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Preface

This volume presents a selection of papers developed from talks presented at the
First Conference of the International Society of Nonparametric Statistics (ISNPS),
held on June 15–19, 2012, at Chalkidiki, Greece. The papers cover a wide spectrum
of topics of current interest and provide a glimpse of some of the most signif-
icant recent advances in theory, methodology, and applications of nonparametric
statistics. Some of the topics covered in this volume include: Curve estimation and
smoothing, Distribution of clusters of exceedances, Frequency domain and multi-
scale methods, Inference for extremes, Level set estimation, Model selection and
variable selection in high dimensions, Multiple testing, Nonparametric methods for
image analysis and telecommunication networks, Nonparametric signal filtration,
Particle filters, Statistical learning, and Resampling methods (Bootstrap, Permuta-
tion tests, etc.). All papers in the volume are refereed.

ISNPS was formed in 2010 with the mission “to foster the research and practice
of nonparametric statistics, and to promote the dissemination of new developments
in the field via conferences, books and journal publications.” The nature of ISNPS
is uniquely global, and its international conferences are designed to facilitate the
exchange of ideas and latest advances among researchers from all around the
world in cooperation with established statistical societies such as the Institute of
Mathematical Statistics (IMS) and the International Statistical Institute (ISI). ISNPS
has a distinguished Advisory Committee that includes R. Beran, P. Bickel, R.
Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M.
Rosenblatt, G. Roussas, T. Subba Rao, and G. Wahba. The Charting Committee
of ISNPS consists of over 50 prominent researchers from all over the world.

The First Conference of ISNPS included over 275 talks (keynote, special
invited, invited and contributed) with presenters coming from all five continents.
After the success of the First Conference, a second conference is currently being
organized. The second ISNPS Conference is scheduled to take place in Cádiz, Spain,
June 12–16, 2014, and is projected to include over 350 presentations. More
information on ISNPS and the conferences can be found at http://www.isnpstat.
org/.
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vi Preface

We would like to thank Marc Strauss and Jon Gurstelle of Springer for their
immediate support of this project. It has been a pleasure working with Hannah
Bracken of Springer during the production of the volume. We would like to
acknowledge her patience, support, and cheer at all stages of preparation of the
manuscript. Finally, we are grateful to our referees who provided reports and
feedback on the papers on a tight schedule for timely publication of the proceedings;
this volume is much improved as a result of their efforts.

University Park, PA, USA Michael G. Akritas
Raleigh, NC, USA S.N. Lahiri
San Diego, CA, USA Dimitris N. Politis
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Chapter 1
A Cost Based Reweighted Scheme of Principal
Support Vector Machine

Andreas Artemiou and Min Shu

Abstract Principal Support Vector Machine (PSVM) is a recently proposed
method that uses Support Vector Machines to achieve linear and nonlinear sufficient
dimension reduction under a unified framework. In this work, a reweighted scheme
is used to improve the performance of the algorithm. We present basic theoretical
results and demonstrate the effectiveness of the reweighted algorithm through
simulations and real data application.

Keywords Support vector machine • Sufficient dimension reduction • Inverse
regression • Misclassification penalty • Imbalanced data

1.1 Introduction

The recent increased capability of computers in storing large datasets allows
researchers to collect large amount of data. This creates the need to analyze them and
a number of methods have been proposed to efficiently and accurately reduce the
dimensionality of several problems, in order for their analysis to become feasible.
A set of methods were developed in what is known as sufficient dimension reduction
(SDR) for regression problems. See for example [2, 4, 9–12].

In SDR the objective is to estimate a p � d matrix ˇ .d � p/, such that:

Y X jˇTX (1.1)

where Y is the response variable, X is a p dimensional predictor and ˇTX gives d
linear combinations of the predictors. As long as d is less than p then dimension

A. Artemiou (�)
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2 A. Artemiou and M. Shu

reduction is achieved. There are many possible ˇ that can satisfy model (1.1), which
is also known as the conditional independence model. The space spanned by the
column vectors of ˇ spans a dimension reduction space, S .ˇ/. If the intersection
of all dimension reduction subspaces is a dimension reduction subspace itself, then
it is called the Central Dimension Reduction Subspace (CDRS), denoted as SY jX .
CDRS has the minimum dimension d among all dimension reduction subspaces.
CDRS does not always exist, but if it exists it is unique. For more see [3].

Recently there has been interest towards nonlinear SDR, where nonlinear func-
tions of the predictors are extracted without losing information for the conditional
distribution of Y jX , that is:

Y X j�.X/ (1.2)

where � W Rp ! R
d . See for example [7, 17, 18]. Li et al. [13] used Support Vector

Machine [5] to achieve linear and nonlinear SDR under a unified framework.
To estimate the CDRS, Li et al. [13] used the idea of slicing the response as was

proposed by Li [9]. One of the algorithms they suggested to implement is the “left
vs right” (LVR) approach.

In the LVR approach at each dividing point between slices Oyr ; r D 1; : : : ;H �1,
whereH the number of slices, a binary response variable is defined as follows:

QY ri D I.Yi � Oyr /� I.Yi < Oyr/ (1.3)

where Yi the i th response in the dataset and I.�/ is the indicator function. Using soft
margin SVM approach at each dividing point the optimal hyperplane TxCt which
separates the two classes is found, where . ; t/ 2 R

p�R and it was shown that 2
SY jX . As it will be shown in the next section, to use the soft margin SVM approach,
one needs to minimize an objective function where a tuning parameter exists. This
is known as the misclassification penalty, or the “cost” and in the classical setting
is the same for both classes. In this work our focus is to estimate the CDRS by a
scheme that changes the misclassification penalty.

Our proposal involves using a separate cost for each class and it was inspired by
the fact that there are different numbers of observations in each class at each dividing
point. This will have an effect on the performance of the algorithm since for the first
few comparisons there is a much smaller number of observations on the left of the
dividing points than the number of points on the right of it. Similarly, on the last few
comparisons the number of observations on the right of the dividing points is much
smaller than those on the left. For example if the sample size n D 100 and there
are H D 20 slices then if there are equal number of observations in each slice, at
the first and the last (19th) comparisons one class will have 5 points and the other
class will have 95 points. Similarly at the second and second to last comparisons
one class will have 10 points and the other 90 points and so on. A similar idea was
presented by Veropoulos et al. [15] in the classic SVM literature.
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The notation and the main idea of Li et al. [13] is reviewed in Sect. 1.2.
In Sect. 1.3 the new method which is called Cost Reweighted PSVM (CRPSVM)
is introduced for the linear case. In Sect. 1.4 we discuss the estimation procedure,
and in Sect. 1.5 we have some simulations. Finally a small discussion follows at
the end. Due to space constraints results for the nonlinear case are omitted, but the
results are discussed. Finally asymptotic theory and properties of the method are
omitted but the interested reader is referred to Li et al. [13] as the results are similar.

1.2 Principal Support Vector Machine

In this section the main idea behind PSVM is outlined. Let .Yi ;X i /; i D 1; : : : ; n

be iid observations, and let QYi be the value of Yi based on Eq. (1.3) for any cutoff
point Oyr . Let ˙ D var.X/ and . ; t/ 2 R

p � R be a vector and a constant
characterizing the optimal hyperplane.

In the linear case it was suggested to minimize the following objective function
in the sample level

minimize  T˙ n C �n�1
nX

iD1
�i among . ; t; �/ 2 R

p � R � R
n

subject to QYi Œ T.X i � NX/ � t � � 1 � �i ; �i � 0 i D 1; : : : ; n;

(1.4)

where ˙ n is the sample estimator of the population covariance matrix ˙ , � > 0

is the misclassification penalty and � D .�1; : : : ; �n/
T, where �i ; i D 1; : : : ; n is

the misclassification distance for the i th observation, which is 0 if the point is
correctly classified.˙ n in the first term of the objective function is not present in the
traditional SVM literature, but it was introduced by Li et al. [13] as it was essential
in the dimension reduction framework for two reasons. First it gives a unified
framework for linear and nonlinear dimension reduction and in the linear case it
allows for dimension reduction without matrix inversion thus allowing researchers
to use the method in large p small n problems. Fixing . ; t/ and minimizing over
the �i ’s one can show that the above constraint problem takes the form

 T˙ n C �

n

nX

iD1
f1� Yi Œ 

T.X i � NX /� t �gC (1.5)

where aC D maxf0; ag. At the population level this is written as

L. ; t/ D  T˙ C �Ef1� QY Œ T.X �EX/� t �gC: (1.6)

It was shown that if . �; t�/ minimizes the objective function (1.6) among all
. ; t/ 2 R

p � R then  � 2 SY jX , under the assumption that E.X jˇTX/ is a
linear function of ˇTX , where ˇ is as defined in (1.1). This assumption is known as
the linear conditional mean (LCM) assumption and it is very common in the SDR
framework. It is equivalent to the assumption of X being elliptically distributed.
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1.3 Cost Reweighted PSVM

To reweight based on our description in the Sect. 1.1 two separate costs �i ; i D
�1; 1 are introduced in the objective function. Each point will have a cost based
on which class it belongs. The idea is that it is much more costly to get a
misclassification from the class that has a smaller portion of the data (i.e. 10%)
than the class that has the biggest portion of the data (i.e. 90%).

As in classic linear PSVM at the sample level of the problem one minimizes the
following objective function:

minimize  T˙ n C 1

n

nX

iD1
� Qyi �i among . ; t; �/ 2 R

p � R � R
n

subject to Qyi Œ T.xi � Nx/� t � � 1 � �i ; �i � 0 i D 1; : : : ; n;

(1.7)

where we clearly denote the dependence of the misclassification penalty � on the
value of Qyi . A similar derivation as in the PSVM case can lead to the following
population level objective function:

LR. ; t/ D  T˙ C E
�
� QY f1� QY Œ T.X � EX/� t �gC� (1.8)

The only difference of this with (1.6) is the definition of the misclassification penalty
(cost) and its dependence on the value of QY .

The following theorem shows that indeed the minimizer � of LR. ; t/ is in the
CDRS. The proof is left for the Appendix.

Theorem 1. SupposeE.X jˇTX/ is a linear function of ˇTX , where ˇ is as defined
in (1.1). If . �; t�/ minimizes the objective function (1.8) among all . ; t/ 2 R

p �
R, then  � 2 SY jX .

1.4 Estimation

In order to estimate the vectors that span the CDRS a quadratic problem program-
ming needs to be solved. It is a similar procedure as the one that appears in Cortes
and Vapnik [5] for estimating the hyperplane for standard SVM algorithms and in
Veropoulos et al. [15] for the different costs in each class problem. We emphasize
that the problem we are solving is essentially different as we are multiplying the first
term with ˙ n. That is, to solve the sample version of the objective function (1.8)
which is:

OLR. ; t/ D  T˙ n C 1

n

nX

iD1
� Qyi f1 � QYi Œ T.X i � NX/� t �gC
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one needs to standardize the predictors usingZ i D ˙�1=2n .X i� NX/ and � D ˙ 1=2
n  

and the objective function becomes:

OLR.�; t/ D�T� C 1

n

nX

iD1
� Qyi f1 � QYi Œ� TZ i � t �gC (1.9)

This looks closer to the classic SVM objective function that was used in the
classification setting. Then the following theorem holds:

Theorem 2. If �� minimizes the objective function in (1.9) over R
p , then �� D

1
2
Z T.˛ ˇ Qy/ where ˛ is found by solving the quadratic programming problem:

maximize ˛T1 � 1

4
.˛ˇ Qy/TZZ T.˛ˇ Qy/

subject to 0 < ˛ <
1

n
��; .˛ˇ Qy/T1 D 0;

(1.10)

where 1 D .1; : : : ; 1/T 2 R
n and �� 2 R

n has entries the value of the cost
corresponding to each data point.

Thus to find the dividing hyperplane for the original data we have that  � D
˙�1=2n ��. The proof is shown in the Appendix.

The following algorithm is proposed for estimation:

1. Compute the sample mean NX and sample variance matrix Ȯ D n�1
Pn

iD1.X i �
NX/.X i � NX/T and use them to standardize the data.

2. Let qr ; r D 1; : : : ;H � 1, be H � 1 dividing points. In the simulation section
we choose them to be, the (100 � r=H )th sample percentile of fY1; : : : ; Yng.
For each r , let QY ri D I.Yi > qr/ � I.Yi � qr/ and ��r be the n dimensional
vector of costs for the respective cutoff point and let . O�r ; Otr / be the minimizer
of �T� C ��rEnf1 � QY r Œ�TZ � t �gC, which are found using Theorem 2. This
process yieldsH � 1 normal vectors O�1; : : : ; O�H�1.

3. Use the normal vectors to calculate O i D Ȯ �1=2 O�i to construct matrix OV n DPH�1
rD1 O r

O T

r .
4. Let Ov1; : : : ; Ovd be the eigenvectors of the matrix OV n corresponding to its d largest

eigenvalues. We use subspace spanned by Ov D .Ov1; : : : ; Ovd / to estimate the
CDRS, SY jX .

1.5 Simulation Results

The following three models are used for the simulations:

Model I: Y D X1 CX2 C �";
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Model II: Y D X1=Œ0:5C .X2 C 1/2�C �";

Model III: Y D 4CX1 C .X2 CX3 C 2/ � � � ";

where X � N.0; Ip�p/; p D 10; 20; 30; " � N.0; 1/. There are 500 simulations
with sample size n D 100, � D 0:2 andH D 5; 10; 20; 50.

To evaluate the performance the distance measure proposed by Li et al. [12] is
used where S1 and S2 are two subspaces of Rp . The distance is defined by the
matrix norm kPS1 � PS2k, where PSi denotes orthogonal projection on Si . In
this work the Frobenius norm is used.

To compare the performance between the two algorithms the ratio between the
two costs is set equal to the inverse ratio between the number of observations
between the two classes (a similar idea was used in the SVM literature by Lee et al.
[8]). This implies that

��1
�1

D n1

n�1
:

For CRPSVM, there are multiple iterations of the algorithm for different dividing
points. At each dividing point, qr , there are different number of observations on the
right slice and the left slice, so the above ratio will be different each time. Thus, for
the simulations the larger class always has misclassification penalty �base (which is
defined) and then the above ratio is used to define the misclassification penalty for
the smaller class.

We compare the performance of CRPSVM with the PSVM algorithm and the
results are presented in Table 1.1. For models I and III the two methods have similar
performance for small number of slices but we can see that the performance for the
reweighted algorithm is improved as the number of slices increases. This is expected
as the larger the number of slices, the larger the difference between the number of
points in each slice at the first few and last few comparisons and therefore the higher
the effect when using the reweighted method. For model II CRPSVM is better for
all cases.

In this paper the nonlinear dimension reduction is not discussed for briefness.
Our simulations show that reweighted method outperforms PSVM but to a lesser
extend than the linear case. This is probably due to the fact that in the nonlinear
setting we move into a higher dimensional space in which it is likely that the data
are separable or at least there are fewer misclassifications. Thus, the effect of the
few misclassifications is smaller than that of the linear case where it is clear that the
data are not separable.

A BIC type criterion is used to estimate the dimension of the CDRS. This is
a common approach in SDR literature (see [19]). We try to find the value k that
maximizes:

Gn.k/ D
kX

iD1
�i .V n/� ˛n� 3

8 �i .V n/k (1.11)
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Table 1.1 Performance of PSVM and CRPSVM for different number of slices where
�base D �PSVM D 1 for linear sufficient SDR

Number of slices H
p Model Methods 5 10 20 50
10 I PSVM 0.23 (0.061) 0.22 (0.060) 0.22 (0.056) 0.22 (0.059)

CRPSVM 0.22 (0.062) 0.17 (0.048) 0.15 (0.046) 0.13 (0.043)
II PSVM 1.00 (0.222) 0.95 (0.204) 0.92 (0.219) 0.94 (0.214)

CRPSVM 0.78 (0.170) 0.75 (0.165) 0.73 (0.164) 0.75 (0.170)
III PSVM 1.35 (0.119) 1.35 (0.113) 1.33 (0.128) 1.34 (0.119)

CRPSVM 1.33 (0.133) 1.28 (0.153) 1.26 (0.169) 1.26 (0.171)
20 I PSVM 0.35 (0.069) 0.34 (0.064) 0.33 (0.065) 0.33 (0.068)

CRPSVM 0.32 (0.069) 0.25 (0.056) 0.21 (0.056) 0.19 (0.049)
II PSVM 1.27 (0.153) 1.20 (0.157) 1.19 (0.154) 1.19 (0.156)

CRPSVM 1.10 (0.140) 1.04 (0.149) 1.04 (0.142) 1.02 (0.154)
III PSVM 1.44 (0.061) 1.44 (0.057) 1.44 (0.059) 1.43 (0.064)

CRPSVM 1.42 (0.068) 1.40 (0.080) 1.38 (0.086) 1.38 (0.088)
30 I PSVM 0.45 (0.076) 0.44 (0.077) 0.43 (0.075) 0.42 (0.074)

CRPSVM 0.40 (0.070) 0.32 (0.065) 0.27 (0.064) 0.25 (0.061)
II PSVM 1.40 (0.111) 1.36 (0.117) 1.34 (0.116) 1.34 (0.124)

CRPSVM 1.27 (0.113) 1.23 (0.118) 1.21 (0.124) 1.20 (0.124)
III PSVM 1.50 (0.050) 1.50 (0.049) 1.50 (0.043) 1.49 (0.046)

CRPSVM 1.48 (0.050) 1.45 (0.055) 1.44 (0.057) 1.44 (0.057)

where �i.V n/ the eigenvalues of V n and ˛ is a constant that needs to be determined
and should depend on p;H; d and �. Li et al. [13] used a slightly modified
criterion and determined ˛ using cross validation at the expense of computation
time. Here, based on a small study of how each parameter affects the estimation of
the dimension through the criterion above we choose a specific value which gives
good estimation under various combinations of the parameters above.

To compare the performance between the cross validated BIC (CVBIC) criterion
for PSVM with the performance of the BIC criterion for CRPSVM we use ˛ D
log.�baseC2/p1=4

H1=4 for models I and II. Also � D 0:2, �base D �PSVM D 1, p D
10; 20; 30, sample size n D 100; 200; 300; 400; 500,H D 20; 50 and the percentage
of correct dimension estimation is summarized in Table 1.2 for 500 simulations. We
can see that for model I which has d D 1 the CVBIC of PSVM works better for
smaller sample sizes while for large sample sizes the performance is perfect for
both the CVBIC of PSVM and the BIC of CRPSVM. On the other hand in almost
all the simulation for model II where d D 2 the proposed BIC criterion of CRPSVM
performs better especially for small sample sizes.
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Table 1.2 Performance of CVBIC criterion for dimension determination of PSVM and the BIC
criterion for CRPSVM with ˛ D log.�baseC2/p1=4

H1=4 for different number of slices where �base D
�PSVM D 1

Model I, d D 1 Model II, d D 2

Number of observations n Number of observations n
H p Method 100 200 300 400 500 100 200 300 400 500
20 10 PSVM 1 1 1 1 1 0:748 0:978 1 1 1

CRPSVM 0:992 1 1 1 1 0:842 0:97 0:998 1 1

20 PSVM 1 1 1 1 1 0:31 0:862 0:98 0:944 1

CRPSVM 0:926 0:998 1 1 1 0:89 0:946 0:996 1 1

30 PSVM 0:996 1 1 1 0:93 0:174 0:584 0:912 0:98 0:874

CRPSVM 0:566 0:994 1 1 1 0:916 0:96 0:996 0:998 1

50 10 PSVM 1 1 1 1 1 0:732 0:992 1 1 1

CRPSVM 0:974 1 1 1 1 0:964 0:994 1 1 1

20 PSVM 1 1 1 1 1 0:358 0:866 0:984 1 1

CRPSVM 0:752 0:994 1 1 1 0:97 1 1 1 1

30 PSVM 0:996 1 1 1 1 0:162 0:624 0:914 0:992 1

CRPSVM 0:336 0:952 1 1 1 0:924 1 1 1 1

1.6 Real Dataset Analysis

In this section we show through a real dataset the advantage one can gain by working
with the reweighted method. We use the dataset from the UC Irvine machine
learning repository [1]. The dataset was first used in Ein-Dor and Feldmesser [6]
and the objective is to create a regression model that estimates relative performance
of the Central Processing Unit (CPU) of a computer using some of its characteristics,
including cache memory size, cycle time, minimum and maximum input/output
channels, and minimum and maximum main memory. Relative performance was
calculated using observations from users of different machines in the market.
The dataset consists of 209 models where performance is not available.

We apply both PSVM and CRPSVM on this dataset. We use � D 1 and we use
the dr package in R [16] to separate the data into ten slices. Figure 1.1 shows clearly
that in the first direction both methods capture the nonlinear relationship which [6]
expect to see in this case. Although the correlation (�) between the first direction
of the two methods is � D �0:9 which indicates the strong similarity, we can also
see from the plots that the reweighted algorithm performs slightly better because the
points with smaller performance are closer to the curve they form and also points
with larger performance seem to be more aligned with the curve.
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Fig. 1.1 First direction for the computer hardware dataset for the PSVM .left/ and CRPSVM
.right/

1.7 Discussion

In this work, it is shown that reweighting using different costs improve the
performance of PSVM which was introduced by Li et al. [13].

PSVM is a method that achieves both linear and nonlinear dimension reduction
in a unified framework. It brings together SDR and machine learning, two areas used
separately to solve high dimensional problems. With this work we have shown that
one of the ideas used in the machine learning literature to improve the performance
of Support Vector Machines (SVM) can also be used in the SDR framework to
improve the performance of PSVM.

The original algorithm uses slices of different size without correcting for this.
This manuscript shows through simulation and real data examples that reweighting
can improve the performance of the algorithm. To achieve this we apply a different
misclassification penalty for each class. Different sample size between classes can
lead the separating hyperplane to be more biased towards the bigger class. Since
the way the algorithm works separates the data in two unequal sample size classes,
reweighting reduces the bias towards the bigger class and therefore produces more
accurate results. To demonstrate the effectiveness of this procedure we chose the
ratio between the two penalties to be the inverse ratio between the two class
sizes. The increase in performance reinforces previous results by Lee et al. [8]
in the classification framework. We note that although only one approach to find
the relationship between the two different penalties is used, there is still an open
question on how to find an optimal relationship between the two penalties as well as
applying other ideas that target samples with different sample sizes.
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Appendix

Proof of Theorem 1. Without loss of generality, assume thatEX D 0. First we note
that for i D 1;�1

E
�
� QY Œ1 � QY . TX � t/�C� DEfEŒ�� QY Œ1 � QY . TX � t/�C� jY;ˇTX �g

DEfEŒ�� QY Œ1 � QY . TX � t/��C jY;ˇTX �g

where the last equality holds because � QY is positive. Since the function a 7! aC is
convex, by Jensen’s inequality we have

EŒ
�
� QY Œ1 � QY . TX � t/�

�C jY;ˇTX � �fEŒ� QY Œ1 � QY . TX � t/�jY;ˇTX �gC

Df� QY Œ1 � QY .E. TX jˇTX/� t/�gC

where the equality follows from the model assumption (1.1). Thus

E
�
� QY Œ1 � QY . TX � t/�C

� � Ef� QY Œ1 � QY .E. TX jˇTX/� t/�gC: (1.12)

On the first term now we have:

 T˙ D var. TX/ DvarŒE. TX jˇTX/�CEŒvar. TX jˇTX/�

�varŒE. TX jˇTX/�: (1.13)

Combining (1.12) and (1.13),

LR. ; t/ � varŒE. TX jˇTX/�C Ef� QY Œ1 � QY .E. TX jˇTX/� t/�gC:
By the definition of the linearity condition in the theorem E. TX jˇTX/ D
 TP T

ˇ.˙ /X and therefore the right-hand side of the inequality is equal to
LR.Pˇ.˙ / ; t/. If  is not in the CDRS then the inequality is strict which
implies  is not the minimizer. �

Proof of Theorem 2. Following the same argument as in Vapnik [14] it can be
shown that minimizing (1.9) is equivalent tov

minimizing �T� C 1

n
.��/T� over .�; t; �/

subject to � � 0; Qy ˇ .�TZ � t1/ � 1 � �:
(1.14)

The Lagrangian function of this problem is

L.c; t; �;˛;ˇ/ D �T� C 1

n
.��/T� � ˛TŒ Qy ˇ .�TZ � t1/ � 1C �� � ˇT�: (1.15)
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where � D .�1; : : : ; �n/. Let .��; ��; t�/ be a solution to problem (1.14). Using the
Kuhn–Tucker Theorem, one can show that minimizing over .�; t; �/ is similar as
maximizing over .˛;ˇ/. So, differentiating with respect to �, t , and � to obtain the
system of equations:

8
ˆ̂<

ˆ̂:

@L=@� D 2� �Z T.˛ˇ Qy/ D 0

@L=@t D ˛T Qy D 0

@L=@� D 1
n
�� � ˛� ˇ D 0:

(1.16)

Substitute the last two equations above into (1.15) to obtain

�T� � ˛TŒ Qy ˇ .�TZ /� 1� (1.17)

Now substitute the first equation in (1.16) (� D 1
2
Z T.˛ˇ Qy/) in the above:

1T˛ � 1

4
.˛ˇ Qy/TZZ T.˛ˇ Qy/: (1.18)

Thus to minimize (1.15) we need to maximize (1.18) over the constraints

(
˛T Qy D 0

1
n
�� � ˛� ˇ D 0:

(1.19)

which are equivalent to the constraints in (1.10). �
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Chapter 2
Power Assessment of a New Test
of Independence

P.N. Patil and D. Bagkavos

Abstract A new nonparametric test of independence between the components of
bivariate random vectors .X; Y / is motivated and evaluated in practice. The test
statistics is based on the fact that under independence, every quantile of Y given
X D x is constant. This is in contrast to the most commonly used basis that the
joint probability density or distribution function ofX and Y , equals to the product of
their marginal probability densities or distributions, respectively. Emphasis is given
on the small sample power properties of the test. Through numeric simulations
with distributional data, the power of the test is benchmarked against standard
independence tests, already existing in the literature.

Keywords Independence • Hypothesis test • Statistical power • Test size
Quantile regression

2.1 Introduction

The present note is concerned with the general problem of testing the stochastic
independence between the components of bivariate random vectors. Historically, the
Cramer–Von Mises distance measure has provided the basis for several hypothesis
tests on this topic, e.g., [2,4–6,11], and [12]. See also [14] for a broader view of the
subject.

A test of independence which originates from a different basis is investigated
here. The concept, first considered in [10] and further explored in [3] is that
independence is implied if every regression quantile of Y versusX D x is constant.
Under the linear quantile regression framework, c.f. [1], this idea is put to action
by applying density weighted conditional expectation on the first order condition
for minimization of the least absolute deviation criterion and integrating across
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all possible quantiles. This results in a new condition which under independence
between X and Y equals to zero, while otherwise takes large positive values.
Naturally, this provides a proper candidate for developing a consistent independence
test with its sample, kernel based, analogue as the proposed test statistic.

The purpose of this note is to provide insight on the practical performance of
the suggested hypothesis test. Specifically, the small sample distribution of the test
statistic under the null is approximated and then utilized in calculating the power
of the test as a function of the level of correlation between X and Y . Furthermore,
the power functions of the tests developed in [2] and [6] are used as a benchmark in
assessing the practical performance of the test presented here. We note here that the
test’s theoretical properties, including its asymptotic distribution under both the null
and alternative hypotheses, establishment of its consistency against all dependence
alternatives as well as a bandwidth choice rule which controls the trade-off between
the test’s power and size functions will be provided in future work.

The rest of the paper is organized as follows. Section 2.2 discusses the develop-
ment of the test and provides the test statistic. Numerical evidence on the power of
the test and comparison with the powers of the [2] and [6] tests is given in Sect. 2.3.

2.2 Motivation and Test Statistic

Let .X; Y / 2 R � R be a random variable with cumulative distribution function
F.x; y/ and probability density function f .x; y/. Denote with FY .yjx/ the
marginal distribution of Y conditional on X D x and with F�1Y .yjx/ its inverse.
The marginal (unconditional) distribution of Y is denoted by FY .y/ and by F�1Y .y/

its inverse. Obviously under independence between X and Y , FY .yjx/ D FY .y/

and F �1Y .yjx/ D F �1Y .y/.
The basis of the proposed test is that under independence, for every quantile p,

where 0 < p < 1, we have that F�1Y .pjx/ D cp where cp does not vary with x.
For example, F�1Y .pjx/ can be modeled (see also [1]) by

F �1Y .pjx/ D ˇx C F�1Y .p/: (2.1)

Under independence between X and Y , for any fixed p 2 .0; 1/ the conditional
quantile function of Y given X D x does not depend on x and therefore

F�1Y .pjx/ D F�1Y .p/:

Now, let p.u/ D sign.u/C2p�1 and let .X1; Y1/ and .X2; Y2/ be two independent
random vectors with common probability density function f .x; y/: Now set

J.p/ D E
˚
Kh.X1;X2/ p

�
Y2 � F �1Y .p/

�
 p
�
Y1 � F�1Y .p/

��

where Kh.X1;X2/ D h�1K..X1 � X2/h
�1/, K is a second order kernel and h

denotes bandwidth, i.e., the spread of the kernel. Observe that for every fixed
p 2 .0; 1/, under the hypothesis of independence of X and Y ,

gp.x/ D Ef p.Y1 � F�1Y .p//jX1 D xg D 0:
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Therefore, under independence of X and Y , for every p 2 .0; 1/ we have,

J.p/ D E
˚
Kh.X1;X2/ p.Y2 � F �1Y .p//Ef p.Y1 � F �1Y .p//jX1g

� D 0

and consequently

J D
Z 1

0

J.p/ dp D 0:

Under dependence we have

gp.X1/ D Ef p.Y1 � F�1Y .p//jX1g ¤ 0 a:s:

for at least one p 2 .0; 1/: Assuming that gp is twice differentiable,

J.p/ D E
˚
Kh.X1;X2/ p

�
Y2 � F �1Y .p/

�
 p
�
Y1 � F�1Y .p/

��

D E
˚
Kh.X1;X2/E

˚
 p

�
Y2 � F�1Y .p/

�
 p
�
Y1 � F�1Y .p/

� j.X1;X2/
��

D
Z 1

0

g2p.x/f
2
X .x/dx CO.h2/:

Thus as h ! 0, J.p/ > 0 and since J.p/ is a continuous function of p,

J D
Z 1

0

J.p/dp > 0:

Therefore, J can be used for the following hypothesis test

H0 W
\

0<p<1

H0p; H0p W F�1Y .pjx/ D cp

with the alternative specified by

H1 W
[

0<p<1

H1p; H1p W F�1Y .pjx/ D c.x/

where now c.x/ varies with x for at least one p 2 .0; 1/.
For deriving a test statistic, assume a sample .Xi ; Yi /; i D 1; : : : ; n from F.x; y/

and denote by OF �1Y .y/ the inverse of the empirical marginal distribution of Y ,
OFY .y/. The density weighted conditional expectation

E
˚
 p
�
Y � F�1Y .p/

� jx� fX.x/;

can be reasonably estimated (fixing x D Xi ) by

1

.n � 1/h
nX

jD1; j¤i
K

�
Xi �Xj

h

�
 p.Yj � OF�1.p// (2.2)
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where the real valued function K is called kernel and integrates to 1, while h is
called bandwidth and controls the spread of the kernel and therefore the amount of
smoothing applied. Based on (2.2), the sample version of J is

Tn.h/ D
Z 1

0

1

n

nX

iD1
 p.Yi � OF�1Y .p//

1

.n� 1/h
X

j¤i
K

�
Xi �Xj

h

�
 p.Yj � OF�1.p// dp

D 1

n.n� 1/h
XX

1�i<j�n
K

�
Xi �Xj

h

�Z 1

0
 p

�
Yi � OF�1Y .p/

�
 p.Yj � OF�1.p// dp

which is also the proposed test statistic. By denoting with Rni the rank of Yi after
ordering the random sample .Xi ; Yi /; i D 1; 2; : : : ; n with respect to Yi and after
slightly modifying the definition of the empirical distribution function from OFY to
n.nC 1/�1 OFY , a suitable for computational purposes form of the statistic is

Tn.h/ D 2

n.n � 1/h
XX

1�i<j�n
K

�
Xi �Xj

h

�

�
	

min.Rni ; Rnj /2

.nC 1/2
C n � max.Rni ; Rnj /2

.nC 1/2
� 1

3



: (2.3)

The next section discusses the test’s operational characteristics and provides
numerical evidence on its power.

2.3 Numerical Evaluation of the Test’s Power

In this section, the implementation details of the suggested test are discussed and
then distributional data is used to exhibit the performance of the proposed test’s
power properties and asses its practical performance.

Throughout this section Tn.h/ is calculated on bivariate samples of size 50
by (2.3) with K being the uniform kernel. The bandwidth, h, is chosen so as to
maximize the test’s power under the null, subject to keeping the significance level
constant. Specifically, in each Tn.h/ implementation, the bandwidth is given by

h D ch�: (2.4)

In (2.4), for each given sample, h� is the optimal MISE regression bandwidth
of [13], implemented in package lokern, R. The factor c is determined by a grid
search in a probe analysis and applies to all bandwidth calculations with samples
from the same distribution.

The probe analysis is designed to find c so that the test’s size under the null
matches the user supplied level confidence level a. Specifically, for each of the 30
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equidistant c points in .0; 3/, 10,000 test statistic values, Tn.ch�/, under the null are
calculated. The probability a.ch�/ D P.Tn.ch

�/ > la/ is then calculated where
la is the .1 � a/100% quantile of the 10,000 Tn values, calculated as described in
the next paragraph. The c that corresponds to the highest among the 30 a.ch�/’s is
selected and used in (2.4).

The bandwidth choice rule employed here implicitly works as a selection rule
based on bootstrap/edgeworth expansion ideas considered in the past by [8]. The
benefit of such an approach is that it offers the means to control both power and
size. An additional advantage of this bandwidth procedure is that it offers the best
bandwidth both under the null and the alternative hypothesis.

As a cut-off point in the test’s power function approximation, we use the
.1 � a/100% quantile of the numerical distribution of Tn.h/. For this purpose,
definition 7 of [7], which is readily implemented in R by the quantile() func-
tion, is applied on 100,000 Tn.h/ values. The Tn.h/ values result by applying (2.3),
implemented as described in the previous paragraph, on 100,000 uncorrelated
bivariate samples.The desired number of uncorrelated samples is obtained by
repeatedly generating bivariate samples .Xi ; Zi /; i D 1; : : : ; 50 and keeping only
those for which the correlation between X and Z is less than 0.001.

Then, the power function of Tn.h/ is approximated by

P.Tn.h/ > cut � off/ D #Tn.h/ > cut � off

m
; (2.5)

form D 100 replications. Specifically, 40 equidistant correlation levels, �, between
0 and 1 are determined. For each �, 100 independent (i.e., corr.X;Z/ < 0:001)
bivariate samples .Xi ; Zi /; i D 1; : : : ; 50 are drawn. The actual samples used by
Tn.h/ are .Xi ; Yi /; i D 1; : : : ; 50 where the Yi ’s are obtained by the transformation

Y D �X CZ
p
1 � �2:

The provision of drawing samples with corr.X;Z/ < 0:001 is sought because this
ensures that the above transformation will return samples .Xi ; Yi / with the desired
level of correlation. Then for each �, Tn.h/ is calculated 100 times using the .Xi ; Yi /
samples and the empirical power is calculated by (2.5).

The tests of [2] (noted as Bn) and [6] (noted as Dn) are used for benchmarking
Tn.h/

0s behavior. The Bn test is calculated as described in [9, p. 43]. Its power
function is approximated by (2.5) with Tn.h/ replaced byBn and with cut-off points
found in Table 2 of [9]. The Dn test is implemented by the hoeffd function of
R (package Hmisc) which also returns its p-value for the given sample. It’s power
function is approximated by f#ofDnp � values < ag=m.

Now, three examples are presented next to exhibit the test’s power behavior and
asses, its practical performance. For each distribution utilized in each example, the
power functions presented result by an average of 40 power functions calculated as
described above. Further, all three tests are always calculated on the same samples.

The first example (Fig. 2.1) utilizes the bivariate distribution with p.d.f.

f1.x; y/ D exp.�.x C y//; x > 0; y > 0:
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Fig. 2.1 Empirical test powers for Tn (dotted line), Bn (solid line), and Dn (dashed line), n D 50

with data from f1.x; y/
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Fig. 2.2 Empirical test powers for Tn (dotted line), Bn (solid line), and Dn (dashed line), n D 50

with data from f2.x; y/

In implementing the power function of Tn.h/, the bandwidth factor c D 0:32 has
been found optimal. The significance level is a D 1%.

For the second example (Fig. 2.2) the bivariate distribution with p.d.f.

f2.x; y/ D 2; 0 � x � y � 1;

is employed, a D 5% and the bandwidth factor for Tn.h/ is found to be c D 1:34.
The last example (Fig. 2.3) uses the bivariate normal distribution and a D 5%.

Tn.h/ is implemented with bandwidth factor c D 0:7.
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Fig. 2.3 Empirical test powers for Tn (dotted line), Bn (solid line), and Dn (dashed line), n D 50

with data from the bivariate normal distribution
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Chapter 3
Empirical ®�-Divergence Minimizers
for Hadamard Differentiable Functionals

Patrice Bertail�, Emmanuelle Gautherat, and Hugo Harari-Kermadec

Abstract We study some extensions of the empirical likelihood method, when the
Kullback distance is replaced by some general convex divergence or '-discrepancy.
We show that this generalized empirical likelihood method is asymptotically valid
for general Hadamard differentiable functionals.

Keywords Generalized empirical likelihood • Empirical process • Hadamard
differentiability.

3.1 Introduction

Empirical likelihood [20–22] is now a classical method for testing or constructing
confidence regions for the value of some parameters in nonparametric or semi-
parametric models. A possible interpretation of empirical likelihood is to see it as the
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minimization of the Kullback divergence, sayK , between the empirical distribution
of the data Pn and a measure (or a probability measure) Qn dominated by Pn, under
linear or non-linear constraints imposed on Qn by the model (see [2,19,26]). Related
results may be found in the probabilistic literature about divergence or the method
of entropy in mean (see [7, 8, 10, 12, 17, 18]). Some generalizations of the empirical
likelihood method have also been obtained by using Cressie-Read discrepancies
[1, 9] and led to some econometric extensions known as “generalized empirical
likelihood” [19]. Bertail et al. [4] have shown that Owen’s original method in the
case of the mean can be extended to any regular convex statistical divergence or
'�-discrepancy (where '� is a regular convex function) under weak assumptions.
The purpose of this paper is to show that this general method remains asymptotically
valid for a large class of non-linear parameters, mainly Hadamard differentiable
parameters in the same spirit as [2].

The layout of this paper is the following. In Part 2, we first recall some basic facts
about convex integral functionals and their dual representation. As a consequence,
we briefly state the asymptotic validity of the corresponding “empirical '�-
discrepancy” method in the case of M-estimators. In part 3, we then extend this
method to general Hadamard differentiable functionals, T .P/ in R

q . An interesting
interpretation of this method is that the image by T of the ball centered at Pn with
radius 	2q.1 � ˛/=2n is, in regular cases, a confidence region asymptotically with
coverage probability 1 � ˛; for any “regular” '�-discrepancies.

3.2 Empirical ®�-Discrepancy Minimizers

3.2.1 '�-Discrepancy Minimizers and Duality

We consider a measured space .X ;A ;M /where M is a space of signed measures.
Let f be a measurable function defined from X to R

r ; r � 1. For any signed
measure � 2 M , we write �f D R

fd� and if � is a density of probability, �f D
E�.f .X//. In the following, we consider ', a convex function whose support d.'/,
defined as fx 2 R; '.x/ < 1g, is assumed to be non-void (' is said to be proper).
We denote respectively infd.'/ and supd.'/, the extremes of this support. For
every convex function ', its convex dual or Fenchel-Legendre transform is given by

'�.y/ D sup
x2R

fxy � '.x/g; 8 y 2 R:

Recall that '� is then a semi-continuous inferiorly (s.c.i.) convex function. We
define by '.i/ the derivative of order i of ' when it exists. From now on, we will
assume the following assumptions for the function '.

H1 ' is strictly convex and d.'/ contains a neighborhood of 0;
H2 ' is twice differentiable on a neighborhood of 0;
H3 (renormalization) '.0/ D 0 and '.1/.0/ D 0, '.2/.0/ D 1, which implies that '

has an unique minimum at zero;
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H4 ' is differentiable on d.'/, that is to say differentiable on intfd.'/g, with right
and left limits on the respective endpoints of the support of d.'/, where intf:g
is the topological interior;

H5 ' is twice differentiable on d.'/;
H6 '.1/ is itself convex on his domain.

Assumptions H4–H6 will be useful in studying the generalized empirical
likelihood. Notice that H6 implies that the second order derivative of ' is bounded
from below by some constantm > 0 on R

C \ d.'/; an assumption required in [4].
Let ' satisfies the hypotheses H1, H2, H3. Then, the Fenchel dual transform '� of
' also satisfies these hypotheses. Under H1–H6, '�is convex, with a minimum at
0, '�.0/ D 0, nonnegative thus invertible on d.'�/\R

C '�.2/ is nonincreasing on
d.'�/\R

�:The '�-discrepancy I'� between Q and P, where Q is a signed measure
and P a positive measure, is defined as follows:

I'�.Q;P/ D
( R

X '�
�
dQ
dP

� 1
�
dP if Q 	 P

C1 else:
(3.1)

For details on '�-discrepancies or divergences Csiszàr [4,7,10] and some historical
comments, see [16, 18, 27, 28]. For us, the main interest of '�-discrepancies lies on
the following duality representation, which follows from results of [6] on convex
functional integrals (see also [4, 8, 17]).

Theorem 1. Let P 2M be a probability measure with a finite support and f

be a measurable function on .X ;A ;M /. Let ' be a convex function satisfying
assumptions H1–H3. If the following constraints qualification holds,

Qual.P/ W 9� 2 M ; �f D 
0 and infd.'�/ < inf
X

d�

dP
� sup

X

d�

dP
< sup d.'�/; P�a:s:;

then, we have the dual equality:

inf
Q2M ;.Q�P/fD
0

˚
I'�.Q;P/

� D sup
�2Rr

	
�0
0 �

Z

X

'.�0f /dP


: (3.2)

If ' satisfies H4, then the supremum on the right hand side of (3.2) is achieved at
a point �� and the infimum on the left hand side at Q� is given by Q

� D .1 C
'.1/.��0f //P:

3.2.2 Empirical Optimization of '�-Discrepancies

Let X1; : : : Xn be i.i.d. r.v.’s defined on X with common probability measure P.
Consider the empirical probability measure Pn D 1

n

Pn
iD1 ıXi ; where ıXi is the

Dirac measure at Xi . We will first consider that the parameter of interest 
0 2 R
q is
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the solution of some M-estimation problem EPf .X; 
0/ D 0, where f is a regular
differentiable function from X �Rq ! R

r . For simplicity, we now assume that
f takes its value in R

q , that is r D q and that there is no over-identification
problem. The over-identified case can be treated similarly by first reducing the
problem to the strictly identified case (see [3, 26]). Denote Mn D fQn 2 M
with Qn 	 Png D ˚

Qn D Pn
iD1 qi ıXi ; .qi /1�i�n 2 R

n
�
. Considering this set of

measures, instead of a set of probabilities, can be partially explained by Theorem 1,
to establish the existence of a solution for the dual problem.

For a given ', we define, by analogy to [21, 22], the quantity

8
 2 R
q; ˇn.
/ D inf

Qn2Mn; Qnf .:;
/D0
I'�.Qn;Pn/

We define the corresponding random confidence region

Cn.r/ D ˚

 2 R

q j9Qn 2 Mn with Qnf .:; 
/ D 0 and nI'� .Qn;Pn/ � r
�
;

where r D r.˛/ is a quantity such that P.
0 2 Cn.r// D 1 � ˛ C o.1/:

The underlying idea of empirical likelihood and its extensions is actually a plug-
in rule. Consider the functional defined by

8
 2 R
q; ˇ.P; 
/ D inf

Q2M ; Q�P; Qf .:;
/D0 I'
�.Q;P/

that is, the minimization of a contrast under the constraints imposed by the model.
This can be seen as a projection of P on the model of interest for the given pseudo-
metric I'� . If the model is true at P, that is, if EPf .X; 
0/ D 0 at the true underlying
probability P, then clearly ˇ.P; 
0/ D 0. A natural estimator of ˇ.P; 
/ for fixed 

is given by the plug-in estimator ˇ.Pn; 
/, which is ˇn.
/. This estimator can then
be used to test ˇ.P; 
/ D 0 or, in a dual approach, to build confidence region for 
0
by inverting the test.

For Qn in Mn, the constraints can be rewritten as .Qn � Pn/f .:; 
/ D
�Pnf .:; 
/: Using Theorem 1, we get the dual representation

ˇn.
/ WD inf
Qn2Mn; .Qn�Pn/f .:;
/D�Pnf .:;
/

I'�.Qn;Pn/

D sup
�2Rq

Pn

�
� �0f .:; 
/ � '.�0f .:; 
//

�
:

(3.3)

Notice that �x � '.x/ is a strictly concave function and that the function � ! �0f
is also concave. The parameter � can be simply interpreted as the Kuhn and Tucker
coefficient associated to the original optimization problem. From this representation
of ˇn.
/; we can now derive the usual properties of the empirical likelihood and its
generalization. In the following, we will also use the notations
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f n D 1

n

nX

iD1
f .Xi ; 
/; S

2
n D 1

n

nX

iD1
f .Xi ; 
/f .Xi ; 
/

0 andS�2n D .S2n/
�1:

The following theorem states that generalized empirical likelihood essentially
behaves asymptotically like a self-normalized sum. Links to self-normalized sum
for finite n have been investigated in [3, 5].

Theorem 2. Let X; X1; : : : ; Xn be in R
p , i.i.d. with probability P and 
0 2 R

q

such that EPf .X; 
0/ D 0. Assume that S2 D EPf .X; 
0/f .X; 
0/
0 is of rank q

and that ' satisfies the hypotheses H1–H4. Assume that the qualification constraints

Qual.Pn/ hold. For any ˛ in �0; 1Œ, set r D 	2q.1�˛/
2

, where 	2q.:/ is the 	2 distribution
quantile. Then Cn.r/ is an asymptotic confidence region with

lim
n!1P.
0 2 Cn.r// D lim

n!1P.nˇn.
0/ � r/

D lim
n!1P

�
nf
0
nS
�2
n f n � 	2q.1 � ˛/

�

D 1 � ˛:

The proof of this theorem starts from the convex dual-representation and follows
the main arguments of [4] and [22] for the case of the mean. It is left to the reader.

Remark 1. If ' is finite everywhere then the qualification constraints are not needed
(this is for instance the case for the 	2 divergence). In this case, the empty
set problem emphasized by [14] is solved. For empirical-likelihood, the Qual.P/
constraint qualification simply says that there should be at least a solution which
belongs to the support of the discrepancy. For the case of the mean, it boils down to
assuming that 
 belongs to the convex hull of the points.

3.3 Empirical ®�-Discrepancy Minimizers for Hadamard
Differentiable Functionals

We now extend the preceding results to general functional parameter 
0 D T .P/

defined on the space of signed measures M taking their value in R
q . The empirical

'�-discrepancy minimizers evaluated at 
 are now defined by

8
 2 R
q; ˇn.
/ D inf

Qn2Mn; T .Qn/D

I'�.Qn;Pn/: (3.4)

For any r > 0, define the empirical ball center at Pn with radius r by

Mn.r/ D fQn 2 Mn; nI'�.Qn;Pn/ � rg
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By using the arguments of [2, 21], the confidence region given by

Cn.r/ D f
 2 R
q; 9Qn 2 Mn.r/; 
 D T .Qn/g; (3.5)

with r D 	2q.1�˛/
2

has asymptotically coverage probability 1 � ˛: This was the
main motivation of [2] for proving that empirical likelihood of general Hadamard
differentiable functionals is still valid asymptotically. It means that the image by T

of the ball with respect to I'� ; centered at Pn with radius
	2q.1�˛/
2n

for any pseudo-
metric I'� is always an asymptotically 1 � ˛ confidence region for T .P/: If T is
a convex functional (in particular if it is linear) then the corresponding region is
automatically convex (see also [15]).

3.3.1 Hadamard Differentiability

For this we consider the following abstract empirical process framework (see [30]
for details). F is a subset of functions of L2.P/ D fh; Ph2 < 1g endowed with
jjf jj2;P D .P.f 2//1=2. We assume that L1.F / is equipped with the uniform norm

jj QQ � QjjF D dF . QQ;Q/ D sup
h2F

j. QQ � Q/h. /j:

We assume that expectations (resp. measures) are outer expectations (resp. outer
measures) so that weak convergence is defined as Hoffman-Jörgensen convergence.
This avoids measurability problems. For the same reason, we will also assume that
F is image admissible Suslin (see [11, 30]). This ensures that the classes of the
square functions and difference of square functions are P-measurable. Assume in
addition that

H7 F is a Suslin–Donsker Class of functions with envelop H (without loss of
generality such that H � 1) such that 0 < PH2.:/ < 1:

Recall that expectation should be understood as outer expectation. Under H7, the
empirical process n1=2.Pn�P/ indexed by F converges (as an element of L1.F //

to a limit GP; which is a tight Borel measurable element of L1.F / such that the
sample paths f ! GP.f / are uniformly jj : jj2;P continuous:

Denote the covering number—the minimal number of ball of radius " for any
seminorm jj:jj needed to cover F—by N .";F ; jj:jj/:
H8 The following usual uniform entropy condition holds

Z 1

0

sup
QP2D

q
log.N."jjH jj2;QP;F ; jj:jj2;QP//d" < 1;

where D is the set of all discrete finitely probability measures QP with 0 <
QPH2.:/ < 1:
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Define now B.F ;P/; the subset of L1.F / which are jj jj2;P�uniformly
continuous and bounded. We recall the following definition of Hadamard
differentiability tangentially to B.F / adapted from [24]. Notice that differentiation
taken tangentially to B.F ;P/ weakens the notion of differentiation and makes
it easier to check in statistical problems (see examples in [13, 24], Chap. 3.9 of
[30] and Chap. 20 of [29]). Our result may be applied for instance the well known
functional

R
FdG, see p. 298 of [29]. The empirical counterpart of this functional

yields the Mann–Whitney statistic. It is known that this functional is Hadamard
differentiable tangentially to some appropriate sets.

The functional T from M 
 L1.F / to R
q is said to be Hadamard differ-

entiable at P 2 M tangentially to B.F ;P/, say T is HDTF � P; iff there
exists a continuous linear mapping dTP : M !R

q , such that for every sequence
�n ! � 2 B.F ;P/; for every sequence tn ! 0; as n ! 1

T .P C tn�n/ � T .P/
tn

� dTP:� !
n!1 0 :

For a Hadamard differentiable functional, T .1/.:;P/ is the canonical gradient
or influence function, that is any function from X to B1 such that dTP� D
�T .1/.:;P/, with the normalization PT .1/.:;P/ D 0:

The following theorem establishes the validity of generalized empirical likeli-
hood for Hadamard differentiable functionals.

Theorem 3. Assume H1 to H8. If T defined on M is HDTF � P with gradient

T .1/.:;P/ and P.T .1/.:;P//2 < 1 of rank q, for all ˛ 2 Œ@I 1�, for r D 	2q.r�˛/
2

, we
have

lim
n!1P .
0 2 Cn.r// D 1 � ˛:

An interesting example of Hadamard differentiability is given in [24] in the
framework of two-dimensional censored survival times, with applications to tests
of independence between duration data (see [25]). The idea is to show that the two-
dimensional cumulative hazard function is Hadamard differentiable tangentially to
a well chosen class of functions (given in [24]). The same kind of results may be
obtained directly for real Hadamard functionals of the cumulative hazard function
by the chain rule. Recall that Hadamard differentiability is fairly the weakest form of
differentiability which ensures the validity of the chain rule (see [30]). Note that it is
not needed to construct an empirical likelihood version adapted to the censored data
as done for instance in [23] for univariate censored data. The censored structure
is directly taken into account into the constraints. Comparisons between the two
approaches would be of interest and will be the subject of future applied works.
Other examples of interest may be found in [23] and may be treated by using
Hadamard differentiability. In this framework, the choice of an adequate divergence
is also a crucial issue which requires some extensive works.
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3.4 Proofs of the Main Results

The following lemma generalizes a result obtained by Bertail [2] for the Kullback
divergence. It shows that the set Mn.r/ is small and controlled by the number of
weights close to 1=n. For a signed measure for Qn D Pn

iD1 qi ıXi , we define In D
fi D 1; : : : ; n; qi >

1
n
g; ICn D fi D 1; : : : ; n; 0 < qi � 1

n
g, and I�n D fi D

1; : : : ; n; qi � 0g. We denote respectively N;NC; N� the cardinals of In; ICn ; I�n .
The following lemma is interesting by itself and control the size and number of
weights qi which can be negative.

Lemma 1. Let H1–H6 hold. For any r > 0 then, for Qn in Mn.r/ we have

8i 2 In; 1

n
� qi � '��1.r/C 1

n

8i 2 ICn ;
1 � p

2r

n
Ir< 1

2
� qi � 1

n

For r � 1

2
; max

i2IC
n

qi � 1

n
max

( 
1 �

r
2r

NC

!
I 0

)
and

.NC � 2r/2

4NCn2
�
X

i2ICn

q2
i

8i 2 I�n ; r � 1

2

1 � p
2r

n
� qi � 0; and finally N� � 2rIr� 1

2
:

Proof. For r > 0 and Qn 2 Mn.r/, we have
Pn

iD1 '�.nqi � 1/ � r . '� is non-
negative, so we have for all i 2 f1; : : : ; ng; '�.nqi � 1/ � r: Under H1–H3, '�

is invertible on R
C \ d.'�/, so that for r > 0, for i 2 In;

1
n
< qi � '��1.r/C1

n
:

Now, consider i 2 ICn [ I�n , '�.2/ is strictly decreasing on R
� so that '�.2/.x/ �

'�.2/.0/ D 1 for x � 0. Using Taylor-Lagrange expansion, we have

1

2

X

i2IC
n [I�

n

'�.2/.n Qqi �1/.nqi �1/2 D
X

i2IC
n [I�

n

'�.nqi �1/ �
nX

iD1
'�.nqi �1/ � r

with n Qqi�1 2�nqi�1I 0Œ. Thus, n Qqi�1 � 0 and we have
P

i2IC
n [I�

n
.nqi�1/2 � 2r

In particular, for any i 2 ICn and r < 1
2
, 1�
p
2r

n
� qi � 1

n
:Moreover, for any r > 0,

we get
1�
q

2r

NC

n
� max

i2IC
n
qi � 1

n
. Now, for any i 2 I�n , 1 � nqi > 1,

p
N� � p

N� min
i2I�

n

.1 � nqi / � p
2r;
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yielding N� � 2r: And, for any i 2 I�n and r � 1
2
, 1�
p
2r

n
� qi � 0: Now, we also

have
P

i2IC
n
.nqi � 1/2 � 2r so that �2nP

i2IC
n
qi CNC � 2r yielding

NC � 2r

NC2n
� 1

NC
X

i2IC
n

qi �
0

@ 1

NC
X

i2IC
n

q2i

1

A
1=2

:

We finally get .N
C�2r/2
4NCn2

� P
i2IC

n
q2i :

Lemma 2. Let r > 0,

 
nX

iD1
q2i

!�1=2
.Qn � P/

w!
n!1 GP inL1.F /;

uniformly over Mn.r/ with Qn D P
qiıXi 2 Mn.r/ and GP is a gaussian process

in L1.F /.

Proof. We modify the proof of [2] which is itself an adaptation of theorem 2.11.1
and example 2.11.7 of [30]. To obtain the uniform convergence on Mn.r/ of the
weighted empirical process, it is sufficient to check that (i) limn!C1max1�i�n
jqi jpPn
iD1 q

2
i

and (ii) for ı > 0, Fı;P D fg � hIg; h 2 F ; kg � hk2;P � ıg
satisfies an uniform equicontinuity condition, withkg�hk22;P D EP.g.X/�h.X//2.
The domination condition in example 2.11.8 of [30] is clearly satisfied.

We start by proving? (i). For 0 < r < 1
2
, from lemma 1,

max
iD1;:::;n jqi j � '��1.r/C 1

n
and

nX

iD1
q2i � 1

n2
N C .n �N/

.1 � p
2r/2

n2
:

So for any c 2 Œ0; 1�; with limn!1N=n D c, (i) is true.
Now, for r > 1

2
, we have

max
iD1;:::;n

jqi j � max

�
'��1.r/C 1

n
;
1

n
;

p
2r � 1
n

�
and

nX

iD1

q2i � max

�
1

n2
N;
.NC � 2r/2
4NCn2

�
:

So, we have

maxiD1;:::;n jqi j
.
Pn

iD1 q2i /
1
2

�
max

�
'��1.r/C1

n
I
p
2r�1
n

�

r
max

�
1
n2
N;

.NC�2r/2
4NCn2

� :

Since by lemmaN� is always finite, and for any c 2 Œ0; 1�; with limn!1N=n D c,
(i) is follows.
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Now, we prove (ii) that is, for all Q" > 0

lim
ı!0 lim sup

n!1
sup

qn��Mn.r/

P

 
sup

kf�gk2;P<ı
jGn;qn.f /�Gn;qn.g/j > Q"

!
D 0 (3.6)

where Gn;qn .f / D Pn
iD1

qi

.
Pn
iD1 q

2
i /
1
2

.ıXi � P/.f / and qn 

 Mn.r/ is used

for Qn D Pn
iD1 qi ıXi 2 Mn.r/. We define kf k22;qn D Pn

iD1
q2iPn
iD1 q

2
i

f .Xi /
2,

kf k22;Pn D 1
n

Pn
iD1 f .Xi /2.

We now follow the proof of [2] (except for controlling the maximal inequality
with the covering numbers because we do not have the equivalence between the two
norms kf � gk22;qn and kf � gk22;Pn ). To check (ii), it is sufficient to prove that, for
any � > 0 and ın ! 0 with n, �n D P.supkf�gk2;qn<ın jGn;qn.f / �Gn;qn .g/j > Q"/
tends to 0 with n. By Markov inequality and symmetrization arguments there exists
a constant C > 0 such that

�n � 2C

Q" EP

 
kHk2;qn

Z an
kHk2;qn

0

q
ln.N.�kHk2;qn ;Fı;P; k:k22;qn //d�

!
;

with an D supf 2Fı;P
kf .Xi /k2;qn . Using Cauchy–Schwartz inequality, there exists

a constant C1 > 0 such that

�2
n � C1PkHk22;qnEP

 Z an
kHk2;qn

0

q
ln.N.�kHk2;qn ;Fı;P; k:k22;qn //d�

!2
:

Besides we have

• H > 1, that is kHk2;qn � 1, and ankHk2;qn � an.

• PkHk22;qn D P.H2/ < 1:

• Moreover, there exists some non-negative constant A such that, for any qn 


Mn.r/, kf �gk2;qn � Akf �gk2;Pn . So we have an D supf 2Fı;P

kf .Xi /k2;qn �
A supf 2Fı;P

kf .Xi /k2;Pn D Qan. That is due to Lemma 1, which implies

for r � 1

2
;8i; q2iPn

iD1 q2i
� .'��1.r/C 1/2

.n �N/.1 � p
2r/2 CN

for r >
1

2
;8i; q2iPn

iD1 q2i
� max..'��1.r/C 1/2I 1I .1� p

2r/2

N C max

�
1 �

q
2r
n�N I 0

�2
C .1 � p

2r/2N�
:

• Denote QCn D Pn
iD1 jqi jıXi positive measure. Remark that k:k2;qn D k:k

2;q
C
n

and QCn 2 D set of finitely discrete probability measure.
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It follows by Cauchy–Schwartz inequality, there exists a constant C1 > 0, such
that,

�2
n � C1PH

2
EP

 Z Qan

0

sup
�2D

q
ln.N.�kHk2;�;Fı;P; k:k22;�//d�

!2
:

We achieve this proof by the same arguments as [2].

Proof of Theorem 3. Let r > 0 and define Cn.r/ D f
 2 R
q j9Qn 2 Mn.r/ with

Qnf .:; 
/ D 0g with f .x; 
/ D T .P/� 
 C T .1/.x;P/. Then, on the one hand, for

r D 	2q.1�˛/
2

we have by theorem 2, limn!1 P.Cn.r// D 1 � ˛: On the other hand,
we can write

Cn.r/ D
	

 2 R

q j9Qn 2 Mn.r/; 
 D T .P/C 1

Qn.1/
.Qn � P/.T .1/.:;P//



:

We show that it is the linearized and renormalized part of

QCn.r/D
˚

 2 R

q j9Qn 2 Mn.r/; 
DT .P/C .Qn � P/.T .1/.:;P//CRn.Qn;P/
�
;

where Rn.Qn;P/ is the remainder in the Hadamard-differentiability of T .Qn/

around T .P/ because T isHDTF �P with canonical gradient T .1/.:;P/. Lemma 2
gives that

 
nX

iD1
q2i

!�1=2
.Qn � P/.T .1/.:;P//

w!
n!1 GP.T

.1/.:;P//:

and yields the uniform convergence of
�Pn

iD1 q2i
��1=2

.Qn �P/ on Mn.r/. Thus by
Theorem 20.8 of [29] we have the controlR.Qn;P/ D oP..

Pn
iD1 q2i /1=2/ uniformly

over Mn.r/. Moreover Qn.1/ converges in probability to P.1/ with n. It follows
that Cn.r/ and QCn.r/ are asymptotically equivalent.
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Chapter 4
Advances in Permutation Tests for Covariates
in a Mixture Model for Preference Data Analysis

Stefano Bonnini and Francesca Solmi

Abstract The rating problem arises very often in statistical surveys and a new
approach for this problem is represented by the combination of uniform and
binomial models. In the present work a simulation study is presented to prove the
good power behavior of a permutation test on the covariates of a complex model,
with more than one covariate. Moreover a discussion on the minimum sample size
needed to perform such permutation test is also given.

Keywords Permutation test • Mixture model • Combination based test
• Covariate effect

4.1 Introduction

Ordinal data are typical of many application fields like marketing, clinical studies,
performance analysis, and many others. In this framework a new approach is
represented by the combination of uniform and binomial models (briefly CUB
models), introduced by [3,6], and [7] and then generalized by [8] and [5]. It assumes
that the judgment process follows a psychological mechanism which takes into
account the feeling towards the object under judgment and an uncertainty generated
by the presence of multiple alternatives. CUB models are generated by a class of
discrete probability distributions obtained as a mixture of a shifted Binomial and a
Uniform random variable. One of the most interesting proposals of mixture models
for discrete data in biomedical studies is that of [2], related to the distribution of the
number of times a given event has been identified by the registration system of a
specific disease.
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In the case of CUB models, characteristics of subjects (consumers, patients,: : :)
and objects (products, drugs,: : :) can be also introduced. Let us assume n people are
rating a given item, and hence we observe the sample data y D .y1; y2; : : : ; yn/.
For example let us consider an international marketing survey performed in Italy,
Sweden, and Great Britain where a sample of n people is asked to give a vote
(satisfaction level) to a new wine after testing it. Value yi is the vote (integer
number from 1 to m D 10) given by the i -th evaluator. Moreover let xi and
wi .i D 1; : : : ; n/ be row-vectors of subject’s covariates for explaining feeling and
uncertainty respectively. In our marketing example let us consider for the feeling
the binary covariates gender (1: male; 0: female), italian (1: Italian; 0: non Italian),
and swedish (1: Swedish; 0: non Swedish) and for the uncertainty the numerical
covariate age. As a matter of fact males usually appreciate wine more than females,
hence the feeling toward wine of males is supposed to be greater than that of
females. Similarly, for enological culture and traditions, Italians are supposed to
have a greater feeling than people from Great Britain while Swedes are supposed
to have less feeling than British. Moreover younger people are supposed to be less
experienced and therefore more uncertain in their evaluations than older people,
thus age might be considered a covariate negatively related to uncertainty. Therefore
for the i -th evaluator the row-vector of size 3 xi represents gender and nationality
(covariates for feeling), and the variable wi (row-vector of size 1) represents age
(covariate for uncertainty).

According to the CUB model theory, a specific score given by an evaluator
may be interpreted as consequence of a psychological mechanism such that the
evaluation is the result of pairwise comparisons between all the possible scores.
For instance, if an evaluator choose the vote 5, this evaluation is better than other
4 evaluations (1; 2; 3, and 4) and worse than other 5 evaluations (6; 7; 8; 9, and 10),
hence we can say that we have 4 successes and 5 failures. Therefore if �i is the
probability that the chosen score is worse than another one in a pairwise comparison
(failure) and 1 � �i is the probability that the chosen score is better than another
one (success), the probability of observing the score yi might be represented by a
shifted binomial distribution with parameter �i . The value 1 � �i can be considered
a measure of feeling.

The shifted binomial distribution may represent the psychological mechanism of
the choices of an evaluator only in the absence of uncertainty. If the evaluator were
completely uncertain, the probability of observing the score yi could be the same
for each possible value in the set 1; 2; : : : ; m, and the uniform distribution would be
suitable. In real situations uncertainty is neither null nor maximum. If 
i denotes
the probability of non-uncertainty of i -th evaluator, the probability of observing the
score yi might be computed with the mixture model defined by Eq. (4.1). The value
1 � 
i can be considered a measure of uncertainty.

The general formulation of a CUB.p; q/ model (i.e., with p covariates for
uncertainty and q covariates for feeling) is expressed by

Pr.Yi D yjxi ;wi / D 
i

�
m � 1

y � 1
�
.1 � �i /y�1�m�yi C .1 � 
i /

�
1

m

�
; (4.1)
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with y D 1; 2; : : : ; m, 
i D Œ1 C exp.�xiˇ/��1, and �i D Œ1 C exp.�wi �/��1,
where  D .ˇ0; � 0/0 are the coefficients of the relation between the parameters

 D .
1; : : : ; 
n/ and � D .�1; : : : ; �n/ and the respective covariates. In the
marketing example ˇ D .ˇ1; ˇ2; ˇ3/

0 represents the vector of coefficients which
describe how the covariates gender, italian, and swedish affect the feeling toward
wine and � represents the coefficient which describe how the covariate age affects
the uncertainty.

Inference on CUB models has been developed both in a parametric framework,
via maximum likelihood and asymptotic theory (see [6]), and via nonparametric
inference (see [1]). The permutation test on the effect of covariates in a CUB
model proposed by [1] works according to the following procedure: (i) calculate
the observed value of a suitable test statistic T function of the observed dataset; (ii)
permute the rows of only the columns of the dataset related to the tested covariates,
keeping fixed the remaining columns of the dataset (perform constrained permuta-
tions within blocks, in which the nontested covariates are constant); (iii) calculate
the value of the test statistic corresponding to the permuted dataset; (iv) repeat
steps (ii) and (iii) B times, obtaining the permutation distribution of the test
statistic; (v) calculate the p-value of the test as usual, according to the permutation
distribution of T .

Three different test statistics are proposed in [1]: (a) the classical likelihood-ratio
statistic (hereafter Tlrt); (b) a linear combination of the Wald type test statistics for
the partial tests on the single coefficients (Twald); (c) a nonparametric combination
of p-values of the partial tests on the single coefficients (Tnpc). The methods are
competitive alternatives to the classical parametric test for small sample sizes, since
their rejection rates respect ˛ underH0 and assume greater values underH1 (higher
estimated powers).

In Sect. 4.2 the main results of a Monte Carlo simulation study are shown, to
prove the good performances of the permutation solutions in specific situations
characterized by more than one covariate, to study how the number of covariates in
the model affects the performance of the tests. Section 4.3 is devoted to a discussion
about the minimum sample size needed to perform this powerful permutation test.
In Sect. 4.4 the test is applied to a real problem related to a customer satisfaction
survey of a ski school. The conclusions of the study are reported in Sect. 4.5.

4.2 Simulation Study

Considering dichotomous covariates and assuming nonnegative coefficients, that is
ˇj � 0 for j D 1; : : : ; p and �s � 0 for s D 1; : : : ; q, a measure of the “distance”
between the model under the null hypothesis of no covariates’ effect, namely the
CUB.0; 0/ model, and the CUB.p; q/ model under the alternative hypothesis, in
terms of feeling and uncertainty, can be given by the values ı
.x1;:::;xq/ D 
.1;:::;1/ �

.0;:::;0/ and ı�.w1;:::;wq / D �.1;:::;1/ � �.0;:::;0/, where 
x1;:::;xp and �w1;:::;wq are the
values of 
 and � respectively for the i -th subject/object, computed as function
of the observed covariates. In the present simulation study a fixed marginal effect
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of the only covariate taken into account for the uncertainty parameter is considered:
ı
.x1/ D 
.1/ � 
.0/ D �0:6. For the parameter of feeling three alternative values
for the fixed marginal effect of each of the three considered covariates are taken
into account: ı�.w1/ D �.1;0;0/ � �.0;0;0/ D ı�.w2/ D �.0;1;0/ � �.0;0;0/ D ı�.w3/ D
�.0;0;1/ � �.0;0;0/ D 0:05, 0:10 or 0:20.

In each setting the marginal effects of the covariates of the feeling parameter
� (and thus the coefficients �1; : : : ; �q) are simulated to be equal. Under the null
CUB.0; 0/ model the values 
 D 
.0;:::;0/ D 0:80 and � D �.0;:::;0/ D 0:10,
very common in real problems, are assumed. Let us consider that the value of the
parameter of feeling as function of the covariates is �i D Œ1 C exp.�wi �/��1 D
Œ1 C exp.��0 � Pq

sD1 wis�s/��1, where wis is the value of s-th covariate for i -
th evaluator. Thus �.0;:::;0/ D Œ1 C exp.��0/��1. The overall effects ı�.w1;:::;wq/ are
computed according to the following steps:

1. compute the value �0 as function of �.0;:::;0/: �0 D lnŒ�.0;:::;0/=.1 � �.0;:::;0//�. If
�.0;:::;0/ D 0:10 then �0 D �2:197.

2. Compute the coefficient �s D � as function of the marginal effect ı�.ws/ D ı,
because ı�.ws/ D Œ1 C exp.��0 � �s/�

�1 � �.0;:::;0/ ) �s D � D lnŒ.ı C
�.0;:::;0//=.1 � ı � �.0;:::;0//� � �0. For example if ı D 0:05 then � D 0:462.

3. Compute ı�.w1;:::;wq/ D �.1;:::;1/ � �.0;:::;0/ D Œ1 C exp.��0 �Pq
sD1 �s/��1 � Œ1C

exp.��0/��1 D Œ1C exp.��0 � q�/��1 � Œ1C exp.��0/��1. Thus for example if
� D 0:462 and q D 2 then ı�.w1;:::;wq / D ı�.w1;w2/ D 0:12.

The considered scenarios, that is the models in the alternative hypothesis and the
marginal and joint effects of the covariates on 
 and � are reported in Table 4.1.
Clearly we wish to study the performance of the testing procedures in the less
favorable conditions under H0 and under H1. Under the null hypothesis we are
interested to study the accuracy of the tests, that is to determine whether the

Table 4.1 Simulation settings: models considered under the alterna-
tive hypothesis and marginal and overall effects of the covariates on 

and �

Setting Model under H1 ı
.x1/ ı�.ws / s D 1; : : : ; q ı�.w1;:::;wq/

1 CUB.0; 2/ – 0.05 0.12
CUB.0; 3/ – 0.05 0.21
CUB.1; 2/ –0.6 0.05 0.12
CUB.1; 3/ –0.6 0.05 0.21

2 CUB.0; 2/ – 0.10 0.26
CUB.0; 3/ – 0.10 0.46
CUB.1; 2/ –0.6 0.10 0.26
CUB.1; 3/ –0.6 0.10 0.46

3 CUB.0; 2/ – 0.20 0.52
CUB.0; 3/ – 0.20 0.76
CUB.1; 2/ –0.6 0.20 0.52
CUB.1; 3/ –0.6 0.20 0.76
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Table 4.2 Estimated rejection probabilities for m D 7, n D 50, and
˛ D 0:05

True model H0 H1 Tlrt Twald Tnpc Tpar�lrt

H0 CUB(0,0) CUB.3; 3/ 0.059 0.049 0.064 0.119

H1, Setting 1 CUB.0; 0/ CUB.0; 2/ 0.235 0.229 0.220 0.501
CUB.0; 0/ CUB.0; 3/ 0.257 0.275 0.232 0.671
CUB.0; 0/ CUB.1; 2/ 0.507 0.064 0.195 0.919
CUB.0; 0/ CUB.1; 3/ 0.394 0.044 0.111 0.891

H1, Setting 2 CUB.0; 0/ CUB.0; 2/ 0.688 0.686 0.646 0.740
CUB.0; 0/ CUB.0; 3/ 0.806 0.816 0.681 0.849
CUB.0; 0/ CUB.1; 2/ 0.437 0.167 0.188 0.743
CUB.0; 0/ CUB.1; 3/ 0.468 0.213 0.333 0.761

H1, Setting 3 CUB.0; 0/ CUB.0; 2/ 0.985 0.983 0.958 0.992
CUB.0; 0/ CUB.0; 3/ 0.986 0.981 0.965 0.999
CUB.0; 0/ CUB.1; 2/ 1.000 0.999 1.000 1.000
CUB.0; 0/ CUB.1; 3/ 0.999 0.999 1.000 1.000

rejection rates are near ˛ and do not exceed ˛. The CUB.3; 3/ model presents 6
more coefficients than the CUB.0; 0/ model, hence some of the considered testing
procedures, like Twald and Tnpc should be disadvantaged because they are based on
multiple tests and the power is expected to increase with the number of partial
tests (i.e., with the number of tested coefficients). Hence a CUB.3; 3/ model in
the alternative hypothesis when the null hypothesis is true is less favorable than
the other models considered in the alternative hypothesis when the null hypothesis
is false and the alternative is true. Conversely when the alternative hypothesis is
true and the greater the rejection rates the better the performance of the tests, the
less favorable conditions are represented by simpler models with a lower number of
tested coefficients.

The permutation solutions Tlrt, Twald, and Tnpc and the parametric likelihood-
ratio test, hereafter labeled as Tpar�lrt are compared. A number of B D 1; 000

permutations and CMC D 1; 000 Monte Carlo replications are considered.
Tables 4.2 and 4.3 summarize the results of the simulations, in terms of estimated
rejection probabilities of the compared tests, respectively for sample size n D 50

and n D 100. Notice how the power of all the procedures tends to increase with
the sample size n. The only exception to this general rule is represented by setting
three in presence of one covariate for 
 (last two lines of Tables 4.2 and 4.3) in
correspondence to Tlrt, Twald, and Tpar�lrt. However the power behavior of the testing
methods in these cases is very similar, the rejection rates are very near 1, and the
differences between the rejection rates in the case n D 50 and in the case n D 100

are very small especially when compared to the other settings.
It is evident that the parametric solution does not control the type I error for small

sample sizes (specifically n D 50). A better performance can be appreciated for n D
100. As a matter of fact a curious power behavior can be observed for all the testing
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Table 4.3 Estimated rejection probabilities for m D 7, n D 100, and
˛ D 0:05

True model H0 H1 Tlrt Twald Tnpc Tpar�lrt

H0 CUB.0; 0/ CUB.3; 3/ 0.039 0.035 0.037 0.063

H1, Setting 1 CUB.0; 0/ CUB.0; 2/ 0.455 0.466 0.420 0.476
CUB.0; 0/ CUB.0; 3/ 0.626 0.635 0.528 0.785
CUB.0; 0/ CUB.1; 2/ 0.874 0.393 0.589 0.959
CUB.0; 0/ CUB.1; 3/ 0.810 0.294 0.571 0.964

H1, Setting 2 CUB.0; 0/ CUB.0; 2/ 0.972 0.968 0.915 0.965
CUB.0; 0/ CUB.0; 3/ 0.999 0.997 0.965 0.998
CUB.0; 0/ CUB.1; 2/ 0.853 0.623 0.718 0.978
CUB.0; 0/ CUB.1; 3/ 0.866 0.628 0.708 0.991

H1, Setting 3 CUB.0; 0/ CUB.0; 2/ 1.000 1.000 1.000 1.000
CUB.0; 0/ CUB.0; 3/ 1.000 1.000 1.000 1.000
CUB.0; 0/ CUB.1; 2/ 0.946 0.926 1.000 0.987
CUB.0; 0/ CUB.1; 3/ 0.954 0.939 1.000 0.998

procedures: when a significant covariate is introduced for the uncertainty parameter,
the estimated rejection probabilities tend to decrease. This behavior seems to be
more evident for the permutation solutions based on the nonparametric combination
of partial permutation tests (Twald and Tnpc). This result is due to the anomalous
behavior of the partial test on the coefficient of the covariate of the uncertainty
parameter 
: a possible reason is that when more uncertainty is introduced in a part
of the observations (one of the two sub-groups identified by the covariate affecting
the uncertainty) it is actually more difficult for the tests to recognize the influence
of the other covariates on the feeling parameter. On the other side, if the likelihood-
ratio tests (both parametric and permutation versions) are considered, there is a loss
of power but usually, when a new covariate is added into the model under H1 and
consequently the “distance” between null and alternative model grows, there is a
power improvement of the tests. However it must to be noticed that, for fixed values
of ı
.x1/, the power of all the procedures is an increasing function of ı�.ws/ because
it grows passing from Setting 1 to Setting 3.

4.3 Minimum Sample Size for the Application
of the Permutation Test

The application of a permutation test is not possible when the minimum available
p-value of the test is greater than the significance level ˛, according to the
distribution of the test statistic. This problem may occur when the number of
possible permutations, and consequently the cardinality of the permutation space,
is too low: when all the B possible permutations are considered, the p-value of
a permutation test when the null hypothesis is rejected for high values of the test
statistic T is given by



4 Permutation Tests for Preference Analysis Models 39

� D ].T � � Tobs/

B
D
PB

bD1 I.T �b � Tobs/

B
;

where T � is the random variable which represents the test statistic according to
the permutation distribution, Tobs is the observed value of T , T �b is the value of
T � corresponding to the b-th permutation of the dataset, B is the total number of
permutations, and I.T �b � Tobs/ represents the indicator function of the event T �b �
Tobs, i.e., it takes value 1 when the inequality is true and 0 otherwise. The p-value
satisfies the constraints �min D 1=B � � � 1 D �max. Hence a necessary condition
for the applicability of the method is �min D 1=B < ˛ or equivalently B > 1=˛. If
˛ D 0:05 then the minimum number of total distinct permutations should be B D
int.1=˛/C1 D 21. Similarly if ˛ D 0:10 then the minimum number of permutations
should be B D 11; if ˛ D 0:01 then the minimum number of permutations should
be B D 101; etc.

Let us consider the permutation test of the problem under study and let us indicate
the number of subjects/evaluators belonging to the j -th group defined by a given
combination of values/levels of the nontested covariates with nj , j D 1; : : : ;M ,
whereM indicates the number of groups in the sample. The total number of distinct
permutations is given by

B D
MY

jD1
nj Š;

while the all-cell-permutation condition, i.e., the condition that at least two data
are observed for each combination of values of the nontested covariates (see [1]),
necessary in order to apply the permutation solution, implies that the minimum
number of permutations is equal to B D 2M . The permutation strategy should
take into account that under H0 exchangeability exists between populations with
identical distributions. In [4] it was proved that for tests of hypotheses of no effect,
when the two or more compared populations present nonidentical distributions the
permutation test can have a greater type I error rate, even under the null hypothesis.
Hence no large sample sizes are needed for the application of the test. For example
when ˛ D 0:05 andM � 5 the all-cell-permutation condition allows the application
of the test, as B � 25 D 32 > 21.

