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Preface

The 21st ICSA Applied Statistics Symposium was successfully held from June 23 to
June 26, 2012, Boston, Massachusetts. International Society for Biopharmaceutical
Statistics (ISBS) and American Statistical Association (ASA) co-sponsored the
conference. There were 552 conference participants, 140 short course attendees, and
18 student volunteers. Over 400 papers were presented in 103 scientific sessions.
Although the symposium has been held 21 times, this is the first time a proceeding
is published for the symposium.

This inaugural proceeding of the ICSA Applied Statistics Symposium consists
of 27 selected papers from a broad range of topics, from statistical applications in
business and finance to applications in clinical trials and biomarker analysis. All
papers have been reviewed by the editors to ensure quality but we do not expect
the book is error-free. Instead of having a focused topic, we intentionally selected
papers as broad as possible to serve the whole statistical community with all types
of research interests. We specifically asked authors to explain all terminologies in
simple forms so that statisticians from different research areas can understand and
benefit from their papers. For example, papers in business should not be written with
business statisticians in mind; instead, they should target the general population
of statisticians. Therefore, readers of this book can enjoy not only papers from
their own research areas but also those from different areas, which can potentially
broaden their research interests.

In the part of Statistical Applications in Business and Finance, a house price
index was constructed based on an autoregressive method that shows better
predictive capabilities by accounting for changes in the market due to both single
and repeat home sales. A method incorporating intra-day high-frequency trading
data is demonstrated to result in better returns for stock portfolio allocation.
A functional dynamic factor model is developed to forecast zero coupon bond yields
for bond portfolio management and derivative security pricing. A mixed modeling
approach is proposed for assessing the effectiveness of each marketing channel
when multiple channels are used simultaneously in pharmaceutical promotions and
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vi Preface

for optimizing the allocation of marketing resources. The uplifting modeling in
identifying customers for targeted marketing campaigns through database analyses
is discussed in the last paper of the section, and a tree-based uplifting modeling
method is proposed for improving the traditional method in the evaluation of the
marketing campaign efficiency.

In the Biomarker Analysis and Personalized Medicine section, the first paper
points out that for some common efficacy measures such as relative risk or odds
ratio, the efficacy for the overall population may not be representable as a function
of efficacy for the subgroups and their prevalence unless certain design elements are
satisfied. The second paper tries to identify subgroup of patients who benefit from
beta-blocker treatment in a clinical trial setting in patients with chronic heart failure.
The dataset is divided into two subsets, using the first set to build a parametric score
for stratifying the remaining patients and the second set to obtain a nonparametric
estimate of the treatment effect. Surrogate endpoints including biomarkers that can
be obtained earlier in the trial to assess the efficacy of treatment are often of interest.
The third paper considers a principal stratification approach to assess surrogacy for
dichotomous markers and allows outcomes with missing values. A joint modeling of
time-to-event clinical endpoint and longitudinal data on a biomarker is introduced
in the fourth paper to assess correlation between the surrogate biomarker and the
clinical endpoint. The last paper focuses on combining multiple continuous-scaled
biomarkers into one single diagnostic or predictive tool for certain diseases.

In the Bayesian Statistics in Clinical Trials section, the authors illustrate how
Bayesian methods are developed and applied in clinical studies. In early phase
oncology trials, comparative simulation studies have demonstrated that the modified
Toxicity Probability Interval (mTPI) design, a transparent Bayesian adaptive design,
is safer in treating fewer patients at toxic doses above the MTD than the traditional
3+3 design. In another example of Bayesian application in early clinical studies,
Bayesian inference is used for a biomarker interim analysis to facilitate the
interim decision making for early clinical development. For the analysis of survival
data from clinical trials, two new classes of semi-parametric survival models are
proposed and demonstrated to have many practical advantages, including ease
for determining priors, simpler interpretation of the regression parameters via the
ratio of median survival times, and the ability to address heteroscedasticity of
survival response. The last paper of this section presents a Bayesian conditional
model for survival data with semi-competing risks in the presence of partial
treatment switch, which is common due to ethical and practical reasons in clinical
studies.

In the section of High Dimensional Data Analysis and Statistical Genetics, the
first paper proposes a new pipeline with five steps for reverse-engineering the
gene regulatory network using ordinary differential equation models. The second
paper proposes a kernel-based semi-parametric regression method for testing the
effect of microbiome composition on either a continuous or a binary outcome.
A conditional autoregressive model is used to account for correlation in selecting
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positive protein-coding genes to detect traces of natural selection. The fourth paper
develops a sufficient dimension reduction method for high-dimensional regression
with tensor predictors, which extends the conventional vector-based dimension
reduction model. A successive standardization method is proposed and compared
with the significance analysis of microarrays method in a case study in the last
paper.

In the section of Survival Analysis, a synthesized approach is proposed that
combines the observed overall survival (OS) effect and the predicted OS effect from
the progression-free survival (PFS) data to explicitly test the implicit OS hypothesis
at the time of primary analysis of PFS, which could help set an appropriate
threshold for PFS effect size for accelerated approval from regulatory agencies.
The other paper in this section considers a less restricted heterogeneity model to
simultaneously analyze multiple cancer prognosis datasets. This model may provide
an approach to address the reproducibility issue of findings about cancer prognosis
markers across independent studies.

In the Safety and Risk Analysis section, the first paper reviews several approaches
for analyzing low incidence adverse events with the consideration of drug exposure
information and recurrence events in drug or vaccine development. The second
paper tries to quantify through simulations the power in the setting of detecting
cardiovascular signals in first-in-human trials and demonstrates that cardiovascular
safety signals in general have reasonable statistical power for early detection when
using a dose–response analysis.

In the Longitudinal and Spatial Data Analysis section, a new semi-nonparametric
estimation approach is presented for constructing conditional reference charts
(conditional quantiles) for muscular strength, a latent variable measured with error.
The second paper develops a hierarchical Bayesian method for analyzing data with
repeated binary responses over time and time-dependent missing covariates, which
is a common problem in many biomedical studies and environmental applications.

In the Multi-Regional Clinical Trials section, a statistical method for multi-
regional clinical trials is discussed for the setting where the treatment effect is
similar but the variance is heterogeneous across different regions.

Finally, in the section of In Vitro Drug Combination Studies, an analytical method
is proposed to evaluate different designs for in vitro drug combination studies, which
typically involve a large number of wells with various concentrations of two drugs
added together.

We are indebted to the authors who contributed their papers to the proceeding
and carefully prepared their manuscripts in a tight timeline (2 months for the
original draft and 1 month for incorporating our comments). Without a successful
symposium, we would not have the source of quality papers to choose from for this
book. Our deep gratitude goes to the Executive Organizing Committee (Mingxiu
Hu, Tianxi Cai, Naitee Ting, Hongliang Shi, Minghui Chen, and Mark Chang), the
Program Committee, and many other volunteers of the 21st ICSA Applied Statistics
Symposium. We also appreciate Takeda Pharmaceuticals for giving us the time
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to work on the book. We are grateful to Hannah Bracken and Marc Strauss of
Springer for initiating the idea of publishing this proceeding and for their assistance
throughout the entire process of completing the book.

Cambridge, MA, USA Mingxiu Hu
Yi Liu

Jianchang Lin
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Part I
Applications in Business and Finance



Constructing and Evaluating an Autoregressive
House Price Index

Chaitra H. Nagaraja and Lawrence D. Brown

Abstract We examine house price indices, focusing on an S&P/Case-Shiller-based
index and an autoregressive method. Issues including the effect of gap time on sales
and the use of hedonic information are addressed. Furthermore, predictive ability is
incorporated as a quantitative metric into the analysis using data from home sales
in Columbus, Ohio. When comparing the two indices, the autoregressive method is
found to have the best predictive capabilities while accounting for changes in the
market due to both single and repeat sales homes in a statistical model.

1 Introduction

Some uses for house price indices are as market indicators, prediction of individual
house prices, or as inputs into other economic measures. However, houses are
heterogenous goods varying in characteristics, age, and location. Furthermore, in
any given time period, only a small subset of the population of homes is sold.
Therefore, the price of a house is observed only intermittently. These are just some
of the factors one must consider when constructing a house price index.

In essence, to create an index for a housing market, a geographic area (e.g.,
state, metropolitan area) and a time period (e.g., month, year) are selected. Sales
data is collected and a summary measure is computed for each time period (t =
0, . . . ,T −1). The index is then constructed as a ratio of the measure at time period t
to the base period measure (t = 0). Many types of models following this profile have

C.H. Nagaraja
Fordham University, 5 Columbus Circle, New York, NY 10019, USA
e-mail: cnagaraja@fordham.edu

L.D. Brown (�)
University of Pennsylvania, 400 Jon M. Huntsman Hall,
3730 Walnut St., Philadelphia, PA 19104, USA
e-mail: lbrown@wharton.upenn.edu

M. Hu et al. (eds.), Topics in Applied Statistics: 2012 Symposium of the International
Chinese Statistical Association, Springer Proceedings in Mathematics & Statistics 55,
DOI 10.1007/978-1-4614-7846-1 1, © Springer Science+Business Media New York 2013
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4 C.H. Nagaraja and L.D. Brown

been formulated including repeat sales indices which are the current benchmark
index. In this paper, we describe a new autoregressive index method. This index
allows for the use of both single and repeat sales in a statistical model with intuitive
features automatically incorporated into the model. Furthermore, we provide the
prediction of individual house prices as a method of index evaluation and show that
the autoregressive method yields better predictions as well.

We begin in Sect. 2 with a description of the data which will be used to illustrate
topics in the subsequent sections. Some background on the development of housing
indices, in particular repeat sales indices, is provided in Sect. 3 followed by a
description of the autoregressive index in Sect. 4. We compare indices in Sect. 5
and conclude in Sect. 6.

2 Data

The sales data used in this paper is part of a larger data set covering 20 metropolitan
areas (see [16] and [17] for more details). Here, we focus on Columbus, Ohio in
the USA as additional characteristics about the houses are available for sales in this
area.

The data consists of single-family home sales which were approved for federally
supported mortgages from July 1985 through September 2004. We divide the data
into 3-month periods, resulting in 77 quarters, in order to have a sufficient number
of sales per time period. A total of 162,716 sales of 109,388 unique homes were
made in the sample period. Among these sales are 67,926 homes which are sold
only once during this period. We have the time of sale, address (including ZIP
(postal) code), and price for each sale. In addition, for 91% of the homes, we
know the construction year, building area in square feet, number of bedrooms, and
number of bathrooms; however, any structural changes in a house are not recorded.
In the housing literature, these types of housing characteristics are called hedonic
variables. Graphs of each of the hedonic characteristics, for the subset of data
including those variables, are shown in Figs. 1 and 2.

To fit the models described in Sects. 3 and 4, the data was split into training and
test sets. As will be described in Sect. 3, the repeat sales method can only be fit using
homes that sell at least twice. Consequently, in order to fairly compare this method
with the autoregressive approach, the test set must contain only final sales. The last
sale from homes with three or more sales and the second sale of a random sample of
sales from homes that sold twice were selected to create the test set; the remaining
sales form the training set. Using this procedure, there were 136,989 sales in the
training test and 25,727 sales in the test set. For the S&P/Case-Shiller® method
(described further in Sect. 3), the training set observations resulted in 27,601 pairs
of consecutive sales.
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A. Mean and Median Price Series
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Fig. 1 Price series and histograms on home sales in Columbus, Ohio (July 1985–Sept. 2004).

3 Index Construction Methods

A basic index can be constructed from a median or mean price series where at each
time period, the median or mean price is computed for a specified geographic area.
In Fig. 1A, both the mean and median price series for Columbus, Ohio are plotted.
Like income, house prices are heavily skewed as a few homes are very expensive.
This is clear from Fig. 1A as the mean price series is consistently higher than the
median price series. Therefore, many proposed indices use log prices instead of
prices. The autoregressive method outlined in Sect. 4 uses log prices as well.

However, a median or mean price index is considered an insufficient measure
of housing prices as it suffers from composition problems: (a) seasonal effects, (b)
no control over types of houses sold each period, and (c) no quality adjustment.
In Fig. 1B, the number of sales per quarter is graphed. We can see that during the
winter, sales are much lower than in the summer. One contributing factor to this
seasonal effect is that households with children tend to prefer to move in the summer
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A. Construction Years for Homes

construction year

1800 1850 1900 1950 2000

0

5,000

10,000

15,000

20,000

25,000

nu
m

be
r 

of
 h

om
es

median: 1980

1 2 3 4 5 6

B. Number of Bedrooms per House

number of bedrooms

pe
rc

en
ta

ge
 o

f h
om

es

0%

10%

20%

30%

40%

50% median: 3 rooms

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C. Number of Bathrooms per House 

number of bathrooms

pe
rc

en
ta

ge
 o

f h
om

es

0%

10%

20%

30%

median: 2 bathrooms

D. log(building area)

log(building area) (sq. feet)

6.0 6.5 7.0 7.5 8.0 8.5

0

5,000

10,000

15,000

20,000

25,000
nu

m
be

r 
of

 h
om

es
mean on log scale transforms
to 1,804 square feet

Fig. 2 Histograms and bar graphs for hedonic variables for homes in Columbus, Ohio: construc-
tion year, number of bedrooms and bathrooms, and building area in square feet.

and not during the school year. In Fig. 1C, the type of sales by year is graphed. Each
bar represents a year and the height of the bar specifies the number of sales. The
bars are then divided into three components illustrating the number of new homes
(blue), old homes which are being sold for the first time in the data period (red),
and old homes which have been sold more than once in the data period (green).
As we will discuss next, new and old homes have quality differences which are
ignored in median and mean indices. As a result, changes in a median or mean price
index are not necessarily indicative of changes in the underlying market. While the
National Association for Realtors publishes a median price series (Existing Home
Sales Series) at the metropolitan area level, other indices have been developed to
address these deficiencies.

Attributes of a house such as building area, number of bedrooms, and location
are called hedonic characteristics. In their simplest form, hedonic characteristics can
be used as predictor variables, along with time as a dummy variable, in a regression
on price. The estimated time effects can be converted into an index by dividing
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each by the base period effect. The resulting hedonic price index takes into account
the heterogeneity of homes. In the Columbus, Ohio data, the available hedonic
variables, construction year, number of bedrooms and bathrooms, and building area
are plotted for unique homes in Fig. 2. We can see that homes in this city are quite
varied. Many researchers advocate the use of hedonic indices [14]. However, given
the difficulty of obtaining sufficient hedonic information and producing a robust
model form, the hedonic index is considered impractical for general use.

The next development in house price index construction was the repeat sales
index introduced by Bailey, Muth, and Nourse in 1963 [1]. This method divides the
data into sets of sale pairs. The basic setup is as follows:

yit′

yit
=

bt′

bt
× εitt′

logyit′ − logyit = logbt′ − logbt + logεitt′ (1)

where yit is the sale price of the ith house at time t, bt is the price index, t ′ > t for

time periods 0,1, . . . ,(T−1), and logεtt′
iid∼N

(
0,σ2

)
where iid denotes independent

and identically distributed. The model as formulated in (1) is fit using least squares
regression and by assumption, b0 = 1 (logb0 = 0). There are two clear advantages
of this model: the previous sale price is considered a proxy for the hedonic
characteristics and the bias due to new homes, which are generally more expensive
and are of higher quality, is eliminated [4].

Extensions by Case and Shiller [6, 7] and Calhoun [2], used in the Federal
Housing Finance Agency House Price Index, and Shiller [21], implemented in the
S&P/Case-Shiller® Home Price Indices, have different error structures than the
original Bailey, Muth, and Nourse model. In the original method, the error term
logεitt′ is assumed to have the same variance regardless of the gap time between
sales. (See Fig. 1D for a histogram of gap lengths.) However, Case and Shiller [6, 7]
were the first to suggest that lengthy gaps between sales should be compensated
for in the model. They do so by adding a random walk component to the error

term. Consequently, logεit = ∑t
j=t� vi j + ηit where vi j

iid∼ N
(
0,σ2

v

)
are steps of a

Gaussian random walk, t� is the time period when the house was constructed, and

ηit
iid∼ N

(
0,σ2

η
)
. Then, the error term in (1) is:

logεitt′ = logεit′ − logεit

=
t′

∑
j=t+1

vi j +ηit′ −ηit (2)

Var[logεitt′ ] = (t ′ − t)σ2
v + 2σ2

η . (3)

As the gap time (t ′ − t) increases, the variance of the error term also increases. The
model is then fit using weighted least squares with estimates of the variances in (3)
used as weights. Calhoun [2] proposes a similar extension as well. The S&P/Case-
Shiller® index is estimated on the price scale instead of the log price scale; however,
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the error structure is kept as in (2). This causes some problems in estimation which
are managed to some extent by using instrumental variables [21, 22]. However,
the disconnect between the model and error structure is difficult to support from
a statistical perspective [15, 16].

There are numerous criticisms of repeat sales indices, two of which we discuss
here. As repeat sales indices include only homes which have sold at least twice in
the sample period, a large percentage of homes are excluded from the index [4, 14].
These single sales include both new homes and old homes sold only once during
the sample period. Consequently, as can be seen in Fig. 1C, a large proportion of
the data is excluded. In the overall data set, which covers over nearly 20 years,
42% of the sales are discarded because they are single sales. Omitting single sales
homes can introduce bias into the index [9, 11–13]. One unintended consequence of
discarding single sales is that two cities can have the same house price index even if
one is growing at a much faster rate due to new construction than the other.

One of the prime assumptions of repeat sales indices is that hedonic character-
istics are not required because all relevant information about the house is included
in the previous sale price. In other words, (1) functions because the house at time t
and at time t ′ are considered the same. There are two issues with this assumption.
First, houses which have been significantly changed (remodeled or deteriorated)
have to be excluded; with sufficient information about the house, this is possible.
However, even if this is not the case, the house has aged over the intervening years
between sales. Generally, price depreciates with age and is not accounted for in the
repeat sales model [18]. As a remedy, adjustments incorporating age effects into the
computed index have been proposed [3, 8, 10, 19]. Many of these modifications are
added after the index calculations; therefore, we omit them in our analysis as they
can always be added if implementing these indices.

Borrowing information across time periods as accomplished by the repeat sales
indices is a valuable concept; however, excluding single sales is undesirable. A
hybrid index, proposed by Case and Quigley [5], attempts to include single sales
by combining repeat sales indices and hedonic index components. However, as
with pure hedonic indices, such an index has high data requirements making
it impractical for broad use. The autoregressive model described in Sect. 4 is a
proposed index which includes both repeat and single sales in a suitable fashion
without any additional data requirements in a statistical model.

4 Autoregressive Index

The autoregressive method as described in [17] considers all sales of the same house
as components of a single series as opposed to pairs of sales. In theory, each house
has a price at every time period. However, the price is observed only when sold.
We start by defining the adjusted price xit of the ith house at time of sale t (t =
0, . . . ,T − 1).
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xit = logyit − μ− at− τz (4)

where yit is the sale price, μ is an overall mean for log prices, at is the log time effect

in period t, and τz
iid∼N

(
0,σ2

τ
)

is a random effect for ZIP (postal) code (z = 1, . . . ,Z),
a proxy for location effects.

The adjusted prices follow a stationary AR(1) time series, observed when a sale
occurs, and is a Markov process:

xit′ = φ (t′−t)xit + εit′ . (5)

The parameter |φ | < 1 is the correlation between adjusted prices of a house in
consecutive time periods. The gap time between two sales, one at time t and the
second at time t ′ where t ′ > t is denoted as (t ′ − t). For initial sales, there is no
previous sale price and so the term φ (t′−t)xit drops out. To obtain a stationary series,
the random variation term εit is defined as follows:

εit ∼ N
(
0, σ2

ε /
(
1−φ2)) for the first sale

εit′ ∼ N
(

0, σ2
ε

(
1−φ2(t′−t)

)
/
(
1−φ2)

)
for subsequent sales (6)

Where all of the error terms are independent. Two intuitive patterns arise
naturally from this formulation of the model. First, as the time between sales
increases, the correlation in adjusted prices between sales should decrease. The
φ (t′−t) component of (5) incorporates this feature. Second, as the time between
sales increases, we also expect that the variance of the error term, εit , to increase as
well which is visible through (6). The parameters a0, . . .aT−1,σ2

ε ,σ2
τ ,τ1 . . .τZ are fit

using the coordinate ascent procedure, an iterative maximum likelihood estimation
method, as no closed-form estimates exist for most of the parameters. Further details
can be found in [17]. One can also generalize the model in [17], by including
additional hedonic information instead of only the ZIP code.

After fitting the data to the autoregressive method, a selection of the parameter
estimates are: μ̂ = 11.5159, φ̂ = 0.994807, σ̂2

ε = 0.001264, and σ̂2
τ = 0.090329.

The value of μ̂ can be interpreted as an estimate of the overall average log price.
Observe that the estimate for the autoregressive coefficient φ is very high, nearly
one. One may argue that there is a unit root issue and that a random walk is a more
appropriate model form (such as in the Case-Shiller model). However, this is not the
case [17]. If we look back to Fig. 1D, the histogram of the gap time (t ′ − t) between
consecutive sales is graphed. The median gap time is 4.75 years or 14.25 quarters
in Columbus, Ohio. Note that φ̂14.25 = 0.928 and is considerably less than one as a
result. Given that nearly all sales occur with at least a gap of one year and most have
a much longer gap time between sales, no appreciable unit root issue exists.

Finally, the log time effect at can be converted into a price index as follows: b0 =
exp{â0− â0} ,b1 = exp{â1− â0} , . . . ,bT−1 = exp{âT−1− â0}. The first quarter,
July through September 1985, is set as the base period and consequently b0 = 1.
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5 Comparison of Indices

No objective standards exist for evaluating and comparing indices. One reason is
that there is no true index to compare an estimate to. Consequently, compiling
evidence for or against a particular index is generally a matter of considering issues
of sample selection bias based on the treatment of the data [4]. However, all of the
indices described here are derived from models for the price of a house. Therefore
prediction of individual prices can be used as an objective measure and as part of
the index evaluation process. Given the limited availability of hedonic data, we do
not examine the hedonic or hybrid indices here as comparisons to the repeat sales
and autoregressive indices would not be fair. Instead, we focus on the S&P/Case-
Shiller-based index, as it is the most well-known index, and the autoregressive index
here. (A full set of comparisons with repeat sales indices can be found in [16].)

The model was fit using the training set observations (as described in Sect. 2)
and predictions for repeat sales were computed on the test set observations. For the
autoregressive method, to improve efficiency of the predictions when transforming
predictions on the log scale back to the price scale, the following adjustment was
made: ŷit = exp{̂logyit +MSR/2} where MSR is the mean squared error from the
training set predictions [20]. As the S&P/Case-Shiller-based method is fit on the
price scale, no similar adjustments are necessary. The test set root mean squared
error, RMSE =

(
∑n

i=1(yit − ŷit)
2
)
/n, was compared between the two methods. For

the autoregressive method, the test set RMSE = $27,353 and for the S&P/Case-
Shiller-based method, the RMSE = $30,208. The autoregressive method has a lower
RMSE for Columbus, Ohio indicating that this method produces better predictions.
We find that the autoregressive method has the lowest RMSE values for all of the
cities in the larger data set and amongst the other repeat sales methods [16, 17].

The last step is to compare index values. In Fig. 3, the mean (green), median
(black), autoregressive (red), and S&P/Case-Shiller-based (blue) indices are plotted.
We can see that the general trends are similar across indices. The mean and median
indices fluctuate more because there is no smoothing over time periods. Unlike in
Fig. 1A, when the mean and median price series differed, when converted into price
indices, by dividing each value in the series by the base period price, they are not as
different. Another feature is that the autoregressive index is nearly always between
the mean price index and the S&P/Case-Shiller-based index. The mean price index
treats all sales as if they were single sales; on the other hand, the S&P/Case-Shiller-
based index incorporates only repeat sales observations. The autoregressive index
includes both single sales and extracts the additional information from comparing
repeat sales prices over time resulting in roughly a weighted average of the two
index construction concepts.
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Fig. 3 Price indices for Columbus, Ohio: mean, median, autoregressive method, and S&P/Case-
Shiller-based price indices.

6 Discussion

House price indices are useful for a variety of purposes and allow one to measure
market changes over time. The autoregressive method described in this paper is an
example of such an index. It not only incorporates the repeat sales idea inherent in
traditional repeat sales methods, but also takes into account the vital information
included in single sales which are omitted from repeat sales methods. The effect
of gap times follows naturally from the model form by decreasing the correlation
between adjusted prices and increasing the variance of the error term as the gap time
increases. Both features intuitively make sense as large gap times would indicate
that the previous sale price is less valuable and predicting the future price from the
previous sale price becomes more difficult.

As these indices are synthetic constructions, they are difficult to evaluate. Adding
the prediction of individual house prices to the list of evaluation techniques allows
for a more objective measure of comparison. The autoregressive method performs
better than the repeat sales methods on this metric as well, with lower test set
RMSE values. All of these indices can be improved by removing homes which have
changed drastically between sales and adding adjustments for the effects of age.
Other refinements include adding relevant economic indicators or hedonic variables
similar to the hybrid index idea set forth by Case and Quigley [5]. However, the
autoregressive index provides us a good base form for an index to which we can
incorporate additional features.
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On Portfolio Allocation: A Comparison of Using
Low-Frequency and High-Frequency
Financial Data

Jian Zou and Hui Huang

Abstract Portfolio allocation is one of the most fundamental problems in finance.
The process of determining the optimal mix of assets to hold in the portfolio is a very
important issue in risk management. It involves dividing an investment portfolio
among different assets based on the volatilities of the asset returns. In the recent
decades, it gains popularity to estimate volatilities of asset returns based on high-
frequency data in financial economics. However there is always a debate on when
and how do we gain from using high-frequency data in portfolio optimization. This
paper starts with a review on portfolio allocation and high-frequency financial time
series. Then we introduce a new methodology to carry out efficient asset allocations
using regularization on estimated integrated volatility via intra-day high-frequency
data. We illustrate the methodology by comparing the results of both low-frequency
and high-frequency price data on stocks traded in New York Stock Exchange over a
period of 209 days in 2010. The numerical results show that portfolios constructed
using high-frequency approach generally perform well by pooling together the
strengths of regularization and estimation from a risk management perspective.

1 Introduction

Portfolio allocation is one of the most fundamental problems in finance. It involves
dividing an investment portfolio among different assets. The process of determining
the optimal mix of assets to hold in the portfolio is a very important issue in
risk management. Markowitz (1952) was the original milestone paper for mod-
ern portfolio theory on the mean-variance analysis by solving an unconstrained
quadratic optimization problem. It was later expanded in the book Markowitz
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(1959). This approach has had a profound impact on financial economics. Sharpe
(1966) introduced the Sharpe ratio for the performance of mutual funds, which is a
direct measure of reward-to-risk.

High-frequency financial data usually refer to intra-day observations. The extra
amount of information contained in high-frequency data enables researchers to
develop more accurate estimators for the volatility matrix. The volatility matrix of
daily asset returns is a key input in portfolio allocation, option pricing, and risk
management. However, the main challenge is that when the number of assets is
large, the volatility matrix cannot be estimated accurately. To address this problem,
several innovative approaches for volatility matrix estimation were proposed in the
past decade. Estimation methods for the univariate case include realized volatility
(RV) (Andersen et al. (2001)), bi-power realized variation (BPRV) (Barndorff-
Nielsen and Shephard (2002)), two-time scale realized volatility (TSRV) (Zhang
et al. (2005)), wavelet realized volatility (WRV) (Fan and Wang (2007)), kernel
realized volatility (KRV) (Barndorff-Nielsen et al. (2008)), and Fourier realized
volatility (FRV) (Mancino and Sanfelici (2008)). For multiple assets, we face non-
synchronization issue, which is referred to as that high-frequency price data are
not aligned properly for different assets, hence are recorded at various mismatched
time points. For a pair of assets, Hayashi and Yoshida (2005) and Zhang et al.
(2005) have developed methods based on overlap intervals and previous ticks to
estimate co-integrated volatility of the two assets. Barndorff-Nielsen and Shephard
(2004) have considered estimation of integrated co-volatility for synchronized
high-frequency data.

From a financial risk management perspective, Jagannathan and Ma (2003)
analyzed the impact of weights constraints in large portfolio allocation. They show
that solving the global minimum variance portfolio problem with some constraints
on weights is equivalent to use a shrinkage estimate of the covariance matrix. Fan
et al. (2012a) studied portfolio allocation with gross-exposure constraint combining
vast volatility matrix estimation using different sampling schemes. However, there
exists an interesting question as of when and how an investor will benefit from using
high-frequency financial data in his/her portfolio allocation decisions. This paper
aims to perform a comparative study on the performance of portfolios constructed
using both low-frequency and high-frequency financial data. Therefore, we hope to
shed some light on the benefits of high-frequency data in risk management.

The data that motivated this research comprise the transaction-by-transaction
stock prices from the 30 DJIT composite constituents traded in New York Stock
Exchange (NYSE). The data set is huge with ultra high-frequency observations
since these stocks are highly liquid with vast trading volume. These high-frequency
financial data also possess unique features such as price discreteness, unequally
spaced time intervals, and non-synchronized trading (see, e.g., Wang and Zou (2010)
for some illustrations of these issues). The normal trading hours of the NYSE are
from 09:30 until 16:00. Thus, for simplicity, we discarded any transactions beyond
these hours from our analysis.
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The rest of this paper is structured as follows. Section 2 elaborates the framework
of our methodology of portfolio allocation for high-frequency data. Section 3
presents numerical evidence on the performance comparison of our method under
both low- and high-frequency scenarios. Section 4 concludes this paper.

2 Methods

Suppose that a portfolio consists of p assets and their log price process Xt =
(X1t , · · · ,Xpt)

T obeys an Itô process governed by

dXt = μ t dt +σ t dWt , t ∈ [0,L], (1)

where Wt is a p-dimensional standard Brownian motion, μ t is a drift taking values
in Rp, and σ t is a diffusion variance of p× p matrix. Both μt and σ t are assumed to
be continuous in t.

For the portfolio with allocation vector w (i.e., percentage of each asset in the
portfolio) and a holding period T , the variance (risk) of the portfolio return is
given by R(w,Σ) = wT Σw. However, it is well known that the estimation error
in the mean vector μ t could severely affect the portfolio weights and produce
suboptimal portfolios. This motivates us to adopt another popular portfolio strategy:
the global minimum variance portfolio, which is the minimum risk portfolio with
weights that sum to one. These weights are usually estimated proportional to the
inverse covariance matrix, i.e., w ∝ Σ−1. Following Jagannathan and Ma (2003) and
Fan et al. (2012b), we consider the following risk optimization with two different
constraints:

minwT Σw, s.t.‖w‖1 ≤ c and wT 111 = 1 (2)

where c is the gross exposure parameter which specifies the total exposure allowed
in the portfolio and ‖ · ‖1 is the standard vector L1 norm. The summation to one
constraint ensures weight percentages sum to 100%, inducing a full investment. An
additional common requirement is no short selling (e.g., 401k, IRAs, and mutual
funds), which adds the nonnegative optimization constraint. This corresponds to the
case c = 1 as in Jagannathan and Ma (2003). The second optimization case is the
global minimum risk portfolio where the gross exposure constraint c = ∞. Note that
we only consider these two cases for simplification of the problem. Other cases with
varying c can be easily generalized in our methodology.
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2.1 Average Realized Volatility Matrix for High-Frequency
Financial Data

The realized co-volatility computed from the high-frequency data on the prices of
the p assets is used to estimate the integrated volatility over a given period of time.
Let’s take a day as a unit time. The integrated volatility for the �-th day is a matrix
defined to be

Σx(�) =
∫ �

�−1
σsσ†

s ds, �= 1, · · · ,L. (3)

We first consider estimation of Σx(1) on day one. For i = 1, · · · , p, suppose that
the high-frequency data for the i-th asset on day one are observed at times ti j, j =
1, · · · ,ni, and we denote by Yi(ti j) the observed log price of the i-th asset at time ti j.
Because transactions may be made at distinct times for different assets, the high-
frequency price data for p-assets are often recorded at various mismatched time
points. This is referred to as non-synchronized problem in high-frequency financial
data.

Another complication in high-frequency financial data is that due to microstruc-
ture noise, the observed log price Yi(ti j) of the i-th asset is a noisy version of its true
log price Xi(ti j) and is usually assumed to obey an additive noise model

Yi(ti j) = Xi(ti j)+ εi(ti j), (4)

where εi(ti j) are assumed to be i.i.d. noise with mean zero and finite fourth moments
and independent of Xi(t).

We consider realized co-volatility based on previous-tick times. Let n = n1 +
· · ·+ np and assume that ni/n are bounded away from zero. Take a predetermined
sampling frequency τk,k = 1, · · · ,m. One such example is to select τi be a regular
grid. For each k = 1, · · · ,m, we choose the corresponding observation time for the
i-th asset by

τik = max{ti j ≤ τk, j = 1, · · · ,ni}, i = 1 · · · , p.

The realized co-volatility is defined to be a p× p matrix Σ̂y(1) whose (i1, i2) element
is given by

Σ̂y(1)[i1, i2] =
m

∑
k=1

[Yi1(τi1,k)−Yi1(τi1,k−1)] [Yi2(τi2,k)−Yi2(τi2,k−1)].

We estimate Σx(1) by Σ̂y(1). Hayashi and Yoshida (2005) showed that when there
is no microstructure noise and m ∼ n, m1/2 (Σ̂y(1)−Σx(1)) has asymptotic mixed
normal distribution. Their result implies that as n→ ∞,

Σ̂y(1)−Σx(1) = OP(n
−1/2).
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Zhang (2006) proved that with i.i.d. microstructure noise and m∼ n2/3,

Σ̂y(1)−Σx(1) = OP(n
−1/3).

We apply the realized co-volatility to the price observations on the �-th day and
obtain the realized co-volatility estimator Σ̂y(�) of integrated volatility Σx(�) on the
�-th day. Above asymptotics imply that

Σ̂y(�)−Σx(�) = OP(n
−η), �= 1, · · · ,L, (5)

where η is equal to 1/3 for i.i.d. noise and 1/2 for no noise in the price data.
However, since there are other sources of randomness in the data, such as price
discreteness and non-synchronization errors, Wang and Zou (2010) showed that
the rate η is on the order of 1/6. Subsequently, Tao et al. (2011) established the
optimal minimax risk for estimating large volatility matrix under the subguassian
tail assumption.

3 Numerical Studies

3.1 Portfolio Optimization with Low Frequency Data

First, we applied our methodology to the daily closing prices of Dow 30 stocks
in 2011. The data are publicly available in many online search engines such as
Yahoo Finance. Since the number of stocks we considered here is 30, we calculated
the minimal variance portfolio consisting from 2 stocks to 30 stocks. The main
challenge here is the possible portfolio combination increases exponentially when
the number of stocks increases. If considering all the possibilities, the total case
would be on the order of 230. This would be prohibitive to do in real applications.
Hence we resort to sampling method to get around this issue. For a fixed number
of stocks, we randomly generate 10,000 samples from the 30 stocks and then
performed the calculation of yield and variance based on each subsample. We
recorded the global minimal variance portfolio and the corresponding sharp ratio,
which is defined as

S =
E[R−R f ]

σ
=

E[R−R f ]√
var[Ra−Rb]

. (6)

with R f being the risk free rate. It is a measure of the excess return (or risk premium)
per unit of deviation in an investment asset, typically referred to as risk (and is a
deviation risk measure).

In most cases, the maximum sharp ratio first increases when we include more
stock but decreases when the number of stock exceeds certain threshold (Fig. 1a).
For each day, the cusp point is different, ranging from two to seven visually. If we
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Fig. 2 The distribution of maximum sharp ratio if sampling 10,000 compared with that with
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take the transaction fees into consideration, it may even support the preference of
choosing those portfolios consisting of small number of stocks. The maximum sharp
ratio across trading days can vary a lot (Fig. 1B) and its volatility is highly correlated
with the market performance (Fig. 1C).

To check how the number of sampling could affect the possibility of capturing
the maximum sharp ratio, we run another experiment with 100,000 sampling and
the comparison is shown in Fig. 2. With the increased number of sampling, the
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distribution of maximum sharp ratio does shift right a little. Overall the difference is
not significant. Considering the big increase of computational cost when increasing
the sampling from 10,000 to 100,000, we kept the sampling to 10,000 in the
following experiments.

3.2 Portfolio Optimization with High-Frequency Data

We downloaded the intra-day stock prices from the TAQ database and synchronized
the time point. With high-frequency data, we estimated the variance matrix between
the 30 stocks for each day. Then we performed the same workflow again. The
relationship between the maximum sharp ratio and the number of stocks shown in
the low frequency data still holds (Fig. 3a) though in someday the maximum sharp
ratio keep increasing or decreasing or stable when changing the number of stocks in
the portfolio.

The maximum sharp ratio across trading days (Fig. 3b) also varies a lot since the
co-volatilities between stocks are more dynamic. Figure 3b also shows volatility
clustering, leverage effects, and the non-stationary process of the stock price
movement. The portfolio based on high-frequency data can achieve much higher
sharp ratio during the high volatility range of the whole market when compared
with Fig. 1b. This relatively strong performance is universal for the global minimum
variance portfolio consisting of from 2 stocks to 30 stocks (Fig. 3a). From the
comparison of the distribution of those larger than zero maximum sharp ratios
between high-frequency data and low frequency data (Fig. 4), we could see that
sharp ratios from high-frequency data have a more disperse range and right shift
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towards higher values than those from low frequency data. It attributes to the fact
that high-frequency data could capture the true co-volatilities between stocks.

We also checked the composite of the maximum sharp ratio portfolio. Figure 5
shows an example of the maximum sharp ratio portfolio of five stocks. The
composite changes across trading days, indicating rebalance is needed to keep
maximum sharp ratio. Nevertheless, some interesting patterns conform to our
existing knowledge. For example for the technical stocks, GE, CSCO, INTC, and T
closely clustered together. Also PG and JNJ, BA and UTX form a cluster implying
their similarity in the underlying sector.
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4 Discussion and Conclusions

The portfolio optimization under the Markowitz’s framework has been applied
widely over the years among practitioners. While appealing in its simplicity, the
Markowitz’s portfolio fails to capture some important characteristics of the capital
markets, especially with wide availability of high-frequency financial data nowa-
days. This paper proposed an innovative methodology to perform asset allocation
using high-frequency data. The empirical comparison between portfolios using
low-frequency and high-frequency illustrated the efficiency of this method. For
technical details, please refer to Zou and Wu (2012). This methodology may be
applied to other applications such as transportation and logistics, where determining
allocations in a large pool of available resources is crucial. It could also be used in
spatio-temporal applications, where there are situations that we want to determine
optimal allocation of different monitoring stations.
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Applications of Functional Dynamic
Factor Models

Spencer Hays, Haipeng Shen, and Jianhua Z. Huang

Abstract Accurate forecasting of zero coupon bond yields for a continuum of
maturities is paramount to bond portfolio management and derivative security
pricing. Yet a universal model for yield curve forecasting has been elusive, and
prior attempts often resulted in a tradeoff between goodness-of-fit and consistency
with economic theory. To address this, herein we propose a novel formulation
which connects the dynamic factor model (DFM) framework with concepts from
functional data analysis: a DFM with functional factor loading curves. This results
in a model capable of forecasting functional time series. Further, in the yield curve
context we show that the model retains economic interpretation. We show that our
model performs very well on forecasting actual yield data compared with existing
approaches, especially in regard to profit-based assessment for an innovative trading
exercise. We further illustrate the viability of our model to applications outside of
yield forecasting.
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1 Introduction

The yield curve is an instrument for portfolio management and for pricing synthetic
or derivative securities (Diebold and Li 2006). Our contribution to the yield
literature is pragmatic: we introduce a dynamic factor model with functional
coefficients which reconciles the theory-based desire to model yield data as a curve
with the applied need of accurately forecasting that curve over time.

It is of interest to know the yield for all maturities at each point in time (cross-
sectional), as well as for a single maturity as it evolves over time (dynamic).
Therefore, bond data have cross-sectional and dynamic correlational behaviors to
consider for predictive modeling.

Yield curve models have traditionally assumed either of a cross-sectional or time
series formulation. The former approach conforms to economic theory; for a given
date the emphasis is on fitting a yield curve to existing yields based on no-arbitrage
principles. The latter approach is the so-called equilibrium or affine-class models
where time series techniques are used to model the dynamics of yield on a short-
term or instantaneous maturity. Yields for longer maturities are then derived using an
affine model. In any sense, goodness of fit is paramount in a model for it to be of any
use. Still, a yield model should be consistent with its underlying theory and maintain
a degree of economic interpretation. Cross-sectional/no-arbitrage models ignore the
dynamics of yields over time; time series models place emphasis on dynamics at the
expense of theory.

Proposed in this chapter is a synthesis of the cross-sectional and dynamic
considerations mentioned above. We approach yield curves as a functional time
series; the yields of the observed maturities are a discrete sampling from a true
underlying yield curve. To this end we conflate concepts from functional data
analysis (Ramsay and Silverman 2002; 2005, FDA; e.g.,) and from dynamic factor
analysis/modeling (Basilevsky 1994, DFM; e.g.,). Ours is a dynamic factor model
with functional coefficients which we call the functional dynamic factor model
(FDFM). These functional coefficients, or, factor loading curves (FLCs) are natural
cubic splines (NCS): a significant result which facilitates interpolation of yields
both within and out of sample so that forecasts are indeed true yield curves. While
the factor loadings account for the cross-sectional/curve dimension of yields, the
dynamic factors, in turn, determine the evolution of these functions over time. Thus,
they account for the time series and cross-correlational nature of yield data.

Combining elements from functional data analysis (FDA) and dynamic factor
modeling (DFM) to forecast time series of yield curves is not necessarily a new
thing. Diebold and Li (2006) developed their Dynamic Nelson–Siegel model (DNS)
with functional coefficients which has spawned multiple variants (i.e., Koopman
et al. 2010). Also, Bowsher and Meeks (2008) use NCS in conjunction with
cointegrated latent factors. Though our FDFM is in a similar vein as those of the
aforementioned yield models, there are two notable distinctions. First, the FDFM
functional coefficients are estimated; thus, they are free to vary with the particular
application to explain the functional nature of the data. Second, estimation of the
FDFM is achieved in a single step.
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Presented in this chapter is our FDFM which we show to perform very well
in regard to yield curve forecasting and also satisfies our two aforementioned
criteria: goodness of it and economic interpretability. Further, we do so in multiple
assessments which highlight the model’s capability of accurately forecasting in both
the statistical and financial (profit) sense.

2 Functional Dynamic Factor Models

Consider a general process of a time series of curves {xi(t) : t ∈ T ; i = 1, . . . ,n},
where T is some continuous interval and i indexes discrete time. We hypothesize
that each curve is composed of a forecast-able smooth underlying curve, yi(t), plus
an error component, �i(t), i.e.,

xi(t) = yi(t)+ �i(t). (2.1)

In practice, only a discrete sampling of each curve is observed. Specifically, for t ∈
T , consider a sample of discrete points {t1, t2, . . . , tm}with t j ∈ T for j ∈ {1, . . . ,m}.
Then denote xi j ≡ xi(t j) as an observed data at time i evaluated at t j. In terms of
forecasting, even if the cross-sectional dimension m is small enough for VAR or
DFM methods, there is nothing inherent or implicit in those frameworks to provide
direction in terms of forecasting an entire function for all t ∈ T . Thus, to forecast
the smooth curve yn+h(t) for some forecast horizon h > 0, we can synthesize the
DFM framework with methods from FDA.

2.1 The Model

Via this synthesis, we propose a model referred to as the FDFM. The formulation
is similar to that of a DFM where the observed data {xi j} is a function of a small
set of K latent dynamic factors {βik;k = 1, . . . ,K} and their corresponding factor
loadings. But in this setting the factor loadings fk j ≡ fk(t j) are discrete samples
from continuous, unobserved though nonrandom FLCs fk(·). Together, the dynamic
factors with their functional coefficients generate the forecast-able part of the time
series of curves {xi(t)}.

In theory, the dynamic factors can follow any type of time series process such as
(V)ARIMA, but for the purpose of this method we focus on factors with stationary
and independent AR(p) errors. These factors can include explanatory variables or
just a constant; here we will consider only the latter. A complete discussion of
the former can be found in Hays et al. (2012a;b); Judge (1985) provides a good
reference for the procedure in general.

The order of the AR processes may differ among factors, but for notational
simplicity here we assume it is the same for all. For the model to be identified,
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we require that the functional coefficients are orthonormal, although other types
of constraints may be employed to ensure identification (i.e., conditions on the
covariance functions). The model is explicitly stated as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi(t j) = ∑K
k=1 βik fk(t j)+ �i(t j),

βik = ∑p
r=1 ϕrkβi−r,k + vik,

∫
T fk(t) fl(t)dt =

{
1 if k = l,

0 otherwise,

(2.2)

with �i(t j)≡ �i j
i.i.d.∼ N(0,σ2), vik

i.i.d.∼ N(0,σ2
k ) and E[vik�i′ j] = 0 for i, i′ = 1, . . . ,n.

This is a broad framework that includes the standard versions of both DFMs and
FPCA models: when the coefficients { fk(t)} are nonfunctional, Model (2.2) reduces
to the standard DFM; when the factors {β k} are non dynamic, the model is similar
to FPCA.

2.2 Estimation

With the error assumptions for Model (2.2) we propose estimation via maximum
likelihood (ML). To ensure smooth and functional estimates for the FLCs, we
augment the likelihood expression with “roughness” penalties (Green and Silverman
1994) and maximize a penalized likelihood expression. Because our dynamic
factors are unobserved, we consider this a problem of missing data and use the
expectation maximization (EM) algorithm (Dempster et al. 1977) to estimate model
parameters and smooth curves.

2.2.1 Penalized Likelihood

Let the n×m matrix X denote collectively the observed data where the (i, j)th
element of X is xi j for i = 1, . . . ,n, j = 1, . . . ,m. The rows of X correspond to
yield curves for a fixed date; the columns are the time series of yield for a specific
maturity. Next, we denote fk j = fk(t j), the row vector fk = [ fk1, . . . , fkm], and
F′ = [f′1, . . . , f

′
K ]. In a similar manner, we define β k = [β1k . . .βnk]

′ and the matrix
Bn×K = [β 1 . . .β K ]. Thus the columns of B are the time series factors β 1, . . . ,β K .
Then, the Model (2.2) is represented in matrix form as

Xn×m = Bn×KFK×m + �n×m =
K

∑
k=1

β kfk + �, (2.3)

where � = [�i j ]n×m with �i j = �i(t j).
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To derive the log-likelihood expression, we rely on successive conditioning of
the joint distribution for X and B:

l(X,B) = l(B)+ l(X|B). (2.4)

We have assumed that the K factors of AR(p) series are independent, thus their joint
distribution is the product of the individual distributions. To each of those, we further
condition on the first p values of each factor time series; thus our likelihood (2.4) is
a conditional one.

To ensure each fk(·) is smooth, following Green and Silverman (1994) we
include roughness penalties in solving for the K FLCs fk. These terms place
a condition on the second derivative of each function fk(·) to ensure that the
function is not too “rough.” Combining the likelihood expression with the roughness
penalties, we obtain the following penalized log-likelihood:

lp(X,B) = l(B)+ lp(X|B)≡ l(B)+

[

l(X|B)+
K

∑
k=1

λk

∫ [
f ′′k (t)

]2
dt

]

. (2.5)

The penalty parameter λk controls how strictly the roughness penalty is enforced,
and we allow it to differ for each loading curve (discussed in Sect. 2.4). We refer to
the latter term in (2.5), lp(X|B), as the penalized sum of squares (PSS). Intuitively,
optimization of PSS balances a familiar goodness-of-fit criterion with a smoothness
requirement for the resulting estimates of fk(t).

Thus, to estimate the model, we will optimize the penalized, conditional log-
likelihood lp(X,B) with respect to the set of parameters and FLCs. Because B are
unobserved, we treat their absence as a missing value problem and use the expec-
tation maximization algorithm (Dempster et al. 1977) to optimize Expression (2.5).
Before this is discussed in Sect. 2.2.3, we will currently assume the dynamic factors
are known.

To estimate the loading curves fk(t), according to Theorem 2.1 of Green and
Silverman (1994), for fixed k, the minimizer f̂k(·) of PSS is a natural cubic spline
with knot locations t1, . . . , tm. Further, this NCS interpolates the discrete row vector
f̂k which is the solution to the minimization problem

min
fk

[
l(X|B)+λkfkΩf′k

]
, (2.6)

where Ωm×m is a matrix determined solely by the spline knot locations.

2.2.2 Connection with Natural Cubic Splines

The origin of the penalty matrix Ω from (2.6) stems from Green and Silverman
(1994). Conceptually, functions of first and second differences of each fk j serve as
derivatives of fk(t) evaluated at t j; see Hays et al. (2012a) for details. The important
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concept is that the matrix Ω depends only on the observed values for t j. This
facilitates a rather useful result based on Theorem 2.1 of Green and Silverman
(1994).

Proposition 2.1. For fixed k, the f̂k(·) optimizing PSS in (2.5) is a natural cubic

spline with knot locations at t j, and
∫ [

f ′′k (t)
]2

dt = fkΩf′k.

2.2.3 EM Algorithm

First introduced by Dempster et al. (1977), then refined by Meng and Rubin (1993),
the EM is an iterative method by which to impute missing data with values based
on conditional expectations using the observed data. First, the EM is inaugurated
with initial values for the factors and FLCs. From these initial values, maximum
likelihood estimates for the parameters are calculated based on (2.5); we call this
Step 0. Then the algorithm alternates between the E-step and the M-step. In the
E-step, values for the factor time series are calculated as conditional expectations
given the observed data and current values for the MLEs. In the M-step, MLEs are
calculated for the FLCs and other parameters based on the factor scores from the
conditional expectations in the E-step. After the initial step, the E-step and the M-
step are repeated until differences in the estimates from one iteration to the next are
sufficiently small.

Step 0: Akin to the method used in Shen (2009), initial values for B are composed
of the first K singular values and left singular vectors from the singular value
decomposition (SVD) of the data matrix X. Initial values for F are the corresponding
right singular vectors. From these, initial parameter estimates are computed for σ2

and the set of factor parameters {σ2
k ,ck,ϕ1,k, . . . ,ϕp,k}.

The E-Step: Derivation of the conditional moments for the E-Step requires the
expressions of some of the unconditional moments. Let X≡ vec(X) and β ≡ vec(B).
Then (2.3) can be rewritten as

X = (F′ ⊗ In)β + vec(�) =
K

∑
k=1

(fk⊗ In)β k + vec(�). (2.7)

Define the n× n variance matrix for β k as Σk, and let c be the K× 1 vector with
elements ck/[1− (∑p

r=1 ϕr,k)]. Then

E[β ]≡ μβ = c⊗ 1n E[X]≡ μX = (F′ ⊗ In)μβ

Var[β ]≡ Σβ = diag{Σ1, . . . ,ΣK}Cov[β ,X]≡ Σβ ,X = Σβ (F⊗ In) (2.8)

Var[X]≡ ΣX = (F′ ⊗ In)Σβ (F⊗ In)+σ2Inm.
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Next, using properties of multivariate normal random vectors, the conditional
distribution of β |X can be found. Let

(
β
X

)
∼ N

[(
μβ
μX

)

,

(
Σβ Σβ ,X

ΣX,β ΣX

)]

.

Then
⎧
⎪⎪⎨

⎪⎪⎩

μβ |X ≡ E[β |X] = μβ +Σβ ,XΣ−1
X (X− μX),

Σβ |X ≡Var[β |X] = Σβ −Σβ ,XΣ−1
X ΣX,β ,

E[ββ ′|X] = Σβ |X + μβ |Xμ ′β |X.
(2.9)

From a computational standpoint there is concern over the inversion of ΣX which
is of order nm. However it can be shown (Hays et al. 2012a, i.e., see) that a Sherman–
Morrison–Woodbury factorization (Press et al. 1992, e.g.,) reduces to K, n× n
inversions rather than a single from an nm× nm inversion.

With the conditional moments, the E-step of the EM posits that the latent time
series factors are replaced with the known values of the conditional distribution
given X. Values for terms like βik come directly from the vector μβ |X and cross-

factor terms like βik′βhk are obtained from the E[ββ ′|X] matrix.

The M-Step: For each EM iteration, the M-step optimizes the conditional pe-
nalized log-likelihood in (2.5) given the observed data and the current parameter
estimates for Θ. The M-step, then, is just a matter of making these substitutions into
the likelihood and solving for the MLEs. After the M-Step, we return to the E-Step
to update the values for the factor time series. This procedure is repeated until the
parameter estimates from one iteration of the EM are sufficiently close to those of
the next.

2.3 Forecasting and Curve Synthesis

Forecasting is straightforward: for illustrative purposes, suppose we estimate our
FDFM with K factors following an AR(1) process with constants {ck}, k = 1, . . . ,K.
Then the h-step ahead forecasted curve x̂n+h|n(t) is based on the components of the

forecast of the factor time series β̂n+h|n,k and the estimated FLCs f̂k(t):

{
x̂n+h|n(t) = ∑K

k=1 β̂n+h|n,k f̂k(t)

β̂n+h|n,k = ĉk + ϕ̂kβ̂n+h−1,k = ∑h−1
r=0 ϕ̂rĉk + ϕ̂h

k βnk.
(2.10)

The NCS result of Sect. 2.2.2 ensures we can interpolate f̂k(t) to any degree
of fineness between any two knot locations t j and t j+1. See (Green and Silverman
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1994) for the specific formulation. It is worth noting that for t < t1, or t > tm, the
f̂k(t) is a linear extrapolation. Using this method together with (2.10) we can impute
and forecast at the same time; a result that enables, e.g., yield forecasts for bonds of
maturities that have not been observed.

2.4 Computational Efficiency

The estimation algorithm using the iterative EM with this FDFM formulation can
be computationally intensive. However, in addition to the factorization of ΣX, two
further results hasten computation and convergence. Generalized cross validation
(GCV) based on column-deletion of X can be used to solve for each optimal λk

and with some algebraic manipulation, this often time-consuming iterative method
reduces to a rather time efficient algorithm.

In the M-step, when products of the factors appear, such as 〈β k,β h〉 =
E[〈β k,β h〉|X], then the imputation comes from the E[β β ′|X] matrix. It can be
shown that Σβ |X is block diagonal; this property facilitates a rather convenient
result regarding between-factor cross products. It can be shown that the conditional
expectation of a product of two (distinct) factors is simply the product of their
individual expectations. This greatly simplifies the M-step calculations. See Hays
et al. (2012a;b) for details.

3 Application to Yield Curve Data

In this section we consider the application of our FDFM to actual yield data. We use
the same data as Diebold and Li (2006)1 which is a sample of monthly yields on
zero coupon bonds of 18 different maturities (in months):

t j = {1.5,3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120},

j = 1, . . . ,m = 18. The yields are from the period January 1985 through December
2000 (192 months) originally obtained from forward rates provided by the Center
for Research in Securities Prices (CRSP), then converted to unsmoothed Fama-Bliss
yield rates; see Fama and Bliss (1987) for further details on the method.

1See http://www.ssc.upenn.edu/∼fdiebold/papers/paper49/FBFITTED.txt for the actual data.

http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED.txt
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3.1 Candidate Models

In the following sections we compare the FDFM with the DNS model presented in
Diebold and Li (2006). Their model is composed of three factors with corresponding
FLCs. The factor loadings are pre-specified parametric curves (see the dashed
curves in Fig. 1) based on financial economic theory. Let xi(t) denote the yield
at date i on a zero coupon bond of maturity t, then the DNS model is represented as

⎧
⎪⎪⎨

⎪⎪⎩

xi(t) = ∑3
k=1 βi,k fk(t)+ �i(t), for i = 1, . . . ,n,

f1(t)≡ 1, f2(t)≡ 1−exp(−αit)
αit

, f3(t)≡ f2(2)− exp(−αit),

βi,k = ck +ϕkβi−1,k + ζi,k, for k = 1,2,3,

(3.1)

evaluated at maturities t j, j = 1, . . . ,m. The first loading curve f1(t) is constant
and intended to represent the long-term component of yields (level); the second
f2(t) represents a short-term component, or slope. Finally, the third loading f3(t)
represents a mid-term component, or curvature. The parameter αi determines the
point t∗(αi) at which f3(t) achieves its maximum. While this can be estimated as a
fourth factor (see, e.g., Koopman et al. 2010), Diebold and Li (2006) set αi to a fixed
value for all i = 1, . . . ,n. This results in entirely predetermined, parametric curves.
The specific value α = 0.0609 is determined by their definition of “mid-term” as
t = 30 months.

Estimation of the DNS model is a two-step procedure. First, time series of
factor scores of β̂i,k are estimated by ordinary least squares (OLS) of xi(t j) on
[1, f2(t j), f3(t j)] for j = 1, . . . ,m at each time point i = 1, . . . ,n. Second, an AR(1)
model is fit on each series β̂i,k for the purpose of forecasting β̂n+1,k and ultimately
x̂n+1(t j) via (2.10) from Sect. 2.3.

3.2 Assessment

We assess the performance of the FDFM in three distinct exercises. The first two
are traditional error-based assessments of forecasts or within-sample predictions
of yield curves or sections thereof. The final application is a combination of both
forecasting and curve synthesis. Through an adaptation of the trading algorithms
introduced in Bowsher and Meeks (2008), we develop trading strategies based on
the forecasts of the FDFM and DNS models and assess the resulting profit generated
by each.

For each of these, as a comparison, we use the DNS specification aforementioned
above in Sect. 3.1. For the purpose of making an unbiased comparison, we use a
similar formulation of our FDFM model with 3 factors following independent AR(1)
processes. The key distinction between this FDFM model and the DNS model is that
the FDFM estimates the model simultaneously, while the estimation for the DNS
model requires two steps.
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Fig. 1 Example of factor loading curves: FDFM curves (solid, left axis) estimated from the period
May 1985 to April 1994; pre-specified DNS curves (dashed, right axis). FDFM estimates closely
resemble the shape of the DNS curves for the second and third factors. Dual axes have been utilized
to account for difference in scale.

Figure 1, Panels (a) and (b), show an example of the FLCs estimated by the
FDFM (solid line) for the period May 1985 through April 1994. Pictured alongside,
the dashed line plots the DNS model curves. Recall the DNS motivation for the form
of f1, f2, and f3 was an economic argument, while the formulation of the FDFM
described in Sect. 2 is based entirely on statistical considerations. Despite this, we
see that the FDFM model is flexible enough to adapt to a specific application. FLCs
f2(t) and f3(t) from the FDFM assume the behavior of those from the DNS model
without imposing any constraints that would force this. Thus, the FDFM inherits the
economic interpretation of f2(t) and f3(t) set forth in Diebold and Li (2006). We
consider the first FDFM factor loading curve (not pictured) as the mean yield.

3.2.1 Forecast Error Assessment

In this section, we compare the FDFM and DNS models using a rolling window of
108 months to forecast the yield curve 1, 6, or 12 months ahead. Yields on bonds
of maturity less than 3 months are omitted in order to match the methodology used
in Diebold and Li (2006). To compare the models we use the root mean squared
forecast error (RMSFE):

RMSFE j =

√
r

∑
i=1

[xn+h(t j)− x̂n+h(t j)]
2

r
.

where r = 84,79,73 is the number of rolling forecasts for forecast horizon h =
1,6,12, respectively.
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Table 1 RMSFE: 1, 6, and 12 month ahead Yield Curve Forecast
Results. The better result between the two models is highlighted in bold.
RMSFE is typically lower with the FDFM for 1, 6 and 12 months ahead.

RMSFE
1 Month Ahead 6 Months 12 Months

Maturity DNS FDFM DNS FDFM DNS FDFM
3 Months 0.176 0.164 0.526 0.535 0.897 0.867
1 Year 0.236 0.233 0.703 0.727 0.998 0.967
3 Years 0.279 0.274 0.784 0.775 1.041 0.947
5 Years 0.292 0.277 0.799 0.772 1.078 0.953
10 Years 0.260 0.250 0.714 0.697 1.018 0.921

Table 2 Average RMSFE; FDFM as a fraction of DNS

Omitted 1 2 3 4 5 6 7 8
Short 0.88 0.95 0.94 0.87 0.99 0.99 1.34 0.92
Mid 0.97 0.90 0.98 0.93 1.01 1.00 1.11 1.17
Long 1.05 1.13 1.06 1.64 0.88 1.67 0.93 1.82
All 0.95 1.00 0.98 1.14 0.95 1.26 1.13 1.39

A summary of the forecasting performance is shown in Table 1. For month ahead
forecasts, the RMSFE is lower for all five displayed maturities. For 6 months ahead,
DNS outperforms FDFM just two out of five times. For 12-month ahead forecasts,
FDFM has lower RMSE for all five maturities.

3.2.2 Curve Synthesis

Because each factor loading curve f̂k(·) is an NCS, between any two observed
maturities t j and t j+1, we can calculate the value for f̂k(t). It follows, then, that
between any two time series of yields {xi(t j)}n

i=1 and {xi(t j+1)}n
i=1, we are able to

replicate an entire time series for the intermediate maturity t: {x̂i(t)}n
i=1.

To illustrate this point, we use the entire data set (see introduction of Sect. 3), i.e.,
use i = 1, . . . ,n = 192 months of yield data for maturities t j, m = 18. For both the
DNS and FDFM models, we delete a set of l = 1, . . . ,8 adjacent time series from
the data, estimate the model, then assess the prediction RMSFE of the predicted
series in reference to the actual deleted series. More information on the RMSFE
calculation can be found in the original paper Hays et al. (2012a).

Results are presented in Table 2 with FDFM as a fraction of DNS. In general,
as L increases we see the expected decline in the performance of the FDFM model
relative to DNS. The average RMSFE on short-term bonds for the FDFM remains
surprisingly robust as we delete more and more maturities. On mid-term bonds,
DNS results in lower prediction error when the number of deleted series reaches 5
or more. For long term, DNS more or less outperforms FDFM across the board (this
trend will be echoed in Sect. 3.2.3).
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3.2.3 Portfolio-Based Assessment

RMSFE-type assessment provides a good diagnostic measure of forecast perfor-
mance from a statistical perspective. In this section we consider an adaptation of
the profit-based assessment introduced in Bowsher and Meeks (2008). There they
considered three separate trading strategies and calculated cumulative profits over
the trading period. Here we present results for one of their strategies and comment
on the other two. Complete results for those can be found in the main paper of
Hays et al. (2012a). In any case, evaluation is based on the same concept: accurate
prediction of the expected spread between long and short positions. This serves as
a good capstone exercise for our presentation of the FDFM as it simultaneously
involves both forecasting and curve synthesis: the primary uses for our model.

We use the same rolling window of 108 months as described in Sect. 3.2.1 so
that the trading algorithm is employed every month over the course of 84 months.
Each period i we create a portfolio consisting of a $1M purchase of one bond or
set of bonds and a corresponding sale of another bond or set of bonds for the same
amount. Therefore, the net investment per period is $0. The decision of which bond
to sell and which to buy is made based on the sign of the predicted spread in their
one period returns.

At time i + 1 we cash out our portfolio and record the cumulative profit over
the 84-month trading period. Denoting the yield at time i of a zero coupon bond of
maturity t months as xi(t), the price of the bond at time i is

Pi(t) = exp[−txi(t)]. (3.2)

Correspondingly, the price the next period (month) is then Pi+1(t − 1) =
exp[−(t−1)xi+1(t−1)] since in the month that has elapsed the maturity is reduced
by 1 month. We denote the one period return as

Ri+1(t) =

[
Pi+1(t− 1)

Pi(t)

]
− 1, (3.3)

and the log one period return as ri+1(t)≡ ln[1+Ri+1(t)]. Equations (3.2) and (3.3)
imply

ri+1(t) = txi(t)− (t− 1)xi+1(t− 1). (3.4)

Thus for a forecasted yield x̂i+1|i(t) we have r̂i+1|i(t) = txi(t)− (t− 1)x̂i+1|i(t− 1),
which is a combination of both actual and forecasted yields. We use the data
presented in the beginning of Sect. 3 and thus are limited to a set of non-
consecutive observed maturities. Akin to Bowsher and Meeks (2008), we rely on
linear interpolation of xi(t−1) to provide the yield for xi(t) and use the same random
walk forecast (RW) as a benchmark by which to compare models:

xi+1(t) = xi(t)+ηi+1(t), ηi+1(t)
iid∼WN(0,ν2), (3.5)

with forecast x̂i+1|i(t) = xi(t).
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Table 3 Optimal Pairs Portfolio.

Profit ($000) Profit ($000)
t1 FDFM DNS RW t1 FDFM DNS RW

Short 3 1,013 3,574 −228 Mid 21 1,246 202 680
6 1,381 2,828 −133 24 1,592 242 70
9 1,061 1,013 −297 30 2,284 203 −951

12 1,873 −367 −307 36 1,466 919 −173
15 1,519 −582 −432 Long 48 −361 589 236
18 1,081 −481 −263 60 740 339 −284

72 −131 −1 72

Optimal Pairs Algorithm. Our main strategy of focus is the most sophisticated
method by creating portfolios of an optimal pair of bonds each period i. Given a
fixed value of t1, we choose t2i to optimize the absolute spread in predicted return:

t2i = argmax
t =t1
|r̂i+1|i(t)− r̂i+1|i(t1)|. (3.6)

Because we examine multiple portfolios, we use a sparser set of maturities in
this exercise than previous, though of the same range. This set is defined by the
observed maturities in the beginning of Sect. 3: t1, t2i ∈ T = {4,7,10,13,16,19,
22,25,31,37,49,61,73,85}. We perform this exercise for all choices of t1 as long
as t1 < t2i and compare the results. Our investment rule di at time i and resulting
profit πi+1 the next period is:

di = $1M× sgn[r̂i+1|i(t2i)− r̂i+1|i(t1)],

πi+1 = di[Ri+1(t2i)−Ri+1(t1)]≈ di[ri+1(t2i)− ri+1(t1)].

We set di = 0 whenever r̂i+1|i(t2i) = r̂i+1|i(t1).
The results of the strategy are shown in Table 3. When the choice of t1 is 6

months or less, the DNS model generates greater cumulative profit than either of the
other models. However, when the choice of t1 is within 9 and 36 months, the FDFM
consistently generates significantly greater profit than the DNS and RW models.
Thus, when we are free to pick the bond that optimizes the predicted spread each
period, the FDFM performs rather well, provided the maturity of the first bond is
within a certain range.

Other Algorithms. Every period i we form a portfolio of sub-portfolios with two
bonds {t1, t2, j}. Define weights wj as the proportion of the historical absolute excess
return on portfolio {t1, t2, j} to the sum over all j of the same. Again cumulative profit
is calculated over the same trading period. Use of the FDFM model results in nearly
twice the cumulative profit produced from the DNS model. In the interest of space
the complete results cannot be displayed here but appear in Hays et al. (2012a).

In the optimal pairs algorithm above, the choice of the optimal second bond
can vary from one period to the next so it is not clear what a consistently
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good combination is. Thus, for the third strategy we consider an exploratory and
exhaustive approach as a diagnostic assessment of which combination of bonds our
model excels. In this modification of strategy 1 from Bowsher and Meeks (2008),
the portfolio is a simple one consisting of two bonds with maturities t1 and t2. For the
duration of the strategy, these maturities remain fixed over all periods. We examine
the cumulative profit of all combinations of this type or portfolio such that t2 > t1.

Once more, complete results can be found in Hays et al. (2012a), but briefly the
FDFM model typically has the greatest profit when t2 ∈ {30, . . . ,72}. These results
are consistent with Sects. 3.2.1 and 3.2.2: the FDFM was either comparable or better
on RMSFE for forecasting and for imputation on maturities in this range. We also
see a certain similarity in these results to those of the Optimal Pairs Algorithm.
Namely, that the FDFM typically outperformed the other two models when t1 was
exactly in this range.

4 Conclusion and Discussion

In this chapter we developed a method for modeling and forecasting functional
time series, specifically in the application to yield curve forecasting. This novel
approach synthesizes concepts from functional data analysis and DFM culminating
in an FDFM. The FDFM is both consistent economic-theory and exhibits accurate
goodness-of-fit. By specifying error assumptions and smoothness conditions for
functional coefficients, estimation by the Expectation Maximization algorithm
results in nonparametric FLCs that are NCS’. Thus for a given time series of curves
we can forecast entire curves as opposed to a discrete multivariate time series.
Indeed, this exciting new class of models is fertile for further development and
application.
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Mixed Modeling for Physician-Direct
Campaigns

Wei Huang and Lynda S. Gordon

Abstract Today, pharmaceutical companies leverage multiple channels, such as
sales rep visits, samples, professional journals, and even consumer mass media, to
reach out to physicians in order to increase product awareness and drug knowledge
to gain incremental market share or prescribing volume. Measuring the influence
of each individual channel is critical for future planning and resource optimization.
The analytic challenge occurs when physicians are exposed to multiple channels
simultaneously and the impact of each channel may have different life spans.
Traditional ANCOVA (analysis of variance with covariates) is no longer sufficient
to see the whole picture. In this paper, we will present a mixed modeling approach to
longitudinal data to answer two important business questions: (1) How effective are
different channels in promoting sales? (2) How should we allocate resources across
multiple channels?

1 Introduction

Pharmaceutical companies rely on product promotions to inform physicians and
other health care professionals (HCPs) of the existence and characteristics of
new product and to reinforce awareness of established products, especially those
facing branded competitors (Duetsch LL 1998). In 2008, pharmaceutical companies
spent at least $20.5 billion on promotional activities, excluding expense of the
free samples distributed to physicians, or around 10.8% of the US sales reported
by the Pharmaceutical Research and Manufacturers of America (PhRMA) (The
Congressional Budget Office 2009). In 2011, a projected $29 billion was spent on
promotion (SK&A 2012).
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During the past two decades, pharmaceutical companies have significantly
expanded their mix of ways to promote their products, first by shifting from heavily
relying on sale representative detailing to increased use of multichannel promotions
including both personal and nonpersonal and second, by expanding promotional
efforts beyond physicians and other HCPs to direct-to-consumer communications
consumers. The first change is partially due to harder access to physicians and other
health care providers (Grogan 2010) and the second change happened after the Food
and Drug Administration (FDA) issued draft regulatory guidance in 1997 allowing
pharmaceutical companies to list only major side effects and a toll free number or
internet address for details in their television ads (Duetsch LL 1998).

With so many channels, pharmaceutical company marketers need to answer
two important questions to optimize their promotion efforts: (1) How effective are
different channels in promoting sales? (2) How should we allocate resources across
multiple channels?

2 Data Collection

While pharmaceutical companies leverage different channels to reach out to physi-
cians or other health care professionals or consumers, data can be collected
from multiple points of interaction between patients, HCPs, and pharmaceutical
companies (Fig. 1).

Fig. 1 Communications and interactions: a measurement framework for pharmaceutical brand
promotion response and optimization
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Companies such as IMS Health or Wolters Kluwer (now Source Healthcare
Analytics) provide projected Rx Prescription sales at HCP level for most retail
brands. Sales of non-retail, or infusion or administered drugs cannot be tracked by
HCP and are not the focus of this paper.

For channels targeting HCPs directly, such as sales representative detailing and
sample distribution, data can be collected from internal sales and marketing teams
at HCP level, although competitor promotional efforts are not widely available. For
channels targeting consumers directly, we convert consumer impressions or reach
from these channels to HCP level metrics. For example, we use Gross Rating Point
(GRP) within DMA to capture the volume and frequency of TV Ads and use it as
model covariates in our analysis.

Physicians’ preference may vary significantly. Thus physicians’ demographics,
such as age and gender, as well as the patient demographics collected at zip-code
level based on proximity to HCP offices, could also shed light on behavior and thus
need to be included in the analysis.

