembourgish 9th graders in order
to examine the degree of misclassification due to tracking decisions.

2 Development of the Validation Criterion

The starting point for the development of the validation criterion is the distribution
of test scores that were obtained from students’ results in standardized academic
achievement tests in secondary school (see Fig. 1).

In Fig. 1, distributions of test scores of students coming from a lower track
(the vocational track) and from a higher track (the academic track) are displayed.
As can be seen in the figure, both distributions overlap. The test score that is
assigned to the distributions’ intersection shall be called xinter . This test score divides
the test score continuum into two parts. Each part of the test-score continuum
represents one of two competence levels that will later on serve as the validation
criterion. We shall call one competence level the VT competence level (in analogy
to the vocational track) and the other competence level the AT competence level
(in analogy to the academic track). Students’ test scores of the VT competence level
occur more frequently within the vocational track than within the academic track.
Correspondingly, test scores of the AT competence level occur more frequently
within the academic track than within the vocational track.
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Fig. 1 Hypothetical distributions of test scores with equal variances, separated for different
tracks. Continuous line: Test score distribution obtained from students of the vocational track.
Intermittent line: Test score distribution obtained from students of the academic track. xinter marks
the intersection of the distributions. The distributions’ intersection defines the competence levels

If the variances of the test-score distributions are equal, the intersection of the
distributions can be estimated as

xinter D �1 C �2

2
; (1)

with �1 being the mean of the distribution of the vocational track, �2 being the
mean of the distribution of the academic track, and �1 < �2.

Students with test scores xi < xinter are assigned to the VT competence level,
whereas students with test scores xi > xinter are assigned to the AT competence
level. We define students being correctly classified as those students whose actual
track matches their competence level. Correspondingly, students are considered
misclassified if they obtained test scores that fall into a competence level that does
not fit their actual track. That is, students of the vocational track are misclassified
if their test scores are captured by the AT competence level, and vice versa,
students of the academic track are misclassified if they obtained test scores falling
into the VT competence level. The number of misclassifications can be expressed
formally by the area under the distributions that is defined by the overlap and
the intersection. According to Inman and Bradley (1989), the overlap OVL of
two normal distributions obtained from independent random samples with equal
variances is given by

OVL D 2˚

�
�1
2

abs .ı/

�
; (2)

with

ı D �1 � �2

�
; (3)
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and the standard normal distribution function is represented by ˚ . The value of � is
given by the square root of the variance of the distributions.

The OVL coefficient indicates the area which one distribution shares with the
other distribution. Therefore, the overlap captures more than the misclassified
students of a single distribution. The frequency of students from the vocational track
being misclassified is half the number of students represented by the overlap area.
Accordingly, the frequency of students from the academic track being misclassified
is also half the number of students represented by the overlap area. Thus, the overall
frequency of misclassified students is given by

fmisclass D OVL

2
: (4)

So far, we have shown how the number of misclassified students can be estimated
in case their test scores are distributed with equal variances. However, this approach
is also feasible with distributions of unequal variances. If the variances are unequal,
there will result two points of intersection. These points are defined by

xinter1;2 D �p
2

˙
r�p

2

�2 � q; (5)

with

p D 2
�
�2�

2
1 � �1�22

	

�22 � �21
(6)

and

q D
�21�

2
2 � �22�

2
1 � 2 ln

�
�2
�1

�
�21 �

2
2

�22 � �21
; (7)

with�1 and �1 as parameters of the distribution of test scores obtained from students
of the vocational track, and �2 and �2 as parameters of the distribution of test scores
obtained from students of the academic track.

As can be seen in Fig. 2, both intersections define three (instead of two)
competence levels: Competence level AT1 where test scores are more likely for
students from the academic track, competence level V T where test scores are more
likely for students from the vocational track, and competence level AT2 where
again test scores are more likely for students from the academic track. However,
the competence level AT2 which contains the smallest test scores is of no relevance
for our purpose since surely all students of the academic track falling into this
category would be considered as being misclassified since their test scores are
below xinter2 . According to Inman and Bradley (1989), the overlap of two normal
distributions with unequal variances is given by
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Fig. 2 Hypothetical distributions of test scores with unequal variances, separated for different
tracks. Continuous line: Test score distribution obtained from students of the vocational track.
Intermittent line: Test score distribution obtained from students of the academic track. xinter1
and xinter2 mark the intersections of the distributions. The distributions’ intersections define the
competence levels V T , AT1 and AT2

OVL D ˚

�
xinter1 � �1

�1

�
C ˚

�
xinter2 � �2

�2

�

�˚
�
xinter1 � �2

�2

�
� ˚

�
xinter2 � �1

�1

�
C 1: (8)

However, the entire overlap captures not all misclassified students, since students
from the academic track whose test scores are assigned to competence level AT2
are not part of the overlap. Equation (9) provides an estimate of the proportion of
students being misclassified if the variances of the distributions differ.

fmisclass D n2

n1 C n2
˚

�
xinter2 � �2

�2

�
C n1

n1 C n2

�
1 �˚

�
xinter2 � �1

�1

��
; (9)

with n1 representing the sample size of the distribution of students from the
vocational track, and n2 representing the sample size of the distribution of students
from the academic track. The parameters� and � are estimated by the distributions’
means and standard deviations.

3 Application of the Validation Criterion to a Representative
Sample of Luxemburgish Secondary-School Students

In Luxembourg, students were oriented to one of three tracks after 6th grade of
primary school. These tracks are one academic track and two vocational tracks.
For the sake of simplicity, we treated students of both vocational tracks as being
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Table 1 Distribution of the students depending on the tracking decision in 6th grade and the track
the students attended in 9th grade

Track 9th gradeTracking decision
6th grade Vocational track Academic track fi:

Vocational track 0.561 0.010 0.571
Academic track 0.025 0.404 0.429
f:j 0.586 0.414 1.000

Numbers are relative frequencies
Bold numbers indicate misclassifications. Marginals are represented by fi: and f:j

in a single track. Orientation of the students and hence the split-up of the whole
student population was done according to the tracking decisions at the end of
primary school. These decisions were primarily based on the students’ academic
achievements in the main curricular fields. On average, students assigned to the
vocational track show lower achievements than students assigned to the academic
track. In our sample, n1 D 1,346 students (59%) attended the vocational track,
whereas n2 D 954 students (41%) attended the academic track in 9th grade. Table 1
shows the distribution of the students depending on the initial tracking decision in
6th grade and the track they attended in 9th grade.

Of all students, 3:5% attended tracks for which they were not recommended.
This figure represents the number of misclassified students according to the usual
validation criterion. As an indicator of academic competence, we resorted to results
obtained from standardized academic achievement tests that were administered in
all 9th grades of Luxemburgish secondary school in 2011. The test items were
constructed with respect to standards proposed by the Luxemburgish Ministry
of Education, and they covered contents of the main curricular fields (French,
German, Mathematics) of all tracks (Ministere de l’Education nationale et de
la Formation professionelle 2010). Although different versions of the test were
administered depending on the different tracks, common scales of the versions
were established after items response theory (e.g., Drasgow and Hulib 1990). Thus,
according to the curricular fields, three competence scales resulted, with a mean
of each competence scale that was set to M D 500, and a standard deviation of
SD D 100. For the purpose of this study, test scores of the three competence scales
were averaged. Hence, the averaged test scores represented the global academic
competence of the students. Figure 3 shows the distribution of the students’ mean
test scores plotted against the different tracks.

The means and standard deviations were M1 D 480.79 (SD1 D 61.03) for the
distribution of test scores obtained from the vocational track, and M2 D 580.21
(SD2 D 62.59) for the distribution of test scores obtained from the academic track.
The difference between both means was significant, p < 0.001. According to
Kolmogorov–Smirnov tests, both distributions conformed to normality (Z1 D 0.62,
p D 0.838; Z2 D 1.11, p D 0.170). Estimation of the distributions’ intersection
was done after Equation (1) since the variances of both distributions did not differ
significantly, F (1312, 986) D 0.951, p > 0.21. The test score belonging to the
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Fig. 3 Distributions of the students’ mean test scores plotted against the different tracks

Table 2 Distribution of the students depending on the tracking decision in 6th grade, the track the
students attended in 9th grade, and the competence level

Track 9th gradeTracking decision Competence
6th grade level Vocational track Academic track fi:

Vocational VT 0.456 0.006 0.571
Track AT 0.105 0.004
Academic VT 0.015 0.091 0.429
Track AT 0.010 0.313
f:j 0.586 0.414 1.000

Numbers are relative frequencies
Bold numbers indicate misclassifications. Marginals are represented by fi: and f:j

intersection was xinter D 530.8. All students who obtained test scores that were
below xinter were assigned to competence level V T , and all students who obtained
test scores above xinter were assigned to competence level AT . Next, the area of
overlap of both distributions was estimated after Equation (2). For estimation of
ı, the mean of the distributions’ standard deviations was used. The overlap was
OVL D 0:422, from which followed that the number of misclassified students was
fmisclass D 0:211. That is, about 21% of the students were on the wrong track.
Table 2 shows the number of students of each competence level, plotted against
the tracking decision and the track they attended in 9th grade. As can be seen,
the frequency of the misclassified students estimated by Equation (4) matched the
number of misclassified students given in Table 2.

Finally, we estimated the predictive validity of the tracking decision. We did
this first by measuring the level of agreement between the initial tracking decision
and the actual track the students attended in 9th grade, and second by measuring the
level of agreement between the tracking decision and the competence level. Cohen’s
kappa provided an indicator of agreement (Cohen 1960). Whereas the agreement
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between tracking decisions and actual tracks in 9th grade was fairly high (	 D 0:93),
the agreement between tracking decisions and competence levels was only moderate
(	 D 0:56). These figures show that teachers’ tracking decisions did well predict the
students’ track in secondary school, but were much worse predictors of their actual
academic competences.

4 Discussion

In this study, an alternative approach for the validation of tracking decisions was
proposed. This approach supplemented the usual criterion of keeping the track by
the inclusion of results of standardized academic achievement tests. Achievement
tests were administered to Luxembourgish 9th graders who attended either the
lower (vocational) track or the higher (academic) track. Test scores were then
classified into two categories according to the intersection of the distributions of test
scores obtained from students of either track. Since the categories represented the
competence of students that was more likely for students from one track compared
to students from the opposite track, we treated these categories as competence
levels pertinent to a certain track. We presented a formula according to which the
frequency of misclassified students can be estimated, if the test-score distributions
are normal and the parameters .�; �; n/ of the test-score distributions are known.
When applied to the sample of Luxembourgish 9th graders, it turned out that about
21% of the students were on the wrong track.

The construction of standardized scholastic achievement tests is often guided
by the aim of achieving normality of the test score distributions. Provided that
these distributions are normal, the formal approach allows for a more precise
estimation of the intersection of the distributions and hence of the distributions’
overlap than if one tries to gauge the intersection by visual inspection of the curves.
Our approach is feasible if the distributions are normal and completely specified.
However, alternative approaches relaxing this assumption might also be developed.

The discrepancy between the tracks students actually attend, and their academic
competence demonstrates that the validation of tracking decisions must go beyond
the assessment of the level of agreement between tracking decisions and actual
tracks. Therefore, we additionally estimated the validity of tracking decisions as the
level of agreement between tracking decisions and the competence level a student
was assigned to according the intersection of the test-score distributions. Since the
latter was much lower than the former, we suppose that success and failure of
students in secondary school partly depend on factors that are not related to student’s
actual academic achievement. This supposition is confirmed by empirical evidence.
For instance, it has been shown that teacher’s evaluations of students are affected by
their expectations regarding prior achievements of the students (Jussim and Eccles
1992). Moreover, teachers frequently stick to their evaluations of students even if
students’ achievements obviously have changed (e.g., Schlechty 1976).
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Of course, test results in 9th grade do not only reflect the actual competence of
the students, but are also affected by the impact a single track had on the students’
individual development. However, the comparison of the test results obtained from
students of different tracks is nevertheless useful since it indicates whether at the
time of testing students exhibit achievements which are below or above the general
level, or fit well the general level, despite the impact of their corresponding track.

We conclude that the discrepancy between tracking and students’ academic
competences reflects both a limited ability of teachers to validly predict students
academic achievements in secondary school as well as a low permeability of the
Luxembourgish school system. Both factors may prevent the students’ academic
advancement and therefore decrease their chances for occupational success.
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DD˛-Classification of Asymmetric
and Fat-Tailed Data

Tatjana Lange, Karl Mosler, and Pavlo Mozharovskyi

Abstract The DD˛-procedure is a fast nonparametric method for supervised
classification of d -dimensional objects into q � 2 classes. It is based on q-
dimensional depth plots and the ˛-procedure, which is an efficient algorithm for
discrimination in the depth space Œ0; 1�q . Specifically, we use two depth functions
that are well computable in high dimensions, the zonoid depth and the random
Tukey depth, and compare their performance for different simulated data sets, in
particular asymmetric elliptically and t-distributed data.

1 Introduction

Classical procedures for supervised learning like LDA or QDA are optimal under
certain distributional settings. To cope with more general data, nonparametric
methods have been developed. A point may be assigned to that class in which
it has maximum depth (Ghosh and Chaudhuri 2005; Hoberg and Mosler 2006).
Moreover, data depth is suited to reduce the dimension of the data and aggregate
their geometry in an efficient way. This is done by mapping the data to a depth-
depth (DD) plot or, more generally, to a DD-space: a unit cube of dimension q � 2,
where each axis indicates the depth w.r.t. a certain class (e.g. see Fig. 1, left and
middle). A proper classification rule is then constructed in the DD-space, see Li et al.
(2012). In Lange et al. (2012) the DD˛-classifier is introduced, which employs a
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Fig. 1 DD-plots using zonoid (left) and location (middle) depth with black and open circles
denoting observations from the two different classes and combined box-plots (right) for Gaussian
location alternative

modified version of the ˛-procedure (Vasil’ev 1991, 2003; Vasil’ev and Lange 1998;
Lange and Mozharovskyi 2012) for classification in the DD-space. For other recent
depth-based approaches, see Dutta and Ghosh (2012a), Dutta and Ghosh (2012b),
and Paindaveine and Van Bever (2013); all need intensive computations.

However, when implementing the DD˛-classifier a data depth has to be chosen
and the so called “outsiders” have to be treated in some way. (An outsider is a data
point that has depth 0 in each of the classes.) The present paper also addresses
the question which notion of data depth should be employed. To answer it we
consider two depth notions that can be efficiently calculated in higher dimensions
and explore their sensitivity to fat-tailedness and asymmetry of the underlying class-
specific distribution. The two depths are the zonoid depth (Koshevoy and Mosler
1997; Mosler 2002) and the location depth (Tukey 1975). The zonoid depth is
always exactly computed, while the location depth is either exactly or approximately
calculated. In a large simulation study the average error rate of different versions
of the DD˛-procedure is contrasted with that of standard classifiers, given data
from asymmetric and fat-tailed distributions. Similarly the performance of different
classifiers is explored depending on the distance between the classes, and their speed
both at the training and classification stages is investigated. We restrict ourselves
to the case q D 2, see Lange et al. (2012) for q > 2. Outsiders are randomly
assigned with equal probabilities; for alternative treatments of outsiders, see Hoberg
and Mosler (2006) and Lange et al. (2012).

The rest of the paper is organized as follows. Section 2 shortly surveys the
depths notions used in the DD˛-procedure and their computation. In Sect. 3 the
results of the simulation studies are presented and analyzed, regarding performance,
performance dynamics and speed of the proposed classifiers. Section 4 concludes.

2 Data Depths for the DD˛-Classifier

Briefly, a data depth measures the centrality of a given point x in a data set X in R
d ;

see e.g. Zuo and Serfling (2000) and Mosler (2002) for properties.
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2.1 Zonoid vs. Location Depth

In the sequel we employ two data depths that can be efficiently computed for high-
dimensional data (d D 20 and higher): the zonoid depth and the location depth. The
computational aspect plays a significant role here as the depths have to be calculated
for each point of each class at the training stage, and they still have to be computed
for a new point w.r.t. each class at the classification stage.

Zonoid depth. For a point x and a set X D fx1; : : : ; xng 2 R
d the zonoid depth is

defined as

ZD.x; X/ D
(

supf˛ W x 2 ZD˛.X/g if x 2 ZD˛.X/ for some 0 < ˛ � 1;

0 otherwise;
(1)

with the zonoid region (2)

ZD˛.X/ D
(

nX
iD1


ixi W 0 � 
i � 1

n˛
;

nX
iD1


i D 1

)
I (2)

see Koshevoy and Mosler (1997) and Mosler (2002) for properties.
Location depth, also known as halfspace or Tukey depth, is defined as

HD.x; X/ D 1

n
min

u2Sd�1
]fi W hxi ;ui � hx;uig; (3)

where h�; �i denotes the inner product. The location depth takes only discrete values
and is robust (having a large breakdown point), while the zonoid depth takes all
values in the set fŒ 1

n
; 1� [ f0gg, is maximum at the mean 1

n

P
i xi , and therefore

less robust. For computation of the zonoid depth we use the exact algorithm of
Dyckerhoff et al. (1996).

2.2 Tukey Depth vs. Random Tukey Depth

The location depth can be exactly computed or approximated. Exact computation
is described in Rousseeuw and Ruts (1996) for d D 2 and in Rousseeuw and
Struyf (1998) for d D 3. For bivariate data we employ the algorithm of Rousseeuw
and Ruts (1996) as implemented in the R-package “depth”. In higher dimensions
exact computation of the location depth is possible (Liu and Zuo 2012), but the
algorithm involves heavy computations. Cuesta-Albertos and Nieto-Reyes (2008)
instead propose to approximate the location depth, using (3), by minimizing the
univariate location depth over randomly chosen directions u 2 Sd�1. Here we
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explore two different settings where the set of randomly chosen u is either generated
once and for all or generated instantly when computing the depth of a given point.
By construction, the random Tukey depth is always greater or equal to the exact
location depth. Consequently, it yields fewer outsiders.

3 Simulation Study

A number of experiments with simulated data is conducted. Firstly, the error rates
of 17 different classifiers (see below) are evaluated on data from asymmetric t- and
exponential distributions in R

2. Then the performance dynamics of selected ones
is visualized as the classification error in dependence of the Mahalanobis distance
between the two classes. The third study explores the speed of solutions based on
the zonoid and the random Tukey depth.

3.1 Performance Comparison

While the usual multivariate t-distribution is elliptically symmetric, it can be made
asymmetric by conditioning its scale on the angle from a fixed direction, see Frahm
(2004). For each degree of freedom, 1 (D Gaussian), 5 and 1 (D Cauchy), two
alternatives are investigated: one considering differences in location only (with
�1 D �

0
0

�
, �2 D �

1
1

�
and ˙1 D ˙2 D �

1 1
1 4

�
) and one differing in both location

and scale (with the same �1 and �2, ˙1 D �
1 1
1 4

�
, ˙2 D �

4 4
4 16

�
), skewing the

distribution with reference vector vC
1 D .cos.�=4/; sin.�=4//, see Frahm (2004)

for details. Further, the bivariate Marshall–Olkin exponential distribution (BOMED)
is looked at: .minfZ1;Z3g;minfZ2;Z3g/ for the first class and .minfZ1;Z3g C
0:5;minfZ2;Z3g C 0:5/ for the second one with Z1 � Exp.1/, Z2 � Exp.0:5/,
andZ3 � Exp.0:75/. Each time we generate a sample of 400 points (200 from each
class) to train a classifier and a sample containing 1,000 points (500 from each class)
to evaluate its performance (D error rate).

DD-plots of a training sample for the Gaussian location alternative using zonoid
(left) and location (middle) depth are shown in Fig. 1. For each classifier, training
and testing is performed on 100 simulated data sets, and a box-plot of error
rates is drawn; see Fig. 1 (right). The first group of non-depth classifiers includes
linear (LDA) and quadratic (QDA) discriminant analysis and k-nearest-neighbors
classifier (KNN). Then the maximal depth classifiers (MM, MS and MH; cf. Ghosh
and Chaudhuri 2005) and the DD-classifiers (DM, DS and DH; cf. Li et al. 2012) are
regarded. Each triplet uses the Mahalanobis (Mahalanobis 1936; Zuo and Serfling
2000), simplicial (Liu 1990) and location depths, respectively. The remaining eight
classifiers are DD˛-classifiers based on zonoid depth (Z-DD˛), exactly computed
location depth (H-DD˛-e), random Tukey depth for once-only (H-DD˛-]s) and
instantly (H-DD˛-]d) generated directions, each time using ] D 10; 20; 50 random
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Fig. 2 DD-plots using zonoid (left) and location (middle) depth and combined box-plots (right)
for Cauchy location-scale alternative

Fig. 3 DD-plots using zonoid (left) and location (middle) depth and combined box-plots (right)
for BOMED location alternative

directions, respectively. The combined box-plots together with corresponding DD-
plots using zonoid and location depth are presented for the Cauchy location-scale
alternative (Fig. 2) and the BOMED location alternative (Fig. 3).

Based on these results (and many more not presented here) we conclude: In
many cases DD˛-classifiers, both based on the zonoid depth and the random Tukey
depth, are better than their competitors. The versions of the DD˛-classifier that are
based on the random Tukey depth are not outperformed by the exact computation
algorithm. There is no noticeable difference between the versions of the DD˛-
classifier based on the random Tukey depth using same directions and an instantly
generated direction set. The statement “the more random directions we use, the
better classification we achieve” is not necessarily true with the DD˛-classifier
based on the random Tukey depth, as the portion of outsiders and their treatment
are rather relevant.

3.2 Performance Dynamics

To study the performance dynamics of the various DD˛-classifiers in contrast with
existing classifiers we regard t-distributions with 1, 5 and 1 degrees of freedom,
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Fig. 4 Performance dynamic graphs for Gaussian (left) and asymmetric conditional scale Cauchy
(right) distributions

each in a symmetric and an asymmetric version (see Sect. 3.1). The Mahalanobis
distance between the two classes is systematically varied. At each distance the
average error rate is calculated over 100 data sets and five shift directions in
the range Œ0; �=2�. (As we consider two classes and have one reference vector
two symmetry axes arise.) By this we obtain curves for the classification error
of some of the classifiers considered in Sect. 3.1, namely LDA, QDA, KNN, all
DD˛-classifiers, and additionally those using five constant and instantly generated
random directions. The results for two extreme cases, Gaussian distribution (left)
and asymmetric conditional scale Cauchy distribution (right) are shown in Fig. 4.

Under bivariate elliptical settings (Fig. 4, left) QDA, as expected from theory,
outperforms other classifiers and coincides with LDA when the Mahalanobis
distance equals 1. DD˛-classifiers suffering from outsiders perform worse but
similarly, independent of the number of directions and the depth notion used; they
are only slightly outperformed by KNN for the “upper” range of Mahalanobis
distances. (Note that KNN does not have the “outsiders problem”.) But when
considering an asymmetric fat-tailed distribution (Fig. 4, right), neither LDA nor
QDA perform satisfactorily. The DD˛-classifiers are still outperformed by KNN
(presumably because of the outsiders). They perform almost the same for different
numbers of directions. The DD˛-classifier based on zonoid depth is slightly
outperformed by that using location depth, which is more robust.

3.3 The Speed of Training and Classification

The third task tackled in this paper is comparing the speed of the DD˛-classifiers
using zonoid and random Tukey depth, respectively. (For the latter we take 1,000
random directions and do not consider outsiders.) Two distributional settings are
investigated: N.0d ; Id / vs. N.0:25 � 1d ; Id / and N.0d ; Id / vs. N..0:2500

d�1/0; 5 � Id /,
d D 5; 10; 15; 20. For each pair of classes and number of training points and
dimension we train the classifier 100 times and test each of them using 2,500 points.
Average times in seconds are reported in Table 1.
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Table 1 The average speed of training and classification (in parentheses) using the random Tukey
depth, in seconds

N.0d ; Id / vs N.0:25 � 1d ; Id / N.0d ; Id / vs N..0:2500

d�1/
0; 5 � Id /

d D 5 d D 10 d D 15 d D 20 d D 5 d D 10 d D 15 d D 20

n D 200 0.1003 0.097 0.0908 0.0809 0.0953 0.0691 0.0702 0.0699
(0.00097) (0.00073) (0.00033) (0.00038) (0.00098) (0.0005) (0.00034) (0.00025)

n D 500 0.2684 0.2551 0.2532 0.252 0.2487 0.2049 0.1798 0.1845
(0.00188) (0.00095) (0.00065) (0.00059) (0.0019) (0.00096) (0.00065) (0.00049)

n D 1000 0.6255 0.6014 0.5929 0.5846 0.5644 0.5476 0.4414 0.4275
(0.00583) (0.00289) (0.00197) (0.00148) (0.0058) (0.00289) (0.00197) 0.00148

Table 1 and the distributional settings correspond to those in Lange et al.
(2012), where a similar study has been conducted with the zonoid depth. We also
use the same PC and testing environment. Note firstly that the DD˛-classifier
with the random Tukey depth requires substantially less time to be trained than
with the zonoid depth. The time required for training increases almost linearly with
the cardinality of the training set, which can be traced back to the structure of the
algorithms used for the random Tukey depth and for the ˛-procedure. The time
decreases with dimension, which can be explained as follows: The ˛-procedure
takes most of the time here; increasing d but leaving n constant increases the number
of points outside the convex hull of one of the training classes, that is, having
depth D 0 in this class; these points are assigned to the other class without
calculations by the ˛-procedure.

4 Conclusions

The experimental comparison of the DD˛-classifiers, using the zonoid depth and
the random Tukey depth, on asymmetric and fat-tailed distributions shows that in
general both depths classify rather well, the random Tukey depth performs not worse
than the zonoid depth and sometimes even outperforms it (cf. Cauchy distribution),
at least in two dimensions. Though both depths can be efficiently computed, also
for higher dimensional data, the random Tukey depth is computed much faster. Still
when employing the random Tukey depth the number of random directions has to be
selected; this as well as a proper treatment of outsiders needs further investigation.
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The Alpha-Procedure: A Nonparametric
Invariant Method for Automatic Classification
of Multi-Dimensional Objects

Tatjana Lange and Pavlo Mozharovskyi

Abstract A procedure, called ˛-procedure, for the efficient automatic classification
of multivariate data is described. It is based on a geometric representation of two
learning classes in a proper multi-dimensional rectifying feature space and the
stepwise construction of a separating hyperplane in that space. The dimension of
the space, i.e. the number of features that is necessary for a successful classification,
is determined step by step using two-dimensional repères (linear subspaces). In
each step a repère and a feature are constructed in a way that they yield maximum
discriminating power. Throughout the procedure the invariant, which is the object’s
affiliation with a class, is preserved.

1 Introduction

A basic task of pattern recognition consists in constructing a decision rule by which
objects can be assigned to one of two given classes. The objects are characterized by
a certain number of real-valued properties. The decision rule is based on a trainer’s
statement that states for a training sample of objects, whether they belong to class
V1 or class V2. Many procedures are available to solve this task, among them binary
regression, parametric discriminant analysis, and kernel methods like the SVM; see,
e.g., Hastie et al. (2009).

A large part of nonparametric approaches search for a separating (or rectifying)
hyperplane dividing the two training classes in a sufficiently high-dimensional
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Fig. 1 Instable solution for the separation of the classes (left). The selection of an informative
property (right)

feature space. In doing so we face the problem that the “competencies” of measured
properties (forming the axes of the original space) are unknown. Even more, we also
do not know the correct scale of a property.

Very often these uncertainties lead to a situation where the complete separation of
the patterns (or classes) of a training sample becomes difficult (Fig. 1, left). All these
factors can cause a very complex separating surface in the original space which
correctly divides the classes of the training sample but works rather poorly in case
of new measured data. The selection of a more “informative” property (Fig. 1, right)
can give less intricate and thus more stable decisions.

The ˛-procedure (Vasil’ev 2003, 2004, 1969, 1996; Vasil’ev and Lange 1998)
uses the idea of a general invariant for stabilizing the selection of the separating
plane. The invariant is the belonging of an object to a certain class of the training
sample. The ˛-procedure—using repères—performs a step-by-step search of the
direction of a straight line in a given repère that is as near as possible to the trainer’s
statement, i.e. separates best the training sample. It is completely nonparametric.
The properties of the objects which are available for the recognition task are selected
in a sequence one by one. With the most powerful properties a new space of
“transformed features” is constructed that is as near as possible to the trainer’s
statement.

2 The ˛-Procedure

First, we perform some pre-selection, taking into further considerations only those
properties pq , q D 1; : : : ; m; whose values are completely separated or have some
overlap as shown in Fig. 2. Next, we define the discrimination power or separating
power of a single property pq as

F.pq/ D cq

l
; (1)

where l is the length of the training sample (D number of objects) and cq is the
number of correctly classified objects.
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Fig. 2 Classification by a single property pq , with l D 15, cq D 6

Fig. 3 ˛-procedure, Stage 1

We set a minimum admissible discrimination power Fmin, and at the first step
select any property as a possible feature whose discrimination power exceeds the
minimum admissible one:

F.pq/ > Fmin (2)

For the synthesis of the space, we select step-by-step those features that have
best discrimination power. Each new feature shall increase the number of correctly
classified objects. For this, we use the following definition of the discrimination
power of a feature, selected at step k:

F.xk/ D !k � !k�1
l

D �!k

l
; !0 D 0; (3)

where!k�1 is the accumulated number of correctly classified objects before the k-th
feature was selected and !k is the same after it was selected.

At Stage 1 we select a property having best discrimination power as a basis
feature f0 (D first axis) and represent the objects by their values on this axis; see
Fig. 3.

At Stage 2 we add a second property pk to the coordinate system and project
the objects to the plane that is spanned by the axes f0 and pk . In this plane a ray
originating from the origin is rotated up to the point where the projections of the
objects onto this ray provide the best separation of the objects. The resulting ray,
characterized by its rotation angle ˛, defines a possible new axis. We repeat this
procedure for all remaining properties and select the property that gives the best
separation of the objects on its rotated axis, which is denoted as Qf1. This axis is
taken as the first new feature, and the respective plane as the first repère; see Fig. 4.
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Fig. 4 ˛-procedure, Stage 2

Fig. 5 ˛-procedure, Stage 3

At Stage 3 we regard another property pj that has not been used so far and define
the position of the objects in a new plane that is built by the axes Qf1 and pj . Again
we consider a ray in this plane and turn it around the origin by the angle ˛ until
the projections of the objects onto this axis give the best separation. We repeat this
procedure for all remaining properties and select the best one, which, together with
Qf1 forms the second repère (Fig. 5). In our simple example this feature already leads

to a faultless separation of the objects.
If all properties have been used but no complete separation of all objects reached,

a special stopping criterion as described in Vasil’ev (1996) is to be used.

3 Some Formulae

As we see from the description of the idea, the procedure is the same at each step
except for the first basic step defining f0.

Let us assume that we have already selected k � 1 features. We will use the
symbol Qxi;.k�1/; i D 1; : : : ; l; for the projections of the objects onto the feature fk�1
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Fig. 6 Calculating the value
of feature k � 1 for object i

and !k�1 as the number of already correctly classified objects (Fig. 6). For the next
step k we have to compute the projection Qxi;.k/ D �i cos.ˇi C ˛q/ for all remaining
properties pq , where Qxi;.k�1/ is the value of feature k�1 for object i , xiq is the value

of property q for object i , �i D
q

Qx2i;.k�1/ C x2iq ; ˇi D arctan.xiq= Qxi;.k�1// .

After n steps the normal of the separating hyperplane is given by

 
nY

kD2
cos˛0k; sin ˛02

nY
kD3

cos˛0k; : : : ; sin˛0n�1 cos˛0n; sin ˛0n

!
; (4)

where ˛0k denotes the angle ˛ that is best in step k, k D 2; : : : ; n. Due to
the fact that (4) is stepwise calculated, the underlying features must be assigned
backwards in practical classification. For example, the separation decision plane
and the decomposition of its normal vector are shown in Figs. 7 and 8.

Note: If the separation of objects is not possible in the original space of
properties, the space can be extended by building additional properties using
products of the type xsiq � xtir for all q; r 2 f1; : : : ; mg and i and some (usually
small) exponents s and t . The solution is then searched in the extended space.

4 Simulations and Applications

To explore the specific potentials of the ˛-procedure we apply it to simulated
data. Besides the application to the original data, the ˛-procedure can also be
applied to properly transformed data; in particular, it has been successfully used to
classify data on the basis of their so called DD-plot (DD˛-classifier), see Lange
et al. (2012a,b). The ˛-procedure (applied in the original space (˛-pr.(1)) and
the extended space using polynomials of degree 2 (˛-pr.(2)) and 3 (˛-pr.(3))) is
contrasted with the following nine classifiers: linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), k-nearest neighbors classification (KNN),
maximum depth classification based on Mahalanobis (MM), simplicial (MS), and
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Fig. 7 The separating decision plane

Fig. 8 The separating decision plane with its defining vector

halfspace (MH) depth, and DD-classification with the same depths (DM, DS and
DH, correspondingly; see Li et al. 2012 for details), and to the DD˛-classifier.

Six simulation alternatives are used; each time a sample of 400 objects (200 from
each class) is used as a training sample and 1,000 objects (500 from each class) to
evaluate the classifier’s performance (D classification error). First, normal location
(two classes originate from N.

�
0
0

�
;
�
1 1
1 4

�
/ and N.

�
1
1

�
;
�
1 1
1 4

�
/, see Fig. 9, left) and

normal location-scale (the second class has covariance
�
4 4
4 16

�
, see Fig. 9, middle)

alternatives are tried.
To test the proposed machinery for robustness properties we challenge it using

contaminated normal distribution, where the first class of the training sample
of the normal location and location-scale alternatives considered above contains
10 % objects originating from N.

�
10
10

�
;
�
1 1
1 4

�
/ (see Fig. 9, right and Fig. 10, left
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Fig. 9 Boxplots of the classification error for normal location (left) and location-scale (middle),
and normal contaminated location (right) alternatives over 100 takes

0.3 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.50.4 0.5

Classification error Classification error Classification error

0.6 0.7

Fig. 10 Boxplots of the classification error for normal contaminated location-scale (left), and
Cauchy location-scale (middle), and exponential (right) alternatives over 100 takes

correspondingly). Other robustness aspects are demonstrated with a pair of Cauchy
distributions forming a similar location-scale alternative, see Fig. 9, middle. Settings
with exponential distributions (.Exp.1/;Exp.1// vs. .Exp.1/C 1;Exp.1/C 1/, see
Fig. 10) conclude the simulation study.

The ˛-procedure performs fairly well for normal alternatives and shows remark-
able performance for the robust alternatives considered. Though it works well on
exponential settings as well, its goodness appears to depend on the size of the
extended feature space. The last choice can be made by using either external
information or cross-validation techniques.

5 Conclusion

The ˛-procedure calculates a separating hyperplane in a (possibly extended) feature
space. In each step a two-dimensional subspace is constructed where, as the data
points are naturally ordered, only a circular (that is, linear) search has to be
performed. This makes the procedure very fast and stable. The classification task
is simplified to a stepwise linear separation of planar points, while the complexity
of the problem is coped with by the number of features constructed. The angle ˛
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of the plane at step .k � 1/ defines a basic vector of the following repère at step
k. Finally, the ˛-procedure is coordinate-free as its invariant is the belonging of an
object to a certain class only.
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Support Vector Machines on Large Data Sets:
Simple Parallel Approaches

Oliver Meyer, Bernd Bischl, and Claus Weihs

Abstract Support Vector Machines (SVMs) are well-known for their excellent
performance in the field of statistical classification. Still, the high computational cost
due to the cubic runtime complexity is problematic for larger data sets. To mitigate
this, Graf et al. (Adv. Neural Inf. Process. Syst. 17:521–528, 2005) proposed the
Cascade SVM. It is a simple, stepwise procedure, in which the SVM is iteratively
trained on subsets of the original data set and support vectors of resulting models
are combined to create new training sets. The general idea is to bound the size
of all considered training sets and therefore obtain a significant speedup. Another
relevant advantage is that this approach can easily be parallelized because a number
of independent models have to be fitted during each stage of the cascade. Initial
experiments show that even moderate parallelization can reduce the computation
time considerably, with only minor loss in accuracy. We compare the Cascade SVM
to the standard SVM and a simple parallel bagging method w.r.t. both classification
accuracy and training time. We also introduce a new stepwise bagging approach
that exploits parallelization in a better way than the Cascade SVM and contains an
adaptive stopping-time to select the number of stages for improved accuracy.

1 Introduction

Support vector machines (e.g., Schoelkopf and Smola 2002) are a very popular
supervised learning algorithm for both classification and regression due to their
flexibility and high predictive power. One major obstacle in their application
to larger data sets is that their runtime scales approximately cubically with the
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number of observations in the training set. Combined with the fact that not one
but multiple model fits have to be performed due to the necessity of hyperparameter
tuning, their runtime often becomes prohibitively large beyond 100.000 or 1 million
observations. Many different approaches have been suggested to speed up training
time, among these online SVMs (e.g., the LASVM by Border et al. 2005, sam-
pling techniques and parallelization schemes. In this article we will evaluate two
quite simple methods of the latter kind. All of our considered approaches break
up the original data set into smaller parts and fit individual SVM models on these.
Because of the already mentioned cubical time-scaling of the SVM algorithm w.r.t.
the number of data points a substantial speed up should be expected.

We state two further reasons for our general approach: (a) Computational power
through multiple cores and multiple machines is often cheaply available these days.
(b) We would like to keep as much as possible from the original SVM algorithm
(use it as a building block in our parallelization scheme) in order to gain from future
improvements in this area. It is also of general interest for us, how far we can get
with such relatively simple approaches.

In the following sections we will cover the basic SVM theory, describe the
considered parallelization approaches, state our experimental setup, report the
results and then summarize them with additional remarks for future research.

2 Support Vector Machines

In supervised machine learning, data for classification tasks can be represented as a
number of observations .x1; y1/; .x2; y2/; : : : ; .xn; yn/ 2 X � Y, where the set X
defines the space in which our feature vectors xi live in (here assumed to be R

p as
we will mainly discuss the Gaussian kernel later on) and Y D f�1; 1g is the set of
binary class labels. The support vector machine (SVM) relies on two basic concepts:

(a) Regularized risk minimization: We want to fit a large margin classifier f W
R
p ! R with a low empirical regularized risk:

. Of ; Ob/ D arg inf
f 2H ;b2R jjf jj2H C C

nX
iD1

L.yi ; f .xi /C b/ : (1)

Here, b is the so-called bias term of the classifier and L is a loss function.
For classification with the SVM, we usually select the hinge loss L.y; t/ D
max.0; 1�yt/. This is a convex, upper surrogate loss for the 0/1-lossL.y; t/ D
I Œyt < 0�, which is of primary interest, but algorithmically intractable.

While the second term above (called the empirical risk) measures the
closeness of the predictions f .xi / C b to the true class labels �1 and C1,
respectively, by means of L, the first term jjf jj2H is called a regularizer, relates
to the maximization of the margin and penalizes “non-smooth” functions f .
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The balance between these two terms is controlled by the hyperparameter C .
For an unknown observation x the class label is predicted by sign. Of .x/C Ob/.

(b) Kernelization: In order to be able to solve non-linear classification problems
we “kernelize” (1) by introducing a kernel function k W X � X ! R ; which
measures the “similarity” of two observations. Formally, k is a symmetric,
positive semi-definite Mercer kernel. And H is now defined as the associated
reproducing kernel Hilbert space for k, our generalized inner product in H is
hx; x0iH D k.x; x0/ and jjxjj2 D hx; xiH By using this so-called “kernel trick”
we implicitly map our data into a usually higher-dimensional space, enabling us
to tackle nonlinear problems with essentially linear techniques. The Gaussian
kernel

k.xi ;xj / D exp
��� jjxi � xj jj22

	
(2)

is arguably the most important and popular kernel function and we have
therefore focused on it in all subsequent experiments. But note that all following
parallelization techniques are basically independent of this choice.

The optimization problem (1) is usually solved in its dual formulation and leads
to the following quadratic programming problem:

max
˛

nX
iD1

˛i � 1

2

nX
i;jD1

yiyj hxi ;xj iH

s.t. 0 � ˛ � C and yT˛ D 0 ;

(3)

where ˛ denotes the vector of Lagrange multipliers.
As we will usually obtain a sparse solution due to the non-differentiability of our

hinge loss L, some ˛i will be zero, and the observations xi with ˛i > 0 shall be
called support vectors (SVs). They are the samples solely responsible for the shape
of our decision border f .x/ D 0. This is implied by the fact that if we retrain an
SVM on only the support vectors, we will arrive at exactly the same model as with
the full data set.

The SVM performance is quite sensitive to hyperparameter settings, e.g., the
settings of the complexity parameter C and the kernel parameter � for the Gaussian
kernel. Therefore, it is strongly recommended to perform hyperparameter tuning
before the final model fit. Often a grid search approach is used, where performance
is estimated by cross-validation, but more sophisticated methods become popular as
well (see e.g., Koch et al. 2012).

Multi-class problems are usually solved by either using a multi-class-to-binary
scheme (e.g., one-vs-one) or by directly changing the quadratic programming
problem in (3) to incorporate several classes.
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3 Cascade Support Vector Machine

The Cascade SVM is a stepwise procedure that combines the results of multiple
regular support vector machines to create one final model. The main idea is to
iteratively reduce a data set to its crucial data points before the last step. This is
done by locating potential support vectors and removing all other samples from the
data. The method described here is essentially taken from the original paper by Graf
et al. (2005):

1. Partition the data into k disjoint subsets of preferably equal size.
2. Independently train an SVM on each of the data subsets.
3. Combine the SVs of, e.g., pairs or triples of SVMs to create new subsets.
4. Repeat steps 2 and 3 for some time.
5. Train an SVM on all SVs that were finally obtained in step 4.

This algorithm (depicted in the right-hand side of Fig. 1) will be called Cascade
SVM or simply cascade. In the original paper, Graf et al. also considered the
possibility of multiple runs through the cascade for each data set. After finishing
a run through the cascade the subsets for the first step of the next run are created
by combining the remaining SVs of the final model with each subset from the first
step of the first run. For speed reasons we always only perform one run through the
cascade.

4 Bagging-Like Support Vector Machines

Another generic and well-known concept in machine learning is bagging. Its main
advantage is that derived methods are usually accurate and very easy to parallelize.
Chawla et al. (2003) introduced and analyzed a simple variant, which proved to
perform well on large data sets for decision trees and neural networks. Unlike
in traditional bagging algorithms, the original data set is randomly split into n
disjoint (and not overlapping) subsamples, which all contain 1

n
-th of the data. Then

a classification model is trained on each of these subsets. Classification of new data
is done by majority voting with ties being broken randomly. Hence, using SVMs
means that the training of this bagging-like method is equivalent to the first step
of the Cascade SVM. By comparing these two methods we can analyze if the
additional steps of the cascade (and the invested runtime) improves the accuracy
of the procedure.

Figure 1 shows the structures of a 4-2 Cascade SVM (C-4-2)—with 4 being the
number of subsets in the first step and 2 representing the number of models being
combined after every single step—and a bagged SVM using three bags.
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Fig. 1 Schemes for bagged SVM (left) and cascade (right)

5 Stepwise Bagging

It can easily be seen that the possibility to parallelize the Cascade SVM decreases
in every step. This leads to the problem that an increasing number of cores will
stay idle during the later stages, and in the last stage only one core can be used.
We will also observe in the following experimental results that both algorithms—
cascade and bagging—will perform suboptimally in some cases either with regard
to runtime or accuracy. We therefore made the following changes to the described
cascade algorithm in order to maximally use the number of available cores and to
generally improve the algorithm by combining the advantages of both methods:

1. In the first stage, the data is partitioned in k subsets as usual.
2. At beginning of each subsequent stage in the cascade, all remaining vectors are

combined into one set and then randomly divided into k overlapping subsets.
The size of the subsets is fixed to the size of the subsets of the first stage, but
not larger than 2/3 of the current data, if the former cannot be done. Overlapping
occurs as vectors are drawn with replacement.

3. In the final stage, a bagged SVM is created instead of a single model.
4. As it is problematic to determine the number of stages of this approach we try

to infer the optimal stopping time: At the beginning of the training process we
hold out 5 % of the training data as an internal validation set. After each stage
we measure the error of the bagged model of k SVMs from the current stage on
this validation data. If the accuracy compared to the previous stage decreases, we
stop the process and return the bagged model of the previous stage.

5. We have noticed that in some cases of a preliminary version of this stepwise
bagging algorithm the performance degraded when the support vectors contained
many wrongly classified examples. This happens in situations with high Bayes
error/label noise, because all misclassified examples automatically become
support vectors and will therefore always be contained in the training set for
the next stage. As this seems somewhat counterintuitive, we have opted not to
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select the support vectors in each stage, but instead only the SVs on and within
the margin. This has the additional advantage that the set of relevant observations
is reduced even further.

6 Experimental Setup

We evaluate the mentioned parallelization schemes on seven large data sets.1 Their
respective names and characteristics are listed in Table 1. Some of the data sets are
multi-class, but as we want to focus on the analysis of the basic SVM algorithm,
which at least in its usual from can only handle two-class problems, we have
transformed the multi-class problems into binary ones. The transformation is stated
in Table 1 as well. We have also eliminated every feature from every data set which
was either constant or for which more than n�1000 samples shared the same feature
value.

As we are mainly interested in analyzing the possible speedup of the training
algorithm we have taken a practical approach w.r.t. the hyperparameter tuning in
this article: For all data sets we have randomly sampled 10 % of all observations
for tuning and then performed a usual grid search for C 2 2�5; 2�3; : : : ; 215 and
� 2 2�15; 2�13; : : : ; 23, estimating the misclassification error by fivefold cross-
validation. The whole procedure was repeated five times, for every point .C; �/
the average misclassification rate was calculated, and the optimal configuration was
selected. In case of ties, a random one was sampled from the optimal candidates.
Table 1 displays the thereby obtained parameterizations and these have been used in
all subsequent experiments.

Table 1 Data sets, data characteristics, used hyperparameters, proportional size of smallest class
and multi-class binarization

Data set Size Features C � Smaller class Binarization

covertype 581,012 46 8 0.500 0.488 Class 2 vs. rest
cod 429,030 9 32 0.125 0.333
ijcnn1 191,681 22 32 3.13e�2 0.096
miniboone 130,064 50 32768 7.81e�3 0.281
acoustic 98,528 50 8 3.13e�2 0.500 Class 3 vs. rest
mnist 70,000 478 32 1.95e�3 0.492 Even vs. odd
connect 67,557 94 512 4.88e�4 0.342 Class 1 vs. rest

To compare the speedups of the different parallelization methods, we have
run the following algorithms: The basic SVM, the Cascade SVM with C-27-3

1Can be obtained either from the LIBSVM web page or the UCI repository.
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(27-9-3-1 SVMs), C-27-27 (27-1 SVMs), C-9-3 (9-3-1 SVMs) and C-9-9 (9-1
SVMs), bagging with nine bags (B-9) and the stepwise bagging approach also
with nine subsets (SWB-9). For the basic SVM algorithm we have used the
implementation provided in the kernlab R package by Karatzoglou et al. (2004).
For all parallel methods we have used nine cores. For all algorithms we have
repeatedly (ten times) split the data into a 3/4 part for training (with the already
mentioned hyperparameters) and 1/4 for testing. In all cases we have measured the
misclassification rate on the test set and the time in seconds that the whole training
process lasted.

7 Results

The results of our experiments are displayed in Fig. 2 and can loosely be separated
into three groups. For the data sets acoustic, cod and miniboone, the bagged SVMs
lead to a better or at least equally good accuracy as the Cascade SVMs in only
a fraction of its training time. Since the bagged SVM is nothing else but the
first step of a cascade, this means that the subsequent steps of the cascade do
not increase or even decrease the quality of the prediction. This does not mean
that the Cascade SVM leads to bad results on all of these sets. In the case of
miniboone for example it performs nearly as good as the classic SVM in just about
4,000 s compared to 65,000. But bagging does the same in only 350 s. On these
data sets the stepwise bagging procedure usually leads to an accuracy that is equal
to those of the standard bagging SVM and needs at worst as much time as the
cascade.

The second group consists of connect, covertype and mnist. On these datasets
the Cascade SVM leads to results that are as accurate as those from the classic
SVM but only needs about half of the training time. The bagged SVM on the other
hand again performs several times faster but cannot achieve the same accuracy as
the other methods. So in these cases, at the cost of an at least ten times higher
training time, the further steps of the cascade actually do increase the accuracy.
The stepwise bagging SVM produces results that lie between the cascade and the
standard bagging SVMs in both accuracy and training time. The actual boost in
accuracy varies from data set to data set.

For the last dataset ijcnn1, all three methods perform very fast (cascade 15,
bagging 25, stepwise bagging 14 times faster) but none of them achieves an accuracy
that is as good as the classic SVM. Again the cascade outperforms bagging w.r.t
accuracy while SWB lies between the other two methods.
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Fig. 2 Misclassification rates and training times (the latter on log10 scale) for normal and parallel
SVMs

8 Conclusion and Outlook

We have analyzed simple parallelization schemes for parallel SVMs, namely a
bagging-like approach, the Cascade SVM and a new combination of the two. On
the considered data sets we could often observe a drastic reduction in training
time through the parallelization with only minor losses in accuracy. Especially our
new combined approach showed promising results. But still none of the considered
algorithms shows optimal results across all considered data sets, and more work
has to be done in this regard. One of the major missing features of our method
is an efficient procedure for hyperparameter tuning that does not require many
evaluations on large subsets of the training data. We have already begun preliminary
experiments for this and will continue our research in this direction.
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Soft Bootstrapping in Cluster Analysis and Its
Comparison with Other Resampling Methods

Hans-Joachim Mucha and Hans-Georg Bartel

Abstract The bootstrap approach is resampling taken with replacement from the
original data. Here we consider sampling from the empirical distribution of a
given data set in order to investigate the stability of results of cluster analysis.
Concretely, the original bootstrap technique can be formulated by choosing the
following weights of observations: mi D n, if the corresponding object i is drawn
n times, andmi D 0, otherwise. We call the weights of observations masses. In this
paper, we present another bootstrap method, called soft bootstrapping, that consists
of random change of the “bootstrap masses” to some degree. Soft bootstrapping can
be applied to any cluster analysis method that makes (directly or indirectly) use of
weights of observations. This resampling scheme is especially appropriate for small
sample sizes because no object is totally excluded from the soft bootstrap sample. At
the end we compare different resampling techniques with respect to cluster analysis.

1 Introduction

The non-parametric bootstrap approach is resampling taken with replacement
from the original distribution (Efron 1979). Asymptotic results and simulations of
bootstrapping were presented by many authors like Mammen (1992). Bootstrapping
has been established as a statistical method for estimating the sampling distribution
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Fig. 1 Plot of the two dimensional toy data set A (on the left hand side). On the right hand side,
the estimates of the locations of clusters are plotted. They are the result of hierarchical clustering
of 250 bootstrap samples into three clusters

of an estimator based on the original data (Efron and Tibshrani 1993). This
technique allows the estimation of the sampling distribution of almost any statistic
using only very simple methods.

Generally, bootstrapping falls in the broader class of resampling methods. Some
alternative resampling methods are sub-setting (draw a subsample to a smaller size
without replacement) and jittering (add random noise to every measurement of
each single observation). These alternatives or a combination of them are often
applied in order to investigate the stability of clustering results. This is because no
multiple observations disturb the clustering, as it is in bootstrapping where multiple
observations can establish “artificial” mini-clusters.

In this paper, we consider non-parametric bootstrap sampling from the empirical
distribution of a given data set in order to investigate the stability of results of
cluster analysis. In doing so, statistical parameters such as location and variance
of individual cluster means can be assessed. Figure 1 introduces a toy data set
(plot on the left hand side). Obviously, there are three classes C1 D f1; 2; : : : ; 13g,
C2 D f14; 15; : : : ; 18g, and C3 D f19; 20; : : : ; 26g. The data values are integers.
They can be taken directly from the plot. Cluster analysis aims at finding groups
(clusters) in the data at hand. In addition, Fig. 1 shows estimates of the location
parameters that are the result of hierarchical Ward clusterings of 250 non-parametric
bootstrap samples of this toy data into three clusters (plot on the right hand side).
Here, each bootstrap clustering provides estimates of three cluster centers. So,
the plot represents 750.D 250 � 3/ estimates. Obviously, almost all estimates of the
cluster centers reflect the true classes. The lonely star at the top in the center of the
plot presents clearly a mixture of classes C1 and C2. Of course, such an estimation
of locations is strictly restricted to metric data.
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In clustering, the estimation of these parameters is not the main task. The final
aim of clustering is the formation of groups either as a partition or a hierarchy of
a given set of observations. Therefore, here the focus is on general investigation
of stability based on partitions. This covers also hierarchies because they can be
considered as a set of partitions. The stability of partitions and hierarchies as
well as individual clusters can be assessed by different similarity measures such
as the adjusted Rand or Jaccard index (Mucha 2007). Using such measures of
comparing partitions or sets, the bootstrap simulations can help to answer the
following questions:

• Are there clusters? And if so, how many clusters are most likely?
• What about the stability of individual clusters?
• What about the reliability of cluster membership of each observation?

In doing so, the partition of clustering of the original data set is compared with a
bootstrap clustering. Of course, this comparison is repeated with many bootstrap
samples. At the end, these comparisons are summarized. Obviously, the objective is
the investigation of the stability of a clustering on three levels (Haimerl and Mucha
2007; Mucha 2007):

1. Determine the number of clusters that result in the most stable partition with
respect to measures such as the adjusted Rand or the total Jaccard (the latter is
the average over the Jaccard values of all individual clusters).

2. Calculate the individual stability for every cluster in a partition with respect to
measures such as Jaccard index or Dice index (Hennig 2007).

3. Calculate the value of reliability of cluster membership for every observation in
a cluster and test it with a significance level.

In the case of metric data, general stability investigations can be completed by the
estimation of statistics of location parameters of clusters as shown in Fig. 1.

2 Resampling by Weighting of the Observations

Let us consider the problem of findingK clusters for I given observations. Without
loss of generality, let us consider furthermore the well-known (generalized) sum of
squares clustering criterion

VK D
KX
kD1

1

Mk

X
i2Ck

mi

X
l2Ck ;l>i

mldil; (1)

that has to be minimized concerning a partition into the clusters Ck; k D 1; : : : ; K ,
where Mk D P

i2Ck mi and mi denote the weight of cluster Ck and the weight of
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observation i, respectively. Here dil are the pair-wise squared Euclidean distances
between two observations i and l:

dil D d.xi ; xl / D .xi � xl /T .xi � xl /; (2)

where xi and xl are the vectors of measurements of the corresponding observations.
Then, for instance, the partitionalK means method (Späth 1985 in Chap. 7: “Criteria
for given or computed distances not involving centres”, Mucha et al. 2002) or the
hierarchical Ward’s method (Mucha 2009; Späth 1982) find a suboptimum solution
of (1). In addition, the latter finds all partitions into K D 2; 3; : : : ; I � 1 clusters
in one run only, and this result is (usually) unique. Therefore and without loss of
generality, we focus here our investigation of stability of clustering on Ward’s
method (see for more details: Haimerl and Mucha 2007; Mucha and Haimerl 2005).

For simplicity, let us suppose in the following that the original weights of
observations are mi D 1; i D 1; 2; : : : ; I (“unit mass”). Concretely, then the
original bootstrap technique based on these masses can be formulated by choosing
the following weights of observations:

mi D



n if observation i is drawn n times
0 otherwise .

(3)

Here I D P
i mi holds in resampling with replacement. Observations with

mi > 0 are called selected or active ones, otherwise non-selected or supplementary
ones. The latter do not affect the clustering. All statistical methods that make use
(directly or indirectly) of masses can do bootstrapping based on (3). By the way,
the “centers-free” criterion (1) allows computational efficient K means clusterings
because the pairwise distances (2) remain unchanged in simulations based on
resampling.

3 Soft Bootstrapping

Bootstrapping generates multiple observations. In clustering, this is often a
disadvantage because they can be seen as mini-clusters in itself (Hennig 2007).
Otherwise, on average, more than a third of the original observations are absent
in the bootstrap sample. In the case of small sample size that can cause another
disadvantage. Therefore, here we recommend another bootstrap method, called soft
bootstrapping hereafter, that consists of random change of the bootstrap masses (3)
to some degree:

m�
i D



n -(qp/(I-q)) if observation i is drawn n times
0C p otherwise .

(4)
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Table 1 An example for the toy data sets: Original bootstrap weights mi and the corresponding
soft bootstrap weights m�

i with the softness parameter p D 0:1

Observations

Mass 1 2 3 4 5 . . . 25 26

mi 1 1 4 0 2 . . . 3 0
m�

i 0.956 0.956 3.956 0.100 1.956 . . . 2.956 0.100

Here q counts the number of observations that are not drawn by bootstrapping
and p .p > 0/ is a softness parameter close to 0. This resampling scheme of
assigning randomized masses m�

i > 0 (obviously, guaranteed by construction:
I D P

i m
�
i ) is especially appropriate for a small sample size because no object

is totally excluded from the soft bootstrap sample. Table 1 shows examples of
both the masses (3) coming from original bootstrapping of the toy data and their
corresponding soft masses (4). Here the bootstrap sample consists of 18 (individual
or multiple) observations, i.e., q D 8.

4 Validation of Clustering Using Soft Bootstrapping

Concretely, in (4), each observation gets a quite different degree of importance in
the clustering process. The clustering algorithms itself must fulfill the condition that
non-selected observations (m�

i D p) do not initialize clusters either by merging
two non-selected observations (in case of hierarchical methods) or by setting seed
points in an initial partition (in case of K means and other partitional methods).
These conditions are easy to realize in the algorithms to make the thing working.

What are stable clusters from a general statistical point of view? These clusters
can be confirmed and reproduced to a high degree by using resampling methods.
Thus, cluster analysis of a randomly drawn sample of the data should lead to similar
results. The Jaccard index is the odds-on favorite to assess cluster stability (Hennig
2007). Both the adjusted Rand index and the total Jaccard index (pooled over all
individual clusters) is most appropriate to decide about the number of clusters, i.e. to
assess the total stability of a clustering. In a validation study, we compare an original
cluster analysis result with many bootstrap clusterings based on these measures.

5 Comparison of Resampling Methods

In clustering, the so-called sub-sampling or sub-setting is another approach intro-
duced by Hartigan (1969):

ms
i D



1 if observation i is drawn randomly
0 otherwise .

(5)
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Fig. 2 Ward’s clustering of toy data set A of Fig. 1: Comparison of different resampling schemes
based on the adjusted Rand index

Fig. 3 Ward’s clustering of toy data set A: Comparison of different resampling schemes based on
the standard deviations of the adjusted Rand index, see Fig. 2

In contradiction to (3) this is resampling taken without replacement from the
original data, and a parameterL < I is needed: the cardinality of the drawn sample.
As before, observations withms

i D 0 (non-selected objects) do not affect the cluster
analysis in any way.

In the following we compare the applicability of different resampling techniques
with respect to cluster analysis:

• original bootstrapping (3),
• soft bootstrapping (4) with different parameters p D 0:01, and p D 0:1, and
• sub-setting or sub-sampling (5) with L D 19 (i.e., about 73 % out of 26

observations of the toy data set are drawn randomly).

Figures 2 and 3 show the averages and standard deviations of the adjusted Rand
index based on 250 simulations, respectively. The total Jaccard index behaves very
similar to the adjusted Rand, see Fig. 4. Both take their maximum at K D 3.
Surprisingly, the two cluster solution seem to be likely too. However, the variation
of the adjusted Rand index has its distinct minimum at K D 3, see Fig. 3.
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Fig. 4 Ward’s clustering of toy data set A: Comparison of different resampling schemes based on
the Jaccard index

Fig. 5 Ward’s clustering of toy data set B: Comparison of different resampling schemes based on
the adjusted Rand index

The toy data B consists also of 26 observations in two dimensions as before but
the space between the three classes is reduced by four units on each axis. Now it
should be more difficult to find the three clusters. Figures 5 and 6 show the averages
and standard deviations of the adjusted Rand index, respectively. All of a sudden,
the vote for the three cluster solution is much more clear than in Fig. 2. As before in
the case of toy data A, the Jaccard index behaves also very similar to the adjusted
Rand and votes strictly for K D 3.

6 Summary

Soft bootstrapping gives similar simulation results in cluster analysis compared
to original bootstrapping. The smaller the softness parameter p the more similar
the results are. Surprisingly, for both toy data sets considered here, the sub-setting
scheme seems not to be appropriate for detecting the number of clusters. However,
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Fig. 6 Ward’s clustering of toy data set B: Comparison of different resampling schemes based on
the standard deviations of the adjusted Rand index, see Fig. 2

a further discussion and investigation of this failure must be postponed. Soft
bootstrapping can be generalized to observations with (arbitrary) positive masses
in order to deal with (already) aggregated data.
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Dual Scaling Classification and Its Application
in Archaeometry

Hans-Joachim Mucha, Hans-Georg Bartel, and Jens Dolata

Abstract We consider binary classification based on the dual scaling technique.
In the case of more than two classes many binary classifiers can be considered.
The proposed approach goes back to Mucha (An intelligent clustering technique
based on dual scaling. In: S. Nishisato, Y. Baba, H. Bozdogan, K. Kanefuji
(eds.) Measurement and multivariate analysis, pp. 37–46. Springer, Tokyo, 2002)
and it is based on the pioneering book of Nishisato (Analysis of categorical
data: Dual scaling and its applications. The University of Toronto Press, Toronto,
1980). It is applicable to mixed data the statistician is often faced with. First,
numerical variables have to be discretized into bins to become ordinal variables
(data preprocessing). Second, the ordinal variables are converted into categorical
ones. Then the data is ready for dual scaling of each individual variable based on
the given two classes: each category is transformed into a score. Then a classifier can
be derived from the scores simply in an additive manner over all variables. It will be
compared with the simple Bayesian classifier (SBC). Examples and applications to
archaeometry (provenance studies of Roman ceramics) are presented.
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Fig. 1 OCR data: examples of images of the digits 3 and 9 in a 8� 8 grid of pixels

1 Introduction

In this paper, we consider binary dual scaling classification (DSC). However, our
approach of binary classification is not restricted explicitly to K D 2 classes.
For K > 2 classes, this results in .K � 1/K=2 binary classifiers. This is denoted
as pairwise classification because one has to train a classifier for each pair of theK
classes.

The DSC proposed here appears to be motivated by practical problems of
analyzing a huge amount of mixed data efficiently. In archaeometry, for instance,
both the chemical composition and petrographic characteristics (such as texture)
of Roman tiles are investigated in order to find provenances (Giacomini 2005).
One way to deal with such problems is down-grading all data to the lowest
scale level, that is, downgrading to categories by loosing almost all quantitative
information. Another general way is binary coding which is much more expensive
in computer space and time, for details see Kauderer and Mucha (1998).

First, an application of the proposed method to optical character recognition
(OCR) is presented, see at the website (Frank and Asuncion 2010). The basis of
the ORC data are normalized bitmaps of handwritten digits from a preprinted form.
From a total of 43 people, 30 contributed to the training set and different 13 to the
test set. The resulting 32 � 32 bitmaps are divided into non-overlapping blocks of
4 � 4 and the number of pixels are counted in each block. This generates an input
matrix of 8�8where each element is an integer in the range 0: : : 16. This reduces the
dimensionality and gives invariance to small distortions. Figure 1 shows examples
of digits 3 and 9: the first observation of “3” and “9” of the database, respectively.
The area of a square represents the count of the corresponding element of the 8 � 8
matrix (64 variables).

Usually, these 64 ordinal variables with 17 categories at most can be
directly processed by DSC. However, the number of categories is high with
respect to the sample size of a few hundred and there still is an ordinal scale.
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Fig. 2 The codes of the digit “9” of Fig. 1 after transformation into text data

Therefore (and because there is a general need of categorization in case of
metric variables) here the original ORC data is down-graded exemplarily in a
quite rough manner into at most five categories: “never” (count D 0), “seldom”
(1–4), “sometimes” (5–11), “often” (12–15), and “always” (16). The corre-
sponding transformation to do this is simply: if(cD0;“never”;if(cD16;“always”;
if(c>11;“often”;if(c<5;“seldom”;“sometimes”)))) (where c stands for count and
based on the standard function if(test;then;else)). Figure 2 shows a result of binning
into categorical data as described by the simple formula above. The quantitative
meaning of the target words is only for illustrative purposes. DSC makes no
use of any ordering. However, especially in medical applications, special optimal
scaling techniques for ordered categories can be of great interest, see for instance
(Pölz 1995).

2 Binary Classification Based on Dual Scaling

The question arises: Can we build a good classifier nevertheless? The starting point
is a (I �J )-data table X D .xij/, i D 1; 2; : : : ; I , j D 1; 2; : : : ; J of I observations
and J variables. It is only supposed for DSC that the number of different values
(or categories, words, : : :) of each variable should be at least two. On the other
hand, for reasons of getting a stable result for classifying unseen observations, the
number of categories should be “as small as possible” with regard to the number
of observations. In addition to X, a binary class membership variable is required.
It can be used in order to give categorical data a quantitative meaning. Generally,
we want to obtain a new variable zj so as to make the derived scores within the
given classes as similar as possible and the scores between classes as different
as possible (Nishisato 1980, 1994). The basis is a contingency table, which can
be obtained by crossing a categorical variable xj of Mj categories with the class
membership variable. Considering the special case of two classes, dual scaling can
be applied without the calculation of orthogonal eigenvectors. A given category



108 H.-J. Mucha et al.

Fig. 3 OCR data: PCA plot of the two classes “digit 3” and “digit 9” based on DSC scores

ymj (m D 1; 2; : : : ;Mj ) of a variable j is transformed into an optimally scaled in
sense of maximal between classes variances by

umj D p
.1/
mj

p
.1/
mj C p

.2/
mj

; j D 1; 2; : : : ; J;m D 1; 2; : : : ;Mj : (1)

Here p.1/mj is an estimate of the probability for being a member of class 1 when

coming from categorym of variable j , whereas on the other side p.2/mj is an estimate
of the probability for being a member of class 2 when coming from category m of
variable j . For further details, see Kauderer and Mucha (1998) and Mucha (2002).
The final result of the transformations (1) is a quantitative data matrix Z D .zij/,
i D 1; 2; : : : ; I , j D 1; 2; : : : ; J . To be concrete, Z is obtained from X by replacing
each category by its corresponding score (1). Figure 3, that presents a multivariate
view on Z by principal component analysis (PCA), emphasizes the inhomogeneity
of the class “digit 9”. This fact becomes also visible in density plot in Fig. 4.

The well-known correspondence analysis (Greenacre 1989) is simply related to
(1) by a scale factor b D p

I1I2=I and a shift c, where I1 and I2 is the number of
observations in class 1 and class 2, respectively, and c is a constant (Mucha 2002).
Concerning other scaling approaches, see Gebelein (1941), Fahrmeir and Hamerle
(1984), and Pölz (1988).

After recoding the categories of X all data values of Z D .zij/ are in the interval
[0,1]. Without loss of generality the hypothetical worst-case zw 	 0 is considered
here (this naming comes from credit scoring, see Kauderer and Mucha 1998).
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Fig. 4 Several cuts of the nonparametric density estimation based on the first two PC of Fig. 3

Fig. 5 OCR data: plot of distance scores tiw (2) versus the classification error

Then the Manhattan distance tiw between an observation zi and the worst case zw

has both the suitable and really simple form

tiw D t.zi ; zw/ D
JX
jD1

zij: (2)

We call tiw the distance score. In contrast, the SBC, sometimes called Naive–Bayes
(Good 1965), is based on a conditional independence model of each variable given
the class. Once the discrete probabilities p.1/mj and p.2/mj of (1) are estimated, the
posterior probabilities can be computed easily as a by-product. Concretely, they
have to be computed for each individual class, and the largest one predicts the
class.

For the training data, Fig. 5 visualizes the relation between the distance scores
and the error rate with respect to the class membership variable. Now the question
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Table 1 OCR test data: comparison of results of dual scaling and Naive Bayes classification

Dual scaling classification Naive Bayes classification

Given Confusion matrix Error Confusion matrix Error

Classes Class 1 Class 2 rate Class 1 Class 2 rate

Digit “3” 164 19 10.38 % 160 23 12.57 %
Digit “9” 9 171 5.00 % 7 173 3.89 %
Total 173 190 7.71 % 167 196 8.26 %

is how to build up a classifier based on the distance scores (2). One simple way is
looking for a suitable cut-off-point on the distance score axis. Obviously, in Fig. 5,
the optimum error rate is near 0.04 (4.15 %). Here the corresponding cut-off-value of
the minimum error rate is 0.4883. This cut-off-values is used as a classifier later on
for a decision-making on new observations. For comparison, the SBC, also based
on the categorized data, has a slightly lower error rate of 3.24 %. Concerning the
OCR test data (Frank and Asuncion 2010), DSC outperforms SBC as documented
in Table 1.

3 Application to Archaeometry

Our data basis: About 1,000 stamped tiles from the Roman province Germa-
nia Superior have been investigated by chemical analysis until now. Here, the
first time, we consider by dual scaling classification (DSC) both archaeologi-
cal (especially epigraphy) and chemical information. To this end, two of the
most important and already confirmed areas for brick-production (provenances),
Straßburg–Königshofen (I1 D 113) and Groß–Krotzenburg (I2 D 63), will be
investigated. They are located side by side in a PCA plot of eight provenances, see
Fig. 19 in Mucha (2009). Altogether, two archaeological categorical variables (type
of the tile, name of the military unit) and nine oxides and ten trace elements are the
starting point for DCS.

Preparation of the metric data: The chemical elements are measured with X-ray
fluorescence analysis (XRF) in quite different scales. Thus, first the metric data
matrix Y D .yij/ of these measurements is standardized by:

vij D yij � y�
j

sj
i D 1; 2; : : : ; I; j D 1; 2; : : : ; J;

where y�
j is the minimum and sj is the standard deviation of variable j . Then the

vij are non-negative values. Second, almost all quantitative information is lost by
down-scaling to categories simply by:
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Fig. 6 Snapshot of the first part of the input matrix X D .xij/ for DSC after down-grading the
measurements to characters. The last two archaeological variables were already categorical ones

Fig. 7 Result of DSC: the two classes look well-separated and no errors occur

xij D “c” & rounddown.vijI 0/;

where the function rounddown makes integer values and “c” makes text data.
Figure 6 shows a part of the result of binning into categorical data as described

by the simple formula above. As before in the case of the ORC data, X D .xij) is
the starting point for both DSC and SBC. Figure 7 visualizes the relation between
the distance scores and the error rate. Clearly to see, no errors are counted when
using a cut-off-value of approximately 0.55. All tiles from Straßburg–Königshofen
are located on the right hand side. SBC performs similar: no errors are counted.
Finally, Fig. 8 presents the PCA plot based on Z. As before, also this figure
shows that DSC does a good job of discriminating between the two provenances
Straßburg–Königshofen (on the right hand side: marked by circles) and Groß–
Krotzenburg. The latter looks much more inhomogeneous. Also, for both DSC
and SBC, no errors are counted by cross validation. This is a helpful result for
archaeological investigation of military places of late second and early third century
AD. In addition, in Fig. 8, the type of the stamp of each tile is marked by a
symbol.
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Fig. 8 PCA plot based on the dual scaling space plus archaeological information

4 Conclusion

The idea of DSC is presented and its application to archaeometry. DSC can be
applied in case of mixed data. Missing values cause also no problem because they
can be seen as an additional category. DSC performs similar to SBC. In addition,
DSC allows multivariate graphics based on the scores. It is a computationally
efficient classification method. Sure, DSC can be improved by sophisticated cat-
egorization methods.
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Gamma-Hadron-Separation in the MAGIC
Experiment

Tobias Voigt, Roland Fried, Michael Backes, and Wolfgang Rhode

Abstract The MAGIC-telescopes on the canary island of La Palma are two of
the largest Cherenkov telescopes in the world, operating in stereoscopic mode
since 2009 (Aleksić et al., Astropart. Phys. 35:435–448, 2012). A major step in
the analysis of MAGIC data is the classification of observations into a gamma-
ray signal and hadronic background. In this contribution we introduce the data
provided by the MAGIC telescopes, which has some distinctive features. These
features include high class imbalance, unknown and unequal misclassification costs
as well as the absence of reliably labeled training data. We introduce a method to
deal with some of these features. The method is based on a thresholding approach
(Sheng and Ling 2006) and aims at minimization of the mean square error of an
estimator, which is derived from the classification. The method is designed to fit
into the special requirements of the MAGIC data.

1 Introduction

Binary classification problems are quite common in scientific research. In very high
energy (VHE) gamma-ray astronomy for example, the interest is in separating the
gamma-ray signal from a hadronic background. The separation has to be done as
exactly as possible since the number of gamma-ray events detected is needed for
the calculation of energy spectra and light curves (Mazin 2007). There are some
distinctive features characterizing the data we have to deal with.
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One feature is that there is a huge class imbalance in the data. It is known that
hadron observations (negatives) are more than 100–1,000 times more common than
gamma events (positives) (Weekes 2003; or Hinton and Hofman 2009). The exact
ratio, however, is unknown. A second feature is that individual misclassification
costs of gamma and hadron observations are unknown and not important in our
context. We use classification as a preliminary step of an analysis, which aims at
estimation of some quantity. The mean square error of the resulting estimator thus
measures naturally also the expected loss resulting from our classification.

Throughout this paper we use random forests (Breiman 2001) as is usually done
in the MAGIC experiment (Albert et al. 2008). One effective method of making
these cost sensitive is the thresholding method (Sheng and Ling 2006). This method
is not applicable as we do not know individual misclassification costs, but in the
following we introduce a similar method based on the third feature of the data:
In VHE gamma-ray astronomy one is not primarily interested in the best possible
classification of any single event, but instead one wants to know the total number
of gamma observations (positives) as this is the starting point for astrophysical
interpretations. Statistically speaking this means estimation of the true number of
positives based on a training sample. As said above the mean square error of this
estimation measures naturally the expected loss of the classification, so we regard
the mean square error (MSE) as overall misclassification risk in the thresholding
method and choose the discrimination threshold which minimizes the MSE of
the estimated number of positives in a data set. Additionally, the unknown class
imbalance is taken into consideration by this method.

2 The MAGIC Experiment and Data

The MAGIC telescopes on the canary island of La Palma are two of the biggest
Cherenkov telescopes in the world. Their purpose is to detect highly energetic
gamma particles emitted by various astrophysical sources like Active Galactic
Nuclei (AGNs). Gamma particles are of special interest to astrophysicists, because
they are not scattered by magnetic fields, so that their point of origin can be recon-
structed. When a gamma particle reaches Earth, it interferes with the atmosphere,
inducing a so called air shower of secondary particles. The air shower then emits
Cherenkov light in a cone, which can be seen by Cherenkov telescopes like the
MAGIC telescopes. The somewhat elliptical shape of the shower is imaged in the
telescopes’ cameras. A major issue one has to solve in the MAGIC experiment
is that not only gammas induce particle showers, but also many other particles,
summarized as hadrons. Thus, gamma and hadron particles have to be separated
through classification. Figure 1 shows camera images of the MAGIC I telescope
of a gamma and hadron event. As can be seen, the gamma event has a more regular
shape than the hadron. Note though that these images are almost ideal cases. Usually
the difference between the two types of particles cannot be seen that easily. Figure 1
also shows the raw data we have for the analysis. It consists of one light intensity
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Fig. 1 Camera images of a gamma event (left) and a hadron event (right) in the MAGIC
experiment

for each pixel in the camera. Additionally, but not shown here, a time information is
given for each pixel.