Tables 4.4 and 4.5 report the minimum sample sizes (and the optimal partition
of evaluators in the groups) for some values of M and for two alternative values
of the significance level ˛ D 0:05 and 0:10. Notice that the minimum required
sample sizes appear to be quite low. As expected, they increase withM , i.e., with the
number of nontested covariates (or the number of possible combinations of levels
of nontested covariates). In real case applications a common problem consists in
testing the influence of a covariate on the response in presence of two, three, or four
nontested dichotomous covariates: in these cases we would have M D 4, 8 and 16
respectively.
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Table 4.4 Minimum sample sizes (and optimal partition of subjects in the
groups) for ˛ D 0:05 and some values of M

M nmin nj ,j D 1; : : : ;M

1 n D 4 n1 D 4 .B D 24/

2 n D 6 n1 D 2In2 D 4 .B D 48/ or n1 D n2 D 3 .B D 36/

3 n D 7 n1 D n2 D 2In3 D 3 .B D 24/

4 n D 4 n1 D n2 D n3 D 2In4 D 3 .B D 48/

M � 5 n D 2M nj D 2I j D 1; : : : ;M .B D 2M /

Table 4.5 Minimum sample sizes (and optimal partition of
subjects in the groups) for ˛ D 0:10 and some values of M

M nmin nj ,j D 1; : : : ;M

1 n D 4 n1 D 4 .B D 24/

2 n D 5 n1 D 2In2 D 3 .B D 12/

3 n D 7 n1 D n2 D 2In3 D 3 .B D 24/

4 n D 2M D 8 n1 D n2 D n3 D n4 D 2 .B D 16/

M � 5 n D 2M nj D 2I j D 1; : : : ;M .B D 2M /

4.4 Real Application: Survey on the Ski School of Sesto

In winter 2010/11 a customer satisfaction survey on the ski courses for young
children (up to 13 years old) promoted by the Ski School of Sesto, near Bolzano,
in Italy, was performed by the University of Padova. A sample of 135 customers
was asked to give a vote (on a 1–10 scale) about some aspects of the service. The
respondents were the parents of the kids who took part in the courses. Among
the monitored aspects let us consider the “ease of learning” of the children and
the “helpfulness of the teachers” and let us apply the proposed permutation test
on two CUB.2; 2/ models to verify if and how the covariates “nationality” and
“first participation” affect uncertainty and feeling of the respondents. The use of the
permutation solution based on the NPC combination allows to adjust the p-values of
the partial tests on the single coefficients controlling the multiplicity, for attributing
the eventual significance of the global tests to the single coefficients. The two
covariates are dichotomous variables taking value 1 when the respondent is italian
and when the child/children take part to the evaluated course for the first time
respectively and value 0 otherwise.

Table 4.6 shows that both the covariates have a significant effect in the model
for the “ease of learning” (global p-value D 0:022, B D 1; 000 permutations).
Specifically they affect parameter 
: “nationality” has a positive effect on the
parameter (hence a negative effect on the uncertainty) and “first participation” an
opposite effect. In other words italian customers are less uncertain and people who
take part to the ski courses for the first time present greater uncertainty when they
evaluate the “ease of learning.” Similarly the covariates globally have an influence
on the evaluations about the “helpfulness of the teacher” (global p-value D 0:071,
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Table 4.6 Ease of learning:
coefficient estimates,
permutation tests on
covariates at ˛ D 0:10

(partial adjusted p-values in
brackets), and sign of the
relation between covariates
and uncertainty and/or feeling
in the CUB.2; 2/ model

Parameter Nationality First participation


 Ǒ
1 D 3:776 Ǒ

2 D �1:710
.0:023/ .0:085/

� C
� O�1 D n:s: O�2 D n:s:

.0:518/ .0:518/

global p-value 0:022

Table 4.7 Helpfulness of the
teacher: coefficient estimates,
permutation tests on
covariates at ˛ D 0:10

(partial adjusted p-values in
brackets), and sign of the
relation between covariates
and uncertainty and/or feeling
in the CUB.2; 2/ model

Parameter Nationality First participation


 Ǒ
1 D 2:372 Ǒ

2 D n:s:

.0:072/ .0:421/

� C
� O�1 D n:s: O�2 D n:s:

.0:955/ .0:312/

global p-value 0:071

B D 1; 000 permutations). In this case only “nationality” produces a significant
effect on the uncertainty and also in this case the Italians are less uncertain (see
Table 4.7). No covariate affects the feeling for any of the considered responses.

4.5 Conclusions

In this paper some new properties of a permutation solution to test for covariates’
effect on ordinal responses in a combination of uniform and shifted binomial model
(CUB model), recently proposed in [1], are discussed. The simulation study proves
that the permutation test controls the type I error in the presence of more than one
tested covariate also when the sample size is not large and seems to be powerful
under H1. The test based on the likelihood ratio test statistic seems to be a very
well performing alternative to the classical parametric counterpart when the sample
size is not large even in presence of more than one covariate both for feeling and
uncertainty. The minimum sample sizes and the best partitions of subjects in theM
different combinations of the nontested-covariates’ levels have been presented.

The CUB model is very useful because it is parsimonious in terms of number
of parameters and it can be used for several types of applications when the
evaluators are people (performance analysis, customer satisfaction, studies on the
effects of drugs or therapies,: : :). This unique and interesting approach allows to
distinguish between the two components which mainly affect the final choice of the
evaluators: uncertainty and feeling. An interesting aspect consists in the possibility
of testing whether and how some individual characteristics of the evaluators affect
uncertainty and feeling. In this framework the wald test and likelihood ratio test
present two main limits: they are not suitable solutions for small sample sizes
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(small number of evaluators) and they cannot be applied for multivariate CUB
models. The permutation test proposed by [1] allows to overcome these limits
because no assumption about the null distribution of the test statistic is needed, thus
the asymptotic distribution under H0 is not required, and the dependence among
component variables in the multivariate case can be implicitly taken into account
with a suitable permutation strategy and through the nonparametric combination
(NPC) methodology. The present work methodologically (study of power behavior)
and from the application point of view (minimum sample size determination,
application example) contributes to study utility, performances and applicability,
conditions of the cited nonparametric solution, in fact providing a new solution
to complex application problems in the CUB framework, where performance and
applicability of such methodology had not yet been proved.
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Chapter 5
Semiparametric Generalized Estimating
Equations in Misspecified Models

Francesco Bravo

Abstract This paper proposes a two-step procedure for estimating semiparametric
models defined by a set of possibly misspecified overidentified generalized esti-
mating equations. The paper shows that the resulting estimator is asymptotically
normal with a covariance matrix that crucially depends on the weight matrix
used in the estimation process. The paper also considers efficient semiparametric
classical minimum distance estimation. An example provides an illustration of the
applicability of the results of this paper.

Keywords Misspecification • Two-step estimation

5.1 Introduction

Generalized estimating equations (GEE henceforth) are extensions of generalized
linear models [6, 7] and quasi-likelihood methods (see for example Wedderburn
[10] and McCullagh [5]), that are often used in the context of nonnormal correlated
longitudinal data as originally suggested by Liang and Zeger [4]. Zieger [11]
provides a comprehensive review of GEE. In this paper we consider possibly
overidentified GEE in which we allow for infinite dimensional parameters as well
as possible global misspecification. These models are theoretically interesting and
empirically relevant since there are many situations where misspecification in GEE
might arise including responses missing not completely at random and/or covariates
measured with errors.

Under global misspecification it is not possible to define the notion of a “true”
unknown parameter, yet we can assume the existence of a parameter—often
called “pseudo-true” using the terminology originally suggested by Sawa [9]—
that uniquely minimizes the limit objective function; this parameter becomes the
parameter of interest. Note however that as opposed to the case of correctly specified
models the pseudo-true value needs not be the same for different choices of the
weight matrix used in the estimation process.
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In this paper we assume that the parameter of interest is finite dimensional
whereas the nuisance parameter is infinite dimensional. The estimation procedure
we suggest consists of two steps: in the first step the infinite dimensional parameter
is consistently estimated by a nonparametric estimator. In the second step the finite
dimensional parameter is estimated using the profile objective function based on
the first step estimator. We make two main contributions: first we show that the
proposed two step estimator is asymptotically normal with a covariance matrix that
depends in a complicated way on the weight matrix used in the estimation. This
result generalizes to the semiparametric case results obtained by Hall and Inoue [3]
in the context of generalized method of moment estimators for misspecified models.
It also generalizes the quadratic inference function approach originally suggested by
Qu et al. [8] in the context of correctly specified GEE models.

Second we propose a novel semiparametric classical (efficient) minimum dis-
tance estimator. This result generalizes the classical result of Ferguson [2] and
can be used for example to estimate partially linear longitudinal data models with
unobserved effects using Chamberlain’s [1] linear projection approach..

The rest of the paper is structured as follows: next section introduces the model
and the estimators. Section 5.3 contains the main results and an illustrative example.
An Appendix contains sketches of the proofs.

The following notation is used throughout the paper: “0” indicates transpose, “�”
denotes the generalized inverse of a matrix, “˝” denotes Kronecker product, “vec”
is the vec operator, and finally for any vector v v˝2 D vv0.

5.2 The Model and Estimator

Let fZi gniD1 denote a random sample from the distribution of Z 2 Z 
 R
dz ,


 2 � 
 R
k denote the unknown finite dimensional parameters of interest, � is a

compact set, and h0 .Z/ WD h0 2 H D H 1 � : : : : � Hm is a vector of unknown
infinite dimensional nuisance parameters, and H is a pseudo-metric space. The
statistical model we consider is

E Œg .Z; 
; h0/� D � .
; h0/ for all 
 2 �; (5.1)

where g .�/ W Z ���H ! R
l .l � k/ is a vector-valued known (smooth) function,

and inf
2� k� .
; h0/k > 0 is the indicator of misspecification.
Let g .Zi ; 
; h/ WD gi .
; h/, g .Z; 
; h/ WDg .
; h/, Og .
; h/DPn

iD1 gi .
; h/ =n,
and let Oh WD Oh .Zi / denote the first-step nonparametric estimator of h0.
The estimator we consider is defined as

O
 D arg min

2�

OQ OW
�

; Oh

�
; (5.2)

where

OQ OW .
; h/ D Og .
; h/0 OW Og .
; h/
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denote the GEE objective function and OW is a possibly random positive semidefinite
weighting matrix, that may also depend on a preliminary estimator, say O
p .

In the case of correctly specified model � .
; h0/ D 0 at a unique 
0. As an
example of this situation we discuss how a semiparametric extension to the classical
minimum distance (CMD) estimation can be cast into the framework of this paper.
Suppose that 
0 is related to 
0 WD m.
0; h0/wherem.�/ W ��H ! R

l is a vector-

valued known (smooth) function, and that there exists an estimator O
 WD O

� Oh
�

for


0 based on a first-step estimator Oh. Then a semiparametric CMD estimator is
defined as

O
 D arg min

2�

�
O
 �m

�

; Oh

��0 OW
�

O
 �m
�

; Oh

��
; (5.3)

which is as in (5.2) with Og
�

; Oh

�
D O
 �m

�

; Oh

�
.

5.3 Main Results

We consider three different estimators that correspond to three different choices of
OW : first OW is a nonstochastic positive definite matrixW ; second OW is stochastic but

it does not depend on a preliminary estimator O
p . Finally OW is allowed to depend on
O
p. This distinction is important in the context of misspecified overidentified GEE
models, because it implies that the pseudo true value 
� WD 
� .W / minimizing
the limit objective function (see assumption GEE1(i) below) might be different for
different choices of OW . Note however that for notational simplicity in what follows
we shall ignore this important point and use 
� to denote possibly different pseudo-
true parameters.

Assume that

GEE1 (i) there exists a 
� such that QW .
; h/ WD E Œg .
; h0/�
0WE Œg .
; h0/�

is minimized for all 
 2 �n
�, (ii) 
� 2 int .�/, (iii) g .
; h/ is twice
continuously differentiable in a neighborhood of 
�a:s,

GEE2 (i) sup
2�
��� Og
�

; Oh

�
� E Œg .
; h0/�

��� D op .1/ ; (ii)
��� OW �W

��� D op .1/,

GEE3 (i) the empirical processes vn .h/ D Pn
iD1 Œgi .
�; h/ � E .g .
�; h//� =n1=2

and Vn .h/DPn
iD1 ŒGi .
�; h/� E .G .
�; h//� =n1=2 are stochastically

equicontinuous at h0, where Gi .
; h/ WD@gi .
; h/ =@
 0, (ii)E
h
g
�

�; Oh

�i
D

op
�
n�1=2

�
; (iii) n1=2

� OW �W
�
��

d! N .0;˙W /, (iv)

sup

2�

��� OG
�

; Oh

�
� E ŒG .
; h0/�

��� D op .1/ ;
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sup

2�

���@vec
� OG

�

; Oh

��
=@
 0 �E �@vec .G .
; h0// =@


0

��� D op .1/ ;

GEE4 (i) the matrixK .
�; h0;W / is nonsingular, where

K .
; h;W / D E ŒG .
; h/�0WE ŒG .
; h/�

C�0�W ˝ IkE
�
@vec .G .
; h// =@
 0



;

(ii) the matrix � .
�; h0;W / is positive definite, where

� .
; h;W / D E
n
.g .
; h/� ��/0 ;

�
.G .
; h/ �E ŒG .
; h/�/0W��


0
;

h� OW �W
�
��
i0
 0˝2

;

with �jk .
; h;W / .j; k D 1; 2; 3/ denoting its block components. Let O
W and O
 OW
denote the GEE estimator based on OW and W , respectively. Let O
pC1 denote
the .p C 1/th iterated GEE estimator based on a preliminary consistent pth GEE
estimator O
p for p D 1; 2; : : : ; k, where O
1 corresponds to either O
W or O
 OW ;

accordingly let W
�

p
�

denote the probability limit of OW that depends on O
p .

Theorem 1. Under GEE1–GEE4

n1=2
� O
W � 
�

�
d! N

�
0;K .
�; h0;W /

�1 �.0/ .
�; h0;W /K .
�; h0;W /
�1
�
;

n1=2
� O
 OW � 
�

�
d! N

�
0;K .
�; h0;W /

�1 �.1/ .
�; h0;W /K .
�; h0;W /
�1
�
;

n1=2
� O
pC1 � 
�

�
d! N

�
0;K .
�; h0;W /

�1 �.pC1/

�

�; h0;W; 
p

�
K .
�; h0;W /

�1
�

where

�.0/ .
�; h0;W / D E ŒG .
�; h0/�0W�11 .
�; h0;W /WE ŒG .
�; h0/�

C E ŒG .
�; h0/�0W�12 .
�; h0;W /C�12 .
�; h0;W /0

WE ŒG .
�; h0/�C�22 .
�; h0;W / ;

�.1/ .
�; h0;W / D �.0/ .
�; h0;W /CE ŒG .
�; h0/�
0�33 .
�; h0;W /E ŒG .
�; h0/�

CE ŒG .
�; h0/�
0W�13 .
�; h0;W /E ŒG .
�; h0/�

CE ŒG .
�; h0/�
0�13 .
�; h0;W /

0WE ŒG .
�; h0/�

C�23 .
�; h0;W /E ŒG .
�; h0/�CE ŒG .
�; h0/�
0�23 .
�; h0;W / ;
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�.pC1/
�

�; h0;W; 
p

� D �.p/
�

�; h0;W;�j3

�

p; h0;W

��
j D 1; 2; 3;

and the �j3
�

p; h0;W

�
terms are to emphasize the dependency of the distri-

bution of the .p C 1/th iterated estimator on that of the pth one through the
�j3

�

p; h0;W

�
matrices.

The expression for �.pC1/
�

�; h0;W; 
p

�
is in general very complicated; see the

Appendix for the case p D 2 with OW D
�Pn

iD1 gi
� O
I

�˝2
=n

��1
as weight matrix

and O
I is the first step estimator based onW D I .
We now consider correctly specified overidentified GEE; the following theorem

shows the asymptotic normality of the efficient CMD (also known as minimum
	2) estimator, that is obtained by using as weight matrix a consistent estimator of

˝ .
0; h0/
�1, where ˝ .
0; h0/ D E

h
g .
; h/˝2

i
and g .
; h/ D 
 � m.
; h/.

Assume that

CMD1 (i) there exists a unique 
0 such thatE Œg .
; h/� D 0, (ii) 
0 2 int .�/, (iii)
m.
; h/ is continuously differentiable in a neighborhood of 
0,

CMD2 (i) sup
2�
��� Og
�

; Oh

�
�E Œg .
; h0/�

��� D op .1/ ; (ii)

���� Ő � O
p; Oh
��1

�˝ .
0; h0/
�1
��� D op .1/ for some preliminary consistent O
p

CMD3 (i) the empirical process vn .h/ D Pn
iD1 Œgi .
0; h/ �E .g .
0; h//� =n1=2 is

stochastically equicontinuous at h0, (ii) E
h
g
�

0; Oh

�i
D op

�
n�1=2

�
, (iii)

M .
; h/ WD @m .
; h/ =@
 0 is continuous at 
0; h0, (iv) rank .M .
0; h0// D
k, (v) ˝ .
0; h0/ is positive definite.

Theorem 2. Under CMD1–CMD3

n1=2
� O
 � 
0

�
d! N

�
0;
h
M .
0; h0/

0˝ .
0; h0/
�1 M .
0; h0/

i�1�
:

5.3.1 An Example

The statistical model we consider is

E ŒM .Z2/ � .Z; 
; h0/� D �M .
/ ; (5.4)

where Z D �
Z01; Z02


0
, M .�/ W Z2 ! R

l is a vector-valued known function often
called in the econometric literature instruments, and � .�/ W Z �� � H ! R is a
“residual” scalar function, such as for example the unobservable error in a regression
model. Models such as (5.4) arise often in economics as a result of the conditional
moment restriction E Œ� .Z; 
; h0/ jZ2� D � .
/ a:s. that might be implied by a
misspecified economic model. We assume that:
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R1 .�M .
�/� �M .
//
0W .�M .
�/� �M .
// is negative definite for all 
 2

�n
�,
R2 � .Z; 
; h/ is three times differentiable with respect to 
 and h with third

derivative Lipshitz continuous with respect to 
 and h,

R3 (i) E sup
2�
��@3� .Z; 
; h/ =@h@h0@hj

��
H

< 1j D 1; : : : ; m, (ii)
E sup
2� k� .Z; 
; h0/k < 1, E sup
2�

��@2� .Z; 
; h0/ =@
@
 0
�� < 1,

R4 (i) E Œ@� .Z; 
; h0/ =@hjZ2� D 0 a:s:; (ii)
��� Oh� h0

���
H

D op
�
n�1=4

�
;

R5 (i) rank .E ŒM .Z2/ @� .Z; 
�; h0/ =@
 0�/ D k,

(ii) rank .E Œ@vec .M .Z2/ @� .Z; 
�; h0/ =@
 0/ =@
 0�/ D k.

R1 is an identification condition that implies GEE1(i); R2 suffices for the
stochastic equicontinuity assumption GEE3(i), whereas R3 suffices for GEE2(i) and
GEE3(iv) by the uniform law of large numbers. R4(i)–(ii) imply GEE3(ii) while R5
implies GEE4(i). Thus assuming further that GEE2(ii), GEE3(iii), and GEE4 hold,
the conditions of Theorem 1 are satisfied; thus the distribution of the semiparametric
nonlinear instrumental variable estimator

O
 D arg min

2�

 
nX

iD1
�
�
Zi ; 
; Oh

�
M .Z2i /

0 =n
!

OW
nX

iD1
M .Z2i / �

�
Zi ; 
; Oh

�
=n

is as that given in Theorem 1.

Appendix

Throughout the Appendix “CMT” and “CLT” denote Continuous Mapping Theorem
and Central Limit Theorem, respectively.

Proof (Proof of Theorem 1). The consistency of any of the three estimators follows

by the identification condition GEE1(i), and the uniform convergence of OQ OW
�

; Oh

�

which follows by GEE2(i)–(ii). The asymptotic normality of O
W and O
 OW follows by
standard mean value expansion of the first order conditions

0 D OG
� O
; Oh

�0
W Og

� O
; Oh
�
;

0 D OG
� O
; Oh

�0 OW Og
� O
; Oh

�
;

which hold with probability approaching to 1 by GEE1(ii). We consider O
 OW and
note that

0 D OG
�

�; Oh

�0 OW n1=2 Og
�

�; Oh

�
C OG

� O
; Oh
�0 OW OG

�

; Oh

�
n1=2

� O
 � 
�
�
;
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hence by GEE2(i)–(ii), GEE3(iii)–(iv), CMT and some algebra it follows that

n1=2
� O
 OW � 
�

�
D �

�
I � P .
�; h0/�1 �0�W ˝ IkE

�
@vec .G .
�; h0// =@
 0


��1

(5.5)

˚
E
�
G .
�; h0/0



WE ŒG .
�; h0/�

�
n1=2

n OG .
�; h0/0W n1=2 . Og .
�; h0/� ��/

C G .
�; h0/0W�� C E ŒG .
�; h0/�0
� OW �W

�
��
o

C op .1/ ;

where P .
; h/ D ˚
E
�
G .
; h0/

0
WE ŒG .
; h/�
�

and G .
; h/ D OG .
; h/
�E ŒG .
; h/�. Note that

�
I � P .
�; h0/�1 �0�W ˝ IkE

�
@vec .G .
�; h0// =@
 0


��1

D K .
�; h0;W /�1 P .
�; h0/�1 ;

and that by CLT

n1=2

2

64
Og .
�; h0/� ��

G .
�; h0/
0
W��� OW �W
�
��

3

75
d! N

0

B@0;

2

64
�11 .
�; h0;W / �12 .
�; h0;W / �13 .
�; h0;W /

�12 .
�; h0;W /
0
�22 .
�; h0;W / �23 .
�; h0;W /

�13 .
�; h0;W /
0
�23 .
�; h0;W /

0
�33 .
�; h0;W /

3

75

1

CA ;

(5.6)

so that the conclusion follows by CMT and some algebra. For O
W the conclusion
follows noting that�j3 .
�; h0;W / .j D 1; 2/ and˙W are all 0. Finally we consider
the iterated semiparametric GEE estimator O
p . We first consider the second-step

estimator O
2 based on either O
W or O
 OW as preliminary (first step) consistent

estimator. Assume that the weight matrix OW is given by O�11
� O
W ; Oh;W

��1
or

O�11
� O
 OW ; Oh; OW

��1
; the same argument as that used to obtain (5.5) can be used to

show that n1=2
� O
2 � 
�

�
has the same influence function as that given in (5.5) (with

�11 .
�; h0;W /�1 replacingW ) except for the last term, which in this case needs a
further expansion. First note that

n1=2
�

O�11
� O
�; Oh;W

��1 ��11 .
�; h0;W /�1
�
��

D n1=2
�
�0� ˝ O�11

� O
�; Oh;W
��1�

�11 .
�; h0;W /�1

˝Ilvec
� O�11

� O
�; Oh;W
�

��11 .
�; h0;W /
�
;
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and by GEE(ii) (with OW D O�11
� O
�; Oh;W

��1
), the triangle inequality and a mean

value expansion we have

�
�0

��11 .
�; h0;W /
�1 ˝�11 .
�; h0;W /

�1
�
n1=2

(
vec

� O�11
�

�; Oh;W

�
��11 .
�; h0;W /

�

C
@vec O�11

�

�; Oh;W

�

@
 0

� O
� � 
�

�)
C op .1/ ; (5.7)

which shows that the asymptotic distribution of n1=2
� O
2 � 
�

�
crucially depends

also on that of n1=2
� O
� � 
�

�
, as we now illustrate for O
� D O
I . Let

L
�

�; h0; �11 .
�; h0;W /�1

�
D �0��11 .
�; h0;W /

�1 ˝�11 .
�; h0;W /�1

�
�
I;E

�
@vec�11 .
�; h0;W /

@
 0

��

and

OS .
�h0;�11 .
�; h0;W / ; 
I / D
"

vec
� O�11

� O
I ; Oh;W
�
��11 .
�; h0;W /

�

K .
�; h0; I /
�1
˚
G .
�; h0/

0 . Og .
�; h0/� ��/CG .
�; h0/
0
��

�

#

so that

n1=2
�

O�11
� O
I ; Oh;W

��1 ��11 .
�; h0;W /�1
�
�� D L

�

�; h0;�11 .
�; h0;W /�1

�

� n1=2 OS.
�h0;�11 .
�; h0;W / ; 
I/ :

Then

�13 .
�; h0;W .
I // D nCov f Og .
�; h0/� ��; ;

OS .
�h0; �11 .
�; h0;W / ; 
I /
0
L
�

�; h0; �11 .
�; h0;W /

�1
�0


;

�23 .
�; h0;W .
I // D nCov

	� OG .
�; h0/� E ŒG .
�; h0/�
�0

�11 .
�; h0;W /
�1
��;

OS .
�h0; �11 .
�; h0;W / ; 
I /
0
L
�

�; h0; �11 .
�; h0;W /

�1
�0


;

�33 .
�; h0;W .
I // D nVar
n
L
�

�; h0; �11 .
�; h0;W /

�1
� OS .
�h0; �11 .
�; h0;W / ; 
I /

o
;

and

n1=2
� O
2 � 
�

�
d! N

�
0;K

�

�; h0; �11 .
�; h0;W /�1

��1
�.2/

�

�; h0;W; 
p

�
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K
�

�; h0; �11 .
�; h0;W /�1

��1�
;

where

�2

�

�; h0; �11 .
�; h0;W .
I //

�1� D �.0/

�

�; h0; �11 .
�; h0;W .
I //

�1�

C E ŒG .
�; h0/�0�33 .
�; h0;W .
I // E ŒG .
�; h0/�

C E ŒG .
�; h0/�0�11 .
�; h0;W .
I //
�1 �13 .
�; h0;W .
I // E ŒG .
�; h0/�

C E ŒG .
�; h0/�0�13 .
�; h0;W .
I //
0�11 .
�; h0;W .
I //

�1 E ŒG .
�; h0/�

C�23 .
�; h0;W .
I // E ŒG .
�; h0/�C E ŒG .
�; h0/�0�23 .
�; h0;W .
I // :

The general distribution of the .p C 1/th iterated GEE estimator can be computed
using a recursive argument.

Proof (Proof of Theorem 2). The consistency of O
 follows as in the proof of
Theorem 1 by CMD1(i), CMD2(i)–(ii). The first order conditions for O
 are

M
� O
; Oh

�0 Ő � O
p; Oh
��1 � O
 �m

� O
; Oh
��

D 0;

which hold with probability approaching 1 by CMD1(ii). By a standard mean value
expansion

n1=2
�

O
 �m
�

0; Oh

�
�M

�

; Oh

� � O
 � 
0
��

C op .1/ (5.8)

and by CMD3(i)–(ii), CMD1 (i), and CMD(iv)

n1=2
�

O
 �m
�

0; Oh

��
d! N .0;˝ .
0; h0//C op .1/

by CLT. The conclusion follows by CMD3(iii)–(iv), (5.8), and CMT.
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Chapter 6
Local Covariance Estimation Using
Costationarity

Alessandro Cardinali

Abstract In this paper we propose a novel estimator for the time-varying covari-
ance of locally stationary time series. This new approach is based on costationary
combinations, that is, time-varying deterministic combinations of locally stationary
time series that are second-order stationary. We show with a simulation example
that the new estimator has smaller variance than other approaches exclusively based
on the evolutionary cross-periodogram, and can therefore be appealing in a large
number of applications.

Keywords Local stationarity • Costationarity • Wavelets • Time-varying
covariances

6.1 Introduction

Loosely speaking, a stationary time series is one whose statistical properties remain
constant over time. A locally stationary (LS) time series is one whose statistical
properties can change slowly over time. As a consequence, such a series can appear
stationary when examined close up, but appear non-stationary when examined on a
larger scale. Priestley [9, 10] provide a comprehensive review of locally stationary
processes and their history, and Nason and von Sachs [5] provide a more recent
review. The methods described in this article can be applied to locally stationary
time series, being triangular stochastic arrays defined in the rescaled time t=T ,
where T represents the sample size.

Based on this setup, Dahlhaus [3] proposed locally stationary Fourier (LSF)
processes whose underlying pseudo-spectral structure is defined in terms of Fourier
basis. The locally stationary wavelet (LSW) model due to Nason et al. [6], instead,
decomposes the local structure of the process among different scales through a set
of non-decimated wavelets used as basis functions. We refer the interested reader to
[7] for computational details pertaining LSW processes. In the following, we will
consider the latter family of processes defined as
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University of Plymouth, Plymouth, UK
e-mail: alessandro.cardinali@plymouth.ac.uk

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__6

53

mailto:alessandro.cardinali@plymouth.ac.uk


54 A. Cardinali

Xt IT D
1X

jD1

1X

kD�1
Wj

�
k

T

�
 j .t � k/�j;k; (6.1)

where f j .t � k/gj is a family of discrete non-decimated wavelet filters, with
local support spanned by the index k and including the neighborhood of t . The
parameter j is integer valued and represents the scale of the corresponding wavelet.
The functionWj .k=T / is a time-localized amplitude of bounded variation, referring
to dyadic scales indexed by j D 1; 2; ::; JT , with JT D Œlog2 T �. Finally �j;k is a
sequence of doubly indexed i.i.d. standardized random variables. This setup allows
the definition of a time-varying generalization of the classical spectra, having a well
defined limit in the rescaled time z 2 .0; 1/, defined as

Sj .z/ D lim
T!1

ˇ̌
ˇ̌Wj

�
ŒzT �

T

�ˇ̌
ˇ̌
2

; (6.2)

where we have set k D ŒzT �, and Œx� is the integer part of x. This multiscale LS
framework has proven to be useful in order to estimate the time-varying association
between non-stationary time series. The estimation of time-localized covariances
is relevant in a wide range of disciplines such as climatology, neuroscience, and
economics, where the underlying phenomena are inherently characterized by regime
changes that cannot be appropriately taken into account by classical stationary
models.

Ombao and Van Bellegem [8] and Sanderson et al. [11] propose methodologies
based, respectively, on the cross-spectra of LSF and LSW models. In this paper we
propose an alternative methodology to estimate time-localized covariances, which
is based on the existence of time-varying linear combinations of LS processes which
are (co)stationary. More details concerning costationarity can be found in Cardinali
and Nason [1], whereas [2] illustrate the related computational aspects. The
contribution of this paper is therefore twofold. We first propose our new estimation
methodology, and then show this to be statistically efficient in comparison to the
method proposed in Sanderson et al. [11]. We illustrate a theoretical example and
then validate the comparison by means of simulations.

The article is structured as follows. Section 6.2 reviews the second order proper-
ties of LS time series models and briefly describes the concept of costationarity. Sec-
tion 6.3 introduces our new covariance-based estimator, and illustrates its relative
efficiency over alternative estimators using a theoretical and simulation example.

6.2 Local Covariance and Costationarity

When processes are not stationary in the wide sense, covariance operators may
have complicated time-varying properties. With non-stationarity their estimation
is typically difficult, since a canonical spectral structure does not exist. Meyer
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[4] showed that although we cannot find, in general, bases which diagonalize
complicated integral operators, it is nevertheless possible to find well structured
bases which compress them. This means that time-varying covariance operators
can be well represented by sparse matrices with respect to such bases. For n D
1; 2; : : : ; N , the locally stationary behavior of LS processes X.n/

t IT is characterized
by a local auto-covariance function

�T .t; �/ D �n;nIT .t; �/ D Cov
�
X
.n/
t IT ; X

.n/
tC� IT

�
:

Using the approximation derived in Sanderson et al. [11] this is representable as

�T .t; �/ D
Œlog2 T �X

jD1
Sj

�
t

T

�
�j .�/C O.T �1/ (6.3)

where Sj .t=T / D Sj .t=T /
.n/ is the local spectra for X.n/

t IT , and �.�/ DP
t  j .t/ j .t C �/ is the autocorrelation wavelet, see Nason et al. [6] for details.

Similarly, using another approximation derived in Sanderson et al. [11], for n;m D
1; 2; : : : ; N , the local cross-covariance between two locally stationary processes
X
.n/
t IT and X.m/

t IT can be defined as

�n;mIT .t; �/ D
Œlog2 T �X

jD1
S
.n;m/
j

�
t

T

�
�j .�/C O.T �1/; (6.4)

where S.n;m/j .t=T / is the local cross-spectra defined as

S
.n;m/
j .t=T / D W

.n/
j

�
t

T

�
W

.m/
j

�
t

T

�
; (6.5)

where W .n/
j .t=T / and W .m/

j .t=T / are the local amplitude functions for the pro-

cesses X.n/
t IT and X.m/

t IT respectively. Note that these functions, along with the local
spectra and cross-spectra, are defined in the rescaled time, and their limits (for
T ! 1) are well defined as �.z; �/, �n;m.z; �/, Sj .z/ and S.n;m/j .z/ respectively, for
z 2 .0; 1/. Moreover, note also that for univariate (globally) stationary time series
the spectra Sj .t=T / is time invariant, i.e., Sj .t=T / D Sj8j , which also implies a
Toeplitz covariance operator �.t; �/ D �.�/. Finally, the time-localized covariance
between two LS processes can be obtained as a particular case of Eq. (6.4) by setting
� D 0, and is therefore defined as

�n;mIT .t; 0/ D
Œlog2 T �X

jD1
S
.n;m/
j

�
t

T

�
C O.T �1/; (6.6)
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since the properties of wavelet filters imply �j .0/ D P
t  

2
j .t/ D 1, for all j . The

covariances (6.6) can be estimated by

O�n;mIT .t; 0/ D
Œlog2 T �X

jD1
OS.n;m/j;t ; (6.7)

where OS.n;m/j;t is an asymptotically unbiased smoothed estimator of the time-varying
cross spectra, as the one proposed in Sanderson et al. [11].

6.2.1 Costationarity

We give a multivariate extension for the definition of costationary processes
originally proposed in Cardinali and Nason [1]. However, we now concentrate on
constant piecewise solution vectors.

Definition 1. Let Xt IT D
�
X
.1/
t IT ; : : : ; X

.N/
t IT
�0

be a vector time series with local auto-

covariances and cross-covariances satisfying Eqs. (6.3) and (6.4). Moreover assume

sup
t

8
<̂

:̂

ˇ̌
ˇCov

�
X
.n/
t IT ; X

.m/
t IT
�ˇ̌
ˇ

Var
�
X
.n/
t IT
�1=2

Var
�
X
.m/
t IT
�1=2

9
>=

>;
< 1;

and for n;m D 1; 2; : : : ; N . We callZ.i/
t costationary process if there exists a set of

bounded piecewise constant functions ˛.i;n/t for t D 1; : : : ; T; n D 1; : : : ; N , and
i D 1; 2; : : : ; I such that

Z
.i/
t D

NX

nD1
˛
.i;n/
t X

.n/
t IT

is a covariance stationary process.

Costationary solutions can be, in general, multiple. This multiplicity is represented
here through the index i . Using a vector notation we can also represent the set of
costationary solutions as a time-varying linear system

Definition 2. Let Zt D
�
Z
.1/
t ; : : : ; Z

.I /
t

�0
and Xt IT as in Definition 1. We define

the costationary system as

Zt D At Xt IT ;

where, for each time point t , At D
h
˛
.i;n/
t

i

i;n
is a .I � N/ dimensional matrix of

costationary vector entries for time t .
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The piecewise constant functions ˛.i;n/t are supposed to be measurable on a disjoint
sequence of half-opened dyadic intervals. In this paper intervals of dyadic length
have been considered for computational convenience, however, in principle the
theory we present will apply to intervals of arbitrary minimal length T �, provided
that for T ! 1 we have T �=T ! �, where � > 0. For a discussion on
segmentation issues and regularity conditions concerning costationary solutions
˛
.i;n/
t we refer again the interested reader to Cardinali and Nason [1]. For an arbitrary

time-varying LS combination, the local variance can be represented as

�2Zi .t/ D
X

n;m

˛
.i;n/
t ˛

.i;m/
t �n;mIT .t; 0/; (6.8)

for n;m D 1; : : : ; N , and it is typically a time-varying quantity. However, when
considering costationary combinations Z.i/.t/, the quantity defined in Eq. (6.8)
becomes time-invariant, so we can simply refer to it as �2Zi .

6.3 A Costationary Estimator for Local Covariances

A direct estimator for the time-varying covariance of locally stationary processes
can be obtained by (6.7). The aim of this section is to introduce an alternative
estimator for local covariances which makes use of costationary solutions. We
will use integers n;m; l; h D 1; 2; : : : ; N to identify (pairs of) LS processes. By
imposing costationarity, the quantity defined in Eq. (6.8) can be estimated by

O�2Zi D
X

n;m

Ǫ .i;n/t Ǫ .i;m/t O�n;mIT .t; 0/; (6.9)

where O�n;mIT .t; 0/ can be any asymptotically unbiased and consistent estimator for
�n;mIT .t; 0/, and Ǫ .i;n/t can be determined using the costat algorithm described in
Cardinali and Nason [1]. In practice we can obtain O�2Zi using the sample variance

estimator of costationary processesZ.i/
t . However, from Eq. (6.9), we can derive an

alternative local covariance estimator as

O�.i/l;hIT .t; 0/ D O�2Zi �P.n;m/¤.l;h/
n;m Ǫ .i;n/t Ǫ .i;m/t O�n;mIT .t; 0/

Ǫ .i;l/t Ǫ .i;h/t

: (6.10)

We are particularly interested in assessing the properties of this estimator, in
particular the gain in efficiency possibly due to using costationary combinations.
This is because estimators based upon such combinations also exploit information
about the global relation of the original LS time series (through the costationary
solution vectors), and such information is not taken into account by considering
covariance estimators exclusively based upon the time-localized cross-periodogram.
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Moreover, because (co)stationarity of single solutions Z.i/
t , there always exist a

projection diagonalizing their covariance matrix. We therefore expect to achieve a
greater degree of efficiency by averaging estimators based upon single costationary
series, provided that the original LS series are not perfectly correlated. We will
therefore consider the estimator

O��l;hIT .t; 0/ D 1

I

IX

iD1
O�.i/l;hIT .t; 0/: (6.11)

The following section illustrates the efficiency of this estimator with a theoretical
and simulation example.

6.3.1 Theoretical Example and Simulations

For the illustrative purposes of this example we will only consider time-invariant
costationary systems, i.e., costationary systems with time-invariant costationary
vectors. These systems can be defined, as a particular case of the general form given
in Definition 2, as

Zt D A Xt IT : (6.12)

We consider two uncorrelated LS Gaussian processes X.1/
t IT and X.2/

t IT , respectively
having local spectra

S
.1/
j .t=T / D

8
<

:

2=3; if j D j� and t � T=2I
1=3; if j D j� and t > T=2I
0; otherwise;

(6.13)

and

S
.2/
j .t=T / D

8
<

:

1=3; if j D j� and t � T=2I
2=3; if j D j� and t > T=2I
0; otherwise:

(6.14)

Then, for i D 1; 2; 3; 4, and time-invariant costationary vectors

˛.1;	/ D .1; 1/;

˛.2;	/ D .1;�1/;
˛.3;	/ D .�1; 1/;
˛.4;	/ D .�1;�1/;
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the linear combinations Z.i/
t are White-Noise processes with variance �2Zi D 1.

This is an example of multiple costationary solution vectors which are also time-
invariant. Other costationary vectors can be found by multiplying ˛.i;	/ by some real
scalar. By applying the singular value decomposition A D U D V we obtain

A D

0

BB@

1 1

1 �1
�1 1

�1 �1

1

CCA D

0

BB@

�1=2 1=2

�1=2 �1=2
1=2 1=2

1=2 �1=2

1

CCA

�
2 0

0 2

� ��1 0
0 1

�

In this case we therefore have rank.A/ D 2 and we expect the estimator O��l;hIT .t; 0/
to be more efficient than the direct estimator proposed in Sanderson et al. [11].
This is because the degree of efficiency of O��l;hIT .t; 0/ is obtained by exploiting the

number of non-perfectly correlated LS time series X.n/
t IT , which are used to produce

synthetic linearly independent stationary time series.

Remark 1. Note that, even in the general time-varying case of Definition 1 (i.e.,
when At depends upon time), conditions therein are sufficient to ensure that
rank.At / D N , for all t D 1; : : : ; T , provided that I � N . The greater is the
number of non-perfectly correlated time series returning costationary solutions, the
greater is the expected degree of efficiency of the new estimator.

We use this simple theoretical example to conduct a simulation experiment investi-
gating the relative efficiency of our costationary estimator for the local covariance
function when compared with the classical estimator exclusively based on the
local cross-periodogram and defined in Eq. (6.7). We simulate pairs of uncorrelated
multiscale LS Gaussian processes having local spectra as defined in Eqs. (6.13)
and (6.14).

In this experiment we use a (real-valued) wavelet model representation. We
choose j � D 4 and simulate 30 � 29=2 D 435 pairs of uncorrelated processes
of increasing length. For each pair we first estimate time-localized covariances by
using the classical estimator defined in Eq. (6.7). We then repeat the estimation
by using the statistics defined in Eq. (6.11). We use simulations to compute, at
each time point t , the Montecarlo variance (variance of simulated samples) of
each estimator as well as the ratio of the two variances, respectively denoted as
VarŒ O�.t; 0/�, VarŒ O��.t; 0/�, and EffŒ O�.t; 0/= O��.t; 0/� D VarŒ O�.t; 0/�=VarŒ O��.t; 0/�.
Table 6.1 shows the time averages (over t) of these respective quantities.
The analysis is repeated for simulated time series of increasing size T D
128; 256; 512; 1;024; 2;048. The results of our simulations show that the new
estimator is substantially more efficient than the estimator exclusively based upon
the cross-periodogram. Interestingly, the gain in efficiency is substantial even for
very moderate sample sizes. These results suggest that increasing efficiency can be
achieved by considering a larger number of time series in costationary combinations.
Future work will consider a full theoretical investigation of this approach as well as
some applications to economics and financial data.
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Table 6.1 Time-averaged Montecarlo variances and relative efficiency ratios for
classical and costationary local covariance estimators

Estimates TD 128 TD 256 TD 512 TD 1,024 TD 2,048

VarT Œ O�.	; 0/� 0.0092 0.0101 0.0103 0.0112 0.0134

VarT Œ O��.	; 0/� 0.0029 0.0028 0.0029 0.0030 0.0032

EffT Œ O�.	; 0/= O��.	; 0/� 3.1710 3.5970 3.5579 3.7321 4.1934
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Chapter 7
Stable Nonparametric Signal Filtration
in Nonlinear Models

Alexander V. Dobrovidov

Abstract A stationary two-component hidden Markov process .Xn; Sn/n>1 is
considered where the first component is observable and the second one is non-
observable. The problem of filtering a random signal .Sn/n>1 from the mixture
with a noise by observations Xn

1 D X1; � � � ; Xn is solved under a nonparametric
uncertainty regarding the distribution of the desired signal. This means that a
probabilistic parametric model of the useful signal .Sn/ is assumed to be completely
unknown. In these assumptions, it is impossible generally to build an optimal
Bayesian estimator of Sn explicitly. However, for a more restricted class of static
observation models, in which the conditional density f .xnjsn/ belongs to the
exponential family, the Bayesian estimator satisfies the optimal filtering equation
which depends on probabilistic characteristics of the observable process .Xn/
only. These unknown characteristics can be restored from the observations Xn

1 by
using stable nonparametric estimation procedures adapted to dependent data. Up
to this work, the author investigated the case where the domain of the desirable
signal Sn is the whole real axis. To solve the problem in this case the approach
of nonparametric kernel estimation with symmetric kernel functions has been
used. In this paper we consider the case where Sn 2 0;1/. This assumption
leads to nonlinear models of observation and non-Gaussian noise which in turn
requires more complex mathematical constructions including non-symmetric kernel
functions. The nonlinear multiplicative observation model with non-Gaussian noise
is considered in detail, and the nonparametric estimator of an unknown gain
coefficient is constructed. The choice of smoothing and regularization parameters
plays the crucial role to build stable nonparametric procedures. The optimal choice
of these parameters leading to an automatic algorithm of nonparametric filtering is
proposed.
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7.1 Introduction

This paper considers the problem of extracting the useful random signal Sn 2 S � R

or a known one-to-one function #n D Q.Sn/ from the mixtureXn D '.Sn; �n/ with
the noise �n, where '.�/ is a given function and S is an admissible set. Here, it is
assumed that the state model and the distribution of Sn are completely unknown.
Such problems often arise in the processing of information in radio and sonar, as
well as getting the true information in some problems of financial mathematics
(e.g., the information about realized volatility or exchange rates). The problem is
studied in discrete time. The goal is to construct an estimator O#n of the process
#n D Q.Sn/ at the moment n by sample Xn

1 D .X1; : : : ; Xn/ of the mixture
.Xn/. If the performance index is the mean squared deviation E.Q.Sn/ � O#n/2;
then it is well known that the optimal estimator equals to the posterior mean O#optn D
E.Q.Sn/jXn

1 /. There are several approaches to calculate #optn based on different
estimation theories. For Q.Sn/ D Sn, linear observation model Xn D Sn C �n and
Gaussian joint distribution of .Xn; Sn/, in accordance with the theorem of a normal
correlation [15], the posterior mean

OSn D ESn C cov.Sn;Xn
1 /cov�1.Xn

1 ; X
n
1 /.X

n
1 � EXn

1 / (7.1)

can be expressed in terms of the covariances of observations cov.Xn
1 ; X

n
1 / and

mutual covariances cov.Sn;Xi /; i D 1; : : : ; n of the signal and observations.
The formula (7.1) admits a recursive representation called the Kalman filter.
Emphasize that such filter can only be built when the Gaussian joint distribution
of the signal and observation are completely known. In the more general case when
the observation model is nonlinear and the joint distribution of .Xn; Sn/ is non-
Gaussian, the optimal Bayesian estimator can be obtained by applying the theory of
conditional Markov processes of Stratonovich [17]. For this the compound process
.Xn; Sn/ should be a Markov process. The optimal estimator is represented as

O
optn D E.Q.Sn/jXn
1 D xn1 / D

Z

S

Q.sn/wn.snjxn1 /dsn; (7.2)

where wn.snjxn1 / is a posterior density of the signal Sn under fixed observations
xn1 D .x1; : : : ; xn/. In accordance with the theory of conditional Markov processes
this posterior density can be written in a recursive form which allows one to trace a
density evolution from wn�1 to wn. The density wn is substituted in (7.2) and, after
integration, one receives the estimator desired.

There are some other ways to determine the optimal estimator (7.2). However,
most of them require precise assignment of the joint distribution of the process
.Xn; Sn/. What should we do if the distribution of the useful signal .Sn/ is unknown,
as in the applications mentioned above? In this case it is impossible to observe the
“pure” useful signal .Sn/ and to collect any statistics about it. The signal can be
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observed only with the noise, thus, in general, the posterior estimator (7.2) cannot be
built directly. Nevertheless, for a more restricted class of static observation models
described by the conditional density of observations f .xnjsn/; belonging to the
exponential family of density distributions (one-dimensional case) [9, 11]

f .xnjsn/ D QC.sn/h.xn/ exp fT .xn/Q.sn/g ; xn 2 R; sn 2 R; (7.3)

where h.xn/;Q.sn/, and T .xn/ are given Borel functions, one can construct an exact
equation [9] for the optimal estimator (7.2)

T 0.xn/ O
optn D @

@xn

�
ln
f .xnjxn�11 /

h.xn/

�
; (7.4)

where T 0 D dT=dxn and QC.sn/ is a normalizing factor.
The main feature of the Eq. (7.4) lies in its explicit independence from the

unknown distribution of .Sn/. To our best knowledge, this equation was firstly
obtained in [4]. In this equation, the optimal estimator O
optn is expressed in terms of
probability characteristics of observable random variablesXn

1 only. Such property of
the estimators is the implementation of the well known empirical Bayesian approach
of G. Robbins to the problems of signal processing. Empirical Bayesian approach
was used in some papers [14, 16] to find a Bayesian estimators of the unknown
constant parameters of probability densities from the exponential family in the
case of i.i.d. observations. For the time being, the author has not found any papers
concerning the application of empirical Bayesian approach to signal processing in
which observations have been statistically dependent.

It should be noted that it is linear entering of the parameter 
n D Q.sn/ under
the exponent of (7.3) (the so called canonical parametrization) allows us to obtain
the Eq. (7.4). Therefore we can construct an estimator of Sn as Osn D Q�1. O
n/. This
will be shown below in the example of the multiplicative model.

Probability characteristics @
@xn

ln.f .xnjxn�11 / entering into the Eq. (7.4) are
unknown but they can be restored using nonparametric kernel procedures of
estimation by dependent observations. This approach constitutes the content of
the nonparametric signal estimation theory [6, 9] where nonparametric methods of
filtering, interpolation, and forecasting of signals with unknown distributions were
developed.

Despite the nonparametric kernel techniques are designed to restore functional
dependencies with a priori unknown form, they contain some unknown parameters
that have to be estimated by observed sample. These parameters are smoothing
parameters (bandwidths), which differ one from another while estimating densities
and their derivatives. A nonparametric estimator of the logarithmic derivative from
the Eq. (7.4) belongs to a class of estimators with peculiarities, because they can
take extremely geat values which in practice leads to high spikes. One of the
methods to remove these spikes is the piece-wise smooth approximation [9, 12, 13],
which includes an unknown regularization parameter ı. This parameter is also to
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be estimated by observed sample. Having the estimators of these two parameters,
algorithms of signal processing become automatic in the sense that no further
information apart from the sample of observations xn1 and the conditional density
f .xnjsn/ is required. This approach corresponds to the notion of unsupervised
systems, introduced in the 1960s of last century.

Such automatic algorithm of stochastic signal filtration was built in [7, 8] for
the linear observation model with a Gaussian noise, where Sn;Xn 2 R. In this
case it is natural to compare the nonparametric filtering quality with the quality
of Kalman filter. In this paper, an automatic nonparametric filtering algorithm for
a multiplicative model Xn D Sn�n with positive variables Sn;Xn 2 Œ0;1� is
constructed. Here the distribution density of noise p.�n/ is generated by normalized
	2-distribution. Note that these linear and nonlinear models are described by
different conditional densities f .xnjsn/ belonging to the exponential family (7.3).
The latter allows us to use the same general equation (7.4) to find the optimal
estimator (7.2) and its nonparametric counterpart.

In addition to the optimal nonlinear and nonparametric estimators it is of
interest to build for a nonlinear model the optimal linear estimate in the case of
complete statistical information. This is done in order to understand what is better:
the optimality of linear estimator or the possibility of sub-optimal nonparametric
estimator to adapt to unknown functional dependence.

In the case of nonlinear models a lot of additional problems arises. First, how to
evaluate the accuracy of nonparametric estimators. Indeed, in the nonlinear case
“Kalman type” algorithm for the optimal estimation does not exist. Second, to
compare estimators numerically one has to generate dependent rvs simulating the
desired signal. This problem arises because any multivariate distributions except
Gaussian have no simple analytical form or unknown at all. Third, to construct the
linear optimal estimators (with complete information) in the nonlinear models it
is necessary to calculate some moments of non-Gaussian rv. Fourth, to estimate
characteristics on the positive semi-axis, using nonparametric techniques, generally
accepted Gaussian kernels are not suitable. Hence, one has to apply, for example,
gamma-kernels [3], which are non-symmetric and take only positive values.

The paper is structured as follows. In Sect. 7.2, we consider Stratonovich
equation for transformation of posterior probability densities and construct a
numerical algorithm of calculating the optimal estimator. Section 7.3 is devoted
to the generation of dependent random variables corresponding to the multiplicative
observation model. In Sect. 7.4, the optimal linear estimator of the useful signal .Sn/
based on its moment characteristics is derived. The nonparametric estimator of the
useful signal with unknown distribution in the multiplicative model is presented in
Sect. 7.5. Consistent estimators of optimal smoothing and regularization parameters
are presented here also. The comparison of quality of estimators by simulated data
is given in Sect. 7.6.
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7.2 Model Description

As an example of a nonlinear system, we consider the multiplicative model

Xn D Sn�n; Xn > 0; Sn 2 S D R
C; n 2 N; (7.5)

where .Sn/n>1 is a stationary Markov random process defined by Rayleigh transition
probability density with distribution parameter �s and covariance power moment
E
�
S2i S

2
iC1

 D �; i 2 N. The sequence .�n/n�1 consists of iid rvs of the form �n D

1
k

Pk
iD1 �2ni ; k 2 N; where �ni are independent Gaussian rvs from i -th repeated

experiment, �ni � N .0; �2/; 1 6 i 6 k. The probability density function (pdf) of
the variable �n is described by the following expression

p�n DC.k; �/ � �k=2�1n exp

�
�k�n
2�2

�
; C.k; �/D

�
k

2�2

�k=2
� �1 .k=2/ ; �n>0:

(7.6)

Here we assume that random processes .Sn/ and .�n/ are mutually independent.
Markov property of the signal Sn allows us to specify two-dimensional distribution
only for its whole description. Our next goal is to construct the optimal nonlinear
estimator of the signal Sn using full statistical information and observations xn1 .

7.3 Optimal Mean-Square Signal Estimation

As a performance index the mean-squared risk

J. OSn/ D E
�
Sn � OSn.Xn

1 /
�2

(7.7)

is considered. Under fixed observations Xn
1 D xn1 , the optimal mean-square

estimator OSoptn D E.SnjXn
1 /; minimizing (7.7), turns into its realization Osoptn ,

described by (7.2), whereQ.Sn/ D Sn. Thus the solution of the estimation problem
is reduced to finding the posterior density wn.snjxn1 /. From Stratonovich theory
of conditionally Markovian processes [17], it is known the recursive formula for
transformation of the posterior density

wn
�
sn j xn1

� D f .xn j sn/
f
�
xn j xn�11

�
Z

RC

Qp .sn j sn�1/wn�1
�
sn�1 j xn�11

�
dsn�1; n > 2:

(7.8)
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This equation links the posterior density wn�1 on the previous step and the density
wn on the present step using the transition density Qp.snjsn�1/ of the signal Sn and
the conditional density f .xnjsn/, generated by the model (7.5). Our aim now is to
calculate these two densities.

To get the formula for Qp .sn j sn�1/, the bivariate Rayleigh pdf [18]

p.x; y/ D xy

�4s .1 � �/ exp

	
� 1

1 � �
�
x2

2�2s
C y2

2�2s

�	
I0

� p
�xy

.1 � �/�2s

�
(7.9)

is used, where I0.x/ is a modified Bessel function and � D cov.X2; Y 2/
p

var.X2/var.Y 2/

is a power correlation. Since Qp .sn j sn�1/ D p.sn; sn�1/
pSn�1 .sn�1/

, where pSn�1.x/ D
x

�2s
e
� x2

2�2s is a known univariate Rayleigh density, we get the following expression

for transitional density

Qp.yjx/ D y

�2s .1 � �/ exp

	
� 1

1 � �
�
�x2

2�2s
C y2

2�2s

�

I0

� p
�xy

�2s .1 � �/

�
: (7.10)

It is used not only in Stratonovich’s equation (7.8), but also for generating dependent
Rayleigh rvs in modeling experiment. To build the rvs generator we need a
transitional distribution function [18]

F.yjx/ D
yZ

0

Qp.yjx/dy D 1 �Q1

�
x

r
�

.1 � �/�2s
; y

r
�

.1 � �/�2s

�
; (7.11)

which is expressed in terms of the Marcum Q-function [18]

QM.a; b/ D
1Z

b

x
�x
a

�M�1
exp

�
�x

2 C a2

2

�
IM�1.ax/dx; M > 1:

The expression for f .xnjsn/, obtained from (7.5) and (7.6), has a form

f .xnjsn/ D C.k; �/ � s�k=2n xk=2�1n exp

�
� kxn

2�2sn

�
; xn > 0: (7.12)

Now everything is ready to solve the Eq. (7.8). As an initial condition we have the
posterior density w1.s1jx1/, which is calculated from Bayes formula

w1.s1jx1/ D pS1.s1/f .x1js1/R
pS1.s1/f .x1js1/ds1

:
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It substitutes on the right-hand side of (7.8). Then some grid depending on required
accuracy on the semi-axis is selected and the computational transformation process
is start up. At each step n the posterior density wn is calculated and substituted in
(7.2), giving the required optimal estimator.

7.4 Linear Estimation of Signal with Full Statistical
Information

Besides the optimal Bayesian estimator, it is of interest to build a somewhat simpler
optimal linear estimator

OS lin
n D a0 C a1Xn�1 C a2Xn (7.13)

for the signal Sn in the multiplicative model (7.5), depending on two latest
observations. A linear estimator, as usual, is expressed through the mathematical
expectation and covariances of the processes .Sn/ and .�n/. In the non-Gaussian
case the moments are calculated, using the known multivariate distribution of the
process .Sn/; which is Rayleigh one in our case. Because of its complexity we
could calculate the covariance of two time-adjacent values of the process .Sn/ only.
This reason explains the choice of dependence in (7.13) from two variables of the
observed process .Xn/.

Minimizing the criterion E
�
Sn � OS lin

n

�2
in a0, a1, a2; one can obtain the

following system of linear equations for the optimal values Qa0, Qa1, Qa2 of a0, a1; a2:

8
<

:

Qa0 C Qa1ESn�1E�n�1 C Qa2ESnE�n � ESn D 0;

Qa0ESn�1E�n�1 C Qa1ES2n�1E�2n�1 C ESnSn�1E�n�1 . Qa2E�n�1/ D 0;

Qa0ESnE�n C Qa1ESnSn�1E�nE�n�1 C Qa2ES2nE�2n � ES2nE�n D 0:

(7.14)

Coefficients of the linear system depend on first and second moments of random
variables Sn; Sn�1; �n; �n�1. All of them are easy to calculate using known uni-
variate Rayleigh and 	2-distribution except one covariance ESnSn�1; where the
formula (7.9) of bivariate Rayleigh density is applied. Substituting the modified
Bessel function in the form of series I0.x/ D P1

mD0 1
.mŠ/2

�
x
2

�2m
into (7.9), one

get (after some tedious calculations) the following expression for the correlation
moment

ESnSn�1 D �s.1 � �/2
1X

mD0
�m

0
BB@
�

�
mC 3

2

�

� .mC 1/

1
CCA

2

D 1

2
�s
p
.1 � �/

p

:

Solution to the linear equation (7.14) is found by standard methods.
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7.5 Nonparametric Estimators in Multiplicative
Observation Model

7.5.1 Equation of Optimal Filtering

It should be noted that the problem of nonparametric estimation of useful signal
Sn with unknown distribution for the linear observation model Xn D Sn C �n
with Gaussian noise �n was solved in [6, 9] and published in [5, 7]. In order to
evaluate the degree of complexity in the transition to non-linear models and non-
Gaussian signals, the multiplicative model (7.5) is considered where the noise
�n is described by the pdf (7.6). This density and the model (7.5) generate the
conditional density of observations (7.12). Comparing (7.12) and (7.3), one can see
that conditional pdf (7.12) belongs to the exponential family with h.xn/ D x

k=2�1
n ,

T .xn/ D kxn=2�
2, and Q.sn/ D 1=sn. Consequently, the canonical parameter


n D 1=sn. In this case the optimal equation (7.4) is solved with regard to 
n.
To demonstrate the method proposed let us derive the optimal equation for the

model (7.5). At the beginning write the conditional density (7.12) in the canonical
exponential representation [11]

f .xnj
n/ D C.k; 
n/ � 
k=2n xk=2�1n exp

�
�kxn
n
2�2

�
; xn > 0: (7.15)

To estimate the canonical parameter, the standard mean-squared conditional risk
Jx. O
n/ D Ex.#n � O
n/2 D EŒ.#n � O#n/2jxn1 � is used, which after minimization
in O
n leads to the optimal estimator O
optn D Ex.#n/ D E.#njxn1 /. Since #n D
Q.Sn/ D 1=Sn, we put O
n D Q.Osn/ D 1=Osn. Then the conditional risk Jx. O
n/ D
Ex.1=Sn � 1=Osn/2 :D Gx.Osn/. Minimization Gx.Osn/ by Osn yields an expression of
one estimator through another:

Osn D 1

Ex.1=Sn/
D 1

Ex.#n/
D 1

O
n
: (7.16)

It is necessary to note that the performance index for estimating Sn becomes
nonstandard. A loss function L.sn; Osn/ D .1=sn � 1=Osn/2 corresponding to this
criterion becomes very sensitive (grows quickly) when the signal sn or its estimator
Osn tends to zero bound of the definition domain. Nevertheless, when it is acceptable,
the estimate (7.16) is optimal by the criterion Gx.Osn/. Thereby, the problem
of estimation of useful signal Sn is reduced to the problem of estimation of
the canonical random parameter #n. Since, by assumption, the random process
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.Sn/ is Markovian, and the process .#n/ is also Markovian. Thus the recursive
Stratonovich’s equation (7.8) can be applied to it, but in relation to posterior
densities of the canonical process .#n/:

wn.
njxn1 / D f .xnj
n/
f .xnjxn�11 /

Z

‚n�1

Qp.
nj
n�1/wn�1.
n�1jxn�11 /d
n�1; n > 2: (7.17)

To obtain the equation in O
n, the conditional density f .xnj
n/must be substituted
from (7.15) into (7.17). Then it is necessary to integrate the Eq. (7.17) by 
n, to
transfer the normalizing constant f .xnjxn�11 / from right to left and to differentiate
the resulting equation by xn (such approach in general case of the conditionally
exponential family of densities is given in [4,6,9]). At the end we obtain the required
equation

O
n D �2.k � 2/

kxn
� 2�2

k

@

@xn
lnf .xnjxn�11 /: (7.18)

Now substituting (7.18) into (7.16) we get the exact equations for the optimal
estimator Osn which depends on characteristics of the observed random variables
only. This estimator is nonrecursive as well as the estimator (7.1), but in contrast
to (7.1) the estimator (7.18) does not depend on characteristics of unobserved signal
Sn. When the distribution of Sn is unknown, the distribution of the mixture Xn is
also unknown, but it can be restored by observations xn1 using nonparametric kernel
methods. To solve the Eq. (7.18) we have to restore the unknown logarithmic density
derivative @=@xn ln f .xnjxn�11 / by dependent observations xn1 . The expression for
the conditional density f .xn j xn�11 / formally depends on all of the observed sample
xn1 . But there is no need to estimate the density of such a great dimensionality.
Taking into account the weak dependence in the process .Xn/;we conclude that only
some latest observations Xn�1; : : : ; Xn�� in condition can influence on Xn, where
� is called the length of dependence zone. More often in applications � is assumed
to be equal to 1, 2, 3. The meaning of the parameter � is equivalent to the notion
of connectivity of Markov process that approximates the non-Markov observation
process .Xn/. One way of selection � is considered in [9]. This remark allows
to substitute the conditional density f .xn j xn�11 / by the “truncated” conditional
density Nf .xn j xn�1n�� / with predefined accuracy. Thus, the logarithmic derivative of
the “truncated” conditional density has the form

 .xnn�� / D @

@xn
ln Nf .xn j xn�1n�� /; (7.19)

where the argument of  .�/ contains � C 1 variables.
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7.5.2 Gamma Kernel Nonparametric Estimator
of Logarithmic Density Derivative

The main difficulty in constructing nonparametric estimators in the multiplicative
models consists in the condition Xn > 0. The principal tools for constructing
estimators are non-symmetric kernels, defined on the positive semi-axis. Examples
of such kernels are gamma kernels

K�b.x/;b.t/ D t�b .x/�1 exp.�t=b/
b�b.x/� .�b.x//

; �b.x/ D
	
x=b; if x > 2b
1
4
.x=b/2 C 1; if x 2 Œ0; 2b/;

(7.20)

recently proposed by Chen [3]. Here b is the smoothing parameter. These kernels
consist of two curves smoothly joined at a point x D 2b. Nonparametric
estimators, built using these kernels, have been generalized in [2] to the case of
multidimensional bounded observations and in [1] to the case of weakly dependent
observations. Multiplicative gamma kernel version of the multidimensional non-
parametric estimator of a density has the form

Of .x1; : : : ; xd / D 1

n

nX

iD1

dY

sD1
Ks
�bs .xs /;bs

.Xis/; (7.21)

where b1; � � � ; bd are smoothing parameters, Ks is a gamma kernel for a variable
xs; and Xis is the s-th element of the sample at the moment i .

Since the logarithmic derivative (7.19) is  .xnn�� / D f 0xn.x
n
n�� /

f .xnn�� /
; where

f 0xn.x
n
n�� / D @f .xnn�� /=@xn is the partial derivative at the point xn, than it is

necessary to construct nonparametric estimator of the density partial derivative on
the positive semi-axis. By differentiating (7.21) in xd ; we have

Of 0xd .xd1 / D n�1
nX

iD1
.ln.Xid //� ln b � �.�.xd //

dY

sD1
Ks
�bs.xs /;bs

.Xis/; (7.22)

where �bs.xs/ and Ks
�bs.xs /;bs

are defined in (7.20) and �.�/ is a Digamma function.
Conditions of convergence in mean-square of density derivative (7.22) one can
find in [10]. Nonparametric estimates of true Rayleigh density and its derivative
are represented in Fig. 7.1. Now we can write the nonparametric counterpart of the
optimal equation (7.18) as

� O
n D �2.k � 2/
kxn

� 2�2

k
� O .xnn�� /; (7.23)
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where � O .xnn�� / D Of 0xn.xnn�� /= Of .xnn�� / is nonparametric estimate. This statistics is
unstable when denominator is near zero. Therefore, we introduce a regularization
procedure for obtaining the stable estimator of the form

Q .xnn�� / :D Q n.xnn�� I ın/ D
� O n.xnn�� /

1C ı�n
O n.xnn�� /4

; (7.24)

where the regularization parameter ın ! 0 has to be evaluated for a finite n.

7.5.3 Choice of the Smoothing and Regularization
Parameters

To solve the Eq. (7.23) the smoothing parameter b and the regularization parameter
ın have to be chosen, whose optimal values depend on the unknown density
f .xnn�� /, as usual, in kernel estimation procedures. Here the optimality means the
minimization of the integrated criterion

R
E.f � Of /2 over b and the integrated

criterion
R

E. � Q /2 over ın. Since there is no enough space to derive the
expressions, we give only the brief results. In univariate case for smoothing
parameter, a rough rule of gamma with the gamma reference distribution yields
an expression

brg D u

�
2
2u � 3v

3u � 4v

�2=5
n�2=5;
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where distribution parameters u D Nm; v D ND= Nm are calculated by method
of moments. Here Nm and ND are the sample mean and the sample variance of
observations. The optimal regularization parameter is given by the relationship

ıopt D
R

E O 6 fdx � R
 E O 5 fdx

R
E O 10 fdx ; (7.25)

where all integrals can be estimated by cross-validation technique. Unfortunately,
the derivation of estimator’s formula occupies a lot of space. It will be done in the
next paper.

7.6 Numerical Comparison of Filters

In Fig. 7.2, three filtering estimators of the desired signal Sn in the multiplicative
model (7.5) were represented: optimal mean-square estimator Osoptn (7.2), optimal
mean-square linear estimator Oslin

n (7.13), and adaptive nonparametric estimator �Osn D
1=� O
n (7.16) obtained under unknown distribution of the signal Sn.

From these results it can be concluded that the quality of the nonparametric
filter is only slightly inferior to the quality of the optimal filter, but it is better
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than the optimal linear filter constructed from the complete statistical information.
This means that the nonparametric filter is able to adapt to the unknown structure of
functionals of the distributions (i.e., to be adaptive or unsupervised), while the linear
filter works within the scope of only two moments and cannot trace the functional
form of distributions.

7.7 Conclusion

This paper presents the nonparametric adaptive filter to extract the useful non-
negative signal with the unknown distribution. It is shown that the quality of the
filter is close to the quality of the Stratonovich nonlinear optimal filter, built using
the complete statistical information.
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Chapter 8
Block Bootstrap for the Autocovariance
Coefficients of Periodically Correlated
Time Series

Anna E. Dudek, Jacek Leśkow, and Sofiane Maiz

Abstract In this paper we propose a new technique of significant frequencies
detection for periodically correlated time series. New method is based on bootstrap
technique called Generalized Seasonal Block Bootstrap. Bootstrap procedure is
applied in the time domain and then Fourier representation of autocovariance
function for bootstrap samples is used. Finally, the simultaneous confidence inter-
vals for the absolute values of the Fourier coefficients are calculated. The results
are compared in the small simulation study with similar tools based on subsampling
methodology and moving block bootstrap for almost periodic processes.

Keywords Autocovariance function • Block bootstrap • Fourier coefficients
Periodically correlated time series • Significant frequencies • Simultaneous
confidence intervals

8.1 Introduction

In recent years, there is an increased research effort in analyzing nonstationary
time series, especially those with cyclic first and second order characteristic. Such
time series are quite widely used in signal analysis : a recent paper of Antoni [1]
provides an interesting insight into application of such time series into machine
diagnostics, while the survey paper of Serpedin et al. [11] gives more than 1,500
different applications of cyclostationary time series and signals in various areas of
science and engineering.
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The most natural way of analyzing first and second order of such nonstationary
time series and signals is to estimate and test various components of mean and
covariance both in time and in frequency domain. The focus of our research
is to provide feasible statistical procedures for estimating Fourier coefficients
of covariance function for periodically correlated time series. Before bootstrap
and subsampling methods were introduced into the area of nonstationary time
series and signals, the statistical inference was based either on direct assumption
of gaussianity of the underlying signal or on approximate gaussianity of the
estimating procedures. However, the latter approach did not provide practical way
of constructing confidence intervals and tests due to a very complicated structure of
asymptotic variance-covariance matrix.

In our paper, we focus on providing valid statistical methods of frequency
determination for periodically correlated time series and signals. This problem is of
critical importance in mechanical signal processing—see, e.g., [1]. We will study a
new bootstrap method called Generalized Seasonal Block Bootstrap (GSBB) . This
method has been proposed and proven to be consistent for a specific nonstationary
time series model in [3]. We will show how GSBB can be applied to the problem of
frequency determination.

Section 8.2 of our paper introduces necessary language and notation to be used
to study time series and signals with cyclic first and second order characteristics.
Moreover, in this section we provide a description of GSBB method. The third
section contains a simulation study proving efficiency of GSBB in detecting
frequencies for the cyclic autocovariance structure. In Sect. 8.4 we provide an
application of our work.

8.2 Problem Formulation

Let fX.t/; t 2 Z g be a periodically correlated (PC) time series with the known
period of the length d , i.e., the considered process has periodic mean and covariance
functions

E .X.t C d// D E .X.t// and Cov .X.t C d/;X.s C d// D Cov .X.t/;X.s// :

Examples of PC times series can be found, e.g., in [6].
We focus on the Fourier representation of the autocovariance function (see [4]

and [5])

BX .t; �/ D
X

�2�d
a .�; �/ exp .i�t/ ; (8.1)

where

a .�; �/ D 1

d

dX

tD1
BX .t; �/ exp .�i�t/ (8.2)
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and

�d D f� W a .�; �/ ¤ 0g 
 f2k
=d W k D 0; : : : ; d � 1g
is finite.

Moreover, for all � 2 Œ0; 2
/ n�d coefficients a .�; �/ are equal to 0.
Assume that we observe the sample X.1/; : : : ; X.n/ form the considered time

series X.t/: The estimator of a .�; �/ is of the form

Oan .�; �/ D 1

n

tDn�maxf�;0gX

tD1�minf�;0g
X .t C �/X .t/ exp .�i�t/ ;

for more details see [7] and [8].
Very important application of just presented Fourier transformation for the

autocovariance function is the significant frequency determination. To construct
the test statistic the asymptotic distribution needs to be determined. Unfortunately,
the asymptotic variance is of very complicated form, which forces usage of other
methods to construct valid confidence intervals. For PC time series the subsampling
procedure was used so far (see for example [2] and [9]).

In this paper we propose to use a bootstrap method introduced in [3] called
Generalized Seasonal Block Bootstrap (GSBB). The main feature of this method
is that it preserves the periodic structure of the time series. Moreover, in contrary
to other known block bootstrap methods the block length choice is independent of
the period length. Dudek et al. [3] proved the consistency of this method under
some moment and ˛—mixing conditions for the overall and seasonal means of the
series. Additionally, the consistent bootstrap simultaneous confidence intervals for
the seasonal means were constructed. The performed preliminary simulation study
is very encouraging. Actual coverage probabilities are close to nominal ones for the
wide spectrum of block length choices. It seems that GSBB is not very sensitive for
the block length choice in the simultaneous confidence bands case. Unfortunately,
so far there are no consistency results for the second order statistics. However,
since subsampling method is computationally very time consuming, no subsampling
simultaneous confidence bands for a .�; �/ were obtained and the subsample length
choice has a big impact on the results, and we decided to use GSBB to construct
bootstrap versions of a .�; �/ and simultaneous bands. Our preliminary results
should be treated as the beginning of much deeper study that needs to be done.

Below we present the GSBB algorithm proposed in [3]. For the sake of simplicity
we focus on its circular version and we assume that the sample size is an integer
multiple of the block length b (n D lb) and is also an integer multiple of the period
length d (n D dw).

Step 1: Choose a (positive) integer block size b.< n/.
Step 2: For t D 1; b C 1; 2b C 1; : : : ; .l � 1/b C 1, let

.X�t ; X�tC1; : : : ; X�tCb�1/ D .Xkt ; XktC1; : : : ; XktCb�1/
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where kt is iid from a discrete uniform distribution

P .kt D t C vd/ D 1

w
for v D 0; 1; : : : ;w � 1:

Since we consider the circular version of GSBB, when t C vd > n we take the
shifted observations t C vd � n:

Step 3: Join the l blocks .Xkt ; XktC1; : : : ; XktCb�1/ thus obtained together to form
a new series of bootstrap pseudo-observations.

We define the bootstrap version of Oan .�; �/ in the natural way as

Oa�n .�; �/ D 1

n

tDn�maxf�;0gX

tD1�minf�;0g
X� .t C �/X� .t/ exp .�i�t/ ;

where X�.t/ is a bootstrap version of X.t/ obtained by using GSBB.
In the next section we present some simulation study results in which we con-

struct the bootstrap simultaneous equal-tailed confidence interval (same as proposed
in [3]) for ja .�; �/ j2. We use these results to find the significant frequencies testing
if the coefficients are equal to zero.

8.3 Simulation Study

In our study we considered the following model

X.t/ D a.t/ cos.2
f0t/C b.t/ cos.2
f1t/;

where a.t/ and b.t/ are two independent stationary random gaussian processes
(with zero mean and variance equal to 1). The length of the time series n is
equal to 8,192, sine waves frequencies f0 and f1 are equal to 0.1 and 0.11 Hz,
respectively. In Fig. 8.1 we present surface of estimated absolute values of the
autocovariance function. Note that the set of the cyclic significant frequencies is of
the form f�2f1;�2f0; 0; 2f0; 2f1g. Since the autocorrelation function is symmetric
we focused only on the positive part of the real line.

We decided to construct bootstrap simultaneous confidence intervals for
ja .�; 0/ j2 using GSBB method, subsampling pointwise confidence intervals using
the method proposed in [9] and finally, introduced by Synowiecki in [12] moving
block bootstrap (MBB) pointwise confidence intervals for almost periodically
correlated (APC) series of the form X .t C �/X .t/ exp .�i�t/. To be more
specific, Lenart et al. in [9] showed the consistency of the standard subsampling
technique (see, e.g., [10]) for the estimator of ja.�; �/j of a PC time series. On the
other hand, Synowiecki in [12] obtained the consistency of MBB for the overall
mean of an APC time series and as a possible application pointed out the Fourier
coefficients of the autocovariance function.
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Fig. 8.1 Estimated values of ja .�; �/ j2 for Œ0:18 Hz, 0:24 Hz� and � 2 Œ�10; 10�

In our study using GSBB we constructed 95 % equal-tailed bootstrap simultane-
ous confidence interval. The number of bootstrap samples generated using GSBB is
B D 500; and the block length b is equal to bp

nc and b 3
p
nc. In Fig. 8.2 we present

the estimated values of ja .�; 0/ j2 together with 95 % simultaneous confidence
interval. The only frequencies for which the confidence interval does not include
zero value are the true frequencies (for both choices of b).

In Fig. 8.3 the subsampling pointwise confidence intervals are presented. The
subsample sizes were taken as previously as bp

nc and b 3
p
nc. Although it would

be enough to cut the lower confidence interval values at zero, we prefer to keep the
original values in figures as in the opposite case the subsampling intervals would
be very narrow and figures would be very hard to read. In contrary to GSBB,
subsampling performance seems to be very dependent on the block length. For b
of order

p
n the significant frequencies were detected properly. But for the shorter

block choice the confidence intervals are wider and all contain zero value, which
means that no significant frequency was detected. Moreover, note that the most of
the subsampling confidence intervals contain strongly negative values. It seems that
the bootstrap distribution is very skewed and converges very slowly to the normal
distribution. As a result the upper quantile is very high and the lower bound of
confidence interval is negative.

Finally, we repeated the simulation study using MBB. Please note that
this method is extremely time consuming as for each � and � the series
X .t C �/X .t/ exp .�i�t/ needs to be constructed. We consider only � D 0,
but wide range of frequencies in the interval Œ0:18 Hz; 0:24 Hz�. Moreover, there
is no method to construct the simultaneous confidence intervals in this case. For
MBB we kept all the same parameters as for GSBB. We detected the true significant
frequencies for both values of b (see Fig. 8.4). Comparing with other methods the
confidence intervals are very narrow when the true frequency is not significant.



80 A.E. Dudek et al.

0.18 0.19 0.2 0.21 0.22 0.23 0.24
−1

0

1

2

3

4

5

6

7

8

9
x 10−4

λ

|â
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Fig. 8.2 Estimated values of ja .�; 0/ j2 (black dots) together with 95 % GSBB equal-tailed
simultaneous confidence interval (vertical lines). Block length b was chosen as b D bpnc (top
figure) and b D b 3pnc (bottom figure)

On the other hand those confidence intervals for subsampling method were wide
but contained negative values, so finally after removing negative parts of intervals
both methods will provide comparable results in this case.