3 Exploratory Data Analysis

Exploratory data analysis is a critical step in analysis as it helps us: (1) validate
the accuracy of data collected and (2) identify potential trend and outliers that can
guide model selection. In the example below (Fig. 2), we observe a sharp drop in

Fig. 2 Example of exploratory data analysis
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key weeks every year—this is resulting from sales representatives and HCPs taking
days off for holidays and need to be controlled in our model to avoid potential bias.

4 Lag and Decay of Impact

Unlike some consumer goods, where you may observe spike in sales shortly
after running TV ads, it sometimes takes time for promotion impact to manifest
in pharmaceutical marketing as patients need to make appointments with their
physicians to discuss the treatment and patients and physicians may need repeated
exposure to promotions to strengthen the impression and recall of drugs enough to
take actions. As a result, the impact could be lagged and the product recall will
decay over the time.

Properly identifying the delay and decay of promotion will be important to the
accurate measurement of channel impact.

In the example below, changes in sales happen 1 week after the TV Ad broadcast.
If a model tries to associate sales to GRPs in a non-lagged application, the results
will return a negative relationship between sales and promotion, as sales increase
when promotion volume is equal to zero. By lagging TV GRPs by 1 week, we can
properly align the promotion spending with their impact on sales (Fig. 3).

We adopt an ad-stock approach to estimate the appropriate level of lag and decay
for the effect of promotions: the effect of promotions extending several periods
after the original delivery. Figure 4 illustrates that different channels may have
dramatically different decay curves—in terms of curve shape or speed of decay.

To identify the most appropriate decay curves, we need to rely on the learning
from our EDA analysis and use prior knowledge and data to identify the right decay
curves.

After identifying the right lag and decay curves, we construct variable for each
promotion channel capturing all the current and carry-over effect from historical
promotions (Fig. 5).

Fig. 3 Example of lagged effect of TV Ad
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Fig. 4 Example of decay curves

Fig. 5 Example of derived vs. original channel promotion

5 Model Structure

Each channel may have a different structure of impact on sales. For example, while
samples may help physicians start trials with new patients, too many samples may
lead to Rx substitutions or cannibalization, i.e., physicians may give out more
samples than necessary for trial and end up with fewer prescriptions. TV ads, on the
other hand, may not be effective at low spending level as it will be hard to achieve
brand recognition and recall of ads among consumers without repeated exposures.

Figure 6 shows some common structures of impact. Samples could be structure
2 and TV ads should be structure 4.

After identifying the most possible structure(s) for each channel, we start to
analyze impact by channel using the following promotion mix model: yit = a0 +

μi +
n
∑

k=1
bk fk(xkit)+ εit , where yit is the Rx of HCP i in week t, μi ˜N(0, θ 2) is the
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random effect at HCP level, εit ˜N(0, σ2) is the random error, xk, k = 1, 2 . . . n
represents the aligned/delayed spending of channel k, and fk() is the structure of
that channel.

We normally try different model specifications and use out-of-sample validation
in addition to standard model fit criteria, such as AIC, BIC to select the final model.

6 Business Application of Model Results

Using the model results, we can now try to answer the two business questions:

1. How effective are different channels in promoting sales?
2. How should we allocate resources across multiple channels?

To understand the first question, we need to look at the estimated model
coefficients by channel and the corresponding response curves. The example in
Table 1 shows that HCPs are responsive to this channel, as increased promotional
level leads to higher sales, but the incremental return is diminishing as promotional
level goes up. If the current level of promotion is 200 units per week and cost per
unit is $1, Return on Investment (ROI)= 480:280= 1.71:1, i.e., on average, every
$1 invested in this channel brings $1.71 back. If we increase level of promotion
from 200 units per week to 250, we will be able to get additional $70 sales back, or
a net profit of $70–$50= $20, indicating that current spending level is too low. On
the other side, if cost per Unit is $2, we then over-spend in this channel, and cutting
back would help raise the profit.

To answer the second question, we need to compare the response curves across
multiple channels and take into consideration the total budget because, in most
cases, marketers only have limited resources at disposal. Let’s assume channel 1 has
the response curve in Table 1, its cost per unit is $1 and its current level of spending
is 200 units per week. Now, assume the brand team has an additional $50 to invest
and a new channel becomes available to them whose response is listed in Table 2:
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Table 1 Example of channel response

Unit of channel Sales Profit (cost per unit= $1) Profit (cost per unit= $2)

0 0 0 0
50 150 100 50
100 280 180 80
150 390 240 90
200 480 280 80
250 550 300 50
300 600 300 0
350 630 280 −70
400 640 240 −160

Table 2 New channel response

Unit of channel Sales Profit (cost per unit= $2)

0 0 0
25 78 53
50 150 100
75 218 143
100 280 180
125 338 213
150 390 240
175 438 263
200 480 280

(1) If brand team chooses to invest in existing channel, the incremental sales would
be $70 and the incremental profit will be $20 and (2) if brand team choose to invest
in the new channel instead, the increase revenue would be $78 and the incremental
profit will be $28. Obviously, to maximize the profit, brand team would choose to
invest the incremental budget in the new channel.

7 Case Study

A major pharmaceutical company spends millions of dollars each year promoting
one major product with annual sales close to $2 billion. The major promotion
channels include: rep detailing, samples, TV Ads, newspaper Ads, professional
journal ads, web banners, paid searches, etc. Table 3 shows a sample data that we
collect for each HCP.

Next step is to identify the Lag/Decay of each channel and calculate ad-stock
values for each channel. The example below (Fig. 7) shows that the correlation
between brand new prescriptions (NRx) and local newspaper spending peaks at
week 6. This is consistent with company’s expectation as patients need time to make
appointments with their physicians.
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Table 3 Example data

Doc ID Zip DMA Specialty Week
Brand
NRx

Market
NRx Details Samples

Local
News
Paper

National
TV
GRPs

001253 60453 CHICAGO PCP 4/16/2012 1 3.2 0 0 24.3 62.9
001253 60453 CHICAGO PCP 4/23/2012 0.5 2.2 4 10 24.3 65.9
001253 60453 CHICAGO PCP 4/30/2012 0 0 0 0 0 78.2
001253 60453 CHICAGO PCP 5/7/2012 2 4.2 3 5 0 6.4
001253 60453 CHICAGO PCP 5/14/2012 0 1 1 0 0 81.1
001253 60453 CHICAGO PCP 5/21/2012 1 2.5 1 5 24.3 18.0

0.25

Decay - Local Newspaper

0.15

0.05

-0.05

0.2

0.1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 7 Local newspaper
impact decay curve

Table 4 Regression results (Partial)

Variable Coefficient

Intercept 1.46
Details 0.82
Samples 1.12
HCP Journal 0.90
Newspaper 0.34
. . . . . .

The selection of the proper functional form depends on the brand knowledge
about the likelihood that marginal Rx return diminishes when spending increases.
In this case, eventually a power additive model was selected: NRxit = a0 + μi +

n
∑

k=1
bkx0.5

kit + εit .

Part of the regression results are listed above (Table 4):
Take details as an example. The average cost per prescription is $80 and for

every NRx, there are on average 1.3 refills. Thus 1 unit increase in NRx will lead
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Table 5 Details response

Details Incr. sales Cost of details Incr. profit

0 $0 $0 $0
1 $151 $90 $61
2 $213 $180 $33
3 $261 $270 −$9
4 $302 $360 −$58
5 $337 $450 −$113
6 $370 $540 −$170

to incremental sales of (1+ 1.3)× $80= $184. The cost per detail is $90. Thus we
can create channel response for details using Incr.Sales = 0.82×Details0.5.

In this example, we should invest no more than two details per week for a HCP
to maximize brand profit (Table 5).

By comparing the responses across different channels, we can optimize the
resource allocation.

8 Conclusions

Pharmaceutical companies heavily rely upon promotions to reach out to HCPs and
patients to build brand recognition to gain market share and brand volume. Yet
different channel’s effectiveness could vary widely so promotion mix is important
and it will influence the top line as well as the bottom line of a brand.

To understand the impact and contribution of each individual channel, we need
to better understand the data we can access and gain insights about channel, such as
lag and carry-over effects, by carefully studying the data.

Once we understand how each channel works, we can use promotion mix model
to estimate channel impact and use that information to guide our future resource
allocation to optimize sales.
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Uplift Modeling Application and Methodology
in Database Marketing

Junjun Yue

Abstract While there is a broad consensus that incrementality is the accurate
measurement of database marketing impact, few marketing activities today are
focused on uplift effect; because most of the target campaigns are selected by
leveraging propensity models which maximize the gross response or demand. In this
paper, we will introduce a tree-based uplift modeling methodology, which optimizes
true marketing profitability. We will also discuss the major stages involved in this
approach, with a real-life example from analytic services in the specialty retail
industry.

1 Introduction

As a common practice in database marketing, we use response, conversion, and
customer value models to optimize campaign response and revenue. These models
predict the conditional probability or mean due to a market treatment, and they
all fall under the general umbrella of propensity modeling—which is a statistical
scorecard to predict the response likelihood or total expected purchase once a market
treatment is given to the target audience. The treatment here could be a catalog mail,
a discount offer, a creative message, or etc. Years of experience proved that these
models worked well, achieving phenomenal return on investment (ROI) for database
marketers through refined audience selection.

Propensity Modeling : F(Response |Treatment)

F denotes the conditional probability or mean due to a market treatment
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However, media mix and multiple touches make these propensity models less and
less efficient because a lot of target population no longer needs market treatments
and they will respond any way. These “natural” responders come onboard due to
established brand awareness and loyalty. This trend emphasized the importance of
uplift modeling, which is to predict change in behavior from different treatments,
e.g., mail vs. non-mail.

Uplift Modeling : F(Response |Treatment A)−F(Response|Treatment B)

F denotes the conditional probability or mean due to a market treatment

2 Uplift Modeling Applications

Overall, there are two broad applications of uplift modeling in database marketing.
One category is to identify customers with decent ROI via marketing treatment vs.
non-treatment. For example, a catalog retailer may want to de-select customers with
low or even negative purchase incremental from its catalog circulation; credit card
companies will target credit line increase offers only to those customers who are
likely to increase their spending and revolving dramatically which can offset the
increased credit risk exposure. The other category is to segment customers based
on different treatment preference. For example, an insurance company may want to
improve quote conversions by allocating either a local agent or a remote dialer to
contact a prospect based on predicted customer preference; a retailer will want to
increase customer communication effectiveness by optimizing channel preferences
(e.g., direct mail vs. email), offer preferences ($ Off vs. % Off; Product Focused
vs. Discount Focused), frequency preferences (2 emails per week vs. 5 emails per
week), etc.

3 Challenges of Uplift Modeling

Compared with traditional propensity models, there are four challenges for uplift
modeling.

The first challenge is that one cannot pinpoint who provide incremental value at
the individual level, the uplift impact of a specific marketing campaign has to be
observed at population level. Otherwise, a traditional propensity model will suffice.

The second challenge is that uplift model will be much more unstable compared
to gross propensity model. To illustrate this, let’s assume a propensity model
and we’ll evaluate the model based on a 100 K random sample from the entire
population. The top decile customers show a response rate of 5% and represent
10 K records which are 10% of the random sample. According to sample statistics
and Central Limit Theorem, we can derive the actual response rate to fall in the range
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of (4.6%, 5.4%) at 95% confidence level. The one-side deviation (0.4%) is only 8%
of the observed response rate (5%). Now, let’s look at an uplift model scenario and
we’ll need two additional inputs to get a feel of its volatility. One of the inputs
is uplift percent due to the market treatment vs. non-treatment, in my retail CRM
(customer relationship management) experience, 30% is a fair assumption. This is
basically saying that the customers who receive direct marketing communication
will have 30% higher response rate than those similar customers who are not
communicated. The other input is treatment and non-treatment split in the sample
data. Since uplift impact could only be observed at population level, a holdout
(non-treatment) group is imperative. And we can assume 50–50 split which will
mathematically minimize the volatility of uplift measurement. So in this case, we
have 5 K top decile customers with treatment and show a response rate of 5%, and
we have another 5 K top decile customers without treatment and show a response
rate of 3.8% (5%/(1+ 30%)). Again according to sample statistics and Central Limit
Theorem, the point estimate of uplift impact is 1.2% while the 95% confidence
range is (0.4%, 2.0%). The one-side deviation (0.8%) is about 70% of the observed
incremental response rate (1.2%).

The third challenge is that uplift modeling needs better planned sampling strategy
compared to propensity model setup. Firstly, uplift modeling needs randomized
treatment group as well as randomized holdout (or alternative treatment) group.
Secondly, due to the much higher volatility encountered by uplift measurement,
much larger sample size is needed to construct a robust uplift model compared
with propensity models. In practice, we normally accumulate enough samples
over multiple months even across a year instead of recommending an interruptive
sampling in a short period of time.

The fourth challenge is that uplift modeling results often show counterintuitive
results compared with propensity models. Most variables in final uplift model are
very different compared with propensity models; and sometimes, the best customer
segment from propensity models is the worst segment identified by uplift modeling
since those folks are already over communicated or they have well established brand
loyalty. The Pareto 20–80 principle suggests us to focus on the best customers,
while the uplift modeling frequently suggests we should leave the best customers as
they are and stop bothering them with marketing efforts. Although uplift modeling
better optimizes true campaign impact, its high volatility (described as the second
challenge) increases the likelihood of misclassification. In practice, we often overlay
uplift model with propensity model to reduce the risk.

4 Uplift Modeling Methodology Review

In practice, there are four methods commonly used to investigate uplift effectiveness
of direct marketing campaigns.

The first approach is two-model approach and there are three steps involved in
this solution. Firstly, build a traditional propensity model on the sample records with
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Illustration 1 Two-model approach

treatment; secondly, build a traditional propensity model on the sample records with
no treatment or with alternative treatment; thirdly, develop uplift ranking criteria
either by taking difference of the two model scores or by crossing tab the two model
score segments. The advantage of two-model approach is that it leverages existing
propensity model framework to the greatest extent so that it is simple to do. But the
two-model approach tries to capture uplift impact through predicted model scores
instead of modeling the actual uplift impact directly, and in only a few occasions,
the two-model approach works as expected (Illustration 1).

The second approach is interaction modeling approach proposed by Lo (2002)
and there are four steps involved in this solution. Firstly, combine treatment and
non-treatment (or alternative treatment) observations into one dataset and create a
treatment flag to indicate whether a treatment was applied to the customer or not,
normally we set the flag to be 1 if the treatment was applied in the campaign and 0 if
otherwise; Secondly, for all the independent variables V1, V2, . . . , VN for modeling,
we create interaction variables IV1, IV2, . . . , IVN where IVN =Flag×VN ; thirdly,
develop a model with intercept, main effects, treatment flag as well as interaction
effects. For example, the model function form could be:

Y = a0 + a1×V1 + a2×V2 + a3×V3 + b0×flag+ b1× IV1+ b2× IV2 + b3× IV3

Intercept—a0, Main Effects—a1×V1+a2×V2+a3×V3, Treatment Flag—b0×
flag, Interaction Effects—b1× IV1 + b2× IV2 + b3× IV3

And finally, derive uplift model function form from the overall model developed
in step three by just keeping the model terms with treatment flag and interaction
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Illustration 2 Interaction modeling approach

effects while setting flag to be 1. For example, the final uplift model from the
function form example above is:

Y = b0 + b1×V1 + b2×V2 + b3×V3

The interaction modeling approach can theoretically optimize campaign uplift
impact and will enable granular decision making in terms of uplift impact because
each individual is scored with an uplift estimation. However, in practice, this
approach often does not provide robust uplift results. This is possibly because the
interaction variables selected from the modeling process are significantly correlated
with gross response or demand, but not uplift impact (Illustration 2).

The third approach is a test design approach on predefined segments by
leveraging business knowledge. For example, in order to investigate optimal email
frequency, marketing practitioners often segment customers based on their historical
RFM (recency, frequency, and monetary—how recent do they purchase, how
frequent do they purchase, and how much do they purchase) as well as email open
and click activities. And for each segment, we reserve enough sample size to observe
the uplift impact of different treatments. As advantages, this approach utilizes
existing business knowledge and frames uplift problems in a continuous test-learn
agenda; also the sample size calculation through historical mean, historical standard
deviation, practical significance, significance level, and power will guarantee us to
have a significant uplift observation for predefined segments. But the predefined
segments may not be the optimal segments to start with in terms of uplift impact
and this approach does not have much flexibility to explore other dimensions which
could be predictive of uplift impact; and the total test sample size needed increases
quickly along with the expanded granularity of predefined segments.
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Illustration 3 Decision tree approach

The fourth approach is the decision tree approach which is aimed to identify
the best variable as well as the best cutoff value of the variable for each binary
split one at a time. Hansotia and Rukstales (2002) uses maximization of the
difference in outcome between the two subpopulations (double difference ) as the
split criterion. Radcliffe and Surry (2011) proposes minimization of the difference
in size between the two subpopulations as a second splitting criterion based on the
facts that small segmented populations usually exhibit extreme outcome. The author
developed a decision tree uplift modeling SAS application based on the criteria of
(1) maximization of the difference in outcome between the two subpopulations; (2)
pass of significance tests for each split; and (3) optional penalty for unbalanced
split. And the author’s methodology will be detailed in next section of the paper. On
the positive side, the decision tree approach models uplift impact directly to drive
optimization and the results are usually relatively stable after significance check and
easy to explain. But on the negative side, this approach may not have enough sample
size to observe uplift impact to very granular level; and it only optimizes one split at
a time and does not consider possible interactions. Although decision tree approach
is not a perfect solution for uplift modeling as well, it still seems to gain popularity
in recent years (Illustration 3).

5 Tree-Based Uplift Modeling Methodology

To practically solve uplift related problems, the author developed a SAS application
tool by building significance-based decision tree to optimize marketing uplift
impact. The methodology is called SOS which stands for searching, optimization,
and significance test.
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5.1 Searching

This step is to go through all the variables as well as all the cutoff values of
each variable based on specified range and step for each split. The purpose is to
calculate the uplift statistics for the permutations of variables and variable cutoffs.
For example, 300 variables with 5% step in the range of 20–80% result in 3,900 =
(300× (80%− 20%/5%) + 1)) searching results. Once the optimal split of the
parent node is determined, the tree will continue evolving to the next level based on
recursive algorithm.

5.2 Optimization

This second step is to pick up the best split from all the possible permutations for
each level of the tree. For each potential variable (X) and its possible cutoff value
(A), the parent population will be split into two subpopulations—left branch (X≤A)
and right branch (X >A). And within each branch, there are two subgroups—
treatment A (e.g., mail) and treatment B (e.g., holdout). Uplift model works if and
only if there is a significant difference between left branch uplift impact ΔRRL =
RRL,A−RRL,B and right branch uplift impact ΔRRR = RRR,A−RRR,B, this is to
say, the absolute value of double difference |ΔRRL−ΔRRR| should be significantly
greater than 0. And among all the possible splits which result in significant double
difference, the best split is to maximize double difference |ΔRRL−ΔRRR|, and with
an optional subjection to the penalty of unbalanced split. The optional penalty factor
the author applied in the tool is:

1/

(

1− fP

∣∣
∣
∣
NL−NR

NL +NR

∣∣
∣
∣

k
)

fP: Penalty flag, 1 indicates application of unbalance split penalty; 0 indicates
otherwise.
NL: Total number of observations (treatment A + treatment B) in the left branch of
the split.
NR: Total number of observations (treatment A + treatment B) in the right branch
of the split.
k: Penalty severity factor, k→ 0 indicates severer penalty of unbalanced split; k→
+∞ indicates otherwise.

To allow more flexibility, the tool not only gives the best split information but also
gives alternative significant splits based on optionally penalized double difference
in a descending order. The reasons to provide alternative splits are:

• The best split may be purely derived from data mining and does not make
business sense to marketers.

• The variable used as best split may not have good trend of uplift effect compared
with other alternatives. For example, an upward or downward uplift sloping curve
may be more ideal and robust for uplift modeling.
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5.3 Significance Test

This third step is to use various significant tests to prune split alternatives so that (1)
the best split automatically identified from the tool is robust to a great extent; (2) the
tool will only end up with a manageable number of alternatives to be considered as
uplift model splits.

The author incorporates two types of significance tests in the tool, they are (1)
approximate U test; (2) contrast among treatments test.

5.3.1 Approximate U Test

According to Central Limit Theorem, the sample means RRL,A, RRL,B, RRR,A,
RRR,B (e.g., response rate, demand per circulation) in the uplift model are all
random variables with approximate normal distribution because we normally have
large enough (hundreds or thousands) observations in each of the four groups—
left branch treatment A, left branch treatment B, right branch treatment A, and
right branch treatment B. And since the individuals in each of the four groups
are mutually independent, the four random variables RRL,A, RRL,B, RRR,A, RRR,B

are mutually independent as well. One tractable property of normal distribution
is that: the linear combination of Independent random variables having a normal
distribution also has a normal distribution. So the uplift measurement (RRL,A −
RRL,B)− (RRR,A −RRR,B) turns out to be a random variable with approximate
normal distribution. Therefore, we can apply a normal test statistics with mean =

(RRL,A−RRL,B)− (RRR,A−RRR,B) and variance =
S2

L,A
NL,A

+
S2

L,B
NL,B

+
S2

R,A
NR,A

+
S2

R,B
NR,B

to

test the statistical significance of the double difference.

5.3.2 Contrast Among Treatments Test

The second significance test is derived from design of experiment. The uplift
modeling is pretty much a two-factor, two-level DOE (design of experiment)
framework. So the uplift problem could be rewritten as below:

μi, j,k = μ +αi +β j + γi, j + εi, j,k (i = 1, 2; j = 1, 2)

Hypothesis test : H0 : γi, j = 0; H1 : γi, j = 0

αi: Main effect of treatment, β j: Main effect of split, γi, j: Interaction effect of
treatment and split

And a contrast in the context of design of experiment is defined as a special form
of linear function of treatment group means, the mathematical expression is below:

C =
t

∑
i=1

kiμi = k1μ1 + k2μ2 + · · ·+ kt μt ; where
t

∑
i=1

ki = 0
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μi: Sample mean of treatment group i, ki: Numeric weight of treatment group i
Therefore, we can apply a t-test statistics with degree of freedom = N −

4 (N = NL,A +NL,B+NR,A +NR,B), mean = RRL,A−RRL,B−RRR,A +RRR,B, and

variance =
(

1
NL,A

+ 1
NL,B

+ 1
NR,A

+ 1
NR,B

)
×MSE to test the statistical significance of

the double difference.
And one interest relation between approximate U test and contrast among

treatments test is that their mathematical expressions are the same if the uplift model
sampling strategy is designed in a balanced way, i.e., treatment and non-treatment
(or alternative treatment) have same number of observations. The proof is below:

MSE =
(NL,A− 1)S2

L,A+(NL,B− 1)S2
L,B+(NR,A− 1)S2

R,A +(NR,B− 1)S2
R,B

NL,A +NL,B +NR,A +NR,B− 4

NL,A = NL,B = N1 and N1 is a large number

NR,A = NR,B = N2 and N2 is a large number

MSE≈
N1S2

L,A +N1S2
L,B +N2S2

R,A +N2S2
R,B

2(N1 +N2)

SC=

√
S2

L,A

NL,A
+

S2
L,B

NL,B
+

S2
R,A

NR,A
+

S2
R,B

NR,B
, where NL,A=NL,B=N1 and NR,A = NR,B = N2

6 Application of Tree-Based Uplift Modeling

One specialty retail client used campaign purchase models to make catalog cir-
culation decisions. Although those propensity models ranked very well in terms
of gross demand per circulation, we observed that the propensity models did not
drive incremental purchases very effectively. A lot of top spending customers,
especially those who are email-able and have fair amount of online web visiting
and purchase activities, have very little uplift impact via monthly catalog commu-
nications. Considering the expensive catalog dollar per book, an uplift model is
very appropriate to identify the low-incremental customer segments and cut back
circulation accordingly. As a first step, we recommended to set up 20 K random
mail as well as 20 K random control panels for 12 consecutive months (a balanced
design). As mentioned in the beginning of the paper, uplift modeling is much more
unstable compared with propensity modeling, and a large sample size is necessary.
A white paper by Portrait Software (2006) pointed out that they would not expect the
uplift modeling technique to work well on campaigns targeting fewer than 100,000
people. Once we accumulated the samples throughout the year, we divided the data



58 J. Yue

Illustration 4 Uplift model validation results

into 50% model development dataset and 50% out of sample validation dataset and
applied the uplifting modeling SAS application tool to the development data to train
the decision tree. Illustration 8 shows the uplift model validation results on the entire
12-month sample and samples of every two consecutive months. Although there
are volatilities from month to month, the uplift model generally holds well over
time. Through this initiative, we were able to identify ∼40% population with very
minimum incremental who can be reduced from catalog circulation (Illustration 4).

We also set up random mail and control panels in future campaigns to back-
test and verify uplift impact out of time across various mailing depths based on
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Illustration 5 Performance comparison—uplift model vs. propensity model

uplift modeling vs. traditional propensity modeling. The below results show that
uplift modeling outperforms propensity modeling regardless of channels (store
and online) and campaign metrics (response, orders) for this specialty retail client
(Illustration 5).

7 Summary

Compared with traditional propensity models, the uplift modeling is a preferred
methodology to maximize the true impact of marketing treatment. In this paper, the
author discussed the challenges of uplift modeling, as well as the four frequently
used approaches and their pros and cons.
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Comparing with the other three approaches, significance-based decision tree
is suggested by the author because (1) it models uplift impact directly; (2) it
is relatively robust after applying significance test directly to uplift measurement
(double difference); and (3) the results are easy to explain.

However, the uplift modeling has its rooted challenge of high volatility compared
with propensity models. In practice, we sometimes overlay uplift model with
propensity model together to reduce the risk of misclassification.
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Designing Studies for Assessing Efficacy
in Mixture Populations

Szu-Yu Tang, Eloise Kaizar, and Jason C. Hsu

Abstract In personalized medicine, the patient population is thought of as a
mixture of two or more subgroups that might derive differential efficacy from a
drug. A decision to make is which subgroup or union of the subgroups should the
drug be developed for. Interestingly, some common measures of efficacy are such
that its value for a mixture population may not be representable as a function of
efficacy for the subgroups and their prevalence. This chapter describes design of
study that would lead to probabilistic models so that relative risk (or odds ratio) for
a mixture population can be represented as a function of relative risk (or odds ratio)
for the subgroups and their prevalence.

1 Motivation

In personalized medicine, there is a question as to whether a drug should be
marketed to the general population or only to a targeted subgroup. For example,
consider a single biomarker which classifies patients into a g+ subgroup and its
complementary subgroup g−. Drug developers might make their marketing decision
based on the true efficacy of a treatment (vs. control) over the entire patient
population, θ , and the efficacy within each subgroup, θg+ , θg− .

Within-group efficacies are by definition conditional, where the effect size
is conditional on group membership. Similarly, broad population efficacy is
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unconditional, since no subgroup must be considered. However, to estimate broad
efficacy, one might choose one of the two paths. First, one might choose an
unconditional estimator, for example from a regression model that does not include
a subgroup indicator. Alternatively, one might choose to use logical relationships
to combine separate conditional estimates of the two subgroup efficacies. This
latter approach might be carried out by combinations of parameter estimates from a
regression model that includes the subgroup indicator.

This chapter discusses the two approaches to estimating broad population
efficacy and their relationship with the study design. We first discuss how to derive
an estimate of θ by combining estimates of θg+ and θg− . The methodology for
computing such an overall estimate depends in part on the measure of efficacy.
The choice of measure depends on both the nature of the disease being treated
and the outcome of interest. For example, the primary outcome of a treatment for
schizophrenia is usually the decrease in PANSS from baseline, and the efficacy of
a drug is typically measured as the difference in the expected decrease, relative
to a control treatment. However, a researcher would choose a different measure if
he/she is interested in the safety of the new drug, where the outcome of interest is the
binary experience of tremors (e.g., tardive dyskinesia) within 6 months of treatment.
In this case, a more appropriate measure of efficacy may be the relative risk (RR) or
odds ratio (OR) of tremor relative to a control treatment. We consider each of these
measures of efficacy in turn.

2 Efficacy Measured as a Difference of Means

In this section we consider the difference of means as the measure of efficacy.
Abbreviate “treatment” and “control” with Rx and C, respectively. Denote by μRx

and μC the mean responses over the entire patient population if the entire population
had received treatment or control, respectively. Denote by μRx

g+ , μRx
g− , μC

g+ , μC
g− the

corresponding mean responses in the g+ and g− subgroups. We further consider the
simple dataset presented in Table 1 to clarify the ideas presented in this section.

If a higher mean response is better, then broad population efficacy is defined:

θ = μRx− μC.

Table 1 Data leading to different least squares means and marginal means

Genetic subgroup g+ g−

Treatment (Rx) 3.5, 3.5, 3.5 7.5, 7.5
(ave.=3.5) (ave.=7.5)

Control (C) 5, 6 4, 5, 6
(ave.=5.5) (ave.=5)
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Ignoring the subgroup designations, a natural estimate of broad population efficacy
is the difference of sample means in the treatment and control groups. Applying this
to our simple example gives:

θ̂ = μ̂Rx− μ̂C =
3.5+ 3.5+ 3.5+7.5+7.5

5
− 5+ 6+ 4+ 5+6

5
=−0.1 < 0,

suggesting that the treatment is not effective for the broad population. This is
the estimate achieved by using the MEANS statement in SAS linear modeling
procedures. However, because the subgroup designation may be associated with
treatment assignment, it is well known that this marginal or unadjusted approach
may result in biased estimates. In particular, if the design is not balanced (i.e.,
uneven randomization within each subgroup), we expect the marginal estimator
to be biased.

An alternative adjusted approach more appropriately combines the conditional
estimates of efficacy for all of the subgroups. The effect of the drug in the g+ and
g− subgroups are, respectively:

θg+ = μRx
g+− μC

g+ and θg− = μRx
g− − μC

g− .

If the assignment to treatment/control is independent of subgroup, then we can write
broad population efficacy as the weighted average of the subgroup efficacies:

θ = μRx− μC = γ×θg+ +(1− γ)×θg−, (1)

where γ denotes the population prevalence of the g+ subgroup.
Note that this relationship only holds for designs where the probability of

randomization to treatment is constant across subgroups. This could be achieved
either by an unstratified design (where the randomization probability must be
independent of the unknown group membership) or in a stratified design with equal
randomization probabilities across all strata. Following Good and Mittal (1987), we
call this property of the study design row uniformity in the parameters.

Thus, for efficacy measured by the difference of mean treatment and control
outcomes, the weighted average of the mean differences in the subgroups equals
the expected difference in broad population under row-uniformity. We call the
difference of means a measure of efficacy that is mixture-representable, because
broad efficacy θ̄ can be represented as a linear function f of efficacy in the
subgroups, and some known characteristic κ of the patient population,

θ̄ = f (θg+ ,θg− ,κ).

For the difference of averages Eq. (1), κ is the prevalence of the g+ subgroup,
denoted γ . Mixture-representable measures of efficacy are helpful for studies with
enrollment stratified by biomarker (such as enrichment designs) and other designs
that do not recruit and assign patients to treatment completely at random.
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To estimate broad efficacy with a mixture-representable measure, an appropriate
approach is to plug in known population values and estimated subgroup efficacies:

θ̂ = f (θ̂g+ , θ̂g− ,κ),

where θ̂g+ and θ̂g− are estimators of θg+ and θg− . For the difference of means
illustrated in our small dataset, if prevalence γ is known to be 50 %, then an
appropriate estimator of θ is:

θ̂ = γ× θ̂g+ +(1− γ)× θ̂g− =
3.5+ 7.5

2
− 5.5+ 5

2
= 0.25 > 0,

suggesting that the drug may be broadly effective. In linear models, this is referred
to as the least squares means (LS-means) approach to estimation. In SAS, it can be
executed using the ESTIMATE statement in linear modeling procedures.

Clearly the adjusted estimator differs from the unadjusted estimator because it
takes the different sample proportions of treatment and control patients in the g+ and
g− subgroups into account. That is, if there is any failure in the randomization that
leads to uneven numbers of patients receiving treatment and control in the biomarker
subgroups, the adjusted means approach still produces unbiased estimators.

However, if the design of the study has proportional cell frequencies across the
subgroups (which we call row-uniformity in the data), then there is no need for
adjustment. The intuition is that just as when Eq. (1) holds when the probability
of assignment to treatment is constant across groups, the sample version of this
equation holds when the sample proportion of those assigned to treatment is
constant across groups. The proof comes from the fact that the information matrix
of estimates of treatment and control effects for each subgroup is essentially a
diagonal matrix with the proportional sample sizes as the diagonals, so least squares
means are the marginal (unadjusted) means (see also Sect. 7.1.2 of Hsu 1996).
Row-uniformity turns out to also be the key condition needed for the adjusted and
unadjusted estimators of RR to coincide, as we show in the next section.

3 Efficacy Measured as a Relative Risk

For binary response (responder vs. non-responder, or adverse event vs. no adverse
event), Good and Mittal (1987) gave a condition for the design of a study for RR
to be mixture-representable. Let pRx

g+(R) represent the joint probability that a patient

is assigned to treatment, belongs to the g+ subgroup, and experiences a positive
response. Let pC

g−(NR) represent the corresponding joint probability for assignment
to control.The analogous joint and marginal probabilities are shown in Table 2.
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Table 2 Probabilities of response (responders (R) or non-responders (NR)), biomarker subgroup
(g+ or g−), and treatment assignment (Rx or C). The internal cells of the two tables at the left
display the three-way joint probabilities for the three classification variables. The marginal cells
of these two tables represent the two-way joint probabilities for biomarker vs. the other variables.
The table on the right displays the two-way and marginal probabilities ignoring the biomarker
subgroups, so that the sum of the probabilities in corresponding cells of the two tables at the left
equals the probability denoted in the corresponding cell of the right-hand table.

g+ subpopulation g− subpopulation population

R NR R NR R NR

treatment (Rx) pRx
g+(R)

pRx
g+(NR)

pRx
g+

+ pRx
g−(R)

pRx
g−(NR)

pRx
g− = pRx

(R) pRx
(NR) pRx

control (C) pC
g+(R)

pC
g+(NR)

pC
g+

pC
g−(R)

pC
g−(NR)

pC
g− pC

(R) pC
(NR) pC

pg+(R) pg+(NR) pg+ pg−(R) pg−(NR) pg− p(R) p(NR) 1

Let RR+, RR−, and RR denote RR for the g+, g− subgroup and broad population,
respectively. Then these measures of efficacy are constructed by the probabilities:

RR+ =
Pr(R|Rx,g+)
Pr(R|C,g+) =

pRx
g+(R)/pRx

g+

pC
g+(R)/pC

g+

=
pRx

g+(R)p
C
g+

pC
g+(R)p

Rx
g+

(2)

RR− =
pRx

g−(R)p
C
g−

pC
g−(R)p

Rx
g−

(3)

RR =
pRx
(R)p

C

pC
(R)p

Rx
(4)

Using this notation, we call an experimental design row uniform in the parame-
ters if the probability of assignment to treatment vs. control is constant across the
subgroups and in the broad population, i.e.:

pRx
g+

pC
g+

=
pRx

g−

pC
g−

=
pRx

pC = λ (5)

In this case, the risk ratio is mixture-representable, where the mixing weight is

the population proportion of control responders who are g+, i.e., ξ+ =
pC

g+(R) /pC
(R)

:

RR = ξ+×RR++(1− ξ+)×RR− (6)
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The proof parallels Theorem 4.2 in Good and Mittal (1987). For a row-uniform
design, the definitions of RR in Eqs. (2) and (3) simplify to:

RR+ =
1
λ

pRx
g+(R)

pC
g+(R)

and RR− =
1
λ

pRx
g−(R)

pC
g−(R)

Further, Eq. (4) becomes:

RR =
1
λ

pRx
(R)

pC
(R)

=
1
λ

pRx
g+(R) + pRx

g−(R)

pC
g+(R) + pC

g−(R)

=
1
λ
{ξ+λ RR++

(
1− ξ+

)
λ RR−}

= ξ+RR++
(
1− ξ+

)
RR−

Again, we have a choice of estimators for RR. We could use either an un-
conditional or unadjusted estimator based on Eq. (4), or a conditional or adjusted
estimator based on Eq. (6). If we choose the latter and ξ+ is known, a natural
adjusted estimator for broad RR is the weighted average of estimates R̂R+ and R̂R−
of the subgroup RRs:

R̂R = ξ+R̂R++
(
1− ξ+

)
R̂R−

If the control treatment is standard of care, it may be reasonable to take the true
population value of ξ+ (the proportion of standard of care responders who are g+)
to be known with great precision, as estimated from historical data. However, even if
much historical data is available, one should be cautious in considering a one-armed
trial, as this would open the door to confounding. Our proposed adjusted estimator
merely uses historical information to appropriately weight the two confounder-free
conditional subgroup-specific estimates of RR. If a large volume of usual care data
is not known or relevant, one may contemplate using a data-based estimate, ξ̂+,
equal to the sample prevalence of the g+ marker among control responders.

As for the difference of means, it is important to understand when adjusted
estimators of RR are necessary, and when easier to compute unadjusted estimators
give identical results. As we show below, it turns out that if the design of the
study is row uniform in the data, unadjusted estimators coincide with their adjusted
counterparts.

Let a+,b+ be the number of responders and non-responders for the treatment (Rx)
arm, and let c+,d+ be the number of responders and non-responders for the control
(C) arm in g+ subgroup. Analogously, we define a−,b−,c−,d− for the g− subgroup,
as in Table 3. Then estimates of RR+, RR−, and RR are
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Table 3 Number of responders (R) and Non-Responders (NR) for each genetic subgroup in the
treatment and control arms and the combined group.

g+ subpopulation g− subpopulation population

R NR R NR R NR

treatment (Rx) a+ b+ NRx
+ + a− b− NRx

− ⇒ a+ +a− b+ +b− NRx

control (C) c+ d+ NC
+ c− d− NC

− c+ + c− d+ +d− NC

R+ NR+ N+ R− NR− N− R NR N

R̂R+ =
a+
NRx
+

/
c+
NC
+

R̂R− =
a−
NRx
−

/
c−
NC
−

R̂Rusual =
a++ a−

NRx /
c+ c−

NC

As noted in the previous section, an experimental design is said to be row uniform
in the data if the ratio of the number of patients in the treatment arm to the number
of patients in the control arm is the same for each of the genetic subgroups. That is,
there exists a λ so that

NRx
+

NC
+

=
NRx
−

NC
−

= λ (7)

Thus, for a design row uniform in the data,

R̂R+ =
a+
NRx
+

/
c+
NC
+

=
1
λ

a+
c+

R̂R− =
a−
NRx
−

/
c−
NC
−
=

1
λ

a−
c−

Therefore, with q̂ = c+
c++c−

,

R̂Rusual =
1
λ

a++ a−
c++ c−

=
1
λ
{ c+

c++ c−
λ × R̂R++

c−
c++ c−

λ × R̂R−}

=
c+

c++ c−
R̂R++

c−
c++ c−

R̂R−

= q̂× R̂R++(1− q̂)× R̂R−.

For any one realization of a randomized clinical study which is not stratified
on genotype, it is unlikely that by chance the design will be exactly row-uniform
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Fig. 1 Randomized design achieving approximate row-uniformity

in the data (i.e., the fraction of treated subjects in the g+ group is identical to the
corresponding fraction in the g− group). In this case, the usual estimate of the broad
risk ratio that ignores group membership is not equal to the weighted average of the
individual risk ratios:

R̂Rusual = ξ̂+R̂R++
(

1− ξ̂+
)

R̂R−

Because this would be a desirable property (as for a balanced design in the difference
of means case). In the next section we discuss possible designs that guarantee a row-
uniform design in the data.

3.1 Designing Studies for RR to be Mixture-Representable

In a randomized clinical trial, randomizing the assignment of patients to treatment
and control (Fig. 1) ensures that the treatment and control groups have similar
characteristics on average, including row-uniformity in the data on average, i.e., the
observed randomization fraction is on average the same in each biomarker subgroup.
For large sample sizes, the law of large numbers suggests that most conducted
studies will be close to row-uniformity in the data (e.g., Paré et al. 2010).

But in practice, it is possible for a randomized trial to lack sufficient row-
uniformity in the data due to chance, especially if sample size is small. To avoid such
a possibility, one can build exact row-uniformity into the study design by stratifying
the study on genotype, and then randomizing the assignment of patients to treatment
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Fig. 3 Random sampling of stored samples to achieve row-uniformity

and control within the g+ patients, and separately within the g− patients, fixing the
numbers of patients given treatment and control to achieve row uniformity in the
data, as depicted in Fig. 2.

However, if patients have already been randomly assigned to treatment and con-
trol without stratification on genotype, then one can enforce exact row-uniformity
in the data by randomly sampling the stored biological specimens of treated
and control g+ patients, and separately randomly sampling the stored biological
specimens of treated and control g− patients, with sample sizes that satisfy row
uniformity in the data, as depicted in Fig. 3.
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4 Odds Ratio as a Measure of Efficacy or Safety

The efficacy of a drug is sometimes quantified by the OR, the ratio of the odds of
response between the treated and control groups. This measure is often convenient,
as it is represented by the exponential of the parameters in standard logistic
regression.

In safety studies, whether a genetic mutation is associated with patients experi-
encing an adverse event to a drug may be measured by the OR, ratio of the odds
of patients experiencing an adverse event having this mutation, relative to patients
without experiencing an adverse event having this mutation (e.g., Mallal et al. 2002).

Let OR+, OR−, and OR indicate OR for the g+, g− subgroup and for broad
population, respectively.

An experimental design is said to be column-uniform in the parameters for g+

and g− subgroups if, for some η ,

pg+(R)

pg+(NR)
=

pg−(R)

pg−(R)
= η (8)

So a design column-uniform in parameters is one in which the ratio of the
probability of being a responder to the probability of being a non-responder is
constant across the genetic subgroups (and therefore the combined population).

An experimental design is said to be row-column-uniform for g+ and g−

subgroups if both conditions, Eqs. (5) and (8), are satisfied. The best known example
of a row-column-uniform design in data is Fisher’s “Lady Tasting Tea” experiment.

Theorem 4.3 of Good and Mittal (1987) shows OR is not subject to an amal-
gamation paradox for row-column-uniform designs. (An amalgamation paradox
would occur when both OR+ and OR− are lower than OR, or vice versa.) However,
while row-uniformity is achievable as shown in the previous section, column-
uniformity does not correspond to clinical expectation. Column-uniformity, constant
ratio of or expected sample sizes of responders vs. non-responders across the
genetic subgroup, corresponds to the biomarker being independent of response,
P(R|g+) = P(R|g−) = P(R). The more realistic expectation of a study with a
thoughtfully chosen biomarker is depicted in Fig. 4, which is not column-uniform.

5 Concluding Remark

For continuous outcome measures, multiple comparisons such as Dunnett’s method
and Tukey’s method were first implemented in SAS Proc GLM under the MEANS
option, which estimates groups differences using marginal means unadjusted for
possible different sample size proportions. However, by 1996, multiple comparisons
were added to the LSMEANS option in Proc Mixed and Proc GLM, estimating
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group differences based on the least squares means approach. This chapter suggests
similar caution may be needed when outcome measure is discrete.
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Estimating Subject-Specific Treatment
Differences for Risk-Benefit Assessment
with Applications to Beta-Blocker
Effectiveness Trials

Brian Claggett, Lu Tian, Lihui Zhao, Davide Castagno, and Lee-Jen Wei

Abstract In the recent past, several clinical trials have sought to evaluate the
effectiveness of beta-blocking drugs in patients with chronic heart failure. Although
the studies of certain drugs in this class yielded overwhelmingly positive results,
other studies resulted in a much less clear interpretation. As result, attention has
appropriately been placed on the impact of patient heterogeneity on treatment
assessment. For clinical practice, it is desirable to identify subjects who would
benefit from the new treatment from a risk-benefit perspective. In this paper,
we investigate the results of the noted Beta-Blocker Evaluation of Survival Trial
(BEST) and implement a systematic approach to achieve this goal by analyzing data
available early in the study, at the time of a hypothetical initial interim analysis. We
utilize multinomial outcome data from these initial patients to build a parametric
score for the purpose of stratifying the remaining patients in the BEST study.
We then use the data from the remaining BEST study participants to obtain a
nonparametric estimate of the treatment effects, with respect to each of several
ordered patient outcomes that encompass both risks and benefits of treatment, for
any fixed score. Furthermore, confidence interval and band estimates are constructed
to quantify the uncertainty of our inferences for the treatment differences over a
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range of scores. We indeed detect subsets of patients who experience significant
treatment benefits in addition to other patient groups who appear to be poor
candidates for treatment.

1 Introduction

Consider a randomized, comparative clinical trial in which a treatment is assessed
against a control with respect to their risk-benefit profiles. Conventionally, a single
treatment contrast is utilized to assess an overall treatment difference with respect
to efficacy, in addition to a global measure of toxicity, over a rather heterogeneous
population. Unfortunately, the resulting inference about these two measures is
rather difficult to interpret in clinical practice. Making patient-specific decisions
based on estimated population-averaged effects can lead to suboptimal patient care
(Kent and Hayward 2007). A positive (negative) trial based on these two overall
measures does not mean that every future patient should (should not) be treated by
the new treatment. Unfortunately, the typical ad hoc subgroup analysis of clinical
studies is not credible (Wang et al. 2007). Moreover, such subgroup analysis is
often conducted by investigating the effect of only a single predictor at a time and
therefore may not be effective in identifying patients who would benefit from the
new treatment. In this paper, we present a systematic approach to nonparametrically
estimate subject-specific treatment differences from a risk-benefit perspective. To
address the issue of risk-benefit assessment, we propose categorizing each patient
into one of several ordered categories at a given follow-up time, more thoroughly
reflecting the patient’s experience during the study. In the event of censoring, we
use inverse-probability weighting to obtain consistent estimates of the associated
outcome probabilities. We use a training data set to first build a parametric univariate
scoring system using baseline variables and then stratify subjects in the target
data set accordingly. We then estimate the treatment effects nonparametrically with
respect to the risk-benefit categories.

Data Our data set of interest comes from a clinical trial, “Beta-Blocker Evaluation
of Survival Trial” (BEST), which compared a beta-blocker to placebo in patients
with advanced chronic heart failure (HF), with a primary endpoint of all-cause
mortality. In this trial, other monitored patient outcomes included timing of
hospitalizations, with cause of each hospitalization recorded as being due to the
patient’s heart failure or for other reasons, and all deaths were adjudicated as
being due to cardiovascular causes (CV death), or otherwise (non-CV death) (Beta-
Blocker Evaluation of Survival Trial Investigators 2001). This trial enrolled 2,708
patients and is of interest because of the observed marginally significant treatment
effect [HR= 0.90 (0.78, 1.02)] for the primary endpoint, standing in contrast to other
similar studies of beta-blockers in patients with heart failure, each of which showed
highly significant beneficial treatment effects (Domanski et al. 2003). The proposed
training/validation approach allows one to avoid the nontrivial “self-serving” bias
that can result from performing the model-building and variable selection process,
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creating the score, stratifying subjects, and estimating subject-specific treatment
differences all within the same data set. For this analysis, we mimic a hypothetical
interim analysis, utilizing the first 900 patients (∼33 % of total enrollment) in the
trial as the training data for model building and selection, with the remaining 1,807
patients reserved to make inference on the effect of treatment over a range of the
selected score values.

Patient Outcome Categories In order to both develop the scoring systems in the
training data set and evaluate the patient outcomes in the validation set, a classifica-
tion system is needed to describe each patient’s status at a fixed follow-up time t0.
Our classification system involves five mutually exclusive and exhaustive categories,
depending on which, if any, events have been experienced by a patient prior to
t0. This classification scheme is designed to account for events whose reduction
represents an anticipated “benefit” of treatment (i.e., CV hospitalization, CV death),
as well as events which may occur more frequently as a result of treatment, and
are therefore considered potential treatment “risks” (i.e., non-CV hospitalization,
non-CV death). For patient i receiving treatment j, let T(1)i j be a patient’s time to
first non-CV hospitalization, T(2)i j the time to the first CV-related hospitalization,
and T(3)i j the time to death, i = 1, ...,n j; j = 1,2. For patients who are hospitalized
for either non-CV or CV reasons, we note that T(1)i j < T(3)i j and T(2)i j < T(3)i j,
respectively. However, because death serves as a competing risk for hospitalization,
a patient who dies without ever being hospitalized may be considered to have
infinitely large values of T(1)i j and T(2)i j. Let Tj = {(T(1) j,T(2) j,T(3) j), j = 1,2}.
Furthermore, let δi j = 1 if a patient’s death is classified as being CV-related,
δi j = 0 otherwise. In the following analysis, we investigate the joint distribution
of {(Tj,δ j), j = 1,2} for patients with given parametric score, which is needed for
risk-benefit analysis on a personalized level. To this end, let us define a patient’s
classification at t0 by εi j .

• ε = 0 if t0 < (T(1)∧T(2)∧T(3)) (patient is “alive and healthy”)
• ε = 1 if T(1) ≤ t0 < (T(2)∧T(3)) (“alive and hospitalized without worsening HF”)
• ε = 2 if T(2) ≤ t0 < T(3) (“alive with worsening HF”)
• ε = 3 if T(3) ≤ t0,δ = 0 (“non-CV death”)
• ε = 4 if T(3) ≤ t0,δ = 1 (“CV death”)

2 Building a Scoring System Via the Training Data Set

To begin, we use the BEST training data set to build a scoring system using
the patients’ baseline characteristics with respect to the above ordinal outcome
categories. Specifically, for this training set, each subject was assigned to a particular
treatment j, where j = 1 denotes the untreated (placebo) group, and j = 2 denotes
the treated (beta-blocker) group. Let Uj be the vector of baseline covariates, and
let the treatment indicator τ j with τ j = 1 in the treated group, and 0 otherwise.
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Let Cj be the censoring variable, which is assumed to be independent of Uj and
all Tj. Furthermore, let X(1) j = min(T(1) j,Cj),X(2) j = min(T(2) j,Cj), and X(3) j =
min(T(3) j,Cj) and {Δ(r) j,r = 1,2,3} be the indicator function, which is one if
T(r) j ≤Cj. The data consist of {(X(1)i j,X(2)i j,X(3)i j,Δ(1)i j,Δ(2)i j,Δ(3)i j,δi j,Ui j)

′, i =
1, · · · ,n j}, n j independent copies of {(X(1) j,X(2) j,X(3) j,Δ(1) j,Δ(2) j,Δ(3) j,δ j ,Uj)

′,
j = 1,2}.

Now, suppose that we are interested in estimating the t0-year outcome probabili-
ties π jk(U), j = 1,2, where π jk(U) = pr(ε j = k|U) for a pre-specified time point t0.
To obtain estimates for π jk(U), one may use an ordinal regression working model
of the following form

g(γ jk(Ui j)) = αk−β ′Zi j− τi j(β ∗
′
Z∗i j) (1)

where γ jk = ∑k
l=0 π jl is the cumulative probability of a patient in treatment group

j being classified into outcome category ε ≤ k, Zi j is a given function of Ui j,
Z∗i j = (1,Z′i j)

′, g(·) is a given monotone function, and α,β j and β ∗j are unknown
vectors of parameters, with α = {αk,k = 0, . . . ,4} representing the intercept terms
and β j and β ∗j corresponding to the main effects and treatment interaction effects,
respectively, of the covariates Z on patient outcome status. Noting that a patient’s
outcome status is observable only when min(T(3), t0) ≤ C, the parameter vectors
above may be estimated by applying inverse probability of censoring weights and
maximizing the standard weighted multinomial log-likelihood function

∑
i j

wi j

Ĝ j(X(3)i j ∧ t0)
{

4

∑
k=0

I(εi j = k)log(π jk(Ui j))}, (2)

with respect to (α,β ,β ∗) where π jk(Ui j) = g−1{αk − β ′Zi j − τi j(β ∗
′
Z∗i j)} −

g−1{αk−1 − β ′Zi j − τi j(β ∗
′
Z∗i j)} via (1), wi j = I(X(3)i j ≤ t0)Δi j + I(X(3)i j > t0),

I(·) is the indicator function, and Ĝ j(·) is the Kaplan–Meier estimator for G j(·),
the survival function of the censoring variable for the jth group, obtained by
treating censored times as “events” and vice versa (Li et al. 2011; Uno et al. 2007;
Zheng et al. 2006). Under some mild conditions, the resulting estimators (α̂, β̂ , β̂ ∗)
converge to a finite constant vector as n → ∞ even when the model (1) is not
correctly specified (Uno et al. 2007). Note that one may repeatedly utilize (1)
and (2) with various Z and g(·) via, for instance, a standard stepwise regression
procedure with U , to obtain final estimates π̂ jk(U).

Evaluation of Working Models Since many variable selection procedures and
link functions can be considered as candidates for estimating π jk(·), j = 1,2, it
is important to formally evaluate their relative merits. To this end, we first note
that the adequacy of such ordinal regression modeling procedures for t0-year
outcomes can be quantified by the cross-validated log-likelihood, where a larger log-
likelihood suggests a better model fit and more accurate out-of-sample predictions.
We use a repeated random cross-validation procedure, in each iteration randomly
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Table 1 Candidate modeling procedures with average cross-validated log-likelihoods

Link Function Variable Sel. L̂

logit Full -202.30
logit AIC -201.25

cloglog Full -201.18∗∗

cloglog AIC -201.29

dividing the entire training data set into two mutually exclusive subsets, B and
H , with the “model building set” B comprising approximately 80 % of the full
training set. For each model building set and for a given link function and variable
selection procedure, we can construct a model, using only patients in B to estimate
π jk(U), yielding predicted probabilities for the patients in the holdout set H ,
with predictions given by π̂ jk(Ui j). The cross-validated log-likelihood, adjusted for
censoring, is ∑(i, j)∈H

wi j

Ĝ j(X(3)i j∧t0)
{∑4

k=0 I(εi j = k)log(π̂ jk(Ui j)}.
The modeling procedure yielding the largest cross-validated likelihood values

will be used for the construction of our final working model and will be refit
to the entire training data set in order to construct the final score. We used 16
clinically relevant covariates to fit the patient outcome data with various working
models to estimate the probability of each outcome status at t0 = 18 months.
These baseline variables are: age, sex, left ventricular ejection fraction (LVEF),
estimated glomerular filtration rate adjusted for body surface area (eGFR), systolic
blood pressure (SBP), class of heart failure (Class III vs. Class IV), obesity (body
mass index (BMI)> 30 vs. BMI≤ 30), resting heart rate, smoking status (ever
vs. never), history of hypertension, history of diabetes, ischemic heart failure
etiology, presence of atrial fibrillation at baseline, and race (white vs. nonwhite).
As in Castagno et al. (2010), we used three indicator variables to discretize eGFR
values into four categories, with cut-points of 45, 60, and 75. We used the ordinal
regression models described above to fit the outcome data and considered both the
logit and complementary log–log links, g(p) = log( p

1−p),g(p) = log(−log(1− p)),
respectively. For each of these two models, we used two different methods of
variable selection. The first one used all 16 variables additively as well as their
interactions with treatment. The second one used a stepwise regression procedure,
stopping when no more covariates could be added/removed without subsequently
increasing the Akaike information criterion (AIC).

To evaluate these modeling procedures, we used a repeated random cross
validation procedure as described above. Even though the variables selected in
each iteration of the cross validation procedure may be different, our goal is to
assess the average performance of the given modeling procedures. In Table 1, we
present these potential modeling procedures with their corresponding log-likelihood
values, averaged over 50 cross-validation iterations. The full model using the
complementary log-log link was found to provide the best overall fit in the cross-
validation samples and is used derive our scores in the following section. The
parameter estimates obtained from fitting this model to the full training data set
are shown in Table 2.
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Table 2 Ordinal regression coefficients for the final working model using BEST training data

Full Model Full Model
Covariate β β ∗ Covariate β β ∗

Age -0.001 -0.004 Never-smoker 0.126 -0.128
Sex: male 0.098 -0.148 Heart Rate 0.005 -0.015

LVEF -0.014 -0.019 History of hypertension 0.213 -0.173
I(eGFR>75) -0.175 -0.266 History of diabetes 0.308 -0.233
I(eGFR>60) -0.041 -0.106 Ischemic etiology 0.083 0.103
I(eGFR>45) -0.656 -0.078 Atrial Fibrillation 0.244 -0.286

SBP -0.012 0.008 Race: white 0.044 -0.198
Class IV Heart Failure 0.191 0.634 I(BMI>30) 0.207 0.010

Treatment - 1.268

β represents main effects. β ∗ represents treatment interaction effects.

3 Potential Scoring Systems

Having completed this variable selection and model building step to select the “best”
working model for predicting patient outcomes in both treatment groups, there are
two reasonable ways in which to incorporate covariate information for the purposes
of stratifying patients in the BEST trial.

Treatment Selection Score Perhaps the most commonly used method for stratify-
ing patients is by estimated baseline risk, indexed here by β ′Zi j . Another interesting,
though perhaps less commonly used, method for stratifying patients is according
to treatment selection score (TSS), which is indexed by −β ∗′Z∗i j, the model-based
estimate of the differential effect of treatment for a patient with given covariates.
For a given U , let this score for the treatment contrast be denoted by D̂(U), which
intends to estimate D(U) = g(γ2k(U))− g(γ1k(U)) for any outcome category k if
the modeling assumptions are true. Since γ jk refers to the probability of being in a
category equal to, or healthier than, category k, positive values of D(U) correspond
to an overall benefit associated with treatment. It is clear that if the modeling
assumptions are valid, then this score directly addresses the question of whether or
not a particular patient is a good candidate for treatment. This type of stratification
system has recently been implemented successfully by Cai et al. (2011).

4 Making Inferences About the Treatment Differences over
a Range of Scores with Respect to Ordered Patient
Outcomes

Let the final parametric score for a patient with the covariate vector U in the target
study be denoted by S(U), which may be the risk score, based on the control
group only, or the TSS D̂(U) discussed in the previous section. In order to make
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inference about the risks and benefits of treatment at the patient level, we use
the same ordered multinomial classification scheme described previously. We then
construct the confidence interval and band estimates for the treatment differences
with respect to the probability of a patient being classified into each possible clinical
category. The target data consist of n j independent and identically distributed
observations as described in the training data. Furthermore, we let {Yi jk = I(εi j = k),
k = 0, . . . ,4}, which is observable only if min(T(3), t0) ≤ C. For the kth outcome,
we are interested in estimating the treatment difference conditional on S(U) = s,
that is, Ek(s) = pr(εi2 = k|S(U) = s)− pr(εi1 = k|S(U) = s). To estimate Ek(s)
nonparametrically, we use a kernel estimator for each term on the right-hand side of
the previous equation. Specifically, we estimate p jk(s) = pr(εi j = k|S(U) = s) with
p̂ jk(s)

=

{
n j

∑
i

wi jYi jk

Ĝ j(X(3)i j ∧ t0)
Kh j (Vi j− s)

}

/

{
n j

∑
i

wi j

Ĝ j(X(3)i j ∧ t0)
Kh j (Vi j− s)

}

, (3)

where Vi j = S(Ui j), wi j = I(X(3)i j ≤ t0)Δ(3)i j + I(X(3)i j > t0), Ĝ j(·) is the Kaplan–
Meier estimator of G j(·), the survival distribution of the censoring variable Cj,
estimated using observations {(X(3)i j,Δ(3)i j), i = 1, · · · ,n j}, Kh j (s) = K(s/h j)/h j,
K(·) is a smooth symmetric kernel with finite support and h j is a smoothing
parameter. Yi jk may not be observable due to censoring, note that wi jYi jk is always
observable. When h j = O(n−v),1/5 < v < 1/2, it follows from a similar argument
by Li et al. (2011) that p̂ jk(s) converges to p jk(s) uniformly over the interval
s ∈ S , where S is an interval contained properly in the support of S(U). Let
E(s) = {E0(s), . . . ,E4(s)}′ = p2(s)− p1(s) and its empirical counterpart Ê(s) =
{Ê0(s), . . . , Ê4(s)}′ = p̂2(s)− p̂1(s), where Êk(s) = p̂2k(s)− p̂1k(s),
p j(s) = {p j0(s), · · · , p j4(s)}′, and p̂ j(s) = { p̂ j0(s), · · · , p̂ j4(s)}′.

It follows from a similar argument by Li et al. (2011) that when h j is of the same
order as above, for a fixed s, the joint distribution (n1h1 + n2h2)

1/2{Ê(s)−E(s)}
converges in distribution to a multivariate normal with mean 0 and covariance matrix
Σ(s) as n→ ∞. To approximate this distribution, we use a perturbation-resampling
method, similar to “wild bootstrapping” (Mammen 1993; Wu 1986) and has been
successfully implemented in many settings (Cai et al. 2010; Lin et al. 1993; Park and
Wei 2003). Details are provided in Appendix. To construct a (1−α) simultaneous
confidence band for Ek(s) over the interval S , we also use resampling methods,
further described in Appendix. Here, we use an M-fold cross-validation procedure
to choose the smoothing parameter ĥ j which maximizes a weighted cross-validated
multinomial log-likelihood, as in Li et al. (2011). As in Li et al. (2011), ĥ j is of the
order n−1/5. To ensure the bias of the estimator is asymptotically negligible and that
the above large-sample approximation is valid; however, we slightly undersmooth
the data and let the final smoothing parameter be h̃ j = ĥ j× n−0.05.

In order to aid in the interpretation of patient outcome probabilities, we ad-
ditionally estimate patient-specific cumulative probabilities by repeating the same
procedure as above using Ỹi jk = I(εi j ≤ k),γ jk(s) = E(Ỹi jk|s), and Γk(s) = γ2k(s)−
γ1k(s). Each value Γk(s) allows for the estimation of the treatment contrast with



82 B. Claggett et al.

respect to a different composite outcome. For example, Γ0(s) refers to the effect
of treatment on the composite of “any hospitalization or death”; Γ2(s) corresponds
to the effect of treatment on “any death,” the initial primary outcome in the BEST
study. While a particular component Ek(s) may not always directly indicate whether
a treatment is beneficial, the corresponding Γk(s) will always have this desired
interpretation, with positive values always indicating beneficial treatment effects.

5 Patient Outcomes in BEST Trial

Because covariates are expected to be balanced between the two treatment groups
due to randomization, as an overall summary of the data set, we present for each
treatment group the total number of patients in the target data set known to be
in each outcome category, as well as the estimated cell probabilities, adjusting
for censoring, with P(ε j = k) estimated via ∑

n j
i

wi jYi jk

Ĝ j(X(3)i j∧t0)
/∑

n j
i

wi j

Ĝ j(X(3)i j∧t0)
. These

results are shown in Table 3. We note that, overall, treated patients are somewhat
more likely to be classified into outcome categories 0 and 1 (alive with no
hospitalizations or non-CV hospitalizations only), and less likely to be classified
into categories 2 and 4 (alive with CV-related hospitalization and CV death,
respectively). The cumulative probabilities of a treated patient being classified at or
below a certain threshold suggest a population-level beneficial effect of treatment,
across all thresholds.

Now, we apply the final scoring system to the remaining 1,807 patients in the
BEST trial, as derived from the full model described previously, with parameters
estimated using the training set data. We note that 71 % of the target BEST patients
are assigned scores greater than 0, indicating an anticipated treatment benefit for a
majority of patients. To estimate p1(s), p2(s) and E(s) in our analysis below, we let
K(·) be the standard Epanechnikov kernel. Using the TSS, we find that D̂ is indeed
related to the treatment effect on a patient’s probability of experiencing outcome
category ε = 0 (alive without any hospitalizations) and ε = 2 (alive with CV
hospitalization), Ê0(s) and Ê2(s). Specifically, we find Ê0(s) > 0 for s > 0.08 and
Ê0(s) < 0 otherwise. Patients with TSS ∈ (0.30,0.94) are found to be significantly

Table 3 BEST target data, 18-month patient outcomes: Observed patient outcomes and associated
multinomial probability estimates, adjusted for censoring.

Outcome Control Group Treated Group
Category N P(ε = k) P(ε ≤ k) N P(ε = k) P(ε ≤ k)

0 274 0.384 0.384 294 0.405 0.405
1 114 0.160 0.544 150 0.207 0.612
2 165 0.231 0.775 138 0.190 0.802
3 26 0.031 0.806 26 0.031 0.833
4 162 0.194 1.000 143 0.167 1.000

(censored) 156 - - 159 - -
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Fig. 1 BEST target treatment differences (treated minus untreated) using treatment selection score
(D̂) as a scoring system; Left panels: specific outcome probabilities; Right panels: cumulative
outcome probabilities; Bottom right: Distribution of scores

more likely (via the 95 % confidence band) to experience outcomes ε ≤ 1 (alive
with no CV hospitalization), a range of scores representing approximately 36 % of
the patients in the target data set. Treatment effects Ê(·) and Γ̂ΓΓ(·) are shown below in
Fig. 1. It is interesting to note that the estimated (nonsignificant) effect of treatment
in terms of reducing the risk of death is relatively constant, with a risk reduction of
approximately 2 % across the range of scores.
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Conclusions Ultimately, despite the nonsignificant overall result in the BEST trial,
our scoring system is able to identify a sizeable subgroup of BEST patients who
would experience significant benefits from treatment with the beta-blocker (i.e.,
bucindolol), in each case representing approximately one fourth to one half of
the BEST patient population, depending on whether 95 % confidence intervals or
bands are being used to determine statistical significance. The results from our
analysis using the TSS are interesting for the reason that our scoring system, though
not perfectly predictive of all clinical outcomes, seems to have done a reasonably
good job of separating patients who would respond well to treatment from those
who would respond poorly, indicating evidence of treatment interactions that are
identifiable early in the course of the clinical trial and which are prospectively
validated using future patients.

6 Remarks

In this paper, we use a two-stage process that can rather easily be applied in other
scenarios with randomized clinical trial data. Here, we use two independent data
sets obtained by separating the trial patients into two groups according to the order
in which they were enrolled, thus the training data set is similar to that which may
be available at the time of an interim analysis. We utilize these independent data
sets to construct a systematic, subject-specific treatment evaluation procedure. The
final scoring system may be chosen via a complex, exploratory model and variable
selection process using the training data set. We then apply this system to stratify the
patients in the second group and make inferences about the treatment effects with
respect to patient outcomes for each stratum. If two similar studies are available
(e.g., two Phase III trials are in many industry settings), one may instead use the
first and second trials as the training and evaluation sets, respectively.

Because our goal is to develop a score to group patients with similar treatment
responses, the TSS D̂(·) should be the most effective system with which to stratify
patients. However, there are practical concerns that could result in the preference
of a risk score based on the control group only. In particular, if there are multiple
treatments options to be compared, it will not be feasible to build a separate TSSs
for each pairwise treatment comparison, and the baseline risk score would be an
intuitive choice to investigate the effects of each treatment. A secondary analysis
(not shown) of the current data set which utilized the baseline risk score suggested
that low-risk patients from the BEST trial population may derive greater treatment
benefits than high-risk patients.

In this paper, we used the t0-year outcome probabilities as the outcomes of
interest, where t0 may be chosen from a clinical perspective. When there are two
or more time points of interest, and particularly when the clinical endpoints being
evaluated at these time points differ, it is unclear how to best summarize and analyze
the resulting data. It would be appealing to choose a global measure to quantify the
treatment contrast. Future research is needed in this area. Furthermore, our model
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and variable selection procedure is intended to select the “best” model for fitting
the data via the fitted log-likelihood. When the endpoint is the treatment difference,
it is not clear that our approach would necessarily produce the “best” TSS. Further
research is warranted along these lines.

Appendix

Construction of Confidence Intervals and Bands Let {Bi j : i = 1, ...,n j; j = 1,2}
be independent random samples from a strictly positive distribution with mean and
variance equal to one. Let p∗jk(s) be the perturbed version of p̂ jk(s) with p∗jk(s)

= {∑i
Bi jwi j

Ĝ∗ j(X(3)i j∧t0)
Kh j (Vi j − s)Yi jk}/{∑i

Bi jwi j

Ĝ∗ j(X(3)i j∧t0)
Kh j (Vi j − s)}. Here,

Ĝ∗j(·) is the perturbed estimator for the survival function G j(·) Ĝ∗j(t) =

exp[−∑
n j
i=1

∫ t
0

Bi jd{I(Ci j≤u∧X(3)i j)}

∑
n j
l=1 Bl jI(X(3)l j≥u)

]. Denote E∗(s) = p∗2(s)− p∗1(s), where p∗j(s) =

{p∗j0(s), · · · , p∗j4(s)}′. Using the arguments by Cai et al. (2010), the limiting

distribution, conditional on the target data set, of (n1h1 + n2h2)
1/2{E∗(s)− Ê(s)},

is multivariate normal with mean 0 and covariance matrix Σ(s). In order to
obtain an approximation to Σ(s), we generate a large number of realizations of
{Bi1,Bi2} from a standard exponential distribution, and compute E∗(s) for each
perturbation sample. The resulting sample covariance matrix based on those
perturbed estimates E∗, say, Σ̃(s), is a consistent estimator of Σ(s). A two-
sided confidence interval for an individual risk difference Ek(s) is then given
by Êk(s)± z(1−α/2)(n1h1 +n2h2)

−1/2σ̃k(s), where σ̃k(s) is the kth diagonal element
of Σ̃(s).

To construct a (1− α) simultaneous confidence band for Ek(s) over the pre-
specified interval S , we cannot use the conventional method based on the sup-
statistic, sups∈S σ̃−1

k (s)|(n1h1 + n2h2)
1/2{Êk(s)−Ek(s)}| due to the fact that as a

process in s, (n1h1+n2h2)
1/2{Êk(s)−Ek(s)} does not converge to a process. On the

other hand, one may utilize the strong approximation argument given in Bickel and
Rosenblatt (1973) to show that an appropriately transformed sup of Êk(s)−Ek(s)
converges to a proper random variable. In practice, to construct a confidence band,
we can first find a critical value bα such that pr(sups∈S |E∗k (s)− Êk(s)|/{(n1h1 +

n2h2)
−1/2σ̃k(s)} > bα) ≈ α. Then the confidence band for Ek(s) : s ∈ S is given

by Êk(s)± bα(n1h1 + n2h2)
−1/2σ̃k(s). Identical arguments are used for making

inference with respect to Γk(s).
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Missing Data in Principal Surrogacy Settings

Michael R. Elliott, Yun Li, and Jeremy M.G. Taylor

Abstract When an outcome of interest in a clinical trial is late-occurring or difficult
to obtain, good surrogate markers can reliably extract information about the effect
of the treatment on the outcome of interest. Surrogate measures are obtained post-
randomization, and thus the surrogate–outcome relationship may be subject to
unmeasured confounding. Thus Frangakis and Rubin (Biometrics 58:21–29, 2002)
suggested assessing the causal effect of treatment within “principal strata” defined
by the counterfactual joint distribution of the surrogate marker under the treatment
arms. Li et al. (Biometrics 66:523–531, 2010) elaborated this suggestion for binary
markers and outcomes, developing surrogacy measures that have causal interpreta-
tions and utilizing a Bayesian approach to accommodate non-identifiability in the
model parameters. Here we extend this work to accommodate missing data under
ignorable and non-ignorable settings, focusing on latent ignorability assumptions
(Frangakis and Rubin, Biometrika 86:365–379, 1999; Peng et al., Biometrics
60:598–607, 2004; Taylor and Zhou, Biometrics 65:88–95, 2009). We also allow
for the possibility that missingness has a counterfactual component, one that might
differ between the treatment and control due to differential dropout, a feature that
previous literature has not addressed.