One of the major goals of the MAGIC experiment is the Unfolding of Energy
Spectra. Energy Spectra are basically histograms of the energy of observed gamma
particles, that is an estimate of the unknown energy distribution of a source. From
this distribution, characteristics of the source can be inferred. That means, what
we are aiming for is to estimate the number of gamma observations in each of the
histogram’s energy bins as precisely as possible, to get a good estimation of the true
energy distribution.

In order to achieve this goal one has to deal with some challenges.

Very Unfortunate Signal-Background Ratio

According to Weekes (2003) hadron events are around 100–1,000 times more
common than gamma events. This leads to a very undesirable signal-to-background
ratio for our classification. This high class imbalance makes classification of
gammas and hadrons much more difficult than it could be with a more desirable
ratio. Additionally, the true ratio is different for each source one is taking data from.
So we cannot use any a priori knowledge about the ratio to make classification
easier.

No Reliably Labeled Training Data

Another challenge one is facing in the analysis of MAGIC data is that we do not
have access to training data to train the random forest. That means we cannot draw
a sample from the joint distribution of gammas and hadrons with known labels.
What we can do is to take real hadronic background data and mix it with simulated
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gamma events to get training data. The difference of this to drawing from the joint
distribution is that we cannot estimate the true gamma-hadron-ratio from the mix, as
the number of gamma and hadron events in the mix is chosen manually. To estimate
the number of gamma events in real data, it is however necessary to be able to
assess this ratio. So we have to find a way to accomplish this.

Misclassification Costs

The third challenge is that we know that a misclassification of observations causes
a worse estimation of the number of gamma events. That means, there are some
misclassification costs, so that it is desirable to have a cost-sensitive classifier. A
random forest, which we use in the MAGIC analysis chain, can be made cost
sensitive in various ways. One is the thresholding method by Sheng and Ling
(2006). The idea of this method is to minimize the misclassification costs over the
classification threshold in the random forest’s output, that is the fraction of votes
of the trees. However, to apply this method it is of course necessary to know the
misclassification costs. So to make the classifier cost sensitive, we must first assess
the misclassification costs.

3 Threshold Optimization

An example of how we try to achieve a good estimation of the energy spectrum is
the optimization of the threshold in the outcome of the random forest.

Problem Setup

The problem we are facing is a binary classification problem. We have a random
vector of input variables X D .X1; : : : ; Xm/

T and a binary classification variable Y .
X and Y have the joint distribution P.X; Y /. We neither know this distribution, nor
can we make any justifiable assumptions about it. Additionally, in our application
it is not possible to draw a sample from this distribution. We are, however, able
to draw samples from P(X) as well as the conditional distributions P.XjY D 0/

and P.XjY D 1/. Thus, we have independent realizations .x1; 0/; : : : ; .xn0� ; 0/ and
.xn0�C1; 1/; : : : ; .xn1�Cn0� ; 1/ from the respective distributions with sizes n0� and n1�,
respectively, and n D n0� C n1�.

Many classifiers can be interpreted as a function f W Rm ! Œ0; 1�. In the MAGIC
experiment we use random forests, but any classifier which can be regarded as such
a function f can be used. For a final classification into 0 and 1 we need a threshold
c, so that

g.xI c/ D
(
0; if f .x/ � c

1; if f .x/ > c
:
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Table 1 True and classified numbers of positives and negatives in a training sample (left), in a
sample of actual data (middle) and in Off data (right)

Classified Classified Classified

1 0
P

1 0
P

1 0
P

True 1 n11 n10 n1� True 1 N11 N10 N1� True 1 0 0 0
0 n01 n00 n0� 0 N01 N00 N0� 0 N

off
01 N

off
00 N

off
0�P

n
�1 n

�0 n
P

N
�1 N

�0 N
P

N
off
�1 N

off
�0 N off

We consider f to be given and only vary c in this paper. There are several
reasons why we consider f to be given. Among other reasons, we want to adapt
the thresholding method by Sheng and Ling (2006) and we cannot change the
MAGIC analysis chain too drastically, as all changes need approval of the MAGIC
collaboration.

In addition to the training data, we have a sample of actual data to be classified,
x�
1 ; : : : ; x

�
N , for which the binary label is unknown. This data consists of N events

with N1� and N0� defined analogously to n1� and n0�, but unknown.
As we have stated above, we only have simulated gamma events as training data

and therefore need additional information to assess the gamma-hadron-ratio in the
real data. This additional information is given by Off data, which only consists of
N

off
0� hadron events. N off

0� can be assumed to have the same distribution as N0�, so
the two sample sizes should be close to each other. In fact, a realization of N off

0� is
an unbiased estimate for N0�. From this Off data we are able to estimate the true
gamma-hadron-ratio.

For a given threshold c we denote the numbers of observations in the training
data after the classification as nij; i; j 2 f1; 0g, where the first index indicates the
true class and the second index the class as which the event was classified. We can
display these numbers in a 2�2 table. With Nij; i; j 2 f1; 0g and N0j ; j 2 f1; 0g
defined analogously we get similar 2�2 tables for the actual data and the Off data,
see Table 1.

It is obvious that we do not know the numbers in the first two rows of the table
for the actual data as we do not know the true numbers of positives and negatives
N1� and N0�.

As we can see above,N1� is considered to be a random variable and our goal is to
estimate, or perhaps better predict, the unknown realization ofN1�. The same applies
to N0�. That is why we consider all the following distributions to be conditional on
these values.

We additionally define the True Positive Rate (TPR), which is also known as
Recall or (signal) Efficiency, and the False Positive Rate (FPR) as

TPR D n11

n1�
(1)

and

FPR D n01

n0�
; (2)
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respectively. As we will see in the following section, these two values are important
in the estimation of the number of gamma events.

Estimating the Number of Gamma-Events

To estimate the number of gamma events, we first have a look at the following
estimator:

QN1� D 1

p11

�
N�1 �N

off
01

�
: (3)

where p11 is the (unknown) probability of classifying a gamma correctly. This
estimator could be used if we knew p11. It takes the difference between N�1 and
N

off
01 as an estimate for N11 and multiplies this with 1

p11
to compensate for the

classification error in the signal events.
Since we want to estimate the number of positives as precisely as possible we

want to assess the quality of the estimator QN1�. A standard measure of the quality
of an estimator is the mean square error (MSE). As in applications we usually have
fixed samples in which we want to estimateN1�, we calculate the MSE conditionally
on N1�, N0� and N off

0� . Under the assumption that Ni1, N
off
01 and ni1, i 2 f1; 0g are

independent and (conditionally) follow binomial distributions, the conditional MSE
of QN1� can easily be calculated. It is:

MSE
� QN1�jN1�; N0�; N off

0�
�

D p201

p211

�
N0� �N

off
0�
�2

CN1�
�
1

p11
� 1

�
C p01 � p201

p211

�
N0� CN

off
0�
� (4)

where p01 is the probability of classifying a hadron as gamma and p11 is the
probability of classifying a gamma correctly. As we do not know these values we
have to estimate them. Consistent estimators for these values are TPR and FPR [(1)
and (2)]. Using TPR as an estimator for p11 in (3) we get

ON1� D n1�
n11

�
N�1 �N

off
01

�
D 1

TPR

�
N�1 �N

off
01

�
: (5)

By estimating p11 with TPR and p01 with FPR in (4) we get the estimate

bMSE
� ON1�jN1�; N0�; N off

0�
�

D FPR2

TPR2

�
N0� �N

off
0�
�2

CN1�
�

1

TPR
� 1

�
C FPR � FPR2

TPR2

�
N0� CN

off
0�
�
:

(6)
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As TPR and FPR are consistent estimators of p11 and p01 and the sample sizes n1�
and n0� are usually high (> 105), using the estimates instead of the true probabilities
should only lead to a marginal difference.

Algorithm

Equations (5) and (6) can be used in an iterative manner to find a discrimination
threshold, although N1� in (6) is unknown. To find a threshold we alternately
estimate N1� and calculate the threshold:

1. Set an initial value c for the threshold.
2. With this threshold estimate N1� using equation (5).
3. Compute a new threshold through minimizing equation (6) over all thresholds

using the estimates ON1� for N1� and N � ON1� for N0�.
4. If a stopping criterion is fulfilled, compute a final estimate of N1� and stop.

Otherwise go back to step 2.

Because negative estimates ON1� can lead to a negative estimate of the MSE, we set
negative estimates to 0. As a stopping criterion, we require that the change in the cut
from one iteration to the next is below 10�6. First experiences with the algorithm
show that the convergence is quite fast. The stopping criterion is usually reached in
less than ten iterations.

In the following we refer to this algorithm as the MSEmin method. This method
takes both into consideration: The problem of class imbalance and the minimization
of the MSE, that is, the overall misclassification costs. In the next section we
investigate the performance of this algorithm on simulated data and compare it to
other possible approaches.

4 Application

It is now of interest, if the MSEmin method proposed above means an improvement
over the currently used and other methods. As stated above, we want to estimate
the number of gamma events depending on the energy range. We therefore use
the methods on each of several energy bins individually by splitting the data sets
according to the (estimated) energy of the observations and using the methods on
each of these subsamples individually.

The method currently in use in the MAGIC experiment is to choose the threshold
manually so that the TPR is “high, but not too high”. Often TPR is set to
values between 0.4 and 0.9 (e.g. Aleksić et al. 2010) and the threshold is chosen
accordingly. For our comparison we look at values of 0.1–0.9 for TPR. We call
these methods Recall01, . . . , Recall09.

An approach to avoid energy binning is to fit a binary regression model to the
random forest output, with energy as the covariate. The fitted curve can then be
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regarded as discrimination threshold. In this paper we use a logistic regression
model. We fit the model to the training data using a standard Maximum Likelihood
approach to estimate the model coefficients.

As the proposed MSEmin method is quite general and not bound to optimizing
a fixed threshold, we use it in an additional approach by combining it with logistic
regression. Instead of minimizing the MSE over possible fixed thresholds, we search
for optimal parameters of the logistic regression curve, so that the MSE becomes
minimal. The procedure is the same as for the MSEmin method proposed in the
algorithm above, only that we exchange the threshold c with the two parameters of
the logistic regression, say ˇ0 and ˇ1. For initialization we use the ordinary ML-
estimates of the two parameters.

We use all these methods on 500 test samples and check which method gives
the best estimate for the number of gamma events. We focus here on the hardest
classification task with a gamma-hadron-ratio of 1:1000. For the comparison we
use the following data:

Test data: To represent actual data we simulate 500 samples for each gamma-
hadron-ratio 1:100, 1:200, . . . , 1:1000. The number of hadron-events in each
sample is drawn from a Poisson distribution with mean 150,000. The number of
gamma events is chosen to match the respective ratio.

Training data: We use 652,785 simulated gamma observations and 58,310 hadron
observations to represent the training data from which TPR and FPR are
calculated. Note that the ratio of gammas and hadrons in this data has no
influence on the outcome, as only TPR and FPR are calculated from this data.

Off data: For each test sample we draw a sample of hadron observations to
represent the Off data. The number of hadrons in each sample is drawn from
a Poisson distribution with mean 150,000.

The result can be seen in Fig. 2. As we can see, all methods seem to give
unbiased estimates. However, all Recall methods have comparably high variances
when estimating the true number of gamma events, with the best one being Recall01.
Our proposed method MSEmin leads to a smaller variance and therefore performs
better than all of them. The results of the logistic regression approach is quite similar
to the MSEmin method, but has a bit smaller errors. The best performance is given
by the combination of the methods MSEmin and logistic regression.

5 Conclusions and Outlook

MAGIC data has some distinctive features, which make the analysis of the data
difficult. We have illustrated that major challenges can be overcome when we focus
on the overall aim of the analysis, which is the estimation of the number of signal
events.

We introduced a method to choose an optimal classification threshold in the
outcome of a classifier, which can be regarded as a function mapping to the interval
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Fig. 2 Boxplots of the estimates in the 500 samples with a gamma-hadron-ratio of 1:1000. The
thick line in the middle of each box represents the median of the estimates. Between the upper and
lower boundaries of each box lie 50 % of the estimates. The whiskers range to the minimum and
maximum of all the data. The true number is marked by the long horizontal line

[0,1]. In this paper we used random forests, but any classifier providing such a
function can be used. The introduced method minimizes the MSE of the estimation
of the number of signal events. In our experiments this method performs better
than the method currently used. The method is also adaptable to combine it with
other methods. The combination with a logistic regression approach gave even better
results than the two methods on their own.
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2010). We present an implementation of these learning operators in a prototype
system for cooperative query answering. The implementation can however also be
used as a usual concept learning mechanism for concepts described in first-order
predicate logic. We sketch an extension of the generalization process by a ranking
mechanism on answers for the case that some answers are not related to what user
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1 Introduction

Conceptual inductive learning is concerned with deriving a logical description of
concepts (in a sense, a classification) for a given set of observations or examples;
in induction, the resulting description is also called a hypothesis. Background
knowledge can support the concept learning procedure. In his seminal paper on
inductive learning, Michalski (1983) introduced and surveyed several learning
operators that can be applied to a set of examples to obtain (that is, induce) a
description of concepts; each concept subsumes (and hence describes) a subset of
the examples. He further differentiates inductive learning into concept acquisition
(where a set of examples must be classified into a predefined set of concepts) and
descriptive generalization (where a set of observations must be classified into a
newly generated and hence previously unknown set of concepts). In a similar vein,
de Raedt (2010) emphasizes the importance of logic representations for learning
processes as follows:

To decide whether a hypothesis would classify an example as positive, we need a notion of
coverage.[. . . ] In terms of logic, the example e is a logical consequence of the rule h, which
we shall write as h ˆ e. This notion of coverage forms the basis for the theory of inductive
reasoning[. . . ]
Especially important in this context is the notion of generality. One pattern is more general
than another one if all examples that are covered by the latter pattern are also covered by the
former pattern.[. . . ] The generality relation is useful for inductive learning, because it can be
used (1) to prune the search space, and (2) to guide the search towards the more promising
parts of the space.[. . . ] Using logical description languages for learning provides us not
only with a very expressive and understandable representation, but also with an excellent
theoretical foundation for the field. This becomes clear when looking at the generality
relation. It turns out that the generality relation coincides with logical entailment.[. . . ]

In this paper we present the implementations of three logical generalization
operators: Dropping Condition (DC), Anti-Instantiation (AI) and Goal Replacement
(GR). The novelty of our approach lies in the fact that these operators are combined
iteratively. In other words, several successive steps of generalization are applied
and operators can be mixed. Our work is based on the soundness results of an
optimized iteration that can be found in Inoue and Wiese (2011); the main result
there is that it is sufficient to apply these three operators in a certain order: starting
with GR applications, followed by DC applications and ending with AI applications
(see Fig. 1). This order is employed in our system when applying the three operators
iteratively in a tree-like structure.

To the best of our knowledge, the iteration of these three operators is also novel
when learning concepts from a set of examples. In this paper we present general-
ization as an application for a cooperative query answer system CoopQA: it applies
generalization operators to failing queries which unsatisfactorily result in empty
answers; by applying generalization operators we obtain a set of logically more
general queries which might have more answers (called informative answers) than
the original query. The implementation can however also be used in a traditional
concept learning setting—that is, learning concepts by iterative generalization: as
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Fig. 1 Tree-shaped combination of DC, AI and GR

such we see the failing query as an initial description of a concept (which however
does not cover all positive examples contained in a knowledge base); we then use our
tree-shaped generalization until all positive examples can be derived as informative
answers to the more general query (and hence we have obtained a more general
description of the initial concept).

More formally, we concentrate on generalization of conjunctive queries that
consist of a conjunction (written as ^) of literals li ; a literal consists of a logical
atom (a relation name with its parameters) and an optional negation symbol (:)
in front. We write Q.X/ D l1 ^ : : : ^ ln for a user’s query where X is a free
variable occurring in the li ; if there is more than one free variable, we separate
variables by commas. The free variables denote which values the user is looking for.
Consider for example a hospital setting where a doctor asks for illnesses of patients.
The query Q.X/ D ill.X; flu/ ^ ill.X; cough/ asks for all the names X of patients
that suffer from both flu and cough. A query Q.X/ is sent to a knowledge base ˙
(a set of logical formulas) and then evaluated in ˙ by a function ans that returns
a set of answers (a set of formulas that are logically implied by ˙); as we focus
on the generalization of queries, we assume the ans function and an appropriate
notion of logical truth given. Note that (in contrast to the usual connotation of
the term) we also allow negative literals to appear in conjunctive queries; we just
require Definition 1 below to be fulfilled while leaving a specific choice of the ˆ
operator open. Similarly, we do not put any particular syntactic restriction on ˙ .
However, one of the generalization operators scans ˙ for “single-headed range-
restricted rules” (SHRRR) which consists of a body part left of an implication
arrow (!) and a head part right of the implication arrow. The body of a SHRRR
consists of a disjunction of literals whereas the head consists only of one single
literal: li1 ^ : : :^ lim ! l 0; range-restriction requires that all variables that appear in
the head literal also appear in one of the body literals; again, we also allow negative
literals in the body and in the head. As a simple example for a SHRRR consider
ill.X; flu/ ! treat.X;medi/ which describes that every patient suffering from flu is
treated with a certain medicine.
CoopQA applies the following three operators to a conjunctive query (which—
among others—can be found in the paper of Michalski 1983):

Dropping Condition (DC) removes one conjunct from a query; applying DC to
the exampleQ.X/ results in ill.X; flu/ and ill.X; cough/.
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Anti-Instantiation (AI) replaces a constant (or a variable occurring at least
twice) in Q.X/ with a new variable Y ; ill.Y; flu/ ^ ill.X; cough/, ill.X; Y / ^
ill.X; cough/ and ill.X; flu/ ^ ill.X; Y / are results for the exampleQ.X/.

Goal Replacement (GR) takes a SHRRR from ˙ , finds a substitution  that
maps the rule’s body to some conjuncts in the query and replaces these conjuncts
by the head (with  applied); applying the example SHRRR to Q.X/ results in
treat.X;medi/ ^ ill.X; cough/.

These three operators all fulfill the following property of deductive generalization
(which has already been used by Gaasterland et al. 1992) where � is the input query
and  is any possible output query:

Definition 1 (Deductive generalization wrt. knowledge base). Let˙ be a knowl-
edge base, �.X/ be a formula with a tuple X of free variables, and  .X;Y/ be a
formula with an additional tuple Y of free variables disjoint from X. The formula
 .X;Y/ is a deductive generalization of �.X/, if it holds in ˙ that the less general
� implies the more general  where for the free variables X (the ones that occur in
� and possibly in  ) the universal closure and for free variables Y (the ones that
occur in  only) the existential closure is taken:

˙ ˆ 8X9Y .�.X/ !  .X;Y//

In the following sections, we briefly present the implementation of the CoopQA
system (Sect. 2) and show a preliminary evaluation of the performance overhead of
iterating generalization operators (Sect. 3).

2 Implementation Details

The focus of CoopQA lies on the efficient application of the underlying gen-
eralization operators. As CoopQA applies the generalization operators on the
original query in a combined iterative fashion, the resulting queries may contain
equivalent queries, which only differ in occurrences of variables or order of literals.
CoopQA thus implements an equivalence checking mechanism to eliminate such
duplicate queries. The most important step of query equivalence checking is finding
substitutions between two queries. CoopQA tries to rearrange the literals in the two
queries such that the substitutions can be obtained by mapping the variables in the
two queries according to their positions. Instead of finding the substitution over
the whole of the two queries, we segment the queries into segments of pairwise
equivalent literals and find the correct ordering for each pair of corresponding
segments. We now briefly sketch how each operator is implemented:

Dropping Condition (DC): For a query of length n (i.e., n literals in the query),
n generalized queries are generated by dropping one literal. As this involves
replicating the n � 1 remaining literals, run-time complexity of DC is O.n2/.
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Anti-Instantiation (AI): If a query of length n contains M occurrences of con-
stants and variables, at most M generalized queries (each of length n) are
generated. Assume that the query was divided into r segments, then the literal
affected by anti-instantiation has to be removed from its segment and the anti-
instantiated literal with the new variable has to be placed into a (possibly
different) segment; finding this segment by binary search requires log r time
(which is less than n). Thus, run-time complexity of AI is O.Mn/.

Goal Replacement (GR): GR, as described in Sect. 1 (and in more detail in Inoue
and Wiese (2011)), requires finding parts of the query that are subsumed by the
body of a given SHRRR. The definition of subsumption is that a logical formula
R.X/ subsumes Q.Y / if there is a substitution  such that R.X/ D Q.Y /.
Our implementation uses a generator that takes the query and the rule’s body as
input, and produces matchings of the body against the rule. We apply relaxed
segmentation upon the two lists of literals (of the query and of the rule’s body),
which requires equivalent literals to only have the same predicate. For example,
q.X; Y / and q.a;Z/ are considered equivalent literals in this case. We then
perform matching upon corresponding equivalent segments of the query against
the segments of the rule’s body to obtain a list of literals that are subsumed by
the rule’s body. Note that the segments in the query and the rule’s body need not
have the same size, as long as all the segments in the rule’s body are found in
the query. The matching literals are then replaced in the query by the rule’s head,
which already has the substitution applied.
The worst case scenario of GR is when both the query and the rule contain only
one segment of (relaxed) equivalent literals. Given a query of size n, a rule with
the body of size k (n � k), the number of possible matchings of k out of n literals
from the query against the rule is

�
n
k

	
. For each combination of k literals, we have

to perform permutation to find the correct ordering to determine the substitution
against the rule body. Thus, in the worst case, the cost of finding the substitution
for each combination is kŠ. Hence, complexity of finding all matchings of the
query against the rule’s body is O.kŠ

�
n
k

	
/. In general, for a rule with a body of s

segments, each of length ki , and a query with s corresponding segments, each of
length ni , complexity is O.

Ps
iD1.ki Š

�
ni
ki

	
//.

3 Performance Evaluation

We present some benchmarking and performance evaluation results of our imple-
mentation of the generalization operators. We focus on the cost of the tree-shaped
generalization process.

Our benchmark suite generates a random knowledge base and query which
consists large set of a combinations of illnesses and treatments from our medical
example. We chose this synthetic data set because goal replacement has to capture
the semantic dependencies in the data expressed by rules; so far we could not find
any real-world benchmark with appropriate rules for goal replacement.
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Fig. 2 Effects of query length and rule body length

Fig. 3 Effects of number of rules

We analyze the effects on execution time by varying various parameters such
as query length, number of SHRRRs in the knowledge base and the length of rule
bodies. The runtime graphs show the time spent on each of the three operators alone
as well as their summed total execution time. The tests were run on a PC under Linux
2:6 with a 64 bit Ubuntu 10:04 using Java 1:6 with OpenJDK Runtime Environment
6. The PC had 8GB of main memory and a 3:0GHz Quad Core processor.

We first analyze how query length affects execution time of generalization.
Figure 2 shows the total time taken by each operator when running CoopQA
for a certain query length (that is, number of literals). We observe an increase
in the execution time of AI operator after query length 5 as potentially more AI
operations are possible; in case of DC and GR operation, effect of query length on
the execution time is negligible. Analyzing the effect of number of rules contained
in the knowledge base shows that the total execution time increases with the number
of rules as shown in Fig. 3. Closely investigating each operator reveals that there is
no significant change in execution time in case of AI. In case of DC it is again
negligible; however, we observe a linear increase in execution time in case of GR
and that is because of increased matching and replacement. Lastly, there is no effect
on DC and GR execution time when rule bodies are longer (see Fig. 2). Yet, time
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decreases for AI. This is due to the replaced part of the query: a long rule body
makes the query shorter by replacing a longer part of the query with one literal;
hence less AI operations are possible.

Profiling our code using VisualVM1 shows that AI operation takes up 48.4 % of
the total execution time; the main cost lies in performing equivalence checking to
detect duplicated queries when a new one is generated (taking up to 33.6 % of total
execution time). GR’s main bottleneck is to replace matched literals to generate
queries, not the matching against rules itself.

4 Discussion and Conclusion

The CoopQA system uses three generalization operators that were widely used for
inductive learning of concepts; it applies them in a cooperative query answering
system in order to discover information for a user which might be related to his
query intention. In contrast to other approaches using DC, AI and GR, tree-shaped
generalization profits from an efficient combination of the three operators. The
presented implementation shows favorable performance of the generalization opera-
tors. Future and ongoing work in the CoopQA system is covering the important issue
of answer relevance which we discuss briefly: some answers might be generalized
“too much” and are “too far away” from the user’s query intention; a relevance
ranking for answers can provide the user with the most useful answers while
disregarding the irrelevant ones. In particular, a threshold value for answer ranks can
be specified to return only the most relevant answers to the user and an aggregation
of ranks reflecting the iteration of operators must be defined. Dropping Conditions
and Goal Replacement are purely syntactic operators that do not introduce new
variables. A relevance ranking for them can be achieved by assigning the answers
to generalized queries a penalty for the dropped or replaced conditions. In contrast,
anti-instantiation leads to the introduction of a new variable. Recall from Sect. 1 the
example query Q.X/ D ill.X; flu/ ^ ill.X; cough/ that asks for patients suffering
from flu and cough at the same time. Applying AI on the constant cough leads to the
generalized query ill.X; flu/^ ill.X; Y / where the condition of cough is relaxed and
any other disease would be matched to the new variable Y . These diseases might be
very dissimilar to cough and hence totally irrelevant from the point of view of the
original query Q.X/. A more intelligent version of the AI operator can hence rank
the answer to the generalized query regarding their similarity to the original query.
Here we have to differentiate between the case that a constant was anti-instantiated,
and the case that a variable was anti-instantiated. More precisely, within a single
application of the AI operator, we can assign each new (more general) answer ansj
the rank value rankj , where the rank is calculated as follows:

1http://visualvm.java.net/

http://visualvm.java.net/


134 M. Bakhtyar et al.

• if Y is the anti-instantiation of a constant c (like cough in our example), we obtain
the similarity between the value of Y in answer ansj (written as valj .Y /) and the
original constant c; that is, rankj D sim.valj .Y /; c/.

• if Y is the anti-instantiation of a variable (like in the generalized query ill.Y; flu/^
ill.X; cough/ where different patients X and Y are allowed), we obtain the
similarity between the value of Y in ansj and the value of the variable (say,
X ) which is anti-instantiated by Y in the same answer; that is, rankj D
sim.valj .Y /; valj .X//.

Let us assume we have predefined similarities sim.bronchitis; cough/ D 0:9 and
sim.brokenLeg; cough/ D 0:1 for our example. An answer containing a patient with
both flu and bronchitis would then be ranked high with 0.9; whereas an answer
containing a patient with both flu and broken leg would be ranked low with 0.1. Such
similarities can be based on a taxonomy of words (or an ontology); in our example
we would need a medical taxonomy relating several diseases in a hierarchical
manner. Several notions of distance in a taxonomy of words can be used (e.g., Shin
et al. 2007) to define a similarity between each two words in the taxonomy (e.g., Wu
and Palmer 1994). When the AI operator is applied repeatedly, similarities should
be computed for each replaced constant or variable; these single similarities can
then be combined into a rank for example by taking their weighted sum. To make
the system more adaptive to user behavior, the taxonomy used for the similarities
can be revised at runtime (with an approach as described in Nikitina et al. 2012).
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Clustering Large Datasets Using Data Stream
Clustering Techniques

Matthew Bolaños, John Forrest, and Michael Hahsler

Abstract Unsupervised identification of groups in large data sets is important
for many machine learning and knowledge discovery applications. Conventional
clustering approaches (k-means, hierarchical clustering, etc.) typically do not scale
well for very large data sets. In recent years, data stream clustering algorithms have
been proposed which can deal efficiently with potentially unbounded streams of
data. This paper is the first to investigate the use of data stream clustering algorithms
as light-weight alternatives to conventional algorithms on large non-streaming data.
We will discuss important issue including order dependence and report the results
of an initial study using several synthetic and real-world data sets.

1 Introduction

Clustering very large data sets is important for may applications ranging from
finding groups of users with common interests in web usage data to organizing
organisms given genetic sequence information. The data are often not only so large
that they do not fit into main memory, but they even have to be stored in a distributed
manner. Conventional clustering algorithms typically require repeated access to all
the data which is very expensive in a scenario with very large data.

Data stream clustering has become an important field of research in recent
years. A data stream is an ordered and potentially unbounded sequence of objects
(e.g., data points representing sensor readings). Data stream algorithms have been
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developed in order to process large volumes of data in an efficient manner using a
single pass over the data while having only minimal storage overhead requirements.
Although these algorithms are designed for data streams, they obviously can also be
used on non-streaming data.

In this paper we investigate how to use data stream clustering techniques on large,
non-streaming data. The paper is organized as follows. We introduce the problems
of clustering large data sets and data stream clustering in Sects. 2 and 3, respectively.
Section 4 discusses issues of the application of data stream clustering algorithms to
non-streaming data. We present results of first experiments in Sect. 5 and conclude
with Sect. 6.

2 Clustering Large Data Sets

Clustering groups objects such that objects in a group are more similar to each other
than to the objects in a different group (Kaufman and Rousseeuw 1990). Formally
clustering can be defined as:

Definition 1 (Clustering). Partition a set of objects O D fo1; o2; : : : ; ong into a set
of clusters C D fC1; C2; : : : ; Ck; C�g, where k is the number of clusters and C�
contains all objects not assigned to a cluster.

We restrict clustering here to hard (non-fuzzy) clustering where Ci \ Cj D ;
for all i; j 2 f1; 2; : : : ; k; �g and i ¤ j . Unassigned objects are often considered
noise, however, many algorithms cannot leave objects unassigned (i.e., C� D ;).
The ability to deal with noise becomes more important in very large data sets
where manually removing noise before clustering is not practical. The number k
is typically user-defined, but might also be determined by the clustering algorithm.
In this paper, we assume that the objects are embedded in a d -dimensional metric
space (o 2 R

d ) where dissimilarity can be measured using Euclidean distance.
We do not deal with the problem of finding the optimal number of clusters, but
assume that a reasonable estimate for k is available.

The most popular conventional clustering methods are k-means type clustering,
hierarchical clustering and density-based clustering. All these methods have in
common that they do not scale well for very large data sets since they either need
several passes over the data or they create data structures that do not scale linearly
with the number of objects. We refer the reader to the popular book by (Jain and
Dubes 1988) for details about the various clustering methods.

To cluster large data sets, researchers have developed parallel computing
approaches, most notably using Google’s MapReduce framework (e.g., for k-means
see Zhao and He 2009). On the other hand, researchers started earlier to reduce the
data size by sampling. For example, CLARA (Kaufman and Rousseeuw 1990) uses
sampling and then applies Partitioning Around Medoids (PAM) on the samples
and returns the best clustering. Another algorithm, BIRCH (Zhang et al. 1996),
builds a height balanced tree (also known as a cluster feature or CF tree) in a single
pass over the data. The tree stores information about subclusters in its leaf nodes.
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During clustering, each data point is either added to an existing leaf node or a new
node is created. Some reorganization is applied to keep the tree at a manageable
size. After all data points are added to the CF tree, the user is presented with a list of
subclusters. BIRCH was developed by the data mining community and resembles
in many ways the techniques used in data stream clustering which we will discuss
in the next section.

3 Data Stream Clustering

We first define data stream since data stream clustering operates on data streams.

Definition 2 (Data Stream). A data stream is an ordered and potentially
unbounded sequence of objects S D ho1; o2; o3; : : :i.

Working with data streams imposes several restrictions on algorithms. It is
impractical to permanently store all objects in the stream which implies that there is
limited time to process each object and repeated access to all objects is not possible.

Over the past 10 years a number of data stream clustering algorithms have been
developed. For simplicity, we will restrict the discussion in this paper to algorithms
based on micro-clusters (see Gama 2010). Most data stream clustering algorithms
use a two stage online/offline approach.

Definition 3 (Online Stage). Summarize the objects in stream S in real-time (i.e.,
in a single pass over the data) by a set of k0 micro-clustersM D fm1;m2; : : : ; mk0g
where mi with i D f1; 2; : : : ; k0g represents a micro-cluster in a way such that the
center, weight, and possibly additional statistics can be computed.

When the user requires a clustering, the offline stage reclusters the micro-clusters to
form a final (macro) clustering.

Definition 4 (Offline Stage). Use the k0 micro-clusters inM as pseudo-objects to
produce a set C of k  k0 final clusters using clustering defined in Definition 1.

Note that while k often is specified by the user, k0 is not fixed and may grow
and shrink during the clustering process. Micro-clusters are typically represented
as a center and each new object is assigned to its closest (in terms of a proximity
measure) micro-cluster. Some algorithms also use a grid and micro-clusters repre-
sent non-empty grid-cells. If a new data point cannot be assigned to an existing
micro-cluster, typically a new micro-cluster is created. The algorithm may also
do some housekeeping (merging or deleting micro-clusters) to keep the number of
micro-clusters at a manageable size.

Since the online component only passes over the data once and the offline
component operates on a drastically reduced data set which typically fits into
main memory, data stream clustering algorithms can be used efficiently on very
large, disk-resident data. For a comprehensive treatment of data stream clustering
algorithms including some single-pass versions of k-means and related issues,
we refer the interested reader to the books by Aggarwal (2007) and Gama (2010).
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4 Data Stream Clustering of Non-streaming Data

Applying a data stream clustering algorithm to non-streaming data is
straightforward. To convert the set of objects O into a stream S, we simply take
one object at a time from O and hand it to the clustering algorithm. However, there
are several important issues to consider.

A crucial aspect of data streams is that the objects are temporally ordered. Many
data streams are considered to change over time, i.e., clusters move, disappear or
new clusters may form. Therefore, data stream algorithms incorporate methods to
put more weight on current data and forget outdated data. This is typically done by
removing micro-clusters which were not updated for a while (e.g., in CluStream;
Aggarwal et al. 2003) or using a time-dependent exponentially decaying weight for
the influence of an object (most algorithms). For large, stationary data sets, where
order has no temporal meaning and is often arbitrary, this approach would mean
that we put more weight on data towards the end of the data set while loosing the
information at the beginning. Some data stream clustering algorithms allow us to
disable this feature, e.g., using a very large horizon parameter for CluStream forces
the algorithm not to forget micro-clusters and instead merge similar clusters. For
many other algorithms, the decay rate can be set to 0 or close to 0. For example in
DenStream (Cao et al. 2006) a value close to 0 reduces the influence of the order in
the data. However, setting it to 0 makes the algorithm unusable since removing small
micro-clusters representing noise or outliers depends on the decay mechanism. It is
very important to established if and how this type of order dependence can be
removed or reduced before applying a data stream clustering algorithm to non-
streaming data.

Since data stream clustering algorithms use a single pass over the data, the
resulting clustering may still be order dependent. This happens for algorithms,
where the location of the created micro-clusters is different if objects are added in a
different order. However, this type of order dependency typically only effects micro-
cluster placement slightly and our results below indicate that after reclustering, the
final clustering is only effected minimally.

Another issue is that data stream clustering algorithms dispose of the objects
after they are absorbed by a micro-cluster and since the data stream is expected to
be unbounded, not even the cluster assignments of the objects are retained. The only
information that is available after reclustering is the set of micro-clustersM and the
mapping of micro-clusters onto final clusters fmacro W M 7! C. In order to infer
the mapping of objects in O to cluster labels, we find for each object o the closest
micro-cluster and then use fmacro to retrieve the cluster label in C. Note that this
approach works not only for reclustering that produces spherical clusters but also
for reclustering that produces arbitrarily shaped clusters (e.g., with single-linkage
hierarchical clustering or density based clustering).
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Table 1 Data sets

Dataset Number of objects Dimensions Clusters Noise

Mixture of Gaussians 100,000 d a ka n%a

Covertype 581,012 10 7 Unknown
16S rRNA 406,997 64 110 Unknown
a

Values correspond with the data sets’ names

5 Comparing Different Clustering Methods

To perform our experiments we use stream,1 a R-extension currently under devel-
opment which provides an intuitive interface for experimenting with data streams
and data stream algorithms. It includes the generation of synthetic data, reading of
disk-resident data in a streaming fashion, and a growing set of data stream mining
algorithms (including some from the MOA framework by Bifet et al. 2010). In this
first study, we only evaluate sampling and the online component of three of the more
popular clustering methods suitable for data streams.

• Reservoir sampling (Vitter 1985)
• BIRCH (Zhang et al. 1996)
• CluStream (Aggarwal et al. 2003)
• DenStream (Cao et al. 2006)

For evaluation, we use the data sets shown in Table 1. We use several mixture
of Gaussians data sets with k clusters in a d -dimensional hypercube created
with randomly generated centers and covariance matrices similar to the method
suggested by Jain and Dubes (1988).2 Some clusters typically overlap. For one set
we add n D 20% noise in the form of objects uniformly distributed over the whole
data space.

The Covertype data set3 contains remote sensing data from the Roosevelt
National Forest of northern Colorado for seven different forest cover types. We use
for clustering the ten quantitative variables.

The 16S rRNA data set contains the 3-gram count for the more than 400,000
16S rRNA sequences currently available for bacteria in the Greengenes database.4

16S sequences are about 1,500 letters long and we obtain 64 different 3-gram counts
for the 4 letters in the RNA alphabet. Since these sequences are mainly used for
classification, we use the phylum, a phylogenetic rank right below kingdom, as
ground truth.

1stream is available at http://R-Forge.R-Project.org/projects/clusterds/.
2Created with the default settings of function DSD_Gaussian_Static() in stream.
3Obtained from UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/
Covertype.
4Obtained from Greengenes at http://greengenes.lbl.gov/Download/Sequence_Data/
Fasta_data_files/current_GREENGENES_gg16S_unaligned.fasta.gz.

http://R-Forge.R-Project.org/projects/clusterds/
http://archive.ics.uci.edu/ml/datasets/Covertype
http://archive.ics.uci.edu/ml/datasets/Covertype
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/current_GREENGENES_gg16S_unaligned.fasta.gz
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/current_GREENGENES_gg16S_unaligned.fasta.gz
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All data sets come from a stationary distribution and the order in the data is
arbitrary making them suitable for evaluating clustering of non-streaming data.

5.1 Evaluation Method

We cluster each data set with each data stream clustering method. We reduce decay
and forgetting in the algorithms by using appropriate parameters (horizon D 106

for CluStream and 
 D 10�6 for DenStream). Then we tune each algorithm for
each data set to generate approximately 1,000 micro-clusters to make the results
better comparable. Finally, we recluster each data stream clustering algorithm’s
result using weighted k-means using the known number of clusters for k.

We chose data sets with available ground truth in order to be able to use
an external evaluation measure. Studies showed that the corrected Rand index
(Hubert and Arabie 1985) is an appropriate external measure to compare partitions
for clustering static data (Milligan and Cooper 1986). It compares the partition
produced via clustering with the partition given by the ground truth using the Rand
index (a measure of agreement between partitions) corrected for expected random
agreements. The index is in the interval Œ�1; 1�, where 0 indicates that the found
agreements can be entirely explained by chance and the higher the index, the better
the agreement. The index is also appropriate to compare the quality of different
partitions given the ground truth (Jain and Dubes 1988) as is done in this paper.

5.2 Results

First, we take a look at how different algorithms place micro-clusters since this
gives us a better idea of how well reclustering will work. In Fig. 1 we apply all
four algorithms on a simple mixture of Gaussians data set with 10,000 data points
and 5 % noise. We either set or tuned all algorithms to produce about 100 micro-
clusters. Reservoir sampling (1 %) in Fig. 1 concentrates on the dense areas and only
selects few noise points. However, we can see that some quite dense areas do not
have a representative. Also, no weights are available for sampling. BIRCH places
micro-clusters relatively evenly with heavier micro-clusters in denser areas. Since
BIRCH tries to represent all objects, noise creates many very light micro-clusters.
CluStream produces results very similar to BIRCH. DenStream tends to create a
single heavy cluster for a dense area, but often micro-cluster compete for larger
dense areas resulting in a cloud of many very light clusters. A big difference to the
other methods is that DenStream is able to suppress noise very well.

Next, we look at the order dependence of each method. We use the same data set
as above, but randomly reorder the data ten times, run the four algorithms on it and
then recluster with weighted k-means and k D 5. We assign the 10,000 objects to
the found clusters using the method discussed above in Sect. 4 and then compare the



Clustering Large Datasets Using Data Stream Clustering Techniques 141

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

Sampling 1%

CluStream DenStream

BIRCH

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1 About 100 micro-clusters placed by different algorithms on a mixture of k D 5 Gaussians
in d D 2 (shown in gray) with 5 % noise. Micro-cluster weights are represented by circle size

assignments for the ten different orders (45 comparisons) using the corrected Rand
index. The average corrected Rank index is relatively high with 0.74 (sampling),
0.85 (BIRCH), 0.81 (CluStream) and 0.79 (DenStream). Sampling has the lowest
index, however, this is not caused by the order of the data since random sampling is
order independent, but by the variation caused by choosing random subsets. The
higher index for the other methods indicates that, using appropriate parameters,
order dependence is below the variability of a 1 % sample.

Finally, we cluster and recluster the artificial and real data sets and report the
corrected Rank index between the clustering and the known ground truth in Fig. 2.
We replicate each experiment for the artificial data ten times and report the average
corrected Rand index. For comparison, the result of k-means on the whole data set
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Fig. 2 Corrected Rand index for different data sets with k-means reclustering

is reported. BIRCH performs extraordinarily well on the artificial data sets with
low dimensionality where it even outperforming directly using k-means. For noisy
data (k3d2n20), we see that all algorithms but DenStream degrade slightly (from
k3d2n00). This can be explained by the fact, that DenStream has built-in capability
to remove outliers. For higher-dimensional data (k10d10n00 and the real data sets)
CluStream performs very favorably.

6 Conclusion

The experiments in this paper indicate a potential for using data stream clustering
techniques for efficiently reducing large data sets to a size manageable by con-
ventional clustering algorithms. However, it is important to carefully analyze the
algorithm and remove or reduce the order dependency inherent in data stream clus-
tering algorithms. More thorough experiments on how different methods perform is
needed. However, the authors hope that this paper will spark more research in this
area, leading to new algorithms dedicated to clustering large, non-streaming data.
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Feedback Prediction for Blogs

Krisztian Buza

Abstract The last decade lead to an unbelievable growth of the importance of
social media. Due to the huge amounts of documents appearing in social media,
there is an enormous need for the automatic analysis of such documents. In this
work, we focus on the analysis of documents appearing in blogs. We present a
proof-of-concept industrial application, developed in cooperation with Capgemini
Magyarország Kft. The most interesting component of this software prototype
allows to predict the number of feedbacks that a blog document is expected
to receive. For the prediction, we used various predictions algorithms in our
experiments. For these experiments, we crawled blog documents from the internet.
As an additional contribution, we published our dataset in order to motivate research
in this field of growing interest.

1 Introduction

The last decade lead to an unbelievable growth of the importance of social media.
While in the early days of social media, blogs, tweets, facebook, youtube, social
tagging systems, etc. served more-less just as an entertainment of a few enthusiastic
users, nowadays news spreading over social media may govern the most important
changes of our society, such as the revolutions in the Islamic world, or US
president elections. Also advertisements and news about new products, services and
companies are spreading quickly through the channels of social media. On the one
hand, this might be a great possibility for promoting new products and services.
On the other hand, however, according to sociological studies, negative opinions
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spread much quicker than positive ones, therefore, if negative news appear in social
media about a company, the company might have to react quickly, in order to avoid
losses.

Due to the huge amounts of documents appearing in social media, analysis
of all these documents by human experts is hopeless, and therefore there is an
enormous need for the automatic analysis of such documents. For the analysis,
however, we have to take some special properties of the application domain into
account. In particular, the uncontrolled, dynamic and rapidly-changing content of
social media documents: e.g. when a blog-entry appears, users may immediately
comment this document.

We developed a software prototype in order to demonstrate how data mining
techniques can address the aforementioned challenges. This prototype has the
following major components: (1) the crawler, (2) information extractors, (3) data
store and (4) analytic components. In this paper, we focus on the analytic compo-
nents that allow to predict the number of feedbacks that a document is expected
to receive in the next 24 h. For feedback prediction, we focused on the documents
appearing in blogs and performed experiments with various predictions models. For
these experiments we crawled Hungarian blog sites. As an additional contribution,
we published our data.

2 Related Work

Data mining techniques for social media have been studied by many researchers,
see e.g. Reuter et al. (2011) and Marinho et al. (2008). Our problem is inherently
related to many web mining problems, such as opinion mining or topic tracking
in blogs. For an excellent survey on opinion mining we refer to Pang and Lee
(2008). Out of the works related to blogs we point out that Pinto (2008) applied
topic tracking methods, while Mishne (2007) exploited special properties of blogs
in order to improve retrieval.

Despite its relevance, there are just a few works on predicting the number of
feedbacks that a blog-document is expected to receive. Most closely related to our
work is the paper of Yano and Smith (2010) who used Naive Bayes, Linear and
Elastic Regression and Topic-Poisson models to predict the number of feedbacks
in political blogs. In contrast to them, we target various topics (do not focus on
political blogs) and perform experiments with a larger variety of models including
Neural Networks, RBF Networks, Regression Trees and Nearest Neighbor models.

3 Domain-Specific Concepts

In order to address the problem, first, we defined some domain-specific concepts
that are introduced in this chapter. We say that a source produces documents. For
example, on the site torokgaborelemez.blog.hu, new documents appear regularly,
therefore, we say that torokgaborelemez.blog.hu is the source of these documents.
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From the point of view of our work, the following parts of the documents are
the most relevant ones: (1) main text of the document: the text that is written
by the author of the document, this text describes the topic of the document,
(2) links to other documents: pointers to semantically related documents, in our case,
trackbacks are regarded as such links, (3) feedbacks: opinions of social media users
about a document is very often expressed in form of feedbacks that the document
receives. Feedbacks are usually short textual comments referring to the main text of
the document and/or other feedbacks. Temporal aspects of all the above entities are
relevant for our task. Therefore, we extract time-stamps for the above entities and
store the data together with these timestamps.

4 Feedback Prediction

Feedback prediction is the scientifically most interesting component of the proto-
type, therefore we focus on feedback prediction. For the other components of the
software prototype we refer to the presentation slides available at http://www.cs.
bme.hu/~buza/pdfs/gfkl_buza_social_media.pdf.

4.1 Problem Formulation

Given some blog documents that appeared in the past, for which we already
know when and how many feedbacks they received, the task is to predict how
many feedbacks recently published blog-entries will receive in the next H hours.
We regard the blog documents published in the last 72 h as recently published ones,
we set H D 24 h.

4.2 Machine Learning for Feedback Prediction

We address the above prediction problem by machine learning, in particular by
regression models. In our case, the instances are the recently published blog
documents and the target is the number of feedbacks that the blog-entry will receive
in the next H hours.

Most regression algorithms assume that the instances are vectors. Furthermore,
it is assumed that the value of the target is known for some (sufficiently enough)
instances, and based on this information, we want to predict the value of the target
for those cases where it is unknown. First, using the cases where the target is known,
a prediction model, regressor, is constructed. Then, the regressor is used to predict
the value of the target for the instances with unknown valued target.

http://www.cs.bme.hu/~{}buza/pdfs/gfkl_buza_social_media.pdf
http://www.cs.bme.hu/~{}buza/pdfs/gfkl_buza_social_media.pdf
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In our prototype we used neural networks (multilayer perceptrons in particular),
RBF-networks, regression trees (REP-tree, M5P-tree), nearest neighbor models,
multivariate linear regression and bagging out of the ensemble models. For more
detailed descriptions of these models we refer to Witten and Franke (2005) and
Tan et al. (2006).

In the light of the above discussion, in order to apply machine learning to
the feedback prediction problem, we have to resolve two issues: (1) we have to
transform the instances (blog documents) into vectors, and (2) we need some data
for which the value of the target is already known (train data).

For the first issue, i.e., for turning the documents into vectors, we extract the
following features from each document:

1. Basic features: Number of links and feedbacks in the previous 24 h relative to
baseTime; number of links and feedbacks in the time interval from 48 h prior
to baseTime to 24 h prior to baseTime; how the number of links and feedbacks
increased/decreased in the past (the past is seen relative to baseTime); number
of links and feedbacks in the first 24 h after the publication of the document, but
before baseTime; aggregation of the above features by source,

2. Textual features: The most discriminative bag of words features,1

3. Weekday features: Binary indicator features that describe on which day of the
week the main text of the document was published and for which day of the
week the prediction has to be calculated,

4. Parent features: We consider a document dP as a patent of document d , if d
is a reply to dP , i.e., there is a trackback link on dP that points to d ; parent
features are the number of parents, minimum, maximum and average number of
feedbacks that the parents received.

We solve the first issue as follows: we select some date and time in the past and
simulate as if the current date and time would be the selected date and time. We call
the selected date and time baseTime. As we actually know what happened after the
baseTime, i.e., we know how many feedbacks the blog entries received in the next
H hours after baseTime, we know the values of the target for these cases. While
doing so, we only take blog pages into account that were published in the last 3
days relative to the baseTime, because older blog pages usually do not receive any
more new feedbacks.

A similar approach allows us to quantitatively evaluate the prediction models: we
choose a time interval, in which we select different times as baseTime, calculate the
value of the target and use the resulting data to train the regressor. Then, we select
a disjoint time interval in which we again take several baseTimes and calculate the

1In order to quantify how discriminative is a word w, we use the average and standard deviation of
the number of feedbacks of documents that contain w, and the average and standard deviation of
the number of feedbacks of documents that do not contain w. Then, we divide the difference of the
number of average feedbacks with the sum of the both standard deviations. Then, we selected the
200 most discriminative words.
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true values of the target. However, the true values of the target remain hidden for the
prediction model, we use the prediction model to estimate the values of the targets
for the second time interval. Then we can compare the true and the predicted values
of the target.

5 Experiments

We examined various regression models for the blog feedback prediction problem,
as well as the effect of different type of features. The experiments, in total, took
several months of CPU time into account.

5.1 Experimental Settings

We crawled Hungarian blog sites: in total we downloaded 37,279 pages from
roughly 1,200 sources. This collection corresponds approximately 6 GB of plain
HTML document (i.e., without images). We preprocessed as described in Sect. 4.2.
The preprocessed data had in total 280 features (without the target variable, i.e.,
number of feedbacks). In order to assist reproducibility of our results as well as to
motivate research on the feedback prediction problem, we made the preprocessed
data publicly available at http://www.cs.bme.hu/~buza/blogdata.zip.

In the experiments we aimed to simulate the real-world scenario in which we
train the prediction model using the blog documents of the past in order to make
predictions for the blog documents of the present, i.e., for the blog documents that
have been published recently. Therefore, we used a temporal split of the train and
test data: we used the blog documents from 2010 and 2011 as train data and the
blog documents from February and March 2012 as test data. In both time intervals
we considered each day as baseTime in the sense of Sect. 4.2.

For each day of the test data we consider ten blog pages that were predicted to
have to largest number of feedbacks. We count how many out of these pages are
among the 10 pages that received the largest number of feedbacks in the reality.
We call this evaluation measure Hits@10 and we average Hits@10 for all the days
of the test data.

For the AUC, i.e., area under the receiver-operator curve, see Tan et al. (2006),
we considered as positive the 10 blog pages receiving the highest number of feed-
backs in the reality. Then, we ranked the pages according to their predicted number
of feedbacks and calculated AUC. We call this evaluation measure AUC@10.

For the experiments we aimed at selecting a representative set of state-of-the-
art regressors. Therefore, we used multilayer perceptrons (MLP), linear regressors,
RBF-Networks, REP-Trees and M5P-Trees. These regressors are based on various
theoretical background (see e.g. neural networks versus regression trees). We used
the Weka-implementations of these regressors, see Witten and Franke (2005) for
more details.

http://www.cs.bme.hu/~{}buza/blogdata.zip
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Fig. 1 The performance of the examined models

Table 1 The effect of different types of features and the effect of bagging

Model Basic Basic C weekday Basic C parent Basic C textual Bagging

MLP (3) 5:533˙ 1:384 5:550˙ 1:384 5:612˙ 1:380 4:617˙ 1:474 5:467˙ 1:310

0:886˙ 0:084 0:884˙ 0:071 0:894˙ 0:062 0:846˙ 0:084 0:890˙ 0:080

MLP (20,5) 5:450˙ 1:322 5:488˙ 1:323 5:383˙ 1:292 5:333˙ 1:386 5:633˙ 1:316

0:900˙ 0:080 0:910˙ 0:056 0:914˙ 0:056 0:896˙ 0:069 0:903˙ 0:069

k-NN 5:433˙ 1:160 5:083˙ 1:345 5:400˙ 1:172 3:933˙ 1:223 5:450˙ 1:102

(k D 20) 0:913˙ 0:051 0:897˙ 0:061 0:911˙ 0:052 0:850˙ 0:060 0:915˙ 0:051

RBF Net 4:200˙ 1:458 4:083˙ 1:320 3.414 ˙ 1.700 3:833˙ 1:428 4:750˙ 1:233

(clusters: 100) 0:860˙ 0:070 0:842˙ 0:069 0.846 ˙ 0.074 0:818˙ 0:074 0:891˙ 0:050

Linear 5:283˙ 1:392 5:217˙ 1:343 5:283˙ 1:392 5:083˙ 1:215 5:150˙ 1:327

Regression 0:876˙ 0:088 0:869˙ 0:097 0:875˙ 0:091 0:864˙ 0:096 0:881˙ 0:082

REP Tree 5:767˙ 1:359 5:583˙ 1:531 5:683˙ 1:420 5:783˙ 1:507 5:850˙ 1:302

0:936˙ 0:038 0:931˙ 0:042 0:932˙ 0:043 0:902˙ 0:086 0:934˙ 0:039

M5P Tree 6:133˙ 1:322 6:200˙ 1:301 6;000˙ 1:342 6:067˙ 1:289 5:783˙ 1:305

0:914˙ 0:073 0:907˙ 0:084 0:913˙ 0:081 0:914˙ 0:068 0:926˙ 0:048

The performance (Hits@10 and AUC@10) of the models for different feature sets

5.2 Results and Discussion

The performance of the examined models, for the case of using all the available
features is shown in Fig. 1. For MLP, we used a feed-forward structure with
(1) 3 hidden neurons and 1 hidden layer and (2) 20 and 5 hidden neurons in the first
and second hidden layers. In both cases we set the number of training iteration of
the Backpropagation Algorithm to 100, the learning rate to 0:1 and the momentum
to 0:01. For the RBF-Network, we tried various number of clusters, but they did not
have substantial impact on the results. We present results for 100 clusters.

The effect of different feature types and the effect of bagging is shown in Table 1.
For bagging, we constructed 100 randomly selected subsets of the basic features and
we constructed regressors for all of these 100 subsets of features. We considered the
average of the predictions of these 100 regressors as the prediction of the bagging-
based model.
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Fig. 2 The performance of the REP-tree classifier with basic features for various training intervals

The number of hits was around 5–6 for the examined models, which was much
better than the prediction of a naive model, i.e., of a model that simply predicts the
average number of feedbacks per source. This naive model achieved only 2–3 hits
in our experiments. In general, relatively simple models, such as M5P Trees and
REP Trees, seem to work very well both in terms of quality and runtime required
for training of these models and for prediction using these models. Depending on
the parameters of neural networks, the training may take relatively long time into
account. From the quality point of view, while we observed neural networks to be
competitive to the regression trees, the examined neural networks did not produce
much better results than the mentioned regression trees.

Additionally to the presented results, we also experimented with support vector
machines. We used the Weka-implementation of SVM, which had inacceptably long
training times, even in case of simple (linear) kernel.

Out of the different types of features, the basic features (including aggregated
features by source) seem to be the most predictive ones.

Bagging, see the last column of Table 1, improved the performance of MLPs
and RBF-Network both in terms of Hits@10 and AUC@10, and the performance of
REP-tree in terms of Hits@10. In the light of average and standard deviation, these
improvement are, however, not significant.

We also examined how the length of the training interval affects the quality of
prediction: both Hits@10 and AUC@10 of the REP-tree classifier are shown in
Fig. 2 for various training intervals. As expected, recent training intervals, such as
the last 1 or 2 months of 2011, seem to be informative enough for relatively good
predictions. On the other hand, with using more and more historical data from larger
time intervals, we did not observe a clear trend which may indicate that the user’s
behavior may (slightly) change and therefore historical data of a long time interval
is not necessary more useful than recent data from a relatively short time interval.
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6 Conclusion

In the last decade, the importance of social media grew unbelievably. Here,
we presented a proof-of-concept industrial application of social media analysis.
In particular, we aimed to predict the number of feedbacks that blog documents
receive. Our software prototype allowed to crawl data and perform experiments.
The results show that state-of-the art regression models perform well, they out-
perform naive models substantially. We mention that our partners at Capgemini
Magyarország Kft. were very satisfied with the results. On the other hand, the
results show that there is room for improvement, while developing new models
for the blog feedback prediction problem seems to be a non-trivial task: with
widely-used techniques, in particular ensemble methods, we only achieved marginal
improvement. In order to motivate research in this area of growing interest, we made
our data publicly available.
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Spectral Clustering: Interpretation
and Gaussian Parameter

Sandrine Mouysset, Joseph Noailles, Daniel Ruiz, and Clovis Tauber

Abstract Spectral clustering consists in creating, from the spectral elements of a
Gaussian affinity matrix, a low-dimensional space in which data are grouped into
clusters. However, questions about the separability of clusters in the projection space
and the choice of the Gaussian parameter remain open. By drawing back to some
continuous formulation, we propose an interpretation of spectral clustering with
Partial Differential Equations tools which provides clustering properties and defines
bounds for the affinity parameter.

1 Introduction

Spectral clustering aims at selecting dominant eigenvectors of a parametrized
Gaussian affinity matrix in order to build an embedding space in which the
clustering is made. Many interpretations of this method were lead to explain why
the clustering is made in the embedding space with graph theory with random walks
(Meila and Shi 2001), matrix perturbation theory (Ng et al. 2002), Operators in Man-
ifolds (Belkin and Niyogi 2003), physical models as inhomogeneous ferromagnetic
Potts model (Blatt et al. 1996) or Diffusion Maps (Nadler et al. 2006). But all these
analysis are investigated asymptotically for a large number of points and do not
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explain why this method works for a finite data set. Moreover, another problem
still arise: the affinity parameter influences the clustering results (Ng et al. 2002;
Von Luxburg 2007). And the difficulty to define an adequate parameter seems to
be slightly connected to the lack of some clustering property explaining how the
grouping in this low-dimensional space correctly defines the partitioning in the
original data.

In this paper, we propose a fully theoretical interpretation of spectral clustering
whose first steps were introduced by Mouysset et al. (2010). From this, we define
a new clustering property in the embedding space at each step of the study and
new results showing the rule of the Gaussian affinity parameter. After recalling
the spectral clustering method and the rule of the affinity parameter in Sect. 2.1,
we propose a continuous version of the Spectral Clustering with Partial Differential
Equations (PDE). To do so, we consider a sampling of connected components
and, from this, we draw back to original shapes. This leads to formulate spectral
clustering as an eigenvalue problem where data points correspond to nodes of
some finite elements discretization and to consider the Gaussian affinity matrix
A as a representation of heat kernel and the affinity parameter � as the heat
parameter t . Hence, the first step is to introduce an eigenvalue problem based on
heat equation which is defined with a Dirichlet boundary problem. From this, in
Sect. 2.2, we deduce an “almost” eigenvalue problem which can be associated to
the Gaussian values. Thus identifying connected component appears to be linked to
these eigenfunctions. Then, by introducing the Finite Elements approximation and
mass lumping, we prove in Sect. 2.3 that this property is preserved with conditions
on t when looking at eigenvectors given by spectral clustering algorithm. Finally,
in Sect. 3, we study numerically the difference between eigenvectors from the
spectral clustering algorithm and their associated discretized eigenfunctions from
heat equation on a geometrical example, as a function of the affinity parameter t .

2 Interpretation

In the following, spectral clustering and its inherent problem are presented. Then
we propose a continuous version of this method.

2.1 Spectral Clustering: Rule of Gaussian Parameter

Let consider a data set P D fxi giD1::N 2 R
p. Assume that the number of

targeted clusters k is known. First, the spectral clustering consists in constructing the
parametrized affinity matrix based on the Gaussian affinity measure between points
of the data set P. After a normalization step, by stacking the k largest eigenvectors,
the spectral embedding in R

k is created. Each row of this matrix represents a data
point xi which is plotted in this embedding space and then grouped into clusters via
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Fig. 1 Geometrical example: (a) clustering result for � D 0:8, (b) percentage of clustering error
function of � , (c) spectral embedding space for � D 0:8

the K-means method. Finally, thanks to an equivalence relation, the final partition
of data set is directly defined from the clustering in the embedding space.

So this unsupervised method is mainly based on the Gaussian affinity measure,
its parameter � and its spectral elements. Moreover, it is known that the Gaussian
parameter conditions the separability between the clusters in the spectral embedding
space and should be well chosen (Von Luxburg 2007). The difficulty to fix this
choice seems to be tightly connected to the lack of results explaining how the
grouping in this low-dimensional space defines correctly the partitioning in the
original data for a finite data set. Figure 1 summaries these previous remarks
via a percentage of clustering which evaluated the percentage of mis-clustered
points applied on a geometrical example of two concentric rectangles (Fig. 1a). For
� D 0:8, value which provides clustering errors (Fig. 1b), the two clusters defined
with K-means are represented in the spectral embedding (Fig. 1c) by the respective
black and grey colors. A piece of circle in which no separation by hyperplane is
possible is described. Thus, in the original space, both rectangles are cut in two and
define a bad clustering as show in Fig. 1a.

2.2 Through an Interpretation with PDE Tools

As spectral elements used in spectral clustering do not give explicitly this topo-
logical criteria for a discrete data set, we are drawing back to some continuous
formulation wherein clusters will appear as disjoint subsets as shown in Fig. 2.
In that way, we first have to define a clustering compatibility which establishes the
link between continuous interpretation and the discrete case. So we consider an open
set ˝ subdivided by k disjoints connected components of ˝ .

Definition 1 (Clustering Compatibility). Let ˝ be a bounded open set in R
p

made by ˝i; i 2 1; ::; k disjoint connected components such that: ˝ D Sk
iD1 ˝i .

Let P be a set of points fxi gNiD1 in the open set ˝ . Let note Pj , for j D
f1; ::; kg, the non empty set of points of P in the connected component ˝j

of ˝:Pj D ˝j \ P;8j 2 f1; ::; kg. Let C D fC1; ::; Ck0g be a partition of P.
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Fig. 2 Principle of the interpretation with PDE tools

Suppose that k D k0 then C is a compatible clustering if 8j D f1; ::; k0g; 9i 2
f1; ::; kg; Cj D Pi .

To make a parallel version in the L2.˝/ space, data points which believe
in a subset of ˝ are equivalent to believe in the same connected component.
In the following, we will formulate spectral clustering as an eigenvalue problem
by assuming data points as nodes of some finite elements discretization and by
considering Gaussian affinity matrix as a representation of heat kernel. But as the
spectrum of heat operator in free space is essential, we will make a link with a
problem defined on bounded domain in which the spectrum is finite. Then, due to the
fact that we compare the discrete data defined by the elements of the affinity matrix
with some L2 functions which are the solutions of heat equation, we will introduce
an explicit discretization with the Finite Element theory and the mass lumping to
cancel all knowledge about the mesh. Then we will make a feedback of this analysis
for the application of spectral clustering by defining clustering properties following
the successive approximations. Finally, this study will lead to a functional rule of �
and a new formulation of a spectral clustering criterion.

2.2.1 Link Between Gaussian Affinity and Heat Kernel in R
p

Let recall the Gaussian affinity element Aij between two data points xi and xj is

defined by Aij D exp
�
� ��xi � xj

��2=2�2
�

. A direct link between the affinity Aij

and the heat kernel on R
�C � R

p , defined by KH.t; x/ D .4�t/�
p
2 exp

��kxk2=4t	
could be established as follows:

Aij D .2��2/
p
2 KH

�
�2=2; xi � xj

	
; 8i ¤ j; 8.i; j / 2 f1; ::; N g: (1)

Equation (1) permits defining the affinity measure as a limit operator: the Gaussian
affinity is interpreted as the heat kernel of a parabolic problem and its Gaussian
parameter � as a heat parameter t . Consider the following parabolic problem which
is called heat equation, for f 2 L2.Rp/:

.PRp /

(
@tu ��u D 0 for .t; x/ 2 R

C � R
p;

u.x; 0/ D f for x 2 R
p:
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Due to the fact that the spectrum of heat operator in free space, noted SH , is essential
and eigenfunctions are not localized in R

p without boundary conditions, we have to
restrict the domain definition and make a link with a problem on a bounded domain
˝ in which the eigenfunctions could be studied.

2.2.2 Clustering Property with Heat Equation

Let now introduce the initial value problem in L2.˝/, for f 2 L2.˝/:

.P˝/

8
ˆ̂<
ˆ̂:

@tu ��u D 0 in R
C �˝;

u.t D 0/ D f; in ˝;

u D 0; on R
C � @˝:

Denote by KD the Green’s kernel of .P˝/. The solution operator in H2.˝/ \
H1
0 .˝/ associated to this problem is defined, for f 2 L2.˝/, by:

SD.t/f .x/ D
Z

˝

KD.t; x; y/f .y/dy; x 2 R
p:

Let consider f.fvn;i /n;i>0; i 2 f1; ::; kgg 2 H1
0 .˝/ such that .fvn;i /n;i>0 are the

solutions of �fvn;i D 
n;ifvn;i on ˝i for i 2 f1; ::; kg and n > 0 and extend
fvn;i D 0 on ˝n˝i . These functions are eigenfunctions of .P˝/ and the union of
these eigenfunctions is an Hilbert basis ofH1

0 .˝/. Moreover, as˝ D Sk
iD1 ˝i , for

all i 2 f1; ::; kg and n > 0, the eigenfunctions, noted f.fvn;i /n;i>0; i 2 f1; ::; kgg,
satisfied: SD.t/fvn;i D e�
n;i tfvn;i . So the eigenfunctions of SD have a geometrical
property: its support is included in only one connected component. Thus a clustering
property in the spectral embedding space could be established.

Proposition 1 (Clustering Property). For all point x 2 ˝ and � > 0, let note
��x a regularized Dirac function centred in x: ��x 2 C1.˝; Œ0; 1�/; �"x.x/ D 1 and
supp.�"x/ � B.x; "/. The eigenfunctions of SD , noted fvn;i , for i 2 f1; ::; kg and
n > 0 such that for all x 2 ˝ and all i 2 f1; ::; kg and for all t > 0, the following
result is satisfied:

�9"0 > 0; 8" 2�0; "0Œ; 9n > 0; .SD.t/�"x jfvn;i /L2.˝/ ¤ 0
� ” x 2 ˝i (2)

where .f jg/L2.˝/ D R
˝
f .y/g.y/dy;8.f; g/ 2 L2.˝/ is the usual scalar product

in L2.

Proof. By contrapositive, let i 2 f1; ::; kg and a point x 2 ˝j with any j ¤ i . Let
dx D d.x; @˝j / > 0 be the distance of x from the boundary of ˝j . According to
the hypothesis on ˝ , we have d0 D d.˝i ;˝j / > 0. So for all " 2�0; inf.dx; d0/Œ,
B.x; "/ � ˝j . Then for all t > 0, supp.SD.t/�"x/ � ˝j and so, for n > 0,
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.SD.t/�
"
x jfvn;i /L2.˝/ D 0. So there does not any "0 > 0 which verifies the direct

implication of (2). Reversely, let x 2 ˝i and " 2�0; inf.dx; d0/Œ, B.x; "/ � ˝i .
So the support of �"x is in ˝i . As the .fvn;i /n>0 is an Hilbert basis of L2.˝i/ and
that �"x.x/ D 1 ¤ 0 then there exists n > 0 such that .�"x jfvn;i / ¤ 0. In this case,
.SD.t/�

"
x jfvn;i /L2.˝/ D e�
n;i t .�"x jfvn;i / ¤ 0.

By considering an open subset O which approximates from the interior the open
set ˝ such that Volume.˝nO/ � �, for � > 0, both heat operators of .PRp / and
.P˝/ could be compared in O. Let ı be the distance fromO to˝ as shown in Fig. 2.
Due to the fact that the difference between the Green kernels KH and KD could
be estimated in O and is function of the heat parameter t , the geometrical property
could thus be preserved on the heat operator in free space restricted to O. Let vn;i
be the eigenfunction fvn;i which support is restricted to O, for all i 2 f1; ::; kg and
n > 0. From this, we obtain, for 0 < t < ı2:

SOH.t/vn;i D exp�
ni t vn;i C �.t; vn;i /; (3)

with k�.t; vn;i /kL2.O/ ! 0 when t ! 0; ı ! 0:

So we can prove that on O, the eigenfunctions for the solution operator for bounded
heat equation are quasi-eigenfunctions for SOH plus a residual (Mouysset et al.
2010). The clustering property adapted to the restricted heat operator SOH remains
introducing an hypothesis on the heat parameter t . Moreover, (2) is modified with
non-null values by introducing a gap between scalar product with eigenfunctions
such that for all x > 0 and all i 2 f1; ::; kg:

2
4

9"0 > 0; 9˛ > 0; 8" 2�0; "0Œ; 9n > 0; 8t > 0 small enough,
vn;i D arg maxfvm;j ;m2N;j2Œj1;kj�g

ˇ̌
.SOH.t/�

�
x jvm;j /L2.O/

ˇ̌
and

ˇ̌
.SOH.t/�

"
x jvn;i /L2.O/

ˇ̌
> ˛

3
5 ” x 2 Oi :

(4)

These previous results prove that in infinite dimension, a clustering could be realized
in the spectral embedding space because the eigenfunctions have a geometrical
property. This study leads to the following question: do eigenvectors of the affinity
matrix behave like eigenfunctions of .P˝/?

2.3 Discretization with Finite Elements

From this, we will look for a similar behaviour onto eigenvectors of A by
introducing a finite dimension representation matching with the initial data set P
with help of the finite elements (Ciarlet 1978). So, we consider data points as finite
dimensional approximation and elements of the affinity matrix built from data points
as nodal values of SOH .
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2.3.1 Approximation in Finite Dimension

Let �h be a triangulation on NO such that: h D max
K2�h

hK , hK being a characteristic

length of triangle K . Let consider a finite decomposition of the domain: NO D
[K2�hK in which .K;PK;˙K/ satisfies Lagrange finite element assumptions for
all K 2 �h. We define also the finite dimension approximation space: Vh D fw 2
C0. NO/I 8K 2 �h;wjK 2 PKg and denote ˘h the linear interpolation from C0. NO/
in Vh with the usual scalar product .�j�/L2.Vh/ (Ciarlet 1978). According to this
notations, for t > 0, the ˘h-mapped operator SOH applied to each shape function
�j is, for h3pC2 < t2, for all 1 � j � N :

.4�t/
p
2 ˘h.S

O
H.t/�j /.x/ D

NX
kD1

..AC IN /M/kj �k.x/CO

�
h3pC2

t2

�
; (5)

where M stands for the mass matrix defined by: Mij D .�i j�j /L2.Vh/. Equation (5)
means that the affinity matrix defined in (1) in spectral algorithm is interpreted as
the ˘h-projection of operator solution of .PRp / with M mass matrix from Finite
Element theory (Mouysset et al. 2010).
So we could formulate finite elements approximation of continuous clustering
result (3). From the eigenfunctions of SD restricted to O, their projection in Vh,

notedWn;i , are defined by:Wn;i D ˘hvn;i 2 Vh;8i 2 f1; ::; kg. So, for h
3pC2
2 < t <

ı2, the following result could be established:

.4�t/
�p
2 .AC IN /MWn;i D e�
n;i tWn;i C � .t; h/ ; (6)

where k� .t; h/ kL2.Vh/ ! 0 and ı ! 0. Equation (6) shows that the geometrical
property is preserved in finite dimension on the eigenvectors of .A C IN /M .
Moreover, a lower bound for the heat parameter was defined. But all this previous
results include the mass matrix which is totally dependent of the finite elements.
In order to cancel this dependence, mass lumping process is investigated.

2.3.2 Mass Lumping

The mass lumping method consists in using a quadrature formula whose integration
points are the interpolation points of the finite element. So let Ik be the list of indices
of points which are element of K 2 �h. Let consider the quadrature scheme exact
for polynomials of degree � 1:

Z

K

�.x/dx 

X
k2Ik

jKj
3
�.xik / (7)
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where jKj is the area of the finite elementK . So, with additional regularity condition
on the mesh which bounds jKj, the mass lumping permits considering the mass
matrix M as a homogeneous identity matrix. So (6) is modified so that, 9 ˛ > 0,
such that:

˛ .AC IN /Wn;i D e�
n;i tWn;i C � 0.t; h/; (8)

where k� 0.t; h/kL2.Vh/ ! 0 and ı ! 0. The approximation in finite dimension
of the clustering property (4) is reformulated as follows, for all xr 2 P, for all
i 2 f1; ::; kg:

2
664

9˛ > 0; 9n > 0; 8t > 0; t; h2=t and h.3pC1/=t2 small enough,

Wn;i D arg max
fWm;j ;m2N;j2Œj1;kj�g

ˇ̌
ˇ�.AC IN /:r jWm;j

	
L2.Vh/

ˇ̌
ˇ

and
ˇ̌
ˇ..AC IN /:r jWn;i /L2.Vh/

ˇ̌
ˇ > ˛

3
775 ” xr 2 Oi ;

(9)

where ..AC IN //:r is the r th column of the matrix .A C IN /, for all r 2 f1; ::N g.
This leads to the same clustering for a set of data points either we consider
eigenfunctions in L2.˝/ or ˘h-interpolated eigenfunction in the approximation
space Vh. With an asymptotic condition on the heat parameter t (or Gaussian
parameter �), points which are elements of the same cluster have the maximum of
their projection coefficient along the same eigenvector. So the clustering in spectral
embedding space provides the clustering in data space.