It seems that GSBB is much more powerful than subsampling and MBB in
the considered very simple example. Additionally, it is much less computationally
time consuming than MBB method and potentially provides simultaneous confi-
dence intervals, which cannot be achieved in MBB case. Although, we are aware that
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(λ

,0
)
|2

0.18 0.19 0.2 0.21 0.22 0.23 0.24
−6

−4

−2

0

2

4

6
x 10−4

λ

|â
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Fig. 8.3 Estimated values of ja .�; 0/ j2 (black dots) together with 95 % subsampling equal-tailed
pointwise confidence intervals (vertical lines). Subsample size b was chosen as b D bpnc (top
figure) and b D b 3pnc (bottom figure)

much deeper simulation and research study is needed to make any final statement.
Also the problem of the optimal choice of b is open for all methods. We decided
to use same b values for bootstrap and subsampling only to show that obtained
results are not accidental and values are not taken to favor any of the techniques.
Performance of GSBB is very promising and research on its consistency for different
applications should be continued.
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Fig. 8.4 Estimated values of ja .�; 0/ j2 (black dots) together with 95 % MBB equal-tailed
pointwise confidence intervals (vertical lines). Block length b was chosen as b D bpnc (top
figure) and b D b 3pnc (bottom figure). To indicate the additional significant frequency the x-axis
range was reduced in comparison to other cases

8.4 Possible Applications

Just presented preliminary results can be applied in the future in many different
settings. Of course, first the consistency theorems are essential. The second order
frequency analysis is often necessary in condition monitoring and mechanical
systems, rotating machinery, telecommunications, biomechanics signals. Many kind
of faults appear and manifest themselves by the presence of second order cyclic
frequencies. These frequencies can be the result of a mixture of various random
phenomena with some periodic structures related to the studied system. GSBB could
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be a very useful tool for identifying these frequencies, testing their significance and
then making decision about the state of the considered system. The wide range of
motivating signal examples can be found in [1].
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Chapter 9
Bootstrapping Realized Bipower Variation

Gang Feng and Jens-Peter Kreiss

Abstract Realized bipower variation is often used to measure volatility in financial
markets with high frequency intraday data. Considering a nonparametric volatility
model in discrete time, we propose a nonparametric i.i.d. bootstrap procedure
by resampling the noise innovations based on discrete time returns, and a
nonparametric wild bootstrap procedure by generating pseudo-noise that imitates
correctly the first and second order properties of the underlying noise, in order to
approximate the distribution of realized bipower variation. Asymptotic validity of
the proposed procedures is proved. Furthermore, the finite sample properties of the
proposals are investigated in a simulation study and are also compared with the
standard normal approximation.

Keywords Realized bipower variation • Nonparametric volatility estimation
• Bootstrap

9.1 Introduction

We begin with a standard continuous-time model for the log-price process .Pt / of a
financial asset

d logPt D �tdt C �tdWt ;

where �t denotes the drift, �t is a volatility term, and Wt is a standard Brownian
motion. Assume that equidistant intraday data with lag 1=n, n 2 N is observable.

Xi;n WD logP i
n

� logPi�1
n

denotes the intraday log-return over the time interval Œ i�1
n
; i
n
�.

The integrated volatility (IV) over a day, an important value to quantify the
variation of the price process, is defined as
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IV WD
Z 1

0

�2t dt:

Encouraged by the increased availability of high frequency data, there exists quite
a number of publications that deal with the estimation of integrated volatility in
the last few years (see, e.g., Andersen and Bollerslev [1, 3]). The microstructure
noise effect of high frequency data on the properties of estimators of integrated
volatility is observed, but will not be considered in this paper.

A simple estimator of IV, known as realized volatility (RV) [2], is defined for the
model above as

RV WD
nX

iD1
X2
i;n:

A Central Limit Theorem for
p
n.RV � IV/ is already given (see, e.g., Barndorff-

Nielsen and Shephard [3]).
The more general realized bipower variation (RBV) estimator (see, e.g.,

Barndorff-Nielsen and Shephard [4]) is defined as

RBV.r; s/ WD n
rCs
2 �1

nX

iD2
jXi;njr jXi�1;njs; r; s � 0:

It is shown that RBV is robust to finite activity jumps if r; s < 2. We concentrate
here on RBV.1; 1/.

Barndoff-Nielsen et al. [5] showed the following convergence in probability

RBV.r; s/
p�! �r�s

Z 1

0

j�ujrCsdu;

and under certain assumptions on the stochastic volatility process .�t /, as n ! 1,

T PZn WD
p
n
�

RBV.r; s/� �r�s
R 1
0

j�t jrCsdt
�

�.r; s/

d�! N .0; 1/ ; (9.1)

where �r D E.jujr /, u � N.0; 1/ and

�2.r; s/ D �
�2r�2s C 2�r�s�rCs � 3�2r�

2
s

� Z 1

0

j�t j2.rCs/dt:

As an alternative tool to the first-order asymptotic theory, Goncalves and
Meddahi [6] primarily introduced two bootstrap methods in the context of realized
volatility. Podolskij and Ziggel [8] extended it to realized bipower variation.
Podolskij and Ziggel [8] proved first-order asymptotic validity and used Edgeworth
expansions and Monte Carlo simulations to compare the accuracy of the bootstrap
with existing approaches. It is worth mentioning that Podolskij and Ziggel as well as
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Goncalves and Meddahi focus on standardized quantities like (9.1) for their boostrap
procedures. We propose in this paper two further bootstrap methods in the context
of a nonparametric model and we do not restrict to standardized quantities.

In the following, we consider a discrete-time model for the intraday log-return
process .Xt;n/:

Xt;n WD 1p
n
�

�
t � 1

n

�
"t ; t D 1; : : : ; n; (9.2)

where n 2 N is the number of intraday observations.

Assumption A.

• ."t / are i.i.d. but not necessarily normally distributed random variables with
E"t D 0, E"2t D 1, and E"4t < 1.

• � denotes a spot volatility term. We assume it can be described with a non-
stochastic continuous differentiable function � W Œ0; 1� ! .0;1/.

The following theorem can be shown.

Theorem 1. For the discrete-time model (9.2), it holds under assumption A, as
n ! 1, that

Tn WD p
n
�
RBV.1; 1/� .Ej"1j/2IV

� d�! N
�
0; Q�2.1; 1/� ; (9.3)

where

Q�2.1; 1/ D
��
Ej"1j2

�2 C 2 .Ej"1j/2 Ej"1j2 � 3 .Ej"1j/4
� Z 1

0

j�uj4du:

Proof. We define

Ui;n WD �

�
i � 1

n

�
�

�
i � 2

n

��
j"i"i�1j � .Ej"1j/2

�
:

For each n 2 N , fUi;n W i D 1; � � � ; ng are centered and 1-dependent random
variables. Tn can be written as follows: Tn D An C Bn, where

An WD 1p
n

nX

iD2
Ui;n

and

Bn WD
"
1p
n

nX

iD2
�

�
i � 1

n

�
�

�
i � 2
n

�
.Ej"1j/2

#
� p

n .Ej"1j/2 IV:

To handle An we make use of a central limit theorem (CLT) for m-dependent
triangular arrays (cf. [7]). It can easily be shown, as n ! 1, that
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1

n

nX

iD2
E
�
U 2
i;n

� �!
��
Ej"1j2

�2 � .Ej"1j/4
� Z 1

0

j�uj4du WD c.0/;

and

1

n

n�1X

iD2
E .Ui;nUiC1;n/ �!

�
.Ej"1j/2 Ej"1j2 � .Ej"1j/4

� Z 1

0

j�uj4du WD c.1/:

The function c.�/ fullfills

c.0/C 2c.1/ D Q�2.1; 1/:

A direct computation furthermore leads to

1

n2

nX

iD1
EjUi;nj4 D o.1/:

Thus a Ljapunov-condition is also fulfilled and Lemma 8.4, [7], gives

An
d�! N

�
0; Q�2.1; 1/� :

Additionally it is easy to show that, as n ! 1, Bn ! 0, which concludes proof of
Theorem 1. ut
Remark 1. Podolskij and Ziggel [8] approximate the finite sample distribution
of T PZ

n , which is a standardized statistic. We want to approximate the finite sample
distribution of Tn including its (asymptotic) variance. Thus, if we want to construct
a confidence interval of RBV, our results will directly lead to confidence intervals
without further estimation of a standard deviation � (as which has to be done in
Podolskij and Ziggel [8]).

9.2 Nonparametric I.I.D. Bootstrap

The i.i.d. bootstrap for realized volatility introduced by Goncalves and Meddahi
[6] is motivated from constant volatility, i.e., they used a standard resampling
scheme from observed log-returns and showed the asymptotic validity under certain
assumptions. Podolskij and Ziggel [8] introduced a bootstrap method with the
similar idea in context of bipower variation. In contrast, we propose a nonparametric
bootstrap procedure by resampling estimated noise innovations based on discrete
time returns, which closely mimics the varying volatility structure of observed
log-returns.
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9.2.1 Bootstrap Procedure

Let realizations X1;n; � � � ; Xn;n be given.

• Step 1: Compute O� via a kernel estimator, e.g.,

O�.u/2 D
Pn

tD1 X2
t;nK

� t�1
n �u
h

�

1
n

Pn
tD1 K

� t�1
n �u
h

� ; (9.4)

where h > 0 denotes the bandwidth and K.u/, a probability density (typically
with bounded support) called kernel function.

• Step 2: Let O"t D
p
nXt;n

O�� t�1
n

� , t D 1; � � � ; n. Standardizing {O"1; � � � ; O"n} gives

{"1; � � � ; "n}.
• Step 3: Generate the bootstrap intraday returns via

X�t;n D 1p
n

O�
�
t � 1
n

�
"�t ;

in which "�t D "It , It � Laplace on f1; � � � ; ng, i.e., "�t are drawn with
replacement from the set f"1; � � � ; "ng.

The bootstrap realized bipower variation is defined as:

RBV�.r; s/ WD n
rCs
2 �1

nX

iD2
jX�i;njr jX�i�1;njs; r; s � 0:

9.2.2 Validity of the Bootstrap

Theorem 2. It holds for a continuous differentiable function � W Œ0; 1� ! .0;1/ in
model (9.2) and a kernel estimator O� , for which supi2f0;1;			 ;ng j O�2.i=n/��2.i=n/j D
oP .1/ and supu2Œ0;1� j O� 0.u/j D oP .

p
n/, that as n ! 1,

T �n WD p
n

 
RBV�.1; 1/� O�21

1

n

nX

tD1
O�2
�
t � 1
n

�!
d�! N.0; Q�2.1; 1// (9.5)

in probability. Here O�r D E�j"�1 jr D 1

n

nX

iD1
j"i jr . Q�2.1; 1/ is defined in Theorem 1.

The result implies as n ! 1:

sup
x2R

jP.T �n � x/ � P.Tn � x/j p�! 0:
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Proof. Similarly to the proof of Theorem 1, we define for each n 2 N centered and
1-dependent random variables fU �i;n W i D 1; � � � ; ng as

U �i;n WD O�
�
i � 1

n

�
O�
�
i � 2
n

� �j"�i "�i�1j � O�21
�
;

and rewrite T �n as: T �n D A�n C QBn, where

A�n WD 1p
n

nX

iD2
U �i;n;

and

QBn WD 1p
n

 
nX

iD2
O�
�
i � 1
n

�
O�
�
i � 2
n

�
O�21 �

nX

iD1
O�2
�
i � 1

n

�
O�21
!
:

The CLT for m-dependent triangular arrays (Lemma 8.4, [7]) yields the desired
result. ut

9.3 Nonparametric Wild Bootstrap

Based on the wild Bootstrap for realized volatility introduced by Goncalves and
Meddahi [6], a wild bootstrap method in context of bipower variation was defined by
Podolskij and Ziggel [8]. It uses the same summands as the original realized bipower
variation, but the returns are all multiplied by an external random variable. We
propose a nonparametric wild bootstrap procedure by generating pseudo-noise that
imitates correctly the first and second order properties of the underlying noise.

9.3.1 Bootstrap Procedure

Let realizations X1;n; � � � ; Xn;n be given.

• Step 1: Compute O� with an kernel estimator, e.g. (9.4).
• Step 2: Generate pseudo-noise "�1 ; � � � ; "�n with "�t i.i.d. such that E�"�t D 0;

E�j"�t j D
s

RBV.1; 1/
1
n

Pn
iD1 O�2� i�1

n

� and E�j"�t j2 D
s

RBV.2; 2/
1
n

Pn
iD1 O�4� i�1

n

� :

For example, one can easily define even a two point distribution that matches all
three moment conditions.
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• Step 3: Generate the wild bootstrap intraday returns via

XWB
t;n D 1p

n
O�
�
t � 1

n

�
"�t :

The bootstrap realized bipower variation is defined as:

RBVWB.r; s/ WD n
rCs
2 �1

nX

iD2
jXWB

i;n jr jXWB
i�1;njs; r; s � 0:

9.3.2 Validity of the Bootstrap

Based on the result RBV.r; r/
p�! .Ej"jr /2 R 1

0
�2r .u/du for our model (compare

[4] for stochastic volatility), we have that

E�j"�t jr p�! Ej"t jr ; r D 1; 2;

so that the first and second order properties of the underlying noise are correctly
mimicked.

Theorem 3. It holds for a continuous differentiable function � W Œ0; 1� ! .0;1/ in
model (9.2) and a kernel estimator O� , for which supi2f0;1;			 ;ng j O�2.i=n/��2.i=n/j D
oP .1/ and supu2Œ0;1� j O� 0.u/j D oP .

p
n/, that as n ! 1,

TWB
n WD p

n

 
RBVWB.1; 1/� .E�j"�1 j/2 1

n

nX

tD1
O�2
�
t � 1

n

�!
d�! N.0; Q�2.1; 1//

(9.6)

in probability. Q�2.1; 1/ is defined in Theorem 1. This implies as n ! 1:

sup
x2R

jP.TWB
n � x/ � P.Tn � x/j p�! 0:

Proof. Similar to the proof of Theorem 2 and therefore omitted. ut

9.4 A Simulation Study

Using Monte Carlo simulations, we compare the accuracy of the proposed bootstrap
methods with the normal approximation by considering 2.5% and 97.5% quantiles
of the finite sample statistic Tn.
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Fig. 9.1 Volatility function and quantiles of nonparametric bootstrap and normal approximation

We choose here a volatility function �.u/ D 0:32.u � 0:5/2 C 0:04 (cf. panel 1,
Fig. 9.1), a noise innovation of " � N.0; 1/, and a sample size of n D 200. The
observations are simulated according to model (9.2) and Tn is computed. On the
one hand, we compute O� with the kernel estimator (9.4), generate the bootstrap
data, and compute T �n and T WBn [cf. (9.5) and (9.6)]. With 1,000 repetitions of the
bootstrap procedures, we get empirical quantiles of the distribution of T �n and TWB

n .
On the other hand, we computed the desired quantiles via normal approximation
with estimated standard deviation Q�.1; 1/.

The whole simulation again is repeated 1,000 times to obtain boxplots of
sample quantiles of interest. The boxplots on the left side of panel 2 in Fig. 9.1
give the approximations via nonparametric i.i.d. bootstrap, while the ones in the
middle give the approximations via nonparametric wild bootstrap. The boxplots
on the right side present the results obtained from normal approximation. The true
quantiles, indicated as lines in panel 2 of Fig. 9.1, of the finite sample distribution
of Tn are also obtained by simulation (100,000 repetitions).

One can see that the median of both bootstrap boxplots nearly hits the true
2.5% quantile. For the 97.5% quantile, both bootstraps perform not as well as for
the 2.5% quantile, but at least slightly better than the normal approximation. One
reason could be the fact that the kernel volatility estimator (9.4) underestimates the
true high volatility at the boundary of the interval. Therefore, the 97.5% quantile,
which is strongly related to high volatility, is not so well approximated. The normal
approximation of course cannot mimic the skewness of the finite sample distribution
of Tn.

With the same setup of n and ", but another volatility function, namely �.u/ D
0:08 C 0:04 sin.2
u/ (cf. panel 1, Fig. 9.2), we do the same simulation study as
before. The results are displayed in panel 2 of Fig. 9.2.

The situation is quite similar. Bootstrap medians are closer to the true values
than the medians of the normal approximation, indicating that bootstrap might be
better able to mimic to a certain extent the skewness of the distribution of Tn.
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Fig. 9.2 Volatility function and quantiles of nonparametric bootstrap and normal approximation

An underestimation of the 97.5 % quantile does not appear in this case, in which
the high volatility is located in a non-border area of the interval. Both bootstraps
therefore perform better for the 97.5 % quantile in contrast with the simulation
before.

Acknowledgements Both authors gratefully acknowledge the report of an anonymous referee and
also the remarks of one of the editors. Their comments lead to a considerable improvement of the
manuscript.

References

1. Andersen, T.G., Bollerslev, T.: Answering the skeptics: yes, standard volatility models do provid
accurate forecasts. Int. Econ. Rev. 39, 885–905 (1998)

2. Andersen, T.G., Bollerslev, T.: Parametric and nomparametric measurements of volatility.
In: Al̈t-Sahalia, Y., Hansen, L.P. (eds.) Handbook of Financial Ecnometrics. Elsevier,
North-Holland (2002)

3. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realised volatility and its use in
estimating stochastic volatitily models. J. R. Stat. Soc. Ser. B 64, 253–280 (2002)

4. Barndorff-Nielsen, O.E., Shephard, N.: Power and bipower variation with stochastic volatility
and jumps. J. Financ. Econom. 2(1), 1–37 (2004)

5. Barndorff-Nielsen, O.E., Graversen, S.E., Jacod, J., Podolskij, M., Shephard, N.: A central
limit theorem for realized power and bipower variation of continuous semimartingales. In:
From Stochastic Analysis to Mathematical Finance, Festschrift for Albert Shiryaev, pp. 33–68.
Springer, Berlin (2006)

6. Gonçalves, S., Meddahi, N.: Bootstrapping realized volatility. Econometrica 77(1), 283–306
(2009)

7. Kreiss, J.-P.: Asymptotical properties of residual bootstrap for autoregression. Technical
Report, TU Braunschweig. (1997). Available via: https://www.tu-braunschweig.de/Medien-DB/
stochastik/kreiss-1997.pdf

8. Podolskij, M., Ziggel, D.: Bootstrapping bipower variation. Technical report, Ruhr-University
Bochum (2007). Available via: http://www.podolskij.uni-hd.de/files/PZ2007.pdf

https://www.tu-braunschweig.de/Medien-DB/stochastik/kreiss-1997.pdf
https://www.tu-braunschweig.de/Medien-DB/stochastik/kreiss-1997.pdf
http://www.podolskij.uni-hd.de/files/PZ2007.pdf


Chapter 10
Multiple Testing Approaches for Removing
Background Noise from Images

John Thomas White and Subhashis Ghosal�

Abstract Images arising from low-intensity settings such as in X-ray astronomy
and computed tomography scan often show a relatively weak but constant back-
ground noise across the frame. The background noise can result from various
uncontrollable sources. In such a situation, it has been observed that the performance
of a denoising algorithm can be improved considerably if an additional thresholding
procedure is performed on the processed image to set low intensity values to
zero. The threshold is typically chosen by an ad-hoc method, such as 5% of the
maximum intensity. In this article, we formalize the choice of thresholding through
a multiple testing approach. At each pixel, the null hypothesis that the underlying
intensity parameter equals the intensity of the background noise is tested, with
due consideration of the multiplicity factor. Pixels where the null hypothesis is not
rejected, the estimated intensity will be set to zero, thus creating a sharper contrast
with the foreground. The main difference of the present context with the usual
multiple testing applications is that in our setup, the null value in the hypotheses
is not known, and must be estimated from the data itself. We employ a Gaussian
mixture to estimate the unknown common null value of the background intensity
level. We discuss three approaches to solve the problem and compare them through
simulation studies. The methods are applied on noisy X-ray images of a supernova
remnant.

Keywords Image denoising • Background noise • Multiple testing • Multiscale
representation • Bayesian approach • Gaussian mixture model
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10.1 Introduction

In astronomy, distant starts and supernovas are often studied by images taken by
X-ray telescopes such as Chandra X-ray observatory, where the data consist of pixel
by pixel photon counts (Starck and Murtagh [10]). Typically, these images have very
low intensity, where Poisson distribution appropriately model the pixel level photon
counts. It is very convenient to analyze such data using a multi-scale framework,
where the likelihood function factorizes according to different levels of smoothness
(Kolaczyk [6], Kolaczyk and Nowak [7]). Several methods have been developed
for denoising such low-intensity images; see [3, 5, 7, 8, 12, 14]. The last reference
used a Bayesian approach with a prior that induces ties using a Chinese restaurant
process (Pitman [9]) in the values of relative intensities of neighboring pixels, thus
allowing structure formation, yet preserving a conditionally conjugate structure for
fast computation. At the same time, the Bayesian method gives estimates of the
variability in the estimated intensities associated with each pixel.

A common feature of X-ray images is that the area on the screen other than the
part occupied by the object of interest shows presence of a faint, roughly constant,
background noise, which ideally would have been completely dark (Starck and
Murtagh [10]). This noise may come from various other celestial sources and cosmic
radiations. Typically, the impact of background noise relative to the radiation from
the object of interest is negligibly small for images taken by telescopes reading
visible light such as the Hubble telescope. However, X-ray images are typically
taken for distant supernova remnants which appear to be extremely faint from
the solar system, and so the effect of the background noise becomes much more
prominent.

The background noise can be incorporated in the Poisson model for pixel-level
photon counts by adding an extra unknown constant term � in the intensity values
�.i;j / of each pixel .i; j /, making a nugget-like effect as in some Gaussian regres-
sion models with measurement errors. However, in the corresponding multiscale
framework, the parameter � remains present in all levels thus making it hard to use
benefits of the multiscale modeling.

To overcome the difficulty, we take a post-processing approach to remove
the effect of the background noise. While the approach may be combined with
almost any denoising method for photon limited images, we specifically apply
the background noise removal technique on images denoised by the Bayesian
method proposed by White and Ghosal [12]. It was shown in [12] that their method
outperforms other methods when both accuracy and computational complexity are
considered. Moreover their method allows an estimate of variability that will turn
out to be useful in our proposed background noise removal approach.

A naive but effective method of background noise removal is a simple
thresholding—any estimated intensity below a certain level is set to zero. This
introduces more contrast between the intensities of the foreground and background,
thus creating sharper boundaries. It has been empirically observed by simulation
that in a typical photon limited image, a thresholding below 5 % level of the
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maximum estimated intensity can often improve distances between processed and
true images by 10–20 % (White [11]). However, the 5 % level of thresholding is
chosen in an ad-hoc manner. The processed image can be sensitive to the choice of
threshold, and important features may be lost if a too strong threshold is used.

The problem of determining the appropriate threshold can be formulated as a
multiple hypotheses testing problem. At a given pixel, the true intensity can be
the null value equal to the background intensity or an alternative value which is
considerably higher than the null value. We can then test these pair of hypotheses at
each pixel using the estimated intensity parameter and the estimated intensity is set
to zero only if the null hypothesis is not rejected at that pixel. However, due to a large
number of pixels in a frame, which can be between several thousands to a million,
a considerable number of false rejections will show up just by the randomness in
the estimated intensity values. In order to address the issue, we need to correct
for multiplicity. In the next section, we describe three approaches to multiplicity
correction. In Sect. 10.3, we present a simulation study to check the effectiveness of
the proposed multiple testing method. Some real astronomical images are presented
in Sect. 10.4. We then conclude the paper with a discussion of remaining issues and
future developments.

10.2 Background Noise Detection by Multiple Testing

Consider an image represented by an array of N �N pixel-specific intensity values
�.i;j /, i; j D 1; : : : ; N , where N is typically a power of 2, N D 2L. We observe
a noisy version of the image as an array X.i;j /, i; j D 1; : : : ; N . In the low
intensity images in X-ray astronomy we are interested in, it is reasonable to model
X.i;j / as independent Poisson variables with parameters �.i;j /, i; j D 1; : : : ; N .
Typically, in a considerably large portion of the image, the source of the emission
is a background noise with low constant intensity �, that is, �.i;j / D � for these
pixels, although it is unknown which pixels correspond to the intensity value �.
Moreover, the value of � is also unknown. The only information we have, from the
intuitive understanding of X-ray astronomical images, is that � is small compared
to maxf�.i;j / W i; j D 1; : : : ; N g and that for many pixels .i; j /, �.i;j / D �. This
is an interesting sparsity structure that will allow improved processing of images.
When viewed on a frame, features in the image are much more clearly visible if the
intensities at pixels receiving only background noise are set to zero.

To distinguish between signal and background noise, at each pixel .i; j /, we
can consider a pair of statistical hypotheses, the null H.i;j / W �.i;j / D � against an
alternative H 0.i;j / W �.i;j / > �. Based on a noisy image data, we have estimates of

intensity values O�.i;j /, .i; j / D 1; : : : ; N . Below we propose a method of removing
the background noise from the processed image using a multiple testing method. We
shall illustrate the idea behind the multiple testing technique using images processed
by a multi-scale Bayesian method based on a Chinese restaurant process prior
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recently introduced by White and Ghosal [12]. A brief description of this method
is given below. We note that the multiple testing method can be applied on any
good Bayesian or non-Bayesian image processing method. For instance, the basic
denoising method on which multiple testing is performed can be other commonly
used methods such as the translation invariant Haar wavelet method (Kolaczyk [5]),
median filtering method, method of Markov random field prior, two-dimensional
multi-scale maximum a posteriori method (Nowak and Kolaczyk [8]), multi-scale
complexity regularization method (Kolaczyk and Nowak [7]), or the platelet method
(Willett and Nowak [14]). The multiple testing method itself may be non-Bayesian
or Bayesian. We shall present two variations of the multiple testing method, one of
which is based on a Bayesian approach and the other is non-Bayesian.

The multi-scale Bayesian method of [12] is based on a factorization of the
Poisson likelihood in different scales and independent assignment of prior distri-
butions on the parameters appearing in each factor such that neighboring values
of the parameters are tied with certain probabilities. At intermediate scales l D
1; : : : ; L � 1, there are 4l block-pixels, whose photon counts Xl;.i;j / are Poisson
distributed with parameter �l;.i;j /, say. Let X�lC1;.i;j / D .XlC1;.i 0;j 0/ W i 0 D
2i � 1; 2i; j 0 D 2j � 1; 2j /. Then the likelihood function can be factorized as

P.X0;.1;1/j�0;.1;1// �
L�1Y

lD0

2lY

iD1

2lY

jD1
M .X�lC1;.i;j /jXl;.i;j /;��lC1;.i;j //; (10.1)

where P and M respectively stand for Poisson and multinomial distributions
and ��lC1;.i;j / stands for the vector of relative intensities. Independent priors on
parameters at different levels will lead to independent posterior distributions and
allow easy computation of the posterior means of the original �-parameters.

To encourage structures formation, White and Ghosal [12] constructed a prior
on the relative intensity parameters within each-parent-child group by first condi-
tioning on a randomly formed “configuration” of tied relative intensity parameters,
and independently, across different parent-child groups of all possible levels of
the multi-scale representation, using Dirichlet distributions of the appropriate
dimensions, depending on the number of free parameters. Configurations are
formed within each-parent-child group by independent Chinese restaurant processes
(Pitman [9]). The Chinese restaurant process creates random partitions dictating
which values are to be tied with what. The conjugacy of the Dirichlet distribution
for the multinomial likelihood, conditional on the configurations, help represent the
posterior distribution analytically. Posterior probabilities of each configuration can
be computed using explicit expressions of the integrated likelihood, and hence allow
fast analytic computation of posterior mean and variances of intensity parameters.

A test for H.i;j / against H 0.i;j / can be based on the estimated intensity O�.i;j /.
Ideally, a natural decision is to reject the null hypothesis (i.e., to declare that the
source of emission at the location is not just the background image, but is some
genuine object of interest) for large values of . O�.i;j / � �/=�.i;j /, where �.i;j / stands
for the standard deviation of O�.i;j /.
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There are several difficulties associated with the testing problem. Firstly, the
test statistics . O�.i;j / � �/=�.i;j /, i; j D 1; : : : ; N , are not observable since the
value of the background noise intensity � is unknown. Moreover, the standard
deviation �.i;j / of O�.i;j / is difficult to obtain, and will involve unknown values of
true intensities in a very complicated way, so even a plug-in estimator of �.i;j / is not
readily available. The distribution of the test statistic is not known too, although
a normal approximation may be reasonable. Finally, as there are many pairs of
hypotheses (one for each pixel), the multiplicity must be taken into account to
provide appropriate controls on testing errors.

Multiple testing issues commonly appear in genomics and other modern statis-
tical applications. Suppose that there are n null hypotheses H10; : : : ;Hn0, which
are to be tested, out of which n0 are true. Suppose that R of n null hypotheses
are rejected if tested individually using a common critical level ˛. Let V be the
(unobserved) number of true null hypotheses that are rejected. Ideally, one would
like to control the family-wise error rate (FWER) given by P.V > 0/, but in
most applications, that turns out to be too conservative. Benjamini and Hochberg
[1] considered a different measure, called the false discovery rate (FDR) given by
E.V=max.R; 1// and devised a procedure to control the FDR. Let p.1/; : : : ; p.n/
denote the ordered nominal p-values and Oi D maxfi W p.i/ < i˛=ng. Then rejecting
all null hypotheses H0j corresponding to p-values pj � p.Oi/ will control the FDR
at level ˛ (Benjamini and Hochberg [1]). If the proportion of true hypothesis n0=n,
is known to be, or can be estimated as w, then an improved procedure is obtained
by replacing i˛=n by i˛=.nw/. Often, the Benjamini–Hochberg procedure remains
valid even when the test statistics (equivalently, p-values) in different locations are
not independent, but are positively related, although it can become substantially
conservative. Ghosal and Roy [4] found that modeling p-values or test statistics by
nonparametric mixture models can be beneficial, especially if the distributions of
the test statistics are hard to obtain and dependence is present across test statistics
corresponding to different hypotheses.

In the present context, we are interested in testing the n D N2 hypotheses
�.i;j / D �, i; j D 1; : : : ; N , simultaneously. We model the estimated intensity
values nonparametrically as a Gaussian mixture model (GMM). The idea is of
course motivated from the observation that each O�.i;j / is approximately normally
distributed with mean �.i;j /—a consequence of a Bernstein–von Mises theorem that
may be established since the Poisson distribution forms a regular finite dimensional
family. As finite Gaussian mixtures are quite accurate in approximating a more
general Gaussian mixture, it will suffice to consider a relatively few number of
components, say, three or five leading to the following mixture model for the
marginal density of O�.i;j /:

f .�/ D
rX

kD1
wk �.�I�k; �k/; (10.2)
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where wk is the weight of the component with mean �k and standard deviation �k , r
is the number of mixture components, and � stands for the normal density. It may be
noted that O�.i;j / will not be independently distributed across pixels as O�.i;j / involves
all X.i 0;j 0/. However, in image processing applications, the dependence becomes
extremely weak for pixels that are far apart, leading to a mixing-type dependence.
This will allow estimation of parameters in (10.2). The mixture component with
the smallest center (and usually with the highest proportion also) is of interest
for our purpose. By studying the histogram of the estimated intensity parameters
corresponding to the pixels, we find that three Gaussian components are needed to
adequately represent the empirical histogram so that the null component is clearly
visible, and hence to allow accurate estimation of this component. If the full density
needs to be estimated as in the Bayesian multiple testing method, it appears that
five mixture components are needed. The resulting methods appear to be fairly
insensitive to the choice of the number of components r , as long as r � 3 and
r � 5 for the respective problems. Hence we shall use r D 3 or 5 depending on
the multiple testing methods in the numerical illustrations below. However, a more
formal approach for the choice of r may be based on model selection criteria such
as AIC or BIC. If desired, completely nonparametric Gaussian mixture models can
be used too at the expense of additional computational complexity, but it does not
appear to improve accuracy of the multiple testing method. Note that the multiplicity
of the testing problem has a benefit, namely, the estimation of the marginal density
f .�/ is possible only due to the multiplicity, which works as repeated sampling.
This together with the assumed sparsity structure allows us to detect the intensity
level � of the background noise.

To estimate the parameters in (10.2), we employ an EM-algorithm starting with
an initial value given by a k-means algorithm as described by Calinon [2]. Once the
parameters are estimated and component with the lowest value of �k is identified
as the estimated value of �, we can consider three different methods of multiple
testing. The first approach employs the classical multiplicity correction based on
the Benjamini–Hochberg procedure, where test statistics are normalized by the
estimated standard deviation corresponding the null component in the Gaussian
mixture model for the post-processing intensity values. The second approach is
a minor variation of the first, where the only difference is in the estimate of the
standard deviation, namely, a pixel-specific estimated standard deviation is obtained
from the posterior distribution, and is applicable only for a Bayesian method such
as that of [12]. The third approach uses a Bayesian multiple testing method. Below,
we describe these methods in more details:

• Gaussian Mixture Model (GMM) Method: We use the test statistic T.i;j / D
. O�.i;j / � O�/= O� , where O� is the standard deviation of the Gaussian component
associated with center O�, and compare its value with the one-sided standard
normal critical value. Then the Benjamini–Hochberg procedure is applied on
T.i;j / to locate pixels corresponding to background intensity �.
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• Posterior Variance Method: We use the same idea except that we use a pixel
specific estimate of the standard deviation O�.i;j /, obtained from the posterior

variance of �.i;j /, i.e., T.i;j / D . O�.i;j / � O�/= O�.i;j /.
• Bayes Classification Method: The intensity value for each pixel .i; j / is classified

as the null or the alternative component using a standard Bayes classifier,
treating the estimated weights as prior probabilities of each component and
the component Gaussian distribution as the likelihood. Thus if the “posterior
probability” Ow� O�; O� . O�.i;j //= Of . O�.i;j //, where Ow is the weight of the null Gaussian
mixture component and . O�; O�/ its parameters estimated using the GMM method,
and Of represents the full density estimate using the GMM method, is less than
1=2, then we keep the pixel intensity estimate and do not threshold it to 0. As the
Bayes classifier is based on posterior probability rather than a p-value, it does not
need multiplicity correction.

A fully Bayesian variation of the Bayes classification method can be implemented
by using a Gibbs sampling algorithm on the Gaussian mixture model to compute
the posterior probability of each observation coming from the null component. This
method appears to be computationally more expensive, but it will be interesting to
study its performance.

10.3 Empirical Study

In this section, we use a well-known image of Saturn and simulate photon counts
by following the Poisson model and adding some background noise to study the
relative performance of the proposed multiple testing methods for background noise
removal. We consider two situations—light background noise (maximum intensity
10 and background intensity 0.3) and heavy background noise (maximum intensity
5 and background intensity 1). The simulation results are shown in Table 10.1.
In the light background noise scenario, the error, computed by the mean absolute
deviation (MAD), was reduced by 64% after the usual denoising stage without the
background noise correction. The error was further reduced by over 50% using the
posterior variance method of removing background. The other two methods, GMM
and Bayes, reduce error by about 45% in the second stage. Second stage reduction
at the level 20–25% is obtained in terms of the root-mean-squared error (RMSE). In
the heavy background noise scenario, the MAD was reduced respectively by 57%,
70%, and 58% in the second stage by the three background noise removal methods
respectively, while these figures are respectively 40%, 51%, and 41% in terms of
RMSE. Figure 10.1 shows how the image looks like before and after background
noise removal in the heavy background noise situation.
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Table 10.1 Saturn Image denoising under two different level background
images—light and heavy. Figures are given in the scale 10�6. The numbers in
the parentheses denote the standard errors of the estimates. Results are based on
ten replications

Light background noise Heavy background noise
Method MAD RMSE MAD RMSE

Observed 5.42 (0.008) 8.55 (0.013) 8.78 (0.009) 11.75 (0.011)

Smoothed 1.95 (0.010) 2.38 (0.014) 6.53 (0.009) 7.20 (0.010)

GMM 1.11 (0.009) 1.89 (0.015) 2.81 (0.024) 4.33 (0.025)

Posterior variance 0.96 (0.008) 1.77 (0.015) 2.02 (0.019) 3.51 (0.026)

Bayes 1.08 (0.009) 1.86 (0.015) 2.73 (0.081) 4.25 (0.074)

Fig. 10.1 Saturn image with maximum intensity 5 and background intensity 1. (a) True.
(b) Observed. (c) Smooth. (d) GMM. (e) Post. (f) Bayes

10.4 Applications

We apply the proposed background removal methods on an X-ray image of the
supernova G1.9C0.3 obtained by the Chandra observatory that is publicly available
from NASA website. Figure 10.2 shows the smoothed image in the top left.
The images after background removal are shown for each algorithm. It appears that
the Posterior Variance background noise removal method appears to remove the
background noise somewhat more aggressively than the other two methods.
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Fig. 10.2 X-ray image of G1.9C0.3 from the Chandra X-ray observatory with denoising and
background noise correction. (a) Smoothed. (b) GMM. (c) Post. (d) Bayes

Fig. 10.3 X-ray image of Kepler’s supernova remnant from the Chandra X-ray observatory with
denoising and background noise correction. (a) Smoothed. (b) GMM. (c) Post. (d) Bayes

Fig. 10.4 Chest X-ray image with denoising and background noise correction. (a) Smoothed.
(b) GMM. (c) Post. (d) Bayes

Another X-ray image is shown in Fig. 10.3. This is an image of Kepler’s
supernova remnant, which has a much larger photon flux due to longer exposure
given to it because of its importance. Visually it appears that the Bayes background
noise removal algorithm works the best. This may be due to the higher exposure
level compared with usual X-ray images.

Finally, we show a medical application of the proposed background noise
removal method using a chest X-ray photograph in Fig. 10.4. It appears that
the clarity of the method improves when background noise removal technique is
applied, especially the Bayes classifier method.
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10.5 Discussion

We have proposed a multiple testing method for removing background noise from
X-ray images that are given by low photon counts. The method is based on modeling
of estimated pixel intensities using a Gaussian mixture model. We considered
three approaches to multiple testing, two of which are based on FDR controlling
mechanism using two different test statistics and the third one is based on a
Bayes classifier. These methods remove the arbitrariness of a simple thresholding
procedure and is shown to be effective in further reducing noise from processed
images. The method is also applicable to some medical images such as computed
tomography scans. The method can also be applied on colored images, where
color typically represent energy level of photons, using the three dimensional
extension of the method of White and Ghosal [12] proposed recently by White and
Ghosal [13]. Although the multiple testing idea is well motivated by intuition and
works well in numerical experiments, much of its theoretical justification remains
to be established.
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Chapter 11
Peak-Load Forecasting Using a Functional
Semi-Parametric Approach

Frédéric Ferraty, Aldo Goia, Ernesto Salinelli, and Philippe Vieu

Abstract We consider the problem of short-term peak load forecasting in a
district-heating system using past heating demand data. Taking advantage of the
functional nature of the data, we introduce a forecasting methodology based on
functional regression approach. To avoid the limitations due to the linear specifica-
tion when one uses the linear model and to the well-known dimensionality effects
when one uses the full nonparametric model, we adopt a flexible semi-parametric
approach based on the Projection Pursuit Regression idea. It leads to an additive
decomposition which exploits the most interesting projections of the prediction
variable to explain the response. The terms of such decomposition are estimated
with a procedure which combines a spline approximation and the one-dimensional
Nadaraya–Watson approach.

Keywords Semiparametric functional data analysis • Projection pursuit regres-
sion • Forecasting • District heating

11.1 Introduction

District heating (or “teleheating”) system consists in distributing the heat for resi-
dential and commercial requirements, via a network of insulated pipes. To guarantee
an efficient generating capacity, maintaining the system stability, the short-term
forecasting (made within the 24 h of the day after), and in particular the prevision of
peaks of demand, plays a central role.

Many statistical methods have been introduced to make forecasting in a
district-heating system: one can see, for example, Dotzauer [4] and Nielsen and
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Madsen [11] for some applications and references. The techniques employed in
these works are based on regression or time series models; in practice, however,
they skip the fact that the data used are discretization points of curves, are
highly correlated, and exhibit some seasonality patterns. Hence, it seems natural
in this context to use a functional approach (for a review on functional data
analysis the reader can see, e.g., Bosq [1], Ferraty and Vieu [7], and Ramsay
and Silverman [12]). Linear modelling for functional time series analysis have been
proposed by Bosq [1] while the first nonparametric methodological advances have
been given in Ferraty et al. [6]. From an applied point of view, in Goia et al. [9] and
in Goia [10] some of such techniques dealing with functional linear modelling have
been employed in predicting the peaks load and compared with the multivariate
ones.

The linear specification, although it allows to interpret the estimated coefficients,
appears quite restrictive and is very difficult to verify in the functional regression
context. On the other hand, however, a full nonparametric approach, which should
provide a flexible exploratory tool, would suffer some limitations: in particular it
would not permit a direct interpretation of estimates and it would be subject to the
so-called problem of the dimensionality effects.

In order to avoid the drawbacks due to linear and nonparametric approaches, in
this work we propose to make the predictions of peak of heat demand by using the
semi-parametric functional approach proposed in Ferraty et al. [5] in the context of
the regression model with a functional predictor and a scalar response. It is based
on the Projection Pursuit Regression principle (see, e.g., Friedman and Stuetzle
[8]), and leads to an additive decomposition which exploits the most interesting
projections of the variable. This additive structure provides a flexible alternative
to the nonparametric approach, offering often a reasonable interpretation and, as
shown in the cited paper, being also insensitive to dimensionality effects.

The paper is organized as follows. We first give a brief presentation of data
and the prediction problem (Sect. 11.2). Then, in the Sect. 11.3 we illustrate the
Functional Projection Pursuit Regression approach and the estimation technique.
Finally the Sect. 11.4 is devoted to present the obtained results.

11.2 A Brief Presentation of the Forecasting Problem

The dataset analyzed has been provided by AEM Turin Group, a municipal utility
of the northern Italy city of Turin, which produces heat by means of cogeneration
technology and distributes it, guaranteeing the heating to over a quarter of the town.
The data consist of measurements of heat consumption taken every hour, during four
periods: from 15 October 2001 to 20 April 2002, and the same dates in 2002–2003,
2003–2004 and 2004–2005.

The hourly data for the heating demand in three selected weeks have been plotted
in Fig. 11.1. We can clearly distinguish an intra-daily periodical pattern which
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Fig. 11.1 Heating demand in three selected weeks (the panels contain data from November 2002,
January and March 2003) and daily load curves of the whole first period (from October 2002 to
April 2003).

reflects the aggregate behavior of consumers, and we can also note how it evolves
over the seasons following the variations of the climatic conditions.

We take advantage of the functional nature of the data and we divide, in a natural
way, the observed series of heat demand of each period in n D 186 functional
observations, each one coinciding with a specific daily load curve.

We denote by Cy;d D ˚
Cy;d .t/ ; t 2 Œ0; 24�� the daily load curve of period y

and day d , with y D 1; : : : ; 4 and d D 1; 2; : : : ; 186. Since each of these functional
data is observed on a finite mesh of discrete times, t1 < t2 < � � � < t24, the resulting
dataset consists in a matrix with 744 rows and 24 columns. This way for cutting time
series into continuous pieces is commonly used when one wishes to apply functional
data analysis techniques, as well linear ones (see Bosq [1]) as nonparametric ones
(see Ferraty et al. [6]).

Let us consider now the forecasting problem. Define the daily peak load as

Py;d D max
jD1;:::;24 Cy;d .tj /;

the aim is to predictPy;d on the basis of the load curve from the previous dayCy;d�1.
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Due to the presence of a trend in the time series of peaks in each period, we
consider the differenced series �Py;d D Py;d �Py;d�1, instead of the original data.
Moreover, as we can see from Fig. 11.1, the load data exhibit a vertical shift, so it
is more interesting to take the first derivative DCy;d of the load curves. Hence, we
introduce the functional time series model:

�Py;dC1 D ˚
�
DCy;d


C "y;d

where ˚ is the regression operator and "y;d is a centered real random error,
uncorrelated with the predictor.

11.3 The Functional Projection Pursuit Regression

In this section we resume the most important aspects about the Functional Projection
Pursuit Regression (FPPR) approach we use. Rather than developing the time series
prediction problem directly, we will look at it as a special case of regression
estimation problem from dependent observations. Thus, in the presentation, we
follow a general approach as in Ferraty et al. [5]. Sections 11.3.1 and 11.3.2 are
written with new self-contained regression notations. The link with our forecasting
functional time series context will be made clear in Sect. 11.3.3.

11.3.1 The Additive Decomposition Principle

Let f.Xi ; Yi / ; i D 1; : : : ; ng be n centered random variables (r.v.) identically
distributed as .X; Y /, where Y is a real r.v. and X is a functional r.v. having values
in H , where H D ˚

h W R
I
h2 .t/ dt < C1�

(I interval of R) is a separable Hilbert
space equipped with the inner product hg; f i D R

I
g .t/ f .t/ dt and induced norm

kgk2 D hg; gi. The general regression problem can be stated in a standard way as

Y D r ŒX�C E

with r ŒX� D E ŒY jX�. As usual, we assume E ŒE jX� D 0 and E
�
E 2jX
 < 1.

The main principle of the FPPR is to approximate the unknown regression
operator r by a finite sum of terms

r ŒX� �
mX

jD1
g�j
�D

�j ; X

E�
(11.1)
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where 
�j 2 H with
���
�j

���
2 D 1, g�j , for j D 1; : : : ; m, are real univariate functions

and m is a positive integer to determine. The aim is to find the most predictive
directions 
�j along which to project X that are the most interesting for explaining
Y and, at the same time, describing the relation with Y by using a sum of functions
g�j , that we call most predictive components. We make this by looking at the pairs�

�j ; g�j

�
iteratively. At first step, we determine 
�1 by solving

min
k
1k2D1

E

h
.Y � E ŒY j h
1; Xi�/2

i
:

Once 
�1 is obtained, we have g�1 .u/ D E
�
Y jh
�1 ; Xi D u



. If we set E1;
�

1
D Y �

g�1
�˝

�1 ; X

˛�
, then E1;
�

1
and

˝

�1 ; X

˛
are uncorrelated. So, in an iterative way, we can

define

Ej;
�
j

D Yi �
jX

sD1
g�s
�h
�s ; Xi i

�
j D 1; : : : ; m

with at each stage E

h
Ej;
�

j
j
D

�j ; X

Ei
D 0. Then, one can obtain for j > 1 the j -th

direction 
�j by solving the minimization problem

min
k
jk2D1

E

��
Ej�1;
�

j�1
� E

h
Ej�1;
�

j�1
j ˝
j ; X

˛i�2�

and then define the j -th component as g�j .u/ D E

h
Ej�1;
�

j�1
jh
�j ; Xi D u

i
.

By this way, the directions 
�j entering in (11.1) are explicitly constructed and so,
after them-th step, one has the additive decomposition with E

�
Em;
�

m
j h
�m;Xi
 D 0:

Y D
mX

jD1
g�j
�D

�j ; X

E�
C Em;
�

m
:

We remark that two different pairs
�

1�j ; g1�j

�
and

�

2�j ; g2�j

�
may produce the

same additive estimation (i.e., g1�j .h
1�j ; Xi/ D g2�j .h
2�j ; Xi/). However, that lack
of unicity is not a problem in a prediction perspective.
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11.3.2 Estimation Strategy in FPPR

We illustrate now how to estimate the functions g�j and 
�j . The procedure is
based on an alternating optimization strategy combining a spline approximation
of directions and the Nadaraya–Watson kernel regression estimate of the additive
components.

Denote by Sd;N the .d CN/-dimensional space of spline functions defined on
I with degree d and with N � 1 interior equispaced knots (with d > 2 and N > 1,
integers). Let fBd;N;sg be the normalized B-splines. For j D 1; : : : ; m, the spline
approximation of 
j is represented as �Tj Bdj ;Nj .�/, where Bdj ;Nj .�/ is the vector
of all the B-splines and �j is the vector of coefficients satisfying the normalization
condition

�Tj

Z

I

Bdj ;Nj .t/Bdj ;Nj .t/
T dt �j D 1: (11.2)

The estimation procedure is based on the following steps:

• Step 1: Initialize the algorithm by setting m D 1 and current residuals
OEm�1; O�m�1;i

D Yi , i D 1; : : : ; n:

• Step 2: Choose the dimension Nm C dm of Sdm;Nm and fix the initial direction
setting the vector of initial coefficients �.0/m satisfying (11.2).

Find an estimate Og�i
m;�

.0/
m

of gm using the Nadaraya–Watson kernel regression

approach excluding the i -th observationXi :

Og�i
m;�

.0/
m

.z/ D
X

l 6Di

Km

�
z�.�0m/T bm;l

hm

�

P
l 6Di Km

�
z�.©0

m/
T

bm;l
hm

� OEm�1; O�m�1;l

where bm;l D ˝
Bdm;Nm ;Xl

˛
.

Then, compute an estimate O�m by minimizing

CVm .�m/ D 1

n

nX

iD1

�� OEm�1; O�m�1;i
� Og�i

m;�
.0/
m

�
�Tmbm;i

��2�
IXi2G

over the set of vectors �m 2 R
NmCdm satisfying (11.2). Update � .0/m D O�m,

and repeat the cycle until the convergence: the algorithm terminates when the
variation of CVm passing from the previous to the current iteration (normalized
dividing it by the variance of current residuals) is positive and less than a
prespecified threshold.

• Step 3: Let un be a positive sequence tending to zero as n grows to infinity (for
instance, one might take un proportional tom logn=n). If the penalyzed criterion
of fit



11 Peak-Load Forecasting Using a Functional Semi-Parametric Approach 111

PCV .m/ D 1

n

nX

iD1

2
64

0

@ OEm�1; O�m�1;i
�

mX

jD1
Og�im; O�m

�
O�Tmbm;i

�
1

A
2
3
75 .1C un/ IXi2G

does not decrease, then stop the algorithm. Otherwise, construct the next set of
residuals

OEm; O�m;i D OEm�1; O�m�1;i
� Ogm; O�m

�
O�Tmbm;i

�
;

update the term counterm D mC 1, and go to Step 2.

Once the m� most predictive directions 
�j and functions g�j which approximate
the link between the functional regressor and the scalar response are estimated,
one can try to improve the performances of the model, by using a boosting procedure
consisting in final full nonparametric step. In practice, we compute the residuals

Yi �
m�X

jD1
Og
j; O
j

�D O
j ; Xi
E�

and after we estimate the regression function between these residuals and the
functional regressors Xi by using the Nadaraya–Watson type estimator proposed
in Ferraty and Vieu [7], deriving the following additive decomposition

Yi D
m�X

jD1
Og
j; O
j

�D O
j ; Xi
E�

C Orm�C1 .Xi/C �i

where �i are centered independents random errors with finite variance, uncorrelated
with Xi , and

Orm�C1 .x/ D
nX

iD1

Km�

�
'.Xi ;x/

hm�C1

�

Pn
iD1 Km�

�
'.Xi ;x/

hm�C1

�

0

@Yi �
m�X

jD1
Og
j; O
j

�D O
j ; Xi
E�
1

A ;

where Km� is a standard kernel function, hm�C1 > 0 is a suitable bandwidth, and
' .�; �/ is a relevant semi-metric.

Remark 1. In the situations when the pairs .Xi ; Yi / are independent, various theo-
retical properties have been stated for this method along two almost simultaneous
papers (see Chen et al. [3], Ferraty et al. [5]), and its nice behavior on real
curves datasets has also been highlighted. While theoretical advances for dependent
data are still an open challenging problem, we will see in Sect. 11.4 how this
methodology behaves nicely for real-time series forecasting problems.



112 F. Ferraty et al.

11.3.3 Time Series Application

The general regression methodology described in Sects. 11.3.1 and 11.3.2 below
applies directly to the forecasting time series problem described in Sect. 11.3, by
putting:

• Xi D DCy;d
• Yi D �Py;d
• I D Œ0; 24�

• n D 744.

11.4 Application to the District Heating Data

Let us consider the forecasting problem of the daily peak load using the FPPR
approach introduced above. We split the initial sample into two sub-samples:
a learning sample corresponding to the data observed in the first three periods
(2001–2002, 2002–2003, and 2003–2004) and a test sample containing the data
of whole fourth period (2004–2005). The estimation procedure is based on cubic
splines and the number of knots at each step has been fixed to 10. The initialized
values of the vector � .0/m are random. The bandwidths are selected by a cross-
validation procedure over the learning sample.

To evaluate the predictive abilities of the introduced approach, we use the Mean

of the Absolute Percentage Errors e4;d D
ˇ̌
ˇP4;d � OP4;d

ˇ̌
ˇ =P4;d ( OP4;d are the predicted

values) and the classical Relative Mean Square Error of Prediction (RMSEP).
The out-of-sample performances are compared with those obtained by using two
functional competitors: the functional linear model and the nonparametric model.
About the first, the estimation of the functional linear coefficient is based on the
penalized B-spline approach (see Cardot et al. [2]) with 40 knots and the penalized
coefficient chosen by cross-validation. Concerning the nonparametric model, we
use the kernel estimator proposed in Ferraty and Vieu [7] with the semi-metric

'1 .u; v/ D
�R

I

�
u.1/.t/ � v.1/.t/

�2
dt
�1=2

and the K-nearest neighbors bandwidths,

with K selected by a cross-validation over the training-set.
Stopping the FPPR algorithm at Om D 1 (any supplementary steps do not improve

the performances), we obtain the results gathered in Table 11.1: we can note that
our method fits well and its out-of-sample performances are equivalent to the
competitors ones. To clarify what is the surplus of information in using FPPR, it
is convenient to look at the estimates of the first most predictive direction 
1 and the
corresponding first additive component g1 shown in Fig. 11.2. As we can see, the
main feature revealed by the graphs is the linearity of the link between the predictor
and the response, as we can deduce from the shape of Og1.
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Table 11.1 Out-of-sample performances of the model for the prediction of the peaks of
consumption

FPPR withm D 1 Linear model Nonparametric model

RMSEP 0.9095 0.9151 0.8949

MAPE 0.0553 0.0558 0.0602

% of days in which e4;d � 10% 82.8 84.4 81.7

% of days in which e4;d � 5% 62.4 60.8 60.8

% of days in which e4;d � 1% 18.3 17.7 15.0
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Fig. 11.2 Estimates of the first most predictive direction 
1 (left panel) and the corresponding
additive component g1(right panel)
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Chapter 12
An Open Problem on Strongly Consistent
Learning of the Best Prediction
for Gaussian Processes

László Györfi and Alessio Sancetta

Abstract For Gaussian process, we present an open problem whether or not there is
a data driven predictor of the conditional expectation of the current value given the
past such that the difference between the predictor and the conditional expectation
tends to zero almost surely for all stationary, ergodic, Gaussian processes. We show
some related negative and positive findings.

Keywords Conditional expectation • Data driven predictor • Ergodic process
• Gaussian time series • Linear regression • Strong consistency

12.1 Open Problem

Let fYng1�1 be a stationary, ergodic, mean zero Gaussian process. The predictor is
a sequence of functions g D fgi g1iD1. It is an open problem whether it is possible to
learn the best predictor from the past data in a strongly consistent way, i.e., whether
there exists a prediction rule g such that

lim
n!1

�
EfYn j Y n�11 g � gn.Y

n�1
1 /

� D 0 almost surely (12.1)

for all stationary and ergodic Gaussian processes. (Here Y n�11 denotes the string
Y1; : : : ; Yn�1.)

Bailey [3] and Ryabko [29] proved that just stationarity and ergodicity is not
enough, i.e., for any predictor g, there is a binary valued stationary ergodic process
such that
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P
	

lim sup
n!1

jgn.Y n�11 /� EfYn j Y n�11 gj � 1=2



� 1=8;

(cf. Györfi, Morvai and Yakowitz [17]).
In this paper we try to collect some related results such that the main aim is

to have as mild conditions on the stationary, ergodic, Gaussian process fYng1�1 as
possible.

Concerning ergodicity of stationary Gaussian processes, L2 ergodicity means
that

E

8
<

:

 
1

n

nX

iD1
Yi

!29=

; ! 0; (12.2)

which is equivalent to

1

n

nX

iD1
r.i/ ! 0; (12.3)

where

r.i/ D cov.Yi;Y0/;

(cf. Karlin and Taylor [21]). Moreover, because of stationarity the ergodic theorem
implies that

1

n

nX

iD1
Yi ! E fY1 j F g (12.4)

a.s. such that F is the �-algebra of invariant sets. From (12.2) and (12.4) we get that

E fY1 j F g D 0 (12.5)

a.s. Thus, from (12.3) we get the strong law of large numbers, and so (12.3) is
a necessary condition for ergodicity of a stationary Gaussian process. Maruyama
[24] and Grenander [14] proved that the necessary and sufficient condition for
ergodicity of a stationary Gaussian process is that the spectral distribution function
F is everywhere continuous. Lindgren [23] showed that

1

n

nX

iD1
r.i/2 ! 0 (12.6)

is a necessary condition for ergodicity, while

r.i/ ! 0 (12.7)
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is a sufficient condition. Because of Jensen inequality, we get that

 
1

n

nX

iD1
r.i/

!2
� 1

n

nX

iD1
r.i/2;

therefore (12.6) implies (12.3). Cornfeld et al. [8] showed that for stationary
Gaussian process with absolutely continuous spectral distribution, (12.7) is a
necessary, too.

In the theory of prediction of stationary Gaussian process, the Wold decomposi-
tion plays an important role. It says that we have Yn D UnCVn, where the stationary
Gaussian processes fUng1�1 and fVng1�1 are independent, fUng1�1 has the MA(1)
representation

1X

jD0
a�j Zn�j ; (12.8)

with i.i.d. Gaussian innovations fZng and with

1X

iD1
ja�i j2 < 1; (12.9)

while the process fVng1�1 is deterministic: Vn D EfVn j V n�1�1 g.
For a stationary, ergodic Gaussian process, we may get a similar decomposition,

if we write the continuous spectral distribution function in the form F.�/ D
F .a/.�/C F .s/.�/, where F .a/.�/ is an absolutely continuous distribution function
with density function f and F .s/.�/ is singular continuous distribution function.
Then we have the decomposition Yn D U 0n C V 0n , where the stationary, ergodic
Gaussian processes fU 0ng1�1 and fV 0ng1�1 are independent, fU 0ng1�1 has the spectral
distribution function F .a/, while fV 0ng1�1 has the spectral distribution function F .s/.
If
R 

�
 ln f .�/d� > �1, then Un D U 0n and Vn D V 0n (cf. Lindgren [23]).
In the analysis of stationary Gaussian processes one often assumes the MA(1)

or the AR(1) representations such that these representations imply various type of
mixing properties. The AR(1) representation of the process fYng means that

Yn D Zn C
1X

jD1
c�j Yn�j ; (12.10)

with the vector c� D .c�1 ; c�2 ; : : : /. Bierens [4] introduced a non-invertible MA(1)
process such that

Yn D Zn �Zn�1; (12.11)

where the innovations fZng are i.i.d. standard Gaussian. Bierens [4] proved that this
process has no AR(1) representation.
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The rest of the paper is organized as follows. In Sect. 12.2 we summarize
the basic concepts of predicting Gaussian time series, while Sect. 12.3 contains
some positive and negative findings concerning universally consistent prediction.
The current machine learning techniques in Sect. 12.4 may result in universal
consistency.

12.2 Prediction of Gaussian Processes

In this section we consider the classical problem of Gaussian time series prediction
(cf. Brockwell and Davis [6]). In this context, parametric models based on distribu-
tional assumptions and structural conditions such as AR(p), MA(q), ARMA(p,q),
and ARIMA(p,d ,q) are usually fitted to the data (cf. Gerencsér and Rissanen [13],
Gerencsér [11, 12]). However, in the spirit of modern nonparametric inference, we
try to avoid such restrictions on the process structure. Thus, we only assume that we
observe a string realization Y n�11 of a zero mean, stationary, and ergodic Gaussian
process fYng1�1, and try to predict Yn, the value of the process at time n.

For Gaussian time series and for any integer k > 0, EfYn j Y n�1n�k g is a linear
function of Y n�1n�k :

EfYn j Y n�1n�k g D
kX

jD1
c
.k/
j Yn�j ; (12.12)

where the coefficients c.k/j minimize the risk

E

8
<̂

:̂

0

@
kX

jD1
cj Y�j � Y0

1

A
2
9
>=

>;
;

therefore the main ingredient is the estimate of the coefficients c.k/1 ; : : : ; c
.k/

k from
the data Y n�11 . Such an estimate is called elementary predictor, it is denoted by Qh.k/
generating a prediction of form

Qh.k/.Y n�11 / D
kX

jD1
C
.k/
n;j Yn�j

such that the coefficients C .k/
n;j minimize the empirical risk

n�1X

iDkC1

0

@
kX

jD1
cj Yi�j � Yi

1

A
2
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if n > k, and the all-zero vector otherwise. Even though the minimum always exists,
it is not unique in general, and therefore the minimum is not well defined. It is shown
by Györfi [15] that there is a unique vector C .k/

n D .C
.k/
n;1 ; : : : ; C

.k/

n;k / such that

n�1X

iDkC1

0

@
kX

jD1
C
.k/
n;j Yi�j � Yi

1

A
2

D min
.c1;:::;ck /

n�1X

iDkC1

0

@
kX

jD1
cj Yi�j � Yi

1

A
2

;

and it has the smallest Euclidean norm among the minimizer vectors.
For fixed k, an elementary predictor

Qh.k/.Y n�11 / D
kX

jD1
C
.k/
n;j Yn�j

cannot be consistent. In order to get consistent predictions there are three main
principles:

• k is a deterministic function of n,
• k depends on the data Y n�11 ,
• aggregate the elementary predictors f Qh.k/.Y n�11 /; k D 1; 2; : : : ; n � 2g.

12.3 Deterministic kn

Schäfer [30] investigated the following predictor: for a > 0, introduce the truncation
function

Ta.z/ D
8
<

:

a if z > a;
z if jzj < a;
�a if z < �a.

Choose Ln " 1, then his predictor is

Ngn.Y n�11 / D
knX

jD1
C
.kn/
n;j TLn.Yn�j /:

Schäfer [30] proved that, under some conditions on the Gaussian process, we have
that

lim
n!1

�
EfYn j Y n�1n�kng � Ngn.Y n�11 /

� D 0 a.s.
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His conditions include that the process has the MA(1) representation (12.8) such
that

1X

iD1
ja�i j < 1; (12.13)

and therefore it is purely nondeterministic and the spectral density exists. Moreover,
he assumed that

EfYn j Y n�1�1 g � E
˚
YnjY n�1n�kn

� ! 0

a.s. For example, he proved the strong consistency with kn D n1=4 if the spectral
density is bounded away from zero. The question left is how to avoid these
conditions such that we pose conditions only on the covariances just slightly
stronger than (12.7).

For a deterministic sequence kn; n D 1; 2; : : : , consider the predictor

Qgn.Y n�11 / D Qh.kn/.Y n�11 / D
knX

jD1
C
.kn/
n;j Yn�j :

For the prediction error EfYn j Y n�11 g � Qgn.Y n�11 / we have the decomposition

EfYn j Y n�11 g � Qgn.Y n�11 / D In C Jn;

where

In D EfYn j Y n�11 g � E
˚
YnjY n�1n�kn

�

is the approximation error, and

Jn D E
˚
YnjY n�1n�kn

� � Qgn.Y n�11 / D
knX

jD1
.c
.kn/
j � C .kn/

n;j /Yn�j

is the estimation error. In order to have small approximation error, we need kn ! 1,
while the control of the estimation error is possible if this convergence to 1 is slow.

We guess that the following is true:

Conjecture 1. For any deterministic sequence kn, there is a stationary, ergodic
Gaussian process such that the prediction error EfYn j Y n�11 g � Pkn

jD1 C
.kn/
n;j Yn�j

does not converge to 0 a.s.

Next we show that the approximation error tends to zero in L2 without any
condition:
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Lemma 1. For any sequence kn ! 1 and for any stationary process fYng1�1,

lim
n!1Ef.In/2g D 0:

Proof. We follow the argument from Doob [9]. Because of stationarity,

EfYn j Y n�11 g � E
˚
YnjY n�1n�kn

�

and

EfY0 j Y �1�nC1g � E
˚
Y0jY �1�kn

�

have the same distribution. The sequence EfY0 j Y �1�nC1g; n D 1; 2; : : : is a
martingale such that EfY0 j Y �1�nC1g ! EfY0 j Y �1�1g a.s. and in L2, too. Similarly,
if kn ! 1, then EfY0 j Y �1�kng ! EfY0 j Y �1�1g a.s. and in L2. These imply that

EfY0 j Y �1�nC1g � E
˚
Y0jY �1�kn

� ! 0

a.s. and in L2, therefore for the variance of the approximation error, kn ! 1
implies that

Var.In/ D Var.EfYn j Y n�11 g � E
˚
YnjY n�1n�kn

�
/ ! 0: (12.14)

ut
Next we consider the problem of strong convergence of the approximation error.

First we show a negative finding:

Proposition 1. Put kn D .lnn/1�ı with 0 < ı < 1. Then for the MA(1) process
defined in (12.11), the approximation error does not converge to zero a.s.

Proof. For the MA(1) process defined in (12.11), we get that

E
˚
YnjY n�11

� D
n�1X

jD1

�
j

n
� 1

�
Yn�j ;

(see (5) in Bierens [4]). Similarly,

E
n
YknC1jY kn1

o
D

knX

jD1

�
j

kn C 1
� 1

�
YknC1�j ;

so stationarity implies that

E
˚
YnjY n�1n�kn

� D
knX

jD1

�
j

kn C 1
� 1

�
Yn�j :
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On the one hand,

E
˚
YnjY n�11

� D
n�1X

jD1

�
j

n
� 1

�
Yn�j

D
n�1X

jD1

�
j

n
� 1

�
.Zn�j �Zn�j�1/

D
�
1

n
� 1

�
Zn�1 C 1

n

n�2X

jD0
Zj ;

and, on the other hand,

E
˚
YnjY n�1n�kn

� D
knX

jD1

�
j

kn C 1
� 1

�
Yn�j

D
knX

jD1

�
j

kn C 1
� 1

�
.Zn�j �Zn�j�1/

D
�

1

kn C 1
� 1

�
Zn�1 C 1

kn C 1

n�2X

jDn�kn�1
Zj :

Thus

E
˚
YnjY n�11

� � E
˚
YnjY n�1n�kn

�

D
�
1

n
� 1

kn C 1

�
Zn�1 C 1

n

n�2X

jD0
Zj � 1

kn C 1

n�2X

jDn�kn�1
Zj

D 1

n

n�1X

jD0
Zj � 1

kn C 1

n�1X

jDn�kn�1
Zj :

The strong law of large numbers implies that 1
n

Pn�1
jD0 Zj ! 0 a.s., therefore we

have to prove that

lim sup
n

1

kn C 1

n�1X

jDn�kn�1
Zj D 1

a.s. Let nm D bm lnmc be a subsequence of the positive integers, then we show that

lim sup
m

1

knm C 1

nm�1X

jDnm�knm�1
Zj D 1
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a.s. One can check that nm�knm > nm�1, therefore the intervals Œnm�knm �1; nm�
1�, m D 1; 2; : : : are disjoint, and so for C > 0 the error events

Am WD
8
<

:
1

knm C 1

nm�1X

jDnm�knm�1
Zj > C

9
=

;

m D 1; 2; : : : are independent. If ' and ˚ denote the density and the distribution
function of a standard normal distribution, then the tail probabilities of the standard
Gaussian satisfy

' .z/

z

�
1 � 1

z2

�
� ˚.�z/ � ' .z/

z

for z > 0; (cf. Feller [10, p. 179]). These imply that

PfAmg D P

8
<

:
1

knm C 1

nm�1X

jDnm�knm�1
Zj > C

9
=

;

D ˚.�Cpknm C 1/

�
'
�
C
p
knm C 1

�

C
p
knm C 1

�
1 � 1

C 2.knm C 1/

�
:

Because of the choice of kn, we get that

1X

mD1
PfAmg �

1X

mD1

'
�
C
p
knm C 1

�

C
p
knm C 1

�
1 � 1

C 2.knm C 1/

�
D 1;

so the (second) Borel–Cantelli Lemma for independent events implies that

P
	

lim sup
m

Am



D 1;

and the proof of the proposition is finished. ut
Proposition 2. Assume that for all n > k,

n�1X

jDkC1
c
.n�1/
j r.j / � C1k

�� ; (12.15)

and

kX

jD1
.c
.n�1/
j � c.k/j /r.j / � C2k

�� ; (12.16)
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with � > 0. If

kn D .ln n/.1Cı/=� (12.17)

(ı > 0), then for the approximation error, we have that In D EfYn j Y n�11 g �
E
n
YnjY n�1n�kn

o
! 0 a.s.

Proof. The approximation error In is a zero mean Gaussian random variable.
Buldygin and Donchenko [7] proved that In ! 0 a.s. if and only if Var.In/ ! 0

and for any � > 0,

P
	

lim sup
n!1

In < �



> 0: (12.18)

Because of (12.14), we have to verify (12.18), which is equivalent to

P
	

lim sup
n!1

In � �



< 1:

Next we show that under the conditions of the proposition we have that

Var.In/ � c

.ln n/1Cı
(12.19)

with some constants c > 0 and ı > 0. In order to show (12.19), consider
the representations EfYn j Y n�11 g D Pn�1

jD1 c
.n�1/
j Yn�j and EfYn j Y n�1n�kng D

Pkn
jD1 c

.kn/
j Yn�j . Introduce the vectors X.k/

i D .Yi�k; : : : ; Yi�1/T (where the

superscript T denotes transpose), and the empirical covariance matrix R
.k/
n D

1
n�k�1

Pn�1
iDkC1 X

.k/
i .X

.k/
i /T , and the vector of empirical covariances M.k/

n D
1

n�k�1
Pn�1

iDkC1 YiX
.k/
i . If r.n/ ! 0, then the covariance matrix R.k/ D EfR.k/n g

is not singular, and the optimal mean squared error of the prediction is

Ef.Y0 � EfY0 j Y �1�k g/2g D EfY 20 g � EfEfY0 j Y �1�k g2g
D EfY 20 g � .M .k//T .R.k//�1M .k/;

(cf. Proposition 5.1.1 in Brockwell and Davis [6]), where M.k/ D EfM.k/
n g. Thus,

Var.In/ D EfI 2n g
D EfEfY0 j Y �1�.n�1/g2g � EfEfY0 j Y �1�kng2g
D .M .n�1//T .R.n�1//�1M .n�1/ � .M .kn//T .R.kn//�1M .kn/:
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Moreover, we have that c.n�1/ D .R.n�1//�1M .n�1/ and c.kn/ D .R.kn//�1M .kn/.
Applying the conditions of the proposition, we get that

Var.In/ D
n�1X

jD1
c
.n�1/
j M

.n�1/
j �

knX

jD1
c
.kn/
j M

.kn/
j

D
n�1X

jD1
c
.n�1/
j r.j / �

knX

jD1
c
.kn/
j r.j /

D
knX

jD1
.c
.n�1/
j � c

.kn/
j /r.j /C

n�1X

jDknC1
c
.n�1/
j r.j /

� .C1 C C2/k
��
n

with � > 0, then for the choice (12.17), (12.19) is proved. Thus, (12.19) implies
that

P fIn � �g D ˚

 
� �p

Var.In/

!
� e
� �2

2Var.In/ � e�
�2.lnn/1Cı

2c D n�
�2.ln n/ı

2c

therefore
1X

nD1
P fIn � �g < 1;

so the Borel–Cantelli Lemma implies that

lim sup
n!1

In < �

a.s. ut
The partial autocorrelation function of Yn is ˛ .j / WD c

.j /
j where c.j /j is as

defined before, i.e. the j th coefficient from the AR.j / approximation of Yn. It is
possible to explicitly bound the approximation error In using ˛ .j /. The asymptotic
behavior of ˛.j / has been studied extensively in the literature. For example,
j˛.j /j � c=j for fractionally integrated ARIMA processes (e.g., Inoue [19]). This
includes Gaussian processes such that jr.i/j � c.j C 1/�ˇ under the sole condition
that ˇ > 0, as conjectured in Remark 1 below. It is unknown whether all stationary
and ergodic purely nondeterministic Gaussian processes have partial correlation
function satisfying j˛.j /j � c=j .

Proposition 3. Suppose that

1X

jDkC1
˛2.j / � ck��
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with � > 0, c > 0. For the choice (12.17), we have that In D EfYn j Y n�11 g �
E
n
YnjY n�1n�kn

o
! 0 a.s.

Proof. We follow the line of the proof of Proposition 2 to verify (12.19). To
ease notation, let �2k be the optimal mean square prediction error of the AR.k/
approximation: �2k WD Ef.Y0�EfY0 j Y �1�k g/2g. By the Durbin–Levinson Algorithm
(cf. Brockwell and Davis [6], Proposition 5.2.1),

�2k D �2k�1.1 � ˛2.k// D r.0/

kY

jD1
.1 � ˛2.j //;

iterating the recursion and noting that �20 D r.0/ D Var.Y0/. Since, as in the proof
of Proposition 2,

Ef.In/2g DEfEfY0 j Y �1�.n�1/g2g � EfEfY0 j Y �1�kng2g
D�2kn � �2n�1

Dr.0/
knY

jD1
.1 � ˛2.j //

0

@1 �
n�1Y

jDkC1
.1 � ˛2.j //

1

A :

Without loss of generality assume that ˛.j /2 � C < 1. For 0 < x � C < 1 apply
the inequality � lnC

C
x � ln.1 � x/, then

Ef.In/2g � r.0/

0

@1 �
1Y

jDknC1
.1 � ˛2.j //

1

A

D r.0/
�
1 � e

P1
jDknC1 ln.1�˛2.j //�

� r.0/
�
1 � e�

lnC
C

P1
jDknC1 ˛

2.j /
�

� r.0/
lnC

C

1X

jDknC1
˛2.j /

� r.0/
lnC

C
ck��n :

Hence, with the choice (12.17), (12.19) is verified. ut
Remark 1. We conjecture that under the condition

jr.i/j � c.ji j C 1/�ˇ;
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c < 1, ˇ > 0, the conditions of Propositions 2 and 3 are satisfied. Notice that
for any MA(p), the conditions of Proposition 2 are met, while for any AR(q), the
conditions of Proposition 3 are satisfied.

Remark 2. Notice that the MA(1) example in the proof of Proposition 1 satisfies
the conditions of the Propositions 2 and 3 with � D 1, since ˛.j / D c

.j /
j D j�1,

and r.0/ D 2, r.1/ D �1 and r.i/ D 0 if i � 2, from which one gets that

Var.In/ D 1

kn C 1
� 1

n
:

Moreover, the choice kn D .lnn/1Cı is just slightly larger than in the proof of
Proposition 1.

Remark 3. Under the AR(1) representation (12.10), the derivation and the condi-
tions of Proposition 2 can be simplified. Multiplying both sides of (12.10) by Yn and
taking expectations,

EY 2n D
1X

iD1
c�i EfYnYn�ig C EfYnZng

D
1X

iD1
c�i r.i/C Var.Z0/

D EfEfY0 j Y �1�1g2g C Var.Z0/:

It implies that
P1

iD1 c�i r.i/ < 1 and

Var.In/ � EfEfY0 j Y �1�1g2g � EfEfY0 j Y �1�kng2g

�
knX

jD1
.c�j � c

.kn/
j /r.j /C

1X

jDknC1
c�j r.j /

� .C1 C C2/k
��
n ;

if the conditions
P1

iDk c�i r.i/ � C1k
�� and

Pk
jD1.c�j � c

.k/
j /r.j / � C2k

�� are
satisfied.

Remark 4. If the process has the MA(1) representation (12.8), then r.i/ DP1
jD0 a�j a�jCi assuming the innovations have variance one. The Cauchy–Schwarz

inequality implies that

jr.i/j �
vuut
1X

jD0
.a�j /2

1X

jD0
.a�jCi /2 D

vuut
1X

jD0
.a�j /2

1X

jDi
.a�j /2 ! 0:



128 L. Györfi and A. Sancetta

We show that for a�j > 0, ˇ > 1 implies (12.13). To see this, note that r.i/ > 0 and

0

@
1X

jD0
a�j

1

A
2

�
1X

iD0

1X

jD0
a�j a�jCi D

1X

iD1
r.i/:

Moreover,
P1

iD1 r.i/ < 1 implies that
P1

jD0 a�j < 1. Notice that without any
conditions on fa�j g,

P1
iD1 jr.i/j < 1 does not imply that

P1
jD0 ja�j j < 1.

Remark 5. Concerning the estimation error the main difficulty is the possible slow
rate of convergence of averages. For an arbitrary ergodic process, the rate of
convergence of an average can be arbitrary slow, which means that for any sequence
an # 0, there is a zero mean, stationary, ergodic process such that

lim sup
n

Ef. 1
n

Pn
iD1 Yi /2g
an

> 0: (12.20)

The question here is whether or not for arbitrary sequence an # 0, there is a zero
mean, stationary, ergodic Gaussian process with covariances fr.i/g such that (12.20)
is satisfied. To see this, let fYig have the MA(1) representation (12.10) with Zj
standard normal and a�0 D 1, a�j D j�˛ for j > 0, 1 > ˛ > 1=2. Then a�j #,
therefore r.j / # and so we get that

lim sup
n

Ef. 1
n

Pn
iD1 Yi /2g
an

� lim sup
n

1

nan

nX

iD0
r.i/

�
1 � ji j

n

�

� lim sup
n

1

2nan

nX

iD0
r.i/

� lim sup
n

1

2an
r.n/

D lim sup
n

1

2an

0

@
1X

jD0
a�j a�jCn

1

A :

Then a�j # implies that

lim sup
n

Ef. 1
n

Pn
iD1 Yi /2g
an

� lim sup
n

1

2an

0

@
1X

jD0
.a�jCn/2

1

A

� lim sup
n

n.1�2˛/

2an
:
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For ˛ ! 1=2 the sequence can be made to diverge for any an ! 0 polynomially.

We can make it logarithmic using a�j D �
j ln1C� .j /

��1=2
for j > 1 and some

� > 0, but it is a bit more complex. Similar slow rate results can be derived for
empirical covariances.

If the process fYng1�1 satisfies some mixing conditions, then Meir [26], Alquier
and Wintenberger [2], and McDonald et al. [25] analyzed the predictor Qh.k/.Y n�11 /.
If the process fYng1�1 is stationary and ergodic, then Klimo and Nelson [22] proved
that

C .k/
n ! c.k/ (12.21)

a.s. Unfortunately, the convergence (12.21) does not imply that
Pk

jD1.C
.k/
n;j �

c
.k/
j /Yn�j ! 0 a.s.

Conjecture 2. For any fixed k, there is a stationary, ergodic Gaussian process such
that

Pk
jD1.C

.k/
n;j � c.k/j /Yn�j does not converge to 0 a.s.

Lemma 2. Let

rn.i/ WD n�1
nX

jD1
Yj YjCi

be the empirical autocovariance. Suppose that jr.i/j � c.ji jC1/�ˇ, c < 1, ˇ > 0.
Then, for the sequence an D .n˛=kn/ with ˛ 2 .0; ˇ ^ .1=2//,

an max
i�kn

jrn.i/� r.i/j ! 0

a.s.

Proof. At first, we show that

n2Ejrn.k/ � r.k/j2 � c2ckn
2�2ˇ (12.22)

with ck < 1. Note that

Ejrn.k/ � r.k/j2 D 1

n2

nX

iD1

nX

jD1
E
˚
.YiYiCk � EYiYiCk/

�
Yj YjCk � EYj YjCk

��
:

To this end,

E
˚
.YiYiCk � EYiYiCk/

�
YjYjCk � EYjYjCk

��

D E
˚
YiYiCkYj YjCk

� � EYiYiCkEYj YjCk:
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By Isserlis Theorem [20],

E
˚
YiYiCkYj YjCk

�

D EYiYiCkEYjYjCk C EYiYjEYiCkYjCk C EYiCkYjEYiYjCk:

Therefore

E
˚
.YiYiCk � EYiYiCk/

�
YjYjCk � EYjYjCk

��

D EYiYjEYiCkYjCk C EYiCkYjEYiYjCk
D r2 .i � j /C r .i � j C k/ r .i � j � k/ :

Hence,

nX

iD1

nX

jD1
E
˚
.YiYiCk � EYiYiCk/

�
YjYjCk � EYj YjCk

��

D
nX

iD1

nX

jD1
r2.i � j /C

nX

iD1

nX

jD1
r.i � j C k/r.i � j � k/

D nr2.0/C 2

n�1X

iD1
.n � i/r2.i/C nr2.k/C 2

n�1X

iD1
.n � i/r.i C k/r.i � k/

� n

 
2r2.0/C 2

n�1X

iD1
r2.i/C

n�1X

iD1
.r2.i C k/C r2.i � k//

!