1 Introduction

Given the time required to obtain clinical endpoints such as survival, there is interest
in using surrogate endpoints such as disease-free survival at early follow-up periods
[4], or biomarkers such as CD4 counts for AIDS [12] to assess the effectiveness of
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a treatment regime in clinical trial settings. The demand for “surrogate markers” in
clinical research has led to the development of a large number of statistical methods
to evaluate the effectiveness of such measures [2]. Prentice’s foundational paper
defined “perfect” surrogacy as occurring when an outcome T is independent of
treatment Z conditional on the surrogate measure S [15]. Buyse et al. [3] developed
a meta-analytic approach that distinguishes between trial-level and individual-level
surrogacy, with large coefficients of determination at both the individual and trial
level indicative of a good surrogate measure.

An alternative approach to assessing surrogacy uses causal inference, with the
goal of obtaining a surrogate whose causal treatment effects are strongly associated
with the causal treatment effects on the outcome. Traditional regression models
that condition on surrogacy measures to assess the fraction of the treatment effect
explained can only be viewed as causal under the rather strong assumption that there
are no confounders between the surrogate marker and the final outcomes, since the
surrogate marker is observed post-randomization [17]. Robins and Greenland [16]
define direct and indirect effects in mediation analysis in the potential outcomes
framework. Assuming that the surrogate marker can be manipulated independently
from the outcome, Robins and Greenland define (natural) direct effects as the
expected value of the difference in the potential outcomes under different treatment
assignments when the value of the marker is held constant, and indirect effects as
the expected difference in the potential outcomes under treatment when the marker
is changed to the value it would have taken under treatment and under control.
An alternative “principal stratification” approach to assess surrogacy was proposed
by Frangakis and Rubin [7]. Principal strata are defined by the joint potential
outcomes of the surrogate marker, thus forming a “pre-randomization” variable
that can be conditioned on while retaining causal interpretations of randomized
treatment effects. The causal effects of interest become the differences in the
potential outcomes under treatment and control within the strata in which the
surrogate changes as a result of the treatment assignment. This approach has been
explored for binary outcomes in more detail by Gilbert and Hudgens [8] and Li
et al. [10]. Here we extend Li, Taylor, and Elliott [10] to accommodate missing
data in the (observable) outcome measure, a common occurrence since the value
of the surrogate variable is typically to provide information in advance of the
outcome measure of interest. We utilize the machinery of the missing data literature,
focusing on developing a non-ignorable missing mechanism for the final outcome
of interest on the assigned treatment arm that is based on the assumption of latent
ignorability [6, 14, 21]. We also allow for the possibility that missingness has a
counterfactual component, one that might differ between the treatment and control
due to differential dropout, a feature that previous literature has not addressed to our
knowledge.



Missing Data in Principal Surrogacy Settings 89

2 Assessing Surrogacy Via Principal Stratification

2.1 Notation

We denote treatment assignment by Zl , the potential outcome for the surrogate
under each of the treatment assignments for the lth subject by Sl(Zl), and the
potential outcome for the true endpoint under each of the treatment assignments
by Tl(Zl). We assume the surrogate is fully observed but the true endpoint under
the assigned treatment arm is missing (for example, due to insufficient follow-up
time or dropout), and denote Rl(Zl) = {0,1} corresponding to missing and observed
true endpoints under each of the treatment assignments, respectively. Assuming
dichotomous treatment assignments, surrogate markers, and true endpoints, the
support for the joint distribution of the potential outcomes of the true endpoints
is given by {(0,0),(0,1),(1,1),(1,0)}, corresponding, respectively, to failure under
both arms, failure under control and success under treatment, success under both
arms, and success under control and failure under treatment. Potential surrogate
markers and responses have similar support corresponding to success/failure or
observed/missing associated with each treatment arm. We denote the probability
of a subject belonging to a cell in the resulting 4× 4 × 4 contingency table
by P((S(0),S(1)) = i,(T (0),T (1)) = j,(R(0),R(1)) = k) = πi jk, where i, j,k =
{1,2,3,4}, corresponding to the four support points. Thus the “complete data” are
{(S(0),S(1))l,(T (0),T (1))l ,(R(0),R(1))l ; l = 1, . . . ,n}. The observed data for the
lth subject is given by (zl ,rl ,sl , tl), where rl = R(Zl = zl), sl = S(Zl = zl), and

tl =

{
T (Zl = zl) if rl = 1

. if rl = 0
, where “.” indicates a missing value.

2.2 Surrogacy Measures of Interest

The principal strata correspond to the categories associated with the distribution
of the potential surrogate markers, with (0,0) termed “never responsive”, (0,1)
“responsive”, (1,1) “always responsive”, and (1,0) “harmed” where without loss
of generality 0 corresponds to a “poor health” surrogate marker and 1 to a “good
health” surrogate marker. A common assumption is that the “harmed” stratum does
not exist, often termed the “monotonicity” assumption since it implies Sl(0)≤ Sl(1)
for all l and thus π4 jk = 0 for all j,k; similarly monotonicity for the outcome implies
Tl(0) ≤ Tl(1) and thus πi4k = 0 for all i,k. A more limited form of monotonicity,
which we term “stochastic monotonicity,” only assumes the treatment is more
likely to be helpful than harmful (π2++ > π4++) for the surrogate measures, and
that, within the non-harmful principal strata, the treatment is more likely to be
helpful than harmful (π j2+ > π j4+, j = 1,2,3) for the final outcome [5]. Under
the assumption of “monotonicity,” corresponding to no one harmed with respect to
either the surrogate or outcome, the overall causal effect of treatment (CE) is given
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by E(Tl(1)− Tl(0)) = π+2 = π12 + π22 + π32. (We denote πi j ≡ πi j+ = ∑k πi jk,
the joint distribution of the potential surrogate marker and potential outcome
marginalized across the missingness patterns.) Frangakis and Rubin [7] proposed
associative and dissociative effects corresponding, respectively, to the fraction of
patients on which the treatment improved both the surrogate marker and the final
outcome AE=π22 and the fraction of patients on which the treatment changed the
final outcome but not the surrogate marker DE=π12 + π32. A good surrogate will
have a large AE, indicating that the causal effect on the surrogate is highly associated
with a causal effect on the final outcome of interest. Similarly, a good surrogate will
have a small DE, indicating that the causal effect on the outcome is small when the
causal effect on the surrogate is zero. Because AE and DE are constrained to sum
to CE, interpreting “large” and “small” is perhaps most useful relative to the CE;
hence Taylor et al. [20] defined associative proportions AP=AE/CE and dissociative
proportions DP=DE/CE as the fraction of the overall treatment effect partitioned
between the associative and dissociative effects. Frangakis and Rubin [7] suggest
the concept of “perfect surrogacy,” defined as causal effects on T occurring only
with causal effects on S (i.e., π12 = π32 = 0); Li, Taylor, and Elliott [10] extend this
to propose another surrogacy measure, CAP, which assesses the degree to which
causal effects on T occur only with causal effects on S simultaneously with causal
effects on S occurring only with causal effects on T : CAP= π22

π12+π21+π22+π23+π32
.

Without the monotonicity assumption, CE=π+2−π+4 (the net treatment effect for
the final outcome corresponding to the fraction responsive to the treatment minus
the fraction harmed), AE=π22 +π42− (π24 +π44) (net treatment effect on patients
whose surrogate was responsive to treatment), and DE=π12 +π32− (π14+π34) (net
treatment effect on patients whose surrogate was not responsive to treatment) [11],
and AP and DP are unchanged. Note that, in the absence of monotonicity, there is
the possibility that treatment effects may be positive in some principal strata and
negative in others, allowing the values of AP and DP to range outside of 0 and 1. In
this case, the proposed marker may no longer be a reliable surrogate.

3 Principal Stratification Model for Surrogacy Accounting
for Nonresponse in the True Endpoint

3.1 Model Assumptions

Factoring the joint distribution of the complete data we obtain

p(T (Z),S(Z),R(Z) | Z)) = p(T (Z) | S(Z),R(Z),Z))p(S(Z),R(Z), | Z))p(R(Z) | Z))

for T (Z)= (T1(Z), . . . ,Tn(Z)), where Tl(Z) refers to the set of potential outcomes for
the lth subject associated with all possible treatment assignments Z in the sample,
and similarly for S(Z) and R(Z).



Missing Data in Principal Surrogacy Settings 91

We make the following three assumptions:

1. Randomization: Treatment assignment is made independently of the potential
outcomes for the surrogate markers, so that

p(T (Z),S(Z),R(Z) | Z)) = p(T (Z),S(Z),R(Z))

2. Stable unit treatment assignment [18]: Treatment assignment for subject i is
independent of (S j(Zj),Tj(Zj),R j(Zj)) for j = i, so that

p(T (Z),S(Z),R(Z)) = ∏
l

p(Tl(Zl),Sl(Zl),Rl(Zl));

also the observed surrogate marker is equal to the potential outcome under the
observed treatment arm (sl = zlS(zl)+ (1− zl)S(zl)), and similarly for Tl .

3. Latent ignorability of missing data [6, 14, 21]: Conditional on the joint distri-
bution of the surrogate markers under both treatment assignments Sl(Zl), the
joint distribution of the true endpoint under both treatment assignments Tl(Zl) is
independent of counterfactual response. Thus we have

p(Tl(Zl),Sl(Zl),Rl(Zl)) = p(Tl(Zl) | Sl(Zl),Rl(Zl))p(Sl(Zl),Rl(Zl)) =

p(Tl(Zl) | Sl(Zl))p(Sl(Zl),Rl(Zl)).

We also consider a missing completely at random (MCAR) model in which
missingness is independent of both the surrogate and the true outcome:

p(Tl(Zl),Sl(Zl),Rl(Zl)) = p(Tl(Zl) | Sl(Zl))p(Sl(Zl))p(Rl(Zl))

Note also that we do not make the compound exclusion restriction (CER). Under
CER, Sl(0) = Sl(1) implies that Rl(0) = Rl(1) and Tl(0) = Tl(1) [6, 14]. Doing so
would imply that subjects who had no causal impact of treatment on the surrogate
outcome would have no causal impact of treatment either on the true endpoint of
interest or on their response behavior, thereby assuming away key issue that we
would like the data to speak to in our analysis.

3.2 Model Estimation

Factoring P((S(0),S(1)) = i,(T (0),T (1)) = j,(R(0),R(1)) = k) = πi jk as

P((T (0),T (1)) = j | (S(0),S(1)) = i,(R(0),R(1)) = k)

P((S(0),S(1)) = i,(R(0),R(1)) = k) = π j|ikπi+k
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we have under the latent ignorability assumptions that π j|ik ≡ π j|i for all k. We have
27 free parameters in the model (19 under monotonicity) but only 10 sufficient
statistics in the data. Hence we use a fully Bayesian approach to cope with the
non-identifiability in the observed data likelihood [9].

The complete data likelihood is given by

∏
i

∏
j

∏
k

πni jk
i jk = ∏

i
∏

j
πni j+

j|i ∏
i

∏
k

πni+k
i+k

where ni jk denotes the complete-data cell counts. (Note that the observed data
cell counts are linear combinations of these complete-data cell counts; for
example, the cell count of subjects for whom both the surrogate and outcome
are observed to be failures under control (i.e., zl = 0,rl = 1,sl = 0, tl = 0) is given
by ∑2

i=1 ∑2
j=1 ∑4

k=3 ni jk.) We assume a Dirichlet prior for the cell probabilities:

p(π j|i)∼ DIR(a j|i)

p(πi+k)∼ DIR(bi+k)

Under the MCAR assumption, P((S(0),S(1)) = i,(R(0),R(1)) = k) =
P((S(0),S(1)) = i)P((R(0),R(1)) = k) and thus πi jk = π j|iπi++π++k = πi j+π++k.
The distribution of R is thus independent of S and T and thus can be ignored in
both the data augmentation step and the draw of the parameters conditional on the
complete data for estimation of the surrogacy effects of interest (although required
to obtain model fit estimates discussed in Sect. 2.2). With 18 free parameters (11
under monotonicity) and 8 sufficient statistics, we again use a fully Bayesian
approach, assuming a Dirichlet prior for the cell probabilities:

p(πi j+)∼ DIR(ai j+)

p(π++k)∼ DIR(b++k)

Estimation proceeds via Gibbs sampling and data augmentation: draws of the
cell probabilities are made conditional on the complete data cell counts, and draws
of the complete data cell counts are made conditional on the cell probabilities and
observed cell counts. Estimation under monotonicity restricts complete cell counts
and probabilities associated with “harmed” markers and outcomes to be equal to 0;
estimation under stochastic monotonicity restricts the cell probabilities associated
with the harmed markers and outcomes to be less than the cell probabilities
associated with responsive markers and outcomes by rejecting draws that fail to
meet this criterion. Further details of the Gibbs sampler are not provided because of
space limitations.
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3.3 Choosing Between the Missingness Mechanisms

To choose between the latent ignorable and MCAR missingness mechanisms, we
can compute the Deviance Information Criterion (DIC) of Spiegelhalter et al. [19].
The DIC measure accounts for the fact that, in a hierarchical framework, the
number of effective parameters may be unclear: the random effects associated with
each subject may “count” as approximately one parameter if the between-variance
estimates are large (small degree of shrinkage), and as nearly zero parameters if the
between-variance estimates are small (large degree of shrinkage). Although we do
not entertain a Bayesian hierarchical model here, we have a similar issue in that the
number of parameters is unclear given that not all are fully identified.

4 Application to the Collaborative Initial Glaucoma
Treatment Study

We apply the proposed models to an analysis of the Collaborative Initial Glaucoma
Treatment Study (CIGTS) [13]. Glaucoma is an eye disease caused by increased
intraocular pressure (IOP) that can result in reduced vision or blindness. The CIGTS
was a clinical trial that compared the effects of eye surgery (treatment) against the
standard practice of medication (control) to reduce or stop visual field loss. Because
visual field loss is caused by increased IOP, one of the major secondary outcomes
of interest is reduction in IOP. Here we consider reduction in IOP below 18 mmHg
after 96 months of follow-up, based on previous work that has shown IOP of less
than 18 mmHg at every time point during at least 6 years of follow-up was associated
with a reduced likelihood of visual field loss [1]. Because of the extensive follow-
up time, we wish to determine if early reductions in IOP could serve as a marker
for much late reductions; hence the surrogate marker was reduction in IOP below
18 mmHg after 12 months of follow-up. However, such an analysis suffers from
a substantial amount of missing outcome data due to the long follow-up period.
Because the cause of the missingness is due to dropout for unknown reasons, we do
not restricting the missingness patterns in the analysis.

The observed data is given in Table 1. Of 574 subjects with IOP measured at 12
months, only 228 had fully observed data (IOP also measured at 96 months). For

Table 1 Collaborative Initial Glaucoma Treatment Study: Observed Data.

Control Treatment
Reduced IOP Reduced IOP
at 96 Months at 96 Months

No Yes Missing No Yes Missing
Reduced IOP No 28 29 69 145 11 8 35 65
at 12 Months Yes 14 55 97 147 10 73 144 216

42 84 166 292 21 81 179 282
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fully observed subjects on the control (drug only), 66.7 % had reduced IOP to below
18 mmHg at 96 months; 79.4 % of fully observed subjects on the treatment arm had
reduced IOP at 96 months, yielded an estimated causal effect of treatment (CET) of
.127 (90 % CI .030,.224). Reduced IOP at 12 months was observed for 58.4 % of
subjects who were fully observed on the control arm, versus 54.8 % of subjects who
did not have 96-month IOP measures. For subjects on the treatment arm, 80.4 % of
fully observed subjects had reduced IOP at 12 months, versus 81.4 % of subjects
without 96-month IOP measures.

We fit an MCAR model and a latent ignorable model, as well as a model for the
fully observed data, under the monotonicity and non-monotonicity assumption, as
well as the “stochastic monotonicity” assumption that only assumes the treatment
more likely to be helpful than harmful. Each model is fit using a single chain of
100,000 draws after a burn-in of 1,000. We consider uniform priors of the form
a j|i = 1 for all i, j and bi+k = 1 for all i,k for the latent ignorable model and ai j+ = 1
and for all i, j and b++k = 1 for all k for the MCAR model, and assess sensitivity to
the prior by also considering of Jeffreys-type prior of the form a1|1 = · · · = a4|4 =
1/2 and b1+1 = · · · = b4+4 = 1/2 and a11+ = · · · = a44+ = 1/2 and b++1 = · · · =
b++4 = 1/2. Results are given in Table 2. Table 3 provides the DIC measures for
the latent ignorable and MCAR models.

Based on DIC, the best fit is provided by the latent ignorable model under
stochastic monotonicity; similar fit is provided by the MCAR model under mono-
tonicity and the uniform Dirichlet prior. Particularly poor fit is evidenced by the
MCAR model under non-monotonic assumptions, as evidenced by the discrepancy
between the CE estimator from the model and the identifiable estimate (.127)
obtained from the fully observed data; use of the Jeffreys-type prior improved
the fit to some degree. The best-fitting latent ignorable model under stochastic
monotonicity and MCAR model under monotonicity had little sensitivity to the prior
assumptions and gave broadly similar results. In particular, early reduction of IOP
appears to be at best a modestly useful surrogate marker from a causal perspective,
with only a weak association between the 8-year causal effect on IOP and the 12-
month causal effect on IOP. The point estimate of the associative proportion is
somewhat greater under the latent stochastic monotonicity assumption than under
the MCAR full monotonicity assumption, although the 90 % credible interval can
and does include 0, indicating some evidence of interactions in causal effect within
the principal strata [5].

5 Discussion

This manuscript considers a principal stratification approach to assess surrogacy for
dichotomous markers and outcomes when missing data is present for the outcome,
extending the work of Li et al. [10] to accommodate missingness under latent
ignorability assumptions. The principal strata are defined by the joint distribution
of the surrogate marker under both treatment and control, with the quality of the
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Table 2 Analysis of Collaborative Initial Glaucoma Treatment Study: posterior mean, posterior
mode, and 90 % credible intervals for causal treatment effect (CE), associative effect (AE),
associative proportion (AP), and common associative proportion (CAP). First row for Dirichlet
prior set uniformly to 1; second row for Dirichlet prior set uniformly to 1/2.

T Fully Observed MCAR Latent Ignorability
MeanMode CI MeanMode CI MeanMode CI

Monotonicity
CE .130 .125 .060-.209 .126 .118 .058-.200 .148 .141 .069-.233

.120 .112 .044-.203 .115 .111 .042-.195 .133 .123 .039-.234
AE .045 .009 .004-.109 .040 .008 .003-.097 .052 .030 .004-.118

.042 .003 .000-.121 .035 .002 .000-.102 .050 .003 .000-.142
AP .339 .192 .034-.731 .316 .119 .030-.698 .348 .322 .039-.726

.339 .020 .004-.863 .308 .020 .003-.830 .362 .023 .005-.884
CAP .134 .025 .011-.323 .127 .023 .010-.315 .159 .031 .013-.376

.131 .009 .001-.383 .117 .008 .001-.354 .164 .013 .001-.492

No Monotonicity
CE -.024 -.022 -.119-.070 .015 .018 -.076-.106 .073 .080 -.054-.185

.032 .030 -.064-.127 .060 .062 -.032-.151 .061 .085 -.121-.205
AE -.027 -.018 -.130-.074 .025 .019 -.071-.121 .068 .084 -.066-.187

.031 .036 -.080-.142 .066 .071 -.044-.171 .062 .094 -.109-.211
AP .827 .915 -3.482-5.125 .517 .972 -4.379-5.793 .853 .849 -2.189-3.850

.845 .979 -3.734-5.427 .987 .978 -2.446-4.430 .795 .901 -2.341-3.866

Stochastic Monotonicity
CE .023 .028 -.060-.107 .044 .048 -.037-.125 .116 .120 .031-.205

.056 .061 -.034-.144 .079 .074 -.003-.163 .125 .124 .027-.232
AE -.015 -.026 -.100-.072 .006 .002 -.075-.086 .055 .047 -.025-.141

.010 .014 -.084-.103 .034 .029 -.056-.124 .057 .034 -.031-.156
AP .650 .578 -4.060-5.902 .433 .690 -2.863-3.900 .426 .551 -.425-.884

.400 .773 -2.744-3.486 .367 .791 -1.538-1.331 .409 .552 -.483-.912

Table 3 DIC measures for various models accounting for missing data. First row for Dirichlet
prior set uniformly to 1; second row for Dirichlet prior set uniformly to 1/2.

MCAR Latent Ignorability

Monotonicity 63.68 67.64
64.13 67.97

No Monotonicity 79.06 66.37
69.19 66.62

Stochastic Monotonicity 77.53 63.66
68.48 63.25

surrogate being the CET that is associated with strata in which the surrogate marker
is impacted by treatment. Latent ignorability assumes that the conditional distri-
bution of the potential outcomes within the principal strata are independent of the
outcome missingness but allows for the possibility that the marginal distribution of
the surrogate marker or treatment outcome is associated with outcome missingness.
This is a weaker assumption than MCAR in which missingness is independent
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of both the surrogate and the true outcome, and is identifiable at the “complete
data” (counterfactual) level, in contrast to a fully non-ignorable model which would
require postulating non-identified parameters for the unobserved outcomes at this
complete-data level. A unique aspect of our approach (to our knowledge) is that we
allow for the possibility that missingness has a counterfactual component, one that
might differ between the treatment and control due to differential dropout.

A variety of extensions to this work can be considered. Our focus is on assessing
and ameliorating the effect of missingness on inference about binary surrogate
measures and outcomes in a counterfactual setting, and in the process we have
focused on a relatively simple Dirichlet prior formulation for the cell parameters.
The work of Li, Taylor, and Elliott [10] and Li et al. [11] considered a log-
linear parameterization that was capable of incorporating a priori assumptions about
positive correlations between the surrogate marker and final outcome in a more
refined fashion than the model considered here, particularly when the monotonicity
assumption is relaxed. Extensions to continuous surrogate measures and outcomes
are also possible and are the focus of current work.
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Assessment of Treatment-Mediated Correlation
Between a Clinical Endpoint and a Biomarker

Peter H. Hu

Abstract There is increasing need to identify biomarkers (BMKs) responding early
to drug treatment to help decision making during clinical development. One of the
statistical metrics often involved in screening such BMKs from a single study is
the assessment of correlation between a candidate BMK and a primary clinical
endpoint. In this chapter, some drawbacks in relying on simple regression models
for such an investigation will be criticized first, followed by a real example to
demonstrate the danger of relying on static data to assess such a correlation. A
theoretical justification will then be given to promote the idea of pursuing treatment-
mediated correlation patterns. The rest of this paper will then be focused on how to
estimate correlation under this preferred metric from data with parallel-group design
and time-to-event (T2E) being the primary clinical endpoint. A jointly modeling
framework of T2E and longitudinally measured BMK will then be introduced, with
explanation in details how to parameterize the joint model and interpret some key
parameters. By comparing the performances of three different models, the results
from the analysis of an AIDS trial will be presented to demonstrate the benefit of
joint modeling of T2E and BMK, followed by some brief discussions.

1 Introduction

Of various criteria to evaluate biomarker (BMK) use for clinical development, the
correlation, or in general speaking, association, between a candidate BMK and
a primary clinical endpoint of interest, is the most popular statistical metric to
be assessed. Unlike cross-sectional data where snapshot correlation is the only
pattern that can be pursued from the data, clinical trial data are dynamic and many
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different correlation metrics are assessable. However, often only treatment-mediated
correlation pattern between a BMK and primary clinical endpoint is interpretable
and meaningful in terms of how treatment effect observed on a BMK can be used
to gauge treatment effect on the primary clinical endpoint that is time consuming to
observe. See a good example from a meta-analysis evaluating statin treatment [2].
Although meta-regression is a putative approach to disclose how drug treatment
effect on a BMK of interest corresponds to the treatment effect on the primary
clinical endpoint, it is unrealistic to have abundant resources of data to conduct
meta-analysis for such an investigation at early clinical space. Rather, such an
objective has often to be sought from a single, small study. In Sect. 2, the challenges
of exploring such a relationship from a single study will be reviewed and some
drawbacks of relying on simple linear regression to explore the correlation between
a primary clinical endpoint and a longitudinally measured BMK will be criticized,
followed by an example in Sect. 2.1 to demonstrate the danger of relying on static
data to assess such a correlation. How the information about the intrinsic systematic
correlation pattern in the whole data is utilized in various correlation metrics will
then be disclosed theoretically in Sect. 2.2. In Sect. 3, a framework of joint modeling
of a primary clinical endpoint and a longitudinally measured BMK will then be
introduced. Parameterization of the joint model with time-to-event (T2E) being
the primary clinical endpoint is to be explained in detail in Sect. 3.1, as well as
interpretation of the key parameters. An AIDS clinical trial data will be analyzed
in Sect. 3.2 using three different models. Their performances will be compared to
demonstrate the benefit of jointly modeling T2E and BMK, followed by some brief
discussions in Sect. 4.

2 Abuse of Correlation Metric in Clinical Trial Arena

In the case of meta-analysis, treatment effects on BMK and the primary clinical
endpoint can be estimated from each individual studies as paired data and the
correlation pattern between the two treatment effects can be visualized across
studies [2]. In a single study, however, such a correlation pattern is not visu-
alizable from data with parallel design. As an ad hoc approach to get around
this disadvantage, crossover design can be considered to evaluate the correlation
between the two types of treatment effects at subject level since each subject
can receive two or more different treatments. Due to the difficulty in visualizing
treatment-mediated data for correlation assessment from a single study, two naı̈ve
approaches are often used—evaluating correlation between a BMK and the primary
clinical endpoint for each time point or for each treatment group. There are some
drawbacks in these naı̈ve approaches. Even the study design allows a BMK and
the primary clinical endpoint to be measured with synchronization, the pattern
of correlation between them at each time point, as a stochastic snapshot, can be
dramatically different from treatment-mediated systematic pattern, such as change
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from baseline. Similarly, correction pattern within each treatment group is not
necessarily treatment-mediated. These issues still exist even when all time points
and treatment group data are pooled together for correlation assessment if no
meaningful contrast is applied to convert the flat data into treatment-mediated
dynamic data, i.e., change from baseline or difference from placebo or both. An
example is given in Sect. 2.1 to show the danger of relying on static data to assess
correlation between a BMK and the primary clinical endpoint.

2.1 The Danger of Relying on Static Data to Assess Correlation

A 4-treatment sequence×3-period crossover study was conducted to evaluate renal
blood flow (RBF) among 12 patients. Each patient received 3 out of 4 treatments,
placebo, drug A with two doses, A1 and A2, and generic drug L. RBF was measured
on two assay platforms, G and E1. Assay platform G is considered the conventional
gold standard but it is invasive and requires time series collection of multiple
urine samples in order to calculate RBF. E1 is an image-based new assay that is
noninvasive and only one time measurement is needed. Due to the infeasibility
of assay platform G, only one post-dose measure of RBF was conducted on both
platforms G and E1. Here RBF data from assay platform G is considered as the
primary clinical endpoint and the new assay platform E1 as the BMK.

The study results indicated that all active drug treatments, A1, A2, and L,
significantly boosted RBF compared to placebo on both assay platforms (data
not shown). Consequently it was of interest to understand whether the same
biology was measured on both assay platforms by exploring how the RBF data are
correlated between the two assay platforms. Two approaches were proposed for this
investigation but, surprisingly, the correlation patterns are dramatically different.

Shown in Fig. 1 are the treatment-specific, as well as all treatment-pooled,
correlation patterns between the two assay platforms with static data, that is, the one-
time readout of RBF. It’s surprising that a negative trend of correlation is observed,
with statistical significance achieved in both doses of drug A treatments. Given the
fact that all active drug treatments boosted RBF in both assay platforms compared to
placebo and it is believed the same biology was measured in both assay platforms,
it is very difficult to interpret this negative correlation. Increase in sample size by
pooling all treatment data together does not seem to help at all.

Taking a glimpse of the correlation pattern in treatment group A1, it looks
apparently subject # 9 is an outlier. Of course this subject contributed to the negative
correlation due to the highest RBF readout in assay platform G and lowest in assay
platform E1. But this negative correlation pattern still remains when this data point is
removed. In fact, this subject showed highest RBF on assay platform G as well when
receiving placebo. And when taking placebo, this subject’s RBF readout is the 3rd
lowest on assay platform E1, suggesting that, if the correlation metric is constructed
using placebo adjusted RBF, then the behavior of this data point may be different.
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Fig. 1 The x-axis and y-axis are the one-time RBF readout on assay platforms E1and G,
respectively. Each type of symbol represents a treatment group and the numbers printed within
each symbol are the patient IDs. Correlation patterns between the two assay platforms are plotted
separately for each treatment group, as well as pooled together. Printed on top are the estimates of
Pearson correlation coefficient and the associated p-values. The blue line corresponds to the slope
of the best linear fit of the paired data.

The endpoint applied to construct the correlation metric shown in Fig. 2 is the ratio
of RBF readout for an active treatment over placebo and A2 vs A1 (for assessment
of dose effect of drug A). It can be seen clearly that this correlation pattern, using
change from placebo as dynamic data, is dramatically different from the negative
trend in Fig. 1. Unfortunately, due to the limitation of study design and very small
sample size, no statistical significance at level of 0.1 was reached for this positive
trend of the correlation. But it is obvious the patterns shown in these two figures are
completely different from each other.

The above example implies not all correlation metrics are consistent with each
other and helpful for drug development. To dissect why the two correlation metrics
showed dramatically different behaviors, theoretical explorations, from the point of
view how information about the intrinsic systematic correlation pattern in the whole
data is utilized in the two correlation metrics, were investigated further.



Assessing correlation between a clinical endpoint and a biomarker 103

Total RBF on Assay E1

T
ot

al
 R

B
F

 o
n 

A
ss

ay
 G

Fold change, Drug A1 over Placebo
Correlation (P−value) = 0.11 (0.831)

1 5

6

9

10

11

1 1.12 1.24 1.36 1.48 1.6

1.02

1.14

1.26

1.38

1.5

Fold change, Drug A2 over Placebo
Correlation (P−value) = 0.34 (0.513)

1

2

4

5

9

12

0.8 0.94 1.08 1.22 1.36 1.5

0.9

1.02

1.14

1.26

1.38

Fold change, Drug L over Placebo
Correlation (P−value) = 0.39 (0.440)

2

4

6

10

11

12

1 1.12 1.24 1.36 1.48 1.6

0.9

1

1.1

1.2

1.3

Fold change, Drug A2 over Drug A1
Correlation (P−value) = 0.70 (0.122)

1

3

5

7

8

9

0.8 0.86 0.92 0.98 1.04 1.1

0.98

1.06

1.14

1.22

1.3

Fig. 2 The x-axis and y-axis are the fold changes of RBF readout for an active drug treatment
over placebo on assay platforms E1 and G, respectively. Correlation patterns between the two assay
platforms are plotted separately for each active treatment. Other settings are the same as Fig. 1.

2.2 Information Usage in Various Correlation Metrics

Sample correlation between two data matrices U and V can be interpreted geomet-
rically in a linear space as cos(θ ), where θ is the angle between them [4]. The
goal of this theoretical investigation is to express U and V in various correlation
metrics as a function of the entire data X to disclose how the intrinsic correlation
information imbedded on X is represented in cos(θ ). Mimic the data structure of
the above example, let each of n subjects receive both active treatment p and control
treatment q under both assay platforms u and v, then the entire outcome data can be
expressed as ln(Xn×4) =

(
up
∣
∣uq
∣
∣vp

∣
∣vq

)
. Note that, if ln(X) is centered at its mean

vector, then cos(θ ) will be exactly the Pearson correlation coefficient estimate as
calculated according to (1) and ln(X)T ln(X) is proportional to the sample variance–

covariance matrix ̂cov [ln(X)] denoted in (1)
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Table 1 Data input for 3 correlation metrics and the estimated correlations

Data & Correlation Pooled Treatment Active Treatment Treatment Effect

In assay U ln(X)

(
1 0 0 0
0 1 0 0

)T

ln(X)
(

1 0 0 0
)T

ln(X)
(

1 −1 0 0
)T

In assay V ln(X)

(
0 0 1 0
0 0 0 1

)T

ln(X)
(

0 0 1 0
)T

ln(X)
(

0 0 1 −1
)T

cos (θ )
h+ j√

a+b
√

c+d

j√
a
√

c
h+ j− (g+ i)√

a+b−2e
√

c+d−2 f

cos(θ ) =
tr
(
UT V

)

√
tr(UT U)

√
tr(VT V)

, ̂cov [ln(X)] =

up uq vp vq

up| a e j i
uq| e b g h
vp| j g c f
vq| i h f d

(1)

Summarized in Table 1 are the three correlation metrics proposed, their input
endpoint data expressed as functions of data X and the corresponding correlations
estimates.

As it can be seen from the expressions of cos(θ ), the correlation information

represented as the ten unique elements, a through j, in ̂cov [ln(X)] denoted in (1) is
only fully utilized in the estimate for correlation in treatment effects. If correlation
is sought only from active treatment data, then any correlation information related to
placebo will be ignored, leading to substantial loss of information. From this point
of view, the negative correlation detected from the treatment group with drug A in
the above example may be biased. More surprisingly, intuitively there appears to
have no loss of information if pooled data are applied for correlation estimation.
But, as it can be seen from the expression of cos(θ ), only six out of the ten
unique elements in the sample variance–covariance matrix is utilized, suggesting
meaningful contrasts should be applied to convert pooled data into dynamic data
to avoid loss of information. Simply pooling all treatment data together cannot
guarantee to have all correlation information retained.

Although correlation in subject-level treatment effects can be visualized and
realized in crossover studies as treatment-mediated correlation measure, this ad
hoc approach does not work for parallel group comparisons because no individual
patient level treatment effect is observable. For treatment-mediated associations
between a primary clinical endpoint and a longitudinal BMK with parallel group
design or crossover design with repeated measures, a joint modeling between the
clinical endpoint and BMK has to be applied.
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3 Joint Modeling of a Clinical Endpoint
and a Longitudinally Measured BMK

Joint modeling of two correlated endpoints, X and Y , can be realized following
the theory in latent variable model. In general, two assumptions are made. First, it
assumes there exists a latent variable or random effect w that underlies the process
of both X and Y . Second, it assumes X and Y are independent of each other
conditioning on w. Provided X |w and Y |w can be modeled parametrically from
the data with likelihood l (X |w) and l (Y |w ), respectively, the joint likelihood of X
and Y , l (X ,Y ), can then be computed by integrating l (X ,Y |w) = l (X |w) l (Y |w)
over the distribution of w as nuisance parameters. To obtain the inference about the
association between treatment effect on BMK and the primary clinical endpoint, an
extra step called bridging is imposed, that is, the subject level mean profile predicted
from the model for X |w is included as one of the covariates during modeling Y |w .
Considering X as a normally distributed, longitudinally measured BMK and Y as
T2E, parameterization of the joint likelihood is illustrated below.

3.1 Construction of Joint Likelihood of a Longitudinally
Measured BMK and T2E

To parameterize the joint likelihood of a longitudinally measured BMK and T2E,
we observe

1. Longitudinally measured BMK outcome on subject i at time ti j as
xi (t) =

{
xi (ti j) , j = 1, . . .ki

}
. Denote zi a p-dimensional vector of baseline

covariates, including treatment indicator, for subject i = 1, . . . ,n, then the mean
profile of xi (t) can be modeled as xi (t) = mi (t) + εi (t) ,εi (t) ∼ N

(
0,σ2

)
,

where

mi (t) = γ0i + γ1it + γ2it
2 + · · ·γdit

d + zT
i η (2)

where γ i = (γ0i,γ1i, . . . ,γdi)
T ∼ Nd

(
μγ ,Σγ

)
is a d-dimensional random effect

with PDF denoted as g(·). Note that the random effects presented in (2) as high-
order polynomials are to provide better fitting in case some subjects show highly
nonlinear longitudinal trajectories, as recommended in [5]. The likelihood for
BMK process can then be written as f

(
xi (ti j)

∣
∣γ i;zi,η ,σ2

)
.

2. T2E data yi = (Ti,δi) for subject i, where Ti = min(T ∗i ,Ci), with T ∗i and Ci being
the true event time and censoring time, respectively. δi is the event indicator,
i.e., δi = I (T ∗i ≤Ci). Denote wi a q-dimensional vector of baseline covariates,
including treatment indicator, for subject i = 1, . . . ,n. Denote further Mi (t) =
{mi (λ ) ,0≤ λ < t} the history of the true unobserved longitudinal BMK process
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up to time point t, h0 (t) the baseline risk function. The risk function at time t can
then be modeled as

h(t |Mi (t) ;wi ) = h0 (t)exp
[
wT

i α+β mi (t)
]

(3)

The likelihood for the T2E process is then

ui (Ti,δi |γ i;wi,α ,β ,η ) = [h(Ti |Mi (Ti) ;wi,β ,α )]δi Si (Ti |Mi (Ti) ;wi,β ,α )

where Si (Ti |Mi (Ti) ;wi,β ,α ) = exp
{
−
∫ Ti

0 h0 (t)exp
[
wT

i α +β mi (t)
]

dt
}

.

The complete joint likelihood for subject i is then

∞∫

−∞

[
ki

∏
j=1

f
(
xi (ti j)

∣
∣γ i;zi,η ,σ2 )

]

ui (Ti,δi |γ i;wi,α,β ,η )g
(

γ i; μγ ,Σγ

)
dγ i (4)

Treatment-mediated association between BMK and T2E, as well as treatment
effects on BMK and T2E, respectively, can then be obtained by maximizing (4).
Although theoretically maximization of (4) can be realized using EM algorithm
[7], a hybrid of EM and quasi-Newton algorithms, implemented recently as an
R contributed package called JM [6], is much more efficient. Some handy utility
functionalities there enable more choices of T2E models and numeric integration
methods and allow estimating expected survival probability and residuals via
resampling.

Revisit the two core sub-models, (2) and (3), in the joint modeling process, it can
be seen that some key inferences can be obtained in this joint modeling framework
from three parameters, η (treatment effect on BMK), α (treatment effect on T2E),
and β (association strength between T2E and treatment effect on BMK), such that
β η +α is the combined treatment effect on T2E. Some further discussion about
these effects will be provided in Sect. 4. Below an anti-AIDS clinical trial data will
be applied to fit three models and the benefits of using this joint model are illustrated.

3.2 An Example

A randomized, parallel-group clinical trial among 467 HIV infected patients who
did not respond to AZT in the previous trial participated in this study. The
aim of this study was to compare the efficacy and safety of two alternative anti-
retroviral drugs (variable name: drug), ddI (Zalcitabine), and ddC (Didanosine).
During the study follow-up, 188 death events (variable name: event) occurred.
CD4+ cell counts (variable name: CD4) scheduled at baseline (Month 0), 2,
6, 12, and 18 months (variable name: obstime) post-randomization, as well as
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time-to-death (variable name: Time), were recorded. Additional three important
baseline explanatory binary variables for AIDS diagnosis at study entry (yes vs no,
variable name: prevOI), AZT stratum (failure vs intolerance, variable name: AZT)
and gender (male vs female, variable name: gender) are also included in the analysis.
Details about this data can be found from [3].

The first glimpse of treatment-mediated association between time-to-death and
CD4 cell counts can be taken from Fig. 3. Lower probability of survival with ddI
treatment compared with ddC is observed from the left panel. From the right panel,
CD4+ cell counts decreased over time. When compared the mean profile curves over
time between the two treatment groups, it can be seen that the treatment group with
ddI showed slower pace of decrease of CD4+ cell counts. This pattern suggests the
correlation in treatment effects (ddI vs ddC) on time-to-death and CD4+ cell counts
should be negative.

To assess treatment-mediated association strength between time-to-death and
CD4+ cell counts, the following three models are considered to compare with each
other. All models contain the three explanatory variables, prevOI, AZT, and gender,
as baseline covariates.
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Table 2 Comparisons in point estimate (SE) among 3 models@

Parameter Point Estimate (SE)

Naı̈ve Model 2-stage Model Joint Model

Treatment effect on T2E (α̂) 0.222(0.147) 0.233(0.148) 0.274(0.144)
Treatment effect on BMK (η̂) 0.040(0.024) 0.041(0.024)
Association between T2E and BMK (β̂ ) −0.045(0.137) −0.273(0.339) −0.400(0.150)

The treatment effect (SE) on T2E estimated from a Cox model with treatment being the only
covariate is 0.217(0.146)

1. Joint model: The LDA sub-model and Cox sub-model are specified as follows:
LDA sub-model: Outcome variable derived as ΔCD4 = change in square

root of CD4+ cell counts from baseline, with fixed effects including
additional covariates—drug, obstime and drug× obstime, random effect
including only obstime;

Cox sub-model: With additional covariates for drug and the subject-level
mean ΔCD4+ predicted from the above LDA sub-model at event or
censoring time Ti for subject i = 1, . . . ,n.

2. 2-Stage model: The same as the joint model setup described above but the two
sub-models are estimated separately except jointly;

3. Naı̈ve model: Same as the above Cox sub-model except the predicted subject-
level mean ΔCD4(Ti) replaced with raw ΔCD4 and estimated using counting
process.

By using the R package JM, the key parameter estimates are displayed in Table 2.
It can be seen that the joint model is consistent with the other two models in terms
of the treatment effects on time-to-death and CD4+ cell counts, respectively, from
both the magnitude and direction of the two effects. The direction of the trend of
the treatment-mediated association between time-to-death and CD4+ cell counts
is consistent among the three models, which is aligned with what is implied from
Fig. 2. However, there are striking differences between the joint model and the other
two ad hoc approaches in terms of the magnitude of the association, as well as the
estimation efficiency. The joint model is more powerful than either of the ad hoc
methods in these two aspects. See Sect. 4 about some further discussions.

4 Discussion

As long as there is only one event or censoring for each subject during the study
follow-up, it is in general not a problem to ignore measurement error brought
in due to repeated measure of a BMK as a time-varying covariate in counting
process-based estimation of Cox-model parameters. This is because only the last
time interval, from the last time the measurement of BMK was made to the time of
event or censoring, contributes to the partial likelihood, based on which parameter
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estimations are made. The underlying assumption is all information about the BMK
is absorbed in the last measurement, which, if not valid, may lead to substantial
loss of information. This may explain why the estimated correlation strength is
a lot weaker in the naı̈ve model. Furthermore, BMK data are more likely to be
missing at later scheduled time points, such that the longer the survival time, the
less reliable the predicted mean profile due to missing data. Worst of all, mechanism
of missing at random is unlikely to be valid under such a scenario. These impacts
may explain why the correlation strength estimated from the naı̈ve model or 2-stage
model seems attenuated compared to the joint model. In addition, Between-subject
variability of BMK is not taken into consideration at the 2nd step of modeling for
survival time, resulting in attenuated and/or distorted assessment of correlation in
the 2-stage modeling. The joint model, on the other hand, is not only unaffected
by any of these impacts, but also may provide a plausible solution to LDA with
informative missing data, with inferences for BMK response made directly and no
need to impute missing data explicitly.

The combined total treatment effect on T2E inferred from the two core sub-
models, (2) and (3), is β η +α . If the magnitude of β η +α is greater than α , then a
trial design by considering simultaneously information about BMK and T2E could
be more cost-effective than based on T2E alone. See [1] for details. Also note that
β , estimated from a single study, does not have exactly the same interpretation as
correlation between treatment effect on BMK and treatment effect on T2E as from
meta-analysis [2] although both of them are treatment-mediated correlations. From
β it can tell how much effect on T2E is attributed to the treatment effect on BMK,
in the sense that, if β η takes the majority in the combined effect on T2E, then the
treatment effect at the end of the trial to be gauged during early interim analysis
can be at least β η . If η , the treatment effect on BMK, improves over time, then
improvement of the treatment effect at the end of the trial is expected as well. To
obtain the correlation estimate from a single study with meaning equivalent to the
one from meta-analysis, we may stratify the total study population and perform
meta-analysis type of estimation by pretending each stratum as an independent
study, which requires more careful plan during the trial design stage than the routine
case, i.e., to find an appropriate stratifier and perform stratified randomization at
larger sample size.
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Man-Jen Hsu, Yuan-Chin Ivan Chang, and Huey-Miin Hsueh

Abstract A biomarker is usually used as a diagnostic or assessment tool in medical
research. Finding a single ideal biomarker of a high level of both sensitivity
and specificity is not an easy task; especially when a high specificity is required
for a population screening tool. Combining multiple biomarkers is a promising
alternative and can provide a better overall performance than the use of a single
biomarker. It is known that the area under the receiver operating characteristic
(ROC) curve is most popular for evaluation of a diagnostic tool. In this study,
we consider the criterion of the partial area under the ROC curve (pAUC) for the
purpose of population screening. Under the binormality assumption, we obtain the
optimal linear combination of biomarkers in the sense of maximizing the pAUC
with a pre-specified specificity level. Furthermore, statistical testing procedures
based on the optimal linear combination are developed to assess the discriminatory
power of a biomarker set and an individual biomarker, respectively. Stepwise
biomarker selections, by embedding the proposed tests, are introduced to identify
those biomarkers of statistical significance among a biomarker set. Rather than for
an exploratory study, our methods, providing computationally intensive statistical
evidence, are more appropriate for a confirmatory analysis, where the data has been
adequately filtered. The applicability of the proposed methods are shown via several
real data sets with a moderate number of biomarkers.
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1 Introduction

A biomarker is a biological indicator in showing absence, presence, or the condition
of a disease, and it can be used to determine the status of a subject, the effectiveness
of a treatment, and so on. Ideally, a biomarker with both high sensitivity and
specificity for accurate prediction is expected. However, it is not easy to find such a
biomarker in practice. Combining biomarkers provides an alternative to improve the
performance of currently available ones. For example, the serum prostate-specific
antigen (PSA) is a well-accepted prognostic biomarker to screen for prostate cancer.
However, this test has a low specificity and therefore might lead to over-diagnosis.
Besides PSA, several potentials are investigated, please see [11]. Nevertheless, no
single biomarker among them outperforms PSA, and therefore, more investigators
propose the use of a combination of PSA and others. Please see [1, 9].

The receiver operating characteristic (ROC) curve is the most popular graphical
tool in evaluation of the diagnostic power of a biomarker. It provides an exhaustive
look at the relationship between sensitivity and specificity of a biomarker. The
area under the ROC curve (AUC) is proposed for an efficient summarization. In
some applications, investigators place their emphasis only on a part of the curve.
For example, a high level of specificity is required for a biomarker serving as a
population screening tool. As a consequence, a biomarker is assessed on the partial
area under the ROC curve (pAUC) in a region of specificity above some level. See
[13] and the reviews by [4, 16].

This study focuses on combining multiple continuous-scaled biomarkers into one
single diagnostic or predictive rule for disease with emphases on assessment of each
biomarker. For better interpretability, we propose the use of a linear combination
for information summarization. The discriminatory power of a linear combination
of biomarkers is evaluated on the pAUC. The optimal linear combination, which
provides the best discriminatory power among all combinations, is the target
solution of research interest. In addition to the global predictability, some insights
into the importance of an individual biomarker can be obtained from the coefficients.
However, it needs to incorporate sampling variation for statistical significance.

In presence of multiple biomarkers, a traditional way is fitting a multiple logistic
regression model to the data set for medical diagnosis. For example, see [20].
Alternatively, seeking the maximal discriminatory power, Su and Liu [17] derived
the explicit form of the best linear combination in terms of AUC under a binormal
model. Following their study, [6] found a solution, that dominates any others in
some scenarios. Nevertheless, the dominating scenarios are not universal. Pepe and
Thompson [12] and Pepe et al. [14] proposed the use of empirical AUC estimates in
finding the optimal linear combination. In our earlier study, we found that not only
the analytical derivation but also the computation became much more complicated
under the pAUC criterion, please refer [2].

Recently, due to newer and better biotechnology, big data are generated easily
and related analytical tools are demanding. In developing a binary classification,
which is parallel to a diagnostic rule, several algorithm-based approaches have been
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proposed by directly using either AUC or pAUC as the objective function, such
as [3, 5, 7, 8, 10, 15, 22, 23]. However, these algorithm-based methods are unable
to accommodate statistical evidence into variable selection. It motivates our study
in developing some stepwise approaches, embedding adequate statistical tests, to
identify important biomarkers for data sets of a moderate size. In which, a biomarker
is discarded or selected based on the statistical evidence from data, not only on a
computational prospect.

The paper is organized as follows. In Sect. 2, the sample version of the optimal
linear combination will be defined. In Sect. 3, some testing procedures for the global
and individual discriminatory power will be proposed. Furthermore, two biomarker
selection approaches adopting the proposed tests will be developed. Real example
analyses are given in Sect. 4. We then conclude this paper with a discussion in
Sect. 5.

2 Strong Consistency of the Linear Combination
Estimator Maximizing the pAUC

Let X be a random vector of p biomarkers related to the disease of a subject, and
D be the binary disease status, where D = 1 indicates a subject from the diseased
population, D = 0 indicates a subject from the non-diseased population. Suppose
that

X|D = d ∼MV N(μd ,Σd), d = 0,1,

where Σ0 and Σ1 are positive definite. For any given real vector a ∈ Rp,

aT X|D = d ∼ N(aT μd ,Qd),

where Qd = aT Σda, for d = 0,1. Let Φ(·) denote the cumulative distribution
function of N(0,1) and Φ−1(·) be its inverse function. Let c(u) = Φ−1(1− u) and
Δμ = μ1− μ0, then at specificity (1− u), the sensitivity of aT X is equal to

F(a,u) = Φ
(

aT Δμ − c(u)
√

Q0√
Q1

)
.

Therefore, for a false positive rate region (0, t) for some predetermined t ∈ (0,1),
the pAUC of aT X is equal to

pAUC(a) =
∫ t

0
F(a,u)du. (1)

Similar to AUC, the pAUC has the scale invariant property. For identification
purposes, in this study the search for the optimal linear combination vector is
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restricted to the hyper-sphere with an unit radius. Let a∗ be such a pAUC maximizer;
that is,

a∗ = argmaxa∈Ep
pAUC(a),

where Ep = {a| ‖a‖= 1,a ∈ Rp}.
When the population parameters are unknown, the maximum likelihood esti-

mates (MLEs) are employed in a sample version of the optimization problem.
Assume two independent random samples of n0,n1 are drawn from the non-diseased
and diseased populations, respectively. The estimated mean vectors and covariance
matrices are, respectively, denoted as follows: μ̂0, μ̂1, and Σ̂0, Σ̂1. Moreover, let
Δ̂μ = μ̂1− μ̂0 and Q̂d = aT Σ̂da, for d = 0,1. Replacing the unknown parameters in
(1) by their corresponding MLEs defined above, we have a sample version of pAUC
below:

̂pAUCn(a) =
∫ t

0
F̂n(a,u)du, (2)

where

F̂n(a,u) = Φ

(
aT Δ̂μ − c(u)

√
Q̂0√

Q̂1

)

.

Thus, a∗ of the optimal linear combination is estimated by the maximizer of (2):

ân = argmaxa∈Ep
̂pAUCn(a).

The theorem below shows that ân is a strong consistent estimator of a∗. A sketch of
the proof is provided in Appendix.

Theorem 1. Assume that pAUC(a) in (1) is a continuous function of a and has a
unique maximizer a∗ in Ep. Then ân→ a∗ with probability 1 as n0,n1→ ∞.

In real applications, some of the coefficients in the best linear combination were
found to be nearly zero. Numerically, their corresponding biomarkers might have
limited contribution to the combination and thus to the disease prediction. In the
following section, we will discuss how to assess the significance of biomarkers
obtained in our maximizing procedure in terms of their discriminatory power.
The proposed testing procedures will be embedded into our biomarker selection
approaches in order to find a compact biomarker set, which consists of only
significant biomarkers in disease diagnosis.
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3 Hypothesis Testing and Biomarker Selection

3.1 Testing the Discriminatory Power

Considering only the class of linear combinations, we evaluate the global discrimi-
natory power of a set of p≥ 1 biomarkers, X, by testing the following hypotheses:

H0,g : The biomarker set has no discriminatory power to the disease

versus

H1,g : The biomarker set has a discriminatory power to the disease.

The null hypothesis H0,g is true if and only if the optimal linear combination of the
biomarker set has no discriminatory power. Or equivalently, the maximal pAUC
that the set can achieve through its linear combinations is not greater than the
reference limit t2/2, which is the pAUC value of the non-informative diagnosis with
a diagonal ROC curve. That is,

H0,g : pAUC(a∗)≤ t2

2
versus H1,g : pAUC(a∗)>

t2

2
.

By maximizing the sample pAUC defined in (2), we obtain the maximal sample
pAUC and use it as the test statistic. That is,

Tg = max
a∈Ep

̂pAUCn(a) = ̂pAUCn(ân) =

∫ t

0
Φ

(
âT

n Δ̂μ − c(u)
√

Q̂0√
Q̂1

)

du.

The null hypothesis H0,g is rejected if Tg is sufficiently large.
Let XT = (XT

i− ,Xi), we consider to assess the contribution of Xi given the
existence of other biomarkers, Xi− . The following hypothesis is tested:

H0,c : Given Xi− , Xi has no discriminatory power to the disease.

The coefficients of the optimal linear combination of X are written as a∗T =
(a∗Ti− ,a

∗
i ), where a∗i is the corresponding coefficient of Xi. In this problem, we

propose evaluating the biomarker Xi from a∗i . That is, H0,c is equivalent to

H0,c : a∗i = 0.

The test statistic is the estimator of a∗i , denoted by Tc,i = ân,i. The null hypothesis
H0,c is then rejected if Tc,i is either too small or too large.

Due to the complex formulation of the test statistics, the null distribution and
the critical values are estimated by a parametric bootstrapping method. Under the
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null hypothesis, the sampling distribution of the test statistic is estimated. Consider
drawing two independent random samples of size n1 and n0 from the estimated
null distribution. Then using the bootstrap samples to find the test statistic. Repeat
the sampling B times. The critical value(s) is(are) then equal to the correspondent
percentile(s) among these values.

3.2 Biomarker Selection

We now turn to the biomarker selection problem. Assume that all biomarkers are
adequately standardized a priori and denoted the full standardized biomarker set
by X. Let âT

n = (ân,1, . . . , ân,p) be the estimate of the optimal linear combination
as before. The magnitude of |ân,i| is used as an ordering criterion in the following
stepwise biomarker selection approaches. Rearrange the biomarkers according to
their corresponding |ân,i| values in an ascending order. Denoted the rearranged
vector by XT = (X(1), . . . ,X(p)).

We consider two stepwise selection methods: the Forward and the Backward
approaches. Define A as the set of biomarkers under consideration in each step for
convenience. The Forward procedure starts from a null A and tests the contribution
of the potentially most discriminatory biomarker X(p). The biomarker is added to A
if it is significant. Then it consecutively assesses X(p−1), X(p−2) and so on. On the
other hand, the Backward procedure starts from testing the overall discriminatory
power of A = {X}. If an insignificance is obtained, we stop the selection and
conclude that the full biomarker set is independent of the disease. With a significant
global effect, one further determines whether the potentially least discriminatory
biomarker X(1) is significant. Remove the biomarker from A if an insignificant result
is present. Given the result, this procedure consecutively assesses the conditional
contribution of X(2), of X(3), and so on. After evaluating the contribution of every
individual biomarker, we conclude that the biomarkers remaining in A have a
significant contribution to the linear combination in terms of pAUC. The details are
presented below:

Forward Method

Step 1. Set A = /0. Test the marginal effect of X(p) with respect to

H0,(p) : X(p) has no discriminatory power.

If H0,(p) is rejected, add X(p) to A. Go to the next step.
Step 2. Test the significance of X(p−1) with respect to

H0,(p−1) : Given A, X(p−1) has no discriminatory power.
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If H0,(p−1) is rejected, add X(p−1) to A. Go to the next step.
...

Step p. Test the significance of X(1) with respect to

H0,(1) : Given A, X(1) has no discriminatory power.

If H0,(1) is rejected, add X(1) to A. Stop.

Backward Method

Step 0. Set A = {X}. Test the global effect of A with respect to

H0,(0) : A has no discriminatory power.

If H0,(0) is rejected, go to the next step; otherwise, stop and conclude A = /0.
Step 1. Assess X(1) by removing X(1) from A and test the hypothesis,

H0,(1) : Given A, X(1) has no discriminatory power.

If H0,(1) is rejected, add X(1) to A. Go to the next step.
Step 2. Assess X(2) by removing X(2) from A and test the hypothesis,

H0,(2) : Given A, X(2) has no discriminatory power.

If H0,(2) is rejected, add X(2) to A. Go to the next step.
...

Step p. Assess the effect of X(p). If A = {X(p)}, stop; otherwise, remove X(p) from
A and test the following null hypothesis,

H0,(p) : Given A, X(p) has no discriminatory power.

If H0,(p) is rejected, add X(p) to A. Stop.

Note that except in the initial step of the Backward method, there is no early
stopping criterion in both approaches in order to minimize the risk of not taking the
variation of |ân,i| into the ordering criterion at the beginning of the procedure. Note
that at every step, the biomarker set involved is likely to differ, thus the optimal
linear combination should be recalculated for the hypothesis testing. Further, the
two biomarker selection approaches assess the conditional discriminatory power
of one target biomarker at every step and hence the related null hypothesis is
H0,c. For simplicity, one can consider a fixed significance level stepwisely in the
procedure. To control the global type I error rate, a suitable multiplicity adjustment
can be employed. For example, the Bonferroni adjustment suggests a α/p stepwise
significance level in the Forward method, and α/(p+ 1) level in the Backward
method for the global type I error rate to be controlled at α level.
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4 Applications to Real Data Sets

We apply our procedures to two real examples in [6, 19]. By using the raw data
and the standardized data, the optimal linear combinations of the full biomarker
set are both reported in Table 1. We consider the following standardization: every
biomarker in the raw data subtracts the non-diseased group mean and then divides
by its pooled sample standard deviation from the two groups for a more uniform
unit across biomarkers. The two proposed biomarker selection methods with 5%
stepwise significance level are applied on the standardized data. The optimal linear
combinations of the reduced biomarker set are given in Table 1.

The first example is a study of Duchenne Muscular Dystrophy (DMD).The DMD
carriers generally are elevated by certain serum enzymes, not by physical symptoms.
The measurements of three biomarkers of DMD of 87 normal and 38 carrier females
were collected in this data set. The sample means of the three biomarkers in the
normal and carrier groups are, respectively, μ̂T

0 = (3.3932,4.5213,2.4863), μ̂T
1 =

(4.7615,4.5228,3.0105); and the sample covariance matrices are

Σ̂0 =

⎛

⎝
.0316 −.0039 .0024
−.0039 .0065 .0006
.0024 .0006 .0113

⎞

⎠ , Σ̂1 =

⎛

⎝
.7683 −.0050 .3054
−.0050 .0094 −.0064
.3054 −.0064 .2268

⎞

⎠ .

We observe from Table 1 that the contribution of the second biomarker is greatly
downsized by the standardization. In fact, we find that the marginal distributions of
the second biomarker of the two groups do not vary much. Consequently, it should
have a limited discriminatory power. The reason that it has an inflated coefficient
in the optimal linear combination based on the raw data is due to the fact that
it has relatively small variances, which means that it is measured by a greater
unit than other biomarkers. The standardization makes the units of the biomarkers
more uniform. It leads to a more fair comparison across the biomarkers. After data

Table 1 The estimated best linear combination and the corresponding pAUC for the specificity
range (0.9,1) in DMD and atherosclerotic coronary heart disease examples.

Case Method â1 â2 â3 ̂pAUCn

DMD Full set (raw) 0.8350 0.5116 0.2026 0.0888
Full set (Standardized) 0.9895 0.0653 0.1292 0.0888
Forward (Standardized) 0.9657 0.0000 0.2597 0.0885
Backward (Standardized) 0.9657 0.0000 0.2597 0.0885

Case Method lutein TBARS HDL C U A ̂pAUCn

Heart disease Full set (raw) 0.9447 0.3258 0.0265 0.0274 0.0165
Full set (Standardized) 0.7079 0.6754 0.0834 0.1890 0.0165
Forward (Standardized) 1.0000 0.0000 0.0000 0.0000 0.0099
Backward (Standardized) 1.0000 0.0000 0.0000 0.0000 0.0099
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standardization, Table 1 shows that both Forward and Backward approaches select
the first and the third biomarkers. We find that the decrement in the pAUC by
removing the second biomarker is slim.

In another real example, we consider four biomarkers lutein, TBARS, HDL
cholesterol (HDL C), and uric acid (U A) for construction of a classification
tool for atherosclerotic coronary heart disease. A cohort of 434 subjects were
selected for the analysis yielding 72 cases and 362 controls. One obtains an
insignificant conclusion in testing the null hypothesis of normality. For the
non-diseased and diseased groups, the estimated means of the four markers are
μ̂T

0 = (0.1275,0.8845,4.0766,6.7724), μ̂T
1 = (0.1402,0.9337,4.1225,6.9112);

and the two sample covariance matrices are

Σ̂0 =

⎛

⎜
⎜
⎝

.0034 −.0004 −.0002 −.0051
−.0004 .0285 .0039 .0417
−.0002 .0039 .0488 .0268
−.0051 .0417 .0268 .2846

⎞

⎟
⎟
⎠ , Σ̂1 =

⎛

⎜
⎜
⎝

.0043 .0033 .0006 .0067

.0033 .0415 .0019 .0426

.0006 .0019 .0389 .0010

.0067 .0426 .0010 .1504

⎞

⎟
⎟
⎠ .

From Table 1, the impact of the first biomarker lutein, which has relatively small
variances in the raw data, is downsized by the standardization. Before the biomarker
selection, the first two biomarkers, lutein and TBARS, seem important to the disease
from the magnitudes of their coefficients. However, the two stepwise selections
produce the same conclusion that only the biomarker lutein achieves statistical
significance, although there is a moderate reduction in the pAUC by discarding other
three biomarkers.

5 Discussion

In this study, we focus on disease diagnosis with the presence of multiple biomark-
ers. We consider the class of linear combinations for an effective and easy-to-
interpret summarization of the multiple biomarkers. The diagnostic power of a linear
combination is evaluated upon its pAUC over a clinically relevant threshold region.
In specific, we consider the requirement of a high specificity for the purpose of
population screening.

Under the binormality assumption, the pAUC of a linear combination is esti-
mated by employment of MLEs of the population parameters. In addition, the strong
consistency of the estimated optimal linear combination is proved. We introduce a
testing procedure to assess the overall diagnostic power of a set of biomarkers from
the greatest pAUC it can achieve in the class of linear combinations. Furthermore, a
testing procedure for determining the conditional contribution of a single biomarker
given the existence of other biomarkers is developed. The parametric bootstrap
method is applied to find the critical value(s) of the tests. These proposed tests
are then embedded in two biomarker selection approaches. The applicability of the
proposed methods is illustrated by two real data sets.
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Differing with other algorithm-based marker selection approaches, the proposed
methods select or discard a biomarker based upon the evidence of statistical
significance. As a trade-off, to acquire statistical evidence, our methods necessarily
involve many computations. As such, it decreases the feasibility of these methods
for big data sets. Consequently, our methods are less appropriate in an exploratory
study. We suggest the application of adequate data filtering for dimension reduction
prior to advanced statistical confirmatory analysis, such as the construction of a
diagnostic rule.

Appendix

Proof of Theorem 1. Since E(X|D)2 < ∞, by SLLN, as n→ ∞,

μ̂0
a.s.→ μ0, μ̂1

a.s.→ μ1, Σ̂0
a.s.→ Σ0, Σ̂1

a.s.→ Σ1.

Consequently, for any fixed a ∈ Ep,

aT Δ̂μ
a.s.→ aT Δμ , Q̂0

a.s.→ Q0, Q̂1
a.s.→ Q1, and F̂n(a,u)

a.s.→ F(a,u),

since Φ(·) is a continuous function ([18], Theorem 1.10 (i)).
Further, since Φ(·) is bounded, by the dominated convergence theorem,

lim
n→∞

̂pAUCn(a) = lim
n→∞

∫ t

0
Fn(a,u)du =

∫ t

0
F(a,u)du = pAUC(a).

Hence, for any fixed a ∈ Ep, ̂pAUCn(a) → pAUC(a) with probability 1. Since
a∗ = argmaxa∈Ep

pAUC(a) is assumed unique, it implies that for every � > 0,
supa:d(a,a∗)≥� pAUC(a)< pAUC(a∗). As a consequence, according to Theorem 5.7
([21]),

ân→ a∗, with probability 1.
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Safety Concerns of the 3+3 Design:
A Comparison to the mTPI Design

Yuan Ji and Sue-Jane Wang

Abstract The 3+3 design is the most common choice by clinicians for phase I
dose-escalation oncology trials. In recent reviews, more than 90 % of phase I trials
are based on the 3+3 design (Rogatko et al., Journal of Clinical Oncology 25:4982–
4986, 2007). The simplicity and transparency of 3+3 allows clinicians to conduct
dose escalations in practice with virtually no logistic cost, and trial protocols based
on 3+3 pass IRB and biostatistics reviews briskly. However, the performance of
3+3 has never been compared to model-based designs under simulation studies
with matched sample sizes. In the vast majority of statistical literature, 3+3 has
been shown to be inferior in identifying the true MTD although the sample size
required by 3+3 is often magnitude smaller than model-based designs. In this paper,
through comparative simulation studies with matched sample sizes, we demonstrate
that the 3+3 design has higher risks of exposing patients to toxic doses above the
MTD than the mTPI design (Ji et al., Clinical Trials 7:653–663, 2010), a newly
developed adaptive method. In addition, compared to mTPI, 3+3 does not provide
higher probabilities in identifying the correct MTD even when the sample size is
matched. Given the fact that the mTPI design is equally transparent, simple and
costless to implement with free software, and more flexible in practical situations,
we highly encourage more adoptions of the mTPI design in early dose-escalation
studies whenever the 3+3 design is also considered. We provide a free software
to allow direct comparisons of the 3+3 design to other model-based designs in
simulation studies with matched sample sizes.
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1 Introduction

Phase I oncology trials aim to find the maximum tolerated dose (MTD), the highest
dose with toxicity rate close to a pre-specified target level, pT . The 3+3 design [3, 4]
is the leading method for phase I dose-escalation trials in oncology, as over 90 % of
published phase I trials have been based on 3+3 for the past two decades [1, 5, 6].
Such popularity of 3+3 is striking since numerous model-based dose-escalation
methods have been developed by biostatisticians during the same time period and
almost all the new methods seemed to exhibit better performance than 3+3 [7–10].

The main reason for the popularity of the 3+3 design is due to its simplicity,
transparency, and the costless implementation in practice. In contrast, it often
requires a considerable amount of logistic support and complexity to implement
most model-based designs. Even if the practical burden could be overcome,
protocols based on model-based designs are often subject to more thorough reviews
by IRB or among biostatisticians, as operating characteristics of these new designs
are required. To the contrary, if the protocol is based on the 3+3 design, such
requirement disappears since 3+3 has been widely used. As a result, despite the
acceleration in the research development of adaptive model-based designs, the lower
standard in the review process and cost-free implementation in practice makes 3+3
an increasingly popular design to physicians. Setting aside the logistic issues, we
ask exactly how much better the model-based designs are than 3+3. In reviewing
the statistical literature on phase I adaptive designs, we found that when comparing
to 3+3, most works did not match the sample size across the designs. For example
Ji et al. (2010) [2] showed that 3+3 exhibits a smaller average sample size in the
computer simulations than model-based designs, and consequently 3+3 also yields
a smaller percentage in identifying the true MTD in these simulations. Since the
sample size is not matched in the comparison, it is difficult to assess the reason for
the reduced percentage under 3+3. More importantly, since phase I trials focus on
patient safety, comparisons without matching sample size cannot provide accurate
assessment on the safety characteristics of designs. In fact, usually designs resulting
in larger sample sizes should be safer since patients enrolled in the later stage of the
trial with a larger sample size will be better protected due to more precise statistical
inference.

In this paper, we construct a comprehensive simulation study to evaluate the
operating characteristics of 3+3 and a newly developed adaptive design known
as the modified toxicity probability interval (mTPI) method [2, 6]. In doing so
we match the sample size between the two designs. The main intent of choosing
the mTPI design for comparison is because mTPI is equally simple, transparent,
and costless to implement. In other words, the logistic burden of mTPI and 3+3
is comparable, which allows us to focus on the simulation performance. Albeit
being recently introduced to the society, mTPI has already received attention
from both research and industry entities [11, 12]. For example, through personal
communication we are informed that almost all phase I oncology trials conducted
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at Merck Co., Inc. in the past 2 years have been based on the mTPI design or its
variations. Recently, phase I trials based on the mTPI design has been published
[13, 14]. Considering the short time period since the publication of the mTPI design,
this popularity is encouraging.

In a nutshell, the 3+3 design consists of a set of deterministic rules that dictate
dose-escalation decisions based on observed patient outcomes. For example, if out
of three treated patients 0, 1, or more than 1 toxicities are observed, 3+3 will
recommend escalating dose level, continuing at the same dose level, or de-escalating
dose level, respectively (see, e.g., [15, 16]).

The mTPI design uses a Bayesian statistics framework and a beta/binomial
hierarchical model to compute the posterior probability of three intervals that reflect
the relative distance between the toxicity rate of each dose level to the target rate pT .
Let pd denote the probability of toxicity for dose d, d = 1, . . . ,D, where D is the total
number of candidate doses. Using the posterior samples for pd , mTPI computes the
unit probability mass, defined as

UPM(a,b)(d) =
Pr{pd ∈ (a,b) | data}

b− a
, (1)

for three intervals corresponding to under-, proper-, and over-dosing, in reference to
whether a dose is lower, close to, or higher than the MTD, respectively. Specifically,
the under-dosing interval is defined as (0, pT − �1) and implies that the dose level
is lower than the MTD, the over-dosing interval (pT + �2,1) implies that the dose
level is higher than the MTD, and the proper-dosing interval (pT − �1, pT + �2)
suggests that the dose level is close to the MTD. Here �1 and �2 are small fractions,
say 0.05. Inference is robust with respect to the choice of �, as shown in [2]. Large
UPM values for each interval imply large per-unit posterior probability mass for that
interval, therefore implying the corresponding decision: if UPM(d) is the largest for
under-, proper-, or over-dosing interval, the decision should be to escalate (E), stay
(S) at dose d, or de-escalate (D), respectively. Therefore, assuming that dose d is
currently used to treat patients, the mTPI design assigns the next cohort of patients
based on the decision rule Bd , given by

Bd = arg max
m∈{D,S,E}

UPM(m,d), (2)

where UPM(m,d) is the value of UPM for the dosing interval associated with
decision m. Decisions D, S, or E warrant the use of dose (d − 1), d, or (d + 1)
for the next cohort of patients, respectively. Ji et al. [2] proved that the decision
rule Bd is consistent and optimal in that it minimizes the posterior expected loss, in
which the loss function is determined to achieve equal prior expected loss for the
three decisions, D, S, and E. More importantly, all the dose-escalation decisions for
a given trial can be pre-calculated under the mTPI design and presented in a two-
way table (Fig. 1). Once the trial starts, clinicians can easily monitor the trial and
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Fig. 1 Dose-finding spreadsheet of the mTPI method. The spreadsheet is generated based on a
Beta/Binomial model and pre-calculated before a trial starts. The letters in different colors are
computed based on the decision rules under the mTPI method and represent different dose-finding
actions. In addition to actions D, S, and E, the table includes action U , which is defined as the
execution of the dose exclusion rule in mTPI.

select the appropriate doses following the pre-calculated table. The simplicity and
transparency of mTPI makes it a strong candidate as a model-based counterpart of
the 3+3 design in practice. A software in Excel is provided at https://biostatistics.
mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software Id=72 We will
show surprising and important findings and make a recommendation to use mTPI in
future phase I trials based on these findings.

2 Comparison of 3+3 and mTPI

2.1 Simulation Setup

We perform computer simulation of phase I trials based on the 3+3 and mTPI
designs and compare their operating characteristics summarized over thousands of
simulated trials.

https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=72
https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=72
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Fig. 2 Dose-response patterns for the 42 clinical scenarios in the simulation. For each of the
pT = 0.1,0.2,0.3 values, 14 scenarios are constructed.