3 Gaussian Parameter: A Geometrical Example

This previous theoretical interpretation proves that the Gaussian parameter should
be chosen within a specific interval in order to improve the separability between
clusters in the spectral embedding space. In order to experiment the parallel between
continuous version and the approximate one, we consider a geometrical example
with non convex shapes as shown in Fig. 3a. For each connected component (or each
cluster) i 2 f1; 2g, the discretized eigenfunction, noted W1;i , associated to the first
eigenvalue of each connected component and the eigenvectors, noted Yi , which
gives maximum projection coefficient with W1;i are respectively plotted in Fig. 3b,
c and e, f. The correlation ! betweenW1;i and Yi is represented as a function of the
heat parameter t in Fig. 3d: ! D j.W1;i jYi /j.kW1;ik2kYik2/�1. The vertical black
dash dot lines indicate the lower and upper estimated bounds of the heat parameter.
In this interval, the correlation between the continuous version and the eigenvectors
of the Gaussian affinity matrix is maximum. So the clusters are well separated in the
spectral embedding space.
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Fig. 3 (a) Data set (N D 669), (b) and (c) discretized eigenfunctions of SD , (d) correlation
! between the continuous version and its discrete approximation function of t , (e) and (f)
eigenvectors from A which provides the maximum projection coefficient with the eigenfunctions
of SD

4 Conclusion

In this paper, spectral clustering was formulated as an eigenvalue problem. From
this interpretation, a clustering property on the eigenvectors and some conditions on
the Gaussian parameter have been defined. This leads to understand how spectral
clustering works and to show how clustering results could be affected with a bad
choice of the affinity parameter. But we do not take into account the normalization
step in the whole paper but its rule is crucial for ordering largest eigenvectors for
each connected components to the first eigenvectors and should be studied.
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On the Problem of Error Propagation
in Classifier Chains for Multi-label Classification

Robin Senge, Juan José del Coz, and Eyke Hüllermeier

Abstract So-called classifier chains have recently been proposed as an appealing
method for tackling the multi-label classification task. In this paper, we analyze
the influence of a potential pitfall of the learning process, namely the discrepancy
between the feature spaces used in training and testing: while true class labels are
used as supplementary attributes for training the binary models along the chain, the
same models need to rely on estimations of these labels when making a prediction.
We provide first experimental results suggesting that the attribute noise thus created
can affect the overall prediction performance of a classifier chain.

1 Introduction

Multi-label classification (MLC) has attracted increasing attention in the
machine learning community during the past few years (Tsoumakas and Katakis
2007).The goal in MLC is to induce a model that assigns a subset of labels to each
example, rather than a single one as in multi-class classification. For instance, in
a news website, a multi-label classifier can automatically attach several labels—
usually called tags in this context—to every article; the tags can be helpful for
searching related news or for briefly informing users about their content.

Current research on MLC is largely driven by the idea that optimal prediction
performance can only be achieved by modeling and exploiting statistical dependen-
cies between labels. Roughly speaking, if the relevance of one label may depend
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on the relevance of others, then labels should be predicted simultaneously and not
separately. This is the main argument against simple decomposition techniques such
as binary relevance (BR) learning, which splits the original multi-label task into
several independent binary classification problems, one for each label.

Until now, several methods for capturing label dependence have been proposed
in the literature, including a method called classifier chains (CC) (Read et al. 2011).
This method enjoys great popularity, even though it has been introduced only lately.
As its name suggests, CC selects an order on the label set—a chain of labels—and
trains a binary classifier for each label in this order. The difference with respect to
BR is that the feature space used to induce each classifier is extended by the previous
labels in the chain. These labels are treated as additional attributes, with the goal to
model conditional dependence between a label and its predecessors. CC performs
particularly well when being used in an ensemble framework, usually denoted as
ensemble of classifier chains (ECC), which reduces the influence of the label order.

Our study aims at gaining a deeper understanding of CC’s learning process. More
specifically, we address a potential pitfall of this method: since information about
preceding labels is only available for training, this information has to be replaced
by estimations (coming from the corresponding classifiers) at prediction time. As
a result, CC has to deal with a specific type of attribute noise: while a classifier
is learned on “clean” training data, including the true values of preceding labels,
it is applied on “noisy” test data, in which true labels are replaced by possibly
incorrect predictions. Obviously, this type of noise may affect the performance
of each classifier in the chain. More importantly, since each classifier relies on
its predecessors, a single false prediction might be propagated and possibly even
reinforced along the chain.

The rest of the paper is organized as follows. The next section introduces the
setting of MLC, and Sect. 3 explains the classifier chains method. Section 4 is
devoted to a deeper discussion of the aforementioned pitfalls of CC, along with some
experiments for illustration purposes. The paper ends with a couple of concluding
remarks in Sect. 5.

2 Multi-label Classification

Let L D f
1; 
2; : : : ; 
mg be a finite and non-empty set of class labels, and
let X be an instance space. We consider an MLC task with a training set S D
f.x1; y1/; : : : ; .xn; yn/g, generated independently and identically according to a
probability distribution P.X;Y/ on X � Y. Here, Y is the set of possible label
combinations, i.e., the power set of L. To ease notation, we define yi as a binary
vector yi D .yi;1; yi;2; : : : ; yi;m/, in which yi;j D 1 indicates the presence
(relevance) and yi;j D 0 the absence (irrelevance) of 
j in the labeling of xi . Under
this convention, the output space is given by Y D f0; 1gm. The goal in MLC is
to induce from S a hypothesis h W X �! Y that correctly predicts the subset of
relevant labels for unlabeled query instances x.
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The most-straight forward and arguably simplest approach to tackle the MLC
problem is binary relevance (BR). The BR method reduces a given multi-label
problem with m labels to m binary classification problems. More precisely, m
hypotheses hj W X �! f0; 1g, j D 1; : : : ; m, are induced, each of them being
responsible for predicting the relevance of one label, using X as an input space.
In this way, the labels are predicted independently of each other and no label
dependencies are taken into account.

In spite of its simplicity and the strong assumption of label independence, it has
been shown theoretically and empirically that BR performs quite strong in terms of
decomposable loss functions (Dembczyński et al. 2010), including the well-known
Hamming loss LH.y;h.x// D 1

m

Pm
iD1ŒŒyi ¤ hi .x/��. The Hamming loss averages

the standard 0/1 classification error over the m labels and hence corresponds to the
proportion of labels whose relevance is incorrectly predicted. Thus, if one of the
labels is predicted incorrectly, this accounts for an error of 1

m
. Another extension

of the standard 0/1 classification loss is the subset 0/1 loss LZO.y;h.x// D ŒŒy ¤
h.x/��. Obviously, this measure is more drastic and already treats a mistake on a
single label as a complete failure. The necessity to exploit label dependencies in
order to minimize the generalization error in terms of the subset 0/1 loss has been
shown in Dembczyński et al. (2010).

3 Classifier Chains

While following a similar setup as BR, classifier chains (CC) seek to capture label
dependencies. CC learns m binary classifiers linked along a chain, where each
classifier deals with the binary relevance problem associated with one label. In the
training phase, the feature space of each classifier in the chain is extended with the
actual label information of all previous labels in the chain. For instance, if the chain
follows the order 
1 ! 
2 ! : : : ! 
m, then the classifier hj responsible for
predicting the relevance of 
j is of the form

hj W X � f0; 1gj�1 �! f0; 1g : (1)

The training data for this classifier consists of instances .xi ; yi;1; : : : ; yi;j�1/ labeled
with yi;j , that is, original training instances xi supplemented by the relevance of the
labels 
1; : : : ; 
j�1 preceding 
j in the chain.

At prediction time, when a new instance x needs to be labeled, a label subset
y D .y1; : : : ; ym/ is produced by successively querying each classifier hj .
Note, however, that the inputs of these classifiers are not well-defined, since the
supplementary attributes yi;1; : : : ; yi;j�1 are not available. These missing values are
therefore replaced by their respective predictions: y1 used by h2 as an additional
input is replaced by Oy1 D h1.x/, y2 used by h3 as an additional input is replaced by
Oy2 D h2.x; Oy1/, and so forth. Thus, the prediction y is of the form
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y D �
h1.x/; h2.x; h1.x//; h3.x; h1.x/; h2.x; h1.x///; : : :

	

Realizing that the order of labels in the chain may influence the performance of the
classifier, and that an optimal order is hard to anticipate, the authors in Read et al.
(2011) propose the use of an ensemble of CC classifiers. This approach combines
the predictions of different random orders and, moreover, uses a different sample
of the training data to train each member of the ensemble. Ensembles of classifier
chains (ECC) have been shown to increase prediction performance over CC by
effectively using a simple voting scheme to aggregate predicted relevance sets of
the individual CCs: for each label 
j , the proportion Owj of classifiers predicting
yj D 1 is calculated. Relevance of 
j is then predicted by using a threshold t , that
is, Oyj D ŒŒ Owj � t ��.

4 The Problem of Error Propagation in CC

The learning process of CC violates a key assumption of machine learning, namely
that the training data is representative of the test data in the sense of being identically
distributed. This assumption does not hold for the chained classifiers in CC: while
using the true label data yj as input attributes during the training phase, this
information is replaced by estimations Oyj at prediction time. Needless to say, yj
and Oyj will normally not follow the same distribution.

From the point of view of the classifier hj , which uses the labels y1; : : : ; yj�1 as
additional attributes, this problem can be seen as a problem of attribute noise. More
specifically, we are facing the “clean training data vs. noisy test data” case, which
is one of four possible noise scenarios that have been studied quite extensively in
Zhu and Wu (2004). For CC, this problem appears to be vital: Could it be that the
additional label information, which is exactly what CC seeks to exploit in order
to gain in performance (compared to BR), eventually turn out to be a source of
impairment? Or, stated differently, could the additional label information perhaps
be harmful rather than useful? This question is difficult to answer in general. In
particular, there are several factors involved, notably the following:

• The length of the chain: The larger the number j � 1 of preceding classifiers
in the chain, the higher is the potential level of attribute noise for a classifier
hj . For example, if prediction errors occur independently of each other with
probability �, then the probability of a noise-free input is only .1 � �/j�1. More
realistically, one may assume that the probability of a mistake is not constant
but will increase with the level of attribute noise in the input. Then, due to the
recursive structure of CC, the probability of a mistake will increase even more
rapidly along the chain.

• The order of the chain: Since some labels might be inherently more difficult to
predict than others, the order of the chain will play a role, too. In particular, it
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would be advantageous to put simpler labels in the beginning and harder ones
more toward the end of the chain.

• The accuracy of the binary classifiers: The level of attribute noise is in direct
correspondence with the accuracy of the binary classifiers along the chain. More
specifically, these classifiers determine the input distributions in the test phase.
If they are perfect, then the training distribution equals the test distribution, and
there is no problem. Otherwise, however, the distributions will differ.

• The dependency among labels: Perhaps most interestingly, a (strong enough)
dependence between labels is a prerequisite for both, an improvement and a
deterioration through chaining. In fact, CC cannot gain (compared to BR) in case
of no label dependency. In that case, however, it is also unlikely to loose, because
a classifier hj will most likely1 ignore the attributes y1; : : : ; yj�1. Otherwise, in
case of pronounced label dependence, it will rely on these attributes, and whether
or not this is advantageous will depend on the other factors above.

In the following, we present two experimental studies that are meant to illustrate
the problem of error propagation in classifier chains.

4.1 Experiment with Real Data

Our intuition is that attribute noise in the test phase can produce a propagation
of errors through the chain, thereby affecting the performance of the classifiers
depending on their position in the chain. More specifically, we expect classifiers in
the beginning of the chain to systematically perform better than classifiers toward
the end. In order to verify this conjecture, we perform the following simple
experiment: we train a CC classifier on 500 randomly generated label orders. Then,
for each label order and each position, we compute the performance of the classifier
on that position in terms of the relative increase of classification error compared
to BR. Finally, these errors are averaged position-wise (not label-wise). For this
experiment, we used three standard MLC benchmark data sets: emotions (593
examples, 72 attributes, 6 labels), scene (2,407, 294, 6), yeast-10 (2,417, 103, 10);
the latter is a reduction of the original yeast data set to the ten most frequent labels
and their instances.

The results in Fig. 1 clearly confirm our expectations. In two cases, CC starts to
loose immediately, and the loss increases with the position. In the third case, CC is
able to gain on the first positions but starts to loose again later on.

1The possibility to ignore parts of the input information does of course also depend on the type of
classifier used.
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Fig. 1 Results of the first experiment: position-wise relative increase of classification error (mean
plus standard error bars).

4.2 Experiment with Synthetic Data

In a second experiment, we used a synthetic setup that was proposed in
Dembczynski et al. (2012) to analyze the influence of label dependence. The input
space X is two-dimensional and the underlying decision boundary for each label is
linear in these inputs. More precisely, the model for each label is defined as follows:

hi .x/ D
(
1 aj1x1 C aj2x2 � 0

0 otherwise
(2)

The input values are drawn randomly from the unit circle. The parameters aj1 and
aj2 for the j -th label are set to aj1 D 1 � � r1, aj2 D � r2, with r1 and r2 randomly
chosen from the unit interval. Additionally, random noise is introduced for each
label by independently reversing a label with probability � D 0:1. Obviously, the
level of label dependence can be controlled by the parameter � 2 Œ0; 1�: the smaller
� , the stronger the dependence tends to be (see Fig. 2 for an illustration).

For different label cardinalitiesm 2 f5; 10; 15; 20; 25g, we run ten repetitions of
the following experiment: we created 10 different random model parameter sets
(two for each label) and generated 10 different training sets, each consisting of
50 instances. For each training set, a model is learned and evaluated (in terms of
Hamming and subset 0/1 loss) on an additional data set comprising 1,000 instances.

Figure 3 summarizes the results in terms of the average loss divided by the
corresponding Bayes loss (which can be computed since the data generating process
is known); thus, the optimum value is always 1. Comparing BR and CC, the big
picture is quite similar to the previous experiment: the performance of CC tends to
decrease with an increasing number of labels. In the case of less label dependence,
this can already be seen for only five labels. The case of high label dependence
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Fig. 2 Example of synthetic data: the top three labels are generated using � D 0, the three at the
bottom with � D 1.

is more interesting: while CC seems to gain from exploiting the dependency for
a small to moderate number of labels, it cannot extend this gain to more than 15
labels.

5 Conclusion

This paper has thrown a critical look at the classifier chains method for multi-label
classification, which has been adopted quite quickly by the MLC community and
is now commonly used as a baseline when it comes to comparing methods for
exploiting label dependency. Notwithstanding the appeal of the method and the
plausibility of its basic idea, we have argued that, at second sight, the chaining of
classifiers begs an important flaw: a binary classifier that has learned to rely on
the values of previous labels in the chain might be misled when these values are
replaced by possibly erroneous estimations at prediction time. The classification
errors produced because of this attribute noise may subsequently be propagated or
even reinforced along the entire chain. Roughly speaking, what looks as a gift at
training time may turn out to become a handicap in testing.

Our results clearly show that this problem is relevant, and that it may strongly
impair the performance of the CC method. There are several lines of future work.
First, it is of course desirable to complement this study by meaningful theoretical
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Fig. 3 Results of the second experiment for � D 0 (top—high label dependence) and � D 1

(bottom—low label dependence).

results supporting our claims. Second, it would be interesting to investigate to what
extent the problem of attribute noise also applies to the probabilistic variant of
classifier chains introduced in Dembczyński et al. (2010).
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Statistical Comparison of Classifiers
for Multi-objective Feature Selection
in Instrument Recognition

Igor Vatolkin, Bernd Bischl, Günter Rudolph, and Claus Weihs

Abstract Many published articles in automatic music classification deal with
the development and experimental comparison of algorithms—however the final
statements are often based on figures and simple statistics in tables and only a few
related studies apply proper statistical testing for a reliable discussion of results and
measurements of the propositions’ significance. Therefore we provide two simple
examples for a reasonable application of statistical tests for our previous study
recognizing instruments in polyphonic audio. This task is solved by multi-objective
feature selection starting from a large number of up-to-date audio descriptors and
optimization of classification error and number of selected features at the same
time by an evolutionary algorithm. The performance of several classifiers and their
impact on the pareto front are analyzed by means of statistical tests.

1 Introduction

A large share of interdisciplinary research as music information retrieval (MIR)
(Downie 2003) corresponds to experimental studies with comparison and evaluation
of established and new algorithms. However, it can be observed that in many cases
the suggestions or improvements of a novel technique are not properly evaluated:
e.g. only one evaluation metric like accuracy is estimated, the holdout set is
not completely independent, or the final assumptions are not underlined by any
statistical tests which provide a solid estimation of the investigations reliability.
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Especially the lack of statistical testing holds also for the most of our own previous
studies in music classification. Therefore we decided to check again the results
of our study for instrument recognition in polyphonic recordings (Vatolkin et al.
2012) and to apply exemplary tests on two experimental results. The target of this
paper is not to provide a comprehensive introduction into statistical testing—but to
encourage the MIR community to use statistical tests for a better and more reliable
evaluation of algorithms and results.

In the following subsections we introduce shortly the instrument recognition
problem and refer to the relevant works about statistical tests for algorithm
comparisons in MIR. Then we describe our study and discuss the application of
two different tests for multi-objective classifier comparison. Finally, we conclude
with recommendations for further research.

1.1 MIR and Instrument Recognition

Almost all MIR tasks deal directly or indirectly with classification: identification of
music harmony and structure, genre recognition, music recommendation etc. One
of these subtasks is instrument identification, allowing for further promising appli-
cations: music recommendation, organization of music collections or understanding
of instrument role in a certain musical style. The largest challenge for successful
instrument recognition in audio is that it is usually polyphonic: several simultane-
ously playing sources with different overtone distribution, noisy components and
frequency progress over time make this task very complicated if the number of
instruments is too large. Another problematic issue is that many different instrument
playing possibilities (for example open or fretted strings) hinder the creation of well
generalizable classification models which distinguish not only between different
instruments but are also not influenced by these playing techniques. One of the
recent comprehensive works related to instrument recognition in polyphonic audio
is Fuhrmann (2012). An overview of the previous works mainly for recognition of
singular instrument samples is provided by Eronen (2001).

1.2 Statistical Tests in Music Classification

Statistical hypothesis testing is a formal methodology for making judgments about
stochastically generated data. In this article we will mainly consider two sample-
location tests. In detail this means: we have observed numerical observations
v1; : : : ; vn and w1; : : : ;wn and want to compare these two w.r.t. a specific “location
parameter”, e.g. their mean or median value. In a one-sample test we would
compare the location parameter of only one population to a constant value, while
“paired” means that we are actually interested in the location of vi � wi , because
both observations have been measured at the same object and/or belong together.
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A common example of pairing in machine learning is that vi and wi are performance
values of predictive models and have both been observed during resampling in
iteration i on the same training and test sets. Depending on whether the statistics
of interest is approximately normally distributed, the two most popular tests for
this scenario are the paired t-test and the Wilcoxon signed-rank test (Hollander and
Wolfe 1973).

During the last years a vast number of conference and journal papers has been
published in the MIR research area, but only a rather small fraction of them apply
statistical tests. From a collection of 162 MIR-related publications we studied (from
rather short conference papers to dissertations and master theses) only about 15 %
apply or directly mention statistical tests. Furthermore, in almost all of these works
hypothesis tests were employed only in very few cases instead of a systematic
analysis for algorithm comparison.

To name a couple of examples for further reading, Gillick and Cox (1989) argue
about the importance of applying statistical tests to speech recognition, in particular
they mention McNemar and matched-pairs test. The k-fold cross-validated t-test
for comparison of temporal autoregressive feature aggregation techniques in music
genre classification is applied in Meng et al. (2007) and demonstrates the signif-
icantly improved performance of the proposed methods. Mckay (2010) uses the
Wilcoxon signed-rank test for the comparison of features from different sources
(symbolic, audio and cultural) for genre classification. Another evaluation of audio
feature subsets for instrument recognition by statistical testing was performed by
Bischl et al. (2010). Noland and Sandler (2009) mention the application of the z-test
for correlation measurements in key estimation based on chord progression.

2 Instrument Identification in Intervals and Chords

Here we provide a short description of our study, for details please refer to
Vatolkin et al. (2012). The binary classification task was to detect piano, guitars,
wind or strings in the mixtures of 2 up to 4 samples playing at the same time. The
complete set included 3,000 intervals (2 tone mixtures) and 3,000 chords (3 and 4
tone mixtures). 2,000 intervals and 2,000 chords were used for model training and
optimization based on cross-validation and the remaining mixtures were used as an
independent holdout set for validation.

A 1,148-dimensional audio feature vector was preprocessed and provided as
input for four classifiers: decision tree C4.5, random forest (RF), naive Bayes (NB)
and support vector machine (SVM). Since using a too large feature set comes
with the additional costs of increased prediction time and storage space (both very
relevant in MIR, e.g. see Blume et al. 2011) and the trade-off between the size of
the feature set and the prediction performance of the model is difficult to specify
a priori we decided to perform multi-objective feature selection by means of an
evolutionary algorithm (EA) w.r.t. to classification error E2 and the proportion
of selected features fr . Three different initial feature rates iFR 2 f0:5I 0:2I 0:05g
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(probabilities that each feature was selected for model building at the beginning of
the optimization process) and three different crossover operators for EA were tested
as optimization parameters. The results confirmed our suggestion that the feature
selection is an important step providing successful and generalizable models.

The formal definition of multi-objective feature selection (MO-FS) can be
described as:

� D arg min


Œm1 .Y I˚.X; // ; : : : ; mO .Y I˚.X; //� ; (1)

where X is the full feature set, Y the corresponding labels,  the indices of
the selected features, ˚.X; / the selected feature subset and m1; : : : ; mO are O
objectives to minimize.

The output of a MO-FS algorithm is a solution set, each of them corresponding
to the subset of initial features. The non-dominated front of solutions consisted of
the feature subsets with the best compromises between E2 and fr . Such front can
be evaluated by a corresponding hypervolume:

S.x1; : : : ; xN / D
[
i

vol.xi /; (2)

where vol.xi / relates to the hypercube volume spanned between the solution xi and
the reference point which should be set to the worst possible solution responding to
all metrics ([1;1] in our case).

3 Application of Tests

In Vatolkin et al. (2012) we provided nine experimental results examining the
overall performance of our method and comparing different classifiers and settings
of EA parameters. These observations were in most cases clearly underlined by
the corresponding experimental statistics and figures—however no significance
measurements were done in a proper way. For the following subsections we
selected two results and considered appropriate statistical tests for the reliability
measurements (for instrument detection in chords).

3.1 All Classifiers are Important

The first result was that if all selected feature sets after FS were compared, it was
hardly possible to claim that some of the classification methods were irrelevant:
the non-dominated fronts of solutions contained solutions from all classification
methods. This statement is illustrated by Fig. 1. Here we plotted all final solutions
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Fig. 1 Solutions after optimization from 10 statistical runs for each classification method opti-
mizing mean classification error E2 and feature rate fr (iFR D 0:5). Circles: C4.5; rectangles:
RF; diamonds: NB; triangles: SVM. From left to right: CG: identification of guitar in chords; CP:
piano; CW: wind; CS: strings

from ten statistical repetitions and marked the non-dominated fronts by thick dashed
lines. It can be stated that often certain classifiers occupy specific regions of the
front: RF and SVM provide often the smallest E2 values but require larger feature
sets whereas C4.5 and NB perform worse corresponding toE2 but may build models
from extremely small feature sets.

For the measurement of statistical significance of the observation, that all
classifiers are reasonable for non-dominated solution fronts, we need at first a null
hypothesis. Therefore, H0 can be formulated as follows: given a classifier A, the
hypervolumes for all solutions fronts Sall and fronts built of solutions without
this classifier Sall=A have the same distribution across r statistical repetitions of
the experiment. Since: (1) the number of statistical repetitions was rather low
(r D 10 because of large computing time and overall experiment number); (2) no
assumption of the normal distribution and (3) the clear relationship between Sall

and Sall=A, we selected the Wilcoxon signed rank test for paired observations. We
run the test for 9 optimizer parameter settings (3 iFR values � 3 crossover operators)
separately. The frequency of H0 rejections for each classifier averaged across all
combinations of optimization parameters is given in the first row of Table 1.
It means, that the removal of RF solutions from the non-dominated front leads to
decrease of hypervolume in all cases. The “least important” NB still contributes to
the hypervolumes in 38.9 % of all experiments. Another interesting observation is
the dependency of the classifier performance on the feature set size. We observed
already in Vatolkin et al. (2012), that SVM performs better starting with large
feature sets whereas C4.5 suffers from too large amount of features despite of an
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Table 1 Frequencies for H0 rejection for the test of classifier importance

C4.5 RF NB SVM

How often H0 rejected? 72.2 % 100.0 % 38.9 % 55.6 %
How often H0 rejected for iFR D 0:5? 41.7 % 100.0 % 25.0 % 83.3 %
How often H0 rejected for iFR D 0:2? 75.0 % 100.0 % 50.0 % 50.0 %
How often H0 rejected for iFR D 0:05? 100.0 % 100.0 % 41.7 % 33.3 %

Fig. 2 Mean hypervolumes of the holdout set divided by mean hypervolumes of the optimization
set. CG: recognition of guitar in chords; CP: piano; CS: strings; CW: wind. Circles: C4.5;
rectangles: RF; diamonds: NB; triangles: SVM. Large signs: iFR D 0:5; medium signs: iFR D 0:2;
small signs: iFR D 0:05. Different shades correspond to different crossover settings

integrated pruning technique. Now we can underline this by statistical test results:
for experiments started with initial feature rate of 0.5 the removal of SVM solutions
leads in 83.3 % of the cases to hypervolume decrease. For iFR D 0:05 this holds only
for 33.3 % of the runs. For C4.5 the situation is exactly opposite: C4.5 solutions were
required even in all runs with iFR D 0:05 for the fronts with largest hypervolumes.
For NB no such clear behavior can be observed, but it seems to perform worse with
larger feature sets.

3.2 Generalization Ability

The second important observation is that the classifiers provided models with
different generalization ability, i.e. performance on an independent data set. Figure 2
lists hypervolumes of the last populations on the holdout set (1,000 chords) divided
by hypervolumes on the optimization set (2,000 chords). A value above 1 means
that the models perform better for holdout set than for optimization set. From the
figure it can be clearly seen that SVM models are almost all less generalizable than
RF models; in general C4.5 and RF provide the most robust models. For statistical
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Table 2 Frequencies for H0 rejection for the test of model generalization ability

Classifier A Classifier B How often H0 rejected? How often ehA > ehB?

RF SVM 88.9 % 100.0 %
RF NB 66.7 % 86.1 %
RF C4.5 22.2 % 91.7 %
C4.5 SVM 61.1 % 88.9 %
C4.5 NB 27.8 % 69.4 %
NB SVM 22.2 % 88.9 %

analysis of model generalization ability between two classifiers A;B we compare
the distributions of fhA and fhB , where hC .ri / D Sholdout.C; ri/=Sopt.C; ri/ is the
rate of holdout hypervolume divided by optimization hypervolume for classifier
C and run ri and fhC is the mean value across ten statistical repetitions. The H0
hypothesis is that the fhA and fhB distributions are equal, meaning that there is no
significant difference between the model generalization abilities for classifiers A
and B. In Table 2, the first table row can be interpreted as follows: the mean fhC
across all optimizer parameters and statistical repetitions for RF was in 100 % cases
larger than for SVM (last column). H0 was rejected in 88.9 % cases—although
this is below 100 %, we can indeed state that RF tends to create significantly
more generalizable models than SVM. The further lines provide less clear results,
however we can state, that RF provides rather more generalizable models than NB
and C4.5 than SVM. This behaviour can be also observed from Fig. 2—but it does
not illustrate all concrete values from the statistical repetitions and provides no
statistical significance testing.

4 Final Remarks

Another important issue for statistical test design is that the hypotheses must be
created before the data analysis—otherwise they may hold only for the concrete
data set. The first hypothesis (all classifiers are important) was already influenced
by our multi-objective feature selection study in Vatolkin et al. (2011)—and the
second one (different model generalization performances) was considered after the
creation of Fig. 2. The final and only accurate way to underline the significance of
this statement—which was here not possible because of the large optimization times
for all experiments—is to rerun the complete study for another 3,000 chords and to
apply the test again.

Concluding our short excursion with two examples of statistical test application
in music instrument recognition, we strongly recommend the following three steps
to be carefully planned for design of any new study comparing performance of
classification algorithms (in MIR as well as in other domains): (a) design of an
independent holdout set neither involved in training of classification models nor
any optimization and parameter tuning (see Fiebrink and Fujinaga 2006 especially
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for feature selection in MIR and our previous publications from the reference list).
(b) Consideration of multi-objective optimization or at least evaluation comparing
the methods: if an algorithm performs better than another one with response to
e.g. accuracy, it may be on the other side slower, fail on highly imbalanced sets or
provide less generalizable models (see Vatolkin et al. 2011 for different evaluation
scenarios). (c) Application of statistical tests for reliable comparison of methods and
significance measurements as discussed in this work.
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The Dangers of Using Intention as a Surrogate
for Retention in Brand Positioning Decision
Support Systems

Michel Ballings and Dirk Van den Poel

Abstract The purpose of this paper is to explore the dangers of using intention as a
surrogate for retention in a decision support system (DSS) for brand positioning.
An empirical study is conducted, using structural equations modeling and both
data from the internal transactional database and a survey. The study is aimed
at evaluating whether the DSS recommends different product benefits for brand
positioning when intention is used as opposed to retention as a criterion variable.
The results show that different product benefits are recommended contingent
upon the criterion variable (intention vs. retention). The findings also indicate
that the strength of the structural relationships is inflated when intention is used.
This study is limited in that it investigates only one industry; the newspaper
industry. This research provides guidance for brand managers in selecting the most
appropriate benefit for brand positioning and advices against the use of intention as
opposed to retention in DSSs. To the best of our knowledge this study is the first to
challenge and refute the commonly held belief that intention is a valid surrogate for
retention in a DSS for brand positioning.

1 Introduction

Given an ongoing evolution from transaction-based marketing to relationship-based
marketing (Grönroos 1997), that is primarily driven by the assertion that selling
an additional product to an existing customer is several times less expensive
than selling the product to a new customer (Rosenberg and Czepiel 1984), it has
been argued that building enduring bonds with customers is a profitable strategy
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(Reichheld 1996). Hence customer retention has gained a central role in marketing
strategies (Buckinx et al. 2007).

One way of reducing churn, or driving retention, is establishing brand associa-
tions in consumers’ minds (brand-positioning; Keller and Lehmann 2006) that have
been shown to be positively linked to retention (Reynolds et al. 2001). In order to
find these associations, and subsequently use them as building blocks in their brand
positioning, companies resort to decision support systems (DSSs). A successful
DSS consists in a model that enables marketing professionals to determine the
brand-positioning that would reinforce the relationship between a provider and a
customer. Because this requires linking attitudinal variables to behavior, and extant
literature has shown that this link is hierarchical in nature (Shim and Eastlick 1998),
a structural equations model is in order (e.g., brand positions influence attitudes
such as product satisfaction and brand commitment that in turn influence retention).
Although retention should be the criterion variable in these models, research has
focused on survey measures of behavior leaving observed behavior lingering in the
background (e.g., Homer and Kahle (1988). This can severely bias inferences (see
Bolton 1998; Morwitz 1997 for details).

Although gains are made along several fronts (e.g. Milfont et al. 2010), the
link between high level bases for brand positioning and observed behavior still
remains unexplored. In this study we build on the studies Homer and Kahle (1988),
Shim and Eastlick (1998), and Milfont et al. (2010) and assess the impact on the
final brand-positioning recommendation of using observed behavior (retention) as
opposed to declared behavior (intention) as the criterion variable. More specifically,
the question is whether different values or benefits are recommended for brand
positioning contingent upon whether the dependent variable is declared or observed.

2 Conceptual Model

Schwartz’ value inventory is a comprehensive framework consisting of ten basic
human values (see Schwartz and Boehnke 2004). It is widely used in industry for
brand positioning. Literature indicates that value groupings depend on the context
(see Schwartz and Boehnke 2004; Homer and Kahle 1988). From our analysis, we
see a three factor solution emerging: (1) power and achievement, (2) hedonism and
self-direction and (3) tradition, conformity and security. The values “Stimulation”,
“Universalism” and “Benevolence” display cross loadings on two factors and that
why is we eliminate them from the analysis. In this study we will call the three
emerging factors (1) self-enhancement, (2) openness to change and (3) conservation
and we will level our hypotheses at this structure. Allen and Meyer’s (1990)
three-component model of commitment consists of normative commitment (social
obligation based bond- ought to), affective commitment (emotional desire based
bond- want to) and calculative or continuance commitment (rational cost based or
need based bond- need to). Meyer et al. (2002) find, in an organizational context,
that all three forms of commitment are negatively related to turnover intentions.
Whereas commitment concerns the brand, involvement concerns the product class
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(Zaichkowsky 1994; Ros et al. 1999). A person that identifies with either the product
(involvement), or the brand (commitment) will be less likely to churn (Sjöberg
and Sverke 2000). Research suggests that affective commitment might also affect
normative commitment (see Ros et al. 1999; Meyer et al. 2002). There is ample
evidence of a positive relationship between satisfaction and behavioral intentions
(Cronin and Taylor 1992) and of commitment’s mediating role of the relationship
between satisfaction and intentions (Paul et al. 2009). Meta-analytic research points
out that overall job satisfaction positively correlates with affective commitment and
normative commitment (Meyer et al. 2002). Adversely, a small negative relationship
is reported between satisfaction and continuance commitment (Meyer et al. 2002).
Hence, we formulate the hypotheses as follows:

• H1: Affective commitment has a positive impact on renewal intentions.
• H2: Normative commitment has a positive impact on renewal intentions.
• H3: Calculative commitment has a positive impact on renewal intentions.
• H4: Involvement has a positive impact on renewal intentions.
• H5: Affective commitment has a positive influence on normative commitment.
• H6: Satisfaction has a positive impact on affective commitment.
• H7: Satisfaction has a positive impact on normative commitment.
• H8: Satisfaction has a small negative impact on calculative commitment.

Several authors found support for the relationship between values on the one
hand and attitudes (Homer and Kahle 1988) and declared behavior (Shim and
Eastlick 1998) on the other hand. Overall satisfaction then, is an evaluation of
outcomes relative to a certain expected internal or external standard. Consequently,
when thinking about possible relationships with satisfaction we have to keep
substitutes (e.g. the internet) in mind. Because the purpose of this study is to
discover which benefits display the strongest link to intention (retention), and
subsequently satisfaction and involvement we will not hypothesize about which link
is strongest.

• H9: Self-Enhancement is related to satisfaction.
• H10: Openness-to-change is related to satisfaction.
• H11: Conservation is related to satisfaction.
• H12: Self-Enhancement is related to involvement.
• H13: Openness to change is related to involvement.
• H14: Conservation is related to involvement.

3 Empirical Study

3.1 Sample

The customers of two Belgian newspaper brands were invited to participate in a
study. Both brands can be considered similar, except their geographical targeting
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at the province/state level. One of the two brands consisted of different editions.
25,897 emails were sent out, inviting customers to click on a link to go to an
online questionnaire (an incentive in the form of a prize was offered). 2,142 of them
reached the end of the questionnaire and were subsequently used in the analysis.

3.2 Measures

Except for observed retention all constructs used items measured with a 7-point
Likert scale. To acquire an accurate translation, all measures were translated to
Dutch and back-translated to English by two independent translation agencies.
We used the Short Schwartz’s Value Survey (Lindeman and Verkasalo 2005) and
the following introductory question: “Imagine a typical moment at which you are
reading [newspaper brand]. In general, how do you feel at that moment? Indicate
to which degree the following concepts are consistent with that feeling”. All mea-
surement scales are based on extant literature: renewal intentions (Lindeman and
Verkasalo 2005), normative commitment (Ros et al. 1999), calculative commitment
(Gounaris 2005), affective commitment (Gustafsson et al. 2005), and satisfaction
(Fornell et al. 1996). Benefits, satisfaction, commitment and intention are all
measured at time t, to predict retention at time t C 1. The time window appears
in Fig. 1.

Consistent with the approach of Gustafsson et al. (2005), we computed retention
from the account data as the number of days a customer is retained. The average
retention is 141.70 days (standard deviation D 34.37).

3.3 Analysis and Results

In order to test our hypotheses we used the procedure of structural equation
modeling proposed by Anderson and Gerbing (1988). This procedure was applied
in AMOS, version 18. Because our data is multivariate non-normal we cannot use
a normal theory estimator such as ML or GLS. Hence we estimated the model
parameters using weighted least squares which is an asymptotic distribution free
method (Browne 1984), making no assumptions of normality.

The final model is displayed in Fig. 2. All direct paths in the final model were
significant (at least at the p< 0:05 level) for the intention model. To compare it with
the retention model we left all relationships in the model.

Cronbach’s Alpha for the (latent) variables ranges from 0.721 to 0.954 with an
average of 0.871. The standard deviations range from 0.963 to 1.582 for the Likert
scales indicating a substantial amount of variance to be explained. The correlations
range from 0.198 to 0.952 with a mean of 0.563. The mean of retention is 141.7 and
the standard deviation is 34.37.
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Fig. 1 Time window

Fig. 2 Estimated model

The squared multiple correlations (SMC) reveal that a considerable amount
of variance is explained by the model: intention (retention) D 0.396 (0.010),
overall satisfaction D 0.627 (0.637), calculative commitment D 0.350 (0.366),
normative commitmentD 0.777 (0.778), affective commitment D 0.908 (0.896),
involvement D 0.198 (0.215). Consistent with extant literature (Hennig-Thurau and
Klee (1997); Newman and Werbe (1973)) only a very low amount of variance
is explained in retention. In terms of model fit, both models are very much alike:
intention (retention) : Chi-square (385):1081.424 (1046.501), Chi-square/DF: 2.809
(2.718), AGFI: 0.824 (0.835), GFI: 0.854 (0.863), PGFI: 0.707 (0.715), CFI: 0.782
(0.791), PNFI: 0.621 (0.627), RMSEA: 0.029 (0.028).

As the results show (Fig. 2), all hypotheses are supported, except hypothesis 3,
5, 8, 12 and 14. In what follows we’ll provide possible explanations. H3 predicted
a positive influence of calculative commitment on renewal intentions. As Meyer
et al. (2002) point out, calculative commitment is the weakest commitment predictor
of intentions. Consequently we deem it is plausible that the relationship becomes
insignificant when modeled together with affective and normative commitment.
Related to this, our analyses indicated that calculative commitment has a positive
influence on normative commitment. Although correlation analysis (not shown
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in this paper) already confirmed this link, the construct of satisfaction, modeled
as a common predictor of both normative and calculative commitment seems
to substantiate this link. This relationship seems plausible; a rational cost-based
motivation, perceived as a need to stay does not take into account the other
side’s interests and can be considered as taking unfair advantage of the partner.
This can induce feelings of guilt and indebtedness toward the partner and a sense
of obligation to return a favor. As such, calculative commitment can influence
normative commitment. This line of reasoning is consistent with the other findings;
as expected, the reverse link between calculative and normative commitment is
not true, nor is there a relationship between calculative commitment and affective
commitment.

H5 predicted a positive influence of affective commitment on normative com-
mitment. Although correlation analysis (not shown in this paper) clearly supports
this hypothesis, structural equations modeling, which is a much stronger test of
the hypothesis, clearly does not. Our analyses point to the fact that satisfaction
acts as a suppressor variable, rendering the hypothesized relationship insignificant.
This effect has never been reported, presumably because no author has proposed a
link between satisfaction and normative commitment.

H8, foresaw a negative link between satisfaction and calculative commitment.
As aforementioned, this link was expected to be small, indicating a lack of
connection. In contrast, both the correlation analysis and structural equation model
indicate a positive link between satisfaction and calculative commitment, but,
admittedly, smaller than the link between satisfaction and the other commitment
constructs. A positive link seems plausible, because satisfied customers’ lack of
involvement with how to end the relationship, and the associated costs, may drive
this positive relationship. Moreover, a positive connection between satisfaction and
lack of worthwhile alternatives also seems justified in that satisfaction measures,
among others, the brand’s performance relative to competitors. Finally tests of H12
and 14 indicated a lack of relationship between self-enhancement and involvement
and conservation and involvement. This hiatus is probably due to the strong link
between openness-to-change and involvement, accounting for the majority of the
correlation.

Finally, having discussed the validity of our model, we arrive at the main question
of this study: the standardized total effects of the values/benefits on intention
(retention) is as follows: Self Enhancement 0.063, p< 0:30 (0.007, p< 0:20),
Openness to change 0.207, p < 0:40 (0.041, p < 0:05) and Conservation 0.245,
p < 0:05 (0.033, p < 0:05). In the following section we discuss these findings.

4 Discussion

The purpose of the decision support system in this study is to make a rec-
ommendation about which value should serve as the primary benefit for brand
positioning. When using intention as a dependent variable the recommendation
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is Conservation with 0.245 (which is 18.7 % higher than the value second in
position, i.e., Openness-to-change 0.207), but when using retention it is the inverse,
namely Openness-to-change with 0.041 (which is 24.24 % higher than the second
in position, i.e., Conservation with 0.033). Using intention as a proxy for retention
will not only overestimate the strength of the relationship between benefits and
retention but will provide erroneous recommendations that are based on a 18.7 %
difference. Given the fact that the practice of brand positioning involves substantial
communications budget at the one hand and drives sales on the other hand this
could be a serious threat to brands. If the wrong brand position is chosen, the wrong
associations and expectations may be created in the consumer’s mind, which may
inflict permanent damage to a brand’s performance in the market. Although survey
measures are easier to obtain, we advise against their use as a surrogate for observed
retention in decision support systems for brand positioning.

5 Future Research and Limitations

A direction for further research is modeling other dependent variables, such as
acquisition, up-sell or cross-sell. Although brands should display a certain level of
consistency to come across trustworthy, core values and subsequently positions are
dynamic and evolve over time (McCracken 2005). It is highly important to monitor
this evolution. Managers could just as well choose to position their brand based on
customer acquisition if it is first launched, reposition it based on cross-sell when it
is in the maturity stage and reposition it based on retention when the brand is in the
decline phase. For example, if a car maker notices that its brand positioned on the
value power is entering the decline phase, it might be time to reposition the brand
on values that drive retention (e.g., green and efficiency). This study is limited in
that it is restricted to one industry (the newspaper business). Another direction for
future research is replication in other industries.
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Abstract Most of the common recommender systems deal with the task of
generating recommendations for assortments in which a product is usually bought
only once, like books or DVDs. However, there are plenty of online shops selling
consumer goods like drugstore products, where the customer purchases the same
product repeatedly. We call such scenarios repeat-buying scenarios (Böhm et al.,
Studies in classification, data analysis, and knowledge organization, 2001). For our
approach we utilized the results of information geometry (Amari and Nagaoka,
Methods of information geometry. Translation of mathematical monographs, vol
191, American Mathematical Society, Providence, 2000) and transformed customer
data taken from a repeat-buying scenario into a multinomial space. Using the multi-
nomial diffusion kernel from Lafferty and Lebanon (J Mach Learn Res 6:129–163,
2005) we developed the multinomial SVM (Support Vector Machine) item rec-
ommender system MN-SVM-IR to calculate personalized item recommendations
for a repeat-buying scenario. We evaluated our SVM item recommender system
in a tenfold-cross-validation against the state of the art recommender BPR-MF
(Bayesian Personalized Ranking Matrix Factorization) developed by Rendle et al.
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1 Introduction

Gathering customer purchase data by recording online purchases or via customer
cards like Payback (www.payback.de) to determine personalized product recom-
mendations is getting more and more important. Common recommender systems
deal with the task of generating recommendations for assortments in which a
product is usually bought only once (one-buying scenario) like books or DVDs.
However, there are plenty of online shops selling consumer goods like drugstore
products where the customer purchases the same product repeatedly. We call such
scenarios repeat-buying scenarios (Böhm et al. 2001). Especially customer cards
record purchase data in such repeat-buying scenarios. For this reason we developed a
personalized recommender system considering the special issues of a repeat-buying
scenario. The purchase history in repeat-buying scenarios differs to the purchase
history of one-buying scenarios. It contains not only the information whether a
product was bought or how it was rated, it also contains how often the product
was bought over the recording period. For example one time a customer bought
a shampoo, a conditioner and two toilet paper packages. Next time he bought a
shampoo and a conditioner again. The purchase history of the customer contains
therefore two shampoos, two conditioners, two toilet paper packages. This purchase
history data is very similar to the word count representation (bag of words) used
in text classification tasks. Counting product purchases is therefore similar to
counting words in a document. The similarity of the data representations leads
to the use of similar approaches. In text classification tasks the application of
information geometry concepts produces outstanding results (see Zhang et al. 2005;
Lafferty and Lebanon 2005). Due to the similarity of the data representation and the
outstanding results of Lafferty and Lebanon (2005) we decided to use information
geometry approaches. Therefore we derived our recommender system from the
method Lafferty and Lebanon (2005) presented for text classification.

In the remainder of this paper we first state how our approach fits the context
of related research (Sect. 2). Afterwards we introduce information geometry and
present our embedding of user profiles into a multinomial space, which is used in
our SVM based item recommender system described in Sect. 5 and evaluated in
Sect. 6. Finally, we conclude and provide an outlook for future work (Sect. 7).

2 Related Work

There is a vast literature presenting recommender systems for one-buying scenarios
like collaborative filtering (Deshpande and Karypis 2004), matrix factorization
(Hu et al. 2008), etc. and only a few publications concerning the special issues of
repeat-buying scenarios (Böhm et al. 2001). As one state-of-the-art recommender
system we want to mention the BPR-MF (Bayesian Personalized Ranking Matrix
Factorization) recommender system developed by Rendle et al. (2009). Similar to

www.payback.de
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our proposed system BPR-MF uses the information if a product was bought by a
user as implicit feedback. As aforementioned Lafferty and Lebanon (2005) as well
as Zhang et al. 2005 present text classification methods using information geometry
approaches. They embedded a text document into a multinomial space and utilized
a multinomial kernel function to train an SVM (Support Vector Machine) for text
classification. We derived our recommender from these approaches.

3 Notation and Problem Formulation

For the sake of clarity, we introduce some notions in the following describing a
repeat-buying scenario. Let U be the set of customers (users) and I the set of
items. For a fixed recording period T the purchases of all customers I are recorded.
Iu � I denotes the set of items the user u purchased in the recording time T .
Implicit feedback is given by the purchase frequency ı.u; i / W U � I ! N, which
determines how often product i was bought by user u in the recording period T . The
user profile xu 2 X � N

jI j of user u comprises the purchase frequency of each item
i 2 I :

xu D .ı.u; i1/; : : : ; ı.u; in//; fi1; : : : ; ing D I; n D jI j : (1)

The aim of our recommender system is to predict the interest of an user in an item
which he/she has not bought yet. For example a user who bought regularly diapers is
eventually interested in other baby products. More specific, we want to learn a model
M based on the given user profiles ı.u; i / that predicts the future interest �.u; j / of
a user u in an item j … Iu as good as possible. To solve this problem we utilized
approaches from information geometry (Amari and Nagaoka 2000), which provide
very good results in text classification problems (Lebanon 2005; Zhang et al. 2005).

4 Information Geometry

In the following section we present a brief introduction to the concepts of infor-
mation geometry, which we will use later on in our recommender system. For
further details and proofs of the following concepts see Amari and Nagaoka (2000),
Lafferty and Lebanon (2005) and Zhang et al. (2005).

4.1 Multinomial Manifold

The parameter space � � R
n of a statistical distribution p.xI /;  2 �, where

x is a random variable, is referred to as a statistical manifold. If the manifold �
is differentiable, then .�;J / is a Riemannian manifold, where J is the Fisher
information metric. The metric is used to compute distances within the manifold.
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We now consider the multinomial distribution pMN.x; /, where  D
.1; : : : ; n/ with  � 0 and

Pn
jD1 j D 1. The parameter space �MN is defined as

follows:

�MN WD
8
<
: 2 R

n W
nX

jD1
j D 1;8jj � 0

9
=
; : (2)

Obviously�MN D P
n�1 is the n-1 simplex, which is a differentiable manifold.

4.2 Geodesic Distance

In the following we describe how to compute distances within the multinomial
manifold denoted as geodesic distance d . Using the aforementioned Fisher informa-
tion metric to calculate the geodesic distance leads to an error-prone and complex
calculation. For this reason we transform the simplex into a manifold for which the
geodesic distance can be calculated in a simpler way.

It is a well known fact that the n � 1 simplex P
n�1 is isometric to the positive

portion of the n� 1 sphere Sn�1C of radius 2,

S
n�1C WD

8
<
:x 2 R

n W
nX

jD1
x2j D 2;8jxj � 0

9
=
; ; (3)

through the diffeomorphism F W Pn�1 ! S
n�1C follows:

F./ D .2
p
1; : : : ; 2

p
n/ : (4)

The geodesic distance within the n � 1 sphere S
n�1C is given by dSn�1 .x; x0/ D

arccoshx; x0i. Due to the isometry of Sn�1 and P
n�1 it holds that dPn�1.;  0/ D

d
S
n�1
C

.F./; F. 0//: From this it follows that

dMN D dPn�1.;  0/ D d
S
n�1
C

.F./; F. 0// D arccos

0
@

nX
jD1

q
j �  0

j

1
A : (5)

4.3 Embedding

In order to use the geometry of a statistical manifold we have to embed our data into
the manifold. Our approach to embed a user profile xu 2 X into a multinomial space
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is inspired by the embedding of text documents as described in Lebanon (2005)
and Zhang et al. (2005). We assume that a user profile xu is a sample of a unique
multinomial distribution pMN.xu; /. To determine the parameters of the unique
distribution, we use a maximum likelihood estimation MLE OpML W X ! �ML

given by

OpML.xu/ D
 

ı.u; i1/Pn
jD1 ı.u; i1/

; : : : ;
ı.u; in/Pn
jD1 ı.u; ij /

!
D Ou; (6)

which embeds the user profile xu into the multinomial space.

4.4 Multinomial Kernel

The following two kernel functions are using the geodesic distance of the multino-
mial manifold instead of the Euclidean distance. For further information and proofs
see Lafferty and Lebanon (2005). By replacing the Euclidean distance with the
geodesic distance in the negative distance kernelKND you get the negative geodesic
distance kernel

KNGD.; 
0/ D � arccos

 
nX
iD1

q
i �  0

i

!
;  �  0 2 �MN � R

n: (7)

(see Zhang and Chen 2005). Just as well you get the multinomial diffusion kernel

KMN
t .;  0/ D .4�t/

n
2 � arccos

 
nX
iD1

q
i �  0

i

!
;  �  0 2 �MN � R

n (8)

by replacing the Euclidean distance of the Euclidean diffusion kernel (see Lafferty
and Lebanon 2005).

5 Multinomial SVM Item Recommender System
MN-SVM-IR

The item recommender system we will present in the following utilizes the
multinomial geometry by using a Support Vector Machine SVM with a multinomial
kernel function (see Sect. 4.4) to compute recommendations of the future interest
�.u; i�/ of user u in item i� 2 I . For further details regarding Support Vector
Machines and kernel functions see Cristianini and Shawe-Taylor (2000). In the
following we present the MN-SVM-IR - Method:
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1. First of all you have to split the set of users U into two parts. One part UT � U

is used for training and one part UR � U for which the recommendation should
be calculated. It holds UT \ UR D ;

2. Create the training data set:

• The positive labeled training data contains all user profiles xu of the users who
have bought product i�:

UC WD fu 2 UT W i� 2 Iug � UT (9)

For the positive training data the item i� will be removed. It holds:

xu n i� WD .ı.u; i1/; : : : ; ı.u; in//; i1; : : : ; in 2 I n fi�g; n D jI j � 1 (10)

• The negative labeled training data contains all user profiles xu of the users
who have not bought product i�:

U� WD fu 2 UT W i� … Iug � UT (11)

It holds UC [ U� D UT
• Embed the user profiles xu n i�; u 2 UC and xu; u 2 U� into the multinomial

space using (6).
• The training data contains all embedded user profiles Ou n i�; u 2 UC

and Ou; u 2 U� with the corresponding label.

T WD f. Ou n i�;C1/ W u 2 UCg [ f. Ou;�1/ W u 2 U�g (12)

3. Train the SVM with the training data T utilizing one of the multinomial kernel
functions described in Sect. 4.4 to get the decision function f .

4. To determine the future interest �.u; i�/ of a user u 2 UR in item i� we first
predict the class with the decision function f

sign.f . Ou// D

 C1 user u is interested in i�

�1 user u is not interested in i� (13)

Additionally we determine how much the user is interested in item I� by
calculating the distance di�. Ou;w/ of the vector Ou to the decision boundary of
the SVM in the multinomial space. The higher the distance, the higher is the
interest of user u in item i�. It holds:

�.u; i�/ D .f . Ou/ � di�. Ou;w// : (14)

With the method at hand you get an one-vs-all classifier for item i�. In order to
get a recommender system to determine recommendations for all items i 2 I you
have to repeat the described method for all items and users.
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6 Evaluation

We evaluated our item recommender system against the state-of-the-art recom-
mender system BPR-MF developed by Rendle et al. (2009). As evaluation measure
we used the Area under the ROC Curve AUC (Bradley 1997).

6.1 Dataset

We performed our experiments on a real world dataset taken from a larger German
online drugstore. The dataset contained the purchases of 316,385 users on 7; 057 D
jI j items recorded over the recording period T of 61 weeks. In the experiment we
used only data of users who purchased a minimum of ten items. Thus the number of
users had been reduced to 64; 311 D jU j the number of items remained the same.

6.2 Evaluation Method

To evaluate the two different methods regarding AUC we used a combination
of tenfold-cross-validation and leave-one-out validation scheme because of the
differing learning and prediction strategies of the two methods. First we randomly
selected six different items i� with three different purchase frequencies, low
(0–5,000 purchases), middle (5,001–10,000 purchases) and high (10,000 and higher
purchases) and performed the following procedure for each item i�. We randomly
selected test datasets T of size jT j D 1; 000 and jT j D 2; 000. Following the
tenfold-cross-validation scheme we divided the test set T into ten parts. Nine parts
where used for training and one part for testing. In the testing part the item i� had
been removed from the user profiles xu. The MN-SVM-IR was trained on the nine
training parts and separately tested on the user profiles xu of the test part whereas the
BPR-MF was trained on all parts and tested on the removed items i�. To compare
the methods we determined the AUC value based on the calculated predictions for
the item i�.

6.3 Results

We compared the MN-SVM-IR using the multinomial diffusion kernel (DK) and the
negative geodesic distance kernel (NGD) with BPR-MF regarding the AUC. Table 1
shows the AUC prediction quality determined in the experiments. The results show
that MN-SVM-IR outperforms the BPR-MF in each experiment. Furthermore you
can see that the diffusion kernel obtains better AUC values for middle and high
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Table 1 AUC prediction quality for the MN-SVM-IR vs BPR-MF experiment (bold numers
indicating the best AUC value)

size T BPR-MF MN-SVM-IR (DK) MN-SVM-IR (NGD)

Low purchase frequency 1,000 0.79376 0.79376 0.81044
0.77244 0.77244� 0.78984�

2,000 0.79376 0.79376 0,82778
0.79459 0.80003 0.80206

Middle purchase frequency 1,000 0.82704 0.85072 0.83316
0.79892 0.83540 0.83396

2,000 0.85082 0.85092� 0.83316�

0.79790 0.84797� 0.84769�

High purchase frequency 1,000 0.77764 0.81632� 0.81708�

0.78792 0.83176� 0.83301�

1,000 0.75577 0.80382� 0.80621�

0.81326 0.86464� 0.86455�

� Result is statistically significant (p < 0:05)

frequent items whereas the negative geodesic distance kernel obtains better results
for the low frequent items. To determine the statistical significance of our results
we used a paired t-test (1). For high frequent items statistical significance could be
shown (p < 0:05) for all AUC values and also for two of the middle frequency
test sets.

7 Conclusion

The main contribution of the work at hand is, at first the embedding of a repeat-
buying user profile xu into a multinomial space �MN and second the development
of an SVM based item recommender system MN-SVM-IR utilizing the multinomial
geometry. Our evaluation on a real world data set shows that our MN-SVM-
IR outperforms the state-of-the-art recommender system BPR-MF with statistical
significance regarding the AUC.

In the future one could investigate different approaches to embed the user profiles
into the multinomial space. Here a tf-idf similar embedding could be considered.
Furthermore the development of additional kernel functions would be useful to
extend the presented recommender system.
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Predicting Changes in Market Segments Based
on Customer Behavior

Anneke Minke and Klaus Ambrosi

Abstract In modern marketing, knowing the development of different market
segments is crucial. However, simply measuring the occurred changes is not
sufficient when planning future marketing campaigns. Predictive models are needed
to show trends and to forecast abrupt changes such as the elimination of segments,
the splitting of a segment, or the like. For predicting changes, continuously collected
data are needed. Behavioral data are suitable for spotting trends in customer
segments as they can easily be recorded. For detecting changes in a market structure,
fuzzy-clustering is used since gradual changes in cluster memberships can implicate
future abrupt changes. In this paper, we introduce different measurements for the
analysis of gradual changes that comprise the currentness of data and can be used in
order to predict abrupt changes.

1 Introduction

The planning of future marketing campaigns highly depends on the developments
of different market segments as it is not reasonable to plan strategies while
disregarding future market needs. Therefore, an early knowledge of trends in a
known market structure is crucial and hence, predictive models are needed rather
than just descriptive ones. For this kind of analysis, internet market places bear the
advantage that data can be collected easily and continuously due to, e.g., automatic
transaction logs.

The basis for this research were the data of an internet market place of a
German drug store. The transaction data had been collected over approximately
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2 years and was analyzed on a monthly basis. For the first months, five general
segments where detected based on different behavioral data concerning recency
of the last purchase, frequency and monetary ratio of purchases, the basket sizes
with regard to the number of objects, and the variety of products. Naturally,
when comparing data of later months to the first results, several changes in the
customer segments were revealed. But the challenge is not detecting the changes
retrospectively but predicting and reacting to changes proactively. As the prediction
includes a descriptive analysis, it is a higher-level analysis in the area of change
mining (c.f. Böttcher et al. 2008). In this paper, different measures are identified
which show gradual changes in a cluster structure and which can implicate future
structural changes in market segments based on cluster analysis. It provides the
basis for future research for predicting abrupt changes such as the formation of new
segments, the elimination of segments, and the merging or splitting of segments.

In Sect. 2, the fundamentals of this change mining problem are given. Afterwards,
the analysis and evaluation of gradual changes in a known structure are described
in Sect. 3 as they are the basis for predicting future abrupt changes, and different
measures to display gradual changes are introduced. In order to show the relation-
ship between the introduced measures and different gradual changes, experimental
results based on artificial data sets are shown in Sect. 4. In Sect. 5, conclusions and
an outlook on further research tasks are given.

2 Fundamentals

The objective of market segmentation based on behavioral data is finding groups
of customers showing similar characteristics, i.e. detecting homogeneous segments
with regard to the actions of the customers, and the handling of economically
promising segments. The basis for predicting abrupt changes in these market
segments, i.e. changes with regard to the number of segments, is the evaluation
of gradual changes within separate segments. For example, a continuous decrease
in the number of customers assigned to a particular segment, indicating a shrinking
of this segment, can indicate a future segment elimination. Therefore, the analysis
of gradual changes is crucial in this context. In order to analyze these changes,
an adequate method is needed. In the field of market segmentation, clustering
algorithms are commonly employed for automatically detecting homogeneous
groups, so called clusters, based on numerical attributes. But to be able to show
gradual changes in a cluster structure, each cluster has to be evaluated separately
without taking into account the other clusters. Hence, possibilistic membership
degrees are needed rather than probabilistic degrees or crisp cluster assignments
because possibilistic fuzzy cluster analysis focusses on the typicality of objects
rather than their probability of belonging to a particular cluster. In order to avoid the
problem of cluster coincidence in possibilistic clustering (c.f. Krishnapuram and
Keller 1996) while still regarding each cluster separately, we employ possibilistic
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fuzzy clustering with a penalty term based on cluster homogeneity which we
introduced in Minke et al. (2009).

For change detection, sliding time windows with a window-length of � and an
analyzing frequency of �t are used as it is essential to distinguish between slight
random changes in the data structure and significant changes; in the example shown
in Fig. 1, � D 3 and�t D 1, i.e. the analysis is performed periodically.

General Procedure

The general procedure for detecting changes in a market segmentation and, more
generally, a cluster structure consists of three main steps:

1. Detection of significant changes in the cluster structure
This is the descriptive part of the analysis including an estimation of the current
cluster number and the updated cluster prototypes.

2. Trend detection
By evaluating the gradual changes in the structure over several periods in time,
future abrupt changes can be predicted. This is the predictive part of the analysis.

3. Reclustering of current objects
The objects of the current time window are reclustered when needed, i.e. if there
are any significant changes. The reclustering is initialized with the estimated
cluster prototypes and cluster number.

Based on the general procedure, three problems emerge: the extraction of a time-
dependent cluster drift, the detection of gradual changes in the structure of a single
cluster which is the main topic of this research, and—based on the first two—the
prognosis of future abrupt changes in the general cluster structure.

3 Analysis of Gradual Changes

The first step of the general procedure, i.e. the detection of significant changes in
the cluster structure, includes the analysis of gradual changes of individual clusters.
In order to analyze the differences between a known cluster structure and the current
objects that are added in a new time period, the new objects are assigned to the
existing clusters based on their membership degrees. This assignment is executed
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by employing an ˛-cut where ˛ 2 Œ0; 1� denotes the absorption threshold. By using
an ˛-cut in fuzzy-clustering, objects are assigned to all clusters to which they have
a membership degree of at least ˛, so multiple assignments as well as outliers are
possible.

Afterwards, the cluster centers are updated incrementally to evaluate the cluster
drift. This update is performed by combining each existing cluster center with the
center of the new objects absorbed by this cluster, e.g. by applying the incremental
update approach introduced in Crespo and Weber (2005). The extraction of the
cluster drift is done preliminarily to the analysis of structural changes of a cluster
because otherwise, false positive changes might be detected.

Subsequently, the gradual changes in the structure of a cluster are examined
by evaluating different local measures and—in case of ellipsoid clusters—
incrementally updating the covariance matrices in order to detect additional
changes.

3.1 Local Measures

As there are already several measures that can show different structural characteris-
tics of a cluster, known measures can be applied in the process of analyzing gradual
changes. First of all, the absolute cardinality n˛i of the ˛-cut can be used:

n˛i D j Œui �˛ j (1)

where ui D �
uij
	

is the vector of membership degrees uij of objects j to cluster i
and Œui �˛, ˛ 2 Œ0; 1�, is the ˛-cut of ui . A change in the absolute cardinality can
show an increase or decrease in the size of a segment.

Additionally, the density and the fuzzy cardinality of an ˛-cut can be evaluated,
the local density being calculated as the fuzzy cardinality with ˛ D 0:5:

card .Œui �˛/ D
X
j2Œui �˛

uij (2)

The fuzzy cardinality takes into account the distribution of the objects absorbed by
a cluster, revealing differences in a distribution and density shifts.

Thirdly, the index of compactness 	˛i according to Bensaid et al. (1996) can be
applied:

	˛i D
P

j2Œui �˛ umij d
2
Ai

�
vi ; xj

	

card .Œui �˛/
(3)

where m is the fuzzifier and d2Ai

�
vi ; xj

	
is the squared Mahalanobis distance

between cluster center vi and object vector xj . Ai is a positive semi-definite norm
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matrix based on the fuzzy covariance matrix˙i withAi D det .˙i /
1
P ˙�1

i where P
denotes the dimensionality. In case of spherical clusters,˙i and Ai are given by the
identity matrix I . The smaller the index of compactness, the smaller the variance
and the more compact the cluster.

Furthermore, local measures for evaluating structural changes can be derived
from global validity measures. E.g., the local partition coefficient (LPC ) can help to
show differences in the membership degrees and in the distribution within a cluster
as it focuses on rather crisp cluster assignments:

LPC .Œui �˛/ D 1

n˛i

X
j2Œui �˛

u2ij (4)

Additionally, the local partition entropy can provide further information when
evaluating the density distribution in a cluster.

3.2 Covariance Matrices

In case of ellipsoid clusters, the development of the covariance matrices can be
analyzed as well. Although fuzzy clustering techniques are applied to the overall
problem, the crisp covariance matrices of the ˛-cut,˙˛

i , are needed when evaluating
changes between different points in time. The fuzzy covariance matrices are
calculated based on membership degrees. However, these degrees might be outdated
due to their estimation based on the previously measured cluster prototypes and,
therefore, might lead to erroneous results.

The update of the crisp covariance matrices is performed incrementally, similarly
to the update of the cluster centers, generating a weighted combination of the
existing matrices and the matrices of the newly absorbed objects. Based on
the estimated matrices, further characteristics of a cluster can be evaluated. For
example, the Fuzzy Hyper-Volume given in (5) is valuable when describing the
extension of a cluster in general and can be used to detect changes in the cluster
volume.

FHV .Œui �˛/ D P

q
det
�
˙˛
i

	
(5)

As the name states, it is usually applied to fuzzy covariance matrices, but it works
for the hard case as well.

Furthermore, the eigenvalues 
i � and eigenvectors eip, p D 1; : : : ; P , contain
further information regarding the extension as well as the cluster alignment. Hence,
in addition to revealing changes in the cluster volume, they can help detecting a
rotation of a cluster, indicating a different development of individual dimensions.
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4 Experimental Results

In order to show the relationship between the introduced measures and different
structural changes, several sequences of artificial data sets were created because the
changes in the real-life data set mentioned in Sect. 1 were caused by a combination
of different structural changes. To be able to assign different measures to particular
cluster changes, simple examples are needed. Therefore, each of the first set of the
created sequences only includes one of the following changes; in later experiments,
different changes were combined.

• Number of objects:
A change indicates a growing or shrinking of a cluster and thus, a future cluster
elimination or, if the development of outlier clusters is monitored, the formation
of a new cluster.

• Cluster volume:
A difference in the cluster volume can show similar changes as the number of
objects as well as changes with respect to the similarity of the objects absorbed.

• Cluster alignment:
Especially in case of analyzing customer segments, a change in the cluster
alignment can reveal changes in the customer behavior since different dimensions
might show a different development.

• Cluster density:
A change in the density represents the most complex situation because it often
includes changes with respect to the cluster volume and the cluster alignment and
can be caused by different reasons. Thus, a detailed analysis will not be shown
here.

For each change, several sequences of normally-distributed data were created
and analyzed. Apart from general changes regarding structure and separation of
individual clusters, the created data sets differed in object number per period,
number of clusters and outliers, dimensionality, and parameters concerning the
sliding time windows. Table 1 provides an overview of the influence of each
particular change on the measures introduced in Sects. 3.1 and 3.2; the notation
will be explained in the following subsections where each change will be regarded
separately. The results shown in Table 1 were stable through all tests.

4.1 Number of Objects

When the number of objects of a cluster is changed, the absolute and the fuzzy
cardinality show a similar development, i.e. a decrease (#) has a negative influence
(�) on the fuzzy cardinality and vice versa, which is quite intuitional. For the index
of compactness and the local partition coefficient, there are no significant changes
(�). For the measures regarding the cluster extension, there are slight variations,
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Table 1 Influence of gradual changes on different measures

Measure Number of objects Cluster volume Cluster alignment

n˛i #: � / ": C #: (C)/": (�) (�)
card .Œui �˛/ #: � / ": C #:C / ": � �
	˛i � #: � / ": (C) �
LPC .Œui �˛/ � #: C / ": (�) �
FHV .Œui �˛/ C,� #: � / ": C �

i � C,� #: � / ": C C,�
jet�1

ip � etipj � 1 � 1 < 1

but they are rather random and independent of the direction of the occurred change;
they only depend on where exactly objects are added or eliminated. The inner
product of the eigenvectors of different time frames is approximately one as the
cluster alignments do not change significantly.

4.2 Cluster Volume

When the volume of a cluster is constantly decreased, i.e. the objects are getting
more similar, several measures are affected. The volume decrease results in a slight
increase of the absolute as well as the fuzzy cardinality. The index of compactness
is reduced, revealing that the cluster is getting more compact. Similarly, the local
partition coefficient increases as the membership degrees of the objects absorbed by
the cluster grow.

However, it turns out that in case of a volume increase, the effects are not as
clear due to the observation area limited by ˛. If the volume increases, objects
leave the observation area as their membership degrees are estimated based on the
old cluster prototype and, hence, the old cluster volume. This fact yields results
similar to a small decrease in the number of objects. The changes of the index of
compactness and the local partition coefficient are rather small (see parentheses in
Table 1). However, in case of ellipsoid clusters, the evaluation of changes in the
covariance matrix can uncover the volume change when examining the measures
regarding the cluster extension. Again, the inner products of the eigenvectors of the
different time windows are close to one, showing an unchanged cluster alignment.

4.3 Cluster Alignment

The cluster alignment can only change in case of ellipsoid clusters due to unlike
developments in different dimensions. Since the inner structure of the clusters is not
changed but the alignment, local measures as introduced in Sect. 3.1 are not of help,
i.e. there are no significant changes. The characteristics of the covariance matrix,
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especially the eigenvectors, contain the needed information. Due to the rotation,
there are considerable changes in the eigenvectors as the inner products of the
vectors of subsequent time windows are smaller than one. Some slight changes in
the eigenvalues emerge as well, again due to the limited observation area.

4.4 Combination of Different Changes

The cluster alignment is analyzed independently as it influences the inner product
of the eigenvectors only. However, when changes in number of objects and
volume occur simultaneously, an additional analysis becomes elementary. Such
co-occurrence can be uncovered by combining the correspondent columns in
Table 1. There are no universally valid influences on the measures because the
changes in the measures depend on the proportion of the different changes; the
changes might even compensate each other. In empirical studies based on artificial
data sets, it was possible to show the changes when first assigning the change with
the strongest overlap. Afterwards, when eliminating the influences on the measures
caused by the dominant change, the second change became visible.

5 Outlook

In this paper, different measures for detecting gradual changes in a cluster structure
were introduced and evaluated. These are needed when predicting future abrupt
changes regarding the cluster number and—in the context of marketing—the
number of market segments as abrupt changes usually follow previous gradual
changes. Experimental results based on artificial data sets show the relationship
between simple structural changes within a cluster and the introduced measures.
These relationships form the basis for describing simple changes and can be
considered when evaluating more complex changes and predicting future needs.
However, the experiments are limited to artificially generated data. The transfer of
the findings to the real-life data set remains to be researched so a prediction can
be achieved when analyzing changing market structures based on internet market
places.
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Symbolic Cluster Ensemble based
on Co-Association Matrix versus
Noisy Variables and Outliers

Marcin Pełka

Abstract Interval-valued data arise in practical situations such as recording
monthly interval temperatures at meteorological stations, daily interval stock prices,
etc. Ensemble approach based on aggregating information provided by different
models has been proved to be a very useful tool in the context of the supervised
learning. The main goal of this approach is to increase the accuracy and stability of
the final classification. Recently the same techniques have been applied for cluster
analysis, where by combining a set of different clusterings, a better solution can
be received. Ensemble clustering techniques might be not a new problem, but their
application to the symbolic data case is a quite new area. The article presents a
proposal of application of the co-association based approach in cluster analysis
when dealing symbolic data with noisy variables and outliers. In the empirical part
simulation experiment results are compared based on artificial data (containing
noisy variables and/or outliers). Besides that ensemble clustering results of real data
set is shown (segmentation example). In both cases ensemble clustering results are
compared with results obtained from a single clustering method.

1 Introduction

Generally speaking clustering methods seek to organize some set of items (objects)
into clusters in such way that objects from the same cluster are more similar
to each other than to objects from other (different) clusters. Clustering methods
have been applied with a success in many different areas—such as taxonomy,
image processing, data mining, etc. In general clustering techniques can be divided
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into two main groups of methods—hierarchical (agglomerative or divisive) and
partitioning (see for example Gordon 1999; Jain et al. 1999).

In cluster analysis objects are usually described by single-valued variables (single
values or categories). Such approach allows to represent them as a vector of
quantitative or qualitative measurements. In such approach each column represents
a variable. However this kind of data representation is too restrictive and does not
allow to represent more complex data. To take into account the uncertainty and/or
variability of the data variables must assume sets of categories or intervals. Such
kind of data have been mainly studied in symbolic data analysis (SDA; see for
example Bock and Diday 2000; Billard and Diday 2006).

Ensemble techniques that aggregate information provided by many different
(diverse) base clusterings has been originally designed to deal supervised
(discrimination or regression) learning problems. The main goal of this approach is
to increase the accuracy and stability of the final classification. Recently ensemble
learning has been applied with a success to clustering (unsupervised) tasks for
classical data. Nevertheless this approach can be quite easily adapted to symbolic
data situation.

This paper presents results ensemble clustering for symbolic interval-valued data,
when dealing artificial data with noisy variables and/or outliers and real data set,
with application of co-association matrix (co-occurrence matrix).

2 Symbolic Data

There are six main symbolic variable types (Bock and Diday 2000, p. 2; Billard and
Diday 2006):

1. Single quantitative value,
2. Categorical value,
3. Quantitative variable of interval type (interval-valued variables),
4. Set of values or categories (multivalued variable),
5. Set of values or categories with weights (multivalued variable with weights),
6. Modal interval-valued variable.

Regardless of their type symbolic variables also can be (Bock and Diday 2000,
p. 2) taxonomic—which presents prior known structure, hierarchically dependent—
rules which decide if a variable is applicable or not have been defined and logically
dependent—logical rules that affect variable’s values have been defined.

Generally speaking there are two main types of symbolic objects (see for
example Pelka 2010, pp. 342–343). First order objects—single product, respondent,
company, etc. (single individuals) described by symbolic variables. These objects
are symbolic due to their nature. Second order objects (aggregate objects, super
individuals)—more or less homogeneous classes, groups of individuals described
by symbolic variables. In the empirical part second order objects are applied in the
real data set.
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3 Ensemble Learning for Symbolic Data

There are two ensemble learning approaches that can be applied for symbolic
data case. First of them is the clustering algorithm for multiple distance matrices
proposed by de Carvalho et al. (2012). This approach is based on different distance
matrices. Those matrices are treated as different points of view. Different distance
matrices can be obtained by applying different distance measures, subsets of
variables, subsets of objects. Second are based on consensus functions in clustering
ensembles (see de Carvalho et al. 2012; Fred and Jain 2005; Fred 2001; Stehl and
Gosh 2002).

There are four main ways to obtain different base partitions for co-association
based functions (Fred and Jain 2005, pp. 835, 842; Hornik 2005)—combining
results of different clustering algorithms, producing different partitions by resam-
pling the data, applying different subsets of variables, applying the same clustering
algorithm with different values of parameters or initializations.

There are five main types of consensus functions in clustering ensembles that
can be applied for symbolic data case (Fred and Jain 2005; Fred 2001; Ghaemi et al.
2009):

1. Hypergraph partitioning in which clusters are represented as hyperedges on
a graph, their vertices correspond to the objects to be clustered and each
hyperedge describes a set of objects belonging to the same cluster. The problem
of consensus clustering is reduced to finding the minimum-cut of a hypergraph.

2. Voting approach. The main idea is to permute cluster labels such that best
agreement between the labels of two partitions is obtained. The partitions from
the ensemble must be relabeled according to a fixed reference partition. The
voting approach attempts to solve the correspondence problem.

3. Mutual information approach. Objective function—the mutual information
measure (MI) between the empirical probability distribution of labels in the
consensus partition and the labels in the ensemble.

4. Finite mixture models. The main assumption is that labels are modeled as random
variables. These variables are drawn form a probability distribution. That distri-
bution is described as a mixture of multinominal component densities. The objec-
tive of consensus clustering is formulated as a maximum likelihood estimation.

5. Co-association based functions. The consensus function operates on the
co-association (co-occurrence) matrix which is build from initial N base
partitions. Objects belonging to the same cluster (“natural cluster”) are likely to
be co-located in the same cluster in different data partitions. The co-association
matrix is used to find final partition of the set E by applying some clustering
algorithm—like single-link, complete-link, etc.