� nc2

 
2C 2

n�1X

iD1
.ji j C 1/�2ˇ C

n�1X

iD1

�
.ji C kj C 1/�2ˇ C .ji � kj C 1/�2ˇ

�
!

� c2ckn
2�2ˇ;

and so (12.22) is proved. Ninness [27] proved that if an arbitrary sequence of random
variablesXn, n D 1; 2; : : : satisfies

E

8
<

:

 
1

n

nX

iD1
Xi

!29=

; � Cn�2ˇ

with C < 1, then

n˛

 
1

n

nX

iD1
Xi

!
! 0
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a.s., where 0 < ˛ < ˇ ^ .1=2/. Thus, (12.22) satisfies the condition in Theorem 2.1
of Ninness [27], which implies n˛jrn.k/� r.k/j ! 0 a.s. for each k. Hence, by the
union bound, the lemma is true for any an � n˛=kn. ut

We slightly modify the coefficient vector as follows: introduce the notations
QR.k/n D R

.k/
n C 1

ln nI and QC .k/
n D . QR.k/n /�1M .k/

n . Moreover, put Qc.k/ D . QR.k//�1M .k/,

where QR.k/ D Ef QR.k/n g.

Proposition 4. Under the conditions of Lemma 2 and for the choice kn D .lnn/�

with � > 0,

knX

jD1
. QC .kn/

n;j � Qc.kn/j /Yn�j ! 0

a.s.

Proof. Because of the Cauchy–Schwarz inequality

jJnj D
ˇ̌
ˇ̌
ˇ̌
knX

jD1
. Qc.kn/j � QC .kn/

n;j /Yn�j

ˇ̌
ˇ̌
ˇ̌

�
vuut

knX

jD1
. Qc.kn/j � QC .kn/

n;j /
2

knX

jD1
Y 2n�j

�
vuut

knX

jD1
. Qc.kn/j � QC .kn/

n;j /
2kn max

1�i�n Y
2
i :

Pisier [28] proved the following: let Z1; : : : ; Zn be zero mean Gaussian random
variables with EfZ2

i g D �2, i D 1; : : : ; n. Then

E
	

max
i�n jZi j



� �

p
2 ln.2n/;

and for each u > 0,

P
	

max
i�n jZi j � E

	
max
i�n jZi j



> u



� e�u2=2�2 :

This implies, by taking u D 2�
p
2 ln.2n/,

P
	

max
i�n jYi j > 3�

p
2 ln.2n/



� 1

.2n/4
;
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and therefore

1X

nD1
P
	

max
1�i�n jYi j > 3�

p
2 ln.2n/



< 1;

and so the Borel–Cantelli Lemma implies that

lim sup
n!1

max1�i�n jYi jp
ln n

� 1

a.s. Thus, we have to show that for the choice of kn D .lnn/� we get that

kn ln n
knX

jD1
. Qc.kn/j � QC .kn/

n;j /
2 ! 0

a.s. Let k � k denote the Euclidean norm and the norm of a matrix. Then

knX

jD1
. Qc.kn/j � QC .kn/

n;j /
2

D kQc.kn/ � QC .kn/
n k2

D k. QR.k//�1M .k/ � . QR.k/n /�1M .k/
n k2

� 2k. QR.k/n /�1.M .k/ �M.k/
n /k2 C 2k.. QR.k//�1 � . QR.k/n /�1/M .k/k2

Concerning the first term of the right-hand side, we have that

k. QR.k/n /�1.M .k/ �M.k/
n /k2 � k. QR.k/n /�1k2kM.k/ �M.k/

n k2

� .ln n/2
knX

iD1
.r.i/ � rn.i//

2

� .ln n/2kn max
1�i�kn

.r.i/ � rn.i//2:

The derivation for the second term of the right-hand side is similar:

k.. QR.k//�1 � . QR.k/n /�1/M .k/k2 � k. QR.k//�1 � . QR.k/n /�1k2kM.k/k2

� k. QR.k//�1k2k. QR.k/n /�1k2k QR.k/ � QR.k/n k2kM.k/k2

� .ln n/4kR.k/ � R.k/n k2
knX

iD1
r.i/2
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� .ln n/4
knX

iD1

knX

jD1
.r.i � j / � rn.i � j //2

1X

iD1
r.i/2

� c1.lnn/42kn

knX

iD1
.r.i/ � rn.i//2

� c1.lnn/
42k2n max

1�i�kn
.r.i/ � rn.i//2:

For the choice kn D .lnn/� , summarizing these inequalities we get that

kn ln n
knX

jD1
. Qc.kn/j � QC .kn/

n;j /
2 � c2.k

2
n.lnn/

3 C k3n.lnn/
5/ max
1�i�kn

.r.i/� rn.i//2/

� c2.ln n/
5C3� max

1�i�kn
.r.i/� rn.i//

2/

! 0

a.s., where we used Lemma 2 with an D .lnn/5C3� . ut
Remark 6. In this section we considered deterministic choices of kn. One can
introduce data driven choices of Kn, for example, via complexity regularization
or via boosting. In principle, it is possible that there is a data driven choice, for
which the corresponding prediction is strongly consistent without any condition on
the process. We conjecture the contrary: for any data driven sequenceKn, there is a
stationary, ergodic Gaussian process such that the prediction error

EfYn j Y n�11 g �
KnX

jD1
C
.Kn/
n;j Yn�j

does not converge to 0 a.s.

12.4 Aggregation of Elementary Predictors

After n time instants, the (normalized) cumulative squared prediction error on the
strings Y n1 is

Ln.g/ D 1

n

nX

iD1

�
gi .Y

i�1
1 / � Yi

�2
:
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There is a fundamental limit for the predictability of the sequence, which is
determined by a result of Algoet [1]: for any prediction strategy g and stationary
ergodic process fYng1�1 with EfY 20 g < 1,

lim inf
n!1 Ln.g/ � L� almost surely; (12.23)

where

L� D E
n�
Y0 � E

˚
Y0jY �1�1

��2o

is the minimal mean squared error of any prediction for the value of Y0 based on the
infinite past observation sequences Y �1�1 D .: : : ; Y�2; Y�1/. A prediction strategy g
is called universally consistent with respect to a class C of stationary and ergodic
processes fYng1�1 if for each process in the class,

lim
n!1Ln.g/ D L� almost surely:

There are universally consistent prediction strategies for the class of stationary and
ergodic processes with EfY 4g < 1, (cf. Györfi and Ottucsák [18], and Bleakley
et al. [5]).

With respect to the combination of elementary experts Qh.k/, Györfi and Lugosi
applied in [16] the so-called doubling-trick, which means that the time axis is
segmented into exponentially increasing epochs and at the beginning of each epoch
the forecaster is reset.

Bleakley et al. [5] proposed a much simpler procedure which avoids in particular
the doubling-trick. Set

h.k/n .Y
n�1
1 / D Tminfnı;kg

� Qh.k/n .Y n�11 /
�
;

where the truncation function Ta was introduced in Sect. 12.3 and 0 < ı < 1
8
.

Combine these experts as follows. Let fqkg be an arbitrarily probability distribu-
tion over the positive integers such that for all k, qk > 0, and define the weights

wk;n D qke
�.n�1/Ln�1.h

.k/
n /=
p
n D qke

�Pn�1
iD1.h

.k/
i .Y i�11 /�Yi /2=pn

(k D 1; : : : ; n � 2) and their normalized values

pk;n D wk;nPn�2
iD1 wi;n

:

The prediction strategy g at time n is defined by

gn.Y
n�1
1 / D

n�2X

kD1
pk;nh

.k/
n .Y

n�1
1 /; n D 1; 2; : : :
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Bleakley et al. [5] proved that the prediction strategy g defined above is
universally consistent with respect to the class of all stationary and ergodic zero-
mean Gaussian processes, i.e.,

lim
n!1Ln.g/ D L� almost surely;

which implies that

lim
n!1

1

n

nX

iD1

�
EfYi j Y i�11 g � gi .Y i�11 /

�2 D 0 almost surely:

(cf. Györfi and Lugosi [16], and Györfi and Ottucsák [18]).
This later convergence is expressed in terms of an almost sure Cesáro consis-

tency. We guess that even the almost sure consistency (12.1) holds. In order to
support this conjecture mention that

gn.Y
n�1
1 / D

n�2X

kD1
pk;nh

.k/
n .Y

n�1
1 / �

n�2X

kD1
pk;n Qh.k/n .Y n�11 / D

n�2X

kD1
pk;n

kX

jD1
c
.k/
n;j Yn�j ;

and so

gn.Y
n�1
1 / D

n�2X

jD1
cn;j Yn�j ;

where

cn;j D
n�2X

kDj
pk;nc

.k/
n;j :
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Chapter 13
Testing for Equality of an Increasing Number
of Spectral Density Functions

Javier Hidalgo and Pedro C.L. Souza

Abstract Nowadays it is very frequent that a practitioner faces the problem of
modelling large data sets. Some relevant examples include spatio-temporal or panel
data models with large N and T . In these cases deciding a particular dynamic
model for each individual/population, which plays a crucial role in prediction and
inferences, can be a very onerous and complex task.

The aim of this paper is thus to examine a nonparametric test for the equality of
the linear dynamic models as the number of individuals increases without bound.
The test has two main features: (a) there is no need to choose any bandwidth
parameter and (b) the asymptotic distribution of the test is a normal random variable.

Keywords Spectral density function • Canonical decomposition • Testing
• High dimensional data

13.1 Introduction

It is arguable that one of the ultimate goals of a practitioner is to predict the future
or to obtain good inferences about some parameter of interest. To provide either of
them, knowledge of the dynamic structure of the data plays a crucial role. Often
this is done by choosing an ARMA specification via algorithms such as AIC or
BIC . However, when the practitioner faces a large dimensional data set, such as
panel data models with large N and T or spatio-temporal data sets, the problem
to identify a particular model for every element of the “population” can be very
onerous and time-consuming. In the aforementioned cases, it might be convenient to
decide, before to embark in such a cumbersome task, whether the dynamic structure
is the same across the different populations. This type of scenarios/models can be
regarded as an example of the interesting and growing field of high-dimensional data
analysis. When the number of spectral density functions that we wish to compare
is finite, there has been some work, see among others Coates and Diggle [6],
Diggle and Fisher [9] or Detter and Paparoditis [8] and the references therein.
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In a spatio-temporal data set we can mention the work by Zhu et al. [19]. The above
work does not assume any particular model for the dynamic structure of the data. In
a parametric context, the test is just a standard problem of comparing the equality of
a number of parameters. Finally, it is worth mentioning the work in a semiparametric
framework by Härdle and Marron [14] or Pinkse and Robinson [16], who compare
the equality of shapes up to a linear transformation.

In this paper we are interested on a nonparametric test for equality of the dynamic
structure of an increasing number of time series. Two features of the tests are as
follows. First, although we will not specify any parametric functional form for the
dynamics of the data, our test does not require to choose any bandwidth/smoothing
parameter for its implementation, and second, the asymptotic distribution of the test
is a Gaussian random variable, so that inferences are readily available.

More specifically, let
˚
xt;p

�
t2Z;p2N be sequences of linear random variables, to

be more specific in Condition C1 below. Denoting the spectral density function of
the pth sequence

˚
xt;p

�
t2Z by fp .�/, we are interested in the null hypothesis

H0 W fp .�/ D f .�/ for all p � 1 (13.1)

a.e. in Œ0; 
�, being the alternative hypothesis

Ha W 0 < � .P/ D jPj =P < 1; (13.2)

where P D ˚
p W � ��p

�
> 0

�
with �p D ˚

� 2 Œ0; 
� W fp .�/ ¤ f .�/
�

and
“jA j” denotes the cardinality of the set A being � .�/ the Lebesgue measure.
Herewith P denotes the number of individuals in the sample. Thus P denotes the
set of individuals for which fp .�/ is different than the “common” spectral density
f .�/. In this sense � DW � .P/ represents the proportion of sequences

˚
xt;p

�
t2Z, p �

1 for which fp .�/ ¤ f .�/. One feature of (13.2) is that the proportion of sequences
� can be negligible. More specifically, as we show in the next section, the test has
nontrivial power under local alternatives such that � .P/ D O

�
P1=2

�
. The situation

when � D � .P/ such that � & 0 can be of interest for, say, classification purposes or
when we want to decide if a new set of sequences share the same dynamic structure.
Also, it could be interesting to relax the condition that �

�
�p

�
> 0. This scenario

is relevant if we were only concerned about the behaviour of the spectral density
function in a neighbourhood of a frequency, say zero. An example of interest could
be to test whether the so-called long range parameter is the same across the different
sequences, which generalizes work on testing for unit roots in a panel data model
with an increasing number of sequences, see, for instance, [15]. However, for the
sake of brevity and space, we will examine this topic somewhere else. Finally it is
worth mentioning that we envisage that the results given below can be used in other
scenarios which are of interest at a theoretical as well as empirical level. Two of
these scenarios are: (1) testing for a break in the covariance structure of a sequence
of random variables, where the covariance structure of the data is not even known
under the null hypothesis, and (2) as exploratory analysis on whether or not there
is separability in a spatial-temporal data set, see [11] and the references there in,
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although contrary to the latter manuscript we will allow the number of locations to
increase to infinity. However, the relevant technical details for the latter problems
are beyond the scope of this paper.

We finish this section relating the results of the paper with the problem
of classification with functional data sets, which is a topic of active research.
The reason being that this paper tackles the problem of whether a set of curves, i.e.
spectral density functions, are the same or not. Within the functional data analysis
framework, this question translates on whether there is some common structure or
if we can split the set into several classes or groups. See classical examples in [10],
although their approach uses nonparametric techniques which we try to avoid so
that the issue of how to choose a bandwidth parameter and/or the “metric” to decide
closeness are avoided. With this in mind, we believe that our approach can be used
for a classification scheme. For instance, in economics, are the dynamics across
different industries the same? This, in the language of functional data analysis, is
a problem of supervised classification which is nothing more than a modern name
to one of the oldest statistical problems: namely to decide if an individual belongs
to a particular population. The term supervised refers to the case where we have
a “training” sample which has been classified without error. Moreover, we can
envisage that our methodology can be extended to problems dealing with functional
data in a framework similar to those examined by Chang and Ogden [5]. The latter
is being under current investigation elsewhere, when one it is interested on testing in
a partial linear model whether we have common trends across individuals/countries,
see [18] or [7] among others for some related examples.

The remainder of the paper is as follows. Next section describes and examines a
test for H0 in (13.1) and we discuss the regularity conditions. Also we discuss the
type of local alternatives for which the test has no trivial power. The proof of our
main results is confined to Sects. 13.3 and 13.4. The paper finishes with a conclusion
section.

13.2 The Test and Regularity Conditions

We begin describing our test. To that end, denote the periodogram of
˚
xt;p

�n
tD1,

p D 1; : : : ;P, by

Ip .j / D 1

n

ˇ̌
ˇ̌
ˇ

nX

tD1
xt;pe

�i t�j
ˇ̌
ˇ̌
ˇ

2

;

where �j D 2
j=n, j D 1; : : : ; Œn=2� DW Qn, are the Fourier frequencies.
Suppose that we were interested inH0 but only at a particular frequency, say �j ,

for some integer j D 1; : : : ; Qn. Then, we might employ
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Tn .j / D 1

P

PX

pD1

 
Ip .j /

P�1
PP

qD1 Iq .j /
� 1

!2

to decide whether or not fp .j / D f .j /. The motivation is that as P % 1,

1

P

PX

qD1
Iq .j /

P! lim
P!1

1

P

PX

qD1
fq .j / DW f .j / ; (13.3)

under suitable regularity conditions. So, underH0, we can expect that the sequence
of random variables

0

@ 1
P

PX

qD1
Iq .j /

1

A
�1

Ip .j / � 1

will have a “mean” equal to zero. On the other hand, under Ha, for all p 2 P and
�j 2 �p, we have that the last displayed expression develops a mean different than

zero since E
�
Ip .j / =f .j /

�
¤ 1.

Now extending the above argument to every j � 1, we then test for H0 using

Tn D 1

Qn
QnX

jD1

	
Tn .j / �

�
1 � 2

P

�

: (13.4)

It is worth to discuss the technical reason for the inclusion of the term .1 � 2=P/
into the right side of (13.4). For that purpose, recall Barlett’s decomposition, see
[4], which implies that

Ip .j /

P�1
PP

qD1 Iq .j /
� 1 ' I";p .j /

P�1
PP

qD1 I";q .j /
� 1:

Now using standard linearization, see, for instance (13.15), the second moment of

the right side of the last displayed expression is 1� 2
P Co

�
.nP/�1=2

�
, see the proof

of Theorem 1 for some details. In fact, the reason to correct for the term 2=P is due
to the fact that the mean of I";p .j /, which is 1, is estimated via P�1

PP
qD1 I";q .j /.

See, for instance, [15] for similar arguments.
We shall now introduce the regularity conditions.

Condition C1
˚
xt;p

�
t2Z;, p 2 N, are mutually independent covariance stationary

linear processes defined as
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xt;p D
1X

jD0
bj;p"t�j;pI

1X

jD0
j
ˇ̌
bj;p

ˇ̌
< 1; with bp;0 D 1;

where
˚
"t;p

�
t2Z, p 2 N, are iid sequences with E

�
"t;p

� D 0, E
�
"2t;p

�
D �2";p ,

E
�ˇ̌
"t;p

ˇ̌`� D �`;p < 1 for some ` > 8. Finally, we denote the fourth cumulant

of
˚
"t;p=�";p

�
t2Z by �4;p , p 2 N.

Condition C2 For all p 2 N, fp .�/ are bounded away from zero in Œ0; 
�.
Condition C3 n and P satisfy P

n
C n

P2 ! 0.

Condition C1 is standard and very mild. This condition implies that

fp .�/ D �2";p

2


ˇ̌
Bp .�/

ˇ̌2
;

where Bp .z/ D P1
jD0 bj;peij z. Thus, underH0, we have that

Bp .z/ DW B .z/ D
1X

jD0
bj e

ij z; and �2";p D �2" ; p � 1: (13.5)

C1 together with C2 implies that the spectral density functions
˚
fp .�/

�
, p D

1; 2; : : :, are twice continuously differentiable. We could relax the condition to allow
for strong dependent data at the expense of some strengthening of Condition C3.
However, since the literature is full of scenarios where results for weakly dependent
sequences follow for strong dependence, we have decided to keep C1 as it stands
for the sake of clarity. Also it is worth emphasizing that we do not assume that
the sequences are identically distributed, as we allow the fourth cumulant to vary
among the sequences. It is worth signaling out that C2 implies that the sequences˚
xt;p

�
t2Z;, p 2 N, have also a autoregression representation given by

xt;p D
1X

jD1
aj;pxt�j;p C "t;pI

1X

jD0
j
ˇ̌
aj;p

ˇ̌
< 1

and fp .�/ D �2";p
2


ˇ̌
Ap .�/

ˇ̌�2
, where Ap .z/ D 1 � P1

jD1 aj eij z. Finally a word
regarding Condition C1 is worth considering. We have assumed that the sequences˚
xt;p

�
t2Z and

˚
xt;q

�
t2Z, for all p; q D 1; 2,.. are mutually independent. It is true that

this assumption in many settings can be difficult to justify and we can expect some
“spatial” dependence among the sequences. An inspection of our proofs indicate
that the results would follow provided some type of “weak” dependence. That is,
if we denote the dependence between

˚
"t;p

�
t2Z and

˚
"t;q
�
t2Z by �p;q .t/, then we

have that P�1
PP

p;qD1
ˇ̌
�p;q .t/

ˇ̌ � C < 1 uniformly in t . The only main noticeable
difference when we compare the results that we shall have to those in Theorem 1
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below is that the variance of the asymptotic distribution in Theorem 1 below would
reflect this dependence among the sequences

˚
"t;p

�
p2N. However for simplicity and

to follow more easily the arguments we have decided to keep C1 as it stands.
Denote

�4 D lim
P!1

1

P

PX

pD1
�4;p:

Theorem 1. UnderH0 and assuming C1� C3, we have that

Qn1=2P1=2Tn !d N .0; 4C �4/ :

Proof. The proof of this theorem is confined to Sect. 13.3 below.

The conclusion that we draw from Theorem 1 is that the asymptotic distribution
is standard. However, its asymptotic variance depends on the “average” fourth
cumulant �4. So, to be able to make inferences, we need to provide a consistent
estimator of �4. One possibility comes from the well-known formula in [12].
However, in our context it can be a computational burden prospect, apart from the
fact that all we need is not to obtain a consistent estimator of all �4;p but for the
average. Another potential problem to estimate �4 via [12] is that it would need a
bandwidth or cut-off point to compute the estimator of �4;p , for all p � 1. This is
the case as the computation of �4, i.e. �4;p , depends on the covariance structure of
x2t;p as well as that of xt;p . This creates the problem of how to choose this bandwidth
parameter for each individual sequence. Thus, we propose and examine an estimator
of �4 which is easy to compute and in addition it will not require the choice of any
bandwidth parameter in its computation.

To that end, denote the discrete Fourier transform of a generic sequence
fut gntD1 by

wu .j / D 1

n1=2

nX

tD1
ut e
�i t�j ; j D 1; : : : ; Qn:

Also, C1 andH0 suggest that the discrete Fourier transform of
˚
"t;p

�n
tD1 is

w";p .j / � A
���j

�
wx;p .j / ;

where B�1
�
�j
� D A

�
�j
�

and using the inverse transform of wu .j /, we conclude
that

"t;p � 1

n1=2

nX

jD1
eit�j A

���j
�

wx;p .j / (13.6)
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where “�” should be read as “approximately”. Notice that the last two expressions
are valid under the alternative hypothesis if instead of A

���j
�

we write Ap
���j

�
.

The latter indicates that the problem to obtain the residuals
˚O"t;p

�n
tD1 becomes a

problem to compute an estimator of A
���j

�
. To that end, denote by

Of .j / D 1

P

PX

pD1
Ip .j / (13.7)

the estimator of f .j / underH0. Then, we compute
˚ O"t;p

�n
tD1 ; p D 1; : : : ;P, as

O"t;p D 1

n1=2

n�1X

jD1
eit�j OA .j /wx;p .j / ;

	
p D 1; : : : ;P;
t D 1; : : : ; n;

where

OA .j / D exp

(
�

nX

rD1
Ocr e�ir�

)
;j D 1; : : : ; Qn

Ocr D 1

n

nX

`D1
log Of .�`/ cos r�`; r D 1; : : : ; n:

Note that O�" D 2
 exp . Oc0/. The function exp
˚Pn

rD1 Ocre�ir�
�

is an estimator of
A .�/ D exp

˚P1
rD1 cre�ir�

�
with

cr D 1




Z 


0

logf .�/ cos .r�/ d�: (13.8)

Observe that ec0 jA .�/j�2 D f .�/ and the motivation to estimate A .�/ by
OA .j / comes from the canonical spectral decomposition of f .�/, see, for instance,

[2, pp. 78–79] or [13]. Moreover, denoting

Oa` D 1

n

Qn�1X

jD�QnC1
OA.j / ei`�j ; ` D 1; : : : ; n;

we could also estimate A .j / as OA .j / D 1C Oa1e�i�j C � � � C Oane�in�j . This comes
from the fact that ec0

ˇ̌
exp

˚P1
rD1 cre�ir�

�ˇ̌2 D f .�/ and that a` is the `th Fourier
coefficient of exp

˚P1
rD1 cre�ir�

�
. In fact, one of the implications of the canonical

decomposition is that exp
˚P1

rD1 cre�ir�
� D 1 � P1

jD1 aj eij�. Also, we might

consider Oa` and OA .j / D 1C Oa1e�i�j C � � � C Oane�in�j as estimators of the average
a` D P�1

PP
pD1 ap;` and A .j / D P�1

PP
pD1 Ap .j /, respectively, as Of .j / is an
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estimator of f .j / under the maintain hypothesis. In addition it is worth pointing
out that from a computational and theoretically point of view, we may only estimate
the first, say Cn1=2, cr coefficients as C1 implies that cr D O

�
r�2

�
.

Then, we compute our estimator of �4 as

O�4 D 1

P

PX

pD1

1

n

nX

tD1

 O"4t;p
O�4"

� 3

!
:

Nevertheless we have, as a by-product, that 1
n

Pn
tD1

�
O"4t;p
O�4" � 3

�
is an estimator of

the fourth cumulant �4;p , p � 1.

Theorem 2. UnderH0 and assuming C1� C3, we have that O�4 !P �4.

Proof. The proof of this theorem is confined to Sect. 13.4 below.

We finish this section describing the local alternatives for which Tn does not have
trivial power. In addition as a corollary to Proposition 1 below, we easily conclude
that Tn will then provide a consistent test forH0. To that end, we consider the local
alternatives

Hl W
(
fp .�/ D f .�/

�
1C 1

n1=2
gp .�/

�
for all p � CP1=2

fp .�/ D f .�/ for all CP1=2 < p � P;

where gp .�/ is different than zero in �p . So, we hope that the test will have
nontrivial power for alternatives converging to the null hypothesis at rate of order
O
�
n�1=2P�1=2

�
, which is the rate that one would expect in a parametric setting.

Notice that, without loss of generality, we have ordered the sequences in such a way
that the first CP1=2 sequences are those for which fp .�/ 6D f .�/. Assuming for
notational simplicity �p D �, we then have the following result.

Proposition 1. UnderHl and assuming C1� C3, we have that

Qn1=2P1=2Tn !d N .c; 4C �4/ ;

where c D 2
R
�
g .�/ d� with g .�/ D limP%1 P�1=2

PP1=2

pD1 gp .�/.

Proof. First, proceeding as in the proof of Theorem 1, it easily follows that Tn is
governed by the behaviour of

T 1
n D 1

Qn
QnX

jD1

8
<̂

:̂
1

P

PX

pD1

0

@ fp .j / VI";p .j /C fp .j /

P�1
PP

qD1 fq .j / VI";q .j /C 1
� 1

1

A
2

�
�
1 � 2

P

�
9
>=

>;
;
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where VI";p .j / D I";p .j / � 1 and where for notational simplicity we have
abbreviated fp .j / =f P .j / as fp .j / with f P .j / D P�1

PP
qD1 fq .j /. Also,

to abbreviate the arguments and notation we assume that �2";p D �2" . Now,
using (13.15) and the arguments in the proof of Theorem 1, we have that

1
�

P�1
PP

qD1 fq .j / VI";q
�
jj
�C 1

�2
asym' 1 � �

b2n .j /C 2bn .j /
�
;

where bn .j / D P�1
PP

qD1 fq .j / VI";q .j / and “
asym' ” denotes that the left- and right-

hand sides are asymptotically equivalent.
So, the asymptotic behaviour of Tn is that governed by

1

Qn
QnX

jD1

(
1

P

PX

pD1

n�
fp .j / VI";p .j / � bn .j /

�
C �

fp .j / � 1
�o2

� �1 � �
b2n .j /C 2bn .j /

��
)

�
�
1 � 2

P

�
:

Now, except terms of smaller order of magnitude, the expectation of the last
displayed expression is

1

Qn
QnX

jD1

8
<

:

�
1 � 2

P

�
1

P

PX

qD1
f 2
q .j / � 1C P�1

PX

qD1

�
fp .j / � 1�2

9
=

;

D 2

Qn
QnX

jD1
n�1=2P�1=2

P1=2X

qD1
gq .j / .1C o .1// ; (13.9)

because, recalling the definition of Hl , we have that, for all j D 1; : : : ; Qn,

1

P

PX

qD1
f 2
q .j / � 1 D 1

Qn1=2P
P1=2X

qD1
gq .j / .1C o .1// :

So, standard arguments indicate that Qn1=2P1=2 times the right side of (13.9) is

21=2

Qn
QnX

jD1

8
<

:
1

P1=2

P1=2X

qD1
gq .j /

9
=

; !
P;n%1

c

since f P .j / D 1 C n�1=2P�1
PP1=2

qD1 gq .j / under Hl . From here the proof of the
proposition proceeds as that of Theorem 1 and so it is omitted. �
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One immediate conclusion that we draw from Proposition 1 is that our test detect
local alternatives shrinking to the null hypothesis at a parametric rate, even being
our scenario a nonparametric one.

13.3 Proof of Theorem 1

In what follows we denote VI";p .j / D I";p .j / � 1, where

I";p .j / D 1

n

nX

t;sD1

"t;p

�"

"s;p

�"
ei.t�s/�j and Rp .j / D Ip .j /

f .j /
� I";p .j / : (13.10)

Using [3] Theorem 10.3.1 and then C1 we have that standard algebra implies
that

E

0

@ 1
P

PX

pD1
R2p .j /

1

A D O

�
1

n

�
I E

�
Rp .j /

� D O

�
1

n

�
(13.11)

E

0

@ 1
P

PX

pD1
Rp .j /

1

A
2

D O
�
n�2 C P�1n�1

�
: (13.12)

In addition and denoting I .�/ as the indicator function, C1 also implies that

E

0

@ 1
P

PX

pD1
VI";p .j /

1

A
2

D O
�
P�1

� I

E

0

@ 1
P

PX

pD1
VI";p .j / 1P

PX

pD1
VI";p .k/

1

A D I .j D k/

P
C 1

nP
1

P

PX

pD1
�4;p: (13.13)

Next, using (13.11) and (13.12), we obtain that

0

@ 1
P

PX

pD1

Ip .j /

f .j /

1

A
2

D
0

@ 1
P

PX

pD1

�
Rp .j /C VI";p .j /C 1

�
1

A
2

D
0

@ 1
P

PX

pD1
VI";p .j /

1

A
2

C 2

P

PX

pD1
VI";p .j /C1C�n; (13.14)
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where �n is a sequence of random variables such that E �n D Op
�
n�1

�
. Thus, using

the linearization

1

an
D 1

a
� an � a

a2
C .an � a/2

a3
CO

�
jan � aj3

�
; (13.15)

with an D
�

P�1
PP

pD1 Ip .j / =f .j /
�2

and a D 1, it follows easily by C3 and then

by (13.11) that

Tn D 1

Qn
QnX

jD1

8
<̂

:̂
1

P

PX

pD1

2
64

0

@Rp .j /C VI";p .j / � 1

P

PX

qD1

�
Rq .j /C VI";q .j /

�
1

A
2

�

0

B@1C 3

0

@ 1
P

PX

qD1
VI";q .j /

1

A
2

� 2

P

PX

qD1
VI";q .j /

1

CA

3

75 �
�
1 � 2

P

�
9
>=

>;

C op

�
.nP/�1=2

�

D 1

Qn
QnX

jD1

8
<̂

:̂
1

P

PX

pD1

2
64

0
B@ VI 2";p .j / �

0

@ 1
P

PX

qD1
VI";q .j /

1

A
2
1
CA

�

0
B@1C 3

0

@ 1
P

PX

qD1
VI";q .j /

1

A
2

� 2

P

PX

qD1
VI";q .j /

1
CA

3
75 �

�
1 � 2

P

�
9
>=

>;

C op

�
.nP/�1=2

�
:

From here and observing that E
�PP

pD1
n PI 2";p .j / � 1

o�2 D O
�

PCn�1PpD1
P�4;p

�
, we obtain by (13.13) and standard arguments that

Tn D 1

Qn
QnX

jD1

8
<̂

:̂
1

P

PX

pD1

VI 2";p .j /� 2 VI";p .j /C 2
0

@ 1
P

PX

qD1

VI";q .j /
1

A
2

� 2

P2

PX

q;pD1

VI 2";q .j / VI";p .j /
9
>=

>;

�
�
1� 2

P

�
C op

�
n�1=2P�1=2

�
: (13.16)

We can now see the motivation to include the term .1 � 2=P/ in (13.4) as
standard manipulations indicate that
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E

0

@ 1
P

PX

qD1
VI";q .j /

1

A
2

� E

0

@ 1

P2

PX

q;pD1
VI 2";q .j / VI";p .j /

1

A D 1

P
C o

�
1

Pn

�
:

Next, E

�PQn
jD1

	�
P�1=2

PP
pD1 VI";p .j /

�2 � 1

�2

is equal to

QnX

j;kD1

1

P2

PX

q1;q2;p1;p2D1

n
E
� VI";q1 .j / VI";q2 .j / VI";p1 .k/ VI";p2 .k/

�
� 1

o

D
QnX

j;kD1

1

P2

PX

q;pD1

h
E VI 2";q .j / E VI 2";p .k/ � 1

i
C 2

0

@ 1
P

PX

pD1
E
n VI";p .j / VI";p .k/

o
1

A
2

C 1

P2

PX

pD1
E
n VI 2";p .j / VI 2";p .k/

o
CO

�
n2

P

�

because C1 implies that the expectation on the left of the last displayed equality
is zero unless the subindexes .p1; p2; q1; q2/ come by pairs. Now using [1]
Theorems 2.3.2 and 4.3.1., and in particular expressions in (2.3.7) and
(4.3.15), we obtain that Cov

�
I";p .j / ; I";p .k/

� D �
1CO

�
n�1

��
I .j D k/ C

O
�
n�1

�
I .j ¤ k/. The latter implies that the right side of the last displayed

equation is O
�
n2=P

�
. Similarly

E

0

@
QnX

jD1

8
<

:
1

P

PX

q;pD1
VI 2";q .j / VI";p .j / � 2

9
=

;

1

A
2

D O

�
n2

P

�
:

So, . QnP/1=2Tn D . QnP/�1=2
PQn

jD1
PP

pD1
n VI 2";p .j / � 1 � 2 VI";p .j /

o
C op .1/ and

thus the proof is completed if we show that

1

. QnP/1=2

QnX

jD1

PX

pD1

n VI 2";p .j / � 1 � 2 VI";p .j /
o

d! N .0; 4C �4/ :

To that end, we need to check the “generalized” Lindeberg’s condition as in
Theorem 2 of [15]. Indeed, a sufficient condition for that theorem to hold true is that

E

0

@ 1

P1=2

PX

pD1

n VI 2";p .j / � 1 � 2 VI";p .j /
o
1

A
4

< 1

uniformly in P and j . But this is the case by C1 and that E VI 8";p .j / < 1. This
concludes the proof of the Theorem. �
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13.4 Proof of Theorem 2

We first show that

Ocj � cj D wj C 1

Qn
QnX

`D1

0

@ 1
P

PX

pD1
Rp .`/

1

A cos .j�`/COp
�
P�2n�1=2

�
; forj � 1;

(13.17)

where E
ˇ̌
wj
ˇ̌2 D O

�
n�1P�1

�
and E

�
wjwk

� D 0 for j ¤ k, and the Op .�/ is
uniformly in j � 1.

Indeed denoting cj;n D Qn�1PQn`D1 logf .`/ cos .j�`/, by definition

Ocj � cj D Ocj � cj;n CO
�
min

�
n�1;

ˇ̌
cj
ˇ̌��
;

because twice continuous differentiability of logf .�/ implies that

1

n

nX

`D1
logf .`/ cos .j�`/� cj D 1

n

nX

`D1

( 1X

kD0
cke

ik�`

)
cos .j�`/� cj

D O
�
min

�
n�1;

ˇ̌
cj
ˇ̌��
: (13.18)

Recall that (13.8) indicates that ck is the kth Fourier coefficient of logf .�/.

Next, using the inequality sup`D1;:::;Qn
ˇ̌
ap
ˇ̌ � �P

` a
q
p

�1=q
together with (13.12),

we get that

E sup
`D1;:::;Qn

ˇ̌
ˇ Of .`/� f .`/

ˇ̌
ˇ
2 �

QnX

`D1

E

ˇ̌
ˇ̌
ˇ̌
1

P

PX

pD1

Rp .`/

ˇ̌
ˇ̌
ˇ̌

2

C
0

B@
QnX

`D1

E

0

@ 1
P

PX

pD1

VI";p .`/
1

A
4
1

CA

1=2

D O
�
n�1=2P�1

�
: (13.19)

So, using that E
ˇ̌
ˇ Of .`/� f .`/

ˇ̌
ˇ
2 D Op

�
P�1

�
and (13.19), we obtain that Taylor’s

expansion of logf .�/ implies that

Ocj � cj;n D 1

Qn
QnX

`D1

 Of .`/
f .`/

� 1
!

cos .j�`/

C1

Qn
QnX

`D1

 Of .`/
f .`/

� 1

!2
cos .j�`/COp

�
P�2n�1=2

�
;
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where the Op .�/ is uniformly in j . Using (13.10) and (13.12), we have that

Ocj � cj;n D 1

Qn
QnX

`D1

0

@ 1
P

PX

pD1
VI";p .`/

1

A cos .j�`/

C1

Qn
QnX

`D1

0

@ 1
P

PX

pD1
VI";p .`/

1
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cos .j�`/

C1

Qn
QnX

`D1

0

@ 1
P

PX

pD1
Rp .`/

1

A cos .j�`/COp
�
P�1n�1

�
;

where the Op .�/ is uniformly in j � 1. Because
PQn

`D1 cos .j�`/ D 0 if j � 1,
we have that proceeding as in the proof of Theorem 1, the second moment
of the first and second terms on the right of the last displayed expression is

O
�
.nP/�1 C �

nP2
��1�

. From here it is standard to conclude (13.17). Finally, we

have that

E
�
wjwk

� D 0 if j ¤ k;

which follows easily from the fact that the moments of either P�1
PP

pD1 VI";p .`/ or
�

P�1
PP

pD1 VI";p .`/
�2

are independent of `. Recall that
˚
"t;p

�
t2Z are independent

sequences of random variables and
PQn

`D1 cos .j�`/ D 0 if j � 1. It is worth
observing that in particular we have shown that

O�2" � �2" D . Oc0 � c0/ .2
/ e
c0 C op .1/ :

Let An .j / DW exp
nPQn

uD1 cue
�iu�j

o
. Then uniformly in j , we have that

log
� OA .j / =An .j /

�
D

QnX

uD1
. Ocu � cu;n/ e

�iu�j

D
QnX

uD1

8
<

:wu C 1
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QnX

`D1
cos .u�`/

1

P

PX

pD1
Rp .`/

9
=

; e
�iu�j

COp
�
P�2n1=2 C P�1

�
:
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Next,

E
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QnX

uD1

1
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QnX

`D1
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@ 1
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PX

pD1
Rp .`/
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A
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D E
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�
1
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C 1

j`C j j
�
1

P

PX

pD1
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A
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D O
�
P�1n�1

�
;

where jajC D max .1; jaj/, using (13.12). Finally, proceeding as with the last
expression, it is easy to observe that

E

 QnX

uD1
wu cos .u�`/ e�iu�j

!2
D O

�
P�1

�

Next twice continuous differentiability of f .�/ implies that An .j / � A .j / D
A .j /�1 exp

˚�P1uDn cue
�iu�j � D O

�
n�2

�
. So that, Taylor expansion of

A�1 .j / OA .j / � 1 indicates that

A�1 .j / OA .j / � 1 D b .j /COp
�
P�2n1=2 C P�1
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;

E
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b .j /2
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D O

�
P�1

�
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Now, by definition
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n
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jD1
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C 1

n

nX

jD1
eit�j

� OA.j / A�1 .j / � 1
� nX

sD1
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�is�j (13.20)

C 1

n

nX

jD1
eit�j

(
A .j /

nX

sD1
xs;pe

�is�j �
nX

sD1
"s;pe

�is�j
)
:

By Barlett’s decomposition, see Brockwell and Davis (2000), it is clear that the first
term on the right is Op

�
P�1

�
uniformly in t � 1. The second term on the right of

(13.20) is
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1

n1=2

nX

jD1
eit�j

0

@1
Qn
QnX

`D1
cos .j�`/

1

P

PX

pD1
VI";p .`/

1

A 1

n1=2

nX

sD1
"s;pe

�is�j

COp
�
n1=2=P

�
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, the last displayed expression is Op

�
P�1=2 C n1=2=P

�
uniformly in

t � 1. So, it remains to examine the third term on the right of (13.20), which is
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using formulae (10.3.12) of [3]. Using the standard result E
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. Also, it is clear using the previous arguments that the

last displayed expression is op
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�
uniformly in t � 1. So, it remains to examine

the contribution due to
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`D0, which using the change of subindex s � n D r , it is
straightforward to notice that it suffices to examine
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first term is easily seen to be o
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uniformly in t D 1; : : : ; n.
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So, we conclude that uniformly in t D 1; : : : ; n, O"t;p � "t;p D op
�
t�1
�
. From

here it is standard to conclude the proof of the theorem. �

13.5 Conclusion

In this paper we have described and examined a simple test for equality of an
increasing number of spectral density functions of unspecified functional form. One
interesting aspect of the test is that, even without knowledge of the spectral density
function under the null, there was no need to choose any bandwidth or smoothing
parameter for its implementation. This is possible by using all the information given
in data, and in particular that the number of sequences P also increases without
limit. The implementation of the test is straightforward after we make use of the
Fast Fourier Transform. A second interesting aspect of the test is that its asymptotic
distribution is a normal random variable, although its asymptotic variance depends
on the “average” fourth cumulants of the sequences. So the implementation of the
test might be thought to be challenging as to provide an estimator of this average of
the fourth cumulant of the innovation sequences

˚
"t;p

�
t2Z;p2N. This is the case as

we have not made any specification on the dynamic structure of the sequences˚
xt;p

�
t2Z;p2N. However, after realizing that all we need is to provide a consistent

estimator of the average fourth cumulant instead of the fourth cumulants for each of
the individual sequences, we suggest a very simple estimator based on the canonical
decomposition of the spectral density function as given in [17], see also [13] or [2]
for more details.

There are several interesting issues worth examining as those already mentioned
in the introduction. One of them is how we can extend this methodology to the
situation where the sample sizes for the different sequences are not necessarily
the same. We believe that the methodology in the paper can be implemented after
some smoothing has been put in place, for instance, via splines. A second relevant
extension is what happens when there exists dependence among the sequences. This
scenario might be the rule rather than the exception with, say, spatio-temporal data
or with large panel data sets with cross-section dependence across individuals. That
is, if we denote �p;q .t/ the dependence between

˚
"t;p

�
t2Z and

˚
"t;q
�
t2Z, p; q 2 N,

the question is how are our results going to change in this scenario? We conjecture
that, after inspection of our proofs, a condition such as P�1

PP
p;qD1

ˇ̌
�p;q .t/

ˇ̌ �
C < 1 uniformly in t will suffice for the main conclusions in Theorem 1 to go
through. However, the technical details to accomplish this and in particular those
to obtain a consistent estimator of the asymptotic variance might be cumbersome
and lengthy. We envisage, though, that this is possible via bootstrap methods using
results given in Sect. 13.2 together with those obtained by Chang and Ogden [5]
to be able to obtain a simple computational estimator of the long run variance of
the test. However the details are beyond the scope of this paper. Finally, there are a
couple of problems, mentioned in the introduction, where the methods developed in
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the paper can be used. One of them was on testing for stationarity of the covariance
structure of a sequence of random variables, being the second one on testing for
separability of the covariance function in a spatio-temporal data set.
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Chapter 14
Multiscale Local Polynomial Models
for Estimation and Testing

Maarten Jansen

Abstract We present a wavelet-like multiscale decomposition based on iterated
local polynomial smoothing with scale dependent bandwidths. For reasons of
continuity and smoothness, a multiscale smoothing decomposition must be slightly
overcomplete, but the redundancy is less than in the nondecimated wavelet trans-
form. Unlike decimated wavelet transforms, multiscale local polynomial decom-
positions remain numerically stable and the reconstructions are still smooth when
the decomposition is applied to time series data on irregular time points. In image
denoising, local polynomials outperform nondecimated wavelet transforms, even
though the latter have a higher degree of redundancy allowing additional smoothing
upon reconstruction. Another benefit from the presented scheme is its ability to
construct multiscale decompositions for derivatives of functions. The transform can
also be extended towards nonlinear and observation-adaptive data decompositions.

Keywords Kernel • Local polynomial • Wavelet • Multiscale

14.1 Introduction

The success of wavelet methods in data smoothing hinges on the locality of the
wavelet basis functions. Locality means that the basis function is concentrated
around a given location in time or space, but also in frequency or scale. The property
of locality makes wavelets well suited for the analysis of data with intermittent
behavior. Examples of such data include the observations of functions that are
piecewise smooth, with isolated jumps. As a consequence of locality, wavelet
decompositions of such functions are sparse, since most basis functions correspond
to locations and scales that do not appear in the data. Sparsity in its turn is the
key to nonlinear processing, typically thresholding. Next to sparsity, wavelets are
characterized by multiresolution, meaning that contributions at different scales can
be linked to each other in a way so that the decomposition as a whole can be

M. Jansen (�)
Department of Mathematics and Computer Science, Université Libre de Bruxelles (ULB),
Brussel, Belgium
e-mail: maarten.jansen@ulb.ac.be

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__14

155

mailto:maarten.jansen@ulb.ac.be


156 M. Jansen

seen as a tree structured analysis of the data. This structure can then be exploited
in the processing of the data. Processing data, such as smoothing, with wavelets is
thus based on nonlinearity and multiresolution. In accordance with the sparsity, the
processing includes the selection of significant wavelet coefficients. This selection
and the further estimation may proceed along the multiresolution structure.

In spite of the success of wavelet methods, criticisms quote the sometimes
unpleasant visual artifacts present in the reconstruction from a wavelet decompo-
sition. These artifacts come in two kinds. The first category is due to false positives
among the selected wavelet coefficients. The false positives appear as spurious
spikes in an interval of smooth behavior. False positives can be associated with a
large variance in the observations. The second category are features missed by the
selection. They appear as Gibbs-like fluctuations or blur near discontinuities. False
negatives are due to strict selection criteria that introduce bias.

Another point of criticism is that wavelet methods are not easy to extend
towards settings beyond that of equidistant observational points. The extensions
exist [1, 3, 6, 9, 10], but are either computationally intensive, or have difficulties in
combining smoothness with good numerical properties. It seems that in this respect,
the classical fast wavelet transform, defined on equidistant point sets, is a lucky
coincidence [4].

The new scheme is implemented as a repeated local polynomial smoothing
operation, where bandwidths changing over the iterations define the subsequent
levels of the multiscale decomposition. Bandwidths can be chosen in a dyadic way
(as integer powers of two, that is), but other sequences of scales are equally possible.
As a consequence, the bandwidth is not a smoothing parameter, but a design
parameter for the decomposition. In general, the local polynomial smoothing is used
as an intermediate step in a data transform procedure, and not for proper smoothing.
Smoothing can take place after the decomposition. As usual with wavelets, the
presented transform is particularly interesting for data that are piecewise smooth,
that is, data that are smooth on subintervals, separated by singular points of jumps,
cusps, or other forms of discontinuity. For such data, the multiscale local polynomial
approach can be combined with nonlinear processing on the transformed data
(typically thresholding), which would not be possible in a direct local polynomial
smoothing approach. The reason behind this observation is that locating an unknown
number of change points is in fact a naturally multiscale problem: indeed, the
discovery of each change point involves the identification of the lengths or scales
of the adjacent intervals of smooth behavior, which requires checking all possible
scales. On the other hand, the multiscale local polynomial decomposition has the
benefit over classical wavelet transforms, that it is not limited to dyadic scales or
dyadic point sets, nor is it computationally or conceptually difficult to construct a
multiscale local polynomial transform for data on nonequidistant point sets.

This paper discusses applications and extensions of a newly introduced multires-
olution scheme [4]. The new scheme is slightly redundant, meaning that it produces
more transform coefficients than observations. The redundancy is necessary in
order to combine smoothness of the reconstruction with good numerical condition.
The number of coefficients is twice the number of observations. This redundancy
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factor is lower than the log.n/ for the nondecimated wavelet transform. Yet, as illus-
trated in Sect. 14.3, the new decomposition seems to be superior in image denoising
than the nondecimated wavelet transform. Secondly, the new decomposition can
easily be extended to be data-adaptive, as discussed in Sect. 14.5. Thirdly, the new
decomposition can be used to construct a stable multiscale representation for the
derivative of function, as shown in Sect. 14.4.

14.2 Multiscale Local Polynomial Transforms

The general scheme for a multiscale local polynomial transform starts off by
associating the observations Yi D f .xi /C "i for i D 1; : : : ; n to the finest scale J ,
that is, the finest scaling coefficients are defined as sJ;k D Yk while the finest scale
grid is xJ;k D xk . By JJ D f1; : : : ; ng, we denote the index set of the grid points.
Then the proposed multiscale local polynomial decomposition is implemented as a
loop over resolution level j , for starting at j D J �1 down to the coarsest or lowest
scale j D L. At each scale j , we perform the following actions.

1. We set the index set of scale j to the evens in the set of scale j C 1, that is,
Jj D e D f2kjk 2 JjC1g. We coarsen the observational grid accordingly,
that is, xj D xjC1;e. This subsampling operation is denoted by xj D .# 2/xjC1,
where .# 2/ represents a rectangular matrix whose columns are the subsampled
columns of the identity matrix.

2. We filter the coarse scaling coefficients sj D .# 2/ QHj � sjC1. The square filter
matrix can be the identity matrix. In that case, the even scaling coefficients
will proceed unchanged to the next scale. As the routine is repeated scale after
scale, a coarse scale coefficient would then follow from a single observation.
The variance of the coarse scale coefficient would be reduced by a nontrivial
smoothing filter QHj at each intermediate scale j , leading to coarse scaling
coefficients that are weighted averages of the observations. In signal processing
terms, such a filter can be described as anti-aliasing.

3. We define wj , the wavelet or detail coefficients at scale j as the offsets
between the fine scaling coefficients and a prediction based on the coarse
scale coefficients, that is wj D sjC1 � Pj ." 2/sj : The rectangular matrix
." 2/ D .# 2/T maps the subsampled vector sj onto a vector of the original size
by inserting zeros. In practice, this upsampling is incorporated into the prediction
matrix Pj .

4. For reasons of numerical stability, the prediction can be followed by another
update of the scaling coefficients, sUj D sj C Uj .# 2/wj : Such an update
may serve to make the underlying basis or frame functions satisfy the vanishing
integral condition. Basis functions without zero integral are known as hierarchi-
cal basis functions. They are perfectly fine with nonlinear processing in some
smoothness spaces, including Sobolev spaces, but zero integrals are necessary
in function spaces that allow discontinuities. Indeed, it is easy, for instance, to
construct nontrivial decompositions of the zero function in a hierarchical basis
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that converge in L2 [5]. In signal processing terms, the update step can also be
seen as an anti-aliasing step. We refer to [4] for further details about updating of
the scaling coefficients.

The algorithm presented here can be seen as an extension of both the lifting scheme
[7, 8] and the Laplacian pyramid [2]. It thus constructs a linear but overcomplete
transform w D QWY of the observations Y onto a vector of multiscale local polyno-
mial coefficients w. The vector w is assembled as w D ŒsL; wL; wLC1; : : : ;wJ�1�.

The redundancy of the transform occurs in the definition of wj , which has the
same size as the scaling coefficients sjC1. In a wavelet transform using the lifting
scheme, the detail coefficients wj would have the same size as the odd subsamples
of sjC1.

Because of the redundancy, the inverse transform is not unique. The most
straightforward reconstruction is to use wj and sj in the expression sjC1 D
wj C Pj ." 2/sj :

The redundancy is needed because the operation Pj is filled in by a local
polynomial smoothing [4]. If the operation were applied on the odd subsamples of
sjC1, as in a wavelet transform, then the subsampling would undo the smoothness
of the operation in Pj , leading to fractal-like reconstruction. In order to avoid this
effect, subsampling requires Pj to be interpolating, but interpolation is unstable
on irregular point sets. Therefore, smoothness and numerical stability seem to be
somehow contradictory.

Both operations Pj and QHj can thus be implemented by local polynomial
smoothing, see (13) in [4]. The designs of both operations together determine the
properties of the transform. It is best to design the prefilter QHj in function of the
choice of Pj . For a full discussion, we refer to [4]. A good choice is to take QHj from
the same family as Pj . For instance, if Pj implements a local quadratic smoothing,
then QHj should also be invariant under quadratic polynomials. On irregular point
sets, it is important that the smoothing operation can at least reproduce the identical
function on that set. Therefore, on irregular point sets, a local polynomial of degree
at least one is recommended. Local constant smoothing, plain Nadaraya–Watson
that is, kernel estimation is not sufficient: it will lead to reconstructions that reflect
the structure of the observational grid.

It should be noted that the bandwidth in the multiscale local polynomial decom-
position is not primarily a smoothing parameter, but it rather controls the scale. That
means that the bandwidth should be scale dependent and that the transform can
be generalized beyond the dyadic scales that are common in the classical discrete
wavelet transform. For a more elaborated discussion of the bandwidth, we refer
to [4].

Figure 14.1 illustrates the method with a test signal showing a bump, jump, and
kink. The function is defined on Œ0; 1� as
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Fig. 14.1 Test signal with 2,049 observations, subject to independent, homoscedastic, additive
normal errors and a reconstruction using multiscale local linear smoothing and scale dependent
minimum prediction error soft thresholding
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for x 2 Œ0; 1� with transition points 0:3I 0:4I 0:62I 0:7I 0:85. The function has
been observed in n D 2;049 points xi uniformly distributed on Œ0; 1�, according
to the additive model Yi D f .xi / C "i , where "i is independent, homoscedastic
normal noise with �" D 1=3. The simulation study then computes the multiscale
local polynomial decomposition of the observations w D QWY along with its noise-
free version v D QWf, where f D .f .x1/; : : : ; f .xn//. As before, denote w D
ŒsL; wL; wLC1; : : : ;wJ�1� and v D ŒrL; vL; vLC1; : : : ; vJ�1�, then the estimator
of these noise-free coefficients used here is a level-dependent thresholding routine,
which is Ov D ŒsL; OvL; OvLC1; : : : ; OvJ�1�, where Ovj D ST.wj ; �j /. The function
ST.x; �/ is the soft-threshold operation on vector x with threshold �, which
is defined componentwise by ST.x; �/ D .ST.xi ; �//iD1;:::;n and ST.xi ; �/ D
sign.xi / .jxi j � �/ 1.jxi j � �/. In this expression, the function 1.A/ stands for
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Fig. 14.2 Original noisy image (SNRD 3 dB); Denoising by simple thresholding the three finest
scales in two decompositions: first using nondecimated Cohen–Daubechies–Feauveau wavelet
family with less dissimilar lengths, four primal and four dual vanishing moments (SNR =
13.67 dB); second using multiscale local linear smoothing (SNR = 13.84 dB)

the indicator function or characteristic function for a set A. The threshold �j is
chosen to minimize the prediction error PE.Ovj / D 1

n
kOvj � vj k2 over all soft-

threshold estimators. Finally the vector of observations is estimated by an inverse
transform Of D WOv, where W is a reconstruction from a multiscale local polynomial
decomposition.

14.3 Application in Image Denoising

The decomposition of Sect. 14.2 can be extended towards two-dimensional data,
such as images, but also irregularly scattered data. On regular grids of pixels, a
two-dimensional square wavelet transform can be constructed by using for Pj a
local linear prediction with a cosine kernel and bandwidth equal to three pixels. The
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operation QHj is the same local linear prediction. The transform is completed by
an update operation Uj , ensuring that the frame functions of the reconstruction all
have two vanishing moments. Figure 14.2 compares the denoising capacity of such a
slightly overcomplete transform with a fully nondecimated wavelet transform using
the filters of the Cohen–Daubechies–Feauveau wavelet family with less dissimilar
lengths and four primal and four dual vanishing moments (CDF-LDL 4,4). These
filters are quite popular in the image processing world. Somehow surprisingly,
the local linear prediction transform, which relies just on a factor 2 redundancy,
slightly outperforms the CDF-LDL 4,4 nondecimated transform, which can use a
factor log.n/ redundancy for additional smoothing upon reconstruction.

14.4 A Multiscale Estimation for the Derivative of a Function

In a local polynomial of degree one or higher, the coefficient of the linear term
can be used to estimate the local value derivative in a numerically stable way. This
procedure can be applied to the integral of the observations, which is numerically
well-conditioned problem. The result is a differentiated multiscale local polynomial
analysis of the integral.

More precisely, let P0j denote the matrix that maps data ." 2/sj onto the
linear terms in the local weighted least squares polynomials that smooth sj on
the observational grid xj , with weights given by the moving kernel function.
Furthermore, let Ij a numerical integration matrix, then the wavelet coefficients
at scale j are defined as w0j D sjC1� P0j ." 2/Ij sj . The prefilter can be constructed

in a similar way, sj D .# 2/ QH0j IjC1sjC1; where QH0j maps a vector sjC1 onto the
linear terms in the local polynomials for sjC1 on xjC1.

If we replace the finest scale (J � 1) prefilter by an operation without numerical
integration, i.e., sJ�1 D .# 2/ QH0J�1sJ ; then the decomposition forms a multiscale
analysis of the derivative. In particular assuming that IJ is invertible, and IJDJ D I ,
with I the identity matrix, we can write QH0J�1sJ D QH0J�1IJ .DJ sJ /.

The choice of Ij requires some care. Complications include forward and back-
ward shifts due to discretization, resulting in unsharp reconstruction of singularities.
Another point of attention is numerical stability, especially when the differentiated
integral prediction is followed by an update step.

The multiscale differentiated integral local linear smoothing is illustrated
in Fig. 14.3.
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Fig. 14.3 Reconstruction using scale dependent minimum prediction error soft thresholding in a
multiscale differentiated integral local linear smoothing for the observations in Fig. 14.1

14.5 Adaptive Multiscale Local Polynomial Smoothing

14.5.1 A Free Adaptive Prefilter

The reconstruction from the multiscale local polynomial decomposition is not
unique. The most straightforward routine is based on repetitive application of
the expression sjC1 D wj C Pj ." 2/sj : This expression does not involve the
prefilter QHj . As a consequence, the prefilter can be taken to be nonlinear or data-
adaptive at no immediate cost. Nevertheless, as QHj and Pj are best designed
together, both can be made adaptive if the analysis keeps track of the data-dependent
choices for use at the reconstruction.

14.5.2 The Goal of Adaptivity

Multiscale transforms using local operations at each scale lead to sparse decompo-
sitions. These sparse data representations allow nonlinear processing with focus on
the coefficients in the representation that correspond to the location of discontinu-
ities. In this scheme, the multiscale transform itself plays a passive role: it is a linear
decomposition into a representation from which discontinuities can be detected by
a different routine.

The adaptive version that we propose here is a nonlinear, data-dependent trans-
form, which, by itself, actively searches for possible discontinuities. The transform
adapts itself to these possible discontinuities in a way that discontinuities detected
during the transform will not give rise to large coefficients. More precisely, the set of
input data at the current scale will be partitioned around the locations of the detected
discontinuities, so that no subset of input data contains a discontinuity other than in
its endpoints. As a result, the representation will be even sparser than before, leading
to less false negatives and less false positives in the coefficient selection phase.
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Fig. 14.4 Full and truncated
kernels in adaptive kernel
smoothing

14.5.3 Adaptivity Driven by Statistical Testing

The adaptivity is realized by choosing between alternative predictions. The standard
prediction, as defined in Sect. 14.2 is considered as default choice, unless significant
improvement is obtained by using a different prediction. More precisely, let Pj be a
local polynomial smoothing operation using a two-sided kernelK.u/ as depicted in
the middle of Fig. 14.4. Let PLj and PRj stand for the same operations, but this time
using, respectively, the right- and left truncated kernels KL.u/ D K.u/ � I.u < 0/

and KR.u/ D K.u/ � 1.u > 0/, where, as before, 1.A / is the indicator function
on a set A . The use of a right- or left-truncated kernel suggests the presence of
a singularity, which would make smoothing across its location more difficult and
less meaningful. Denote k the index in wj corresponding to the location of the
singularity, then smoothing across k being more difficult than truncated smoothing
would result in a large offset wj;k , compared to one of the truncated versions, wLj;k
or wRj;k .

14.5.4 The Statistical Test

Let �sj;k D E.wsjk / for s 2 fL;C;Rg, then we test if H0 W �sj;k D 0 against

H1 W �Cj;k ¤ 0 and min.j�Lj;kj; j�Rj;kj/ D 0. The test can be repeated for every

k separately, based on the test statistic Tk D max.jwCjk j=jwLjk j; jwCjk j=jwRjk j/, or
any equivalent value. This test statistic is independent from the variance of the
coefficients. Its null distribution, however, is that of the maximum of two ratios,
which is typically a heavy tailed variable. The heavy tails lead to tests with little
power, many false positives or both.

In order to increase the power of the statistical tests, we estimate the variance of
each coefficient based on all coefficients at scale j . This estimation proceeds in two
steps. First, assuming that the observations are independent, identically distributed,
we have for the covariance matrix˙y D �2I . From there we can, up to the unknown
constant �2, find the structure of the covariance matrix of the coefficients using the
recursion

sj D QVj sjC1

wj D QWj sjC1
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Then

˙sj D QVj˙sjC1
QV T
j

˙wj D QWj˙sjC1
QW T
j ;

which allows to standardize the detail coefficients as

w0j;k D wj;k=
q�
˙wj

�
kk
;

for which we know that var.w0j;k/ D �2. In a second step, the parameter � can be
estimated, using the sparsity of the decompositions. For Gaussian data, this could
be, for instance, the median absolute deviation (MAD) based estimator

O�j D median.jw0j j/=˚�1.3=4/;

where ˚.x/ is the cumulative Gaussian distribution, and ˚�1.3=4/ � 0:6745.
Based on this estimator, we can impose a threshold � on jw0j j= O�j and select
coefficients that are above the threshold, while at least one of its truncated
equivalents is below the threshold.

The presence of a single change point may lead to significant differences
between full and truncated offsets at several locations. In order to eliminate
multiple discoveries of a single change, all adjacent offsets are recomputed after
the discovery of a change point, in a way that the newly discovered change point
is excluded from the computations. Further details can be found in forthcoming
publications, currently under submission.

14.5.5 Adaptivity and Further Update Steps

The adaptivity actively locates the singularities. It thus reduces the number of
false negatives. It also avoids smoothing across singularities, thereby offering
an alternative to decompositions with update operations Uj for use in function
spaces that allow jumps. It is also an alternative for updated scaling coefficients
in the reduction of aliasing. Updating the scaling coefficients after an adaptive
prediction step is a nontrivial thing to do. Uncareful updates will easily introduce
new numerical problems. This is because the adaptivity has lined up several basis
functions along a singularity. As a consequence, these basis functions show a large
degree of overlap, and are thus far from orthogonal. The impact of the overlap can be
reduced by grouped processing, in particular by block or tree structured coefficient
selection. This is subject of ongoing work.
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Fig. 14.5 Reconstruction using adaptive multiscale kernel smoothing the observations in Fig. 14.1

Figure 14.5 shows a reconstruction from simple thresholding within an adaptive
multiscale kernel smoothing scheme without update step. The edges are much
sharper than in the non-adaptive decompositions.

14.6 Conclusions

This paper has discussed multiscale local polynomial smoothing. Initially, this
scheme has been proposed to reconciliate the benefits from nonlinear processing
within a sparse multiscale decompositions and smooth reconstructions using ker-
nel based estimators. Thanks to a slight overcompleteness, the multiscale local
polynomial decomposition is able to combine smoothness and numerical stability
on an arbitrary irregular point set. This offers an elegant solution to the numerical
problems encountered in the so-called second generation wavelet decompositions
on irregular point sets, using the lifting scheme. The proposed transform performs
surprisingly well on other settings, such as image denoising, which is obviously
far from a problem on a nonequidistant point set. The transform can also be used
to estimate derivatives in multiscale fashion. Data-adaptive versions are another
extension of the presented method. Finally, it should be noted that the scale in the
multiscale decomposition is not automatic and dyadic, as in a wavelet transform, but
rather steered by the level dependent choice of the bandwidth. This leaves the user
with a richer and yet very natural range of multiscale decomposition to choose from.
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Chapter 15
Distributions of Clusters of Exceedances
and Their Applications
in Telecommunication Networks

Natalia Markovich

Abstract In many applications it is important to evaluate the impact of clusters
of observations caused by the dependence and heaviness of tails in time series.
We consider a stationary sequence of random variables fRngn�1 with marginal
cumulative distribution function F.x/ and the extremal index 
 2 Œ0; 1�. The clus-
ters contain consecutive exceedances of the time series over a threshold u separated
by return intervals with consecutive non-exceedances. We derive geometric forms
of asymptotically equal distributions of the normalized cluster and inter-cluster
sizes that depend on 
 . The inter-cluster size determines the number T1.u/ of
inter-arrival times between observations of the process Rt arising between two
consecutive clusters. The cluster size is equal to the number T2.u/ of inter-arrival
times within clusters. The inferences are valid when u is taken as a sufficiently high
quantile of the process fRng. The derived geometric models allow us to obtain the
asymptotically equal mean of T2.u/ and other indices of clusters. Applications in
telecommunication networks are discussed.

Keywords Clusters of exceedances • Extremal index • Geometric distribution
Cluster size • Inter-cluster size

15.1 Introduction

In many applications it is important to evaluate the impact of clusters of observations
caused by the dependence and heaviness of tails in time series. Clusters of extremal
events, i.e. conglomerates of exceedances over a threshold, impact the risk of
hazardous events like climate catastrophes, huge insurance claims, the loss and
delay in telecommunication networks due to overloading. There are different
definitions of a cluster. Clusters may be blocks of data with at least one exceedance
over a threshold, or clusters are data blocks separated by a fixed number of non-
exceedances over a threshold [2].
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Return interval

Clusters

Threshold u

T1(u)

T2 (u)

Fig. 15.1 Clusters of exceedances of the process Rt over the threshold u

We consider a stationary sequence of random variables (rvs) fRngn�1 with
cumulative distribution function (cdf) F.x/, Mn D maxfR1; : : : ; Rng and the
extremal index 
 2 Œ0; 1�. The clusters contain consecutive exceedances of the fRng
over a threshold u separated by return intervals with consecutive non-exceedances,
see Fig. 15.1.

We derive geometric-like asymptotically equal distributions of the cluster and
inter-cluster sizes that depend on 
 . The inter-cluster size determines the number
T1.u/ of inter-arrival times between non-exceedances of fRng arising between two
consecutive clusters, i.e. between two consecutive exceedances of the process fRng
over u. The cluster size is equal to the number T2.u/ of inter-arrival times between
exceedances within clusters, i.e. between two consecutive non-exceedances. The u
is taken as a sufficiently high quantile of the process fRng. We denote

T1.u/ D minfj � 1 W M1;j � u; RjC1 > ujR1 > ug;
T2.u/ D minfj � 1 W L1;j > u; RjC1 � ujR1 � ug;

where M1;j D maxfR2; : : : ; Rj g, M1;1 D �1, L1;j D minfR2; : : : ; Rj g, L1;1 D
C1.

The .1�F.u//T1.u/ is derived to be exponentially distributed [4]. In telecommu-
nication systems [10] one has to exclude the cases T1.u/ D 1 and T2.u/ D 1 since
they correspond to inter-arrival times between consecutive events fRig and to use

T �1 .u/ D minfj > 1 W M1;j � u; RjC1 > ujR1 > ug;
T �2 .u/ D minfj > 1 W L1;j > u; RjC1 � ujR1 � ug:

Then T �2 .u/ � 1 is the number of exceedances of fRng over u in the cluster (the
size of the cluster) and T �1 .u/ � 1 is the number of non-exceedances between two
consecutive clusters (the size of the inter-cluster).
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A geometric distribution has been used as a model of the limiting cluster size
distribution 
 , namely, 
.j / D limn!1 
n.j / for j D 1; 2; : : :, where


n.j / D P fNrn.un/ D j jNrn.un/ > 0g for j D 1; : : : ; rn;

is the cluster size distribution, rn D o.n/, Nrn.un/ is the number of observations
of fR1; : : : ; Rrng which exceed un D anx C bn such that the Leadbetter’s mixing
condition1 D.un/ is satisfied [5, 12]. If the process Rt satisfies the D00.un/-
condition2 [6], then in our notations


.j / D lim
n!1P fT2.un/ � 1 D j g D .1 � 
/j�1
; j D 1; 2; : : : (15.1)

is proposed in [12, p. 126] without rigorous proof.

Definition 1 ([7]). The stationary sequence fRngn�1 is said to have extremal index

 2 Œ0; 1� if for each 0 < � < 1 there is a sequence of real numbers un D un.�/
such that

lim
n!1n.1 � F.un// D �; lim

n!1P fMn � ung D e��
 hold: (15.2)

The idea behind the representation (15.1) is that 
 may be interpreted as the
reciprocal of the limiting mean cluster size 
 � 1=ET2.u/, i.e. the mean number of
exceedances over the threshold per cluster [7]. Hence, 
 may be used as a probability
in the geometric distribution.

The geometric nature of T1.u/ is considered in [1], where T1.u/ is called a
“duration between two consecutive violations”. It is used to test the independence
hypothesis.

In [9] geometric-like asymptotically equivalent distributions of both T1.u/ and
T2.u/ with probability corrupted by the extremal index 
 are derived. The latter
allows us to take into account the dependence in the data. The geometric model of
T2.u/ allows us to obtain its asymptotically equal mean. One can consider sums

1D.un/ is satisfied if for any A 2 I1;l .un/ and B 2 IlCs;n.un/, where Ij;l .un/ is the set of
all intersections of the events of the form fRi � ung for j � i � l , and for some positive
integer sequence fsng such that sn D o.n/, jP f.ATB/g � P fAgP fBgj � ˛.n; s/ holds and
˛.n; sn/! 0 as n!1.
2The D00.un/-condition [3, 6] states that if the stationary sequence fRtg satisfies the D.un/-
condition with un D anx C bn and normalizing sequences an > 0 and bn 2 R such that for
all x there exists � 2 R, � > 0 and � 2 R, such that

n .1� F.anx C bn//!
�
1C �.x � �/

�

��1=�

C

; as n!1;

holds, where .x/C D max.x; 0/, then limn!1

Prn
jD2 P fRj � un < RjC1jR1 > ung D 0,

where rn D o.n/, sn D o.n/, ˛.n; sn/! 0, .n=rn/˛.n; sn/! 0 and sn=rn! 0 as n!1.
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STi .u/ D PTi .u/
jD1 Xj , i 2 f1; 2g, where the sequence fXj g denotes inter-arrival times

between events fRt g, ST1.u/ and ST2.u/ are interpreted as the return interval and the
duration of a cluster, see Fig. 15.1. In [9] it is shown that the limit tail distribution
of ST2.u/ that is defined as a sum of random numbers of weakly dependent regularly
varying inter-arrival times with tail index 0 < ˛ < 2 is bounded by the tail of stable
distribution.

The paper is organized as follows. In Sects. 15.2 and 15.3 we present the obtained
theoretical results and examples of processes satisfying these results. In Sect. 15.4
applications in the teletraffic theory are considered.

15.2 Limit Distributions of T1.u/ and T2.u/

Our results [9] with respect to the distribution of T1.u/ can be considered as an
extension of Theorem 1. It is based on the mixing condition��.un/.

Definition 2. For real u and integer 1 � k � l , let Fk;l .u/ be the �-field generated
by the events fXi > ug, k � i � l . ��.un/ is fulfilled for the mixing coefficients

˛n;q.u/ D max
1�k�n�q

sup jP.BjA/ � P.B/j; (15.3)

where the supremum is taken over all A 2 F1;k.u/ with P.A/ > 0 and B 2
FkCq;n.u/, if there exist positive integers rn D o.n/, qn D o.rn/ for which
˛crn;qn.un/ ! 0 as n ! 1 for all c > 0.

Theorem 1 ([4]). Let the positive integers frng and the thresholds fung, n � 1, be
such that rn ! 1, rnF .un/ ! � and PfMrn � ung ! exp.�
�/ as n ! 1 for
some � 2 .0;1/ and 
 2 Œ0; 1�. If the condition��.un/ is satisfied, then

PfF .un/T1.un/ > tg ! 
 exp.�
 t/ (15.4)

for t > 0 as n ! 1, where F .t/ D 1 � F.t/ is the tail function of fR1g.

The result (15.4) implies that

F .un/T1.un/ Dd T
 D
	
�; withprobability 
;

0; withprobability 1 � 
;

where � is an exponentially distributed rv. This agrees with the result [5] that
the point process of exceedance times has a Poisson process limit. In [13] the
result (15.4) was shown for T1.u/� 1 since T1.u/ can provide nonzero values only.
In the limit the clusters form single points when thresholds increase [2, Sect. 10.3.1].

In [9] quantiles of the underlying process Rt are taken as thresholds fung. The
following result is derived.
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Let us consider the partition of the interval Œ1; j � for a fixed j , namely,

k�n;0 D 1; k�n;5 D j; k�n;i D Œjkn;i =n�C 1; i D f1; 2g;
k�n;3 D j � Œjkn;4=n�; k�n;4 D j � Œjkn;3=n�

(15.5)

that corresponds to the partition of the interval Œ1; n�

fkn;i�1 D o.kn;i /; i 2 f2; 3; 4gg; kn;4 D o.n/; n ! 1; (15.6)

where n is the sample size. Here, both k�n;1 and k�n;2 tend to 1, both k�n;3 and k�n;4 tend
to j and fŒk�n;2; k�n;3�g is the sequence of extending intervals as n ! 1.

Theorem 2 ([9]). Let fRngn�1 be a stationary process with the extremal index 
 .
Let fx�ng and fx��

n
g be sequences of quantiles of R1 of the levels f1 � �ng and

f1 � ��n g, respectively, those satisfy the conditions (15.2) if un is replaced by x�n or
by x��

n
, and qn D 1 � �n, q�n D 1 � ��n , ��n D .1 � q
n/

1=
 . Let positive integers
fk�n;ig, i D 0; 5, and fkn;i g, i D 1; 4, be, respectively, as in (15.5) and (15.6), p�n;i D
o.�n;i /, i 2 f1; 2; : : : ; 5g, fp�n;3g is an increasing sequence, �n;i D k�n;i � k�n;i�1,
and q�n;i D o.p�n;i /, such that

˛�n .x�n/ D maxf˛k�
n;4;q

�
n;1

I˛k�
n;3;q

�
n;2

I˛�n;3;q�
n;3

I˛jC1�k�
n;2;q

�
n;4

I
˛jC1�k�

n;1;q
�
n;5

I˛jC1;k�
n;4�k�

n;1
g D o.1/

(15.7)

holds as n ! 1, where ˛n;q D ˛n;q.x�n / is determined by (15.3), then it holds
for j � 2

lim
n!1P fT1.x�n/ D j g=.�n.1 � �n/

.j�1/
 / D 1; (15.8)

lim
n!1P fT2.x��

n
/ D j g=.q�n

�
1 � q�n

�.j�1/

/ D 1; (15.9)

and if additionally the sequence fRng satisfies theD00.x�n /-condition at Œ1; k�n;1C2�
and Œk�n;4 � 1; j C 1�, then it holds for j � 2

lim
n!1P fT1.x�n / D j g=.�n.1 � �n/.j�1/
 / � 
2; (15.10)

lim
n!1P fT2.x��

n
/ D j g=.q�n

�
1 � q�n

�.j�1/

/ � 
2: (15.11)

The extremal index 
 shows the deviation of the asymptotic distribution from the
geometric one. One can rewrite (15.8) and (15.9) in geometric forms as

cnP fT1.x�n/ D j g � �n.1 � �n/j�1; dnP fT2.x��
n
/ D j g � 	n.1 � 	n/

j�1;
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as n ! 1, using the replacements .1��n/
 D 1��n, 0 < �n < 1 and .1�q�n /
 D
1 � 	n, 0 < 	n < 1. The following lemma useful in practice is derived in [9].

Lemma 1. [9] If the conditions of Theorem 2 are satisfied, and supn E.T
1C"
2 .x��

n
//=

�n < 1 holds for some " > 0, where�n D q�n =.1� .1� q�n /
 /2; and the sequence
fRng satisfies the mixing condition (15.7) then it holds

lim
n!1E.T2.x��

n
//=�n D 1:

15.3 Examples

We shall consider how Theorem 2 fits to concrete processes.

15.3.1 Autoregressive Maximum (ARMAX) Process

The ARMAX process is determined by the formula Rt D maxf˛Rt�1; .1 � ˛/Zt g,
where 0 � ˛ < 1, fZt g are iid standard Fréchet distributed rvs with the cdf F.x/ D
exp .�.1 � ˛/=x/, x > 0. The extremal index of the process is given by 
 D 1 �
˛ [2]. The condition (15.7) is fulfilled for ˛ D 0. TheD00.x�n /-condition is satisfied.
In [9] it is shown that

P fT1.x�/ D j g D �
q1�
 � q

�2
q
j =.q.1 � q//; j D 2; 3; : : : ; (15.12)

P fT2.x�/ D 2g D q
.q
.1�
/ � q
 /; P fT2.x�/ D j g � q
 .q.1�
/
 � q
 /j�1;
(15.13)

for j D 3; 4; : : : hold, where q D 1 � �, and x� is the .1 � �/th quantile of R1, i.e.
PfR1 > x�g D �. The distributions T1.x�/ and T2.x�/ are geometric ones as ˛ D 0

(or 
 D 1). Moreover, it holds

E.T1.x�// D q˛

1 � q
; E.T1.x�//2 D q˛.1C q1�˛/

.1 � q/.1 � q1�˛/
:

15.3.2 Moving Maxima (MM) Process

The MM process is determined by the formula Rt D maxiD0;:::;mf˛i"t�i g, where
˛i � 0 and

Pm
iD0 ˛i D 1. "t are iid unit Frechet distributed rvs with the cdf F.x/ D

exp .�1=x/, x > 0. The extremal index of the process is given by 
 D maxi f˛i g [2].
All conditions of Theorem 2 are satisfied. Let ˛0 � ˛1 � : : : � ˛m hold. Then it
holds
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Fig. 15.2 The distribution (15.12) of T1.x�/ of a ARMAX process (dotted line), the lower bound
(15.14) of an MM process (thin solid line) and geometric-like model (15.10) (solid line) against the
Fréchet quantiles x� D �1= ln.1� �/ as threshold u (left). Probabilities corresponding to j D 10

are located above the ones determined at j D 20 for smaller u. The lower bound (15.13) of T2.x�/
of an ARMAX process (dotted line), the lower bound (15.14) of a MM process (thin solid line)
and geometric-like model (15.11) (solid line) against the Fréchet quantiles u D x� D �1= ln.q�/,
q� D 1� .1� .1��/
 /1=
 (right). Probabilities corresponding to j D 10 are located under those
ones determined at j D 20 for larger u. In both figures 
 D 0:6 and ˛1 D 0:3 were taken

P fT1.x�/ D j g � q
.j�1/C1�

�
q˛1 � q
 � .1 � q
 /=.1� q/; j D 2; 3; : : :

(15.14)

P fT2.x�/ D 2g D q

�
q˛1 � q
 � ;

P fT2.x�/ D j g � q.q˛1 � q
 /j�1; j D 3; 4; : : : ; (15.15)

where q D 1 � �, x� is the .1 � �/th quantile of R1, [9]. The distributions T1.x�/
and T2.x�/ are geometric ones as 
 D ˛0 D 1. It is shown in [9] that it holds

E.T1.x�// � q.q˛1�
 � 1/

.1 � q
 /.1 � q/
; E.T1.x�//2 � .1C q
 /q.q˛1�
 � 1/

.1 � q
 /2.1 � q/
:

The results for both processes are in good agreement with Theorem 2, see Fig. 15.2.
Evidently, the probability to get larger T2.x�/ and smaller T1.x�/ is higher for
smaller thresholds and vice versa.