2.1.1 Clinical Scenarios

We consider 6 doses in the simulated trials. We construct 14 scenarios for each of
the three target pT values, resulting in a total of 42 scenarios. In each scenario, true
toxicity probabilities are specified for the 6 doses. These scenarios are set up to
capture a wide range of dose–response shapes in practice, as shown in Fig. 2 (see
also a discussion in Ji et al., 2012 [17]). Specifically, Scenario 1 represents a case
where all doses are safe and low; Scenario 2 represents a case where all doses are
high; in Scenarios 3–4 doses cover a wide range of toxicity probabilities and the
toxicity probability of one dose equals pT ; Scenarios 5–7 also cover a wide range of
toxicity probabilities but the MTD is bracketed by two adjacent doses; In Scenario
8–10, dose toxicity probabilities do not vary much and center around the target pT ;
Scenarios 11–12 are similar to Scenarios 8–10, except doses have a wider range of
toxicity; lastly, Scenarios 13–14 represent two rare cases in which the MTD is the
lowest and highest dose, respectively.

2.1.2 Values of pT

In practice, the target pT values are rarely larger than 30 % as it implies unnecessary
exposure of patients to doses with high toxicity. Below, we make three choices of
pT : 0.1, 0.2, and 0.3, i.e., the target toxicity rates of the MTD in our simulated trials
are 10 %, 20 %, or 30 %. For each pT and each scenario, we simulate 2,000 trials.

2.1.3 Matching Sample Size

A unique feature in our comparison is that we attempt to match the average sample
size of the 3+3 and mTPI designs for each of the clinical scenarios used in the
simulation study. To achieve this, for each scenario we first apply the 3+3 design to
2,000 simulated trials and obtain the mean of the 2,000 sample sizes. We then apply
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Fig. 3 Difference in the average sample size per trial between 3+3 and mTPI. Each boxplot
summarizes the differences for 14 scenarios for a given target toxicity pT value.

the mTPI design, in which we need to specify the maximum sample size. The mTPI
design stops the trial when the total number of patients enrolled is equal or larger
than the maximum sample size. We calibrate the maximum sample sizes of mTPI
for each pT value and each scenario, so that the average sample sizes over simulated
trials under both designs are similar across all the scenarios. Figure 3 shows the
differences of the average sample sizes (over 2,000 simulated trials) between 3+3
and mTPI. The two designs exhibit comparable sample sizes overall. Our calibration
of mTPI only involves varying the maximum sample size, while keeping all the other
design features unchanged.

2.1.4 Variations of the 3+3

To account for different target pT values, we use one of the two 3+3 variations
(3+3L and 3++3H). See Fig. 4. Briefly, the two designs only differ when 6 patients
have been treated at a dose, and 1 or 2 of them experience the toxicity. In one
variation, 3+3L, we would stop the trial and declare that the MTD has been exceeded
if 2 out of 6 patients experienced toxicity at the dose; in the other variation, called
3+3H , we would stop the trial and declare that the MTD is that dose. Likewise,
3+3H would escalate if 1 toxicity is observed from 6 patients, while 3+3L would
stop and declare the dose to be the MTD. Here, L or H means that the target toxicity
rate pT of the MTD is low or high. We use 3+3L for trials with pT = 0.1 or pT = 0.2,
and the 3+3H for trials with pT = 0.3.
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Step 1: treat 3 patients
at dose i

Escalate to dose i+1,
Repeat Step 1

Enroll 3 more patients
At dose i

If (i = 1), stop the trial;
If (i > 1), De-escalate to

dose i-1

0 DLT 1 DLT >1 DLT 

1 DLT in 6
patients

>2 DLT in
6 patients

6 patients
treated at

i-1

3 patients
treated at

i-1

Escalate to
dose i+1,

Repeat Step 1

Stop the study
Enroll 3 more patients

at i-1,
Repeat Step 1

Stop the trial;
Dose i  is the MTD

2 DLTs in 6
patients

Stop the trial;
Dose i  is the MTD

3+3H 3+3L

3+3L

3+3H

Fig. 4 Schema of the enhanced 3+3 design. The two versions of 3+3L and 3+3H represent the
cases where the MTD is defined as the highest dose on which no more than 1 and 2 dose-limiting
toxicities (DLT) are observed from 6 patients, respectively.

2.2 Performance Evaluation

Summarizing results from 42 scenarios over three different pT values for three
designs can be subjective depending on the criterion used in the comparison. Since
the average sample sizes between the two methods are roughly matched, we focus
our comparison on two summary statistics simultaneously,

n>MT D = the number of patients treated above the true MTD

%SelMT D = the percentage of selecting the true MTD.

n>MT D directly evaluates the safety of each design since under matched sample size;
a smaller n>MT D value implies fewer toxicities. To calculate %SelMT D, we need to
decide which doses will be considered as the MTD for each scenario.

2.3 Main Results

Figure 5 summarizes the comparison between the 3+3 and mTPI designs, regarding
the differences in n>MT D and %SelMT D. We present the comparison results of
n>MT D in the left panel. Comparing to the mTPI design, the 3+3 design has lower
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Fig. 5 Comparison between 3+3 and mTPI based on matched sample sizes. The left panel
presents the differences in the numbers of patients treated at doses above the MTD (n>MT D),
i.e., values of (n>MT D3+3 - n>MTDmT PI) for all 42 scenarios. The right panel presents the
differences in the selection percentages of the true MTD (%SelMTD), i.e., values of (%SelMTD3+3 -
%SelMTDmTPI) for all 42 scenarios. The three colors in the plots represent the results corresponding
to the three different pT values.

n>MT D values for two scenarios, higher n>MT D for 34 scenarios, and the same
n>MT D for six scenarios. In words, 40 out of 42 times, mTPI treats fewer or the
same number of patients at doses higher than the MTD than 3+3. In addition, Fig. 6
examines the overall toxicity percentage, defined as

the total number of toxicities over all simulated trials
the total number of patients treated over all simulated trials

× 100%.

Only in one out of 42 scenarios, the 3+3 design exhibits a lower overall toxicity
percentage than the mTPI design.

We direct attention to the right panel of Fig. 5 which compares %SelMT D between
the two designs. In 10 out of 42 scenarios, 3+3 has a higher selection percentage
of the true MTD than mTPI. Among these scenarios, the 3+3 design selects the
MTD up to about 25 % more often than the mTPI design (Scenario 2 for pT = 0.3).
In the remaining 32 scenarios, mTPI selects the MTD more often than 3+3, up
to more than 40 % (Scenario 14 for pT = 0.1). A closer examination reveals that
3+3 has higher %SelMT D values in scenarios when none of the doses has a toxicity
probability close to pT or when the MTD is at the lower or higher end of the dosing
set. We performed additional simulations and confirmed this finding. We found that
when the MTD is out of the range of the dosing set, 3+3 usually has a higher
selection percentage than mTPI. In other words, 3+3 is a better method when none
of the investigational doses is close to the true MTD. This advantage seems to be
of limited utility in practice since usually doses are chosen based on scientific and
historical data, anticipating some of them are close to the MTD, not the opposite.
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Fig. 6 Overall toxicity percentages for the 3+3 and mTPI designs across all the simulated trials.

Summarizing the two plots in Fig. 5 and considering that (1) the overall sample
sizes between the two designs are roughly matched for all the scenarios and (2)
the 42 scenarios are constructed to cover a wide range of practical dose–response
shapes, we conclude that the 3+3 design is more likely to treat patients at toxic
doses above the MTD and less likely to identify the true MTD than the mTPI design.

3 Conclusion and Discussion

The mTPI has all the attractive properties 3+3 enjoys for practical considerations
and implementations. In addition, compared to the 3+3 design, the mTPI design
is safer in treating fewer patients at doses above the MTD, and in general yielding
higher probabilities in identifying the true MTD.

In practice, a single value n must be provided as the maximum sample size for
the mTPI design in any dose escalation study. In implementing the mTPI design, we
recommend a sample size of n = k× (d+1) to ensure that the design will reach the
highest dose if needed and still has one more cohort to use. Here k is the cohort size
and d the number of doses.

It is commonly accepted that phase I trials are of small sizes. This mythology
is poorly addressed in the literature. Small phase I trials often provide wrong
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recommended doses for phase II, resulting in either low efficacy or high toxicity if
the recommended doses are too low or too high, respectively. More discussion and
investigation on the proper sample sizes of phase I trials are needed. For example,
a streamlined and seamless phase I/II design may result in higher power in the
identification of safe and effective doses [18] due to increased sample sizes from
the seamless features.

We note that comparison between CRM and 3+3 have been investigated by
various authors [19–21] and thus is not included in this paper. A downside of CRM
is the lack of easy ways for implementation in practice. We have included the CRM
design in our software so that interested users can examine all three designs together,
3+3, CRM, and mTPI.
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Bayesian Interim Inference of Probability
of Clinical Trial Success

Ming-Dauh Wang and Grace Ying Li

Abstract Understanding of the efficacy of an investigated compound in early drug
development often relies on assessment of a biomarker or multiple biomarkers that
are believed to be correlated with the intended clinical outcome. The biomarker of
interest may require enough duration of time to show its satisfactory response to
drug effect. Meanwhile, many drug candidates in the portfolio of a pharmaceutical
company may compete for the limited resources available. Thus decisions based
on assessment of the biomarker after a prolonged duration may be inefficient. One
solution is that longitudinal measurements of the biomarker be measured during
the expected duration, and analysis be conducted in the middle of the trial, so that
the interim measurements may help estimate the measurement at the intended time
for interim decision making. Considering the small trial size nature of early drug
development and convenience in facilitating interim decisions, we applied Bayesian
inference to interim analysis of biomarkers.

1 Introduction

Efficiency of drug development has been a focus of discussion in recent years [1]. In
the pharmaceutical industry, this has much to do with how a drug company makes
critical decisions concerning investment on molecules that will eventually obtain
regulatory approval. To make the conventional staged drug development procedure
more efficient, drug companies have been seeking for innovative approaches and
applying them in the whole drug development process.

One area of attention is on making the early phase drug development more
informative so as to render a higher trial success rate of the much more costly
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late phase confirmatory development. This is in no wise an easy task, in that
many characteristics of early phase studies are distinctive from those of the
late phase trials. For example, efficaciousness of a drug on treating a disease is
normally assessed by measures that require a long treatment and follow-up to show
benefits clinically and statistically. Given the exploratory nature of early phase drug
development, such efficacy testing is hardly implementable. Thus, biomarkers that
are easier to measure and can be therapeutically modified in a relatively shorter
period of time would instead be looked upon for making decisions concerning
efficacy of the molecule in early drug development. For instance, high density
lipoprotein cholesterol (HDL-C) has been the biomarker utilized in early phase
programs to determine whether a class of drugs called CETP inhibitors would
further reduce cardiovascular events [2, 3]. It takes only a matter of a few months
to observe the maximum response of HDL-C to treatment, while it requires trials
of a few years long to learn whether a CETP inhibitor can efficaciously reduce
cardiovascular risks. Another example is that bone mineral density (BMD) has been
used as a biomarker for fracture risks in osteoporosis research [4].

Although biomarkers are relied on to make early drug development decisions,
there exist issues that are commonly faced. First, there may not be good biomarkers
that have been identified to be well correlated with the intended clinical endpoint. In
such a situation, approaches have been proposed to increase the predictive power of
biomarkers [5, 6]. Secondly, biomarkers themselves may also need a long duration
of time, though still relatively shorter than needed for the clinical endpoint, to
exhibit differentiation between a tested drug and its comparator. It is the latter issue
that is to be dealt with in our current consideration.

In this manuscript, we consider the situation when early measurements of a
biomarker are employed to enhance estimation of the same biomarker at a later
time point. This estimation can also involve other biomarkers that bear certain
relationships with the primary biomarker of interest. This is done so that at a time
during a clinical trial when measurement at the later time point is available only
from a small portion of enrolled subjects, informative analysis can be performed
to make various critical interim decisions concerning the overall development of
the molecule. The framework of Bayesian interim inference of biomarkers in our
consideration is laid out in Sect. 2. Section 3 presents an application of the proposed
approach. Concluding discussions are given in Sect. 4.

2 Bayesian Interim Assessment of Probability of Trial
Success

2.1 The Problem and Bayesian Framework

Consider a clinical trial that is conducted to test the effect of an experimental
drug on a biomarker of interest compared to a comparator. The comparator can
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be a placebo treatment, an approved agent for the same disease state, or the same
compound but in a different delivery form (such as injection versus a non-injection
route). To rein in the trial to be of an acceptable size as typical in early phase drug
development, the primary measurement of the biomarker is at a prolonged time
point that would be regarded as longer than a typical early phase trial. In addition,
longitudinal measurements of the biomarker at some earlier time points at and after
randomization are taken. The power of the trial is calculated for detection of the
anticipated effect size observed with the tested drug at the prolonged time point as
compared to the comparator.

Suppose we are interested in the change (or percent change) from randomization
(or baseline) in the biomarker, and the following time-response model is assumed:

Y1 = Δ1 + ε = M
(

1− e−kt
)
+ ε

Y2 = Δ2 + ε = aM
(

1− e−kt
)
+ ε, (1)

where Δ1 and Δ2 are the mean changes with the comparator and tested drug, M is the
mean maximum change at infinity of time, t is the lapse of time from randomization,
k > 0 is a common shape parameter for both treatments, a > 0 is a parameter
that measures the relative effect size of the tested drug to the comparator, and
ε ∼ N(0,σ2) is the random error.

If multiple doses of the experimental drug are tested, then the model can be
expressed as

Yi = Δi + ε = Mi

(
1− e−kt

)
+ ε

= aiM
(

1− e−kt
)
+ ε, i = 1, . . . ,d, (2)

with i = 1; a1 = 1 for the comparator and i = 2, . . . ,d; a2 > 0, . . . ,ad > 0 for the
different doses of the tested drug. An alternative approach is to treat dose also as
continuous. This can be accomplished by, for instance, the following integrated
model:

Y =

{
M
(
1− e−kt

)
+ ε, for comparator

D
ED50+D

[
aM

(
1− e−kt

)]
+ ε, for dose D of tested drug,

where ED50 is the dose of the tested drug at which half of the assumed mean
maximum effect aM

(
1− e−kt

)
is achieved when measured at time t.

Another extension is considering within-subject correlations of measurements
at the longitudinal time points in the model. Furthermore, other biomarkers that are
correlated with the primary biomarker, as well as demographic and genetic variables
may also be accounted for in the model to improve evaluation of drug effect on the
primary biomarker. For a more extensive treatment of some of these topics, please
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refer to [7]. In our experience, modeling issues caused by data scarceness commonly
encountered in early phase trials when applying more complex models may suggest
falling back to a simpler model.

Longitudinal measurements of change in the biomarker are scheduled to be
obtained at times t = tk,k = 1, . . . ,K from each subject. Denote the time of
measurement and change from baseline in measurement of the biomarker at time
t = tk from subject j ( j = 1, . . . ,Ni) in treatment i (i = 1, . . . ,d) as ti jk and Yi jk.
Then at the interim analysis, all available data D = (ti jk,yi jk)

′s are used to estimate
parameters a, M, k, and σ2 in the model, using model (1) for illustration. In
Bayesian inference these parameters are regarded as random variables with a joint
prior density denoted by π(a,M,k,σ2). Practically, these parameters are assumed
independent a priori such that the joint prior density can be written as

π(a,M,k,σ2) = π(a)π(M)π(k)π(σ2).

Upon availability of interim data D, information of these parameters is updated
by applying the Bayes rule and summarized in the posterior density:

π(a,M,k,σ2|D) ∝ π(a,M,K,σ2)L(a,M,K,σ2|D),

where L(a,M,K,σ2|D) is the likelihood of the parameters given the data.

2.2 Posterior Inference

Interim decisions can be made by drawing information from the posterior distribu-
tion concerning comparison of the tested drug with the comparator. For example,
non-inferiority of the tested drug in comparison with the comparator at the intended
time t = tK through Model (1) can be assessed by the posterior probability:

P1 = Pr(Δ1−Δ2 < δ |D, t = tK)

=
∫
I{Δ1−Δ2 < δ |θ , t = tK}π(θ |D)dθ , (3)

where δ > 0 is the non-inferiority margin, I is the indicator function, and θ =(M,k,
a,σ2). Non-inferiority is claimed if P1 > η , with 0 < η < 1 being the minimally
required threshold of probability. At the same time, a low probability below a
smaller threshold 0 < η ′ < η can be evidence for concluding that the tested drug is
convincingly inferior to the comparator, and a posterior probability between η ′ and
η is indicative of inconclusiveness.

Another posterior probability not hinging on a single time of measurement, but
on the overall trend of the time-response course, is
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P2 = Pr(a < φ |D),

=

∫
I{a > φ |θ}π(θ |D)dθ , (4)

where 0 < φ < 1 is the minimally acceptable discount in effect size by the tested
drug to show non-inferiority to the comparator.

When multiple doses of the tested drug are explored as formulated in Model
(2), each dose can be compared with the comparator as in (3) or (4). Or if the trial
objective is to find whether there is at least one dose that is non-inferior to the
comparator, then the following posterior probability would be of interest:

P3 = Pr(Δ1−Δ2 < δ ∪·· ·∪Δ1−Δd < δ |D, t = tK)

=

∫
I{Δ1−Δ2 < δ ∪·· ·∪Δ1−Δd < δ |D, t = tK}π(θ |D)dθ ,

where θ is extended to be (M,k,a2, . . . ,ad ,σ2).
Posterior probabilities P2 and P3, as P1, are then compared to selected threshold η

and η ′ for making interim decisions. Computation of P1, P2, and P3 would normally
require Monte Carlo simulation, which can be carried out by available Bayesian
analysis packages, such as WinBUGS.

2.3 Predictive Inference

The above posterior inference is based on prior information in combination with
interim data without prediction. Nevertheless, the yet unobserved measurements at
the later time points from the incomplete subjects can be accounted for to make
interim predictions for the outcome of the trial if it is continued to the planned end.
A yet unobserved value Y at time t can be imputed by the predictive value Ỹ that
bears the following density:

f̃ (ỹ|D, t) =
∫

f (y|θ , t)π(θ |D)dθ ,

where f (y|θ , t) is the density of the measurement at time t given θ . The predicted
values are then incorporated in the intended inference.

In the case of testing non-inferiority as discussed in the previous section, the
predictive probability of achieving non-inferiority, given the non-inferiority margin
δ (or discount in effect size a) and threshold probability η , is calculated by

P̃1 =

∫
I{Pr(Δ1−Δ2 < δ |D̃, t = tK)> η}∏

(
f̃ (ỹ|D, t)dỹ

)
, (5)

P̃2 =

∫
I{Pr(a < φ |D̃)> η}∏

(
f̃ (ỹ|D, t)dỹ

)
,
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or

P̃3 =

∫
I{Pr(Δ1−Δ2 < δ ∪·· ·∪Δ1−Δd < δ |D̃, t = tK)> η}∏

(
f̃ (ỹ|D, t)dỹ

)
,

where D̃ = {D, ỹ′s} are the data that include the predicted values, and the product
∏ is of all the yet unobserved values. Again, computation of P̃1, P̃2, and P̃3 typically
requires Monte Carlo simulation, such as by WinBUGS.

The predictive probability P̃1, P̃2, or P̃3 is then compared to another pair of
thresholds τ and τ ′, with 0 < τ ′ < τ < 1. A success is claimed if P̃i > τ , and a failure
or futility is concluded if P̃i < τ ′. More in-depth research on predictive inference in
interim analysis can be found in [8, 9].

2.4 Interim Decision Making

There are drawbacks and limitations of the conventional early phase decision
process, and proposals have been made to make this process more efficient [10, 11].
The purpose of the proposed Bayesian interim analysis is to help facilitate interim
decision making. One frequently encountered need is to know if subsequent devel-
opment activities, such as manufacturing capabilities and toxicology preparation,
should be initiated in advance of the end of the ongoing trial. This can be done by
examining the interim data, and if the interim results exceed the expectation, then
following preparations can be initiated early and accelerated so that unnecessary
lags of time between activities can be saved. On the other hand, if the interim
results look disappointing, further investment on the molecule can be immediately
halted for consideration of patient safety and saving of resources for more promising
compounds.

3 An Application

A molecule had been proved for treatment of a certain disease state by a delivery
route. Another more convenient delivery route was investigated, which if approved
for use was believed to reduce unwanted adverse reactions and thus increase patient
compliance and usage. However, this new delivery route needed to show efficacy
that is non-inferior to the approved delivery route. A pre-confirmatory Phase 2 trial
for testing the new delivery route at 3 doses (Test Dose 1, 2, 3) in comparison
with the approved route (Reference) was conducted where the primary efficacy
variable was defined as percent change from baseline in a biomarker of interest.
This biomarker would take relatively long to fully respond to treatment in the Phase
2 standard. Thus there was the need to assess the biomarker while the trial was
ongoing to learn if
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1. There is high evidence that the new route is non-inferior to the approved route,
and thus full planning and preparations should be at once initiated, or

2. Strength of evidence of the new route being inferior to the old is mediocre, and
thus only partial planning be started, or

3. The new route is basically inferior to the approved route, and thus no further
planning should be done, but just finish the trial and a comprehensive assessment
be conducted to determine subsequent steps.

The new delivery route was believed to behave similarly as the old in terms of
time response, but just with a discounted size. The hope was that the discount in
effect is minimal so that the impact on the eventual clinical endpoint to be assessed
in the confirmatory phase would be acceptable. Considering cost and operation
effectiveness, in addition to the measurement of the biomarker at the intended
duration of time, only another measurement at an earlier time point was taken to
increase power of efficacy detection.

3.1 Prior Elicitation

There were available early phase studies that provide information about the old
delivery route. To assess the validity of the assumed model in (1), the nonlinear
model was fitted to the data. Both the original means and fitted means are plotted in
Fig. 1. As shown in the figure, the model fitted the data reasonably well.
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There was no available data of the biomarker from the new delivery route, yet
the prorated model in (1) was deemed reasonable. With this assumption, the data
from the approved delivery route as shown in Fig. 1 were summarized to form prior
knowledge about the parameters M, k. However, there was no reliable information
yet on the effect size of the biomarker with the new delivery route as relative to
the old. So a non-informative (or ignorance) prior was assumed for a. A fairly
nonspecific weak prior was also assigned for σ2. Below are the solicited prior
distributions:

M ∼ Gamma(534,47),

k ∼ Gamma(65,523),

log(a) ∼ N(−0.105,1000),

σ2 ∼ Gamma(0.001,0.001),

where a gamma distribution Gamma(α,β ) has mean α/β and variance α/β 2. The
gamma distributions for M and k are reflective of the least squares mean estimates
of the parameters in the exponential model and their standard errors. The prior mean
of−0.105 for log(a) represents an anticipated case of a = 0.9 but is diffused by the
large variance 1,000.

3.2 Simulations

Prior to the planned interim analysis, simulations were first conducted to study the
performance of the Bayesian inference and likely outcomes. As earlier mentioned,
the biomarker was measured at an early time point and at a later time point. It was
assumed that at the interim analysis 40 subjects would have measurements at the
early time point, and only 10 subjects have measurements at the later time point
for each of Reference and Test Dose 1, 2, 3. Non-inferiority is defined with a non-
inferiority margin of 3.5%.

Posterior rather than predictive analysis was implemented for the interim analysis
of this trial. Because of the high uncertainty in the likely dose response curve, model
evaluation by simulation was done dose-wise for Test Dose 1, 2, 3 in comparison
with Reference according to Model (1), whereas the actual interim analysis was
conducted using Model (2) that incorporates all treatments. Interim data were first
simulated for a range of values of a. The posterior probability that the new delivery
route is not inferior to the old at the later time point was then calculated for the
different values of a, which are summarized in Table 1. These numbers were used

Table 1 Posterior probability of new delivery route being inferior to the old

a 0.50 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Pr(Δ1−Δ2 < 3.5%|D, t2) 0.13 0.28 0.37 0.46 0.56 0.64 0.73 0.80
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to guide the selection of interim decision rules. Both the simulation and later on the
planned interim analysis were both performed using R and WinBUGS.

3.3 Interim Analysis and Decision

For the purpose of the planned interim analysis, the decision grid tabulated in
Table 2 was ascertained across Statistics, Medical, Senior Management, and other
disciplines. And this was done with consideration of the simulated results as well
as practical probability thresholds for a Phase 2 trial. Because the interim analysis
was to decide on the plan for late Phase 2 preparation rather than to potentially stop
the trial early for success or futility, the less stringent thresholds 0.35 and 0.65,
as compared to 0.2 and 0.8 suggested in [8], were selected. The probability of
study success (PrSS) could be the value of the posterior probability in (3) or of
the predictive probability in (5). In this application the former was adopted for the
interim decision.

At the interim analysis, the time-response model in (2) was employed for the
inference of percent change in the biomarker for the reference and 3 doses of the
tested delivery route. The posterior results are summarized in Table 3. According to
our decision grid, all 3 doses of the tested route failed to pass the futility threshold
of 0.2, regardless of safety risk. Thus no late Phase 2 planning was recommended
by the interim assessment committee and accepted for implementation.

Upon the futility decision, the trial was not stopped, but continued to the planned
end, and thus there was the opportunity to assess the validity of the interim decision.
The updated posterior summary given the full trial data was given in Table 4, where
similar results are shown as seen at the interim analysis. Therefore, it confirmed the
correctness of the futility decision earlier made.

Table 2 Decision grid regarding late phase 2 planning

PrSS Safety Risk
Low Medium High

PrSS≥ 0.65 Full Plan Partial Plan No Plan

0.35≤ PrSS < 0.65 Partial Plan Partial Plan No Plan

PrSS > 0.35 No Plan No Plan No Plan

Table 3 Posterior summary of Bayesian interim analysis (percent change from baseline)

Treatment Mean SD HPD (90% Credible Interval) Pr(Δ1−Δi < 3.5%|D, t2)

Reference 8.48 0.17 8.21 8.78

Test Dose 1 0.22 0.49 −0.59 1.02 < 0.1

Test Dose 2 1.24 0.50 0.43 2.05 < 0.1

Test Dose 3 1.70 0.47 0.92 2.47 < 0.1
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Table 4 Posterior summary of analysis of final data (percent change from baseline)

Treatment Mean SD HPD (90% Credible Interval) Pr(Δ1−Δi < 3.5%|D, t2)

Reference 8.49 0.18 8.20 8.81

Test Dose 1 0.35 0.74 −0.83 1.58 < 0.1

Test Dose 2 0.83 0.73 −0.34 2.07 < 0.1

Test Dose 3 1.08 0.70 −0.50 2.22 < 0.1

4 Discussion

Much decreased drug development efficiency in recent years has prompted both
regulatory agencies and the pharmaceutical industry to seek ways of reversing
the declining trend. These include applying more efficient designs, more powerful
analytical methods, and more flexible decision-making processes in clinical trials.
Still regarded as non-conventional in drug development and remained much on
research shelves not a long while ago, Bayesian inference thus came into scene
as showing to be a superior alternative to conventional frequentist approach in many
circumstances of pharmaceutical research. In particular, the Bayesian language
often proves to be more understandable to non-statisticians and thus helps facilitate
communications between statistics and other disciplines.

We have proposed and applied the discussed Bayesian approach for facilitation of
interim decisions concerning subsequent activities related to the studied molecule.
In our example, this had helped avoid unnecessary further expenditure invested on
the seemed futile compound, and thus allowed more promising drug candidates in
the portfolio to advance in development with the spared resources. With the intended
purpose of the interim analysis, the trial was continued to the planned end after the
interim analysis, and thus provided us the opportunity to confirm the correctness of
our interim decision.

It is generally recognized that it is not an easy effort to change conventions and
cultures that have sticked with drug development for many years. Our example
was just a step in educating people in our company on the value of adopting a
non-conventional interim decision process during a clinical trial by application of
Bayesian inference, with the hope of contributing to the Critical Path Initiative and
bearing anticipated fruit.
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Bayesian Survival Analysis Using Log-Linear
Median Regression Models

Jianchang Lin, Debajyoti Sinha, Stuart Lipsitz, and Adriano Polpo

Abstract For the analysis of survival data from clinical trials, the popular semi-
parametric models such as Cox’s (1972) proportional hazards model and linear
transformation models (Cheng et al. 1995) usually focus on modeling effects of
covariates on the hazard ratio or the survival response. Often, there is substantial
information available in the data to make inferences about the median/quantiles.
Models based on the median/quantiles (Ying et al. 1995) survival have been shown
to be useful in for describing covariate effects. In this paper, we present two
novel survival models with log-linear median regression functions. These two wide
classes of semiparametric models have many desirable properties including model
identifiability, closed form expressions for all quantile functions, and nonmonotone
hazards. Our models also have many important practical advantages, including the
ease of determination of priors, a simple interpretation of the regression parameters
via the ratio of median survival times, and the ability to address heteroscedasticity
of survival response. We illustrate the advantages of proposed methods through
extensive simulation studies investigating small sample performance and robustness
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properties compared to competing methods for median regression, which provide
further guidance regarding appropriate modeling in clinical trial.

1 Introduction

Semiparametric models such as Cox (1972) proportional hazards model and linear
transformation models (Cheng et al. 1995; Fine et al. 1998) are very popular for
modeling effects of covariates on survival response. For example, the main aim
of a semiparametric model for a two-arm randomized trial for small cell lung-
cancer (SCLC) patients (Ying et al. 1995) is to express the effects of treatment
arm and age at entry on time to death (survival time). Often, there is substantial
data information available about the median. However, previous semiparametric
models for survival data do not focus on the effects of covariates on the median
and other quantiles. Particularly for Bayesian survival analysis, medians and other
quantiles are natural choices for elicitation of experts opinions. Clinical experts
on the disease under study are likely to have useful prior information/opinions
about survival quantiles (say, the median) and the changes in the median for
varying covariate values. However, semiparametric Bayesian models for survival
data, possibly with the exception of Kottas and Gelfand (2001), and Hanson and
Johnson (2002), are either based on covariate effects on the hazard ratio (see Ibrahim
et al. 2001) or on the mean survival time (e.g., Walker and Mallick 1999. In two-
arm cancer clinical trials, the determination of a clinically significant difference and
subsequent evaluation of power of the trial, even for frequentist trial designs, are
often based on the prior evaluation of the median for the control arm as well as
the clinically significant effect of treatment on median survival time (Piantadosi
2005). In this paper, our goal is to propose novel semiparametric models for
median survival time with interpretable regression effects. We show that these wide
classes of semiparametric models have many desirable properties including model
identifiability and non-monotone hazards. Unlike previous methods for Bayesian
survival analysis (e.g., Hanson and Johnson 2002), our models accommodate the
situation when the location/median as well the scale and shape of the survival
distribution are affected by the covariate. Unlike some of the previous frequentist
methods for median regression, we do not require the restrictive assumption that all
quantile functions below the median to be linear.

In Sect. 2, we introduce two new semiparametric survival models with log-linear
median regression functions. In Sect. 2, we also show the desirable properties of
these two large classes of survival models, including closed form expressions for
other quantile functions (besides the median). We also present the comparisons
as well as relationships of our models with existing Bayesian and frequentist
median regression models. In Sects. 3 and 4, we present the likelihood, suitable
nonparametric prior processes and Markov Chain Monte Carlo (MCMC) tools
to estimate the model parameters using a semiparametric Bayesian approach. In
Sect. 5, our simulation studies reveal that estimators based on our models have better
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small sample performances and more robustness properties compared to competing
methods for median regressions including the estimators of Portnoy (2003). Some
final remarks are in Sect. 6.

2 Semiparametric Models

Let Ti be the survival time of subject i = 1, . . . ,n and let Zi = (1,Zi1, . . . ,Zip)
′ be the

corresponding vector of p time-constant covariates along with the intercept term.
The monotone power transformation gλ (y) (Bickel and Doksum 1981),

gλ (y) =
Sgn(y) |y|λ

λ
for λ > 0 , (1)

where Sgn(y) = −1 for y < 0 and Sgn(y) = +1 otherwise, is an extension of the
Box-Cox power family (Box and Cox 1964), a popular transformation to obtain
symmetric and unimodal density for the transformed random variable. We assume
that for unknown λ , the transformed survival time gλ{log(Ti)} is symmetric and
unimodal with median gλ (β ′Zi) = gλ (Mi), that is,

gλ{log(Ti)}= gλ (Mi)+ εi, (2)

where εi are iid from a unimodal and symmetric density fε (·) centered at 0, Mi =
β ′Zi, and β is the vector of regression parameters. Carroll and Ruppert (1984) and
Fitzmaurice (2007) among others proposed parametric version of the transform-
both-sides (TBS) regression model for an uncensored continuous response with the
original Box-Cox transformation (Box and Cox 1964) and N(0,σ2) density for error
fε (·).

The transformation gλ (y) in (1) is monotone with derivative g′λ (y) =

|y|λ−1. The median of log(Ti) is Mi = β ′Zi because P[log(Ti) > Mi] =
P [gλ{log(Ti)}> gλ (Mi)] = Fε(0) = 1/2, where Fε is the cdf of ε . As a
consequence, the survival time Ti has a log-linear median regression function
Q0.5(Zi) = exp(Mi) = exp(β ′Zi) and survival function S(t|z) = 1−Fε(gλ (log t)−
gλ (M)). The following theorem shows that the parameter λ and the density fε of
(2) are also identifiable, in the sense that for any survival time following (2), there
is a unique (λ , fε ) for which gλ{log(Ti)} has a symmetric unimodal distribution.

In relation to the parametric TBS model with Gaussian ε , Kettl (1991) introduced
another parametric model gλ{log(Ti)} = gλ (Mi)+ |Mi|γ ηi with ηi ∼ N(0,σ2). As
an alternative to the semiparametric TBS model of (2), we can consider a semipara-
metric extension of Kettl’s (1991) model with a symmetric unimodal density for ηi.
However, for the sake of parsimony, we recommend not using two separate param-
eters λ and γ to achieve symmetry and to model heteroscedasticity, respectively.
Instead, we suggest the Power-Of-Mean-Scale (POMS) semiparametric model
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log(Ti) = Mi + |Mi|γ εi (3)

with εi ∼ fε (.) symmetric and unimodal at 0, as an alternative to the TBS model.
The key assumption of the semiparametric POMS model of (3) is that log(T ) is
symmetric and unimodal with median Mi = β Zi. Unlike the Bayes model of Kottas
and Gelfand (2001) and Hanson and Johnson (2002), the POMS model of (3) takes
care of the heteroscedasticity of log(Ti). The survival function of (3) is S(t|Z) =
Sε{log(t |M|

γ
e−sgn(M)|M|1−γ

)}, and it reduces to the accelerated failure time model
with S(t|Z) = Sε{log(te−M)} when γ = 0.

Although the models in (2) and (3) apparently focus on modeling the median, we
can easily obtain other quantiles of log(T ). For TBS of (2), the α-quantile Qα(Z)
of T is

Qα(Z) = exp{M∗α(Z)}= exp
[
g−1

λ {gλ (β ′Z)+ ε∗α}
]
, (4)

because P[gλ{log(T )} < gλ (M) + ε∗α |Z] = α for α ∈ (0,1), where ε∗α is the
α-quantile of fε (·) with P(ε < ε∗α) = α . For α = 0.5, we have ε∗0.5 = 0 and get
the log-linear median function exp(β ′Z) for T in (2). Similarly, the α-quantile of T
for the POMS model is

Qα(Z) = exp(M+ |M|γε∗α), (5)

where M = β ′Z for the regression parameter β in (3). These expressions of (4)
and (5) show that both of these models are very convenient for simultaneously
estimating all important quantiles of Ti using the estimates of parameters and ε∗α .
However, unlike the existing methods including those of Portnoy (2003) and Peng
and Huang (2008), Qα(Z) of the TBS and POMS models in (4) and (5) are not
linear in covariate Z unless α = 0.5 (median). The Bayesian models of Kottas and
Gelfand (2001) and Hanson and Johnson (2002) also have linear quantile functions
Mα(Z) = β ′α Z of logT for all 1 > α > 0, and they are parallel to each other (with
only the intercept of βα different for different α ∈ (0,1)).

3 Model Estimation and Inference

Let Ti and Ci be the survival and censoring times, respectively, for i = 1, · · · ,n. We
observe (ti0,δi), where ti0 = Ti ∧Ci is the observed follow-up time and δi is the
censoring indicator, with δi = 1 for Ti = ti0 and 0 otherwise. It is assumed that Ti

and the random censoring time Ci are conditionally independent given covariate Zi.
Given the observed data vector (t0,δ ∗) with t0 = (t10, . . . , tn0) and δ ∗ = (δ1, . . . ,δn),
the likelihood function under our TBS model of (2) is as follows:

L(β ,λ , fε |t0,δ ∗) ∝
n

∏
i=1

{
|yi|λ−1 fε (ωi)

}δi
{1−Fε (ωi)}1−δi , (6)
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where ωi = gλ (yi)− gλ (β ′Zi) with yi = log(ti0), Fε(ω) =
∫ ω
−∞ fε (u)du is the cdf

of the unimodal symmetric density function fε . For the POMS model of (3), the
corresponding likelihood is

L(β ,γ, fε |t0,δ ∗) ∝
n

∏
i=1

{
fε (ω∗i ) |Mi|−γ}δi

{
Fε (ω∗i )

}1−δi , (7)

where ω∗i = (yi−Mi)/|Mi|γ , Mi = β ′Zi and Fε(u) =
∫ +∞

u fε (z)dz.
In general, for the parametric versions of either TBS or POMS model, any

unimodal symmetric distribution, such as the Gaussian and logistic, can be used
for Fε . For example, fε (w) and Fε(w) will be, respectively, replaced by the density
φσ (w) and cdf Φσ (w) of N(0,σ2) for the Gaussian TBS model likelihood in (6)
and the Gaussian POMS model’s likelihood in (7). The corresponding posterior
is p(τ,σ |t0,δ ∗) ∝ L(τ,σ |t0,δ ∗)π(τ,σ), where π(τ,σ) is the joint prior density
based on the available prior information, with τ = (β ,λ ) for TBS and τ = (β ,σ)
for POMS. MCMC samples from this joint posterior can be used to implement
a parametric Bayesian analysis. Under either of these two parametric models,
the maximum likelihood estimator (MLE) of the regression parameters β can be
obtained via maximizing the log-likelihood L(τ,σ |t0,δ ∗) corresponding to the
chosen model.

4 Semiparametric Bayesian

Any parametric assumption about fε is deemed as a restrictive parametric assump-
tion for some data examples in practice. In the semiparametric models of (2) and
(3), the unimodal symmetric distribution Fε of error εi is assumed unknown. The
semiparametric likelihood of model in (2) is given as

L(β ,λ ,Fε |t0,δ ∗) ∝
n

∏
i=1

{
|yi|λ−1 dFε (ωi)

}δi
[F̄ε (ωi)]

1−δi , (8)

where F̄ε(u) = 1−Fε(u) and ωi = gλ (yi)− gλ (μi). Similarly, the semiparametric
likelihood of POMS model of (3) is

L(β ,γ,Fε |t0,δ ∗) ∝
n

∏
i=1

{
|Mi|−γ dFε (ω∗i )

}δi [F̄ε (ω∗i )]
1−δi , (9)

where ω∗i = (yi−Mi)/|Mi|γ for Mi = β ′Zi. For semiparametric maximum likelihood
estimation (SPMLE) under these models, the likelihoods are maximized with
respect to the restriction that Fε is the cdf of a unimodal distribution symmetric
around 0. The regularity conditions and asymptotic issues for the SPMLE under ei-
ther (8) or (9) are nontrivial and beyond the scope of this paper. For semiparametric
Bayesian analysis, we need the posterior
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p(τ,Fε |t0,δ ∗) ∝ L(τ,Fε |t0,δ ∗)π12(τ)π3(Fε) , (10)

where π12 and π3 are independent priors of τ and Fε . We would like to emphasize
that the expression of the likelihood L(τ,Fε |t0,δ ∗) in (10) and even the priors π12

and π3 actually depend on the underlying semiparametric model (either TBS of (2)
or POMS of (3)). This uses the simplifying, however reasonable, assumption that
the prior opinions about parametric vector τ and nonparametric function Fε can be
specified independently. We will discuss the practical justification of this assumption
later.

We now introduce a class of nonparametric priors π3 for Fε , applicable either for
model in (2) or in (3), defined over the space of symmetric unimodal distribution
functions. We use the result that any symmetric unimodal distribution Fε can be
expressed as a scale-mixture of uniform random variables

Fε(u) =
∫ ∞

0
ζ (u|θ ) dG(θ ) (11)

for some mixing distribution G(θ ) (Feller 1971 p.158), where ζ (u|θ ) for θ > 0
is the uniform distribution with mean zero and support (−θ ,+θ ). We use the
Dirichlet process (Ferguson 1973) G ∼ DP(G0,ν) prior for the unknown scale-
mixing distribution G(θ ) of (11) to define a nonparametric prior for the random
(unknown) unimodal symmetric distribution Fε . The Dirichlet process (DP) is
characterized by the known “prior guess” G0 (the prior expectation of G), and a
positive scalar parameter ν , precision around prior mean/guess G0. The prior mean
G0 of the random mixing density G can be chosen appropriately to assure a desired
prior mean/guess F∗ for unknown Fε . Using a result by Khintchine (1938), when the
density f∗(·) and its derivative f ′∗(·) exist, the density G′0(θ ) of G(θ ) is given as

G′0(θ ) =−2θ f ′∗(θ ) for θ > 0 . (12)

For example, to obtain an approximate double exponential (Dexpo(γ)) prior mean
density f∗(ε) = 1

2 γ exp(−γ|ε|) for the regression error density fε , using (12), we
need to choose G0(θ |γ) as Gamma(2,γ) with density G′0(θ |γ) = γ2θ exp(−γθ ).

5 Simulation Study

For our simulation models, we set the median of Y = log(T ) given Z to be M(Z) =
β0 + β1Z = 6.5+ Z with β0 = 6.5 and β1 = 1.0, where Z can take four possible
values 0,0.5,1.0, and 1.5, in equal proportions for each simulated dataset. For each
simulation distribution of T considered in the study, we simulate at least 5,000
datasets with sample sizes n = 80,160, and 320. The number of simulated datasets
for different sample sizes may vary to assure that the Monte Carlo variability of the
approximate bias and MSE of the regression estimates being smaller than 0.01.
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Table 1 Results of simulation study under Exponential and Pareto models: Monte Carlo approx-
imation of the sampling mean and Mean Square Error (MSE) of different estimators of known
β1 = 1

Simulation TBS MLE Portnoy SP TBS SP POMS
Model Sample Mean MSE Mean MSE Mean MSE Mean MSE

80 0.91 2.66 0.93 4.27 0.92 0.90 1.06 1.50
Exponential 160 0.97 1.35 1.11 2.28 1.08 0.65 1.09 1.12

320 0.94 0.69 0.96 1.20 0.93 0.48 1.07 0.68
80 1.00 12.69 1.12 26.98 1.03 0.95 0.73 1.76

Pareto 160 0.99 6.00 1.08 9.96 1.01 0.85 0.86 4.57
320 0.95 2.75 0.97 4.41 1.02 0.68 0.88 2.23
80 0.99 1.94 1.01 1.52 1.04 0.72 0.92 0.83

TBS 160 0.96 0.97 0.98 1.69 0.97 0.48 0.92 0.70
320 0.97 0.51 0.98 1.35 1.03 0.30 0.97 0.72

First we evaluate the robustness of the MLE and of the semiparametric Bayes
estimates based on the TBS model of (2) and the POMS model of (3). We
compare performances (bias and MSE) of these three estimators to the competing
frequentist estimator of Portnoy (2003). For this aim, we simulate data from a
parametric conditional distribution of Y given Z, namely the Exponential and
Pareto, where the assumptions of TBS in (2) and POMS in (3) are not valid. Both
exponential and pareto simulation densities are heteroscedastic and skewed for all
λ . The independent censoring was generated from an Exponential density with rate
parameter k chosen to obtain desired proportions of censoring. For example, the
choice of k = log(2)/30 results in approximately 20% censoring for exponential
simulation model.

Table 1 presents the summary of the approximate sampling mean and mean-
square-error (MSE) of various competing estimators of β1 under exponential and
Pareto simulation models. Results in Table 1 under an exponential simulation model
show that the MLE based on (2) and the Bayes estimators based on either (2) or
(3) have comparable biases relative to competing estimators. Further, the MSE of
Portnoy’s estimators are much larger than the corresponding MSE of the MLE and
Bayes estimators. The Bayes estimators under (2) and (3) have much smaller MSE
compared to the MLE.

In simulations for the Pareto distribution with scale parameter equal to 1, gλ (Y )
is an extremely skewed and heavy-tailed density for all values of λ . As we expect,
the bias of the MLE β̂1 is slightly higher than that of Portnoy’s estimator. The bias
of semiparametric Bayes estimators are similar to the bias of Portnoy’s estimator.
However, they have much smaller MSE than other competing estimators. For the
Pareto simulation model, the MSE of Bayes estimators under the TBS model are
substantially smaller compared to that of Bayes estimators based on POMS model.

For the last part of Table 1, our aim is to investigate the improved performance of
the Bayes estimator under a correct TBS modeling assumption compared to rest
of the competing estimators. For this aim, we simulated data from TBS model
of (2) with λ = 0.5 and double-exponential density for ε . We see that Bayes
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estimators under the TBS models have substantial improvement in MSE compared
to competing estimators including the Bayes estimators under the POMS model.
The bias of MLE under the Gaussian TBS model increases with sample size. The
MSE for Bayesian POMS model is worse (30–45 % increase) than that of Bayes
TBS model for all sample-sizes.

In summary, when the distribution of logT after an optimal transformation has a
moderate degree of asymmetry, the MLE and Bayes estimators based on either (2)
or (3) have finite sample biases very similar to that of Portnoy (2003)’s estimator.
More importantly, the precision of Bayes estimators based on TBS and POMS are
better even when the underlying assumptions of either (2) or (3) are not entirely
valid. However, the MLE’s performance depends on the degree of symmetry of the
distribution of gλ (Y ) under optimal λ . The semiparametric Bayes estimators have
excellent biases and smallest MSE among all of its competitors. When the modeling
assumption of (2) is correct, the Bayes estimator based on (2) shows much better
MSE compared to any competing estimators. This implies that the semiparametric
Bayes estimator based on (2) is a safer and more robust estimator to use in practice
compared to its competitors.

6 Discussion

In this paper, we present two new classes of semiparametric models amenable
to Bayes estimation of the log-linear median regression function for censored
survival data. Similar to previous semiparametric models (e.g., Cox’s model), both
models have one nonparametric function fε and a finite dimensional parameter
vector. Our Bayes methods have the advantage of the ease of determination of
priors and a simple interpretation of the regression parameters via the ratio of
median survival times. Our model classes are large since the nonparametric error
density fε in either model has no assumed functional form except the assumption
of symmetry and unimodality. We argue that the assumption of unimodality is
needed because it justifies the importance of median as the location parameter of
interest. As mentioned in previous literature including Box and Cox (1964), the
transformation in (1) is often an effective tool to obtain symmetry and accommodate
heteroscedasticity. Our method can be applied when the covariate Z affects the
location as well as the scale and shape of the regression error of logT .

In spite of the many similarities in interpretations and forms between the TBS
and POMS model, there are some differences between them. The expression in (4)
for the TBS model also implies that Qα(Zi) ≤ Qα(Zj)⇔ Qα ′(Zi) ≤ Qα ′(Zj) for
all α,α ′ ∈ (0,1). This means that under the model in (2), ordering between two
patients’ median survival times implies uniform ordering between their correspond-
ing survival functions over the entire time-axis. This property is similar to Cox’s
model where ordering between two hazards (as well as survival functions) remain
the same over the entire time-axis. However, the POMS model of (2) does not satisfy
this property. Under the POMS model of (3), survival functions from two treatment
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groups may cross each other. The key assumption of symmetric logT in (3) may be
restrictive in some applications. Our simulation study shows that MSE of estimator
under (3) is higher than that under (2) when logT has skewed and heteroscedastic
density.

Although we focus on modeling the median functional, our methods can be
either used via (4) or (5) to compute even the joint confidence band of any
other quantile functional because the quantile functions of (4) and (5) are known
functions of (β ,λ ,ε∗α ). For brevity, we have omitted the results of our simulation
study showing an excellent accuracy of joint confidence bands of all these quantile
functions (Q0.25(z),Q0.5(z),Q0.75(z)) under Bayes TBS model of (2) (even when the
simulation model is Pareto). However, for some diseases, such as cancers with very
good prognosis, the main interest may not be on the median, and the goal may be on
modeling the quantile Qα(Z) as a log-linear function with P{T < Qα(Z)} = α for
α > 1/2. In this case, we can use a modification of the log-linear models in (2) and
(3) with assumption P(ε < 0) = Fε(0) = α . We can use the scale-mixture model
of (12) with the modification that ζ (u|θ ) being the uniform density with support
{2θ (α − 1), 2θα} where θ has an unknown mixing density G. For the sake of
brevity, we again omitted the details of the rest of the methodology and related
MCMC steps. This model allows only the (1−α)-percentile of T to be a log-linear
function of covariate.

Our methods can also predict the outcome of a future patient with known covari-
ate values. Our simulation results show that the efficiency gain of semiparametric
Bayes estimators is substantial compared to existing frequentist estimators even
when our assumptions of (2) and (3) do not hold (e.g., for Pareto distribution). We
do not present any separate simulation study of parametric Bayes estimators because
these estimators under diffuse prior information are numerically close to parametric
ML estimators. All of these advantages make our proposed methods extremely
attractive alternatives to other existing semiparametric method for censored data.
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Bayesian Analysis of Survival Data
with Semi-competing Risks and Treatment
Switching
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Abstract Treatment switching is common in clinical trials due to ethical and
practical reasons. When the outcome of interest is time to death and patients
were switched at the time of intermediate nonterminal event, semi-competing risk
issue intertwines with the challenge of treatment switching. In this chapter, we
develop a Bayesian conditional model for survival data with semi-competing risks
in the presence of partial treatment switching. Properties of the conditional model
are examined and an efficient Gibbs sampling algorithm is developed to sample
from the posterior distribution. A Bayesian procedure to estimate the marginal
survival functions and to assess the treatment effect is also derived. The Deviance
Information Criterion with an appropriate deviance function and Logarithm of the
Pseudo-marginal Likelihood are constructed for model comparison. The proposed
method is examined empirically through a simulation study and is further applied to
analyze data from a colorectal cancer study.
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1 Introduction

Treatment switching is common in clinical trials, especially for cancer and other
severe diseases. One type of treatment switching is that for patients who are
randomized to the control group, they are allowed to switch to the treatment arm
after disease progression. Various methods were utilized to analyze the treatment
switching data of clinical trials with survival outcomes. The most conventional
method is intent-to-treat (ITT) analysis, where the analysis was based on the
initial treatment intent, not on the treatment eventually administered. Although ITT
analysis can reflect the design of the study, use data of all patients, and avoid some
misleading artifacts during intervention, it may underestimate the treatment effect
[2]. Other modeling and analysis methods include per-protocol analysis, model
with treatment as a time-varying covariate, causal proportional hazards estimator,
rank preserving structural failure time models, and parametric randomization-based
method. Morden et al. [3] gave a nice review of these methods and conducted
simulation studies to compare them under different scenarios. Recently, Zeng et al.
[4] proposed a novel class of semi-parametric semi-competing risks survival models
to accommodate treatment switching. More references for treatment switching
literature are available in [4].

In this chapter, we develop a Bayesian conditional model for survival data with
semi-competing risks in the presence of partial treatment switching, that is, not
every subject in the control arm switched to experimental treatment. We develop
an efficient Gibbs sampling algorithm for the posterior inference of the parameters.
Under the Bayesian paradigm, the marginal predictive survival function under the
proposed model can be carried out without resorting to asymptotics.

The rest of the chapter is organized as follows. Section 2 presents a detailed
development of the semi-competing risks conditional model and provides the
explicit expressions for the likelihood function based on the observed data and
the Bayesian formulation of the predictive survival function. A simulation study
is carried out to examine the empirical performance of the posterior estimates and
Bayesian model criteria in Sect. 3. A detailed analysis of a subset of the data from
the Panitumumab 408 study is presented in Sect. 4. We conclude the chapter with a
brief discussion in Sect. 5.

2 The Semi-competing Risks Conditional Models

2.1 Models

To introduce the proposed model, we use the following notation. As motivated from
the Panitumumab 408 study, we consider disease progression as a nonterminating
event. However, the proposed model can be applied to any other type of non-
terminating event. Let E be a dichotomous variable to denote the disease progression
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status of subjects, where E = 1 if the subject is in the disease progression population,
which include subjects who eventually develop disease progression before death,
and E = 0 if otherwise. Also let TD denote the time from study entry to death for
subjects with E = 0. For the disease progression population (E = 1), we further let
TP denote the time from study entry to disease progression and let TG denote the
time from disease progression to death.

The proposed statistical model consists of the following three components. The
first component is to model the disease progression status E given the baseline
covariates x and the treatment indicator A (A = 1 if the subject is on the treatment
arm and A = 0 if the subject is on the control arm). To this end, we assume

logit{P(E = 1|A,x,α)}= log
{ P(E = 1|A,x,α)

1−P(E = 1|A,x,α)

}
= α0 +Aα1 + x′α2, (1)

where α0, α1, and α2 are unknown coefficients and α = (α0,α1,α ′2)′. The second
component models the survival distribution of the non-progression population given
x and A, which is defined by

hD(t|A,x,E = 0) = h0(t)exp{Aβ0 + x′γ0}, (2)

where hD(t|A,x,E = 0) is the conditional hazard function of TD given the covariates,
h0(t) is an unknown baseline hazard function, and (β0,γ0) are unknown regression
coefficients.

As introduced, TP and TG are potentially dependent. To capture this dependence,
we assume the following models for TP and TG:

hP(t|A,x,E = 1) = h1(t)exp{Aβ1 + x′γ1} and (3)

hG(t|A,z,V,TP,E = 1) = h2(t)exp{Aβ21 +V(1−A)β22+ z′γ21 +TPγ22}, (4)

where hP(t|A,x,E=1) is the conditional hazard function for TP, hG(t|A,z,V,TP,
E=1) is the conditional hazard function for TG, both h1(t) and h2(t) are unknown
baseline hazard functions, and the β ’s and γ’s are regression coefficients. Here, V is
the treatment switching indicator (1 if switching; 0 if no switching) and z reflects the
covariates collected at baseline or at disease progression, which could be prognostic
factors for the treatment switching decision. The model defined by (1)–(4) is called
the semi-competing risks conditional model, denoted by CM, and is very flexible
to account for the dependence between TD and TP. It allows for positive, null, or
negative association between TP and TG by letting γ22 < 0, γ22 = 0, or γ22 > 0,
respectively.

We further assume piecewise constant hazard functions for the baseline hazard
functions h0(t), h1(t), and h2(t). For k = 0,1,2, let 0 < sk1 < sk2 < .. . < skJk be a
finite partition of the time axis. Thus, we have the Jk intervals: (0,sk1], (sk1,sk2], . . . ,
(sk,Jk−1,skJk ], where skJk = ∞. In the jth interval, we assume a constant baseline
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Fig. 1 A closed arrow means
observed; an open arrow
means censored or equal to ∞.
Patients 1, 2, 3, and 4 are
examples of categories I, II,
III, and IV defined in
Sect. 2.2.

hazard, hk(y|λ k) = λk j for y ∈ (sk, j−1,sk j ]. Letting λ k = (λk1,λk2, . . .λkJk )
′, the

cumulative baseline hazard function corresponding to hk(t) is given by

Hk(y|λ k) = λk j(y− sk, j−1)+
j−1

∑
g=1

λkg(skg− sk,g−1), if sk, j−1 < y≤ sk j (5)

for k = 0,1,2.

2.2 Likelihood Function and Posterior Inference

In addition to the notations defined in Sect. 2.1, we let C denote the inde-
pendent censoring time, YD = min(TD,C)I(E = 0) + min(TP + TG,C)I(E = 1),
YP = min(TP,C)I(E = 1)+∞I(E = 0), R = I(YD < C), and δ = I(YP < C), where
I(H) = 1 if H is true, and 0 otherwise. We let YP = ∞ when E = 0 for mathematical
convenience and to emphasize that for the progression-free population with E = 0,
the progression will never happen. We partition the patient population into four
categories: (I) patient died at time YD without disease progression and the observed
data are DI = (E = 0,YD,δ = 0,R = 1,x,A); (II) patient was observed to have
disease progression at YP and then died at YD so we have the observation DII =
(E = 1,YP,YG = YD−YP,R = 1,δ = 1,x,A,V (1−A),z); (III) patient was observed
to have disease progression at YP and right censored at YD so we have the observation
DIII = (E = 1,YP,YG =YD−YP,R = 0,δ = 1,x,A,V (1−A),z); and (IV) patient was
only observed to be right censored at YD and no disease progression occurred before
YD so we have DIV = (YD,R = 0,δ = 0,x,A). For the patients in the category IV, E
is missing with possible values of 0 or 1. The relationships between TD and TP from
the four categories are illustrated in Fig. 1. As shown in the figure, TD is greater than
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or equal to TP since when the patient had the terminating event (death), he/she is not
at risk of having nonterminating event (disease progression) any more.

Let SD, SP, and SG be the survival functions, and fD, fP, and fG be the density
functions, of TD, TP, and TG, respectively, where Sk(t|·) = exp(−

∫
hk(μ |·)dμ),

fk(t|·) = hk(t|·)Sk(t|·), and hk(t|·) with k = D,P,G are defined in (2), (3), and (4),
respectively. Let LI , LII , LIII , and LIV be the likelihood functions of categories I, II,
III, and IV, respectively. We have

LI = ∏
i in (I)

P(E = 0|Ai,xi,α) fD(yDi|Ai,xi,β0,γ0,λ 0),

LII = ∏
i in (II)

P(Ei = 1|Ai,xi,α) fP(yPi|Ai,xi,β1,γ1,λ 1)

fG(yGi|Ai,Vi,zi,yPi,β 2,γ2,λ 2),

LIII = ∏
i in (III)

P(Ei = 1|Ai,xi,α) fP(yPi|Ai,xi,β1,γ1,λ 1)

SG(yGi|Ai,Vi,zi,yPi,β 2,γ2,λ 2),

LIV = ∏
i in (IV )

P(Ei = 1|Ai,xi,α)SP(yDi|Ai,xi,β1,γ1,λ 1)

+P(Ei = 0|Ai,xi,α)SD(yDi|Ai,xi,β0,γ0,λ 0). (6)

Therefore, the overall likelihood function of the observed data Dobs is L(θ |Dobs) =
LI ×LII ×LIII ×LIV , where θ = (α ′,β0,γ ′0,λ

′
0,β1,γ ′1,λ

′
1,β
′
2,γ ′2,λ

′
2)
′ is the vector

of all the model parameters with β 2 = (β21,β22)
′ and γ2 = (γ ′21,γ22)

′.
To conduct Bayesian inference, we need to specify a prior distribution for θ . We

assume that α , (β0,γ ′0)′, (β1,γ ′1)′, (β
′
2,γ ′2)′, λ 0, λ 1, and λ 2 are independent and

specify the priors for these parameters as: α ∼ Npa(0,Σa), (β0,γ ′0)′ ∼ Np0(0,Σ0),
(β1,γ ′1)′ ∼ Np1(0,Σ1), (β ′2,γ ′2)′ ∼ Np2(0,Σ2), and λk j ∼ Gamma(ak j,bk j) for j =
1, . . . ,Jk and k = 0,1,2, where pa, p0, p1, and p2 are the dimensions corresponding
to the respective vectors of the model parameters, and Σa, Σ0, Σ1, Σ2, ak j, and bk j are
pre-specified hyper-parameters. In the simulation study in Sect. 3 and the analysis
of the real data from a colorectal cancer study in Sect. 4, these hyper-parameters
were specified as Σa = 1000Ipa, Σ0 = 1000Ip0, Σ1 = 1000Ip1, Σ2 = 1000Ip2, and
ak j = bk j = 0 for j = 1, . . . ,Jk and k = 0,1,2, where Ipa , Ip0 , Ip1 , and Ip2 are the
identity matrices. We note that when ak j = bk j = 0, we specified a Jeffreys prior
for each λk j for j = 1, . . . ,Jk and k = 0,1,2. Therefore, the resulting joint prior for
θ , denoted by π(θ), is essentially noninformative. Using the above prior for θ and
the likelihood function L(θ |Dobs), the posterior distribution of θ given Dobs can be
written as

π(θ |Dobs) ∝ L(θ |Dobs)π(θ ). (7)
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To facilitate the posterior computation, we introduce a set of latent variables
E∗ = {E∗i , i ∈ (IV )} such that the augmented version of LIV is given by

L∗IV = ∏
i in (IV )

[P(Ei = 1|Ai,xi,α)SP(yDi|Ai,xi,β1,γ1,λ 1)]
E∗i

[
P(Ei = 0|Ai,xi,α)SD(yDi|Ai,xi,β0,γ0,λ 0)

]1−E∗i
. (8)

In order to carry out posterior inference, we develop an efficient Gibbs sampling al-
gorithm to sample θ from the posterior distribution in (7). Let [A|B] denote the con-
ditional distribution of A given B. To run the Gibbs sampling algorithm, we sample
from the following conditional distributions in turn: (i) [λ 0,λ 1,λ 2|β0,γ0,β1,γ1,β 2,
γ2,E

∗,Dobs]; (ii) [β0,γ0,β1,γ1,β 2,γ2,E
∗|α,λ 0,λ 1,λ 2,Dobs]; and (iii) [α |E∗,Dobs].

For (ii), we use the modified collapsed Gibbs technique [1]. It is easy to show that

[β0,γ0,β1,γ1,β 2,γ2,E
∗|α ,λ 0,λ 1,λ 2,Dobs]

= [β0,γ0,β1,γ1,β 2,γ2|α,λ 0,λ 1,λ 2,Dobs][E
∗|α,β0,λ 0,γ0,β1,γ1,λ 1,Dobs]. (9)

Since the conditional distributions in (i), (ii), and (iii) are either standard distribu-
tions or the conditional densities are log-concave, the implementation of the Gibbs
sampling algorithm is straightforward.

2.3 The Predictive Survival Function with Partial
Treatment Switching

An inferential research goal in this research is to compare the survival function of
the death time in the setting when no subjects have switched treatment. Let T ∗D(a)
denote a potential survival time when a subject receives treatment a at the time of
randomization and stays on the same treatment over the entire study duration. Let
Sa(t|θ ) = P(T ∗D(a) > t|θ ). Following [4], we state the following two assumptions:
(i) Treatment A is completely randomized and T ∗D(a) = TD(a) if a subject never
switches treatment; and (ii) Given (A = 0,z,TP = u) or (A = 1,z,TP = u), V is
independent of the potential outcomes {T ∗D(0),T ∗D(1)}. Under Assumptions (i) and
(ii), the posterior marginal survival functions Sa(t|θ) can be estimated by

M−1
M

∑
m=1

∫

x
ŜD(t|A = a,x,E = 0,θ (m))P̂(E = 0 | A = a,x,θ (m)) f̂X (x | A = a)dx

+M−1
M

∑
m=1

∫

x,z,u

[
ŜG(t− u | A = a,z,V = 0,TP,E = 1,θ (m)) f̂X (x | A = a)×

f̂P(u | A = a,x,E = 1,θ (m)) f̂Z(z | A = a,x,E = 1)P̂(E = 1 | A = a,x,θ (m))
]
dudzdx,
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where θ (m) is the mth MCMC sample from the posterior distribution in (7), fX (x|·)
and fZ(z|·) are the conditional densities of X and Z, respectively. We estimated
fX (x|·) and fZ(z|·) nonparametrically as f̂X (x | A = a) = ∑n

j=1 I(Xj = x,A j =
a)/∑n

j=1 I(A j = a) and

f̂Z(z | X ,A = a,E = 1) =
∑ j∈(II,III) I(Zj = z)Kan(‖Xj−X‖)I(A j = a)

∑ j∈(II,III) Kan(‖Xj−X‖)I(A j = a)
,

where Kan is the kernel function with bandwidth an. The survival and density
functions of TD, TP, and TG can be estimated by plugining the piecewise
exponential model estimates for the baseline hazard functions. In particular,

Hk(y|λ (m)
k ) = ∑Jk

j=1{I(sk, j−1 < t ≤ sk j)[λ
(m)
k j (t− sk, j−1)+∑ j−1

g=1 λ (m)
kg (skg− sk,g−1)]}

and hk(y|λ (m)
k ) = ∑Jk

j=1{I(sk, j−1 < t ≤ sk j)[λ
(m)
k j (t− sk, j−1)I( j = 1)+λ (m)

k, j−1(sk j −
sk, j−1)I( j > 1)]} with sk0 = 0 for k = 0,1,2.

3 A Simulation Study

To examine the empirical performance of the posterior estimates as well as Deviance
Information Criterion (DIC) and Logarithm of the Pseudo-Marginal Likelihood
(LPML), we carry out a simulation study. Five hundred simulated datasets with
n = 500 as well as n = 1,000 were generated. In the simulation study, the baseline
treatment A was generated from a Bernoulli(0.5), corresponding to a randomized
trial with a 1 : 1 sample size allocation; two baseline covariates X1 and X2 were
independently generated from a U(−1,1) and a Bernoulli(0.6), respectively. Given
A and (X1,X2), E was generated from model (1) with the coefficients (including an
intercept) being 1.6, -1.8, 1, and 0.1, respectively. When E = 0, we simulated TD

from model (2) with H0(t) = t, β0 = −1 and (γ01,γ02) = (1,0.2). For E = 1, TP

was generated with H1(t) = 5t, β1 = −0.5 and (γ11,γ12) = (1,0) and an additional
prognostic factor Z at disease progression was generated from a U(0,10) while
the selection into treatment switching (V ) for a subject in the control arm (A =
0) was from a Bernoulli(p), where p = exp(−0.5+ 0.3TP + 0.2X1 + 0.5Z)/[1+
exp(−0.5 + 0.3TP + 0.2X1 + 0.5Z)]. Moreover, TG was generated with H2(t) =
t,β21 = −0.3,β22 = −0.5, γ21 = −0.5,γ22 = 0.5,γ23 = −0.4 and an additional
parameter γ24 = 0.6 as the coefficient for TP. Finally, the censoring time was
generated from a U(1,7) and the study duration was τ∗ = 3. The latter yielded the
average proportions of categories I to IV as 23%, 55%, 10%, 12%.

For each simulated dataset of n = 1,000, we fit the proposed CM with various
values of (J0,J1,J2) and computed DIC and LPML. The mean values of the
DICs and LPMLs over the 500 simulated datasets were 2247.50 and -1123.92 for
(J0,J1,J2) = (1,1,1); 2259.12 and -1129.84 for (J0,J1,J2) = (5,5,5); and 2274.35
and -1137.61 for (J0,J1,J2) = (10,10,10). We note that the true value of (J0,J1,J2)
is (1,1,1). Thus, both DIC and LPML correctly identified the true model. Under the



166 Y. Zhang et al.

Table 1 Posterior estimates under CM in the simulation study

n = 500 n = 1,000
Parameter True EST SD SE RMSE CP% EST SD SE RMSE CP%

TD model
β0 −1.00 −1.01 0.21 0.22 0.22 0.94 −1.01 0.14 0.15 0.15 0.94
γ01 1.00 1.01 0.17 0.18 0.18 0.95 1.01 0.12 0.13 0.13 0.94
γ02 0.20 0.21 0.19 0.20 0.20 0.95 0.21 0.14 0.14 0.14 0.94

TP model
β1 −0.50 −0.51 0.12 0.12 0.12 0.94 −0.51 0.09 0.08 0.08 0.95
γ11 1.00 1.01 0.11 0.11 0.11 0.94 1.00 0.07 0.07 0.07 0.95
γ12 0.00 0.00 0.12 0.13 0.13 0.93 0.00 0.08 0.09 0.09 0.94

TG model
β21 −0.30 −0.30 0.15 0.15 0.15 0.95 −0.30 0.10 0.10 0.10 0.95
β22 −0.50 −0.50 0.15 0.16 0.16 0.94 −0.51 0.11 0.11 0.11 0.93
γ21 −0.50 −0.51 0.12 0.12 0.12 0.94 −0.50 0.08 0.09 0.09 0.94
γ22 0.50 0.50 0.13 0.13 0.13 0.94 0.50 0.09 0.09 0.09 0.94
γ23 −0.40 −0.41 0.21 0.22 0.22 0.95 −0.40 0.15 0.14 0.14 0.97
γ24 0.60 0.57 0.22 0.21 0.22 0.96 0.59 0.15 0.15 0.15 0.95

E model
α0 1.60 1.63 0.22 0.23 0.23 0.93 1.62 0.15 0.16 0.16 0.94
α1 −1.80 −1.83 0.23 0.23 0.24 0.94 −1.82 0.16 0.16 0.16 0.95
α21 1.00 1.02 0.19 0.19 0.19 0.96 1.02 0.14 0.13 0.13 0.96
α22 0.10 0.10 0.22 0.21 0.21 0.96 0.11 0.15 0.15 0.15 0.96

Estimated Survival function of control arm
S0(τ∗/2) 0.25 0.25 0.02 0.02 0.02 0.94 0.25 0.03 0.03 0.03 0.92

S0(τ∗) 0.07 0.07 0.01 0.01 0.01 0.93 0.07 0.01 0.02 0.02 0.93

Estimated Survival function of treatment arm
S1(τ∗/2) 0.48 0.48 0.02 0.02 0.02 0.95 0.48 0.02 0.03 0.03 0.94

S1(τ∗) 0.24 0.24 0.02 0.02 0.02 0.93 0.25 0.02 0.02 0.03 0.92

best combination of (J0,J1,J2), namely, (1,1,1), the average of the posterior means
(EST), and the average of the posterior standard deviations (SD), the simulation
standard error (SE), the root of the mean squared error (RMSE), and the coverage
probability (CP) of the 95 % highest posterior density (HPD) intervals for each
parameter as well as Sa(t|θ ) were computed. The results are given in Table 1.
Table 1 shows excellent empirical performance of the posterior estimates for all
the parameters as well as the survival probabilities for both n = 500 and n = 1,000.
In particular, the ESTs are nearly identical to the true values, the SDs are very close
to the SEs, and the CPs are very close to 95 %.
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4 Application to a Colorectal Cancer Study

The proposed CM model is applied to analyze the data collected from a colorectal
cancer study, the panitumumab study conducted by Amgen Inc. Panitumumab study
was an open label, randomized, phase III multicenter study designed to compare the
efficacy and safety of panitumumab plus best supportive care (P+BSC) versus BSC
alone in patients with EGFr-expressing metastatic colorectal cancer. Patients were
randomly assigned to receive P+BSC (A=1) or BSC (A=0). The baseline covariates,
x, include age in years at screening (Age), baseline Eastern Cooperative Oncology
Group score (score 0 or 1 versus ≥ 2 (bECOG01)), primary tumor diagnosis type
(Rectal), gender (Male), and region (western Europe (WesternEU), eastern and
central Europe (CenEstEU), versus rest of the world). The covariates, z, in the TG

model include bECOG01, age at disease progression (PR Age), best tumor response
with partial response (BTR PR) or stable disease (BTR SD) versus progressive
disease, last ECOG score (LECOG01), and grade 2 or above adverse events (AE).