The elements of co-association matrix are defined as follows (Fred and Jain 2005,
p. 844; Ghaemi et al. 2009, p. 640):

C.i; j / D nij

N
; (1)
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where: i , j—pattern numbers, nij—number of times patterns i and j are assigned
to the same cluster among N partitions, N—total number of partitions.

4 Simulation Studies

To compare the performance of ensemble clustering versus noisy variables and
outliers with a comparison to single clustering method, five artificially generated
interval-valued symbolic data sets were prepared (see also Fig. 1).

1. Data set 1—Shapes—the Gaussian, square, triangle and wave in two dimensions.
2. Data set 2—Spherical—three elongated clusters in two dimensions. The obser-

vations are independently drawn from bivariate normal distribution with means
.0; 0/; .1:5; 7/; .3; 14/ and covariance matrix

P
.�jj D 1; �jl D �0:9/.

3. Data set 3—Cassini—the inputs of the Cassini problem are uniformly distributed
on a two-dimensional space within three structures. The two external structures
(classes) are banana-shaped structures and in between them, the middle structure
(class) is a circle.

4. Data set 4—Spirals.
5. Data set 5—Smiley—the smiley consists of two Gaussian eyes, a trapezoid nose

and a parabola mouth (with vertical Gaussian noise).

In order to obtain symbolic data frommlbench package data sets each point .z1; z2/
of the data is considered as the “seed” of the rectangle. Each rectangle is therefore a
vector of two intervals defined by: Œz1��1=2; z1C�1=2�, Œz2��2=2; z2C�2=2�. The
parameters �1 and �2 are drawn randomly from the interval Œ0I 1�. In clusterSim
package symbolic interval data the data is generated for each model twice into setsA
andB and minimal (maximal) value of fxAij ; xBij g is treated as the beginning (the end)
of an interval. The noisy variables are simulated independently from the uniform
distribution. It is required that the variations of noisy variables in the generated data
are similar to non-noisy variables (see Milligan and Cooper 1985; Qiu and Joe 2006;
Walesiak and Dudek 2011; Leisch and Dimitriadou 2010).

For each data set 20 simulation runs were made and average adjusted Rand index
(MR; Hubert and Arabie 1985) was calculated.

In ensemble approach different clusterings were merged—following methods
that are available in R software have been applied: pam, hierarchical agglomerative
(Ward, single, complete, average, McQuitty, median, centroid) and hierarchical
divisive (diana). The number of clusters was drawn randomly from the interval
.2I 30/. Then k-means method was applied to obtain final clustering from the
co-association matrix.

In single clustering following methods that are available in R software have been
applied: pam, SClust, hierarchical agglomerative (Ward, single, complete, average,
McQuitty, median, centroid) and hierarchical divisive (diana).

Rousseeuws Silhouette cluster quality index (Rousseeuw 1987) was applied in
both cases to find the final number of clusters.
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Fig. 1 Artificial data sets

Table 1 Results of clustering for artificial data sets without noisy
variables and/or outliers

Single clustering method & Ensemble
Data set the best clustering method clustering

1 2 clusters (SClust) 4 clusters
Shapes MR D 0:34123 MR D 0:97561

2 3 clusters (pam) 3 clusters
Spherical MR D 1 MR D 1

3 2 clusters (pam) 3 clusters
Cassini sMR D 0:53112 MR D 1

4 2 clusters (pam) 2 clusters
Spirals MR D 0:78972 MR D 1

5 3 clusters (pam) 4 clusters
Smiley MR D 0:65132 MR D 1

In both cases—ensemble clustering and single clustering—Ichino and Yaguchi
unnormalized distance measure was applied (see Bock and Diday 2000, pp. 153–
183, for details on distance measurement for symbolic data). Table 1 presents and
compares results of ensemble and single clustering methods for artificial data sets
(without noisy variables and outliers). Table 2 presents and compares results of
ensemble and single clustering for artificial data sets with noisy variables and/or
outliers.
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Table 2 Results of clustering for artificial data sets with noisy variables
and/or outliers

Single clustering method & Ensemble
Data set the best clustering method clustering

Shapes 2 clusters (diana) 4 clusters
C2 noisy variables MR D 0:32010 MR D 0:87743

Spherical 3 clusters (pam) 3 clusters
C25% outliers MR D 0:90921 MR D 0:93298

Cassini 2 clusters (SClust) 3 clusters
C3 noisy variables MR D 0:32009 MR D 0:89987

Spirals 2 clusters (pam) 2 clusters
C20% outliers MR D 0:54092 MR D 0:97630

Smiley 3 clusters (pam) 4 clusters
C1 noisy variable MR D 0:43331 MR D 0:902134

Besides artificial data sets also one real data sets was applied. The car symbolic
interval data set consists of 33 objects (car models) described by 8 interval-valued
variables, 2 categorical multi-nominal variables and 1 nominal variable (see:
de Carvalho et al. 2006). In this application, only 8 interval-valued variables—
Price, Engine Capacity, Top Speed, Acceleration, Step, Length, Width and
Height—were considered for brand segmentation purposes.

Car data set was clustered 20 times with single clustering methods (with appli-
cation of Ichino and Yaguchi unnormalized distance). Best results were reached for
3 clusters (pam clustering)—mean Rand index was equal to 0:787362. In ensemble
approach this data set was clustered 15 times (also with application of Ichino and
Yaguchi unnormalized distance) with application of different clustering methods.
Number of clusters was chosen at random from the interval Œ2I 20�. Finally also a 4
cluster solution was detected (mean Rand index was equal to 0:899823). First cluster
contains mainly compact cars, there are also two sedans in this cluster. Second
class contains only sedans. Third class contains only “flagships” (like Passat, BMW
7 series or Aston Martin). The fourth cluster contains mostly sport cars and one
“flagship”—(Ferrari).

5 Final Remarks

Different ensemble clustering methods can be quite easily adapted to symbolic data
situation. Ensemble learning methods can be applied for symbolic data analysis
in all types of marketing problems. They usually reach better solutions (in terms
of mean adjusted Rand index) than any of single clustering methods. They seem
to be a good solution for marketing problems, as symbolic data tends to form not
well separated clusters of many different shapes. When using symbolic data single
clustering methods not always are able to detect correct number of clusters.
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Simulation studies have shown that symbolic ensemble clustering based on
co-association matrix reaches better results than single clustering methods—
especially when dealing not well separated cluster structures, data sets with noisy
variables and/or outliers.

While dealing real marketing problems ensemble clustering for symbolic data
also reached better results than single clustering method. What is more it detected
four quite homogeneous clusters—compact cars, sedans, “flagships” and sport cars.

Ensemble clustering can be applied to solve following marketing tasks
(problems): market segmentation (for example brands, consumers, goods or
services). Identification of homogeneous groups of consumers in order to
understand better their behavior. Brand or company positioning. Determination
of market structure. Dimension reduction. Identification of homogeneous groups of
consumers to test new products (see for example Gatnar and Walesiak 2004).
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Image Feature Selection for Market
Segmentation: A Comparison of Alternative
Approaches

Susanne Rumstadt and Daniel Baier

Abstract The selection of variables (e.g. socio-demographic or psychographic
descriptors of consumers, their buying intentions, buying frequencies, preferences)
plays a decisive role in market segmentation. The inclusion as well as the exclusion
of variables can influence the resulting classification decisively. Whereas this
problem is always of importance it becomes overwhelming when customers should
be grouped on the basis of describing images (e.g. photographs showing holidays
experiences, usually bought products), as the number of potentially relevant image
features is huge. In this paper we apply several general-purpose approaches to this
problem: the heuristic variable selection by Carmone et al. (1999) and Brusco and
Cradit (2001) as well as the model-based approach by Raftery and Dean (2004).
We combine them with k-means, fuzzy c-means, and latent class analysis for
comparisons in a Monte Carlo setting with an image database where the optimal
market segmentation is already known.

1 Introduction

1.1 Traditional Market Segmentation

Market segmentation has always been the “key to market success” (Weinstein
1994). Its purpose is the definition and treatment of target markets. Important
elements are data collection and the segmentation of the data, e.g. with cluster
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analysis (Wedel and Kamakura 2000). Commonly data collection is realized by
asking consumers to reveal their actions, interests and opinions (AIO; Wells and
Tiggert 1971) in a survey. But there are always problems with questionnaires, e.g.
social desirability effects (Groves 1989). Therefore market segmentation on the
basis of individual photographs, that describe their AIOs in a much more indirect
way, seems to be a promising alternative.

1.2 New Approach: Grouping Consumers by Images

Our new approach is segmentation of consumers by their uploaded images—in
social networks, on holiday rating pages, image sharing platforms and so on. The
assumption is that these shared images with others reflect the way they want to be
seen. And that they reflect their AIOs much more unbiased than their responses to
questionnaires. So maybe these images contain more and more realistic information,
which were not used in market analysis and marketing up to now. In prior research
by Baier and Daniel (2012) and Baier et al. (2012) the research questions, whether
uploaded images really reflect the consumers activities, interests and opinions and
if clustering algorithms are able to reproduce expected grouping only using the
uploaded images and their digital information, were analysed. Both questions were
answered positively. This is advantageous, because more and more realistic data
can be collected for market analysis. The questionnaires can be designed in a
more attractive way for the respondents, because the form is more open. Further
references can be found in Baier et al. (2012). But considering images as a data
base for market segmentation, new problems arouse. In fact, out of images a
huge amount of information can be extracted. On one hand, large mounds of
data can lead to failure of the state-of-the-art methods in classification. On the
other hand, if these methods do not fail at the task, it is possible, they eventually
do not deliver satisfying results in an appropriate computing time. This is the
reason why it is necessary to distinguish between relevant, irrelevant and redundant
information. Every classification method can work more efficient if only relevant
data is processed, of course. Hence the aim is to reduce noise in the extracted
image data. And the reduction of dimensions is a wide-spread technique in pattern
recognition, and consequently expedient for classification as well.

2 Methodology

The methods we compared are made up of a clustering method combined with a
variable selection approach. More precisely, the clustering methods are presented
in Sect. 2.1 and the variable selection approaches are explained in particular in
Sect. 2.2. Because clustering describes unsupervised grouping procedures, it is not
possible to combine these methods with feature selection techniques which are made
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for classification task, which means supervised grouping procedures. Furthermore,
hierarchical clustering methods are not considered in this framework.

2.1 Clustering Methods

The clustering methods we took into consideration are first the latent class analysis
(LCA) as a model-based approach. Considering a given data matrixY D .yi/, where
yi represents the real-valued data vector of object i , the LCA has the following
objective function

logJ D
X
i;j

zij � logŒ˛j � p.yijj /�: (1)

(1) represents the loglikelihood function, where the zij are binary and the values 0
and 1 represent the assignment of object i to cluster j . The ˛j ’s are the weights of
the clustering components respectively the classes. p.�jj / stands for the density of
cluster j with the parameters j . Furthermore the fuzzy c-means clustering with the
objective function

J D
X
i;j

zmij � kyi � �j k2 (2)

is taken into comparison. The notation are similar to (1) with the difference that
the zij are fuzzy and not binary, hence they can take values from 0 to 1. The �j
represents the cluster centroid of the cluster j . k�k stands for the Euclidean distance.
The fuzzy parameterm defines the degree of fuzzification in the calculation. The k-
means (3) clustering is a special case of the fuzzy c-means clustering with zij from
the binary set f0; 1g and with fuzzifierm D 1.

J D
X
i;j

zij � kyi � �j k2 (3)

2.2 Variable Selection Methods

In the model-based variable selection approach (clustvarsel) by Raftery and Dean
(2004) a statistical model selection is combined with a greedy search. It is supported
by the R-package clustevarsel and hereafter referred to as CVS. The data set of all
variablesY is divided into three disjunct sets of variables, whereY1 is the set of the
selected variables, inY2 are the candidate variable(s) andY3 contains the remaining
variables. By comparing the two modelsM1 (4) and M2 (5) candidates for addition
and removal are chosen and evaluated (Raftery and Dean 2004). z stands for the
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cluster membership. Model M1 is a model where Y2 is conditionally independent
givenY1 meansY2 does not give additional information in relation to the clustering.
Unlike M2 where Y2 gives additional information afterY1 has been observed.

M1 W p.Yjz/ D p.Y1;Y2;Y3jz/ D p.Y3jY2;Y1/p.Y2jY1/p.Y1jz/ (4)

M2 W p.Yjz/ D p.Y1;Y2;Y3jz/ D p.Y3jY2;Y1/p.Y2;Y1jz/ (5)

The first two variables are chosen to be the most likely to form a univariate
clustering respectively a bivariate clustering in combination with the first variable
chosen. Afterwards, an additional variable is proposed to be the most likely to
form a multivariate clustering with the already chosen ones and evaluated and
another selected variable is proposed for removal and evaluated. The proposition
and evaluation steps are repeated until two propositions in series are rejected and
the algorithm stops.

Other methods for variable selection are heuristics. Heuristics are simplified
solutions for complex optimization problems. Heuristics do not demand finding
the best solution, because finding the best solution is either impossible nor it
can be found in an appropriate computing time. They provide proportionally fast
and relatively high quality solutions for optimization problems. The first heuristic
presented in this framework is HINoV, which stands for heuristic identification of
noisy variables. The advantage of HINoV is the fast computing performance, the
disadvantage is that this heuristic does not consider combinations of the different
variables. But this is on the other hand the reason for its fast performance and the
computational complexity is linear. Carmone et al. (1999) presented this heuristic
for the purpose of variable selection and hence the reduction of dimensions as well.
The HINoV-procedure works as follows: At first, for each variable the selected
clustering method is executed separately. Therefore a single classification is build
for every variable. These classifications can be compared using the adjusted Rand
index (ARI; Hubert and Arabie 1985).1 Summing up all these adjusted Rand indices,
so called total pairwise adjusted Rand indices (TOPRI) are calculated. And sorting
these TOPRI-values in a decreasing order and cutting them down by a ratio rule
leads to the set of the selected variables.

The variable-selection heuristic for k-means clustering (VS) was developed by
Brusco and Cradit (2001) especially for the k-means clustering algorithm and is
more complex than the HINoV. The VS heuristic considers the impact of the
combination of variables. This is on one hand an advantage but it is disadvantageous
in computing time issues. The computing complexity is quadratic and is hence not
as fast as the HINoV. The procedure of VS is as follows: The VS works based on
sets, so two sets were initialized, S for the set of selected variables is an empty
set in the beginning and U , the set which contains all unselected variables. The
clustering method is processed with every variable and every pair of variables

1Further information concerning the ARI can be found in Sect. 3.1.
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treated as a bivariate data input. The result therefore are one-variable-classifications
and two-variable-classifications. In case of the one-variable-classifications the
ARI-values were calculated from pairwise combination. For every combination of
two-variable-classifications the accounted for variance (VAF) is calculated and the
pair which has the maximal VAF under the condition that the analogous ARI-values
exceed a certain threshold, are picked as the first two selected variables. If two
variables are selected the algorithm adds further variables in case the addition of
these variables improves the clustering result. In every step for all the unselected
respectively remaining variables ARI values are calculated. The full procedure can
be followed in Brusco and Cradit (2001).

3 Evaluation

3.1 Synthetic Data

The concept of our proceeding in the empirical part is as follows: At first, we test all
the combinations (LCA-CVS, LCA-HINoV, LCA-VS, Fuzzy-HINoV, Fuzzy-VS,
K-means-HINoV, K-means-VS) with synthetic data we generated for this purpose,
in order to show how the methods and variable selection approaches perform in
general. Therefore we generated data according to Gaussian mixtures with randomly
generated “true” parameters ˛true, the number of classes K true, and distribution
parameters  true. And the clustering methods were supposed to find the grouping
according to the “true” data structure we forced. Based on the “true” data structure,
we have a so-called ground truth and are able to evaluate the performances exactly
by applying the ARI. The ARI is a measure of similarity of two partitions. The
original Rand index (Rand 1971) has been adjusted to chance by Hubert and Arabie
(1985).

3.2 Real Data

In the experimental part with real data, we chose three color images, which
come from the following three categories: mountain view, sunsets and city lights
(Figs. 1–3). These three images have been edited in 19 different ways (brightness
(C/�), clarity (C), contrast (C/�), cross processing (blue/green/red), film grain
(black/white), high dynamic range, highlight, saturation (C/�), shadow, sharpen,
soften, temperature (C/�)). Hence we have 20 versions of each image, 1 original
and 19 derivatives. This leads to a set of 60 images, from which the following digital
low level features (consisting of several variables) that are described in image pro-
cessing literature (Del Bimbo 1999; Shapiro and Stockman 2001; Chatzichristofis
and Boutalis 2008a,b; Tamura et al. 1978) were extracted: color and edge directivity
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Fig. 1 Mountain view

Fig. 2 Sunset

Fig. 3 City lights

descriptor CEDD, color histogram, color structure, edge histogram, fuzzy color and
texture histogram FCTH, Gabor, region shape, scalable color and Tamura.

4 Results

4.1 Synthetic Data

We have evaluated the data with 0, 50 and 80 % of noisy variables in the data. As
it can be seen in Table 1, the quality of the results is decreasing with the increasing
percentage of noise. This applies to all methods. Partially the increasing percentage
of noise effects the computing time. In the second part of the evaluation we took
the 80 % noisy data in order to show the general performing characteristics of
the variable selection and weighting algorithms. Every one of the chosen variable
selection procedures worked reliably for the tested cases. Only the computing times
differ.
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Table 1 Mean computation time (in seconds) and consensus with true classification (as ARI
value) for LCA, fuzzy and k-means clustering with 0 %, 50 % and 80 % noise and with CVS,
HINoV and VS

LCA Fuzzy K-means

Time ARI Time ARI Time ARI

0 % noise 115.57 1.00 261.35 0.94 141.86 0.94
50 % noise 377.16 0.42 266.94 0.49 138.75 0.38
80 % noise 680.11 0.49 259.78 0.42 144.37 0.36
CVS 795.56 1.00
HINoV 157.30 0.99 988.14 0.99 139.84 0.99
VS 5729.9 0.99 14896. 0.99 6024.6 0.99

Table 2 Consensus with true classification (as ARI value) for LCA, fuzzy and k-means clustering
with the extracted image features and with CVS, HINoV and VS (italic values are line by line and
column by column means)

Features (number of variables) LCA Fuzzy K-means

CEDD (144) 0.261 0.479 0.367 0.369
ColorHistogram (512) 0.478 0.121 0.183 0.261
ColorStructure (128) 0.288 0.571 0.518 0.459
EdgeHistogram (80) 0.313 0.571 0.561 0.482
FCTH (192) 0.602 0.642 0.460 0.568
Gabor (60) 0.390 0.456 0.424 0.423
RegionShape (35) 0.377 0.695 0.323 0.465
ScalableColor (64) 0.422 0.478 0.681 0.527
Tamura (18) 0.626 0.905 0.821 0.784

0.417 0.546 0.482
All features (1,233) 0.821 0.859 0.859 0.846
with the following methods
CVS 0.951 0.873 0.860 0.895
HINoV 0.821 0.951 0.905 0.892
VS 0.784 0.951 0.911 0.882

0.844 0.920 0.892
HSMatrix (16) 0.904 0.904 0.465 0.758
HSVCube (64) 0.379 0.859 0.456 0.565
LABCube (64) 0.491 0.859 0.423 0.591
RGBCube (64) 0.491 0.862 0.862 0.738
RGBMatrix (192) 0.414 0.416 0.327 0.386

0.536 0.780 0.507

4.2 Real Data

The real image data clustering by only the single feature data (upper part of Table 2)
did not lead to satisfying result, although some appropriate features for clustering
could be identified, e.g. Tamura or FCTH. If all features were taken into the
experiment the resulting ARIs increase (middle part of Table 2). And they increase
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even more with applying the variable selection procedures. Outstanding good result
were accomplished by the combinations of LCA-CVS, Fuzzy-HINoV and Fuzzy-
VS. In the bottom part of the table, we investigated color histograms from the
different color spaces and found out the HSMatrix gave good data to clust and
the fuzzy-c-means procedure was the most successful procedure. Variable selection
techniques were not applied in this case. The italic values are line by line and column
by column means of the certain parts of the table and are stated to give an idea of
the overall performance of the procedures and the applicability of the features.

4.3 Conclusion and Outlook

The experiment shows that clustering images only on the basis of their extracted
digital data, which were all low level features, is possible and promising for further
research. Single features are not convincingly successful in this task, but with the
support of variable respectively feature selection methods the results increased up
to an ARI value of 0.951. Of course, this is not the ultimate proof, hence further
research has to be done. The basis of images will be expanded and the image
processing respectively modifying techniques will vary more. There will be an
investigation which low level feature variations cause the problems in clustering
processes and which feature does not effect clustering in general. But the main
aim of this paper, to show that unsupervised grouping of images can be done with
low-level features and feature selection techniques, was successful. Later further
features, e.g. the Exif data or high level features like manually added tags, can be
included in the clustering behaviour investigations of images.
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The Validity of Conjoint Analysis:
An Investigation of Commercial Studies
Over Time

Sebastian Selka, Daniel Baier, and Peter Kurz

Abstract Due to more and more online questionnaires and possible distraction—
e.g. by mails, social network messages, or news reading during the processing in an
uncontrolled environment—one can assume that the (internal and external) validity
of conjoint analyses lowers. We test this assumption by comparing the (internal
and external) validity of commercial conjoint analyses over the last years. Research
base are (disguised) recent commercial conjoint analyses of a leading international
marketing research company in this field with about 1.000 conjoint analyses per
year. The validity information is analyzed w.r.t. research objective, product type,
period, incentives, and other categories, also w.r.t. other outcomes like interview
length and response rates. The results show some interesting changes in the validity
of these conjoint analyses. Additionally, new procedures to deal with this setting
will be shown.

1 Introduction

Conjoint Analysis (CA) is a wide used and well established method for measuring
consumer preferences (see Green and Srinivasan (1990); Sattler and Hartmann
(2008)). Even today, after more than 40 years of research in the context of
marketing science, CA is still an object of investigation in this field of research
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(e.g., Green and Rao (1971); Green et al. (2001); Meissner and Decker (2010);
Pelz (2012); Sänn and Baier (2012); Selka et al. (2012); Toubia et al. (2012)).
Therefore, an extensive view on conjoint analyses (CAs) seems to be productive.
Nowadays, with a lot of distraction potentials due to the ubiquitous availability of
information in the internet in general (e.g., online newspapers, Twitter) or social
network services (e.g., Facebook, LinkedIn) a lower validity for computer-assisted
self interviews (CASI) on the web could be expected. Further the dynamic nature
of consumers’ preferences, measurement errors due to fatigue and boredom as
well as the often stated learning effects of respondents can have negative impacts
on CA’ validity (see Mccullough and Best (1979); Desarbo et al. (2005); Netzer
et al. (2008)). Information overload is also stated as potential source of lower
internal and external validity (e.g., Jacoby (1984); Chen et al. (2009)). In contrast
to this background, some intuitive presumptions, based on methodological and
technological development in the past, will be given and completed with an analysis
of the mean validity and the validity variance of conjoint analysis over time.

2 Intuitive Presumptions and Research Questions

Due to the evolutional development of conjoint analytical data collection methods,
many different methods and approaches arose. There are traditional methods to
avoid information overload by shrinking potential attribute combinations through
orthogonal designs (Addelman 1962) or modern methods to collect as many data
as possible by each respondent by asking as few questions as possible (Johnson
1987; Green and Krieger 1996; Netzer et al. 2008). Besides them, there are other
approaches, which produce much better validity values due to the usage of modern
computer technology (e.g., Allenby et al. (1995); Johnson and Orme (2007)).
Additionally there is an intuitive presumption of learning effects of research
company employees regarding the question of “How to do a good CA?”

Against this background and even with the potential negative impacts due to
the distraction potentials of the internet, a validity gain over time in the conjoint
analytical research area is expected. On the one hand, this expectation is based
on the developments in technology and on the other hand on the previously
given methodological developments in the past. Both expectations are probably
compensating given negative impacts mentioned in Sect. 1. Furthermore, support for
this presumption could be found in other scientific areas (see Day and Montgomery
1983; Landeta 2006). Insofar, the research question could be given as “Is there
a validity gain in CA over time?” and potential intuitive answers to this research
question can be derived as hypotheses in such a manner:

H1: The mean validity of CAs is increasing over time.
H2: The mean validity variance CAs is decreasing over time.

By following these hypotheses, a brief introduction into validity measures should
be given here. Just to clarify the understanding of them within the scope of this
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paper. Typically, validity in CA context is measured by internal and external validity
values. Internal validity values are represented through the Root Likelihood (RLH)
value, which is measuring the correlation between estimated respondent answers
and the given ones. Other correlation coefficients are also possible (and typical;
e.g., R2), but not within the scope of this paper. Typically the RLH vlaues are
measuring the validity of hierarchical bayes (HB) estimation models of CAs, which
were applied to all data sets here. The Mean Absolute Error (MAE) measures
the errors between the estimated data model and the prior calculated simulation
results. Therefore, the MAE values are also a measure for the internal model fit.
For measuring the external validity, here, First-Choice Hit-Rates (FCHR) are given.
Upcoming analyses here are based on linear regression models and F-Statistics
(to test hypothesis H1) and on Breusch-Pagan- (BPT) and Goldfeld-Quandt-Tests
(GQT) to check for heteroscedasticity (and therefore to test hypothesisH2).

3 Database of Recent Commercial CAs

To investigate the research question and to support or reject the given hypotheses,
a database containing 2,093 data sets of commercial CAs over a time (1996–2011)
was analyzed. The data sets are provided from a german market research institute.
Therefore, this database just contains data about german CAs. To come up with the
meta-data examination, it should be summarized here, that the given data contains
information about. . .

• . . . the end date, the topic, the user amount, the drop-off rate,
• the representativeness of the study, the questionnaire duration,
• the purpose, the usage of incentives, the multimedia usage,
• the questionnaire type (CASI, CAPI), the used approach (e.g. ACA, CBC),
• the features and levels and (of course)
• some validity values (RLH, MAE, FCHR) for each CA.

In a first analysis step, a brief overview of the meta-data information is given in an
aggregated manner in Table 1. The given summary is following the given character-
istics in Wittink et al. (1994). The given results showing w.r.t. the application context
a similar result, as given by Green et al. (1981); Louviere and Woodworth (1983),
and Green and Srinivasan (1990). With respect to the purpose, the results showing
a similar result as given in Cattin and Wittink (1982), Wittink and Cattin (1989),
Wittink et al. (1994), and Sattler and Hartmann (2008). Therefore, with these given
distributions and results, it could be stated, that the upcoming results here probably
can be transferred to other international CAs as well. Even if the database here is
just taken from the German market. Furthermore, it should be outlined, that the
data examination shows an meaningful result regarding the usage of incentives and
the usage of CASI over time. Both usages increased highly significant over time
(p < 0:001).
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Table 1 Characteristics of given database

Category % of usage Purpose % of usage

Consumer goods (to expend) 29:35% Product optimization 52:41%
Consumer goods (to utilize) 20:79% Pricing 31:49%
Telco services 17:40% Drug admission 6:31%
Financial services 10:95% New product development 3:15%
Medical services 9:70% Distribution 1:82%
Other services 7:93% Other 4:83%
Other 3:87%

CA method % of usage Avg. duration % of usage

CBC 89:10% Up to 20 min 7:03%
ACA 5:73% Up to 30 min 33:56%
HCA 3:20% Up to 45 min 31:60%
CVA 1:96% Up to 60 min 27:82%

Up to 90 min 1:82%

Computer-aided collection type % of usage Usage of incentives % of usage

CAWI 66:65% Incentives used 69:47%
CAPI 25:99% No incentives used 30:53%
other 7:36%

ACA Adaptive CA, CBC Choice Based CA, HCA Hierarchical CA, CVA Conjoint Value Analysis,
CAWI/CAPI Computer-assisted (Web/Personal) Interview, Avg. Average

4 Validity and Variance Analysis of Recent Commercial CAs

For the upcoming data analysis it has to be repeated here, that all data sets are
collected over a time period of 16 years. Due to technological and methodological
development over time, the given results are not directly comparable (e.g., different
estimation software versions, iteration amounts, etc.). Therefore, all recent commer-
cial CAs were recalculated on the same computer, with the same software base and
with the same estimation parameters (10k burn-in and estimation iterations, prior
variance of 2, 5 degrees of freedom and an acceptance rate of 35%) to create a
homogeneous database.

As mentioned in Sect. 2, F-Statistics and linear regression models where used to
analyze the internal validity values. Given p-values indicating the significance levels
and the regression coefficient b will be used to indicate the validity development of
the specific dataset over time (positive b-values indicating a gain, negative values the
opposite). The regression model here is given through the usual regression formula:

Oyi D b � xi C ˛

The first investigation is about the CBC and ACA approaches in general. Table 2
shows the results in an appropriate manner.
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Table 2 Summary of validity development over time for different time frames

Time frame ACA CBC

1996–2011 N D 119I b D �0:035Ip < 0; 01 N D 1772I b D �0; 014Ip < 0; 001
2002–2011 N D 28; data set to small N D 1683I b D �0; 007Ip < 0; 01
2006–2011 N D 8; data set to small N D 1382I b D 0; 003644Ip > 0; 1
E Exponent

Table 3 Internal and external validity development in CA

CA approach Validity criterion Result

Time frame: 1996–2002
ACA R2 (N D 89) b D �2:2E�6; p > 0:1

MAE (N D 92) b D 1:8E�4; p > 0:1
FCHR (N D 92) b D �6:7E�4; p > 0:1

CBC R2 (N D 88) b D �3:7E�6; p < 0:1
MAE (N D 140) b D 4:7E�4; p > 0:1
FCHR (N D 140) b D 1:8E�5; p > 0:1

Time frame: 2003–2011
ACA Dataset too small, for research implications (N D 28)
CBC RLH (N D 1770) b D 4:5E�4; p < 0:1

MAE (N D 1719) b D 1:1E�3; p < 0:001
FCHR (N D 1719) b D �4:6E�3; p < 0:001

E Exponent

Given results showing no significant validity gain over time rather the opposite
is shown over the whole time period. A more deep view on further given validity
values is inline with the given results above (see Table 3)—No validity gain over
time.

Therefore, hypothesis H1 has to be rejected. No significant increase of CA’
validity values over time could be detected. In fact, the opposite development was
found for some validity values. To complete these findings, a variance analysis
was applied to check for result dispersons within the data set. On this, all RLH
values got regressed and tested for homo- and heteroscadisticity by using GQT
and (studentized) BPT. The statistical test and p-values are summarized in Table 4.
Compared to the results above, they are showing a consistent result. The validity
variance of CAs over time was not decreased. Significant p-values there indicating
a heteroscedasticity, what has to be interpreted as an variance increase over time.
Non significant values indicating homoscedasticity, what has to be interpreted as
constant variance over time. The CBC validity values (1996–2011) from Table 4
were also plotted in Fig. 1 and using the example of the FCHR. A visual analysis of
figure’s shape shows the increased variance. Hypothesis H2 could not be accepted
either. A validity gain based on validity variance could not be detected and therefore,
support for both hypotheses could not be found.
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Table 4 Validity variance values and variance development in CA

CA approach VC Studentized BPT BPT GQT

Time frame: 1996–2011
ACA (N D 119) RLH BP D 0:085 BP D 0:252 GQ D 1:334

MAE BP D 3:59* BP D 1:81 GQ D 0:97

FCHR BP D 0:202 BP D 0:087 GQ D 1:102

CBC (N D 1772) RLH BP D 8:003*** BP D 3:854** GQ D 0:93

(N D 1859) MAE BP D 4:353** BP D 2:178 GQ D 0:889

(N D 1859) FCHR BP D 7:33*** BP D 3:757* GQ D 1:16**
Time frame: 2003–2011
ACA Dataset too low, for research implications (N D 41)
CBC (N D 1683) RLH BP D 0:238*** BP D 0:108** GQ D 0:967

(N D 1719) MAE BP D 3:253* BP D 1:6 GQ D 0:932

(N D 1719) FCHR BP D 12:921**** BP D 6:521** GQ D 1:134**
Time frame: 2006–2011
CBC (N D 1382) RLH BP D 0:193*** BP D 0:085** GQ D 0:957

MAE BP D 6:694*** BP D 3:287* GQ D 0:905

FCHR BP D 5:415** BP D 2:802* GQ D 1:057

E Exponent, BPT Breusch-Pagan-Test, GQT Goldfeldt-Quandt-Test, BP Breusch-Pagan’s value
of test statistic, GQ Goldfeld-Quandt’s value of test statistic, VC Validity Criterion
*p < 0; 1; **p < 0; 05; ***p < 0; 01; ****p < 0; 001

Fig. 1 Graphical representation of CBC’s first-choice-hit-rates over time

5 Conclusion and Outlook

The given analysis here has not proven the intuitive presumption of a validity
gain over time. Neither the internal and external validity values nor the validity
variance of more than 2,000 analyzed commercial CAs from the last 16 years
have shown support for the presumptions and the derived hypotheses. Even modern
technological and methodological developments in the past seeming to have no
positive effects on CA’ validity values. Maybe the mentioned negative impacts in
Sect. 1 are cutting through, which means, that the negative impacts of modern
internet on respondent’s distraction are compensating the potential positive impact
of such new modern approaches and technological enhancements. This should be
tested and investigated in future.
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Abstract In this paper, we try to apply stochastic programming methods to product
line design optimization problems. Because of the estimated part-worths of the
product attributes in conjoint analysis, there is a need to deal with the uncertainty
caused by the underlying statistical data (Kall and Mayer, 2011, Stochastic linear
programming: models, theory, and computation. International series in opera-
tions research & management science, vol. 156. New York, London: Springer).
Inspired by the work of Georg B. Dantzig (1955, Linear programming under
uncertainty. Management Science, 1, 197–206), we developed an approach to use
the methods of stochastic programming for product line design issues. Therefore,
three different approaches will be compared by using notional data of a yogurt
market from Gaul and Baier (2009, Simulations- und optimierungsrechnungen
auf basis der conjointanalyse. In D. Baier, & M. Brusch (Eds.), Conjointanal-
yse: methoden-anwendungen-praxisbeispiele (pp. 163–182). Berlin, Heidelberg:
Springer). Stochastic programming methods like chance constrained programming
are applied on Kohli and Sukumar (1990, Heuristics for product-line design using
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original approach and to the one of Gaul, Aust and Baier (1995, Gewinnorientierte
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1 Introduction

In Marketing, product line design optimization holds an important role. Companies
want to place new products in special markets, so they have to know which
products are the most promising ones to minimize costs or to maximize market
share, profits and sales (Green et al. 1981; Gaul et al. 1995). For measuring the
preferences of the customers for that purpose, conjoint analysis is very well suited
(Green and Srinivasan 1978). Based on the part-worths measured and estimated
by conjoint analysis, it is possible to compute the optimal product line via different
approaches. All approaches to these optimization problems have the same weakness:
the optimization is based on uncertain statistical data. As one can see, there is a
need to deal with these uncertainties. One possibility is to solve product line design
problems with the techniques of stochastic programming (Dantzig 1955). In this
paper we applied a special kind of stochastic programming: chance constrained
programming (Kall and Mayer 2011) which was incorporated to the optimization
approach of Kohli and Sukumar (1990) and afterwards compared to the approach
of Gaul et al. (1995). Therefore in Sects. 2.1 and 2.2, we introduce the two
approaches. Afterwards in Sect. 3, we give the reader some theory of chance
constrained programming techniques with the aim to understand the application of
these techniques to the approach of Kohli and Sukumar (1990) in Sect. 5.

2 Product Line Design Optimization

In product line design optimization, there are several different approaches to get the
optimal product line from the estimated part-worths and other additional conditions.
To test chance constrained programming, we consider two models which are
introduced below.

On a market with J products, a company plans to add R new products to the
product line. With K the number of attributes and Lk .k D 1; 2; : : : ; K/ the
number of attribute levels, I the number of segments, the utility of product j
.j D 1; 2; : : : ; J / in segment i .i D 1; 2; : : : ; I / is denoted by uij. The part-worth
of an attribute level l .l D 1; 2; : : : ; Lk/ from attribute k in segment i is described
by ˇikl. If a product j with attribute k possesses attribute level l , the decision
variable xjkl takes the value 1 and 0 else. The amount of coverage for product j with
attribute level l of attribute k is djkl.

2.1 Approach of Kohli and Sukumar (1990)

The number of possible product configurations is J D QK
kD1 Lk . Because that

number can be very high, one choose just R out of J products to add to the
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product line. The approach of Kohli and Sukumar (1990) uses the first choice
decision rule. Here, pij denotes the probability of choosing product j over product
j 0 if the utility uij of product j in segment i exceeds the utility uij 0 of product j
in segment i (pij D 1 and pij D 0, else). Then, the optimization problem can be
formulated as follows (Gaul and Baier 2009):

IX
iD1

RX
jD1

KX
kD1

LkX
lD1

d riklxijklyi �! max!

subject to

RX
jD1

LkX
lD1

xijkl D 1 8i; k; (1)

LkX
lD1

xijkl �
Lk0X
lD1

xijk0l D 0 k0 < k;8i; j; k; (2)

xijkl C xi 0jkl0 � 1 8i < i 0; l < l 0; j; k; (3)

RX
jD1

KX
kD1

LkX
lD1

ˇikl.xijkl � xi 0 jkl/ � 0 8i ¤ i 0; (4)

yi

RX
jD1

KX
kD1

LkX
lD1

ˇiklxijkl � yi .ui0 C �/ 8i; (5)

yi ; xijkl 2 f0; 1g 8i; j; k; l: (6)

The objective function represents the profit for the supplier and should be max-
imized subject to the constraints. The constraints (1)–(3) ensure that for each
individual just one new product is chosen. By (4) and (5) the first choice decision
rule is modeled. Equation (6) represents the binary restriction for the decision
variables yi (D 1, if individual i buys a product out of the product line;D 0 else)
and xijkl.

2.2 Approach of Gaul/Aust/Baier (1995)

The optimization model of Gaul et al. (1995) uses the BTL (Bradley–Terry–Luce)
choice decision rule (Bradley and Terry 1952). An individual i chooses product j
with probability pij proportional to its utility for product j :
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pij D u˛ij
JX

j 0D1
u˛ij0

;

The parameter ˛ � 0 is for adjusting the simulation on the basis of market
information. For ˛ D 0 the BTL rule leads to uniformly distributed choices and
if ˛ ! 1 the BTL rule becomes the first choice decision rule.

Consider a market with j D 1; : : : ; F external products and j D FC1; : : : ; FC
E own products. The new products to add to the product line are represented by
j D F CE C 1; : : : ; F CE CR. This model is able to include part fixed costs fkl

for the attribute levels. However, the notation is the same like in the model above.

KX
kD1

LkX
lD1

0
@

FCECRX
jDFCEC1

xikl

 
IX
iD1

pij!idikl � fkl

!
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jDFC1

xikl

IX
iD1

pij!idikl
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subject to

LkX
lD1

xjkl � 1 8k; j D F C E C 1; : : : ; F CE CR; (7)

pij D

 
KX
kD1

LkX
lD1

ˇiklxjkl

!˛

FCECRX
j 0D1

 
KX
kD1

LkX
lD1

ˇiklxjkl

!˛ 8i; j; (8)

LkX
lD1

xjkl D
LkC1X
lD1

xj.kC1/l k D 1; : : : ; K � 1;

j D F C E C 1; : : : ; F C E CR;

(9)

xjkl 2 f0; 1g 8k; l; j D F C E C 1; : : : ; F C E CR: (10)

Here, the objective function is the maximization of the amounts of coverage
for the new and already established products less the fixed costs for the new
products. Summarizing over all individuals, the probability of buying the products
is considered as well. Equation (7) ensures that every attribute of a product has just
one attribute level. Constraint (8) represents the BTL choice decision rule. while (9)
assures that each product is offered with a full set of attributes. The binary restriction
of the decision variables xjkl is shown in constraint (10).
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3 Stochastic Programming

The first stochastic programming techniques were proposed by Dantzig (1955).
The purpose was to deal with uncertain parameters in (non-)linear programs.
Since then, it proved its flexibility and usefulness in many fields where the
incorporation of uncertainty is necessary, e.g. finance, operations research or
meteorology (Shapiro et al. 2009). There are three different types of stochastic
programs: single-stage programs (e.g. chance constrained programming), second-
stage programs and multistage programs (Birge and Louveaux 2011).
Now, we want to give a very short introduction into the field of chance constrained
programming according to Kall and Mayer (2011). Imagine an ordinary linear (or
integer) program with fixed matrix A, fixed solution vector b, the parameter vector
of the objective function c and the vector of the decision variables x:

min cT x

s:t: Ax � b;

x � 0:

Now, we assume that not every constraint in Ax � b is fixed, but also some of them
depending on uncertain data, like statistical parameters. Then with T � A, h � b

and a random variable � follows:

min cT x

s:t: Ax � b;

T .�/x � h.�/; x � 0:

Because of the uncertain parameters in T .�/x � h.�/, one cannot ensure that every
constraint in this system holds, so that no optimal solution can be found. To avoid
that, there is a need to incorporate a probability function P :

min cT x

s:t: Ax � b;

P.T .�/x � h.�// � p; x � 0:

That means, that the constraints T .�/x � h.�/ are holding with high probability
for a certain probability p. After transformation of these constraints, the chance
constrained problem becomes a linear (or integer) program again.
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4 Chance Constrained Programming Applied
to Kohli and Sukumar (1990)

Remember constraint (5) from the optimization model of Kohli and Sukumar
(1990). This constraint is chosen for the stochastic program because in that a very
important decision for choosing new products to the product line is made. A new
product will be taken over the status quo products if the utility of the new product
exceeds the utility of the status quo products (ui0;8i ) of a free chosen parameter �.
We will adjust � that way, that the uncertainty of the estimated part-worths ˇikl will
be incorporated in the decision process. The advantage is that we get a parameter
which considers the quality and uncertainty of the conjoint part-worths estimation.
Therefore, we used the standard error of the estimated part-worths for each segment
i evolving from their variances:

Var.ˇikl/ D �2i :

Then, the standard error is defined as:

�2 D 1

I 2

IX
iD1

�2i

The standard error (the uncertainty of the model) will now be incorporated into the
optimization model through the manipulation of the parameter � which we assume is
normal distributed with the expectation value 0 and the variance �2: � � N.0; �2/.
Then, we get:
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Transform � into a random variable with a standard normal distribution:

� WD �
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We get:
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Inversing the probability function P and let qp be the p-quantile of the standard
normal distribution leads to:

yi

0
@

RX
jD1

KX
kD1

LkX
lD1

ˇiklxijkl �
KX
kD1

LkX
lD1

ˇ0klx0jkl

1
A � yi � � � qp 8i: (11)

We have a simple integer program again.

5 Results and Application of the New Approach

For our first test of the model, we took a small example from Gaul and Baier (2009)
with given part-worths of the attribute levels of natural yogurts, the corresponding
amounts of coverage and four segments with their segment weights like shown
in Table 1. On the status quo market, there are three suppliers with five products.
For the simulation, the original and the chance constrained approach of Kohli and
Sukumar (1990) as well the approach of Gaul et al. (1995) were coded with the
statistical software package R and solved by complete enumeration.

In this example we choose p D 0:95, because we want that the constraints
hold with a probability of 95 %. This is a good trade off between the relaxation
of constraint (5) and the need that this constraint is fulfilled. Then, the p-quantile of
the standard normal distribution is qp D 1:645 and the root of the standard error is
� D 0:0091. With these values we can run the simulation. In Tables 2 and 3 are the
results of the simulation with the original approach of Kohli and Sukumar (1990)
with the proposed � D 0 and the chance constrained approach with � D �qp . It
shows that the solution with � D 0 is very bad, because these are two products
(p,m,0.4) and (p,s,0.5) who are already present on the status quo market. With an
� depending on the standard error one get products (g,m,0.5) and (p,s,0.4) which
are not on the market yet and thereby much better results. The solution after Gaul
et al. (1995) is shown in Table 4. In this approach the two products (p,s,0.4) and
(p,m,0.7) give the optimal solution for the problem. To compare the solutions found
with the chance constrained approach applied to Kohli and Sukumar (1990) with the
solutions of the approach of Gaul et al. (1995), we inserted them into the objective
function of Gaul et al. (1995). For the product (p,s,0.4) there is a yield of 19.43
PMU/TU (part money unit per time unit) and for (g,m,0.5) we get 7.77 PMU/TU,
so combined a total amount of 27.20 MU/TU for the chance constrained approach.
With the solutions of Gaul et al. (1995) we have a yield of 21.32 PMU/TU for
(p,s,0.4) and a yield of 18.31 PMU/TU which makes a summarized yield of 39.63
MU/TU.
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Table 1 Illustration of the segment specific part-worths (Source: Own illustration according to
Gaul and Baier (2009))

Part-worths ˇikl

Wrapping Taste Price
k D 1 k D 2 k D 3

Segment Weight of segment Plastic Glass Sour Mild 0.4 MU 0.5 MU 0.7 MU
i wi l D 1 l D 2 l D 1 l D 2 l D 1 l D 2 l D 3

1 20000 MU/TU 0.00 0.06 0.00 0.44 0.33 0.17 0.00
2 10000 MU/TU 0.00 0.06 0.44 0.00 0.33 0.17 0.00
3 5000 MU/TU 0.05 0.00 0.14 0.00 0.55 0.27 0.00
4 10000 MU/TU 0.00 0.53 0.00 0.27 0.13 0.07 0.00

Table 2 Solution after Kohli/Sukumar with proposed � D 0 with
the two products (p,m,0.4) and (p,s,0.5).

i yi xi11 xi12 xi21 xi22 xi31 xi32 xi33

1 1 1 0 0 1 1 0 0
2 1 1 0 1 0 0 1 0
3 1 1 0 0 1 1 0 0
4 0 1 0 0 1 1 0 0

Table 3 Solution after Kohli/Sukumar with chance constrained
� D �qp with the two products (g,m,0.5) and (p,s,0.4).

i yi xi11 xi12 xi21 xi22 xi31 xi32 xi33

1 0 0 1 0 1 0 1 0
2 1 1 0 1 0 1 0 0
3 1 1 0 1 0 1 0 0
4 1 0 1 0 1 0 1 0

Table 4 Solution after Gaul et al. with the products (p,s,0.4) and
(p,m,0.7).

j xj11 xj12 xj21 xj22 xj31 xj32 xj33

1 1 0 1 0 1 0 0
2 1 0 0 1 0 0 1

6 Conclusion and Outlook

Nevertheless the solution of the chance constrained approach is not that good as the
approach of Gaul et al. (1995), we managed to make the original approach of Kohli
and Sukumar (1990) better. Now, one can consider the failure that inevitably occur
in the conjoint estimation process. That is an advantage, especially when you have
bigger problems than above and cannot adjust the parameter � manually. However,
stochastic programming (chance constrained programming) showed its power to
product line design optimization problems and will be studied further. The next step
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is to design new product optimization models with two- or multi-stage stochastic
programming. Stochastic programming seems to be very promising to these kind of
problems.
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On the Discriminative Power of Credit Scoring
Systems Trained on Independent Samples

Miguel Biron and Cristián Bravo

Abstract The aim of this work is to assess the importance of independence
assumption in behavioral scorings created using logistic regression. We develop four
sampling methods that control which observations associated to each client are to be
included in the training set, avoiding a functional dependence between observations
of the same client. We then calibrate logistic regressions with variable selection on
the samples created by each method, plus one using all the data in the training set
(biased base method), and validate the models on an independent data set. We find
that the regression built using all the observations shows the highest area under
the ROC curve and Kolmogorv–Smirnov statistics, while the regression that uses
the least amount of observations shows the lowest performance and highest variance
of these indicators. Nevertheless, the fourth selection algorithm presented shows
almost the same performance as the base method using just 14 % of the dataset, and
14 less variables. We conclude that violating the independence assumption does not
impact strongly on results and, furthermore, trying to control it by using less data
can harm the performance of calibrated models, although a better sampling method
does lead to equivalent results with a far smaller dataset needed.
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1 Introduction

Behavioral scorings are a well-known statistical technique used by financial
institutions to assess the probability that existing customers default a loan in the
future. Various statistical models are used to measure this probability, with logistic
regression the most popular among them, used by 95 % of financial institutions
worldwide according to Thomas et al. (2002).

The aim of this study is to empirically measure the importance of violating
the independence assumption needed to calibrate the parameters of a logistic
regression using standard maximum likelihood estimation (Hosmer and Lemeshow
2000), in the context of behavioral scoring development. The situation has been
documented in the literature (Medema et al. 2007), and there is strong evidence
on the perverse effects of ignoring its effects, particularly in the case of reject
inference, where it was concluded that sample bias leads to different classification
variables, and to an overall reduction in predictive capability as Verstraeten and
Van Der Poel (2005) show. Another, very disruptive, consequence of dependent
events is that common goodness-of-fit tests applied give biased and incorrect results,
resulting in the commonly overlooked need of applying ad-hoc tests such as the
one developed by Archer et al. (2007), or measuring the model for misspecification
using a statistical test alike the one introduced by White and Domowitz (1984).

In this paper, we propose several sampling methods in order to avoid using
dependent data as input when training logistic regressions, focusing on eliminating
or reducing sampling bias by different sub-sampling methodologies in temporal,
panel-like, databases. This problem, very common consumer credit risk, is also of
relevance whenever there is a panel structure of data with a high rate of repeated
cases, such as predictive modeling in marketing campaign response.

The paper is structured as follows: First, we show how is that a dependence
structure arises when monthly account data and a standard definition of default.
Second, we describe the four sampling techniques implemented to overcome the
latter issue. Third, we calibrate logistic regressions using these techniques, and
compare the discrimination power of these regressions against one calibrated using
all the data points. The paper ends with conclusions and practical recommendations
about the importance of the issue.

2 Dependence Structures

The data commonly used in developing behavioral scoring models corresponds
to observations at the end of every month for every client currently on an
active relationship with the financial institution. Usually, these databases contain
information about the products that every client has, so there will normally be
one record for every product—client, each month. Because the risk that is being
studied is the one associated with the client and not with a single product, these
tables are usually consolidated to show the credit behavior of the clients, in each
particular month. Finally, these tables are cross-referenced with other sources to
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obtain additional information, normally consisting of demographic (in the case of
retail lending) and external credit information.

The dependent variable associated with the client behavior that is going to
be modeled through a logistic regression is constructed using the days in arrears
information. So, for client i on time t , the dependent variable yit is obtained as
follows:

yit D


1 maxsD1;:::;h di;tCs � 90

0 otherwise
(1)

where dit corresponds to the days in arrears that client i shows on time t , and h is a
parameter of the model and corresponds to the length of the time frame to include
on an observation of future behavior. This means that if the client becomes 90 days
in arrears or more in any of the h subsequent months, that client is marked on time t
as showing a default from that record onward. We use here the standard definition of
default accepted by the Bank for International Settlements and the Basel Committee
on Banking Supervision (2006).

With this definition of default, a 0 means that none of the following h months
show more than 89 days in arrears. This is where the independence issue arises.
Consider a client that never shows a delay in his/her monthly payments. Now,
suppose that yit and yi;tCh are known and that both equal 0. Then, it is possible
to deduce the value of the dependent variable for every month in this interval of
time. Indeed, yit D 0 means that

di;tCs < 90 8s D 1; : : : ; h (2)

and yi;tC12 D 0 means that

di;tC12Cs < 90 8s D 1; : : : ; h (3)

Of course, together these two equations imply that:

di;tCs < 90 8s D 1; : : : ; 2h (4)

We conclude that every indicator of default between t and t C h has to be equal
to 0. Therefore, there is a dependence structure between yit, yi;tCh, and every point
in between.

3 Sampling Algorithms

We develop four sampling algorithms that choose data in a way so that dependence
structures are eliminated. The motivation behind the use of algorithms is to
“simulate” a data generation process that does not produce dependent observations
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Algorithm 1 Algorithm 1: One-month-per-client sampling
1: S D ; {Reduced sample set}
2: for t D 1 to t do
3: for i D 1 to N do
4: Identify the subset Di 	 f1; : : : ; T g in which the client is observed.
5: Choose a random date t 0 2 Di .
6: Include the observation .i; t 0/ in the sample S , S D S [ .i; t 0/.
7: end for
8: end for
9: return S

Algorithm 2 Algorithm 2: One-month-per-client sampling 2
1: S D ; {Reduced sample set}
2: for i D 1 to N do
3: Select random time t 0 2 f1; : : : ; T g.
4: if Pair .i; t 0/ exists in full sample. then
5: S D S [ .i; t 0/

6: end if
7: end for
8: return S

in the sense explained in the above section, so that the estimation can be applied in a
straightforward manner. Of course, this imposition implies that less data is going to
be included on model calibration. We assume that there is a full sample set index F
such that a pair .i; t/ is in F if both a given customer i is in the books (and therefore
has data available) at time t .

Algorithms 1–3 construct small samples of data, because they select at most 1
observation per client. Therefore, to assure consistency of the estimates, parameters
obtained on each sample are then averaged to obtain the final estimate, in a
bootstrapping approach. Algorithm 1 corresponds to stratified sampling, regarding
each client as a stratum. It selects, for every i , one random date t in Fi D
.c; t/ 2 F W c D i . This approach distorts the distribution of the data, because it
tends to over represent “occasional clients”: individuals who have little history with
the institution.

Algorithm 2 tries to control for the distortion previously described. It can be
regarded as a cluster sampling, in which each client (with all of its corresponding
observations) is regarded as a cluster. First, each cluster i is selected with probability
jFi j
jF j . Then, one observation from each individual is selected at random from the dates
available for it in the dataset.

Algorithm 3 builds on the fact that, by definition, clients appear only once each
month. Thus, it constructs T different samples, labeled Ft ; t D 1 : : : T , so that Ft D
.i; s/ 2 F W s D t . This method assumes that the credit behavior of the population
does not change heavily from one month to the other.

Finally, the aim of Algorithm 4 is to try to include the most data associated with
each client available set of data Fi , controlling that every pair of data is separated
for more than h months, and therefore independent with respect to the framework
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Algorithm 3 Algorithm 3: Each month as different sample
1: S D ;
2: Select random time t 0.
3: S D fi W .i; t 0/ 2 F g
4: return S

Algorithm 4 Algorithm 4: mod h Sampling
1: Construct a reduced sample Z0 using (for example) algorithm 1.
2: for Clients i in Z0 do
3: Fi D ft W .i; t / 2 Z0g
4: FLAG = true.
5: for f D .i; t / 2 Fi do
6: Si D fs W .i; t / 2 S

7: for s 2 Si do
8: if js � t j mod h ¤ 0 then
9: FLAG = false.

10: end if
11: end for
12: if FLAG= true then
13: S D S [ f

14: end if
15: end for
16: end for
17: return S

presented earlier. In other words, the aim is to solve for each client i :

maxSi2Z Card.Si /
s.t. t2 � t1 � h 8t2 > t1:tj 2 Si ; j D f1; 2g: (5)

The feasible set is non-empty (one can always use just one datum), so the solution
exists; although, it may not be unique, depending on the data available. Algorithm 4
is a heuristic approach to solve this problem.

4 Experimental Results

To illustrate the difference in performance of the sampling methods, we imple-
mented them on a real financial institution database. The data comes from monthly
observations of the behavior of the consumer retail business line. The list of clients
was split 70–30 % to create a training set and a validation set of data.

The first step to build the logistic regression models was to perform univariate
analysis of the variables included, resulting on a predictive power ranking of
variables. The level association of every variable with the target was calculated using
CHAID trees, based on the chi square statistic. The optimal splitting constructed by
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Table 1 Description of datasets used per algorithm

Algorithm No. of sets Avg. size Avg. bad rate No. variables

1 50 19,063 2.55 % 12
2 50 10,738 2.01 % 5
3 50 10,733 2.05 % 4
4 1 57,038 2.08 % 25
Base 1 407,844 2.07 % 39

CHAID trees was used to define sets of dummy indicators for each variable. Then,
a correlation filter was applied to the dummies, with a tolerance of 50 %, assuring
that whenever a conflict appeared, the dummy associated with the variable that was
higher on the univariate ranking was preserved.

The next step was to construct sample using the above mentioned algorithms.
Table 1 shows statistics of the sets built. The base algorithm refers to using
all the data points in the training set associated with one client. Due to the fact
that the sample size of sets created by Algorithms 1, 2 and 3 was less than 5 % of
the available data (represented by the set size of the Base Algorithm), 50 samples
were extracted so that the logistic regression model would be obtained by averaging
coefficients obtained across the 50 sets, in order to assure the robustness of the
results.

Using the above mentioned sets, forward selection with logistic regression was
applied to reduce the number of selected variables. For algorithms 1, 2 and 3, this
process was run for every one of the 50 sets constructed, so 50 lists of selected
dummies were obtained. The final set of dummies for each method was the one
that appeared on at least 90 % of the lists. The same table also shows the number of
variables selected with each method, and it is clear that the algorithms that produced
the smaller sets of data tend to include the least number of dummies.

The last step was to calibrate logistic regressions using just the list of dummies
selected under each sampling approach. Again, for Algorithms 1, 2 and 3, logistic
models were fitted on each of the samples, and then the final coefficients of the
model were calculated as the average across all sets.

In order to validate the results of each model, Kolmogorv–Smirnov and Area
Under ROC statistics were calculated in the validation set. These statistics were
calculated for each month of the set, so as to assure that just one observation per
client would be used. Table 2 shows the average and standard deviation for both
statistics, across all months on the validation set.

The results show that the Base Algorithm is the one that shows the best
performance under both measures. Nevertheless, Algorithm 4 shows less volatility
on the KS statistic (although this does not occur with AUC), and achieves almost
the same performance. The worst results are shown by Algorithms 2 and 3.

To investigate if the differences in performance of Algorithm 4 and Base were
due to model misspecification, a neural network model was calibrated and validated
with the same approach as before. Table 3 shows these results.
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Table 2 Results per algorithm

KS AUC

Algorithm Average Std. Dev. Average Std. Dev.

1 71.39 % 3.49 % 91.58 % 1.78 %
2 68.95 % 4.06 % 87.92 % 1.71 %
3 68.68 % 3.98 % 87.00 % 2.07 %
4 74.39 % 2.85 % 93.11 % 1.27 %
Base 74.89 % 3.02 % 93.55 % 1.20 %

Table 3 K–S statistics, and AUC for each algorithm

KS AUC

Algorithm Average Std. Dev. Average Std. Dev.

4 69.46 % 2.92 % 91.16 % 1.47 %
Base 71.08 % 3.04 % 91.66 % 1.39 %

It is clear that the same results are obtained using neural networks instead, and it
can be concluded that the most likely reason behind the difference in performance
across the methods is the number of data points in the sets created by them. Indeed,
Algorithm Base and 4 show the largest size and the best performance. Conversely,
Algorithms 2 and 3 show the worst performance and the smallest sample size.
Therefore, the differences in performance would be explained by the fact that the
quality of the models calibrated using more data is better, because more and more
complex patterns can be discovered with more data.

In sum, although we couldn’t find reductions in performance associated with the
use of dependent data, we do find that one can achieve almost the same performance
with less data points, using considerably less classification variables (as with
Algorithm 4), which in turn reduces the volatility of the K–S statistic in time. Con-
sequently, we believe that sampling algorithms that demand a minimum separation
of h months between observations associated with the same client on each sample
can deliver better performance results in behavioral scoring applications.

5 Conclusions

In this paper we aimed to empirically measure the importance of the independence
assumption needed to use standard maximum likelihood calibration methods for
logistic regressions, in the context of behavioral scoring model development.
We showed how dependence structures arise when using monthly client behavior
data, and a standard definition of target variable. Finally, sampling methods that
eliminated these dependencies were developed, and testing them on real life data
from a financial institution show how reducing the impact of bias can lead to worst
predicting capabilities.
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The experiments showed that when using all the observations of a client the best
performance was achieved. In other words, trying to control the dependence in data
caused model impairment. This situation was related with the smaller training set
size that sampling implies. Nevertheless, Algorithm 4 achieves almost the same
performance than Base Algorithm, but using 14 variables less and showing lower
volatility of the KS statistic.

In sum, trying to control for dependence in data using sampling techniques could
harm the performance of the calibrated models. Although it may be useful in order
to lower the volatility of the model without sacrificing a lot of discriminating power,
it should be used carefully, and trying to include the most data possible, using
algorithms such as Algorithm 4.
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A Practical Method of Determining Longevity
and Premature-Death Risk Aversion
in Households and Some Proposals
of Its Application

Lukasz Feldman, Radoslaw Pietrzyk, and Pawel Rokita

Abstract This article presents a concept on how to infer some information on
household preference structure from expected trajectory of cumulated net cash
flow process that is indicated by the household members as the most acceptable
variant. Under some assumptions, financial planning style implies cumulated
surplus dynamics. The reasoning may be inverted to identify financial planning
style. To illustrate the concept, there is proposed a sketch of household financial
planning model taking into account longevity and premature-death risk aversion,
as well as bequest motive. Then, a scheme of a procedure to identify and quantify
preferences is presented. The results may be used in life-long financial planning
suited to the preference structure.

1 Introduction

Modern personal financial planning builds on achievements of many interrelating
disciplines and specializations. Its theoretical backbone is life cycle theory, devel-
oped since the middle of the twentieth century, starting from seminal works by Ando
and Modigliani (1957) and Yaari (1965), based on earlier achievements by Ramsey
(1928), Fisher (1930) and Samuelson (1937) in the field of intertemporal choice.
Under the influence of concepts developed by these authors it is often postulated
that a life-long financial plan of a household should optimize time structure of
consumptby maximization of expected discounted utility. To do it, one needs
to formulate the utility function, estimate its parameters and define probabilities
to be used in calculation of expected value. Most publications on this subject
use utility of consumption, neglecting bequest motive. Longevity risk aversion is
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usually the only kind of risk aversion considered there. As regards the probabilities,
life-cycle models are applied, assuming either deterministic (Yaari 1965), or,
sometimes, stochastic mortality force (Huang et al. 2011). Existing life-cycle
literature concentrates on models that support optimization of retirement capital
distribution, rather than life-long financial planning. Moreover, these models are
better suited for individuals than households. Consistently, they neglect premature-
death and focus on longevity risk (for a one-person household premature death
has no financial consequences). Another implication of that approach is treating
the time when the life of the analyzed entity ends as the only stochastic element
(unless stochastic mortality force is assumed). In real life, from financial point
of view, it is important not only whether the household still exists, but also who
of its members is alive (particularly when their incomes or variable costs differ
substantially).

Also in the field of practical applications there is a lot of scope for improvements.
The main financial goal that must be worked into personal financial plan is, certainly,
retirement. This is because of its relatively big magnitude, as well as impossibility
of post-financing it. Retirement planning professionals tend, however, to attach
excessive weight to the following two rules, applied equally to all households,
regardless their preferences: (1) retirement income of a household should be at least
as high as total consumption of the household, and (2) individual retirement income
of a household member should not be lower than his or her individual financial needs
in retirement. Building retirement capital that guarantees this is a safe but expensive
way of providing for old age. It may be inefficient, due to overlapping coverage of
household fixed costs, and generates considerable unutilized surplus. Neglecting
this surplus would, in turn, lead to overestimating retirement capital needs and,
consistently, paying unnecessarily high contributions to private pension plans in
pre-retirement period. It is possible to propose more risky, but less expensive
solutions. They should be, however, suited to preference structure of household
members.

In his article a modification to the existing approaches is presented. It is, so far, a
basic version of the model, narrowed to retirement planning. The model is used here
just as a tool facilitating assessment of financial-safety level demanded by household
members for their retirement period, taking also into account their bequest motive.
This will determine boundary conditions for any other financial plans. The results
may be then used as an input to augmented versions of the model, that, in turn,
may be applied as tools supporting life-long financial planning. The extensions
might, for example, allow for multiple financial goals and a variety of financing
sources.

The proposition encompasses a simplified household model, a concept of
augmented preference-structure formal description and a general idea of a tool for
assessing aversion to premature-death and longevity risk (with bequest motive taken
into account). The underlying model of household cash flow is expressed in the
form of cumulated net cash flow process (also referred to as cumulated surplus
dynamics).
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Under assumptions of Sect. 3, there is a strict dependence between financial plan
and expected trajectory of cumulated net cash flow process. The focus is on the
segment of the trajectory that corresponds to the retirement phase of the life cycle.
One can identify just a couple of typical general shapes this expected trajectory may
take on, each corresponding to some other level of premature death and longevity
risk. Each has also its particular potential to generate bequest capital.

The core of this proposition is a simple technique of assessing risk aversion
towards two types of length-of-life-related risk at once. It is shown how a scope
of decision variants, together with information about their financial consequences
for old age, might be visualized to household members, and how the feedback
information received from the household may be interpreted and used in the model.

2 Definitions

The terms that are used here in specific meaning, suited for our approach, are:
household, full and partial retirement and schemes of retirement gap filling.

Definition 1. Household
– an autonomous economic entity distinguished according to the criterion of
individual property, whose members are two natural persons (main members of
the household), fulfilling the following conditions: (1) jointly set and realize, in
solidarity with each other, goals as regards majority of the most important needs of
all members of this entity and (2) are supposed to intend to remain members of this
entity, to the extent possible, throughout the whole period of its existence—together
with other natural persons, who, in some phases of the entity life cycle, fulfill the
condition 1 or are (at least economically) dependent on any of the main members.

Definition 1 uses some key elements of a broader definition proposed by Zalega
(2007).

Definition 2. Full pension
– such retirement income of an individual that completely covers his/her variable
costs and the whole amount of fixed costs.

Definition 3. Partial pension
– such individual retirement income that is lower than full pension.

Definition 4. General schemes of retirement gap filling
A scheme of retirement gap filling is one of the following three general classes of
relations between retirement income and consumption needs:

1. “2 � Full”

In.1/t � FC C VC.1/
t I In.2/t � FC C VC.2/

t (1)
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Fig. 1 Household’s cumulated net cash flow in: (1) “2 � Full”, (2) “Full–Partial”, (3) “2 � Partial”
scheme, for: (a) expected R1-R2-D2-D1 scenario, (b) premature death, (c) longevity

2. “Full–Partial”

In.1/t < VC.1/
t I In.2/t � FC C VC.2/

t I In.1/t C In.2/t < FC C VC.1/
t C VC.2/

t (2)

3. “2 � Partial”

VC.1/
t < In.1/t < FC C VC.1/

t I VC.2/
t < In.2/t < FC C VC.2/t (3)

In.1/t C In.2/t < FC C VC.1/
t C VC.2/

t

Notation: In.i/t —i -th person’s total income in period t , FC—household fixed
costs, VC.i/

t —variable costs assigned to the i -th person.

Graphical illustration of these general schemes present Fig. 1.
Moreover, the schemes “Full–Partial” and “2 � Full” have four specific variants

(each). Together there are 9 possible schemes. More details are presented in Table 1.
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Table 1 Income-cost structure and corresponding risks related to length of life

Ex. In(1) In(2) PD(1) Lgv.(1) PD(2) Lgv.(2) Scheme

1 In.1/ < VC.1/ In.2/ < VC.2/ � C � C 2 � Partial
2 VC.2/ < In.2/ � C C C 2 � Partial

< FC C VC.2/

3 In.2/ > FC C VC.2/ � C C � Full � Partial

4 VC.1/ < In.1/ In.2/ < VC.2/ C C � C 2 � Partial
< FC C VC.1/

5 VC.2/ < In.2/ C C C C 2 � Partial
< FC C VC.2/

6 In.2/ > FC C VC.2/ � C C � Full � Partial

7 In.1/ > In.2/ < VC.2/ C � � C Full � Partial
FC C VC.1/

8 VC.2/ < In.2/ < C � � C Full � Partial
FC C VC.2/

9 In.2/ > FC C VC.2/ � � � � 2 � Full
Where:
Ex. – exposure type, In(i ) – i -th person’s income, PD(i ), Lgv.(i ) – existence (C) or nonexistence
(�) of a threat to liquidity in case of premature death (PD(i )) or longevity (Lgv.(i )) of person i
(premature-death and longevity risk)

3 Assumptions

The model takes on the following assumptions:

• Both main members intend to remain in the household until their death.
• Joint utility function of the whole household is considered.
• Utility function of the household is composed of two elements: utility of

consumption and utility of bequest.
• Pre-retirement household income is constant in real terms (inflation indexed).
• Fixed real rate of return on private pension plan.
• Pension income constant in real terms (inflation indexed).
• Fixed replacement rate (but may be different for women and men).
• No other financial goals considered.
• Household members buy life annuity.
• Household consumption is fixed at a planned level, unless loosing liquidity.
• There is no “full pension” restriction

There are four key events in life cycle of a household. The times are denoted as:

• retirement of the first person (deterministic):R1,
• retirement of the second person (deterministic):R2,
• death of the second person (stochastic):D2,
• death of the first person (stochastic):D1.
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If a typical case is taken into consideration, where the household is just a
marriage and spouses are of similar age, then expected order of these events is just
R1, R2, D2, D1 (or, put differently:E.R1/ < E.R2/ < E.D2/ < E.D1/).

Are the assumptions listed above realistic? Together they make up an indeed
simplified household finance model. This refers to the number of financial goals
(retirement only), possible ways of financing, dynamics of labour income, con-
sumption needs, etc. But this model is used just to produce general schemes of
filling retirement gap, each connected to a corresponding level of risk and each
showing somewhat different potential to generate bequest. The model also allows
to represent the schemes in a simple graphical and tabular form, to be shown to
household members. The choice of scheme by the household members should help
assessing their attitude towards risk and bequest motive. The results may be then
used in a final, more advanced, model, to support life-long financial planning. That
other model should, in turn, allow for any number of financial goals and ways of
financing them, as well as for more types of risk. This will require revising and
relaxing some assumptions.

4 Optimization

Formally the goal function may be expressed with the following (4):

V.BI �; ı; �/ D
1X
tD0

�
1

.1C �/t
� qt j�t � u.Ct.B/I �; ı/

C 1

.1C �/t
� �t j�t � v.CNCFt .B/I �/


(4)

for the optimization task defined as: argmaxBV.BI �; ı; �/.

where: Ct—consumption (in monetary terms) at t , CNCFt—cumulated net
cash flow at the moment t , �—parameter describing longevity risk aversion,
ı—parameter of premature death risk aversion, �—bequest motive parameter,
u.:/—utility of consumption, v.:/—utility of bequest, �—interest rate used for
discounting.

The decision variable B may be defined as (5):

B D
�

z1 x1
z2 x2


(5)

where:
zi is a fraction of variable costs of i -th person covered by her retirement income,
xi is a fraction of fixed costs covered by retirement income of i -th person.
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The feasible set is given by condition 6:

0 � zi � 1I if zi < 1, then xi D 0I if zi D 1, then xi � 0 (6)

The probabilities qt j�t and qt j�t used in (4) are not just conditional survival
probabilities (like in Yaari (1965) or Huang et al. (2011)), but probabilities that
consumption (or cumulated surplus) is of a given size at a given time. These
probabilities depend on survival probabilities, but are not identical with them.

Under the assumption of Sect. 3 each of retirement gap filling schemes, rep-
resented by B, may be, ceteris paribus, realized by a unique combination of
consumption, investments and unconsumed (but also uninvested) surplus. This, in
turn, determines cumulated surplus dynamics. On this basis a cumulative stochastic
process of surplus may be derived. Its will, certainly, depend on mortality model
used.

Another task is to define utility functions u.:/ and v.:/. Even before this, it is
possible, however, to present a general concept on how to estimate their parameters
(� , ı and �), which is the subject of this article.

At last, there is an interest rate (�), used for discounting. For now it is sufficient
to say that it is a parameter, just set by the analyst. But in further research one should
consider, what kind of risk premia the rate should include.

5 The Role of Bequest Motive

Choosing from amongst the schemes, a household chooses in fact a future dynamics
of cumulated net cash flow. It implies corresponding combinations of premature-
death and longevity risk. Each scheme may be also characterized with some level of
expected bequest left. Two households with identical risk aversion may differently
value available schemes if they differ in their attitude towards bequest.

This is why the goal function contains element reflecting bequest motive (4).
Each row of Table 1 should be then considered twice: from the point of view of a
household that is and is not interested in passing any bequest to their descendants.

6 Choice of Scheme and Model Calibration

Having defined all decision variants, one may start with goal function calibration.
A sketch of rule (ordinal condition) for estimation results is presented in Table 2.

It is suggested that only nine levels of risk are considered (for both kinds of life-
length risk) and risk aversion parameters � and ı may take on just nine values (each).
The values reflect ranks with respect to the level of risk, but in the inverted order (the
higher risk aversion, the lower risk accepted). Risk aversion is measured here on an
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Fig. 2 Cumulated net cash flow of a household under various schemes of retirement gap filling;
sorted from the safest (no. 9) to the most risky (no. 1)

ordinal scale only. Utility function should be then constructed in such a way that it
makes sense of these values. A rule will be that the goal function with parameters
�j , ıj and �j , corresponding to j -th row of Table 2, reaches its maximum on
the range of values of B (Sect. 4, (5)) that fulfills income-cost conditions of the
scheme j .

The procedure of model calibration boils down to presentation of graphical
schemes and Table 1 to main members of the household, supplemented with
additional explanation about threats in case dates of death deviate from their
expected values, and requesting a feedback in the form of the choice of only one
of these schemes. In addition, the information about household’s bequest motive
must be collected. Then values of � , ı and � are read from the selected row of the
table.

This is, certainly, not an estimation in statistic-econometric sense. No sig-
nificance tests are possible. Here p-value would mean something like this: if a
household has indeed no aversion to longevity risk (� D 0), then what is the
probability that it chooses, say, Scheme 3 (� D 5/? Next, the probability might
be compared to the test significance level. This is, however, beyond the scope of this
article.

7 Various Gap-Filling Schemes: Numerical Example

Household parameters: a 38 year old woman (1) with income 4,000, and 39 year
old man (2) with income 4,500. Scenario: R1-R2-D2-D1. Total expenses: (a) 6,450
(pre-retirement), (b) 5,950 (R1-R2), (c) 4,950 (R2-D2), (d) 2,975 (D2-D1). Let
retirement age be 60 for women and 65 for men.

Cumulated surplus term structures for several schemes of retirement gap filling
are presented in Fig. 2. The plots presented there show the relationship that is essen-
tial for the discussed problem. Namely, they illustrate a potential for investigating a
trade-off between cumulated net cash flow on the day the first person retires and the
same quantity close to the horizon of the plan.
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8 Application and Directions of Further Development

Once � , ı and � are determined, they may be used in optimization of life-long
financial plan. In planning stage the model of cumulated net cash flow may be much
more complex, due to new kinds of financial goals and ways of financing them.

The main challenge in further research will be defining such utility functions
(u.:/ and v.:/ in (4)) that reflect properly preferences of a household. For a given set
of values of risk-aversion and bequest-motive parameters, the goal function should
reach its maximum just for the scheme corresponding to these values.

Another direction is classification of households with respect to life-length risk
aversion.

References

Ando, A., & Modigliani, F. (1957). Tests of the life cycle hypothesis of saving: comments and
suggestions. Oxford Institute of Statistics Bulletin, 19 (May), 99–124.