15.4 Teletraffic Applications

The main problem in the teletraffic theory concerns the trade-off between available
resources and the transmission of information with minimal loss and delay during
delivery. We consider the packet traffic in peer-to-peer (P2P) applications like Skype
and IPTV where the packet lengths and inter-arrival times between packets are both
random. The described theory can be used to evaluate the quality of the packet
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Fig. 15.3 Sample mean of T1.u/ (solid line) and the model2ET1.x�/D 
2�=.1� .1� �/
 /2 with

 D 1 (thin solid line) and with the intervals estimate of 
 [4] (dotted line) (left); sample mean of

T2.u/ (solid line) and the model2ET2.x�/ D 
2q=.1� .1� q/
 /2 with 
 D 1 (dotted line) (right)
against u corresponding to quantiles x� of scaled transmission rates fRn 	 10�5g of the SopCast
IPTV packet traffic

transmission. We study the loss and delay at the packet layer. The main idea is
that the packet loss is caused by exceedances of the rate of a transmission over a
threshold u that can be interpreted as a channel capacity [11]. Then the packets can
be lost only in the clusters generated by exceedances of the rate above u. In this
context, the rates are considered as underlying process fRng, the return intervals
as lossless periods and cluster durations as delays between successfully delivered
packets, see Fig. 15.1. Since active streams may share the capacity of a channel,
one can manage the equivalent capacity (i.e., the part of capacity allocated for each
stream) in such a way to minimize the probability of a packet to miss its playout
deadline at the receiver. Using geometric distributions of T1.u/ and T2.u/ and Wald’s
equation one can estimate the means of the lossless time and the delay in the clusters
in an on-line regime [8,11]. The latter can be used to optimize the quality of packet
transmissions in P2P overlay networks. Modeling of ET1.u/ and ET2.u/ by SopCast
IPTV data is shown in Fig. 15.3.

Acknowledgements This work was supported in part by the Russian Foundation for Basic
Research, grant 13-08-00744 A.
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Chapter 16
Diagnostic Procedures for Spherically
Symmetric Distributions

Simos G. Meintanis

Abstract Goodness-of-fit tests are proposed for the null hypothesis that the
distribution of an arbitrary random variable belongs to the general family of
spherically symmetric distributions. The test statistics utilize a well-known char-
acterization of spherical symmetry which incorporates the characteristic function
of the underlying distribution. An estimated version of this characterization is then
employed both in the Kolmogorov–Smirnov sense and the Cramér–von Mises sense
and yields corresponding test statistics. Both tests come in convenient forms which
are straightforwardy applicable with the computer. Also the consistency of the tests
is investigated under general conditions. Since the asymptotic null distribution of
the test statistic depends on unknown factors, a resampling procedure is proposed in
order to actually carry out the tests.

Keywords Goodness-of-fit • Empirical characteristic function • Resampling
procedure

16.1 Introduction

Consider a p-dimensional random vector X with an unknown distribution
function F . In the process of performing statistical inference, the distribution
of X is often regarded as nuisance and it is then common practice to assume
either too much or too little for F . In such cases we are led either to the one
extreme of a fully parametric distribution function, or to the other extreme, which
is essentially nonparametric, and assumes very little structure for F ; for instance,
when only the existence of a few moments or, at the most, (reflective) symmetry
is postulated. Here we consider a somewhat “intermediate situation,” of a semi-
parametric null hypothesis. In doing so we focus on the family of spherically
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symmetric distributions (SSD) which is known to contain models that constitute
building blocks for many of the often employed parametric models, such as the
normal, the contaminated normal, the Student t , and the Laplace distribution. Also
it is well known that several estimation results in regression are robust with respect
to spherical symmetry; see, for instance, [7, 9, 10, 14]. The reader is referred to
[4] for a complete treatment of the properties of SSD, and in particular to Sects.
2.7.1–2.7.2 of that book for extension of the well-known t and F statistics from the
normal distribution to the class of SSD.

On the basis of i.i.d. copies X1;X2; : : : ; Xn, of X , we wish to test the null
hypothesis,

H0 W the law of X belongs to the family of spherically symmetric laws 2 R
p:

(16.1)

Note that the null hypothesisH0 should be understood in its full generality, meaning
that in Eq. (16.1) the specific distribution of X is left unspecified, and we are only
interested whether F belongs to the general family of SSD. Therefore our test
procedure would also be semi-parametric in nature and, as such, acceptance of H0

would provide only partial information regarding the structural properties of the
underlying theoretical distribution function F .

To outline the proposed procedure, let '.t/; t 2 R
p , denote the characteristic

function (CF) of X , and recall the characterization of the family of SSD, that H0

holds if and only if, for some univariate function �.�/ it holds that

'.t/ D �.ktk2/; 8t 2 R
p: (16.2)

In view of (16.2), it is natural to consider as a test statistic some distance measure
involving the discrepancy

Dn.t; s/ D 'n.t/ � 'n.s/;

computed over points t; s 2 R
p , such that ktk2 D ksk2, where 'n.u/ D

n�1
Pn

jD1 e{u
0Xj , is the empirical CF of Xj ; j D 1; : : : ; n. A Kolmogorov–

Smirnov type distance would follow naturally from the above reasoning as
sup jDn.t; s/j, where the supremum is taken over all possible pairs .t; s/ of vectors
in R

p such that ktk2 D ksk2. However we shall instead consider a test statistic
indexed by a parameter R, which takes into account all possible vectors lying
within a sphere of radius R 2 .0;1�. In particular we suggest the test statistic,

p
n sup
0���R

sup
.t;s/2S��S�

jDn.t; s/j ; (16.3)

where S� WD ft 2 R
p W ktk2 D ksk2 D �2g. Clearly the limiting value R ! 1 cor-

responds to the usual (unrestricted) Kolmogorov–Smirnov test. A related approach
mimicking a Cramér–von Mises test is, again on the basis of jDn.t; s/j, to consider
an integrated distance-squared statistic of the type
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n

Z R

0

 Z

.t;s/2S��S�
jDn.t; s/j2d�.t; s/

!
W.�/d�; (16.4)

where �.�; �/ denotes a finite measure on S��S�. Notice that in Eq. (16.4) the option
of using the full spectrum of values by letting R ! 1 necessitates the introduction
of a weight function W.�/ in order to smooth out the periodic nature of 'n.�/, and
thereby produce a convergent integral in Eq. (16.4).

Although Eqs. (16.3) and (16.4) allow for arbitrary ways of determining the
values .t; s/ 2 S� � S�, for practical computational purposes we shall instead
consider test statistics similar to those in (16.3) and (16.4), for which, however,
the values .t; s/ WD .t.�/; s.�// 2 S� � S� have been prespecified. In particular and
for fixed integer J > 0, we select a grid of values .tj .�/; sj .�// 2 S� � S�; j D
1; : : : ; J , and compute Dn.�; �/ at these values. Then the suggested test statistics
reduce to

KSn;R D p
n sup
0���R

max
.tj ;sj /

J
jD12S��S�

ˇ̌
Dn.tj ; sj /

ˇ̌
; (16.5)

and

CMn;R D n

Z R

0

0
B@

X

.tj ;sj /
J
jD12S��S�

jDn.tj .�/; sj .�//j2
1
CAW.�/d�; (16.6)

respectively. Rejection of the null hypothesis H0 in (16.1) would be for large values
of KSn;R and CMn;R.

In the literature there are several tests for spherical symmetry, some of them
utilizing the empirical CF. For a review the reader may refer to [13], and the
references therein. We mention here the most relevant papers of [3, 8, 16], and the
test in Chap. 3 of the monograph of [15]. There exist also some so-called necessary
tests, i.e., tests which are based on necessary but not sufficient properties of SSD,
and which are very convenient to use; see, for instance, [5, 11].

16.2 Computation of the Test Statistics

Clearly in order to specify the test statistics in Eqs. (16.5) and (16.6) we need to
fix the way in which the pairs .tj ; sj / are selected. Before doing that note that
from (16.6) we have by straightforward algebra

CMn;R D 1
n

PJ
jD1

Pn
l;mD1

RR
0 cosŒt 0jXlm�W.�/d�C RR

0 cosŒs0j Xlm�W.�/d�

�2 RR
0

cosŒt 0jXl � s0jXm�W.�/d�;
(16.7)
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where Xlm D Xl � Xm, and of course the arguments tj and sj depend on �, i.e.,
tj D tj .�/ and sj D sj .�/, j D 1; : : : ; J .

A natural way of selecting tj D tj .�/ and sj D sj .�/ is to use the hyperspherical
coordinates: Let t D t.�/ be any point in R

p, which lies in S�, i.e., ktk2 D �2. Then
this point may be written as t D �.t1; : : : ; tp/

0 via the hyperspherical coordinates

t1 D cos�1;

t2 D sin�1 cos�2;

t3 D sin�1 sin �2 cos�3;

::: (16.8)

tp�1 D sin�1 � � � sin �p�2 cos�p�1;

tp D sin�1 � � � sin �p�2 sin �p�1;

where the angular coordinates satisfy f�`gp�2`D1 2 Œ0; 
�, and �p�1 2 Œ0; 2
�.
With this specification the CM-type test statistic may be computed as follows:

Given t as above and any other point x D .x1; : : : ; xp/
0 2 R

p , notice that the
arbitrary integral figuring in (16.7) reduces to

Z R

0

cosŒt 0.�/x�W.�/d� (16.9)

D
Z R

0

cos

2

4�.x1 cos�1 C x2 sin �1 cos�2 C � � � C xp sin �1 � � � sin�p�1„ ƒ‚ …
u

/

3

5W.�/d�

D
Z R

0

cos.�u/W.�/d� WD IW .u/:

Typical choices such as W.�/ D e�a� and W.�/ D e�a�2 ; a > 0, lead to the
closed-form expressions for this integral as

IW .u/ D a � e�aR .a cos.Ru/ � u sin.Ru//

a2 C u2
;

and

IW .u/ D 1

4

r



a
e�u2=4a

�
Erf

�
2aR � iu

2
p
a

�
C Erf

�
2aR C iu

2
p
a

��
;

respectively. The limiting values as R ! 1 are IW .u/ D a=.a2Cu2/ and IW .u/ D
.1=2/

p

=a e�u2=4a.
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Our approach, although in the same spirit as the test suggested by Zhu and
Neuhaus [16], differs from it in that these authors utilize the property that if the law
of X belongs to the SSD class, then X 0e is symmetric around zero for every unit
vector e. Then the real part of the CF of X 0e vanishes identically, and empirical-
CF procedures, such as those suggested by Feuerverger and Mureika [6] may be
applied. The aforementioned property is already mentioned in [8] and holds true
for all distributions in the class of SSD. However it is not equivalent to X being
spherically symmetric. In fact, there exist distributions for which X 0e is symmetric
around zero without X belonging to the family SSD. A typical example is when X
follows the uniform distribution on the p-cube Œ�a; a�p . Consequently it is expected
that any test which utilizes this property will have low power against such non-
spherically symmetric laws.

16.3 A Consistency Result

The statistics figuring in (16.5) and (16.6) utilize a grid .tj ; sj /JjD1 
 S� � S�

of points on the p-surface of S� which varies continuously with �. To prove
consistency of the tests that reject H0 for large values of KSn;R and CMn;R against
general alternatives, we impose the following conditions:

– (A1) For some �� 2 .0;R�, there is a pair of points .t�; s�/ such that kt�k D
ks�k D �� and .t�; s�/ 2 f.t1; s1/; : : : ; .tJ ; sJ /g 
 S�� � S�� , such that '.t�/�
'.s�/ ¤ 0.

– (A2) The weight functionW figuring in (16.6) satisfies 0 <
RR
0
W.�/d� < 1.

We then have the following result.

Theorem 31. Suppose that the distribution of X satisfies (A1). We then have

lim inf
n!1

KSn;Rp
n

> 0 almost surely: (16.10)

If in addition (A2) holds, we have

lim inf
n!1

CMn;R
n

> 0 almost surely: (16.11)

Proof. The almost sure uniform convergence of the empirical CF (see [1, 2, 6, 12])
gives

lim
n!1 sup

ktk�R

ˇ̌
'n.t/ � '.t/

ˇ̌ D 0 almost surely
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and thus from (A1) we have

lim inf
n!1 sup

0���R
max

jD1;:::;J
ˇ̌
Dn.tj ; sj /

ˇ̌ � j'.t�/ � '.s�/j > 0

almost surely as n ! 1, which implies (16.10).
To prove (16.11), notice that j'n.t/j � 1 and thus jDn.t; s/j2 � 4. Then the

second inequality in (A2) and Lebesgue’s dominated convergence theorem gives

lim
n!1

CMn;R
n

D
Z R

0

0

@
JX

jD1
j'.tj .�// � '.sj .�//j2

1

AW.�/d� WD �;

almost surely. Now let mj D min0���R
ˇ̌
'.tj .�//� '.sj .�//

ˇ̌2
, and m D

minfmj gJjD1. Then

� � Jm

Z R

0

W.�/d�:

By (A1) and the first inequality in (A2) it follows that the last quantity is positive
which shows (16.11).

16.4 A Conditional Resampling Test

Both the finite sample and the asymptotic distribution of the test statistics under the
null hypothesis of spherical symmetry depend on the unknown distribution of the
Euclidean norm of the underlying random vectorX [see (16.2)]. To carry out the test
in practice, we use the conditional Monte Carlo method proposed by Diks and Tong
[3] (see also [16]). The motivation for this resampling procedure is that, provided
that P.X D 0/ D 0, the distribution of X is spherically symmetric if, and only if,
kXk and X=kXk are independent, and X=kXk has a uniform distribution over the
unit sphere surface S1.

The resampling scheme, which is conditional on the norms kX1k; : : : ; kXnk, runs
as follows:

(i) Calculate the test statistic T WD T .X1; : : : ; Xn/, based on the original
observationsXj ; j D 1; : : : ; n.

(ii) Generate vectors u�j ; j D 1; : : : ; n, that are uniformly distributed on S1.
(iii) Compute the new data X�j D u�j kXj k; j D 1; : : : ; n.
(iv) Compute the test statistic T � D T .X�1 ; : : : ; X�n /.
(v) Repeat steps (ii) to (iv) a number of times B , and calculate the corresponding

test statistic values T �1 ; : : : ; T �B .
(vi) Reject the null hypothesis if T > T �.B�˛B/, where T �.1/ � : : : � T �.B/ denote the

corresponding order statistics
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Chapter 17
Nonparametric Regression Based
Image Analysis

P.-A. Cornillon, N. Hengartner, E. Matzner-Løber, and B. Thieurmel

Abstract Multivariate nonparametric smoothers are adversely impacted by the
sparseness of data in higher dimension, also known as the curse of dimensionality.
Adaptive smoothers, that can exploit the underlying smoothness of the regression
function, may partially mitigate this effect. We present an iterative procedure based
on traditional kernel smoothers, thin plate spline smoothers or Duchon spline
smoother that can be used when the number of covariates is important. However
the method is limited to small sample sizes (n < 2;000) and we will propose some
thoughts to circumvent that problem using, for example, pre-clustering of the data.
Applications considered here are image denoising.

Keywords Image sequence denoising • Iterative bias reduction • Kernel
smoother • Duchon splines

17.1 Introduction

The recent survey paper [11] presents modern image filtering from multiple
perspectives, from machine vision, to machine learning, to signal processing; from
graphics to applied mathematics and statistics. It is noteworthy that an entire section
of that paper is devoted to an iteratively refined smoother for noise reduction.
A similar nonparametric regression estimator was considered independently in [4],
who recognized it as a nonparametric iterative bias reduction method. When coupled
with a cross-validation stopping rule, the resulting smoother adapts to the underlying
smoothness of the regression function. The adaptive property of this iterative bias
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corrected smoother helps mitigate the curse of dimensionality, and that smoother has
been successfully been applied to fully nonparametric regression with moderately
large number of explanatory variables [5].

This paper presents a fully nonparametric regression formulation for denoising
images. In Sect. 17.2, we present iterative biased regression (IBR) with kernel
smoother and Duchon splines smoother. In Sect. 17.3, we consider image denoising
as a regression problem and evaluates IBR in that context. The proposed procedure
is compared to BM3D in Sect. 17.4. Section 17.5 gathers concluding remarks.

17.2 Iterative Bias Reduction

For completeness, we recall the definition of the iterative bias corrected smoother.
Consider the classical nonparametric regression model

Yi D m.Xi/C "i ; (17.1)

for the pairs of independent observations .Xi ; Yi / 2 R
d � R, i D 1; : : : ; n. We

want to estimate the unknown regression functionm assuming that the disturbances
"1; : : : ; "n are independent mean zero and finite variance �2 random variables. It
is helpful to rewrite Eq. (17.1) in vector form by setting Y D .Y1; : : : ; Yn/

t , m D
.m.X1/; : : : ; m.Xn//

t , and " D ."1; : : : ; "n/
t , to get Y D mC ". Linear smoothers

can be written in vector format as

Om D S.X; �/Y;

where S.X; �/ is an n�n smoothing matrix depending on the explanatory variables
X and a smoothing parameter � or a vector of smoothing parameters. The latter is
typically the bandwidth for kernel smoother or the penalty for splines smoothers.
Instead of selecting the optimal value for �, [4] and [5] propose to start out with
a biased smoother that has a large smoothing parameter � (ensuring that the data
are over-smoothed) and then proceed to estimate and correct the bias in an iterative
fashion. If one wants to use the same smoothing matrix (denoted it simply by S
from now) at each iteration, the smoother Omk after k � 1 bias correction iterations
has a closed form expression:

Omk D ŒI � .I � S/k�Y: (17.2)

The latter shows that the qualitative behavior of the sequence of iterative bias
corrected smoothers Omk is governed by the spectrum of I �S [4]. If the eigenvalues
of I � S are in Œ0; 1Œ, then limk�!1 Omk.Xj / D Yj . Thus at the observations, the
bias converges to 0 and the variance increases to �2.
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This convergence of the smoother to the data (as a function of the number of
iterations) raises the question of how to select the number of iterations k. For
univariate thin-plate spline base smoothers, [3] showed that there exists a k? such
that the iterative bias corrected smoother Omk? converges in mean square error to
the true regression function at the minimax convergence rate. An extension of that
result to the multivariate case is presented in [4]. This optimal number of iterations
can be selected from data using classical model selection criterion such as: GCV,
AIC, BIC, or gMDL [10]. All these rules are implemented in ibr package.

17.2.1 Adaptation to Smoothness

The resulting estimator adapts to the true (unknown) smoothness of the regression
function. Since points in higher dimensions are more separated from one another
than their lower dimensional projections, smoothers in higher dimensions need
average over larger volumes than in lower dimensions to smooth over the same
number of points. Thus smoother in higher dimensions have, for similar variances,
larger biases.

This effect is at the heart of the curse of dimensionality, which can also be
quantified via the minimax Mean Integrated Square Error (MISE): For �-times
continuously differentiable regression functions in R

d , the minimax MISE is of
order n2�=.2�Cd/. While this rate degrades as a function of the dimension d , it
is improved with increasing smoothness. For example, the minimax MISE rate
of convergence of a 40-times differentiable function on R

20 is the same as the
minimax MISE rate of convergence of a twice differentiable function on R.
While in practice, the smoothness of regression function is not known, adaptive
smoothers behave (asymptotically) as if the smoothness were known. Thus in higher
dimensional smoothing problems, such as those arising in image denoising and
image inpainting, adaptive smoothers are desirable as they partially mitigate the
curse of dimensionality.

Iterative bias reduction can be applied to any linear smoother. For kernel
smothers, the behavior of the sequence of iterative bias corrected kernel smoothers
depends critically on the properties of the smoother kernel. Specifically, the
smoothing kernel needs to be positive definite [4, 7]. Examples of positive definite
kernels include the Gaussian and the triangle densities, and examples of kernel that
are not definite positive include the uniform and the Epanechnikov kernels. In this
paper we focus only on the Gaussian kernel smoother:

Sij D KijPn
iD1 Kij

; where Kij D exp

(
�

dX

kD1
.Xik �Xjk/2=.2�2k/

)
;

and on the Duchon splines smoother presented in the next section.
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17.2.2 Splines Smoothers

The theoretical results given in [4] are given for Thin Plate Splines (TPS) smoother.
Suppose the unknown function m from R

d ! R belongs to the Sobolev space
H .�/.˝/ D H .�/, where � is an unknown integer such that � > d=2 and ˝ is an
open subset of Rd , TPS is a solution of the minimization problem

1

n
kYi � f .Xi /k2 C �J d� .f /;

see, for example, [9], where

J d� .f / D
X

˛1C			C˛dD�

�Š

˛1Š � � �˛d Š
Z

� � �
Z �

@�f

@x
˛1
1 � � � @x˛dd

�2
dx1 � � �dxd :

The first part of the functional controls the data fitting while J d� .f / controls the
smoothness. The trade-off between these two opposite goals is ensured by the choice
of the smoothing parameter �. The main problem of TPS is that the null space
of J d� .f / consists of polynomials with maximum degree of .� � 1/, so its finite
dimension is M D �

�Cd�1
��1

�
. As � > d=2, the dimension of the null space increases

exponentially with d . In his seminal paper, [8] presented a mathematical framework
that extends TPS. Noting that the Fourier transform (denoted by F .:/) is isometric,
the smoothness penalty J d� .f / can be replaced by its squared norm in Fourier space:

Z
kD�f .t/k2dt can be replaced by

Z
kF .D�f /.�/k2d�:

In order to solve the problem of exponential growth of the dimension of the null
space of J d� .:/, Duchon introduced a weighting function to define:

J d�;s.f / D
Z

j� j2skF .D�f /.�/k2d�:

The solution of the new variational problem: 1
n
kYi � f .Xi /k2 C �J d�;s.f /is now

g.x/ D
M0X

jD1
˛j �j .x/C

nX

iD1
ıi�

d
�;s.kx � Xik/;

provided that � C s > d=2 and s < d=2. The
˚
�j .x/

�
are a basis of the subspace

spanned by polynomial of degree � � 1 and

�d�;s.r/ /
	
r2�C2s�d log.r/ d if 2!C 2s � d is even;
r2�C2s�d d otherwise
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with the same constraint as TPS that is T ı D 0 with the matrix T defined as Tij D
�j .Xi /. For the special case s D 0, Duchon splines reduce to the TPS. But if one
wants to have a lower dimension for the null space of J d�;s one has to increase s;
for instance, to use a pseudo-cubic splines (with an order � D 2), one can choose
s D d�1

2
as suggested by Duchon [8].

17.3 Image Denoising

An image is a matrix of pixels values, in which each pixel measures a grayscale, or
a vector of color levels. Pixel are spatially defined by their positional coordinates
.i; j / where .i; j / 2 f1; : : : ; pg2. In order to avoid complex notations we restrict
ourselves to squared image. As an example, consider the picture of Barbara below,
defined by 512 � 512 pixels (p D 512), each pixel value in f0; 1; : : : ; 255g,
representing 256 gray levels. The left-hand panel of Fig. 17.1 displays the original
image, and the right-hand panel shows a noisy version, which we wish to denoise.
The numerical measure to quantify the error is the PSNR (Peak Signal to Noise
Ratio):

PSNR D 10 � log10

�
c2

MSE

�
;

where c is the maximum possible pixel value of the image and MSE is the mean
squared error between the original image and the treated image. The quality of the
reconstruction is given in decibel (dB) and a well-reconstructed image has a PSNR
within Œ30; 40�.

The noisy image given Fig. 17.1 is obtained by adding a Gaussian noise to the
original image. Let us denote by Y the vector of all the gray value (for all the pixels).

Fig. 17.1 Barbara, original image—noisy image, PSNR=28.14 dB
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Fig. 17.2 Image analysis as a regression problem

This vector Y is of length n D p2 and its kth coordinate is the gray value of pixel
.i; j / where k D .i � 1/�pC j . Let us denote by X the n�d matrix gathering all
the explanatory variables. The kth row of length d (corresponding to pixel .i; j /) is
usually made with the gray value of neighboring pixels ; the coordinates i and j can
be added as explanatory variables. For instance, when one uses the eight immediate
neighbors and the two coordinates, the number of columns of X is d D 10 (see
Fig. 17.2).

Thus image analysis can be recast as a regression problem, and we can use a
nonparametric smoothing approach to fit Y ; thereby denoising the image. Taking a
nonparametric smoothing approach brings forth two major challenges:

1. the size of the neighboring pixels can be large (one can think to use 24 or 48
neighbors) and thus the dimension d can be large. This problem is known as
curse of dimensionality in the statistical literature;

2. the size n � n of the smoothing matrix S is usually very large. For the Barbara
example, we have n D 512 � 512 D 262;144.

Nonparametric smoothing at point Yk can roughly be thought as doing local
averages of data points Yk0 measured at covariate locations Xk0 near a given point
Xk. When the number of data points n is fixed and when the dimension d increases,
the expected number of points falling into a ball of center Yk (with a given radius)
is decreasing exponentially. Thus to have a constant number of points one has to
increase exponentially the size of sample n or to increase the size of neighborhood
which leads to biased smoother (and the finding of optimal smoothing parameter ��
does not alleviate this problem). Thus, the use of classical nonparametric smoother
such as kernel regression is far from easy with 24 or 48 neighbors and one has to
use smoother that can cope with moderate dimension d such as Duchon Splines or
IBR (kernel or Duchon splines).

Concerning the size of smoothing matrix n, we only need to partition the
dataset into sub-images. It is obvious that smoothing assumes that the signal varies
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smoothly with the values of the covariates. Thus, to avoid smoothing over edges
which are numerous in an image, we need to partition the image into smaller
homogeneous sub-images, leading to tremendous decrease of the sample size n (of
sub-image). For instance, when the size of each sub-image is chosen equal to 30�30
the resulting 900 pixels in such sub-image can be used as a dataset for regression
and one can apply the iterative regression estimate (Eq. 17.2), with Y being the
level of gray of the current pixel and X being the level of gray of its eight (or more)
neighbors.

In order to partition the image into homogeneous sub-images, we used the CART
algorithm [2] and regression trees. The resulting partition is data dependent and
the size and shape of the sub-image vary from one sub-region to another. We used
the package rpart to define homogeneous regions (so the explanatory variables are
only the position i and j and the independent variable is the gray level Y ) and
within each sub-image, we applied ibr. We did modify the rpart function in order
to control the maximal and minimal size of each sub-region. Specifically, we decide
to partition the image of Barbara into sub-regions with at least 100 pixels and at
most 700 pixels. Figure 17.3 shows the evolution of the partition with rpart; the
picture on the rightmost panel has 686 regions.

A direct application of the CART algorithm produces rectangular regions. Such
a partition will readily follow horizontal and/or vertical boundaries in the image.
Figure 17.4 left shows the result from applying ibr within each region, whereas the
right side shows the difference between the denoised image and the original image.

While IBR is effective at denoising the image, the denoised image has a PSNR D
33:22dB, one can see the boundaries of the partition. To alleviate this artifact, which
is due to the fact that CART uses vertical and horizontal splits, we propose to
partition the image several times at various angle of rotation, and for each partition,
use ibr for denoising. Specifically, consider the following rotation with angle ˛

i
0 D i � cos˛ C j � sin ˛

j
0 D �i � sin ˛ C j � cos˛:

Fig. 17.3 Partition of the image of different size using rpart. The right-hand panel displays the
final partition, which is composed of 686 regions
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Fig. 17.4 Left: Denoised image (i.e. fitted values) using kernel IBR applied to a noisy image.
Right: the image of the residuals

Fig. 17.5 Partition of the image using rotation with angle ˛ D 30 (left) and ˛ D �60 (right)

We now apply rpart to the image in that new coordinate system .i 0; j 0/. While
the partition will still be rectangular (in that coordinate system), we can rotate back
the partition into the original coordinate system in which the partitions are now
slanted. Figure 17.5 presents two examples of partitions.

We compute a denoised image by averaging, pixel-wise, the smoothers obtained
for the various rotated partitions. We found empirically that using a small number
of rotations leads to better smoothers than one that uses a large number of rotations.
Using three rotations, with maximal size of 300 pixel for each region, we obtain the
following result (Fig. 17.6).

The PSNR is 33.72 dB using kernel smoother and 33.60 dB using Duchon spline
smoother.
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Fig. 17.6 Denoised image (i.e. fitted values) with IBR kernel (PSNR D 33:72 dB) and image of
the residuals (right)

17.4 Comparison with BM3D

BM3D algorithm, developed by [6], is the current state of the art for image
denoising. This method mixes block-matching (BM) and 3D filtering. This image
strategy is based on an enhanced sparse representation in transform domain. The
enhancement of the sparsity is achieved by grouping similar 2D image fragments
(or blocks) into 3D data arrays called groups. Then, in order to deal with the 3D
groups, a collaborative filtering procedure is developed. The codes and related
publications could be found at http://www.cs.tut.fi/~foi/. That algorithm requires
knowledge of the standard deviation of the noise. By default, the standard value is
25. Alternatively, when the noise level is unknown, one can use an estimate of the
standard deviation in BM3D. We compare our regression based denoting algorithm
to BM3D, using the following settings,

• BM3D, with the true standard deviation of the noise. We expect to outperform
the classical BM3D for which the standard deviation is unknown and has to be
estimated

• BM3D with default standard deviation of the noise
• IBR kernel, three rotations, maximal size D 700
• IBR Duchon, three rotations, maximal size D 700

on several images with different noise levels. The Matlab code for our comparison
is available upon request. This comparison is conducted for five levels of Gaussian
noise: � D 5; 10; 15; 20, and 30 and replicated ten times.

Figure 17.7 shows that as the noise increases the PSNR of the denoised image
decreases. The BM3D algorithm, with the true standard deviation of the noise (in
red), is better than IBR (in blue) with a difference of around 2 dB. This case is not
very realistic since we never know the true noise level. When the noise level is

http://www.cs.tut.fi/~foi/
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Fig. 17.7 Comparison BM3D versus IBR kernel: true noise level known (red) or unknown (blue)

unknown, the IBR procedure is better than BM3D (with standard values) whenever
the noise level is low (less than 15). IBR with kernel smoother or Duchon splines
smoother give similar results.

17.5 Conclusion

General statistical lore suggested that fully nonparametric regression with many
covariates (more than 5) should be generally avoided. The recent realization that
it is possible to design simple adaptive regression smoothers makes it now practical
to smooth data in higher dimensions. While having good statistical properties, the
current implementation of the IBR algorithm is limited by number of observationsn.

Image denoising presents both problems simultaneously: a large number of
covariates and large sample sizes. We present in this paper how to resolve both of
these issues in order to apply the IBR algorithm. The initial results are promising,
but the simulation study presented in this paper is done only for illustration purpose
and somewhat limited. Recall that the noise assumed here is Gaussian and with the
same level in the whole image.

In practical situations, the noise is usually connected to the gray level and thus
its level is different within the image see, for example, [1]. If the partitioning into
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sub-images is done in the right way, the level of noise can be thought to be almost
the same within sub-images but different from one sub-image to another. Thus, the
IBR procedure that makes the assumption of the same level of noise within sub-
images can be thought to be realistic and the performance of this method has to
be investigated further. The regression formulation also appears useful for image
completion (inpainting) and we will investigate this topic in a future work.
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Chapter 18
A Nonparametric Causality Test: Detection
of Direct Causal Effects in Multivariate Systems
Using Corrected Partial Transfer Entropy

Angeliki Papana, Dimitris Kugiumtzis, and Catherine Kyrtsou

Abstract In a recent work we proposed the corrected transfer entropy (CTE),
which reduces the bias in the estimation of transfer entropy (TE), a measure of
Granger causality for bivariate time series making use of the conditional mutual
information. An extension of TE to account for the presence of other time series
is the partial TE (PTE). Here, we propose the correction of PTE, termed Corrected
PTE (CPTE), in a similar way to CTE: time shifted surrogates are used in order to
quantify and correct the bias, and the estimation of the involved entropies of high-
dimensional variables is made with the method of k-nearest neighbors. CPTE is
evaluated on coupled stochastic systems with both linear and nonlinear interactions.
Finally, we apply CPTE to economic data and investigate whether we can detect the
direct causal effects among economic variables.

Keywords Direct causality • Transfer entropy • Multivariate coupled systems

A. Papana (�)
University of Macedonia, Thessaloniki, Greece
e-mail: angeliki.papana@gmail.com

D. Kugiumtzis
Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mail: dkugiu@gen.auth.gr

C. Kyrtsou
University of Macedonia, Thessaloniki, Greece

BETA, University of Strasbourg, Strasbourg, France

Economix, University of Paris 10, Nanterre, France

ISC-Paris, Ile-de-France, Paris, France
e-mail: ckyrtsou@uom.gr

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__18

197

mailto:angeliki.papana@gmail.com
mailto:dkugiu@gen.auth.gr
mailto:ckyrtsou@uom.gr


198 A. Papana et al.

18.1 Introduction

The leading concept of Granger causality has been widely used to study the
dynamic relationships between economic time series [4]. In practice, only a subset
of the variables of the original multivariate system may be observed and omission
of important variables could lead to spurious causalities between the variables.
Therefore, the problem of spurious causality is addressed. Moreover, for a better
understanding of the causal structure of a multivariate system it is important to study
and discriminate between the direct and indirect causal effects.

Transfer entropy (TE) is an information theoretic measure that quantifies the
statistical dependence of two variables (or subsystems) evolving in time. Although
TE is able to distinguish effectively causal relationships and asymmetry in the
interaction of two variables, it does not distinguish between direct and indirect
relationships in the presence of other variables. Partial transfer entropy (PTE) is
an extension of TE conditioning on the ensemble of the rest of the variables and
it can detect the direct causal effects [20]. As reported in [13], using the nearest
neighbor estimate, PTE can effectively detect direct coupling even in moderately
high dimensions. The corrected transfer entropy (CTE) was proposed as a correction
to the TE [12], aiming at reducing the estimation bias of TE. For its estimation,
instead of making a formal surrogate data test, the surrogates were used within
the estimation procedure of the measure, and the CTE was estimated based on
correlation sums.

We introduce here the corrected partial transfer entropy (CPTE) that combines
PTE and CTE, which reduces the bias in the estimation of TE, so that TE goes to
the zero level when there is no causal effect. Similarly to CTE, the surrogates are
used within the estimation procedure of CPTE, instead of performing a significant
test for PTE. Further, for the estimation of CPTE, the nearest neighbor estimate is
implemented since it has been shown to be robust to the time series length and to its
free parameter (number of neighbors) and efficient in high dimensional data (e.g.,
see [21]).

The paper is organized as follows. In Sect. 18.2, the information causality mea-
sures, transfer entropy and partial transfer entropy are introduced and the suggested
measure, corrected partial transfer entropy (CPTE) is presented. In Sect. 18.3, CPTE
is evaluated on a simulation study using coupled stochastic systems with linear and
nonlinear causal effects. As an example of a real application, the direct causal effects
among economic variables are investigated in Sect. 18.4. Finally, in Sect. 18.5,
the results from the simulation study and the application are discussed, while the
usefulness and the limitations of the nonparametric causality test are addressed.
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18.2 Methodology

In this section, we introduce the information causality measures transfer entropy
(TE) and partial transfer entropy (PTE), and define the corrected partial transfer
entropy (CPTE), a measure able to detect direct causal effects in multivariate
systems. Transfer entropy (TE) is a nonlinear measure that quantifies the amount of
information explained in Y at h time steps ahead from the state of X accounting
for the concurrent state of Y [19]. Let xt , yt be two time series and xt D
.xt ; xt�� ; : : : ; xt�.m�1/� /0 and yt D .yt ; yt�� ; : : : ; yt�.m�1/� /0, the reconstructed
vectors of the state space of each system, where � is the delay time and m is the
embedding dimension. TE from X to Y is defined as

TEX!Y D �H.ytChjxt ; yt /CH.ytChjyt /
D �H.ytCh; xt ; yt /CH.xt ; yt /CH.ytCh; yt / �H.yt /; (18.1)

where H.x/ is the Shannon entropy of the variable X . For a discrete variable X ,
the Shannon entropy is defined as H.X/ D �Pp.xi / logp.xi /, where p.xi /
is the probability mass function of the outcome xi , typically estimated by the
relative frequency of xi . The partial transfer entropy (PTE) is the extension of TE
accounting for the causal effect on the response Y by the other observed variables of
a multivariate system besides the drivingX , let us denote themZ. PTE is defined as

PTEX!Y jZ D �H.ytChjxt ; yt ; zt /CH.ytChjyt ; zt /: (18.2)

where zt is the stacked vector of the reconstructed points for the variables in Z.
The information measure PTE is more general than partial correlation since it

is not restricted to linear inter-dependence and relates presence and past (vectors
xt ; yt ; zt ) with future (ytCh). Following the definition of Shannon entropy for
discrete variables, one would discretize the data of X , Y , and Z first, but such
binning estimate is inappropriate for high dimensional variables (m > 1). Instead
we consider here the estimate of nearest neighbors. The joint and marginal densities
are approximated at each point using the k-nearest neighbors and their distances
from the point (for details see [6]). k-nearest neighbor estimate is found to be very
robust to time series length, insensitive to its free parameter k and particularly useful
for high dimensional data [11, 21].

Asymptotic properties for TE and PTE are mainly known for their binning
estimate, which stem from the asymptotic properties of the estimates of entropy
and mutual information for discrete variables (e.g., see [5,10,17]). Thus parametric
significance testing for TE and PTE is possible assuming the binning estimate,
but it was found to be less accurate than resampling testing making use of
appropriate surrogates [7]. The nearest neighbor estimates of TE and PTE do not
have parametric approximate distributions, and we employ resampling techniques
in this study.
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Theoretically, both PTE and TE should be zero when there is no driving-response
effect (X ! Y ). However, any entropy estimate gives positive TE and PTE at a level
depending on the system, the embedding parameters and the estimation method.
We introduce the Corrected Partial Transfer Entropy (CPTE), designed to give zero
values in case of no causal effects and positive values otherwise. In order to define
CPTEX!Y jZ , we compute M surrogate PTE values by randomizing the driving
time series X using time shifted surrogates [15]. These M values form the null
distribution of PTE for a significance test. We denote by q0 the PTE value on the
original set of time series and q.1 � ˛/ the .1 � ˛)-percentile value from the M
surrogate PTE values, where ˛ corresponds to the significance level for an one-sided
test. The CPTEX!Y jZ is defined as follows:

CPTEX!Y jZ D 0; if q0 < q.1� ˛/

D q0 � q.1 � ˛/; if q0 � q.1� ˛/
(18.3)

In essence, we correct for the bias given by q.1 � ˛/ and either obtain a positive
value if the null hypothesis of direct causal effect is rejected or obtain a zero value
if CPTE is found statistically insignificant.

18.3 Evaluation of CPTE on Simulated Systems

CPTE is evaluated on Monte Carlo simulations on different multivariate stochastic
coupled systems with linear and nonlinear causal effects. In this section, we present
the simulation systems we used and display the results from the simulation study.

18.3.1 Simulation Setup

CPTE is computed on 100 realizations of the following coupled systems, for all
pairs of variables conditioned on the rest of the variables and for all directions.

1. A VAR(1) model with three variables, where X1 drives X2 and X2 drives X3

x1;t D 
t

x2;t D x1;t�1 C �t

x3;t D 0:5x3;t�1 C x2;t�1 C �t ;

where 
t , �t , �t are Gaussian white noise with zero mean, diagonal covariance
matrix, and standard deviations 1, 0.2, and 0.3, respectively.

2. A VAR(5) model with four variables, where X1 drives X3, X2 drives X1, X2
drives X3, and X4 drives X2 [22, Eq. 12]
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x1;t D 0:8x1;t�1 C 0:65x2;t�4 C �1;t

x2;t D 0:6x2;t�1 C 0:6x4;t�5 C �2;t

x3;t D 0:5x3;t�3 � 0:6x1;t�1 C 0:4x2;t�4 C �3;t

x4;t D 1:2x4;t�1 � 0:7x4;t�2 C �4;t

3. A VAR(4) model of variables, where X1 drives X2, X1 drives X4, X2 drives X4,
X4 drives X5, X5 drives X1, X5 drives X2, X5 drives X3 [18]

x1;t D 0:4x1;t�1 � 0:5x1;t�2 C 0:4x5;t�1 C �1;t

x2;t D 0:4x2;t�1 � 0:3x1;t�4 C 0:4x5;t�2 C �2;t

x3;t D 0:5x3;t�1 � 0:7x3;t�2 � 0:3x5;t�3 C �3;t

x4;t D 0:8x4;t�3 C 0:4x1;t�2 C 0:3x2;t�3 C �4;t

x5;t D 0:7x5;t�1 � 0:5x5;t�2 � 0:4x4;t�1 C �5;t

4. A coupled system of three variables with linear and nonlinear causal effects,
where X1 drives X2, X2 drives X3, and X1 drives X3 [3, Model 7]

x1;t D 3:4x1;t�1.1 � x1;t�1/2 exp �x21;t�1 C 0:4�1;t

x2;t D 3:4x2;t�1.1 � x2;t�1/2 exp �x22;t�1 C 0:5x1;t�1x2;t�1 C 0:4�2;t

x3;t D 3:4x3;t�1.1 � x3;t�1/2 exp �x23;t�1 C 0:3x2;t�1 C 0:5x21;t�1 C 0:4�3;t

The three first simulation systems are stochastic systems with only linear causal
effects, while the fourth one has both linear and nonlinear causal effects. For all
simulations systems, the time step h for the estimation of CPTE is set to one (as
originally defined for TE in [19]) or m. The embedding dimension m is adapted
to the system complexity, the delay time � is set to one, and we use ˛ D 0:05.
The number of neighbors k is set to 10 and we note that the choice of k has been
found not to be crucial in the implementation of TE or PTE, e.g., see [6, 11, 13].
We consider the time series lengths n D 512 and 2,048, in order to examine the
performance of the measure for both short and large time series length.

18.3.2 Results from Simulation Study

In order to evaluate the performance of CPTE, we display the percentages of
rejection of the null hypothesis of no causal effect from the 100 realizations of the
coupled systems.

For the first simulation system, if we set h D 1 and m D 1, the percentages
of statistically significant CPTE at the directions of direct causal effects X1 ! X2
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Table 18.1 Percentages of statistically significant CPTE for system 1, h D 1, m D 1x

X1 ! X2 X2! X1 X2 ! X3 X3 ! X2 X1 ! X3 X3! X1

n D 512 100 6 100 2 6 5

n D 2,048 100 4 100 11 5 4

Table 18.2 Percentage of statistically significant CPTE for system 2, h D 1, m D 5

X1 ! X2 X2! X1 X1 ! X3 X3 ! X1 X1 ! X4 X4! X1

n D 512 0 100 100 0 0 2

n D 2,048 0 100 100 1 0 6

X2 ! X3 X3! X2 X2 ! X4 X4 ! X2 X3 ! X4 X4! X3

n D 512 22 0 4 100 0 7

n D 2,048 62 1 2 100 0 5

and X2 ! X3 are 100%, while for the other directions of no causal effects the
percentages vary from 2% to 11% (see Table 18.1). The choice h D 1 andm D 1 is
favorably suited for this system and only direct causal effects are found significant.
For different h or m values, indirect effects are detected by CPTE. For example, if
we set h D 1 and m D 2, the indirect causal effect X1 ! X3 is detected by CPTE.
In this case however, this effect is indeed direct if two time lags are considered. The
expression of x3 after substituting x2 becomes: x3;t D 0:5x3;t�1Cx1;t�2C�t C�t�1.
The same holds for h D 2 and m D 1, and here the direct causal effect X1 ! X2
cannot be detected as the expression of x2;t for two steps ahead is x2;t D 
t�1 C �t .

Concerning the second system, the largest lag in the equations is 5, and therefore
by setting h D 1 and m D 5, CPTE correctly detects the direct causal effects
X1 ! X3, X2 ! X1, and X4 ! X2. For the true direct effect X2 ! X3 being
under-valued in the system, the percentages of significant CPTE values increase
with n, indicating that larger time series lengths are required to detect this interaction
(see Table 18.2). By increasing h, indirect effects become statistically significant,
e.g. for h D 5, CPTE correctly detects again all the direct interactions, even for
small time series lengths, but it also indicates the indirect driving of X4 to X1 (with
50% percentage for n D 512, and 100% for n D 2; 048) and of X4 to X3 (35% for
n D 512, 74% for n D 2; 048).

The third simulation system is on 5 variables and the largest lag is 4, so we set
m D 4. For h D 1, CPTE correctly detects all the direct causal effects with a
confidence increasing with n, e.g. the percentage of detection changes from 34%
for n D 512 to 96% for n D 2; 048 for the weakest direct causal effect X2 ! X4.
However, for larger n, CPTE also indicates the indirect driving of X5 ! X4 with
percentage 52% (see Table 18.3). For h D 4, the performance of CPTE worsens
and it fails to detect some direct causal effects. For example, the percentages of
significant CPTE values at the direction X1 ! X4 are 11% and 24% for n D 512

and 2,048, respectively. For other couplings, the improvement of the detection from
n D 512 to n D 2; 048 is larger: 17% to 53% for X2 ! X4, 18% to 47% for
X5 ! X2, and 45% to 98% for X4 ! X5.



18 Corrected Partial Transfer Entropy 203

Table 18.3 Percentage of statistically significant CPTE for system 3, h D 1, m D 4

X1! X2 X2 ! X1 X1 ! X3 X3! X1 X1 ! X4 X4 ! X1 X1! X5

n D 512 91 2 6 4 68 3 7

n D 2,048 100 2 13 8 100 2 12

X5! X1 X2 ! X3 X3 ! X2 X2! X4 X4 ! X2 X2 ! X5 X5! X2

n D 512 100 8 5 34 10 9 100

n D 2,048 100 13 8 96 3 7 100

X3! X4 X4 ! X3 X3 ! X5 X5! X3 X4 ! X5 X5 ! X4

n D 512 5 5 5 71 100 29

n D 2,048 8 4 6 100 100 52

Table 18.4 Percentages of statistically significant CPTE values of system 4, for h D 1; 2,m D 2,
� D 1, k D 10, and n D 512, 2,048, conditioned on the third variables, respectively

X1 ! X2 X2! X1 X2 ! X3 X3 ! X2 X1 ! X3 X3! X1

n D 512 98 11 88 3 95 9

n D 2,048 100 7 100 5 100 10

The last simulation system involves linear interactions (X2 ! X3) and nonlinear
interactions (X1 ! X2 and X1 ! X3), all at lag one. For h D 1 and m D 2, CPTE
correctly detects these causal effects for both small and large time series lengths,
while the percentage of detection remains low at the absence of coupling, as shown
in Table 18.4. Again, if h is larger than 1, false detections are observed. However,
increasing n enhances the performance of CPTE, and for h D 2 and n D 4; 096

the percentage of significant CPTE for X1 ! X2, X2 ! X3, and X1 ! X3 are
97%, 100%, and 77%, respectively. Therefore, the effect of the selection of the
free parameters h and m on CPTE gets larger for shorter time series.

18.4 Application on Economic Data

As a real application, we investigate the causal effects among economic time series.
Specifically, the goal of this section is to investigate the impact of monetary policy
into financial uncertainty and the long-term rate by taking the direct effects of this
relationship into account. The data are daily measurements from 05=01=2007 up to
18=5=2012. They consist of the 3-month Treasury Bill returns as a monetary policy
tool, denoted as X1, the 10-year Treasury Note to represent long-term behavior,
denoted as X2, and the option-implied expected volatility on the S&P500 returns
index (VIX), X3, in order to take financial uncertainty into consideration.

In similar studies instead of using the 3-month TBill, the changes in monetary
policy are mirrored in the evolution of the Fed Funds which is directly controlled by
FED. However, as it is pointed out in [1, 8], the 3-month TBill rate can adequately
reflect the Fed Funds movements.
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An in-depth investigation of the interrelations among the three variables starts by
estimating CPTE for all pairs of variables conditioned on the third variable. In the
aim to smooth away any linear interdependence from the returns series the CPTE is
applied on the VAR filtered variables. As it is shown in [2], information theoretic
quantities, such as transfer entropy, perform better when VAR residuals are used.
CPTE indicates the nonlinear driving of X1 on X2 (CPTEX1!X2 D 0:0024) for
h D 1, m D 1, � D 1, and k D 10. Regarding the “stability” of the results, it is
expected to be lost by increasing the embedding dimension m. Clearly, CPTE for
largerm values does not indicate any causal effect.

In order to further analyze the directions of those causal effects, PTE values
from the VAR filtered returns are also calculated. The statistical significance of
PTE is assessed with a surrogate data test. The respective p-values of the two-
sided surrogate test are obtained with means of shifted surrogates. If the original
PTE value is on the tail of the empirical distribution of the PTE surrogate value,
then the “no-causal effects” hypothesis is rejected. It is worth noticing that the two-
sided surrogate test for PTE indicates the same causal effects as CPTE, revealing
that X1 ! X2 (p-value = 0.03). The corresponding PTE values for this direction of
the causality are much larger compared with the rest of relationships.

18.5 Conclusions

Corrected Partial Transfer Entropy (CPTE) is a nonparametric causality measure
able to detect only the direct causal effects among the components (variables) of
a multivariate system. CPTE is defined exploiting the concept of surrogate data in
order to reduce the bias in Partial Transfer Entropy (PTE), giving zero values in case
of no causal effects and otherwise positive values.

CPTE correctly detected the direct causal effects for all tested stochastic
simulation systems, but only for the suitable selection of the free parameters. CPTE
is sensitive to the selection of the free parameters h and m, especially for short
time series. The selection of the step ahead h D 1 turns out to be more appropriate
than h D m at all cases. The suitable selection of the free parameters seems to
be crucial at most cases in order to avoid spurious detections of causal effects. The
more complicated a system is, the larger the time series are needed.

In the real application, CPTE indicated the direct driving of the 3-month TBill
returns on the 10-year TNote returns, without, however, excluding the presence of
indirect dependencies among these interest rate variables and the VIX. Determining
the 3-month TBill as the “node” variable, of our 3-dimensional system, highlights
the interest in examining its underlying dynamics jointly with the transmission
mechanisms of monetary policy. Although the transfer entropy (TE) method has
been recently applied in financial data, the partial transfer entropy is a relatively
new technique in this field. TE is estimated on the returns of the economic variables
(log-returns) and does not rely upon cointegration aspects (e.g., see [9, 14, 16]).
On the basis of the well-documented long-term comovement between the 3-month
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TBill and the 10-year TNote, the impact of non-stationarity on the performance
of the above tests is an important issue meriting further investigation. This point
reveals new insights about the informational content of Granger-causality type tests.
The results from real data should be handled with care due to their high degree of
sensitivity to the specific properties of the under-study variables.
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Chapter 19
A High Performance Biomarker Detection
Method for Exhaled Breath Mass
Spectrometry Data

Ariadni Papana Dagiasis, Yuping Wu, Raed A. Dweik, and David van Duin

Abstract Selected-ion flow-tube mass spectrometry, SIFT-MS, technology seems
nowadays very promising to be utilized for the discovery and profiling of biomark-
ers such as volatile compounds, trace gases, and proteins from biological and
clinical samples. A high performance biomarker detection method for identifying
biomarkers across experimental groups is proposed for the analysis of SIFT-MS
mass spectrometry data. Analysis of mass spectrometry data is often complex due
to experimental design. Although several methods have been proposed for the
identification of biomarkers from mass spectrometry data, there has been only a
handful of methods for SIFT-MS data. Our detection method entails a three-step
process that facilitates a comprehensive screening of the mass spectrometry data.
First, raw mass spectrometry data are pre-processed to capture true biological signal.
Second, the pre-processed data are screened via a random-forest-based screening
tool. Finally, a visualization tool is complementing the findings from the previous
step. In this paper, we present two applications of our method; a control-asthma case
study and an H1N1 Flumist time-course case study.
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19.1 Introduction

Biomarker identification is a common task of several researchers nowadays
especially in the science of “omics” such as genomics and proteomics. Selected-
ion flow-tube mass spectrometry (SIFT-MS) technology seems nowadays very
promising to be utilized for the discovery and profiling of biomarkers such as
volatile compounds, trace gases, and proteins from biological and clinical samples.
Although several methods have been proposed for the identification of biomarkers
from mass spectrometry data, there has been no uniform method that extends
to complex experimental settings. The overall goal of the following studies
is to understand lung physiology and pathology and the pathobiology of lung
diseases through the study of exhaled biomarkers. In this paper, we present a high
performance method for analyzing SIFT-MS datasets via a nonparametric adaptive
technique while focusing on biomarker identification associated with diagnosis and
prognosis of asthma from human exhaled breath samples.

Several methods have been developed in the literature for the classification
of mass-spectrometry data [1, 5, 7, 20, 21], but these methods mostly focus on
the characterization of peptide or protein ions in a sample while utilizing the
matrix-assisted laser ionization (MALDI-MS) or surface-enhanced laser ionization
(SELDI) technology. However, the detection and quantification of trace gases and
volatile compounds via the SIFT-MS technology has received minimal attention.
The diagnosis of tuberculosis from above serum samples from wild badgers was
studied in [17] with principal components and partial least squares discriminant
analysis, while the distribution of several volatile compounds in breath was studied
in [18] with the help of SIFT-MS. In this paper, we use SIFT-MS to propose a high-
performance biomarker detection method for exhaled breath mass spectrometry
data. This method has two key components; first, this method can be used for the
analysis of SIFT-MS data as well as other mass spectrometry data and second, it is
applicable to fixed-time and time-course experimental data.

19.2 Materials

Mass spectrometry (MS) is an analytical technique widely used for the determi-
nation of molecular weights, elemental compositions, and structures of unknown
substances. MS is based on the ionization principle where the quantification of
the mass-to-charge ratio of charged particles is key. Ionization techniques use ions
created in an ion source injected into a tube.1

1SIFT-MS is a chemical ionization technique allowing calculations of analyte concentrations from
the known reaction kinetics without the need for internal standard or calibration [14].
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19.2.1 SIFT-MS Instrumentation

SIFT-MS is an MS technique used for simultaneous quantification of several trace
gases and volatile compounds in biological samples such as exhaled breath, urine,
cell cultures, and non-biological samples such as humid air, exhaust gases and
rumen gases [14]. SIFT-MS relies on the chemical ionization of sample trace gases
by selected positive ions. The selected positive ions, called the “precursor” ions,
are H3OC, NOC, and OC2 . These ions are suitable for breath analysis since they
react slowly with N2, O2, H2O, CO2, or Ar [12]. The neutral analyte of a sample
vapor reacts with the precursor ions and forms product ions. The product ions are
sorted by their mass-to-charge ratio (m=z) and a detector is used to measure their
abundances.2

Mass spectrometry data are pairs of abundance measurements and m=z, ordered
according to m=z. A mass spectrum is a graph of intensity against m=z. Figure 19.1
shows a sample mass spectrum from an asthma patient using H3OC as the precursor
ion. The location and abundance measurements associated with the peaks represent
the significant biological information in the spectrum.
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Fig. 19.1 A sample mass spectrum from an asthma patient using H3OC as the precursor ion

2Absolute concentrations of trace gases and vapors in air are calculated based on the flow
tube geometry, the ionic reaction time, flow rates and pressure and ion–molecule reaction rate
coefficients [14].
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19.2.2 Data Description

Today, SIFT-MS has been used in studies that check for urinary infection [15],
cancer [16,19], renal failure [3,4], Helicobacter pylori infection [13], and substance
abuse. SIFT-MS has also been successfully used in exhaled breath due to its non-
expensive and pain-free nature [10] and therefore it can be useful for clinical
diagnosis and therapeutic monitoring. In this paper, we detected biomarkers from
the SIFT-MS analysis of breath samples for two studies; the H1N1 Flumist study
and the Asthma study. The H1N1 2009 monovalent live intranasal vaccine was
administered in nine healthy healthcare workers.3 Each subject was sampled a total
of four to six times over four to six sampling days (one sample per day). This was a
repeated measures study using healthy controls. Subjects received the H1N1 vaccine
on day 1, thus day 0 is baseline. In the second study, we gathered exhaled breath
samples from 33 Asthma patients and compared those with 19 healthy individuals.
Each subject was sampled one time only.

19.3 Methodology

A high performance biomarker detection method for identifying biomarkers across
experimental groups is proposed for the analysis of SIFT-MS data. Our detection
method entails a three-step process that facilitates a comprehensive screening of the
data. First, raw mass spectrometry data are pre-processed to capture true biological
signal. Second, the pre-processed data are screened via a random-forest-based
screening tool. Finally, a visualization tool is complementing the findings from the
previous step.

The high performance biomarker detection method

1. Pre-processing of MS data
2. Detection of biomarkers via a random-forest approach
3. Visualization tool

Our biomarker detection method has two key components; first, the method can be
used for the analysis of SIFT-MS data as well as other MS data and second, it is
applicable to fixed-time and time-dependent multi-group experimental data.

3The dose administered was 0.2 ml. All individuals had previously received trivalent seasonal 2009
vaccine (intramuscular). All subjects underwent nasal pharyngeal swab for influenza (Prodesse
PCR) immediately prior to H1N1 vaccination to rule out the presence of sub-clinical influenza
prior to vaccination and on day 1 after vaccination to determine viral load.



19 Biomarker Detection for Exhaled Breath MS Data 211

19.3.1 Data Pre-processing

All samples used in this study were analyzed by SIFT-MS with limit of detection
being typically 1 ppb. The resolution of the instrument was set to 1 amu and each
scan was composed of two cycles. The counts per second (cps) of each cycle to sort
out unusable scans was used. The data were averaged across cycles 1 and 2. We will
refer to this set of counts as the “Raw” data.

Pre-processing of the “Raw” MS data, that is selecting features of spectra that
correspond to a true biological signal, is required prior to analyzing them for
biomarker identification. The standard pre-processing steps are: baseline removal
to remove systematic artifacts, spectra normalization to correct systematic variation
due to experimental noise, peak detection and quantification, and peak alignment. In
this paper, although for baseline correction various methods were tried, the removal
of the baseline was not necessary due to minimum magnitude of variability. Each
spectrum was normalized using the Syft Technologies normalization procedure as
follows. First, the sum of counts at H3OC19; 37; 55; 73 for each scan was computed.
The H3OC mass counts were normalized by dividing the observed H3OC mass
counts for each H3OC by the total H3OC sum. Similarly, the NOC counts were
normalized by dividing the observed counts for each NOC by the total NOC30; 48
sum. The OC2 counts were normalized by dividing the observed OC2 counts by
the count of OC2 32. Due to the very small intensity values after normalization, all
counts were multiplied by 107 for computational convenience. Next, a local maxima
criterion for peak detection was used. A data point in a spectrum was a local peak if
it was a local maximum within a window with an adaptive window size. Once peaks
were detected, they were aligned across spectra to find those peaks that represent
the same compound.

19.3.2 Detection of Biomarkers Using Forests

Random forests [2,6,8] is an ensemble learning method of computational inference
that grows a collection of classification trees choosing the most popular classifi-
cation. More specifically, bootstrap samples are selected from the pre-processed
data and for each sample/spectrum a tree is constructed using a random sample
of all the available predictors at each node. The forest classifier is constructed by
aggregating every tree classifier from the bootstrap samples. For example, in the
case of classification, each classifier predicts/votes the status of each spectrum.
Then, the votes from all the trees are aggregated to return the final vote for the
spectrum. Random forests can be run for regression or classification [8]. We used
the statistical program R project [11] for the analysis of our datasets and the package
randomForest [8].

Our forest-based biomarker detection method utilizes the variable importance
(VIMP) values calculated from the random forest analysis of the pre-processed data.
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VIMP values measure the change in prediction error on a new test case if a variable
were removed from the analysis [8] and therefore large VIMP values indicate the
predictiveness of a variable. VIMP values are calculated for every product ion
and product ions are sorted based on the magnitude of their corresponding VIMP
values. Product ions with the highest VIMP values (above zero) are marked as
biomarkers. The proposed biomarker detection method is applicable under two
distinct experimental settings; a fixed-time two-group setting and a multi-group
time-course setting.

For the Case-Control setting, random forest is run in a classification mode
and VIMP values are computed. Biomarkers, product ions with the highest VIMP
values, are considered to be associated with a disease. For the Time-course setting,
random forest is run in a regression mode, utilizing time as the predictor, and VIMP
values are computed. Biomarkers, product ions with the highest VIMP values,
reflect intensities changing over time. This approach is also applicable in the case
of comparing several groups and the case of incorporating the effects of additional
predictors while trying to track change over time [9]. Overall, our detection method
works by first, reducing the dimensionality of the data (peaks detection) and second,
by detecting significant biomarkers in the collection of spectra.

19.3.3 Visualization Tool

Finally, a visualization tool, called the VIMP plot, is utilized to complement the
findings from the previous step of the biomarker detection method. The VIMP
plot is a line plot that shows the VIMP values in ascending (or descending) order
for each biomarker detected in the previous step. The proposed graph may be
used independently of the experimental setting. In the case of classification, the
VIMP plot may be used together with side-by-side boxplots and in the case of
regression, the VIMP plot may be accompanied by a time-profile plot for the
detected biomarkers.

19.4 Applications

Our high performance detection method was applied to various SIFT-MS exhaled
breath data from various samples and diseases such as asthma, liver disorders,
pulmonary hypertension, sleep apnea, and influenza infection. Here, we present
results from the H1N1 Flumist and Asthma study. Figure 19.2 shows the VIMP
values for the NO detected H1N1 Flumist biomarkers: NOC143,169, 77, 99, 113,
118, 85, 117, 55, 107, 19. The time profile for NOC117C is given in Fig. 19.3.
Similar results were obtained from our analysis for the H3O and O2 precursors. For
the Asthma study, the VIMP values are given in Fig. 19.4 for the H3O biomarkers.
The side-by-side boxplots for the top five detected biomarkers are displayed in
Fig. 19.5.
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19.5 Discussion

Our biomarker detection method is a high performance detection method due to
its multiple-step nature, as well as, its non-parametric and data-adaptive nature.
Initially, the dimensionality of the data is reduced and information about potential
biomarkers of interest is gathered. Then, a nonparametric classifier, setting-adaptive,
is used to detect significant biomarkers in the collection of spectra. The random-
forest-based classifier has several good properties; it promotes good accuracy, it
is robust to outliers and noise, it is faster than other ensemble methods, it provides
internal estimates of error, strength, correlation, and variable importance, it is simple
and it works efficiently for large datasets.
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Chapter 20
Local Polynomials for Variable Selection

Francesco Giordano and Maria Lucia Parrella

Abstract Nonparametric estimators are particularly affected by the curse of
dimensionality. An interesting method has been proposed recently, the RODEO,
which uses the nonparametric local linear estimator for high dimensional regression,
avoiding the curse of dimensionality when the model is sparse. This method can
be used for variable selection as well, but it is blind to linear dependencies. For
this reason, it is suggested to use the RODEO on the residuals of a LASSO. In
this paper we propose an alternative solution, based on the adaptation of the well-
known asymptotic results for the local linear estimator. The proposal can be used
to complete the RODEO, avoiding the necessity of filtering the data through the
LASSO. Some theoretical properties and the results of a simulation study are shown.

Keywords Local polynomials • Variable selection • Nonparametric regression
models

20.1 Introduction

Nonparametric analysis is often accused to be too much cumbersome from a
computational point of view and too much complicated from an analytical per-
spective, compared with the gains obtained in terms of more general assumptions
on the analysed framework. For this reason, in recent years many efforts have
been done to propose nonparametric procedures which are simple to analyse and
automatic to implement. The RODEO method of [1] is an example of this tendency.
It has been proposed to perform nonparametric high dimensional regression for
sparse models, avoiding the curse of dimensionality problem which generally
affects nonparametric estimators. The theoretical results shown in their paper are
innovative and promising, but some drawbacks of the computational procedure
restrict its applicability. In particular, the RODEO is based on a hard-threshold
variable selection procedure which isolates the nonlinear covariates from the others
(linear and irrelevant). In this paper, we call nonlinear covariates those variables
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having a nonlinear effect on the dependent variable of the regression model, and
linear covariates those variables having a linear effect (the remaining ones are
irrelevant). The advantage of the RODEO is that the rate of convergence of the
smoothing estimator depends on the number of nonlinear covariates, which is much
smaller than the number of total covariates when the model is sparse. This reduces
the problem of the curse of dimensionality considerably. On the other side, the
drawback of the RODEO is that it fails to identify the linear dependencies, because
the statistic used to test the relevance of the covariates does not distinguish the
irrelevant covariates from the linear ones (it is equal to zero in both cases). Thus
the method is ineffective for variable selection. To overcome this, [1] suggest to
use the RODEO method on the residuals of a LASSO, but the consequences of this
deserve to be further explored.

The aim of this work is to propose an alternative solution for the identification
of the relevant linear covariates. It is based on well-known asymptotic results on
the multivariate local polynomial estimators, derived by [3] and [2], but these
results are adapted to the particular analysed framework in order to have a better
performance of the variable selection procedure. Our proposal can be used as a final
step of the RODEO procedure, to allow the RODEO to be applied to the original
data with no necessity of using the LASSO.

Let .X1; Y1/; : : : ; .Xn; Yn/ be a set of RdC1-valued random vectors, where the Yi
are the dependent variables and theXi are the Rd -valued covariates of the following
nonparametric regression model

Yi D m.Xi/C "i ; "i � N.0; �2" /: (20.1)

Here m.Xi/ D E.Y jXi/ W Rd ! R is the multivariate conditional mean function.
The errors "i are i.i.d, and they are supposed to be independent of Xi . We use the
notation Xi D .Xi .1/; : : : ; Xi .d// to refer to the covariates and x D .x1; : : : ; xd /

to denote the target point at which we want to estimate m. We indicate with fX.x/
the density function of the covariates, having support supp.fX/ � R

d . In general,
throughout this paper we use the same notation as in [1].

20.2 The Multivariate Local Linear Estimator

The Local Linear Estimator (LLE) is a nonparametric tool whose properties have
been studied deeply (for example, see [2]). It corresponds to perform a locally
weighted least squares fit of a linear function, being equal to

arg min
ˇ0;ˇ1

nX

iD1

˚
Yi � ˇ0.x/ � ˇT1 .x/.Xi � x/�2 KH.Xi � x/; (20.2)

where the function KH.u/ D jH j�1K.H�1u/ gives the local weights and K.u/
is the Kernel function, a d -variate probability density function. The d � d matrix
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H represents the smoothing parameter, called the bandwidth matrix. We assume it
is a diagonal, positive definite matrix. It controls the variance of the Kernel
function and regulates the amount of local data used on each dimension, and so
the local smoothness of the regression function. Denote with ˇ.x/ D .ˇ0.x/;

ˇ1.x/; : : : ; ˇd .x//
T the vector of coefficients to estimate. Using the matrix notation,

the solution of the minimization problem in the (20.2) can be written as Ǒ.xIH/ D
.XTWX/�1XT WY, where Ǒ.xIH/ is the estimator of the vector ˇ.x/ and

X D

0
B@
1 .X1 � x/T

:::
:::

1 .Xn � x/T

1
CA ; W D

0
B@
KH.X1 � x/ : : : 0

:::
: : :

:::

0 : : : KH.Xn � x/

1
CA :

It is extremely difficult and inefficient to use local linear estimators in high
dimension, due to the crucial effects of the bandwidth matrix. The optimal band-
width matrix H opt must take account of the trade-off between bias and variance of
the LLE, and can be defined by minimizing the asymptotic mean square error

H opt D arg min
H

h
Abias2f Ǒ

j .xIH/g C Avarf Ǒ
j .xIH/g

i
; (20.3)

where Abias and Avar denote the asymptotic bias and variance. The appeal of the
RODEO procedure is that it exploits the properties of the bandwidth matrix for
local linear estimators, under the assumption that model (20.1) is a sparse model.
The RODEO procedure includes a practical way to select the bandwidth matrix (see
[1] for the details). Denote with H� D diag.h�1 ; : : : ; h�d / such estimated bandwidth
matrix. Its peculiarity is that the bandwidths associated with the linear and irrelevant
covariates are automatically set to a high value, say hU . As a result, the amount of
usable data significantly increases. Denote with C 
 f1; 2; : : : ; d g the set including
the indexes of the nonlinear covariates. It means that h�j D hU ;8j 2 C . On
the other side, the bandwidths associated to the nonlinear covariates are shrinked
towards zero, so that h�j < hU ;8j 2 C . Thus, the RODEO method identifies the
nonlinear covariates (indexed by C ), but it does not distinguish the relevant linear
covariates from the irrelevant ones (all included in C ). The test proposed in the
following section tries to solve this problem.

20.3 Using LLE’s Asymptotics for Variable Selection

Let Dm.x/ D
�
D
.1/
m .x/; : : : ;D

.d/
m .x/

�T
denote the gradient of m.x/. Note from

the (20.2) that Ǒ.xIH/ gives an estimation of the function m.x/ and its gradient.
In particular,
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Ǒ.xIH/ D

0
BBB@

Ǒ
0.xIH/

Ǒ
1.xIH/
:::

Ǒ
d .xIH/

1
CCCA 


0
BBBB@

Om.xIH/
OD.1/m .xIH/

:::
OD.d/m .xIH/

1
CCCCA
: (20.4)

The asymptotic behaviour of such statistics has been studied by [2], who proved the
joint asymptotic normality of the vector Ǒ.xIH/ and derived the explicit asymptotic
expansions for the conditional bias and the conditional covariance matrix, given
observations of predictor variables. Our proposal is to use the asymptotic normal
distribution of the estimator ODm.xIH/ in order to test the relevance of the locally
linear covariates. The idea is based on the fact that the partial derivativesD.j /m .x/ are
zero for irrelevant covariates. For the moment, we consider a sequence of marginal
tests instead of a unique conjoint test, but we are working on a variant of the method
based on multiple testing or based on the hard-threshold technique. So, we consider
the following hypotheses

H0 W D.j /m .x/ D 0 H1 W D.j /m .x/ ¤ 0 for j 2 C: (20.5)

Rejecting the hypothesis H0, for a given j , means to state the relevance of the
covariate X.j / for the estimation of m.x/. What makes this testing procedure new
is the fact that the bandwidth matrix is selected in order to allow the total power of
the test to be improved. We explain why in the following lines.

It is easy to show (see the proof of Lemma 1) that the bias of the statistic
OD.j /m .xIH/ is independent from hj if X.j / is a linear covariate, that is when
@2m.x/=@x2j D 0. Moreover, it is independent from hj under the alternative
hypothesis H1. So, the statistic test is always independent from hj , under both the
hypotheses, whereas its asymptotic variance is equal to

Avarf OD.j /m .xIH/g D �2" �2

nfX .x/jH jh2j
; (20.6)

where �2 D R
u21K

2.u/du. So, in order to minimize the mean square error of the test
statistic under the null hypothesis, we only have to minimize the variance in (20.6)
by choosing a bandwidth hj extremely large. This implies some benefits on the
power of the test, since the distance among the two distributions (under the null
and alternative hypotheses) increases when the variance decreases (ceteris paribus).
However, in order to have such benefits, we must be sure that the test is performed
in the class of the locally linear covariates and that the bandwidth is estimated large
for all the linear and irrelevant covariates. This is guaranteed using the matrix H�
output by the RODEO method and considering the set of covariates included in C .
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Finally, we use the suggestion of [1] to estimate the variance functional in (20.6),
so we reject the hypothesisH0 for the covariate X.j / if

ˇ̌
ˇ OD.j /m .xIH�/

ˇ̌
ˇ > z1�˛=2

q
O�2" eTjC1BBT ejC1;

where O�2" is some consistent estimator of �2" (for example, the one suggested in [1]),
ejC1 is the unit vector with a one in position j C 1, B D .XT WX/�1XTW and
z1�˛=2 is the 1�˛=2 percentile of the normal distribution, with ˛ the size of the test.

20.4 Theoretical Results

In this section we show the consistency of our proposal. In particular, Proposition 1,
states the rate of convergence of our proposed statistic-test. First, we state the
following assumptions, which are also used in [1].

(A1) The bandwidthH is a diagonal and positive definite matrix.
(A2) The multivariate Kernel functionK is a product kernel, based on a univariate

kernel function with compact support, which is nonnegative, symmetric, and
bounded; this implies that all the moments of the Kernel exist and that the
odd-ordered moments of K andK2 are zero.

(A3) The second derivatives of m.x/ are
ˇ̌
mjj .x/

ˇ̌
> 0, for each j D 1; : : : ; k.

(A4) All derivatives of m.�/ are bounded up to and including order 4.
(A5) .hU ; : : : ; hU / 2 B 
 R

d , that is B is a compact subset in R
d .

(A6) The density function f .x/ of .X1; : : : ; Xd/ is uniform on the unit cube.

Lemma 1. Using the estimated bandwidth matrix H�, under the assumptions
(A1)–(A6), the bias and the variance of the estimator OD.j /m .xIH/ defined in
(20.4) are

biasf OD.j /m .xIH�/jX1; : : : ; Xng D Op
�
�2C
�
;

varf OD.j /m .xIH�/jX1; : : : ; Xng D �2" �2.K/

njH�j.hU /2 .1C op.1//

where j 2 C and �C D maxfh�i ; i 2 C g.

Proof (sketch). We assume that there are k nonlinear covariates in C , r � k linear
covariates inA and d�r irrelevant variables in the complementary set U D A [ C .
To be simple, we rearrange the covariates as follows: nonlinear covariates for
j D 1; : : : ; k, linear covariates for j D k C 1; : : : ; r , and irrelevant variables
for j D r C 1; : : : ; d . Moreover, we suppose that the set of linear covariates
A can be furtherly partitioned into two disjoint subsets: the covariates from k C 1

to k C s belong to the subset Ac , which includes those linear covariates which
are multiplied to other nonlinear covariates, introducing nonlinear mixed effects in
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model (20.1); the covariates from kC sC 1 to kC r belong to the subset Au, which
includes those linear covariates which have a linear additive relation in model (20.1)
or which are multiplied to other linear covariates. Therefore, A D Ac [ Au and
C [ A [ U D f1; : : : ; d g. Under such conditions, we can partition the gradient of
m.x/ as follows:

Dm.x/ D �
D
C
m.x/;D

Ac
m .x/;D

Au
m .x/; 0

�T
;

where 0 denotes a vector with d � r zeroes, and

D
C
m.x/ D

�
@m.x/

@xj

�T

j2C
D
Ac
m .x/ D

�
@m.x/

@xj

�T

j2Ac
D
Au
m .x/ D

�
@m.x/

@xj

�T

j2Au

:

Moreover, it is also useful to take account of the partial derivatives of m.x/ of total
order 3. To this end, we define the following matrix

Gm.x/ D

0

BBBBBB@

@3m.x/

@x31

@3m.x/

@x1@x
2
2

: : :
@3m.x/

@x1@x
2
d

@3m.x/

@x2@x
2
1

@3m.x/

@x32
: : :

@3m.x/

@x2@x
2
d

:::
:::

: : :
:::

@3m.x/

@xd @x
2
1

@3m.x/

@xd @x
2
2

: : :
@3m.x/

@x3d

1

CCCCCCA
D

0

BB@

G
C
m.x/ 0 0 0

G
AcC
m .x/ 0 0 0

0 0 0 0
0 0 0 0

1

CCA ; (20.7)

where 0 denotes a vector/matrix with all zeroes. Note that the matrix Gm.x/ is not
symmetric. Note also that, for additive models, matrix G

AcC
m .x/ is null while matrix

G
C
m.x/ is diagonal. In the last case, the analysis is remarkably simplified.
Let us partition in the same way the bandwidth matrix H . Following the classic

approach used in [2], we can derive the asymptotic bias and the asymptotic variance
of the LLE in our specific setup, using the uniformity assumption for fX and
remembering that the estimated bandwidth matrix H� assigns, with probability
tending to one, the value hU to the locally linear covariates X.j /, with j 2 C .
The bias is

E

8
ˆ̂̂
<

ˆ̂̂
:

0
BBB@

ODCm.xIH/
ODAcm .xIH/
ODAu
m .xIH/

ODUm.xIH/

1
CCCA �

0

BB@

D
C
m.x/

D
Ac
m .x/

D
Au
m .x/

0

1

CCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

X1; : : : ; Xn

9
>>>=

>>>;
D Bm.x;H/Cop

�
�2C
�
; (20.8)

where, denoted with 1 a vector of ones and defined �r D R
ur1K.u/du, it is

Bm.x;H/ D 1

2
�2

0
BBB@

h
G
C
m.x/H

2
C C

�
�4

3�22
� 1

�
diagfGC

m.x/H
2
C g
i

1

G
AcC
m .x/H2

C 1
0
0

1
CCCA :
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On the other side, using Lemma 7.4 in [1] and the assumptions of this lemma, the
conditional covariance matrix is

Cov

8
ˆ̂̂
<

ˆ̂̂
:

0
BBB@

ODCm.xIH/
ODAcm .xIH/
ODAu
m .xIH/

ODUm.xIH/

1
CCCA

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

X1; : : : ; Xn

9
>>>=

>>>;
D �2" �2

njH j

0

BB@

H�2C 0 0 0
0 H�2Ac 0 0
0 0 H�2Au

0
0 0 0 H�2U

1

CCA .1Cop.1//;

where �2 D R
u21K

2.u/du. The result of the lemma follows. ut
Proposition 1. Under the assumptions (A1)–(A6), for all � > 0 and j 2 C , it is

� OD.j /m .xIH�/� D
.j /
m .x/

�2 D Op
�
n�4=.4Ck/C�

�
: (20.9)

Proof. Using Theorem 5.1 in [1] and Lemma 1, the conditional squared bias is

bias2
� OD.j /m .xIH�/jX1; : : : ; Xn

�
D Op

�
n�4=.4Ck/C�

� 8j 2 C:

Using, again, Lemma 1, the conditional variance is

varf OD.j /m .xIH�/jX1; : : : ; Xng D �2" �2.K/

n.hU /dC2�k
Qk
iD1 h�i

.1C op.1// 8j 2 C :

By Theorem 5.1 in [1], it is varf OD.j /m .xIH�/jX1; : : : ; Xng D Op
�
n�4=.4Ck/C�

�
,

8j 2 C . Finally, using the same arguments as in the proof of Corollary 5.2 in [1],
the result follows. ut
Remark 1. the rate of convergence shown in Proposition 1 is faster than n�2=.4Ck/,
which is the optimal rate for the first derivative estimator (see [2]). This is a
consequence of the linearity conditions.

Remark 2. suppose a transform on the covariate values is such that the nonlinear
dependencies are transform into linear ones. Then k D 0 and Proposition 1 implies
that the rate of convergence is n�1C", which is very close to the parametric case.

20.5 Some Results from a Simulation Study

In this section we briefly investigate the empirical performance of our proposal.
We generate datasets from three different models, reported in the following table.