We fit CM with different values of J0,J1, and J2 to the panitumumab data. The
DIC and LPML values of the seven combinations of (J0,J1,J2) are given in Table 2.
The model based on (J0,J1,J2) = (1,30,5) achieves the smallest DIC value and the
largest LPML value. Table 3 gives the posterior estimates of the CM model with
(J0,J1,J2) = (1,30,5). The 95 % HPD intervals for treatment were (-1.754, -0.486)
under the E model, (-1.155, 0.156) under the TD model, (-1.388, -0.936) under the TP

model, and (-1.196, -0.362) under the TG model. These results imply that treatment
is associated with E , TP, TG but not with TD. Comparing to the BSC patients who had
progression but didn’t switch to P+BSC group, the patients switching the treatment
group had significantly lower hazard of death with posterior mean and 95 % HPD
interval of -1.371 and (-1.773, -0.971). The posterior mean and 95 % HPD interval
for γ22 in (4) were -0.083 and (-0.161, -0.008), which implies that there is a positive
association between TP and TG.

In all of the Bayesian computations, we used 20,000 Gibbs samples after
1,000 burn-ins for each model to compute all the posterior estimates, including
posterior means, posterior standard deviations, and 95 % HPD intervals. Codes
were written for the FORTRAN 95 compiler using IMSL subroutines with double
precision accuracy. The convergence of the Gibbs sampler was checked using
several diagnostic procedures discussed in [1]. The autocorrelations for all model
parameters disappeared after lag 10.

5 Discussions

In this chapter, we have developed a Bayesian conditional model for partial
treatment switching problems with terminal event as primary outcome and the
non-terminal event time as switching time. The proposed model accommodates
treatment switching and flexible dependence between the progression time and
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Table 2 DIC, pD , and LPML values for the Panitumumab data

Parameter CM
J0 J1 J2 DIC pD LPML

1 30 5 3482.64 67.32 −1746.76
3 30 5 3486.14 69.48 −1748.76
5 30 5 3486.92 71.44 −1748.94
1 25 5 3500.00 62.20 −1755.11
1 35 5 3484.61 72.54 −1748.62
1 30 3 3488.20 65.37 −1749.05
1 30 10 3490.95 72.46 −1751.73

Table 3 Posterior estimates for the Panitumumab data under CM with (J0 ,J1,J2) = (1,30,5)

Parameter EST SD 95 % HPD Parameter EST SD 95% HPD

E Model TD Model
Intercept 1.475 0.983 (−0.474, 3.369)
Treatment −1.114 0.326 (−1.754, −0.486) Treatment −0.488 0.334 ( −1.155, 0.156)
Age −0.010 0.014 (−0.038, 0.017) Age 0.024 0.015 ( −0.004, 0.054)
bECOG01 1.992 0.340 (1.309, 2.641) bECOG01 −0.617 0.296 ( −1.180, −0.021)
Rectal 0.308 0.334 (−0.346, 0.950) Rectal −0.058 0.317 ( −0.667, 0.573)
Male −0.320 0.329 (−0.966, 0.320) Male −0.329 0.307 ( −0.933, 0.275)
CenEastEU −0.003 0.615 (−1.186, 1.215) CenEastEU −0.312 0.631 ( −1.534, 0.929)
WesternEU 0.342 0.418 (−0.461, 1.176) WesternEU 0.239 0.401 ( −0.540, 1.021)

TP Model TG Model
Treatment −1.159 0.115 ( −1.388, −0.936) Treatment −0.783 0.214 ( −1.196, −0.362)
Age −0.015 0.005 ( −0.025, −0.006) V*(1-Treatment) −1.371 0.208 ( −1.773, −0.971)
bECOG01 −0.777 0.176 ( −1.110, −0.429) PR Age −0.004 0.005 ( −0.014, 0.006)
Rectal −0.036 0.109 ( −0.246, 0.179) BTR PR −0.243 0.347 ( −0.920, 0.434)
Male −0.041 0.109 ( −0.252, 0.174) BTR SD −0.166 0.173 ( −0.502, 0.177)
CenEastEU 0.226 0.233 ( −0.228, 0.681) bECOG01 −0.244 0.196 ( −0.619, 0.141)
WesternEU −0.049 0.159 ( −0.367, 0.255) LECOG01 −1.033 0.145 ( −1.320, −0.749)

AE 0.290 0.116 ( 0.064, 0.516)
Prog Time −0.083 0.039 ( −0.161, −0.008)

survival time. This type of scenarios arise often in clinical trials, in which patients
immediately switch to the experimental treatment once he/she experiences an
event (for example, progression). The proposed model is the parallel Bayesian
development of the approach developed in [4]. The Bayesian estimates were very
similar to those based on the frequentist method. For example, for the proposed
Bayesian approach, the treatment effect estimates (standard deviations) in the E , TD,
TP, and TG models were -1.114 (0.326), -0.488 (0.334), -1.159 (0.115), and -0.783
(0.214), respectively. For the frequentist method mentioned in [4], the corresponding
estimates (standard errors) were -1.070 (0.319), -0.464 (0.347), -1.144 (0.118), and
-0.784 (0.214). Thus, these two sets of the estimates were very similar. However,
under the Bayesian paradigm, the marginal predictive survival function under the



Bayesian Semi-competing Risks Survival Models 169

proposed model can be carried out straightforward without resorting to asymptotics.
The proposed model is useful for researchers encountering treatment switching
studies in the presence of semi-competing risks where one is interested in assessing
the treatment effect on survival of terminal event.
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High-Dimensional Ordinary Differential
Equation Models for Reconstructing
Genome-Wide Dynamic Regulatory Networks

Shuang Wu, Zhi-Ping Liu, Xing Qiu, and Hulin Wu

Abstract The gene regulatory network (GRN) is a complex control system and
plays a fundamental role in the physiological and development processes of living
cells. Focusing on the ordinary differential equation (ODE) modeling approach,
we propose a novel pipeline for constructing high-dimensional dynamic GRNs
from genome-wide time course gene expression data. A five-step procedure, i.e.,
detection of temporally differentially expressed genes, clustering genes into func-
tional modules, identification of network structure, parameter estimate refinement
and functional enrichment analysis, is developed, combining a series of cutting-
edge statistical techniques to efficiently reduce the dimension of the problem and
to account for the correlations between measurements from the same gene. In the
key step of identifying the network structure, we employ the advanced parameter
estimation and statistical inference methods to perform model selection for the
ODE models. The proposed pipeline is a computationally efficient data-driven
tool bridging the experimental data and the mathematical modeling and statistical
analysis. The application of the pipeline to the time course gene expression data
from influenza-infected mouse lungs has led to some interesting findings of the
immune process in mice and also illustrated the usefulness of the proposed methods.

1 Introduction

The genome encodes thousands of genes whose products enable cell survival and
numerous cellular functions, such as cell growth and division, the response to
environmental stimuli, and so on. The interactions of these genes and their products
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form intricate regulatory networks. Understanding the dynamics of these networks
sheds light on the mechanisms of diseases that occur when certain regulations
are dysfunctional. With the rapid advances in high-throughput technologies such
as DNA microarray and next generation RNA-seq, tremendous amounts of gene
expression data have been produced, especially time course gene expression data
that allow investigators to study dynamic behaviors of the genes. Analyzing
these data with statistical and computational approaches can provide quantitative
measures of the global response of a biological system to specific interventions and
help us better understand the biological process in a systematic way.

The abundance of genomic data has largely promoted the development of
methodologies for data-driven inference of gene regulatory networks (GRNs). The
objective is to reconstruct the GRNs from experimental data using mathematical
models, especially dynamic network models that aim to capture the complex
phenomena of biological systems by modeling the time course gene expression data.
Many models have been proposed, including the information theory models (Steuer
et al. 2002; Stuart et al. 2003), Boolean networks (Shmulevich et al. 2002; Thomas
1973), vector autoregressive (VAR) and state space models (SSM) (Hirose et al.
2008; Kojima et al. 2009), Bayesian networks (Friedman et al. 2000; Heckerman
1996; Perrin et al. 2003; Zou and Conzen 2005), and differential equation models
(Chen et al. 1999; Holter et al. 2001; Lu et al. 2011; Yeung et al. 2002). Excellent
reviews on diverse data-driven modeling schemes and related topics can be found in
De Jong (2002) and Hecker et al. (2009).

In this paper we focus on the ordinary differential equation (ODE) modeling
approach for reconstructing the high-dimensional GRN. In ODE network models,
gene regulations are modeled by rate equations, which quantify the change rate
(derivative) of the expression of one gene in the system as a function of expression
levels of all related genes. It is a directed network graph model and the dynamic
feature of the GRN is automatically and naturally quantified. Both up and down
regulations as well as self-regulations can be appropriately captured by the ODE
model. The general form of the ODE model can be written as

X′(t) = F(t,X(t),θ ), (1)

where X(t) = (X1(t), . . . ,XG(t))T is a vector representing the gene expression levels
of genes 1, . . . ,G at time t, t ∈ [t0,T ], 0 ≤ t0 < T < ∞, and X′(t) is the first order
derivative of X(t). The link function F describes the regulatory effects between
genes, which possibly depends on a vector of parameters θ .

The identification of the parameters in (1) requires some constraints on the model
structure, for instance, specification of the form of the function F. Many previous
works have assumed that F is linear, due to the simplicity of linear models (Bansal
et al. 2006; Holter et al. 2001; Yeung et al. 2002). A linear ODE model can be
written as

X ′g(t) = αg0 +
G

∑
i=1

αgiXi(t), g = 1, . . . ,G, (2)
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where αg0 is the intercept and coefficients α = {αgi}g,i=1,...,G quantify the regulation
effects of other genes on the rate of expression change of the g-th gene. For a small-
scale ODE-based GRN model (i.e., G is small), some standard methods such as the
least squares method or likelihood-based method can be used to perform statistical
inference for the dynamic parameters α . However, when G becomes large, model
(2) includes many parameters and the standard statistical methods may fail due to
the curse of dimensionality.

The methodologies presented in this paper are useful data-driven tools for
reconstructing large-scale GRNs from genome-wide time course gene expression
data by ODE models. In a typical gene expression experiment, tens of thousands
of genes are measured simultaneously, but only a fraction of them are associated
with the biological process of interest or a particular stimulus, such as a therapeutic
treatment or virus infection. Since it is reasonable to include only these “responsive”
genes in the ODE network model, the first step in the GRN modeling is to identify
temporally differentially expressed genes, i.e., genes with expressions changed
significantly over time. Within the set of differentially expressed genes, which
usually ranges from several hundreds to thousands, many genes behave similarly
during the experimental period, making it difficult to distinguish their expression
patterns based on the time course data. We propose to cluster these similarly behaved
genes (co-expressed genes) into functional modules (Luan and Li 2003; Ma et al.
2006). By doing this, the dimension of the ODE model (2) can be significantly
reduced and we can rewrite (2) for functional modules as

M′k(t) = βk0 +
K

∑
i=1

βkiMi(t), k = 1, . . . ,K, (3)

where K is the number of functional modules and Mk(t) is the mean expression
curve of the k-th module. The between-gene variation within each module is
accounted using mixed-effects modeling approaches. These K functional modules
are the nodes of the GRN and when βki is nonzero, there is a directed edge between
module i and module k. Since biological systems are seldom fully connected and
most nodes are only directly connected to a small number of other nodes (Jeong
et al. 2000), it is commonly assumed that the GRN is a sparse network, i.e., the
number of nonzero βki in model (3) is small. Therefore, to identify the significant
edges S = {1 ≤ k, i ≤ K : βki = 0} from the time course experimental data is an
essential step in the reconstruction of a GRN.

Although the model size K of (3) is comparably smaller than that of the original
model (2), simultaneous model selection and parameter optimization of (3) are still
computationally very expensive, because these involve costly numerical integration
and complicated parameter regularization. To tackle this difficulty, we propose to
adopt the two-stage smoothing-based estimation method (Liang and Wu 2008; Voit
and Almeida 2004), which decouples the system of differential equations into a
set of pseudo-regression models by substituting the differentials and state variables
in (3) with the estimated derivatives and expression curves from the observed
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data. This method avoids numerically solving the differential equations directly
and does not need the initial or boundary conditions of the state variables. More
importantly, it allows us to perform model selection and parameter estimation for
one equation at a time, which significantly reduces the computational cost. These
favorable properties of the two-stage smoothing-based estimation method greatly
outweigh its disadvantage of a small loss of estimation accuracy in dealing with
high-dimensional ODE models (Lu et al. 2011).

In this paper, we propose a novel pipeline to identify dynamic GRNs from
genome-wide time course gene expression data by combining a series of cutting-
edge statistical techniques. The remainder of the paper is organized as follows. The
methodologies in the pipeline are presented in Sect. 2: we first introduce methods to
select temporally differentially expressed genes from the genome-wide time course
data in Sect. 2.1; in Sect. 2.2, we discuss various methods to cluster these differential
genes into functional modules; Sect. 2.3 provides details of the statistical methods
for the network structure identification based on the linear ODE model; Sect. 2.4
deals with the parameter refinement of the reconstructed GRN in Sect. 2.3; Sect. 2.5
addresses the functional enrichment analysis of the functional modules and the
reconstructed GRN. We then illustrate the proposed pipeline with the time course
gene expression data from influenza-infected mouse lungs (Pommerenke et al. 2012)
in Sect. 3. We summarize the pipeline with some remarks and discuss perspectives
for future research in Sect. 4.

2 Methodology

2.1 Identifying Temporally Differentially Expressed Genes

We adopt the significant testing method proposed by Wu and Wu (2013) to identify
temporally differentially expressed genes. It is assumed that the expression profile of
each gene Xg(t) is a smooth function of time and the time course measurements are
collected as discrete observations from Xg(t) that are contaminated by noisy signals.
Denote Ug jr = Xg(t j)+ �g jr as the r-th replicate of the expression measurements of
the g-th gene at time t j, g = 1, . . . ,G, j = 1, . . . ,n, r = 1, . . . ,R j, where n is the
number of sampling time points for each gene and R j is the number of replicates
at t j. The noises �g jr are assumed to be i.i.d r.v.’s with mean 0 and variance σ2. A
key step is to create an estimate of Xg(t) from the noisy time course data through a
data-based eigen-representation: Xg(t) ≈ μg +∑L

l=1 ξglφl(t), where μg is the mean
expression, φl are the sequences of orthonormal eigenfunctions and ξgl are the
corresponding functional principal component scores. The top L eigenfunctions are
selected such that the total variation explained exceeds a pre-specified threshold
(such as 90 %).

In the case of a single experimental group, we are often interested in discovering
genes whose expression profiles are time-dependent, where the hypothesis can be
written as
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Hg0 : Xg(t) = μg, v.s. Hg1 : Xg(t) = μg, for any t ∈ [t0,T ]. (4)

The test statistic is a modified F-statistic, which compares the goodness-of-fit of the
null model to the alternative model:

Fg =
RSS0

g−RSS1
g

RSS1
g +ρ

, (5)

where RSS0
g and RSS1

g are the residual sum of squares under the null and the
alternative models for the g-th gene, respectively. This statistic can also be viewed
as the signal-to-noise ratio of each gene. For genes with low signal levels, variances
in Fg can be high because of small values of RSS1

g. The small constant ρ in the
denominator can help stabilize the variance of Fg and a suggested choice by Wu
and Wu (2013) is ρ = σ̂2, the estimated variance of the noisy signal. A permutation
test is used to generate the null distribution of (F1, . . . ,FG) and the multiple testing
adjustment method proposed by Benjamini and Hochberg (1995) is applied to
control the false discovery rate (FDR). If multiple experimental groups are involved,
we want to identify genes with different expression profiles in different groups. See
Wu and Wu (2013) for testing across multiple groups and more technical details.

2.2 Clustering Genes into Functional Modules

For each differentially expressed gene, we first combine the replicated gene
expressions by taking their average at each time point. This is mainly for technical
convenience, since most of the existing clustering algorithms do not consider
multiple replicates in the time course expression data. We do not recommend
averaging the replicates before the significance test because some genes may have
outliers in the observed data and averaging replicates for these genes may distort
their expression patterns and reduce the testing power. The significance test selects
genes with large signal-to-noise ratios, which less likely include any outliers. Next,
a gene-wise standardization procedure is applied. It has been well documented that
genes with similar biological functions usually have similar expression patterns but
with different expression magnitudes (fold changes) (Pommerenke et al. 2012). This
standardization procedure can remove such magnitude differences and is commonly
adopted when the aim is to produce groups of genes that are functionally related
(Eisen et al. 1998).

Many clustering methods have been applied to time course gene expression data,
including K-means clustering (Hartigan and Wong 1979), self-organizing maps
(SOM) (Kohonen 1997), and hierarchical clustering (Eisen et al. 1998). To account
for the dependency of expression levels across time for a given gene, Ma et al.
(2006) proposed a nonparametric mixed-effects smoothing spline method under
the framework of a mixture distribution to cluster time course gene expression
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data. The maximum penalized likelihood method coupled with a variation of the
EM algorithm was employed to estimate the model parameters and the number of
clusters was determined by the BIC criterion. In practice, we find that this method
is computationally very slow. Moreover, the BIC criterion often keeps decreasing
as the number of clusters increases, failing to select the number of clusters. For the
data application in Sect. 3, we apply K-means clustering to group the differentially
expressed genes into functional modules. The most appealing advantage of K-means
clustering is its computational efficiency. In addition, we find that for a given number
of clusters, the result by K-means clustering is very close to that produced by Ma
et al. (2006), since the latter uses K-means to initiate the program. Therefore, we
recommend the use of K-means clustering for practical applications if one has
limited computational resources.

We propose an empirical rule to determine the number of clusters when using
K-means clustering. Denote the total within-cluster sum of squares of the k-th
cluster by WCSSk. We plot the relative changes of the within-cluster sum of squares
(WCSSk −WCSSk+1)/WCSSk against the number of clusters k and choose the
number K at the knee of the curve. The motivation behind this proposal is that
the within-cluster variation WCSSk goes down as k increases and the decreasing
rate should significantly slows down after k passes the optimal number of clusters.
To facilitate the ODE network modeling and functional enrichment analysis in the
following steps, we recommend that the number of clusters K should not be chosen
too small and ideally it is more than 10.

2.3 Identification of Network Structure

In this section, we present methods to identify the significant regulations between
functional modules in model (3). We first obtain the estimates of Mk(t) and
their derivatives M′k(t) from the observed data. Substituting these estimates into
(3) can decouple the K-dimensional ODEs into K independent pseudo-regression
models. So the problem of identifying the ODE model structure can be transformed
into variable selection problems of these K regression models. The decoupling
property is a unique feature of the two-stage smoothing-based estimation method
for ODEs (Liang and Wu 2008; Voit and Almeida 2004). The benefits of this
approach are that it avoids numerically solving the differential equations and allows
independent model selection and parameter estimation for one equation at a time,
which significantly reduce the computational cost (Lu et al. 2011).

2.3.1 Nonparametric Smoothing

With a slight abuse of notation, we use Ug j to denote the expression level at t j for the
g-th gene after combining the replicates and the standardization procedure. Within
each of the K functional modules, the gene expression patterns are similar, so we can
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treat the time course data of these genes as longitudinal measurements and model
them using the following nonparametric mixed-effects model:

Ug j = Mk(t j)+ηgi(t j)+ εgi j, g ∈Ck, (6)

where Ck is the collection of gene indices for the k-th module, Mk(t) is the mean ex-
pression curve for module k, and ηgi(·) is the random-effects function that quantifies
the deviation of the expression level of gene g from the mean expression Mk(t).

There is a sizable literature about the model fitting of (6) and the methods
include smoothing spline, regression spline, penalized spline, and local polynomial
smoothing. We omit the detailed presentations of these standard smoothing methods
and refer to Wu and Zhang (2005) and references therein for a good review on this
topic. Applying any of these nonparametric smoothing techniques, we can obtain
the estimates of the mean expression curve Mk(t) and its first order derivative M′k(t)
for each functional module. Following Liang and Wu (2008), we suggest under-
smoothing these curve estimates in this step.

2.3.2 Variable Selection for the Linear ODE Model

We plug the estimated mean expression curves and their derivatives M̂k(t) and
M̂′k(t) into the ODE system (3) to form a set of pseudo-linear regression models.
Since M̂k(t) and M̂′k(t) are estimated continuously as nonparametric functions, we
recommend using augmented data from M̂k(t) and M̂′k(t) at time points t∗1 , . . . , t

∗
N

(∈ [t0,T ]), where N can be larger than the original sample size n. This data
augmentation strategy has also been used by other investigators before (Bansal et al.
2006) and has been shown to help better estimate the ODE parameters. Denote the
augmented data as yk j = M̂′k(t

∗
j ) and zk j = M̂k(t∗j ), j = 1, . . . ,N. We can write the

pseudo-regression models as

yk j = βk0 +
K

∑
i=1

βkizi j + δk j, k = 1, . . . ,K. (7)

The error term δkl represents the aggregated estimation error of M̂k(t) and M̂′k(t) and
model error due to the substitution of the differential equation variables by M̂k(t) and
M̂′k(t). Note that these errors are dependent, and the covariates zi j and responses yk j

in (7) are derived from the smoothing estimates rather than directly measured data.
Therefore, model (7) is not a standard regression model and this is why we refer to
it as a “pseudo” linear regression model.

For linear regression models, many penalized methods have been proposed in
the regularization framework to conduct variable selection and estimation, such as
the least absolute shrinkage and selection operator (Tibshirani 1996) and smoothly
clipped absolute deviation (SCAD) (Fan and Li 2001). Many efforts have been
made to demonstrate the statistical properties of these methods in high-dimensional
settings, such as Zhang and Huang (2008) and Kim et al. (2008) among others.
These methods can be applied to perform variable selection for model (7), but their
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theoretical properties under the pseudo-linear regression setting need to be carefully
considered. In this paper, we focus on the SCAD method for model (7).

Without loss of generality, we assume that both the response yk = (yk1, . . . ,ykN)
T

and covariates zi = (zi1, . . . ,ziN)
T , i = 1, . . . ,K in (7) are centered, so βk0 = 0.

Consider the following penalized objective function

1
2N

N

∑
j=1

(yk j− zT
i β k)

2 +
K

∑
i=1

Jλk
(|βki|), (8)

where β k = (βk1, . . . ,βkK)
T and Jλ (|β |) is the SCAD penalty (Fan and Li 2001). We

employ the CCCP-SCAD algorithm developed by Kim et al. (2008) to minimize
(8). This algorithm is shown to be less sensitive to the initial value, faster, more
stable than previous algorithms for the SCAD problem and more importantly, it is
always guaranteed to converge to a local minimum (Kim et al. 2008; Lu et al. 2011).
Applying the CCCP-SCAD algorithm to each of the K pseudo-linear regression
models, we obtain the collective set of nonzero coefficients Ŝ = {(k, i) : 1 ≤ k, i ≤
K, β̂ S

ki = 0}, where β̂ S
ki are the minimizers of (8). This set Ŝ gives the structure of the

ODE network model (3) and the regulation relationships between the functional
modules in the network. Lu et al. (2011) have proved that the SCAD estimator
β̂ S

ki has an oracle property, which ensures the correct recovery of the true network
asymptotically.

2.4 Refining Parameter Estimates

In Sect. 2.3, the two-stage smoothing-based estimation method is employed to
simplify the computation of the ODE models and also facilitate the variable
selection procedure. However, the parameter estimates from the two-stage method
are not efficient in terms of estimation accuracy, because of the approximation errors
brought in by the estimates of the mean expression curves Mk(t) of the functional
modules and their derivatives M′k(t). These errors could be quite large when the data
are measured at a sparse grid or with large noise signals. To overcome the estimation
deficiency of the two-stage method, we propose to refine the parameter estimates
for the selected ODE model using the nonlinear least squares (NLS) method. The
parameter estimates from the two-stage method in Sect. 2.3 can be used as the initial
estimates in the NLS procedure.

Recall that model (3) is based on the mean expression values of the functional
modules. Therefore, the refined parameter estimate obtained from the NLS method
provides a description of the average regulatory effect that the genes in one module
have on another module. To obtain the gene-specific regulatory parameter estimates,
we consider the following mixed-effects ODE model for module k (1≤ k≤ K):

dXg(t)
dt

= βk0 + ∑
i∈Ŝk

αgiMi(t) = βk0 + ∑
i∈Ŝk

(βki + γgi)Mi(t), g ∈Ck, (9)
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where Xg(t) is the true expression curve of the g-th gene; the set Ck includes the gene
indices in module k and Ŝk = {i : 1 ≤ i ≤ K, β̂ S

ki = 0} is the collection of nonzero
coefficients for the k-th differential equation; the random effects γgi are assumed
to follow normal distributions and they characterize the between-gene variation in
the k-th module. Model (9) indicates that gene g in the k-th functional module is
regulated by the mean effects of genes in the other modules and the gene-specific
effect αgi can be considered as the average regulatory effect βki with a random
deviation γgi. Lu et al. (2011) recommended using the stochastic approximation
EM (SAEM) algorithm (Delyon et al. 1999; Kuhn and Lavielle 2004) to obtain the
maximum likelihood estimates (MLEs) of αgi. When the conditional distribution of
random effects γgi does not have a closed-form expression, a Markov chain Monte
Carlo (MCMC) method can be used. See Delyon et al. (1999) and Kuhn and Lavielle
(2004) for more details about the SAEM algorithm.

2.5 Functional Enrichment Analysis

Up to this point, we have constructed the module-based GRN through the ODE
network models using data-driven methods. It is crucial to interpret these data-
driven results and summarize the biological implications of the reconstructed GRN.
To this end, we perform the functional enrichment analysis for the functional
modules and the reconstructed GRN.

Genes within the same functional module may have many biological func-
tions and certain functions may be over-represented in this module compared
to the population of genes in an organism or a biological process. These over-
represented functions or enriched functions are the key factors to understand the
role that the functional module plays in the whole network. We can use DAVID
(Huang et al. 2009) to identify the gene ontology (GO) functional annotations and
KEGG/BioCarta/Reactome pathways that are enriched in each functional module.
In this analysis, a modified Fisher’s exact test is carried out for each functional term
under the null hypothesis that this function is not over-represented in the functional
module compared to the background population (Huang et al. 2009). The statistical
significance of each functional term is adjusted by the multiple testing adjustment
method, such as the procedure proposed by Benjamini and Hochberg (1995).

3 Application to Mouse Influenza Infection Data

In this section, we apply the proposed pipeline to the time course microarray
data measured in mouse lungs after a nonlethal infection with influenza A PR8
(H1N1) (Pommerenke et al. 2012). The genome-wide changes in gene expression
patterns were monitored at day 1, 2, 3, 5, 8, 10, 14, 18, 22, 26, 30, 40, and 60
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Fig. 1 The spaghetti plot of the standardized gene expression profiles for each functional module
overlaid with the smoothed mean expression curve obtained from (6) (solid line) and the refined
estimate from the linear ODE model (dashed line). The number of genes in each module is
displayed in the parentheses.

post-infection (p.i.). Three mice were prepared as three independent biological
replicates at each day p.i., except for days 3 and 5, where there were 6 replicates.
Nine mice were mock-infected and their gene expression data were collected as
baseline measurements (day 0). The total number of genes in the data set is 27527.
In the following analysis, we only consider the gene expression data up to day 30
p.i. Since most of the gene expression profiles after day 30 p.i. are nearly flat, we
believe that the majority of the gene expression variations are still preserved after
removing the data on days 40 and 60 p.i.

We first perform the significance test under the null hypothesis (4). Using 10,000
permutations, we identify 3667 genes (FDR = 0.005) with temporally differential
expression patterns. To further reduce the dimension of the problem, we group
these differential genes into 19 functional modules using K-means clustering.
Figure 1 shows the spaghetti plot of the standardized gene expression profiles for
each functional module, with the number of genes in each module displayed in
the parentheses. Treating the gene expression profiles within the same functional
module as longitudinal data, we obtain the smoothed mean expression curve and
the corresponding first order derivative for each module using model (6). The mean
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Fig. 2 The module-based gene regulatory network constructed by the linear ODE model from the
viral infection gene expression data.

expression curves are displayed as solid lines overlaid with the spaghetti plots
in Fig. 1, and as suggested by Liang and Wu (2008), these curve estimates are
under-smoothed. We decouple the ODE system by plugging in the estimates of
the mean expression curves and their derivatives, where the mean curve estimates
and their derivatives are evaluated at an augmented time grid, with N = 100 time
points equidistantly distributed in [0,30]. Applying the SCAD variable selection
method described in Sect. 2.3.2, we obtain the module-based GRN shown in Fig. 2.
Conditional on the selected model structure, we refine the parameter estimates using
the NLS method and the solutions from the refined ODE model are displayed as
dashed lines in Fig. 1. We can see that these refined curve estimates from the linear
ODE model closely follow the mean expression trend for each functional module.

Table 1 summarizes the detailed information about the inward and outward
regulations between the functional modules. The negative signs in the table indicate
down regulations, i.e., negative coefficients in the refined ODE model. We find
that Modules 1, 4, 5, 6, 8, and 18 have the most outward regulations, indicating
their crucial roles in this regulatory network. So we refer to them as the “hub”
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modules. To better understand the roles these modules play in the regulatory
network, we carry out functional enrichment analysis using DAVID (Huang et al.
2009). Due to space limitation, we only display the GO biological processes, the
KEGG pathways and some selective molecular functions enriched in each functional
module (Table 1). We can see that several modules have functions related to the
immune process, such as innate immune response, positive regulation of adaptive
immune response, T cell activation, and B cell receptor signaling pathway. The
complete list of biological functions enriched in each module and also the genes
associated with each functional term is available upon request.

Taking a closer look at Table 1, we find that genes in Module 1 are mostly related
to the innate immune process. This is consistent with the expression patterns in
Fig. 1, where genes respond to the viral infection immediately with rapid increases
up to around day 6 p.i. and then quickly drop back to the baseline levels at around
day 15 p.i. Modules 4 and 5 feature strong augmentations of gene expressions
starting at around day 3 p.i., with peaks around day 8 p.i. (Fig. 1). Unlike Module 1,
the gene expression levels after day 20 p.i. of Modules 4 and 5 are still considerably
higher than those at the baseline. These two modules are mainly associated with the
activation and differentiation of T cells and lymphocyte. B cell related functions
are enriched in Modules 8 and 9, indicating the recruitment of B cells into the
lungs. Accordingly, we find that the gene expressions of these two modules start to
increase after day 5 p.i. and continue to be highly expressed till day 30 p.i. (Fig. 1).
Modules 11–19 have down-regulated gene expression patterns, and interestingly,
we find that the enriched functions in these modules are mainly housekeeping
biological functions, such as cellular process, development, and binding. These
down-regulated expressions reflect the death of the lung epithelial cells or their
impairment due to the virus infection. The regulatory interactions between these
housekeeping functions and the innate and adaptive immune responses enable the
proper functioning of the immune process in lungs.

Besides the “intra-module” functional annotations, we are also interested in
building a functional landscape of the genome-wide regulatory network in response
to viral infection. Linking the functional annotations and the topology of the gene
network identified through the ODE model (Fig. 2) can help us understand the
functional linkages and associations between these functional modules, and thus
better understand the dynamic regulations of the whole immune system. Taking
Module 1 as an example, we can see from Table 1 that it is regulated by Modules
6, 8, 16, 18, and itself. Module 1 is associated with the innate immune response,
while Modules 6, 8, 16, and 18 are enriched as “cell cycle,” “B cell activation
and immune response,” “cell development,” and “catalytic activity,” respectively
(Table 1). This means that many fundamental biological processes in cells are
involved in the initiate of the innate immune response. On the outward influence
side, we find Module 1 regulates almost all the other modules, indicating the crucial
role of this module in the immune system.

In summary, the functional modules can be considered as meta-genes and the
“intra-module’ functional annotations summarize the biological functions of these
meta-genes. The “inter-module” regulatory relationships imply the cooperative
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coordination of these network units and the dynamics of the immune responses
after the viral infection. We have shown in this data application that using the
proposed pipeline, we are able to identify many interesting interactions in the mouse
immune system and the regulatory relationships identified in the ODE-based GRN
are consistent with those found by other investigators (Pommerenke et al. 2012).

4 Discussion

We proposed a new pipeline for the reverse-engineering of the dynamic GRN based
on ODE models. We focused on the genome-wide time course gene expression data,
which provides a complete view of the evolvement of the biological phenomena
over a period of time rather than at a snapshot. Our pipeline is consisted of five
steps: (1) detection of temporally differentially expressed genes; (2) clustering
differential genes into functional modules; (3) identification of network structure;
(4) parameter estimate refinement; and (5) functional enrichment analysis. A
series of advanced statistical techniques are employed, including the integration
of the FPCA and the hypothesis testing, time course gene expression clustering,
nonparametric mixed-effects modeling and the parameter estimation and statistical
inference for ODE models. The proposed pipeline is a computationally efficient
data-driven tool bridging the experimental data and the mathematical modeling
and statistical analysis. More importantly, the systems biological approaches in the
pipeline allow us to model the living systems as a whole rather than a collection of
single biological entities and gain insights into the control of a part of the system
while taking into account the effect it has on the whole system. The application
to the influenza-infected mouse data has illustrated the usefulness of the proposed
pipeline.

For the identification of network structure, we adopted the two-stage smoothing-
based estimation method to decouple the ODE system to a set of pseudo-regression
models. Wu et al. (2012) proposed to use a weight function in the least squares
criterion in the second stage after plugging in the estimates of the mean expression
curves and their derivatives. They have shown that using the appropriate weight
function can alleviate the boundary effects of the nonparametric curve estimates
and also improve the convergence rate of the parameter estimates. Following this
idea, we can modify the objective function (8) in the SCAD procedure to a penalized
weighted least squares: 1

2N ∑N
j=1 dk(t j)(yk j−zT

i β )2+∑K
i=1 Jλk

(|βki|), where dk(t) is a
nonnegative weight function on [t0,T ] with boundary conditions dk(t0) = dk(T ) = 0.

An important extension of the proposed pipeline is to include some prior
information in the ODE network modeling. For example, if one network component
is known to regulate another component from the literature, one can incorporate
this information in the network structure identification by not penalizing the
corresponding regulatory coefficients in the variable selection procedure. Besides
the popularly adopted linear ODE model (3), certain nonlinear ODE models are
also very important in practical applications, because complex dynamic behaviors



188 S. Wu et al.

and regulations in a GRN cannot be explained by simple linear systems (Heinrich
and Schuster 1996). An example of nonlinear ODE models based on the functional
modules can be written as

M′k(t) = βk0 +
K

∑
i=1

βki fki(Mi(t),θ ki), k = 1, . . . ,K. (10)

The regulatory functions fki can be known nonlinear functions with unknown
parameters θ ki, such as the sigmoid function model (Chen et al. 2004). They can also
be some unknown functions and may be estimated using nonparametric techniques.
Since co-regulations occur very often in GRNs, we can generalize model (10) to
include the interaction effects between certain components. A further extension
to (10) is to relax the additive assumption and allow more complex nonlinear
relationships, such as the S-systems (Kikuchi et al. 2003; Kimura et al. 2005).
However, these topics are beyond the scope of this paper and will be studied in
the future research.
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Kernel Methods for Regression Analysis
of Microbiome Compositional Data

Jun Chen and Hongzhe Li

Abstract With the development of next generation sequencing technologies, the
human microbiome can now be studied using direct DNA sequencing. Many human
diseases have been shown to be associated with the disorder of the human micro-
biome. Previous statistical methods for associating the microbiome composition
with an outcome such as disease status focus on the association of the abundance
of individual taxon or their abundance ratios with the outcome variable. However,
the problem of multiple testing leads to loss of power to detect the association.
When individual taxon-level association test fails, an overall test, which pools the
individually weak association signal, can be applied to test the significance of
the effect of the overall microbiome composition on an outcome variable. In this
paper, we propose a kernel-based semi-parametric regression method for testing
the significance of the effect of the microbiome composition on a continuous or
binary outcome. Our method provides the flexibility to incorporate the phylogenetic
information into the kernels as well as the ability to naturally adjust for the covariate
effects. We evaluate our methods using simulations as well as a real data set on
testing the significance of the human gut microbiome composition on body mass
index (BMI) while adjusting for total fat intake. Our result suggests that the gut
microbiome has a strong effect on BMI and this effect is independent of total fat
intake.
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1 Introduction

The human body carries ten times more bacterial cells than the human cells. Besides
bacteria, there are other types of microbes such as viruses, fungi, and archaea. The
collection of these microorganisms, their genetic elements, and their environmental
interactions constitutes the human microbiome, which contains two orders of
magnitude more genes than the genes in the human genome [1]. The human
microbiome coevolves with the human genome and provides us with additional
biological functions that are not encoded in the human genome. It is not until very
recently that researchers began to appreciate the importance of human microbiome
in human health and disease. With technological advancement, there have been
studies of the human microbiome at different body sites ranging from skin [2] to
gut [3–6]. Important insights have been gained from analysis of large-scale human
microbiome data, including the discovery of enterotypes [4] and discovery of the
link between diet and these enterotypes [6]. Meanwhile, many diseases have been
linked to the disorder of the human microbiome including obesity, inflammatory
bowel disease, and even colon cancers [7].

Prior to the next generation sequencing (NGS) era, the study of the human
microbiome involves cloning individual microbial DNA fragments followed by
Sanger sequencing, a procedure that is very laborious and expensive. NGS tech-
nologies such as 454 pyrosequencing and Illumina Solexa sequencing have enabled
researchers to study the human microbiome using direct DNA sequencing, which
is much cheaper, faster, and more high-throughput. There are basically two ways
of sequencing the microbiome: the 16S rRNA gene targeted sequencing and
the shotgun metagenomic sequencing [8]. The latter involves sequencing all the
microbial DNA fragments from a microbiome sample. Though the shotgun method
is more powerful and possible less biased, the 16S rRNA gene targeted approach is
routinely conducted to determine the bacterial composition due to its relative low
cost and simpler analysis pipeline. In the targeted approach, one variable region
of the 16S rRNA gene is isolated by PCR and sequenced by NGS. Since each
bacterial species harbors different version of 16S sequence, these sequenced 16S
tags carry information about species identity. The 16S tags from the same species
are highly similar, so in practice the 16S tags are clustered into small units called
Operational Taxonomic Units or OTUs at 97% similarity level. These OTUs are
considered to be surrogates of biological species, though strict correspondence is
hard to establish. The number of OTUs is usually on the order of thousands or more
and varies tremendously depending on the body sites studied and the number of
samples sequenced.

The OTUs are related by a phylogenetic tree. This tree provides an important
prior information on the phylogenetic relationships among the bacterial species. Ap-
propriate use of the tree information can lead more meaningful analysis [9, 10, 12].
Figure 1 gives an example of the OTU counts generated for a study on the effects of
diet on the gut microbiome composition [6]. The phylogenetic tree, shown on the
top, relates all the OTUs and exhibits clear clustering pattern.
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Fig. 1 OTU counts of 98 gut microbiome samples from COMBO study. Row: subjects,
column: OTUs. The gray scale indicates the OTU abundance. White regions indicate the OTUs
that receive zero counts in a given sample. The OTUs are related by a phylogenetic tree shown at
the top. The tree is constructed using the genetic distances between OTUs based on the aligned
16S sequences. The OTUs from different phyla are colored accordingly.

Understanding the relationship between the human microbiome and disease
is one of the most important goals of human microbiome studies. Testing the
significance of the effects of overall microbiome composition on a disease status
or a disease related quantitative trait is an essential step to disentangle the complex
relationship between the human microbiome and disease. However, due to the
complexity of the microbiome data, rigorous statistical methods are required to
conduct such an overall test. An overall test can overcome the problem of multiple
testing of individual associations between microbial taxon and disease that are
usually very weak. In this paper, we propose a kernel-based semi-parametric
regression method for testing the significance of the effect of overall microbiome
composition on an outcome variable. The key of our approach is to define a distance
matrix among the samples that effectively take into account the observed OTU
compositions and the phylogenetic tree information. The phylogenetic tree-based
distance matrix can then be used to define a kernel function used in semi-parametric
generalized linear models. A score test can then be developed to test for an overall
association between the microbiome composition and an outcome variable.

We briefly review the literature on kernel-based regression and its connec-
tion with generalized linear mixed-effects models. We then present methods for
kernel construction for microbiome compositional data using phylogenetic tree
information. We finally present simulation results and real data application.
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2 Methods

2.1 Kernel-Based Semi-parametric Regression Model
and Score Test

Suppose we have n samples. Let yi denote an outcome variable for the ith sample,
where yi can be binary (e.g., disease status) or continuous (e.g., a quantitative trait).
Let xi = (xi1, · · · ,xip) be the p covariates we want to adjust for and zi = (zi1, · · · ,ziq)
be the abundances of q OTUs for the ith sample, where q is large and is usually
in the order of thousands. These OTUs are related by a known phylogenetic tree
T . To test the effect of OTUs on the outcome after adjusting for the covariate
effects, we use the kernel-based semi-parametric regression framework [13, 14],
in which we model the effects of OTUs and other covariates using the following
link function g(.),

g(μi) = xT
i β + h(zi),

where μi is the mean of the outcome, the covariate effects are modeled paramet-
rically with β being the regression coefficients, and the OTU effects are modeled
nonparametrically. Specifically, we assume that the general function h(zi) is from a
Reproducing Kernel Hilbert Space HK generated by a positive semi-definite kernel
function K(., .). Under this framework, testing no OTU effect on the outcome is
equivalent to testing h(z) = 0. When the outcome is a continuous normal variable,
g(.) is the identity function. When the outcome is binary variable, g(.) is the
logit function ln(μi/(1− μi)). By choosing different kernel functions, we assume
different functional form of h(.), so we can model OTU interactions, nonlinear OTU
effects, and even the phylogenetic relationship among OTUs.

The regression coefficients β and the function h(.) can be estimated by maximiz-
ing the penalized likelihood

pl(h,β ) =
n

∑
i=1

l(h,β ;yi,xi,zi)−
1
2

λ ‖h‖2
HK

,

where l(.) is the likelihood function, ‖h‖HK
measures the smoothness of the

function h(.), and the tuning parameter λ controls the trade-off between model
fit and complexity of the function h(.). By representer theorem, the penalized
maximum likelihood estimate of h(.) can be expressed as h(.) = ∑n

i=1 αiK(.,zi) for
some α . So the penalized likelihood function can be rewritten as

pl(α ,β ) =
n

∑
i=1

l(α ,β ;yi,xi,zi)−
1
2

λ αT Kα,

where K is the kernel matrix over the samples with Ki j = K(zi,z j). This penalized
likelihood function is equivalent to the Penalized Quasi-likelihood (PQL) function
from a generalized mixed-effects model:

g(μi) = xT
i β + hi,
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where β are fixed effects and h ∼ N(0,τK) are subject-specific random effects
with the variance component τ = 1/λ and h = Kα . Through this connection,
parameter estimation and testing in original kernel-based regression framework
can be conducted under the generalized mixed-effects model. Testing h(z) = 0
corresponds to the variance component test in generalized mixed model:

H0 : h(z) = 0⇔ H0 : τ = 0.

The variance component test can be performed using a score test and the score
statistic is

Q =
1

2φ
(y− μ̂0)

T K(y− μ̂0), (1)

where φ is the dispersion parameter, μ̂0 is the fitted mean under H0. The distribution
of Q under H0 has a weighted mixture of χ2 distributions and can be determined
using approximation or exact methods. Details of the score test can be found in
[14]. The power of the score test depends on the choice of the kernel matrix K. In
the next section, we provide a way of designing an appropriate kernel that takes into
account the phylogenetic relationship among the OTUs.

2.2 Construct Kernels Based on Generalized UniFrac
Distances

The kernel-based score test requires a kernel matrix K. One major characteristic
of the OTU data is that the OTUs are related by a phylogenetic tree. OTUs are
usually clustered on the tree and form lineages of different depths. These lineages
can be roughly thought as taxonomic units at different levels such as genus and
family. OTUs from the same lineage are genetically more similar and usually have
similar biological functions. The outcome is usually affected by one or several OTU
lineages instead of dispersed individual OTUs. One simple way of defining a kernel
matrix is by transforming the distance matrix through

K =−1
2
(I− 11′

n
)D2(I− 11′

n
), (2)

where D = {di j} is the pairwise distance matrix, I is the identity matrix, and 1 is a
vector of 1’s. It is easy to verify that kernel matrix defined this way can recover the
original distances using standard kernel operation: d2

i j = Kii +Kj j− 2Ki j. If the D
is Euclidean, i.e. the samples can be embedded in a real coordinate space, then the
positive semi-definiteness of K is guaranteed. If there is no Euclidean embedding
for D, then K is not positive semi-definite. In such case, we can apply a positive
semi-definiteness correction procedure. We first perform an eigen-decomposition
by K = UΛUT , where Λ = Diag(λ1,λ2, . . . ,λn). We then reconstruct K∗ using the
absolute eigenvalues by K∗ = UΛ∗UT , where Λ∗ = Diag(|λ1|, |λ 2|, . . . , |λn|).
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The most widely used distance metric in microbiome data analysis is UniFrac
distance that effectively incorporates the phylogenetic tree information [15]. The
unweighted UniFrac distance, which uses only OTU absence and presence informa-
tion, is defined as the fraction of branch length of the phylogenetic tree that is unique
to any microbial community. The weighted UniFrac distance uses OTU proportion
data and weights the branch length by proportion difference of the two communities.
A generalized UniFrac distance was also proposed [10] that can be regarded as a
one-parameter extension of the UnFrac distances. The generalized UniFrac distance
between communities A and B is defined as:

d(ξ ) =

m

∑
i=1

bi(pA
i + pB

i )
ξ
∣
∣
∣
∣

pA
i − pB

i

pA
i + pB

i

∣
∣
∣
∣

m

∑
i=1

bi(pA
i + pB

i )
ξ

,

where m is the number of branches in the tree, bi is the length of ith branch,
and pA

i , pB
i are the proportions of OTU lineages that descend from ith branch for

community A and B. The term on the denominator is the normalizing factor so
d(ξ ) ∈ [0,1]. In the formula, the branch length is weighted by both the relative
difference

∣
∣pA

i − pB
i

∣
∣/
∣
∣pA

i + pB
i

∣
∣, which puts equal emphasis on every branch and the

branch proportion (pA
i + pB

i )
ξ , which includes a parameter ξ controlling the weight

on abundant lineages. As ξ changes from 0 to 1, more weight is put on abundant
lineages. The generalized UniFrac distance includes weighted and unweighted
UniFrac distances as special cases. When ξ = 1, the generalized UniFrac distance is
reduced to weighted UniFrac distance dW . When ξ = 0 and we use the OTU absence
and presence data, the generalized UniFrac distance is reduced to unweighted
UniFrac distance dU . By taking different values of ξ , we can detect a much wider
range of community difference, from the difference in most abundant lineages to
least abundant lineages. To avoid the multiple testing problem using too many ξ ’s,
we restrict us to four representative instances on the generalized UniFrac distance
series, namely dW , d(0.5), d(0), and dU . Note that d(0) uses the proportion data and
is different from dU .

We use the kernels constructed from these four distances to detect microbiome ef-
fects using both simulations and a real application. Specifically, for two individuals

i and j, we calculate their pair-wise distance, dW
i j , d(0.5)

i j , d(0)
i j , and dU

i j , respectively,
which defines the distance matrix and the kernel function as in Eq. (2).

3 Simulations

We present simulations to evaluate the power of kernel-based score tests for
detecting the microbiome effects on a disease status or a quantitative trait. We
compare the performance of different kernels under various scenarios to identify
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the best-performance scenario for each kernel considered. For each scenario, we
generate 100 samples and the power is calculated based on 1,000 repetitions at
type I error 0.05.

3.1 Simulation Methods

To mimic the real OTU counts, we use a medium-scale phylogenetic tree of OTUs
from a real throat microbiome data set of 60 samples [16]. The phylogenetic tree,
which consists of 856 OTUs after discarding the singleton OTUs, is constructed
using the FastTree algorithm in the Qiime pipeline [17]. We model the OTU
counts using Dirichlet-multinomial (DM) model to account for the overdispersion
seen in real microbiome data [11]. We estimate the mean OTU proportions
(π1,π2, · · · ,π856) as well as the overdispersion parameter θ using maximum like-
lihood method. We then generate the OTU counts using the estimated parameters.
Specifically, for ith sample, the OTU proportions are generated using Dirichlet dis-
tribution: (pi1, pi2, · · · , pi856) ∼ Dirichlet(π̂1, π̂2, · · · , π̂856, θ̂ ) and the OTU Counts
are generated using a Multinomial Distribution with the OTU proportions generated
in previous step: (zi1,zi2, · · · ,zi856) ∼Mutinomial(pi1, pi2, · · · , pi856,ni), where the
sequencing depth ni is drawn from a negative binomial distribution with a mean
1,000 and size 25.

We partition the 856 OTUs into 20 clusters (lineages) by performing PAM
(Partition Around Medoid) based on the OTU distance matrix, where the pair-wise
OTU distance is taken to be the patristic distance, i.e. the length of the shortest
path linking the two OTUs on the phylogenetic tree. The abundance of these 20
OTU clusters varies tremendously. We assume that the outcome variable depends
on the abundance of a certain OTU cluster corresponding to some bacterial lineage.
To compare the power of different kernels under different scenarios, we consider
in our simulation four representative clusters with different abundance levels
(19.4%,5.7%,1.5%,0.3%, respectively). The continuous outcome is generated
using a normal distribution with mean f ∑k∈S j

pik and fixed standard deviation,
where S j is the set of OTU indices in cluster j and the parameter f controls the
effects of the OTU cluster. The standard deviation is the same for different clusters
(SD=1.0). Specifically, we first standardize the proportions of the OTU in the
associated cluster to have mean 0 and standard deviation of 1. The binary outcome is
generated using a Bernoulli distribution with the mean 1/(1+ exp(− f ∑k∈S j

pik)).
We vary the effect size f to create power curves. When f = 0, the OTU cluster has
no effects on the outcome. The four generalized UniFrac distances dW , d(0.5), d(0),
and dU are constructed using GUniFrac package [9] with the observed OTU counts
and the phylogenetic tree. We then convert the UniFrac distances into kernels using
formula (2). The kernel matrix is then used in the score statistic (1) for testing the
overall association. The power is calculated based on 1,000 repetitions with type I
error rate 0.05.
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Fig. 2 Statistical power for the kernel-based score test with different kernels for testing the
effects of the overall microbiome composition on an outcome. Four representative OTU clusters,
ranging from very abundant to very rare, are chosen to affect the outcome. The abundance of
corresponding cluster is shown in the parenthesis. The kernel-based test is used for testing the
overall association of between all OTUs and the outcome. The power curve is created by varying
the OTU effects. The first point of the power curve shows the power under null. Kernels compared
are those constructed from generalized UniFrac distances (dW , d(0.5), d(0) and dU ) and the linear
kernel (L). Both continuous outcome (A) and binary outcome (B) are investigated.

3.2 Simulation Results

Figure 2 shows the power of kernel-based score test using kernels constructed
from the generalized UniFrac distances dW , d(0.5), d(0), and dU and the simplest
linear kernel, i.e. inner product of the OTU proportion vectors. Note that although
the true associated OTUs belong to a cluster, the kernel-based tests are used for
testing the overall association between all OTUs and the outcome. These different
kernels behave qualitatively the same for both the continuous outcome (panel A) and
binary outcome (panel B). Clearly, no kernel performs the best under all scenarios
considered. When there is no OTU effect, score test controls the type I error at 0.05
level. Each kernel has its best performing scenario. The kernel based on dW is most
powerful to detect the effects of abundant OTU cluster (cluster 12) on the outcome,
but it becomes less powerful as the causal OTU cluster becomes less abundant.
The kernel based on dU shows the opposite direction with its best performance for
rare OTU cluster (cluster 19). The kernel based on d(0) lies in the middle. Most
remarkably, the kernel based on d(0.5) is most robust with its performance always
being closer to the best performing kernel for the corresponding scenario. It also
achieves best power when the OTU cluster is moderately abundant (cluster 4) and
is comparable to dU when the OTU cluster is rare (cluster 19). In comparison, the
linear kernel, which does not use phylogenetic tree information, is only powerful to
detect the effects of abundant OTU cluster, where the kernel based on dW achieves
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a similar or better power, but it becomes almost powerless in other scenarios. In
other words, the linear kernel is dominated by the kernel based on dW . Therefore,
incorporation of the phylogenetic tree information can increase the power of the
score test. In practice, it is helpful to conduct score tests using different UniFrac
distance-based kernels. The test results can provide potential insights into whether
the rare or abundant OTUs are associated with the outcome.

4 Application to Real Data Analysis

To demonstrate the use of our proposed method in real applications, we apply our
method to a real data set for testing the significance of the effect of the overall
microbiome composition on the Body Mass Index (BMI), an index of obesity.
Recent mouse and human studies have implicated the role of the gut microbiome
in obesity [18–20]. However, these studies all focused on testing the association
of obesity with particular microbiome features such as the species richness and
the ratio of Firmicutes to Bacteroidetes. We use the microbiome data set from
a study on the effects of diet on gut microbiome composition conducted at the
University of Pennsylvania [6]. For this study, both gut microbiome 16S data and
BMI data are available for 98 healthy subjects. Fecal samples were obtained from
these 98 subjects and bacterial DNA was extracted using standard protocol. After
multiplexed 454 pyrosequencing, about 900,000 high quality, partial (∼370bp) 16S
rRNA gene sequences were generated. These sequences were analyzed using the
Qiime pipeline [17], where the sequences were clustered at 97% sequence identity
into OTUs. Generalized UniFrac distances (dW , d(0.5), d(0) and dU ) are computed
using the OTU abundance data and the OTU tree and are converted to kernels. We
first perform kernel-based score test on the original continuous BMI values. Table 1
shows that the score test is most significant when the kernel based on dU is used
(p= 6.7E−6) and becomes less significant when more weights are put on abundant
lineages (e.g. dW ), indicating it is mostly the rare lineages that affect the BMI. This
is in accordance with the observation that the species richness decreased in obese
twins [18], since these rare species contribute to the most of the species richness.
To illustrate the kernel-based test for binary outcome, we dichotomized subjects
into normal or overweight with a BMI cutoff value 25. The test results have the
same trend.

Fat intake is a confounding factor in the test, since it is correlated with both BMI
(r = 0.32, p = 0.001) and microbiome composition (PERMANOVA, p < 0.05).

Table 1 Kernel-based score test for the effect of the overall gut microbiome
composition on BMI (unadjusted).

Kernel type dW d(0.5) d(0) dU

p-value (original scale) 0.22 0.03 4.3E-5 6.7E-6
p-value (dichotomized) 0.21 0.02 7.9E-5 4.2E-5
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Table 2 Kernel-based score test for the effect of the overall gut microbiome
composition on BMI after adjusting for fat intake and the effect of fat intake on
BMI after adjusting for the microbiome composition.

Kernel type dW d(0.5) d(0) dU

p-value (microbiome) 0.36 0.11 0.007 0.003
p-value (fat) 0.001 0.006 0.012 0.036

We next conduct kernel-based score test after adjusting for fat intake and the result
is shown in Table 2. Though the significance of the microbiome effect is reduced, it
is still significant when the kernels based on d(0) and dU are used (p = 0.007,0.003
respectively), indicating the association of overall microbiome composition and
BMI after adjusting for the total fat intake. Table 2 also gives the p-values for the fat
intake adjusting for microbiome effect. It remains significant no matter what kernels
are used.
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A Conditional Autoregressive Model
for Detecting Natural Selection
in Protein-Coding DNA Sequences

Yu Fan, Rui Wu, Ming-Hui Chen, Lynn Kuo, and Paul O. Lewis

Abstract Phylogenetics, the study of evolutionary relationships among groups
of organisms, has played an important role in modern biological research, such
as genomic comparison, detecting orthology and paralogy, estimating divergence
times, reconstructing ancient proteins, identifying mutations likely to be associated
with disease, determining the identity of new pathogens, and finding the residues
that are important to natural selection. Given an alignment of protein-coding DNA
sequences, most methods for detecting natural selection rely on estimating the
codon-specific nonsynonymous/synonymous rate ratios (dN/dS). Here, we describe
an approach to modeling variation in the dN/dS by using a conditional autoregres-
sive (CAR) model. The CAR model relaxes the assumption in most contemporary
phylogenetic models, i.e., sites in molecular sequences evolve independently. By
incorporating the information stored in the Protein Data Bank (PDB) file, the CAR
model estimates the dN/dS based on the protein three-dimensional structure. We
implement the model in a fully Bayesian approach with all parameters of the model
considered as random variables and make use of the NVIDIA’s parallel computing
architecture (CUDA) to accelerate the calculation. Our result of analyzing an
empirical abalone sperm lysine data is in accordance with the previous findings.
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1 Introduction

Darwinian natural selection at the molecular level is always an attractive topic
among biologists because it is the basis of explaining adaptation in morphology,
physiology, and developmental biology, and understanding species divergence and
evolutionary innovations. By comparing protein-coding genes and differentiating
synonymous substitutions from nonsynonymous substitutions, the traces of natural
selection can be detected. The nonsynonymous/synonymous rate ratio (ω = dN/dS)
measures selective pressure: (1) ω = 1, neutral substitution; (2) ω > 1, positive
selection; and (3) ω < 1, purifying selection. Most contemporary phylogenetic
substitution models assume that sites in molecular sequences evolve independently
and identically (i.i.d.) for the convenience of likelihood calculation. But this
assumption is not biologically plausible, for instance, substitutions of both RNA and
protein-coding genes must be affected by their functional constraints that vary from
site to site. Various substitution models were proposed to relax the i.i.d. assumption,
for example, the auto-discrete-gamma model [1], the hidden Markov-chain model
[2], the mechanistic model [3], and the phylogeny and secondary structure using
maximum likelihood (PASSML) model [4, 5]. Besides those, Robinson et al. [6],
Rodrigue et al. [7], and Kleinman et al. [8] put forward a Bayesian model that takes
the whole sequence as the Markov chain state instead of every amino acid site.
Huelsenbeck et al. [9] introduced a nonparametric Dirichlet process (DP) model
that allowed the sites to be automatically assigned into one of a number of classes
with each class having a different ω without changing the likelihood calculation.

We introduce here a conditional autoregressive (CAR) [10] model for the purpose
of both relaxing the i.i.d. assumption in most substitution models and detecting
positive selection in protein-coding genes. Moreover, the fast development of
structural biology makes it possible to apply the CAR model to detecting positive
selection since it provides the relevant spatial information.

2 Materials and Methods

2.1 Phylogenetic Codon Substitution Model with CAR Prior

On the assumption that substitutions follow a continuous-time Markov process on
the phylogenetic tree, the instantaneous rate matrix Q of the general codon model
can be expressed in Eq. (1), whose entries represent the instantaneous rates of
changing from codon i to codon j,
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Q =
{

qi j
}
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aωπ j : nonsynonymous transversion (A <−> C)
aπ j : synonymous transversion (A <−> C)

bωπ j : nonsynonymous transition (A <−> G)
bπ j : synonymous transition (A <−> G)

cωπ j : nonsynonymous transversion (A <−> T)
cπ j : synonymous transversion (A <−> T)

dωπ j : nonsynonymous transversion (C <−> G)
dπ j : synonymous transversion (C <−> G)

eωπ j : nonsynonymous transition (C <−> T)
eπ j : synonymous transition (C <−> T)

f ωπ j : nonsynonymous transversion (G <−> T)
f π j : synonymous transversion (G <−> T)

0 : i and j differ at more than one position,

(1)

where ω = dN/dS is the nonsynonymous/synonymous rate ratio, a,b,c,d,e, and
f are the generalized time-reversible (GTR) exchangeabilities, and π j is the
stationary frequency of codon j. We let ω have a CAR prior. The dimension of the
instantaneous rate matrix Q is 61× 61 because the three stop codons are excluded
from the state space. Every codon has its own instantaneous rate matrix Q, and every
Q is rescaled before the calculation of the transition probabilities, P(t) = eQt , which
means that the branch lengths, t, of the phylogenetic tree are in terms of expected
number of substitutions per codon.

The CAR prior is in the form of a multivariate normal distribution whose mean
vector is μ and covariance matrix is Σ with K-by-K dimensions. K is equal to the
number of ω in the data. In practice, the precision matrix Σ−1 is used instead of the
covariance matrix Σ. The precision matrix is defined as

Σ−1 = Dw−ρW, (2)

where W is the proximity matrix whose entry wi j equals to 1 or 0 based on
the a priori knowledge that the codons i and j are neighbors or not, Dw is a
diagonal matrix whose diagonal element is the summation of the corresponding
row of W, and ρ is a scalar whose domain belongs to

(
1/λ(1),1/λ(n)

)
, where

λ(1) < λ(2) < · · ·< λ(n) are the ordered eigenvalues of D−1/2
w WD−1/2

w [11]. Because
the nonsynonymous/synonymous rate ratio (ω) must be positive, we let ω = eφ and
φ has the CAR prior. Therefore, the prior of ω is indeed a multivariate log-normal
distribution, and the full probability density function (PDF) of ω is,

f (ω|ρ ,τ) =
∣∣Σ−1

∣∣
1
2 τ−K

(2π) K
2 ∏K

i=1 ωi

· exp

{
− 1

2τ2 (logω)′Σ−1 (logω)

}
· I{1/λ(1)<ρ<1/λ(n)}(ρ),

(3)
where τ is a scalar tuning the variance.
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Fig. 1 Image showing the abalone sperm lysin based on the 2LIS PDB data file using Jmol-
12.0.49. The cartoon-style is selected, and the image is colored by amino acids.

2.2 Empirical Data Analysis

The Protein Data Bank (PDB) that is supervised by the Worldwide Protein Data
Bank (wwPDB) [14] is a repository for the 3-D structures of large biological
molecules, such as proteins and nucleic acids. PDB data files can be retrieved from
the web sites of RCSB PDB (USA), PDBe (Europe), and PDBj (Japan) that are the
founding members of the wwPDB using file IDs or key words. A typical PBD data
file contains a series of title sections, including the names of molecules, details about
data collection and structure solution, primary and secondary structure information,
atomic coordinates, crystallographic structure factors, NMR experimental data,
bibliographic citations, etc. All the information is arranged by following the PDB
format, which makes it possible to extract the atomic coordinates.

The abalone sperm lysin data set consisting of 25 taxa and 405 nucleotide sites
[12, 13] was examined for the purpose of detecting positive selection in protein-
coding DNA sequences. The corresponding PDB data file, ID:2LIS [15] (Fig. 1),
was downloaded to specify the proximity matrix (W) of the CAR prior. Before
the proximity matrix was determined, a matrix S whose entries represented the
shortest distance between any two residues was calculated first in the light of the
PDB data file,

S = {si j}=
{

0 if i = j
di j,min if i = j

, (4)

where i and j denoted the residue site, all the entries were in angstroms, and
di j,min was the minimum Euclidean distance of all possible calculations given all the
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atomic orthogonal coordinates of any two residues were known. In total, four spatial
correlation schemes were examined: (1) “Simple” (the simplest spatial correlation,
i.e., the two adjacent residues would be treated as neighbors); (2) “Radius 5” (any
two residues whose shortest distance (si j) was less or equal than 5 would be thought
as neighbors); (3) “Radius 10” (the same as scheme (2) except that the bound was
set to 10); and (4) “Radius 20” (the same as scheme (2) except that the bound was
set to 20).

The general codon model (Eq. (1)) was applied to all analyses, and the tree topol-
ogy was fixed to the best tree topology that were accompanied by the original data.
Prior distributions were as follows: Dirichlet(1, · · · ,1

︸ ︷︷ ︸
61

) for the codon frequencies;

Dirichlet(1,1,1,1,1,1) for the GTR exchangeabilities; Inverse-gamma(2.001,1) for
the hyperparameter τ2; and a transformed Beta(1,1) for the hyperparameter ρ . The
PDF of this Beta(1,1) was,

π(ρ ;α,β ) =
Γ(α +β )

(ρmax−ρmin)Γ(α)Γ(β )

(
ρ−ρmin

ρmax−ρmin

)α−1(
1− ρ−ρmin

ρmax−ρmin

)β−1

,

(5)

where ρmin = 1/λ(1) and ρmax = 1/λ(n). The prior distributions of the relative
proportions of branch lengths to the total tree length and the total tree length were
Dirichlet( 1, · · · ,1

︸ ︷︷ ︸
2·25−3=47

) and Exponential(10 ·47), respectively.

For all analyses, a single Markov chain was allowed to burn-in for 1,000 cycles,
where 1 cycle involved updating all parameters at least once. These updates were
effected either by the slice sampling [16] or the Metropolis-Hastings proposal [17,
18]. Following the burn-in period, the chain was allowed to run for 10,000 additional
cycles and was sampled once per cycle, providing 10,000 samples. To be practical,
the calculation of the likelihood of the general codon model required using a 240-
core Nvidia GPU Tesla card for the purpose of high performance computing (HPC).

2.3 Model Selection and Assessment

Two approaches to the model selection and assessment were exploited, namely, the
deviance information criterion (DIC) [19] and the conditional predictive ordinate
(CPO) [20, 21]. The DIC that reflects both the goodness-of-fit of the model and the
complexity of the model is defined as

DIC = D(θ )+ pD (6)

=−4Eθ [log f (y|θ )]+ 2log f (y|θ̃ ), (7)

where D(θ ) is the posterior mean deviance that shows the goodness-of-fit of
the model, pD is the effective dimension that measures the effective number of
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parameters in the model, y is the data, θ is the model parameters, θ̃ is the posterior
mean of θ , and f (y|θ ) is the likelihood function that relies on the model. In general,
models with smaller DICs should be preferred to those with larger DICs, and
increasing pD improves the goodness-of-fit of the model.

The CPO for the ith observation yi is defined as,

CPOi = f
(
yi|y(−i)

)
(8)

=

(∫
1

f (yi|θ )
π(θ |y)dθ

)−1

(9)

≈
(

1
L

L

∑
l=1

1
f (yi|θ l)

)−1

, (10)

where y(−i) denotes all the observations excluding the ith one, θ is the model
parameter vector, f (yi|θ ) is the likelihood function of the model evaluated at the
ith observation, and π(θ |y) is the posterior density. Equation (10) shows the Monte
Carlo approximation of CPOi, where L is the total sample size of an MCMC run,
and f (yi|θ l) is the site likelihood of the ith observation evaluated at the lth iteration.
It is manifest that CPOi is calculated without actually deleting the observation yi

from the estimation and is the harmonic mean of the site likelihood of yi. The CPO
statistic is useful to single out outliers or influential observations, with a large value
indicating a good fit of the model to the observation yi and vice versa. A useful
summary statistic of the CPOis is the sum of their logarithms that is called the log
pseudo-marginal likelihood (LPML) [20] and defined as,

LPML =
n

∑
i=1

log(CPOi). (11)

Models with larger LPMLs have better fit to the data.

3 Results and Discussion

The CAR model is broadly used in spatial statistical studies, for example, demog-
raphy, epidemiology, biogeography [22], and even single nucleotide polymorphism
(SNP) studies [23]. We presented here the first application of the CAR model to
the field of phylogenetics for the purpose of detecting positive selection in protein-
coding genes. By analyzing the 25 abalone sperm lysin sequences with four spatial
correlation schemes, “Simple,” “Radius 5,” “Radius 10,” and “Radius 20,” we found
the “Radius 10” was the best one among the four candidates using the DIC and
LPML methods (Fig. 2). The “Radius 10” scheme obtained the best goodness-of-fit,
smallest model dimension and lowest DIC among the four schemes (Fig. 2ABC),
and the LPML reinforced the belief (Fig. 2D). The posterior probability of a site



A CAR Model for Natural Selection Detection 209

7510

7520

7530

7540

D
(θ

)

90
95

100
105
110
115
120

pD
D

IC

7600

7620

7640

7660

D
IC

−3950

−3940

−3930

−3920

−3910

LP
M

L

Simple Radius 5 Radius 10 Radius 20
Spatial Correlation Schemes

a

b

c

d

Fig. 2 Assessment of the four different spatial correlation schemes: “Simple,” “Radius 5,” “Radius
10,” and “Radius 20” using the DIC and LPML. (A) The “Radius 10” scheme had the best
goodness-of-fit among the 4 schemes; (B) The “Radius 10” scheme had the lowest model
dimension; (C) DIC favored the “Radius 10” scheme in all those four; (D) The “Radius 10” scheme
had the best LPML among the four.

being under positive selection was reported based on the “Radius 10” scheme
(Fig. 3). This quantity was calculated per site from the MCMC output as the fraction
of samples whose ω was greater than 1. In the light of the “Radius 10” scheme,
sites 1, 3, 5, 9, 16, 24, 27, 31, 32, 35, 40, 58, 59, 66, 70, 78, 81, 97, 104, 111,
114, 117, and 118 were under positive selection with 95 % posterior probability,
which is in accordance with the investigation of [12] and [13] (Fig. 3). Those sites
were highlighted in black in the cartoon-style structure of the abalone sperm lysin
(Fig. 4).

The merits of the CAR model are that: (1) it is a pure Bayesian method; (2) it is
compatible with most existing Bayesian phylogenetic software because it does not
require changing the likelihood function, making it easy to implement; (3) the model
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Fig. 3 The posterior probabilities of the abalone sperm lysin data being under positive selection
according to the best spatial correlation scheme, “Radius 10.” The dotted line shows the 95 %
posterior probability cutoff. According to the “Radius 10” scheme, sites 1, 3, 5, 9, 16, 24, 27, 31,
32, 35, 40, 58, 59, 66, 70, 78, 81, 97, 104, 111, 114, 117, and 118 are under the positive selection
with 95 % posterior probability.

Fig. 4 Image showing the abalone sperm lysin based on the 2LIS PDB data file using Jmol-
12.0.49. The sites that are potentially under positive selection are colored black.

itself is quite flexible, and information from other sources can be simply transformed
to specify a priori knowledge of the spatial correlation of a protein-coding gene;
and (4) the MCMC reaches equilibrium quickly. There are few available choices for
detecting positive selection in protein-coding genes at present, and of the available
Bayesian frameworks the nonparametric DP model is the most popular one. In
general, the CAR model outperformed the DP model in most of the simulation
analyses (results not shown): (1) when there was no correlation structure in the
simulated data, the CAR model provided better goodness-of-fit (smaller D(θ )) than
the DP model at the cost of higher model dimension (larger pD); (2) when the data
was simulated from a CAR prior, the CAR model had a clear advantage (superior
goodness-of-fit and small model dimension) over the DP model no matter which
model selection method was used; and (3) when the data was simulated from a DP
prior, the DP model performed better than the CAR model although the advantage
of the DP model over the CAR model was small in most analyses.

The LPML quantity based on the CPO statistic is very useful for model selection,
particularly considering the simpleness of its calculation. The consistency of LPML
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to identify the true model was shown in the simulation study (results not shown).
The only drawback of the LPML method is that the site log-likelihoods must be
stored during an MCMC run, which is not a common option of most phylogenetic
software currently.

The calculation speed of the codon model likelihood is improved greatly because
of the usage of a 240-core Nvidia GPU Tesla card and the Beagle-lib [24], a library
for evaluating phylogenetic likelihoods by making use of highly parallel processors.
The analysis of one spatial correlation scheme requires only 12 hours whereas
formerly 7 days are needed to finish 10,000 MCMC cycles. However, in order to
bring the graphical card into full play, the likelihood function has to be rewritten,
and different graphical card manufacturers have their own standards and languages,
which results in limited portability of software.

In this study, we fixed the topology for convenience. There is nothing, however,
to prevent the CAR model usage when the topology is allowed to vary during an
MCMC run except that more time is needed, particularly when codon models are
used.
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Dimension Reduction for Tensor Classification

Peng Zeng and Wenxuan Zhong

Abstract This article develops a sufficient dimension reduction method for high
dimensional regression with tensor predictors, which extends the conventional
vector-based dimension reduction model. It proposes a tensor dimension reduction
model that assumes that a response depends on some low-dimensional representa-
tion of tensor predictors through an unspecified link function. A sequential iterative
dimension reduction algorithm (SIDRA) that effectively utilizes the tensor structure
is proposed to estimate the parameters. The SIDRA generalizes the method in Zhong
and Suslick (2012), which proposes an iterative estimation algorithm for matrix
classification. Preliminary studies demonstrate that the tensor dimension reduction
model is a rich and flexible framework for high dimensional tensor regression, and
SIDRA is a powerful and computationally efficient method.