Fisher, I. (1930). The theory of interest. New York: Macmillan.
Huang, H., Milevsky, M. A., & Salisbury, T. S. (2011). Yaari’s Lifecycle Model in the 21st Century:

Consumption Under a Stochastic Force of Mortality. URL: http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=1816632[or:]http://dx.doi.org/10.2139/ssrn.1816632.Cited22March2012

Ramsey, F. P. (1928). A mathematical theory of saving. The Economic Journal, 38(152), 543–559.
Samuelson, P. A. (1937). A note on measurement of utility. Review of Economic Studies, 4,

155–161.
Yaari, M. E. (1965). Uncertain lifetime, life insurance and theory of the consumer. The Review of

Economic Studies, 32(2), 137–150.
Zalega, T. (2007). Gospodarstwa domowe jako podmiot konsumpcji. Studia i Materiały, Wydział

Zarza̧dzania UW

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1816632 [or:] http://dx.doi.org/10.2139/ssrn.1816632. Cited 22 March 2012
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1816632 [or:] http://dx.doi.org/10.2139/ssrn.1816632. Cited 22 March 2012


Correlation of Outliers in Multivariate Data

Bartosz Kaszuba

Abstract Conditional correlations of stock returns (also known as exceedance
correlations) are commonly compared regarding downside moves and upside moves
separately. The results have shown so far the increase of correlation when the market
goes down and hence investors’ portfolios are less diversified. Unfortunately, while
analysing empirical exceedance correlations in multi-asset portfolio each correlation
may be based on different moments of time thus high exceedance correlations for
downside moves do not mean lack of diversification in bear market.

This paper proposes calculating correlations assuming that Mahalanobis distance
is greater than the given quantile of chi-square distribution. The main advantage of
proposed approach is that each correlation is calculated from the same moments
of time. Furthermore, when the data come from elliptical distribution, proposed
conditional correlation does not change, which is in opposition to exceedance
correlation. Empirical results for selected stocks from DAX30 show increase
of correlation in bear market and decrease of correlation in bull market.

1 Introduction

Correlation estimates play an important role in finance. It is especially visible in
portfolio allocation, where the weight of an asset in a portfolio does not rely only
on an estimated risk but also depends on an estimated correlation. Many previous
studies (Longin and Solnik 2001; Ang and Bekaert 2002; Ang and Chen 2002; Hong
et al. 2007; Butler and Joaquin 2002; Chua et al. 2009; Garcia and Tsafack 2011
and references therein) have revealed that asset returns are more correlated when the
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market goes down and less when it goes up. This occurrence is known as asymmetric
dependence between asset returns. Hence, it influences reduction of diversification
during market turbulence (when extreme returns occur).
The asymmetric dependence has been revealed by the concept of exceedance
correlation. This concept is used to measure the correlation between asset returns
when both are either lower or greater than the given level (e.g., one standard
deviation). Therefore, this approach measures the correlation in the tails (upper and
lower tail separately) for each pair of assets returns. However, Campbell et al. (2008)
show that increase in conditional correlation is due to normality assumption for the
return distribution.
The aim of this paper is not to propose an alternative model for the exceedance
correlation, but to propose an alternative statistic to measure correlation between
multivariate extreme returns. Not only it is more adequate to portfolio allocation
but also it is easier to compute, more useful for practitioners and less sensitive to
model assumption. The main disadvantage of the exceedance correlation is that it is
calculated for each pair separately and may be based on different moments of time.
Thus, even strong asymmetries for all assets in portfolio may never occur, especially
for a large size portfolio. The proposed approach is defined as the correlation for a
subsample in which Mahalanobis distance for multivariate observations is greater
than a given level. This definition allows proposed correlation to capture both more
and less correlated assets while the exceedance correlation fails.
The rest of this paper is organised as follows. Section 2 introduces the concept of the
exceedance correlation. Section 3 proposes new approach for correlation between
extreme returns and compares this concept to the exceedance correlation. Section 4
includes empirical analysis for proposed statistic. Section 5 concludes this paper.

2 Exceedance Correlation

The conditional correlation, also known as the exceedance correlation, measures a
correlation between extreme assets returns. The exceedance correlation, introduced
by Longin and Solnik (2001), is a correlation of two returns R1 and R2 conditioned
by exceedance of some threshold, that is:

�E.˛/ D



Corr.R1;R2jRi � qRi .˛/I i D 1; 2I˛ � 0:5/

Corr.R1;R2jRi > qRi .˛/I i D 1; 2I˛ > 0:5/ ; (1)

where qRi .˛/ is the ˛-quantile of the return Ri . Instead of the quantile of the
variable Ri , the i threshold can be used, where i means amount of standard
deviations exceeded by the return Ri .

The conditional correlation strictly depends on underlying distributions, which
is illustrated in Fig. 1. This example shows the shape of exceedance correlation
for standard bivariate normal distribution with correlation 0.5 and for the standard
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Fig. 1 A shape of the
exceedance correlation

bivariate t-distribution with correlation 0.5 with 3, 5, 7 and 10 degrees of freedom.
It can be seen that the exceedance correlation for normal distribution is strictly less
than 0.5 and it decreases moving toward the tails of distribution. This figure also
illustrates the influence of assumed distribution on a shape of the exceedance corre-
lation, e.g. for the t-distribution exceedance correlation increases when decreasing
degrees of freedom. It has been shown by many researchers (Longin and Solnik
2001; Ang and Bekaert 2002; Ang and Chen 2002; Hong et al. 2007; Butler and
Joaquin 2002; Chua et al. 2009 and others) that asset returns are more correlated
when the market goes down and less when it goes up. This result has been
obtained by comparing the differences between theoretical exceedance correlation
assuming bivariate normal distribution and the empirical exceedance correlation.
Unfortunately, for normality assumption the exceedance correlation is strictly less
than for the t-distribution assumption, hence the differences between theoretical
and empirical conditional correlation are sensitive to distributional assumption.
This problem has been analysed by Campbell et al. (2008) who have shown, that
assuming the t-distribution, these differences frequently disappear. This assumption
is justified in practice due to existence of outliers in real dataset.

Another problem with the exceedance correlation can occur in application to the
portfolio theory. Many researchers have argued that higher conditional correlation
between asset returns when the market goes down reduces benefits from portfolio
diversification (i.e. Ang and Chen (2002), Chua et al. (2009), Ang and Bekaert
(2002)). The magnitude of this reduction decreases when the number of assets in a
portfolio increases, which results from the definition of the exceedance correlation
which is calculated for each pair separately, hence conditional correlation is based
on different moments of time. Estimating a conditional correlation matrix with some
threshold ˛, for assets in a portfolio, does not mean that when extreme returns occur
all returns will be correlated according to this conditional correlation matrix, but
it means that when all returns exceed some threshold ˛, they will be correlated
in accordance with the estimated conditional correlation matrix. Thus, increasing
number of assets in portfolio, probability that all returns exceed some threshold
˛ decrease. For example, analysing returns of six stocks from DAX30, between
3 January 2003 and 22 February 2012 (2,332 days) only on 35 days (1.5 %) all
returns have been exceeded over one standard deviation (negative exceedance and
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positive exceedance have been counted together), for 20 stocks from DAX30, only
seven (0.30 %) have been observed, hence it can be seen that increasing amount of
assets in portfolio, calculated exceedance correlations for all stocks can appear very
rarely in practice, even when the threshold is relatively small.

Discussion in this section show, that exceedance correlation is very sensitive to
the model assumptions and it only concerns very rare situations. The presented
conditional correlation cannot give any information about less correlated returns
under market turbulence, which is significant in portfolio allocation. Therefore, it is
desirable to find statistic which measures dependence between stock returns and
avoids presented problems. This statistic is proposed in next section.

3 Correlation of Multivariate Extreme Returns

The aim of this section is to propose a statistic which measures dependence between
extreme returns and to give some reasons for its usefulness in financial data analysis.

The main point of the proposed correlation is to analyse correlation between
multivariate extreme returns (also called outliers). A return is called multivariate
extreme return when it has a “large” value of an outlyingness measure, e.g. the
Mahalanobis distance. The main difference between the exceedance correlation and
the proposed correlation of extreme returns is that calculation of the exceedance
correlation uses only bivariate extreme returns, while the proposed correlation uses
only the multivariate ones (which are not necessarily bivariate).

For a portfolio with N risky assets, proposed correlation of multivariate extreme
returns is given as:

�M .˛/ D Corr.Ri ; Rj jd2.R;�; ˙/ � c.˛//; (2)

where Ri is the return on the i -th asset in the portfolio, R D .R1; : : : ; RN / is the
vector of assets returns, � and ˙ is the mean and covariance matrix of the returns
on the N assets, d2.R;�; ˙/ is a squared Mahalanobis distance defined as follows:

d2.R;�; ˙/ D .R � �/0˙�1.R � �/:

The value c.˛/ is a fixed chosen constant determined by ˛, a number between 0
and 0.5, which is a fraction of observations taken to calculate �M .˛/. It is clear that
�M .˛/ estimates correlation between the most extreme returns in the dataset. Hence,
the natural choice for c.˛/ is the value for which P�;˙ .d

2.R;�; ˙/ � c.˛// D ˛

When assuming that returns are multivariate normal, then c.˛/ D �2N .1�˛/ where
�2N .˛/ is the ˛-quantile of the chi-square distribution with N degrees of freedom.

The presented approach is based on an elliptical truncation concept described by
Tallis (1963) for elliptically truncated multivariate normal distributions. The main
advantage of this concept is that the correlation does not change after elliptical
truncation when data come from an elliptical distribution. Thus, the proposed
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conditional correlation can be easily compared to its unconditional counterpart,
which makes it more useful in practice than the exceedance correlation is.

The proposed conditional correlation is able to capture both more and less
correlated assets under market turbulence, because it is computed for multivariate
outliers. It plays an important role in portfolio allocation as it is desirable to increase
the allocation to less correlated assets, especially when extreme returns occur.

The presented approach can be easily robustified using robust estimators of the
mean and covariance matrix in order to determine robust Mahalanobis distances.
Robust estimators are less sensitive to both deviations from the assumed distribution
(usually normal distribution) and to outliers. Hence, correlation of multivariate
extreme returns is less sensitive to the model assumption. The robustified version
of the conditional correlation is applied in empirical analysis and described more
widely in the next section.

4 Empirical Analysis

This section includes the methodology for testing the correlation of outliers as well
as performs the test and presents the results obtained for the real dataset.

4.1 Methodology

This section considers the problem of testing H0 W � D �M , the hypothesis
that the correlation of multivariate extreme returns differ from true correlation
coefficient. The aforementioned discussion shows that when data come from an
elliptical distribution the null hypothesis is valid, since the test procedure consists
in measuring two correlation coefficients over two distinct samples. That is, � and
�M are determined as follows:

O�M .˛/ D Corr.Ri ; Rj jd2.R; O�; Ȯ / � c.˛//;

O� D O�.˛/ D Corr.Ri ; Rj jd2.R; O�; Ȯ / < c.˛//; (3)

where O� and Ȯ are estimates of multivariate location and dispersion. Assuming
normality, the maximum likelihood estimators of mean vector and covariance matrix
can be used, albeit stock returns are not normally distributed which makes the MLE
estimators inefficient in the case of even minor deviations from normal distribution.
Hence, a better approach is determining robust distances using robust estimators,
such as Minimum Covariance Determinant (MCD). Correlation coefficients O�M .˛/
and O� are estimated using Pearson’s correlation due to maintenance impact of the
highest returns.
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It can be seen, that both correlations O�M .˛/ and O� are measured from different
groups of returns. The first estimate O�M .˛/measures correlation of extreme returns,
the second estimate O� measures correlation within the bulk of the data.

For the estimated values, the test on the difference between two independent
correlations is applied. In the first step, both correlation estimates are transformed
using Fisher r-to-z transformation (Steiger 1980):

Zi D 1

2
ln
1C �

1 � � ;

and next, the test statistic Z D Z1 � Z2 is computed. The test statistic Z is
approximately normally distributed with variance �Z D . 1

N1�3 C 1
N2�3 /

1=2. The
aforementioned procedure is applied for real dataset in the next section. As estimates
of multivariate location and dispersion, MCD estimates with 30 % breakdown point
are applied. As c.˛/ the �26.0:95/ is chosen.

The research utilises historical daily logarithmic rates of return for six largest
companies from DAX30: Siemens (SIE), Bayer (BAYN), SAP (SAP), Allianz
(ALV), Daimler (DAI), E.ON (EOAN). The empirical analysis focuses on analysing
the research hypothesis for two different periods separately: bear market—from
2007-07-01 to 2009-02-28 (422 returns) and bull market—from 2009-02-28 to
2011-07-19 (609 returns).

4.2 Empirical Results

This section focuses on the analysis of the conditional correlations with accordance
the aforementioned methodology. Tables 1 and 2 present estimated conditional
correlations of extreme returns ( O�M .˛/) and estimated conditional correlations
within the bulk of data ( O�). An asterisk indicates a significant difference between
correlations within the bulk of the data and correlation of extreme returns at the 5 %
level.

Table 1 presents estimated conditional correlations under bull market. It can be
seen that correlations of extreme returns decrease and this reduction is significant
for almost all companies except for Daimler. For Daimler, only one correlation with
E.ON fell down from 0.53 to 0.33 while other correlations persist on the same
level. These results indicate that under bull market correlations of extreme returns
decrease, however there exist stocks for which correlation of outliers is the same as
correlation within the bulk of the data.

Table 2 presents the estimated conditional correlations under bear market.
It shows that among four companies: Bayer, SAP, Allianz and Daimler each
correlation of outliers increases, moreover these correlations are relatively high
(greater than 0.6). For other companies (Siemens, E.ON) almost all correlations
have not changed significantly except for pairs Siemens and Daimler, Siemens and
SAP. The interesting result is that for E.ON all correlations of extreme returns
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Table 1 Conditional correlations under bull market

ALV BAYN DAI EOAN SIE SAP ALV BAYN DAI EOAN SIE SAP

The bulk of the data Extreme returns

ALV 1 0,64* 0,63 0,70* 0,76* 0,55* 1 0,27* 0,62 0,40* 0,62* 0,39*
BAYN 1 0,55 0,56* 0,66* 0,50* 1 0,42 0,31* 0,40* 0,27*
DAI 1 0,53* 0,67 0,50 1 0,33* 0,66 0,38
EOAN 1 0,66* 0,49* 1 0,40* 0,28*
SIE 1 0,57* 1 0,38*
SAP 1 1

An asterisk indicates a significant difference between correlation within the bulk of the data and
correlation of extreme returns at the 5 % level

Table 2 Conditional correlations under bear market

ALV BAYN DAI EOAN SIE SAP ALV BAYN DAI EOAN SIE SAP

The bulk of the data Extreme returns

ALV 1 0,47* 0,67* 0,36 0,62 0,48* 1 0,63* 0,77* 0,30 0,70 0,65*
BAYN 1 0,42* 0,45 0,57 0,43* 1 0,70* 0,32 0,67 0,61*
DAI 1 0,32 0,63* 0,46* 1 0,30 0,80* 0,74*
EOAN 1 0,43 0,36 1 0,30 0,27
SIE 1 0,54* 1 0,68*
SAP 1 1

An asterisk indicates a significant difference between correlation within the bulk of the data and
correlation of extreme returns at the 5 % level

decreased and were relatively low (between 0.27 and 0.32) in comparison to other
correlations of outliers which were greater than 0.61. These results show that under
bear market correlations of extreme returns are high and increase significantly.
Although, there exist stocks for which correlation of outliers does not change
significantly.

The differences between correlations under bear and bull market have been
compared in the same manner. Tables of which are not presented here due to
limited content of this paper. The results are similar to the presented ones, two most
interesting of which are drawn. Comparing the differences between correlations
from the bulk of the data, the significant increase has been observed for bull
market. For the differences between correlations of extreme returns, the significant
increase has been observed for bear market. Nevertheless, correlations did not
change significantly for some stocks.

To sum up, it can be seen that correlations of extreme returns significantly
increase under bear market and significantly decrease under bull market. However,
there exist stocks for which correlation does not change under market turbulence,
which shows that it is still possible to keep a diversified portfolio under bear or
bull market even when extreme returns occur. Another interesting conclusion is that
correlations differ under bear and bull market, since portfolio weights should be
adjusted when the market trends change.
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5 Conclusions

This paper includes a new proposal for correlation estimate of extreme returns which
can be used for practical purposes. It has been shown that proposed conditional
correlation is more adequate for portfolio allocation and more useful in practice as
against exceedance correlation.

The empirical analysis has revealed that although, correlation of extreme returns
significantly change, there exist stocks for which it does not. Thus, it is still possible
to keep a diversified portfolio under bear or bull market even when extreme returns
occur.

Obtained results can be practically interpreted as follows: under bull market
investors make similar decisions for most of companies (higher correlations within
the bulk of data) and occurrence of extreme returns results from independent
decisions which are based on the specific situation of each company (lower
correlations for outliers), e.g. new contract or sound financial results. Under bear
market one can observe the opposite situation, investors make independent decision
for each companies (lower correlations within the bulk of data), but occurrence of
extreme return for one company (high positive or negative return) follow the same
decision for other companies.
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Value-at-Risk Backtesting Procedures Based
on Loss Functions: Simulation Analysis
of the Power of Tests

Krzysztof Piontek

Abstract The definition of Value at Risk is quite general. There are many
approaches that may lead to various VaR values. Backtesting is a necessary
statistical procedure to test VaR models and select the best one. There are a lot
of techniques for validating VaR models. Usually risk managers are not concerned
about their statistical power. The goal of this paper is to compare statistical power
of specific backtest procedures but also to examine the problem of limited data
sets (observed in practice). A loss function approach is usually used to rank correct
VaR models, but it is also possible to evaluate VaR models by using that approach.
This paper presents the idea of loss functions and compares the statistical power of
backtests based on a various loss functions with the Kupiec and Berkowitz approach.
Simulated data representing asset returns are used here. This paper is a continuation
of earlier pieces of research done by the author.

1 Introduction: VaR and Backtesting

Value at Risk (VaR) can integrate different types of financial risk and is one of
the most popular risk measures used by financial institutions. It is such a loss
in market value of a portfolio that the probability of occurring or exceeding this
loss over a given time horizon is equal to a prior defined tolerance level q (Jorion
2007; Campbell 2005). VaR is often defined in a relative way, as a conditional or
unconditional quantile of the forecasted return distribution (denoted as VaRr;t .q/),
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where rt is a rate of return and F�1
r;t is a quantile of loss distribution related to the

probability of 1 � q at the instant t (Jorion 2007; Piontek 2010):

P
�
rtC1 � F�1

r;t .q/
	 D q; VaRr;t .q/ D �F�1

r;t :

This definition does not, however, inform how VaR should be actually estimated.
The risk managers never know a priori, which approach or model will be the best
or even correct. That is why they should use several models and backtest them.
Backtesting is an ex-post comparison of a risk measure generated by a risk model
against actual changes in portfolio value over a given period of time, both to evaluate
a new model and to reassess the accuracy of existing models (Jorion 2007). A lot
of backtest approaches have been proposed (Haas 2001; Campbell 2005; Piontek
2010):

1. based on a frequency of failures (Kupiec, Christoffersen),
2. based on a adherence of VaR model to the asset return distribution (on a multiple

VaR levels; Crnkovic-Drachman, Berkowitz),
3. based on a various loss functions (Lopez, Sarma, Caporin).

Those approaches have different levels of usage difficulty and they require different
sets of information. During the backtesting we should test the frequency of
exceptions as well as their independence (Haas 2001; Campbell 2005; Piontek
2010).

In the further part of this paper, the author examines specific methods of testing
only the number of exceptions. The null hypothesis for these tests states that the
probability of exceptions (approximated by empirically determined frequency of
exception) matches the VaR tolerance level. Sections 2 and 3 present methods used
only to evaluate models. By using all the methods presented in Sect. 4 it is possible
both to rank models and to test them. Unfortunately testing is not so easy as
ranking.

The last part compares the power of analyzed backtests and gives conclusions.

2 Test Based on the Frequency of Failures

The simplest and the most popular tool for validation of VaR models (for a length
of backtesting time period equal to T units) is the failure (or hit) process ŒIt .q/�

tDT
tD1

with the hit function defined as follows (Jorion 2007):

It .q/ D


1I rt � �VaRr;t .q/ if a violation occurs
0I rt > �VaRr;t .q/ if no violation occurs.

The Kupiec test examines how many times VaR is violated over a given span of time
(Jorion 2007; Piontek 2010). This statistical test is based on the likelihood ratio:
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LRKuc D �2 ln

�
.1 � q/T0qT1
.1 � Oq/T0 OqT1

�
� �21; (1)

Oq D T1

T0 C T1
; T1 D

TX
tD1

It .q/; T0 D T � T1:

3 Tests Based on Multiple VaR Levels

The information contained in the hit sequence is limited. However, the lost informa-
tion is potentially very useful in backtesting. By using additional information one
may construct a test verifying VaR models for any tolerance level. The properties
of correct VaR model should hold for any q. Backtests that use multiple VaR
levels might be applied. They are based on deviation between the empirical return
distribution and the theoretical model distribution, usually across their whole range
of values (Haas 2001; Campbell 2005; Piontek 2010).

Usually, the portfolio returns rt are transformed into a series ut and then into
zt , where Fr.�/ denotes the forecasted return distribution function (see (1)) and
˚�1.�/—is the inverse normal distribution function (Piontek 2010).

ut D Fr .rt / D
Z rt

�1
fr.y/dy; zt D ˚�1.ut /

If the Value at Risk model is well calibrated it is expected that:

ut � i:i:d:U.0; 1/ or equivalently zt � i:i:d:N.0; 1/:

Under the null hypothesis that the VaR model is correct, the zt should be independent
and identically distributed standard normal random variable. The property that the
series zt is normally distributed is a direct parallel to the unconditional coverage—
the proper number of exceptions. The most popular approach of this type is the one
proposed by Berkowitz (Haas 2001; Piontek 2010):

zt � � D �.zt�1 � �/C "t ; var."t / D �2;

H0 W .�; �; �/ D .0; 1; 0/:

A restricted likelihood can be evaluated and compared to an unrestricted one:

LRBuc D 2 ŒLLF. O�; O�; O�/� LLF.0; 1; O�/� � �22: (2)
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4 Tests Based on Loss Function

As it was mentioned before, risk managers are often interested not only in how
individual models perform, but also how they compare to each other. By using the
backtests presented in Sects. 2 and 3 of this paper, managers cannot rank the correct
models (for example by using p-values). So they can only find that some models
are good enough to use, but they cannot choose the best one. A group of methods
utilizing the concept of the so called loss functions might give us a help here (Lopez
1998; Blanco and Ihle 1999; Campbell 2005). Those techniques could be used to
rank models, but also to test them. Unfortunately testing is not so easy as in Kupiec
or Berkowitz approaches.

To use the loss function approach one needs (Lopez 1998; Campbell 2005):

• a set of n paired observations describing the losses for each period (rt ) and their
associated VaR forecasts (VaRr;t .q/),

• a loss function that gives a score to each observation (the score depends on how
the observed loss (or profit) contrasts with the forecasted VaR),

• a benchmark which gives us a score that we could expect from a “good” model,
• a score function which aggregates information for the whole period.

The idea of the loss function is to measure the accuracy of a VaR model on the
basis of the distance between observed returns and VaR values:

L.VaRr;t .q/; rt / D


f .VaRr;t .q/; rt /I if rt � �VaRr;t .q/
g .VaRr;t .q/; rt /I if rt > �VaRr;t .q/

(3)

An exception is given a higher score-value than nonexception (backtesting proce-
dures from the supervisory point of view):

f .VaRr;t .q/; rt / � g .VaRr;t .q/; rt / ;

and usually:

g .VaRr;t .q/; rt / D 0:

Finally, for each day the score function compares the values of a loss function with
a benchmark and aggregates this information for the whole time horizon (d D 1; 2):

SF D 1

T

TX
tD1

jL.VaRr;t .q/; rt /� benchmarkjd : (4)

Benchmark is usually obtained with Monte Carlo simulation by using (3) underH0,
that the assumed model is correct (VaR model the same as data generating process).

The closer the value of a score function value to zero, the better the model.
Therefore one can use the score function to rank models.
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A very simple size-adjusted loss function was introduced by Lopez (1998).
He proposed a testing method which incorporates the magnitude of exceptions in
addition to their number:

Lt .VaRr;t .q/; rt / D


1C .rt C VaRr;t .q//

2I if violation
0I if no-violation

(5)

Many loss functions and their alternatives have been proposed in the literature
afterwards (Blanco and Ihle 1999; Angelidis and Degiannakis 2007). A promising
candidate is the loss function (6) using Expected Shortfall—a very intuitive and
coherent risk measure (Jorion 2007). Usually k D 1 or 2.

f .VaRr;t .q/; rt / D jjrt j � ESr;t .q/jk; (6)

where:

ESr;t .q/ D EŒrt jrt < �VaRr;t .q/� :

As mentioned before, the loss function approach might be used to rank models
but also to evaluate them. The loss function procedure is not a formal statistical test
but one can convert this approach into such a test. The null hypothesis (H0) states
that the assumed model is correct.

A test statistic and a critical value are needed to be compared. The way we obtain
them depends on adopted testing framework (Campbell 2005).
To obtain the test statistic (SF0):

1. fit a statistical model to the observed returns,
2. calculate VaR forecasts using the assumed model,
3. compare VaR to the observed returns using the loss function (3),
4. calculate the score function value (SF0) using (4).

To obtain the test critical value (CV ):

1. simulate a large number of return series using the assumed model,
2. calculate corresponding VaR forecasts using the model for each series,
3. calculate the score function (4) values for each series (SF distribution),
4. find the quantile of the empirical distribution of the score function values for each

series.

The quantile may be used just as in a standard hypothesis testing framework—as
the critical value (CV ). Then we can carry out the test by comparing actual score
function value to the critical one (if SF0 > CV we reject H0 that the model is
correct). This approach will be used in the empirical part of this paper.



278 K. Piontek

Backtesting Errors

The tests presented before are, usually, used for evaluating internal VaR models
developed by financial institutions. However, one should be aware of a fact that two
types of errors may occur: a correct model can be rejected or a wrong one may be
not rejected (Jorion 2007; Piontek 2010).

All tests are designed for controlling the probability of rejecting the VaR
model when the model is correct. It means that the type I error is known. This type
of wrong decisions leads to the necessity of searching for another model, which
is just wasting time and money. But the type II error (acceptance of the incorrect
model) is a severe misjudgment because it can result in the use of an inadequate
VaR model that can lead to substantial negative consequences.

Performance of selected tests needs to be analyzed in regard to the type II error,
so the best test can be selected. The analysis is provided for a different (but small)
numbers of observations and model misspecifications.

5 Empirical Research: Simulation Approach

Generated returns are independent and follow standardized Student distribution with
the number of degrees of freedom between 3 and 25. Also VaR model is based on
the standardized Student distribution, but with 6 degrees of freedom always. Thus,
it may be incorrect. On this ground we can test the statistical power of backtests.
The t-distribution was used as a simplest (but quite realistic) approximation of
returns distributions. Results depend on the shape of the distribution. The further
research should be continued based on other fatter tailed and skewed distributions
(i.e. Pearson type IV or skewed-t distributions). The data series with 100, 250, 500,
750 and one thousand observations were simulated. For each type of inaccuracy
of the model and for each length of the data series Monte Carlo simulations with
10.000 draws were done. It allowed for calculating test statistics and for estimation
of the frequency at which the null hypotheses were rejected for incorrect models.
The last may be treated as an approximation of the test power.

Tables 1 and 2 present the summary of results obtained for different approaches
and different tolerance levels (q D 0:05 or q D 0:01). The central column (for
0.05) represents the type I error (significance level of the test is equal to typical
value 0.05), other columns—the power of the test for a given strength of inaccuracy
(incorrect frequency of failures).

Interpretation of the results is straightforward. For example, in the case of 250
observations, for a tolerance level of 0.05 and for the Kupiec test, an inaccurate
model giving 3 or 7 % of violations (instead of 5 %) was rejected only in about 39
and 30 % of draws. Put differently, in about 61 and 70 % of cases we did not reject
the wrong model at 5 % significance level.
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Table 1 Power of backtests for VaR tolerance level q D 0:05, ˛ D 0:05

Actual frequency of violations
Number
of obs. 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070

Power of the Kupiec test (1)
100 0.191 0.131 0.091 0.072 0.075 0.073 0.084 0.130 0.173
250 0.390 0.235 0.131 0.075 0.061 0.071 0.123 0.211 0.305
500 0.670 0.406 0.211 0.108 0.054 0.074 0.150 0.295 0.443
750 0.802 0.546 0.259 0.105 0.059 0.108 0.257 0.448 0.655
1,000 0.914 0.682 0.349 0.118 0.047 0.100 0.263 0.520 0.737

Power of the Berkowitz test (2)
100 0.224 0.149 0.090 0.060 0.047 0.059 0.137 0.264 0.446
250 0.587 0.342 0.173 0.073 0.046 0.091 0.241 0.524 0.771
500 0.919 0.656 0.317 0.109 0.048 0.131 0.416 0.781 0.958
750 0.986 0.858 0.475 0.151 0.048 0.184 0.578 0.915 0.992
1,000 0.999 0.946 0.619 0.179 0.049 0.215 0.701 0.967 0.997

Power of the Lopez loss function test (5)
100 0.074 0.068 0.065 0.058 0.051 0.045 0.041 0.039 0.038
250 0.147 0.103 0.076 0.059 0.050 0.046 0.046 0.047 0.051
500 0.204 0.132 0.087 0.063 0.051 0.047 0.052 0.060 0.071
750 0.257 0.159 0.098 0.065 0.050 0.049 0.058 0.073 0.092
1,000 0.312 0.190 0.111 0.067 0.051 0.051 0.064 0.084 0.113

Power of the expected shortfall loss function test (6)
100 0.151 0.100 0.069 0.0530 0.051 0.060 0.083 0.117 0.161
250 0.344 0.200 0.110 0.061 0.051 0.070 0.123 0.202 0.310
500 0.629 0.375 0.182 0.080 0.051 0.086 0.187 0.342 0.525
750 0.810 0.530 0.257 0.097 0.050 0.103 0.254 0.474 0.689
1,000 0.913 0.665 0.336 0.115 0.050 0.119 0.316 0.580 0.803

For VaR tolerance level equal to 0.05 the superiority of Berkowitz test over
the other approaches is observable for all lengths of return series. For VaR
tolerance level of 0.01 the superiority is observable only for 750 and one thousand
observations series length. For the series with a shorter length the conclusions are
ambiguous.

The statistical power of the tests depends strictly on the type of loss function.
Even for the Expected Shortfall (ES) Loss Function (with d D 2; higher power than
for the Lopez approach) the statistical power of test is lower than for the Berkowitz
approach. The superiority of loss function approach over the Berkowitz approach
has not been found for VaR models with tolerance level equal to both 5 and 1 %.
The Kupiec and the ES Loss Function approaches are comparable with respect to
power, however, the Kupiec test is easier to use.

Generally speaking, statistical power of the tests are rather low. Only for the
longer series and stronger inaccuracies the power could be acceptable for risk
managers. For the tolerance level of 1 % the results indicate that the Kupiec test
is not adequate for small samples—even for one thousand observations. This test
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Table 2 Power of backtests for VaR tolerance level q D 0:01, ˛ D 0:05

Actual frequency of violations
Number
of obs. 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014

Power of the Kupiec test (1)
100 0.003 0.006 0.008 0.013 0.018 0.024 0.031 0.046 0.049
250 0.167 0.099 0.066 0.048 0.094 0.081 0.084 0.090 0.095
500 0.197 0.136 0.099 0.076 0.067 0.073 0.101 0.133 0.177
750 0.222 0.177 0.133 0.116 0.041 0.051 0.079 0.124 0.172
1,000 0.285 0.178 0.106 0.063 0.053 0.067 0.112 0.174 0.249

Power of the Berkowitz test (2)
100 0.078 0.069 0.057 0.050 0.049 0.055 0.065 0.071 0.083
250 0.125 0.087 0.063 0.051 0.052 0.054 0.071 0.094 0.129
500 0.228 0.138 0.080 0.061 0.049 0.058 0.085 0.139 0.197
750 0.336 0.195 0.098 0.063 0.047 0.068 0.105 0.174 0.278
1,000 0.447 0.246 0.126 0.065 0.050 0.068 0.130 0.224 0.355

Power of the Lopez loss function test (5)
100 0.018 0.020 0.022 0.024 0.025 0.026 0.028 0.029 0.030
250 0.014 0.017 0.019 0.022 0.025 0.029 0.031 0.035 0.039
500 0.059 0.056 0.058 0.054 0.050 0.048 0.048 0.051 0.056
750 0.143 0.099 0.068 0.055 0.049 0.048 0.052 0.058 0.066
1,000 0.146 0.105 0.078 0.059 0.051 0.050 0.055 0.062 0.075

Power of the expected shortfall loss function test (6)
100 0.005 0.008 0.013 0.018 0.025 0.033 0.043 0.053 0.066
250 0.002 0.005 0.009 0.016 0.026 0.039 0.055 0.076 0.100
500 0.137 0.093 0.066 0.052 0.050 0.060 0.081 0.112 0.153
750 0.197 0.123 0.077 0.055 0.049 0.061 0.091 0.136 0.197
1,000 0.263 0.156 0.092 0.058 0.051 0.066 0.105 0.164 0.242

should not be used for VaR models with the tolerance level of 1 % for typical lengths
of the observed series. The Berkowitz test has higher power than the Kupiec test,
but the power of this test is probably not sufficient for risk managers using typical
lengths of data series. For VaR tolerance level of 1 % the power of the ES Loss
Function tests is unacceptable and lower than for the Berkowitz approach.

6 Final Conclusions

One should not rely on one backtest only. No one procedure is perfect. The main
differences between the used test procedures arise due to the set of information. The
Kupiec approach uses less information than the loss function based one and the loss
function based approach less than the Berkowitz one. Tests based on the hit function
throw away valuable information about tail losses. It is better to use the tests that
are based on the information on both magnitudes and frequencies of tail losses.
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The type of loss function and score function are chosen arbitrarily and statistical
power of tests depend on them. One huge violation may cause rejection of any
model. We have to clean data, which makes automation of the test procedure not so
easy. We should try to test models for a different VaR tolerance levels, positions and
data sets. It is worth to consider a two stage procedure: (1) find the set of acceptable
models by using at least the Berkowitz approach, (2) find the best model by ranking
the set with the loss function method.

It is necessary to determine how low may be power of backtests in some typical
cases (Piontek 2010) and to discuss the acceptable minimum.
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Rank Aggregation for Candidate Gene
Identification

Andre Burkovski, Ludwig Lausser, Johann M. Kraus, and Hans A. Kestler

Abstract Differences of molecular processes are reflected, among others,
by differences in gene expression levels of the involved cells. High-throughput
methods such as microarrays and deep sequencing approaches are increasingly
used to obtain these expression profiles. Often differences of gene expression
across different conditions such as tumor vs inflammation are investigated.
Top scoring differential genes are considered as candidates for further analysis.
Measured differences may not be related to a biological process as they can also
be caused by variation in measurement or by other sources of noise. A method
for reducing the influence of noise is to combine the available samples. Here, we
analyze different types of combination methods, early and late aggregation and
compare these statistical and positional rank aggregation methods in a simulation
study and by experiments on real microarray data.

1 Introduction

Molecular high-throughput technologies generate large amounts of data which are
usually noisy. Often measurements are taken under slightly different conditions and
produce values that in extreme cases may be contradictory and contain outliers.
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One way of establishing more stable relationships between genes is by transforming
the data into ordinal scale by ranking their expression values profile-wise. High
expression levels are thereby sorted at the top of the ranking. Common patterns can
be revealed by combining these rankings via aggregation methods. These methods
construct consensus rankings for which all input rankings have least disagreements
in some sense. Here, we study the difference between two general combination
procedures, namely: (a) early and (b) late aggregation. In early aggregation, gene
values are aggregated by methods like mean or median and are ranked based on the
aggregated value. In contrast, late aggregation is the process of building a consensus
ranking after the data was transformed into ordinal scale individually. To what
extent early and late aggregation approaches differ was not reported so far. In this
simulation study we observe, that the quality and the results depend strongly on
the underlying noise model of the data. If we assume that each sample is affected
by slightly different technical noise, e.g. because of differences in the laboratory
conditions, late aggregation more accurately reflect the structure of a ground truth
ranking.

2 Background

An overview over existing aggregation methods can be found in Schalekamp and
Zuylen (2009). Dwork et al. (2001) propose methods based on bipartite graph
matching for rank aggregation. Their analysis is focused on the scenario of partial
rankings (i.e. rankings including missing values). They introduce different Markov
Chain models for this scenario. Based on this work Fagin et al. (2003) showed that
there are additional distance functions which can be used to solve rank aggregation
in polynomial time using bipartite matching even in the case of partial lists.

In context of candidate gene selection rank aggregation gained increasing interest
over the years. DeConde et al. (2006) present an approach using rank aggregation to
identify top genes for prostate cancer across five different microarray experiments.
They take top-25 lists from each experiment and find a consensus ranking which
shows genes that are considered most influential in all studies. Lin (2010) reports
additional results with Borda aggregation and Cross-Entropy Monte Carlo methods
for the same data. Lin notes that the Borda aggregation method is very competitive
regarding Markov Chains aggregation. The main challenge is to handle longer lists,
which it is not always possible with Cross-Entropy and other optimization methods
in a computationally efficient manner. In this context Pihur et al. (2007, 2008)
present Cross-Entropy rank aggregation to identify marker genes in top-k rankings.

3 Methods

Let X D fx1 : : : xkg with xi 2 R
n denote a set of samples (profile vectors) of a cer-

tain class of objects. A rank aggregation method can be seen as a function X 7!  ,
where  is a so-called consensus ranking. A ranking is thereby a permutation of the
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numbers 1; : : : ; n. The consensus ranking of a sample should reflect the ordering of
the feature levels in a class. In principal two types of aggregation methods exists.

Early aggregation methods initially aggregate the original profiles X into a
summary statistic Qx 2 R

n, e.g. the mean or the median. The consensus ranking
corresponds to the ranking of Qx.

X 7! Qx 7!  (1)

Late aggregation methods first transform the original samples into ordinal scale
X 7! ˘ D f�1 : : : �kg, where �i is a ranking of the values of xi . The aggregation
is done on this intermediate representation.

X 7! ˘ 7!  (2)

Late rank aggregation can be seen as an optimization problem which aims
to find a ranking  that has an overall minimum distance to k given rankings
�1; : : : ; �k with regard to some distance function. Finding a optimal aggregate
can be computationally expensive. In the case of the Kendall-� distance, which
counts the number of disagreements between rankings, the optimization is NP-hard
(Dwork et al. 2001). It can be calculated efficiently, if other distance measures
are used (Fagin et al. 2003). For example, an optimal aggregate for Borda count,
Spearman footrule (Diaconis and Graham 1977), and Copeland score (Copeland
1951) can be determined in polynomial time. The rest of this section introduces the
late aggregation methods used in this study.

3.1 Borda Score

The Borda method (borda) calculates a score for each element (gene) of a profile
(e.g., Dwork et al. 2001). This score is based on a summary statistic (e.g., mean)
of the ranks the gene achieved in the rankings of ˘ . The consensus ranking is
constructed by ranking the scores of all genes. In this work we use the mean rank
to calculate the Borda score 1

j˘ j
P
�2˘

� . The resulting aggregate is ranked increasing

by this score with ties broken randomly.

3.2 Copeland’s Score

In Copeland aggregation (copeland), the score of an element depends on its relative
position in relationship to the other elements (Copeland 1951). A high score is
assigned to those elements which are better ranked in the majority of the rankings
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in ˘ than the other elements. For an element i the Copeland score is given by the
sum of pairwise comparisons with the remaining elements j ¤ i .

Ci D
X
j¤i

�
IŒvi;j >li;j � C

1

2
IŒvi;jDli;j �

�
with (3)

vi;j D
X
�2˘

IŒ�.i/>�.j /� and li;j D
X
�2˘

IŒ�.i/<�.j /�: (4)

Here, vi;j denotes the number of ranks for element i that are higher than for
element j and li;j the number of ranks for element i that are lower than for
element j . The elements are ranked increasing by their score values.

3.3 Kolde’s Robust Rank Aggregation

Kolde et al. (2012) recently presented a rank aggregation method (robust) which
uses order statistics to compute scores for individual items. Their main idea is to
compare input rankings to an uncorrelated ranking and assigning a rank to the
items based on their significance score. The null model is that all rank lists are
non-informative and the ranks are randomly distributed in the items. The authors
improve the method by comparing each item to a random position, calculating the
p-value, and deciding on how much better the item has improved its position. The
elements in the aggregate are then ordered by the resulting score.

3.4 Pick-a-Perm

Ailon et al. (2008) showed that a consensus ranking can be found by selecting one
from the available input rankings  2 ˘ . The consensus ranking is chosen to have a
minimum distance to all other input rankings �1; : : : ; �k according to the Kendall-�
distance. This method will be called pick in the following.

3.5 Spearman’s Footrule and Canberra Distance

Spearman’s footrule (spearman) is defined as the sum of rank differences of all
elements in two different rankings:

F .�; � 0/ D
nX
iD1

j�.i/ � � 0.i/j (5)
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The Canberra distance (canberra) can be seen as modification of Spearman’s
footrule. It additionally takes into account the relevance of the ranks based on their
position:

CD.�; � 0/ D
nX
iD1

j�.i/ � � 0.i/j
�.i/C � 0.i/

(6)

The interpretation of this distance is that elements having higher ranks are given less
weight in the aggregation due to the denominator �.i/C � 0.i/.

4 Experimental Setup

We compared early and late aggregation methods on both artificial and real
microarray datasets. For the artificial ones we utilized the microarray generator
proposed by Smyth (2004), which is designed to generate two class datasets with
differentially expressed genes (we selected the case class for our experiments). This
generator assumes the single genes to be normally distributed (mean = 0). Variances
are chosen according to an inverse �2 distribution with d0 degrees of freedom for
each gene. For differentially expressed genes the mean value of the case class is
chosen according to a normal distribution with mean 0 and variance � � v0.

Based on this setup we generated a nested simulation first randomly drawing
means and variances for the subsequent normal models of data generation. Our
experiments are based on the simulation parameters used by Smyth d0 D 4 and
v0 D 2. We defined about 90 % of all genes to be differentially expressed (i.e. mean
¤ 0). Technical noise for each sample was modeled by a noise vector drawn from
� � Un.1; c/ and was multiplied feature-wise with the variance vector of the
sample. For c D 1 our model corresponds to the original model proposed by
Smyth. We constructed 100 datasets of 250 genes each. The mean vectors of the
corresponding models are used as ground truth. Aim was to estimate the ground
truth by aggregating the rankings of 10 samples each drawn according to the
previously generated model. The performance is measured by the mean Kendall-
� disagreements.

The aggregation methods are also compared on three real microarray datasets
(Table 1). In these experiments the initial ground truth was estimated by applying
mean on all samples of the selected class. A rank aggregation method was then
tested by estimating this ranking on a subset of 10 randomly chosen samples. This
experiment was repeated 100 times.
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Table 1 Summary of the real microarray datasets

Dataset Cancer Class # sam. # fea. Citation

Alon Colon Adenocar. 40 2,000 Alon et al. (1999)
West Breast ERC 25 7,129 West et al. (2001)
Shipp Lymphoma FL 19 7,129 Shipp et al. (2002)
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Fig. 1 Summary of the artificial experiments (Sect. 4). The aggregation methods were compared
on reconstructing the feature rankings of an artificial model based on a set of 10 samples. This
experiment was repeated 100 times. The mean number of Kendall-� disagreements is shown

5 Results

Figure 1 shows the results for the experiments on the artificial datasets. The figure
shows the error curves which measure the Kendall-� disagreements between the
aggregate and the ground truth rank.

For the parameter c D 1 the early aggregation method mean and late aggregation
methods borda and copeland show almost no difference in their performance. For
increasing c, mean predicts rankings that disagree more and more with the ground
truth ranking of the population. The methods borda and copeland act more stable
than mean for larger values of c. For large values of c, median predicts the ground
truth rank better than mean but worse than borda and copeland. The methods
spearman and canberra predict rankings that are less close to ground truth rank than
the previous methods. For large values of c robust produces slightly better results
than canberra. The lowest performance was achieved by pick.

The results on the real datasets can be found in Fig. 2. The black color of a cell
denotes that the aggregation method indexing the row achieved a significantly lower
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Fig. 2 Results of the microarray experiments: A black cell denotes that the aggregation method
given in the row significantly outperforms the method in the column according to one-sided
Wilcoxon rank tests (˛ D 0:05, Bonferroni, n D 56)

mean distance to the ground truth ranking than the method indexing the column. The
significance was tested by one-sided Wilcoxon rank tests (˛ D 0:05, Bonferroni,
n D 56). Two of the methods, the borda and copeland, are not outperformed by any
other method. The early aggregation method mean was only beaten by the copeland
method on the West dataset. The methods median and spearman showed an identical
behavior and are beaten three times. All other methods outperformed pick.

6 Discussion and Conclusion

We inspected early and late aggregation approaches in settings where the goal is
to find a consensus ranking about the order of elements or genes in the presence
of technical noise. In early aggregation, elements are first aggregated and ranked
afterwards. In late aggregation, elements are first transformed into ordinal scale
and are then aggregated into a consensus ranking using different methods. In most
microarray experiments noise is present in the data and the underlying noise model
plays a major role for rank aggregation.

On simulated data late aggregation with Copeland or Borda outperforms early
aggregation based on mean or median. For the real datasets the Borda and Copeland
methods are on par with the mean. Still, these methods constantly outperform the
aggregation with median. This suggests that Borda and Copeland methods are more
robust predictors than the median.

One can speculate that the reason for this lower performance is due to the small
sample sizes as the mean performs well on large datasets (data not shown). The
ordinal data used by late aggregation is less prone to differences in noise allowing
late aggregation to outperform early aggregation methods.
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The experiments shown in our study analyze aggregation methods as a
stand-alone application. Their usability for other experimental setups (e.g. clas-
sification, clustering or the selection of differentially expressed genes) needs to be
determined. Here, possible applications could be feature or distance selection.
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Unsupervised Dimension Reduction Methods
for Protein Sequence Classification

Dominik Heider, Christoph Bartenhagen, J. Nikolaj Dybowski, Sascha Hauke,
Martin Pyka, and Daniel Hoffmann

Abstract Feature extraction methods are widely applied in order to reduce the
dimensionality of data for subsequent classification, thus decreasing the risk of
noise fitting. Principal Component Analysis (PCA) is a popular linear method
for transforming high-dimensional data into a low-dimensional representation.
Non-linear and non-parametric methods for dimension reduction, such as Isomap,
Stochastic Neighbor Embedding (SNE) and Interpol are also used. In this study,
we compare the performance of PCA, Isomap, t-SNE and Interpol as preprocessing
steps for classification of protein sequences. Using random forests, we compared
the classification performance on two artificial and eighteen real-world protein
data sets, including HIV drug resistance, HIV-1 co-receptor usage and protein
functional class prediction, preprocessed with PCA, Isomap, t-SNE and Interpol.
Significant differences between these feature extraction methods were observed.
The prediction performance of Interpol converges towards a stable and significantly
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higher value compared to PCA, Isomap and t-SNE. This is probably due to the
nature of protein sequences, where amino acid are often dependent from and affect
each other to achieve, for instance, conformational stability. However, visualization
of data reduced with Interpol is rather unintuitive, compared to the other methods.
We conclude that Interpol is superior to PCA, Isomap and t-SNE for feature
extraction previous to classification, but is of limited use for visualization.

1 Introduction

Machine learning techniques, such as artificial neural networks, support vector
machines and random forests are widely applied in biomedical research. They have
been used, for instance, to predict drug resistance in HIV-1 (Dybowski et al.
2010) or protein functional classes (Cai et al. 2003). Protein sequences can be
encoded with so-called descriptors, mapping each amino acid to real numbers.
It has been shown in a recent study that these descriptor encodings lead to a better
classification performance compared to the widely used sparse encoding (Nanni and
Lumini 2011). Recently, we have developed a method for numerical encoding and
linear normalization of protein sequences to uniform length (Heider and Hoffmann
2011) as preprocessing step for machine learning. This normalization procedure
has been successfully applied to several classification problems (Dybowski et al.
2010; Heider et al. 2010; Dybowski et al. 2011), and it has been shown that it
leads to higher prediction performance compared to other preprocessing schemes
involving multiple sequence alignments or pairwise sequence alignments with a
reference sequence. However, the longer the protein sequences are, the higher the
dimension of the input space for the classifier becomes. This can lead to problems
regarding generalization and prediction performance of the resulting classifiers.
This is important for protein functional class prediction, as the number of known
proteins belonging to a certain group is often limited, and the lengths of the proteins
can easily exceed hundreds of amino acids.

Thus, in biomedical research one frequently encounters the “small-n-large-p”
problem, where p denotes the number of observed parameters (here number of
amino acids) and n the number of samples. As mentioned before, the ratio n=p is an
important indicator to avoid overfitting of the machine learning techniques. There
are two different approaches to overcome small-n-large-p problems: (1) feature
selection methods introduce a ranking of the parameters and pick a subset of features
based on the ranking for subsequent analysis, and (2) feature extraction methods
transform the high dimensional input data into a lower dimensional target space.

In the current study, we focus on feature extraction methods and demonstrate
the use of Interpol (Heider and Hoffmann 2011) to reduce the dimensionality of
the input space for subsequent protein classification, and compare the prediction
performance of Interpol with PCA, Isomap and t-Distributed Stochastic Neighbor
Embedding (t-SNE).
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Table 1 The table summarizes the number of sequences within each dataset and
the class ratio of positive to negative samples

Dataset # sequences Class ratio Dataset # sequences Class ratio

APV 768 1.60:1 d4T 630 1.17:1
ATV 329 0.92:1 ddI 632 0.96:1
IDV 827 1.04:1 TDF 353 2.03:1
LPV 517 0.82:1 DLV 732 1.78:1
NFV 844 0.67:1 EFV 734 1.63:1
RTV 795 0.96:1 NVP 746 1.33:1
SQV 826 1.50:1 V3 1,351 0.17:1
3TC 633 0.45:1 GTP 1,435 0.85:1
ABC 628 0.41:1 AZT 630 1.08:1

2 Methods

2.1 Data

We used 18 real-world (see Table 1) and two synthetic data sets in order to
evaluate our procedure. Seventeen data sets are related to HIV-1 drug resistance
(Rhee et al. 2006; Heider et al. 2010), one data set is related to HIV-1 co-receptor
usage (Dybowski et al. 2010), and one dataset is related to protein functional
class prediction (Heider et al. 2009). The cut-offs of the IC50 values between
susceptible and resistant sequences are in accordance with Rhee et al. and Heider
et al. for the HIV-1 drug resistance data sets. The concentration of a drug inhibiting
50 % of viral replication compared to cell culture experiments without a drug is
defined as IC50 (50 % inhibitor concentration). As we are focussing on binary
classification, intermediate resistant and high-level resistant are both defined as
resistant. Furthermore, we analyzed the classification of small GTPases (GTP)
according to Heider et al.

We also analyzed two synthetic data sets, S1 and S2, consisting of 54 42-mer
amino acid sequences and 41-mer sequences, respectively. Each sequence is
composed as follows:

G20XXG20

with G20 D 20 glycines, XX D RI (arginine and isoleucine) for the positive
samples, and XX D IR (isoleucine and arginine) for the negative samples. In S2,
the first G is deleted. Furthermore, random point mutations are introduced, where
Gs are mutated into one of the other 20 amino acids commonly found in proteins.
Arginine and isoleucine were chosen due to their extreme opposed hydropathy
values.
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2.2 Descriptors

We used the hydropathy scale of Kyte and Doolittle (1982) to encode the protein
sequences, as it has been shown in several studies that it leads, in general, to accurate
predictions. Moreover, we tested other descriptors, e.g. net charge. However, these
alternative descriptors led to worse prediction performance.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical approach for decomposing
multidimensional data into a set of uncorrelated variables, the so-called principal
components (Jolliffe 2002). It is widely-used to reduce the number of variables in
highly correlated data and to detect underlying signal sources in noisy data. If a
given set of variables is a linear combination of a smaller number of uncorrelated
signals, PCA is able to compute these signals, and to provide the linear combination
underlying the input data. We used PCA implemented in R (http://www.r-project.
org/).

2.4 Isomap

Isomap (Tenenbaum et al. 2000) is closely related to Multidimensional Scaling
(Cox et al. 2003) and performs dimension reduction on a global scale. It finds a
low-dimensional embedding such that the geodesic distances between all samples
in a dataset are preserved, i.e. Isomap ensures that the shortest path between each
pair of samples (nodes) in a neighborhood graph G is maintained. Therefore,
Isomap is able to capture paths along a non-linear manifold allowing application
to more complex datasets whose samples are expected to lie on or near non-linear
sub-manifolds.

We used Isomap implemented in the R-package RDRToolbox. The number of
neighbors for computing the neighborhood graph was set to 10.

2.5 t-SNE

Although being implemented for visualizing of high-dimensional data, t-SNE
(t-Distributed Stochastic Neighbor Embedding) can be easily used for reducing
noise (van der Maaten and Hinton 2008). t-SNE is a modified version of Stochas-
tic Neighbor Embedding (SNE). SNE converts the high-dimensional Euclidean
distances between samples into conditional probabilities representing similarities.

http://www.r-project.org/
http://www.r-project.org/
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t-SNE differs from SNE due to its cost function. It used a symmetric version of the
SNE cost function and moreover, uses a Student-t distribution rather than a Gaussian
to compute the similarities between the samples. We used t-SNE implemented in the
R-package tsne.

2.6 Interpol

The Interpol normalization (Heider and Hoffmann 2011) was also applied in the
current study. It transforms the discrete descriptor values into the continuous space.
Interpol connects all known data points (here: descriptor values along a given
protein sequence), resulting in a continuous curve that represents these data points.
The normalization factor k is defined as the number of equally spaced positions
at which the curve is sampled. These samples are then used as an input for
classification. Although originally developed for normalizing protein sequences of
variable length, Interpol can also be used to deliberately reduce input dimensionality
for classification. This can be done by choosing a normalization factor k < n, with
n being the length of a given feature vector.

In our study, we used Interpol implemented in R with the averaging method.
Thus, Interpol divides an encoded sequence of length n in k equally sized intervals
I1; : : : ; Ik . All descriptor values lying in interval Ij (j 2 1; : : : ; k) are subsequently
averaged. The averaged values represent the reduced sequence of length k. For
instance, k D 2 lead to two intervals: the first is I1 D Œ1; n=2� and the second
one is I2 D Œn=2; n�. For k D 3 the three resulting intervals are I1 D Œ1; n=3�,
I2 D Œn=3; 2n=3� and I3 D Œ2n=3; n�. For k D m;m < n the resulting intervals are
I1 D Œ1; n=m�, I2 D Œn=m; 2n=m� ; : : : ; Im D Œ.m � 1/n=m; n�.

2.7 Classification

We used random forest (Breiman 2001) implemented in R, as they have been shown
to be less prone to overfitting and thus produce highly robust and accurate predic-
tions compared to other machine learning techniques (Caruana and Niculescu-Mizil
2006).

2.8 Performance Measurement

To evaluate the sensitivity, specificity and accuracy for each classifier, we repeated
a leave-one-out cross-validation 10 times and averaged the results. Furthermore, we
computed the area under the curve (AUC), which is the integral of the Receiver
Operating Characteristics (ROC) curve.
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Table 2 Hydropathy index
of Kyte and Doolittle (1982)

Amino acid Hydropathy Amino acid Hydropathy

R �4:5 A 1.8
K �3:9 M 1.9
Q,E,N,D �3:5 C 2.5
H �3:2 F 2.8
P �1:6 L 3.8
Y �1:3 V 4.2
W �0:9 I 4.5
S �0:8
T �0:7
G �0:4

3 Results and Discussion

We analyzed several real-world and two synthetic data sets as described in Material
and Methods. The dimension of both synthetic data sets (S1 and S2) was suc-
cessfully reduced by applying Interpol. Low normalization factors (k) lead to a
loss of prediction performance, but with increasing dimensionality, the performance
converged towards stable AUC values. The prediction accuracy of the synthetic data
sets converged towards an AUC of 1 with increasing target dimensionality. The other
methods, namely PCA, Isomap and t-SNE, worked as well on the synthetic data.

For the real-world datasets, as mentioned before for the synthetic datasets, low
normalization factors (k) lead to a loss of prediction performance. However, with
increasing dimensionality, the performance converged towards stable AUC values.
The dimension of the input space can be reduced, in general, by a factor of 2 with
n=2 being typically the minimum to achieve converged prediction performance.
However, we recommend to use k > n=2 to guarantee high prediction performance.

A reduction to n=2 leads to a function f , which maps two successive values yi
and yiC1 onto a value yiC0:5 between these two feature values:

f .xi ; xiC1/ D yi C yiC1
2

D yiC0:5 (1)

The function f is semi-bijective, i.e. one can use the inverse function f �1 to
calculate the former two data points yi and yiC1 out of the resulting yiC0:5 value in
most of the cases. However, the order of the two data points is lost.

There are 17 different numerical values for the amino acids with regard to the
hydropathy index of Kyte and Doolittle (1982). Combining these values result in
172�17
2

C 17 D 153 possible pairs of amino acids. These pairs are mapped onto
109 unique values in the interval Œ�4:5; 4:5�, resulting in the above semi-bijective
function. However, non-unique values result from pairs that are highly similar to
other pairs. These pairs will lead with high probability to similar prediction results
in the classification process.

The results for the proposed n=2 border are shown in Table 2. In contrast to
Interpol, PCA, Isomap and t-SNE performed significantly worse (with regard to the
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Table 3 The performance of the classifiers for the proposed n=2 border are shown as AUC ˙ sd

exemplarily for the datasets APV, D4T, V3 and GTP

Data set PCA Isomap t-SNE Interpol

APV 0:8686˙ 0:0015 0:8277˙ 0:0015 0:8235 ˙ 0:0015 0:9374˙ 0:0015

D4T 0:8301˙ 0:0038 0:7246˙ 0:0032 0:7406 ˙ 0:0033 0:9217˙ 0:0016

V3 0:9561˙ 0:0018 0:9422˙ 0:0019 0:9411 ˙ 0:0017 0:9690˙ 0:0016

GTP 0:9722˙ 0:0012 0:9553˙ 0:0014 0:9622 ˙ 0:0013 0:9844˙ 0:0012

Wilcoxon-signed rank test on the AUC distributions from the tenfold leave-one-out
cross-validation runs). Interpol performs up to 9 % better than PCA, up to 20 %
better than Isomap and up to 11 % better than t-SNE with a reduction to half of the
input dimension (Table 3). The coverage of the variance for PCA is about 80–90 %
for the different datasets, e.g. 87.50 % (APV), 89.94 % (D4T) and 86.23 % (GTP).

4 Conclusions

We conclude that sequence interpolation by Interpol can be used for reducing
the input dimensionality of protein sequences for classification. Using a desired
dimensionality k > n=2 there is no loss of prediction performance. Compared to
PCA, Isomap and t-SNE, sequence interpolation is consistently better for reducing
dimensionality. The difference in AUC can be up to 20 % (see http://www.uni-
due.de/~hy0546/auc.pdf for comparisons of all datasets). In comparison to PCA,
Isomap and t-SNE, sequence interpolation is computationally cheap and processes
on sample-by-sample basis. It thus is highly efficient even for large datasets. Interpol
performs stably and superior also for smaller dimension (k < n=2), and thus,
leads to better prediction performance compared to PCA, Isomap and t-SNE for
all k, except for a dimensionality of two and three. These results are based on RF
classification and other classification methods might lead to different results. Thus,
Interpol should be used in classification studies with RFs, whereas PCA, Isomap and
t-SNE should be used to visualize the data in the two- or three-dimensional space.
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Three Transductive Set Covering Machines

Florian Schmid, Ludwig Lausser, and Hans A. Kestler

Abstract We propose three transductive versions of the set covering machine with
data dependent rays for classification in the molecular high-throughput setting.
Utilizing both labeled and unlabeled samples, these transductive classifiers can
learn information from both sample types, not only from labeled ones. These
transductive set covering machines are based on modified selection criteria for their
ensemble members. Via counting arguments we include the unlabeled information
into the base classifier selection. One of the three methods we developed, uniformly
increased the classification accuracy, the other two showed mixed behaviour for
all data sets. Here, we could show that only by observing the order of unlabeled
samples, not distances, we were able to increase classification accuracies, making
these approaches useful even when very few information is available.

1 Introduction

Classifying tissue samples according to high dimensional gene expression profiles is
one of the basic tasks in molecular medicine. These profiles are normally designed
for a wide field of applications and rather unspecific in their marker selection for the
current classification task. It is assumed that these profiles contain a vast amount of
uninformative features. A decision criterion based on such a profile should be based
only on a small subset of expression levels. In contrast to other low dimensional
embeddings, e.g. PCA (Jolliffe 2002), such a sparse decision criterion allows the
direct identification of marker genes or possible drug targets. A classifier suitable in
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this scenario is the set covering machine (SCM) with data dependent rays (Kestler
et al. 2011). The decision boundary of this ensemble method can be interpreted as

IF gene1 > value1 AND gene2 < value2 : : : THEN class1

The training of this inductive classifier is solely based on labeled training examples.
It is often restrictive in settings in which labeling processes are time consuming
or costly. Here, the limitation of labeled samples can lead to overfitting. In this
work we present three newly developed transductive versions of this SCM enabling
the training algorithm to incorporate unlabeled samples. For all three methods the
unlabeled samples are involved in the selection process of the single ensemble
members. The selection criteria are based on counting arguments abstracting from
scale and density information of the unlabeled samples; only the feature-wise
ordering of all samples is utilized. The results indicate that even this ordering
information can increase classification accuracies.1

2 Methods

The task of classification can be formulated as follows: Given an object by a vector
of measurements x 2 R

m predict the correct category y 2 f0; 1g. The samples of
class 1 and 0 are called positive and negative samples. A classification method is
allowed to adapt according to a set of labeled training samples Str D f.xi ; yi /gniD1.
The unlabeled samples of this set will also be denoted by P D fx j .x; 1/ 2 Strg
and N D fx j .x; 0/ 2 Strg. The quality of the prediction can be tested on a set
of test samples Ste D f.x0

i ; y
0
i /gn0

iD1. Omitting the labels, this set will also be called
U D fx j .x; y/ 2 Steg. Different types of classifiers can be distinguished according
to their method of predicting a class label.

An inductive classification process can be separated into two major phases. In the
induction phase a decision function, a classification model, h 2 H is trained.
The applied training algorithm l is a supervised one, i.e. it solely utilizes labeled
samples: l.Str;H/ 7! h:In the deduction phase the classifier h is applied on unseen
samples: h.x/ 7! Oy:The aim of an inductive learner is to find a classifier h that is
highly predictive over the distribution of all labeled samples. It is often misleading
as a general good performance does not imply a good performance on a particular
test setSte of objects of interest. A decision could achieve better results onSte, if it is
specialist on this set. In contrast a transductive classification (Vapnik 1998) process
is only concerned with predicting the class labels of a fixed set of test samples Ste.
The classification is achieved in a single step by utilizing all samples and not only
training a concept class h on the labeled data.

1We only utilize the information of orderings of features values, not the information given by a
ordinal structure of the class labels (e.g. Herbrich et al. 1999).
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2.1 Inductive Set Covering Machine

An example for an inductive classifier is the set covering machine (SCM) proposed
by Marchand and Taylor (2003). It can be seen as an ensemble method merging the
predictions of a set of selected classifiers E � H .

h.x/ D
^
hj2E

hj .x/ (1)

The fusion strategy of a SCM is a logical conjunction (unanimity vote), which is a
strategy with an asymmetric behavior. A conjunction is more likely to misclassify
a positive example than a negative one. A sample will only receive the class
label 1, if all ensemble members vote for class 1. It will receive class label 0 if
at least one base classifier predicts class 0; an example of class 0 will be classified
correctly, if it is covered by at least one correctly classifying ensemble member.
A trained ensemble should fulfill two properties to counteract this characteristic of
a conjunction:

1. The base classifiers should achieve a high sensitivity.
2. The ensemble size jEj should be relatively small.

The SCM training algorithm tackles this problem according to a greedy strategy.
It iteratively extends the current ensemble E by a classifier hj 2 H achieving a
maximal usefulness Uj .

Uj D jQj j � pjRj j (2)

The usefulness Uj can be seen as a tradeoff of two objectives representing
the positive and negative effects the candidate hj would have on the existing
ensemble E. The first objective jQj j denotes the number of uncovered negative
examples hj classifies correctly. The second one jRj j is the number of positive
examples correctly classified by the current ensemble E but misclassified by hj .
The two objectives are linked via a tradeoff parameter p 2 Œ0;1/. It is often set
to p D 1 in order to maximize the sensitivity of the ensemble members. The
algorithm stops when all negative samples are covered by at least one classifier or a
chosen maximal number of ensemble members s was trained.

2.2 Set Covering Machine with Data Dependent Rays

A special version of the SCM is the set covering machine operating on data
dependent rays (Kestler et al. 2011). In contrast to other versions of the SCM
this classifier allows variable selection and constructs an interpretable decision
boundary. A single threshold classifier determines the class label of a sample x
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Fig. 1 A ray optimized according to (4). Symbols gray circle/black circle denote samples of
class 1/0

according to a single threshold t 2 R on a selected feature dimension j 2
f1; : : : ; ng.

r.x/ D IŒd.x.j /�t /
0� (3)

Here d 2 f�1; 1g denotes the direction of the classifier. A ray is called data
dependent if t 2 fx.j / W .x; y/ 2 Strg. In order to increase the sensitivity of the
final ensemble, the rays are trained to avoid errors on the positive training samples.
At the same time the error on the negative ones is minimized.

min
r 02H.Str/

�
Remp.r

0;N/C jNjRemp.r
0;P/

�
(4)

Figure 1 shows an example of a data dependent ray optimized according to (4). The
threshold t must be equal to the largest or smallest value of a positive example. The
closest point on the negative side of the threshold must be a negative one. The open
interval between this point and the threshold will be of interest for the following.
It will be denoted as ı.r/.

2.3 Transductive Set Covering Machines

The inductive set covering machine chooses the current ray rk among those
candidates having a maximal usefulness.

rk 2 K D


ri 2 H j Ui D max

rj2H Uj
�

(5)

In the context of small sample sizes, the number of possible candidates can be
relatively large as the number of ray classifiers is very large (� m) in contrast to
a relatively small number of values the utility can take (� jPjjNj) on the set of
feasible rays. The usefulness is a rather unspecific selection criteria in this scenario.
A wrong choice can lead to a diminished predictive performance.

To improve the selection process, we include a post processing step on K
based on the unlabeled samples U available in the transductive training. The
unlabeled samples are used to rank the candidates in K in up to jUj additional
categories. We have tested three different post processing strategies resulting in three
transductive set covering machines (SCMmin, SCMmax, SCMprev).
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r1

r2

r3

Fig. 2 Three rays of equal usefulness. Symbols gray circle/black circle indicate samples of
class 1/0. The unlabeled samples are denoted by square. Each of the rays is preferred by a different
transductive SCM. Ray r1 is optimal for SCMmin. Here, no unlabeled samples occur in ı.r1/. Ray
r2 has the maximal number of unlabeled samples in ı.r2/. It is optimal for SCMmax. SCMprev would
select r3. Here, the most unlabeled samples are on the positive side of the threshold corresponding
to a higher prevalence of the positive class

The SCMmin selects a ray r inK according to the number of unlabeled samples in
the interval ı.r/. It chooses those rays which have a minimal number of unlabeled
samples in this interval. The SCMmax can be seen as an opposite version to the
SCMmin. Here the set of candidates is restricted to those having a maximal number
of unlabeled samples in ı.r/. The SCMprev incorporates the prevalence of the classes
in the candidate selection process. Here, rays are preferred for which more unlabeled
samples can be found on the side of the decision boundary assigned to the class with
the higher prevalence.

An example, describing the differences of the reordering steps of all three
versions is shown in Fig. 2. It shows three rays of equal usefulness. While the
SCMind would randomly select one of the given rays, each of the transductive SCMs
would add a different ray to the classification model. The SCMmin would select r1
which has no unlabeled samples in ı.r1/. SCMmax as opposite version would add r2
because of the two unlabeled points in ı.r2/. The SCMprev would select r3. Here are
most unlabeled samples on the positive side of the threshold which is the one having
higher prevalence.

3 Experimental Setup

The transductive versions of the set covering machine are tested and compared to
the inductive one in sequences of k-fold cross-validation experiments (e.g. Bishop
2006), where k 2 f10; : : : ; 2g. The cross-validation experiments are adapted to the
transductive learning scheme by utilizing the single folds as proposed in Lausser
et al. (2011). A transductive learner does not only get access to the labeled training
folds but also to the unlabeled test fold. Decreasing the number of folds has slightly
different consequences for the training set of inductive and transductive learners.
While an inductive learner has to cope with a smaller set of (labeled) samples
the number of available samples remains constant for the transductive one. Here,
the tradeoff between labeled and unlabeled samples is varied. While 90 % of all
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Table 1 Characteristics of the analyzed microarray datasets

Dataset # features # pos. samples # neg. samples Publication

Armstrong 12,582 24 48 Armstrong et al. (2002)
Buchholz 169 37 25 Buchholz et al. (2005)
Su 12,533 91 83 Su et al. (2001)
Valk 22,215 177 116 Valk et al. (2004)

training samples will be labeled in a tenfold cross-validation only 50 % will be
labeled in the twofold experiment. Transductive learners are likely to be applied in
settings, in which much more unlabeled than labeled samples exist. The setting can
be mimicked by switching the role of labeled and unlabeled folds. The classifiers
are tested on real microarray data and artificial data. A list of real datasets is given
in Table 1.

For the real datasets a classification and regression tree (CART) was chosen as
reference classifier (Breiman et al. 1984). It was trained according to the semi-
supervised self-training scheme (Weston et al. 2003). In this iterative process the
unlabeled samples and class labels predicted by the current model are used as
additional training data for the following classifier. The training ends if the label
vector does not change anymore or a maximal number of iterations (t D 20) was
achieved.

The artificial datasets contain n D 100 samples of a dimensionality of m D
1; 000. The single samples are drawn from a uniform distribution xj � Um.�1; 1/.
The labels of the samples are determined according to a conjunction of jjj D 5

single threshold classifiers.

yi D
8
<
:
0 if

V
j2j I

h
x
.j /
i >0

i

1 otherwise
(6)

Here j � f1; : : : ; mg denotes an index vector for the selected feature dimensions.
The datasets are collected with different tradeoffs of positive and negative labeled
samples. The number of positive samples varies in p 2 f10; 20; : : : ; 90g.

4 Results

A summary of the results on the artificial datasets is shown in Fig. 3. They show that
the transductive versions work better than the inductive SCM when more unlabeled
than labeled samples occur. While the SCMmin is better than the SCMind in the
presence of more positive samples, the SCMmax, as opposite version of the SCMmin,
is better for more negative samples. The SCMprev shows a better performance than
the SCMind over all class proportions.
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SCMprev vs SCMindSCMmax vs SCMindSCMmin vs SCMind

Fig. 3 The cross-validation results on the artificial datasets. The different datasets with different
proportions of positive and negative samples are shown on the y-axis. A black square denotes an
increased accuracy of a transductive SCM. Values given in the squares show the differences of the
cross-validation accuracies between the variants

percentage of labeled samples

ac
cu

ra
cy

SCMind
SCMmax
SCMmin
SCMprev
CARTsel

Fig. 4 Cross-validation accuracies on the microarray datasets

The results on the real datasets are shown in Fig. 4. SCMmax and SCMprev show an
equal or better performance than SCMind on all datasets. On the Buchholz and on the
Valk dataset CARTsel performs better than the SCMs when there are more labeled
than unlabeled samples. While SCMmax works best on the Armstrong dataset, the
SCMprev dominates all other versions of the SCM over all experiments on the
Buchholz and on the Valk dataset. The results of the SCMmin are comparable for
the Buchholz and the Valk dataset. It is outperformed by all other SCMs on the
remaining datasets.

5 Discussion and Conclusion

The transductive versions of the SCM discussed in this work incorporate informa-
tion of unlabeled samples by solely evaluating their feature-wise ordinal position.
They do not rely on structural properties of a data collection like regions of high
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density or clusters. Our experiments show that already this information is able
to improve the classification performance of the set covering machine. Based on
a relatively small set of assumptions it may be applicable to a wider range of
classification algorithms.

The two versions SCMmin and SCMmax select their threshold according to the
number of unlabeled samples in the gap between the threshold and the remaining
negative samples. While the SCMmin minimizes this number resulting in a minimal
gap between the positive and negative labeled samples, the SCMmax maximizes this
gap. The unlabeled samples in this gap will receive a negative label making SCMmax

preferable for an higher prevalence of class 0 and SCMmin preferable for a higher
prevalence of class 1. The results on the real datasets confirm these theoretical
thoughts only for the SCMmax. The SCMmin shows an inferior performance for
datasets with a larger positive class. This may be due to the greedy sensitivity
maximization of the SCM coupled to the new selection strategy. In contrast the
specificity maximization of the SCMmax seems to be beneficial in this scenario.
The SCMprev, which estimates the class prevalence from the training data, performs
comparable or better than the SCMind in most of the cases. It is less dependent on the
labeling of the classes than the other two approaches. The different SCMs perform
better or comparable to CARTsel except on two datasets where CARTsel reaches a
higher accuracy when more labeled than unlabeled samples occur.

The proposed algorithms are restricted to incorporate unlabeled information in
the selection process of the ensemble members. A future step will be to utilize this
information also for the adaption of the single threshold classifiers. This can for
example be done according to the finer granularity of the data.

The transductive SCMs inherit some beneficial properties of the inductive set
covering machine. Being an ensemble of single threshold classifiers it evaluates each
feature dimension independently. It is not affected by different scales or varying
feature types. In the context of bimolecular data it may be a possible candidate
for a transductive classification process suitable for combining data from different
sources as transcriptomics and proteomics.
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Tone Onset Detection Using an Auditory Model

Nadja Bauer, Klaus Friedrichs, Dominik Kirchhoff, Julia Schiffner,
and Claus Weihs

Abstract Onset detection is an important step for music transcription and other
tasks frequently encountered in music processing. Although several approaches
have been developed for this task, neither of them works well under all cir-
cumstances. In Bauer et al. (Einfluss der Musikinstrumente auf die Güte der
Einsatzzeiterkennung, 2012) we investigated the influence of several factors like
instrumentation on the accuracy of onset detection. In this work, this investigation
is extended by a computational model of the human auditory periphery. Instead of
the original signal the output of the simulated auditory nerve fibers is used. The main
challenge here is combining the outputs of all auditory nerve fibers to one feature for
onset detection. Different approaches are presented and compared. Our investigation
shows that using the auditory model output leads to essential improvements of the
onset detection rate for some instruments compared to previous results.

1 Introduction

A tone onset is the time point of the beginning of a musical note or other sound.
A tutorial on basic onset detection approaches is given by Bello et al. (2005).
The algorithm we will use here is based on two approaches proposed in Bauer et al.
(2012): in the first approach the amplitude slope and in the second approach the
change of the spectral structure of an audio signal are considered as indicators for
tone onsets. In Sect. 2 we briefly describe these two approaches.
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Since the human ear still is the best system for music perception the onset
detection approach is extended by using the auditory model output instead of the
original signal. A similar idea was proposed in Benetos (2009) where the extension
led to improved results. In contrast to our work, in their study two other features are
used for onset detection (Spectral Flux and Group Delay). Furthermore, they use
fixed parameter settings for the detection algorithm while the goal of our study is to
explore different settings by an experimental design.