224 F. Giordano and M.L. Parrella

Model m.x/ r k

1 5x28x
2
9 2 2

2 2x10 C 5x28x29 3 2

3 2x10x2 C 5x28x29 4 2

Model 1 has been used by [1]. The other models are variants of the first one, with
the addition of some linear mixed effects. We simulate 200 Monte Carlo replications
for each model, considering different configurations of settings. The number of
relevant covariates varies from r D 2 to r D 4, as shown in the table, while for
all the models, the number of nonlinear covariates is k D 2. The remaining d � r

covariates are irrelevant, so they are generated independently from Y . Note that the
linear, the nonlinear, and the irrelevant covariates are not sequentially sorted, but
they are presented randomly in the models. Finally, all the covariates are uniformly
distributed, fX � U.0; 1/, and the errors are normally distributed, f" � N.0; 0:52/,
as in [1]. In Fig. 20.1, for models 1–3, we show the percentages of rejection of the
null hypothesesH0 in (20.5), for j 2 C , x D .1=2; : : : ; 1=2/ and d D 10. For the
nonlinear covariates in C (i.e., covariates 8 and 9), the percentages plotted show the
result of the RODEO nonlinear hard-threshold test. To show the consistency of our
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Fig. 20.1 For each covariate of models 1–3, we show the percentages of rejection for the null
hypothesis H0 of test (20.5), when x D .1=2; : : : ; 1=2/ and d D 10. To show the consistency
of the test, we report n D 250 on the top and n D 500 on the bottom. The nonlinear covariates
are represented with the symbol “+,” the linear covariates with the symbol “�;” and the irrelevant
covariates with the symbol “o.” The size of each single test, ˛ D 0:05, is shown by a dashed line
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test, we consider two different sample sizes, n D .250; 500/. We report n D 250

on the top and n D 500 on the bottom of the figure. For each model, the nonlinear
covariates are represented with the symbol “+,” the linear covariates with the symbol
“�,” and the irrelevant covariates with the symbol “o.” Note that each percentage
plotted may represent the size of the test (for the irrelevant covariates) or the power
of the test (for the relevant covariates). As desired, the realized power tends to one
while the size tends to ˛ D 0:05, as n ! 1. Both these limits are shown in the
plots by a dashed line.
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Chapter 21
On the CLT on Low Dimensional
Stratified Spaces

Leif Ellingson, Harrie Hendriks, Vic Patrangenaru, and Paul San Valentin

Abstract Noncategorical observations, when regarded as points on a stratified
space, lead to a nonparametric data analysis extending data analysis on manifolds.
In particular, given a probability measure on a sample space with a manifold
stratification, one may define the associated Fréchet function, Fréchet total variance,
and Fréchet mean set. The sample counterparts of these parameters have a more
nuanced asymptotic behaviors than in nonparametric data analysis on manifolds.
This allows for the most inclusive data analysis known to date. Unlike the case
of manifolds, Fréchet sample means on stratified spaces may stick to a lower
dimensional stratum, a new dimension reduction phenomenon. The downside of
stickiness is that it yields a less meaningful interpretation of the analysis. To
compensate for this, an extrinsic data analysis, that is more sensitive to input data is
suggested. In this paper one explores analysis of data on low dimensional stratified
spaces, via simulations. An example of extrinsic analysis on phylogenetic tree data
is also given.

Keywords Central limit theorem • Stratified space • Frechet means • Intrinsic
means • Inrinsic means

21.1 Data Analysis on Manifolds

The question of studying random elements (nowadays called objects) was first
raised by Fréchet [7]. As an example, Fréchet suggested analyzing the shape of
a contour of a closed curve and the shape of an egg selected at random from a
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wire egg basket. Fréchet’s approach to Analysis of Object Data (AoOD) consists
of identifying an object with a point in a complete metric space .M; d/. Next,
given a random object X on M; he defined what we call today the Fréchet function
on M , given by Fd .p/ D E.d2.X; p//. A minimizer of Fd is called a Fréchet
mean and the minimum value of Fd is the Fréchet total variance. Ziezold [23]
showed that the Fréchet sample mean set is a consistent estimator of Fréchet
population mean set. Going beyond consistency, Hendriks and Landsman [10] and,
independently, Patrangenaru [19] assumed the metric space from which the data
is sampled is a submanifold of the numerical space, or from an abstract manifold,
thus allowing for a description of the asymptotics of the extrinsic sample mean
on a manifold embedded in a numerical space, thus providing key examples of
limit behavior of Fréchet sample means. In addition, Hendriks and Landsman [10]
and, independently, Patrangenaru [19] used different consistent estimators of the
population extrinsic covariance matrix to studentize the extrinsic sample mean
vector and estimate the extrinsic population mean. The large sample behavior of
the Fréchet sample mean on a manifold in general was given in Bhattacharya and
Patrangenaru [4]. A manifold modeled allows for one to describe on a Hilbert space
H is locally diffeomorphic to H;which, due to terms of a representation consistency,
allows to describe the asymptotics of the Fréchet sample means in terms of a
representation in the tangent space at the Fréchet mean, if the latter exists. A 2D
manifold, immersed in R

3 is shown in Fig. 21.1.
Two types of distances were considered on the sampling manifold M : a chord

distance d Dj d; where j W M ! L is an embedding of M into a vector space
over the reals L; or an arc distance d D dg, where g is a Riemannian tensor on M .
The nonparametric methods for studying data of this sort has led to an extrinsic and
an intrinsic data analysis.

Fig. 21.1 Left: A 2D manifold—Klein bottle. Right: a tangent space at a point of a 2D manifoldM
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21.2 Data Analysis on One Dimensional Stratified Spaces

While analysis of Fréchet means on manifolds is now an established area, sample
spaces in modern data analysis, including Kendall shape spaces in dimension 3 or
higher, are not all manifolds. However, they do have a manifold stratification; they
are stratified spaces (see Verona [21]).

Definition 1. A filtration by closed subsets Fi ; i D 0; 1; : : : of a metric space M;
such that the difference between successive members Fi and Fi�1 of the filtration
is either empty or a smooth manifold of dimension i; is called a stratification. The
connected components of the difference Fi n Fi�1 are the strata of dimension i .

The regular part of M is the highest dimensional stratum. At each regular point,
the stratified space has a tangent space. The dimension of the stratified space is m
if M D Fm ¤ Fm�1; otherwise dim M D 1. All other points are singular. The
analysis of data on stratified spaces is still in very early stage. Examples of stratified
sample spaces, which are not themselves manifolds include similarity shape spaces
(see Kendall et al. [15]), affine shape spaces (see Groisser and Tagare [9]), and
projective shape spaces (see Mardia and Patrangenaru [17]). Spaces of positive
semidefinite matrices, which arise as data points in Diffusion Tensor Imaging (for
example, see Schwartzman et al. [20]), and tree spaces (see Billera et al. [5]; Wang
and Marron [22]) are additional examples of stratified sample spaces.

21.2.1 Phylogenetic Trees

The data that biologists use usually come from one homogenous sequence, which in
the biologist’s language concerns the relationship between gene trees and genes that
are made from one tree. The gene sequence might be about 200 base pairs long. One
of the problems that has occurred in the last 40 years is that biologists believe that
the way evolution works is that there would only be one species tree. Different genes
have different histories, so you get different gene trees. Putting them together is a
statistical problem that helps the study of the evolutionary process. A phylogenetic
tree with p leaves is an equivalence class based on a certain equivalence, of a DNA-
based connected directed graph of species with no loops, having an unobserved root
(common ancestor) and p observed leaves (current observed species of a certain
family of living creatures). A tree with p leaves is a simply connected graph with
a distinguished vertex, labeled o, called the root, and p vertices of degree 1, called
leaves, that are labeled from 1 to p. In addition, we assume that all interior edges
have positive lengths. An edge of a p-tree is called interior if it is not connected to
a leaf. Now consider a tree T, with interior edges e1; : : : ; er of lengths l1; : : : ; lr ,
respectively. If T is binary, then r D p � 2; otherwise r < n � 2. The vector
.l1; : : : ; lr /

T specifies a point in the positive open orthant .0;1/r . That is to say
that a binary p-tree has the maximal possible number of interior edges and thus
determines the largest possible dimensional orthant; in this case, the orthant is
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Fig. 21.2 Tree spaces T3; T4; T5

p � 2-dimensional. The orthant corresponding to each non-binary tree appears
as a boundary face of the orthants corresponding to at least three binary trees.
In particular, the origin of each orthant corresponds to the (unique) tree with no
interior edges, which is known as the star tree. The space Tp is constructed by
taking one p � 2-dimensional orthant for each of the .2p � 3/ŠŠ possible binary
trees and gluing them together along their common faces. Note that tree spaces
are not manifolds. Singularities (points where the space does not have a tangent
space) are present in the tree space structure. For further detail on phylogenetic
trees and the construction of the tree space, see Billera et al. [5]. Phylogenetic
trees with p leaves are points on a metric space Tp that has p � 2 dimensional
stratification. In particular, the space of trees with three leaves is T3 D S3, a 3-
spider, which is the union of three line segments with a common end (see Fig. 21.2,
left). For a probability measure on Sp; if none of the the “legs” of the p-spider has a
dominant expected mean distance to the center of the spider, then the Fréchet mean
is the star tree. This result will be stated more formally in the following section and
extended to more general spaces. T4 is a two dimensional stratified space obtained
from 15 D .2 � 4 � 3/ŠŠ 2D quadrants glued according to tree identification rules
(see Billera et al. [5]). Interior points of these quadrants are combinatorial binary
trees with four leaves, the coordinates of an interior point being given by the two
interior edges of a binary tree in one of these combinatorial binary trees. Points on
the boundaries of the quadrants correspond to combinatorial trees with four leaves,
which are obtained from a combinatorial binary tree by shrinking one of the interior
edges to zero length. Therefore a representation of T4 as a surface with singularities
can be obtained from the polyhedral surface given in Fig. 21.3 by identifying the
edges labeled with the same letter. While this is a 3D pictorial representation only,
in fact, as mentioned in Sect. 21.3, given that 24�4�2 D 10; T4 is embedded in R

10

having the star tree at the origin. In this representation, the intersection of a small
sphere in R

10 centered at the origin with T4 is the so-called Petersen graph. An edge
of Petersen graph is the transverse intersection of one quadrant with a sphere, thus
there are 15 edges, and a vertex is the point where one of the coordinate axes pierces
the sphere, therefore there are 10 vertices (see Fig. 21.4).
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Fig. 21.3 A 2D stratified
space—T4 , space of trees
with four leaves

Fig. 21.4 Petersen graph

The remainder of this paper will focus on data analysis for low dimensional tree
spaces and simple graphs.

21.2.2 CLTs on Trees

Assume Xi; i D 1; : : : ; n are i.i.d. random objects on a spider Sp; having legs
La; a D 1; : : : p; and center C . Further, assume the intrinsic mean �X1;I exists
and the intrinsic variance is finite. Any probability measure Q on Sp decomposes
uniquely as a weighted sum of probability measures Qk on the legs Lk and an
atomQ0 at C (Hotz et al. [13]). More precisely, there are nonnegative real numbers
fwkgpkD0 summing to 1 such that, for any Borel set A � Sp, the measure Q takes
the value

Q.A/ D w0Q0.A \ C/C
pX

kD1
wkQk.A\ Lk/: (21.1)

We will consider the nontrivial case when the moments �a D E.Qa/; a D 1; : : : ; p

are all positive.

Theorem 1 (Hotz et al. [14]). Assume w0 D 0. (i) If there exists a 2 1; p such
that wa�a >

P
b¤a wb�b , then �X1;I 2 La and, for n large enough NXn;I 2 La
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and
p
n. NXn;I � �X1;I / has asymptotically a normal distribution. (ii) If there exists

a 2 1; p such that wa�a D P
b¤a wb�b; then, after folding the legs Lb; b ¤ a; into

one half line opposite to La,
p
n. NXn;I / has asymptotically the distribution of the

absolute value of a normal distribution. (iii) If 8a 2 1; p;wa�a <Pb¤a wb�b; then

�X1;I D C and there is n0 s.t. 8n � n0; then NXn;I D 0 a.s..

Remark 1. Under the assumptions of Theorem 1 (iii), we say that the sample mean
is sticky. Theorem 1 was recently extended to C. L. T. on open books [13]. Its proof
is based on the idea of using the so-called Tits metrics (see Gromov [8], p.11).

Basrak [2] proved a similar result for distributions on metric binary trees.
According to Basrak [2]: “Limit theorems on ( binary ) trees will need minor
adjustments, since on a general tree, the barycenter can split the tree into more than
three subtrees.” Nevertheless, asymptotically, the inductive mean will have one of
the three types of behavior described in Theorem 3 in Basrak [2], meaning that the
stickiness phenomenon is still present for distributions on trees.

21.2.3 CLTs on Graphs Including Cycles

The above comment from Basrak [2] does not extend to arbitrary finite, connected
graphs, since graphs usually have cycles (see Fig. 21.5). The key property of metric
acyclic graphs (trees) is that they are CAT(0) and that a random object on such a
space with finite intrinsic variance has an intrinsic mean. There are random objects
on a circle having an intrinsic mean set with at least two points. In fact the intrinsic
mean set may contain an arbitrary number of points, or be even the entire circle.
However, Basrak’s condition for trees can be extended to the case of graphs in some
general cases even if the graphG has cycles with positive mass on any arc of a cycle.
In our approach, we have in mind graphs with the structure of path metric spaces in
the sense of Gromov [8, p. 11].

Consider the case that the Fréchet mean is unique, to be denoted by �I . In this
case, by consistency of the intrinsic sample mean set [23], any measurable intrinsic
sample mean O�I;n selected from the sample mean set converges a.s. to �I ; and since
around �I the graph is homeomorphic to R; the intrinsic sample mean behaves like
in Theorem 1(i).

Assume �I is a vertex, and there is a small neighborhood of �I that looks like a
spider Sp with center C D �I and with p legs, p � 2, such that each leg belongs to

Fig. 21.5 Bicyclic graph
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a different connected component of Gn�I . Then the sample Fréchet mean behaves
like in Theorem 1. More generally, given a unique Fréchet mean,�I , there is a small
neighborhood of �I that looks like a spider Sp with center C D �I and legs La
oriented such that C is the starting point of the leg.

For each x 2 G and leg La, d.x; �/ is either increasing or decreasing for � 2 La.
We define "a.x/ D C1 if increasing and "a.x/ D �1 if decreasing. Then �I is
sticky if for all legs La

E.d.X;�I /"a.X// > 0: (21.2)

This is easily identified as a condition that implies that �I is a local minimum of
the Fréchet variance. The quantity M.a/ D E.d.X;�I /"a.X// is called the net
moment in the direction of La.

As an aside, one can consider for any � 2 G its star neigborhood S� and the
“derivative” in the direction of leg La of S�; given by

DLaFd D E.2d.X; �/"a.X//: (21.3)

Remark 2. It would be useful to consider the case when the probability distribution
of X is concentrated in a dense countable subset of the graph G. (For example, in
the circle S1 at rational angles from some base point. At every rational angle the
Fréchet function cannot be minimal, since the antipodal point carries mass.)

Remark 3. One may note that in the case of trees, and in particular in case of data on
a spider, the condition of stickiness in this section is equivalent with the condition
in Theorem 1. Details are given in Hendriks and Patrangenaru [11]. Consider the
situation where �I is a vertex, and Ca is a connected component of Gnf�I g that
has a unique edge joined to �I . Then Ga D Ca [ �I is a subgraph of G. For
each x 2 Ga there is the intrinsic distance from x to �I , and with respect to the
probabilityQa conditional to be in Ca there is an expected intrinsic distance, called
the moment (of Qa or Ga with respect to �I ), which we label ma. The condition
for stickiness is equivalent in this case to ma <

P
b¤a ma; which in the case of a

star tree (spider), neighborhood of the Fréchet mean, is the right notion to study the
empirical limit behavior, equivalent to the condition in Theorem 1 (iii).

Remark 4. Certain complications arise in describing stickiness phenomena, in case
when the graph includes a cycle of positive probability mass. Consider, for example,
the case of a simple graph such as the circle, realizable as a one vertex, one
edge graph. See Hotz and Huckemann [12]. In this case, if �I is a Fréchet mean,
then the antipodal point, ��I , must have probability 0. Even, if the density in a
neighborhood of ��I is continuous, then the density at ��I cannot exceed .2
/�1.
If the density is below .2
/�1, Hotz and Huckemann [12] prove a central limit
theorem to normal distribution.

In the next section we consider concrete simulations that on data on simple graphs,
justifying the results in this section.
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Fig. 21.6 Graph exhibiting a family of distributions having non-sticky means (light dots)

Fig. 21.7 Graph exhibiting a family of distributions having sticky means (light dots)

Fig. 21.8 Graph exhibiting a family of distributions having both sticky and non-sticky means
(light dots)

21.2.4 Simulations of Sticky and Non-sticky
Sample Means on Graphs

Figure 21.6 shows a graph exhibiting non-sticky intrinsic sample mean (green dot)
as we pull an observation (red dot) away. On the other hand, Fig. 21.7 shows how the
intrinsic sample mean sticks to its original location even after pulling an observation
away from it.

A similar behavior of distributions having either sticky and regular means on
bicyclic graphs is displayed in Fig. 21.8.

21.3 Computational Examples on 2D Stratified Spaces

For computational algorithms for intrinsic sample means on Tp see Owen and
Provan [18]. Here we consider some computational examples to illustrate the
behavior of extrinsic means for simulated data on T4 (for the asymptotic distribution
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Fig. 21.9 Extrinsic mean set (red) and intrinsic mean (green) on various simulations in T4

of the intrinsic sample means on this space, see Barden et al. [1]). For both
examples, our embedding j is j W T4 ! R

10. In general Tp can be embedded
in R

k; k D 2p � p � 2.

21.3.1 Simulations on T4

Figure 21.9 shows data simulated on a portion of T4, which is gray shaded in
Fig. 21.2. This portion of T4 consists of five orthants arranged radially around
the origin. This portion was labeled Q5 in Barden et al. [1]. Please note that
while the region is displayed in three dimensions, this is for display purposes only.
The intrinsic means, displayed in green, are computed according to the distance
discussed in Billera et al. [5]. The extrinsic mean sets, displayed in red, are
calculated by embedding this region into R

10, as described above. For the purposes
of these simulations, we assume that the data is distributed only on this region, not
on the remaining portions of T4.

In the left image, the simulated data are distributed identically over all five
quadrants with equal probability of being in each quadrant, resulting in the intrinsic
sample mean being the star tree and the extrinsic sample mean set consisting of
five trees radially symmetric about the origin. To show the behavior of the intrinsic
and extrinsic sample means, we perturbed the initial distribution by reducing the
maximum possible distance in the x1 direction, adjusting the probability of an
observation in the .x1; x2/ and .x5; x1/ quadrants accordingly.

In the middle image, the distribution has been perturbed slightly in this manner.
As a result, the extrinsic mean set now consists of only two trees, but the intrinsic
mean is still the star tree because there is still a substantial concentration of mass on
the .x1; x2/ and .x5; x1/ quadrants. We continue to perturb the distribution in the
above manner until the intrinsic mean was no longer the star tree. The results of this
are shown in the image on the right. In this case, not only is the intrinsic mean no
longer the star tree, but the extrinsic mean is also now unique. Please note that we
had to greatly perturb the original distribution in this manner to obtain an intrinsic
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mean that was not the star tree. Indeed, this distribution no longer has sufficient
mass on the .x1; x2/ and .x5; x1/ quadrants for the intrinsic mean to remain at the
origin.

Remark 5. Note that unlike the extrinsic mean set on Q5 which is immediate
to compute, the formula for the intrinsic mean of a random object on Q5 is
complicated, as shown in Barden et al. [1]. Moreover the computations of the
intrinsic sample mean onQ5 is increasingly computationally intensive as the sample
size grows larger. The advantage of the intrinsic analysis on Q5 is the uniqueness
of the intrinsic mean, leading to a nice asymptotic behavior of the intrinsic sample
mean [1]. The problem of the large sample behavior of the extrinsic sample mean
set on Q5 is still open and is nontrivial.

Remark 6. There are distributions on Q5 having sticky intrinsic means (see
Fig. 21.9). For such a distribution the sample intrinsic mean coincides with the
population intrinsic means, which is not very informative. In such cases it is
preferred to use an extrinsic approach, and construct confidence regions for the
extrinsic mean (Fig. 21.10).

21.3.2 Extrinsic Sample Mean for RNA Data

In this example we compute the extrinsic sample mean of ten simulated phy-
logenetic trees obtained using the Mesquite software [16] and the concatenated
Parkinsea RNA data taken from UT-Austin CRW website [6], such that there will
only be four leaves in the phylogenetic tree. In Fig. 21.11 we show the location of
the one Parkinsea point in the tree space using its link of the origin. Figure 21.12
shows the resulting extrinsic sample mean tree and its relative location in the tree
space.

Fig. 21.10 Petersen graph representation of the extrinsic mean set (light) associated with the T4
simulated data in Fig. 21.9
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Fig. 21.11 Left: A simulated phylogenetic tree of Parkinsea. Right: Location of the tree in the
tree space using the link of the origin

Fig. 21.12 Left: The extrinsic sample mean tree. Right: Location of the extrinsic mean tree relative
to the sample trees

Fig. 21.13 Embeddings of open books: part of T4, hard cover book and paperback book

21.3.3 Extrinsic CLTs on Open Books

The extrinsic mean set of a distribution on a carton open book (see Fig. 21.13)
is on the spine if and only the distribution is entirely concentrated on the spine;
such embeddings do not present the stickiness phenomenon. On the other hand,
paperback open books present a stickiness phenomenon for a large family of
distributions. In general the CLT for an embedding of stratified spaces is now known
(see [3]).
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21.4 Discussion

An analysis of a population of trees based on intrinsic means may be difficult if
the intrinsic sample mean sticks to a lower dimensional stratum of the tree space.
For example, the biological interpretation of the intrinsic mean of a population of
phylogenetic trees with p leaves being at the star tree is that the phylogenies in
the family are too diverse to offer a plausible evolutionary scenario. On the other
hand, an extrinsic analysis a population of trees based on extrinsic mean sets may be
helpful since, unlike the intrinsic mean tree, which is unique due to the hyperbolicity
of .Tp; �0/; if we canonically embedded Tp in R

k as a p � 2 dimensional stratified
space, the extrinsic mean set reflects all average evolutionary trees from a given
family of phylogenetic trees, revealing more mean evolutionary scenarios. Extrinsic
data analysis should be further pursued on stratified spaces for additional reasons.
The first is that computations of extrinsic means on manifolds are faster than their
intrinsic counterparts [3]. Additionally, each point in the extrinsic sample mean
set has, asymptotically, a multivariate normal distribution around the point of the
extrinsic population mean set in the corresponding orthant, while the intrinsic
sample mean might often time stick to a vertex, thus making the data analysis on a
graph difficult. In addition, there are no necessary and sufficient conditions for the
existence of the intrinsic mean on a non-simply connected graph, while on the other
hand, there are such conditions for the existence of extrinsic means on graphs and
tree spaces.
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Chapter 22
Kernel Density Outlier Detector

M. Pavlidou and G. Zioutas

Abstract Based on the widely known kernel density estimator of the probability
function, a new algorithm is proposed in order to detect outliers and to provide a
robust estimation of location and scatter. With the help of the Gaussian Transform,
a robust weighted kernel estimation of the density probability function is calculated,
referring to the whole of the data, including the outliers. In the next step, the data
points having the smallest values according to the robust pdf are removed as the least
probable to belong to the clean data. The program based on this algorithm is more
accurate even on greatly correlated outliers with the data, and even with outliers with
small Euclidean distance from the data. In case the data have many variables, we
can use Principal Component algorithm by (Introduction to Multivariate Statistical
Analysis in Chemometrics. CRC press, 2008) [1] with the same efficiency in the
detection of outliers.

Keywords Robust kernel density estimation • Outlier detector

22.1 Introduction

In statistics, an outlier is an observation that is numerically distant from the rest of
the data. Grubbs defined an outlier as: An outlying observation, or outlier, is one that
appears to deviate markedly from other members of the sample in which it occurs.
Hawkins [2] suggested that:

An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism. Outliers
can occur by chance in any distribution, but they are often indicative either of
measurement error or that the population has a heavy-tailed distribution.

Outlier detection refers to the problem of finding patterns in data that do not
conform to expected behaviour. Depending on the application domain, these non-
conforming patterns can have various names, e.g., outliers, anomalies, exceptions,
discordant observations, novelties or noise.
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There have been introduced many outlier detecting methods, such as the Min-
imum Covariance Determinant, MCD, by Rousseeuw and Van Driessen [4], the
Stahel Donoho estimate, SDE, proposed by Maronna et al. [3]. Most of them use
the Euclidean distance and the covariance matrix of the data, or the Mahalanobis
distance, as the MCD, or use projections as in SDE, in order to mark data as outliers.

Distance based techniques compare distances, Euclidean at the beginning and
in the Robust version of Rousseeuw and Van Driessen Mahalanobis distances, in
order to categorize clean data and outliers. The Minimum Covariance Determinant
scatter estimator (MCD) is a highly Robust estimator for the dispersion matrix of a
multivariate elliptically symmetric distribution. It is very efficient when the clean
data follow the Gaussian Distribution. As for a profile it usually is a vector of
numbers that together capture important aspects of the user’s behaviour. Profiles are
learned from the data, thereby eliminating the need for defining “normal” behaviour.
By comparing profiles we can find points with unusual behaviour. The model based
processes are somewhat similar with the exception that they focus on learning
abnormalities in the sense of semi-supervised learning, and not focusing on normal
patterns. These both methods tend to require a fairly large training data set. So far,
the underlying idea of all our outlier detection procedures is that the majority of the
data, which are supposed to be the clean data, follow a normal probability density
function with unknown mean and standard deviation values. In an outlier infected
data set, here is a method though, to estimate the probability density function non-
parametrically. This is called Kernel Density Estimator, KDD [6]. The problem is
that the pdf estimated will not be accurate or cannot be used as a criteria, because
it is based both on the clean and the outlier data. The above methods in most of the
cases assume gaussian distributions for the majority of the data, i.e. the clean data,
thus trying to detect outliers using scatter matrices or fitting measures to gaussian
distributions or other known distributions such as Cauchy or Laplace which are
widely used in Telecommunications. However, not every data is produced according
to the Gaussian distribution or not every healthy data distribution is known. Our
proposition is that for more robust and accurate measurements, we should use the
actual density of the data. One way to do this is through Kernel Density Probability
Estimates. After the distribution of the whole of the data is estimated, trying to
emphasize healthy data and penalize possible noisy data, the data points with the
larger probabilities estimated with the help of our modified weighted version of
the Kernel Density Probability function are chosen as more possible to belong to
the healthy data set and those with reduced probabilities according to the estimated
model are considered to be the outliers.

22.2 Weighted Kernel Density Probability Estimate

In statistics, kernel density estimation, KDD, is a nonparametric way to estimate
the probability density function of a random variable. Kernel density estimation is
a fundamental data smoothing problem where inferences about the population are
made, based on a finite data sample.



22 Kernel Density Outlier Detector 243

0

0.
00

0.
05

0.
10

D
en

si
ty

 fu
nc

tio
n

0.
15

X

5 10−5 0

0.
00

0.
05

0.
10

D
en

si
ty

 fu
nc

tio
n

0.
15

X

5 10−5

Fig. 22.1 Example of the histogram of a dataset compared to the Kernel Density Estimate using
Gaussian Kernels, KDE. The KDE is more smooth than the histogram. Local maxima correspond
to bigger probabilities of the data points

A range of kernel functions are commonly used: uniform, triangular, biweight,
triweight, Epanechnikov, normal, and others. Due to its convenient mathematical
properties, the normal kernel is often used K.x/ D �.x/, as in this paper, where �
is the standard normal density function.

The probability estimated at the point x with the help of a Kernel Density
Estimator is the superposition of the contribution of the (multivariate) Gaussians
of all the other points of the data set, centred at each of these points (Fig. 22.1).

The use of the Kernel Density estimate for representing feature distributions
as well as for the detection of outliers may also be motivated by the fact that
the individual component densities may model some underlying of hidden classes.
Since every single data point contributes to the estimation of the sample distribution,
we can exclude certain data points, by comparing the a-posteriori possibility of
the estimated kernel density function. The data points that are assigned with the
smallest probability values are considered to be the least stable ones and are filtered
as possible outliers.

As we mentioned before, the estimated density at each intersection is essentially
the average of the densities of all intersections that overlap that point. This means
that when calculating the probability at any intersection, the contribution of every
other data point density, or every data point gaussian in our case, is the same. This
way, only the data points that have the density pattern of the majority of the data
contribute more to the estimation of the pdf and have therefore larger probability.
But what if a large enough density of outliers are gathered in a high density or even
around a healthy data point? The consequence will be for the pdf to have a peak at
that point and these outliers to show greater probability. A new proposition would
be use a weighted version of the Kernel Density estimate using the the Euclidean
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distances between each data point and all the rest data points. This way, outlying
points far from the intersection, even in great density, will be underweighted and
therefore have a smaller impact on the pdf and a smaller probability value.

More explicitly, we have combined two data properties in order to form a robust
probability density estimate, the difference in density, based on the Kernel Density
estimate, and the Euclidean distance used as a weight to the Kernel Probability
Estimate. This combination, as we will see in the experimental results, proves to be
more efficient in the detection of outliers, which will simply have a small probability
value in this kernel pdf estimate, whether data and outliers follow the gaussian pdf
or not.

22.3 Kernel Density Outlier Detection KDD Algorithm

As we mentioned before, we believe that it is more accurate to use the Probability
Estimate of the dataset in order to detect outliers than to suppose a priori that data
and outliers follow the Gaussian distribution and to use metrics relying on this
assumption. However, when data are corrupted with outliers or noise, the Probability
estimate based on our dataset does not reflect the true Probability Estimate of
the datapoints. In our effort to make the Density Probability Estimate more robust,
we used the Kernel Probability Estimate with a Bandwidth that is selected with
the help of the Mahalanobis Distance, as well as weights for this Kernel Probability
Estimate, which are based on the Euclidean Distance between the data. The equation
of the weighted Kernel Density Probability Estimate, using Gaussian kernels, has
the following form:

p.x/ D 1

nhD

X

i

K
x � xi

h
(22.1)

where wij are the weights of each gaussian kernel, D is the Bandwidth of the
gaussian kernel and xi are the data points whose probability estimate is being
calculated. The weights satisfy the constraint that

X

i

wi D 1:

The weight wij will be of the form

wi D .a �
X

i

Eucl.xi; xj //=a (22.2)

where a is the largest Euclidean distance between our data points and it is used
for normalization, including the outliers, and ˙Eucl.xi; xj / is the sum Euclidean
distance between each data point xj of the jth Gaussian and the point xi.



22 Kernel Density Outlier Detector 245

The algorithm for the KDD Kernel Density Outlier Detection Method, in order
to remove c % of the data as possible outliers, is presented:

1. Compute sum of Euclidean distances (a) of each point from the others and next,
according to Eq. (1.6), the weights wi.

2. With the help of Eq. (1.5), compute p(x) several times, around 12 is usually
enough, each time with different Bandwidth D, with D ranging around the
Standard deviation of the dataset. Choose the bandwidth of D, for which the
largest probability values p(x) values of the data correspond to the minimum
sum of Mahalanobis distances.

3. Choose the 0.6*N biggest values of p(x), with the chosen bandwidth.
4. Compute Robust Mean and Covariance matrix based on these most probable data

points.
5. Execute C step of MCD Algorithm, chi-square recruiting.

We should note that if either data features are highly correlated or high in number,
it is desirable first to perform Principal Component Analysis algorithm (PCA) of
Varmuza and Filzmoser [1]. The efficiency and the results present the same and
even greater accuracy, as we will see later on.

22.4 Experimental Results

In this simulation, as in the paper of Maronna and Zamar [7] we generate random
data of the same distribution and contamination. The methods which we compare
with our KDD proposal are the best [5] methods of the above paper like: Principal
Component Outlier Detector (PCOut), Minimum Volume Ellipsoid (MVE) and fast
Minimum Covariance Determinant (MCD). The sampling situations were p-variate
normal � contaminated distributions, with p taking the values 5 and 10, and n=10p
(Table 22.1). We generated correlated data as follows. Let m D Œn � (where Œ:�
denotes the integer part) we generated yi as p-variate normals Np.0; I / for i D
1; : : : :; n�m, and asNp.yo; d

2I / for some y0 and i > n � mI we chose ı D :1. The
choice of a normal distribution with a small dispersion, rather than exact point-mass
contamination, is due to the fact that exactly repeated points may cause problems
with the subsampling algorithms (Table 22.2).

Put xi D Ryi , where R is the matrix with

Rjj D 1 and Rjk D � for i ¤ j .12/

Then for � D 0, X has covariance matrix R2, and the multiple correlation �mult
between any coordinate of X and all of the others is easily calculated as a function
of �. We chose �mult D 0:999. This is a very collinear situation.

In this section also, we show results as in the paper of Filzmoser Maronna and
Werner (2008) for location outliers with k = 2 to k=10 and for scatter outliers with ı2

ranging from ı2=0.1 to ı2=5. We present our results table with (1) The percentage of
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Table 22.1 KDD comparative performance evaluation for Gaussian distributed data with several
parameter values

ı2 D 0:1 ı2 D 0:5 ı2 D 1 ı2 D 2 ı2 D 5

Method k %FN %FP %FN %FP %FN %FP %FN %FP %FN %FP

LTED 0 100:00 6:61 100:00 4:3 – 2:96 64:2 1:55 7:69 1:35

PCOut 0 100:00 7:15 99:96 6:81 – 5:30 61:16 4:00 8:84 3:49

MCD 0 100:00 5:51 100:00 3:74 – 2:60 63:94 1:64 7:65 1:40

KDD 0 100:00 9:17 99 7:3 – 3:4 39 1:5 1 2:41

LTED 2 100:00 4:71 98 3 90:00 2:23 49:00 1:45 6:4 1:37

PCOut 2 100:00 7:21 99:44 6:29 82:05 4:19 45:61 3:10 8:90

MCD 2 100:00 4:69 99:94 3:20 95:58 2:21 50:42 1:54 5:96 1:40

KDD 2 0 5:46 0 5:39 0 2:81 0 1:64 0 1:7

LTED 5 65:8 1:55 12 1:4 6:9 1:45 3:3 1:41 0:00 1:35

PCOut 5 67:27 1:60 15:29 1:59 7:25 1:65 3:77 1:74 5:92 2:11

MCD 5 100:00 4:00 32:16 1:43 16:46 1:41 7:20 1:40 1:52 1:40

KDD 5 0:00 1:7 0:00 1:65 0:00 1:6 0:00 1:67 0:00 1:61

LTED 10 0:00 1:35 0:00 1:34 0:00 1:35 0:00 1:34 0:00 1:38

PCOut 10 0:00 1:49 0:00 1:69 0:00 1:79 0:00 1:87 0:03 1:93

MCD 10 0:00 1:40 0:00 1:40 0:00 1:40 0:00 1:39 0:01 1:40

KDD 10 0:00 1:45 0:00 2:11 0:00 1:9 0:00 1:75 0:00 1:3

We can see the false negative and false positive results
%FN and %FP � D 10; n D 1; 000; n D 100; � D 10%; � D 0.5, 500 simulations

Table 22.2 KDD comparative performance evaluation for Gaussian distributed data and larger
percentage of outliers

ı2=0.1 ı2=0.5 ı2=1 ı2=2 ı2=5
Method k %FN %FP %FN %FP %FN %FP %FN %FP %FN %FP

LTED 0 90:00 5:62 90:00 3:8 – 2:93 44:2 1:51 6:24 1:46

PCOut 0 100:00 10:15 100:00 10:01 – 7:70 76:14 5:60 10:89 5:24

MCD 0 100:00 7:8 100:00 4:78 – 3:90 70:02 2:8 9:2 2:30

KDD 0 100 8:4 99:3 19:5 – 3:8 51:6 4:3 6:6 2:9

LTED 2 0:00 4:45 0:00 2:8 0:00 2:28 0:00 1:34 0:00 1:23

PCOut 2 100:00 8:5 100:00 7:91 85:6 6:04 51:01 4:15 9:16 4:18

MCD 2 100:00 5:82 100:00 4:15 94:04 3:31 55:45 2:10 6:91 2:24

KDD 2 0 2:14 0 2:43 0 2:14 0 3:14 0 2:29

LTED 5 0:00 1:58 0:00 1:32 0:00 1:33 0:00 1:40 0:00 1:36

PCOut 5 69:62 1:85 17:28 1:94 8:36 1:86 4:1 1:88 7:9 1:97

MCD 5 100:00 4:81 39:12 1:88 22:15 1:81 11:50 1:40 5:6 1:54

KDD 5 0:00 2:71 0:00 3:57 0:00 3:14 0:00 3:14 0:00 3:57

LTED 10 0:00 1:33 0:00 1:33 0:00 1:32 0:00 1:33 0:00 1:36

PCOut 10 0:00 1:44 0:00 1:56 0:00 1:65 0:00 1:77 0:00 1:85

MCD 10 0:00 1:39 0:00 1:40 0:00 1:39 0:00 1:39 0:01 1:40

KDD 10 0:00 2:43 0:00 3:29 0:00 3:57 0:00 3:14 0:00 3:57

%FN and %FP, � D 10; n D 1; 000; n D 300; � D 30%; � D0.5, 500 simulations
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Table 22.3 Performance
Evaluation of KDDw on
larger dimensions

Method Dimension

p %FN %FP

LTED 50 0 0

PCOut 50 49:5 5:92

KDD 50 0 2:3

LTED 100 0 0

PCOut 100 31:8 2:31

KDD 100 0 2:2

LTED 200 0 0

PCOut 200 18:3 3:98

KDD 200 0 2:3

LTED 500 0 0

PCOut 500 12:9 3:10

KDD 500 0 1:5

LTED 1; 000 2:1 1:36

PCOut 1; 000 6:06 3:39

KDD 1; 000 0 1:8

LTED 2; 000 0:26 1:50

PCOut 2; 000 0:38 2:54

KDD 2; 000 0 2

Outliers generated with a slightly
larger covariance matrix (ı2 D 1:2)

Table 22.4 Application of
MCD, MVE, PCOut and
KDD on UCI breast cancer
data

Method Correlation Cosine similarity

UCI BC Data 3:9� 10�4 4:0� 10�4

KDD 1:5� 10�4 4:7� 10�4

MCD 3� 10�5 3:2� 10�5

MVE 3:7� 10�5 6� 10�7

PCout 6� 10�5 5� 10�5

Evaluation Metrics on remaining clean data

false negatives(FN)-outliers that were not identified, or masked outliers, and (2) the
percentage of false positives (FP)- non-outliers that were classified as outliers, or
swamped non-outliers. Table 22.3 shows results for percentage of outliers �=0.1
as a compromise between low and high levels of contamination, the results are
comparable. Note that the case k=0, ı D 1 corresponds to no outliers in the
data, which reduces to a measurement of only the false positives. Examination
of Table 22.4 reveals that KDD performs well at identifying outliers (low False
negatives) and it has satisfactory percentage of False positive than most of the
methods. Also, we observe that KDD does well both for location outliers, i.e. k D 5,
and for scatter outliers ı2 D 2 and ı2 D 5.

As we increase the contamination up to �=0.30 KDD does exceptionally well for
all type of outliers, as we can see in Table 22.2. Its performance is getting better as
we increase contamination, and this is a big advantage among all the other robust
estimators.
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In Table 22.3 we can also evaluate KDD’s performance in different feature
numbers, as the variance has increased to 1.2 and multiple correlation coefficient
to 0.7. In this case, KDD has been performed on the principal components derived
from PCA.

In the next step, we applied our method to real data, Breast Cancer Data from
UCI Repository. The dataset gives information on breast cancer patients, who at
the time being were reported stable in terms of their health condition. At the same
time we used the three widely known outlier detectors fast MCD, MVE and PCOut
again. The performance of each detector is evaluated with the help of two metrics,
the average of the data points pairwise correlation as well as the cosine similarity
metric.

As seen in the results of Table 22.5, the average pairwise correlation of the clean
data using the KDD detector is quite higher than the other methods and is close to
the initial subset’s correlation. This may be a hint that KDD kept as clean data the
data points that had a bigger similarity between them, as we can see in the cosine
similarity measure, which is even bigger than the initial dataset.

Similar are the comparative results on Ionosphere data from UCI Data Repos-
itory. This radar data was collected by a phased array of 16 high-frequency
antennas system and measurements took place in Goose Bay, Labrador. Once more,
we applied our four techniques for detecting outliers and we present the results
regarding the two metrics, the average pairwise correlation and the average cosine
similarity measure. Again, in table we notice that our method gives those subset of
data as clean, that have the biggest average cosine similarity as well as the bigger
correlation after the removal of the outliers. The average mahalanobis distance has
no big difference (Table 22.5).

In order to introduce KDD’s performance on our last data set, Parkinson’s
Telemonitoring Data of UCI Repository, we applied all our previous four outlier
detection methods and we chose randomly two features to display. In the first
scatterplot, the two features of the original dataset are presented. As we can see,
the majority of the points lie on the left lower values. However, there seems to be a
positive correlation on greater values, although some data points in the middle seem
to exceed the supposed ellipsoid boundary (Fig. 22.2).

Finally, here are the results of the metrics on UCI Parkinson’s Telemonitor-
ing Data in Table 1.9. The cosine similarity measure and the average pairwise

Table 22.5 KDD, MCD,
PCOut and MVE similarity
measures on UCI ionosphere
datasets

Method Mahalanobis Correlation Cosine

KDD 7:1158 0:6660 0:7472

fastMCD 7:6393 0:5527 0:6606

pcout 7:0820 0:6307 0:7136

MVE 7:0901 0:6200 0:7222
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Fig. 22.2 (a) Two-dimensional scatterplot of original dataset. (b) Data of KDD comparing to
original. (c) Data of MCD comparing to original. (d) Data of PCOut comparing to original

Table 22.6 KDD, MCD,
PCOut and MVE similarity
measures on UCI Parkinson
Telemonitoring dataset

Method Correlation Cosine

UCI Data 0:1057 0:0877

KDD 0:1098 0:0910

fastMCD 0:1065 0:0883

pcout 0:1089 0:0902

correlation of the KDD data have higher values than the other measures as well
as than the original data. This could imply that the KDD produced data subset is
supposed to be more clean, more correlated and supposedly belonging to the same
pattern (Table 22.6).
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Chapter 23
Model Selection for Classification
with a Large Number of Classes

Justin Davis and Marianna Pensky

Abstract In the present paper, we study the problem of model selection for
classification of high-dimensional vectors into a large number of classes. The
objective is to construct a model selection procedure and study its asymptotic
properties when both, the number of features and the number of classes, are
large. Although the problem has been investigated by many authors, we research
a more difficult version of a less explored random effect model where, moreover,
features are sparse and have only moderate strength. The paper formulates necessary
and sufficient conditions for separability of features into the informative and
noninformative sets. In particular, the surprising conclusion of the paper is that
separation of features becomes easier as the number of classes grows.

Keywords High dimensional data • Low sample size • Multivariate analysis
• Classification

23.1 Introduction

It is a well-established result that addition of “noninformative” dimensions in data,
by which we mean any dimensions which do not improve the accuracy of a generic
classifier, eventually makes accurate classification impossible even with just two
classes. Additional noninformative dimensions are especially problematic when the
total number of dimensions exceeds the number of samples in a data set; this is one
aspect of the high-dimension, low sample size (HDLSS) problem. The difficulty
becomes even more acute when the number of dimensions exceeds the number of
observations as it often happens in many practical applications. Indeed, Fan and
Fan [6] argue that when the dimension of vectors to be classified tends to infinity
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and the sample size remains finite, almost all linear discriminant rules can perform
as badly as the random guessing. The objective of the present paper is to study
dimension reduction which is designed specifically for classification.

A number of authors studied model selection in the HDLSS problem, see, e.g.,
[1–3, 5, 6, 8] and [9], among others. The difference between the present paper and
studies and methodologies cited above is that, first, we consider model selection
which is specifically designed for classification; second, we do not assume that the
difference between class means is asymptotically large, or even, large at all; third,
we consider the novel case when the number of classes is large—in particular, the
number of classes grows approximately as a logarithm of the number of features.
This setup is motivated by classification of communication signals recorded from
South American knife fishes considered in Davis and Pensky [4] as well as
classification of genetics data where the number of features is enormous and the
number of classes (e.g., various biological conditions) can be large while the sample
is relatively limited.

The rest of the paper is organized as follows. In Sect. 23.2, we briefly review the
results of Davis and Pensky [4] and introduce the general framework of the paper.
Section 23.3 presents main results of the paper on model selection and separability
of features into informative and non-informative sets. Finally, Sect. 23.4 concludes
the paper with discussion.

23.2 General Framework

Consider the problem of classification of p-dimensional vectors into L classes
!1; � � � ; !L based on ni training samples from class i , i D 1; � � � ; L, wherePL

iD1 ni D n. For convenience, we arrange samples as row vectors

D> D Œd1;d2; � � � ;dn�;
yielding the .n � p/ matrix D; i.e. the first n1 rows of D are samples from the first
class, the next n2 rows are samples from the second, etc. We denote the columns
of D by di 2 <n, i D 1; � � � ; p; hence, the first column of D contains the first
component of each of the n samples, the second contains the second component of
all samples, etc.

The objective is to select a sparse subset of these p vectors which enable
classification of vectors d1;d2; � � � ;dn into classes !1; � � � ; !L. For this purpose,
we introduce a binary vector x 2 <p with xi D 1 if vector component di is
“informative” and should be retained in subsequent discriminatory analysis, or
xi D 0 if di should be discarded. The goal of the analysis, then, is to draw
conclusions about vector x on the basis of matrix D. For this purpose, we introduce
the following notations. Let p1 D Pp

iD1 xi and p0 D p � p1 represent the
number of informative and noninformative dimensions, respectively. Let e 2 <n be
a column vector with all components being equal to one and gl 2 <n, l D 1; � � � ; L,
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be column vectors with the j -th components .gl /j D 1 if it corresponds to class l ,
i.e. if

n1 C � � � ; nl�1 C 1 � j � n1 C � � � ; nl�1 C nl ;

and .gl /j D 0 otherwise; i.e. .gl /j is nonzero iff sample j is from class l and g
may be thought of as a matrix of indicator functions. We also define G 2 <n�L with
columns gl , l D 1; � � � ; L.

The idea is to search for components di which are constant within classes but
vary in between classes. This was accomplished by the CONstant FEature Selection
Strategy (CONFESS) proposed by Davis and Pensky [4]. In particular, CONFESS
assumes that di , a noisy measurement of the “true” i -th component�i , i.e.

di D �i C "i

where "i are multivariate normal "i � N.0; �2i In/ and �i can be partitioned into a
sum of three components. The first is constant across all components and contributes
nothing to discrimination among classes; this component is from SC , described
below. Another is constant within classes but varies between classes and, were
one able to extract this component exactly, would allow for direct classification;
these are contained in SG and one of its subspaces, S1, in which all vectors have
componentwise sum 0. Finally, the third varies within classes but does not provide
any useful information for classification; these are contained in S0.

For this purpose, CONFESS introduces the following subspaces: SC D Span.e/,
the one-dimensional subspace of scalar multiples of e, SG D Span.g1; � � � ; gL/,
S1 D SG n SC , and S0 D <n n SG , so that <n D SC ˚ S0 ˚ S1. Denote by P0 and
P1 matrices of orthogonal projections onto S0 and S1. Then

�i D n�1=2mie C ui C vi ; i D 1; � � � ; p; (23.1)

where it is assumed that

mi � N.0; �2i �
2/;

.ui jxi D 0/ � ı.0/;

.ui jxi D 1/ � N.0; �2i ˙ u/ (23.2)

vi � N.0; �2i ˙ v/:

Here matrices ˙ u D P1˙P1 and ˙ v D P0˙P0 ensure that ui 2 S1 and vi 2 S0
and it is assumed that vectors ui and vi are independent. Here, ui represents the
groupwise contribution to variance and vi the within-group variation.

Remark 1. Conditions (23.1) and (23.2) require that each vector �i can be parti-
tioned into the sum of three independent components, n�1=2mie, ui and vi , and
feature i is considered to be non-informative if the second component ui of vector
�i is identically equal to zero. In addition, all components are assumed to be
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normally distributed. If assumption of independence is violated, in general, results
of the paper hold. However, due to dependence between features, vectors vi carry
some information about ui , so that the inference should be performed conditionally
on vectors vi .

If normality assumptions do not hold, then Yi ’s do not obey chi-squared
distribution and, possibly, would have heavier tails. The latter would lead to different
separability conditions in Theorem 1.

23.3 Model Selection and Separability

Assume we have a sequence of data sets fDg generated according to model (23.1)
and (23.2). In order to study model selection and its precision, assume that˙ D �2I
and that �i , i D 1; � � � ; p; and � are known, i.e., all parameters but xi are known.
We shall also assume that features are sparse, i.e. p1 D �p and p0 D .1 � �/p

where p ! 1 and � is possibly small. We shall also assume that the number of
classes is growing, i.e. L ! 1 as p ! 1.

For each vector di , we define yi D H1di where H>1 H1 D P1 is the unique
Cholesky decomposition of P1; the unique orthogonal projection into S1, and denote

Yi D jjyi jj2
�2i .1C �2/

:

Then, it can be shown that

.Yi jxi D 0/ � 	2L�1
1C �2

; .Yi jxi D 1/ � 	2L�1: (23.3)

It follows from (23.3), that for any z > 0, one has

P.Yi � zjxi D 1/ � P.Yi � zjxi D 0/:

Define random variables

U D maxfYi jxi D 0gp0iD1; V D minfYi jxi D 1gp1iD1:

If there exists � > 0 such that P.U < � < V / D 1, then, almost surely, one could
select all informative dimensions by retaining only those with Yi > �. However, this
is a very stringent condition and we call fDg separable if there exists a sequence f�g
such that

lim
p!1P.U � �/ D 1 and lim

p!1P.V � �/ D 0:
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If fDg is separable, the probability of (retaining) discarding an (non)informative
dimension goes to 0 as p ! 1. The following lemma provides necessary and
sufficient conditions for separability.

Lemma 1. Let fDg be a sequence of data sets generated according to model (23.1)
and (23.2) with ˙ D �2I, and all parameters but xi are known. Then, fDg is
separable iff

lim
p!1p0.1 � FL�1..1C �2/�// D 0 and lim

p!1p1FL�1.�/ D 0; (23.4)

where

FL�1.x/ D �
�
L�1
2
; x
2

�

�
�
L�1
2

� :

Here �.k; z/ is the incomplete gamma function (see formula 8.350 of [7]).

Using asymptotic expansion 8.327.3 of [7] of the logarithm of the Gamma
function and asymptotic expansions of incomplete gamma functions for various
relationships between L and x provided in Paris [10], we can rewrite condi-
tions (23.4) as follows.

Lemma 2. Denote � D p1=p, � D .L � 1/=� and �� D .1 C �2/=� D .1 C
�2/�=.L� 1/. Let

F1.�; L; p; �/ D .L � 1/.��1C ln � � 1/C ln.L � 1/C2 ln.1 � ��1/�2 lnp1;

F2.�; �; L; p; �/ D .L � 1/.�� � ln �p � 1/C ln.L � 1/C 2 ln.�� � 1/� 2 lnp0:

Then, fDg is separable iff

lim
p!1F1.�; L; p; �/ D 1 and lim

p!1F2.�; �; L; p; �/ D 1: (23.5)

Note that � should satisfy inequality

1 < � < 1C �2: (23.6)

Moreover, since F1.�; L; p; �/ is increasing, F2.�; �; L; p; �/ decreasing in � , it
suffices to find � D O� such that

F1.�; L; p; �/ D F2.�; �; L; p; �/ (23.7)

and show that, say, limp!1 F1. O�; L; p; �/ D 1. Equation (23.7) can be
simplified to

.L� 1/.ln.1C �2/� �2��1/C 2 ln

�
� � 1

.1C �2/ � �
�

C 2 ln

�
1 � �
�

�
D 0:
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Consider collections of models with L D L.p/ and � D �.p/ such that
limp!1L.p/ D 1 and limp!1 �.p/ � 0 but � is a fixed constant. This is a
more reasonable setup than the one with �.p/ D log.p/ that is usually considered
in the detection and model selection literature. There are two possible cases here:
limp!1 �.p/ D �0 � 0 (case 1) and limp!1 �.p/ D 0 (case 2).

Case 1. Since L ! 1, one obtains

O� D O�1�2= ln.1C �2/C o.1/ as p ! 1; (23.8)

and, as p ! 1, conditions (23.5) appear as

F1.�; L; p; �/ D .L�1/. O��1C ln O��1/C ln.L� 1/C2 ln.1�O��1/�2 ln.p/ ! 1:

(23.9)

Case 2. Since ln.1 � �/ � 0 for � ! 0, one derives

O� D O�2 D �2

ln.1C �2/

1

1 � 2 ln �
.L�1/ ln.1C�2/

(23.10)

and separability conditions (23.5) hold iff (23.9) is valid. Moreover, by direct
calculations one can check that condition (23.6) is satisfied only if �2 ln �=.L�1/ <
�2 � ln.1C �2/, so that O�1 D k O�2 for some constant 0 < k < 1.

Summarizing both cases, we obtain the following statement.

Theorem 1. Let fDg be a sequence of data sets generated according to
model (23.1) and (23.2) with ˙ D �2I, and all parameters but xi are known.
Then, fDg is separable if

.L � 1/. O��1 C ln O� � 1/ � 2 lnp and .L � 1/.�2 � ln.1C �2// � �2 ln �;

and fDg is not separable if

lim
p!1 2 lnp=.L�1/ > O��1C ln O��1 or lim

p!1�2 ln �=.L�1/ > �2� ln.1C�2/:

Here O� is given by expression (23.8) if limp!1 �.p/ � 0 and by expression (23.10)
if limp!1 �.p/ D 0.

23.4 Discussion

In the present paper, we studied the problem of model selection for classification
of high-dimensional vectors into a large number of classes. The objective is to
construct a model selection procedure and study its asymptotic properties when both
the number of features and the number of classes are large. Although the problem
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has been investigated by many authors, we research a more difficult version of a
less explored random effect model where, moreover, features are sparse and have
only moderate strength. The paper formulates necessary and sufficient conditions for
separability of features into the informative and noninformative sets. In particular,
the surprising conclusion of the paper is that separation of features becomes easier
as the number of classes grows.

The most basic assumption of the models, that the a priori segregation of samples
into classes with a certain structure (e.g. (23.2)) can be and has been done correctly,
is perhaps the most problematic assumption. It may be that some covariates are
“partially informative.” For example, in [4], it was noted that a covariate differed
from zero for only a single class and therefore served to differentiate that class
from all others but was otherwise constant among classes. While that vector
was recognized as informative in that application, it is unclear whether partially
informative vectors will be retained in general; i.e. if one but only one class
differs significantly from the mean, this useful variation may be falsely attributed
to random error. It is unlikely that a model with indicators for partial informativity
for each class is tractable; CONFESS naively modified would contain pL indicators
fxilgpiD1 LlD1, with xil D 1 iff class l differs significantly from all other classes as
measured on vector i .

We note as well that the model does not apply directly to discrete data and that the
assumption of a linear model may not represent all forms of between-class variation;
e.g. in some settings, classes may differ by multiplicative factors.
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Chapter 24
Semiparametric Bayesian Small Area
Estimation Based on Dirichlet Process Priors

Silvia Polettini

Abstract Small area estimation concerns the problem of releasing estimates for
domains that are not planned by design in statistical surveys. For such domains
the observed sample size may often be too small to allow for accurate estimation of
aggregates of interest. To borrow strength from related domains, the vast majority of
small area models relies on mixed effects regression models. Whereas inference on
the fixed effects is shown to be robust to deviations from normality, estimation of the
random effects is crucial for predicting small area quantities. The potential impact of
distributional assumptions on the random effects is shown to be important; missing
covariates can lead to multimodal distributions for the random effects; the latter may
also be skewed. Any parametric assumption, applying to nonobservable quantities,
is difficult to check. This contribution examines a Bayesian semiparametric version
of the Fay–Herriot model in which the default normality assumption for the random
effects is replaced by a nonparametric specification, based on the Dirichlet process.
Viability of the approach and the effect of introducing a flexible specification of the
random effects are investigated through an application to simulated data.

Keywords Dirichlet process • Fay-Herriot • Gibbs sampling • Hierarchical
Bayes • Mixed model • Nonparametric random effects • Small area estimation

24.1 Introduction: The Fay–Herriot Model

Small area estimation deals with the problem of releasing estimates for domains that
are not planned by design in statistical surveys. Indeed sample surveys are generally
designed to provide estimates of means of variables of interest for pre-specified,
large domains. The growing request for estimates of aggregates (like poverty rates,
mean income, etc.) defined at increasingly detailed domains (e.g. states, provinces,
labour districts, demographic subgroups, etc.) has justified a growing interest for
techniques that allow for accurate estimation of aggregates at unplanned domains,
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called small areas. For such small areas the observed sample size may often be too
small to allow for accurate estimation of the aggregates of interest. Modern methods
for small area estimation heavily rely on mixed effects models that increase the
effective domain sample size by borrowing strength from related areas. The book
by Rao [16] contains a thorough analysis of the model-based approach to small area
estimation and SAE methods in general.

In this contribution we focus on area-level models. Area-level models rely on
aggregated, area-specific quantities and therefore are often the only estimable model
under microdata confidentiality protocols. Indeed, due to disclosure limitation
procedures, data aggregated to the area-level are currently more readily available to
users than are unit-level data, for both the variable of interest and for the auxiliary
information. Another advantage of area-level modelling is that it allows one to
account for the sampling design by introducing the direct survey estimates and their
corresponding (design-based) variance estimates.

In the literature, the first formulation of an area-level model is the Fay–Herriot
model [8]. Let m be the number of sampled small areas. In a small area estimation
problem the design-unbiased, direct estimators of the target small-area parameters
in the sampled areas O
i , i D 1; : : : ; m may present unacceptably high variances
due to small sample size in some or all of the small areas. The Fay–Herriot model
prescribes a sampling model for the direct survey estimates O
i , supplemented by a
linking model for the small area parameters of interest. Under the sampling model,
design unbiased, direct survey estimators O
i of the small area parameters 
i , i D
1; : : : ; m, are assumed to be available, whose sampling error is �i . Usually the �i ’s
are assumed to be independent normal random variables, �i � N.0; i/, so that

O
i j
i ;  i � N.
i ;  i /; i D 1; : : : ; m: (24.1)

To achieve the desired borrowing strength across areas, a linking model for 
i is
introduced, namely 
i D x0i ˇC�i ;where xi D .xi1; : : : ; xip/

0 is a vector of auxiliary
variables,ˇ is a vector of regression coefficients, and finally the vi ’s are area-specific
random effects accounting for heterogeneity and lack of fit. Normality of the random
effects is usually assumed: �i � N.0; �2� /, so that


i jˇ; �2� � N.x0iˇ; �2� /; i D 1; : : : ; m: (24.2)

Under the Fay–Herriot model, the sampling variances are assumed to be known. In
practice, smoothed estimators of such variances, usually by means of generalized
variance function approach [5], are used, and then these are treated as known.

Combining the previous equations, one obtains a mixed effects linear regression
model with normal random components, O
i D x0iˇC �i C �i . Since areas of interest
may not be all sampled in practice, it is assumed that the combined area-level model
above also holds for the non-sampled areas. This amounts to assuming no selection-
bias for areas.
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In a frequentist setting, the Empirical Best Linear Predictor (EBLUP), obtained
by replacing the unknown variance components in the BLUP by suitable estimators,
is readily available for the Fay–Herriot model, based, e.g., on REML (see, e.g., [4]).

For area-level models, the distributional assumptions on sampling errors �i are
usually justified by the properties of the direct estimators O
i . By contrast, the
normality assumption for the random effects �i has no justification other than
computational convenience and is difficult to detect in practice, since it involves
unobservable quantities. The problem affects both frequentist and Bayesian analy-
sis, although availability of MCMC techniques makes computational convenience
less relevant in the latter framework.

24.2 Proposed Approach

The assumption of normality may fail to represent the distribution of the random
effects for several reasons: missing covariates may lead to multimodal distributions;
the distribution may be skewed. The effect on model estimates of distributional
assumptions on the random effects is shown to be important [7, 10, 11, 15]. For
instance, the presence of outliers may affect the precision of estimates of fixed
effects and induce bias in estimation of the random effects.

Accurate prediction of the random effects is crucial for predicting small area
quantities; although pointwise prediction is robust to deviations from normality, the
precision of such predictions is decreased; also, estimation of nonlinear functionals
may suffer from misrepresentation of the law of the random effects. For the
reasons mentioned above, it would be important to rely on a model that has a
flexible specification of the random effects, so as to achieve a greater adaptability
and robustness against model misspecifications. In [7] the authors develop two
robustified versions the Fay–Herriot model [8] by describing the random effects
by either an exponential power (EP) or a skewed EP distribution and investigate
robustness of such Fay–Herriot-type models under deviations from normality. Their
aim is to understand whether estimates of linear and especially nonlinear functionals
such as ranks are sensitive to deviations from normality of the random effects.
Although the models proposed in [7] are based on distributions that generalize, and
contain, the normal, yet these parametric models may fail to adequately describe
the distribution of the random effects, and again the problem of checking the
adequacy of these models arises. Datta and Lahiri [3] propose a robust hierarchical
Bayesian model generalizing the Fay–Herriot model and constructed for the purpose
of accommodating outliers. Heavy tailed distributions, namely a scale mixture of
normal distributions, are used for the random effects. The resulting family includes
as a special case the EP model proposed by [7]. Our approach has strong relations
with the model of [3].

In this paper a different extension of the Fay–Herriot model is considered, based
on Dirichlet process priors (DPP). Here the assumption of normality producing the
linking model (24.2) is replaced by
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�i j�2� ;M � G.�/; independently; G � DP.M;N.0; �2� // i D 1; : : : ; m

(24.3)

where DP.M; �/ stands for the Dirichlet process (DP) [1, 9] with precision
parameter M and base measure �. In the context of a generalization of the Fay–
Herriot model, it is natural to assume � to be a normal distribution.

The representation above not only relaxes the normality assumption but also
provides an enlarged model for describing the random effects, thus accommodating
for outliers as well as multimodalities and other departures from normality.

The complete model specification reads as follows:

O
i D 
i C ei ei � N.0; i/ independently; i D 1; : : : ; m (24.4)


i D x0iˇ C �i ; �i � G.�/; independently; i D 1; : : : ; m (24.5)

G � DP.M;N.0; �2� // (24.6)

�2� � IG.a1; b1/ (24.7)

ˇ � N.0; d I/ where I is the identity matrix (24.8)

M � Gamma.a2; b2/ (24.9)

The hyperparameters in (24.7)–(24.9) are fixed; for comparability with the EBLUP,
the hyperprior on the ˇ vector is assumed to be normal with large variance.

The paper [2] provided a Polya-urn scheme representation of the joint dis-
tribution of realizations from a DP.M; �/ process as the product of successive
conditional distributions of type

�i j�1; : : : ; �i�1;M � M

M C i � 1
�.�i /C 1

M C i � 1
i�1X

kD1
ı.�k D �i /;

with ı.�/ denoting the Dirac delta function. The above representation induces
clusters in the random effects due to the existence of a positive probability that a
newly generated cluster coincides with a previous one. As a consequence, small
areas are partitioned into clusters sharing the same random effect.

It is worth noting that, given n observations from a Dirichlet process with
parameters M and �, the marginal distribution of a partition n1; n2; : : : ; nk such
that

Pk
1 nj D m; nj > 0 for all j D 1; : : : ; k is


.n1; : : : nk/ D � .M/

� .M Cm/
Mk

kY

jD1
� .nj /I

thus the introduction of the Dirichlet process amounts to model random partitions
of m objects. From the previous equations we see that M , the precision parameter
of the DP, affects the number of clusters and therefore it is expected to influence the
prediction of small area quantities.
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Under the proposed model and following [13, 14] the likelihood function is

L.ˇj O�/ D
mX

cD1

X

C WjC jDc

� .M/

� .M Cm/
Mc

cY

jD1
� .nj /

Z
p. O
.j /jˇ; �j /dG0.�j /

where C is a partition of cells f1; ::; Kg into c groups (or clusters), nj is the number

of observations in the j -th cluster, 1 � nj � m, O
.j / is the vector of the direct
estimates belonging to cluster j and finally

p. O
.j /jˇ; �j / D
Y

k2cluster j

1p
2
 k

exp

	
� 1

2 k
. O
k � x0kˇ � �j /

2



:

As evident from the previous equation, all areas belonging to a given cluster are
assigned the same random effect; furthermore, the number of clusters in each
partition is unknown.

A matrix representation of clusters is convenient. To each partition C of m
objects into c clusters, let us associate an allocation matrix A of size m � c whose
entries ak;j are 1 when the random effect �k belongs to cluster j and zero otherwise.
The random effects can be defined as � D A� (and �k D a0k�) by setting �j D �k
when �k 2 cluster j . Under this reparametrization the likelihood becomes

L.ˇj O
; A/ D � .M/

� .M Cm/

mX

cD1
M c

�
X

A2Ac

cY

jD1
� .nj /

Z mY

kD1
p. O
kjA;	; ˇ/�.�1; : : : �c/d	:

where Ac is the set of all allocation matrices A having c nonempty clusters and
	 D .�1; : : : �c/, �j � N.0; �2� /, independently, and

mY

kD1
p. O
kjA;	; ˇ/�.	/ D

mY

iD1

1p
2
 i

exp

(
� .

O
i � x0iˇ � a0i	/2
2 i

) �
1

2
�2�

�c=2
expf�	0	=2�2� g

As already discussed, uncertainty on M , affecting the number of clusters,
is included in the model. This amounts to a form of model averaging. For a
noninformative specification of the prior forM , we follow [6], where it is suggested
to use a Gamma prior with parameters chosen to match the prior information
about the number of clusters. Assuming absence of prior information, we specify
a Gamma with parameters chosen so that the induced prior for the total number of
clusters is closest to the discrete uniform distribution on f1; : : : ; mg in terms of the
Kullback–Leibler divergence.
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Table 24.1 Measures of
average absolute (ARB) and
squared (ASRB) relative bias
under the simulated settings

ARB ASRB

Case 1: Standard normal

Proposed model 0:48 1:36

Standard HB model 0:50 1:64

Case 2: Mixture of normals

Proposed model 6:87 3993:65

Standard HB model 9:62 8262:80

The posterior distribution of the small area quantities 
i is analytically
intractable, so Markov Chain Monte Carlo techniques are used to perform
inference. Specifically, a Gibbs sampler is constructed, repeatedly sampling one
set of parameters at a time, namely ˇjrest, �jrest, M jrest, �2� jrest. Given model
specification and the previous equations, sampling the fixed effects parameters
given the cluster configuration proceeds as in standard normal hierarchical models;
updating �2� jrest is also standard, whereas the algorithm proposed in [18] is used for
generating the random effects. Finally, M jrest is updated using a Metropolis step.

The semiparametric linear mixed models is reported in [12] to reduce the
variability of the regression parameters estimates, producing uniformly shorter HPD
intervals than the standard normal random effects models. It is of interest here to
understand the performance of the method in predicting small area quantities under
the extended Fay–Herriot model above, primarily the domain means 
i in (24.5).

24.3 Application

The performance of the method is tested by means of an application to simulated
data. Simulation enables us to benchmark the fitted values to the true underlying val-
ues. Working in a Bayesian framework, it is natural to compare the proposed model
with the standard normal hierarchical Bayesian (HB) model. Such comparison is
performed under two different settings for the random effects:

1. normal case: �i � N.0; 1/; independently;i D 1; : : : ; m

2. mixture of two normals � � 0:9N.0; 1/ C 0:1N.0; 25/; independently;
iD1; : : : ; m, as in [17].

A synthetic dataset of m D 100 areas was generated from the model O
i D ˇ0 C
ˇ1x1i C ˇ2x2i C ˇ3x3i C �i C �i with ˇ D .1; 2;�3; 4/; covariates have been
generated from independent normal distributions and �i � N.0; i/ independently,
i D 1; : : : ; m, with  i ranging from 0.055 to 6.998, with average 1.54 and median
2.18.

In the application, the prior on ˇ was taken to beN.0; 106/ in both the parametric
and the semiparametric model, for comparability with the EBLUP. As regards the
proposed model, the prior for M was chosen as suggested in [6] to return a “flat”
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prior on the number of clusters, as detailed in the previous section, while the prior
for the variance of the base measure of the Dirichlet Process was chosen to be
IG.0:01; 0:01/.

The HB predictor is robust to departures from normality of the random effects
and, as expected, the predictions of the small area means based on posterior means
do not differ remarkably under either models in both settings (results not shown
here). This confirms that the performance of the new model in terms of point
predictions is sensible.

Denoting by Q
i the small area predictions under a given model, the following
quantities are considered as measures of prediction error: average relative bias,

ARB D 1

m

mX

iD1

j Q
i � 
i j
j
i j

and average squared relative bias,

ARSB D 1

m

mX

iD1

 Q
i � 
i

i

!2
:

The above quantities were computed to compare the standard HB Fay–Herriot
model and the proposed semiparametric one. As shown in Table 24.1, the summaries
indicate a slight advantage in using the proposed method in all cases, even in the
normal setting where the standard HB model is optimal.

Besides measures of prediction error, the main interest is whether the semipara-
metric model may produce more accurate inferences in terms of shorter credible
intervals. The equal tail 95 % credible intervals were compared to those obtained
under the standard normal hierarchical model. Whereas for the standard normal
setting the two models give intervals of comparable size, with average size 2.1 under
the proposed model and 2.7 under the standard HB model, under the mixture of
normals setting the nonparametric model achieves a slightly better performance, the
mean interval size being 2.7 under the proposed model and 3.8 under the standard
HB model. The reason for the observed reduction in variability even under normality
of the random effects may be ascribed to areas in the same cluster sharing the same
random effect; the DP prior effectively achieves flexibility without increasing the
dimensionality of the problem to a large extent.

Figures 24.1 and 24.2 show the posterior predictive distributions for a selection
of areas under the two assumptions for the model generating the random effects. In
most cases the posterior distributions are more concentrated than the under standard
HB model and the true value belongs to the 95 % credibility interval.
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Fig. 24.1 MCMC approximation of the posterior predictive distributions of the area means under
the standard normal setting. In each panel the kernel density estimates of the posterior predictive
distribution of the small area mean are presented for the standard HB model (dashed line) and the
proposed semiparametric model (solid line). The true area mean (black dot), along with its HB
(black dashed line) and semiparametric (black solid line) estimates are depicted. The endpoints
of the 95 % credibility intervals are shown in grey (HB: grey dashed lines, proposed model: grey
solid lines). For each of the selected areas,  i , the sampling variance of the direct estimator O
i is
reported

24.4 Final Remarks

This contribution investigates a semiparametric version of the Fay–Herriot model
based on the DP prior. The model formulation allows to relax parametric assump-
tions on the random effects using a parsimonious nonparametric representation
of such model component, relying on a Dirichlet process prior. The aim is to
capture area-specific variability not accounted for by the covariates using a flexible
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Fig. 24.2 MCMC approximation of the posterior predictive distributions of the area means under
the mixture of normals setting. In each panel the kernel density estimates of the posterior predictive
distribution of the small area mean are presented for the standard HB model (dashed line) and the
proposed semiparametric model (solid line). The true area mean (black dot), along with its HB
(black dashed line) and semiparametric (black solid line) estimates are depicted. The endpoints
of the 95 % credibility intervals are shown in grey (HB: grey dashed lines, proposed model: grey
solid lines). For each of the selected areas,  i , the sampling variance of the direct estimator O
i is
reported

representation, without excessively increasing the number of model parameters. The
characteristics of the DP imply that the random effects are given a mixture structure,
with number of components that depends on the DP precision parameter, M .
Uncertainty onM is also accounted for in the proposed model.

The experiments performed seem to indicate that the proposed model effectively
achieves flexibility in modelling the random effects, without increasing the dimen-
sionality of the problem. As a consequence, the posterior predictive distributions of
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the small area means tend to be more concentrated than the standard HB predictions,
thus producing shorter credible intervals.

Although coverage properties remain to be investigated, the computational
complexity associated with the new model seem to be worth the effort in terms
of accuracy of the estimates.

The paper focused on prediction of small area means, but other quantities might
be of interest, such as ranks or the CDF. In this respect, larger gains could be
obtained as optimal properties of the HB predictor do not hold for other estimators.
The same framework could also be applied to unit level and nonlinear models.
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Chapter 25
Bootstrap Confidence Intervals
in Nonparametric Regression
Without an Additive Model

Dimitris N. Politis

Abstract The problem of confidence interval construction in nonparametric
regression via the bootstrap is revisited. When an additive model holds true, the
usual residual bootstrap is available but it often leads to confidence interval under-
coverage; the case is made that this under-coverage can be partially corrected using
predictive—as opposed to fitted—residuals for resampling. Furthermore, it has
been unclear to date if a bootstrap approach is feasible in the absence of an additive
model. The main thrust of this paper is to show how the transformation approach
put forth by Politis (Test 22(2):183–221, 2013) in the related setting of prediction
intervals can be found useful in order to construct bootstrap confidence intervals
without an additive model.

Keywords Model-free inference • Resampling • Nonparametric function
estimation

25.1 Introduction

Consider regression data of the type f.Yt ; xt /; t D 1; : : : ; ng. For simplicity of
presentation, the regressor xt is assumed univariate and deterministic; the case
of a multivariate regressor is handled similarly. As usual, it will be assumed
that Y1; : : : ; Yn are independent but not identically distributed. Attention focuses
primarily on the first two moments of the response Yt , namely

�.xt / D E.Yt jxt / and �2.xt / D Var.Yt jxt /: (25.1)

In the nonparametric setting, the functions �.�/ and �.�/ are considered unknown
but assumed to possess some degree of smoothness (differentiability, etc.). There are
many approaches towards nonparametric estimation of the functions � and � , e.g.,
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wavelets and orthogonal series, smoothing splines, local polynomials, and kernel
smoothers. For concreteness, this paper will focus on one of the oldest methods,
namely the Nadaraya–Watson (N-W) kernel estimators; see Li and Racine [7] and
the references therein.

Beyond point estimates of the functions � and � , it is important to be able to
additionally provide interval estimates in order to have a measure of their statistical
accuracy. Suppose, for example, that a practitioner is interested in the expected
response to be observed at a future point xf. A confidence interval for �.xf/ is
then desirable. Under regularity conditions, such a confidence interval can be given
either via a large-sample normal approximation, or via a resampling approach; see,
e.g., Freedman [3], Härdle and Bowman [5], Härdle and Marron [6], Hall [4], or
Neumann and Polzehl [9].

Typical regularity conditions for the above bootstrap approaches involve the
assumption of an additive model with respect to independent and identically
distributed (i.i.d.) errors. In Sect. 25.2, we revisit the usual model-based bootstrap
for regression adding the dimension of employing predictive as opposed to fitted
residuals as advocated by Politis [10, 11] in a related context. More importantly, in
Sect. 25.3 we address the problem of constructing a bootstrap confidence interval
for �.xf/ without an underlying additive model.

The model-free approach developed in this paper is totally automatic, relieving
the practitioner from the need to find an optimal transformation towards additivity
and variance stabilization; this is a significant practical advantage because of the
multitude of such proposed transformations, e.g. the Box/Cox power family, ACE,
AVAS, etc.—see Linton et al. [8] and the references therein. The finite-sample
simulations provided in Sect. 25.4 confirm the viability and good performance of
the model-free confidence intervals.

25.2 Model-Based Nonparametric Regression

25.2.1 Nonparametric Regression with an Additive Model

An additive model for nonparametric regression is given by the equation

Yt D �.xt /C �.xt / "t ; t D 1; : : : ; n; (25.2)

with "t � i.i.d. (0,1) from an (unknown) distribution F . The N-W estimator of �.x/
is defined as

mx D
nX

iD1
Yi QK

�x � xi
h

�
with QK

�x � xi
h

�
D K

�
x�xi
h

�
Pn

kD1 K
�
x�xk
h

� (25.3)



25 Bootstrap Confidence Intervals in Nonparametric Regression Without an. . . 273

where h is the bandwidth, and K.x/ is a symmetric kernel function withR
K.x/dx D 1. Similarly, the N-W estimator of �2.x/ is given by s2x D

Mx �m2
x where Mx D Pn

iD1 Y 2i QK � x�xi
h

�
:

For t D 1; : : : ; n, let et D .Yt � mxt /=sxt denote the fitted residuals, and
Qet D .Yt � m

.t/
xt /=s

.t/
xt the predictive residuals. Here, m.t/

x and M.t/
x denote the

estimatorsmx andMx , respectively, computed from the delete-Yt dataset: f.Yi ; xi /,
i D 1; : : : ; t � 1 and i D t C 1; : : : ; ng. As before, define s.t/xt D

q
M

.t/
xt � .m

.t/
xt /

2.
Choosing the bandwidth h is often done by cross-validation, i.e., picking h to
minimize

Pn
tD1 Qe2t , or its L1 analog:

Pn
tD1 j Qet j.

25.2.2 Model-Based Confidence Intervals

Consider the problem of constructing a confidence interval for the regression
function �.xf/ at a point of interest xf. A normal approximation to the distribution
of the estimator mxf implies an approximate .1 � ˛/100 % equal-tailed, confidence
interval for �.xf/ given by:

Œmxf C vxf � z.˛=2/; mxf C vxf � z.1 � ˛=2/� (25.4)

where v2xf
D s2xf

Pn
iD1 QK2.xf�xi

h
/ with QK defined in (25.3), and z.˛/ being the ˛-

quantile of the standard normal. If the “density” (e.g., histogram) of the design
points x1; : : : ; xn can be thought to approximate a given functional shape (say, f .�/)
for large n, then the large-sample approximation

nX

iD1
QK2
�xf � xi

h

�
�
R
K2.x/dx

nh f .xf/
(25.5)

can be used which relies on the assumption that
R
K.x/dx D 1; see, e.g., Li and

Racine [7].
Interval (25.4) may be problematic in two respects: (a) it ignores the bias of mx ,

so it must be either explicitly bias-corrected, or a suboptimal bandwidth must be
used to ensure undersmoothing; and (b) it is based on a Central Limit Theorem
which may not be a good finite-sample approximation if the errors are skewed
and/or leptokurtic, or when the sample size is not large enough. For both above
reasons, practitioners often prefer bootstrap methods over the normal approximation
interval (25.4). When using fitted residuals, the following algorithm is the well-
known residual bootstrap pioneered by Freedman [3] in a linear regression setting,
and extended to nonparametric regression by Härdle and Bowman [5], and other
authors. As an alternative, we also propose the use of predictive residuals for
resampling as advocated by Politis [10, 11] in a related context. The predictive
residuals have an empirical distribution that has similar shape as that of the fitted
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residuals but it has larger scale. This is a finite-sample phenomenon only but it
may help alleviate the well-known phenomenon of under-coverage of bootstrap
confidence intervals.

Our goal is to approximate the distribution of the confidence root: �.xf/ � mxf

by that of its bootstrap counterpart.

Resampling Algorithm for Model-Based Confidence Intervals for �.xf/

1. Based on the f.Yt ; xt /; t D 1; : : : ; ng data, construct the estimates mx and sx
from which the fitted residuals ei ; and predictive residuals Qei are computed for
i D 1; : : : ; n.

2. For the traditional model-based bootstrap approach (MB), let ri D ei �
n�1

P
j ej ; for i D 1; : : : ; n: For the predictive residual approach (PRMB) as

in Politis [10], let ri D Qei � n�1
P

j Qej ; for i D 1; : : : ; n:

(a) Sample randomly (with replacement) the residuals r1; : : : ; rn to create
the bootstrap pseudo-residuals r�1 ; : : : ; r�n whose empirical distribution is
denoted by OF �n .

(b) Create pseudo-data in the Y domain by letting Y �i D mxi C sxi r
�
i ; for

i D 1; : : : ; n:

(c) Based on the pseudo-data f.Y �t ; xt /; t D 1; : : : ; ng, re-estimate the functions
�.x/ and �.x/ by the kernel estimators m�x and s�x (with same kernel and
bandwidths as the original estimatorsmx and sx).

(d) Calculate a replicate of the bootstrap confidence root: mxf �m�xf
.