1 Introduction

A tensor is a multidimensional array. More precisely, an mth-order tensor is an
element of the tensor product of m vector spaces, each of which has its own
coordinate system termed mode Merris (1997). For example, a first-order tensor
is a vector with one mode and a second-order tensor is a matrix with two modes
(row and column). With the rapid development of science and technology in the
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dye1 –0.814 –0.652 –0.264

dye2 –0.806 –0.099 –1.429

…

dye36 0.991 –1.038 0.823

Fig. 1 The difference map of a colorimetric array can be generated for any odorant or mixture of
odorants by digital subtraction, pixel by pixel, of the image of the array before and after exposure.

past decades, large amount of tensor observations is routinely collected, processed,
and stored in many scientific researches and commercial activities nowadays. The
colorimetric sensor array (CSA) data is one of such examples.

CSA, invented by Kenneth Suslick’s group (UIUC), is one of the leading
electronic nose techniques. As shown in Fig. 1, CSA is simply a digitally-imaged,
two-dimensional extension of litmus paper (Rakow et al. 2005; Rakow and Suslick
2000; Zhang and Suslick 2005). For any odorant, a response is generated by digital
subtraction, pixel by pixel, of the color of p pre-print chemo-responsive dyes
before and after exposure: red value after exposure (Ra f ter) minus red value before
(Rbe f ore), green (Ga fter) minus green (Gbe f ore), blue (Ba f ter), minus blue (Bbe f ore).
Averaging the centers of the spots (∼ 300 pixels) for each dye, the result is simply
a p× 3 matrix (second-order tensor), where each row represents the color change
of a dye and each column represents one of the three spectrum coordinates (R,G,B)
of a color cube. If we further consider the time and the odorant concentration as
factors, we will have forth-order tensor (dyes × color spectrum × time × odorant
concentration). The tensor is a color fingerprint for each odorant and will be used
for downstream statistical analysis. For example, we can use CSA to discriminate
an unknown odorant (Feng et al. 2010; Lim et al. 2008; Zhang et al. 2006), evaluate
a wine’s taste (Savage 2012), monitor bacteria growth (Carey et al. 2011) and even
cancer risk prediction (Ehmann et al. 2012; Morgan 2012).

Existing statistical methods for the tensor data largely ignore the tensor structure
by simply vectorizing each tensor observation into a vector and offering solutions
using the vector-based statistical methods. These solutions, however, are far from
satisfactory. First, the simple vectorization destroys the original design information
and leads to interpretation difficulties. For example, a tensor presentation of the
CSA data can help us answer the question such as which dye is classification-
relevent on what color spectrum. An answer to the previous question cannot be
given if we simply stack the columns of the observation and use a vector-based
classification method because we have no separate parameters for the dyes and
the color spectrums. Second, the simple vectorization significantly aggravates the
curse of dimensionality, which refers to various difficulties that a large number
of variables (or dimensions) can cause to function approximation, model fitting,
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information extraction, and computation (Fan and Li 2006). For example, typical
36-dye CSA data require 36+ 3 parameters, while simple vectorization generates
36× 3 = 108 parameters for a conventional classification analysis. Thus the simple
vectorization renders many vector-based approaches infeasible for a sample with
less than 108 observations. Moreover, even if we have fairly large sample size, both
the computational efficiency and the estimation accuracy of the classical vector-
based analysis will be compromised by simple vectorization (Donoho and Elad
2003; Fan and Li 2006). There is an obvious pressing need for new statistical
methods and theories that can directly utilize the intrinsic tensor structures.

Regression analysis is probably the most popular statistical tool for modeling
the relationship between a response Y and a series of predictor variables X . With
X ∈ R

p, various models and methods have been developed for regression analysis
in the literature, ranging from classic linear regression to nonparametric regression.
In general, regression can be considered as an inference about the conditional
distribution of Y given X , often with the mean response E(Y | X) of particular
interest. When p is large, the estimate of E(Y | X) can be seriously compromised by
the curse of dimensionality. To overcome this limitation, a wide range of methods
have been proposed to facilitate dimension reduction in regression in the literature.
Sufficient dimension regression (SDR) is one of such proposals, which assumes that
the response Y only depends on a lower dimensional projection of the X . To identify
the lower dimensional projections is the major goal of SDR analysis.

Although the SDR model is arguably the most general model that can be used
in a wide spectrum of applications, it is not directly applicable to the regression
model with tensor predictors, because the tensor structure will be lost in the lower
dimensional projection if we simply vectorize the tensor predictor. To overcome this
limitation, Li et al. (2010) proposed dimension folding method to obtain the lower
dimensional projection in the form of a tensor product. Briefly, Li et al. (2010) find
the lower dimensional projections for the rows and columns of the matrix predictor
separately such that their tensor product contains the smallest vector-based lower
dimensional projection.

Although the dimension folding method is promising in keeping the tensor
structure during dimension reduction, we always wonder if there exists a space
smaller than the space targeted by dimension folding and also containing all the
regression-related lower dimensional projection of X . Another related question is
how to find the smaller space if there exists one. In this article, we show that a
smaller space indeed exists. To recover the space, we propose a tensor dimension
reduction (TDR) model. A sequential iterative dimension reduction algorithm
(SIDRA) is proposed to estimate the parameters in the TDR model. The SIDRA
generalizes the recent work of Zhong and Suslick (2012) on matrix classification to
the dimension reduction regression model under the sufficient dimension reduction
framework.

The rest of the article is organized as follows. In Sect. 2, we give a brief introduc-
tion to sufficient dimension reduction regression (DR) model that is proposed by Li
(1991). The DR model is generalized to the tensor dimension reduction regression
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model (TDR) in Sect. 3 to allow tensor predictors. Section 4 discusses the population
version of the SIDRA procedure. Several implementation issues of the procedure are
discussed in Sect. 5. Some case studies are reported in Sect. 6. Additional remarks
in Sect. 7 conclude the article.

2 Sufficient Dimension Reduction

Let X ∈ R

p be a random vector and Y ∈ R be a random scalar. Suppose S is a
subspace of Rp and PS is the projection operator from R

p to S in the standard inner
product. If

Y ⊥ X |PSX , (1)

where ⊥ means statistical independence, then it is said that PSX is sufficient for
the dependence of Y on X . In other words, the projection PSX captures all the
information contained in X regarding Y . Model (1) was formally proposed by Cook
and Weisberg (1994) and was further discussed by Cook (1996) and Cook (1998).
Model (1) is equivalent to several other formulations, for example, the general
multiple-index model

Y = h(β T
1 X , · · · ,β T

d X ,ε) (2)

proposed in Li (1991), where h is an unknown function, βis are p-dimensional
vectors of unit length, d is an integer less than p, T denotes transpose, ε is
independent of X , and E(ε) = 0. Given (β T

1 X , · · · , β T
d X), Y and X are independent.

Therefore the linear space spanned by βi can serve as S in model (1). Conversely,
if (1) holds, there exist h and ε such that (2) holds. A brief proof of the equivalence
between the two models can be found in Zeng and Zhu (2010).

Model (1) and (2) are referred to as the dimension reduction regression (DR)
model and S is referred to as a dimension reduction subspace. Dimension reduction
subspace may not be unique. Cook (1996) introduced an important concept called
central space, which is defined as the intersection of all dimension reduction
subspaces when it is a dimension reduction subspace itself. The central subspace
is denoted by SY |X , and the dimension of SY |X is called the structural dimension of
regressing Y on X . Under mild conditions, it can be shown that SY |X exists; see Cook
and Weisberg (1994) for details. Throughout this article, we assume the existence
of SY |X .

The dimension reduction regression model is a very general formulation and
covers a wide range of parametric and semi-parametric models. For example, if
Y is a discrete variable taking values in {1, 2, · · · , K}, the dimension reduction
regression model covers logistic regression and many classification models. If Y
is a continuous variable taking values in R, linear regression model, partial linear
model, and single index model are its special cases.
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It was showed in Chen and Li (1998) and Zhong et al. (2012) that, when X
satisfies the so-called linearity condition E(X |PSY |X X) = PSY |X X , a basis of SY |X , i.e.
{β1, · · · , βd} can be obtained by recursively maximizing

L(η) = max
T

corr2(T (Y ),ηT X) (3)

subject to the constraint that βiΣX β j = δi j, where ΣX
�
= var(X) and δi j = 1 if i = j

and= 0 otherwise, η ∈Rp and T is any possible transformations of Y including non-
monotone ones. In general, the L(η) reflects the largest possible squared correlation
between a transformed response T (Y ) and the projection ηT X . At the population
level, Chen and Li (1998) showed that L(η) has an explicit form

L(η) =
ηT var[E(X |Y )]η

ηT var(X)η
=

ηT Mη
ηT ΣX η

, (4)

where M
�
= var[E(X |Y )]. Therefore, β1, · · · ,βd are the eigenvectors of M with

respect to ΣX corresponding to the largest d eigenvalues.
Based on the definition of M, a computationally stable and fast procedure called

sliced inverse regression (SIR) was proposed in Li (1991) to generate an estimate
of M, which is further used to generate an estimate of PSY |X . Observing (Xi,Yi), the
SIR algorithm is described as follows: (i) Divide the range of Y into several disjoint
intervals I1, · · · , IH and let nh denote the number of observations falling in Ih; (ii)
Estimate E(X) and ΣX by the sample mean X̄ and sample variance covariance matrix
Σ̂X of X and estimate E(X |Y ) by X̄h =

1
nh

∑{i:Yi∈Ih}Xi; (iii) Estimate M by M̂, where

M̂ = 1
n ∑H

h=1 nh(X̄h− X̄)(X̄h− X̄)T . (iv) Apply the spectral decomposition to M̂ with

respect to Σ̂X to obtain its eigenvalue-eigenvector pairs (λ̂i, β̂i) where λ̂1 ≥ ·· · ≥ λ̂d .
The β̂i is the SIR estimate of βi and is referred to as the ith SIR direction. Empirical
studies demonstrate that SIR is fairly successful in achieving dimension reduction
for the high dimensional regression. The properties and asymptotic behaviors of
SIR have been well studied in the literature; see Duan and Li (1991) and Hsing and
Carroll (1992), among others.

3 Tensor Sufficient Dimension Reduction

The dimension reduction regression model discussed in the preceding section can
be extended to second or higher order tensors. To ease the presentation, this section
only focuses on second order tensors. The model and algorithm proposed here can
be similarly extended to mth-order tensors.

We introduce some notations and conventions used in the presentation. Denote
α⊗β as the Kronecker product of vectors α and β . For two linear spaces, S1 ⊂R

p1

and S2 ⊂ R

p2 , denote S1⊗S2 as the linear space spanned by {α⊗β | α ∈ S1,β ∈
S2}. With a little bit abuse of notation, for any second-order tensor X ∈ R

p1⊗R

p2 ,
we let X ∈ R

p1 p2 be the vector obtained by stacking up the columns of X.
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3.1 Decomposable Tensor and Core Tensor Dimension
Reduction Set

Assume that the response Y ∈ R depends on a low-dimensional projection of X
through an unknown link function g, i.e.,

Y = g(γT
1 X , . . . ,γT

d X ,ε), (5)

where g is an unknown function, γi = βi ⊗ αi with αi ∈ R

p1 and βi ∈ R

p2 are
indexes, and ε is a random error independent of X . Model (5) is equivalent to
say that Y is independent of X given (γT

1 X , . . . ,γT
d X). Note that γ1, . . . ,γd may not

be identifiable because γi for i = 1, . . . ,d and g are confounded with each other.
However, the space spanned by γ1, . . . ,γd is identifiable. For example, consider
model Y = g(αT

1 Xβ1,αT
2 Xβ1) + ε . For this model, we can think the indexes are

β1 ⊗ α1 and β1 ⊗ α2 and can also think the indexes are β1 ⊗ (α1 + α2) and
β1⊗ (α1−α2). But in either case, they span the same linear space.

Define S as the space spanned by (γ1, · · · ,γd), S1 as the space spanned by
(α1, · · · ,αd) and S2 as the space spanned by (β1, · · · ,βd). It is worth noting that
not all the vectors in S can be written as a Kronecker product of a α and a β ,
where α ∈ S1 and β ∈ S2. For example, for β1⊗α1 ∈ S and β2⊗ α2 ∈ S, we
have β1⊗α1 +β2⊗α2 ∈ S. But, in general, it cannot be expressed as a Kronecker
product of a α ∈ S1 and a β ∈ S2 unless α1 = α2 or β1 = β2. To keep the tensor
structure and the interpretability of the indexes in model (5), we introduce the
concept of decomposable tensor. An mth order tensor γ ∈ S1 ⊗S2 ⊗ ·· · ⊗ Sm is
said to be decomposable if it can be written in the form of η1⊗η2⊗·· ·⊗ηm where
ηi ∈ Si for i = 1, . . . ,m (Merris 1997). Thus, for model (5), we let S be the set that
consists of all the decomposable tensors in S. It is easy to see that S is identifiable
if S is identifiable. From now on, we define S as the tensor dimension reduction
set (TDRS). Similar to the dimension reduction subspace discussed in Sect. 2, the
TDRS might not be unique. To overcome this challenge, we introduce the core
tensor dimension reduction set (CTDRS), which is defined as the intersection of
all TDRSs when it is a TDRSs itself. The rank of the CTDRS is referred to as the
core dimension of regressing Y on X .

It is important to point out that model (5) is substantially different from their
counterpart in the preceding section although they look similar in expression. For
simplicity, consider the case when d = 1. If we ignore the fact that X is a second-
order tensor and treat it as a vector, the index β in model (2) has p1 p2 parameters.
However, if we treat it as a second-order tensor, noting that γ1 = β1 ⊗ α1, the
index γ1 has only p1 + p2 parameters. Intuitively, considering the tensor structure
in estimation will yield more efficient estimates due to less number of parameters.
For the central subspace in (1), the basis can be any set of d linearly independent
vectors, while in model (5), the index is specified as a set of d linearly independent
vectors of the form {βi⊗αi, i = 1, . . . ,d}.
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3.2 Comparison with Dimension Folding

In Li et al. (2010), a different tensor dimension reduction model called dimension
folding is proposed based on the following model,

Y ⊥ X |(PS2⊗PS1)X , (6)

where S1 the linear space spanned by {α1, . . . ,αd}, S2 is the linear space spanned
by {β1, . . . ,βd}, and PSi is a projection operator from R

pi to Si for i = 1,2 in the
standard inner product. Because αi for i = 1, · · · ,d operate on the rows of X, S1 is
named as the left dimension-folding subspace in Li et al. (2010). Similarly, S2 is
named as the right dimension-folding subspace in Li et al. (2010). The smallest left
dimension-folding subspace Sc

1 is called the central left dimension-folding subspace
for Y |X, and the smallest right dimension-folding subspace Sc

2 is called the central
right dimension-folding subspace for Y |X. Li et al. (2010) also defined the central
dimension-folding subspace as Sc

2⊗Sc
1 and showed that

SY |X ⊂ Sc
2⊗Sc

1,

where SY |X is the central subspace obtained by treating X as a vector and completely
ignoring its tensor structure.

It is important to point out that S in model (5) is substantially different from the
central dimension-folding subspace in Li et al. (2010). In fact, model (5) is a more
parsimonious model for the relationship between Y and X . Let SY |X be the linear
space that spanned by S, the CTDRS. Then, it is easy to show that

SY |X ⊂ SY |X ⊂ Sc
2⊗Sc

1.

This claim can be illustrated clearly using the following toy example. Consider
model Y = g(γT

1 X ,γT
2 X ,ε), where γ1 = β1 ⊗ α1 and γ2 = β2 ⊗ α2. Then Sc

1 =
span(α1,α2) and Sc

2 = span(β1,β2). Hence Sc
2 ⊗Sc

1 is spanned by (β1⊗α1,β1⊗
α2,β2⊗α1,β2⊗α2) with four dimensions, while SY |X is spanned by (β1⊗α1,β2⊗
α2) with two dimensions. The latter is clearly a proper subset of the former. This
example clearly demonstrates that the space SY |X defined in (5) is a subspace of the
central dimension-folding subspace.

4 Tensor Dimension Reduction and SIDRA Procedure

From now on, we focus on the estimation of the γi, 1 ≤ i ≤ d, while leaving g
unspecified. Let R be the set of all decomposable tensors in R

p2 ⊗R

p1 . Similar
to the estimation of model (1) and (2), the first direction γ1 can be obtained by
maximizing L(η) inR, i.e.,
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γ1 = argmaxη∈R
ηT var[E(X |Y )]η

ηT var(X)η
. (7)

Comparing (7) to (4), we may naturally attempt the optimization of (7) using
the tensor spectrum decomposition as what we did for the vector predictors.
However, tensor spectral decomposition, such as the PARAFAC (Harshman and
Lundy 1984) or Tucker model (Tucker 1951; 1966), unlike its vector sibling, may
not maximize L(η). Beyond this, the definition and algorithm of the tensor spectral
decomposition are far from mature and have many intrinsic problems. For example,
the orthogonality on each mode is not assumed and decomposition on the same
mode is not unique using different algorithms (Kolda and Bader 2009; Smilde et al.
2004).

Recall that X is the vectorization of X, where X∈Rp2⊗R

p1, and for any η ∈R,
we have η = β ⊗α and ηT X = αT Xβ , where α ∈ R

p1 and β ∈ R

p2 . Maximizing
(7) is equivalent to maximizing the bivariate function

L1(α,β ) =
var[E(αT Xβ | Y )]

var(αT Xβ )
(8)

with respect to α and β . Practically, the maximizer of (8) can be obtained by
iteratively maximizing the following univariate functions

Lα(η) =
ηT var[E(XT α|Y )]η

ηT var(XT α)η
(9)

for given α and

Lβ (η) =
ηT var[E(Xβ |Y )]η

ηT var(Xβ )η
(10)

for given β .
Notice that Eq. (9) is the unrestricted maximization in the vector space R

p2 .
Thus, if α is given, β can be obtained by SIR. The maximization of (10) is similar
to (9). Equations (9) and (10) imply that α and β can be estimated iteratively by
SIR if an initial estimate of α is provided. Notice that the objective function in
Eq. (8) is bounded above by one and the iterative maximization approach ensures
the increasing of L(·) in each iteration. Thus, the convergence is guaranteed for the
iterative algorithm.

Let γ1 = (β1 ⊗ α1) be the maximizer of (8). The second direction γ2 can be
obtained in a similar way by maximizing Eq. (8) on all the decomposable tensors
of Rp2 ⊗R

p1 that is orthogonal to γ1, where the orthogonality is defined using the
standard inner product, i.e., γT

2 γ1 = 0. Thus, we can obtain directions in a sequential
fashion. Generally, in the (k + 1)th step, we project the tensor predictors onto the
space that is orthogonal to the space spanned by the previously obtained (γ1, · · · ,γk)
and find a new γk+1 by iteratively maximizing (8) with X replaced by the projection.
More precisely, given Mk = (γ1, · · · ,γk), define Pk = ΣX Mk(MT

k ΣX Mk)
−1MT

k as the
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projection matrix from R

p1 p2 onto the space spanned by Mk with respect to ΣX . Let
X(k) ∈ R

p1 p2 be the projection of X in the complementary space of the linear space
that spanned by Mk, i.e.,

X(k) = (I−Pk)X . (11)

Let Rk denote the set of all decomposable tensors of Rp2 ⊗R

p1 that is orthogonal
to the space spanned by (γ1, · · · ,γk). Then we have

γk+1 = argmaxη∈Rk

ηT var[E(X(k)|Y )]η
ηT var(X(k))η

. (12)

Replace X(k) in (12) by the matrization of Xk, denote by X(k). The objective function
in (12) can be rewritten as

Lk+1(α,β ) =
var[E(αT X(k)β | Y )]

var(αT X(k)β )
. (13)

Thus, we can obtain the (k+ 1)th direction of the CTDRS using the iterative algo-
rithm that we proposed for estimating γ1. Our algorithm for estimating (γ1, · · · ,γd)
can be summarized as follows.

Algorithm 1 The sequential iterative dimension reduction algorithm (SIDRA)
• Let X(0) = X and M0 be an empty set.
• Do k = 1,2, . . . for the following and stop when Lk(α∗k ,β

∗
k ) = 0.

– Choose an initial value of αk, for example, a random vector of unit length.
– Iterate the following until converge to find α∗k and β ∗k that maximize (13).

∗ Update β ∗k by maximizing Lα∗k (η) with X replaced by X(k−1).
∗ Update α∗k by maximizing Lβ∗k (η) with X replaced by X(k−1).
∗ Stop iteration when the difference between two consecutive Lk(α∗k ,β

∗
k ) is 0.

– Let γk = β ∗k ⊗α∗k and calculate Lk(α∗k ,β
∗
k ).

– Let Mk = Mk−1∪{γk} if Lk(α∗k ,β
∗
k )> 0 and calculate X(k) as in (11).

• Output γ1, . . . ,γk, which are in Mk.

5 Implementation

With observations (Xi,Yi) for i = 1, · · · ,n, the maximization steps in Algorithm 1
can be accomplished using SIR as described in Sect. 2. More precisely, we follow
the steps below to estimate d directions, γ̂1, . . . , γ̂d , which are referred to as the tensor
SIR directions. Note that the number of directions d should be smaller than the
number of slices H.
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• Let Xi,(0) = Xi for i = 1, . . . ,n. Calculate Σ̂X as the covariance matrix of Xi, the
vecterization of Xi.

• Do k = 1,2, . . . ,d for the following.

– Choose an initial value of αk, for example, a random vector of unit length.
– Iterate the following until converge to find α̂k and β̂k.

∗ Find β̂k as the first SIR direction with yi as response and XT
i,(k)α̂k as

predictor.
∗ Find α̂k as the first SIR direction with yi as response and Xi,(k)β̂k as

predictor.

– Let γ̂k = β̂k⊗ α̂k and M̂k = (γ̂1, . . . , γ̂k).
– Calculate Xi,(k) = (I− P̂k)Xi, where P̂k = Σ̂X M̂k(M̂T

k Σ̂X M̂k)
−1M̂T

k .

• Output γ̂1, . . . , γ̂k as the first d tensor SIR directions.

Although the SIDRA method can effectively recover the core tensor dimension
reduction set theoretically and intuitively, we may encounter some practical problem
during implementation. For example, if the true model is Y = g((β1⊗α1)

T X ,(β2⊗
α1)

T X ,ε), the α̂1 obtained in the first step may not be the same as the α̂1 obtained
in the second step empirically though they will be in general very close. To face
this dilemma, the SIDRA algorithm need to be modified correspondingly so that the
α̂’s and β̂ ’s obtained in different iterations are either identical or orthogonal to each
other.

In the following, we present the modified algorithm more precisely. Let S1,k

and S2,k be the space spanned by (α̂1, . . . , α̂k) and (β̂1, . . . , β̂k), respectively. It is
clear that assuming γ̂T

k+1γ̂i = 0 is equivalent to assuming β̂ T
k+1β̂i = 0 or α̂T

k+1α̂i = 0,

because γ̂T
k+1 γ̂i = 0 = (β̂ T

k+1β̂i)(α̂T
k+1α̂i) for i = 1, . . . ,k. Therefore, to obtain γ̂k+1

that is orthogonal to γ̂i for i = 1, . . . ,k, we only need to find the maximizer of (13)
in the following 4 subsets

D1 = {(α,β )|α ∈ S⊥1,k,β ∈ S2,k},

D2 = {(α,β )|α ∈ S1,k,β ∈ S⊥2,k},

D3 = {(α,β )|α ∈ S⊥1,k,β ∈ S⊥2,k},

D4 = {(α,β )|α ∈ S1,k,β ∈ S2,k},

separately and then select the one with the largest value of Lk(α̂, β̂ ), where S⊥i,k
for i = 1,2 is referred to as the complementary space of Si,k. Clearly, the newly
identified directions only introduce the direction that is orthogonal to the existing
directions by this way.

To make our presentation concise, we use D4 as an example to illustrate how to
find the maximizer of (13) on that domain. Let A = (α̂1, · · · , α̂k) be a set of basis of
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S1,k. Consequently, α = Aa for some vector a, if α ∈ S1,k. Similarly, we can write
β = Bb for some vector b, where B = (β̂1, · · · , β̂k) is a basis of S2,k. Therefore, the
objective function (13) can be rewritten as

L̃k(a,b) =
var[E(aT AT X(k)Bb | Y )]

var(aT AT X(k)Bb)
. (14)

Define X̃(k) = AT X(k)B. Then we can use the iterative algorithm proposed in
Algorithm 1 to maximize (14) with respect to a and b. Denote the maximizer as
â and b̂. Finally, we can calculate α̂ = Aâ and β̂ = Bb̂.

Remark 1. Though D4 appears to be unnecessary at the first glance, it is in fact
essential as illustrated in the following example. Assume Y = f ((β1⊗α1)

T X ,(β2⊗
α2)

T X ,(β1⊗α2)
T X ,ε), where αT

1 α2 = β T
1 β2 = 0. Then the third CTDRS direction

β1⊗α2 in the previous model is in D4 and will not be able to recover if we omit D4

in the optimization.

Remark 2. It is also necessary to point out that D1 to D4 is not a partition of Dk,
where Dk = {(α,β ) | (β ⊗α)T γ̂i = 0, i = 1, . . . ,k} is all decomposable tensors in
R

p2 ⊗R

p1 that is orthogonal to the space spanned by {γ̂1, . . . , γ̂k}. In fact, we can
easily show that

D1∪D2∪D3∪D4 ⊂ Dk

using the following example. Assume that Y = f ((β1⊗ (α0 +α1))
T X ,ε), where

β1 ∈ S⊥2,k, α1 ∈ S1,k, and α0 ∈ S⊥1,k. It is easy to show that γ1 = β1⊗ (α0 +α1)

belongs to D1 but none of the D1 to D4. However, we will argue that this under-
coverage is not an issue for our TDR model since it is the whole CTDRS rather than
individual directions in CTDRS that we want to recover. In this example, notice that
we can easily use two linearly independent tensor β1⊗α0 and β1⊗α1 that recovered
in D1 to D4 to estimate γ1.

6 Case Study

6.1 2-way Tensor Classification of TIC at High and Low
Concentrations

The method was applied to a series of CSA experiments for 147 chemicals with the
aim to classify these chemicals into either nontoxic or one of the 20 toxic industrial
chemicals (TICs) that listed as “High Hazard TICs” on the NATO International Task
Force 25. Seven replicates in each chemical category were tested. The color changes
of the 147 chemicals were recorded before and 5 min after exposure at a Permissible
Exposure Limits (PEL), a level may cause serious health problems after multiple
exposures.
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Fig. 2 Panel (a) shows the projections of 147 VCTs on the first two tensor sir directions at PEL
level. Panel (b) is the average misclassification error of testing sets versus the number of tensor
SIR directions.

Figure 2a is the projection of the 147 chemicals on the first and second tensor SIR
directions. Though some of the chemical categories can be clearly classified using
the first two tensor SIR directions, most chemical categories have no clear boundary.
This clearly supports the motivation of the CSA that we need to test large amount of
chemical interactions to improve the classification accuracy. To further pin down the
best number of tensor SIR direction, we calculated the predicted misclassification
error by randomly sample one chemical from each TIC class to form the testing
set and use the rest of the chemicals to form the training set. The random partition
has been done for 350 times. We plotted in Fig. 2b the average misclassification
error of SIR and tensor SIR versus the number of directions. We can also see clearly
that tensor SIR outperforms SIR consistently in terms of misclassification error.
The minimum misclassification error obtained using SIR is 15% while the error is
reduced to 2% by using the tensor SIR.

6.2 3-Way Tensor Classification of Bacterias

Rapid and accurate detection of pathogenic bacteria is important for determining
potential medical remedies. A physician may be unable to address a bacteria
infection with the appropriate antibiotic until the identity or antibiotic susceptibility
of the bacteria has been determined, and consequently, sepsis remains one of
the leading causes of death even among first-world nations. The detection of
pathogenic bacteria is also very important for industry to contain the potential
bacteria contamination. It has been shown in Carey and Suslick (2011) that the
bacterial can be smelled using the CSA.

In this experiment, the color difference map of 150 pathogenic bacterials from
10 bacterial class and 14 control has been collected every 30 min using CSA with
a time range from 120 to 600. For each bacterial a 3-way array is generated with
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Fig. 3 Panel (a) shows the projections of the 164 different maps on the first two tensor sir
directions. Panel (b) is average misclassification error of testing sets versus the number of tensor
SIR directions.

the first dimension being the dye effect, second dimension being the color spectrum
effect, and the third dimension being the time effect. Because the change of the color
for the same analyze is not continuous as the time increase, we treat the time effect
as a multivariate vector rather than a continuous variable.

Figure 3a is the projection of the 164 color difference map on the first and second
tensor SIR directions. Though some of the bacterials such as E. faecalis and E.
faecium cannot be clearly separated using the first two tensor SIR direction, most
bacterials can be grouped well. To further evaluate the sensitivity and specificity
of the CSA in bacterial detection, we separate the data by randomly sample one
difference map from each class to form the testing sample and use the rest difference
maps to form the training sample. Tensor SIR is applied on the training data and the
misclassification error is calculated using the testing data. The procedure is repeated
50 times. In Fig. 3b, we plotted the average misclassification error of the testing set
along different number of tensor SIR directions. The misclassification rate is 2.55 %
with four directions and below 1 % with 7 or more directions. Figure 3b supported
the biological assumption that the bacteria produce volatile organic compounds that
can be well detected using the CSA. We did not compare our method with SIR for
this study because the data in this study has a severe p� n problem (p = 1836 and
n = 164) that cannot be handled by SIR.

7 Conclusion

In this paper, we proposed a TDR model under the SDR framework. As all the
other sufficient dimension reduction methods, our TDR model did not assume a
specific relationship between the response variable and the explanatory variables.
Consequently, the model can be used for a wide spectrum of scientific applications
such as the one that we used in this paper.
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Moreover, as discussed in Sect. 3, the TDR model can effectively reduce the
parameter space by incorporating the tensor structure into the dimension reduction
regression. Thus, as we demonstrated in the example in Section 6.1, it is of a great
advantage for dealing with the tensor data that cannot be handled using a traditional
vector analysis method.

As our model intends to keep the tensor structure of the indexes for its
interpretability, we may not be able to find the exact central dimension reduction
subspace. Compared to the existing method such as dimension folding method that
proposed in Li et al. (2010), our method can provide a more parsimonious estimate
of the central space SY |X , and moreover, a more interpretable estimate directions.

Like all the iterative estimation approach, the SIDRA procedure proposed in this
article may encounter issues typical to iterative estimation approach as discussed
in Lange (2010). One major limitation of the iterative estimation approach is that
the estimate may practically trapped to a local optimal estimate and fail to reach
the global optimal estimate. To mitigate this issue, we advocate trying multiple
starting point for iteration in each hierarchy and choose the best estimate. The
proposed algorithm can be easily generated to the functional tensor data. This
approach is currently under investigation and the results will be reported in the
future publication.
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Successive Standardization: Application
to Case-Control Studies

Bala Rajaratnam, Sang-Yun Oh, Michael T. Tsiang, and Richard A. Olshen

Abstract In this note we illustrate the use and applicability of successive
standardization (or normalization), studied earlier by some of the same authors
(see Olshen and Rajaratnam, Algorithms 5(1):98–112, 2012; Olshen and
Rajaratnam, Proceeding of the 1st International Conference on Data Compression,
Communication and Processing (CCP 2011), June 21–24, 2011; Olshen and
Rajaratnam, Annals of Statistics 38(3):1638–1664, 2010), in the context
of biomedical applications. Successive standardization constitutes a type of
normalization that is applied to rectangular arrays of numbers. An iteration first
begins with operations on rows: first subtract the mean of each row from elements
of the particular row; then row elements are divided by their respective row standard
deviations. This constitutes half an iteration. These two operations are then applied
successively at the level of columns, constituting the other half of the iteration. The
four operations together constitute one full iteration. The process is repeated again
and again and is referred to as “successive standardization.” Work in Olshen and
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Rajaratnam, Algorithms 5(1):98–112, 2012; Olshen and Rajaratnam, Proceeding
of the 1st International Conference on Data Compression, Communication and
Processing (CCP 2011), June 21–24, 2011; Olshen and Rajaratnam, Annals
of Statistics 38(3):1638–1664, 2010 is about both theoretical and numerical
properties of the successive standardization procedure, including convergence,
rates of convergence, and illustrations. In this note, we consider the application of
successive standardization to a specific biomedical context, that of case–control
studies in cardiovascular biology. We demonstrate that successive standardization
is very useful for identifying novel gene therapeutic targets. In particular, we
demonstrate that successive standardization identifies genes that otherwise would
have been rendered not significant in a Significance Analysis of Microarrays (SAM)
study had standardization not been applied.

1 Introduction

Data in the form of large rectangular arrays of real numbers arise naturally in the
biomedical sciences (such as in gene expression from protein chips), the earth and
environmental sciences and many other applications. In the biomedical context,
columns correspond to subjects and rows correspond to genes or gene fragments.
In comparing two vectors of interest in such contexts, for instance, take two rows of
such matrices that may have been measured in different scales. One can put these
rows “on the same footing” by subtracting the mean of each vector followed by
dividing by its standard deviation. Sometimes, the need to do a similar type of
standardization occurs at the level of the entire rectangular array. For these purposes,
a successive standardization procedure was proposed by colleague Bradley Efron as
a possible way to put both rows and columns “on the same footing.” We formally
define the successive standardization procedure in the section that follows this brief
introduction. The procedure was analyzed and studied by some of the authors in
[1–3]. This paper continues in this line of work.

2 Successive Standardization: Theory, Methods, Illustrations

Let us now define formally the successive standardization procedure in this section.
We briefly summarize its theoretical numerical properties for completeness and
as a backdrop to the application that follows. To this end, we follow closely the
explanation in [1–3]. Let X(0) denote a rectangular array of real numbers. We first
standardize this initial matrix at the level of each by row, i.e., first subtracting the
row mean from each entry and thereafter dividing each entry in each row by its
respective row standard deviation. The resulting matrix is denoted as X(1). We
defined this procedure as one iteration in the process of attempting to row and
column standardize the rectangular array of real numbers or matrix. We then proceed
to standardize the matrix at the level of each column, i.e., by first subtracting the
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column mean from each entry (of that column) and then by dividing each entry by
the respective column standard deviation. The resulting matrix is denoted as X(2).
In particular, row mean and standard deviation polishing is followed by column
mean and standard deviation polishing. The process is then repeated with X(2) and
is repeated until successive standardization eventually yields a row and column
standardized matrix. In particular, the successive normalizations are repeated until
“convergence” which is defined as the difference in the squared Frobenius norm
between two consecutive iterations being less than a pre-specified tolerance.

Following the notation in [2] closely, let X denote an I× J matrix with values
x ∈ RIJ . We take coordinates Xi j(x) = Xi j to be iid N(0,1), though this assumption
can be easily relaxed. As in [1–3], we assume that 3≤min(I,J)≤max(I,J)< ∞.

Let X = X(0). Now

X̄ (0)
i· =

1
J

J

∑
j=1

Xi j; X̄ (0)
· j =

1
I

I

∑
i=1

Xi j

(S(0)i )2 =
1
J

J

∑
j=1

(Xi j− X̄ (0)
i· )2 (1)

=
1
J

J

∑
j=1

(Xi j)
2− 2

J

J

∑
j=1

Xi jX̄
(0)
i· +(X̄ (0)

i· )2 (2)

=
1
J

J

∑
j=1

(Xi j)
2− 2(X̄ (0)

i· )2 +(X̄ (0)
i· )2. (3)

X(1) = [X (1)
i j ], where, in an obvious notation, X (1)

i j = (Xi j− X̄ (0)
i· )/S(0)i .

From [1–3], almost surely (S(0)i )2 > 0. Analogously, set X(2) = [X (2)
i j ], where

X (2)
i j = (X (1)

i j − X̄ (1)
· j )/S(1)j , the definition of (S(1)j )2 being self-explanatory. As

in [1–3], (S(1)j )2 > 0. In general, for m odd, X (m)
i j = (X (m−1)

i j − X̄ (m−1)
i· )/S(m−1)

i

with X̄ (m−1)
i· and (S(m−1)

j )2 defined in obvious ways. Now for m even X (m)
i j =

(X (m−1)
i j − X̄ (m−1)

· j )/S(m−1)
j , with X̄ (m−1)

· j and (S(m−1)
j )2 defined analogously. We

assume without loss that (S(l)j )2 and (S(l)j )2 is positive for all (i, j, l).
The results in [1–3] pertain both to convergence and rates thereof of the above

successive standardization procedure. In particular, successive standardization is
provably convergent except on a set of measure zero.

We now proceed to illustrate the pattern of convergence on matrices of different
dimensions. We first consider 5-by-5 matrices. Figure 1 gives plots of the log of the
squared Frobenius norms of the differences between consecutive iterates for such
matrices. Four different plots have been included to demonstrate that the number of
iterations required to attain convergence varies from one starting point to another.
These figures describe the type of convergence patterns that are observed in the
small dimensional setting from different starting values. Though different starting
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Fig. 1 Convergence patterns of successive standardization for 5-by-5 matrices. Starting values
were generated from a uniform [0,1] distribution. The y-axis denotes the log of the squared
Frobenius norm of the differences between consecutive iterates. The x-axis denotes iteration
number.

values give slightly different convergence patterns, it is clear that the convergence is
rapid. We also provide illustrations of convergence for larger (20-by-20) matrices—
see Fig. 2. The convergence patterns in the 20-by-20 case are more homogeneous.
Once more it is clear that regardless of dimension of the matrix, convergence of
successive standardization is rapid. This rapidity of convergence to the set of fixed
points of successive standardization can be visualized when I = J = 3, see Fig. 3.

The work in [1] also concerns a related question, which is whether the con-
vergence phenomenon observed with successive normalization will still occur if
simultaneous normalization is undertaken instead. More specifically, simultaneous
normalization entails row and column mean polishing and row and column standard
deviation polishing all done at once:

X (t+1)
i j =

X (t)
i j − X̄ (t)

i. − X̄ (t)
. j

S(t)i. S(t). j
.
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Fig. 2 Convergence patterns of successive standardization for 20-by-20 matrices. Starting values
were generated from a uniform [0,1] distribution. The y-axis denotes the log of the squared
Frobenius norm of the differences between consecutive iterates. The x-axis denotes iteration
number.

It can be shown [1] through counter example that the simultaneous normalization
algorithm does not converge. We provide a few plots to illustrate this lack of
convergence (see Fig. 4).

These counterexamples do not, however, shed light on the possibility of con-
vergence for simultaneous normalization. The numerical work undertaken in this
regard indicates that convergence was not seen for any of the examples that were
tried.

3 Application of Successive Standardization
in Cardiovascular Biology

We now proceed to investigate the merits of using successive standardization in
the context of cardiovascular biology and cardiovascular disease. We focus first
on a case–control study, where the specific disease under investigation is ischemic
cardiomyopathy (ICM). We shall then consider data on dilated cardiomyopathy
(DCM).
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Fig. 3 Illustration of convergence to set of fixed points in the I = J = 3 case. Note that due to
constraints implied by the mean and standard deviation for each row and column only 3 distinct
entries appear in the limit of the sequence of iterates. These 3 distinct values appear in each column
of the limit and are therefore sufficient to illustrate each limit. The x, y, z axes in the right panel
denote the coordinates of the 3rd column of each iterate. The black circle indicates the origin as
given by (0,0,0). The blue circle indicates the set of fixed points in the I = J = 3 case. The red
points indicate the 3rd column of successive iterates with initial values generated from a uniform
[0,1] distribution.
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Fig. 4 Illustration of simultaneous normalization and divergence of procedure. Starting values
were generated from a uniform [0,1] distribution. The y-axis denotes the log of the squared
Frobenius norm of the differences between consecutive iterates. The x-axis denotes iteration
number.

3.1 Ischemic Cardiomyopathy

We consider dataset GSE5406 from the Gene Expression Omnibus. This dataset was
gathered from 16 normal individuals and 108 with ischemic cardiomyopathy. The
number of genes in the study is 22283. In order to assess if successive normalization
reveals any new genes, we use the Significance Analysis of Microarrays (SAM)
method [4] to see if with and without standardization yields different results. We
shall also refer to the dataset prior to standardization as the “raw” data and the
standardized data as its “normalized” version. The number of iterations required
to obtain the standardized data from the raw data is 12 for the normal group and
10 iterations each for the ICM and DCM groups. The starting value is fixed in
this example as given by the original dataset. In order to run SAM the number of
genes was reduced by approximately half to 11,820. This reduction was for both
illustration and identifiability purposes, and also serves to make the SAM analysis
computationally tractable. Recall that probe sets on the HG-U133A platform
measure abundance of different (sets of) sequences. The majority of probe sets are
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Fig. 5 SAM Q-Q plots for ICM analysis before (left) and after standardization (right). The red
points denote the genes that are significantly overexpressed, and the green points denote those that
are significantly underexpressed. Note that the median FDR is 0.05543605 for the raw data (delta
= 0.75) and a median FDR of 0.05970533 for the normalized data (delta = 0.55).

Table 1 Summary of results from the SAM method for the data on ischemic cardiomyopathy.

Raw Standardized

Number of significant genes recorded 1507 1233

Number of genes significantly overexpressed 897 499
Number of overexpressed genes not identified in alternative method 403 5

Number of genes significantly underexpressed 610 734
Number of underexpressed genes not identified in alternative method 56 180

designed to measure expression levels of particular genes; however, some probe sets
measure abundance of expression levels of a family of genes that share a common
subsequence or a set of common subsequences.1 For our analysis we have retained
probe sets that are designed to measure expression levels of particular genes only
(these are probe sets having “ at” designations). After this filtering, 11820 genes
remain. The samr() function in library(samr) in R was implemented on both the raw
and normalized data with the number of permutations set at 1,000.

The SAM analysis led to constructing a delta-table using samr.compute.delta.
table() for values of delta (a SAM parameter) between 0 and 2, incrementing by
0.05. In order to compare the lists of genes that are called significant between the two
datasets, we chose a median false discovery rate (FDR) of 0.05543605 for the raw
data (delta =0.75) and a median FDR of 0.05970533 for the normalized data (delta

1http://media.affymetrix.com/support/downloads/manuals/data analysis fundamentals manual.
pdf

http://media.affymetrix.com/support/downloads/manuals/data{_}analysis{_}fundamentals{_}manual.pdf
http://media.affymetrix.com/support/downloads/manuals/data{_}analysis{_}fundamentals{_}manual.pdf
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Table 2 Summary of results from the SAM method for the data on dilated cardiomyopathy.

Raw Standardized

Number of significant genes recorded 1985 1337

Number of genes significantly overexpressed 744 627
Number of overexpressed genes not identified in alternative method 188 71

Number of genes significantly underexpressed 1241 710
Number of underexpressed genes not identified in alternative method 532 1

= 0.55). The SAM Q-Q plots when we control the median FDR at their respective
levels are shown in Fig. 5. The results are recorded in Table 1:

Table 1 indicates that of the 499 significantly over expressed genes after
standardization, five genes were not considered significant in the analysis before
normalization. The gene symbols for these five are: PIK3R4, ODC1, CAMKK2,
INSL5, PMP2. We note that the gene ODC1 (ornithine decarboxylase), for instance,
has featured in a study where its expression level was up regulated. The study
concerned ischemia-reperfusion (I/R) injury in an animal (rat) model (see http://
www.ncbi.nlm.nih.gov/pubmed/19100015?dopt=Abstract).

3.2 Dilated Cardiomyopathy

The analysis for dilated cardiomyopathy is similar to the one above for ischemic
cardiomyopathy. We give the specific details of the analysis for the sake of
completeness. We once more consider dataset GSE5406 from the Gene Expression
Omnibus. This dataset contains data from 16 normal individuals and 86 from
those with dilated cardiomyopathy (DCM). The number of genes in the study is
the same, i.e., 22,283. In order to assess if successive normalization reveals any
new genes, we once again use the Significance Analysis of Microarrays (SAM)
method to see if with and without standardization yield different results. In order
to run SAM the number of genes was once more reduced by approximately half to
11820. As mentioned in the analysis of ischemic cardiomyopathy, this reduction
is for illustrative purposes only and renders the SAM analysis more tractable
computationally. The samr() function in library(samr) in R was implemented on
both the raw and normalized data with the number of permutations set at 1,000.

The SAM analysis led to constructing a delta-table using samr.compute.delta.
table() for values of delta (a SAM parameter) between 0 and 2, incrementing by
0.05. In order to compare the lists of genes which are called significant between the
two datasets, we chose a median FDR of 0.0569515 for the raw data (delta = 0.8)
and a median FDR of 0.05233577 for the normalized data (delta = 0.5). The SAM
Q-Q plots when we control the median FDR at their respective levels are shown in
Fig. 6. The results are recorded in Table 2:

Table 2 indicates that of the 627 significantly over expressed genes after
standardization, 71 genes were not considered significant in the analysis before

http://www.ncbi.nlm.nih.gov/pubmed/19100015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19100015?dopt=Abstract
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Fig. 6 SAM Q-Q plots for DCM analysis before (left) and after standardization (right). The red
points denote the genes that are significantly overexpressed, and the green points denote those that
are significantly underexpressed. Note that the median FDR is 0.0569515 for the raw data (delta =
0.8) and a median FDR of 0.05233577 for the normalized data (delta = 0.5).

normalization. Moreover, of the 710 significantly under expressed genes after stan-
dardization, one particular gene was not considered significant in the analysis before
normalization. The gene symbol for this particular gene is GZMB (granzyme B).
We note that the gene GZMB (granzyme B) has been connected to dilated
cariomyopathy in the literature (http://www.ncbi.nlm.nih.gov/pubmed/10398167?
dopt=Abstract).

4 Concluding Remarks

The goal of this note is to demonstrate that successive standardization has not only
theoretical properties but also potentially important practical applications, espe-
cially in the context of genomics. The comparison of significantly expressed genes
pre- and post-standardization in a case–control setting reveals that standardization
can lead to the identification of novel genes that would otherwise have been omitted.
This does not mean to say that standardized data should replace the original data, but
rather that together they are complementary and can lead jointly to novel therapeutic
targets. This is affirmed by the finding that standardized data can fail to discover
genes that raw data is able to and vice versa. Future work in this regard will be in
the direction of applying standardization to other case–control studies outside the
context of cardiovascular biology. This includes applying the technique to datasets
on breast and other types of cancer.

http://www.ncbi.nlm.nih.gov/pubmed/10398167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10398167?dopt=Abstract
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Quantification of PFS Effect for Accelerated
Approval of Oncology Drugs

Cong Chen and Linda Z. Sun

Abstract By the accelerated approval (AA) mechanism (Code of Federal
Regulations- 21 CFR 314 and 601. Accelerated Approval Rule, 1992), the FDA
may grant approval of drugs or biologic products that are intended to treat serious
or life-threatening diseases using a surrogate endpoint that is reasonably likely to
predict clinical benefit. In oncology, progression-free-survival (PFS) is increasingly
used as such a surrogate of overall survival (OS) in Phase III confirmatory trials.
Improved understanding on how to deal with the PFS endpoint in trial conduct
and data analysis has mitigated some regulatory concerns about this endpoint.
However, a glaring gap still exists as how to determine whether the outcome from
a registration trial with PFS as the primary endpoint at the time of analysis is
reasonably likely to predict a clinical benefit as normally reflected through an effect
on OS. Since there is no guidance on this, regulatory agencies tend to look for
a compelling PFS effect coupled with an OS effect in the right direction without
specification of the effect sizes and significance levels. To address this issue, we
propose a synthesized approach that combines the observed OS effect and the
estimated OS effect from the PFS data to explicitly test the implicit OS hypothesis
at the time of primary analysis. The proposed approach is applied to hypothetical
Phase III trials in metastatic colorectal cancer and adjuvant colon cancer settings
using the relationships between OS effect size and PFS effect size established from
historical data. Prior information on such a historical relationship is frequently cited
by relevant decision makers during regulatory reviews for drug approval. However,
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the information is rarely fully accounted for in the actual (mostly qualitative)
decision-making process. Our approach provides a simple analytic tool for deriving
a more quantitative decision. It is clear that the design based on our approach may
have a larger sample size than a conventional trial with PFS as the primary endpoint,
but directly address the elusive OS question that a conventional PFS trial cannot, no
matter how good a surrogate endpoint PFS is.

1 Introduction

The conventional endpoint for a Phase III confirmatory trial in oncology is overall
survival (OS), defined as time from randomization to death due to any cause.
In recent years, there is an increasing interest in progression-free-survival (PFS),
i.e., time from randomization to disease progression (or recurrence of disease in
adjuvant setting in which case the endpoint of same interest would be disease-free-
survival) or death due to any cause, whichever comes first. There are a few major
drivers behind it. First, the new generation of oncology drugs under development
tends to have a better safety profile than traditional chemotherapies, which makes
accelerated approval based on PFS more justifiable, as the new generation oncology
drugs are unlikely to be so toxic that patients’ survival may be harmed by the
side effects of a drug. Second, there are inevitable situations where cross-over
(or cross-in) after disease progression confounds the analysis of OS, whereas PFS
arguably captures the true interventional effect of an experimental treatment on
tumor burden. Third, some cancer diseases have a long natural history, making it
less feasible or ethical to conduct time-consuming survival trials. Fourth, disease
progression tends to correlate with patient’s quality of life, and in some situations
may arguably be considered an indirect or even direct measure of clinical benefit
especially when clinical judgment (in a blinded fashion) is incorporated into the
definition, although a subject-level correlation doesn’t necessarily translate into a
correlation in treatment effects. Fifth, as we better understand the issues involving
PFS, the conduct and analysis of clinical trials with PFS as an endpoint should
improve. Last but not least, patients participating in trials are limited and societal
investment is under constraint. Judicious use of PFS helps make drug development
more efficient so that unmet medical needs can be met sooner rather than later
although, in absence of real breakthroughs in cancer treatment, the meaningfulness
of small improvements in PFS (and for this matter OS) is always questionable.

There has been a lot of statistical research investigating whether OS can be
replaced with PFS, i.e., whether PFS is a surrogate endpoint for OS in the statistical
sense. For example, Burzykowski et al. [2] showed that treatment effect on disease-
free-survival (after 3 years of median follow-up) reliably predicts treatment effect on
overall survival (after 5 years of median follow-up) for adjuvant colorectal cancer
studies, supporting a previous finding by Sargent et al. [3]. Similarly, Tang et al.
[4] showed that PFS effect and OS effect have a reliable relationship in metastatic
colorectal cancer and Miksad et al. [5] showed that PFS effect and OS effect have
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a reliable relationship in advanced breast cancer. However, can PFS be considered
a surrogate endpoint of OS for future clinical trials in the same disease settings?
It remains controversial from a clinical standpoint [6] (also see [7] for discussions
in different disease settings). From a statistical standpoint, a surrogacy measure is
often continuous in nature. An endpoint is considered a surrogate if such a measure
(or measures) meet certain threshold(s). However, determination of the threshold(s)
is judgmental and lacks consensus. In this sense, it is not about whether an endpoint
is a surrogate or not; it is more about to what extent (or degree) an endpoint is a
surrogate. Discussions about various surrogacy measures can be found in [8, 9].
A less ambitious application of one such measure (proportion of treatment effect
explained) for hypothesis generation, as opposed to surrogacy validation, can be
found in [10].

In this paper, we address the endpoint issue from a slightly different angle
in light of the FDA requirement for accelerated approval [1], which is safe-
guarded with a Phase IV commitment of directly demonstrating clinical benefit,
and regulatory rationales from both the EMA and FDA on recent oncology drug
approvals (available in the public domain). It is apparent therein (also see [11]) that
the definition of a “surrogate” endpoint is focused on whether the treatment effect
on the PFS endpoint is reasonably likely to predict a clinical benefit as normally
reflected through an effect on OS, which is a daunting task given various issues
associated with this endpoint (a comprehensive discussion can be found in [12]).
Statistical validation of PFS as a surrogate endpoint for OS (by some measure
yet to be determined with consensus) certainly helps, but is not mandatory in
this context, since it does not directly address the question: how clinically and
statistically significant should a PFS effect be to meet the regulatory requirement? It
relies on the strength of evidence in the ongoing trial and the historical relationship
between PFS effect and OS effect, and this problem is less investigated in the
statistical literature. The closest approach may be found in [13, 14] where surrogate
threshold effect (STE), or minimum treatment effect on a surrogate marker required
to predict a nonzero positive treatment effect on OS in a future trial, was proposed.
The establishment of STE for PFS helps with a regulatory decision but does not
directly address the regulatory issue. Besides, it is unclear how to incorporate OS
effect into the metrics. In the absence of a solid statistical argument, regulatory
agencies tend to look for a compelling PFS effect and an OS effect in the right
direction without specification of the effect sizes and significance levels. As a result,
regulatory decisions are subject to judgmental bias. This paper attempts to fill the
gap by proposing a more objective approach.

The historical relationship between PFS effect size and OS effect size in the
same disease setting holds the key to successful estimation of the OS effect based
on PFS data. Prior information on the historical relationship is frequently cited by
relevant decision makers during regulatory reviews for drug approval. However,
the information is rarely fully accounted for in the actual (mostly qualitative)
decision-making process. In this paper, we will quantify the impact of the historical
relationship on the estimation of OS effect from PFS data. We will also show how
the OS data from the same trial can be further incorporated into a joint test-statistic



246 C. Chen and L.Z. Sun

for testing OS effect in a synthesized approach. As a result, the heuristic regulatory
requirement on both PFS effect and OS effect becomes a testable hypothesis;
significant clinical benefit may be claimed, in light of current and historical data, if
the one-sided p-value from the joint test-statistic is less than 2.5% (say). Statistical
incorporation of historical data into the drug approval process is nothing new in the
regulatory environment. It is reflected in the development of medical devices where
a Bayesian framework is often applied (see [15] for FDA draft guidance). Design
and analysis of a non-inferiority trial also involves the estimation of the historical
effect of the active comparator (see [16] for ICH guidance). Our proposed approach
follows the regulatory precedent set in these fields in the sense of utilizing historical
data to make a quantitative decision. Although our work is motivated by oncology,
the idea in the proposed approach is equally applicable to other therapeutic areas.

The rest of the paper is organized as follows: Sect. 2 provides the joint test-
statistic for OS effect and illustrates its characteristics in a hypothetical example.
Section 3 provides sample size calculations for the study design of a clinical trial
using this joint test-statistic. Because the main purpose of this paper is to advocate
a higher-level concept, we try to keep the technical details to minimum in the main
presentation. Extensions and discussion are provided in Sect. 4.

2 Estimation of OS Effect

2.1 Set-up

Consider a hypothetical Phase III oncology trial with 1:1 randomization that uses
PFS as the primary endpoint for possible accelerated approval of a new treatment.
Suppose that the point estimate of hazard ratio (HR; treatment vs. control) is 0.6 in
PFS based on 400 events (target number of PFS events), and is 0.75 in OS based
on 100 events (immature) at the time of primary analysis. A definite demonstration
of unequivocal clinical benefit may be delayed until the OS data from this trial is
mature, or in a separate trial as part of the Phase IV commitment. The corresponding
one-sided p-value would be <0.0001 for the PFS data and 0.075 for the OS data
based on the regular Z-test statistics. Is this outcome positive enough that an
accelerated approval may be granted? To properly answer this question, we need
a reliable estimate of the relationship between OS effect size and PFS effect size in
the same disease setting from historical data. We assume that the relationship can
be approximated by a simple linear model on log(HR) scale. For simplicity, we also
assume that the intercept term in the linear model is zero. This is equivalent to the
assumption that if the treatment effect is nonexistent in one endpoint it will not show
up in the other endpoint. Define γ̂ as the mean estimate of the ratio of OS effect to
PFS effect in the log hazard ratio scale, and σ̂γ (>0) as the corresponding estimate
of the standard error. The historical relationship in effect size is adequately captured
in the doublet (γ̂, σ̂γ ) under the asymptotic normality assumption. Further, let Δ̂OS
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and Δ̂PFS be the respective log(HR) estimates of OS and PFS effect from the current
Phase III trial of interest. Their respective variance estimates are σ̂2

OS and σ̂2
PFS, and

an estimate of the correlation between Δ̂OS and Δ̂PFS is ρ which is readily available
from an appropriate resampling analysis or from the SAS procedure PROC PHREG
for multiple failure data analysis by invoking, e.g., the WLW option [17].

It is not the focus of this paper on the estimation of (γ̂, σ̂γ ). However, it
can never be over-emphasized that the historical studies should be examined for
the constancy (and range of variability) of effect size ratio, which depends on
the timing of analyses for PFS and OS, among other considerations [12]. Good
estimates come from appropriate meta-analysis (see [18, 19] for general reference
on meta-analyses), with the assistance of sensitivity analyses. Instead, we will use
existing estimates in the literature for illustration of the proposed approach. In the
metastatic colorectal cancer disease setting [4], the effect size ratio is estimated as
the regression slope of OS effect on PFS effect for several randomized clinical trials
with moderate to large size. It was estimated to be 0.54 with standard error of 0.10 on
the hazard reduction scale. The estimate of intercept was negligible, and inclusion
of it or not in the linear model did not change the point estimate of the regression
slope. Based on these findings, the authors concluded that a 10% hazard reduction
in PFS for a novel therapy would yield an estimated 5.4%± 1% hazard reduction
in OS. No estimates were provided on the log(HR) scale. However, because hazard
reduction is a good approximation of the log(HR), We will use (0.54, 0.10) as a
starting point for (γ̂ , σ̂γ) for illustration purpose in this disease setting. Of note,
based on a point estimate of 0.54, the estimated OS effect from the PFS effect in
the hypothetical trail described at the beginning of this section is HR= 0.76, which
is close to the observed OS effect (HR= 0.75) (i.e., the relationship in effect size is
consistent with what is established from historical data). In an adjuvant colon cancer
setting, Sargent et al. [3] estimated the regression slope to be 0.89 with standard
error of 0.061 on hazard ratio scale for trials of fluorouracil-based regimes. The
intercept was estimated to be 0.12, which implies HR(OS)= 0.12+ 0.89HR(PFS)
or 1−HR(OS)=−0.01+ 0.89(1−HR(PFS)), i.e., the intercept term would be
negligible at −0.01 on hazard reduction scale under the same regression slope. This
is consistent with findings from [2] in that the regression slope was estimated to be
0.90 on the log(HR) scale for trials of different regimens whereas the incept term is
negligible at 0.03. Based on these data, the clinical community generally believes
that PFS can be used to replace OS for future trials in adjuvant colon cancer. We
will use (0.89, 0.061) as a starting point for (γ̂ , σ̂γ) for illustration purpose in this
disease setting. Of note, the observed OS effect from the hypothetical trial would
be smaller than that estimated from the PFS effect if γ̂ were indeed equal to 0.89.
Once a reliable estimate of (γ̂ , σ̂γ) is available, how should we evaluate the strength
of evidence on the OS endpoint with the observed PFS effect and OS effect from
the hypothetical trial?
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2.2 Estimators of OS Effect

We consider two estimators of the OS effect, one based on Δ̂PFS alone and the other
based on both Δ̂PFS and Δ̂OS. By the definition of γ̂ , a natural estimate of the OS
effect from the historical relationship and Δ̂PFS is

Δ̂P = γ̂ Δ̂PFS (1)

Based on (1), the same inference as in [4] on OS effect for a given Δ̂PFS can be
easily made. The overall variance of Δ̂P is

Var(Δ̂P) = γ̂2σ̂2
PFS + Δ̂2

PFSσ̂2
γ + σ̂2

γ σ̂2
PFS (2)

The distribution of Δ̂P, as a product of two random variables, is not normal in
general but behaves like a normal distribution especially when γ̂ has a nonzero mean
and a very small variance. A Z-test statistic (denoted to be ẐP) can be naturally
formed from Δ̂P and Var(Δ̂P) under the normal distribution assumption. The
estimated OS effect based on PFS data alone is considered statistically significant at
the 2.5% (one-sided) level if

ẐP = Δ̂P/

√
Var(Δ̂P)< Z0.025 (3)

where Z(.) denotes the quantile of a standard normal distribution at the corresponding
level. Notice that the significance level is fixed at the 2.5% (one-sided) level for
ease of presentation. The appropriate level that might be considered acceptable for
drug approval should depend on whether this is an isolated result or one of two
or more trials providing similar results, and various other considerations. Observe
that Var(Δ̂P) > γ̂2σ̂2

PFS, which implies that (except for the trivial case of σ̂γ = 0)
numerically

Δ̂2
P/Var(Δ̂P) = (γ̂ Δ̂PFS)

2
/Var(Δ̂P)< (γ̂ Δ̂PFS)

2
/(γ̂2σ̂2

PFS) = Δ̂2
PFS/σ̂2

PFS

regardless of γ̂ . This shows that, under the normal distribution assumption for ẐP,
the estimated OS effect from PFS will always be less statistically significant than the
PFS effect. This observation is consistent with intuition that, due to uncertainty in
the relationship between OS effect and PFS effect, the PFS endpoint needs to cross
a higher bar (i.e., p-value <2.5%) for the estimated OS effect to be statistically
significant at the 2.5% (one-sided) level. Similarly, Δ̂2

P/Var(Δ̂P) < γ̂2/σ̂2
γ and Δ̂P

will be less statistically significant than γ̂ . This implies that, again, consistent with
intuition, OS effect cannot be reliably estimated from PFS effect in absence of a
solid historical relationship between the two.
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With Δ̂OS available, which is often the case in any Phase III oncology trial, a
weighted estimator of the OS effect that naturally incorporates Δ̂OS is

Δ̂J = wΔ̂OS +(1−w)Δ̂P. (4)

As mentioned previously, the estimated correlation between Δ̂OS and Δ̂PFS is ρ ,
hence the covariance of Δ̂OS and Δ̂p is γ̂ρσ̂OSσ̂PFS. The variance of Δ̂J is estimated
to be

Var(Δ̂J) = w2Var(Δ̂OS)+ (1−w)2Var(Δ̂P)+ 2w(1−w)Cov(Δ̂OS, Δ̂p)

= w2σ̂2
OS +(1−w)2Var(Δ̂P)+ 2w(1−w)γ̂ρσ̂OSσ̂PFS (5)

An inverse-variance weighted estimate of w is

w = Var(Δ̂P)/(Var(Δ̂P)+ σ̂2
OS). (6)

A more complicated joint estimate of the OS effect may be obtained by maximum
likelihood estimation (MLE) [20]. It is not our focus to find an optimal estimate of
the OS effect and its statistical properties in this paper. We will use the one based
on w from (6), which is easy to understand and robust to model misspecifications.
Again, Δ̂J and Var(Δ̂J) naturally form a joint Z-test statistic (denoted to be ẐJ)
under asymptotic normality assumptions. The estimated OS effect is considered
statistically significant at the 2.5% (one-sided) level if

ẐJ = Δ̂J/

√
Var(Δ̂J)< Z0.025 (7)

We apply ẐP and ẐJ to the analysis of the hypothetical trial in the next section.
The correlation (ρ) between Δ̂PFS and Δ̂OS is assumed to be 0.5 for all scenarios.
Of note, purely from a statistical standpoint, a negative trend on the treatment effect
in either PFS or OS does not automatically rule out a positive finding based on the
joint test-statistic. However, such a contradictory outcome, should it ever occur, will
inevitably call into question the applicability of (γ̂, σ̂γ ) and the integrity of the trial
conduct. Whenever possible, the assumption on historical relationship needs to be
checked from trial data before a conclusion can be made.

2.3 Illustration

Depending on the similarity in disease settings, comparators used in the control
arms, toxicity profiles and biological mechanisms of action for study drugs and
standard of care, and various other considerations, historical data may need to be
discounted or even discarded before it is incorporated into design and analysis of a
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Fig. 1 Boundaries of rejection regions on hazard ratio scale based on the joint test-statistic (ẐJ of
7). The solid line refers to r = 1 (no inflation) and the dashed line refers to r = 2 (doubling). The
left panel is for metastatic colorectal cancer with (γ̂ , σ̂γ) = (0.54, 0.1) and the right panel is for
adjuvant colon cancer with (γ̂ , σ̂γ) = (0.89, 0.061)

future trial. One way to discount (γ̂, σ̂γ ) is to inflate σ̂γ by a factor of r (>1), the
upper limit of which may be set at 2 (i.e., doubling of σ̂γ ). Another way to discount
(γ̂, σ̂γ ) is to reduce γ̂ by a certain factor so that a greater PFS effect would be
needed to predict the same OS effect. For illustration purpose, we will only consider
inflation of σ̂γ .

What kind of OS effect and PFS effect from the hypothetical trial would consist
of a positive finding based on the joint test-statistic at the 2.5% (one-sided) level?
Figure 1 provides boundaries of rejection regions for the empirical treatment effects
on hazard ratio scale (i.e., exp(Δ̂OS) and exp(Δ̂PFS) in the two colorectal disease
settings. The boundaries are confined to hazard ratio <1 for both endpoints to
exclude a negative trend. As expected, the configuration generally depends on the
standard error of the regression slope (via the inflation factor r). For example, when
the HR for OS is 0.8 under the metastatic colorectal cancer setting, the HR for PFS
needs to be 0.8 at r = 1 or 0.75 at r = 2 to have a positive outcome. However, if
the OS effect has a strong positive trend (e.g., <0.6) in the metastatic colorectal
setting (left panel) or <0.8 in the adjuvant colon cancer setting (right panel), the
impact of r would be minimal as the boundaries for r = 1 and r = 2 largely overlap.
For example, a HR of 0.8 or less for both OS and PFS would consist of a positive
outcome in the adjuvant colon cancer setting regardless of r.

To empirically validate the assumption on the historical relationship, one may

compare Δ̂OS to the 95% confidence interval of Δ̂P,

(
Δ̂P− 1.96

√
Var(Δ̂P), Δ̂P

+ 1.96
√

Var(Δ̂P)

)
. If it falls into the confidence interval, a positive conclusion
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may be made with strong confidence. If it doesn’t but Δ̂OS is less than Δ̂P (i.e.,
observed OS effect is stronger than estimated from PFS data), an even stronger
conclusion may be made. Otherwise, the trial may not be considered positive at the
2.5% significance level even if the outcome is in the rejection region. (The outcome
from the hypothetical trial passes this test under both disease settings.) Certainly,
one may use other empirical approaches as appropriate to validate the assumption.

3 Event Size Calculations

In this section, we provide event size calculations for trials intending to use ẐJ (7)
for demonstrating a statistically significant OS effect at a one-sided type I error
rate of αJ and type II error rate of β J based on historical estimate of (γ̂, σ̂γ ).
For simplicity, the trials have two arms and apply a 1:1 randomization (minor
modifications are needed otherwise.) Denote ΔPFS as the PFS effect of interest and
ΔOS as the corresponding OS effect which is expected to be γ̂ΔPFS. Suppose that the
relative number of events for the PFS endpoint (NPFS) and OS endpoint (NOS) at the
time of primary analysis (for application of accelerated approval) is relatively fixed
at λ such that NPFS≈ λ NOS (λ > 1). A ballpark estimate of λ for a typical Phase III
oncology trial can be easily obtained upfront once a follow-up strategy is decided.
For ease of illustration, we will keep λ at 4 in the following examples. This by no
means implies that this is an optimal estimate for the respective disease settings we
will consider. The sample sizes are inherent in Var(Δ̂J), which has to satisfy the
following constraint

Δ2
OS = (ZαJ +ZβJ

)2 [Var(Δ̂J)
]

(8)

or equivalently

γ̂2Δ2
PFS = (ZαJ +ZβJ

)2 [w2σ̂2
OS +(1−w)2Var(Δ̂P)+ 2w(1−w)γ̂ρσ̂OSσ̂PFS

]
(9)

where σ̂2
OS = 4/NOS and σ̂2

PFS = 4/NPFS with Var(Δ̂P) from (2) and w from (5).
NPFS and NOS are readily solved from (9) once γ̂ , σ̂γ , λ , ρ , and ΔPFS are provided.
See appendix for sample code.

Table 1 provides NPFS and NOS and study properties at αJ = 2.5% and β J = 10%
in the metastatic colorectal cancer setting. To meet the implicit OS objective at the
time of analysis in which PFS is the primary endpoint in a conventional Phase III
oncology trial, some thought leaders argue for a smaller type I error rate than 2.5%
(one-sided) to be set for the PFS endpoint and some argue for testing of super-
superiority. To compare with these alternative approaches, Table 1 also reports study
powers for testing the null hypothesis HRPFS = 1 at 0.0625% (Pow1: equivalent to
requirement of two positive trials) and testing the null hypothesis HRPFS = 0.80 at
α = 2.5% (Pow2: super-superiority) based on NPFS using the conventional log-rank
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Table 1 Sample sizes and study properties based on the joint test-statistic (ẐJ of 7) at αJ=2.5%
(one-sided) and β J = 10% (i.e., 90% power) for metastatic colorectal cancer with (γ̂ , σ̂γ) =
(0.54, 0.1)

test. Also reported are powers for testing the null hypothesis HROS = 1 at α = 2.5%
(Pow3: regular superiority) and HROS = 1 at α = 50% (Pow4: positive trend) based
on NOS using the conventional log-rank test. Two PFS effects are considered,
HR= 0.5 and HR= 0.6. The corresponding estimated OS effects are HR= 0.69
and HR= 0.76, respectively, based on historical data under the two disease settings.
The sample size estimates are extremely sensitive to σ̂γ ; they are more than tripled
when σ̂γ is doubled. The estimates are also sensitive to the effect size of interest
but less so to ρ , as one might be expected. To demonstrate a statistically significant
PFS effect at the same type I/II error rates, the number of PFS events would be 88
for ΔPFS = log(0.5) and 162 for ΔPFS = log(0.6). Not surprisingly, as seen from the
table, more PFS events are needed to have sufficient power to demonstrate an OS
effect with the proposed OS estimator. On the other hand, if a conventional survival
trial at the same type I/II error rates is considered, the number of OS events would
be 305 for ΔOS = log(0.69) and 558 for ΔOS = log(0.76), which is much greater
than NOS in the table.

Table 2 provides the same analyses in the adjuvant colon cancer setting except
that the null hypothesis for super-superiority is changed to HR= 0.90 for PFS to
better reflect the difference in (γ̂, σ̂γ ). Two PFS effects are considered, HR= 0.6
and HR= 0.7. The corresponding OS effects are HR= 0.63 and HR= 0.73, respec-
tively. As a comparison, the number of PFS events would be 162 for ΔPFS = log(0.6)
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Table 2 Sample sizes and study properties based on the joint test-statistic (ẐJ of 7) at αJ=2.5%
(one-sided) and β J = 10% (i.e., 90% power) for adjuvant colon cancer with (γ̂ , σ̂γ) = (0.89, 0.061)

and 330 for ΔPFS = log(0.7) in a conventional PFS trial while the number of
OS events would be 197 for ΔOS = log(0.63) and 425 for ΔOS = log(0.73) in a
conventional survival trial at the same type I/II error rates. The sample size estimates
in this disease setting are less sensitive to σ̂γ compared to the metastatic colorectal
cancer setting. Because OS effect can be estimated with greater certainty from PFS
effect, NPFS only has a moderate increase as compared to a conventional PFS trial.
This partly confirms the general belief that PFS is a good surrogate endpoint for OS
for adjuvant colon cancer. But it also implies that a conventional PFS trial would
still be underpowered for answering the elusive OS question even when PFS is a
good surrogate endpoint.