Section 3 describes the auditory model utilized for this study. As the output
is a multidimensional time series the onset detection indicators of all dimensions
have to be combined to one indicator. Therefore, in Sect. 4 we propose several
combination strategies. To test our approach we use randomly generated tone
sequences of six music instruments with two tempo settings. Section 5 provides
the detailed generation procedure. Section 6 presents the results in respect of the
music instruments, the tempo and the chosen combination strategy. Additionally, the
results of the extended approach are compared with the results of the approach based
on the original signal proposed in Bauer et al. (2012). Finally, Sect. 7 summarizes
the work and provides ideas for future research.

2 Onset Detection Approach

The ongoing audio signal is split up into T windows of length L with an
overlap of O per cent of L. Features are evaluated in each window to obtain
onset detection functions. Several features have been proposed for this task like
High Frequency Content, Spectral Flux, Group Delay, Weighted Phase Deviation,
Modified Kullback–Leibler Distance or Zero Crossing Rate (Böck et al. 2012;
Krasser et al. 2012). Here, we use the two features proposed in Bauer et al. (2012)
in order to compare with those results: the difference between amplitude maxima
(FA) and the correlation coefficient between the spectra (FS ) of the current and the
previous window. Each of the vectors FA and FS is then rescaled into the interval
[0,1].

For each window a combined feature CombF can be calculated as CombF D
WA � FA C .1 � WA/ � FS , where the weight WA 2 Œ0; 1� is a further parameter,
which specifies the influence of the amplitude based feature on the weighted sum. In
Bauer et al. (2012) we investigated further combination approaches and this
approach provided the best results. Let detect.s;L;O;WA/ denote the onset detec-
tion function which returns the CombF-vector for the audio signal s depending on
L, O and WA.

The peak-picking procedure consists of the following two steps: thresholding of
the onset detection function and localization of tone onsets. In order to assess if a
window contains a tone onset, based on CombF, a threshold is required. We will use
here a Q%-quantile of the CombF-vector as such threshold. If the CombF-value for
the current window, but neither for the preceding nor for the succeeding window,
exceeds the threshold, an onset is detected in this window. If the threshold is
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exceeded in multiple, consecutive windows, we assume that there is only one onset,
located in that window with the maximal CombF-value in this sequence. This is
a simple fixed thresholding approach, but as we consider only music signals with
small changes of sound intensities (see Sect. 5), it is assumed to be appropriate
here (see Bello et al. 2005). For music signals with higher sound volume changes
adaptive thresholds are more reasonable (Rosão et al. 2012). For each window with
an onset detected its beginning and ending time points are calculated and the onset
time is then estimated by the centre of this time interval. Let onsets.CombF;Q/
denote the onset estimation function which returns for the onset detection feature
CombF D detect.s;L;O;WA/ and quantile Q the estimated time points of the tone
onsets.

In this work we assume that a tone onset is correctly detected, if the absolute
difference between the true and the estimated onset time is less than 50 ms (see
Dixon 2006). As quality criterion for the goodness of the onset detection the so
called F -value is used: F D 2c

2cCf CCf �

; where c is the number of correctly

detected onsets, f C is the number of false detections and f � denotes the number of
undetected onsets. Note that the F -value always lies between 0 and 1. The optimal
F -value is 1. For the given vector of the true onset time points true, the function
f _value.est; true/ returns the F -value for the vector of the estimated onset times
est D onsets.CombF;Q/.

3 Auditory Model

An auditory model is a computer model of the human auditory system. It requires
an acoustic signal as input and outputs the spike firing rates of the auditory nerve
fibers. The human auditory system consists of roughly 3,000 auditory nerve fibers.
Auditory models contain usually a much smaller number of fibers. For this study
the popular model of Meddis (2006) is employed. To put it simply, in this model
the auditory system is coded by a multichannel bandpass filter where each channel
represents one specific nerve fiber. Each channel has its specific best frequency by
which its perceptible frequency range is defined. In this work we use 40 channels
with best frequencies between 250 Hz (channel 1) and 7,500 Hz (channel 40). An
exemplary output of the model, called auditory image, can be seen in Fig. 1. While
the 40 channels are located on the vertical axis and the time response on the
horizontal axis, the grey level indicates the channel activity per second.

4 Auditory Model Based Onset Detection Approach

The output of the auditory model is, according to Sect. 3, a set of 40 audio
signals .chan1; chan2; : : : ; chan40/, where each signal corresponds to one of 40
hearing channels. For all channels the combined features CombF are computed
as described in Sect. 2 and then combined to one onset indicator. While there are
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Fig. 1 Auditory image

more comprehensive ways, we tried a simple method first. The detailed procedure
is described in the following1:

1. For each channel chank, k D 1; : : : ; 40; calculate the onset detection function
CombFk D detect.chank;L;O;WA/.

2. For each window i , i D 1; : : : ; T , do:

• vŒi � D .CombF1Œi �; : : : ;CombF40Œi �/0,
• outputŒi � D quantile.vŒi �;C/, where the function quantile returns the C%-

quantile of the vector vŒi �.

3. output D .outputŒ1�; : : : ; outputŒT �/0.
4. est D onsets.output;Q/.
5. error D f _value.est; true/.

In the following we will investigate the influence on the onset detection accuracy
of the parameters L, O, WA and C. In order to reduce the complexity, we estimate
the parameter Q by means of grid search in the interval from 0 to 1 with step size
0.05 (the same approach as in Bauer et al. 2012).

The following settings of the four parameters are tested: L with two levels (512
and 2,024 samples), O with two levels (0 and 50 %), WA with three levels (0, 0.5
and 1) and C with three levels (5, 50 and 95 %). Table 1 lists the 36 parameter
settings.

5 Music Data Set

In order to compare the extended onset detection approach proposed in this paper
with the original one the same data set is used as in Bauer et al. (2012), which
consists of 24 randomly generated tone sequences. In the following we briefly
describe the construction principles of this data set.

1vŒi � is the notation for the i -th element of vector v.
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Table 1 Parameter settings for auditory model based onset detection

ID L O WA C ID L O WA C ID L O WA C ID L O WA C

1 512 0 0 5 10 512 50 0 5 19 2,048 0 0 5 28 2,048 50 0 5
2 512 0 0 50 11 512 50 0 50 20 2,048 0 0 50 29 2,048 50 0 50
3 512 0 0 95 12 512 50 0 95 21 2,048 0 0 95 30 2,048 50 0 95
4 512 0 0.5 5 13 512 50 0.5 5 22 2,048 0 0.5 5 31 2,048 50 0.5 5
5 512 0 0.5 50 14 512 50 0.5 50 23 2,048 0 0.5 50 32 2,048 50 0.5 50
6 512 0 0.5 95 15 512 50 0.5 95 24 2,048 0 0.5 95 33 2,048 50 0.5 95
7 512 0 1 5 16 512 50 1 5 25 2,048 0 1 5 34 2,048 50 1 5
8 512 0 1 50 17 512 50 1 50 25 2,048 0 1 50 35 2,048 50 1 50
9 512 0 1 95 18 512 50 1 95 27 2,048 0 1 95 36 2,048 50 1 95

There are many characteristics that describe a music signal like tempo, genre,
instrumentation or sound volume. We consider merely the instrumentation and the
tempo as control variables when designing the data set: the same tone sequences are
recorded by different music instruments with different tempo settings. This allows
to explicitly measure the influence of these two control variables on the accuracy of
the onset detection.

Six music instruments are considered: piano, guitar, flute, clarinet, trumpet and
violin. The tone sequences are generated randomly by considering the following
settings:

1. Sound intensities follow the uniform distribution in the interval [70,90]
(in MIDI-coding).

2. Notes follow the uniform distribution in the interval [60,76] (in MIDI-coding).
This interval corresponds to the common pitch range (from C4 to E5) of the
instruments under consideration.

3. Tone durations (in seconds) are

(a) absolute values from the normal distribution with parameters � D 0:5 and
� D 0:2,

(b) absolute values from the normal distribution with parameters � D 0:2 and
� D 0:1.

The first tone duration setting generates slow music pieces with two beats per
second on average (or 120 BPM2), whereas the second setting generates fast music
pieces with five beats per second on average (300 BPM). For each of the six music
instruments and for each of the two tone duration settings five tone sequences (with
the duration of 10 s) are generated. The fast tone sequences hence include ca. 50
tone onsets and the slow sequences ca. 20 onsets.

The generated MIDI-files are converted to WAVE-files using real tone samples
from the RWC data base (Goto et al. 2003).

2BPM: beats per minute.
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Fig. 2 Comparison of the 36 onset strategies (see Table 1): for each instrument and each strategy
the average F -value over five slow and five fast sequences is presented

6 Results

In this section we will compare the 36 proposed parameter settings of the auditory
model based onset detection in order to investigate the influence of these settings
on the goodness of onset detection for each instrument. Further, we will compare
the results of original signal and auditory model based detection for the same
algorithm’s parameter settings. This should reveal whether an extension of the onset
detection algorithm (proposed in our previous work) with an auditory model leads
to better detection accuracy.

Comparison of Auditory Image Based Onset Detection
Approaches

In order to compare the goodness of the proposed 36 onset detection strategies (see
Sect. 4) we calculate the F -measure for each music instrument and for each of the
five slow and five fast sequences (see Sect. 5). The resulting average F -measures of
the six music instruments and 36 strategies are presented in Fig. 2. Most strategies
provide acceptable results but few strategies obviously fail. Furthermore, it can be
seen, that for the music instruments piano, guitar and clarinet—in contrast to the
others—systematically better detection accuracies are achieved.

Table 2 presents the best parameter settings for each instrument and on average.
We can observe an interaction between parameters C and WA: if WA D 1, C
should be chosen high (C D 95). Whereas the best setting on average is the one
with the small window length (L D 512 samples), without overlap (O D 0%),
considering merely the spectral based feature (WA D 0) and middle quantile
(median, C D 50%). Further, in Table 3 the worst strategies are listed: considering
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Table 2 Best parameter
settings for each instrument
and on average

Instrument ID L O WA C

Piano 36 2,048 50 1 95
Guitar 23 2,048 0 0.5 50
Flute 9 512 0 1 95
Clarinet 36 2,048 50 1 95
Trumpet 2 512 0 0 50
Violin 2 512 0 0 50
On average 2 512 0 0 50

Table 3 Worst parameter
settings

ID L O WA C

7 512 0 1 5
16 512 50 1 5
34 2,048 50 1 5
25 2,048 0 1 5
19 2,048 0 0 5

only the amplitude based feature (WA D 1) in combination with small C-values
does not seem to lead to acceptable results.

Comparison of Auditory Image Based and Original Signal
Based Onset Detection

In Bauer et al. (2012) the original signal based tone onset detection algorithm was
tested on the data set used in this work for eight possible combinations of the
following parameter settings: L with two levels (512 and 2,048 samples), O with
two levels (0 and 50 %) and WA with two levels (0 and 1). As the parameter C is
only given in the extended approach, it was set to the average best setting C D 50%
(see Table 2).

Table 4 shows the average F -values of auditory model based and original signal
based onset detection over the eight parameter settings mentioned above. It also
gives the median of the percentage change of the results when using the extended
approach. Further, Fig. 3 compares the detection accuracy (F -measure) of both
approaches for an example of slow trumpet tone sequences.

According to Table 4 the auditory image based onset detection is on average
(over all parameter settings) better than the original signal based. However, when
considering the median of the vector of 40 improvement-rates—for each setting
and each tone sequence—we observe for flute and trumpet, in contrast to the
other music instruments, a decline of the onset detection accuracy when using
the auditory model based approach (especially for the slow sequences). This is
basically caused by the fact that many onsets for these two instruments were
detected with a not accepted delay of more than 50 ms. Figure 4 shows a fragment
of the auditory image for a slow trumpet sequence. Obviously the channels with
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Table 4 Averaged F -values of the auditory model and original signal based onset detection over
eight different parameter settings and the median of the percentage change of the results when
using the extended approach

Sequence

Piano Piano Guitar Guitar Flute Flute. . . .
Approach slow fast slow fast slow fast

Auditory model 0.961 0.934 0.950 0.928 0.576 0.662
Original signal 0.918 0.854 0.949 0.895 0.553 0.606
Improvement (in %) 1.33 5.75 0.00 �0:98 �6:73 �1:64

Clarinet Clarinet Trumpet Trumpet Violin Violin
Approach slow fast slow fast slow fast
Auditory model 0.849 0.875 0.564 0.708 0.597 0.773
Original signal 0.775 0.801 0.514 0.658 0.466 0.638
Improvement (in %) 4.53 3.95 �6:78 �0:46 32.56 23.92

Fig. 3 Comparison of F -values of the original signal (dark) and auditory image based (light)
onset detection for slow trumpet tone sequences. The window length L is given on the x-axis,
while the values of the two other parameters (WA and O) are listed within the figure

high best frequencies (over 3,000 Hz) respond later than the channels with low best
frequencies. Interestingly such delays do not occur very often for short tones from
staccato tone libraries (for trumpet and flute). This may be due to the fact that short
and especially staccato tones in contrast to long tones usually have stronger attacks.
Thus, in order to improve the onset detection a systematic investigation of these
effects is required.
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Fig. 4 Cut-out of the audiogram for a slow trumpet sequence

7 Summary

In this work we proposed a strategy for using the multiple channel output of an
auditory model for the tone onset detection problem. We compared auditory model
and original signal based approaches on the same data set for several algorithm
parameter settings. The data set consists of random sequences which were generated
for six music instruments and two tempi (fast and slow) using real tone recordings.

An essential improvement of the onset detection when using the auditory model
can be noted for the violin (over 20 %). However, for the slow trumpet and flute tone
sequences a decline of the detection accuracy can be observed using the auditory
model based approach. This can be explained through the delayed response of high
frequency channels of the auditory model. In order to improve the auditory model
based onset detection the detailed study of auditory model behaviour depending
on musical characteristics of audio signals is required and is the aim for our
further research. Additionally, we plan to compare our two features with others
mentioned in Sect. 2, especially by considering polyphonic music pieces. Further,
other approaches for processing the channel outputs of the auditory model can be
considered, for example by taking the channel order into account.
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A Unifying Framework for GPR Image
Reconstruction

Andre Busche, Ruth Janning, Tomáš Horváth, and Lars Schmidt-Thieme

Abstract Ground Penetrating Radar (GPR) is a widely used technique for detecting
buried objects in subsoil. Exact localization of buried objects is required, e.g.
during environmental reconstruction works to both accelerate the overall process
and to reduce overall costs. Radar measurements are usually visualized as images,
so-called radargrams, that contain certain geometric shapes to be identified.

This paper introduces a component-based image reconstruction framework to
recognize overlapping shapes spanning over a convex set of pixels. We assume some
image to be generated by interaction of several base component models, e.g., hand-
made components or numerical simulations, distorted by multiple different noise
components, each representing different physical interaction effects.

We present initial experimental results on simulated and real-world GPR data
representing a first step towards a pluggable image reconstruction framework.

1 Introduction

This paper introduces a component-wise decomposition framework for images
which is applied in the context of Ground Penetrating Radar data analysis. An image
is assumed to be decomposable into several information-bearing components and
noise whose areas within an image may be overlapping. The latter assumption is a
characteristic property of GPR data analysis and requires us to enable our model to
capture interaction effects. In relation to common image analysis, our problem is
best described as dissecting spotlights in a theater scene from some whole picture.
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Fig. 1 Hyperbolas are caused by steady movement of a radar vehicle across a buried pipe (a). At
each horizontal position, an A-Scan (column) is measured, whose stacked visualization results in
so-called radargrams, or B-Scans (b)

Our framework allows to define individual base image components fk along
with multiple noise-components gl whose exact semantics are task-dependent.
Components contribute pixelwise at position .x; y/ to a final image OI :

OI .x; y/ D
K
k

fk.x; yI /C
K
l

gl .x; yI / (1)

Let ˇ denote a component mixing operation which combines individual base com-
ponents. In the most simple, yet uncommon scenario, aggregating base components
can be realized by component-wise summation at pixel level. More realistic real-
world application scenarios require more complex operations, e.g. if one thinks of
RGB color spaces or convolution (Daniels 2004).

The analysis of Ground Penetrating Radar (GPR) data aims at subsoil imaging,
for which many applications exists, e.g., landmine detection and pipe location
recognition (cf. Daniels 2004, Chaps. 12, resp. 9). In this paper deals with the pipe
recognition problem from B-Scans as depicted in Fig. 1.

Within our framework, we define valuable information as being hyperbola-
shaped image components containing a certain reflection pattern, whereas clutter
is defined as all other elements within that image.

Since we are dealing with real-world data, several artifacts exist in our radar-
grams: (a) varying soil conditions cause hyperbolas to be jittered, (b) shadowing or
masking effects occur, e.g., if obstacles are buried beneath the pipes, (c) multiple
vertical hyperbolas may represent the same pipe, as its inner filling material directly
influences the propagation of the wave.

To motivate our approach presented here, we are having a closer look at the
radargram image in Fig. 1b and identify the following characteristics: along the
depth (y) axis, a clear reflection pattern exists along the hyperbola (Sect. 3.1). For
our real-world data measured on a test-site, we can define synthetic hyperbola
components (Sect. 3.2) being used within our framework to derive the actual
curvature of a hyperbola (Sect. 4).
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2 Related Work

Relevant related work is summarized from two areas: (a) the GPR data analysis
focusing on pipe recognition and (b) object/shape identification in images.

Hyperbola Detection for GPR Data Interpretation is concerned with hyperbola
recognition and can generally be divided in three different approaches: (a) hyperbola
estimation from sparse data (Chen and Cohn 2010; Janning et al. 2012; Ahn et al.
2001), (b) utilizing brute-force methods such as the Hough transform to estimate
model parameters (Simi et al. 2008), (c) supervised machine-learning, e.g., Neural
Networks, for which training data needs to be collected beforehand (Al-Nuaimy
2000).

Since our framework does not define any learning strategy, existing approaches
may be well formalized therein, such as:

• E/M algorithms may be trained on the pixel probability belonging to one of the
base components (done in a sparse way in Chen and Cohn 2010),

• The Hough Transform may be phrased within our framework if components are
derived in an iterative fashion, see e.g. Buza et al. (2009).

Image Reconstruction techniques are presented in Tu et al. (2006). The author
also presents a unifying framework which partitions the source image into crisp
subsets. Their generative approach closely relates to ours, but lacks the ability to
model overlapping components which we need here.

Forsyth and Ponce (2004) present a technique called “hypothesize and test”
which tries to identify previously known shapes from a template database in an
image while being robust to affine transformations. Their closely related approach
bears two key differences: (a) we are unable to build up an exact template database
so that we would be required to infer parameters for a method emitting such
templates, and (b) convolution of radar waves causes effects on the radargram
images which might completely alter the shape of a template.

Zhao et al. (2012) utilize a numerical simulator to approximate radargram
images, but neither evaluate their approach on real-world data nor promise appli-
cability to any real-world data, since their approach is “seriously limited”, so that
their applicability is “impossible” for the general case.

3 Component-Wise Decomposition of GPR Images

Our framework is utilized for GPR data analysis as follows. Components are
assumed to contribute to the final radargram in an additive way, which is known
as the first-order Born approximation (Daniels 2004, Chap. 3), so that ˇ 	 P

. This
assumption is preliminarily made since our current study focuses on the suitability
of our approach. Modeling more complex interaction effects such as convolutional
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Fig. 2 Characteristic Reflection Patterns are sought in a B-Scan (a). These are simulated by three
Gaussians (b) which are identified in an A-Scan (c)

methods is justified (Abubakar and Berg 2002), as e.g., pipes buried close to each
other alter their pattern non-linearly. Our framework comprises both

• Base Components containing hyperbola-shaped patches along the x axis and a
characteristic reflective pattern along the depth axes. Soil conditions and antenna
characteristics cause hyperbolas to be distinguishable from the background only
to a certain extend, the “fading window”.

• Noise is regarded as being all other artifacts within an image, e.g., linear patches
which are caused by buried walls or underground water.

To learn model parameters, we define a closed-form loss function that allows us to
use direct optimization algorithms, e.g. Gradient Descent. Given an image I.x; y/,
it is defined pixelwise as the summed squared error on intensities:

l.I; OI / D
X
x;y

.I.x; y/ � OI .x; y//2 (2)

3.1 Pipe Reflection Patterns

We investigated reflection patterns along the depth axes shown in Fig. 2. The black
vertical line represents an A-Scan being visualized in subfigure (c).

Clearly visible are either black–white–black or white–black–white patterns,
whose actual excitation (intensity) differs across various real-world radargrams.
Three displaced Gaussians G.�; �/ define our synthetic

G.�; �h; �u; �d ; gu; gd /D vh �G.�; �h/C vu �G.� � gu; �u/C vd �G.�C gd ; �d /

(3)

which is centered at position � with standard deviation �h “here” (h), having
potentially varying extends gu “upwards” (u) and gd “downwards” (d ) at different
magnitudes (v) and standard deviations � (Fig. 2b). Figure 2c contains an excerpt of
an A-scan along with the reflective pattern identified.
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3.2 Components for GPR Image Reconstruction

We define our synthetic hyperbola base component by combination of the reflection
pattern with a hyperbola equation as:

Qfk.x; yI / D vhp
2��h

exp.� 1

2�2h
.h.a; b; x0; x/ � y C y0 � a/2/

C vdp
2��d

exp.� 1

2�2d
.h.a; b; x0; x/ � y � gd C y0 � a/2/

C vup
2��u

exp.� 1
2�2u
.h.a; b; x0; x/ � y C gu C y0 � a/2/ (4)

with  WD fa; b; x0; y0; vh; vd ; vu; gd ; gug. The component yet does not account for
the above mentioned “fading window” which will be added later on. The equation
combines the three-parametric hyperbola equation

h.a; b; x0; x/ D
p
a2 C b.x � x0/2 (5)

from Capineri et al. (1998) with the Gaussian excitation of (3), while the term
.y0 � a/ ensures a fixed apex location .x0; y0/ of the hyperbola when varying
parameter a. Consequently, parameters a, b only affect the curvature of the
hyperbola, whose values can be constrained for a real-world scenario:

a > 0 b > 0 (6)

vh � vd < 0 vh � vu < 0 (7)

a
b
< 10 (8)

These conditions are not required in general for the estimation process, but have
experimentally shown to guide the convergence of the algorithm to a desired
result, since unrealistic local minima are avoided. Condition (6) ensures the correct
opening of the hyperbola, while condition (7) takes care of maintaining the desired
reflection shape as in Fig. 2b. It has been observed that the optimization tends to
converge to straight-line estimates, so that condition (8) ensures the hyperbolas to
be shaped like those occurring in real-world scenarios. Large a and b values result
in more smooth hyperbolas at the apex.

The choice of a good “fading window” to account for antenna and soil influences
is both task- and data-dependent. For our experiments, we got satisfactory results
using a triangle weighting function,

w.xI / WD
(
1 � jx�x0j

z ; if jx � x0j < z

0; else
(9)

parameterized by  WD fx0; zg so that the base component is parameterized on the
union of both individual parameters sets  .
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fk.x; yI / D w.xI / � Qfk.x; yI / (10)

For our real-world data, setting z D 14 units (approx. 26 cm) in (9) resulted in
satisfying results as shown below.

4 Experiments

To evaluate our framework, we ran two experiments which were implemented using
Mathematica 8 using its built-in optimization routines: (a) we confirmed correct
estimation of parameters using loss function (2) for simulated data derived from (4)
for increasing noise and jittering, and thereafter (b) applied the framework to real-
world data using the same loss but (10). In both experiments, we restricted ourselves
to identify a single hyperbola.

4.1 Robustness to Noise

We simulated two kinds of noise on top of synthetic radargrams as follows:

1. Global pixelwise random uniform noise of magnitude relative to the maximum
excitation (vh) of the hyperbola. Within our framework, let noise g.x; y/ WD
rand.0; �/ be some random number in the interval .0; �/. Clearly, if � D vh, the
noise amount equals the excitation of the hyperbola. Let n� D �

vh
denote the

normalized fraction.
2. Random Gaussian jittering which we used to simulate heterogeneous soil-

conditions. For this kind of noise, we added a y-offset to (4) so that y0 WD y0 C
G.0; �/ with G denoting a random value sampled from a Gaussian distribution
having variance � .

Since we are aiming at exact determination of the parameter values on simulated
data, we are measuring the error in terms of accuracy regarding the actual parameter
values using RMSE. For both results shown in Fig. 3, uniform noise increases up
to twice the excitation amount of the hyperbola (n� D 2). Subfigure (a) contains
results for the non-jittered case, whereas the target hyperbola in subfigure (b) was
jittered along the y-axis. All results were obtained by averaging over 10 runs.

As stated in Sect. 3.2, the fraction a=b may be used as an indicator for the
smoothness at the apex location, so that absolute values for a and b only give limited
insight to the actual performance. Just focusing on this fraction and its excitation vh,
we conclude that our approach is suitable for both the jittered and non-jittered case
until the noise amount even exceeds the actual excitation of the hyperbola (n� D 1:5,
� D 0:4).
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Fig. 3 RMSE on hyperbola parameters (4) for increasing noise and jitter. (a) Non-distorted
hyperbola. (b) Jittered Hyperbola (� D 0:4)

Fig. 4 Our approach successfully extracts hyperbolas (b) from B-Scans (a)

4.2 Application to Real-World Data

We visually evaluated our approach on real-world data on some sample radargrams.
Since we are having no exact parameter values to measure the quality quantitatively,
Fig. 4 shows an example setting within which subfigure (a) contains an excerpt of
a real-world radargram. Initializing and fixing the component to the actual apex
position (our only assumption here) and running a parameter estimation for (10)
results in an image component as shown in subfigure (b) whose estimated reflection
pattern at its apex location is overlayed in Fig. 2c. It can clearly be seen that the
remaining noise part in subfigure (c) contains all information but the hyperbola, so
that our approach may be regarded as being suitable for identifying the exact shape
of a hyperbola.

5 Conclusion and Future Work

This paper presented a general formalization for component-based image decompo-
sition and showed its application to both simulated and real-world GPR data. Based
on a thorough data analysis, a two-dimensional hyperbola components was derived
and empirically shown to be suitable in both settings
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However, this work provides only initial insights to the problem being tackled.
Some assumptions were made which we aim to address as follows in future work:
(a) for both the simulated and real-world data we need a close initialization for the
algorithm to converge to the actual solution/position to the desired result. We will
further automatize the initialization utilizing data preprocessing steps, e.g., image
smoothing, and apex identification steps through hyperbola migration (Daniels
2004) or GamRec (Janning et al. 2012). (b) We restricted our analysis to identify
a single hyperbola at a time. Our next goal is to integrate our approach into either
an iterative algorithm or an E/M type algorithm for joint hyperbola identification.
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Recognition of Musical Instruments in Intervals
and Chords

Markus Eichhoff and Claus Weihs

Abstract Recognition of musical instruments in pieces of polyphonic music given
as mp3- or wav-files is a difficult task because the onsets are unknown. Using
source-filter models for sound separation is one approach. In this study, intervals
and chords played by instruments of four families of musical instruments (strings,
wind, piano, plucked strings) are used to build statistical models for the recognition
of the musical instruments playing them by using the four high-level audio feature
groups Absolute Amplitude Envelope (AAE), Mel-Frequency Cepstral Coefficients
(MFCC) windowed and not-windowed as well as Linear Predictor Coding (LPC) to
take also physical properties of the instruments into account (Fletcher, The physics
of musical instruments, 2008). These feature groups are calculated for consecutive
time blocks. Statistical supervised classification methods such as LDA, MDA,
Support Vector Machines, Random Forest, and Boosting are used for classification
together with variable selection (sequential forward selection).

1 Introduction

What characterizes the sound of a musical instrument? Because pitch and loudness
are not specific enough to discriminate between single tones of different instruments
it is important to look at timbre represented by the distribution of overtones in
periodograms. This distribution depends on the physical structure of the musical
instrument (see Fletcher 2008; Hall 2001). On the other side the energy of
every single signal has got a temporal envelope that differs from one musical
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Fig. 1 ADSR-curve of a musical signal

instrument to the other and is therefore also considered in this work. In total,
four groups of features are taken into account: a spectral envelope derived from
linear predictor coefficients (LPC, 125 var.), Mel-frequency Cepstral Coefficients
(MFCC, windowed: 80) and MFCC not-windowed (16 var.) as well as an Absolute
Amplitude Envelope (AAE, 132 var.). MFCCs have already shown to be useful for
classification tasks in speech processing (see Rabiner and Juang 1993; Zheng et al.
2001) as well as in musical instrument recognition (Krey and Ligges 2009;
Wold et al. 1999; Brown 1999).

On the one hand, each musical signal is windowed by half-overlapping segments
ws , s 2 f1; : : : ; 25g; of a size of 4,096 samples. On the other hand, each musical
signal can be divided into four phases: attack, decay, sustain and release (ADSR)
(see Fig. 1). In order to model these phases, blocks of five consecutive windows
each are constructed (see Fig. 2) and so-called block-features are calculated for each
block. The number five is chosen arbitrarily.

In this paper, musical signals are intervals and chords. All intervals are built by
two different tones played simultaneously by the same or different instruments. All
chords consist of three or four tones played simultaneously by the same or different
instruments. See Sect. 3.1 for more information.

The four instrument classes consist of the following instruments:
Strings: violin, viola, cello
Wind: trumpet, Flute
Piano
Plucked strings: E-guitar, acoustic guitar
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Fig. 2 Blocks of a tone

2 Groups of Features

Each interval or chord is an audio signal xŒn�, n 2 f1; : : : 52920g; of length 1.2 s
with the sampling rate sr D 44;100Hz. On these signals the features of each feature
group (LPC, MFCC windowed, MFCC not-windowed, AAE) are calculated.

As described in Eichhoff and Weihs (2010) all features but the Absolute
Amplitude Envelope are calculated on each of the five consecutive time windows
using the component-by-component median for the blocks. In case of the Absolute
Amplitude Envelope calculation was done by using non-overlapping windows of
size 400.

The MFCC features are also calculated on the whole 1.2 s (“unwindowed”).
Visualizations of these features can be found in Figs. 3–6. Further details

concerning the four mentioned feature groups may be found in Eichhoff and Weihs
(2010).

3 Classification Tasks and Test Results

For each instrument class piano, plucked strings, strings and wind, classification
is carried out separately with class variables with values f1; 0g, meaning that
instrument class is involved in the interval/chord or not. As classification methods
Linear Discriminant Analysis (LDA), Multivariate Discriminant Analysis (MDA),
Random Forest (RaFo), the boosting method Adaboost (Adaboost) and Decision
Trees (Rpart), k-nearest neighbours (kNN) and Support Vector Machines (SVM)
are used. The last five methods use hyper-parameters tuned on a grid.
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3.1 Database of Intervals and Chords

Only those intervals and chords are used for classification that often appear in pop
music. For this reason the small/large third, fourth, quint, large sixth and small
seventh are used in case of the intervals and steps I, IV, V, and VI in case of the
chords. The latter consists of four, all other chords of three tones.

The tones of the intervals as well as the chords are i.i.d. chosen out of 12 possible
tones as well as the instruments out of the possible eight instruments, the key from
major/minor, the interval size, and the steps.

The data set consists of 2,000 tones as training and 1,000 tones as a hold out set.
All these tones are built by using 1,614 guitar, 1,202 string, 313 piano and 418 wind
tones from the McGill University Master Samples (see McGill University 2010),
RWC Database (see Goto et al. 2003) and music samples of the Electronic Music
Studios, Iowa (see University of Iowa 2011).

The sound intensity of all tones is mezzo-forte (mf) as stated at the labels of the
tones. Of course, this has to be regarded with caution because even if the tones
are labeled with “mf”, the instrumentalists may have played differently and the
recording conditions could have been different in all three cases.

The pitch range of the involved individual tones is E2 up to Gb6 (approx.
82–1,479 Hz).

3.2 Classification Steps

Each data frame A 2 R
m�n (rows refer to objects, columns to features) is pre-

filtered. For each iteration of a tenfold cross-validation a logistic model is calculated
and by stepwise forward selection those variables are selected that minimize the
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Fig. 7 Classification process

Table 1 Intervals—evaluation result and number of selected variables

LPC, MFCC win. C not-win., AAE (353 var.) MFCC win. C not-win. (96 var.)

Misclass. error Misclass. error
(best tuning result Number of selected var. (best tuning result Number of selected var.
after prefiltering) (only prefiltering) after prefiltering) (only prefiltering)

Guitar 0.095 (0.085) 9 (34) 0.155 (0.137) 14 (36)
Piano 0.135 (0.105) 11 (45) 0.143 (0.130) 9 (16)
Strings 0.100 (0.095) 11 (56) 0.140 (0.158) 18 (23)
Wind 0.089 (0.069) 17 (38) 0.121 (0.097) 11 (24)

(AIC)-criterion (Akaike 1974). This procedure is done for three randomly built
tenfold cross-validations. Those variables are selected that have been chosen at least
nine of ten times.

This procedure leads to a data frame B 2 R
m�p with p < n. Then, hyper-

parameter tuning is carried out by a tenfold cross-validation, if necessary. The
“optimal” hyper-parameters are then used to carry out the training procedure on
the above mentioned 2,000 tones using a tenfold cross-validation and sequential
forward selection. The methods without hyper-parameters start directly at this point.

At the end, evaluation on the hold-out set is being done to get the misclassifica-
tion error on these “new” tones.

Figure 7 shows the process of classification. For each instrument and interval and
chord classification the best results are shown in Tables 1 and 2. The corresponding
classification method always was SVM except for Strings where RaFo shows best
results.

Table 3 shows the features jointly selected for two instrument classes
(G D Guitar, P D Piano, S D Strings, W D Wind). From this table one can calculate
the percentage of features for guitar, piano, strings, wind (left to right) shared with
the other instrument classes: Intervals: 0.67 0.45 0.27 0.35, Chords: 0.18 0.31 0.10
0.14.
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Table 2 Chords—evaluation
result and number of selected
variables, based on all 353
variables

Misclass. error
(best tuning result Number of selected var.
after prefiltering) (only prefiltering)

Guitar 0.130 (0.140) 14 (31)
Piano 0.190 (0.204) 13 (42)
Strings 0.133 (0.138) 10 (33)
Wind 0.208 (0.197) 7 (30)

Table 3 Number of “shared”
features Intervals Chords

G P S W G P S W

G 9 3 1 2 14 2 0 0
P 3 11 0 2 2 13 1 1
S 1 0 11 2 0 1 10 0
W 2 2 2 17 0 1 0 7

One can observe that in case of chords the number of shared features is smaller
than for intervals. This may be explained by the more complex situation of the chord
classification. Due to this fact more specific information is necessary to detect a
certain instrument class. Due to the same reason, the misclassification errors in the
interval classification Table 1 are higher than in the chord classification Table 2.
From Table 1 one can recognize that additionally to windowed and not-windowed
MFCC it makes sense to consider also the other feature groups AAE and LPC.

3.3 Classification Results: Common Features Blockwise

Furthermore, classification results show that not every block seems to be important
and necessary for classification. Although one may note critically that only one
replication of the procedure has been done. Naturally, the statement could be more
robust after many replications.

Figure 8 shows that features from blocks 2 and 3 in case of the intervals and
blocks 3 and 5 in case of the chords are rarely chosen. The numbers in this
figure denote the feature number f1; : : : ; dimension(feature)g of each feature group.
Concerning the selected not-windowed MFCC features it can be seen in Table 4 that
only the first three of 16 features are selected in each of the four instrument classes.

Table 5 shows the evaluation results for intervals with reduced blocks for all
variable groups and only not-windowed MFCCs (no. 1, 2, 3). Again, in all cases
except wind SVM showed the best results. For wind, RaFo was the best method.
A comparison of Tables 1 and 5 shows that block reduction to just block 1 is
sufficient for all instrument classes except for the string class because there the
results get worse. In addition, block 4 appears to be important for strings (approx.
9% error rate, see right hand side of Table 5).
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Fig. 8 Common features blockwise

Table 4 Selected not-windowed MFCC feature-numbers (1–16)

Intervals Chords

G 1 –
P 1 2,4
S 2 –
W 1,2,3 2

Table 5 Intervals—evaluation results and number of selected variables

Block No. 1 (75 var.) Blocks No. 1 and 4 (146 var.)

Misclass. error Misclass. error
(best tuning result Number of selected var. (best tuning result Number of selected var.
after prefiltering) (only prefiltering) after prefiltering) (only prefiltering)

Guitar 0.094 (0.092) 10 (19) 0.097 (0.093) 10 (26)
Piano 0.118 (0.113) 11 (22) 0.119 (0.105) 10 (34)
Strings 0.201 (0.182) 7 (17) 0.091 (0.083) 14 (36)
Wind 0.109 (0.109) 7 (16) 0.107 (0.109) 11 (20)

4 Conclusion

Musical instrument recognition in intervals and chords leads to good misclassifi-
cation errors of around 10% for the intervals when using only block 1 for guitar,
piano, wind and the two blocks 1 and 4 for strings. The number of selected variables
is between 7 and 14.

It would be useful to carry out more than one replication of the procedure to get
more robust results concerning statements of selected features for interval and chord
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classification and more stable misclassification error rates. Also, investigations
based on statistical tests and further investigation in the classification of chords with
a reduced block number will be done.
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ANOVA and Alternatives for Causal Inferences

Sonja Hahn

Abstract Analysis of variance (ANOVA) is a procedure frequently used for
analyzing experimental and quasi-experimental data in psychology. Nonetheless,
there is confusion which subtype to prefer for unbalanced data. Much of this
confusion can be prevented when an adequate hypothesis is formulated at first.
In the present paper this is done by using a theory of causal effects. This is the
starting point for the following simulation study done on unbalanced two-way
designs. Simulated data sets differed in the presence of an (average) effect, the
degree of interaction, total sample size, stochasticity of subsample sizes and if there
was confounding between the two factors (i.e. experimental vs. quasi-experimental
design). Different subtypes of ANOVA as well as other competing procedures from
the research on causal effects were compared with regard to type-I-error rate and
power. Results suggest that different types of ANOVA should be used with care,
especially in quasi-experimental designs and when there is interaction. Procedures
developed within the research on causal effects are feasible alternatives that may
serve better to answer meaningful hypotheses.

1 Background

Often there are various independent variables in a single analysis. When the
independent variables are categorical—indicating different groups of persons for
example—usually a t-test or ANOVA is used to analyze the data. For example, in a
study Pollock et al. (2002) investigated how students performed on a post test cap-
turing understanding of technical topic. The groups differed in two aspects: Firstly,
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only some of the students had received prior teaching on technical topics. Secondly,
the groups received a different instruction: Either a simple or a more complex
text was given to the students. The results of the study indicated an interaction of
medium effect size: The students with no prior teaching performed better on the post
test when reading the simple text instead of the complex text. For the other students
the opposite was true. Whereas Pollock et al. (2002) were mainly interested in the
interaction, often the overall performance of the manipulated factor is of interest
(i.e. instructional text in the example).

One possible approach to test such an overall effect is to use an ANOVA and
focus on the main effect of the manipulated factor (see e.g. Eid et al. 2010 for
background and terminology of ANOVA). When the other independent variable can
not be manipulated, the number of observations in the subsamples may differ. This
is called an unbalanced design. Most software packages provide different algorithms
that lead to different results in unbalanced designs (see e.g. Langsrud (2003); Searle
(1987)). In this paper I will use the distinction of Type I-IV sums of squares that was
used originally in the software package SAS GLM. The different algorithms can be
regarded testing different hypotheses due to different weighting of the cell means
(see Searle (1987); Werner (1997)). Often resarchers using ANOVA are actually
interested in causal questions. Eid et al. (2010) note that the theory of causal effects
provides an adequate basis in this case (see also Wüthrich-martone (2001)).

The theory of causal effects (Steyer et al. in press) distinguishes between
covariates Cx that are prior to a treatment variable X that is again prior to an
outcome variable Y . In our example the covariate prior teaching is prior to the
different instructional texts (x vs. x0, treatment variable) and these are prior to
the post test (outcome variable). Thus, although prior teaching is not a continuous
variable here, it will be regarded as a covariate. Only a single covariate is used here
to simplify matters. Usually various covariates will have to be regarded. The overall
or average treatment effect (ATE) is defined by

ATE 	 EŒEXDx.Y jCx/� EXDx0

.Y jCx/�

Referring to the example this means: First calculate the (theoretical) differences
on the outcome variable between both instructional methods for each value of the
covariate. Then calculate the weighted sum of these differences using the (theoret-
ical) distribution of the covariate as weights. So the ATE takes the distribution of
the covariate into account. For choosing the right procedure to test the hypothesis
H0: ATE D 0, the design of the study plays an important role: In a randomized
experiment the distribution of the covariates does not differ systematically between
the treatment groups. In a quasi-experiment usually this is not true: Here the
covariates often affect both, the treatment variable and the outcome variable. This is
called confounding. Adjustment procedures should be used in this case.

In unbalanced two-way designs, the question occurs how to test the hypothesis
H0: ATE D 0. Procedures like ANOVA, that are recommended in textbooks, will
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be compared to procedures from the causal effects research in a simulation study.
Some of the hypotheses tested by the different procedures coincide when there
is no confounding or no interaction. Furthermore some of the procedures use the
general linear model (GLM) that assumes a fixed design matrix. Nonetheless this
assumption is rarely met in many real world investigations as subsample sizes are
not fixed by the design of the study. Therefore, I manipulated these aspects in the
simulation study.

2 Method

2.1 Simulated Data Sets

The data from Pollock et al. (2002) was used as a starting point for the simulation
study. First the covariate Z was simulated as an indicator variable (0: no prior
teaching, 1: prior teaching) with P.Z D 1/ D 0:4. The treatment variable X
was also an indicator variable (0: simple text, 1: complex text). In the randomized
experiment condition P.X D 1jZ D 0/ D P.X D 1jZ D 1/ D 0:5, and for the
quasi-experimental condition P.X D 1jZ D 0/ D 1

3
and P.X D 1jZ D 1/ D 3

4

indicating a favorable treatment assignment in this case. For the fixed sample sizes
the proportion of sample sizes corresponded exactly to these probabilities. For
stochastic sample sizes binomial distributions were used to reflect deviations due
to the sampling process. The simulation procedure further ensured that there were
at least two observations in each cell.

The outcome variable Y was calculated as a linear combination of Z, X and
the interaction XZ with additional normally distributed error terms. The linear
combination was constructed similar to the data from Pollock et al. (2002) with
minor changes: The size of the interaction was modified so that no interaction, an
interaction like in the study (middle interaction) or the twice that interaction (strong
interaction). The coefficient of X was modified so that two different values for the
ATE resulted. For the simulation under the Null hypothesis the ATE was zero. For
the simulation under the Alternative hypothesis the effect size like defined in Steyer
and Partchev (2008, p. 40) for the ATE was 0:5. In different data sets we found effect
sizes up to 1.0, strongly depending on the content of the analysis.

The total sample size N ranged between 30 and 900. The nominal ˛-level was
set at .05 as a typical level used in psychology. As the procedures described are
parametric, also other nominal ˛-levels are possible. The simulation study was
conducted using R 2.13. For each combination 1,000 data sets were simulated.
Each data set was analyzed using the following procedures.
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2.2 Procedures Under Investigation

The t-test for unequal variances (Welch-test) with the treatment variable as the
independent variable as well as various ANOVA approaches were investigated.
The following variants of ANOVA used the covariate prior teaching and the
treatment variable instructional method as factors:

ANOVA 1: ANOVA of Type I sums of squares including the treatment variable
as the first and the covariate as the second factor

ANOVA 2: ANOVA of Type II sums of squares (This is equivalent to ANOVA of
Type I including the covariate as the first factor.)

ANOVA 3: ANOVA of Type III sums of squares and ANOVA of Type IV sums of
squares (Both procedures lead to identical results when there are no empty cells.)

The procedures are contained in the standard installation of R and in the car library
(Fox and Weisberg 2011), respectively. A cross check assured that results equaled
those of SPSS.

There are many procedures from research on causal effects that aim to correct
for bias introduced by confounding variable. They stem from different research
traditions. Most of the procedures presented here focus on the relation between
covariate and outcome variable, whereas the last one using Matching focuses on
the relation between covariate and treatment variable. For an wider overview see for
example Schafer and Kang (2008).

The first procedure is an ANCOVA procedure proposed by Aiken and West
(1996). This variant of the standard ANCOVA allows for an additional interaction
term and conducts a mean centering on the covariate. It tests the hypothesis H0:
ATE D 0. Although qualitative covariates may cause problems in procedures like
ANCOVA, here we can easily include them as the present covariate is dichotomous.
The procedure relies on the general linear model and the assumptions therein (i.e.
fixed subsample sizes, normally distributed error terms with equal variances). When
these assumptions are fulfilled, this procedure can be regarded a baseline procedure
for testing this hypothesis. See Schafer and Kang (2008) for more background
information and also for R-Syntax.

The second procedure that extends the ANCOVA approach is EffectLite devel-
oped by Steyer and Partchev (2008). It relies on maximum likelihood estimation
and uses Mplus in the background. A benefit of this method is that—beside of
interaction—it allows for stochastic group sizes, heterogeneous error terms and
latent variables for example.

The third procedure is a Regression Estimate approach (Regr.Est.) that was
developed by Schafer and Kang (2008). The background of this procedure stems
from research on missing values. It uses a special computation of standard errors. In
the simulation study by Schafer and Kang (2008) it showed a very robust behavior.
Additional background and R-code are provided along with the article of Schafer
and Kang (2008).
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Finally as a matching procedure the Match function with exact matching and
ATE estimation of the Matching package of Sekhon (2011) was used. The procedure
uses weights to calculate estimators and standard errors for testing the ATE. Like in
the package a standard normal distribution of the test statistic was used for assessing
significance. Schafer and Kang (2008) do not recommend using matching methods
based on weights.

3 Results

3.1 Type-I-Error Rates

Table 1 shows the empirical type-I-error rates for the different procedures under
different simulated conditions.

The t-test shows only good adherence to the nominal ˛-level in the experimental
conditions. The ANOVA approaches behave differently: ANOVA 1 yields similar
problems like the t-test, thus working only well in experimental conditions.
Furthermore stochastic group sizes lead to slightly higher type-I-error rates even
in the randomized experiment. ANOVA 2 displays the best behavior of all ANOVA
approaches, only failing when there are both interaction and confounding or both
interaction and stochastic group sizes. ANOVA 3 shows problems whenever an
interaction is present.

ANCOVA with mean centering works well unless when there are strong interac-
tions combined with stochasticity. EffectLite shows difficulties with small sample
sizes in all conditions. The Regression Estimates procedure never exceeds the
nominal ˛-level but seems to behave quite conservative. Finally, the Matching
procedure sometimes excesses the nominal ˛-level for small sample sizes while
being quite conservative in the presence of interaction.

3.2 Power

An important aspect for applied researchers is to know about the power of the
different procedures (see Fig. 1).

The t-test shows the lowest power of all investigated procedures. ANOVA 1
and ANOVA 2 belong to the procedures with the highest power. ANOVA 3 was
not included in the graph because of the too high type-I-error rate under the Null
hypothesis.

The ANCOVA approach and EffectLite belong to the procedures with the highest
power. The Regression Estimates procedure shows a rather low power, and the
Matching procedure a medium power.
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Table 1 Empirical type-I-error rates for the nominal ˛-level of 5 % under different side conditions
for different procedures. Type-I-error rates exceeding the 95 % confidence interval [.037,.064] are
printed in bold. In each condition 1,000 data sets were simulated

Interaction No Middle Strong

N 30 90 300 900 30 90 300 900 30 90 300 900

Randomized experiment, fixed group sizes
t -test .039 .040 .044 .040 .022 .030 .024 .040 .015 .014 .019 :013

ANOVA 1 .042 .050 .054 .046 .047 .047 .045 .066 .048 .053 .049 :046

ANOVA 2 .042 .050 .054 .046 .047 .047 .045 .066 .048 .053 .049 :046

ANOVA 3 .045 .045 .052 .043 .048 .067 .121 .266 .076 .136 .310 :716

ANCOVA .042 .050 .054 .046 .047 .047 .045 .066 .048 .053 .049 :046

EffectLite .077 .061 .056 .047 .075 .058 .048 .069 .082 .060 .051 :046

Regr.Est. .031 .021 .023 .018 .023 .022 .014 .028 .024 .018 .018 :010

Matching .069 .056 .056 .046 .054 .046 .037 .051 .043 .025 .028 :019

Quasi-experiment, fixed group sizes
t -test .069 .124 .358 .788 .105 .309 .832 .997 .130 .504 .979 1:00
ANOVA 1 .076 .134 .375 .803 .155 .376 .876 .998 .272 .711 .996 1:00
ANOVA 2 .050 .042 .043 .052 .052 .059 .058 .063 .053 .066 .080 :147
ANOVA 3 .041 .052 .039 .047 .055 .080 .087 .217 .067 .120 .239 :589

ANCOVA .047 .045 .040 .055 .050 .055 .048 .048 .051 .054 .046 :041

EffectLite .080 .054 .045 .055 .087 .063 .051 .048 .078 .058 .048 :043

Regr.Est. .050 .022 .015 .018 .055 .023 .018 .021 .036 .021 .004 :012

Matching .082 .059 .040 .055 .071 .052 .040 .042 .048 .029 .012 :017

Randomized experiment, stochastic group sizes
t -test .041 .054 .054 .040 .047 .056 .052 .058 .032 .064 .055 :040

ANOVA 1 .048 .064 .064 .047 .074 .076 .078 .076 .095 .134 .129 :100
ANOVA 2 .044 .057 .055 .042 .061 .052 .061 .064 .052 .084 .077 :071
ANOVA 3 .047 .044 .048 .043 .062 .062 .103 .259 .068 .109 .280 :715

ANCOVA .043 .057 .054 .042 .058 .054 .060 .064 .048 .084 .075 :073
EffectLite .069 .062 .056 .043 .088 .055 .058 .058 .058 .071 .053 :041

Regr.Est. .040 .027 .026 .019 .039 .020 .023 .018 .030 .029 .017 :017

Matching .063 .066 .056 .043 .076 .051 .051 .050 .042 .047 .030 :026

Quasi-experiment, stochastic group sizes
t -test .044 .104 .322 .796 .050 .223 .732 .998 .062 .333 .917 1:00
ANOVA 1 .051 .120 .332 .809 .074 .277 .791 .999 .164 .498 .960 1:00
ANOVA 2 .047 .046 .060 .040 .046 .045 .076 .072 .068 .083 .103 :180
ANOVA 3 .038 .044 .062 .044 .050 .054 .117 .228 .062 .098 .276 :626

ANCOVA .046 .049 .062 .039 .052 .046 .068 .054 .078 .075 .081 :076
EffectLite .081 .052 .063 .039 .095 .050 .065 .048 .087 .065 .066 :056

Regr.Est. .045 .021 .029 .020 .045 .017 .029 .021 .053 .028 .024 :017

Matching .070 .055 .064 .040 .075 .042 .058 .040 .068 .043 .037 :030
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Fig. 1 Comparison of power for different procedures. Only procedures with sufficient adherence
to the nominal ˛-level were included. Results are based on 1,000 simulated data sets

4 Discussion

Both, the very progressive behavior of the t-test in the quasi-experimental condition
and the low power in the experimental condition can be explained as this procedure
does not incorporate the covariate. The results show that ANOVA procedures in
many cases are not appropriate to test the hypothesis about the ATE. This can
be explained by comparing the hypotheses underlying the ANOVA procedures
with the definition of the ATE. Depending on the respective ANOVA procedure,
the hypotheses coincide only in cases with no interaction or in the experimental
condition.

Alternative procedures from the research on causal effects work better than
ANOVA in many cases containing an interaction. Differences between these proce-
dures result from the different approaches. The ANCOVA approach from Aiken and
West (1996) works fine unless when the group sizes are stochastic. Stochastic group
sizes violate the assumption of fixed subsample sizes. The EffectLite approach
works well with bigger sample sizes. The reason therefore is that the maximum
likelihood estimation requires big sample sizes. The conservative behavior of the
Regression Estimates approach might be due to its robustness (compare Schafer and
Kang (2008)). Finally the Matching approach from Sekhon (2011) using weights has
been criticized on various occasions (e.g. Schafer and Kang (2008)). The progres-
sive behavior for small sample sizes might be avoided when a t-distribution instead
of a standard normal distribution is used for significance testing.

The simulation study is limited in various ways as only a small set of conditions
was investigated. In particular, this refers to the single, dichotomous covariate and
the error term distribution. Further simulation studies should also focus on the
stochasticity of subsample sizes, as this is quite common in applied studies.
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5 Conclusion

In many textbooks the criterion to decide if to use ANOVA or ANCOVA procedures
are characteristics of the variables. This criterion is quite superficial and should be
replaced by a sensible research question and the hypothesis derived from it. In the
case of causal questions and when some of the variables are prior to the intervention
investigated (e.g. characteristics of the units like gender or prior teaching in the
example), procedures from research on causal effects are an adequate choice. As the
simulation study shows, this is especially important when there is are interactions
in the data.

ANCOVA incorporating interaction (Aiken and West 1996) is a good choice
when the group sizes are fixed by the design of the study. Other procedures like
Regression Estimates (Schafer and Kang 2008) or EffectLite (Steyer and Partchev
2008) have the capability of treating frequently occurring difficulties like stochastic
group sizes or variance heterogeneity. As the simulation study showed, EffectLite
should be used only in sufficiently large samples (i.e. N � 90).
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Testing Models for Medieval Settlement
Location

Irmela Herzog

Abstract This contribution investigates two models for the spread of Medieval
settlements in the landscape known as Bergisches Land in Germany. According to
the first model, the spread was closely connected with the ancient trade routes on
the ridges. The alternative model assumes that the settlements primarily developed
in the fertile valleys. The models are tested in a study area for which the years
are known when the small hamlets and villages were first mentioned in historical
sources. It does not seem appropriate to apply straight-line distances in this context
because the trade routes of that time include curves. Instead an adjusted distance
metric is derived from the ancient trade routes. This metric is applied to generate a
digital raster map so that each raster cell value corresponds to the adjusted distance
to the nearest trade route (or fertile valley respectively). Finally, for each model
a Kolmogorov–Smirnov test is applied to compare the adjusted distances of the
Medieval settlements with the reference distribution derived from the appropriate
raster map.

1 Introduction

Two models have been proposed for the spread of Medieval settlements in the
landscape known as Bergisches Land in Germany. Some experts think that the
spread was closely connected with the ancient trade routes which were already
in use before the population increase in Medieval times (e.g. Nicke 1995). An
alternative hypothesis assumes that the settlements primarily developed in the
valleys with good soil (Kolodziej 2005). This contribution investigates the two
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Fig. 1 Left: Medieval settlements in the study area, the background shows the terrain and the
streams. Right: Ancient trade routes and LCPs

hypotheses focusing on an area covering 675 km2 of the Bergisches Land (Fig. 1).
For this study area, a publication is available (Pampus 1998) listing the years when
the small hamlets and villages were first mentioned in historical sources, with a
total of 513 locations mentioned in Medieval times (i.e. between 950 and 1500
AD), 88 of these were recorded before 1350 AD (early settlements are indicated
by triangles in Fig. 1, left). This list of settlements is probably very close to a
complete sample, because it includes a high proportion of very small places and
only a small fraction of the place names in the list of Pampus could not be located
on historical or modern maps. Merely a small amount of the settlements on the
list were abandoned. Therefore the assumption is plausible that the sample is not
seriously biased. However, a settlement might have been mentioned a long time
after its first house had been built. So the history of settlement in this area is
perhaps not reflected adequately in the years when the place names were first
mentioned.

On the oldest available reliable maps from the study area, drawn in the middle of
the nineteenth century, nearly all settlements are still very small, and for this reason
it was quite easy to identify the centre of each settlement, which was marked by a dot
in a geographical information system (GIS). To test the hypotheses, the distribution
of these dots with respect to the targets (i.e. fertile valleys and known ancient trade
routes) is compared with the background distribution. In practice, a raster map is
created and for each raster cell the distances to the nearest targets are calculated.
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The distance distribution of those raster cells which include the settlement dots is
compared to the distribution of all raster cells in the study area.

2 Least-Cost Distance

However, the straight-line distance does not seem appropriate for testing the models,
because in a hilly terrain with many creeks and small rivers, people did not walk “as
the crow flies”. The ancient trade routes preserve the movement patterns of the time
when they developed. For the study area, these trade routes are described by Nicke
(2001) who published overview maps and lists the villages along the routes. So it
was possible to outline the routes roughly in a GIS. The route sections connecting
the villages were digitized from maps created in the middle of the nineteenth century
(Fig. 1, right), assuming that the ancient route layout is still preserved at that time.
On the basis of a successful reconstruction of these trade routes by least-cost paths
(LCPs), an adjusted distance measure can be derived. Different cost models result
in different LCPs. A popular cost model (Tobler 1993; Herzog 2010) depends only
on the slope of the terrain and estimates the walking time required:

cost.s/ D 10=e�3:5jsC0:05j (1)

where s is the slope (calculated by vertical change divided by horizontal change).
The slope is derived from the ASTER digital elevation model (ASTER GDEM is a
product of METI and NASA). The resolution of the elevation data is about 30 m.

The goodness of fit of LCPs to the ancient trade routes was assessed by visual
impression. Formal methods like that presented by Goodchild and Hunter (1997)
were not applied because the improvements after adjusting the model parameters as
described below were quite evident. A slope-dependent cost function for wheeled
vehicles produced better results than the Tobler cost function. The movement
patterns of pedestrians differ from that of carts or wagons with respect to the grade
which they can climb efficiently without switchbacks. The term critical slope is used
for the transition grade where it is not longer efficient to mount the grade directly.
Whereas the critical slope for walkers is at about 25 % (Minetti 1995), a lower
critical slope in the range between 8 and 16 % is appropriate for carts or wagons
(e.g. Grewe 2004 referring to Roman roads). A simple quadratic function can be
constructed with a given critical slope c (Llobera and Sluckin 2007; Herzog 2010):

cost.s/ D 1C .s=c/2 (2)

where c and s are percent slope values. The LCPs resulting from a quadratic cost
function with a critical slope of 13 % performed best. However the LCP results
came closer to the known trade routes when the slope costs were combined with
penalties for crossing wet areas. Initially modern data on streams were used, but
some small creeks are not included in the stream data set, and in some cases, the river
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or creek changed since Medieval times due to meandering or modern construction
work. So instead of the modern stream layer, the digital soil map (provided by the
Geologischer Dienst, Krefeld, Germany) formed the basis for identifying wet areas.
Most small creeks missing in the stream layer but depicted in the mid nineteenth
century map are within wet areas indicated on the soil map. Moreover, wet soils
are still present in areas where meanders of rivers like the Wupper were located
in former times. The LCPs resulting from the penalty factor of 5 for the wet
soils coincided better with the trade routes than the paths generated with factors
4 or 6. The best LCP results were achieved when some ford locations identified on
historical maps were assigned a lower factor of 2 within the wet areas.

These LCPs are fairly close to the Medieval trade routes (Fig. 1, right). The fit of
the LCPs to the trade routes is not perfect which may be caused by several factors,
e.g. the inaccuracies of the digital elevation model, landscape change due to modern
activities like quarries, mining and the creation of water reservoirs and the fact that
additional aspects (beyond slope and avoiding wet areas) might have played a role
as well.

So a new metric was defined which takes the slope, the wet areas, and the fords
into account. The metric is symmetric because the slope-dependent quadratic cost
function is symmetric. The Tobler cost function is not symmetric, but assuming that
the same route was chosen for moving to a given target and back, the symmetric
function newcost(s) D cost(s) C cost(�s) should be used instead of the asymmetric
function cost(s) (Herzog 2010).

3 Accessibility Maps

On the basis of the distance metric described above, raster accessibility maps are
created. The accessibility map with respect to the ancient routes relies on the main
routes described by Nicke (2001), ignoring alternative (mostly later) route sections
which are also shown in Fig. 1 (right). The digital soil map was used to identify
fertile valleys: the soil map attributes include the upper limit of soil quality which
indicates agrarian productivity with a maximum value of 100 in Germany, but not
exceeding 75 in the Bergisches Land. A thematic map showing this attribute allowed
to identify streams surrounded by fertile valleys. So two accessibility maps with two
sets of line-shaped targets are created: the first set consists of Medieval trade routes,
the second set is formed by streams surrounded by fertile valleys. For each raster
cell of the accessibility map, the accessibility value corresponds to the least-cost
distance to the nearest trade route or valley with good soils respectively (Fig. 2).

All raster cell values within the study area form the reference probability
distribution, and the sample of the cells including the settlement dots will be
compared with this reference distribution.



Testing Models for Medieval Settlement Location 355

Fig. 2 Accessibility maps, with respect to ancient trade routes (left), and fertile valleys (right).
One distance unit in the map corresponds to the costs of covering 1 km on dry level ground. The
legend indicates the quartiles of the distance distribution

4 Testing

One-sample Kolmogorov–Smirnov tests (e.g. Conover 1971) are applied to test
the hypothesis that the Medieval settlements are closer (in terms of the least-
cost distance) to the linear targets than the reference distribution derived from the
appropriate accessibility map. Both reference distributions are skewed to the right
so that the popular t-test, which assumes normal distribution, is not applicable. The
Kolmogorov–Smirnov test is a non-parametric goodness-of-fit test, which compares
the empirical distribution function Fn of the independent, identical distributed (iid)
sample consisting of n observations with the cumulative distribution function F.x/.
The test considers only the maximum vertical distance between these two functions:

D D max
x

Fn.x/ � F.x/ (3)

The null hypothesis of this one-sided test is rejected if D exceeds a threshold
depending on n and the confidence level ˛. Tables listing the exact threshold
values up to n D 40 are published (e.g. Conover 1971), for n > 40 conservative
approximations are used. This allows presenting the test in a diagram, which shows
the two distribution functions and their maximum distance (Fig. 3).

Moreover, with a given threshold an upper confidence band for the empirical
distribution function can be constructed. The null hypothesis of the goodness-of-fit
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Fig. 3 Kolmogorov–Smirnov tests (one-sided, one-sample). Fertile valleys (right): The black bar
indicates the maximum distance between F88 and F ; the grey confidence band is drawn for ˛ D
1% and n D 513; F513 exceeds the confidence band at the position indicated by the arrow. On the
x-axis the same distance units are used as in Fig. 2

test is rejected if at some point x, Fn.x/ exceeds the upper confidence band. So this
test is easily intuitive for archaeologists without sound statistical background.
Figure 3 (left) shows that the Medieval settlements within the study area are
somewhat closer to the trade routes than the raster cells forming the reference
distribution, however, the null hypothesis of the goodness-of-fit test is not rejected at
the 1 % level. This applies both to the set of settlements mentioned before 1350 AD

and all Medieval settlements. The least-cost distance of the Medieval settlements
to the streams surrounded by fertile valleys is significantly lower than that of the
reference distribution (Fig. 3, right). For ˛ D 1% the null hypothesis is rejected
both for the settlements mentioned before 1350 AD and all Medieval settlements.
This test supports the model that Medieval settlements primarily developed in the
fertile valleys rather than close to ancient trade routes.

5 Discussion

The Kolmogorov–Smirnov test relies on the assumption that the sample is iid.
There are some indications that Medieval settlement locations are not quite iid:
(a) the distance between any two neighbouring settlements is above a certain limit
(no settlement is on top of another one); (b) Siegmund (2009) discusses early
Medieval settlements in the fairly flat area of the Niederrhein, Germany, and comes
to the conclusion that they are regularly spaced with a distance between 2.25 and
3.25 km. However, for n > 40 the Kolmogorov–Smirnovtest is conservative tending
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Fig. 4 Box plots of the
autocorrelation coefficients
(Moran’s I ) of 190 sets of
random points in the study
area

to favour the null hypothesis, and a very low confidence level was chosen. Therefore
the conclusion that fertile valleys were preferred probably is still valid.

To check the effect of autocorrelation, Fotheringham et al. (2000) suggest
comparing the autocorrelation coefficient of the data set investigated with those
of experimental distributions. Their approach assumes that the attribute values
are known only at the given spatial locations. But at any point within the study
area the attribute value can be derived from the accessibility map, so a different
approach is applied: 190 data sets each consisting of 513 random points within the
study area were simulated and the autocorrelation coefficients (Moran’s I ) for the
distance to trade route (or fertile valleys respectively) were calculated for each data
set. The popular Moran’s I measures the spatial dependency of nearby locations
(Fotheringham et al. 2000):

I D
 

nP
i

P
j wij

! P
i

P
j wij.xi � x/.xj � x/P

i .xi � x/2

!
(4)

where n is the number of samples, xi is the value at location number i , and
the weights wij are determined by the inverse distance between two locations i
and j . As calculating least-cost distances is very time-consuming, the Euclidian
distance was used instead. If neighbouring values are more similar than with a
random distribution, a positive autocorrelation coefficient is expected. Negative
autocorrelation indicates higher dissimilarities of nearby locations than with a
random distribution.

According to the box plots of the Moran’s I experimental distributions (Fig. 4),
for Medieval settlements both Moran’s I for trade routes (0.15079) and fertile
valleys (0.16871) can be found in the lowest quartile of the distributions. In fact,
for fertile valleys, the coefficient is within the bottom 10 % range, and for trade
routes within the bottom 20 % range. This is probably the result of the fact that the
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settlements are more regularly distributed than a random sample. A more positive
autocorrelation than expected should create a problem with the test performed
above, however, with the observed fairly low values of Moran’s I , no negative
impact on the test results is expected.

After performing the tests and on checking the digitized routes against the
description by Nicke (2001), it was found that a route (Homburgische Eisenstraße)
was omitted. So on including this route, the ancient route model might become
significant. However, according to Nicke (1995) only two ancient routes within
the study area played an important role for the spread of Medieval settlements
(Brüderstraße and Zeitstraße). The Zeitstraße seems to be very problematic, because
it is difficult to reconstruct by LCPs and because there are only few settlements in
its vicinity. So maybe any other set of ancient trade routes was more important with
respect to the settlement history. Testing all subsets of trade routes or each trade
route individually may help to clarify if any of these old roads played a significant
role with respect to Medieval settlement location in the study area.
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Supporting Selection of Statistical Techniques

Kay F. Hildebrand

Abstract In this paper we describe the necessity for a semi-structured approach
towards the selection of techniques in quantitative research. Deciding for a set
of suitable techniques to work with a given dataset is a non-trivial and time-
consuming task. Thus, structured support for choosing adequate data analysis
techniques is required. We present a structural framework for organizing techniques
and a description template to uniformly characterize techniques. We show that the
former will provide an overview on all available techniques on different levels of
abstraction, while the latter offers a way to assess a single method as well as compare
it to others.

1 Introduction

Researchers and students engaging in quantitative analysis of their data are always
faced with a set of decisions as to which techniques to use for the data set at hand.
The decisions made in quantitative analysis are motivated by financial or temporal
efficiency, trends in previous choices of other researchers or plain convenience.
They are certainly—at least to some extent—motivated by technical and functional
aspects. Up to now, there are no standards to support decisions of that kind.

It is important to mention here that our approach does not aim to make a decision
for a researcher or student, but to support the decision making process. Despite the
fact that some consider elegant data analysis an art, the aforementioned constraints
often stand in the way of treating it accordingly. Especially in early stages of their
education, students may not have acquired the expertise to handle data analysis
problems adequately yet.
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Furthermore, it can be difficult to identify suitable techniques, because there is
little effort from experts developing new quantitative methods to make them avail-
able to non-expert communities in an understandable way. Being understandable
in this context does not mean to strip the techniques from their core contents and
present them in a superficial fashion. On the contrary, we are going to propose an
approach that will preserve all necessary complexity but only reveal it in a stepwise
manner. Thus, more complexity is only introduced when required for decision in
favor of or against a data analysis technique.

The remainder of the paper will be structured as follows: We will first analyze,
what previous work has been done with regard to a framework for data analysis and
a description structure for data analysis techniques (Sect. 2). We will then present
our approaches to these two items in Sects. 3 and 4. A discussion as well as an
outlook on upcoming research will conclude the paper.

2 Related Work

With regard to providing a structure that allows researchers or students to identify
the most suitable technique for the problem at hand, very little research has been
done. Grob and Bensberg provide a placement of data mining itself in contrast to
knowledge discovery. They also propose a very rough outline of a process model for
data mining (Grob and Bensberg 2009). Their process model lacks structure and is
only applicable to data mining instances of data analysis. Another approach has been
presented by Feelders et al. (2000). They describe a high-level process model which
offers the possibility to go back to the previous step, if required. The mentioned
steps are Problem Definition, Acquisition of Background Knowledge, Selection of
Data, Pre-processing of Data, Analysis and Interpretation as well as Reporting and
Use. Each step is described in further detail. However, they do not address the issue
of technique selection.

A more detailed approach is presented by Jackson (2002). While she, too, focuses
on data mining only, the paper has a much closer look on the concepts around data
mining. There is a list of actors in the data mining process, including a description
of each. Furthermore, recurring tasks and techniques are identified. These are data
summarization, segmentation, classification, prediction and dependency analysis.
She provides a matrix that maps nine groups of techniques to the aforementioned
tasks. She does not provide different levels of abstraction nor does she extend
the list of dimensions. The process model she describes is a sequence of six
steps—Business Understanding, Data Understanding, Data Preparation, Modeling,
Evaluation, Deployment—each of which is refined into three to five sub steps.
The process is motivated by industry environments and their demand in terms of
efficiency and speed.

It should be noted at this point that none of the available literature focuses
on research and studying environments and all papers restrict themselves to data
mining. We could not find anything that specifically deals with the selection of
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techniques for data mining or statistical analysis. The communities that constantly
develop and improve available techniques, such as statisticians, mathematicians or
machine learners, fail to make their results available to others in a way that allows
researchers from unrelated fields to benefit from the advances. A non-expert of data
analysis, however, often is overwhelmed by the complexity that is prominent in
technical literature. Since there is hardly any work on building a bridge between
these two groups in the form of a framework that provides manageable complexity
for technique selection, we could not find any publication that goes one step further
and tries to provide a description structure for a single technique.

3 A Framework for Placing Data Analysis Techniques

Choosing a technique to apply to a given data set in order to achieve a certain result
is a complex task. We propose to support this process by graphically structuring
the tools available. “Placing a technique” as used in the heading of Sect. 3, means
defining which areas in a layered series of graphics one has to select in order to
arrive at a certain technique.

To get a better understanding of the approach, it should be noted right at the
beginning, that the final artifact is going to be a web application/portal that can be
used by students and researchers alike to carry out their tool selection process. The
process requires them to select an area on the first layer that their case is concerned
with. They are then presented with a more detailed graphical representation of that
area and again have to choose, which section applies to them. Eventually, a set of
suitable techniques—according to their choices in the different layers—is presented
to them.

At the same time, the set of incorporated techniques can be updated by
researchers who have developed a new tool. At the same time, the description of
the framework will make it clear that this application neither can nor is meant to
make a decision for or against a tool, but is merely a way to structure the selection
process and thus make it manageable.

For this graphical structure to be helpful, it needs to cover the possible use
cases in data analysis. The framework should also unveil complexity in a stepwise
manner so as to not overstrain researchers’ and student’s willingness to engage in
the selection process. When using the framework, the first steps should be intuitive
for users from different communities. Later on, interaction can be less generic and
complexity may increase. Given this, we will introduce the first of a number of
structuring layers of the framework. This layer should be simple for the reasons
mentioned before. It should hold a high level of abstraction and allow for a quick
overview. The segment interesting to the researcher should be identifiable rapidly.

Figure 1 shows the result of our qualitative research on how to represent the
areas of data analysis graphically. It is what a user of the application will be first
confronted with, when using the framework. We assume that every user is able to
categorize their data analysis problem with respect to its general objective into either
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Fig. 1 Prototypical statistical framework

Confirmation, Exploration or Description (the three horizontal bars in the center of
Fig. 1). Cases that do not fit into one of these categories should easily be assigned to
a category of the “roof” of the framework (i.e. Data Governance, Data Management
or Data Quality) or the Evaluation frame. In case, the problem at hand is located at
the center, the user has to decide which step of the process he or she is interested in.

At this point, we have identified Inspection, Cleansing, Transformation and
Modeling as the steps that should be featured in a simple overview as this.
Eventually, choosing a segment from this first layer will trigger opening a new layer
which further details the selected segment. We still have to determine the number of
abstraction layers that will enable an educated, yet not overwhelming selection of
an appropriate technique. An interactive approach as we propose it here requires,
of course, some form of animation in the framework as well as predefined actions.
One option to implement this framework is an animated website. This way would
also allow remote access as well as parallel interaction. Suitable techniques might
be JavaScript, Flash or HTML5. This is yet to be evaluated. Complementing the
framework will be a community of users, both providing and obtaining content.
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Table 1 Exemplary heading sequences of data analysis techniques

First level Second level Third level
Technique heading heading heading Source

Standard
deviation

Preparation and
description
of data

Measures of
dispersion

Variance, [. . . ]
and
variance
coefficient

Hartung et al.
(2009)

Additive
regression

Transformations:
engineering
the input
and output

Combining
multiple
models

– Witten et al.
(2011)

3.1 Methodology

In order to make a conscious decision on what dimensions to include in the
framework and which categories to separate them into, we used a semi-structured
qualitative research approach. Fundamental to our analysis were the tables of
contents of 14 respective textbooks from the areas of stochastic, data analysis and
data mining (Dekking et al. 2010; Fahrmeir et al. 2007; Feelders et al. 2000; Feller
1968, 1971; Georgii 2007; Han et al. 2011; Hand et al. 2001; Handl 2002; Hartung
et al. 2009; Hastie et al. 2008; Härdle and Simar 2011; Witten et al. 2011). The
tables of contents have been examined for headings that indicate the description of
one single technique in the following section. For these headings, all higher-level
headings have been extracted together with the name of the technique itself. The
result was a 451-item list of techniques and their placement in the area of data
analysis according to the authors of the book.

In a second step, the terminology of different authors had to be harmonized in
order to compare the categorizations of one method by different authors. Methods
and headings in languages other than English were translated. In other cases we
had to make use of our knowledge of the domain and content of the books,
respectively (e.g. Rank Correlation and Spearman’s Correlation were mapped to the
same technique). In a third step, we examined sequences of headings in order to find
similarities. At this point, we were only interested in the highest level of abstraction
because our goal was to extract a canonical structure for generally placing methods
in an overview framework. Common first level headings were condensed into the
segments that can be found in Fig. 1. Two examples for a heading sequence can be
found in Table 1.

4 A Description Structure for Data Analysis Techniques

While the framework described above can be used to identify a set of techniques
that may be suitable to tackle a certain data analysis problem, there still remains the
problem of which technique to eventually choose. As a remedy to that we propose to
link to each of the techniques that have previously been entered into the framework,
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a profile that shortly describes the essence of that technique. The important thing
being, that the profile does not need to convey an in-depth specification. It should
merely give a hint to the user, which technique to investigate further. In order to do
that, we have developed an outline that consists of six points which condense the
core of a technique.