3. Steps (a)–(d) in the above are repeated B times, and the B bootstrap root
replicates are collected in the form of an empirical distribution with ˛-quantile
denoted by q.˛/.

4. Then, a .1 � ˛/100 % equal-tailed confidence interval for �.xf/ is given by:

Œmxf C q.˛=2/;mxf C q.1 � ˛=2/�: (25.6)

Remark 2.1. As in all nonparametric smoothing problems, choosing the bandwidth
is often a key issue due to the ever-looming problem of bias; the addition of a
bootstrap algorithm as above further complicates things. Different authors have
used various tricks to account for the bias. For example, Härdle and Bowman [5]
construct a kernel estimate for the second derivative �00.x/, and use this estimate
to explicitly correct for the bias; the estimate of the second derivative is known
to be consistent but it is difficult to choose its bandwidth. Härdle and Marron
[6] estimate the (fitted) residuals using the optimal bandwidth but the resampled
residuals are then added to an oversmoothed estimate of �; the bootstrapped data
are then smoothed using the optimal bandwidth. Neumann and Polzehl [9] use only
one bandwidth but it is of smaller order than the mean square error optimal rate; this
undersmoothing of curve estimates was first proposed by Hall [4] and is perhaps
the easiest theoretical solution towards confidence band construction although the
recommended degree of undersmoothing for practical purposes is not obvious.
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Remark 2.2. An important feature of all bootstrap procedures is that they can
handle joint confidence intervals, i.e., confidence regions, with the same ease
as the univariate ones. This is especially true in regression where simultaneous
confidence intervals are typically constructed in the form of confidence bands; the
details are well known in the literature and are omitted due to lack of space.

25.3 Model-Free Nonparametric Regression

25.3.1 Nonparametric Regression Without an Additive Model

We now revisit the nonparametric regression setup but in a situation where a model
such as (25.2) cannot be considered to hold true (not even approximately). As an
example of model (25.2) not being valid, consider the setup where the skewness
and/or kurtosis of Yt depends on xt , and thus centering and studentization will
not result in “i.i.d.–ness.” The dataset is still f.Yt ; xt /; t D 1; : : : ; ng where
the regressor xt is univariate and deterministic, and the variables Y1; Y2; : : : are
independent but not identically distributed. Define the conditional distribution
Dx.y/ D P fYf � yjxf D xg where .Yf; xf/ represents the random response
Yf associated with regressor xf. Attention still focuses on constructing an interval
estimate of �.xf/ D E.Yfjxf/ D R

y Dxf.dy/:

Throughout this section, we will assume that the function Dx.y/ is continuous
in both x and y. Consequently, we can estimate Dx.y/ by the local (weighted)
empirical distribution

ODx.y/ D
nX

iD1
1fYi � yg QK

�x � xi
h

�
I (25.7)

this is just an N-W smoother of the variables 1fYt � yg; t D 1; : : : ; n. Estimator
ODx.y/ enjoys many desirable properties, including asymptotic consistency, but is

discontinuous as a function of y. To construct a continuous (and differentiable)
estimator, let b be a positive bandwidth parameter and �.y/ be a (differentiable)
distribution function that is strictly increasing, and define

NDx.y/ D
nX

iD1
�

�
y � Yi
b

�
QK
�x � xi

h

�
: (25.8)

Under regularity conditions, Li and Racine [7, Theorem 6.2] show that

Var. NDx.y// D O

�
1

hn

�
and Bias. NDx.y// D O.h2 C b2/ (25.9)
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assuming that h ! 0, b ! 0, hn ! 1 and
p
hn.h3Cb3/ D o.1/; to minimize the

asymptotic Mean Squared Error of NDx.y/, the optimal bandwidths are h � chn
�1=5

and b � cbn
�2=5 for some positive constants ch; cb .

Recall that the Yt s are non-i.i.d. only because they do not have identical
distributions. Since they are continuous random variables, the probability integral
transform is applicable. If we let �i D Dxi .Yi / for i D 1; : : : ; n, then �1; : : : ; �n are
i.i.d. Uniform(0,1). Of course, Dx.�/ is not known but we can define

ui D NDxi .Yi / for i D 1; : : : ; nI (25.10)

by the consistency of NDx.�/, we can now claim that u1; : : : ; un are approximately
i.i.d. Uniform(0,1).

Using (25.10) and following the Model-free Prediction Principle of Politis [10],
the quantity

…xf D n�1
nX

iD1
OD�1xf

.ui / (25.11)

was proposed as an L2-optimal predictor of Yf, i.e., an approximation to the
conditional expectation �.xf/ D E.Yfjxf/. Note that ODxf.y/ is a step function in y,
and thus not invertible; the notation OD�1xf

denotes the quantile inverse. Alternatively,
one could propose the quantity n�1

Pn
iD1 ND�1xf

.ui / where a true inverse is used; the
difference between the two is negligible, and definition (25.11) is straightforward.

Note that …xf is defined as a function of the approximately i.i.d. variables
u1; : : : ; un; as such, it may be amenable to the original i.i.d. bootstrap of Efron [2].
Two questions arise: (a) is the estimator …xf quite different from the standard N-W
estimatormxf? and (b) couldmxf itself be bootstrapped using i.i.d. resampling? The
answers to these questions are NO and YES, respectively, due to the following fact.
To motivate it, recall that the N-W estimator mx can be expressed alternatively as

mx D
nX

iD1
Yi QK

�x � xi
h

�
D
Z
y ODx.dy/ D

Z 1

0

OD�1x .u/du: (25.12)

The last equality in (25.12) is the identity
R
y F.dy/ D R 1

0 F
�1.u/du that holds

true for any distribution F .

Fact 3.1. Assume that Dx.y/ is continuous in x, and differentiable in y with
derivative that is everywhere positive on its support. Then, ˘xf and mxf are
asymptotically equivalent, i.e.,

p
nh .˘xf � mxf/ D op.1/ for any xf that is not

a boundary point.

One way to prove the above is to show that the average appearing in (25.11) is
close to a Riemann sum approximation to the integral at the RHS of (25.12) based
on a grid of n points. The law of the iterated logarithm for order statistics of uniform
spacings can be useful here; see Devroye [1] and the references therein.
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Remark 3.1. The above line of arguments indicates that there is a variety of
estimators that are asymptotically equivalent to mxf in the sense of Fact 3.1.
For example, the Riemann sum M�1

PM
kD1 OD�1xf

.k=M/ is such an approximation
as long as M � n. A stochastic approximation can also be concocted as
M�1

PM
iD1 OD�1xf

.Wi / where W1; : : : ;WM are i.i.d. generated from a Uniform(0,1)
distribution andM � n.

25.3.2 Bootstrap Algorithm for Model-free Confidence
Intervals

Let O�.xf/ denote our chosen estimator of �.xf/ D E.Yfjxf/, i.e., either mxf or
…xf , or even one of the other asymptotically equivalent estimators discussed in
Remark 3.1. Our goal is to approximate the distribution of the confidence root:
�.xf/� O�.xf/ by that of its bootstrap counterpart. The algorithm reads as follows.

Resampling Algorithm for Model-Free Confidence Intervals for �.xf/

1. Based on the f.Yt ; xt /; t D 1; : : : ; ng data, construct the estimates ODx.�/
and NDx.�/, and use (25.10) to obtain the transformed data u1; : : : ; un that are
approximately i.i.d. Uniform (0,1).

(a) Sample randomly (with replacement) the transformed data u1; : : : ; un to
create bootstrap pseudo-data u�1 ; : : : ; u�n .

(b) Use the quantile inverse transformation OD�1x to create bootstrap pseudo-data
in the Y domain, i.e., let Y �n D .Y �1 ; : : : ; Y �n / where Y �t D OD�1xt .u�t /. Note
that Y �t is paired with the original xt design point; hence, the bootstrap
dataset is f.Y �t ; xt /; t D 1; : : : ; ng.

(c) Based on the pseudo-data f.Y �t ; xt /; t D 1; : : : ; ng, re-estimate the condi-
tional distributionDx.�/; denote the bootstrap estimates by OD�x .�/ and ND�x .�/.

(d) Calculate a replicate of the bootstrap confidence root: O�.xf/� O��.xf/ where
O��.xf/ equals either

R
y OD�xf

.dy/ D R 1
0

OD��1

xf
.u/du or n�1

Pn
iD1 OD��1

xf
.u�i /

according to whether O�.xf/ was chosen as mxf or …xf .

2. Steps (a)–(d) in the above are repeated B times, and the B bootstrap root
replicates are collected in the form of an empirical distribution with ˛-quantile
denoted by q.˛/.

3. Then, the Model-Free (MF) .1 � ˛/100 % equal-tailed, confidence interval for
�.xf/ is[(a)]

Œ O�.xf/C q.˛=2/; O�.xf/C q.1 � ˛=2/�:Œ.a/� (25.13)

Remark 3.2. An alternative way to implement step 1(a) of the above algorithm is:

a0. Generate bootstrap pseudo-data u�1 ; : : : ; u�n i.i.d. from an exact Uniform .0; 1/

distribution.
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If the above choice is made, then there is no need to use (25.10) to obtain the
transformed data u1; : : : ; un; in this sense, the smooth estimator NDx.�/ is not needed,
and the step function ODx.�/ suffices for the algorithm.

The downside to the above proposal is that the option to use “predictive” u-data is
unavailable. To elaborate, recall that Politis [10] defined the model-free “predictive”
u-data as follows. Let ND.t/

xt denote the estimator NDxt as computed from the delete-Yt
dataset, i.e., f.Yi ; xi /, i D 1; : : : ; t � 1 and i D t C 1; : : : ; ng. Now let

u.t/t D ND.t/
xt
.Yt / for t D 1; : : : ; n: (25.14)

The u.t/t variables are the model-free analogs of the predictive residuals Qet of
Sect. 25.2.

Remark 3.3. We can now define Predictive Model-Free (PMF) confidence intervals
for �.xf/. The PMF Resampling Algorithm is identical to the above with one
exception; replace step 1(a) with the following:

a00. Sample randomly (with replacement) the predictive u-data u.1/1 ; : : : ; u
.n/
n to

create bootstrap pseudo-data u�1 ; : : : ; u�n .

Remark 3.4. Recall that the model-free L1-optimal predictor of Yf is given by
the medianf ND�1xf

.ui /g; see Politis [10, 11]. Therefore, by analogy to Fact 3.1,
we have: medianf ND�1xf

.ui /g D ND�1xf
.medianfuig/ ' ND�1xf

.1=2/ since the uis are
approximately Uniform (0,1). Hence, if the practitioner wanted to estimate the
median (as opposed to the mean) of the conditional distribution of Yf given xf, then
the local median ND�1xf

.1=2/, could be bootstrapped using i.i.d. resampling in the
same manner that medianf ND�1xf

.ui /g can be bootstrapped.

25.4 Simulations

25.4.1 When a Nonparametric Regression Model Is True

The building block for the simulation in Sect. 25.4.1 is model (25.2) with �.x/ D
sin.x/, �.x/ D 1=2; and errors "t i.i.d. N(0,1) or two-sided exponential (Laplace)
rescaled to unit variance. Knowledge that the variance �.x/ is constant was not
used in the estimation, i.e., �.x/ was estimated from the data. For each distribution,
500 datasets each of size n D 100 were created with the design points x1; : : : ; xn
being equi-spaced on .0; 2
/, and N-W estimates of �.x/ D E.Y jx/ and �2.x/ D
Var.Y jx/ were computed using a normal kernel in R.

Confidence intervals with nominal level ˛ D 0:90were constructed using the two
methods presented in Sect. 25.2.2: Traditional Model-Based (MB) and Predictive
Residual Model-Based (PRMB); the two methods presented in Sect. 25.3.2: Model-
Free (MF) of (25.13), and Predictive Model-Free (PMF) from Remark 3.3; and the
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Table 25.1 Empirical coverage levels (CVR) of confidence intervals according to
different methods at several xf points spanning the interval .0; 2
/

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:802 0:735 0:725 0:756 0:811 0:760 0:736 0:738 0:765

PRMB 0:860 0:821 0:813 0:826 0:878 0:840 0:806 0:812 0:837

MF 0:843 0:796 0:780 0:798 0:853 0:821 0:815 0:811 0:831

PMF 0:925 0:856 0:851 0:859 0:891 0:875 0:853 0:858 0:878

Normal 0:829 0:836 0:773 0:805 0:860 0:827 0:774 0:820 0:845

Nominal coverage was 0.90, and sample size n D 100; error distribution:
i.i.d. Normal

Table 25.2 (Average) lengths (LEN)—with standard errors below them—of the
confidence intervals reported in Table 25.1

xf=
 = 0.15 0.3 0.5 0.75 1| 1.25 1.5 1.7 1.85

MB 0:380 0:346 0:332 0:358 0:380 0:359 0:334 0:345 0:377

0:003 0:003 0:003 0:003 0:003 0:003 0:003 0:003 0:004

PRMB 0:466 0:432 0:418 0:441 0:473 0:451 0:418 0:427 0:466

0:008 0:009 0:010 0:007 0:010 0:011 0:009 0:008 0:009

MF 0:448 0:418 0:398 0:424 0:455 0:428 0:399 0:420 0:455

0:005 0:005 0:005 0:004 0:005 0:005 0:005 0:005 0:005

PMF 0:518 0:487 0:468 0:490 0:513 0:492 0:470 0:487 0:517

0:005 0:005 0:005 0:004 0:005 0:005 0:006 0:005 0:005

Normal 0:382 0:368 0:368 0:369 0:368 0:371 0:367 0:367 0:378

0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002

Table 25.3 As in Table 25.1 but with error distribution: i.i.d. Laplace

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:789 0:739 0:752 0:782 0:816 0:770 0:741 0:730 0:801

PRMB 0:860 0:858 0:852 0:878 0:905 0:865 0:852 0:857 0:886

MF 0:853 0:835 0:837 0:877 0:870 0:843 0:831 0:835 0:872

PMF 0:924 0:906 0:915 0:930 0:930 0:897 0:913 0:908 0:929

Normal 0:810 0:836 0:820 0:849 0:877 0:843 0:817 0:844 0:852

NORMAL approximation interval (25.4). The smoothing kernel � in (25.8) was
taken to be the standard normal density. All required bandwidths were computed by
L1 cross-validation. For each type of interval, the corresponding empirical coverage
level (CVR) and average length (LEN) were recorded together with the (empirical)
standard error associated with each average length.

Tables 25.1, 25.2, 25.3, and 25.4 summarize our findings and contain a number
of important features.

• The standard error of the reported coverage levels over the 500 replications is
0.013.
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Table 25.4 As in Table 25.2 but with error distribution: i.i.d. Laplace

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:362 0:332 0:316 0:348 0:370 0:340 0:304 0:323 0:354

0:004 0:003 0:003 0:003 0:003 0:003 0:003 0:003 0:004

PRMB 0:455 0:417 0:398 0:436 0:465 0:424 0:382 0:407 0:444

0:007 0:006 0:007 0:006 0:006 0:005 0:005 0:005 0:006

MF 0:424 0:394 0:372 0:411 0:441 0:405 0:359 0:388 0:426

0:004 0:004 0:004 0:004 0:004 0:004 0:004 0:004 0:005

PMF 0:494 0:461 0:440 0:473 0:500 0:468 0:431 0:455 0:489

0:004 0:004 0:004 0:004 0:004 0:004 0:003 0:004 0:004

Normal 0:368 0:362 0:362 0:358 0:362 0:361 0:362 0:362 0:366

0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002

• By construction, this simulation problem has some symmetry that helps us
further appreciate the variability of the CVRs. To elaborate, note that for any
x 2 Œ0; 
� we have j�.x/j D j�.2
 � x/j and the same symmetry holds for the
derivatives of �.x/ as well due to the sinusoidal structure. Hence, the expected
CVRs should be the same for xf D 0:15
 and 1:85
 in all methods. So for
the NORMAL case of Table 25.1, the CVR would be better estimated by the
average of 0.829 and 0.845, i.e., closer to 0.837; similarly, the PMF CVR for the
same points could be better estimated by the average of 0.925 and 0.878, i.e.,
0.902.

• The NORMAL intervals are characterized by under-coverage even when the true
distribution is Normal. This under-coverage is more pronounced when xf D 
=2

or 3
=2 due to the high bias of the kernel estimator at the points of a “peak” or
“valley” that the normal interval (25.4) “sweeps under the carpet”.

• The length of the NORMAL intervals is quite less variable than those based on
bootstrap; this is not surprising since the extra randomization from the bootstrap
is expected to inflate the overall variances.

• Although regression model (25.2) holds true here, the MB intervals show
pronounced under-coverage; this is a phenomenon well known in the bootstrap
literature. As previously mentioned, the predictive residuals have generally larger
scale than the fitted ones. Consequently, the PRMB intervals are wider, and
manage to partially correct the under-coverage of the MB intervals.

• The performance of MF intervals is better than that of MB intervals despite the
fact that the former are constructed without making use of (25.2). However, as
with the MB intervals, the MF intervals also show a tendency towards under-
coverage.

• The PMF intervals appear to nicely correct the MF under-coverage in the Normal
case although in the Laplace case they yield an over-correction. However, even
with this over-correction, the PMF coverages are closer to the nominal in most
entries of Tables 25.1 and 25.3 with only a few exceptions in Table 25.3 where
the PRMB intervals are more accurate.
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25.4.2 When a Nonparametric Regression Model Is Not True

In this subsection, we investigate the performance of different confidence intervals
in the absence of model (25.2). For easy comparison with Sect. 25.4.1, we will keep
the same (conditional) mean and variance, i.e., we will generate independent Y data
such that E.Y jx/ D sin.x/, Var.Y jx/ D 1=2, and design points x1; : : : ; x100 equi-
spaced on .0; 2
/. However, the error structure "x D .Y �E.Y jx//=pVar.Y jx/ has
skewness and/or kurtosis that depends on x, thereby violating the i.i.d. assumption.
For our simulation, we considered

"x D cxZ C .1 � cx/Wp
c2x C .1� cx/2

(25.15)

where cx D x=.2
/ for x 2 Œ0; 2
�, and Z � N.0; 1/ independent of W that will

either be distributed as 1
2
	22 � 1 to capture a changing skewness, or as

q
3
5
t5, to

capture a changing kurtosis; note that EW D 0 and EW 2 D 1.
Our results are summarized in Tables 25.5, 25.6, 25.7, and 25.8. The findings are

qualitatively similar to those in Sect. 25.4.1. The PMF intervals are the undisputed
winners here in terms of coverage accuracy. By contrast, the NORMAL and the
MB bootstrap intervals show pronounced under-covarage; interestingly, these are
the two methods that most practitioners use at the moment.

Table 25.5 As in Table 25.1 but with error distribution (25.15): non-i.i.d. skewed

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:741 0:743 0:731 0:766 0:820 0:775 0:732 0:750 0:778

PRMB 0:813 0:817 0:815 0:844 0:892 0:865 0:825 0:845 0:862

MF 0:799 0:775 0:753 0:820 0:877 0:839 0:783 0:804 0:839

PMF 0:881 0:853 0:851 0:891 0:907 0:884 0:837 0:858 0:882

Normal 0:811 0:826 0:758 0:793 0:879 0:813 0:764 0:817 0:814

Table 25.6 As in Table 25.2 but with error distribution (25.15): non-i.i.d. skewed

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:361 0:332 0:314 0:343 0:370 0:349 0:322 0:335 0:366

0:005 0:004 0:004 0:003 0:003 0:003 0:003 0:003 0:003

PRMB 0:456 0:417 0:395 0:430 0:463 0:442 0:408 0:420 0:460

0:009 0:008 0:007 0:006 0:006 0:007 0:008 0:006 0:007

MF 0:422 0:390 0:369 0:405 0:441 0:419 0:388 0:410 0:446

0:005 0:005 0:004 0:004 0:004 0:004 0:004 0:004 0:005

PMF 0:492 0:460 0:437 0:467 0:499 0:479 0:452 0:472 0:506

0:006 0:005 0:004 0:004 0:004 0:005 0:004 0:004 0:004

Normal 0:372 0:358 0:358 0:357 0:358 0:359 0:358 0:358 0:367

0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002
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Table 25.7 As in Table 25.1 but with error distribution (25.15): non-i.i.d. kurtotic

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:795 0:754 0:730 0:747 0:792 0:782 0:750 0:756 0:770

PRMB 0:868 0:840 0:809 0:843 0:870 0:852 0:834 0:837 0:845

MF 0:863 0:820 0:804 0:811 0:838 0:833 0:814 0:808 0:834

PMF 0:918 0:896 0:889 0:880 0:890 0:886 0:868 0:869 0:877

Normal 0:808 0:815 0:788 0:800 0:861 0:821 0:781 0:828 0:812

Table 25.8 As in Table 25.2 but with error distribution (25.15): non-i.i.d. kurtotic

xf=
 = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

MB 0:363 0:339 0:327 0:353 0:380 0:360 0:332 0:341 0:372

0:004 0:004 0:004 0:003 0:003 0:003 0:003 0:003 0:003

PRMB 0:446 0:416 0:402 0:433 0:465 0:443 0:408 0:420 0:455

0:007 0:007 0:007 0:007 0:006 0:006 0:007 0:005 0:006

MF 0:423 0:402 0:382 0:416 0:449 0:429 0:397 0:410 0:451

0:004 0:004 0:004 0:004 0:004 0:004 0:004 0:004 0:004

PMF 0:496 0:469 0:452 0:480 0:508 0:489 0:461 0:477 0:507

0:004 0:005 0:004 0:004 0:004 0:004 0:004 0:004 0:004

Normal 0:377 0:365 0:365 0:365 0:365 0:367 0:365 0:365 0:373

0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002 0:002
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Chapter 26
Heteroskedastic Linear Regression: Steps
Towards Adaptivity, Efficiency, and Robustness

Dimitris N. Politis and Stefanos Poulis

Abstract In linear regression with heteroscedastic errors, the Generalized Least
Squares (GLS) estimator is optimal, i.e., it is the Best Linear Unbiased Estimator
(BLUE). The Ordinary Least Squares (OLS) estimator is suboptimal but still valid,
i.e., unbiased and consistent. White, in his seminal paper (White, Econometrica
48:817–838, 1980) used the OLS residuals in order to obtain an estimate of the
standard error of the OLS estimator under an unknown structure of the under-
lying heteroscedasticity. The GLS estimator similarly depends on the unknown
heteroscedasticity, and is thus intractable. In this paper, we introduce two different
approximations to the optimal GLS estimator; the starting point for both approaches
is in the spirit of White’s correction, i.e., using the OLS residuals to get a rough
estimate of the underlying heteroscedasticity. We show how the new estimators can
benefit from the Wild Bootstrap both in terms of optimising them, and in terms of
providing valid standard errors for them despite their complicated construction. The
performance of the new estimators is compared via simulations to the OLS and to
the exact (but intractable) GLS.

Keywords BLUE • Least squares estimation • Minimum variance

26.1 Introduction

Standard regression methods rely on the assumption that the regression errors are
either independent, identically distributed (i.i.d.), or at least being uncorrelated
having the same variance; this latter property is called homoscedasticity. The Gen-
eralized Least Squares (GLS) estimator is Best Linear Unbiased Estimator (BLUE)
but its computation depends on the structure of the underlying heteroscedasticity.
Typically, this structure is unknown, and the GLS estimator is intractable; in this
case, practitioners may be forced to use the traditional Ordinary Least Squares
(OLS) estimator which will still be valid, i.e., unbiased and consistent, under general
conditions.
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Under the assumption that the error variance is an unknown but smooth function
of the regressors it is possible to give an approximation to the GLS estimator.
For example, Caroll [2] showed that one can construct estimates of regression
parameters that are asymptotically equivalent to the weighted least squares esti-
mates. Chatterjee and Mächler [1] proposed an iterative weighted least squares
algorithm to approximate the optimal GLS. In a different spirit, Yuan and Whaba
[12] introduced a penalized likelihood procedure to estimate the conditional mean
and variance simultaneously. In the same framework, Le, Smola, and Canu [4],
using Gaussian process regression, estimate the conditional mean and variance by
estimating the natural parameters of the exponential family representation of the
Gaussian distribution.

What happens if no smoothness assumption on the error variance can be made?
In his seminal paper, White [10] used the OLS residuals in order to get an estimate
of the standard error of the OLS estimator that is valid, i.e., consistent, under an
unknown structure of the underlying heteroscedasticity. In the paper at hand, we
introduce two new approximations to the optimal GLS estimator; the starting point
for both approaches is in the spirit of White’s [10] correction, i.e., using the OLS
residuals to get a rough estimate of the underlying heteroscedasticity. The paper is
structured as follows; in Sect. 26.2 we formally state the problem, introduce our
first estimator, and show how a convex combination of the under-correcting OLS
and the over-correcting approximate GLS estimators can yield improved results.
In Sect. 26.3, in our effort to approximate the quantities needed for the GLS,
we introduce a second estimator. In Sect. 26.4 we present a series of simulation
experiments to compare performance of the new estimators to the OLS and to the
exact (but intractable) GLS.

26.2 Adaptive Estimation: A First Attempt

Consider the general linear regression setup where the data vector Y D
.Y1; : : : ; Yn/

0 satisfies:

Y D Xˇ C �: (26.1)

As usual, ˇ is a p�1 unknown parameter vector,X is an n�p matrix of observable
regressors, and � D .�1; : : : ; �n/

0 is an unobservable error vector. The regressors
may be fixed or random variables (r.v.); in either case, it will be assumed that the
regressor matrix X is independent from the error vector �, and that the n�p matrix
is of full rank almost surely.

Letting xi denote the i th row of the matrix X , we will further assume that

f.xi ; �i / for i D 1; : : : ; ng is a sequence of independent r:v:0s (26.2)

and that the first two moments of � are finite and satisfy:

E.�/ D 0 and V.�/ D ˙ where ˙ D diag.�21 ; : : : ; �
2
n /; (26.3)
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i.e., the �i errors are mean zero, uncorrelated but with heteroskedasticity of arbitrary
form. The OLS estimator of ˇ is Ǒ

LS D .X 0X/�1X 0Y . Its variance–covariance
matrix, conditional on X , is given by

V. Ǒ
LS/ D .X 0X/�1X 0˙X.X 0X/�1

that can be estimated consistently by White’s (1980)[10] heteroskedasticity consis-
tent estimator (HCE):

.X 0X/�1X 0 ȮX.X 0X/�1

where

Ȯ D diag. O�21 ; : : : ; O�2n/ with O�2i D r2i =.1� hi /
� : (26.4)

In the above, ri is the i th element of the residual vector r D Y �X Ǒ
LS, and hi is the

“leverage” of point xi , i.e., the i th diagonal element of the projection (“hat”) matrix
H D X.X 0X/�1X 0. White’s [10] original proposal had � D 0 in Eq. (26.4); later
proposals recommended � D 1, i.e., studentized residuals, or � D 2, i.e., delete-1
jackknife residuals; see MacKinnon [7] for a review.

Nevertheless, in the presence of heteroskedasticity, Ǒ
LS is not optimal. Efficiency

in this case is attained by the GLS estimator Ǒ
GLS which is the solution of

.X 0˙�1X/ Ǒ
GLS D X 0˙�1Y: (26.5)

Under the stated assumptions, the variance–covariance matrix of Ǒ
GLS, conditional

on X , is given by

V. Ǒ
GLS/ D .X 0˙�1X/�1: (26.6)

The problem, of course, is that˙ is unknown, so Ǒ
GLS is unobtainable. However,

despite the fact that Ȯ is an inconsistent estimator of ˙ , we may still construct
estimators of the matrices X 0˙�1X and X 0˙�1 that are needed to compute Ǒ

GLS;
this is done in the spirit of White’s [10] HCE.

Before doing that though it is important to consider the possibility that Ǒ
GLS is

not well defined due to the fact that ˙ might be non-invertible. We can define a
small perturbation of ˙ that is invertible; to do this, let ı > 0 and define ˙ı D
diag.�21 C ı; : : : ; �2n C ı/. We now define Ǒ

GLS;ı as the solution of

.X 0˙�1ı X/ Ǒ
GLS;ı D X 0˙�1ı Y:

Note that Ǒ
GLS;ı is always well defined, and—for ı small enough—is close to Ǒ

GLS

when it is well defined.
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In the same spirit, let ı > 0 and define

Q̇
ı D diag. Q�21 ; : : : ; Q�2n/ with Q�2i D r2i C ı

.1 � hi /�
(26.7)

where r and � are as in Eq. (26.4). Note that Q̇
ı reduces to Ȯ when ı D

0; the advantage of Q̇
ı, however, is that it is always invertible with Q̇ �1

ı D
diag. Q��21 ; : : : ; Q��2n /.

Remark 2.1. In practice, ı could/should be taken to be a fraction of the residual
sample variance S2 D .n � p/�1

Pn
iD1 r2i , e.g., ı D 0:01 S2 or ı D 0:001 S2;

among other things, this ensures equivariance of Ȯ
ı.

We now define a preliminary estimator Q̌
ı as the solution of

.X 0 Q̇ �1
ı X/ Q̌

ı D X 0 Q̇ �1
ı Y: (26.8)

To investigate the behavior of the preliminary estimator Q̌
ı we need to define the

diagonal matrixWı that has as i th element the quantityEŒ.r2i C ı/�1�. Now let Q̌
W;ı

as the solution of

.X 0WıX/ Q̌
W;ı D X 0WıY: (26.9)

Under conditions similar to the assumptions of Theorem 1 of White [10], we can
now claim the following large-sample approximations:

X 0 Q̇ �1
ı X �c X

0WıX and X 0 Q̇ �1
ı �c X

0Wı (26.10)

where symbol A �c B for matrices A D .aij / and B D .bij / is short-hand
to denote that aij � bij for all i; j , i.e., coordinate-wise approximation. As a
consequence, it follows that Q̌

ı � Q̌
W;ı for large enough samples.

Now if we could claim thatWı �c
Q̇ �1
ı , then we would have that Q̌

W;ı � Ǒ
GLS;ı ,

and thus Q̌
ı would be a consistent approximation to the GLS estimator. However,

the approximationWı �c
Q̇ �1
ı is not a good one. In fact, by Jensen’s inequality we

haveEr�2i � 1=Er2i D 1=�2i ; hence, it follows thatWı will be biased upward as an
estimator of˙�1ı . In this sense, Q̌

ı is an over-correction in trying to take account of

the covariance of the errors. Since the OLS estimator Ǒ
LS is an under-correction, it

is interesting to explore the hybrid estimator Q̌
ı;� whose kth coordinate is given by

Q̌
ı;�Ik D �k Q̌

ıIk C .1 � �k/ Ǒ
LSIk (26.11)

where �k; Q̌
ıIk; Ǒ

LSIk denote the kth coordinates of �; Q̌
ı; Ǒ

LS, respectively, and
� is a mixing weight vector of the practitioner’s choice. By choosing the tuning
parameter � to be multi-dimensional, we allow each coordinate to receive a different
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weight; this might be especially helpful if/when heteroscedasticity is due to only a
subset of the predictors. In this case, Eq. (26.11) becomes

Q̌
ı;� D � ı Q̌

ı C .1 � �/ ı Ǒ
LS (26.12)

where .ı/ denotes the Hadamard (point-wise) vector product.
Even if efficiency is not attained, Q̌

ı;� is still a step in the right direction towards
the GLS estimator. In addition, it satisfies the two robustness criteria of Chatterjee
and Mächler [1] as it gives reduced weight to .Yi ; xi / points that involve either an
outlier in the error �i , or an outlier in the regressor xi , i.e., a high “leverage” point.

Remark 2.2. To fine-tune the choice of the weight vector �, the wild bootstrap of
Wu [11] is found useful. See Mammen [6] for a detailed study. Here we will use
the simplest version proposed by Liu [5] and further discussed by Davidson and
Flachaire [3], namely bootstrapping the signs of the residuals. Specifically, define
the bootstrap residuals

r�i D si ri=.1 � hi /�=2 for i D 1; : : : ; n

where s1; : : : ; sn are i.i.d. sign changes with Probfsi D 1g D Probfsi D �1g D
1=2, and � D 1 or 2, i.e., studentized or jackknife residuals, respectively, as in
Eq. (26.4). The use of jackknife residuals—also known as predictive residuals—in
bootstrapping has also been recommended by Politis [8, 9].

The wild bootstrap datasets are generated via Eq. (26.1) using the sameX matrix,
and ˇ replaced by Ǒ

LS. Letting r� D .r�1 ; : : : ; r�n /0, the bootstrap data vector Y �
satisfies the equation:

Y � D X Ǒ
LS C r�: (26.13)

Then the pseudo-data Y � can be treated as (approximate) replicates of the original
data. Of course, this is justified under the additional assumption that the errors �i are
(approximately) symmetrically distributed around zero; if this is not true, then the
error skewness can be incorporated in the wild bootstrap by using a non-symmetric
auxiliary distribution for the si random variables used above.

The bootstrap procedure for choosing the weight vector � is summarized in
Algorithm 1 below that works as follows. Firstly, d denotes the number of candidate
� vectors that the bootstrap procedure should choose from. Typically, a grid will
be formed spanning the allowed [0,1] interval for each coordinate of �; a large
d corresponds to a fine grid. Then, B bootstrap datasets are generated based on
Eq. (26.13). For a particular choice of the vector�, Q̌

ı;� is computed as in Eq. (26.12)
on every bootstrap dataset. The algorithm finds �opt that minimizes the empirical

MSE with respect to the Ǒ
LS, as estimated in the original dataset. In the algorithm,

k denotes the kth parameter vector, and j denotes the j th bootstrap dataset.
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Algorithm 1 Find optimal tuning parameter vector � for Q̌
ı;� via Wild Bootstrap

1: Choose d candidate tuning parameter vectors �.1/; : : : ; �.d/, where �.k/ 2 .0; 1/p
2: Create B wild bootstrap datasets by Eq. (26.13)
3: for k in 1 to d do
4: for j in 1 to B do
5: Q̌.j /

ı D .X 0 Q̇�1.j /

ı X/�1X 0 Q̇�1.j /

ı Y .j /

6: Ǒ.j /
LS D .X 0X/�1X 0Y .j/

7: Q̌.kj /
ı;� D �.k/ ı Q̌.j /ı C .1� �.k// ı Ǒ.j /LS

8: end for
9: end for

10: �opt D argmin
1�k�d

1
B

PB
jD1.
Q̌.kj /
ı;� � ǑLS/2

11: output Q̌ı;� D �opt ı Ǒı C .1� �opt / ı ǑLS

26.3 Adaptive Estimation: A Second Attempt

One may consider linearization as an alternative approximation to adaptive GLS. To
do this, consider linearizing the 1=x function around a point x0, i.e.,

1=x � 1=x0 � .1=x20/ � .x � x0/ D 2=x0 � .1=x20/ � x: (26.14)

Using the above approximation on each of the elements of the diagonal matrix
˙ , it follows that we may be able to approximate the X 0˙�1X needed for GLS
by: 2x�10 X 0X � x�20 X 0˙X . But the last expression is estimable by a usual HCE
procedure, i.e., by:

2x�10 X 0X � x�20 X 0 ȮX (26.15)

where Ȯ is defined as in Eq. (26.4). Similarly,X 0˙�1 � 2x�10 X 0�x�20 X 0˙ which
is estimable by:

2x�10 X 0 � x�20 X 0 Ȯ : (26.16)

Because of the convexity of the 1=x function the linear approximation (Eq. 26.14)
becomes a supporting line, i.e.,

1=x > 2=x0 � .1=x20/ � x

for all positive x ¤ x0 (and becomes an approximation for x close to x0). Hence,
the quantity in Eq. (26.15) under-estimatesX 0˙�1X in some sense.

Note, however, that the RHS of Eq. (26.14) goes negative when x > 2x0 in
which case it is not only useless, but may also cause positive definiteness problems
if the approximation is applied to 1=�2i or 1=r2i type quantities. To address this, we
propose a two-step solution:
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(a) Truncate (rather Winsorize) the r2i by letting Qri D ri when jri j < &, and Qri D
& � sign.ri / when jri j � & for some & > 0. This implies that the influence of too
large residuals will be bounded. The number & can be picked in a data-based
manner, e.g. we can take &2 as the � quantile of the empirical distribution of the
r2i for some � 2 .0; 1/ but close to 1; for example, � D 0:9 may be reasonable
in which case &2 is the upper decile.

(b) Choose a big enough linearization point x0 to ensure positive definiteness of
the quantity in Eq. (26.15). To do this, let x0 D .&2 � ı/=2 where ı is a small,
positive number; as in Remark 2.1, ı can be chosen to be a fraction of S2 or—in
this case—a fraction of &2, e.g. ı D 0:001&2.

With choices of x0 and � as in parts (a) and (b) above, we now define Ľ
ı;� as the

solution of

.2x�10 X 0X � x�20 X 0 ȮX/ Ľ
ı;� D 2x�10 X 0Y � x�20 X 0 Ȯ Y

which is equivalent to

.2X 0X � x�10 X 0 ȮX/ Ľ
ı;� D 2X 0Y � x�10 X 0 Ȯ Y: (26.17)

The construction of estimator Ľ
ı;� is described in full detail in Algorithm 2. The

procedure for the choice of the optimal linearization point (or truncation point)
is similar to that of Algorithm 1. B bootstrap datasets are generated based on
Eq. (26.13). For a particular choice of truncation point, Ľ

ı;� is computed as in
Eq. (26.17) on every bootstrap dataset. The algorithm finds &opt that minimizes the

empirical MSE with respect to the Ǒ
LS, as estimated in the original dataset.

In Algorithm 2, d denotes the total number of possible truncation points to
be examined and denotes how many quantiles of the OLS squared residuals are
considered as candidates; for example, one may consider the 70 %, 80 %, and 90 %
quantiles, i.e., d D 3. In the Algorithm, k denotes the kth candidate truncation point
and j denotes the j th bootstrap dataset.

Remark 3.1. Computing the distribution of Q̌
ı , Q̌

ı;�, and Ľ
ı;� analytically seems a

daunting task even under simplifying assumptions such as normality; the same is
true regarding their asymptotic distribution. In order to estimate/approximate the
intractable distribution of our estimators, we propose the simple wild bootstrap
procedure mentioned in Sect. 26.2, i.e., changing the signs of the i th residual with
probability 1=2.

Luckily, it seems that the bias of the above estimators—although not identically
zero—is negligible; see the empirical results of Sect. 26.4.4. Hence, the main
concern is estimating the variance of our estimators. Section 26.4.3 provides a
simulation experiment showing that estimation of variance can be successfully
performed via the wild bootstrap.
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Algorithm 2 Find optimal linearization point x0 for Ľ
ı;� via Wild Bootstrap

1: Choose d candidate truncation parameters &.1/; : : : ; &.d/.
2: Create B wild bootstrap datasets by Eq. (26.13)
3: for k in 1 to d do
4: Set Qri  ri when jri j < &.k/ and Qri  &.k/sign.ri / otherwise

5: x
.k/
0 D .&.k//2�ı

2
, for some small ı

6: for j in 1 to B do
7: Ľ.kj /

ı;� D .X 0X � 1

x
.k/
0

X 0 Ȯ .j /X/�1.X 0Y .j/ � 1

x
.k/
0

X 0 Ȯ .j /Y .j //
8: end for
9: end for

10: &opt D argmin
1�k�d

1
B

PB
jD1.
Ľ.kj /
ı;� � ǑLS/2

11: x0 &2opt�ı

2

12: Ľı;� D .X 0X � 1
x0
X 0 ȮX/�1.X 0Y � 1

x0
X 0 Ȯ Y /

26.4 Simulation Experiments

To empirically study the performance of the proposed estimators, extensive finite-
sample simulations were carried through. The setup for the simulation experiments
was the same as in MacKinnon [7]. In particular, the model employed was

yi D ˇ1 C
pX

kD2
.ˇkXik/C ui ; (26.18)

where Xk � lognormal(0,1), and ui D �i�i where �i D j1 C ˇkXikj� and �i �
N.0; 1/. Experiments were conducted for p D 2. The heteroscedasticity inducing
factor � 2 Œ0; 2� was chosen in increments of 0.2.

26.4.1 Choosing the Tuning Parameter Vector �

In this experiment, we explore the empirical behavior of the tuning parameter vector
� for the estimator of Sect. 26.2. We first choose � to be simply a binary vector,
that is, its kth coordinate is either 0 or 1. Here, we simply count the number of
correctly captured�’s. Correctly, means closeness to the true parameter as measured
by the squared difference (L2 distance). Specifically, when Ǒ

LSIk is closer to the true
parameter in L2 than what Q̌

ıIk is, �k should be equal to 0. When the opposite is
true, �k should be equal to 1. The above strategy is equivalent to a test procedure,
in the sense that only the optimal parameter stays in the final model. We carry out
the experiment for three cases; Case I, ˇTRUE D .1; 0:5/0; Case II, ˇTRUE D .1; 1/0;
Case III, ˇTRUE D .1; 1:5/0.
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Fig. 26.1 Ratio of counts when � D 1 and when � D 0 to the counts of times when the
corresponding coefficient was closer to the true parameter in L2. Plots on the left show the ratio
when Q̌ı was optimal, while plots on the right show the ratio when ǑLS was optimal. Each row in
the figure corresponds to an experiment

Equation (26.18) was used for the generation of the response variable Y . The
experiment was carried out with n D 200 and it was repeated 199 times while
the number of bootstrap samples was 201. For all the experiments, we choose the
perturbation on the diagonal of Ȯ to be ı D 0:001 S2. Results for the first part of
the experiment are shown in Fig. 26.1. We report the ratio of counts of times when
� D 1 and when � D 0 to the counts of times when the corresponding estimate was
closer to the true parameter in L2. As expected, as heteroscedasticity increases, Q̌

ıIk
is closer to the kth coordinate of the true parameter than what Ǒ

LSIk is. As it can be
seen, the ratio of counts of times when �k D 1 to the counts of times when Q̌

ıIk is
optimal increases as a function of heteroscedasticity. On the other hand, the ratio of
counts of times when �k D 0 to the counts of times when Ǒ

LSIk is optimal decreases
as a function of heteroscedasticity. This suggested that our procedure for estimating
Q̌
ı;� is functioning properly.

26.4.2 Comparing the Performance of the New Estimators

We now compare the performance of our estimators in terms of their average square
difference to the true parameter, i.e., their Mean Squared Error (MSE); our empirical
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results are summarized in Table 26.1. For Q̌
ı;�, the mixing parameter vector was

the same as above. For Ľ
ı;� , the search for the optimal truncation point begun at

the 70% quantile of the EDF of the squared OLS residuals. In several cases where
heteroscedasticity is mild, Q̌

ı;� and Ľ
ı;� outperform Ǒ

LS and they are closer to the
optimal Ǒ

GLS. In cases of heavy heteroscedasticity, Q̌
ı is always closer to the true

parameter.

26.4.3 Variance Estimation via Wild Bootstrap

As suggested in Remark 3.1, it may be possible to estimate the variance of
our estimators via the wild bootstrap. In this simulation, data were generated as
before using Case II. The sample sizes were n D 50; 100, and 200, while the
heteroscedasticity inducing factor was � D 0; 1; and 2. It is important to note that
we modified our data generating model in Eq. (26.18) by changing the parameters
of the lognormal distribution from .0; 1/ to .0; :25/. In our experiments we found
that the former parameters generate a heavy-tailed distribution, therefore possible
outliers in the predictor variables could show up. This might cause problems in
the variance estimation procedure via the wild bootstrap that are magnified in
the presence of heteroscedasticity. By modifying the parameters and controlling
for heavy tails, we alleviate this problem. We compare the true variances of our
estimators to their bootstrap counterparts. Specifically, we evaluate the true variance
of our estimators, denoted by varˇ by a Monte Carlo simulation based on 100
datasets. Secondly, to obtain estimates of varˇ we use the wild bootstrap. Our
bootstrapped estimates are denoted by varˇ� and were averaged over 100 bootstrap
samples. Our results are shown in Table 26.2. As it can be seen, the ratio varˇ�

varˇ is
nearly always, very close to 1. This suggests that the wild bootstrap can be safely
used to estimate standard errors. For this experiment, given that our estimators are
already computationally intensive, we did not do any fine-tuning.

26.4.4 The Bias of the Proposed Estimators

If the bias of the proposed estimators were appreciable, then we would need to also
estimate it via bootstrap, otherwise the standard errors developed in Sect. 26.4.3
would be to no avail. Luckily, as hinted at in Remark 3.1, the bias of the proposed
estimators appears to be negligible; this implies that a practitioner need not worry
about the bias (or estimation thereof) when conducting inference using the new
estimators. To empirically validate this claim, we performed the same simulation
experiment as in Sect. 26.4.3 but with a larger number of Monte Carlo samples
(1,000) in order to accurately gauge the bias. As can be seen in Table 26.3, all
estimators have a bias that may be considered negligible. Also reported are the
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Ǒ LS

Q̌ ı
Q̌ ı;�
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Table 26.2 Comparison of the true variance to the variance estimated by the wild bootstrap for
the various estimators

n D 50 n D 100 n D 200
varˇ�

varˇ � D 0 � D 1 � D 2 � D 0 � D 1 � D 2 � D 0 � D 1 � D 2

ǑLS 0.98452 0.92712 0.90215 0.97599 1.00946 0.98036 1.03372 0.95064 0.97939
0.94926 0.94358 0.90952 1.00786 1.00354 0.97330 1.02632 0.94079 0.97425

Q̌
ı 0.97823 0.93632 0.89858 0.96645 1.00206 0.98862 1.01824 0.93914 0.99269

0.94020 0.94542 0.90791 0.99466 0.99601 0.98258 1.01044 0.92939 0.98661
Q̌
ı;� 0.91100 0.90898 0.88396 0.69562 0.88212 1.15183 1.07295 0.96827 0.94053

0.89474 0.88480 0.87706 0.69291 0.89955 1.06307 1.10091 1.01367 0.92281
Ľ
ı;� 0.88959 0.91235 0.89738 0.70893 0.85388 1.17216 1.02872 0.91514 0.94677

0.87843 0.88626 0.89392 0.70797 0.86385 1.07663 1.02124 0.96083 0.92529

Table 26.3 Bias of the different estimators with inter-quantile ranges
divided by

p
1000 (number of Monte Carlo Samples) in parentheses. As

it can be seen in most cases the bias is negligible.

� D 0 � D 1 � D 2

n D 50

Ǒ
LS 0.028 (0.024) �0.031 (0.047) �0.043 (0.095)

�0.017 (0.023) 0.018 (0.048) 0.018 (0.103)
Q̌
ı 0.029 (0.025) �0.038 (0.046) �0.031 (0.09)

�0.017 (0.024) 0.026 (0.049) 0.002 (0.101)
Q̌
ı;� 0.027 (0.024) �0.036 (0.047) �0.038 (0.093)

�0.017 (0.023) 0.021 (0.047) 0.009 (0.104)
Ľ
ı;� 0.028 (0.024) �0.031 (0.047) �0.043 (0.095)

�0.016 (0.024) 0.017 (0.049) 0.017 (0.103)

n D 100

Ǒ
LS �0.001 (0.018) 0.022 (0.036) 0.016 (0.082)

�0.003 (0.016) �0.031 (0.036) �0.028 (0.087)
Q̌
ı 0.000 (0.018) 0.014 (0.037) 0.014 (0.082)

�0.004 (0.017) �0.025 (0.037) �0.027 (0.086)
Q̌
ı;� 0.000 (0.017) 0.018 (0.037) 0.007 (0.082)

�0.004 (0.017) �0.027 (0.036) �0.021 (0.087)
Ľ
ı;� �0.001 (0.017) 0.021 (0.036) 0.016 (0.082)
�0.002 (0.017) �0.031 (0.036) �0.027 (0.087)

n D 200

Ǒ
LS 0.012 (0.012) 0.003 (0.025) �0.04 (0.055)

�0.013 (0.011) �0.005 (0.024) 0.032 (0.056)
Q̌
ı 0.013 (0.012) 0.000 (0.025) �0.039 (0.054)

�0.014 (0.011) �0.002 (0.024) 0.03 (0.055)
Q̌
ı;� 0.012 (0.012) 0.001 (0.025) �0.038 (0.054)

�0.013 (0.011) �0.003 (0.024) 0.031 (0.055)
Ľ
ı;� 0.012 (0.012) 0.003 (0.025) �0.039 (0.055)

�0.014 (0.011) �0.005 (0.024) 0.032 (0.056)
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inter-quantile range associated with the 1,000 replications; they are small enough
to ensure that if the true bias is different from zero, it cannot be too far away.

26.5 Concluding Remarks

In our attempt to approximate the intractable GLS estimator, we presented
several different estimators. The advantage of our estimators lies on the fact
that they do not rely on smoothness assumptions regarding the error variance.
Our simulation results show that our estimators largely outperform the traditional
OLS in the presence of heteroscedasticity of unknown structure. In particular,
our preliminary analysis shows that mixing different estimators can yield good
results. However, a limitation of this approach is computational time, since the
optimal grid of the mixing parameter is unknown and an extensive search is needed.
Nevertheless, the direct estimator Q̌

ı is not computer-intensive, and can always be
used since it has been empirically shown to be quite efficient in our simulation.
Also, improved optimization techniques can be used for estimating the tuning
parameters of both our estimators, i.e. an adaptive grid, as well as parallelization for
speed-up.

Further work may include comparisons to techniques that rely on smoothness
assumptions, as well as extending these ideas to the time series case where the
underlying covariance structure is unknown. Finally, in addition to adapting to
heteroscedasticity, any of our procedures can be easily modified to perform model
selection by introducing L2 or L1 regularizers on our objective function. The latter
could be particularly interesting in high-dimensional scenarios, where the rank of
the design matrix is less than p and the data are contaminated with outliers. All the
above are open directions for future research.
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Chapter 27
Level Set Estimation

P. Saavedra-Nieves, W. González-Manteiga, and A. Rodríguez-Casal

Abstract A density level set can be estimated using three different methodologies:
Plug-in methods, excess mass methods, and hybrid methods. The three groups of
algorithms to estimate level sets are reviewed in this work. In addition, two new
hybrid methods are proposed. Finally, all of them are compared through an extensive
simulation study and the results obtained are shown.

Keywords Level set estimation • Excess mass • Plug-in • Hybrid • Shape
restrictions

27.1 Introduction

Level set estimation theory deals with the problem of reconstructing an unknown
set of type L.�/ D ff � f�g from a random sample of points Xn D fX1; : : : ; Xng,
where f stands for the density which generates the sample Xn, � 2 .0; 1/ is a
probability, fixed by the practitioner, and f� > 0 denotes the biggest threshold
such that the level set L.�/ has a probability at least 1 � � with respect to the
distribution induced by f . Figure 27.1 shows the level sets for three different values
of the parameter � . The problem of estimating L.�/ has been analyzed using three
different methodologies in the literature: Plug-in methods, excess mass methods,
and hybrid methods. We will present these three groups of automatic methods to
reconstruct level sets and we will compare them through a detailed simulation
study for dimension 1. We have restricted ourselves to the one-dimensional case
because some of these methods have not yet been extended for higher dimension
(see [8] or [6] for example). In Sect. 27.2, we will present and compare the plug-in
methods. In Sects. 27.3 and 27.4, we will study the behavior of excess mass methods
and hybrids methods, respectively. Finally, we will compare the most competitive
methods in each group in Sect. 27.5.
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Fig. 27.1 Level sets for a one-dimensional density with � D 0:1 (first column), � D 0:5 (second
column) y � D 0:9 (third column)

27.2 Plug-in Methods and Simulations Results

The simplest option to estimate level sets is the so-called plug-in methodology. It
is based on replacing the unknown density f by a suitable nonparametric estimator
fn, usually the kernel density estimator. So, this group of methods proposes OL.�/ D
ffn � Of� g as an estimator, where Of� denotes an estimator of the threshold. This is
the most common approach but its performance is heavily dependent on the choice
of the bandwidth parameter for estimating f . Baíllo and Cuevas were interested
in choosing the best smoothing parameter to reconstruct a level set in the context
of quality control. It was obtained by minimizing a cross-validation estimate of the
probability of a false alarm, see [1]. Samworth and Wand proposed an automatic rule
to select the smoothing parameter for dimension 1, see [8]. They derived a uniform-
in-bandwidth asymptotic approximation of a specific set estimation risk function,
Efd�f .L.�/; OL.�//g, where d�f .L.�/; OL.�// D R

L.�/4 OL.�/ f .t/dt and 4 denotes

the usual difference given by L.�/4 OL.�/ D .L.�/ n OL.�// [ . OL.�/ n L.�//. Of
course, it is also possible to consider classical methods such as Seather and Jones or
cross validation to select the bandwidth parameter although they are not specific to
estimate level sets.

27.2.1 Simulations Results for Plug-in Methods

In this section, we will compare Baíllo and Cuevas’ (BC), Samworth and Wand’s
(SW), Sheather and Jones’ (SJ), and cross validation (CV) methods. The first two
one are specific bandwidth selectors to estimate level sets. The last two algorithms
are general selectors to estimate density functions.

We have generated 1; 000 samples of size n D 1; 600 for the 15 Marron and
Wand’s density functions (see [5]) and we have considered three values for the
parameter � : � D 0:2, � D 0:5, and � D 0:8. Although there are several
ways to estimate the threshold, we have estimated it by using Hyndman’s method,
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see [3]. This algorithm estimates the threshold by calculating the �-quantile of the
empirical distribution of fn.X1/; : : : ; fn.Xn/. We have considered the Sheather and
Jones selector to calculate fn. For each fixed random sample and each method,
we have estimated the level set L.�/ and we computed the error of the estimation
by calculating d�f .L.�/; OL.�//. So, for a given model and a value of � we have
calculated 1; 000 errors for each method.

To facilitate the presentation of the results, we use some figures described below.
Each figure is divided into rectangles that are painted with different colors according
to the method (vertical axis) and the density model (horizontal axis). Colors are
assigned as follows: light colors correspond to low errors and vice versa. So, this
representation allows to detect the most or less competitive algorithm fixed the value
of � . Given a density, we have ordered the means of the 1; 000 errors calculated
by testing if they are equal previously. If we reject the null hypothesis of equality
between two means for the same model, then each method will be painted using
a different color (darker or lighter according to the mean of the errors is higher or
lower). In another case, both algorithms are represented using the same color. We
will use this approach in the following sections to compare the methods of the two
remaining groups of algorithms.

Figures 27.2 and 27.3 show the plug-in methods comparison for � D 0:5 and
� D 0:8, respectively. For � D 0:5, the best results are provided by Sheather and
Jones and cross validation selectors. If � D 0:8, then specific selectors for level sets
have better results for the models 1, 2, 3, and 5. All of these densities have an only
mode. They are very simple level sets. However, classical selectors are the most
competitive for more sophisticated models such as 6, 8, 9, 10, 11, 12, 13, 14, or 15.

Less competitive More competitive
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J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 27.2 Comparison of plug-in methods (vertical axis) with the 15 Marron and Wand’s density
models (horizontal axis), � D 0:5 and n D 1; 600. The error criteria is d�f
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Fig. 27.3 Comparison of plug-in methods (vertical axis) with the 15 Marron and Wand’s density
models (horizontal axis), � D 0:8 and n D 1; 600. The error criteria is d�f .

As a conclusion, specific methods to estimate level sets do not improve the results
of the classic bandwidth selection rules. In addition, cross validation and Sheather
and Jones methods often provide similar results and they present the best global
behavior.

27.3 Excess Mass Methods and Simulations Results

Another possibility consists of assuming that the set of interest satisfies some
geometric condition such as convexity. Excess mass approach estimates the level
set as the set of greatest mass and minimum volume under the shape restriction
considered. For example, Müller and Sawitzki’s method for one dimensional level
sets assumes that the number of connected components,M , is known, see [6].

27.3.1 Simulations Results for Excess Mass Methods

Müller and Sawitzki’s method depends on an unknown parameter M . This is the
main disadvantage of this algorithm. We have considered five values for the number
of clusters,M D 1; 2; 3; 4, and 5. We will denote the Müller and Sawitzki’s method
with M modes by MSM .



27 Level Set Estimation 303

Less competitive More competitive

M
S

1
M

S
2

M
S

3
M

S
4

M
S

5
M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 2 2 2 2 5 7 4 5 6 6

Fig. 27.4 Comparison of Müller and Sawitzki’s method for different values of M (vertical axis)
with the 15 Marron and Wand’s density models (horizontal axis), � D 0:5 and n D 1; 600. The
error criteria is d�f

To analyze the influence of the parameter M for Müller and Sawitzki’s method,
we will use Fig. 27.4. In this case, we have written the real number of modes for
each density and � D 0:5 on the vertical axis too.

From Fig. 27.4, it is clear that Müller and Sawitzki’s method is very sensitive to
the parameter M . For � D 0:5, densities 1, 2, 3, 4, and 5 are unimodal and M D 1

provides the best results. Densities 6, 7, 8, or 9 have two modes and, in this case,
the best value of M is M D 2. Model 10 has five modes for � D 0:5 and again
M D 5 provides the best estimations. However, the best value of M for the Müller
and Sawitzki’s method is not equal to the real value ofM for the models 11, 12, and
13 because some of their modes are not significant. In addition, if misspecification
of M occurs, it can be seen that big values of M are better than a small values
because the means of errors are lower.

27.4 Hybrid Methods and Simulations Results

As the name suggests, hybrid methods assume geometric restrictions and they use
a pilot nonparametric density estimator to decide which sample points can be in
the level set, X C

n D ffn � Of�g. In this work we proposed two new hybrid
methods to estimate convex and r-convex sets with r > 0. The last one is a shape
condition more general than convexity. In fact, a closed set A is said r-convex with
r > 0 if A D Cr.A/ where Cr.A/ D T

fBr .x/WBr.x/\AD;g .Br.x//
c denotes the r-

convex hull of A, Br.x/ denotes the open ball with center in x and radius r and
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.Br.x//
c , its complementary. Our two new proposals are based on the convex hull

and r-convex hull methods for estimating the support, see [4] and [7], respectively.
Under convexity restriction, we suggest estimating the level set as the convex hull
of X C

n and, under r-convexity, as the r-convex hull of X C
n . Another classic hybrid

method is the so-called the granulometric smoothing method, see [9]. It assumes
that the level set L.�/ and its complementary are r-convex. This method adapts the
Devroye–Wise’s estimator for the support to the context of level set estimation, see
[2]. In this case, the estimator consists of the union of balls around those points in
X C
n that have a distance of at least r from each point in Xn n X C

n .

27.4.1 Simulation Results for Hybrids Methods

Granulometric smoothing method and r-convex hull method depend on an unknown
parameter r . This is the main disadvantage of these algorithms. In this work, we have
considered five values for the radius of balls, r : r1 D 0:01, r2 D 0:05, r3 D 0:1;

r4 D 0:2, and r5 D 0:3. We will denote the methods as follows: Convex hull method
by CH, r-convex hull method by CHr , and granulometric smoothing method with
radius r by Wr .

Although these results are not shown here, we have studied the influence of
the parameter r for r-convex hull method and granulometric smoothing method.
In general, r-convex hull method is less sensitive to the selection to the parameter r .
We have compared the three hybrids methods by fixing an intermediate value for r
because it is unknown. We have considered r D r3 and use Fig. 27.5 to show the

More competitiveLess competitive

C
H

r 3
W

r 3
C

H

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 27.5 Comparison of hybrid methods (vertical axis) with the 15 Marron and Wand’s density
models (horizontal axis), � D 0:2 and n D 1; 600. The error criteria is d�f
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results obtained for � D 0:2. Each method is represented on the vertical axis and
each density model on the horizontal axis.

Some of the density models present convex level sets for � D 0:2 or � D 0:8

although they are not unimodal (see, for example, densities 6, 8, or 11 in Fig. 27.5).
In this case, when the convexity assumption is true, convex hull method can be
very competitive. However, models 1, 2, 3, and 4 have convex level sets for
some value of � and r3-convex hull method is the most competitive for them. In
addition, sometimes convexity hypothesis can be very restrictive (see models 7
or 10, for example) and then, r3-convex hull or granulometric smoothing methods
provide better and similar results although the first one is most competitive for high
values of � .

27.5 Final Conclusions

Finally, we will compare the most competitive methods in each group. So, we will
consider cross validation method, Müller and Sawitzki’s method, granulometric
smoothing method, r-convex hull method, and convex hull method. It is necessary
to specify a value for the parametersM and r for Müller and Sawitzki’s method and
granulometric smoothing method or r-convex hull method. We have fixed M D 3

and r D r3 again.
Figures 27.6 and 27.7 show the results for � D 0:2 and � D 0:5. Müller and

Sawitzki’s method with M D 3 is not very competitive because most of the models
are not trimodal. For low values of � , cross validation does not present bad results
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Fig. 27.6 Final comparison of the most competitive methods in each group (vertical axis) with
the 15 Marron and Wand’s density models (horizontal axis), � D 0:2 and n D 1; 600. The error
criteria is d�f
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Fig. 27.7 Final comparison of the most competitive methods in each group (vertical axis) with
the 15 Marron and Wand’s density models (horizontal axis), � D 0:5 and n D 1; 600. The error
criteria is d�f

but granulometric smoothing or r3-convex hull methods have a better behavior (see
models 3, 4, 6, or 11). But these two methods present a big disadvantage because
both depend on an unknown parameter. Convex hull gets worse its results for � D
0:5 (see models 6, 8, or 11). The rest of the hybrid methods have good results for
this value of � .

In general, if no assumption is made on the shape of the level set, cross validation
is a good option. But, if we have some information about the shape of the level
set, then hybrid methods can be an alternative. For instance, if � is small, then
convex hull method could be very competitive. Most of these densities have convex
level sets for this level. Under more flexible shape restrictions, r-convex hull or
granulometric smoothing methods could be used but they depend on an unknown
parameter. It would be useful to have a method for selecting it from the sample.
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Chapter 28
Nonparametric Permutation-Based Control
Charts for Ordinal Data

Livio Corain and Luigi Salmaso

Abstract In the literature of statistical process control (SPC), design and
implementation of traditional Shewart-based control charts requires the assumption
that the process response distribution follows a parametric form (e.g., normal).
However, since in practice, ordinal observations may not follow the pre-specified
parametric distribution these charts may not be reliable. In this connection, this work
aims at providing a contribution to the nonparametric SPC literature, proposing
univariate and multivariate nonparametric permutation-based control charts for
ordinal response variables which are not only interesting as methodological solution
but they have a very practical value particularly within the context of monitoring
some measure of user’s satisfaction, loyalty, etc. related to use of a given service.
As confirmed by the simulation study and by the application to a real case study
in the field of monitoring of customer satisfaction in services, we can state that the
proposed NPC chart for ordered categorical response variables is certainly a good
alternative with respect to the literature counterparts.

Keywords Nonparametric combination • NPC chart • Permutation tests

28.1 Introduction and Motivation

Recently Corain and Salmaso [5] proposed the application of the Non Parametric
Combination (NPC) methodology [13] to develop a novel type of multivariate
nonparametric control chart called NPC chart which has proved to be particularly
effective as statistical process control (SPC) tool when the underlying data gener-
ation mechanism is non-normal in nature. In this paper we extend the proposal of
Corain and Salmaso [5] to the case of ordered categorical response variables which
is a situation difficult to treat by traditional SPC methods such as the Shewart-type
charts. The NPC chart provides a flexible and effective analysis in terms both of the
specification of the inferential hypotheses and of the nature of the variables involved
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without the need of modelling, in case of multivariate response, the dependence
among variables.

Design and implementation of traditional Shewart-based control charts requires
the assumption that the process response distribution follows a parametric form
(e.g., normal). The statistical properties of commonly employed control charts are
exact only if this assumption is satisfied; however, the underlying process is not
normal in many applications, and as a result the statistical properties of the standard
charts can be highly affected in such situations. To develop appropriate control
charts that do not require specifying the parametric form of the response distribution
beforehand, a number of distribution-free or nonparametric control charts have been
proposed in literature (Chakraborti et al. [3]). Despite immense use and acceptability
of parametric control charts, non-parametric control charts are an emerging area of
recent development in the theory of SPC. The main advantage of non-parametric
control charts is that they do not require any knowledge about the underlying
distribution of the variable.

Das [6] summarized several non-parametric control charts for controlling loca-
tion from a literature survey (the sign test, Hodges-Lehmann estimator and Mann-
Whitney statistic) and compared their efficiency to detect the shift in location while
in out of the control state under different situations and identified the best method
under the prevailing situation. Chakraborti and van de Wiel [4] outlined that non-
parametric or distribution-free charts can be useful in statistical process control
problems when there is limited or lack of knowledge about the underlying process
distribution. In their paper, a phase II Shewhart-type chart is considered for location,
based on reference data from phase I analysis and the well-known Mann-Whitney
statistic.

The implementation of most control charts requires that the performance ratings
be quantitative on the interval scale of measurement, which may not be the case
in many applications (Bakir [1]). Bakir proposes a quality control chart that is
particularly useful in the area of performance appraisal when the workers’ ratings
are categorical on the ordinal scale of measurement. Moreover in a comparison
of three control charts for monitoring data from student evaluations of teaching
(SET) with the goal of improving student satisfaction with teaching performance,
Ding et al. [7] show that a comparison of three charts (an individuals chart, the
modified p chart, and the z-score chart) reveals that the modified p chart is the
best approach for analyzing SET data because it utilizes distributions that are
appropriate for categorical data, and its interpretation is more straightforward.
Samimi et al. [16] give an ordinal scale contribution to control charts; their paper
presents several control charts classified in two groups based on the scale used to
assess customer loyalty. In the first group of control charts, customer loyalty is
considered as a binary random variable modeled by Bernoulli distribution whilst in
the second group, an ordinal scale is considered to report loyalty level. Performance
comparison of the proposed techniques using ARL criterion indicates that chi-
square and likelihood-ratio control charts developed based on Pearson chi-square
statistic and ordinal logistic regression model respectively are able to rapidly detect
the significant changes in loyalty behavior. When the process measurement is
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multivariate most existing multivariate SPC procedures assume that the in-control
distribution of the multivariate process measurement is known and it is a Gaussian
distribution (Qiu [14]); Qiu [14] demonstrates that results from conventional
multivariate SPC procedures are usually unreliable when the data are non-Gaussian.
He suggests a methodology for estimating the in-control multivariate measurement
distribution based on log-linear modeling and a multivariate CUSUM procedure
(a nonparametric multivariate Cumulative SUM procedure, based on the antiranks of
the measurement components) for detecting shifts in the location parameter vector
of the measurement distribution is also suggested for Phase II SPC. Qiu and Li [15],
have considered the case of non parametric form of the process distribution and
categorical data. The authors try to make two contributions to the non-parametric
SPC literature. First, they propose an alternative framework for constructing non-
parametric control charts, by first categorizing observed data and then applying
categorical data analysis methods to SPC. Under this framework, some new non-
parametric control charts are proposed. Second, they compare our proposed control
charts with several representative existing control charts in various cases.

28.2 Univariate and Multivariate Permutation Tests
and Nonparametric Combination Methodology

The importance of the permutation approach in resolving a large number of infer-
ential problems is well documented in the literature, where the relevant theoretical
aspects emerge, as well as the effectiveness and flexibility from an applicatory point
of view ([2, 8, 9, 13]).

For any general testing problem, in the null hypothesis .H0/, which usually
assumes that data come from only one (with respect to groups) unknown population
distribution P , the whole set of observed data x is considered to be a random
sample, taking values on sample space ˝n, where x is one observation of the
n-dimensional sampling variable X.n/ and where this random sample has no
necessarily independent and identically distributed (i.i.d.) components. We note that
the observed data set x is always a set of sufficient statistics inH0 for any underlying
distribution [12]. Since, in the null hypothesis and assuming exchangeability, the
conditional probability distribution of a generic point x0 2 ˝n, for any underlying
population distribution P 2 P , is distribution-independent, permutation inferences
are invariant with respect to the underlying distribution in H0. Some authors,
emphasizing this invariance property, prefer to give them the name of invariant tests.
However, due to this invariance property, permutation tests are distribution-free and
nonparametric. Permutation tests have general good properties such as exactness,
unbiasedness and consistency (see [10, 13]).

In order to provide details on the construction of multivariate permutation
tests via nonparametric combination approach, let us consider, for instance, two
multivariate populations and the related two-sample multivariate hypothesis testing
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problem where p (possibly dependent) variables are considered. The most simple
additive statistical model (with fixed effects) can be represented as follows:

Yij D �j C �ij ; i D 1; : : : ; nj ; j D 0; 1;

where �j is the p-dimensional mean effect, �ij � IID.0;˙/ is a p-variate random
term of experimental errors with zero mean and variance/covariance matrix ˙ . The
univariate response Y can be either continuous, binary, ordered categorical or mixed
variables (some binary/continuous and some other ordered categorical).

The main difficulties when developing a multivariate hypothesis testing proce-
dure arise because of the underlying dependence structure among variables, which
is generally unknown. Moreover, a global answer involving several dependent
variables is often required, hence the main question is how to combine the
information related to the p variables into one global test. In order to better explain
the proposed approach let us denote an n � p, n D n0 C n1, data set with Y:

Y D ŒY0;Y1� D �
Y1; Y2; : : : ; Yp


 D
y11 y12 : : : y1p
y21 y22 : : : y2p
: : : : : : : : : : : :

yn1 yn2 : : : ynp

;

where Y0 and Y1 are the n0 � p and the n1 � p samples drawn from the first and
second populations, respectively. In the framework of Nonparametric Combination
(NPC) of Dependent Permutation Tests we suppose that, if the global null hypothesis
H0 W �0 D �1 of equality of the two populations is true, the hypothesis of
exchangeability of random errors holds. Hence, the following set of mild conditions
should be jointly satisfied:

a) we suppose that for Y D ŒY0; Y1� an appropriate p-dimensional distribution
exists, Pj 2 P; j D 0; 1, belonging to a (possibly non-specified) family P
of non-degenerate probability distributions;

b) the null hypothesis H0 states the equality in distribution of the multivariate

distribution of the p variables in the two groups:H0 W ŒP0 D P1� D
h
Y0

dD Y1

i
.

Null hypothesis H0 implies the exchangeability of the individual data vector
with respect to the two groups. Moreover H0 is supposed to be properly
decomposed into p sub-hypotheses H0k , k D 1; : : : ; p, each appropriate for
partial (univariate) tests, thus H0 (multivariate) is true if all the H0k (univariate)

are jointly true: H0 W
"

p\

kD1
Y1k

dD Y2k

#
D
"

p\

kD1
H0k

#
. H0 is called the global

or overall null hypothesis, and H0k; k D 1; : : : ; p, are called the partial null
hypotheses.

c) The alternative hypothesis H1 can be represented by the union of partial H1k

sub-alternatives: H1 W
"

p[

kD1
H1k

#
, hence, H1 is true if at least one of the sub-

alternatives is true.
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In this context, H1 is called the global or overall alternative, and H1k; k D
1; : : : ; p, are called the partial alternatives.

d) Let T D T .Y/ represent a p-dimensional vector of test statistics, p > 1,
whose components T k; k D 1; : : : ; p, represent the partial univariate and non-
degenerate partial tests appropriate for testing the sub-hypothesis H0k against
H1k . Without loss of generality, all partial tests are assumed to be marginally
unbiased, consistent and significant for large values (for more details we refer to
Pesarin and Salmaso [13]).

At this stage, in order to test the global null hypothesis H0 and the p univariate
hypotheses H0k , the key idea comes from the partial (univariate) tests which
are focused on the k-th component variable, and then combining them through
an appropriate combining function, to test the global (multivariate) test which is
referred to as the global null hypothesisH0.

However, we should observe that in most real problems when the sample sizes
are large enough, there is a clash over the problem of computational difficulties in
calculating the conditional permutation space. Hence, it is not possible to calculate
the exact p-value of observed statistic Tk0. This is usually overcome by using
the CMCP (Conditional Monte Carlo Procedure). The CMCP on the pooled data
set Y is a random sampling from the set of all possible permutations of the
same data under H0. Hence, in order to obtain an estimate of the permutation
distribution under H0 of all test statistics, a CMCP can be used. Every resampling
without replacement Y� from the data set Y actually consists of a random
attribution of the individual block data vectors to the two treatments. In every Y�b
resampling, b D 1; : : : ; B , the k partial tests are calculated to obtain the set of
values

�
T�b D T.Y�bk/; k D 1; ::; pI b D 1; : : : ; B



, from the B independent random

resamplings. It should be emphasized that CMCP only considers permutations
of individual data vectors, so that all underlying dependence relations which are
present in the component variables are preserved.

Without loss of generality, let us suppose that partial tests are significant for large
values. More formally, the steps of the CMC procedure are described as follows:

1. calculate the p-dimensional vectors of statistics, each one related to the corre-
sponding partial tests from the observed data:

Tobs
p�1 D T.Y/ D �

T obs
k D Tk.Y/; k D 1; ::; p



;

2. calculate the same vectors of statistics for the permuted data:

T�b D T.Y�b / D �
T �bk D Tk.Y�b /; k D 1; ::; p



;

3. repeat the previous step B times independently. We denote with fT�b ; b D
1; : : : ; Bg the resulting sets from the B conditional resamplings. Each element
represents a random sample from the p-variate permutation c.d.f. FT .zjY/ of the
test vector T.Y/.
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The resulting estimates are:

OFT .zjY/ D
"
1

2
C

BX

bD1
I
�
T�b 6 z

�
#
= .B C 1/ ;8z 2 Rp;

OLTk .zjY/ D
"
1

2
C

BX

bD1
I
�
T�bk > z

�
#
= .B C 1/ ;8z 2 R1;

O�k D OLTk
�
T obs
k jY� D

"
1

2
C

BX

bD1
I
�
T�bk > T obs

k

�
#
= .B C 1/ ; k D 1; : : : ; p

where I.:/ is the indicating function and where with respect to the traditional
EDF estimators, 1/2 and 1 have been added, respectively, to the numerators and
denominators in order to obtain estimated values in the open interval (0,1), so that
transformations by inverse CDF of continuous distributions are continuous and so
are always well defined.

Hence, if O�k < ˛, the null hypothesis corresponding to the k-th variable (H0k) is
rejected at significance level equal to ˛.

Let us now consider a suitable continuous non-decreasing real function, � W
.0; 1/p ! P1, that applied to the p-values of partial tests Tk defines the second
order global (multivariate) test T 00 (for details see [13]).

28.3 NPC Charts for Ordered Categorical
Response Variables

The theory of permutation tests and of nonparametric combination represent the
methodological background from which a nonparametric multivariate control chart
for ordered categorical response variables can be developed. Let be the two
p-variate samples Y0 and Y1 related to the so-called control chart phase I and II,
more specifically, denoting with n (n >1) the sample size of the rational subgroup,
Y0 has to be considered as the n0 � p pooled sample, n0 D n � m, of the m
in-control samples, used to retrospectively testing whether the process was under
control and where the first m subgroups have been drawn. Note that without loss
of generality we are assuming that all m initial subgroups are actually in-control
samples. The sample Y1 has to be considered as one of the actual subgroups of
size n1 � p, possibly out-of-control samples (n D n0), used for testing whether
the process remains under control when further subgroups will be drawn. Since our
reference response is a multivariate ordered categorical variables, for each univariate
component we consider suitable permutation test statistics:

• Multi-focus statistic [13]: this approach suggests to decompose the categorical
response variable of interest into s binary variables each one related to one
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category of the response; in this way, it is possible to refer to a further
decomposition of the null univariate sub-hypothesis H0ks into s additional sub-
hypothesis each one suitable for testing the equality in distribution of each one
of the s category of the ordered categorical response variable; this is done by
taking into account a set of s Chi-squared based tests calculated from s 2 � 2

contingency sub-tables to be then combined into a final statistic;
• Anderson–Darling statistic [13]:

T �AD D
s�1X

rD1

�
N �0r �N �1r

� �
2
N	r
n

�
2n �N	r
2n

�
n2

2n � 1
�� 12

;

• where N	r D N0r C N1r D N �0r C N �1r are the observed and the permutation
cumulative frequencies in which N �sr D P

q�r f �sq , r D 1; : : : ; s � 1, j D 0; 1,
and fsq is the frequencies of the j -th treatment for the q-th category of the
response.

Within our approach we do not need to estimate any parameters of the in-control
process. This is consistent with the usual rationale behind the nonparametric
permutation approach, i.e. the in-control pooled sample Y0 plays the role of
reference dataset to be kept out and recursively compared with Y1, which is one
of the subgroups to be tested in the future. This conceptual framework leads to a
procedure where we consider a sequence of independent multivariate two-sample
hypotheses testing problems in case of unbalanced designs (n0 > n1). Some
important remarks have to be pointed out: the control limit for the multivariate
control chart at the desired ˛-level has to be simply calculated as the (1�˛) quantile
of the null permutation distribution of the multivariate combined test statistic T 00
(for details on how to perform a multivariate permutation test via nonparametric
combination methodology see [13]); noting that necessarily the limits will differ
for any given subgroup under testing. Finally, we are implicitly assuming that the
process parameters are unknown but the extension to the case of known parameters
is straightforward; in fact, this case may reduce to the so-called multivariate
one-sample problem where a combination-based solution already does exist [13].
In this work we focus on the case of unknown limits, the most interesting for real
applications.

28.4 Simulation Study

In order to validate the proposed NPC Chart and to evaluate its relative performance
when compared with a traditional multivariate and control chart such as Hotelling
T 2 and X-bar (which are not appropriate in case of ordered categorical data),
we carried out a suitable Monte Carlo simulation study. The real context we
are referring to is a typical customer satisfaction study where a group of 20
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people provides their evaluations by a Likert 1–5 rating ordinal scale, where
we suppose that the 0.5 scores are admitted as well. Note that we are actually
considering a nine point ordered categorical response variable. Let us consider the
following simulation setting:

• number of response variables: p D 5; 10; where the number of active variables
(under the alternative hypothesis) was 1, 2, and 4 (three setting), more precisely
while in all cases �0 D Œ3; 3; 3; 3; 3�, under H1 the mean values were set for
the three settings, respectively, as �1 D Œ3; 3; 3; 3; 5�, �1 D Œ3; 3; 3; 4; 5� and
�1 D Œ3; 4; 4; 5; 5�;

• two types of multivariate distributions for random errors: Normal and a moderate
heavy-tailed and skewed distribution (with kurtosis equal to 20 and skewness
equal to 3). In order to guarantee an ordered categorical response variable we
rounded the continuous error to the nearest 0.5 value;

• two types of variance/covariance matrices: i. Ip (identity matrix, i.e. the case
of independence where �jh D 0;8j; h D 1; : : : ; p) and ˙p is such that each
univariate random component has �2j D 1;8j D 1; : : : ; p and �jh D 0:4.

The performance of univariate and multivariate NPC Charts has been evaluated
in terms of Average Run Length—ARL, i.e. the average number of samples
needed before to get the first out-of-control (reject the null hypothesis that a truly
out-of-control process is under control). Simulations are designed so that for each of
the 1,000 data generations five independent samples of size n D 20 are created and
the control charts are applied until the first out of control is reported. The in-control
pooled dataset Y0 was generated by n0 D n � 2 random values (m D 2).

Results of normal errors and skewed and heavy-tailed errors (due to space
requirements, tables only for the case of dependent random errors), for p D 5 and
p D 10, respectively, are shown in the tables below (Tables 28.1, 28.2, 28.3, 28.4).

First of all, let us consider results under the null hypothesis. We estimated the
type one error considering a 0.5 % ˛-level. As we can see, all NPC charts properly
respect the nominal level, while X-bar and Hotelling (which are not appropriate for
ordinal data) appear strongly biased (the first) and quite conservative (the second).