It is clear from the two tables that, even though the number of events required
with the design based on our approach is larger than the size of a conventional trial
in which PFS is the primary endpoint, it has smaller sample size than a conventional
survival trial. By incorporating historical and current trial data, it can address the
elusive OS question that a conventional PFS trial cannot, no matter how good a
surrogate endpoint PFS is. It is also clear from the two tables that it is impossible
to set a common bar on the type I error rate or null effect in a conventional PFS
trial to guard against a potential spurious outcome, despite good intentions. A
clinically meaningful PFS effect in one disease setting (e.g., adjuvant colon cancer)
may not be so in a different setting (e.g., metastatic colorectal cancer) no matter
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how compelling it is. Conversely, some disease settings do not need to have a PFS
effect as large as in other settings to indicate an improvement in OS. It is also clear
from the two tables that the definition of a positive survival trend has a drastically
different implication to study power. Just like for the PFS endpoint, it is impossible
to set a common bar without being ultraconservative or arbitrary. From similar
analyses under various alternative assumptions on key parameters such as historical
relationship and relative number of events (results not presented here), the general
pattern of the above findings holds.

In planning for a Phase III trial that applies ẐJ (7) to the testing of the OS effect,
we may use data from Phase II and other similar trials to estimate ρ for the sample
size calculation. While it makes event size calculation easier by fixing λ upfront,
there is room for improvement when the design is complicated or when accrual
and follow-up is not straightforward. Nevertheless, the event size (9), assisted with
sensitivity analyses, provides a starting point for trial planning.

4 Discussion

Regulatory approval of a drug application to market is ultimately decided by a
trade-off between risk and benefit. Traditional chemotherapies for oncology are
toxic; they are usually approved after successful demonstration of an unequivocal
survival benefit over standard of care. Many new biologics or small molecule drugs
under development are target-specific and are presumably less toxic, thanks to the
phenomenal expansion of our knowledge in the molecular biology of cancer. This
raises a natural question whether a conventional survival trial should be mandatory
for their approval. Of all the viable alternative endpoints that have been considered,
PFS has received the most attention. However, for majority of the disease settings,
the PFS endpoint can’t be considered a valid surrogate endpoint to survival and
is not necessarily a direct measure of clinical benefit. A statistically significant
outcome on PFS does not automatically equate to a positive trial, which, to the
minimum, requires providing evidence of survival benefit with reasonable assurance
by FDA’s AA mechanism. More and more often, regulatory agencies face the
difficult task of setting an appropriate bar for PFS effect size for accelerated
approval.

To address this regulatory issue, we have proposed a synthesized approach that
incorporates all relevant data within and outside of a trial (i.e., PFS and OS data as
well as historical relationship between the OS effect size and the PFS effect size)
into a simple joint test-statistic for explicitly testing the implicit OS hypothesis.
An event size equation is also provided for trials intending to use the joint test-
statistic for hypothesis testing. The proposed approach is applied to hypothetical
Phase III trials in metastatic colorectal cancer and adjuvant colon cancer settings.
It demonstrates that rational and objective bars for PFS effect size as well as for
OS effect size can be set using our proposed approach. Further, a modified design
of the conventional PFS trial can be prospectively planned to directly address the
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regulatory issue under the same approach. It has to be emphasized that, while the
proposed approach helps address a relevant regulatory and scientific issue associated
with FDA’s AA mechanism, it is never intended to replace a conventional survival
trial should it be a requirement for regulatory approval. It also has to be emphasized
that we have treated the regulatory issue as a statistical estimation and hypothesis
testing problem, which is a conventional approach in the regulatory environment, as
opposed to a statistical prediction problem as in [13, 14]. While this represents our
best understanding of the regulatory policy, it is up to the policy makers to clarify.

Reliable estimation of the historical relationship plays a pivotal role in successful
estimation of OS effect from PFS data. In the last decade, tremendous clinical data
for various cancer diseases have been generated, with much more forthcoming.
They provide a solid foundation for establishing the much-needed historical rela-
tionships. Regulatory agencies and scientific advisors implicitly incorporate such a
relationship, or lack thereof, into the decision process for drug approval. However,
different reviewers may use different historical data sources to come up with their
own estimates. They may come up with different estimates even they have access
to the same historical data. Besides, as pointed out by an anonymous referee, even
when an appropriate meta-analysis is applied different estimates may be obtained
from different methods (e.g., fixed effects regression, random effects regression,
and mean estimation of actual effect size ratios). More importantly, it is unclear
how to fully account for the uncertainties in historical relationship. We used the
standard error from meta-analysis (after possible inflation) in our approach, which
is consistent with [4]. This essentially treats the current trial as a typical or “average”
trial among historical ones, as an anonymous referee has correctly pointed out.
However, it is unclear whether this represents an accurate interpretation of the
regulatory policy. An alternative Bayesian approach can be found in [21].

Propelled by scientific breakthroughs, the current regulatory requirement for
oncology drug approval has created an unmet need for the statistical community.
A lot of energy and effort has been spent on surrogacy validation in the last two
decades. But numerous fruitful findings have not been sufficient to address the
emerging regulatory issues. The approach we have proposed in this paper represents
a step in the right direction. To clearly relay the key message, we purposely keep the
technical details to minimum. Many related statistical issues (e.g., group sequential
design in light of a different variance–covariance structure, comparison between the
MLE and the weighted estimator, properties of the joint test-statistic) and practical
issues (e.g., filing for accelerated approval after an interim analysis while the trial
is ongoing, impact of accelerated approval on execution of Phase IV commitment
in a separate trial, impact of cross-in on survival analysis) are left open for further
investigation.

The issues inherent in the AA mechanism (and to some extent conditional
approval under CHMP) are both statistical and regulatory. A collaborative effort
among all stakeholders in drug development (drug developers, regulatory reviewers,
and academic researchers) is greatly needed to help make accelerated approval a
more data-driven decision process.
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Integrative Analysis of Multiple Cancer
Prognosis Datasets Under the Heterogeneity
Model

Jin Liu, Jian Huang, and Shuangge Ma

Abstract In cancer research, genomic studies have been extensively conducted,
searching for markers associated with prognosis. Because of the “large d, small
n” characteristic, results generated from the analysis of a single dataset can be
unsatisfactory. Integrative analysis simultaneously analyzes multiple datasets and
can be more effective than the analysis of single datasets and classic meta-
analysis. In many existing integrative analyses, the homogeneity model has been
assumed, which postulates that different datasets share the same set of markers. In
practice, datasets may have been generated in studies that differ in patient selection
criteria, profiling techniques, and many other aspects. Such differences may make
the homogeneity model too restricted. Here we explore the heterogeneity model,
which assumes that different datasets may have different sets of markers. With
multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time)
models to describe survival. A weighted least squares approach is adopted for
estimation. For marker selection, penalization-based methods are examined. These
methods have intuitive formulations and can be computed using effective group
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coordinate descent algorithms. Analysis of three lung cancer prognosis datasets with
gene expression measurements demonstrates the merit of heterogeneity model and
proposed methods.

1 Introduction

Genomic studies have been extensively conducted, searching for markers associated
with the prognosis of cancer. Data generated in such studies have the “large d, small
n” characteristic, with the number of genes profiled d much larger than sample size
n. In addition, in whole-genome studies, only a subset of the profiled genes are
expected to be associated with prognosis. Thus, the analysis of cancer prognosis
data with genomic measurements demands regularized estimation and selection.

In practical data analysis, genomic markers identified from the analysis of single
datasets are often unsatisfactory. Multiple factors contribute to the unsatisfactory
performance, including the highly noisy nature of cancer genomic data, technical
variations of profiling techniques and, more importantly, the small sample sizes of
individual studies. Recent studies have shown that pooling and analyzing multiple
studies may effectively increase sample size and improve properties of the identified
markers (Guerra and Goldsterin 2009; Ma et al. 2009, and references therein).
Multi-dataset methods include meta-analysis and integrative analysis methods.
Integrative analysis pools and analyzes raw data from multiple studies and can
be more informative than classic meta-analysis, which analyzes multiple studies
separately and then pools summary statistics (lists of identified genes, p-values,
effect sizes, etc.).

In studies such as Ma et al. (2011b), the homogeneity model has been assumed.
Under this model, multiple datasets share the same set of markers. This model
has also been adopted with cancer diagnosis studies and categorical responses
(Ma et al. 2011a and references therein). In practical data analysis, when mul-
tiple datasets are generated in independent studies, heterogeneity (in patients’
characteristics, technical aspects such as profiling protocols, etc) inevitably exists.
Such heterogeneity may make the homogeneity model too restricted. In addition,
data analyses in Ma et al. (2011a;b) show that for some of the identified genes,
the magnitudes of estimated regression coefficients may vary significantly across
datasets. It is possible that the very small regression coefficients are actually zero.
Such an observation further suggests the necessity of relaxing the homogeneity
model assumption.

In this study, we describe cancer survival using AFT (accelerated failure time)
models. Compared with alternatives such as the Cox model, the AFT model has
a significantly simpler objective function and lower computational cost, which is
especially desirable with high-dimensional data. In addition, its regression coeffi-
cients may have more lucid interpretations. As an alternative to the homogeneity
model, we consider the heterogeneity model. It includes the homogeneity model
as a special case and can be more flexible. For marker selection, we adopt
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penalization. The proposed penalization methods are intuitively reasonable and can
be computationally realized using the group coordinate descent algorithms. This
study complements the existing ones by conducting integrative analysis under the
more flexible heterogeneity model and by adopting penalization methods tailored to
this model.

2 Integrative Analysis of Cancer Prognosis Studies

2.1 Data and Model Settings

Assume M independent studies and nm iid observations in study m(= 1, . . . ,M). The
total sample size is n = ∑M

m=1 nm. In study m, denote T m as the logarithm (or another
known monotone transformation) of failure time. Denote Xm as the length-d vector
of gene expressions. Although gene expression data is used as an example in this
study, it should be noted that the proposed methods are also applicable to studies
with other types of genomic measurements. For simplicity of notation, assume that
the same set of genes are measured in all M studies. For the ith subject, the AFT
model assumes that

T m
i = β m

0 +Xm′
i β m + �m

i , i = 1, . . . ,nm. (1)

where β m
0 is the intercept, β m ∈ R

d is the length-d vector of regression coefficients,
and �m

i is the error term. When T m
i is subject to right censoring, we observe

(Y m
i ,δ m

i ,Xm
i ), where Y m

i = min{T m
i ,Cm

i }, Cm
i is the logarithm of censoring time,

and δ m
i = I{T m

i ≤Cm
i } is the event indicator.

When the distribution of �m
i is known, the parametric likelihood function can be

easily constructed. Here we consider the more flexible case where this distribution
is unknown. In the literature, multiple estimation approaches have been developed,
including, for example, the Buckley-James and rank-based approaches (Buckley
and James 1979; Jin et al. 2003). In this study, we adopt the weighted least
squares estimator (Stute 1996), which to the best of our knowledge, has the lowest
computational cost. This property is especially desirable with high-dimensional
data.

Let F̂m be the Kaplan–Meier estimator of the distribution function Fm of T m.
F̂m(y) = ∑nm

i=1 ωm
i I{Y m

(i) ≤ y}, where ωm
i s are the jumps in the Kaplan–Meier

estimator and can be computed as

ωm
1 =

δ m
(1)

nm , ωm
i =

δ m
(i)

nm− i+ 1

i−1

∏
j=1

(
nm− j

nm− j+ 1

)δ m
( j)

, i = 2, . . . ,nm.

Here Y m
(1) ≤ ·· · ≤ Y m

(nm) are the order statistics of Y m
i s, and δ m

(1), . . . ,δ
m
(nm) are the

associated event indicators. Similarly, let Xm
(1), . . . ,X

m
(nm) be the associated gene
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expressions of the ordered Y m
i s. Stute (1996) proposed the weighted least squares

estimator (β̂ m
0 , β̂ m) that minimizes

1
2

nm

∑
i=1

ωm
i (Y

m
(i)−β m

0 −Xm
(i)
′β m)2. (2)

We center Xm
(i) and Y m

(i) using their ωm
i -weighted means, respectively. Define

X̄m
w =

nm

∑
i=1

ωm
i Xm

(i)/
nm

∑
i=1

ωm
i ,Ȳ

m
w =

nm

∑
i=1

ωm
i Y m

(i)/
nm

∑
i=1

ωm
i .

Let Xm
ω(i) =

√
ωm

i (X
m
(i)− X̄m

w ) and Y m
ω(i) =

√
ωm

i (Y m
(i)− Ȳ m

w ), respectively. With the
weighted centered values, the intercept is zero. The weighted least squares objective
function can be written as

Lm(β m) =
1
2

nm

∑
i=1

(Y m
ω(i)−Xm

ω(i)
′β m)2. (3)

Denote Y m = (Y m
ω(1), . . . ,Y

m
ω(nm))

′ and Xm = (Xm
ω(1), . . . ,X

m
ω(nm))

′. Further denote Y =

(Y 1′, . . . ,Y M′)′, X = diag(X1, . . . ,XM), and β = (β 1′, . . . ,β M ′)′.
Consider the overall objective function L(β ) = 1

n ∑M
m=1 Lm(β m). With this ob-

jective function, larger datasets have more contributions, which is intuitively
reasonable. When desirable, normalization by sample size can be applied.

2.2 Homogeneity Model and Penalized Selection

In Huang et al. (2012) and Ma et al. (2011a;b), the homogeneity model is adopted
to describe the genomic basis of M datasets. Denote β m

j as the jth component

of β m. Then β j = (β 1
j , . . . ,β M

j )′ is the length-M vector of regression coefficients
representing the effects of gene j in M studies. Under the homogeneity model, for
any j(= 1, . . . ,d),

I(β 1
j = 0) = . . .= I(β M

j = 0).

That is, if a gene is identified as associated with prognosis in one dataset, it is
identified in all of the M datasets. Thus, the M datasets have the same sparsity
structure. This is a sensible model when multiple datasets have been generated under
the same protocol. With multiple datasets generated independently, if the analysis
of individual datasets and examination of the protocols suggest a high degree of
similarity, then this model can be adopted.

For marker selection, Ma et al. (2011b) adopts penalization and proposes using
the group MCP (gMCP) approach, where the estimate is defined as
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β̂ = argmin
{

L(β )+PgMCP(β )
}
,

with

PgMCP(β ) =
d

∑
j=1

ρ(||β j||Σ j ;
√

d jλ1,γ). (4)

ρ(t;λ ,γ) = λ
∫ |t|

0

(
1− x

λ γ

)

+
dx is the MCP penalty (Zhang 2010). ||β j||Σ j =

||Σ1/2
j β j||2, || · ||2 is the L2 norm, Σ j = n−1X [·, j]′X [·, j], and X [·, j] is the n× d j

submatrix of X that corresponds to β j. In (4), d j is the size of the coefficient group
corresponding to gene j. When the M datasets have exactly matched gene sets,
d j ≡ M. We keep d j so that this formulation can accommodate partially matched
gene sets. When gene j is not measured in dataset k, we take the convention β k

j ≡ 0.
λ1 > 0 is the tuning parameter, and γ > 0 is the regularization parameter (Zhang
2010).

Penalty function (4) has been motivated by the following considerations. In
this analysis, genes are the functional units. The overall penalty is the sum over
d individual penalties, with one for each gene. For gene selection, the MCP
penalization is adopted. In single-dataset analysis, MCP has been shown to have
performance comparable to or better than some of the alternative penalties. For
a specific gene, its effects in the M studies are represented by a “group” of M
regression coefficients. Under the homogeneity model, the M studies are expected to
identify the same set of genes. Thus, within a group, no further selection is needed,
and so the L2 norm is adopted. Note that here we adopt the || · ||Σ j norm, which
rescales the regression coefficient vector by the covariance matrix Σ j , so that the
computation can be less ad hoc.

3 Heterogeneity Model and Penalized Selection

3.1 Heterogeneity Model

When multiple datasets are generated in independent studies, heterogeneity in-
evitably exists (Knudsen 2006). The degree of heterogeneity depends on the
differences in study protocols, profiling techniques, and many other factors. In can-
cer prognosis studies, the effort to unify the sets of identified markers across
independent studies has not been very successful (Cheang et al. 2008; Knudsen
2006). This can also be partly seen from the data analysis in Ma et al. (2011b). Such
observations raise the question whether the homogeneity model is too restricted and
motivates the heterogeneity model. Under the heterogeneity model, one gene can be
associated with prognosis in some studies but not others. This model includes the
homogeneity model as a special case and can be more flexible.

In addition, there are scenarios under which the homogeneity model is concep-
tually not sensible, but the heterogeneity model is. The first is where different
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studies are on different types of cancers (Ma et al. 2009). On the one hand,
different cancers have different prognosis patterns and different sets of markers.
On the other hand, multiple pathways, such as apoptosis, DNA repair, cell cycle,
and signaling, are associated with the prognosis of multiple cancers. The second
scenario is the analysis of different subtypes of the same cancer. Different subtypes
have different risks of occurrence and progression, and it is not sensible to reinforce
the same genomic basis. The third scenario is where subjects in different studies
have different demographic measurements, clinical risk factors, environmental
exposures, and treatment regimens. For genes not intervened with those “additional”
variables, their importance remains consistent across multiple studies. However, for
other genes, they may be important in some studies but not others.

3.2 Penalized Marker Selection

Under the heterogeneity model, the model and regression coefficients have two
dimensions. The first is the gene dimension as in other marker selection studies. The
second, which is unique to integrative analysis, is the study (dataset) dimension. In
marker selection, we need to determine whether a gene is associated with prognosis
in any study at all as well as in which studies it is associated with prognosis. Such
an objective demands two-way selection.

3.2.1 A Two-Step Approach

Since integrative analysis under the heterogeneity model calls for two-way selec-
tion, a natural strategy is to achieve the selection in two steps, with one step for
each way. The first step is to determine whether a gene is associated with prognosis
in any study. As β j = (β 1

j , . . . ,β M
j )′ represent the effects of gene j (= 1, . . . ,d) in

M studies, this step of selection amounts to determining whether ‖β j‖2 = 0. We
propose achieving this step of selection using the gMCP penalization approach.
With genes selected in the first step (i.e., { j : ||β j||2 = 0}), in the second step, we
determine which prognosis responses (studies) they are associated with. For this
step, we propose applying the MCP approach to each dataset separately. This step
conducts standard single-dataset analysis. Note that although both steps employ the
MCP penalties, they may have different tuning and regularization parameters.

3.2.2 Composite Penalization

In the analysis of a single dataset, when there is a grouping structure among
covariates, two-way selection can be achieved using composite penalization. The
idea is to use a group penalty for variable selection at the group level and a second
penalty for variable selection at the within-group level. The composite of the two
penalties will then be able to conduct variable selection at both levels.
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In integrative analysis with multiple datasets, we adopt a similar strategy. First
consider the 1-norm gMCP approach, where the penalty takes the form

P1−norm gMCP(β ) =
d

∑
j=1

ρ(‖β j‖1;
√

d jλ ,γ). (5)

‖β j‖1 = ∑M
m=1 |β m

j | is the L1 norm of β j, which can also be viewed as a Lasso
penalty. Other notations have similar implications as with gMCP. With this compos-
ite penalty, the outer penalty has a gMCP form. In integrative analysis, it conducts
selection at the gene level. The inner penalty is Lasso. For a gene with nonzero
effects, it identifies in which study(ies) the gene is associated with prognosis.

In (5), the Lasso penalty is adopted mainly because of its computational
simplicity. In single-dataset analysis, it has been shown that MCP can have better
properties (for example, more accurate selection) than Lasso. Motivated by such a
consideration, we propose the composite MCP (cMCP) approach, where the penalty
takes the form

PcMCP(β ) =
d

∑
j=1

ρ

(
M

∑
m=1

ρ(β m
j ;λ2,b);λ1,a

)

. (6)

Here λ1,λ2 are the tuning parameters, and a,b are the regularization parameters.

Computational algorithm for cMCP . Below we describe the computational
algorithm for cMCP. The two-step and 1-norm gMCP estimates can be computed in
a similar manner.

Consider the group coordinate descent algorithm. This algorithm is iterative and
optimizes over the regression coefficients of one gene at a time. It cycles through all
genes, and the overall iteration is repeated multiple times until convergence. Here
the key is update of estimates for a single group (gene). Unfortunately, the cMCP
approach does not have a simple form for updating individual groups. To tackle this
problem, we adopt an approximation approach. Consider update with the jth group.
By taking the first order Taylor series approximation about β j and evaluating at β̃ j

(the current estimate), the penalty as a function of β k
j is approximately proportional

to λ̃ jk|β k
j | where

λ̃ jk = ρ ′
(

M

∑
m=1

ρ(|β̃ m
j |;λ2,b);λ1,a

)

ρ ′(|β̃ k
j |;λ2,b). (7)

For update with each β k
j , we have an explicit solution:

β̂ k
j = fcMCP(z;λ ) = S1 (z,λ ) , (8)

with S1(z,λ ) = sgn(z)(|z|−λ )+, and z and λ to be defined below.
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Consider the following algorithm. With fixed tuning and regularization
parameters,

1. Initialize s = 0, the estimate β (0) = (β (0)′
1 , . . . ,β (0)′

d )′ = (0, . . . ,0)′, and the vector
of residuals r = Y −Xβ (0);

2. For j = 1, . . . ,d,

(a) Calculate λ̃ jk according to expression (7).

(b) Calculate z j = n−1X [·, j]′r + β (s)
j . X [·, j] is the n× d j submatrix of X that

corresponds to β j.

(c) For k = 1, . . . ,M, update β k(s+1)
j ← fcMCP(zk

j; λ̃ jk), where zk
j is the kth element

of z j.

(d) Update r← r−X [·, j](β (s+1)
j −β (s)

j ).

Update s← s+ 1.
3. Repeat Step 2 until convergence.

We use the L2 norm of the difference between two consecutive estimates smaller
than 0.001 as the convergence criterion. Convergence is achieved for the lung
cancer datasets within twenty iterations. For the proposed methods, in the objective
function, the first term is continuously differentiable and regular in the sense of
Tseng (2001). The penalty term is separable. Thus the coordinate descent estimate
converges to a coordinate-wise minimum of the first term, which is also a stationary
point. Our limited experience suggests that the proposed computational algorithms
are affordable. Among the three approaches, cMCP has the highest computational
cost. With fixed tunings, the analysis of the lung cancer datasets (Sect. 4) takes about
40 s using a regular desktop PC.

3.2.3 Tuning Parameter Selection

The proposed methods involve the following tuning/regularization parameters: two-
step approach: (λ ,γ) for gMCP and possibly different (λ ,γ) for MCP, 1-norm
gMCP: (λ ,γ), and cMCP: (λ1,λ2,a,b).

Properties of the estimates are jointly determined by the tuning/regularization
parameters. Generally speaking, smaller values of a and b (γ in MCP and gMCP)
are better at retaining the unbiasedness of the MCP penalty for large coefficients, but
they also have the risk of creating objective functions with a nonconvexity problem
that are difficult to optimize and yield solutions that are discontinuous with respect
to λ1 and λ2 (λ ). It is therefore advisable to choose values of a and b (γ) that are big
enough to avoid this problem but not too big. As suggested in Breheny and Huang
(2011) and Zhang (2010), we have experimented with a few values for a and b (γ),
particularly including 1.8, 3, 6, and 10.

In our numerical study, we select tuning parameters via V-fold cross validation
with V = 5. Our limited unpublished simulation suggests that a = 6, b = 6 and
γ = 6 lead to the best performance. We note that such a result does not indicate the
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universal superiority of those values. In practice, searching over multiple possible
values is still needed. With λ (λ1,λ2), one may expect that its value cannot go down
to very small values since there are regions not locally convex (Breheny and Huang
2009; 2011). The criteria over non-locally convex regions may go up and down. To
avoid the unexpectedness of such regions, we select λ (λ1,λ2) where the criterion
first goes up (see Breheny and Huang 2011 for related discussions).

4 Analysis of Lung Cancer Prognosis Studies

Lung cancer is the leading cause of death from cancer for both men and women in
the USA and in most other parts of the world. Non-small-cell lung cancer (NSCLC)
is the most common cause of lung cancer death, accounting for up to 85% of such
deaths (Tsuboi et al. 2007). Gene profiling studies have been extensively conducted
on lung cancer, searching for markers associated with prognosis. Three studies are
described in Xie et al. (2011). The UM (University of Michigan Cancer Center)
study had a total of 175 patients, among whom 102 died during follow-up. The
median follow-up was 53 months. The HLM (Moffitt Cancer Center) study had a
total of 79 subjects, among whom 60 died during follow-up. The median follow-
up was 39 months. The CAN/DF (Dana-Farber Cancer Institute) study had a total
of 82 patients, among whom 35 died during follow-up. The median follow-up was
51 months. We refer to Xie et al. (2011) and references therein for more details on
study designs, subjects’ characteristics, and profiling protocols; 22,283 genes were
profiled in all three studies.

In previous studies such as Xie et al. (2011), the three datasets were combined
and analyzed. Such a strategy corresponds to a special case of the homogeneity
model in the present study. As the three datasets were generated in three independent
studies, heterogeneity is expected to exist across datasets. This can be partly seen
from the summary survival data and profiling protocols. Here we assume the
heterogeneity model and analyze using the two-step method (Table 1), 1-norm
gMCP (Table 2), and cMCP (Table 3). Note that with all methods, the small
magnitudes of regression coefficients are caused by the “clustered” log survival
times. The estimates suggest that different datasets may have different prognosis-
associated genes. This partly explains why published studies have failed to unify
the identified markers across different lung cancer prognosis datasets. As described
in Sect. 1, multiple factors may contribute to this heterogeneity. Without having
access to all the experiment details, we are not able to determine the exact cause of
heterogeneity. Although there are overlaps, different approaches identify different
sets of genes. Such an observation is not surprising and has been made in published
studies such as Ma et al. (2011b).

To provide a more comprehensive description of the three datasets and various
methods, we also conduct the evaluation of prediction performance. Although in
principle marker identification and prediction are two distinct objectives, evaluation
of prediction performance can be informative for marker identification. In particular,
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Table 1 Two-step method: identified genes and their estimates.

Probe Gene UM HLM CAN/DF

200041 s at DDX39B 0.004 0.027
200642 at SOD1 0.016 0.016

200650 s at LDHA −0.007 0.044
200694 s at DDX24 −0.031
200747 s at NUMA1 −0.016 −0.022
200772 x at PTMA −0.029 0.034 −0.025
201021 s at DSTN −0.050
201033 x at RPLP0 −0.006
201508 at IGFBP4 0.0004 −0.050

201523 x at UBE2N 0.017
201568 at UQCRQ 0.016 0.000 0.002
201789 at Hs.59719 −0.058

201875 s at MPZL1 −0.015 0.001
202081 at IER2 0.0002 −0.026

202162 s at CNOT8 0.006 0.017 0.001
202176 at ERCC3 0.006

Table 2 1-norm gMCP: identified genes and their estimates.

Probe Gene UM HLM CAN/DF

200041 s at DDX39B 0.005
200633 at UBB −0.001
200642 at SOD1 0.0004 2.8E-05

200674 s at RPL32 0.002
200693 at YWHAQ −0.003

200694 s at DDX24 −0.002
200724 at RPL10 0.0005

200772 x at PTMA −0.0002 −0.002
200804 at TMBIM6 −0.001
200972 at TSPAN3 −0.003

200973 s at TSPAN3 0.003
201021 s at DSTN −0.016
201033 x at RPLP0 −0.0005
201173 x at NUDC 0.003
201201 at CSTB 0.005
201508 at IGFBP4 −0.001

201611 s at ICMT −0.001
201645 at TNC 0.003

201729 s at KIAA0100 5.0E-05
201789 at Hs.59719 −0.012
202081 at IER2 −0.002
202146 at IFRD1 −0.0001
202176 at ERCC3 −0.002

202183 s at KIF22 0.002
202413 s at USP1 −0.001



Integrative Analysis of Multiple Cancer Prognosis Datasets 267

Table 3 cMCP: identified genes and their estimates.

Probe Gene UM HLM CAN/DF

200041 s at DDX39B 0.005
200633 at UBB −0.001

200674 s at RPL32 0.002
200693 at YWHAQ −0.005

200772 x at PTMA −0.001
200972 at TSPAN3 −0.002

200973 s at TSPAN3 0.002
201021 s at DSTN −0.017
201033 x at RPLP0 −0.0003
201173 x at NUDC 0.001
201201 at CSTB 0.004
201645 at TNC 0.001
201789 at Hs.59719 −0.011
202176 at ERCC3 −0.0003

202183 s at KIF22 0.001
202413 s at USP1 −0.0002

if prediction is more accurate, then the identified markers are expected to be more
meaningful. For prediction evaluation, we adopt a random sampling approach as
in Ma et al. (2009). More specifically, we generate training sets and corresponding
testing sets by random splitting data (with sizes 3:1). Estimates are generated using
the training sets only. We then make prediction for subjects in the testing sets.
We dichotomize the predicted linear risk scores X β̂ at the median, create two risk
groups, and compute the logrank statistic, which measures the difference in survival
between the two groups. To avoid extreme splits, this procedure is repeated 100
times. The average logrank statistics are calculated as 2.17 (two-step), 4.77 (1-norm
gMCP), and 3.70 (cMCP). 1-norm gMCP is the only approach that can separate
subjects into groups with significantly different survival risks (p-value = 0.029).
Based on this prediction evaluation, genes and estimates presented in Table 2 are
suggested as the final results for these three datasets.

5 Discussion

In cancer genomic research, multi-dataset analysis provides an effective way to
overcome certain drawbacks of single-dataset analysis. In most published studies, it
has been reinforced that multiple datasets share the same set of prognosis-associated
genes, that is, the homogeneity model. In this study, for multiple cancer prognosis
datasets, we consider the heterogeneity model, which includes the homogeneity
model as a special case and can be less restricted. This model may provide a way
to explain the failure to unify cancer prognosis markers across independent studies
(Knudsen 2006; Cheang et al. 2008). Under the heterogeneity model, we propose
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three penalization methods for marker identification. Such methods are intuitively
reasonable and computationally feasible. Analysis of three lung cancer studies
demonstrates the practical feasibility of proposed methods.

Under the heterogeneity model, marker selection needs to be conducted in two
dimensions. Methods beyond penalization, for example thresholding and boosting,
may also be able to achieve such selection. Comprehensive investigation and com-
parison of different approaches are beyond the scope of this article. The proposed
methods are based on the MCP penalty, which has been shown to have satisfactory
performance in single-dataset analysis. We suspect that it is possible to develop
similar approaches based on, for example, bridge and SCAD penalties. As in single-
dataset analysis there is no evidence that such penalties are superior to MCP, such a
development is not pursued.
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Part VI
Safety and Risk Analysis



On Analysis of Low Incidence Adverse Events
in Clinical Trials

G. Frank Liu

Abstract In drug or vaccine development, some adverse events (AEs) of interest
may occur infrequently. Because of their clinical importance, those AEs may
be studied in a clinical trial with large sample size, long-term follow-up, or in
meta-analysis of combined data from multiple trials. The conventional summary
and analysis methods based on frequency of first occurrence and comparing the
proportion difference between treatment groups may not be the best approach
because (1) the drug exposure information is not considered in the frequency
summary and analysis and (2) any recurrence of an event in the long-term follow-up
is not accounted for. When recurrence events are considered, issues on the analysis
such as intra-subject correlation among the recurrence events, over-dispersion, and
zero inflation may need to be considered. In this paper, we review several approaches
for summary and analysis of safety data in these settings. Considerations are
given on the assumptions of the risk function, adjustment for differential follow-
up, and handling of over-dispersion and excessive zero for low incidence events.
Applications to drug and vaccine clinical trials will be used for demonstration.

1 Introduction

Safety analysis is critically important for clinical trials in testing new drug,
biologic, or vaccine products. Sponsors are required to assess the safety profile of
a new product by quantifying the incidence of potential adverse events (AEs) and
comparing that with an active and/or placebo control. An overview of collecting and
analysis of safety data in clinical trials can be found in Chuang-Stein (1998).
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In clinical trials, an AE can be any unfavorable and unintended sign, symptom,
or disease associated with the use of the study products. For some AEs of special
interest, the incidence rates (i.e., the probability of observing an AE in a given
patient-time unit) can be low. Because of clinical importance, these AEs may be
studied in clinical trial setting before the product is approved. Due to low incidence,
a study with large sample size and long-term follow-up, or a meta-analysis which
combines multiple trials may be used. The conventional summary and analysis
methods based on frequency of first occurrence and comparing the proportion
difference between treatment groups may not be the best approach because (1) the
drug exposure information is not considered in the frequency summary and analysis,
which can be issues for meta-analysis or studies with differential follow-up and (2)
any recurrence of an event in the long-term follow-up is not accounted for.

For low incidence events, the AE count observed in long-term follow-up can
be approximated by a Poisson process or a sum of sequential binary outcomes.
Statistical models such as Poisson regression is often used to estimate and compare
the incidence rates. Several issues on analyzing these AEs include intra-subject
correlation among the sequential outcomes, over-dispersion, and zero inflation.
In this paper, we review several approaches for summary and analysis of safety
data under these settings. Considerations are given on the assumptions of the risk
function, adjustment for differential follow-up, and handling of over-dispersion and
excessive zero for low incidence events. Both exposure-adjusted incidence rate and
estimates from over-dispersion and zero inflation statistical models for counts data
will be discussed. Applications to drug and vaccine clinical trials will be used for
demonstration.

2 Common Measures for Analysis of Adverse Events

2.1 Crude Percentage

Adverse events are generally tabulated and listed for randomized clinical trials. One
of the most common measures for tabulation is the crude percentage of AEs. It is
calculated as

Crude% = n/N× 100%, (1)

where N is the number of patients who took at least one dose of study product and
n is the number of patients with the specific AE observed during the follow-up.

The crude percentage provides a simple and easily understandable measure.
The unit for the calculation is patient. It can be interpreted as an estimate of
the cumulative probability of having an event at the end of the follow-up period
assuming that all subjects in the study are followed to the end. It may underestimate
the cumulative probability if some subjects discontinue from the study early. If the
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proportions of discontinuation or the follow-up differ between treatment groups, the
treatment comparison based on the crude percentage could be biased.

By definition, the crude percentage does not take into account for duration of
follow-up or any recurrent event observed for a patient, which may be fine for short-
term studies in which almost all patients may be followed for the duration of the
study. In long-term studies, however, it may not be an optimal measure because the
follow-up time may be different due to dropouts.

2.2 Exposure-Adjusted Incidence

To take account for differential follow-up, an incidence rate is often used which
is defined as the number of subjects with a specific AE divided by the total
exposure time (Liu et al. 2006; Siddiqui 2009). It is also called the exposure-adjusted
incidence rate (EAIR), specifically,

EAIR = n/∑ ti× 100, (2)

where n is the number of patients with the AE and ti is the exposure time (time-
to-first AE or follow-up time if the patient has no AE) for patient i. The EAIR is
interpreted as number of AEs per 100 patient-time (e.g., patient-year).

The definition of EAIR is based on the assumption that the occurrence of a
specific AE follows an independent Poisson process; therefore, event occurs with a
constant rate over time. While this may not be appropriate for AEs that usually occur
early in the study (e.g., allergic reactions) or events whose hazard rates increase or
decrease over time, it can be a reasonable approximation for low incidence AEs in
long-term studies.

2.3 Exposure-Adjusted Overall Incidence

In the definition of EAIR, only the first event and time-to-first event are considered.
When recurrent events are observed in long-term studies, an overall incidence rate is
another alternative measure which accounts for all recurrent events and follow-up.

In general, there is no simple explicit formula to calculate the overall incidence
rate. Statistical models such as a Poisson regression may be used to estimate the
overall incidence rate and to compare the rates between treatment groups. In clinical
applications, the recurrent events may be correlated unless the events follow a
Poisson process; therefore, the counts may have over-dispersion or zero inflation
problems. We will discuss these statistical models and treatment comparisons in the
next section.
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3 Analysis Methods for Low Incidence AEs

3.1 Comparing Crude Percentage or EAIRs

For comparing percentages or EAIRs of a specific AE between 2 treatment groups,
several metrics may be considered, including risk difference (p1− p2) and relative
risk (p1/p2). For percentages of AEs, odds ratio (p1(1− p2)/(1− p1)/p2) is another
possible metric. The choice of a metric is somewhat arbitrary but may provide quite
different interpretations. For example, if the incidence of a particular AE is 1% on
placebo compared to 2% on test drug, the relative risk increase is 100%, while the
risk difference is 1 percentage point. While both are legitimate summaries, the risk
difference is often preferred because of its simplicity and can always be calculated.
For rare AEs, the ratio and odds ratio may not be defined if there are no events in
the control treatment group. Therefore, we will focus our discussions on the risk
difference in this paper.

For proportion difference, it is assumed that ni∼Binomial(Ni, pi), i= 1,2. The
point estimate for θ = p1− p2 is θ̂ = n1/N1−n2/N2. To construct a 95% confidence
interval (CI) for θ , both exact and approximation methods are well studied (see,
e.g., Chan and Zhang 1999; Chen 2002; Newcombe 1998). When the sample sizes
for studying low incidence AEs are relatively large, the exact methods may not
be feasible computationally. Among the approximation methods, Miettinen and
Nurminen’s (1985) method performs well as studied in Newcombe (1998) for
proportion difference and Liu et al. (2006) for EAIR difference. Specifically, for
proportion difference, the 95% CI is solved from

χ2
0.95 =

(p̂1− p̂2− δ )2

Ṽ

where p̂i = ni/Ni, Ṽ =
[

p̃1(1− p̃1)
N1

+ p̃2(1− p̃2)
N2

]
N1+N2

(N1+N2−1) , and p̃1 is the maximum

likelihood estimate of p1 under p̃1− p̃2 = δ .
For the difference of two EAIRs, it is assumed that n1 and n2 follow independent

Poisson distributions with parameters λ1T1 and λ2T2, respectively. The point
estimate for the EAIR difference is θ̂ = n1/T1− n2/T2. Its 95% CI can be obtained
similarly using the Miettinen and Nurminen’s method (see Liu et al. 2006 for
detailed formulas).

Example 1: A meta-analysis is conducted for a drug A (for confidentiality
purpose the actual drug name is not disclosed) on comparing 3 gastrointestinal AEs
that are clinically interested for the product. The meta-analysis included more than
17 trials, with duration of follow-up from 12 weeks up to 24 months. No recurrent
events were collected in these studies. Table 1 summarizes the crude percentages of
AEs and EAIRs, and their corresponding 95% CIs for the differences between drug
A and control B.
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Table 1 Meta-analysis of three gastrointestinal adverse events for drug (A) versus control (B)

The crude percentages for the gastrointestinal AEs were low, around 1.1–3.9%.
The percentages were similar between the test drug and control groups as the 95%
CIs containing 0. However, because of different duration of follow-up in studies in
the meta-analysis, it is not easy to interpret the crude percentage.

The EAIRs were around 1.5–5.2 per 100-patient year, which had a clear clinical
interpretation. The values were slightly higher than the crude percentages because
the averaged follow-up time for the studies in the analysis was less than a year. The
EAIRs between treatment groups were also similar based on the 95% CIs.

Example 2: In a safety study for a vaccine, the primary endpoint is any
serious adverse event (SAE) within 6 months post vaccination. In this study, the
investigators were asked to make phone calls every 2 months to collect SAEs.
Recurrent and multiple SAEs were collected throughout the study. In this analysis,
we only consider the first SAE and summarize the crude percentage and EAIR in
Table 2. The analysis of recurrent events will be considered in the next section.

With the deliberated follow-up plan in this vaccine study, most of the subjects
completed the 6-month follow-up. Therefore, the overall follow-up time in patient-
year was about half of the total number of subjects in the study. The values of EAIRs
were about 2 times that of the crude percentages. The conclusions for the treatment
comparisons were similar using either crude percentage or EAIR. No significant
difference was seen from the analyses.

3.2 Comparing Overall Incidence Rates for Counts Data

When recurrent events are collected, both count of AEs and duration of follow-up
are considered in statistical models for estimating the overall incidence rates. It is
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Table 2 Analysis of serious adverse events for vaccine (A) versus control (B)

likely that the recurrent events may be correlated; in that case the Poisson regression
may not be appropriate because of over- or under-dispersion problem. Another issue
for low incidence AEs is that majority patients might not report any AEs, which
results in zero-inflated distribution.

To address the over-dispersion and zero inflation, several statistical models are
proposed in the literature, including Poisson model with over-dispersion, negative
binomial model, Poisson model with zero inflation, and negative binomial model
with zero inflation (e.g., Bae et al. 2005). For these models, it is important to
understand the meaning of the parameters in the models. Suppose μ is the mean
for counts Y, then a Poisson regression is often represented by a log linear model

f (y) = μye−μ/y!,y≥ 0

log(μ) = α +β I(trt=A),var(Y ) = μ

where I(E) = 1 if event E is true, 0 otherwise. From this model, the means for
treatment groups A and B are eα+β and eα , respectively, and β is the log risk ratio
between treatment groups A and B.

With similar notations, the other models can be written as follows.

1. Poisson model with over-dispersion (P w OD)

Y ∼ Poisson(μ), var(Y ) = ϕμ

where ϕ > 0 is the dispersion parameter.
2. Poisson model with zero inflation (ZIP)

f (y) =

{
ω +(1−ω)e−μ, y = 0
(1−ω)μye−μ/y!, y > 0

, logit(ω) = ξ +ηI(trt=A)

where ω is a probability for excessive zero.
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Table 3 Incidence, incidence ratio, and incidence difference under different statistical models

3. Negative binomial model (NB)

f (y) = Γ(y+ 1/k)(kμ)y/Γ(y+ 1)/Γ(1/k)/(1+ kμ)y+1/k, y≥ 0

where k> 0 is a shape parameter for NB model.
4. Negative binomial model with zero inflation (ZINB)

f (y) =

{
ω +(1−ω)(1+ kμ)−1/k, y = 0

(1−ω)Γ(y+ 1/k)(kμ)y/Γ(y+ 1)/Γ(1/k)/(1+ kμ)y+1/k, y > 0

In all these models, the meaning of the regression parameters α and β can be
different. As summarized in Table 3, for Poisson, Poisson w OD, or NB models,
β is the log of incidence ratio and eα+β − eα is the incidence difference. For zero-
inflated models (ZIP or ZINB), the incidence ratio or incidence difference is also
related to the zero inflation parameters ξ and η . Therefore, we cannot simply test
parameter β alone for comparing the treatment difference. A more appropriate
comparison should be based on the incidence ratio or difference between groups,
and constructing corresponding confidence intervals.

In order to calculate confidence interval for the incidence difference under these
models, we consider the effective sample size approach (Li et al. 2006; Liu 2012).
Suppose μ̂ and SE(μ̂) are point estimate and SE for μ of a given treatment group
from an analysis model, we define effective follow-up and events as

T̂ = μ̂ / [SE(μ̂)]2, n̂ = T̂ × μ̂.

Apply this formula to both treatment groups A and B, we will get
(n̂A, T̂A) and (n̂B, T̂B), then the 95% CI for incidence difference is obtained using
Miettinen and Nurminen’s method.

Remark: Among these models, it is suggested that the NB-based models may
be more natural to account for over-dispersion (Keene et al. 2007). The NB model
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assumes that the count for each individual follows a Poisson process with different
incidence rate, which, as a set, are distributed according to a gamma distribution.

4 Application

In the vaccine study example described above, a subject may report multiple SAEs
during the 6-month follow-up. Table 4 summarizes the number of subjects reporting
SAEs by number of SAEs reported. It shows that quite a few subjects reported more
than 1 SAEs.

To account for all SAEs observed in the study, a naı̈ve estimate for the overall
incidence rate would be the total SAEs divided by the total follow-up time. Its 95%
CI can be obtained using the Miettinen and Nurminen’s method (see Liu et al. 2006).
We also use statistical models described in the previous section in this data. Table 5
presents the analysis results including the naı̈ve method.

The results show that the naı̈ve method is exactly the same as that from Poisson
regression. Without considering the potential over-dispersion, the variability from
the Poisson regression or zero-inflated Poisson model may be underestimated. As
a result, the 95% CIs from those models were narrow and did not contain 0,
which may lead to conclude that the rates were different between treatment groups.
However, when over-dispersion was considered in the models of Poisson with OD,
NB, or ZINB, the resulted 95% CIs all contained 0 implied no significant difference
between the treatment groups.

Table 4 Number of subjects by reported number of SAEs and treatment group

Table 5 Estimated overall incidence rates and incidence rate difference by statistical method
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5 Conclusion Remarks

For low incidence AEs, a study with large sample size and long-term follow-up,
or meta-analysis which combines multiple trials may be used. In this case, it is
important to consider exposure and account for recurrent events in the analyses.

To account for exposure, EAIR is one commonly used measure for the incidence
based on time-to-first event. To further account for recurrent events, an overall
incidence rate may be estimated from statistical models such as Poisson or negative
binomial regression. In many applications, a simple overall incidence rate or Poisson
model may not be appropriate due to over-dispersion. A model adjusted for over-
dispersion and zero inflation may be more suitable, e.g., zero-inflated Poisson model
with over-dispersion, or zero-inflated negative binomial model. Some alternative
models such as zero-inflated hurdle models may also be considered (see Yang et al.
2012).

It is noticed that the analysis based on exposure-adjusted incidence or overall
incidence requires a constant hazard assumption, which may be approximately
reasonable when the incidence rate is low. However, when the constant hazard is
concerned in an application based on clinical or biological reasons, survival analysis
methods such as Kaplan-Meier estimate or parametric time-to-event models may be
considered. In this case, a simple summary statistic such as average incidence rate
over the study period may not carry sufficient information to characterize the safety
profile. The duration of follow-up, cumulative probability, or hazard function over
time may be considered to provide a more complete profile of safety. Recently,
a nonparametric approach called the mean cumulative function (MCF) has been
proposed to provide statistical inference on recurrent AE profiles in randomized
clinical trials. The details can be found in Siddiqui (2009) and Barker (2010).
Finally, a related topic to low incidence AE analysis is safety signal detection,
which is out of the scope for this paper. Many research papers are available in
pharmacovigilance literature (see, e.g., Almenoff et al. 2005).
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Statistical Power to Detect Cardiovascular
Signals in First-in-Human Trials:
Is It Really Small?

Ouhong Wang, Mike Hale, and Jing Huang

Abstract It is widely accepted that, due to the small size of first-in-human (FIH)
trials, safety signals are difficult to detect. The chances of detecting early signals
in cardiovascular safety, including heart rate, blood pressure, QT prolongation, etc.,
have long been considered to be remote. However, much of this belief is based
on an analysis involving pair-wise comparisons of very small cohorts. When dose
is considered as a continuous variable, dose–response becomes the main focus
and power can be significantly improved with appropriate testing procedures. In
this research, we try to quantify through simulations the power in this setting and
demonstrate that cardiovascular safety signals in general have reasonable statistical
power for early detection when using a dose–response analysis. The simulations
account for different magnitudes of effects and various scenarios including linear,
log-linear, and Emax relationships between dose and safety signal, together with
multiple parametric and nonparametric tests.

1 Introduction

Cardiovascular safety signal is a very important aspect that we need to pay special
attention to in all phases of clinical trials. Much effort has been applied to try
detecting such signals as accurately as possible and as early as possible. Yet, it
has long been thought that the chances of detecting these signals are low in first-in-
human (FIH) studies due to the inherently small sample sizes of the study design.
Such belief often is based on analysis using pair-wise comparison between the
placebo and a particular dose group without considering the possibility of dose–
response. As illustrated in Fig. 1 using variability estimates from empirical data, in
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Fig. 1 Sample size required for 80% power at 2-sided α = 0.05

order to achieve 80% power, pair-wise comparisons require sample sizes that are
multiple-fold larger than those typically seen in FIH.

However, it is more informative to examine the safety signal relationship with
dose as a continuum. When all doses in the FIH are considered in this manner, power
naturally increases as the variability estimate for the dose–response relationship
(e.g., slope in the linear dose–response case) is reduced compared to the intra-
subject variability. It is not clear, though, what the magnitude of the power gain
could be between these two analysis methods. In this research we use simulation to
answer the question about how much better we could detect these important safety
signals in the sense of power if we treat dose as a continuous variable and consider
all doses together.

2 Method

2.1 Simulation Setup

The general framework of FIH studies is used. Specifically, we assume subjects are
dosed sequentially in different cohorts, with each cohort using a dose higher than
the previous one. Within each cohort, subjects are randomized to either placebo or
active drug. Dose escalation is by a fixed factor, or equivalently, by a fixed amount
on the log-scale.

The measurement of interest is change from baseline of a cardiovascular safety
signal which could be heart rate, blood pressure, QT prolongation, etc. Assume that
the change within each dose group follows a normal distribution and the variability
(i.e., standard deviation) of these changes is SD=σ across all dose groups. Assume
further that in the placebo group, the change from baseline has a mean of 0, and in
the highest dose group, the change from baseline has a mean of A. We explore a
range of A from the following: A= {0.2–2 by 0.2}×σ . In actual applications, data
may be re-expressed, such as log transformation, if needed to yield approximate
normality.
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For a typical FIH study, doses of D, aD, a2D, a3D, . . . , ad− 1D are utilized in
a cohort design with 3:1 active-to-placebo ratio. While this general setup allows
flexibility in the dosing pattern, in this particular simulation we set a= 3, d= 6,
and D= 1 which produce corresponding doses of 0 (placebo), 1, 3, 9, 27, 81, and
243. In this simulation, we examine cohort sizes of n= 4 and n= 8, which are two
representative setups in FIH studies.

Nine models are considered to describe the true underlining relationship between
the escalating dose and the change from baseline of each dose group: linear, log-
linear, and Emax model following effect= dose×A/(ED50 + dose) where ED50 = 1/b
of max dose, and b= {2, 3, 4, 5, 10, 20, 40}.

For each of these scenarios, the simulation is run for the two cohort sizes: n= 4
and n= 8; and the magnitude of mean change (for the highest dose group) is set at
10 evenly spaced points: 0.2σ , 0.4σ , 0.6σ , . . . ., 2σ , with the magnitude of mean
changes for the other doses dictated by the nine models above. After the mean effect
for each dose is determined, we then simulate change from baseline values 1,000
times under normal distribution with the estimated mean and the common σ . Power,
defined as the proportion of the 1,000 trials that reach statistical significance at 2-
sided α = 0.05, is calculated using three different statistical tests:

1. Jonckheere-Terpstra test (J-T).
2. Trend test for the slope of the linear dose–response being 0.
3. Trend test for the slope of the log-linear dose–response being 0.

While the latter two use linear regression models to test specific trends between
dose and response, the J-T test is a nonparametric trend test. The alternative
hypothesis for the J-T test is that there is a priori ordering of the populations.
Letting θ i be the population median for the ith population (i= 1 to K), the null
and alternative hypotheses can be conveniently expressed as:

H0 : θ1 = θ2 = . . .= θK

HA : θ1 ≤ θ2 ≤ . . .≤ θK

with at least one inequality being strict. The test statistic derives from a comparison
of how many data points are in order versus out of order in the sense of the
alternative hypothesis. Approximation to standard normal distribution is used to
infer test significance (Hollander et al. 1973; Kotz et al. 2006).

Note that the placebo subjects are combined to form one placebo group during
analysis: for cohort size of n= 4, the placebo group will have 6 samples while the
rest of the dose groups have 3 each; for cohort size of n= 8, the placebo group
will have 12 samples while the rest of the dose groups have 6 each. Also note that
for the log-linear trend test, we assign a hypothetical dose to the placebo group
as D/a to make the log transformation feasible and the gap between doses evenly
spaced in the log-scale. In this particular simulation D/a= 1/3. In addition, using
these models, the power is independent of σ ; and for the ease of implementation
we take σ = 7.5, which is a reasonable value for heart rate variability in FIH studies
observed.
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Fig. 2 Various dose-response scenarios

2.2 Adding Hill Parameter in the Emax Model

To investigate further the patterns between linear and log-linear trend we introduce
the Hill parameter in the Emax model to provide a gently increasing S-shaped curve:

Effect =
doseH ×A

EDH
50 + doseH

Figure 2 shows the effect of adding the Hill parameter. When ED50 is small,
the dose–response behavior is similar to the log-linear trend. When ED50 is large
and H is large, effect goes up slowly at the beginning and increases more rapidly
in the middle dose range, exhibiting a more obvious S-shape which is overall better
approximated by linear trend than anything else. When ED50 is large and H is small,
the pattern is in-between linear and log-linear curves.

To understand the behavior of power in the presence of Hill parameter, we first
looked at the Emax model with Hill parameter h= 2, sample size of 2:6 for each
cohort, and effect of maximum dose being 1σ . We examined three ED50 cases where
it falls on 9, 27, and 81, respectively. We then fixed the ED50 at a relatively large
value of 81 and examined a range of Hill parameters spanning from 0.5 to 5 with
0.5 increments.
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3 Results

The simulation results of the nine scenarios are summarized graphically that
represent the power for all combinations of A, n, effect scenario, and statistical
tests. Specifically, there will be one plot for each scenario, thus nine plots in total.
Within each plot, the x-axis is the magnitude of the drug effect from 0.2σ to 2σ for
the highest dose, and the y-axis is the estimated power from the simulation (i.e., the
proportion of the 1,000 tests that has 2-sided p-value <0.05). We use solid lines to
indicate the results from the smaller cohort size of n= 4 and dashed lines to indicate
the results from the larger cohort size of n= 8. Different colors are used to indicate
different tests employed: red for linear trend test; green for log-linear trend test, and
blue for the Jonckheere-Terpstra test. Figure 3 represents the linear relationship;
Fig. 4 represents the log-linear relationship; Figs. 5–11 represent the Emax model
where ED50= 1/b of max dose, and b= {2, 3, 4, 5, 10, 20, 40}.

When the underlining dose–response relationship is linear, the linear trend test
should naturally perform the best and the graph shows that clearly. With cohort size
4 (i.e., solid lines), when the effect is small (0.2σ ), the power across the three tests
is all low (around 5%). The difference becomes more noticeable with increasing
effect size, and the advantage of the appropriate linear test becomes obvious with
moderate increase in effect size, while the performance of log-linear test and J-T
test remains similar until around 0.8σ . At the maximum effect of 2σ , the power
of each test also reaches its highest, respectively, and the difference among tests is
the largest as well: 85.2% for linear trend test, 58.9% for log-linear trend test, and

Power with underlying linear relationship between dose and vital sign change
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243; 1000 simulations
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cohort size = 4 Jonckheere-Terpstra test
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Power with underlying loglinear relationship between dose and vital sign change
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Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/2 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243; 1000 simulations
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Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/3 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243; 1000 simulations
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Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/4 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243: 1000 simulations
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Fig. 7 Emax model with b= 4

47.6% for J-T test. When the sample size doubles from n= 4 to n= 8, the power
increases as well. The linear test consistently provides the best power, while the
log-linear test is slightly better than the J-T test. The biggest advantage of the linear
test is around 1.2–1.4σ , after which, the power of the linear test gradually plateaus.
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Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/5 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243: 1000 simulations
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Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/10 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243: 1000 simulations
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Fig. 9 Emax model with b= 10

Similar to the linear case, when the underlining dose–response relationship is
log-linear, the log-linear trend test should naturally perform the best and the graph
again shows that clearly. In this case, the log-linear test and the J-T test actually
provide similar power with log-linear test being slightly and consistently better,
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Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/20 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243: 1000 simulations
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Fig. 10 Emax model with b= 20

Power with underlying Emax relationship between dose and vital sign change: ED50 = 1/40 max dose
Cohort with 3:1 active-to-placebo ratio at dose = 1, 3, 9, 27, 81, 243: 1000 simulations
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Fig. 11 Emax model with b= 40

while the linear test has substantially worse power. With the smaller cohort size,
the difference between the log-linear test and the J-T test is less than 5% across the
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whole range of effect sizes. The drop-off of power for the linear trend test could
be as high as 23.9% compared to log-linear test and 21.2% compared to the J-T
test. When the cohort size doubles to n= 8, the power increases as well. Now the
difference between the log-linear trend test and the J-T test is further reduced with
the biggest difference being 4.4% and in the majority of the cases the difference is
less than 1.5%. The drop-off of power for the linear test is now 25.9% compared
to the log-linear test and 23.1% compared to the J-T test. With the smaller cohort
size, the log-linear test achieves power higher than 80% (power= 83.2%) at effect
size 1.8σ . The linear trend test only reaches power of 66.9% with an effect size of
2σ . With double the cohort size, the log-linear test achieves power higher than 80%
(power= 82.9%) at effect size of 1.2σ and power higher than 90% when the effect
size is larger than 1.4σ . The J-T test reaches a power of 80.1% when the effect size
is 1.2σ , and over 90% when the effect size is larger than 1.4σ . As a comparison,
the linear trend test only reaches power over 80% with effect size of 1.6σ and 90%
with the largest effect size of 2σ . In the set of scenarios using Emax model, effect
goes up in an Emax fashion as following, where b= 2, 3, 4, 5, 10, 20, 40:

Effect = Dose× A
ED50 +Dose

= Dose× A
MaxDose

b +Dose

When b is very small (b= 2), the dose–response behavior is more like the linear
scenario. Not surprisingly, the linear test shows the best power followed by the log-
linear test, then the J-T test. As b gradually increases to 3, 4, and 5, the power of
the three tests is similar, while the sample size drives the difference in power. It is
noticeable though that the linear trend test also gradually loses power relative to the
other two tests. When b is 10, 20, and 40, the dose–response relationship is closer
to the log-linear pattern and the log-linear test renders the best power, followed by
the J-T test, while the linear test performs more and more poorly. The difference in
power between the linear test and the other two is bigger as b gets larger. Note that
the log-linear trend test consistently performs better than the J-T test, although the
power difference is not dramatic.

We then look at Emax model with Hill parameters. We first look at h= 2, with
cohort size of 8 (6:2). We explore three ED50 cases: 9, 27, and 81. The relationship
between the change from baseline and dose is shown in Fig. 12. The left panel shows
the dose using log-scale on the x-axis, while the right panel shows the dose using
raw scale.

The powers of the three tests on these different scenarios are all summarized in
Table 1.

Among the Emax models with h= 2, except for the case of high ED50 (81), log-
linear test has the best power, while J-T test is the second best. For the case of
ED50 dose= 81, linear test has the best power followed by log-linear test. In all
five scenarios, J-T test never produces the best power. When h is less than 1, we
use h= 0.5 as an illustrating example, the trend is very close to log-linear, while
the magnitude of change (i.e., the slope and the change at the highest dose) is
substantially smaller compared to Emax model with greater than 1 hill parameter
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Table 1 Power of three tests using different Hill parameters and different ED50

Power

Emax   
(h=0.5, 
ED50=9)

Emax  
(h=0.5, 

ED50=27)

Emax  
(h=0.5, 

ED50=81)

Emax   
(h=2, 

ED50=9)

Emax  
(h=2, 

ED50=27)

Emax  
(h=2, 

ED50=81)
Linear 
Model

Log-
linear 
Model

Linear Test 0.297 0.246 0.239 0.509 0.583 0.551 0.527 0.4
Log-linear Test 0.528 0.386 0.31 0.815 0.655 0.41 0.345 0.621
J-T Test 0.49 0.376 0.289 0.775 0.601 0.36 0.296 0.57

and the same ED50. As a result, the overall power is worse compared to the
h= 2 scenarios. The log-linear test and the J-T test provide the best performance
with the log-linear test being slightly and consistently better, while the linear test
performance is substantially worse. The fact that the J-T test never produces the
best power may seem surprising at the first look. Recall that our simulation setup
had the low doses at 1, 3, 9, and 27. With a uniform standard deviation of σ and
the maximum effect size of 2σ at the highest dose of 243, at the low end of the
dose range there is considerable amount of overlap in the signal. Such scenarios
render the J-T test less efficient in the low dose range and impact its overall
performance. Varying model parameters to generate scenarios less favorable to the
parametric models might be a good extension of this research to better understand
J-T performance more broadly.

One observation is that when ED50 is large, log-linear test starts to lose its
advantages. To investigate further, we fix ED50 at 81 and change the Hill parameter
from 0.5 to 5. The result is summarized in Fig. 13. When h= 0.5, the trend is very
similar to the log-linear trend. When h increases, the change from baseline increases
much slower compared to log-linear trend before ED50 and much faster after ED50.
We calculate the power for the case of h= 4 as an example and the results are:
linear test power= 62%, log-linear test power= 44%, and J-T test power= 37.1%.
Overall, when h is small and/or ED50 is relatively low, the Emax model is very
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Fig. 13 Comparison of scenarios with different Hill parameters

similar to the log-linear model and thus the log-linear test performs the best. When
ED50 is large and h is large as well, the Emax shape is very similar to the linear
trend and thus the linear test does the best. When ED50 is large and h is small, the
pattern falls in-between linear and log-linear.

4 Discussion

From this simulation, we see that in first-in-human studies, although pair-wise
comparison for any dose vs. placebo has low power due to the limited sample
size, taking all doses into consideration can increase the power substantially. It is
important to have a good understanding of the relationship between the escalating
dose and the change from baseline drug effect and use the appropriate test thereafter.
Visualization between the dose and effect could help achieve such goal. When the
relationship is unclear, log-linear dose trend test could be considered as the test of
choice since in most cases, log-linear dose trend test consistently provides best or
close-to-best power compared with other tests.

In addition, the following could be considered individually or in combination to
further improve power. Multiple post-baseline measures can be combined to reduce
variability. When PK profile is available, it can help select only relevant time points,
again reducing variability. Baseline measures can be considered as covariates in
the tests, eliminating the noise caused by them. When multiple small studies are
available, they can be pooled, at least the placebo data, to increase sample size.
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Constructing Conditional Reference Charts
for Grip Strength Measured with Error

Pedro A. Torres, Daowen Zhang, and Huixia Judy Wang

Abstract Muscular strength, usually quantified through the grip strength, can be
used in humans and animals as an indicator of neuromuscular function or to
assess hand function in patients with trauma or congenital problems. Because
grip strength cannot be accurately measured, several contaminated measurements
are often taken on the same subject. A research interest in grip strength studies
is estimating the conditional quantiles of the latent grip strength, which can be
used to construct conditional grip strength charts. Current work in the literature
often applies conventional quantile regression method using the subject-specific
average of the repeated measurements as the response variable. We show that this
approach suffers from model misspecification and often leads to biased estimates
of the conditional quantiles of the latent grip strength. We propose a new semi-
nonparametric estimation approach, which is able to account for measurement errors
and allows the subject-specific random effects to follow a flexible distribution. We
demonstrate through simulation studies that the proposed method leads to consistent
and efficient estimates of the conditional quantiles of the latent response variable.
The value of the proposed method is assessed by analyzing a grip strength data set
on laboratory mice.
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1 Introduction

Grip strength is an indicator of neuromuscular function and is often used to assess
the hand function in patients with trauma or congenital problems [19]. However,
grip strength, particularly in mice and rats, is difficult to measure accurately [1].
As a consequence, researchers often collect between 2 and 5 measurements on
the same subject because of the cost, effort, and time involved. These repeated
measurements are contaminated with measurement error. A research interest in grip
strength studies is estimating the conditional quantiles of the latent grip strength, say
Y ∗i , which can be used to construct conditional grip strength charts. Those reference
charts can help monitor the growth, follow progress after treatment, and identify
abnormal cases. Reference charts for the latent grip strength are more broadly
applicable than those based on the subject-specific averages of repeat measurements
which are lab-specific, depending on the experiment protocols (e.g., repetition of
measurements, dynamometers used, and muscle relaxation time). Our goal is to
construct conditional reference charts for the latent grip strength given the contam-
inated replicates {Yi j} and covariates information. In other words, we are interested
in estimating the conditional quantile function of the unobserved variable Y ∗i .

In the measurement error literature, researchers have discussed the estimation
of quantiles of a latent variable when no covariates are present. In the context of
density estimation, Caroll et al. [2] proposed to model the latent variable with a
flexible distribution. Schechtman and Spiegelman [22] proposed two estimation
methods, SIMEX [4] and efficient bootstrap combined with Jackknife. Li and Vuong
[17] used the empirical characteristic function of pairs of repeated measurements
to derive nonparametric estimators of the density of a latent variable. Delaigle
et al. [7] suggested two deconvolution estimators for the density function of an
unobserved variable based on contaminated replications. More recently, Tooze
et al. [25] proposed a classical linear mixed effects model after applying a Box-
Cox transformation to the contaminated replicates to estimate conditional quantiles
of the unobserved response variable. None of the existing methods tackle the
estimation of the conditional quantiles of Y ∗i using a quantile regression framework
when the response has been measured repeatedly with error and covariates are
present. Therefore, we propose a flexible semi-nonparametric method to estimate
the conditional quantile function of a latent variable in a regression setting. We
consider a two-stage model in which the regression errors for the latent variable
follow a flexible distribution and the measurement errors are normally distributed.

2 Proposed Method

Let Y ∗i be a latent response variable and xi a p× 1 vector of covariates for the
ith subject, i = 1, . . . ,m. The vector xi includes the constant 1 as the first element
corresponding to the intercept term. For a given subject, the covariates in xi,
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for instance age or weight, are assumed to remain constant across the repeated
measurements. Our main objective is to estimate Qτ(Y ∗i |xi) = inf{t ∈ ℜ : P(Y ∗i ≤
t|xi) ≥ τ}, where 0 < τ < 1 is the quantile level. We assume that Y ∗i and xi are
related through the following location-scale shift model

Y ∗i = xT
i β +(xT

i γ)ui. (1)

where β and γ are p×1 parameter vectors. In model (1) the covariates affect both the
location and scale of the conditional distribution of Y ∗i given xi. To allow flexibility
in model (1) we assume that the density of the regression errors ui belongs to a
class of smooth densities having a continuous and strictly increasing cumulative
distribution function (CDF) denoted by HK(ui,a), where a is the unknown parameter
vector and K is a nonnegative integer that will be selected during the estimation
process. A brief introduction to this class of smooth densities are deferred to the end
of this subsection. The rationale behind this distributional assumption on ui is that
for some problems the unknown conditional distribution of the latent variable can
be reasonably approximated by the members of this flexible semi-nonparametric
(SNP) family. An advantage of this flexibility is that the bias due to misspecification
could be diminished in many situations [23]. Another advantage of the proposed
distribution is that the resulting likelihood function has a closed form and the
computation is relatively straightforward.

The conditional linear quantile function resulting from model (1) is

Qτ(Y
∗
i |xi) = xT

i β(τ) = xT
i {β + γH−1

K (τ,a)}, (2)

provided that xT
i γ > 0 in the domain of xi. Although the location-scale shift

model (1) assumes the conditional quantiles of Y ∗i are linear in xi, this model is
convenient and has been widely used in quantile regression settings [11, 15, 21, 27].
Nonetheless, the proposed method can be extended to more general heteroscedastic
models by replacing xT

i γ with any parametric function σ(xi,γ)> 0.
If Y ∗i were observed, the quantile coefficients β (τ) in (2) can be estimated by the

conventional quantile regression estimator [14, 15]. However, in many applications
Y ∗i cannot be accurately measured. Instead, several repeated measurements {Yi j}ni

j=1
are taken on the same subject i. For the observed response variable Yi j, we assume
the following classical measurement error model [2] Yi j = Y ∗i + ei j, where ei j

are i.i.d. N(0,σ2
e ) random measurement errors that are independent of xi and ui.

The model for the observed response according to (1) is then given by

Yi j = Y ∗i + ei j = xT
i β +(xT

i γ)ui + ei j. (3)

Model (3) differs from the classical linear mixed model since the former includes
a single term for the random effects ui that could follow non-normal distributions,
and its design matrix for the random effects includes the unknown parameters γ .

Some researchers apply conventional linear quantile regression (QR) method
using the subject-specific average of repeated measurements, namely, Ȳi =
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n−1
i ∑ni

j=1 Yi j, as the response variable to estimate Qτ(Y ∗i |xi) [18, 19, 26]. However,
this naive QR approach suffers from model misspecification and often leads to
biased estimates of the conditional quantiles of the latent response as well as the
covariates effects.

In the proposed method we assume that the subject-specific random effects ui

follow a standard SNP distribution with density belonging to a class of smooth
densities, introduced originally in the econometrics context [5, 9]. A univariate
random variable u follows a standard SNP distribution if its density is given by
hK(u,a) = P2

K(u,a)φ(u) = (aT u)2φ(u), where u = (1,u, · · · ,uK)T , K is the degree
of the polynomial PK(·), a = (a0,a1, · · · ,aK)

T comprises the (K + 1) polynomial
coefficients and φ(u) is the standard normal density. A comprehensive discussion of
the SNP estimator and its properties can be found in [6, 9, 28].

2.1 Computational Details

Let Yi = (Yi1, . . . ,Yini)
T be the ni× 1 vector of repeated measurements for the ith

subject. The location-scale shift model (3) can be rewritten as

Yi = Xiβ +(Xiγ)ui + ei, (4)

where Xi = 1ni⊗ xT
i is a ni× p design matrix, 1ni is a column vector of ones and ⊗

denotes the usual Kronecker product, ui is a univariate random variable following a
standard SNP distribution, and ei is a ni× 1 vector that comprises the measurement
errors associated with the ith subject. In our implementation we assume that
ei ∼ N(0,σ2

e Ini), where Ini is the identity matrix of order ni, but the proposed
method can be extended to models with other measurement error distributions. The
parameter vector of dimension d = 2p +K + 1 is θ = (β T ,γT ,ϕT ,σ2

e )
T , where

the K-dimensional vector ϕ results from the reparameterization of the polynomial
coefficients a. This reparameterization allows one to use unconstrained optimization
techniques to compute the MLE of θ (see details in [3, 28]).

The log-likelihood function based on model (4) can be written as

l(θ ;Y) =
m

∑
i=1

[
logg(Yi;θ )+ logEWi|Yi ;θ

{
P2

K(Wi)
}]

, (5)

where g(Yi;θ ) is the normal density with parameters E(Yi;θ ) = Xiβ and
Var(Yi;θ ) = σ2

e Ini + (xT
i γ)2Jni , where Jni is the square matrix of ones of

dimension ni. Given Yi, the random variable Wi in (5) has a normal density
with parameters E(Wi|Yi;θ ) = {ni(xT

i γ)(Ȳi − xT
i β )}/{σ2

e + ni(xT
i γ)2} and

Var(Wi|Yi;θ ) = σ2
e /{σ2

e + ni(xT
i γ)2}.

The log-likelihood (5) involves a normal-based likelihood and higher moments
of a normal distribution that have closed forms. Therefore, the function (5) can be
maximized using standard optimization algorithms such as Quasi-Newton Rapshon.
Starting values for γ can be obtained by using Ȳi and the median regression method
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in [11]. For the angles ϕ, a grid of starting values on (−π/2,π/2]K usually deliver
good results [28]. Otherwise, starting values can be easily obtained using a classical
linear mixed model. The linearity of the conditional quantile (2) is guaranteed by the
condition xT

i γ > 0. In practice, we found it unnecessary to enforce that constraint
in the optimization routine if the location-scale shift model provides a reasonable
fit to the data. Moreover, negative values of xT

i γ resulting from the unconstrained
optimization may be an indication of model misspecification [11].

The value of K in hK(u,a) can be selected by using adaptive rules such as
BIC, AIC, or Hannan-Quinn (HQ) criterion [5, 10]. In our simulation studies
we used the HQ criterion defined as −l(θ̂ ;Y) + d log(logN), where d is the
dimension of θ and N = ∑m

i=1 ni. In many applications values of K = 0,1,2 may
be enough to approximate the true distribution of interest [3, 5, 28]. For highly
skewed distributions, though, larger values of K are needed in order to get better
approximations [8, 24].