Point number one—Objective—puts into one sentence what applying this tech-
nique to data will eventually achieve. Upon reading it, a researcher should be able
to generally decide whether it is worthwhile for him or her to consider this method.
It is by no way meant to advertise the technique. An impartial short description is
required.

The second item—Assumptions—describes the requirements to the data or the
underlying model the technique makes (e.g. error terms are normally distributed
or attributes are at least ordinal in scale). By putting them at the beginning of
the description structure, one can quickly decide whether the technique is actually
applicable to the data at hand.

Point three—Specifications—hints at the amount of work that has to be done
before the method can be applied. Typical examples for specifications are underly-
ing distributions, thresholds, parameters, sample sizes, exit conditions, etc. But there
can also be aspects not as obvious: in description techniques, for instance, colors,
shapes, sizes and the like can be specified.

Item four—Algorithm—comprises a list of steps, not necessarily into deepest
detail, that communicates a rough outline of the actions that have to be carried out
when applying the technique. It can be pseudo-code in the case of very structured
techniques, but it may also be a free text description of the approach.

The second to last point—Result—explains what one receives from a technique
and in which way it is interpretable. This field helps to separate the purely
algorithmic outcome of a method from the interpretation a researcher attributes to it.
Results can be classifiers, clusterings, probabilities, parameters or diagrams, plots
and graphs.

The last item—Evaluation—describes which features of a result can be reviewed
and where potential pitfalls are. It may be required to check the fit of a regression
curve, examine a diagram for the message it transports, inspect clusters regarding
internal homogeneity or interpret correlation values.

In Table 2, two exemplary techniques have been submitted to the proposed
structure. On the one hand, there is a pie chart, which has been chosen deliberately
to emphasize the broad applicability of the structure, even to techniques that are
not inherently algorithmic. On the other hand, Support Vector Machines are a
complicated method that needs to be reduced in complexity in order to fit into
the structure and in order to be understandable without previous knowledge. The
square brackets in Table 2 denote omissions that have been made due to lack of
space. Detailed specifications, algorithms or symbols have been omitted on purpose.
This way, complexity is reduced and the selection process is supported. It should be
noted at this point, that the simplification of methods is merely done for during
the process of choosing a technique. Eventually, users will have to embark on the
complexity of a method in order make an informed decision and prevent a poor
choice of techniques.
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Table 2 Applied description structure for data analysis techniques

Technique Colored pie chart Support vector machines

Objective Visualize the composition of a
population/sample

Binary linear classification of input
data

Assumptions The manifestation of variable is
known for each item in the
population/sample or attributed
to a dummy category (e.g.
unknown). Variables are either
nominal, categorical or binned
metric

Objects need to be classified in a
binary fashion

Specifications Reserve as many colors for visual
representation as there are
manifestations

If the data is not linearly separable
to begin with: A kernel function
to project objects into higher-
dimensional space. A number
of dimensions for the higher-
dimensional space. A set of
training data. [. . . ]

Algorithm Determine the overall number of
objects. Determine the number
of objects per manifestation.
Compute relative frequencies
for each manifestation. Assign
each manifestation a sector of a
circle according to its relative
frequency as well as a color.
Compile a full circle from the
sectors specified above.
Compile a key that assigns
colors to manifestations

Determine a maximum-margin
hyperplane to separate the data
points. In order to do that,
determine the two parallel
hyperplanes that have the
greatest distance from each
other but still separate the
data. [. . . ] Input new data and
determine on which side of the
hyperplane an object lies in
order to decide its class

Result A colored pie chart representing
the given population/sample

A maximum margin hyperplane
depending on training data and
kernel

Evaluation Check pie charts adequacy in
terms of visualizing the
population/sample: Are sectors
distinguishable with respect to
size and color? If not, reassign
colors or re-evaluate choice of
technique

Check the size of margins, do new
objects often lie inside them? Is
there a chance of overfitting on
the training data?

5 Conclusion and Outlook

In this paper, we have presented a first step towards more educated selection of
techniques in data analysis by students and researchers. We started by introducing
a first layer of a framework that will eventually support the complete selection
process for data analysis techniques. Finally, a description structure for data analysis
methods was described which will become the lowest level of the aforementioned
framework. It allows for a homogeneous description of various techniques.
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As for the decision framework, we are fully aware of the fact that the approaches
presented here can only be a very first attempt to improve the decision process with
respect to quantitative methods. Upcoming work will include a refinement of the
framework: further layers to structure complexity need to be added. The empirical
analysis of tables of content will be evaluated to provide input on how to structure
levels of finer granularity of the framework. Other ways of introducing structure
(e.g. ontologies) will be examined. We are planning on implementing a web-based
prototype once the framework has been outlined in its entirety. This prototype
should be complemented by a community concept so as to allow researchers to add
their artifacts and others to retrieve suitable techniques. Introducing a community
also aims at avoiding the pitfall of merely copying textbook knowledge in a more
accessible format. Wiki-like discussion about the content of description structures
can force contributors to re-evaluate their opinions on techniques.

The description structure presented here only contains technical information on
the tool it describes at the moment. It may be worthwhile to extend its six sections
and introduce a section that holds meta information on related tools, original
resources (papers, articles, etc.) and links to available implementations or even an
interface to an implementation (e.g. in form of a web service). This section can
improve user experience of the web application. From a technical point of view,
it will be crucial to establish connections between approaches that aim at the same
kind of problem. Thus, experts can specify pros and cons of techniques.
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Alignment Methods for Folk Tune Classification

Ruben Hillewaere, Bernard Manderick, and Darrell Conklin

Abstract This paper studies the performance of alignment methods for folk music
classification. An edit distance approach is applied to three datasets with different
associated classification tasks (tune family, geographic region, and dance type),
and compared with a baseline n-gram classifier. Experimental results show that
the edit distance performs well for the specific task of tune family classification,
yielding similar results to an n-gram model with a pitch interval representation.
However, for more general classification tasks, where tunes within the same class
are heterogeneous, the n-gram model is recommended.

1 Introduction

With the growth of the Music Information Retrieval field and the expansion of
data mining methods, folk music analysis has regained attention through the past
decades. Folk music archives represent a cultural heritage, therefore they need to be
categorized and structured to be more easily consulted and searched. The retrieval
of similar tunes from a folk tune database has been the subject of several MIREX
contests, and alignment methods have proven to be the most successful at this task
(Urbano et al. 2011). Various melodic similarity measures have been investigated
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for the exploration of a folk song database, and they have been combined in the
attempt to find an optimal measure (Müllensiefen and Frieler 2004).

Music classification has become a broad subfield of the computational music
research area, with many challenges and possible approaches (Weihs et al. 2007).
In a recent study, alignment methods have been applied to the specific task of tune
family classification (van Kranenburg et al. 2013), a tune family being an ensemble
of folk songs which are variations of the same ancestral tune. In that work, alignment
methods with various features were compared with several global feature models, in
which a melody is represented as a vector of global feature values. It was shown that
alignment methods achieve remarkable accuracies for tune family classification in
comparison with the global feature models, regardless which features were used to
represent the data. An open question, however, is how alignment methods perform
on other types of folk tune classification tasks where tunes within a class do not
present detectable melodic similarity.

The n-gram model is another machine learning technique that can be applied to
both music classification (Hillewaere et al. 2009) and music retrieval (Uitdenbogerd
and Zobel 1999). In this study, we investigate the performance of a simple alignment
method, the edit distance, versus an n-gram classifier for the following tasks:

(a) tune family classification, in order to verify that the edit distance achieves
similar results to the alignment methods reported by van Kranenburg et al.
(2013);

(b) two fundamentally different folk music classification tasks. The first task is
geographic region classification, which we have thoroughly studied in our
previous work (Hillewaere et al. 2009). The second task is folk tune genre
classification, where the genres are the dance types of the tunes (Hillewaere
et al. 2012).

Given the excellent results with alignment methods in the study by van Kranenburg
et al. (2013), they might also perform well on the different classification tasks
proposed in (b). However, we do not expect this to happen and hypothesize the high
performance is due to high similarity within tune families and that n-gram models
over the same representations will perform equally well.

Since folk music is orally transmitted, traditionally by people singing during
their social activities or work, over time multiple variations arise in the tunes. This
phenomenon has led to the notion of tune family, i.e. an ensemble of tunes that
all derive from the same ancestral tune. This is a hypothetical concept, since we
generally cannot trace the historical evolution of a folk song. Given this definition
of a tune family, it is obvious that songs of the same tune family are very similar,
although numerous musical variations between them are possible, we only cite a
few (van Kranenburg et al. 2007): melodic contour, rhythmic changes, insertion
and deletion of parts, range, and number of phrases. We illustrate this with a score
example in Fig. 1, which shows the first phrases of three tunes belonging to the tune
family called “Heer”. Clearly, the first two phrases are highly similar, and the third
phrase repeats the same melodic motif. This is typical for the tune family concept,



Alignment Methods for Folk Tune Classification 371

Fig. 1 Three tunes from the same tune family are very similar

and it is evident that tunes from the same geographic region or with the same dance
type generally differ a lot more, which makes these classification tasks harder.

To verify our hypothesis, an edit distance method is applied to three folk music
datasets with three different classification tasks, which will be described in the next
section. For each of the folk tune collections, the pieces are encoded in melodic and
rhythmic representations: as strings of pitch intervals, and as strings of duration
ratios. These basic representations have been chosen to compare the predictive
power of models based on melodic information versus rhythmic information.
For each data collection and for each representation, pairwise edit distances are
computed and the classification is done with a one nearest neighbour algorithm,
which is similar to the approach used by van Kranenburg et al. (2013). A tenfold
cross validation scheme is used to assess the performances in terms of classification
accuracies.

2 Data Sets

In our experiments we use three folk tune datasets in MIDI format with different
associated classification tasks, which we detail in this section.

2.1 TuneFam-26

This dataset of 360 songs is the tune family dataset used in the study of van
Kranenburg et al. (2013). The source of this dataset is a larger collection called
“Onder de groene linde”, which is hosted at the Meertens Institute in Amsterdam. It
contains over 7,000 audio recordings of folk songs that were tape-recorded all over
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the country. The Witchcraft project digitized over 6,000 songs, both transcriptions
of those audio recordings and from written sources.

In this large digitized database there are over 2,000 tune families, and a part of
the Witchcraft project is to develop methods to retrieve melodies belonging to the
same tune families. Therefore, the 360 songs were selected as to be representative,
and they were grouped into 26 tune families by domain experts (van Kranenburg
et al. 2013). This dataset, called the Annotated Corpus, is what we refer to as
TuneFam-26.1

2.2 Europa-6

This is a collection of folk music from six geographic regions of Europe (England,
France, South Eastern Europe, Ireland, Scotland and Scandinavia), for which the
classification task is to assign unseen folk songs to their region of origin. Li et al.
(2006) studied this problem with factored language models, and they selected 3,724
pieces from a collection of 14,000 folk songs transcribed in the ABC format.

Their collection was pruned to 3,367 pieces by filtering out duplicate files, and by
removing files where the region of origin was ambiguous. In order to end up with
core melodies that fit for our research purpose, a preprocessing in two steps was
carried out: the first step ensures that all pieces are purely monophonic by retaining
only the highest note of double stops which occurred in some of the tunes, and in
the second step we removed all performance information such as grace notes, trills,
staccato, etc. Repeated sections and tempo indications were also ignored. Finally,
by means of abc2midi we generated a clean quantized MIDI corpus, and removed
all dynamic (velocity) indications generated by the style interpretation mechanism
of abc2midi. In our previous work, we have shown that n-gram models outperform
global feature models on this corpus (Hillewaere et al. 2009).

With a total of 3,367 pieces, Europa-6 is a larger dataset than TuneFam-26, and
another contrast is that this dataset not only contains sung music, but also folk
dances for example.

2.3 Dance-9

The corpus Dance-9 is a large subset of Europa-6: 2,198 folk tunes subdivided
into nine dance type categories, the largest ones being jigs, reels and polskas. The
associated classification task is to predict the dance type of an unseen tune. Several

1We would like to thank Peter van Kranenburg for sharing the Annotated Corpus and for the kind
correspondence.
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Fig. 2 Excerpt of the Scottish jig “With a hundred pipers”, illustrating the event feature sequences
and the string representation

string methods have been compared with global feature models and event models
using this data set (Hillewaere et al. 2012).

To construct Dance-9 we only selected the ABC-files with an unambiguous
dance type annotation. Furthermore, we discarded all dance types that occurred
insufficiently by putting a minimal threshold of 50 tunes, because it would lead to a
highly unbalanced dataset. To the remaining 2,198 pieces, the same preprocessing
steps as for Europa-6 have been applied, as is for the conversion to MIDI.

3 Methods

3.1 Music Representation

A piece of music can be viewed as an ordered sequence of events, and every event
is represented by an event feature of one’s choice. In our case of monophonic folk
music, the music events are note objects, with pitch and duration as basic event
features. In this paper, we use two derived event features to represent the pieces: the
first is the melodic interval in semitones between the current and the previous note,
and the second is the duration ratio, i.e. the duration of the current note divided by
the duration of the previous note. The obtained event features can be mapped onto
characters, choosing a distinct character for each distinct feature value. Thereby the
event feature sequence is mapped onto an ASCII symbol string, in which case we talk
about a string representation. This is illustrated in Fig. 2 on a short excerpt of a jig.
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3.2 Edit Distance

Alignment methods compute a distance measure between two sequences of sym-
bols, by estimating the minimal cost it takes to transform one sequence into the
other. In its simplest form this transformation is carried out by means of edit
operations, such as substitution, insertion and deletion. Therefore, this method is
often referred to as “edit distance”, which is in fact the Levenshtein distance. For
example, the edit distance between the strings “ismir” and “music” is equal to 4,
since the optimal alignment between them is given by

i s m i r

m u s i c

which means four edit operations are needed: two substitutions (“i” to “m” and “r”
to “c”), one insertion (the “u”) and one deletion (the “m”). For the purpose of our
current research, we have used WEKA’s implementation of the edit distance (http://
www.cs.waikato.ac.nz/ml/weka/).

The edit distance defines a pairwise distance metric, therefore the classification
can be performed with an instance-based nearest neighbour classifier. Given a test
instance, the prediction of its class label is solely based on the training instance
which is closest with respect to the edit distance (instead of the usual Euclidean
distance).

3.3 n-Gram Models

An n-gram model is a generative model for sequences which computes the
probability of an entire sequence as the product of the probability of individual
events within the sequence. Each event is conditioned on n� 1 previous events and
these conditional probabilities are estimated from a training corpus, with smoothing
applied in order to avoid zero probabilities (Manning and Schutze 1999).

The n-gram model can be used for classification, by constructing a separate
model for every class, and classifying a new sequence according to the model which
generates the sequence with highest probability. To apply the model to music, every
piece of the data set is transformed into an event feature sequence according to
a feature of choice (e.g., duration ratio or melodic interval, see Sect. 3.1), and for
each class the n-grams occurring in the class are compiled.

It is important to mention that the music representation is basically the same as
for the edit distance approach, but the essential difference between these methods is
that an n-gram model aims to model the transitions for a given class, whereas the
edit distance computes a global pairwise similarity measure between pieces.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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Table 1 The tenfold cross validation classification accuracies for our experiments on the three
datasets

Melodic int Pitch Duration ratio Duration

Alignment Pentagram Global Alignment Pentagram Global

TuneFam-26 94.4 (3.9) 90.8 (3.7) 73.6 (8.9) 80.3 (5.9) 70.6 (5.9) 55.0 (7.5)
92.0 74.0 74.0 55.0

Europa-6 49.5 (2.0) 64.1 (3.0) 47.5 (3.1) 55.1 (2.2)
Dance-9 50.0 (2.6) 66.1 (2.2) 63.2 (1.4) 74.4 (2.0)
Numbers in parentheses are the standard deviation over the ten folds. For comparison, the numbers
italicized are the results by van Kranenburg et al. (2013)

4 Results and Discussion

In this section, the experimental results of the edit distance on the three datasets
are reported for both the interval and the duration ratio representations. They are
compared with a pentagram model (an n-gram model with n D 5), over the same
representations. To assess the performance of both methods, we have set up a tenfold
cross validation scheme to compute classification accuracies. The folds were taken
in a stratified way, which is especially important for the results with TuneFam-26,
to avoid that an entire tune family would be contained in the test fold, in which case
a correct prediction would be impossible. We also ensured that the exact same folds
were used for all experiments to do an impartial comparison.

The classification accuracies are reported in Table 1. The column on the left
shows the melodic interval results, and the right column contains the duration ratio
performances. The edit distance results are reported in the alignment columns, and
for comparison we also include the results reported by van Kranenburg et al. (2013)
(italicized numbers).

First of all, we observe higher accuracies on TuneFam-26 than on the other
corpora. The edit distance approach classifies the tune family dataset with a high
accuracy of 94.4 % on pitch intervals, which is very similar to the 92 % reported by
van Kranenburg et al. (2013). This is remarkable since the edit distance is a simpler
method than that used by van Kranenburg et al. (2013), which uses gap opening
and extension weights in the computation. The edit distance slightly outperforms
the pentagram model that still achieves an accuracy of 90.8 %, in other words there
are only 13 more misclassified pieces.

With the duration ratios, the edit distance performs again very well on the
tune family dataset with an accuracy of 80.3 %, outperforming both the pentagram
model and the alignment method on duration ratio reported by van Kranenburg
et al. (2013), though the high standard deviation of the accuracy estimate on both
approaches should be noted (Table 1).

For the classification of geographic region or genre, the pentagram models clearly
yield higher accuracies than the edit distance, with approximately 15 % difference
for both datasets with the melodic interval representation. We remind the reader that
1 % on Europa-6 or Dance-9 corresponds to a larger amount of pieces due to the
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difference in the sizes of the data sets, so this result shows that alignment methods
are suitable for the specific task of tune family classification, but obtain much lower
accuracies on more general types of classification tasks.

To summarize, all these results indicate that the tune family classification task is
relatively easy. This finding specifically contradicts the statement of van Kranenburg
et al. (2013) that the tune family classification task is more difficult than the region
classification on Europa-6. They suggest that the heterogeneity of tunes between
regions makes the task easier, but it appears in our results this is not the case. On
the contrary, there is more heterogeneity within one region than there is in one tune
family, which makes the region classification significantly harder.

We have also constructed two global feature models on TuneFam-26, based on
global features derived from pitch on the one hand and duration on the other hand,
similarly as in our previous work (Hillewaere et al. 2012). The accuracies obtained
with an SVM classifier (with parameters tuned by a grid search) are reported in the
respective columns of Table 1, and compared with the global feature results found by
van Kranenburg et al. (2013). These accuracies confirm their statement that global
feature approaches are of limited use for tune family classification.

5 Conclusions

In this paper we have investigated how a simple alignment method, called the
edit distance, performs on three different folk music classification tasks: (a)
classification of tune families, (b) classification of geographic region of origin, and
(c) classification of dance types. Three folk tune datasets are used to assess the
performance of the edit distance method in comparison with a pentagram model.
Experimental results have shown the following:

• the edit distance approach performs well on the tune family dataset, yielding
similar results to those reported by van Kranenburg et al. (2013);

• for edit distance, the tune family classification task is easier than classification of
geographic region or dance type;

• for geographic region or dance type classification, an n-gram model is more
appropriate.

We believe that these findings are due to the intrinsic concept of a tune family, since
highly similar tunes are present within any tune family. Music retrieval methods
using local sequential information, such as alignment methods and n-gram models,
are capable of capturing this similarity and therefore lead to high performances.
When pieces within classes are highly similar, alignment methods will achieve good
classification results. On the other hand, when classes are more heterogenous the
n-gram model is more appropriate.
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Comparing Regression Approaches in Modelling
Compensatory and Noncompensatory Judgment
Formation

Thomas Hörstermann and Sabine Krolak-Schwerdt

Abstract Applied research on judgment formation, e.g. in education, is interested
in identifying the underlying judgment rules from empirical judgment data.
Psychological theories and empirical results on human judgment formation
support the assumption of compensatory strategies, e.g. (weighted) linear models,
as well as noncompensatory (heuristic) strategies as underlying judgment rules.
Previous research repeatedly demonstrated that linear regression models well
fitted empirical judgment data, leading to the conclusion that the underlying
cognitive judgment rules were also linear and compensatory. This simulation study
investigated whether a good fit of a linear regression model is a valid indicator
of a compensatory cognitive judgment formation process. Simulated judgment
data sets with underlying compensatory and noncompensatory judgment rules
were generated to reflect typical judgment data from applied educational research.
Results indicated that linear regression models well fitted even judgment data with
underlying noncompensatory judgment rules, thus impairing the validity of the fit
of the linear model as an indicator of compensatory cognitive judgment processes.

1 Theories of (Non-)compensatory Human Judgment
Formation

Human judgment formation can be considered as the integration process of multiple
pieces of information, either perceived in the environment or retrieved from
memory, into a usually unidimensional judgment. Reliance on human judgment
is common throughout a variety of professional domains, e.g. education, therapy,
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or medicine. Besides the aim of investigating the impact of available information
on judgment, central interest of research on human judgment formation rests on
the judgment rules underlying the integration process. Psychological theories of
human judgment formation stated different assumptions on this integration process.
A prominent and persistent theoretical approach considers human judgments to be a
weighted linear integration of the available information (Anderson 1974; Anderson
and Butzin 1974; Brunswik 1952). According to Gigerenzer and Goldstein (1996),
this judgment rule can be classified as a compensatory judgment rule, because the
influence of a piece of information can be outweighed by the effect of other pieces
of information. In contrast, a series of influential theories of noncompensatory judg-
ment rules has been proposed (Gigerenzer 2008), e.g. the Take-The-Best-Heuristic
(TTB) (Gigerenzer and Goldstein 1996), a stepwise search rule for discriminating
pieces of information. According to the TTB, available pieces of information are
initially sorted by their subjective validity regarding the judgment to be done. In the
judgment process, the pieces of information are serially elaborated if the piece of
information is discriminative for the judgment. As the first discriminative piece of
information is found, the judgment formation process is aborted and the judgment
is exclusively based on the first discriminating piece of information. TTB well
illustrates noncompensatory judgment rules as all pieces of information less valid
than the first discriminating piece are neglected in judgment formation.

2 Empirical Modelling of Judgment Formation Processes

Various studies illustrate attempts to model judgment rules of empirically observed
judgment data. In general, these studies selected plausible possible judgment rules
from theory and compared their empirical fit in explaining the actual judgments
observed. Dhami and Harries (2001) compared a compensatory linear regression
model and a noncompensatory cut-off value model on lipid-lowering drug pre-
scription judgments of general psychologists, finding a nearly equivalent fit of
both models to the observed judgment data. Hunter et al. (2003) investigated
weather-related judgments of professional pilots and reported that among various
compensatory (linear integration) and noncompensatory (cut-off value model,
minimum model) judgment rules, an unweighted additive model best predicted
pilots’ weather-related judgments. Across various studies, it turned out “. . . that
decision makers (insofar as they are behaving appropriately) are paramorphically
well represented by linear models” (Dawes and Corrigan 1974, p. 105). In the
framework of compensatory theories of judgment, the generally adequate fit of
linear models can be interpreted as a confirmation that the underlying cognitive
judgment formation process is also linear and compensatory. In contrast, Gigerenzer
and Goldstein (1996) reported that, for the case of binary pieces of information,
predicted judgments by a weighted linear model are nearly indistinguishable from
judgments predicted by the noncompensatory TTB. Furthermore, Bröder (2000,
2002) demonstrated that the TTB rule itself can be expressed in terms of a weighted
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linear model, if the ˇ-weight of a predictor exceeds the sum of the ˇ-weights of
all less valid pieces of information (see (1)). The I ’s in (1) refer to the values of
the binary pieces of information, whereas the ˇ-weights reflect the impact of the
corresponding piece of information on the judgment J .

J D ˇ1I1 C ˇ2I2 C : : :C ˇnIn; ˇi >

nX
jDiC1

ˇj ; I1 : : : In 2 f0; 1g (1)

Given this point of view, the validity of the conclusion that the generally
adequate fit of linear models indicates an underlying compensatory judgment
formation process is impaired. Instead, the adequate fit rather indicates a high
flexibility of linear models in fitting empirical judgment data resulting from various
compensatory or noncompensatory cognitive judgment rules.

3 Research Question

The present study aimed at assessing the capability of linear models’ fit in
discriminating between compensatory and noncompensatory judgment rules within
an applied setting of judgment modelling, namely the assessment of student achieve-
ment in educational research. In contrast to Gigerenzer and Goldstein’s (1996)
binary data analysis, criteria and information in educational judgments are usu-
ally multi-leveled (e.g. grades, test scores). Furthermore, findings of educational
research indicate that many achievement criteria resulting from human judgments,
including grades, can be considered to be transformations of within-class rank
orders of the students (Ingenkamp 1971; Rheinberg 2001). Therefore, the study
applied linear regression models to simulated data sets of rank-order judgments
resulting from the compensatory or noncompensatory integration of multi-level
information, and investigated whether the fit of the regression model might be
considered as a valid indicator of an underlying compensatory judgment rule.

4 Data Simulation

In this study, 100 data sets were simulated to reflect typical data sets of applied
educational research. Each data set contained data of 50 fictitious teachers and
judgments for 25 students per teacher were simulated, corresponding to common
class sizes. As the basis for the judgments, five pieces of information were simulated
for each student. To reflect student information in educational research, the grade
distribution of 1,802 Luxembourgish 6th grade primary school students (see (2))
was taken as the reference distribution for the construction of the simulated
student information. The construction of the simulated student information was
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implemented by an ordinal regression model (see (2)), in which the odd for a grade
less or equal than x for a student k was determined by a threshold parameter tx
and a standardized normal distributed student ability parameter uk. The threshold
parameters were set to values that result in grade probabilities according to the
reference distribution for a student ability parameter of uk D 0, whereas the
weighting � of uk was chosen to result in inter-grade correlations of r � 0:60,
as observed in the actual Luxembourgish grade data.

p.x/ D

8
ˆ̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂:

0:39 for x D 1

0:32 for x D 2

0:20 for x D 3

0:07 for x D 4

0:02 for x D 5

0 else

ln

�
P.X � x/

1 � P.X � x/

�
D �uk C tx (2)

For each of the simulated students, teacher judgments with different underlying
judgment rules were constructed. As a compensatory judgment rule, a weighted
linear judgment rule was implemented. The weighting coefficients of the linear
judgment rule were chosen to imply a decreasing impact from the first to the
last piece of student information (see (3)). For noncompensatory judgment rules,
(a) an adapted TTB judgment rule and (b) a minimum value judgment rule were
implemented. The TTB judgment rule was implemented according to Bröder (2000)
by a linear model with weighting coefficients that did not allow the influence of a
piece of information to be outweighed by less valid pieces of information (see (4)).
For this, the restriction ˇi >

Pn
jDiC1 ˇj was adapted to ˇi >

Pn
jDiC1 ˇjmj , with

mj representing the range of values of information j (mj D 5 � 1 D 4), to take
into account that the simulated student information is multi-leveled. In the TTB
judgment rule, the validity of information decreased from the first to the last piece
of information, thus resembling the relative impact of each piece of information in
the weighted linear judgment rule. The minimum value judgment rule, representing
teacher judgments solely based on the worst piece of student information, was
actually implemented as a maximum function of the pieces of information (see (5)),
due to the scale of Luxembourgish grades in which lower grades indicate higher
achievement.

J D 0:30I1 C 0:25I2 C 0:20I3 C 0:15I4 C 0:10I5 (3)

J D 54I1 C 53I2 C 52I3 C 51I4 C 50I5 (4)

J D max.I1; I2; I3; I4; I5/ (5)
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For each of the 50 teachers in the simulated data sets, the judgments for his
25 students were then rank transformed, resulting in a rank order of the students
according to the respective judgment rule. Ranks were assigned ascendingly, that
means lower ranks indicated higher achievement of a student. In case of tied ranks,
the average rank was assigned to the students.

5 Results

Linear regression models with the five pieces of information as predictors were fitted
to the individual rank order judgments of each teacher resulting from the weighted
linear judgment rule, the TTB judgment rule, and the minimum value judgment rule,
using the lm function of the R 2.10.1 software package. The ratio of explained
variance R2 was computed for each regression model as an indicator to which
extent an individual teacher’s rank order, given a compensatory or noncompensatory
underlying judgment rule, could be explained by the linear model. Figure 1 displays
the teachers’ mean R2s for the 100 simulated data sets for the three underlying
judgment rules.

For judgments with an underlying weighted linear judgment rule, the regression
models showed a nearly perfect fit throughout all data sets with a mean explained
variance of 93:6% (SD D 0:58). The linear regression models on average explained
92:1% (SD D 0:61) of the variance of the TTB judgments and 84:6% (SD D 0:82)
of the variance of the minimum value judgments. Thus, linear regression models
fitted well the rank order judgments resulting from all three underlying judgment
rules, and showed a nearly indistinguishable fit between the weighted linear and
the TTB judgment rule. Because merely considering the fit of the regression
model tended not to be a valid indicator for an underlying compensatory linear
judgment rule, the inspection of the models’ regression coefficients was done to
investigate whether the pattern of coefficients could reveal the underlying judgment
rules. The mean regression coefficients for the three underlying judgment rules are
displayed in Fig. 1. As to be expected, the regression coefficients for the underlying
weighted linear judgment rule well reflected the actual weighting of the pieces
of information, whereas the underlying minimum value judgment rule resulted
in nearly equal regression coefficients for all pieces of information. For the TTB
judgment rule, strongly exaggerated regression coefficients (M D 3:82 (TTB) vs.
M D 1:84 (linear)) resulted for the most valid first piece of information. However,
the coefficient pattern for the TTB judgment rule did not fulfill the restrictions
according to Bröder (2000) (see (1) and (4)), required for the expression of a TTB
judgment rule in terms of a weighted linear model. In none of the simulated data
sets, the coefficients for the first two pieces of information fulfilled the restrictions,
whereas the restriction for the coefficient of the third piece was fulfilled in 1 of
100 data sets and for the fourth piece in 18 of 100 data sets. Thus, an underlying
TTB judgment rule could not be validly discriminated from a weighted linear
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Explained Variance by Model
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Fig. 1 Mean R2s and mean regression coefficients by underlying judgment rule for r D 0:60

judgment rule, neither by the fit of the regression model nor by the pattern of
regression coefficients.

To investigate whether the results were rather due to the partial multicollinearity
of the pieces of information than due to an insensitivity of the linear regression
model to noncompensatory judgment rules, the simulation was repeated and 100
additional data sets with uncorrelated pieces of information were simulated. The
mean ratios of explained variance and the regression coefficients are displayed
in Fig. 2. The regression models again showed a nearly perfect fit for the linear
(M D 95:1%, SD D 0:51) and TTB judgment rule (M D 93:7%, SD D
0:57). The fit of the regression models for the minimum value judgment rule
decreased to a mean explained variance of 63:9% (SD D 1:64). Similar to the
findings for the intercorrelated pieces of information, the pattern of regression
coefficients for the TTB judgment rule (see Fig. 2) did not indicate an underlying
noncompensatory judgment rule. As observed for correlated pieces of information,
the TTB restrictions for the coefficients of the first two pieces of information were
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Fig. 2 Mean R2s and mean regression coefficients by underlying judgment rule for r D 0:00

fulfilled in none of the data sets. The restriction was fulfilled in 12 data sets for the
third piece of information and in 47 data sets for the fourth piece of information.

6 Discussion

The study investigated whether the fit of a linear regression model to empirical
judgment data is a valid indicator for an underlying linear and compensatory
cognitive process of judgment formation. Linear regression models were applied
to simulated data sets resembling typical judgment data from applied educational
research. The simulated judgments were either based on a linear compensatory
judgment rule or on two noncompensatory judgment rules, namely a TTB judgment
rule or a minimum value judgment rule. In sum, the results of the study indicated
that the fit of the linear regression model is not a sufficient indicator for valid
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conclusions on the cognitive judgment formation process. Judgment data with
underlying noncompensatory judgment rules resulted in equally good fit (TTB rule)
or an only slightly decreased fit (minimum value rule) of the regression model than
judgment data with a compensatory judgment rule. Only in the case of uncorrelated
pieces of information, the fit of the regression model markedly decreased for the
minimum value model. An inspection of the regression coefficients for the TTB
judgment rule data did not reveal the hypothesized pattern of coefficients indicating
a noncompensatory judgment rule. For applied research on judgment formation in
education, the results of this study imply that unrestricted linear regression models
with a good fit to judgment data should only be interpreted as a paramorphical
representation of the underlying cognitive judgment process. Even in optimal
circumstances, i.e. error-free judgment data and no interindividual differences in
the judgment rules, the linear regression model did not allow for valid conclusions
whether judgments resulted from a compensatory or noncompensatory cognitive
judgment formation process. Applied educational research should focus either on
experimental settings, in which cognitive judgment rules might be identified by
systematic variation of available information, or on the development of classification
methods to discriminate between judgment rules, as Bröder’s (2002) classification
method for the detection of compensatory and noncompensatory judgment rules
in binary judgment data, which demonstrated that the comparison of different
restricted linear models may lead to more valid conclusions on the underlying
cognitive judgment formation processes.
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Sensitivity Analyses for the Mixed Coefficients
Multinomial Logit Model

Daniel Kasper, Ali Ünlü, and Bernhard Gschrey

Abstract For scaling items and persons in large scale assessment studies such
as Programme for International Student Assessment (PISA; OECD, PISA 2009
Technical Report. OECD Publishing, Paris, 2012) or Progress in International
Reading Literacy Study (PIRLS; Martin et al., PIRLS 2006 Technical Report.
TIMSS & PIRLS International Study Center, Chestnut Hill, 2007) variants of the
Rasch model (Fischer and Molenaar (Eds.), Rasch models: Foundations, recent
developments, and applications. Springer, New York, 1995) are used. However,
goodness-of-fit statistics for the overall fit of the models under varying conditions as
well as specific statistics for the various testable consequences of the models (Steyer
and Eid, Messen und Testen [Measuring and Testing]. Springer, Berlin, 2001) are
rarely, if at all, presented in the published reports.

In this paper, we apply the mixed coefficients multinomial logit model (Adams
et al., The multidimensional random coefficients multinomial logit model. Applied
Psychological Measurement, 21, 1–23, 1997) to PISA data under varying conditions
for dealing with missing data. On the basis of various overall and specific fit
statistics, we compare how sensitive this model is, across changing conditions. The
results of our study will help in quantifying how meaningful the findings from
large scale assessment studies can be. In particular, we report that the proportion
of missing values and the mechanism behind missingness are relevant factors for
estimation accuracy, and that imputing missing values in large scale assessment
settings may not lead to more precise results.
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1 Introduction

To analyze data obtained from large scale assessment studies such as Programme for
International Student Assessment (PISA; OECD 2012) or Progress in International
Reading Literacy Study (PIRLS; Martin et al. 2007) different versions of the Rasch
model (Fischer and Molenaar 1995) are applied. For instance, in PISA the mixed
coefficients multinomial logit model (Adams et al. 1997) has been established,
to scale items and persons. One may be interested in how well the model fits the
data. But goodness-of-fit statistics for the overall fit of this model under varying
conditions are rarely presented in the published reports, if they are presented at all
(OECD 2002, 2005, 2009, 2012).

One special characteristic of the PISA assessment data is the presence of missing
values. Missing values can occur due to missing by design as well as item non-
response (OECD 2012). The handling of missing values seems to be crucial, because
an improper treatment of missing values may result in invalid statistical inferences
(Huisman and Molenaar 2001). In this paper, we apply the mixed coefficients
multinomial logit model to PISA data for varying forms of appearance of missing
values. Based on various overall and specific fit statistics, we compare how sensitive
this model is, across changing conditions.

In the mixed coefficients multinomial logit model, the items are described by
a fixed set of unknown parameters, �, and the student outcome levels (the latent
variable), � , are random effects. Three parts of this models can be distinguished:
the conditional item response model, the population model, and the unconditional,
or marginal, item response model (for technical details, see Adams et al. 1997).

In addition to the afore mentioned components, a posterior distribution for the
latent variable for each individual n is specified by

h .�nI wn; �; �;˙jxn/ D fx.xnI �j�n/f .�n/
R

�
fx.xnI �j�/f .�/

,

where xn is the response vector, and � , wn, and ˙ are parametrizing the postulated
multivariate normal distribution for � (OECD 2012, p. 131). Estimates for � are
random draws from this posterior distribution for each student, and these are referred
to as plausible values (see Mislevy 1991; Mislevy et al. 1992).

The mixed coefficients multinomial logit model is used in PISA for three
purposes: national calibration, international scaling, and student score generation
(estimation of students’ plausible values). Multidimensional versions of this model
have been fitted to PISA data; for instance, a three-dimensional version has had
reading, science, and mathematics as its (correlated) dimensions. For estimating the
parameters of this model, the software ConQuest R� can be used (Wu et al. 2007).

Missing values in PISA can occur due to missing by design (different students
are administered different test items) as well as by item non-response. Usually three
mechanisms producing item non-response are distinguished: Missing Completely
At Random (MCAR), Missing At Random (MAR), and Not Missing At Random
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(NMAR) (Little and Rubin 2002; Schafer 1997). When MCAR, missing item scores
form a simple random sample from all scores in the data, that is, there is no
relation to the value of the item score that is missing, or to any other variable. If
missingness is related to one or more observed variables in the data, the process is
called MAR. NMAR means that missingness is related to the value that is missing
or to unobserved variables.

To control for item non-response, different procedures are studied in the statisti-
cal literature (Huisman and Molenaar 2001). One popular technique is imputation.
Using this technique, missing responses are estimated, and the estimates are
substituted for the missing entries. However, a number of imputation techniques
are available (e.g., see van Ginkel et al. 2007a), so the question is what methods are
to be preferred.

Huisman and Molenaar (2001) compared six imputation methods for dealing
with missing values. They used four real complete data sets with different sample
sizes, and missing values were created in the samples using three different mecha-
nisms resulting in MCAR, MAR, and NMAR. The proportion of created missing
values was P D 0:05, P D 0:10, and P D 0:20. In general, model based
imputation techniques perform better than randomization approaches. But this effect
can only be observed for a missing value proportion of at least P D 0:10 and when
missingness is due to MAR or NMAR. An effect due to sample size could not be
observed.

Van Ginkel et al. (2010) used two-way imputation with error and compared it
with listwise deletion. The method of two-way imputation is based on a two-way
ANOVA model. It produces relatively unbiased results regarding such measures as
Cronbach’s alpha, the mean of squares in ANOVA, item means, mean test score,
or the loadings from principal components analysis. A description of the two-
way ANOVA model can be found in van Ginkel et al. (2007c). Missingness was
introduced into a real complete data set using the mechanisms MCAR, MAR, and
NMAR. The data set consisted of ten unidimensional items. The method of two-
way imputation with error outperformed listwise deletion with respect to different
criteria (e.g., Cronbach’s alpha and mean test score). The results were almost as
good as those obtained from the complete data set.

The strength of the method of two-way imputation with error (TWCe) was also
shown in several other studies (van der Ark and Sijtsma 2005; van Ginkel et al.
2007b, 2007c). This method may also be useful for large scale assessment studies
such as PISA. Another imputation method considered is multiple imputation by
chained equations (MICE), which is a multiple imputation technique that operates
in the context of regression models. In general, missing values are replaced by
plausible substitutes based on the distribution of the data. The MICE procedure
contains a series of regression models, where each variable with missing data is
modeled conditional on the other variables in the data. Iterations then yield multiple
imputations (for a detailed explanation of the method, see Azur et al. 2011).

Because of large number of variables (more than 200) and respondents (around
half a million) sophisticated methods of imputation such as the multiple imputation
by chained equations (van Buuren et al. 2006; van Buuren 2007) possibly may not



392 D. Kasper et al.

be applicable. Unfortunately, information about how different methods for dealing
with missing values perform in the context of PISA are lacking so far. In this regard,
the present paper will study whether the application of these imputation methods
may lead to improved estimates. The afore mentioned studies can only serve as
a reference, for how sensitive the mixed coefficients multinomial logit model may
“react” to missing values or different imputation methods. The reason for this is, that
none of the studies have investigated the sensitivity of multidimensional versions of
Rasch type models for missing value analyses. Moreover, crucial criteria such as
the goodness-of-fit of these models or the accuracy of the item parameter estimates
have not been investigated in those studies.

2 Study Design

To study the estimation accuracy of the mixed coefficients multinomial logit model
under varying conditions for missing values, we analyzed data from the PISA
2009 study (OECD 2012). We used a complete data set of 338 German students
on the mathematics and science test items of Booklet Nr. 9. Missing values for
this data set were created using the mechanisms MCAR, MAR, and NMAR. For
MCAR, each data point had the same probability of being coded as missing value.
Under the condition of MAR, missingness was associated with gender: for men,
the probability of a missing value was nine times higher than for women. To reach
NMAR, in addition to the correlation of missingness with gender, the probability
of a missing value was eight times higher for incorrect answers (that is, for zero
entries) than for correct answers.

Three proportions of missing values were considered: P D 0:01, P D 0:03,
and P D 0:05. These proportions capture the usual amount of missingness in
the PISA test booklets. As imputation methods, we used two-way imputation with
error (TWCe) and multiple imputation by chained equations (MICE). Each of the
imputation methods was applied one time to every data set, so for any imputation
method, missing condition, and proportion of missing values, there is one imputed
data set.

All of the 2 � 3 � 3 � 1 imputed data sets, the nine missing data sets (MD),
and the complete data set were analyzed with the mixed coefficients multinomial
logit model, whereat the mathematical items were allocated to one dimension and
the science items to another dimension. As criteria for the sensitivity of this model,
the item fit statistic MNSQ and the item parameter estimates were used. MNSQ
quantifies how well the model fits the data. This fit statistic is applicable especially
for large numbers of observations. A perfect value of MNSQ is 1:0, whereas values
less than 1:0 indicate an overfit, values greater than 1:0 an underfit. In general,
mean squares in a near vicinity of 1:0 indicate little distortion. On the other
hand, the item parameters may be interpreted as the difficulties or discrimination
intensities of the items, and theoretically, they can range in the reals or subsets
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thereof. As parameters of the mixed coefficients multinomial logit model, they can
be estimated by maximum likelihood procedures.

For both statistics, we calculated the differences between the estimates obtained
from the complete data sets and the estimates for the missing values and imputed
data sets. The absolute values of these differences were averaged and the standard
deviations were calculated. In addition, ANOVA models were applied.

3 Results

The means of the absolute differences for MNSQ between the estimates from
the complete data sets and the estimates for the missingness and imputed data
sets are summarized in Table 1. As can be seen, the mean differences in MNSQ
between the complete data sets and the imputed as well as the missing data sets are
small. As expected, the difference is larger when the proportion of missing values
increases. The mechanisms behind missingness obviously influence the estimation
accuracy in the case of NMAR. The effect of imputation methods on estimation
accuracy is small. In general, using the missing data set (MD) for the analysis results
in the least biased estimates.

As the results of the ANOVA show, the small effects of imputation methods
on estimation accuracy in terms of MNSQ are statistically significant (Table 2).
Also the effects of the proportion of missing values and NMAR on the estimation
accuracy in terms of MNSQ are statistically significant. In addition, all two-way
interaction terms were included in the model, but were not significant.

The means of the absolute differences for the estimated item parameters between
the complete data sets and the missingness and imputed data sets are summarized
in Table 3. Generally, these results are similar to the previous findings. We observe
small differences between the estimates obtained from the complete data sets and the
imputed as well as the missing data sets. The difference is larger when the proportion
of missing values increases, and an effect of the mechanisms underlying missingness
can be observed for NMAR.

As the results of the ANOVA show, the effects of the proportion of missing values
(P D 0:05), NMAR, TWCe, and MICE on the estimation accuracy in terms of the
item parameter estimates are statistically significant (Table 4). In addition, all two-
way interaction terms were included in the model, but were not significant.

4 Discussion

For scaling items and persons in PISA, the mixed coefficients multinomial logit
model is used. However, statistics for the fit of this model under varying conditions
for dealing with missing values are rarely, if at all, presented in the published
reports. We have applied the mixed coefficients multinomial logit model to PISA
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Table 1 Means of the absolute differences for MNSQ

MCAR MAR NMAR

P P P

Imputation Method 0:01 0:03 0:05 0:01 0:03 0:05 0:01 0:03 0:05

TWCe 0:008 0:005 0:012 0:006 0:011 0:013 0:008 0:013 0:015

MICE 0:007 0:008 0:011 0:006 0:013 0:014 0:006 0:014 0:018

MD 0:006 0:007 0:009 0:006 0:009 0:012 0:004 0:011 0:011

TWCe two-way imputation with error, MICE multiple imputation by chained equations,
MD missing data set (no imputation)

Table 2 ANOVA for mean difference for MNSQ

Effect F df1 df2 p

TWCea 4.51 1 795 0.03
MICEa 5.60 1 795 0.02
P3b 0.83 1 795 0.36
P5b 75.51 1 795 0.00
MARc 1.00 1 795 0.32
NMARc 16.80 1 795 0.00
TWCe*MAR 0.59 1 795 0.44
MICE*MAR 0.00 1 795 0.97
TWCe*NMAR 1.18 1 795 0.28
MICE*NMAR 1.41 1 795 0.24
TWCe*P3 1.17 1 795 0.28
TWCe*P5 0.09 1 795 0.76
MICE*P3 0.56 1 795 0.46
MICE*P5 2.93 1 795 0.09
a Reference category was no imputation
b Reference category was P D 0:01
c Reference category was MCAR

Table 3 Means of the absolute differences for estimated item parameters

MCAR MAR NMAR

P P P

Imputation Method 0:01 0:03 0:05 0:01 0:03 0:05 0:01 0:03 0:05

TWCe 0:013 0:018 0:035 0:012 0:028 0:035 0:017 0:032 0:045

MICE 0:011 0:024 0:031 0:011 0:020 0:045 0:015 0:034 0:043

MD 0:008 0:014 0:018 0:009 0:023 0:029 0:012 0:019 0:025

TWCe two-way imputation with error, MICE multiple imputation by chained equations,
MD missing data set (no imputation)

data under varying conditions for missing values. Based on various fit statistics,
we have compared how sensitive this model is, across changing conditions.

With respect to the fit criterion MNSQ, we have shown that the proportion of
missing values obviously influences estimation accuracy; less accurate estimates
are observed for higher proportions of missing values. The mechanisms behind
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Table 4 ANOVA for mean difference for estimated item parameters

Effect F df1 df2 p

TWCea 19.39 1 741 0.00
MICEa 5.87 1 741 0.02
P3b 0.14 1 741 0.72
P5b 126.36 1 741 0.00
MARc 0.07 1 741 0.78
NMARc 16.59 1 741 0.00
TWCe*MAR 2.12 1 741 0.15
MICE*MAR 0.55 1 741 0.46
TWCe*NMAR 0.83 1 741 0.36
MICE*NMAR 0.06 1 741 0.80
TWCe*P3 0.27 1 741 0.60
TWCe*P5 3.69 1 741 0.06
MICE*P3 0.05 1 741 0.83
MICE*P5 3.12 1 741 0.08
a Reference category was no imputation
b Reference category was P D 0:01
c Reference category was MCAR

missingness also appear to be relevant for estimation accuracy. As the study of this
paper corroborates, imputing missing values does not lead to more precise results
in general. In future research, it would be interesting to investigate the effects of
imputation techniques in matters of higher proportions of missing values, as well as
of appropriate modifications of the mixed coefficients multinomial logit model for
the lower proportions in PISA.

Generally, the pattern of results for the estimated item parameters resembles the
results for MNSQ. Again, the proportion of missingness, the imputation methods,
and the mechanisms creating the missing values have an influence on the estimation
accuracy. It seems that the imputation methods considered here do not lead to more
accurate results regarding the fit criterion and the item parameters, at least under the
conditions studied in this paper.

Which of the imputation techniques should be preferred in educational large scale
assessment studies such as PISA? The findings of this paper cannot favor one over
the other, of the two analyzed imputation techniques MICE and TWCe. Similar
results were obtained for both methods. In some cases, the TWCe method led to
better results, and in other cases, MICE performed better.

Nonetheless, the considered missingness proportions were relatively small, and
the investigation of the influence of missing values on such other criteria as the
important students’ plausible values in PISA would have exceeded the scope of this
paper. These topics must be pursued in future research.
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Confidence Measures in Automatic Music
Classification

Hanna Lukashevich

Abstract Automatic music classification receives a steady attention in the research
community. Music can be classified, for instance, according to music genre, style,
mood, or played instruments. Automatically retrieved class labels can be used
for searching and browsing within large digital music collections. However, due
to the variability and complexity of music data and due to the imprecise class
definitions, the classification of the real-world music remains error-prone. The
reliability of automatic class decisions is essential for many applications. The goal
of this work is to enhance the automatic class labels with confidence measures
that provide an estimation of the probability of correct classification. We explore
state-of-the-art classification techniques in application to automatic music genre
classification and investigate to what extend posterior class probabilities can be used
as confidence measures. The experimental results demonstrate some inadequacy of
these confidence measures, which is very important for practical applications.

1 Introduction

Automatic music classification is one of the most often addressed fields in Music
Information Retrieval (MIR). The classifiers are aimed to learn high-level music
concepts such as music genre, music style, mood, or played instruments. These high-
level concepts are really handy for practical application and so are of a particular
interest of the research community. State-of-the-art automatic music classification
systems already reach quite high accuracy values. Methods for music classification
involve various machine learning techniques such as Gaussian Mixture Models
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(GMM) and Support Vector Machines (SVM). Once trained, the classifiers can
predict class labels for the unseen data.

However, the classification of the real-world music remains error-prone. First,
the feature representations of musical signals are imperfect and incomplete. Second,
the fusion of music styles causes natural blurring of the class borders. Third, it is
impossible to collect representative training data to cover the entire variability of
music over the world.

In this paper we address the topic of so called confidence measures that
accompany a classification decision and give insight into the reliability of this
decision. The remainder of the paper is structured as follows. Section 2 introduces
a concept of confidence measure in a classification system. Section 3 describes our
experimental setup including experimental dataset and classification systems. The
results are presented and discussed in Sect. 4. The last section concludes the paper
and discusses some points for the further research.

2 Confidence Measures in Classification Systems

Confidence measure (CM) is a score (preferably between 0 and 1) that accompanies
a classification decision. This score indicates the reliability of a decision made by
the classifier. A higher CM corresponds to the more reliable decision.

2.1 Definition and Requirements

For many practical applications it is not sufficient to be able to rank classification
decisions according to their CMs. The absolute CM values become important once
it is necessary: (1) to compare and/or to combine classification decisions originated
by various classifiers; (2) to introduce a reject option, which is based on CM values;
or (3) to interpret the classification results.

In this paper we define a CM as a score between 0 and 1, which accompanies
a classification decision and fulfills the requirements proposed by Duin and Tax
(1998):

1. On the average a fraction c of all objects with confidence c should be classified
correctly.

2. Reliably classified objects should have larger confidences than objects close to
the decision boundary.

Such CMs are easy to interpret. For instance, if we rank classification decisions of
some system according to their confidence and get 100 decisions with CMs around
0:7, we can expect about 70 of them to be correct. Such CMs are helpful in many
practical applications: they can serve as a hint for the end user and can be used to
filter out insecure decisions or to fuse classification decisions emitted by several
classification systems.
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To measure the quality of CMs, Duin and Tax (1998) introduced confidence
error and normalized confidence error scores. Confidence error q is the mean
square error between the confidence estimate c.x/ and the correctness indicator
t.x/: q D Ef.t.x/ � c.x//2g. Normalized confidence error � is independent of the
classification error "

� D q

"
� 1

2
; 0 � � � 1

2
: (1)

The reader should refer to Duin and Tax (1998) for more insight into the range
of � in (1). For the interpretation of results it is sufficient to keep in mind that (1)
� D 0 indicates an ideal case where for all correct decisions c is equal 1 and for all
incorrect decisions c is equal 0; (2) � D 1

2
corresponds to a random assignment of

c values.

2.2 Estimation of Confidence Measures

Estimation of CMs differs for generative and discriminative classifiers. Generative
classifiers are based on class conditional probability density functions p.xj!i / for
each class !i . One of the commonly used generative classifiers is GMM. Here,
a confidence measure c.x/ for sample x can be defined as the posterior class
probability p.!i jx/:

c.x/ D p.!i jx/ D p.xj!i /p.!i /
p.x/

D p.xj!i /p.!i /P
i p.xj!i /p.!i / : (2)

Discriminative classifiers directly model the decision boundary between classes.
Let f .x/ be a function indicating a distance from x to a decision boundary. The
confidence c.x/ can be defined via a mapping of f .x/:

c.x/ D 1

1C exp.Af .x/C B/
; (3)

where A and B are some constants that need to be estimated experimentally.
The sigmoid function in (3) is successfully applied by Platt (1999) for one of
the most used binary discriminant classifiers, namely SVM. In case of a multi-
class classification the probabilistic output for SVM can be estimated by pairwise
coupling as suggested by Wu et al. (2004).

3 Experimental Setup

In this paper we evaluate two state-of-the-art classification systems in application
to the automatic music genre classification task. The experimental setup for this
evaluation is described in the following subsections. It includes experimental
dataset, feature extraction, classification, and evaluation measures.
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3.1 Dataset

The experimental dataset includes 1,458 full-length music tracks from a public
ISMIR 2004 Audio Description Dataset.1 This dataset hast equally sized fixed
training and test parts. Each track in the dataset is labeled with one of six
genres: Classical (638 tracks), Electronic (230), Jazz & Blues (52),
Metal & Punk (90), Rock & Pop (202), and World (246). The task is to learn
classification rules from the music tracks in the training part in order to predict
genre labels in the test part.

3.2 Feature Extraction

We utilize a broad palette of low-level acoustic features and several mid-level repre-
sentations. The set of extracted acoustic features is nearly identical to the one used in
Lukashevich (2012). The features can be subdivided in three categories by covering
timbral, rhythmic and tonal aspects of sound. Timbre features comprise low-level
features, such as Mel-Frequency Cepstral Coefficients, Octave Spectral Contrast,
Audio Spectrum Centroid, Spectral Crest Factor, Spectral Flatness Measure, and
their mid-level representations. These mid-level features are computed on 5.12 s
(with 2.56 s hop size) excerpts and observe the evolution of the low-level features.
The mid-level representations help to capture the timbre texture by descriptive
statistics, see Dittmar et al. (2007) for details. Rhythmic features are derived from the
energy slope in excerpts of the frequency-bands of the Audio Spectrum Envelope.
Further mid-level rhythmic features are gained from the Auto-Correlation Function
(Dittmar et al. 2007). Tonality features are based on the Enhanced Pitch Class
Profiles feature proposed in Lee (2006).

3.3 Frame-Wise Classification

Extracted feature vectors and corresponding genre labels are used for the frame-
wise classification. The temporal resolution of frame-wise classification it is equal
to 2.56 s. Here we apply two classification systems:

System 1 Performs dimensionality reduction via Linear Discriminant Analysis
(LDA) and subsequent classification with GMM.

System 2 Does variable selection by Inertia Ratio Maximization using Feature
Space Projection (IRMFSP) and classifies with SVM.

1http://ismir2004.ismir.net/genre_contest/index.htm

http://ismir2004.ismir.net/genre_contest/index.htm
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The following paragraph provides brief information on the applied techniques.
Variable selection method IRMFSP is proposed by Peeters and Rodet (2003).
During each iteration of the algorithm, we look for a feature dimension (variable)
maximizing the ratio of between-class inertia to the total-class inertia. LDA is one
of the most often used supervised dimensionality reduction techniques (Fukunaga
1990). Original feature vectors are linearly mapped into new feature space guaran-
teeing a maximal linear separability by maximization of the ratio of between-class
variance to the within-class variance. SVM is a discriminative classifier, attempting
to generate an optimal decision plane between feature vectors of the training classes
(Vapnik 1998). We use a SVM with a Radial Basis Function kernel in this paper.
Posterior class probabilities are estimated as proposed by Platt (1999). Furthermore
we additionally apply the pairwise coupling algorithm suggested by Wu et al.
(2004) to support the multi-class case. GMM is a commonly used generative
classifier. Single data samples of each class are interpreted as being generated from
various sources and each source is modeled by a single multivariate Gaussian. The
parameters of a GMM are estimated using the Expectation-Maximization algorithm
proposed by Dempster et al. (1977).

3.4 Song-Wise Classification

Although the frame-wise classification is helpful for some applications, often
the song-wise class decisions are required. Song-wise decisions are estimated by
majority voting (MV) within all frames of a song. We apply both hard and soft
MV. In the hard MV the most frequent class decision over all frames within a song
is taken as a song-wise decision. The corresponding CM is set to its normalized
frequency. In the soft MV the class with a highest mean confidence over all frames
within a song is taken as a song-wise decision. This highest mean confidence
becomes a confidence of a song-wise decision.

3.5 Evaluation Measures

To measure the performance of the classification system trained for M classes, we
define a confusion matrix C 2 R

M�M . Matrix element cij is the number of samples
with true class label !i classified as class !j . In addition we define a normalized
confusion matrix Cnorm where each row of C is normalized to a sum of 1. The overall
accuracy is defined as a fraction of a number of correctly classified samples to
a number of all samples: A D trace.C/=

P
ij cij. The error rate is a fraction of

incorrectly classified samples: " D 1 � A.
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Fig. 1 Confusion matrices show frame-wise and song-wise classification results for system 2
(IRMFSP C SVM), all values are given in percent. (a) Frame-wise, IRMFSP C SVM. (b) Song-
wise, IRMFSP C SVM

4 Results

Figure 1 presents detailed results of frame-wise and song-wise classification for
classification System 2 in a form of confusion matrices, here the overall accuracy
reaches 0:78 and 0:88 for frame-wise and song-wise classification, respectively.
System 1 achieves comparable overall accuracy of 0:73 and 0:87, correspondingly.
Both classification systems show solid results that are comparable to the state of the
art for this public dataset. Song-wise classification is more reliable in comparison to
the frame-wise classification. The confusion matrices show that some genres are
confused more often that the others. So Metal & Punk is often confused with
Rock & Pop. These confusions could partly be explained by the natural fusion of
these music genres.

In this work we are interested in the question to which extend the posterior class
probabilities can be used as confidence measures. Table 1 shows the normalized
confidence error � as defined in Sect. 2.1. The values of � for frame-wise classifica-
tion equal to 0:10 and 0:12 signify the meaningfulness of proposed CMs. Remind
the range of � in (1). The song-wise classification via MV aggregation improves
the overall accuracy, the error rate " decreases. However, the aggregation via MV
increases the normalized confidence error �. It is interesting to observe that the
hard and soft MV lead to close error rate values but have a strong influence on the
confidence measures. In case of hard MV the CMs are more reasonable. Especially
in case of the LDA C GMM classification system the CMs become close to random
ones for soft MV.

According to the definition of a CM, on the average a fraction c of all objects
with confidence c should be classified correctly. Do our CMs meet this requirement?
Figure 2 depicts the relation between the CMs and accuracy values for frame-wise
classification. Here we collect classified frames within equidistant confidence bins
and take a look to their accuracy. As expected from the low values of normalized
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Table 1 Normalized confidence error, as defined in Sect. 2.1

Time resolution
(aggregation)

Frame-wise
(none)

Song-wise
(hard MV)

Song-wise
(soft MV)

Measure " � " � " �

Method
LDA C GMM 0:27 0:10 0:13 0:25 0:13 0:43

IRMFSP C SVM 0:22 0:12 0:12 0:20 0:12 0:29
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Fig. 2 Relation between the CMs and accuracy values for frame-wise classification

confidence error �, both classification systems output reasonable CMs, close to the
desired ones. In general, the CMs values are higher than corresponding accuracy
values. This tendency is only different for CMs lower than 0:3. Note, that CM
values of a winning class in this range in the experiment with six classes correspond
to nearly equiprobable class decisions. In our experiment only a few classification
decisions fall into the range of low confidence values so that we do not focus on this
part of the accuracy vs. confidence curve.

However, this nearly ideal relation between CM values and accuracy does not
hold true if we examine it for frames from each class individually. As it can be seen
in Fig. 3, the frames from class Classical with CMs of about 0:8 reach accuracy
of about 0:9. In contrast, the frames from class Rock & Pop with CMs of about
0:8 exhibit accuracy of only 0:6. This behavior of CMs violates the requirements
introduced in Sect. 2.1 and therefore hampers the interpretation of classification
results. We can observe that the relation between CMs and accuracy depends on the
accuracy reached for a particular class. So for classes with accuracy higher than an
overall accuracy (see Classical) the CMs values are lower than the reached
accuracy. In contrast, for classes with lower class accuracies (see Metal & Punk
and Rock & Pop) the CMs are higher than the accuracy values. Our observations
correspond to the findings of Fumera et al. (2000) where the authors discuss the
effects of the imperfect estimation of posterior class probabilities.
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Fig. 3 Relation between the CMs and accuracy for frames from different classes

5 Conclusions and Outlook

This paper addresses the topic of confidence measures accompanying classification
decisions in automatic music classification scenario. We considered posterior class
probabilities as confidence measures and explored their behavior in state-of-the-art
systems for automatic music genre classification. The experimental results signified
the meaningfulness of the proposed confidence measures. However, in reflection of
classification results for distinct classes the confidence measures appeared to be not
optimal and need to be corrected.

Our future research will be directed towards further investigation on the depen-
dencies for class accuracies and confidence measures. Moreover, we are interested
in the possibilities to correct the confidences measures via a mapping function so
that they fulfill the theoretical requirements. It would be significant to understand
the behavior of the confidence measures during hard and soft MV and to answer the
question if the correction of the frame-level confidence measures can improve the
accuracy of the song-level classification.
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Using Latent Class Models with Random Effects
for Investigating Local Dependence

Matthias Trendtel, Ali Ünlü, Daniel Kasper, and Sina Stubben

Abstract In psychometric latent variable modeling approaches such as item
response theory one of the most central assumptions is local independence (LI),
i.e. stochastic independence of test items given a latent ability variable (e.g.,
Hambleton et al., Fundamentals of item response theory, 1991). This strong
assumption, however, is often violated in practice resulting, for instance, in biased
parameter estimation. To visualize the local item dependencies, we derive a measure
quantifying the degree of such dependence for pairs of items. This measure can be
viewed as a dissimilarity function in the sense of psychophysical scaling (Dzhafarov
and Colonius, Journal of Mathematical Psychology 51:290–304, 2007), which
allows us to represent the local dependencies graphically in the Euclidean 2D space.
To avoid problems caused by violation of the local independence assumption, in this
paper, we apply a more general concept of “local independence” to psychometric
items. Latent class models with random effects (LCMRE; Qu et al., Biometrics
52:797–810, 1996) are used to formulate a generalized local independence (GLI)
assumption held more frequently in reality. It includes LI as a special case. We
illustrate our approach by investigating the local dependence structures in item types
and instances of large scale assessment data from the Programme for International
Student Assessment (PISA; OECD, PISA 2009 Technical Report, 2012).
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1 Introduction

In educational measurement, models are often concerned with connecting observed
responses of an individual to test items with the individual’s latent ability. Tradi-
tionally, for instance in item response theory (IRT; e.g. Mcdonald 1999), ability is
represented by a (unidimensional or multidimensional) latent continuous variable.
This variable is assumed to explain all influences on the examinee’s responses to the
test items. An alternative approach to model the examinee’s ability and responses is
based on discrete structures called knowledge spaces or learning spaces (Falmagne
and Doignon 2011). Here, latent ability is represented by a latent discrete variable,
which also determines the examinee’s response pattern completely. Thus, in both
approaches the latent variable represents the whole latent space, i.e. accounts for all
(systematic) associations between test items. This means, both approaches postulate
local independence given the latent variable.

More technically (see Hambleton et al. 1991), for n items, the binary random
variable representing the (correct or incorrect) response of an examinee to item i

is denoted by Si . Furthermore, the probability of a response of an examinee with
latent ability  is denoted by P.Si j/, where P.Si D 1j/ and P.Si D 0j/ are
the probabilities of a correct and incorrect response to item i , respectively. Local
independence (LI) is satisfied iff

P.S1; S2; : : : ; Snj/ D P.S1j/P.S2j/ : : : P.Snj/ D
nY
iD1

P.Si j/; (1)

where P.S1; S2; : : : ; Snj/ is the joint probability for all responses S1; S2; : : : ; Sn
in the test, given the latent ability  .

We show that in PISA 2009 for reading items within one item unit (OECD
2012), LI may not be satisfied when assuming a model with a one-dimensional
latent continuous variable explaining test performance. Since in PISA such latent
variable models are used for scaling items and persons, the parameter estimation
can be biased (e.g., see Chen and Wang 2007).

In this paper, we provide means to model and, thus, control for local item
dependencies via visualization and a generalized concept of “local independence.”
First, we visualize the occurring local item dependencies by deriving a metric
based on the dissimilarity between item pairs using Rosenbaum’s test for LI
(Rosenbaum 1984). Second, we demonstrate that a more general form of local
independence derived from the latent class model with random effects (LCMRE),
which was introduced by Qu et al. (1996), yields considerably fewer violations of
the LI assumption; in the sense that we reject the null hypothesis “LI is satisfied”
less frequently. As discussed by Ünlü (2006), the LCMRE can be applied to
learning space theory (LST) and viewed as a generalization of the LST fundamental
basic local independence model (BLIM). This generalized approach provides a
classification of the sample in a mastery and a non-mastery class, and it allows
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for estimating the misclassification rates of the items to prevent fallacies. That
application in LST is instructive, and we therefore give a brief introduction to LST
before we elaborate on local dependence under the LCMRE.

2 Basics of Learning Space Theory

For a comprehensive introduction to LST, the reader is referred to Falmagne and
Doignon (2011). For the purposes of this paper, our discussion is restricted to the
very main concepts and ideas of LST. LST utilizes set theory to describe the possible
states of knowledge of a learner. Knowledge is represented by the set of test items
an individual is able to master under ideal conditions. More formally, given a set of
items Q, the subset K � Q of items a learner with a certain ability should answer
correctly is called her/his knowledge state. Any family of subsets of Q containing
the empty set ; and Q builds a so-called knowledge structure K (on Q).

As an example consider the set Q of five items Q D fa; b; c; d; eg. Then

K D f;; fag; fbg; fa; bg; fa; b; cg; fa; b; d g; fa; b; c; d g; fa; b; c; d; egg

forms a knowledge structure and, for instance, a person with knowledge state
fa; b; d g is capable of answering items a, b, d correctly, but not items c and e.

Since lucky guesses and careless errors are possible, a learner’s responses R �
Q, i.e. the set of items she/he answers correctly in reality, is not generally equal to
her/his knowledge stateK . In LST, the probability of a responseR for a learner with
knowledge state K is modeled by the basic local independence model (BLIM). The
BLIM assumes LI, so that probabilities factor into the probabilities of slipping (or
not slipping) on items i 2 K and guessing (or not guessing) on item i … K .

Definition 1. A quadruple .Q;K ; p; r/ is called a BLIM iff

1. K is a knowledge structure on Q,
2. p is a probability distribution on K , i.e., p W K !�0; 1Œ;K 7! p.K/, with
p.K/ > 0 for any K 2 K , and

P
K2K

p.K/ D 1,

3. r is a response function for .Q;K ; p/, i.e., r W 2Q � K ! Œ0; 1�; .R;K/ 7!
r.R;K/, with r.R;K/ � 0 for any R 2 2Q and K 2 K , and

P
R22Q

r.R;K/ D 1

for anyK 2 K ,
4. r satisfies LI, i.e.,
r.R;K/ D Q

i2KnR
ˇi � Q

i2K\R
.1� ˇi / � Q

i2RnK
�i � Q

i2Qn.R[K/
.1 � �i /;

with two constants ˇi ; �i 2 Œ0; 1Œ for each item i 2 Q called the item’s careless
error and lucky guess probabilities, respectively.



410 M. Trendtel et al.

The BLIM assumes that the manifest multinomial probability distribution on the
response patterns is governed by the latent state proportions and response error rates.
Postulating that the response patterns are independent from each other and that the
occurrence probability of any response pattern R 2 2Q, �.R/, is constant across the
subjects, �.R/ can be parameterized as �.R/ D P

K2K
r.R;K/p.K/.

3 Latent Class Model with Random Effects

In the following, we consider the simplest knowledge structure K on Q, i.e. K D
f;;Qg. In this case, there are only two knowledge states and the BLIM degenerates
to the classical unrestricted 2-classes latent class model. We connect LST notation
with the concept of binary response variables Si and a latent ability variable  by
regarding a set Q of n items. Then, the item response variable Si is equal to one for
all item answered correctly, i.e. i 2 R, and Si D 0 for items i … R. Further, the two
knowledge states result in a binary ability variable  D 1 for K D Q and  D 0 for
K D ;. Hence, the assumption of LI is denoted as P.S1 D s1; S2 D s2; : : : ; Sn D
snj D #/ D

nQ
iD1

P.Si D si j D #/ for any si ; # 2 f0; 1g for all i . Note that  is

discrete in this case.
Since LI may not be justified in general, we regard a different model extended

to allow for local dependence using random effects (see Qu et al. 1996). The latent
class model with random effects (LCMRE) assumes that an individual’s responses
are not completely governed by the knowledge stateK . In addition, there might be a
subject- and/or item-specific random factor T � N.0; 1/ influencing the examinee’s
item performance. Under the LCMRE, the latent (discrete) ability  supplemented
by the latent (continuous) random factor T represents the complete latent space
having influence on the item performance.

Under this model, general “local independence” (GLI) is satisfied iff, given 
and T , the factorization of probabilities holds

P.S1 D s1; : : : ; Sn D snj D #; T D t/ D
nY
iD1

P.Si D si j D #; T D t/

for any si ; # 2 f0; 1g (1 � i � n) and t 2 R.
The latent random variables  and T are assumed to be independent and for any

item i 2 Q, the conditional probability P.Si D 1j D #; T D t/ for solving the
item, given  D # and T D t , is parametrized through a probit regression (Qu et al.
1996):˚.ai# C bi# t/.
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4 Testing Local Independence

In practice, the local independence assumption (1) may not hold. Therefore, several
tests are known to test for pairwise local dependence of an item pair. In this paper,
we consider a test introduced by Rosenbaum (1984) to derive a visualization of
local item dependencies. Regard a set Q of n items. For an item pair .i; j / 2 Q�Q,
an individual can obtain a total score k of correct responses to the n � 2 items in
Qnfi; j g with k 2 f0; : : : ; n�2g. For any k, the sample distribution of .Si ; Sj / can
be tabulated in a 2�2 contingency table. Letmuvk be the expected counts of the cell
.u; v/ in the kth contingency table for u; v 2 f0; 1g and k 2 f0; : : : ; n�2g. The odds
ratio Rk in the kth table is defined as Rk D m00km11k

m10km01k
. LI implies the null hypothesis

H0 W Rk � 1; for k D 0; : : : ; n � 2:

In Rosenbaum’s approximate test, a high p-value indicates LI between the consid-
ered items and a low p-value indicates local dependence.

To visualize local item dependencies, the p-value is used as a dissimilarity mea-
sure for any item pair. Thereby, a small p-value indicating higher local dependence
represents a higher similarity and a higher p-value represents a higher dissimilarity.
In this way, we derive a dissimilarity function on the set of items. Given a
dissimilarity function, Fechnerian scaling (see, e.g., Dzhafarov and Colonius 2007)
can be applied to impose a metric on the item set by calculating the so-called
Fechnerian distances (FD). Based on this metric, multidimensional scaling can be
applied to project the items onto the Euclidean two-dimensional space. Two items
close to each other on the plot are more locally dependent than two items further
apart. Hence, the local dependence structure is visualized.

5 Local Independence and Latent Classes in PISA

As an application, we analyzed the local independence of reading items in the
German sample of the PISA 2009 paper-and-pencil test. Regarding the traditional
concept of LI (1), we expect to detect local item dependencies via Rosenbaum’s test
for LI since the continuous latent ability variable may not fully explain associations
between items. We visualize occurring dependencies as described in Sect. 4.

Local independence is satisfied if and only if there is no other influencial
dimension on an individual’s response besides the model’s latent variables. In the
LCMRE the individual’s responses are influenced by both, one continuous latent
variable (the random effect) and one discrete variable (the latent ability) leading to
a more general concept of local independence (GLI). If we test for GLI by holding
fixed the latent state too, the test should not indicate LD when the data follow the
LCMRE.
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Table 1 Sample sizes, class sizes and number of violations of LI as a result of the test for LI for
an alpha level of 0.05 based on the whole sample of the respective item unit and based on the
estimated latent classes obtained from the LCMRE

Sample size Significant violations

Unit label Whole sample Class 1 Class 2 Whole sample Class 1 Class 2

R055 1,431 1,118 313 6 2 1
R083 1,462 314 1,148 6 5 5
R227 763 232 531 5 0 0
R412 1,434 1,266 168 4 5 5
R414 1,442 708 734 6 0 0
R447 1,461 708 753 6 1 0
R452 1,449 688 761 6 4 2
R453 1,445 1,081 364 6 2 2

In PISA 2009, items in the same so-called item unit are based around a common
stimulus (e.g., OECD 2012). This motivates the assumption that items in the same
unit can be seen as equally informative and the underlying knowledge structure is
the simplest one, i.e. we can a assume a binary ability variable  representing the
two possible knowledge states (see Sect. 3). There is a total number of 37 units
comprising a total of 131 items. We choose units containing exactly four items and
excluded response patterns missing responses for at least one item within the unit.
Units with less than 300 complete response patterns were skipped.

We analyzed nine item units and applied the test for LI for every item pair in each
item unit for all response patterns. The test for LI always gives a significant result
(0.00) for an item pair consisting of the same items and the test is symmetric with
respect to the order of the item pair. Therefore, we take into account the respective
6 item pairs consisting of two different items only.

After applying the test for LI (see Sect. 4) in each considered item unit at least
4 item pairs show significant (alpha level of p < 0:05) local dependencies (see
Table 1). This indicates that one continuous latent variable is not sufficient to explain
the item performance for these units.

Exemplarily, in Table 2, the results of the test and the calculated Fechnerian
distances (FDs, see Sect. 4) are shown for the item unit “R414”. Figure 1a shows the
plot of the multidimensional scaled FDs between the items of the item unit “R414”
calculated based on the pairwise dissimilarities arising from the test for LI for the
whole sample. Figure 1a and Table 2 show that items are strongly locally dependent.
Within the unit, items “R414Q02”, “R414Q06” and “R414Q09” show higher local
dependencies than the item “R414Q11” with the other items.

In the next step, we applied the LCMRE using the R-package randomLCA for
computations and partitioned the item responses according to the class probabilities
for the two knowledge states derived from the latent class analysis. Thereby, a
response pattern was allocated to the knowledge state with the highest estimated
probability. Afterwards we applied the test for LI for every class separately for each
item unit, hence testing for GLI. The results are summarized in Table 1. For item
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Fig. 1 LD structure of the items of the unit “R414”. Part (a) shows the structure within the whole
sample, (b) within knowledge state K D Q and (c) within knowledge state K D ;

units “R083”, “R412” and “R452”, the number of violations were still too high to
accept the LCMRE with two latent classes as a suitable model. For all other item
units, however, the reduction of violations was striking. There were no more than
2 violations of GLI in each class and item unit. The units “R227” and “R414” do
not show any violation of GLI at all. As this stands against 5 and 6 violations,
respectively, under a model with one continuous latent variable, the LCMRE is
strongly preferable.