Under the alternative hypothesis, the Anderson–Darling with Tippet and Multi-
Focus with iterated combining functions seem to perform better than other NPC
solutions [13].

28.5 Conclusion

As confirmed by the simulation study and by the real case study, we can state that the
proposed NPC chart for ordered categorical response variables may represent a good
alternative with respect to existing techniques. Furthermore, control charts based
on NPC can manage with any dependence relation among variables and any kind
of variable (even mixed variables with possible presence of missing observations).
An important property which can be very useful in real applications is represented
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by the finite sample consistency of NPC-based tests (see [13]) which can help in
gain power keeping fixed the sample size and increasing the number of informative
variables. Regarding some directions for future research, an effective way to gain
additional power could be the inclusion in the same problem of more than one aspect
(so-called multi-aspect strategy). Finally, additional research is needed to study the
effect of heteroscedastic random errors and extensions to single case data could be
of interest for future research.
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Chapter 29
The Latest Advances on the Hill Estimator
and Its Modifications

M. Ivette Gomes and Milan Stehlík

Abstract Recent developments on the Hill and related estimators of the extreme
value index are provided. We also discuss their properties, like mean square error,
efficiency and robustness. We further discuss the introduction of underlying score
functions related to modified Hill estimators.

Keywords Extreme value index • Efficiency • Heavy right tails • Hill estimator
Modified Hill estimators • Mean square error • Robustness • Score function

29.1 Estimators Under Study and Scope of the Paper

Let us consider a sample of size n of independent, identically distributed random
variables (r.v.’s), X1; : : : ; Xn, with a common distribution function (d.f.) F . Let us
denote byX1;n � � � � � Xn;n the associated ascending order statistics (o.s.) and let us
assume that there exist sequences of real constants fan > 0g and fbn 2 <g such that
the maximum, linearly normalized, i.e. .Xn;n � bn/ =an, converges in distribution to
a non-degenerate random variable. Then, the limit distribution is necessarily of the
type of the general extreme value (EV) d.f., given by

G�.x/ D
	

exp.�.1C �x/�1=� /; 1C �x > 0; if � 6D 0

exp.� exp.�x//; x 2 <; if � D 0:
(29.1)

F is then said to belong to the max-domain of attraction of G� and we use the
notation F 2 DM

�
G�
�
. The parameter � , in (29.1), is the extreme value index

M.I. Gomes (�)
Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa
e-mail: ivette.gomes@fc.ul.pt

M. Stehlík
Department of Applied Statistics, Johannes Kepler University, Linz, Austria

Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V,
Valparaíso, Chile
e-mail: Milan.Stehlik@jku.at

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__29

323

mailto:ivette.gomes@fc.ul.pt
mailto:Milan.Stehlik@jku.at


324 M.I. Gomes and M. Stehlík

(EVI), the primary parameter of extreme events. We further use the notation DCM WD
DM

�
G�>0

�
.

Let us denote RVa the class of regularly varying functions at infinity, with an
index of regular variation equal to a 2 <, i.e. positive measurable functions g.�/
such that for all x > 0, g.tx/=g.t/ ! xa, as t ! 1 (see [6], for details on regular
variation). The EVI measures the heaviness of the right tail function F .x/ WD 1 �
F.x/; and the heavier the right tail, the larger � is. In this paper we shall consider
Pareto-type underlying d.f.’s, with a positive EVI, or equivalently, models such that
F .x/ D x�1=�L.x/, � > 0, with L 2 RV0, a slowly varying function at infinity, i.e.
a regularly varying function with an index of regular variation equal to zero. These
heavy-tailed models are quite common in the most diverse areas of application.

In Sect. 29.2, we provide a few properties of the Hill EVI-estimator and a few
related estimators, like the mean of order p of those same statistics, the generalized
Hill and corrected-Hill EVI-estimators. We compare asymptotically at optimal
levels, in the sense of minimum mean square error (MSE) some of those EVI-
estimators. Finally, in Sect. 29.3, we approach the use of score functions for the
H-estimator to obtain some desirable properties, e.g. robustness.

29.2 The Hill (H) and a Few Related EVI-Estimators

For heavy-tailed models, i.e. if F 2 DC
M

, the simplest class of EVI-estimators is
proposed in Hill [28]. The H-estimator, also denoted Hk;n, is the average of the
log-excesses as well as of the scaled log-spacings, given by

Vik WD lnXn�iC1;n=Xn�k;n and Wi WD i flnXn�iC1;n=Xn�i;ng ; 1 � i � k < n;

(29.2)
respectively. We thus have

Hk;n WD 1

k

kX

iD1
Vik D 1

k

kX

iD1
Wi ; 1 � k < n: (29.3)

The asymptotic properties of Hk;n have been thoroughly studied by several authors.
See the recent reviews in [4] and [21]. Note that with F .x/ WD inffy W F.y/ � xg
denoting the generalized inverse function of F , and

U.t/ WD F .1 � 1=t/; t � 1; (29.4)

the reciprocal quantile function, we can write the distributional identityX
dD U.Y /,

with Y a unit Pareto r.v., i.e. an r.v. with d.f. FY .y/ D 1 � 1=y; y � 1. For the o.s.
associated with a random Pareto sample .Y1; : : : ; Yn/, we have the distributional

identity Yn�iC1;n=Yn�k;n
dD Yk�iC1;k , 1 � i � k. Moreover, kYn�k;n=n

p�!
n!11,
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i.e. Yn�k;n
p� n=k. Consequently, and provided that k D kn, 1 � k < n, is an

intermediate sequence of integers, i.e. if

k D kn ! 1 and kn D o.n/; as n ! 1; (29.5)

we get

Uik WD Xn�iC1;n
Xn�k;n

dD U.Yn�iC1;n/
U.Yn�k;n/

dD U.Yn�k;nYk�iC1;k/
U.Yn�k;n/

dD Y
�

k�iC1;k.1Cop.1//;
(29.6)

i.e. Uik
p� Y

�

k�iC1;k . Hence, lnUik � � lnYk�iC1;k D �Ek�iC1;k, 1 � i � k;

with E denoting a standard exponential r.v. The log-excesses, Vik D lnUik , 1 �
i � k, in (29.2), are thus approximately the k top o.s. of a sample of size k from an
exponential parent with mean value � . This justifies the H-estimator, in (29.3). For
first and second-order conditions see [27] and the references therein.

29.2.1 A Mean of Order p (MOP) and the Generalized Hill
(GH) EVI-Estimators

Note that we can write

Hk;nD
kX

iD1
ln .Xn�iC1;n=Xn�k;n/1=k D ln.

kY

iD1
Xn�iC1;n=Xn�k;n/1=k ; 1�i�k < n;

the logarithm of the geometric mean of the statistics Uik, given in (29.6). More
generally, as done in [9], we can consider as basic statistics for the EVI-estimation,
the MOP of Uik, i.e. the class of statistics

Ap.k/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�
1
k

kP
iD1

U
p

ik

�1=p
; if p > 0

� kQ
iD1

Uik

�1=k
; if p D 0:

(29.7)

From (29.6), we can write Up

ik D Y
�p

k�iC1;k.1C op.1//. Since E.Y a/ D 1=.1� a/
if a < 1, the law of large numbers enables us to say that if p < 1=� ,

Ap.k/
p�!

n!1 .1=.1� �p//1=p . Hence the reason for the class of MOP EVI-

estimators,
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H.p/

k;n WD

8
<̂

:̂

�
1 �A�pp .k/

�
=p; if p > 0

lnA0.k/ D H.k/; if p D 0;

(29.8)

with Ap.k/ given in (29.7), and with H.0/

k;n 
 Hk;n, given in (29.3). This class of
MOP EVI-estimators depends on this tuning parameter p � 0, which makes it very
flexible, and even able to overpass for finite samples one of the simplest and one
of the most efficient EVI-estimators in the literature, the corrected-Hill (CH) EVI-
estimator in [10].

The slope of a generalized quantile plot led to the GH EVI-estimator in [2],
further studied in [3], with the functional form,

GHk;n D Hk;n C 1

k

kX

iD1
fln Hi;n � ln Hk;ng :

29.2.2 Asymptotic Properties of the Hill and Related
EVI-Estimators

Weak consistency of any of the aforementioned EVI-estimators is achieved when-
ever F 2 DCM and k is intermediate, i.e. (29.5) holds. Under the validity of
an adequate second-order condition (see [27]), it is possible to guarantee their
asymptotic normality. More precisely, denoting T any of the aforementioned EVI-
estimators, and with A.t/ a function converging to zero as t ! 1, measuring the
rate of convergence of the sequence of maximum values to its non-degenerate limit
and such that jAj 2 RV�, � � 0 a shape second-order parameter, it is possible to
guarantee the existence of .bT ; �T / 2 < � <C, such that

Tk;n
dD � C �T P

T
k =

p
k C bT A.n=k/C op.A.n=k//; (29.9)

with PT
k an asymptotically standard normal r.v. Details on the values of .bT ; �T /

in (29.9) are given in the aforementioned papers associated with the T -estimators.

29.2.3 Asymptotic Comparison at Optimal Levels
of the H, MOP and GH EVI-Estimators

We shall next proceed to the comparison of the aforementioned EVI-estimators
under study at their optimal levels, in a way similar to the one used in several articles
on the topic. See [25] and the references therein. Let us assume that Tk;n denote any
arbitrary semi-parametric EVI-estimator for which (29.9) holds for any intermediate



29 The Latest Advances on the Hill Estimator and Its Modifications 327

sequence of integers k D kn, and where PT
k is an asymptotically standard normal

r.v. Then, we have
p
k
�
Tk;n � �

� d! Normal.�bT ; �2T / as n ! 1; provided that k

is such that
p
k A.n=k/ ! �, finite, as n ! 1. We then write Bias1

�
Tk;n

� WD
bT A.n=k/ and Var1

�
Tk;n

� WD �2T =k. The so-called asymptotic mean square error
(AMSE) is then given by AMSE

�
Tk;n

� WD �2T =k C b2T A
2.n=k/. Regular variation

theory [6] enables us to show that, whenever bT ¤ 0, there exists a function

'.n/ D '.n; �; �/, such that limn!1 '.n/ AMSE
�
T0n

� D �
�2T
�� 2�

1�2�
�
b2T
� 1
1�2� DW

LMSE
�
T0n

�
; where T0n WD TkT0 .n/;n

and kT0 .n/ WD arg mink AMSE
�
Tk;n

�
. More-

over, if we more restrictively assume that A.t/ D �ˇt�; � < 0;

kT0 .n/ WD arg min
k

MSE .Tk;n/ D �
�2T n

�2�=
�
b2T �

2ˇ2.�2�/��1=.1�2�/ .1C o.1//:

It is then usual to consider the following definition, where we introduce an AREFF-
indicator conceived so that the highest the AREFF is, the better is the first estimator.

Definition 1. Given two biased estimators T .1/k and T .2/k , for which a distributional
representation of the type of the one in (29.9) holds, with constants .�1; b1/ and
.�2; b2/, b1; b2 6D 0, respectively, both computed at their optimal levels, the
Asymptotic Root Efficiency (AREFF) of T .1/0n relatively to T .2/0n is

AREFF1j2 
 AREFF
T
.1/
0n jT .2/0n

WD
vuutLMSE

�
T
.2/
0n

�

LMSE
�
T
.1/
0n

� D
���2
�1

��2� ˇ̌
ˇ
b2

b1

ˇ̌
ˇ
� 1
1�2�

:

As detected in [9], at optimal levels, the MOP EVI-estimator, with p optimally
chosen, i.e. p WD arg infp<1=.2�/ AMSE

�
H
.p/
0n

�
, denoted merely MOP in Fig. 29.1,

can beat the H-estimator in the whole .�; �/-plane. But it can be beaten by the GH-
estimator, unless � is small. In Fig. 29.1 we exhibit the comparative behaviour of
the aforementioned EVI-estimators.

The MOP EVI-estimators have thus a nice performance in a region of the .�; �/-
plane quite usual in practice. But if we are in a region of .�; �/ around the line
providing bGH D 0, the GH outperforms the MOP at optimal levels, unless � D 0.

29.2.4 Location-Invariant H-Estimators and Corrected
Hill EVI-Estimators

As mentioned by several authors, the inadequate use of the H-estimator for shifted
data can lead to drastic systematic errors. Such a non-invariance for shifts of the
H-estimator led the authors in [17] to the study of the location invariant Hill-type
estimator
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Fig. 29.1 Comparative overall behaviour of the classical EVI-estimators under consideration

Hk;n.k0/ WD 1

k0

kX

iD1
ln
��
Xn�iC1;n � Xn�k;n

�
=
�
Xn�k0C1;n �Xn�k;n

��
;

with k0 < k adequately chosen (the rate of convergence is of the order ofp
k0 <

p
k, but the asymptotic bias can be drastically reduced). An algorithm

for the choice of k0 and k is provided in [17], as well as full information on the
asymptotic bias and variance of these EVI-estimators. For a discussion on location-
invariant H-estimators, we recommend the reading of [1], where the H-estimators
are transformed into scale/location invariant estimators through the use of the
transformed sample X.q/

n WD �
XnWn � XnqWn; Xn�1Wn �Xnq Wn; : : : ; XnqC1Wn � Xnq Wn

�
,

where nq D bnqc C 1, with bxc denoting the integer part of x. We can have
0 < q < 1, for any F 2 DM .G�>0/ (the random threshold, XnqWn, is an empirical
quantile), and q D 0, for d.f.’s with a finite left endpoint xF (the random threshold
is the minimum, X1Wn). Any statistical inference methodology based on the sample
of excessesX.q/

n is called a PORT-methodology, with PORT standing for peaks over
random thresholds, a term coined by the authors in [1]. This methodology enabled
the introduction and study of classical location/scale invariant EVI-estimators, like
the PORT-Hill estimators, among others, studied for finite-samples in [22]. See also
[18, 24] and [26].

Let us next consider any “classical” semi-parametric EVI-estimator, Tk;n, valid
for � > 0. Let us also assume that a distributional representation similar to the one
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in (29.9) holds for Tk;n, with .b
T
; �

T
/ replaced by .b; �/ for the sake of simplicity.

The pattern of these estimators exhibits thus the same type of peculiarities:

• high variance for high thresholdsXn�k;n, i.e., for small values of k;
• high bias for low thresholds, i.e., for large values of k;
• a small region of stability of the sample path (plot of the estimates versus k), as

a function of k, making problematic the adaptive choice of the threshold, on the
basis of any sample paths’ stability criterion;

• a “very peaked” MSE, making difficult the choice of k0 WD arg infk MSE .Tk;n/.

The preceding peculiarities have led researchers to consider the possibility of
reducing the bias term, building new estimators T Rk;n, the so-called second-order
reduced-bias (SORB) EVI-estimators. Particularly, for heavy tails, i.e., � > 0, the
reduction of bias is a very important problem involved in the estimation of � or
the Pareto index, ˛ D 1=� , in case the slowly varying part of the Pareto type
model disappears at a very slow rate. Under an adequate second-order condition
and for k intermediate, there exist �R > 0 and an asymptotically standard normal
r.v. PT

k , such that for a large class of models in DCM , and with A.:/ the function

in (29.9), T Rk;n
dD �C�RP

T
k =

p
kCop.A.n=k//: Notice that for such reduced-bias

estimators we no longer have a dominant component of bias of the order ofA.n=k/,
as in (29.9). Therefore,

p
k
�
T Rk;n � �

� �!d
n!1 Normal

�
0; �2

R

�
not only whenp

kA.n=k/ ! 0, as for the classical estimators, but also when
p
kA.n=k/ ! �,

finite and non-null. Such a bias reduction provides usually a stable sample path for a
wider region of k-values and a reduction of the MSE at the optimal level, in the sense
of minimum MSE. These optimal levels should be such that

p
kA.n=k/ ! 1, as

n ! 1.
Such an approach has been carried out for heavy tails in the most diverse

manners. The key ideas are either to find ways of getting rid of the dominant
component bA.n=k/ of bias in (29.9), or to go further into the second-order
behaviour of the basic statistics used for the EVI-estimation, like the log-excesses
or the scaled log-spacings in (29.2). The accommodation of bias in the log-excesses
led the authors in [23] to investigate a class of weighted combinations of the log-
excesses denoted weighted Hill (WH) estimators, more robust than the H-estimators,
and given by

TWH
k;n; Ǒ; O� WD 1

k

kX

iD1
p
ik
. Ǒ; O�/ Vik; pik. Ǒ; O�/ WD e

Ǒ .n=k/ O�..i=k/�O��1/=. O� ln.i=k//;

where . Ǒ; O�/ are suitable consistent estimators of the second-order parameters
.ˇ; �/, in A.t/ D �ˇt� . It is a class of minimum-variance reduced-bias (MVRB)
estimators, in the sense that these estimators can have an asymptotic variance
equal to the one of the H-estimators but an asymptotic bias of smaller order, and
therefore seems to open interesting new perspectives in the field. Related work
appears in [10] and [20]. The authors in [20] suggest the class of EVI-estimators,
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M
k;n; Ǒ; O� WD Hk;n � Ǒ .n=k/ O� OC1; OC1 D 1

k

Pk
iD1 .i=k/

�O� Wi ; with Wi ; 1 � i � k,
given in (29.2). With the same objectives, but with a slightly simpler analytic
expression, we also refer the estimator H

k;n; Ǒ; O� WD Hk;n

�
1 � Ǒ .n=k/ O� =.1 � O�/�,

studied in [10]. Notice that the dominant component of the bias of the H-estimator
is estimated in two different ways for M

k;n; Ǒ; O� and H
k;n; Ǒ; O�; and directly removed

from the H-estimator. The key of success of these MVRB EVI-estimators lies in
the estimation of ˇ and � at a level k1, such that k D o.k1/, with k the number of
top o.s. used for the EVI-estimation. The level k1 needs to be such that . Ǒ; O�/ is
consistent for the estimation of .ˇ; �/ and O�� � D op.1= lnn/. For more details on
the choice of k1, see [19, 23], and more recently [11].

29.3 Score Functions for the Hill Estimator

In several applications we need some specific properties of estimators, e.g. robust-
ness (see [31] for normality testing against Pareto tails).

A standard score function is typically considered to be a base for statistical
inference. Sometimes it is overlooked that pioneering works on score functions,
e.g. [13,16,30] considered as a base the normal distribution, which is defined on the
whole line. In such a setup, if a parameter is going to be inferred, we have typically
a translation group closely related to its score function. This standard score is the
gradient wrt 
 of the logarithm of the likelihood function, i.e.

S.
;X/ D @

@

logL.
 IX/:

In this paper we consider only a semi-parametric setup. For a nonparametric
analogy see [12] where scores Sn D B2

A
@
@xn

logf .xnjxn�1/ C xn
A

are defined for a
conditionally exponential family in the linear modelXn D ASnCB�n; where A;B
are known constants, �n is Gaussian noise, .Xn; Sn/; n > 1 is a two-component
Markov process, .Xn/ is an observable process and .Sn/ is an unobservable useful
process.

In our setup, let X be the support of the distribution F with density f ,
continuously differentiable according to x 2 X and let � W X ! < be given
by [29] �.x/ D x; ifX D <; �.x/ D log.x � a/; ifX D .a;1/ and
�.x/ D log x

1�x ; ifX D .0; 1/. Then the transformation-based score or shortly
the t-score [14] is defined by

T .x/ D � 1

f .x/

d

dx

�
1

�0.x/
f .x/

�
;

which expresses a relative change of a “basic component of the density”, the density
divided by the Jacobian of mapping �.



29 The Latest Advances on the Hill Estimator and Its Modifications 331

It is clear that for the Normal distribution, which is an archetypical distribution,
we have �.x/ D x; S.x; 
/ D d

d

logf .x; 
/ and O
 D MLE, with MLE standing

for maximum likelihood estimator, is the solution of
Pn

iD1 S.Xi ; O
/ D 0.
However, for the Pareto distribution we can consider at least two recently

implemented approaches, MLE, which is related to the “standard score” estimation
with � D id and SF .X; ˛/ D 1

˛
� logx and t-score estimation with �.x/ D

log.x � 1/ (see [31] and [32]). Notice that the MLE is not robust wrt right outliers,
i.e. if Xi ! inf, then Ǫ # 0. For a t-estimation we have

SF .x/ D ˛
�
1 � ˛ C 1

˛x

�
:

Thus standard estimation
P
SF .g/.Xi / D 0 gives us Ǫ D 1

x�1 (where x D nP
1
xi

is a harmonic mean) which is an estimator apparently robust against right-outliers.
This allows us to define the t-Hill estimator by (see [31])

H�k;n D 1

Ǫk;n D
�
1

k

kX

iD1

Xn�k;n
Xn�jC1;n

��1
� 1:

Note that if we consider a generalization to p < 0 of the MOP functionals
in (29.8), we get H�k;n D H

.�1/
k;n . To justify such a construction we remark that

formal heavy-tailed propositions can only be satisfactorily involved for empirical
constructs if sample data can be taken as a reasonable representation of the
underlying distribution. In practice, distribution data may be contaminated by
errors. The point of departure is the recent research which has shown that the Hill
estimator is non-robust. This means that small amounts of data contamination in
the wrong place can reverse unambiguous conclusions. The “wrong place” usually
means in the upper tail of the distribution. As shown in [7], small errors in the
estimation of the tail index can bring large errors in the estimation of quantiles.
Robust methods for extreme values have been recently addressed in the literature
(e.g. [8] considered robust estimation in the strict Pareto model, [33] proposed
robust tail index estimation procedure for the semi-parametric setting of Pareto-type
distributions). As discussed in the paper [32], t-estimation is at least a competitive
estimation technique in the presence of heavy tails. In [15] we have shown that t-
estimation is clearly better when contamination is present. The weak consistency of
the t-Hill estimator has been proven under standard regularity conditions in [31].
Asymptotics and robustness of the t-Hill estimator is studied in [5].
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Chapter 30
Multivariate Stochastic Volatility Estimation
Using Particle Filters

K. Triantafyllopoulos

Abstract A particle filter algorithm is proposed for sequential estimation of
volatility and cross-correlation of multivariate financial time series. The returns of
prices of assets, such as shares traded in the stock market, are modelled with a skew-t
distribution, which is able to capture the heavy tails and asymmetry of financial
returns, and the inverse of the volatility covariance matrix is modelled via a Wishart
autoregressive process. Motivated from the conjugacy between the Gaussian and
the Wishart distributions, we describe a new choice for the importance density and
we modify an existing approach of dealing with the model hyperparameters, using
Gaussian mixtures. The proposed methodology is illustrated with data consisting of
three constituents of the FTSE-100 stock index.

Keywords Multivariate volatility • Particle filters • Skew-t distribution • Wishart
process

30.1 Introduction

Over the last two decades, multivariate volatility models and related computational
algorithms have been established to quantify forecast uncertainty and to enable
risk management [4]. There are two main categories of models (a) multivariate
generalised autoregressive conditional heteroscedastic models (MGARCH) and
(b) multivariate stochastic volatility models (MSV). MGARCH, reviewed in [3],
model the volatility covariance matrix as a function of past returns and adopt
likelihood-based estimation methods for inference and forecasting. MSV, reviewed
in [1,11] and in [20], treat the volatility as a stochastic process and adopt simulation-
based estimation methods, usually Markov chain Monte Carlo (MCMC). The
advantages of Bayesian inference via MCMC, widely reported by many authors
[5], offer increased flexibility and adaptability to real data. However, MCMC
is aimed at off-line application, because each time out-of-sample estimation or

K. Triantafyllopoulos (�)
School of Mathematics and Statistics, University of Sheffield,
Hicks Building, Sheffield S3 7RH, UK
e-mail: kostas@sheffield.ac.uk

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__30

335

mailto:kostas@sheffield.ac.uk


336 K. Triantafyllopoulos

forecasting is required, the Markov chain has to be re-initialised. Together with
the fact that MCMC is computationally demanding, off-line application limits its
use, in particular with the view of portfolio selection [4]. The nature of sequential
application required in industry (e.g. for daily or tick data) call for sequential
simulation-based methods. Such methods, including particle filters or sequential
Monte Carlo, have been discussed previously [10,12], but the literature is dominated
by off-line estimation methods such as MCMC.

In this paper we develop a particle filter procedure, aimed at sequential volatility
estimation. Following recent advances in covariance matrix processes [8, 9, 14, 15,
18,19], we adopt a Wishart autoregressive process for the evolution of the precision
covariance matrix (inverse of the volatility covariance matrix). We consider a skew-t
distribution in the returns model, which is able to capture heavy tails and asymmetry
of the returns. We propose a novel approach for the importance density, based on the
conjugacy between the Gaussian and the Wishart distributions. In order to estimate
the hyperparameters of the model, such as the skewness parameters, we adopt a
modified version of [12], according to which the distribution of the hyperparameters
is modelled via a Gaussian mixture. Unlike the previous reference, we do not
adopt auxiliary particle filtering; instead, we develop a slightly different simulation
approach. We illustrate the methodology by considering data, consisting of returns
of three constituents of the FTSE-100 stock index.

The remainder of the paper is organised as follows. Section 30.2 describes
the model and the following section discusses inference using the particle filter.
Section 30.4 analyses the three-variate financial data mentioned above and finally
conclusions are given in Sect. 30.5.

30.2 Model Set-up

Suppose that yt D Œy1t ; : : : ; ypt �
T denotes the log-return column vector at time t ,

i.e. yit D log.pit=pi;t�1/, where pit is the price of asset i at time t and T denotes
transposition .i D 1; : : : ; p/. The conditional covariance matrix of yt is known as
volatility matrix and its estimation is the main purpose of this paper. A first model
postulates that yt follows a Gaussian distribution, described by

yt D �C �t ; �t � Np.0;˙t /; (30.1)

where � is the mean vector of yt , �t is a random vector following the p-dimensional
Gaussian distribution with zero mean vector and volatility covariance matrix ˙t ,
which is assumed to be symmetric and positive definite. The innovation vector �t
is assumed to be independent of �s , for t ¤ s. The mean vector � may be equal
to the zero vector, but usually it is fluctuating around zero, allowing positive or
negative returns estimation necessary for portfolio optimisation. We consider that
the volatility matrix˙t is stochastic and is generated by an inverse Wishart process,
described by



30 Multivariate Stochastic Volatility Estimation Using Particle Filters 337

˙�1t j ˙t�1 � W.k; k�1A˙�1t�1AT /; (30.2)

whereA is a p�p autoregressive parameter matrix of full rank andW.k; S/ denotes
a Wishart distribution with k > p � 1 degrees of freedom and scale matrix S . From
properties of the Wishart distribution it follows that E.˙�1t j ˙t�1/ D kS D
A˙�1t�1AT , which defines an autoregressive process for the precisions. It is further
assumed that ˙t is independent of �t and that initially ˙�10 � W.�; V /, for some
degrees of freedom � > p � 1 and some scale matrix V . The model consists
of (30.1) and (30.2), together with the initial distribution of ˙�10 ; in this model,
the hyperparameters are �; k;A; �; V . From (30.2) it follows that given ˙t�1, ˙t

follows an inverse Wishart distribution with k degrees of freedom and scale matrix
S�1, i.e. ˙t j ˙t�1 � IW.k; k.AT /�1˙t�1A�1/. From this we can write that
E.˙t j ˙t�1/ D C˙t�1C T and hence˙t follows an autoregressive process, where
C D k1=2.k � p � 1/�1=2.AT /�1. Similar processes for the volatility are discussed
in [19].

The above model relies on the Gaussian distribution assumption of the log-
returns yt . However, in financial time series it is well known that such an assumption
is usually wrong or not empirically motivated. This is because financial returns
typically exhibit the following characteristics (sometimes referred to as stylised
facts):

1. Returns have heavy tails, certainly heavier than the Gaussian distribution.
In practical terms this means that tail or extreme events (such as positive high
and negative low returns) have more probability to occur than in the Gaussian
distribution.

2. Returns are asymmetric, that is a low negative return (linked to loss) does not
have the same probability as a high positive return (linked to profit). Typically,
there are more frequent positive returns, but their magnitude is lower than that of
negative returns (an example of this is shown in Sect. 30.4). Again the Gaussian
distribution is inappropriate as it is symmetric and it places same probability to
positive and negative returns.

In this paper we propose replacing the Gaussian distribution of the returns with
the multivariate skew-t distribution of Azzalini and Capitanio [2]. Thus the returns
model is

yt j ˙t � Stp.0;˙t ; ˛; �/; (30.3)

where ˛ D Œ˛1; : : : ; ˛p�
T is the skewness parameter vector and � the degrees of

freedom. Some comments are in order. First, note that ˛ D 0 reduces the distribution
to a multivariate Student t distribution; ˛i > 0 introduces positive skewness to the
distribution of the return yit and ˛i < 0 negative skewness to yit . We remak that
the distribution allows both ˛i � 0 and ˛j � 0, for i ¤ j (both positively and
negatively skew returns can be incorporated). If � is large, the above distribution
is approximated by a skew-Gaussian distribution. In our study we expect to have
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˛i < 0 (as returns are negatively asymmetric) and � to be small (as we expect the
distribution of the returns to exhibit heavy tails).

Secondly, we note that from [2], the mean vector and the covariance matrix of yt
are given by

� D E.yt j ˙t / D cdiag.˙t /
1=2ı;

and

Var.yt j ˙t/ D �

� � 2
˙t � c2diag.˙t /

1=2ııT diag.˙t /
1=2; (30.4)

where diag.˙t / denotes the diagonal matrix with diagonal elements the diagonal
elements of˙t , c D �1=2
�1=2� Œ.��1/=2�� .�=2/�1, ı D .1CaT˙�t a/�1=2˙�t a,
˙�t D diag.˙t /

�1=2˙tdiag.˙t /
�1=2, � .x/ denotes the gamma function with

argument x, and � > 2. Thus, the mean return � in this distribution depends on
the skewness parameter vector ˛ and the covariance matrix ˙t . Interestingly, non-
zero � is implied by a non-zero ˛; large shifts in ˙t (which imply large volatility),
imply large absolute mean return. Now, ˙t is not the volatility, as the conditional
covariance matrix of yt , given by (30.4) is not equal to ˙t .

The working model adopts the skew-t distribution for the returns (30.3) together
with the Wishart autoregressive evolution of ˙t and the initial distribution ˙�10 �
W.v; V /; the hyperparameters are ˛; �; k; A; v; V .

30.3 Inference Using Particle Filters

Suppose we wish to compute the integral

I D
Z
f .x/p.x/ dx D EŒf .x/�;

where p.�/ is a density function and the integration is performed over the domain of
p.�/. If we simulate N values x.1/; : : : ; x.N/ from p.x/, we can approximate I by
N�1

PN
iD1 x.i/.

Usually, it is difficult to sample from p.�/. Importance sampling suggests to
sample from another density function g.�/ and to approximate I by

I D
Z
f .x/

p.x/

g.x/
g.x/ dx D EŒf .x/w.x/� � 1

N

NX

iD1
f .x.i//w.i/;

where x.1/; : : : ; x.N/ is a sample from g.�/ and w D w.x/ D p.x/=g.x/ is called
weight. For this approach to work, the main requirement is that g.�/ should have the
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same domain as p.�/ and obviously it should be a convenient density we can sample
from.

In many situations, we only know p.�/ up to a proportionality constant, e.g. when
p.�/ is a posterior distribution computed by an application of the Bayes’ theorem
as posterior / likelihood � prior. It turns out that it suffices to know p.�/ up to
a proportionality constant, if we operate with the normalised weights defined by
Qw D wi =

PN
iD1 wi ; for more details the reader is referred to [13].

This simple idea is applied sequentially over time. First we introduce some
notation. For any time t D 1; 2; : : :, let y1Wt D fy1; : : : ; yt g be the collection of
observed data up to and including time t ; likewise, let ˙0Wt D f˙0;˙1; : : : ; ˙t g be
the collection of covariance matrices up to and including time t . Let gt .˙0Wt j y1Wt /
be an importance function, from which we can simulate from. Then we have

wt D p.˙0Wt jy1Wt /
g.˙0Wt jy1Wt / / p.˙0Wt ; yt jy1Wt�1/

g.˙0Wt jy1Wt / / p.˙t ; yt j˙0Wt�1; y1Wt�1/
g.˙t j˙0Wt�1; y1Wt /

p.˙0Wt�1jy1Wt�1/
g.˙0Wt�1jy1Wt�1/

/ p.yt j˙t /p.˙t j˙t�1/
g.˙t j˙t�1; y1Wt / wt�1; (30.5)

where it is assumed that the importance function can be decomposed as g.˙0Wt j
y1Wt / D g.˙t j˙0Wt�1; y1Wt /g.˙0Wt�1jy1Wt�1/. We note that this decomposition is true
if g.˙t j ˙t�1; yt / is equal to p.˙t j ˙t�1; yt / (the density of ˙t , given ˙t�1
and yt ); in general, the above rule enforces that g.�/ behaves in a way similar to
p.˙t j ˙t�1; yt /, which is the optimal importance function (see below).

The particle filter algorithm commences by generating˙.1/
t ; : : : ; ˙

.N/
t from

g.˙t j˙.i/
t�1; yt /, then evaluating the non-normalised weights

w.i/t D p.yt j˙.i/
t /p.˙

.i/
t j˙.i/

t�1/
g.˙

.i/
t j˙.i/

t�1; yt /
Qw.i/t�1

and finally normalise the weights at time t , Qw.i/t D N�1
PN

iD1 w.i/t , and proceed to
time t C 1. The posterior distribution of ˙t at t is approximated as p.˙t jy1Wt / �PN

iD1 Qw.i/t ı.˙t �˙.i/
t /, where ı.�/ denotes the dirac point mass.

In the application of the above algorithm there are three important issues needed
to be dealt with.

1. Particle degeneration. It has been observed that the particles degenerate, i.e.
very few particles have significant weights, the rest are very close to zero. This
results in poor and biased Monte Carlo estimates as very few particles are used.
The solution is to resample the particles, if this happens. The problem is detected
if the effective sample size Neff D .

P
. Qw.i/t /2/�1 is lower than N=3, in which

case we resample the particles; there are several algorithms of resampling in this
context, but here we use multinomial resampling, see, e.g., [6] and [13].

2. Choice of the importance function. Clearly, we should choose an importance
function that we can sample from, but a poor choice would lead to poor
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performance of the algorithm. An obvious choice is to sample from the prior
p.˙t j ˙t�1/, but this is suboptimal, in a sense that we do not take into account
the observation vector yt . On the other extreme the optimal importance function,
which minimises the variance of the weights, is p.˙t j ˙t�1; yt /, but it is usually
hard or not possible to sample from.

We propose to sample from p.˙t j ˙t�1; yt /, assuming model (30.1) for yt ,
and use this sampling distribution for the general model (30.3). In other words,
we equate g.˙t j ˙t�1; yt / to the optimal importance function p.˙t j ˙t�1; yt /
obtained in the case of model (30.1). From (30.1) and (30.2) the posterior
distribution of ˙�1t , given˙t�1 and yt is

p.˙�1t j ˙t�1; yt / / p.˙�1t j ˙t�1/p.yt j ˙t/ / det.˙t /
.kC1�p�1/=2

� exp

	
�1
2

tr
�
.yt��/.yt��/TC.AT /�1˙t�1A�1



˙�1t



;

where det.�/ denotes determinant and tr.�/ is the trace operator. Thus, ˙�1t j
˙t�1; yt � W.k C 1; St /, where S�1t D .yt ��/.yt � �/T C .AT /�1˙t�1A�1.
This implies that ˙t j ˙t�1; yt � IW.k C 1; S�1t /.

3. Hyperparameter estimation. Model (30.2), (30.3) depends on some hyper-
parameters, which are subject to estimation. The successful application of the
particle filter depends on the estimation of such hyperparameters; in the model
of Sect. 30.2 these are �; ˛; �; k; A; v; V .

A first estimation approach is to augment 
 into the state ˙t , i.e. define the
state xt D .˙t ; 
/ and provide the particle filter approximation to the posterior
p.xt j y1Wt /. The problem with this approach is that since 
 is time-invariant
(
t D 
t�1 for all t), this approach is equivalent to sampling 
 from the prior
distribution p.
/; for a detailed discussion see [7] and [13]. To overcome this
problem, [7] suggest to build an artificial evolution for 
 , i.e. 
t D 
t�1 C &t ,
where &t is some random vector with zero mean. This basically overcomes the
problem that 
t D 
t�1 is sampled from p.
/, but it introduces the undesirable
feature that now the hyperparameters are time-varying.

This problem has attracted significant interest, see, e.g., [12, 16] and [17].
In this paper we adopt a modified version of [12]. These authors suggest to
approximate the posterior distribution of 
 by a finite Gaussian mixture with
weights derived from the particle filter of the states. Let N
 and V
 be the mean
vector and covariance matrix of 
 . The joint posterior distribution of˙t and 
 is
approximated by

p.˙t ; 
 j y1Wt / �
NX

iD1
Qw.i/t Np.
 Im.i/; h2V
 /ı.˙t �˙.i/

t /;
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where m.i/ D a
.i/ C .1 � a/ N
 , for some a in .0; 1/ and a2 C h2 D 1. This
setting is necessary to make sure that the mean vector and covariance matrix of

 implied by the Gaussian mixture match those of p.
/.

[12] use the above mixture in order to propose a target importance function
to sample from. Here we propose an alternative approach. Assume that at time
t � 1 we have obtained a sample of ˙.i/

t�1 and 
.i/ together with the weights
Qwt�1. At time t we simulate N draws from the Gaussian mixture (using a
classification variable as described in [12] or [13]), then we simulate from the
importance density g.˙t j ˙t�1; yt ; 
/ (this is given in (2) above) and finally we
calculate the weights w.i/t according to (30.5), which is conditional on 
 D 
.i/,
we standardise the weights and perform the resampling step, if needed. Thus,
our approach differs from that of [12] as we avoid the use of auxiliary filtering to
sample from the importance function.

Only briefly we outline that model choice and model comparison may be
performed via an evaluation of the log-likelihood function. Given a data path y1Wn,
by noting the prediction error decomposition, the log-likelihood of .˙1; : : : ; ˙n/ is
` D Pn

tD2 logp.yt j y1Wt�1/p.y1/. Thus we can approximate ` by

Ò D
nX

tD1
log

NX

iD1
Qw.i/t�1p.yt j ˙.i/

t /;

where p.yt j ˙.i/
t / is the density of a skew-t distribution. More details of likelihood-

based model comparison for particle filters are given in [10].

30.4 Illustration

In this section we consider data consisting of share prices of three assets, Cairn
Energy (CE), Anglo America (AA) and Associate British Foods (ABF) traded in
the FTSE-100 stock index. The data collected on daily frequency, span a four-year
period, 2 January 2006 to 24 December 2009. The prices are transformed to log-
returns, which are depicted on the left panel of Fig. 30.1. The returns of AA and ABF
are somewhat similar: there appears to be increased uncertainty around the end of
2008. Up to 2009 the returns of CE are quite similar to the returns of AA and ABF,
but in the end of 2009 there is a very low negative return of CE. A simple descriptive
statistical analysis reveals that the skewness coefficients of CE, AA and ABF are
�24:97, �0:15 and �0:07, respectively. We note that they are all negative, indicating
presence of skewness in the distribution of the returns, in particular for CE, which
is clearly shown in Fig. 30.1. This and the presence of heavy tails (sample statistics
are not given here) motivate the adoption of the skew-t distribution of Sect. 30.2.

We have applied model (30.2) and (30.3). The hyperparameters of this model
are �; v; V , ˛; �; k and A. Out of those, we propose to use historical data (prior
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Fig. 30.1 Estimated volatility (right panel) against log-returns of the FTSE-100 constituents CE,
AA and ABF

to 2 January 2006) to estimate �; v; V and so reduce the hyperparameters subject
to estimation to 
 D .˛; �; k; A/. � is the mean of yt in model (30.1), used for
sampling from the importance function, and is estimated as the sample mean using
historical data; here � D Œ�0:0019; 0:0001;�0:00002�T . v and V are the degrees
of freedom and scale matrix of the initial distribution ˙�10 � W.v; V /. Since
E.˙�10 / D vV , we can choose any arbitrary value v > p � 1 (for the distribution
to be non-singular) and V D v�1S , where S is the sample covariance matrix,
calculated from historical data.

For 
 , we have adopted the Gaussian mixture approach described in Sect. 30.3,
after first transforming � (which must be > 2) to log.� � 2/ and k (which is greater
than p � 1 D 2) to log.k �pC 1), so as the Gaussian mixture be valid (the domain
of each scalar component of 
 to be the real line). Furthermore, we define ˛ D
Œ˛1; ˛2; ˛3�

T the vector containing the skewness parameters of the return of each
asset and allow each ˛i to take values in the real line. Finally, we have transformed
the 3� 3 AR parameter matrix A to its vectorised form (a nine-dimensional column
vector) so as to enable 
 to be a vector and to avoid working with matrix-variate
Gaussian mixtures; in this set-up, 
 is 13-dimensional vector. For the simulation
of the skew-t distribution, we have used the package sn, available in http://cran.

http://cran.r- project.org/web/packages/sn/index.html
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Fig. 30.2 Estimated cross-correlations of the FTSE-100 constituents CE, AA and ABF. Shown
are the correlation between CE and AA, CE and ABF and AA and ABF

r-project.org/web/packages/sn/index.html of the programming language R and for
the simulation of the Wishart distribution, we have used the package MCMCpack
available in http://cran.r-project.org/web/packages/MCMCpack/index.html.

We have used N D 1; 000 particles for each time t . Figure 30.1 shows the
estimated volatilities against the returns. These volatilities are computed by (30.4)
by replacing modes of posterior samples of size N at each time point t of˙t and 
 .
As we can see the volatility estimates seem to reflect the dynamics of the returns.
Figure 30.2 shows the cross-correlation estimates over time. We observe that these
correlations, which again are the modes of each sample correlations, show a clear
dynamic nature with AA and ABF having the highest correlations.

At the last time point (24 December 2009) the estimated inverse of A (which
drives the AR evolution of ˙t ) is

OA�1 D
2

4
0:07179 0:00002 0:00009

�0:00036 0:06199 0:00006

�0:00336 �0:00045 0:06150

3

5

and those of k, � and ˛ are Ok D 8:345, O� D 3:537 and Ǫ D Œ�4:511;�0:558;
�0:540�T . We note the negative skewness of the returns (as a result of negative
skewness parameter), the heavy tails of the returns (as a result of low degrees of

http://cran.r- project.org/web/packages/sn/index.html
http://cran.r-project.org/web/packages/MCMCpack/index.html
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freedom O�) and the stationarity of the volatility process (as a result of the matrix
OCT D Ok1=2. Ok � p � 1/�1=2 OA�1 having eigenvalues inside the unit circle, i.e. �1 D
0:099, �2 D 0:086 and �3 D 0:085).

30.5 Concluding Comments

In this paper we describe a particle filter algorithm for sequential estimation of time-
varying volatility. We propose a skew-t distribution for the returns, which is capable
to deal with the heavy tails and the asymmetry of the returns, and an autoregressive
process for the volatility evolution. A suitable important function is put forward in
conjunction with a new approach to deal with the estimation of the hyperparameters
of the model.

Acknowledgements I should like to thank Dimitris Kugiumtzis for inviting me to present a paper
at the first Conference of the International Society for Non-Parametric Statistics. I am also grateful
to the editors and an anonymous referee.
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Chapter 31
Guaranteed Estimation of Logarithmic Density
Derivative by Dependent Observations

Vyacheslav Vasiliev

Abstract We provide a truncated estimation method to analyze the non-asymptotic
properties of a variety of ratio type functional’s estimators when the data may
possibly be dependent. As an illustration, the parametric and nonparametric esti-
mation problems on a time interval of a fixed length are considered. In particular,
parameters of linear multivariate autoregressive process are estimated. Moreover,
the estimation problem of a multivariate logarithmic derivative of a noise density
of an autoregressive process with guaranteed accuracy is solved. It is shown that
all the truncated estimators have not only guaranteed accuracy in the sense of the
Lm-norm,m � 2; as well as asymptotic properties of basic estimators.

Keywords Ratio estimation • Truncated estimation method • Fixed sample size
• Guaranteed accuracy • Multivariate autoregression • Non-parametric logarithmic
density derivative estimation

31.1 Introduction

Evolution of mathematical statistics is turned to development of data processing
methods by dependent sample of fixed size. One of the possibilities for finding
estimators (parametric and nonparametric) with the guaranteed quality of inference
using a sample of fixed size is provided by the approach of truncated sequential
estimation. The truncated sequential estimation method was developed in [3–5]
(among others) for parameter estimation problems in discrete-time dynamic models.
Using a sequential approach, estimators of dynamic system parameters with known
variance by sample of fixed size were constructed in these papers.

Nonparametric truncated sequential estimators of a regression function were
presented in [7, 8] on the basis of Nadaraya–Watson estimators calculated at
a special stopping time. These estimators have known mean square errors as
well. The duration of observations is also random but bounded from above by a

V. Vasiliev (�)
Tomsk State University, Lenin Ave. 36, Tomsk, 634050 Russia
e-mail: vas@mail.tsu.ru

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__31

347

mailto:vas@mail.tsu.ru


348 V. Vasiliev

non-random fixed number. Results in non-asymptotic parametric and nonparametric
problem statements can be found in [6, 9–11] among others.

In this paper the truncated estimation method of ratio type functionals by
dependent sample of fixed size is presented. This method makes it possible to obtain
estimators with guaranteed accuracy in the sense of the Lm-norm,m � 2: The main
purpose of the paper is to obtain an estimator of the multivariate logarithmic
derivative of a distribution density of noises of an autoregressive process with
unknown parameters. Early similar results for scalar ratio type estimators were
published in [13].

31.2 General Problem Statement and Main Result

Let .˝; F ; P/ be a probability space with a filtration fFngn�0 and let .fn/n�1
and .gn/n�1 be fFng-adapted sequences of random s � q matrices and numbers
respectively.

Let

�N D fN =gN ; N � 1 (31.1)

be an estimator of a matrix �: For instance, the matrix � can be a ratio

� D f=g

and fN and gN are estimators of some matrix f and number g ¤ 0 respectively.
Consider the following modification of the estimator �N W

Q�N .H/ D �N � 	.jgN j � H/; N � 1; (31.2)

where H is a positive number or sequence H D .HN /; defined below and the
notation 	.A/ means the indicator function of set A:

Our main aim is to formulate general conditions on the sequences .fN /; .gN / and
on the parameter H giving a possibility to estimate � with a guaranteed accuracy
in the sense of the Lm-norm,m � 2:

Define for some 'N .m/; wN .�/; H and CV the function

VN .m;�;H/ D CV .'N .m/C wN .�//;

as well as for positive integer p < m; positive numbers HN and number QCV the
function

VN .p/ D QCV Œ'N .p/CH
�2p
N '

p=m
N .m/wp=�N .�/C wN .�/C �N �;

where �N D 	.HN > .1 � ˇ/jgj/; ˇ 2 .0; 1/:
Theorem 1. Assume for some integers m � 1 and � � 1 there exist sequences of
positive numbers .'N .m//N�1 and .wN .�//N�1; decreasing to zero, as well as a
number g ¤ 0 such that for every N � 1 the following assumptions hold
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(1) EjjfN � �gN jj2m � 'N .m/I
(2) E.gN � g/2� � wN .�/:

Then, the estimator Q�N .H/ defined in (31.2) has the following properties

(i) in the case of known positive lower bound g� for jgj; the parameter H in the
definition of the truncated estimator (31.2) should be taken from the interval
.0; g�/ and

Ejj Q�N.H/� � jj2m � VN .m;�;H/I (31.3)

(ii) in the case of unknown g (and g�) for every (possibly slowly decreasing to
zero) sequence H D .HN / of positive numbersHN ; N � 1 and every positive
integer p; satisfying

mp

m � p � �; m > 1 and � > 1;

it holds

Ejj Q�N.HN / � � jj2p � VN .p/: (31.4)

Corollary 1. Assume that � D f=g for some matrix f; where g is defined in
Theorem 1 and, instead of the assumption (1), for some � � 1 there exists sequence
.vN .�//N�1 of non-negative numbers, decreasing to zero, such that

EjjfN � f jj2� � vN .�/; N � 1:

Then the assumption (1) of Theorem 1 is fulfilled, where the function 'N .m/ should
be replaced by the following one:

'N .m/ D vm=�N .m/C wm=�N .�/; m D min.�; �/:

Remark 1. The functions VN .m;�;H/ and VN .p/ may depend on unknown
parameters. At the same time the knowledge of the rate of Lm-convergence
of proposed estimators can be useful in various adaptive procedures (control,
prediction etc.; see Sect. 31.3.2 below as well) and for the construction of pilot
estimators (see, e.g., [2, 12, 14]).

Remark 2. The properties of estimators of the often encountered form G�1N ˚N
(GN and ˚N are random matrices) can be investigated using the presented method
(see, e.g., Sect. 31.3.1 below).
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31.3 Density Estimation of Noises of a Stable First Order
Multivariate Autoregression

31.3.1 Estimation of Parameters of an Autoregression

We show in this section a possibility to apply the presented general truncated method
for guaranteed estimation of matrix parameters in multivariate systems.

Consider the s-dimensional process (s > 1) satisfying the following equation

x.n/ D Ax.n � 1/C �.n/; n � 1; (31.5)

where noises �.n/; n � 1 are i.i.d. zero mean random vectors with finite moments
of the order 16.s � 1/; as well as Ejjx.0/jj16.s�1/ < 1 and the stability condition
for the process (31.5) is satisfied, i.e. all the eigenvalues of the matrix A lie within
the unit circle, see, e.g., [1]. We suppose that the matrix parameterA to be estimated
belongs to a compact set � from the stable region.

Consider the estimation problem of A with a guaranteed accuracy. We define the
estimator of the type (31.2) on the basis of the LSE of the form (31.1)

OAN D ˚NG
�1
N ; N � 1;

where

GN D 1

N
GN ; GN D

NX

nD1
x.n � 1/x0.n � 1/;

˚N D 1

N
˚N ; ˚N D

NX

nD1
x.n/x0.n � 1/; N � 1:

Define the matrix

G
C
N D �NG

�1
N ; �N D det.GN /:

According to the general notation, in this case we have

� D A; �N D OAN ; fN D ˚NG
C
N ; gN D �N :

Using formula (31.5) it is easy to verify that with PA-probability one it holds

lim
N!1GN D F and lim

N!1�N D � > 0;
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where F is a positive definite s � s-matrix, such that �� D inf
A2�� > 0 (see, e.g.,

[1]). Then

f D A�; g D �

and Q�N D QAN ;
QAN D OAN � 	.�N � H/; (31.6)

whereH 2 .0;��/:
Assumptions of Theorem 1 can be verified form D � D 4 similar to, e.g., [2]

sup
A2�

EAjjfN �A�N jj4 � C1

N 2
I sup

A2�
EA.�N ��/4 � C2

N 2
:

Using the assertion (i) of Theorem 1 it can be shown that there exists a given
number C� such that for every N � 1;

sup
A2�

EAjj QAN �Ajj4 � C�

N2
: (31.7)

31.3.2 Nonparametric Estimation of a Multivariate
Logarithmic Density Derivative

Consider the problem of estimating the logarithmic derivative (q D 1 in the general
problem statement),

�.t/ D rf .t/=f .t/

(rf .t/ is a s � 1-vector of the first order partial derivatives of f .t/) of a
distribution density f .t/ of the i.i.d. vector noises �.n/ D .�1.n/; : : : ; �s.n//

0 in the
model (31.5), considered in Sect. 31.3.1. Noises �.n/; n � 1 are zero mean random
vectors with finite moments of the order 4˛; where ˛ D maxf4.s � 1/; � C 1C ıg
for some ı > 0; as well as Ejjx.0/jj4˛ < 1 (the number � will be defined below in
Assumption (f)) and the stability condition is satisfied. It is supposed that the matrix
parameter A to be estimated belongs to a compact set � from the stable region
(see also Sect. 31.3.1).

ASSUMPTION (f) We suppose that the function f .�/ satisfies the following
condition

sup
z2Rs

f .z/ � Cf ;
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and, for some even � � 2; as well as L > 0 and � 2 .0; 1�; for all the partial
derivatives of the order 1C � the Lipshitz condition

jf .1C�/.x/ � f .1C�/.y/j � L jjx � yjj�

holds.
The knowledge of �.t/ is important in various statistical problems, e.g. for con-

structing the algorithm of optimal control of an autoregressive process; estimating
of a regression curve; testing close hypotheses. These problems are of a peculiar
interest in the case of dependent observations: for example, where the logarithmic
derivative of a density is used for designing the optimal algorithms of nonlinear
filtering and adaptive control of random processes (see, e.g., [2] and the references
therein).

We will construct estimators of f .t/ and rf .t/ using the following estimators
Q�.n/ of noises �.n/ in (31.5):

Q�.n/ D x.n/ � A�n�1x.n � 1/; n D 1;N ; (31.8)

where A�n�1 D proj� QAn�1; QAn is the estimator defined in (31.6). By the defini-
tion (31.8), the estimators Q�.n/ can be represented in the form

Q�.n/ D �.n/C .A �A�n�1/x.n � 1/; n D 1;N :

Note that the matrices A� A�n�1 are uniformly bounded

sup
n;A2�

jjA�A�n�1jj � C (31.9)

and, according to (31.7), the following properties of the estimator A�n�1 can be
obtained,

sup
A2�

EAjjA�A�n�1jj4 � sup
A2�

EAjjA� QAn�1jj4 � C�

n2
; n D 1;N : (31.10)

Using (31.9) and (31.10), we can find the known numbers C1 and Cm; such that

sup
A2�

NX

nD1
EAjj.A�A�n�1/x.n � 1/jj2m �

	
C1 logN; m D 1;

Cm; 1 < m � � C 1:
(31.11)

Similar relations were obtained in [2] (see Lemmas 5.1.3 and 5.1.5) for another
type of estimators.

As a nonparametric estimator of a density f .t/ D f .0/.t/ satisfying Assumption
(f) and its partial derivative f .1/.t/ D @f .t/=@tj ; we use the combined statistic of
the form
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b

f
.r/
N .t/ D 1

NhsCrr;N

NX

iD1
K.r/

 
t � Q�.i/
hr;N

!
; r D 0; 1; (31.12)

where K.0/.u/ D K.u/ D Qs
kD1 K.uk/ is an s-dimensional multiplicative

kernel which, generally speaking, does not necessarily possess the characterizing
properties of density (nonnegativity and normalization to 1),K.1/.u/ D @K.u/=@uj ;
sequences of numbers hr;N # 0; N ! 1:

Using technique of Theorems 4.3.1 and 5.1.3 from [2] and (31.11), by appro-
priate chosen kernels K.�/ in (31.12), we can find known numbers C �i ; i D 0I 1;
such that

sup
A2�

EA. OfN .t/ � f .t//4 � C �0

 
1

N 2h2s0;N
C h

4.�C1C�/
0;N

!
;

sup
A2�

EAjjbrf N .t/ � rf .t/jj4 � C �1

 
1

N 2h
2.sC2/
1;N

C h
4.�C�/
1;N

!
:

Thus, to minimize the obtained upper bounds, it is natural to put

h0;N D h1;N D N
� 1
2.�C1C�/Cs

and for obviously defined numbers QC0 and QC1; we have

sup
A2�

EA. OfN .t/ � f .t//4 � QC0N�
4.�C1C�/

2.�C1C�/Cs ;

sup
A2�

EAjjbrf N .t/ � rf .t/jj4 � QC1N�
4.�C�/

2.�C1C�/Cs :

As an estimator of the ratio �.t/ from the observations .x.n//n�1; one can use
the ratio

O�N .t/ D brf N .t/= OfN .t/

of statistics defined in (31.12).
Estimators of type (31.12) of the density and its derivatives from observa-

tions (31.8) (with estimators .A�n/ of an another type) were considered in [2],
Chap. 4, where it was established, in particular, their asymptotic normality and
convergence with probability one. The results on asymptotic ratio estimation of the
partial derivatives of the noise distribution density in multivariate dynamic systems
are given in [2], Sect. 5.1.
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To obtain estimators of �.t/ with a known MSE we apply Theorem 1. Define the
estimator

Q�N .t/ D O�N	. OfN .t/ � H/; N � 1:

Put H D .logN/�1 in the definition of the estimator Q�N .t/: Then, according
to (31.4) with p D 1; m D � D 2; for some number QC using Corollary 1 for N
large enough (to eliminate �N ) we have

EAjj Q�N .t/� �.t/jj2 � QC ŒN�
2.�C�/

2.�C1C�/Cs C .logN/2N�
4.�C�/C2

2.�C1C�/Cs CN
� 4.�C1C�/
2.�C1C�/Cs �:

It should be noted that the obtained rate of convergency of the estimator Q�N .t/
is similar to the case of independent observations (see, e.g., [2]).

31.4 Simulation Study

To confirm theoretical results of Sect. 31.3.1 we realize simulations of the truncated
estimator of the parameter � in the software package MATLAB, where � is the
parameter of the scalar autoregressive process .xn/n�0; satisfying the equation

xn D �xn�1 C �n; n � 1: (31.13)

Here x0 and .�n/n�1 are i.i.d. standard Gaussian random variables and parameter �
is assumed to belong to the stable region (�1,1).

Table 31.1 Truncated estimation of the parameter �

N=100 N=200 N=500
� Q�.N / j S2�.N / Q�.N / j S2�.N / Q�.N / j S2�.N /

H=0,6

0,2 0,201 j 0,009 0,191 j 0,005 0,198 j 0,002
�0,2 �0,219 j 0,011 �0,199 j 0,004 �0,196 j 0,001

0,5 0,496 j 0,007 0,496 j 0,003 0,502 j 0,001
�0,5 �0,489 j 0,007 �0,493 j 0,003 �0,501 j 0,001

0,9 0,887 j 0,002 0,892 j 0,001 0,897 j 3,9e–004
�0,9 �0,869 j 0,005 �0,890 j 0,001 �0,895 j 3,9e–004

H=0,8

�0,2 �0,189 j 0,011 �0,190 j 0,005 �0,198 j 0,002
0,5 0,493 j 0,007 0,486 j 0,004 0,497 j 0,001
�0,9 �0,884 j 0,003 �0,891 j 0,002 �0,895 j 3,6e–004

a The presented results of modeling belong T. Dogadova (aurora1900@mail.ru)
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In Table 31.1 the average

O�.H;N / D 1

100

100X

kD1
Q�.k/.H;N /

of the truncated estimators of the type (31.6)

Q�.k/.H;N / D

NP
nD1

x
.k/
n x

.k/
n�1

NP
nD1
.x
.k/
n�1/2

� 	
"

NX

nD1
.x
.k/
n�1/

2 � HN

#
(31.14)

for the k-th realization x.k/ D .x
.k/
n /; k D 1 : : : 100 of the process (31.13) as well

as quality characteristics

S2�.N / D 1

100

100X

kD1
. Q�.k/.H;N / � �/2

of estimators (31.14) for differentN and H are given.

31.5 Summary

We have presented the truncated estimation method of ratio type multivariate
functionals constructed by dependent samples of finite size. This method allows
to obtain estimators with a guaranteed accuracy (31.3) on a time interval of a fixed
length.

As an illustration, parametric and nonparametric estimation problems are con-
sidered. The presented method was applied to estimation of parameters of a linear
multivariate autoregressive process and of a multivariate logarithmic derivative of
its noise density. Results of simulation confirm the efficiency of the parameter
estimation procedure.

The presented method can be similarly applied to samples from continuous-time
models.

References

1. Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971)
2. Dobrovidov, A.V., Koshkin, G.M., Vasiliev, V.A.: Non-parametric state space models. Kendrick

Press, Heber City (2012) http://www.kendrickpress.com/nonpara.html (Russian original:
Vasiliev, V.A, Dobrovidov, A.V., Koshkin, G.M.: Nonparametric Estimation of Functionals
of Stationary Sequences Distributions. Nauka, Moscow (2004))

http://www.kendrickpress.com/nonpara.html


356 V. Vasiliev

3. Fourdrinier, D., Konev, V., Pergamenshchikov, S.: Truncated sequential estimation of the
parameter of a first order autoregressive process with dependent noises. Math. Methods Stat.
18(1), 43–58 (2009)

4. Konev, V.V., Pergamenshchikov, S.M.: Truncated sequential estimation of the parameters in
random regression. Seq. Anal. 9(1), 19–41 (1990)

5. Konev, V.V., Pergamenshchikov, S.M.: On truncated sequential estimation of the drifting
parametermeant in the first order autoregressive models. Seq. Anal. 9(2), 193–216 (1990)

6. Mikulski, P.W., Monsour, M.J.: Optimality of the maximum likelihood estimator in first-order
autoregressive processes. J. Time Ser. Anal. 12(3), 237–253 (1991). doi: 10.1007/s00184-010-
0333-5

7. Politis, D.N., Vasiliev, V.A.: Sequential kernel estimation of a multivariate regression function.
In: Proceedings of the IX International Conference “System Identification and Control Prob-
lems”, SICPRO’12, pp. 996–1009, V. A. Tapeznikov Institute of Control Sciences, Moscow,
30 January–2 February 2012

8. Politis, D.N., Vasiliev, V.A.: Non-parametric sequential estimation of a regression function
based on dependent observations. Seq. Anal. 32(3), 243–266 (2013)

9. Roll, J., Nazin, A., Ljung L.: A non-asymptotic approach to local modelling. In: The 41st IEEE
CDC, Las Vegas, Nevada, 10–13 December 2002. (Regular paper) (2002). Predocumentation
is available at http://www.control.isy.liu.se/research/reports/2003/2482.pdf

10. Roll, J., Nazin, A., Ljung L.: Non-linear system identification via direct weight optimiza-
tion. Automat. IFAC J. Special Issue on Data-based modelling and system identification
41(3), 475–490 (2005). Predocumentation is available at http://www.control.isy.liu.se/research/
reports/2005/2696.pdf

11. Shiryaev, A.N., Spokoiny, V.G.: Statistical Experiments and Decisions. Asymptotic Theory.
World Scientific, Singapore (2000)

12. Vasiliev, V.A.: On identification of dynamic systems of autoregressive type. Automat. Remote
Control 12, 106–118 (1997)

13. Vasiliev, V.A.: One investigation method of ratio type estimators. Preprint 5 of the Math. Inst.
of Humboldt University, Berlin, 1–15 (2012). http://www2.mathematik.hu-berlin.de/publ/pre/
2012/p-list-12.html

14. Vasiliev, V.A., Koshkin, G.M.: Nonparametric identification of autoregression. Probab. Theory
Appl. 43(3), 577–588 (1998)

10.1007/s00184-010-0333-5
10.1007/s00184-010-0333-5
http://www.control.isy.liu.se/research/reports/2003/2482.pdf
http://www.control.isy.liu.se/research/reports/2005/2696.pdf
http://www.control.isy.liu.se/research/reports/2005/2696.pdf
http://www2.mathematik.hu-berlin.de/publ/pre/2012/p-list-12.html
http://www2.mathematik.hu-berlin.de/publ/pre/2012/p-list-12.html


Chapter 32
Nonparametric Statistics and High/Infinite
Dimensional Data

Frédéric Ferraty and Philippe Vieu

Abstract One of the current challenge proposed to the nonparametric community
is to deal with high dimensional (and possibly infinite dimensional) data. In high
(but finite) dimensional setting the key question is often to proceed to some
variable selection stage. In the infinite framework, which involves the so-called
functional data, an usual approach consists in adapting (or trying to adapt) standard
methodologies by taking suitably into account the infinite dimensional feature of
the problem. While both fields have been widely studied in the few last past years
under parametric (mainly linear) modelling, the challenge is now to develop more
trustable nonparametric methods. The aim of this paper is to discuss the few recent
nonparametric advances made in this direction, as well in functional data analysis
as in model selection when considering a large number of variables, with main
objective to point some interesting tracks for the future. Even if both fields may
look similar for the unadvertised people, we will also emphasize on the structural
differences existing between high (but finite) dimensional data setting and functional
data one.

Keywords Functional data • Infinite dimensional variable • High dimension
statistics

32.1 Introduction

All along their developments most of revolutionary scientific advances had to cope
with old ideas. This is exactly the case for nonparametric techniques in Statistics.
In a natural way, each new problem in Statistics is firstly taken on by simple linear
approach and at each time the main challenge for the nonparametricians has s been
to convince people of the interest and of the feasibility of non-linear approaches.
Because of increasing sources of applications (being possible by technological
progress in collecting, storing and processing data) and because of important open
theoretical questions, most of the current problems in Statistics are concerning

F. Ferraty • P. Vieu (�)
Institut de Mathématiques, Université Paul Sabatier, Toulouse, France
e-mail: ferraty@math.univ-toulouse.fr; vieu@math.univ-toulouse.fr

© Springer ScienceCBusiness Media New York 2014
M.G. Akritas et al. (eds.), Topics in Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 74, DOI 10.1007/978-1-4939-0569-0__32

357

mailto:ferraty@math.univ-toulouse.fr
mailto:vieu@math.univ-toulouse.fr


358 F. Ferraty and P. Vieu

“high” dimensional variables and the challenge for the nonparametricians is to
convince the community of the possible using of nonparametric ideas in this
situation. The aim of this contribution is to discuss two important kinds of problems
involving “high” dimension: functional data analysis and variables selection. These
two problems are at the centre of thousands of papers since a few years but once
again the scientific community is currently far to be convinced of the interest
for developing nonparametric approaches. After a short historical discussion in
Sect. 32.2, we discuss in Sect. 32.3 the main ideas making possible the using of
nonparametrics in functional data analysis while in Sect. 32.4 we present the few
recent advances existing in nonparametric variable selection procedures. The aim of
Sect. 32.5 is double: firstly discussing both the similarities and the structural differ-
ences between functional data and high dimensional ones, and secondly presenting
some situations in which there is some interest for mixing both approaches. One of
the main goals of this contribution is to highlight some tracks for the future in both
fields.

32.2 Nonparametric Modelling in Low Dimensions: Some
Short Historical Background

While the main precursor papers in one-dimensional nonparametric statistics [36,
38, 51] go back to the end of fifties (and even sooner with Tukey’s regressogram
[50]), it took much more time to convince people of the interest of such flexible
modelling approaches. It was not rare for the nonparametricians, even in the 1980s,
to receive sceptical comments as well from the statistical community as from un-
specialist scientists, like Nonparametric smoothing methods will never work, they
need too much data . . . or Nonparametric regression is great but unuseful to provide
some kind of correlation coefficient . . . and so on. Thanks to the efforts of the
statistical community and to the increasing capacity of computers, these old ideas
have been quickly overpassed and nonparametric smoothing has been popularized
to become at the end of the 1980s an incontournable preliminary stage when one
has to deal with univariate data. In this moment various general contributions have
popularized this field of Statistics [10, 13, 28, 46].

Curiously, in the moment as the nonparametric ideas became popular for univari-
ate problems the same phenomenon occurred when one was thinking in multivariate
smoothing! Based on a narrow interpretation of the exponential deterioration (when
the dimension of the problem increases) of the rates of convergence of nonpara-
metric estimates [47], it was not unusual to face arguments like Nonparametric
modelling has no interest nor future when the dimension is greater than 3 or 4,
. . . , going so far as to raise the spectre of the devil through the famous curse
of dimensionality which was one among the most commonly used expressions in
the 1990s in the statistical community. Once again the development of numerous
researches has allowed to overpass these ideas and it is now commonly accepted that
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the dimension is not a curse but a chance for the statisticians (and for the scientists
in general). It is also widely admitted now that nonparametric ideas can be very
efficiently adapted in multivariate situations. Additive modelling (popularized by
Stone [48] and Hastie and Tibshirani [29]) and semiparametric statistics [44,45] are
two famous examples of how smoothing ideas can be suitably used in multivariate
situations.

32.3 Nonparametric Functional Data Analysis

Functional data analysis consists in extracting statistical informations from a sample
	1; : : : ; 	n of objects being of infinite dimensional nature. The technological
progresses have dramatically increased the number of scientific fields having now
to deal with such kind of data, and the need for accurate statistical analyses of
them has been popularized by the various monographies by Ramsay and Silverman
(see [39–41]). Even if they are mostly oriented towards time series modelling the
works by Bosq have also contributed to popularize this field (see [6]). Basically,
the 	i ’s can be curves, images, continuous periods of a single time series, or even
objects having more complicated structure. A typical example is the following
spectrometric dataset (see Fig. 32.1), which serves now as usual benchmark for
testing the behaviour of any new statistical method. In these data, coming from
food quality problems, the 	i ’s are the spectra of light absorbance as function of the
wavelength for a sample of n D 215 pieces of chopped meat.

Of course, each of these curves is not observed in a continuous way but on a
finite grid (composed of 100 equispaced wavelengths in the example depicted in
Fig. 32.1) and there is a first and obvious link between functional and nonparametric
statistics which consists in smoothing each of these curves. This is not really a
difficult problem since it consists just in successive univariate smoothing processes
(exactly 215 univariate smoothings in the example depicted in Fig. 32.1), and this
can be done easily (and at low computational costs) by many one-dimensional
nonparametric techniques (for instance, Splines have been used in Fig. 32.1).

The real question is to find models and methods for extracting informations
from such kind of data in order to solve some statistical problems: clustering,
discrimination, prediction of some extra explanatory variable . . . As a matter of
example, one practical problem associated with the data of Fig. 32.1 was to predict
the quantity of some noxious substance, fatness, moisture, . . . , in each piece of
meat. In a natural way each among these methodological problems has been firstly
investigated through linear point of view, and it was not (maybe it is still not!) easy
to convince people of the possible using of nonparametric ideas in this area. At the
end of the 1990s, when presenting ideas on this topic, it was not rare to receive very
naive negative comments like One knows that nonparametric does not work for high
dimensional data! How can you hope that it works for infinite dimensional ones?

However the reason why it can work is very simple. Looking at what happens
in multivariate settings, it looks like the problem lies in the sparseness of the data.
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While this is true that for standard distances (associated to some functional norm
jj:jj) the number of points falling into some fixed ball is exponentially decreasing
with the dimensionality, this phenomenon can be easily controlled by using other
notion of neighborhood. Said with more mathematical words, by changing the
topological structure on the functional space of the variables 	i one may allow
to reduce these sparseness effects. For instance, in terms of local weighting (and
many nonparametric techniques are based on local weighting), the key idea is to use
neighbourhood based on some general pseudo-distance d

Vd .	0; �/ D fx; d.	; 	0/ � �g;

rather than those based on standard norms

Vjj:jj.	0; �/ D fx; jj	 � 	0jj � �g:

A “good” choice of the pseudo-distance d may insure more concentration of the
functional data, and therefore less sparseness effects. In a natural way, a key
parameter for controlling the behaviour of nonparametric functional method is the
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notion of small ball probability function (also called concentration function) defined
as the measure (respect to the probability distribution of the variable 	) of the
ball Vd .	0; �/. Once again this is not necessarily the same as the measure of the
ball Vjj:jj.	0; �/. In some sense, the using of pseudo-metric is a way for reducing
the dimensionality of the problem since the concentration function based on the
Vd .	0; �/ is expected to be much grater than the one based on the standard notion
of neighbourhoodVjj:jj.	0; �/.

Said with other words, by a “good” choice of d the door is open for applying
to functional data any nonparametric technique based on local weighted average
procedures. Of course, things are not so easy, since the pseudo-metric has to increase
concentration of the data but without losing too much relevant information on them.
Once again this is typical for dimensionality reduction model which has to reduce
the sparseness of the data but still keeping their most informative part. For instance,
in the data presented in Fig. 32.1, the pseudo-metric based on second derivatives of
the curves

d.	; �/ D
sZ

.	00.t/ � �00.t//2 dt;

is a good compromise which concentrates the curves without losing their predictive
power (see [26] for a complete study of these data).1

While the precursor papers combining nonparametric approach with functional
data (see [21, 22]) were not warmly received, this idea starts to be commonly
shared in the statistical community. Thanks to the organizers of the 2002s meeting
[5], which allowed to present these ideas to the whole nonparametric community,
the general contribution [23] has been much more positively received. From a
methodological point of view this field of nonparametric functional data analysis has
been popularized by the book [24], while its feasibility and its good behaviour on
finite samples has been highlighted by various on-line packages (see [14,37]). Now,
these precursor works have been followed by many further works in this area (the
most recent bibliographical surveys can be found in [12, 20, 27]), and also by many
specialized sessions in most of international conferences mixing nonparametric and
functional data ideas as by various special issues in statistical journals. Even if
there are still stubborn people who do not focus on statistical modelling aspects
and who still may argue something like This methodology has no interest since it
cannot apply when using any standard (Gaussian for instance) process in “normed
space”!, our guess is that nonparametric functional statistics will still take more
and more importance in the next future. We hope that this contribution will help in
this sense by convincing the few last sceptics that overpassing the narrow scope of

1Of course, this specific choice is not the best one for any functional data problem, but it is out
of the scope of this short contribution to discuss the crucial question of pseudo-metric choice (see
[24] for large discussion). The only purpose here is to convince people that, by this simple idea,
many nonparametric techniques can be efficiently adapted to functional data analysis.
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normed spaces is a natural and efficient way for doing dimensionality reduction in
functional data analysis.

Of course, saying that nonparametric ideas may be used in any problem involving
functional data does not mean that it will always outperform other approaches. Even
more, our guess is that combinations of the methods (linear and nonparametric
for instance) could lead to very interesting results. For instance, some advances
in this direction involve functional additive modelling [25,34,35], functional single
index modelling [1,2], functional projection pursuit regression [9,17] and functional
partially linear modelling [3, 31]. This field, that one could name functional
semiparametric statistics, has undoubtedly a great future ahead.

32.4 Nonparametric Variable Selection Procedure

For the same technological reasons as for functional data, there is now more and
more situations in which high dimensional data have been collected and need the
attention of the statistician. Basically such data can be expressed as p-dimensional
vectors X1; : : : ; Xn, and it is not unusual to have to face situations in which the
number of variables p is much greater than the number of statistical units n.
An usual and natural way to process is to suppress all the variables being not
informative. This field of Statistics has been very active during the last past years
(and it still does so). Once again, and for obvious simplicity reasons, this question
has been almost exclusively studied under linear modelling assumptions. The most
popular contribution is the LASSO procedure introduced by Tibshirani [49], but
various other methods (many being extensions of the Tibshirani’s LASSO) have
been proposed. A selected list of important contributions in this sense involves
the SCAD-penalized version of LASSO [16], the Dantzig selector [8], the Least
Angle Regression [15], the Elastic Net method [54], the grouped LASSO [52],
the adaptive LASSO [53] and the relaxed LASSO [33]. The reader will find more
complete list of references in the book [7]. There are a few recent advances on non-
linear modelling (for instance, through some additive structural assumptions as in
[30,32,42]), but the fully nonparametric approach of the problem is still a field being
almost virgin. However, as it was the case in Sect. 32.3 before with functional data,
the linear modelling is more and more unsatisfactory (and its validity is more and
more difficult to assess) when the dimension increases.

So, there is an obvious need for developing fully nonparametric model for
this kind of problems. However, saying that, one cannot ignore the difficulty of
the task from a computational point of view; basically, the computational costs
are higher in nonparametrics than in linear approaches and even more, they are
higher and higher as the dimensionality of the problem increases. The precursor
papers by Comminges and Dalalyan [11] and Ferraty and Hall [18] are stating
the first asymptotic results in this field. In addition, [18] proposes an algorithm
for showing the possible implementation and its high interest for finite sample
situations of the flexible nonparametric variable selection procedure. Without any
doubt nonparametric model selection is a great challenge for the next few years,
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and we hope that this contribution will help in this sense. Our point of view on
this question is that, in the short term, the main task for constructing trustable
nonparametric model selection procedures would be to develop artful algorithms
combining flexibility of the model and reasonable run time.

32.5 Similarities and Dissimilarities Between Functional
and High Dimensional Data

It is worth being noted that functional data and high dimensional problems present
not only some similarities but also strong structural differences. As said before, in
practice a functional data is always observed on a finite grid. That means that one
does not have at hands the whole continuous data 	1; : : : ; 	n but high-dimensional
vectorsX1; : : : ; Xn; defined as2

Xi D .	i .t1/; : : : ; 	i .tp/;

where the tj are the points at which the curves 	i have been observed. For instance,
in the spectrometric example depicted in Fig. 32.1, p is equal to 100 (corresponding
to the 100 wavelengths at which the absorbances have been measured). A sample of
these discretized data is presented in Fig. 32.2.

A first naive point of view would be to consider such data as usual high
dimensional vectors, but in this case most of the commonly used methods (linear
ones, for instance) would come against the strong correlation existing between the
variables and would fail. Said with other words, functional data analysis can be seen
as a special case of high dimensional problem, the specificity coming from these
strong correlations. As a matter of consequence, there is a real need for thinking
these two fields of modern Statistics as being more complementary than competitive.

To illustrate a first situation where there are obvious interests in thinking both
fields in a complementary way, let us go back to the spectrometric data depicted
in Fig. 32.1. Chemometricians are quite often interested in two things: firstly in
predicting the quantity of some chemical component (for instance, fatness or
moisture in the data of Fig. 32.1), but also in knowing which part of the spectrum is
of most relevance for predicting this component. While the first question has been
widely studied by means of functional regression models (linear or nonparametric)
the second one has received much less attention. As proposed in [19] it is possible
to solve this problem by combining functional nonparametric ideas described in
Sect. 32.3 with the variable selection methods described in Sect. 32.4. Indeed, the

2For the sake of simplicity we restrict this presentation to balanced situations. In the more general
setting, when the curves are not observed on the same grids, there is a preliminary stage which
consists in smoothing each among the observed un-balanced curves Xi D .	i .ti;1/; : : : ; 	i .ti;pi /;

and then in constructing a new balanced dataset from these smoothed curves.
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Fig. 32.2 The discretized spectrometric curves, and the four most informative points (vertical
lines)

most relevant pointwise part of the continuous spectrum 	 can be obtained by
implementing a nonparametric variable selection procedure acting on the observed
variables 	i .t1/; : : : ; 	i .tp/. For the data in Fig. 32.1, this leads to select as most
informative points for predicting fatness the four ones identified by the vertical lines
in Fig. 32.2.

An other situation of interest is when one has at hand different kinds of data:
some being functional and some other ones being high dimensional vectors. In this
case one has to develop models having one infinite dimensional component (to
capture the structure of the functional variable) and also being able to reduce the
dimensionality of the vector valued variables. The semi-functional model presented
in [4] and the variable selection procedure going with it are advances in this
direction.

These were just two examples of situations where functional data analysis and
variable selection procedures can be very efficiently mixed. Our guess (and our
hope) is that this combination could be the source of many other interests. In any
case, this is also a great challenge for the nonparametricians.
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32.6 Concludings

As a matter of conclusion, one can say that nonparametric statistics had all along
its history to face with dimensionality questions. Large world conferences on
Nonparametric Statistics like those in Spetzes in 1990 (see [43]), in Creta in 2012
(see [5]) and in Chalkidiki in 2012 (from which this book is issued), have been major
moments for making possible strong methodological advances and for overcoming
dimensionality obstacles, and we would thank very much all the organizers of
these three meetings. At the moment, functional data analysis and variable selection
procedures are important fields for which the nonparametric ideas could help in
finding interesting structure and/or information in complex datasets, and for which
the nonparametricians have to convince the community of the interest (and the
feasibility) of these ideas. While people start to be convinced by Nonparametric
Functional Data Analysis (and the Creta’s meeting in 2012 was a crucial moment
for that), this is not so much the case for Nonparametric Variable Selection. We hope
that this contribution will help in motivating further advances on both fields and
particularly on their possible combinations.
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