2.2 Asymptotic Properties and Inference

The conditional quantile function of Y ∗i can be estimated by Q̂τ (Y ∗i |xi) = xT
i β̂ (τ),

where β̂ (τ) = β̂ + γ̂H−1
K (τ; ϕ̂). For a given τ and ϕ̂ , the quantity H−1

K (τ; ϕ̂) can be
found by solving the nonlinear equation HK(u; ϕ̂) = τ for u. In our implementation
we used the bisection method to compute the quantiles of the SNP distribution. The
asymptotic properties of the proposed ML-SNP estimator β̂ (τ) are stated in the
following theorem.

Theorem 1. Let β 0(τ) = β 0 + γ0ξK(τ;ϕ0), 0 < τ < 1, be the true quantile coeffi-
cients in (2) for a known K, where ξK(τ;ϕ0) = H−1

K (τ,ϕ0). Then, under classical
regularity conditions for the MLE of θ and the SNP density hK(τ,ϕ), the estimator

β̂ (τ) = β̂ + γ̂ξK(τ; ϕ̂) satisfies that: i) β̂ (τ) p→ β 0(τ); ii) m
1
2

{
β̂ (τ)−β 0(τ)

}
d→

N(0,Ω0), as m→ ∞, where Ω0 is the asymptotic covariance matrix. If K = 0, then
Ω0 = DΣθ 0DT , where D =

[
Ip, Φ−1(τ)Ip, 0p

]
, Ip is the identity matrix of order p,

0p is a p-dimensional vector of zeroes, Φ(·) is the CDF of a standard normal distri-
bution, and Σθ 0 is the asymptotic covariance matrix resulting from (5). If K > 0, then
Ω0 = g′(θ 0)Σθ 0g′(θ 0)

T , where g′(θ ) =
[

Ip, ξK(τ,ϕ)Ip, γ∂ξK(τ,ϕ)/∂ϕT , 0p
]

is

the Jacobian matrix, and g(θ̂) = β̂ (τ).

In Theorem 1, ∂ξK(τ,ϕ)/∂ϕT =−{2/hK(ξ ,a)}aT ΛB−1C, where Λ is a symmetric
square matrix of order K + 1, C = ∂c/∂ϕT of dimension (K + 1)×K, and B and c
are defined in [28, p. 797]. The (i, j)th element of Λ, denoted by λi j, is defined as

λi j =
∫ ξ
−∞ ti+ j−2φ(t)dt, i, j = 1,2, . . . ,K +1, where φ(·) is the density function of a

standard normal distribution.
The matrix g′(θ 0) involves the SNP density hK(u,a), which may take zero

values depending on its parameters. For instance, when K = 1 the density hK(u,a)
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takes a zero value when u = −a0/a1, a1 = 0. Hence the formula based on Taylor
expansion is unstable around the quantile levels at which the densities are close to
zero. Moreover, according to our simulation studies, the formula based on Taylor
expansion often underestimates the standard errors of β̂(τ) for small sample sizes.
We adopt a resampling method by perturbing the log-likelihood as an alternative to
estimate the standard errors [12, 13, 20].

3 Simulation Studies

We assessed the performance of the proposed method through the model Yi j =
Y ∗i +ei j, where Y ∗i = (4+2xi)+(1+0.5xi)ui, xi ∼U(0,1), ei j ∼N(0,σ2

e ), and ui ∼
N(0,1) or ui ∼ 0.75N(−1,1)+ 0.25N(2,1). We considered the following factors
(levels): number of subjects (m = 100,300), number of repeated measurements
(n = 2,4), and measurement error (σe = 0.5,1,2). The values for σe lead to
conditional reliability ratios for individual measurements ranging from 0.20 to
0.96. The conditional reliability ratio is defined as ρ(xi) = Var(Y ∗i |xi)/Var(Yi j|xi).
For a given τ , the true quantile coefficients are given by β0(τ) = 4+F−1(τ) and
β1(τ) = 2+ 0.5F−1(τ), where F−1(·) is the inverse CDF of ui.

We considered five estimators: ML-SNP, ML-Normal, REML-Normal, omni-
scient, and naive. The ML-SNP estimator assumes an SNP distribution for the
subject-specific random effects ui, while the ML-Normal and REML-Normal assume
normality. The method omniscient is the conventional quantile regression method
using the latent response Y ∗i . This estimator is infeasible in practice but it serves
as a benchmark for comparison. The naive estimator results from the conventional
linear quantile regression with Ȳi as the response variable. We fitted the models
using an SNP distribution with K chosen among 0,1, or 2, using the HQ criterion.
These grid points of K cover a broad class of distributions while having the method
computationally tractable. We obtained estimates of the quantile coefficients β0(τ)
and β1(τ) for τ = 0.1, . . . ,0.9, using the five methods described above. We compared
these methods using the average bias and mean squared error (MSE) ratio of the
estimators based on 1,000 Monte Carlo replicates. The MSE ratio is defined as
the MSE of a given estimator divided by that of the omniscient estimator. Finally,
we evaluated the adequacy of the variance formula for the ML-SNP estimator
introduced in Sect. 2.2.

Due to space limit, we only report results from two simulation scenarios. The
results for other scenarios show similar patterns. Figure 1 shows the average bias and
MSE ratio of the estimators for the normal case with a balanced design with n = 4,
m = 100, and σe = 1. For normally distributed random effects, the HQ criterion
chose K = 0 in about 83% and 95% of the times when m= 100 and 300, respectively.
From Fig. 1, the SNP- and normal-based estimators are approximately unbiased.
Naive method underestimates the intercept, while it overestimates the slope when
τ < 0.5. The bias is larger for quantiles on the tails of the distribution. Although the
relative bias of naive estimates is small, it does not vanish as m increases. Moreover,
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Fig. 1 Average bias and MSE ratio of quantile coefficient estimators with ui ∼ N(0,1),m =
100,n = 4. Omniscient (�), ML-Normal (◦), ML-SNP (�), Naive (+), REML-Normal (×).
Reliability ratios: ρ(0) = 0.50 and ρ(1) = 0.69.

naive estimator has a systematic bias that increases with σe, regardless of the m
value. Finally, all the methods yield unbiased estimates when τ = 0.5. Note that the
naive yields unbiased estimates at τ = 0.5 because the conditional median of Y ∗i and
Ȳi are the same so the naive estimator does not suffer from model misspecification.
In terms of the MSE ratio, the SNP estimators for random normal effects lose some
efficiency when compared to the normal-based estimators, but that difference in
MSE becomes negligible when the sample size increases.

For the normal mixture distribution, the HQ criterion chose K = 0,1, and 2 in
about 16 %, 22 %, and 62 % of the times when m = 100, whereas K = 2 was chosen
99.7% of the times when m = 300. For the sake of clarity, we excluded the results of
the normal-based estimators from Fig. 2 because of the considerable bias resulting
from the misspecification of the subject-specific random effects distribution. From
Fig. 2, the naive method underestimates the intercept for τ ≤ 0.38 and overestimates
it when τ > 0.38, which approximately corresponds to the quantile level where
the distribution takes its mode. An opposite bias pattern occurs with the slope.
The naive estimator has negligible bias at τ ≈ 0.38 since Ȳi and Y ∗i have the
same conditional quantiles at this quantile level. The ML-SNP and the omniscient
estimator are approximately unbiased. The ML-SNP estimator shows smaller MSE
compared to the other estimators. In particular, the ML-SNP estimator outperforms
the omniscient estimator, since the latter is obtained nonparametrically without
modeling the response distribution while the former estimates the normal mixture
distribution satisfactorily. This fact reveals the advantage of the flexibility of the
ML-SNP estimator to approximate distributions not belonging to the SNP family.
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Fig. 2 Average bias and MSE ratio of quantile coefficient estimators with ui ∼ 0.75N(−1,1)+
0.25N(2,1),m = 100,n = 4. Omniscient (�), ML-SNP (�), Naive (+). Reliability ratios: ρ(0) =
0.73 and ρ(1) = 0.86.

Table 1 Standard errors and coverage probabilities for the ML-SNP estimator of quantile coef-
ficients when m = 100. T: variance estimation method based on Taylor expansion; R: resampling
method; Bias: average bias; MC SD: Monte Carlo standard deviation; SE: average standard error;
CP: coverage probability of 95 % Wald-type confidence interval.

β0(τ) β1(τ)
ui ∼ N(0,1)

τ Method Bias SE MC SD CP Bias Ave. SE MC SD CP

0.1
T

0.034
0.346

0.367
0.919

-0.007
0.645

0.678
0.931

R 0.339 0.940 0.624 0.940

0.5
T

0.007
0.245

0.256
0.930

-0.023
0.449

0.474
0.927

R 0.252 0.935 0.461 0.935

ui ∼ 0.75N(−1,1)+0.25N(2,1)

0.1
T

0.045
0.365

0.400
0.910

0.021
0.688

0.731
0.915

R 0.389 0.920 0.743 0.930

0.5
T

-0.011
0.319

0.395
0.866

0.023
0.565

0.720
0.857

R 0.402 0.915 0.706 0.945

0.9
T

-0.095
0.532

0.741
0.826

0.015
0.957

1.343
0.831

R 0.659 0.930 1.247 0.935

Table 1 summarizes the standard error estimates for some quantile levels based
on the variance formula given in Sect. 2.2. Because the formula described the
sampling variation of the estimator adequately when m = 300, we show only the
results when m= 100. For small sample sizes, the proposed formula based on Taylor
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expansion underestimates the true sampling variation of the ML-SNP estimator.
The underestimation is more severe for the normal mixture case, particularly for
upper quantiles. A possible explanation for the underestimation is that the random
effects distribution may be misspecified when the sample size is small. This leads
to poor estimates of the density value at the quantile of interest, and therefore,
unsatisfactory performance of the proposed formula. Table 1 also shows the results
using the resampling approach as an alternative to the Taylor expansion formula
when m = 100. For each of the 200 simulated data sets, we generated 50 resamples
based on the random perturbations generated from an exponential distribution with
mean and variance equal to 1. The resampling approach gives better estimates of the
standard errors, particularly for non-normal random effects and small sample sizes
where the formula based on Taylor expansion does not perform adequately.

4 Application: Conditional Grip Strength Charts

We illustrate the proposed method using the mice data from the JaxWest1 study [16].
The study assessed the physiology of seven inbred mice strains. We focus on the
relationship between grip strength and weight for illustration. Five measurements
(n = 5) of the forelimb grip strength (g) were collected from m = 112 mice aged
about 12 weeks so the total number of observations is N = 560. Our objective is
to estimate the conditional quantiles of the latent grip strength as a function of
weight. We propose the model Yi j = Y ∗i + ei j = β0 + β1W̃i + (γ0 + γ1W̃i)ui + ei j,
where Yi j and Y ∗i are the log-transformed observed and the latent grip strength,
respectively. The W̃i is the weight centered at zero making the interpretation of the
intercept quantile coefficient easier. The log transformation was adopted to satisfy
the classical measurement error assumptions, which were verified using different
tools. The values of the HQ criterion for K = 0,1, and 2 were 0.066, 0.068, and
0.070, respectively. The SNP(K = 1) is similar to the normal distribution, whereas
SNP(K = 2) is slightly left-skewed. A visual inspection to the quantile lines from
the naive method in the log scale (Fig. 3) suggests that the lower quantiles are
farther apart from each other than the upper quantiles, which indicates a skewed
distribution. Therefore, we argue that an SNP(K = 2) is more appropriate for this
data set.

The estimates and their respective standard errors for the ML-SNP(K = 2)
are θ̂ = (β̂ T , γ̂T , ϕ̂T , σ̂2

e )
T = (4.623,0.025,0.147,0.011,0.878,0.450,0.048)T and

ŜE(θ̂ ) = (0.140,0.008,0.083,0.004,0.133,0.309,0.003)T. The SNP distribution
has mean and variance equal to 0.703 and 1.508. The estimated reliability ratio
is, for instance, ρ̂(25) = 0.39 when the weight is 25g. The reliability ratio increases
with weight because the variance of the latent grip strength is larger for heavier
mice while the variance of the measurement error remains constant according to
the proposed model. Figure 3 plots the fitted conditional quantile lines at τ =
0.05,0.25,0.50,0.75,0.95 in the log scale using the naive and ML-SNP(K = 2)
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Fig. 3 Fitted conditional quantile lines in log scale for mice grip strength data. The circles
represent the grip strength measurements. The vertical dashed line is the average weight.

approach. We can see that the naive method gives larger estimates of the upper
quantiles of the latent grip strength, particularly for lighter mice. For instance, the
naive estimate of the 75th percentile is about the same as the ML-SNP estimate
of the 95th percentile when weight is about 18g. Conversely, the naive estimates
are somewhat smaller for lower quantiles. The median grip strength line is similar
in both methods. In this application the point estimates of the quantile coefficients
using the naive and the ML-SNP(K = 2) do not show significant differences mainly
because of the considerable number of repeated measurements. In other studies,
though, taking such a number of repeated measurements may be restrictive, and
therefore, the naive estimates may exhibit larger bias in those situations.

5 Conclusions and Discussion

We proposed a flexible semi-nonparametric method to estimate the conditional
quantile function of a latent response variable when it is measured repeatedly with
error and covariates are present. The proposed method is flexible since the subject-
specific random effects are assumed to follow a flexible SNP distribution. The
method also accommodates heteroscedastic regression errors and is relatively easy
to implement given the closed form of the likelihood function. For the location-scale
shift model we derived the asymptotic properties of the proposed estimator. The
proposed variance formula works well for moderate sample sizes. For small sample
sizes, we recommend the proposed resampling method. Through the analysis of a
lab mice data, the proposed method showed to be useful to estimate the conditional
quantiles of the latent forelimb grip strength as a function of mice weight.

Simulation studies also suggest that our method outperforms the naive method
for normal and non-normal cases across different measurement error scenarios.
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Even for normal mixture distributions that do not belong to the SNP family, the
proposed method has ignorable bias since the SNP distribution is flexible enough to
provide decent approximations even with a small K. The ML-Normal and REML-
Normal estimators are inappropriate when the distribution of the subject-specific
random effects deviates considerably from normality, such as the normal mixture
case considered in the simulation study.

One limitation of the proposed method is that for regression errors with heavy-
tailed distributions, the SNP fit requires a larger polynomial degree K and this could
be computationally troublesome. In such cases, one can apply a simple monotone
transformation to the data to lighten the tails and fit an SNP with a smaller K.
The conditional quantile in the original scale can be estimated directly by using
its property of equivariance to monotone transformations.
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Hierarchical Bayesian Analysis of Repeated
Binary Data with Missing Covariates

Fang Yu, Ming-Hui Chen, Lan Huang, and Gregory J. Anderson

Abstract Missing covariates are a common problem in many biomedical and
environmental studies. In this chapter, we develop a hierarchical Bayesian method
for analyzing data with repeated binary responses over time and time-dependent
missing covariates. The fitted model consists of two parts: a generalized linear
mixed probit regression model for the repeated binary responses and a joint
model to incorporate information from different sources for time-dependent missing
covariates. A Gibbs sampling algorithm is developed for carrying out posterior com-
putation. The importance of the covariates is assessed via the deviance information
criterion. We revisit the real plant dataset considered by Huang et al. (2008) and use
it to illustrate the proposed methodology. The results from the proposed methods
are compared with those in Huang et al. (2008). Similar top models and estimates
of model parameters are obtained by both methods.
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1 Introduction

Missing covariates may occur due to the unavailability of covariate measurements,
survey non-response, or data loss. A simple approach is to analyze the data that are
fully observed, known as the complete case (CC) approach. When the data contain a
large proportion of missing values in covariates, the CC approach may lead to biased
and inefficient estimates of the model parameters. In addition, the subjects with
missing covariates may differ systematically from those with completely observed
covariates in terms of their associations with the outcome variable. Thus, it is
important to incorporate the missing covariates in data analysis.

There is a rich literature on the methodological development for regression
analyses with missing covariate data. Little (1992) reviewed these methods for
multivariate normal regression models, while Ibrahim et al. (2005) presented a
comprehensive review of missing data methods for generalized linear models. One
of the major challenges in analyzing data with missing covariates is to model the
distributions of missing covariates. Lipsitz and Ibrahim (1996) proposed a sequence
of one-dimensional conditional distributions to model missing covariates. Huang
et al. (2008) developed a maximum likelihood method to incorporate information
from other data resource to model the time-dependent missing covariates and
showed that their approach improved model fit on the repeated binary outcome
variable. In this chapter, we develop a full Bayesian method to incorporate the
third data resource for modeling time-dependent missing covariates and fit a probit
regression model for the repeated binary response variable.

To illustrate the method proposed in this chapter, we consider the data analyzed
in Huang et al. (2008) with a focus on the disruption of alternative flowering
pattern of American basswood trees (Tilia americana). The alternative flowering
pattern disrupts when the change in the flowing index (i.e., decreasing) between two
consequent years fails to follow a change in opposite direction (i.e., increasing) in
the following year. The flowering intensity data were collected annually on 24 trees
over a 29-year period from 1974 to 2002. The binary outcome variable was defined
with value 1 when the tree deviated from our expectation of an increasing value
of the flowering intensity and 0 otherwise. The covariates were from two datasets:
(1) the yearly defoliation data recording the defoliation by gypsy moths (Lymantria
dispar) on each tree from 1973 to 2002 and (2) the monthly weather conditions
including temperature and precipitation recorded as the “Departure from Normal
Monthly Temperature” (denoted as “Temp”) and “Departure from Normal Monthly
Precipitation” (denoted as “Ppt”) from the weather station in Storrs, Connecticut, the
general area where the studied trees are located. The defoliation data were directly
observed, while more than half weather data (including temperature and precipita-
tion) were missing. To estimate the missing weather values, the neighboring stations
within 25 miles of the local weather stations were identified, and the weather data
from these neighboring stations were incorporated in the study.

The remainder of this chapter is organized as follows. Section 2 presents the
Bayesian probit regression model for repeated binary responses. Section 3 develops
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the model for missing weather conditions. In Sect. 4, the deviance information
criterion (DIC) is derived for identifying important defoliation and/or weather
condition factors associated with the cyclical pattern of flowering. A detailed
analysis of the flower intensity data is given in Sect. 5. We conclude the chapter
with brief remarks in Sect. 6.

2 The Model for Outcome Variable

2.1 Bayesian Probit Regression

Let yit , t = 1, · · · ,Ti denote the binary response variables over time of plant i for
i = 1, · · · ,n. The response variable may be associated with both environmental
covariates (i.e., weather) and plant-specific covariates (i.e., disease, pest). The
environmental covariates often are time-dependent and shared by all plants at the
same location. Missing values may exist in the environmental covariates. The plant-
specific covariates are measured when collecting the response variable and, hence,
they are often completely observed. Let xt = (xt1, · · · ,xt p)

′ be a p-dimensional
vector for the environmental covariates and zit = (zit1, · · · ,zitq)

′ be a q-dimensional
vector of plant-specific covariates at time t. In our real data example, yit = 1 when
the flower intensity of tree i at time t shows deviation from the alternating pattern
for an expectation of an increasing value of the index and yit = 0 otherwise. The
covariates xt contain the temperature and precipitation of year t observed from the
local weather station, and the zit contain the information of defoliation by gypsy
moths for tree i.

The Bayesian probit regression is used to connect the response variable and the
covariates. First, the latent variable ϖit is introduced to represent the real observed
difference in flower intensities between adjacent years t−1 and t on the tree i. When
ϖit <= 0, the flower intensities increase, which does not show a deviation from the
expectation of an increasing value, and consequently yit = 0. When ϖit > 0, there is a
deviation from the alternating pattern and yit = 1. Then the outcome variables yit are
independently distributed and the likelihood function of yit is given by L(ϖit |yit) =
(1{ϖit ≤ 0})1−yit (1{ϖit > 0})yit , where 1{A} is the indicator function such that
1{A}= 1 if A is true and 0 otherwise. We model ϖit using covariates xt and zit with

ϖit = μ + bi + x′tβ + z′itγ + εit ,∀i, t, (1)

where μ is the overall mean, bi is the random plant effect, β ′ = (β1, · · · ,βp) and
γ ′= (γ1, · · · ,γq) correspond to the effects of covariates xt and zit on ϖit , respectively,
εit represents the remaining part of ϖit unexplained by these covariates. We assume
εit ∼ N(0,σ2) independently with σ2 = 1 to ensure model identifiability.

Note that yit may be missing at a given time t. Assume that yit is missing at
random (MAR). Then, we can marginalize the missing data of yit and apply the
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model in (1) only for the observed data of yit using the covaraites Xt and Zit from
the same plant i of the same year t. Let δit be the indicator such that δit = 0 if yit

is missing and 1 otherwise. Letting Θy = {μ ,b1, · · · ,bn,β ,γ}, the likelihood of the
outcome variable yit can be written as

L(Θy|yit ,Zit ,Xt ,δit)

= {1−Φ(μ + bi+X′tβ +Z′itγ)}(1−yit){Φ(μ + bi+X′tβ +Z′itγ)}yit , (2)

when δit = 1, where Φ(·) is the cumulative distribution function of the standard
normal distribution.

In matrix form, (1) can be rewritten as ϖ i = Δi×Θ+ ε i for i = 1, · · · ,n, where
ϖ i = [ϖi1, · · · ,ϖiTi ]

′, Δi = [ jTi
,Bi,Xi,Zi], jTi

is the column vector containing Ti ones,
Bi is a Ti× n matrix with all columns set to zero values except that the ith column
equals jTi

, Xi is a Ti× p matrix with each row containing the corresponding Xt , and
Zi a Ti×q matrix with its tth row equal to Zit . Note that Xi is defined with index i to
distinguish the plants as the outcome variable may not be observed in the same years
for different plants. We further write Θ= [μ ,b1, · · · ,bn,β ,γ]′ and ε i = [εi1, · · · ,εiTi ]

′.

2.2 Prior Specification

Conjugate priors are specified for each parameter defined in (1). Specifically,
we assume μ ∼ N(0,σ2

0 ), bi ∼ N(0,σ2
b ), β ∼ N(0,c0σ2

1 (X
′X)−1), and γ ∼

N(0,c0σ2
1 (Z

′Z)−1), where X of dimension N× p and Z of dimension N× q consist
of row sub-matrices Xi and Zi, i = 1, · · · ,n, respectively, N equal the total number
of outcome variables with N = ∑i Ti, and c0 > 0 is prespecified. We take c0 = 10
in this chapter. The inverse gamma priors are assumed for the variance parameters
with σ2

0 ∼ IG(γ0,δ0), σ2
b ∼ IG(γb,δb), and σ2

1 ∼ IG(γ1,δ1), where the (γ0, γb, γ1)
are shape parameters and (δ0,δb,δ1) are scale parameters.

2.3 Posterior Distribution and Computation

Let ϖ = [ϖ1, . . . ,ϖn] be a collection of all latent variables, and Θp =
{γ0,δ0,γb,δb,γ1,δ1}. To develop an efficient Gibbs sampling algorithm, we
integrate out all random plant effects bi in (2) and sample the remaining coefficient
parameters and variance parameters using the modified collapsed Gibbs sampling
method (Chen et al. 2000). Define a new covariates matrix Δ∗i = [ jTi

,Xi,Zi] for all
i, and a new coefficient vector Θ∗ = [μ ,β ,γ]′. Given (ϖ ,X,Z,σ2

0 ,σ
2
b ,σ

2
1 ), Θ∗ ∼

N1+p+q(μΘ,ΣΘ), where Σ−1
Θ = ∑n

i=1(Δ
∗′
i UiΔ∗i )+ (Σ0

Θ)
−1, Ui = (ITi + JTi σ2

b )
−1 =
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ITi −
σ 2

b
Tiσ 2

b +1
JTi , ITi is the Ti × Ti identity matrix, and JTi is a square matrix of

dimension Ti×Ti containing all ones. The matrix Σ0
Θ is the variance matrix defined

in the prior distribution for Θ∗, and (Σ0
Θ)
−1 = diag{σ−2

0 ,c−1
0 σ−2

1 X′X,c−1
0 σ−2

1 Z′Z}.
The mean vector μΘ = Σ−1

Θ ×∑n
i=1(Δ

∗′
i ϖ i). The posterior distributions of σ2

0 and
σ2

1 in (1) are: σ2
0 |μ ,γ0,δ0 ∼ IG(γ0 + 1/2,δ0 + μ2/2) and σ2

1 |X,Z,β ,γ,γ1,δ1 ∼
IG(γ1 +(p+q)/2,δ1 +(β ′X′Xβ + γ ′Z′Zγ)/(2c0)). Thus, sampling Θ∗, σ2

0 and σ2
1

is straightforward. The posterior distribution of σ2
b is given by

f (σ2
b |ϖ ,X,Z,μ ,β ,γ ,δb,γb) ∝ (σ2

b )
−γb−1 exp(−δb/σ2

b )

× (1+Tiσ2
b )
− 1

2 exp
{1

2

n

∑
i=1

σ2
b

Tiσ2
b + 1

[
Ti

∑
t=1

(ϖit − μ−X′tβ −Z′itγ)]
2
}
. (3)

The localized Metropolis algorithm (Chen et al. 2000) is used to sample σ2
b

from (3). The latent vector ϖ i follows a truncated multivariate normal distribution
with π(ϖ i|μ ,β ,γ,Xi,Zi,σ2

b ) ∝ fMN(ϖ i|Δ∗i Θ,U−1
i )∏Ti

t=1 [(1{ϖit ≤ 0})1−yit (1 −
1{ϖit ≤ 0})yit ], in which fMN(·|C,D) is the multivariate normal probability density
function of mean vector C and variance matrix D. We sample ϖit , t = 1, · · · ,Ti

iteratively from a truncated normal distribution of fN((ϖit − μϖit )/(σϖit )1{wit ≤
−μϖit/σϖit} if yit = 0 and fN((ϖit − μϖit )/σϖit )1{ϖit > −μϖit/σϖit} if yit = 1,

where μϖit =
σ 2

b
(Ti−1)σ 2

b+1 ∑Ti
t1=1,t1 =t(ϖit1 − μ −X′t1 β − Z′it1γ) + μ +X′tβ +Z′itγ and

σ2
ϖit

=
σ 2

b
(Ti−1)σ 2

b+1
+ 1. The algorithm of Geweke (1991) is used to sample ϖit .

3 The Model for Missing Covariates

We only need to model the weather related time-dependent covariates xt’s since Zit ’s
are completely observed. We define the observed covariates at time t as Xt,obs, the
missing covariates as Xt,mis, and the indicator for missing with rt j = 1 when xt j is
available and 0 otherwise. Assuming that the missing covariates xt j’s are MAR, we
only need to model Xt but not the missing data indicators (Ibrahim et al. 2005)). We
modify the approach proposed by Huang et al. (2008) in the Bayesian framework to
model the missing covariates.

Note that the information on covariates was recorded in neighboring stations,
and the weather covariates among neighboring stations are expected to share similar
patterns. We incorporate three sources of information when modeling the missing
weather conditions (1) the weather information from neighboring stations; (2) the
weather information from the previous months; and (3) the weather information
from the previous year. Let wt jk , t = 1, · · · ,T , j = 1, · · · , p, k = 1, · · · ,K be the
observation from the kth neighboring stations for the jth weather variable of time t.
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The xt j −wt jk measures the deviance between xt j from the local station and the
corresponding variable wt jk for k = 1, . . . ,K. We assume

xt j−wt jk = μt j +φ jk + εt jk, (4)

where μt j measures the effect of time and other covariates on the jth covariate, φ jk

measures the effect of the kth neighboring stations on the jth weather variable, εt jk

is a random error. We further assume ε t j = (εt j1,εt j2, . . . ,εt jK)
′ ∼ N(0,Σ j), where

Σ j is a K ×K covariance matrix, and ε t j’s are independent for t = 1, . . . ,T and
j = 1, . . . , p. In (4), μt j can be written into a linear function of the same covariate
from the previous year denoted as xt, j−1 and the values of other covariates at the
same year including xt, j−1, · · · ,xt1 as follows:

μt j = ξ j0xt−1, j + ξ j1xt, j−1 + · · ·+ ξ j, j−1xt1, j = 1, · · · , p. (5)

Depending on the characteristics of the covariates, we may just use a subset of
the weather information from the previous year or months for μt j . Since a weak
correlation was observed between the values of xt j−wt jk’s for different neighboring
stations, we simply assume zero correlations between (xt j−wt jk)’s for k = 1, · · · ,K.
Accordingly, the variance covariance matrix Σ j for ε t j in (4) is written as Σ j =
diag(σ2

j1,σ
2
j2, . . . ,σ

2
jK), where the σ2

jk measures the conditional variance of xt j −
wt jk given μt j.

Since wt jk’s may have a large percentage of missing values, for simplicity,
we only include those observed wt jk’s in (4) for modeling Xt j’s. Define
ζt jk = 1 to indicate that wt jk is observed and 0 otherwise. Also let D =
{yit ,δit ,Zit ,Xt,mis,Xt,obs, ζt jkwt jk,bi,1 ≤ i ≤ n,1 ≤ t ≤ T,1 ≤ k ≤ K} denote
the complete data. Then, the complete-data likelihood function is given by

L(Θy,σb,ξ ,φ ,Σ|D) ∝ ∏n
i=1

{[
∏T

t=1

(
1 −Φ(μ + bi + X′tβ + Z′itγ)

)(1−yit)δit
(
Φ(μ +

bi + X′tβ + Z′itγ)
)yit δit

]
(σ2

b )
−1/2 exp(−b2

i / (2σ2
b ))
}
×
[

∏T
t=1 ∏K

k=1 ∏p
j=1 σ−ζ jtk

jk

exp{−ζ jtk(xt j − wt jk − μt j − φ jk)
2/(2σ2

jk)}
]
, where μt j is defined in (5),

ξ = (ξ j0,ξ j1,ξ j2 . . .ξ j, j−1,1 ≤ j ≤ p)′, φ = (φ jk,1 ≤ j ≤ p,1 ≤ k ≤ K)′, and
Σ = (σ2

jk,1≤ k ≤ K,1≤ j ≤ p)′.

3.1 Prior Specification

We assume a conjugate prior for each parameter in Θx. Specifically, φ jk ∼N(0,σ2
φ j
),

ξ jl ∼ N(0,σ2
ξ j
) for l = 1, · · · ,Lj, where Lj equals the number of covaraites in

defining μt j in (5). We further assume σ2
φ j
∼ IG(νφ ,ρφ ) and σ2

ξ j
∼ IG(νξ ,ρξ ).

For σ2
jk, we assume that σ2

jk ∼ IG(νs j ,ρs j ) and their parameters ρs j independently
follow gamma distributions with ρs j ∼ G(νs0 ,ρs0).
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3.2 Posterior Distribution and Computation

The posterior distribution of xt j is N(μ∗xt j
,σ∗2

xt j
), where μ∗xt j

= σ∗2
xt j
(

μxt j

σ 2
xt j

+

n

∑
i=1

δitβ j(wit − μ − bi − Zitγ − ∑ j1 = j xt j1 β j1)), σ∗2
xt j

= (σ−2
xt j

+ ∑n
i=1 δitβ 2

j )
−1,

and σ−2
xt j

= ∑K
k=1 ζt jk/σ2

jk. We use the Gibbs sampling algorithm to sample the
missing covariates xt j . Similarly, the posterior distribution of φ jk given Xt , μt j’s,
wt jk’s, σ2

jk’s, σ2
φ j

’s and the posterior distribution of ξ jl’s given Xt , φ jk’s, wt jk’s,

σ2
jk’s, σ2

ξ j
’s follow normal distributions. Since multiple parameters φ jk’s and

ξ jl’s are involved in the model for missing covariates, it is computationally
extensive to sample each parameter iteratively. Instead we sample φ jk’s and
ξ jl’s jointly from their multivariate normal posterior distribution given Xt , wt jk’s,
σ2

jk’s, σ2
φ j

’s and σ2
ξ j

’s. The posterior distributions of σ2
φ j

and σ2
ξ j

are given by

σ2
φ j
∼ IG(νφ + K

2 ,ρφ + 1
2 ∑K

k=1(φ jk)
2) and σ2

ξ j
∼ IG(νξ +

Lj
2 ,ρξ + 1

2 ∑
Lj
l=1(ξ jl)

2).

The variance parameters σ2
jk have inverse gamma posterior distributions of

σ2
jk ∼ IG(νs j + ∑T

t=1
ζt jk

2 ,ρs j + ∑T
t=1

ζt jk
2 (xt j − μt j − wt jk − φ jk)

2), and their
parameters ρs j independently follow gamma posterior distributions of ρ j ∼G(νs0 +

Kνs j ,1/(ρ−1
s0

+∑K
k=1 σ−2

jk )). Thus, sampling these parameters is straightforward.

4 DIC for Model Comparison

The Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002) is used for
identifying important subset of covariates. The models for outcome variables and
covaraites involve parameters Θy and Θx. Accordingly, DIC can be calculated by
DIC = D(Θy,Θx)+2pD, where the penalty term pD = D(Θy,Θx)−D(Θy,Θx), and
Θy = E(Θy|Dobs). Since our primary interest is on selecting important subset of β
and γ for fitting the outcome variables, we focus on the Bayesian probit regression
model for the outcome variables. Then we consider X as a parameter, and have
Θ∗= {Θy,X}, and DIC becomes DIC =D(Θ∗)+2pD, where pD =D(Θ∗)−D(Θ∗).
Based on (2) for the outcome variable, we define the deviance function D(Θ∗) as
−2logL(Θy,Xt |yit ,Zit ,δit).

Huang et al. (2005) developed a version of DIC for the generalized linear model
with missing covariates. Note that the covaraites X’s were involved in the outcome
variable through term X′tβ . Instead of estimating Xt and β separately for calculating
the DIC value, following the suggestion by Huang et al. (2005), we redefine our
parameter set as Θ� = {μ ,X′β ,γ} and calculate the DIC value. When the covariate
Xt is observed then X′tβ = X′tE(β |D), otherwise X′tβ = E(X′tβ |D). In addition,
we can integrate out bi from the likelihood function for the outcome variable in
(2). As a result, we need to calculate product of cumulative distribution function of
multivariate normal distributions via the algorithm proposed by Genz (1992).
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5 Results

The proposed method is applied to analyze the real flower intensity data described
in Sect. 1. Our primary interest is to evaluate the effects of important variables (in-
cluding both weather variables and defoliation variables) on the pattern of flowering
intensities. We consider the same 19 models discussed in Huang et al. (2008). We
set c0 = 10 and 0.01 for all shape and scale hyperparameters {γ0,δ0,γb,δb,γ1,δ1}
in the model for the outcome variable and {νξ ,ρξ ,νφ ,ρφ ,νs0 ,ρs0} in the model for
missing covariates. The DIC criterion measures are used to compare all 19 models.
The models with smaller DIC values fit the data better. In the first 7 models listed in
Table 1, the effects of temperature conditions, precipitation conditions, defoliation
status, or their combinations are included. Note that the weather conditions from
different seasons may affect the flowering intensities differently by influencing the
initiation or development of the flowers. The monthly weather information is split
into seasons. We focus on the 3 months before July or after July, when the flowering
reaches its peak. We define the months of April to June of current year as “spring
season,” and the months of August to October of previous year as “fall season.” In
the remaining 12 models listed in Table 1, the weather information from particular
seasons are used to identify the seasonal effects of weather conditions on flowering
intensities. Table 1 shows the values of DIC and pD for all 19 models. Five of these
models have DIC value less than 160. Out of these 5 models, model 5 (containing

Table 1 The values of DIC for 19 models

Bayesian
Model Definition MLa DIC Pd

1 Defoliation (Defol-1, Defol) 10.85 166.52 3.20
2 Ppt (PptJul-1, . . . , PptJul) 15.62 166.91 10.21
3 Temp (TempJul-1, . . . , TempJul) 8.67 161.92 11.15
4 Defoliation & Ppt (Model 1 + Model 2) 10.14 162.77 11.06
5 Defoliation & Temp (Model 1 + Model 3) 4.25 157.29 11.99
6 Ppt & Temp (Model 2 + Model 3) 21.93 165.62 17.26
7 Defoliation, Ppt & Temp (Models 1 + 2 + 3) 22.51 162.01 17.40
8 Fall Ppt (PptAug-1, PptSept-1, PptOct-1) 30.96 183.21 2.01
9 Spring Ppt (PptApr, PptMay, PptJun) 12.64 168.27 4.02

10 Fall Temp (TempAug-1, TempSept-1, TempOct-1) 21.12 177.41 3.59
11 Spring Temp (TempApr, TempMay, TempJun) 22.84 177.95 3.73
12 Spring & Fall Ppt (Model 8 + Model 9) 10.03 165.28 6.24
13 Spring & Fall Temp (Model 10 + Model 11) 1.17 158.20 6.64
14 Fall Ppt & Temp (Model 8 + Model 10) 25.42 179.74 4.58
15 Spring Ppt & Temp (Model 9 + Model 11) 10.28 165.80 6.59
16 Spring & Fall Ppt & Defol-1 (Model 12 + Defol-1) 0 159.33 6.96
17 Spring & Fall Temp & Defol-1 (Model 13 + Defol-1) 1.05 155.55 7.10
18 Fall Ppt & Temp & Defol-1 (Model 14 + Defol-1) 7.27 171.34 6.31
19 Spring Ppt & Temp & Defol-1 (Model 15 + Defol-1) 1.51 159.19 7.15

a: Maximum Likelihood approach, AICQ−1298.36 were listed.
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temperature and defoliation) contains more than twice number of covariates in
other four models. Specifically, model 13 and model 17 include Spring and Fall
temperature (versus the 13 monthly values for the full flowering cycle, as model 5),
model 16 includes Spring and Fall precipitation, and model 19 includes Spring
precipitation and temperature. Defoliation from the earlier year is also included in
models 16, 17, and 19. The DIC values from all these 5 models are comparable. The
big model has the small DIC value since the pD value is relatively small compared
to the complexity of the model. Though the DIC values may be in favor of a large
model due to underestimation in the dimensional penalty, the DIC values do show
that the smaller penalty is associated with a smaller model. Therefore, we select the
four models containing small subsets of covariates with comparable DIC values. We
note that these four models identified based on DIC also are selected by the AICQ

in Huang et al. (2008).
Since model 13 is nested in model 17, we focus on the other three models of the

four top models and assess the effects of the selected covariates on the flowering
intensities. The posterior means, the posterior standard deviations (SDs), and the
95% highest posterior density (HPD) intervals were given in Table 2. In all the three
models, the defoliation from previous year (Defol-1) is included in the model and
its 95 % HPD interval is above zero in models 16 and 19, implying a positive effect,
and high levels of defoliation are likely to cause a deviation in the alternating pattern
when an increase in flowering intensity is expected. The precipitation from June
(PptJun) is included in both models 16 and 19, showing significant negative effects
in both models. Hence, the higher the precipitation in June of the current year, the
less likely to observe a deviation in the increasing pattern of flowering intensity.
The temperature also shows an important influence in the flowering intensity. In
model 17, the temperature of August (TempAug-1) from the previous year and May
(TempMay) of the current year has negative effects.

The estimated effects shown in Table 2 have biological meaning and are
expected. Using defoliation as an example, the defoliation by gypsy moths in
the previous year apparently reduces the ability of trees to reserve energy and
prepare for the flowering in the current year. June is a critical month for flowering
intensities. The precipitation in June of the current year will help the tree to
develop leaves or flowers; hence, a high precipitation in these two months will
promote flowering intensities. Similarly, it is expected that the higher temperature
in August of the previous year and May of the current year, the more energy the
tree can reserve for developing new leaves, and heavier flowering intensities will be
observed.

Table 2 also presents the estimates of Huang et al. (2008) using the maximum
likelihood (ML) method for models 16, 17, and 19. As the logistic regression model
was used for outcome variable in Huang et al. (2008), the estimates of the regression
coefficients are expected to share similar directions but have different magnitudes.
From Table 2, we see some slight differences between these two methods in model
17 but not in models 16 and 19. In model 17, temperature in September of previous
year shows a significant negative effect and defoliation of previous year shows a
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Table 2 Posterior estimates of the parameters under three top models

Maximum Likelihood Bayesian
Model Variable Estimate SE P-Value Mean SD 95% HPD

16 Intercept -1.517 0.239 <0.001 -0.794 0.127 (-1.034, -0.543)
PptAug-1 0.189 0.302 0.532 0.056 0.129 (-0.204, 0.307)
PptSep-1 0.032 0.238 0.894 0.085 0.156 (-0.216, 0.390)
PptOct-1 -0.310 0.271 0.252 -0.219 0.118 (-0.434, 0.033)
PptApr -0.048 0.290 0.870 0.150 0.124 (-0.084, 0.413)
PptMay -0.498 0.383 0.193 -0.052 0.127 (-0.302, 0.199)
PptJun -1.198 0.244 <0.001 -0.577 0.190 (-0.940, -0.202)
Defol-1 1.230 0.319 <0.001 0.501 0.233 ( 0.069, 0.982)
σ 2 0.200 0.313 − 0.004 0.022 ( 0.000, 0.014)

17 Intercept -1.545 0.260 <0.001 -0.822 0.131 (-1.089, -0.575)
TempAug-1 -0.803 0.363 0.027 -0.402 0.148 (-0.696, -0.113)
TempSep-1 -0.671 0.248 0.007 -0.230 0.142 (-0.509, 0.050)
TempOct-1 0.351 0.272 0.197 0.121 0.119 (-0.112, 0.347)
TempApr 0.605 0.340 0.075 0.267 0.159 (-0.018, 0.601)
TempMay -1.026 0.320 0.001 -0.476 0.171 (-0.799, -0.124)
TempJun -0.144 0.315 0.649 0.038 0.148 (-0.238, 0.343)
Defol-1 0.741 0.317 0.019 0.366 0.205 (-0.001, 0.806)
σ 2 0.078 0.457 − 0.003 0.016 ( 0.000, 0.012)

19 Intercept -1.546 0.243 <0.001 -0.792 0.128 (-1.053, -0.555)
PptApr -0.101 0.255 0.692 0.080 0.113 (-0.140, 0.293)
PptMay -0.627 0.423 0.138 -0.141 0.123 (-0.392, 0.082)
PptJun -1.154 0.235 <0.001 -0.443 0.191 (-0.837, -0.099)
TempApr 0.308 0.267 0.249 0.107 0.138 (-0.162, 0.377)
TempMay -0.450 0.322 0.162 -0.214 0.129 (-0.469, 0.032)
TempJun -0.157 0.247 0.525 0.021 0.147 (-0.247, 0.328)
Defol-1 1.217 0.313 <0.001 0.501 0.226 ( 0.085, 0.936)
σ 2 0.021 0.446 − 0.003 0.019 ( 0.000, 0.015)

SE, Standard Error; HPD, highest posterior density interval

significant positive effect only in the ML method. However, the Bayesian method
shows that both covariates have marginal effects.

Following Chen et al. (2000), we define the Bayesian latent residuals as ϖ∗it =
(ϖit − μϖit )/σϖit , where μϖit = E(ϖit |D) and σ2

ϖit
= Var(ϖit |D) are the posterior

mean and variance of ϖit . Accordingly we calculate the posterior probabilities
P(|ϖ∗it ≥ 2|D) using the MCMC samples. Similarly, we estimate E(yit,new|D) =
E[Φ(μ +bi+X′itβ +Z′itγ)|D] using the MCMC samples. Figure 1 shows the scatter
plots of the posterior probabilities P(|ϖ∗it ≥ 2|D) versus E(yit,new|D) for the three
top models to assess the model adequacy. The estimated probabilities P(|ϖ∗it ≥ 2|D)
for all ϖ∗it in Fig. 1 are less than 0.06, indicating that the three top models all fit the
flower intensity data fairly well.
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Fig. 1 Plots of posterior probabilities P(|ϖ∗it ≥ 2|D) versus E(yit ,new|D) for three top models.

6 Discussion

We have developed a useful Bayesian approach for modeling missing covariates
in addition to the probit regression model for repeated binary responses. The DIC
measure is derived to identify important covariates when data contain missing
covariates. The results from the real data analysis on flowering intensity pattern
of Tilia americana demonstrate that (1) the incorporation of additional information
(i.e., weather information from neighboring weather stations) improves the model
fit and (2) both DIC and AICQ select similar top models. We note that the Bayesian
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and ML methods yield slightly different estimates of the model parameters. The
difference between the Bayesian method and the ML method may be partially due
to the relatively small sample size. As it is well known, the Bayesian estimates
including the posterior standard deviations and 95 % HPD intervals are calculated
without resorting to asymptotics while the ML method does require the asymptotic
normality.
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Abstract In recent years, global collaboration has become a commonly used
strategy for new drug development. To accelerate the development process and
shorten the approval time, the design of multi-regional clinical trials (MRCTs)
incorporates subjects from many countries around the world under the same
protocol. After showing the overall efficacy of a drug in all global regions, one
can also simultaneously evaluate the possibility of applying the overall trial results
to all regions and subsequently support drug registration in each of them. Several
statistical methods have been proposed for the design and evaluation of MRCTs.
Most of these approaches, however, assume a common variability of the primary
endpoint across regions. In practice, this assumption may not be true due to
differences across regions. In this paper, we use a random effect model for modeling
heterogeneous variability across regions for the design and evaluation of MRCTs.
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1 Introduction

To speed up drug development and regulatory approval time, the design of multi-
regional clinical trials (MRCTs) incorporates subjects from many countries around
the world under the same protocol. After showing the overall efficacy of a drug in
all global regions, one can also simultaneously evaluate the possibility of applying
the overall trial results to all regions and subsequently support drug registration in
each of them. Recent approaches for sample size determination in multi-regional
trials developed by Kawai et al. (2008) and Ko et al. (2010) are all based on the
assumption that the effect size is uniform across regions. In practice, it might be
expected that there is a difference in treatment effect due to regional difference
(e.g., ethnic difference). Hung et al. (2010) presented a number of useful statistical
analysis tools for exploration of regional differences and a method that may be
worth consideration in planning an MRCT. Chen et al. (2012) proposed a random
effect model for heterogeneous treatment effect across regions for the design and
evaluation of an MRCT. For those approaches, an equal variability of the primary
endpoint across regions is usually assumed.

In this paper, we concern the case that the mean of response variable is fixed
but the shift in the variance across regions is random. This assumption may not
be trivial. In a population of patients with chronic pain, no group differences were
evident for the STAI (State-Trait Anxiety Inventory) state anxiety scores, but the
observed standard deviation from African-American population might be smaller
than that from Caucasian populations (Edward et al. 2001). In subjects with diabetes
mellitus, there was no difference in low density lipoprotein (LDL)/apolipoprotein
(apo) B ratio between Asian Indians and Chinese, but there might exist differences in
the observed standard deviation between two groups. In fact, the observed standard
deviation from the Asian Indians was much larger than that observed from Chinese
(Tan et al. 2001).

This paper is organized as follows. In Sect. 2, we evaluate the drug efficacy in
overall region when unequal variability of the primary endpoint across regions is
assumed in the MRCT. A method for sample size determination of the MRCT is
also proposed in Sect. 3. Numerical examples are presented in Sect. 4 to illustrate
the use of our method. Discussions are given in Sect. 5.

2 Statistical Hypothesis and Testing Statistic

For simplicity, we focus on the MRCT for comparing a test product and a placebo
control based on a continuous efficacy endpoint. Suppose that there will be M
regions participated in the MRCT. Let Xij and Yik be efficacy responses for patients
j and k receiving the test product and the placebo control, respectively, in the
ith region, i=1, . . . ,M, j=1, . . . , ni

T, and k=1, . . . , ni
C. In this paper, we assume a

common treatment effect but an unequal variability of the efficacy response across
regions. Subsequently, we can assume that
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Xi j ∼ N (μT ,σ2
Ti), and Yik ∼ N(μC, σ2

Ci), (1)

where N(μ , σ2) represents the normal distribution with mean μ and σ2. To
address the issue of heterogeneous variability across regions, similar to the approach
developed by Lu et al. (2010), we can let

σTi =
σT

τTi
, σCi =

σC

τCi
,

and assume that

τTi ∼ Gamma(νT ,λT νT ), and τCi ∼ Gamma(νC,λCνC), (2)

where λT > 0 and λC > 0. Here, τTi and τCi can be thought of as the shift in the
variance across regions. Following this design, μT , μC, λT , λC,νT , νC, σ2

T and σ2
C

are the unknown parameters.
For the treatment group, in addition to observe X = {xi j, j = 1, . . . ,nT

i ;
i = 1, . . . ,M} from all regions, we can consider τT = {τT 1, . . . ,τT M} as the latent
data. Therefore, the log-likelihood function can be written as

L(uT ,σ2
T ,νT ,λT |X ,τT )

∝ L(X |uT ,σ2
T ,τT )+L(τT |νT ,λT )

=−nT logσT +
M
∑

i=1

nT
i
2 logτTi− 1

2σ 2
T

M
∑

i=1

nT
i

∑
j=1

τTi(xi j− uT )
2 +νT M log(λT νT )−

(M+ 1) logΓ(νT )+ (νT − 1)
M
∑

i=1
logτTi− (λT νT )

M
∑

i=1
τTi,

(3)

where nT =
M
∑

i=1
nT

i . Since there doesn’t exist closed-form solution to the likelihood

equations, we will use the expected maximum (EM) algorithm to obtain the
maximum likelihood estimates of uT ,σ2

T ,νT , and λT .
The EM algorithm is comprised of two steps, namely E-step and M-step. The E-

step computes the conditional expectation of the complete-data sufficient statistics

given the observed values and the current estimates Ω(t)
T = {X ,u(t)T ,σ (t)

T ,ν(t)
T ,λ (t)

T }
and the M-step maximizes the expected L(X |uT ,σ2

T ,τT ) over (uT ,σ2
T ) and the

expected L(τT |νT ,λT ) over (νT ,λT ) to derive the local maximum values. The EM
algorithm proceeds as follows.

E-Step: By conditioning on the current estimates Ω(t)
T = {X ,u(t)T ,σ (t)

T ,ν(t)
T ,λ (t)

T }, we
have

τTi ∼ Gamma(ν(t)
T +

nT
i

2
,λ (t)

T ν(t)
T +

nT
i

∑
j=1

(xi j− u(t)T )
2

2(σ (t)
T )

2 ).
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The expectations of the relevant statistics are given by

E[τTi|Ω(t)
T ] =

2ν(t)
T (σ (t)

T )
2
+ nT

i (σ
(t)
T )

2

2λ (t)
T ν(t)

T (σ (t)
T )

2
+

nT
i

∑
j=1

(xi j− u(t)T )
2
,

and

E[logτTi|Ω(t)
T ] = φ(ν(t)

T +
nT

i

2
)− log(λ (t)

T ν(t)
T +

nT
i

∑
j=1

(xi j− u(t)T )
2

2(σ (t)
T )

2 ),

where φ(y) = Γ
′
(y)

Γ(y) represents the digamma function. Given the current estimates

Ω(t)
T = {X ,u(t)T ,σ (t)

T ,ν(t)
T ,λ (t)

T }, let

VT1i
(t) = E[τTi|Ω(t)

T ] and VT2i
(t) = E[logτTi|Ω(t)

T ].

We can obtain the expectation of the log-likelihood function:

Q(uT ,σ2
T ,νT ,λT |Ω(t)

T )

=−nT logσT +
M
∑

i=1

nT
i
2 VT2i

(t)− 1
2σ 2

T

M
∑

i=1

nT
i

∑
j=1

VT 1i
(t)(xi j− uT )

2 +νT M log(λT νT )

−M logΓ(νT )+ (νT − 1)
M
∑

i=1
VT 2i

(t)− (λT νT )
M
∑

i=1
VT 1i

(t).

(4)

M-step: We can maximize the function (4) by

∂Q
∂uT

= 1
σ 2

T

M
∑

i=1

nT
i

∑
j=1

VT 1i
(t)(xi j− uT ) = 0,

∂Q
∂σ 2

T
=− nT

σ 2
T
+ 1

σ 3
T

M
∑

i=1

nT
i

∑
j=1

VT1i
(t)(xi j− uT )

2 = 0,

∂Q
∂λT

= νT M
λT
−νT

M
∑

i=1
VT1i

(t) = 0,

and

∂Q
∂νT

= M log(λT νT )+M−Mφ(νT )+
M

∑
i=1

VT 2i
(t)−λT

M

∑
i=1

VT 1i
(t) = 0. (5)

The iterations of the estimates of parameters uT ,σ2
T , and λT are given by
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û(t+1)
T =

M
∑

i=1
VT1i

(t)(
nT

i
∑

j=1
xi j)

M
∑

i=1
nT

i VT1i
(t)

,

(σ̂ (t+1)
T )2 = 1

nT

M
∑

i=1

nT
i

∑
j=1

VT 1i
(t)(xi j− u(t+1)

T )
2
,

and

λ̂ (t+1)
T = M

M
∑

i=1
VT 1i

(t)
.

(6)

In addition, ν(t+1)
T can be derived by finding the solution to Eq. (5) by Newton

method, i.e.,

ν̂(t+1)
T = ν(t)

T −
log(λ (t+1)

T ν(t)
T )−φ(ν(t)

T )+
1
M

M
∑

i=1
VT2i

(t)− λ (t+1)
T

M

M
∑

i=1
VT1i

(t) + 1

1

ν(t)
T

− φ ′(ν(t)
T )

2

.

(7)

Proceeding similarly, we can use the EM algorithm to derive the maximum
likelihood estimates of uC,σ2

C, νC and λC.
Assume that the EM iteration converges after the (t+ 1)th loop. By Theorem 1 in

Lu et al. (2010), we can approximately derive that

E(u(t+1)
T )≈ uT ,

E(u(t+1)
C )≈ uC,

Var(u(t+1)
T )≈

λT σ 2
T νT

M
∑

i=1
nT

i (VT 1i
(t))

2

(νT−1)(
M
∑

i=1
nT

i VT 1i
(t))

2 ,

and

Var(u(t+1)
C )≈

λCσ2
CνC

M
∑

i=1
nC

i (VC1i
(t))

2

(νC− 1)(
M
∑

i=1
nC

i VC1i
(t))

2 .

Let μ̃T and μ̃C be the approximate MLEs. Subsequently, we have

μ̃T − μ̃C ∼ N(μT − μC, σ2
p),

where
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σ2
p =

λT σ 2
T νT

M
∑

i=1
nT

i (V
(t)
T1i)

2

(νT−1)(
M
∑

i=1
nT

i V
(t)
T 1i)

2 +
λCσ 2

CνC
M
∑

i=1
nC

i (V
(t)
C1i)

2
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2 . (8)

The hypothesis of testing for the overall treatment effect in the MRCT can thus
be given as

H0 : μT − μC � 0 vs. HA : μT − μC > 0

Although the hypothesis is one-sided, the method proposed can be straightfor-
wardly extended to the two-sided hypothesis. Under the null hypothesis, the test
statistic is given by

z =
μ̃T − μ̃C

σ̃p
, (9)

where μ̃T and μ̃C are estimated from the iterations of Eq. (6), σ̃p is from Eq. (8)
and can be estimated by Eqs. (6) and (7). Under the null hypothesis, the test statistic
follows a standard normal distribution for a large sample. Thus, we reject the null
hypothesis at α level of significance if z> z1-α .

3 Sample Size Determination

Let N be the total sample size for each group, and pi denote the proportion of

patients out of 2 N in the ith region, i = 1, · · · ,M, where
M
∑

i=1
pi = 1. The total

sample size for each group planned for detecting an expected treatment difference
μT −μC =Δ at the desired significance level α and with power 1 - β will be obtained
by solving

Δ
σ̃p
− z1−α = z1−β .

Assume that homogeneous variance condition holds. That is, σTi = σCi =
σi,σT = σC = σ̃ , νT = νC = ν̃, λT = λC = λ̃ , and thus we can assume that
VT1i =VC1i =V1i. Also assume that nT

i = nC
i , i = 1, . . . ,M. Let

σ̃e =

√
N
2

σ̃p =

√√√
√
√
√
√
√

Nλ̃ σ̃2ν̃
M
∑

i=1
ni(V1i

(t))
2

(
˜
ν−1)(

M
∑
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niV1i

(t))
2 .

Hence
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2
N
(Z1−α +Z1−β )

2σ̃2
e = Δ2.

Consequently, we have

N =
2(Z1−α +Z1−β )

2

Δ2 (

λ̃ σ̃2ν̃
M
∑

i=1
pi(V1i

(t))
2

(ν̃− 1)(
M
∑

i=1
piV1i

(t))
2 ). (10)

Here, V (t)
1i can be estimated by the latent variable τi =

σ̃
σi

if we have sufficient

information of σ2
i and σ̃ from early stage of development. Given ν̃, λ̃ , and Δ at

the design stage, N can thus be derived by solving Eq. (10). However, in drug
development, early stage trials are smaller and often limited to fewer regions. Even
if not, the sample size from each region may be too small to get variance estimations
with any precision. This may limit the application of our method.

4 Numerical Examples

To illustrate our approach, suppose an MRCT will be conducted in three regions
(for example, Japan, EU, and the USA). Similar to Kawai et al. (2008), let p1 be
the proportion of patients in the smallest region, p2 the proportion of patients in the
second smallest region, and p3 the proportion of patients in the largest region. Here,
we consider three designs: p1 = p2 < p3, p1 < p2 = p3, and p1 < p2 < p3.

By considering α=0.025, β=0.2, Δ = 7, ν̃ = 4, λ̃ = 1, and σ̃ = 20,
Tables 1 and 2 exhibit the total sample size and the assurance probability for
different combinations of design parameters with (τ1,τ2,τ3) = (0.7,0.9,1.4) and
(τ1,τ2,τ3) = (1.5, 1.1, 0.5), respectively. The first panel in the tables corresponds
to p1 = p2 < p3, the second panel corresponds to p1 < p2 = p3, and the third panel
corresponds to p1 < p2 < p3. For instances, the first line in Table 1 corresponds to
a design with (p1, p2, p3)=(0.1, 0.1, 0.8), and (τ1,τ2,τ3) = (0.7, 0.9, 1.4). In this
case, the total sample size required per group in the MRCT is 204.

If (τ1,τ2,τ3) = (0.7, 0.9, 1.4), the required sample size per group for the MRCT
increases as p1 increases. This makes intuitive sense, since for this case, Region 1
will have the largest variance. As p1 increases, the overall variation σ̃2

e becomes
larger. On the contrary, when (τ1,τ2,τ3) = (1.5, 1.1, 0.5), the required sample size
per group for the MRCT decreases as p1 increases. In all cases, the total sample
size required per group, N, is minimized when all regions are close to be equally
represented. On the other hand, the shift in variation across regions we assume in
Table 2 is larger than that in Table 1. Consequently, the difference between the
sample sizes for all the scenarios in Table 2 (vary from 266 to 287) is larger than
that in Table 1 (vary from 204 to 213).
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Table 1 The required total sample size given α = 0.025, β = 0.1, δ = 7, σ = 20, v = 8, λ = 1
and (τ1,τ2,τ3) = (0.7, 0.9, 1.4)

p1 = p2 < p3

p1 p2 p3 N

0.1 0.1 0.8 204
0.15 0.15 0.7 207
0.2 0.2 0.6 210
0.25 0.25 0.5 212
0.3 0.3 0.4 213

p1 < p2 = p3

p1 p2 p3 N

0.1 0.45 0.45 209
0.15 0.425 0.425 210
0.2 0.4 0.4 211
0.25 0.375 0.375 212
0.3 0.35 0.35 213

p1 < p2 < p3

p1 p2 p3 N

0.1 0.25 0.65 206
0.15 0.3 0.55 209
0.2 0.35 0.45 211

Table 2 The required total sample size given α=0.025, β=0.1, δ = 7, σ = 20, v = 4, λ = 1 and
(τ1,τ2,τ3) = (1.5, 1.1, 0.5)

p1 = p2 < p3

p1 p2 p3 N

0.1 0.1 0.8 287
0.15 0.15 0.7 290
0.2 0.2 0.6 287
0.25 0.25 0.5 280
0.3 0.3 0.4 272

p1 < p2 = p3

p1 p2 p3 N

0.1 0.45 0.45 267
0.15 0.425 0.425 268
0.2 0.4 0.4 268
0.25 0.375 0.375 268
0.3 0.35 0.35 266

p1 < p2 < p3

p1 p2 p3 N

0.1 0.25 0.65 281
0.15 0.3 0.55 279
0.2 0.35 0.45 281
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5 Discussions

Since the design of an MRCT incorporates subjects from many countries around
the world, it might be reasonable to anticipate a difference in population variability
due to ethnic differences. With consideration of the effect of ethnic differences on
response variable in an MRCT, in this paper, we concern the case that the mean
of response variable is fixed but the shift in the variance across regions is random.
Our approach is different from other approaches assuming a common population
standard deviation across regions. However, care needs to be taken when the shift in
variation across regions is large. A larger shift in variation implies a larger regional
difference. That is, the effect sizes among regions are very different. In this case, we
need to consider whether or not the overall effect size in (μ̃T− μ̃C)/σp is meaningful
or interpretable for all regions. Therefore, if regional differences are suspected,
we may only choose regions that likely meet the minimal clinical meaningfulness
requirement of effect size. On the other hand, if regional differences are caused
mostly by trial conduct/data quality among regions, the results of the entire trial
might not be interpretable. Therefore, the statistical analysis plan should discuss
specific elements of global trial needing considerations in design and analysis.

Our research work here is based on the assumption that the mean of response
variable is fixed but the shift in the variance across regions is random. Chen et
al. (2012) used a random effect model to model heterogeneous treatment effect
across regions for the design and evaluation of an MRCT. For the most practical
case of varying treatment effects with varying variances across regions, the normal-
scaled inverse gamma distribution may be considered for modeling the unknown
parameters. Future work is being pursued to address this issue.
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Part IX
In Vitro Drug Combination Studies



Experimental Design for In Vitro Drug
Combination Studies

Gregory Hather, Huaihou Chen, and Ray Liu

Abstract In vitro drug combination studies typically involve a large number of
wells with various concentrations of two drugs added together. To gain the most
information from an experiment, what should the drug concentrations be? Here, we
consider the case where the single drug response curves are known beforehand, but
no previous data is available from the combination. We consider several designs,
including C- and D-optimal designs and a factorial design. We evaluate these
designs based on the expected variance of the synergy score for a large set of in
vitro experiments performed at Takeda Pharmaceuticals. Based on the results, we
were able to identify which design was the most efficient and robust.

1 Background

Drug combinations have become an important part of cancer care and antiviral
therapy. To identify synergistic drug combinations, and to understand the combined
behavior, scientists often perform in vitro drug combination studies. In the oncology
setting, in vitro studies usually involve a cell viability assay applied to a cancer cell
line. The assay usually involves a microtiter plate, where cells and various amounts
of drugs are added to each well. The plate is then incubated, after which the cell
viability is measured.

In the case where two drugs are considered, various methods have been used to
analyze the data [1–4]. Some methods involve fitting a response surface model to
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describe the viability as a nonlinear function of the two drug concentrations [5, 6].
The fitted response surface can then be summarized by a single number to describe
the synergy.

The choice of drug concentrations used in the experiment can affect the quality
of the results. If the drug concentrations don’t cover a reasonable range, then the
response surface will be poorly estimated, so the synergy measure will be highly
uncertain. In this paper, we will propose and evaluate several different designs for
drug combination studies.

Experimental design for response surface estimation has a rich history in the
literature. In particular, design methods for nonlinear response surface surfaces
have been explored, both in a general context [7, 8] and in the context of drug
combination studies [9, 10]. In the nonlinear setting, the optimal design for finding
the response surface parameters actually depends on the parameters. If a small-
scale experiment has been done previously, then the parameter estimates from this
experiment can be used to design a larger experiment. However, combination studies
are often performed without previous combination data. In this paper, we consider
the case where previous combination data is unavailable, but where previous single
agent data has been collected.

2 Analyzing Cell Viability Data

Takeda scientists performed a number of combination studies using 384-well
microtiter plates (Fig. 1). To analyze this data, we normalized the viability by scaling
so that the median of the negative controls was 0 and the median of the positive
controls was 100. More formally,

Fig. 1 A heatmap showing the viability measurements for a drug combination study performed at
Takeda Pharmaceuticals. Here, yellow corresponds to high viability and blue corresponds to low
viability
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Vi = 100
Ui−median(U−)

median(U+)−median(U−)
,

where Vi is the normalized viability of the ith well, and Ui is the corresponding raw
viability measurement. After normalization, the controls were discarded.

2.1 Single Drug Experiments

Some of the experiments only involved single agents. For these cases, we assumed
that the dose response curve had the form of the Hill equation [11]. Since the data
was normalized, we assumed that the highest viability (the upper plateau) was 100.
Thus, the viability was modeled as

V = 100− Emax

1+(I/C)S + error,

where V is the normalized viability measurement. Here, Emax is the maximum drug
effect, I is the inflection point, S is the slope, and C is the drug concentration. We
assumed that the error values were identically distributed normal random variables
that were independent of each other. These assumptions can be tested by exploratory
data analysis and residual analysis. We used the nlm() function in the R software
package [12] to minimize the sum of the squared residuals and estimate the lower
plateau, the slope, and the inflection point.

2.2 Combination Experiments

To describe the relationship between the normalized viability and the drug con-
centrations, we used a response surface model similar to that of [5], which is an
extension of the Hill equation. For a given plate, let

C = (CA/I1)+ (CB/I2)

x = (CA/I1)/C

Emax = E1 +E2x+E3x2 +E4x3

I = 1+ I3x(1− x)

S = S1 + S2x+ S3x2 + S4x3

V = 100− Emax

1+(I/C)S + error,
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where E1, E2, E3, E4, I1, I2, I3, S1, S2, S3, and S4 are parameters, CA and CB are
the respective concentrations of drugs A and B, and V is the normalized viability
measurement. This model has the property that along any line of constant dose ratio,
the model has the form of a Hill equation. We assumed that the error values were
independent and identically distributed normal random variables. We also included
two constraints, thus yielding a model with 9 degrees of freedom.

We fit the data to our model by minimizing the residual sum of squares using the
used the nlm() function in R. Next, we developed a measure of synergy that was a
function of the nine response surface parameters. We refer to this measure as the
synergy score.

3 Designing Combination Experiments

For a given number of wells, we wish to choose doses that will minimize the
variance of the synergy measure. Unfortunately, the best choice depends on the
shape of the response surface, which we don’t have until we do the experiment.
However, if we have past single drug data, and we assume that there is no interaction,
then we have a guess for the parameters. For a model with no interaction, we assume
that I3 = 0. We also assume that for x= 0.5, the resulting slope and Emax are found
by averaging the slope and Emax, respectively, for the individual drugs. With these
constraints, one can uniquely identify parameters for the model.

3.1 A C-Optimal Design

Figure 2 shows a strategy for finding an optimal study design. Given single agent
data, one can produce a guess for the response surface parameters. In addition, given
the dose choices for a proposed design, one can compute the likelihood function
and the Fisher Information matrix, evaluated at the initial parameter guess. Using
the Cramer-Rao lower bound [13, 14], the Fisher Information matrix can be used to
estimate the variance matrix of the parameter estimates with the proposed design.
Since the synergy score is simply a function of the response surface parameters,
the one can use the Delta method [13] to estimate the expected variance of the
synergy score under the proposed design. Then, one can adjust the proposed design
to minimize the estimated variance.

The Delta method uses a first order (i.e., linear) approximation to relate the syn-
ergy score to the response surface parameters. Therefore, this approach minimizes
the variance of a linear combination of the parameters. In the literature, this is called
a C-optimal design [7].
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Fig. 2 The process for
choosing a design

3.2 Computational Approach

The experimental design specifies the concentration for each of the two drugs
in each microtiter well. Thus, minimizing the estimated variance of the synergy
score would require a search over a space with dimension equal to twice the
number of wells. Finding the global optimum in this space would require far too
much computational power. Therefore, we developed a heuristic approach to this
optimization problem.

Start with 6× 6 log-spread grid points, search over the 50× 50 candidate grid
points, and choose the point which minimizes the variance of the synergy measure
estimate. Repeat the above search step until we obtain the number of design points
needed. Remove the 36 starting grid points and search another 36 design points over
the 50× 50 candidate grid points.

3.3 Evaluating Designs

To evaluate our C-optimal design procedure, we obtained data from a set of 100
drug combination studies performed at Takeda Phamaceuticals using a variety of
drugs and cancer cell lines. The studies were done with 384 well microtiter plates.
The doses were arranged in a factorial design, with dose ranges manually chosen by
the scientists. In addition, we obtained single agent data for each drug from previous
experiments.

Figure 3 shows our method for evaluating the design. For each of the 100
experiments, we found the C-optimal design based on the past single agent data.
Next, we took the corresponding combination data, estimated the response surface
parameters, and used these estimates to predict the variance of the synergy measure.
We believe this is a realistic assessment of the design procedure because it uses real
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Fig. 3 The process for
evaluating the C-optimal
design

single agent data to create the designs and real combination data to evaluate the
designs.

3.4 Other Designs

In addition to the C-optimal design, we considered two other designs, which we
call the D-optimal design and the automated factorial design. The D-optimal design
[7] is similar to the C-optimal design, except it minimizes the determinate of the
estimated parameter covariance matrix.

The automated factorial design is a factorial design with dose ranges chosen
based on the past single agent data. From the past single agent data, we estimate the
slope and inflection point, and we used the following formula to select a dose range.

Log dose range =

(
log(I)− a− b

slope
, log(I)+ a+

c
slope

)
,

where I is the inflection point, and a, b, and c are constants. The dose levels are
evenly distributed on the log scale along the selected dose range. Note that the dose
range is centered around the inflection point, and the width of the range decreases
with increasing slope. This ensures that the dose range covers the region when the
response is changing.

4 Results and Discussion

The results are shown in Table 1. We found that the C-optimal design actually
underperformed the designs manually created by the scientists. The D-optimal
design is only slightly better than the manual designs. We believe these optimal
designs underperform because there is a difference between the parameters used to
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Table 1 Predicted variance of the estimate for the synergy score for the various designs

Experiment C-optimal D-optimal Automated factorial

1 0.63 1.00 0.43
2 1.02 0.38 0.66
3 1.26 0.25 0.56
4 1.31 0.52 0.72
5 2.04 0.06 0.26
6 2.18 0.60 0.45
7 0.29 0.55 0.62
8 0.19 0.94 0.17
9 2.64 0.73 0.33
100 0.98 0.45 0.45
Mean 4.60 0.83 0.49

The variance is expressed as a fraction of the variance expected under the manual
factorial designs

Table 2 Predicted variance of the estimate for the synergy score for the C- and D-optimal designs

Experiment C-optimal D-optimal

1 0.10 0.22
2 0.12 0.24
3 0.08 0.20
4 0.11 0.34
5 0.04 0.10
6 0.05 0.15
7 0.15 0.39
8 0.02 0.004
9 0.02 0.07
100 0.21 0.45
Mean 0.112 0.216

In this case, the designs were evaluated using the same parameters that were used to
generate the designs. The variance is expressed as a fraction of the variance under
the manual factorial designs

generate the designs and the parameters used to evaluate the designs. The parameters
used to generate the designs are found using the prior single agent data. This data is
from a different batch than the combination data, so the parameter values may have
shifted. Also, the initial parameter guesses assume that there is no drug synergy.
Therefore, the initial parameter guesses may differ substantially from the parameters
estimated from the combination data. We believe the C- and D-optimal designs are
not robust to these differences. Furthermore, previous studies have found that C-
and D-optimal designs can perform poorly if there is a high level of uncertainty in
the initial parameter guesses [8].

To confirm our view, we evaluated the C- and D-optimal designs using the
same parameters that were used to generate these designs. The results are shown
in Table 2. As expected, the C- and D-optimal designs perform well in this scenario.
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In Table 1, the automated factorial design outperforms the manual factorial
designs. The variance of the synergy measure is reduced by a factor of 2, which
means the number of wells could be cut in half if the automated factorial design is
used.

5 Conclusion

We presented a method to evaluate different designs for drug combination studies.
We found that the C-and D-optimal designs were not robust to misspecification of
the response surface parameters. The automated factorial design showed a twofold
reduction in the variance of the synergy measure.
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