Table 3 shows the results of the test for GLI and the calculated Fechnerian
distances between the items of the item unit “R414” for both knowledge states,
K D Q andK D ;. Further, Fig. 1b, c visualize the local dependencies.

6 Conclusion

We have proposed a method to visualize violations of the traditional concept of local
independence (LI) in a psychometric context using Fechnerian scaling. A general-
ized form of “local independence” has been derived from the latent class model
with random effects. That resulted in fewer violations of LI, and thus, is assumed to
prevent biased estimation (important in PISA). Possible limitations of our approach
lie within the assumption of (standard) normally distributed random factor T . So
far, we have no theory that could imply the normal distribution. Moreover, at least
theoretically, the link function could be any distribution function (other than˚). For
the models juxtaposed in this paper, the impact of fewer violations on the estimation
of the model parameters must be quantified in simulations. Additionally, analyses
have to be done investigating the performance of tests of LI in other modeling
approaches, e.g. the Q-statistics (Yen 1984). Considering the results of the analyses
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of the PISA 2009 data, a 2-class latent class model with random effects seems to
be sufficient to model dependencies for most item units. In terms of learning space
theory, examinees can be divided into a mastery and a non-mastery group. In a next
step, individual items may be analyzed to identify specific characteristics of the
items, as a possible explanation for this kind of data.
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1 Introduction

PISA is an international large scale educational assessment study conducted by
member countries of the OECD (2001, 2002a, 2004, 2007, 2010) and investigates
how well 15-year-old students approaching the end of compulsory schooling are
prepared to meet the challenges of today’s knowledge societies (OECD 2005, 2012).
The study does not focus on the students’ achievement regarding a specific school
curriculum but rather aims at measuring the students’ ability to use their knowledge
and skills to meet real-life challenges (OECD 2009a).

PISA started in 2000 and takes place every 3 years. Proficiencies in the domains
reading, mathematics, and science are assessed. In each assessment cycle, one of
these domains is chosen as the major domain under fine-grained investigation;
reading in 2000, followed by mathematics in 2003, science in 2006, etc. The
definitions of the domains can be found in the respective assessment frameworks
(e.g., OECD 2009a). In addition to these domains, further competencies may also
be assessed by a participating OECD member; for example digital reading in 2009
(OECD 2012). Besides the actual test in PISA, student and school questionnaires are
used to provide additional background information (e.g., about the socio-economic
status of a student). In PISA 2009 for instance, in addition to these questionnaires, in
14 countries parents were asked to fill in an optional questionnaire. The background
information are used as so-called conditioning variables for the scaling of the PISA
cognitive (i.e., test) data.

The number of countries (and economies) participating in PISA continues to
increase (e.g., 32 and 65 countries for PISA 2000 and 2009, respectively). In each
participating country, a sample of at least 150 schools (or all schools) were drawn.
In each participating school, 35 students were drawn (in schools with less than 35
eligible students, all students were selected).

The PISA study involves a number of technical challenges; for example, the
development of test design and measurement instruments, of survey and ques-
tionnaire scales. Accurate sampling designs, including both school sampling and
student sampling, must be developed. The multilingual and multicultural nature
of the assessment must be taken into account, and various operational control and
validation procedures have to be applied. Focused on in this paper, the scaling and
analysis of the data require sophisticated psychometric methods, and PISA employs
a scaling model based on item response theory (IRT; e.g., Adams et al. 1997;
Fischer and Molenaar 1995; van der Linden and Hambleton 1997). The proficiency
scales and levels, which are the basic tool in reporting PISA outcomes, are derived
through IRT analyses.

The PISA Technical Report describes those methodologies (OECD 2002b, 2005,
2009b, 2012). The description is provided at a level that allows for review and,
potentially, replication of the implemented procedures. In this paper, we recapitulate
the scaling procedure that is used in PISA (Sect. 2). We discuss the construction of
proficiency scale and proficiency levels and explain how the results are reported and
interpreted in PISA (Sect. 3). We comment on whether information provided in the
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Technical Report is sufficient to replicate the sampling and scaling procedures and
central results for PISA, on classification procedures and alternatives thereof, and
on other, for instance more automated, ways for reporting in the PISA Technical
Report (Sect. 4). Overall, limitations of PISA and some reflections and suggestions
for improvement are described and scattered throughout the paper.

2 Scaling Procedure

To scale the PISA cognitive data, the mixed coefficients multinomial logit model
(MCMLM; Adams et al. 1997) is applied (OECD 2012, Chap. 9). This model is a
generalized form of the Rasch model (Rasch 1980) in IRT. In the MCMLM, the
items are characterized by a fixed set of unknown parameters, �, and the student
outcome levels, the latent random variable � , are assumed to be random effects.

2.1 Notation

Assume I items (indexed i D 1; : : : ; I ) with Ki C 1 possible response categories
(0; 1; : : : ; Ki ) for an item i . The vector-valued random variable, for a sampled
person, X 0

i
D �

Xi1; Xi2; : : : ; XiKi
	

of order 1 � Ki , with Xij D 1 if the response
of the person to item i is in category j , or Xij D 0 otherwise, indicates the
Ki C 1 possible responses of the person to item i . The zero category of an item
is denoted with a vector consisting of zeros, making the zero category a reference
category, for model identification. Collecting the X 0

i
’s together into a vector X 0 D

�
X 0

1
; X 0

2
; : : : ; X 0

I

�
of order 1� t (t D K1 C � � � CKI ) gives the response vector, or

response pattern, of the person on the whole test.
In addition to the response vector X (person level), assume an 1�p vector �0 D�

�1; �2; : : : ; �p
	

of p parameters (p � I ) describing the I items. These are often
interpreted as the items’ difficulties. In the response probability model, linear combi-
nations of these parameters are used, to describe the empirical characteristics of the
response categories of each item. To define these linear combinations, a set of design
vectors aij (i D 1; : : : ; I ; j D 1; : : : ; Ki ), each of length p, can be collected to form
an p � t design matrix A0 D �

a11; : : : ; a1K1
; a21; : : : ; a2K2

; : : : ; aI1; : : : ; aIKI

�
,

and the linear combinations are calculated by A� (of order t � 1). In the multidi-
mensional version of the model it is assumed that D � 2 latent traits underlie the
persons’ responses. The scores of the individuals on these latent traits are collected
in the D � 1 vector � D �

1; : : : ; D
	0

, where the ’s are real-valued and often
interpreted as the persons’ abilities.

In the model also the notion of a response score bijd is introduced, which gives
the performance level of an observed response in category j of item i with respect
to dimension d (d D 1; : : : ;D). For dimension d and item i , the response scores
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across the Ki categories of item i can be collected in an Ki � 1 vector bid D�
bi1d ; : : : ; biKi d

	0
and across the D dimensions in the Ki � D scoring sub-matrix

Bi D �
bi1; : : : ; biD

�
. For all items, the response scores can be collected in an

t �D scoring matrix B D �
B 0

1
; : : : ; B 0

I

�0
.

2.2 MCMLM

The probability Pr.Xij D 1; A; B; �j�/ of a response in category j of item i ,
given an ability vector � , is exp.bij� C a0

ij�/=.1CPKi
qD1exp.biq� C a0

iq�/,
where biq is the qth row of the corresponding matrix Bi , and a0

iq is the

.
i�1P
lD1

Kl C q/th row of the matrix A. The conditional item response model

(conditional on a person’s ability �) then can be expressed by fx.xI �j�/ D
exp Œx0 .B� C A�/� =

P
z exp Œz0 .B� C A�/� , where x is a realization of X andP

is over of all possible response vectors z.
In the conditional item response model, � is given. The unconditional, or

marginal, item response model requires the specification of a density, f .�/. In
the PISA scaling procedure, students are assumed to have been sampled from a
multivariate normal population with mean vector � and variance-covariance matrix
˙ , that is, f .�/ D (.2�/D j˙ j/�1=2exp

�� .� � �/0 ˙ �1 .� � �/ =2
�
. Moreover,

this mean vector is parametrized, � D � 0w, so that � D � 0w C e, where w is
an u � 1 vector of u fixed and known background values for a student, � is an
u �D matrix of regression coefficients, and the error term e is N.0; ˙ /. In PISA,
� D � 0w C e is referred to as latent regression, and w comprises the so-called
conditioning variables (e.g., gender, grade, or school size). This is the population
model.

The conditional item response model and the population model are combined
to obtain the unconditional, or marginal, item response model, which incorpo-
rates not only performance on the items but also information about the students’
background: f .xI �; �; w;˙/ D R

fx.xI �j�/f .�I �; w;˙/d� . The parameters
of this MCMLM are � , ˙ , and �. They can be estimated using the software
ConQuest R� (Wu et al. 1997; see also Adams et al. 1997).

Parametrizing a multivariate mean of a prior distribution for the person ability
can also be applied to the broader family of multidimensional item response models
(e.g., Reckase 2009). Alternative models capable of capturing the multidimensional
aspects of the data, and at the same time, allowing for the incorporation of covariate
information are explanatory item response models (e.g., De Boeck and Wilson
2004). The scaling procedure in PISA may be performed using those models. In
further research, it would be interesting to compare the different approaches to
scaling the PISA cognitive data.



OECD’s Programme for International Student Assessment (PISA) 421

2.3 Student Score Generation

For each student (response pattern) it is possible to specify a posterior dis-
tribution for the latent variable � , which is given by h .�I w; �; �;˙jx/ D
fx.xI �j�/f .�I �; w;˙/=

R

fx.xI �j�/f .�I �; w;˙/. Estimates for � are ran-

dom draws from this posterior distribution, and they are called plausible values (e.g.,
see Mislevy 1991).

Plausible values are drawn in PISA as follows. M vector-valued random
deviates .'mn/mD1;:::;M are sampled from the parametrized multivariate normal
distribution, for each individual n. For PISA, the value M D 2;000 has been
specified (OECD 2012). These vectors are used to approximate the integral
in the equation for the posterior distribution, using Monte-Carlo integration:R

fx.xI �j�/f .�I �; w; ˙/d� 
 1

M

PM
m D 1 fx.xnI �j'mn/ D =. The values

pmn D fx.xnI �j'mn/f .'mnI �; w; ˙/ are calculated, and the set of pairs
.'mn;pmn==/mD1;:::;M can be used as an approximation of the posterior density;
and the probability that 'jn could be drawn from this density is given by qjn D
pjn=

PM
mD1 pmn. L uniformly distributed random numbers .�i /LiD1 are generated;

and for each random draw, the vector, 'i0n, for which the condition
Pi0�1

sD1 qsn <
�i � Pi0

sD1 qsn is satisfied, is selected as a plausible vector.
A computational question that remains unclear at this point concerns the mode

of drawing plausible values. A perfect reproduction of the generated PISA plausible
values is not possible. It also remains unclear which of the plausible values (for a
student, generally five values are generated for each dimension), if the means of
those values, or if even aggregations of individual results (computed one for each
plausible value), were used for “classifying” individuals into the proficiency levels.

The MCMLM is fitted to each national data set, based on the international item
parameters and national conditioning variables. However, the random sub-sample
of students across the participating nations and economies used for estimating
the parameters, is not identifiable (e.g., OECD 2009b, p. 197). Hence, the item
parameters cannot be reproduced with certainty as well.

3 Proficiency Scale Construction and Proficiency Levels

In addition to plausible values, PISA also reports proficiency (scale) levels. The
proficiency scales developed in PISA do not describe what students at a given level
on the PISA “performance scale” actually did in a test situation, rather they describe
what students at a given level on the PISA “proficiency scale” typically know and
can do. Through the scaling procedure discussed in previous section, it is possible
to locate student ability and item difficulty on “performance continua” � and �,
respectively. These continua are discretized in a specific way to yield the proficiency
scales with their discrete levels.
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Fig. 1 Print reading proficiency scale and levels (taken from OECD 2012, p. 266). PISA scales
were linear transformations of the natural logit metrics that result from the PISA scaling procedure.
Transformations were chosen so that mean and standard deviation of the PISA scores were 500 and
100, respectively (OECD 2012, p. 143)

The methodology to construct proficiency scales and to associate students with
their levels was developed and used for PISA 2000, and it was essentially retained
for PISA 2009. In the PISA 2000 cycle, defining the proficiency levels progressed
in two broad phases. In the first phase, a substantive analysis of the PISA items
in relation to the aspects of literacy that underpinned each test domain was carried
out. This analysis produced a detailed summary of the cognitive demands of the
PISA items, and together with information about the items’ difficulty, descriptions
of increasing proficiency. In the second phase, decisions about where to set cut-off
points to construct the levels and how to associate students with each level were
made.

For implementing these principles, a method has been developed that links three
variables (for details, see OECD 2012, Chap. 15): the expected success of a student
at a particular proficiency level on items that are uniformly spread across that level
(proposed is a minimum of 50% for students at the bottom of the level and higher
for other students at that level); the width of a level in the scale (determined largely
by substantive considerations of the cognitive demands of items at that level and
observations of student performance on the items); and the probability that a student
in the middle of the level would correctly answer an item of average difficulty
for this level (referred to as the “RP-value” for the scale, where “RP” indicates
“response probability”).

As an example, for print reading in PISA 2009, seven levels of proficiency were
defined; see Fig. 1.

A description of the sixth proficiency level can be found in Fig. 2.
The PISA study provides a basis for international collaboration in defining

and implementing educational policies. The described proficiency scales and the
distributions of proficiency levels in the different countries play a central role in
the reporting of the PISA results. For example, in all international reports the
percentage of students performing at each of the proficiency levels is presented
(see OECD 2001, 2004, 2007, 2010). Therefore, it is essential to determine the
proficiency scales and levels reliably.



OECD’s Programme for International Student Assessment (PISA) 423

Fig. 2 Summary description of the sixth proficiency level on the print reading proficiency scale
(taken from OECD 2012, p. 267)

Are there alternatives? It is important to note that specification of the proficiency
levels and classification based on the proficiency scale depend on qualitative expert
judgments. Statistical statements about the reliability of the PISA classifications
(e.g., using numerical misclassification rates) are not possible in general, in the sense
of a principled psychometric theory. Such a theory can be based on (order) restricted
latent class models (see Sect. 4).

4 Conclusion

The basic psychometric concepts underlying the PISA surveys are elaborate.
Complex statistical methods are applied to simultaneously scale persons and items
in categorical large scale assessment data based on latent variables.

A number of questions remain unanswered when it comes to trying to replicate
the PISA scaling results. For example, for student score generation international
item parameters are used. These parameters are estimated based on a sub-sample
of the international student sample. Although all international data sets are freely
available (www.oecd.org/pisa/pisaproducts), it is not evident which students were
contained in that sub-sample. It would have been easy to add a filter variable,
or at least, to describe the randomization process more precisely. Regarding
the reproduction of the plausible values it seems appropriate that, at least, the
random number seeds are tabulated. It should also be reported clearly whether
the plausible values themselves are aggregated before, for instance, the PISA scores
are calculated, or whether the PISA scores are computed separately for any plausible
value and aggregated. Indeed, the sequence of averaging may matter (e.g., von
Davier et al. 2009).

An interesting alternative to the “two-step discretization approach” in PISA for
the construction of proficiency scales and levels are psychometric model-based
classification methods such as the cognitive diagnosis models (e.g., DiBello et al.
2007; Rupp et al. 2010; von Davier 2010). The latter are discrete latent variable

www.oecd.org/pisa/pisaproducts


424 A. Ünlü et al.

models (restricted latent class models), so no discretization (e.g., based on subjective
expert judgments) is necessary, and classification based on these diagnostic models
is purely statistical. We expect that such an approach may improve on the error of
classification.

It may be useful to automatize the reporting in PISA. One way to implement that,
is by utilizing Sweave (Leisch 2002). Sweave is a tool that allows to embed R code
for complete data analyses in LATEX documents. The purpose is to create dynamic
reports, which can be updated automatically if data or analysis change. This tool
can facilitate the reporting in PISA. Interestingly, different educational large scale
assessment studies may then be compared, heuristically, data or text mining their
Technical Reports.

References

Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients
multinomial logit model. Applied Psychological Measurement, 21, 1–23.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized
linear and nonlinear approach. New York: Springer.

Dibello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment
and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of
statistics (pp. 979–1030). Amsterdam: Elsevier.

Fischer, G. H., & Molenaar, I. W. (Eds.). (1995). Rasch models: Foundations, recent developments,
and applications. New York: Springer.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis.
In W. Härdle & B. Rönz (Eds.), Compstat 2002—Proceedings in Computational Statistics
(pp. 575–580). Heidelberg: Physica Verlag.

Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex
samples. Psychometrika, 56, 177–196.

OECD (2001). Knowledge and skills for life. First results from the OECD Programme for
International Student Assessment (PISA) 2000. Paris: OECD Publishing.

OECD (2002a). Sample tasks from the PISA 2000 assessment. Paris: OECD Publishing.
OECD (2002b). PISA 2000 Technical Report. Paris: OECD Publishing.
OECD (2004). Learning for tomorrow’s world: First results from PISA 2003. Paris: OECD

Publishing.
OECD (2005). PISA 2003 Technical Report. Paris: OECD Publishing.
OECD (2007). PISA 2006: Science competencies for tomorrow’s world. Paris: OECD Publishing.
OECD (2009a). PISA 2009 assessment framework: Key competencies in reading, mathematics and

science. Paris: OECD Publishing.
OECD (2009b). PISA 2006 Technical Report. Paris: OECD Publishing.
OECD (2010). PISA 2009 results: Overcoming social background—Equity learning opportunities

and outcomes. Paris: OECD Publishing.
OECD (2012). PISA 2009 Technical Report. Paris: OECD Publishing.
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago:

University of Chicago Press.
Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.
Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods,

and applications. New York: The Guilford Press.
van der Linden, W. J., & Hambleton, R. K. (Eds.). (1997). Handbook of modern item response

theory. New York: Springer.



OECD’s Programme for International Student Assessment (PISA) 425

von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and
Assessment Modeling, 52, 8–28.

von Davier, M., Gonzales, E., & Mislevy, R. J. (2009). What are plausible values and why are they
useful? Issues and Methodologies in Large-Scale Assessments, 2, 9–37.

Wu, M. L., Adams, R. J., & Wilson, M. R. (1997). ConQuest R�: Multi-aspect test software
[Computer program manual]. Camberwell: Australian Council for Educational Research.



Music Genre Prediction by Low-Level
and High-Level Characteristics

Igor Vatolkin, Günther Rötter, and Claus Weihs

Abstract For music genre prediction typically low-level audio signal features from
time, spectral or cepstral domains are taken into account. Another way is to use
community-based statistics such as Last.FM tags. Whereas the first feature group
often can not be clearly interpreted by listeners, the second one lacks in erroneous
or not available data for less popular songs. We propose a two-level approach
combining the specific advantages of the both groups: at first we create high-
level descriptors which describe instrumental and harmonic characteristics of music
content, some of them derived from low-level features by supervised classification
or from analysis of extended chroma and chord features. The experiments show that
each categorization task requires its own feature set.

1 Introduction

Music classification plays an important role among other research fields in music
information retrieval (Weihs et al. 2007; Ahrendt 2006). The target is here to
identify high-level music descriptors such as harmony, rhythm or instrumentation
as well as categorize music collections into genres, substyles or personal listener
preferences. For the latter task very often large sets of audio features are previously
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extracted from songs and are then used for building of classification models. Some
recent works confirm the assumption that the classification quality may be improved
by combination of features from the different sources—e.g. audio, cultural and
symbolic characteristics in Mckay and Fujinaga (2008). However the significant
advantage of the audio features still remains that they can be extracted from any
existing song whereas the score is not always available, and the metadata or
community statistics are often erroneous, inconsistent or missing for less popular
music.

An interesting proposal to improve the classification performance based only on
audio features is to extract more high-level audio characteristics as discussed in
Berenzweig et al. (2003). Here the classification approach consists of two steps:
at first a set of music theory-inspired music characteristics (semantic features) is
predicted from low-level audio features by pattern classification. In the second
step the music categories can be identified by high-level, or both high-level and
low-level features. Another possibility is to predict community tags from audio,
which may describe different high-level characteristics of songs, as discussed in
Bertin-Mahieux et al. (2008). Our previous study (Rötter et al. 2011) confirmed also
the relevance of the high-level features for personal music categories defined for a
very limited number of songs.

The integration of such high-level information provides a better understanding of
music categorization models. A description like “high vocal rate, no organ, a lot of
guitar and almost always minor key” provide a listener or a music scientist a more
clear explanation of a song than “high values of angles in phase domain, spectral
centroid below 1,000 Hz and mel frequency coefficient 5 above a certain value”.
Another hope is that model creation from high-level characteristics may require less
amount of significant features.

In our work we classify audio songs into six different genres and eight styles
based on AllMusicGuide taxonomy and compare different large and up-to-date low-
level, high-level and combined feature sets. The next section provides the details of
the integrated feature sets. Section 3 describes the results of the experimental study.
We conclude with the summary and ideas for further developments.

2 Audio Features

A rather difficult or even impossible task is to distinguish clearly between low-
level and high-level features, since the boundaries between the both groups are
sometimes imprecise. There is also no consensus in literature, since many different
opinions exist: some authors relate to feature statistics estimated from other features
(e.g. derivation) already as high-level, other refer to high-level features if they
are estimated from score rather than from audio, supported by music theory, or if
any sophisticated domain-specific algorithm was incorporated in feature estimation.
In our work we consider a feature to be high-level if it is related to music
theory and describes harmony, melody, instrumentation, rhythm, tempo or structural
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characteristics of a piece of music. To name maybe one of the most controversial
example, a chroma vector estimated from wrapped frequency bin amplitudes is
labeled as low-level, whereas the tone with the maximum chromagram amplitude
is labeled as high-level since it relates closer to harmonical characteristics.

All features can be extracted by AMUSE (Vatolkin et al. 2010). The most of the
low-level features are described in Theimer et al. (2008) and the manual of the MIR
Toolbox (Lartillot and Toivainen 2007).

The LOW-LEVEL FEATURE SET consists of timbral, harmonical and temporal
characteristics. The first group relates to 38 features from time, spectral, phase,
cepstral and ERB domains: zero-crossing rate, spectral characteristics (centroid,
skewness, slope, flux etc.), mel frequency cepstral coefficients (MFCCs), centroid
from ERB bands etc. The low-level harmonical descriptors build a further group
of 14 features, e.g. chroma vector, fundamental frequency, bass chroma, amplitudes
and position of spectral peaks. The seven tempo-related features describe periodicity
of peak amplitudes, correlated components and fluctuation patterns.

HIGH-LEVEL TEMPO & RHYTHM SET consists of estimated beat, tatum and
onset numbers per minute, rhythmic clarity, tempo based on onset events and song
duration.

HIGH-LEVEL HARMONIC FEATURES comprise several MIR Toolbox features
such as estimated key and its clarity, tonal centroid and harmonic change detection
function. Another set is based on Sonic Annotator NNLS chroma plugin (Mauch
and Dixon 2010): local tuning, harmonic change and consonance. Further we
implemented several own features based on NNLS chroma chord extractor and
semitone spectrum: number of different chords and chord changes in a music
interval, shares of the most frequent chords with regard to their duration and interval
strengths estimated from the semitone peaks and chroma DCT-reduced log pitch
representation (Müller and Ewert 2010).

INSTRUMENT-RELATED SET is based on our instrument recognition study
(Vatolkin et al. 2012): there we ran a large-scale multi-objective feature selection by
evolutionary algorithms for optimization of instrument classification in polyphonic
audio mixtures. Four binary classification tasks were to identify guitar, piano, wind
and strings. We saved up to 237 classification models classifying these 4 groups.
This high number has two reasons: at first we used four different classifiers for
model estimation (decision tree, random forest, naive bayes and support vector
machine). Further, the goal of our previous survey was to optimize classification
error and feature rate at the same time—small feature sets save disc space as well
as training and classification times and may tend to provide more generalizable
models. All the best models found (the first one with the smallest classification error
and the largest feature number; the last one with the largest classification error and
smallest feature amount) were used for high-level feature estimation. For all short
audio frames around onset events the overall rate of models in a 10 s music interval
was saved which detected an instrument, i.e. a value of 0.9 for piano rate meant, that
90 % of audio frames from a large 10 s window were classified as containing piano.

Another important issue to mention is feature processing. For short-framed
features we apply two possibilities for feature aggregation as illustrated by Fig. 1.
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Fig. 1 Selection of short audio frames based on attack, onset and release events. Attack intervals
are marked by ascending lines below the spectrum; release intervals by descending lines

This approach is based on the attack-onset-release (AOR) interval, where the attack
phase corresponds to the increasing energy of a new note, onset event to the moment
with the largest energy and release phase to the decreasing sound. The first method
saves the features only from the frames between the previously extracted onset
events (so that the noisy and inharmonical components around the beginning of a
new note are disregarded) and estimates mean and deviation of each feature for large
frames of 4 s with 2 s overlap. The second method creates three new different feature
dimensions from each feature: from the frames in the middle of attack intervals,
onset event frames and the middle of release intervals. Mean and deviation are
again estimated for 4 s windows, so that the final number of feature dimensions
is increased by factor 6.

3 Experimental Study

Six genre and eight style classification tasks from the labelled song set described in
(Vatolkin et al. 2011) were used to test the different low-level and high-level feature
sets. Random forest (RF) and support vector machine (SVM) were used for training
of classification models. The feature sets were:

• MFCCs-BetwOns: 92-dimensional vector with MFCCs and delta MFCCs (mean
and deviation saved for 4 s frames, see previous section).

• MFCCs-AOR: 276-dim. vector with the same original features which were used
to build three new groups (attack, onset and release features as described above).

• LL-BetwOns: 808-dim. vector estimated from all original low-level
characteristics.

• LL-AOR: 2424-dim. vector estimated from all original low-level characteristics.
• HLRhythmTempo: 6-dim. vector with rhythm and tempo features (since the

original feature series were calculated for larger time frames or even complete
song no further aggregation method was applied).
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Table 1 The best three feature sets for all classification tasks and random forest models

Task 1st best set 2nd best set 3rd best set

CLASSIC LL-BetwOns LL-AOR Complete-AOR
0.0581 0.0589 0.0600

ELECTRONIC MFCCs-AOR LL-AOR MFCCs-BetwOns
0.1866 0.2128 0.2194

JAZZ HLInstrumentsAll HL-AOR Complete-AOR
0.0877 0.1076 0.1119

POP & ROCK LL-BetwOns MFCCs-BetwOns LL-AOR
0.1957 0.1985 0.2018

RAP MFCCs-BetwOns MFCCs-AOR HLHarmony-AOR
0.0642 0.0691 0.0904

R&B HLInstrumentsBest MFCCs-AOR MFCCs-BetwOns
0.2342 0.2457 0.2715

ADULT CONTEMPORARY HLHarmony-AOR HLHarmony-BetwOns MFCCs-AOR
0.2546 0.2600 0.2988

ALBUM ROCK LL-AOR LL-BetwOns Complete-AOR
0.1876 0.1892 0.1955

ALTERNATIVE POP ROCK LL-BetwOns HLHarmony-BetwOns HLHarmony-AOR
0.1397 0.1408 0.1512

CLUB DANCE HLHarmony-AOR HLHarmony-BetwOns LL-BetwOns
0.3473 0.3474 0.3875

HEAVY METAL HLInstrumentsBest MFCCs-BetwOns MFCCs-AOR
0.1049 0.1141 0.1241

PROG ROCK HLInstrumentsAll HLHarmony-AOR MFCCs-AOR
0.4228 0.4261 0.4361

SOFT ROCK LL-AOR Complete-AOR LL-BetwOns
0.2347 0.2511 0.2572

URBAN HLInstrumentsAll MFCCs-AOR LL-AOR
0.1253 0.1299 0.1310

The numbers below feature set descriptions correspond to classification error on a validation song
set

• HLHarmony-BetwOns: 268-dim. vector with high-level harmony characteristics.
• HLHarmony-AOR: 804-dim. vector with high-level harmony characteristics.
• HLInstrumentsBest: 16-dim. vector with instrument recognition features: four

models with the smallest classification errors from four classifiers.
• HLInstrumentsAll: 237-dim. vector with instrument recognition features: all

models with the best tradeoff solutions resp. to classification error and selected
feature rate from four classifiers.

• HL: 377-dim. vector with all high-level features (only mean values saved for 4 s
frames).

• HL-AOR: 2262-dim. vector with all high-level features (mean and deviation
saved for larger frames after generation of attack, onset and release features).

• Complete-BetwOns: 1562-dim. vector from all original features.
• Complete-AOR: 4686-dim. vector from all original features.
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Table 2 The best three feature sets for all classification tasks and support vector machine models

Task 1st best set 2nd best set 3rd best set

CLASSIC HL-AOR HL Complete-AOR
0.0472 0.0502 0.0509

ELECTRONIC LL-AOR LL-BetwOns Complete-BetwOns
0.1815 0.1836 0.1955

JAZZ HLHarmony-AOR Complete-AOR Complete-BetwOns
0.1042 0.1128 0.1143

POP & ROCK LL-AOR LL-BetwOns MFCCs-AOR
0.1591 0.1901 0.1991

RAP MFCCs-AOR MFCCs-BetwOns LL-AOR
0.0614 0.0746 0.1147

R&B MFCCs-AOR MFCCs-BetwOns HLInstrumentsAll
0.2528 0.2840 0.2933

ADULT CONTEMPORARY Complete-BetwOns LL-BetwOns Complete-AOR
0.2117 0.2134 0.2450

ALBUM ROCK LL-AOR Complete-AOR HLHarmony-BetwOns
0.1754 0.2172 0.2213

ALTERNATIVE POP ROCK LL-BetwOns LL-AOR Complete-AOR
0.1641 0.1656 0.1752

CLUB DANCE LL-BetwOns HLHarmony-BetwOns LL-AOR
0.2671 0.2841 0.2853

HEAVY METAL MFCCs-BetwOns HLInstrumentsBest HL-AOR
0.1356 0.1667 0.1769

PROG ROCK HLRhythmTempo LL-AOR LL-BetwOns
0.3051 0.3213 0.3308

SOFT ROCK LL-AOR HLHarmony-BetwOns Complete-AOR
0.2368 0.2557 0.2569

URBAN MFCCs-BetwOns MFCCs-AOR LL-BetwOns
0.1504 0.1584 0.1764

The numbers below feature set descriptions correspond to classification error on a validation song
set

Tables 1 and 2 list the best feature sets for each category. It can be clearly
observed that for different tasks different feature sets perform best. No clear
statement can be claimed that high-level features are more preferable with respect to
classification error. This holds even for the same category—e.g. R&B identification
with RF works well with high-level instrument features, but the second best MFCCs
feature set is rather close. Feature sets may perform well or completely fail—as
an example the high-level harmony sets are among the best three for Rap, Adult
Contemporary, Alternative Pop Rock, Club Dance and Prog Rock, but they are
among the worst for Heavy Metal (HLHarmony-AOR has classification error of
0.4933 and HLHarmony-BetwOns of 0.4730) or Pop & Rock (errors of 0.3416
resp. 0.3321).
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It can be also observed, that the original features have a tendency to be more
important than a processing method: for 11 of 14 tasks classified by RF as well as for
11 tasks classified by SVM the same original feature set is selected twice among the
best three sets using two different feature aggregation methods (LL-BetwOns and
LL-AOR for RF and Classic, MFCCs-AOR and MFCCs-BetwOns for Electronic
etc.)—even if sets with “AOR”-method consist of three times more final features
than from interonset frames.

Comparing RF and SVM models, SVM seem to perform slightly better on
average (for 8 of 14 categories and the very best feature sets)—however the
differences are sometimes rather small, and the advantage of RF is that it is faster
and may provide more generalizable models as observed in Vatolkin et al. (2012).
The two classifiers require often different feature sets for the same task, only for
three tasks the same feature set is the best for both classifiers.

4 Conclusions and Outlook

Concluding our feature set comparison, we can clearly confirm, that different
features are required for different problems. But also the choice of a classifier and
a feature aggregation method may lead to varying results. At the current stage the
reliable recognition of music categories by interpretable high-level features is still
work in progress. In future, we plan to apply category-adapted feature selection
and refer to this work as a baseline method with pre-defined feature sets. On the
other side, it can be reasonable to decrease the computing time by identification of
relevant segments in songs, so that it would not be necessary to extract and process
features from complete audio recordings.

Another serious drawback of high-level features at least at the current research
state is that many of them perform well only for some limited set of music pieces,
and also are hard to identify in general for polyphonic recordings: tempo recognition
may estimate the tempo as twice the correct value if it is based on autocorrelation,
instrument recognition models may not work well if different playing styles
are performed, and harmonic analysis becomes complicated if the number of
simultaneously playing instruments is too large. However the robustness of high-
level audio features will doubtlessly increase in future, and only these features can
provide the best interpretability for human listeners. Also the combination with
features from other domains (community tags, metada) could be promising for
further improvements of classification performance.
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Using Clustering Across Union Catalogues
to Enrich Entries with Indexing Information

Magnus Pfeffer

Abstract The federal system in Germany has created a segmented library
landscape. Instead of a central entity responsible for cataloguing and indexing,
regional library unions share the workload cooperatively among their members. One
result of this approach is limited sharing of cataloguing and indexing information
across union catalogues as well as heterogeneous indexing of items with almost
equivalent content: different editions of the same work. In this paper, a method for
clustering entries in library catalogues is proposed that can be used to reduce this
heterogeneity as well as share indexing information across catalogue boundaries.
In two experiments, the method is applied to several union catalogues and the
results show that a surprisingly large number of previously not indexed entries
can be enriched with indexing information. The quality of the indexing has been
positively evaluated by human professionals and the results have already been
imported into the production catalogues of two library unions.

1 Introduction

Unlike the US, where the Library of Congress acts as a central authority for
cataloguing and indexing of all kinds of materials, the German library system
is based on a cooperative approach. The national library is only responsible for
German works or works on Germany, while regional library unions share the
workload of cataloguing all other materials. At the present time there are five such
unions, each with its own catalogue. While sharing records is possible in theory as
all unions use the same cataloguing rules and central authority files, it is in practice
often limited (Lux 2003).
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Table 1 Koecher, M.: Lineare Algebra und analytische Geometrie (BVB catalogue)

Year Subject headings (SWD) Classification (RVK)

2003 Analytische Geometrie; Lehrbuch; Lineare Algebra QH 140; SK 220; SK 380
1997 Analytische Geometrie; Lehrbuch; Lineare Algebra QH 140; SK 220; SK 380
1992 Analytische Geometrie; Lehrbuch; Lineare Algebra SK 220
1992 Analytische Geometrie; Lineare Algebra SK 220
1985 – –
1985 – –
1985 Analytische Geometrie; Lehrbuch; Lineare Algebra SK 110; SK 220
1983 – –
1983 Analytische Geometrie; Lehrbuch; Lineare Algebra SK 110; SK 220
1983 – –
1981 Analytische Geometrie; Lehrbuch; Lineare Algebra SK 220

Table 2 Koecher, M.: Lineare Algebra und analytische Geometrie (SWB catalogue)

Year Subject headings (SWD) Classification (RVK)

2003 – SK 220
1997 Analytische Geometrie; Lehrbuch; Lineare Algebra QH 140; SK 220
1992 Analytische Geometrie; Lineare Algebra SK 220
1985 Analytische Geometrie; Einfhrung; SK 220; SK 380

Lehrbuch; Lineare Algebra
1983 Analytische Geometrie; Lineare Algebra SK 110; SK 220

The needless redundant handling of the same items combined with slight
variations in the application of the cataloguing rules result in databases that are
hard to aggregate on the national level as the detection of duplicates will often fail.
Within a single union catalogue, another consequence of the cooperative approach
is visible: heterogeneous indexing of titles with almost equivalent content, as in
different editions of the same work.

The following example illustrates this particular problem: The work Lineare
Algebra und analytische Geometrie by Max Koecher has been republished in new
editions over several decades. Tables 1 and 2 show the editions in two union
catalogues. Both have entries without subject headings or classification numbers
and there are variations in the terms and classes. Indexing information for identical
editions across the two catalogues also varies.

In this paper, we will show that a simple clustering method that is applied
to a combined data set of several union catalogues can be utilized to reduce
this heterogeneity and also enrich a significant amount of previously not indexed
entries with subject headings or classification information. The paper is structured
as follows: After a short discussion of the related work by other authors, the
prevalent subject headings and classification system currently used in German
libraries are introduced. Next, a matching algorithm is proposed that can be used
to reliably cluster different editions of the same work. Both the encouraging
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numerical results of the application of the proposed algorithm to several union
catalogues as well as the results of an evaluation by indexing professionals will be
presented next. The paper closes with an outlook on possible other applications for
similar clustering approaches as well as a discussion of the further work needed to
apply this kind of data homogenisation to a large number of catalogues on a regular
basis.

2 Related Work

In previous experiments, the author has tried to apply case-based reasoning methods
to automatically index entries in library catalogues that had not been indexed by a
human specialist. Pfeffer (2010) gives an overview of the method and the results.
While the first results were intriguing, later evaluation by human professionals
showed significant flaws in the generated indexing information and motivated the
experiments described in this paper.

In general, matching entries in catalogues or bibliographic databases has mostly
been done to find duplicates, i.e. different entries that describe the identical
resource. Sitas and Kapidakis (2008) give an exhaustive overview of the used
algorithms and their properties. Even though the algorithms are geared towards
not matching different editions of the same work they are still useful to gain
insight into what metadate elements can differ between very similar editions. But
there are also projects concerned with matching editions: Hickey et al. (2002)
propose an algorithm to automatically create abstract “work” entities from different
manifestations in a catalogue according to the FRBR entity-relationship model.
Their algorithm is very similar to one used this paper, but based on the data fields
and cataloguing rules in the US. Accordingly there is an optional step included that
allows to look up the authors and editors in the Library of Congress authority file
and use the established form of the name to improve the matching results. Taniguchi
(2009) is working on the same problem and uses a similar approach and likewise
adapts it to the peculiarities of the Japanese MARC variant and the local cataloguing
rules. In both cases, only the data fields for author’s and editor’s names, main title
of the work and uniform title of the work are used in the matching process. Both
report success in grouping the expressions into homogenised clusters, but show no
further applications for the resulting clusters.

Some next generation opacs or resource discovery systems allow the grouping
of different editions of the same when presenting search result lists. Dickey (2008)
describes the process and its foundation in the FRBR model. The paper lists several
implementations in commercial products, but apparently the matching algorithms
used are proprietary.
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3 Preliminaries

The most commonly used indexing system in Germany is a controlled vocabulary,
the Schlagwortnormdatei (SWD) 1 and its accompanying set of rules, the Regeln
für den Schlagwortkatalog (RSWK).2 It contains more than 600.000 concepts and
records preferred terms, alternative terms as well as broader and narrower terms.
SWD and RSWK are in use since the late 1980s and have been adopted by almost
all scientific libraries in Germany and Austria and some libraries in the German-
speaking part of Switzerland. In most catalogues, search by subject is based solely
on this vocabulary, so a higher proportion of indexed entries would improve retrieval
results in subject based queries.

There is more variation in the classification systems used in Germany to create
call numbers for printed books and other media. Many libraries still use a self-
developed one that is tailored to their local situation. On the other hand, the
Dewey Decimal Classification (DDC) (See Dewey (2005)) and the Regensburger
Verbundklassifikation (RVK) 3 are systems used by many libraries. The first has
been used by the German National Library for items published since 2007 and this
decision by the national library has rekindled interest in DDC. The latter has grown
from a local classification system developed in 1964 to become the classification
system used by almost all university libraries in the state of Bavaria in the 1990s.
It is currently being adopted by a growing number of libraries in the German-
speaking countries to replace the aforementioned locally developed classification
systems. Replacement usually includes reclassification and new call numbers for
all items located in publicly accessible stacks of the adopting library. A higher
proportion of entries with RVK classes in the union catalogue would alleviate this
task considerably.

4 Matching Algorithm

The basic idea is to find all other editions of a given work to aggregate their
indexing and classification information and attach it to those editions that lack
subject headings or classification. With this goal in mind it should be noted that
any proposed algorithm should at all cost avoid false positive matches: overly

1Subject Headings Authority File. In a recent development, the SWD is combined with authority
files for persons and corporate bodies to form the Gemeinsame Normdatei (GND) (engl.: Universal
Authority File). This file will be suitable to be used with the proposed RDA cataloguing rules. The
catalogue data used for the experiments described in this paper still used the SWD, but the results
can be applied to catalogues using the GND.
2Rules the for subject catalogue. See Scheven et al. (2012) for a complete reference.
3Regensburg Union Classification System. See Lorenz (2008) for an introduction.
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eager matching would lead to clusters containing different works and thus in our
application to misleading aggregated indexing information. Hickey et al. (2002)
showed several examples for this case when a non-exact matching variant was used
and caution against using loose matching. False negatives, on the other hand, would
only reduce the potential benefits of the basic idea: in the worst case, editions of a
given work form several clusters and no indexing information can be shared.

The proposed algorithm utilizes only the data fields for title and subtitle and all
persons or corporate bodies involved with creating the work. All other information,
like publisher, date and place of publication, format or standard numbers vary over
different editions and cannot be used. As explained before, title and subtitle must
match exactly. But for the creators and contributors, it is only required that one
of them matches exactly when two entries are compared. This allows matching of
editions that have been reworked by a new editor or author but still mention the
original ones. Unlike the algorithm described in Hickey et al. (2002) an optional
look-up in an authority file is not needed, as the German rules for cataloguing
require that all creators and contributors to a work are cross-referenced with a central
authority file when the item is catalogued. These rules also help in another case:
when a work has been translated from another language, the rules require that the
title of the original work is recorded as the uniform title. This field can accordingly
be used to match editions across different languages.

The consolidated algorithm contains two phases:

• Phase 1: Key generation

– For each entry of the catalogues, the following data fields are prepared:

� If a uniform title exists, it is used, else title and subtitle are concatenated.
� Authors, contributors and corporate bodies involved as creator or contribu-

tor are identified and their authorized name is retrieved.

– Comparison keys are created from all combinations of the normalized form of
the used title and one of the creators/contributors.

• Phase 2: Matching

– All keys are compared and entries with matching keys are grouped in a cluster.

From a catalogue entry for the book by Scheven et al. (2012), the resulting keys
are:

• scheven esther|regeln fuer den schlagwortkatalog rswk
• kunz martin|regeln fuer den schlagwortkatalog rswk
• bellgard sigrid|regeln fuer den schlagwortkatalog rswk
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Table 3 Results from first experiment

Union No. of monographs With RVK With SWD Added RVK Added SWD

SWB 12,777,191 3,235,958 3,979,796 959,419 636,462
HeBIS 8,844,188 1,933,081 2,237,659 992,046 1,179,133

5 Experiments

In a first experiment in 2010, the complete data from two library union cata-
logues was retrieved and filtered for monographs. The catalogues were from the
Sdwestdeutscher Bibliotheksverbund (SWB) 4 and the Hessisches Bibliotheks- und
Informationssystem (HeBIS).5

Prior to the experiment, the proportion of indexed entries is 25–30 %. After
applying the algorithm described in Sect. 4, indexing information is shared among
the members of the individual clusters. Entries that had no indexing information
before and get indexed by this transfer are counted. The results are shown in Table 3.
There is a surprisingly large number of newly indexed entries and the proportion of
indexed entries is increased by up to 50 %.

5.1 Evaluation

The results were offered as CSV files for download and imported as RDF triples
into a prototype linked open data server, which allowed for browsing the entries and
viewing the generated clusters on the web. Eckert (2010) has additional information
on this service and the benefits of a presentation of experimental results as linked
data.

The SWB also added a large part of the new subject headings and classifica-
tion results into a test database to allow librarians to use them in retrieval and
cataloguing. Several experts in subject indexing used both resources to evaluate
the quality of the experimental results. Both random checks as well as systematic
queries were performed and not a single false positive match was identified. The
experts recommended importing the results to the production catalogues, which was
completed by both SWB and HeBIS library unions in late 2011.

5.2 Extended Experiment

In a second experimental run in 2012, the algorithm was applied to a larger set of
union catalogue databases. In addition to SWB and HeBIS, catalogues from the

4Library Union of South-West Germany. Catalogue: http://swb.bsz-bw.de/.
5Hessian Library Information System. Catalogue: http://www.portal.hebis.de/.

http://swb.bsz-bw.de/
http://www.portal.hebis.de/
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Table 4 Results from the extended experiment

Union No. of monographs With RVK With SWD Added RVK Added SWD

SWB 13,330,743 4,217,226 4,083,113 581,780 957,275
Hebis 8,844,188 1,933,081 2,237,659 1,097,992 1,308,581
HBZ 13,271,840 1,018,298 3,322,100 2,272,558 1,080,162
BVB 22.685.738 5.750.295 6.055.164 2,969,381 2,765,967

Hochschulbibliothekszentrum NRW (HBZ) 6 and the Bibliotheksverbund Bayern
(BVB) 7 were used. There was no data available from the fifth German library union,
the Gemeinsamer Biblitheksverbund.8 The SWB catalogue data set was new and
already contained most of the results from the first run, while the HeBIS catalogue
data was the same as in the first run.

Table 4 shows the final result for this run. Again, a huge increase can be
seen. From the HeBIS data it can be seen that adding more catalogues to the
data pool results in diminishing, but still significant returns. The HBZ can benefit
extraordinarily from the experiment, as its member libraries have been more
reluctant to switch to RVK than those of other unions and accordingly a smaller
proportion of the entries in the catalogue have RVK information. The data will
be made available to the unions in the coming months. Both HBZ and BVB have
already expressed their intent to integrate the results into their production systems
as soon as possible.

6 Conclusion and Outlook

In this paper, a simple matching algorithm for entries in catalogues or bibliographic
databases is proposed that is based solely on comparison of uniform title, title,
subtitle and authorized name of creators and contributors. It is used to cluster
entries from several library union catalogues. In the resulting clusters, indexing and
classification information is shared among all members in order to enrich previously
not indexed entries. The resulting numbers from two experimental runs show that
the proportion of indexed entries can be increased significantly. Independent experts
have validated the results and the quality of the indexing information. The results
have already been imported into production catalogue databases of two library
unions.

6University Library Center of North-Rhine Westphalia. Catalogue: http://okeanos-www.hbz-nrw.
de/F/.
7Bavarian Library Union. Catalogue: http://www.gateway-bayern.de/.
8Common Library Network. Catalogue: http://gso.gbv.de/.

http://okeanos-www.hbz-nrw.de/F/
http://okeanos-www.hbz-nrw.de/F/
http://www.gateway-bayern.de/
http://gso.gbv.de/
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Further work is needed in fine-tuning the matching algorithm to also include
editions that have slight alterations in the title. Publisher and other information
could be used in this case to prevent false positive matches. Also, there is no
reason to limit the approach to German library union catalogues. Swiss and Austrian
libraries have already expressed interest in using it and as an increasing number of
library catalogues is becoming available under open licences, the data pool could
be enlarged even further. As indicated in the related work section, the problem of
different rules for authorized names and used authority files needs to be addressed,
if international catalogues should be included. Furthermore, the approach can
easily be extended to other indexing and classification systems, like the Library
of Congress Subject Headings and the Dewey Decimal Classification.

But with an ever growing database and more applications, one must also consider
the software side of the matching algorithm. For the experiments, a set of Perl
scripts was written to transform catalogue records into an internal representation
and do the two-phase matching on this internal representation. This kind of software
works in an academic context, but is neither maintainable nor scalable to process
very large data sets. Luckily, there are several projects working on adopting “Big
Data” methods and development frameworks to metadata management. One of
these projects is culturegraph,9 which is the basis for a prototype linked open data
service of the German National Library. It is written in Java and utilizes Hadoop,
a framework for scalable, distributed applications. It is open source and comes with
comprehensive documentation. Integrating the matching algorithm and possible
variants into this project would enable interested parties to apply them to their own
data and build on top of a common infrastructure. It is the next logical step to further
develop this approach.
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Text Mining for Ontology Construction

Silke Rehme and Michael Schwantner

Abstract In the research project NanOn: Semi-Automatic Ontology Construction—
a Contribution to Knowledge Sharing in Nanotechnology an ontology for chemical
nanotechnology has been constructed. Parts of existing ontologies like CMO and
ChEBI have been incorporated into the final ontology. The main focus of the project
was to investigate the applicability of text mining methods for ontology construction
and for automatic annotation of scientific texts. For this purpose, prototypical tools
were developed, based on open source tools like GATE and OpenNLP. It could
be shown that text mining methods which extract significant terms from relevant
articles support conceptualisation done manually and ensure a better coverage of
the domain. The quality of the annotation depends mostly on the completeness of
the ontology with respect to synonymous and specific linguistic expressions.

1 Introduction

The main objective of the NanOn project was to explore text mining methods for
the semi-automatic construction of an expressive ontology for an important field
of science. Another aim was to explore the benefits of an ontology for scientists.
Nanotechnology is well suited for both purposes because it is interdisciplinary and
heterogeneous and the relevant knowledge is expressed in various terminologies. To
construct the ontology, experts for ontology design worked together with experts
from the nanotechnology domain. To cooperate, these two groups had to find a
common understanding of the possibilities and limitations of an ontology.
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2 Approach

As a guideline for the ontology construction the NeOn methodology (Suárez-
Figueroa et al. 2012) was applied, which included specification, conceptualisation,
re-using existing knowledge sources and the final implementation. For the con-
ceptualisation, existing text mining methods were modified and new ones were
developed. Overall, this was an iterative process where the individual steps were
partly conducted in parallel.

2.1 Specification

As a result of the requirements analysis done mainly by the nanotechnology
experts the purpose of the ontology was to provide a widely accepted knowledge
representation of nanotechnology. Initially, the whole area of nanotechnology was
envisaged, but it soon became clear that this domain is so complex and extensive,
that more experts would have been necessary than available for this project. As a
consequence, the scope was limited to chemical nanotechnology, a scientific subject
area of highly interdisciplinary character as well. It was further decided that the
ontology should be designed for users from science and industry, helping them
to improve their search for materials, properties, or processes. These users were
represented also in the project by the participating experts. Finally, OWL 2 DL was
selected as the descriptive language for authoring the ontology.

The specification included also a glossary of the most relevant terms of the
defined subject area, which served as a first basis for the conceptualisation. Another
basis was the compilation of 45 competency questions, exemplary questions from
all areas to be covered selected by the domain experts, which the ontology should be
capable of answering. These questions were also used to evaluate the completeness
of the ontology at the end of the project. Examples are “Which metals show
surface plasmon resonance?” or “Which process is used for achieving property P
in material M?”.

2.2 Conceptualisation

As a preparatory step, the description of the domain was sub-divided into four
modules which at the same time were intended as modules for the ontology:

• Materials: relevant inorganic materials in nanotechnology,
• Properties: physical and chemical properties and process properties,
• Processes: chemical processes like analytical and production processes,
• Equipment: e.g. equipment used for the implementation of processes.
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This modularisation ensured high flexibility for further development and future
updates of the ontology and also for the incorporation of available sources. After
modularisation, the process of conceptualisation consisted of the following four
steps:

1. Selection and integration of existing ontologies and thesauruses,
2. Identification of relevant terms by domain experts,
3. Manual annotation,
4. Text mining.

For the first step, structured knowledge in the form of existing ontologies or
thesauruses of related knowledge fields were identified, as well as full texts of
scientific publications and patents, from which knowledge can be extracted and
used for the ontology. Mainly three ontologies were found, parts of each were
incorporated into the NanOn ontology. The Chemical Methods Ontology (CMO)
is an ontology comprising analytical processes and production processes used in
chemistry and materials science. The Chemical Entities of Biological Interest
Ontology (ChEBI) was also partly integrated because it contains chemical elements
and substances and provides the background knowledge of chemistry for chemical
nanotechnology. Finally, sections of the ChemAxiomMetrology, which comprises
methods of measurement and measuring instruments, were adopted.

As a second step relevant terms known from the day-to-day work of the
nanotechnology experts were identified. In a third step, the ontology was checked
for completeness: documents were automatically annotated with concept expres-
sions already in the ontology. These annotations were examined by the experts
for completeness, and relevant terms not assigned automatically were manually
annotated and incorporated into the ontology as classes or as synonyms of existing
classes. Steps 2 and 3 were iterated several times in order to ensure that the ontology
would be as comprehensive as possible. During this process it became clear that not
all expectations of the experts could be implemented. The chemical and physical
properties of nanomaterials are often highly interdependent—cf. the dependency of
the boiling point from the material’s purity and the ambient pressure. Thus they
neither can be modelled satisfactorily in OWL 2 DL nor is it possible to populate
the ontology automatically with their respective instances.

3 Text Mining

Text mining methods played a crucial role in various stages of the ontology
building process. Initially, text mining was used to assist the ontology designers in
finding concepts. With the necessary concepts determined, synonymous and quasi-
synonymous expressions for the concepts and the semantic relations between them
had to be found. And finally, text mining was used to populate the ontology with
instances.
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3.1 Identification of Concept Candidates

The results of the manual annotations proved that the modelling by the experts
leaved significant gaps. So the idea was to identify automatically, on the basis of a
corpus of scientific articles, relevant terms which can give indications for ontology
concepts. The text corpus used was composed of 16,676 full-texts of scientific
articles, 26,892 scientific abstracts, and 4,142 patents, comprising together about
107 million word tokens. The extraction of significant terms was a multi-stage
process which involved tools of the OpenNLP library. After applying the sentence
detector and the tokeniser, the tokens were tagged with the part-of-speech (PoS)
Tagger. On this basis the NP Chunker was used, generating a list of noun phrases
(NP) corresponding to patterns like

NP = (DET) (ADJP) Noun+ with ADJP --> (ADV) ADJ+ (ADJP)
where DET = Determiner, ADV = Adverb, and ADJ = Adjective.

The resulting noun phrases were skimmed, deleting leading or trailing words
specified in a stop word list. Then the phrases were normalised morphologically
to their singular form. After deleting duplicates, terms with a very low frequency
were discarded, as most of them tend to be misspelled words. To eliminate terms of
general language which are supposedly not specific for nanotechnology, the British
National Corpus (BNC) was used as a contrast corpus. Terms with a frequency
above a cut-off value of 2,000 in the BNC were discarded. The remaining phrases
were weighted, using the tf/idf measure. The weight for terms found in the titles
or abstracts of the documents was multiplied by 2. The cut-off values were chosen
heuristically with the aim to limit the list of terms to a manageable number.

By this procedure, a list of 6,653 terms was extracted from the above mentioned
text corpus. This list was reviewed by the domain experts who classified each term
into one of the three categories “highly relevant as ontology concept”, “relevant as
concept”, and “not relevant at all”. 1,789 terms were judged as highly relevant, 2,628
as relevant, and 2,236 terms as not relevant at all. Compared to the 6,653 terms of
the initial list, this results in a precision of 66,4 %. 3,923 of the relevant or highly
relevant terms had not been contained in the ontology before and were incorporated
as new concepts.

3.2 Finding Synonymous Expressions

To populate the ontology with instances, documents had to be annotated with
concepts and relations between them. To do so, it is important to include into the
ontology as many synonymous or quasi-synonymous expressions for the concepts
and relations as possible. Three algorithmic approaches were employed:

• Identifying acronyms and their definitions. The corpus was parsed for token
sequences like, e.g., flux transfer event (FTE) or gradient refractive index
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(GRIN). If the acronym was present in the ontology, the definition was incor-
porated and vice versa.

• Using OpenNLP text stemmers, spelling variants for concept labels were identi-
fied, i.e. singular and plural forms and other derived forms. Spelling variants like
English and American diction were included as well.

• Hearst Patterns (Hearst 1992) were used to identify noun phrases connected
by narrower and broader terms. These patterns are sequences of PoS-tags and
functional words like NPb such as NPn or NPn and other NPb, where NPb
would be a broader term to NPn, like in “their molecular properties such as
molecular mass could also” the phrase “molecular properties” is a broader
term to “molecular mass”. Relevant (NPb, NPn) pairs were checked against the
ontology and added where appropriate.

Essential for an ontology are semantic relations between the concepts beyond those
which are found in thesauri. These relations were determined by domain experts.
As corpus exploration tools, AntConc and Sketch Engine were applied to help the
experts to amend these relations with synonymous expressions. AntConc (Anthony
2008) is capable of finding concordances and offers among others flexible statistical
text analyses. Sketch Engine (Kilgarriff et al. 2004) provides information about the
grammatical and collocational behaviour of words in a text corpus.

3.3 Automatic Annotation

For optimum use of the ontology, preferably all concepts of the ontology should
be connected with as many instances as possible, where an instance would be a
concrete reference of the concept in a document. This requirement would involve a
very high effort for domain experts, so that the identification of the instances should
preferably be done automatically. For this task, a plugin for GATE (Cunningham
et al. 2011) was developed, which enables automatic annotation of documents
based on a user-defined set of linguistic patterns (Nikitina 2012). For concepts,
string matching algorithms are used. Whenever a label, synonym, acronym, or other
expression for a concept recorded in the ontology was found in the documents,
the location was accepted as an instance for the concept. In a next step, relations
were identified on the basis of linguistic patterns and a distance dimension. Such
a linguistic pattern would be, e.g., <material> “acting as” <chemicalRole>,
where <material> and <chemicalRole> would be expressions for the concepts
material or chemical role or respective sub-classes. If all parts of the pattern were
found within a given distance, the relation hasChemicalRole was identified in this
location.
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Table 1 Contribution of the ontology construction steps

Modules Adopted concepts Modelling by experts Text mining Total

Properties 114 597 1,801 2,512
Processes 1,676 220 954 2,850
Materials 29 605 538 1,172
Equipment 84 140 174 398
Suppl. concepts 0 0 456 456
Total 1,903 (26 %) 1,562 (21 %) 3,923 (53 %) 7,388

Table 2 Examples for semantic relations and their linguistic expressions

Relation Description Linguistic expressions

isMeasuredByMethod Connects a measuring method
with a property

Detected using, evaluated
by, quantified by

hasAnalyticalProcess Connects an analytical process
with a material

Analysed by, characterised
using

hasChemicalRole Connects a chemical role with
a material

Acting as, serves as

4 The NanOn Ontology

After re-using existing ontologies, modelling by domain experts and, finally,
discovering concepts with the help of text mining, the ontology comprised 7,388
concepts. For the interpretation of the numbers given in Table 1 the sequence
of the processing is important: initially, 1,903 concepts were adopted from other
ontologies; in hindsight these amounted to 26 % of all classes. The domain experts
added 1,562 concepts, and text mining as the last step produced 3,923 more concepts
which had not been in the ontology before. This again shows the importance of the
text mining pass. Moreover, text mining revealed the necessity of supplementary
concepts, which include mainly concepts for theories and models relevant for
nanotechnology.

Each of the 7,388 concepts was labelled with a natural language term. To enhance
automatic annotation, 11,149 additional natural language expressions were added,
which included 9,405 synonyms (3,783 by text mining and 5,622 adopted from other
ontologies), 196 automatically collected acronyms, 342 simple chemical formulas
(like TiO, BaMgF4), and 1,206 other linguistic expressions like verbal phrases.

As to the semantic relations, the experts identified 47 relations, of which 28 were
designed for automatic annotation. To enable this, a total of 140 linguistic expres-
sions for these relations were determined (Table 2 gives some examples). The other
19 relations are partly superordinate relations, like hasProcess is superordinate to
hasAnalyticalProcess. Partly they are relations between concepts only, which are
not intended for describing relations between instances, e.g., hasReciprocalValue
ties concepts describing a physical property with their reciprocal property.
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5 Evaluation

Within the project, first analyses of the ontology’s quality and the automatic
annotation of concepts and relations were carried out. Because of the high manual
effort required for these investigations, comprehensiveness for the latter was not
possible within the limits of the project. Still, they are useful to reveal basic
tendencies.

For the evaluation of the final ontology its completeness is a vital criterion. Here,
the 45 competency questions, defined at project start, came into play. The domain
experts verified that each question could be answered on the basis of the ontology,
so the ontology was judged to cover the application domain completely.

As to the precision of the concept annotation, 29 scientific articles were
automatically annotated, resulting in 26,040 concept instances. The review by the
experts revealed 294 wrong annotations, meaning a precision of 99 %.

This high precision could not be expected for relation annotation as sophisticated
linguistic knowledge is necessary to detect relations between concepts in a text.
400 scientific articles were automatically annotated with an outcome of 50,463
annotations for relation instances. Of these, a sample with 16,095 annotations
was inspected by the experts. 8,112 were correct annotations, so the precision is
50.4 %. However, the precision varies quite strongly among the several relations,
from e.g. 92 % for isMetaPropertyOf, 54 % for isProcessPropertyOf to 26 % for
isAnalyticalProcessOf and 0 % for hasStartingMaterial. The reason for these huge
differences is that some relations connect very specific concepts or are expressed by
very specific linguistic phrases. The identification of corresponding text passages
succeeds well. Other relations cannot be separated easily from each other, because
they either connect the same concept classes or they are phrased with the same
words.

The added value, an ontology can contribute to information retrieval could be
shown by the experts too. For example, the question “Which are the applications
for apolar materials?” is hardly solved with standard retrieval. First, all apolar
materials have to be found, then all passages, where an application of such a material
is described. With the NanOn ontology this can be answered with a formal query
like

<material> hasMaterialProperty ‘‘apolar’’ AND
<material> hasApplication <application>

The first part of the query identifies all instances of the material property apolar
with relations to a material. The second part then looks for all instances of any such
material, which are related to an application. The applications found are the result
of the query. It should be emphasised, that the information found for the first and the
second part of the query do not need to originate from the same document. Hence,
the ontology can improve both recall and precision of information retrieval.
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6 Conclusion

During this project it could be shown that the use of an ontology with its classes and
relations turns out to be useful for information retrieval. It was demonstrated that
some of the competency questions which had been defined could not be searched
with traditional methods with an adequate result. Here, the NanOn ontology really
adds value as it can give answers to such questions.

On the other hand, it was also shown that the construction of an ontology
which fulfils all requirements in a specific scientific area, requires a lot of effort
by domain experts. The text mining methods definitely support the construction
of the ontology, but in all cases the extracted terms have to be evaluated by the
experts. The automatic annotation relies significantly on the comprehensiveness
of the ontology concerning synonyms. Automatic annotation of relations is more
challenging, especially as the achieved results in our project were completely
heterogeneous in terms of quality, so there is place for improvement. A further
problem which was not dealt with in the project but became very clear in our
cooperation with scientists was that the queries which make use of the ontology
have to be defined in a formal language like SPARQL. This is too complicated for
the average user, so it will be necessary to work on a sophisticated user interface if
an ontology is to be used in scientific databases.

Overall, the domain experts were convinced by the possibilities of the ontology.
It is planned to expand the ontology and to apply it in future projects for research
data management.
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Data Enrichment in Discovery Systems Using
Linked Data

Dominique Ritze and Kai Eckert

Abstract The Linked Data Web is an abundant source for information that can be
used to enrich information retrieval results. This can be helpful in many different
scenarios, for example to enable extensive multilingual semantic search or to
provide additional information to the users. In general, there are two different ways
to enrich data: client-side and server-side. With client-side data enrichment, for
instance by means of JavaScript in the browser, users can get additional information
related to the results they are provided with. This additional information is not stored
within the retrieval system and thus not available to improve the actual search.
An example is the provision of links to external sources like Wikipedia, merely
for convenience. By contrast, an enrichment on the server-side can be exploited to
improve the retrieval directly, at the cost of data duplication and additional efforts
to keep the data up-to-date. In this paper, we describe the basic concepts of data
enrichment in discovery systems and compare advantages and disadvantages of both
variants. Additionally, we introduce a JavaScript Plugin API that abstracts from the
underlying system and facilitates platform independent client-side enrichments.

1 Introduction

Today, library catalog systems are commonly replaced by resource discovery
systems (RDS). They use search engine technology to provide access to all kinds
of resources; not only printed books, but also e-books, articles and online resources.
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Ideally, they are a one-stop shop for library patrons. To enhance the user experience
and the retrieval quality in this large amount of data, the data can be enriched
by additional, contextual information. Therefore, the Linked Data Web with huge
amounts of mostly freely available data, e.g. DBpedia, GeoNames, FOAF, is a
promising source due to its standardized structure and the available links between
the resources. The enrichment can be driven by two strategies: first, additional
information can be displayed to the user. Typical examples are Wikipedia articles
or links to other relevant sources. Second, the search itself can be improved by
including external data into the discovery system, e.g. further descriptions, subject
headings or classifications that can be used to receive the most relevant resources.

In this paper, we start with a brief introduction of the two enrichment strategies,
namely client-side and server-side enrichment. We discuss their advantages and
disadvantages as well as appropriate use cases. For client-side enrichment, we
describe a JavaScript Plugin-API for Primo,1 an RDS provided by Ex Libris.
The concept of this API is easily transferable to other RDSs. We demonstrate the
application of the API by means of several plugins.

2 Data Enrichment in Discovery Systems

In the previous years, several ideas came up to improve library catalogs by
enriching the data. Mostly, the goal is to increase the search efficiency or provide
the user some additional value. By taking additional sources like Wikipedia
into account, a semantic and multilingual search can be provided, e.g. SLUB
Semantics (Bonte 2011). Other examples are recommender services, like by Geyer-
Schulz et al. (Geyer-Schulz 2003) or BibTip (Mönnich 2008), where the user gets
recommendations based on statistics what others used. Additionally, the enrichment
with photos or news articles has already been performed, see Rumpf (2012) for an
overview. Mostly techniques like CGI oder Ajax are used to display such additional
information.

There are several ways to perform a data enrichment. Nowadays, most RDS,
like Primo, base on a 3-tier architecture as illustrated in Fig. 1. It consists of the
client, the business logic, and the database tier. The client is responsible for the
communication with the user, i.e., the content presentation and the user input.
The client in web-based systems consist of the browser with possible JavaScript
logic and the presentation layer on the server that generates the HTML views.
In contrast, the database tier provides access to the data. Between these two
tiers, the business logic is located, i.e., the implementation of application-specific
functionalities like performing a search, ordering a book, or accessing a resource.
We refer to all enrichments in the client tier as client-side enrichments, and
enrichments in the database tier as server-side enrichments.

1http://www.exlibrisgroup.com/category/PrimoOverview/.

http://www.exlibrisgroup.com/category/PrimoOverview/
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Fig. 1 Three-tier architecture of a system, including client, business logic and database tier

Client-Side Enrichment

Client-side enrichment typically takes place when some kind of additional informa-
tion about a resource is presented to the user, be it in the list of search results or
on a details page. External sources are queried for these further information. They
are loaded on the fly and directly presented to the user without loading it into the
database. Thus, there is no need for an adaption of the database or a transformation
of the data to fit into the existing scheme.

A way to perform this enrichment, is the use of JavaScript, i.e., to actually
enhance the response page in the browser. This is minimal invasive and works with
every RDS, as almost no changes have to be made on the server-side.

This way, the network load is not only distributed to the single clients, but the
additional data is also always up-to-date as it is requested on the fly. However, it
has the drawback that this data cannot be indexed and is not searchable. Another
drawback is the reliance on the availability of the data providers.

The typical use case for a client-side enrichment is the provision of additional
information that is not needed for searching, but convenient for the user, e.g. links
to Wikipedia articles or maps to geographical locations. They might be interesting
and helpful, since the users get better informed about a resource and do not have
to find these information manually. In turn, such data is mostly not useful for the
document search because the huge amount of further information can result in the
retrieval of non-relevant resources.

Server-Side Enrichment

On the other hand, there is a lot of data, e.g. additional descriptions or associated
keywords, that actually can be used to enhance the retrieval itself. Therefore, it
has to be loaded into the database and be part of the index. Since the data is mostly
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available in another format, changes in the database structure, e.g. adding new fields,
and/or system-specific data transformation and integration steps are required.

With server-side enrichment, precision and recall can be improved by taking the
additional information into account. Once the external data is loaded, the whole
system is independent of the initial provider. The drawback is that all necessary
data has to be duplicated locally and that a suitable update mechanism has to be
devised. The data license can also be an issue, as a replication and transformation
of the data is needed.

The typical use case for a server-side enrichment is the improvement of the
actual retrieval, e.g., by adding further subject headings from library consortia like
the South West German Library Consortium (SWB) or abstracts, e.g. provided by
databases like Mathematical Reviews. Thus, the user receives the most relevant
resources even if he or she does not use a proper search term. A comparable
enrichment on the client-side would make this additional information visible, but
for example the search results cannot be limited to a specific subject even if the
subject headings are known.

Enrichments Using Linked Data

Linked Data is a theorem to publish structured and interlinked data in a common
format. It bases on four principles: use URIs to identify things, use HTTP URIs so
that the things can be referred to, provide useful information about the things in
a standard format like RDF and include links to other data (Berners-Lee 2006).
Everything that works with Linked Data works also without Linked Data but it
makes everything easier. The more the data access, the format and the underlying
data structure is unified and standardized, the more parts of the enrichment
infrastructure are reusable. Otherwise, every time the wheel has to be reinvented and
the infrastructure consists of a wild mixture of different parsers, access mechanisms,
update scripts and transformation programs. With Linked Data, the integration of a
new data source is very easy. Moreover, already existing links between linked data
resources can be reused. By having so-called same as links, we can even overcome
the integration problem to a certain degree. In a perfect world, where all data is
Linked Data, you actually do not enrich your data by Linked Data, you enrich the
Linked Data by adding links.

Today, no RDS provides a general support for Linked Data. This means, the
internal database is not accessible as a Linked Data source and external (linked)
data sources cannot get related to the internal data by means of URIs and simple
links. From a Linked Data perspective, every data enrichment in current RDSs
feels like a workaround. The possibilities to enrich the data are limited to some
predefined ways and—most problematic—some of the data that is accessible via
the RDS is not accessible for enrichment at all. This is especially the case for third-
party metadata that is only merged into the search results, as provided by products
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like Primo Central2 by Ex Libris or Summon3 by Serials Solutions. At Mannheim
University Library, we implemented a JavaScript Plugin-API that abstracts from the
underlying RDS (Primo) and allows the enrichment even of data where we do not
have access to, namely Primo Central.

3 JavaScript Plugin-API

The API is designed with two goals in mind: abstraction from the underlying RDS
and easy development of new (enrichment) plugins. By replacing the RDS-specific
part, all plugins should be transferable to a different RDS.

Figure 2 illustrates the enrichment process for a single plugin. There are three
levels (Plugin, API, Primo) and all accesses of the plugin to Primo are handled
via the API and vice versa. At first, the plugin registers itself for predefined
events and specifies the required data to perform an enrichment, for instance
ResultListIsShown. The API monitors the RDS and waits for the predefined events
to take place. If the event happens for which the plugin registered, the API calls the
plugin and provides the desired data. The plugin can now request data from external
sources and perform the actual enrichment. To present the enriched data to the
user, the plugin again uses predefined functions of the API, like AddLinkToAuthor.
The API finally uses Primo-specific JavaScript code to actually insert the desired
link into the HTML result page.

The API is developed alongside the plugins that we actually wanted to have.
Currently, there are three plugins at the Mannheim University Library: PermaLink,
Database Recommender, and Wikipedia.

PermaLink. The first plugin is a very simple one, but it provides a fundamental
feature for Linked Data: a stable, persistent URI for each resource that is available
in the RDS. This is not only important for Linked Data, it is also a feature often
asked for by the patrons, as such a URI allows the bookmarking of resources,
more concrete their metadata, and the sharing of resource information via email.
To make the URI an actually working permanent link, we additionally need a link
resolver, which is a script on a server that redirects from links like http://link.bib.
uni-mannheim.de/primo/RECID to the corresponding details page in Primo.4 The
plugin itself is simple, it registers for the details page of a resource and asks for the
internal identifier. Then, it adds the permalink to the details page (Fig. 3).

Database Recommender. The database recommender plugin proposes
databases for a given query. It is our goal to provide Primo as a one-stop shop
for our patrons, but unfortunately not all metadata of resources that we pay for is

2http://www.exlibrisgroup.com/category/PrimoCentral.
3http://www.serialssolutions.com/en/services/summon/.
4As RECID, the record ID of Primo is used. For example: MAN_ALEPH00143741.

http://link.bib.uni-mannheim.de/primo/RECID
http://link.bib.uni-mannheim.de/primo/RECID
http://www.exlibrisgroup.com/category/PrimoCentral
http://www.serialssolutions.com/en/services/summon/
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Fig. 2 Functionality of the Primo Plugin-API (UML sequence diagram)

Fig. 3 PermaLink plugin in Primo

available to be included into Primo. We still have databases and other electronic
resources that have to be searched separately, if all relevant literature has to be
found. To determine suitable databases for a given query, we use a web service of
the SuUB Bremen. The user query is sent to this service and a list of associated
subject fields is returned (Blenkle 2009). Our subject specialists created a list of
databases associated to each subject field. This information is used by the plugin to
provide database recommendations which are inserted via the API below the result
list (Fig. 4).

Wikipedia. Our third plugin links to the Wikipedia article of an author of a
resource, if available. Therefore, we use an existing list with the assignments of
Wikipedia articles to the GND5 number of the described author (Danowski 2007).
We use a caching server that resolves URIs containing the GND number and returns
the first paragraph of the corresponding Wikipedia article, if available.

With the API, we provide a general function that allows to add an icon to
elements of the details page and a text that is shown in a popup, when the user

5Gemeinsame Normdatei. Authority file provided by the German National Library.
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Fig. 4 Database recommender plugin in Primo

Fig. 5 Wikipedia articles of authors plugin in Primo

clicks on the icon. In this case, the plugin adds the Wikipedia icon right beside the
author name. The text that is shown in the popup contains the first paragraph and
the link to the full Wikipedia article (Fig. 5).

4 Conclusion and Future Work

In this paper, we explained the basic concepts of data enrichment in RDS.
We focused on client-side enrichment, i.e., the presentation of additional infor-
mation about a resource on-the-fly. We identified the minimal invasiveness of
JavaScript-based client-side enrichment as a major advantage and provided an
overview, how a JavaScript Plugin-API can be designed that abstracts from the
underlying RDS. The goal of the API is to be able to present any kind of additional
information to the user. Thus, the user does not need to search for this data manually.

The three implemented plugins gave us first insights of concrete enrichments
that we implemented in Primo. We plan to develop more plugins, especially based
on Linked Data. Currently, the plugins do not use Linked Data. For example, the
Wikipedia Plugin “simply” fetches the Wikipedia article as website. However, we
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need to parse the website to extract the contained information. This causes a lot of
problems, especially if we like to show the same article in another language. With
DBPedia,6 the Linked Data version of Wikipedia, we can query information about
the author using the GND number and get the information in all available languages
in a structured format. Thus, it presents a much simpler solution.

Further, we like to provide links between publications and research data. Within
the InFoLiS project, links between publications and research data of the social
sciences are determined (Boland 2012). The resulting links will be published as
Linked Data, which makes the presentation straight-forward. Another plugin we
plan to implement enriches the resources with an explanation, where the resource
can be found in the library, e.g. by means of a map.

The JavaScript Plugin-API is constantly developed as new plugins are added.
An official release under an open source license is planned. We are very interested
in co-developers that want to use the API with a different RDS, so that its ability to
abstract from the underlying RDS could be demonstrated.

Acknowledgements We like to thank Bernd Fallert for his great work on the implementation.
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